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Preface

Modern industry puts a lot of challenges on all the people involved. High quality
standards and high customization, tight deadlines, and small volumes of orders al-
ready pose a lot of problems to the managers, industrial engineers, and ordinary
workers. With fierce competition in the market added to this, the picture becomes
even more dramatic.

Good old days when improvement of a manufacturing process was rather a hobby
of the managing person than his perpetual task are gone. An ongoing improvement
today is a matter of survival in a tough environment rather than just a matter of
higher income. It is not enough just to improve; it is crucial to improve more than all
(or, at least, most of) the competitors. That is why an improvement, or optimization,
of a manufacturing process becomes a complicated problem that one cannot resolve
without having suitable tools at his disposal.

Optimization of a manufacturing process has multiple “facets” and includes lay-
out design, jobs scheduling, workload control, etc. Each of these subproblems pro-
vides a broad area for research and deserves a separate book. That is why we have
chosen only a small problem in the field of layout design—the cell formation (CF)
problem aimed at decomposing a manufacturing system into several subsystems so
that a particular objective (classically, a mutual independence of cells) is optimized.

Though the cell formation problem is usually seen in a rather narrow context of
a cellular layout, we argue that it is much more general. As a matter of fact, virtu-
ally any manufacturing system is somehow subdivided into departments, production
lines, cells, etc. We believe that any such subdivided system can be described in CF
terms using a proper definition of objective and similarity between machines. Gen-
erally speaking, most of the layout design problems can be viewed as a clustering
problem where machines must be grouped into clusters based on some similarity
between them. For example, in functional layout, the machines are grouped based
on the similarity of functions that they perform, in production lines—based on the
sets of products that are processed on a sequence (line) of machines, and in a classic
cellular layout—based on the similarities of sets of products they are needed for. To
sum up, any possible grouping of machines may be seen as a clustering according
to a certain similarity measure.
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vi Preface

It should be noted that the cell formation problem is not as well defined as most
of the combinatorial optimization problems, like the p-median problem. It rather
exists as a collection of approaches, each equipped with its own objective function
and constraints, aimed at a general goal of clustering machines and products (phys-
ically or logically) so that the performance of the manufacturing system can be
improved. In this book we make an attempt to consider the cell formation problem
in a systematic and formalized way and propose several models, both heuristic and
exact. Our models are based on quite general clustering problems and are flexible
enough to allow for various objectives and additional constraints. This means that
their application domain goes beyond the classical cell formation aimed at making
independent cells, moreover, that of the underlying mathematical problems goes far
beyond the layout design. We also provide results of numerical experiments involv-
ing both artificial data from academic papers in the field and real manufacturing data
to certify the appropriateness of the models proposed. We thus provide a flexible and
efficient tool to managers and industrial engineers for designing optimal cells based
on their own vision of optimality and constraints involved.

This book, however, is intended not only for managers and industrial engineers
but also for academic researchers and students because of two reasons. Firstly, it
poses several mathematical problems that may be of certain interest and importance
from both theoretical and applied point of view. Secondly, it demonstrates a cer-
tain research methodology—of (re)considering the problem and choosing a suitable
model—that allowed us to advance the techniques for solving the problem exten-
sively studied for more than 50 years.

While working on this book we tried to make it understandable for the broadest
audience: all algorithmic details are given a detailed description with multiple nu-
merical examples, informal explanations are provided for the theoretical results and
detailed introductions into each of the problems considered are provided. However,
a basic understanding of manufacturing, combinatorics, and linear programming is
a prerequisite. Further, each chapter is self-contained to a certain extent, which, we
hope, will make reading the book more pleasant.

Finally, we would like to mention that this book includes our recent papers on
cell formation. Since the papers are published in many different outlets, namely,
Journal of Combinatorial Optimization, Computational Mathematics and Applica-
tions, Mathematical and Computer Modeling, Lecture Notes in Computer Science,
Computational Management Science, Operations Research and Mathematics and
Statistics, the authors have decided to organize them within a book with the pur-
pose to attract more attention of the research community, engineers, managers, and
students dealing with different sides of decision making within a very wide area of
industrial engineering. We are grateful to all our co-authors for their great contribu-
tion to the corresponding papers cited properly in this book and listed here: Mikhail
Batsyn, Ilya Bychkov, Pavel Sukhov, Jannes Slomp, and Julius Zilinskas.

Gainesville, FL Boris Goldengorin
Eindhoven, The Netherlands Dmitry Krushinsky
Gainesville, FL Panos Pardalos
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Chapter 1
The Problem of Cell Formation: Ideas
and Their Applications

This book focuses on a development of optimal, flexible, and efficient models for
cell formation in group technology. By optimality we mean guaranteed quality of
the solutions provided by the model,1 by flexibility—possibility of taking additional
constraints and objectives into account and by efficiency—reasonable running times
(e.g., taking into account that cells are reconfigured infrequently, the times of 1 s.
and 10 min. are equally acceptable). The main aim is, thus, to provide a reliable
tool that can be used by managers to design manufacturing cells based on their own
preferences and constraints imposed by a particular manufacturing system.

The general structure of the book is as follows. The first chapter contains the
prerequisites, necessary for understanding the cell formation problem and the gaps
in the corresponding research. Those already familiar with the problem may safely
skip some sections (e.g., the one describing existing approaches). The following four
chapters are focused on a development of mathematical models for cell formation,
Chap. 2 being very technical and focusing on theoretical properties of a proposed
model. Chapter 5 considers alternative objectives for cell formation. Finally, Chap. 8
summarizes the book and provides directions for further research.

1.1 Introduction

One of the possibilities for obtaining a higher profit in a manufacturing system is
lowering production costs (while preserving the production volumes). This, in turn,
can be achieved by minimizing flow costs that include transportation costs, idle
times of machines, and costs of manpower needed to deliver parts from one ma-
chine to another. The paradigm in industrial engineering called group technology
(GT) was first developed in the former USSR (see, e.g., [105, 107] or [63]) and is
targeted at making the manufacturing system more efficient by improving the men-

1 We allow for suboptimal solutions in case they are guaranteed close to the optimum. Thus, our
notion of optimality differs from the one used in mathematical programming, where optimality
means that no better solution exists.

B. Goldengorin et al., Cell Formation in Industrial Engineering, Springer Optimization
and Its Applications 79, DOI 10.1007/978-1-4614-8002-0 1,
© Springer Science+Business Media New York 2013
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2 1 The Problem of Cell Formation: Ideas and Their Applications

tioned above factors. The main idea behind group technology is that similar things
should be done similarly. One of the key issues in this concept is cell formation
(CF) that suggests grouping machines into manufacturing units (cells) and parts into
product families such that a particular product family is processed mainly within one
cell. Such a grouping becomes possible by exploiting similarities in the manufactu-
ring processes for different parts and increases the throughput of the manufacturing
system without sacrificing the product quality. This can be viewed as decomposing
the manufacturing system into a number of almost independent subsystems that can
be managed separately. Clearly, such a decomposition is beneficial from the perspec-
tive of workload control and scheduling (especially, taking into account that most
scheduling problems are computationally difficult). The degree of subsystems in-
dependence corresponds to the amount of intercell movement—the number of parts
that must be processed in more than one subsystem (by more than one manufactu-
ring cell).

The problem of cell formation can be traced back to the works of Flanders [58]
and Sokolovski (see [79], p. 153) but is often attributed to Mitrofanov’s group tech-
nology [106, 107] and Burbidge’s product flow analysis (PFA; see [28]). Burbidge
showed that the problem of cell formation can be reduced to a functional grouping
of machines based on binary machine-part incidence data. Thus, in its simplest and
earliest form cell formation is aimed at the functional grouping of machines based
on a similarity of the sets of parts that they process. Input data for such a problem is
usually given by an m× r binary machine-part incidence matrix (MPIM) A = [ai j],
where ai j = 1 if and only if jth part needs ith machine at some step of its produc-
tion process. In terms of MPIM, the problem of cell formation was first defined as
one of finding independent permutations of rows and columns that lead to a block-
diagonal structure of matrix A without specification of the searched block sizes. For
real data the perfect block-diagonal structure rarely occurs and the goal is to obtain
the structure that is as close to a block-diagonal one as possible.

The problem of optimal (usually, with respect to the amount of intercell move-
ment) cell formation has been studied by many researchers. An overview can be
found in [13, 21, 138, 164]. However, neither relevant mathematical models of the
cell formation problem nor tractable algorithms that guarantee optimality of the
obtained solutions were reported because some of the used mathematical models
including the p-median problem (PMP) based models are well-known computa-
tionally intractable problems. Moreover, even worst-case performance estimates are
not available for most approaches. In fact, it was only shown that they produce
high quality solutions for artificially generated instances. At the same time, today’s
highly competitive environment makes it extremely important to increase the effi-
ciency of manufacturing systems as much as possible. In these conditions any no-
ticeable improvement (e.g., achieved by properly designed manufacturing cells) can
provide a secure position for a company in a highly competitive market.

This chapter is organized as follows. The next section provides an overview of
the cellular and alternative layouts. Section 1.3 introduces a notion of (dis)similarity
measure and provides an analysis of similarity and performance measures used
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in CF. Section 1.4 provides an overview of the existing approaches and their
classifications while Sect. 1.5 summarizes the current state of the art in cell for-
mation and presents the outline of this book.

1.2 Cellular Layout and Its Alternatives

Today’s highly competitive market puts a constantly increasing pressure on the
manufacturing industries. Current challenges, such as increasing fraction of high-
variety-low-volume orders, short delivery times, increased complexity, and preci-
sion requirements, force the companies to extensively optimize their manufactu-
ring processes by all possible means. It is not hard to understand that layout of
the processing units (machines, departments, facilities) can drastically influence the
productivity of the whole manufacturing system both explicitly and implicitly. The
explicit impact of the layout is expressed, for example, via the material handling
costs and time (spent on delivering parts from one unit to another) and tooling
requirements. The implicit impact of the layout can be explained by the fact that
smaller and well-structured systems are usually easier to manage. This provides a
possibility of finding more optimal management solutions (e.g., most scheduling
problems are computationally hard, and the problem structure and size substantially
influence the possibility of obtaining optimal solutions), as well as additional space
for improvement (e.g., possibilities for set-up time savings).

The two classical types of layout that were prevailing not so long ago (and are
still used) are job shop (functional) and flow shop (production line) layouts. In a
job shop layout, machines are grouped into functional departments based on a sim-
ilarity of their functions: drilling, milling, thermal processing, cutting, storage, etc.
This process-oriented layout has certain advantages, first of all, from the perspective
of flexibility (with regard to a changing product mix), expertise, and cross-training.
Indeed, it imposes no dedication of machines to parts, so that a wide variety of parts
can be manufactured in small lot sizes. In addition, as all machines in a department
perform similar functions, any person able to operate one of them is able to operate
other ones (sometimes after a limited additional training). Moreover, as each func-
tional department brings together specialists in the same field, it becomes easier for
them to communicate and learn from each other. However, it was shown that in job
shop systems parts spend up to 95 % of their manufacturing time on waiting in the
machine queues [8] and traveling from one machine to another. The remaining 5 %
of the total time is shared between set-up and value adding processing time. These
figures imply that functional layout is very inefficient, but it also has another draw-
back. When a new part is released into the shop floor, a need for rescheduling all
the system may occur,2 especially if the part has a very tight deadline and cannot
be processed on a FIFO basis. This substantially complicates the management. The
flow shop layout, as compared to the job shop, is product-oriented and is optimized

2 This applies only if parts are processed according to a general optimized schedule. In a common
practice, however, heuristic rules are applied to choose which part will be processed next at each
machine.
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for manufacturing a small variety of parts in large volumes. This is done by grouping
machines into several manufacturing lines such that there is a straight “linear” flow
across each line. However, the mix flexibility in this case is assumed to be very low
and adding new products may destroy the “linear” structure of the flow shop layout.
Thus, in case of high-variety–low-volume orders, the flow shop is very inefficient.

The cellular layout is intended to combine advantages of both the considered
above layouts and to make the management easier by decomposing the whole manu-
facturing system into several almost independent subsystems. This layout can be
viewed as an application of group technology and suggests that parts that need
similar operations and resources should be grouped into product families such that
each family is processed within an almost independent smaller size manufacturing
subsystem—a cell. In case of cellular layout, machines are grouped in such a way
that the physical distance between machines in a cell is small and each cell contains
(almost) all the machines needed to process the corresponding part family. This
separates the flows, similarly to the flow shop, but also preserves a certain degree of
flexibility as part families are usually robust to the changes in the product mix (i.e.,
new parts usually fit well into present families). In other words, cells are supposed
to inherit the advantages of a job shop producing a large variety of parts and a flow
shop dedicated to mass production of one product (in case of cells—one family of
products). It was shown in [88] that a reduction of 20–80% in material handling
costs can be achieved by introducing machine cells.

The fractal layout (see, e.g., [150]) was proposed as an alternative to the other
layouts in order to minimize the total part flows. It is based on an observation that the
pattern of logical relations between parts usually possesses a hierarchical structure
similar to the structure of a fractal. These relations between parts are of two basic
types: (i) part a is a subpart of part b (a needs only some operations that b needs) and
(ii) parts a and b should be assembled together. In case (i) the set of machines needed
for part a is a proper subset of machines needed for part b—machines needed for
both parts a and b should be placed closer to each other; machines needed only for
b should be placed around them. In case (ii) the sets of machines needed for a and b
can be completely different—in this case the two corresponding groups of machines
should be placed next to each other. There is also a somewhat different interpretation
of the fractal layout (see, e.g., [109]). It suggests that a manufacturing system is
decomposed into a number of cells such that each cell has machines of several types
in ratios similar to those of the whole manufacturing system. This implies that each
cell can produce almost any part, but some are more suited for a particular part
than others. Due to its cellular structure, the fractal layout offers certain advantages
similar to those of the cellular layout. Naturally, the fractal layout can be viewed
as a cellular layout with some additional properties: similarity of cells and/or their
hierarchical structure. On the other hand, there is a fundamental difference between
the two: while the fractal layout is process-oriented, the cellular one is usually more
product-oriented as each cell focuses on a production of few parts. The fractal layout
is hardly possible in many manufacturing systems, especially those where most of
the machines are unique. In addition, the problem of balancing the load of equivalent
machines assigned to different cells may emerge.
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The random and the maximally distributed (also known as holonic) layouts (see,
e.g., [19]) are aimed at minimizing the product flow at a condition of high mix
flexibility. They suggest that machines are randomly placed on the factory floor, or
machines of the same type are placed as evenly as possible within the plant, cor-
respondingly. This ensures that for an arbitrary part the expected traveling distance
between two consecutive machines is limited. Thus, these two layouts guarantee a
worst-case (w.r.t. product mix) moderately good performance. At the same time,
these two layouts are almost unstructured that makes it quite challenging to manage
such a system (or even to find a way in it for the personnel).

To sum up, in most situations, except the limiting cases (see Fig. 1.1), the cellular
layout is beneficial over the other ones from the perspective of part flows. As can be
seen from the literature, in case of large lot sizes and low variety the flow layout is
beneficial as manufacturing lines substantially reduce the handling costs and make
management very easy. Only in case of very high variety and low volumes the cellu-
lar layout may not be possible and the best choice will be the functional layout. The
cellular layout can be also thought of as a way of moving from the functional layout
to flow lines: a decomposition into cells decreases the variety of parts processed in
each cell. It should be mentioned that the condition of high variety does not itself
prohibit efficiency of the cellular layout as parts within a family are assumed only
to use similar sets of machines, regardless of their operational sequences. Thus, in
practice the cellular layout and, therefore, the cellular manufacturing seem to be
very promising as they make a rather general assumption about the structure of a
manufacturing system, while the other approaches either ignore this structure (e.g.,
the random layout) or assume too much structure (e.g., the fractal layout) which is
more likely to be absent.

Fig. 1.1 Relevance of layouts with regard to the product mix (by the number of part types we mean
the number of different processing sequences)
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The main advantages of the cellular manufacturing (CM) can be summarized as
follows (see, e.g., [90, 153, 157]):

• Reduction of material handling costs and time. In CM almost each part is
processed in a single (small) cell. Thus, all flows are concentrated in the cells
and the traveling distances are reduced.

• Reduction of throughput times. Reduced traveling times and transfer of each
part to the next machine once it is processed reduce the total time spent in the
manufacturing system.

• Reduction of set-up time. A manufacturing cell produces similar parts. Thus, the
settings for the parts can also be similar and the time needed to change setups is
saved.

• Reduction of tooling requirements. See the previous point.
• Reduction of work-in-process (WIP) and finished goods inventories. It was

shown in [8] that WIP could be reduced by 50 % if the set-up time is cut in
half. This reduction also decreases the order delivery time.

• Reduction of space requirements. Reduced WIP and tooling requirements allow
saving some space. This, in turn, can be used to shift machines closer to each
other and further decrease material handling costs.

• Reduction in management efforts (scheduling, planning, etc.). Small and almost
independent subsystems (cells) are substantially easier to manage than the whole
large manufacturing system.

• Reduction of wasted parts percentage and improved product quality. Localized
and specialized cells force the expertise to be concentrated. Small cells imply
faster feedback if something goes wrong with a part.

However, CM has a number of negative side effects (see, e.g., [90, 153]):

• Substantial implementation costs: identification of optimal manufacturing cells
and part families, physical reorganization (moving machines), additional cross-
training of the personnel, etc.

• Difficulties in workload balancing and lack of robustness. Each machine can be
important for the functioning of the whole cell, if it breaks the cell can become
inoperable. This can be partially tolerated by cross-training, but the number of
workers may become a constraint.

• Broad expertise. Each cell contains machines of different types and workers need
a broader “specialization.”

• Synchronization of parts for further assembly. Additional measures and resources
(e.g., storage space) are needed to handle parts that are processed in different cells
but must be assembled together.

• Lower utilization of the machines. Independence of the cells can be improved
by introducing additional machines, but the load of them decreases. Moreover,
if two or more cells contain equivalent machines, the load balancing problem
may occur when one of such machines is underutilized while the other one is
overloaded.

• Lack of flexibility. Changes of the product mix can completely destroy
independence of the cells.
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Despite these disadvantages, CM is assumed to improve the performance of the
manufacturing system in case of high-variety–low-volume environment and, thus,
is an important issue in industrial engineering. At the same time, it is clear that
transition to the CM should be designed very carefully in order to reduce possible
drawbacks. Finally, it is extremely important to understand that the benefits of cel-
lular layout on its own are restricted and it rather provides a possibility of improve-
ment. That is why a positive effect can be achieved only if CM is complemented by
proper management and planning.

1.3 (Dis)similarity and Performance Measures

As mentioned in Sect. 1.1, CF is aimed at obtaining independent cells and this cel-
lular decomposition becomes possible by exploiting similarities in the manufactu-
ring processes of different parts. Thus, to construct an algorithm for solving the CF
problem, one usually needs to define a similarity measure for parts and or machines.
The notion of similarity measure is very important for the problem under consider-
ation. In particular, after introducing a (dis)similarity measure for machines, one
can restrict himself to considering only machine-machine relations. This substan-
tially reduces the problem size, taking into account that the number of machines is
usually quite limited, while the number of parts can be magnitudes larger. For ex-
ample, Park and Suresh [122] consider an instance with 64 machine types and 4,415
parts; we experienced instances with 30. . .60 machine types and 5,733. . .7,563 parts
in practice. Alongside with a possibility for problem size reduction, (dis)similarity
measures provide certain flexibility to the model—they may incorporate a variety of
manufacturing factors, as will be shown in the latter chapters of this thesis.

After the CF problem is solved it is necessary to estimate the effectiveness of
the obtained cellular decomposition, i.e., a solution performance measure is needed.
The following subsections provide an overview and analysis of the existing simi-
larity and performance measures; a good analysis of similarities and related aspects
can be found in [119].

1.3.1 Similarities and Dissimilarities: An Overview

It is not hard to understand that in case of independent cells manufacturing processes
of any two parts not assigned to the same cell differ a lot, i.e., these parts do not use
the same machine types. Note that this does not automatically imply that any two
parts within one cell are very similar (use mainly the same machines). To illustrate
this, consider the following example.

Let the manufacturing system be represented by the following MPIM:



8 1 The Problem of Cell Formation: Ideas and Their Applications

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0
1 1 0 0 0 0 0
1 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Suppose one is interested in two cells. It is easy to see that the cells can be as follows:

• Cell 1: machines 1,2,3,4; parts 1,2,3,4
• Cell 2: machines 5,6; parts 5,6,7

It is easy to see that these cells are completely independent. However, parts 2 and 3
from cell 1 as well as parts 5 and 7 from cell 2 do not have similar manufacturing
processes (they use completely different machines) even though they are in the same
cell.

Thus, the goal of the CF problem is to maximize the dissimilarities between cells
and its objective is of the general form

maxF(d p(i, j) · xp
i j | i, j = 1 . . .r), (1.1)

where F(.) : Rr×r → R is some functional, d p(i, j) is the dissimilarity between
manufacturing processes of parts i and j and xp

i j are Boolean decision variables that
are equal to 1 if and only if parts i and j are in different cells. In fact, F(.) can be
linear in x-variables, i.e., of the form F(d p(i, j) · xp

i j | i, j = 1 . . . r) = ∑i, j d p(i, j)xp
i j ,

due to the following lemma.

Lemma 1.1. If one aims at the most independent cells, then the objective function
of the CF problem is essentially linear.

Proof. Let us consider a specific set of cells. Observe that the impact of each part is
independent of the impacts of the other parts. This is because of the fact that if some
part has to move from one cell to another this adds exactly one intercell movement,
irrespective of the amount of intercell movement induced by other parts. This means
that the total impact of all parts is just a sum of impacts of each part. ��

This lemma will be illustrated in the following chapters of the book: all the pro-
posed models have linear objective functions, irrespective of the particular objective
for the cell formation, and despite the fact that some approaches in literature use
non-linear objective functions.

Thus, the problem of cell formation can be posed as one of maximizing the sum
of dissimilarities between parts. Once parts are grouped into the product families,
machines can be efficiently grouped into the cells just by assigning each machine
independently to the cell where it is most needed. However, this way of dealing
with the problem replaces an m× r MPIM by an r× r part-part dissimilarity matrix,
thus increasing the problem size. Yet, there exists a completely symmetric way of
dealing with the cell formation problem: instead of differences between parts one
can consider differences between machines. If one denotes by dm(i, j) difference
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between machines i and j based on the difference between sets of parts that need
these machines, then the objective becomes

max∑
i, j

dm(i, j)xm
i j , (1.2)

where xm
i j—Boolean variables equal to 1 if and only if machines i and j are in dif-

ferent cells.
From the CF perspective, dissimilarities dm(i, j) must depend on the MPIM and,

as will be shown later, on the sequence in which a part visits machines. In the sim-
plest case when operational sequences are ignored each machine is completely char-
acterized by a Boolean vector (a row in the MPIM). Thus, the dissimilarities dm(i, j)
can be defined as some distance between the corresponding Boolean vectors (rows
i and j): from Euclidean or Hamming distance to any sophisticated measure.

It should be mentioned that the problem of the form max∑i, j d(i, j)xi j can be
equivalently transformed:

max∑i, j d(i, j)xi j =

∑i, j d(i, j)−min∑i, j d(i, j)(1− xi j) =

∑i, j d(i, j)+max∑i, j(−d(i, j))(1− xi j) =
c+max∑i, j s(i, j)(1− xi j)�
min∑i, j s(i, j)xi j

where the coefficients s(i, j) = −d(i, j) are called similarities and c is some con-
stant. Thus the problem of cell formation can be formulated as a maximization of
the sum of similarities within each cell (most of the similarity-based approaches in
literature use this form) or as a minimization of similarities between cells.

Clearly, a definition of the similarity measure is ambiguous, like that of the dis-
similarity measure. Even though several similarity measures were proposed in liter-
ature (an overview can be found in [119, 140, 164]), to the best of our knowledge for
none of them, there exists a strict proof of adequateness. Rather, it was shown em-
pirically that they work well in some cases. Thus, the issue of formulating a strictly
reasoned (dis)similarity measure remains open. In the following chapters several
similarity measures reflecting different objectives will be proposed and explained.

1.3.2 Performance Measures: Are They Different

As cell formation is aimed at making independent manufacturing cells, an amount
of intercell movement, i.e., an amount of parts that must be processed in more than
one cell, is a natural performance measure of the cellular decomposition.3 We used
the term “amount of parts” to underline that one can be interested in minimizing not

3 More precisely, the amount of parts traveling between cells. A single part may be processed in
only two cells, but if it has to travel several times between the cells, then the intercell movement is
larger. This issue is often ignored, especially if the input data is represented by a MPIM.
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just the number of parts traveling between cells but also their mass or volume, etc.
In case of functional grouping with a binary input matrix this amount is exactly the
number of ones outside the diagonal blocks and is denoted by ne—the number of
exceptional elements. Thus, in the simplest case ne can be used as a performance
measure of the cellular decomposition.

Another characteristic often used to estimate the performance is the number of
voids nv. In terms of block-diagonal matrices it is just the number of zeroes within
diagonal blocks. Let us use the term operation to denote a single processing step of
one part, i.e., processing of some part by some machine. Now, in terms of opera-
tions nv means the number of operations that can be performed without increasing
intercell movement but are not realized (are not needed).

Clearly, minimum values of ne and nv depend on the number of cells p and the
following lemma shows an important property of these values.

Lemma 1.2. The following two properties take place:

(i) Function minne(p) is nondecreasing in p
(ii) Function minnv(p) is nonincreasing in p

where minima are taken over all decompositions into p nonempty cells (i.e., each
cell performs at least one operation).

Proof. We will start from part (i). Fix the input data, denote n∗e(p) = minne(p)
and consider two optimal (with respect to ne) decompositions into p and p + 1
cells, respectively. The numbers of exceptional elements of these decompositions
are n∗e(p) and n∗e(p+1). Now, consider a decomposition with p+1 cells and merge
any two cells. This leads to p cells and the number of exceptions n′e(p) such that
n′e(p) ≤ n∗(p+ 1). On the other hand, n∗e(p) ≤ n′e(p) holds, just by minimality of
the latter. Thus, we have n∗e(p) ≤ n′e(p) ≤ n∗e(p+ 1) for arbitrary number of cells
p = 1, . . . ,m.

A similar reasoning can be used to prove part (ii). ��
Along with ne and nv the proposed literature performance measures also use the

total number of operations n1 (the total number of ones in the MPIM), purely for
normalization purpose. In fact, if the desired number of cells is fixed, ne is the best
performance measure as this value completely reflects the goal of cell formation—
decomposition into independent cells. However, if the number of cells is also a vari-
able, then any algorithm minimizing only ne in practical cases will produce a single
cell, as usually perfect cells are not possible and the smallest amount of intercell
movement equal to 0 is achieved by a single cell that contains the whole manufactu-
ring system. In the capacitated versions of the cell formation problem constraints on
the cell size, workload, etc. ensure reasonable cells. However, in the uncapacitated
approaches to avoid this effect, nv was artificially introduced into the objective. Tak-
ing into account that nv has an opposite behavior to ne (see Lemma 1.2), this will
force the number of cells to attain some reasonable value. As nv is not connected to
the original goal of cell formation, a number of ways of introducing it into the per-
formance measure were proposed (an overview can be found in [83, 135]). Yet, sim-
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ilarly to the situation with the (dis)similarity measures, there is no strict theoretical
explanation why one is better than the other.

We would like to finish this section with some examples of the performance
measures most widely used in literature:

• ne [3]
• ne + nv [21]
• GCI = 1− ne

n1
—group capability index [78]

• τ = n1−ne
n1+nv

—grouping efficacy [2, 3, 87]

• η = α n1−ne
n1−ne+nv

+(1−α) mr−n1−nv
mr−n1−nv−ne

—grouping efficiency [2, 7, 35]

where α ∈ [0,1]—weighting factor, usually set to 0.5. Another example of a per-
formance measure is the amount of intercell movement. It will be shown in the
following chapters that, generally speaking, it is not the same as the number of ex-
ceptions ne. The first two measures in the list must be minimized, while GCI, τ ,
and η maximized. Some of these measures will be used in the following chapters in
order to compare the performance of several approaches.

An overview of performance measures and their empirical evaluation can be
found in [83, 135]. We would like to conclude this section by saying that all the
available performance measures are either proportional to the number of excep-
tions or combine the numbers of exceptions and voids (usually in a non-linear way).
Furthermore, it can be shown (see [15]) that under some restrictions most of the
mentioned above performance measures are equivalent.

There exist only two fundamental classes of performance measures: those
aimed at minimizing only intercell relations and those minimizing inter-
and maximizing intracell relations simultaneously.

1.4 An Overview of the Existing Models and Approaches

Alongside with several similarity and performance measures, there exist a great
number of approaches to solving the cell formation problem. From the most general
perspective they can be classified as follows:

• Clustering based on energy functions
• Similarity based hierarchical clustering
• Fuzzy logic methods
• Genetic algorithms and simulated annealing
• Neural networks
• Graph-theoretic approaches
• Mixed-integer linear programming (MILP)
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It should be mentioned that all the groups of approaches except the last two are in-
trinsically heuristic; see [104] for a comparative study. On the contrary, the CF prob-
lem can be modelled exactly in terms of graph partitioning or MILP, but these lead
to computationally intractable (NP-hard) problems, thus forcing the use of heuristic
solution methods.

Below we give a brief overview of all the mentioned classes of approaches to cell
formation in order to provide the reader an impression about all kinds of algorithmic
tools applied to CF. The earliest iterative approaches representing ad hoc algorithms
are described in detail, while for those based on standard techniques (e.g., neural
networks or genetic algorithms) only the main peculiarities are mentioned. Such a
level of detalization, as we hope, will be useful especially for those not familiar with
the cell formation problem and the approaches involved.

1.4.1 Bond Energy Analysis

The idea of using the bond energy of the cells as a criterion of clustering perfor-
mance was first used by McCormick et al. [103] in their bond energy algorithm
(BEA). BEA is aimed at identifying clusters that are present in complex data arrays
by permuting rows and columns of the input data matrix in such a way as to push the
numerically larger elements together. The measure of clustering effectiveness (ME)
used in BEA was devised so that an array that possesses dense blocks of numerically
large elements will have a large ME when compared to the same array whose rows
and columns have been permuted so that its numerically large elements are more
uniformly distributed. This measure is the sum of the bond strengths, where bond
strength is defined as a product of a pair of nearest-neighbor elements:

ME(A) =
1
2

M

∑
i=1

N

∑
j=1

ai j(ai, j+1 + ai, j−1 + ai+1, j + ai−1, j), (1.3)

where A—any M×N array with nonnegative elements. The measure defined in such
a way has the following theoretical and computational advantages [103]:

• The ME is applicable to arrays of any size and shape; the only requirement is
nonnegativity of elements.

• Since the vertical (horizontal) bonds are unaffected by the interchanging of
columns (rows), the ME decomposes into two parts: one dependent only on row
permutations and the other dependent only on column permutations. Thus, ME
can be optimized in two phases by finding the optimal column permutation and
then the optimal row permutation (or vice versa).

• Since the contribution to the ME from any column (or row) is only affected by
the two adjacent columns (rows), i.e., only local information is used, the ME
optimization leads to a sequential suboptimal procedure.
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The proposed in [103] algorithm is as follows:

1. Place one of the columns arbitrarily. Set i = 1.
2. Try placing individually each of the remaining N− i columns in each of the i+1

possible positions and compute their contributions to ME. Place the column into
the position that gives the highest contribution. Increment i by 1 and repeat until
i = N.

3. After arranging all the columns do the same procedure for rows. (This part is
unnecessary in case of symmetric input matrix.)

The main characteristics of the algorithm are as follows:

• Computational time depends only on the size of input matrix and has order of
O(M2N +N2M).

• The algorithm always leads to a block-diagonal form of the matrix if it can be
obtained by row and column permutations.

• The final ordering is independent of the order in which rows (columns) are given
and depends only on the initial row (column).

The described representation resembles the Quadratic Assignment problem (see,
e.g., [121]) that was also applied to CF by a number of researchers.

King [84] proposed a more sophisticated rank order clustering (ROC) algorithm
that solves the particular case of binary input matrix and exploits the binary nature
of input. The algorithm is as follows:

1. Consider each row of the machine-parts matrix as a binary number. Rank the
rows in order of decreasing binary value. Rows with the same value should arbi-
trarily be ranked in the same order in which they appear in their current matrix
(from top to bottom).

2. Check if the current matrix row order (numbering from top to bottom) and the
rank order just calculated coincide. If yes, go to (6). If no, go to (3).

3. Rearrange the machine-part matrix starting with the first row by placing the rows
in decreasing rank order. Rank columns in decreasing binary value. Columns
with the same value should be arbitrarily ranked in the order in which they appear
in the current matrix (reading from left to right).

4. Check if the current matrix column order and the rank order just calculated are
the same. If yes, go to (6). If no, go to (5).

5. Rearrange the machine-part matrix starting with the first column by placing
columns in decreasing rank order. Go to (1).

6. Stop.

King claimed that his ROC algorithm always finds a block-diagonal structure if it
exists and requires much less computer time than McCormick’s et al. technique.
However, it was shown in [36] that ROC can fail if the matrix has almost block-
diagonal form (two exceptional elements in a 20× 35 matrix). Another peculiarity
of ROC is that it clusters machines and parts simultaneously while most other ap-
proaches first cluster machines and then derive part families.
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The modification of ROC proposed by Chandrasekharan and Rajagopalan [36]
MODROC has better performance in case of ill-structured data and consists of three
stages:

• Stage 1. ROC is applied on the rows and columns of the initial matrix repeatedly
in two iterations. This results in an ordered matrix that has the following proper-
ties. If the first k elements are ones in the ith row, then at least the first k elements
are ones in the (i− 1)th row. This is also true for columns.

• Stage 2. Identification of perfect blocks (an all ones submatrix).
• Stage 3. Hierarchical clustering of blocks.

The last approach based on bond energy that we consider here is used in the
direct clustering algorithm (DCA) by Chan and Milner [33]. Like the previous ones,
DCA iteratively permutes rows and columns such that the nonzero entries of the
input matrix are grouped into dense clusters and can be outlined as follows:

1. Count the number K of nonzero cells in each column and in each row. Rearrange
the machine-part matrix with columns in decreasing and rows in increasing order
of K.

2. Starting with the first column in the matrix, transfer the rows which have nonzero
entries in this column to the top of the matrix. Repeat the procedure with the other
columns, until all the rows are rearranged.

3. Check if the matrix has changed from the previous step. If yes, go to (4). If no,
go to (6).

4. Starting with the first row of the matrix, transfer columns that have nonzero en-
tries in this row to the leftmost position in the matrix. Repeat the procedure for
all the other rows, until all the columns are rearranged.

5. Check if the matrix has changed from the previous step. If yes, go to (2). If no,
go to (6).

6. Stop.

This algorithm can work with any starting form of the machine-part matrix. The
iterative procedure of DCA converges after a limited number of iterations [33] and
unlike all the mentioned above approaches the result is always the same, irrespective
of the initial permutation of rows and columns.

The above mentioned algorithms are reasonably fast but involve intuitive proce-
dures that cannot guarantee optimality.

1.4.2 Iterative Approaches Based on Similarity Measures

As follows from the title, all these approaches need some similarity measure S(., .)
to be defined for any pair of machines (and parts). Several similarity measures have
been considered and a particular choice was usually made either based on experi-
mental evaluation of possible candidates or on the desired properties of the manu-
facturing cells to be obtained.
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One of the first papers considering an iterative hierarchical clustering approach
based on similarity measures is by McAuley [102]. He used a single linkage cluster-
ing algorithm (SLC) in which the similarity measure between two clusters is defined
as the maximum of the machine similarities between machine pairs where machines
of the pair are in different clusters. In a formalized form, the measure of similarity
S(K1,K2) between two clusters K1 and K2 is defined as

S(K1,K2) = max
i1∈K1,i2∈K2

S(i1, i2). (1.4)

The idea of the hierarchical clustering algorithm is very simple. At the beginning
each machine is considered as one separate cluster, then iteratively two clusters
with the highest similarity are merged into one bigger cluster. Usually, a threshold
value is introduced and merges occur only if similarity between a particular pair
of clusters exceeds this threshold. The result of such clustering algorithms can be
represented in a form of dendrogram (tree), nodes of which represent machine cells
at different levels of detail. One of the main disadvantages of such procedure is the
so-called chaining effect: clusters that have low similarity for most of the machine
pairs can be merged if there exist a single pair of machines that are similar enough.
By its essence hierarchical clustering is equivalent to the approach based on the
minimum spanning tree (MST) problem (to be discussed in Sect. 1.4.6).

Numerous modifications were proposed to avoid chaining effect. These include
complete linkage clustering (CLC), average linkage clustering (ALC), and linear
clustering algorithm (LCC). The main difference between all of them is the defi-
nition of similarity measure for clusters. In case of CLC the similarity S(K1,K2)
between two clusters K1 and K2 is defined as

S(K1,K2) = min
i1∈K1,i2∈K2

S(i1, i2), (1.5)

while for ALC it is given as

S(K1,K2) =
1

|K1||K2| ∑
i1∈K1,i2∈K2

S(i1, i2) (1.6)

where |K1| and |K2| are cardinalities of the corresponding clusters. The LCC algo-
rithm is slightly more sophisticated and can be described as follows [156]:

• Step 1. Select the highest similarity value that has not yet been considered in the
clustering process. Assume it is the similarity for machine pair (i1, i2). One of
four cases occurs:

(a) Neither machine i1 nor i2 has yet been assigned to a machine cell. In this case
a new cell is created containing these two machines.

(b) One of the machines is already assigned to some cell. In this case the second
machine is added to the same cell.

(c) Machines i1 and i2 are already assigned to the same cell. Nothing needs to be
done.
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(d) Machines i1 and i2 are already assigned to different cells. The similarity be-
tween them implies that the two cells can be merged in later processing. This
pair is marked.

• Step 2. Repeat Step 1. Go to Step 3 when all machines have been assigned to
cells.

• Step 3. Steps 1 and 2 create the maximum number of clusters that would fit the
situation defined by the input matrix. If there are no bottleneck parts created by
this clustering, then the solution is optimal. However, this solution may contain
more cells than it is desired. If so, go to Step 4.

• Step 4. Starting with the largest commonality score that was marked at Step 1d
start joining the cells. If at some step the resulting cell is too large or does not
conform with some other requirements, then do not perform the join operation.

• Step 5. Repeat Step 4 until all predefined constraints on number of cells, their
size, etc. are satisfied.

The authors claim [156] that the algorithm has linear complexity.
Likewise the previous group of algorithms, iterative approaches are reasonably

fast but involve intuitive procedures that cannot guarantee optimality.

1.4.3 Fuzzy Logic Approaches

The main assumption behind all the above mentioned approaches and those based
on graph partitioning and mathematical programming is that the part families are
mutually exclusive and collectively exhaustive, i.e., each part can only belong to
one part family. The absence of ideal block-diagonal structure of the MPIM for
most real manufacturing systems, as well as uncertainties (e.g., about future part
demands) and ambiguities (e.g., some part has half of operations within one cell and
other half in another), had lead to an idea of using fuzzy logic (instead of classical
one) in cell formation. From a qualitative point of view such changes mean that
classical Boolean decisions (e.g., some machine is either included into a particular
cell or not) are replaced by fuzzy ones (a machine is likely to be included into a
particular cell with some likelihood coefficient μ ∈ [0;1]). The most important fact
is that fuzzy arithmetic can be plugged into any existing algorithm for cell formation
by replacing Boolean variables by continuous ones defined on the interval [0;1]
and classical logic operations by fuzzy ones (e.g., conjunction can be replaced by
min, disjunction by max and negation ¬x by 1− x). At the output, for any machine
(part), a vector of inclusion coefficients for any cell (part family) is obtained and the
machine (part) is assigned to the cell (part family) that corresponds to the highest
coefficient. We do not give a detailed description of successful implementations of
fuzzy logic approach for the sake of shortness as fuzzy logic operations lead to quite
extensive notations. Instead, we would like to refer the reader to [42, 62, 113, 162]
where relevant algorithms are explained in detail and examples are given. Of certain
interest is a paper by Suresh et al. [148] where fuzzy logic approach is used within
a framework of neural networks.
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1.4.4 Genetic Algorithms and Simulated Annealing

Genetic algorithms (GA) and simulated annealing (SA) are quite general meta-
heuristics that proved to be useful in a wide variety of optimization problems (in-
cluding clustering and classification). Thus, their application to a field of cell for-
mation is quite natural.

Authors usually start with a non-linear objective function and some initial config-
uration of machine cells, and then apply an evolutionary procedure to optimize the
value of the objective [1, 161]. For example, Adil and Rajamani [1] use an objective
function that contains two non-linear terms reflecting intra- and intercell movement
costs. The SA that they use has the following main steps. Initially, the number of
cells is set equal to the number of machines and each machine is assigned to a sepa-
rate cell. This is an initial configuration. At each subsequent iteration, one machine
is moved from the current cell to another in order to get a new machine assign-
ment. The machine to be moved and the cell for it are chosen randomly and after
the movement the objective value is updated for the new configuration. The gener-
ated solution is accepted if the objective value is improved. If the objective value is
not improved, then the solution is accepted with some probability depending on a
temperature that is high at the beginning and decreases during the execution of the
algorithm. Such setting ensures that a large proportion of generated solutions are
accepted at the beginning and local optima can be avoided at early stages. Decreas-
ing temperature allows the algorithm to stabilize in a vicinity of some local (and,
hopefully, global) optimum. At each cooling temperature many moves are tried and
the algorithm stops when predefined conditions are met.

Genetic algorithms are applied to cell formation in the same spirit and differ from
SA only in the details of the evolutionary optimization procedure. A typical genetic
algorithm starts with an initial population (pool) containing a predefined number of
feasible solutions to the cell formation problem (decompositions into cells). Then,
at each iteration some fixed number of the worst solutions are deleted from the pop-
ulation and the same number of new solutions is added. These new solutions are ob-
tained in one of two ways: by small modifications of some solution already present
in the current population (mutation) or by joining parts of two solutions (crossover).
This procedure is repeated iteratively until some stopping criterion is met. The size
of an initial population, the proportion of deleted solutions, probabilities of mutation
and crossover are parameters of the GA. It should be mentioned that there are no
provably good approaches for finding optimal values of these parameters (the same
is true for the parameters of SA) and in practice they are found on a trial-and-error
basis. Applications of GA to the cell formation can be found in [57, 97]. Mavridou
and Pardalos [101] consider an application of both GA and SA to a related facility
layout problem.

A number of other metaheuristics, tabu search [31] being the most well-known,
were also applied to the CF problem.
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1.4.5 Neural Network Approaches

Flexibility and universality of artificial neural networks (ANN), as well as presence
of a rich choice of architectures and learning rules, inspired their application to the
cell formation problem. All the ANN-based approaches can be classified into two
groups: those using supervised and unsupervised learning. The first group typically
uses either feed-forward perceptrons and backpropagation learning rule (see, e.g.,
[80]) or Hopfield-like feedback network (see, e.g., [93]). This group needs some
learning set to be defined, i.e., a typical representative of each machine cell and
part family should be chosen. Respectively, the desired number of cells should be
known. Typical representatives are usually found by some heuristic procedure.

The neural networks from the second group are capable of finding the cluster
structure of the input data without any additional knowledge about typical represen-
tatives and some architectures do not even need the number of clusters to be given.
This group of ANN-based approaches includes the Carpenter–Grossberg neural net-
work [81], so-called self-organizing maps [38, 73], competitive neural networks
[99, 152], and adaptive resonance theory (ART) networks [148, 163].

ANN-based approaches also differ in the type of input data they use: some deal
directly with binary machine-part relations, while others perform clustering based
on similarities.

1.4.6 Graph-Theoretic Approaches

One of the examples of applying graph theoretic approach to the cell formation can
be found in [126]. For a given manufacturing system authors construct a graph with
each vertex representing a machine. An arc between two machines i and j represents
the “strength” of the relationship between the machines. These “strengths” can be
defined as similarity coefficients used in approaches from Sect. 1.4.2. Given this
weighted graph, cliques can be found (a clique is a maximal complete subgraph)
and these cliques are merged into production cells such that the relationship within
a cell is “strong” (a sum of all pairwise similarities within a cell is large) and inter-
cell relationships are “weak.” Once production cells are formed, a set of rules are
used to assign parts to cells. This approach works especially well if the number of
machines is small, because the number of possible cliques increases exponentially
as the number of vertices in a graph (a number of machines) increases.

In [72] an algorithm based on the MST problem is considered. As in the previ-
ous case, cell formation instance can be encoded in a weighted graph where each
vertex corresponds to some machine and weights are dissimilarities between cor-
responding machines. Suppose an MST is found in such a graph. Deleting p− 1
heaviest edges from the MST produces p subtrees that can be interpreted as manu-
facturing cells. Such a procedure ensures that dissimilarity between machines within
a cell is minimal. In [116] a worst-case analysis of the MST approach is performed.
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Ng [115] uses the bond energy formulation of the problem and then shows that it
can be transformed into the rectilinear traveling salesman problem (TSP) and also
provides a worst-case bound.

Finally, one of the most widely used graph-theoretic approaches to cell formation
is based on the PMP. This approach is closely related to the two approaches men-
tioned above. While the first approach suggests decomposition of the graph into
cliques and the second one into spanning trees, the approach based on the PMP
seeks for the optimal decomposition of the graph into trees of depth one, i.e., trees
consisting of a root and some leaves without internal nodes. A detailed description
of the approach can be found in [7, 48, 155, 159, 160] and in the next chapter.

The use of similarity measures is typical for this group of approaches. For a
more detailed overview of graph-theoretic approaches to cell formation we refer the
reader to [34].

1.4.7 MILP Based Approaches

MILP is quite a broad and well-studied area. Many optimization problems, includ-
ing those of cell formation, have been translated into the MILP format due to a
simple and quite general structure of the latter. In its most general form an MILP
problem can be expressed as:

min
{

cTx | Ax≤ b; x ∈ R
n
+; xi ∈ Z, i ∈U

}
,

where x is a vector of variables, A is a real-valued matrix, b and c are real-valued
vectors; the dimensions of A, b, and c must be such that all the multiplications make
sense. U is an index set for integer variables.

A number of researchers start from an explicit mixed-integer programming or
MILP formulation of the cell formation problem (and linearize the formulation if
necessary). For example, [39] define the problem as follows:

∑
i

∑
j
∑
k

c jai jx jk(1− yik)+∑
i

∑
j
∑
k

di j(1− ai j)x jkyik →min (1.7)

s.t. ∑
k

x jk = 1 ∀ j, (1.8)

∑
k

yik = 1 ∀i, (1.9)

ysk + ytk ≤ 1 ∀k, (s, t) ∈ S1, (1.10)

ysk− ytk = 0 ∀k, (s, t) ∈ S2, (1.11)

Mmin ≤∑
i

yik ≤Mmax ∀k, (1.12)

x jk ∈ [0;1] ∀ j,k, (1.13)

yik ∈ {0,1} ∀i,k, (1.14)
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where ai j = 0 if machine i is not required for part j and 0 < ai j ≤ 1 otherwise,
c j—intercell movement costs for part j, di j—cost of part j not utilizing machine i,
Mmin—minimum number of machines in a cell, Mmax—maximum number of ma-
chines in a cell, S1—set of machine pairs that cannot be located in the same cell,
S2—set of machine pairs that must be located in the same cell. Decision variables
x jk and yik have the following meaning:

x jk = 0 part j is not processed in cell k
0 < x jk ≤ 1 part j is processed in cell k

(1.15)

yik =

{
1, machine i is in cell k
0, otherwise

(1.16)

The first term in the objective function (1.7) represents the total costs of intercell
movement and the second term represents the total costs of resource underutiliza-
tion. Constraint (1.8) ensures allocation of each part to a cell. Constraints (1.9) and
(1.14) ensure that each machine can only be assigned to one cell. Constraint (1.10)
states that the machine pairs included in S1 cannot be placed in the same cell. Sim-
ilarly, constraint (1.11) forces machine pairs from S2 to be placed in the same cell.
Finally, constraint (1.12) specifies the minimum and maximum number of machines
allowed in any cell. As the mentioned model has a non-linear objective function
(1.7), it was linearized by introducing new variables zi jk = x jkyik and Chen and Her-
agu’s MILP model is

∑
i

∑
j
∑
k

c jai jx jk +∑
i

∑
j
∑
k

(di j(1− ai j)− c jai j)zi jk, (1.17)

s.t., (1.18)

(1.8)− (1.14) (1.19)

zi jk ≤ x jk ∀i, j,k, (1.20)

zi jk ≤ yik ∀i, j,k, (1.21)

zi jk ∈ [0;1] ∀i, j,k. (1.22)

It should be mentioned that the number of integer (Boolean) variables in the model
depends on the number of machines, parts, and cells to be made. This means that
for realistic instances having hundreds of parts the formulation becomes huge and
hardly solvable. On the contrary, the approach from [142] deals only with machine-
machine relations.

Another MILP formulation that includes a wider range of practically motivated
constraints can be found in [141]; however due to its size it is hardly tractable for
moderate- and large-size instances. Note also that all the models based on graph
theory can be (and usually are) reformulated in terms of MILP. This is done in order
to avoid the need of developing special algorithms for handling the model.

