
The railway sector is subject to varying normative and legal systems
across different countries. The CENELEC 50128 standard and its
international version IEC 62279 are necessary for the realization of
software applications within this sector.

This book is dedicated to the 2011 version of the CENELEC 50128
standard, which defines the implementation of techniques and methods
and focuses on management skills and the establishment of an
independent evaluation.

The authors stress the need for qualified tools, organization with
independence and the presence of an effective verification pole. The
construction of two types of software, software and parameterized so-
called generic software, are introduced. The involvement of people from
within the industry allows the authors to avoid the usual confidentiality
problems which can arise and thus enables them to supply new useful
information (photos, architecture plans, real examples, etc.).

By providing a real implementation guide to understanding the
fundamentals of the standard and the impacts on the activities to be
performed, this book helps to better prepare the compulsory phase of
independent evaluation.

Jean-Louis Boulanger is currently an Independent Safety Assessor (ISA)
in the railway domain focusing on software elements. He is a specialist
in software engineering (requirement engineering, semi-formal and
formal method, proof and model-checking). He also works as an expert
for the French notified body CERTIFER in the field of certification of
safety critical railway applications based on software (ERTMS, SCADA,
automatic subway, etc.). His research interests include requirements,
software verification and validation, traceability and RAMS with a
special focus on safety.

Z(7ib8e8-CBGDEB(www.iste.co.uk

CONTROL, SYSTEMS
AND INDUSTRIAL ENGINEERING SERIES

CENELEC 50128
and

IEC 62279 Standards

Jean-Louis Boulanger

J
e
a
n

-L
o

u
is B

o
u

la
n

g
e
r

C
E

N
E

L
E

C
 5

0
1

2
8

 a
n

d
 IE

C
 6

2
2

7
9

 S
ta

n
d

a
rd

s

9781848216341-Case.qxp_Layout 1 03/03/2015 12:22 Page 1

CENELEC 50128 and IEC 62279 Standards

CENELEC 50128 and
IEC 62279 Standards

Jean-Louis Boulanger

First published 2015 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2015
The rights of Jean-Louis Boulanger to be identified as the author of this work have been asserted by him
in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2015931031

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-634-1

Contents

INTRODUCTION . xiii

CHAPTER 1. FROM THE SYSTEM TO THE SOFTWARE 1

1.1. Introduction . 1
1.2. Command/control system . 2
1.3. System . 6
1.4. Software application . 8

1.4.1. What is software? . 8
1.4.2. Different types of software . 9
1.4.3. The software application in
its proper context . 10

1.5. Conclusion . 11

CHAPTER 2. RAILWAY STANDARDS . 13

2.1. Introduction . 13
2.2. Generic standards . 14

2.2.1. Introduction . 14
2.2.2. Safety levels . 15

2.3. History between CENELEC and the IEC 16
2.4. CENELEC referential framework . 17

2.4.1. Introduction . 17
2.4.2. Description . 18
2.4.3. Implementation . 21
2.4.4. Software safety . 22
2.4.5. Safety versus availability . 22

2.5. EN 50155 standard . 23
2.6. CENELEC 50128 . 26

2.6.1. Introduction . 26

vi CENELEC 50128 and IEC 62279 Standards

2.6.2. SSIL management . 26
2.6.3. Comparison of 2001 and 2011 versions 28

2.7. Conclusion . 30

CHAPTER 3. RISK AND SAFETY INTEGRITY LEVEL 31

3.1. Introduction . 31
3.2. Basic definitions . 31
3.3. Safety enforcement . 37

3.3.1. What is safety? . 37
3.3.2. Safety management . 40
3.3.3. Safety integrity . 47
3.3.4. Determination of the SIL . 50
3.3.5. SIL table . 55
3.3.6. Allocation of SILs . 56
3.3.7. SIL management . 57
3.3.8. Software SIL. 58
3.3.9. Iterative process . 59
3.3.10. Identification of safety requirements 60

3.4. In IEC 61508 and IEC 61511 . 61
3.4.1. Risk graph . 62
3.4.2. LOPA . 64
3.4.3. Overview . 66

3.5. Conclusion . 66

CHAPTER 4. SOFTWARE ASSURANCE . 67

4.1. Introduction . 67
4.2. Prerequisites . 67
4.3. Quality assurance . 68

4.3.1. Introduction . 68
4.3.2. Quality assurance management . 69
4.3.3. Realization of a software application 73
4.3.4. Software quality assurance plan (SQAP) 75

4.4. Organization . 78
4.4.1. Typical organization . 78
4.4.2. Skill management . 80

4.5. Configuration management . 82
4.6. Safety assurance management . 84
4.7. Verification and validation . 86

4.7.1. Introduction . 86
4.7.2. Verification . 87
4.7.3. Validation . 103

Contents vii

4.8. Independent assessment . 104
4.9. Tool qualification . 104
4.10. Conclusion . 105
4.11. Appendix A: list of quality
documents to be produced . 106
4.12. Appendix B: structure of a
software quality assurance plan . 106

CHAPTER 5. REQUIREMENTS MANAGEMENT . 109

5.1. Introduction . 109
5.2. Requirements acquisition phase . 110

5.2.1. Introduction . 110
5.2.2. Requirements elicitation . 111
5.2.3. Process of analysis and documentation 119
5.2.4. Verification and validation of
the requirements . 126

5.3. Requirements specification . 129
5.3.1. Requirements characterization . 129
5.3.2. Characterization of requirements
specification . 135
5.3.3. Expression of requirements . 135
5.3.4. Requirements validation . 140

5.4. Requirements realization . 140
5.4.1. Process . 140
5.4.2. Verification . 141
5.4.3. Traceability . 143
5.4.4. Change management . 146

5.5. Requirements management . 150
5.5.1. Activities . 150
5.5.2. Two approaches . 151
5.5.3. Implementation of tools . 152

5.6. Conclusion . 154

CHAPTER 6. DATA PREPARATION . 155

6.1. Introduction . 155
6.2. Recap . 156
6.3. Issue . 156
6.4. Data-parameter-based system . 158

6.4.1. Introduction . 158
6.4.2. Characterization of data . 161

viii CENELEC 50128 and IEC 62279 Standards

6.4.3. Service inhibition . 162
6.4.4. Overview . 164

6.5. From the system to the software . 165
6.5.1. Need . 165
6.5.2. What the CENELEC framework does not say 167

6.6. Data preparation process . 169
6.6.1. Context . 169
6.6.2. Presentation of section 8 of the
CENELEC 50128:2011 standard . 170

6.7. Data preparation process . 174
6.7.1. Management of the data preparation process 174
6.7.2. Verification . 182
6.7.3. Specification phase . 182
6.7.4. Architecture phase . 186
6.7.5. Data production . 190
6.7.6. Integration of the application
and acceptance of the tests . 196
6.7.7. Validation and evaluation
of the application . 197
6.7.8. Procedure and tools for
preparation of the application . 197
6.7.9. Development of generic software . 198

6.8. Conclusion . 199
6.9. Appendix: documentation to be produced 199

CHAPTER 7. GENERIC APPLICATION . 201

7.1. Introduction . 201
7.2. Software application realization process 201
7.3. Realization of a generic application . 203

7.3.1. Specification phase . 203
7.3.2. Architecture and component design phase 213
7.3.3. Component design phase . 236
7.3.4. Coding phase . 242
7.3.5. Execution of component tests . 243
7.3.6. Software integration phase . 246
7.3.7. Overall software testing phase . 247

7.4. Some feedback on past experience . 249
7.5. Conclusion . 250
7.6. Appendix A: the programming language “Ada” 251
7.7. Appendix B: the programming language “C” 253

7.7.1. Introduction . 253

Contents ix

7.7.2. The difficulty with C . 253
7.7.3. MISRA-C . 254
7.7.4. Example of a rule . 255

7.8. Appendix C: introduction to
object-oriented languages . 255
7.9. Appendix D: documentation
needing to be produced. 258

CHAPTER 8. MODELING AND FORMALIZATION 261

8.1. Introduction . 261
8.2. Modeling . 261

8.2.1. Objectives . 261
8.2.2. Different types of modeling . 263
8.2.3. Model . 264

8.3. Use of formal techniques and formal methods 265
8.3.1. Definitions . 265
8.3.2. UML . 268

8.4. Brief introduction to formal methods . 269
8.4.1. Recap . 269
8.4.2. Usage in the railway domain . 270
8.4.3. Summary . 276

8.5. Implementation of formal methods . 279
8.5.1. Conventional processes . 279
8.5.2. Process including formal methods . 280
8.5.3. Issues . 282

8.6. Maintenance of the software application 284
8.7. Conclusion . 285

CHAPTER 9. TOOL QUALIFICATION . 287

9.1. Introduction . 287
9.2. Concept of qualification . 288

9.2.1. Issue . 288
9.2.2. CENELEC 50128:2001 . 288
9.2.3. DO-178 . 291
9.2.4. IEC 61508 . 292
9.2.5. ISO 26262 . 293

9.3. CENELEC 50128:2011 . 293
9.3.1. Introduction . 293
9.3.2. Qualification file . 294

x CENELEC 50128 and IEC 62279 Standards

9.3.3. Qualification process . 295
9.3.4. Implementation of the qualification process 297

9.4. Fitness for purpose . 305
9.4.1. Design method . 305
9.4.2. In case of incompatibility . 305
9.4.3. Code generation . 306

9.5. Version management . 306
9.5.1. Identification of versions . 306
9.5.2. Bug/defect analysis . 307
9.5.3. Changing versions . 307

9.6. Qualification process . 307
9.6.1. Qualification file . 307
9.6.2. Ultimately . 308
9.6.3. Qualification of non-commercial tools 308

9.7. Conclusion . 308

CHAPTER 10. MAINTENANCE AND DEPLOYMENT 309

10.1. Introduction . 309
10.2. Requirements . 309

10.2.1. Fault management . 309
10.2.2. Managing changes . 310

10.3. Deployment . 312
10.3.1. Issue . 312
10.3.2. Implementation . 313
10.3.3. In reality . 314

10.4. Software maintenance . 315
10.4.1. Issue . 315
10.4.2. Implementation . 315

10.5. Product line . 316
10.6. Conclusion . 318
10.7. Appendix: documentation
needing to be produced. 319

CHAPTER 11. ASSESSMENT AND CERTIFICATION 321

11.1. Introduction . 321
11.2. Evaluation . 321

11.2.1. Principles . 321
11.2.2. CENELEC 50128:2011 . 324

11.3. Cross-acceptance . 325
11.4. Certification . 326

11.4.1. Product certification . 326

Contents xi

11.4.2. Software certification . 327
11.4.3. Evolution management . 327

11.5. Conclusion . 328
11.6. Appendix: documentation needing to be produced 328

CONCLUSION . 329

BIBLIOGRAPHY . 331

GLOSSARY . 343

INDEX . 351

Introduction

I.1. Objective

Railways are subject to both normative and legal frameworks (laws,
decrees, regulations, etc.) which differ from one country to another. At the
European level, the legal framework includes European and national texts. It
should be noted that this normative and legislatory framework is fairly new
(the earliest published standards date from the mid-1990s, and the earliest
laws passed from 2004). Figure I.1 presents the main standards which apply
to the building of a railway system.

Figure I.1. Normative context

Système complet

Sous-système Signalisation

Equipement

Hardware

50126

50129

50159

Train

Equipement

Hardware Logiciel

50155

Logiciel

50128

Complete system

Signalling subsystem

Equipment

Hardware Software Software

Equipment

xiv CENELEC 50128 and IEC 62279 Standards

As Figure I.1 illustrates, the domain of railways is divided into two parts:
applications relating to signaling and applications onboard the trains. In fact,
it is necessary to add a third family of applications – “Miscellaneous”: this
category would include means of energy management, the systems that run
travelators and escalators, information systems, applications for management
of the auxiliary systems (e.g. tunnel ventilation, fire detection, etc.) – indeed
anything at all which can be connected to the railway system. The auxiliary
systems are no less important than the primary ones. The fire-detection and
tunnel-ventilation system is a system connected to the domain which could
prevent a tunnel from filling with smoke in an evacuation situation. Thus,
this system has a bearing on safety.

The subdivision of the normative framework stems from the fact that,
originally, safety in railway systems was based on signaling (changing the
state of the signals depending on the presence or absence of trains on the
track), and the train driver was responsible for respecting the commands
shown to him by the signals.

When software was first used, it rendered the principles of signaling more
flexible (the transmission of signaling information to the driver’s cab as a
report, virtual division of the track, etc.). The second step involved installing
software on board the trains to handle non-safety-related information and to
develop specific, small functions. The need to keep weight and costs
under control led manufacturers to replace the copper hardwired systems
and relays with software (TCMS – Train Control/Management Systems,
for instance). In addition, the need to evolve quickly (without having
to replace the equipment) and innovations (such as the permanent-
magnet motor) led to the use of software for classic pieces of equipment,
such as the driver’s joystick, the traction control system, the braking
system, etc.

The CENELEC 50126, 50128, 50129, 50159 and 50155 standards are
applicable throughout Europe, but increasingly, they are being used beyond
Europe as well. Additionally, the CENELEC standards are mirrored on the
international scene by the IEC standards1, as shown by Table I.1.

1 “IEC” stands for International Electrotechnical Commission. For further information, see:
www.iec.ch/.

Introduction xv

This book presents the 2011 version of CENELEC2 50128 standard
[CEN 11a] and its implementation. In Chapter 13, we shall give a detailed
breakdown of the differences between CENELEC 50128:2011 and its IEC
equivalent: 62279.

CENELEC IEC Comments

50126:1999 62278:2002 Same

50129:2003 62425:2007 Same

50128:2001 62279:2002
Identical with the exception of the first
page

50128:2011 62279:2014-draft

The IEC draft contains notable
differences in relation to the CENELEC
document (e.g. additional constraints for
certification of tools, etc.)

50159-1
50159-2

62280-1:2002
62280-2:2002

Same

50159:2011 62280:2014 Same

50155 60571
Identical, except for the fact that the IEC
standard contains additional explanations

Table I.1. Breakdown of CENELEC and IEC standards

CENELEC 50128:2011 identifies a process for creating software for
railway applications, and identifies the resources which need to be mobilized
in order to achieve the set level of assurance. It introduces new requirements
such as separation between the generic software and the settings data,
certification of the tools, the need to document and the need to stay abreast
of maintenance and the rollout of new versions of the software.

We are going to present this new version of the standard, but above all,
we shall give references to the fundamental reading necessary to put the
standard into practice.

I.2. Reminder

Safety of railway applications was originally based on the management of
signaling. With automated systems such as the metro (see Line 14 of the

2 “CENELEC” stands for Comité Européen de Normalisation ELECtrotechnique (European
Commission for Electrotechnical Standardization). For further information, see:
www.cenelec.eu/.

xvi CENELEC 50128 and IEC 62279 Standards

Paris metro3 and/or the VAL (Véhicule Automatique Léger – Lightweight
Automated Vehicle)4 in Charles de Gaulle Airport), software is used to
enhance safety management. The 2001 version of CENELEC 50128
[CEN 01a] was written to define a context by which to manage the safety of
the software used. This version of the standard benefited from the advent of
numerous software-based systems.

Figure I.2. The VAL at CdG Airport, standing at the platform5

Since the release of this version, the use of software has expanded to all
parts of the railway industry (driver support, driver joystick, door
management, traction management, management of sensor settings, tunnel
ventilation management system, etc.), and it has become necessary to take
new problems into account, such as maintenance and deployment. The
maintenance of software goes above and beyond simple correction of
anomalies, to the handling of evolution of a range of equipment, different
versions of which may be used by different operators. Hence, it is necessary
to take maintenance measures which take account of the versions employed
and a rollout process which enables us to guarantee the systems will work
properly after new versions are rolled out.

3 The design and approval of the SAET-METEOR (developed by MATRA-transport – now
SIEMENS – for the RATP, see [MAT 98]), brought into operation in 1998, greatly
contributed to the formulation of the 2001 version 2001 of CENELEC 50128.
4 The first VAL began operating in Lille in 1983. Today, it is used in Taipei and Toulouse,
Rennes and Turin (since January 2006). With regard to the rollout of the VAL, at least 119km
of track have been laid worldwide, and over 830 carriages are currently in service or under
construction. The VAL at CDG combines VAL technology and additional digital equipment
based on the B method [ABR 96].
5 Photo taken by Jean-Louis Boulanger.

Introduction xvii

The creation of a software application is based on people and on the use
of complex tools. In relation to the first point, the new version of the
standard places emphasis on the management of skills and responsibilities.
On the second point, the tools can have an impact on the executable content
(code generators, compilers, etc.) and/or on the verification (test
environment, tool for checking programming rules, etc.), so it is necessary to
qualify and/or certify the tools that are used. It should be noted that this
notion of qualification is one which has been introduced in the newly-
updated set of standards (IEC 61508 [IEC 08], ISO 26262 [ISO 11],
CENELEC 50128 [CEN 11a], etc.).

I.3. Overview

We have given a brief presentation of the CENELEC 50128 standard and
have begun to introduce the changes which were made to it in the 2011
version. Thus, in the remaining chapters of this book, we shall present the
2011 version of the CENELEC 50128 standard and the principles of its
implementation.

The chapters of this book are presented as follows:

– Chapter 1: software in the system;

– Chapter 2: history of the CENELEC framework and structure of the
50128 standard;

– Chapter 3: definitions in the system and allocation to the software
packages;

– Chapter 4: quality assurance on the software (quality management,
organization management, checking and validation, etc.). Application of
Chapter 6 of the CENELEC 50128 standard;

– Chapter 5: requirement management;

– Chapter 6: the specific application and data-based settings.
Implementation of Chapter 8 of the CENELEC 50128 standard;

– Chapter 7: development of the generic application. Implementation of
Chapter 7 of the CENELEC 50128 standard;

xviii CENELEC 50128 and IEC 62279 Standards

– Chapter 8: model, modeling and formalization;

– Chapter 9: certification of tools;

– Chapter 10: maintenance and rollout. Implementation of Chapter 9 of
the CENELEC 50128 standard;

– Chapter 11: independent evaluation;

– Conclusion.

1

From the System to the Software

1.1. Introduction

The automation of numerous command systems (in railways, the
aeronautics, automotive, nuclear industries, etc.) and/or process control
systems (production, etc.), and the replacement of logical or analog systems
involving little interaction by highly-integrated systems, have led to a
considerable expansion of the domain of functional safety, taking account of
the features and peculiarities of computer systems.

Dependability relates to applications for which it is crucial to ensure a
continuous good level of service (reliability), because human lives are at
stake (transport, nuclear energy, etc.), because of the high level of
investment which would be lost were the calculation to go wrong (space,
chemical production process, etc.), or indeed because of the cost of the
problems that could be caused by failure (e.g. in the banking process,
reliability of the transport network, etc.). It should be noted that for several
years, account has been taken of the environmental impacts (e.g. with
accidental spills of chemical products into the environment, impact on
ecosystems, recycling, etc.).

Since the very beginning of research into such systems, the problems
linked to validation of those systems have been at the heart of designers’
concerns: it is useful to prove the mechanisms to react to the occurrence of
failures are well designed, to check that design (by means of simulations, tests,
evidence, etc.) and convincingly estimate projected, meaningful values
measuring the performances of the functional safety devices.

2 CENELEC 50128 and IEC 62279 Standards

The difficulty then lies in accurately identifying the various actors
involved in the process (users, operators, managers, maintenance personnel,
service providers, assessors, authorities, etc.), the different elements in the
system, the interactions between those elements, the interactions with the
users and the factors which have an impact on the operational safety,
ultimately with identification of the electronic and/or programmable
elements.

The aim of this first chapter is to offer an examination of the software in
the context in which it is used, which is a system, and recap on the links and
the constraints which need to be taken into account in creating software.

1.2. Command/control system

Figure 1.11 shows an example of a railway system. The Operation
Control Center (OCC – photo a) controls the whole of the line and passes
operational commands to the trains and to the signaling management system
(photo c shows a manual operation control center).

Figure 1.1. The system in its environment2

1 The picture shows an old-generation operating control center (OCC); new OCCs are stored
in PCs and have developed from a physical technology (TCO – optical control view) to
display by a video projector.
2 Photos taken by Jean-Louis Boulanger.

From the System to the Software 3

The operation control center3 sends commands to the ground via a set of
relays (photo d shows an example of a room containing the relays linked to
the signaling system). In response to the commands, the ground equipment
adopts the desired behavior (in photo e, we can see maneuver signals).

Figure 1.1 demonstrates the complexity associated with the concrete
system, and highlights the point that a complex system is based not on one
piece of software, but on many. Each of these software programs is associated
with safety objectives which likely differ from one program to another.

The software involved in supervision does not have as much impact on
people’s safety as does the software relating to automated control of the trains.
For this reason, in the context of systems requiring certification (aeronautics,
railways, the nuclear sector, systems based on programmable electronics, etc.),
we assign a given level of safety to each software application.4

This level of safety is associated with a scale, ranging from “non-critical”
to “highly critical”. The concept of safety assurance levels and the scales
associated therein will be presented in Chapters 2 and 3.

Figure 1.2. The system in its environment

Figure 1.2 highlights the fact that the system being constructed is closely
linked with an environment which responds to the commands issued by the

3 Figure 1.1 shows a manual operating control center. However, these have now become
computerized, and are referred to as PMIs ([BOU 10a – Chapter 5]); PIPCs and PAINGs
([BOU 10a – Chapter 4]).
4 For instance, in the field of aeronautics, the level of safety is called the Design Assurance
Level; in railways, we speak of the Safety Integrity Level (SIL); and in the automobile sector
we have the Automotive Safety Integrity Level (ASIL).

Système

Environnement

Entrées

Sorties

System

Input

Output

Environment

4 CENELEC 50128 and IEC 62279 Standards

system. It is therefore necessary to acquire a view of the state of the process
to be controlled and to have a means of command which is capable of
relaying the commands to the environment. The environment may be
composed of physical elements, but as a general rule, there are interactions
with human parties (operators, users, maintenance personnel, etc.).

During the requirements analysis phase, it is essential to clearly identify
all the actors (operators, maintenance personnel, customers, etc.) and
identify all the devices which interact with the system. The requirements
analysis phase is essential, but can still give rise to numerous omissions and
misunderstandings.

Figure 1.3. Example of modeling of the system in its environment

Figure 1.3 presents an example of the modeling of a system to control a
level crossing. This system can control the intersection of at least one road
with a railway track. This system interacts with various actors (both human

From the System to the Software 5

and machine): an OCC (as shown in the Figure 1.1), the road users (trucks,
cars, etc.), railway users and operators in charge of operation and/or
maintenance.

We have chosen to construct a class diagram which models the fact that
the decentralized level-crossing management system using a communication
system (DRBCS) comprises a level crossing which is itself made up of a
railway and a roadway.

The important point in Figure 1.3 lies in identifying the actors which
interact with the management system, including the road users, the trains, the
OCC and especially the maintenance operators or other personnel (whom the
model identifies as “special people”).

It is crucial to identify all the actors involved at system level; otherwise
there is a risk of forgetting actions – e.g. maintenance activities – but it is
also possible to overlook disturbances or malfunctions. We can point to the
classic example5 of the efficiency of a Wi-Fi network, which may correlate
to the density of auxiliary networks connected to the system.

Hereinafter, we shall not discuss how to deal with the human factor,
because whilst the human factor is an essential one, it does not directly relate
to the critical software-based equipment, except for:

– the activities of creation of the software application – hence the need to
formalize the skills and responsibilities of the people in charge of the
software, as indicated in Chapter 5 of the standard;

– the activities of maintenance and rollout, which are dealt with by
Chapter 9 of CENELEC 50128:2011 [CEN 11a].

As regards the identification of the actors involved, it is more usual to
speak of identification of the stakeholders; for further information, see
Chapter 11 of [BOU 14c].

5 The use of so-called “open” networks (see the standards [CEN 01a] and [CEN 11a]) such as
Wi-Fi is attended by a certain number of difficulties, such as network densification (the
number of private networks is constantly increasing) and/or interference caused by nearby
equipment. It should be noted that, for a very long time, the issue of open networks has not been
approached from the standpoint of functional safety, because it relates to aspects such as
confidentiality, intrusion, etc., which are covered by the term “security”.

6 CENELEC 50128 and IEC 62279 Standards

1.3. System

Our aim in this section is to lay down the vocabulary relating to the
creation of a software-based device. To begin with, we must remember that a
software application is directly linked to a device, and that without hardware
architecture, there can be no software. Indeed, the validation of a program
(see Chapter 5) requires the hardware architecture, and the results are
applicable only to that particular hardware. For this reason, the first
definitions we shall give relate to the concept of a system and of a software-
based system.

DEFINITION 1.1 (System).– A system is a set of elements interacting with one
another, which is organized in such a way as to achieve one or more
predetermined results.

The “organized” part of Definition 1.1 can be seen in the system’s
organization into different levels, as illustrated by Figure 1.4.

Figure 1.4. From the system to the software

Figure 1.4 offers a hierarchical view of the system. This is the view
which is used in the railway domain. Hence, a railway line is viewed
as a system, which is divided into a number of subsystems: the
signaling control subsystem, the passenger transfer subsystem, etc. The
signaling control subsystem, for its part, is divided into a number of devices,
or classes of equipment: onboard equipment, ground equipment and line
equipment.

Système

Sous-système 1 Sous-système 2

Equipement 1 Equipement 3Equipement 2

Logiciel Matériel

System

Subsystem 1 Subsystem 2

Equipment 1 Equipment 2 Equipment 3

Software Hardware

From the System to the Software 7

A system performs several functions. A system function can be
subdivided into a variety of subsystems, with each subsystem performing
functions which are subfunctions of the whole system’s functions. At system
level, this representation needs to be accompanied by models which illustrate
the interactions between the functions, as shown by the example given in
Figure 1.5.

Figure 1.5. Example of the subdivision of a system

Figure 1.6. Example of distribution6

6 The example of a subsystem presented is the control system “SAET” used on the
“METEOR” line (the rapid-transit East/West Line 14 (“METEOR” is a backronym for this)
on the Paris Metro). For further information, see Chapter 2 of [BOU 12].

1

F1

1

F2

1

F3

I1I1

I2I2

O2O2

O1O1

I3I3I3

I1

I2
F1

F2

F3

1
1

1

O1

O2

PA Section PA Section PA Section

Tapis de transmission

PA Embarque

message

message

PCCPA LigneLine AP

Transmission matrix

message

message

OCC

Section AP Section AP Section AP

Onboard AP

8 CENELEC 50128 and IEC 62279 Standards

Thus, a subsystem hosts a variety of functions, which can then be divided
between several different pieces of equipment. A piece of equipment is not a
functional element in itself; it must be joined by other equipment in order to
perform a subsystem-level function.

In terms of a railway system, the difficulty lies in the fact that a train is
home to many system functions, and therefore that it contains equipment
which contributes to these different functions. For example, the installation
of an auto-pilot subsystem involves installing devices on the ground, which
communicate with an onboard component on the train, as shown by
Figure 1.6.

DEFINITION 1.2 (Software-based system).– Elements of the system may be
totally or partially software-based.

Figure 1.7 shows that a system is a structured entity (comprising
computer systems, processes and use contexts) which must form an
organized, coherent whole. Hereinafter, we shall examine the software
applications which are found in the computer/automated system component.

In this chapter, we have shown that a system based on programmable
electronic equipment is a complex object, which needs to be carefully
analyzed in each of its component parts.

1.4. Software application

1.4.1. What is software?

In the context of this chapter, the so-called “software” element is a set of
computation/processing elements which are executed on a physical hardware
architecture so that the system, as a whole, can render the services associated
with a device (see Figure 1.4).

Later on in this book, we shall look at the software aspects, so it is
necessary, at this point, to define exactly what software is – see
Definition 1.3. This definition is slightly different from the one given by ISO
90003:2004 [ISO 04a].

From the System to the Software 9

DEFINITION 1.3 (Software).– Set of programs, processes and rules, and
possibly documentation as well, relating to the performance of a set of
operations on the data.

Definition 1.3 does not differentiate between the means (the methods,
processes, tools, etc.) used to create the software application, the products
created by its execution (documents, analytical results, models, sources, test
scenarios, test results, specific tools, etc.) and the software application itself.

This definition is generally associated with the concept of a software
application. The concept of software itself is associated with that of
executable files.

Figure 1.7. System and interaction

1.4.2. Different types of software

Definition 1.3 shows what the concept of software involves, but it should
be noted that there are a variety of different types of software:

– operational software: this term refers to any software delivered to an
external customer as part of a program or a product. Test arrays for external
usage fall into that category;

Contexte

Logiciels

Matériels

Logiciels

Matériels

équipement 1 équipement 2

équipement 3

Logiciels

Matériels

Système
Informatique/automatique

Actuateurs

Capteurs

Processus Environnement

Procédure/instruction d’utilisation

Maintenance

Lien avec d’autre système

.......

Computerized/automated
system

Processes

Software

Hardware

equipment 1 equipment 2

Software

Hardware

equipment 3

Software

Hardware

Sensors

Actuators

Context

Environment

Procedure/usage instruction

Maintenance

Links with other systems

...

10 CENELEC 50128 and IEC 62279 Standards

– demo: a demonstrator (demo) is a piece of software used by an external
customer to help refine their expression of their needs and measure the level
of service which could potentially be delivered. These programs are not
intended for operational use;

– development tool: a development tool is an internal software
application, which is not delivered to an external customer, designed to help
development in the broadest sense (editor, compilation chain, etc.), including
at the test stage and integration stage;

– model: a model is an internal program for study, not delivered to any
external parties, which serves to check a theory, an algorithm or the
feasibility of a technique (e.g. by simulation), without the objective of a result
or of completeness.

1.4.3. The software application in its proper context

In spite of the long-standing monolithic view, we feel it is important to
look at a software application as a set of components (see Definition 1.4),
which interact to process a set of data. Thus, a component may be a part of
the software application, a reused part, a library, a commercial off-the-shelf
(COTS7 – see Definition 1.5) component, etc.

DEFINITION 1.4 (Component).– A component is an element of software
which performs a set of predefined services; these services (or tasks)
conform to a clear set of requirements; a component has clear interfaces
and is managed in configuration as a separate element in its own right.

DEFINITION 1.5 (Commercial off-the-shelf – COTS).– A software product
which is available to buy and use without carrying out development
activities.

As Figure 1.8 shows, a software application generally uses an abstraction
of the hardware architecture and of its operating system by way of a
base layer known as the “base software”. In principle, the base software
should be written in low-level programming languages such as an assembly
language and/or C [KER 88]. It is used to encapsulate the services of the

7 COTS are products that are commercially available and can be bought “as is” (without
specification, V&V elements, etc.).

From the System to the Software 11

operating system and its utilities, but it also provides relatively direct access
to hardware resources.

Figure 1.8. A software application in its environment

If the software application is associated with a high level of safety, then
the base layers (baseware, utilities and operating system) are also associated
with safety objectives. The safety objective of the lower layers will depend
on the hardware architecture in place (monoprocessor, 2oo2, nOOm, etc.)
and on the safety measures employed. In [BOU 10a], we presented real-
world examples of safe functional architectures. For the rest of this book, we
shall assume that the safety analyses have been performed and that for all the
software applications (including the base layer), a level of safety has been
allocated.

1.5. Conclusion

In this chapter, we have shown the underlying complexity of
programmable electronics-based systems. We have demonstrated the
existence of a hierarchy which ranges from the system to the software,
through the subsystems, devices and the electronic hardware.

In Chapter 3, we shall show how to control the dependability of a
system by controlling the electronic part (see [BOU 10a]) and the software
part.

Matériel

Logiciel de base

Application

Utilitaire

Système d’exploitation

Application

Baseware
Utility

Operating system

Hardware

2

Railway Standards

2.1. Introduction

Critical systems for safe operation are characterized by the fact that a
fault may have serious consequences, both in terms of people’s safety and of
economic and/or environmental impact. In many domains, including
railways, there are normative frameworks which stipulate that the safety of a
newly-created system must be demonstrated. These normative frameworks
are supplemented by European and/or national laws and decrees, setting out
rules which need to be respected.

These referential frameworks advocate a separation of roles and
responsibilities. One team might be in charge of creating the system
(development, checking and validation), whilst another would be in charge
of demonstrating the safety of that system (conduction of safety studies,
drafting of the safety file and analysis of the completeness of the work). A
third team, independent of the other two, would be in charge of evaluating
the level of safety that is actually delivered. The evaluation may or may not
yield a safety certificate.

This chapter is based on the author’s experience as a certifying evaluator
in the area of railway systems (urban, freight and main lines). In [BOU 07b],
we provided an assessment of the implementation of railway standards.

Finally, we shall present a few normative contexts. The aim of this
chapter is not to present all of the existing norms and standards and the
links between them, but rather to lay down a few points of reference

14 CENELEC 50128 and IEC 62279 Standards

which will be useful for the coming discussion. [BAU 10] offer a
presentation of the applicable standards arranged by their domain of
application (aeronautics, the automobile industry, railways, the nuclear
sector, space and automaton-based systems) and a comparison of those
standards (points of similarity and of difference).

2.2. Generic standards

2.2.1. Introduction

Electrical/electronic systems have been used for many years, to perform
functions relating to safety in the majority of industrial sectors. The IEC
61508 standard [IEC 08] presents a generic approach to all activities linked
to the safety lifecycle of electrical/electronic/programmable electronics
(E/E/PE) systems which are used to perform safety functions. This standard
was published by the International Electrotechnical Commission1 (IEC),
which is an international standardization organization in charge of the
domains of electricity, electronics and the related techniques.

IEC 61508 [IEC 08] sets out a generalized approach to safety2, which is
comparable to the ISO3 9000 system [ISO 08] on quality.

The IEC 61508 standard [IEC 08] is made up of seven parts:

– IEC 61508-1: general requirements;

– IEC 61508-2: requirements for electrical/electronic/programmable
electronic safety-related systems;

– IEC 61508-3: software requirements;

– IEC 61508-4: definitions and abbreviations;

– IEC 61508-5: examples of methods for the determination of safety
integrity levels;

1 For further information, see www.iec.ch/.
2 IEC 61508 [IEC 08] does not cover the aspects of confidentiality and/or integrity (i.e.
security), which relate to the establishment of precautions to prevent unauthorized persons
from harming and/or affecting the safety provided by the E/E/PE safety-related systems. In
particular, such precautions involve monitoring of the networks in order to prevent intrusion.
3 See www.iso.org/iso/home.html.

Railway Standards 15

– IEC 61508-6: guidelines on the application of IEC 61508-2 and IEC
61508-3;

– IEC 61508-7: overview of techniques and measures.

The IEC 61508 standard [IEC 08] is absolutely coherent with the
convergence which is observed between the various industrial sectors
(aeronautics, nuclear, railway, automobile, manufacturing, etc.), but the
content of IEC 61508 is so complex (or unusual) that it is necessary to be
guided through the standard. Thus, interested readers should refer to
[ISA 05] or [SMI 07].

In most cases, safety is accomplished by many systems of diverse
technologies (mechanical, hydraulic, pneumatic, electrical, electronic,
programmable electronics). The safety strategy must take account of all the
factors which contribute to safety. Thus, IEC 61508 [IEC 08] sets out an
analytical framework which applies to safety-related systems based on other
forms of technology, before going on to specifically discuss electronics-
based systems.

Owing to the wide variety of E/E/PE applications and their greatly-
varying degrees of complexity, the exact nature of the safety measures to be
taken depends on factors specific to the application; for this reason, in IEC
61508 [IEC 08], there are no general rules, but rather recommendations
regarding the analytical methods that should be used.

2.2.2. Safety levels

IEC 61508 [IEC 08] defines the concept of the Safety Integrity Level
(SIL). It should be noted that a similar concept exists in all domains, although
the vocabulary used varies from one field to another. In aeronautics, one
speaks of the Design Assurance Level (DAL) and in other domains, of the
SIL. In the automotive industry, the concept of the Automotive SIL (ASIL)
is used.

The SIL offers a scale against which to measure and quantify the safety
level of a system. Safety Integrity Level 1 (SIL 1) is the lowest level
possible, and SIL 4 the highest. The four SILs for a safety function are
characterized by the potential impact of a failure:

– SIL 4: catastrophic impact (highest level);

16 CENELEC 50128 and IEC 62279 Standards

– SIL 3: impact on the community;

– SIL 2: major protection of the installation and of production, or risk of
injury to employees;

– SIL 1: minor protection of the installation and of production (lowest
level).

The standard details the requirements which must be fulfilled in order to
reach each safety integrity level. These requirements are more demanding for
higher SILs, with a view to ensuring a lesser probability of a dangerous fault.

Using the SIL scale, it is possible to set out prescribed practices relating
to the integrity of the safety functions being entrusted to the E/E/PE systems.

2.3. History between CENELEC and the IEC

Electric/electronics systems have been in use for many years, performing
safety-related functions (the term safety is used in this context in most
industrial sectors). IEC 61508 presents a generic approach to all activities
pertaining to the safety lifecycle of the E/E/PE systems used to perform
safety-related functions.

Figure 2.1 shows a link between the IEC 61508 [IEC 08] and IEC 61513
[IEC 11] standards, but this link is inaccurate. In actual fact, standards were
in place in the nuclear industry long before IEC 61508 was written, and the
link exists only because of the naming system.

Figure 2.1. IEC 61508 and its offshoots

IEC 61508
Standard général

IEC 61511
Norme sectorielle

Processus industriel

IEC 61513
Norme sectorielle

Nucléaire

IEC 62061
Norme sectorielle

Machine

EN 5012x
Ferroviaire

ISO 26262
Domaine automobile

General standard

Sector-specific standard

Industrial processes

Sector-specific standard

Nuclear industry

Sector-specific standard

Machine industry
Railway industry Automotive industry

Railway Standards 17

2.4. CENELEC referential framework

Today, railway projects are governed by texts (laws, decrees,
declarations, etc.) and a normative framework (CENELEC4 EN 50126
[CEN 99], EN 50129 [CEN 03] and EN 50128 [CEN 01a, CEN 11a]) which
intend to define and achieve certain objectives in terms of RAMS
(Reliability, Availability, Maintainability and Safety).

The three standards cover the safety-related aspects of the system, down
to the hardware and/or software elements used. Figure 2.2 illustrates the
relationships between the various CENELEC standards.

2.4.1. Introduction

As Figure 2.1 illustrates, the railway standard CENELEC EN 5012x is an
offshoot of the generic IEC 61508 safety standard [IEC 08] which integrates
the specific features of the railway domain and of the successful experiments
(SACEM5, TVM6, SAET-METEOR [MAT 98], etc.).

Figure 2.2. Main standards applicable to railway systems

4 Comité européen de normalisation électrotechnique – see www.cenelec.eu/.
5 SACEM, which stands for Système d’Aide à la Conduite, à l’Exploitation et à la
Maintenance (Driving, Operation and Maintenance Support System), is a system used on
Line A of the Paris RER (suburban rapid rail) to display signaling data in the driver’s cabin.
6 TVM, which stands for transmission voie-machine (Track-to-Machine Transmission), is a
railway signaling system in use in the driver’s cabins on France’s high-speed train lines.

Système ferroviaire complet

EN 50159

Sous-système individuel

Partie individuelle de l’équipement

EN 50128 EN 50129

EN 50126Système de signalisation ferroviaire complet

Complete railway system

Complete railway signaling system

Individual subsystem

Individual part of device

18 CENELEC 50128 and IEC 62279 Standards

The railway standard CENELEC EN 5012x is applicable both to urban
rail applications (e.g. the Paris metro and RER, etc.) and to conventional rail
applications (high-speed lines, ordinary trains, freight trains).

Figure 2.3. Organization of standards applicable to railway systems

One of the restrictions on this railway standard (CENELEC EN 5012x)
relates to the domain of application of CENELEC EN 50128 [CEN 01a,
CEN 11a] and CENELEC EN 50129 [CEN 03], which are normally limited
to the signaling subsystems (see Figure 2.3). For the hardware architectures
used in other subsystems, there are previous standards which remain
applicable (NF F 00-101, etc.). Work is currently under way at the various
certification bodies to extend and generalize these two standards to the
whole of the railway system.

2.4.2. Description

In the area of railways, the normative referential framework comprises
the following standards:

– CENELEC EN 50126 [CEN 99], which describes the methods to be
used to specify and demonstrate reliability, availability, maintainability and
safety (RAMS);

– CENELEC EN 50128 [CEN 01a, CEN 11a], which describes the
actions to be taken in order to demonstrate the safety of the software;

Complete railway
system

Complete railway
signaling system

Subsystem

EN 50159 EN 50128

EN 50129

EN 50126

Hardware Software

Communication
system

Hardware Software

Subsystem

Complete railway
signaling system

Complete railway
system

Communication
system

EN 50128

EN 50129

EN 50126

EN 50159

Railway Standards 19

– CENELEC EN 50129 [CEN 03], which describes the structure of the
safety file and the means needing to be mobilized to ensure the safety of the
hardware.

Thus, CENELEC EN 50129 is oriented more specifically toward the
management of the safety of the hardware architectures. In [BOU 10a], we
presented the principles of safety management for hardware architectures, and
we presented examples of safe, functioning architectures.

CENELEC EN 50128 [CEN 01a, CEN 11a] pertains to the management of
the safety of the software applications. In [BOU 11b], we presented safety
management techniques for a software application.

These standards are complemented by a standard relating to the
“transmission” aspects. The 2001 version of CENELEC EN 50159 was
divided into two parts: EN 50159-1 [CEN 01b], devoted to closed networks,
and EN 50159-2 [CEN 01c], devoted to open networks. The new version of
CENELEC EN 50159 [CEN 11b] supersedes the previous version, and covers
all types of networks (both open and closed).

Thus, CENELEC EN 50159 also covers some of the aspects relating to
security. It has emerged, in the wake of the advent of new uses (e.g. the use
of Wi-Fi networks) that this standard is no longer sufficient, because it does
not relate to the management of COTS or to physical defenses against
intrusion into premises.

It is worth pointing out that in addition to these standards pertaining to
the architecture of a device (software + hardware), there are further
standards which regulate the device’s interactions with the environment, such
as CENELEC EN 50121 [CEN 06], which deals with the issues of
electromagnetic compatibility (EMC), both from the point of view of EM
radiation emitted from the railway system into the outside world and from
the point of view from the environment into the railway system (affecting
the train and fixed equipment).

Figure 2.4 examines the safety lifecycle in the context of the railway
domain. The cycle is divided into three stages:

– preliminary analyses (stages 1, 2 and 3);

20 CENELEC 50128 and IEC 62279 Standards

– creation of the system, the subsystem and/or equipment (stages 4–9);

– commissioning and use of the system (stages 10–14).

Figure 2.4. Safety lifecycle

In CENELEC EN 50129 [CEN 03], system requirements are divided into
safety-related and non-safety-related requirements. CENELEC EN 50126
[CEN 99] suggests the following steps (here we are only looking at the
aspects of prototyping/production of the system) to outline and demonstrate
the safety of a system:

– define the system and application conditions: draw up a mission profile,
describe the system, create an operation/maintenance strategy and identify any
constraints caused by the pre-existing infrastructure (other systems or other
lines developed previously);

– perform a risk analysis;

– in terms of the system requirements: analyze the requirements, detail
the system and its environment, and define the system’s demonstration and
acceptance criteria;

– allocation of system requirements: specify the subsystem requirements,
the equipment and/or component requirements, and define the acceptance
criteria for these elements;

J1 - 13

Concept -1

Définition du système et conditions
d’application -2

Analyse du risque -3

Exigences du système -4

Allocation des
exigences du système -5

Conception et réalisation -6
(nécessité de reprendre le cycle)

Fabrication -7

Installation -8

Validation du système -9

Acceptation du
système - 10

Exploitation et
maintenance -11

Retrait du service
et dépose -14

Modification/mise à niveau -12

Surveillance des performances -13

Concept –1

Definition of system and application
conditions –2

Risk analysis –3

System requirements –4

Apportionment of
system requirements –5

Design and realization –6
(entails repeating the cycle)

Production –7

Installation –8

System validation –9

Acceptance of
system –10

Operation and
maintenance –11

Modification and retrofit –12

Performance monitoring –13

Disposal and
decommissioning –14

Railway Standards 21

– design and implementation: carry out the design and development
processes, and perform the necessary checks and validation.

2.4.3. Implementation

The purpose of the CENELEC framework is to:

– provide a Europe-wide common framework in order to encourage the
expansion of the railway-equipment market and enhance the interoperability,
interchangeability and cross-acceptance [CEN 07] of railway equipment;

– deal with the specific requirements of the railway domain.

Safety, in the sense of operational safety, is assured by the use of
predefined concepts, methods and tools, throughout a system’s entire
lifecycle. A safety study entails an examination of the system’s faults. We
must identify and quantify the seriousness of the potential consequences and,
as far as possible, the frequency with which such faults can be expected to
occur.

Amongst the risk-reduction measures which can be taken to ensure the
level of risk is acceptable, CENELEC EN 50129 [CEN 03] describes the
setting of safety objectives (see Chapter 3) for the functions of the system
and of its subsystems. The Safety Integrity Level (SIL) is defined as one of
the discrete levels to specify the safety integrity requirements for the
functions assigned to the safety-related systems.

More specifically, CENELEC EN 50128 [CEN 01a, CEN 11a] is devoted
to the aspects of software development for use in railway systems. In
reference to the software, the Software SIL (SSIL) defines varying levels of
criticality, ranging from 0 (no danger) to 4 (critical).

Remember that a definition of what is meant by “software”
(Definition 1.3) was given in section 1.4.1.

Safety requirements have always been taken into account in complex
systems (rail transport, air transport, nuclear power plants, etc.). Today,
though, contractual obligations as regards performances have led industrialists
in the railway sector, for example, to very carefully define the parameters

22 CENELEC 50128 and IEC 62279 Standards

affecting a system’s reliability, availability and maintainability (RAM). The
choice of norms and standards is the responsibility of the designer and/or
manufacturer.

2.4.4. Software safety

CENELEC EN 50128 [CEN 01a, CEN 11a] specifies the procedures and
technical prerequisites applicable to the development of programmable
electronic systems used in railway control and protection applications.
CENELEC EN 50128 is therefore not normally applicable to all software
applications in the rail sector.

EN 50155 [AFN 07], on the other hand, is normally applicable for all
onboard applications on a train.

2.4.5. Safety versus availability

The standards in force describe the processes, methods and tools
necessary to attain and demonstrate the required SIL. It is a question of
obligatory techniques, which applies in addition to the obligations in force
regarding the quantitative and/or qualitative results.

At this early stage, we have chosen to focus on safety, because safety is
the main aspect of operational fitness which is crucial to analyze. There are
few, if any, requirements in terms of reliability or availability which are set
out by the normative framework.

In the context of critical systems (SIL 3 and 4), the principles of safety
implementation run counter to the principles of system availability. For
example, in the area of railways, the safety status which is “train stopped”
has a significant impact on the system’s overall availability. On the other
hand, the obligations governing the creation of a critical system help to
improve the reliability of the software. This reliability is achieved by
conditioning the complexity and quality of the software.

However, in the context of non-critical (SIL 0) and low-criticality
software applications (SIL 1 and SIL 2), the process of software

Railway Standards 23

development is subject to less stringent constraints (in terms of the choice of
programming language, the tools and the processes used). This lessens the
quality of the software, leading to software packages whose reliability is
poor. More specifically, in the context of SIL 0, 1 or 2 systems, the
industrialists can use “Commercial Off-The-Shelf” (COTS) products.
Quality assurance, which has a direct impact on the reliability and
availability of COTS products, remains a current issue.

2.5. EN 50155 standard

EN 50155 [AFN 07] is applicable for all electronic equipment7 fitted in
railway vehicles. This standard is not solely devoted to software
applications: section 7.3 therein gives an in-depth description of the rules
applicable to software-related aspects.

The first requirement relates to the obligatory conformance to ISO
9001:2008 [ISO 08]. The second relates to the putting in place of
configuration-management procedures, which must cover the software
applications developed but also the tools used for development and
maintenance.

The third requirement relates to the definition of a lifecycle for the
development of a software application, which must be structured and
documented.

As illustrated by Figure 2.5, the development cycle advocated by
EN 50155 [AFN 07] is divided into five stages:

– specification of the software;

– design of the software;

– testing of the software;

– testing of the hardware/software integration;

– maintenance of the software application.

7 In this context, “electronic equipment” includes devices used for command, regulation,
protection, power supply, etc.

24 CENELEC 50128 and IEC 62279 Standards

For the specification phase, EN 50155 [AFN 07] introduces the concept
of “requirements” and that of a “specifications list”, but does not go into any
greater depth about the concept of requirements.

Figure 2.5. Development cycle advocated by EN 50155

As regards the software-development phase, section 7.3.2 of EN 50155
[AFN 07] states that a modular approach is needed (i.e. the software is
divided into small components – or “modules” – which limits the size and
the number of interfaces). The standard also prescribes a clearly-defined
approach (procedure, list of documentation needing to be produced, type
plan, standardization, etc.) and a structured method (logic/function
block diagrams, sequence diagrams, data flow diagrams, truth tables/
decision tables). With regard to the code, the standard states that it is
necessary to choose a programming language which offers easy verification
(requiring a minimum level of effort for understanding). The development
method and the programming language should make it easy to analyze the
code. The program’s behavior should be able to be deduced from analyses of
the code.

1. Spécification
du

logiciel

2. Développement
du

logiciel

3. Tests
du

logiciel

4. Tests
d’intégration

logiciel/matériel

5. Maintenance du logiciel

1. Software
specification

2. Software
design

3. Software
testing

4. Software &
hardware

integration testing

5. Software maintenance5. Software maintenance

1. Software
specification

2. Software
design

3. Software
testing

4. Software &
hardware

integration testing

Railway Standards 25

With regard to testing, EN 50155 [AFN 07] recommends using the
technique of boundary-value analysis, equivalence class partitioning and
input domain partitioning. Test cases may be selected using a model and a
simulation of the process.

The maintenance phase is a key point: it is essential to guarantee that
any modification, addition of a function or adaptation of the software
application – e.g. for a different type of train – does not compromise safety.
The management of the maintenance phase must be fully defined and
documented. One of the difficulties with the maintenance phase is to manage
the simultaneous evolution of multiple parallel versions of the software, and
installation on the ground and aboard the fleet (as the trains are of different
types and are parked in different places).

EN 50155 [AFN 07] recommends that all the elements produced be
recorded in a format that facilitates subsequent analysis. With regard to the
documents that must be produced, the standard gives the following list:

– software requirements specification with a demonstration that the
system requirements are fulfilled;

– a description of the architecture and the design of the software
application capable of serving the requirements expressed in the software
requirements specification;

– for each software component, it is necessary to give a description of the
execution characteristics (list of inputs and outputs, etc.), the source code, the
description and the test results;

– the dataset for the software application (global variables and global
constants) must be described in a document known as the “data dictionary”;

– a description of the memory embedding of the software application;

– a description and a reference (name, version) of the tools used to
develop the software application and produce the executable file;

– a description of the integration tests and of the associated results.

In sections 7.3.2 and 10.2, the EN 50155 [AFN 07] standard states that
the CENELEC 50126 [CEN 99] and 50128 standards [CEN 01a, CEN 11a]
are applicable in this area, but does not clearly define in what way they are
applicable, or the precise extent of that applicability.

26 CENELEC 50128 and IEC 62279 Standards

2.6. CENELEC 50128

2.6.1. Introduction

CENELEC 50128 [CEN 01a, CEN 11a] applies for both safety-related
and non-safety-related domains – for this reason, CENELEC 50128
introduces SSIL 0, which pertains to non-safety-related software applications
– and applies exclusively to software and the interaction of a software
application with the whole system.

This standard recommends the implementation of a V-lifecycle, from the
software specification to the software testing. One of the peculiar points of
CENELEC 50128 lies in the need to deconstruct the implementation of the
resources. For this reason, it is said to be a “resources standard”.

 CENELEC 50128 explicitly introduces the concept of evaluation. As we
showed in [BOU 07a], for software applications, evaluation involves
demonstrating that the software application achieves the safety objectives set
for it.

Evaluation of the SIL of a software application is based on:

– the use of audits: is quality-assurance (QA) effectively employed on the
project?

– reviewing of the plans (software QA plan, testing plan, verification and
validation (V&V) plan, etc.);

– reviewing of the elements produced (documents, source code,
generation chain for the executable, data production process, test scenarios
and results, safety assessment (e.g. Software Error Effect Analysis (SEEA)),
etc.);

– formulation of comments and potential non-conformities;

– formulation of an assessment in the form of an evaluative report.

2.6.2. SSIL management

In Chapter 4, we shall present the approach to safety management as
proposed by CENELEC 5012x. In this section, we shall focus on how to
identify the SSIL on the basis of the SIL, and outline the general ideas.

Railway Standards 27

2.6.2.1. SSIL attribution

The management of software safety involves management of the SSIL.
As indicated above, the value of the SSIL ranges between 0 (no impact
whatsoever on safety) to 4 (major impact on safety).

Figure 2.6 shows the breakdown of the set Tolerable Hazard Rate (THR)
either for a subsystem in terms of Failure Rate (FR), or for the hardware
making up that subsystem in accordance with the architecture (in which
case, independence hypotheses may be made), and the division of the SIL
either for each subsystem in terms of SIL (giving us the SSIL) or for the
hardware (or software) components:

– the hardware’s SIL is identical to the SIL of the subsystem;

– the software’s SSIL is identical to the SIL of the subsystem.

The switch from a subsystem SIL to a device SIL is made with the rules
introduced above, but it is possible to take account of the architecture of the
device to refine the SILs and SSILs. Thus, the SSIL is linked to an SIL
rather than to a degree of probability.

Figure 2.6. Switch from the THR/SIL for the subsystem to the SSIL for the software package

2.6.2.2. Choice of SSIL

The SSIL is set on the basis of safety analyses as an objective to be
attained in the creation of the software. Thus, CENELEC 50128 introduces

Sous-système

Hardware Software

Equipement

Hardware Software

Equipement

THR

SIL

FR

SIL

FR

SIL SSIL SSIL

Subsystem

Equipment Equipment

Hardware Hardware SoftwareSoftware

28 CENELEC 50128 and IEC 62279 Standards

the concept of independent evaluation to confirm that this objective has been
achieved.

The SSIL is a safety integrity objective which must be met. This
objective cannot be quantified, which is why CENELEC 50128 includes the
idea of evaluation. An outsider, independent of the software development
team, evaluates whether or not the objective has been achieved. It must be
remembered that the main tactic in creating safety-related software is to
monitor the number of system faults, and in order to do so, it is necessary to
monitor the development process and the complexity of the software. The
SSIL is tied in with the concept of confidence, and therefore the question
asked of the evaluator is: do you have confidence in the performance of this
program?

An in-depth analysis of CENELEC 50128 shows that for SSIL1
and SSIL2, the same type of activities are performed; the same is also
true for SSIL3 and SSIL4. Remember that SSIL1 relates not to impacts
on human life but rather to impacts on the equipment, which is why
three levels of SSIL are generally used: SSIL0, SSIL2 and SSIL3/4. If an
SSIL1 is identified, it is recommended that it be reclassified as either an
SSIL0 or an SSIL2 depending on the seriousness of the risks associated
therewith.

2.6.3. Comparison of 2001 and 2011 versions

2.6.3.1. CENELEC 50128:2001

The structure of the 2001 version of CENELEC 50128 [CEN 01a] is
illustrated in Figure 2.7. It should be noted that in this version of the
standard, section 17 describes the management of the software settings. This
section was added after the initial draft. Therefore it does not respect the
same structure as Chapters 8–16, and is very difficult to implement.

Section 16 introduces the basic concepts of software maintenance, whilst
still being orientated toward “bug correction”. In this version, it should be
noted that there is a low degree of common activities (tests, verifications,
etc.).

Railway Standards 29

Figure 2.7. Structure of CENELEC EN 50128:2001

Figure 2.8. Structure of CENELEC EN 50128:2011

30 CENELEC 50128 and IEC 62279 Standards

2.6.3.2. EN 50128:2011

The 2011 version of CENELEC 50128 [CEN 11a] introduces the concept
of software assurance (SwA), which is aimed at creating a software package
with a minimum level of error, based on a Quality Assurance, skill
evaluation, verification and validation, and independent evaluation. It
introduces clear separation between the application data and the software,
which is then called the generic software.

One of the important points in the new version of CENELEC 50128 is
the addition of Clause 9, which is devoted to the oversight of the software’s
maintenance and deployment. Figure 2.8 illustrates the structure of the 2011
version of CENELEC 50128.

2.7. Conclusion

From the above, we can conclude that, irrespective of the specific
domain, there is a referential framework in place which gives a scale that can
be used to quantify a system’s level of criticality. This level of criticality
helps define the amount of effort that must be invested. Safety management
for a critical system involves defining processes based primarily on testing
activities.

As regards the aspect of reliability, for critical systems, it stems from
quality management. On the contrary, for non-critical systems, which are
often COTS, there is presently a real difficulty in defining their true
reliability, although this information is of absolutely crucial importance.

The CENELEC 5012x set of standards identifies an approach to create
the system safely and stay abreast of safety during its operation and
maintenance.

Finally, the CENELEC framework introduces the concept of product
evaluation and certification [BOU 09b]. These concepts will be explored in
detail in Chapter 10.

3

Risk and Safety Integrity Level

3.1. Introduction

The aim of this chapter is to present the concepts of risk, undesirable
events, accidents, severity, frequency and level of risk. Here, we are able to
set out a clearly-defined lexicon, and also point out the differences between
the vocabulary used in different domains.

For example, in aeronautics, we speak of the Design Assurance Level
(DAL), and in other domains, the concept used is the Safety Integrity Level
(SIL). For the automotive industry, the concept of ASIL1 is used, and there
are two new criteria – exposure and controllability – which play a part in the
definition of the risk level.

3.2. Basic definitions2

In the context of railway systems, we seek to prevent or avoid accidents.
An accident (see Definition 3.1) is a situation which may be associated with
various types of damage/injury (individual, collective).

DEFINITION 3.1 (Accident – CENELEC 50129).– An accident is an
unexpected event or series of events causing death, injury, loss of a system
or service, or damage to the environment.

1 Automotive SIL – the automotive industry has adapted the qualifier levels to take account
of the specificities of that domain, for more information see [ISO 11].
2 This section is repeated from [BOU 06].

32 CENELEC 50128 and IEC 62279 Standards

By its very nature, an accident, in order to be prevented, must be taken
into account as an eventuality in the creation of the system. In land transport,
as pointed out by [BAR 90], accidents can be classified into a number of
different categories:

– system accidents: the users of the system are passive, and are caused
harm, by the fault of the staff (maintenance, intervention, operation, etc.),
failures within the system or abnormal conditions in the environment;

– user accidents: this category of accidents relates to events which are
localized to one or a few users (e.g. illness, panic, suicide, etc.) and which
have very little to do with the system;

– system/user accidents: unlike with system accidents, in this case, the
user is active and interacts with the system. The accident is caused by an
improper use of the system (e.g. failure to heed the audio warning of the
doors closing).

