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Preface 

Bluetongue viruses (BTV) cause diseases that have serious 
economic consequences in ruminants (sheep, cattle) in many 
parts of the world. The incidence of bluetongue disease affects 
the international movement of animals and germ plasm. 
Although the etiological agent of the disease was isolated in 
1900 and preliminary biochemical characterizations were pub
lished as early as in 1969, most of the current understanding of 
the molecular biology, biochemistry, and genetics of BTV has 
evolved only recently. Triggered by the modern techniques of 
molecular biology, genetics, and immunology, BTV research 
has experienced an information explosion in the past 10 years. 
However, much of this information is scattered throughout an 
extensive literature. It is therefore an appropriate time to meld 
this together into a reference book. This book includes compre
hensive information on BTV research provided in articles 
contributed by researchers from around the world. It covers 
what is known about the molecular structure of the virus and 
the current understanding of its biology, evolution, and 
relationships with its invertebrate and vertebrate hosts 
(infection, immunity, and pathogenicity). 

Specific topics covered include a short description of the 
emergence of the disease and its infection patterns. Diagnosis of 
the disease, serology of the infection, pathology, and patho
genesis are described, in addition to the immune response to 
infection in the natural host and in model animals. Much 
progress has been made recently in understanding BTV repli
cation from studies of in vitro culture systems. This is discussed 
with detailed descriptions of how immunoelectron microscopy 
has contributed to our understanding of the various steps in 
virus morphogenesis and the release of progeny viruses from 
infected cells. BTV is transmitted by Culicoides vectors to 
various vertebrate hosts. A separate chapter is therefore 
devoted to the BTV vector relationships. 

Inevitably molecular and genetic studies have come to 
dominate BTV research in recent years, and this is reflected in at 
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least three chapters. The importance of epidemiology, evolution 
of multiple BTV serotypes and their relationships with each 
other has been appreciated for many years. Only recently has 
this been put on to a fundamental basis. The new information 
on BTV regarding the structure and function of the various viral 
genes and their protein products has clarified many of the 
puzzling aspects of this group of viruses and is revealing genetic 
relationships among different virus serotypes. 

The complete sequence of one virus (a US isolate of BTV -10) 
has been reported. The restriction sites of each BTV -10 gene as 
well as the predicted amino acid sequences of the encoded 
proteins have been included as an appendix, pp. 179-193. 

In summary, our goal was to bring together basic and 
molecular aspects of virology and to develop a reference and 
source book for researchers and students at all levels. This could 
not have been accomplished without the contributions and 
support of the individual authors, to whom all credit is due. 

Lastly, we are indebted to Professor Richard Compans, who 
is not only responsible for initiating this book, but has 
constantly provided constructive criticism whenever needed. 

August 1989 
POLLY Roy 

BARRY M . GORMAN 
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1 Bluetongue 

Bluetongue in sheep and cattle was first described in the late 18th century. 
GUTSCHE (1979) attributes the first description of "Tong-sikte" to a French 
zoologist, Francois de Vaillant, who travelled in the Cape of Good Hope between 
1781 and 1784. Although clinical aspects of the disease were recorded by 
HUTCHEON, the Chief Veterinary Officer of the Cape Colony, in his Annual 
Report for 1880, it was not until 1902 that "Malarial Catarrhal Fever" was first 
reported in the scientific literature (HUTCHEON 1902). 

SPREULL (1905) wrote an account of the disease which he believed to be 
peculiar to South Africa. In a typical case description in sheep he indicated that 
the onset was marked by high fever lasting about 5-7 days. By 7-10 days 
distinctive lesions appeared in the mouth, and the tongue became severely 
affected and turned dark blue. He suggested that the word "malarial" was not 
applicable to the disease but that the common name "bluetongue" should be 
used. In his early reports HUTCHEON had suggested that the agent was an insect
transmitted plasmodium. ROBERTSON and THEILER (quoted by SPREULL 1905) 

United States Department of Agriculture, Agricultural Research Service, Arthropod-borne Animal 
Diseases Research Laboratory, P.O. Box 3965, University Station, Laramie, Wyoming, 82071-3965, 
USA 
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2 B. M. Gorman 

showed that the agent was filterable. SPREULL (1905) showed that the virus was 
transmitted to goats and to cattle and that the infection was inapparent. 

Early attempts at vaccination included the use of serum from sheep which had 
recovered from the disease. THEILER (1908) immunized sheep by infection with a 
mild strain of virus which had been serially passaged in sheep. The original 
THEILER strain, now designated as serotype 4, was used for more than 40 years 
despite evidence that the vaccine was not safe and that the resultant immunity 
was not adequate. NEITZ (1948) was the first to recognize antigenically different 
types of bluetongue viruses (BTV) and to provide evidence for strain variation in 
virulence. In a series of cross-protection tests in sheep using ten strains isolated 
over a period of 40 years, NEITZ found that each strain produced solid immunity 
against reinfection, but variable protection against challenge with heterologous 
strains. A quadrivalent vaccine was introduced which included a strain now 
designated as serotype 12, two strains now designated as serotype 3, and the 
original THEILER strain (serotype 4). The serotyping of BTVs is based on serum
neutralization tests developed by HOWELL (1960, 1970). In South Africa the 
composition of bluetongue vaccines has been altered empirically to include new 
serotypes as they were detected (see HOWELL 1969). The present vaccine in use in 
South Africa is composed of a triad, each member containing five attenuated 
serotypes. 

2 The Emergent Disease 

Bluetongue was regarded as a disease of ruminants in Africa until 1943 when an 
outbreak occurred in Cyprus. According to GAMBLES (1949) there had been a 
number of outbreaks in Cyprus beginning in 1924, but in 1943-1944 a 
particularly virulent strain was responsible for about 2500 deaths in sheep. The 
mortality rate in flocks reached 70%. An antigenically distinct strain caused a 
further outbreak in 1946. GAMBLES commented that the same disease in a less 
severe form had been seen in Palestine in 1943 and in Turkey in 1944, 1946, and 
1947. By 1951 bluetongue had been reported in Israel (KOMAROV and GOLDSMIT 
1951); the strain was designated as serotype 4 (HOWELL 1969). 

An apparently new disease entity of sheep known as "soremuzzle" was first 
recognized in Texas in 1948 (HARDY and PRICE 1952). The close resemblan'Ce to 
bluetongue was recognized, and BTV was isolated from cases of soremuzzle in 
sheep in California in 1952 (McKERCHER et al. 1953). The virus was subsequently 
identified as serotype 10; viruses of that serotype had been previously identified in 
South Africa. BTV serotype 11 was isolated in New Mexico in 1955, serotype 17 
in Wyoming in 1962, serotype 13 in Idaho and Florida in 1967, and serotype 2 in 
Florida in 1983. Serotype 17 viruses have been found only in the United States 
(USA). 

In 1956 a major epizootic of bluetongue began in Portugal and extended into 
Spain (MANSO-RIBIERO et al. 1957). Within the first 4 months of the epizootic, a 
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strain of serotype 10 virus caused 179000 deaths in sheep with a mortality rate of 
75% of affected sheep. A campaign of quarantine, slaughter, and compulsory 
annual vaccination produced a dramatic reduction in the incidence of disease 
such that it disappeared within 4 years, and no clinical cases have subsequently 
been recorded. 

Bluetongue was reported in West Pakistan in 1958, in a flock of Rambouillet 
sheep previously vaccinated and imported from Utah, USA. HOWELL (1969) 
identified that virus as serotype 16 and reported that strains homologous in the 
serum-neutralization test were isolated in Israel in 1966. In describing an 
outbreak of bluetongue in goats and sheep in Maharashtra State, India, in 1961, 
SAPRE (1964) commented that the disease had caused havoc in sheep and goats in 
Pakistan in 1960. 

The experience of bluetongue in the Iberian peninsula, the apparent spread of 
the disease through the Middle East and the Indian subcontinent, and the 
perception of bluetongue as an "emerging disease of animals" (HOWELL 1963) 
contributed to the restrictions placed on the movement of animals and 
importation of animal products. Perhaps in no country was threat of the 
introduction of BTV feared more than in Australia. 

Before 1977 Australia was considered to be an area free of bluetongue disease. 
Strict quarantine regulations applied to livestock and animal products were 
designed to exclude exotic pathogens, including BTVs. Fears were often 
expressed of the serious economic losses which would be incurred if the viruses 
were introduced into Australia. A typical comment (BOWNE 1971) suggested that 
bluetongue had "explosive potential especially in countries like Australia where 
the sheep industry is of great economic importance and BT (bluetongue) could 
raise havoc with an extremely susceptible sheep population." 

In a symposium on bluetongue held in Adelaide, Australia, in May 1974 many 
speakers referred to the potential dangers posed by BTVs. GEERING (1975) 
outlined the plans for control of bluetongue in an epizootic situation. Those plans 
were based on three lines of attack. These were "slaughter of ruminants in the 
infected area, disinsection of the infected area, [and] ... maintenance of a larger 
quarantine zone in which the standstill of ruminants ... was to be ... enforced." 
GEERING suggested that "a virulent strain of bluetongue could cause a mortality 
rate of up to 70% in the highly susceptible sheep population" and he proposed 
that it might "be necessary to blanket vaccinate a large portion ofthe Australian 
sheep population to lessen the serious effects of the disease." As part of that plan 
the Commonwealth Serum Laboratory held seed lots of most of the known 
serotypes of bluetongue which had been isolated in South Africa. If necessary, an 
appropriate vaccine could be made quickly in the event of an outbreak of 
bluetongue. In November 1977 it was announced that workers at the Common
wealth Scientific and Industrial Research Organization (CSIRO) Division of 
Animal Health had isolated a virus, from insects collected in the Northern 
Territory, which was indistinguishable from bluetongue virus (ST. GEORGE et al. 
1978). Despite the fact the insects had been collected and the virus isolated more 
than 2 years before that announcement, and that there was no evidence of disease, 
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32 countries imposed bans on livestock imports, and control measures were 
introduced in parts of northern Australia (LEHANE 1981). Eight BTV serotypes 
have now been isolated in Australia. Three of these have so far been isolated only 
in Australia: type 20 in 1975, type 21 in 1979, and type 23 in 1982. Viruses of 
serotype 1 (1979), 15 (1982), 9 (1985),3, and 16 (1986) have also been isolated in 
other countries (ST. GEORGE et al. 1980; GARD et al. 1987a, b). 

3 Bluetongue and Related Orbiviruses 

VERWOERD (1969) purified BTV and showed that the genome consisted of double
stranded RNA (dsRNA). He was the first to recognize the need to establish a new 
taxonomic group to include the known dsRNA viruses and those arthropod
borne viruses with physicochemical and morphological properties similar to 
those of BTV. Although not all the viruses he listed had been shown to contain 
dsRNA, VERWOERD (1970) proposed the name diplornaviruses for the new 
taxonomic group. 

The International Committee on Taxonomy of Viruses decided that the 
bluetongue-like viruses would be defined by the genus Orbivirus within the family 
Reoviridae (FENNER 1976). The name Orbivirus had been proposed by BORDEN 
et al. (1971) to describe a number of arthropod-borne viruses that on the basis of 
morphological and physicochemical criteria formed a distinct group. The 
derivation from the Latin "orbis" ("ring" or "circle") was appropriate, since 
negatively stained virus particles when examined in the electron microscope have 
large doughnut-shaped capsomers. 

VERWOERD et al. (1970), using polyacrylamide gel electrophoresis (PAGE), 
resolved the BTV genome into ten segments. The patterns of separation of the 
genome segments of a reovirus and a BTV were different, and the molecular 
weight of the BTV genome was estimated to be 12 x 106, compared with 15 x 106 

for the reovirus (VERWOERD et al. 1970). Representative viruses from each of the 
recognized serogroups have been found to contain genomes similar to that of 
BTV (for a review, see GORMAN et al. 1983). 

The described orbiviruses are differentiated into 12 serological groups 
(Table 1). No common generic antigen has been found, but viruses within each 
group share antigens detectable in complement-fixation (CF) tests, agar gel 
immunodiffusion tests, and fluorescent-antibody tests. The serotypes within 
each group are distinguishable by specific reactions in serum-neutralization 
tests. 

The emphasis placed by different workers on the significance of cross
reactions in serological tests has created some confusion in the classification of 
orbiviruses. Within most of the serogroups, the serotypes cannot be distinguished 
by their reactions in the group-specific tests; in others the serotypes can be 
clustered within the serogroup by their cross-reactions in CF tests. The problem 
has been further complicated by reports of low-level cross-reactions among 



Table I. Orbivirus serological groups 

Serogroup 

Bluetongue 
Epizootic hemorrhagic disease 
Umatilla 
Eubenangee 
Palyam 
African horse-sickness 
Equine encephalosis 
Warrego 
Wallal 
Changuinola 
Corriparta 
Kemerovo' 

No. serotypes 

24 
8 
4 
2 

10 
9 
7 
2 
3 

12 
6 

23 

• Kemerovo serogroup consists of four related but distinct groups 
(BROWN et al. 1988b) 
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viruses that are normally considered to be members of distinct serogroups. There 
has been reluctance to include viruses of the Eubenangee and epizootic 
hemorrhagic disease (EHD) of deer serogroups in a BTV serogroup, despite 
many reports of serological relationships among viruses in these groups (MOORE 
and LEE 1972; MOORE 1974; ST. GEORGE et al. 1978; GORMAN and TAYLOR 1978; 
DELLA-PORTA et al. 1985). BTVs are important pathogens of sheep, and it 
appears difficult to justify the inclusion of viruses, which are not known to cause 
disease in animals, in an extended BTV serogroup on the basis oflow-Ievel cross
reactions in certain serological tests. 

The division of some serogroups into numbered serotypes and the formation 
of other serogroups with viruses of different names has also led to confusion in 
defining orbiviruses. Historically, the bluetongue and African horse-sickness 
groups were established by workers isolating viruses that were related to known 
serotypes but gave distinct reactions in cross-protection tests in animals or in 
serum-neutralization tests. Most of the other orbiviruses were isolated as by
products in programs to isolate and identify viruses as the causative agents of 
arthropod-transmitted disease. New viruses or new serotypes of a virus group are 
given names and are registered in the International Catalogue of Arboviruses 
(KARABATSOS 1985). In this way, most ofthe orbivirus serogroups are named from 
the first member isolated and consist of viruses with different names. The use of 
names to describe serotypes in some serogroups and numbers to describe viruses 
of the African horse-sickness and bluetongue serogroups obscures the fact that 
the serogroups are composed of viruses related by the use of the same serological 
tests. 

3.1 The Bluetongue Virus Serogroup 

Following the demonstration of distinct types of BTV s in cross-protection tests in 
sheep (NEITZ 1948) there were many attempts to develop serum-neutralization 
tests to study variation among BTV strains. HOWELL (1960, 1970) defined 16 
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Table 2. Prototype strains of bluetongue virus· 

Serotype Prototype strain Isolation 

Year Country 

1 Biggarsberg 1958 South Africa 
2 Ermelo 22/59 1959 South Africa 
3 Cyprus sample B 1943 Cyprus 
4 Vaccine batch 603 1900 South Africa 
5 Mossop 1953 South Africa 
6 Strathene 1958 South Africa 
7 Utrecht 1955 South Africa 
8 Ermelo 89/59 1959 South Africa 
9 University Farm 1942 South Africa 

10 Ermelo 91/59 1959 South Africa 
11 Nelspoort 1944 South Africa 
12 Byenespoort 1941 South Africa 
13 Mt. Currie 1959 South Africa 
14 Ermelo 87/59 1959 South Africa 
15 Onderstepoort 133/60 1960 South Africa 
16 Hazara 1960 Pakistan 
17 Wyoming 2790 1962 United States 
18 South Africa 
19 South Africa 
20 CSIRO 19 1975 Australia 
21 CSIRO 154 1979 Australia 
22 1982 Australia 
23 DDP90 1982 Australia 
24 South Africa 

'Extended from HOWELL and VERWOERD (1971); GORMAN et aL (1983) 

distinct antigenic groups of viruses, and subsequent application of similar 
techniques by many workers has led to the description of 24 different BTV 
serotypes (Table 2). 

The significance of immunologically distinct serotypes in serum-neutraliz
ation tests is difficult to assess. There have been few attempts to correlate 
protection in animals with serotype, but there are indications that levels of 
neutralizing antibodies are a poor measure of protection (JEGGO 1986). The 
validity of the classification of BTVs into distinct serotypes may also be 
questioned. In early work, HOWELL (1960) used sheep convalescent sera and 
found some cross-neutralization between heterologous strains of BTV. These 
cross-reactions were virtually eliminated in subsequent tests by using hyper
immune guinea pig sera (HOWELL and VERWOERD 1971). THOMAS and TRAINER 
(1971) used convalescent and hyperimmune sera of calves to compare seven BTV 
strains in plaque-reduction tests. Convalescent sera cross-reacted with heterolog
ous virus strains, but the cross-reactions were less than those observed using 
hyperimmune sera. BARBER and JOCHIM (1973) studied the serological character
istics of ten BTV strains isolated in the United States using plaque-reduction 
tests. On the basis of the reaction with hyperimmune sheep sera, the strains were 
classified into four serotypic groups, but cross-reactions among all ten strains 
were detected using hyperimmune rabbit sera. 
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The classification of BTVs into discrete groups seems improbable given the 
virtually continuous nature of biological variation. THOMAS et al. (1979) found 
extensive cross-reactions among BTV strains in North America in serum
neutralization tests and suggested that an antigenic continuum of virus strains 
existed instead of clearly defined antigenic groups. The serological comparison of 
the Australian strain CSIRO 19 with reference BTVs provides further evidence of 
the need to reassess the serum-neutralization tests used to identify BTV 
serotypes. Although the strain had been designated as a new serotype (serotype 
20) by the World Reference Centre, The Veterinary Research Institute, Onder
stepoort (VERWOERD et al. 1979), DELLA-PORTA et al. (1981) found the strain 
indistinguishable from serotype 4 using plaque-reduction, plaque-inhibition, or 
quantal microtiter neutralization tests. DELLA-PORTA et al. (1981) commented 
that the strain CSIRO 19 could be considered to be a subtype of serotype 4 and 
questioned its designation as a new serotype. Since animals inoculated with 
CSIRO 19 were protected against challenge with virulent serotype 4 or serotype 
17 viruses, the practical value of a classification system based on in vitro reactions 
using carefully selected antisera must be questioned. 

A wide variety of tests have been used in attempts to differentiate BTVs (for 
reviews, see VERWOERD et al. 1979; GORMAN et al. 1983). A passive hemagglutin
ation (PHA) test for detection of BTV antibodies has been described (BLUE et al. 
1974) in which partially purified virus is used to sensitize tannic acid-treated 
equine erythrocytes for testing; although some serotype specificity was found, the 
test has not been widely used. 

JOCHIM and JONES (1980) developed a hemolysis in gel (HIG) test for BTVs. 
Like the CF test, the HIG test was group reactive, but BTVs and EHD viruses 
were differentiated in the test. 

Hemagglutination which is specific for certain erythrocytes has been reported 
for BTV s (HUBSCHLE 1980; TOKUHISA et al. 1981 a; van der WALT 1980; COWLEY 
and GORMAN 1987) and for EHD viruses (TOKUHISA et al. 1981b). In one study 
the BT8 strain from the USA (serotype 10) agglutinated sheep erythrocytes 
only, whereas strains of serotypes 3, 8 and 10 from South Africa agglutinated 
sheep, guinea pig, mouse, and chicken erythrocytes (HUBSCHLE 1980). An 
avirulent strain of serotype 10 from South Africa agglutinated sheep, goose, 
rabbit, and human erythrocytes (van der WALT 1980). A difference in the range 
of erythrocytes agglutinated by two BTVs isolated in Australia has also been 
reported. Bluetongue serotype 20 virus agglutinated sheep erythrocytes only, 
while serotype 21 virus agglutinated sheep, bovine, human, and goose eryth
rocytes (COWLEY and GORMAN 1987). The significance of the restricted range of 
erythrocytes agglutinated by some viruses and the extended range of others has 
not been investigated. Despite the serotype specificity in the hemagglutination 
and hemagglutination-inhibition test, it has not found wide use in serological 
tests for BTV infections. 

MANNING and CHEN (1980) developed an enzyme-linked immunosorbent 
assay (ELISA) to detect antiviral IgG in sheep experimentally infected with four 
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viruses of different serotype. The test was group reactive, as was a similarly based 
test described by HUBSCHLF et al. (1981). 

3.2 The Epizootic Hemorrhagic Disease Virus Serogroup 

Outbreaks ofEHD have occurred in the USA since 1890. The New Jersey strain 
was isolated in 1955 and compared with the South Dakota strain isolated in 1956 
(SHOPE et al. 1960). In cross-protection tests, deer that had recovered from 
infection with either strain resisted heterologous challenge. In neutralization 
tests, the viruses appeared to differ (METTLER et al. 1962), but effective com
parison of the two strains was hampered by the lack of susceptible laboratory 
animals or cell culture for both viruses. The New Jersey strain was more lethal in 
deer than the South Dakota strain (SHOPE et al. 1960). The original isolate of the 
South Dakota strain has apparently been lost (R.E. SHOPE 1980, personal 
communication). 

The virus has since isolated from white-tailed deer, mule deer, or antelope in 
the states of South Dakota, North Dakota, Michigan, Kentucky, Wyoming, 
Washington, North Carolina, Indiana, in Alberta, Canada, as well as from cattle 
and sheep in the state of Colorado (HOFF and TRAINER 1978; FOSTER et al. 1980; 
THOMPSON et al. 1988). The Alberta strain is designated as serotype 2 (BARBER 
and JOCHIM 1975). 

Three strains of viruses from Culicoides spp. and one from C. schultzei 
colleted at Ibadan, Nigeria (LEE et al. 1974; LEE 1979) are probably distinct 
serotypes. The virus XBM/67 isolated in South Africa is referred to as a serotype 
(VERWOERD et al. 1979), but no detailed serological comparison with other EHD 
strains has been reported. Five distinct serotypes have been isolated in Australia 
(CAMPBELL and ST. GEORGE 1986). One of these (CSIRO 439) is identical to 
Ibaraki virus from Japan in serum-neutralization tests. Ibaraki virus is related to 
but distinct from the Alberta strain of serotype 2 (CAMPBELL et al. 1978) and 
produces a bluetongue-like illness in cattle (INABA 1975). In Table 3 serotypes 1 
and 2 are designated according to convention. The virus strains from Australia, 
Nigeria, and South Africa are not numbered. 

HUISMANS et al. (1979) found a 5%-10% homology between the genomes of 
the New Jersey strain of serotype 1 and a South African strain of bluetongue 
serotype to. By cross-immune precipitation experiments common antigens were 
detected on VP7 and VP3 which are located in the nucleocapsids of the viruses 
(HUISMANS et al. 1979; HUISMANS and ERASMUS 1981). 

BROWN et al. (1988a) examined the relationships among five EHD viruses on 
the basis of RNA-RNA hybridization. Nine ofthe ten genes of the viruses showed 
more than 74% homology. The most closely related were the New Jersey strain of 
serotype 1 and a strain from Nigeria (IbAr 22619), despite their geographical 
separation and the 12-year interval between virus isolations. The viruses cross
react in serum-neutralization tests (MOORE and LEE 1972; MOORE 1974). In 
hybridization tests EHD serogroup viruses were distantly related to BTV 
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Table 3. Prototype strains of epizootic hemorrhagic disease (EHD) virus 

Serotype Prototype Isolation 

Year Country 

I New Jersey 1955 United States 
2 Alberta 1962 Canada 

Ibaraki 1959 Japan 
CSIRO 439 1980 Australia 

XBM/67 1967 South Africa 
IbAr 22619 1967 Nigeria 
IbAr 33853 1968 Nigeria 
IbAr 49630 1970 Nigeria 
CSIRO 157 1977 Australia 
CSIRO 753 1981 Australia 
CSIRO 775 1981 Australia 
DPP 59 1982 Australia 

serotype 10 from the USA, but one gene of serotype 10 consistently hybridized 
with gene 9 of the EHD viruses. The authors suggested that common antigenic 
determinants on the smallest nucleocapsid protein of the viruses (VP7) may be 
encoded on gene 9. In in vitro translation of RNA segments of EHD virus 
serotype 2, MECHAM and DEAN (1988) found that VP7 was encoded in gene 7 or 8. 
The discrepancy may reflect differences in technique for separating dsRNA 
genome segments. 

Despite the low-level cross-reactions in some serological tests and cross
hybridization of at least one gene of EHD and BTV s, they probably represent two 
distinct populations of viruses. No evidence was found for gene reassortment in 
cell cultures infected simultaneously with viruses of both serogroups (GORMAN 
1985; BROWN et al. 1988a) Gene reassortment has been demonstrated only 
between viruses of a serogroup and not between viruses in different serogroups of 
orbiviruses (reviewed in GORMAN 1983; GORMAN et al. 1983; KNUDSON and 
MONAlH 1990). 

3.3 The Umatilla Virus Serogroup 

Viruses of the Umatilla serogroup have been isolated from species of Culex 
mosquitoes in the USA, Israel, and India. Umatilla, Llano Seco, and Netivot 
viruses are antigenically related to viruses in the bluetongue, EHD, and 
Eubenangee virus serogroups (TESH et al. 1986). The exact taxonomic status of the 
viruses is uncertain since cross-neutralization tests were inconclusive. A fourth 
virus, Minnal, isolated from Culex vishuii in India will be included in the 
serogroup (N. KARABATSOS, 1989 personal communication). 

3.4 The Eubenangee Virus Serogroup 

Eubenangee virus was isolated from a pool of 11 species of mosquitoes in 
northern Australia (DOHERTY et al. 1968). The virus reacted with antisera to EHD 
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viruses and to Pata virus in CF tests, but reciprocal reactions were not detected 
(BORDEN et al. 1971). Pata virus had been isolated from Aedes palpalis in the 
Central African Republic. Despite low-level cross-reaction in these tests, Pata 
virus was recognized as a member ofthe Eubenangee serogroup, but neither virus 
was considered as a member of the EHD serogroup (KARABATSOS 1985). 
GONZALEZ and KNUDSON (1988) and BROWN et al. (1988a) compared Eu
benangee, Pata, EHD, bluetongue, and certain other orbiviruses by RNA-RNA 
hybridization and by tests for gene reassortment between orbiviruses. They 
concluded that Pata virus was not related to Eubenangee or EHD viruses and 
recommended that the virus be placed in the ungrouped set of orbiviruses. 

The third recognized serotype, Tilligerry virus, was isolated from Anopheles 
annulipes in New South Wales, Australia (GARD et al. 1973). In CF tests Tilligerry 
virus is more closely related to Eubenangee virus than to Pata virus (MARSHALL 
et al. 1980). Most of the isolations of Eubenangee group viruses have been made 
from pools of mosquitoes. In an extensive study involving isolation of viruses 
from arthropods collected in the Northern Territory of Australia, four isolations 
of Eubenangee-related viruses were made from Culex annulirostris, one from 
Anopheles farauti, and only one from the biting midge Culicoides marksi 
(STANDFAST et al. 1984). This contrasts with the isolations of BTVs and EHD 
viruses consistently from species of Culicoides. The serological relationships of 
these six isolates with the two serotypes of the Eubenangee serogroup have not 
been established, but GONZALEZ and KNUDSON (1988) showed that the four 
isolates from C. annulirostris were indistinguishable by RNA-RNA hybridiz
ation. All of the isolates cross-hybridized strongly in seven of the ten genes. 
DELLA-PORTA et al. (1979) reported that antiserum to the isolate from A.farauti 
neutralized infectivity ofBTV serotype 1. There was no cross-hybridization of the 
RNA of any of the Eubenangee viruses with BTV RNA (GONZALEZ and 
KNUDSON 1988). 

Viruses of the Eubenangee serogroup appear to be restricted to Australia. 
Despite reports of low-level cross-reactions in some serological tests between 
Eubenangee virus and BTVs(DELLA-PORTA et al. 1985), the viruses are distinct by 
RNA-RNA hybridization (BROWN et al. 1988a) and do not reassort genes on 
mixed infection in cell culture (TAYLOR 1984). The basis for shared antigens has 
not been established. 

3.5 The Palyam Virus Serogroup 

Viruses of the Palyam serogroup have been isolated in India, Australia, Japan, 
and Africa. Ten distinct serotypes have been defined (KNUDSON et al. 1984) which 
are closely related in RNA-RNA hybridization tests (BODKIN and KNUDSON 
1986). 

There have been consistent reports of cross-reactions in serological tests 
between viruses of the bluetongue and Pal yam serogroups. MOORE (1974) 
reported cross-reactions in immunoprecipitin tests between Abadina, EHD, and 
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bluetongue viruses. Sequential infection of cattle with four viruses of the Palyam 
serogroup led to the production of antibodies which reacted with BTV serotype 
20 in immunoprecipitin tests (DELLA-PORTA et al. 1985). DELLA-PORTA et al. 
(1979) described an interesting situation in which serum from a cow experiment
ally infected with a Eubenangee virus neutralized BTV serotype 1 but not BTV 
serotype 20 or Ibaraki virus (EHD serogroup). The animal was subsequently 
challenged with a Palyam group virus and developed more cross-reactive 
antibodies that neutralized both BTV serotypes 1 and 20 and to a lesser extent, 
Ibaraki virus. The result illustrates the difficulty in interpreting serological tests 
on animals that may be exposed to infection with different orbiviruses. 

4 Diagnosis and Serology 

The diagnosis of bluetongue in sheep is uncomplicated for an experienced 
clinician, according to GIBBS (1983). However, the disease in cattle can be 
confused with infectious bovine rhinotracheitis, malignant cattarhal fever, and 
bovine virus diarrhea/mucosal disease. The diagnosis usually involves isolation 
of the virus or the detection of specific antibodies in the serum of a convalescent 
animal. There is no optimal procedure for isolating BTVs. Inoculation of 
susceptible sheep, embryonating chicken eggs, baby mice, and a variety of cells 
and cell lines in culture have been used. Some strains can be isolated directly in 
cell culture, but others can be isolated only in embryonating chicken eggs. No one 
system is best and JOCHIM (1985), after reviewing the procedures that have been 
used, concluded that there was more chance of isolating viruses if a number of 
systems were used. 

Detection of antibodies to BTVs is based on group-reactive tests and the 
serotype-specific neutralization tests. A number of group-reactive tests including 
complement-fixation, fluorescent-antibody, and the agar gel immunodiffusion 
have been used. The CF test is often difficult to perform and a number of 
anticomplementary factors are encountered in its usual application. Addition of 
normal bovine serum to the test enhanced the level of BTV -specific antibody, and 
the modified CF test has been used extensively to certify animals free of 
antibodies to BTV (BOULANGER and FRANK 1975). 

The agar gel immunodiffusion test for bluetongue was first described by 
KLONTZ et al. (1962) and has been used in a variety of modifications to detect 
antibodies to BTV. There are problems with the test in that it detects cross
reacting antibodies to other orbiviruses and it is relatively insensitive (DELLA
PORTA et al. 1985). The test is easy to perform and is inexpensive so that it is often 
preferred in surveying animals for BTV infection. In the interpretation of data 
obtained using the test, consideration has to be given to the period of persistence 
of antibodies. OSBURN et al. (1981) isolated viruses from 81 cattle, 35 of which 
were negative reactors in agar gel immunodiffusion tests, and from 122 sheep, 28 
of which were negative in the tests. 
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Two types of ELISA have been used to detect BTV infections. In the indirect 
ELISA the viral antigen is coated on polystyrene plates and reacted with test 
serum or serum containing antibodies (MANNING and CHEN 1980; HUBSCHLE 
et al. 1981; POLl et al. 1982; LUNT et al. 1988; DROLET et al. 1988). A blocking 
ELISA has been described by ANDERSON (1984) in which immobilized antigen is 
reacted with a test serum and then with a group-specific murine monoclonal 
antibody. Antibody to BTV, if present in the test serum, blocks the antigen, 
preventing reaction with the monoclonal antibody in the last step of the test. Sera 
containing antibodies to EHD virus do not react in the test. Antibodies to cellular 
protein, which can complicate interpretation of immunodiffusion tests and 
indirect ELISA tests, do not interfere in the blocking ELISA. AFSHAR et al. 
(1987a) compared the indirect ELISA and a competitive ELISA for detection of 
antibodies to BTV. The competitive ELISA differed from the blocking ELISA 
only in that the monoclonal antibody was added to the reaction immediately 
after the addition of the test serum. They found the competitive ELISA more 
sensitive in the detection of antibodies than the indirect ELISA and as sensitive or 
more sensitive than the agar gel immunodiffusion test, the modified CF test, and 
the plaque neutralization test in detecting BTV antibodies. No reaction between 
the BTV antigen and an antiserum to EHD virus was seen in either test. Similar 
results were reported by LUNT et al. (1988) comparing a blocking ELISA using a 
monoclonal antibody to VP7 and an indirect ELISA for antibodies to BTV in 
experimental and field sera. The specificity of the blocking ELISA was absolute 
for BTV antibodies and showed no cross-reaction with antisera to EHD viruses. 
The blocking ELISA has also been used in a format in which the antigen was 
applied to nitrocellulose strips. Again, the ELISA was superior to the agar gel 
immunodiffusion test in detecting antibodies to BTV in experimental and field 
sera (ASHFAR et al. 1987b). 

Detection of viral antigens in virus-infected ovine tissues using an indirect 
immunoperoxidase technique has been described (CHERRINGTON et al. 1985). The 
suggestion was made that the method could replace the fluorescent-antibody test, 
which generally lacks specificity, but the immunoperoxidase technique has not 
found wide application. 

ADKINSON et al. (1988) studied the temporal development of humoral immune 
responses in sheep to natural BTV infection using Western immunoblotting. The 
procedure was superior to serum-neutralization and agar gel immunodiffusion 
tests in identifying past exposure to the virus. The immunoblotting procedure 
appeared to be group specific when assaying ruminant sera. Sera from BTV
infected sheep did not cross-react with EHD virus proteins and vice versa. 

Cloned cDNA copies of RNA segments ofa number ofserotypes ofBTV have 
been used to assess the relationships among viruses, but few have been used to 
detect BTV -specific RNA sequences in infected cells. A cDNA copy of segment 3 
of serotype 17 hybridized to RNA from 19 serotypes ofBTV but did not hybridize 
to the RNA of EHD virus serotype 1 (PURDY et al. 1984; Roy et al. 1985). The 
cDNA probe detected BTV-specific RNA in infected cells in culture and in red 
blood cells of experimentally infected sheep (RoY et al. 1985). The probe was also 
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used in in situ cytohybridization to determine the tissue tropism and target cells 
for replication of BTV in the developing chick embryo. In contrast to the earlier 
hybridization results, the probe also detected RNA of EHD virus in infected 
embryos (WANG et al. 1988). A partial cDNA clone ( '" 70%) of segment 7 ofBTV 
serotype 17 was used in a dot-blot hybridization technique to detect BTV in cell 
culture (SQUIRE et al. 1985). Despite the fact that the gene codes for the group
specific protein, VP7, the probe did not detect RNA of serotype 13 in infected 
cells. 

5 Populations of Bluetongue Viruses 

From RNA-RNA reassociation experiments it was apparent that geographical 
separation of BTVs had led to significant sequence divergence among them 
(HUISMANS and HOWELL 1973; HUISMANS and BREMER 1981; GORMAN et al. 1981). 
These observations were extended using cDNA copies of certain genes in 
hybridization tests (HUISMANS and CLOETE 1987) and in direct comparisons ofthe 
nucleotide sequences of some BTV genes. GOULD (1988) defined three major 
groupings of the viruses-North American, Australian, and African-and 
suggested that there were other possible groupings based on serotype 15 isolated 
in Australia, serotype 16 isolated in West Pakistan, and serotype 3 from Cyprus. 
The observations are consistent with the evolution in isolation of distinct 
populations of BTVs and suggests the possibility that discrete gene pools evolve 
independently. 

The concept of "gene pools" (see ADAMS 1979) of bluetongue and other 
orbiviruses implies populations of viruses able to exchange genetic information. 
Gene reassortment among orbiviruses has been demonstrated only between 
viruses of defined serogroups (reviewed in GORMAN et al. 1983; KNUDSON and 
MONATH 1990) except for the Kemerovo serogroup in which there are probably 
four reassortant groups (BROWN et al. 1988b). Reassortant BTVs have been 
generated by experimental infections of cells in culture (GORMAN et al. 1982; 
KAHLON et al. 1983) of sheep (SAMAL et al. 1987) cattle (STOTT et al. 1987; OBERST 
et al. 1987), and of Culicoides variipennis (SAMAL et al. 1987). Despite these 
observations in experimental systems, the significance of the phenomenon in 
generating diversity in populations of BTV s has not been established. The only 
evidence for naturally occurring reassortants is based on comparative 
oligonucleotide fingerprinting of BTV isolates. 

SUGIYAMA et al. (1981) compared oligonucleotide maps of genome segments 
of BTV serotypes 10 and 11, isolated in the USA, and concluded that one virus 
isolate was a natural reassortant between prototypes of serotypes 10 and 11. The 
oligonucleotide maps suggested that nine segments of the virus were derived from 
the serotype 10 virus and one (segment 3) from the serotype 11 virus. Segment 3 is 
highly conserved among BTVs (GOULD 1987) and direct comparison of the 
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nucleotide sequences of segments 3 of serotypes 17 and 10 isolated in the USA 
revealed 95.5% homology (GHIASI et al. 1985). The interpretation of oligonucleo
tide maps of closely related prototype strains and a "naturally occurring" isolate 
to suggest reassortants in segment 3 should be viewed with caution. 

COLLISSON and Roy (1983) compared the oligonucleotide maps of vaccine 
strains of serotype 10 used in the USA and concluded that one strain was a 
natural reassortant, and that the oligonucleotide map of segment 10 was more 
like the corresponding segment of a prototype 11 virus. The authors observed 
that "it appears very likely that reassortment between different BTV serotypes 
probably occurs continuously in nature although whether it takes place in the 
vectors or in the animal host (or both) is not known." The sequence of segment 10 
of an Australian isolate of BTV -1 was more than 83% homologous at the 
nucleotide level with that of the US prototype strain of serotype 10 (GOULD 1988), 
showing a greater conservation than that between segment 3 of the Australian 
virus and the US serotype 10 (GOULD 1987). It is likely then that gene 10 of the US 
serotypes 10 and 11 is highly conserved. An interpretation of oligonucleotide 
maps of genome segments of closely related BTV isolates as indicative of natural 
reassortment is not convincing. 

From the limited data available it is premature to infer that gene reassortment 
is a major determinant in the genetic structure of BTV populations. Caution 
seems justified when one considers the results of cross-hybridization of the geno
mes ofBTVs isolated in Cyprus in 1971 and the original strain (serotype 4) isolated 
by THEILER in South Africa in 1900. HUISMANS and HOWELL (1973) detected nine 
hybrid molecules after hybridizing single-stranded RNA of the Cyprus isolate 
with the genome of THEILER'S virus. Slight migrational differences in PAGE of the 
hybrid and native segments indicated that mutational change had occurred, but 
the genetic composition of the two viruses was remarkably conserved despite 
their geographical and temporal isolation. It is difficult to believe that such 
conservation could occur in freely reassorting BTV populations. 

6 Concluding Remarks 

The history of bluetongue in South Africa and the demonstration of its explosive 
potential in Spain and Portugal contributed to the belief that it would spread to 
the major sheep-farming areas of the world. The association ofBTVs with cases of 
soremuzzle in sheep in the USA enhanced the proposition that bluetongue was 
one of the emerging diseases of animals (HOWELL 1963). 