As MILP is computationally intractable (NP-hard) in general, heuristic methods
were used to solve the obtained problems. However, in the next chapter we will
show that there exists a compact MILP formulation based on the PMP that can be
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solved exactly by a general-purpose MILP solver just due to its compactness (small
size in terms of the number of variables and constraints).

We would like to conclude this section by saying that most classes of
approaches (except MILP) rely on algorithms for which addition of con-
straints is problematic. For example, for genetic algorithms it is easy to
check if the generated solution satisfies additional constraints but gener-
ating a feasible solution may be challenging (the algorithm makes sense
only if some feasible solutions are present in the pool). Thus, alongside
with tractability and optimality, the issue of flexibility makes practical
applicability of many approaches questionable.

1.5 Conclusions and the Outline of This Book

Cellular decomposition of the manufacturing system has a substantial impact on its
efficiency. This is caused by both explicit and implicit factors. First of all, cellular
layout explicitly improves the products flow, reduces handling and cross-training
costs and delivery times. At the same time, the implicit impact of cellular layout
is due to the fact that smaller systems are easier to manage. For example, taking
into account NP-hardness of most scheduling problems, switching from one big
manufacturing system to few small subsystems can make the difference between
impossibility and possibility of making an optimal schedule.

Due to vast benefits proposed by cellular manufacturing, the cell formation prob-
lem has been extensively studied for more than 50 years. This resulted in a wide
variety of approaches as well as modifications of the problem. However, to the best
of our knowledge, there have been very few attempts of solving the problem to
optimality and almost all the proposed models for CF problem are either of intu-
itive (heuristic) nature or are solved by heuristic procedures. This means that the
obtained solutions incorporate two types of errors: an intrinsic error of modeling
and a computational error induced by a heuristic solution procedure. In fact, for
an overwhelming majority of the existing approaches, no worst-case performance
guarantees are available and it was only shown that they give satisfactory results
for some artificial instances (as optimal solutions to the real life instances are usu-
ally not known). Moreover, most solution algorithms are lacking not only a strict
theoretical analysis but also such basic concepts as (dis)similarity and performance
measures. One may conclude that despite its long history the theoretical and applied
sides of the CF problem have certain gaps that we are going to fill in the following
chapters.

The main theme of this book can be formulated as follows: design of an applica-
ble in practice approaches (models) for solving the cell formation problem. By prac-
tical applicability we mean that the approach (model) must satisfy certain criteria:
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• Guaranteed solution quality
• Reasonable running times for real-life instances
• Flexibility: possibility of adding additional constraints and/or objectives

Taking these requirements into account, the methodological grounds of the pre-
sented here research are as follows. Based on the observation that there is a promi-
nent imbalance between the number of machines and parts (dozens vs. thousands)
we conclude that an efficient model uses a (dis)similarity measure and works with
machine-machine relations first making machine cells and then assigning parts to
the cells made. In order to comply with the flexibility requirement, we will consider
the models expressed in terms of mixed-integer linear programmes. Having quite
a general and simple form, MILP models can be extended by any number of linear
constraints without affecting the general structure of the problem. This choice of
a model format can be further motivated by the fact that MILP is a well-studied
area and there exist a number of commercial (e.g., CPLEX, Xpress-MP) and non-
commercial (e.g., GLPK) solvers. Contemporary solvers are very efficient and able
to handle instances with thousands of variables and constraints. Furthermore, the
use of available solvers makes the implementation of the models much easier by
avoiding the need of developing special algorithms and programming them. How-
ever, we do not restrict ourselves to MILP-based models and consider two purely
combinatorial techniques in the last chapters.

In the following chapters we propose two new models based on the p-median and
multicut problems. The first model is an efficient heuristic having a restricted mod-
eling error and a zero computational error. The second model solves the problem
exactly; however, due to its computational complexity only instances of a moderate
size (in terms of the number of machines) can be handled. Yet, we demonstrate the
applicability of this model by an industrial case. In Chap. 6 a completely different
pattern-based model is proposed. This purely combinatorial model represents an ef-
ficient heuristic that works better if the cell sizes are fixed. In other words, unlike
the PMP- and MINpCUT-based models, stricter constraints on the cell sizes make
the pattern-based model easier to solve. In Chap. 7 we consider a possibility of solv-
ing cell formation problems with two objectives and propose a branch-and-bound
scheme for computing the set of Pareto optimal solutions. Besides the five models,
we propose several similarity measures exactly reflecting possible objectives of cell
formation.

The rest of the book is organized as follows. Chapter 2 provides an insight into
the PMP and its properties. An efficient model based on the pseudo-Boolean for-
mulation of the PMP is presented; its computational possibilities are discussed and
demonstrated by means of extensive experiments.

Chapter 3 is focused on the PMP-based model for cell formation. It is shown that
PMP-based models, though being an approximation to the cell formation problem,
provide high-quality solutions and outperform other contemporary heuristics. At
the same time, if an efficient PMP formulation (like the one discussed in Chap. 2)
is used, the computing times are negligibly small even for the largest CF instances
occurring in practice.
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Chapter 4 deals with an exact model for cell formation. It is shown that the latter
is equivalent to the minimum multicut problem (that we abbreviate as MINpCUT).
Two MILP formulations are also presented and their effectiveness is demonstrated
by means of computational experiments with real industrial data. Further, it is shown
that a reasonable similarity measure corresponds to the amount of parts traveling di-
rectly between a pair of machines; therefore, sequencing information is of particular
importance for optimal cell formation.

Chapter 5 discusses appropriateness of the standard objective (minimization of
parts flow between cells) and considers other possible objectives for cell formation,
as well as the ways of their introduction into the proposed models (first of all, via
the similarity measure).

Chapter 6 proposes an alternative pattern-based heuristic for the CF problem
that relies on the well-known Assignment problem. The effectiveness of this model
is confirmed by experiments with 35 most widely used CF benchmark instances.
According to the obtained results our model dominates all the available in literature
heuristics.

In Chap. 7 the Julius Žilinskas’ approach to solving bi-objective CF problems is
considered. We develop a branch-and-bound scheme for computing the Pareto front
and provide numerical results certifying the competitiveness of this approach.

Finally, Chap. 8 summarizes the major results presented in this book and provides
directions for future research.



Chapter 2
The p-Median Problem

2.1 Introduction

This chapter focuses on the p-median problem (PMP) that will be used in the next
chapter in order to construct an efficient approach for CFP. Those not interested in
technical details may safely skip most of this chapter, except of the derivation of the
pseudo-Boolean formulation that is crucial for understanding the next chapters.

The PMP is a well-known NP-hard problem which was originally defined by
Hakimi [75, 76] and involves location of p facilities on a network in such a manner
that the total weighted distance of serving all demands is minimized. It has been
widely studied in literature and applied in cluster analysis, quantitative psychology,
marketing, telecommunications industry [27], sales force territories design [111],
political districting [17], optimal diversity management (ODM) [26], cell formation
in group technology [160], vehicle routing [85], and topological design of computer
communication networks [125].

The basic PMP model that has remained almost unchanged during recent 30 years
is the so-called ReVelle and Swain integer linear programming formulation [44,
130]. Note that this formulation contains Boolean decision variables and, hence, this
is a Boolean linear programming formulation. Since then, the PMP has been the sub-
ject of considerable research involving the development of some different types of
adjusted model formats [43, 45, 47, 133], and recently [4, 44, 55], as well as the de-
velopment of advanced solution approaches ([128] and references within) and some
recent publications [11, 18, 27, 139]. For a comprehensive list of references to the
PMP we address the reader to [108, 128] and a bibliographical overview from [131].

A Boolean linear programming formulation of the PMP can be defined on a
weighted bipartite graph G = (V,A,C) with the set of vertices V = I∪ J, the set of
arcs A⊆ I× J, and a cost matrix of nonnegative weights C = {ci j : ci j ≥ 0, (i, j) ∈
A} as follows. For the given sets I = {1,2, . . . ,m} of sites at which plants (cluster
centers) can be located, J = {1,2, . . . ,n} of clients (cluster points) with unit demand
at each client site, a matrix C = [ci j] of nonnegative costs (distances, or some other
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dissimilarity measure) of supplying each j ∈ J from each i ∈ I, the number p of
plants to be opened, the PMP can be written as

min
m

∑
i=1

n

∑
j=1

ci jxi j, (2.1)

s.t.
m

∑
i=1

xi j = 1, j = 1, . . . ,n, (2.2)

xi j ≤ yi, i = 1, . . . ,m; j = 1, . . . ,n, (2.3)
m

∑
i=1

yi = p, (2.4)

yi ∈ {0,1}, i = 1, . . . ,m, (2.5)

xi j ∈ {0,1}, i = 1, . . . ,m; j = 1, . . . ,n. (2.6)

For any feasible solution (xi j,yi), yi = 1 if plant i is open, and yi = 0, otherwise;
xi j = 1 if client j is assigned to plant i, and xi j = 0, otherwise. Constraints (2.2)
assign each client to exactly one plant, and constraints (2.3) forbid the assignment
of a client to a closed plant, constraint (2.4) fixes the number of opened plants to p.

A PMP instance is described by an m× n matrix C = [ci j] and the number 1 ≤
p≤ |I|. We assume that the entries of C are nonnegative and finite, i.e., C ∈ R

mn
+ . If

I = J, we have the classic ReVelle and Swain’s PMP model [130] with n2 Boolean
decision variables.

Further progress with improvements of ReVelle and Swain’s PMP model was
made by Rosing et al. [133], Cornuejols et al. [45], Dearing et al. [47], Church [43],
Church [44] and recently by AlBdaiwi et al. [4] and Elloumi [55]. All of them have
incorporated in different ways the following properties of PMP:

• Based on an ordering of the distances ci j with respect to a given demand point
they have either reduced the number of clients or have excluded from (2.1)–(2.6)
a repetition of decision variables xi j and xk j corresponding to the equal costs
ci j = ck j for some j ∈ J.

• The mn+m Boolean decision variables are replaced by m Boolean decision vari-
ables and mn nonnegative decision variables, i.e., (2.6) is replaced by

xi j ≥ 0, i = 1, . . . ,m; j = 1, . . . ,n. (2.7)

To the best of our knowledge there is no PMP model that adjusts the numbers of
non-negative decision variables and corresponding linear constraints depending on
the number p of medians.

In this chapter we start our study of the classic p-median model represented as a
Boolean linear programming model by posing the following questions:

• What are the optimal numbers of decision variables partitioned into Boolean and
non-Boolean variables?

• What is the optimal number of constraints?
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• Are the above-mentioned numbers of decision variables and constraints
dependent on the PMP input data, more specifically on the number p of medians?

This chapter proposes a new model formulation for the PMP that contains all
previously suggested improvements which we have incorporated in a concise and
simplified notation including our adjustment of decision variables and correspond-
ing linear constraints depending on the number p of medians. This new p-median
formulation is called a mixed Boolean pseudo-Boolean model (MBpBM) for the
PMP. We show that our model can result in a substantially smaller mixed Boolean
linear programming formulation for a given application of the PMP and can be used
either to find a global optimum by means of general-purpose mixed integer linear
programming (MILP) solvers or to develop new exact and approximate algorithms
based on the well-known methods in mixed-integer programming (see, e.g., [158]).

Some of the above-mentioned improvements were separately done for the PMP
without taking into account the ongoing progress with model formulations for an-
other common model within minisum location-allocation problems, namely the sim-
ple plant location problem (SPLP), often referred to as the uncapacitated facility
location problem (UFLP) [46] or the warehouse location problem (see, e.g., [131]).
The SPLP is similar to the PMP, and the methods used to solve one are often adapted
to solve the other. The objective function of the SPLP is one of determining the
cheapest method of meeting the demands of a set of clients J = {1, . . . ,n} from
plants that can be located at some candidate sites I = {1, . . . ,m}. The costs involved
in meeting the client demands include the fixed cost of setting up a plant at a given
site, and the per unit transportation cost of supplying a given client from a plant
located at a given site. Both PMP and SPLP are defined on bipartite graphs and
differ in the following details. First, the SPLP involves a fixed cost for locating a
facility at a given vertex while the PMP does not. Second, unlike the PMP, SPLP
does not have a constraint on the number of opened facilities. Typical SPLP formu-
lations separate the set of potential facilities (sites location, cluster centers) from the
set of demand points (clients). In the PMP these sets are identical, i.e., I = J. Such
problems are well known in cluster analysis (see, e.g., [27]). Both problems form
underlying models in several combinatorial problems, like set covering, set parti-
tioning, information retrieval, simplification of logical Boolean expressions, airline
crew scheduling, vehicle dispatching [41], and assortment (see, e.g., [68, 124]), and
are subproblems of various location analysis problems [131].

An instance of the SPLP has an optimal solution in which each client is sat-
isfied by exactly one plant. A similar observation is valid for the PMP. Hammer
[77] (see also [47]) used this fact to derive a pseudo-Boolean representation of the
SPLP. The pseudo-Boolean polynomial (pBp) developed in that work has terms that
contain both a literal and its complement. At the end of [77] it is shown by means
of an example that only linear monomials can have negative coefficients. Subse-
quently, Beresnev [20] developed a different pseudo-Boolean formulation in which
each term contains only literals or only their complements. We have found this for-
mulation easier to manipulate and hence adjusted Beresnev’s formulation of the
SPLP to the PMP in [4, 65].
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The purpose of this chapter is twofold. First, we design a new model for the PMP
and show that the number of nonnegative decision variables and corresponding con-
straints depend on the number of p-medians and will be adjusted in our model.
Moreover, these numbers are minimal within the class of mixed integer linear pro-
grams for the PMP. Second, we show that our new model allows solving by means
of a general-purpose solver on a PC some PMP benchmark instances previously in-
tractable by both general-purpose solvers and the state-of-the-art exact algorithms,
as well as handling smaller instances more efficiently.

In order to demonstrate the properties of the PMP and compare performance of
the formulations we used benchmark instances from the four most popular libraries:
OR, TSP, ODM, and RW. The first one, the OR library, was introduced by Beasley
[16] and is available at [94]. Every node is both a potential location and a client, and
the costs are the lengths of the shortest paths between the corresponding nodes.

The TSP library was originally proposed for the traveling salesman problem
(TSP) and is available at [95]. TSP instances are defined as sets of points in a two-
dimensional plane. Every point is considered both a potential location and a client,
and the costs are simply Euclidean distances.

Instances from the next library that we studied are based on the ODM problem.
For the description of this problem and instances see [26].

Finally, we considered instances proposed by Resende and Werneck [129]. These
problems are defined on random distance matrices. In every case, the number of
potential facilities m is equal to the number of clients n and distances are integers
taken uniformly at random from the interval [1,n]. The library contains five instances
with n = 100,200,250,500,1000.

The chapter is organized as follows. Section 2.2 focuses on the pseudo-Boolean
formulation of the PMP and its basic properties. In Sect. 2.3 we analyze the size
reduction techniques applicable to the PMP. Next, in Sect. 2.4 we present our new
MBpBM formulation, discuss its minimality and provide results of numerical ex-
periments. Sections 2.5 and 2.6 provide two applications of the pseudo-Boolean
formulation: estimation of instance data complexity and characterization of equiv-
alent instances. Finally, Sect. 2.7 concludes the chapter with a summary and future
research directions.

2.2 The Pseudo-Boolean Representation

Recall that given sets I = {1,2, . . . ,m} of sites in which plants can be located, J =
{1,2, . . . ,n} of clients, a matrix C = [ci j] of transportation costs (supplying costs,
distances, similarities, etc.) for each j ∈ J from each i ∈ I, the number p of plants
to be opened and a unit demand at each client site, the PMP is one of finding a set
S⊆ I with |S|= p, such that the total cost

fC(S) = ∑
j∈J

min{ci j | i ∈ S} (2.8)
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of satisfying all unit demands is minimized. Note that non-unit demands d j �= 1 can
be scaled by c′i j = ci jd j, and the number of served clients by each plant is unbounded
(the so-called uncapacitated location problem; see, e.g., [128, 131]). An instance of
the problem is described by an m×n matrix C = [ci j] and the number 1≤ p≤ |I|. We
assume that entries of C are nonnegative and finite, i.e., C∈R

mn
+ . The Combinatorial

Formulation of PMP is to find

S∗ ∈ argmin{ fC(S) : /0⊂ S ⊆ I, |S|= p}. (2.9)

It is possible to reformulate the objective function fC(S) of PMP (2.8) in terms of
a pBp (see [20, 77]). It is enough to find a pseudo-Boolean representation for each
addend min{ci j | i ∈ S} and sum up addends for all j ∈ J. In the rest of this section
we will use the following notions. Mappings f : {0,1}n → R are called pseudo-
Boolean functions. All pseudo-Boolean functions can be uniquely represented as
multi-linear polynomials of the form (see, e.g., [23])

f (x) = ∑
S⊆I

αS ∏
i∈S

xi. (2.10)

The expressions αS ∏i∈S xi and ∏i∈S xi are called a monomial and a term, respec-
tively. In this book multi-linear polynomials are called pBps and monomials with
the same term are called similar monomials. For example, the following pairs of
monomials 2x1x5 and 5x1x5; 3x3x4x7 and 5x3x4x7 are similar monomials. We say
that a pBp is in the reduced form if it contains no similar monomials. In other
words, the algebraic summation of similar monomials is called reduction. Repre-
sentation of the cost function (2.8) in terms of a pBp needs two additional notions:
a permutation matrix and a difference matrix.

An m × n permutation matrix Π = [πi j] is a matrix with each column
Π j = (π1 j, . . . ,πm j)

T defining a permutation of 1, . . . ,m that if being applied to
the corresponding column of the cost matrix makes its entries sorted in a non-
decreasing order. There may exist several permutation matrices for a given instance
of the PMP. Given a matrix C, the set of all permutation matrices Π such that
cπ1 j j ≤ cπ2 j j ≤ ·· · ≤ cπm j j for j = 1, . . . ,n is denoted by perm(C).

Given this notion of the permutation matrix, consider the expression min{ci j | i ∈
S} for some fixed j ∈ J. Clearly, the minimum is attained if S = I, i.e., the smallest
value is chosen among all entries ci j for a fixed column j. It is clear that the unit
demand of column j cannot be satisfied cheaper than this smallest value. Assume
that this smallest value is attained at an entry cπ1 j j of column j such that π1 j in-
dicates the number of the row containing this smallest entry cπ1 j j in column j. In
terms of the original PMP, if the site numbered by π1 j is open, then the unit demand
of client j will be satisfied by costs cπ1 j j; otherwise (if the site π1 j is closed, but
all other sites in I \ {π1 j} are opened) the cheapest way to satisfy the unit demand
of client j is by the value of a second smallest entry cπ2 j j. The value of a second
smallest entry cπ2 j j can be represented as follows: cπ2 j j = cπ1 j j + [cπ2 j j − cπ1 j j].
Similarly, if both sites π1 j,π2 j are closed and all other sites are opened, then the
unit demand of client j will be satisfied by the value of a third smallest entry
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cπ3 j j = cπ1 j j + [cπ2 j j − cπ1 j j] + [cπ3 j j − cπ2 j j], etc. In other words, depending on
the set of opened and closed sites from I the corresponding smallest value of
min{ci, j | i ∈ S} can be represented by the sum of the smallest values of entries in
column j and the corresponding differences of ordered entries in column j. By intro-
ducing a Boolean variable yπ1 j = 0 if the site π1 j is opened and yπ1 j = 1 if the site π1 j

is closed, we are able to express, for example, the costs of satisfying the unit demand
j depending on whether the site π1 j is opened or closed (if π1 j is closed, then we
assume that π2 j is open, i.e., yπ2 j = 0), as follows: cπ2 j j = cπ1 j j +[cπ2 j j− cπ1 j j]yπ1 j .

To illustrate this idea, let us consider the first column C1 of matrix C (2.23),
namely C1 = (c11,c21,c31,c41)

T = (7,10,16,11)T. After ordering its entries in a
non-decreasing order 7 < 10 < 11 < 16 we have that the corresponding permutation
is Π 1 =(1,2,4,3)T. If the Boolean vector (y1,y2,y3,y4)

T reflects an opened (closed)
plants at cite i = 1,2,3,4, then depending on the set of opened plants S⊆ {1,2,3,4}
we have min{ci1 | i ∈ S} = [7+ 3y1 + 1y1y2 + 5y1y2y4]. For example, if S = {2,4},
then y = (1,0,1,0)T, and min{ci1 | i ∈ {2,4}}= 7+3×1+1×1×0+5×1×0×
0 = 10.

Corresponding to a permutation matrix Π = [πi j], a difference matrix Δ = δi j

containing differences between the transportation costs for each j ∈ J is uniquely
defined as follows:

δ1k = cπ1kk,

δrk = cπrkk− cπ(r−1)kk, r = 2, . . . ,m. (2.11)

Defining

yi =

{
0 if i ∈ S
1 otherwise,

i = 1, . . . ,m (2.12)

we can indicate any solution S by a vector y= (y1,y2, . . . ,ym)
T. Its total cost is given

by the following pBp:

BC,Π (y) =
n

∑
j=1

{
δ1 j +

m

∑
k=2

δk j

k−1

∏
r=1

yπr j

}
. (2.13)

Note, this pBp is different from those used by Hammer [77] and Dearing et al. [47]
containing both variables and their complements.

We call a pBp f (y) (2.10) a Hammer–Beresnev polynomial if there exists a PMP
instance C and Π ∈ perm(C) such that f (y) = BC,Π (y) for each y ∈ {0,1}m, since
this representation of the total cost was first presented in the context of UFLPs inde-
pendently in [20, 77]. The following theorem from [5] gives necessary and sufficient
conditions for this.

Theorem 2.1. A general pBp is a Hammer–Beresnev polynomial if and only if all
its coefficients are nonnegative.

Proof. The “if” statement is trivial. In order to prove the “only if” statement, con-
sider a PMP instance defined by the cost matrix C, an ordering matrix Π ∈ perm(C),



2.2 The Pseudo-Boolean Representation 31

and a Hammer–Beresnev polynomial BC,Π (y) in which there is a monomial of
degree k with a negative coefficient. Since monomials in BC,Π (y) are contributed
by the elements of C only, a monomial with a negative coefficient implies that δk, j is
negative for some j ∈ 1, . . . ,n. But this contradicts the fact that Π ∈ perm(C). ��

In [4] it is shown that the total cost function (2.13) is identical for all permuta-
tions in perm(C). Hence, we can remove the Π in BC,Π (y) without introducing any
confusion. We denote a Hammer–Beresnev polynomial corresponding to a given
PMP instance C by BC(y) and define it as

BC(y) = BC,Π (y), (2.14)

where Π ∈ perm(C).
A solution y is feasible if ∑m

i=1 yi =m− p. Thus, every product of more than m− p
variables is 0 for any feasible solution. This observation allows excluding monomi-
als of high degree from the objective function and we call this procedure truncation
of the Hammer–Beresnev polynomial. The polynomial subjected to truncation and
summation of similar monomial is denoted by BC,p(y) and has the following form:

BC,p(y) =
n

∑
j=1

{
δ1 j +

m−p+1

∑
k=2

δk j ·
k−1

∏
r=1

yπr j

}
. (2.15)

It should be mentioned that the truncated Hammer–Beresnev polynomial BC(y)
usually contains less than (m− p)× n monomials as presence of equal entries in
columns of the cost matrix leads to zero differences δk j and similar monomials can
be subjected to algebraic summation (e.g., constants δ1 j can be always summed up
into one value). Further, we will denote the truncated Hammer–Beresnev polyno-
mial with reduced similar monomials by BC,p(y) it can be expressed as:

BC,p(y) =
k

∑
r=0

αr ∏
i∈Tr

yi =
k

∑
r=0

αrTr, (2.16)

where Tr is a set of Boolean variables yi included in term Tr and k is the number of
non-constant monomials in BC,p(y).

We can reformulate (2.9) in terms of Hammer–Beresnev polynomials as the
pseudo-Boolean formulation of PMP:

y∗ ∈ argmin{BC,p(y) : y ∈ {0,1}m,
m

∑
i=1

yi = m− p}. (2.17)

Example 2.1. Consider a PMP instance from [55] with m = 4, n = 5, p = 2 and

C =

⎡
⎢⎢⎣

1 6 5 3 4
2 1 2 3 5
1 2 3 3 3
4 3 1 8 2

⎤
⎥⎥⎦ . (2.18)
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A possible ordering matrix for this problem is given by

Π =

⎡
⎢⎢⎣

1 2 4 1 4
3 3 2 2 3
2 4 3 3 1
4 1 1 4 2

⎤
⎥⎥⎦ , (2.19)

and the difference matrix is

Δ =

⎡
⎢⎢⎣

1 1 1 3 2
0 1 1 0 1
1 1 1 0 1
2 3 2 5 1

⎤
⎥⎥⎦ , (2.20)

The Hammer–Beresnev polynomial representing the total cost function for this in-
stance in the form (2.13) is

BC(y) = [1+ 0y1+ 1y1y3 + 2y1y2y3]+
[1+ 1y2+ 1y2y3 + 3y2y3y4]+
[1+ 1y4+ 1y2y4 + 2y2y3y4]+
[3+ 0y1+ 0y1y2 + 5y1y2y3]+
[2+ 1y4+ 1y3y4 + 1y1y3y4].

(2.21)

Taking into account that p = 2, after truncation and reduction of similar monomials
in (2.21) we obtain the following pseudo-Boolean representation of the instance:

BC,p=2(y) = 8+ 1y2+ 2y4 + 1y1y3 + 1y2y3 + 1y2y4 + 1y3y4 →min

s.t. (2.22)

y1 + y2 + y3 + y4 = m− p = 2,

y ∈ {0,1}m.

It is easy to see that the objective function in (2.22) contains only 7 nonzero co-
efficients while the initial cost matrix (2.18) has 20 entries. This implies that the
pseudo-Boolean representation allows reduction of the memory needed to store the
PMP instance data. Of course, not only coefficients but also terms must be stored;
however, these overheads in most cases will be overwhelmed by the substantial re-
duction of the polynomial.

2.3 Reduction Techniques

The pseudo-Boolean representation of a PMP instance has very attractive properties,
which we are going to consider in the rest of this chapter. First of all, a pBp can be
subjected to several quite straightforward types of reductions.
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2.3.1 Reduction of the Number of Monomials in the pBp

Recall that given a variable vector y=(y1,y2, . . . ,ym)
T , the expressions T =∏i∈T yi

and αT = α ∏i∈T yi (T ⊆ {1, . . . ,m}, α ∈ R) are called a term and a monomial,
respectively. We also call two monomials similar if their terms are identical. Finally,
by reduction of monomials we mean algebraic summation of similar monomials.

Reduction of the number of monomials in pBp consists of three stages. First,
as some locations may have equal distance to several clients, the corresponding
entries in the difference matrix are zero and the number of terms in the polynomial
is usually less than mn (see column #T in Table 2.1). This reduction is similar to the
one introduced by many authors [20, 43, 45, 47, 55] and can be illustrated by the
following small example: let m = 4, n = 5 and the cost matrix is

C =

⎡
⎢⎢⎣

7 15 10 7 10
10 17 4 11 22
16 7 6 18 24
11 7 6 12 8

⎤
⎥⎥⎦ . (2.23)

A possible permutation matrix and the corresponding difference matrix are

Π =

⎡
⎢⎢⎣

1 3 2 1 4
2 4 3 2 1
4 1 4 4 3
3 2 1 3 2

⎤
⎥⎥⎦ (2.24)

and

Δ =

⎡
⎢⎢⎣

7 7 2 7 8
3 0 2 4 2
1 8 0 1 4
5 2 4 6 8

⎤
⎥⎥⎦ . (2.25)

Thus, the pBp is BC = [7+ 3y1 + 1y1y2 + 5y1y2y4]+ [7+ 0y3+ 8y3y4 + 2y1y3y4]+
[4 + 2y2 + 0y2y3 + 4y2y3y4] + [7 + 4y1 + 1y1y2 + 6y1y2y4] + [8 + 2y4 + 4y1y4 +
8y1y3y4]. As there are two zeros in the difference matrix, the initial (in contrast
to reduced and truncated) pBp has mn− 2 = 18 nonzero terms (we will denote this
characteristic by #T ).

Second, the pBp can be subjected to reducing similar monomials (by its essence,
it corresponds to the second reduction rule from [55], p. 11). In the considered ex-
ample this procedure leads to a polynomial 33+ 7y1+ 2y2 + 2y4 + 2y1y2 + 8y3y4 +
4y1y4 +11y1y2y4 +10y1y3y4 +4y2y3y4 with ten monomials. We denote the number
of monomials in such pBp with reduced similar monomials by #Tr.

Finally, as shown in [4], for any feasible solution y, the value of truncated
polynomial BC,p obtained from BC by deleting all terms of degree higher than
(m− p) is equal to the value of the initial pBp. For example, BC = 33+ 7y1 +
2y2+2y4+2y1y2 +8y3y4 +4y1y4 +11y1y2y4 +10y1y3y4 +4y2y3y4 with p = 2, i.e.,
BC,2 = 33+ 7y1 + 2y2 + 2y4 + 2y1y2 + 8y3y4 + 4y1y4 has just seven monomials.
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Table 2.1 Reduction of the pBp for benchmark instances

Entries in Reduction
Library Instance m matrix C #T #Tr (%)

OR pmed1 100 10,000 7,506 6,722 32.78
OR pmed15 300 90,000 20,182 17,428 80.64
OR pmed26 600 360,000 29,963 25,694 92.86
OR pmed40 900 810,000 36,326 31,642 96.09
ODM BN48 42 411 411 329 19.95
ODM BN1284 1,284 88,542 88,447 85,416 3.53
ODM BN3773 3,773 349,524 348,063 341,775 2.22
ODM BN5535 5,535 666,639 665,577 654,709 1.79
TSP rd100 100 9,900 9,394 9,243 6.63
TSP D657 657 430,992 368,233 367,355 14.77
TSP fl1400 1,400 1,958,600 838,110 836,557 57.29
TSP pcb3038 3,038 9,226,406 5,763,280 5,759,404 37.58
RW rw100 100 10,000 6,357 6,232 37.68
RW rw200 200 40,000 25,351 25,099 37.25
RW rw250 250 62,500 39,542 39,228 37.24
RW rw500 500 250,000 158,007 157,362 37.06
RW rw1000 1,000 1,000,000 631,805 630,543 36.95

This makes it possible for the particular problem with fixed number of medians to
truncate the polynomial thus reducing its size to at most (m− p) ·n.

In order to determine the effect of the mentioned above techniques, a number of
experiments with instances from the four libraries were carried. Results of pseudo-
Boolean formulation and reduction of similar monomials for typical representatives
of each library are given in Table 2.1. We computed reduction (see the rightmost
column of the table) as (mn− #Tr)/mn× 100%. As can be seen from the table,
instances from OR library allow the highest reduction of the number of terms in the
pBp. For example, for the instance pmed40 the size of the polynomial is about 4%
of the number of entries in the cost matrix. So, from the point of view of our notion
of complexity, these instances are the easiest ones. Instances from TSP and RW
libraries also allow compact representation of the polynomial, while ODM instances
are the most complex ones and allow only minor reduction of the number of terms.

Of certain interest is a relation between instance size and the achieved reduction
(rightmost column in Table 2.1). For OR and TSP libraries this factor tends to in-
crease for larger problems implying that pseudo-Boolean representation is efficient
for large instances from these classes. However, for ODM library the situation is
opposite, so from this point of view ODM instances are also hard. With randomized
graphs from RW library the reduction ratio is almost constant, so these instances are
somewhere in between the previous two groups.

Despite the differences in performance between the above-mentioned libraries,
truncation of the polynomial has similar impact on the required space for all the
considered instances (resulting in at most (m− p) ·n entries). We have observed that
nonzero entries are uniformly distributed over the rows of the difference matrix
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Δ (in other words, the numbers of nonzero monomials of different degrees are
approximately the same). It means that with increasing p the number of monomi-
als in the truncated polynomial BC,p decreases in a linear fashion from #Tr to 1
(if p = m the polynomial is just a constant). Moreover, if we denote by p∗ ≤ m the
(minimum) number of rows that contain all minima in columns, then the polynomial
reduces to a constant for p≥ p∗.

2.3.2 Reduction of the Number of Clients (Columns)

In order to show why the reduction of the number of clients (columns) is possible
we have to give the following definitions.

Definition 2.1. Two PMP instances defined on costs matrices C and D are called
equivalent if C and D are of the same size (number of rows) and BC,p(y) =BD,p(y).

Definition 2.2. Having an m×n cost matrix C, by aggregation of clients (columns),
we mean construction of such m× n′ matrix D that BC,p(y) = BD,p(y) and n′ < n.

This means that if there exist some cost matrix D that leads to the same polynomial
as C and D has fewer columns, then the PMP defined on C can be substituted by the
problem defined on D. So, given a cost matrix C and the number of medians p, one
can try to find such a matrix D that corresponds to the same truncated polynomial
as C and has the minimum possible number of columns.

The idea behind this type of processing is as follows. Each chain of embedded
terms in a pBp corresponds to some permutation and a column of differences. At
the same time, over the terms of the polynomial it is possible to define a relation
of partial order that, in turn, can be represented by the Hasse diagram. It is clear
that all the terms can be covered by n chains that correspond to n columns of the
difference matrix. It means that all vertices of the Hasse diagram can be covered by
n (internally) vertex-disjoint chains. However, observation that for some instances
reduction of similar monomials leads to a substantial decrease in their number sug-
gests a possibility that all terms can be covered by fewer chains. Having a chain
of embedded terms it is possible to reconstruct a permutation and a row of the dif-
ference matrix. Thus, reduced number of chains covering all terms implies reduced
number of clients in the aggregated matrix and the problem of finding the smallest
n′ is reduced to finding the minimum number of chains that cover all terms of the
polynomial (or all vertices of the corresponding Hasse diagram). According to the
well-known Dilworth’s decomposition theorem (see, e.g., Theorem 14.2 in [136], p.
218), this minimal number of chains is equal to the maximum size of an antichain
(in our case it is the maximum number of non-embedded terms).

In order to compute the minimum number of chains we used the MINLEAF al-
gorithm described in [74] that constructs a minimum leaf outbranching.1 Having

1 MINLEAF is a polynomial-time algorithm and is essentially based on finding the maximum
cardinality matching.
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such an outbranching it is possible to reconstruct the chains such that the number of
chains is equal to the number of leaves in the outbranching. After that, an equiva-
lent matrix, each column of which is induced by one of the obtained chains, can be
restored. As in the formulation of the PMP each column of the costs matrix corre-
sponds to a client whose demand is to be satisfied and existence of the equivalent
matrix with smaller number of columns implies that in the initial instance some
clients can be aggregated.

Within the mentioned above small example (2.23) this procedure leads to the fol-
lowing. The reduced pBp BC(y) = 33+7y1 +2y2 +2y4 +2y1y2 +8y3y4 +4y1y4 +
11y1y2y4 + 10y1y3y4 + 4y2y3y4 corresponds to the following Hasse diagram:

y2→y1y2→y1y2y4

↗ ↗ ↗ ↘
const→y1→y1y4→y1y3y4→y1y2y3y4

↘ ↗ ↗ ↗
y4→y3y4→y2y3y4

(2.26)

It is easy to check that the size of the maximum antichain is 3, so all the terms of
BC(y) can be covered by three chains and the aggregated matrix has three columns.
Below are the chains (each being presented as a column), permutation and difference
matrices:

y2 y1 y4

y1y2 y1y4 y3y4

y1y2y4 y1y3y4 y2y3y4

y1y2y3y4 y1y2y3y4 y1y2y3y4

(2.27)

Π ′ =

⎡
⎢⎢⎣

2 1 4
1 4 3
4 3 2
3 2 1

⎤
⎥⎥⎦ Δ ′ =

⎡
⎢⎢⎣

0 0 33
2 7 2
2 4 8

11 10 4

⎤
⎥⎥⎦ . (2.28)

Having these two matrices it is possible to restore the cost matrix D of the aggre-
gated instance:

D =

⎡
⎢⎢⎣

2 0 47
0 21 43

15 11 35
4 7 33

⎤
⎥⎥⎦ . (2.29)

2.3.2.1 Experiments

As was mentioned above, the minimum number of aggregated clients (columns)
does not exceed n. On the other hand, it cannot be smaller than the maximum num-
ber of terms with same degree in the reduced polynomial. In particular, for the case
of instances from OR library, this leads to the following. As the cost matrix for
such instances has a zero diagonal, the minimal element of ith column is located
in the ith row and the first row of the permutation matrix contains no equal entries.
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This means that the (reduced) pBp contains n linear terms and cannot be covered
by less than n chains. So, the OR instances, if considered “as is,” do not allow any
aggregation of clients. This result brought us to an idea of considering the corrected
instances without zeros on the diagonal (it is filled by some positive numbers during
application of the Floyd’s algorithm). Further we mark such instances with an as-
terisk (e.g., pmed1∗). As all the other considered libraries are free of the mentioned
“hardness,” they can be directly used for experiments with aggregation of clients.

In our experiments we considered truncated polynomials and determined the
minimum number of aggregated columns (n′) for all values of p from 1 to m− 1
(if p = m, the truncated polynomial is just a constant and it can be covered by one
chain). Let us denote by p′′ the smallest number of medians at which the truncated
polynomial can be covered by less than n chains.

The results for typical representatives from each library are given in Figs. 2.1 and
2.2. As can be seen from the figures, for corrected OR and ODM problems p′′ = 0
and even a non-truncated polynomial can be covered by n−1 chains, thus making it
possible to aggregate one client. At the same time, for TSP and RW instances, any
aggregation becomes possible only as p gets very close to m.

Thus, we can summarize that the reduction of the number of clients is negligible
for all the considered benchmark libraries.

Fig. 2.1 Aggregation of clients for benchmark instances from (a) OR and (b) ODM libraries

Fig. 2.2 Aggregation of clients for benchmark instances from (a) TSP and (b) RW libraries
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2.3.3 Preprocessing: An Overview and Application to the PMP

The essence of preprocessing that we consider is to find such locations that can be
excluded from consideration as they are not contained in some optimal solution (see
also [61]). At the same time, the technique considered in this section is independent
of any solution algorithm (e.g., it does not use upper and lower bounds) and is based
purely on the structural properties of the input cost matrix.

Let us define the p-truncation operation applied separately to each column of the
cost matrix as setting p largest entries to the value of the smallest of them. This pro-
cedure ensures that the pBp of the p-truncated matrix is equal to the truncated pBp
of the initial matrix. The following theorem (see [4], Theorem 4 and [5]), provides
a direct suggestion for preprocessing based on p-truncation.

Theorem 2.2. Assume that in a given PMP instance with p < m some row i in the
cost matrix C contains all the columns maxima after p-truncation operations are
performed on all columns of C. Then there exists an optimal solution y∗ to the in-
stance with y∗i = 1.

Proof. The fact that row i in a p-truncated matrix contains all columns maxima
implies that location i is among the m− p most expensive locations for every client.
This, in turn, means that in a feasible solution each client j can be served cheaper
from a different location. Thus, location i can be excluded from consideration and
the corresponding y-variable can be fixed to 1. ��

In other words, the theorem means that if some variable yi is not contained in the
truncated polynomial, then there exists an optimal solution y∗ with y∗i = 1. In order
to illustrate this we would like to consider the following example. Let the cost matrix
be defined as (the rightmost column of numbers enumerates rows of the matrix):

C =

⎡
⎢⎢⎢⎢⎣

1 3 9
2 5 3
9 7 8
5 9 7
4 4 5

⎤
⎥⎥⎥⎥⎦

1
2
3
4
5

. (2.30)

Also, let p be p = �m/2�= 3 (that corresponds to the hardest case from a combina-
torial point of view). The p-truncated matrix Cp=3 is

Cp=3 =

⎡
⎢⎢⎢⎢⎣

1 3 7
2 5 3
4 5 7
4 5 7
4 4 5

⎤
⎥⎥⎥⎥⎦

1
2
3
4
5

. (2.31)

The objective function can be represented by the pBp BC(y) = 7+ 2y1 + 2y2 +
2y1y2 + 1y1y5 + 2y2y5 + 3y1y2y5 + 1y2y4y5 + 4y1y2y4y5 + 2y1y2y3y5 + 1y2y3y4y5.
After truncation one obtains BC,p=3(y) = 7+ 2y1 + 2y2 + 2y1y2 + 1y1y5 + 2y2y5.
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As can be seen, the truncated pBp does not contain two variables y3,y4, so they can
be set to 1 as this does not affect the value of BC,p=3(y). This means that the initial
matrix C given by (2.30) can be reduced to matrix D with fewer rows:

D =

⎡
⎣

1 3 7
2 5 3
4 4 5

⎤
⎦

1
2
5
. (2.32)

It should be noticed that if one sets all other variables y1,y2,y5 to 0, this immediately
gives the optimal solution. Thus, for this small example the problem can be solved
just by data preprocessing.

However, with large instances this technique does not always allow solving the
problem. Given a PMP cost matrix, we studied how the possibility of preprocessing
depends on the value of p. As the value of p grows, the number of entries in any
column whose values are revised increases. So, the higher the value of p, the greater
the chance that a row of C is eliminated due to Theorem 2.2. This explains why
PMP instances with p = p0, p0 < m/2, are more difficult to solve than instances on
the same cost matrix with p = m− p0, even though the number of feasible solutions
for both cases are identical. Let p′ be the smallest value of p for which p-truncation
eliminates at least one row in C. Let us also denote by p∗ the minimum number
of rows that contain the minimum entry of each column of C. Then, the PMP in-
stance defined on C with p > p∗ has open facilities that do not serve any client and
increasing the value of p over p∗ does not improve the objective value.

Table 2.2 presents a characterization of benchmark instances introduced in
Table 2.1 in terms of p′ and p∗. As can be seen from the table, preprocessing be-
comes possible only for large number of medians as p′ > m/2 holds for all the
considered benchmark instances. One may notice that the benchmark libraries are
arranged in order of increasing difficulty: value of p′ are getting closer to m. The val-
ues of p∗ are very close to m for all the considered instances implying that all
benchmark libraries contain no degenerate instances and most of the rows can be
potentially included into an optimal solution.

2.3.4 Minimality of the Pseudo-Boolean Representation

In the previous sections we described a number of reductions that are based on the
pseudo-Boolean formulation of the PMP and substantially reduce the amount of
data that unambiguously describes the instance. However, there emerges a natural
question: can one do better by using a different approach? The following lemma
gives an answer to this question.

Theorem 2.3. The pseudo-Boolean formulation (2.17) of PMP allows the most
compact representation of its instance.

Proof. The intuition is as follows. Take the reduced and truncated pBp and consider
a monomial αT with a nonzero coefficient that corresponds to an entry of the cost
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Table 2.2 Values of p′ and p∗ for benchmark instances

Library Instance m p′ p∗

OR pmed1∗ 100 90 93
OR pmed15∗ 300 180 285
OR pmed26∗ 600 452 581
OR pmed40∗ 900 644 882
ODM BN48 42 27 35
ODM BN1284 1,284 653 1,211
ODM BN3773 3,773 3,385 3,742
ODM BN5535 5,535 2,179 5,503
TSP rd100 100 97 97
TSP D657 657 477 653
TSP fl1400 1,400 1,177 1,395
TSP pcb3038 3,038 3,026 3,033
RW rw100 100 90 95
RW rw200 200 186 193
RW rw250 250 241 243
RW rw500 500 489 492
RW rw1000 1,000 978 992

matrix ci j that does not contribute to any optimal solution. This means that there
exist, a client j that cannot be assigned to location i. There can be several causes
for this:

1. For any subset S of p opened locations there always exists a location i′ ∈ S such
that ci′ j < ci j. In this case client j is never served from location i.

2. For client j location i can be replaced by location i′, i.e., there exist some location
i′ such that ci j = ci′ j. In this case client j can be served from location i′ instead
of i.

3. For some subset of locations S client j is equivalent to some client j′. (By
equivalence of clients with regard to the set of locations S we mean that sorting
locations from S by distance from j and j′ gives two equal sequences.) In this
case these two clients can be viewed as one with aggregate serving costs ci j +ci j′
for all i ∈ S.

The latter two cases are symmetric: case 2 means that from the point of view of
client j locations i and i′ are equally distant, while case 3 means that from the point
of view of the set of locations S clients j and j′ are equal. In case 1 the coefficient
α is set to 0 during the truncation. For the second case we have zero coefficient as
the difference Δ [., j] = ci j− ci′ j is zero. Finally, for the third case equivalent clients
are eliminated by reduction of similar monomials.

Next, consider the number of coefficients in the truncated and reduced Hammer–
Beresnev polynomial BC,p(y). Suppose, there exist a model with one less coeffi-
cient. This implies that some monomial αr ∏i∈Tr yi can be deleted from BC,p(y) to
obtain a new polynomial B′

C,p(y). However, it is always possible to select an input
matrix C such that
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fC(S) = BC,p(yS)

and

min{B′
C,p(y),

m

∑
i=1

yi = m− p}= min{BC,p(y),
m

∑
i=1

yi = m− p}−αr.

Taking into account that αr > 0 (by definition of BC,p(y)), the optimal values of
the two formulations are different and we have a contradiction. ��

Theorem 2.3 has important consequence for applicability of the pseudo Boolean
formulation. Let us consider an arbitrary model of the PMP within the class of mixed
Boolean linear programming (LP) models. The size of a mixed Boolean LP model
is determined by the following four factors:

• Number of Boolean variables
• Number of continuous variables
• Number of constraints (and number of terms in each constraint)
• Number of monomials in the objective function.

We claim that the minimum mixed-Boolean LP model for PMP can be derived from
its pseudo-Boolean representation, as demonstrated in the next section.

2.4 A Compact Mixed Boolean LP Model

In order to obtain a mixed Boolean LP model we have linearized all nonlinear terms
in 2.16 by introducing additional variables zr = ∏i∈Tr yi. Since αr ≥ 0 and PMP is
a minimization problem (2.17) one can replace each nonlinear equality ∏i∈Tr yi =
zr by an equivalent nonlinear inequality ∏i∈Tr yi ≤ zr which is equivalent to the
following system of linear inequalities: ∑i∈Tr yi− |Tr|+ 1 ≤ zr and zr ≥ 0. In any
optimal PMP solution the variable zr is set to 0 if and only if at least one variable
yi = 0, and zr = 1 if and only if all yi = 1, i.e., zr ∈ {0,1}. Now the pseudo-Boolean
formulation of PMP with a nonlinear objective function (2.16) can be presented as
the following mixed Boolean linear programming model:

minimize

{
α0 +

m

∑
r=1

αryr +
k

∑
r=m+1

αrzr

}
(2.33)

s.t.
m

∑
i=1

yi = m− p; (2.34)

∑
i∈Tr

yi−|Tr|+ 1≤ zr, r = m+ 1, . . . ,k; (2.35)

zi ≥ 0, i = m+ 1, . . . ,k. (2.36)

yi ∈ {0,1}, i = 1, . . . ,m. (2.37)
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The objective function (2.33) is split into three parts: the first part α0 is the sum of
all smallest entries δ1 j per column (client) j, the second part reflects the penalties
incurred by the next to the smallest entries δ2 j, and the third part represents all other
penalties corresponding to δi j for 1 < i≤ m− p.

We call the formulation (2.33)–(2.37) a MBpBM for PMP. In case of the example
cost matrix defined by (2.18) the MBpBM formulation can be easily derived from
(2.22):

min8+ y2+ 2y4 + z5 + z6 + z7 + z8 (2.38)

s.t. z5 + 1≥ y1 + y3, (2.39)

z6 + 1≥ y2 + y3, (2.40)

z7 + 1≥ y2 + y4, (2.41)

z8 + 1≥ y3 + y4, (2.42)
4

∑
i=1

yi = m− p = 2, (2.43)

zi ≥ 0, i = 5, . . . ,8; (2.44)

yi ∈ {0,1}, i = 1, . . . ,4. (2.45)

In the following Lemma 2.1 we explain how to reduce the number of Boolean vari-
ables yi involved in the restrictions (2.35). If for Tr1 �= /0 we have that Tr1 ⊂ Tr2 , then
the number of variables corresponding to the inequality with zr2 in (2.35) might be
reduced as follows:

zr1 + ∑
i∈Tr2\Tr1

yi−|Tr2 \Tr1 |+ 1≤ zr2 . (2.46)

Lemma 2.1. Let /0 �= Tr1 ⊂ Tr2 be a pair of embedded sets of Boolean variables yi.
Thus, two following systems of inequalities

∑
i∈Tr1

yi−|Tr1 |+ 1≤ zr1 (2.47)

∑
i∈Tr2

yi−|Tr2 |+ 1≤ zr2 (2.48)

zr1 ≥ 0, zr2 ≥ 0 (2.49)

and

∑
i∈Tr1

yi−|Tr1 |+ 1≤ zr1 (2.50)

zr1 + ∑
i∈Tr2\Tr1

yi−|Tr2 \Tr1 | ≤ zr2 (2.51)

zr1 ≥ 0, zr2 ≥ 0 (2.52)

are equivalent.
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Proof. Our proof will be done if we show that the following inequalities ∑i∈Tr2
yi−

|Tr2 |+1≤ zr2 and zr1 +∑i∈Tr2\Tr1
yi−|Tr2 \Tr1 | ≤ zr2 are equivalent. Note that zr2 = 1

if and only if yi = 1 for all i ∈ Tr2 which implies that zr1 = 1 since Tr1 ⊂ T2, but
zr2 = 0 if and only if at least one variable yi = 0 for some i ∈ Tr2 . If i ∈ Tr1 , then
zr1 = 0 implies zr2 = 0, even if yi = 1 for all i ∈ Tr2 \Tr1 ; otherwise yi = 0 for some
i ∈ Tr2 \Tr1 implies zr2 = 0 even if zr1 = 1. ��

In the following theorem we indicate that our new problem formulation (2.33)–
(2.37) is equivalent to the pseudo-Boolean formulation (2.17).