From the definition of an accident, we see a new concept appear: that of
an event. This can be refined somewhat by introducing the concept of an
undesirable event (see Definition 3.2).

DEFINITION 3.2 (Undesirable event).– An undesirable event is an event
which should not be allowed to occur, or which should have only a very low
level of probability of occurring.

The harm caused can also be classified into two categories: collective
harm and individual harm.

A user accident is, by nature, likely to cause individual harm, whereas the
other two categories of accidents may cause individual or collective harm.
With this understood, it is then possible to define a level of severity3:
insignificant (minor), marginal (significant), critical and catastrophic.

In [HAD 98], which applies only to rail transport, the authors offer a
typology of accidents which links the categories of accidents, the potential
accidents, the types of harm, the level of severity, the types of hazard and the
hazardous factors. Using this typology, it is possible to show the link

3 We have chosen to focus on the railway domain [CEN 99], but where alternative terms exist
and are used in other domains, they are given in parentheses.

Risk and Safety Integrity Level 33

between a hazardous factor, such as a lightning strike, and a system accident
such as a collision.

Whilst an accident is, by definition, conclusive (i.e. the event must
already have occurred in order for the situation to be called an accident),
there is an intermediary situation: a potential accident. The concept of a
potential accident refers to a known situation which could lead to an
accident.

Figure 3.1. Example of classification of a potential accident

For railway systems, the list of potential accidents (see Definition 3.3)
contains: a derailment, a passenger fall, a collision, dragging of a person,
trapping of a person, electrocution, fire, explosion, flooding, etc.

DEFINITION 3.3 (Potential accident).– A potential accident is an unexpected
event or series of events which could lead to an accident in the wake of the
occurrence of an additional event for which the system is unprepared.

Figure 3.1 is reproduced from [HAD 95]. It shows an example of the
classification of a potential accident relating to a collision. Table 3.1 gives a

34 CENELEC 50128 and IEC 62279 Standards

preliminary list of potential accidents. The situation of a potential accident is
connected to the concept of a hazard (see Definition 3.4).

Potential accident

Passenger fall
The passenger falls from the train onto the platform
The passenger falls, on the train, whilst at a station
The passenger falls from the platform onto the track

Passenger injury

The passenger cannot disembark
The passenger is caught between the train doors and the
platform
The passenger is on the track and is hit by a train
…

Derailment
Derailment due to excess speed
Derailment due to an incorrectly-positioned signal
…

Collision
Collision between trains
Collision with an obstacle

Staff injury
Staff on the track are hit by a train
…

Asphyxia/poisoning …

Burning …

Electrocution …

Fire
Fire on the train
Fire outside of the train

Table 3.1. Example of list of potential accidents

DEFINITION 3.4 (Hazard – CENELEC 50126).– A hazard is a condition
which could give rise to a potential accident.

Thus, a hazard (see definition 3.4) is a hazardous situation, the
consequences of which could harm people (injury or death of persons),
the company (loss of production, financial loss, loss of image, etc.) or the
environment (degradation of the natural world, animal habitats, pollution,
etc.). Depending on whether the cause is random or deliberate
(deterministic), the terms hazard and threat, respectively, are used. Thus, the
term threat is used in the context of security activities.

Risk and Safety Integrity Level 35

Hazards can be classified into three categories: hazards caused by the
system or its components, hazards caused by humans (failure on the part of
the operating staff; failure on the part of the maintenance staff; intervention
by passengers) and hazards caused by abnormal circumstances in the
environment (earthquakes, wind, fog, heat, humidity, etc.).

The identification of hazardous situations for a given system involves
carrying out systematic analyses which include two complementary phases:

– an empirical phase, based on feedback from the ground (a pre-existing
list, accident analysis, etc.);

– a creative and/or predictive phase, which could be based on
brainstorming, projected studies, etc.

The concept of a hazard (a hazardous situation) is directly connected to
the concept of failure.

Figure 3.2 represents the path which leads from the undesirable event to
the accident. It should be noted that the potential accident can only come to
pass in a suitable operational context. Indeed, if the hazard is a driver
ignoring a red light on a secondary track with little traffic, the risk incurred
is less than it would be on a busy main line. Similarly, the path which leads
from an undesirable event to a hazardous situation is linked to a technical
context.

Figure 3.3 illustrates the complete chain of events between the cause and
the potential accident (for further information, readers could consult
[BLA 08], for example). The concept of cause is introduced to form the link
with the different types of failures to which the system may fall prey, such as
the failure of one or more functions (a function may extend transversally to
several internal pieces of equipment), failure of one or more such
components, human error and external factors (EMC, etc.).

Figure 3.4 shows how, for a potential accident, factors come together and
combine, with a definite cause-and-effect web being woven. It is then the
responsibility of the analysts to select the representative (Cause/Undesirable
Event/HazardousSituation/PotentialAccident) scenarios.

36 CENELEC 50128 and IEC 62279 Standards

Figure 3.2. Chain of events leading up to an accident

Figure 3.3. Chain of events leading up to a potential accident

Risk and Safety Integrity Level 37

3.3. Safety enforcement

In this section, we shall discuss and present certain concepts pertaining to
safety. For the most part, the perspective adopted will be that of the railway
domain, but for certain concepts we shall use definitions drawn from other
domains if they are relevant.

3.3.1. What is safety?

In the field of rail transport, two safety enforcement principles are used
(see [BIE 98]): probabilistic safety (see Definition 3.6) and intrinsic safety
(see Definition 3.5).

DEFINITION 3.5 (Intrinsic safety).– A system is said to be intrinsically safe if
we can be certain that any failure of one or more components of that system
will only result in its becoming more permissive than it was at the time the
failure occurred. Note that in rail transport, a complete stoppage of the train
is generally the most restrictive state.

Figure 3.4. Combination of events leading up to a potential accident

Intrinsic safety is based on the physical properties of the components.
Hence, we need to know exactly how the components will behave in case of
one or more faults. Therefore, the components used in intrinsically-safe
systems tend not to be overly complex.

38 CENELEC 50128 and IEC 62279 Standards

DEFINITION 3.6 (Probabilistic safety).– Probabilistic safety involves being
able to demonstrate, a priori, that the probability of occurrence of a
hazardous situation is lower than a predefined tolerable threshold.

Thus, probabilistic safety entails acceptance of the fact that there is no
such thing as zero risk. The concept will be explored in greater detail later
on. The combination of probabilistic safety and intrinsic safety enables us to
define controlled safety. A device is said to have controlled safety if it is
capable of detecting a fault which could lead to a state whose consequences
would be unacceptably severe, and in this case, enters a safe mode.

DEFINITION 3.7 (Computer security).– Computer security is defined by the
set of means and resources employed to minimize the vulnerability of a
computer system to accidental or intentional threats.

Two very different types of threats can be discerned: accidents and
deliberate attacks. A distinction also needs to be drawn between the
prevention of physical harm (Safety) and the prevention of intrusion
(Security).

Safety relates to the protection of computer systems from accidents due to
the environment, or system errors. Safety is a priority in computer systems
which control real-time processes which could endanger human lives
(automated transport, nuclear power plants, etc.). Real-time systems are
subject to very stringent time restrictions.

DEFINITION 3.8 (Safety).– Safety relates to the prevention of catastrophes
(harm prevention).

The defense of computer systems against malicious actions (intrusions,
vandalism, etc.) falls under the remit of “security”. In general, security
relates to systems which perform sensitive processes or handle sensitive data
(e.g. bank-account management, etc.).

With the introduction of new technologies in computer-based systems,
the above is no longer entirely true. In the area of rail transport, technologies
such as Wi-Fi or GSM (or sometimes GSM-R) are being introduced, and
measures will need to be taken to ensure security.

DEFINITION 3.9 (Security).– Security relates to the prevention of intrusion or
confidentiality.

Risk and Safety Integrity Level 39

The basic principle is to prevent the object of the security (the data) from
entering a communication channel: to do so would be compromising for a
certain party, and the system needs to be secured in light of that fact.
Generally, we speak of a “gray channel” for the secured communication
channel. Applications used to communicate over the gray channel must have
a mechanism for encoding and decoding the data exchanged. This
mechanism must be able to serve the security objectives.

The CENELEC EN 50159 standard [CEN 11b] defines different security
objectives depending on the type of network. If we are dealing with a closed
network, the protective measures relate to the integrity of the data received.
With an open network, we need to take account of the possibility of
unauthorized message transmissions4 and modification of the devices.

In the final analysis, the basic errors relating to the messages are limited
to:

– repetition: an existing message is re-sent at an inappropriate moment;

– deletion: a message is destroyed (e.g. an emergency brake command);

– insertion: a message is inserted into the existing data stream;

– sequencing: the sequence of messages is altered (e.g. a message might
be delayed);

– corruption: a message is modified into a different correct message;

– delay: the transmission system is overloaded;

– masquerading: an intruder manages to pass for one of the interlocutors.

CENELEC EN 50159 proposes an approach to handle and demonstrate
security in communications. Ultimately, one of the features of railway
applications is that security is delivered by applications (rather than by the
network) and that in case of failure, the system will enter a predefined
security state (usually passively).

This explains why security (see Definition 3.9) is taken into account in the
design of railway systems. Yet, as explained in [BOU 14b], the addition of

4 Unauthorized messages may be transmitted after eavesdropping on or monitoring
communication channels. The eavesdropping or monitoring is not, in this case, the
undesirable event.

40 CENELEC 50128 and IEC 62279 Standards

remote access requires the taking into account of other types of risks, such as
intrusion, hacking, control appropriation, etc.

3.3.2. Safety management

The safe operation [LIS 95, VIL 88] of a system is ensured by a certain
number of activities based on studies. Such studies must be performed prior
to the design of a system which needs to be safe.

Figure 3.5. Operational safety implementation cycle

Figure 3.5 shows the cycle for implementation of operations safety for a
computer system. The first step is to conduct a rigorous needs analysis. The
studies relating to operational safety must be capable of identifying the risks
and projecting their potential consequences. Thus, it is possible to define
operational safety objectives (in terms of reliability, maintainability,
availability and/or safety) for our system.

Figure 3.6. Specification of system requirements

Risk and Safety Integrity Level 41

The studies relating to operational safety follow the same phases as the
lifecycle (specification, design, production and modification).

Specification is an important step, because it enables the designers to
identify the needs and to clearly set out the system requirements. There are
two types of such requirements: those not related to safety (functional
requirements, non-functional requirements such as performance, etc.) and
those related to safety (see Figure 3.6).

Figure 3.7. Relationship between a failure, a risk and the potential effects

As is shown by Figure 3.7, it is possible to form a link between a risk, the
consequences associated therewith and the potential faults.

DEFINITION 3.10 (Risk).– Risk is a combination of:

– the likelihood of occurrence of an event or series of events leading to a
hazardous situation, or the frequency of such events; and

– the consequences of that hazardous situation.

Thus, in light of Definition 3.10 and as specified by [IEC 08], risk is a
combination of the probability of harm occurring and the severity of that
harm. Severity is characterized by the nature of the harm and the
consequences of the accident (see Figure 3.8).

42 CENELEC 50128 and IEC 62279 Standards

Figure 3.8. Frequency and severity

For each hazardous situation, therefore, we need to define a probability of
its occurrence, or its frequency. With that goal in mind, it is possible to define
a set of categories (see Table 3.2, which is taken from CENELEC EN 50126
[CEN 99]), where each category is associated with a frequency range.

Category Description

Frequent
Likely to occur frequently.
The hazard will be continually experienced.

Probable
Will occur several times.
The hazard can be expected to occur often.

Occasional
Likely to occur several times.
The hazard can be expected to occur several times.

Remote
Likely to occur sometime in the system lifecycle.
The hazard can reasonably be expected to occur.

Improbable
Unlikely to occur but possible.
It can be assumed that the hazard may exceptionally occur.

Incredible
Extremely unlikely to occur.
It can be assumed that the hazard may not occur.

Table 3.2. Frequency of occurrence of hazardous situation

Risk and Safety Integrity Level 43

In Table 3.2, the term “often” indicates that the hazardous situation has
occurred in the past and will likely occur again.

DEFINITION 3.11 (Hazardous situation – IEC 61508).– A hazardous situation
is a situation wherein a person is exposed to a hazardous phenomenon (or
hazardous phenomena). A hazardous phenomenon is a potential source of
danger in the shot and/or long term.

Definition 3.11 introduces a link between the risk and the potential
accident. The hazardous situation is one of the links in the chain in an
accident scenario. It corresponds to an unstable, but remediable, state of the
system.

For each hazardous situation, we need to analyze the consequences it will
have for the system, the people involved and the environment. In order to
quantify these consequences, we can define a level of severity. Table 3.3 is
reproduced from CENELEC EN 50126, and forms the link with the
consequences.

Given the diversity of risks and the impact that they may have on the
system, it is preferable to define categories and associate actions with
those categories. Table 3.4 is an example of categorization. In the
undesirable category, there is a link with the supervisory authority. In
the railway domain, this would be the rail operator or the regulatory
authority.

Level of
severity

Consequences for people or the
environment

Consequences for the
service

Catastrophic
Fatalities and/or multiple severe injuries
and/or major damage to the environment

Critical
Single fatality and/or severe injury and/or
significant damage to the environment

Loss of major system

Marginal Minor injury and/or significant threat to
the environment

Severe system(s) damage

Insignificant Possible minor injury Minor system damage

Table 3.3. Hazard Severity Level

44 CENELEC 50128 and IEC 62279 Standards

Risk category Actions to be applied against each category

Intolerable Shall be eliminated

Undesirable
Shall only be accepted when risk reduction is impracticable and
with the agreement of the Railway Authority or the Safety
Regulatory Authority, as appropriate

Tolerable Acceptable with adequate control and with the agreement of the
Railway Authority

Negligible Acceptable with/without the agreement of the Railway
Authority

Table 3.4. Qualitative risk categories

In order to evaluate the risk on the basis of the definitions given above,
the standards recommend the establishment of a Frequency/Severity matrix.
By way of example, here we have reproduced the matrix (Table 3.5) given in
the CENELEC EN 50126 standard.

Frequency of
occurrence of a
hazardous event

Level of risk (risk category)

Frequent Undesirable Intolerable Intolerable Intolerable

Probable Tolerable Undesirable Intolerable Intolerable

Occasional Tolerable Undesirable Undesirable Intolerable

Remote Negligible Tolerable Undesirable Undesirable

Improbable Negligible Negligible Tolerable Tolerable

incredible Negligible Negligible Negligible Negligible

Insignificant Marginal Critical Catastrophic

Severity level of hazard consequence

Table 3.5. Qualitative risk category

Risk and Safety Integrity Level 45

REMARK.– The content of Tables 3.2, 3.3 and 3.4 is taken directly from the
published standards. The formulation of the elements takes account of the
general nature of the possible application of the tables. Any time the tables
are used, the first step must be to define the terms and their associated
categories in the particular use context at hand.

The acceptable (or tolerable) risk is a value of a risk level arrived at by an
objective, deliberate decision. This threshold of acceptability is known as the
THR (Tolerable Hazard Rate). The THR is expressed as the probability of
occurrence of a failure, expressed in the form 10−x per hour. When
identifying hazardous situations, it is crucial to assign them a THR, which
must be included in the specification.

For a particular system, it is the responsibility of the rail operator to state
the maximum THRs for each potential hazard. The process of safety
management for the railway domain is defined by CENELEC EN 50126
[CEN 99], and is illustrated by Figures 3.4 and 3.5.

Risk management where the risks have the capacity to surpass the THR
involves:

– decreasing the probability of occurrence by way of preventive displays
to reduce the vulnerability of the elements of the system which are most
exposed to that hazardous situation;

– decreasing the severity of the consequences by putting defensive
measures in place.

On the basis of an initial description of the system and a list of
the hazardous situations, it is possible to perform a risk analysis, aimed
at identifying which measures need to be taken in order to render the
risks acceptable. These measures need to be taken when creating the
system.

Figures 3.9 and 3.10 show an example of the process of risk analysis.
This process is applicable to the system, the subsystems and the devices. The
phase of identification of the hazardous situations consists of using the
system interface to study the identification of hazardous situations but also
defining the THR associated therewith.

46 CENELEC 50128 and IEC 62279 Standards

Figure 3.9. Example of process of risk analysis – Part 1

With regard to the risks, if it is possible to eliminate the danger,
obviously we should do so, because this is the most effective way of
reducing the risks. Yet it is often impossible to eliminate the dangers. In such
cases, we need to reduce the risks to an acceptable level.

Figure 3.10. Example of process of risk analysis – Part 2

In order to reduce the risks, we need to reduce the frequency of the
danger and/or reduce the severity of the danger (i.e. the consequences). The
reduction of the frequency and/or severity of the danger is more commonly
denoted by the term “risk management”.

Figure 3.11 presents a diagram of the process of risk management, which
is an iterative 3-phase loop: identifying, evaluating and acting.

Risk and Safety Integrity Level 47

Figure 3.11. Risk-management process

The objectives of risk management are:

– step 1: to identify the dangers associated with the system:

- identify any systematically hierarchically rank all the reasonably-
predictable dangers associated with the system in its application
environment,

- identify the sequences of events which lead to the dangers;

– step 2: evaluate the dangers:

- estimate the frequency of occurrence of each danger,

- evaluate the probable severity of the consequences of each danger,

- evaluate the risk for the system posed by each danger;

– step 3: establish a process to manage the risk at hand:

- establish the hazardous situations register5 (HSR).

Based on the list of safety requirements and the THRs, it is possible to
define a safety integrity level.

3.3.3. Safety integrity

In the various domains (aeronautics, nuclear, space, railways, etc.), a
similar concept is found: that of the safety level. Yet the concept of safety
integrity was first introduced by the IEC 61508 standard [IEC 08].

5 We also speak of a safety log and/or HazardLog (HL).

48 CENELEC 50128 and IEC 62279 Standards

The concept of safety integrity was then taken up and adapted in the
various offshoot standards. For the railway domain, the concept of safety
integrity was taken up in the CENELEC EN 50126, EN 50128 and EN
50129 standards.

The concept of safety integrity comprises two components:

– integrity against random failures.

– integrity against systematic failures.

The main difference between random and systematic failures lies in the
fact that systematic failures cannot be quantified by way of probabilistic
computation.

Random failures result from the hardware; they occur randomly over
time, and are due to aging and wear-and-tear on the hardware. Because of
their nature, software applications are not subject to random failures.

Figure 3.12. Safety integrity

Systematic failures may be due to the hardware and/or the software. They
are due to human errors during the different phases in the life of the system
(a specification and/or design problem, a manufacturing problem, a problem
during the installation, a problem caused during maintenance, etc.). With
regard to systematic failures, it is necessary to employ various methods or
techniques which should help obtain a sufficient level of confidence in the
safety integrity level attained.

Figure 3.6 presents the division of the requirements specification into two
categories: safety-related requirements and non-safety-related requirements.
In view of what was said above, it is possible to refine this division, as
illustrated by Figure 3.13. This figure introduces a new division of the

Risk and Safety Integrity Level 49

safety-related requirements into functional safety requirements and safety
integrity requirements.

Figure 3.13. Specification of system requirements

The functional safety requirements characterize the safety-related
requirements linked to the functionality of the system’s safety functions.

The concept of safety integrity can be characterized as the ability of a
system to fulfill its safety-related functions in specific conditions, in a
predefined operational environment for a given length of time. Safety
integrity (section 4.7 in CENELEC EN 50126 [CEN 99]) is linked to the
probability of not performing the required safety function.

Unlike with IEC 61508 [IEC 08], CENELEC EN 50126 (which is
applicable to the whole of the railway system) does not define the correlation
between safety integrity and the probabilities of failure. On the other hand, it
is necessary to define that correlation for a given application. The safety
functions are assigned to safety-related systems or to external risk-reduction
devices.

The SIL is divided into four discrete values (1 to 4) which can be used to
specify the prescriptions relating to safety integrity.

50 CENELEC 50128 and IEC 62279 Standards

For IEC 61508 [IEC 08], the four SILs for a safety-related function are
characterized by the impact of any failures:

– SIL 4: catastrophic impact (highest level);

– SIL 3: impact on the community;

– SIL 2: major protection of the installation and of production, or risk of
injury to employees;

– SIL 1: minor protection of the installation and of production (lowest
level).

The SIL must be determined by experts, and the SIL must be assigned to
an element which, alone, is capable of serving one or more functions.

3.3.4. Determination of the SIL

It is necessary to put a systematic approach in place (see Figures 3.9 and
3.10) to the determination of the safety requirements. This approach must
take account of the environment, the modes of use and the architecture of the
element under analysis.

After having identified the risks and hazardous situations needing to be
taken into account, we have a list of the hazards and the THRs associated
therewith.

Appendix A in CENELEC 50129 [CEN 03] introduces the method of
subdivision of the THR assigned to each undesirable event. The proposed
method can be broken down into five steps:

– step 1: analysis of the causes of each undesirable event in order to
identify the system functions whose failure leads to the undesirable event;

– step 2: division of the THR allocated to the undesirable event into
THRs allocated to the system functions using AND/OR combinatorial logic;

– step 3: allocation of an SIL to the system functions using the
corresponding SIL table (see Tables 3.6 and 3.7);

– step 4: division of the THR and the SIL of each system function into
the different subsystems supporting that function.

Risk and Safety Integrity Level 51

Figure 3.14. Analysis of causes associated
with each undesirable event

Figure 3.15. Allocation of THRs as a
function of the fault tree diagrams

52 CENELEC 50128 and IEC 62279 Standards

Figure 3.16. Allocation of SILs of the basis of the THRs

The left side of Figure 3.17 shows the architecture analysis whose
input is a given platform, the list of system functions and their THRs,
which analyzes the link between the system functions and the subsystem
functions.

Figure 3.17. Allocation to the subsystems

On the right-hand side of Figure 3.17, we show the link between the
system functions and the subsystem functions. If a subsystem function is

Risk and Safety Integrity Level 53

used only by a system function, then there is a direct allocation of the THR
and the SIL, and similarly in regard to the systemic and subsystemic levels.
If a subsystem function is the support for several system functions, the SIL
of the system function is equal to the maximum of the SIL of the subsystem
functions and the THR of the system function is equal to the minimum of the
THR of the subsystem functions.

An analysis of the causes of the failures will be used as the basis for this
allocation; the THRs of the subsystem functions will be calculated using the
fault tree diagram. As regards the allocation of the SILs:

– the functions, the impact on safety of whose failures are combined by
way of an “OR” branch in a cause tree, are allocated the same SIL as that
which was determined prior to the “OR” branch;

– the allocation of SILs to the functions, the impact on safety of whose
failures are combined by way of an “AND” branch in a cause tree, depends
on the respect of criteria of functional and physical independence of those
functions. If the functional and physical independence of the failure modes
of the functions is clearly established, the SIL which was determined prior to
the “AND” branch can be distributed amongst the functions situated on both
sides of that “AND” branch. Otherwise, the prior SIL must be allocated to
the functions;

– step 5: subdivision of the objectives: the THR of each subsystem is
divided into Failure Rate (FR) of the hardware platforms comprising the
subsystem depending on the architecture (independence hypotheses may then
be made). The overall SIL is divided into SILs in each subsystem in SILs
(SSIL) for the hardware platforms (or software):

- the SIL of the hardware is identical to the SIL of the subsystem;

- the Software SIL (SSIL) is identical to the SIL of the subsystem.

It should be noted that we adopt the hypothesis that a subsystem can be
divided into a “Hardware” and “Software” part.

The switch from the subsystem SIL to local equipment SIL is
made with rules that were introduced, but it is possible to take account
of the architecture of the equipment with a view to refining the SILs and
SSILs.

54 CENELEC 50128 and IEC 62279 Standards

Figure 3.18. Division of the SILs and THR subsystem between the hardware platforms

Indeed, if we implement a homogeneous 2oo3 architecture (same
hardware elements, same OSs6, same memories, etc.), we can improve the
taking into account of random faults, but not design faults or common faults
(processor faults, etc.), so therefore the SIL required for the hardware needs
to be the same as that of the subsystem.

If we put the same software on the same architecture three times, the
software then needs to be SSIL4. If we are able to diversify and demonstrate
the diversification of the software applications, the implementation of
three diversified applications can justify an SSIL2 for those applications.

Putting heterogeneous 2oo3 architecture (three different processors,
diversified memory units, etc.) in place enables us to improve the handling of
design problems and faults with the basic components, whilst limiting
common modes. It is then possible to show that each processing unit can be
assigned an SIL2 objective. If we put in place only one software application,
it will remain SSIL4.

The reasoning processes presented above by way of example show that it
is possible, on the basis of the architecture and an expert judgment, to refine

6 OS for Operating System.

Risk and Safety Integrity Level 55

the allocation of the SILs and SSILs. It should be noted that this allocation
remains subject to an expert judgment, which must be justified, and that it is
by no means an SIL algorithmic technique.

3.3.5. SIL table

IEC 61508 [IEC 08] defines two categories of systems: low-demand
systems and high-demand systems. In order to characterize these two types
of system, it identifies the concept of average probability of failure on
demand (PFDavg) and the concept of probability of failure per hour (PFH).
Table 3.6 presents the definitions of SIL for the two types of system.

Low demand High demand

Safety
Integrity

Level

Average probability of
failure to execute the
function on demand

Safety

Integrity
Level

Probability of dangerous
failure per hour

SIL 4 10-5 ≤ PFDavg < 10-4 SIL 4 10-9/h ≤ PFH < 10-8/h

SIL 3 10-4 ≤ PFDavg < 10-3 SIL 3 10-8/h ≤ PFH < 10-7/h

SIL 2 10-3 ≤ PFDavg < 10-2 SIL 2 10-7/h ≤ PFH < 10-6/h

SIL 1 10-2 ≤ PFDavg < 10-1 SIL 1 10-6/h ≤ PFH < 10-5/h

Table 3.6. SIL table in IEC 61508 [IEC 08]

For the railway domain, Table 3.7 shows the link which exists between the
SIL and the THR. In fact, this table was introduced for railway signaling and
can be extended to all or part of the system. This table can also be redefined.

THR
per hour and per function

SIL

10-9 ≤ THR ≤ 10-8 4

10-8 ≤ THR < 10-7 3

10-7 ≤ THR < 10-6 2

10-6 ≤ THR < 10-5 1

Table 3.7. SIL table from CENELEC EN 50129 [CEN 03]

REMARK.– It should be noted that Tables 3.6 and 3.7 should be read from
left to right. Thus, a THR enables us to define an SIL. The SIL corresponds
to a level of confidence which must be achieved as to the correctness of the

56 CENELEC 50128 and IEC 62279 Standards

system. With rare exceptions, it is possible to convert from an SIL to a THR.
In order to do so, we express the SIL of a hardware element which is
introduced to serve the SIL objective. As this hardware element must be
quantified, a THR is then necessary.

3.3.6. Allocation of SILs

We have presented the general method for allocating SILs and SSILs in
the previous sections. However, as indicated in the explanations given in step
5 in section 3.3.4, it is important to exercise caution: the choice of an SIL
and an SSIL is one which is made by an expert on the basis of the risks
identified, the safety studies (preliminary risk analysis, FMEA, fault tree
analysis (FTA), SEEA, etc. – for a description of the studies performed, see
[VIL 88]), objectives such as the THR and the proposed architecture.

There are approaches (Table 3.8) which are intended to define general
rules for architectures, such as in the Yellow book7 [RSS 07].

Other approaches, such as [HAR 06, PAP 10], go a little further, because
they do not rule out the possibility of an automated SIL-allocation process.

SIL of global level
SIL of low-level functions Combination function8

(e.g. with voters) Primary Other

SIL4
SIL 4
SIL 4
SIL 3

None
SIL 2
SIL 3

None
SIL 4
SIL 4

SIL 3
SIL 3
SIL 3
SIL 2

None
SIL 1
SIL 2

None
SIL 3
SIL 3

SIL 2
SIL2
SIL 1

None
SIL 1

None
SIL 2

SIL 1 SIL 1 None None

Table 3.8. SIL attribution table, extracted from the Yellow Book [RSS 07]

7 The Yellow Book describes the implementation of CENELEC EN 50126, EN 50129 and
EN 50128 for the United Kingdom.
8 As a general rule, the combination function (e.g. a vote situation) has the same SIL as the
global function, but its complexity is very low.

Risk and Safety Integrity Level 57

3.3.7. SIL management

Just as with the IEC 61508 standard [IEC 08], the CENELEC EN 50126,
EN 50128 and EN 50129 standards detail the requirements which must be
satisfied in order to achieve each safety integrity level. These requirements
are stricter for higher SILs, so as to ensure a lower probability of a dangerous
fault.

As Figure 3.19 shows, safety integrity is governed by two groups of
practices. With regard to integrity against random failures, it is necessary to
balance quantitative objectives (such as the Failure Rate) and qualitative
objectives. As regards integrity against systematic failures, we must balance
QA objectives, safety management, and objectives pertaining to the safety
management of the hardware elements.

We shall now give a brief discussion of the techniques used to manage a
platform’s integrity against systematic failures:

– with regard to the measures employed to manage the safety of the
hardware elements (see IEC 61508 Part 2; CENELEC EN 50129), they are
based on safety analysis methods (PHA, FMEA, Hazard and Operability
study (HAZOP), FTA, etc.), design methods9 (redundancy, diversification,
etc.), downgraded-mode and definition-strategy management and a
command of the technical documentation;

– with regard to the quality management strategies (see IEC 61508 Part 1,
CENELEC EN 50129 and CENELEC EN 50128), they are based on an
understanding of quality (implementation of ISO 9001:2008 [ISO 08] or
equivalent), understanding of staff certification and implementation of
independence;

– with regard to the quality management strategies (see IEC 61508
Parts 1 and 3, CENELEC EN 50126, EN 50129 and EN 50128), they are
based on an overall understanding of safety (definition of a strategy which
covers everything from system level to the hardware platforms and the
software they run), a demonstration of safety, management of the safety of
the software applications (use of SEEA10, time-honored development

9 For further information, see Chapter 1 of [BOU 10a].
10 Software Error Effects Analysis (SEEA) is the only safety study performed on all or part of a
software application (see [AFN 90]).

58 CENELEC 50128 and IEC 62279 Standards

methods and “safe” programming techniques) and an understanding of the
technical documentation associated with the different activities (the activities
must be auditable).

Figure 3.19. Safety integrity management

3.3.8. Software SIL

As indicated in section 2.2.2, there are four Safety Integrity Levels
(SILs). When an element is not subject to the SIL standard, it is not
associated with any level, which means that the standard is not applicable to
that element.

For the software, on the other hand, the Software Safety Integrity Level
(SSIL) has been defined. This scale has five values: 0 to 4. Level 4
corresponds to the highest safety integrity level, and level 1 to the lowest.
Level 0 indicates that the particular piece of software is unrelated to safety.

The main difference between the SIL and the SSIL is that for SSIL 0, the
CENELEC 50128 standard [CEN 01a, CEN 11a] identifies obligations. It
should be noted that in the 2011 version of CENELEC 50128, the term
“SSIL” is replaced by “SIL”, but it is preferable to continue to use “SSIL”
when speaking of software.

Note that CENELEC 50128 is written in such a way that one can
consider there to be only three levels:

– SSIL 0: the software is not safety-related, but it is necessary to
demonstrate quality assurance (QA) and configuration management;

Risk and Safety Integrity Level 59

– SSIL 2: the software is associated with a “medium”-level safety
objective, which requires the implementation of production rules designed to
guarantee safety;

– SSIL 3-4: the software is associated with a “high”-level safety
objective, which necessitates the use of appropriate resources and
techniques.

Normally, SSIL1 is not used because it is related to reliability (impact on
hardware and low impact on humans). It is not a good idea to try to manage
software reliability because it is not possible to estimate the number of
residual software defects, and each time we update the software we add new
defects and/or cause residual effects.

CENELEC EN 50128 [CEN 01a, CEN 11a] identifies the tools and
methods designed to produce a “0-fault” program. Below is an extract from
the list of techniques recommended by CENELEC EN 50128:

– use of formal methods;

– use of dynamic tests;

– use of qualifiable development environments;

– use of simulation methods to validate the model and/or select the tests
to be run;

– formalization of teamwork methods (specification, encoding,
verification, validation, etc.);

– implementation of strong quality assurance (using a pre-established,
disciplined system).

3.3.9. Iterative process

The process of definition of the SILs which starts with the hazards
and runs down to the lowest levels (software are hardware) is a process
which must loop back on itself, as is illustrated by Figure 3.20. The
purpose of this loop is to check that all the predefined objectives have been
achieved.

60 CENELEC 50128 and IEC 62279 Standards

Figure 3.20. Allocation of the system to the fundamental elements

3.3.10. Identification of safety requirements

Figure 3.13 introduced the safety-related requirements, but did not
indicate how the link between the risk analyses and the safety requirements
is established. A grasp of the risks enables us to identify the barriers
enabling us to work through to the potential accident and/or to decrease the
severity of the consequences of the accident.

Figure 3.21 presents the barriers in the series of events leading up
to the accident. As a general rule, the barriers relate to the equipment and the
system functions and/or the implementation of special operational
procedures.

Risk and Safety Integrity Level 61

Figure 3.21. Introduction of barriers

Safety studies should enable us to define the safety requirements which
will be served by the barriers. Figure 3.22 shows a certain number of
elements (gray boxes) which could offer the support for safety requirements.

The process began with the identification of the risks and we were able to
identify the system functions relating to safety, and to divide those system
functions between the devices, in order to identify the devices that support the
safety-related functions. Finally, we associate with each device a set of
requirements which is a function of the risk incurred.

One of the important points for this type of analysis is the identification
of the choices and justifications.

The SIL can then be defined as the level of confidence accorded to the
respect of the safety requirements allocated to the function and/or the device.

3.4. In IEC 61508 and IEC 61511

[ISA 05] offers an interpretation and certain rules for the implementation
of IEC 61508 [IEC 08] and IEC 61511 [IEC 05].

IEC 61508 [IEC 08], in Part 5, describes the risk graph as a means of
identifying the SIL. IEC 61511 [IEC 05], in Part 3, presents several methods
for calculating the SIL such as, for instance: the risk graph and the Layer of
Protection Analysis (LOPA). For further information about these methods,
readers could usefully consult [GUL 04] and [AHM 09].

62 CENELEC 50128 and IEC 62279 Standards

Figure 3.22. Position of safety requirements

These three methods to determine the SIL for a given safety instrumented
function need to be performed after a risk analysis is conducted. It should be
noted that, unlike with Appendix A of CENELEC EN 50129 [CEN 03],
which is normative, Appendices D, E and F of Part 3 of IEC 61511 (and for
IEC 61508) are informative – thus, it is not obligatory to use these methods.

3.4.1. Risk graph

One of most widely used techniques to determine the SIL in safety
instrumented systems (SIS) is the so-called “risk graph” method (see
IEC 61508 [IEC 08] and IEC 61511 [IEC 05]).

The adoption of this method leads to the introduction of a certain number
of simplifying parameters to describe the nature of the hazardous situation
when the safety-related systems are faulty or unavailable.

As indicated above, the risk “R” is seen as the combination of a frequency
“f” and a level of severity – we tend to speak more of the consequence, and

Risk and Safety Integrity Level 63

therefore use the symbol “C”. The frequency of the hazardous event (f) is
supposed to be the result of three influencing factors:

– frequency and length of exposure in a hazardous area;

– the possibility of preventing the hazardous event;

– the probability that the hazardous event will occur in the absence of
safety-related systems, which is sometimes called the probability of an
undesired occurrence.

If we combine the fact that R = f * C and that f = F * P * W, then we can
characterize the degree of risk by four parameters:

– the consequence of the hazardous event (C);

– the frequency and length of exposure to danger (F);

– the possibility of preventing the hazardous event (P);

– the probability of the undesired occurrence (W).

For a particular risk, therefore, we simply need to analyze each parameter
and associate them in order decide on the SIL for the safety-related systems.

These four parameters are considered to be sufficiently generic to be
applicable to all systems, and they can be used to create a meaningful
hierarchical ranking of the risks. It is possible to introduce new parameters in
order to refine the methodology.

Figure 3.23 shows an example of a risk graph. In the scales associated with
the parameter “W”, we see the emergence of six classes of requirements,
graded from “a” to “b”, through SIL1 to SIL4. The category “a” thus
corresponds to “no safety requirement” and category “b” to “situation
unacceptable”.

For a specific branch of the risk graph (i.e. X1, X2, … or X6) and, for a
specific W scale (i.e. W1, W2 or W3), the final output of the risk graph gives
the SIL for the system under analysis (1, 2, 3 or 4) and corresponds to a
measurement of the necessary reduction in risk for the system.

In view of the possibility to adapt the parameters to the specific domains
and professions involved in the company, the main difficulty lies in the

64 CENELEC 50128 and IEC 62279 Standards

calibration of the graph. The ranking of the parameters thus needs to take
account of all situations.

Figure 3.23. Example of risk graph

One of the difficulties then is to take account of the imprecision and of
uncertainty on the part of the experts; for this purpose, fuzzy-logic-based
approaches have been put forward (for instance, see [SIM 06]).

3.4.2. LOPA

As indicated in IEC 61511 [IEC 05], the LOPA method (for Layer of
Protection Analysis – see [AIC 93]) begins with the data gathered during the
HAZOP analysis, and takes account of each hazard identified, documenting
the triggering cause and the layers of protection which prevent or lessen the
hazard. Unlike what happens with purely qualitative risk-assessment

Risk and Safety Integrity Level 65

techniques, LOPA gives an estimation of the frequency of an undesirable
event.

The LOPA method evaluates the reduction of the risk by analyzing the
contribution of the different layers of protection (from the intrinsic
characteristics of the process to any emergency measures that are in place)
in case of an accident. It is used to determine which SIL should be
allocated to each safety instrumented function (SIF) and how many layers
of protection are necessary to reduce the risk to an acceptable level. The
aim is to calculate the residual risk expressed in terms of frequency
of accidents per year, which necessitates that we quantify the frequencies
of occurrence of triggering events and the probabilities of failure in each
layer.

The analysis is made up of the following steps:

– definition of the impact of the undesirable event (severity);

– determination and enumeration of all triggering events;

– determination and enumeration of all the layers of protection preventing
the propagation of the triggering event leading to the undesirable event;

– determination of the frequency of the triggering events, based on data
or on expert assessments;

– determination of the effectiveness of the layers of protection in terms of
probability of failure when needed;

– calculation of the frequency of the undesirable event.

The LOPA method applies only for function on demand (the safety
system is called upon only in the presence of an event triggering the
hazardous situation which is independent of that event) and it is not suitable
for continuous mode (any fault in the safety system is a triggering event for
the hazardous situation).

Unlike with the risk graph method, the LOPA method has the advantage
of not requiring scaling, because the input values are quantified. The
problem does arise, however, with those values which are not commonly
accepted and which differ depending on the sites, the situations, the feedback
from the ground, etc.

66 CENELEC 50128 and IEC 62279 Standards

3.4.3. Overview

One of the main difficulties introduced by this type of approach is the
need to validate a certain number of parameters which have a direct impact
on the choice of the SIL.

The use, in a railway application, of products whose SILs are assigned
with this type of approach will thus be faced with the difficulty of
demonstrating that the initial hypotheses are verified by the use context.

3.5. Conclusion

In this chapter, we have presented the basic method for SIL allocation as
it applies in the field of railway signaling.

As a general rule, we apply the same approach for the other railway
subsystems, but the IEC 61508 framework [IEC 08] is being used
increasingly frequently for the auxiliary parts (tunnel ventilation management
system, PA system on the platforms, etc.).

By defining a normative framework describing what a railway system is,
the aim in the railway domain is to define a railway system as a collection of
products. Building a railway system could, in this way, be viewed as being
similar to building using LEGO®, but with the need to verify the compatibility
of the products.

The acceptance of previously-certified products is therefore a point of
crucial importance, which requires the use of cross-acceptance analyses.

4

Software Assurance

4.1. Introduction

In this chapter, we shall present the prerequisites necessary to implement
CENELEC 50128. The 2011 version of CENELEC 50128 [CEN 11a]
introduces the concept of software assurance (SwA). SwA covers all
activities leading to the confidence that the software is of a certain software
safety integrity level (the SSIL mentioned previously).

For the hardware aspects, there is a whole collection of techniques
(redundancy, diversity, etc.) which can be employed to create safety
equipment that takes account of faults in the basic elements (memory,
processor, ALU, etc.). However, for software, such an approach is unusable.
After all, if we insert safety measures into the software program, we
inevitably make it much more complex, so the number of systematic latent
faults increases, because it is difficult to adequately check very complex
software.

4.2. Prerequisites

CENELEC 50128:2011 considers the implementation of ISO 9001:2008
[ISO 08b] as a prerequisite; so too does CENELEC 50126 [CEN 99],
pertaining to safety management. For this reason, CENELEC 50128:2011
does not identify any activity or organizational constraint for quality
management or safety management.

68 CENELEC 50128 and IEC 62279 Standards

4.3. Quality assurance

4.3.1. Introduction

Definition 4.1 introduces quality assurance with an emphasis placed on
an objective: confidence in the attainment of a prerequisite level of quality.

DEFINITION 4.1 (Quality assurance – QA).– Implementation of an
appropriate set of pre-established, systematic measures to ensure confidence
in the attainment of the required level of quality.

Although its role is to be helpful, quality is often seen by the project
participants as:

– a “word”: it is useless, it is not a tangible part of the project, it
contributes nothing, etc.;

– a “curse”: it is a waste of time, it creates more problems than it solves,
it is a straitjacket, etc.

Quality assurance is an exercise in prescription and control which must
be understood and accepted. It must provide methods and processes, and
must facilitate control of the activities. Thus, the implementation of quality
assurance enables us to have pre-established, systematic activities which are
clearly understood and mastered.

The general measures taken by a company to ensure the quality of its
products or services are described in that company’s “Quality Assurance
Manual” (QAM). Each measure (specification, test, etc.) is defined as part of
a “procedure”. In a complex prescribed strategy, a set of guidelines may be
available, describing how to implement that strategy. Each procedure
associated with a strategy identifies the input and output documents. Typical
guidelines describing the template of the required documents should also be
available.

By employing the pre-established, systematic strategies prescribed in the
quality framework (QAM, procedure, template), skill and efficiency begin to
be seen. Indeed, skill is gained by application and understanding of the
processes. Efficiency, for its part, is achieved by the implementation of
proposed improvements, the understanding and acceptance of the difficulties
encountered during the process, and the implementation of feedback
procedures.

Software Assurance 69

4.3.2. Quality assurance management

4.3.2.1. Prescriptions of standard in force

CENELEC 50128:2011 reiterates the need to have a quality-assurance
strategy based on ISO 9001:2008. In previous versions of the standard, the
existence of a QA system at company level is mandatory (M), and ISO
9001:2008 certification is simply highly recommended (HR), but as Table
A.9 in the latest version of the standard (reproduced here as Table 4.1)
shows, conformance with ISO 9001:2008 has become mandatory. Table A.9
is applicable to all entities involved in the creation of the software, and
hence also extends to the subcontractors and/or co-contractors.

Conformance of the quality strategy to ISO 9001:2008 needs to be
demonstrated. With this in mind, it is possible to establish a matrix (see
Table 4.2, for example) which, on each count of the ISO 9001:2008
requirements, illustrates the link with the company’s quality system (QAM,
procedure, professional guidelines, etc.).

Measurement SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

Accredited EN ISO 9001 R HR HR

Compliant with EN ISO 9001 M M M

Compliant with ISO/IEC 90003 R R R

Company’s quality system M M M

Software configuration management M M M

Checklist R HR HR

Traceability R HR M

Data recording and analysis R HR M

Table 4.1. Reproduction of Table A.9 from CENELEC 50128:2011

Table 4.1 shows new requirements: it is HR to use control lists and a
traceability strategy1 (traceability is mandatory for SSIL3-SSIL4). These two
requirements are not new; indeed, it is not reasonable to attempt to verify an
activity without explicitly stating an objective for that activity. Control lists
are one means to set a direction, as the control list can take account of

1 Requirement management and traceability are presented in Chapter 5.

70 CENELEC 50128 and IEC 62279 Standards

various guidelines linked to different departments (quality, V&V, technical
and safety).

ISO Description Status

4.1 General Requirements Partial

4.2.1 General Documentation Requirements Partial

4.2.2 Quality Manual Partial

4.2.3 Control of Documents Total

4.2.4 Control of Records Total

5.1 Management Commitment Partial

Table 4.2. Conformity matrix to ISO 9001:2008

As for traceability, it is the hinge point of the whole of the CENELEC
referential framework: it is necessary to identify the functional and non-
functional requirements on the basis of the system requirement specifications
(SyRS), extending to the hardware and/or software elements.

In the railway domain, the software will invariably be subject to
independent assessment. With this in mind, it is necessary for the activities
to be identically reproducible and that records are kept which are auditable2
for an external body. Hence, it is important to record and analyze the
elements produced at each step, which is why the last item in Table A.9 is
present, rendering data-recording and analysis “highly recommended” even
when the SSIL is 0. Independent software assessment is discussed in
Chapter 10 of this book.

4.3.2.2. ISO 9001:2008

The international standard ISO 9001:2008 [ISO 08b] is a generic norm
which specifies the requirements pertaining to the quality management
system (QMS) in an organization. It is used when an organization needs to
demonstrate its capacity to regularly deliver a product which conforms to the
customer requirements and to the applicable legal and regulatory

2 “Auditable” means that an external body is able to perform an audit a posteriori and the
elements produced are sufficient to judge whether or not the activity being audited has been
correctly carried out. Thus, it is necessary to leave sufficiently precise records of the activity
as it is being performed.

Software Assurance 71

requirements. It also aims for the continuous improvement of the system and
assurance of conformity with those requirements.

The ISO 90003 guide [ISO 04a], although it takes account of the version
of ISO 9001 from 2000, still remains a useful application guide for the
application to software development but it is not an obligation to implement
CENELEC 50128:2011 and IEC 62279.

All the requirements outlined in ISO 9001:2008 can be applied to any and
all organizations, regardless of their type, size and the final product in
question.

The main advantage of this standard is that it necessitates the definition
of the professional processes so as to make them universally applicable.
Thus, they constitute the knowledge of the company and ensure replay3 and
maintainability over time.

ISO 9001:2008 comprises five main chapters:

– Quality Management System (process approach, general requirements,
documentation) – continuous improvement of the QMS;

– responsibility of the Directors (responsibility, authority and
communication, quality policy, quality objectives, directors’ review);

– resource management (human resources, infrastructure, working
environment);

– product development (planning, client process, purchasing, production,
measuring equipment);

– measurement, analysis and improvement (control, non-conforming
products, internal audits, corrective action, etc.).

It should be noted that CENELEC 50128:2011 only refers to ISO
9001:2008, but a company may have a quality assurance mechanism which
conforms to a different framework such as Capability Maturity Model for
integration (CMMi4) or Software Process Improvement and Capability

3 “Replay” is the ability to repeat activities precisely (“doing and redoing” something). For
effective replay, it is important that nothing should be left implicit.
4 CMMi is a maturity model specific to the software industry which encapsulates a set of
good practices to be employed in development projects. For further developments, see the
website of the Software Engineering Institute: www.sei.cmu.edu/cmmi.

72 CENELEC 50128 and IEC 62279 Standards

dEtermination ((SPICE) – see [ISO 04b]), but in that case, we must provide
evidence (an equivalence matrix such as Table 4.2) to demonstrate the
equivalence with ISO 9001:2008 [ISO 08b].

In the context of railways, IRIS5 [UNI 09] has been defined to integrate
the respect of ISO 9001:2008 and of the CENELEC framework (50126,
50128 and 50129) into a single certification.

4.3.2.3. Indicator

ISO 9001:2008 recommends the establishment of indicators by which to
monitor the quality of the software product and of the process in place.

The 2001 version of CENELEC 50128 [CEN 01a], in section 15.4.5 –
item 7 – called for the definition of metrics (in the sense of quantitative
measures) to be applied to the process and the product. It introduced an
explicit link to ISO/IEC 9126 [ISO 91, ISO 04c].

ISO/IEC 9126 defines and describes a series of quality characters of a
software product (internal and external characteristics, usage features).
These characteristics can be used to specify the functional and non-
functional requirements of the customers and the users.

The characteristics identified by ISO/IEC 9126 are:

– functional capacity: does the software cater for the functional
requirements expressed?

– reliability: can the software maintain its level of service in precise
conditions and for a specific length of time?

– usability: does the software require little effort to use?

– efficacy: does the software require profitable, proportionate sizing of
the hosting platform in relation to the other requirements?

– maintainability: does the software require little effort in order to evolve
to cope with new requirements?

– portability: can the software be transferred from one platform or
environment to another?

5 “IRIS” stands for International Railway Industry Standard. For further information, visit:
www.iris-rail.org.

Software Assurance 73

CENELEC 50128:2011 [CEN 11a] and 62279:2014 [IEC 14] have
transferred the demand for respect of ISO/IEC 9127 to the level of
realization of the software specification requirements (section 7.2.4.1 of
CENELEC 50128).

CENELEC 50128:2011 introduces the need to master the complexity as
illustrated by row 8 of Table A.12. This command of the complexity is “HR”
for all SSILs.

In order to take account of the state of the art, it would have been
preferable to take account of ISO 25000 [ISO 14] for the requirements and
evaluation of software quality. That standard is also known as “SQuaRE”,
which stands for Software QUAlity Requirements and Evaluation.

4.3.3. Realization of a software application

It should be noted that we speak of the “realization” rather than the
“development” of a software application. The realization of a software
application comprises the activities of development but also those of
verification, validation, production, installation and maintenance of the
software application (see Figure 4.1).

Figure 4.1. Steps in the realization of a software program

74 CENELEC 50128 and IEC 62279 Standards

The activities of verification of validation are important, and
will be carried out more or less fully depending on the level of safety required.
As regards the activities of production of the final application and installation,
they are crucial, and require specific processes to be put in place. The
decommissioning (or “retirement”) or a software application is mentioned, but
poses no major problem, unlike the retirement of a complex system, such as
the decommissioning of a nuclear plant or a railway installation.

Figure 4.2. Different cycles in the realization of a software program

The maintenance of the software application remains the trickiest
activity. Indeed, in the wake of a change, it is crucial to maintain a level of
safety whilst keeping the cost of the evolution under control and minimizing
the impact on a system in service.

There is a difficulty facing the maintenance of a software application: the
lifespan of that software application. Indeed, for the railway domain, the
lifespan is between 40 and 50 years; in aeronautics it is forty years; in the
nuclear industry, 50 years; and for the automotive industry, 15 years. In light

Software Assurance 75

of these expected lifespans, it is necessary to take measures to ensure
continuity of service and maintenance of the software application.

As Figure 4.2 illustrates, there are various cycles ((a) V cycle, (b) cascade
cycle, (c) spiral cycle, etc.) for the realization of a generic software
application, but the cycle recommended by the various standards
(CENELEC 50128:2011, IEC 61508, ISO 26262) is still the V cycle.

Finally, we need to define a cycle of realization, and to stay on top of
different aspects such as: application of the realization cycle, requirements
traceability management, change management, configuration management,
tool management, etc.

4.3.4. Software quality assurance plan (SQAP)

Thus, for any given project, we must identify the process of realization of
the software (e.g. the V-cycle shown in Figure 4.3), the quality objectives,
the procedures employed to realize the product and the realization
conditions. Today, it is the V-cycle that is recommended by the various
standards applicable to the realization of safety-related software.

Figure 4.3. V-cycle

76 CENELEC 50128 and IEC 62279 Standards

With this in mind, a Project Quality Plan (PQP) must be drawn up for
each project. The PQP is a document describing the specific techniques
employed by a company to ensure the quality of the product or service to
which the project pertains. As a general rule, not all of the procedures
implemented by a company will be applicable to the project, and certain
specific aspects of that project will need to be taken into account
(e.g. innovation, outsourcing of activity, etc.).

Quality management for the software application involves the
implementation of a “Software Quality Assurance Plan” (SQAP). Indeed, to
ensure quality during the realization of a software application, one must
define the resources that need to be mobilized.

By “resources”, we mean human resources, material resources, and
resources in terms of methods, processes and tools. There are a number of
objectives attached to the SQAP (see Appendix A):

– to define the organization of the project (for instance, see the form of
organization identified in Figure 4.6);

– to demonstrate the suitability of the assigned personnel for their
respective roles;

– to define the software realization cycle, which must take account of
the aspects of development, verification, validation and assessment.
CENELEC 50128:2011 advocates the use of a V-cycle (similar to
that illustrated by Figure 4.3), but it is possible to define other realization
cycles;

– to identify the procedures which are applicable, the applicable guides,
the input elements, output elements and activities to be performed (see
Figure 4.4) at each phase of the cycle;

– to demonstrate conformance to CENELEC 50128:2011;

– etc.

In view of the organization of the project, as a general rule, the SQAP
introduces the lifecycle and fully defines the design phases, involving a
Software Configuration Management Plan (SCMP), a Software Verification
Plan (SVeP) and a Software Validation Plan (SVaP).

Software Assurance 77

Figure 4.4. Description of a step

In certain cases, the SVeP and SVaP are combined in a Verification and
Validation Plan (VVP), which covers the verification of each phase of the
lifecycle, the unit tests, the integration tests (examining software/software
and hardware/software integration) and the target validation tests.

The plans pertaining to the software realization (SQAP, VVP and/or
SVaP, SVeP) need to be verified, and the Quality Verification Report (QVR)
must contain the results of that verification. This verification of the plans
should demonstrate that the company’s QAM and the quality objectives for
the target SSIL have been respected.

Figure 4.5. Hierarchy of plans

78 CENELEC 50128 and IEC 62279 Standards

It is necessary to ensure the quality of the project; in order to do so, we
must put in place a set of metrics by which to evaluate the project and
identify any difficulties. The possible metrics include: number of errors,
number of versions, number of requirements dealt with and/or tested, etc.
These metrics are essential, as they enable us to identify potentially-
problematic situations, such as a peak in demand, improper quality
management, lack of skill, etc.

4.4. Organization

4.4.1. Typical organization

CENELEC 50128:2011 suggests three types of organization, which
depend on the SSIL (SSIL0, SSIL2 and SSIL3/4). Figure 4.6 represents a
complete organization for a software realization project of SSIL3/4.

Figure 4.6. Typical architecture for an SSIL3/4 project as described by CENELEC 50128

The shaded boxes in the above figure contain two roles (QUA and RAMS)
which are not in the CENELEC 50128:2011 framework but are introduced by
the application of ISO 9001:2008 and CENELEC 50126 [CEN 99].

From Figures 4.6 and 4.7, we are able to identify the hierarchical links
and the levels of independence. The dotted-line boxes represent two
independent organizations.

The realization of a program with SSIL4 will involve at least eight
people on the project, who will need to assume 11 roles:

– QUA: the quality engineer is in charge of verifying the proper
implementation of the quality procedures and the company’s rules in the

Software Assurance 79

project. He/she must also verify the correct application of the plans (SQAP,
VVP, SCMP, etc.);

– RAMS: the safety engineer is in charge of managing the safety analysis
related to the desired SSIL for the software;

– PM: the project manager is in charge of managing and organizing the
activities involved in the realization;

– RQM: the requirements manager is responsible for clearly laying out
the requirements (see Table 4.2);

– DES: the designer is responsible for constructing the architecture and
coming up with the design for the software;

– IMP: the implementer is charged with producing executable code on the
basis of the design;

– INT: the integrator is in charge of the integration of software
components that have already been tested. This integration continues until a
complete software package has been constructed;

– TST: the tester’s task is to perform the component test and the overall
software test;

– VER: the verifier’s task is to perform verifications and checks, which
may relate to a document, a file, a process, etc.;

– VAL: the validator must, on the basis of the various activities, confirm
whether or not the software can be considered valid;

– ASR: the assessor is independent of the realization team, and must
reach a verdict as to the achievement of the SSIL.

Appendix B of CENELEC 50128:2011 introduces a description of the
responsibilities and skills required for each role. This breakdown makes it
clear that no one person can correctly realize a software program: a diverse
set of skills is required for each phase.

It should be noted that in IEC 62279:2014 [IEC 14], quality was taken
into account by the introduction of the role of the Quality Assurance
Manager (QUAM) added alongside the VER. IEC 62279:2014 thus
advocates the same approach, but new roles have been introduced (see
Figure 4.7), such as the Configuration Manager (CGM) and the reviewer
(REV), and therefore Appendix B in that document is fuller:

80 CENELEC 50128 and IEC 62279 Standards

– QUAM: the quality assurance manager is the person in charge of the
SQAP and of verifying that the plans are correctly implemented;

– CGM: the configuration manager is the person in charge of overseeing
the configuration and producing the associated documents (SCMP, SwVS6);

– REV: the reviewer is the person in charge of carrying out a review of
the documents output at each phase of the project.

Figure 4.7. Typical architecture for an SSIL3/4 project as described by IEC 62279

4.4.2. Skill management

Clause 5 of CENELEC 50128:2011 places emphasis on the management
of the skills at work during the project and on the formalization of that
management process. Normally, the SQAP must contain elements
demonstrating the skills of the people involved for the roles that they
assume, but this management may be formalized at company level.

This skill management and/or justification cannot be based solely on the
management of curricula vitarum (CVs). It is crucial to be able to properly
demonstrate that the personnel are adequately qualified for their various
roles.

One of the difficulties in skill management lies in the management of the
skills of people outside the company (at subsidiary companies,
subcontractors, experts to whom work is outsourced, etc.). The labor code
and the commercial legislation include the prohibition to manage the skills
of external workers, but ISO 9001:2008 does not allow for external skill
management.

6 SwVS for Software Version Sheet.

Software Assurance 81

In railway projects, it is important to put in place a managerial strategy
(job description, skill sets, identification of requisite prior training, etc.),
which can be used to demonstrate that the external personnel are adequately
skilled and are capable of assuming the roles assigned to them.

For subcontracting (where work is done for a flat fee by an outside party),
it is necessary to demonstrate that the subcontractor has a skill-management
scheme and is able to assign the various roles in the projects to the
appropriate people, but it is crucial for the customer to perform at least one
audit to check that this skill management works properly. In general, this
audit of the subcontractor is performed at the same time as the audit to
demonstrate ISO 9001:2008 conformance.

Appendix B in CENELEC 50128:2011 and in IEC 62279:2014 presents
the roles and, for each role, identifies the responsibilities and skills required
(see Table 4.3). It should be noted that for each role, we find the need for
knowledge (at least familiarity with the part of the project in question) and
for familiarity with the regulatory framework.