The discovery of BTVs in Australia was not the result of investigations of 
disease, but a by-product of a program designed to isolate viruses from the 
insect vectors of bovine ephemeral fever. Despite the fact that 8 of the 24 known 
BTV serotypes have now been isolated in Australia, there is still no evidence 
of clinical bluetongue in the country. That the viruses circulate "silently" suggests 
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that they form part of a complex ecosystem of orbiviruses, insects, livestock, 
and other animals. Representative viruses of 7 of the 12 recognized serogroups 
of orbiviruses including EHD, Palyam, and Eubenangee have been isolated in 
Australia. Viruses of 3 of those 7 serogroups are apparently indigenous, as are 
3 of the 8 serotypes of bluetongue and all but one of the serotypes of EHD, 
Palyam, and Eubenangee. The BTVs have probably evolved in Australia as 
part of a large complex of indigenous orbiviruses. Although periodic incursion 
of viruses is possible, the patterns of isolations of bluetongue and related 
orbiviruses suggest continuous circulation of viruses in defined regions. 

A pattern similar to that seen in Australia appears to be emerging from a 
study of bluetongue in 11 countries in the Caribbean and Central America. 
Although there is no evidence of bluetongue disease in the region, more than 100 
isolates have been made from healthy animals. Viruses of serotypes 1,3,6, and 12 
have been identified, and these do not account for all of the potential animal
infecting serotypes which have been identified in serological tests (c. H. BARRETO 
1989, personal communication). 

Although only a limited number of BTV genes have been sequenced, it was 
apparent to GOULD (1988) that there were discrete BTV populations. Further 
analyses of the genetic structure of BTV populations will lead to a better 
understanding ofthe patterns of circulation of viruses. Analysis of archival strains 
should provide important information on the stability of the viral genomes and 
on the consequences of dispersal of viruses. The pattern of "emergence" of the 
disease from Africa can then be resolved. 
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1 Introduction 

The structural components of bluetongue virus (BTV), the prototype of the 
orbivirus genus, has been the subject of a number of reviews (VERWOERD et al. 
1979; GORMAN and TAYLOR 1985; SPENCE et al. 1984). The main features can be 
summarized as follows: BTV is an icosahedral-shaped particle consisting of a 
segmented double-stranded RNA genome encapsidated in a double-layered 
protein coat. Removal ofthe outer protein layer activates a viral-associated RNA 
polymerase which transcribes the ten genome segments into 10 mRNAs which 
are in turn translated into at least seven structural and three nonstructural 
proteins. The characteristic features of these different structural components will 
be reviewed in this chapter. The key to the elucidation of the structural 
characteristics has been the ability to isolate and purify large amounts of BTV. 

1 Department of Genetics, University of Pretoria, Pretoria 0002, South Africa 
2 Biochemistry Section, Veterinary Research Institute, Onderstepoort 0110, South Africa 

Current Topics in Microbiology and Immunology, Vol. 162 
© Springer·Verlag Berlin' Heidelberg 1990 



22 H. Huismans and A. A. Van Dijk 

2 Viral Purification 

The purification of BTV is hampered by difficulties in dissociating the virus from 
the cellular material to which it is very tightly bound as well as by the instability of 
purified virus particles. The first purification methods were based on homogeniz
ation of infected cells followed by fluorocarbon extraction, sucrose gradient 
centrifugation and fractionation on CsCI density gradients (VERWOERD 1969; 
VERWOERD et al. 1972; MARTIN and ZWEERINK 1972). Since the method is not 
equally satisfactory for the different serotypes and purified virus particles remain 
associated with varying amounts of either nonstructural viral proteins or small 
cellular proteins, alternative purification methods have been proposed. The 
cellular proteins are either absent or present in reduced amounts if the virus is 
dissociated from the cellular material by detergents such as Triton X-lOO which 
do not disrupt the cell nucleus (HUISMANS et al. 1987b). MERTENS et al. (1987a) 
have also described an improved method to purify BTV and have recommended 
the use of sodium N-Iauroyl sarcosinate to prevent the aggregation of virus 
particles. 

3 Viral Morphology 

Three morphologically distinct BTV particles namely virions, cores and subcore 
particles have been identified (Fig. 1). The different particles are obtained and the 
morphological features revealed by stepwise removal of some of the major 
structural proteins of the virus. 

The negatively stained bluetongue virion is an icosahedral particle with a 
reported diameter of about 68-70nm (VERWOERD et al. 1972; MARTIN and 
ZWEERINK 1972). The particles have a "fuzzy" appearance which clearly 
distinguishes BTV and other orbiviruses from reovirus and rotavirus which have 

Fig. I a-c. Electron micrographs of a negatively stained bluetongue virus b core particles and 
c subcore particles. (Micrographs courtesy of Mr H.1. ELs, Electron Microscope Unit, Medical 
University of Southern Africa, 0204 Medunsa, South Africa) 
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a more structured and clearly defined outer capsid layer (PALMER et al. 1977). A 
sedimentation constant of 550S and a buoyant density in CsCI of 1.36 g/cm2 has 
been reported for the bluetongue virion (MARTIN and ZWEERINK 1972; V AN DUK 
and HUISMANS 1982). The density is similar to that reported for other orbiviruses 
such as African horse-sickness virus (AHSV) and epizootic haemorrhagic disease 
(EHD) virus (BREMER 1976; HUISMANS et al. 1979). A value of 1.38 g/cm2 has, 
however, been reported by VERWOERD et al. (1972) and MERTENS et al. (1987a). 

Bluetongue virions are converted to core particles by the removal ofthe outer 
capsid protein layer. The diameter of these core particles is in the order of 58 nm 
(MERTENS et al. 1987a) or 54 nm (ELS and VERWOERD 1969). Due to a tendency to 
aggregate, the core particles are difficult to purify on sucrose gradients. However, 
under the appropriate conditions they have a sedimentation constant of 470S. 
They are stable on CsCI gradients and have a density of 1.40 g/cm2 (V AN DUK and 
HUISMANS 1982; MERTENS et al. 1987a). The main morphological feature of the 
core particle is the presence of 32 distinct morphological units, or capsomeres 
with a circular configuration. These capsomeres are arranged in icosahedral 
symmetry with the triangulation number T-3 (ELS and VERWOERD 1969). They 
are tube-like, hollow structures about 8 nm long and 10-12 nm wide with an axial 
hole about 4 nm in diameter. This characteristic ring-like configuration of the 
caps orne res is the feature from which the genus name orbivirus is derived ("orbis" 
meaning ring or circle) (BORDEN et al. 1971). 

In vivo almost all virions are uncoated to core particles immediately after 
infection. Later in the infection cycle a significant portion are further uncoated to 
subcore particles (HUISMANS et al. 1987d). These subcore particles are character
ized by a skeleton-like appearance with a hexagonally shaped outline, resembling 
the subvirus particles of rotavirus described by ALMEIDA et al. (1979). The thin 
outer layer of the subcore particles has a side-to-side diameter of 40 nm and 
appears to be the base or scaffold on which the capsomeres are assembled. The 
caps orne res are presumed to be composed of major core protein VP7, which is the 
protein lost during the conversion from core to subcore particles. A method for 
the purification of subcore particles has been described (HUISMANS et al. 1987d), 
but it is evident that the particles are very unstable. In many respects the 
morphology of the BTV subcore particles bears a striking resemblance to the 
morphology and structure of double-stranded (ds)RNA phage <1>6 
(ROMANTSCHUK et al. 1988). Both particles are composed of one major protein, 
three minor proteins, and dsRNA. 

4 Chemical Composition and Stability of the Virus 

The purified virion is composed of about 80% protein and 20% dsRNA 
(VERWOERD 1969). The base composition of the viral RNA yielded a C + G value 
of 42.4% (VERWOERD et al. 1979). There is no evidence that any single-stranded 
(ss) RNA is associated with the virion. 
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The stability of the virion has been reviewed by VERWOERD et al. (1979). A loss 
of infectivity is observed after the removal of one or more of the proteins in the 
outer capsid layer. Both monovalent and divalent cations can destabilize the 
outer capsid layer at ionic concentrations that are pH-dependent (HUISMANS et al. 
1987b). The virions are most stable in the pH range of 8-9. Core particles are 
stable at a pH of as low as 5.0, but a further lowering of the pH results in a 
disruption ofthe particles. BTV is therefore not as stable over a wide pH range as 
reovirus (STANLEY 1967). 

BTV virions are stable in lipid solvents (VERWOERD et al. 1979) and nonionic 
detergents such as Triton X-100 (HUISMANS et al. 1987b; MERTENS et al. 1987a). 
Nonpurified BTV particles in infected cells are strongly cell-associated and very 
stable at low temperatures over a long period. Purified virus particles are, 
however, unstable even at low temperatures and will rapidly lose infectivity. The 
problem is aggravated by a strong tendency of the particles to aggregate 
(MERTENS et al. 1987a). 

5 Viral Proteins 

The 10 dsRNA genome segments of BTV each code for the synthesis of at least 
one protein. The structural proteins are numbered VP1 to VP7 in order of 
decreasing size based on electrophoretic migration on polyacrylamide gels and 

Table 1. Bluetongue virus proteins 

Proteins Coding" Location Molecularb TotalC Estimated 
Segment mass (dalton) structural number/ 

proteins (%) viriond 

VPl 1 Core 149 588 2.0 6 
VP2 2 Outer capsid III 023 22.7 97 
VP3 3 Core 103 326 16.2 74 
VP4 4 Core 76433 0.9 5 
VP5 6 Outer capsid 59 163 20.1 161 
VP6 9 Core 35750 2.8 37 
VP7 7 Core 38548 34.9 429 
NSI 5 Infected cell 64 445 NA NA 
NS2 8 Infected cell 40999 NA NA 
NS3 10 Infected cell 25602 NA NA 

"Assignments as suggested by PEDLEY et al. 1988 based on reports by MERTENS et al. (1984) as well as 
V AN DUK and HUISMANS (1988). Segments are numbered in order of decreasing size which agrees with 
their order of migration in 1 % agarose gels (PEDLEY et al. 1988) 
bCalculated from nucleotide sequences obtained for cloned genome segments (RoY 1989) 
cFrom VERWOERD et al. (1972) 
d Calculated as described by VERWOERD et al. (1972) but using the molecular mass values of the cloned 
genome segments determined by Roy (1989) 
NA, not applicable 
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the nonstructural proteins are designated NS1, NS2, and NS3. However, in the 
case of some BTV serotypes the order of migration of VP2 and VP3 is reversed 
(GRUBMAN et al. 1983). It has also been reported that the order can be reversed if 
different polyacrylamide cross-linkers are used (MECHAM et al. 1986). The coding 
assignments, as determined by in vitro translation of the positive strand of each of 
the ten dsRNA genome segments of the virus, have been reported for BTV-17, 
BTV-1, and BTV-lO by GRUBMAN et al. (1983), MERTENS et al. (1984) and VAN 
DUK and HUISMANS (1988), respectively. These results are summarized in Table 1. 
In view of the fact that different electrophoretic conditions can affect and even 
reverse the order of migration of the genome segments (Kow AUK and LI 1987), 
the genome segments of BTV are numbered 1 to lOin order of decreasing size on 
agarose gels, as suggested by PEDLEY et al. (1988). The characterization of each of 
the seven structural and three nonstructural proteins has been a major part of the 
continuing research on BTV. 

5.1 Structural Polypeptides 

There appears to be general consensus that the fully infectious BTV virion 
contains four major proteins (VP2, VP3, VP5 and VP7) and three minor proteins 
(VP1, VP4 and VP6) (VERWOERD et al. 1972; MARTIN and ZWEERINK 1972). Of 
these, major proteins VP2 and VP5 form the diffuse outer capsid layer of the 
VIrus. 

There have been various reports ofthe association of purified virus with either 
cellular or nonstructural proteins. These include the small nonstructural proteins 
NS3 and NS3a (MERTENS et al. 1984) as well as NS2 (MERTENS et al. 1987a). 
MECHAM et al. (1986) on the other hand found that some of the BTV serotypes are 
still associated with nonstructural protein NS1 after purification. More compel
ling evidence has been provided by EATON et al. (1988), who used an immunogold 
labelling procedure to show that both virus and core particles contain NS1. 
Judged by the position of the gold-labelled probes, NSI may protrude from the 
surface ofthe core particles. The immunogold labelling results were confirmed by 
analysis of purified virus and core particles. The authors suggested that the Triton 
X-lOO purification method that they used could be responsible for the discrep
ancy between their results and those obtained by VERWOERD et al. (1972). 
However, MERTENS et al. (1987a) and HUISMANS et al. (1987b) have both used 
Triton X-100 purification methods but failed to detect similar amounts ofNS 1. It 
remains to be clarified whether incorporation of NS 1 into the capsid is a 
functional necessity or a coincidental event. 

The molecular mass of the various BTV proteins was initially determined by 
their migration on SDS-containing polyacrylamide gels (VERWOERD et al. 1972; 
DE VILUERS 1974). These results are flawed to some extent by the fact that the 
relative order of migration can be influenced by electrophoretic conditions such 
as the buffer system and acrylamide concentration (HUISMANS and BREMER 1981; 
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MERTENS et al. 1984}. More recently the exact size of the BTV-lO (US) 
polypeptides have been determined after sequencing the corresponding cloned 
genome segments. These results are discussed in Chap. 3. In Table 1 the relative 
molar amount of the seven structural proteins are indicated. These values were 
first determined by VERWOERD et al. (1972), but since a much better estimate ofthe 
size of the different proteins is now available the molar ratios were recalculated 
using the size of the proteins shown in Table 1. The major capsid proteins 
constitute about 93% of the protein content of the virus. Proteins VPl and VP4 
are present in the smallest relative amount of about 5-6 copies/virion each, 
whereas VP7 is present in the largest number of copies. 

There is no evidence that any of the capsid proteins are modified either by 
phosphorylation or glycosylation. One possible exception is protein VP6, a 
component of the core particle, which is often resolved into two bands of very 
similar electrophoretic mobility on PAGE gels (HurSMANS and BREMER 1981; 
MERTENS et al. 1984). The nature ofthis doublet is unknown, but it is possible that 
one is a modified form ofthe other. It is not observed in all the BTV serotypes and 
has for example never been observed in the case of BTV -10. 

Most of the proteins are synthesized throughout the infection cycle with a 
relative frequency that is not significantly different from that in which the 
corresponding mRNA species are synthesized (HUISMANS 1979; HurSMANS et al. 
1987c). The first virus-specific polypeptides are detected 2-4 h after infection and 
there is a rapid increase in the rate of synthesis until about 11-13 h p.i. after which 
the rate remains more or less constant until at least 24 h after infection. 

With respect to the function and individual characteristics of the seven 
structural proteins we will distinguish between outer capsid and core 
polypeptides. 

5.1.1 Outer Capsid Polypeptides 

The outer capsid layer of BTV consists of two major polypeptides, VP2 and VP5, 
which together constitute approximately 40% of the total protein content of the 
virus. Little is known about the interaction between these two proteins, their 
topography and degree of exposure on the surface of the virus particle. However, 
the fact that VP2 can be dissociated from the virion without removal of VP5 
(VERWOERD et al. 1972; HUISMANS et al. 1987b) indicates that VP5 is more closely 
associated with the core particle than VP2. If VP5 has to recognize or bind both 
VP2 and one of the core proteins, it would place a higher degree of constraint on 
the variability ofVP5 than on VP2. The variability ofthese two proteins has been 
the subject of a number of investigations 

It was demonstrated by PAGE that VP2 and VP5 show the largest variation 
in size among the structural proteins of the different BTV serotypes (DE VILLIERS 
1974; MECHAM et al. 1986). Peptide mapping has furthermore indicated that VP2 
is unique for each ofthe US serotypes, whereas VP5 showed an intermediate level 
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of conservation (MECHAM et al. 1986). These results have been substantiated by 
data on the nucleic acid homology of the genes coding for the outer capsid 
polypeptides. These results, which are reviewed in Chap. 3, include 
mRNA/dsRNA hybridization between BTV serotypes (HUISMANS and HOWELL 
1973), hybridization of labelled dsRNA, or small dsRNA fragments of one 
serotype to Northern blots of dsRNA of another serotype (SQUIRE et al. 1986; 
KOWALIK and LI 1987; MERTENS et al. 1987b) and DNA/RNA hybridization of 
cloned genomic probes with dot spots or Northern blots of dsRNA (HUISMANS 
and CLOETE 1987; HUISMANS et al. 1987a; GOULD 1988a; UNGER et al. 1988a, b). 
Comparisons of amino acid sequences of VP2s and VP5s from several BTV 
serotypes have also been reported (GHIASI et al. 1985; PURDY et al. 1986; FUKUSHO 
et al. 1987; GOULD 1988a; GOULD and PRITCHARD 1988 and WADE-EvANS 
et al. 1988). The high degree of conservation of VP5 polypeptides in comparison 
with VP2 reflects a high degree of restraint on the structural variability of 
VP5. 

The variability of the major outer capsid polypeptides of BTV reflects the role 
of these proteins in the induction of serotype-specific neutralizing antibodies. 
While most of the evidence would indicate that VP2 is the main determinant of 
serotype-specificity, a contributory role of VP5 can by no means be excluded. 

The first evidence for the role of VP2 in determining serotype specificity was 
obtained by demonstrating that VP2 immune precipitation was serotype specific 
(HUISMANS and ERASMUS 1981). Similar results were obtained with the five BTV 
serotypes isolated in the USA (MECHAM et al. 1986). 

More direct evidence that VP2 is involved in the induction of serotype
specific antibodies was obtained by demonstrating that VP2 and a mixture of 
VP2 and VP5 can elicit neutralizing antibodies in rabbits and sheep (HUISMANS 
et al. 1987b). The immune response obtained after injection of sheep with 100 J.Lg 
purified VP2 was sufficient to protect them against challenge with virulent virus 
of the same serotype. 

VP2 purified from gels after SDS-PAGE failed to induce neutralizing 
antibodies. However, neutralizing antibodies were obtained by VP2 synthesized 
in cells infected with baculovirus recombinants containing the cloned segment 2 
gene of BTV-lO (US) (INUMARU and Roy 1987). These results indicate that the 
neutralization epitope could be conformation dependent. The importance ofVP2 
in the induction of a neutralization-specific immune response was further 
confirmed by the isolation of VP2-specific monoclonal antibodies which can 
neutralize the virus (ApPLETON and LETCHWORTH 1983) and provide passive 
protection against challenge with a homologous virulent BTV strain 
(LETCHWORTH and ApPLETON 1983). 

The regions on VP2 that are involved in determining serotype specificity have 
not as yet been identified. A comparison of the amino acid sequence of VP2 from 
two BTV serotypes failed to locate the antigenic site(s) involved in the serotype
specific variation (FUKUSHO et al. 1987). GOULD et al. (1988) have isolated a 
number of escape mutants using a neutralizing monoclonal antibody against 
BTV -1 (Aus). When compared with the wild-type virus the mutants each revealed 
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a single nucleotide substitution in the segment 2 gene which resulted in a single 
amino acid change in VP2. The changes were all located between amino acid 
positions 328 and 33S in VP2. This variable region is flanked by sequences which 
contain a mixture of conserved and variable residues which in turn are flanked by 
two regions of highly conserved sequences. The conserved regions could be very 
important in ensuring that the overall three-dimensional conformation of the 
variable serotype-specific region is maintained. The region containing the 
neutralization-specific mutations (GOULD et al. 1988) is outside the variable VP2 
regions identified by GHIASI et al. (1987). It is, however, highly likely that more 
than one serotype-specific epitope is involved. For example, two VP2-specific 
monoclonal antibodies, one of which neutralizes BTV-l (Aus) but not BTV-l 
(SA) and another one which neutralizes both, have been reported (WHITE and 
EATON as reported by GOULD et al. 1988). 

The possibility that VPS contributes to the neutralization-specific immune 
response has not been fully explored. KAHLON et al. (1983) have used reassortants 
to demonstrate that serotype specificity co segregates with the VP2 but not with 
the VPS genome segments. In a study of reassortant viruses of BTV types 20 and 
21, it was shown that reassortants which possessed both outer capsid proteins 
VP2 and VPS were neutralized specifically by homologous antiserum. However, 
reassortants with VP2 of BTV-20 and VPS of BTV-21 had intermediate 
characteristics (COWLEY and GORMAN 1989). In similarly designed studies, 
MERTENS et al. (1989) isolated a reassortant containing VPS from BTV -3 and VP2 
from BTV-I0 which cross-neutralized with both parental virus strains (BTV-3 
and BTV-I0), indicating a possible contributory role for VPS in the induction of 
neutralizing antibodies. There is, however, as yet no evidence that VPS by itself 
can induce neutralizing antibodies. 

Other functions of the virus that are generally thought to be associated with 
proteins in the outer capsid layer are virulence and cell adsorption. RNA/RNA 
hybridization of a number of virulent and avirulent strains of homologous 
serotypes (HUISMANS and HOWELL 1973) indicated the occurrence of very small 
differences in those genome segments coding for the outer capsid polypeptides. 
WALDVOGEL et al. (1986) have isolated two strains of BTV-ll that differed 
significantly in their virulence for newborn mice. The two strains were distinct 
electropherotypes with the most obvious difference in the electrophoretic 
mobility of genome segment S. 

There is some evidence that VP2 is involved in cellular attachment. A loss of 
infectivity is associated with the removal ofVP2 (VERWOERD et al. 1972) and such 
particles can also no longer bind to cells (HUISMANS et al. 1983). Intermediate 
subviral particles of BTV that contained VP2 chymotrypsin cleavage products 
were, however, fully infectious (MERTENS et al. 1987a). Although cleavage ofVP2 
did not affect cell attachment, it did result in a loss of haem agglutination activity. 
This function is generally also associated with VP2 since haemagglutination 
inhibiting antibodies to BTV are type-specific (TOKUHISA et al. 1981; HUBSCHLE 
1980; VAN DER WALT 1980). The results suggest that the sites for haemagglutin
ation activity and cell attachment are not necessarily the same. COWLEY and 
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GORMAN (1987) have used reassortants to locate the haemagglutination activity 
on VP2. 

5.1.2 Core Polypeptides 

The BTV core is composed of two major polypeptides (VP3 and VP7) and three 
minor polypeptides (VP1, VP4 and VP6). VP7 predominates and comprises 
approximately one-third of the total protein content of the virion (Table 1). 

VP7 is the main component of the capsomeres on the surface ofthe BTV core 
particle (HUISMANS et al. 1987d). There is also some evidence that the protein is 
not completely shielded by the outer capsid and can be recognized in the double
layered virus particle by VP7-specific antibodies (HYATT and EATON 1988). VP3 
on the other hand is not recognized by antibodies, suggesting an inner location. 
VP3 is the only major structural protein in the BTV subcore particles and it has 
been proposed that it forms the protein scaffold on which the capsomeres are 
arranged (HUISMANS et al. 1987d). 

VP7 has been identified as the soluble group-specific antigen (HUISMANS and 
ERASMUS 1981; GUMM and NEWMAN 1982; HDBSCHLE and YANG 1983). The 
protein has been purified by chromatofocusing (GUMM and NEWMAN 1982) and 
has been characterized by peptide mapping (WHISTLER and NEWMAN 1986). 
Tryptic maps ofVP7 from seven different BTV serotypes indicated that VP7 from 
some serotypes was only distantly related. A similar pattern was also reflected by 
the nucleic acid homology of cognate genome segments that encode VP7. In 
contrast to those genome segments that code for the other core proteins which 
were found to be highly conserved (more than 90% nucleic acid homology), the 
variation in the VP7 genome was much larger (HUISMANS and CLOETE 1987; 
HUISMANS et al. 1987a; KOWALIK and LI 1987; RITTER and Roy 1988). In a 
number ofBTV serotypes the VP7 genome homology was high (more than 90%), 
whereas between others the homology was much less. Since VP7 is the most 
exposed of the core polypeptides it might well be subjected to immunological 
pressure which could explain the variation in VP7 that is observed. 

Little is known about the minor capsid polypeptides VP1, VP4 and VP6. The 
nucleotide sequence of BTV -to (US) segment 1 which encodes VP1 has recently 
been determined (RoY et al. 1988). VP1 was shown to be a 149588 dalton 
polypeptide with extensive homology to a vaccinia virus DNA-dependent RNA 
polymerase subunit, as well as several other prokaryotic and eukaryotic RNA 
polymerases. VP1 and VP4 are present in very small amounts of about 5-6 copies 
per virus particle and a cooperative enzymatic function of the two proteins in 
RNA transcription and/or RNA replication is a distinct possibility. Some of 
these enzymatic activities will be discussed in more detail in Sects. 6.2.1 and 
6.2.2. 

Nothing is known about protein VP6 except that it migrates as a doublet in 
several of the BTV serotypes. It is also surprising that the molecular weight of 
VP6 is smaller than that ofVP7 (Table 1), although it migrates in a position above 
VP7. The reason for this is not clear. 
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5.2 N onstructural Proteins 

At least three different nonstructural proteins have been identified in BTV
infected cells. The two major nonstructural proteins, NS1 (P5A) and NS2 (P6A), 
were first identified by HUISMANS (1979). A third minor nonstructural protein, 
NS3, was first detected by GORMAN et al. (1981) in BTV-infected cells. 

The synthesis of nonstructural proteins NS1 and NS2 in BTV-infected cells 
coincides with that of the structural proteins (HUISMANS 1979). Protein NSI is 
synthesized in large amounts, comprising about 25% of the virus-specified 
proteins in the infected cells. However, very little NSI is detected in the soluble 
fraction of infected cells because it is very rapidly converted to high molecular 
weight tubular structures with a sedimentation coefficient of about 300S-500S 
(HUISMANS 1979; HUISMANS and ELS 1979). The presence of these tubules is a 
characteristic feature of BTV-infected cells (LECATSAS 1968). Tubules are also 
found in cells infected with other orbiviruses such as EHDV and AHSV (TSAI and 
KARSTAD 1970; OELLERMAN et al. 1970). Negatively stained BTV tubules are 
approximately 68 nm in diameter and are characterized by a surface fine structure 
with a striking 9 nm linear periodicity along the length of the tubules, giving them 
a ladder-like appearance. The EHDV tubules are 54 nm in diameter whereas the 
AHSV tubules are much smaller with a diameter of 18 nm and no clearly defined 
surface structure (HUISMANS and ELS 1979). 

The tubules are distinct from the microtubules in uninfected cells. Colchicine, 
which inhibits the polymerization of tubulin into microtubules (WILSON and 
MESA 1973), had no effect on virus tubule formation in BTV - and AHSV -infected 
cells (HUISMANS and ELS 1979; EATON et al. 1987). Polymerization of NSI into 
tubules occurs throughout the infection cycle and can be demonstrated as early as 
2-4 hpj., long before the appearance of infectious progeny virus particles. 
Recently URAKAWA and Roy (1988) have expressed the gene that codes for NSI 
by means of a baculovirus recombinant. The protein was synthesized in large 
amounts and formed numerous tubules in Spodoptera Jrugiperda cells. 

EATON et al. (1988) have investigated the localization ofNS1 in BTV-infected 
cells, using NSI-specific monoclonal antibodies. These results have been 
reviewed by EATON and HYATT (1989) and are discussed in a later chapter. A 
group of NSI-specific monoclonal antibodies was identified which reacted with 
virus particles in infected cells. These particles were either leaving or in close 
proximity to the viral inclusion bodies. It seems possible that some NSI remains 
associated with highly purified virus or core particles. 

The gene coding for NSI (segment 5) is transcribed more frequently than any 
of the other genome segments (HUISMANS and VERWOERD 1973). This could 
explain the high relative amounts in which NS1 is synthesized. The fact that 
segment 5 is more frequently expressed is not unique to BTV but has also been 
observed in the case of other orbiviruses such as EHDV (HUISMANS et al. 1979). It 
is unknown why such large amounts ofNS1 are required in the infected cells. An 
attractive hypothesis presented by EATON et al. (1988) is that the tubular 
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structures, which appear to condense from NS1-rich fibrillar material, are the 
repository ofNS1 that has been utilized in a prior stage of virus morphogenesis. If 
the tubules themselves are not the active participants in virus morphogenesis 
there could be a necessity for a continued large supply of fresh, soluble NS1 
throughout the infection cycle. 

The gene coding for NS1 is highly conserved in the BTV serogroup 
(HUISMANS and CLOETE 1987). It has been sequenced by LEE and Roy (1987) 
and was shown to code for a 553 amino acid protein that does not appear to have 
any similarity to known microtubular proteins. In addition to NS1, MERTENS et 
al. (1984) have observed another protein called NS1a which is also coded for by 
genome segment 5 (PEDLEY et al. 1988). The relationship between NS1a and NS1 
is not clear. 

The function of NS2, the other major non structural protein, is also not clear. 
It has some features in common with protein (T-NS ofreovirus. The two proteins 
are of approximately the same size and both have affinity for ssRNA (HUISMANS 
and JOKLIK 1976; HUISMANS et al. 1987c). Such ssRNA-binding nonstructural 
proteins appear to be common to all members of the Reoviridae family and have 
also been found in the case of rotavirus (BOYLE and HOLMES 1986). A distinctive 
feature ofthe BTV NS2 is that it is phosphorylated (HUISMANS et al. 1987c). NS2 
purified by affinity chromatography can also be phosphorylated in vitro without 
addition of exogenously added phosphokinase, suggesting that the kinase that is 
responsible for phosphorylation remains associated with NS2 during purification 
(HUISMANS et al. 1987c) 

NS2 was detected in both the soluble and particulate fraction of infected cells. 
Particulate NS2 can be solubilized by a high-salt treatment and can then be 
purified using affinity chromatography (HUISMANS et al. 1987c).1t was also found 
that mixtures of BTV mRNA and soluble NS2 form a complex with an estimated 
S value of about 22 on sucrose gradients. The S value was independent of the 
mRNA/NS2 ratio. The exact stochiometric ratio or molar amounts of the 
macromolecules in these complexes have not as yet been determined. An 
attractive hypothesis for the function of NS2 is that it acts in the selection and 
condensation of the ten mRNA species during virus morphogenesis. EATON et al. 
(1988) refer to an unpublished observation by A.D. HYATT that NS2 is associated 
with the viral inclusion bodies in the cytoskeleton ofBTV -infected cells. MERTENS 
et al. (1987a) have reported that a small amount ofNS2 remains associated with 
highly purified virus. The gene coding for NS2 has been cloned and sequenced 
(HALL et al. 1989). It codes for a protein of 357 amino acids. 

The third nonstructural protein, NS3, is encoded by the smallest of the BTV 
genome segments (MERTENS et al. 1984; VAN DUK and HUISMANS 1988). The in 
vitro translation product consists of two proteins NS3 and NS3A with a 
molecular weight of 28 000 and 25 000 daltons respectively. The two proteins 
have almost identical peptide maps and were also found to be synthesized in very 
small amounts in BTV -infected cells (V AN DUK and HUISMANS 1988). Whether 
NS3 and NS3A are functional equivalents or complement one another is not 
known. The NS3-coding genome segment of BTV -10 (US) and BTV -1 (A us) have 
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been cloned and sequenced (LEE and Roy 1986; GOULD 1988b) indicating two in
phase, overlapping open reading frames. 

6 Viral Nucleic Acids 

BTV nucleic acids are comprised of dsRNA and single-stranded mRNA. The 
mRNAs are transcribed from the dsRNA template and each of the ten mRNA 
species is an exact copy of the positive strand of one of the dsRNA segments 
(HUISMANS and VERWOERD 1973). There are no small oligonucleotides associated 
with BTV as is the case with reovirus (BELLAMY et al. 1967; SHATKIN and SIPE 
1968). In this section we will summarize the characteristics of the various viral 
RNAs, the synthesis of mRNA, and the use of genomic probes for the detection of 
viral RNA. 

6.1 Double-Stranded RNA 

6.1.1 Physicochemical Characteristics 

Rapid progress has been made in the characterization of the BTV dsRNA 
segments in the past few years. All the ten genome segments of BTV -to (US) have 
been cloned and sequenced and these results will be summarized in a following 
chapter. Important common features of all the dsRNA segments are that the 5'
and 3'-noncoding regions are relatively short, varying between 8 and 34 bp 
(RoY 1989). A sequence of six nucleotides at the 3'- and 5'-ends of all BTV 
dsRNA segments is conserved (KmcHI et al. 1983; RAO et al. 1983; MERTENS and 
SANGAR 1985). 

There are considerable differences in the PAGE migration profiles of the 
genome segments of the different serotypes of BTV (Fig. 2a). These migration 
patterns are not characteristic for different isolates of the same serotype (OBERST 
et al. 1987; MERTENS et al. 1987b) (Fig. 2a) and can therefore not be used for 
conclusive serotype classification (GORMAN and TAYLOR 1985). The variation in 
electrophoretic migration on PAG E gels is furthermore not an accurate reflection 
of the size of the genome segments (PEDLEYet al. 1988). It has been shown that the 
relative order of migration of the genome segments is affected by and can even be 
reversed by variation in polyacrylamide concentrations (MERTENS and SANGAR 
1985; KOWALIK and LI 1987). The differences can be ascribed to variations in base 
composition or to secondary structure and are less distinct at low polyacrylamide 
concentrations. 

On agarose gels the dsRNA genome segments are separated according to size 
and no differences in the dsRNA profiles of the different BTV serotypes have been 
reported (Fig. 2b) (SQUIRE et al. 1983; KOWALIK and LI 1987; PEDLEY et al. 1988). 
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Fig. 2a,b. dsRNA profiles ofBTV serotypes 1 South Africa (I SA), 1 Australia (1 Aus), 3,4, Wand 20. 
Genomic dsRNAs were extracted and separated in a 10"1. polyacrylamide (3'-end-labelled RNA, 
detected by autoradiography), and b 1% agarose gels (unlabelled dsRNA, stained with ethidium 
bromide). (From PEDLEY et al. (1988), with permission) 

It has therefore been proposed that all references to the relative order of 
migration of genome segments should be standardized in terms of the migration 
on agarose gels (PEDLEY et al. 1988). 

A question that has not been fully explored is whether the dsRNA segments 
are linked inside the virus particle. ELS (1973) demonstrated by electron 
microscopy that BTV particles liberated between six to ten fragments of dsRNA. 
FOSTER et al. (1978) presented evidence that the genome, when extracted under 
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acidic conditions (pH 4.0) with SDS and phenol, is occasionally seen as an 
un fragmented continuous structure. In most cases, however, the genomes have a 
rosette configuration with loops that emanate from a central area that resembles 
a doughnut. These rosette patterns each contained ten loops of varying length. 
The relative size of each of the ten loops is of about the same order as has been 
reported for the individual genome segments. The most surprising aspect of these 
results is, however, that the SDS-phenol extraction did not cause fragmentation 
of the dsRNA, which would seem to exclude a protein as possible linker of the 
genome segments. 

6.1.2 Heterogeneity of the Genome and Genomic Probes 

The phenomenon of heterogeneity among the dsRNA segments ofthe 24 different 
BTV serotypes has already been referred to in Sects. 5.1 and 5.2. The different 
genome segments are classified as either highly variable, moderately conserved or 
highly conserved (KOWALIK and LI 1987; HUISMANS and CLOETE 1987). Overall 
nucleic acid similarity has also provided the basis for a distinction between BTV 
isolates from different geographical areas such as South Africa and Australia 
(GOULD 1987, 1988c). 

The most highly conserved genome segments are generally considered 
suitable serogroup-specific genomic probes. The VP3-specific genome segment 
has been recommended by Roy et al. (1985) as a highly conserved group-specific 
genomic probe. The probe is particularly suitable for detecting BTV isolates from 
the same geographical group such as the American and South African sero
types. 

HUISMANS and CLOETE (1987) have suggested the use of aNSI-specific 
genomic probe. The NSI genome is highly conserved and cross-hybridization 
between South African and Australian BTV isolates occurs under conditions of 
high stringency, even though at a significantly reduced efficiency. 

For the detection of virus-specific dsRNA and mRNA in infected cells, the 
most suitable probes are likely to be those that are specific for the mRNA 
species that predominate. In BTV- and EHDV- infected cells the NS1- and 
NS2-mRNAs are transcribed more frequently than the others and the corre
sponding genomic probes were consequently found to be the most sensitive in in 
situ hybridization (VENTER and HUISMANS, unpublished results). The same 
observation was made in the case of EHDV and equine encephalosis virus 
(VILJOEN, NEL and HUISMANS, unpublished results). 

The best serotype-specific probe is segment 2 which encodes VP2. The level of 
interserotype cross-hybridization observed with this probe has also been shown 
to correlate with the low level of cross-neutralization between different serotypes 
(HUISMANS and CLOETE 1987). However, as pointed out by GOULD (1988a) this 
may also only apply to isolates from the same geographical group. For example, 
the genomic probes specific for the genes that encode outer capsid proteins VP2 
and VP5 of BTV-l (Aus) did not hybridize to cognate genes of BTV-I (SA). 
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Similar results were obtained with the BTV-9 and BTV-20 serotypes from 
Australia. 

6.2 Messenger RNA 

The dsRNA genome segments serve as templates for the synthesis of ten single
stranded mRNA species. The mRNAs have a heterogeneous size distribution on 
sucrose gradients with estimated S values ranging from 12 to 22 (VERWOERD and 
HUISMANS 1972). BTV mRNA has also been fractionated on 3% low melting 
agarose gels (V AN DUK and HUISMANS 1988) which resulted in resolution of eight 
of the ten BTV mRNA species. These results confirmed an earlier observation 
that the ten mRNA species are not synthesized at the same rate (HUISMANS and 
VERWOERD 1973). The synthesis ofmRNA is effected by a core particle-associated 
RNA polymerase (transcriptase). 

6.2.1 The Viral Transcriptase and mRNA Synthesis 

The transcriptase is activated by removal of the outer capsid layer of the virus. 
This can be achieved in the case of BTV by one of four methods, namely 
centrifugation of virions on CsCI gradients at pH 7.0 (VERWOERD et al. 1972), 
treatment of virions with chymotrypsin and magnesium (V AN DUK and 
HUISMANS 1980), isolation of naturally occurring core particles in BTV -infected 
cells (MARTIN and ZWEERINK 1972; HUISMANS et al. 1987d) and treatment of 
virions with 1.0 M MgCl2 at pH 6.5 (HUISMANS et al. 1987b). 

The mechanism by which the removal of the outer capsid layer activates the 
transcriptase is not clear. The most likely explanation is that this modification 
allows free access of the nucleoside triphosphates to the genome and the 
unimpaired extrusion of the newly synthesized mRNA. This hypothesis is 
supported by the observation that the BTV transcriptase is very rapidly inhibited 
during the course of an in vitro transcriptase assay at high core concentrations. At 
high concentrations the core particles tend to aggregate very strongly (MERTENS 
et al. 1987a; VAN DUK and HUISMANS 1987). In the precipitated complexes the 
physical access to and from the core particles could be impaired with the result 
that mRNA synthesis is blocked. 

VERWOERD and HUISMANS (1972) have reported that in vitro the BTV 
transcriptase has a low temperature optimum at 28°C. This is much lower than 
the 47°-S2°C optimum reported for reovirus (KAPULER, 1970). However, the 
preference for a low temperature is not an intrinsic characteristic of the BTV 
transcriptase itself but can be explained by the observation that a reduction in 
temperature counteracts the inhibitory effect of high core concentration on the 
transcriptase reaction (VAN DUK and HUISMANS 1980; VAN DUK and HUISMANS 
1982; VAN DUK and HUISMANS 1987). At very low core concentrations the 
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reaction is as efficient at 37°C as at the lower temperatures. The inhibitory effect 
can also be reversed by the addition of viscous compounds such as sucrose and 
glycerol (VAN DUK and HUISMANS 1987). One possible explanation is that the 
reduction in temperature and the increase in viscosity prevent the aggregation of 
core particles which could inhibit the transcriptase reaction. 

The RNA polymerase itself has not been characterized. ROYet al. (1988) have 
tentatively assigned the polymerase to VPl on account of the degree of amino 
acid similarity of the latter to a variety of prokaryotic and eukaryotic RNA 
polymerases. More than one protein may, however, be involved in trans
cription. Indications have also been found that the structural integrity of the 
core particle is essential for maintaining transcriptase activity (HUISMANS et al. 
1987d). 