Theorem 2.4. PMP formulations (2.33)–(2.37) and (2.17) are equivalent.

Proof. The “if” statement is trivial and we start with “only if” part, i.e., we are
going to show that any feasible solution to (2.33)–(2.37) is feasible to (2.17). Con-
straints (2.35) ensure that for any subset of opened sites within Tr the corresponding
penalties in both objective functions will be zero. Otherwise (if all sites within Tr are
closed), the same penalty value will be added to the objective functions of (2.33)–
(2.37) and (2.17). ��

It is clear that the restriction (2.35) for zr can be expressed by means of embedded
terms with different degrees such that T =

{∪k
t=1Trt

}⊆ Tr.
Based on the compact representation of a PMP instance within pseudo-Boolean

formulation (2.17) one may conclude that this formulation has extracted only essen-
tial information to represent the PMP from optimization point of view. In particular,
for each client j only sites with p-truncated and pairwise different distances are
essential for an optimal PMP solution. These distances form the objective func-
tion of our mixed Boolean linear programming formulation (MBpBM) as well as
the set of linear constraints. Since each linear constraint (2.35) represents a non-
linear monomial in the objective function of pseudo-Boolean formulation (2.17) we
have incorporated in the MBpBM the number p of medians as follows: for larger
values of p our MBpBM has less non-negative variables and corresponding constra-
ints induced by non-linear monomials. It means that we are in a position to check
whether our MBpBM is an optimal model within the class of Mixed Boolean Lin-
ear Programming models. If we will be able to show that the matrix of all linear
constraints in our MBpBM induced by non-linear monomials contains the smallest
number of nonzero entries, then taking into account that the objective function of
our MBpBM has the smallest number of nonzero coefficients, one may conclude
that our MBpBM is an optimal one. Unfortunately, in general it is not the case. It is
not difficult to show that the problem of finding a constraint matrix with the small-
est number of nonzero entries is at least as hard as the classic set covering problem
(see, e.g., [60]). Let us consider a partially ordered set with subsets of cardinality
at least two corresponding to all non-linear monomials in the truncated and reduced
pBp. Take any set F with the largest cardinality. We say that the set F is covered
by its subsets Fi ⊂ F if |F \ (∪i∈LFi)| ≤ 1 and F is covered by a single subset if
|F \Fr)|= 1. It is clear that the following linear constraint corresponding to a single
covering
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zFr + yr− 1≤ zF

has the smallest number of nonzero entries. In general case even for a single set F
to find the best covering by subsets embedded in F is an NP-hard problem (see, e.g.,
[60]), but our problem is more difficult since we are looking for an optimal covering
not only for the set F but also for all its subsets minimizing the number of nonzero
entries of all corresponding linear constraints. In other words, we have shown that to
find an optimal model within the class of mixed Boolean linear programming mod-
els is an NP-hard problem, even if the number of corresponding linear constraints is
a linear function on the number of all nonnegative decision variables.

Note that the number of nonzero coefficients in the objective function of MBpBM
is minimal because the number of nonzero coefficients corresponding to non-linear
terms is minimal (just by means of contradiction it can be easily shown that if we
assume that there is an objective function with strictly less number of nonzero coef-
ficients, then there is either a feasible or an optimal solution to the PMP for which
the objective function value defined on the corresponding solution is strictly less
than the objective function computed on the given PMP instance). Since the num-
ber of linear constraints (2.35) is equal to the number of nonzero coefficients αr for
r =m+1, . . . ,k one may conclude that both numbers, namely the number of nonzero
coefficients in (2.33) and the number of linear constraints (2.35), are minimal. These
considerations are formalized in the following theorem.

Theorem 2.5. The numbers of coefficients in the objective, variables, and constra-
ints in MBpBM are minimal within the class of mixed Boolean LP models for PMP.

Proof. First of all note that the number of Boolean variables cannot be smaller than
m as otherwise some potential locations are not taken into account. Next, minimality
of the number of coefficients in the objective immediately follows from the minimal-
ity of the pseudo-Boolean representation (Theorem 2.3). This implies minimality of
the number of nonnegative variables (corresponding to nonlinear monomials) as the
number of Boolean variables is fixed to m and is closely related to the number of
linear monomials. This, in turn, implies minimality of the number of constraints as it
is exactly the number of nonnegative variables and each nonnegative variable needs
at least one constraint to be biased with Boolean variables. ��

Theorem 2.5 can be illustrated by the following example using the cost matrix
(2.18). The MBpBM can be easily derived from the pseudo-Boolean formulation
(2.22) and looks like:

f (y,z) = 8+ y2+ 2y4 + z5 + z6 + z7 + z8 →min
s.t.
y1 + y2 + y3 + y4 = 2,
z5 ≥ y1 + y3− 1,
z6 ≥ y2 + y3− 1,
z7 ≥ y2 + y4− 1,
z8 ≥ y3 + y4− 1,
yi ∈ {0,1}, i = 1, . . . ,4,
zi ≥ 0, i = 5, . . . ,8.

(2.53)
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The obtained model has 4 Boolean y-variables, 4 nonnegative z-variables, 5 con-
straints and 6 terms in the objective function. For Elloumi’s MILP model [55] these
numbers are 4, 17, 23, and 12, respectively.

Properties of our model, such as decreasing number of variables and constra-
ints, give some insight into the properties of the polytope of feasible solutions to
the PMP. The fact that the total number of variables in MBpBM is always less than
(m− p) · n implies that the p-median polytope never has a full dimension of m · n,
i.e., some dimensions either are fixed (by p-truncation) or are duplicate (these are
removed by combining similar monomials in the Hammer–Beresnev polynomial).
At the same time MBpBM allows measuring the actual dimension of the polytope
and implies that this dimension decreases with increasing p as more and more di-
mensions become fixed (more and more assignments of clients to facilities become
prohibited).

2.4.1 Further Reductions

Even though MBpBM is a very compact model, we can further reduce it by involv-
ing upper and lower bounds on the cost of optimal solutions (see [68]). Suppose,
we know from some heuristic a (global) upper bound fUB on the cost of optimal
solutions. This can be even a virtual upper bound (see for more details virtual upper
bounds created within the data correcting approach for solving different combina-
torial optimization problems [64, 67]), i.e., without a feasible solution. Let us now
consider some term Tr = ∑i∈Tr yi from the pBp and define a vector yr in the follow-
ing way: for any i ∈ Tr set yr

i = 1 and set all other elements of yr to zero. It is easy
to see that BC,p(yr) is a valid lower bound for the subspace of solutions with all
locations from Tr closed. If we denote this lower bound by f LB

r , then the following
holds:

f LB
r = BC,p(y

r). (2.54)

The essence of the reduction that we consider here can be expressed by the following
lemma.

Lemma 2.2. If for some term Tr = ∏i∈Tr yi of a truncated and reduced Hammer–
Beresnev polynomial holds f LB

r > fUB, then for every optimal solution y∗ holds
Tr(y∗) = 0.

Proof. Taking into account that we have a truncated polynomial, any term r has a
degree of at most m− p and |Tr| ≤ m− p. This means that to keep Tr equal to 1 at
least p sites are to be opened, implying that the cost of any feasible solution with
sites from Tr closed is at least BC,p(yr) (by closing additional sites we can only
increase the objective value). By condition of the lemma we have that there exists a
cheaper feasible solution, thus any feasible solution y with yi = 1 for any i ∈ Tr is
not optimal. ��
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The following counter-example shows that the inequality in Lemma 2.2 should
be strict.

Example 2.2. Consider an instance defined by the following cost matrix C:

C =

⎡
⎢⎢⎣

0 6 6
1 0 8
2 9 9
5 4 0

⎤
⎥⎥⎦ . (2.55)

A possible permutation and difference matrices are

Π =

⎡
⎢⎢⎣

1 2 4
2 4 1
3 1 2
4 3 3

⎤
⎥⎥⎦ Δ =

⎡
⎢⎢⎣

0 0 0
1 4 6
1 2 2
3 3 1

⎤
⎥⎥⎦ . (2.56)

In case p = 2 the Hammer–Beresnev polynomial is

BC,p=2(y) = 1y1 + 4y2 + 6y4 + 1y1y2 + 3y1y4 + 2y2y4. (2.57)

Considering the first term T1 = y1, we have T1 = {1}, y1 = (1,0,0,0), and f LB
1 =

BC,p=2(y1) = 1. Suppose, the upper bound is the same fUB = 1. If the inequality in
Lemma 2.2 was non-strict, then this would imply that for any optimal solution y1 =
0. However, it can be checked that for the unique optimal solution to this instance
y∗ = (1,0,1,0), this does not hold. Note that y∗3 = 1 due to Theorem 2.2.

Now we can check the condition of Lemma 2.2 for every term of the pBp, start-
ing from terms with the lowest degree. Such order of checking terms is beneficial
because if some term is found to be zero in any optimal solution (let us call such
terms null terms), then all terms of higher degree containing it are also zero. Here
we would like to point out two possibilities of dealing with null terms within our
MBpBM model.

The first and the most straightforward approach is to set the variable that corre-
sponds to a null term to zero throughout the formulation. This eliminates one term
from the objective function, but preserves the number of constraints. At the same
time the number of nonzero entries in the constraint matrix can increase as elimina-
tion of some term (or corresponding z-variable) reduces the possibility of applying
Lemma 2.1. We call the model reduced according to this approach based on bounds
MBpBMb. The following example shows how this reduction works.

Consider the cost matrix C (2.18), p = 2, and an MBpBM model (2.53). One
can compute the global upper bound fUB, for example, by greedy heuristics that
works as follows. It starts with all locations opened (i.e., y = (0,0,0,0)) and at each
step closes such location (sets such yi to 1) that results in the smallest increase in
the value of the objective function. The procedure is repeated until m− p locations
are closed (m− p entries of y are set to 1). For the cost matrix given by (2.18) this



2.4 A Compact Mixed Boolean LP Model 47

procedure gives fUB = 9. Then, for every term Tr of the objective function, we
construct a vector yr and compute the lower bound to the unknown optimal value
BC,p=2(yr):

T1 = y2 y1 = (0,1,0,0) BC,p=2(y1) = 9,
T2 = y4 y2 = (0,0,0,1) BC,p=2(y2) = 10 > fUB,
T3 = z5 = y1y3 y3 = (1,0,1,0) BC,p=2(y3) = 9,
T4 = z6 = y2y3 y4 = (0,1,1,0) BC,p=2(y4) = 10 > fUB,
T5 = z7 = y2y4 y5 = (0,1,0,1) BC,p=2(y5) = 12 > fUB,
T6 = z8 = y3y4 y6 = (0,0,1,1) BC,p=2(y6) = 11 > fUB.

(2.58)

By comparing the obtained values with the computed upper bound we have that in
any optimal solution T2, T4, T5, and T6 are zero, i.e., in our MBLP model we can
fix variables y4, z6, z7, and z8 to zero:

8+ y2+ z5 + 0z6 + 0z7 + 0z8 →min (2.59)

s.t. y1 + y2 + y3 = 2, (2.60)

z5 + 1≥ y1 + y3, (2.61)

z6 + 1≥ y2 + y3, (2.62)

0+ 1≥ y2 + 0, (2.63)

0+ 1≥ y3 + 0, (2.64)

y4 = 0, (2.65)

zi ≥ 0, i = 5, . . . ,8; (2.66)

yi ∈ {0,1}, i = 1, . . . ,4. (2.67)

By substituting the fixed values into all constraints and the objective function and
observing that some constraints (2.63) and (2.64) became redundant, we obtain the
reduced model:

8+ y2+ z5 →min (2.68)

s.t. z5 + 1≥ y1 + y3, (2.69)

1≥ y2 + y3, (2.70)

y1 + y2 + y3 = 2, (2.71)

y4 = 0, (2.72)

z5 ≥ 0; (2.73)

yi ∈ {0,1}, i = 1, . . . ,4. (2.74)

Further we will call this variation of MBpBM with reduction based on bounds—
MBpBMb.

Another approach to dealing with null terms allows to reduce not only the size
of the objective function but also the number of constraints. Its essence is expressed
by the following lemmas.
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Lemma 2.3. Increasing a coefficient at a null term does not affect the cost of optimal
solutions.

Proof. Straightforward from the definition of null terms. If some term is found to
be equal to 0 in any optimal solution, then increasing the coefficient of the corre-
sponding monomial will not result in new optimal solutions. ��
Lemma 2.4. If for some term r1 in the Hammer–Beresnev polynomial there exists
an embedded term r0 with large enough coefficient αr0 , then r1 can be given a zero
coefficient without affecting the cost of optimal solutions.

Proof. The cost of any feasible solutions for which term r0 evaluates to 1 is bounded
from below by αr0 . If there exists a feasible solution of cost less than αr0 , all terms
containing r0 evaluate to 0 in any optimal solution. This, in turn, implies that their
coefficients are irrelevant and can be set to 0. ��

Thus, if a null term is found, it can be given a large enough coefficient (exceeding
a cost of an arbitrary feasible solution) and all terms for which it is embedded can
be eliminated from the Hammer–Beresnev polynomial without a need in additional
constraints. We call the model with this reduction MBpBMb1. Even though it allows
smaller reduction of the objective function, it can benefit from the reduced number
of constraints. For the considered above instance with cost matrix C (2.18) and p= 2
the MBpBMb1 model is as follows:

8+ y2+ 1,000y4+ z5 + 1,000z6 →min (2.75)

s.t. z5 + 1≥ y1 + y3, (2.76)

z6 + 1≥ y2 + y3, (2.77)

y1 + y2 + y3 + y4 = 2, (2.78)

y4 = 0, (2.79)

zi ≥ 0, i = 5, . . . ,8; (2.80)

yi ∈ {0,1}, i = 1, . . . ,4. (2.81)

Here we have set large coefficients to 1,000 for the sake of clarity, while in prac-
tice the value of fUB + 1 = 10 suffices for this purpose. It is also clear that if we
find a linear null term, then we fix the corresponding y-variable to 0 and eliminate
this term from the objective function (instead of raising its coefficient to infinity).
Moreover, if for some null term there are no terms into which it is embedded, then it
is beneficial to eliminate it and add a corresponding constraint. If these exceptions
are introduced into MBpBMb1, then for the considered example both formulati-
ons (MBpBMb and MBpBMb1) become equal, although the mechanisms by which
some constraints were dropped are different. While in MBpBMb third and fourth
constraints became redundant as most of the variables in them were set to 0, in
MBpBMb1 these constraints did not exist at all because corresponding terms were
eliminated from the pBp.

Finally, it should be mentioned that instead of f LB
r = BC,p(yr), a somewhat

stronger lower bound can be used.
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Lemma 2.5. φLB
r defined as

φLB
r = fC(T r)+ min

ki∈T r

|T r |−p

∑
i=1

[ fC(T r \ {ki})− fC(T r)] (2.82)

is a valid lower bound for the subspace of feasible solutions having locations from
Tr closed, where fC(.)—cost function of the PMP, i.e., fC(T r) = BC,p(yr), and T r

denotes the complement of Tr, i.e., T r = {1, . . . ,m} \Tr.

Proof. As the cost function of the PMP fC(.) is a supermodular function [68], the
following holds for any S ⊆ T ⊆ {1, . . . ,m}

fC(S)≥ fC(T )+ ∑
k∈T\S

[ fC(T \ {k})− fC(T )]. (2.83)

In our case S is unknown restricted (S⊆T must hold) optimal solution (set of opened
locations) of cardinality |S|= p implying that

fC(S)≥ fC(T )+min
ki∈T

|T |−p

∑
i=1

[ fC(T \ {ki})− fC(T )] (2.84)

where T = {1, . . . ,m} \T . If we now set T = T r, then the proof is completed. ��
In the computational experiments reported in the following sections (and involv-

ing MBpBM and its modifications) we used lower bounds given by (2.82).

2.4.2 Computational Experiments

In order to show the applicability of our compact MBpBM formulation, a number
of computational experiments were held. We used benchmark instances from two of
the most widely used libraries: J. Beasley’s OR library and randomly generated RW
instances by Resende and Werneck (see, e.g., [55]). The common class of bench-
mark instances included in almost all publications devoted to the PMP itself is just
the OR library instances. Since the main purpose of our experiments is to show that
our model for PMP is one of the best currently known models (see [44, 55]) which
could be used to solve PMP instances to optimality based on general-purpose soft-
ware, we have used Xpress-MP and 15 largest instances (see Tables 2.4 and 2.3)
from OR library [94]. This benchmark library contains 40 different PMP instances,
each representing a graph of n vertices, each vertex being a client and a potential
facility and a specific value of p. Graphs are complete and range in size from 100
(with 10,000 arcs) to 900 (with 810,000 arcs) nodes. The distance ci j between two
nodes is the length of a shortest path linking them.

We have conducted our experiments on a personal computer with Intel 2.33 GHz
processor, 1.95 GB RAM and Xpress-MP as an MILP solver.
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Table 2.3 MBpBM for different numbers of medians in pmed39/pmed40

pmed39 pmed40
p fC(S∗) Mtr constr MBpBM fC(S∗) Mtr constr MBpBM

1 14,720 29,042 706,612 7.3 17,425 31,641 744,257 12.8
5 11,069 28,839 705,976 79.7 12,305 31,268 743,056 39.3
9 9690 27,883 702,341 429.2 10,740 30,155 738,633 54.8

10 9,423 27,637 701,168 121.2 10,491 29,905 737,406 88.0
20 7,894 26,008 690,135 80.5 8,717 28,143 725,285 104.3
30 7,051 24,983 679,640 567.4 7,731 27,109 714,318 138.7
40 6,436 24,272 669,999 182.9 7,037 26,372 703,930 113.4
50 5,941 23,688 660,138 93.9 6,518 25,813 694,355 782.7
60 5,545 23,229 651,280 38.6 6,083 25,304 684,402 171.9
70 5,215 22,815 641,971 5.7 5,711 24,883 674,846 33.3
80 4,929 22,439 632,520 4.6 5,398 24,503 665,476 5.5
90 4,684 22,147 624,079 4.5 5,128 24,164 656,067 5.7

100 4,462 21,844 615,198 4.9 4,878 23,851 646,520 5.4
200 2,918 19,731 529,883 2.7 3,132 21,623 557,661 3.1
300 1,968 18,252 449,160 2.0 2,106 20,066 473,237 2.4
400 1,303 17,000 371,790 1.5 1,398 18,725 391,820 1.7
500 821 15,812 298,029 1.3 900 17,431 314,045 1.3
600 471 14,495 223,027 1.0 530 16,040 237,199 0.9
700 244 12,962 151,916 0.7 271 14,337 161,826 0.6
800 100 10,684 81,510 0.3 100 11,781 86,772 0.7

Tables 2.4 and 2.5 summarize the computational results obtained for the largest
15 OR instances and random RW instances, correspondingly. The first three
columns contain the name of instance, the number of m nodes, and the number
p of medians. The next three columns are related to the running times (in seconds)
for the considered above variations of our model: the initial MBpBM formulation
and its modifications incorporating reductions based on bounds. The last column
reflects computing times for Elloumi’s NF model that we implemented and tested
within the same environment as our models so that to ensure consistent comparison
of performance. Note that all running times reported are times spent by a MILP
solver, i.e., not including the time needed to construct a pseudo-Boolean repre-
sentation. Note also that the complexities of constructing MBpBM and NF are
approximately the same.

Our computational experiments with OR and RW instances can be summarized
as follows. Our basic MBpBM formulation outperforms Elloumi’s New Formula-
tion in most of the tested cases, especially for larger numbers of medians p. At the
same time the reduction based on bounds (see column MBpBMb) has compara-
tively poor performance in general. This can be explained by an increased number
of nonzero coefficients in a constraint matrix (for large RW instances this formula-
tion cannot be handled by Xpress-MP due to memory limitations). However, there
exist instances (e.g., pmed36 and pmed38) for which MBpBMb performs better
than other variations of the formulation based on a pBp and for the instance pmed36
has three times smaller computing times comparatively to NF. Better performance
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Table 2.4 Comparison of computing times for our and Elloumi’s
NF formulations (15 largest OR library instances)

Instance m p MBpBM MBpBMb MBpBMb1 Elloumi

pmed26 600 5 163.84 194.08 111.81 180.31
pmed27 600 10 27.59 41.00 21.31 43.73
pmed28 600 60 2.48 8.63 2.13 3.61
pmed29 600 120 1.78 6.50 1.31 2.91
pmed30 600 200 1.50 5.56 0.78 4.81
pmed31 700 5 153.22 132.91 57.05 90.95
pmed32 700 10 33.13 53.17 43.39 37.64
pmed33 700 70 3.09 10.11 2.69 4.73
pmed34 700 140 3.72 8.03 1.97 7.11
pmed35 800 5 70.30 233.66 154.41 514.72
pmed36 800 10 2,256.83 2,014.70 4,252.13 6,737.25
pmed37 800 80 3.91 12.61 3.08 7.00
pmed38 900 5 1,328.34 368.73 2,041.28 307.00
pmed39 900 10 572.81 713.59 444.08 473.95
pmed40 900 90 5.39 15.53 4.02 8.42

of larger models can be explained by the fact that increased number of variables
and coefficients provides more options for branching and thus may lead to better
pivoting of the MILP solution procedure. Finally, the revised reduction based on
bounds MBpBMb1 outperformed other considered models in almost all cases ex-
cept pmed32, pmed36, and pmed38 (for pmed36 it is better than NF but is worse
than MBpBM). We would also like to mention one instance from TSP library [95],
namely fl1400, with p = 400 which is unsolved in [11] and has been solved to
optimality by our MBpBM in 598.5 s. Note that Beltran’s et al. [18] advanced semi-
Lagrangian approach based on proximal-analytic center cutting plane method has
not solved the instance fl1400 with p = 400 to optimality as well and returns an
approximation within 0.11 % in 678 s.

2.5 Instance Data Complexity

2.5.1 Data Complexity and Problem Size Reduction

Problem size reduction is a very common technique in integer programming and
combinatorial optimization that can be used to find a compact representation of PMP
instances. It is aimed at constructing an instance of a smaller size that is assumed to
be easier to solve and provides an optimal solution to the initial instance. Moreover,
it is straightforward that if the procedure of size reduction is as time-consuming as
the procedure for solving the initial problem, it has no sense. These considerations
lead to the following definition:
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Table 2.5 Comparison of computing times for our and Elloumi’s NF formulations (Re-
sende and Werneck random instances)

Instance m p MBpBM MBpBMb MBpBMb1 Elloumi

rw100 100 10 678.91 671.28 452.52 845.30
100 20 4.00 6.44 2.22 5.25
100 30 0.09 0.43 0.03 0.13
100 40 0.08 0.34 0.02 0.14
100 50 0.06 0.28 0.02 0.13

rw250 250 10 – – – –
250 25 – – – –
250 50 340.86 1,633.58 225.83 335.86
250 75 1.09 8.50 0.48 2.08
250 100 0.50 5.44 0.11 0.88
250 125 0.66 5.02 0.27 1.38

rw500 500 10 – – – –
500 25 – – – –
500 50 – – – –
500 75 – – – –
500 100 – – – –
500 150 2.97 105.63 1.22 12.27
500 200 2.25 54.78 0.28 4.11
500 250 1.77 44.83 0.13 4.36

rw1000 1,000 10 – * – –
1,000 25 – * – –
1,000 50 – * – –
1,000 75 – * – –
1,000 100 – * – –
1,000 200 – * – –
1,000 300 118.91 * 13.40 234.99
1,000 400 11.49 * 1.16 21.81
1,000 500 9.08 * 0.77 28.47

– not solved within 1 h

∗ not enough memory for the MILP solver

Definition 2.3. We will call instance D a reduced version of instance C (D =
red(C )) if it satisfies the following conditions:

1. /0⊂ opt.solutions(D)⊆ opt.solutions(C )
2. Size(D)≤ size(C )
3. D can be obtained from C in polynomial time.

The first requirement guarantees that by solving D to optimality one immediately
obtains an optimal solution to C (here we assume the feasibility of C ), while the
second one is related to the reduction itself. Finally, the last requirement is needed
to make the definition useful in practice: if for some NP-hard problem computing
the reduced instance D is as hard as solving C , then such a reduction is senseless.
Based on this definition of a reduced instance we define complexity of the instance
data in the following way:
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Definition 2.4. By complexity of the instance data C (relative to a particular prob-
lem) we mean the minimum capacity of the storage needed to be able to obtain an
optimal solution to the initial instance:

comp(C ) = min{size(D) : D = red(C )}.
It should be noticed that without a reference to a particular problem (in our

case—the PMP) this definition is meaningless. However, even when the problem
is fixed, it provides neither a direct way to constructing a compact representation of
the data nor even for determining the minimum required space. Further we briefly
describe existing approaches to reducing the problem size and thus to obtaining
upper bounds of instance data complexity.

As the cost matrix of a PMP instance has m×n elements, it is clear that this value
is the most trivial upper bound for comp(C ). This value is achieved by the classical
MILP representation (see [130]) of the PMP with its objective function defined as

∑
j∈J

∑
i∈I

ci jxi j. (2.85)

Here ci j denote entries of the cost matrix and xi j are decision variables (xi j = 1
if jth client is served from ith location, otherwise xi j = 0). Cornuejols et al. [45]
introduced an alternative formulation of the problem. For any client j, let Kj be
the number of different distances from j to any location. It follows that Kj ≤ m.

Let D1
j < D2

j < .. . < D
Kj
j be these distances, sorted. For each client j it is possible

to define a hierarchy of neighborhoods V k
j such that each V k

j is a set of locations

within the distance Dk
j from client j. Naturally, in an optimal solution a client j is

assigned to its neighborhood with the smallest Dk
j containing the opened location.

Thus, instead of xi j this formulation uses variables zk
j such that zk

j = 1 if and only if

there are no opened locations in V k
j . The objective function in this case is defined as:

∑
j∈J

(
D1

j +
Ki−1

∑
k=1

(Dk+1
i −Dk

i )z
k
i

)
. (2.86)

Informally, this representation implies that only different elements in each column
of the cost matrix are meaningful and the problem size can be reduced by storing
only the pairwise different elements from each column. The further reduction is
proposed in [55]. It states that if for some j,k, j′,k′ holds V k

j = V k′
j′ , then for any

feasible solution zk
j = zk′

j′ and some terms in (2.86) can be merged. Several reduc-
tions are also presented in [43], but they are similar to those described above. There
are also some papers aimed at reduction of the number of constraints in the MILP
formulation of the problem (see, e.g., [9, 10]); however, the number of coefficients
in the objective function remains the same.

It should be noticed that most of the reduction techniques described in literature
are based on a MILP formulation of the PMP and apply artificial tricks exploit-
ing some features of the instance. On the contrary, as we showed in Sect. 2.3, a
pseudo-Boolean representation itself naturally leads to several reductions that allow
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obtaining better estimates of the instance data complexity and include all known
reductions. (Note that due to the fact that the construction of the pBp and all its
reductions can be done in polynomial time, the third condition of Definition 2.3 is
satisfied.)

2.5.2 Complex Benchmark Instances

In this section we consider the aspects of constructing complex benchmark instances
that can be used for testing solution algorithms and introduce our library of such
instances.

To have maximum possible complexity, a PMP instance defined on an m×n cost
matrix should not be amenable to any of the reductions described above. Thus, first
of all, the entries of the difference matrix should be nonzero, such that all monomials
in the pBp have nonzero coefficients, or, equivalently:

Claim. The most complex instances have pairwise different and nonzero entries in
every column of the cost matrix (assuming that sizes of the cost matrix are fixed).

However, as explained below, these two restrictions on the entries of the differ-
ence matrix are not sufficient to ensure the complexity. Suppose, for some column
j the difference between the minimal and second minimal element Δc[1, j] is com-
parable to the (unknown) costs of optimal solution. In this case the location (row),
at which the minimum for jth client (column) is attained, will be included into any
optimal solution. Such additional structure can be exploited by the solution algo-
rithms and thus reduces the complexity of the instance. This particular case can be
generalized in the following way. Suppose, the (truncated) pBp contains a mono-
mial αT = α ∏i∈T yi with a large enough coefficient α that exceeds the costs of
the optimal solution (or its somehow computed upper bound). Then, clearly, for any
optimal solution y holds T (y) = 0, implying that at least one of the variables in T
must be set to zero and at least one of the corresponding locations is opened. In fact,
this condition can be made even stronger if one considers not only the coefficient α
at T but also the sum of α and coefficients of all monomials with terms embedded
in T . It is also quite straightforward that this test is more likely to fail as the range
of the entries of difference matrix (or, equivalently, coefficients of the pBp) becomes
smaller, up to the limit case when they all are equal. These considerations lead to
the following claim.

Claim. Instances that lead to the pBp with all coefficients equal (except a constant—
monomial of degree zero) are the most complex ones (assuming that the number of
monomials is fixed).

Once we know how to construct a “complex” pBp, we are interested in maxi-
mizing the number of monomials in it. To achieve this, there should be no similar
monomials in the pBp representation of the problem. It should be mentioned that
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constants obtained from pseudo-Boolean representation of all the columns can be
reduced into one monomial, so every PMP instance has a complexity of at most

comp(C )≤ mn− (n− 1) = n(m− 1)+ 1. (2.87)

To ensure that only constants can be aggregated, the permutation matrix
Π must conform with the following requirement: the sets of first k entries of
columns Π j in Π should be pairwise different for any k : 1 ≤ k ≤ m. This
requirement can be expressed in an alternative form. Let us consider a Hasse
diagram defined over the subsets of {1, . . . ,m}. It is easy to see that each per-
mutation Π j = (π1 j,π2 j, . . . ,πm j)

T corresponds to a chain of embedded sub-
sets {π1 j} ⊂ {π1 j,π2 j} ⊂ . . . ⊂ {π1 j, . . . ,πm j} that, in turn, corresponds to a
/0− {1, . . . ,m} path in the Hasse diagram. Now the requirement can be formu-
lated as follows:

Claim. In order to prohibit reduction of similar monomials, the permutation matrix
should correspond to a collection of internally vertex-disjoint /0−{1, . . . ,m} paths
in the Hasse diagram defined on subsets of {1, . . . ,m}.

Taking into account that there are at most m such paths, for PMP instances with
n > m, it is always possible to reduce at least n−m linear monomials in the pBp, so
for instances in our benchmark library holds n ≤ m. Due to these considerations it
is possible to formulate the problem of constructing a permutation matrix that leads
to a complex instance as a problem of finding n vertex-disjoint paths in a graph
obtained from the Hasse diagram. Though this problem is known to be polynomially
solvable [132], the fact that the complete Hasse diagram has 2m vertices makes the
procedure very time-consuming for large m. However, there exists a trivial solution:

πi j = (i+ j)modm+ 1. (2.88)

In case n = 4, m = 5 this solution leads to the following permutation matrix Π :

Π =

⎡
⎢⎢⎢⎢⎣

3 4 5 1
4 5 1 2
5 1 2 3
1 2 3 4
2 3 4 5

⎤
⎥⎥⎥⎥⎦
.

Based on a representation of the monomials as a collection of chains it is possible to
estimate the complexity of a PMP instance (the maximum number of monomials in
the pBp). Consider a complete Hasse diagram that contains all subsets of {1, . . . ,m}.
Clearly, the maximum length of a chain of embedded non-constant terms is m− 1,
as it is the maximum possible degree of the pBp. The number of chains of this
maximum length is exactly m =

(m
1

)
as there exits m linear terms (as well as m terms

of degree m− 1). Each of these chains uses exactly one term of each degree from
1 to m− 1. Once all maximum length chains are used, the next available maximum
length of a chain is m−3 (terms of degree 2, . . . ,m−2). The number of such chains
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is
(m

2

)− (m
1

)
which is exactly the number of quadratic terms that were not included

in chains of length m− 1. If we have enough columns to use all these chains (i.e.,
n is sufficiently large), then we switch to chains of length m− 5 (terms of degree
3, . . . ,m− 3) and there are

(m
3

)− [
(m

2

)− (m
1

)
]− (m

1

)
=
(m

3

)− (m
2

)
such chains, which

is exactly the number of cubic terms not used by chains of lengths m−2 and m−1.
We continue picking the longest possible chains until we have n of them. It is not
hard to understand that the number of terms of some degree k (1 ≤ k ≤ m− 1) in
such a collection of n longest chains is bounded by n and, at the same time, cannot
exceed

(m
k

)
. Figure 2.3 gives a graphical representation of how the number of terms

in such a collection of chains of maximum length can be calculated.

Fig. 2.3 Estimating the maximum number of nonzero terms in a pBp

In the left part of Fig. 2.3 an example for m = 5 is shown. Circles denote terms
of a pBp that are arranged in such a way that terms of same degree are within one
column. Lines correspond to possible chains of embedded terms. If one is aimed at
having n chains containing the maximum number of terms, then he picks n longest
chains starting from the lower part of the picture. In particular, it can be seen that it
is impossible to get more than five full chains for the given example. For instance,
if n = 6, then at least one linear monomial will be reduced. For arbitrary m and n
the maximum number of monomials in the reduced pBp corresponds to the area of
the shaded region in the right part of Fig. 2.3. Thus the complexity (equivalently, the
number of monomials in the corresponding pBp) of a PMP instance C defined by
an m× n cost matrix is bounded by

comp(C )≤
m−1

∑
i=1

min{n,
(

m
i

)
}+ 1. (2.89)

The main peculiarity is that for a number of clients n exceeding the number of
locations m addition of new clients has progressively smaller impact on the com-
plexity of the instance that is always less than n(m− 1)+ 1, while for n ≤ m there
exist instances of complexity n(m− 1)+ 1.

It is easy to see that in case n < m all the minima are contained in at most n rows
(i.e., all minima are achieved on at most n < m locations) and preprocessing will
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eliminate at least m−n variables (rows of the cost matrix). This leads to a conclusion
that instances with n = m are, potentially, the most complex ones (provided the
entries of the cost matrix satisfy the considered above requirements).

Possibility of truncation of the pBp depends only on the number of medians
and is not affected by the values of the cost matrix. Thus, we cannot negate this
reduction by adjustment of the cost matrix and if p is fixed (2.89) can be improved
in the following way:

comp(C )≤
m−p

∑
i=1

min{n,
(

m
i

)
}+ 1. (2.90)

Our benchmark library contains complex (in terms of possibility of problem size
reduction) PMP instances defined on square matrices of different sizes. As costs ma-
trices are dense, they are stored explicitly in files named “XmatrY,Z.txt,” where X is
“t” if the permutation matrix Π is defined by (2.88) and X is “r” if Π is a randomized
permutation matrix obtained as a solution to the disjoint paths problem mentioned
above. Y reflects the values of m and n (in our instances n = m), and costs are se-
lected in such a way that entries of the difference matrix Δ are uniformly distributed
random integers from {1, . . . ,Z}. Due to Claim 2.5.2 instances with smaller Z are
harder to solve. For example, the file named “tmatr4,1.txt” defines the following
instance:

C =

⎡
⎢⎢⎣

3 4 1 2
4 1 2 3
1 2 3 4
2 3 4 1

⎤
⎥⎥⎦ . (2.91)

It is easy to check that the permutation matrix is the same as cost matrix C and the
difference matrix has all unit entries.

The structure of the files is as follows. The first line contains the numbers of
clients and potential locations (columns and rows of the cost matrix); next all entries
of the cost matrix are explicitly listed row by row. The library is available at http://
go.to/dkrush (under “Science”→“PMP”).

We would like to finish description of our complex instances by mentioning that
under certain conditions optimal objective values can be computed by a simple for-
mula (see Lemma 2.6 below). This property is especially useful for the developers
of heuristic methods and makes it possible to estimate the quality of the generated
solutions.

Lemma 2.6. If the m× n cost matrix of a PMP instance satisfies the following con-
ditions:

http://go.to/dkrush
http://go.to/dkrush
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• m = n.
• A permutation matrix is defined by (2.88).
• All entries of the difference matrix are equal to some constant d,

then the optimal objective value can be computed as

d(n′+ 1)

[
n′p
2

+(n mod p)

]
, (2.92)

where n′ = �n/p�.
Proof. Conditions of the lemma ensure that each row (and each column) of the cost
matrix can be obtained from (d,2d, . . . ,md) by a cyclic shift, i.e., each multiple of
d is contained in each row exactly once. This implies that at most p clients can be
served at a cost d. As well, at most p clients can be served at costs 2d, 3d, etc.
Thus, the minimum can be obtained by serving first p clients at cost d, the next
min{n− p, p} clients at cost 2d, the next min{n− 2p, p} clients at a cost 3d, etc.,
until we serve all n clients. By a simple combinatorial reasoning, the total costs in
this case can be computed as

d

[
n′(n′+ 1)

2
p+(n′+ 1)(n mod p)

]
= d(n′+ 1)

[
n′p
2

+(n mod p)

]
. (2.93)

This minimum is achieved by the p locations (rows of the cost matrix) that fall
within the following pattern:

(d 2d . . . pd . . . . . . . . . . . . . . . . . . md)
(. . . . . . . . . md d 2d . . . pd . . . . . . . . .)
(. . . . . . . . . . . . . . . . . . . . . md d 2d . . .)
. . .

(2.94)

��
Lemma 2.6 and its constructive proof have an important corollary. It can be checked
that in the instances satisfying the condition of the lemma, each location is open in
p optimal solutions and the number of optimal solutions is n (does not depend on
the number of medians p). This means that these instances are degenerate and may
be easily solvable, irrespective of their size.

In order to check the properties of our instances we held a number of computa-
tional experiments. For the sake of comparison we used two formulations of PMP:
our MBpBM and Elloumi’s NF [55] (which is the most compact MILP formula-
tion of PMP, to the best of our knowledge). Figure 2.4 shows the ranges of m and
p for which the model can be loaded into the MILP solver (in our case Xpress).
For different sizes of the m×m input matrix we checked for which range of p the
formulation can be loaded into the MILP solver (i.e., is small enough to fit into the
memory). Clearly, this range is bounded from above by the line p =m. As Elloumi’s
formulation does not account for the number of medians, there exist some critical
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Fig. 2.4 Ranges of complex instances data size for which our MBpBM and Elloumi’s NF can be
loaded by Xpress

size of the cost matrix beyond which the formulation becomes prohibitively large,
irrespective of p. At the same time, our formulation based on the pseudo-Boolean
representation of the instance data can be loaded by a general-purpose MILP solver
for some values of p even if the input matrix is of huge dimension (see Fig. 2.4).

Finally, we compared running times of two solution approaches (our MBpBM
and Elloumi’s NF) applied to selected OR instances and to our generated instances
of the same size and with the same number of medians p. As was presumed, in-
stances with permutations given by (2.88) are easy for the MILP solver and the
running times are of the same magnitude as running times for OR instances (even
though the number of coefficients in the formulation is much larger). Thus, we com-
pared running times of OR instances and our complex instances with randomized
permutation matrices and difference matrices containing all unit entries. The results
of this comparison are presented in Table 2.6 and show that our benchmark instances
are complex also in terms of running time. In particular, for small values of p, com-
putation times explode even for 100× 100 input matrices. Also, for the unsolved
instances we compared the best found integer solutions with solutions obtained by
heuristics and it was observed that heuristics produced better solutions. This contra-
dicts the common observation that MILP solvers based on branch-and-bound pro-
cedures spend only a very small portion of the total running time on finding the
optimal solution (while most of the time is spent on proving its optimality). Thus,
from this point of view, our instances with randomized permutation matrices are
also complex.
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Table 2.6 Running times in seconds for our MBpBM and Elloumi’s NF for OR
instances and our complex instances of the corresponding size

OR instances Our instances
m p MBpBM MBpBMb Elloumi MBpBM MBpBMb Elloumi

100 5 0.22 0.20 0.25 4,434.66 3,443.13 24,684.42
10 1.47 0.58 4.08 878.78 1,141.05 3,926.20
20 0.11 0.06 0.14 92.95 26.25 62.94
33 0.22 0.05 0.13 0.28 0.11 0.61

200 5 15.22 17.67 17.06 * * *
10 0.73 0.55 0.77 * * *
20 0.49 0.31 0.55 * * *
40 0.41 0.28 0.45 1,616.33 1,218.45 1,753.47
67 0.27 0.14 0.41 1.08 0.63 1.34

300 5 4.00 4.61 4.50 * * *
10 8.59 8.33 7.36 * * *
30 0.80 0.56 1.25 * * *
60 1.05 1.13 2.34 * * *

100 0.48 0.30 0.86 1.16 0.27 1.81
400 5 42.47 30.78 23.38 * * *

10 25.16 21.19 32.02 * * *
40 1.73 1.31 2.97 * * *
80 0.97 0.72 1.61 * * *

133 0.73 0.80 1.25 3.83 1.86 6.28
500 5 4.52 3.92 6.22 * * *

10 51.63 64.05 98.59 * * *
50 1.74 1.31 2.77 * * *

100 1.42 0.97 2.33 * * *
167 1.44 0.88 1.84 14.91 4.14 18.56

600 5 163.84 111.81 180.31 * * *
10 27.59 21.31 43.73 * * *
60 2.48 2.13 3.61 * * *

120 1.78 1.31 2.91 * * *
200 1.50 0.78 4.81 49.81 15.41 201.39

700 5 153.22 57.05 90.95 * * *
10 33.13 43.39 37.64 * * *
70 3.09 2.69 4.73 * * *

140 3.72 1.97 7.11 * * *
800 5 70.30 154.41 514.72 * * *

10 2,256.83 4,252.13 6,737.25 * * *
80 3.91 3.08 7.00 * * *

900 5 1,328.34 2,041.28 1,143.97 * * *
10 572.81 444.08 473.95 * * *
90 5.39 4.02 8.42 * * *

∗Not solved within 24 h
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2.6 Equivalent PMP Instances

Generally speaking, there exist many different PMP instances that have the same
(reduced) Hammer–Beresnev polynomial, mainly because similar monomials can
be aggregated and disaggregated. Correspondingly, if two PMP instances have the
same size (the same number of potential locations) and the same Hammer–Beresnev
polynomial, then any solution y has the same objective value for both of them. This
implies that a solution that is optimal for one of the instances is also optimal for the
other one (provided the number of medians p are the same for both instances). This
allows defining a notion of equivalence based on a pseudo-Boolean representation.
Two instances of the PMP defined by cost matrices C and D are called equivalent
if they have the same size (number of rows), the same number of medians p and
BC = BD. The most important point here is that equivalence of two instances can
be checked in time that is polynomially bounded in the size of the input cost matrix,
even though the PMP is itself NP-hard. This becomes clear if one observes that a
Hammer–Beresnev representation can be generated in polynomial time and contains
a polynomially bounded number of monomials. However, it should be noted that
such equivalence is only a sufficient condition for two PMP instances to have the
same optimal solution. The following counter-example illustrates this.

Example 2.3. Consider two instances defined by costs matrices C and D:

C =

[
1 1
2 2

]
and D =

[
1 1
3 3

]
. (2.95)

If p = 1 then the Hammer–Beresnev functions BC(y) = 2+ 2y1 and BD(y) = 2+
4y1 are different but the instances have a unique optimal solution y∗ = (0,1)T.

Let us consider the set of all PMP instances that are equivalent to a given instance
defined by matrix C:

PC,p =
{

D ∈ R
mn
+ : BD,p = BC,p

}
. (2.96)

This set can be defined as

PC,p =
⋃

Π∈PERM(C)

PC,Π ,p , (2.97)

where
PC,Π ,p =

{
D ∈ R

mn
+ : BC,p = BD,Π ,p

}
, (2.98)

and PERM(C) is a set of all m× n permutation matrices that can be induced by
BC,p. Any set of embedded terms of Hammer–Beresnev polynomial defines at least
one permutation of {1, . . . ,m} that can be viewed as some column of permutation
matrix. We say that a permutation matrix Π of equivalent instance is induced by
BC,p if it has the same size as C, each its column is defined by some set of embedded
terms of BC,p and each term is used in generation of some column of Pi.
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Let us now consider the set PERM(C). It should be noted that perm(C) ⊆
PERM(C) and having fixed some permutation Π ∈ perm(C) all other elements of
this set can be obtained by application of operations from a finite set to it. First such
operation is a permutation of the columns of Π—it is clear that it does not affect the
polynomial. Second operation is a permutation of such elements i and k from some
column j for which holds cπi j j = cπk j j. It is easy to check that all terms containing
either of variables yπi j and yπk j (but not both) have zero coefficients. In order to pro-
vide the following two operations, it is useful to introduce matrix representation of
the Hammer–Beresnev polynomial: each such polynomial can be represented as an
m×n matrix, every entry of which corresponds to some monomial of the Hammer–
Beresnev polynomial (possibly with a zero coefficient). Moreover, the following
restrictions take place:

(i) Every row i contains monomials of ith degree.
(ii) Monomials within each column have embedded terms.

Having a polynomial and a fixed permutation it is possible to restore the matrix
representation (the inverse is also true—having a matrix representation it is possible
to restore the polynomial and some permutation(s)). For example,

BC(y) = 7+ 5y1+ 4y2 + 4y1y2 and Π =

⎡
⎣

1 2
2 1
3 3

⎤
⎦ (2.99)

lead to many optional matrix representations, for example,
⎡
⎣

7 0
5y1 4y2

3y1y2 1y1y2

⎤
⎦ ,
⎡
⎣

3 4
5y1 4y2

0y1y2 4y1y2

⎤
⎦ . (2.100)

It can be seen from this example that by interchanging the entries in the second row
the restrictions (i) and (ii) on the matrix representation of the polynomial are not
violated. At the same time, this leads to a different permutation matrix:

polynomial permutation⎡
⎢⎢⎣

3 4
5y1 4y2

3y1y2 1y1y2

4y1y2y3 5y1y2y4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2
2 1
3 4
4 3

⎤
⎥⎥⎦

↓ ↓⎡
⎢⎢⎣

3 4
4y2 5y1

3y1y2 1y1y2

4y1y2y3 5y1y2y4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 1
1 2
3 4
4 3

⎤
⎥⎥⎦ .

(2.101)

Thus, the third operation is permutation of the entries within one row such that the
embedded structure of the matrix is preserved. The fourth operation is reduction of
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similar monomials; it leads to an increase in the number of zero coefficients in the
matrix representation and thus provides more opportunities for application of the
second operation:

polynomial permutations⎡
⎢⎢⎣

3 4
5y1 4y2

3y1y2 1y1y2

4y1y2y3 5y1y2y4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2
2 1
3 4
4 3

⎤
⎥⎥⎦

↓ ↓⎡
⎢⎢⎣

3 4
5y1 4y2

4y1y2 0y1y2

4y1y2y3 5y1y2y4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2
2 1
3 4
4 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1
2 4
3 2
4 3

⎤
⎥⎥⎦ .

(2.102)

Similarly to [4], we show that the set PC,Π can be described by a system of linear
inequalities.

Let us assume that Π ,Ψ ∈ perm(C). The choice of the particular Π and Ψ is
unimportant since the truncated Hammer–Beresnev polynomials for all permuta-
tions within perm(·) are identical (see [5]). The truncated Hammer–Beresnev poly-
nomial for C is

BC,p(y) =
n

∑
j=1

Δc[1, j]+
n

∑
j=1

Δc[2, j]yπ1 j +

m−p

∑
k=3

n

∑
j=1

Δc[k, j]
k

∏
r=1

yπr j , (2.103)

while that for D is

BD,p(y) =
n

∑
j=1

Δd[1, j]+
n

∑
j=1

Δd[2, j]yψ1 j +

m−p

∑
k=3

n

∑
j=1

Δd[k, j]
k

∏
r=1

yψr j . (2.104)

For the PMP defined on D to be equivalent to the PMP defined on C, BD,p(y) has
to be equal to BC,p(y). By equating similar monomials in BC,p(y) and BD,p(y), we
see that for equivalence entries in D have to satisfy the following equations.

Equating the coefficients of the constant and linear monomials in (2.103) and
(2.104) yields

n

∑
j=1

Δd[1, j] =
n

∑
j=1

Δc[1, j], (2.105)

∑
j:ψ1 j=k

Δd[2, j] = ∑
j:π1 j=k

Δc[2, j] k = 1, . . . ,m− p. (2.106)
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By equating the coefficients of non-linear monomials we get the equations

∑
{ψ1 j ,...,ψk j}={π1 j,...,πk j}

Δd[k, j]−Δc[k, j] = 0 k = 3, . . . ,m− p; j = 1, . . . ,n. (2.107)

Finally, since Π ∈ perm(C) and Ψ ∈ perm(D) and since all entries in the instances
are assumed to be nonnegative, we have that

Δd[k, j] ≥ 0 k = 1, . . .m− p; j = 1, . . . ,n, (2.108)

di j ≥ 0 i = 1, . . . ,m; j = 1, . . . ,n, (2.109)

Consider the instance in (2.18) with p = 1 and BC(y) = BC,p=1 = 8+ 0y1+ 1y2 +
2y4 + 0y1y2 + 1y1y3 + 1y2y3 + 1y2y4 + 1y3y4 + 7y1y2y3 + 1y1y3y4 + 5y2y3y4. Then
PC,Π1 (where Π1 is given by (2.19)) is defined by the following system. Note that by
adding a specific permutation we just specify the names of entries in an equivalent
matrix.