Role: requirements manager: RQM

Responsibilities:

– must be in charge of specifying the software requirements;
– must deliver the specifications laid out by the software requirements;
– must establish and maintain traceability to and from the requirements at system level;
– must ensure that the requirements relating to the specifications and the software are

taken into account in the management of the modifications and of the configuration,
including the state, version and authorization status;

– must ensure consistency and completeness in the specification of the software
requirements (with reference to the requirements of the end user and the final
environment of application);

– must develop and maintain the requirement documents relating to the software.

Main skills:

– must be competent in requirements engineering;
– must have experience in the field of application;
– must have experience in the safety criteria in the field of application;
– must understand the overall role of the system and the environment of its application;
– must understand the analytical techniques and their results;
– must understand the applicable regulations;
– must understand the requirements set out by CENELEC 50128.

Table 4.3. Extract from Table B.1 in CENELEC 50128:2011

82 CENELEC 50128 and IEC 62279 Standards

For management of the external people involved in the project, it is
important to request certification of training in CENELEC 50128:2011 (the
request may also be extended to the whole of the CENELEC framework)
and in the legislative context.

Figure 4.8 introduces an example of a process of resources which is
organized around a phase of allocation. At entry into the allocation phase,
we have job sheets which, for each role, define the requisite skills and level
of training, and the list of people both within and outside the company who
need to be involved in the project. Upon completion of the allocation phase,
we must find justifying factors which demonstrate that the people to whom
each role has been assigned are competent for those roles. In order to do so,
we need to be capable of linking a person to a role, and we must have
elements of justification which show that the requisite skills have been
acquired, or that further training must be undertaken.

Figure 4.8. Process of resource and skill management

4.5. Configuration management

The software forms part of a set of a piece of equipment whose
configuration must be managed. For this reason, at system level, we must
have a “Configuration Management Plan” (CMP). The CMP must cover all

Software Assurance 83

aspects of the equipment: pneumatic, mechanical, electrical, electronic,
hardware, software, maintenance tools, etc. The CMP describes the naming
conventions, the rules of version management, the means of configuration
management, the organization, the responsibilities, etc., and the contents of
the system version sheet (called SysVS).

With regard to software configuration management, we must be capable,
at all times, of pinpointing the list of elements produced during the
realization of the software application and the associated versions.

It should be pointed out that the sources and the process of generation of
the executable are only a few elements stemming from the realization of the
software, and that it is important not to forget all the documents produced
(plans, specifications, design documents, test files, verification documents,
end-of-phase report, etc.), the various scenarios and test results7 (CTs, H/S
and S/S ITs, OSTs), the results of the tooled verification phases (coverage
synthesis file, metrics synthesis file, code analysts’ report, etc.) and the tools
implemented throughout the process.

Role: configuration manager: CGM

Responsibilities:

– must be party to the configuration management system;
– must establish that all the requirements relative to the software are clearly identified and

attached to the appropriate versions independently within the configuration management
system;

– must prepare the delivery sheets which mention incompatible versions of the software
components.

Main skills:

– must be competent in software configuration management;
– must have an understanding of the requirements set out by IEC 62279.

Table 4.4. Extract from Table B.10 in IEC 62279:2014

Successful software configuration management involves the
establishment of the software configuration management plan (SCMP). The
objective of the SCMP is to define the general approach (what, when and
how), the tree structure(s) to archive all of the elements (source, documents,

7 The strategies of component tests (CTs), integration tests (ITs) and overall software tests
(OSTs) will be presented in Chapter 6.

84 CENELEC 50128 and IEC 62279 Standards

files, tools, etc.) and the people in charge of managing and controlling the
configuration management. The proposed process must define the content of
the software version sheet (SwVS). IEC 62279:2014 introduces a specific
role for this activity and a job specification (see Table B.10).

The configuration management plan must identify a control activity: it is
not acceptable to discover at the end of a project that elements have been lost
or that the configuration is inconsistent. This activity of verification can be
carried out by means of configuration audits. These audits can be performed
by the quality team.

4.6. Safety assurance management

CENELEC 50128:2011 does not identify a safety assurance activity, but
it requires the implementation of CENELEC 50126. CENELEC 50126
defines a cycle for management of the FMDS (see Figure 3.4), which is
based on the acquisition of the needs when the system is removed. For our
purposes though CENELEC 50126 requires the safety team to identify the
safety-related functional requirements and the safety-integrity requirements,
and that they follow all of the requirements throughout the whole of the
cycle.

Figure 4.9. Example of requirements traceability

Software Assurance 85

For this reason, the safety team must verify that all the safety-related
requirements are served by the software application at the stage of its
realization, but also from the moment of its entry into service to its ultimate
decommissioning. The safety team therefore must verify that each safety-
related requirement is correctly dealt with during the realization of
the software. Hence, they must analyze all of the residual faults in the
software in order to verify the impact on the system, and analyze every change
made during the maintenance phase in order to demonstrate that these changes
do not impact on safety.

With regard to the verification of the requirements, Figure 4.9 presents an
example of a situation. The upper-level requirements are broken down at the
following levels and associated with tests. The responsibility of the safety
team is to verify that the safety requirements are correctly dealt with, which
is modeled by the gray box.

The activity of the safety team in the context of a software program must
hinge on the following activities:

– identification of the safety requirements applicable to the software, by
synthesis of the safety documents such as the “Preliminary Hazard Analysis”
(PHA), “System Hazard Analysis” (SHA), “Interface Hazard Analysis”
(IHA), “Sub-System Hazard Analysis” (SSHA) and “Hazard Log” (HL);

– participation as checker in all document reviews, to demonstrate that
the safety-related requirements are dealt with by the software;

– analysis of coverage of the safety requirements by the tests (unit tests,
component tests, integration tests, full system tests);

– analysis of the event reports describing the residual errors;

– identification of the exported constraints on the use of the software;

– a priori analysis of the demands for evolution of the software
application;

– specific analyses linked to the demonstration of the software safety,
such as software error effects analysis (SEEA – see [AFN 90] and
[GAR 94]) and/or critical code reading (CCR);

– independent assessment management: it is necessary to make the
connection with the independent safety assessor (ISA) and to manage the
impact of comments and questions on the project.

86 CENELEC 50128 and IEC 62279 Standards

Figure 4.10 presents the safety management cycle as prescribed by
CENELEC 50126, but positioning a few activities.

CENELEC 50126 recommends that the work of the safety team be
described in the safety assurance plan (SAP), but in view of the specificity of
the activities linked to software safety demonstration, it is preferable to
establish a software safety assurance plan (SSAP) which focuses on the
software.

Figure 4.10. Annotated safety cycle as prescribed by CENELEC 50126

4.7. Verification and validation

4.7.1. Introduction

The realization of a software application must take account of the
design of that application, but it must also take account of the activities

Software Assurance 87

whereby it is possible to demonstrate that the application achieves a
certain level of quality. The attainment of a level of quality involves
demonstrating that no errors have been introduced during the design phase
and that the product corresponds to the requirements which were initially
identified.

As regards V&V management, the activities must be defined and
positioned at an appropriate point in the lifecycle of the software’s
realization (see Figure 4.8). It is important to specify the organization and
responsibilities of the V&V team, and thus draft one or more plans (see
Figure 4.5).

In view of the rules of independence introduced by CENELEC
50128:2011, the people performing the verification may or may not be in the
same team as those in charge of validation. The independence requirements
are linked to the SSIL objective:

– for an SSIL0, the PM can manage the whole of the realization team but
not the quality, safety and evaluation teams. The project team must be
divided into two parts: a development part and a V&V part;

– for an SSIL2, the PM can be in charge of the realization team but not of
the quality, safety and evaluation teams. The project team must be divided
into three parts: a development part, a test realization part and a V&V part;

– for a SSIL3-SSIL4, in addition to the above restrictions, the PM cannot
be in charge of the validation team (see Figures 4.6 and 4.7).

4.7.2. Verification

4.7.2.1. Presentation

Figure 4.11 illustrates the main problem of the realization of a software
application. Indeed, there is a need to realize and at the same time there is a
realization. The purpose of verification is to demonstrate that all the need is
taken into account by the realization and that no unexpected elements exist.
The development team will always have good reasons for introducing
undesired code fragments (recycled functions, addition of a service, etc.) and
for not catering for all the requirements (technical difficulties, oversights,
etc.).

88 CENELEC 50128 and IEC 62279 Standards

Figure 4.11. Verification and validation

ISO 9001:2008 recommends that each production be systematically
verified. CENELEC 50128:2011 stresses the point, indicating that the role of
the verification is to show that the product has been correctly created (i.e.
that no faults have been introduced). Thus, as Figure 4.12 illustrates, the
verification is an activity which covers every phase of the lifecycle.

Figure 4.12. Verification8 and validation

8 In the figure, we have introduced the unit tests, but it is also possible to see module tests or
component tests.

Software Assurance 89

As Figure 4.13 shows, on the basis of the inputs and the activities, we
need to demonstrate that the output elements are correct.

In addition to the elements discussed previously, we must indicate the
need to have elements of proof which are able to demonstrate that the
activity of verification has been correctly performed and that the product
respects the input requirements – hence Definition 4.2.

DEFINITION 4.2 (Verification).– Confirmation by tangible proof that the
specified requirements have been satisfied at each stage in the realization
process.

Figure 4.13. Verification

The verification of a phase requires us to analyze the implementation of
the quality requirements (application of the procedures, respect of formats,
etc.), the application of the processes (respect of plans, respect of the
organization, etc.), the correctness of the activities and the accurate
integration of the safety requirements.

In summary, the objective of verification is to show that we have
correctly made the product. Thus, the associated question is: has the work
been well done?

90 CENELEC 50128 and IEC 62279 Standards

4.7.2.2. Activity of verification

In the context of CENELEC 50128:2011, verification is the activity which
consists, for each phase of the lifecycle, of demonstrating by analysis and/or
testing that, for the specific inputs, at every point the deliverable elements
fulfill the objectives (identified in the plans) and the requirements set for the
phase.

Below is a non-exhaustive list of the activities of verification:

– the reviews relating to the outputs from a phase are designed to ensure
conformity with the objectives and prescriptions for that phase, taking
account of the inputs specific to that phase;

– design reviews: code analysis, verification of coding rules, etc.;

– the whole-program tests performed on the product in order to ensure
that the function conforms to the specification;

– the integration tests performed during the element-by-element assembly
of different parts of a system, based on environmental tests, in order to
ensure that all the parts function with one another in line with the
specifications;

– the component test performed after the realization of a component. At
that point of the presentation, we find the link between the component test
and the module tests and/or unit tests;

– etc.

Section 6.2 of the standard presents the activity of verification. This
activity must be described (in the VVP or in an SVeP), and it must be
justified (see sections 4.8, 4.9 and 4.10 of the standard). The plan (VVP or
SVeP) must be verified, and the QVR must contain the results of that
verification. This verification of the plan must be capable of showing that the
company’s QAM has been respected and that the objectives set out in
CENELEC 50128 for the SSIL objective are met.

As the verifications are performed for each phase, it is necessary to
produce a quality verification report for each of those phases. The
production of that QVR may be coupled with an end-of-phase review.

Software Assurance 91

Measure SSIL0
SSIL1
SSIL2

SSIL3
SSIL4

1. Formal proof – R HR

2. Static analysis (A.19) – HR HR
3. Dynamic analysis and dynamic tests (A.13) – HR HR

4. Metrics – R R

5. Traceability R HR M

6. Software Error Effects Analysis – R HR

7. Coverage of test for the code R HR HR

8. Functional tests and black-box tests HR HR M

9. Performance tests – HR HR

10. Interface tests HR HR HR

Table 4.5. Extract from Table A.5 in CENELEC 50128:2011

Section 6.2 is based on Table A.5 (reproduced above as Table 4.5) which
identifies two “families” of activities:

– static verifications (which do not require execution): rows 1, 2, 4, 5
and 6;

– dynamic verifications (which require execution): rows 3, 7, 8, 9 and 10.

4.7.2.3. Static analysis

In this section, we shall focus on static analyses. Static analyses are a way
of performing a check without executing the code of the application.

Measure SSIL0
SSIL1
SSIL2

SSIL3
SSIL4

1. Boundary-value analysis – R HR

2. Control lists – R R
3. Control flow analysis – HR HR

4. Data flow analysis – HR HR

5. Error guessing R R

6. Design reviews/checks HR HR HR

Table 4.6. Extract from Table A.19 in EN 50128:2011

In Table A.5, traceability (for instance, see Table 4.7) and the metrics are
reiterated as a means of verification in addition to Table A.9 (Table 4.1),

92 CENELEC 50128 and IEC 62279 Standards

with the difference being that the metrics are now merely “R” (as opposed to
“HR”) for verification. Indeed, the verification cannot solely be based on
metrics.

Software
Architecture

File (DAL from
French)

Preliminary Design File (DCP from French)

DAL_EX_1 DCP_EX_11, DCP_EX_12, DCP_EX_13

DAL_EX_2

DAL_EX_3 DCP_EX_11

Table 4.7. Example of traceability matrix between DAL and DCP

Figure 4.14. Example of a control graph

Below are a few metrics (for examples, see [CAB 96]):

– cyclomatic number v(G): the cyclomatic number describes the
complexity of a program. It quantifies the number of paths of execution of a
procedure/function. This metric is measured from the control graph (see
Figure 4.14);

– number of lines of code: there are several variants of this metric (with
or without comments, with or without blank lines). This metric can be used
to evaluate readability and maintainability (presence of comments);

Software Assurance 93

– Halstead metrics: this array of metrics can be used to evaluate the
complexity of a program fragment by examining the complexity of the
expressions used (the operators and operands);

– number of errors detected, number of errors corrected, number of
evolutions.

The cyclomatic number is one of the most prevalent and important
metrics, because it enables us to establish a minimum limit for the number of
unit tests that need to be performed to test a code fragment.

It is important to note that it is possible to construct direct metrics
(relating to the code) or indirect metrics (synthesis of other metrics, process
analysis, etc.).

By way of example, Table 4.8 shows an example of the results of
measures taken by metrics on a code using the analyzer “Logiscope”. The
table shows the name of the metric, the minimum and maximum limits
(chosen for the project or for the company) and the measure which must be
employed.

Metric Name
Min.
value

Max.
value

Value

Number of commands N_STMTS 1 50 70

Program length PR_LGTH 3 350 85

Cyclomatic number VG 1 20 11

Max number of levels MAX_LVLS 1 5 3

Number of non-cyclical paths N_PATHS 1 80 29

Number of “Goto” jumps N_JUMPS 0 0 0

Comment rate (frequency) COM_R 0.2 1.0 0.17

Average length of commands AVG_S 3 7 1.21

Number of input and output points IO_PTS 2 2 2

Table 4.8. Example of a table containing the result of measures gained by various metrics

As regards the applicability of measure theory in object-oriented
languages, there is no answer that can be given at present. Many different
metrics have been developed (see [CHI 94]), but they hinge on the aspect of
complexity of the structure, so it is difficult to establish a clear relationship

94 CENELEC 50128 and IEC 62279 Standards

between them and the conventional indicators of quality (testing effort
required, maintainability, etc.).

In terms of static analysis, there is a link to Table A.19 (see Table 4.6).
Table A.19 cites control lists as “Recommended”, because they cannot be
employed alone for a verification; rather, they represent a guide which
identifies objectives.

Figure 4.15. Design review

From Tables A.9, A.5 and A.19, we must deduce that the use of reviews
(see Figure 4.15) is highly recommended (HR) – an obligation, even – and
that in order to perform these reviews it is necessary to:

– identify the complex elements by using metrics;

– have control lists (for an example, see Table 4.9) to guide the checking
process and set clear verification objectives. Control lists help to identify the
elements of justification which need to be produced;

– verify the validity of the traceability. Traceability is an input and an
integral part of the documents produced during the process of realization of
the software. One of the verification team’s goals is to verify the traceability;

– perform flow analyses (control flow/data flow). Using flow analyses, it is
possible to verify that any variables to be consumed have been produced, that
all produced variables are consumed, that the architecture of the call diagram
is correct, etc.;

– have a formalized review process.

Software Assurance 95

Point Issue
Status:
OK/KO

Comment

R_1 Is the document title correct?

R_2 Is the document reference correct?

R_3 Has the version number been specified?

R_4 Are the title, reference and version number
present on each page?

R_5 …

R_6 Is the list of input documents given?

R_7 Is it possible to identify the versions used?

R_8 …

Table 4.9. Example of a checklist

Checklists (for example, see Table 4.9) must define checkpoints. These
checkpoints are linked to knowledge of the types of errors which may be
introduced during the activity having led to the production of the documents
being verified.

Row 6 of Table A.19 also mentions design analysis, which refers to
verification that the various guides (modeling guide, design guide, coding
guide, etc.) have been taken into account. Indeed, Tables A.4 and A.12 in
CENELEC 50128:2011 identify the need for a guide, so it is important to
check that these guides have been correctly followed.

Formal proof is cited as a means of verification that can be used. The use
of formal proof can replace the testing activities, but if so, it is necessary to
explain and justify how the proof is equivalent to the corresponding battery
of tests. In any case, such proof cannot replace the whole-program testing
activities (functional tests) using the software on its target platform.

4.7.2.4. Dynamic analysis

4.7.2.4.1. Test strategy

Table A.5 illustrates the need to perform functional tests (L8) and
interface tests (L10) from SSIL0 onwards.

96 CENELEC 50128 and IEC 62279 Standards

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

1. Execution of a test dossier on the basis of
boundary-value analysis

– HR HR

...

4. Modeling of performances – R HR

5. Equivalence-class tests and input-partitioning R R HR

6. Structural tests – R HR

Table 4.10. Extract from Table A.13 in CENELEC 50128:2011

The conduction of tests remains the principal activity, which is performed
in three steps:

– a step of selection of test cases (Table A.13-L1), which results in the
compilation of a test dossier (DTx where x = C, I or L);

– a step of encoding of the test cases in computing scenarios;

– a step of execution of the computing scenarios and formalization of the
results in a dossier of test results (DRTx where x = C, I or L).

Measure SSIL0
SSIL1;
SSIL2

SSIL3; SSIL4

1. Functional tests and black-box tests HR HR HR

2. Performance tests – R HR

Table 4.11. Extract from Table A.6 in CENELEC 50128:2011

One of the important points is the selection of test cases, which must
respect three criteria:

– black-box tests (A.5-L8, A.6-L1, A.7-L2);

– boundary-values analysis (A.13-L1, A.14-L3);

– selection of test cases after identification of equivalence classes (A.13-
L5, A.14-L4).

As regards black-box tests, this is the most important point. Constructing
black-box tests consists of not having design elements to identify test cases.
Therefore, during the design phase, the code is not accessible to the team in
charge of identification of the test cases, and therefore it is necessary for the

Software Assurance 97

design elements (detailed design dossiers, for example) to be sufficiently
detailed (presentation of the requirements, of the algorithms and of all the
data being handled). Similarly, it is not possible to take the formal model
which served to generate the code as input to the whole-program testing
and/or integration testing phase.

Table A.7 in CENELEC 50128:2011 relates to the whole-program tests
and introduces the possibility of creating a model of the requirements of the
software specification to selection the test cases (see [BOU 99] for an
example of the implementation).

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

1. Performance tests – HR M

2. Functional and black-box tests HR HR M
3. Modeling – R R

Table 4.12. Extract from Table A.7 in EN 50128:2011

CENELEC 50128:2011 identifies the need to carry out performance tests
and leaves open the possibility of carrying them out during the integration
phase and/or the phase of testing of the whole of the software. These tests
are extremely important and necessitate the identification of the performance
requirements (A.13-L4, A.18): response time, cycle time, processor
workload, memory workload, etc.

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

…

3. Boundary-value analysis R HR HR

4. Equivalence classes and input partitioning
tests

R HR HR

...

Table 4.13. Extract from Table A.14 in CENELEC 50128:2011

We shall specify in the description of the downward phase in the V cycle
(Chapter 7) how this section must be applied for the different testing
activities: component tests, interface tests and tests of the whole software
package.

98 CENELEC 50128 and IEC 62279 Standards

4.7.2.4.2. Coverage of tests

One of the important issues for a project is: “How do we decide when to
stop the tests?”. There are a variety of possible responses:

– a sufficient level of confidence has been attained (purely subjective);

– an objective of coverage of the instructions has been achieved;

– structural coverage has been achieved;

– an objective of coverage of the inputs and outputs has been achieved;

– coverage has been achieved;

– the estimated number of residual errors is acceptable;

– etc.;

– and as the final possibility, the budget has run out.

In fact, for critical applications which have an impact on safety, the
coverage does not help the decision as to when to terminate the tests: it has
another, more important objective, which is to identify the portions of code
not covered (i.e. which are not stimulated, or not executed) by the tests. As is
indicated by item 1 on the requirements given in Table A.21, the purpose of
coverage is to increase confidence in the activity of testing. Any portions of
code not covered are linked to one of the following situations:

– case 1: the tests performed are incomplete in relation to the
specifications, and it is then necessary to supplement the tests but also to
understand why the tests have not been specified;

– case 2: the code of the application contains code which is not related to
the specifications (i.e. additional codes alongside the specifications).

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

1. Instruction R HR HR

2. Branch – R HR
3. Compound conditions – R HR

4. Data flow – R HR

5. Path – R HR

Table 4.14. Extract from Table A.21 in CENELEC 50128:2011

Software Assurance 99

In fact, to be more specific, case 1 can be linked to the fact that it is not
possible to perform any tests (defensive programming, bad code structure,
etc.) or that genuine oversights have occurred in the identification of
the tests. For case 2, either the coder has added code which is not linked to
the specifications, or he/she has applied programming rules (e.g. defensive
programming) which introduce cases that are unidentifiable on the basis of
the specifications.

The 2001 version of CENELEC 50128 called for a demonstration of the
coverage of the instructions. In its 2011 version, 50128 introduces a more
specific requirement in its Table A.21.

Figure 4.16. Three types of coverage9

Coverage of the instructions consists of executing each instruction in the
program at least once. Figure 4.16(a) shows that with a single test running
through the two “then” branches in the program, this coverage is not sufficient
because it is designed to test the explicit paths (the absence of an else branch
introduces an implicit part). Figure 4.16(b) illustrates that the coverage of the
branches is designed to test each branch of the execution once. It allows us to
see certain behaviors, such as the fact that no instruction is executed (because
of the two else branches). On the other hand, it does not enable us to verify the
program’s behavior if the first then is not executed and the second is. The risk
is that a variable may be updated in the first then statement and consumed in
the second. Figure 4.16(c) presents the coverage of the paths, and in this

9 The program given as an example here comprises two if structures without an else.

100 CENELEC 50128 and IEC 62279 Standards

example this coverage enables us to test all the behaviors and thus detect any
errors linked to the various combinations of branches.

An important point is that, for software classed as SSIL1-SSIL2,
coverage of the instructions is not sufficient, it is necessary to envisage
coverage of the branches.

Figure 4.17. Example of a loop

Figure 4.17 shows an example of a program comprising a while structure
(same thing for repeat or for loops). Coverage of the paths is impracticable
on this type of program because the while structure must be executed 0
times, 1 times … n times. If the while structure is composed of a complex
body, the number of paths is higher. For this reason, CENELEC 50128
indicates that coverage of the paths is impracticable. Also note that it is
possible to focus on coverage of the i-paths, where i defines the maximum
number of loops; when i = 1, we obtain a degree of coverage which is
achievable in terms of cost.

In terms of coverage of the data flows, the aim is to verify that all the data
produced are consumed, and that all the data consumed have been produced.
This coverage is not used in industry at present.

Coverage of the instructions, the branches and the paths involves
checking the functional progression in the software application. The purpose
of data flow coverage is to verify data management. These different types of
coverage are unable to guarantee that all the conditions are correctly
encoded. Indeed, by going through each branch or path, we can verify that it
is attainable, but in order to verify that the conditions (expression evaluated
at the level of the IF, WHILE and/or the REPEAT statements), it is
necessary to test the conditions themselves.

Software Assurance 101

A condition C is composed of simple conditions – whose value is either
true or false. More specifically, the condition C is composed of simple
conditions connected by logical operators (and, or, not, etc.).

Consider a condition C = CS1 op1 CS2 op2 … CSn. To fully test the
condition C, it is necessary to perform 2n tests. To perform the tests of the
compound conditions (Table A.21 – row 3), it is necessary to test each
simple condition, which gives us 2 × n tests. In aeronautics, Modified
Condition/Decision Condition (MC/DC) is used, necessitating n+1 tests, as
shown by Figure 4.18.

Figure 4.18. Aliased program

CENELEC 50128 recommends the putting in place of the compound
condition. MC/DC is not the compound condition, but it is based on lazy
evaluation as enacted by compilers. As an evaluative measure, this coverage
is satisfactory for SSIL3-SSIL4.

As is indicated by item 2 in the requirements in Table A.21, for SSIL3-
SSIL4, it is recommended to implement the following combinations when
testing the components:

– coverage of the branches + coverage of the compound conditions: all
the branches are executed and all the conditions are verified. This
combination is interesting, but it may lead to the construction of condition-
oriented tests which do not represent the component’s true behavior;

(a=0) and (b>1) and (c>1) (a=0)

(b>1)

(c>1)

102 CENELEC 50128 and IEC 62279 Standards

– coverage of the branches + data flows: merely covering the branches
and the data flows is not capable of demonstrating that all functional paths
have been tested;

– coverage of the paths: as previously indicated, this coverage is
impracticable when we have repetitions.

In light of the above analysis, we recommend constructing the tests on the
basis of the requirements associated with a component and/or on analysis of
the algorithms associated therewith. If the algorithms are an input for the
specification of the tests, it will be necessary to search for coverage of the
conditions but on the basis of scenarios describing a realistic functional
framework.

The concept of the level of coverage implies the possibility of possessing
information about the execution path associated with each test. The coverage
information can be obtained by way of two mechanisms:

– an instrumentation of the code: in this scenario, there is a modification
of the source code. This modification may impact on the application’s
behavior (at least from the temporal point of view). This type of
instrumentation is carried out when working on the “host” device;

– a physical instrumentation at thee processor level (a probe), at the bus
level, etc. This type of instrumentation is carried out when working on the
“target” device.

4.7.2.5. Summary

As previously indicated, the activity of verification must be planned, and
it must be justified that the approach proposed enables us to detect the
various anomalies which could be introduced into the final software. The
approach must be verified as being consistent with the company’s prescribed
processes and with the CENELEC 50128:2011 objectives for the SSIL
objective.

The proposed approach must be a combination of dynamic and static
analysis techniques. The code must be manipulated and it must be executed.
One of the essential points is to render the activity of verification effective. In
order to do so, it is necessary to have processes, skilled people and clear
objectives. The objectives of verification need to be formalized in control
lists.

Software Assurance 103

To conclude this section, we must recap an additional requirement: we
must have tangible proof, and therefore the activities of verification must be
documented and the data recorded in order to facilitate auditing and
independent assessment.

4.7.3. Validation

Validation in the context of the lifecycle of a system includes all
activities which offer assurance and which build confidence in the system
and in its ability to satisfactorily perform the intended functions, and to
achieve the set goals and objectives.

As Figure 4.19 shows, validation is an activity which involves
demonstrating that the software application actually provides the service for
which it was developed. With the intended service being defined by the
requirements, it is necessary to show that the software application, running
on the target hardware platform, conforms to these requirements, by way of
a battery of tests. If we consider the activity of testing as an activity of
verification, then validation is the confirmation, by examination and
provision of tangible proof, that the software conforms to the specifications
given in the software safety prescriptions.

Figure 4.19. Validation

CENELEC 50128:2011 introduces the concept of tests performed on the
whole software package instead of the term “validation tests”. As
Figure 4.12 illustrates, all the phases are subject to an activity of verification
(a combination of reviews, static analysis, testing, etc.).

104 CENELEC 50128 and IEC 62279 Standards

Thus, the validation of a software application consists of combining all of
the verifications and certifying the fact that the software application does or
does not respect the requirements set out in the software specification. As we
shall explain in section 8.3.7, a specific report known as the software
validation report (SVR) needs to be produced.

DEFINITION 4.3 (Validation).– Confirmation by tangible proof that the
requirements for a specific usage or intended application have been met.

According to Definitions 4.2 and 4.3, validation can be seen as external
verification of the product.

In summary, validation consists of demonstrating that we have created
the product correctly.

4.8. Independent assessment

In both its versions (2001 and 2011), CENELEC 50128 introduces
independent assessment. An independent assessment is performed by a
person who is not directly involved in the project. He/she analyzes all of the
elements produced to realize the software and confirms whether or not the
result conforms to requirements and whether or not the SSIL objective has
been achieved.

In Chapter 11, we shall give a more formal presentation of the activity of
independent assessment and the additional concepts which go along with it,
such as that of certification.

4.9. Tool qualification

CENELEC 50128:2001 introduced a requirement for the compilers used
to be purpose-certified, but did not give any clear indication of what
precisely was expected in this regard. The 2011 version of CENELEC 50128
formally introduces the need to obtain qualification for the tools employed
for a project (see section 6.7 of the standard). As with IEC 61508 [IEC 08]
and ISO 26262 [ISO 11], three classes of tools are introduced: T1, T2
and T3.

Software Assurance 105

The T1 category is reserved for tools which have no impact on the
verification and on the final executable file. T2 is devoted to tools where a
fault could lead to error in the results of the verification or validation. T2
contains the tools used for verification of the coding rules, quantifying the
metrics, static analysis of the code, management and execution of tests, etc.
The category T3 is given over to tools which, if faulty, could have an impact
on the final executable software. This class includes compilers, code
generators, etc.

Section 6.7 of CENELEC 50128:2011, for each category, defines a set of
recommendations which can be used to identify the content of the tool
qualification report.

Chapter 9 is devoted to the description of the activities to be carried out
to obtain qualification of the tools employed.

4.10. Conclusion

In this chapter, we have presented section 6 of CENELEC 50128:2011,
which introduces the concept of software assurance. Software assurance is a
concept which introduces the elements necessary for the realization of a
software program.

These elements are the management of quality based on ISO 9001:2008,
strong and effective verification and validation deployed at each phase, a
complete command of the tools and an independent assessment whereby an
outside observer verifies that the process is well defined and has been
properly applied.

Software assurance has been established to confirm that the realization of
a safety-related program involves not the introduction of safety-related
techniques (protection, fault detection, redundancy, etc. – see [BOU 13b])
into the software, but rather that it is acquired by way of a firm
understanding of quality, V&V, the tools and an independent assessment,
with the main idea being that it is crucial to minimize the number of latent
errors by introducing as few as possible and detecting as many faults as
possible.

106 CENELEC 50128 and IEC 62279 Standards

4.11. Appendix A: list of quality documents to be produced

In this chapter, we have described the principles of quality management.
We now take advantage of this section to recap on the list of quality plans
which must be produced as part of a CENELEC 50128:2011-compatible
project.

Title Acronym

Software Quality Assurance Plan SQAP

Software QA Verification Report QVR

Software Configuration Management Plan SCMP

Software Verification Plan SVeP

Software Validation Plan SVaP

Software Delivery and Deployment Plan SDDP

Software Maintenance Plan SMP

Software Assessment Plan SAP

Table 4.15. List of quality plans to be produced

4.12. Appendix B: structure of a software quality assurance plan

The SQAP for a railway project must contain the elements which are
described later on in the section. The SQAP is subdivided into a variety of
documents, as shown by Figure 4.5.

The subjects to be dealt with are:

– section 1: identification of the mandatory standards and regulations.
The aim of this section is to identify all the standards and regulations which
need to be respected during the development of the software. It is necessary
to clearly identify the titles, references and versions of these documents. This
section includes ISO 9001:2008, CENELEC 50128:20xx, IEC 62279:20xx,
etc.;

– section 2: organization of the project (software part), demonstration of
independence and justification of the skills (this may be based on a process
local to the process and on management of the company’s HR);

– section 3: a presentation of the boundary of the program (or programs)
being created;

Software Assurance 107

– section 4: a presentation of quality management and control (metrics,
control points, audits, etc.);

– section 5: a presentation of the software development cycle (V-model,
etc.) and of each step involved. For each such step, there must be a
subsection, describing the input elements, the output elements, the activities
to be performed, the human resources, the technical resources (tools, testing
environments, laboratories, etc.) and the acceptance criteria and end-of-phase
management criteria;

– section 6: a presentation of configuration management (tools,
procedure, version identification, identification of the elements needing to be
managed, etc.). It will be necessary to explicitly define how the software
version specification is produced;

– section 7: a presentation of the process of anomaly management, and of
demands for modification and corrections;

– section 8: a presentation of the process of tool management
(identification, configuration management, etc.), and especially the
management of tool certification;

– section 9: we must have a list of the documents which need to be
produced during the software development process;

– section 10: it is necessary to demonstrate conformance to the standards
identified in section 1 – specifically to CENELEC 50128 (or IEC 62279).
Conformance to CENELEC 50128 should not be based solely on the tables
given in Appendix A, but rather on the whole of the standard. Indeed,
the body of the standard is normative, and there are certain subjects which
are not covered by the Tables A.x. For example, in the 2001 version, the
coverage of the tests is not discussed by a Table A.x, but is dealt with by a
sentence within the main body of the document. For the 2011 version, it is
the certification of the tools which is not dealt with by a Table A.x.

5

Requirements Management

5.1. Introduction

Requirements engineering is a need which appears in all professional
standards (in the fields of aeronautics, automobiles, railway, the nuclear
sector, electrical equipment, etc.). A difficulty is introduced by the fact that
none of these industrial standards actually define what is meant by a
“requirement”. The industrial standards introduce the concept of traceability
(a link between different elements) and that of a level (in aeronautics we
have the concepts of High-Level Requirement and Low-Level Requirement
(HLR and LLR)).

This chapter presents the activities of requirement engineering and their
implementation. The activities identified cover the user needs analysis and
the realization.

Requirements management is the discipline which consists of
establishing and documenting requirements. The various activities associated
therewith are elicitation, specification, analysis, verification and validation,
and management.

As a general rule, a project will begin with a phase of requirements
acquisition, the purpose of which is to construct a requirements
specification. On the basis of the requirements specification, the second
phase is to realize those requirements.

In reality, certain projects begin with the phase of analysis; others will
not. Indeed, a client lodging an order who wishes to create a new piece of

110 CENELEC 50128 and IEC 62279 Standards

equipment must begin with an analysis phase, in order to construct the
technical specifications list as accurately as possible.

For other projects, it is considered that the requirements specification
exists and even that it is provided in the form of the technical system needs
(TSN). It should be noted that this second category of projects corresponds
to the fact that a client lodging an order, or a high-level industrialist, will
use several companies to create the final system, and in this case, the
requirements specifications serve to ensure the consistency of the whole
system.

5.2. Requirements acquisition phase

5.2.1. Introduction

The first phase (see Figure 5.1), which can be called the requirements
acquisition process, is a four-step process (see Figure 5.2): requirements
elicitation, requirements analysis (negotiation), requirements document, and
verification.

Figure 5.1. Two-phase process

The purpose of the first step, called elicitation, is to identify the problem
(identification of the stakeholders, sources, explicit and implicit
requirements). The second step involves analyzing the problem, discussing

Requirements Management 111

and negotiating. This second step is very important, because it is necessary
to have the agreement/assent of the user(s) as regards the requirements; here
the notion of negotiation is very important in arriving at a consensus.

The next step is to produce the requirements specification, which may be
in test format, and/or be supplemented by models. The final step is the
verification of requirements, on the basis of the requirements specification: it
is necessary to verify that the specification is coherent and complete.

The realization phase is based on a cycle which must integrate all the
different phases of the system’s life.

Figure 5.2. Acquisition process

In Chapter 2 of [RAM 09] and Chapter 3 of [RAM 11], examples of
requirements management in the automotive and railway domains are
presented.

5.2.2. Requirements elicitation

5.2.2.1. Introduction

Table 5.1 is an extract from [STA 94]. It shows that over 30% of causes
of failure in the realization of systems stem from incompleteness of the

112 CENELEC 50128 and IEC 62279 Standards

requirements, a lack in the description of the requirements or unrealistic
requirements.

Description %
Incomplete requirements 13.1%
Requirement not representative of the user’s
needs

12.4%

Poor resource management 10.6%
Unrealistic requirements 9.9%

Poor support from the management 9.3%
Evolution of requirements/specification 8.7%

Poor planning management 8.1%
Not a requirement 7.5%

Table 5.1. Distribution of the causes of failure

One of the difficulties of requirements management lies in defining the
concept of a requirement. There are many published works which attempt to
identify just what a requirement is, and how to cater for it. [HUL 05] offers
one of the most complete overviews.

We shall adopt definition 5.1, which is drawn from work carried out by
industrialists in AFIS1.

DEFINITION 5.1 (Requirement).– A requirement is a statement which
expresses a need and/or constraints (technical, cost-related, time-related,
etc.). The language used for this statement may be natural language,
mathematical language, etc.

Attributes Description

ID Unique Identifier

TEXT Text of the requirement

SOURCE Element from which this requirement is derived

Table 5.2. A requirement

1 AFIS is the Association française d’ingénierie système (French Systems Engineering
Association). One of its working groups is specifically devoted to requirements management.
For further information, see: www.afis.fr. AFIS is a subsidiary of INCOSE – see: www.
incose.com.

Requirements Management 113

For clear identification, a requirement is a labeled element (the label
provides a unique identification) that characterizes an element of the system
under construction. For each requirement, it is important to know the source,
so the attribute “source” is included. Table 5.2 characterizes what is meant
by a minimum requirement, an identifier, a text and a link to the source.

Requirements elicitation consists of identifying, clarifying and justifying
the requirements which need to be integrated. One initial difficulty lies in the
fact that there are numerous sources of requirements (see Figure 5.3): they
include the client’s specifications, the professional guidelines, the existing
system, similar system, interface systems, applicable standards and laws,
user needs, etc. The second difficulty lies in the fact that the initial
expression of the needs is often incomplete and extremely vague.

With documentary sources, the person in charge of elicitation of the
requirements (hereinafter called the “analyst”) will use all sorts of
documents, such as the existing documentation about the product, bug
reports written about previous applications, documents from monitoring (or
“vigil”) of the sector (standards, laws, etc.) and technological environment
(new technologies, etc.) or analysis of previous change requests.

Figure 5.3. Sources of need

Yet completely focusing on the end user (who will need to be clearly
identified) will enable the analyst to gather the user’s expectations and
remarks regarding the functional aspects, on the one hand, but most
importantly the non-functional aspects. Particularly long response times for

Client

Cahier
des

charges

Référentiel
métier

…

Systèmes
existants

…

Liens
explicites

Liens
implicites

Obligations
légales

Normes
Legal
obligations

Existing
systems

Implicit
links

Explicit
links

Technical
system
needs

Standards

Professional
guidelines

114 CENELEC 50128 and IEC 62279 Standards

an application, problems of accessibility or ergonomics will always be subject
to comments, which then need to be archived for later use.

Ultimately, it is fairly difficult to find the optimal combination of all of
the resources at the analyst’s disposal. The task of requirements elicitation
entails:

– identifying the stakeholders;

– identifying all the sources of the requirements as far as possible;

– adapting the analysis strategy to the particular problem at hand
(systematic analysis of the documentation, immersion with the client,
immersion with the end user, brainstorming sessions, etc.).

These three activities will be analyzed in this chapter. There are a number
of different types of requirements, as illustrated by Figure 5.4.

Figure 5.4. Acquisition process

The requirements can be classified into two categories: functional
requirements and non-functional requirements. Functional requirements
pertain to the system’s behavior, and can therefore be tested, whereas non-
functional requirements characterize properties such as safety (causing of
harm to people, goods and/or the environment), security (respect of the labor
codes, intrusion, data manipulation, etc.), availability, reliability,
performances, maintainability, etc.

5.2.2.2. Identification of stakeholders

As a general rule, projects tend to be to update an existing product, so
there is a feeling of familiarity with all the stakeholders involved in the
project, and in the rarer case of innovative projects, there is a certain feeling

Exigences fonctionnelles

Exigences non fonctionnelles

Exigences Performances

FMDS

…

Requirements

Functional requirements

Non-functional requirements RAMS

Requirements Management 115

of freedom. Therefore, the step of identification of the stakeholders is often
overlooked. This oversight has an impact on the construction of the
requirements framework, which results in an incomplete fulfillment of the
needs.

For so-called certifiable systems, this may cause a lack of knowledge or
incomplete knowledge of the applicable laws and standards. Hence,
forgetting the stakeholders is often a cause of failure or significant delay in
projects, because the products delivered do not correspond to the
expectations held by the stakeholders (operators, network and/or
infrastructure managers, maintenance staff, users, authorities, certification
bodies, etc.).

A stakeholder is, by definition, a person or entity who has an interest in
the project. One way to gain a complete picture of who the stakeholders are
is to attempt to answer the following questions:

– who is financing the project? Who is in control of the budget?

– does this project have sponsors? If so, who are they?

– who are the users of the future system? By “user”, evidently, we mean
the end user, but not solely the end user. We must think about the system’s
time in operation (the operators, administrators, etc.), its maintenance and its
eventual decommissioning. Figure 5.6 shows a number of users (operators,
motorists, train drivers and maintenance staff);

– who are the people that will design and test the system?

– who will be installing the system and training the end users?

– are there any authorities in charge of authorization of the system? There
may be national, regional (e.g. European) and international bodies, each of
which will have applicable legislation and representative organizations;

– are there any pre-existing interface systems?

– is there a need for certification?

– etc.

It is possible to analyze the needs pertaining to the stakeholders by
creating a model of the environment in its true context and using it to
identify the flows between the parties. In order to do so, we can create a

116 CENELEC 50128 and IEC 62279 Standards

context diagram or an environment diagram in the form of a “horned beast”
or “octopus” diagram, as used in the APTE2 method [BRE 00].

In a project consisting of linking the various pieces of equipment in the
railway system by a global network, we can construct an octopus diagram
identifying the new system and the actors who will interact with it. Based on
that diagram, it is possible to identify the crucial functions (without these
functions, the system cannot operate) and the main functions (required
services). Figure 5.5 illustrates the result of this study.

Figure 5.5. Example of an “octopus” diagram

Figure 5.6 is an example of a model (class diagram) that can be employed
to identify the users and the interactions between those users. This model
uses UML notation [OMG 11, ROQ 06, ROQ 07] and demonstrates that the
Dynamic Radio-Based Control System (DRBCS) being designed is a
decentralized system which interacts with several types of actors (the
operators, train drivers, maintenance personnel and road users).

2 The APTE method is a functional-analysis and value-analysis method. This versatile
method can be applied equally for products, manufacturing procedures, equipment or
organizations. For further information, see: http://cabinet-apte.fr.

Requirements Management 117

Figure 5.6. An automated level crossing and its users

It is important to identify each of the stakeholders and clearly indicate
what their interest is in the project. In general, a table with columns (for
example, Table 5.3) serves this need to identify the stakeholders.

Name Organization Roles
Contact
details

Availability Field
Level of
expertise

Objective,
Interest in
the project

Table 5.3. Example of identification of stakeholders

5.2.2.3. Identification of sources

Generally, the project will be a response to a demand (usually in the form
of an updated set of functional specifications) which is expressed by one of
the stakeholders: the client. Hence, the functional specifications are the first
source.

118 CENELEC 50128 and IEC 62279 Standards

The functional specifications may contain domain-specific requirements
(e.g. specific to the aeronautics, automotive, railway, nuclear, service,
telecoms domain, etc.) and/or make reference to professional documents. If
the product is subject to authorization (authorization for commissioning,
certification, etc.), the functional specifications must indicate the applicable
standards (IEC3, DO4, CENELEC5, ISO6, etc.) and legal texts (laws and
decrees) to be respected, unless this is basic knowledge in the domain, but as
a general rule, it is preferable to clearly identify them. In addition to the
standards and legal texts, we must define the objectives to be fulfilled
(objectives pertaining to safety, performance, time management, maximum
workload, certification, etc.).

On the same principle, if the system is intended to be a replacement for
an existing system, the documentation for the existing system and the
feedback on that system also become sources which need to be taken into
account.

Figure 5.7. Identification of sources

3 See: www.iec.ch/.
4 Standard published by the RTCA inc. See: www.rtca.org/.
5 See: www.cenelec.eu/.
6 See: www.iso.org/iso/home.htm.

Cahier
des charges

Normes
- Domaine
- ISO 9001
- Communication
- …

Référentiel métierObligations légales
(lois, arrêtés, décrets,

etc.)
Pour chaque autorité

(nationale,
européenne,

internationale)

Systèmes
existants

Besoins des
utilisateurs

Systèmes en
interface

Maintenance

Exploitation

Legal obligations
(laws, decrees, etc.)
for each authority

(national, European,
international)

Standards
- Domain
- ISO 9001
- Communication
- …

Professional
standard

Technical system
needs

User needs

Maintenance

Existing
systems

Interface
systems

Operation

Requirements Management 119

It should be noted that in the railway domain, the “GAME7”
(Globalement Au Moins Equivalent is the European term for Globally At
Least Equivalent, see [LET 00]) principle is used in the design of a new
system. With this principle, it is possible to draw on past experience (reuse
of justifications, recycling of the initial principles, etc.) in the design of a
comparable system.

More generally, the functional specifications are incomplete, and on the
basis of the list of stakeholders, it is necessary to identify the associated
sources. Figure 5.7 gives an illustration of what may constitute the sources
for a project.

5.2.3. Process of analysis and documentation

5.2.3.1. Subdivision of the process

On the basis of the identification of the stakeholders and knowledge of
the sources, it is then possible to implement an analysis process (see
Figure 5.8) which can be divided into two steps: the analysis of the problem
(or requirements analysis) and the production of the description of the
product.

This two-phase process is important, but there is a tendency, with many
projects, to go directly to the production phase. In this case, there is a danger
of not fully grasping all of the needs, and therefore creating the wrong
system or an inadequate system.

The analysis phase involves identifying the requirements. In order to do
so, we can analyze all of the sources and select the known requirements, and
then on the basis of the list of stakeholders, it is possible to put in place an
operation of attribution of the requirements to the stakeholders. This phase will
be followed by an analysis phase, the aim of which is to analyze the

7 In the railway domain, a positive approach was adopted, stipulating that all new systems or
all modifications made to an operating system should offer a global safety level at least
equivalent to that of existing systems offering comparable services (“GAME” principle). Such
an approach effectively has the intrinsic merit of maintaining the dynamics of progress by
minimizing the risk of the “always more” approach. It enables us to take advantage of the
existing systems, deemed satisfactory, and thus benefit from the experience acquired. Finally,
this approach is essentially determinist, for it is based, as far as possible, on existing reference
systems, but for all that, it does not systematically reject the probabilistic approach which is,
in any case, necessary in the case of technologically-innovative subsystems.

120 CENELEC 50128 and IEC 62279 Standards

interactions between the stakeholders and the system, with a view to
identifying the additional requirements.

Figure 5.8. Analysis process

5.2.3.2. Requirements analysis phase

5.2.3.2.1. Objectives

The objective of the requirements analysis phase is to construct all the
stakeholder requirements. It should be noted that analysis phase helps to
identify the boundary of the product (see Figure 5.9) and to characterize the
interfaces with the other products.

Figure 5.9 illustrates the environment of a system, and/or an application,
which comprises three inputs (Ei), two outputs (Sj) and three interfaces (Ik)
with existing resources (reused systems, electricity supply, etc.).

The stakeholders’ requirements form the basis of the acceptance or non-
acceptance of the system, the negotiation and agreement on the project, the
development of the system and the management of changes made to the

CdCF
Normes

Référentiel
métier

Obligations
légales

Systèmes
existants …

Description consistante et complète
du produit

Phase d’analyse

Production de la description

Connaissance des exigences

Legal
obligations

Existing
systems

Technical
System
Needs

Standards

Professional
guidelines

Analysis phase

Knowledge of requirements

Production of the description

Consistent and complete description
of the product

Requirements Management 121

requirements. The requirements define the result as expected by
the stakeholders. That is why it is necessary to acquire the users’ needs as
fully as possible.

Figure 5.9. Environment of the software application

Figure 5.10. Evolution of the state of a system

Thus, within the system, we need to identify:

– the interfaces with the environment (see Figure 5.9). These interfaces
may be electrical, mechanical, software-based, hydraulic, etc.;

E1

E2

S1

E3

S2

I1 I2 I3

Etat B fonctionnement
incorrect non dangereux

Etat C fonctionnement
incorrect et dangereux

Etat A fonctionnement
correct

défaillance

défaillance

réparation

Etre disponible

Etre fiable, disponible
et de sécurité

Etre en danger

Being available

Being reliable,
available and safe

failure

failure

repair

Being at risk

State A:
normal function

State B: abnormal but
non-hazardous function

State C: abnormal but
hazardous function

122 CENELEC 50128 and IEC 62279 Standards

– the states: at rest, in operation, downgraded mode, etc. (for example,
see Figure 5.10). The concept of the state introduces a division between the
states of normal operation, states of non-operation and hazardous states;

– the concept of correct behavior, downgraded behavior and hazardous
behavior;

– the concept of functional and non-functional needs.

As regards the states of the system, Figure 5.10 identifies the proper and
improper states, but it is necessary to go further and introduce all of the
states that may be encountered for the system, which characterize specific
behaviors (init, safe state, maintenance, degraded, etc.), as illustrated by
Figure 5.11.

During the elicitation phase, it is necessary to reflect on the non-
functional requirements and implement analyses relating to the operational
safety, the aim of which is to define the safety requirements but also the
availability, reliability and maintainability requirements.

Figure 5.11. Different states of the system

Figure 5.12 illustrates a process that integrates the elicitation of the
non-functional requirements pertaining to RAMS.

Requirements Management 123

Figure 5.12. Elicitation process with RAMS analyses

5.2.3.2.2. Elicitation techniques

The purpose of elicitation techniques is to aid the discovery of the
conscious, unconscious and subconscious requirements of the stakeholders.
These techniques are chosen as a function of the risk factors, the human and
organizational constraints, the professional domain and the level of detail
expected for the requirements. The elicitation techniques may also be chosen
as a function of the requirements document being prepared.

On the basis of the list of stakeholders and the sources, it is then
necessary to establish a process of acquisition of the requirements, and with
that goal in mind, there are a variety of elicitation approaches [ZOW 05]:

– inquiry techniques: surveys, questionnaires, etc.;

– interview techniques;

– creativity techniques: brainstorming, storyboarding;

– animation techniques: brown paper, roleplaying, use cases;

– observation techniques: terrain, learning;

– prototyping and simulation techniques.

Sources

Analyse de FMDSExigences
fonctionnelles

Exigences
non fonctionnelles

Documentation

Elucidation Elicitation

RAMS analysisFunctional

requirements

Non-functional

requirements

124 CENELEC 50128 and IEC 62279 Standards

In Appendix A of [MEI 02], the author presents the methodological
elements pertaining to requirements management. Requirements
management is one of the tools which system engineering offers, as is
demonstrated by the EIA-632 standard [EIA 98, EIA 03].

The best result is obtained when the analyst jointly implements several of
these techniques.

In this book, it is not possible to be exhaustive. Therefore, in the next
sections, we are going to present only two of these techniques, but it must be
noted that all of the techniques identified above need to be implemented,
depending on the particular project at hand.

5.2.3.2.3. Interview techniques

An interview comprises several steps:

– question phase: the questions are posed and the responses noted;

– pause: during pauses, most people will find something to say and/or
explain, which offers the opportunity to discover the additional
requirements;

– summary and/or reformulation phase: this phase is important because it
enables us to verify that the responses have been fully understood.

The implementation of interviews involves a preparation phase, where a
set of questions will be prepared. This set of questions should enable the
interviewers to identify the needs of the different stakeholders. This set of
questions contains:

– open-ended questions: these require responses other than “yes” or “no”;

– closed-ended questions: such questions can be answered with “yes” or
“no”. Closed questions are used to obtain a definitive response (after
reformulation, for example).

It should be noted that during the interview, it is possible to add questions
depending on the responses and after the reformulation of the responses.

It is necessary to interview all the stakeholders who have been identified,
and make them aware of the fact that their requirements form a whole (a
system). It is crucial to take the stakeholders seriously and not to pass
judgment as to the requirements they express. During the interviews, it is

Requirements Management 125

necessary to treat all of the elements as requirements, to document the
importance of the requirements for each stakeholder, document the results of
the interviews and formalize the stakeholders’ acceptance of the result
(notes, documents, etc.) of the interviews.

The use of interviews involves stimulating and inciting the stakeholders
to respond. The chairperson of the interview panel therefore needs to have
excellent abilities to manage a discussion and sustain it, whilst being capable
of managing the pauses.

5.2.3.2.4. Prototyping and simulation techniques

A maquette is an initial, highly-simplified model of the problem. The
maquette is designed to model certain aspects of the problem to be solved in
a more or less precise way. When the maquette handles genuine elements of
the system (such as the data files, etc.), we speak of a prototype.

The maquette and/or prototype is a way of dealing with the vision of the
different players and the behaviors expected (see Figure 5.13).

Figure 5.13. Prototype and expression of needs

A prototype may be static, in which case we seek to model the
interactions between the different elements, including the actors, but it may
also be dynamic, and we model simplified behaviors. In that case, it will be
possible to run scenarios.

126 CENELEC 50128 and IEC 62279 Standards

The realization of a prototype is a good way of facilitating the
understanding of the needs, but this involves costs, and often it is tempting to
consider that the prototype is the start of a solution.

It should be noted that more and more prototypes are used to validate a
concept (Website, etc.). The difficulty with a prototype is the need to not
lose sight of the fact that it is a prototype (which may be extremely
advanced) and that it is not the design for the final product.

5.2.3.3. Description production phase

The second phase consists of identifying the requirements. The process of
analysis and transformation is designed to clarify the text of the
stakeholders’ requirements and identify the product requirements. The
conflicts (two contradictory requirements or requirements with different
objectives), any incompleteness, unspoken requirements and others need to
be demonstrated.

It is at this step that it is appropriate to retire the descriptive aspects and
focus on what is essential. Indeed, it is necessary to focus on the need and
not on pseudo-solutions. At the conclusion of this phase, we obtain a set of
requirements which constitutes the description of the needs.

Finally, we seek to produce a complete and consistent description of the
requirements. As regards the requirements specification, we describe the
activity in section 5.3.

5.2.4. Verification and validation of the requirements

5.2.4.1. Introduction

In Figure 5.2, we have identified the necessity of verifying the
requirements following the phase of production of the requirements
specification document. However, we also need to speak of the concept of
validation: indeed, the requirements identified with the client will be the
source for the client tests, which are usually called “acceptance tests”.

The realization of a system (subsystem/equipment/application) must take
account of the design, but it must also take account of the activities which
prove that the system has achieved a certain level of quality. The
achievement of a level of quality involves demonstrating that no faults have

Requirements Management 127

been introduced during the design phase and that the product corresponds to
the requirements which have been identified.

In the context of the requirements and the phase of verification of the
requirements specification, it is necessary, first of all, to demonstrate by
means of a verification phase, that the requirements specification does not
contain errors, and by way of validation of the requirements that the system
produced does indeed correspond to the client’s needs (see Figure 5.14).

Figure 5.14. Verification and validation

5.2.4.2. Verification

The verification of the requirements can be performed by way of several
activities:

– more or less formal design review (readthrough, use of checklists, etc.);

– realization of a model and/or a prototype;

– preparation of test log (see Figure 5.15).

It should be remembered that here we are speaking of a verification that
the stakeholders’ requirements have been properly taken into account. Thus,
it is necessary for this task of verification to be performed jointly by the
client and the supplier.

The validation of the requirements involves the creation of a battery of
tests to ensure the system is accepted by the client. This is one of the most
important stages of verification in the whole process.

128 CENELEC 50128 and IEC 62279 Standards

As Figure 5.15 illustrates, on the basis of the requirements, we identify
test cases8 (TC_x). These test cases describe a particular situation to be
achieved, with this situation being linked to an equivalence class. Based on
the test cases, it is possible to prepare the test scenarios; each test scenario
describes a situation. Thus, a test case may play a part in several test
scenarios.

As the only element of input at this level is the requirements
specification, the tests we are describing here are what are known as “black-
box” tests (as we have no knowledge of the realization).

Figure 5.15. Link between the tests and the requirements9

The client, or the entity working on behalf of the client, usually must
perform the acceptance tests, but in view of the contract, the client’s history,
the supplier’s history, etc., the client may decide to construct their own
battery of acceptance tests on the basis of the validation tests performed on
the installation, conducted by the supplier.

5.2.4.3. Validation

In order to conduct the acceptance tests, we need to have access to the
system in its true environment. This is an important activity, because the aim
is to verify that the finalized, installed product functions as the client

8 For more information on the testing, see [MYE 10].
9 TeS for Tests Specification and TS for Test scenario.

Requirements Management 129

intended. This phase is also known as the receipt phase, and in the
CENELEC 50126 standard [CEN 99], it is called the system acceptance
phase.

5.3. Requirements specification

5.3.1. Requirements characterization

The requirements specification is a document detailing all of the
requirements to which the product must conform. Definition 5.1 defined the
concept of a requirement, and Table 5.2 defined the fundamental attributes
which characterize a requirement.

5.3.1.1. Identification

A requirement must be uniquely identifiable, so generally an identifier is
attached to each requirement. This identifier must be unique. So as not to
cause confusion with other items which may be numbered (such as items on
a list, etc.), the identifier is constructed using a label (e.g. REQ) and a unique
number (xxxx). Thus, we have an identifier in the format REQ_xxxx.

[REQ_0001]

The software must be able to be updated.

[PROJECT] AAAA

[DOCUMENT] DDD

A requirement is associated with a project, and in particular with a
document. Hence, it is possible to have an identifier in the format
REQ_AAAA_DDDD_xxxx, where AAAA represents the project number,
DDDD the document reference and xxxx the unique number assigned to that
requirement.

The project reference and document reference can therefore be integrated
into the identifier or be seen as an attribute.

[REQ_AAAA_DDD_0001]

The software must be able to be updated.

130 CENELEC 50128 and IEC 62279 Standards

If we want to make the identifier unique, it is important not to reassign
the requirement numbers if a requirement is removed. For that reason, it is
wise to avoid using an automated identification mechanism (such as the
auto-numbering style in Microsoft® Word).

As regards the identification of a requirement, it may be difficult to detect
the end of a requirement. Therefore, it is useful to put an identification
system in place in the form of tags – see the following example.

[REQ_0002]

A software cycle must be executable in the space of 100 ms.

