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Preface

The past decades have seen the continuous appearance of accounts on mesoscopic
transport owing to the ever increasing range of theoretical and experimental
advances in the field. It is thereby challenging to present novel aspects of electronic
nanostructure physics while still leading the reader coherently from fundamental
concepts and methods through to their current application in an accessible and self-
contained manner. A feasible strategy may then be to follow a path through the
layers of acquired knowledge dictated by a narrowed perspective under a specific
applicational aim. In the present Lecture Notes we have attempted to fulfill such
a task, covering the theoretical treatment and computation of electronic quantum
transport from the perspective of two-dimensional ‘billiard’ systems, oriented
by the aim to explore the controllability of their magnetotransport properties.
Emphasis is placed on illuminating the implications of confined scattering between
terminals for the general theoretical treatment and for the mechanisms underlying
the response of such transport devices. The main message is then that, based on
universal phenomena such as multiple wave interference, electrostatic collimation,
and magnetic deflection or phase modulation, efficient magnetotransport control can
be achieved in simple setups defined by the nonuniversal property of their geometry.

Starting out with a top-bottom description of mesoscopic transport at semicon-
ductor interfaces, we address the conceptual as well as technical peculiarities arising
from billiard-type confinement and focus on the ingredients needed for conductance
control. A thorough account is given on the efficient numerical computation of the
electronic propagator in the scattering system with a technique particularly suitable
for the structures to be studied. The rest of the book is devoted to the identification
of magnetically induced mechanisms enabling electronic current controllability
through their interplay with the confinement geometry. The purpose is to provide
a pedagogical presentation of both the theoretical framework and computational
approach in a manner adapted to open billiard systems, and to discuss the arising
phenomena with magnetotransport control as a vehicle.

If our purpose is even partially fulfilled, it is because of the contribution and
support of several colleagues and friends. In particular, we have enjoyed helpful and
inspiring discussions with F.K. Diakonos, S. Rotter, F. Dolcini, and P. Giannakeas,
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among others. Special thanks go to D. Buchholz, who pioneered the computational
aspects of the presented material and with whom the ideas on magnetotransport
control were partially initiated. Finally, we are indebted to A.V. Zambetaki and S.I.
Mistakidis for their critical reading of the manuscript.

Hamburg, Germany Christian V. Morfonios
March 31, 2016 Peter Schmelcher
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Chapter 1
Introduction

All knowledge degenerates into probability.
— David Hume

A Treatise of Human Nature, 1738

When writing that “all knowledge degenerates into probability”, eighteenth century
philosopher David Hume could barely have anticipated to what literal extent this
statement would be carried two centuries later with the establishment of quantum
theory in the description of nature. The claim as such, expanded beyond its original
context as the epitome of empiricism, indeed applies to what has become the
standard concept by which the realm of the microscopic is approached. Regardless
of its interpretation as a fundament of nature or as an emergence of still obscure
origin, it is the inherent probability of events which remains deterministically
accessible at scales where particles reveal their wavy self—even if empirical
ability to sense physical phenomena has been pushed to extreme accuracy. The
probabilistic character of a system’s behavior immediately brings the question of its
controllability into a very specific dichotomy: Absolute certainty about a property
prior to its measurement is achieved only by forcing the associated probability to
the limit of zero or unity.

1.1 Electron Waves at the Nanoscale

Although ubiquitously desirable in science, controllable system response is of
particular relevance in the field of electronic transport in fabricated semiconductor
nanostructures. Here, the property to be controlled is the electronic flow between
the electrodes attached to an effectively two-dimensional region of nanoscale
confinement. Such devices are usually electrostatically defined by nanoscale pat-
terned metallic gates on top of a semiconductor heterostructure junction where
electrons have been restricted to move forming an effectively two-dimensional