Equations corresponding to constants (2.105):

d11 + d32+ d23 + d14 + d45 = 33. (2.110)

Equations corresponding to linear monomials (2.106):

y1 : (d31− d11)+ (d24− d14) = 0,

y2 : (d32− d22) = 1,

y3 : (d42− d32) = 0,

y4 : (d23− d43)+ (d35− d45) = 2.

Equations corresponding to non-linear monomials (2.107):

y1y2 : (d34− d24) = 0,

y1y3 : (d21− d31) = 1,

y2y3 : (d42− d32) = 1,

y2y4 : (d33− d23) = 1,

y3y4 : (d15− d35) = 1,

y1y2y3 : (d41− d21)+ (d44− d34) = 7,

y1y3y4 : (d25− d15) = 1,

y2y3y4 : (d12− d42)+ (d13− d33) = 5.

Inequalities corresponding to nonnegativity of differences (2.108):

d31− d11,d24− d14,d32− d22,d23− d43,d35− d45 ≥ 0,

d34− d24,d21− d31,d42− d32,d33− d23,d15− d35 ≥ 0,

d41− d21,d44− d34,d25− d15,d12− d42,d13− d33 ≥ 0.
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Inequalities corresponding to nonnegativity of costs (2.109):

d11,d12, . . . ,d44,d45 ≥ 0. (2.111)

For p = 2 we have that BC,p=2 = 8+0y1+1y2 +2y4 +0y1y2 +1y1y3 +1y2y3 +
1y2y4 +1y3y4+, and all equations corresponding to cubic terms will be replaced by

y1y2y3 : (d41− d21)+ (d44− d34) = 0,

y1y3y4 : (d25− d15) = 0,

y2y3y4 : (d12− d42)+ (d13− d33) = 0.

Hence, given a cost matrix C, any solution D to the set of inequalities (2.105)–
(2.109) will be a matrix for an equivalent instance.

Inequalities (2.105)–(2.109) define a family of polyhedra in R
mn
+ (each polyhe-

dron in the family corresponds to some permutation Πi ∈ perm(C)). Further, we
show that any two such polyhedra (2.98) either have an empty intersection or coin-
cide.

From the following example it can be seen that in the simplest case, when each
coefficient in the Hammer–Beresnev polynomial is defined by the costs of serving
only one client (by entries of only one column in the cost matrix), the claimed
property can be verified by considering only (2.105)–(2.107). The polynomial is
presented in a matrix form, such that each column of the matrix contains monomials
with embedded terms.

Let us consider two representations of the same polynomial,
⎡
⎣

7 0
5y1 4y2

4y1y2 0y1y2

⎤
⎦
⎡
⎣

7 0
4y2 5y1

4y1y2 0y1y2

⎤
⎦ , (2.112)

their corresponding cost matrices
⎡
⎣

7 4
12 0
16 4

⎤
⎦

⎡
⎣

11 0
7 5

15 5

⎤
⎦

(2.113)

and permutations ⎡
⎣

1 2
2 1
3 3

⎤
⎦

⎡
⎣

2 1
1 2
3 3

⎤
⎦ .

(2.114)

Then, equations describing polyhedra for the two cases are
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const. : d11 + d22 = 7, const. : d21 + d12 = 7,
y1 : d21− d11 = 5, y2 : d11− d21 = 4,
y2 : d12− d22 = 4, y1 : d22− d12 = 5,

y1y2 : d31− d21 = 4, y1y2 : d31− d11 = 4,

(2.115)

It can be seen that equations in the second line (in the third, as well) contradict each
other, so the two polyhedra have empty intersection. On the other hand, the only
way to eliminate this contradiction is to put r.h.s. of these equations to 0. However,
in this case we will have two equivalent systems of equations:

d11 + d22 = 7, d21 + d12 = 7,
d21− d11 = 0, d11− d21 = 0,
d12− d22 = 0, d22− d12 = 0,
d31− d21 = 4, d31− d11 = 4.

(2.116)

In a more general case, however, by considering only the equations it is not
possible to prove the claimed property of the polyhedra induced by the Hammer–
Beresnev polynomial. The following counter-example illustrates this point.

Consider the two following matrix representations of the same polynomial:
⎡
⎣

7 0 0
5y1 4y2 0y1

4y1y2 0y1y2 2y1y3

⎤
⎦
⎡
⎣

7 0 0
4y2 5y1 0y1

4y1y2 0y1y2 2y1y3

⎤
⎦ , (2.117)

their corresponding cost matrices
⎡
⎣

7 4 0
12 0 2
16 4 0

⎤
⎦

⎡
⎣

11 0 0
7 5 2

15 5 0

⎤
⎦

(2.118)

and permutations
⎡
⎣

1 2 1
2 1 3
3 3 2

⎤
⎦

⎡
⎣

2 1 1
1 2 3
3 3 2

⎤
⎦ .

(2.119)

Then, equations describing polyhedra for the two cases are

const. : d11 + d22 + d13 = 7, const. : d21 + d12 + d13 = 7,
y1 : d21− d11 + d33− d13 = 5, y1 : d22− d12+ d33− d13 = 5,
y2 : d12− d22 = 4, y2 : d11− d21 = 4,

y1y2 : d31− d21 + d32− d12 = 4, y1y2 : d31− d11+ d32− d22 = 4,
y1y3 : d23− d33 = 2, y1y3 : d23− d33 = 2,

(2.120)
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There are no contradicting equations in the two systems and it can be verified that
they have common solutions. Thus, if only equalities are considered, the polyhedra
can intersect in general case, but, if constraints on non-negativity (2.108)–(2.109)
are added, it is possible to formulate the following lemma.

Lemma 2.7. Polyhedra induced by different permutation matrices either do not in-
tersect or coincide.

Proof. Suppose, for some column j it is possible to change its permutation from
π1 = (· · · , i,k, · · ·)T to π2 = (· · · ,k, i, · · ·)T, so that only two adjacent entries are in-
terchanged. The first permutation will lead to the following inequality (among the
others):

di, j− dk, j ≥ 0. (2.121)

Similarly, the second permutation leads to a system that includes

dk, j− di, j ≥ 0. (2.122)

It is straightforward that the polyhedra intersect only if dk, j = di, j, but in this case
the systems of equations that correspond to the two cases (permutations, matrices)
are equivalent. ��

2.6.1 Dimensions of PMP Equivalence Polyhedra

As mentioned above (2.97), the union PC of polyhedra corresponding to possible
permutations of the cost matrix C describes all equivalent PMP instances. Once
the equivalence relation is established, it is natural to estimate the dimension of
equivalent data (dimension of PC). In order to do that, we introduce additional
notations. Let us denote the system of (2.105)–(2.107) by E . In turn, E can be
presented in a matrix form as A · d = b, where A—mn×N matrix, d—vector of
entries of the cost matrix (variables), d = (d11,d21, . . . ,dmn)

T, and N—the number
of equations in (2.105)–(2.107). Under these notations it is possible to formulate the
following properties of E (we assume that A has at least two rows, i.e., m≥ 2).

Observation 1 For any two equations eq1 and eq2 from E there exist two variables
di j and dkl , such that

di j ∈ eq1,di j /∈ eq2, (2.123)

dkl ∈ eq2,dkl /∈ eq1. (2.124)

Observation 2 All coefficients in the equations from E belong to {−1,1}.
Observation 3 There exist variables dmi, i = 1, . . . ,n that are included in exactly
one equation with coefficient +1. All the other variables are included in exactly two
equations with coefficients +1 and −1, correspondingly.
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The latter becomes clear if one considers equations corresponding to coefficients
of a chain of embedded terms of the Hammer–Beresnev polynomial.

Observations 1 and 2 have an important consequence formalized in the following
lemma.

Lemma 2.8. Constraint matrix A describing the polyhedron of equivalent instances
is totally unimodular. The transposed minor of A excluding the first row (the one cor-
responding to constraints (2.105)) is also totally unimodular if all subpermutations
in Π are different, i.e., if the pseudo-Boolean representation of the instance has no
similar monomials.

Proof. The first statement can be easily verified by observing that every column of
A has at most two nonzero entries and they the opposite sign. Together with the
statement of Observation 2 this matches the well-known sufficient conditions for
total unimodularity (see, e.g., [120], Theorem 13.3).

In order to prove the second statement, observe that absence of similar monomi-
als implies that each coefficient in the Hammer–Beresnev polynomial (except the
constant) is uniquely defined as a difference of two entries of the cost matrix. This
means that each row of A (correspondingly, each column of AT except the first one)
has exactly two nonzero entries of the opposite sign. Thus, the sufficient conditions
used in the first part of the proof are satisfied. ��

Lemma 2.8 implies that the polyhedron of equivalent instances has only integral
vertices and that each cost matrix within an equivalence class can be represented as a
conic combination of some integer-valued cost matrices from the same equivalence
class.

The following observations reflect some additional properties of the constraints
defining the equivalence polyhedron.

Observation 4 If some two equations eq1, eq2 from E contain the same variable
di j, then exactly one of the following holds (λ1,λ2—some constants):

◦ di j ∈ λ1eq1 +λ2eq2 and there exists no other equation eq3 ∈ E that contains di j.
◦ di j /∈ λ1eq1 +λ2eq2 and there exists no other equation eq3 ∈ E that contains di j.

Observation 5 (Elimination of variables) If in a linear combination λ1eq1 +λ2eq2

of two equations from E some variable di j (that was present in both of them) is
eliminated, then this combination contains d(i+1) j and d(i−1) j, and no other equation
from E contains both these variables.

Lemma 2.9. The system of equations E is linearly independent.

Proof. By definition, the system is linearly dependent if there exist such constants
λ1, . . . ,λN (∑i |λi| > 0) that L ≡ λ1eq1 + λ2eq2 + . . .+ λNeqN = 0, or, in other
words, coefficients at all variables in L are zero. Let us show that such set of con-
stants λi, i = 1 . . .N does not exist by induction on the number of equations in L .

For N = 1—trivially, in each equation there are variables with nonzero coeffici-
ents (see Observation 2).
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Suppose, for some N > 1 holds L =λ1eq1+λ2eq2+ . . .+λNeqN �= 0, this means
that L contains at least one variable with a nonzero coefficient. Let us show that by
adding one more equation to L one will not obtain 0. If L and eqN+1 do not have
common variables, then for any λN+1 holds

L +λN+1eqN+1 �= 0. (2.125)

If L and eqN+1 have some common variable di j, then exactly one of the follow-
ing cases takes place:

◦ d(i+1) j ∈L , d(i+1) j /∈ eqN+1

◦ d(i+1) j ∈ eqN+1, d(i+1) j /∈L
◦ d(i+1) j /∈ eqN+1, d(i+1) j /∈L

In the first two cases we have a variable that cannot be eliminated by adding
λN+1eqN+1 to L . The third case implies that d(i+1) j was eliminated in L and ac-
cording to Observation 5 there exist some dk j, k > i that is in L and not in eqN+1.
This finishes the proof. ��

As all equations in E are linearly independent, then A has the maximum possible
rank that is equal to the number of rows in it, i.e., rank(A) = N. If one now denotes
by |T | the number of monomials in the initial Hammer–Beresnev polynomial (equal
to the number of nonzero entries in the difference matrix Δ ) and by |B|—the number
of terms in the reduced polynomial (with combined similar monomials), then the
following bounds on rank(A) take place.

Lemma 2.10.

rank(A)≥ |B|. (2.126)

rank(A)≤ |B|+mn−|T|. (2.127)

Proof. As every term with a nonzero coefficient corresponds to an equation in E ,
then the number of equations cannot be smaller than |B|. However, equations for
some terms of the polynomial with zero coefficients are to be included into the
system as their corresponding zero entries existed in the difference matrix. So, the
upper bound is obtained by adding the quantity of zeros induced by equal entries in
the columns of the cost matrix. ��

It should be noted that for a PMP instance defined on a cost matrix D to be
equivalent to a PMP instance defined on a cost matrix C, perm(D) has to be identical
to perm(C). Note that a choice among many equivalent matrices might be refined
by adding either additional constraints reflecting some sufficient conditions for the
polynomially solvable special case as well as some additional requirements to the
entries included in, for the sake of simplicity, a linear objective function defined on
PC,p.

The problem of finding an equivalent matrix D with the minimum number of
columns to the given matrix C can be solved using the following well-known Dil-
worth’s decomposition theorem (see, e.g., [136], Theorem 14.2):



70 2 The p-Median Problem

The set of terms Ta with positive coefficients in a pseudo-Boolean polynomial are subsets
of partially ordered set T , and hence, the minimum number of chains covering Ta (nothing
else as the minimum number of aggregated columns of C) is equal to the maximum size of
an antichain (the maximum number of non-embedded terms).

The maximum size of an antichain found for matrix (2.18) is equal to four, and
if the permutation matrix ΠE is chosen to be

ΠE =

⎡
⎢⎢⎣

1 2 4 3
3 3 2 4
2 1 1 1
4 4 3 2

⎤
⎥⎥⎦ , (2.128)

then the corresponding Hammer–Beresnev polynomial BC,p=2(y) = [1 + 0y1 +
1y1y3 + 2y1y2y3] + [1 + 1y2 + 1y2y3 + 3y2y3y4] + [1 + 1y4 + 1y2y4 + 2y2y3y4] +
[3 + 0y1 + 0y1y2 + 5y1y2y3] + [2 + 1y4 + 1y3y4 + 1y1y3y4] yields the following
(in)equalities. Equations corresponding to constants (2.105):

e11 + e22 + e43 + e34 = 8. (2.129)

Equations corresponding to linear monomials (2.106):

y1 : (e31− e11) = 0,

y2 : (e32− e22) = 1,

y3 : (e44− e34) = 0,

y4 : (e23− e43) = 2.

Equations corresponding to non-linear monomials (2.107):

y1y3 : (e21− e31) = 1,

y2y3 : (e12− e32) = 1,

y2y4 : (e13− e23) = 1,

y3y4 : (e14− e44) = 1,

y1y2y3 : (e41− e21)+ (e42− e12) = 0,

y1y2y4 : (e33− e13) = 0,

y1y3y4 : (e24− e14) = 0.

Nonnegativity inequalities corresponding to (2.108):

e31− e11,e32− e22,e44− e34 ≥ 0,

e23− e43,e21− e31,e12− e32 ≥ 0,

e13− e23,e14− e44,e41− e21 ≥ 0,

e42− e12,e33− e13,e24− e14 ≥ 0.

Nonnegativity inequalities corresponding to (2.109):
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e11,e12, . . . ,e43,e44 ≥ 0. (2.130)

Finally, the reconstructed costs matrix E that is equivalent to matrix C (2.18) is

E =

⎡
⎢⎢⎣

8 2 3 1
9 0 2 1
8 1 3 0
9 2 0 0

⎤
⎥⎥⎦ . (2.131)

Note that the equivalence relation defined in this chapter for the PMP
can be extended to other problems modelled via the PMP. For example,
in Chap. 3 we show that the CFP can be modelled via the PMP. This
implies that one can define equivalent CFP instances as those leading to
equivalent PMP instances.

2.7 Summary and Future Research Directions

This chapter presents a new approach to formulation of models for the PMP. We
first formulate the PMP using a pBp as the objective function and with just one con-
straint related to the number of medians in a feasible solution keeping all decision
variables Boolean. We then reduce the size of the objective function by truncation
and reducing similar monomials. After that we linearize all non-linear terms in the
objective function with additional variables and linear constraints. The resulting mo-
del that we call MBpBM is within the well-studied class of mixed Boolean linear
programming models. The number of nonzero coefficients in the objective func-
tion of MBpBM is minimal compared to all previously published models for the
PMP. Since the number of Boolean decision variables is equal to m and cannot be
further reduced (except by well-known reduction tests finding some open and/or
closed sites; see, e.g., [4, 11, 68] and references within) and the number of lin-
ear constraints is equal to the number of nonnegative variables, one may conclude
that the MBpBM has the smallest number of constraints related to the nonnegative
variables. As we have shown, the matrix of constraints related to the nonnegative
decision variables is as sparse as possible if we would be able to solve a generaliza-
tion of the classical set covering problem defined on the set of all terms involved in
the pseudo-Boolean formulation of PMP. Unfortunately, this set covering problem
is NP-hard [60]. As shown by our computational experiments for a PMP instance
with m = n = 1,000 the corresponding ground set of covering problem might be
in magnitudes larger. From the other side, even if we might be able to find the
most sparse matrix of constraints, then the created MBpBM is still in the class of
mixed Boolean linear programming models which are computationally intractable
(NP-hard). Anyway, if we evaluate the optimality of a model within the class of
mixed Boolean linear programming models by the smallest number of nonnegative
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variables and corresponding constraints, our MBpBM is an optimal one and PMP
instance specific!

The main distinction between MBpBM and all the well-known mixed Boolean
PMP formulations is that the number of non-negative variables in MBpBM is auto-
matically adjusted according to the number p of medians, i.e., the number of non-
negative variables as well as the number of constraints decrease linearly with in-
creasing values of p. This feature of MBpBM implies that PMP instances with rel-
atively large numbers of medians are easier to solve using standard MILP software
applied with our MBpBM. Thus, our models (MBpBM, MBpBMb, and MBpBMb1)
and pseudo-Boolean approach to their creation do not only extend the capabilities
of general-purpose software in solving larger sized PMPs but also make it possi-
ble to solve smaller problems more efficiently while using general-purpose MILP
software.

The MBpBM allows either to solve much larger problems by general-purpose
MILP software than what is possible using previous model formulations or to speed
up essentially the best-known models for the PMP. In sharp contrast, CPLEX is un-
able to solve the 15 largest OR test problems (see Table 2.1) in classical formulation
of PMP (see [11, 18]).

The MBpBM approach may also lead to reduced model sizes for other location
models like the SPLP and the capacitated SPLP (a generalization of PMP with fixed
charges) as well as to improve data correcting approach to the SPLP (see [61, 68]).
Together with the MBpBM we have introduced two variations of MBpBM, namely
MBpBMb and MBpBMb1. The MBpBMb includes preprocessing of monomials
and corresponding linear constraints based on a lower bound to a subproblem of
MBpBM induced by a subspace determined by the term of the corresponding mono-
mial in pBp. The MBpBMb1 is based on further reductions of monomials in pBp
induced by a monomial with zero coefficient and embedded in all terms with higher
degrees.

Computational results reported in Tables 2.4–2.5 show that MBpBMb1 outper-
forms the best available MILP Elloumi’s model for all OR library instances except
pmed38. Our MBpBM allows solving PMPs with much less execution times than
required by the best-known models in the literature. It also allows solving much
larger problems by general-purpose MILP software than is currently possible us-
ing previous model formulations. The MBpBM has been able to obtain an optimal
solution to the fl1400 instance with p = 400, which remained unsolved in [11] by
their state-of-the-art algorithm for PMP as well as by Beltran’s et al. advanced semi-
Lagrangian approach based on proximal-analytic center cutting plane method [18].
Our models MBpBM, MBpBMb, MBpBMb1 are computationally more efficient
than all available in the literature MILP formulations of PMP and outperform corre-
sponding state-of-the-art algorithms available in the literature; see [11, 18, 27, 43–
45, 55, 139].

Computational results reported in Table 2.3 show that our MBpBM will be useful
for p-median approach applicable to large cell formation instances in group tech-
nology such that the optimal number p of cells can be found (see, e.g., [160]). To
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summarize, in this chapter we have shown that our model extends the ability to solve
large-scale PMP instances to optimality by means of general-purpose software, e.g.,
Xpress-MP.

With regard to the main subject of this book—the cell formation problem—one
may conclude that application of PMP to solving the cell formation problem is ben-
eficial as the former can be solved to optimality very efficiently using the introduced
MBpBM formulation. Taking into account that the size of the problem is quite lim-
ited (e.g., 100 machines are already too many for a typical manufacturing system)
one may expect tiny solution times and this expectation will be verified in the fol-
lowing chapter.



Chapter 3
Application of the PMP to Cell Formation
in Group Technology

3.1 Introduction

Cell formation, being a popular concept in industrial engineering, suggests group-
ing machines into manufacturing cells and parts into product families such that each
family is processed mainly within one cell. The problem of optimal (usually, with re-
spect to the amount of intercell movement) cell formation has been studied by many
researchers. An overview can be found in [138, 164] and recently in [21]. However,
no tractable algorithms that guarantee optimality of the obtained solutions were re-
ported because of computational complexity of the problem. Moreover, even worst-
case performance estimates are not available for most approaches. In fact, it was
only checked that they produce good solutions for artificially generated instances
without any kind of worst or average case analysis. At the same time, today’s highly
competitive environment makes it extremely important to increase the efficiency of
manufacturing systems as much as possible. In these conditions any noticeable im-
provement (e.g., achieved by properly designed manufacturing cells) can provide a
secure position for a company in a highly competitive market.

3.1.1 Background

The problem of cell formation can be traced back to the works of Flanders [58] and
Sokolovski [79] but is often attributed to Mitrofanov’s group technology [106, 107]
and Burbidge’s product flow analysis [28]. Burbidge showed that it can be reduced
to a functional grouping of machines based on binary machine-part incidence data.
Thus, in its simplest and earliest form, cell formation is aimed at the functional
grouping of machines based on similarity of the sets of parts that they process.
Input data for such a problem is usually given by a binary machine-part incidence
matrix A = [ai j], where ai j = 1 if and only if part j machine i at some step of
its production process. In mathematical terms, the problem of cell formation was

B. Goldengorin et al., Cell Formation in Industrial Engineering, Springer Optimization
and Its Applications 79, DOI 10.1007/978-1-4614-8002-0 3,
© Springer Science+Business Media New York 2013

75



76 3 Application of the PMP to Cell Formation in Group Technology

first defined as one of finding independent permutations of rows and columns that
lead to an (almost) block-diagonal structure of matrix A—uncapacitated functional
grouping.

Early approaches to cell formation [33, 36, 84, 89, 103] (see Fig. 3.1) were re-
stricted to the functional grouping and produced optimal results only for the data
with a perfect cellular structure. The next step in the development of the cell forma-
tion problem was made by introducing the production volumes issue. A binary input
matrix was replaced by a real-valued one with entries reflecting actual production
volumes. Further, various types of data from real manufacturing systems (e.g., oper-
ational sequences, alternative routings, available workers) and/or additional constra-
ints (e.g., on the number of machines or workers within a cell, workload) were taken
into account leading to a bunch of new approaches to solving the corresponding
problems. Some of these approaches use genetic algorithms [57, 97, 101], simulated
annealing [1, 101, 161], and tabu search [31]. Others focused on artificial neural
networks exploiting their ability of (self-)learning and a variety of available archi-
tectures and learning paradigms: backpropagation learning [80], competitive learn-
ing [99], adaptive resonance theory [148, 163], and self-organizing maps [38, 73].
Despite being robust and adaptive, neural networks usually need an adjustment of
learning parameters that are hard to interpret and are selected on a trial-and-error
basis. In contrast to neural network approaches, the ones based on mixed-integer
linear programming, MILP [39, 141, 142], and graph theory, in particular, on the
p-median problem [7, 48, 155, 159] and its modifications (see, e.g., [21]), are easy
to understand and to interpret and need only the dissimilarity measure to be defined
for each pair of machines. However, as these approaches lead to computationally
intractable (NP-hard) problems (except the ones based on the minimum spanning
tree problem, see, e.g., [117]), researchers still focus on development of sophisti-
cated heuristics. We also would like to mention the paper by Chen and Heragu [39]
separately, because it differs from the bulk of other works in several aspects. First of
all, the authors made an attempt to solve the problem exactly. However, they were
able to solve optimally only instances of moderate size. Secondly, their formulation
does not use a dissimilarity measure and deals directly with machine-part relations.
This makes the applicability of the model questionable, as in the real systems, the
number of parts can be estimated in thousands leading to a huge formulation, even
though the number of machines is small. For example, an instance with 4,415 parts
was considered by Park and Suresh [122], and we experienced much larger ones.

Thus, until now there is no approach that guarantees optimality of obtained solu-
tions. In fact, for most of the available approaches, even worst-case quality analysis
is not available. This means that for real problems it is not known how far from true
optima the obtained solutions are. Finally, most models, being an approximation of
the original cell formation problem, are solved by heuristic methods thus accumu-
lating two errors: an intrinsic error of modeling and an error induced by a heuristic
solution method.
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3.1.2 Objectives and Outline

This chapter is motivated by the observation that while most approaches induce a
modeling error, the underlying problems are usually solved by heuristics leading
to a computational error that further deteriorates the solution quality. In contrast,
by means of the p-median problem (PMP), we show that the computational error
can be completely avoided. We also provide an experimental study showing that
the modeling error is relatively low. Despite its NP-hardness, our PMP-based model
can be solved to optimality in acceptable time for real-world data just by intensively
exploiting its properties and reducing its size. That is, we can transform the original
NP-hard problem into another NP-hard problem of a size small enough to allow its
resolution by a general-purpose MILP solver within seconds. By this example we
would like to draw the reader’s attention to the importance of a careful model choice
and opportunities provided by problem size reduction techniques.

This chapter is aimed at the development of a tractable MILP model for solving
real-world cell formation problems. We present an efficient formulation that is based
on the PMP, and allows solving large-size cell formation instances (typical for the
real manufacturing systems) in acceptable time by general-purpose MILP solvers.
We show that our model outperforms contemporary approaches in terms of solutions
quality and can be used as a starting point for further extensions. Even though PMP
is NP-hard [82], we present an efficient MILP formulation that intensively exploits
the structure of the input data thus substantially reducing the problem size. More-
over, we show that additional linear constraints reflecting capacities of the cells,
workload balancing, sequencing of operations, etc. can be incorporated into our
model while preserving its practical computational tractability. We also claim that
our model not only allows solving previously considered problems but also presents
a new flexible framework for dealing with real-world cell formation. Numerical
experiments will show that our model outperforms several other contemporary ap-
proaches in quality of the obtained solutions, while keeping computing times below
1 s. In addition, it is worth mentioning that the applicability of our approach is not
restricted to cell formation applications as models based on the p-median problem
were proposed in various fields, including cluster analysis, quantitative psychology,
marketing, telecommunications industry, sales force territories design, political dis-
tricting, optimal diversity management, vehicle routing, and topological design of
computer communication networks (references can be found in [4]). Thus, we would
like to draw attention of both—managers, industrial engineers, and researchers—to
the new possibilities provided by our flexible and optimally solvable p-median mo-
del.

The chapter is organized as follows. The next section describes the p-median
approach to the cell formation problem including general formulation of the PMP,
its interpretation in terms of cell formation and our efficient MILP formulation.
Section 3.3 gives some examples of constraints that can be incorporated into the pro-
posed model to illustrate its practical applicability. In Sect. 3.4 we provide results of
our experiments with instances used in recent papers. Finally, Sect. 3.5 summarizes
the chapter and outlines possible directions for future research.
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Fig. 3.1 Evolution of cell formation problem and applicability of approaches

3.2 The p-Median Approach to Cell Formation

The PMP was applied to cell formation in group technology by a number of re-
searchers (see [48, 160] and references within). However, to the best of our knowl-
edge, in all CF-related papers, PMP (as well as almost any other model based
on graph partitioning or MILP) is solved by some heuristic method. At the same
time, for the PMP there exist efficient formulations (the most recent one derived in
[55, 65]) that allow solving medium and large-size instances to optimality. In this
chapter we utilize our new model for the PMP that represents the instance data even
in a more compact way thus leading to a smaller MILP formulation. This allows
solving large-scale CF problems to optimality within seconds.

PMP is one of well-known minisum location-allocation problems. In Chap. 2 we
gave a detailed introduction to this problem; further details and solution methods
can be found in [108, 128]. For a directed weighted graph G = (V,A,C) with |V |
vertices, set of arcs (i, j) ∈ A ⊆ V ×V and weights (distances, dissimilarities, etc.)
C = {ci j : (i, j) ∈ A}, the PMP consists of determining p nodes (the median nodes,
1≤ p≤ |V |) such that the sum of weights of arcs joining any other node and one of
these p nodes is minimized (see Fig. 3.2).

In terms of cell formation, vertices represent machines and weights ci j represent
dissimilarities between machines i and j. These dissimilarities can be derived from
the sets of parts, that are being processed by either of the machines (e.g., if two
machines process almost the same set of parts they have small dissimilarity and are
likely to be in the same cell) or from any other desired characteristics (e.g., workers
skill matrix, operational sequences). Moreover, usually there is no need to invent a
dissimilarity measure as it can be derived from one of the available similarity mea-
sures using an expression d(i, j) = c− s(i, j), where d(., .)/s(., .) is a (dis)similarity
measure and c—some constant large enough to keep all dissimilarities nonnegative.
As can be seen from the literature, several similarity measures were proposed and
the particular choice can influence results of cell formation. For our experiments we
have chosen one of the most widely used—Wei and Kern’s “commonality score”
[156] and derived our dissimilarity measure as
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d(i, j) = r · (r− 1)−
r

∑
k=1

Γ (aik,a jk), (3.1)

where

Γ (aik,a jk) =

⎧
⎨
⎩

(r− 1), i f aik = a jk = 1,
1, i f aik = a jk = 0,
0, i f aik �= a jk,

(3.2)

where ai j—entries of the machine-part incidence matrix and r—number of parts.
Thus, if applied to cell formation, the p-median problem means finding p ma-

chines that are best representatives (centers) of p manufacturing cells, i.e., the sum
over all cells of dissimilarities between such a center and all other machines within
the cell is minimized. Once p central machines are found, the cells can be produced
by assigning each other machine to the central one such that their dissimilarity is
minimum. Note that the desired number of cells p is part of the input for the model
and should be known beforehand. Otherwise, it is possible to solve the problem for
several numbers of cells and pick the best solution.

Further, for the sake of clarity for those familiar with the PMP, we will follow the
terminology inherited from location-allocation applications and represent the set of
vertices V as a union of two (possibly intersecting) sets I and J, such that |I| = m,
|J| = n. We will call the elements of I locations and those of J–clients. Moreover,
we treat weights ci j as costs of serving client j ( j ∈ J) from location i (i ∈ I). In
terms of cell formation the set of locations I contains potential centers of the cells
and the set of clients J contains all machines. Clearly, in case of cell formation, sets
I and J coincide as any machine, potentially, can be a center of a cell. This implies
that PMP applied to cell formation has a symmetric cost matrix.

Fig. 3.2 The p-median problem: minimize the total weight of solid edges

3.2.1 The MBpBM Formulation

Our approach is based on a compact MILP formulation for PMP—the Mixed
Boolean pseudo-Boolean formulation (MBpBM), discussed in detail in Chap. 2 and
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in [65]. Here we briefly describe the major idea behind the formulation, as needed
for the further analysis.

The MBpBM formulation is derived from the so-called pseudo-Boolean formu-
lation of PMP (see [4, 65]) that associates with a cost matrix C, a permutation matrix
Π , a difference matrix Δ , and a vector of Boolean variables y= (y1, . . . ,ym), reflect-
ing opened (yi = 0) and closed (yi = 1) locations. Each column of Π is a permutation
that sorts the entries from the corresponding column of C in a nondecreasing order;
each column of Δ contains differences between consecutive sorted entries of C (δi1

is defined as the smallest elements in column i). It can be shown that the PMP can
be expressed in terms of a polynomial on Boolean variables, abbreviated as BC,p(y),
with only one constraint requiring exactly p locations to be opened: ∑m

i=1 yi = m− p.
The pseudo-Boolean formulation can then be linearized by introducing for each
product of y-variables in BC,p(y) a nonnegative z-variable and a constraint reflecting
the relation between z- and y-variables. The resulting MBpBM formulation can be
expressed as follows:

f (y) = α0 +
m

∑
r=1

αryr +
|B|
∑

r=m+1

αrzr →min

s.t.
m

∑
i=1

yi = m− p (3.3)

zr ≥ ∑
i∈Tr

yi−|Tr|+ 1, r = m+ 1, . . . , |B|, (3.4)

zr ≥ 0, r = m+ 1, . . . , |B|, (3.5)

y ∈ {0,1}m, (3.6)

where αr are coefficients of BC,p(y), |B| denotes the number of monomials in
BC,p(y), and Tr is the set of variable indices in monomial r, i.e., zr = ∏i∈Tr yi.

The following example demonstrates how our formulation works for a small CF
instance.

Example 3.1. Let the instance of the cell formation problem be defined by the fol-
lowing machine-part incidence matrix (MPIM)

parts

machines

1 2 3 4 5
1 1 1 1
2 1 1
3 1 1
4 1 1

(3.7)

with four machines and five parts (zero entries are skipped for better visualization).
Now one can construct the machine-machine dissimilarity matrix C by applying the
defined above dissimilarity measure (3.1):
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C =

⎡
⎢⎢⎣

6 20 10 20
20 9 19 9
10 19 9 19
20 9 19 9

⎤
⎥⎥⎦ , (3.8)

For example, the left top entry c11 is obtained in the following way:

c11 = r(r− 1)−
r
∑

k=1
Γ (a1k,a1k) =

5(5− 1)−Γ(0,0)−Γ (1,1)−Γ (0,0)−Γ (1,1)−Γ (1,1) =
20− 1− 4− 1−4−4= 6,

(3.9)

These dissimilarities can be thought of as some constant (needed to ensure nonneg-
ative values) minus the weighted sum of the number of matching zeros and ones in
two corresponding rows of the MPIM. The weights are chosen such that to ensure
that any matching one cannot be compensated by any number of matching zeros
within a row.

Possible permutation and difference matrices for the costs matrix (3.8) are:

Π =

⎡
⎢⎢⎣

1 2 3 2
3 4 1 4
2 3 2 3
4 1 4 1

⎤
⎥⎥⎦ Δ =

⎡
⎢⎢⎣

6 9 9 9
4 0 1 0

10 10 10 10
0 1 0 1

⎤
⎥⎥⎦ . (3.10)

These lead to the following pseudo-Boolean polynomial BC(y):

BC(y) = 33+ 4y1+ 1y3 + 20y1y3 + 20y2y4 + 2y2y3y4. (3.11)

If one is interested in having two manufacturing cells, then the number of medians
p in the formulation should be set to 2 and the pseudo-Boolean polynomial can be
truncated to the degree of (m− p) = 2:

BC,p=2(y) = 33+ 4y1+ 1y3 + 20y1y3 + 20y2y4. (3.12)

The obtained polynomial has two non-linear terms that we have to linearize by in-
troducing additional z-variables: z5 = y1y3 and z6 = y2y4. Now, our MBpBM for-
mulation allows expressing the given instance of cell formation as the following
MILP:

f (y,z) = 33+ 4y1+ 1y3 + 20z5 + 20z6 −→min (3.13)

y1 + y2 + y3 + y4 = 2, (3.14)

z5 ≥ y1 + y3− 2+ 1, (3.15)

z6 ≥ y2 + y4− 2+ 1, (3.16)

zi ≥ 0, i = 5,6, (3.17)

yi ∈ {0,1}, i = 1, . . . ,4. (3.18)
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Its solution y = (0,0,1,1)T , z = (0,0)T leads to the following cells:

parts

machines

2 4 5 1 3
1 1 1 1
3 1 1
2 1 1
4 1 1

(3.19)

3.2.2 Compactness of the MBpBM Formulation

Taking into account that there is a one-to-one correspondence between non-linear
monomials of BC,p(y) and nonnegative variables and constraints in MBpBM, the
properties of BC,p directly apply for the MBpBM formulation.

The fundamental property of the pseudo-Boolean formulation is that for real-
world instances the number of monomials in BC,p(y) can be essentially reduced
comparatively to the number of entries in the initial costs matrix. In particular, the
following three reductions take place:

• Only pairwise different elements in each column of the costs matrix play a role.
• All equal column subpermutations in Π contribute to a single monomial in

BC,p(y).
• The degree of BC,p(y) is at most m− p, i.e., only m− p+ 1 smallest different

entries in each column of the costs matrix are meaningful (“p-truncation”).

The cell formation application supports these reductions. Consider, for example, an
instance with p perfect cells, i.e., its machine-part incidence matrix can be trans-
formed into an ideal block-diagonal form with p blocks. In this case each column of
the corresponding cost matrix for the PMP has at most p different entries, which is
normally much less than m− p+ 1. Next, the number of different subpermutations
of each length is also equal to p. Thus, in case of p perfect cells, the objective has
at most p× p monomials, irrespective of the number of machines and parts. This
results in an MBpBM formulation with at most p× (p− 1) nonnegative variables
and corresponding constraints, irrespective of the number of machines and parts.
Of course, perfect cells are uncommon in practice and the problem becomes larger;
however, these considerations demonstrate that the size (and, therefore, complex-
ity) of the model is closely related to the complexity of the instance. It should be
noticed that the classical formulation of the PMP (which is most widely used, see,
e.g., [160]) contains all m×m coefficients in the objective function.

To illustrate this point we performed a number of computational experiments.
A 200× 200 block-diagonal matrix with five ideal blocks was generated and then
gradually perturbed by adding random flips (change 1 within a diagonal block into
0, or 0 outside a block into 1). For each obtained instance we estimated the number
of coefficients in the objective of the MBpBM formulation and the solution time.
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The size of the instance (200 machines) was intentionally chosen larger than nor-
mally occur in practice: we could not find instances with more than 50 machines in
literature, while the number of parts does not influence the formulation. This was
done in order to show that the performance of our model does not deteriorate with
an increase in the instance size. The experimental results are presented in Fig. 3.3,
where the numbers of coefficients in the objective and running times are plotted
against the amount of flips, expressed as a percentage of the total number of ele-
ments in the input matrix. Only the cases with less than 15 % of flips are considered
because otherwise the potential intercell movement becomes too large and the CF
itself does not make sense. As can be seen from the figure, even for the instances
with 200 machines, the computing times are normally below 1 s, except rare cases
(85 out of 6,000) when up to 10 min were needed. We believe that these outliers are
caused only by the MILP solver due to “incorrect” branching.

Fig. 3.3 Performance of a PMP-based model for CF (m = 200, r = 200, p = 5)

Speaking more generally, MBpBM contains all known reductions for PMP not
involving (pre)-solving the instance, unlike other MILP formulations for PMP. For
example, the formulation from [55] does not use p-truncation. On the other hand, it
is possible to reduce the size of the MBpBM formulation further by involving esti-
mation of lower bounds on the subspaces of feasible solutions (a possible framework
is described in [65]).
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3.2.3 A Note on the Optimality of PMP-Based Models

The PMP does not explicitly optimize the goal of cell formation; see [66]. Thus, it
is important to analyze the quality of solutions produced by a PMP-based model.

Let us first consider the case of a manufacturing system in which p perfect cells
are possible. It is not hard to understand that a PMP model equipped with a reason-
able dissimilarity measure (like the one described above (3.1)) will discover those p
cells, thus producing optimal results; see [66]. In practice, however, perfect cellular
structure is distorted to some extent. If input data are given in a form of a machine-
part incidence matrix, then there are two types of distortions: voids—zeroes in di-
agonal blocks and exceptions—ones outside the diagonal blocks.

The following propositions provide sufficient conditions for optimality of the
obtained solution.

Proposition 3.1. Suppose that a block structure without exceptions exists (only
voids are allowed). In this case a PMP-based model produces an optimal solution
if in each cell there is at least one machine that is needed for all parts from the
corresponding part family.

Proof. First we prove that only machines needed for all parts in the cells can become
medians. Observe that the dissimilarity measure (3.1) is designed in such a way that
for any two machines (rows of the machine-part incidence matrix) each coinciding
one weighs more than any number of zeros. This implies that only the machine
that is needed for all parts assigned to a cell will “cover” the maximum number of
ones and will be selected as a median. As soon as medians are defined, all other
machines are uniquely assigned to the cells where they are needed—the assumption
of the proposition implies that a structure where each machine is needed in exactly
one cell is possible. As a result, completely independent cells will be obtained.

Proposition 3.2. Suppose that a solution with a block structure without exceptions
is found (only voids are allowed). If in each cell the median machine has at least
one part in common with any other machine in a cell, then the solution is optimal.

Proof. Straightforward, as moving any machine to a different cell will create at least
one exception.

Proposition 3.3. Suppose, a solution with a block structure without voids is found
(only exceptions are allowed). If the number of exceptions in each row is strictly less
than the number of within-block ones in this row, then the solution is optimal.

Proof. Absence of voids in the blocks guarantees that the assignment of machines
(rows) to cells (blocks) is not sensitive to a particular choice of medians. At the
same time, a limited number of exceptions induced by any machine guarantees that
its current position is optimal, irrespective of the configuration of other blocks. This
is due to the fact that moving a machine to the other cell will reduce the number of
matching ones and this cannot be compensated with any increase in the number of
matching zeros, due to the used dissimilarity measure (3.1).

Proposition 3.3 can be generalized to allow for both voids and exceptions.
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Proposition 3.4. If there exists an optimal solution to the CF problem satisfying the
following requirement, then it will be found by a PMP-based model: for any two
machines (rows) i and j belonging to the same cell (block) k the total number of
voids in rows i and j is strictly less than the difference between the number of parts
(columns) assigned to cell k and the number of exceptions in either of the rows
i and j. The inverse is also true: if such a solution is found, then it is optimal.

Proof. The condition insures that any machine (row) has more matching ones with
any other machine from the same cell (by the pigeonhole principle) than with a
machine from another cell. This guarantees that the assignment of machines (rows)
to cells (blocks) is not sensitive to a particular choice of medians. The rest of the
reasoning is similar to the proof of Proposition 3.3.

As is noticeable in Propositions 3.1–3.3, presence of dense blocks is critical for
an optimality unless exceptional elements can be avoided. These propositions as-
sume some properties of the optimal solution, thus they can only be used for pos-
terior assessment of optimality. Yet, as our numerical experiments show, running
times for our model are very small and it is reasonable to solve the problem and
then check the optimality of the obtained solution.

As the conditions of Propositions 3.1–3.3 cannot be always met, we performed
an experimental study on the possible modeling error introduced by the PMP mod-
els for CF. We generated input matrices with an ideal block-diagonal structure and
then gradually destroyed it by adding (unbiased) random flips (change 1 within a
diagonal block into 0, or 0 outside a block into 1). For each instance we compared
the performance of the original configuration of the cells and the one discovered by
our PMP-based model in terms of the number of exceptions (expressed as a per-
centage of the total number of ones in the matrix). The latter quantity is exactly the
amount of intercell movement. The typical behavior of a PMP-based model is pre-
sented in Fig. 3.4, where the number of flips is expressed as a percentage of the total
number of elements m× r in the input matrix and each data point is averaged for
about 1,000 trials. As the figure shows, the average error is quite low and does not
exceed 1 %. The maximum error in our experiments was also quite limited and did
not exceed 10 %. Clearly, as the number of flips gets larger, the initial configuration
of cells is no more optimal and becomes dominated. It can be easily checked that as
the amount of flips approaches 50 %, the matrix approaches a completely random
one (i.e., each element is 1 with probability 0.5). It is also important to understand
that in this case the CF problem itself does not make sense because the underlying
system does not possess a cellular structure and cannot be decomposed in a reason-
able way. In fact, cellular decomposition of the manufacturing system makes sense
in practice only if the resulting amount of intercell movement (exceptions in the
block-diagonalized matrix) is below 10− 15%; in these cases the maximum mod-
eling error in our experiments does not exceed 4%, while the average error is of the
order 10−3 %.

Thus our experimental study on the modeling error can be summarized as fol-
lows: if a PMP-based model discovers a reasonable solution (with less than 15 %
intercell movement), then it is very close to the optimal one; otherwise a “good”
solution most probably does not exist.
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Fig. 3.4 Solution quality of a PMP-based model for CF (m = 25, r = 50, p = 4, cell sizes vary
from 4×9 to 8×15)

3.3 How to Model Additional Constraints of CF

In this section we would like to discuss the possibilities of introducing additional
real-life factors and constraints into the model. Thus, we are not interested here in
describing all constraints that can be incorporated, but rather in demonstrating the
possibility of extending the model appropriately.

Clearly, there are three places in our model where additional factors can be in-
corporated:

• Dissimilarity coefficients
• Objective function (structure)
• Constraints

The use of dissimilarity coefficients can be illustrated, for example, as fol-
lows. The availability of skills in a manufacturing system can be represented by
a machine-worker skills matrix, i.e., in a way very similar to the input for machine-
part grouping. This means that any available machine-machine (dis)similarity mea-
sure can be applied to this skills matrix. Being then plugged into a similarity-based
cell formation approach such measure minimizes a number of workers that can op-
erate a machine outside of their cell or, equivalently, maximizes a number of ma-
chines that each worker can operate within his cell. Similarities based on either of
these data can be combined in a number of ways, e.g., linearly or multiplicatively.
The case of a linear combination with equal weighting coefficients is equivalent to
having a one aggregated incidence matrix where each column corresponds either
to a part or to a worker. It should be mentioned that the same approach is used in
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[21] for what they call a concurrent model. In that paper it is also demonstrated that
such an approach gives better results than two-stage procedures that make cells and
assign workers consecutively.

The objective function can be extended, e.g., by penalizing assignment of some
machines to the same cell. In this way an issue of equivalent machines (the ones with
similar functionality) can be resolved. Another example is the use of manufacturing
sequences: terms accounting for multiple transits of a part between the cell can be
added to the objective.

Finally, a wide variety of linear constraints can be included. These range from
simple variable fixing constraints to capacity, workload balancing, and other ones.
For example, just by fixing some z-variables one can force or prohibit assignment
of some machines to the same cells—this can be necessary because of safety, engi-
neering or managerial considerations.

In the rest of this section we provide examples of extending the model with sev-
eral particular factors.

Note that the reductions that make our model efficient are based exclu-
sively on the properties of the underlying clustering model and assume
nothing about its further extension. This implies that any additional con-
straints expressed in a linear form can be added to our compact formula-
tion.

3.3.1 Availability of Workforce

The availability of skills in a manufacturing system can be represented by a
machine-worker skills matrix, i.e., in a way very similar to the input for machine-
part grouping. This means that any available machine-machine (dis)similarity
measure can be applied to this skills matrix. Being then plugged into a similarity-
based cell formation approach such measure minimizes a number of workers that
can operate a machine outside of their cell, or, equivalently, maximizes a number of
machines that each worker can operate within his cell. Clearly, cells produced by
skills-based clustering can differ from those produced by functional grouping. Thus,
the machine-part incidence matrix cannot be simply substituted by skills matrix in
the definition of (dis)similarity measure. On the other hand, (dis)similarities based
on either of these data (dp(i, j) and dw(i, j), respectively) can be combined in a
number of ways, e.g., linearly (d(i, j) = α1dp(i, j)+α2dw(i, j)) or multiplicatively
(d(i, j) = dp(i, j)×dw(i, j)). The case of a linear combination with equal weighting
coefficients is equivalent to having a one aggregated incidence matrix obtained by
simply joining the machine-part incidence matrix and a skills matrix together:
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parts workers

machines

1 2 . . . r
1
...
m

1 2 . . . w

(3.20)

It should be mentioned that the same approach—joint use of machine-part and skills
matrices in definition of (dis)similarity coefficients is used in [21] for what they call
a concurrent model.

3.3.2 Capacity Constraints

The considered above model does not account for the size of cells that it produces
and thus can lead to highly unbalanced manufacturing systems (e.g., having cells
containing only one machine). This implies that some additional constraints restrict-
ing the number of machines in a cell are needed. Suppose we want each cell to con-
tain at least nL and at most nU machines. Keeping in mind that our MBpBM model
can be augmented by any linear constraints there emerge two major questions:

• Can such capacity constraints be expressed in a linear form?
• Is the number of these new constraints small enough to ensure acceptable solution

times?

Let us consider the first question. By constructing a linear capacity constraint we
will show that it has a positive answer. Let us introduce auxiliary Boolean variables
xi j such that xi j = 1 if j-th machine is assigned to a cell clustered around i-th ma-
chine (or, in terms of PMP, j-th client is served from i-th facility). This can happen
only if two conditions are satisfied simultaneously: i-th machine is a center of the
cluster and all machines k such that ck j ≤ ci j are not centers of the clusters (i.e.,
for all k s.t. πk j ≤ πi j holds yk = 1). These considerations lead to the following
expression for xi j:

xi j = (1− yi) ∏
k:πk j≤πi j

yk = ∏
k:πk j≤πi j

yk− yi ∏
k:πk j≤πi j

yk (3.21)

If the corresponding entries δ [i, j] and δ [i − 1, j] in the difference matrix are
nonzero, then our MBpBM formulation contains z-variables that are equal to the
products in (3.21)

z′ = ∏
k:πk j≤πi j

yk , z′′ = yi ∏
k:πk j≤πi j

yk

and xi j can be expressed as xi j = z′ − z′′. Having linear expressions for xi j (in terms
of z-variables), capacity constraints can be written as:

∑
j∈J

xi j ≥ nL and ∑
j∈J

xi j ≤ nU , i ∈ I.
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Let us now consider the question about the number of additional constraints.
Naturally, 2m constraints are always needed; however, depending on products in
(3.21), something else may be required. Even though some products can be elimi-
nated from (3.21) by p-truncation as they always contain at least one zero variable,
there may still be products for which additional z-variables must be introduced, as
well as the corresponding constraints of type (3.4). To sum up, the number of addi-
tional constraints is equal to m plus number of zero entries in first (m− p) rows of
the difference matrix (this number is always less than m(m− p) and is polynomial
in the instance size).