[END_REQ]

5.3.1.2. A few important characteristics

Before defining any requirements, it is necessary to put a set of criteria in
place. These criteria should be used to qualify the requirements. An analysis
of the existing literature (academic and/or normative) enables us to identify
criteria which pertain to a requirement, and others which pertain to a set of
requirements.

For each requirement, the following criteria are most often encountered:

– atomic: the requirement is a clearly-identifiable and indivisible element;
it expresses one point and one point only;

– concise: when it is described in natural language, a requirement must be
written in the form of a single sentence, which should be no longer than a
few lines;

– clear: the requirement can be fully understood on the basis of a single
reading; the sentence-structure is simple and does not use literary flourishes;

– precise: all the elements used in the requirement are identifiable and
fully characterized (no pending questions such as: what units of measurement
are used?);

– abstract: a requirement is at the appropriate level of abstraction: it
should not impose a solution (technical or functional), but merely describe
the need;

– unambiguous: reading of the requirement should facilitate an
understanding of the need with only one possible interpretation. Thus, it is

Requirements Management 131

important not to use turns of phrase or words which facilitate multiple
interpretations or complexify the understanding of the requirement;

– up to date: the requirement must reflect the current state of the system /
of the knowledge about the system;

– complete: it is key that all of the concepts used in the requirement be
defined and that no information be lacking;

– verifiable: there must be a means of verification of the requirement
which is feasible (within reason);

– consistent: it is necessary to verify that the requirement forms a
consistent whole (i.e. the terms used in the requirement are the same
throughout and carry the same meaning);

– coherent: the requirement must not be conflictual (i.e. the requirement
should not say both one thing and the opposite), and the terminology must be
coherent (with the glossary);

– correct: it must correspond to a real need on the part of a stakeholder
(external coherence);

– traceable: it is necessary to be able to trace the source, evolution,
impact and use of the requirement.

Other criteria may be necessary – e.g. the fact that a requirement should
be realizable, meaning that an implementation of that requirement should be
possible within reasonable conditions of cost, time and realization.

Ultimately, even though other criteria may be added to this list, those
presented above constitute a solid basis upon which to build a methodology.

There are two main rules for the comprehension of the requirements:

– use short sentences and paragraphs;

– formulate one requirement, and one only, per sentence.

5.3.1.3. Characterization of a set of requirements

For a set of requirements, the main criteria relate to their coherence, their
completeness and non-redundancy.

132 CENELEC 50128 and IEC 62279 Standards

A set of requirements must be:

– complete: no requirements should be missing and each of the
requirements included in the list should be complete. The completeness of
the set of requirements is a tricky point, because it is linked to an exhaustive
needs analysis. For example, it is easy to forget, in a set of technical
specifications, to define the software’s behavior in case of undesirable events
(such as a hardware breakdown, an error in the data input by the user, etc.).
In such situations, it is not for the developer to devise what the program must
do at the point of implementation. It is necessary, during the identification of
the requirements, to check that the requirements cover:

- all of the objects handled,

- all of the possible states of those objects,

- all of the use conditions,

- all of the use scenarios which have been envisaged,

- all of the applicable standards and professional guidelines, etc.

The best way of evaluating the completeness of a set of requirements is to
put a document model in place, which is:

– coherent: there must be no ambiguity or internal inconsistency of the
requirements framework; there should be no contradictions between the
requirements, and a unique identification of the document. The coherence of
a set of requirements relates to the clear definition of the concepts for all of
the requirements. Put differently, every word must be used in exactly the
same way for each requirement;

– non-redundant: it is necessary that, within the set of requirements, there
be no redundancy: the same information and/or the same requirement should
not appear multiple times.

5.3.1.4. Characterization of the process

From the point of view of the process, all requirements must be:

– identifiable: it is necessary to attach, to each requirement, a unique
identifier (see the first attribute in Tables 5.2 and 5.4);

– verifiable: it is necessary to ensure that all the requirements are verifiable.
The form of verification may be a readthrough, a model, a specific analysis
and/or a test (see the fourth attribute in Table 5.4);

Requirements Management 133

– modifiable: we must be able to manage the evolutions of the
requirements throughout the whole of the system’s life (realization,
manufacture, commissioning, maintenance, decommissioning). In order to do
so, a configuration management process needs to be established (see the fifth
attribute).

Attributes Description

ID Unique identifier

TEXT Text of the requirement

SOURCE Element from which this requirement is derived

VERIFICATION Activity of verification associated with the
requirement

VERSION Version associated with the requirement

Table 5.4. List of attributes characterizing a requirement

Table 5.4 introduces a second identification of the attributes describing a
requirement. We shall continue to add to this description as the chapter
continues.

5.3.1.5. Additional

It is thus possible to supplement this list of attributes with other attributes
that can be used to qualify the requirement:

– category (functional, RAM10, safety, performance, etc.);

– status of the requirement: under construction, awaiting validation,
validated, implemented, etc.;

– priority (to be defined depending on the project);

– verifiable (yes/no);

– type of verification (readthrough, specific analysis, simulation, etc.);

– testable (yes/no);

– type of tests;

– source (who, when, etc.);

– status (pending, analyzed, rejected, etc.);

10 RAM for Reliability, Availability and Maintainability.

134 CENELEC 50128 and IEC 62279 Standards

– type of document;

– version;

– effort;

– attribution.

Attributes Description Values

ID Unique identifier REQ_AAAA_DDDD_xxxx

TEXTE Text of the requirement

SOURCE
Element from which this
requirement is derived

CATEGORY FUNC, RAM, SAFE, PERF

VERIFIABLE YES / NO

VERIFICATION
Activity of verification associated
with the requirement

Walkthrough

Design review

Calculation

Unit tests

Integration tests

Whole tests

…

…

VERSION
Version associated with the
requirement

xx.yy

Table 5.5. List of attributes characterizing a requirement (cont.)

The attributes need to be defined at the beginning of a project, and it is
necessary to define them very clearly; see Table 5.6.

Name of attribute Version

Semantics of attribute Version associated with requirement

List of possible values x.y

Semantics of values
x is the major index

y is the minor index

Unit N/A

Table 5.6. Definition of an attribute

Requirements Management 135

5.3.2. Characterization of requirements specification

It has already been mentioned that a set of requirements must be non-
redundant, coherent and complete, but the requirements specification
document must satisfy additional criteria:

– the document must be structured: that is, it must have a clear structure,
which can be easily read by anyone, and which facilitates targeted reading;

– the document must be modular: the requirements which belong together
should be grouped in a clear structural framework, and located appropriately
in relation to one another;

– the document must be extendible (i.e. the possibility of maintenance
must be taken into account): it must have a flexible structure in order to
facilitate change;

– the document must be sufficient: there should be no need to wade back
through all of the source documents in order to comprehend the product;

– the document must be traceable: relations must be established between
the requirements documents and the other engineering documents.

5.3.3. Expression of requirements

5.3.3.1. Natural language

It is crucially important to express the requirements in natural language.
Indeed, natural language remains the most widely used and the simplest of
ways to communicate about the requirements and establish mutual
understanding. The purpose of expressing a requirement in natural language
is to express the need as clearly as possible, without going into the details of
the design.

It should be noted that this approach may seem contrary to the common
approaches used nowadays, in which the model tends to be central.
However, the making of a model cannot replace the expression
of the requirements in natural language. Indeed, whilst a picture is worth a
thousand words, it is no easier to understand, and it is important to employ
those thousand words in order to verify that the picture is correct and
complete.

136 CENELEC 50128 and IEC 62279 Standards

The difficulty of natural language lies in the ability to express the same
concept in a number of different ways, and the tendency to introduce literary
turns of phrase which render a sentence more complex and may cause
ambiguities to arise. Therefore, it is necessary to define rules to govern the
description of the requirements in natural language.

The first rule is to use and respect a requirements template, which will
need to be defined for each project. This template may be based on the
following (non-exhaustive) list of rules:

– a requirement must be in the form “subject + verb + complement”;

– consistently use the verb “must + auxiliary”, correctly conjugated;

– use the active rather than the passive voice;

– use terms with an unequivocal definition. You can ensure the terms are
unequivocally defined by constructing a glossary (see next section);

– avoid the use of adverbs which make the sentence unclear;

– avoid negations. Their use must be limited to the so-called safety
requirements (such as “the system must not…”).

Below are a few examples of textual requirements:

[REQ_1]

The objective of a firearm is to propel a bullet in a given direction.

[END_REQ]

[REQ_2]

A bullet will be expelled from the chamber if the firearm is not blocked
and the powder is ignited.

[END_REQ]

5.3.3.2. Construction of a glossary

The difference in interpretation of the terms used by the stakeholders is a
common source of conflict and misunderstanding in requirements
management. It is particularly important to reach agreement as to shared
terminology.

Requirements Management 137

With this in mind, it is possible to define all the relevant terms in a
glossary. That glossary would contain domain-specific jargon and technical
terms specific to the context, abbreviations and acronyms. If necessary, with
a view to making the connection between the stakeholders, the glossary can
also identify synonyms and homonyms, but the idea is to define one unique
set of vocabulary for the project.

The use of a glossary must conform to strict rules:

– the glossary must be centralized and the version specified: it is a
referential standard;

– the responsibilities pertaining to the maintenance of the glossary must be
defined;

– the glossary must be maintained and be accessible throughout the
duration of the project;

– it is imperative that all the stakeholders make use of the glossary for
any communications;

– the glossary must be approved by all of the stakeholders.

It is recommended to establish the glossary as soon as possible, because
any misunderstandings can lead to tasks being repeated, but also, in
particular, to difficulties in comprehension which may not be discovered
until late on, and which may have a major impact in terms both of effort and
cost to rectify.

5.3.3.3. Formalization

The expression of the requirements in natural language comes up against
a problem, which is the declarative nature of the requirements: it may be
rather difficult to express a requirement in text form, or at the very least, that
textual formulation may be longer and more complicated than a small
diagram or a mathematical formula. For this reason, a requirement expressed
in textual form can be supported by graphic representations and/or
mathematical expressions.

Hence, it is not uncommon to find requirements which are a mixture
of a textual description and a diagram (see the example given in
Figure 5.16).

138 CENELEC 50128 and IEC 62279 Standards

Figure 5.16. Textual requirement supplemented with a diagram

Formalization may go as far as the implementation of mathematical
equations and/or construction of a so-called “formal model”. By way of
example, Figure 5.17 shows a B-model which is a formalization of the
property P1: there must be no danger of collision. The property can be
expressed, mathematically, in the following form:

{ } []
1 21 2 1 2, , so , ift tt t T D D t tϕ∀ ∈ ∩ = ≠

Figure 5.17. B-model of the property of non-collision

5.3.3.4. Formulation by use of a template

The formulation template is an effective tool for the description of a
requirement. The use of a requirement template will help to prevent the
frequent mistakes that may occur during the description of the requirements
in natural language.

Requirements Management 139

The template is an excellent pedagogical tool, which is particularly
effective during the learning stage. It is a guide to the syntactic structure of a
unitary requirement, which is very helpful in the description of the
functional requirements. An example of a template is presented in
Figure 5.18.

By combining the glossary and the template, we shall be able to reduce
the ambiguities introduced by natural language.

Figure 5.18. Example of a template for the formulation of a requirement11

5.3.3.5. Modeling

In order to work on the correctness and completeness of the requirements,
it is interesting to create one or more models. A model is an abstract
description of a system and/or a process. As it is a simplified representation,
there is a reduction in the complexity. Hence, the model is easily
manipulatable, and it enables us to reason and/or make a certain number of
checks. The more accurate the model is, the closer the results obtained will
be to those which will be observed with the final system.

Thus, the model can serve as a tool to aid communication between the
different stakeholders.

A good model should focus on the problem, but it may go so far as to
describe a solution, and in that case, it is possible to manage all or part of the
final code. Therefore, a model may or may not be described as “executable”.

11 Source translated from [POH 10].

140 CENELEC 50128 and IEC 62279 Standards

More generally, it is possible to have models devoted to every step in the
process of realization of the system. We then speak of Model-Based
Development (MBD).

Modeling must be used in addition to textual description of the
requirements: we must be able to express the needs in order to model
them. The use of a model without a textual requirement is tantamount to
discovering our requirements without having expressed them, and the issue
arises of how to check whether the model corresponds to the requirement or
not.

A model is usually composed of two mutually-complementary parts:

– a static model describing the entities constituting the system, and the
states which may be associated with it;

– a dynamic model, describing the possible changes of state.

Chapter 8 of this book will be devoted to modeling.

5.3.4. Requirements validation

The requirements specification which has been produced enables us to
identify the users’ needs, and on that basis, the client can then prepare their
battery of acceptance tests to perform on the system.

The purpose of the acceptance tests is to demonstrate that the system
produced does indeed conform to the requirements. Therefore, the
acceptance tests must cover all of the user requirements.

5.4. Requirements realization

5.4.1. Process

Figure 5.1 shows that once the requirements specification has been
completed, it is possible to move on to the second phase, which is the
realization of those requirements. The requirements realization phase must
follow a cycle which should be capable of demonstrating that the final
product meets the requirements.

Requirements Management 141

It should be noted that we speak of the realization of an application,
rather than the development of an application. The realization of an application
encompasses the activities of development but also the activities of
verification, validation, production, installation and maintenance of the
application (see Chapter 4).

5.4.2. Verification

5.4.2.1. Objective of verification

The verification of a phase involves verifying the implementation of the
quality requirements (application of the procedures, respect of the prescribed
formats, etc.), the application of the processes (respect of the plans, respect
of the organization, etc.), the correctness of the activities and the proper
integration of the safety requirements.

For each phase in the realization process, it is necessary to conduct a
phase of verification of the requirements, with three objectives – to ensure
that:

– the initial requirement has been taken into account: traceability must be
established between the upper-level requirements and the initial
requirements. This traceability must be verified: the links exist and they are
explicitly demonstrated;

– the set of requirements forms a correct whole: it is necessary to
demonstrate that the requirements are comprehensible, unambiguous,
verifiable, feasible, etc. We must also demonstrate that the set of
requirements is complete and coherent (no conflict);

– no untraceable element has been introduced: the purpose of this
verification is to check that all the requirements being formulated are
traceable to a requirement of the next level. Very frequently, we see the
emergence of so-called design and/or architectural requirements which
actually have no link with the next level up. An analysis of these
requirements shows that, for the most part, they represent things unsaid, and
are very rarely true design requirements. It is also necessary to define what a
design/architectural requirement is.

In the first and third points, the traceability study (analysis of each row of
the traceability matrices) should show that all the requirements have been

142 CENELEC 50128 and IEC 62279 Standards

implemented, but also that everything that has been implemented is actually
required.

Software
Architecture
Specification

Preliminary Design Specification

SAS_REQ_1 PDS_ REQ _11, PDS_ REQ _12, PDS_ REQ _13

SAS_ REQ _2

SAS_ REQ _3 DCP_ REQ _11

Table 5.7. Example of traceability matrix between an architecture and a design

5.4.2.2. Documentary review

Verification is then performed by way of a quick “walkthrough” or a
design review. The design review (see Figure 5.12) is a documentary check
which must have an objective. This objective can be formalized in the form
of a “checklist”.

This checklist (see Table 6.8, for example) must define the checkpoints.
These points are linked to knowledge of the types of faults which may be
introduced during the activity which has led to the production of the
documents under review.

Point Rule
State

OK/KO
Comment

R_1 All the parent requirements must be traced or a
justification must be given

R_2 All the requirements in the document must be
traced to at least one parent requirement, or else a
justification must be given

R_3 All the interfaces identified must participate in at
least one requirement

R_4 All the states of the system must participate in at
least one requirement

R_5 Is each requirement atomic (no need to read
through a set of requirements in order to
understand the need)?

R_6 Is each requirement verifiable?

… …

Table 5.8. Example of checklist regarding requirements

Requirements Management 143

5.4.3. Traceability

Figure 5.19 illustrates how the client’s recommendations can be
distributed throughout the system, and how the process can continue even to
the level of the software- and hardware elements. In the level ni verification
phase, it must be demonstrated that the requirements on this level correlate
to the next level up: ni−1. This correlation check is performed by
implementing an action of traceability.

Figure 5.19. Partial traceability between the client requirements
and the equipment-related requirements

The implementation of traceability (see Definition 5.2) involves the
definition of at least one link between two objects. In the context of
requirements, the traceability links must be able to demonstrate that a
requirement on level ni is connected to a requirement on the previous level,
ni−1. The inverse link demonstrates that no requirements have been overlook
during the realization process.

144 CENELEC 50128 and IEC 62279 Standards

DEFINITION 5.2 (Traceability).– Traceability consists of establishing a link
between two objects.

The traceability must be bidirectional, and we must be able to establish:

– vertical traceability: tracing a requirement from its highest level to its
lowest, with the objective being to show that whatever the level, all the
requirements are related to a need;

– horizontal traceability: tracing a requirement through the phases of the
process of development and realization. The objective is to show that a
requirement has been satisfied.

In requirements management, there are three kinds of traceability:

– upward traceability of requirements;

– downward traceability of requirements;

– inter-requirement traceability.

When traceability has to be implemented for the requirements, it is useful
to evaluate and define:

– the level of detail of the traceability connection, which corresponds to
the detail of the elements which it connects. Does it trace single
requirements? Sets of requirements? Use cases? Whole documents?

– the semantics of the traceability connection: “derives from”, “satisfies”,
“realizes”, “verifies”, “uses”, “depends on”, etc.

There are several ways to implement traceability:

– by a textual reference;

– by a hyperlink;

– by a reference internal to the tool.

As is illustrated by Figure 5.19, there are a number of basic
transformations of requirements. Of these, two cases are particularly
interesting: the addition and the abandonment of a requirement. In one or
other of these cases, it is absolutely essential to attach a justification to the
requirement.

Requirements Management 145

As we have seen, the aim of traceability is to define links between the
different requirements. As Figure 5.21 shows, the basic link connects two
requirements which belong to two different, consecutive levels.

Figure 5.20. Basic traceability of the requirements

Figure 5.21. Link between the requirements

The requirements are then associated with system functionalities.
A functionality is a behavior which is expected of the system. The term
“functionality” is used because at system level, there may not necessarily be
a service in the sense of a “function”, but rather an overall service (which is
the result of a set of actions). Naturally, this process must be divided
between the subsystems, the devices, the hardware aspects and the software
aspects.

146 CENELEC 50128 and IEC 62279 Standards

Figure 5.22 shows a traceability matrix which illustrates the link between
the requirements and the functions, but also between the requirements and
the secondary requirements derived from the former.

Item 1 in Figure 5.22 shows the functional link and the association
between the requirements on the two levels. The function Fct1 is split into
three sub-functions. As item 2 shows, the requirement Ex2 has been divided
into two (Ex21 and Ex22) which are associated with two sub-functions
(Fct12 and Fct13) of function Fct1.

Figure 5.22. Requirements traceability matrix

5.4.4. Change management

5.4.4.1. Introduction

Figure 5.1 illustrates a process wherein the requirements realization phase
cannot be launched until all the requirements characterizing the need have
been acquired and grasped. Indeed, in case of a premature launch of the
requirements realization phase, any evolution of the need-related
requirements may have an impact on costs and time (see [STA 94] and
[STA 01]).

There are two types of projects:

– for certain projects, the requirements acquisition phase is performed by
the person responsible for lodging the order, and is part of a very controlled,
well-managed process. In this context, the referential framework at the end
of the requirements acquisition phase is relatively stable, and the evolution
of this framework will give rise to an evolution of the contract;

Requirements Management 147

– for the second category of project, the acquisition phase forms part of
the project, where the response to a call for tender has been made before
completion of the acquisition phase. In such a case, the set of requirements is
not known, and may evolve for a certain period of time. It is then necessary
to have a process in place for managing the changes.

In addition to these two categories of projects, we must also modulate our
ideas with the fact that the design of certain products needs to take account
of regulatory and normative objectives. Indeed, any regulation in force
represents an additional set of requirements for which to cater, but this has
an impact on the understanding of the product, meaning the requirements
realization process is more likely to be delayed until the acquisition phase
has been completely finalized.

5.4.4.2. Nothing is perfect

As we have seen in the previous sections, the definition of the
requirements is a process which, on the basis of non-formalized elements,
seeks to identify the requirements which the system must respect. With this
goal in mind, the process must necessarily be iterative: it must be accepted
that the requirements are subject to change. This means that the initial
requirements may be improved during the design of the application.

Such changes may be induced by a difficulty in interpretation during the
refinement and/or attribution of the requirements to the components, by
modification requests, by a difficulty (or impossibility) to perform the tests,
etc.

In order to be able to handle this iterative process, a specific attribute
defining the state of a requirement may be added. This attribute could, for
example, take the values: tabled, under analysis, accepted.

5.4.4.3. Accepting change

Today, clients are no longer prepared to accept inflexibility; they want to
be free to ask for functional changes to be made to a project during the course
of its development. Hence, the designers of new products must have a positive
attitude toward change.

The development of so-called smart products must respond to a market
dynamic where the clients’ requirements tend to change very rapidly in an

148 CENELEC 50128 and IEC 62279 Standards

environment of fierce competition. In this frantic rat-race, innovation must
be at the heart of the definition and the development of new products, and it
is a major advantage to be the first to launch a revolutionary product on the
market – the so-called killer product.

The evolution of the regulations, which impose increasingly-stringent
constraints on the functionalities and design of these products, also
contributes to this dynamic of change, but to a lesser extent.

As a product designer, it is essential to be able to act swiftly when faced
with a new requirement or a changed understanding of the client’s needs
during the development process. This ability to accept and deal with change
is a crucial pillar in agility. Thus, we need to be able to devise new
engineering processes in order to respond to a “natural” evolution of the
requirements during the course of the project.

These “agile” processes must be anticipated and defined as early as
possible, and must not be the result of an ad hoc process. In this context,
requirements management is a central process, because it is this
process which will ensure that the client’s requirements are fulfilled and
that there is traceability between those requirements and the end
product finally delivered. We need to think of the requirements as
being evolutive artifacts, which are always crucial to the success of the
projects.

5.4.4.4. Impact of change

Analysis of a change is performed by way of an impact analysis
(see Definition 5.3) and a non-regression analysis (Definition 5.4). In
certain cases, non-regression is said to be total. In such cases, it is then
necessary to re-execute all the tests in one or all of the phases. The purpose
of non-regression analysis is to minimize the cost of engineering a new
version.

DEFINITION 5.3 (Impact analysis).– Impact analysis of an anomaly consists
of identifying the modifications that need to be made on the later phases of
the realization (impact on the documents, impact on the code, impact on the
description and implementation of the tests).

Requirements Management 149

DEFINITION 5.4 (Non-regression analysis).– Non-regression analysis consists
of determining a set of tests to demonstrate that the modification that has
been made has no effect on the rest of the software application12.

Requirements management is a tool that can be used to manage any
evolutions made after implementation of the original system. Indeed, it is
possible to define the impact cones relating to a requirement.

As is illustrated by Figure 5.23, on the basis of the modified
requirements, it is possible to perform an impact analysis. In order to do so,
we extract the cone whose origin is the modified requirement and which
works toward the code. This code enables us to identify all the requirements
of the lower levels which could, potentially, be impacted by the
modification, and the test cases associated therewith.

Figure 5.23. Impact analysis

The second analysis (see Figure 5.24) involves performing non-regression
analysis. Non-regression analysis entails constructing a cone which begins (at
its vertex) with the modified requirement, and works back toward the
requirements in the initial specification. Based on the requirements cone, we
can thus select the non-regression tests to repeat in order to show that the
modification does not impact on the system requirements.

12 It should be noted that non-regression testing can be performed on the software application
or on a larger element, such as a device, a subsystem and/or even a system.

150 CENELEC 50128 and IEC 62279 Standards

Figure 5.24. Non-regression analysis

5.5. Requirements management

5.5.1. Activities

Requirements are used to form the link between the documents
(specification lists, design files, encoding files) but also as testing objectives.
The various categories of tests (unit tests, software/software integration tests,
hardware/software integration tests, functional tests and income tests) can be
viewed in relation with the requirements on the basis of the attribute “type of
verification”. Thus, we obtain a requirements-management process which
involves forming the link between the initial needs, the choices made during
the realization, and the validation phases (see Figure 5.25).

The phase of verification consists of verifying the fulfillment of the
requirements and the coherence of the links that have been established. From
the standpoint of the project, management of the fulfillment of the
requirements enables us to quantify the work that has been done and the
work that remains to be done.

Management of the evolution of the requirements and analysis of their
impacts on the linked requirements and on the products are the key points of
requirements management. It must be noted that the true difficulty of
requirements management lies in management of the evolutions.

Requirements Management 151

In summary, we can state that requirements management requires simple
mechanisms to be put in place, such as:

– the introduction of identifier management;

– the description of the requirements;

– the definition of a traceability matrix.

Figure 5.25. Links between the activities

5.5.2. Two approaches

Today, requirements management is enacted by way of two approaches:

– database-centered approach;

– document-centered approach.

5.5.2.1. Database-centered approach

The first approach, which is called the database-centered approach,
involves compiling all of the requirements (and the elements associated
therewith) in a database, and establishing all of the links within that
database.

152 CENELEC 50128 and IEC 62279 Standards

The use of this approach involves being capable of importing all the
elements (documents, models, source files, test scenarios, test results, etc.)
into the database. If this is done, it becomes possible to produce the
traceability matrices and think about the links existing between the
requirements (impact analysis, evolution management, etc.).

However, centralization of the information in a single database is a
disadvantage, for various reasons:

– the size of the database depends on the size of the documents being
handled;

– in case the source document evolves, it is necessary to re-import it into
the database. However, it is usually rather difficult to automate the
reintegration of data relating to the requirements;

– etc.

5.5.2.2. Document-centered approach

The second approach, which is known as document-centered, consists of
going through the documents (documents, models, source files, test scenarios,
test results, etc.) and adding information regarding the links between the
objects. That information comes in the form of tags, attributes and links.

The use of this approach requires us to be able to add data and also to
harvest them from the requests submitted.

The advantage of this approach is that it does not alter the process that
has been established for the conduction of the project, and is limited to the
embellishment of the existing documents.

5.5.3. Implementation of tools

In [STA 01], mention is made of the fact that the establishment of a
requirements-management environment is the best way of producing a
major impact on the success of a project. The definition of a minimal set
of requirements provides us with a base that can be managed, and the tool
then becomes a vector of communication between the various teams
involved.

Requirements Management 153

A text-editor-type tool13 may suffice in this case (with tables, identifier
management, links between the documents, etc.) to handle one or several
documents. In complex systems, the number of documents and number of
steps (see Figure 5.25) create a need for a tool-based requirements-
management process.

A tool is not sufficient to manage the requirement, it is necessary to
define a management process. In another way, it is preferable to define a
management process and to select the appropriate tools to implement it
afterwards.

Figure 5.26. Outline of a requirements-management environment

[CHO 01] presents the approach known as Common Airbus
Requirements Engineering (CARE), which was designed to aid in the
development of the AIRBUS A380. This approach is based on the definition
of a global methodology, which is inspired by the EIA632 standard [EIA 98,
EIA 03] and is equipped with a devoted toolkit.

Requirements management is supported by tools which facilitate the
acquisition of the requirements, the establishment of traceability measures,

13 As part of the twofold validation implemented by the RATP for the SAET-METEOR
equipping Line 14 of the Paris Metro, the text-processing tool INTERLEAF was used to
define and manage all the requirements (from system level to the three software programs
written in the formal language “B”).

154 CENELEC 50128 and IEC 62279 Standards

reporting and the generation of documentation. This list includes, for
example, DOORS (distributed by IBM), RTM (Integrated Chipware Inc.),
Requisite Pro (Rational) and Reqtify (created by Dassault for traceability
matrix generation). One of the main issues associated with the use of these
tools is their integration into the trade processes used by individual
companies.

5.6. Conclusion

Requirements management is an entirely separate process. For that
reason, it is essential to produce a requirements-management plan, the goal
of which is to describe:

– the organization put in place to manage requirements on the project
during all the phases (from the requirement acquisition phase to the
decommissioning phase);

– the concept of requirement: syntax, principle of drafting, list of
attributes, etc.;

– the resources mobilized to manage the requirements: tools and
processes;

– the principles of document management and production;

– the process of evolution management (identification of changes, impact
analysis, non-regression testing);

– etc.

For readers wishing to know more about requirements, we recommend
consulting [BOU 14a, HUL 05, POH 10].

6

Data Preparation

6.1. Introduction

In recent years, the process of installation of a software-based system has
undergone a change, caused by the need to establish product lines. Indeed,
no longer is a product designed solely for one use; rather, it must be able to
be used in various contexts. This issue is common to the various domains
and the standards associated therewith [BAU 10].

When a system is dependent on a dataset to define and realize its
behavior, we say that it is a parameter-based system. There may be various
types of parameters: data describing the context of the system’s use
(topology, velocity curve, stopping points, etc.), data governing the services
(maximum number of objects, weight, etc.) and service activation/inhibition
data where some services such as Electronic Stability Program (ESP) in the
car are present and can be activated when the user requests.

In parameter-based systems, the safety of the complex, operationally-safe
critical system is governed not only by the validation of the software
application but also the validation of the data handled by that software
application.

The management of parameter-based software applications is described
in section 8 of CENELEC 50128:2011 [CEN 11a], which we shall present in
this chapter.

156 CENELEC 50128 and IEC 62279 Standards

6.2. Recap

The railway systems in charge of signaling have the characteristic of
handling data describing the topology of the line that they manage
(see [GEO 90], for example). These topological data are said to be invariant,
because they do not change unless work has been carried out on the line. The
topological data include lights, routes, track circuits, platforms, the
description of the line, etc. Topological data are not the only invariant data
that can be used by a railway system; there are also data pertaining to the
features of the train: its weight, its length, its maximum speed, maximum
acceleration, braking characteristics, door characteristics, length of alarm on
doors closing, etc.

Signaling systems, but many other railway systems as well, can thus be
constructed on the basis of a generic application (applicable to different sites
and different users) and a configuration process [BOU 00, BOU 03,
BOU 06] used to obtain a specific application (dedicated to a single site, one
use, a lone user).

The CENELEC 50128:2011 standard (see Figure 2.8) covers both aspects:
the development of a generic software application (see Chapter 7 of the
standard) and the development of a process to manage the parameters of a
generic application (see Chapter 8 of the standard). The aim of the current
chapter is to present the issue, the concepts associated therefore and what is
expected of data preparation, through an analysis of CENELEC 50128:2011.

6.3. Issue

Global Positioning System (GPS) is a tool that is very widely used in
daily life today, and is an example of a system where data are ubiquitous.
For GPS, it is difficult to imagine there being any direct impact on safety,
although certainly some surprising situations could arise (e.g. lack of any
road, a non-optimal route or one which disobeys signage, etc., as illustrated
by Figure 6.1), but as the driver is still ultimately responsible for the
decisions, the GPS is merely a driving aid. However, new uses for GPS, such
as the monitoring of train positions, could have an impact on safety-related
recommendations such as measuring of the position, accuracy, etc.

As we shall see later on, the railway domain is one example where data
are ubiquitous in the realization of the system, but it is not the only one. The

Data Preparation 157

nuclear, automotive and space domains are other areas where data
management can impact on safety.

Figure 6.1. Example of issues relating to data

For example, in the nuclear domain, the concept of parameter data is
essential. Thus, the systems SPIN (For “SeParation & INcineration” – a
French federally-mandated program) and US (Unité de Surveillance, or
Monitor unit) for N4-class1 reactors generate a vast quantity of data (more
than 10,000 units). Some of these data are updated during the operation of
the reactor – notably to take account of the depletion of fuel. At least two
data-related incidents are identified on the Website of the ASN (Autorité de
Sûreté Nucléaire, or Nuclear Safety Authority – www.asn.fr). Following the
incidents on 14 February 2000 and 4 April 2000, the analysis shows that it
was mistake in parameter-setting which led to an underestimation of the
power released by the fuel in a given situation, leading to automatic
shutdown of the reactor. Note that it was the parameters of the SPIN and US
that were at fault. These errors were due to the poor quality of the
documentation used in programming the systems.

For the nuclear domain, section 5.2 of the IEC 60880 standard [IEC 06]
introduces the concept of configuration data as being data that are necessary
for the adaptation of applicative software to the inputs/outputs and the
services required by the installation.

1 The N4 classification applies to pressurized water reactors with 1450MWe nominal power,
operated by EDF.

158 CENELEC 50128 and IEC 62279 Standards

Parameter data are divided into two broad categories:

– data which are not intended to be modified online by operators, and
which are subject to the same requirements as the rest of the software;

– parameters, i.e. data which can be modified by operators during the
operation of the installation (e.g. alarm thresholds, checkpoints, instrument
calibration data), and which are subject to specific requirements.

In the spatial domain, the preparation for launch of an Ariane 5 rocket
([BOU 10] Chapter 7) requires the production of the data relating to a
trajectory. These data must take account of the characteristics of the
launcher, the trajectory identified and the weather conditions. There are three
types of such data: the mission data (mass, intended orbit parameters, etc.),
family data (type of nose on the rocket, etc.), configuration data and data
dependent on the launcher (sensor calibration, etc.). However, before it is
possible to produce the data, it is necessary to carry out studies and
simulations. The data (in tabulated form) are produced in the form of ADA
packaging [ANS 83, ISO 95, BAR 14], and can be exploited by the flight
program.

6.4. Data-parameter-based system

6.4.1. Introduction

The command/control systems being developed today are increasingly
large and cumbersome; they integrate the concept of communication and
consume data. These statistical data may be of two types:

– fixed data, said to be “invariant”, which characterize the environment
(topology, trajectory, etc.), the system (number of objects, limit, etc.) and
characteristics (weight, length, velocity, etc.);

– data which evolve with the state of the system.

DEFINITION 6.1 (Specific application).– A specific application is a generic
application with which a set of parameters has been associated. This specific
application can only be used for one installation.

It should be noted that the concept of a specific application covers both
the software and hardware aspects.

Data Preparation 159

DEFINITION 6.2 (Generic application).– A generic application comprises an
execution platform (called a generic product) and a software application.
That software application is defined on the basis of a set of parameters
which must be instantiated as a function of the final use (depending on the
site, depending on the services needing to be provided, depending on the
technical characteristics techniques, etc.).

As Figure 6.2 illustrates, the generic application (see Chapter 7) is
therefore the combination of a generic software program and an execution
platform. The execution platform is called the generic product, and covers
the hardware aspect and the software aspects (operating system, firmware,
middleware for communications management, etc.).

Figure 6.2. Specific application versus generic application

DEFINITION 6.3 (Generic product).– A generic product comprises a set of
hardware elements and a set of software programs (operating system,
firmware, middleware, etc.). The aim of a generic product is to facilitate the
execution of a software application. A generic product can be used for the
realization of a variety of systems.

As is indicated by Definition 6.3, a generic product is designed to execute
different types of software application – the generic aspect means that it does
not need to be specialized; the concept of a product is linked to the fact that

160 CENELEC 50128 and IEC 62279 Standards

this set can be certified independently of the field of use. Such is the case,
for example, of programmable logic controllers (PLCs).

The generic product is, in general, developed independently from a
specific project. See, for example, the different PLCs already certified SIL3
in conformance with IEC 61508 ([IEC 08]) or the internal generic products
developed by railway industrial actors based on 2oo3 architecture or coded
monoprocessors (see [BOU 10a], Chapter 2).

The invariant data are known to the generation of the system and define a
configuration for the system. Thus, it is possible to generically define a
system and implement it by way of parameters on another site.

For example, from the description of a metro line, it is possible to deduct a
dataset common to all the devices making up the system. Those data depend
on the topology of the line, the characteristics of the trains and the
technological choices (response time, processor computation time, etc.). In the
world of railway systems, they are called “topological invariants” [GEO 90].

A metro line (see the fictitious example given in Figure 6.3) is made up
of tracks carrying train traffic. Those tracks are constituted by track circuits
(TCs). Each track circuit is a portion of track which is able to detect the
presence of trains in that particular area. The track circuits are generally
connected to two other track circuits, but in cases where they are connected
to three other track circuits, they must be associated with a route, which is a
device that enables a user to choose the path to take.

Figure 6.3. Example of topology

Data Preparation 161

6.4.2. Characterization of data

A specific application (see Definition 6.1) is therefore devoted to a
specific use. This application uses data of different types:

– service activation/inhibition data;

– fixed data which do not evolve over time. Such data describe the
system’s characteristics (topology, velocity curve, stopping points, etc.);

– data which evolve over time, with the evolution time being the cycle or
a longer duration.

Data whose values change regularly (in the railway domain, these data
are called “variants”) may be:

– input that the system acquires regularly;

– data that the system calculates, such as the global or local variables and
the system outputs.

Definition 6.4 (Configuration data).– Configuration data are parameters
whose value does not change during the execution of the software
application.

As is indicated by Definition 6.4, the parameter data (in the railway field,
we speak of “invariants”) are the first type of data. The parameter data
generally include two families of data: those defining the technical
characteristics (velocity, weight, size, number, etc.) and those defining the
use context (the topology, the velocity curves, the stopping points, etc.).

The parameter data characterize the implementation of a so-called generic
software application to a specific case. Note that there are two types of
configuration data (see Figure 6.4): the so-called calibration data, which are
deemed to be invariant because they change extremely slowly, and the
configuration data which, for their part, actually are truly invariant.

DEFINITION 6.5 (Calibration data).– Calibration data are data which evolve
over a “long” period of time.

As Definition 6.5 indicates, the calibration data are linked to the fact that
the system’s characteristics evolve over time (decrease of fissile material in a
nuclear power plant, evolution of the characteristics of engines because of

162 CENELEC 50128 and IEC 62279 Standards

wear and tear, etc.). Railway systems use some calibration data, for example,
to confirm the wheel diameter.

Figure 6.4. Configuration data versus calibration data

6.4.3. Service inhibition

The configuration data may be associated with real data for the system,
but in certain cases they are associated with services – as is the case, for
example, with service activation/inhibition data. Such data (see Figure 6.5)
are used to determine whether or not the execution of the services can be
allowed.

Figure 6.5. Data controlling the activation of a segment of code

Data Preparation 163

The use of inhibition/activation data is therefore associated with the
notion of dead code (i.e. code which cannot be executed in a real-world
execution). Thus, it is necessary to obtain a complete validation of the
application with and without the data-controlled functions to ensure that a
runtime error (such as a memory anomaly, a processor anomaly, inadequate
point management, etc.) cannot lead the software application into an
uncontrolled situation.

This type of data can be used to put in place an activity of capitalization,
and therefore establish a process of reuse of services that have already been
validated. However, it is not compatible with the a priori creation of
unnecessary functions for future use. Whilst it is true that this approach
could help reduce the cost of a future project by reusing the existing
functions, it could also cause costs to spiral out of control if functions are
developed a priori that are not used on the project.

The inhibition/activation data are useful in defining a product line.
Figure 6.6 presents a process of realization of an application based on the
concept of a product line. The generic product is not an entirely separate
application: it is necessary to put in place a stage of specialization, whereby
we define the common boundary between the common core and the generic
application to be realized; using that knowledge, it is possible to construct the
generic application on a shared base.

Figure 6.6. Product line

164 CENELEC 50128 and IEC 62279 Standards

This process is associated with two activities:

– the first, which we can call “generalization”, involves harvesting the
behaviors of the generic application which have been validated in the
common core. We can then use them “as are” in a subsequent software-
development project;

– the second activity is called synchronization, and is linked to the fact
of updating a generic application in relation to the common core; indeed,
that common core may have evolved (with error correction, generalization,
etc.).

Here, we shall not further describe the concept of a product line,
although it remains a challenge to control the cost of the realization of
software applications. CENELEC 50128:2011 [CEN 11a] does not identify
this issue.

6.4.4. Overview

In this section, we have laid down the specific vocabulary that is used to
speak of parameter-based software applications. In the railway domain, the
concepts of a generic product, a generic application and a specific
application may facilitate re-use, but above all they are essential in dividing
safety research.

CENELEC 50126 [CEN 99]2 – which describes the management of the
safety-related processes – is applicable from the level of the whole system to
that of the generic product, and CENELEC 50129 [CEN 03] – which
focuses on the formalization of the safety demonstration – introduces the
concept of a safety case and the possibility to compile safety cases for the
generic product, for the generic application and/or for the specific
application.

Finally, it is possible, in the railway domain, to realize systems on the
basis of a generic product, a generic application and/or a specific application,
and only configuration data are used to set the parameters.

2 See Chapter 2 for an introduction to the CENELEC standards, and more specifically to
CENELEC 50129 and the concept of a safety case.

Data Preparation 165

6.5. From the system to the software

6.5.1. Need

Parameter-based software applications require specific work to
identify and produce the data to be handled. This activity is, for the moment,
identified as an activity to be carried out during the phase of realization of
the software application, but at present, there is a danger of constructing a
system which will not work.

Figure 6.7. View of a system

Indeed, a railway system (for example, see Figure 6.73) comprises many
different kinds of equipment (OCC, AP-Line, AP-Section, AP-Onboard and
transmission belt) and may have several software applications – either
parameter-based or otherwise (see Figure 7.8).

3 The example presented here is connected to SAET-METEOR, which is the system
employed on Line 14 of the Paris Metro. Further information can be found in Chapter 2 of
[BOU 12].

166 CENELEC 50128 and IEC 62279 Standards

Figure 6.8. From the system to the software

In such an approach, the main difficulty relates to the coherence of the
data between different devices. The data must (non-exhaustive list, but one
which does offer a general idea of the issue):

– describe the same system: common source of input for the production
of the data, identical version of the data, technical interpretation of the
characteristics of the data, etc.;

– be coherent: compatible precision, same frame of reference of the units
(km, etc.), similar frame of reference for orientation (where is the point of
reference?, etc.), compatibility of the frames of reference (the switch from a
PK orientation to a track marker-based orientation, etc. – see Figure 6.9),
identical limits (the maximum speed of the train must be the same for all the
devices, etc.);

– be correct: the same activity of validation must show that the data are
correct and that the operation of the system is in line with what is required
for all configurations.

Data Preparation 167

Figure 6.9. Pinpointing of the objects: a) on the basis of a “kilometric point”
(PK – European system), b) on the basis of a segment

Figure 6.9 shows an example of topology, and demonstrates that it is
possible to have different frames of reference by which to pinpoint the
objects. Initially, the objects are located by using a measurement in relation
to “kilometric points” (PK, roughly equivalent to “mile markers” – see case
(a) in Figure 6.9), but at the equipment level, the tendency is to work with
more precise local frames of reference, such as the segment (case (b) in
Figure 6.9) or the track marker.

6.5.2. What the CENELEC framework does not say

The concept of data is essential for railway systems, but
CENELEC 50126 [CEN 99], which describes the process of safety
management throughout the lifecycle of the system, does not directly
mention this concept. Meanwhile, CENELEC 50129 [CEN 03], which is
intended to formalize safety demonstration, does indeed introduce the
concept of generic products and generic applications, but does not indicate
how the parameters should be managed, and what form they should take.

As Figure 6.10 illustrates, the data-preparation process to be implemented
comprises three steps:

– step 1: identification of the data at system/subsystem/equipment level.
This identification enables us to define the data and their characteristics;

168 CENELEC 50128 and IEC 62279 Standards

– step 2: identification of the data consumed by the generic software. On
the basis of the system data and the software requirements, during the design
of the software, we must identify the data that are actually consumed and the
characteristics of those data;

– step 3: definition of the data production process, on the basis of the
system data and the data necessary to set the parameters of the generic
application, a data preparation process must be defined. We must show that
the data stemming from the data preparation process respect the desired
properties. This data production process should enable us to demonstrate that
the data conform to their SSIL objectives [BOU 99, BOU 00].

Figure 6.10. A three-step process

The data preparation process was identified in the previous version of
CENELEC 50128 [CEN 01a], but it was impracticable. In the 2011 version
of the standard, section 8 identifies the principles characterizing the data and
the needs to carry out a data preparation process that respects CENELEC
50128:2011 [CEN 11a] and the objective SSIL.

1

2

3

4

5

6

d1

f1

Donnée du système
- Id
- Famille
- Format
- Unité
- …

Application
générique

DATA
- Id
- Famille
- Format
- Unité
- …

spécifie

Etape 1

Etape 3
Préparation des don

Etape 2

Step 1

Step 3

Step 2

Data preparation

Generic
application

System data
- ID
- Family
- Format
- Unit
- …

DATA
- ID
- Family
- Format
- Unit
- …

specifies

Data Preparation 169

6.6. Data preparation process

In this section, we shall present the data preparation process as stipulated
by CENELEC 50128:2011, and more specifically, we shall explain what is
expected because of section 8 of that standard.

6.6.1. Context

6.6.1.1. Software assurance

As was demonstrated by Figure 2.8, Clause 6 (which relates to software
assurance) needs to be implemented both for the realization of the generic
application and for the parameter setting. It is therefore necessary to have
quality assurance in accordance with ISO 9001:2008 [ISO 08], skill
management, a form of organization, configuration management,
verification/validation, to qualify the tools and realize an evaluation.

Therefore, it is important to have a set of plans (SQAP, SCMP, VVP,
SVaP, etc.) that describe the organization, processes and resources mobilized
to realize the data preparation processes. These plans may or may not be
specific; the data preparation may be part of a project or be an entirely
separate project.

Software assurance was presented in Chapter 4 and is still applicable for
the generic software, to the preparation of the principles of parameter setting
and to specific parameter setting.

6.6.1.2. Safety assurance management

CENELEC 50128:2011 does not identify an activity of safety assurance,
but it requires the implementation of CENELEC 50126 [CEN 00].
CENELEC 50126 defines a RAMS management cycle (see Figure 2.4)
which is based on acquisition of the need when the system is
decommissioned. For our purposes, though, CENELEC 50126 requires the
safety team to identify the functional requirements pertaining to safety and
the safety integrity level requirements, and to take account of all the
requirements throughout the whole of the cycle.

CENELEC 50129 [CEN 03], which pertains to the safety case and is
normally applicable to the signaling subsystem (in the next version of

170 CENELEC 50128 and IEC 62279 Standards

CENELEC 50126, this section will be applicable to all parts of the system),
introduces different levels of the safety case:

– the safety case for the generic product;

– the safety case for the generic application;

– the safety case for the specific application.

This structure conforms to Figure 6.2 and to Definitions 6.1, 6.2 and 6.3,
given above.

Hence, the safety team must, in its safety assurance plan (SAP), define a
safety demonstration strategy which takes account of that decomposition
(Figure 6.2). A set of activities needs to be established with a view to
showing that:

– the safety management requirements are properly served at every level;

– the generic product is indeed safe and it clearly identifies the exported
constraints pertaining to its use;

– the generic application is able to conform to the constraints exported by
the generic product, that it is safe and clearly identifies the exported constraints
pertaining to its use;

– the specific application is able to conform to the constraints exported by
the generic application, that it is safe and clearly identifies the exported
constraints pertaining to its use;

– the specific application is consistent with the final installation.

6.6.2. Presentation of section 8 of the CENELEC 50128:2011 standard

6.6.2.1. Lifecycle

The structure given in section 7 of the CENELEC 50128:2011 standard
adheres to the V-lifecycle, and for each phase, the standard identifies the
inputs, outputs and activities. For section 8, the structure is different; indeed,
the process of production of the parameter data is viewed as a whole.
Section 8.2 identifies the inputs, section 8.3 the outputs and section 8.4
describes the cycle (see Figure 6.11) and the activities that need to be carried
out in relation to that cycle.

Data Preparation 171

Figure 6.11. Data preparation cycle

The data preparation cycle is divided into eight phases. Of those eight,
there are three phases of particular importance:

– the planning phase (step 8.4.1), which is aimed at defining the data
preparation strategy, the activities, the documentation needing to be
produced and the necessary resources;

– the validation and evaluation phase (step 8.4.6), which is not really a
phase in the truest sense of the word. Indeed, the only article associated with
it says that it is important to monitor the performance of each phase of the
realization cycle. As the implementation of ISO 9001:2008 is requisite, this
phase is covered by the activities of verification which need to be put in
place. That is why, in Figure 6.11, a checking activity is shown to the right
of the end of phase;

– the phase of development of the generic application (step 8.4.8), which
invokes section 7 of the standard and introduces stipulations relating to the
setting of the parameters.

6.6.2.2. Problem of circularity

In section 8.2, which relates to the input documents, it is indicated that, for
the input to the data production process, it is necessary to have the
requirements specification, the architecture, the application conditions and
the user manual for the generic software, which implies that the generic
software has already been realized and the data preparation process remains
to be defined.

8.
4.

1-
 P

la
nn

in
g

8.4.2- Requirements specification

8.4.3- Architecture/design

8.4.4- Data production

8.4.5- Integration of application and testing

8.4.7- Procedure and tools for
preparation of the application

8.4.8- Development of generic
software: §7

8.4.6- V
alidation and evaluation

172 CENELEC 50128 and IEC 62279 Standards

Section 8.8 of the standard pertains to the development of the generic
software. In directly invokes section 7 after having identified the additional
recommendations linked to the parameter data. As Figure 6.12 shows,
therefore, there seems to be a circular aspect to the process.

Figure 6.12. Circularity between the generic software and the data preparation

In fact, the circularity stems from the fact that there are a number of
possibilities for developing a software application and the parameter data, as
shown by Figure 6.13. In case 1, we begin by realizing the generic
application and on that basis, we can then develop the data. On the contrary,
case 2 involves carrying out the data preparation first and then developing
the generic application afterwards.

Figure 6.13. Various realization processes

Données du système
- Id
- Famille
- Format
- Unité
- …

Cas 1

Application
générique

DATA
- Id
- Famille
- Format
- Unité
- …

spécifie

Préparation des données

Données du système
- Id
- Famille
- Format
- Unité
- …

Cas 2

Application
générique

DATA
- Id
- Famille
- Format
- Unité
- …

spécifie

Préparation
des données

Case 1 Case 2

System data
- ID
- Family
- Format
- Unit
- …

System data
- ID
- Family
- Format
- Unit
- …

DATA
- ID
- Family
- Format
- Unit
- …

DATA
- ID
- Family
- Format
- Unit
- …

Generic
application

Generic
application

specifies
specifies

Data preparation

Data
preparation

Data Preparation 173

From another standpoint, in the railway domain, at present, there are two
approaches to the format of parameter data:

– the first approach, which corresponds to case 1 in Figure 6.13, is called
“tabular data”: on the basis of the algorithms identified in the generic
software, we construct tables of specific data devoted to the algorithms. This
approach helps to optimize the execution times and decrease the complexity
of the algorithms, but it is difficult to find the system data in the tables, and
the number of time data units then becomes extremely great. This type of
approach has been used on the SACEM [GEO 90], MAGGALY, the SAET-
METEOR system [BOU 00, BOU 06, DEL 99], the VAL at Charles de
Gaulle Airport (see Introduction), etc.;

– the second approach, which corresponds to case 2 in Figure 6.13, is
called “industrial data”: on the basis of the input documents, we produce
files of parameter data which are centered on the industry, containing the
objects of the system. A high-level language (state machine diagrams, Petri
nets, etc.) is used to describe each object, the different states and the links
with the other objects. The generic software, therefore, is a machine for
executing the objects, which must respect the semantics of the high-level
language that has been used. This type of approaches has been employed for
New-Generation Signaling Stations (known as PAINGs, from the French
term) – [BOU 10a], Chapters 4 and 5 – and CMPs [GAL 08].

Figure 6.14. Example of a parameter

174 CENELEC 50128 and IEC 62279 Standards

The choice of one of the two strategies determines the type of generic
applications to be realized, and the overall process of realization of the final
software application.

For Case 1 in Figure 6.13, the reality is a little more complex. In general,
the data and the generic software are developed in parallel. This parallelism
is caused by the fact that during the realization of the software, it may be
necessary to introduce:

– specific data to control the algorithms (see, for example, the discussion
in section 7.4.3);

– data with specific characteristics which help to optimize the software’s
execution and/or decrease the complexity of the algorithms. In the case of
complex algorithms with multiple instances of element searches, it may be
preferable to simplify the algorithms and generate tabulated data specific to
that algorithm. In that case, the complexity is transferred from the algorithm
executed by the generic software to the data production algorithm.

Finally, we can see that section 8.2 of CENELEC 50128:2011 needs to be
supplemented by a set of system documents to identify the data. These
system documents (System Data Specification, etc.) must describe the data
from the point of view of the system (name, description, attributes,
characteristics, unit, type, etc.).

6.7. Data preparation process

6.7.1. Management of the data preparation process

6.7.1.1. Planning

In this section, we shall discuss step 8.4.1, which is called “planning”. It
is necessary to draw up an application preparation plan (APP).

Figure 6.15 shows that data preparation involves managing two types of
activities: the production of the parameter data and the integration of those
data with the generic software. For this reason, the APP needs to be realized
either for each specific application or for a category of specific application.
If it is produced for a category of specific application, then we shall finally
validate a family of configurations.

Data Preparation 175

As with the software quality assurance plan (SQAP), the APP must:

– choose between industrial data and tabulated data;

– describe the process of development of the application (see
sections 6.7.1.2 and 6.7.1.3);

– describe the human resources, the organization and the forms of
independence;

– for each phase of the process, identify the activities to be performed, the
input and output documents and the human resources needing to be
mobilized;

– for each phase of the process, identify the verifications to be carried
out;

– identify the documentary structure;

– identify the tools used;

– describe the principles of the configuration management.

Figure 6.15. Link between the two realization processes

Software assurance, as defined in Clause 6 of CENELEC 50128:2011,
identifies a tree diagram of plans (see Figure 4.5) which may or may
not be shared with the data preparation. Thus, the APP may comprise
a single document or be based on other documents (SQAP, SDP, SCMP,
VVP, etc.).

176 CENELEC 50128 and IEC 62279 Standards

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

1. Tabular specification methods R R R

2. Application-specific language R R R

3. Simulation R HR HR

4. Functional testing M M M

5. Checklists R HR M

6. Fagan inspection – R R

7. Formal design review R HR HR

8. Formal proof of the correctness of the data – – HR

9. Walkthrough R R HR

Table 6.1. Table A.11 from CENELEC 50128:2011

CENELEC 50128:2011 identifies a number of techniques to be employed
for data preparation, in its table A.11 (see Table 6.1 above). Table A.11 of
the standard outlines two types of techniques:

– languages (1 and 2);

– means of verification (3 to 9)4.

One of the problems of data preparation relates to the means of
expression for specifying the data (Clause 8.4.1.11, Table A.11, items 1 and
2). Indeed, the data may be in different forms – either tabulated data or
industrial data (state machines, Petri nets, etc.).

The APP therefore needs to identify the formalisms used to describe the
data and the data production process, so that it is feasible, comprehensible,
limits the introduction of errors and is reproducible and maintainable.

6.7.1.2. Integration between the data and the generic software

The link between the data and the generic software is an important point,
which needs to be properly grasped. As the generic software consumes data,
it can export constraints (see Clause 8.4.16 of the standard) which the data
must respect (e.g. “always finish a table with the value –1”, “express

4 See Chapter 4 for a description of the verification techniques.

Data Preparation 177

distances in cm”, etc.), and these constraints can be directly linked to the
software safety.

There are different levels of integration between the parameter data and
the generic software, as illustrated by Figure 6.16. Case 1 presents an
example of software where the parameter data are dispersed or fully
integrated into the software. In case 2, the parameter data are a contiguous
whole, but are still integrated in the application. Then we have case 3, where
the parameter data are outside of the software.

Figure 6.16. Software integration levels

The identification of the parameter data, the principle of separation
between the data and the generic software and the interfaces must be
identified at the point of specification of the generic software (Clauses
8.4.8.2 and 8.4.8.3 of the standard).

Case 3 is interesting (see Clause 8.4.8.4 of the standard) because it
simplifies the maintenance activities – a modification of the data can no
longer lead to recompilation – but it induces problems of controlling the
integrity and validity of the data. Indeed, the protective measures in place for
the executable no longer apply for the software, so we need to put specific
protective measures in place for the parameter data, and mechanisms for the
executable to check the validity of the data. The problem is: “how can the
software know that an integral configuration (a coherent dataset) is an
appropriate configuration for it?”.

6.7.1.3. Data production process

The data production process is designed to transform (see Figure 6.17)
system-level data into data that can be manipulated by the software. This
transformation can be performed manually or it can be automated.

1) 2) 3)

178 CENELEC 50128 and IEC 62279 Standards

Figure 6.17. Data transformation

If the number of data units is small, it is possible to manually produce the
parameter data. If the number is too great, it will be preferable, in order to
conserve the amount of effort invested and ensure the repeatability, to use
automated tools for the process.

The specification of the generic software must identify the SSIL, the
software requirements and the data. Hence, it is possible to identify the SIL
of the parameter data.

Now we need to define the data production process. The main difficulty
relates to the correctness of the transformation; with this in mind, it is
possible to use three approaches [BOU 07] for data production (see
Figure 6.18).

Figure 6.18. Data transformation

The first case consists of developing only one tool to produce the data.
The second case is to use three tools: two diversified tools – but which have
the same specification – perform the same transformation, and a comparison
engine is used to check that the result is identical (or similar in the case of

Data Preparation 179

partial comparison). The last case is to realize a tool which performs the
transformation and a tool which reverses the transformation, and finally use
a comparison engine to check that the result is similar (generally speaking,
transformations do not preserve all the information, so it is impossible to
verify absolute equality).

The third case in Figure 6.18 ensures greater diversity (two different
specifications) between the two tools than does the second case (same
specification).

Thus, we have at least four possible approaches, but they must be
combined with the possibility of manually checking the data, so we have
Table 6.2.

Production
Verification of

data
Characteristics Comment

Manual
Manual
(walkthrough,
etc.)

Not much data
The number of data units is
reasonable, and there is no need for
automation

Manual Tests Not much data

It is possible to show that the data
are correct by whole-program
software tests
This approach is not practicable in
case of a large number of data units

Automated –
case 1

Manual
(walkthrough,
etc.)

Not much data
The small number of data units
means it is possible to carry out a
manual check

Automated – case 1
Data SSIL2 or
SSIL3-4

A unique tool developed for the
data SSIL

Automated – case 2
Data SSIL2 or
SSIL3-4

We have a double chain, which
enables us to use tools from a lower
SSIL (diversification function) than
the SSIL expected for the data

Automated – case 3
Data SSIL2 or
SSIL3-4

We have a highly-diversified
double chain, which enables us to
use tools from a lower SSIL
(diversification function) than the
SSIL expected for the data

– Automated
Data SSIL2 or
SSIL3-4

The safety of the data may be based
on the implementation of a tool to
verify the data (e.g. by proof)

Table 6.2. Combinations to realize a data production process

180 CENELEC 50128 and IEC 62279 Standards

The APP must describe the process of data production needing to be
implemented as a function of the SSIL, and identify the set of tools that must
be employed. For each tool, either it needs to be created or it is re-used. In
all cases (Clause 8.4.1.10 in the standard), SSIL objectives and a class of
qualification (T1, T2, T3) must be associated with the tools, and a
certification of the tools must be conducted in accordance with Clause 6.7 of
CENELEC 50128:2011 (see Chapter 8).