Analysis of the relative molar proportion in which the ten mRNA species of 
BTV are transcribed was carried out by analysis of mRNA/dsRNA hybrids on 
polyacrylamide gels (HUISMANS and VERWOERD 1973) and by direct fractionation 
of the in vitro synthesized mRNA by agarose gel electrophoresis (VAN DUK 
and HurSMANS 1988). It was found that the different mRNA species are not 
transcribed at a frequency that is inversely proportional to their molecular weight 
as has been reported for reovirus (SKEHEL and JOKLIK 1969) and cytoplasmic 
polyhedrosis virus (SMITH and FURurCHI 1980). Segment 5, which codes for 
nonstructural protein NS1, is transcribed at more than double the predicted rate 
whereas segment 10, which codes for NS3, is transcribed at about one-half the 
predicted frequency (HurSMANS and VERWOERD 1973). It is interesting that NS 1 is 
also translated in much higher relative amounts and comprises about 25% of the 
virus-specified proteins in infected cells. Nonstructural protein NS3, on the other 
hand, is synthesized in such small amounts that it is hardly detectable in infected 
cells (VAN DUK and HUISMANS 1988). The lower than predicted level of segment 
1 ° transcription is, however, not sufficient to explain the very low level of NS3 
synthesis. 

The molar ratio in which the different mRNAs are transcribed remains the 
same throughout the infection cycle and the ratio ofmRNAs synthesized in vivo 
and in vitro is also identical (HurSMANS and VERWOERD 1973). The observed 
transcription control thus appears to be an intrinsic property of the core particle. 
A similar observation was made for other orbiviruses such as EHDV 
(HUISMANS et al. 1979). 

6.2.2 mRNA Capping 

It is presumed that the mRNAs ofBTV are capped during transcription as in the 
case of r<:ovirus and cytoplasmic polyhedrosis virus (SHA TKIN 1976) and rotavirus 
(IMAI et al. 1983). Guanylyl transferase, a key enzyme in cap synthesis, has been 
assigned to core polypeptide lambda 2 of reovirus (SHATKIN et al. 1983). In the 
case ofBTV, the function has been provisionally assigned to the core polypeptide 
VP4 (P.P.c. MERTENS, personal communication). 
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7 Conclusion 

Significant progress has been made during the past 20 years in the characteriz
ation of the BTV structural components. The major aim of these investigations 
remains an explanation of the different biological characteristics of the virus in 
terms of its nucleic acids and proteins. 

An important contribution to the study of the structural components was 
made by the cloning and sequencing of the ten dsRNA genome segments of BTV 
(Chap. 3). These results have provided new insight into the genetic variation of 
the genome segments in the BTV serogroup and have provided detailed 
information about the amino acid sequence of the ten virus-specified proteins. 

Much of the research on the viral proteins has been focussed on immunologi
cally important proteins such as VP2 which is involved in the induction of a 
protective immune response. Some progress has been made but much remains to 
be elucidated, particularly so with regard to the identification of the epitopes on 
the different viral proteins that contribute to the cell-mediated and humoral 
protective immune response. In this respect the structural relationship between 
the different proteins and the conformation of the proteins in the capsid layers of 
the virus is likely to be of fundamental importance. 

Although some progress has been made in assigning specific functions to a few 
of the core polypeptides, the role of the majority of these proteins in viral 
replication remains largely unknown. The same applies to the nonstructural 
proteins. Important aspects that remain to be investigated include the association 
of nonstructural proteins with viral inclusion bodies, virus particles and viral 
components such as mRNA. 

The ability to express the cloned genome segments ofBTV in a variety of host 
cells should provide a means of investigating them in greater detail. It should also 
provide the opportunity of evaluating different approaches in the development of 
recombinant vaccines. 
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1 Introduction 

Bluetongue virus (BTV) particles were initially suggested to be morphologically 
similar to reovirus particles (OWEN and MUNTZ 1966; STUDDERT et al. 1966; ELS 

and VERWOERD 1969) and were subsequently confirmed to contain a double-
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stranded RNA (dsRNA) genome as in reovirus (ELS 1973; VERWOERD 1969; 
VERWOERD et al. 1970; BOWNE and RITCHIE 1970). BTV, along with other 
morphologically related viruses, is classified as an orbivirus within the family 
Reoviridae (BORDEN et al. 1971; MURPHY et al. 1971). To date 24 different BTV 
serotypes have been identified from different parts of the world including North 
and South America, Australia, Africa, and Southeast Asia (HOWELL 1960, 1970; 
HOWELL and VERWOERD 1971; GORMAN et al. 1983; KNUDSON and SHOPE 1985). 
In the early 1970s VERWOERD and coworkers carried out the first biochemical 
studies ofthe BTV particle and since then many further studies on the genome of 
BTV have been done. In this chapter we intend to define the current state of our 
understanding of the genetics and the structure ofthe bluetongue genes and gene 
products. 

2 Genetic Attributes of Bluetongue Viruses 

The BTV genome is comprised often dsRNA segments, ranging in size from 0.5 to 
2.7 x 106 daltons (ELS 1973; VERWOERD et al. 1979; FUKUSHO et a1. 1989). The 
segments can be resolved by polyacrylamide gel electrophoresis (PAGE) into 
distinctive patterns for each serotype (Fig. 1). The RN A segments are numbered 1 
to 10 in order of migration and may also be referred to as large, medium, and 
small segments (i.e., LJ - L3, M4-M6, and S7-SlO). Separation of the dsRNA 
segments by agarose gel electrophoresis, however, produces patterns that are 
practically identical among serotypes (PEDLEY et a1. 1988), and this suggests that 

(/) 
C") r-... 

Q) N 0 ..--
..-- ..-- ..--

.:t:. > > > > 
'- > I-ro l- I- l- I-

(]) 
Kb ~ (]) (]) (]) (]) 

5 .. 
4.3 - - -
3.5 ' - #::::::= ~ 2.0-
1.9- -..., - .. - -=- -
1.6- _ - ~ 

1.3- - .-
- - ---- - ~,-- ::::t= Fig. 1. Polyacrylamide gel (10%) - ~- electrophoresis of genomic 

0.98- - dsRNA segments of five - -- serotypes of BTY from the -- United States. Gel was stained 
0.83- - with silver nitrate 
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equivalent genome segments from these serotypes may only have minor 
differences in their molecular weights, but have significant differences in their base 
compositions. 

As summarized in Table 1, the BTV genome codes for at least seven major 
structural proteins (VPl-VP7) and at least three nonstructural proteins (NSl
NS3), and each of these is coded for by a separate RNA segment of the genome 
(GRUBMAN et al. 1983; MERTENS et al. 1984; VAN DUK and HurSMANS 1988; 
PEDLEY et al. 1988). 

2.1 Oligonucleotide Fingerprint Analysis of Serotypes 
Isolated in the United States 

Oligonucleotide fingerprint analyses of the ten dsRNA species of US BTV 
serotypes indicated that each RNA species was unique and therefore contained 

a 

b 

• • 

• 

SEGMENT 8 

SEGMENT 3 

o 

Fig. 2 a,b. RNAse T1 fingerprint 
analysis of different segments of 
BTV-IO and BTV-II. a Segment 8 
fingerprints; b schematic diagram 
of the deduced relationships be
tween segments 3. H alf-filled circles 
represent shared oligonucleotides. 
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unique genetic information. However, when individual genes were compared 
between the serotypes (e.g., BTV-I0, BTV-ll, and BTV-17), the fingerprints were 
similar, or even identical, for most genes, but a few of the genes differed greatly. An 
example is presented in Fig. 2a which shows that fingerprints of segment 8 of 
prototype BTV-I0 and BTV-ll are very similar, if not identical. Similarly, 
fingerprints of segment 3 of prototype BTV -10 and an alternate isolate of BTV -11 
were very similar as shown in a comparative schematic diagram of fingerprints 
(Fig.2b) (SUGIYAMA et al. 1981). When an isolate (80-26798, isolated from 
Washington State) of the BTV-lO virus was fingerprinted, it was evident that the 
segments were comparable with those of either prototype BTV -10 or BTV -11 
except for segment 1 which was identical to segment 1 of an alternate BTV -11 
isolate (COLLISSON and Roy 1983). When fingerprints of individual RNA 
segments of BTV -11 and BTV -17 were compared, the patterns were very similar 
for all equivalent segments indicating that few changes in the genome ofBTV-ll 
could have led to the emergence ofBTV-17, provided that some of the changes 
occurred in the gene coding for the antigenic polypeptide(s) (RAo et al. 1983a). In 
order to determine the extent of genotypic variation among BTV isolates, a study 
of the RNA sequences ofBTV-ll isolates obtained in 1973 from different regions 
of the United States (USA), or from Colorado State, but in different years, from 
1963 to 1975, was undertaken. The results indicated that all the BTV-ll isolates 
were related, albeit to various extents, to the US prototype BTV -11 strain. 
However, all showed some sequence differences, indicating that considerable 
evolution ofthe BTV -11 genome has occurred in the USA since the original 1962 
isolation of the virus (SUGIYAMA et al. 1982). 

2.2 Reassortment of Genome Segments 

Since BTV has a segmented genome, reassortment of genome segments between 
different serotypes should be possible and has been demonstrated in tissue 
culture, in vertebrate hosts, and in Culicoides vectors (KAHLON et al. 1983; 
GORMAN et al. 1983; Roy et al. 1982; SAMAL et al. 1987). Reassortment in field 
isolates had been reported both in vertebrate hosts and Culicoides vectors 
(SUGIYAMA et al. 1981, 1982; Rao et al. 1983a; RAO and Roy 1983; COLLISSON et al. 
1985; SAMAL et al. 1987). The generations of reassortants in the vector Culicoides 
variipennis (42%) is reportedly higher than in sheep (5%), the natural vertebrate 
host (SAMAL et al. 1987). Another genetic feature of BTV infection is that multiple 
serotypes of BTV have been recovered from individual infected sheep and 
cattle (OSBURN et al. 1981; OBERST et al. 1985; STOTT et al. 1982), indicating that 
antigenically distinct viruses can cohabit in a single ruminant. 

By generating reassortant viruses involving two different serotypes, it had been 
possible to make protein coding assignments for certain genome segments. 
Serological and molecular analyses of such reassortant viruses had demonstrated 
that segment 2 codes for the serotype-specific neutralizing antigen VP2, segment 
3 codes for the core protein VP3, segment 5 codes for the other outer capsid 
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protein VP5, and segment 10 codes for the nonstructural protein NS3 (RoY et al. 
1982; KAHLON et al. 1983). These assignments were subsequently confirmed by in 
vitro translation of individual RNA segments (GRUBMAN et al. 1983; MERTENS 
et al. 1984; SANGAR and MERTENS 1983; PEDLEY et al. 1988). 

2.3 Homologous Terminal Sequences 

As a preliminary step in the cloning and sequencing ofBTV dsRNA segments the 
3' terminal sequences of the ten genome segments ofBTV serotypes 10, 11, and 17 
were determined (RAO et al. 1983b). The terminal sequence of one strand was 
HoCAAUUU ... 5' and the other was HoCAUUCACA ... 5' for all segments of the 
two serotypes. Beyond these common termini, the sequences varied considerably 
among segments. This was substantiated by MERTENS and SANGAR (1985) who 
reported six similar conserved terminal residues in BTV serotypes 1 and 20 and in 
a related orbivirus, Ibaraki virus (a member of the epizootic hemorrhagic disease, 
EHD, serogroup). Annealing experiments with in vitro synthesized mRNA of 
BTV serotype 1 and the single RNA strands separated from the dsRNA genome 
segments showed that the strand terminating with HOCAUUCACA ... 5' was of the 
same polarity as the mRNA (i.e., positive) and the strand terminating with 
HoCAAUUU ... 5' was of the opposite polarity (i.e., negative). 

2.4 Molecular Cloning of the Complete 
Genome of Bluetongue Virus 

To obtain full-length DNA clones representing the entire genome of BTV 
serotype 10, the dsRNA segments were first isolated by agarose gel electro
phoresis. Complete cDNA copies of each segment were then synthesized and 
cloned into the Hind III or the PstI restriction site of dG-tailed pBR322 plasmid 
(PURDY et al. 1985; GHIASI et al. 1985; LEE and Roy 1986, 1987; Yu et al. 1987, 
1988a; Roy et al. 1988; FUKUSHO et al. 1989). In the case of segment 5, coding for 
VP5 (see below), RNA-cDNA hybrid duplexes were successfully ligated directly 
into the PstI site of pBR322 (PURDY et al. 1986). Using these techniques our 
laboratory has been successful in obtaining full-length clones for all segments of 
BTV-1O as well as a number of clones representing various RNA segments of 
other serotypes. 

2.5 Genetic Relationships Among Serotypes 

Hybridization techniques have been extensively employed to determine the 
genetic relationships of dsRNA genome segments between different serotypes 
of BTV. HUISMANS and HOWELL (1973) used mRNA-dsRNA hybridization, 
followed by analysis of the duplexes by gel electrophoresis, to study the rela-
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tionships among South African isolates. Their results indicated that cross
hybridization occurred between the different isolates for all the dsRNA segments 
except for segments 2 and 5, which code for the two outer capsid proteins. A 
similar pattern of cross-hybridization between segments was seen in three 
Australian BTV isolates (GORMAN et al. 1983). However, when cross
hybridization studies involved viruses from different continents, for example, 
Australian serotypes with South African serotypes (4 and 10) or US serotype 17, 
the homology between equivalent segments was less than 30% (HUISMANS and 
BREMER 1981; GORMAN et al. 1981). Thus, it has been suggested that although 
BTV serotypes evolved from a common ancestor, the gene pools of viruses on 
different continents have diverged significantly as they evolved. 

More recent studies have used different hybridization techniques to study the 
genetic relationships among five US serotypes (BTV-2, BTV-I0, BTV-ll, BTV-
13, and BTV-17) (SQUIRE et al. 1985; KOWALIK and LI 1987). The conclusions of 
these studies were the same as those discussed above: RNA segments 2 and 5 
showed little or no cross-hybridization between serotypes, while the other eight 
RNA segments, in similar studies, showed cross-hybridization, some segments 
more than others (e.g., segment 7 was the weakest, while segments 6 and 8 were 
strongest). 

Northern blot analysis can reflect the extent of homology between probe and 
target nucleic acids under suitable hybridization conditions. We have used this 
technique with all available complete clones of the BTV -10 genome segments and 
the segment 2 clones of six different serotypes to study the genetic relationships 
among 20 different virus isolates from different continents (RoY et al. 1985; 
RITTER and Roy 1988). Hybridization conditions (e.g., temperature, ionic 
strength, probe concentration, and washing stringency) were chosen such that 
target sequences ofless than 70% homology would be negative. Results of these 
studies are discussed below. 

2.5.1 Genes Encoding the Outer Capsid Proteins, VP2 and VPS 

For segment 2 of BTV-l and BTV-2, hybridization was only observed with 
homologous RNAs under these conditions (Fig. 3a, RITTER and Roy 1988). 
Segment 2 of BTV -13 did not hybridize with any other RNA of US serotypes but 
did so with segment 2 ofBTV-16 (an isolate from Pakistan), indicating that these 
two serotypes are probably more closely related to each other than BTV -13 is to 
the other US serotypes (Fig. 3b). Weak cross-hybridization occurred between 
segment 2 of the US serotypes BTV-I0, BTV-ll, and BTV-17 as well as the South 
African serotypes 4 and 15 and the Australian serotype 20 indicating some 
probable relationship between these serotypes (Fig. 3a, b). Similarly, hybridiz
ation between segments 2 and 5 of BTV -4 and BTV -20 has been detected by 
RNA-RNA hybridization (MERTENS et al. 1987). HUISMANS and CLOETE (1987), 
using dot-blot techniques, have also reported a low level of hybridization 
between segment 2 of BTV-4 and that of serotypes 10, 11, 17, and 20. 
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Fig. 3 a,b. Hybridization studies with the genes encoding outer capsid protein V P2 gene of different 
BTV serotypes. a Autoradiograms of nick-translated 32P-labelled DNA probes representing RNA 
segment 2 of BTV-I, BTV·2, and BTV-IO, hybridized to genomic RNA of different serotypes. 
b Autoradiograms of similar hybridizations involving segment 2 DNA clones of BTV-II, BTV-I3, 
and BTV-I7 with different viral RNA species. The numbers (BTV-I to -20) and EI and E2 (EHDV I 
and 2) at the top of the figure represent the RNA species of different viruses. The faint bands are 
highlighted with arrow heads 

Northern blots using segment 5 ofBTV-10, which codes for the second outer 
capsid protein VP5, showed that this segment also varies among serotypes, 
however, for this segment US serotypes 10, 11, and 17 and S. African serotypes 3, 
4,5, and 15 are more closely related to each other than to other serotypes (Fig. 4). 
Thus, it is possible that VP5 plays some role in the determination of virus 
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BTV-10-5 

E 1 E2 1 2 3 4 5 6 7 8 9 10 

1>, 

11 12 13 14 15 16 17 18 19 20 

t> 

Fig. 4. Hybridization studies 
with the RNA encoding outer 
capsid protein VP5 gene of 
BTV -10 (RITTER and Roy 
1988) 

serotype. HUISMANS and CLOETE (1987) observed some hybridization of segment 5 
of BTV-4 with the homologous segments of all serotypes except 16 and 19. This 
discrepancy with the data discussed above may have been due to differences in the 
hybridization/washing conditions used. Recent studies involving cross
neutralization tests of BTV reassortment viruses have supported the idea that 
VP5 may playa minor role in the determination of virus serotype (MERTENS et al. 
1989; COWLEY and GORMAN 1989). 

2.5.2 The Inner Core Protein Genes of BTV 

Hybridization experiments confirmed that segments 1, 3, and 4 are highly 
conserved among all BTV serotypes (Fig. 5). Segments 7 and 9 are also well 
conserved among serotypes, although segment 7 of BTV -7 and BTV -19 showed 
less homology to BTV -10 than to the other serotypes (Fig. 5). Segment 9 of BTV-
10 did not hybridize with either BTV -16 (Pakistan isolate) or BTV -20 (Australian 
isolate) and only weakly with several other serotypes (Fig. 5; RITTER snd Roy 
1988). 

2.5.3 The Nonstructural Protein Genes of BTV 

Similarly, hybridization studies indicated that segments 6 and 10 are highly 
conserved among serotypes (Fig. 6). Segment 8 is less well conserved since 
hybridization was weak with segment 8 of BTV -16 and BTV -20 (Fig. 6; RITTER 
and Roy 1988). A similar result for segment 8 of BTV-lO and BTV-16 was 
reported by HUISMANS and CLOETE (1987). 

In summary, those segments which code for the inner core and nonstructural 
proteins ofBTV appear to be well conserved among serotypes. However, segment 
7, which codes for the group-specific protein VP7 (HUISMANS and ERASMUS 1981), 
and segment 9, which codes for VP6, appear to be less well conserved among 
serotypes than the remaining segments coding for the three inner core proteins 
(HUISMANS and CLOETE 1987; RITTER and Roy 1988; MERTENS et al. 1987). 
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BTV-l0-l BTV-l0-7 
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Fig. 5. Northern blot hybridization of RNA segments that encode BTV inner capsid proteins (RITTER 
and Roy 1988) 

2.6 Complete Sequence of BTV Genome 

The genome of BTV -10 has now been completely sequenced. Not only is this the 
first completed genome sequence of a member of the Reoviridae but also the 
largest reported complete genome sequence of an RNA virus. In addition, the 
sequences of a number of RNA segments of other serotypes have been reported. It 
is therefore possible to analyse the structural features of the ten segments and 
their predicted gene products, as well as to make comparisons between analogous 
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BTV-10-6 
E1 E2 1 2 3 4 5 6 7 8 9 1011121314151617 181920 

• 

BTV-l0-8 

E1E21 23. 587 8 9,0",2131.,5,817 181920 

BTV-10-10 

E1 E2 1 2 3 .. 5 8 7 8 9 ,0,112,31.'5'817 181920 

Fig.6. Northern blot hybridization of RNA segments encoding three NS proteins of BTY (RITTER 
and Roy 1988) 

genes and products from different serotypes (PURDY et al. 1984; FUKusHo et al. 
1987; GHIASI et al. 1985, 1987; GOULD 1987, 1988a, b; GOULD and PRITCHARD 
1988; GOULD et al. 1988; HALL et al. 1989; W ADE-EVANS et al. 1988; YAMAGUCHI 
et al. 1988a, b). The results of these analyses are discussed below. 

The complete sequence of the BTV-lO genome was determined to be 19218 
base pairs (bp) long (13 x 106 daltons). The sizes of the individual segments vary 
from 3954 bp (segment 1, 2.7 x 106 daltons) to 822 bp (segment 10, 5 x 105 

daltons). The overall base composition of the genome is 28.1% A + U; 21.9% 
G + C; the base compositions of the individual segments are all quite similar and 
range from 24.6% to 20.7% G + C. The 5' noncoding regions range from 8 bp 
(segment 4) to 34 bp (segment 6) in length, while the 3' noncoding regions are 
longer, ranging from 31 bp (segment 5) to 116 bp (segment 10). 

Presented in Table 1 are the summarized data for the coding arrangements of 
all ten of the dsRNA segments of BTV-10. Sequencing of the cloned segments 
confirmed the presence of conserved terminal sequences (see above) on all ten 
segments (RAo et al. 1983b). Each RNA segment has highly conserved terminal 
sequences (i.e., 5' -GUU AAA-----3' on the 5' end and 5' ----CACUUAC-3' on the 3' 
end of the positive-sense strands). In addition, other features proximal to these 
conserved sequences can be recognized in most of the segments. For example, 
nine ofthe ten segments have another A following the 5' conserved sequence (i.e., 
at position 7) and six of the segments have two A residues at positions 7 and 8. At 



T
ab

le
 2

. 
P

re
di

ct
ed

 a
m

in
o 

ac
id

 c
om

po
si

ti
on

s 
o

f 
th

e 
te

n 
pr

im
ar

y 
ge

ne
 p

ro
du

ct
s 

of
 B

T
V

-I
0 

V
P

l 
V

P
2 

V
P

3 
V

P
4 

V
P

5 
V

P
7 

V
P

6 
A

m
in

o 
ac

id
 

C
or

e 
n 

Sh
el

l 
n 

C
or

e 
n 

C
or

e 
n 

Sh
el

l 
n 

N
S1

 
n 

C
or

e 
n 

N
S

2 
n 

C
or

e 
n 

N
S

3 
n 

A
la

ni
ne

 (
A

) 
76

 
58

 
53

 
55

 
3 

70
 

40
 

61
 

49
 

93
 

41
 

74
 

40
 

11
5 

21
 

59
 

31
 

95
 

20
 

87
 

A
rg

in
in

e 
(R

) 
91

 
70

 
65

 
68

 
69

 
77

 
54

 
83

 
28

 
53

 
43

 
78

 
24

 
69

 
27

 
76

 
32

 
98

 
11

 
48

 
A

sp
ar

ti
c 

(D
) 

77
59

 
69

 
72

 
59

 
65

 
48

 
73

 
26

 
49

 
32

 
58

 
13

 
37

 
29

 
81

 
18

 
55

 
11

 
48

 
A

sp
ar

ag
in

e 
(N

) 
53

 
41

 
41

 
43

 
41

 
46

 
24

 
37

 
16

 
30

 
20

 
36

 
18

 
52

 
12

 
34

 
9 

27
 

8 
35

 
[I

'.l
 

C
ys

te
in

e 
(C

) 
12

 
9 

16
 

17
 

5 
6 

6 
9 

3 
6 

16
 

29
 

3 
9 

7 
20

 
1 

3 
2 

9 
::t

 
G

lu
ta

m
ic

 (
E

) 
84

 
65

 
60

 
63

 
50

 
55

 
48

 
73

 
55

 
10

5 
39

 
71

 
14

 
40

 
34

 
95

 
36

 
11

0 
15

 
66

 
fi 

G
lu

ta
m

in
e 

(Q
) 

42
 

32
 

37
 

39
 

42
 

47
 

8 
12

 
19

 
36

 
26

 
47

 
20

 
57

 
16

 
45

 
9 

27
 

10
 

44
 

s:: ~
 

G
ly

ci
ne

 (
G

) 
69

 
53

 
49

 
51

 
43

 
48

 
33

 
50

 
33

 
63

 
32

 
58

 
23

 
66

 
20

 
56

 
40

 
12

2 
6 

26
 

0 

H
is

ti
di

ne
 (

H
) 

21
 

16
 

29
 

30
 

16
 

18
 

27
 

41
 

17
 

32
 

14
 

25
 

6 
17

 
4 

11
 

6 
18

 
3 

13
 

... 
Is

ol
eu

ci
ne

 (
I)

 
95

 
73

 
70

 
73

 
65

 
72

 
38

 
58

 
48

 
91

 
39

 
71

 
24

 
69

 
19

 
53

 
19

 
58

 
11

 
48

 
~ 

L
eu

ci
ne

 (
L

) 
11

1 
85

 
90

 
94

 
82

 
92

 
63

 
96

 
43

 
82

 
42

 
76

 
28

 
80

 
21

 
59

 
16

 
49

 
23

 
10

0 
~ 

L
ys

in
e 

(K
) 

87
 

67
 

61
 

64
 

27
 

30
 

36
 

55
 

40
 

76
 

23
 

42
 

1 
3 

29
 

81
 

30
 

91
 

19
 

83
 

S 
M

et
hi

on
in

e 
(M

) 
50

 
38

 
20

 
21

 
35

 
39

 
27

 
41

 
17

 
32

 
23

 
42

 
19

 
54

 
13

 
36

 
6 

18
 

13
 

57
 

::I
 

P
he

ny
la

la
ni

ne
 (

F
) 

65
 

50
 

43
 

45
 

39
 

43
 

25
 

38
 

20
 

38
 

26
 

47
 

14
 

40
 

11
 

31
 

2 
6 

9 
39

 
~ 

P
ro

li
ne

 (
P)

 
51

 
39

 
36

 
38

 
47

 
52

 
32

 
49

 
15

 
29

 
20

 
36

 
21

 
60

 
17

 
48

 
7 

21
 

11
 

48
 

l 
S

er
in

e 
(S

) 
83

 
64

 
47

 
49

 
42

 
47

 
37

 
57

 
31

 
59

 
25

 
45

 
11

 
32

 
20

 
56

 
20

 
61

 
21

 
92

 
T

hr
eo

ni
ne

 (
T

) 
78

 
60

 
48

 
50

 
53

 
59

 
24

 
37

 
22

 
42

 
23

 
42

 
30

 
86

 
13

 
36

 
18

 
55

 
15

 
66

 
T

ry
p

to
p

h
an

 (
W

) 
11

 
8 

13
 

14
 

10
 

11
 

15
 

23
 

2 
4 

13
 

24
 

5 
14

 
5 

14
 

3 
9 

1 
4 

~ 
T

yr
os

in
e 

(Y
) 

56
 

43
 

47
 

49
 

39
 

43
 

28
 

43
 

14
 

27
 

28
 

51
 

9 
26

 
10

 
28

 
4 

12
 

3 
13

 
::I

 
0 

V
al

in
e 

(V
) 

90
 

69
 

62
 

65
 

73
 

81
 

41
 

63
 

28
 

53
 

27
 

49
 

26
 

74
 

29
 

81
 

21
 

64
 

17
 

74
 

~ 
T

o
ta

l 
13

02
 

95
6 

90
1 

65
4 

52
6 

55
2 

34
9 

35
7 

32
8 

22
9 

I»
 

::I
 

C
i. 

N
et

 c
ha

rg
e 

+
27

.5
 

+
11

.5
 

-5
.0

 
+

7
.5

 
-4

.5
 

+
2

 
+

1
 

-
3

 
+

1
1

 
+

5
.5

 
-1i>' 

Si
ze

 
14

95
88

 
11

10
23

 
10

33
26

 
76

43
3 

59
16

3 
64

44
5 

38
54

8 
40

99
9 

35
75

0 
25

60
2 

tT
l 

::I
 

<>
 

T
he

 in
di

vi
du

al
 c

om
po

si
ti

on
, 

pr
ed

ic
te

d 
si

ze
 a

n
d

 c
ha

rg
e,

 a
t 

ne
ut

ra
l 

pH
, o

f e
ac

h 
ge

ne
 p

ro
du

ct
 is

 g
iv

en
. 

F
o

r 
co

m
pa

ra
ti

ve
 p

ur
po

se
s 

th
e 

am
in

o 
ac

id
 c

on
te

nt
s 

ar
e 

al
so

 
0 Ii"

 
ex

pr
es

se
d 

as
 th

e 
nu

m
be

r (
n)

 p
er

 1
00

0 
re

si
du

es
. T

he
 p

re
su

m
ed

 lo
ca

ti
on

 o
f e

ac
h 

pr
ot

ei
n 

in
 t

he
 v

ir
io

n 
is

 g
iv

en
 (

ou
te

r c
ap

si
d.

 S
H

EL
L;

 i
nn

er
 c

ap
si

d,
 C

O
R

E;
 n

on
st

ru
ct

ur
al

 
C

i. 

N
S

) 
'"C

 ... 0 ~.
 '" V
I 

V
I 



56 P. Roy, J. J. A. Marshall, and T. J. French 

the 3' ends of the positive-sense strands the conserved sequence is preceded by AC 
in 7 of the 10 segments, and in the remaining 3 segments (4, 5, and 6) it is preceded 
by CA or Cc. Also UU dimers are found proximal to the 3' ends in seven of the 
ten segments (1,2,5,6,7,8 and 9). The 3' noncoding regions of seven of the 
segments (3,4,5,7,8,9, and 10) are purine-rich; it is not known if this plays any 
role in transcription, translation, or morphogenesis. 

Apart from segment I the first AUG codon on the positive RNA strand of 
each of the segments initiates a long open reading frame. Segment I has an 
additional AUG codon upstream of the codon which initiates the open reading 
frame (residues 7 -9); it is not known ifthis affects the translational efficiency of the 
gene. Similar AUG codons have been reported for segment I ofBTV-I, BTV-ll, 
and lbaraki virus (MERTENS and SAN GAR 1985; RAO et al. 1983b). Some of the 
initiating AUG codons have some of the features of the consensus flanking 
sequences for initiating codons proposed by KOZAK (1981), but none have all the 
features. For example, seven of the segments (1,2,3,5,6,7, and 8) have a G at 
position +4 (counting the A of AUG as + I) and all of the segments, except 
segment 9, have a G or an A at position - 3. All three possible translation 
termination codons are used; four gene products terminate with UGA, four with 
UAG, and the remaining two with UAA. 

Table 2 is a summary of the predicted amino acid composition, size, and net 
charge of all the primary gene products of BTV -10. The amino acid composition 
is also given as the number per 1000 residues; the mean composition of all the 
products is as follows: A, 76.7; R, 72.0; D, 59.7; N, 38.1; C, 11.7; E, 74.3; Q, 38.6; G, 
59.3; H, 33.1; I, 66.6; L, 81.3; K, 59.2; M, 37.8; F, 37.7; P, 42.0; S, 56.2; T, 53.3; W, 
12.5; Y, 33.5; V, 67.3. When individual gene products are compared with these 
values several striking variations are evident. These are discussed below, with 
other data, for each individual segment. 

2.6.1 Segment 1, VPl Protein 

This, the largest of the segments, codes for the minor core protein VPl. The 
molecule is a highly basic protein with a positively charged carboxyl terminus. In 
fact this protein has the highest predicted net positive charge ( + 27.5 (R + K 
+ 1/2H-D-E) at neutral pH), although it is no more abundant in charged residues 
per unit length than the other BTV gene products. VPl is also rich in the 
hydrophilic residues serine and threonine and the aromatic residues phenyl
alanine and tyrosine compared with the other gene products (see Fig. 7). The VPl 
primary sequence has some homology with that of vaccinia virus 146 kD 
polymerase subunit, the fJ-chain subunits of Escherichia coli and common 
tobacco chloroplast RNA polymerases, Saccharomyces cerevisiae RNA poly
merase II and III, and Drosophila polymerase II (RoY et al. 1988). These 
homologies may reflect similar functional domains between DNA- and RNA
directed RNA poly me rases, and there is a possibility that they may have all 
evolved from a common ancestral gene. Recent evidence suggests that VPl is 
indeed a transcriptase component (see Sect. 2.7). 



a 
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Sequence number b Sequence number 

Fig.7a,b. Hydropathic plot for the predicted ten RNA gene products of BTY-lO. The regions of the 
predicted proteins with a net hydrophobicity (areas above the center line) are displayed. The plot 
involves a span setting of 21 amino acids 

2.6.2 Segment 2, VP2 

This gene product is a major component of the outer capsid of BTV and is the 
principal serotype-determining antigen. It elicits neutralizing antibodies 
(HUISMANS and ERASMUS 1981; KAHLON et al. 1983) and is the BTV hemagglut
inin protein (COWLEY and GORMAN 1987). Together with the other outer capsid 
protein, VP5, it exhibits the greatest sequence variation of all the segments among 
serotypes (FUKUSHO et al. 1987; GHIASI et al. 1987; RITTER and Roy 1988; 
YAMAGUCHI et al. 1988a, 1988b; GOULD 1988a) The neutralizing antigen VP2 
appears to be hydrophilic in nature and contains many charged residues (Fig. 7). 
VP2 is rich in aromatic residues and conserved cysteine residues which may 
indicate a highly ordered, disulfide-bonded structure. 
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In order to study the nature of antigenic variation among serotypes segment 2 
of four other US serotypes (BTV-2, BTV-ll, BTV-13, and BTV-17) and one 
Australian serotype (BTV-l) have been sequenced (FUKUSHO et al. 1987; GHIASI 
et al. 1987; YAMAGUCHI et al. 1988a, b; GOULD 1988a). All of these sequences 
contain the conserved 5' and 3' terminal sequences discussed above (Table 3). 
Segments 2 of BTV-l and BTV-2 are 2940 bp and 2943 bp long, respectively, 
which are slightly longer than those of BTV-lO and BTV-ll (both 2926 bp) or 
BTV-13 (2935 bp) or BTV-17 (2923 bp). The 5' noncoding region of BTV-l and 
BTV-2 is 17 bp which is shorter than that of the other four serotypes (19 bp for 
BTV-I0, BTV-ll, and BTV-17; 21 bp for BTV-13). The 3' noncoding region of 
BTV-lO, BTV-ll, and BTV-17 is 36 bp, 34 bp for BTV-13, and 35 bp for BTV-l 
and BTV-2. The noncoding regions of BTV-lO, BTV-l1, and BTV-17 are well 
conserved by comparison with those ofBTV-13 and BTV-2, those ofBTV-2 are 
more homologous with those of BTV-l. 

Alignment of the predicted amino acid sequences of the six serotypes 
shows that the VP2 proteins of BTV -10, BTV -11, and BTV -17 are closely related, 
while those of BTV -13 and BTV -2 are more closely related to each other and to 
BTV -1, the Australian isolate (Fig. 8). The close similarities of the VP2 seq uences 
ofBTV -10, BTV -11, and BTV -17 serotypes are indicated by the fact that only one 
gap was required for maximum homologous alignment between them, as shown 
in Fig. 9. Similar alignment comparisons among the VP2 ofBTV-2 and BTV-13 
or BTV-l required several gaps (Figs. 10 and 11). The sequence homology does 
not appear to reflect the geographical distances among isolates (Table 4). In 
general the differences in amino acids among the six serotypes are distributed 
evenly throughout the whole protein (YAMAGUCHI et al. 1988b), but at least five 
highly variable regions (Fig. 8, underlined) can be identified. Conversely, there are 
a number of highly conserved regions (indicated by asterisks) which are evident; 
conserved amino acids together with conservative changes (on the basis of charge 
or polarity) account for approximately 43% homology between all six serotypes. 
The carboxyl terminus of VP2 appears well conserved, which may reflect some 
form of evolutionary constraint such as a need to interact with other BTV 
proteins (e.g., the other outer capsid protein VP5). Also the middle region is 
relatively well conserved, with the absolute conservation of an octapeptide 
between all six serotypes (NPYPCLRG; positions 360-367, Fig. 12), which may 
reflect a role in the preservation of overall protein conformation. The six cysteine 
residues that are conserved among all six serotypes (indicated by dots in Fig. 8) 
may be involved in disulfide bridges important for protein structure. The 
common phylogenetic origin of all six viruses was revealed by the diagonal lines 
when the apparently distantly related VP2 proteins (e.g., BTV-IO and BTV-l or 
BTV-2 or BTV-13 and BTV-2 and BTV-l or BTV-13, etc.; see Fig. 13) were 
compared although, as shown by arrows, some gaps are noticeable. Also the 
hydropathic profiles of the six VP2 sequences are similar (data not shown). This 
pattern of variable and conserved regions may be due to the need for VP2 to 
preserve its overall structure, which may be necessary for interactions with other 
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Fig. 9. Amino acid sequence alignments ofVP2 proteins of three BTV serotypes using the BTV-IOas 
a reference. The conserved amino acids are indicated by stars 

viral proteins, while at the same time changing the nature of the portions located 
on the surface of the BTV particle due to immunological pressure from its host. 