© Springer International Publishing Switzerland 2017
C.V. Morfonios, P. Schmelcher, Control of Magnetotransport in Quantum Billiards,
Lecture Notes in Physics 927, DOI 10.1007/978-3-319-39833-4_1
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2 1 Introduction

free electron system. The size of a typical device is large enough to treat the
surrounding crystal lattice as continuous, but small enough for the quantum features
of the transported electrons to become important or even dominate the system
response. In this mesoscopic regime, where the electronic De Broglie wavelength
is comparable to the size of the confinement, the system can be treated in the
framework of scattering theory, as applied to waves propagating coherently within
given geometrical constraints provided that inelastic processes are suppressed.
Probability in transport accordingly enters in the form of transition rates from
ingoing to outgoing waves in the presence of multiple electrode terminals. This
identification of transmission probabilities as the essential component of electronic
conductance is due to the pioneering work of Landauer [1] and Büttiker [2] and
has since become a successful conceptual and technical basis in treating quantum
coherent transport as well as modeling decoherence processes [3, 4]. Vanishing and
maximal current flow between two terminals is here translated to a transmission
probability of zero and unity, respectively, at the Fermi energy of the incoming
electrons. Given the underlying theoretical description of transport, the challenge
posed here is to identify, understand and ultimately manipulate the mechanisms
which may enable its controllability.

Though simple and in many ways intuitive, the Landauer-Büttiker picture of
mesoscopic transport was far from obvious when proposed, owing to the non-
equilibrium situation of current flow as well as the complications added by many-
body interactions in actual experimental settings. An important test of the theory
was the experimental confirmation of the quantized conductance in narrow quasi-
one-dimensional channels by Wharem et al. in 1988 [5], repeated and refined later in
shorter nanoscale constriction (so-called quantum point contacts) [6]. Relying on the
simple geometry of these systems and the ballistic transport achieved, transmission
is mediated by practically decoupled channels leading to characteristic plateaus in
the measured conductance. Regarding current control, in such a setting the charge
flow current can be switched on and of by tuning the gates defining the quantum
point contacts. This requires, however, a real-time gate operation on local scale to
alter the electrostatic confinement of the device and is further subject to geometrical
restrictions in applying the gate voltages. Moreover, deviations from the ideal
plateaus is generally caused by imperfections such as impurity scattering [7], and
the observed quantization steps may also break down depending on the confining
potential configuration [8]. As shown already in [5, 6], another possibility to control
the current is to apply a global magnetic field which successively depopulates the
magnetoelectric subbands. The practical disadvantage is here that a very high field
strength is needed to raise the Landau subbands through the Fermi level. Apart
from these considerations, it is clear that the suppression of current is here forced
essentially by imposing electrostatic or magnetic energy barriers on the electron
flow. An alternative route to nanoelectronic current control is to exploit the wave
dynamics in the device determined by weaker magnetic fields in combination with
a confinement potential which in general couples individual scattering states.
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1.2 Open Quantum Billiards

Prominent candidate elements for such a type of conductance control are so called
open electron ‘billiards’ [9–15]. As the name suggests, these are two-dimensional
structures which confine ballistically moving particles within a region of space of
certain geometry, with openings along their boundary through which the particle
can escape. In their classical version, the dynamics of a point particle is defined
by the shape of the boundary, and so the phase space of trajectories in billiards
have served as a paradigm in studying nonlinear dynamics and chaos [16]. Such
constructs would be of little relevance to electronic transport devices if it were not
for the immense technological progress in nanoscale fabrication techniques over the
last few decades: Nowadays, electrons can be restricted with very high accuracy to
move along a two-dimensional semiconductor interface [17], and the confinement
potential defining an electron billiard can be patterned to almost arbitrary profile
and well below the electronic mean free path and coherence length [18–21]. In
other words, the idealized billiard potential can practically be drawn directly in the
laboratory.

Quantum billiards, in which moving point particles are replaced by waves, have
thereby been used to model nanoscale transport devices and set the grounds for the
theoretical description and experimental investigation of coherent transport in the
mesoscopic regime. They are also widely known as effectively zero-dimensional
quantum ‘dots’ (or even ‘artificial atoms’[22]), though we will mostly use the term
‘billiard’ which emphasizes their spatial extent in the form of 2D cavities. It should
be pointed out that, in the absence of magnetic fields and inelastic processes, the
stationary scattering framework is formally equivalent for matter and light waves;
many aspects of transmission are therefore investigated in microwave billiards
rather than electron billiards, since the experimental setup is incomparably easier
to construct and free from the inherent imperfections of solid state. Motivated by its
classical counterpart, this unified quantum billiard model provides a unique platform
to explore the quantum-to-classical crossover in the form of quasi-bound states [23]
and wave function scars [24–26], the role of integrability in transmission statistics
[27, 28] and shot noise [29] as well as signatures of quantum chaos [16, 30–32]. At
higher energies the relation of wave patterns to classical trajectories and the resulting
transmission spectra are explained successfully using semiclassical techniques
[31, 33, 34] which provide valuable insight into the dynamics taking place. Billiard
systems are also convenient for the study of the ubiquitous phenomenon of Fano
interference [35, 36], because of its clear connection to geometrically defined quasi-
bound states [9] whose coupling to the leads can vary the spectral width from
isolated Fano peaks [37–42] to the overlapping regime [12, 43, 44]. In the latter
case the effect of resonance trapping [45–48] can be induced where the widths of
Fano resonances bifurcate [46] as a function of system parameters, meaning that
lineshapes of vanishing width can be superimposed on broader resonances. In the
opposite extreme, broad resonances overlap and the interference of the associated
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strongly lead-coupled states in general lead to a highly irregular transmission profile
in varying energy.