The 2011 version of CENELEC EN 50128 formally introduces the need
to qualify the tools (see section 6.7 of the standard and Chapter 9 of this
book).

6.7.1.4. Inputs to the data preparation process

As explained in the previous sections, section 8.2 of
CENELEC 50128:2011 does not identify all of the input documents for the
data production process. To begin with, for the inputs, it is crucial to have
the system documents mentioned below.

These documents must take account of the system data – including, for
example:

– system requirements specification;

– description of system architecture;

– system safety requirements specification;

– etc.

In addition, depending on the case from Figure 6.18 that applies, it is
essential to have at least a software quality assurance plan (SQAP), which
describes the process of realization of the specific application, the steps
(software development, development of the data preparation process, data
production, etc.) and the order of those steps.

6.7.1.5. Study of safety of data process

The data production process is based on tools (see Figure 6.18), which
are either reused from a previous project or need to be developed. The data
are manipulated by a generic software application, developed with a
particular SSIL; thus, the data must be equally as safe as the software by
which they are consumed.

Data Preparation 181

Clause 8.4.1.8 recommends that a safety analysis be performed of the
proposed data preparation process, with a view to confirming that we can
achieve the expected level of safety for the data. This safety analysis would
help confirm the levels of qualification expected for the tools and the
objective SSILs allocated to them.

6.7.1.6. Overview

Ultimately (see Figure 6.19), before being able to produce the APP, it is
essential to have an SQAP which describes the overall strategy to realize the
specific application (development of a generic application, development of
the data, instantiation of a configuration, creation of the specific application)
and the order in which these activities take place. This SQAP must also
identify the nature of the data (tabulated or industrial) and the principles of
integration of the data with the generic software.

On the basis of the SQAP, it is possible to produce the APP, which
must – in addition to defining the organization, the process and the
resources – identify the data preparation process (see Table 6.2), identify the
tools which can be reused and those which need to be developed, and
identifier the level of qualification of the tools and their objective SSILs (see
the safety study).

Figure 6.19. APP and its verification

As is stipulated by ISO 9001:2008, each product must be verified. The
CENELEC 50128:2011 standard identifies a data verification report (DVR).

182 CENELEC 50128 and IEC 62279 Standards

The APP must be verified (for conformity to CENELEC 50128:2011,
coherence and implementation on each specific application). The results of
this verification must be reported in the DVR.

6.7.2. Verification

In Chapter 4, we discussed software assurance. Amongst other things,
software assurance includes V&V. Thus, section 4.7 is applicable both to the
generic software and to parameter management. Therefore, it is not
necessary to repeat the presentation of the activities of verification.

6.7.3. Specification phase

6.7.3.1. Description of the step

As Figure 6.20 shows, the input to the specification phase is the planning
documents (APP and other plans), the system requirements, the system
architecture and the safety requirements.

Figure 6.20. Specification phase

6.7.3.2. Specification of application requirements

The specification phase involves producing an application requirements
specification (ARS), which must cover both the data and the generic

Data Preparation 183

software. For the generic software, if it is developed, we need to take
account of the constraints which it exports. If not, we need to describe the
requirements that characterize it.

The ARS must, firstly, contain a description of the external interfaces.
Figure 6.21 illustrates the system input interfaces (all of the system data and
their description), the auxiliary interfaces which are the existing tools, and
the output interfaces, which are the data produced for the different
subsystems and devices (see Figures 6.7 and 6.8). This view of the process
enables us to take account of the issue of compatibility of the data produced
for the different subsystems. If different data production processes are
employed (one for each subsystem and/or device), it is crucial to put in place a
process to ensure compatibility and coherence of the data.

This specification must take account of the choices that have been made
in the APP with regard to the data production process (see Table 6.2 and the
accompanying discussion). We must characterize the input data and the
output data, clearly indicating the desired properties (functional and non-
functional requirements) regarding those data. Note that the SSIL associated
with the data must be identified.

Figure 6.21. Specification phase

The ARS must take account of the separation between the generic
software and the data, and therefore must identify the means of protection of
the data and the principles of interfacing between the parameter data and the
generic software.

184 CENELEC 50128 and IEC 62279 Standards

For each requirement, we must identify:

– the link (traceability) with the phase input requirements;

– the safety attribute (yes or no);

– the verification attribute, which indicates whether the requirement is
testable or whether a specific analysis is necessary.

With regard to the testability of the requirements, it must be remembered
that all the requirements must be verifiable and that some of them must be
testable. In addition, it is necessary to verify that the specification is:

– complete;

– coherent;

– comprehensive, clear and precise;

– verifiable;

– maintainable;

– traceable.

Table 6.3 shows an example of traceability between the input
requirements and the software requirements. In the example, we can see a
system requirement that is not fulfilled; it is therefore necessary to add a
justification in order to prove that nothing has been overlooked.

System requirements Specification of software requirements

SyRS_EX_1 ARS_EX_10, ARS_EX_20

SyRS_EX_2 –

…

Table 6.3. Example of traceability between the system- and software specifications

Table 6.3 is not sufficient, because we need to identify the software
requirements which are not traceable (in the aeronautic domain, the term
used is “derived requirements”). Therefore, it is necessary to add inverse
traceability.

Data Preparation 185

6.7.3.3. Complete data preparation tests

The standard does not require us to prepare the complete application test
specification (CATS). We recommend – in order to ensure that the test cases
are pertinent – performing a specification of the complete application tests
whose objective is to cover all the requirements in the ARS. As the only
input element at this level is the ARS, we are indeed in the process of
specifying black-box tests (i.e. tests performed with no knowledge of the
realization).

Figure 6.22. Specification phase

Figure 6.22 shows the step of specification of the application after
addition of the CATS. The purpose of the CATS is to demonstrate that the
process of parameter-setting carried out conforms to the stated requirements.
The writing of the CATS enables us to show that the requirements are
testable. Indeed, the person in charge of producing the CATS must perform a
detailed requirements analysis (identification of the boundary values for each
input, identification of equivalence classes and identification of
observables).

The objective of the CATS is to cover 100% of the requirements. For
each non-testable requirement, we must have a justification and an
alternative verification activity. The CATS must contain a traceability matrix
demonstrating that the requirements have properly been tested and/or
verified, but we must also show that each test case is associated with a
requirement.

186 CENELEC 50128 and IEC 62279 Standards

The realization of the CATS, therefore, is a verification of the software
requirements specification.

6.7.3.4. Verification

The verification of the ARS (and of the CATS) must relate to:

– the readability of the requirements;

– the traceability of the requirements;

– the internal coherence of the requirements;

– the respect of the project quality plans;

– the conformity to CENELEC 50128:2011, with account taken of the
fact that the data preparation process will be based on existing tools or tools
to be developed.

The data verification report (DVR) must be capable of demonstrating
that:

– the application requirements specification has been verified;

– the whole-application test specification (if it is realized) has been
verified;

– the processes defined in the APP and in the other plans (SQAP, VVP,
etc.) have been applied properly.

The specification phase verification report can thus be formalized as the
end-of-phase report, and be written following a formal review referencing all
the records of the verification (list of input documents, completed checklists,
review report, specific analysis, list of anomaly sheets, etc.). The aim of the
formal review is to provide authorization to proceed to the next phase (with
or without reservations).

6.7.4. Architecture phase

6.7.4.1. Description of the architecture and the design

Once the application requirements specification has been performed, it is
then possible to put a form of architecture in place (see Figure 6.23), but in
this case it is the architecture of the data production process.

Data Preparation 187

On the basis of Table 6.2 and Figure 6.18, we must identify the tools that
need to be implemented, any differences in the hardware (it may be
necessary to execute several of the tools or a process) and the human
resources. This architecture must take account of the results of the process
safety study.

Figure 6.23. Architecture phase

On the basis of the list of tools to be implemented, we identify the tools
needing to be developed, to commercial tools and the tools that can be
reused. For each tool, we must identify the need for qualification (category
Tx) and the objective SSIL. For the tools needing to be developed, the
algorithms or transformations (see Figure 6.24) to be implemented must be
specified.

To conclude, the application architecture and design (AAD) comprises:

– a description of the input data (files, etc.);

– a description of the intermediary data (files, formats, etc.);

– a model of the data preparation process;

– the hardware resources to be implemented;

– the human resources to be implemented;

– a list of tools with, for each tool:

- the list of requirements,

- the list of interfaces,

188 CENELEC 50128 and IEC 62279 Standards

- the Tx category and the objective SSILs,

- the algorithms to be used;

– one or more traceability matrices.

One of the important subjects at this stage relates to the production of the
intermediary files and their management (which configuration management,
what type of protection, etc.).

Figure 6.24. Example of transformation

6.7.4.2. Integration tests

The new version of CENELEC 50128 does not stipulate the preparation
of any integration tests. In view of the complexity of the data preparation
process (multiple tools, different machines and various people involved), it
is preferable to conduct software/software and software/hardware integration
tests. The complete architecture phase is shown in Figure 6.25.

The S/S5 integration tests have the aim of verifying that the exchanges
between the tools function correctly (the correct filenames, the right format,
true accuracy of the data, effective protection of the files, etc.). The objective
of the H/S integration tests is to demonstrate that the software applications
function correctly (proper operation, no overconsumption of memory,
acceptable memory consumption and execution times, etc.).

It is possible to create two different documents or a single document. We
speak of the AITS (Application Integration Test Specification). The aim of
the AITS is to demonstrate that the software/software and software/hardware
interfaces are correct.

5 S/S for Software/Software and H/S for Hardware/Software.

Data Preparation 189

Figure 6.25. Architecture phase with integration tests

As the only input elements, at this point in the project, are descriptive
documents, we are specifying black-box (with no knowledge of the
realization).

The realization of the AITS is therefore a verification of the AAD.

6.7.4.3. Verification report

As previously indicated, CENELEC 50128:2011 identifies a verification
report for the end of each phase. That verification report must enable us to
demonstrate that:

– the specification of the application architecture has been fulfilled;

– the specification of the application integration tests (if done) has been
fulfilled;

– the processes defined in the plans (SQAP, VVP, etc.) have been
appropriately applied.

The verification report for the architecture and design phases can thus be
formalized as the report on the end-of-phase review, and be written
following a formal review, referencing all records of the verification
(list of input documents, completed checklists, review report, specific
analysis, list of anomaly sheets, etc.). The aim of the formal review is to

190 CENELEC 50128 and IEC 62279 Standards

provide authorization to proceed to the next phase (with or without
reservations).

6.7.5. Data production

6.7.5.1. Design of algorithms

If we have an architecture for the data and algorithms process, it is
possible to implement the data production process.

Figure 6.26 recaps that the data production process must take account of
two aspects:

– the data production;

– the production of the final executable (data + generic software).

Figure 6.26. Link between the two realization processes

As regards data production, Clause 8.4.4.1 indicates that agrammatic
languages are recommended for producing the data. There is a link in Table
A.16 of CENELEC 50128:2011 (see Table 6.4). This recommendation
supplements rows 1 and 2 in Table A.11, which spoke of modeling based on
tables and specific languages.

As regards Table 6.4, rows 1, 2 and 3 make a direct link to section 3 of
IEC 61131:20036 [IEC 03]. Row 4 talks about state graphs, but should be

6 IEC 61131 [IEC 03] introduces syntax and the semantics of programming languages for
PLCs.

Data Preparation 191

read as “state/transition graphs” in a broader sense (see Figure 6.14).
Remember that this version of the standard indicates that it is possible to use
other languages not mentioned here, after demonstration of their adequacy
for the application.

Finally, the standard recommends using a graphic language close to those
used in the particular domain (preserving the specific points of signaling, for
instance, in order to facilitate verification by the experts in the domain) to
describe the data and describe the transformations necessary to produce the
application data.

Measure SSIL0
SSIL1;
SSIL2

SSIL3; SSIL4

1. Functional block diagram R R R

2. Sequential function charts – HR HR

3. Ladder diagrams R R R

4. State charts R HR HR

Table 6.4. Table A.16 from the standard EN 50128:2011

At this level, CENELEC 50128:2011 is not overly precise as to the
documentation needing to be produced. Existing tools (such COTS tools
or tools reused from former projects) can be employed, some tools may
have been realized (see Clause 8.4.7) and a specific form of data coding may
have been implemented. If we wish to be able to specify and perform tests
(see Clauses 8.4.4.2, 8.4.4.3, etc.), it is necessary to have design documents
which enable us to ensure the software maintenance. Thus, we feel it
necessary to have at least one design document. Therefore, we recommend
producing detailed design documents for each tool or algorithm being coded.

Figure 6.27 shows that on the basis of the document describing the
architecture, it is possible to identify the tools which can be reused (COTS or
existing tools) and that the qualification case (QC) must be able to
demonstrate the appropriateness of the tool for the needs. If a development is
necessary, a detailed design (DD) document and associated tests (ATS) (see
the next section) need producing.

192 CENELEC 50128 and IEC 62279 Standards

Figure 6.27. Realization of data production process

In case of tool development, the DD should contain the necessary
requirement (functional and non-functional) to permit the development of
the tools.

6.7.5.2. Algorithm tests

The 2011 version of the standard offers an improvement to deal with data
production, but points remain to be clarified – e.g. the algorithm tests and
design tests. Clauses 8.4.4.2 and 8.4.4.3 discuss the application test report,
whereas the application test specification (ATS) is only defined later on
(Clauses 8.4.4.5 and 8.4.4.6).

The ATS must enable us to show that the data and/or the algorithms do
conform to the requirements and the architecture. The best option, therefore,
is to have a design document which identifies the needs and can serve for the
coding and test production.

In the previous sections, we introduced overall tests and integration tests.
At this level, it would be preferable to introduce tests of the algorithms
and/or data designed to show that the functionalities are present in the tools
used and/or that the algorithms developed function properly. Thus, the ATS
would more likely pertain to the type of component tests or module tests.
The realization of the ATS, therefore, is a verification of the design documents
(if they exist).

Provided the algorithms or data are testable, we must execute the tests
described in the ATS and write an application test report (ATR) that
documents the test results (version, date, tester’s name, etc.).

Data Preparation 193

To conclude this section, we can state that the ensemble comprising the
CATS, the AITS and the ATS enables us to cater for Clause 8.4.4.5 and the
ensemble comprising the CATR, the AITR and the ATR enables us to cater
for Clause 8.4.4.2.

6.7.5.3. Data verification

Clause 8.4.4.4 introduces a specific application preparation verification
report (APVR). The verification of the algorithms and/or data is done by
way of a walkthrough, which involves verifying (see Figure 6.27):

– the existence of the data handled by the elaboration process;

– the existence of the data handled by the software;

– the existence and correctness of the generation process;

– the traceability of the requirements that apply to the data.

Activities of verification of the algorithms and/or data should be
performed in order to demonstrate that the data are correct and complete.
These activities must be documented in the APVR. These verifications may be
introduced into the process (double execution, specific verification tool,
property demonstration tool, etc.) or be carried out in the form of specific
checks or tests.

Figure 6.28. Data compatibilities

194 CENELEC 50128 and IEC 62279 Standards

6.7.5.4. Activity of verification

As indicated above, the activity needs to be verified, so a specific VR
needs to be produced or the overall VR needs to be updated (if all the
verifications are in the same report), and checks must be performed in order
to demonstrate that:

– the processes defined in the APP and in the other plans (SQAP, VVP,
etc.) have been properly applied;

– the design of the algorithms and/or data has been verified;

– the specification of the algorithm tests (if done) has been fulfilled (e.g.
with a requirement fulfillment analysis);

– the algorithm test report (if done) has been fulfilled;

– the verification of the data (APVR) has been performed.

The algorithm and/or data design phase report can thus be formalized as
the end-of-phase report, and be written following a formal review referencing
all the records of the verification (list of input documents, completed
checklists, review report, specific analysis, list of anomaly sheets, etc.). The
aim of the formal review is to provide authorization to proceed to the next
phase (with or without reservations).

6.7.5.5. Overview

The algorithm and data design phase is fairly complex, as is illustrated by
Figure 6.29. The CENELEC 50128:2011 standard is, indeed, rather
ambiguous as to the activities that need to be established.

Figure 6.29 illustrates only the application tests (linked to the algorithms
and/or data), but if we have put integration tests (AITS) and whole-
application tests (CATS) in place, it is during this phase that we must (see
Figure 6.27) integrate the tools to realize the data production process, and it
is at this time that we must demonstrate that the process respects the
requirements in its specification. The AITR and ATR therefore need to be
produced and verified during this phase.

Data Preparation 195

Figure 6.29. Data and algorithm design phase

In the context of a certifiable application, it is necessary to be able to
repeat the tests in an identical manner. Therefore, the test realization process
must be documented, the configuration of the input data and of the results
must be managed, as must all elements necessary for the implementation of
the tests.

The structure of the test reports (ATR, AITR and CATR) obeys the
following plan:

– identification of the input elements;

– identification of the applicable plans (SQAP, etc.);

– resources used: people, tools, environment, etc.;

– version analyzed;

– list of test cases;

– demonstration of the achievement of the objectives;

– overview of the problems identified;

– conclusion as to the correctness of the version.

196 CENELEC 50128 and IEC 62279 Standards

The overview of the problems identified requires that, for each failure
that is detected, an anomaly file be opened. This anomaly file must describe
the problem identified and the activity and resources mobilized to remedy it.

6.7.6. Integration of the application and acceptance of the tests

6.7.6.1. Activities

This step pertains to the integration of the data and/or application
algorithms with the generic software on its final target. This phase is
generally associated with factory testing. However, other techniques may be
employed, such as exhaustive on-site testing (which is a long and costly
process).

Clause 8.4.5.2 identifies the establishment of a specification for the
application tests, which must demonstrate:

– the proper integration of the data and/or application algorithms with the
generic software on its final target;

– the proper integration of the data and/or application algorithms with the
complete installation.

It is regrettable that the standard identifies this document as being the
same as that which was identified during the data production phase (previous
section of this chapter). We recommend defining a specific test during called
the installation test specification (ITS). One of the important inputs for the
ITS is linked to the constraints exported by the generic software and by the
data process.

The installation test report (ITR) needs to be drawn up at the end of the
execution of the tests. It must clearly indicate what has been tested, by
whom, when, and the results obtained.

6.7.6.2. Verification of the activity

As previously indicated, the activity must be verified, so a DVR must be
produced, or the global DVR must be updated, and the checks should enable
us to demonstrate that:

– the processes defined in the APP and in the other plans (SQAP, VVP,
etc.) have been respected;

Data Preparation 197

– the specification of the installation tests has been verified (e.g. with an
analysis of the fulfillment of the requirements);

– the installation test report has been verified.

6.7.6.3. Overview

Figure 6.30 presents the complete step as stipulated.

Figure 6.30. Data and algorithm design phase

6.7.7. Validation and evaluation of the application

Clause 8.4.6 recommends the establishment of verification activities for
each phase. We have integrated that recommendation into each phase that
we have presented. There is nothing more that needs to be realized.

6.7.8. Procedure and tools for preparation of the application

6.7.8.1. Boundary

Clause 8.4.7 of the standard covers a variety of subjects. It indicates:

– that the development of the specific tools must respect CENELEC
50128:2011;

– the necessity to validate and evaluate the compilation process, taking
account of the data and/or the algorithms (a dedicated compilation chain may
be necessary);

198 CENELEC 50128 and IEC 62279 Standards

– that Clauses 9.1 (relating to deployment) and 9.2 (pertaining to
maintenance) must be taken into account;

– that software assurance – as discussed in Chapter 5 – must be taken into
account;

– that the application verification report must demonstrate the satisfaction
of all the exported constraints, both by the generic software and by the data.

The finalization of the data production process and of the activities
associated therewith needs to be formalized by the production of a software
version sheet (SwVS). That SwVS must identify the configuration of the
tools used, the documentary configuration and must contain the exported
constraints and/or the limits of use.

6.7.8.2. Overview

Clause 8.4.7 does not define new objectives. It reinforces what was said
in Chapter 4 – i.e. that the process employed to carry out the data preparation
process must conform to ISO 9001:2008 and to software assurance as
defined in Clause 6 of that standard.

The maintenance and deployment of the software are presented in
Chapter 10.

6.7.9. Development of generic software

Clause 8.4.8 forms the link with Clause 7, which governs the
development of the generic software. We presented the needs of that clause
in the definition of the process of realization and writing of the APP, in
section 4.3.1.

There are three important points:

– it is important to demonstrate that the whole-program tests on the
generic software do indeed cover all the pertinent configurations of the data.
If it is the case that not all the combinations have been tested, usage limits
must be identified;

– as part of the software maintenance, we must demonstrate that all the
modifications that have an impact on the generic software (or the

Data Preparation 199

configuration data) have been subject to an impact analysis in order to verify
whether or not the configuration data (or the generic software) are impacted;

– it is necessary to demonstrate that the generic software and the
configuration data are compatible.

The realization of a generic software application also generates a
software version sheet. Previously, we identified the existence of the SwVS
for the data production process. For a given installation, therefore, it is
necessary to produce an SwVS which describes:

– the SwVS for the generic software used;

– the SwVS of the data production process;

– the configuration of the input data used.

6.8. Conclusion

CENELEC 50128:2011 deals with two aspects: the development of a
generic software application (see section 7 therein) and the development of a
process by which to set the parameters of a generic application (section 8).

In Chapter 7, we shall present the process of development of a generic
software application. This chapter describes the process of data production.
The data-production process is based on management of the software’s
safety (section 6 in CENELEC 50128:2011) and on the development and/or
re-use of tools. The development of a tool can either obey the process laid out
by CENELEC 50128:2011 or may be associated with a qualification (see
Chapter 8).

We have presented the principles of data preparation, the constraints and
our recommendations. Indeed, although section 8 of CENELEC 50128:2011
does represent real progress, it is still not sufficient to carry out a process.
This is due to the complexity of the parameter-setting processes and to the
vast number of possibilities.

6.9. Appendix: documentation to be produced

In this chapter, we have presented the realization of a parameter-based
application. Here, we devote a small section to recap the list of quality plans

200 CENELEC 50128 and IEC 62279 Standards

which need to be produced as part of a project conducted in accordance with
CENELEC 50128:2011.

Title Acronym

Application Preparation Plan APP

Application Requirements Specification ARS

Complete Application Tests Specification CATS

Application Tests Specification ATS

Complete Application Tests Report CATR

Application Architecture and Design AAD

Application Integration Test Specification AITS

Application Integration Test Report AITR

Application Preparation Verification Report APVR

Application Test Report ATR

Source codes for the application data/algorithms –

Application data/algorithm Verification Report AVR

Installation Test specification ITS

Installation Test Report ITR

Table 6.5. List of documents to be produced

It should be noted that the list given in Table 6.5 is more complete than
the standard, because the standard implicitly introduced some integration
tests.

7

Generic Application

7.1. Introduction

As indicated in the previous chapters of this book, CENELEC
50128:2011 introduces the concept of generic software. In the final analysis,
all software is considered to be generic, but certain programs have
specifically set parameters. Chapter 7 of CENELEC 50128:2011 is given
over to the realization of generic software.

The realization of a generic application can be done on the basis of
the system elements (specification, architecture, knowledge of the hardware
architecture, etc.) and/or after having identified the parameter data and the
links with the software (see Chapter 6 of this book).

7.2. Software application realization process

This section is based on section 5.3.3 of the CENELEC standard.
Figure 7.1 shows the V-lifecycle model as it is generally presented. The
objective of the needs analysis is to verify the fulfillment of the client’s
expectations and the technological feasibility. The purpose of the
specification phase is to describe what the software is meant to do (rather
than exactly how it will do it). In the context of definition of the architecture,
we seek to create a hierarchical breakdown of the software application into
modules and/or components, and we identify the interfaces between those
elements.

202 CENELEC 50128 and IEC 62279 Standards

The description of each module/component (data, algorithms, etc.) is set
out as part of the design. Often, the design phase is separated into two steps.
The first, known as “preliminary design”, involves identifying the data to
be handled by the software and the necessary services; the second
step – “detailed design” – involves describing all of the application’s
services by means of their algorithms. The design phase then leads into the
coding phase.

Figure 7.1. V lifecycle including test specification

Figure 7.1 shows that there are different phases of tests: unit tests (UTs in
the figure), which focus on the lowest-level components; integration tests
(ITs), which pertain to the software and/or hardware interfaces), and
the functional tests (FTs), which aim to show that the product conforms to
the set specifications. This approach of testing is compliant with the module
decomposition. In the current approach, the unit is now the component and
we do some component tests (CTs). As discussed in section 4.3.7, validation

Generic Application 203

consists of demonstrating that we have created the proper product. It is for
this reason that we speak not of validation tests (VTs) but of functional tests
(FTs). In the new version of the standard, these tests are called overall
software tests (OSTs).

As regards the operation/maintenance, it relates to the system’s
operational life and the handling of any future evolutions.

It should be noted that there is a horizontal correspondence (illustrated by
the dotted arrows) between the activities of specification, design and the test
activities. The V lifecycle is therefore divided into two phases: the
“descendant” phase and the “ascendant” phase. The activities of the
descendant phase must be prepared during the ascendant phase. Thus,
Figure 7.1 is closer to the V lifecycle recommended.

Note that the V lifecycle illustrated by Figure 7.1 takes account of good
practices. Initially, in the descendant phase, there was no production of
specifications for the tests (for instance, see ISO 26262 [ISO 11], which
stipulates that the test specifications be produced during the ascendant
phase).

In the next few sections, we shall describe the different phases
(specification, architecture, detailed design, coding, etc.), the methods, means
and productions.

7.3. Realization of a generic application

7.3.1. Specification phase

7.3.1.1. Description of the activity

As Figure 7.2 illustrates, the input for the specification phase includes the
planning documents, the system requirements, the system architecture
and the safety requirements. On that basis, the first activity consists of
setting out the specification for the software requirements, and the second of
setting out the specification of the overall software tests.

Figure 7.2 identifies the verification phases (dotted arrows). Thus, we can
see that the production of the overall software tests specification is an

204 CENELEC 50128 and IEC 62279 Standards

entirely separate verification. This verification is very important because if
we can produce the OSTs, the requirements are feasible.

Figure 7.2. The specification phase

7.3.1.2. Specification of software requirements

7.3.1.2.1. Principles

The software requirements specification (SwRS) must, firstly, describe
the boundary of the software. It is therefore necessary, on the basis of
the elements of the system architecture and/or equipment, to identify the
interfaces with the hardware and the software.

An interface diagram, similar to that shown in Figure 7.3, can be used to
identify the external interfaces. We have two kinds of external interfaces:
interfaces with other software (Ii, Oi) and interfaces with the hardware (Inti).

The environment of the software application comprises interfaces with
the hardware resources (memory, specific address, input/output, watchdog,
etc.), with other software applications (baseware, connected application, etc.)
and/or with the operating system.

Generic Application 205

Figure 7.3. Environment of a software application1

For each external interface, we need to identify:

– name;

– objective;

– description;

– type: hardware, software;

– format, unit, precision;

– protocol if needed;

– data description: equivalence class, boundary value, behavior at
boundary values and outside;

– memory management: buffer, stack with fixed size or not;

– time constraints;

– etc.

After description of the interfaces, it is necessary to identify the modes of
operation (initialization, normal mode, defect mode, maintenance mode, etc.)
and the transitions between the modes (see Figure 7.4).

1 I for Input, O for Output and Int for Interface.

206 CENELEC 50128 and IEC 62279 Standards

Figure 7.4. Software operational mode

For each operational mode, we need to identify the behavior and/or the
list of function authorized. For example, in the maintenance mode, the main
software cannot be executed and we can upload a new version of the
software and download or erase the bug memory.

The software requirements specification must also identify the SSIL of
each function. For this purpose, there are a variety of practices: either we
indicate the SSIL of each function, or we indicate that the software is SSILx,
or the SQAP of the project indicates the SSIL applied to the overall
software.

On the basis of the interfaces and the modes of operation, it is possible to
identify the software requirements. The software requirements must cover:

– the functional needs;

– the non-functional needs: safety, maintainability, etc.;

– the process and standard to be satisfied;

Generic Application 207

For each requirement, we must identify (see Table 7.1):

– the link (traceability) with the phase input requirements;

– the safety attribute (yes or no);

– the verification attribute, which indicates whether the requirement is
testable or whether a specific verification analysis needs to be performed.

Table 7.1. Example of requirement attributes

As regards the testability of the requirements, it must be remembered that
all the requirements must be verifiable and that some of them are testable.

With regard to the requirements, we must verify that the specification is:

– complete;

– coherent;

– comprehensive, clear and accurate;

– verifiable;

– maintainable;

– feasible;

– traceable.

Table 7.2 shows an example of traceability between the input
requirements and the software requirements. In the example, we can see a
system requirement that is not covered; hence, it is necessary to add a
justification to show that nothing has been overlooked.

Attribute Description

ID Identifier

TEXT Description of the requirement

SOURCE Link to the upstream requirement

VERIFICATION Activity to check the requirement : test or specific analysis

SAFETY Yes or not

VERSION Version associated with the requirement

208 CENELEC 50128 and IEC 62279 Standards

System requirements Specification of software requirements

SyRS_RQ_1 SwRS_RQ_10, SwRS_RQ_20,

SyRS_RQ_2 –

…

Table 7.2. Example of traceability for the requirements

Table 7.2 is insufficient, because we need to identify the software
requirements that are not traceable (in the aeronautic domain, we speak of
derived requirements), so it is necessary to add inverse traceability.

As regards the completeness of the specification, it is not possible to
obtain this property by analysis of the document. For the sake of the
specification’s coherence, it would be preferable to compare the
requirements two by two, which is not always possible. In light of these two
difficulties, it is recommended to create a model. The realization of a model
provides a basis for the completeness and coherence analysis.

Technique/Measure SSIL0 SSIL1;
SSIL2

SSIL3;
SSIL4

Formal methods (based on a mathematical
approach)

– R HR

Modeling R R HR

Structured methodology R R HR

Decision table R R HR

Table 7.3. CENELEC 50128:2011 – Table A.2

In the lower part of Table A.2 (see Table 7.3) of CENELEC 50128:2011,
it is indicated that it is mandatory to have a textual expression of
the requirements and that it is possible to associate with that text all the
necessary modeling elements. As is shown by Figure 7.5, all or some of the
requirements can be modeled in order to perform verifications of
completeness and coherence.

Generic Application 209

Figure 7.5. Requirements, model and verification

In conclusion, the software requirements specification is made up of:

– a description of the boundary of the system (hardware interface,
software interface);

– a description of operational mode with an identification of the
associated services;

– a list of the software requirements;

– one or more traceability matrices;

– one or more models.

7.3.1.2.2. Use of formal methods

From the old version of CENELEC 50128, formal methods were
introduced as a necessity. One of the difficulties lies in the fact of having
revealed the formal methods from the moment of the software requirements
specification.

For our purposes, it is not possible to replace the specification of the
requirements in natural language with a formal model. The formal model
must remain an additional element to verify the requirements.

In Chapter 8, we shall give a more detailed presentation of the concepts
of models, formal methods and formal techniques.

210 CENELEC 50128 and IEC 62279 Standards

7.3.1.3. Specification of overall software tests

On the basis of the list of interfaces and the list of requirements from the
software requirements specification, it is possible to prepare an overall
software test specification (OSTS). As the only input element at this level is
the software requirements specification (SwRS), we are specifying black-
box tests (with no knowledge of the realization).

The aim of the OSTS is to show that the software being created does
conform to the needs. However, the writing of the OSTS enables us to show
that the requirements are testable and feasible. Indeed, the person in charge of
producing the OSTS must perform a detailed analysis (see section 4.7.2.4) of
the requirements (identification of the limit values for each input,
identification of the equivalence classes and identification of the
observables).

As Figure 7.6 shows, on the basis of the requirements, we identify test
cases (TC_x). These test cases describe a situation to be attained, with that
situation being linked to an equivalence class. Based on the test cases, it is
possible to prepare the test scenarios. A test scenario describes a situation.
Hence, a test case can be involved in a number of scenarios.

The preparation of the scenarios needs to be documented in the OSTS,
and there is no need to have a computer file on the subject at this point in the
project.

Figure 7.6. Link between the requirements, the test cases and the test scenarios

Generic Application 211

The aim of the OSTS is to cover 100% of the requirements. For each non-
testable requirement, we must have a justification and an alternative
verification activity. The OSTS must contain a traceability matrix
demonstrating that the requirements have been tested and/or verified, but we
must also demonstrate that each test case is associated with a requirement.

Thus, the realization of the OSTS is a verification of the software
requirements specification.

7.3.1.4. Verification report

As required by ISO 9001:2008, each product must be verified.
CENELEC 50128:2011 identifies an end-of-specification-phase report. This
verification report must be able to demonstrate that:

– the software requirements specification has been satisfied;

– the specification of the overall software tests has been satisfied;

– the processes defined in the plans (SQAP, VVP, etc.) have been
properly applied.

The verification of the SwRS and the OSTS must be carried out by way
of a documentary review at least, in the knowledge that the realization of the
OSTS is an entirely separate check. The review of the SwRS and OSTS must
be performed with a specific objective in mind. That objective will need to
be formalized by way of checklists.

On the output of the software requirement phase, we have three kinds of
verification:

1) quality check: we need to verify that the procedure, plan and process
are apply correctly;

2) technical check: we need to verify the technical content of the
requirement;

3) safety check: we need to verify that the safety requirements in input
are correctly assume

For the technical check of the SwRS, we need to verify:

– the correctness of each requirement;

– the coherency of each requirement (the requirement is correct);

212 CENELEC 50128 and IEC 62279 Standards

– the completeness of each requirement (all items used are defined);

– all requirement are stand alone (not necessary to read many requirement
to understand one);

– the requirement size;

– the requirement vocabulary

– the requirement specification completeness;

– the requirement specification correctness;

– the requirement coverage;

– if the requirement is verifiable.

It is possible to formalize this set of verification in a checklist.

Figure 7.7. Example of a UML model

Generic Application 213

Checklists are used to guide the verifications on the industries (quality,
V&V, safety, technical aspects) and on the hard points. Indeed, the
checklists must take account of the company’s accumulated experience. For
example, if we use a UML model (see Figure 7.7, for example) as a support
in the specification, we can identify points such as “For the overall model,
the actors must be defined uniquely.”

The verification report on the specification phase (SwRSVR) can thus be
formalized as the written version of the end-of-phase review report, and may
be produced in the wake of a formal review, referencing all of the records of
the verification (list of input documents, completed checklists, review report,
specific analyses, anomaly sheets list, etc.). The formal review has the aim
of authorizing the beginning of the next phase (with or without reservations).

7.3.2. Architecture and component design phase

7.3.2.1. Presentation of the phase

The second phase of the V lifecycle for software realization is called the
“architecture and design” phase. In actual fact, in involves two steps
(see Figure 7.8): the definition of the architecture for the software and the
decomposition of that architecture into its components. In addition, this
phase of the lifecycle must enable us to identify the integration tests. The
integration tests must cover two subjects: the software/software integration
tests (which are used to verify the software interfaces) and the
hardware/software integration tests (which focus on the verification of the
hardware interfaces).

Figure 7.8. Architecture and design phase

214 CENELEC 50128 and IEC 62279 Standards

As is shown by Figure 7.9, the input to the architecture and design phase
includes the planning documents, the software requirements specification and
methodological guides. On this basis, the first activity consists of describing
the interfaces of the software being created; the second of identifying the
software architecture; the third of performing the design; and to finish, we
need to select the integration tests.

The phase concludes with the verification of all the productions (dotted
arrows).

7.3.2.2. Interfaces

Figure 7.9 shows the first activity, which is the formalization of the
interfaces. The new version of CENELEC 50128 includes the need to
formalize the interfaces and produce a specific document, called the software
interfaces specification.

Figure 7.9. Activity making up the architecture and design phase

The identification of the interfaces was begun in the software
requirements specification (see Figure 7.3). The document “software
interface specification” must cover the description of the interfaces with
the environment and the interfaces between the different software
components (which is why there are two kinds of arrows in Figure 7.9).

Description de l’architecture
du logiciel Spécification des tests

d’intégration

Rapport de vérification

Spécification des exigences
du logiciel

PA
Q

L
, P

G
C

, P
V

V
G

uides m
éthodologiques

Spécification des interfaces

Conception du logiciel

Software requirement
specification

S
Q

A
P

, S
C

M
P

, S
V

V
P

M
ethodological guides

Interface specification

Software architecture
specification

Software design specification

Integration test
specification

Verification report

Generic Application 215

The aim of the interface description is to cover external and internal
interfaces and cover a number of topics:

– name;

– description;

– type: hardware, software;

– format: unit, precision;

– pre- and post-conditions;

– definition of equivalence classes (if they impact on the software’s
behavior), unacceptable values, unused values, maximum and minimum
values, software behavior at these limit values and beyond these limits, etc.;

– time constraints;

– any exceptions;

– memory management: management of buffers and/or stacks, and the
possible memory allocations associated therewith;

– the mechanisms of synchronization (such as scheduling);

– etc.

7.3.2.3. Components

In the 2001 version of CENELEC 50128, the basic unit is the module. A
module is identified as (see Table A.20 and Definition B.30):

– having an entry point and an exit point;

– having a limited number of parameters;

– having a fully defined interface;

– being non-complex.

This modular approach puts one in mind of a function, a procedure, or a
file containing a set of functions, and in a more evolved form, a class in an
object-oriented language. It should be noted that in the 2001 version, there is
a mixture of terminology, with the concepts of “subprogram” and “module”
both being used. The concept of a module is not adequate to describe an
architecture; indeed, we would like to be able to identify an element by a set

216 CENELEC 50128 and IEC 62279 Standards

perimeter in order to be able to replace it (in the same way we would a
mechanical part) and re-use it.

If we seek to replace and re-use, we need to define the basic element of
the architecture by means of a working perimeter and a set of interfaces. The
working perimeter is characterized by a set of requirements and a set of
functions. Additionally, in order for it to be reusable, the element’s
configuration needs to be carefully managed.

Techniques/measures SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

1. Information hiding – – –

2. Information encapsulation R HR HR

3. Parameter number limit R R R

4. Fully defined interface – HR M

Table 7.4. Table A.20 from CENELEC 50128:2011

The 2011 version of CENELEC 50128 introduces the concept of a
software component, characterized by Definition 1.4. This definition
conforms to Table A.20 of the standard (see Table 7.4).

Hereafter, therefore, the basic element is the component. Thus, we shall
speak of component integration and component tests (rather than unit tests or
module tests).

In the 2011 version of CENELEC 50128, Table A.20 (definition of a
component) and Table A.3 (requirements for architecture) indicate that it is
“highly recommended” (HR) to have encapsulation of the information, and
that masking is not recommended (NR). Data masking poses a problem with
regard to the observability of the software behavior, and therefore has an
impact on testability and maintenance. Curative maintenance of a software
application involves analysis of the behavior on the target machine in its real-
world environment. Thus, it is necessary to have access to the software’s
internal statuses.

Encapsulation involves introducing data access services, which has a
number of benefits:

– there is no longer direct access to the data, so those data are somewhat
protected;

Generic Application 217

– it is no longer necessary to know the representation of the data in order to
access it, which facilitates maintenance and reusability;

– etc.

Masking and encapsulation can be managed manually or be offered as a
facility of the language (C++, ADA, etc.).

7.3.2.4. Re-used components

This section is based on section 7.3.4.7 of the new version of
CENELEC 50128.

DEFINITION 7.1 (Re-used component).– A re-used component is a
component which has already been used. It is accompanied by documents
demonstrating that a subset of its functions is guaranteed to conform to their
requirements.

7.3.2.4.1. Principles

There are two cases where components are re-used:

– the first case concerns the use of so-called COTS (commercial off-the-
shelf) components, from outside the firm;

– the second pertains to the re-use of components previously developed
and used. The new version of CENELEC 50128 makes use of the concept of
pre-existing software; we shall in turn use the concept of pre-existing
components.

In accordance with Definition 7.1, for a component to be able to be
re-used, it must have:

– an identification and specification of the interfaces;

– an identification of the requirements which it respects;

– an identification of the hypotheses concerning the environment;

– an identification of the SSIL.

CENELEC 50128:2011 recommends that, for each re-used component, a
fault study be performed with a view to analyzing the effects any such faults
may have on the overall software.

218 CENELEC 50128 and IEC 62279 Standards

7.3.2.4.2. Re-used components

For re-used components, it is possible to cater for the requirements set out
in the previous section as regards the elements needing to be produced. This
documentation (requirements, interfaces and hypotheses about the
environment) can be compiled a posteriori.

For re-used components, it is possible to obtain detailed feedback on their
previous use, which takes account of real-world use of one or more systems,
and tells us about the duration of operation and number of hours of use. In
accordance with Table E.9 – row 11 in CENELEC 50129:2003 (see
Table 7.5), it is possible to construct a high level of confidence on the basis
of the operational data.

Techniques/measures SIL2 – SIL2 SIL3 – SIL4

High level of confidence
demonstrated through use

Optional when prior
proof is not available

R: 10,000 hours of
operating time and at
least a year of
experience in
operation with the
equipment in place

R: 1 million hours of operating
time, at least two years of
experience in operation with the
different equipment in place,
including safety analyses, with
detailed documentation of the
minor changes made during the
time in operation

Table 7.5. Table E.9 from CENELEC EN 50129:2003 [CEN 03]

Re-used components must be identified (by name, reference and version),
and we must demonstrate that the component is being used in a similar
context to its previous uses (i.e. that the use context is appropriate for that
component). The demonstration that the use context is similar must be based
on an identification of the functions which are or are not used, on the use
constraints and on the impact of any residual anomalies.

7.3.2.4.3. COTS

For COTS components (see Definition 1.5), it is rather difficult to obtain
information about their specifications, their interfaces and the hypothesis
about their environment. Therefore, the past experience and/or specific
validation activities must be formalized in a COTS qualification report.

Generic Application 219

Figure 7.10. Wrapping of a COTS component

For each COTS component, we shall have a qualification report which
indicates the usable functions, the associable safety integrity levels, the
environmental hypothesis, the exported constraints and any residual
anomalies. Thus, we must be able to show that the use of the COTS
component in the project adheres to the constraints set in the qualification
report.

The use of a COTS element must be carefully monitored in order to avoid
the propagation of any faults to the components and devices which use that
COTS element. In order to do so, it is possible to implement a strategy
known as wrapping (see Figure 7.10).

7.3.2.4.4. Verification and validation

The re-used components must be integrated into the overall software
validation, and we need to verify that the mechanisms to defend against any
faults in the re-used components are effective and efficient.

This need must be taken into account when defining a process of
verification and validation of the software under construction.

7.3.2.5. Architecture

Once the specification of the software application has been performed, it
is then possible to put in place a defined architecture (see Figure 7.11). With
this architecture, the software application is divided into components.

220 CENELEC 50128 and IEC 62279 Standards

Figure 7.11. From the requirements to a defined architecture

Figure 7.12. Typical architecture

Figure 7.12 shows a software architecture typical of the railway domain.
We have an initial layer which is in charge of managing the hardware
aspects and the execution (this could be an operating system, an execution
loop, a sequencer, etc.). The second layer, known as middleware, handles

Generic Application 221

communications. Thus, we have a generic application and its parameter set
(see Chapter 6).

Figure 7.13. Example of the architecture of a software application

In Figure 7.13, on the basis of the requirements and the identification of
the interfaces (see Figure 7.3), the software application has been divided into
three components (C1, C2, C3). On the basis of the interfaces with the
environment (I1, I2, O1, O2), the architecture identifies the components and
the interfaces between them, and for each component the list of requirements
to be taken into account is given.

The realization of the architecture must take account of criteria such as
maintainability (ability to have a component replaced), re-use (capacity to
re-use a component and definition of the criteria of re-use) and testability
(we need to be capable of testing and running diagnostics).

Testability means that the behaviors must be observable. It is only
possible to observe a behavior if it is not masked by another behavior. If the
behaviors of the functions F and G are to alter the variable X, then
the execution of the command “F; G” is not observable; indeed, the effect of
the function F on the variable X is invisible, because the value of X is
destroyed by the execution of G.

222 CENELEC 50128 and IEC 62279 Standards

As regards the architecture rules, it is necessary to cover the following
aspects:

– the complexity must be distributed throughout all the modules. If one or
more of the modules are very complex (complexity is a concept which needs
to be precisely defined: a high number of lines of code, many functions, a
high cyclomatic number, etc.), we need to justify its inclusion as truly
necessary;

– the number of components must be controlled;

– we need to avoid strong coupling between the components. When the
components are strongly linked, the “plate of spaghetti” effect occurs. The
alteration of a component impacts on all of the components;

– for each component, we need to identify whether it is new or re-used;

– we must carefully monitor the software safety integration levels
between the components. Either we choose to realize the application at the
highest SSIL identified, or we must implement architecture rules enabling us
to partition the architecture and thus respecter the SSIL objectives of each
component. The implementation of a partition or another approach requires
us to demonstrate its efficacy and manage the problem of the exchanges
between components with different SSILs;

– etc.

Technique/Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

1. Defensive programming – HR HR

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16

15. Software Error Effects Analysis (SEEA) – R HR

17. Information Hiding – – –

18. Information encapsulation R HR HR

19. Fully defined interface HR HR M

20. Formal methods R R HR

21. Modeling R R HR

22. Structured methodology R HR HR

23. Modeling supported by computer-aided
design and specification tools

– R HR

Table 7.6. Table A.3 from CENELEC 50128:2011

Generic Application 223

CENELEC 50128:2011 identifies the resources needing to be
implemented at the architectural level in its Table A.3 (see Table 7.6 here).
This table can be broken down into five needs:

– rows 17, 18 and 19 relate to the definition of the components, and are
actually a recap of Table A.20 (see Table 7.4);

– rows 20, 21 and 22 show the need to have at least a structured model. It
should be noted that the need is more stringent than for the specification (see
Table 7.3). Indeed, as can be seen from this section, an architecture requires
a structured model (e.g. with boxes, interfaces or connectors). The aim of
Row 23 is to encourage the use of tooled methods, with the objective being
to improve reproducibility and verifications;

– rows 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 16 are safety
implementation techniques applicable at device level. Indeed, it is no longer
acceptable to introduce self-tests, diagnostics and/or reconfiguration into the
software itself. The software is an object which is too complicated already to
increase its complexity and thus damage its testability;

– row 1 relates to defensive programming. This is the most commonly
mentioned technique to implement security in software, but it brings with it a
number of disadvantages:

- it renders the code more complex – if we have a code whose
complexity is n, the addition of a check by defensive programming at the
start of the program will increase the complexity to 2n,

- it increases the number of test cases needing to be performed,

- it introduces untestable execution paths into the software;

– row 15 pertains to software error effects analysis (SEEA). Note that this
is the only analysis included in Table A.3, and that this analysis is designed
to examine the impact of faults in the input data on a part of the software. In
general, this analysis, which is employed here as a means of verification, is
carried out by the team in charge of safety. At architecture level, SEEA can
be used to identify the weak points (the need to add defensive
programming), any conflicts relating to the SSIL (e.g. consumption of data
with a different SSIL), etc.

In conclusion, the description of the software architecture comprises:

– a description of the boundary of the system (hardware interface,
software interface);

224 CENELEC 50128 and IEC 62279 Standards

– a model of the architecture;

– a list of components, with the list of requirements and the list of
interfaces for each component;

– one or more traceability matrices.

7.3.2.6. Software design

7.3.2.6.1. Software design methods

The design method to be used to create the general design and to design
the components must be selected on the basis of the SSIL needing to be
attained.

Table A.4 (see Table 7.7 here) from CENELEC 50128:2011 can be
broken down into four needs:

– rows 1, 2 and 3 pertain to the need to have at least a structured model
(SSIL2) or a simulation (SSIL3-SSIL4). Note that the need is more stringent
than it is for the architecture (see Table 7.6). Indeed, as can be seen from this
section, an architecture requires a structured model (e.g. with boxes,
interfaces or connectors), but we can go further with a simulation because
we have data structures, sequencing information, etc.;

– rows 4, 5, 10, 12 and 13 are related to the programming paradigm put in
place. CENELEC 50128:2011 recommends the putting in place of a
component-based approach, but it must go hand in hand with a coding
approach which respects the modularity, is based on a programming
language, and may be procedural and/or object-oriented;

– rows 7 and 8 recap the fact that we need to choose a design
methodology that enables us to detect anomalies as soon as possible (by
typing) and analysis. It is possible to strengthen these properties by defining
a subset (row 11) and/or design rules and coding rules;

– row 14 relates to meta-programming – it is not usable for the
development of a railway application, but may be usable for a code generator
or for data production.

The methodology of software design must therefore be described
(modeling guide, design guide and coding rules) and it must be justified. The
justification must be included in the SQAP or in a specific document.

Generic Application 225

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

1. Formal methods R R HR

2. Modeling R HR HR

3. Structured methodology R HR HR

4. Modular approach HR M M

5. Components HR HR HR

6. Design and coding standards HR HR M

7. Analyzable programs HR HR HR

8. Strongly-typed programming language R HR HR

9. Structured programming R HR HR

10. Programming language R HR HR

11. Language subset – – HR

12. Object-oriented programming R R R

13. Procedural programming R HR HR

14. Metaprogramming R R R

Table 7.7. Table A.4 from CENELEC 50128:2011

During the description of the methodology, we must demonstrate that the
objectives from the standard are taken into account – particularly those in the
tables in Appendix A. The HR techniques/measures that are not taken into
account must be justified, but on the other hand if a technique/measure is not
in the tables, it is not necessarily precluded, and a justification of its efficacy
and relevance in relation to the body of the standard and to the need must be
produced.

7.3.2.6.2. Design specification

For input to the component design (Figure 7.14), we must therefore
have a document describing the architecture (Software Architecture
Specification – SAS). However, monitoring the design of the components
involves monitoring the quality of the design. Therefore, it will be necessary
to have a guide presenting a set of safety principles and a programming
guide.

In the context of certifiable software applications, we need to bear in
mind that there are various objectives which must be served, such as:
testability, maintainability and the ability to perform analyses to demonstrate
the safety of the application.

226 CENELEC 50128 and IEC 62279 Standards

Figure 7.14. Design process

The ability to perform analyses on the design of the components means
that this design must be clear and accurate. Everything must be documented
in the SDS (software design specification).

The component design (Figure 7.15) is a step in the realization which
involves finalizing the subdivision of the basic components. The basic
components will depend on the design methodology used. They may be
modules (in the sense of independent files), paquetage (in the sense of ADA
[ANS 83, ISO 95, BAR 14] – they then consist of a specification part and a
design part), classes and/or components (in the sense of the literature on
components, which describes the component as being an independent
autonomous entity).

Each basic unit (Cij) is associated with a set of requirements written as
{Reqij} and a set of functions/services/methods written as {Fij}.

CENELEC 50128:2011 identifies the resources needing to be
implemented at the level of the component design, in the form of Table A.4
(see Table 7.7 and the previous section).

The software component specification (SCS) must therefore identify the
basic units Cij and, for each Cij describe the services and the requirements
needing to be served. The SCS must show that all the components identified
in the software architecture specification (SAS) have been taken into
account, and that there is traceability between the requirements set out in the

Generic Application 227

SAS and those set out in the SCS. The component design file must identify all
of the data structures, the sequencing and the error management
mechanisms.

Figure 7.15. Example of design

To conclude, the description of the design of the components is made up
of:

– a model of the architecture of each component;

– a list of components which the list of requirements and list of interfaces
for each component;

– one or more traceability matrices.

7.3.2.6.3. Choice of development language

The software design phase is the time when we can choose the method
used for the design of the components, and the programming language.
Table A.12 from CENELEC 50128:2011 (reproduced below as Table 7.8)
identifies metrics which the methodology must respect, but also represents a
set of programming rules to be implemented. The programming guide must
identify the programming rules, and these rules must be explained – it is
important to understand the purpose of each of the rules, and the impact that
non-respect of each rule would have on the product.

228 CENELEC 50128 and IEC 62279 Standards

Techniques/Measures SSIL0 SSIL1; SSIL2 SSIL3; SSIL4

1. Coding standard HR HR M

2. Coding style guide HR HR HR

3. No dynamic objects – R HR

4. No dynamic variables – R HR

5. Limited use of pointers – R R

6. Limited use of recursion – R HR

7. No unconditional branches – HR HR

8. Limited size and complexity of functions,
subroutines and methods

HR HR HR

9. Entry/exit points strategy for functions,
subroutines and methods

R HR HR

10. Limited number of subroutine parameters R R R

11. Limited use of global variables HR HR M

Table 7.8. Table A.12 from CENELEC 50128:2011

Row 12 of Table A.4 indicates that we can use object-oriented
programming; however, Table A.12 (rows 3, 4 and 5) introduces constraints
pertaining to memory management which may not be compatible with
object-oriented programming. The implementation of an object-oriented
approach must entail the definition of a methodology and the demonstration
that this methodology is acceptable in terms of the objective of the SSIL.
The CENELEC 50128:2011 standard gives two new tables (A.22 and A.23)
which introduce a number of measures for the realization of an object-
oriented architecture and design. Tables A.22 and A.23 are, at present,
insufficient to define a methodology.

Table A.12 in CENELEC 50128:2011 has been improved in relation to a
number of different points:

– row 8 speaks of the need to keep the complexity of the code under
control;

– row 9 refers to the fact that we must keep track of the exit points from a
unit of code: the language C allows the execution of the command return
more or less anywhere, which introduces an exit point and increases the
cyclomatic complexity (Vg) by 1 for each return command. The addition of
an exit point tends to introduce non-testable paths;

Generic Application 229

– row 10 is redundant with row 3 of Table A.20, which relates to the
components;

– row 11 is important, and aims to prevent the program resembling a
plate of spaghetti (the code cannot be separated into parts). The connection
must be formed between this rule and the need for encapsulation cited in
Table A.20.

The conventional process of development of a software application is
based on the use of a programming language such as Ada, C and/or C++, for
example. Although these languages have a certain level of abstraction in
relation to the code executed on the final computer, they require the manual
writing of lines of code, which contributes to the introduction of mistakes
into that code (by human error).

Table A.15 from CENELEC 50128:2001 took account of the experience
gained in this field in the early 2000s, so C and C++ were unacceptable
without restriction. We can also see that for SSIL3-4, the use of Ada is
merely “R”, but becomes “HR” with the definition of a subset.

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

Ada R HR R
MODULA-2 R HR R
PASCAL R HR R
C or C++ with no restriction R – NR
Subset of C or C++ R R R

Table 7.9. Table A.15 from CENELEC EN 50128:2001

Figure 7.16 shows a fragment of code in C which can generate two
different codes, depending on the anomaly (a) or (b) which is implemented.
This example highlights the weaknesses inherent in C; small programming
mistakes are not detected at compile time. It should be noted that this type of
error is detected if the programming language used is Ada [ANS 83,
ISO 95, BAR 14].

It is possible to work around some of the shortcomings of C by putting
programming rules in place. For instance, in order to prevent an anomaly
such as that shown in Figure 7.16(b), we can implement a rule in the
following form: “When comparing with a variable, that variable must be on
the left-hand side of the expression”.

230 CENELEC 50128 and IEC 62279 Standards

Figure 7.16. Example of a fault in a program written in C

Hence, the languages ADA and C are only used for a subset, so the new
version of Table A.15 was produced. For C, the standard MISRA-C:2004
[MIS 04] is considered to be the best subset in the various domains. MISRA-
C was first published in 1998 [MIS 98] and recently updated, in 2012
[MIS 12], which demonstrates a certain degree of maturity. With regard to
C++, the situation is somewhat more delicate, because the earliest version
dates from 2008 [MIS 08]. For this reason, we need to take account of a
different standard, known as JSF++ [LM 05].

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

ADA R HR HR
MODULA-2 R HR HR
PASCAL R HR HR
C or C++ with no restriction R R R
C#, JAVA R R R

Table 7.10. Table A.15 from CENELEC EN 50128:2011

Table A.15 in CENELEC 50128:2011 includes new languages, such as
C# and JAVA. These languages are merely “recommended” (but not

Soit le fragment de programme
C suivant :

if (TheSignal == clear)
{

 open_gates();
 Start_train();

}

if (TheSignal = clear)
{

 open_gates();
 Start_train();

}

if (TheSignal == clear) ;
{

 open_gates();
 Start_train();

}

défaillance

défaillance

(a)

(b)

Consider the following fragment of a program
written in C:

Failure

Failure

Generic Application 231

“highly”) and the difficulty lies in managing the execution (virtual machine),
ensuring the quality of the code (with coding rules, limited complexity, etc.),
the testing process and the capacity to measure the coverage of the tests.

It is, of course, possible to choose a language which is not included in
Table A.15, but in that case, we need to demonstrate that the chosen language
conforms to the requirements of the standard, that it is appropriate for the
application being created, and it is necessary to analyze the language in order
to identify any dangerous constructs which may require particular attention.

The choice of a language must be justified in the SQAP, and must be
accompanied by the implementation of a coding guide and a set of
programming rules.

7.3.2.6.4. Programming rules

The various standards recommend that programming and coding rules be
formalized in a guide. Table 7.11 offers an example of a table that can be
used to describe the programming and coding rules.

Name of rule A unique identifier for each rule

 SIL value
Each rule can be associated with one or more software security integrity
levels: SSIL0/SSIL2/SSIL4

 Description The description of the rule may be the text used in the standard

 Explanation
The description may be very brief, so an explanation may be needed to
facilitate understanding

 Examples
For each rule, it is necessary to introduce at least one example of correct
use, and a counter-example to demonstrate incorrect use

 Type

The aim of this attribute is to indicate whether the rules is “Required” or
“Advisory”
It is possible to define additional values to identify rules that have an
impact on the form or on other aspects

 Verification Type of verification to be put in place: walkthrough, tools, etc.

 Traceability

In this section, we refer to the various standards:
- MISRA-C,
- MISRA-C++,
- CENELEC 50128,
- JSF++,
- etc.

 Impact
This section contains an indication of the impact which could result
from non-respect of the rule: e.g. impact on safety, impact on testability,
impact on verification, impact on maintainability, etc.

Table 7.11. Example of description of rules

232 CENELEC 50128 and IEC 62279 Standards

As introduced at various points in this chapter, the programming and
coding rules must cover a variety of areas:

– formatting rules;

– good practice definition rules;

– language subset definition rules;

– etc.

7.3.2.6.5. Verification of programming rules

The definition of a subset of the programming language (section 7.3.2.6.3)
and the definition of a set of coding rules (section 7.3.2.6.4) represent an
initial step which must be accompanied by verification that the code actually
respects the aforementioned rules.