2.6.3 Segment 3, VP3 

This is a major structural protein of BTV inner capsids and it contains group
specific antigenic determinants (HUISMANS and ERASMUS 1981). The full sequence 
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Fig. to. Amino acid sequence alignments of VP2 proteins of BTV-13 and BTV-2. The conserved 
amino acids are indicated by stars 
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ffi'V 1 S**Q****YG RV*****V*E *GT*1***A* K*NQQIKDI* Y*Q******F 

BlY 2 PDEDDEVI1T KFDDAKYSEM VGEIIDGGWN DEF;FKMYKLL QEKGNVLTID 499 
BlY 1 **-***A*V* ****VA*GQ* *NDL*N***D O*R***H*1* KSQ*"**"** 

BlY 2 FEKDTKLYNT SEWLPDYYG Kl'lIVAPMFNS KMRIIEI'E1A TNKSDDPM1K 549 
BlY 1 ****A**TSN ElJ*AM*E*FD ***1*****A *L**KHG**T QRRN****V* 

Bl"I 2 Rl'LKPMrDDP VELQRYTLAR YYD1RPGLMG RSLNm'QTQS TFDAKVSELP 599 
BlY 1 ***S*IAFA* IV***L**** F*****A1** QA*S*Q*G** *Y*EE1*KIE 

BlY 2 DYEKWSRFG VIKKPTRPCV TLTGRYILEK YSLLLIDILK YHTEVEGNPQ 649 
Bl'V 1 G*AE1LQ*R* IVQI*KK**P *V*AQ*T**R *A*F**N**E Q*IIQSTDED 

BlY 2 EEF'fHPRIDP ~FKFNGNTL SDLNQTVVF1 VDYLHEKRNY VRSIYEARYI 699 
BlY 1 VMYS***V*Y KLEVH*EN1 1*IS*I*I*V I''*F*F*R*RT **Gv**S**r1 

BlY 2 1SR1RSSTGA ARMS11EFYF PTFARL1SNA REPTYVKDLM ALNFLPLLF1 749 
B1V 1 W***DAQ*Q N*1NV*TEF* **.*GYHL*RV K*A*IIQE1* Y******F*L 

Bl"I 2 VGDNrlIYKHR Q.vS1PLLLYT DRVlWIPLEV GSSNNRQJFV SYLEYMFFFP 798 
Bl"I 1 *S**I**T*K ***V**F**A HEL******* **Y*D*CSL* **1***V**·* 

BlY 2 SLADRTSKVD &SM1KVSKEM VNYYMKTT1S EGGVNLNWS TKSLLYDIYL 848 
B1V 1 *K*F****L* *VQP*IAR*M LK**IN*K*F ***I*****T **Q***ET** 

ffi'V 2 SSVCGGVSDG VVWYLP1THP YKCWA1EVC DDRVPARLRC DRLKLRFPLS 898 
ffi'V 1 A*1***L*** 1********* N**L*****S *E****SI*A SH1******* 

Bl'V 2 AQHLKGIVVI QlNEEGGFDV YTEGIVTHRV CKKSLLKHVC DIVLLKFHGH 948 
Bl'V 1 VK******I* *VD***K*T* *S****S*** ***N***YM* *******s** 

Bl'V 2 VFGNDEMLTK LLNV 
Bl'V 1 ********** **** 

Fig. II. Homology between VP2 protein of US serotypes 2 and Australian serotype 1. The conserved 
amino acids are indicated by stars 
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Table 4. Homology among six BTV VP2 proteins 

BTV-II 
BTV-13 
BTV-17 
BTV-2 
BTV-I 

BTV·IO 

70.2 
32.0 
71.4 
39.9 
39.8 

BTVlI 

39.0 
72.5 
39.9 
39.7 

BTV-13 

38.7 
47.2 
45.8 

BTV-17 

41.1 
40.9 

BTV-2 

58.6 

Percent of each VP2 amino acid sequence homology between the serotypes is scored using a computer 
alignment program 

348 358 368 

BTV-l0 R f Y A L I T D T Q Q G R V w IR T N P Y P C L R G A 

BTV-ll R f Y A L I A I A A T D T Q R G R V W R T N P Y P C L R G A 

BTV-17 R f Y A L I A I A A T D T Q K G R V W R T N P Y P C L R G A 

BTV-13 I A A S D T N N R V W W S N P Y P C L R G A 

BTV-2 I A A S D T Y N S R[I]W \, S N P Y P C L R 

BTV-l M I A A S D T F N R V \, W S N P Y P C L R 

378 388 

BTV-l0 L I A A E C E L G D V Y F T T Y K W S L R 

BTV-ll L I A A E C Q L G D V Y H T L R Q V Y K W S L R 

BTV-17 L V A A E C E L G D V Y S T L R R V Y T W S L R 

BTV-13 L I A A E C K L G D V Y Y K L R S W Y E W S V R 

BTV-2 L I A A L G D V Y f T L R S W Y D W S V R 

BTV-l L I A S L G D V Y S M M R L W Y D W S V R 

Fig. 12. Conserved amino acid sequences of six VP2 proteins. The single mutation from isoleucine (I) 
to valine (V) is circled 

of this segment is known for BTV -10, BTV -17, and BTV -1 (Australian isolate) 
(GHIASI et al. 1985; PURDY et al. 1984; GOULD 1987), and partial sequences are 
known for the South African isolates of BTV -1 and BTV -9, and the Australian 
isolates ofBTV-9 and BTV-15 (GOULD 1987). The sequence is highly conserved 
among serotypes. For example, there are 126 point differences between the 
nucleotide sequences of BTV -10 and BTV -17, and this corresponds to only nine 
changes at the amino acid level which is 0.15% of the possible sites where a single 
nucleotide change would cause an altered amino acid. By contrast, 114 of the 
nucleotide changes are silent (i.e., 6.5% of all possible silent changes). A similar 
pattern is seen upon comparing the VP3 sequence ofBTV-l with those ofBTV-10 
and BTV -17 (GOULD 1987). The amino acid composition is virtually identical for 
all three serotypes (GHIASI et al. 1985; GOULD 1987) with a low content of 
charged amino acids and a high content of hydrophobic amino acids (Fig. 7). 
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Fig. 13. Diagon analyses. The complete amino acid sequences of predicted L2 gene products ofBTV-
10, BTV-I or -2 or -13 and BTV-2 and -13 were compared pairwise using the Diagon program of 
STADEN (1982). Homologies are indicated by diagonal lines. For the protein comparison an II-amino 
acid window and a proportional index of 131 was employed 

2.6.4 Segment 4, VP4 

This protein is a minor component of the inner core and its function is not 
known. The 5' noncoding region of this segment is the shortest of all the segments 
at only 8 bp (Table I); the functional implications of this are not known. Currently 
the sequence of this segment is only known for BTV-1O (Yu et al. 1987). 
Hybridization studies indicate that the sequence is well conserved among 
serotypes. VP4 ofBTV -10 has a high content of charged amino acids (particularly 
histidine) and tryptophan but a low content of glutamine. The protein is more 
hydrophilic in nature, with a strong hydrophilic domain in the carboxyl terminus 
(Fig. 7). 
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2.6.5 Segment 5, VP5 

This protein, along with VP2, forms the outer capsid of bluetongue virions. 
Hybridization studies (see above) show that this RNA segment is not highly 
conserved among serotypes. This segment has been sequenced for BTV-I0 
(PuRDyet al. 1986), both Australian and South African isolates ofBTV -1 (GOULD 
and PRITCHARD 1988; WADE-EvANS et al. 1988), and BTV-2 (our unpublished 
data). The overall homology between these protein sequences (Fig. 14) is 70%. 
However, when conservative changes are taken into account, it is 82%. As in VP2 
of BTV -1 and BTV -2, VP5 of US serotype 2 appears to be more closely related to 
serotype 1 of both Australian and South African isolates in comparison with that 
of US serotype 10. 

The changes are distributed throughout the protein and it is difficult to define 
variable regions as one can do for VP2 (see Sect. 2.6.2). Only one of the cysteine 
residues (at position 381) is conserved among all four sequences. Overall 
predicted charge, at neutral pH, varies being + 4.5, + 1.5, and + 1.0 for BTV-I0 
and BTV-2, the Australian and South African isolates ofBTV-l, respectively. The 
protein is rich in certain nonpolar amino acids, such as alanine and isoleucine, 
and has a low content of tryptophan. There are at least three strong hydrophobic 
regions, including the carboxyl terminus (Fig. 7; PURDY et al. 1986; FUKUSHO 
et al. 1989). 

2.6.6 Segment 6, NSt 

This segment is highly conserved among serotypes (see above) and codes for a 
nonstructural protein, NS 1, which forms tubules in the cytoplasm of BTV
infected cells (HUIsMANs 1979; HUISMANS and ELS 1979) and, using Spodoptera 
frugiperda, cells infected with a recombinant baculovirus (URAKAWA and Roy 
1988). The protein is rich in cysteine, tryptophan, and tyrosine and has the lowest 
content of serine and threonine, per unit length, of all the BTV proteins (LEE and 
Roy 1987). It also has a low content of charged amino acids. This segment has 
been sequenced for the Australian and South African isolates ofBTV-l (GOULD 
et al. 1988), and when these are compared with the sequence from BTV-I0 there is 
an overall homology of 87%, at the amino acid level, which rises to 96% when 
conservative changes are taken into account. All 16 of the cysteine residues, in the 
BTV-I0 sequence, are conserved in the three sequences, which suggests that NS 1 
has a highly ordered, disulfide bond-linked, structure. The protein also has 
several regions of hydrophobic amino acids throughout the molecule, particular
ly in the carboxyl terminal half (Fig. 7). The role that these features play in the 
formation of NS 1 secondary and quaternary (i.e., tubule) structure has yet to be 
determined. 

2.6.7 Segment 7, VP7 

This protein is the major structural component of BTV cores and comprises 36% 
of the total core protein (HUISMANS et al. 1987a). It contains group-specific 
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antigenic determinants (HUISMANS and ERASMUS 1981; GUMM and NEWMAN 
1982). Only the sequence of BTV-tO segment 7 has been reported to date (Yu 
et al. 1988). The amino acid composition ofVP7 differs considerably from that of 
the other BTV gene products. It has a very low proportion of charged amino acids 
(i.e., R + K + tH = 80; D + E = 77) as compared with the average for BTV 
gene products of 142 and 134 respectively (Table 2). The proportion of asparagine 
and glutamine, however, at t09 per tOOO residues (Table 2) is much higher than 
the average (i.e., 77). VP7 has only one lysine which is remarkable since the other 
gene products are lysine rich. The protein is richer in alanine, methionine, and 
proline than are the other BTV gene products, and it is particularly rich in 
hydrophobic sequences (Fig. 7; Yu et al. 1988). 

There is a discrepancy between the predicted size ofVP7 (38 548 daltons) and 
its estimated size by SOS-PAGE (29 kD) (HUISMANS 1979) which may be caused by 
its aberrant mobility due to its hydrophobic nature. It has been postulated that 
VP7 is located on the surface ofthe inner core, but HYATT and EATON (1988) have 
recently reported that VP7 may be accessible from the surface of the virion. In this 
context it is noteworthy that segment 7 is not as well conserved among serotypes 
as are the segments coding for the other inner core proteins (HUISMANS and 
CLOETE 1987; SQUIRE et al. 1985; RITTER and Roy 1988). 

2.6.8 Segment 8, NS2 

This is a nonstructural protein and it is the only BTV encoded protein that is 
phosphorylated in BTV -infected cells (HUISMANS et al. 1987b; DEVANEY et al. 
1988). The protein has the lowest proportional content of threonine of all the 
BTV gene products but an average content of serines. NS2 has a high content of 
cysteines, mostly at the C-terminal end, which suggests a highly ordered structure 
(FuKusHo et al. 1989). Overall the protein is hydrophilic (Fig. 7), rich in charged 
amino acids, but with a low number of histidines. The sequence of segment 8 has 
also been reported for a South African isolate of BTV -1 0 (HALL et al. 1989) and it 
has 95% homology, at the amino acid level, with that of BTV-I0 from the USA. 
NS2 from BTV -infected BHK cells has been shown to be capable of binding BTV 
single-stranded RNA (H UISMANS et al. 1987b). Both termini of the protein contain 
hydrophobic sequences and the secondary structure prediction for the sequence 
is rich in f3-turns. 

2.6.9 Segment 9, VP6 

This protein is a minor component ofBTV inner cores and is hydrophilic (Fig. 7) 
with a unique amino acid composition by comparison with the other BTV gene 
products (FuKusHo et al. 1989). The protein has only one cysteine and a low 
proportional content of aromatic, asparagine, and glutamine residues. VP6 is 
very rich in glycine (40 out of 328 amino acids, 12%) with 12 between residues 88 
to 116, including five consecutive glycines (FuKusHo et al. 1989). VP6 is the 
richest of all the BTV gene products in charged amino acids and it is highly 
conserved among serotypes (see above). Although the function of VP6 is not 
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known, our preliminary studies indicate that the protein is associated with the 
viral RNA in BTV inner cores (RoY et a!. 1989). 

2.6.10 Segment 10, NS3 

The complete nucleotide sequence of the segment has been reported for BTV-I0 
(LEE and Roy 1986) and for the Australian BTV-l (GOULD 1988b). This 
nonstructural protein has a predicted mass of 0.5 x 106 Daltons which is 
somewhat higher than the estimate made from PAGE by VERWOERD et a!. (1970). 
Both the known sequences contain two initiation codons in the same, long, open 
reading frame (i.e., one starting at position 20 and the other at position 59). The 
predicted size of the translated products from these two initiation codons is 
25572 and 24020 Daltons, respectively. In vitro translation of segment 10 RNA 
yields two proteins of approximately these sizes in equimolar amounts (SANGAR 
and MERTENS 1983; MERTENS eta!' 1984; VAN DIJK and HUISMANS 1988). 

The segment 10 sequences of the two serotypes are highly homologous (82%) 
with both termini being particularly well conserved (e.g., two changes in the first 
66 nucleotides at the 5' end). The reason for the 3' noncoding region being three to 
four times longer (at 113 bp) than the other segments is not known. NS3 is rich in 
serine and threonine residues but deficient in arginine, tryptophan, glycine, and 
isoleucine by comparison with the other BTV gene products. There are strong 
hydrophobic regions towards the carboxyl end of the molecule (Fig. 7, LEE and 
Roy 1986). To date no function has been assigned to NS3. 

In summary, analyses of the oligonucleotide fingerprints, hybridization 
studies, and complete cDNA sequences have confirmed that all the genes ofBTV 
genome segments representing the nonstructural proteins (NS1, NS2, and NS3), 
as well as most ofthe inner core proteins (VP1, VP3, VP4, VP6, and VP7), are well 
conserved among serotypes. In contrast, the segments coding for the two outer 
capsid proteins, particularly VP2, vary considerably. However, in spite of these 
variations in amino acid sequence, secondary structure predictions suggest that 
the overall three-dimensional protein structures of VP2 and VP5 are well 
conserved. Despite geographical separation, it is apparent that all BTV serotypes 
have a common ancestor but have evolved differently, some as closely related 
groups and others independently. 

2.7 Expression of BTV Genome Segments in Insect Cells 
Using Recombinant Baculoviruses 

The availability of complete cDNA clones representing the ten discrete dsRNA 
segments and the availability of their sequence database have been further 
exploited for understanding the structural/functional relationships of the BTV 
proteins. Each of the cDNA clones has been manipulated and expressed to a 
high level in insect cells using recombinant baculoviruses. Studies with these 
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recombinant viruses and the expressed proteins have only begun to contribute to 
our understanding of the structural/functional relationships of various BTV gene 
products. In addition, by manipulating the vector systems, we have embarked on 
defining the architecture of the complex morphology of the viral capsids. The 
description of those BTV proteins and morphological structures which have 
proved of particular interest will be discussed below following a brief summary of 
the technology of baculovirus expression. 

2.7.1 The Baculovirus Expression System 

This expression system utilizes the major late promoter of the polyhedrin gene in 
Autographa californica nuclear polyhedrosis virus (AcNPV) (reviewed by MILLER 
1988). The life cycle of this virus is characterized by the production of two forms of 
progeny; extracellular virus particles (ECVs) and occluded virus particles (OVs). 
ECVs are produced relatively early in infection (from 12 h onwards) and are 
released by budding from the cell surface. They mediate the systemic infection of 
the insect and also account for the mode of infection in cell culture. Later in the 
infection cycle (from 18 h onwards) viral progeny are occluded into a paracry
stalline matrix composed primarily of a 29 kDa protein called polyhedrin. These 
occlusions, called polyhedra, protect the progeny virus during horizontal 
transmission and effect their release in a new host by dissolving in the alkaline 
environment ofthe insect gut. Polyhedra accumulate in infected cells for 4-5 days 
until cell lysis, by which time polyhedrin may constitute up to 50% ofthe total cell 
protein. Because cell-to-cell infection is propagated by ECVs, the synthesis of 
polyhedrin protein is a nonessential function for the replication of AcNPV in cell 
culture. The use of AcNPV as an expression system, therefore, involves 
replacement of the polyhedrin gene with a foreign gene which, due to the control 
of the polyhedrin promoter, has the potential to be expressed to a high level. 

A number of transfer vectors are available to construct such recombinant 
baculoviruses. One which has found particular favor is pAcYMl (MATSUURA 
et al. 1987). This, in common with most other baculovirus expression vectors, 
consists of a restriction enzyme fragment of the AcNPV genome encompassing 
the polyhedrin gene, cloned into a high copy-number bacterial plasmid. The 
polyhedrin gene sequence has been deleted in pAcYM 1 and replaced by a BamH 1 
linker to allow fot the insertion of a foreign gene immediately downstream of the 
polyhedrin promoter. The unchanged wild-type AcNPV DNA sequences that 
flank the inserted gene mediate homologous recombination when a cell is 
transfected with the plasmid DNA and wild-type AcNPV DNA. Recombinant 
baculoviruses are selected on the basis of their polyhedrin-negative phenotype 
(see Fig. 15). 

By means of this in vivo recombination technique, cDNA copies of all ten 
BTV segments (principally from serotype 10) have been expressed in the 
baculovirus system (see Fig. 16). The first point of note is that aside from segment 
10, which encodes two closely related polypeptides, each BTV segment has been 
confirmed to be monocistronic. The synthesis of individual BTV polypeptides in 
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cell culture, both structural and nonstructural, enables a variety of questions to 
be addressed. Some of the more significant contributions to our understanding of 
BTV morphology as well as the function of individual proteins resulting from 
analysis of expressed protein are described below. 

2.7.2 VP2 and VP5: The Outer Capsid Proteins 

VP2, one of the major outer capsid proteins, is the antigen recognized by 
neutralizing antibodies (HUISMANS and ERASMUS 1981). VP2 may be a suitable 
candidate for a subunit vaccine since HurSMANS et al. (1987c) demonstrated that 
VP2 purified from whole virus particles can elicit neutralizing antibodies in sheep 
and protect against challenge with the same serotype. Although the success of 
such trials is a promising development in the quest for a BTV subunit vaccine, the 
relatively large quantity of purified virus required to prepare a single protective 
dose makes it impractical to scale-up this method for commercial production. 
The synthesis ofVP2 using genetic engineering techniques therefore provides an 
alternative strategy. 

INUMARU and Roy (1987) have shown that VP2 of serotype 10 expressed in 
insect cells by a recombinant baculovirus is authentic in terms of its antigenic 
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Fig. 16. Expression ofBTV proteins by recombinant baculoviruses. S.frugiperda cells were infected at 
a multiplicity of 10 pfu/cell with wild-type AcNPV or recombinant baculovirus containing a BTV 
gene. Cells were harvested at 48 h postinfection and after separation by SDS-PAGE proteins were 
located by Coomassie Brilliant Blue R staining 

properties. Furthermore, antisera raised in mice or rabbits following immuniz
ation with crude preparations ofthis expressed protein neutralized the infectivity 
of not only BTV -10 virus but also, to a lesser extent, BTV -11 and BTV -17 viruses. 
The segment 2 genes of serotypes 1,2, lO, 11, 13, and 17 have now been expressed 
in the baculovirus system (see Fig. 17), and work is currently in progress to raise 
antisera to these proteins and test their cross-neutralizing activity among 
homologous and heterologous serotypes. 

A further aspect of virus neutralization which has been substantiated by use of 
the baculovirus expression system is the inability of VP5 alone to induce 
antibodies that neutralize BTV virus (Table 5, MARSHALL and Roy 1989). 
HUISMANS et al. (l987c) have previously reported that a mixture of solubilized 
VP2 and VP5 elicits a higher titer of neutralizing antibodies than solubilized VP2 
alone. To assess the role of VP5 individually in virus neutralization, a 
recombinant baculovirus containing the M5 gene of BTV-lO was constructed. 
Unlike other AcNPV-BTV recombinant viruses, this construct had a toxic effect 
on insect cells. Electron micrographs of infected cells showed a loss of 
cytoplasmic and nuclear material and of increase in size of vesicular bodies, which 
may have been derived from autophagic lysosomes in cells infected with the 
recombinant virus. Due to the reduction in cell viability, the expression level of 
VP5 was considerably lower in comparison with the other BTV proteins that 
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Fig. 17. Expression ofVP2 proteins from six BTY serotypes by recombinant baculoviruses. Samples 
were prepared as in Fig. 15 and proteins stained with Coomassie Brilliant Blue R 

Table 5. Plaque reduction neutralization titers of antisera raised to expressed VP2 and VP5 

Antisera BTV serotypes 

10 II 13 17 

Rabbit VP2 antisera >640 > 160 0 > 160 
Preimmune rabbit sera 0 0 0 0 
Mouse VP5 ascitic fluid 0 0 0 0 
Control ascitic fluid 0 0 0 0 
Mouse antisera to: 

YMl j10- 2 infected S.Jrugiperda cells 205 ± 74* 
(n=4) 

YMlj10- 5 infected S.Jrugiperda cells 51±23+ 
(n =4) 

AcNPV infected S.Jrugiperda cells 55+40 
(n=4) 

* Significantly different from AcNPV infected S. Jrugiperda cells at the P = 0.05 level 
+ Not significantly different from AcNPV infected S. Jrugiperda cells at the P = 0.05 level 

have been expressed by this system. Nevertheless, the expressed VP5 was 
recognized by antisera raised to BTV-IO virus and the antisera raised to 
recombinant VP5 protein recognized authentic BTV-lO VP5 protein. However, 
unlike VP2 proteins, the anti-VP5 antibodies failed to neutralize the infectivity of 
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BTV-I0 in vitro (MARSHALL and Roy 1989) (Table 5). VP5, therefore, does not 
appear to play a direct role in virus neutralization, although a synergistic 
interaction with VP2 cannot be ruled out. 

To test the ability of these recombinant proteins to protect against virus 
infection, sheep were inoculated with whole cell extracts of insect cells infected 
with recombinant baculoviruses. Unlike the mice or rabbits, the group of sheep 
which received a mixture of VP2 and VP5 accumulated higher titers of 
neutralizing antibodies than the group that had received only VP2 alone. 
However, both groups were totally protected against challenge with virulent 
virus (unpublished observations). These results indicated that although large 
quantities (> 100 J-lg) of VP2 alone are adequate for protection, together with 
VP5 the protective capabilities are probably much more efficient. Further studies 
on the interactions between these two proteins and their role in viral infection and 
possible subunit vaccines are in progress. 

2.7.3 Core Protein Morphology 

Little is known about the functions, interactions, or stoichiometry of the five core 
proteins. Appreciation of such factors is obviously important if we are to 
understand the morphology of a complex virus such as BTV. Recent cryoelectron 
microscopy studies suggest that the core of BTV consists of a nucleoprotein 
center surrounded by two distinct protein layers, each of which is composed of a 
single polypeptide species (our unpublished observations). Immunogold analysis 
indicates that VP7 is the principal component of the outermost layer and is 
attached to a framework of VP3 (HYATT and EATON 1988). We were therefore 
interested to see if we could synthesize BTV core particles from these compo
nents, and to this end the segment 3 and segment 7 genes were inserted into a 
baculovirus dual expression transfer vector. Such vectors incorporate two copies 
of the polyhedrin promoter and transcription termination sequences (EMERY and 
BISHOP 1987) with a unique enzyme restriction site located downstream of each 
promoter to allow for the insertion of two foreign genes. The promoters are 
present in opposite orientations to minimize the possibility of homologous 
sequence recombination and excision of one or other of the foreign genes. 
Recombinant baculoviruses were prepared by the established procedure of 
cotransfecting S. frugiperda cells with the dual expression plasmid DNA and 
wild-type AcNPV DNA (FRENCH and Roy 1990). 

Electron micrographs of S. frugiperda cells infected with the recombinant 
baculovirus showed large aggregates of foreign material in the cytoplasm which, 
under high magnification, appeared to consist of spherical particles. This 
expressed material was isolated by lysing the cells with NP40 and purification on 
a discontinuous sucrose gradient. When examined under the electron microscope 
the material was found to consist of empty core-like particles whose size and 
appearance were indistinguishable from authentic BTV core particles prepared 
from BTV -infected BHK cells (Fig. 18). 
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Fig. 18 a. Electron micrographs of empty BTV core particles synthesized in insect cells by a 
recombinant baculovirus expressing the major BTV core proteins VP3 and VP7. b Authentic BTV 
core particles prepared from BTV-infected BHK-cells are included for comparison 

How precisely the expressed particles resembled their viral counterparts was 
further appraised by calculation of the VP3 to VP7 stoichiometry. It has been 
estimated to be from 15 VP7 molecules to 2 VP3 molecules in the expressed 
particle. This matches exactly the stoichiometry of these components in BTV core 
particles as determined by VERWOERD et al. (1972). Recent evidence from our 
laboratory indicates that 780 copies of VP7 are present per core particle which, 
based upon a 15:2 molecular arrangement, suggests that the cores contain 104 
copies of VP3. 

The synthesis of empty BTV core particles from the major core proteins VP3 
and VP7 reveals some important aspects of BTV morphology. It can be 
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concluded that their formation is not dependent on the presence of the three 
minor core proteins, nor the BTV dsRNA. In addition, the three BTV 
nonstructural proteins (NS1, NS2, NS3) are not required to assist or direct the 
assembly of the VP3 and VP7 proteins to form stoichiometrically correct empty 
particles. 

In this study the L3 segment gene was isolated from serotype 17, while the 
segment 7 gene originated from serotype 10. VP3 is very highly conserved among 
serotypes and sequence data have shown there to be a 99% homology at the 
amino acid level between serotypes 10 and 17 (GHIASI et al. 1985). The potential of 
singularly expressed VP3 from serotype 17 to act as an antigen for diagnosis has 
been examined by indirect ELISA. It was confirmed that VP3 synthesized in 
insect cells by a recombinant baculovirus reacted with sheep antisera raised to 
BTV-1, BTV-2, BTV-10, BTV-11, BTV-13,and BTV-17 (INuMARuetal. 1987; our 
unpublished data). 

Purified BTV core particles have been shown to contain an RNA-directed 
RNA polymerase (VERWOERD and HUISMANS 1972). VP1 has been considered a 
candidate for the virion replicase/transcriptase based upon its size, location, 
molar ratio in the core, and predicted amino acid sequence (RoY et al. 1988). To 
test whether VP1 is indeed the virion replicase/transcriptase, S. Jrugiperda cells 
were infected with a recombinant baculovirus expressing the VP1 protein and a 
cell lysate containing solubilized VP1 tested for polymerase activity. It was 
evident from these experiments that significant levels of radioactivity were 
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Fig. 19a,b. Polymerase activity of a recombinant baculovirus containing VPl protein of BTV-lO: In 
a standard reaction, a 25-111 aliquot of supernatant recovered from infected ceillysates was assayed at 
3TC in 200111 of reaction mixture containing polyu (20l1g/ml), oligo (A) 12-18 (IOl1g/ml), and 
32P_ATP. The enzyme activity was measured by the incorporation of radioactivity in the TCA 
precipitable material. A Recombinant virus infected lysate (0), wild-type virus lysate (e). B 
Recombinant virus in lysate (0), wild-type virus lysate (0), and mock-infected cell lysate (6) 
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Fig. 20. Proteins were analysed by SDS-PAGE and transferred to an Immobilon filter. The protein 
blot was cut into strips and individual strips were reacted with the (lane 3) dsRNA probe (see Materials 
and Methods). Lane 4 BTY ssRNA probe obtained by SP6 transcription of the BTY-to segment to 
cDNA clone. Lane 5, dsDNA probe derived from pUCI9 and, lane 6, ssRNA probe derived by SP6 
transcription of the pST-I8 plasmid. Lane 1 contains purified BTY-to virion proteins and lane 2 
represents the marker proteins mixture 

recovered only from reaction mixtures in which the cell lysate originated from 
recombinant baculovirus infected cells (Fig. 19; URAKAWA et'al. 1989), and not 
from mock or AcNPV -infected cells. It was therefore concluded that the 
incorporation of labelled A TP resulted from the newly synthesized oligonucleo
tide chains by the active recombinant BTV polymerase (i.e., VP1). 

VP6, which is also a minor core protein, is rich in charged amino acids. This 
suggests that it may function as an RNA-binding protein. In an RNA overlay 
protein blot assay VP6, from both baculovirus-expressed and from purified 
virions, binds both ds and ss BTV RNA, indicating that it may be closely 
associated with the viral genome and is a component of the viral nucleocapsid 
(Fig. 20; Roy et al. 1990). The characteristics and specificity of this binding 
and its functional role in virus assembly are under investigation. 

2.7.4 Virus-Coded Nonstrucutural Proteins 

Two virus-specific entities, tubules and granular inclusion bodies, are routinely 
observed in BTV-infected cells (LECATSAS 1968). The tubules appear to be 
composed of only one type of protein, NS1 (HUISMANS and ELS 1979), which is the 
gene product of the M6 segment. To obtain direct proof that NS1 forms tubules, 
the M 6 gene was expressed in the baculovirus system. When insect cells were 
infected with the derived recombinant baculovirus, tubular structures similar to 
those reported in BTV-infected cells were made (see Fig. 21), and following 
purification were shown to consist of the NS 1 protein (URAKA W A and Roy 1988). 
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Fig.21a,b. (Continued) 
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Fig. 21 a-d. Electron micrograph of baculovirus-expressed tubules. S. Jrugiperda cells infected 
with a AcNPV or, b--d a recombinant virus were fixed with 2% glutaraldehyde 72 h postinfection and 
processed for electron microscopy. P, Polyhedrin; V, virus particles; M, mitochondria; R, ribosomes; 
F, fibrous structure; T, tubules; N, nuclear membrane 
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Another aspect of NSI morphology which was examined following its 
expression was its potential to act as an antigen for BTV diagnosis. Antisera 
raised in response to a BTV infection are known to contain antibodies to NS 1 
(HUISMANS and ELs 1979). The M6 gene ofBTV-10 is highly conserved among 20 
BTV serotypes and baculovirus-expressed NS 1 reacted strongly in an ELISA test 
with polyclonal sheep antisera raised to BTV-2, BTV-lO, BTV-ll, BTV-13, or 
BTV-17, but not with normal sheep sera. NSI would thus seem to be a suitable 
candidate for a diagnostic reagent, particularly since there appears to be limited 
homology with the corresponding segments of two EHD virus serotypes (as 
shown by hybridization studies). 

NS2 protein, which is the gene product of RNA segment S8 and the only 
virion-directed phosphoprotein, has been expressed in high levels (see Fig. 16). 
The expressed protein has also been demonstrated not only to be essentially 
similar in terms of its size, peptide maps profile, and antigenicity to the authentic 
BTV NS2 protein, but also phosphorylated similarly (as shown in Fig. 22). 
Moreover, the expressed protein has been shown to bind ssRNA species. Using 
the gold-labelled anti-NS2 monospecific polyclonal antisera in an immuno
electron microscopic study, NS2 protein has been localized within the virus 
inclusion bodies but not with the virus particles in the BTV-infected BHK-21 
cells (THOMAS and Roy, manuscript in preparation). 
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Fig. 22a,b. Expression ofNS2 by recombinant baculovirus analysed using PAGE a Coomassie Blue 
stained gel. b Autoradiogram of the gel: 1, 32P-labelled AcNPV infected cell lysate; 2, 32P-labelled 
recombinant virus infected cell lysate; 3, 32P-labelled mock infected cell lysate; 4-6, tracks similar to 1-
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Fig. 23a,b. Expression of NS3 by recombinant baculovirus and Western blot analysis. a S. 
Jrugiperda cells were infected with recombinant virus AcYM 1 BTV-lO.W wild-type AcNPV or were 
mock-infected. Proteins were located using Coomassie Blue after separation by SDS-PAGE. b BHK 
cells infected with BTV-lO. The proteins were separated by SDS-PAGE (15%), electroblotted, and 
detected by their reaction with mouse anti-NS3 ascitic fluid. Purified NS3 protein from recombinant 
baculovirus acted as a control 

Little is known about the SIO encoded proteins NS3 and NS3A due to their 
very low level synthesis in BTV -infected BHK cells. Confirmation that both are in 
fact present during the BTV life cycle was only demonstrated after infected cell 
lysates were reacted with polyclonal antisera raised to NS3 protein expressed by a 
recombinant baculovirus (FRENCH et al. 1989). Unlike in vitro translation of SIO 
RNA in the rabbit reticulocyte lysate system where NS3 and NS3A are 
synthesized in equimolar amounts, NS3 was found to be the principle product 
both in the baculovirus expression system and in vivo in BTV-infected BHK cells 
(Fig. 23). Such a result indicates the caution which should be exercised when using 
the in vitro rabbit reticulocyte lysate system to predict the pattern of protein 
synthesis from a gene with alternative start codons. It was also found that NS3 
and NS3A expressed in insect cells reacted strongly with sera from sheep infected 
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with homologous and heterologous serotypes suggesting that the SlO products 
are highly conserved group-specific antigens. 

3 Conclusions 

The importance of the genetic relationships among BTV serotypes has been 
appreciated for many years, yet until recently the genetic variation and 
relatedness of BTV serotypes have been difficult to analyse in detail. The recent 
development in recombinant DNA and nucleic acid sequencing technology has 
enabled rapid accumulation of not only the complete sequences of the whole 
genome of one BTV serotype, but also sequence data on a number of different 
genes of other TV serotypes. This information has led to new insights into the 
evolution of the viruses and accurate characterization of various genes. In 
addition, the predicted sequence analyses of various viral-coded proteins have 
allowed the assessment of the structural/functional relationships of the various 
genes and gene products. 

By the use of novel baculovirus single and multiple expression vectors, we 
have just embarked on defining the role of various proteins in virus replication, 
multiplication cycles, and various morphological structures, which undoubtedly 
will eventually unravel the various processes of protein-protein interaction in the 
morphogenetic events of the virus. 
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Bluetongue virus (BTV) replicates in the cytoplasm of a wide variety of cell types 
and infection ultimately leads to cell death. The studies ofVERwoERD, HUISMANS 
and others in the late 1960s and continuing to the present (see Chap. 2, this 
volume) on the double-stranded, segmented genomic RNA (VERWOERD 1969; 
VERWOERD et al. 1970), the bishelled nature of the virus particle (VERWOERD et al. 
1972), the activation of the virion-bound transcriptase, and the activity of this 
enzyme in vivo and in vitro (VERWOERD and HUISMANS 1972) indicated that BTV 
possesses many characteristics in common with reovirus. However, BTV and the 
similar African horse-sickness and epizootic hemorrhagic disease (EHD) of deer 
viruses differ from reovirus in several respects. They are smaller, lack a well
defined outer capsid layer, and exhibit greater pH sensitivity. In addition, they are 
insect transmitted. Such differences led to the grouping of these viruses 
(VERWOERD 1970) into a genus for which the name "orbivirus" was proposed 
(BORDEN et al. 1971). BTV is the type species of the Orbivirus genus within the 
Reoviridae family. 
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Biochemical and morphological aspects of the reovirus replication cycle have 
been extensively studied and reviewed (JOKLIK 1981; ZARBL and MILLWARD 1983; 
TYLER and FIELDS 1985). Salient features of the reovirus multiplication cycle 
including the conservative mode of RNA replication are outlined briefly in Sect. 
2. There is little doubt that replication of the genome of other double-stranded 
RNA viruses such as BTV or rotavirus, proceeds via a similar conservative 
mechanism. However the protein content, structure, and morphology of the inner 
and outer capsids of BTV differ from their reovirus counterparts. Consequently it 
is to be expected, and electron microscopic observation confirms, that this leads 
to the synthesis of intracellular structures which are unique to BTV-infected cells. 
In contrast to the situation in reovirus-infected cells, unfortunately there is no 
information on the structure, protein content, or biophysical properties of 
particles such as those with replicase or transcriptase activities, and little is 
known of intermediates in BTV particle morphogenesis. 

Until recently information on morphological aspects of BTV replication 
derived in the main from studies done some 20 years ago on electron microscopic 
analysis of thin sections of BTV-infected cells (BOWNE and JOCHIM 1967; 
LECATSAS 1968; CROMACK et al. 1971). There are three factors which led us to 
reexamine BTV replication from a morphological perspective. First, new and 
refined techniques in transmission and scanning electron microscopy are now 
available. Second, the use of monoclonal antibodies especially those labeled with 
colloidal gold, has permitted the intracellular localization of specific virus 
proteins. Third, information on the structure of BTV and the amino acid 
sequence of most of the virus structural and nonstructural proteins provide a 
framework to relate structure and function of viral proteins (see Chap. 3, this 
volume). 

In this chapter we summarize what is currently known about the replication 
of BTV and draw attention to several aspects which serve to differentiate the 
replication cycles of BTV and reovirus. In addition, we show that released 
progeny BTV particles reenter infected cells and their replication contributes 
significantly to both the kinetics of production and the final yield of infectious 
BTV virions. We also indicate how immunoelectron microscopy has contributed 
to our understanding of some of the late steps in virus morphogenesis and the 
release of progeny virus from the infected cell. 

2 The Reovirus Replication Cycle 

Analysis of reovirus-infected cells has revealed a strategy for RNA synthesis and 
replication that is probably used by all viruses containing double-stranded 
segmented RNA genomes (JOKLIK 1981). For this reason and to provide a basis 
for comparison with BTV, key features of the reovirus replication cycle and virus 
morphogenesis pathway are outlined briefly in this section. 
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Reovirus are taken into the cell by endocytosis (DALES 1973). Following 
transport to lysosomes the outer coat of the virus is partially disrupted 
(STURZENBECKER et al. 1987). The subviral particle (SVP) generated contains an 
active transcriptase and is probably released into the cytoplasm by crossing the 
lysosomal membrane (TYLER and FIELDS 1985). The parental SVP synthesize 
initially four and subsequently ten mRNAs (WATANABE et al. 1968) which are 
capped at the 5' terminus (FURWICHI and SHATKIN 1977) and have two functions. 
Not only may they be translated to generate viral proteins, but they also serve as 
the role source of positive single-stranded RNAs for encapsidation into progeny 
virions (ZARBL and MILLWARD 1983). Parental virus RNA transcripts are made 
early in infection (SKUP and MILLWARD 1980). 

Little is known ofthe way in which reovirus particles are assembled. It is clear, 
however, that morphogenesis is linked to replication of the genome. The 
morphogenetic process appears to start with particles which comprise both core 
and outer coat proteins (in proportions different from that found in virions) and 
ten single-stranded RNAs of positive polarity (MORGAN and ZWEERINK 1975). 
The single-stranded RNA binding property of the nonstructural protein O"-NS 
(HUISMANS and JOKLIK 1976) suggests that although it is not itself incorporated 
into virions (ZWEERINK et al. 1971), it may playa role in the, as yet obscure, 
process whereby ten individual single-stranded parental RNA transcripts are 
sequestered into a precursor particle. These single-stranded RNA-containing 
particles exhibit a replicase activity which synthesizes RNA of negative polarity 
thereby generating double-stranded RNA. RNA synthesis and addition of viral 
proteins to the complex probably occur concomitantly (Acs et al. 1971). 

A number of uncharacterized alterations in structure and protein content 
follow the synthesis of double-stranded RNA and lead to the formation of 
progeny subviral particles with transcriptase activity. These particles contain 
predominantly core proteins and variable amounts of the nonstructural protein, 
/1-NS (MORGAN and ZWEERINK 1975; ZWEERINK et al. 1976). If replicase particles 
are direct precursors of transcriptase particles, /1-NS may be responsible for 
displacing the outer coat proteins associated with replicase particles (ZARBL and 
MILLWARD 1983). Progeny SVP resemble viral cores but lack the prominent 
icosahedrally located projections observed in cores derived directly from virus 
particles. The mRNA transcribed from progeny SVPs is uncapped (ZARBL et al. 
1980) and constitutes 80%-90% of the viral mRNA synthesized in infected cells. It 
seems that progeny SVPs with transcriptase activity may have a relatively short 
half-life and undergo further rearrangement to yield immature progeny viruses. 
This process appears to involve displacement of protein /1-NS and the acquisition 
ofthe outer capsid proteins and the 12 projections associated with the inner core. 
The last step in morphogenesis appears to be the addition of the major outer coat 
protein 0"-3 (JOKLIK 1981) which inhibits the viral transcriptase activity (ASTELL 
et al. 1972). 

Virus replication occurs in perinuclear inclusions which, late in infection, 
contain arrays of mature and immature progeny viruses embedded in a reticulum 
of "kinky" filaments comprised, at least in part, of vimentin (SHARPE et al. 1982). 
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Morphogenesis occurs within these inclusion bodies. Mature viruses accumulate 
in infected cells which eventually die and lyse. The bulk of progeny virions, 
however, remain associated with cell debris. 

3 Bluetongue Virus Genes and Proteins 

BTV consists of a core composed of 32 capsomers arranged in icosahedral 
symmetry, surrounded by an outer fibrillar coat (BOWNE and RITCHIE 1970; 
VERWOERD et al. 1972). The outer coat can be removed from the virion by 
treatment with mono- or divalent cations at appropriate pH and contains two 
proteins, VP2 and VP5 (HUISMANS et al. 1987a). The remaining core particle 
contains ten segments of virion RNA (VERWOERD et al. 1970), two major proteins 
VP3 and VP7, and three minor proteins VPl, VP4, and VP6. The capsomers 
consist perhaps entirely of VP7 (HurSMANS et al. 1987c; HYATT and EATON 
1988). 

Immunoelectron-microscopic studies showed that gold-labeled VP7 anti
bodies react weakly with fixed, intact BTV particles in the grid cell culture 
technique (HYATT et al. 1987; HYATT and EATON 1988). We have recently shown 
that unfixed BTV particles remain bound to the grid substrate during labeling 
experiments and bind large numbers of VP7 monoclonal antibodies. This 
indicates that VP7 is accessible on the outer surface of the virus (HYATT and 
EA TON 1988). More information about the structural components of the virus is 
given in Chap. 2 of this volume. 