A promising aspect of electron billiards with respect to conductance control is the
drastic modification of their transport properties by an externally applied magnetic
field [49–55], and they therefore dominate the intense investigation of coherent
magnetotransport in the mesoscopic regime, where quantum interference meets and
overlaps with the notion of oriented paths. Aharonov-Bohm (AB) interference [56]
at weak magnetic fields is generalized from its occurrence in ring-shaped devices
[57–59] to billiard setups [60, 61] where the interference of spatially extended states
at the lead openings give rise to multimode transmission oscillations in varying
field strength. The combination of quantum dots or wires with ring geometries into
hybrid structures has been used to study the intricate interplay between Fano and
AB interference [62–66]. At intermediate field strengths the electronic dynamics is
dominated by the Lorentz deflection which becomes particularly important in the
case of multiterminal structures [67–69] where the Onsager reciprocity relations
[70] take effect [2]. For strong magnetic fields, where well spaced Landau levels
occupy the bulk, transport is mediated by edge states [54, 71] localized at the
billiard boundary and multiterminal transmission is determined by the device
topology and remains largely unaffected by the potential landscape caused, e. g.
by impurities. An early manifestation of edge state transport was the quantum Hall
effect [72, 73], an extraordinary example of precision in conductance quantization.
Since edge states are essentially of one-dimensional nature, their interference may
lead to well defined AB oscillations in structures where they are caused to couple
among each other, as by diffraction at sharp lead openings [54]. The above three
regimes of magnetotransport are in general not separated but combine depending
on the confining geometry and the lead attachment which may lead to enhanced
irregularities in the conductance profile. The above magnetically related phenomena
acquire an additional twist when the electronic spin is taken into account, and
‘spintronics’ has developed into a field of its own [74]. However, the small Zeeman
splitting in weak magnetic fields does not alter the overall conductance much at
finite temperatures; Spin-orbit coupling is also relatively weak in conventional
semiconductors like GaAs and is usually neglected for transport of conduction band
electrons [75].

Assembling individual dots into linear arrays via coupling QPCs gives rise to
new features such as the precursor of bands in the transmission spectra [76] and
magnetically induced Bragg scattering [77], resonant transmission and reflection
[50] and the formation of coupling-induced bipartite states [78], depending on
the type and strength of coupling [79]. Lateral arrays of dots or antidots (closed
areas expelling instead of confining electrons) lead to even more complex band
structures [80, 81] and interesting properties in the presence of magnetic fields
such as alternative versions of the quantum Hall effect [82] modulated by AB
interference [83]. Connected dots also reveal the importance of electron-electron
interactions in the observed response [84–88] which may lead to Coulomb blockade
[89, 90] of electron transport for sufficiently isolated dots. For strongly lead-coupled
systems interactions are otherwise widely treated on a mean field level through
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self-consistent calculations [91, 92]. Together with the finite potential of the gates
defining the device, they lead to an effective softening of the electron billiard
boundaries [93] which is taken into account in more realistic simulations [8, 94].
The dynamics within soft-wall billiards may correspondingly show pronounced
differences with respect to the hard-wall counterpart, such as stabilization of
particular trajectories [50, 95], suppression (quenching) of the Hall resistance [94]
and enhanced occurrence of sharp Fano resonances [14].