A verification that the code respects the rules which have been defined
can be performed manually if the number of rules is limited and/or the size
of the code is small. It should not be forgotten that this verification must be
auditable, which means that there is a formal record of the verification. In
order to ensure the maintenance of the software application, this verification
must be reproducible.

Therefore, it is preferable for this type of verification to be tooled.
Therefore, the tool must be capable of analyzing the code for the selected
language and it must be possible to define the rules to be verified. As we saw
in the previous sections, there are recognized sets of rules such as MISRA-C
[MIS 98, MIS 04, MIS 12], but we must also be capable of defining our own
rules.

For example, Figure 7.17 is a screenshot taken during the execution of
the QAC application on a program P written in C.

7.3.2.7. Specification of the integration tests

Based on the architecture, the component design and interface
specification, it is possible to prepare the files for the integration tests. As the
only input elements, at this point of the project, are descriptive documents
(SAS, SDS, interface specification), we are specifying black-box tests
(without knowledge of the realization).

As r
be perfo

– sof
demons
interfac
the SD
satisfact
processo

Figu

egards the in
ormed:

ftware/hardw
strate that the
es. These tes
S or the SA
tion of the
or load, netw

ure 7.17. Scree

ntegration tes

ware integrat
e software is
sts may be p
AS. The cat
e performan

work load, etc

enshot of the QA

sts, there are

tion tests: th
s capable of
performed on
tegory may
nce require
c.);

G

AC summary sc

e two groups

his group of
correctly ha

n the basis o
include tes

ements (mem

Generic Applica

creen

s of tests that

f tests is des
andling the h
of the compo
ts pertaining
mory consu

ation 233

t need to

igned to
hardware
onents in
g to the
umption,

234 CENELEC 50128 and IEC 62279 Standards

– software/software integration tests: this group of tests is designed to
demonstrate that the components verified previously (independently)
are able to correctly interface with one another. The software/software
integration phase must be performed one component at a time (see
Figure 7.18), until the overall software suite is obtained.

Figure 7.18. Example of integration

It is possible to draw up two different documents (SITS, HSITS) or only
one (SITS) – in the latter case we speak of the SITS (Software Integration
Test Specification). The purpose of the SITS is to demonstrate that the
software/software and hardware/software interfaces are correct. The strategy
used for the integration tests must be based on the overall methodology.
Figure 7.19 illustrates the link between the preparation of the SITFs and the
realization of the ITs.

Figure 7.19. Integration strategy

Generic Application 235

The compilation of the SITS helps to demonstrate that the interfaces are
testable – indeed, the person in charge of producing the SITS must (see
section 5.7.2.4) carry out a fine-grained analysis of the interfaces
(identification of min/max values for each input, identification of
equivalence classes and identification of the observables).

On the basis of the interfaces, we identify test cases (TC_x). These test
cases describe a particular situation to be attained, with this situation being
linked to an equivalence class. Based on the test cases, it is possible to
prepare the test scenarios; a test scenario describes a situation. Thus, a test
case may play a part in multiple scenarios. The groundwork for the scenarios
must be prepared in the SITF, and there is no need to actually have a
computer file at this stage in the project.

The purpose of the SITS is to cover 100% of the interfaces. For each
untestable interface, we must have a justification and an alternative
verification activity. The SITS must contain a traceability matrix
demonstrating that the interfaces have properly been tested and/or verified,
but it is also necessary to demonstrate that each of the test cases is associated
with an interface.

At the level of the SITS, it is possible to export tests to the overall
software testing level. Indeed, installing the whole software package on its
target platform may be seen as integration, but exported tests must be
identified and justified. Similarly, it is possible to export integration tests to
the component testing campaign – it may be the case that because of lack of
observers, it is easier to carry out a component test, but this type of case
causes problems in terms of testability and diagnostics for the final
application.

Hence, the realization of the SITS is a verification of the description
documents (SAS, SDS, interface specification).

7.3.2.8. Verification report

As indicated in section 3.6.1.3, CENELEC 50128:2011 identifies a
verification report for the end of each phase. This verification report should
demonstrate that:

– the software architecture specification has been satisfied;

– the software components specification has been satisfied;

236 CENELEC 50128 and IEC 62279 Standards

– the software/software integration tests specification has been satisfied;

– the hardware/software integration tests specification has been satisfied;

– the processes defined in the plans (SQAP, VVP, etc.) have been
correctly applied.

The SAS and SDS and of the SITS must be verified, at the very least, by
a document review, given that the realization of the SITS is an entirely
separate verification. The reviewing of the SAS, SDS and SITS must have a
definite objective, which needs to be formalized in the form of checklists.

Hence, the software architecture and design phase verification report
(SADVR) can be formalized as the result of the end-of-phase review, and be
produced following a formal review referring to all the verification records
(list of input documents, completed checklists, review report, specific
analyses, list of anomaly sheets, etc.). The purpose of the formal review is to
determine whether the project can move on to the next phase (with or
without reservations).

7.3.3. Component design phase

As the input to the component design phase (see Figure 7.20), we have the
software architecture and the software design, but also methodological
documents such as a programming guide and/or a guide (or guides)
describing the principles of safety implementation in a software application
and the design method.

Figure 7.20. Detailed design process

Generic Application 237

7.3.3.1. Realization of the design

The objective of the component design is to describe the behavior of each
base element (function or procedure). As is shown by Figure 7.21, the SCDS
(Software Component Design Specification) contains, for each base unit
(Cij), a set of functions/services/methods represented as {Fij} which must be
implemented.

The aim of the detailed design phase is to identify, for each service (Fij),
the algorithms and data structures. The algorithms must conform to the
needs identified by the associated requirements (Reqij).

The construction of these algorithms may necessity the implementation of
additional services within that component.

In Figure 7.22, we can see how the function F13 in component C13 has
been subdivided into three functions: F131, F132 and F133. The
subfunction F131 is based on an internal service F1311, and all three – F131,
F132 and F133 – rely on two internal functions: F1300 and F1301. We have
also introduced the fact that all the services of component C13 can be based on
one or more libraries. Figure 7.22 represents the call graph for function F131.

Figure 7.21. Detailed design

238 CENELEC 50128 and IEC 62279 Standards

Figure 7.22. Call graph for functions F131

As regards the properties of the documents relating to the components,
there is clarity (readability, comprehensibility, etc.) and particularly the
capacity to be testable. Testability involves allowing for the observers and
avoiding certain programming traits such as global variables, modifying
input parameters, multiple exit points, etc., which is the reason for the
methodological guide at the start of the phase.

7.3.3.2. COTS and re-used components

The preliminary and detailed design phases can be based on components
which have already been used on other projects and/or COTS components.

We shall come back to the issue of re-used components and COTS in
section 7.3.2.4.

7.3.3.3. Component tests

7.3.3.3.1. Methodology

It must be remembered that in CENELEC 50128:2001 (as with many
equivalent standards), the base unit of the software was the module, with the
concept of a module being linked to a fragment of code, a function, a
procedure, a file, a class, etc., which is why we use the terms “unit test” and
“modular test”. The 2011 version introduces the concept of a component
(see section 7.3.2.3) and therefore the concept of component tests.

Generic Application 239

The component test strategy must take account of the following
objectives:

– each component must be tested;

– the tests used are black-box tests (with no knowledge of the code);

– the tests must enable us to show that the component does what is
required of it by the component design;

– all parts of the component must be tested.

CENELEC 50128:2011 requires that the objectives given in Table A.5
(see the discussion in section 4.7.2.2) be respected.

The component test specification document must identify all component
test cases. A test case comprises two parts:

– the input dataset, which is the set of values characterizing the initial
situation (i.e. the inputs of the component/path in the algorithm);

– the expected outputs, which describe all of the output values in line
with the input values (i.e. outputs from the component/calculation of the
algorithm).

Figure 7.23 is an example of a test sheet. The part of the sheet in gray
identifies the test cases, and the blank part of the sheet will need to be filled
in when the tests are conducted.

The structure of the component tests specification document obeys the
following plan:

– identification of the input elements;

– identification of the applicable plans (SQAP, SCTP2, etc.);

– definition of the objectives (coverage, etc.);

– list of test cases;

– demonstration of coverage;

– balance of problems identified.

2 If needed, the component tests strategy can be described in the Software Component Test
Plan.

240 CENELEC 50128 and IEC 62279 Standards

Figure 7.23. Example of test sheet

If it is not possible to define a test case for certain requirements and/or
portions of algorithm, it will be necessary to produce a justification, showing
that this is an acceptable situation, and to put forward an alternative means of
verification (see section 4.7.2.2 on verification).

7.3.3.3.2. Objective of coverage

In order to conform to the objectives identified earlier on, we need to
define a strategy by which to select the test cases, which will depend on the
methodology of specification of the components. This methodology must
identify an objective of coverage of the tests in relation to the code. The 2001
version of CENELEC 50128 identified only the objective of coverage of the

Generic Application 241

instructions, which is obviously insufficient, because there is no verification
of the impact of the so-called implicit branches (e.g. an else branch which is
not specified by an if structure).

The 2011 version of the standard introduces a new Table A.21 (see
Table 7.12 here), which identifies different objectives in terms of coverage.
The standard supplements this table by indicating that at component level,
and for an SSIL3-4, we must go to the combinations 2+3, 2+4 or 5. The
combinations 2+3 and 5 are similar, because in both cases, we test all the
branches and all the conditions, but with the solution 2+3, less account is
taken of the functional aspect. The combination 2+4 is more surprising,
because we then take account of the usage of the data.

Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

1. Statement R HR HR

2. Branch – R HR

3. Compound conditions – R HR

4. Data flow – R HR

5. Path – R HR

Table 7.12. Table A.21 from CENELEC EN 50128:2011

CENELEC 50128:2011, for an SSIL2, only stipulates that the
instructions must be met, which is insufficient – at the very least, it is crucial
to verify the coverage of the branches.

For further information on this topic, readers can refer to
section 4.7.2.4.2, which is devoted specifically to the coverage of the tests.

7.3.3.4. Verification report

As indicated in section 3.6.1.3, CENELEC 50128:2011 identifies a
verification report for the end of each phase. This verification report must be
able to demonstrate that:

– the software component design specification has been satisfied;

– the component test specification has been satisfied;

242 CENELEC 50128 and IEC 62279 Standards

– the processes defined in the plans (SQAP, VVP, etc.) have been
correctly applied.

The component design document and the component test specifications
must be verified, at least, by a documentary review. The realization of the
component test specification document is an entirely separate verification
from the design document. The review must be performed with a definite
objective, which needs to be formalized by way of checklists.

Hence, the software component design verification report (SCDVR) can
be formalized as the result of the end-of-phase review, and be produced
following a formal review referring to all the verification records (list of
input documents, completed checklists, review report, specific analyses, list
of anomaly sheets, etc.). The purpose of the formal review is to determine
whether the project can move on to the next phase (with or without
reservations).

7.3.4. Coding phase

The activity of coding consists of transforming a vision from components
and algorithms into source code, with the constraint of having to respect
various methodological guides, and the objective of doing only what is
required. If there are difficulties during the coding which mean that
something needs to be added to the design documents, the person in charge
of the coding must report this, and any decision that is made needs to be
formalized.

The activity of coding may be performed manually or automatically
(see Figure 7.24). In the context of a manual coding activity, we must put in
place a certain number of rules to guarantee that all of the needs outlined in
the design are indeed taken into account (traceability), that the code will
truly be testable and maintainable (readability, clarity, etc.). If an automatic
code-generation process is used, we must demonstrate that the tools
employed are consistent with the safety level to needing to be attained. It
should be noted that very often, developers will use hybrid processes,
whereby manual code is interfaced with automatically-generated code. In
such cases, the interfacing must be completely and carefully handled.

Generic Application 243

Figure 7.24. Two examples of generation processes

During the coding phase, the executable-generation sequence needs to be
put in place. The executable-generation sequence may be a process of
greater or lesser complexity. Figure 7.25 shows two examples of an
executable-generation sequence. Version (a) is a linear sequence where a
single executable file is produced from the sources, unlike version (b), which
illustrates the production of two executables.

The source code must respect certain criteria. It must:

– be readable and comprehensible;

– be documented, and the comments must be useful (no description of the
code itself, etc.);

– be managed in terms of the configuration;

– respect the methodological guides (naming rules, coding rules,
constraints on the compilation sequence, etc.).

7.3.5. Execution of component tests

7.3.5.1. Activity

Figure 7.26 illustrates the activities connected to this phase. It is
important to verify that the code conforms to its design and to the rules
which have been formalized in the methodological guides.

244 CENELEC 50128 and IEC 62279 Standards

Figure 7.25. Two examples of a compilation sequence

Figure 7.26. Code verification and component test process

The verification of the coding involves checking the quality of the code,
staying on top of its complexity, respecting the methodological guides
(naming rules, coding rules, compile-time sequence constraints, etc.).

The component tests (or unit tests or module tests) are carried out on a
host machine (development machine) and generally do not require a test
environment.

Vérification du codage Résultat des tests
du composant logiciel

Rapport de vérification

Code

PA
Q

L
, P

G
C

, P
V

V

Spécification des tests
du composant logiciel

G
uides m

éthodologiquesS
Q

A
P

, S
C

M
P

, V
V

P

Software component
test specification

Coding verification Software component
tests report

Verification report

M
ethodological guides

Generic Application 245

The carrying out of the component tests requires code fragments known
as “stubs” to be put in place, in order to execute the piece of code we want to
test. This “stub” is designed to be lost, because it is linked to a particular test
and to a state of the code.

As is shown by Figure 7.27, the coding of pilot programs and fictitious
modules (plugs) is part of the “stub”. As a general rule, these elements are
not delivered at the end of the process, and will not be configured.
Therefore, it is impossible to conduct the component test in conditions
mirroring those of the initial entry into service. In the case of a certifiable
application, it is necessary to be able to repeat the component tests
identically, and therefore we must closely document the testing process,
manage the configuration of the input data and the results, and all the
elements necessary for the execution of the unit tests (launcher, plugs, stub,
etc.).

Figure 7.27. “Scaffolding”

Note that the component tests do not require us to have access to the
target machine, and can be performed on the “host machine” (the machine
used for development).

The software component test report needs to be to written at the end of
the execution of those tests. It must enable us to identify what has been
tested, by whom, when and the results obtained. This test report may be a
specific document which repeats the test sheets or a supplemented copy of
the software component test specification document. Figure 7.23 is an
example of a sheet describing a test case.

246 CENELEC 50128 and IEC 62279 Standards

The structure of the test report is as follows:

– identification of the input elements;

– identification of applicable plans (SQAP, etc.);

– resources used: people, tools, environment, etc.;

– version analyzed;

– list of test cases;

– demonstration that the objectives have been attained;

– result of measurement of the test coverage and justification;

– summary of problems identified;

– conclusion as to the correctness of the version.

The summary of the problems identified means that, for each detected
fault, an anomaly sheet has to be created. This anomaly sheet must describe
the identified problem and the activity and elements employed to remedy it.

7.3.5.2. Verification report

A verification must be performed on the generation sequence (see
Figures 7.24 and 7.25) in order to verify that the generation of the executable
works properly, and that it respects the safety objectives and the constraints
exported by the various tools employed.

As with all the phases, a verification report linked to the source code
needs to be produced. This report must summarize the various activities of
verification (walkthrough, complexity measurement, checking of
methodological guides, execution of test cases, etc.), list any problems
identified (for each problem, an analysis/justification must be produced), and
must draw a conclusion as to whether or not the code conforms to the design
documents and the applicable guides.

7.3.6. Software integration phase

7.3.6.1. Activities

Figure 7.28 shows the three activities that need to be performed in this
phase. On the basis of the code, we need to perform the integration of the

Generic Application 247

components in order to obtain the final application. The software/software
integration process is defined in the S/S integration tests specification – now
we simply need to implement it. As indicated in section 4.7.2, the process is
one of integration, one component at a time. It should be noted that for the
S/S integration, we do not need to have access to the target machine, as the
process can be performed on the machine used for the development (the host
machine).

For H/S integration, we may need to use a specific strategy, because we
need to have the target machine and certain devices in order to have access
to data pertaining to the status of the hardware components.

7.3.6.2. Verification report

As with all phases, a verification report pertaining to the integration
activities must be produced; this report must summarize and evaluate the
various verification activities involved in the integration tests (generally a
documentation walkthrough).

Figure 7.28. Software integration process

7.3.7. Overall software testing phase

Figure 7.29 shows the two activities involved in this phase – namely the
performance of overall software tests on the target machine and the
production of the software validation report.

248 CENELEC 50128 and IEC 62279 Standards

Figure 7.29. Overall software testing process

The overall software tests on the target machine enable us to demonstrate
that the hardware/software ensemble does indeed conform to the
specification of the software requirements on the final equipment.
Figure 7.30 shows the overall software testing environment.

Figure 7.30. Software testing on the target machine in a simulated environment

As the overall test is directly linked to the program’s execution, the
validity of this activity is strictly dependent on the environmental conditions
of the test. These conditions must, as faithfully as possible, reflect normal
usage conditions – in other words, the operational environment.

The 2011 version of CENELEC EN 50128 alters the notion of
“validator”. This is a person who is responsible for making sure the overall

Résultat des tests
d’ensemble du logiciel

Rapport de validation

Application
PA

Q
L

, P
G

C
, P

V
V

Spécification des tests
d’ensemble du logiciel

Rapport de
vérification

SQ
A

P,
 S

C
M

P,
 V

V
P

Verification

report
Overall software tests

specification

Overall software
tests report

Validation report

Calculateur réel

Application

OS Driver
Simulateur

d’environnement

Simulateur : permet de décrire les scénariiSimulator: describes the scenarios

Environment
simulator

Final target

Generic Application 249

tests identified from the requirements in the specification are carried out, but
s/he may also request the addition of system-oriented tests and/or user-
needs-oriented tests. The validation supervisor is responsible for the
validation report.

The verification report for the previous phases is thus replaced by a
software validation report (SVR), which takes account of all of the results
obtained up until that point. Indeed, in order to compile the validation report,
we take all of the verification reports that have been produced, we take the
results of the overall tests (and the verification associated with those tests)
and perform an analysis of the coverage of the objectives (relating to the
requirements, the interfaces, the code, etc.). In addition, article 8.7.4.9 of the
standard necessitates confirmation that Appendix A of CENELEC
50128:2011 has been properly applied (choice analysis and verification of
justifications). The format of this verification report is described in
article 8.7.4.10 of CENELEC 50128:2011.

The software validation report must make a judgment as to the adequacy
of the software for its intended use. It may identify exported constraints. In
addition, if the software is appropriate for the intended use, a delivery sheet
must be drawn up, containing the usage constraints.

7.4. Some feedback on past experience

Chapter 7 of CENELEC 50128:2011 introduces a V-lifecycle for
development (see Figure 7.1), where the tests (overall software tests,
software integration tests and software component tests) take place during
the descendant phase, which enables us to identify any bugs in the software
as early as possible. By using this approach, we are able to launch into
the ascendant phase with a minimal number of bugs. Indeed, what increases
the cost and the time taken for the development is the process of bug
management.

The cost of correction of a bug is directly linked to the phase during
which that bug has been identified. If a bug is detected during the functional
test phase, it costs between ten and a hundred times more (or even more than
this, in some cases) to rectify than a bug identified during the component
testing phase. This cost is linked to the resources which have been mobilized
up until the point when the fault is detected, and to the difficult of

250 CENELEC 50128 and IEC 62279 Standards

performing functional tests (use of a target machine, the need to carry out the
tests in real time, difficulty in observation, technical knowledge of the
people involved, etc.).

The author’s own experience (as an assessor/certifier of railway systems)
has led him to conclude that the phases of component testing (be it module
or unit testing) and integration testing are generally ineffective, given that
industrial actors believe that:

– component tests (module/unit tests) are useless (as a general rule, the
unit tests are defined on the basis of the code);

– software/software can be boiled down to a “big-bang integration”
(integration of the whole code instead of integration one module at a time) –
in the worst case scenario, the code is all compiled in one go, and the
integration can be summarized as the verification of the interfaces by the
compiler;

– the hardware/software integration is handled by the functional tests on
the target machine. If the overall software runs correctly on the target
machine, then the integration is correct.

As an assessor, the author is aware of the financial issue, but costs should
not be reduced by cutting corners in terms of standard, but rather by strict
use in combination with a body of experience.

7.5. Conclusion

In this chapter, we have presented the development of a generic
application as defined in Chapter 7 of CENELEC 50128:2011. We have
presented the V lifecycle and, for each step, the techniques, resources and
elements needing to be produced and verified.

CENELEC 50128:2011 is based on a V lifecycle, but it brings back to
center stage the concept of software assurance, which combines the
necessary requirements: quality management, skill management, tool
management, configuration management, V&V management and external
evaluation. In order to do so, the proposed cycle contains the verifications,
and they are performed as early on in the cycle as possible. This enables us
to have what is known as an “agile” approach: we seek to discover any faults

Generic Application 251

as early as possible, not by executing the software but instead by preparing
tests.

This approach enables us to develop software applications at lesser costs
and within a reasonable period of time if the verifications are efficient.

7.6. Appendix A: the programming language “Ada”

The earliest railway applications in France, in the mid-1980s, were
programmed with the language Modula 2. However, afterwards, Ada 83
[ANS 83] became the reference language for the development of critical
applications [RIC 94]. As is shown by Table 7.9, in applications with a high
level of criticality (SSIL3/SSIL4), the language Ada itself is only “R”
(Recommended). Thus, we need to put in place a subset of the language so
that the use of Ada becomes HR.

The maturity of the language and knowledge of the subset mean that now,
Ada is HR as a programming language in this context (see Table 7.10).

Ada was designed on the initiative of the DoD (the Department of
Defense in the USA) to bring the 400+ languages or dialects used by that
organization in the 1970s into one form.

Ada is very widely used in onboard software applications in avionics (the
Airbus), the space domain (the Ariane rocket) and in the railway domain.
The primary characteristic of these systems is that they require the execution
to be absolutely flawless.

Ada 83 evolved into a second major standard: Ada 95 [ISO 95], which
was the first standardized object-oriented language. It brings the possibility
of constructing object-oriented models. The latest dated version is called
Ada 2012 [BAR 14] and introduce new features such as properties
description that offer an opportunity to introduce some formal verification.

Figure 7.31. Example of code in Ada

252 CENELEC 50128 and IEC 62279 Standards

As regards the certification of Ada compilers, the existence of a standard
and of fairly detailed set semantics for the language has enabled us to define
a process for certifying a compiler. This process has been implemented on a
variety of compilers. The process is based on a suite of tests called ACATS
Ada Conformity Assessment Test Suite (ACATS) – see the standard [ISO 99a].
For further information, consult [ADA 01].

For the time being, these new versions of Ada have not been adopted in
the field of onboard systems, because of the object-oriented aspect.
However, in light of their effectiveness, Ada 95 compilers are used for
compilation, in the knowledge that we are dealing with a subset of the
language which does not use “object-oriented” traits. At present, ADA 2012
is not used for critical safety applications.

The “object-oriented” aspect is not taken into account by the standards
applicable to critical applications – CENELEC EN 50128 [CEN 01,
CEN 11], DO 178 [ARI 92, DO 12], IEC 61508 [IEC 08], ISO 26262
[ISO 11], and IEC 60880 [IEC 06].

In order to get around this pitfall, ISO 15942 [ISO 00] defines a restriction
on the constructions of the Ada 95 language and usage rules (programming
styles) which can be used to realize a so-called certifiable application.

The language SPARK Ada [BAR 03] is a programming language which
is a subset of Ada. All the complex structures in Ada considered to be risky
or not facilitating an easy demonstration of the safety are omitted from
SPARK Ada. A mechanism that enables annotations to be added into the
code has been put in place.

The SPARK Ada tools contain a compiler but also an annotating verifier.
It should be noted that there is a free version of the SPARK Ada tools3.
Chapter 3 of [BOU 12] presents the SPARK Ada tools and industrial
examples of their implementation.

A new version of Spark Ada introduces the possibility to use the
properties introduced in Ada 2012 to carry out some formal verification.

3 To learn more about AdaCore and open versions of tools such as GNAT and SPARK Ada,
see the Website: www.libre.adacore.com.

Generic Application 253

7.7. Appendix B: the programming language “C”

7.7.1. Introduction

The language C4 [KER 88] is one of the first languages to have been
made available to developers to create complex applications. The main
difficulty with C lies in the partial definition of the language, which means
that different compilers generate an executable with different behaviors. It
has since been subjected to a standardization process by the ANSI [ISO 99].

As regards the use of C [ISO 99], depending on the desired safety
integrity level, CENELEC EN 50128 [CEN 01] recommends defining a
subset of the language (see Table 7.9), whose execution can be controlled.

Table 7.10 shows that it was considered that sufficient experience had
been gained in the languages Ada, C and C++, meaning that the concept of a
subset of the language no longer needs to be explicitly mentioned, because it
is considered as having been acquired.

7.7.2. The difficulty with C

Some of the weaknesses of C [KER 88, ISO 99] can be circumvented by
putting programming rules in place. For example, in order to prevent an
anomaly of the type if (a = cond) instead of if (a == cond), we can put in
place a rule in the following form: “When comparing with a variable, that
variable must be on the left-hand side of the expression”. This gives us: if
(cond == a).

From 1994, from the existing feedback concerning the use of C (for
example, see [HAT 94]), it became clear that it was possible to define a
subset of C that could be used to create software applications requiring a
high level of safety (SSIL3-SSIL4).

In fact, for C, the norm MISRA-C [MIS 04] has become a de facto
standard, which was developed by the Motor Industry Software Reliability
Association (MISRA5).

4 Although Kerdigan and Ritchie [KER 88] do not describe the language C as understood by
ANSI [ISO 99], theirs remains one of the most interesting books on the subject.
5 For further information, see: www.misra.org.uk/.

254 CENELEC 50128 and IEC 62279 Standards

7.7.3. MISRA-C

MISRA-C [MIS 04] specifies programming rules (see examples given in
Table 7.13) that help to avoid runtime errors caused by improperly-defined
constructs, unexpected behavior (certain structures in C are not completely
defined), misunderstandings between the people in charge of the realization
(readable code, code with defaults, etc.). There are various tools which can
be used to automatically check the MISRA-C rules.

ID Status6 Description

Rule 1.1 Required All of the code must conform to ISO 9899:1990
“Programming languages – C”, amended and corrected by
ISO/IEC9899/COR1:1995, ISO/IEC/9899/AMD1:1995 and
ISO/IEC9899/COR2:1996

Rule 5.4 Required Each tag must be a unique identifier

Rule 14.1 Required There must be no dead code

Rule 14.4 Required The must be no goto statements in the programs

Rule 14.7 Required A function must have a single, unique exit point at the end
of the function

Rule 17.1 Required Pointer arithmetic may only be used for pointers that lead
to a table or an element in a table.

Rule 17.5 Advisory An object declaration should not contain more than two
levels of indirection of the pointer

Table 7.13. Some of the rules7 set out in MISRA-C:2004 [MIS 04]

The MISRA-C standard [MIS 04] repeats rules (e.g. see rules 14.4 and
14.7) which are explicitly given in a number of other standards:

– rule 14.4: in CENELEC 50128 – Table A.12, or IEC 61508 –
Table B.1;

– rule 14.7: in CENELEC EN 50128 – Table A.20, or IEC 61508 –
Table B.9;

– etc.

6 A MISRA rule may be “required” or “advisory”. A “required” rule must be implemented by
the developer, and an “advisory” rule must not be overlooked, even though it is not absolutely
compulsory to implement it.
7 [MIS 04] introduces 122 “required” rules and 20 “advisory” rules.

Generic Application 255

MISRA-C [MIS 98] was developed in 1998, and updated in 2004
[MIS 04] and then later in 2012 [MIS 12], which demonstrates that there is a
certain amount of experience that has been gained from feedback.

The main difficulty with C is choosing a compiler that has garnered
enough experience for the chosen target and for the desired SSIL. In the
absence of a precise and complete standard, there is no certification process
for C compilers, even though initiatives such as [LER 09] are in place8.

7.7.4. Example of a rule

Rule_x: all blocks must be marked with a beginning and an end.

The structure:

for (i=1; i<= length; i++)

 x = i + 3;

needs to be replaced by:

for (i=1; i<= length; i++)

{x = i +3;}

7.8. Appendix C: introduction to object-oriented languages

As already stated earlier, the “object-oriented” aspect is not taken into
account by the applicable standards – CENELEC EN 50128 [CEN 01], DO
178 [ARI 92, DO 12], IEC 61508 [IEC 08] and ISO 26262 [ISO 11] – for
critical applications.

The object-oriented aspect is cited in CENELEC EN 50128 [CEN 01],
but the constraints that apply to the languages mean that we cannot develop a

8 Note that [LER 09] shows the task of verification of a restricted C compiler, but that the
term “certification” is introduced. This does not mean certification by an external organism.
Certification does not relate to demonstrating that the compiler is right, but must also be
applied to the process used, to the elements produced (documents, sources, etc.) and to the
tools employed (Ocaml, Coq and other open tools must be demonstrated as being appropriate
for use for creating safety-related software applications).

256 CENELEC 50128 and IEC 62279 Standards

critical application (SSIL3 and SSIL4) with this type of language (see
Table 7.14).

Technique/measure SSIL0 SSIL1 SSIL2 SSIL3 SSIL4

No dynamic objects – R R HR HR

No dynamic variables – R R HR HR

Limited use of pointers – R R R R

Table 7.14. CENELEC EN 50128 [CEN 01] – Table A.12

As is demonstrated by Tables 7.9 and 7.10, the language C++ [ISO 03,
ISO 06] is cited as being applicable, but certain recommendations are not
compatible with the use of an object-oriented language, as shown by
Table 7.14.

C++ was developed in the 1980s as an improvement on C. C++
introduces the concept of class, of inheritance, of virtual functions and of
overload. A standard was published for C++ by the ISO in 1998 and again in
2003 [ISO 03].

Since the beginning of the millennium, many projects have been
undertaken in an attempt to define a framework to govern the use of C++
[ISO 03, ISO 06] for the development of applications with a high software
safety integrity level (SSIL3-SSIL4).

For example, we can cite the work of:

– OOTiA9 (Object Oriented Technology in Aviation), which has
published numerous guides [OOT 04a, OOT 04b, OOT 04c, OOT 04d];

– JSF++ (Joint Strike Fighter C++), which published a guide [LM 05]
regarding development in C++. This guide summarizes the pre-existing
works, and particularly the MISRA-C standard [MIS 98];

– MISRA, which developed the MISRA-C++:2008 standard [MIS 08].
Table 8.12 presents examples of rules in MISRA-C++:2008.

9 For further information, see: www.faa.gov/aircraft/air_cert/design_approvals/air_software/ oot/.

Generic Application 257

Hence, C++ [ISO 03, ISO 06] is a fairly old language. Approaches
identifying the weak points of C++ and suggesting rules began to appear
quite early on [SCO 98, SUT 05], but the definition of a guiding framework
for the use of C++ for high-SSIL applications is fairly new [LM 05, MIS 08,
OOT 04], which explains why we find applications in C++ up to SSIL2.

As shown by Table 7.15, the MISRA-C++:2008 standard [MIS 08]
introduces a certain number of rules inspired by the existing ones for C, but
they are unable to take account of all the difficulties with C++.

Owing to a variety of pressures (such as the decrease in the number of
Ada and C programmers, for instance), the updating of standards such as
CENELEC EN 50128 or DO 178 has given rise to initiatives aimed at
introducing object-oriented languages.

Id Status10 Description

Rule 0-1-1 Required A software application must not contain unreachable code

Rule 0-1-2 Required
A software application must not contain any non-executable
paths

Rule 1-0-1 Required
All the code must conform to ISO/IEC 14882:2003 “The C++
standard incorporating Technical Corrigendum 1”

Rule 2-10-4 Required
The name of a “class”, “union” or “enum” must be a unique
identifier

Rule 5-2-3 Advisory
The operation “cast” from a basic class to a derived class must
not be applied to polymorphic types

Rule 15-5-1 Required A class destructor must not end with an exception

Rule 17-0-4 Document All the libraries must conform to MISRA-C++

Rule 18-0-1 Required The C library must not be used

Table 7.15. A few rules11 from MISRA-C++:2008 [MIS 08]

10 A MISRA-C++ rule may be “required”, “advisory” or “document”. The implementation of a
“required” rule by the developer is mandatory; an“advisory” rule cannot be ignored even
though it is not obligatory to implement it; and a “document” rule is obligatory.
11 [MIS 08] introduces 198 rules.

258 CENELEC 50128 and IEC 62279 Standards

Thus, the new version of CENELEC EN 50128 [CEN 11] extended the
list of usable object-oriented languages to JAVA and C#, as shown by
Table 7.10. However, this new version of the standard introduces a few
restrictions (limitation on inheritance), shown by Table 7.16.

The version for C of the DO 178 standard has a specific appendix which
defines the constraints of implementation of an object-oriented language for
the realization of a critical application. This appendix is extremely
restrictive, if not totally inapplicable.

As is the case with C, the difficult point with C++ remains the
demonstration that the compiler, for the chosen target and the associated
libraries, respects safety objectives which have been defined by the safety
studies. As no certification is in place for C++ compilers, we need to put in
place a justification based on gained experience and/or qualification.

 SSIL0 SSIL1 SSIL2 SSIL3 SSIL4

The classes should have only one
objective

R R R HR HR

Inheritance used only if the derived
class is a refinement of its basic class

R HR HR HR HR

Depth of inheritance limited by coding
standards

R R R HR HR

Neutralization of operations (methods)
under strict control

R R R HR HR

Multiple inheritance used solely for the
interface classes

R HR HR HR HR

Inheritance from unknown classes – – – NR NR

Table 7.16. New CENELEC EN 50128 [CEN 11] – Table A.23

7.9. Appendix D: documentation needing to be produced

Document title Acronym

Specification

Software Requirements Specification SwRS

Overall Software Test Specification OSTS

Software Requirements Verification Report SwRVR

Generic Application 259

Document title Acronym

Architecture and design

Software Architecture Specification SAS

Software Design Specification SDS

Software Interface Specifications SIS

Software Integration Test Specification SITS

Hardware/Software Integration Test Specification HSITS

Software Architecture and Design Verification Report SADVR

Component design

Software Component Specification SCS

Software Component Test Specification SCTS

Software Component Design Verification Report SCDVR

Component implementation and testing

Software Source Code and Supporting Documentation –

Software Component Testing Report SCTR

Software Source Code Verification Report SSCVR

Integration

Software Integration Test Report SITR

Hardware/Software Integration Test Report HSITR

Software Integration Verification Report SIVR

Overall software tests

Overall Software Test Report OSTR

Software Validation Report SVR

Tool Validation Report TVR

Delivery Sheet (Software Version Sheet) SwVS

8

Modeling and Formalization

8.1. Introduction

In this chapter, we shall present various concepts such as models, formal
methods and formal techniques. We shall place emphasis on the advantages
of these approaches and techniques to realize a functionally safe software
application.

As we have demonstrated in the collection [BOU 11a, BOU 12a,
BOU 12b, BOU 14c], by means of concrete and complex projects, the
railway domain has experienced the use of formal methods (Z [SPI 89], B-
method [ABR 96] and SCADE [DOR 08]) and of formal techniques (proof,
model-checking and abstract interpretation of programs).

From these various experiments, it has emerged that modeling is a
fundamental need for the different phases of realization of a software
application. The main evolution in this field in recent years is the recognition
of the necessity of creating models.

8.2. Modeling

8.2.1. Objectives

In order to work on the correctness and completeness of the requirements,
it is helpful to create one or more models. A model is an abstract description
of a system and/or a process. As it is a simplified representation, there is a

262 CENELEC 50128 and IEC 62279 Standards

reduction in complexity, the model can be easily manipulated and helps the
thought process and/or the performance of a certain number of verifications.
The more accurate the model, the closer the results obtained will be to those
which would actually be observed on the finished system.

Therefore, the model can serve as a tool for communication between the
various stakeholders.

A good model should focus on the problem, but it may go so far as to
describe a solution, and it is then possible to manage all or part of the final
code. Thus, a model may or may not be “executable”.

More generally, it is possible to have models devoted to each step in the
process of realization of the system; we then speak of Model-Based
Development (MBD). In the author’s native France, we speak of IdM –
“Ingénierie des Modèles”.

Modeling must be used in addition to the textual description of the
requirements – we must be able to express our need in order to model it. To
implement a model without a textual requirement is tantamount to exhibiting
one’s needs without having expressed them, and the question then arises of
how to check that the model does actually correspond to the need.

Figure 8.1. Example of a static model introducing different types of communication

A model is generally made up of two mutually complementary parts:

– a static model (Figure 8.1) showing the entities that constitute the
system, and the different states that can be associated with those entities;

– a dynamic model (Figure 8.2) illustrating the possible changes of state.

Déplacement
Train 1

Déplacement
Train 2

+

+

*

Activation Cycle

Activation
Train

Désactivation
Train

*

Suite
Traitement

Cycle activation

Train
activation

Processing
sequence

Train
deactivation

Movement
Train 1

Movement
Train 2

Modeling and Formalization 263

Modeling is often based on a graphic representation of the system, which
is described in the form of a tree-like structure with distinct and autonomous
entities which communicate with one another, and with the environment of
the system. The earliest models were based on functional analyses of the
system (see the work done on SADT1 [LIS 90]).

Figure 8.2. Example of a dynamic model introducing different types of communication

In summary, overall, modeling consists of converting a physical situation
into a symbolic model in a more or less abstract language – be it iconic
(graphical symbols: tables, plotted trends, diagrams, etc.) or logical/
mathematic (functions, relations, etc.).

8.2.2. Different types of modeling

Requirements modeling can be performed at different levels and for
different objectives. Thus, each level of requirements has a corresponding
modeling level. We can use models of objectives or of usage to model the
user requirements, functional models to model the system requirements, and
finally performance models to model the architectural requirements.

1 The acronym SADT stands for Structured Analysis and Design Technique. The method was
developed by Softech in the United States. SADT is an analysis method by successive levels
of an approach describing any set of objects or data.

arrêt en marche

accélère
accélère

freine [vitesse>
freine [vitesse=0]freine

accelerates
accelerates

stoppped in motion

brakes brakes [speed=0]
brakes [speed>0]

stopped

264 CENELEC 50128 and IEC 62279 Standards

We have identified two phases: the analysis phase and realization phase.
In the analysis phase, the objective is to identify the requirement and define
it more precisely. In order to do so, we create a so-called needs model, which
allows the different users to express their needs and to reason about those
needs.

8.2.3. Model

The realization of a model M is a means to understand and/or grasp a
problem/situation. Generally, the specification phase, during which the
technical specifications are absorbed, involves the creation of a model M.

A model may be more or less close to the system under study; we speak
of the degree of abstraction. The closer the model, the closer the results
obtained will be to those which will be observed on the final system.

Another characteristic of models relates to whether or not the support
language has set semantic rules.

Technique/measure SSIL0 SSIL1 SSIL2 SSIL3 SSIL4

1. Data modeling R R R HR HR

2. Data Flow diagrams – R R HR HR

3. Control flow diagram R R R HR HR

4. Finite-state machines or State
Transition diagrams

– HR HR HR HR

…

7. Formal methods R R R HR HR

…

11. Sequence diagrams R HR HR HR HR

Table 8.1. Table A.17 from the new version of CENELEC 50128:2011

The presence of a set of semantic rules means that we can apply
reasoning techniques to ensure the correctness of the results obtained.

The new version of CENELEC 50128 ([CEN 11a], Table A.3)
recommends that the architecture of the software application be based on a
structured method (SADT, etc.). However, it is possible to implement

Modeling and Formalization 265

modeling which is based on the techniques shown in Table A.17 of the
standard (see Table 8.1 here).

From these various experiments, what emerges is that modeling is an
essential need for the different phases of realization of a software
application. The main evolution in this field in recent years is the recognition
of the necessity of creating models. Figure 8.3 shows an example of a
SIMULINK model.

Figure 8.3. Example of Simulink

8.3. Use of formal techniques and formal methods

It is interesting to note that the definitions given in Appendices B and C
(Part 7 of IEC 61508) use, as their points of reference, articles and/or books
dating from between 1970 and 1998. It seems it is now necessary to update
these to reflect the situation today.

8.3.1. Definitions

8.3.1.1. Semi-formal method

According to IEC 61508 ([IEC 08], B.2.3), a semi-formal method offers a
way of developing a description of a system at a given stage of development
(specification, architecture and/or design). The description can be analyzed
or animated in order to check whether the system being modeled satisfies the
requirements (real and/or specified). The standard notes that state diagrams
(finite-state machines) and temporal Petri nets are two examples of
semi-formal methods.

266 CENELEC 50128 and IEC 62279 Standards

 SSIL0 SSIL1 SSIL2 SSIL3 SSIL4

Formal methods, including
CCS, CSP, HOL, LOTOS, OBJ,
VDM, Z and B, for example

– R R HR HR

Semi-formal methods R R R HR HR

Structured methodology
including, for instance, JSD,
MASCOT, SADT, SDL,
SSADM and YOURDON

R HR HR HR HR

Table 8.2. Table A.2 from CENELEC 50128:2001

The 2001 version of CENELEC 50128 introduced the concept of semi-
formal methods in its Table A.2, which made reference to Table A.18.

 SSIL0 SSIL1 SSIL2 SSIL3 SSIL4

Logic/function diagram blocks R R R HR HR

Sequence diagrams R R R HR HR

Data flow diagrams R R R R R

Finite-state machines/state
transition diagrams

– R R HR HR

Temporal Petri nets – R R HR HR

Decision/truth tables R R R HR HR

Table 8.3. CENELEC 50128:2001 – Table A.18

In the new version of CENELEC 50128, semi-formal methods disappear
as techniques. This is due to the ambiguity in determining where the
boundary between what was “formal” and what was “semi-formal” lay, and
certain industrialists considered that the existence of a modeling tool was
sufficient to call for the use of a semi-formal method.

8.3.1.2. Formal method

Section B.30 of the IEC 61508 standard [IEC 08] indicates that a formal
method (e.g. HOL, CSP, LOTOS, CCS, temporal logic, VDM2 [JON 90] and

2 In the IEC 61508 standard, the references to VDM include VDM++ [DUR 92], which
is an object-oriented, real-time extension of VDM. For further information, see:
www.vdmportal.org/.

Modeling and Formalization 267

Z3 [SPI 89]) enables us to construct an unambiguous and coherent
description of a system at a given stage of development (specification,
architecture and/or design).

The description comes in mathematical form, and can be subjected to
mathematical analysis. This mathematical analysis may be tooled.

Generally, a formal method offers a notation, a technique to formulate a
description in that notation and a process of verification to ensure the
correctness of the requirements.

Note that IEC 61508 indicates that it is possible to perform
transformations to “a logical circuit design4”.

Petri nets and state machines (mentioned in the context of semi-formal
methods) may be considered to be formal methods, depending on the degree
of conformity of their usages to a rigorous mathematical base.

8.3.1.3. Structured method

The goal of structured methods (CENELEC 50128 – B.60) is to promote
quality in software development by devoting more attention to the earlier
phases in the lifecycle. This kind of method employs precise and intuitive
notations (generally with computer assistance) to produce and document the
requirements and the characteristics of the product’s implementation.

Structured methods are tools for reflection. They are based on a logical
order of thinking – an analysis of the system which takes account of the
environment, the production of the system documentation, the breakdown of
the data, that of the functions and of the elements needing to be verified, and
must impose a certain degree of intellectual servitude (a simple, intuitive and
pragmatic method). Examples of structured methods include SADT [LIS 90],
JSD, CORE, the real-time Yourdon method and MASCOT.

Structured specification is a technique aiming to demonstrate the simplest
visible relations between the partial requirements included in the functional
specification. The analysis is refined step by step, until we obtain small,

3 Note that in IEC 61508, the B-method [ABR 96] is considered to be a method associated
with Z.
4 These are the terms used in IEC 61508.

268 CENELEC 50128 and IEC 62279 Standards

clear partial requirements. We then obtain a hierarchical structure of partial
requirements which will enable us to specify the complete requirements. The
method emphasizes the interfaces between the requirements, and helps to
prevent interfacial faults.

8.3.1.4. Computer-aided specification tools

In IEC 61508, in section B.2.4, it is stated that the use of computer-aided
specification tools enables us to obtain a specification in the form of a
database, which can be automatically inspected with a view to evaluating
coherence and completeness. The tool may allow for animation. It can be
applied during the different phases of specification, architecture and/or
design. For the design phase, its use is recommended provided that
appropriate tools are available, but it will be necessary to demonstrate the
correctness of the tool (feedback on experience and/or independent
verification of results).

8.3.2. UML

Figure 7.7 shows an example of a UML model5 [OMG 11, ROQ 07] of a
railway system implementing different models: use cases, sequence diagram,
state/transition diagram and class diagram.

It must be remembered that UML is merely a notation, and that in order
to make it into a method, it is necessary to put in place a methodology which
defines the elements used, the meaning associated with those elements, the
points of verification, etc. This methodology must be based on a modeling
guide and on a training set appropriate for each domain in question.

Hence, the use of the notation UML does raise certain issues [BOU 08a,
OKA 07]. How can we use a notation which has no semantic rules? How can
we evaluate an application based on UML notation? And so on. A number of
publications set out to provide answers to these questions, such as [OOT 04]
and [MOT 05], for instance.

The notation UML [OMG 11, ROQ 07] is not, at present, recognized as a
structure and/or semi-formal method in the set of standards, although many
wish to implement it either partially or completely.

5 For further information, see the OMG’s Website: www.omg.org/.

Modeling and Formalization 269

In [BOU 07b, BOU 07c, BOU 08a, BOU 09a] and Chapter 19 of
[RAM 09], we showed how UML notation can be used to create models of
critical systems.

In the projects RT3-TUCS, ANR-SAFECODE and ANR-RNTL-
MEMVATEX, we studied different possible ways in which to introduce
UML as a means of modeling a critical system – for example, see [BOU 05,
BOU 08a, IDA 07a, IDA 07b, OKA 07, RAS 08].

In recent years, a number of projects have been able to propose a
formalization of the UML notation by way of a transformation to formal
languages, such as [IDA 06, IDA 09, LED 02, MAM 02, MAR 01,
MAR 04]. Also of note are publications such as [MOT 05], which have put
forward additional rules to verify UML models.

8.4. Brief introduction to formal methods

8.4.1. Recap

Formal techniques (simulation, model-checking, abstract interpretation,
proof, etc.) are not a new phenomenon. Indeed, the earliest papers discussing
this subject date from the 1970s (for examples, see [COU 77, DIJ 76,
HOA 69]). However, the implementation of formal methods dates from the
1980s [HAL 91, JON 90, SPI 89] with uses in industry emerging in the
1990s [BEH 93, OFT 97].

In [BOW 95] and [OFT 97], we find the first feedback from industrialists
about formal techniques, and in particular, feedback on the B-method
[ABR 96], LUSTRE [ARA 97, HAL 91] and SAO+, which is the predecessor
of SCADE6. Other publications, such as [HAD 06, MON 00], offer an
overview of formal methods from a more scientific standpoint.

The purpose of formal methods is to eliminate the ambiguities,
misunderstandings and incorrect interpretations which may arise in the
description in natural language.

6 It should be noted that, to begin with, SCADE was a development environment based on
LUSTRE, but that since version 6, SCADE has become a language in its own right (the code
generator for version 6 does indeed use a SCADE model as input, rather than a LUSTRE
code).

270 CENELEC 50128 and IEC 62279 Standards

The umbrella term “formal method” covers:

– languages:

- which have a formally-defined vocabulary and syntax;

- whose semantic rules are defined mathematically.

– transformation and verification techniques based on mathematical proof.

Formal specification invariably yields a description of what the software
must do, but not how it must do it.

It should be noted that in the context of critical applications, at least two
formal methods have recognized and widely-used design environments which
cover part of the process of realization of code specification, whilst
integrating one or more verification processes. These two methods are the
B-method [ABR 96] and the programming language LUSTRE [HAL 91,
OFT 97] and the graphic version thereof, called SCADE [DOR 08]. The B-
method and the SCADE environment are associated with tried-and-tested
industrial tools.

The advantage of formal methods lies in the fact that verifications such as
proofs of properties (by means of activities of proof, exhaustive simulation
[BAI 08], etc.) can be implemented as early as possible in the development
cycle. The underlying idea is to create a program which is safe because of its
very construction.

8.4.2. Usage in the railway domain

8.4.2.1. From Z to the B-method

In the context of SACEM7 [GEO 90], the RATP (the group in charge of
Paris transport) conducted a proof with Hoare logic [HOA 69] to demonstrate
that the requirements had been taken into account (for further information,
consult [GUI 90]). The Hoare proof enables us, on the basis of a program P
and a set of preconditions C, to reveal all of the post-conditions.

The Hoare proof conducted for SACEM was able to make explicit a certain
number of properties of the code, but it was not possible to form the link

7 Système d’Aide à la Conduite, à l’Exploitation et à la Maintenance.

Modeling and Formalization 271

with the safety-related requirements (such as the requirement of
non-collision, for example).

In light of this situation, it was decided to construct a formal model in
Z notation [SPI 89]. This formal model enabled the developers to break
down the properties and form a link between the requirements and the code.
Thus, twenty or so major anomalies were detected by the team of experts in
charge of re-specifying the system in Z.

In the wake of the difficulties encountered during the creation of SACEM
(manual processing, introduction of errors, complexity of the properties
obtained, difficulty in conducting the proofs, problem of traceability, etc.),
the company in charge of the development of the SAET-METEOR [LEC 96,
MAT 98] was asked to use a tooled formal process integrating the formal
proof. In that context, the B-method was chosen.

For that reason, in the railway domain in France, the use of formal
methods, and particularly the use of the B-method, is increasingly
commonplace in the development of critical systems. The software in these
safety systems (railway signaling, automatic train operation) must conform
to very strict criteria in terms of quality, reliability and robustness.

The B-method [ABR 96] was developed by Jean-Raymond Abrial. It is a
model-oriented formal method like Z and VDM, but which facilitates an
incremental development, from the specification to the code, by way of the
concept of refinement [MOR 90], in a unique formalism: the language of
abstract machines. At each step in the development in B, obligations of
proofs are generated in order to ensure the validity of the refinement and the
consistency of the abstract machine. Thus, the B-method is based on the
concept of proof.

More recent projects such as CTDC, KVS, SAET-METEOR [BEH 93,
BEH 96, BOU 06], the VAL at CdG Airport and Line 1 of the Paris Metro
use the B-method throughout the entire development process (from the
specifications to the final code – see Figure 8.4).

It should be noted that the B-method has an industrial environment. The
B-workshop is marketed by CLEARSY. This tool covers the whole of the
development cycle proposed by the B-method (specification, refinement,
code generation and proof).

272 CENELEC 50128 and IEC 62279 Standards

Figure 8.4. B development cycle

Figure 8.5. The “Hello, World!” program written in B

[BOU 14c] is devoted to the B-method, and presents various examples of
its implementation.

8.4.2.2. From LUSTRE to SCADE

In light of the observation that conventional computer languages were
inadequate for creating automated, real-time applications, the language
LUSTRE was developed at the VERIMAG8 Laboratory in the 1980s
[BEN 03, HAL 91, HAL 05].

8 For further information, see: www.verimag.fr.

Modeling and Formalization 273

LUSTRE then evolved into SCADE9, by means of various phases and
approximations (SAGA with Merlin Gérin, SAO10 with AIRBUS). It should
be noted that SAO had two points in its favor:

– code generation on the basis of automated models helped to decrease
the number of errors;

– the graphic language, close to the traditions to which aeronautical
engineers are accustomed, facilitates communication within AIRBUS, thus
speeding up the development and helping to capitalize on the existing
savoir-faire within the company. Hence, SAO is one of the factors in the
success of the A320.

[HAL 05] offers a more detailed presentation of the history of LUSTRE
and SCADE, and of the differences which exist.

The SCADE environment implements an extension of the (textual)
language LUSTRE. This extension preserves the properties of LUSTRE and
facilitates modeling based on the concepts of functional block diagrams and
data flow diagrams. LUSTRE belongs to the category of “formal methods”,
in the sense that it is based on a syntax and a precise set of semantic rules.
LUSTRE is a textual language.

The SCADE environment allows us to model an application in graphic
form by means of components (boxes, state/transition graphs, etc.), which
are combined on a “plank” (see Figure 8.6).

Safety Critical Application Development Environment (SCADE) is
a language and a development environment which is used in field such
as avionics (AIRBUS, Eurocopter), the nuclear sector (Schneider
Electric, CEA), the railway domain (Ansaldo STS, AREVA, THALES,
RATP) and has recently begun being used in the automobile industry as
well.

9 SCADE is distributed by Esterel-Technologies – see: www.esterel-technologies.com.
10 SAO (Spécification Assisté par Ordinateur, or Computer-Aided Specification) is a
“domestic” formalism developed by AIRBUS that recycles the ideas of analog block diagrams,
and is therefore able to offer a specification tool and also a code generator.

274 CENELEC 50128 and IEC 62279 Standards

SCADE is intended to be compatible with the recommendations of the
various industrial standards (DO-178, IEC 61508, EN 50128 and IEC
60880).

Figure 8.6. Example of a plank

Figure 8.7 takes the tools from the SCADE environment and places them
into the V-lifecycle. Whether the SCADE environment is used for the
specification or design phases, we always begin with an initial document
entitled “specification” here. This document may be either a textual
specification or a formal specification (SART), and may be at system level
or software level, etc.

At the global level, it is interesting to put in place a model that describes
the software’s functional architecture. The system being modeled is then
broken down as a function of the requirements, corresponding to SCADE
models. This breakdown enables us to:

– distribute the global specification into various SCADE models (one
model per requirement function);

– independently develop each SCADE model;

– produce the corresponding interface document.

Nœud N1

Net View on N1 - P2

Net View on N1 - P1

v1E1

E2

v1

v2

E1

S1
v2

Planche P1 du nœud N1

Entrées
du nœud N1 v3

Sortie
du nœud N1

Variables locales
du nœud N1

Nœud N1
Entrées
 E1 :real
 E2 :real
Sortie
 S1 :real

v3Variables locales
du nœud N1

page P1 of node N1

Local variables of
node 1

Local variables of
node 1

Node N1
Inputs

I1: real
I2: real

Output
O1: real

Node N1

Inputs to node
N1

Output from
node N1

Modeling and Formalization 275

Figure 8.8 offers a detailed view of the models used to manage SCADE
nodes, and the relations which govern them.

Figure 8.7. SCADE as a design environment

Figure 8.8. Architecture of SCADE models

Spécification

Edition d’un
modèle SCADE

Générateur de
code

Code

Simulation
+

Couverture

Validation

Analyse/Conception Test/Intégration

Intégration

Specification

Development of
a SCADE model

Integration

Code generator

Simulation +
model/code

coverage

Analysis/Design Testing/Integration

276 CENELEC 50128 and IEC 62279 Standards

8.4.3. Summary

In the collection [BOU 11a, BOU 12a, BOU 12b, BOU 14c], we
presented examples of an industrial environment that can be used to
implement formal methods. Although today, there are numerous
environments and a huge number of applications, it must be noted that there
has been a change – indeed, we have switched from “timid” experimentation
with the use of formal techniques to their use on an industrial scale, as we
shall explain later on.

However, this change does create a number of difficulties. The
development of a software application that has an impact on safety is a rather
difficult task which is very much orientated toward “quality control11”.
Indeed, the only effective way to develop a safety-related software
application is to avoid introducing errors and/or detect as many such errors
as possible, and in order to do that, we need quality control techniques. QC
involves carefully defining the process and producing a very significant
amount of documentation.

The introduction of formal methods into the process leads us from a
quality-control approach to a “model-centered” approach, which may give
the impression that the documentation is no longer of use, and renders the
SSIL for the software application dependent of the SSIL of the tools
employed.

8.4.3.1. Model-checking

It should be noted that formal techniques were initially used by
industrialists to check that a specification, architecture, design principles
and/or code respected certain properties.

As Figure 8.9 illustrates, previously, the work of checking entailed:

– identifying the properties: an analysis of the input elements
(specification, architecture, realization principles, code, etc.) would be
performed with the aim of identifying the properties. The properties can be
classified into two families: safety properties and rapidity properties;

11 “Quality Control” in the sense of implementation of a process in line with a QC standard –
e.g. ISO 9001:2008 [ISO 08].

Modeling and Formalization 277

– modeling: having chosen a technology (technique + toolkit), it is then
necessary to create a model M which can be interpreted by the tools and
enables is to implement the chosen verification technique (model-checking,
proof, simulation, etc.);

– analyzing: the third phase consists of performing the verification itself.

Figure 8.9. Identification, modeling and analysis

For example, Chapter 2 of [BOU 12a] shows how the approach illustrated
in Figure 8.9 was implemented by the RATP12 to validate the specifications
of the safety functions in the SAET-METEOR13.

8.4.3.2. Establishment of formal methods

Two types of approaches have been presented in the different chapters:

– the first type of approaches consists, on the basis of a specification, of
realizing a formal model (see Figure 8.10) and performing verifications on
that model;

– the second type consists of performing formal analyses (see
Figure 8.11) on a code realized in the conventional manner (in C, ADA or
C++, for example), on the basis of a specification (see Figure 8.4).

12 For further information, see: www.ratp.fr/.
13 The system [MAT 98] which, since October 1998, has been being used on Line 14 of the
Paris Metro, is called SAET-METEOR (which stands for Système d’Automatisation de
l’Exploitation des Trains – METro Est Ouest Rapide).

278 CENELEC 50128 and IEC 62279 Standards

Figure 8.10. Realization of a model

In [BOU 11a], we presented many examples of the implementation of a
static analyzer belonging to the “abstract interpretation” family (see Chapter 3
of [BOU 11a] and [COU 77, COU 00]). Thus, we presented examples of the
use of FramaC, Polyspace, Astrée and CodePeer.

In order to integrate formal methods, the process of realization needs to
evolve, to include the modeling phase, as shown by Figure 8.12.

Figure 8.11. Formal analysis of a code

Normally (Figure 8.12(a)), on the basis of the design documents
(specification, architecture, design, etc.) and the industrial procedures, the
code must be produced. The inclusion of a modeling phase (Figure 8.12(b))

Modeling and Formalization 279

increases the importance of the concept of a tool and therefore the need to
qualify the tools on the basis of impacts on the software application.

Figure 8.12. Formal analysis of a code

8.5. Implementation of formal methods

8.5.1. Conventional processes

The realization of a software application is subdivided into steps
(specification, design, coding, tests, etc.). We speak of the lifecycle. The
lifecycle is necessary to describe the dependencies and sequencing between
the activities.