In vitro translation of individual methylmercuric hydroxide-denatured 
double-stranded RNA segments of BTV has demonstrated the coding assign
ments of each RNA from BTV-l (South Africa; MERTENS et al. 1984), BTV-17 
(United States; GRUBMAN et al. 1983), BTV-tO (South Africa; VAN DIJK and 
HUISMANS 1988), and BTV-l (Australia; EATON and HYATT 1989). The results 
show that in addition to the seven structural proteins, BTV codes for four 
additional proteins which have not been detected in virus preparations isolated 
from infected cells by freon extraction and purified by zonal centrifugation in 
sucrose and equilibrium centrifugation in cesium chloride (VERWOERD et al. 
1972). Two of these nonstructural proteins, NS 1 and NS2, are readily detected in 
BTV -infected cells. In contrast, NS3 and NS3a, which are closely related proteins 
generated by RNA to, are difficult to detect in infected cells. Localization ofNSl 
and NS2 in virus-infected cells has provided some clues to the function of these 
two proteins (see Sect. 7). The role of NS3 and NS3a in virus replication is 
unknown. They are synthesized in small amounts late in infection and appear to 
be present in the soluble fraction of infected cells (V AN DIJK and HUISMANS 1988). 
Small amounts of NS 1 and NS2 have been detected in virus particles purified 
using sodium lauryl sarcosine and dithiothreitol (MERTENS et al. 1987; EATON 
et al. 1988). 
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In contrast to NS2, which appeared to be present on the surface of the virus 
particle (MERTENS et al. 1987), NSI was associated with core particles. 
Immunogold probing of core particles using NSI monoclonal antibodies 
suggests that NSI may project from the surface ofthe core particle (EATON et al. 
1988). It is clear that neither NSI nor NS2 are required for virus infectivity 
(VERWOERD et al. 1972). Their presence in the virus may be due to surface 
contamination of core or intact particles. Alternatively, the proteins may playa 
role in virus replication or morphogenesis (see Sect. 7). 

4 Adsorption of Bluetongue Virus to Cells 

Field isolates of BTV from infected ruminants or insects often replicate poorly in 
cultured cells. Adaptation by passage in embryonated chicken eggs and/or tissue 
culture selects viruses which replicate in primary cultures such as chicken embryo 
and lamb kidney and in a wide variety of cultured cells of insect and mammalian 
origin including BHK-21, Vero, MDBK, HeLa, SVP, and Aedes albopictus cells 
(HOWELL et al. 1967; MCPHEE et al. 1982). The results outlined in this chapter 
were derived from studies on the interaction between BTV and susceptible cells in 
culture. 

No information is available on the nature of the cell receptor to which BTV 
binds. However, analysis of the BTV-erythrocyte interaction has indicated that 
the virus binds to specific sialic acid-containing, serine-linked oligo saccharides in 
the glycophorins of human and a number of animal erythrocytes (EATON and 
CRAMERI 1989). 

It is clear that virus binding to cells is mediated by the outer coat protein VP2. 
HUISMANS et al. (1983) showed that particles of BTV-I0 lacking VP2, but 
containing the other outer coat protein VP5, were incapable of binding to BHK 
cells in suspension. Similarly, COWLEY and GORMAN (1987) used reassortants of 
BTV-20 (which agglutinated sheep erythrocytes only) and BTV-21 (which 
agglutinated sheep, bovine, human, and goose erythrocytes) to show that 
agglutinating ability correlated with the presence of VP2. 

The virus adsorbs rapidly to susceptible cells at both 4° C and 3r C with 
maximum adsorption of BTV-I0 to BHK cells and BTV-4 to mouse L cells 
occurring within approximately 20 min (HOWELL et al. 1967; HUISMANS et al. 
1983). 

5 Endocytosis 

Investigation of many virus-cell systems by numerous researchers indicates that 
the most likely mechanism for virus entry into cells is direct internalization by 
plasma membrane penetration or utilization of the normal cellular process of 
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receptor-mediated endocytosis followed by penetration of either the endosomal 
or lysosomal membrane. Viruses in two of the Reoviridae genera provide 
examples of each of these modes of uptake. Trypsin-activated, infectious 
rotaviruses enter cells by direct plasma membrane penetration (KALJOT et al. 
1988). In contrast, reoviruses are efficiently transported into lysosomes, and it is 
there that the outer coat is partially hydrolyzed (STURZENBECKER et al. 1987) 
generating subviral particles which probably pass through the lysosomal 
membrane into the cytoplasm (DALES 1973). 

There are several reports describing the presence of BTV in intracellular 
vacuoles shortly after infection (LECA TSAS 1968; CROMACK et al. 1971). Since these 
studies were reported, much more information is available on the process of 
endocytosis and viral uptake via the endocytic pathway. Key features of this 
pathway are given below and micrographs of BTV at various stages of uptake 
and uncoating are seen in Fig. 1. The virus binds to a receptor on the plasma 
membrane (Fig. la, b) at a site which may ultimately be characterized by the 
presence of clathrin. The clathrin-coated membrane surface grows as a "coated 
pit" which eventually invaginates (Fig. 1c) and detaches from the cell surface, 
yielding a coated vesicle (Fig. 1d). This rapidly loses the clathrin coat (Fig. Ie). 
Vesicles may then fuse with (Fig. If), or fuse together to form, a larger electron
lucent, endocytic vesicle, the endosome (Fig. 19). Endosomes lack the hydrolytic 
enzymes found in lysosomes but resemble the latter in having an acidic pH 
(HELENIUS et al. 1983). Most viruses appear to use the endosome as the site of 
entry into the cell cytoplasm. The low pH triggers a fusion activity in the 
glycoprotein spikes of enveloped viruses or a surface protein of nonenveloped 
viruses. This results in either fusion of the viral membrane with the limiting 
membrane of the vesicles or the direct penetration of the nonenveloped virus or 
its genome through the membrane. Most of the macromolecular contents of 
endosomes are ultimately transferred to secondary lysosomes which are 
hydrolase-rich, acidic, electron-dense vacuoles often located in the perinuclear 
region of the cell. Reovirus is unusual in its requirement for hydrolytic conditions 
to remove the virus outer coat and activate the virion transcriptase. Studies on 
the uptake of BTV into cells have to date revealed few virus-like particles in 
lysosomes (BROOKES unpUblished). This suggests that BTV may enter the 
cytoplasm (Fig. 1h) by penetration of the endosomal membrane. The morpho
logy of BTV particles within endosomes (Fig. If, g) indicates that the acidic 
conditions therein (approximately pH 5.0) have elicited either changes in the 
structure of the outer capsid layer or its removal from the virus. HUISMANS et al. 
(1987c) have shown that within 1 h of infection, BTVis converted to core particles 
(Fig. 1h) which appear to lack all of the VP2 and most of the VP5 of the outer 
capsid layer. It is interesting that VP2 can be removed from BTV in vitro at pH 
5.0 (albeit in the presence of 0.2 M salt) (HUISMANS et al. 1987a). This finding is 
consistent with the morphological observations suggesting that BTV uncoating 
occurs in endosomes. The failure to remove VP5 in vitro at pH 5.0 raises the 
possibility that its removal may occur in the cell cytoplasm after release of a 
partially uncoated virus from the endosome. Removal of both outer capsid 
proteins is required to activate the virion transcriptase (VAN DUK and HUISMANS 
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Fig. I a-h. Uptake of BTV by endocytosis and release of core-like particles into the cytoplasm. The 
arrows in H point to two core-like particles in the cytoplasm. Bars, 100 nm 
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1980). From these observations it would appear that a "fusion sequence" may be 
present in either partially or completely uncoated BTV particles which, at acid 
pH, facilitates their removal from the endosome and delivery to the cytoplasm. 
MACKOW et al. (1988) have recently identified a putative fusion sequence in 
rotavirus protein VP7 which may facilitate transport of the virus through the 
plasma membrane. However, similar sequences have not been found in the 
following proteins of the BTV -1 virus used in our morphological studies: VP3 
(GOULD 1987a), VP2 (GOULD 1987b), VP5 (GOULD and PRITCHARD 1988), VP7 
(GOULD and KATTENBELT, unpublished), NSI (GOULD et al. 1988b), and NS3 
(GOULD 1988). 

HUISMANS (1970) has shown that infection of L cells with BTV results in a 
rapid inhibition of cell protein synthesis. No new macromolecular synthesis is 
required to induce this effect and data indicate that a virus coat protein is 
responsible. The speed with which this occurs and the lack of a requirement for 
replication suggest that a virus coat protein may exert a toxic effect at either the 
plasma or endosomal membrane. 

5.1 Inhibition of BTV Replication by Modulators 
of Endosomal and Lysosomal pH 

The release of virus from endosomes and lysosomes is dependent on the low pH in 
these organelles. Raising the intraendosomal and lysosomal pH by addition of 
lysomotropic weak bases such as NH4Cl and methylamine or acidic ionophores, 
such as monensin and nigericin (OHKUMA and POOLE 1978), results in the failure 
of endocytosed virus particles to enter the cytoplasm. The effect of lysomotropic 
weak bases and acidic ionophores on the replication of BTV has been examined. 
The results indicate that NH4Cl (20mM), methylamine (20mM), monensin 
(0.01 mM) or nigericin (0.005 mM) completely block virus replication when 
added simultaneously with the virus or within approximately 20min of virus 
uptake (HYATT et al. 1989). This confirms that uptake of BTV by the endocytic 
route is required to generate a core particle with transcriptase activity and 
thereby initiate a productive virus infection. 

HUISMANS et al. (1987c) have shown that intracellular core particles ultimately 
lose their VP7-containing capsomers to generate subcores which, at least in vitro, 
fail to transcribe RNA. This suggests that the transcriptase of each core particle 
may be active for only a limited period. In addition, the data suggest that, unlike 
reovirus, core particles do not reassociate with newly synthesized outer coat 
proteins and are not released from the cell as progeny virus. 

6 Amplification of Infecting Virions 

Following release from endosomes, core particles of BTV in the cytoplasm 
(Fig. Ih) become associated with a matrix that is similar in structure but less 
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large numbers later in infection (see Sect. 7.3). As seen in Fig. 2a, the matrix often 
appears to form at one side and in contact with the core particle but eventually 
spreads to surround it (Fig. 2b). These structures are undoubtedly VIB precur
sors and they are presumably formed by condensation of viral RNA transcribed 
from the core particle and viral proteins translated on ribosomes outside the VIB. 
Information on the protein content ofVIB will be presented in Sect. 7.3. Particles 
with bishelled morphology are observed at the periphery of VIB starting at 

Fig. 2 a-d. Formation and development of virus inclusion bodies in BTV -infected cells. a and b, 4-6 h 
p.i.; c, 8-12 hpj.; d, from approximately 14 h p.i. The first sign ofVIB matrix formation is indicated by 
the arrow in a. Arrows in d point to bishelled virus particles. Bars, 100nm 
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approximately 6 h postinfection (p.i.; Fig. 2b, c, d), indicating that virus particles 
are synthesized within these structures. Activation of the BTV transcriptase 
activity requires removal of both outer coat proteins VP2 and VP5 (V AN DUK 
and HUISMANS 1980). The presence of an outer layer in progeny particles at the 
VIB periphery suggests that they contain at least some of the outer coat proteins 
and therefore may not be able to synthesize mRNA. 

6.1 Superinfection of Virus-Infected Cells 

Late in infection the cell contains numerous VIBs ranging is size from 
approximately 300 nm up to and exceeding 211m in diameter. The release of 
bishelled, probably transcriptase negative, virus particles from the small number 
of VIBs present early in infection raises the question of how the large increase in 
VIB number arises. There appear to be several possibilities. First, although the 
virus particles leaving VIBs early in infection have an outer layer, they may be 
transcriptionally active. They may also be converted in the cytoplasm into core 
particles which are capable of transcription and initiation of new VIBs. 
Alternatively, newly formed virus particles may be released from cells, reenter via 
the endocytic pathway, and reach the cytoplasm as transcriptionally active core 
particles. The latter possibility was suggested by two observations. First, 
electron-microscopic analysis of infected cells at 18-22 h postinfection (p.i.) 
revealed large numbers of virus particles in endocytic vacuoles (HYATT 
et al. 1989). Second, fluorescent antibody studies showed that cells initially 
infected at a multiplicity of infection of approximately 10 PFU /cell with a BTV 
variant (which failed to react with a specific VP2 antibody) supported the 
replication of wild-type BTV when it was added 6 h after the initial infection 
(HYATT et al. 1989). 

To investigate the role of superinfection in the BTV replication cycle, virus 
was adsorbed to cells at 4° C for 1 h and at different times thereafter, at 37° C, 
20 mM NH4 Cl was added. The titer of released virus, determined at 36 h p.i., 
showed that addition ofNH4CI within the first 20 min essentially prevented virus 
replication. Addition at times up to 12 h p.i. decreased the titer approximately 
tenfold. A similar study with reovirus-infected cells (STURZENBECKER et al. 1987) 
indicated that addition ofNH4Cl after 30min inhibited virus yield by only two to 
fourfold. Clearly NH4Ci exerts the maximum effect when added very early in the 
replication cycle of both reovirus and BTV. Addition later has a smaller but 
nevertheless significant effect, especially in BTV-infected cells. The data support 
the idea that reinfection of BTV-infected cells (and perhaps reovirus-infected 
cells) by progeny virus contributes to the final virus titers. Nigericin exerts a 
similar effect in BTV-infected cells (HYATT et al. 1989). 

To determine if the nigericin and NH4CI-mediated decrease of released virus 
titer was correlated with a fall in the intracellular concentration of virus antigen, 
cells on coverslips were infected with BTV and at 4 hpj. nigericin or NH4Cl was 
added. At 22 hand 46 h p.i. cells were probed by immunofluorescence using NSl-
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Fig.3a-c. Effect of addition of anti-BTV anti
serum on the synthesis of intracellular viral 
antigen in BTV -infected cells. SVP cells were 
infected at 10 PFU/cell and at a 4 hand b 22 hpj. 
bovine neutralizing BTV antiserum was added 
to the culture medium. At 22.5 hpj. a and band c 
an infected, untreated monolayer were washed 
and cytoskeletons generated (EATON et at. 1987). 
Virus antigen was detected using a mouse anti
VP2 monoclonal antibody, biotinylated mouse 
antibody and fluorescein-streptavidin. Arrows .in 
c point to fluorescent material at lateral regions 
on the cell surface. Binding of bovine BTV 
antibodies to virus antigen on the cell surface 
may have blocked monoclonal antibody binding 
and account for the absence of fluorescent 
material at the edge ofthe cells in b. Nuclei had a 
yellow appearance readily differentiated from 
the bright green cytoplasmic fluorescence. 
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and VP2-specific monoclonal antibodies which bind to virus tubules and virus 
particles respectively (see Sect. 7). The results showed that at 22 hpj. about 50% 
of the cells in treated cultures contained no detectable virus antigen and the 
remaining cells contained much less than that observed in untreated, infected 
cultures where all the cells fluoresced strongly. By 46 hpj., the number of 
fluorescence-positive cells had risen to about 95% and the intracellular con
centration of viral antigen had increased. At this time pj. in untreated, infected 
cultures, no cells remained on the substrate (HYATT et al. 1989). 

Further evidence for reinfection of cells by released progeny virions was 
sought by adding BTV antiserum to the culture medium of infected cells to 
neutralize released viruses and thereby prevent superinfection. The results in 
Fig. 3 show that addition of a bovine BTV -I-neutralizing antiserum to STV
infected cells 4 hpj. markedly reduced the amount of cytoskeleton-associated 
virus particles detectable at 22.5 hpj. by immunofluorescence using a VP2 
monoclonal antibody. 

These results may be explained if it is assumed that a majority of virus 
particles leaving VIBs early in infection are incapable of transcription and are 
unable to initiate new VIB formation. In infected cells treated with NH4Cl at 1 h 
pj. for example, the development of new VIBs may depend on the infrequent 
release from established VIBs of unencapsidated particles which contain an 
active transcriptase. Increasing the time of infection under these circumstances 
may enhance the possibility of generating such transcriptase positive particles. 
This may account for the marked delay in viral antigen production in BTV
infected cells treated with nigericin or NH4Cl at times after 1 hpj. 

In summary, in the absence of NH4 CI, progeny virus made early in infection 
may be released from the cell (see Sect. 8) and reenter via endocytosis. The core 
particles liberated into the cytoplasm presumably initiate new VIB formation. An 
increase in the number of VIBs may raise the probability of synthesizing, within 
the cell, core-like particles with active transcriptases. The process whereby 
progeny virus particles reinfect cells effectively increases the multiplicity at which 
cells are infected with BTV. 

7 Structures Observed in BTV -Infected Cells 

Electron-microscopic analysis ofthin sections has shown that late in infection the 
cytoplasm of BTV-infected cells contains three major viral specific structures. 
VIBs have both granular and fibrillar characteristics and are found throughout 
the cell but are present in greatest concentration in juxtanuclear locations. Virus 
tubules, which constitute one of the most unique features of orbivirus-infected 
cells, are present in large numbers in predominantly peri- or juxtanuclear 
locations. They are of varying lengths with a 68 nm diameter and appear to have a 
helical conformation with a 9 nm periodicity (HUISMANS and ELs 1979). Tubules 
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isolated from the infected cells do not contain nucleic acid and the function of 
these structures is one of the most puzzling aspects of BTV replication. Unlike 
reovirus-infected cells, which contain large arrays of particles late in infection, 
electron-microscopic analysis of thin sections of BTV -infected cells rarely reveals 
similarly large aggregates of BTV particles. However, the use of monoclonal 
antibodies to VP2 in immunofluorescence experiments has shown that large 
VP2-containing aggregates are present in the cytoplasm and attached to the 
cytoskeleton (see below) of BTV-infected cells. Negative staining of intact, 
infected cells grown on electron-microscope grids has also revealed aggregates, 
which may be quite large, underlying the infected cell membrane. The involve
ment of such aggregates in virus morphogenesis and release is discussed in 
Sect. 8. 

7.1 Attachment to Intermediate Filaments 

Eucaryotic cells contain an extensive filamentous network referred to as the 
cytoskeleton and which is revealed by treatment of cells with NP40 or Triton
XlOO. Such nonionic detergents solubilize the cell membrane and release soluble 
cytoplasmic components. The three major classes of protein filament in the 
cytoskeleton are the actin-based microfilaments (approximately 5 nm diameter), 
the tubulin-containing micro tubules (approximately 25 nm diameter), and the 
intermediate filaments (10nm diameter) whose composition depends on the cell 
type (EATON and HYATT 1989). 

Early recognition of a possible association between double-stranded RNA 
viruses and the cytoskeleton resulted from the work of DALES (1973) who 
analysed thin sections of so-called virus factories in reovirus-infected cells. This 
revealed that virus particles were associated with microtubules and enmeshed in 
masses of dense, twisted, or kinky filaments. Subsequent studies by BABISS et al. 
(1979) confirmed that reovirus type 1 had a high affinity for microtubules even in 
vitro. More recently SHARPE et al. (1982) have shown that there is a specific 
disruption of the intermediate filament network in reovirus-infected cells and a 
relocalization of the intermediate filament protein vimentin in reovirus inclusion 
bodies. 

Preliminary evidence for a cytoskeletal role in BTV replication was obtained 
when it was shown that BTV antigens which react with both polyclonal and BTV 
monoclonal antibodies remain associated with the cytoskeleton following 
treatment of infected cells with NP40(EATON et al. 1987; EATON and HYATT 1989). 
In addition, analysis of the detergent-soluble cytoplasmic fraction and the 
insoluble nuclear-cytoskeletal fraction of BTV-infected cells labeled with [35S]_ 
methionine revealed that a high proportion of the individual structural and 
nonstructural proteins remain in the cytoskeletal fraction. 

Visual evidence for the presence of virus-specific structures on the cyto
skeleton was obtained using whole mount electron microscopy of the cyto
skeleton. Cells grown on grids were infected with BTV and at 20 hpj. 
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cytoskeletons were prepared and fixed by simultaneous treatment with NP40 and 
0.1 % glutaraldehyde (HYATT et al. 1987). Cytoskeletons were postfixed in osmium 
tetroxide, dehydrated in acetone, and critical-point dried from carbon dioxide. 
The detergent-insoluble skeletal networks of BTV-infected cells were character
ized by the presence of dense areas in juxtanuclear positions. Within these areas 
and in other perinuclear locations were large numbers ofVIBs and virus tubules. 
The VIBs appeared to be approximately spherical structures. Virus tubules 
appeared in groups and were often found lying parallel to neighboring filaments. 
Individual tubules appeared hollow, approximately 30 ± 2 nm in diameter and 
ranged in length from 300 to 400 nm. Virus-like particles were identified on the 
basis of size (55 nm) and their approximately hexagonal shape, and were found 
either singly, in rows, or in aggregates. BTV -like particles were also observed 
outside on the cells surface or leaving the cell (see Sect. 8). 

The viral-specific structures bound to filaments with a diameter of approxi
mately 10 nm. This effectively ruled out the larger (25 nm) microtubules as the site 
of binding. To determine if virus-like particles, VIBs or tubules bound to 
intermediate or microfilaments, three monoclonal antibodies specific for each of 
these structures (see Sects. 7.2, 7.3, and 7.4) were used to probe cytoskeletons of 
BTV-infected cells following treatment with the microfilament-disrupting drug 
cytochalasin B. Although the drug altered the distribution of fluorescence with 
each of the three monoclonal antibodies, it did not eliminate it from cytoske
letons. Thus, the binding of viral-specific structures was not dependent on intact 
microfilaments. Similar results were obtained with the microtubule-disrupting 
drug colchicine (EATON et al. 1987). 

These results implicated intermediate filaments as the site of binding. Direct 
evidence for this came from two sources. First, virus-like particles, VIBs and 
tubules were associated with the intermediate filament array which formed 
around the nucleus in infected cells treated for prolonged periods with colchicine 
(EATON et al. 1987; EATON and HYATT 1989). In particular, virus-like particles 
were associated in long trains with the intermediate filaments (Fig. 4). Second, 
virus particles were found to be associated with filaments which reacted with 
colloidal gold-labeled anti-vimentin antibodies (EATON et al. 1987; EATON and 
HYATT 1989). 

In summary, these data show that at least a proportion of VIBs, tubules, and 
virus-like particles in BTV -infected cells is cytoskeleton-associated. VIB and 
tubule-specific monoclonal antibodies have been used to determine if all of these 
structures are bound to the cytoskeleton or if some are found in the soluble 
cytoplasmic fraction of infected cells. Comparison of the patterns and intensity of 
fluorescence generated by methanol-fixed intact cells with those of cytoskeletons 
following probing with a VIB-specific antibody suggests that the vast majority, if 
not all, of the VIBs are cytoskeleton-associated. In contrast, results with a tubule
specific monoclonal antibody suggest that some tubules may not be associated 
with the cytoskeleton. Electron-microscopic examination confirms the presence 
of tubules in NP40-generated cytoplasmic extracts of infected cells (HYATT and 
EATON 1988). 
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Fig.4a,b. Effect of colchicine on the cytoskeletal network of BTV-infected cells. Colchicine was 
added immediately after virus infection and cytoskeletons prepared at 22 hpj. N, nucleus; T, tubule; 
V, virus particle; V I B, virus inclusion body; if, intermediate filament. Rectangle in a is enlarged in b. 
Bars, 1 11m in a and 200 nm in b. 

7.2 Virus Tubules 

HUISMANS and ELS (1979) have purified tubules from BTV-infected cells and 
shown them to consist predominantly, if not entirely, of the non structural protein 
NSI. Probing of cytoskeletons of BTV-infected cells using monoclonal anti
bodies with known specificity for virus proteins confirms that tubules contain 
NSI and reveal the presence of VP3 and VP7 (EATON et al. 1988; HYATT and 
EA TON 1988). The fact that tubules isolated from infected cells and purified by 
sucrose density gradient centrifugation contain only NSI in detectable amounts, 
suggests either that only small quantities of structural proteins are present or that 
during purification the structural proteins are removed. 
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7.3 Virus Inclusion Bodies 

The presence of dense, core-like structures within VIBs and virus-like particles at 
the periphery suggest that it is within these bodies that virus morphogenesis 
occurs. The identification of RNA in VIBs as detected with acridine orange stain 
(BOWNE and JOCHIM 1967) is consistent with this belief. Examination of thin 
sections of VIBs indicates that most of the putative BTV precursor particles 
within the matrix lack a visible outer layer (Fig. lc). In contrast, at the VIB 
periphery, the majority of virus-like particles are bishelled. Previous reports have 
described, and we have observed, apparently complete, bishelled virus particles 
within VIBs (Fig. Id). It must be recognized, however, that VIBs are not 
necessarily spherical or elliptical in shape, and that they may contain large 
inyaginations. Virus particles at the periphery of VIBs but within such "tunnels" 
may appear in thin sections to be within the VIBs. The fact that apparently 
complete bishelled virus particles within VIBs are often present in areas of 
decreased density supports this contention (Fig. Id). 

Immunofluorescent studies showed that cytoskeleton-associated VIBs 
(identified as approximately circular, dense structures under phase contrast) 
bound antibodies to both VP3 and VP7. Indication that these proteins were 
present not only at the periphery but also within the VIB matrix came from 
studies in which Lowicryl sections of whole cells were probed with anti-VP3 and 
anti-VP7 monoclonal antibodies (HYATT and EATON 1988). Anti-VP7 antibodies 
labeled with colloidal gold reacted with the VIB matrix but did not appear to be 
associated with the dense virus-like structures in VIBs. This suggests that VP7, in 
addition to its known presence within virus cores, constitutes part of the VIB 
matrix and is there in high concentration. Lowicryl sections ofVIBs labeled very 
weakly (one or two gold particles per VIB) with anti-VP3 antibody. It seems 
unlikely that this protein is located solely on the periphery of VIBs, as indicated 
by immunofluorescence experiments. Thus, the low but specific level of anti-VP3 
labeling indicates the presence of VP3 within VIBs. In contrast, gold-labeled 
antibodies to VP2 fail to label the internal VIB matrix. In addition, the 
immunofluorescent probing of cytoskeletons from infected cells shows that 
VIBs label very weakly with anti-VP2 monoclonal antibodies. The labeling, if 
it is present, is limited to one or two pin-point fluorescent foci (GOULD et al. 
1988a). 

The nature of the interaction of VP2 with VIBs was investigated by probing 
cytoskeletons with an anti-VP2 antibody conjugated directly to gold. Following 
embedment, thin sections were cut and examined in the electron microscope. The 
results show that anti-VP2 reacted only in locations where virus-like particles 
appeared to be leaving the VIBs (GOULD et al. 1988a; HYATT and EATON 1987). 
Thus, VP2 may be added to developing virus particles, perhaps cores or core-like 
particles, at the periphery of the VIBs. However, as pointed out below, virus 
particles outside the cell and cytoskeleton-associated virus-like particles distal to 
VIBs, are labeled with anti-VP2 antibody more intensely than the particles 
apparently maturing at the VIB periphery. The difference is not due to an 
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inability of the gold-labeled antibody to diffuse efficiently into the cytoskeleton 
and reach the VIB (HYATT 1988). There are two explanations which 
account for these observations. First, VP2 may be present in VIBs in a form 
undetectable by the anti-VP2 antibodies used to date. The increase in the 
reactivity of cytoskeleton-associated virus-like particles with gold-labeled anti
VP2 antibody may reflect a reorganization in the outer coat of the virus, after 
release of the virus from VIBs, with a subsequent increase in accessibility of the 
appropriate epitope on VP2. Alternatively, although some VP2 is added to core
like particles at the VIB periphery, the remainder may be added after the virus
like particles leave the VIBs, either in the cytosol or following binding to the 
cytoskeleton. Analysis of cells infected with a neutralization-resistant variant of 
BTV-l, V35B2, provides evidence in support of the suggestion that VP2 is added 
to core-like particles at the periphery of and outside VIBs (GOULD et al. 1988a). In 
cells infected with this variant, VIBs appear surrounded by particles whose size 
and morphology are consistent with their identification as core particles. Not 
surprisingly, these particles label very weakly with anti-VP2 antibodies, whereas 
the virus-like particles elsewhere on the cytoskeleton and those released from the 
cell label strongly with the anti-VP2 monoclonal antibody. 

Monoclonal antibodies to NS2 react with the surface of VIBs in im
munofluorescence and immunogold labeling procedures. Labeling ofthe internal 
matrix ofVIB in Lowicryl sections of whole cells was also achieved with anti-NS2 
monoclonal antibodies. NS2 is phosphorylated and has been shown to bind to 
single-stranded RNA (HUISMANS et al. 1987b). Its presence within VIBs is 
consistent with a role for this protein in RNA synthesis or sequestration of viral 
single-stranded RNA molecules prior to virus morphogenesis. Unlike mono
clonal antibodies to NS2, NS 1 antibodies fail to react with the matrix of VIB in 
Lowicryl sections. Some but not all NSI antibodies do, however, react in 
immunofluorescence tests, i.e., with the surface of the VIBs. To delineate the 
nature of NS 1 in this location, cytoskeletons of infected cells were incubated 
sequentially with NSI antibody 20E6/A4 and protein A-gold. Following 
embedment and thin sectioning, VIBs were found to be non uniformly labeled 
with gold. The label appeared to be localized around and in the immediate 
vicinity of virus particles leaving VIBs. Importantly, gold was observed in 
association with fibrillar arrays around virus particles observed at the edge of the 
VIBs (EATON et al. 1988). There are two possible sources for the NSI-containing 
material at the VIB periphery. First, NSI may be present in VIBs in an 
immunologically undetectable form and accompany the virus core particles 
which mature from there. Second, NSI may be added to the developing virus 
particles at the VIB periphery. This would account for the failure to detect NSI 
inside VIBs and its presence at the VIB periphery in association with virus 
particles. 

We have previously shown that some gold-labeled anti-NSI monoclonal 
antibodies react with purified BTV core particles (EATON et al. 1987). This is 
evidence for an association which may begin at the VIB periphery. The 
localization of VP2 and NSI monoclonal antibodies at the periphery of VIBs, 
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where virus particles appear to be leaving, is indirect evidence for the role of this 
nonstructural protein in morphogenesis. 

The presence on the cytoskeleton of virus particles which lack the fibrillar 
material raises the possibility that following release of the virus-fibril complex 
from the VIB, a late step in morphogenesis occurs, after which the fibrillar 
material may be removed and the virus released from the cytoskeleton into the 
cytosol. In the event that this is correct, what happens to the fibrillar material? It 
appears unlikely that the material is broken down into constituent soluble 
proteins because little, if any, soluble NS 1 is detected in the cytoplasmic fraction of 
infected cells. An attractive possibility is that the NS I-rich fibrillar material 
condenses to form tubules. In such a model, tubules would be the repository of 
NSI that has been utilized in a prior stage of virus morphogenesis. 

Electron-microscopic examination of BTV -infected cells indicates that large 
numbers of tubules are present throughout the cell as early as 6 hpj. and before 
the appearance of significant numbers of VIBs and progeny virus particles 
(BROOKES 1989). This observation suggests that a proportion of the NSI 
made in infected cells may not be involved in morphogenesis and may also 
undergo condensation to form tubules. Perhaps NS 1 is able to fulfill its function 
in morphogenesis only during or shortly after its synthesis on polysomes. 

7.4 Virus and Virus-Like Particles 

Virus and virus-like particles in BTV -infected cells are identified in thin section 
on the basis of their diameter (approximately 65 nm) and structure which 
encompasses a dense nucleoid (approximately 40 nm diameter) surrounded by a 
ring of electron-translucent material. In whole mount electron microscopy, virus
like particles have a characteristic hexagonal appearance and a diameter of 
approximately 55 nm. Particles with these criteria and the ability to react with 
monoclonal antibodies to VP2 are observed in several locations in BTV -infected 
cells. In addition to those released from the cell and adsorbed to the electron 
microscope grid in the grid cell culture technique, virus-like particles are 
associated with the intracellular cytoskeleton, the cortical layer of the 
cytoplasmic matrix underlying the cell membrane, and the surface of the infected 
cell (HYATT et al. 1989). Glutaraldehyde-fixed, intact cells and cytoskeletons have 
been probed with anti-VP2 antibody and the pattern and intensity of flu
orescence compared. The results indicate that a majority of the viruses and virus
like particles associated with the cytoskeleton of infected cells are in intracellular 
locations. 

Shearing of the nuclear-cytoskeleton fraction of BTV -infected cells in a 
Dounce homogenizer releases high titers of infectious virus. Infectious virus 
particles are also present in the cytosol of infected cells and are released by 
treatment of cells with NP40. Virus particles released during infection into the 
culture medium and those in both the cytosol and cytoskeletal fractions have 
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been partially purified by sedimentation through 40% sucrose columns. Com
parison of the virus titer and the number of particles detected by electron 
microscopy indicate a particle to infectivity ratio of 5-10: 1 for each virus 
preparation. This finding and the fact that a majority of the cytoskeleton
associated virus particles are intracellular suggests that a significant proportion 
ofthe virus-like particles associated with the intermediate filament network ofthe 
cytoskeleton are infectious. 

Electron-microscopic examination has revealed differences in the size of 
partially purified released, cytosol, and cytoskeletal viruses from cells at 22 h p.i. 
(HYATT et al. 1989). Cytoskeleton-associated virus particles are heterogeneous 
and display a range of diameters from approximately 64 to 74nm. In contrast, 
released and cytosol virus particles appear more uniform with a majority of 
particles having a diameter of 64 to 67 nm. 

To further investigate the properties of cytoskeletal-associated virus particles, 
viruses in the cytosol, and released viruses, we have quantitated their ability to 
react with a gold-labeled VP2 monoclonal antibody. To examine released 
viruses, cells were infected on electron-microscope grids and at 22 hpj. virus 
particles adsorbed to the grid outside the cells were fixed with 0.1 % glutar
aldehyde prior to addition of gold-labeled antibody. Binding of antibody to 
cytoskeletal-associated virus particles was determined after treatment of infected 
cells with NP40 and glutaraldehyde. To probe virus particles in the cytosol of 
infected cells under conditions identical to those used for the immunological 
analysis of cytoskeleton-associated and released virus particles, use was made of 
the observation that following lysis of infected cells with NP40 a proportion of 
the virus particles in the cytosol bind to the grid substrate in close proximity to 
the cell. The previously released virus particles can be differentiated from the 
cytosolic virus by prior labeling of the former (and the intact unfixed cell) with a 
VP2 monoclonal antibody conjugated with a 6 nm gold probe. Following cell 
lysis with NP40, the newly released particles from the cytosol which have 
adsorbed to the grid and are unlabeled are probed with the same monoclonal 
antibody conjugated to a larger gold probe. The results indicated that there was a 
heterogeneous distribution of gold probes on the three virus populations, 
especially those derived from the cytosol. More importantly, the binding profiles 
suggested that the populations differed in their capacity to bind antibody. 
Surprisingly, viruses from the cytosol bound most and released viruses bound 
least gold-labeled anti-VP2 antibody (HYATT et al. 1989). There are several 
possible explanations which account for differences in monoclonal antibody
binding capacity of the three virus populations. First, cytoskeleton-associated 
and cytosolic virus particles contain more VP2 than released virus and this extra 
VP2 is removed during morphogenesis. Alternatively, there is no difference in the 
amount ofVP2 present, but virus particles undergo a conformational rearrange
ment which obscures the reactive epitope on some VP2 molecules. 

It is not clear if antibodies are able to neutralize both released viruses and 
those in the cytosol with equal efficiency. Failure to effectively neutralize virus 
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particles liberated as a result of cell death and lysis may account for the reported 
instances of coexistence of infectious virus and neutralizing antibody in the serum 
of animals infected with BTV (see Chap. 5, this volume). 

8 Release of Virus from Infected Cells 

The mechanism whereby BTV is released from infected cells has been the subject 
of some speculation. Reoviruses tend to accumulate in cytoplasmic inclusion 
body-associated arrays and are not released until cell lysis late in infection. 
Similar large-scale paracrystalline "arrays of virus particles have not been 
observed in BTV-infected cells. BTV may be released from cells in a number of 
ways. First, virus may appear in the culture medium following the death and 
subsequent lysis of infected cells. However, the release of virus within 4 to 5 h of 
infection of MDBK cells with BTV serotype 8 (BTV-8) and the thousand-fold 
excess of released over cell-associated virus up to 15 hpj. in this system 
(CROMACK et al. 1971) suggests that other mechanisms may be operative. In other 
BTV-cell systems a high proportion of virus remains cell associated (HOWELL and 
VERWOERD 1971). Although orbiviruses are observed predominantly as naked 
virus particles, there are many reports which describe the presence of virus 
particles with lipoprotein envelopes (OWEN and MUNZ 1966; ELS and VERWOERD 
1969; BOWNE and RITCHIE 1970; FOSTER and ALDERS 1979). These are presumably 
due to virus "budding" from infected cells and viruses undergoing this mode of 
release have been observed (BOWNE and JOCHIM 1967; BOWNE and RITCHIE 1970). 
Similar observations have been made for many other orbiviruses (VERWOERD et 
al. 1979). A third mode of virus release was suggested by a report which describes 
released virus particles situated close to "discontinuities" in the plasma 
membrane (LECATSAS 1968). 

Using a variety oftechniques including immunofluorescent and immunoelec
tron microscopy and the grid cell culture technique we have investigated the 
release ofBTV-l from infected cells. The presence ofVP2 on the surface ofBTV
infected cells 18 to 24 hpj. has been revealed following binding of gold-labeled 
anti-VP2 antibody to glutaraldehyde-fixed, intact cells and enhancement of the 
gold with silver (Fig. 5). 

Most, if not all, of this viral protein is linked to the cytoskeleton because 
immunofluorescent experiments have shown that anti-VP2 antibody added to 
unfixed cells at 37°C for 30 min prior to cell lysis remains associated with the 
cytoskeleton following addition of nonionic detergent. Electron-microscopic 
observations of thin sections and cytoskeletons of infected cells labeled with gold
tagged anti-VP2 antibody indicate that the VP2 on the cell surface is present as 
part of virus particles. 

Negative staining of intact, infected cells labeled with anti VP2 antibody 
reveals virus particles both under the cell membrane (and therefore inaccessible 
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Fig.5a,b. Immunoscanning electron micrograph of BTV-infected cells labeled with VP2 mono
clonal antibody complexed with 12-nm gold particles and silver enhanced. V, virus particles bound to 
the substrate outside the cell (HYATT et aL \989); F, fat droplet. Bars in a and b represent 10 J1m and 
1 J1m respectively 
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Fig. 6. Negative contrast immunoelectron micrograph of BTV-infected cells. Prior to negative 
staining infected cells grown on electron microscope grids were labeled with VP2 monoclonal 
antibody conjugated to 12-nm gold particles. V, virus particles underlying the membrane and 
unlabeled; M, mitochondria. Arrowheads point to labeled virus particles on the cell surface 

Fig.7. Release of virus particles from infected cells. Cytoskeletons ofBTV-infected cells were probed 
with gold-labeled VP2 monoclonal antibody and carbon coated. Stereomicrograph showing virus 
particles outside the cell but attached to the cortical layer underlying the cell membrane. V, virus 
particle; F, filament; C, cytoskeleton. Bar, IOOnm 
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to gold-labeled antibody) and on the cell surface (Fig. 6). Virus aggregates 
and single virus particles on the cell surface retain an association with the cortical 
layer of the cytoskeleton following cell lysis (Fig. 7). 

Large numbers of virus particles were observed to bud through the cell 
membrane (Fig. 8a). However, most virus particles attached to the grid substrate, 
outside the cell, were not enveloped. This may be due to the failure of large 
numbers of enveloped viruses to adsorb to the grid substrate. Enveloped viruses 
on the other hand may be unstable and lose the membrane soon after release from 
the infected cells. Put another way, BTV particles may "escape from" or penetrate 

a b 

Fig. Sa-c. Virus release from infected cells. Thin sections of BTV-infected cells showing a virus 
"budding", b an aggregate of nonenveloped virus particles penetrating the cell membrane and c 
membrane-like material and nGnenveloped virus particles at the cell surface. Virus particles in b were 
labeled during a l-h incubation of unfixed cells at 37° C with a VP2 monoclonal antibody conjugated 
to 6nm gold. Bars, lOOnm 
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their surrounding lipid envelope. Some evidence in favor of the latter suggestion 
comes from the finding oflarge accumulations of membrane-like material outside 
infected cells (Fig. 8c). 

However, it is clear that not all viruses leave the infected cell by a process of 
"budding." A large number of virus particles which appear to be partially 
embedded in the plasma membrane are observed without an overlying envelope 
(Fig. 8b). There are several observations which lead us to conclude that these 
particles are leaving rather than entering the cell: 

1. Following addition of BTV to previously un infected cells, virus uptake was 
observed to occur only by endocytosis and not by direct membrane 
penetration (BROOKES 1989). 