1.3 Taming Wave Propagation in the Deep Quantum Regime

From the above—by no means exhaustive—listing of theoretical and experimental
progress in the field of quantum transport it becomes clear that a large diversity of
phenomena are available with a remarkable impact on the transmission in billiard
systems. It is plausible to think of these effects as a toolkit to control conductance
in nanostructures: Once the corresponding mechanism in each case is understood
and verified, it can in principle be used to manipulate the transport behavior under
given circumstances. In most cases, however, the findings show a non-trivial energy
dependence of transmittivity as a result of the complex nature of wave propagation.
Indeed, a statistical treatment of generic transport devices reveals the manifestation
of universal conductance fluctuations [96], both in varying Fermi energy and applied
magnetic field, as a result of elastic impurity scattering at low temperatures. Another
consequence of wave interference in disordered structures is the phenomenon of
weak localization [97, 98] which is lifted by a magnetic field. In fact, localization
effects [99–102] and conductance fluctuations [11, 32] are also present in a large
variety of ballistic open quantum dot systems. Such universal characteristics are
well described in the framework of random matrix theory (RMT) [103, 104] and by
semiclassical methods [31, 103] where a distinction between symmetry classes and
integrability is concluded.

In view of this inherent irregularity of conductance characteristics for generic
systems, the quest for transport controllability inevitably finds its way to the
exploitation of non-universal properties based on specific device design. This
is in accordance with the fact that, apart from the generic effect of disorder
and chaotic scattering, sample-specific properties are largely determined by the
system geometry and the placement of attached leads. An illuminating example
is the use of Fano interference in structures with certain geometrical features as
a current switching mechanism [62, 105], tunable by a magnetic field [63, 106] or
by a controllable coupling to continuum [37] or resonant [42] states. Indeed, an
isolated Fano resonance lineshape reaches the two desired limits of zero and unit
transmission in a single-channel scattering setting. Resonant control of transport
has also been proposed in terms of cascading of transmitting or reflecting states
in billiard arrays [50, 77]. Nevertheless, resonant effects are in general sensitive to
energy variations and prone to attenuation by imperfections in the setup. Moreover,
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they are eventually washed away from the conductance profile due to thermal
contribution of neighboring states around the Fermi level at finite temperatures.

With respect to multiterminal conductance control, there have been proposals
utilizing window-coupled quantum waveguides as an electronic directional coupler
[107–111], also by use of magnetic fields [112–115], or three-terminal junctions
[116]. For example, in [112] the electronic flow can be altered by modifying the
window opening and thereby changing the coupling of the scattered wave to the
outputs, and then switched by a magnetic field. Again, however, such setups are
based on resonant-like features or show strongly fluctuating transmission, and in
general feature a relatively small directivity. In Bertoni et al. [107] the operation is
performed on ingoing Gaussian wave packets and thus of little applicability [112] in
a stationary picture of transport. Moreover, the magnetic fields used must typically
be strong enough to force the electrons into the edge states regime [112, 114, 115]
or raise magnetic barriers [113].

A remarkable demonstration of transport control is given in a recent work by
Rotter et al. [117] where incoming waves can be completely transmitted to the
output terminal following exclusively classical trajectories. These non-universal
states have definite Wigner-Smith delay times and are accessed as exceptional
points in parameter space away from RMT predictions. Their incoming momentum
components are determined via a systematic protocol and belong to relatively high
channels in the attached leads in order to resolve classical phase space. Since the
constructed waves behave like particles (with the deterministic destiny to escape
through the input or output lead), the transmission equals zero or unity. Although
the approach could be envisaged as a means of beam-like classical wave propagation
[117], its application to electronic devices may be considered challenging since it
would demand the selective population of reservoir-coupled channels.

In the applications to be presented here, the aim is to reach the same limits of zero
and unity in non-resonant transmission, though in the deep quantum regime, that
is, in the ground transversal mode of the attached leads, at electronic wavelengths
comparable to the geometrical characteristics of the transport device. The states at
such low energy are in general spatially extended, only occasionally resembling
classical counterparts, and the challenge is to suppress the otherwise ubiquitous
current fluctuations mentioned above. We investigate the possibility to achieve a
smooth background transmission spectrum in appropriately designed billiard setups
and its magnetically induced switching between zero and one.