This lifecycle enables us to identify phases, and for each phase, we can
identify the inputs, outputs, the activities needing to be performed, the
people involved and the means of verification to be used.

Figure 7.1 shows a typical V-lifecycle. The V cycle is thus divided into
two phases – the descendant phase and the ascendant phase14. There are a
number of different test phases: unit tests15 (focused on the lowest-level

14 It should be noted that there is a horizontal correspondence (dotted-line arrow) between the
activities of specification, design and testing.
15 Unit tests or module tests or component tests.

280 CENELEC 50128 and IEC 62279 Standards

components), integration tests (focused on the software interfaces and/or
hardware interfaces) and functional tests (sometimes called validation tests)
which are designed to show that the product conforms to its specification.
The activities of the ascendant phase (execution of the UTs/ITs and FTs) are
prepared during the descendant phase.

The operation/maintenance phase, for its part, pertains to the operational life
of the product and management of any future evolutions. The maintenance of
the software application remains the trickiest activity. Indeed, following any
change, we must maintain a level of safety whilst staying in control of the
cost of the evolution and minimizing the impact on a system in service.

8.5.2. Process including formal methods

The process of realization of a software application generally involves
different phases requiring the application to be executed. As Figure 8.13
shows, the concept of execution is therefore essential to demonstrate that the
software application functions properly.

Figure 8.13. Typical process

In the context of development based on the concept of modeling
(Figure 8.9), the process is based not on the execution of the application to
demonstrate that the application works properly, but rather on the process of
realization. Then, the software application is considered correct after the
process that has been implemented. The correctness is therefore intrinsic to
the realization of the product.

Modeling and Formalization 281

Figure 8.14 shows an example where the realization of a model is
performed at the specification stage, and in this case the model is an addition to
an informal specification which may contain the requirements. However, the
model may also be introduced at the design level (Figure 8.15).

Figure 8.14. Formal process beginning at the specification stage

Figure 8.15. Formal process beginning at the design stage

In Figure 8.15, the specification is indicated as being non-formal, but it is
possible to have an initial model (formal or at least structured), the goal of
which is to structure the requirements and help to identify any incoherent or
incomplete points. This model can then, during the design phase, be
associated with a formal design model.

In the context of the development of SAET-METEOR (see Chapter 3 of
[BOU 12a]), we have shown how the B-method [ABR 96] has been used to
realize the design of safety-related software. The process used for SAET-
METEOR was therefore one similar to Figure 8.15.

In the field of railway applications, the software specifications are
generally associated with a structured model based on SADT [LIS 90] and/or
SART.

282 CENELEC 50128 and IEC 62279 Standards

It should be noted that in the development of the software of a new
CBTC16, an industrial actor in the railway domain is in the process of
creating a software application where the specification is modeled with
SART and the design combines SCADE with the B-method.

8.5.3. Issues

The introduction of formal techniques and formal methods in the
realization of software applications causes the apparition of new processes
which are no longer in phase with the V-lifecycle recommended by the
standards currently in force. The realization cycle using formal methods
shifts the verification activities to the downward phase and concentrates all
the information in the model (see Figure 8.16).

Figure 8.16. Process involving models

The concentration of the information in the model leads us to say that this
is not a “model-oriented” approach, but rather a “model-centered” one,
which is different. Indeed, with a “model-centered” approach, the model
becomes the backbone for all the activities, or it comes to contain all the

16 Communication-Based Train Control: this is a system controlling the operation, driving
and safety on trains and Metros. CBTC is a system comprising devices installed aboard trains
and fixed devices that communicate between themselves (generally by radio). CBTC is
subject to a standard [IEE 04].

Modeling and Formalization 283

activities (in Figure 8.16, the dashed arrows correspond the verification
activities).

The quality-control standards (ISO 9001:2008 [ISO 08], for example)
recommend that we identify the processes, activities and documents
needing to be produced. The industrial standards such as CENELEC
EN 50128 [CEN 01a, CEN 11a] identify a minimal list of documents to
produce.

In a model-centered process, the UTs and ITs can be replaced by
simulations and/or proof of property. However, these verification elements
are then an integral part of the model, as are the elements such as:

– the calculation of the metrics;

– the verification that the model is coherent;

– the verification that the coding rules have been respected;

– etc.

This type of “model-centered” approach is interesting, but it does away
with numerous documentary elements which are then felt to be
“unnecessary”, because they can be produced on demand. In that, we have
the potential for “non-conformity” to “objective”-oriented standards such as
IEC 61508 [ISO 08], ISO 26262 [ISO 11], la CENELEC EN 50128
[CEN 01a, CEN 11a], etc.

The strength of the “model-centered” approach is that it helps
the professionals involved to come together, as we showed in [BOU 99,
BOU 06]. Indeed, the various teams (software and hardware, design, V&V
and safety) can pool information relating to their activities, which helps to
foster a better understanding of the difficulties. Generally, the team in
charge of safety, which uses its own functional models and its own methods,
may have a slightly different vision to that of the design team, and
those differences may have a very significant impact in terms of costs and
time. The use of a shared model enables the safety-related recommendations
and requirements to be communicated to everyone involved, as soon as
possible, and it is also possible to link those elements to specific parts of the
model.

284 CENELEC 50128 and IEC 62279 Standards

The “model-centered” approach will17 cause four problems:

– the use of models at all levels and of all types. The difficulty relating to
this point lies in the absence of semantic rules for the modeling tools (UML
notation, SIMULINK and/or MATLAB model, etc.);

– the lack of documents means it will not be possible to rework the
design in case of obsolescence of the tools;

– the tools become the central point in the process, so it is necessary to
demonstrate that the tools are usable for the SIL applicable to the software
application under development. This qualification must be applied to the
code generators as well as to the verification tools;

– the complexity of the techniques employed (for example, see abstract
interpretation tools [BOU 11a]) requires a high level of skill of the people in
charge of the activities.

8.6. Maintenance of the software application

The maintenance of the software application remains the trickiest
activity. Indeed, following any change, we must maintain a level of safety
whilst staying in control of the cost of the evolution and minimizing the
impact on a system in service.

The maintenance of a software application comes up against a difficulty:
the lifespan of that software application. Indeed, for the railway domain, the
projected lifespan is 40-50 years, in aeronautics it is 40 years, in the nuclear
domain 50 years, but in the automotive industry, it is only around 15 years.

In light of these lifespans, we need to take measures to ensure the
maintenance of service and the maintenance of the software application.
These measures must take account of the type of machine used for the
development, the tools employed, the documentation needing to be produced
to perform the maintenance and repeat if need be.

Système d’Aide à la Conduite, à l’Exploitation et à la Maintenance
(SACEM) is a system that was commissioned in 1986 and has regularly been
updated since. The choice of a language such as ADA [ISO 95, BAR 14] or

17 We use the future tense here, because at present there is no model-centered application that
has been in operation long enough to cause problems, but it could come to pass.

Modeling and Formalization 285

C [ISO 99] helps to arm against the problems of obsolescence of the
machines, the operating systems and the tools.

But what will become of formal development environments such as the B-
tools and/or SCADE? Will it be possible to transfer the model from one tool
to another? Will it be possible to redevelop a tool?

8.7. Conclusion

Formal techniques and formal methods are now successfully used,
industrially, on projects of varying sizes. The tools associated therefore have
attained a certain level of maturity which means they are able to deal with
the complexity of such applications. Note that the complexity of industrial
applications very frequently has an impact on processing time18.

The use of formal techniques and formal methods has an impact on the
process that is conducted, and it is therefore necessary to construct a new
referential in line with the quality standards in force. The construction of that
referential must take account of the fact that the model can replace documents
which it used to be essential to produce, but also that we must take account
of the lifetime of the system and the associated maintenance objectives.
Indeed, if the tool is no longer maintained and the formalism is proprietary,
it may be difficult, or even impossible, to update the application in the
absence of the model.

Another difficulty with model-centered approaches is that they make the
SSIL of the software application dependent on the SSIL of the tools used. If
it is difficult to demonstrate that a C compiler is SSIL4, it will be even more
difficult to show that a prover is SSIL4. In the context of compilers, it was
possible to implement strategies based on redundancy and diversity.
However, for specific tools such as provers, model-checking tools and/or
tools with abstract interpretation, it is difficult to find two tools with similar
efficacy in the same domain19. Therefore, we need to establish tool
qualification files.

18 In the context of SAET-METEOR, it took over a week in 1998, with the tool Polyspace
(see Chapter 8 of [BOU 11a]) to analyze the 100,000 lines of code in ADA, whereas the same
task would now take 1-2 hours.
19 It must be remembered that for many of the tools used today, the algorithms are not public
property, and are even subject to copyright.

286 CENELEC 50128 and IEC 62279 Standards

The various standards (DO 178, ISO 26262, IEC 61508, CENELEC EN
50128) include, or will soon include, the concept of a “qualification file”.
The qualification of a tool depends on its impact on the final product.

The situation is not reduced to a single vision. The main advantage to the
B-method [ABR 96] and SCADE 6 [DOR 08] is that they offer an approach
which leads from the software specification to the coding phase (passing
through the architecture and design steps along the way). The code generator
in the B workshop is, for certain versions, considered to have been qualified
through use, and the code generator in SCADE 6 includes a certificate.

As regards formal techniques and formal methods, the question of
qualification of the tools is absolutely crucial, because the complexity of the
technologies used (provers, model-checking, etc.), the confidentiality aspect
(licensed algorithms, etc.), the innovation aspect (new technology, relatively
few users, etc.) and the maturity aspect (product stemming from research,
product created under an “open” license, etc.) mean it is not easy to build
confidence in a tool.

9

 Tool Qualification

9.1. Introduction

In this chapter, we shall present the process of tool qualification, as
defined in the 2011 version of CENELEC 50128. The previous version
focused on the qualification of compilers, but the new version takes account
of the set of tools used for the realization of a software application. Thus, the
idea of tool qualification is presented, and examples are used to explicitly
express the need.

The realization of a piece of software is based on the use of software for
the tasks of development, compilation, verification and validation. The
standards that are applicable for the realization of critical software define a
process to manage the introduction of faults into the programs, but that process
can only deliver on its predefined objectives if the tools themselves also
respect specific objectives.

The B version of the standard DO-178 introduced the concept of tool
qualification, and the concept was taken up again in the 2008 version of
IEC 61508, and therefore in the standards derived from it, such as ISO 26262
and the 2011 version of CENELEC 50128.

The goal of this chapter is to present the issue, the concepts associated
therewith and the expectations.

288 CENELEC 50128 and IEC 62279 Standards

9.2. Concept of qualification

9.2.1. Issue

Initially, the development of a software application consisted of
producing a code. In that case, in order to obtain an executable file, we have
to use a compiler. If the process used to obtain the code conforms to an SSIL
objective, the fact of the software application conforming to its SSIL
objective is directly linked to the compiler. We need to demonstrate that the
compiler can be used for an SSIL objective.

More generally, this issue can be generalized to the set of tools used for
the design, compilation, verification and validation of the software
application, but also the tools used in the production of the data for the
software application.

As we have explained, it is essential to demonstrate that a tool is usable
in the realization of a software application with a predetermined SSIL
objective. This activity is called the qualification of a tool.

DEFINITION 9.1 (Qualification).– The qualification of a tool is a process
whereby it is demonstrated that a tool is usable for the realization of a
software application with a definite SSIL.

In the coming sections, we shall give a more detailed presentation of
exactly what qualification is, explicitly discussing the inputs, outputs and
activities.

9.2.2. CENELEC 50128:2001

In Article 10.4.7 (section on design), CENELEC 50128:2001 stated that
we must choose an appropriate set of tools (design methods, language,
compiler) for the SSIL, for the whole of the software’s lifecycle.

More specifically, Article 10.4.9 introduced a stipulation regarding the
selection of the language to be used – the compiler had to have one of the
following articles:

– a validation certificate;

– an assessment report;

– a redundant process.

Tool Qualification 289

With certain languages, such as Ada (e.g. see [ANS 83, ISO 95,
BAR 14]), that have a standard that describes the language, it is possible to
establish a certification process. For example, as regards the certification of
Ada compilers, the existence of a standard and of a fairly detailed set of
semantic rules for the Ada language has made it possible to define a process
for certifying a compiler. This process has been carried out on various
compilers. It is based on a series of tests known as Ada Conformity
Assessment Test Suite (ACATS) – see [ISO 99]. For further information,
consult [ADA 01]. This approach, although it is applicable, is still confidential.

The second possibility is to draw up an evaluation report detailing the
appropriateness of using the given compiler in the particular context. This
approach is what we call “qualification” of the compiler.

Figure 9.1. Two examples of a compilation sequence

Figure 9.1 shows two examples of the executable-generation sequence.
(a) represents a linear sequence where a single executable is produced from
the sources, unlike (b) which shows the production of two executables.
Approach (b) enables us, on the basis of a redundant process, to prove that
the compiler does not adversely impact the executable.

For the third case, the standard was more specific, as it prescribed “a
redundant process based on a signature check which enables us to detect
errors in translation”. This approach was directly inherited from the PSC

290 CENELEC 50128 and IEC 62279 Standards

(Processeur Sécuritaire Codé – Coded Safety Processor) used in the railway
domain in France (see [BOU 10a], Chapter 2).

The PSC was used in the development of SACEM, and has been
deployed on many similar systems. The PSC is based on a redundant process
which is able to produce an executable file and a series of codes on a
hardware architecture capable of executing the application, whilst also
performing a check on the codes predetermined offline. Although it is
interesting, this type of redundancy is very specific and is not widely used.

Technique/Measure SSIL0
SSIL1;
SSIL2

SSIL3;
SSIL4

…

11. Translator validated R HR HR

12. Translator tried, tested and trusted HR HR HR

…

Table 9.1. Table A.4 from CENELEC EN 50128:2001

As Table 9.1 shows, in the area of design, we tend to focus on the
translator (in the sense of a compiler) with a link the section B.7, which
made the switch from a validated translator to a certified compiler, with a
generalization to all tools.

Note that row 12 of the table, regarding a tried-and-trusted translator, is
linked to section B.65, which identifies the concept of a tried-and-trusted
compiler. This concept allows us to attach value to the experience the
developers have acquired with a given version of a compiler. This
experiment needs to be formalized, and the projects (nature, complexity,
SSIL, etc.) and the known anomalies must be identified. The consequence of
this approach is to limit the introduction of new languages and/or new
compilers.

We can conclude from this that in CENELEC 50128:2001, there was a
stipulation that the compilers must be qualified, but no real indication of
exactly what was required.

Tool Qualification 291

9.2.3. DO-178

9.2.3.1. Version B

Version B of the DO-178 standard discusses the need to put tool
qualification in place (see section 12.2). DO-178 necessitates the
qualification of the tools if the process identified in the standard is impacted
(removal or reduction of activities, automation, etc.) by the use of a tool.

DO-178:B introduces two categories of tools:

– software development tools: the outputs are integrated into the onboard
software application;

– software checking tools: these tools do not introduce any new errors,
but they may be incapable of detecting those errors which are present.

DO-178:B indicates that the qualification is valid for a given use on a
specific system, so there is no capitalization.

Thus, the qualification process consists of:

– identifying the type of tools: development tools (CC1) or verification
tools (CC2);

– identifying the level of the tool: the tool’s software level must be
the same as that for the onboard software application, unless we can justify
a reduction of that level. The reduction of the level is connected to the
type of the activity upon which it impacts, to the importance of that
activity, to the probability of being able to detect an anomaly by another
means, etc.;

– implementing a quality-assurance process similar to that which needs to
be established for an onboard application;

– having a specification of the tool;

– checking that the tool conforms to its specification – section 12.2.1-d of
DO-178 describes the necessary activities;

– validating the tool’s behavior. It is possible to monitor the tool over a
certain length of time in order to confirm that the outputs are correct;

292 CENELEC 50128 and IEC 62279 Standards

– managing the faults: any and all faults present in the tool must be
logged, analyzed and corrected;

– establishing a configuration management process similar to that which
needs to be implemented for an onboard application.

During the qualification process, described below, detailed records must
be kept.

For each tool, a qualification plan needs to be drawn up in order to
identify the configuration of the tool, the desired level (CC1 or CC2), the
required level Design Assurance Level (DAL), a description of the
architecture, an identification of the activities to be performed and an
identification of the data needing to be produced.

Note that the qualification must be approved by the certifying authority.

9.2.3.2. Version C

In version C of the DO-178 standard [RTA 11a], several documents were
introduced, including one devoted to tool qualification, which is known as
DO-330. DO-330 retains the CC1 and CC2 categories, and introduces a
qualification objective – the Tool Qualification Level (TQL) – on a scale of
1 to 5.

DO-330 proposes a radical change in philosophy in relation to version B
of DO-178, and also in relation to the other standards (IEC 61508,
ISO 26262, 50128). Indeed, it is suggested that developers establish a tool
realization process which is not the DO-178 standard, but rather a specific
process, stripped back in comparison to the stipulations of the industry-wide
standard. This approach is innovative and more realistic.

9.2.4. IEC 61508

In its 2008 version, IEC 61508 [IEC 08] identifies three classes of tools:
T1, T2 and T3. These three classes are defined as follows:

– T1 generates no output that is able to contribute, directly or indirectly,
to the executable code (including the data) for the safety-related system;

Tool Qualification 293

– T2 takes care of the testing or verification of the design or the
executable code, when errors in the tool itself may prevent it from detecting
faults, but cannot directly create any errors in the executable software;

– T3 generates outputs which are able to contribute, directly or indirectly,
to the executable code for the safety-related system.

Based on these classes, IEC 61508:2008 identifies the need to put a
qualification process in place.

9.2.5. ISO 26262

In its 2011 version, the ISO 26262 standard also identifies three classes
for tools, referred to as the TCL (Tool Confidence Level). TCL2 and TCL3
are the two classes which require the establishment of a set of actions to be
selected on the basis of the ASIL (Automotive SIL) of the software.

Tool qualification can be performed as the combination of four activities:

– feedback on experience;

– evaluation of the tool realization process;

– establishment of a validation of the tool;

– realization of the tool in accordance with ISO 26262.

9.3. CENELEC 50128:2011

9.3.1. Introduction

The 2011 version of CENELEC EN 50128 formally introduces the need to
qualify the tools (see section 6.7 of the standard). As with IEC 61508 and
ISO 26262, three classes of tools are introduced: T1, T2 and T3. The three
classes are defined as follows:

– T1 generates no output that is able to contribute, directly or indirectly,
to the executable code (including the data) for the software;

– T2 facilitates the testing or verification of the design or the executable
code, when errors in the tool may prevent it from detecting faults, but will
not directly create any errors in the executable software;

294 CENELEC 50128 and IEC 62279 Standards

– T3 generates outputs which are able to contribute, directly or indirectly,
to the executable code (including the data) for the safety-related system.

The definition of T2 is the same as it is in IEC 61508:2008 [IEC 08]. For
T1, we focus on the software, and for T3, we introduce further data.

Ultimately, class T1 contains tools which do not have an impact on the
verification and which have no impact on the final executable – examples
include:

– editing tools (text editors, model editors, etc.) which do not have the
ability to generate elements to be integrated into the code;

– additional tools such as configuration management tools.

Class T2 is given over to tools where an error could skew the results of
the verification or validation. The T2 category contains tools for checking
the coding rules, measuring the metrics, for static code analysis, test
management and execution, coverage measuring tools, etc.

Class T3 is devoted to tools whose failure could have an impact on the
final executable. This class includes compilers, code generators, data
preparation tools, etc.

9.3.2. Qualification file

Section 6.7 of CENELEC 50128:2011, for each class, defines a set of
recommendations which identifies the contents of the qualification file.

Figure 9.2. Tool validation file versus qualification file

CENELEC 50128:2011 proposes the preparation of an overall document
known as the tool “validation report”. Thus, this report must cover all of the

Tool Qualification 295

tools involved in the project. However, in the context of an industrial project,
it is preferable to compile standalone files, and for those files to be managed
by the tools rather than by the project team. The tool validation report (TVR)
at the project level is therefore merely a framework (see Figure 9.2) which
can be used to reference the qualification files (with reference and version).

9.3.3. Qualification process

CENELEC 50128:2011 identifies 12 requirements (numbered from 6.7.4.1
to 6.7.4.12) concerning tool qualification. Requirement 6.7.4.12 is linked to
Table 9.2, which has been corrected in relation to the published version. We
have enriched the table with steps that enable us to classify the requirements
needing to be implemented. These steps will be listed and explained in the
next section.

Table 9.2 shows a progression in the efforts needing to be mobilized, but
it is incomplete because it does not take account of the SSIL.
IEC 62279:2014 [IEC 14] is the image of CENELEC 50128. The version of
IEC 62279:2014 being finalized at the time of writing gives us Table 9.3.

On the basis of Table 9.2, we can identify a methodology for the
qualification of the tools which is divided into five activities:

– identification: we must identify the tool and the version used;

– justification: it is necessary to identify and justify the class Tx of the
tool;

– proof of conformity: the tool must have a specification, and it must be
demonstrated that the tool conforms to that specification;

– appropriateness for the needs: we need to demonstrate that the tool is in
line with the overall methodology being used for the software development;

– version management: we must manage the configuration of the
qualified version, and stay abreast of known anomalies.

For each item 6.7.4.x, IEC 62279:2014 [IEC 14] introduces additional
specifications, but these do not change the essential points of the
requirements set out in CENELEC 50128:2011.

296 CENELEC 50128 and IEC 62279 Standards

Class of tools Sections applicable Step

T1 6.7.4.1 Identification

T2 6.7.4.1 Identification

6.7.4.2 Justification

6.7.4.3 Specification

6.7.4.10, 6.7.4.11 Version management

T3 6.7.4.1 Identification

6.7.4.2 Justification

6.7.4.3 Specification

((6.7.4.4 and 6.7.4.5) or 6.7.4.6) Conformity proof

(6.7.4.7 or 6.7.4.8) and 6.7.4.9 Requirement fulfillment

6.7.4.10, 6.7.4.11 Version management

Table 9.2. Table 1 from CENELEC EN 50128:2001

Class
of tools

Methodology SSIL

T1 None -

T2

T3

Demonstration of successful use in similar environments 1-2

Support process implemented in addition to the tool

Execution of a library of test cases, which can be used to demonstrate
that the tool works properly

Respect of all the requirements in CENELEC 50128 for the
development of the tool

3-4

Justification of the existence of a process of implementation of the
tool which demonstrates the SSIL

Execution of a recognized test case library to demonstrate that the
tool works properly

Execution of a process using several different tools with a process of
comparison

Table 9.3. Table 3 from the draft version of IEC 62279

Tool Qualification 297

9.3.4. Implementation of the qualification process

9.3.4.1. Identification

This first activity is fairly simple, in the sense that it consists of identifying
the tool which we wish to use (name, reference, functionalities, etc.) and
explaining precisely why that tool is necessary.

When choosing the tool, we must take account of its insertion into the
process of realization of the software application. Indeed, we need to
explicitly illustrate the appropriateness of the use of this tool, and its
conformity with the SSIL objectives and the functionalities that are or can
be used.

Even in the 2001 version of CENELEC 50128, there was already a
demand to show that the design process was appropriate for the SSIL
objectives. In the 2011 version, we are asked to go further – to think about
the whole process, and therefore about the cooperation between tools,
compatibility of files and formats, the goal being to minimize the number of
errors (caused by the tools, the exchanges and the manipulations).

There are various different types of tools: specification tools, modeling
tools, code generators, compilers, chargers, test environments, configuration
management tools, etc.

Figure 9.3 illustrates an example of a development process, showing the
editing tools, the executable-generation tools, the V&V tools and the
configuration management tools.

One of the difficulties in the implementation of the tools lies in the
number of functions that they provide. Hence, we must be able to define the
functional perimeter that is to be qualified (see Table 9.4). It is generally
difficult to obtain a complete specification of each tool, and the effort needed
for validation is therefore proportional to the number of functions being
used.

9.3.4.2. Justification of class

On the basis of the information gleaned during the identification phase, it
is necessary to identify the impact of a failure of the tool, and therefore the
class Tx associated with each tool.

298 CENELEC 50128 and IEC 62279 Standards

Figure 9.3. Tools in the process

Function Level 1 Client Target

Configuring

Defining a configuration X

Sending a configuration X X

Simulating devices X

Simulating Reading/writing X X

Editing a
scenario

Adding a scenario X

Modifying a scenario X

Removing a scenario X

Table 9.4. Example of identification of the functions of a tool

9.3.4.2.1. Choice of Tx

For each tool, on the basis of its role in the process of realization of the
software application, we need to identify the associated Tx. This step is
tricky because certain tools may play different roles in different projects.

For example, in project A, a spreadsheet can be used to edit the
requirements (with number, attributes and description), and in this context it

Editeur

Analyseur statique

Compilateur

Chargeur

Outil de test

Gestion de version

Scénarii

Fichiers de résultats

Fichiers sources

Fichiers de résultats

Exécutable

Static analyzer

Editor

Test tool

Complier

Loader

Version management

Source files

Results files Results files

Scenarios

Executable

Tool Qualification 299

would be T1. For project B, the spreadsheet can be used as a tool for
visualization and analysis of the test results, or as a generator of test reports;
in that context, the same tool would be classed as T2. For project C,
however, that same tool can be used as a means of generation (using macros)
of data files in ASCII format, in which case it would be classed as T3. This
example with a spreadsheet illustrates the difficulty inherent in the task of
qualification, and the fact that we need to analyze the use of the tool in the
process of realization of the particular software application.

9.3.4.2.2. Failure analysis

The second step in this phase involves carrying out a simplified
dysfunctional analysis, because we are seeking not to study the tool’s safety,
but rather to identify the impact of a failure of that tool on the overall
process.

Table 9.5 offers an example of dysfunctional analysis of the configured
and simulated services which were identified in Table 9.4.

Table 9.6 shows a more complete typical plan to perform a dysfunctional
analysis at tool level, but this is merely a suggestion.

9.3.4.2.3. Compiler

In this section, we present a second example of dysfunctional analysis,
focusing on a compiler. Out of the possible failures in a compilation
sequence, the potentially-hazardous situation identified is as follows:

Production of erroneous assembly codes in relation to the high-
level instructions (e.g. in the language C) to which the
compilation pertains.

In Table 9.7, we offer a simplified analysis of the potential faults of a
compiler, and the hazardous situation is therefore associated with the
concept of “degraded function”. For this failure, various methods of risk
reduction are put forward: qualification, double sequence, verification of a
code by a coded safety processor (PSC – see [BOU 09], Chapter 2).

9.3.4.3. Specification

As indicated earlier on, it is necessary to define the function boundary of
tools classed as T2 and T3 (see Table 9.4, for example) and to have a
specification and/or a user manual that documents the functions being used.

300 CENELEC 50128 and IEC 62279 Standards

The specification elements must identify the usage constraints: type of
machine, type of OS, memory size, usable options, etc.

ID Function
Sub-

function
Failure mode

Effect on
performance of

a test
Detection

Risk reduction
measure

Remark

1
Configure

Configuring
of a

simulation

Establishment
of an

incorrect
configuration

Scenario
unexecutable

Detectable

Scenario
executed

Detectable
Incorrect

configuration

Scenario
executed

Undetectable

Verification of
configuration

before and after
execution of the

scenarios

T2

2 Simulate

Execution of
a simulation

Playing of a
scenario

Incorrect
interpretation
of commands

Scenario
unexecutable

Detectable

Scenario
executed

Undetectable Establishment
of tests

T2

Table 9.5. Example of fault analysis

ID Function
Sub-

function
Phase of life Failure mode Effect Detection Safety

Risk
reduction
measure

Remark

1 Fx SFx

Creation

Modification

Launch

All

No function

Degraded
function

Untimely
function

Partial
function

Unexecutable
function

Delayed
function

NA

Partial
element

…

Yes

No
nS - S

Tests

Verification

…

T1

T2

T3

…

Table 9.6. Typical dysfunctional analysis

9.3.4.4. Proof of conformity

As indicated in Table 9.2, proof of conformity of the tool is necessary if it
is classed as T3.

Tool Qualification 301

9.3.4.4.1. Approach

CENELEC EN 50128:2011 introduces three requirements, which must be
read as follows: ((6.7.4.4 and 6.7.4.5) or 6.7.4.6), contrary to what is
indicated in Table 9.7 of the standard.

ID Function
Failure
mode

Effect Detection Safety
Risk reduction

measure
Remark

1

Compiler

No function
No

executable
Yes nS – No execution

Partial

function
No

executable
Yes nS – No execution

2
Degraded
function

Executable No S

Validation process –

Qualification T3

Double
compilation

sequence
–-

Checking of a code
against runtime

errors

Coded safety
processor type

approach

…

3
Untimely
function

No
executable

Yes nS

Generation is
impossible with the

control of the
operator

4
Delayed
function

Executable No ns –
No constraint on

compile time

Table 9.7. Example of analysis of a compiler

As Figure 9.4 shows, Clause 6.7.4.4 identifies the general approach to
demonstrate the tool’s conformity, which is based on five approaches: proof
of correct operation (list of previous uses, certificates, etc.), validation,
implementation of a means of execution verification (e.g. double
compilation and comparison, code checking to detect compilation errors,
etc.), use of a process to detect errors in the tools, and any other methods –
manual or otherwise (for example, one could manually read through a piece
of code that has been generated).

302 CENELEC 50128 and IEC 62279 Standards

Figure 9.4. Different approaches to proof of conformity

9.3.4.4.2. Proof of proper operation

Proof of proper operation can be performed by using a product that has a
certificate or by demonstrating that we have past experience from which we
have learnt.

9.3.4.4.3. Certified product

Indubitably, the existence of a certificate is the easiest way to verify a
tool’s quality, but we still need to verify that the certificate is applicable to
the use at hand, and that the exported constraints have been taken into
account. Verification that the certificate is applicable is done by way of the
activity of cross-acceptance (Application Guide for CENELEC EN
50129 – Part 1 [CEN 07]), which needs to be performed by an independent
evaluator.

“Cross-acceptance” is a phase which involves checking that the
normative framework, the hypotheses and the constraints exported from an
evaluation report and/or from a certificate are compatible with the planned
use for the project.

9.3.4.4.4. Documented feedback

Documented feedback involves demonstrating that the tool works
properly by formally documenting previous experience. This approach
enables us to benefit from previous uses of the tool and to prepare for the
future. This way of working is in line with the concept of “high level of

Tool Qualification 303

confidence demonstrated through use” that is introduced in Table E.9 of
CENELEC 50129:2003 (see Table 9.8).

Techniques/measures SIL2 - SIL2 SIL3 - SIL4

High level of confidence
demonstrated through use

Optional when prior proof
is not available

R: 10,000 hours of
operating time and at
least a year of experience
in operation with the
equipment in place

R: 1 million hours of operating time,
at least two years of experience in
operation with the different
equipment in place, including safety
analyses, with detailed
documentation of the minor changes
made during the time in operation

Table 9.8. Table E.9 from CENELEC EN 50129:2003 [CEN 03]

The difficulty with documented feedback stems from the (very, and often
too, rapid) evolution of the tools; it is rather difficult to ensure that a tool’s
behavior remains the same as it evolves. From one version to the next, it is
possible to correct and inadvertently add faults which may or may not have
an impact on the tool’s behavior and the usable services. Thus, it is
important to clearly identify the services that are or could be used, and to
have a process for approval of any new versions in place (section 6.7.4.11 of
CENELEC 50128).

Thus, for documented feedback, we need to put in place a continuous
process. This process must recommend the use of a tool that has already been
qualified, define a procedure for approval of a new version and recommend
that the documented feedback be updated at the end of each project.

The documented feedback may be documented in the form of a table, as
illustrated by Table 9.9.

Tools Version Function
Project
name

Number of
lines

SSIL Date Remark

B tools 3.04
Code

generation
METEOR 100,000 SSIL4 Oct. 98 First use

Table 9.9. Example of documented feedback

In the railway domain, as regards compilers, there is currently a certain
amount of experience that can be documented as feedback; these practices
have meant that tools are only modified in case of absolute necessity.

304 CENELEC 50128 and IEC 62279 Standards

9.3.4.4.5. Validation

The validation of a tool is identified in clause 6.7.4.5 of
CENELEC 50128:2011. This clause recommends that we define a validation
strategy, which should focus on the list of usable services.

As is true of the validation of a software application, the validation of a
tool is based on a set of tests which must completely cover the specification
(or usage manual) and the list of usable services. The resources used must be
identified so as to be able to repeat the tests identically. The test scenarios
and results must be logged so they can be reviewed and audited. We must
then formulate and formally record a judgment as to whether the tool’s
services do indeed work properly. In case of anomaly, that version of the
tool may be rejected, or a new restrictive perimeter may be defined.

9.3.4.4.6. Other

Documented feedback and validation are the two favored approaches, but
they are not always practicable. Indeed, with complex and innovating tools –
e.g. automatic proofing tools and abstract interpretation tools – we are
unlikely to be able to have any feedback, and/or it will be difficult to
establish a validation (particularly when the algorithms involved are subject
to copyright).

In this situation, it is necessary to carry out a detailed analysis of the
possible faults, and imagine whether it is possible to manage these faults:

– by a process of realization (combination of tools and activities);

– by verification of the execution (e.g. a double compilation and
comparison of the runtime sessions);

– by additional activities such as manual checks.

Clause 6.7.4.6 in the standard enables us to formalize a justification,
which must be documented and will be subject to the evaluator’s approval.

The first difficulty with this approach is linked to re-use; the argument
may depend very heavily on the project. The second difficulty stems from
the fact that this approach is subject to discussion, and there is no guarantee
of being able to reach an agreement with the evaluator as to the acceptance
of the method.

Tool Qualification 305

9.4. Fitness for purpose

9.4.1. Design method

CENELEC 50128:2011 recommends that the software design method be
compatible with the features of the application.

There are different types of paradigm that can be used to realize a design
and/or a code, such as the object-oriented approach (UML, OMT, etc.), the
functional approach or the imperative approach. We must demonstrate that
the chosen approach is compatible with the application being realized
(onboard software, etc.). The idea of compatibility is linked to the fact that
an inappropriate approach could render the realization and comprehension of
the model more difficult, and therefore in turn make it more difficult to
maintain the software.

The design method and the programming language should enable errors
to be detected as early as possible – e.g. at compile time. For this reason, C is
less appropriate than ADA, as ADA [ADA 83, ADA 01, ISO 95] is capable,
at compile time, of detecting problems of typing and/or faulty construction,
and offers typing control at run time.

The design can be based on code generation tools that are able to produce
a partial code (signature of services, etc.) or a complete one. The use of
automated code generation must be explicitly justified.

The compilation must use tools that have been evaluated as compatible
with the objectives – i.e. T3 tools.

9.4.2. In case of incompatibility

If the design method and/or the language used are not compatible with
the type of application in the process of realization, it will then be necessary
to identify the weak points of the approach and come up with measures to
compensate for them.

For example, the main difficulty with C lies in the weak typing the
language involves. Typing is essentially the manipulation of types of bases,
such as int (or similarly word, etc.). Thus, we must compensate for the lack
of typing linked to a functional – e.g. x is an element of 1…10 – by

306 CENELEC 50128 and IEC 62279 Standards

additional checks which can be introduced in the form of defensive
programming (if (x ≥ 1 & x ≤ 10) at the start of each function. The effect of
this defensive programming, though, is to make the code more complex and
therefore render maintenance more difficult.

9.4.3. Code generation

In the context of the use of so-called “formal” methods, or at least with
model-oriented approaches, it is possible to generate the code automatically
on the basis of a model. CENELEC 50128:2011 requires that when we
choose to use automated code generation, we give an explicit justification as
to why the tool is appropriate for the development of a safety-related
software application.

If a model is used, a number of verification activities may be performed
on that model. By putting the activity of automated code generation in place,
it is possible to obtain a code which is similar to that of the model at input.
Unless we can demonstrate that the generated code is the exact image of the
model (e.g. by using a certified code generator), it is necessary to perform all
the same checks as if the code had been written manually. If the code is
shown to be the exact image of the model, it will then be possible to justify
foregoing checks on the generated code.

Note that code generation may be employed to produce the code for the
generic application and/or the code relating to the parameter data for the
generic software application.

9.5. Version management

For each tool, we must be aware of the usable version(s) and the usage
constraints associated therewith (see Figure 9.5).

9.5.1. Identification of versions

We need to identify each version that is qualified. This identification
must be as accurate as possible. It is important to clearly identify any and all
“patches” which may have been applied in order to obtain the qualified
version.

Tool Qualification 307

Figure 9.5. Version management

9.5.2. Bug/defect analysis

For each version, there is a “Known Bug List” (KBL). It is necessary to
analyze that KBL in order to identify the constraints of use of the tool. Those
usage constraints may pertain to functions which are not to be used,
precautions to be taken for the tool’s implementation, or limitations (e.g. the
maximum number of files the tool can process in a session).

9.5.3. Changing versions

The process of version management involves identifying the process of
acceptance of a new version. This process is based on:

– identification of the new version;

– identification of the evolutions: functional evolutions, list of options, etc.;

– demonstration that the evolutions do not affect the compatibility of the
tool with the process being implemented on the project(s);

– analysis of the new KBL (resolution of faults and therefore removal of
the use constraints associated therewith, finding of new faults and addition
of new use constraints).

As regards the third point, it may be wise to repeat the test which served
to determine the initial qualification.

9.6. Qualification process

9.6.1. Qualification file

The qualification process as defined by CENELEC 50128:2011 must give
rise to a qualification file associated with each tool. This qualification file
must be compiled not at project level, but rather at organizational level, so

308 CENELEC 50128 and IEC 62279 Standards

that it can be used on multiple projects, and thus help enhance confidence in
the tools as they are employed.

9.6.2. Ultimately

The 2011 version of CENELEC 50128 is not yet obligatory, but it is
preferable to implement it because, unlike the 2001 version, it defines a
formal framework for the qualification of the tools. Indeed, it sets objectives
and identifies resources that need to be used.

9.6.3. Qualification of non-commercial tools

The process described in section 9.3.3 is easily applicable to commercial
tools, but it is more difficult to apply it to tools developed locally, or for a
specific project. In general, for non-commercial tools, it is necessary to
implement a realization process that conforms to CENELEC 50128:2011.

As CENELEC 50128:2011 is oriented toward onboard applications, it is
not always easy to apply it completely. It is for that reason that the approach
put forward by DO 330 [RTA 11b] could be of interest, although it is not
directly applicable for the railway domain.

9.7. Conclusion

One of the main advances made by CENELEC 50128:2011 [CEN 11a]
relates to the introduction of classes for the tools involved in the process of
realization of a software application and the definition of qualification
objectives for each class.

In this chapter, we have presented the need and laid out elements used to
create the qualification file for each tool.

As indicated above, IEC 62279:2014 [IEC 14] gives its Table 10.3 in
addition to the demands of CENELEC 50128:2011. In the preparation of the
new version of CENELEC 50126 [CEN 12], section 7.9 of Part 4 raises
the number of requirements from 12 to 17. The new requirements do not alter
the process that is discussed in this chapter; they pertain to the need to select
appropriate tools, to have tools which cooperate and are compatible with the
product or the process, the need for the tools to be available, etc.

10

Maintenance and Deployment

10.1. Introduction

Section 9 of CENELEC 50128:2011 is dedicated to the maintenance and
deployment of software. This section represents a significant evolution of the
standard.

10.2. Requirements

10.2.1. Fault management

In the context of operational safety, a fault is an element which, if
executed, could lead to failure. In the world of software, we speak of
software faults or “bugs”. One of the few things that are certain about
software is that it will invariably contain an unquantifiable number of faults.
Software faults are unavoidable – they are simply part of the software world.

One of the main reasons for the evolution of a program is fault correction.
Figure 10.1 illustrates the fault analysis process.

The fault management cycle consists of several phases: identification of
faults, analysis of their effects (impact on the safety and/or reliability of the
software application), selection of anomalies to correct, analysis of those
anomalies, implementation of the corrections and verification that those
corrections have been successful (usually, to verify the proper

310 CENELEC 50128 and IEC 62279 Standards

implementation of the changes, we conduct a series of tests to check that no
further changes have been made).

The anomalies are analyzed by way of an impact assessment (see
Definition 5.3) and a non-regression analysis (Definition 5.4). In some cases,
the non-regression is said to be total, and in such cases, it is necessary to
repeat all of the tests from one or all of the phases. The objective of non-
regression analysis is to minimize the cost of a new version.

Figure 10.1. Fault management cycle

10.2.2. Managing changes

It is only possible to manage changes made to the software if that
software is maintainable and testable. These two properties are identified as
essential by CENELEC 50128, but they are quite difficult to implement.

One of the peculiarities of railway systems is their lifespan. The lifespan
of this type of system is 40 years, with a tendency to last closer to 50 years.
This raises the question of how to maintain a software application over the
course of 40 years.

Maintenance and Deployment 311

Figure 10.2 shows that, in general, a software evaluation needs to be
repeated several times, which is why we refer to version Vx’. A delta
evaluation can take account of a variety of changes (see version V2+V3).

This incremental process raises several questions:

– how do we manage the commercialization of products when we have
several different certificates?

– after several delta certifications, is it necessary to perform a full
certification (and if so, which are the decisive criteria for the awarding of
that certification)?

– etc.

Figure 10.2. Series of certifications

It is easy enough to ask the above questions, but in order to find an
answer, we must implement specific processes to manage the changes and
the impact of those changes on the products already in use. Hence, we must
have a set of principles that help prevent and/or manage incompatibilities
(software/OS, software/software, hardware/software compatibility issues).

For this reason, CENELEC EN 50128:2001 has a section entitled
“Software maintenance” (Chapter 16), which is very poorly understood by
industrialists, who feel it is not their responsibility to manage the
maintenance of the product over the course of the system’s (40-50 year)
lifespan, and limit themselves to correcting any software faults.

Chapter 16 of CENELEC EN 50128:2001 merely sets out the basics of
evolution management; it does not specify how to establish software
maintenance protocols. Furthermore, in terms of techniques, it presents only
two techniques, as shown in Table A.11 (Table 10.1). For this reason, in the

312 CENELEC 50128 and IEC 62279 Standards

2011 version of the standard, the chapter on maintenance is linked to the
chapter on deployment.

Measure SSIL0 SSIL1;SSIL2 SSIL3;SSIL4

1. Impact analysis R HR M

2. Data logging and analysis HR HR M

Table 10.1. Table A.11 from CENELEC EN 50128:2001

10.3. Deployment

10.3.1. Issue

CENELEC 50126 [CEN 00] recommends that we monitor the safety of
the system, not just during its realization, but right up until the system is
decommissioned (see Figure 2.4). The effect of this is that it is necessary to
monitor and manage any modifications that are made, and to demonstrate
that the SSIL is still the same after modification.

This requirement has a number of impacts on the processes employed:

– it is necessary to build integral maintenance capabilities into the system
during the design;

– it is necessary to define the maintenance processes during the
realization phase, and those processes must be assessed by the independent
evaluator;

– any modification must be identified and authorized;

– the process of modifying a system that is actually in operation must
adhere to the maintenance plans;

– the deployment of any given version must be planned and authorized;

– following a deployment, the new configuration must be logged, and the
operating procedures must take account of any new exported constraints.
Note that it is possible that some exported constraints from the previous
version may need to be removed.

Thus, CENELEC 50128:2011 calls for software deployment management
in its section 9.1.

Maintenance and Deployment 313

10.3.2. Implementation

A new version of a software application is made available by the
provision of a software version sheet (SwVS), identifying:

– the version of the software;

– the software configuration (list of applicable documents, list of sources,
configuration management elements, etc.);

– the exported constraints;

– the data characterizing the interface elements: hardware version,
operating system version, interfacing software versions, etc.;

– etc.

Software deployment involves replacing an existing version with a
different version. This action requires a deployment process to be defined.
This deployment process must be accompanied by a deployment manual
(SDM).

The deployment of a new version may lead to a number of different
situations:

– all goes well (which is rarely the case);

– the configuration of the equipment (train, device, system, etc.) is not the
same as the one referenced in the deployment documents, and the deployment
fails (improper behavior, inability to start, etc.);

– the previous version of the software is not installed properly (different
files, write-protected files, files that have been moved, directories with a
different name, directories not included in the tree diagram, etc.), making it
difficult to install the new version. This may result in poor execution or
erroneous execution (wrong library used, etc.);

– etc.

The software deployment manual must identify:

– the version of the software being deployed;

– the loading process for that version;

314 CENELEC 50128 and IEC 62279 Standards

– the process to verify that the version has loaded correctly (verification
by auto-identification of the software);

– the process to verify that the loaded version works properly in the
normal environment. Thus, we must identify a number of functional tests
and produce test results that will be formally recorded in the deployment log;

– the reversal process: if a problem arises that means the system cannot
function properly with the new version, we must be able to “rewind” to the
original configuration;

– the equipment configuration update process. Updates may be made in
document form (file, train file, etc.), electronic form (database modification),
etc.

The deployment of a software application thus requires a number of
different documents to be produced:

– a software deployment plan (SDP), describing the deployment
management method and the actions to be taken to manage this activity;

– a software deployment manual (SDM) that outline the process for a
given version;

– a software deployment record (SDR) that contains the results of a given
deployment.

As previously indicated, as all activity is checked, it is necessary to
produce a verification report (SDVR) which shows that the productions from
the activity of deployment have been verified.

10.3.3. In reality

CENELEC 50128:2011 was right to introduce this chapter on
deployment of new versions of software, but the deployment of a new
version is rarely carried out by the same industrialist that actually realized
the system. Also, the developer will be able to provide the SDP, the SDM
and SwVS but there is very little chance that they will be able to retrieve the
records of the deployment and finalize the deployment verification report.

A manufacturer must, therefore, consider a version that has been sent to
the client as having been deployed. Note that it would be wise to supplement

Maintenance and Deployment 315

the deployment records with a deployment log that would allow the
industrialist to check all of the versions that are considered deployed.

For his/her part, the person in charge of the system’s operation must
implement a configuration, management process, log the elements provided
by the industrialist and use a deployment process that will produce the
elements requested by the client.

It will be the responsibility of the independent overall system evaluator to
verify full compliance with section 9.1 of CENELEC 50128:2011.

10.4. Software maintenance

10.4.1. Issue

Maintenance of a software application is a real challenge. Indeed, it is not
only a question of being able to alter the code, but it is necessary to ensure
continuity of services offered by a software application over a relatively long
period of time, using equipment which may be very variable.

The tricky part is not managing an application, but instead managing the
demands of multiple customers using different version of the same software.
The software deployment report mentioned in section 10.3.3 becomes very
useful. When a new version is decided upon, we must take the time to check
whether the modification request or fault correction is compatible with all
the deployed versions, or whether we run the risk of creating a branch that
would cause incompatibility issues. This decision must be carefully
considered, because it could have a significant financial impact on the
project.

CENELEC 50128:2011 formalizes the context of software evolutions,
forming a strong link between them and the evolutions of the system (see the
link with phase 13 of CENELEC 50126 [CEN 00]). The maintenance of a
software application is described in section 9.2 of CENELEC 50128:2011.

10.4.2. Implementation

The first change is the establishment of a software maintenance plan
(SMP) to describe the methodology employed to produce a new version of

316 CENELEC 50128 and IEC 62279 Standards

the software during the maintenance phase. This plan must identify the
resources, methods and productions, but also the authorities who decide on a
change and approve the modified software.

CENELEC 50128:2011 is not retroactive, but future developments will
have to conform to it. Before modifying the software, we must decide
whether the modification qualifies as major or minor, and this judgment will
need to be approved by an independent evaluator.

If the modification is deemed to be minor, then section 9.2 is applicable.
If it is considered major, then CENELEC 50128:2011 is applicable in its
entirety.

Every modification must be logged. The log must contain the
modification request, an analysis of the impact that change will have on the
overall system, a detailed description of the modification itself, and a record
of the V&V process used for the change.

A software maintenance report must be established when the software is
first released, with a view to keeping track of the different versions, forming
the link with all the modifications that have been made, forming the link
with impacts on the system and having at our disposal a history of the
software configuration.

As previously indicated, as all activity is checked, it is necessary to
produce a verification report which shows that the productions from the
activity of maintenance have been verified.

10.5. Product line

The management of a product line by an industrial actor will involve the
establishment of variants. This is particularly true for a product that has been
created in conformity with the legislation in one country and must be
installed and operated in another country.

Figure 10.3 illustrates the ideal case (ideal, that is, from a development
point of view, rather than from a financial one). Based on a product P
characterized by a version V1 and a certificate C1, we can proceed to alter
and tweak the product and create a variant which goes further in its

Maintenance and Deployment 317

development. In this case, the lack of interaction between the two projects
will have an impact on costs (the two versions developed from the same
base), and may also impact on safety; the faults detected for one project are
not necessarily shared with the other project.

Figure 10.3. Establishment of a variant

As is shown by Figure 10.4, in order to remedy this sort of problem and
rationalize the costs, the software application can be split into two parts: a
generic part, which is shared by all the projects, and a specific part.

Figure 10.4. Characterization of a specific product

318 CENELEC 50128 and IEC 62279 Standards

The definition of a generic application [BOU 99, BOU 00] is still a tricky
point. Does the generic part need to contain all possible behaviors, or should
it include as little information as possible?

If the generic part contains all possible behaviors, we find ourselves with
a final software application that contains an enormous amount of dead code.
In general, this code is dead code because of the software parameters. The
existence of dead code is prohibited, or should at least be minimized, in the
context of a critical safety application that impacts on human lives. To
demonstrate that this dead code is harmless, it is necessary for the whole of
the generic application to have been checked and validated. Most of the
time, it is not possible to fully check (validate) a generic application
including all potential behaviors.

If the specific application contains only the minimum, the important
behaviors will be in the specific parts, and the workload needing to be done
specifically for each project becomes rather greater. In addition, when
beginning a new project, we must ensure that we use the version of the
specific product which is closest to our target application.

The best way of working is to adopt a position halfway between these
two extremes: to define a generic application of reasonable proportions and,
as new specific application arise, offer additions to that generic application.

Regardless of the choice made, the use of parallel development for the
realization of variants must identify a process of fault reporting between one
variant and another. A fault that is considered dangerous for one variant
may, in fact, be harmless for a different variant, but when it is discovered, it
is necessary to perform the analysis.

The introduction of product lines and the introduction of a separation
between the generic part (reusable, adaptable) and the specific part are not
discussed in CENELEC 50128:2011. However, the standard does allow for
re-use and management of development costs.

10.6. Conclusion

In this chapter, we have presented software deployment and maintenance,
which are two important subjects that are beginning to emerge as points that

Maintenance and Deployment 319

are difficult to manage. A portion of the complexity is induced by the
increase in the number of programs used in a system, which, when coupled
with the number of known faults and the number of identified hardware
configurations, becomes a real headache.

10.7. Appendix: documentation needing to be produced

Document title Acronym

Deployment

Software Deployment Plan SDP

Software Deployment Manual SDM

Software Version Sheet SwVS

Software Deployment Records SDR

Software Deployment Verification Report SDVR

Maintenance

Software Maintenance Plan SMP

Software Change Records SCR

Software Maintenance Records SMR

Software Maintenance Verification Report SMVR

11

Assessment and Certification

11.1. Introduction

 In both the 2001 and 2011 versions of CENELEC 50128, the concept of
independent assessment is explicitly introduced [CEN 01a, CEN 11a].

11.2. Evaluation

11.2.1. Principles

The assessment [BOU 06, BOU 07a, BOU 09b] of a product (a system or
software application) entails conducting an analysis of all the components of
that product, with a view to assessing the product’s conformity to a given
frame of reference (usually a standard, part of a standard or a set of
standards), in accordance with a given method. An independent evaluation is
thus achieved by an Independent Safety Assessor (ISA), who should, ideally
not belong to the company having made the product.

DEFINITION 11.1 (Assessment).– Product evaluation involves assessing the
product’s conformity to a specific frame of reference. There is a predefined
process that must be followed for conformity analysis.

The important thing to remember, from Definition 11.1, is that the
assessment of a product involves two elements: a frame of reference and all
the elements produced during the realization of the product.

322 CENELEC 50128 and IEC 62279 Standards

Figure 11.1 shows the overlap between the development and the
assessment of the software application. It also illustrates the product of the
assessment process: namely the assessment report.

Figure 11.1. Development and assessment

As shown in Figure 11.1, there is a time lag between the start of the project
(T0) and the start of the independent assessment (TA). If T0 = TA, the
independent assessor would not have very much to do at the start of the
contract. If TA were significantly later than T0 (or even, in the worst-case
scenario, after the project has come to an end), the independent assessor’s
work may cause an overload of work for the rest of the team, or even the
repeating of the entire development cycle. Ultimately, the date chosen to
start the assessment (TA) must be appropriate so that the assessor has
enough to work with and to allow the development team to take on board
any demands for adjustment.

Figure 11.2. The three phases of assessment

Assessment and Certification 323

Figure 11.2 shows the assessment process and the four main phases:

– drafting the assessment plan, which describes the organization, the
input frame of reference, methodology and scope of the assessment;

– the audit phase, which involves analyzing the methodological plans,
preparing an audit plan and performing the audit;

– the phase of assessment of all the elements produced (see Figure 11.3)
as a result of the software realization process (descendant phase, ascendant
phase, safety analysis, etc.);

– the final stage is to write the assessment report.

Figure 11.3. Evaluation

The task of assessment involves analyzing all the elements and producing
question-and-remark sheets (QRSs). QRSs represent a means of conducting
an exchange with the client; they are used for the formalization of questions
and remarks, and of responses from the client. The client’s responses may
lead to proposed modifications.

The result of an assessment should state whether or not the product
conforms to each of the requirements of the standard:

– if the product meets the requirement, the evaluation says it “conforms
to the requirement”;

– if the product does not meet the requirement, the assessment says there is
a “remark”;

324 CENELEC 50128 and IEC 62279 Standards

– if the product meets all of the requirements of a standard, then the
evaluation says it “conforms to the standard”;

– if one or more requirements are not met, the product cannot be declared
to conform to the standard.

There may be several kinds of remark, classified on the basis of the “risk
incurred” if the requirement is not met.

This classification of “risk incurred” is highly subjective, and it is usual
for standards to clearly state which requirements are “mandatory”, which
“optional” and which “recommended”.

This enables the assessor to conclusively classify the remarks:

– a deviation from a “mandatory requirement” jeopardizes the product’s
conformity to the standard;

– a deviation from a “recommended requirement” does not, on its own,
call into question the overall conformity of the product to the standard.

11.2.2. CENELEC 50128:2011

Section 6.4 of CENELEC 50128:2011 identifies the need to assess
software applications whose SSIL is between 1 and 4. For a software
application with SSIL0, if it is possible to demonstrate that it conforms to
ISO 9001:2008, no assessment is necessary.

Note that Table B.8 in Appendix B of CENELEC 50128:2011, identifies
the skills required of the person in charge of the evaluation. That table
(reproduced below as Table 11.1) illustrates the need for recognition by an
authority, which gives rise to a restriction on all assessors.

As is the case with the other activities, the assessment must be formalized
in an evaluation plan (EvalP) and the results need to be formalized in an
evaluation report (EvalR).

Having analyzed the whole of the product, the assessor must then identify
all the points of non-conformity to the requirements of CENELEC
50128:2011 and pass judgment as to their impacts on the safety of the
software. Everything must be documented in the assessment report (AsR).

Assessment and Certification 325

It should be noted that if an application has an evaluation, the person in charge of
assessment must accept that assessment after verifying that the results are
applicable. This verification is performed by way of cross-acceptance – see the next
section.

Role: assessor
Skills:
1. shall be competent in the domain/technologies where assessment is carried out
2. shall have acceptance/license from a recognized safety authority
3. shall have/strive to continually gain sufficient levels of experience in the safety
principles and the application of the principles within the application domain
4. shall be competent to check that a suitable method or combination of methods in a given
context have been applied
5. shall be competent in understanding the relevant safety, human resource, technical and
quality management processes in fulfilling the requirements of EN 50128
6. shall be competent in assessment approaches/methodologies
7. shall have analytical thinking ability and good observation skills
8. shall be capable of combining different sources and types of evidence and synthesizing
an overall view about fitness for purpose or constraints and limitations on application
9. shall have overall software understanding and perspective including understanding the
application environment
10. shall be able to judge the adequacy of all development processes (like quality
management, configuration management, validation and verification processes)
11. shall understand the requirements of EN 50128

Table 11.1. Table B.8 from CENELEC 50128:2011

11.3. Cross-acceptance

As is shown by Figure 11.4, a product is not only the description of a set
of interfaces, but also a set of hypotheses, constraints and restrictions.

Figure 11.4. A product

326 CENELEC 50128 and IEC 62279 Standards

Thus, as a general rule, the activity of design of a railway system using
certified or assessed products requires us to verify the compatibility of the
interfaces and of the constraints, the hypotheses and the usage restrictions. If
the industrial standard used for assessment/certification is not that of the
railway domain, we also need to verify that the standards are compatible.

Cross-acceptance is a phase which consists of checking that the normative
context, the hypotheses and the constraints exported from an evaluation
report and/or a certificate are compatible with the use intended for the
project.

The application guide for Part 1 of CENELEC 50129 [CEN 07] describes
the principles of cross-acceptance.

11.4. Certification

11.4.1. Product certification

Certification is an administrative act which expresses confidence
acquired by the competent authority as to the system’s aptitude to fulfill its
safety-related functions.

In the railway sector, certification is tantamount to authorization to
operate.

Certification is based on the “proof” of a product’s safety produced for
the attention of the regulatory authority by the responsible interlocutor
defined in the organization document.

DEFINITION 11.2 (Certification).– Certification consists of awarding a
certificate, which is an undertaking to guarantee that the product respects a
normative standard. The certification is based on the results of an
assessment and the production of a certificate.

A certificate enables us to define a boundary of usage and a boundary of
responsibility. It should be noted that without a certificate, a business may be
asked to demonstrate that the product can be introduced into the system that
the business controls. In this case, we speak of homologation.

Assessment and Certification 327

11.4.2. Software certification

It is possible to certify a product because it refers to something complete
(hardware, mechanics, software, … , processes). For a certain amount of
time now, certification bodies have been being asked to issue certificates for
a software program.

This request makes no sense: the software on its own is not a product – it
is incapable of executing itself, and its execution is dependent on the
hardware that is to receive it. Nevertheless, a number of organizations have
put Independent Safety Assessment (ISA) certification in place. This
produces, in addition to the assessment report, a certificate which indicates
that the software has been successfully evaluated. Thus, it is not a product
certificate.

11.4.3. Evolution management

One of the difficulties with evaluation lies in management of evolutions.
Indeed, as is shown by Figure 11.5, a product can be evaluated for various
versions, and it is possible for several versions to come and go between two
assessments.

Thus, we must be capable of working using the delta method and
analyzing the sum of the evolutions. CENELEC 50128:2011 places no
constraints at all on the way of working.