2. Nonenveloped virus particles, partially embedded in the membrane, have been 
observed immediately under completely enveloped viruses (HYATT et at. 1989). 
The close proximity of the viruses to each other and the cell surface made it 
highly unlikely that the nonenveloped virus was entering the cell. 

3. Staining of virus-infected cells in the grid cell culture technique revealed that 
naked virus particles outside the cell often retain a physical connection to 
localized areas of the cell membrane which appear to have undergone some 
alteration, thus permitting an increased penetration of stain. These connec
tions were also observed in cytoskeletons of infected cells (Fig. 7). 

4. Following incubation ofliving, virus-infected cells with gold-labeled anti-VP2 
antibody for 1 h at 37° C, the vast majority of intracellular gold-labeled virus 
particles were observed within endocytic vesicles. Virus particles within the 
cell and those underlying the cell membrane remained unlabeled, whereas 
nonenveloped viruses outside, on the cell surface, were heavily labeled. 
Aggregates of virus particles partially embedded in the cell membrane were 
more heavily labeled on the exterior (Fig. 8b). These data suggest that, in 
addition to "budding," individual virus particles and aggregates may pene
trate the plasma membrane of infected cells and be released as nonenveloped 
viruses. 

The effect of virus infection on cell viability has been monitored by trypan 
blue exclusion. Following infection at a multiplicity of 10 PFU /cell, released virus 
was first detected at 6 hpj. and the rate of release increased rapidly up to 12 hpj. 
Maximum release occurred from 12 to 24h pj. In spite of the release of virus 
particles by penetration of the plasma membrane, BTV-infected cells remained 
capable of excluding trypan blue. As estimated by dye exclusion, approximately 
95% of cells remained viable in both control and infected cultures up to 24 hpj. 
After this time, infected cells started to detach, but even at 30 hpj. approximately 
75% still remained on the substrate. Approximately 80% of these remained viable. 
These observations also indicate that cell death and subsequent release of 
infectious virus do not contribute significantly to the titer of released virus at least 
up to 24 to 30 hpj. The integrity of the membrane is also manifest by the ability of 
infected cells to retain 51Cr. We have observed no difference in the rate ofrelease 
of radioactivity from BTV -infected or control cells which had been labeled for 1 h 
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with SlCr prior to virus infection. These cultures were observed for a period of 
24h after infection (HYATI et al. 1989). 

Penetration of the plasma membrane by infecting icosahedral viruses has 
been observed with rotaviruses (KALJOT et al. 1988), infectious subviral particles 
of reovirus (BORSA et al. 1979), and adenoviruses (BROWN and BURLINGHAM 
1973). Binding of adenoviruses and picornaviruses to the plasma membrane 
results in a destabilization or rearrangement of the virus particles. Adenovirus 
becomes DNase-sensitive due to the loss of some penton base and fiber proteins 
(OGIER et al. 1977). Poliovirus loses protein VP4 (FENWICK and COOPER 1962). 
Interaction of poliovirus with isolated plasma membrane preparations results in 
the loss of VP4 and VP2 (DE SENA and TORIAN 1980). Thus, the destabilization of 
virus particles at the plasma membrane outside the cell may be the first step in a 
virus-uncoating process that ends in the endosome or lysosome with the exposure 
of hydrophobic regions of the particle which facilitate entrance into the 
cytoplasm. Alternatively, rearrangement of the virus particles at the plasma 
membrane may precede or occur concomitantly with virus penetration through 
the membrane (BROWN and BURLINGHAM 1973). It is tempting to speculate that 
egress ofBTV particles from infected cells by membrane penetration may occur in 
association with a reorganization ofthe outer capsid layer ofthe virus. The results 
presented in Sect. 7.4 indicate that BTV particles released from infected cells 
differ from intracellular particles in their ability to bind gold-labeled VP2 
antibody. This difference may reflect either loss of VP2 during release or a 
rearrangement of the outer coat which obscures a proportion of the reactive 
epitopes on VP2. It must be noted that the size of BTV particles probably 
precludes unassisted movement through the actin-rich cortical layer underlying 
the cell membrane (HARTWIG et al. 1985). Presumably, there may also be a 
mechanism to facilitate this process. Whether this has any bearing on the 
structure of the neighboring plasma membrane is not clear. 

9 Conclusions 

In this chapter the replication of BTV has been discussed from a predominantly 
morphological perspective. Several facets of the virus replication cycle such as 
adsorption, uncoating, late stages in morphogenesis, and virus release from the 
cell are particularly amenable to investigation using electron microscopy. 
In addition, the use of a panel of monoclonal antibodies to virus structural 
and nonstructural proteins employing a variety of immunofluorescent and 
immunoelectron-microscopic procedures has provided new information on the 
cytoskeletallocation and protein content of virus-specific structures synthesized 
in infected cells. 

The data have permitted some conclusions to be drawn and encouraged us to 
speculate further on the mechanism of addition of outer coat proteins to BTV 
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particles during morphogenesis, the effect of lysomotropic agents on virus 
infection, and the processes whereby virus particles are released from infected 
cells. These topics are dicussed within the following summary of BTV replication. 

Following adsorption of cells, BTV is taken up by endocytosis. The outer coat 
protein VP2 is removed in endosomes. VP5 is probably removed there also prior 
to release of the core-like particles into the cytoplasm. In contrast to BTV, the 
outer coat of reovirus is only partially uncoated in the lysosomes. In the 
cytoplasm core-like particles of BTV bind to intermediate filaments and 
transcribe virion RNA. Translation of viral RNA generates proteins which 
appear to condense probably with single-stranded RNA to form a matrix which 
ultimately surrounds the core particle, thereby generating a VIB. It is within the 
VIB matrix that new core-like particles are made. The bishelled structure of 
particles at the VIB periphery suggests that at least a proportion of the outer coat 
proteins is added in that location. Some VP2 appears to be added there and the 
remainder may follow when the virus leaves the VIB. The site ofVP5 addition to 
particles is unknown and the details of core particle morphogenesis within the 
VIBs are obscure. The size and density of the inner capsid observed in thin 
sections and its resemblance to that of virus cores suggests that the particles 
leaving the VIBs contain double-stranded RNA. Therefore, BTV replicase 
particles, i.e., those containing single-stranded RNA, may be found within the 
VIBs. Unlike reovirus-infected cells, where complete and incomplete particles 
coexist in inclusion bodies, the data indicate that late steps in BTV mor
phogenesis occur outside VIBs. Indeed, the final stage in morphogenesis may 
occur concomitantly with the release of virus from the cell. The ability of BTV to 
replicate in and be released from cells may have evolved because of the 
requirement for insect transmission of the virus. 

Studies on the addition of lysomotropic agents suggest that the kinetics of 
BTV replication depend on superinfection of cells with progeny virions. The 
difference in sensitivity of reovirus and BTV to lysomotropic agents added at 
different time pj. may be due to the length of time developing virus particles 
retain their ability to generate mRNA. The addition of at least some of the BTV 
outer coat proteins at the VIB periphery may block transcription at a relatively 
early-stage of virus particle morphogenesis compared with reovirus where in
hibition of transcription by 0"-3 occurs at a late stage in virus morphogenesis. In 
BTV -infected cells a shorter length of time during which particles are active in 
transcription, perhaps coupled with a decreased rate of mRNA production 
compared with reovirus (VAN DUK and HUISMANS 1980), may generate only low 
levels ofmRNA with a consequent delay in the amplification process. Superinfec
tion of BTV -infected cells by progeny virions effectively increase the multiplicity 
of infection, thereby enhancing the kinetics of virus replication. 

Little is known of the mechanism whereby VP2 and VP5 are added to 
developing virus particles. The initial event in the process appears to occur at the 
VIB periphery where both fibrillar NSI and some VP2 become associated with 
core-like particles. The presence of NS 1 in purified core particles suggests that the 
addition ofNSI may precede the addition ofVP2. The absence oflarge numbers 
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of virus particles close to VIBs late in infection suggests that these putative 
incomplete particles are released into the cytosol and it is there or probably after 
binding to the intermediate filaments that more VP2 is added. 

NSI may be removed from the virus particles either concomitantly with the 
addition of VP2 or as a separate and unrelated event. Some NSI remains 
associated, however, with the core particle. The data presented raise the 
possibility that tubules are formed by condensation of NSI-containing fibrils 
released from virus-like particles at this stage of morphogenesis. The presence of 
VP3 and VP7 in tubules may be due to NSI-mediated removal of these proteins 
from the core-like particle. 

The size and heterogeneity of cytoskeleton-associated virus-like particles 
suggests that VP2 (and VP5) may be added to developing virus particles in that 
location. If this is the case, the different size of released and cytoskeletal
associated virus particles indicates that either excess VP2 (and VP5) may be 
removed from cytoskeletal virus or the latter particles undergo a morphological 
rearrangement of the outer coat prior to release from the cell. The presence of a 
smaller number of gold-labeled VP2 antibodies on released virus compared with 
the cytoskeletal particles is consistent with either of these alternatives. It seems 
likely that cytoskeletal-associated virus particles may reach the cortical layer 
underlying the cell membrane via the cytosol. Certainly the similar size of 
released viruses and viruses in the cytosol distinguishes them from cytoskeletal
associated particles. However, cytosolic viruses can themselves be distinguished 
from released particles by virtue of their ability to bind more gold-labeled anti
VP2 antibody. This suggests that a further loss of VP2 or morphological 
rearrangement may occur either prior to or concomitant with "budding" or 
penetration of the virus through the plasma membrane of infected cells. 
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1 Introduction 

Bluetongue disease is an infectious, noncontagious, arthropod-borne viral 
disease, mostly of sheep, but also of other ruminants (ERASMUS 1975). The 
original detailed descriptions of bluetongue disease in sheep were those of 
SPREULL (1905). 

The identification of bluetongue virus (BTV) in a number of countries of the 
Middle East, Asia, and the USA in the early 1940s and 1950s led to the 
description of bluetongue as an emerging disease (HOWELL 1963). BTVs are now 
known to occur in tropical, semitropical, and temperate zones of the world within 
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an equatorial belt which extends approximately between the latitudes 40° Nand 
35° S (SHIMSHONY et al. 1988). 

An important factor in the distribution ofBTV worldwide is the availability of 
suitable vectors, usually biting midges ofthe species Culicoides (WIRTH and DYCE 
1985). Wherever the required vectors are present, BTV can become endemic and 
infected vectors can often be transported by prevailing winds to areas, where if 
they come into contact with susceptible animals, they may infect them thereby 
instituting epizootics. The wind-borne introduction of BTV to various countries 
of the Mediterranean littoral has been postulated (SELLERS 1975; TAYLOR et al. 
1985; POLYDOROU 1985). An epizootic of BTV-lO infection occurred on the 
Iberian peninsula (SILVA 1956; MANSO-RIBEIRO et al. 1957). Epizootics due to 
BTV infection have occurred in Australia and the Okanaghan Valley of Canada 
as extensions from endemic areas (MURRAY 1987; THOMAS et al. 1982). 

Monitoring the prevalence of serum antibodies to BTV in sentinel cattle, 
combined with insect trapping, has enabled the determination of the ecological 
range of Culicoides brevitarsis, one of the known vectors of BTV in Australia 
(MULLER et al. 1982; MURRAY 1987). 

2 Bluetongue Disease in Sheep 

Bluetongue is primarily a disease of sheep and most breeds of sheep are 
susceptible, although not to the same degree. In many areas of the world where 
BTV is endemic the indigenous sheep are less susceptible than the exogenous 
breeds such as Merinos and European mutton types (ERASMUS 1975; BARZILAI and 
SHIMSHONY 1985; TAYLOR et al. 1985; HAFEZ and TAYLOR 1985; GIBBS and GREINER 
1985; T AMA YO et al. 1985; ST. GEORGE 1985). 

In the first reports of bluetongue disease in the USA (HARDY and PRICE 1952) 
it was noted that nursing lambs were less susceptible than older animals. LUEDKE 
et al. (1964) confirmed this observation under experimental conditions and noted 
that susceptibility to infection varied considerably among individuals of a breed 
with older sheep being more susceptible than lambs. However, in other reports no 
age differences were found (ERASMUS 1975). 

In Australia although eight different serotypes of BTV have been identified, 
no clinical disease has been reported in sheep under natural grazing condi
tions (ST. GEORGE and MCCAUGHAN 1979; UREN and SQUIRE 1982; UREN and 
ST. GEORGE 1985; FLANAGAN et al. 1982). 

2.1 Clinical Signs 

Most cases of BTV infection of sheep are subclinical or mild and prognosis is 
generally favorable with complete recovery within a few weeks. ERASMUS (1975) 
has described a mortality rate varying from 2% to 30% under field conditions in 
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South Africa. In the USA, morbidity rates of less than 30% and averaging 10% 
with a mortality rate estimated to be 5% have been reported from field outbreaks 
(HARDY and PRICE 1952; McKERCHER et al. 1953; MOULTON 1961). 

The clinical signs of bluetongue disease following natural infection and the 
gross pathology resulting were described in South Africa by SPREULL (1905), 
THEILER (1906), DIXON (1909), and THOMAS and NEITZ (1947); in Cyprus by 
GAMBLES (1949); and in the United States by HARDY and PRICE (1952) and 
MOULTON (1961). 

There is a great variability in the response of sheep to BTV infection which 
can range from inapparent to acute and fulminating. The severity of the disease 
depends on the susceptibility of the animals, the pathogenicity of the virus, and 
the environmental conditions. Sheep that are stressed severely or subjected to 
high solar radiation levels were reputed to develop more severe lesions than those 
not so treated (NEITZ and RIEMERSCHMID 1944). 

The descriptions of the clinical signs and lesions in natural infections are 
generally in agreement in all reports and are as follows. The first sign is a rise in 
body temperature which may be transitory or continue for up to 14 days, with the 
average duration about 5 to 7 days (ERASMUS 1975). An increased respiratory rate 
which may be moderate, or hyperpneic in the more acute cases, occurs early in the 
febrile response. Hyperemia and swelling of the buccal and nasal mucosa are 
often observed at the time of the first temperature rise. The swelling is usually 
accompanied by frothy salivation, swollen tongue, and licking of the lips and 
nostrils. This is followed by cracking of the epidermis at the commisures of the 
lips, with encrustation of these areas and the nasolabial plane combined with 
edema of the face, submaxillary space, and on occasion, the ears and eyelids. At 
this time hemorrhages ranging from petechiae to ecchymotic occur in the mucous 
membrane of the gingiva and oral cavity in the vicinity of the ventral surface 
of the tongue. Very rarely the tongue becomes swollen, markedly congested, 
and may protrude from the mouth and because of its cyanotic appearance 
gives the name "bluetongue" to the disease. As this sign is transitory it is often 
missed. 

The epithelial lesions of the mouth and nasolabial plane may become chronic. 
The thickened epithelium results in excoriation, leaving bleeding, ulcerated 
lesions which become infected and often necrotic. 

During this time acutely infected sheep develop stiffness, lethargy, and 
anorexia. The reluctance to move has been related to the appearance of reddening 
around the coronet of the hoof, and the development of petechial hemorrhages 
which occur at the skin horn junction (periople). Later the breakdown products 
of these hemorrhages underrun the horn as red streaks in white-hoofed animals. 
In addition to the hooflesions moderate to severe skeletal muscle damage occurs 
leading to degeneration of the muscles, extreme weakness, and prostration. 
Torticollis may result and this is usually terminal. Occasionally, sheep will vomit 
as a result of smooth muscle lesions of the esophagus and pharyngeal area. When 
vomiting occurs aspiration of ruminal contents and pneumonia inevitably 
follows, ending frequently in death. 



122 I. M. Parsonson 

2.2 Pathology of Bluetongue Disease in Sheep 

There are a number of excellent descriptions of the gross pathological lesions in 
sheep at necropsy (BEKKER et al. 1934; THOMAS and NEITZ 1947; MOULTON 1961; 
LUEDKE et al. 1964; PARISH et al. 1982) which between them cover the majority of 
findings. 

2.3 Gross Pathology 

The gross lesions are dependent on the stage of the disease at which the sheep dies 
or is killed, and on the particular infecting virus serotype and strain. In addition, 
environmental effects can also playa role. 

The external lesions are generally visible during the latter stage of the disease. 
Edema, which is a feature of the head and face, usually extends into the 
subcutaneous pendulous areas of the neck and is present in the trachea and 
larynx. Edematous fluid is often present in the submandibular space and in 
ventral areas of the neck and thorax. Subcutaneous edema can also extend to the 
ventral abdomen and intrafascicular muscle planes of the fore- and hindlimbs. In 
the majority of animals the subcutaneous edema is not extensive. However, in 
animals that die in the acute stages of bluetongue disease, the pleural, pericardial, 
and peritoneal cavities usually contain excessive amounts of yellow serous fluid. 
The skeletal muscle lesions can be seen as hemorrhages or hemoglobin-stained 
gelatinous areas among muscle fibers and may be scattered throughout several 
muscles in a group (THOMAS and NEITZ 1947; MOULTON 1961). 

Lesions of the digestive tract include lesions of the oral cavity with extension 
of edema into the laryngeal and pharangeal area. Damage to the esophageal 
musculature has been reported (MAHRT and OSBURN 1986) and has been 
suggested as a possible cause of the vomiting sometimes seen prior to the 
development of aspiration pneumonia (LUEDKE et al. 1964; ERASMUS 1975). 
Ecchymotic hemorrhages may be found under the peritoneal lining of the rumen 
and reticulum. Hyperemia ofthe ruminal papillae, pillars, and reticular folds may 
also be present (ERASMUS 1975), as well as congestion and hemorrhages in the 
region of the abomasum and duodenum (MAHRT and OSBURN 1986). 

Hemorrhages and congestion have also been reported for the cardiovascular 
system particularly the pulmonary artery, subendocardial areas, and papillary 
muscles of the heart (ERASMUS 1975; UREN and SQUIRE 1982; MAHRT and OSBURN 
1986). 

Lesions of the respiratory system often begin in the trachea with petechial 
hemorrhages in the mucous membrane and froth in the lumen extending into the 
bronchi. In chronic cases oflong duration, the ventral lobes of the lungs may have 
areas of atelectasis, or if vomiting has occurred, bronchopneumonia may be 
present with evidence of rumina I material in the trachea and bronchi (MOULTON 
1961; ERASMUS 1975; LUEDKE et al. 1964). Lymph nodes of the head and neck are 
usually congested and enlarged and petechial hemorrhages are commonly 
present (MOULTON 1961; MAHRT and OSBURN 1986). 
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The spleen may be congested, and scattered petechial hemorrhages may be 
present beneath the capsule. Similar petechiae have been reported in the thymus 
(LUEDKE et al. 1964). 

The kidneys are often congested. Petechial hemorrhages may be seen in the 
mucosa of the urinary bladder, urethra, and vulva or penile sheath. Bluetongue 
infection of the pregnant ewe may result in infection ofthe fetus depending on the 
stage of gestation. Encephalopathies occurred in fetuses following vaccination of 
ewes pregnant at 5 to 6 weeks with egg-adapted-BTV serotype 10 vaccines 
(SHULTZ and DELAY 1955; CORDY and SHULTZ 1961; YOUNG and CORDY 1964; 
RICHARDS and CORDY 1967). 

Lesions seen at necropsy relate to the severity of damage to the microvascular 
vessels which in turn results in vascular permeability with edema, hemorrhage, 
thrombosis, ischemia, and necrosis of a wide range of tissues. 

2.4 Clinical Pathology of Bluetongue Disease in Sheep 

Several studies on the clinical pathology of bluetongue disease have been made 
(GRAF 1933; LUEDKE et al. 1964; JEGGO et al. 1986). Hematological studies 
showed that the sheep had leukopenia with lowest counts on days 5 to 7 after 
infection. Of the sheep examined, neutropenia occurred in 88%, lymphopenia in 
95%, and eosinopenia in 77%. Hemolytic anemia was identified by packed cell 
volume, hemoglobin, and icterus index (LUEDKE et al. 1964). The levels of several 
plasma enzymes have been determined and glutamic oxalacetic transaminase, 
glutamic pyruvic transaminase, lactic dehydrogenase, and aldose may increase 
and reach a peak about 8 days after the peak of pyrexia. Significant changes were 
found in serum enzyme activities in creatinine kinase (JEGGO et al. 1986; MAHRT 
and OSBURN 1986), aldolase, and lactate dehydrogenase-all having raised levels 
from day 10 after infection in the animals that subsequently died. Changes in 
aspartate amino-transferase levels in plasma occurred in sheep that died and also 
in sheep that survived and were not correlated to the severity of clinical findings 
(JEGGO et al. 1986). 

2.5 Histological Findings in Bluetongue Disease of Sheep 

Microscopic lesions were first described in the stratified squamous epithelium of 
the skin and oral mucosa of sheep with bluetongue disease by BEKKER et al. 
(1934). Subsequent description ofthe microscopic findings by THOMAS and NEITZ 
(1947) and MOULTON (1961) have expanded the original descriptions. Lesions in 
acute infections are the result of vascular thrombosis occurring in the capillaries 
and small blood vessels causing hemorrhage and edema within the surrounding 
tissues. In the squamous layers of the skin and mucosa, vacuolation and necrosis 
of the epithelium results. Neutrophilic migration occurred in many areas of the 
epithelium and mononuclear and polymorphonuclear cells accumulated in the 
underlying perivascular areas of the dermis. In more chronic lesions, erosions 
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occurred often developing into ulcerated areas. Skeletal muscle degeneration was 
seen as focal areas within muscle masses, occasionally as degenerated single or 
several fibers only, and was characterized by swelling, hyaline degeneration ofthe 
fibers, and infiltration of neutrophils and fibroblasts. Hemorrhages and edema 
were also frequently present. Lesions in the myocardium were similar to those 
seen in skeletal muscle. In sheep with hemorrhages in the tunica media of the 
pulmonary artery, areas between muscle fibers were infiltrated with extravasated 
blood, but there was no degeneration of muscle fibers. 

Microscopic lesions of pulmonary edema and congestion with atelectasis of 
areas in the ventral lobes were common. In addition, sheep that had aspirated 
ruminal material had severe bronchopneumonia, which, depending on the stage, 
was either diffuse and suppurating or undergoing marked necrosis. The latter 
finding was frequently associated with pharyngeal or esophageal myodegener
ation and hemorrhage. 

Other microscopic findings in lymph nodes, and associated with hemorrhages 
of the smooth muscle areas of the rumen, abomasum, and small intestine are 
commonly associated with damage to the microvasculature of those areas. 
Laminitis may occur in some sheep and is characterized microscopically by 
hemorrhages and edema of the tissues at the skin-horn junction. 

Although lesions have been described for other organs and tissues of sheep 
that have acute or chronic bluetongue disease, the common findings relate to a 
breakdown in the microvasculature due to thrombosis and subsequent hemor
rhage, edema, ischemia, and necrosis of the surrounding tissues. 

2.6 Pathogenesis of Bluetongue Disease in Sheep 

ERASMUS (1975) drew attention to the observations of BEKKER et al. (1934) who 
noted the regular development oflesions in those tissues where mechanical stress 
was common. They cited the oral cavity in the vicinity of the teeth as well as the 
muscular pillars and the esophageal groove of the rumen. THOMAS and NEITZ 
(1947) confirmed these findings and they considered that vascular lesions were the 
primary injury. However, neither ventured to explain the mechanisms by which 
the virus caused the lesions. 

STAIR (1968) studied the pathogenesis of bluetongue disease in sheep using 
clinical and gross observations, immunofluorescence, histological, and virus 
neutralization techniques. The sheep were inoculated intravenously and one or 
two sheep were killed at daily intervals for 16 days after inoculation. He found 
that BTV had an affinity for endothelial cells, periendothelial cells, and pericytes 
of capillaries and small blood vessels. Immunofluorescence was concentrated in 
the small vessels underlying stratified squamous epithelium and, in particular, 
that of the oral cavity skin around the mouth and nasolabial plane and the 
coronet of the hoof. The concentration of viral antigen in these areas was 
attributed to the lower temperature of these structures in relation to the rest of the 
body. Basic histopathological lesions of the endothelial cells resulted in nuclear 
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fragmentation and cell death, vacuolation of the cytoplasm, and cytoplasmic 
swelling. The cellular changes commenced from 6 to 10 days after inoculation. 
Ischemic lesions in the epithelium followed the primary viral inflammatory 
changes in the endothelial cells. Mechanical stress and microbiological infection 
greatly influenced the degree of secondary changes. There was a marked increase 
in virus neutralizing antibodies from day 6 to day 8 after inoculation. Fever, the 
initial clinical signs, primary histological lesions, and maximal concentration of 
viral antigen occurred at the same time that the marked increase in serum 
neutralizing antibodies commenced. STAIR (1968) speculated that the lesions 
resulting from BTV infection were generally confined to the areas of lower body 
temperature and that the vascular lesions and exudation of serum crusts in 
nonwool areas resulted in a photosensitization-like hypersensitivity reaction in 
some sheep. 

PINI (1976) studied BTV infection in yearling Merino sheep inoculated 
subcutaneously into the auricula of the ear with plaque purified BTV-IO. Virus 
was isolated from tissue samples taken from individual animals killed at daily 
intervals over a period of 11 days. He found the incubation period was between 6 
and 9 days and that the first clinical sign was pyrexia. The virus was first detected 
in the draining lymph nodes of the head and cervical region also in tonsils and 
spleen. Viremia was first detected on day 6 postinoculation. Macroscopic lesions 
of the oral cavity, lips, and edematous swellings of the face were seen on day 8. 
From these findings PINI (1976) postulated that BTV entered the regional lymph 
nodes from infection sites and was decem ina ted via lymph or vascular systems to 
other lymphoid tissues where further replication occurred. Following replication, 
the virus was carried via the vascular system to other organs and predilection 
sites such as the exposed areas of the body. The fact that viremia was not detected 
until 48 h after the virus detected in lymphoid tissue is very important as virus 
replication was possibly occurring in these sites in the preferred cells before 
release into the bloodstream. The antibody response was detected by im
munofluorescence and coincided with a decrease in virus in the blood without 
appearing to affect the antigen concentration in the tissues. PINI (1976) found no 
evidence of viral antigen in the tissues of sheep killed at 6, 8, and 16 weeks after 
infection. Both these studies (STAIR 1968; PINI 1976) confirm the distribution of 
virus in the tissues and vascular system. Both noted the presence of neutralizing 
antibody and virus in the bloodstream at the same time. 

ERASMUS (1975), in comparing the above studies, considered that the route of 
infection may have been an important factor in the early distribution of BTV in 
the vascular endothelium (intravenous, STAIR 1968) and in the lymphoid tissues 
(intradermal, PINI 1976) in which primary viral replication occurred. Natural 
transmission of BTV by Culicoides sp. is probably via intradermal routes with 
virus replication in draining lymphoid tissues before general release of virus into 
the bloodstream. 

In a study of the pathogenesis of BTV-4 (Cyprus strain) in sheep, LAWMAN 

(1979) found that the primary replication site of the virus was in the lympho
reticular system. Once viremia was detected the virus could be identified in a 
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number of tissues and organs. He found the major hematological feature of BTV 
infection in sheep, goats, and cattle to be a transient pan-leukopenia with 
maximum leukopenia preceding both the peaks of viremia and pyrexia. In this 
study the cells involved in primary replication were monocytes and macrophages, 
although replication also occurred in endothelial cells and neutrophils. 

3 Distribution of Bluetongue Virus in Blood 

There are a number of reports describing the distribution of BTV in the various 
components of the blood. SPREULL (1905) found that serum was as infective as 
whole blood and concluded that the microbe was not bound up in red corpuscles 
and suggested dropping the term "malarial catarrhal fever," and instead using 
bluetongue as the name for the disease. PINI et al. (1966) investigated titration of 
BTV from plasma and buffy coat fractions of sheep blood and concluded that 
virus was associated with the buffy coat. 

LUEDKE (1970) in experiments in sheep, goats, and cattle found that 
concentration of BTV in the erythrocyte fraction of blood was 10 to 100 times 
that of the virus in buffy coat fractions and concluded that BTV was closely 
associated with the erythrocytes during all stages of infection. SAWYER and 
OSBURN (1977) noted that BTV can be isolated with equal efficiency from 
mononuclear and erythrocyte-granulocyute fractions of blood. P ARSONSON et al. 
(1987a) found no differences in the isolation of BTV-20 in cattle from crude buffy 
coat or erythrocyte fractions using several tissue culture cell lines and embryonat
ing chicken eggs. MORRILL and MCCONNELL (1985) examined cellular elements 
from the blood of calves experimentally inoculated with BTV-I0, BTV-ll, BTV-
13, and BTV -17 using transmission electron microscopy. They found intra
vacuolar viral particles within infected agranular leukocytes from blood samples 
collected on day 14 post inoculation. No virus particles were seen associated with 
other cellular elements including erythrocytes and platelets. 

Although the literature in regard to this aspect is confusing, there can be no 
perfect separation of blood fractions without some contamination; thus, the 
discussion becomes academic. Based on the evidence for replication of BTV in 
cells where the virus is closely adherent and associated with cytoplasmic cellular 
structures nucleated cells are necessary (HOWELL et al. 1967; LAWMAN 1979; 
MCPHEE et al. 1982). Unfortunately there is no definitive information available 
on the cell surface receptor sites to which BTV may bind. In an in vitro study of 
BTV -erythrocyte combinations there were indications that the virus binds to 
specific sialic acid-containing sites in human glycophorins and a number of 
animal erythrocytes (EATON and CRAMERI 1989). However, because of the close 
association ofBTV with the cell surface, once the virus has passed through the cell 
membrane (see Chap. 4, this volume), and because of the affinity of the virus 
binding to specific sialic acid sites, shed complete virions could adhere to, and be 
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transported by, erythrocytes as well as the cells of the vascular system in which 
they may replicate. Obviously the methods used for separating the virus from the 
cell membranes of erythrocytes and buffy coat cells are of importance in 
establishing infection and determining the titers of viremias in animals. 

In epidemiological studies of the prevalence of antibodies to BTV in endemic 
areas of Australia, ST. GEORGE (1985) found antibodies to BTV and EHD viruses 
in cattle, buffaloes, deer, goats, and sheep. No antibodies have been found in pigs, 
horses, marsupials (kangaroos and wallabies), or humans. It would appear that 
there must be some specific factors in the virus-host relationship associated with 
virus accessibility to host cells or a specific arthropod-vector-host relationship 
with respect to the transmission of BTV. 

Specific BTV neutralizing antibodies are generally detected from 7 to 14 days 
after infection in sheep and are maintained for extended periods (HOWELL 1960; 
LUEDKE and JOCHIM 1968; LUEDKE 1970; PINI 1976) often coexisting in the blood 
with the specific BTV. ERASMUS (1975) suggested that this may be due to the 
ability ofthe virus to become sequestrated in erythrocyte membranes and thereby 
avoid neutralization. Even very low levels of serotype-specific (homotypic) 
neutralizing antibodies present at the time of the challenge to immunity appear to 
afford protection against heterotypic BTV challenge (GROOCOCK et al. 1982; 
JEGGO et al. 1983; PARSONSON and LUEDKE, unpublished). 

HUISMANS and ERASMUS (1981) found that BTV outer-capsid polypeptide P2 
appeared to be the main determinant of serotype specificity, whereas the main 
determinant of group specificity resided in the core protein P7. Monoclonal 
antibodies raised against P2 were able to neutralize BTV -17 (ApPLETON and 
LETCHWORTH 1983) and provide passive immunity and protection against 
challenge with a pathogenic strain of the homologous serotype (LETCHWORTH 
and ApPLETON 1983). This was confirmed by HUISMANS et al. (1987) with the 
specific purified antigen P2 which fully protected sheep against challenge with the 
homologous BTV serotype (BTV -10). In a comparison with BTV -10 (RICHARDS 
et al. 1988), the appearance of neutralizing antibody in serum did not coincide 
with the clearance of virus from blood and specific neutralizing antibody and 
virus coexisted in peripheral blood for as long as 28 days. It was concluded that 
the intensity of the humoral immune response to specific BTV proteins may 
influence the duration of viremia. The importance ofVP2 in the ability ofBTV -10 
to bind to BHK cells was shown by HUISMANS et al. (1983). Similarly, COWLEY 
and GORMAN (1987) using reassortants of BTV-20 and BTV-21 showed that 
agglutination of erythrocytes (BTV-20 sheep only, and BTV-21 sheep, bovine, 
human, and goose), correlated with the presence of VP2. 

The coexistence of BTV and neutralizing antibodies in the peripheral 
circulation during viremia has often been cited (STAIR 1968; LUEDKE 1969, 1970; 
PINI 1976; GROOCOCK et al. 1982; MACLACHLAN and FULLER 1986), and virus 
clearance in calves infected with BTV-I0 was shown to coincide with humoral 
immune responses to VP2 and nonstructural proteins NS 1 and NS2 
(MACLACHLAN et al. 1987). 
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Suggestions have been made that BTV may reside within circulating cell types 
and remain protected from the effects of neutralizing antibody (LUEDKE 1970; 
MACLACHLAN et al. 1987), or that antigen variation of the virus as a result of 
immunological pressure by neutralizing antibody may result in antigenic drift. 
Further possibilities are that BTV released from cells in which replication has 
occurred may differ from infectious particles that are present in the cell cytoplasm 
or associated with the cytoskeleton and which may be released on cell death and 
lysis (EATON, HYATT and BROOKES, Chap. 4). Subtle differences in the conform
ation of BTV outer-coat proteins may result in lowering neutralizing antibody 
avidity and also allow the possibility of neutralizing activity to heterologous BTV 
which have often been puzzling features of bluetongue disease. DELLA-PORTA 
et al. (1983) found positive serum neutralizing reactions oflow titer to a number 
of different BTV group viruses even with a single serum and this pattern was 
particularly evident in animals from the BTV endemic areas of Northern 
Australia. In South Africa, OWEN et al. (1965) described the isolation of a number 
of heterologous BTV types from individual cattle over a relatively short time 
indicating repeated reinfection. These workers suggested that no basic immunity 
to the various BTV types was present in cattle. DAVIES (1978) reported on the 
possibility of a number of BTV serotypes infecting individual animals in the one 
area in 1 year in Kenya during which time 19 BTV serotypes were identified. 

Antigenic drift does not appear to be the mechanism for the prolonged 
viremia that occurs in some cattle (HEIDNER et al. 1988). The possibility of 
sequestered virus or differences between released, cytoplasmic, and cytoskeletal 
virus remain to be investigated. 

4 Bluetongue Virus Infection in Cattle 

BTV infections of cattle have been recognized worldwide and the epizootiology 
of BTV has been reviewed in Africa (ERASMUS 1975; DAVIES 1980), Australia 
(DELLA-PORTA et al. 1983), and in the USA (HOURRIGAN and KLINGSPORN 1975; 
METCALF et al. 1981). Infections in cattle are now known to occur in many areas 
of the world (OZAWA 1985). However, descriptions of overt disease in cattle due 
to BTV are very rare and generally apply to small numbers of animals during 
epizootics or in isolated episodes (BEKKER et al. 1934; KOMAROV and GOLDSMIT 
1951; SILVA 1956; LOPEZ and SANCHEZ BOTIJA 1958; BOWNE et al. 1968; LUEDKE 
et al. 1970). 

4.1 Bluetongue Disease in Cattle 

SPREULL (1905) demonstrated that BTV could be present in the peripheral blood 
of a calf infected 21 days previously. The first report of clinical disease in cattle due 
to BTV was that of BEKKER et al. (1934), who claimed to reproduce the disease. 
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DE KOCK et al. (1937) and MASON and NEITZ (1940) attempted to repeat the 
experimental initiation of a clinical disease in cattle using inocula as prepared by 
BEKKER et al. (1934), and were able to isolate BTY from cattle exposed to natural 
infection but were unable to reproduce the clinical disease described by BEKKER 
et al. (1934). Their conclusions were that the disease described was ulcerative 
stomatitis and that BTY only caused a subclinical infection in cattle. These 
findings are very interesting and important because the report by BEKKER et al. 
(1934) has been referred to frequently in the literature but the reports of DE KOCK 
et al. (1937) and MASON and NEITZ (1940), refuting the earlier results, are rarely 
quoted. Particularly as OWEN et al. (1965) pointed out, "Cattle in South Africa 
can harbour a number of antigenically different types of bluetongue virus without 
showing signs of illness. It, therefore, appears that when investigating suspected 
bluetongue in cattle, caution must be exercised against the co-incidental isolation 
of bluetongue virus, and its correlation with the symptomatoloy encountered." 

DAVIS (1978) monitored a herd of 3000 head of cattle under continuous 
challenge by BTY, and paid particular attention to heifers in their first breeding 
season. He found that BTY did not result in abortions, stillbirths, or fetal 
abnormalities of any kind and contrasted this finding with the situation in the 
USA reported by LUEDKE et al. (1970). BTY infection of cattle is relatively 
common in the western, central, and southeastern regions of the USA where 
serum antibody prevalence to the virus varies from 6% to 60% of animals tested 
(METCALF et al. 1981). Isolation of BTY from cattle blood was carried out over a 
4-year period in California over the months of August through October. Four to 
eight % of the cattle were viremic to BTY, but without any evidence of clinical 
disease (STOTT et al. 1982). 

Experimental reproduction of clinical bluetongue disease in cattle has never 
been adequately demonstrated, and the only signs reported are transient mild 
pyrexia, leukopenia, viremia, and production of group and specific neutralizing 
antibodies (MASON and NEITZ 1940; OWEN et al. 1965; BOWNE et al. 1968; 
LUEDKE et al. 1977; ST. GEORGE and MCCAUGHAN 1979; GROOCOCK et al. 1983; 
BOWEN et al. 1987a, b; MACLACHLAN et al. 1987). 

The only reports of clinical bluetongue disease experimentally produced in 
cattle are those of BEKKER et al. (1934) and LUEDKE et al. (1977), the latter 
following bites of infected Culicoides variipennis. STOTT et al. (1982) using 
inactivated BTY and immunomodulatory drugs followed by challenge with 
virulent BTY-17, produced a clinical reaction 76 days after immunization. More 
recently ANDERSON et al. (1985) described the development of overt clinical 
bluetongue disease as appearing to be due to previous sensitization by BTY or 
BTY-related viruses. This proposal does not seem likely in view ofthe continuous 
challenge of BTY and related orbiviruses reported from all endemic areas of the 
world and the absence of reports of clinical bluetongue disease in cattle. 

Other infectious agents may confuse the clinical syndromes reported for 
cattle. Referring to the early clinical and pathological descriptions of BEKKER 
et al. (1934) and MASON and NEITZ (1940), the similarity to pestivirus infection of 
cattle is striking (RADOSTITS and LITTLEJOHNS 1988). From the reports of OWEN 
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et al. (1965) and DAVIES (1978) a number of different BTV serotypes can be 
isolated from sentinel cattle over relatively short periods of time ranging from 
within weeks to a few months. Isolation ofBTV (now designated BTV -4, HOWELL 
1970) from the clinical cases described by BEKKER et al. (1934) may have been 
fortuitous, and although inoculums from infected animals reproduced the 
disease, the inoculums consisted of tissues, secretions, and various other material 
and may have contained several infectious agents including BTV. BEKKER et al. 
(1934) concluded that while cattle were susceptible to BTV they were far more 
resistant than sheep. They commented on the few clinically infected animals seen 
only in sporadic isolated field outbreaks. MASON and NEITZ (1980) were not 
supportive of the findings of BEKKER et al. (1934) and were able to show that 
erosive stomatitis was not caused by the "Bekker" strain (BTV -4) in cattle. 

Clinical disease in cattle has been described by KOMAROV and GOLDSMIT 
(1951) in Israel during an epizootic of bluetongue disease. However, no clinical 
disease has been seen in cattle since 1964 (SHIMSHONY et al. 1988) despite evidence 
of BTV infections occurring regularly. Since then infection has not affected the 
health status of Israeli-Holstein cows or bulls over a 25-year period. 