The capacitated version of the considered above model for cell formation in-
stance is as follows:

f (y,z) = 33+ 4y1+ 1y3 + 20z5 + 20z6 −→min,

y1 + y2 + y3 + y4 = 2,

z5 ≥ y1 + y3− 1,

z6 ≥ y2 + y4− 1,

1+ y3− y1− z5 ≥ nL,

1+ y3− y1− z5 ≤ nU ,

2+ 2z5− 2y2 ≥ nL,

2+ 2z5− 2y2 ≤ nU ,

1+ y1+ 2z6− y3− z5 ≥ nL,

1+ y1+ 2z6− y3− z5 ≤ nU ,

2y2− 2y6 ≥ nL,

2y2− 2y6 ≤ nU ,

zi ≥ 0, i = 5,6,

yi ∈ {0,1}, i = 1, . . . ,4, .

3.3.3 Workload Balancing

Another type of constraints that can be incorporated into the MBpBM force the ob-
tained cells to have almost equal workload in terms of machine hours spent by each
cell. The workload of a cell is a sum of workloads of all the machines within it.
Within any model based on the PMP (including ours), a cell can be indicated by its
central machine (a median point in PMP terminology)—a machine that can be con-
sidered the most typical representative of its cluster. Now, suppose some machine i
is the center of the cluster. Any other machine j is assigned to cell-containing ma-
chine i if and only if among all the central machines it minimizes a dissimilarity
measure, i.e.,
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i = argmin
k∈I,yk=0

d(k, j).

In other words, machine j is assigned to the cell-containing machine i if in jth col-
umn of the permutation matrix, the first entry that corresponds to a zero y-variable
is i, i.e., holds γ( j, i) = 1 where

γ( j, i) =
K: π jK=i

∏
k=1

yπ jk (3.22)

Equation (3.22) defines a value that can be used as an indicator for adding or not
adding a workload of a particular machine j to the total workload of the cell clus-
tered around machine i. To introduce workload balancing into the model one has
to sum up workloads of all machines multiplied by such indicators and do that for
cell clustered around every machine, thus leading to O(m) constraints. That is if
one wants to bound the workload of all cells from below by some value WL or from
above by WU , then the following constraints are to be added:

m

∑
j=1

[γ( j, i) ·w( j)] ≥WL(1− yi), i = 1, . . . ,m, (3.23)

(1− yi)
m

∑
j=1

[γ( j, i) ·w( j)] ≤WU , i = 1, . . . ,m, (3.24)

where w( j)—a number of hours that are needed to process all parts by machine j.
The multiplier (1− yi) is used in order to cancel the restrictions on the cells that
are not actually established. It is straightforward that constraints (3.23)–(3.24) are
non-linear if used as they are given because of the products in γ( j, i); however, for
most of these products, there were defined z-variables that can be substituted into
the constraints thus making them linear. We will illustrate these constraints with the
considered above numerical example (3.7), assuming for the sake of simplicity that
each operation on any machine takes one time unit and w( j) = ∑r

k=1 ak j. The load
balancing constraints for machines 1, 2, 3, and 4 will be

1 : 3+ 2y2y3y4 + 2y3 + 2y2y3y4 ≥WL(1− y1), (3.25)

(1− y1)(3+ 2y2y3y4 + 2y3 + 2y2y3y4)≤WU , (3.26)

2 : 2+ 3y1y3 + 2y1y3 + 2≥WL(1− y2), (3.27)

(1− y2)(2+ 3y1y3 + 2y1y3 + 2)≤WU , (3.28)

3 : 2+ 2y1+ 2y2y4 + 2y2y4 ≥WL(1− y3), (3.29)

(1− y3)(2+ 2y1+ 2y2y4 + 2y2y4)≤WU , (3.30)

4 : 2+ 2y1y2y3 + 2y2 + 2y1y2y3 ≥WL(1− y4), (3.31)

(1− y4)(2+ 2y1y2y3 + 2y2 + 2y1y2y3)≤WU , (3.32)

It should be mentioned that these constraints can be subjected to combining similar
monomials and p-truncation by observing that each product of more than (m− p)
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variables is zero in any feasible solution, like it was done for the objective function
in (2.13), i.e., for a pseudo-Boolean polynomial. After doing that and replacing all
the products by z-variables, constraints (3.25)–(3.32) will become:

1 : 3+ 2y3+WLy1 ≥WL, (3.33)

3+ 2y3− 3y1− 2z5 ≤WU (3.34)

2 : 4+ 5z5+WLy2 ≥WL, (3.35)

4+ 5z5− 4y2 ≤WU , (3.36)

3 : 2+ 2y1+ 4z6 +WLy3 ≥WL, (3.37)

2+ 2y1+ 4z6− 2y3− 2z5 ≤WU , (3.38)

4 : 2+ 2y2+WLy4 ≥WL, (3.39)

2+ 2y2− 2y4− 2z6 ≤WU , (3.40)

and the augmented MBpBM model (3.13) looks like:

f (y,z) = 33+ 4y1+ 1y3 + 20z5 + 20z6 −→min, (3.41)

y1 + y2 + y3 + y4 = 2, (3.42)

z5 ≥ y1 + y3− 1, (3.43)

z6 ≥ y2 + y4− 1, (3.44)

3+WLy1 + 2y3 ≥WL, (3.45)

3− 3y1+ 2y3− 2z5 ≤WU , (3.46)

4+WLy2 + 5z5 ≥WL, (3.47)

4− 4y2+ 5z5 ≤WU , (3.48)

2+ 2y1+WLy3 + 4z6 ≥WL, (3.49)

2+ 2y1− 2y3− 2z5 + 4z6 ≤WU , (3.50)

2+ 2y2+WLy4 ≥WL, (3.51)

2+ 2y2− 2y4− 2z6 ≤WU , (3.52)

zi ≥ 0, i = 5,6, (3.53)

yi ∈ {0,1}, i = 1, . . . ,4. (3.54)

3.3.4 Utilizing Sequences of Operations

Sequences of operations on parts are not taken into account in the classical models
of cell formation, while in real world this factor influences optimality of the obtained
decomposition into cells. This can be explained by the following considerations. As-
sume a perfect cell decomposition is not possible, i.e., it is not possible to exclude
all intercellular interactions and some parts have to travel from one cell to another. It
should be mentioned that this assumption is very realistic as most of the real manu-
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facturing systems do not possess a perfect cellular structure (see, e.g., [42]). In such
a setting there is a difference between parts that start their production process in one
cell and end it in another and those parts that start at one cell then move to another
and then move back to the cell from which they started. Clearly, in the latter case
the intercellular flow is twice as much as that for the former case and the classical
model for cell formation can substantially underestimate the real intercellular flows.
Even though there exists an acceptable for our model approach that accounts for
operational sequences by defining a machine-machine similarity measure based on
them [148], here we propose a different method in order to demonstrate the flexi-
bility of our MBpBM-based model. Hence, in order to take into account the impact
of operational sequences, we propose to penalize the objective function when two
machines that are adjacent in the operational sequence of some part are placed in
different cells. Such penalty terms for a pair of machines i and j can have the fol-
lowing general form:

P(i, j) = (1− γ(i, j))
r

∑
k=1

V (k)γk(i, j) (3.55)

where V (k) is the production volume of part k, γk(i, j) ∈ {0,1} is 1 if part k should
be processed by machine j immediately after machine i, γ(i, j) ∈ {0,1} is 1 if ma-
chines i and j are in the same cell, and summation is done for all parts. The sum in
(3.55) is just a constant that can be calculated directly from the input data, while for
indicators γ(i, j) a linear representation is needed. If we represent each γ(i, j) by a
Boolean variable ui j, then the objective function will have the form

f (y,z,u) = f (y,z)+
m

∑
i, j=1

(1− ui j)
r

∑
k=1

V (k)γk(i, j)

and some constraints are needed to force new variables ui j to take value 1 if ma-
chines i and j are placed into the same cell. In a general form u-variables can be
defined by the following Boolean expression:

〈y1 = 0 AND machines i and j are clustered around machine 1〉
OR 〈y2 = 0 AND machines i and j are clustered around machine 2〉
OR 〈y3 = 0 AND machines i and j are clustered around machine 3〉
OR 〈y4 = 0 AND machines i and j are clustered around machine 4〉 .

Now, it is enough to find a set of linear constraints that represent the above Boolean
expressions. As in general case such a representation leads to extensive notations,
we will use a small example to derive it. Suppose, in the considered above manu-
facturing system (3.7), the operational sequences for the five parts are given as
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1 : 2→ 4,
2 : 1→ 3,
3 : 4→ 2,
4 : 1→ 3,
5 : 1.

Assuming unit production volumes of all parts for simplicity, there are only three
nonzero penalties P(i, j):

P(1,3) = (1− γ(1,3)) ·2,
P(2,4) = (1− γ(2,4)) ·1,
P(4,2) = (1− γ(4,2)) ·1.

We can see that P(4,2) = P(2,4) in this case by comparing their expressions and
recalling that indicator γ(i, j) is symmetric, i.e., γ(2,4) = γ(4,2). Let us consider
the corresponding u-variables:

u13 = (ȳ1∧1∧ y3)∨ (ȳ2∧ y1y3∧ y1y3)∨ (ȳ3∧ y1∧1)∨ (ȳ4∧ y1y2y3∧ y1y2y3),
u24 = (ȳ1∧ y2y3y4)∨ (ȳ2∧1∧1)∨ (ȳ3∧ y2y4∧ y2y4)∨ (ȳ4∧ y2∧ y2),
u42 = u24.

The last equality holds because both u42 and u24 indicate that machines 2 and 4 are
placed into the same cell. Observing that any product of more than (m− p) variables
is 0 for any feasible solution and applying elementary transformations one can get:

u13 = (ȳ1∧ y3)∨ (ȳ2∧ y1y3)∨ (ȳ3∧ y1),
u24 = (ȳ2)∨ (ȳ3∧ y2y4)∨ (ȳ4∧ y2),
u42 = u24.

As we have a minimization problem with an objective function that contains u-
variables with negative coefficients, these variables will be maximized and disjunc-
tion of n variables xi can be represented by the constraints

u =
n∨

i=1
xi

u→max
⇔ u≤ n

∑
i=1

xi

u≤ 1

and nonnegativity of u-variables is sufficient, i.e., no new Boolean variables are in-
troduced. Conjunctions can be replaced by products and, in turn, by z-variables. Af-
ter all substitutions and transformations the augmented model (3.13) is (we defined
u7 = u13, u8 = u24 = u42):

f (y,z,u) = 37+ 4y1+ 1y3+ 20z5 + 20z6− 2u7− 2u8 →min, (3.56)

y1 + y2 + y3 + y4 = 2, (3.57)

z5 ≥ y1 + y3− 1, (3.58)

z6 ≥ y2 + y4− 1, (3.59)
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u7 ≤ y1 + y3− z5 (3.60)

u8 ≤ 1, (3.61)

ui ≤ 1, i = 7,8, (3.62)

ui ≥ 0, i = 7,8, (3.63)

zi ≥ 0, i = 5,6 (3.64)

yi ∈ {0,1}, i = 1, . . . ,4. (3.65)

We would like to conclude the section by saying that the reductions that make
our model efficient are based exclusively on the properties of the underlying
clustering model and assume nothing about its further extension. This implies
that any additional constraints expressed in a linear form can be added to our
compact formulation.

3.4 Experimental Results

The aim of our numerical experiments was twofold. First, we would like to show
that the model based on PMP produces high-quality cells and in most cases outper-
forms other contemporary approaches, thus making its use questionable. Second, by
showing that computation times are negligibly small, we argue the use of heuristics
for solving PMP itself.

Up to this point one basic notion remained undefined in this chapter—the quality
measure of the obtained decomposition into cells. We used two most widely used
measures so as to ensure consistent comparison of results. The first one, the group
capability index (GCI) proposed by Hsu [78] can be calculated as follows:

GCI = 1− number of exceptional elements
total number o f ones

= 1− ne

n1
× 100%, (3.66)

where exceptional elements are those nonzero entries of the block-diagonalized
machine-part coincidence matrix that lie outside of the blocks and the total number
of ones is the total number of nonzero entries in the machine-part incidence ma-
trix. It should be mentioned that this measure does not account for zeros inside the
blocks, i.e., does not take into account density of intracell flows. The second quality
measure, group efficiency (η), was proposed by Chandrasekharan and Rajagopalan
[35] and is a weighted sum of two factors η1 and η2:

η = ωη1 +(1−ω)η2 × 100% , 0≤ ω ≤ 1 . (3.67)

In turn, η1 and η2 are expressed as

η1 =
n1− ne

n1− ne + nv

η2 =
mr− n1− nv

mr− n1− nv+ ne
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where m–number of machines, r–number of parts, n1–number of ones in the
machine-part matrix, ne–number of exceptional elements, and nv–number of zeroes
in diagonal blocks. The weighting factor ω is usually set to 0.5 and we used this
value.

For the considered above instance (3.19) these performance measures have the
following values: GCI = 100%, η = 0.5 · ( 9−0

9−0+1 +
20−9−1

20−9−1+0)× 100% = 95%. It
should be mentioned that the sum of voids and exceptions (nv + ne) sometimes is
used as a performance measure (see, e.g., [21]).

Taking into account the aim of our experiments, we compared our results with
those reported in four recent papers and [39]. The main focus was made on the
largest instances. The first paper is by Won and Lee [160] and, like us, uses a p-
median approach but solves PMP by a heuristic procedure. They use Wei and Kern’s
[156] similarity measure and GCI (3.66) as a quality measure. We were not able to
derive the value of η because solutions are not provided in their paper. The second
paper by Yang and Yang [163] applies the ART1 neural network to cell formation,
thus using a completely different approach. The authors used η-measure (3.67) to
estimate solution quality and included solutions (block-diagonalized matrices) in
their paper, thus making it possible for us to compute GCI and to fill in the gaps
in the following Table 3.1 that summarizes results of our comparative experiments.
The third paper is by Ahi et al. [2] and demonstrates an application of a decision-
making technique (TOPSIS) to the cell formation problem. Authors report values of
group efficiency η and we derived values of GCI from their solutions.

Table 3.1 contains data on computational experiments with instances used in
the three mentioned above papers: [160, 163] and [2]. Column “source” indicates
the source of the cell formation instance and of the performance data. Next two
columns contain information on the size of input, such as the number of machines
m, the number of parts r and the number of cells to be made p. The last four columns
indicate quality of solutions (in terms of GCI and η) reported in the discussed papers
and obtained by us, correspondingly.

As can be seen from Table 3.1, in most of the considered cases, our results outper-
form those reported in literature by up to 85.43%–68.02%≈ 17% (see second to the
last row in Table 3.1). On the other hand, there exist scarce instances for which our
model is dominated by other heuristics. This can be explained by the fact that even
though we solve PMP to optimality, the p-median problem itself is not explicitly an
exact model to optimize any of the used above quality measures of cell decompo-
sition (their appropriateness can also be debated). Consequently, any model based
on the p-median problem is of a heuristic nature. However, unlike most of the other
heuristics it grasps the clustering nature of cell formation and presents a flexible
framework by allowing additional constraints reflecting real-world manufacturing
systems to be introduced. Such flexibility is inherent, in particular, to mathemati-
cal programming approaches, but in contrast to them, for PMP we have found an
efficient formulation (see Sect. 3.2.1).

The fourth and the most recent paper considered in our computational experi-
ments is by Bhatnagar and Saddikuti [21]. It uses a model that is very similar to
the p-median problem but differs in the following detail: a restriction specifying the
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number of cells is replaced by a constraint ensuring that each cell has at least two
machines. To our opinion, this model has a potential drawback as it tends to split
“reasonable” cells as can be seen from its objective function (taking into account
that for similarities holds s(i, i)≥ s(i, j) for any two machines i, j). We implemented
the models for machine cell formation and part assignment from [21] in Xpress and
performed a number of experiments with the largest available in literature instances.
Like in the previous cases we used only machine-part incidence matrices as an input
and Wei and Kern’s (dis)similarity measure. Taking into account that the model from
[21] automatically defines the best number of cells, we had to solve our PMP-based
model for all possible values of p and pick the best results.

Finally, we compared performance of our model and the one from [39], which
we implemented in Xpress. As this model, like ours, does not define the optimal
number of cells, we tried to solve it for all possible values of p. However, this was
not always possible due to the complexity of the model. We also limited the running
time of the model by 10 h and provide the best results that we could obtain.

The results for our model and the ones from [21] and [39] are summarized in Ta-
ble 3.2, where the first column enumerates the test instances; the second one refers
to the original source of the instance and the next column shows the number of ma-
chines and parts. The following six columns report the quality of solutions obtained
by the three models. The last column indicates the time (in seconds) spent by the
model from [39] (note, that for our model it took about 1 s to solve either of the
instances). As can be seen from Table 3.2, our model considerably outperforms the
model from [21]. Also, in most of the cases, our model outperforms the one from
[39] in terms of the two used performance measures. Moreover, in terms of comput-
ing times, the difference is clear. This can be explained by the adaptability of our
model to the input data. Consider, for example, instance 7 from Table 3.2 that has
a perfect cellular structure with 7 cells. For this instance our MBpBM formulation
has 42 variables, 19 constraints and 19 coefficients in the objective, while for the
model from [39] these numbers are 7168, 6851, and 20224. At the same time, for
instances with perfect cells, our model provides provably optimal solutions!

Also, we would like to mention that our results strongly outperform those men-
tioned several other papers in the field, e.g., [53].

Concerning the solution times of our PMP-based model, each of the considered
instances was solved within 1 s on a PC with 2.3 GHz Intel processor, 2 GB RAM,
and Xpress as a MILP solver. In our opinion, even if some heuristic can be faster,
then the difference in computing times is negligibly small.

3.5 Summary and Future Research Directions

There is a tendency in the literature for the cell formation models to become more
and more complicated. Such complication has two negative side effects. First of all,
the sophisticated structure of the model usually prohibits its extension to additional
factors and/or constraints taking place in real manufacturing systems. Secondly, a
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Table 3.1 Experimental comparison with Won and Lee [160], Yang and
Yang [163], and Ahi et al. [2]

Source m× r p GCI GCIour η ηour

Won and Lee [160] 30×41 3 92.2 95.3 59.38
4 93.0 93.0 64.39
5 91.4 91.4 72.14
6 89.8 90.6 75.25
7 81.3 89.8 77.93

30×50 3 77.2 77.3 59.53
4 74.9 76.1 62.14

30×90 3 79.9 77.5 61.00
40×100 2 79.5 93.6 55.61

3 93.1 91.5 59.59
4 89.8 88.8 63.84
5 89.3 87.4 69.33
6 89.3 88.1 75.77
7 87.6 88.6 81.38
8 85.5 89.1 85.66

50×150 2 96.5 96.5 57.49
3 86.4 90.1 62.63
4 88.4 92.7 69.05
5 89.7 91.5 76.44
6 87.3 93.1 81.89

Yang and Yang [163] 28×35 6 73.7 73.7 90.68 90.74
46×105 7 84.1 84.9 87.54 87.57

Ahi et al. [2] 8×20 3 83.6 83.6 92.11 98.08
12×19 4 66.2 66.2 80.10 77.09
20×20 6 67.1 82.3 87.89 90.11
18×35 4 77.2 77.2 74.10 81.26
25×40 7 61.5 76.2 68.02 85.43
20×51 6 67.8 77.2 82.62 82.07

complicated model that was designed in order to improve the quality of the obtained
solutions usually raises a problem of computational intractability. This forces the
use of heuristics for solving not the initial cell formation problem, but the model
of it. Suboptimality of these heuristics can overwhelm the advantages of the model,
making them questionable.

In this chapter we showed that these negative side effects can be avoided by pre-
senting an efficient reformulation of the p-median problem. Our reformulation is
flexible enough to accept additional real-life constraints, like capacities and oper-
ational sequences. At the same time, the computational experiments show that our
model is computationally efficient and can be solved to optimality within 1 s on a
standard PC by means of general-purpose software, like CPLEX or Xpress. For the
computational experiments we picked instances from four recent papers in the field
and showed that the PMP-based model outperforms contemporary heuristics. We
did not perform a thorough comparison of computation times as for our model it
took less than 1 s to solve each of the considered problems. It should be also men-
tioned that the main part of our model can be solved by a general-purpose MILP
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Table 3.2 Experimental comparison of our model and those by Bhatnagar and Saddikuti [21] and
Chen and Heragu [39]

(e+ v) η ,% Time, s

# Source m× r [BS10] [CH99] our [BS10] [CH99] our [CH99]

1 Sandbothe (1998)* 20×10 16 9 11 95.40 94.29 95.93 2
2 Ahi et al. [2] 20×20 34 26 26 92.62 90.70 93.85 2385
3 Mosier, Taube (1985)* 20×20 79 74 77 85.63 79.51 88.71 36000
4 Boe, Cheng (1991)* 20×35 87 77 83 88.31 84.44 88.05 24724
5 Carrie (1973)* 20×35 46 40 41 90.76 88.93 95.64 110
6 Ahi et al. [2] 20×51 111 96 83 87.86 83.18 94.11 36000
7 [CR89]* 24×40 20 0 0 98.82 100.00 100.00 2
8 [CR89]* 24×40 37 21 21 95.33 95.20 97.48 1363
9 [CR89]* 24×40 55 40 39 93.78 91.16 96.36 29009

10 [CR89]* 24×40 86 122 81 87.92 74.38 94.32 14890
11 [CR89]* 24×40 96 112 89 84.95 77.68 94.21 10968
12 [CR89]* 24×40 94 118 89 85.06 75.29 92.32 16906
13 Nair, Narendran (1996)* 24×40 40 194 25 96.44 69.90 97.39 36000
14 Nair, Narendran (1996)* 24×40 39 27 26 92.35 92.27 95.74 3575
15 Nair, Narendran (1996)* 24×40 60 50 50 93.25 90.56 95.70 36000
16 Nair, Narendran (1996)* 24×40 59 109 50 91.11 78.08 96.40 36000
17 Ahi et al. [2] 25×40 59 63 56 91.09 86.00 95.52 36000
18 Yang and Yang [163] 28×35 108 72 71 93.43 91.21 93.82 36000
19 Kumar, Vanelli (1987)* 30×41 63 61 54 90.66 86.78 97.22 16967
20 Stanfel (1985)* 30×50 99 115 93 88.17 81.58 96.48 36000
21 King, Nakornchai (1982)* 30×90 228 202 206 83.18 83.25 94.62 36000
22 [CR87]* 40×100 136 72 72 94.75 95.91 95.91 36000
23 Yang and Yang [163] 46×105 376 268 271 90.98 87.12 95.20 36000
24 Zolfaghari, Liang (1997)* 50×150 544 502 470 93.05 82.00 92.92 36000

* a reference to the original source of the instance can be found in [21]
[BS10] results for the model from Bhatnagar and Saddikuti [21]
[CH99] results for the model from Chen and Heragu [39]
[CR87] Chandrasekharan, Rajagopalan (1987)
[CR89] Chandrasekharan, Rajagopalan (1989)

solver and transformations with a pseudo-Boolean polynomial use only basic alge-
braic operations. This means that an implementation of our model does not require
extensive additional efforts. A comparison with an exact approach was also per-
formed and showed that in most cases our model provides better solutions (in terms
of the widely used quality measures) while having incomparably smaller running
time. Finally, by means of computational experiments, we showed that the model-
ing error of a PMP-based model is quite limited with an average of 1 %, and solution
times stay within 1 s in 99 % cases even for instances with 200 machines, i.e., much
larger than those occurring in practice.

In the numerical experiments we considered the simplest possible approach
to cell formation aimed at functional grouping of the machines (equivalently, at
block-diagonalizing the machine-part incidence matrix) without taking into account
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additional factors taking place in real manufacturing systems. There are two reasons
for this. First, we wanted to demonstrate that even a computationally intractable mo-
del of cell formation (at least in its simplest form) can be solved to optimality, and
this possibility, to the best of our knowledge, was overlooked in literature. Second,
this choice was partially governed by available recent papers in the field with which
we wanted to compare our results. At the same time, we showed that a wide range
of constraints can be incorporated into the PMP-based cell formation model thus
making it more realistic and allowing to use all the available information about the
manufacturing system.

Taking into account that the current trend is towards introducing into CF models
additional real-world factors, the possible future research direction is to incorporate
additional constraints into our model, such as availability of several machines of
same type, alternative operational sequences, set-up, and processing times. As our
MBpBM formulation is optimal in the number of coefficients in the objective func-
tion and the number of linear constraints, insertion of new (linear) constraints, in our
opinion, will preserve its tractability and will make it possible to create a flexible
and efficient model for cell formation based on the p-median problem. The issue
of efficiency (low computing times) is getting importance from the perspective of
Virtual Cell Manufacturing [141] with its virtual cell formation (VCF), a paradigm
that becomes more and more promising nowadays. At the same time, our compu-
tational results show that at least in case of uncapacitated functional grouping, our
fast model is a feasible candidate for VCF.

To summarize, all ideas and attempts of extending the decision-making for cell
formation in group technology based on the classical p-median model might be
revised and essentially improved by using our MBpBM reformulation and adding
practically motivated additional constraints reflecting the specific manufacturing en-
vironment. Thus, we would like to stress the importance of the model choice and to
conclude by saying that the above considerations about the problem complexity and
appropriateness of heuristics can be valid also for other applied operations research
problems (especially for those that can be modelled via the PMP).



Chapter 4
The Minimum Multicut Problem and an Exact
Model for Cell Formation

4.1 Introduction

Cell formation (CF) is a key step in the implementation of group technology—a
concept in industrial engineering often attributed to Mitrofanov [107] and Burbidge
[28], and suggesting that similar things should be processed in a similar way. In the
most general setting, the (unconstrained) CF problem can be formulated as follows.
Given finite sets of machines and parts that must be processed within a certain time
period, the objective is to group machines into manufacturing cells (hence the name
of the problem) so that each part is processed mainly within one cell. This objective
can be reformulated as minimization of what is usually referred to as the amount of
intercell movement —the flow of parts traveling between the cells. This amount can
be expressed via the number of parts, their total volume or mass, depending on the
particular motivation for CF. For example, if cells are spatially distributed it may
become important to reduce transportation costs that depend on the mass or volume
rather than on the number of parts.

As mentioned in the previous chapters, throughout the decades the problem has
gained a lot of attention resulting in hundreds of papers and dozens of approaches
that use all the variety of tools ranging from intuitive iterative methods (e.g., [84,
103, 156]) to neural networks (e.g., [81, 163]), evolutionary algorithms (e.g., [1, 31,
57]), and mixed-integer programming (e.g., [21, 39]); an overview can be found in
Chap. 1 of this book. Despite all this variety, to the best of our knowledge, there is
no tractable approach that explicitly minimizes the intercell movement. In particular,
all the available approaches have at least one of the following drawbacks:

• The model itself is an approximation to the original CF problem.
• The model is solved by a heuristic procedure.

To illustrate the first point we would like to mention that it is a common practice
to reduce the size of the problem by considering only relations between machines
instead of considering machine-part relations. Such a framework is quite benefi-
cial due to the fact that the number of machines is quite limited (usually less than
100) while the number of parts can be magnitudes larger. This point will be clearly

B. Goldengorin et al., Cell Formation in Industrial Engineering, Springer Optimization
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illustrated below by means of an industrial example. The reduction is usually im-
plemented by introducing a machine-machine similarity measure that can be based
on the similarity of sets of parts that are being processed by a pair of machines, on
similarity of manufacturing sequences of these parts, etc. Literature reports several
similarity measures; an overview can be found in [164]. However, all of them are
based on intuitive considerations and there is no strict reasoning why one of them
is better than another. If such an inexact similarity measure is further plugged into
some model, then the whole model is nothing more than an approximation to the CF
problem. Finally, the resulting model often appears to be NP-hard and its authors are
forced to use heuristic solution methods further deteriorating the solution quality.

The purpose of this chapter is to formulate an exact model for the CF problem,
flexible enough to allow additional practically motivated constraints and solvable in
acceptable time, at least for moderately sized realistic instances.

The chapter is organized as follows. In the next section we discuss the exact
model for cell formation, show that it is equivalent to the minimum multicut problem
and discuss its computational complexity. In Sects. 4.3 and 4.4 we motivate and
present two MILP formulations for the problem. Section 4.5 is focused on additional
constraints that may be introduced into the model, while Sect. 4.6 provides results
of experiments with real manufacturing data. Section 4.7 summarizes the chapter
with a brief discussion of the obtained results and further research directions.

4.2 The Essence of the Cell Formation Problem

In this section we formalize the CF problem of the given two types of input data
and show how it can be modelled via the minimum multicut problem. For the rest
of this chapter let sets I = {1, . . . ,m} and J = {1, . . . ,r} enumerate machines and
parts, respectively, and let p denote the number of cells.

Quite often, the input data for the CF problem is given by an m× r binary
machine-part incidence matrix (MPIM) A = [ai j], where ai j = 1 only if part j needs
among others machine i; see Fig. 4.1a. Given such an input, the problem is equiva-
lent (see, e.g., [29]) to finding independent permutations of rows and columns that
turn A to an (almost) block-diagonal form or, equivalently, minimize the number of
out-of-block ones, also known as exceptional elements. The diagonal blocks cor-
respond to cells, and the number of exceptional elements reflects the amount of
intercell movement, see Fig. 4.1b.

Given such an interpretation, the problem is similar to the biclustering problem
(see, e.g., [96]). Though for the general biclustering problem there exist efficient
exact methods (see, e.g., [49]), they are hardly applicable to CF because most of
them allow each row or column to belong to more than one cluster (see, e.g., [96],
p. 41), while for CF the issue of non-overlapping blocks is critical. In addition, as
we show further in this section, block-diagonalization does not exactly minimize the
intercell movement as it ignores operational sequences.
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Fig. 4.1 An example of a machine-part incidence matrix (zero entries are not shown for clarity).
(a)raw data. (b) block-diagonalized form (blocks are highlighted)

Though the well-known block-diagonal interpretation is easy to perceive, we will
consider the problem from a completely different, yet insightful, viewpoint. With-
out any loss of generality one can associate with matrix A an undirected bipartite
graph G(I∪ J,E) by simply treating A as an incidence matrix of G. (Note that such
an interpretation was also considered for the biclustering problem.) Taking into ac-
count that each nonzero element of A corresponds to an edge in G, it is not hard
to understand that diagonal blocks of A correspond to disjoint nonempty subgraphs
G1, . . . ,Gp of G. Consider now the set of edges E ′ corresponding to exceptional el-
ements and observe that each edge from E ′ has its endpoints in different subgraphs
Gi , i ∈ {1, . . . , p}. Thus, E ′ can be thought of as a cut that splits G into p nonempty
subgraphs. Further, we call a cut with this property a p-cut. Assuming that all edges
of G have a unit weight and taking into account the relation between E ′ and excep-
tional elements, it is possible to reformulate the CF problem in terms of graphs as
follows: given an undirected weighted graph find a p-cut of the minimum weight.
Let us abbreviate this problem as MINpCUT; in literature it is also known as “min
k-cut” (we prefer to denote the number of subgraphs by p as letter k is handy as an
index).

One may notice that the MINpCUT-based approach has a negative feature as
compared to many other models. Instead of using machine-machine relations it
works directly with machine-part data, i.e., a MINpCUT instance can be very large
(G may have thousands of vertices) and there is no straightforward way to over-
come this. However, we argue that this impossibility of reducing the problem size
is induced by the “inadequate” format of input data rather than by the model itself.
Indeed, irrespectively of the solution approach, the MPIM does not contain enough
information to correctly handle the following aspects:

• Distinguish between the following two cases:

(a) A part is processed in one cell and then finished in the second cell.
(b) A part is processed in one cell, then in the second cell and then again in the

first one.
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• A part visits some machines several times, i.e., its manufacturing sequence looks
like . . .–M1–M2–M1–M2–. . . (this may correspond, e.g., to cycles of thermal
processing).

Thus, all approaches using the machine-part incidence matrix as an input (e.g., the
one from [39]) solve only approximation of the original problem, quite often by a
heuristic. In addition, the common practice of deriving machine-machine relations
from a MPIM looks somewhat awkward from the methodological point of view. It
seems more logical to derive these relations directly from the manufacturing data
normally containing more information, e.g., the sequence in which machines are
visited by each part.

There is also an alternative, intuitive, explanation why any similarity
measure based on a MPIM cannot guarantee optimal solutions to CF. In
fact, each similarity measure in some way aggregates the total number of
matching ones (and zeros) in two rows, while it is never known before-
hand which ones will lie within the blocks and which outside—only these
are exceptional elements that play a role.

The mentioned above considerations motivated us to reconsider the essence of
the cell formation problem. As mentioned in Sect. 4.1, the objective is to minimize
the parts flow between cells. The latter quantity is nothing else than the parts flow
between two machines summed up for all pairs of machines belonging to different
cells. In terms of graphs this can be expressed as follows. Consider a weighted graph
G(I,E), where each vertex corresponds to a machine. An edge (i, j) ∈ E is assigned
a weight equal to the amount of parts going directly from machine i to j and in the
opposite direction. Clearly, a p-cut in such a graph produces p machine cells and its
weight is exactly equal to the amount of intercell movement that must be minimized.
In particular, this means that an exact machine-machine similarity measure must be
defined as the amount of parts traveling directly between a pair of machines. Once
the machine cells are generated, part families can be compiled by assigning each
part to a machine cell performing most operations on it. Thus, we again end up with
the MINpCUT problem, but now it is defined on a graph that has only m vertices, as
compared to m+ r vertices in case of input data given by a machine-part incidence
matrix. We would like to mention that somewhat similar considerations about the
graph-theoretic origins of the exact model for CF can be found in [24]. However,
these authors do not mention its relation to the min multicut problem, nor provide
evidence of tractability for their approach. Another graph-related approaches to CF
include those based on the minimum spanning tree (MST; see, e.g., [116]) and the
p-Median (PMP; see, e.g., [160]) problems. Their difference from our approach
can be made clearer by observing that by minimizing a p-cut one maximizes the
total weight of edges within p subgraphs. Instead of optimizing all weights within
subgraphs, MST and PMP-based approaches consider only those falling within a
certain pattern: a spanning tree or a tree of depth 1, respectively.
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Once we know that the cell formation problem is equivalent to MINpCUT, we
may analyze its complexity based on the properties of the latter. First of all, consider
the case p = 2. MIN2CUT is a straightforward generalization of the well-known
min s− t cut problem where optimization is to be done for all pairs (s, t) (s, t ∈V ).
A closer view makes it possible to conclude that for a graph G(V,E) it is enough to
solve |V |− 1 min s− t cut instances. As the minimum 2-cut (as well as any 2-cut)
splits G into 2 subgraphs, one can fix s lying in one of them and iterate through all
possible vertices t until the one lying in the other subgraph is found. Thus, in case of
two cells, the CF problem without additional constraints is polynomially solvable.
On the other hand, as p gets close to |V |, the problem becomes easy as well. For
example, if p = |V |− 1 there is exactly one pair of vertices that must be placed in
one subgraph (other p−1 subgraphs are just singletons). Further, if p= |V |−2 there
are either two pairs or one triple of vertices that must not be disconnected by a cut.
This intuition can be extended further and it becomes clear that the combinatorial
complexity of the problem quickly increases as p tends to |V |/2.

In a general case when p is a part of the input the problem is NP-hard, having a
polynomial complexity O(np2

T (n)) for fixed p [70], where T (n) denotes time for
solving one min s− t cut problem1 for a graph with n vertices. For a particular case
p = 3 there also exists an efficient O(mn3) algorithm by Burlet and Goldschmidt
[30], where n and m are numbers of vertices and edges, respectively. A number of
approximate algorithms are known (see, e.g., [127, 134]) with the best approxima-
tion ratio being (2− 2/p) [134].

Thus, for p = 2,3 and |V | − 2, |V | − 1, the MINpCUT problem (therefore, the
unconstrained CF problem) can be efficiently solved even for large instances, while
becoming computationally intractable as p gets closer to |V |/2. Moreover, most
papers on MINpCUT propose specialized algorithms, not allowing additional con-
straints to be involved and thus inapplicable to CF. This lack of flexible approaches
motivated us to develop MILP formulations that can be extended by any linear con-
straints and solved using a general purpose solver (at least, for moderately sized
instances).

4.3 MINpCUT: A Straightforward Formulation (SF)

In this section we present and discuss a straightforward formulation (SF) of MIN-
pCUT problem that will be further used in the numerical experiments. Let G(V,E)
be an undirected weighted graph with |V |= n vertices, let ci j denote the weight of
edge (i, j) ∈ E and define a constant S as the sum of all edge weights. Through-
out this chapter, let indices i and j enumerate vertices, i, j ∈ {1, . . . ,n}, and index k
enumerate subgraphs, k ∈ {1, . . . , p}. SF uses two sets of variables: vik variables re-
flecting assignment of vertices to subgraphs and zi jk variables reflecting assignment

1 This is equivalent to the maximum flow problem with source s and sink t .
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of pairs of vertices i and j to subgraphs k. Under the introduced notations the SF
formulation can be written as follows:

S−∑
i

∑
j>i

∑
k

ci jzi jk −→min, (4.1)

∑
i

vik ≥ 1 ∀k, (4.2)

∑
k

vik = 1 ∀i, (4.3)

zi jk ≤ vik ∀i �= j,k, (4.4)

zi jk ≤ v jk ∀i �= j,k, (4.5)

zi jk ≥ vik + v jk− 1 ∀i �= j,k, (4.6)

vik ∈ {0,1} ∀i,k, (4.7)

zi jk ∈ [0,∞) ∀i �= j,k . (4.8)

The objective (4.1) minimizes the difference between the sum of all edge weights
and the sum of weights of the edges within subgraphs, i.e., the weight of the p-cut.
Constraints (4.2) ensure that each subgraph has at least one vertex, i.e., there are
exactly p nonempty subgraphs. Constraints (4.3) ensure that each vertex is included
into exactly one subgraph. Finally, constraints (4.4)–(4.6) are needed to guarantee
that a pair of vertices i and j are assigned to the subgraph k if and only if each of
them is assigned to subgraph k. The formulation uses n× p Boolean v-variables,
while for z-variables nonnegativity is sufficient as constraints (4.4)–(4.6) force them
to take Boolean values.

It is easy to see that the formulation SF has the following property, the number of
variables and, therefore, complexity increases with increasing p. Though for small p
the formulation is rather efficient (as will be shown in Sect. 4.6), for larger values of
p it becomes intractable. It should be noted that SF does not reflect the fundamental
property of the problem: tractability for both small and large (close to n) values of p.
This observation motivated us to develop an alternative formulation that will reflect
its complexity more adequately.

4.4 MINpCUT: An Alternative Formulation (AF)

Without any loss of generality one can think of G as of a complete graph with
some edges (those not actually present) having zero weight. Under this assumption
of completeness, a p-cut decomposes G into p subcliques, leading to the following
properties of the feasible solutions. First of all, for any three vertices presence of any
two edges between them induces presence of the whole triangle on these vertices. If
one calls two edges having a vertex in common adjacent edges, then the property can
be expressed as follows: each pair of adjacent edges induces the third edge adjacent
to both of them. The next property is that any particular vertex in a subclique is
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connected to any other vertex in a subclique. These two simple properties play an
important role in our formulation AF. It uses the following Boolean variables: xi j

is nonzero only if edge (i, j) is not removed by a p-cut, and yi is nonzero only if
vertex i is selected as a special vertex. Each vertex in a subclique can be selected
as a special vertex, and exactly one vertex in a subclique is special. This setting is
needed to count subcliques. The rest of notations are preserved from the previous
sections, and AF can be expressed as:

S−∑
i

∑
j>i

ci jxi j −→min, (4.9)

∑
i

yi = p, (4.10)

xi j ≤ 2− yi− y j ∀i �= j, (4.11)

xi j ≥ xil + x jl− 1 ∀i �= j �= l, (4.12)

xi j = x ji ∀i �= j, (4.13)

yi ∈ {0,1} ∀i, (4.14)

xi j ∈ {0,1} ∀i �= j . (4.15)

Similarly to SF, the objective (4.9) minimizes the difference between the sum of
all edge weights and the sum of weights of the edges within subcliques, i.e., the
weight of the p-cut. Constraint (4.10) ensures that exactly p special vertices must
be selected, while constraints (4.11) force each pair of special vertices to be discon-
nected, such that each subclique contains a single special vertex. Constraints (4.12)
ensure the mentioned above property: any two adjacent edges force the third adja-
cent edge to be preserved. Finally, constraints (4.13) preserve undirected structure
of the problem. It is not hard to understand that these constraints can be used to
eliminate half of the x-variables, i.e., to use only those xi j for which i < j holds. In
our experiments we used such a reduced formulation.

4.5 Additional Constraints

Though the MINpCUT based model exactly minimizes the intercell movement, ad-
ditional constraints ensuring practical feasibility of obtained solutions are usually
needed. Moreover, it is desirable to be able to take into account additional factors
and managerial preferences. As our model has quite a general structure, in principle,
any constraints that can be expressed in a linear form can be included. In this section
we give some examples of extending our formulations SF and AF with additional
constraints.

First of all, some flexibility in the model is provided by weights ci j. It is not hard
to understand that these values can be defined either as the number of parts traveling
between machines i and j or their total mass, volume, etc. However, the range of
possible factors is not limited to properties of parts. For example, it may be desirable
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to account for the available workforce and reduce the so-called cross-training costs
(see, e.g., [21]). In this case, the objective is to ensure that each worker is able to
deal with as much machines in his cell as possible. This issue can be modelled
by making weights ci j dependent on the number of workers able to operate both
machines i and j.

The next issue that can be easily dealt with is based on the fact that some ma-
chines cannot be placed in the same cell (e.g., because of safety reasons) while
others must be placed close to each other because of managerial considerations or
constructional peculiarities. In both formulations SF and AF it is easy to force a pair
of machines i and j to be grouped in one cell or in different cells. In case of SF, the
constraints

vik = v jk ∀k (4.16)

and
vik + v jk ≤ 1 ∀k (4.17)

force or prohibit assignment of machines i and j to the same cell, respectively. For
AF the corresponding constraints are

xi j = 1 (4.18)

and
xi j = 0 , (4.19)

leading to a problem with fewer Boolean variables (as some x-variables become
fixed).

Capacity constraints are, probably, the most popular ones in cell formation; these
set a limit on the minimum or maximum number of machines in a cell. Indeed,
there is little sense in cells containing a single machine, while such solutions are
common for the manufacturing data that we experienced. In order to limit the num-
ber of machines per cell from below by nL, SF must be equipped with the following
constraints:

∑
i

vik ≥ nL ∀k . (4.20)

For AF the constraints look like

∑
j

xi j + 1≥ nL ∀i . (4.21)

Validity of these constraints can be expressed by the fact that each vertex is con-
nected to all other vertices within its subclique. Thus, the number of incident edges
not removed by a p-cut plus the vertex i itself is equal to the total number of vertices
in a subclique. It should be mentioned that the system of constraints (4.21) is redun-
dant in a sense that p constraints written for vertices i all lying in different subcliques
are sufficient. However, it is not known beforehand which p vertices will belong
to different subcliques in an optimal solution (these are determined by y-variables).
Upper bounds on the number of machines per cell can be set in a similar way.
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Workload balancing constraints are used to ensure that cells have a balanced load
in terms of working hours, so that the tasks are evenly divided between the cells.
Such balancing helps to avoid the situation when one cell (and the corresponding
team of workers) is overloaded, while another is underutilized. If one denotes by wi

the workload of machine i and by wL the lower bound on the workload per cell, then
constraints for SF and AF become

∑
i

wivik ≥ wL ∀k (4.22)

and

∑
j

w jxi j +wi ≥ wL ∀i , (4.23)

respectively. It can be seen that the workload balancing and capacity constraints
have very similar structure. Instead of limiting the workload per cell one may be
interested in limiting the difference between workloads of cells. The corresponding
constraints can be easily derived from (4.22) and (4.23) by observing that the left-
hand side of these constraints calculates the workload for each cell and by limiting
the differences between all possible pairs of these workloads.

In the rest of this section we discuss a much less trivial issue—the presence of
identical machines. It is not uncommon, especially in large manufacturing systems,
that some most extensively used machines are present in several copies. This means
that each part can be processed on either of these machines equally well and if
one applies any clustering algorithm directly, the identical machines will always be
grouped together. On the other hand, placing them in different cells reduces intercell
movement (if they are needed in more than one cell). This issue is usually hard to
model as it leads to the so-called disjunctive constraints—a part can be processed
on either of the identical machines. However, here we show that our formulations
can be adjusted to account for identical machines without significant complication.

Note that in the above discussion we could have used the term “machine types”
instead of “machines,” implicitly assuming that identical machines are placed to-
gether. Let us call placement of identical machines in different cells separation of
identical machines. Now we are going to modify the formulations SF and AF such
that they allow separation of identical machines; these will be denoted as SFs and
AFs, respectively.

Let us denote by ni the number of identical machines of type i. Recall that indices
i and j enumerate machine types, i, j ∈ {1, . . . ,n}, and index k enumerates cells or
subgraphs, k ∈ {1, . . . , p}. The modification SFs of formulation SF can be written
as follows:

S−∑
i

∑
j>i

ci jxi j −→min, (4.24)

∑
i

vik ≥ 1 ∀k, (4.25)

∑
k

vik ≥ 1 ∀i, (4.26)
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∑
k

vik ≤ ni ∀i, (4.27)

zi jk ≤ vik ∀i �= j,k, (4.28)

zi jk ≤ v jk ∀i �= j,k, (4.29)

zi jk ≥ vik + v jk− 1 ∀i �= j,k, (4.30)

xi j ≤∑
k

zi jk ∀i �= j, (4.31)

xi j ≤ 1 ∀i �= j, (4.32)

vi j ∈ {0,1} ∀i �= j, (4.33)

zi jk ∈ [0,∞) ∀i �= j,k, (4.34)

xi j ∈ [0,∞) ∀i �= j , (4.35)

where v-, x-, and z-variables have the same meaning as in Sects. 4.3 and 4.4. The
objective (4.24) minimizes the total weight of the edges removed by a p-cut, and
constraints (4.25), (4.28)–(4.30), and (4.33)–(4.34) are inherited from SF. Constra-
ints (4.26)–(4.27) are a generalization of constraint (4.3). These require each vertex
(machine type) i to be included into at least one subgraph (cell) and at most ni sub-
graphs (at most ni machines of type i are used). Finally, constraints (4.31)–(4.32)
cut the edge between i and j if this pair of vertices is not contained in any of p
subgraphs and ensure that each edge can be cut only once. It can be seen that these
constraints also force x-variables to take 0–1 values and the numbers of Boolean
variables in formulations SF and SFs are equal.

The modification of the formulation AF to allow separation of the machines is
even simpler than in case of SF. This task can be accomplished by considering a
graph where each vertex corresponds to a single machine (not to a machine type,
as in case of SFs) and penalizing the objective such that vertices corresponding to
identical machines are forced to be assigned to different subcliques. The penalizing
term for any pair of identical machines i and i′ can be written as

+

[
∑

j
ci j

]
xii′ , (4.36)

where the constant in brackets is large enough to ensure that the negative impact of
placing vertices i and i′ into one subclique cannot be compensated by any arrange-
ment of other vertices. Instead of penalizing the objective, one may also add the
following constraint:

xii′ = 0 . (4.37)

However, such constraints may conflict with capacity or other constraints leading to
an infeasible problem. Thus, AFs inherits the structure of AF and has few additional
constraints or terms in the objective function.

In conclusion, we would like to mention that if for some machine type i holds
ni ≥ p, then it can be excluded from consideration as a machine of this type can
be added to each cell. In particular, this implies that in case of two cells identical
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machines make the problem smaller, therefore easier. On the negative side, separa-
tion of equivalent machines may lead to load-related problems: one of the machines
may become overloaded while the other is rarely used. Thus, additional load bal-
ancing constraints may be necessary.

4.6 Computational Experiments

In order to motivate the exact model for cell formation we considered several used
in literature instances that were tackled by heuristic approaches. The scope of this
study was restricted to the instances containing the operations sequence data and to
the papers reporting complete solutions (assignment of machines to cells) so that
the amount of intercell movement can be estimated. In order to ensure the most
consistent comparison, we restricted the number of machines per cell both from
below and from above by the values inherent to the corresponding solutions from
the literature. The computational results are summarized in Table 4.1, where the first
two columns indicate the number of machines and parts and the number of cells to
be made. The next column indicates the amount of intercell movement achieved by
our MINpCUT based model. The following two columns contain the best result we
could find in the literature and a corresponding reference; the last column reports
running times for SF. As can be seen from Table 4.1, in most cases contemporary
heuristics were unable to find optimal solutions. At the same time, running times
for our model are quite limited, except the last considered instance which we could
not solve to optimality. In these and the following experiments we used a moderate
PC (Intel Core2 Duo, 2.33 GHz, 2 GB RAM) and Xpress-MP as a MILP solver. The
solver was restricted to use one processor core.