Figure 11.5. Series of certifications

328 CENELEC 50128 and IEC 62279 Standards

11.5. Conclusion

In this chapter, we have presented the issue of assessment and
certification. Assessment and certification in the railway domain represent a
long and fairly costly process which needs to be prepared as early as
possible.

In addition, to conclude, it must be pointed out that successful assessment
is linked to skills management, the establishment of a form of organization
with appropriate levels of independence, the formalization of the processes
and demonstration that these processes have been respected. These processes
must cover quality management, development, verification, validation and
safety management.

11.6. Appendix: documentation needing to be produced

Document title Acronym

Assessment

Assessment plan AsP

Assessment report AsR

Conclusion

C.1. Introduction

After a lengthy discussion between the different actors in the railway
domain, the 2011 version of CENELEC EN 50128 took account of
important issues such as tool qualification and software deployment.

This book presents the different evolutions of the standard, also offering
an in-depth explanation of the objectives and impacts.

C.2. CENELEC and IEC

C.2.1. Compatibility between 50128:2001 and 50128:2011

Having analyzed the changes that were introduced in the 2011 version of
CENELEC 50128, we can conclude that a project evaluated as conforming
to the 2011 version also conforms to the 2001 version, but not vice versa.

This point is important because, depending on the country and the
different legislation in force, a standard may be cited with or without
reference to the version. Unfortunately, in the technical specifications for
interoperability (linked to ERTMS), the 2001 version of CENELEC 50128 is
cited, while in the SAM regulations in France, CENELEC 50128 is cited
without mention of which version (mandating the use of the latest existing
version).

330 CENELEC 50128 and IEC 62279 Standards

C.2.2. Compatibility between CENELEC 50128 and IEC 62279

After analyzing the differences between CENELEC 50128:2011 and
IEC 62279:2014 [IEC 14], we can conclude that the two are mutually
compatible in both directions. IEC 62279:2014 introduces additional points
(which are interesting and merit consideration) that do not change the
philosophy and/or objectives.

C.3. Changes to come

A draft version of CENELEC 50126 was published in 2012. It includes a
complete overhaul of the CENELEC framework (50126, 50129, 50128,
50155) with the aim of establishing a single standard to cover the entirety of
the railway system and all parts thereof.

This change is enacted by the establishment of a single standard
(CENELEC 50126) to replace CENELEC 50126, 50129 and 50128,
maintaining parts of CENELEC 50155, which is devoted to hardware and
software.

Part 5 of the new CENELEC 50126 standard will be devoted to software,
and should be identical to the 2011 version. In light of the proposals made in
the context of IEC 62279, it is very likely that some changes will be made,
but these will not have a major impact.

At present, this draft version of the CENELEC 50126 has not been
accepted, and a new group has been launched.

One major difficulty with Part 5 of CENELEC 50126 (draft version) will
stem from the fact that it applies to any and all types of software, irrespective
of the size of the code.

Bibliography

[ABR 96] ABRIAL J.R., The B-Book, Cambridge University Press, Cambridge, 1996.

[ADA 01] ADA RESOURCE ASSOCIATION, Operating Procedures for Ada Conformity
Assessments, version 3.0, www.ada-auth.org/procs/3.0/ACAP30.pdf, April 2001.

[AFN 07] AFNOR, EN 50155, Railway applications – Electronic equipment used on
rolling stock, August 2007

[AFN 90] AFNOR NF F 71-013, Installation fixe et matériel roulant ferroviaires,
Informatique, Sûreté de fonctionnement des logiciels – Méthodes appropriées
aux analyses de sécurité des logiciels, December 1990.

[AHM 09] AHMED A., LANTERNIER B., “Trois méthodes pour déterminer le niveau
de sécurité”, Revue Mesure, no. 813, pp. 26–27, 2009.

[AIC 93] AMERICAN INSTITUTE OF CHEMICAL ENGINEERS, Guidelines for Safe
Automation of Chemical Processes, CCPS, New York, 1993.

[ANS 83] ANSI, Norme ANSI/MIL-STD-1815A-1983, Langage de programmation
Ada, 1983.

[ARI 92] ARINC, Software Considerations in Airborne Systems and Equipment
Certification, DO 178B and by EUROCAE, no. ED12, edition B, 1992.

[BAI 08] BAIER C., KATOEN J.P., Principles of Model Checking, The MIT Press,
Cambridge, 2008.

[BAR 90] BARANOWSKI F., Définition des objectifs de sécurité dans les transports
terrestres, Technical Report 133, INRETS-ESTAS, 1990.

[BAR 03] BARNES J., High Integrity Software: The SPARK Approach to Safety and
Security, Addison-Wesley, Reading, 2003.

332 CENELEC 50128 and IEC 62279 Standards

[BAR 14] BARNES J., Programming in Ada 2012, Cambridge University Press,
2014.

[BAU 10] BAUFRETON P., BLANQUART J.P., BOULANGER J.L. et al., “Multi-domain
comparison of safety standards”, ERTS2, Toulouse, France, 19-21 May 2010.

[BEH 93] BEHM P., “Application d’une méthode formelle aux logiciels sécuritaires
ferroviaires”, Atelier Logiciel Temps Réel, 6es Journées Internationales du Génie
Logiciel, Nantes, France, 1993.

[BEH 96] BEHM P., “Formal development of safety critical software of METEOR”,
First B Conference, Nantes, France, 24-26 November 1996.

[BEN 03] BENVENISTE A., CASPI P., EDWARDS S.A. et al., “The Synchronous
Languages 12 Years Later”, Proceedings of the IEEE, vol. 91, no. 1, January
2003.

[BIE 98] BIED-CHARRETON D., Sécurité intrinsèque et sécurité probabiliste dans les
transports terrestres, Technical Report 31, INRETS – ESTAS, November 1998.

[BLA 08] BLAS A., BOULANGER J.L., “Comment améliorer les méthodes d’analyse
de risques et l’allocation des THR, SIL et autres objectifs de sécurité”,
LambdaMu 16, 16e Congrès de Maîtrise des Risques et de Sûreté de
Fonctionnement, Avignon, France, 6-10 October 2008.

[BOU 99] BOULANGER J.L., DELEBARRE V., NATKIN S., “METEOR: Validation de
Spécification par modèle formel”, Revue RTS, no. 63, pp. 47–62, April-June
1999.

[BOU 00] BOULANGER J.L., GALLARDO M., “Processus de validation basée sur la
notion de propriété”, LambdaMu 12, 28-30 March 2000.

[BOU 03] BOULANGER J.L., “Validation des données liées à la sécurité”, Qualita
2003, Quality and Dependability (RAMS), Nancy, France, 19, 20 and 21 March
2003.

[BOU 05] BOULANGER J.L., BERKANI K., “UML et la certification d’application”,
ICSSEA 2005, CNAM, Paris, 1-2 December 2005.

[BOU 06] BOULANGER J.L., Expression et validation des propriétés de sécurité
logique et physique pour les systèmes informatiques critiques, Doctoral Thesis,
Université de technologie de Compiègne, May 2006.

[BOU 07a] BOULANGER J.L., SCHÖN W., “Assessment of Safety Railway
Application”, ESREL, 2007.

[BOU 07b] BOULANGER J.L., BON P., “BRAIL: d’UML à la méthode B pour
modéliser un passage à niveau”, Revue RTS, no. 95, pp. 147–172, April-June
2007.

Bibliography 333

[BOU 07c] BOULANGER J.L., “UML et les applications critiques”, Proceedings of
Qualita’ 07, Tangier, Morocco, pp. 739–745, 2007.

[BOU 08a] BOULANGER J.L., “RT3-TUCS: How to build a Certifiable and Safety
Critical Railway Application”, 17th International Conference on Software
Engineering and Data Engineering, SEDE-2008, Los Angeles, pp. 182–187,
30 June-2 July 2008.

[BOU 08b] BOULANGER J.L., GALLARDO M., “Poste de manoeuvre à enclenchement
informatique: démonstration de la sécurité”, CIFA, Conférence Internationale
Francophone d’Automatique, Bucharest, Romania, November 2008.

[BOU 09a] BOULANGER J.L., IDANI A., PHILIPPE L., “Linking paradigms in safety
critical systems”, Revue ICSA, September 2009.

[BOU 09b] BOULANGER J.L., “Le domaine ferroviaire, les produits et la
certification”, Journée “ligne produit”, Ecole des Mines de Nantes, 15 October
2009.

[BOU 10a] BOULANGER J.L. (ed.), Safety of Computer Architectures, ISTE, London
and John Wiley & Sons, New York, 2010.

[BOU 10b] BOULANGER J.L., “Sécurisation des systèmes mécatroniques. Partie 1”,
Revue technique de l’ingénieur, dossier BM 8070, November 2010.

[BOU 11a] BOULANGER J.-L. (ed.), Static Analysis of Software, ISTE, London and
John Wiley & Sons, New York, 2011.

[BOU 11b] BOULANGER J.L., “Sécurisation des systèmes mécatroniques. Partie 2”,
Revue technique de l’ingénieur, dossier BM 8071, April 2011.

[BOU 11c] BOULANGER J.L. (ed.), Techniques industrielles de modélisation
formelle pour le transport, Hermès Science-Lavoisier, Paris, 2011.

[BOU 12a] BOULANGER J.-L. (ed.), Industrial Use of Formal Method: Formal
Verification, ISTE, London and John Wiley & Sons, New York, 2012.

[BOU 12b] BOULANGER J.-L. (ed.), Formal Methods: Industrial Use from Model to
the Code, ISTE, London and John Wiley & Sons, New York, 2012.

[BOU 13a] BOULANGER J.L. (ed.), Mise en œuvre de la méthode B, Hermès Science-
Lavoisier, Paris, 2013.

[BOU 13b] BOULANGER J.L., Safety Management for Software-based Equipment,
ISTE, London and John Wiley, New York, 2013.

[BOU 14a] BOULANGER J.L., BADREAU S., Ingénierie des exigences – Méthodes et
bonnes pratiques pour construire et maintenir un référentiel, Dunod, Paris,
2014.

334 CENELEC 50128 and IEC 62279 Standards

[BOU 14b] BOULANGER J.L., ZHAO L., “Sécurité, confidentialité et intégrité dans le
domaine ferroviaire”, Lambda Mu 19, Dijon, France, 21-23 October 2014.

[BOU 14c] BOULANGER JL., Formal Methods Applied to Industrial Complex
Systems: Implementation of the B Method, ISTE, London and John Wiley, New
York, 2014.

[BOW 95] BOWEN J.P., HINCHEY M.G., Applications of Formal Methods, Prentice
Hall, New York, 1995.

[BRE 00] DE LA BRETESCHE B., La méthode APTE: Analyse de la valeur, analyse
fonctionnelle, Pétrelle, Paris, 2000.

[CAB 96] MCCABE T.J., WATSON A.H., Structured Testing – A methodology Using
the Cyclomatic Complexitry Metric, NIST report, 500-235, 1996.

[CEN 99] CENELEC, NF EN 50126, Railway applications – The specification and
demonstration of Reliability, Availability, Maintainability and Safety (RAMS),
October 1999.

[CEN 01a] CENELEC, EN 50128, Railway applications – Communications,
signaling and processing systems – Software for railway control and protection
systems, May 2001.

[CEN 06] CENELEC, EN 50121, Railway applications – Electromagnetic
compatibility, 2006.

[CEN 07] CENELEC, Railway Applications – Communication, Signalling and
Processing systems – Application Guide for EN 50129 – Part 1: Cross-
Acceptance, European norm, May 2007.

[CEN 11] CENELEC, EN 50128, Railway applications – Communications,
signaling and processing systems – Software for railway control and protection
systems, May 2011.

[CEN 12] CENELEC, 50126, Applications Ferroviaires. Spécification et
démonstration de la fiabilité, de la disponibilité, de la maintenabilité et de la
sécurité (FMDS), October 2012.

[CHI 94] CHIDAMBER S.R., KEMERER C.F., “A Metric Suite for Object Oriented
Design”, IEEE Transactions, 1994.

[CHO 01] CHOVEAU E., DE CHAZELLES P., “Application de l’ingénierie système à la
définition d’une démarche d’ingénierie des exigences pour l’airbus A380”, Génie
Logiciel, no. 59, pp. 13–18, December 2001.

[COU 00] COUSOT P., “Interprétation abstraite”, TSI, vol. 19, nos. 1–3,
www.di.ens.fr/~cousot/COUSOTpapers/TSI00.shtml, 2000.

Bibliography 335

[COU 77] COUSOT P., COUSOT R., “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix points”,
Conference Rec. of the 4th Annual ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages (POPL’77), Los Angeles, USA, January 1977,
ACM Press, New York, pp. 238–252, 1977.

[DEL 99] DELEBARRE V., GALLARDO M., JUPPEAUX E., NATKIN S., “Validation des
constantes de sécurité du pilote automatique de METEOR”, ICSSEA’99, CNAM,
Paris, 1999.

[DIJ 76] DIJKSTRA E.W., A Discipline of Programming, Prentice Hall, New York,
1976.

[DO 12] DO 178, Software Considerations in Airborne Systems and Equipment
Certification, (Règlementation pour le développement de logiciels dans le secteur
aéronautique), version DO-178C, 2012.

[DOR 08] DORMOY F.X., “Scade 6 a model based solution for safety critical
software development”, Embedded Real-Time Systems Conference, Toulouse,
France, 2008.

[EIA 98] EIA, EIA-632, Processes for engineering a system, Technical report, April
1998.

[EIA 03] EIA, EIA-632, Processes for engineering a system, Technical report,
September 2003.

[GAL 08] GALLARDO M., BOULANGER J.L., “Poste de manœuvre à enclenchement
informatique: démonstration de la sécurité”, CIFA, Conférence Internationale
Francophone d’Automatique, Bucharest, Romania, November 2008.

[GAR 94] GARIN H., AMDEC – AMDE – AEEL – L’essentiel de la méthode, Editions
AFNOR, 1994.

[GEO 90] GEORGES J.P., “Principes et fonctionnement du Système d’Aide à la
Conduite, à l’Exploitation et à la Maintenance (SACEM). Application à la ligne
A du RER”, Revue générale des chemins de fer, no. 6, June 1990.

[GUL 04] GULLAND W.G., “Methods of Determining Safety Integrity Level (SIL)
Requirements – Pros and Cons”, Proceedings of the Safety-Critical Systems
Symposium, Birmingham, United Kingdom, February 2004.

[HAD 95] HADJ-MABROUCK H., “La maîtrise des risques dans le domaine des
automatismes des systèmes de transport guidés : le problème de l’évaluation des
analyses préliminaires de risques”, Revue Recherche Transports Sécurité, no. 49,
pp. 101–112, December 1995.

336 CENELEC 50128 and IEC 62279 Standards

[HAD 98] HADJ-MABROUCK H., STUPARU A., BIED-CHARRETON D., “Exemple de
typologie d’accidents dans le domaine des transports guidés”, Revue générale
des chemins de fers, 1998.

[HAD 06] HADDAD S., KORDON F., PETRUCCI L., Méthodes formelles pour les
systèmes répartis et coopératifs, Hermès Science-Lavoisier, Paris, 2006.

[HAL 91] HALBWACHS N., CASPI P., RAYMOND P., PILAUD D., “The synchronous
dataflow programming language Lustre”, Proceedings of the IEEE, vol. 79,
no. 9, pp. 1305–1320, September 1991.

[HAL 05] HALBWACHS N., “A Synchronous Language at Work: the Story of
Lustre”, MEMOCODE ‘05 Proceedings of the 2nd ACM/IEEE International
Conference on Formal Methods and Models for Co-Design, Verona, Italy, 2005.

[HAR 06] HARTWIG K., GRIMM M., MEYER ZU HÖRSTE M., Tool for the allocation
of Safety Integrity Levels, Level Crossing, Montreal, 2006.

[HAT 94] HATTON L., SAFER C., Developing Software for High-integrity and
Safety-critical Systems, McGraw-Hill, New York, 1994.

[HOA 69] HOARE C.A.R., “An Axiomatic Basis for Computer Programming”,
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 583, 1969.

[HUL 05] HULL E., JACKSON K., DICK J., Requirements Engineering, Springer,
Berlin, 2005.

[IDA 06] IDANI A., B/UML: Mise en relation de spécifications B et de descriptions
UML pour l’aide ă la validation externe de développements formels en B,
Doctoral thesis doctorat, Joseph Fourier University, November 2006.

[IDA 07a] IDANI A., BOULANGER J.L., PHILIPPE L., “A generic process and its tool
support towards combining UML and B for safety critical systems”, CAINE
2007, San Francisco, 7-9 November 2007.

[IDA 07b] IDANI A., OKASA OSSAMI D.D., BOULANGER J.L., “Commandments of
UML for safety”, 2nd International Conference on Software Engineering
Advances IEEE CS, August 2007.

[IDA 09] IDANI A., BOULANGER J.L., PHILIPPE L., “Linking paradigms in safety
critical systems”, Revue ICSA, September 2009.

[IEC 91] IEC, IEC 1069, Mesure et commande dans les processus industriels –
Appréciation des propriétés d’un système en vue de son évolution, Technical
report, 1991.

[IEC 02a] IEC 62279, Railway applications – Communications, signaling and
processing systems – Software for railway control and protection systems, 2002.

Bibliography 337

[IEC 02b] IEC 62278, Railway applications – Specification and demonstration of
reliability, availability, maintainability and safety (RAMS), 2002.

[IEC 02c] IEC 62280-1, Railway applications – Communication, signaling and
processing systems – Part 1: Safety-related communication in closed
transmission systems, 2002.

[IEC 02d] IEC 62280-2, Railway applications – Communication, signaling and
processing systems – Part 2: Safety-related communication in open transmission
systems, 2002.

[IEC 03] IEC, CEI 61131-3:2003, Automates programmables – Partie 3: Langages
de programmation, 2003.

[IEC 05] IEC, NF EN 61511, Sécurité fonctionnelle Systèmes instrumentés de
sécurité pour le secteur des industries de transformation, European norm, March
2005.

[IEC 06] IEC 60880:2006 Nuclear power plants. Instrumentation and control
systems important to safety. Software aspects for computer-based systems
performing category A functions, 2006

[IEC 07] IEC 62425, Railway applications – Communication, signaling and
processing systems – Safety related electronic systems for signaling, 2007.

[IEC 08] IEC, IEC 61508, Sécurité fonctionnelle des systèmes électriques
électroniques programmables relatifs à la sécurité, international norm, 2008.

[IEC 11] IEC, IEC 61513, Centrales nucléaires de puissance – Instrumentation et
contrôle-commande importants pour la sûreté – Exigences générales pour les
systèmes, August 2011.

[IEC 12] IEC 60571, Railway applications – Electronic equipment used on rolling
stock, 2012.

[IEC 14] IEC 62279, Railway applications – Communication, signaling and
processing systems – Safety related communication in transmission systems,
IEC, 2014

[ISA 05] ISA, Guide d’interprétation et d’application de la norme IEC 61508 et des
normes dérivées IEC 61511 (ISA S84.01) et IEC 62061, April 2005.

[ISO 91] ISO 9126:1991, Information technology – Software product evaluation –
Quality characteristics and guidelines for their use, 1991.

[ISO 95] ISO/IEC 8652:1995, Information Technology – Programming languages –
Ada, 1995.

[ISO 99a] ISO/IEC 18009:1999, Information Technology – Programming
Languages – Ada: Conformity Assessment of a Language Processor, 1999.

338 CENELEC 50128 and IEC 62279 Standards

[ISO 99b] ISO, ISO C standard 1999, Technical report, 1999, www.open-
std.org/jtc1/sc22/wg14/www/docs/n1124.pdf.

[ISO 00] ISO/IEC 15942, Technologies de l’information – Langages de
programmation – Guide pour l’emploi du langage de programmation Ada dans les
systèmes de haute intégrité, 2000.

[ISO 03] ISO/IEC 14882:2003(E), Programming Languages – C++. American
National Standards Institute, New York, 2003.

[ISO 04a] ISO, ISO/IEC 90003:2004, Software engineering – Guidelines for the
application of ISO 9001:2000 to computer software, 2004.

[ISO 04b] ISO, ISO/IEC 15504-x Information technology – Process assessment,
ISO, several parts published between 2004 and 2011.

[ISO 04c] ISO 9126:2004, Information technology – Software product evaluation –
Quality characteristics and guidelines for their use, 2004.

[ISO 06] ISO/IEC 14882:2003(E), Programming Languages – C++. American
National Standards Institute, New York, New York 10036, 2006.

[ISO 08a] ISO 9000:2008, Quality Management System – Principles and
vocabulary, 2008

[ISO 08b] ISO, ISO 9001:2008, Quality Management Systems – Requirements,
December 2008.

[ISO 11] ISO, ISO/CD-26262, Road vehicles – Functional safety, 2011.

[ISO 14] ISO 25000, Ingénierie du logiciel – Exigences de qualité du produit
logiciel et évaluation (SQuaRE) – Guide de SQuaRE, 2014.

[JON 90] JONES C.B., Systematic Software Development using VDM, 2nd edition,
Prentice Hall International, Englewood Cliffs, 1990.

[KER 88] KERNIGHAN B.W., RITCHIE D.M., The C Programming Language, 2nd
edition, Prentice Hall, New York, 1988.

[LAP 92] LAPRIE J.C., AVIZIENIS A., KOPETZ H. (eds), Dependability: Basic
Concepts and Terminology, Dependable Computing and Fault-Tolerant System,
vol. 5, Springer, New York, 1992.

[LER 09] LEROY X., “Formal verification of a Realistic Compiler”, Communication
of ACM, vol. 52, no. 7, pp. 107–115, July 2009.

[LET 00], LE TRUNG B., “Des principes de sécurité GAME, MEM, ALARP”,
Recherche Transports Sécurité, vol. 68, pp. 48–65, July-September 2000.

[LEV 95] LEVESON N.G., Safeware: System Safety and Computers, Addison Wesley
Publishing Company, Nenlo Park, 1995.

Bibliography 339

[LIS 90] LISSANDRE M., Maîtriser SADT, Armand Colin, Paris, 1990.

[LIS 95] LIS, LABORATOIRE D’INGENIERIE DE LA SURETE DE FONCTIONNEMENT,
Guide de la sûreté de fonctionnement, Cépaduès, Paris, 1995.

[LOC 05] LOCKHEED M., Joint strike fighter air vehicle C++ coding standards for
the system development and demonstration program, Document Number
2RDU00001, Revision C, December 2005.

[MAT 98] MATRA & RATP, “Naissance d’un Métro. Sur la nouvelle ligne 14, les
rames METEOR entrent en scène, PARIS découvre son premier métro
automatique”, La vie du Rail & des transports, no. 1076, Hors-série, October
1998.

[MEI 02] MEINADIER J.P., Le métier d’intégration de systèmes, Hermès Science-
Lavoisier, Paris, 2002.

[MIS 98] MISRA, MISRA-C:1998, Guidelines for the use of the C Language in
vehicle based software, April 1998.

[MIS 04] MISRA, MISRA-C:2004, Guidelines for the use of the C language in
critical systems, 2004.

[MIS 08] MISRA, MISRA-C++:2008, Guidelines for the use of the C++ language in
critical systems, June 2008.

[MIS 12] MISRA, MISRA-C:2012, Guidelines for the use of the C language in
critical systems, 2012.

[MON 00] MONIN J.F., Introduction aux méthodes formelles, Hermès Science-
Lavoisier, Paris, 2000.

[MOR 90] MORGAN C., Deriving programs from specifications, Prentice Hall
International, Englewood Cliffs, 1990.

[MOT 05] MOTET G., “Vérification de cohérence des modèles UML 2.0”, Première
journée thématique Modélisation de Systèmes avec UML, SysML et B-Système,
Association française d’ingénierie système, Toulouse, France, 2005.

[MYE 10] MYERS GLENFORD J., SANDLER C., BADGETT T., The Art of Software
Testing, Wiley, 3rd edition, December 2011.

[NAU 69] NAUR P., RANDELL B. (eds.), Software Engineering: A Report on a
Conference sponsored by NATO Science Committee, NATO, 1969.

[OFT 97] OBSERVATOIRE FRANÇAIS DES TECHNIQUES AVANCEES (OFTA),
“Applications des Méthodes Formelles au Logiciel”, Arago, vol. 20, Masson,
Paris, June 1997.

340 CENELEC 50128 and IEC 62279 Standards

[OKA 07] OKALAS OSSAMI D.D., MOTA J.M., THIRY L. et al., “A method to model
guidelines for developing railway safety-critical systems with UML”,
ICSOFT’07 – International Conference on Software and Data Technologies,
Barcelona, Spain, 2007.

[OMG 07] OMG, Unified Modeling Language (UML), Version 2.1.1, 2007.

[OMG 11] OMG Unified Modeling Language (OMG UML), Infrastructure, OMG,
2011.

[OOT 04a] OOTIA, Handbook for Object-Oriented Technology in Aviation (OOTiA),
vol. 1: Handbook Overview, Revision 0, 26 October 2004.

[OOT 04b] OOTIA, Handbook for Object-Oriented Technology in Aviation (OOTiA),
vol. 2: Considerations and Issues, Revision 0, 26 October 2004.

[OOT 04c] OOTIA, Handbook for Object-Oriented Technology in Aviation (OOTiA),
vol. 3: Best Pratices, Revision 0, 26 October 2004.

[OOT 04d] OOTIA, Handbook for Object-Oriented Technology in Aviation (OOTiA),
vol. 4: Certification Practices, Revision 0, 26 October 2004.

[OOT 04d] OOTIA, Handbook for Object-Oriented Technology in Aviation
(OOTiA), Certification Practices, Revision 0, vol. 4, 26 October 2004.

[PAP 10] PAPADOPOULOS Y., WALKER M., REISER M.O. et al., “Automatic
Allocation of Safety Integrity Levels”, Workshop CARS, EDCC conference,
Valencia, Spain, 2010.

[POH 10] POHL K., Requirements Engineering: Fundamentals, Principles, and
Techniques, Springer, Berlin, June 2010.

[RAM 09] RAMACHANDRAN M., ATEM DE CARVALHO R., Handbook of Software
Engineering Research and Productivity Technologies: Implications of
Globalisation, Information Science Reference, August 2009.

[RAM 11] RAMACHANDRAN M., Knowledge Engineering for Software Development
LifeCycles: Support Technologies and Applications, IGI Publishers, April 2011.

[RAS 08] RASSE A., BOULANGER J.L., MARIANO G., THIRY L., PERRONNE J.M.,
“Approche orientée modèles pour une conception UML certifiée des systèmes
logiciels critiques”, CIFA, Conférence Internationale Francophone
d’Automatique, Bucharest, Romania, November 2008.

[RIC 94] RICHARD-FOY M., LEGOFF G., “On-board with safety critical software:
Implementing safety critical software for high-speed railway transportation”, Alsys
World Dialogue, vol. 18, no. 2, 1994.

[ROQ 06] ROQUES P., UML 2 par la pratique – Etudes de cas et exercices corrigés,
Eyrolles, Paris, 2006.

Bibliography 341

[ROQ 07] ROQUES P., UML 2 – Modéliser une application Web, Eyrolles, Paris,
2007.

[RSS 07] RAIL SAFETY AND STANDARDS BOARD, Engineering Safety Management
(The Yellow Book) – Fundamentals and Guidance, vol. 1–2, no. 4, 2007.

[RTA 11a] RTA DO-178:C, Software consideration in airborne systems and
equipement certification, version C, December 2011.

[RTA 11b] RTA DO 330, Software Tools Qualification Consideration, version C,
December 2011.

[SCO 98] MEYERS S., Effective C++: 50 Specific Ways to Improve Your Programs
and Design, 2nd edition, Addison-Wesley, Reading, 1998.

[SIM 06] SIMON C., SALLAK M., AUBRY J.F., “Allocation de SIL par agrégation
d’avis d’experts”, LambdaMu 15, 2006.

[SMI 07] SMITH D.J., SIMPSON K.G.L., Functional Safety, A Straightforward Guide
to Applying IEC 61508 and Related Standards, 2nd edition, Elsevier,
Engelska, 2007.

[SOM 07] SOMMERVILLE I., Software Engineering, version 8, 2007.

[SPI 89] SPIVEY J.M., The Z Notation – A Reference Manual, Prentice Hall
International, London, 1989.

[STA 94] THE STANDISH GROUP, The chaos report, Technical report, 1994.

[STA 01] THE STANDISH GROUP, Extreme chaos, Technical report, 2001.

[SUT 04] SUTTER H., ALEXANDRESCU A., C++ Coding Standards, 101 Rules,
Guideline and Best Practices, Addison-Wesley, Reading, 2005.

[UNI 09] UNIFE, International Railway Industry Standard IRIS, revision 02, 2009.

[VIL 88] VILLEMEUR A., Sûreté de fonctionnement des systèmes industriels, Eyrolles,
Paris, 1988.

[XAN 00] XANTHAKIS S., REGNIER P., KARAPOULIOS C., Le test des logiciels,
Hermès Science, Paris, 2000.

Glossary

AAD Application Architecture and Design

ACATS Ada Conformity Assessment Test Suite

AFIS Association Française d’Ingénierie Système (French
 Systems Engineering Association)

AITR Application Integration Test Report

AITS Application Integration Test Specification

ANSI American National Standards Institute

AP Auto-Pilot

APP Application Preparation Plan

APVR Application Preparation Verification Report

ARS Application Requirements Specification

ASIL Automotive Safety Integrity Level

ASN Autorité de Sûreté Nucléaire (French Nuclear Safety Authority)

ASR Assessor

ATR Application Test Report

ATS Application Test Specification

AVR Application data/algorithm Verification Report

CARE Common Airbus Requirements Engineering

CAS Computer-Aided Specification

344 CENELEC 50128 and IEC 62279 Standards

CATR Complete Application Test Report

CATS Complete Application Test Specification

CBTC Communication-Based Train Control

CCR Critical Code Reading

CDG Charles de Gaulle

CENELEC1 Comité Européen de Normalisation ELECtrotechnique (European
 Committee for Electrotechnical Standardization)

CMMi Capability Maturity Model for integration

CMP Configuration Management Plan

COFRAC COmité FRançais d’Accréditation
(French Accreditation Committee)

COTS Commercial off-the-shelf

CTR Component Tests Report

CTs Component Tests

CTS Component Tests Specification

CV Curriculum Vitae

DAL Design Assurance Level

DES Designer

DoD Department of Defense

DRBCS Dynamic Radio-Based Control System

DVR Data Verification Report

E/E/PE Electrical/Electronic/Programmable Electronics

EMC Electromagnetic Compatibility

ESP Electronic Stability Program

FMEA Failure Mode and Effect Analysis

FR Failure Rate

FTA Fault Tree Analysis

FTs Functional Tests

1 For further information, see: www.cenelec.eu.

Glossary 345

GAME Globalement Au Moins Equivalent (Globally At Least
 Equivalent)

HAZOP HAZard and OPerability study

HL Hazard Log

HLR High Level Requirement

HR Highly Recommended

H/S Hardware/Software

HSITR Hardware/Software Integration Test Report

HSITS Hardware/Software Integration Test Specification

IdM Ingénierie des Modèles (Model-based Engineering)

IEC2 International Electrotechnical Commission

IMP IMPlementer

INCOSE3 International Council on Systems Engineering

INT INTegrator

IRIS4 International Railway Industry Standard

ISA Independent Safety Assessor

ISO5 International Standardization Organization

ITR Installation Test Report

ITS Installation Test Specification

ITs Integration Tests (Chapter 5)

KBL Known Bug List

LLR Low Level Requirement

LOPA Layer of Protection Analysis

M Mandatory

MBD Model-Based Development

2 See: www.iec.ch/.
3 See: www.incose.com
4 For further information, see: www.iris-rail.org.
5 See: www.iso.org/iso/home.htm.

346 CENELEC 50128 and IEC 62279 Standards

METEOR METro Est-Ouest Rapide (rapid transit East/West
Line of Paris Metro)

MISRA6 Motor Industry Software Reliability Association

nOOm n Out Of m architecture

NR Not Recommended

OATR Overall Application Test Report

OCC Operation Control Center

OMG7 Object Management Group

OO Object Oriented

OOTiA8 Object Oriented Technology in Aviation

OSTR Overall Software Tests Report

OSTS Overall Software Tests Specification

OTs Overall Tests

PAING Poste Aiguillage Informatisé – Nouvelle Génération
 (Computerized Points System – New Generation)

PDS Preliminary Design Specification

PHA Preliminary Hazard Analysis

PIPC Poste Informatique Petite Capacité (Small Capacity
Computer Station)

PK Point Kilométrique (Kilometric Point)

PLCs Programmable logic controllers

PM Project Manager

PMI Poste de Manœuvre Informatisé (Computerized Operation Station)

PQP Project Quality Plan

PSC Processeur Sécuritaire Codé (Coded Safety Processor)

QAM Quality Assurance Manual

QMS Quality Management System

6 See: www.misra.org.uk/.
7 See: www.omg.org/.
8 See: www.faa.gov/aircraft/air_cert/design_approvals/air_ software/oot/.

Glossary 347

QUA QUAlity team

QUAM Quality Assurance Manager

QVR Quality Verification Report

R Recommended

RAM Reliability, Availability, Maintainability

RAMS Reliability, Availability, Maintainability and Safety

RATP9 Régie Autonome des Transports Parisiens (Parisian
Transport Operator)

REQ REQuirement

RER Réseau Express Régional (Parisian Suburban Rail Network)

RQM ReQuirements Manager

S/S Software/Software

SACEM Système d’Aide à la Conduite, à l’Exploitation et à la
Maintenance (Driving, Operation and Maintenance
Support System)

SADT Structured Analysis and Design Technique

SADVR Software Architecture and Design Verification
 Report

SAET Système d’Automatisation de l’Exploitation des Trains
 (Automatican System for Trains)

SAP Safety Assurance Plan

SAS Software Architecture Specification

SC Safety Case

SCADE Safety Critical Application Development Environment

SCDVR Software Component Design Verification Report

SCMP Software Configuration Management Plan

SCS Software Component Specification

SCTS Software Component Test Specification

SDS Software Design Specification

9 For further information, see: www.ratp.fr/.

348 CENELEC 50128 and IEC 62279 Standards

SEEA Software Error Effects Analysis

SIL Safety Integrity Level

SIS Software Interface Specifications

SITR Software Integration Test Report

SITS Software Integration Test Specification

SIVR Software Integration Verification Report

SPICE Software Process Improvement and Capability dEtermination

SPIN SeParations and INcineration

SQAP Software Quality Assurance Plan

SQuaRE Software Quality Requirements and Evaluation

SSAP Software Safety Assurance Plan

SSIL Software Safety Integrity Level

SVaP Software Validation Plan

SVeP Software Verification Plan

SVR Software Validation Report

SwRS Software Requirement Specification

SwRSVR Software Requirements Verification Report

SwVS Software Version Sheet

SyRS System Requirement Specification

SysML System Modeling Language

SyVS System Version Sheet

TC Track Circuit

TCL Tool Confidence Level

TCMS Train Control/Management System

TCO Tableau de Contrôle Optique (Optical Control View)

TCs Tests Cases

THR Tolerable Hazard Rate

TQR Tools Qualification Report

Glossary 349

TSN Technical System Needs

TVM Transmission Voie Machine (Track-to-Machine Transmission)

TVR Tool Validation Report

Tx Objective of qualification of a tool: T1, T2 or T3

UML Unified Modeling Language

US Unité de Surveillance (Monitor Unit)

UTs Unit Tests

V&V Verification and Validation

VAL VALidator

VER VERifier

VVP Verification and Validation Plan

Index

A, B, C

ACATS, 252, 289
architecture, 219–224
ASIL, 3, 15, 31, 293
assurance

quality, 23, 26, 30, 58, 59, 68–78,
80, 169, 291

software, 30, 67, 169, 175, 182,
198, 250

bug, 28, 113, 206, 249, 307, 309
calibration data, 158, 161, 162
CCR, 85
certifiable, 115, 195, 225, 245, 252
certificate, 13, 286, 288, 301, 302,

311, 316, 326, 327
checklist, 95, 127, 142, 186, 189,

194, 211–213, 236, 242
CMMi, 71
competency, 82, 326
component, 215–217
compound condition, 101
confidentiality, 5, 14, 38, 286
configuration data, 157, 158, 161,

162, 164, 199
COTS, 10, 19, 23, 30, 191, 217, 218,

219, 238

D, E, F

DAL, 15, 31, 92, 292
data preparation, 155, 294
defect, 59, 205, 307
deployment, 309, 312–315
detailed design, 97, 191, 202, 203,

236–238
diversity, 43, 67, 179, 285
FAA, 256
fault tree, 51, 53
FMECA, 56, 57
formal

method, 59, 209, 261, 265–271,
273, 276–280, 282, 285, 286, 306
verification, 251, 252

frequency, 21, 31, 41, 42, 44, 46, 47,
62, 63, 65

FTA, 56, 57

G, I, L M

generic application, 159, 201, 306,
318

independent
assessment, 70, 85, 103, 104, 105,
321, 322
safety assessor, 85, 321

352 CENELEC 50128 and IEC 62279 Standards

inheritance, 256, 258
integration test, 188, 189
interface, 214, 215
ISA, 85, 321, 327
language subset, 232
maintenance, 309
MBD, 140, 262
METEOR, 7, 17
Metro, 160, 282
Model-Based Development, 140, 262
modeling, 139, 140, 261

O, P, Q

object-oriented, 224, 252, 255
overall software test, 79, 83, 203,

210, 211, 235, 247–249
path coverage, 99, 100, 102
plan, 90, 195, 211, 239, 316
planning, 71, 171, 174–176, 182,

203, 214
preliminary design, 202
product line, 155, 163, 164, 316–318
quality assurance, 23, 26, 30, 58, 59,

68–78, 80, 169, 291

R, S

redundancy, 57, 67, 105, 132, 265,
290

refinement, 147, 271
re-used component, 217–219, 238
SACEM, 17, 173, 270, 271, 284, 290

SAET, 7
safety

analysis, 57, 79, 181, 323
integrity level, 3, 14–16, 21, 31, 67,
169, 219, 253, 256

security, 5, 14, 19, 38, 39, 114, 223
SEEA, 26, 56, 57, 85, 223
seriousness, 21, 28
software assurance, 30, 67, 169, 175,

182, 198, 250
specific application, 156, 158, 159,

161, 164, 170, 174, 180–182, 193,
318

T, U

test coverage, 246
tool qualification, 104, 105, 285, 287,

329
UML, 116, 212, 213, 268, 269, 284,

305
unit testing, 250

V, W

V&V, 10, 26, 70, 87, 105, 182, 213,
250, 283, 297, 316

watchdog, 204

Other titles from

in

Control, Systems and Industrial Engineering

2014
DAVIM J. Paulo
Machinability of Advanced Materials

ESTAMPE Dominique
Supply Chain Performance and Evaluation Models

FAVRE Bernard
Introduction to Sustainable Transports

MICOUIN Patrice
Model Based Systems Engineering: Fundamentals and Methods

MILLOT Patrick

Designing HumanMachine Cooperation Systems

MILLOT Patrick
Risk Management in Life-Critical Systems

NI Zhenjiang, PACORET Céline, BENOSMAN Ryad, REGNIER Stéphane
Haptic Feedback Teleoperation of Optical Tweezers

OUSTALOUP Alain
Diversity and Non-integer Differentiation for System Dynamics

REZG Nidhal, DELLAGI Sofien, KHATAD Abdelhakim
Joint Optimization of Maintenance and Production Policies

STEFANOIU Dan, BORNE Pierre, POPESCU Dumitru, FILIP Florin Gh.,
EL KAMEL Abdelkader
Optimization in Engineering Sciences: Metaheuristics, Stochastic Methods
and Decision Support

2013
ALAZARD Daniel
Reverse Engineering in Control Design

ARIOUI Hichem, NEHAOUA Lamri
Driving Simulation

CHADLI Mohammed, COPPIER Hervé
Command-control for Real-time Systems

DAAFOUZ Jamal, TARBOURIECH Sophie, SIGALOTTI Mario
Hybrid Systems with Constraints

FEYEL Philippe
Loop-shaping Robust Control

FLAUS Jean-Marie
Risk Analysis: Socio-technical and Industrial Systems

FRIBOURG Laurent, SOULAT Romain
Control of Switching Systems by Invariance Analysis: Application to Power
Electronics

GRUNN Emmanuel, PHAM Anh Tuan
Modeling of Complex Systems: Application to Aeronautical Dynamics

HABIB Maki K., DAVIM J. Paulo
Interdisciplinary Mechatronics: Engineering Science and Research
Development

HAMMADI Slim, KSOURI Mekki
Multimodal Transport Systems

JARBOUI Bassem, SIARRY Patrick, TEGHEM Jacques
Metaheuristics for Production Scheduling

KIRILLOV Oleg N., PELINOVSKY Dmitry E.
Nonlinear Physical Systems

LE Vu Tuan Hieu, STOICA Cristina, ALAMO Teodoro,
CAMACHO Eduardo F., DUMUR Didier
Zonotopes: From Guaranteed State-estimation to Control

MACHADO Carolina, DAVIM J. Paulo
Management and Engineering Innovation

MORANA Joëlle
Sustainable Supply Chain Management

SANDOU Guillaume
Metaheuristic Optimization for the Design of Automatic Control Laws

STOICAN Florin, OLARU Sorin
Set-theoretic Fault Detection in Multisensor Systems

2012
AÏT-KADI Daoud, CHOUINARD Marc, MARCOTTE Suzanne, RIOPEL Diane
Sustainable Reverse Logistics Network: Engineering and Management

BORNE Pierre, POPESCU Dumitru, FILIP Florin G., STEFANOIU Dan
Optimization in Engineering Sciences: Exact Methods

CHADLI Mohammed, BORNE Pierre
Multiple Models Approach in Automation: Takagi-Sugeno Fuzzy Systems

DAVIM J. Paulo
Lasers in Manufacturing

DECLERCK Philippe
Discrete Event Systems in Dioid Algebra and Conventional Algebra

DOUMIATI Moustapha, CHARARA Ali, VICTORINO Alessandro,
LECHNER Daniel
Vehicle Dynamics Estimation using Kalman Filtering: Experimental
Validation

HAMMADI Slim, KSOURI Mekki
Advanced Mobility and Transport Engineering

MAILLARD Pierre
Competitive Quality Strategies

MATTA Nada, VANDENBOOMGAERDE Yves, ARLAT Jean
Supervision and Safety of Complex Systems

POLER Raul et al.
Intelligent Non-hierarchical Manufacturing Networks

YALAOUI Alice, CHEHADE Hicham, YALAOUI Farouk, AMODEO Lionel
Optimization of Logistics

ZELM Martin et al.
I-EASA12

2011
CANTOT Pascal, LUZEAUX Dominique
Simulation and Modeling of Systems of Systems

DAVIM J. Paulo
Mechatronics

DAVIM J. Paulo
Wood Machining

KOLSKI Christophe
Human-computer Interactions in Transport

LUZEAUX Dominique, RUAULT Jean-René, WIPPLER Jean-Luc
Complex Systems and Systems of Systems Engineering

ZELM Martin, et al.
Enterprise Interoperability: IWEI2011 Proceedings

2010
BOTTA-GENOULAZ Valérie, CAMPAGNE Jean-Pierre, LLERENA Daniel,
PELLEGRIN Claude
Supply Chain Performance / Collaboration, Alignement and Coordination

BOURLÈS Henri, GODFREY K.C. Kwan
Linear Systems

BOURRIÈRES Jean-Paul
Proceedings of CEISIE’09

DAVIM J. Paulo
Sustainable Manufacturing

GIORDANO Max, MATHIEU Luc, VILLENEUVE François
Product Life-Cycle Management / Geometric Variations

LUZEAUX Dominique, RUAULT Jean-René
Systems of Systems

VILLENEUVE François, MATHIEU Luc
Geometric Tolerancing of Products

2009
DIAZ Michel
Petri Nets / Fundamental Models, Verification and Applications

OZEL Tugrul, DAVIM J. Paulo
Intelligent Machining

2008
ARTIGUES Christian, DEMASSEY Sophie, NÉRON Emmanuel
Resources–Constrained Project Scheduling

BILLAUT Jean-Charles, MOUKRIM Aziz, SANLAVILLE Eric
Flexibility and Robustness in Scheduling

DOCHAIN Denis
Bioprocess Control

LOPEZ Pierre, ROUBELLAT François
Production Scheduling

THIERRY Caroline, THOMAS André, BEL Gérard
Supply Chain Simulation and Management

2007

DE LARMINAT Philippe
Analysis and Control of Linear Systems

LAMNABHI Françoise et al.
Taming Heterogeneity and Complexity of Embedded Control

LIMNIOS Nikolaos
Fault Trees

2006
NAJIM Kaddour
Control of Continuous Linear Systems

The railway sector is subject to varying normative and legal systems
across different countries. The CENELEC 50128 standard and its
international version IEC 62279 are necessary for the realization of
software applications within this sector.

This book is dedicated to the 2011 version of the CENELEC 50128
standard, which defines the implementation of techniques and methods
and focuses on management skills and the establishment of an
independent evaluation.

The authors stress the need for qualified tools, organization with
independence and the presence of an effective verification pole. The
construction of two types of software, software and parameterized so-
called generic software, are introduced. The involvement of people from
within the industry allows the authors to avoid the usual confidentiality
problems which can arise and thus enables them to supply new useful
information (photos, architecture plans, real examples, etc.).

By providing a real implementation guide to understanding the
fundamentals of the standard and the impacts on the activities to be
performed, this book helps to better prepare the compulsory phase of
independent evaluation.

Jean-Louis Boulanger is currently an Independent Safety Assessor (ISA)
in the railway domain focusing on software elements. He is a specialist
in software engineering (requirement engineering, semi-formal and
formal method, proof and model-checking). He also works as an expert
for the French notified body CERTIFER in the field of certification of
safety critical railway applications based on software (ERTMS, SCADA,
automatic subway, etc.). His research interests include requirements,
software verification and validation, traceability and RAMS with a
special focus on safety.

www.iste.co.uk

	Cover
	Title Page
	Copyright

	Contents
	Introduction
	I.1. Objective
	I.2. Reminder
	I.3. Overview

	1: From the System to the Software
	1.1. Introduction
	1.2. Command/control system
	1.3. System
	1.4. Software application
	1.4.1. What is software?
	1.4.2. Different types of software
	1.4.3. The software application in its proper context

	1.5. Conclusion

	2: Railway Standards
	2.1. Introduction
	2.2. Generic standards
	2.2.1. Introduction
	2.2.2. Safety levels

	2.3. History between CENELEC and the IEC
	2.4. CENELEC referential framework
	2.4.1. Introduction
	2.4.2. Description
	2.4.3. Implementation
	2.4.4. Software safety
	2.4.5. Safety versus availability

	2.5. EN 50155 standard
	2.6. CENELEC 50128
	2.6.1. Introduction
	2.6.2. SSIL management
	2.6.2.1. SSIL attribution
	2.6.2.2. Choice of SSIL

	2.6.3. Comparison of 2001 and 2011 versions
	2.6.3.1. CENELEC 50128:2001
	2.6.3.2. EN 50128:2011

	2.7. Conclusion

	3: Risk and Safety Integrity Level
	3.1. Introduction
	3.2. Basic definitions
	3.3. Safety enforcement
	3.3.1. What is safety?
	3.3.2. Safety management
	3.3.3. Safety integrity
	3.3.4. Determination of the SIL
	3.3.5. SIL table
	3.3.6. Allocation of SILs
	3.3.7. SIL management
	3.3.8. Software SIL
	3.3.9. Iterative process
	3.3.10. Identification of safety requirements

	3.4. In IEC 61508 and IEC 61511
	3.4.1. Risk graph
	3.4.2. LOPA
	3.4.3. Overview

	3.5. Conclusion

	4: Software Assurance
	4.1. Introduction
	4.2. Prerequisites
	4.3. Quality assurance
	4.3.1. Introduction
	4.3.2. Quality assurance management
	4.3.2.1. Prescriptions of standard in force
	4.3.2.2. ISO 9001:2008
	4.3.2.3. Indicator

	4.3.3. Realization of a software application
	4.3.4. Software quality assurance plan (SQAP)

	4.4. Organization
	4.4.1. Typical organization
	4.4.2. Skill management

	4.5. Configuration management
	4.6. Safety assurance management
	4.7. Verification and validation
	4.7.1. Introduction
	4.7.2. Verification
	4.7.2.1. Presentation
	4.7.2.2. Activity of verification
	4.7.2.3. Static analysis
	4.7.2.4. Dynamic analysis
	4.7.2.4.1. Test strategy
	4.7.2.4.2. Coverage of tests

	4.7.2.5. Summary

	4.7.3. Validation

	4.8. Independent assessment
	4.9. Tool qualification
	4.10. Conclusion
	4.11. Appendix A: list of quality documents to be produced
	4.12. Appendix B: structure of a software quality assurance plan

	5: Requirements Management
	5.1. Introduction
	5.2. Requirements acquisition phase
	5.2.1. Introduction
	5.2.2. Requirements elicitation
	5.2.2.1. Introduction
	5.2.2.2. Identification of stakeholders
	5.2.2.3. Identification of sources

	5.2.3. Process of analysis and documentation
	5.2.3.1. Subdivision of the process
	5.2.3.2. Requirements analysis phase
	5.2.3.2.1. Objectives
	5.2.3.2.2. Elicitation techniques
	5.2.3.2.3. Interview techniques
	5.2.3.2.4. Prototyping and simulation techniques

	5.2.3.3. Description production phase

	5.2.4. Verification and validation of the requirements
	5.2.4.1. Introduction
	5.2.4.2. Verification
	5.2.4.3. Validation

	5.3. Requirements specification
	5.3.1. Requirements characterization
	5.3.1.1. Identification
	5.3.1.2. A few important characteristics
	5.3.1.3. Characterization of a set of requirements
	5.3.1.4. Characterization of the process
	5.3.1.5. Additional

	5.3.2. Characterization of requirements specification
	5.3.3. Expression of requirements
	5.3.3.1. Natural language
	5.3.3.2. Construction of a glossary
	5.3.3.3. Formalization
	5.3.3.4. Formulation by use of a template
	5.3.3.5. Modeling

	5.3.4. Requirements validation

	5.4. Requirements realization
	5.4.1. Process
	5.4.2. Verification
	5.4.2.1. Objective of verification
	5.4.2.2. Documentary review

	5.4.3. Traceability
	5.4.4. Change management
	5.4.4.1. Introduction
	5.4.4.2. Nothing is perfect
	5.4.4.3. Accepting change
	5.4.4.4. Impact of change

	5.5. Requirements management
	5.5.1. Activities
	5.5.2. Two approaches
	5.5.2.1. Database-centered approach
	5.5.2.2. Document-centered approach

	5.5.3. Implementation of tools

	5.6. Conclusion

	6: Data Preparation
	6.1. Introduction
	6.2. Recap
	6.3. Issue
	6.4. Data-parameter-based system
	6.4.1. Introduction
	6.4.2. Characterization of data
	6.4.3. Service inhibition
	6.4.4. Overview

	6.5. From the system to the software
	6.5.1. Need
	6.5.2. What the CENELEC framework does not say

	6.6. Data preparation process
	6.6.1. Context
	6.6.1.1. Software assurance
	6.6.1.2. Safety assurance management

	6.6.2. Presentation of section 8 of the CENELEC 50128:2011 standard
	6.6.2.1. Lifecycle
	6.6.2.2. Problem of circularity

	6.7. Data preparation process
	6.7.1. Management of the data preparation process
	6.7.1.1. Planning
	6.7.1.2. Integration between the data and the generic software
	6.7.1.3. Data production process
	6.7.1.4. Inputs to the data preparation process
	6.7.1.5. Study of safety of data process
	6.7.1.6. Overview

	6.7.2. Verification
	6.7.3. Specification phase
	6.7.3.1. Description of the step
	6.7.3.2. Specification of application requirements
	6.7.3.3. Complete data preparation tests
	6.7.3.4. Verification

	6.7.4. Architecture phase
	6.7.4.1. Description of the architecture and the design
	6.7.4.2. Integration tests
	6.7.4.3. Verification report

	6.7.5. Data production
	6.7.5.1. Design of algorithms
	6.7.5.2. Algorithm tests
	6.7.5.3. Data verification
	6.7.5.4. Activity of verification
	6.7.5.5. Overview

	6.7.6. Integration of the application and acceptance of the tests
	6.7.6.1. Activities
	6.7.6.2. Verification of the activity
	6.7.6.3. Overview

	6.7.7. Validation and evaluation of the application
	6.7.8. Procedure and tools for preparation of the application
	6.7.8.1. Boundary
	6.7.8.2. Overview

	6.7.9. Development of generic software

	6.8. Conclusion
	6.9. Appendix: documentation to be produced

	7: Generic Application
	7.1. Introduction
	7.2. Software application realization process
	7.3. Realization of a generic application
	7.3.1. Specification phase
	7.3.1.1. Description of the activity
	7.3.1.2. Specification of software requirements
	7.3.1.2.1. Principles
	7.3.1.2.2. Use of formal methods

	7.3.1.3. Specification of overall software tests
	7.3.1.4. Verification report

	7.3.2. Architecture and component design phase
	7.3.2.1. Presentation of the phase
	7.3.2.2. Interfaces
	7.3.2.3. Components
	7.3.2.4. Re-used components
	7.3.2.4.1. Principles
	7.3.2.4.2. Re-used components
	7.3.2.4.3. COTS
	7.3.2.4.4. Verification and validation

	7.3.2.5. Architecture
	7.3.2.6. Software design
	7.3.2.6.1. Software design methods
	7.3.2.6.2. Design specification
	7.3.2.6.3. Choice of development language
	7.3.2.6.4. Programming rules
	7.3.2.6.5. Verification of programming rules

	7.3.2.7. Specification of the integration tests
	7.3.2.8. Verification report

	7.3.3. Component design phase
	7.3.3.1. Realization of the design
	7.3.3.2. COTS and re-used components
	7.3.3.3. Component tests
	7.3.3.3.1. Methodology
	7.3.3.3.2. Objective of coverage

	7.3.3.4. Verification report

	7.3.4. Coding phase
	7.3.5. Execution of component tests
	7.3.5.1. Activity
	7.3.5.2. Verification report

	7.3.6. Software integration phase
	7.3.6.1. Activities
	7.3.6.2. Verification report

	7.3.7. Overall software testing phase

	7.4. Some feedback on past experience
	7.5. Conclusion
	7.6. Appendix A: the programming language “Ada”
	7.7. Appendix B: the programming language “C”
	7.7.1. Introduction
	7.7.2. The difficulty with C
	7.7.3. MISRA-C
	7.7.4. Example of a rule

	7.8. Appendix C: introduction to object-oriented languages
	7.9. Appendix D: documentation needing to be produced

	8: Modeling and Formalization
	8.1. Introduction
	8.2. Modeling
	8.2.1. Objectives
	8.2.2. Different types of modeling
	8.2.3. Model

	8.3. Use of formal techniques and formal methods
	8.3.1. Definitions
	8.3.1.1. Semi-formal method
	8.3.1.2. Formal method
	8.3.1.3. Structured method
	8.3.1.4. Computer-aided specification tools

	8.3.2. UML

	8.4. Brief introduction to formal methods
	8.4.1. Recap
	8.4.2. Usage in the railway domain
	8.4.2.1. From Z to the B-method
	8.4.2.2. From LUSTRE to SCADE

	8.4.3. Summary
	8.4.3.1. Model-checking
	8.4.3.2. Establishment of formal methods

	8.5. Implementation of formal methods
	8.5.1. Conventional processes
	8.5.2. Process including formal methods
	8.5.3. Issues

	8.6. Maintenance of the software application
	8.7. Conclusion

	9: Tool Qualification
	9.1. Introduction
	9.2. Concept of qualification
	9.2.1. Issue
	9.2.2. CENELEC 50128:2001
	9.2.3. DO-178
	9.2.3.1. Version B
	9.2.3.2. Version C

	9.2.4. IEC 61508
	9.2.5. ISO 26262

	9.3. CENELEC 50128:2011
	9.3.1. Introduction
	9.3.2. Qualification file
	9.3.3. Qualification process
	9.3.4. Implementation of the qualification process
	9.3.4.1. Identification
	9.3.4.2. Justification of class
	9.3.4.2.1. Choice of Tx
	9.3.4.2.2. Failure analysis
	9.3.4.2.3. Compiler

	9.3.4.3. Specification
	9.3.4.4. Proof of conformity
	9.3.4.4.1. Approach
	9.3.4.4.2. Proof of proper operation
	9.3.4.4.3. Certified product
	9.3.4.4.4. Documented feedback
	9.3.4.4.5. Validation
	9.3.4.4.6. Other

	9.4. Fitness for purpose
	9.4.1. Design method
	9.4.2. In case of incompatibility
	9.4.3. Code generation

	9.5. Version management
	9.5.1. Identification of versions
	9.5.2. Bug/defect analysis
	9.5.3. Changing versions

	9.6. Qualification process
	9.6.1. Qualification file
	9.6.2. Ultimately
	9.6.3. Qualification of non-commercial tools

	9.7. Conclusion

	10: Maintenance and Deployment
	10.1. Introduction
	10.2. Requirements
	10.2.1. Fault management
	10.2.2. Managing changes

	10.3. Deployment
	10.3.1. Issue
	10.3.2. Implementation
	10.3.3. In reality

	10.4. Software maintenance
	10.4.1. Issue
	10.4.2. Implementation

	10.5. Product line
	10.6. Conclusion
	10.7. Appendix: documentation needing to be produced

	11: Assessment and Certification
	11.1. Introduction
	11.2. Evaluation
	11.2.1. Principles
	11.2.2. CENELEC 50128:2011

	11.3. Cross-acceptance
	11.4. Certification
	11.4.1. Product certification
	11.4.2. Software certification
	11.4.3. Evolution management

	11.5. Conclusion
	11.6. Appendix: documentation needing to be produced

	Conclusion
	C.1. Introduction
	C.2. CENELEC and IEC
	C.2.1. Compatibility between 50128:2001 and 50128:2011
	C.2.2. Compatibility between CENELEC 50128 and IEC 62279

	C.3. Changes to come

	Bibliography
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 350
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 350
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 350
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200066006f00720020007100750061006c0069007400790020007000720069006e00740069006e00670020006f006e0020006400650073006b0074006f00700020007000720069006e007400650072007300200061006e0064002000700072006f006f0066006500720073002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 350
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 350
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 350
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200066006f00720020007100750061006c0069007400790020007000720069006e00740069006e00670020006f006e0020006400650073006b0074006f00700020007000720069006e007400650072007300200061006e0064002000700072006f006f0066006500720073002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