Sentinel cattle in Kenya that had seroconverted to 19 BTV serotypes were 
closely observed over a to-year period for abortions and fetal abnormalities. 
None found attributable to BTV have occurred (DAVIES 1980). 

The cattle population in the northern areas of Australia have a high 
prevalence of serum antibodies to BTV where these viruses are endemic, but there 
is no evidence of clinical disease or reproductive problems (PARSONSON and 
SNOWDON 1985). Occasional epizootics of BTV infection of cattle have been 
reported in Canada (THOMAS et al. 1982) and in the northwestern United States 
(PARISH et al. 1982), without evidence of congenital infections or clinical disease 
in cattle. 

A serological survey of ruminants in some Caribbean and South American 
countries for type-specific antibody to BTV and EHD virus and analysis of the 
data indicated that in 1981-1982 BTV -6, BTV -14, and BTV -17 or closely related 
viruses were infecting ruminants and EHD 1 was infecting cattle. It was deduced 
that an endemic situation is present in these regions without evidence of clinical 
disease (GUMM et al. 1984). 

HERNIMAN et al. (1980), found serological evidence of widespread BTV 
infections throughout the Eastern Hemisphere in tropical, subtropical, and 
Mediterranean regions, yet there are no reports of clinical disease in cattle or 
buffaloes. 

5 Effect of Bluetongue Virus on Reproduction in Sheep 

LUEDKE (1985), discussing the effect of BTV on reproduction in sheep and cattle, 
commented that BTV has been shown to be abortigenic and teratogenic 
following transmission under natural or experimental conditions in sheep and 
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cattle. The major cause of fetal abnormalities or abortions in sheep has been 
shown to be due to the use of live attenuated BTV vaccines, particularly egg
adapted BTV -10 vaccine. Field outbreaks and experimental studies have resulted 
in fetal abnormalities, neonatal deaths, or abortions from the use of this virus 
vaccine in sheep (SHULTZ and DELAY 1955; YOUNG and CORDY 1964; OSBURN 
et al. 1971 a, b; ENRIGHT and OSBURN 1980). 

In Israel in a trial using live attenuated BTV (South Africa) vaccine, 
SHIMSHONY et al. (1980) vaccinated pregnant ewes during the sixth week of 
pregnancy resulting in fetal loss of 40%; however, the remaining ewes produced 
progeny which were normal and showed no congenital defects resulting from 
vaccination. 

GIBBS et al. (1979) infected sheep in midgestation with BTV-4 and BTV-6. 
Normal lambs were born but were viremic for 2 months after birth. It was 
suggested that this may provide an overwintering mechanism for the virus. 
BWANGAMI (1978) found that virulent BTV-I0 and BTV-l1 resulted in death of 
the fetus rather than in congenital defects. Some evidence of placenta invasion by 
these BTV serotypes used in the experiment above was found in 30% of the ewes 
inoculated at the fifth or sixth week of gestation (ANDERSON and JENSEN 1969). 
When BTV-20 was inoculated into ewes at 35 to 42 days gestation, there was no 
evidence of transplacental transfer and the lambs were normal at birth. At 
necropsy 46 days after the birth of the last lamb, no gross or histological lesions 
were seen (FLANAGAN et al. 1982). Inoculation of BTV -10, BTV -11, BTV -13, and 
BTV -17 and epizootic hemorrhagic disease (EHD) of deer viruses I and 2 into 
sheep at 40, 60, and 80 days gestation resulted in the mummification oftwo fetuses 
and one abortion, but the lambs born normally had no defects, were not viremic, 
and had no serum-neutralizing antibodies to any of the viruses (PARSONSON and 
LUEDKE, unpublished). 

HARE et al. (1988) infected donor sheep with BTV -II (Texas station strain) 
bred to BTV -infected and non-infected rams. A total of 49 embryos were 
collected from 18 BTV-infected ewes and transferred to 27 BTV-seronegative 
recipient ewes. Eleven pregnancies and 12 lambs resulted. None of the lambs or 
recipients had serum antibodies nor was BTV isolated from any animal at 
slaughter 30 days after parturition. 

6 Effect of Bluetongue Virus on Reproduction in Cattle 

The transmission ofBTV vertically via the infected pregnant dam to the fetus was 
postulated by LUEDKE et al. (1970). Inoculation offetal calves at the 5th month of 
gestation resulted in failure to isolate BTV at birth although the calves were 
normal and most had neutralizing antibodies in their sera (JOCHIM et al. 1974). 

Using Culicoides variipennis infected with BTV (LUEDKE et al. 1977) 
demonstrated abortions and congenital anomalies in calves from cattle exposed 
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at 60 and 120 days pregnant. Two abortions occurred and one fetus was dead at 
parturition. The remaining seven live calves had gross anomalies and BTV was 
isolated from four. One of the male calves was later found to excrete BTV in 
semen and to have a persistent viremia from birth through 11 years (LUEDKE et al. 
1982). At 5 years of age the bull was used in a natural breeding experiment and 
was mated with 14 cows (LUEDKE and WALTON 1980). Twelve live calves were 
born and one calf was dead at birth. The 12 live calves had congenital defects 
compatible with life and all had a sporadic persistent viremia without producing 
precipitating or neutralizing antibodies to BTV. LUEDKE (1985) described their 
subsequent history and suggested that survival of these calves under field 
conditions would have been unlikely. 

The same bull (B28A) was used to inseminate four cows at estrus. Additional 
groups of four cows each were inoculated subcutaneously with BTV isolated 
from the bull (BTV -11) at various stages of pregnancy, or inoculated directly into 
the uterus at estrus during insemination. None of the four cows mated to the bull 
nor inoculated into the uterus with BTV-ll became infected. Seven of the eight 
remaining animals had viremia, produced antibodies to BTV and had fetuses 
ranging in age from 70 to 222 days which appeared grossly normal. BTV was not 
isolated from the fetuses and those capable of mounting a humoral immune 
response had no antibodies in their serums. It was concluded that there was no 
evidence for congenital BTV -11 infection in this study (PARSONSON and LUEDKE, 
unpublished). 

Studies have been carried out in cattle in which BTV has been used to infect 
cows at insemination (GROOCOCK et al. 1983; BOWEN and HOWARD 1984; 
PARSONSON et al. 1987a). In the studies animals became infected as evidenced by 
viremia and the production of antibodies to the respective BTV used. No clinical 
disease was observed, virus was not isolated from tissues of cattle slaughtered, 
and no evidence of fetal infection was detected in the calves that resulted from the 
insemination. 

PARSONSON et al. (1987b) inoculated BTV-20 into three groups of cows 
pregnant at 84 to 95, 100 to 160, and 170 to 180 days. No clinical signs were 
observed, either viremia and/or antibodies were produced in 11 ofthe 12 animals. 
Cows, calves, and fetuses were necropsied following either parturition or 
slaughter between 200 or 270 days of pregnancy. No virus isolations were made 
from a wide range of tissues and no immunoglobulins or serum-neutralizing 
antibodies to bluetongue virus were detected in the serums of calves or fetuses. It 
was concluded that there was no evidence of transplacental transfer of BTV-20. 
BOWEN et al. (1982), exposed preimplantation embryos from mice and cattle to 
BTV -11 or BTV -17. The zona pellucida (ZP) of both murine and bovine embryos 
provided effective protection from virus present in culture fluid. However, ZP
free embryos became infected and the BTV infection was rapidly embryocidal. 
SINGH et al. (1982) carried out similar studies with bovine embryos and found the 
ZP afforded protection to BTV. 

In a later study (BOWEN et al. 1983a) collected embryos from donor cattle 
using nonsurgical methods at the peak of BTV infection and transferred the 
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embryos to 39 recipients of which 21 became pregnant. No transmission of BTV 
from the infected donors to uninfected recipients occurred. In another study 
THOMAS et al. (1983) transferred 28 ZP-intact embryos from cows infected with 
either BTV-17 or BTV-18 to noninfected recipient cows and 14 became pregnant. 
No recipient developed a viremia or antibodies to BTV and no virus or antibody 
was detected in the calves at parturition. L 

BTV has been detected in the semen of bulls infected with the virus, ( UEDKE 
et al. 1975; BRECKON et al. 1980; PARSONSON et al. 1981; BOWEN et al. 1983b). 
However, while LUEDKEet al. (1975) and BRECKON et al. (1980) were able to isolate 
virus from the semen of persistently infected bulls, PARSONSON et al. (1981), 
BOWEN et al. (1983b; 1985), and HOWARD et al. (1985) isolated BTV from semen 
only during the time that the bull had a concurrent viremia (approximately 14 to 
28 days). BTV was not isolated from the semen of the majority of bulls in these 
experimental groups. 

As part of the management of some artificial breeding (AB) centers, regular 
serological tests and virus isolation attempts to monitor for virus infections are 
carried out (PHILLIPS et al. 1986; MONKE et al. 1986). Bulls with and without 
serum antibodies to BTV were present on the centers. Bulls seropositive for BTV 
infection were monitored for excretion ofBTV over 3 and 4.5 years (PHILLIPS et al. 
1986; MONKE et al. 1986). In both studies all attempts to isolate BTV from semen 
samples from seropositive and seronegative bulls were unsuccessful. It was 
concluded from these results that positive serology for antibodies to BTV is 
poorly correlated with viremia and would indicate that persistent BTV viremias 
are unlikely. One bull that was reported to be persistently infected with BTV (-13 
and -11) and to shed BTV in his semen, was the subject of a retrospective study 
(LUEDKE et al. 1982). The serological and virological responses of this 11-year-old 
bull were detailed in an effort to eliminate some of the confusion surrounding his 
past history. The bull had serum-neutralizing antibodies to BTV from 6 months 
of age, and would have been detected as seropositive in an AB center. 

Embryo transfer has recently been used as a means of controlling BTV 
infection in cattle resulting from insemination of infected semen. THOMAS et al. 
(1985) inseminated four heifers with semen containing BTV-17, and 20 embryos 
were collected and transferred to 16 recipients. None of the recipients or calves 
resulting developed BTV infection or antibody, although two of the donor cows 
had viremia at the time of embryo collection. 

6.1 Congenital Bluetongue Virus Infections in Cattle 

IQ.a series,of experiments (LUEDKE et al. 1977; LUEDKE and WALTON 1980) 
suggested that BTV was abortigenic and teratogenic in cattle. There has been 
little documentary evidence from Africa, Australia, or the USA where BTV are 
endemic in· field situations to substantiate these claims. Many experimental 
studies have used direct inoculation of the bovine fetus in utero to demonstrate 
teratogenicity ofBTV (BARNARD and PIENAAR 1976; MACLACHLAN and OSBURN 
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1983; MACLACHLAN et al. 1985; THOMAS et al. 1986). All the studies found that 
BTV infections in the early bovine fetus resulted in severe central nervous system 
destruction. Any surviving calves would have poor viability and would not be of 
significance as reservoirs of BTV. Congenital infection did not lead to specific 
immunologic tolerance or to postnatal persistence of virus. 

7 Bluetongue Virus Infection in Other Species 

7.1 Goats 

BTV infection of goats is usually inapparent or mild (ERASMUS 1975; BARZILAI 
and TADMOR 1971; LUEDKE and ANAKWENZE 1972). Clinical bluetongue disease 
has been reported in goats in India (SAPRE 1964). The disease in goats has 
warranted very little comment in the literature, although goats have been known 
to be susceptible for over 80 years (SPREULL 1905). 

7.2 Wildlife Species in the USA 

HOFF and TRAINER (1978) have reviewed the effects of BTV and EHD virus on 
wildlife in the USA. They concluded that EHD appeared to be primarily a disease 
of white-tailed deer, although virus-specific antibodies have been detected in 
cattle and sheep (METCALF et al. 1981). 

BTV appears to be transmitted from domestic livestock to wildlife species and 
acute to peracute fatal hemorrhagic diseases often occur in white-tailed deer. 
KARSTED and TRAINER (1967) and VOSDINGH et al. (1968) found that the clinical 
disease and lesions in white-tailed deer to BTV and EHD virus were similar and 
resulted in high mortality. 

Both BTV and EHD virus have been isolated from a number of free-ranging 
wild ruminants in the USA. THORNE et al. (1988), described two epizootics in 
pronghorn antelope (Antilocapea americana) in Wyoming during which it was 
estimated 3200 animals died in 1976 and a further 300 in 1984. Mule deer 
(Odocoileus hemionus) deaths also occurred at the same time from what was 
presumed to be bluetongue disease. 

7.3 Wildlife Species in Africa 

NEITZ (1933) first demonstrated BTV infection in the blesbuck (Damaliscus 
albifrons); subsequently many wild ruminants in Africa have been shown to be 
natural hosts for BTV (ERASMUS 1980). Large populations of wild ruminants 
provide the basis for the maintenance cycle for persistence of BTV in Kenya 
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(DAVIES 1980). Examination of sera from a wide range of wild ruminants showed a 
high prevalence of antibodies to BTV. 

8 Epizootic Hemorrhagic Disease (EHD) of 
Deer Virus Infection in Cattle 

The importance of EHD virus infection of cattle and wild ruminant populations 
has only been assessed in Japan and the USA where epizootics in cattle (Japan) 
and in deer (USA) have occurred. The relationship of EHD virus and BTV 
infections in ruminants in endemic areas of the world is yet to be investigated to 
identify the interrelationship and affects of common infections by both virus types 
in ruminants. 

8.1 EHD Virus in Australia 

There are at least five serotypes of EHD virus in Australia known to infect cattle, 
buffalo, and deer without causing clinical disease (ST. GEORGE 1985). 

8.2 EHD Virus in Japan 

Descriptions of Ibaraki disease in Japanese cattle (INABA 1975) were originally 
compared with descriptions of bluetongue in cattle in Portugal and Spain, 
however, Ibaraki virus did not cause disease in sheep. Ibaraki virus is now known 
to be EHD virus serotype 2 and to be serologically similar to EHDV -2 (Alberta 
strain) and the Australian isolate CSIRO 439 (CAMPBELL and ST. GEORGE 
1986). 

Serological surveys of Japanese cattle have identified the presence of 
antibodies to several BTV serotypes including BTV-l, BTV-2, and BTV-20 
(MIURA et al. 1982a, b) without evidence of clinical disease to either EHD virus or 
BTV. 

8.3 EHD Virus in the United States 

Following a serological survey of slaughter cattle in the USA (METCALF et al. 
1981), it was found that prevalence of serum antibodies to BTV was low in 
northern states and high in southwestern states, ranging from 0% to 79% of 
samples tested. The bluetongue antibody-positive sera were further analyzed to 
determine the distribution of serotypes. Although not all the sera were tested for 
neutralizing antibody to EHD virus, there were strong indications that EHD 
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virus was present in every region and was a relatively common infection of cattle, 
(CARLSON 1983). 

The presence of mixed orbivirus infections in cattle and some wild ruminants 
in endemic areas of the world may ensure a constant immunological stimulus for 
their protection against disease outbreaks and at the same time provide a 
reservoir for periodic epizootics of both BTY and EHD virus. 

9 Conclusions 

Many puzzling aspects of the pathogenesis of BTY and related orbiviruses in 
ruminants remain to be solved. However, the great increase in information on the 
BTY genome and the virion structure and its proteins, as well as the exquisite 
studies on viral replication within cells, have provided new tools for further 
studies on the vector-host-parasite relationships of this virus genus and its 
infections. 

The pathology and pathogenesis of BTY in sheep require further study to 
enable better assessment of the role of virulence factors and the development of 
immunizing methods in order to protect sheep flocks in endemic areas and 
against potential epizootics outside endemic areas. 

The role of BTY in reproduction in both sheep and cattle has been an area of 
confusion and of international concern for trade in domestic ruminant genetic 
material. A gradual accumulation of scientific data will enable authorities to 
develop rational approaches to disease control within their own countries and 
allow relaxation of restrictive international requirements. Advances in the 
development of superior animal types, better methods for screening and handling 
gametes, and diagnostic systems more acceptable internationally will result from 
such studies. 
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1 Introduction 

Bluetongue virus (BTV) has long been known to be transmitted biologically 
by certain species of biting midge belonging to the genus Culicoides (Latreille). 
Du TOIT (1944) in South Africa was the first to implicate a Culicoides species in the 
transmission of this virus when he showed that C. imicola (paUidipennis) was able 
to transmit bluetongue from infected to susceptible sheep. Since that time 
numerous authors have confirmed his observations (WALKER and DAVIES 1971; 
BRAVERMAN and GALUN 1973; BRAVERMAN et al. 1981, 1985; MELLOR et al. 
1984a). However, although there are well over 1000 species of Culicoides in the 
world (BOORMAN 1988), only 17 have been connected with BTV and to date only 
six, C. variipennis, C. imicola, C.fulvus, C. actoni, C. wadai and C. nubeculosus, have 
been proven to transmit the virus (Table 1). This number may soon be increased 
to eight since on the basis of epidemiological evidence and virus isolations it is 
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Table 1. Field and laboratory BTV infections of Culicoides 

Subgenus Species Virus Laboratory Transmission 
isolation infection 

Avaritia C. actoni + + 
C. brevipalpis + 
C. brevitarsis + + 
C.fulvus + + + 
C. imicola + + + 
C. obsoletus + 
C. tororoensis + 
C. wadai + + 

Culicoides C. peregrinus ± 
Diphaeomia C. debilipalpis + 
Hoffmania C. insignis + 

C. milnei + 
C. venustus + 

M onoculicoides C. variipennis + + + 
C. nubeculosus + + 

Oecacta C. oxytoma ± 
Pulicaris C. impunctatus ± 

likely that C. insignis and C. brevitarsis will also prove to be competent BTV 
vectors (GREINER et al. 1985; STANDFAST et al. 1985). Although some of the 
remaining species of Culicoides may eventually be shown to be fully competent 
BTV vectors most species will be refractory to infection. Why this should be is not 
yet entirely clear, but it is known that the mechanism or mechanisms controlling 
the oral infection of Culicoides with BTV operate chiefly at the level ofthe mid-gut 
wall (JENNINGS and MELLOR 1988), a single layer of cells of epithelial origin 
supported by a basement lamina (HARDY et al. 1983; MEGAHED 1956). 

The aims of this chapter are: (a) to discuss those species of Culicoides which 
are either confirmed or suspected vectors of BTV in the various parts of the world 
where the virus occurs; (b) to review the studies which have been undertaken into 
bluetongue virogenesis in vector species of Culicoides, and (c) to discuss some of 
the factors which may be involved in controlling and regulating virus develop
ment in the insect vector. 

2 Vector Species of Culicoides 

BTV occurs across the world in a band stretching from about latitude 40° N to 
35° S. Within this zone it is found in Africa, the Middle East, Asia, Australia and 
the Americas. Several incursions have also occurred into Southern Europe. The 
species of Culicoides transmitting BTV in many of these areas have already been 
identified and these will be discussed in this section. However, in other areas the 
major vector species have yet to be positively identified. 
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2.1 Africa and the Middle East 

C. imicola (pallidipennis) is the major vector of BTV throughout this region and 
numerous isolates of the virus have been made from this species in South Africa 
(Du TOIT 1944; WIRTH and DYCE 1985; ERASMUS 1988, personal communication, 
Kenya (WALKER and DAVIES 1971; WIRTH and DYCE 1985), Sudan (MELLORet al. 
1984), and Israel (BRAVERMAN and GALUN 1973; BRAVERMAN et al. 1981; 
BRAVERMAN et al. 1985; SHIMSHONY 1987). The range of C. imicola in the Afro
Middle Eastern region extends eastwards into the Arabian peninsula (MELLOR 
and AL BUSAIDY, unpublished observations 1984-1988) and Iran (NAVAl 1977) 
and northwards into Turkey (JENNINGS et al. 1983). Countries within the region 
that have been shown to support populations of C. imicola have invariably 
reported serological or clinical evidence of bluetongue. In Turkey the presence of 
C. imicola was totally unsuspected until the BTV epizootics in Western Turkey 
in 1977-1979 (YONGUC et al. 1982; YONGUC 1987). Subsequently large and 
widespread populations of C. imicola were identified, particularly in those areas 
where bluetongue disease had occurred (JENNINGS et al. 1983; JENNINGS et al. 
1989). In the Afro-Middle Eastern region outbreaks ofBTV seem to be invariably 
linked with the presence of C.imicola. 

In Kenya, in addition to C. imicola, BTV has been isolated from C. tororoensis, 
a closely related species, and also from C. milnei (WALKER and DAVIES 1971). 
However, these findings have not been repeated and these two species of midge 
have not been connected with the transmission of BTV elsewhere. C. obsoletus, 
another species of midge closely related to C. imicola, and midges of the C. 
schultzei group are also suspected of transmitting BTV in the Afro-Middle 
Eastern region. BTV has been isolated from C. obsoletus in Cyprus (MELLOR and 
PITzOLIS 1979) and C. schultzei is known to transmit the closely related epizootic 
haemorrhagic disease (EHD) virus in the Sudan (MELLOR et al. 1984a). However, 
further evidence to link any of these four species of midge to BTV transmission 
has not been forthcoming, and it seems likely that they are of only local or minor 
significance in the epidemiology of BTV in the region. 

2.2 Asia 

Bluetongue in sheep has been recorded in Pakistan (SARWAR 1962; HOWELL 
and VERWOERD 1971; HOWELL 1963) and India (SAPRE 1964; UPPAL and 
VASUNDERVAR 1980; BHAMBANI and SINGH 1968; TAYLOR 1989, personal 
communication), while serological evidence of the virus has also been reported 
from Japan (MIURA et al. 1980), Papua New Guinea, Malaysia and Indonesia 
(SELLERS 1981; MIURA et al. 1982). However, isolation of a BTV has not been 
made from any species of Culicoides in this region. In view of the extent of the 
serological evidence for BTV in the area this is probably more a reflection of 
research priorities than of any inherent difficulties in isolating BTV from vector 
midges. In fact several species of Culicoides (c. wadai, C.julvus, C. brevitarsis and 
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C. oxystoma) that are known or suspected BTV vectors in Australia occur widely 
across Southeast Asia (WIRTH and DYCE 1985; KUROGI et al. 1987, 1989). Also, C. 
imicola the major Afro-Middle Eastern vector, which is thought to be conspecific 
with C. brevitarsis (DEBENHAM 1978), occurs at least as far east as Iran (NAVAl 
1977), India (DYCE and WIRTH 1983) and Laos (HOWARTH 1985). Detailed vector 
competence studies are clearly required throughout the whole of the Asian region 
to establish the precise identity, distribution and prevalance of the major BTV 
vectors in the area. 

2.3 Australia 

BTV was first identified in the Northern Territory of Australia in 1977, the 
original isolate being made from a pool of Culicoides collected in 1975. 
Subsequent to 1977 approximately 50 further isolations of BTV, comprising at 
least eight different serotypes (l, 3, 9, 15, 16,20,21 and 23) have been made, mainly 
from cattle (ST. GEORGE 1985; GARD 1987). Two of these serotypes have so far 
been isolated from Culicoides species; serotype 20 from a pool of 214 Culicoides 
comprising about 12 different species and serotype 1 from both C.fulvus and C. 
brevitarsis (ST. GEORGE and MULLER 1984; STANDFAST et al. 1985). Additionally 
C. wadai, C. actoni, C. peregrinus and C. oxystoma (schultzei gp) have been shown 
to support BTV replication after oral infection in the laboratory, and C.fulvus 
and C. actoni have transmitted the virus between sheep, also in the laboratory 
(CYBINSKI et al. 1980; STANDFAST et al. 1985). C. wadai, C.fulvus and C. actoni 

1000mm isohyet -', , 

Fig. 1. Distribution of Culicoides wadai (hatched areas) in Australia in relation to the 1000-mm 
isohyet and major sheep-rearing areas (dotted areas) 
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exhibited the highest experimental infection rates when feeding on BTV infected 
sheep, while C. brevitarsis was less susceptible to infection. All of these four 
species are members of the subgenus Avaritia and as such are closely related to C. 
imicola. C.fulvus and C. actoni have an Australian distribution that is restricted to 
areas with an annual summer rainfall in excess of l000mm (Fig. 1). These two 
species therefore do not occur in the drier sheep-rearing areas and so are unable 
to transmit BTV to this highly susceptible vertebrate host. C. wadai, while 
initially being similarly restricted in distribution, has been extending its range on 
an annual basis and now occurs as far south as northern New South Wales (Fig. 
1). How much further this highly efficient BTV vector will be able to spread 
remains to be seen, but its distribution is now verging on some ofthe major sheep
rearing areas (RALPH 1987). The consequences ofthis may become apparent over 
the next few years. 

2.4 The Americas 

The major vector ofBTV throughout the USA and also in the Okanagan Valley 
in Canada is C. variipennis. The virus has been isolated from field collections of 
this species of midge on numerous occasions (SELLERS 1981; JONES et al. 1981). 
However, C. variipennis does not occur in Southern Florida, the Caribbean 
region, most of Central America and all of South America areas where BTV does 
occur (SELLERS 1981; HOMAN et al. 1985; WALTON et al. 1984; GIBBS and GREINER 
1983). In these areas there are several other candidate vectors for BTV, the most 
likely being C. insignis and C. pusillus (GREINER et al. 1984; WALTON et al. 1984). 
Partial confirmation of this occurred in 1982 when BTV serotype 2 was isolated 
from a pool of C. insignis in Florida (GREINER et al. 1985). More recently a second 
BTV serotype has been isolated from C. insignis in French Guyana (LEFEVRE 
1988, personal communication). 

Vector competence studies with other New World species of Culicoides 
indicate that C. debilipalpis and C. venustus are capable of oral infection with 
BTV. However, even under ideal conditions experimental infection rates were 
very low « 1.9% for C. debilipalpis; < 0.7% for C. venustus), which suggests that 
these species would be inefficient virus vectors in the field (JONES et al. 1983; 
MULLEN et al. 1985). 

2.5 Europe 

BJV incursions into Spain and Portugal occurred between 1956 and 1960 
(MELLOR et al. 1983) and into the Greek Islands of Lesbos and Rhodes, in 1979 
and 1980 respectively (VASSALOS 1980; DRAGONAS 1981). At the time of these 
outbreaks there was no information on the identity of the virus vectors in any of 
these countries. However in 1981, C. imicola the major Old World BTV vector 
was recorded at several locations on the Turkish mainland adjacent to the 
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affected Greek Islands (JENNINGS et al. 1983). Following this, in 1982, C. imicola 
was found to be present in large numbers on Lesbos (BOORMAN and WILKINSON 
1983) and in 1984 it was also recorded on Rhodes (BOORMAN 1988). Furthermore, 
in 1982 and 1984 C. imicola was found at several sites in Spain and Portugal 
(MELLOR et al. 1983; MELLOR et al. 1985), and since that time it has been taken 
repeatedly in Spain at numerous locations as far north as Madrid (BONED and 
MELLOR, 1987-1989, unpublished data). The distribution of C. imicola in the 
Mediterranean basin is now known to be almost identical to that of the BTV 
incursions in the same area (MELLOR 1987). This suggests that C. imicola is the 
only major vector of BTV in this region. Other species of Culicoides such as C. 
schultzei (MELLOR et al. 1984b), which is a suspect vector in Australia (STANDFAST 
et al. 1985); C. obsoletus, from which BTV has been isolated in Cyprus (MELLOR 
and PITZOLIS 1979); and C. nubeculosus, which has been shown to be a laboratory 
vector of BTV (JENNINGS and MELLOR 1988) together have much wider 
distributions in the Mediterranean basin than C. imicola. However, these three 
species appear to have been of little or no significance during the outbreaks of 
bluetongue disease in Europe (MELLOR 1987). Nevertheless, since C. schultzei, 
C. obsoletus and C. nubeculosus have all been shown to be susceptible to 
BTV infection they should each be regarded as potential vectors during any 
future epizootics, particularly if an alternative vector is not immediately 
apparent. 

3 Infection of Cu/icoides with Bluetongue Virus 

Individual Culicoides are infected with BTV in the wild by imbibing viraemic 
blood from an infected vertebrate host. As far as is known this is the only way in 
which wild Culicoides are able to acquire an infection with this virus. In the 
laboratory additional means of infection exist using either a range of artificial 
feeding techniques (RUTLEDGE et al. 1964; MELLOR 1971) or else via parenteral 
(intrathoracic) inoculation of the virus (MELLOR et al. 1974). 

3.1 Parenteral Inoculation 

This method of infection usually makes use of fine glass needles and an apparatus 
similar to the one described by BOORMAN (1975) to introduce virus directly into 
the haemocoel of the insect, thereby bypassing the gut system. Since haemocoelic 
fluid bathes all ofthe organs ofthe insect host, virus replication is initiated rapidly 
in susceptible tissues and without the "lag-phase" that is commonly seen after 
oral infection (Sect. 3.2). When C. variipennis, the major North American vector of 
BTV is inoculated intrathoracically with this virus replication to a level of about 
5.0 loglo tissue culture infection dose (TCID50) per insect occurs over a 4-day 
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Fig.2. Replication of bluetongue virus (BTV) in Culicoides variipennis after intrathoracic inoculation 
(stars) or oral ingestion (circles) of the virus 

period (Fig. 2). Of infected individuals 100% develop a persistent infection, and 
virus transmission may occur after a prepatent period of 4-5 days (FOSTER and 
JONES 1973; JONES and FOSTER 1966). If C. variipennis is orally infected with BTV, 
maximum virus titers do not develop until at least 7 days post-infection (dpi) and 
transmission does not normally occur before 10 dpi (Sect. 3.2). 

The major disadvantage of inoculation as a means of infection is that in by
passing the gut system of the host and any associated virus barriers (Sect. 4), virus 
replication may be induced in species and individuals of Culicoides that are 
normally insusceptible per os (MELLOR et al. 1975; MELLOR and JENNINGS 1980). 
This method will therefore provide data which is potentially misleading should 
one attempt to extrapolate from parenteral to oral infection as a means of 
assessing vector competence. However, parenteral inoculation can be of limited 
value, as a primary screen particularly when dealing with species of Culicoides 
which are reluctant to ingest virus orally, since species which are insusceptible 
parenterally are highly unlikely to be susceptible orally. 

Parenteral infection need not always be regarded as being a totally artificial 
phenomenon, since it has been shown that double infections of insects with 
viruses and filarial worms can result in the gut barrier to infection being breached. 
In such cases the filarial worms act as "natural" inoculators of virus (MELLOR and 
BOORMAN 1980; TURELL et al. 1984). Insects which are normally insusceptible by 
the oral route may then support virus replication and transmission may also 
occur. 
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3.2 Oral Infection and Replication of BTV in 
Susceptible Cu/icoides 

Female Culicoides ingest a wide range of liquid foods including blood, sugars, 
water and nectar. Most of these liquids are deposited in a blind-ending sac, the 
mid-gut diverticulum. However, if the food source is blood, contraction of a 
sphincter muscle at the mouth of the mid-gut diverticulum ensures that most or 
all of the meal is directed into the hind part of the mid-gut (MEGAHED 1956). 

In the wild, susceptible species of Culicoides presumably acquire infection 
with BTY only by imbibing a viraemic blood meal, therefore, the disposition of 
other foods in the digestive tract is oflittle importance in regard to virus infection. 
However, in laboratory studies, the attempted infection of Culicoides species with 
viruses has occasionally taken place using feeding mixtures of virus and sugar 
solutions, or virus, blood and sugar solutions (BRAVERMAN and Sw ANEPOEL 
t 98 t). The interpretation of results obtained in this way may be difficult since the 
susceptibility of the acellular tissues of the mid-gut diverticulum is likely to be 
different from that of the cells of the mid-gut itself. Such a difference has been 
shown for mosquitoes and Japanese B encephalitis when HALE et al. (1957) were 
unable to infect Culex tritaeniorhynchus with this virus in sugar solution, while 
similar and lower concentrations of the virus in blood resulted in high infection 
rates. 

Since, under natural conditions, the hind part of the mid-gut of female 
Culicoides receives most or all of the ingested viraemic blood, it is logical to 
assume that the initial infection with virus occurs in cells in that area 
(CHAMBERLAIN and SUDIA 1961). Once infection of the mid-gut cells is achieved, 
then replication ensues, prior to the release of progeny virus into the haemacoel. 
Secondary target cells, particularly fat body and salivary gland, may then become 
infected (CHANDLER et al. t 985; BOWNE and JONES 1966). 

C. variipennis is the only BTY vector for which detailed virogenic data exist. 
Fully susceptible individuals of this species support virus replication in a manner 
similar to that represented schematically in Fig. 2. Female C. variipennis are able 
to ingest approximately 10 - 4 ml blood, so when feeding upon viraemic blood 
containing 106 TCIDso virus per ml each midge will ingest about 100 TCIDso of 
virus. This is the day 0 value. Over the next 24 h the virus titre per individual 
decreases in what is known as the eclipse or partial eclipse phase. Replication in 
susceptible tissues then supervenes and virus concentration rises to reach a 
plateau between days 7 and 9 post-infection, at a level of 5-6 loglo TCIDso of 
virus per midge. This represents a 103- to 104 -fold increase in virus concentration 
per midge over the day 0 value. Moreover, this level of virus concentration is 
maintained for the remainder of the insect's life. Transmission to a vertebrate host 
becomes possible at 10-14 dpi, subsequent to virus infection of and replication in, 
the salivary glands (BOWNE and JONES 1966; CHANDLER et al. 1985; FOSTER et al. 
1963; LUEDKE et al. 1967; FOSTER and JONES 1973). The titre of virus transmitted 
during biting by an infected C. variipennis has not been accurately estimated but 
MELLOR (unpublished observations) has recovered < 3 to 20 TCIDso of virus 
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after allowing individual BTV -infected C.variipennis to feed through a membrane 
on clean blood. Other authors have also reported that the bite of a single C. 
variipennis is sufficient to infect a susceptible sheep (FOSTER et at. 1968). When 
FOSTER and JONES (1979) infected C. variipennis with BTV they observed a 
complete eclipse phase at 3 dpi when the virus became undetectable in 
experimental insects. Thereafter, a two-phase virus replication cycle ensued 
covering days 3 to 4 and 10 to 14 before virus titre reached a plateau at a level of 
107 egg lethal dose (ELDso) per pool of infected midges. These authors 
interpreted the initial decrease in virus titre as being due to digestion of the 
infecting blood meal, with, "attachment, penetration and uncoating of BTV", in 
the mid-gut cells of infected midges. They suggested that the first increase in virus 
titre (days 3-4) might correspond to BTV growth "through" the gut wall and that 
the second increase (days 10-14) could be due to further cycles of virus 
multiplication in the salivary glands and secondary target organs. Transmission 
became possible from 14 dpi. The plateau region beyond 14 dpi was conceived as 
representing either, "a cessation of virus multiplication with a retention of 
infectivity" or "a steady state of virus replication with its corresponding 
inactivation". No explanation was advanced to explain why BTV infectivity is 
apparently limited to a level of approximately 107 ELDso of virus per midge. 
However, the overall controlling factor may be merely the number of susceptible 
cells available within each infected midge. In this event, and since arboviruses 
rarely cause the catastrophic damage to susceptible insect cells that they do to 
mammalian cells, it might be expected that once all susceptible cells are infected, 
virus replication would persist in them for the duration of their life span. The 
plateau region recorded by FOSTER and JONES would therefore be more likely to 
represent a steady state of virus replication and inactivation rather than a 
cessation of virus replication. 

The infection rate (IR) of C. variipennis by the oral route has been shown to be 
dependent upon the concentration of virus in the blood meal (JONES and FOSTER 

1971a). By feeding colonized C. variipennis a series of infected blood meals 
containing low tit res of BTV (3 x lOs ELDso/ml) these authors progressively 
increased the IR (percentage of individuals actually infected) to a level where it 
equalled the susceptibility rate (SR, i.e., the percentage of individuals in a 
population able to be infected). It has also been shown that a single blood meal 
containing 3 x 106 ELDso of virus per ml will produce an IR which is equal to the 
SR. 

The SR of any vector species of arthropod for an arbovirus rarely equals 100% 
and the susceptibility of C. variipennis for BTV is no exception. JONES and FOSTER 

(1978a) have shown not only that different field populations of C. variipennis have 
different susceptibility for several serotypes of BTV, but that a single population 
could be differently susceptible to different BTV serotypes. JENNINGS and 
MELLOR (1987) found that even within an established laboratory colony of C. 
variipennis, the response to oral infection with a single serotype of BTV could 
vary widely between experiments and they recorded IRs ranging from 0% to 
51.6%. 
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JONES and FOSTER (1974) suggested that the oral susceptibility of C. variipennis 
for BTV seems to be controlled by two distinct genetic mechanisms. The first is 
under the control of a single gene with a dominant allele for resistance. 
Completely susceptible (100% SR) and highly refractory (0%-3% SR) popul
ations of C. variipennis were derived by selective breeding over the course of a 
single generation from a parent population with a mean SR of about 30%. This 
suggests a simple form of Mendelian inheritance. The second mechanism controls 
the threshold of response of C. variipennis to BTV. It apparently operates 
independently of the first mechanism and depends upon the concentration of 
virus in the blood meal (JONES and FOSTER 1974). The exact nature of this second 
genetic mechanism is difficult to determine, but it appears to be similar to the 
proposed viral modulating gene(s) for Western equine encephalomyelitis in C. 
tarsalis (HARDY et al. 1983; KRAMER et al. 1981). 

3.3 Persistence of Infection 

Although certain long-lived arthropods such as ticks are known to exhibit a self
clearing mechanism for infecting arboviruses (PLOWRIGHT et al. 1970), it is 
generally accepted that insects once infected remain so for life (CHAMBERLAIN and 
SUDIA 1961). However, JONES and FOSTER (1971a) have demonstrated diminished 
BTV infection rates for C. variipennis midges that have imbibed a series of 
infective blood meals. These authors have theorized that this phenomenon could 
be due to depletion of virus in infected midges once the insects have attained a 
certain physiological age. This observation has not yet been confirmed by other 
workers and the same authors had not apparently detected virus depletion in 
older midges during earlier studies (JOCHIM and JONES 1966; JONES and FOSTER 
1966; FOSTER et al. 1968). It may be that the loss of BTV infection exhibited by 
some midges is influenced not so much by longevity itself as by other factors such 
as repeated feeding which might cause the "physiological aging" suggested by 
JONES and FOSTER. However, in the absence of a phenomenon such as this, C. 
variipennis, once persistently infected with BTV can remain so for periods of at 
least 35 dpi (FOSTER and JONES 1979) and transmission by some infected 
individuals may occur up to at least 21 dpi (LUEDKE et al. 1976). 

3.4 Oral Susceptibility of C. Variipennis to Different 
Bluetongue Virus Serotypes 

Individual populations of C. variipennis in the field may have widely varying SRs 
for different BTV serotypes (JONES and FOSTER 1978a, 1979). Some populations 
have been shown to have SRs varying from 0% to 21 % for different BTV serotypes 
while other populations exhibited rates that varied between 16% and 69% (JONES 
and FOSTER 1978a). SRs within single field populations of C. variipennis also seem 
to be highly variable with time, and changes from 0% to 13% have been recorded 



The Replication of Bluetongue Virus in Culicoides Vectors 153 

in consecutive years. Usually a population of C. variipennis is most susceptible to 
strains ofthe BTV serotype that is circulating in that population at the time and is 
less susceptible to all other BTV serotypes (JONES and FOSTER 1978a). It is 
obviously important when dealing with vector populations which may exhibit a 
heterogeneous response to infection with a single BTV serotype or between 
different serotypes to use as large a sample of insects for each test as possible. 
Limited testing using small batches of insects is clearly not a reliable method of 
estimating infection or susceptibility rates under these conditions, since it may 
identify only part of the response of a vector population. It is therefore 
inadvisable to attempt to define the susceptibility of any vector population, 
particularly an apparently refractory one, without extensive testing. Sample sizes 
of at least 100 insects per test are recommended (JENNINGS and MELLOR 1987). 