As outlined below, efficient magnetic control of coherent transport in the linear
response regime and at low temperatures is demonstrated numerically and analyzed
by means of different underlying mechanisms. For a linear array of hard-wall
elongated billiards we exploit the geometry to induce destructive interference
between quasi-degenerate states which are phase-modulated by a weak field into
maximal transmission, in a broad energy range. A soft-wall potential is then used
in a similar geometry to create energetically persistent collimated or backscattered
motion. Here the deflecting property of the field is combined with the decoupling
of quasi-bound states from the leads, resulting in totally suppressed conductance
over the whole first channel at zero field which is switched to its maximal value
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by turning on the field. The challenge of efficient conductance control is increased
in multiterminal devices since scattering states in general couple to all leads and
thereby for any lead pair the other leads act like sink s for the probability flux. Here,
efficient directional conductance is demonstrated for a four-terminal setup through
the selective coupling of scattering states to different lead pairs at zero field and their
switching by weak or strong fields. Transport control is in total achieved by simple
means utilizing the interplay of the effect of the magnetic field with the specific
geometry and potential design of the system. In all cases a relative robustness of
the switching effect against small variations in the confining potential is shown,
certifying the functionality of the devices as nanoelectronic circuit elements.

1.4 The Necessity of Efficient Computational Techniques

The pursuit of conductance controllability in terms of non-universal mechanisms
as described above is tightly connected to the ability of performing extensive
investigations of device setups in a highly resolved parameter space of varying
potential configurations, input energy and applied magnetic field strength. In
particular, the needed flexibility in geometry variations and lead positioning renders
necessary the use of equally flexible as well as powerful numerical techniques to
arrive at the quantities of interest. A particular computational technique which has
been established as a standard in quantum transport simulations due to its conceptual
simplicity and numerical robustness is the recursive Green function (RGF) method
[118]. Based on the Green function approach to scattering in confined geometries,
it uses a recursion scheme to compute the relevant part of the single-particle
propagator from an effective tight-binding Hamiltonian where the effect of the
leads attached to the device (open boundary conditions) is accounted for by non-
Hermitian self-energy matrices. Since its first formulation more than three decades
ago [98, 119, 120], it has been refined and extended in various ways depending on
the physical situation at hand, as briefly reviewed below in Chap. 5. A particular
advantage is the possibility to perform the recursion on the level of subsystems
of a composite structure by effectively solving a matrix Dyson equation [121],
thereby reducing significantly the computational cost—especially when the system
can be decomposed into partly repeated sections, as is the case for the billiard
systems studied here. Rotter et al. [54, 122] specialized this technique to the case
of connected modules of simple (analytically solvable) regular geometries, thereby
achieving transport calculations at very high energies and field strengths. Another
version of remarkable flexibility is the ‘knitting’ algorithm by Kazymyrenko et al.
[123] where, conversely, single sites are added one by one to build the complete
device structure. We here develop an extended RGF scheme which combines these
two approaches by connecting multiterminal modules, though of arbitrary form, into
composite structures of arbitrary topology, with a block-reordered version of the
standard RGF at the core computing the single-module propagators. This enables the
rapid investigation of a large diversity of device structures with continuously varying
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geometry parameters in highly resolved energy and field variation, making the
method tailor-made for system optimization with respect to transport controllability.

1.5 Outline of the Book

Each chapter of the book starts with an introductory passage which motivates its
content and provides its main highlights. The structure and content of the chapters
are as follows:

In Chaps. 2, 3, and 4 a relatively self-contained account on the theory of
coherent electronic transport in mesoscopic systems is provided, adapted to the
needs of the present analysis and discussed in the context of quantum billiards.
The presentation follows a top-down order: Chap. 2 introduces the basic principles
of nanoscale semiconductor structures and the circumstances under which two-
dimensional open electron billiards are realized, within the approximations used in
following applications. Chapter 3 reviews the Landauer-Büttiker picture of transport
where conductance is deduced from transmission, clarifying the concept of electron
reservoirs and the connection of multiterminal devices to wave scattering. Chapter 4
presents the Green function formalism pertaining to the scattering matrix and other
quantities relevant to transport, with emphasis on the considerations applicable to
lead-coupled systems. It closes with a discussion of the main interference effects
encountered in the setups to be studied.

Chapter 5 is devoted to the numerical computation of the Green function within a
tight-binding effective Hamiltonian approach. We here develop an extended version
of the recursive Green function (RGF) technique which enables the assembly of
multiply connected composite structures from given subsystems, with arbitrarily
positioned multiple leads. It is based on a block-Gaussian elimination scheme
for solving the matrix Dyson associated with the inter- and intra-connection of
subsystems. The subsystem propagators are found using a block-reordered RGF
method which enables a selective computation of local quantities (state and current
densities) in addition to global ones (transmission). In combination, the two methods
provide a powerful tool to study structures of arbitrary geometry and topology with
high flexibility.