Table 4.1 Performance comparison with heuristic approaches from lit-
erature in terms of intercell movement

Size p Our result Best known Source Time, sec.

8× 20 3 17 17 [112] <1
12× 19 2 9 16 [2] <1
12× 19 3 20 27 [2] <1
18× 35 4 47 54 [2] 7
20× 20 5 17 18 [2] 10
20× 51 5 36 36 [2] 17
20× 20 5 18 19 [112] 13
25× 40 4 17 22 [2] 8
25× 40 6 27 45 [2] 140
25× 40 8 56 72 [112] ∼ 24 h*

* Interrupted due to memory limitations, best integer solution is re-
ported (best lower bound is 50.963). In fact, the reported solution was
found within 1 hour, the rest of the time was spent on tightening the
lower bound
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The aim of our further experiments was to check computational properties of the
introduced model and to show its practical applicability by means of an industrial
case. As a testbed for the experiments we considered data from a small company
producing high-precision tools. The quantitative characteristics of the dataset are as
follows:

• Time period: 11 months
• 30 machine types
• 7,563 part types
• 25,080 operations (4,149 part moves between machines)

First, we tried to solve the unconstrained CF problem for all possible values of p
using both our formulations. We limited the running time by 10 h and the results
are summarized in Fig. 4.2. As predicted in Sect. 4.3, the running times for SF grow
with increasing p, while AF is efficient for p close to 1 and to n. Note that the
instance with 30 machines for p up to 15 can be solved within an hour, which is
more than reasonable taking into account that cells are not reconfigured every day.
Note also that the size of the instance under consideration is quite substantial: after
reviewing hundreds of papers on cell formation we were able to find only three
realistic instances with more than 30 machines (the largest one having 50 machines).
At the same time, the number of parts does not affect the performance of our model.

Next, we conducted several experiments in order to demonstrate the issue of
identical machines and its possible impact. Figure 4.3 shows the intercell movement,
expressed as a percentage of the total parts movement, for p = 2 cells and different
lower bounds on the number of machines per cell. It can be seen that if possibility
of separating identical machines is ignored, balanced cells are impossible due to
a large intercell movement of 18.29%. In the opposite case, two reasonable cells
can be obtained with only 0.19% intercell movement. In case of three cells, the
corresponding figures are 24.13% and 1.16%. Figures 4.4 and 4.5 illustrate the
obtained cellular decompositions, matrices display the numbers of parts traveling
directly between each pair of machines. Note that the fact that the rightmost cell in
Fig. 4.5 has much fewer intracell movement than the other two cells does not imply
that this cell has very low load in terms of working hours. Small intracell movement
means only that machines within a cell share very few parts, while each one can be
substantially loaded in order to produce its unique set of parts.

4.7 Summary

In this chapter an exact model for the cell formation problem in group technology
is developed. We have demonstrated that a machine-parts incidence matrix does not
contain enough information to obtain truly optimal solutions. As becomes apparent
from the presented experimental comparison, recent heuristics taking operational
sequences into account usually lead to suboptimal solutions. We have also showed
that an exact model can be independent on the number of parts and demonstrated
importance of this property by an industrial example.
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Fig. 4.2 Solution times for an instance with 30 machines (limited by 10 h)

Fig. 4.3 Intercell movement for different restrictions on the number of machines per cell for the
case of two cells

It was shown that the cell formation problem with a fixed number of cells is
equivalent to the minimum multicut problem (also, if the input data is given by
a machine-part incidence matrix). This fact immediately implies polynomial solv-
ability of the former in case p = 2. For an arbitrary number of cells, however, the
problem remains NP-hard. Yet, it can still be solved to optimality in many practical
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Fig. 4.4 An optimal decomposition into two cells (zero entries are denoted by dots)

cases due to the limited number of machines in real manufacturing systems. If the
instance is too large to be solved optimally, the following iterative heuristic proce-
dure can be used. For the initial problem solve a MIN2CUT problem, then iteratively
pick the largest cell and solve for it the minimum 2-cut until p cells are obtained. It
is easy to show that whenever (almost) independent cells are possible the obtained
solution will be globally optimal. Optimality conditions for this or another heuristics
may become possible directions for future research.

We presented two MILP formulations that we call SF and AF and demonstrated
their tractability for moderately sized instances by means of an industrial example.
It was found that SF is more efficient than AF for small values of p, becoming
intractable for larger ones. At the same time, AF performs well for values of p close
to 1 and to the number of vertices in a graph. The latter formulation better reflects
structure of the problem and, potentially, may be more suitable for size reduction
based on graph-theoretic considerations.

Several additional constraints were considered, ranging from very popular capac-
ity constraints to the particular case of disjunctive constraints induced by identical
machines. To the best of our knowledge, there are no models adequately handling
identical machines, even though some attempts are reported in literature. In con-
trast, we showed that identical machines can be modelled in both our formulations
and demonstrated how it works by means of an industrial example. Overall, our
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Fig. 4.5 An optimal decomposition into three cells (zero entries are denoted by dots)

numerical experiments confirmed practical applicability of the proposed model for
real-life problems with a moderate number of machine types.

Possible directions for the further research may include development of advanced
formulations for the minimum multicut problem and/or problem size reduction ap-
proaches. Such directions may be interesting taking into account that the problem
has quite a general clustering nature and its possible applications are not limited to
cell formation in group technology.



Chapter 5
Multiobjective Nature of Cell Formation

5.1 Introduction

Throughout the long history of the cell formation problem, not only the solution
methods evolved but also the major goal of making independent cells was inter-
preted differently by different authors. The earliest approaches to CF, dealing with
a binary machine-part incidence matrix, were aimed only at minimizing the num-
ber of intercell moves (exceptional elements in the block-diagonalized matrix, ne).
Quite soon this goal was extended to simultaneous minimization of the number of
intercell moves and maximization of the number of intracell ones (i.e., minimiza-
tion of the number of voids in the diagonal blocks, nv). Up to now, this objective has
proved extremely popular, as becomes clear while looking at objective functions
and the widely used similarity and solution quality measures (see Sect. 1.3).

The reasoning for introducing nv into the objective is twofold. First of all, this
value plays a crucial role for the algorithms determining the optimal number of
cells. As discussed in Chap. 1, the minimum value of ne is a nondecreasing func-
tion on the number of cells. This implies that any such algorithm tends to group
all machines into one cell resulting in zero intercell movement. Taking into account
that the minimum value of nv has the opposite behavior (depending on the number
of cells), combining the two values in the objective forces a “reasonable” number
of cells to be generated. Secondly, some authors (see, e.g., [32]) argue on an im-
portance of intracell movements and claim that nv must be present in the objective,
irrespective of the type of an algorithm. However, very little is said about the rea-
sonable ratio between importances of the two factors, usually these are supposed to
be equally important. For example, in the expression for grouping efficiency (3.67),
the weighting coefficients for the two factors are equal.

While a majority of the papers in the field deals with intercell movement, a num-
ber of authors consider completely different objectives, for example, minimization
of cross-training costs (see, e.g., [21]), minimization of load imbalance [147] or
set-up time reduction (see, e.g., [140, 146]).

B. Goldengorin et al., Cell Formation in Industrial Engineering, Springer Optimization
and Its Applications 79, DOI 10.1007/978-1-4614-8002-0 5,
© Springer Science+Business Media New York 2013
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The goal of this chapter is to consider several objectives relevant to cell formation
and to present the ways of including them into the models from Chaps. 3 and 4.

In the rest of this chapter we discuss appropriateness of combining the amounts
of inter- and intracell movement in the objective and demonstrate possible pitfalls of
minimizing only the intercell movement. We also discuss some other possible goals
considered in the literature, like those related to workforce or set-up time savings.
For each of the goals we describe how it can be integrated into the models presented
in Chaps. 3 and 4.

5.2 Problems with a Minimization of the Intercell Movement

Before discussing the appropriateness of minimizing the amount of inter- and in-
tracell movement, let us mention that by minimizing the number of exceptions in
a machine-part incidence matrix (MPIM) one does not necessary minimize the ac-
tual amount of intercell movement in the system (as shown in Chap. 4). This can be
explained by the fact that each exception indicates that a certain part has to travel
between two cells, without indicating how many travels are needed. Moreover, it is
possible to prove that if an approach uses a (dis)similarity measure derived from the
MPIM, it does not, in general case, minimize the number of exceptions.

Theorem 5.1. None of the approaches using similarity coefficients derived from the
machine-part incidence matrix minimizes the number of exceptions.

Proof. The counter-example shown in Fig. 5.1 illustrates the issue. It can be seen
that machine i shares several parts with only one machine from cell 1 and one part
with several machines from cell 2. Thus, similarity between i and any other machine
from cell 2 is some small value. On the other hand, machine i shares a more notice-
able number of parts with machine j from cell 1 and, clearly, should be assigned to
this cell in order to minimize the intercell movement. Consider the following three
extreme cases:

1. For each cell the objective function contains a sum of similarities only from one
central machine to all the other ones within the cell (like in case of the PMP).

2. For each cell the objective function contains a sum of similarities for all pairs
within the cell (like in case of the MINpCUT).

3. For each cell the objective function contains a sum of similarities for some
pairs falling into a spanning tree pattern (like in case of MST or hierarchi-
cal clustering).

In the first case it is always possible to force machine j to be not the central machine,
leading to a zero similarity between i and center of cell 1. Thus, machine i will be
assigned to cell 2. In the second case, if cell 2 contains sufficiently large number
of machines, then the sum of small similarities with all other machines results in a
substantial number exceeding similarity between i and j. The third case reflects hi-
erarchical clustering methods. Though being capable to deal with the example from
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Fig. 5.1 Counter-example illustrating Theorem 5.1

Fig. 5.1, they are heuristic by their nature and for each of them counter-examples
exist.

Speaking more generally, if the objective function can be represented as follows
(xik define if machines i and k are in the same cell, I2–set of machines from cell 2):

. . .+ si jxi j + ∑
k∈I2

sikxik + . . . , (5.1)

then the sum of small similarities of machine i with machines from cell 2 may
overwhelm the substantial similarity with machine j from cell 1. In addition, if in
a feasible solution not all similarities within a cell are counted, then the similarity
between machines i and j may be excluded from consideration. For a particular
algorithm, one may arrange non-fixed elements in the matrix from Fig. 5.1 such that
at least one of these cases takes place. The only exception for which this may not
work includes sequential algorithms (like MST or hierarchical clustering) that group
machines by picking the “heaviest” links first (these all have a heuristic nature).

Clearly, the above considerations are valid not only for sums but also for any
nondecreasing function.

To make the further analysis accurate, we will refer to a MINpCUT-based model,
that was proven to be exact in Chap. 4. Clearly, the amount of intercell movement is
an important characteristics that reflects the degree of cell independence and must
be included into the objective. Though some authors (see, e.g., [32]) claim that the
amount of intracell movement must also be optimized, we argue that it may be
excluded from consideration. In order to support this argument, we would like to
give an illustrative example based on real manufacturing data. Consider the cells
presented in Fig. 5.2 (we restricted the number of machines per cell such that the
difference is at most 4). It can be seen that one of the cells has almost no intra-
cell movement and contains machines that have very little in common. Clearly, this
situation does not fit into the classical “theory” of cell formation. Yet, there is a nat-
ural reasoning behind the obtained solution and it can be checked that it is the best
possibility available. Clearly, classical cells (with substantial intracell movement
and small intercell movement) are not possible in the considered case because the
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Fig. 5.2 Industrial example demonstrating “non-classical” cells

pattern of connections is very dense. The model “understands” that and finds the
only possible solution: separate machines that have fewer connections with the
“core” of the manufacturing system. Such a solution makes sense from different
perspectives. For example, if cells were made in order to comply with spatial con-
straints and/or are spatially distant, then the goal is reached: obtained cellular de-
composition ensures the minimum traffic of parts between cells. If cells were made
in order to make the management easier, then the goal is again reached: there are two
smaller systems with a limited interaction implying a lower amount of uncertainty.
In addition, one of these systems represents a set of non-interacting machines and
is, therefore, very easy to manage (non-interacting machines can be managed inde-
pendently). Thus, intracell movement does not play an important role, as sometimes
cells with almost independent machines may be preferable. Note that this exam-
ple also illustrates another shortcoming of similarity-based approaches: all of them
assume intensive intracellular traffic and are very unlikely to produce the given in
Fig. 5.2 solution, even though it minimizes the intercellular traffic. While provid-
ing a reasonable decomposition of the manufacturing system, this solution does not
support implementation of group technology. Thus, Fig. 5.2 illustrates that from the
GT perspective the minimization of intercell movement cannot be a sole objective.

5.2.1 Inter-Versus Intracell Movement

The idea of minimizing the intercell movement can be generalized, as done, for
example, by Fallah-Alipour and Shamsi [56]: instead of minimizing the cells de-
pendence, minimize the total cost of cells. When aiming at independent cells,
one minimizes the intercell movement and implicitly assumes that any amount of
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intracell movement is acceptable. From the cost point of view, this can be inter-
preted as follows: intercell moves of parts are given some nonnegative cost, while
intracell ones cost zero. At the same time, one may assume intracell moves to also
have nonzero costs.

It is not hard to understand that such a generalized problem can be easily mod-
elled within the MINpCUT framework just by extending the objective function by

+∑
i

∑
j>i

c′i j

(
1−∑

k

zi jk

)
(5.2)

or
+∑

i
∑
j>i

c′i j(1− xi j) (5.3)

for the formulations given in Sects. 4.3 and 4.4, respectively; c′i j–the cost of an in-
tracell movement between machines i and j, indices i and j enumerate machines,
k enumerates cells. It can be seen that these modifications change only the coeffi-
cients in the objective function without affecting its structure. This means that the
complexity of the problem does not increase with these extensions.

It should be noted that the presence of two types of costs implies two objectives
having an opposite behavior depending on the number of cells p: as p increases, the
amount of intercell movement also increases, while the amount of intracell move-
ment decreases (see Sect. 1.3.2). The two objectives balance each other and the
constraint on the number of cells can be dropped. In formulation AF (Sect. 4.3) this
can be done in a straightforward way by eliminating constraint (4.10). As the for-
mulation SF (Sect. 4.3) encodes the number of cells in its structure (the number of
variables depends on p), an upper bound on the number of cells must be set and
cells may be allowed to be empty by dropping constraints (4.2).

Thus, if both inter- and intracell movement have nonnegative costs, the MIN-
pCUT based model does not need the number of cells to be predefined and can find
the optimal one automatically. The PMP-based model from Sect. 3.2 can also be
adjusted appropriately, but the necessary modifications are more involved than in
case of MINpCUT.

5.2.2 Preserving Flows

Based on the example from Fig. 5.2, it is possible to conclude that in case no
clear cells are present, minimization of intercell movement tends to place the least
connected machines together. One may argue that this tendency may lead to inap-
propriate results. For example, consider the two cellular configurations depicted in
Fig. 5.3 (a) and (b), respectively. In this figure, M1,. . .,M8 denote machines; num-
bers at the edges denote the numbers of parts traveling between the corresponding
machines. Configuration (a) is generated by minimizing the intercell movement,
while (b) is made manually. In both cases cells are forced to have an equal number of
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Fig. 5.3 Two cellular configurations: (a) minimizing intercell movement; (b) preserving line flows

machines. One may argue that configuration (b) is preferred as it allows for two
flows, going through machines M1–M2–M3–M4 and M5–M6–M7–M8. Yet, con-
figuration
(a) preserves one even more prominent closed flow going through M2–M3–M6–
M7, while the rest of machines are put aside.

If one is interested in preserving flows, it is always possible to force either of the
considered in the previous chapters models to keep certain machines in the same
cell. However, identification of flows is an interesting problem on itself. Here we
propose a simple and computationally efficient MILP model for the flows identifi-
cation problem. The model uses Boolean decision variables xi j, where indices i and
j enumerate machines (i, j ∈ {1, . . . ,m}), and can be written as

∑
i

∑
j, j �=i

ci jxi j −→max (5.4)

s.t. (5.5)

∑
j, j �=i

xi j ≤ 1 ∀i, (5.6)

∑
i,i�= j

xi j ≤ 1 ∀ j, (5.7)

xi j ∈ {0,1} ∀i, j , (5.8)
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where ci j may be chosen either to denote the amount of parts traveling between
machines i and j (i.e., have the same meaning as in Chap. 4) or as an amount of parts
traveling in one direction (in this case ci j �= c ji and these correspond to elements of
the from-to matrix). The second alternative is better as it takes into account real
directed flows instead of aggregated undirected ones. Objective (5.4) maximizes the
total amount of flows, while constraints (5.6)–(5.7) ensure that each machine has at
most one incoming flow and at most one outgoing flow, respectively. Such setting
ensures that a solution will contain three types of flows:

• Line flows
• Closed (loop) flows
• Isolated machines

By playing with the right-hand sides of constraints (5.6)–(5.7) it is possible to extend
this set of allowed flow types. For example, if one changes the r.h.s. in (5.7) to
10, tree-like flows with each machine having at most 10 outgoing flows become
allowed.

It can be shown that formulation (5.4)–(5.8) essentially represents the well-
known assignment problem (see, e.g., [120], p. 248) and is polynomially solvable.
This also implies that combinatorial algorithms for the assignment problem can be
applied to solve the flows identification problem. In practice, instances with hun-
dreds of machines can be solved within seconds.

Finally, we would like to mention that the presented flows identification model
can be directly used for cell formation; however, it does not guarantee highly inde-
pendent cells. On the positive side, the model does not require the number of cells
to be defined beforehand. Thus, we propose the flows identification model only for
preliminary analysis such that its output (the number of cells, dominant flows, etc.)
can be used to refine the input for cell formation (e.g., by assigning certain machines
to the same cell so that flows are not interrupted).

5.3 Workforce-Related Objectives

Unless a manufacturing system is completely automated, workforce plays an impor-
tant role in its performance. For example, workers’ skills directly influence the set-
up and processing times of parts, as well as quality of the latter. Moreover, workers
may become ill, retire, etc., and it is desirable that someone can substitute them. In
other words, it is desirable that a worker is able to operate more than one machine—
this is usually referred to as cross-training. Importance of cross-training is discussed
in a number of papers on CF (see, e.g., [21, 22]) and the main related goals can be
formulated as:

• It is desirable that a worker can operate as much machines in his cell as possible
(this improves flexibility and robustness).
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• It may be desirable that a worker can operate only machines within his cell (abil-
ity to operate machines from other cells means qualifications that are not used
but might be paid for).

• Costs of additional training must be as small as possible.

The simplest way of reaching the above goals is to define the machine-worker
incidence matrix (MWIM, similarly to the machine-part incidence matrix, MPIM)
and use it as an input. This idea was used, for example, in [21] by augmenting the
MPIM with columns corresponding to workers and reflecting their abilities to oper-
ate machines. Such a setting suggests that cell independence from parts and workers
points of view are equally preferable. At the same time, it is possible to give these
two objectives different priorities by deriving machine-machine similarities from
MPIM and MWIM separately and then combining them with weighting coeffici-
ents. Clearly, this setting can be directly implemented within the models proposed
in Chaps. 3 and 4.

It is also worth mentioning that Bhatnagar and Saddikuti [21] show that the de-
scribed setting outperforms two-stage procedures that first make machine cells and
then assign workers. This is quite natural, as in two stage procedures cells are actu-
ally made without taking workforce into an account.

5.4 Set-Up Time Savings

One may notice that all the considered above objectives only implicitly improve
the performance of the manufacturing system. In particular, based on the objective
values of either of them (nor on the obtained solutions), it is not straightforward how
to estimate, for example, the gains in the throughput time of the parts and savings in
terms of labor hours. The only exception is as follows: if cells are spatially distant
then the amount of intercell movement influences the time needed to deliver parts
from one cell to another and then translated into the throughput time of parts.

It is quite natural to pose the following question: is it possible to make cells that
explicitly optimize some quantitative manufacturing factors? In this section we con-
sider set-up times of parts as an example of such a factor and propose objectives that
make cells supporting a set-up time reduction. Such an objective was considered, for
example, in [146] and [140].

First of all, let us briefly consider what is the set-up time and why it can be
reduced. Clearly, before a part can be processed by a machine, the latter must be
adjusted in a proper way and have all necessary tools installed. The time needed
for these operations is called the set-up time of a particular part on a particular ma-
chine. The set-up time is thus a fraction of the total throughput time of a part, and
this fraction can be quite substantial. Naturally, several different parts may need
similar set-ups at certain machines and if these parts are processed sequentially then
the machines must be adjusted only once before processing all these parts. This
means that for all but the first such part the set-up time will be zero. Thus, by proper
scheduling of parts at each machines, it is possible to save on set-ups. In reality,
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time needed to change one set-up to another may differ for each pair of parts. In this
case the problem of finding an optimal schedule (a sequence of parts minimizing the
total set-up time) can be modelled by the well-known asymmetric traveling sales-
man problem (ATSP, see, e.g., [60]) defined on a graph where vertices correspond
to parts and weights of the edges correspond to the times needed to switch between
the corresponding set-ups. This implies that a minimization of set-up times is, gen-
erally speaking, an NP-hard problem, even for one machine and without precedence
constraints (some parts arrive later than others).

The reality can be somewhat simplified by introducing a notion of a part family—
a set of parts that have the same set-up at a particular machine. Throughout the
rest of this book we deal with machine-dependent part families, i.e., any two parts
belonging to the same family at one machine may belong to different families at
another machine. This setting is quite realistic. For example, two parts may need
holes of equal diameter and belong to the same family at a drilling machine but if
they have different thickness, they belong to different families at a cutting machine.
If these two parts must be painted into the same color, then at a dyeing machine they
are again in the same family. Now, scheduling can be done at a level of part families,
rather than at a level of parts. In this way it is possible to reduce the problem size and
if the number of families is small (say, 5) then an optimal schedule for a machine
can be found reasonably fast even by a complete enumeration.1 Assuming further
that the set-up time of a part family at a machine is independent of which family
was processed at this machine before, one may completely eliminate the scheduling
issue as the order of families becomes irrelevant, the only requirement is that the
parts from one family are processed consecutively.

An optimal scheduling is beyond the scope of this book, and here we concentrate
on making cells that support set-up time savings, i.e., provide most opportunities for
that.

Let us denote by F the maximum number of families per machine; one may
assume that each machine has F families, some being empty. Let us also introduce
the following notation:

Fj, f ,i =

{
1, if part j belongs to family f on machine i
0, otherwise.

(5.9)

Under the introduced notations one may define for each pair of machines i and j the
following similarity measure s(i, j):

s(i, j) =
r

∑
k=1

F

∑
f=1

(Fk, f ,i ·Fk, f , j), (5.10)

where r is the number of parts. The similarity measure (5.10) reflects the num-
ber of parts belonging to the same family on both machines. It can be directly
plugged into the MINpCUT-based model presented in Chap. 4 or used to derive

1 Scheduling several interacting machines remains a complex problem even if each machine has a
single part family due to precedence constraints.
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a dissimilarity measure for the PMP-based model presented in Chap. 3. In either
case, the cells made using this similarity measure will lead to the cells where the
(machine-dependent) part families are as similar as possible. This implies that the
orders in which parts (families) are processed at each machine in a cell can be similar
(in the best case—identical). This becomes especially beneficial if cells have promi-
nent line flows (identification of such flows is considered in Sect. 5.2), as similar
schedules on machines in a line ensure that set-up time savings can be made at each
machine in this line.

In case set-up times of part families at a machine vary a lot, it becomes necessary
to adjust the similarity measure such that the families with larger set-up times can be
better scheduled. This can be achieved by modifying the similarity measure (5.10)
in the following way:

s(i, j) =
r

∑
k=1

F

∑
f=1

Fk, f ,i ·Fk, f , j · (Si, f + S j, f ), (5.11)

where Si, f and S j, f are set-up times of family f on machines i and j, correspondingly.

5.5 Concluding Remarks

This chapter presented several possible objectives that can be optimized while creat-
ing cells. This list is, of course, not exhaustive, as a particular manufacturing system
may need an objective not relevant to other systems. We tried to cover the most com-
mon objectives and to show how these can be incorporated into the models proposed
in the previous chapters.

An important question not covered in the chapter is how to combine several pos-
sible objectives in one formulation. In fact, the range of possibilities is quite broad
and here we would like to mention only few most widely used (a number of more
advances techniques for handling multiobjectiveness in industrial engineering prob-
lems can be found in [54, 167]). First of all, objectives can be combined in a linear
way with weighting coefficients reflecting a relative importance of each one. Though
this way is the easiest one, it may not cover all optimal solutions. In particular, this
happens if the Pareto optimal front (the set of non-dominated solutions) of a par-
ticular multiobjective problem is non-convex. Furthermore, the choice of weights is
not straightforward, especially if the objective values are measured in different units
(e.g., a number of parts vs. a number of additional workers).

If objectives can be arranged in a linear order of importance, one may perform a
sequential optimization by improving one objective at a time and adding a constraint
requiring the value of this objective to stay within certain limits. A similar approach
is to simultaneously move some objectives to constraints. For example, one may be
interested in maximizing the possibilities for set-up time reduction while keeping
intercell movement and cross-training costs below certain levels.
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Finally, decision making techniques (e.g., TOPSIS; see [2]) may be applied in
order to select the best solution from several ones corresponding to varying weights
or sequences in which objectives were optimized.

We would like to conclude by saying that the choice of objectives and the ways
of combining them in a mathematical formulation essentially depends on particular
goals and motivation for switching to a cellular layout at a particular company. Thus,
we may leave these questions to management. At the same time, a methodology for
estimating appropriateness and importance of different objectives based on given
manufacturing data can be a topic for future research.



Chapter 6
Pattern-Based Heuristic for the Cell Formation
Problem in Group Technology

6.1 Introduction

In the previous chapters were considered approaches to solving the CF problem
whose efficiency heavily depends on the efficiency of modern MILP solvers. On the
contrary, in this chapter we would like to present a purely combinatorial approach
that relies only on efficient algorithms for solving the well-known assignment prob-
lem (AP). The proposed approach also provides a generic framework for modeling
different objectives and constraints in CFP and other combinatorial optimization
problems.

Due to the fact that the CFP with different objective functions was shown to
be NP-hard in [14], a great number of heuristics were proposed (see an overview
in Chap. 1). A major portion of these heuristics is based on different clustering
methods, e.g., ad hoc clustering [36, 37, 84, 103, 144], hierarchical clustering
[102, 110, 137], and clustering based on MST [116, 117], p-median [69], and mul-
ticut [86] problems, respectively. Usually, one chooses a particular clustering ap-
proach in order to find a balance between the computational complexity and the
quality of solutions and applies this approach to any instance he faces. On the other
hand, if one tries to adapt the choice of the clustering approach to the particular
instance, the higher quality of solutions may be achieved while keeping the compu-
tational complexity within reasonable limits. However, in order to do that a unified
framework for simulating various clustering approaches is needed.

The purpose of this chapter is twofold. First we coin a notion of a pattern and
design a generic pattern-based framework that allows to simulate virtually any clus-
tering approach. Secondly, we apply the proposed framework in order to construct
an efficient algorithm for CFP. Furthermore, we show that the pattern-based frame-
work can be used to construct efficient algorithms for many other combinatorial
optimization problems.

This chapter is based on [15] and organized as follows. In the next section we in-
troduce a notion of a pattern that allows to represent clustering approaches for CFP
in a unified way. In Sect. 6.2.1 pattern-based approach for CFP is developed and
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in Sect. 6.4 a heuristic combining the pattern-based and improvement procedures is
presented. In Sect. 6.5 we report our promising computational results. Section 6.6
demonstrates applicability of a pattern-based framework to a wide range of com-
binatorial optimization problems. Finally, Sect. 6.7 concludes the chapter with a
summary and future research directions.

6.2 Clustering and Patterns

It is not hard to understand that the common feature of many clustering approaches
(not necessarily related to CFP) is that they minimize the sum of “weights” of all
“links” between the clusters or maximize the corresponding sum within the clus-
ters (usually, these objectives are equivalent). The difference between clustering ap-
proaches is that they assume a different structure of the clusters. For example, MST
clustering assumes that connections between elements of each cluster (e.g., part
flows between machines) fall into a spanning tree pattern. That is, if this property
actually holds for a particular instance, then the MST solution is optimal for CFP.
Figure 6.1 shows patterns of connections assumed by some clustering approaches.
Clearly, each pattern of connections can be mapped onto the input matrix for the
problem to define the cells that contribute to the objective for a particular clustering
method. Thus, let us define a pattern P as a (nonempty) collection of cells (posi-
tions) in the input matrix. Sometimes it is useful to work with a complement pattern
Pc that contains all positions in a matrix not contained in P . Note that a valid
pattern for the MINpCUT problem is just a collection of p diagonal blocks (any
valid pattern may be transformed into this one by choosing a suitable permutation
of machines). A valid pattern for PMP clustering is a collection of p crosses cen-
tered around median machines (see Fig. 6.1) and intersecting each row and column.
Valid patterns for the MST are somewhat less trivial to characterize.

It should be also noted that a valid pattern may be not unique even for a fixed
instance. Thus there is a problem of finding the optimal one. The number of valid
patterns, however, is less than the number of feasible solutions to the problem; more-
over, one may restrict the search space to only “nice” patterns. For example, in case
of MINpCUT, one may consider only patterns composed from diagonal blocks and
with blocks sorted by their size.

Based on the above, it becomes clear that a clustering problem may be viewed
as a pair of interrelated problems: (i) to find an optimal pattern that is valid for the
particular clustering problem and (ii) to find permutations of rows and columns (in
some cases these must be equal) so that the sum of the entries within the pattern is
optimized. This observation implies that the notion of a pattern provides a generic
framework for considering clustering problems in a unified manner.
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Fig. 6.1 Patterns of some clustering approaches: (a) MST, (b) p-median, (c) MINpCUT

Note that the pattern-based framework is useful not only for clustering
problems, but also for some other combinatorial optimization problems,
as will be shown in Sect. 6.6. In fact, for some problems, an optimal valid
pattern is either predefined or can be easily found.

Now, let us apply the pattern-based framework to the simplest case of CFP when
the input data is given by a Boolean machine-part incidence matrix.

6.2.1 Patterns in CFP

In the most general setting, the optimal CFP pattern P(CFP) is unknown and
should be found together with two optimal permutations: one is a permutation of
rows, say π r and another one is a permutation of columns, say πc. Thus, the CFP is
the problem of finding a pattern and two permutations, one for rows and another one
for columns, such that the given objective function is minimized (maximized). Note
that in the CFP a feasible pattern consists of an unknown number of block-diagonal
rectangles with unknown sizes.

Let us consider a 5× 7 example. For the sake of simplicity we assume that the
machine-part Boolean 5× 7 matrix and its pattern (the two rectangles with sizes
2× 2 and 3× 5 are shaded) are predefined in Fig. 6.2. We call the CFP with the
given pattern the Specified CFP (SCFP) . Having a specific pattern we further
simplify the SCFP by assuming that the rows (machines) order (permutation) is
fixed and denote this problem by RSCFP and its pattern by P(SCFP) = {(1,1),
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(1,2); (2,1),(2,2); (3,3),(3,4),(3,5),(3,6),(3,7); (4,3),(4,4),(4,5),(4,6),(4,7);
(5,3),(5,4),(5,5),(5,6),(5,7)}. Informally, we assume that two machine shops are
given as follows: S1 = {1,2} and S2 = {3,4,5}. Such constraints might be useful in
real problems when the machine shops are already built, all the machines are placed
inside the shops, and it is too expensive or impossible to move them. Let us also fix
the number of parts processed in each shop: two parts in the first shop and five parts
in the second one.

Fig. 6.2 An instance of CFP
defined by a MPIM (an exam-
ple from [154]) and a possible
pattern

Now, in the RSCFP we are given the input matrix, pattern P(SCFP), and a
fixed order of machines. The RSCFP is the problem of finding a permutation of
columns (parts) such that the total sum of all units within (outside) the given pattern
P(SCFP) is maximized (minimized).

Let us assume that the intercell movements are measured by the number of ones
located outside the cells in the machine-part matrix. Hence, minimizing the inter-
cell movements is equivalent to maximizing the number of ones located inside the
cells in the machine-part matrix w.r.t. the given pattern P(SCFP) (because the total
number of ones is a constant).

In order to decide which of the two equivalent objective functions we are going to
minimize or maximize let us note that the total number of positions within the given
pattern is 19, and the number of positions outside the given pattern is 35−19= 16.
It means that in the worst case to compute a contribution to the objective function
we should sum up the entries at 19 positions inside the given pattern or only 16
entries outside the given pattern. Hence, we have chosen the minimization version
of our RSCFP on the complement pattern to the original pattern Pc(SCFP).

Before we try to find an optimal permutation of columns (parts), observe that
the contribution of each column to the objective depends only on its position in the
permutation (not those of other columns) and let us consider some fixed column,
e.g., column 2 (0,1,0,1,1)T. If we place it at the first position, it will generate two
exceptional elements (at positions 4 and 5) because there are two ones that fall into
Pc(SCFP) if column 2 is moved to position 1. If column 2 stays at its original
position, then it still contributes two exceptions to the objective, but if it is moved
to position 3, . . . ,7, it generates only one exception (see Fig. 6.3). Thus, we may
associate column 2 with a row vector (2,2,1,1,1,1,1) where each entry reflects the
contribution of column 2 to the objective in case it is placed at the corresponding po-
sition. By computing such a contribution vector for each column, we may generate
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a square 7× 7 auxiliary matrix (see Fig. 6.4) where an entry at some position (i, j)
denotes the contribution of column i if it is placed at position j in the permutation.

The problem we are facing now is how to find an optimal permutation of columns
(parts) given pattern Pc(RSCFP), a fixed permutation of rows (machines) and all
possible contributions of all columns (auxiliary matrix). In other words, we are
given m columns, m positions and “costs” of putting each column at each position.
This is nothing else than the well-known linear AP defined on the auxiliary matrix.
Solving this AP leads to the permutation of columns πc = (1,7,2,3,4,5,6) with its
optimal value RSCFP(πc) = 6. If we permute all columns of the original matrix (see
Fig. 6.2) by means of the permutation πc, we obtain the following permuted matrix
(see Fig. 6.5) with the sum of all entries at the given pattern Pc(RSCFP) equal to 6.

Fig. 6.3 All possible contri-
butions of column 2 to the
objective of the RSCFP w.r.t.
the given pattern Pc(SCFP)

Fig. 6.4 The auxiliary matrix
for the RSCFP w.r.t. the given
pattern Pc(SCFP)

As we have mentioned before in the original CFP all three objects, namely,
the pattern, the row and the column permutations, are “decision variables.” In the
RSCFP we have fixed the pattern and rows permutation in the original matrix (see
Fig. 6.2) and have found an optimal permutation of columns πc. Let us fix the found
order of parts by means of the permutation πc and consider Fig. 6.5 as the input
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Fig. 6.5 Machine-parts ma-
trix after applying an optimal
column permutation

matrix for the following CFP that we call Column Specified CFP (SCFP). For the
given pattern Pc(SCFP), input matrix (see Fig. 6.5) find a permutation of rows (ma-
chines) π r such that the intercell movements will be further minimized. It means that
we are going to construct an auxiliary square matrix of order 5 because we are look-
ing for an optimal permutation of five machines w.r.t. the given pattern Pc(SCFP).
The rows of our auxiliary matrix will be numbered by numbers of machines of the
original matrix and their entries will indicate the contribution d(i, j) to the AP objec-
tive function when the entries of row i are located at the place of row j. This contri-
bution d(i, j) is equal to the number of units outside of the given pattern P(SCFP),
i.e., inside its complement Pc(SCFP) (see Fig. 6.5). The complete auxiliary matrix
is shown in Fig. 6.6 and an optimal permutation of rows is π r = (1,4,2,3,5) with its
optimal value CSCFP(π r)= 5. If we permute all columns of the original matrix ( see
Fig. 6.5) by means of the permutation π r we obtain the following permuted matrix
(see Fig. 6.7) with the sum of all entries in the given pattern Pc(SCFP) equal to 5.

Fig. 6.6 The auxiliary matrix
for the CSCFP w.r.t. the
given pattern Pc(SCFP)
and the given permutation of
columns πc

In a summary of this section we note that even with the given pattern our pattern-
based approach to find two independent optimal permutations for rows (machines)
and columns (parts) is just a heuristic since our sequential solutions of these two
problems are obtained under an assumption that one of the given permutations, say
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Fig. 6.7 The permuted 5× 7
machine-part matrix after
applying πc and π r with five
intercell movements

a permutation of rows, is an optimal permutation w.r.t. the unknown another optimal
permutation, say a permutation of columns, and vice versa. In the following sections
we are going to check whether our heuristic is competitive with the state-of-the-art
heuristics for solving the CFP.

We would like to draw the reader’s attention to the fact that the optimal
row (or column) permutation is, generally speaking, not unique and the
particular choice of one of the optimal rows (columns) permutations may
influence the next step—finding an optimal column (row) permutation.
This makes the described above pattern-based approach a heuristic in a
general case even if the optimal pattern is known.

6.3 The CFP Formulation

The CFP consists in an optimal grouping of the given machines and parts into cells.
The input for this problem is usually given by m machines, r parts, and a rectangu-
lar machine-part incidence matrix A = [ai j], where ai j = 1 if part j is processed on
machine i. The objective is to find an optimal number and configuration of rectangu-
lar cells (diagonal blocks in the machine-part matrix) and optimal permutations of
rows (machines) and columns (parts) such that after these permutations the number
of zeros inside the chosen cells (voids) and the number of ones outside these cells
(exceptions) are minimized. Since it is not usually possible to minimize these two
values simultaneously, there have appeared a number of compound criteria trying to
join them into one objective function. Some of them are presented below.

For example, we are given the machine-part matrix shown in Fig. 6.2 [154]. Here
are two different solutions for this CFP shown in Fig. 6.8.

The left solution is better because it has less voids (3 vs. 4) and exceptions (4 vs.
5) than the right one. But one of its cells is a singleton—a cell which has less than
two machines or products. In some CFP formulations singletons are not allowed,
so in this case this solution is not feasible. In this chapter we consider both cases
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Fig. 6.8 Two possible solutions. (a) with singletons. (b) without singletons

(where singletons are allowed and where they are not allowed) and whenever there
is a solution with singletons found by the suggested heuristic better than that without
singletons we present both solutions.

6.3.1 The CFP Objective Functions

There are a number of different objective functions used for the CFP. The following
four functions are the most widely used (see also Sect. 1.3.2):

1. η (grouping efficiency)
2. τ (grouping efficacy)
3. GCI (group capability index)
4. ne + nv (number of exceptions and voids)

Throughout the rest of this chapter, we use the grouping efficacy measure in all the
computational experiments because of its capability to distinguish good and bad
solutions and other useful properties (see, e.g., [71, 87] for more information).

To demonstrate the difference between the four described objective functions we
provide these values in Table 6.1 for the two solutions presented in Fig. 6.8.

Table 6.1 Values of the four most widely used CF objectives for the two
solutions from Fig. 6.8a,b

Solution 1 Solution 2

η 0.5 16
19 +0.5 12

16 ≈ 79.60 % 0.5 15
19 +0.5 11

16 ≈ 73.85 %

τ 20−4
20+3 ≈ 69.57 % 20−5

20+4 ≈ 62.50 %

GCI 20−4
20 = 80.00 % 20−5

20 = 75.00 %

ne +nv 4+3 = 7 5+4 = 9

Lemma 6.1. If the pattern (the number and configuration of the cells) is fixed then
objective functions η , τ , GCI, ne+nv become equivalent, in other words these func-
tions reach their optimal values on the same solution.
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Proof. Let us define nin = nv + n1− ne—the number of elements inside the cells,
and nout = mr− nin—the number of elements outside the cells. For the fixed pat-
tern the following values are constant: n1, n0 = mr− n1, nin, nout . So if we maxi-
mize the number of ones inside the pattern n1− ne, then nv is minimized, n0− nv is
maximized, and ne = mr−nin− (n0−nv) is minimized. This means that the group-

ing efficiency η = α nin−nv
nin + (1−α) nout−ne

nout is maximized, the grouping efficacy

τ = nin−nv
n1+nv

is maximized, the grouping capability index GCI = 1− ne
n1

is maximized,
and the number of exceptions and voids ne + nv is minimized. ��

That is why when we apply the pattern-based approach to find optimal permuta-
tions for the fixed pattern we maximize the sum of elements inside the pattern which
is equal to nin− nv.

6.4 Pattern Based Heuristic

In this section we describe and demonstrate the suggested pattern-based approach
on the same 5×7 example from [154] that we already used in the previous sections
(Fig. 6.9).

Fig. 6.9 5× 7 machine-part
matrix from Waghodekar and
Sahu [154]

Basic steps of the suggested algorithm are the following:

(a) Pattern-based heuristic At the first stage our goal is to find the optimal number
of cells p∗ for the current problem instance for which we will then generate
different input patterns and obtain solutions starting from these patterns on the
next stage. The algorithm is the following:

1. Choose a number of cells p. We try numbers of cells in the range from 2 to
min(m,r)/2 where m is the number of rows (machines) in the machine-part
matrix and r is the number of columns (parts).

2. Build an initial pattern. For the chosen number of cells p we build an initial
pattern in the following way. The rows and columns are divided into equal
blocks of [m/p] rows and [r/p] columns (here by [x] we denote an integer part
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of x). The diagonal blocks are the cells for the CFP. If m or r is not divisible
by p, then all the remaining rows and columns are added to the last cell. An
initial pattern with 2 cells for our example is shown in Fig. 6.10. Note that this
pattern is different from the pattern considered in the previous section and so
the result will be different. Moreover, the returned by our heuristic solution
depends on the order of permuted rows or columns of the input matrix. In the
previous section we first have found a permutation of columns c1 and after
permuting the original input matrix by means of c1 found a permutation of
rows r1 = r1(c1) which depends on the fixed permutation of columns c1.

3. Form an auxiliary matrix for rows (Fig. 6.11a).
4. Modify the auxiliary matrix (ai j = max

k,l
akl − ai j) to obtain a minimization

problem (Fig. 6.11b).
5. Solve the AP for this matrix and obtain an AP optimal rows permutation

(Fig. 6.12).
6. Permute rows of the original machine-part matrix according to the optimal AP

permutation from step 5 (Fig. 6.13).
7. Compute an auxiliary matrix for columns based on the permuted machine-part

matrix from the previous step (Fig. 6.14a).

Fig. 6.10 An initial pattern
with 2 cells

Fig. 6.11 Auxiliary matrix for rows. (a) initial. (b) modified
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Fig. 6.12 Optimal AP so-
lution (optimal positions of
rows)

Fig. 6.13 Machine-part ma-
trix after applying the optimal
rows permutation

Fig. 6.14 Auxiliary matrix for columns. (a) initial. (b) modified
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8. Modify the auxiliary matrix (ai j = max
k,l

akl− ai j) to get a minimization prob-

lem (Fig. 6.14b).
9. Solve the AP for this matrix and obtain an AP optimal column permutation

(Fig. 6.15).

Fig. 6.15 Optimal AP so-
lution (optimal positions of
columns)

10. Permute columns according to the AP optimal permutation from the previous
step. In this case we have got an identical (trivial) permutation, so the columns
should stay on their places and the machine-part matrix remains the same as
shown in Fig. 6.13.

(b) Pattern-modification improvement heuristic

11. Apply the pattern-modification improvement heuristic to improve the solution
found so far. The main idea of the improvement heuristic is that the grouping
efficacy can usually be increased by simple modifications (moving either a
row or a column from one cell to another) of the current pattern (cells configu-
ration). To compute the grouping efficacy for the obtained solution (Fig. 6.13)
we need the total number of ones n1, the number of zeros inside the cells nin

0
and the number of ones outside the cells nout

1 : n1 = 20, nv = 4, ne = 6. The
grouping efficacy is then calculated by the following formula:

τ =
n1− ne

n1 + nv
=

20− 6
20+ 4

≈ 58.33%. (6.1)

Looking at this solution (Fig. 6.13) we can conclude that it is possible to move
part 4 from the second cell to the first one. And this way the number of zeros
inside cells decreases by 1 and the number of ones outside cells remains the
same. So it is profitable to attach column 4 to the first cell as it is shown in
Fig. 6.16.
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Fig. 6.16 Moving part 4 from
cell 2 to cell 1

For the modified pattern we have nv = 3, ne = 6 and the grouping efficacy:

τ =
20− 6
20+ 3

≈ 60.87%.

As a result, the efficacy is increased by 2.5 %. Computational results show that
using such pattern modifications could considerably improve the solution. The
idea is to compute an increment in efficacy for each column and row when it
is moved to all other cells and then perform the modification corresponding to
the maximal increment (Tables 6.2 and 6.3).

Table 6.2 Grouping efficacy after moving a row to another cell

Row Efficacy

Cell 1 (%) Cell 2 (%)

1 58.33 56.00
2 58.33 44.44
3 48.00 58.33
4 48.00 58.33
5 48.00 58.33

Table 6.3 Grouping efficacy after moving a column to another cell

Column Efficacy

Cell 1 (% ) Cell 2 (% )

1 58.33 56.00
2 58.33 50.00
3 58.33 50.00
4 60.87 58.33
5 48.00 58.33
6 42.31 58.33
7 54.17 58.33
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We make a modification which gives the maximal increase in efficacy within
all the results—for rows and for columns. Looking at Tables 6.2 and 6.3 we
can conclude that only moving part 4 to cell 1 could increase the grouping ef-
ficacy of the solution. Such modifications are repeated until there is no column
or row for which we get an increment in efficacy.
Note that here we have obtained the solution with efficacy 60.87 % which
is different from the solution shown in the previous chapter with efficacy
62.50 %. This is because here we use another pattern and also we find an opti-
mal permutation first for rows and then for columns. The order of these steps
influences the solution found by pattern-based heuristic. That is why we then
repeat the same procedure (steps 3–11), but first we find an optimal permu-
tation for columns and then for rows. Since the number of columns (parts) is
usually greater than the number of rows (machines), then the number of pos-
sible column permutations is much greater than the number of possible rows
permutations. This means that we have a greater flexibility for column per-
mutation and usually when starting from columns we obtain a better solution.
Anyway, we try both rows-columns and columns-rows orders of permutations
and then choose the best solution.

12. Repeat steps 1–11 for different numbers of cells from 2 to min(m,r)/2.

(c) Determine the number of cells p∗ for which the best solution is obtained.

13. After we have found the grouping efficacy for first solutions with different
numbers of cells, we compare them and choose the optimal cells number, k∗,
for which the greatest grouping efficacy is obtained.

(d) Generate additional patterns with p∗ − c, p∗ − c+1, . . . , p∗+ c cells.

14. We enumerate patterns with cells number taken from a small c-neighborhood
of p∗. Solutions without singletons usually do not require a big number of
cells because height and width of every cell of a solution cannot be less than
two. So there is no such a variety of possible patterns as it is for solutions
with singletons. That is why we take c = 2 for solutions without singletons
and c = 5 for solutions with singletons. The next step is repeated for every
number of cells from p∗ − c to p∗+ c (2c+1 times).

15. For the fixed number of cells we generate different patterns enumerating dif-
ferent values for width and height of every cell with a step of 2 units (a step
of 1 unit is used only for matrices smaller than 15× 20). It means that for so-
lutions without singletons we generate only cells with width and height equal
to 3, 5, . . . , except the last cell which can have an even width or height. For
solutions with singletons we use 2, 4, . . . values. The step of 2 units is ex-
plained by the fact that our improvement heuristic (which is then applied to
every pattern) makes elementary modifications of patterns and moves 1 row
or 1 column from one cell to another if it increases the grouping efficacy.
Since our pattern-based heuristic permutes rows and columns of the machine-
part matrix then the order of the cells in the pattern does not matter. So we can



6.4 Pattern Based Heuristic 143

generate cells so that the first cell has the smallest dimensions and the last one
has the greatest.
For example, if we have a 30× 50 machine-part matrix and we want to gen-
erate patterns with five cells for non-singleton solutions, then we proceed as
follows. First, we generate all possible combinations of cells heights with the
difference between each pair of sequential neighboring cells equal to 2 (we
call this difference by size increment). There are 13 possible combinations for
this example. Second, we generate all possible combinations of cells widths
with size increment 2. There are 119 possible combinations for this example.
Third, we combine every heights combination with every widths combina-
tion to form a pattern. So we get 13 ∗ 119 = 1,547 different patterns for this
example.
• Combinations of heights:

1. 3 + 3 + 3 + 3 + 18 = 30
2. 3 + 3 + 3 + 5 + 16 = 30
3. 3 + 3 + 3 + 7 + 14 = 30
4. 3 + 3 + 3 + 9 + 12 = 30
5. 3 + 3 + 5 + 5 + 14 = 30
6. 3 + 3 + 5 + 7 + 12 = 30
7. 3 + 3 + 5 + 9 + 10 = 30
8. 3 + 3 + 7 + 7 + 10 = 30
9. 3 + 5 + 5 + 5 + 12 = 30

10. 3 + 5 + 5 + 7 + 10 = 30
11. 3 + 5 + 7 + 7 + 8 = 30
12. 5 + 5 + 5 + 5 + 10 = 30
13. 5 + 5 + 5 + 7 + 8 = 30

• Combinations of widths:

1. 3 + 3 + 3 + 3 + 38 = 50
2. 3 + 3 + 3 + 5 + 36 = 50
. . .