4 Barriers to the Infection of Arthropods with Viruses 

Over 50 years ago STOREY (1933) demonstrated that if the integrity of the 
mesenteron of a leaf-hopper (Circadulina mbila) was disrupted by puncture with 
a needle, strains of the insect that previously would not transmit maize-streak 
virus became transmitters. This suggested to him that the mesenteron itself could 
provide a barrier to the transmission of maize-streak virus. Subsequent to 
STOREY'S original observations demonstration of the same phenomenon with 
mosquitoes and arboviruses has been extensively documented. MERRILL and 
TENBROECK (1935) showed that Aedes aegypti could not transmit Eastern equine 
encephalomyelitis (EEE) virus after oral ingestion of the virus. However, if the 
mesenteron was punctured immediately after engorgement of an infected blood 
meal, the mosquito could transmit the virus, McLEAN (1953) demonstrated that 
Murray Valley encephalitis (MVE) virus replicated in Culex annulirostris after 
ingestion or intrathoracic inoculation of virus, whereas virus replicated in 
Anopheles annulipes only after inoculation. Furthermore, he found that .after 
inoculation, virus replication occurred in cells of the mesenteron of Cx. 
annulirostris but not in those of An. annulipes, clearly demonstrating that viral 
susceptibility per os was determined at the level of the mesenteron. 

CHAMBERLAIN and SUDIA (1961), CHAMBERLAIN (1968), MURPHY et al. (1975), 
McLINTOCK (1978), and TINSLEY (1975) have outlined several hypotheses to 
attempt to explain this "gut barrier" to infection of mosquitoes with viruses. 
However, it has become apparent that the mesenteron is not the only site at which 
interference with the normal infection and subsequent transmission of an 
arbovirus by an arthropod may occur. CHAMBERLAIN and SUDIA (1961) showed 
that An. quadrimaculatus is unable to transmit EEE virus even though 70% of 
females contained a high concentration of virus. MELLOR and WILKINSON 
(unpublished) have shown that high proportions of some populations of the soft 
tick Ornithodoros moubata can be persistently infected with certain strains of 
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Fig. 3. Hypothesized(*) and conceptual(**) barriers to the arbovirus infection of mosquitoes. M.LB., 
mesteron infection barrier; M.E.B., mesenteron escape barrier; S.G.I.B., salivary gland infection 
barrier; S.G.E.B., salivary gland escape barrier; T.O.T.B., transovarial transmission barrier. (Adapted 
from HARDY et al. 1983) 

African swine fever virus (ASFV), but transmission occurs only rarely or not at 
all. 

It is becoming increasingly evident that vector competence of arthropods for 
arboviruses is a complex subject and may be associated with multiple barrier 
systems. Figure 3 depicts a summary of the hypothetical and conceptual barriers 
to viral infection of mosquitoes from the stage of initial ingestion of an infectious 
blood meal until the virus is transmitted orally or transovarially (HARDY et al. 
1983). Briefly, the major barriers that an arbovirus may have to surmount upon 
being deposited in the mid-gut of an haematophagous arthropod in order to 
develop a fully patent infection are: 
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1. Infection of the mid-gut cells-mesenteron infection barrier 
2. Dissemination from the infected gut cells into the haemocoel-mesenteron 

escape barrier 
3. Infection of the salivary glands-salivary gland infection barrier 
4. Release from the salivary glands-salivary gland escape barrier. 

A further barrier may also exist which prevents virus infection of the ovaries 
and transmission to the progeny, the transovarial transmission barrier. 

HARDY et al. (1983) and MITCHELL (1983) have published comprehensive 
reviews dealing with all aspects of these and other barriers to the infection of 
mosquitoes by arboviruses. Unfortunately, even though the principles are likely 
to be the same, such a wealth of detailed information is not yet available with 
respect to Culicoides and arboviruses. 

4.1 Barriers to the Infection of Culicoides with Blutongue Virus 

Clearly some female C. variipennis exhibit a mesenteron infection barrier to BTV. 
JONES and FOSTER (1974, 1978a, 1979), and JENNINGS and MELLOR (1987) have 
described how different populations of C. variipennis contain a proportion of 
individuals that are refractory to oral infection with BTV even though 100% of 
each population can be infected parenterally (JONES and FOSTER 1966; FOSTER 
and JONES 1973; JOCHIM and JONES 1966). Manifestation of this barrier is 
apparently controlled by two genetic mechanisms (Sect. 3.2). 

JENNINGS and MELLOR (1987) have also demonstrated the presence of a 
mesenteron escape barrier (MEB) to BTV in C. variipennis. They have shown that 
the maximum level of BTV replication in orally susceptible C.variipennis varies 
from less than 1 to over Sloglo TCIDso of virus per insect. 

Persistently infected C. variipennis containing less than 2.5log1o TCIDso of 
virus consistently failed to transmit, whereas virus transmission was regularly 
demonstrated by midges containing 2.7-S.llog1o TCIDso of virus. Furthermore, 
MELLOR and JENNINGS (unpublished data 1987) dissected the mid-guts from female 
C. variipennis orally infected with BTV at intervals ranging from 10-14 dpi. In 
those midges containing less than 2.S 10glO TCIDso of BTV, the virus was 
completely restricted to the mid-gut cells and had failed to disseminate to the 
secondary target organs, including the salivary glands. These midges, although 
persistently infected with BTV were therefore incapable of operating as vectors 
and quite clearly exhibited a MEB. Up to 43.6% of persistently infected C. 
variipennis were found to express such a barrier. This means that should 
susceptibility to infection be the sole criterion used to determine the BTV vector 
efficiency of C. variipennis populations, there will be a serious risk of over
estimating the vector potential of those populations. The proportion which is 
actually able to transmit the virus must be determined to avoid such errors. 

JONES and FOSTER (1971b) were unable to demonstrate transovarial trans
mission of BTV by C. variipennis when the first to the fifth egg batches of over 440 
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infected females were reared and tested for the presence of virus. These authors 
therefore suggested that transovarial transmission ofBTV was not likely to occur 
under normal conditions for C. variipennis. JENNINGS (1980, personal communica
tion) also tested over WOO progeny from BTV -infected female C. variipennis and 
was unable to find any evidence for trans ovarial transmission of the virus. 
Neither of these two pieces of work exclude all possibility of transovarial 
transmission of BTV by C. variipennis. However, in the absence of any other 
evidence in favour of this method of transmission, either experimental or 
epidemiological, they do suggest that the phenomenon, if it does occur at all, is 
likely to be rare. Further work is clearly necessary on this subject since studies 
with other groups of haematophagous Diptera (mosquitoes and phlebotomids) 
have shown that individuals or different populations of a vector species can vary 
dramatically in their ability to transmit viruses transovarially (TESH 1981). No 
information on salivary gland infection barriers and salivary gland escape 
barriers to BTV is available for any Culicoides species. 

5 Other Factors Involved in Bluetongue Virus 
Infection of Culicoides 

The presence of various barriers to the infection of Culicoides with BTV provides 
a means whereby virus infection of these insects is mediated. However, few studies 
have been carried out in this area and the nature of the mechanisms controlling 
these barriers is at the moment poorly understood. In this context some recent 
studies (MELLOR et aI., in press) have suggested that a modification of the "state" 
of the virus particles themselves by digestive enzymes within the Culicoides gut 
might affect the ability of the particles to infect mid-gut cells. There is no direct 
evidence concerning the composition of Culicoides digestive enzymes, but many 
groups of other haematophagous insects including tsetse flies, muscids, tabanids, 
sandflies and mosquitoes are known to secrete mixtures of proteases, especially 
chymotryspin and trypsin, into the mid-gut (HOUSEMAN 1980; CHAMPLAIN and 
FISK 1956; THOMAS and GOODING 1976; AKOV 1972; GOODING 1972; SPIRO-KERN 
and CHEN 1972; and BRIEGEL and LEA 1975). It would be surprising if this is not 
also the case for Culicoides. 

MERTENS et ai. (1987) have shown that treatment of intact BTV particles with 
chymotrypsin and trypsin cleaves protein 2 in the outer capsid to give rise to an 
infectious subviral particle (ISVP). A third particle type (core) can also be 
produced by the uncoating of either ISVPs or intact virus particles in vitro. ISVPs 
have a similar specific infectivity for mammalian (BHK 21) cells as do intact, non
aggregated virus particles, while core particles have only very low levels of 
infectivity for mammalian cells (MERTENS et ai. 1987). MELLOR et ai. (in press) 
have now shown that all three particle types are orally infective for BTV
susceptible Culicoides. 
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ISVPs appear to be between 100 and 500 times more infectious for Culicoides 
than do intact virus particles. This finding has since been supported by other 
studies which have shown that ISVPs are approximately 100 times more 
infectious than intact virus particles for insect cells (Ae. albopictus) when in cell 
culture (JENNINGS 1989, unpublished observations). Since, therefore, ISVPs of 
BTV seem to be more infectious for insect cells, it would be advantageous to the 
virus if intact particles ingested from a vertebrate host by a prospective vector 
were to be converted into ISVPs in the insect's gut. The presence of proteases such 
as trypsin and chymotrypsin which are known to occur naturally in the guts of 
haematophagous insects might well accomplish this. Indeed, since ISVPs seem to 
be between 100 and 500 times more infective for insects than intact virus particles, 
the conversion of merely 0.2%-1.0% of ingested intact particles into ISVPs would 
account for all of the apparent infectivity of the intact virus particles. 

Oral infection of C. variipennis with core particles of BTV has shown that 
these particles have a similar level of infectivity to intact virus particles. Since the 
outer capsid is completely removed from core particles, their infectivity cannot be 
due to coversion to either of the other two particle types. It therefore seems that 
core particles are infectious in their own right for vector insects. This suggests that 
the initial stages of BTV core-insect cell interaction and entry must involve 
different receptors or different mechanisms to those involving ISVP or virus 
particles. Also, since core particles are virtually uninfectious for mammalian cells, 
it also suggests that this mechanism is peculiar to interactions with insect cells. 

6 Summary 

BTV is maintained in nature by an endless series of alternating cycles of 
replication in Culicoides midges and various mammalian ruminant species. 
Experimentation has shown that the ability of the virus to infect Culicoides 
persistently and be transmitted by them is restricted to a relatively small number 
of species. In essence, therefore, the world distribution map of BTV is little more 
than a distribution map of competent insect vectors. 

Once ingested by a competent vector, BTV attaches to the luminal surface of 
the mid-gut cells, infects these cells and replicates in them. Progeny virus is then 
released through the basement lamina into the haemocoel from where the 
secondary target organs including the salivary glands are infected. Subsequent to 
virus replication in the salivary glands transmission can taken place. The whole 
cycle from infection to transmission takes between 10-15 days at 25°C and 
individual vectors once infected usually remain so for life. 

Not all female midges within a vector species are susceptible to infection with 
BTV, or if infected, are competent to transmit the virus. A series of barriers or 
constraints exists within certain individuals of a vector species which either 
prevents virus infection or else restricts it in such a way as to stop transmission. 
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Each population of a vector species of Culicoides has a variable proportion of 
these so-called refractory midges. The refractory and susceptible traits for BTV 
within a vector species are under genetic control, and by selective breeding, highly 
susceptible or completely insusceptible populations can be obtained. However, 
the mechanisms by which these traits are expressed are poorly understood. 
Further studies are therefore urgently required to determine the precise 
biochemical nature of these mechanisms and their mode of operation. 
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Immune responses to bluetongue virus (BTV) have been studied in a variety of 
animal species with the majority of studies being on the natural ruminant hosts, 
sheep and cattle. Additional studies have been done on murine species for the 

t Dept. Microbiology & Immunology, School of Veterinary Medicine, Davis, CA 95616, USA 
2 Assoc. Dean, Research & Graduate Education, School of Veterinary Medicine, Davis, CA 95616 
USA 

Current Topics in Microbiology and Immunology, Vol. 162 
© Springer·Verlag Berlin'Heidelberg 1990 



164 1. L. Stott and B. I. Osburn 

purpose of developing monoclonal antibodies and as a potential model system 
for elucidation of protective immune responses. Taken together, these studies 
have adequately identified VP2 as the primary, and possibly the only, viral 
protein responsible for inducing virus-neutralizing antibody. Characterization of 
cellular immune responses, specifically cytotoxic T lymphocytes, has been limited 
to demonstration of their existence and permissive specificity relative to BTV 
serotype. However, no information on their protein or peptide specificities has 
been reported. Studies directed at associating specific immune responses, cellular 
versus humoral, with protective immunity are for the most part contradictory 
and/or inconclusive. Elucidation of the specific immune responses, and their 
protein specificities, responsible for inducing protective immunity and virus 
clearance will require additional studies employing new approaches. This chapter 
describes the immunological techniques employed and reports on the immune 
responses which have been elicited in sheep, cattle, and mice. 

2 Immunological Techniques 

2.1 Characterization of Humoral Immune Responses 

In vivo systems, specifically ovine infectivity studies, initially identified the 
plurality of BTV strains through cross-challenge experiments (NEITZ 1948). Such 
techniques were replaced by in vitro virus-neutralization assays which have been 
responsible for the identification of at least 24 BTV serotypes (HAIG et al. 1956; 
HOWELL 1960, 1970). All subsequent studies directed at the development of 
subtype, serotype, and serogroup assays have relied upon the virus
neutralization test to establish BTV specificity. Serological techniques used to 
study humoral immune responses to BTV can be divided into those that are 
serotype specific and those that are serogroup specific. 

2.1.1 Serotype-Specific Antibody 

Virus-neutralization assays in cell culture have been the most popular in vitro 
technique for identification of BTV serotype. Such assays have typically 
employed a plaque-reduction technique or alternatively measured neutralizing 
activity in the fluid phase by inhibition of cytopathic effect as determined by 
visual observation or by staining with crystal violet of the cell monolayer (BARBER 
and JOCHIM 1976; DELLA PORTA et al. 1981; HAIG et al. 1956; HOWELL et al. 1970; 
MACLACHLAN and THOMPSON 1985; PARKER et al. 1975; THOMAS and TRAINER 
1970). An additional technique for identifying serotype-specific antibody has 
been the hemagglutination inhibition (HI) assay (BLUE et al. 1974; VAN DER 
WALT 1980). In vivo measurement of virus-neutralizing antibody has been 
limited to passive protection by monoclonal antibody in sheep and mice after live 
virus challenge (JEGGO et al. 1984b; LETCHWORTH and ApPLETON 1983b). 
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The viral protein specificity of both neutralizing and HI antibody appears to 
be predominantly, ifnot exclusively, directed at epitopes on the viral coat protein, 
VP2 (HUISMANS and ERASMUS 1981; HUISMANS et al. 1987). However, additional 
studies have suggested that epitopes on VP3 (WHITE et al. 1985) and VP5 
(COWLEY and GORMAN 1989; MERTENS et al. 1989) may carry minor neutraliz
ation sites. The viral protein specificity (VP2) of virus-neutralizing antibody has 
been demonstrated by a variety of techniques including immunoprecipitation 
(GRUBMAN et al. 1983; HUISMANS and ERASMUS 1981; HEIDNER et al. 1988; 
LETCHWORTH and ApPLETON 1983a), immunization of animals with purified VP2 
(HUISMANS et al. 1987) and recombinant VP2 (INUMARU and Roy 1987), and use 
of reassortant viruses (KAHLON et al. 1983). The complement of neutralization
related epitopes on VP2, and their subtype restriction, are poorly documented. 
Three neutralization epitopes on VP2 from BTV-17 have been identified using 
monoclonal antibodies; one epitope appears to be carried by all strains of the 
virus and two epitopes are expressed by a limited number of isolates 
(LETCHWORTH and ApPLETON 1983a). Immunoprecipitation studies have identi
fied a minimum of two distinct neutralizing epitopes on BTV-I0 (HEIDNER et al. 
1988). A neutralizing epitope is present on VP2 of both BTV-13 and BTV-2 
(RISTowet al. 1988). Through the study of reassortant viruses (BTV -20 and BTV-
21), the existence of conformational-dependent neutralization epitopes has been 
suggested (COWLEY and GORMAN 1989). Reassortant viruses of the segments, 
coding for VP2 and VP5 (the two major outer coat proteins), express unique 
neutralization epitopes not expressed on either parental virus. 

2.1.2 Serogroup-Specific Antibody 

Many techniques have been employed to identify nonneutralizing, serogroup 
antibodies. For many years the primary assay for the identification of such an 
antibody was the complement-fixation (CF) test (BOULANGER et al. 1967; 
ROBERTSON et al. 1965). Because the primary focus of measuring group-specific 
antibody was for diagnostic and epidemiological purposes, additional assays 
were developed to provide a more sensitive measure of exposure to the virus. Such 
techniques include agar gel immunodiffusion (AGID; JOCHIM and CHOW 1969; 
PEARSON and JOCHIM 1979), indirect enzyme-linked immunosorbent assay (1-
ELISA) (HUBSCHLE et al. 1981; POLl et al. 1982; LUNT et al. 1988), competitive 
ELISA (C-ELISA) (AFSHAR et al. 1987a, b), and hemolysis in gel (HIG) (JOCHIM 
and JONES, 1980). The apparent specificity of group-specific antibody is VP7, a 
major core protein (GUMM and NEWMAN 1982; HUISMANS and ERASMUS 1981); 
however, other structural and nonstructural viral proteins present in the test 
antigen probably contribute to positive test reactions. Purity of the antigen 
preparation, and immunological technique employed, can influence the specific
ity of such assays. Antigenic determinants common to BTV and epizootic 
hemorrhagic disease (EHD) virus have been identified (HUISMANS and ELS 1979; 
HUISMANS et al. 1979). Interpretation ofBTV serology using AGID or CF is often 
compromised by such cross-reactivity; however, use of ELISA appears to 
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minimize this problem (LUNT et al. 1988). Immunoprecipitation (HEIDNER et al. 
1988; HUISMANS and ERASMUS 1981;· RICHARDS et al. 1988) and immunoblotting 
(ADKISON et al. 1988; MACLACHLAN et al. 1987) techniques have gained popular
ity in studies of humoral immune responses since protein specificities can be 
unequivocally determined. 

2.2 Characterization of Cellular Immune Responses 

The BTV proteins responible for the mediation of cellular immune responses 
induced by BTV infection of sheep and mice are not known. Techniques for 
identification of such immune responses have included lymphocyte blastogenesis 
(GHALIB et al. 1985; STOTT et al. 1985a), cytotoxicity assays elCr release) (JEGGO 
and WARDLEY 1982c), and transfer of protective immunity via lymphocyte 
populations enriched for T cells (JEGGO et al. 1984a). 

3 Immune Response of Sheep 

3.1 Humoral Immune Responses 

3.1.1 Serogroup-Specific Antibody 

Following infection with BTV, the first appearance, titer, and persistence of both 
group-specific and type-specific antibodies in sheep is dependent in part on assay 
sensitivity, individual animal and breed variability, and the virus strain 
employed. Group-specific antibodies, as determined by AGIO, CF, ELISA, 
immunoprecipitation, and immunoblot, can be identified within the first or 
second week following virus infection; C-ELISA would appear to be most 
sensitive by identifying virus-specific antibody within 9 days postinfection (dpi) 
(AFSHAR et al. 1987a, b). As demonstrated by immunoblot, such antibodies can be 
directed at all viral structural and nonstructural proteins, including nonneu
tralizing epitopes on VP2 (ADKINSON et al. 1988). However, the detection of such 
antibody may vary depending on the type of animals. Similar observations have 
been made by immunoprecipitation (RICHARDS et al. 1988). 

3.1.2 Serotype-Specific Antibody 

Development of virus-neutralizing antibody is routinely detected within 2 weeks 
after infection. Inability to mount a neutralizing-antibody response has never 
been reported in animals that developed demonstrable viremia. Duration of the 
humoral immune response is poorly characterized. Such studies would require 
housing animals in insect-secure facilities for extended periods of time following 
infection. 
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3.1.3 Protective Immunity 

Prior to discussing the immune response(s) associated with protective immunity, 
it is appropriate to address the practical problems encountered in the interpret
ation of results. As described above, many studies directed at assessing protective 
immunity have relied upon the presence or absence of clinical disease. Such an 
approach can often be difficult, if not impossible, due to breed and individual 
animal susceptibility to infection and/or immune responsiveness, environmental 
stress factors, prior exposure to BTV or related viruses not detected by routine 
serological techniques, and virus virulence (HOWELL and VERWOERD 1971; 
HOWELL et al. 1970; LUEDKE and JOCHIM 1968a, b; NEITZ 1948; STOTT et al. 
1985a). The inability to reproduce clinical disease routinely in sheep (pyrexia, 
lesions, and leukopenia) following virus inoculation has not only hampered 
attempts to associate immune responses with protective immunity but has also 
complicated assessment of virus attenuation for potential vaccine use. Because of 
such problems, many investigators currently use development, titer, and duration 
of postchallenge viremia as a primary correlate of protective immunity. 

Studies attempting to associate immune responses, humoral and/or cellular, 
with protective immunity are rather inconclusive, and often contradictory. Early 
work by DuTiot (cited by HOWELL and VERWOERD 1971), utilizing challenge 
experiments to assess the duration of immunity in sheep, suggested short-lived 
immunity. NEITZ (1948) subsequently demonstrated that this poor immunity 
could be explained by the existence of heterologous strains ofBTV. Furthermore, 
NEITZ (1948) reported that although these various virus strains exhibited a 
variable degree of common immunity, it was insufficient to protect against 
infection with a heterologous virus. Development of in vitro virus neutralization 
assays facilitated the classification of this heterogeneity into serotypes. 

No positive correlation between the development of group-specific antibodies 
(CF and AGID predominantly) and protective immunity and/or virus clearance 
has been reported, with the exception that such antibody may augment 
protection in the presence of passively transferred immune T lymphocytes (JEGGO 
et al. 1984a). A potential role for nonneutralizing antibody in antibody
dependent cell-mediated lysis or complement-mediated lysis of infected cells has 
not been demonstrated (JEGGO et al. 1983b), though such studies have been 
very limited. In order to study this further, the identification of cell-surface viral 
antigens using antibody probes is necessary. 

Association of virus-neutralizing antibody and protective immunity to the 
homologous virus challenge is good (HOWELL and VERWOERD 1971; JOCHIM et al. 
1965; LUEDKE and JOCHIM 1968a). Studies employing passive transfer of antibody 
with virus-neutralizing activity have resulted in various degrees of protection. 
Passive transfer (intravenous) of immune sera specific to BTV-3 afforded 
complete protection, while passive transfer (colostral) ofBTV -2 specific antibody 
afforded partial protection (JEGGO et al. 1 984b). However, in the latter study, 
colostrum was obtained by lambs suckling a ewe that had not been exposed to the 
homologous virus for 1 year, and thus failure of complete protection was 
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probably due to low antibody titer. Two studies have been reported using passive 
transfer of the same BTV -17 -neutralizing monoclonal antibody with contrasting 
results. LETCHWORTH and ApPLETON (1983b) reported complete protection to 
homologous virus challenge as determined by absence of postchallenge viremia 
and clinical response, while JEGGO et al. (1984b) observed only partial protection. 
Although similar volumes (0.03% body weight) were administered to the recipient 
sheep, the two investigators used different assays for determining the virus
neutralizing titer of the ascitic fluid; thus, the basis of the contrasting reports 
remains unknown. 

The efficacy of virus-neutralizing antibody in affording protection from 
homologous serotype challenge has been further established by HUISMANS et al. 
(1987). VP2 was dissociated from the BTV-lO virion in a salt- and pH-dependent 
manner and used to immunize sheep (HUISMANS et al. 1987). Following three 
injections of the purified VP2, sheep were protected against homologous serotype 
challenge as determined by clinical response; unfortunately, post challenge 
viremia was not determined. 

For the most part, humoral immunity associated with neutralizing antibody 
appears to protect only against challenge with the homologous virus. Such 
serotype-specific protection may be limited to sheep that have only been exposed 
to one serotype prior to the live virus challenge. This contention is supported by 
the report of JEGGO et al. (1983a) in which serial infection of sheep with two 
distinct serotypes leads to the development of heterotypic neutralizing antibody 
that was associated with protection following exposure of the sheep to additional 
serotypes not previously encountered by the animal. The authors have noted 
similar development of broadly serogroup-specific neutralizing antibody fol
lowing serial inoculations of individual sheep with different serotypes or in 
animals with unusually high neutralizing activity. It is probable that minor 
neutralization-related epitopes exist that are common to multiple virus serotypes. 
This is supported by the recent report of a monoclonal antibody with neutralizing 
activity to BTV-2 and BTV-13 (RISTOW et al. 1988). 

3.1.4 Virus Clearance 

A positive correlation between development of virus-neutralizing antibody and a 
decrease in viremia is typically observed (GHALIB et al. 1985; GROOCOCK et al. 
1982; HOWELL and VERWOERD 1971; LUEDKE 1969; RICHARDS et al. 1988; UREN 
and SQUIRE 1982). However, there is poor correlation between postchallenge 
neutralization titer and clinical response (LUEDKE 1969; LUEDKE et al. 1964). 
Furthermore, the continued isolation of virus for several weeks, in the presence of 
such antibody (ERASMUS 1975; LUEDKE 1969; RICHARDS et al. 1988), suggests that 
other immune responses might be required for total elimination of the virus. 
Alternatively, this virus pool may persist in the form of infectious virus-antibody 
complexes (JOCHIM and JONES 1977) or be inaccessible to antibody due to a close 
association of virus with erythrocytes or other blood cells (LUEDKE 1970; 
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RICHARDS et al. 1988). In the latter case, normal turnover of such cells may be 
required for the release of virus such that antibody can interact and neutralize this 
persistent pool. 

3.2 Cell-Mediated Immune Responses 

3.2.1 Protective Immunity 

Induction of cell-mediated immune (eM I) responses following BTV infection has 
been suggested by both indirect and direct evidence. Virus-neutralizing antibody 
may not be the only immune response capable of affording protective immunity 
since sheep can resist challenge with live virus in the absence of neutralizing 
antibody (JOCHIM et al. 1965; LUEDKE and JOCHIM 1968a; STOTT et al. 1985a). 

A possible role for eMI response in protective immunity was first suggested 
by immunity afforded to sheep following immunization with an inactivated virus 
preparation which did not induce neutralizing antibody (STOTT et al. 1985a). 
Upon challenge of Warhill sheep with live virus, viremia was absent compared 
with control animals. The development of postchallenge neutralizing antibody 
was inversely correlated to protective immunity. The development of a blasto
genic response to BTV antigen in a lymphocyte-stimulation assay correlated 
most closely with protection and was considered to be evidence of a eMI 
response. It should be noted that similar experiments with Suffolk-cross sheep 
were not as conclusive since 30% of the animals tested responded to challenge 
with intensified clinical signs of bluetongue disease. Such disease intensification 
had been noted following challenge with virulent virus, of sheep previously 
exposed to low concentration of BTV (JOCHIM et al. 1965). The immunological 
basis of such sensitization has not been defined. However, immunological 
responsiveness to BTV antigen varies with different breeds of sheep (BERRY et al. 
1982; NEITZ 1948) and may well playa role in the expression of clinical 
disease. 

Recently more definitive in vitro cytotoxicity studies have demonstrated 
induction of cytotoxic T lymphocytes following infection of sheep with BTV; 
peak activity was observed 14 days after infection (JEGGO and WARDLEY 1982c). 
Passive trasnfer of immune thoracic duct lymphocytes, depleted of B cells, to 
recipient monozygotic twins afforded partial protection to homologous virus 
challenge as determined by reduced viremia and febrile response (JEGGO and 
WARDLEY 1986; JEGGO et al. 1984a). Transfer of such immune lymphocytes to 
recipient animals with preexisting circulation levels of nonneutralizing antibody 
resulted in total protection following challenge with a heterologous serotype. 
While these studies employed few animals, they provided the first evidence that 
eMI responses are induced in sheep following BTV infection, that a population 
ofthese cells has potential cross-serotype reactivity, and that such responses can 
afford at least some degree of protective immunity. 
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3.2.2 Virus Clearance 

No direct evidence of a role for CMI in virus clearance has been reported. The 
report that peak cytotoxic T-cell activity is observed 14 days postinfection would 
argue against a role for CTL-mediated virus clearance since viremia may persist 
for several weeks beyond this time. However, as described for neutralizing 
antibody, CTL activity could playa major role in the initial reduction of virus 
titer typically observed 10 to 21 days postinfection. 

3.3 Fetal Immune Responses 

Because ofthe demonstrated pathogenicity ofBTV for the developing ovine fetus 
it is appropriate to address the subject of fetal immune response. BTV causes 
necrosis in the developing nervous system in the 50- to 80-day fetal lamb, which 
represents a maturational stage when the fetus is not yet immunologically 
competent. 

The fetal lamb is capable of immunologically responding to BTV with 
neutralizing antibody by 90 days gestation, and is associated with virus clearance 
(ENRIGHT and OSBURN 1980; OSBURN 1985). Direct inoculation offetallambs in 
the last trimester of gestation does not result in teratogenesis and virus clearance 
is mediated by immune reponse, as determined by the development of antibody. 
However, infection of the late-term fetus, or newborn lamb, may result in 
prolonged viremia (up to 60 days) (GIBBS et al. 1979; OSBURN 1985). This pro
longed viremia was associated with nondefined parturition-associated immuno
suppression; eventual development of neutralizing antibody was associated with 
viral clearance. 

4 Immune Response of Cattle 

4.1 Humoral Immune Responses 

4.1.1 Serogroup-Specific Antibody 

As described for sheep, detection of group-specific antibodies following BTV 
infection in cattle is typically identified within 1 or 2 weeks postinfection and is 
dependent upon assay sensitivity. While no association of such group-specific 
antibodies has been made with protective immunity or virus clearance, their 
measurement has played a pivotal role in determining prior exposure to BTV for 
diagnostic, epidemiological, and export purposes (STOTT et al. 1983). While 
AGIO is typically used to determine prior exposure of cattle to BTV, the 
antibody response is often short-lived (MACLACHLAN et al. 1984a; PEARSON et al. 
1988). Extensive epidemiological studies in California have demonstrated a lower 
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percentage of seropositive cattle in winter months versus late summer and fall 
months (STOTT et al. 1981). This information, together with the demonstrated 
rapid loss of AGIO antibody following virus clearance from certain BTV-infected 
sentinel cattle (STOTT et al. 1985b), would suggest that this antibody is a poor 
correlate of prior exposure on an individual animal basis. More recent studies 
indicate that a competitive ELISA (AFSHAR et al. 1987a, b) is a more sensitive 
indicatof of prior exposure to BTV. 

The issue of viral protein specificities in sera of cattle previously infected with 
BTV has been addressed using both immunoprecipitation and immunoblotting. 
The application of immunoblotting has been limited to the study of experiment
ally infected colostrum-deprived calves as cross-reaction background makes 
interpretation of data difficult in other cattle. As for sheep, infection of 
colostrum-deprived calves with BTV results in the development of antibodies 
specific for most BTV structural and nonstructural proteins, as determined by 
immunoblot (MACLACHLAN et al. 1987). Similar studies employing immuno
precipitation techniques have yielded comparable results (RICHARDS et al. 1988). 

4.1.2 Serotype-Specific Antibody 

Temporal development of virus-neutralizing antibody in BTV-infected cattle 
typically appears within 1 to 2 weeks postinfection. Duration of this response is 
poorly characterized. 

4.1.3 Protective Immunity 

As described for sheep, infection of naive cattle with a single virus serotype results 
in the development of type-specific neutralizing antibody; such animals are 
resistant to challenge with the homologous virus serotype. However, following 
sequential infection of cattle with two different BTV serotypes, heterotypic virus
neutralizing antibody develops and appears to associate with protection against 
heterologous serotypes not previously encountered (JEGGO et al. 1983b). 

4.1.4 Virus Clearance 

No correlation has been observed between development of serogroup-specific 
AGIO antibody and clearance ofBTV from cattle. Development of virus protein
specific antibody, as determined by immunoprecipitation and/or immunoblot, 
has also failed to associate such antibodies with virus clearance (MACLACHLAN 
et al. 1987; RICHARDS et al. 1988). 

As described for sheep, the initial development of neutralizing antibody is 
associated with a rapid drop in virus titer in blood. However, a long-term, low
titer viremia continues to persist for up to 2 months, sometimes longer, in the 
presence of a high neutralizing-antibody titer (DuTOIT 1962; HEIDNER et al. 1988; 
LUEDKE et al. 1969; MACLACHLAN and FULLER 1986; MACLACHAN et al. 1987; 
RICHARDS et al. 1988). The coexistence of virus and neutralizing antibody could 
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be due to the virus being inaccessible to antibody via its close cellular association 
and/or the presence of infectious or continuously disassociating virus-antibody 
complexes. 

4.2 Cell-Mediated Immune Responses 

4.2.1 Protective Immunity/Virus Clearance 

CMI responses in cattle have not been defined. However, STOTT et al. (1982) 
demonstrated induction of a BTV antigen-induced lymphocyte blastogenesis and 
nonneutralizing antibody following immunization of cattle with an inactivated 
BTV preparation; however, no protective immunity was obvious (STOTT et al. 
1982). The in vitro lymphocyte proliferative response became minimal following 
live virus challenge of immunized cattle. This lack of antigen-specific T
lymphocyte blastogenesis could be due to sequestration of immune T cells from 
the blood into peripheral lymphoid organs and tissues or to the cytopathic 
infection of BTV antigen-activated lymphocytes. The latter hypotheses would be 
supported by recent studies directed at defining BTV -T lymphocyte interactions 
(STOTT, unpublished data) in which productive infection of established bovine 
T-Iymphocyte cultures in vitro resulted in cell death. 

4.3 Immune-Mediated Pathogenesis 

Because of the extremely rare expression of clinical disease in BTV -infected cattle 
(dermatitis and stomatitis), studies have been directed at defining a possible 
underlying immunological mechanism. Original observations made by METCALF 
et al. (1979), on a major epizootic of clinical bluetongue disease in the southern 
USA, led them to speculate that clinical bluetongue in cattle was a hypersensitiv
ity reaction induced in certain animals by previous exposure to BTV of a different 
type or to other related viruses. This speculation is supported by experimental 
production of a clinical condition that closely paralleled those lesions described 
for clinical bluetongue in the field. Cattle were given multiple immunizations of 
inactivated BTV in association with adjuvant (AIOH) and immunopotentiators 
(levamisol and cimetidine), with subsequent development of nonneutralizing 
antibody that included BTV-specific IgE (STOTT et al. 1982; ANDERSON et al. 
1987). Upon challenge, sensitized animals developed clinical disease (dermatitis 
and stomatitis) which was associated with elevated levels ofIgE, prostaglandins, 
and histamine (ANDERSON et al. 1987; EMAU et al. 1984). These results were 
interpreted as being indicative of an immediate type hypersensitivity (type I) and 
supported by the subsequent description of a natural case of clinical bluetongue 
in a heifer (ANDERSON et al. 1985). This heifer exhibited a severe generalized 
dermatitis, lameness, alopecia, and sloughed the entire muzzle. BTV was isolated 
from peripheral blood and BTV-specific reagenic antibody was demonstrated 
using a modified passive cutaneous anaphylaxis (PCA) test. No evidence of 
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bovine virus diarrhea, malignant catarrhal fever, vesicular stomatitis, or photo
sensitization was identified. Controlled studies using infection with orbiviruses 
for sensitization, followed by heterologous virus challenge, will be required to 
establish and characterize an immunological basis for bluetongue disease in 
cattle. 

4.4 Fetal Immune Responses 

Natural BTV infection of the developing bovine fetus is well documented 
(BARNARD and PIENAAR 1976; BROWN and MACLACHLAN 1983; McKERCHER 
et al. 1970; RICHARDS et al. 1971; ZUMPT et al. 1978). Experimental studies have 
established that the outcome offetal infection is closely tied to gestational period. 
In vitro exposure of bovine embryos to BTV results in death; however, the 
embryo is protected from such a lytic effect while it is still within the zona 
pellucida (BOWEN et al. 1982). Inoculation of fetuses in the second trimester of 
gestation results in cerebral malformation (BARNARD and PIENAAR 1976; 
MACLACHLAN and OSBURN 1983; MACLACHLAN et al. 1985; THOMAS et al. 
1986), whereas infection late in gestation probably results in the birth of viremic 
and clinically normal calves (OSBURN and STOTT, unpublished data). 

MACLACHLAN et al. (1984a) studied fetal immune responses to BTV 
following direct inoculation of 125-day-old fetuses. Serum IgM and IgG were 
identified by 8 and 12 days postinoculation, and BTV group-specific (AGID) and 
serotype-specific (virus neutralizing) antibody were present at 20 days posti
noculation (145 days). Virus persisted in the presence of high titer neutralizing 
antibody for at least 50 days, but the infection was cleared by birth (150 days 
postinoculation). Fetal development of a CMI response, as determined by BTV
induced lymphocyte blastogenesis, was never identified, nor did the viral 
infection appear to compromise the ability of fetal lymphocytes to respond to 
mitogens (MACLACHLAN et al. 1984b). Regardless of exact mechanisms of virus 
clearance from the fetus, these studies contrasted with those described earlier by 
LUEDKE et al. (1977a, b, c) in which calves were born to dams infected with BTV 
early in gestation. Calves born in these studies exhibited a range of anatomical 
anomalies, were persistently infected with BTV, and were immunologically 
unresponsive to the virus. The conflicting nature of these reports is not easily 
explained. However, immune responses accompany most, if not all, viral 
infections and true immunological tolerance does not occur (OLDSTONE 1979). 

5 Immune Responses of Mice 

A brief discussion of murine immune responses is relevant here in that the mouse 
is the only laboratory animal model that has been used extensively in developing 
experimental hypotheses relative to specific immune responses, and their protein 
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specificities, associated with protective immunity. Whether the mouse is a 
realistic model for studying protective immune responses of the natural ruminant 
hosts of BTV remains to be determined. 

5.1 Humoral Immune Response 

The study of antibody responses to BTV, and their potential role in contributing 
to protective immunity, has been confined to the suckling mouse. While mature 
mice have been immunized for the purpose of developing monoclonal antibodies, 
they do not express disease and virus replication is probably minimal. Intra
cerebral inoculation of suckling mice is typically required to induce clinical 
disease and death. However, some virus isolates have recently been identified that 
are capable of infecting and killing suckling mice following subcutaneous 
inoculation (WALDVOGEL et al. 1986). Unpublished experience in our laboratory 
with BALBjc mice would indicate they must receive virus within approximately 5 
days of birth if clinical disease and death is to be observed. 

Experiments employing passive transfer (colostral) of BTV group-specific 
nonneutralizing antibody to suckling mice, followed by intracerebral challenge 
with homologous and heterologous BTV serotypes, resulted in no protective 
immunity (STOTT, unpublished data). Such studies would support a nonprotec
tive role of serogroup-specific antibody, as previously described for sheep and 
cattle. 

In contrast to group-reactive antibodies, virus-neutralizing antibodies appear 
to afford good protective immunity. Passive transfer of monoclonal antibody 
with virus-neutralizing activity protected suckling mice from homologous virus 
challenge (LETCHWORTH and ApPLETON 1983b). Similarly, newborn mice, 
suckling immune dams with circulating levels of homologous neutralizing 
antibodies, are protected. This immunity appears to protect mice against 
homologous serotype challenge, regardless of virus strain (identified by RNA 
genome PAGE profiles and virulence for mice by subcutaneous inoculation) 
(STOTT, unpublished data). 

5.2 Cell-Mediated Immune Responses 

The induction of BTV-specific, major histocompatibility complex-restricted, 
cytotoxic T lymphocytes (CTLs) was first demonstrated in mice (JEGGO and 
WARDLEY 1982a, b, c). In these studies employing 51Cr-release assays, induction 
of CTLs required replication of the virus, as inactivated virus preparations did 
not result in generation of cytotoxic activity. Spleen cell preparations derived 
from mice immunized with a single virus serotype were capable of lysing 
syngeneic target cells infected with heterologous serotypes, demonstrating their 
group specificity. These studies would support the nonrestricted nature of bovine 
CTLs relative to virus serotype. 
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Appendix 

Restriction sites of each BTV gene. E, EcoRl; D, Ddel; H, Hi,!!l; P, Pstl are given 
in Fig. 1 and the predicted amino acid sequences of the encoded proteins in Fig. 2. 
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