In the following Chaps. 6, 7, and 8, the above theoretical framework and
computational approach are applied to demonstrate possibilities of conductance
control via the interplay of geometry and magnetic field in selected setups. Chapter 6
explores the magnetotransport through arrays of two-terminal oval-shaped quantum
billiards and demonstrates their functionality as a conductance switch in the linear
response regime. The effect relies on a systematic suppression of the field-free
transmission due to destructive interference of lead-coupled states, which is lifted
by a weak phase-modulating field. Resonances in the coupled-dot system, whose
splitting saturates into banded spectra for large dot number, are analyzed in terms
of characteristic local density distributions. Present already for a single quantum
dot, the conductance switching ratio is drastically enhanced for a double-dot system
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and proves robust against remote impurity disorder at low temperatures. Chapter 7
shows how the use of soft-wall boundaries in elongated billiards can be combined
with orbital magnetism to achieve efficient current control in varying Fermi energy.
The underlying mechanism is the energy persistent backscattering of magnetically
deflected states which are geometrically rescaled by the soft walls, in combination
with the collimation of forward propagation at zero field. In this manner, the
omnipresent conductance fluctuations at low energies are suppressed in favor of
a smooth and tunable transport due to the complete decoupling of quasi-bound
states from the leads. The robustness of the switching functionality is certified
by variations in the shape and potential profile of the billiard. Chapter 8 takes
a challenging step to investigate the possibility of magnetoconductance control
in multiterminal electronic devices. A semi-elliptic four-terminal billiard is here
chosen, where the key property is the separation of scattering states which are
strongly coupled to different pairs of leads in the field-free case. The transmitted
electrons are thereby mediated by rotator and librator modes which are guided and
focused by the convex boundary, respectively. By tuning the magnetic field strength,
the ingoing electron waves are then directed to selected leads via extended Lorenz-
deflected states or edge states. The device thus functions as a unique, magnetically
operated, directional current junction.

Chapter 9 summarizes the topics presented in these Lecture Notes, concludes on
the presented aspects of current control in mesoscopic devices and points at open
perspectives.

References

1. R. Landauer, Electrical resistance of disordered one-dimensional lattices. Philos. Mag.
21(172) (1970)

2. M. Büttiker, Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57(14), 1761 (1986)
3. S. Datta, Steady-state quantum kinetic equation. Phys. Rev. B 40(8), 5830 (1989)
4. S. Datta, A simple kinetic equation for steady-state quantum transport. J. Phys. Condens.

Matter 2(40), 8023 (1990)
5. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko,

D.C. Peacock, D.A. Ritchie, G.A.C. Jones, One-dimensional transport and the quantisation
of the ballistic resistance. J. Phys. C Solid State Phys. 21(8), L209 (1988)

6. B. J. van Wees, L.P. Kouwenhoven, E.M.M. Willems, C.J.P.M. Harmans, J.E. Mooij, H. van
Houten, C.W.J. Beenakker, J.G. Williamson, C.T. Foxon, Quantum ballistic and adiabatic
electron transport studied with quantum point contacts. Phys. Rev. B 43(15), 12431 (1991)

7. J.C. Chen, Y. Lin, K.T. Lin, T. Ueda, S. Komiyama, Effects of impurity scattering on the
quantized conductance of a quasi-one-dimensional quantum wire. Appl. Phys. Lett. 94(1),
012105 (2009)

8. J.A. Nixon, J.H. Davies, H.U. Baranger, Breakdown of quantized conductance in point
contacts calculated using realistic potentials. Phys. Rev. B 43(15), 12638 (1991)

9. J.P. Bird, R. Akis, D.K. Ferry, A.P.S.D. Moura, Y. Lai, K.M. Indlekofer, Interference and
interactions in open quantum dots. Rep. Prog. Phys. 66, 583 (2003)

10. D.K. Ferry, A.M. Burke, R. Akis, R. Brunner, T.E. Day, R. Meisels, F. Kuchar, J.P. Bird, B.R.
Bennett, Open quantum dots—probing the quantum to classical transition. Semicond. Sci.
Technol. 26(4), 043001 (2011)