119. 9 + 9 + 9 + 11 + 12 = 50
• Patterns:

1. 3× 3, 3× 3, 3× 3, 3× 3, 18× 38
. . .

119. 3× 9, 3× 9, 3× 9, 3× 11, 18× 12
120. 3× 3, 3× 3, 3× 3, 5× 3, 16× 38
. . .

1547. 5× 9, 5× 9, 5× 9, 7× 11, 8× 12
We then apply our heuristics using all these patterns as initial on the next steps
of the algorithm.
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(e) Run the pattern-based and improvement heuristics for all the patterns and choose
the best found solution.

16. Steps 1–11 are repeated for all patterns generated on steps 14–15. The best
found solution is then taken as the heuristic solution to the CFP.

6.5 Computational Results

For our computational experiments with the pattern-based heuristic (PBH) we se-
lected the most popular 35 CF instances from the literature (see, e.g., [71]). We
compare our solutions to the 35 CF instances in terms of the grouping efficacy with
best solutions reported up to date. The currently best heuristic for the CFP is the
evolutionary algorithm (EA) from [71]. Since allowing singletons (cells with only
one machine or only one part) in a CFP solution is arguable we present both solu-
tions (with singletons and without) in all cases where our heuristic has been able to
find a better solution with singletons. Also in our solutions we forbid parts which
are not included to any cell; though in many cases it is more efficient (in terms of
the grouping efficacy) to leave some parts not assigned to any cell.

In Table 6.4 we compare our PBH with EA heuristic. We do not include the re-
sults of other six approaches (ZODIAC by Chandrasekharan and Rajagopalan [37],
GRAFICS by Srinivasan and Narendran [144], MST–clustering algorithm by Srini-
vasan [143], GATSP–genetic algorithm by Cheng et al. [40], GA–genetic algorithm
by Onwubolu and Mutingi [118], GP–genetic programming by Dimopoulos and
Mort [52]) also considered in the work of Goncalves and Resende [71], because EA
has the best results among all these approaches on all GT 35 instances. Note that
some of grouping efficacy values published in [71] do not correspond to their so-
lutions shown in the appendix of that paper. So we present the corrected values for
the EA algorithm in Table 6.4. In Table 6.5 we show the corrections which we have
made.

As it can be seen from Table 6.4 all our solutions are better or equal to the EA
solutions (better results are shown with bold font). More specifically we have im-
proved the grouping efficacy for 13 instances and found solutions with the same
value of grouping efficacy for the remaining 22 instances. For these 22 instances we
have the same efficacy but the solutions are different (see Appendix). The maximum
improvement is 7 % for 37×53 instance of McCormick et al. [103]; the average im-
provement among the 13 improved instances is 1.8 %. The solutions with singletons
are better than without them by 2.6 % in average. A short summary of comparison
is shown in Table 6.6. For 26 of the 35 instances the algorithm has found a solution
with singletons which is better than without. Only for three of these instances the
solution has the same number of cells as the solution of the EA algorithm without
singletons. All the 22 solutions without singletons which have the same grouping
efficacy with the solutions of the EA algorithm also have the same number of cells,
though the configuration of the cells and the distributions of ones and zeros are
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Table 6.4 Comparison of our results with EA algorithm [71]

# Source Size
Our approach EA

Singletons No singletons No singletons

Cells efficacy Cells efficacy Cells efficacy

1 King and Nakornchai
(1982)

5×7 3 75.00 2 73.68 2 73.68

2 Waghodekar and Sahu
(1984)

5×7 2 69.57 2 62.50 2 62.50

3 Seifoddini (1989) 5×18 2 79.59 d 2 79.59 2 79.59

4 Kusiak (1992) 6×8 2 76.92 d 2 76.92 2 76.92

5 Kusiak and Chow
(1987)

7×11 5 60.87 3 53.13 3 53.13

6 Boctor (1991) 7×11 4 70.83 3 70.37 3 70.37

7 Seifoddini and Wolfe
(1986)

8×12 4 69.44 3 68.29 3 68.29 a

8 Chandrasekharan and
Rajagopalan (1986b)

8×20 3 85.25 d 3 85.25 3 85.25

9 Chandrasekharan and
Rajagopalan (1986a)

8×20 2 58.72 d 2 58.72 2 58.72

10 Mosier and Taube
(1985a)

10×10 5 75.00 3 70.59 3 70.59

11 Chan and Milner (1982) 10×15 3 92.00 d 3 92.00 3 92.00

12 Askin and Subramanian
(1987)

14×23 6 75.00 5 69.86 5 69.86

13 Stanfel (1985) 14×24 7 71.83 5 69.33 5 69.33

14 McCormick et al. (1972) 16×24 7 53.76 6 51.96 6 51.96 b

15 Srinivasan et al. (1990) 16×30 6 68.99 4 67.83 4 67.83

16 King (1980) 16×43 8 57.53 6 55.83 5 54.86

17 Carrie (1973) 18×24 9 57.73 6 54.46 6 54.46

18 Mosier and Taube
(1985b)

20×20 5 43.45 5 42.96 5 42.94

19 Kumar et al. (1986) 20×23 7 50.81 5 49.65 5 49.65

20 Carrie (1973) 20×35 5 78.40 5 76.54 4 76.14 c

21 Boe and Cheng (1991) 20×35 5 58.38 5 58.15 5 58.07

22 Chandrasekharan and
Rajagopalan (1989)

24×40 7 100.00 d 7 100.00 7 100.00

23 Chandrasekharan and
Rajagopalan (1989)

24×40 7 85.11 d 7 85.11 7 85.11

(continued)
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Table 6.4 (continued)

# Source Size
Our approach EA

Singletons No singletons No singletons

Cells efficacy Cells efficacy Cells efficacy

24 Chandrasekharan and
Rajagopalan (1989)

24×40 7 73.51 d 7 73.51 7 73.51

25 Chandrasekharan and
Rajagopalan (1989)

24×40 11 53.29 10 51.97 9 51.88

26 Chandrasekharan and
Rajagopalan (1989)

24×40 12 48.95 10 47.37 9 46.69

27 Chandrasekharan and
Rajagopalan (1989)

24×40 12 46.26 10 44.87 9 44.75

28 McCormick et al. (1972) 27×27 5 54.82 4 54.27 4 54.27

29 Carrie (1973) 28×46 11 47.23 11 45.92 9 44.37

30 Kumar and Vannelli
(1987)

30×41 15 62.77 12 58.94 11 58.11

31 Stanfel (1985) 30×50 13 59.77 12 59.66 12 59.21

32 Stanfel (1985) 30×50 14 50.83 11 50.51 11 50.48

33 King and Nakornchai
(1982)

30×90 16 48.01 11 45.74 9 42.12

34 McCormick et al. (1972) 37×53 3 60.50 2 59.29 2 56.42

35 Chandrasekharan and
Rajagopalan (1987)

40×100 10 84.03 d 10 84.03 10 84.03

a In Goncalves and Resende (2004) the result of 68.30 is presented though it is actually 68.29
(calculated using the solution presented in the appendix of that paper)
b In Goncalves and Resende (2004) the result of 52.58 is presented though it is actually 51.96
(calculated using the solution presented in the appendix of that paper)
c In Goncalves and Resende (2004) the result of 76.22 is presented though it is actually 76.14
(calculated using the solution presented in the appendix of that paper)
d This solution actually does not have any singletons, but it was the best solution found by the
algorithm with allowed singletons

Table 6.5 Corrections of the grouping efficacy values published in [71]

# Source Problem size Reported value Corrected value

7 Seifoddini and Wolfe (1986) 8×12 68.30 68.29
14 McCormick et al. (1972) 16×24 52.58 51.96
20 Carrie (1973) 20×35 76.22 76.14
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different. The 13 solutions without singletons which are better than EA algorithm
solutions usually have more cells (eight solutions against five solutions with the
same number of cells).

Table 6.6 Summary of the comparison with [71]

Number of problems solved
Better Equal Total

No singletons Singletons No singletons Singletons No singletons Singletons

# Cells # Cells # Cells # Cells

M E T M E T M E T M E T 35 26

8 5 13 23 3 26 0 22 22 0 0 0

M–More, E–Equal, T–Total

6.6 Patterns for Other Combinatorial Optimization Problems

As shown in the previous section, pattern-based approach is quite useful for solv-
ing the CFP. In this section we are going to demonstrate that the approach is not
limited to cell formation or even clustering but is applicable to a wider range of
combinatorial optimization problems (COPs).

Recall that we define a pattern as a specific collection of elements in the given
input data (matrix) reflecting the structure of a feasible (optimal) solution to the
original COP. The following COPs are considered as examples defined on an input
matrix. We are given a matrix and a pattern (a collection of positions in the matrix)
defined on this matrix. The COP objective function is to find optimal rows and
column permutations which minimize (maximize) the sum of elements appearing
in the pattern after applying these permutations to the matrix. In fact, many COPs
such as the AP , the linear ordering problem (LOP) or triangulation problem , the
traveling salesman problem (TSP) and maximum clique problem (MCP) can be
formulated within the pattern-based AP model. Examples of patterns for different
COPs are provided below.

As our pattern-based CFP heuristics relies on the assignment problem, let us
consider the AP as a first example. For the sake of clarity, we restrict ourselves to
a particular case when the AP is defined on a square input matrix of order n = 5
(see Fig. 6.17a) as follows. An arbitrary single element a(i, j) of the input matrix
is called an assignment of row i to column j with its value a(i, j). The AP is the
problem of finding a one-to-one mapping of rows to columns by means of entries
a(i, j) such that the total sum of all n entries is minimized. A valid AP pattern is
defined as any collection of exactly n cells (positions) located in pairwise distinct
rows and columns, i.e., each row (column) contains exactly one cell (see Fig. 6.17b).

For the sake of simplicity, we have chosen n cells located at the main diagonal,
namely P(AP) = {(1,1), . . . ,(i, i), . . . ,(n,n)} representing an AP pattern. The AP
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Fig. 6.17 Example of a pattern. (a) input matrix. (b) AP pattern

is the problem of finding a permutation of rows such that the total sum of all entries
appearing within all cells of P(AP) pattern is minimized. In the given input matrix
of order n we denote by ri the entries of row i and by c j the entries of column j.
Our notation means that the numbering of rows is fixed and all entries ri may be
located (moved) at (to) any row j. In order to consider all n! permutations of rows
entries located at the positions (places) of rows 1, . . . ,n these entries will be moved
to each possible position. After each movement of entries ri at the place of row j the
contribution of these entries to the AP objective function will be computed w.r.t. the
given pattern P(AP). The value of this contribution is simply the sum of all entries
appearing in the given pattern P(AP).

We first consider all possible locations of the first row entries r1 at the positions
of rows 1, . . . ,n. In our example, if the first row entries r1 are located at the place
of row 1, the entry 2 will be located within the cell (1,1) (see Fig. 6.18a). We will
say that the corresponding entry 2 appears in the cell(s) of the given pattern and
contributes to its value. After moving the first row entries r1 at the place of row 2
the entry 8 will be located within the cell (2,2) (see Fig. 6.18b).

Finally, after moving the first row entries r1 at the place of row n = 5, the entry 3
will be located within the cell (5,5). In other words, by means of locating the entries
of r1 at the places of rows 1, . . . ,n, the AP pattern will involve each entry of r1 in all
AP feasible solutions. This fact is illustrated in Fig. 6.19a.

If we repeat all movements for all rows entries, then we obtain the so-called
auxiliary matrix to the original one w.r.t. the AP pattern P(AP) (see Fig. 6.19b).
As it is easy to see, this auxiliary matrix coincides with the original AP matrix and
the sum of all entries located within the AP pattern P(AP) in the original matrix
is equal to 26. After solving the AP defined on the pattern P(AP) we obtain an
optimal permutation π1 = (3,5,4,1,2) with its optimal value a(π1) = 9 which can be
seen explicitly in the permuted matrix (see Fig. 6.20) with the sum of all entries at
the main diagonal equal to 9.
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Fig. 6.18 Explanation of a pattern. (a) entries of r1 located in the first row. (b) entries of r1 located
in the second row

Fig. 6.19 Explanation of a pattern. (a) all contributions of r1 to the objective function of AP. (b)
complete auxiliary matrix of the AP

Fig. 6.20 The permuted origi-
nal matrix according to an op-
timal permutation of rows π1
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Our second example deals with the same original AP matrix (see Fig. 6.17a),
but the used pattern is different and defined by the following collection of cells
P(A) = {(1,1),(1,2),(2,2),(2,3),(2,4),(3,4),(4,4)} with the sum of all entries in
the given pattern equal to 40. The problem in our second example is to find such a
permutation of rows that the total sum of all entries within the given pattern P(A)
is minimized. In order to solve this problem we reduce its solution to the usual
AP by creating an auxiliary matrix. The auxiliary matrix is obtained by computing
all contributions to the corresponding fragment of our pattern P(A) for each row
entries ri being located at all possible row positions j = 1,2, . . . ,5. All movements of
the entries r1 w.r.t. the pattern P(A) are indicated in Fig. 6.21a. The corresponding
auxiliary matrix for the pattern P(A) and the same original matrix (after computing
all contributions to the different parts of the given pattern when each ri is located at
all places of rows 1, . . . ,5 is indicated in Fig. 6.21b.

Fig. 6.21 Example of a more complex pattern. (a) all contributions of r1 to the pattern P(A).
(b) complete auxiliary matrix of P(A), (c) the permuted matrix with a(π2) = 18

The entry a(i, j) of the auxiliary matrix shows the contribution to the AP-based
model w.r.t. the given pattern P(A). For example, a(1,2) = 17 shows the contri-
bution to the AP objective function w.r.t. the pattern P(A). This contribution is
the sum of all entries appearing within the cells (2,2),(2,3),(2,4) after location
the entries of r1 at the place of row 2. The complete auxiliary matrix is shown in
Fig. 6.20b and an optimal permutation of rows π2 = (3,5,2,1,4) with its optimal
value a(π2) = 18. If we permute all rows of the original matrix by means of the
permutation π2 we will obtain the following permuted matrix (see Fig. 6.21c) with
the sum of all entries at the given pattern P(A) equal to 18.

The third example is the linear ordering problem (LOP). The LOP pattern
is defined by P(LOP) = {(2,1);(3,1),(3,2); . . . ;(i,1),(i,2), . . . ,(i, i− 1); . . . ;(n,1),
(n,2), . . . ,(n,n− 1)}, i.e., all cells (positions) under the main diagonal of the given
square matrix of order n (see Fig. 6.22a). Thus, the LOP is the problem of finding
the same permutation for rows and columns such that the objective function (which
is the sum of all entries appearing below the main diagonal in the permuted matrix)
is minimized.

In the next example we would like to mention a broad class of problems in the
field of graph theory aimed at finding some special structures in (complete) graphs
having minimum (maximum) weight. Such problems include TSP (special structure
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Fig. 6.22 Pattern of the LOP

is a cycle traversing all vertices), maximum weight clique of a fixed size, maximum
weight matching and maximum weight complete binary subtree and can be formu-
lated as follows: find a permutation that, if applied to rows and columns of the input
matrix, minimizes (maximizes) the sum of entries falling in a certain pattern (see
Figs. 6.23 and 6.24).

Fig. 6.23 Patterns for (a) TSP, (b) maximum weight clique of size 3 in a complete graph with
seven vertices

As a last example, we would like to consider the following industrial engineer-
ing problem that we call the scheduling problem with careful checking (SPCC).
Consider a company producing high-quality products each requiring a number of
special operations. After some of these operations are performed on a certain part,
the quality of the previous operations on this part may have changed. Therefore,
it is necessary to check the previous operations and correct the affected ones, if
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Fig. 6.24 Patterns for finding (a) maximum weighted matching, (b) maximum weight complete
binary subtree in a complete graph with seven vertices

necessary. We consider two ways of performing the checks and hence obtain two
possibilities for executing the production process. In the first production possibil-
ity, each previous operation on a part is checked and corrected by the worker who
performed it. In the second production possibility, all previous operations together
with the current one are checked and corrected by the same worker (the one who
performed the last operation). We also assume that each worker carries out exactly
one operation and vice versa, i.e., there are n operations and n workers, and different
workers need different time for performing, checking and correcting operations.

Let us denote by P = [pi j] an n× n matrix of processing times (i.e., pi, j is the
time worker i needs to perform operation j) and by Q = [qi j] an n× n matrix of
checking and correcting times (i.e., qi j is the time needed by worker i to check
and correct operation j). The first production possibility is equivalent to finding
independent orderings (permutations) π r and πc for workers (rows) and operations
(columns), respectively, but the same for both matrices P and Q such that the total
sum of processing times (the sum of the entries on the main diagonal of permuted
P) and the sum of checking and correcting times (the sum of entries below the
main diagonal of Q) is minimized. In the second production possibility the pattern
for matrix Q must also contain the entries lying on the main diagonal. Thus, the
SCPP problem can be viewed as simultaneous optimization over two patterns (see
Fig. 6.25) and two matrices, P and Q.

6.7 Summary and Future Research Directions

In this chapter we present a new pattern-based approach within the classic Linear
Assignment model. The main idea of this approach can be illustrated by means of
different classes of combinatorial optimization problems, including the maximum
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Fig. 6.25 Patterns of the SPCC problem (first production possibility)

weight independent set and its unweighted version, linear ordering, and cell forma-
tion problems, just to mention a few. We have successfully applied this approach
to design a new heuristic which outperforms all well-known heuristics for the CFP
with the grouping efficacy as its objective function. The main distinctions of our
PBH are as follows:

• The PBH is based on a rigorous (even if it is informal) formulation of the CFP
as the problem of finding three objects, namely, (i) an optimal pattern, (ii) an
optimal parts permutation and (iii) an optimal machines permutation.

• Our rigorous formulation might be solved efficiently for any fixed pattern and
permutation (either parts or machines) by means of the Jonker-Volgenant’s Hun-
garian algorithm efficient implementation.

• Based on our formulation of the CFP we have designed an efficient PBH which
outperforms all currently known heuristics for the CFP with the grouping efficacy
criterion of optimality.

• We believe that the success of our PBH is due to a wide range of patterns sequen-
tially enumerated under control of the optimality criterion.

• Since to solve a CFP instance, say 40× 100, with a specific pattern by our PBH
requires just several milliseconds, we are able to involve much more adjusted
patterns than we have done in this study and hence to generate a wider range of
high quality CFP solutions.

The main further research direction may be concentrated on the exact mathemat-
ical programming formulation of the CFP with the purpose to find the thresholds
for the number of machines and parts which can be treated to optimality within the
mathematical programming including fractional programming approach. Another
possible direction is finding polynomially solvable special cases of the CFP based
either on structural properties of the Boolean input machine-part matrix or the CFP
criteria of optimality. Finally, we are looking for applications of the pattern-base
approach to another class of combinatorial optimization problems.



Chapter 7
Two Models and Algorithms for Bi-Criterion
Cell Formation

7.1 Introduction

As mentioned in Chap. 5, the cell formation problem may involve several, possibly
contradicting, objectives. The literature in the field, however, focuses either on the
single-objective version of the problem or on an aggregation of the objectives into
a single one [50, 59, 100] (see also [91, 98, 145, 149] for weighting criteria). Rare
exceptions explicitly consider multiple objectives using multiobjective evolutionary
algorithms [6, 25, 51, 114], multiobjective scatter search [12] or multiobjective tabu
search [92]. Yet, many practical implementations of cellular manufacturing systems
involve conflicting objectives that cannot be aggregated without sacrificing the so-
lution quality. This motivated us to consider the Julius Žilinskas approach [166] to
dealing with cell formation problems involving two objectives.

In this chapter we present a branch-and-bound algorithm for the bi-criterion cell
formation problems originally suggested in [166]. The algorithm is demonstrated
using two versions of the CFP: minimization of the numbers of exceptions and
voids and minimization of intercell moves and within-cell load variation, respec-
tively. We investigate the branch-and-bound algorithm on problems from the litera-
ture and show its superiority over complete enumeration, ε-constraint method and
evolutionary algorithms from [6, 51, 151].

7.2 Bi-Criterion Cell Formation Problems

Before we proceed to considering a bi-objective version of the CFP, let us introduce
some notions related to the multiobjective problems. A multiobjective minimization
problem with d objectives f1(x), f2(x), . . . , fd(x) is to minimize the objective vector
f(x) = ( f1(x), f2(x), . . . , fd(x)):

min
x∈X

f(x),

B. Goldengorin et al., Cell Formation in Industrial Engineering, Springer Optimization
and Its Applications 79, DOI 10.1007/978-1-4614-8002-0 7,
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where x is the decision vector and the set X of all possible decision vectors satisfying
the constraints is called a search space. In most cases it is impossible to minimize
all objectives at the same time, so there is no single optimal solution to a given
multiobjective optimization problem.

Two decision vectors a and b from the search space can be related to each other in
a couple of ways: either one dominates the other or none of them is dominated by the
other. The decision vector b dominates the decision vector a (we denote a≺ b) if:

∀i ∈ {1,2, . . . ,d} : fi(a)≤ fi(b) &

∃ j ∈ {1,2, . . . ,d} : f j(a)< f j(b).

Decision vectors which are non-dominated by any other decision vector from the
search space are usually called Pareto optimal and a set of those vectors is called
Pareto set. The set of corresponding objective vectors is called Pareto front. De-
termination of these sets is the main goal of the multiobjective optimization. It is
usually difficult or impossible to determine the exact Pareto set and front in reason-
able time; therefore an approximation of Pareto front can be sought.

In this chapter we consider two models for bi-criterion cell formation problem.
The goal of the problem is to find groupings of machines simultaneously optimizing
two objectives. The objectives conflict, therefore a single solution minimizing both
objectives does not generally exist. In the description of both models we will use the
following notation. The number of machines is denoted by m, the number of parts
by r and the number of cells by p. X is an m× p cell membership matrix where 1
in i-th row and j-th column means that i-th machine is assigned to j-th cell. Each
machine can only be assigned to one cell: Xep = em, where et is a t-element column
vector of ones.

The first used model for bi-criterion cell formation problem (Model 1) is based
on one described in [6] with two objectives:

• Minimization of the number of exceptional elements: the number of times the
parts are processed outside their own cells is minimized.

• Minimization of the number of voids: the number of times the part is not pro-
cessed inside its own cell is minimized.

In this model, decision variables are not only machine-cell membership matrix
X but also r× p part-cell membership matrix Y where 1 in i-th row and j-th column
means that i-th part is assigned to j-th cell. Each part can only be assigned to one
cell: Yep = er. The data of the problem is an m× r machine-part incidence matrix
W where 1 in i-th row and j-th column means that j-th part needs processing on i-th
machine.

The number of exceptional elements is computed as

f1(X,Y) = 〈W,E−XYT〉, (7.1)

where 〈,〉 denotes the inner product of matrices and E is an m× r matrix of ones.
The number of voids is computed as
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f2(X,Y) = 〈E−W,XYT〉. (7.2)

The second model (Model 2) is based on one described in [151] with two
objectives:

• Minimization of the (approximation of) total intercell moves: the number of cells
processing each part is minimized.

• Minimization of within-cell load variation: the differences between workload in-
duced by a part on a specific machine and the average workload induced by this
part on the cell are minimized.

In this model decision variables are machine-cell membership matrix X what
means that the number of variables is considerably smaller than in the first model.
The data of the problem is an m× r machine-part incidence matrix W specifying
workload on each machine induced by each part and an r-element vector ρ of pro-
duction requirements of parts. The problems of the second model are more general
since different workloads and different production requirements of parts may be
used. A problem instance of the first model is the special case of a problem of the
second model when all workloads and production requirements are equal to one.

Intercell moves are computed as

f1(X) = ρ T(Φ(WTX)ep− er), (7.3)

where the function Φ changes the nonzero elements of matrix to ones. Within-cell
load variation is computed as

f2(X) = 〈W−M(X),W−M(X)〉, (7.4)

where the matrix M(X) is an m× r matrix with average cell loads: the element in
i-th row and j-th column specifies the average load of j-th part in the cell where i-th
machine is assigned.

7.3 Bi-Criterion Branch-and-Bound Algorithm

The main concept of branch-and-bound algorithm is to detect sets of feasible solu-
tions which cannot contain optimal solutions. The search process can be illustrated
as a tree with the root corresponding to the search space and branches corresponding
to its subsets. In single objective optimization, the subset cannot contain optimal so-
lutions and the branch of the search tree corresponding to the subset can be pruned,
if the bound for the objective function over a subset is worse than the known func-
tion value. In multiobjective optimization, the subset cannot contain Pareto optimal
solutions if the bound vector b is dominated by at least one already known decision
vector a:

∀i ∈ {1,2, . . . ,d} : fi(a)≤ bi &
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∃ j ∈ {1,2, . . . ,d} : f j(a)< b j.

Evaluation of the bounds for the objective functions is the most important part
of branch-and-bound algorithm. If the bounds are not tight, the search may lead
to complete enumeration of all feasible solutions. Construction of bounds depends
on the objective functions and the type of subsets of feasible solutions over which
the bounds are evaluated. We will represent a subset of feasible solutions of bi-
criterion cell formation problem as a partial solution where only some (m′) first
machines are considered. In this case the partial solution is represented by a m′ × p
cell membership matrix X′.

Instead of operating with zero-one matrix X we will operate with the integer
m-element vector c defining labels of cells to which machines are assigned. The
vector (1,1,2,3, . . .) means that the first and the second machines are assigned to
the first cell, the third machine is assigned to the second cell and the fourth machine
is assigned to the third cell. The matrix X can be easily built from c:

xi j =

{
1, ci = j,
0, otherwise,

i = 1,2, . . . ,m.

In order to avoid equivalent solutions some restrictions are set:

min
ci= j

i < min
ci= j+1

i.

Such restrictions correspond to arrangement of X so that

min
xi j=1

i < min
xil=1

i↔ j < l.

Taking into account such restrictions a search tree of the problem with m = 4 is
shown in Fig. 7.1. Only numerals are shown to save space.

1

11 12

111 112 121 122 123

1111 1112 1121 1122 1123 1211 1212 1213 1221 1222 1223 1231 1232 1233 1234

Fig. 7.1 An example of the search tree for cell formation problem with m = 4

The bounds of objective functions (7.1)–(7.2) of Model 1 may be computed as

b1(X
′) =

r

∑
i=1

min
l=1,...,p

m′

∑
j=1

(wji−wjix
′
jl), (7.5)
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b2(X′) =
r

∑
i=1

min
l=1,...,p

m′

∑
j=1

(x′jl−wjix
′
jl). (7.6)

Assignment of other machines to cells later on during the search process can only
increase objective functions since already assigned machines will not change and
additional nonnegative elements will be added to the rightmost sums.

The bounds of objective functions (7.3)–(7.4) of Model 2 may be computed as

b1(X′) = ρ T(Φ(W′T X′)ep−Φ(Φ(W′T X′)ep)), (7.7)

b2(X′) = 〈W′ −M(X′),W′ −M(X′)〉, (7.8)

where W′ denotes a matrix composed of m′ first rows of matrix W. Assignment
of other machines to cells later on during the search process cannot reduce inter-
cell moves since already assigned machines will not change and the newly assigned
machines can only introduce new intercell moves. The cell load variation will re-
main the same if the other machines are assigned to new separate cells and cannot
decrease after assignment of other machines.

An iteration of the classical branch-and-bound algorithm processes a node in
the search tree that represents an unexplored subset of feasible solutions. The iter-
ation has three main components: selection of the subset to be processed, branch-
ing corresponding to subdivision of the subset and bound calculation. Performance
of a branch-and-bound algorithm depends on selection strategy [123]. We build a
branch-and-bound algorithm for bi-criterion cell formation problem using the depth
first selection. The advantage of this selection strategy is that the search tree can be
explored sequentially avoiding storing unexplored nodes [165].

The branch-and-bound algorithm for bi-criterion cell formation problem can be
outlined in the following steps:

1. Start with c = (1,1, . . . ,1), m′ ←m.
2. If the current solution is complete (m′ = m)

• Find X corresponding to c:

xi j =

{
1, ci = j,
0, otherwise,

i = 1,2, . . . ,m.

• In the case of the first model do the following block for all perspective Y:
– Compute f1(X,Y) and f2(X,Y) according to (7.1)–(7.2).
– If no solutions in the solution list dominate the current solution (X,Y), add

it to the solution list:

If �a ∈ S : (X,Y)≺ a, then S← S∪{(X,Y)}.

– If there are solutions in the solution list dominated by the current solution,
remove them from the solution list:

S← S \ {a∈ S : a≺ c}.
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• In the case of the second model
– Compute f1(X) and f2(X) according to (7.3)–(7.4).
– If no solutions in the solution list dominate the current solution, add it to

the solution list:

If �a ∈ S : X≺ a, then S← S∪{X}.

– If there are solutions in the solution list dominated by the current solution,
remove them from the solution list:

S← S \ {a∈ S : a≺ c}.

• Change c by removing from the tail all numbers appearing only once in c and
increasing the last remaining number, set m′ accordingly.

3. Otherwise

• Find X′ corresponding to c:

x′i j =

{
1, ci = j,
0, otherwise,

i = 1,2, . . . ,m′.

• Compute b1(X′) and b2(X′) according to (7.5)–(7.6) or (7.7)–(7.8).
• If no solutions in the solution list dominate the bound vector of the current set

of solutions represented by the current partial solution, append 1 to the tail of
c and increase m′.

• Otherwise change c by removing from the tail all numbers appearing only
once in c and increasing the last remaining number, set m′ accordingly.

4. If c is not empty, return to Step 2.

Minimal (L) and maximal (U) number of machines in each cell or the maximal
number of cells (K) may be restricted by editing changes of c required to proceed to
the next partial solution in the search tree.

7.4 Computational Experiments

Our computational experiments are aimed at comparison of the proposed algorithm
with other multiobjective CFP algorithms. Thus, we focused on instances of the
cell formation problem from the literature, for which solutions obtained by other
relevant approaches are available. A computer with Intel i7 processor, 8 GB RAM,
and Ubuntu Linux was used for experiments. The branch-and-bound algorithm has
been implemented in C/C++ and built with g++ compiler.

We begin investigation by comparing with the results of ε-constraint method
and genetic algorithm given in [6]. Let us start with a small problem from [6] with
data repeated in Table 7.1 for consistency. Model 1 is used in [6]. There are m = 8
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machines and r = 4 parts in this problem. We will call it Problem 1. Additional
restrictions are used in [6]: two cells, minimum 2 and maximum 6 (it is stated that
5, but the results show 6) machines in each cell. The ε-constraint method takes five
rounds with the total run time 6 s and 10 repetitions of genetic algorithm take 3 s [6].
All ten repetitions of genetic algorithm as well as the ε-constraint method resulted
in non-dominated solutions with objective vectors (6,2), (3,3), and (2,6).

Table 7.1 Problem 1: data of
a small cell formation problem
from [6]

W 1 2 3 4

1 0 0 0 1
2 1 1 0 1
3 0 0 0 1
4 1 1 0 1
5 1 1 0 1
6 0 1 1 0
7 0 1 1 0
8 0 0 0 1

The computational time (t) and the number of functions evaluations (NFE) for
the branch-and-bound algorithm solving Problem 1 with various restrictions are pre-
sented in Table 7.2. Simultaneous evaluation of f1() and f2() counts as one evalua-
tion. With and without restrictions branch-and-bound algorithm solves this problem
in a fraction of a second. Results of ε-constraint method (ε-CM) and genetic al-
gorithms (GA) from [6] are also shown. The branch-and-bound algorithm does not
need a number of rounds differently from ε-constraint method. Since it is deter-
ministic, it does not need several repetitions unlike the genetic algorithm. Model 2
requires less computations than Model 1 as expected because of the smaller number
of decision variables.

In the case of two cells, minimum two and maximum five machines in each
cell, the branch-and-bound algorithm with Model 1 finds multiple non-dominated
solutions with objective vectors (5,3), (4,4), and (3,5). In the case of two cells,
minimum two and maximum six machines in each cell, the branch-and-bound algo-
rithm with Model 1 finds non-dominated solutions with objective vectors mentioned
in [6]: (6,2), (3,3), and (2,6). These solutions are illustrated in Fig 7.2. All three
solutions have the same grouping of the machines to cells, but different assignments
of the parts to cells. Solution with the objective vector (6,2) does not seem adequate
since the part 1 is assigned to the cell of machines 6 and 7 which do not process this
part; however this solution is non-dominated in the case of restrictions K = 2, L = 2,
U = 6, and assignment of part 1 to the smaller cell is motivated by the smaller num-
ber of voids. This solution is dominated by solution (5,0) if a larger number of cells
are allowed. There are often multiple solutions with equal objective vectors when
Model 1 is used.
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Table 7.2 Results of branch-and-bound algorithm solving
Problem 1

Branch-and-bound ε-CM GA
Model 1 Model 2 [6] [6]

K L U t , s NFE t , s NFE t , s t , s

2 0 180 0 72
2 2 5 0 20
2 2 6 0 60 6 0.3
3 0 2,582 0 143
4 0 9,348 0 186
5 0 21,772 0 192
6 0 44,048 0 192
7 0.01 79,878 0 192

0.02 133,788 0 192

4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(6, 2)

4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(3, 3)

4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(2, 6)

Fig. 7.2 Illustration of non-dominated solutions of Problem 1 solved with Model 1 and restrictions
K = 2, L = 2, U = 6

The branch-and-bound algorithm with Model 2 finds non-dominated solutions of
Problem 1 with objective vectors (0,6.75), (1,3), (2,0) when more than two cells
are allowed. They are illustrated in Fig. 7.3 and seem more natural than solutions
given in Fig. 7.2. If the number of cells is restricted to 2, only the first two solutions
are found. Model 2 provides grouping of the machines to cells, but the assignment
of parts to cells is an interpretation of the results. Differently from Model 1, there are
no multiple solutions with the same non-dominated objective vector when solving
Problem 1.

We continue investigation with a problem identified as a large-scale in [6] with
data repeated in Table 7.3 for consistency. Model 1 is used in [6]. There are m = 10
machines and r = 17 parts in this problem. We will call it Problem 2. Additional
restrictions are used in [6]: three cells, minimum 2 and maximum 6 (it is stated that
5, but the results show 6) machines in each cell. The ε-constraint method takes 22
rounds with the total run time 22 h 56 m and 15 repetitions of genetic algorithm
take 5 min [6]. Six out of 15 repetitions of genetic algorithm find non-dominated
solutions with all 15 objective vectors found by the ε-constraint method.
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4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(0, 6.75)

4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(1, 3)

4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(2, 0)

Fig. 7.3 Illustration of non-dominated solutions of Problem 1 solved with Model 1

Table 7.3 Problem 2: data of a cell formation problem
from [6]

W 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1
2 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1
3 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1
4 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0
5 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0
6 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1
7 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0
8 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1
9 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0
10 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

The computational time and the number of functions evaluations for the branch-
and-bound algorithm solving Problem 2 with various restrictions are presented in
Table 7.4. With and without restrictions the branch-and-bound algorithm with Mo-
del 2 solves this problem in a fraction of a second. The branch-and-bound algorithm
with Model 1 requires considerably larger amount of computations than that with
Model 2; however it is still much faster than ε-constraint method and still provides
exact solutions. Genetic algorithm taking similar time does not find all 15 non-
dominated objective vectors in every repetition. Moreover since there are several
solutions with the same non-dominated objective vectors (the branch-and-bound
algorithm finds 115 non-dominated solutions), it is not clear how often the genetic
algorithm finds all of them, most likely never if the population size of 100 is used.
Some of the cells of the machines do not necessary have parts assigned in non-
dominated solutions when Model 1 is used, adequacy of such solutions is not clear.

Non-dominated objective vectors of Problem 2 found by the branch-and-bound
algorithm with Model 1 and some sets of restrictions are shown in Fig. 7.4. Some
of the solutions include cells with only machines or only parts assigned. Adequacy
of such solutions is not clear. It is possible to restrict search space to avoid such
solutions. Although there are a number of non-dominated solutions with equal ob-
jective vectors, there is only one solution with objective vector (36,7). This solution
is illustrated in Fig. 7.5.
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Table 7.4 Results of branch-and-bound algorithm solving Problem 2

Branch-and-bound ε-CM GA
Model 1 Model 2 [6] [6]

K L U t , s NFE t , s NFE t , h:min t , s

2 0.77 4,931,885 0 708
3 2 5 0.02 44,069
3 2 6 5.80 41,121,849 22:56 20
3 3,385 1,779,232,148 0.01 4,726
4 0.02 10,179
5 0.02 12,226
6 0.02 12,088
7 0.01 10,994
8 0.01 10,678
9 0.01 10,597

0.02 10,598

Fig. 7.4 Non-dominated objective vectors of Problem 2 found by the branch-and-bound algorithm
with Model 1: K = 3 (o), K = 3, L = 2, U = 5 (x) and K = 3, L = 2, U = 6 (+)

Pareto front of Problem 2 found with Model 2 and different maximal number of
cells is shown in Fig. 7.6. We also show the non-dominated solutions of problems
with restricted number of cells. We see that there are a number of such solutions
which are dominated in the complete problem. Differently from Model 1, several
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2 3 4 5 7 8 10 13 15 17 9 11 16 1 6 12 14
1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0
2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
6 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1
3 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0
4 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0
5 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0
9 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1
10 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
7 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1
8 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1

Fig. 7.5 Illustration of non-dominated solution of Problem 2 with objective vector of Model 1
(36,7)

non-dominated solutions with the same objective vector is rare. We show two non-
dominated solutions with objective vector of Model 2 (32,14.3333) in Fig. 7.7. Mo-
del 2 provides grouping of the machines to cells, but the assignment of parts to cells
is an interpretation of the results and can be shown differently.

Fig. 7.6 Pareto front (o) of complete Problem 2 with Model 2 and non-dominated solutions when
the number of cells is restricted: two cells (x), three cells (+), other (v)
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2 3 5 7 8 10 13 1517 4 11 16 1 6 12 14 9
1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1
2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1
6 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0
3 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0
4 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 1
9 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1
5 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1
7 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0
8 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0

10 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1

2 3 4 5 8 10 1315 17 7 1 9 11 16 6 12 14
1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0
2 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0
6 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1
3 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0
4 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0
5 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0
9 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1
7 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1
8 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1

10 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1

Fig. 7.7 Illustration of non-dominated solutions of Problem 2 with objective vector of Model 2
(32,14.3333)

We further proceed investigation with a problem presented in [151] with data
repeated in Table 7.5 for consistency, where zero elements are shown as spaces. This
problem is considered large in [51]. There are m = 15 machines and r = 30 parts in
this problem. We will call it Problem 3. Only Model 2 is used for this problem. In the
worst-case situation branch-and-bound leads to complete enumeration of all feasible
solutions. We wonder how far is practical case from the worst case. In complete
enumeration all possible labels in c satisfying described restrictions are generated
and non-dominated solutions are retained as a Pareto set. We also want to investigate
how the solution time depends on the number of cells.

Table 7.5 Problem 3: data of a cell formation problem from [151]

W 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0.3 0.6 0.6 0.2 0.2 0.5 0.7 0.4 0.6
2 0.4 0.5 0.7 0.3 0.4 0.3 0.6 0.8 0.9 0.2
3 0.6 0.7 0.3 0.2 0.4 0.9 0.6 0.2 0.2 0.4 0.3 0.5
4 0.2 0.3 0.4 0.7 0.5 0.6 0.2 0.4 0.4 0.5 0.6
5 0.2 0.3 0.4 0.5 0.7 0.8 0.9 0.6 0.8 0.2
6 0.8 0.9 1.0 0.7 0.2 0.3 0.4 0.5 0.6 0.8
7 0.8 0.9 0.3 0.5 0.5 0.7 0.3 0.5 0.6 0.9
8 1.1 1.2 0.3 0.8 0.3 0.9 0.2 0.3 0.4 0.5
9 0.4 0.5 0.6 0.9 0.5 0.6 0.7 0.8 0.9 1.0

10 0.6 0.2 0.3 0.9 0.2 0.3 0.4 0.5 0.6 0.8
11 0.3 0.3 0.2 0.3 0.4 0.5 0.9 0.2 0.5 0.6 0.7 0.8
12 0.6 0.7 0.8 0.9 0.9 0.3 0.5 0.5 0.6 0.7
13 0.7 0.5 0.6 0.8 0.5 0.3 0.4 0.5 0.7 0.8
14 0.2 0.6 0.8 1.0 0.5 0.4 0.6 0.8 0.2 0.8
15 0.5 0.7 0.9 0.3 0.7 0.9 0.3 0.4

p 155 150 148 160 144 158 152 155 164 148 140 144 145 162 170 140 156 132 172 164 144 158 155 152 140 166 148 145 144 170

Computational time and the number of functions evaluations for the branch-
and-bound algorithm (B&B) and complete enumeration (CE) with various maximal
number of cells are presented in Table 7.6. In the case of the branch-and-bound
algorithm the number of functions evaluations includes evaluations of bounds which
are computed similarly to objective functions. Simultaneous evaluation of f1(X) and
f2(X) counts as one evaluation.

The results show that computational time and NFE grow very fast for complete
enumeration. If more than six cells are allowed, enumerations last more than one
hour. In the case of the branch-and-bound algorithm computational time and NFE
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Table 7.6 Experimental comparison of the branch-and-bound algorithm and
complete enumeration on Problem 3

B&B CE Speed-up
K t , s NFE t , s NFE t NFE

2 0 3,197 0.05 16,384 5
3 0.02 4,077 7.41 2,391,485 371 587
4 0.02 12,108 148.63 44,747,435 7,432 3,696
5 0.08 29,738 894.31 255,514,355 11,179 8,592
6 0.21 57,544 2,497 676,207,628 11,890 11,751
7 0.32 90,280 4,643 1,084,948,961 14,509 12,018
8 0.44 119,939 5,082 1,301,576,801 11,550 10,852
9 0.53 140,514 5,382 1,368,705,291 10,155 9,741
10 0.61 150,819 5,442 1,381,367,941 8,921 9,159
11 0.61 154,462 6,066 1,382,847,419 9,944 8,953
12 0.59 155,485 5,457 1,382,953,889 9,249 8,894
13 0.68 155,692 5,459 1,382,958,439 8,028 8,883
14 0.64 155,717 6,055 1,382,958,544 9,461 8,881

0.67 155,718 6,134 1,382,958,545 9,155 8,881

grow much slower and flatten after nine cells. We see that the branch-and-bound
algorithm is faster than complete enumeration by approximately four orders of
magnitude for the problems with more than four cells. As expected, both the branch-
and-bound algorithm and complete enumeration find the same non-dominated de-
cision vectors. An important result seen in Table 7.6 is that the branch-and-bound
algorithm solves complete problem with up to m cells in less than 1 s. We think that
this is an acceptable time for such a problem.

The found Pareto set of Problem 3 is presented in Table 7.7. The branch-and-
bound algorithm has indicated 38 non-dominated decision vectors. We see that the
Pareto optimal solutions vary in the number of cells as well as in intercell moves
and cell load variation. There are no intercell moves when all machines are assigned
to a single cell. Another extreme is when each machine composes a separate cell, in
this case within-cell load variation is zero.

Graphically the Pareto front of the problem is illustrated in Fig. 7.8. In this fig-
ure we also show solutions from the literature for comparison: solutions found by
multiobjective GP-SLCA algorithm [51] are shown as (+) and the solution found
by genetic algorithm for cell formation problem [151] is shown as (x). Only non-
dominated solution with objective vector (918, 8.596) has been identified in [151].
We see that multiobjective GP-SLCA identified extreme solutions: when all ma-
chines are assigned to a single cell and when each machine composes a separate
cell, as well as Pareto optimal solutions with two and three cells (see Table 7.7).
The latter solutions can also be identified by complete enumeration in relatively
short time (see Table 7.6). Unfortunately other four solutions provided as a result
of multiobjective GP-SLCA are not Pareto optimal as we can see in the plot. It
is not surprising since multiobjective GP-SLCA is a heuristic approach. However,
these solutions are quite far from the actual Pareto front. It can also be seen that the
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Table 7.7 Pareto set of Problem 3 found by the branch-and-bound algorithm

c f1 f2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 38.152
1 1 1 2 2 2 1 2 2 1 1 1 1 1 1 455 22.657
1 1 1 2 2 2 1 2 2 1 3 3 3 3 3 918 8.596
1 1 1 2 2 2 1 2 2 1 3 3 3 3 4 2,147 7.530
1 1 1 2 3 3 1 3 3 1 4 4 4 4 4 2,282 7.467
1 1 1 2 2 3 1 3 2 1 4 4 4 4 4 2,426 6.867
1 1 1 2 3 3 1 3 3 1 4 4 4 4 5 3,511 6.400
1 1 1 2 2 3 1 3 2 1 4 4 4 4 5 3,655 5.801
1 1 2 3 3 4 2 4 3 1 5 5 5 5 5 3,974 5.576
1 1 1 2 3 4 1 4 3 1 5 5 5 5 6 5,019 4.933
1 1 2 3 3 4 2 4 3 1 5 5 5 5 6 5,203 4.509
1 2 2 3 4 5 2 5 4 2 6 6 6 6 7 6,412 4.318
1 1 1 2 3 4 1 5 4 1 6 6 6 6 7 6,527 4.263
1 1 2 3 4 5 2 5 4 1 6 6 6 6 7 6,567 3.641
1 2 3 4 5 6 3 6 5 2 7 7 7 7 8 7,960 3.363
1 1 2 3 4 5 2 6 5 1 7 7 7 7 8 8,075 2.971
1 2 3 4 5 6 3 7 6 2 8 8 8 8 9 9,468 2.693
1 1 2 3 4 5 2 6 7 1 8 8 8 8 9 9,583 2.466
1 1 2 3 4 5 2 6 5 1 7 8 8 8 9 9,600 2.400
1 2 3 4 5 6 3 7 8 2 9 9 9 9 10 10,976 2.188
1 2 3 4 5 6 3 7 6 2 8 9 9 9 10 10,993 2.122
1 2 3 4 5 6 3 7 6 8 9 9 9 9 10 11,016 2.058
1 1 2 3 4 5 2 6 7 1 8 9 9 9 10 11,108 1.895
1 2 3 4 5 6 3 7 6 1 8 9 9 9 10 11,148 1.832
1 2 3 4 5 6 3 7 8 2 9 10 10 10 11 12,501 1.617
1 2 3 4 5 6 3 7 8 9 10 10 10 10 11 12,524 1.553
1 2 3 4 5 6 3 7 6 8 9 10 10 10 11 12,541 1.487
1 2 3 4 5 6 3 7 8 1 9 10 10 10 11 12,656 1.327
1 2 3 4 5 6 3 7 8 2 9 10 10 11 12 14,026 1.215
1 2 3 4 5 6 3 7 8 9 10 11 11 11 12 14,049 0.982
1 2 3 4 5 6 3 7 8 1 9 10 10 11 12 14,181 0.925
1 2 3 4 5 6 7 8 9 1 10 11 11 11 12 14,204 0.892
1 2 3 4 5 6 3 7 8 9 10 11 11 12 13 15,574 0.580
1 2 3 4 5 6 7 8 9 10 11 12 12 12 13 15,597 0.547
1 2 3 4 5 6 7 8 9 1 10 11 11 12 13 15,729 0.490
1 2 3 4 5 6 3 7 8 9 10 11 12 13 14 17,099 0.435
1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 17,122 0.145
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18,647 0

spread of the actual Pareto front is also better than that of approximation found by
multiobjective GP-SLCA. Moreover approximation found by GP-SLCA may give
a wrong impression that the Pareto front has a sharp turn at (918, 8.596) what can
make the decision maker to choose the corresponding decision vector. We can see
that the turn of the actual Pareto front is not that sharp and other Pareto optimal so-
lutions can also be considered. Pareto optimal solution with objective vector (3974,
5.576) is illustrated in Fig. 7.9.
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Fig. 7.8 Pareto front for Problem 3 found by the proposed algorithm (o) and solutions given in
literature: (+) [51] and (x) [151]

6 7 10 11 17 19 1 3 8 9 14 16 18 20 22 26 27 2 5 12 4 13 15 21 23 24 25 28 29 30
1 .6 .6 .5 .7 .4 .6 .3 .2 .2
2 .7 .3 .6 .8 .9 .2 .4 .5 .4 .3

10 .3 .9 .4 .5 .6 .8 .6 .2 .2 .3
3 .2 .4 .2 .2 .3 .5 .6 .7 .9 .6 .34.
7 .3 .5 .3 .5 .6 .9 .8 .9 .5 .7
4 .7 .6 .2 .4 .4 .5 .6 .2 .3 .4 .5
5 .5 .7 .8 .9 .6 .8 .2 .2 .3 .4
9 .9 .5 .6 .7 .8 .9 1.0 .4 .5 .6

8.6.5.4.3.2.7.6 .8 .9 1.0
5.4.3.2.9.3.8.8 1.1 1.2 .3

11 .3 .3 .2 .3 .4 .5 .9 .2 .5 .6 .7 .8
12 .6 .7 .8 .9 .9 .3 .5 .5 .6 .7
13 .7 .5 .6 .8 .5 .3 .4 .5 .7 .8
14 .2 .6 .8 1.0 .5 .4 .6 .8 .2 .8
15 .5 .7 .9 .3 .7 .9 .3 .4

Fig. 7.9 Illustration of non-dominated solution of Problem 3 with objective vector (3974, 5.576)
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Table 7.8 Results of branch-and-bound algorithm and complete enumeration
on Problem 4

B&B CE
K t , s NFE t , s NFE

2 0.08 13,886 17 2,097,152
3 2.68 465,361 50,205
4 25.14 3,799,397
5 76.39 11,816,033
6 141.13 20,751,874
7 189.02 26,083,376
8 205.48 27,595,382
9 196.52 27,528,409
10 203.04 27,370,592
11 202.55 27,268,517
12 198.74 27,250,725
13 203.00 27,251,038
14 196.90 27,257,573
15 204.25 27,261,656
16 196.05 27,263,219
17 202.83 27,264,267
18 206.64 27,264,741
19 201.37 27,264,764
20 195.86 27,264,764
21 201.81 27,264,764
22 203.67 27,264,764

We have also performed experiments with the data identified as industrial prob-
lem in [51]. However we used the bi-criterion model (Model 2). Therefore the results
are not directly comparable, but anyway allow us to judge computational efforts
needed for larger problem. There are m = 22 machines and r = 62 parts in this cell
formation problem. We will call it Problem 4. Computational time and the number
of functions evaluations for the branch-and-bound algorithm and complete enumer-
ation with various maximal number of cells are presented in Table 7.8. Complete
enumeration finished in acceptable time only solving the problem with two cells.

Branch-and-bound algorithm solves the complete problem in less than 10 min. It
is considerably larger than for Problem 3 with 15 machines, but it can still be ac-
ceptable for an industrial problem. Computational time and NFE flatten after seven
maximal cells. It is interesting that the most NFE-consuming problems are with
8–10 cells rather than with the largest possible number of cells. This anomaly can
be explained that when a larger number of cells are allowed a good solution is found
with more cells which enables pruning of branches of the search tree earlier.

The Pareto front of Problem 4 found by the branch-and-bound algorithm is shown
in Fig. 7.10. We also show the non-dominated solutions of problems with restricted
number of cells. We see that there are a number of such solutions which are domi-
nated in the complete problem. This means that in this case it is necessary to solve
the complete problem since restricted problems can give misleading results. In the
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case of Problem 3 this was not the case and the restricted problems gave only Pareto
optimal solutions in the sense of the complete problem although not all were in-
dicated solving restricted problems. It can be seen in Fig. 7.10 that all solutions
found with problems restricted to two and three cells are dominated in the complete
problem with 22 machines. Therefore complete enumeration is not at all useful for
this problem since it can be used to solve only problem restricted to three cells in
acceptable time.

Fig. 7.10 Pareto front (o) of complete Problem 4 and non-dominated solutions when the number
of cells is restricted: two cells (x), three cells (+), other (v)

7.5 Conclusions

In this chapter we proposed a branch-and-bound algorithm for bi-criterion cell for-
mation problems. Two well known bi-criterion models were used: the first model
considers the numbers of exceptional elements and voids and the second model
considers intercell moves and within-cell load variation. The problems of the sec-
ond model are more general since different workloads and different production re-
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quirements of parts may be used. The number of variables is smaller in the second
model than in the first model, because in the second model decision variables define
only machine-cell membership while in the first model part-cell membership is also
considered. Experiments confirmed that the branch-and-bound algorithm with the
second model requires considerably less computational time. The non-dominated
solutions found by the branch-and-bound algorithm with the second model seem
more adequate than that found using the first model.

The branch-and-bound algorithm with the first bi-criterion model solves cell for-
mation problem with eight machines and four parts in a fraction of a second and
outperforms ε-constraint method and genetic algorithm. The branch-and-bound al-
gorithm takes longer solving the problem with 10 machines and 17 parts; however
it is still much faster than ε-constraint method and still provides exact solutions. It
outperforms genetic algorithm by means of the quality of solutions since genetic
algorithm taking similar time does not find all non-dominated objective vectors in
every repetition.

The proposed bi-criterion branch-and-bound algorithm with the second model
solves cell formation problem with 15 machines and 30 parts in less than 1 s. It is by
approximately four orders of magnitude faster than complete enumeration. Thirty-
eight Pareto optimal solutions have been indicated for a problem from the literature,
most of the non-dominated solutions were previously unknown.

A cell formation problem with 22 machines and 62 parts was solved by the pro-
posed bi-criterion branch-and-bound algorithm in less than 10 min. In the case of
this problem solutions found by restricting the number of cells may be dominated
in the complete problem. Therefore, it is necessary to solve the complete problem
since restricted problems can give misleading results.

A possible direction of future research is an extension of the proposed algorithm
to more criteria. Other multiobjective models for cell formation can be explored, as
well. The experimental basis that exists for this problem is small and consequently
there are no extensive comparative results. It would be valuable to fill in this gap
by collecting various problems and solving them with different multiobjective opti-
mization algorithms.



Chapter 8
Summary and Conclusions

8.1 Summary

The book is focused on relevant and effective mathematical models for solving the
cell formation (CF) problem, i.e., grouping machines into manufacturing cells such
that the principles of group technology are implemented. Despite its long history
and hundreds of published papers, very few attempts of solving the problem to op-
timality are known. At the same time, in today’s highly competitive environment,
any noticeable improvement in performance is critical to the company’s survival.

As can be seen from the literature review presented in Chap. 1, most of the avail-
able approaches to cell formation are based on intuitive considerations and incorpo-
rate at least one of the two error types: the modeling error (the objective function
of the model does not exactly reflect the objective of CF) and the computation error
(emerges if a resulting problem is solved heuristically). Even if only the modeling
error takes place, its quantitative analysis is very complicated (e.g., in case of neural
network approaches). Another problem of the existing approaches is flexibility: a
substantial portion of them is based on ad hoc algorithms, and addition of new con-
straints or objectives requires a substantial modification of the approach. Finally,
different performance and similarity measures are used, and the effect on the out-
comes is not clear (they are motivated by intuitive considerations rather than by
strict reasoning). This book presents three models for CF, based on the p-Median,
minimum multicut and assignment problems, respectively. The first one has zero
computing error while keeping the modeling error and running times very limited.
The second one is an exact model and can be solved to optimality only for reason-
ably sized (yet realistic) instances, as shown by a case study. The third model, unlike
the first two, is based purely on combinatorial algorithms and represents an efficient
heuristics.

Chapter 2 is completely focused on the p-median problem (PMP) and its prop-
erties. It is shown that by using a pseudo-Boolean representation of PMP it is pos-
sible to construct an efficient MILP formulation that includes all known problem
size reductions for PMP (not relying on pre-solving the problem). The proposed
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formulation allows some large-size instances to be solved to optimality. In partic-
ular, by efficiently reducing the problem size, the proposed formulation allows a
MILP solver to handle instances that could not be handled in earlier formulations
because of the memory limitations. A pseudo-Boolean representation also provides
insights into a complexity of instance data and properties of the PMP feasible poly-
tope. A methodology for constructing PMP instances that are expected to be com-
plex for any solution algorithm (existing or forthcoming) is described.

In Chap. 3 a model based on the proposed compact formulation for the PMP is
presented and analyzed in detail. It is shown that PMP-based models have quite a
limited modeling error in case reasonable from the manufacturing perspective cells
are possible, i.e., the amount of intercell movement is within 10–15 %. A com-
parison with approaches from several recent papers was done. The results of the
comparison show that our PMP-based model outperforms other contemporary ap-
proaches in solution quality (in terms of widely used performance measures) and has
very short running times (about 1 s.). It is also shown that a number of additional
realistic factors and constraints can be introduced into the compact model making it
practically useful.

In Chap. 4 an exact model for CF that minimizes the amount of intercell move-
ment is derived. It is shown that the exact model is equivalent to the minimum multi-
cut problem (that we abbreviate as MINpCUT), implying polynomial solvability of
the former in the case of two cells. Though there exist efficient algorithms for MIN-
pCUT, these are hardly applicable to CF because they do not allow for additional
constraints that are almost always needed to make practically feasible cells. There-
fore, we propose two MILP formulations for the MINpCUT problem and show how
different constraints can be introduced into either of them. Finally, a practical appli-
cability of the proposed model is demonstrated by means of a case study with real
manufacturing data. It is shown that in case of a reasonable number of machines
(about 30) the proposed MILP formulations can be solved reasonably fast, and the
solution time is not affected by the number of parts that can be quite substantial
(the order of thousands). It is also shown that to guarantee optimal solutions (w.r.t.
minimum intercell movement), the similarity between a pair of machines must be
defined as an amount of parts traveling directly between these two machines.

In Chap. 5 several alternative objectives for CF are discussed. These include
balancing inter- and intracell movements, workforce-related objectives, and set-up
time reduction. Ways of introducing these objectives into the PMP- and MINpCUT-
based models are given, together with a brief discussion about how to combine
several objectives. It is also proven that none of the similarity measures derived from
the machine-part incidence matrix can guarantee optimal solutions, irrespectively of
the approach used.

In Chap. 6 we develop a pattern-based approach that is not based on MILP and
relies mainly on solving the well-known assignment problem. This approach allows
for any additive objective function and represents a very efficient heuristics that
outperforms all other heuristics from the literature. We demonstrated the pattern-
based approach on Boolean input matrices; however it is applicable to finding dense
blocks in arbitrary matrices.
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Chapter 7 presents bi-criterion approach to find either exact or approximation of
Pareto front solutions by means of two mathematical programming models. In the
first model (Model 1) one objective function trying to minimize the number of times
the parts will be processed outside their own cells (minimization of the number of
exceptional elements) while another objective function minimizing the number of
times the part will be not processed inside its own cell (minimization of the number
of voids). In the second model (Model 2) one objective minimizing the number of
cells processing each part (minimization of the total intercell moves) and another
objective minimizing the differences between the workload induced by a part on a
specific machine and the average workload induced by this part on the cell (mini-
mization of within-cell load variation). In other words, Model 2 implying to solve
more general problems because different schedules of workloads might be incor-
porated. Hence, Model 2 returns more relevant solutions. In fact, the cell forma-
tion problem with 22 machines and 62 parts was solved by means of the designed
bi-criterion branch-and-bound algorithm within 10 min on a standard PC with i7
processor, 8 GB RAM, Ubuntu Linux, implemented in C/C++ under g++ compiler.

8.2 Conclusions

The goal of this book was to provide a flexible and efficient tool for solving the CF
problem. In order to achieve the goal five models were developed. The first three
models are dealing with a single objective functions while two others are based on
bi-criterion models. Two of single criterion models are related to graph-partitioning
problems, PMP and MINpCUT, while the third, pattern-based model has a purely
combinatorial nature and relies on the classical assignment problem (AP). Either
of the proposed models proved to be efficient in solving the CF problem, but has
its own weaknesses. For example, the PMP-based model is extremely fast but in-
troduces a (limited) modeling error. The MINpCUT-based model is an exact one
and is somewhat more flexible, but has a somewhat limited applicability in terms of
the problem size. The pattern-based model is extremely efficient (in terms of both
running times and solution quality) if the sizes of cells are fixed but slows down
as the number of possible cell configurations1 increases. The effectiveness of the
three single objective function proposed models can be explained by the fact that
all three problems (PMP, MINpCUT, pattern optimization) including the generic
CF problem have a common clustering nature. Yet, there are certain differences in
constraints imposed on the clusters. For example, in case of the PMP, each cluster
is supposed to have a prominent center (median) that is tightly connected with any
other element in the cluster. Presence of this structure, in particular, makes the prob-
lem much easier—even for random 100×100 input matrices it can be solved within
a minute. The MINpCUT problem, on the contrary, does not have any special con-
straints on clusters, and solving it for a 100×100 matrix normally takes many hours.

1 By configuration we mean a collection of cell sizes, i.e., the number of machines and parts in
each cell.
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Pattern-based approach can be made exact and very fast if the sizes of all clusters
are fixed (given), but due to the fact that the cell sizes are not known beforehand,
an enumerative procedure is needed. The original CF problem normally does not
restrict the structure of the cells2 but imposes certain qualitative constraints. This
makes the problem even more complex. However, the complexity of the problem
can be made dependent only on the number of machines, unlike, for example, the
model from [39] where the number of parts also plays a role. In this case, it appears
that real-life instances have quite limited size (we could not find instances with more
than 50 machines in the literature). This means that quite soon the ongoing progress
in a development of computers and MILP solution methods will make it possible
to solve any CF instance to optimality by the proposed MINpCUT model. On the
other hand, the size of manufacturing systems is not increasing with a trend towards
smaller and more specialized ones. Thus, in this perspective, all the proposed mod-
els are computationally tractable. The bi-criterion two models are dealing with two
contradicting criteria and present as far as the authors of this book aware the first ex-
act Pareto optimal front of solutions by means of the branch-and-bound algorithm.

Possible directions for future research may be grouped into the following
streams. The first one contains a development of more efficient methods for solving
the constrained MINpCUT problem or more efficient enumeration schemes for the
pattern-based approach and extending either of the proposed models with real-life
constraints not mentioned in the book.

Another stream suggests introduction of dynamics into the models: in reality, the
product mix changes over time, and cells must be adjusted. At the same time, it
is desirable that the cells do not change substantially from period to period. Thus,
either a robust (with regard to a changing product mix) or a dynamic (with smooth
changes) solution can be sought.

The next stream of further research is the development of a methodology for
estimating appropriateness and importance of different objectives for CF based on
manufacturing data.

The reasoning behind the final stream relies on the fact that all the considered in
this book models have quite a general nature and their applications are not restricted
to CFP. Thus, a separate stream of future research is directed towards adjustment of
any of the considered models (PMP, MINpCUT, patterns and bi-criterion) to other
complex industrial engineering problems.

2 Sometimes it does: some machines may be required or prohibited to be in one cell. In this case
some variables can be fixed and the problem becomes smaller.
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Note that the key idea of CF—minimizing the flows between the manu-
facturing units—that is traditionally considered within a single factory
may brought to a higher level of interacting factories or even industries
in order to reduce, first of all, transportation costs and related time de-
lays. From the most general perspective, CF can be viewed a particular
case of the location problem aimed at distributing a number of entities
(machines) among a number of sites (cells) so as to minimize interac-
tions between the sites. This suggests that the proposed approaches can
be used (after minor adaptation), for example, in city planning (locating
facilities and institutions in the city so as to minimize transport flows)
in order to reduce traffic congestion, CO2 emissions and time spent on
getting to the workplace from home.



Appendix A
Solutions to the 35 CF Instances from [71]

A.1 Solutions Without Singletons

2 6 0 4 3 5 1 2 3 4 5 6 1 7
1 1 1 2 1 1 1 1
4 1 1 1 5 1 1 1 1
2 1 1 1 1 3 1 1 1 1
3 1 1 1 4 1 1 1 1
0 1 1 1 1 1 1 1 1 1

1. King and Nakornchai (1982), size 5x7, 2. Waghodekar and Sahu (1984),
2 cells, efficacy 73.68 size 5x7, 2 cells, efficacy 62.50

4 7 15 1 16 13 11 2 12 5 0 10 6 3 17 8 14 9 6 3 0 4 5 2 1 7
3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
2 1 1 1 1 1 5 1 1
4 1 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1

1 1 1 1 1 1 1 1

3. Seifoddini (1989), size 5x7, 2 cells, efficacy 79.59 4. Kusiak (1992), size 6x8,
 2 cells, efficacy 76.92

4 7 6 5 1 2 8 3 10 0 9 0 8 5 1 4 7 3 9 6 10 2
1 1 1 1 1 1 1 1
4 1 1 0 1 1 1
0 1 1 1 5 1 1 1
3 1 1 1 6 1 1 1
6 1 1 1 1 1 4 1 1 1
2 1 1 3 1 1
5 1 1 1 1 1 2 1 1 1 1

6. Boctor (1991), size 7x11, 

10 11 3 0 1 4 2 8 6 9 5 7 6 2 19 3 17 5 9 14 0 4 11 7 16 13 10 12 8 1 15 18
7 1 1 7 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 6 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1
4 1 1 1 1 5 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1
5 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1

7. Seifoddini and Wolfe (1986), 8. Chandrasekharan and Rajagopalan (1986b),
 size 8x20, 3 cells, efficacy 85.25

0 7 9 13 17 2 14 1 3 6 8 4 10 18 16 15 5 19 12 11 0 6 9 7 1 2 3 8 4 5
7 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1
1 1 1 1 1 1 1 1 1 1 3 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 1 1 1 1 1 5 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1
2 1 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1

2 1 1
7 1 1

9. Chandrasekharan and Rajagopalan (1986a), 10. Mosier and Taube (1985a),
size 8x20, 2 cells, efficacy 58.72

size 8x12, 3 cells, efficacy 68.29

size 10x10, 3 cells, efficacy 70.59

5. Kusiak and Chow (1987), size 5x7, 3 cells,
efficacy 53.13 3 cells, efficacy 70.37
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0 5 13 3 8 6 9 11 10 1 2 4 7 12 14 12 10 22 19 2 16 21 18 1 4 20 3 8 6 17 7 11 13 9 0 15 5 14
2 1 1 1 1 9 1 1
3 1 1 1 1 13 1 1 1 1
8 1 1 1 1 6 1 1 1 1 1
5 1 1 1 1 1 4 1 1 1 1 1
6 1 1 1 1 1 3 1 1 1 1 1 1
0 1 1 1 1 2 1 1 1
9 1 1 1 1 1 1 1 1
4 1 1 1 1 1 10 1 1 1
7 1 1 1 1 1 11 1 1
1 1 1 1 1 1 0 1 1

12 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1
5 1 1 1 1 1 1 1

11. Chan and Milner (1982), size 10x15,
size 10x15, 3 cells, efficacy 92.00 

3 23 20 2 7 17 5 6 21 11 13 15 10 9 22 0 1 16 18 19 8 14 4 12 14 0 17 10 3 4 7 12 22 1 15 9 18 16 13 11 19 23 6 20 21 2 5 8
2 1 1 1 6 1 1 1
1 1 1 3 1 1
9 1 1 2 1 1 1 1 1 1
10 1 1 1 1 14 1 1 1
0 1 1 13 1 1 1 1 1 1
11 1 1 9 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 11 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 10 1 1 1 1 1
5 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1
6 1 1 1 1 1 4 1
4 1 1 1 1 1 5 1 1 1 1 1 1 1
3 1 1 1 1 1 1 12 1 1 1 1
13 1 1 1 1 8 1 1
8 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 8 6 3 21 11 29 17 10 23 14 7 13 25 20 16 5 19 2 0 15 12 9 24 22 27 4 28 18 26
6 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1
1 1 1 1 1 1 1
8 1 1 1 1 1 1
14 1 1 1 1 1 1 1
5 1 1 1 1
2 1 1 1 1 1 1 1

15. Srinivasan et al. (1990), size 16x30, 4 cells, efficacy 67.83

efficacy 69.86

13. Stanfel (1985), size 14x24, 5 cells,
efficacy 69.33

14. McCormick et al. (1972), size 16x24, 6 cells,
efficacy 51.96

12. Askin and Subramanian (1987), size 14x23, 5 cells,

12 0 11 25 38 30 24 19 2 23 29 26 22 13 42 20 8 4 32 40 7 14 28 15 18 17 1 36 31 41 39 27 9 3 37 5 35 33 6 34 16 10 21
6 1 1 1
9 1 1 1 1 1 1 1
12 1 1
10 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1
2 1 1 1 1 1
11 1 1 1 1 1
0 1 1

21 18 10 15 3 6 20 12 13 17 19 23 0 2 9 22 14 16 8 5 11 1 7 4 6 5 13 0 15 7 4 3 2 19 8 9 11 1 17 16 10 18 14 12
9 1 1 1 5 1 1 1
12 1 1 1 1 1 8 1 1 1 1 1
17 1 1 17 1 1 1 1
16 1 0 1 1 1 1 1 1
15 1 15 1 1 1 1
10 1 1 1 1 16 1 1 1 1 1 1
13 1 1 1 6 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 19 1 1 1 1 1
11 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 14 1 1 1 1 1
1 1 18 1 1
0 1 1 1 3 1 1 1
2 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1
6 1 1 1 1 12 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 4 1 1 1
3 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1

10 1 1 1 1 1 1 1
9 1 1 1 1 1

13 4 12 22 17 20 18 9 0 10 1 3 19 14 15 2 21 11 5 8 7 16 6
18 1 1 1
15 1 1 1 1 1
10 1 1
1 1 1 1 1
14 1 1 1 1 1 1 1
16 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
17 1 1 1 1
4 1 1 1 1 1
0 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1
5 1 1 1 1 1
11 1 1 1 1 1 1 1
13 1 1 1 1 1
3 1 1 1 1 1 1 1
19 1 1 1 1 1
7 1 1 1 1 1 1 1
6 1 1 1
9 1 1 1 1 1 1 1 1

19. Kumar et al. (1986), size 20x23, 5 cells, efficacy 49.65

16. King (1980), size 16x43, 6 cells, efficacy 55.83

17. Carrie (1973), size 18x24, 6 cells,
efficacy 54.46

18. Mosier and Taube (1985b), size 20x20,
5 cells, efficacy 42.96
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28 16 2 22 4 14 24 19 0 32 34 33 18 21 7 13 15 25 9 30 12 6 26 17 1 11 23 20 3 27 31 29 5 8 10
16 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
0 1 1 1 1 1 1
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
12 1 1 1 1
4 1 1 1 1
9 1 1 1 1 1 1
8 1 1 1 1 1
19 1 1 1 1
5 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1
3 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
11 1 1 1 1 1 1
18 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1

6 30 1 23 11 26 9 12 24 17 31 15 33 29 16 2 14 19 0 28 34 4 7 18 25 21 22 13 8 20 32 5 27 10 3
17 1 1 1 1 1 1 1
12 1 1 1 1
3 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1
19 1 1 1 1 1
5 1 1 1 1 1 1
8 1 1 1 1 1 1
4 1 1 1 1 1
9 1 1 1 1 1 1
18 1 1 1 1 1 1 1
11 1 1 1 1 1 1
10 1 1 1 1 1 1
14 1 1 1 1 1 1 1

 20. Carrie (1973), size 20x35, 5 cell, efficacy 76.54

21. Boe and Cheng (1991), size 20x35, 5 cells, efficacy 58.15

5 6 19 28 39 1 22 11 23 30 33 10 14 21 12 13 9 34 35 15 8 32 16 0 3 26 4 29 25 17 2 24 31 37 7 18 20 38 36 27
9 1 1 1 1 1
8 1 1 1 1 1
16 1 1 1 1 1
19 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
4 1 1 1 1 1 1
10 1 1 1 1 1 1
18 1 1 1 1 1 1
21 1 1 1 1 1
0 1 1 1 1 1
12 1 1 1 1 1
20 1 1 1 1 1
11 1 1 1 1 1 1
7 1 1 1 1 1 1
17 1 1 1 1 1 1
5 1 1 1 1 1 1
14 1 1 1 1 1 1
23 1 1 1
13 1 1 1
22 1 1 1
6 1 1 1
15 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1

22. Chandrasekharan and Rajagopalan (1989), size 24x40, 7 cells, efficacy 100.00

16 32 8 15 0 23 22 33 14 1 10 11 30 29 25 4 26 3 17 24 2 31 35 12 9 34 21 13 27 36 7 38 18 20 37 19 28 5 6 39
20 1 1 1 1 1
12 1 1 1 1 1
21 1 1 1 1 1
0 1 1 1 1 1
19 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1
17 1 1 1 1 1 1
7 1 1 1 1 1 1
11 1 1 1 1 1 1 1
5 1 1 1 1 1 1
23 1 1 1
13 1 1 1
6 1 1 1
22 1 1 1
4 1 1 1 1 1 1
1 1 1 1 1 1
18 1 1 1 1 1 1
10 1 1 1 1 1 1
15 1 1 1 1 1 1 1
3 1 1 1 1 1 1
9 1 1 1 1 1
8 1 1 1 1
16 1 1 1 1 1 1

23. Chandrasekharan and Rajagopalan (1989), size 24x40, 7 cells, efficacy 85.11
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31 24 2 13 34 21 9 12 35 39 19 5 28 6 8 16 32 0 15 29 3 26 17 25 4 22 23 1 10 30 33 11 14 36 27 38 18 37 20 7
23 1 1 1
13 1 1 1 1
22 1 1 1
6 1 1 1
10 1 1 1 1 1
1 1 1 1 1 1 1
4 1 1 1 1 1 1
18 1 1 1 1 1 1 1
8 1 1 1 1 1
9 1 1 1 1
16 1 1 1 1 1
0 1 1 1 1 1
20 1 1 1 1 1
21 1 1 1 1 1
12 1 1 1 1 1
5 1 1 1 1 1 1
11 1 1 1 1 1 1 1
7 1 1 1 1 1
14 1 1 1 1 1 1 1
17 1 1 1 1 1 1
2 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1
3 1 1 1 1 1 1

24. Chandrasekharan and Rajagopalan (1989), size 24x40, 7 cells, efficacy 73.51

29 38 37 25 32 8 12 34 21 13 9 35 0 15 16 23 1 30 22 11 33 14 4 26 17 3 28 5 6 19 39 24 2 31 27 18 36 10 20 7
7 1 1 1 1 1 1
5 1 1 1 1 1
0 1 1 1 1 1
20 1 1 1 1 1 1
18 1 1 1 1 1 1
1 1 1 1 1 1
10 1 1 1 1 1 1
4 1 1 1 1 1 1 1
21 1 1 1 1
12 1 1 1 1 1
2 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1
14 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1
9 1 1 1 1
8 1 1 1 1 1
16 1 1 1 1 1
13 1 1 1 1
6 1 1 1
22 1 1 1
23 1 1 1
15 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1

25. Chandrasekharan and Rajagopalan (1989), size 24x40, 10 cells, efficacy 51.97
31 2 5 8 32 35 13 39 12 0 15 4 29 37 25 23 3 10 26 17 33 1 14 24 11 22 6 30 18 28 19 16 34 21 9 27 36 38 7 20

23 1 1 1 1
22 1 1 1 1
20 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 1 1 1
6 1 1 1 1 1
1 1 1 1 1 1
18 1 1 1 1 1 1 1
13 1 1 1 1
21 1 1 1
12 1 1 1 1 1
5 1 1 1 1 1
14 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1
11 1 1 1 1 1 1
2 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1
16 1 1 1 1 1
4 1 1 1 1 1 1
10 1 1 1 1
3 1 1 1 1 1
15 1 1 1 1 1 1 1

22 33 14 4 37 3 17 29 15 9 0 34 2 11 5 26 21 19 8 23 24 31 1 20 27 7 10 28 30 6 16 38 35 18 25 36 13 32 12 39
10 1 1 1 1 1
2 1 1 1 1 1
5 1 1 1 1 1
17 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
20 1 1 1 1 1
21 1 1 1 1
22 1 1 1 1 1 1
4 1 1 1 1 1 1
12 1 1 1 1 1
11 1 1 1 1 1 1
9 1 1 1 1 1
23 1 1 1 1
19 1 1 1 1 1 1 1
6 1 1 1 1 1
13 1 1 1 1 1
3 1 1 1 1 1
0 1 1 1 1 1
16 1 1 1 1 1
14 1 1 1 1 1 1
15 1 1 1 1 1 1
18 1 1 1 1 1 1 1
8 1 1 1 1 1
1 1 1 1 1 1

27. Chandrasekharan and Rajagopalan (1989), size 24x40, 10 cells, efficacy 44.87 

26. Chandrasekharan and Rajagopalan (1989), size 24x40, 10 cells, efficacy 47.37
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6 18 1 2 4 21 3 12 0 7 13 15 11 8 10 9 17 14 24 19 26 25 22 5 23 20 16
1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1
8 1 1 1 1 1 1
10 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1
24 1 1 1 1
14 1 1 1 1 1 1 1
25 1 1 1 1 1
23 1 1 1 1 1
26 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1
22 1 1 1 1
16 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1

2 23 0 14 15 3 5 6 4 1 9 35 8 7 30 16 11 37 28 29 17 19 18 20 24 22 27 21 13 26 45 41 36 25 32 43 31 10 38 42 39 44 40 12 33 34
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
14 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1
25 1 1
17 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1
27 1
1 1 1
15 1 1 1 1
0 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1
23 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1
26 1 1 1
16 1 1 1
13 1 1 1 1 1
21 1 1 1
20 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1
22 1 1
24 1 1 1 1

28. McCormick et al. (1972), size 27x27, 4 cells, efficacy 54.27 

29. Carrie (1973), size 28x46, 11 cells, efficacy 45.92
6 23 14 0 20 21 29 12 2 40 9 32 18 10 17 27 25 5 24 37 19 22 38 1 33 35 26 15 13 8 34 7 28 4 16 36 3 39 30 11 31

26 1 1
3 1 1 1 1 1 1
29 1 1 1 1
19 1 1 1 1
18 1 1 1 1 1
8 1 1 1
28 1 1 1 1 1 1
10 1 1 1 1
0 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
5 1 1
15 1 1
23 1
12 1 1 1
22 1 1 1 1 1
9 1 1 1 1 1
25 1 1 1 1
16 1 1 1 1
17 1 1 1 1
6 1 1 1 1
27 1 1 1
7 1 1 1 1 1
14 1 1
4 1 1 1 1
24 1
13 1 1 1 1 1
21 1 1 1 1 1 1 1
2 1 1 1 1 1 1
20 1 1 1 1 1 1

30. Kumar and Vannelli (1987), size 30x41, 12 cells, efficacy 58.94
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6 0 17 29 31 27 35 33 34 36 9 7 5 3 10 46 42 16 2 1 4 12 13 15 14 20 25 18 26 22 19 23 21 24 11 8 28 32 30 37 43 47 41 45 38 49 48 44 39 40
0 1 1 1 1 1
3 1 1 1
10 1 1 1 1
17 1 1 1 1 1
19 1 1 1 1 1 1
21 1 1 1 1 1
9 1 1 1 1 1 1 1
2 1 1 1 1 1
25 1 1 1
27 1 1 1 1
1 1 1 1 1
4 1 1 1 1 1 1
8 1 1 1 1 1
5 1 1 1 1 1 1
11 1 1 1 1 1 1
7 1 1 1 1 1 1 1
13 1 1 1 1 1 1
15 1 1 1 1 1 1
16 1 1 1 1
14 1 1 1 1 1
12 1 1 1 1 1
6 1 1 1 1
22 1 1 1 1 1
20 1 1 1 1 1 1
18 1 1 1 1 1 1
23 1 1 1 1
29 1 1 1 1 1 1
28 1 1 1 1 1 1
26 1 1 1 1 1
24 1 1 1 1 1

44 15 3 32 41 48 0 40 35 20 8 7 10 1 2 33 14 12 13 17 39 45 11 9 19 37 43 18 26 5 6 28 25 4 31 47 21 42 16 24 46 22 36 23 27 49 29 30 38 34
2 1 1 1 1 1 1
7 1 1 1 1 1 1
24 1 1 1 1 1 1 1
8 1 1 1 1 1 1
0 1 1 1 1 1
10 1 1 1 1 1 1
12 1 1 1 1 1 1 1
4 1 1 1
21 1 1
26 1 1 1 1
23 1 1 1 1
14 1 1 1 1 1 1
27 1 1 1 1 1
1 1 1 1 1 1
13 1 1 1 1 1 1
11 1 1 1 1 1 1
17 1 1 1 1
19 1 1 1 1 1 1 1
5 1 1 1 1 1
3 1 1 1 1 1 1
28 1 1 1 1
9 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1
16 1 1 1 1 1 1 1 1
29 1 1 1
20 1 1 1 1 1 1
25 1 1 1 1 1 1 1
22 1 1 1 1 1 1
15 1 1 1 1 1

32. Stanfel (1985), size 30x50, 11 cells, efficacy 50.51

 31. Stanfel (1985), size 30x50, 12 cells, efficacy 59.66 
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A.2 Solutions with Singletons Allowed

With singletones.
0 2 5 1 3 6 4 1 2 4 3 5 6 0

2 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1
3 1 1 1 4 1 1 1 1
0 1 1 1 1 3 1 1 1 1
4 1 1 1 0 1 1 1 1

1. King and Nakornchai (1982), size 5x7, 2. Waghodekar and Sahu (1984),
3 cells, efficacy 75.00 size 5x7, 2 cells, efficacy 69.57

4 7 15 1 16 13 11 2 12 5 0 10 6 3 17 8 14 9 6 3 0 4 5 2 1 7
3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
2 1 1 1 1 1 5 1 1
4 1 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1

1 1 1 1 1 1 1 1

3. Seifoddini (1989), size 5x7, 2 cells, efficacy 79.59 4. Kusiak (1992), size 6x8,
 2 cells, efficacy 76.92

10 6 1 4 7 2 5 3 9 0 8 6 2 3 10 1 0 8 5 9 7 4
2 1 1 2 1 1 1 1
1 1 1 1 3 1 1
0 1 1 1 4 1 1 1
4 1 1 0 1 1 1
6 1 1 1 1 1 1 1 1 1
3 1 1 1 5 1 1 1
5 1 1 1 1 1 6 1 1 1

5. Kusiak and Chow (1987), size 5x7, 5 cells, 6. Boctor (1991), size 7x11,
4 cells, efficacy 70.83

0 1 5 3 2 4 8 6 9 7 10 11 6 2 19 3 17 5 9 14 0 4 11 7 16 13 10 12 8 1 15 18
0 1 1 1 1 7 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1
4 1 1 1 1 3 1 1 1 1 1 1 1
3 1 1 1 1 1 5 1 1 1 1 1 1 1
5 1 1 1 1 4 1 1 1 1 1 1 1
7 1 1 0 1 1 1 1 1 1 1 1 1 1
6 1 1 2 1 1 1 1 1 1 1 1 1

7. Seifoddini and Wolfe (1986), 8. Chandrasekharan and Rajagopalan (1986b),
size 8x12, 4 cells, efficacy 69.44   size 8x20, 3 cells, efficacy 85.25

0 7 9 13 17 2 14 1 3 6 8 4 10 18 16 15 5 19 12 11 0 1 2 7 3 4 6 9 5 8

7 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 3 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 6 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
2 1 1 1 1 1 1 1 1 1 1 1 4 1 1

5 1 1 1

7 1 1

9. Chandrasekharan and Rajagopalan (1986a), 10. Mosier and Taube (1985a),
size 8x20, 2 cells, efficacy 58.72 size 10x10, 5 cells, efficacy 75

0 5 13 3 8 6 9 11 10 1 2 4 7 12 14 12 10 20 4 3 22 17 6 8 7 11 9 0 15 5 13 14 2 1 21 18 19 16
2 1 1 1 1 13 1 1 1 1
3 1 1 1 1 1 1 1
8 1 1 1 1 2 1 1 1
5 1 1 1 1 1 10 1 1 1
6 1 1 1 1 1 9 1 1
0 1 1 1 1 0 1 1
9 1 1 1 1 1 11 1 1
4 1 1 1 1 1 12 1 1 1 1 1
7 1 1 1 1 1 5 1 1 1 1 1 1
1 1 1 1 1 1 8 1 1 1 1

7 1 1 1 1 1 1 1
4 1 1 1 1 1
6 1 1 1 1 1
3 1 1 1 1 1 1

11. Chan and Milner (1982), size 10x15, 12. Askin and Subramanian (1987), size 14x23, 6 cells,
size 10x15, 3 cells, efficacy 92.00 efficacy 75.00

5 12 10 23 3 20 2 6 17 7 13 21 4 15 9 8 14 11 0 16 22 18 19 1 14 17 5 8 20 2 21 9 6 23 19 3 4 10 0 11 15 13 16 1 18 12 22 7
0 1 1 3 1 1
13 1 1 1 1 6 1 1 1
9 1 1 7 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
10 1 1 1 1 12 1 1 1 1
12 1 1 1 1 1 8 1 1
11 1 1 4 1
5 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
8 1 1 1 1 1 13 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1
4 1 1 1 1 1 15 1 1 1 1 1 1
6 1 1 1 1 1 11 1 1 1 1 1 1 1
3 1 1 1 1 1 1 14 1 1 1

10 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1

13. Stanfel (1985), size 14x24, 7 cells, 14. McCormick et al. (1972), size 16x24, 7 cells,
efficacy 71.83 efficacy 53.76

9 19 16 0 15 13 7 10 23 25 14 20 5 6 21 1 11 3 29 8 17 22 26 24 28 12 2 27 18 4
1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
5 1 1 1 1
14 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
12 1 1 1 1 1 1
8 1 1 1 1 1 1

15. Srinivasan et al. (1990), size 16x30, 6 cells, efficacy 68.99

efficacy 60.87
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19 23 2 35 16 34 30 0 12 25 24 4 40 18 22 8 42 13 28 14 20 10 26 21 29 37 36 17 9 31 41 27 39 3 1 32 7 33 5 38 11 6 15
12 1 1
10 1 1 1 1 1 1
13 1 1 1 1
2 1 1 1 1 1
6 1 1 1
9 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1

16. King (1980), size 16x43, 8 cells, efficacy 57.53

0 23 2 3 5 1 4 7 11 16 14 9 8 10 15 17 13 20 12 6 19 21 18 22 8 0 6 15 5 11 3 17 4 10 14 13 2 7 16 1 18 9 19 12
8 1 1 0 1 1 1 1 1 1
7 1 1 1 1 1 1 1 17 1 1 1 1
16 1 5 1 1 1
15 1 3 1 1 1
6 1 1 1 1 8 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 18 1 1
5 1 1 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 15 1 1 1 1
17 1 1 2 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 10 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1
10 1 1 1 1 11 1 1 1 1 1 1
13 1 1 1 4 1 1 1
12 1 1 1 1 1 14 1 1 1 1 1
9 1 1 1 19 1 1 1 1 1
1 1 9 1 1 1 1 1
0 1 1 1 13 1 1 1 1 1

12 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

17. Carrie (1973), size 18x24, 9 cells, 18. Mosier and Taube (1985b), size 20x20,
efficacy 57.73 5 cells, efficacy 43.45

0 14 10 1 9 16 6 8 7 3 19 15 21 2 11 13 4 5 12 20 22 18 17
5 1 1 1 1 1
2 1 1 1 1 1 1 1
4 1 1 1 1 1
17 1 1 1 1
0 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1
6 1 1 1
9 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 1 1
19 1 1 1 1 1
3 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
18 1 1 1
10 1 1
15 1 1 1 1 1
1 1 1 1 1
16 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1

19. Kumar et al. (1986), size 20x23, 7 cells, efficacy 50.81

18 25 7 21 13 27 3 10 8 29 5 31 20 4 28 2 22 14 16 24 19 0 11 12 30 6 9 23 17 26 1 32 15 33 34
19 1 1 1 1
5 1 1 1 1 1 1 1
9 1 1 1 1 1 1
8 1 1 1 1 1
18 1 1 1 1 1 1 1
11 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1
0 1 1 1 1 1 1
2 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
12 1 1 1 1
17 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1

 20. Carrie (1973), size 20x35, 5 cell, efficacy 78.40

2 16 14 0 19 28 4 20 3 5 27 29 32 10 8 11 12 6 23 9 30 26 1 7 18 25 21 22 13 15 33 24 31 34 17
2 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
11 1 1 1 1 1 1
18 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
12 1 1 1 1
17 1 1 1 1 1 1 1
3 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1
8 1 1 1 1 1 1
19 1 1 1 1 1
4 1 1 1 1 1
9 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21. Boe and Cheng (1991), size 20x35, 5 cells, efficacy 58.38
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5 6 19 28 39 1 22 11 23 30 33 10 14 21 12 13 9 34 35 15 8 32 16 0 3 26 4 29 25 17 2 24 31 37 7 18 20 38 36 27
9 1 1 1 1 1
8 1 1 1 1 1
16 1 1 1 1 1
19 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
4 1 1 1 1 1 1
10 1 1 1 1 1 1
18 1 1 1 1 1 1
21 1 1 1 1 1
0 1 1 1 1 1
12 1 1 1 1 1
20 1 1 1 1 1
11 1 1 1 1 1 1
7 1 1 1 1 1 1
17 1 1 1 1 1 1
5 1 1 1 1 1 1
14 1 1 1 1 1 1
23 1 1 1
13 1 1 1
22 1 1 1
6 1 1 1
15 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1

22. Chandrasekharan and Rajagopalan (1989), size 24x40, 7 cells, efficacy 100.00

16 32 8 15 0 23 22 33 14 1 10 11 30 29 25 4 26 3 17 24 2 31 35 12 9 34 21 13 27 36 7 38 18 20 37 19 28 5 6 39
20 1 1 1 1 1
12 1 1 1 1 1
21 1 1 1 1 1
0 1 1 1 1 1
19 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1
17 1 1 1 1 1 1
7 1 1 1 1 1 1
11 1 1 1 1 1 1 1
5 1 1 1 1 1 1
23 1 1 1
13 1 1 1
6 1 1 1
22 1 1 1
4 1 1 1 1 1 1
1 1 1 1 1 1
18 1 1 1 1 1 1
10 1 1 1 1 1 1
15 1 1 1 1 1 1 1
3 1 1 1 1 1 1
9 1 1 1 1 1
8 1 1 1 1
16 1 1 1 1 1 1

23. Chandrasekharan and Rajagopalan (1989), size 24x40, 7 cells, efficacy 85.11

31 24 2 13 34 21 9 12 35 39 19 5 28 6 8 16 32 0 15 29 3 26 17 25 4 22 23 1 10 30 33 11 14 36 27 38 18 37 20 7
23 1 1 1
13 1 1 1 1
22 1 1 1
6 1 1 1
10 1 1 1 1 1
1 1 1 1 1 1 1
4 1 1 1 1 1 1
18 1 1 1 1 1 1 1
8 1 1 1 1 1
9 1 1 1 1
16 1 1 1 1 1
0 1 1 1 1 1
20 1 1 1 1 1
21 1 1 1 1 1
12 1 1 1 1 1
5 1 1 1 1 1 1
11 1 1 1 1 1 1 1
7 1 1 1 1 1
14 1 1 1 1 1 1 1
17 1 1 1 1 1 1
2 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1
3 1 1 1 1 1 1

24. Chandrasekharan and Rajagopalan (1989), size 24x40, 7 cells, efficacy 73.51

0 16 15 17 26 3 29 25 4 32 8 24 31 2 30 28 6 12 13 9 35 34 21 1 33 11 22 14 23 5 19 38 39 18 7 27 36 10 37 20
12 1 1 1 1 1
21 1 1 1 1
7 1 1 1 1 1 1
11 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
5 1 1 1 1 1
17 1 1 1 1 1 1
0 1 1 1 1 1
20 1 1 1 1 1 1
13 1 1 1 1
6 1 1 1
22 1 1 1
23 1 1 1
16 1 1 1 1 1
1 1 1 1 1 1
18 1 1 1 1 1 1
10 1 1 1 1 1 1
4 1 1 1 1 1 1 1
2 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1
9 1 1 1 1
8 1 1 1 1 1
15 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1

25. Chandrasekharan and Rajagopalan (1989), size 24x40, 11 cells, efficacy 53.29
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30 16 28 6 2 31 8 32 21 34 9 12 35 26 13 22 33 1 11 14 37 3 17 4 25 29 36 7 20 18 23 19 15 0 10 24 27 5 39 38
16 1 1 1 1 1
23 1 1 1 1
22 1 1 1 1
0 1 1 1 1 1
20 1 1 1 1 1
10 1 1 1 1
4 1 1 1 1 1 1
1 1 1 1 1 1
14 1 1 1 1 1 1
18 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1
5 1 1 1 1 1
17 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1
9 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1
21 1 1 1
6 1 1 1 1 1
13 1 1 1 1
3 1 1 1 1 1
8 1 1 1 1 1 1

26. Chandrasekharan and Rajagopalan (1989), size 24x40, 12 cells, efficacy 48.95

15 0 6 9 2 8 32 34 5 11 16 28 30 19 21 23 35 20 22 33 14 7 27 10 31 24 1 12 39 26 13 17 37 4 3 25 29 38 36 18
21 1 1 1 1
20 1 1 1 1 1
12 1 1 1 1 1
8 1 1 1 1 1
4 1 1 1 1 1 1
16 1 1 1 1 1
0 1 1 1 1 1
11 1 1 1 1 1 1
9 1 1 1 1 1
22 1 1 1 1 1 1
10 1 1 1 1 1
2 1 1 1 1 1
13 1 1 1 1 1
3 1 1 1 1 1
23 1 1 1 1
19 1 1 1 1 1 1 1
6 1 1 1 1 1
1 1 1 1 1 1
14 1 1 1 1 1 1
18 1 1 1 1 1 1 1
5 1 1 1 1 1
17 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1

27. Chandrasekharan and Rajagopalan (1989), size 24x40, 12 cells, efficacy 46.26 

14 17 18 1 2 0 4 21 7 12 3 13 15 9 6 8 23 16 26 25 20 19 22 5 24 11 10
14 1 1 1 1 1 1 1
17 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1
22 1 1 1 1
25 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
24 1 1 1 1

28. McCormick et al. (1972), size 27x27, 5 cells, efficacy 54.82 

32 0 6 1 4 15 14 11 3 5 10 7 31 8 35 9 37 29 21 23 17 18 19 20 13 30 27 24 22 16 36 12 28 25 26 2 45 33 34 42 41 39 40 38 44 43
27 1
26 1 1 1
13 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1
1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1
25 1 1
6 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1
22 1 1
14 1 1 1 1
21 1 1 1
24 1 1 1 1
23 1 1 1 1 1 1 1 1
11 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1
16 1 1 1
15 1 1 1 1

29. Carrie (1973), size 28x46, 11 cells, efficacy 47.23
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5 36 25 4 28 8 13 3 12 7 37 18 23 17 10 1 19 24 34 27 6 14 16 20 0 21 29 2 32 38 9 40 26 35 33 15 30 22 39 31 11
5 1 1
15 1 1
13 1 1 1 1 1
7 1 1 1 1 1
24 1
8 1 1 1
27 1 1 1
26 1 1
12 1 1 1
23 1
11 1 1 1 1 1 1 1 1
9 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1
14 1 1
28 1 1 1 1 1 1
19 1 1 1 1
29 1 1 1 1
18 1 1 1 1 1
0 1 1 1 1 1 1
1 1 1 1 1 1 1 1
10 1 1 1 1
25 1 1 1 1
16 1 1 1 1
17 1 1 1 1
6 1 1 1 1
21 1 1 1 1 1 1 1
20 1 1 1 1 1 1
22 1 1 1 1 1
2 1 1 1 1 1 1

30. Kumar and Vannelli (1987), size 30x41, 15 cells, efficacy 62.77

16 1 2 9 7 10 5 3 12 14 6 13 4 15 11 8 26 21 18 22 25 20 43 41 38 47 27 29 34 33 31 35 36 28 32 30 37 17 0 46 42 24 19 23 45 49 44 39 48 40
1 1 1 1 1
4 1 1 1 1 1 1
8 1 1 1 1 1
2 1 1 1 1 1
9 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
11 1 1 1 1 1 1
5 1 1 1 1 1 1
12 1 1 1 1 1
6 1 1 1 1
13 1 1 1 1 1 1
15 1 1 1 1 1 1
29 1 1 1 1 1 1
23 1 1 1 1
17 1 1 1 1 1
19 1 1 1 1 1 1
21 1 1 1 1 1
20 1 1 1 1 1 1
22 1 1 1 1 1
18 1 1 1 1 1 1
0 1 1 1 1 1
3 1 1 1
10 1 1 1 1
27 1 1 1 1
16 1 1 1 1
14 1 1 1 1 1
25 1 1 1
28 1 1 1 1 1 1
26 1 1 1 1 1
24 1 1 1 1 1

 31. Stanfel (1985), size 30x50, 13 cells, efficacy 59.77 

2 10 1 11 6 5 25 4 28 26 38 34 31 43 18 47 30 24 22 23 20 8 42 21 16 45 36 46 14 33 12 37 19 17 9 13 39 3 15 44 32 41 0 40 7 48 35 27 49 29
12 1 1 1 1 1 1 1
4 1 1 1
17 1 1 1 1
19 1 1 1 1 1 1 1
15 1 1 1 1 1
29 1 1 1
22 1 1 1 1 1 1
20 1 1 1 1 1 1
13 1 1 1 1 1 1
11 1 1 1 1 1 1
28 1 1 1 1
0 1 1 1 1 1
3 1 1 1 1 1 1
5 1 1 1 1 1
9 1 1 1 1 1 1 1 1
21 1 1
23 1 1 1 1
25 1 1 1 1 1 1 1
26 1 1 1 1
1 1 1 1 1 1
14 1 1 1 1 1 1
27 1 1 1 1 1
7 1 1 1 1 1 1
2 1 1 1 1 1 1
24 1 1 1 1 1 1 1
10 1 1 1 1 1 1
8 1 1 1 1 1 1
6 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1

32. Stanfel (1985), size 30x50, 14 cells, efficacy 50.83
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