10 1 Introduction

11. R.G. Nazmitdinov, K.N. Pichugin, I. Rotter, P. Šeba, Conductance of open quantum billiards
and classical trajectories. Phys. Rev. B 66(8), 085322 (2002)

12. E.R. Racec, U. Wulf, P.N. Racec, Fano regime of transport through open quantum dots. Phys.
Rev. B 82(8), 085313 (2010)

13. A.F. Sadreev, E.N. Bulgakov, I. Rotter, Bound states in the continuum in open quantum
billiards with a variable shape. Phys. Rev. B 73(23), 235342 (2006)

14. B. Weingartner, S. Rotter, J. Burgdörfer, Simulation of electron transport through a quantum
dot with soft walls. Phys. Rev. B 72(11), 115342 (2005)

15. I.V. Zozoulenko, K. Berggren, Quantum scattering, resonant states, and conductance fluctua-
tions in an open square electron billiard. Phys. Rev. B 56(11), 6931 (1997)

16. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990)
17. R. de Picciotto, H.L. Stormer, A. Yacoby, L.N. Pfeiffer, K.W. Baldwin, K.W. West, 2D-1D

coupling in cleaved edge overgrowth. Phys. Rev. Lett. 85(8), 1730 (2000)
18. V.I. Borisov, V.G. Lapin, V.E. Sizov, A.G. Temiryazev, Transistor structures with controlled

potential profile in one-dimensional quantum channel. Tech. Phys. Lett. 37(2), 136 (2011)
19. S.S. Buchholz, S.F. Fischer, U. Kunze, D. Reuter, A.D. Wieck, Nonlocal Aharonov–Bohm

conductance oscillations in an asymmetric quantum ring. Appl. Phys. Lett. 94(2), 022107
(2009)

20. A. Fuhrer, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Transport
properties of quantum dots with steep walls. Phys. Rev. B 63(12), 125309 (2001)

21. T. Heinzel, R. Held, S. Lüscher, K. Ensslin, W. Wegscheider, M. Bichler, Electronic properties
of nanostructures defined in Ga[Al]As heterostructures by local oxidation. Physica E 9(1), 84
(2001)

22. R.C. Ashoori, Electrons in artificial atoms. Nature 379(6564), 413 (1996)
23. H. Schomerus, J. Tworzydło, Quantum-to-classical crossover of quasibound states in open

quantum systems. Phys. Rev. Lett. 93(15), 154102 (2004)
24. R. Akis, D.K. Ferry, J.P. Bird, Wave function scarring effects in open stadium shaped quantum

dots. Phys. Rev. Lett. 79(1), 123 (1997)
25. E.J. Heller, Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of

periodic orbits. Phys. Rev. Lett. 53(16), 1515 (1984)
26. T. Takami, Semiclassical interpretation of avoided crossings for classically nonintegrable

systems. Phys. Rev. Lett. 68(23), 3371 (1992)
27. S. Rotter, F. Aigner, J. Burgdorfer, Statistics of transmission eigenvalues in two-dimensional

quantum cavities: ballistic versus stochastic scattering. Phys. Rev. B 75(12), 125312 (2007)
28. A.F. Sadreev, Current statistics for transport through rectangular and circular billiards. Phys.

Rev. E 70(1), 016208 (2004)
29. F. Aigner, S. Rotter, J. Burgdörfer, Shot noise in the chaotic-to-regular crossover regime. Phys.

Rev. Lett. 94(21), 216801 (2005)
30. K. Berggren, A.F. Sadreev, A.A. Starikov, Crossover from regular to irregular behavior in

current flow through open billiards. Phys. Rev. E 66(1), 016218 (2002)
31. P. Jacquod, R.S. Whitney, Semiclassical theory of quantum chaotic transport: phase-space

splitting, coherent backscattering, and weak localization. Phys. Rev. B 73(19), 195115 (2006)
32. C.M. Marcus, A.J. Rimberg, R.M. Westervelt, P.F. Hopkins, A.C. Gossard, Conductance

fluctuations and chaotic scattering in ballistic microstructures. Phys. Rev. Lett. 69(3), 506
(1992)

33. K. Richter, M. Sieber, Semiclassical theory of chaotic quantum transport. Phys. Rev. Lett.
89(20), 206801 (2002)

34. L. Wirtz, C. Stampfer, S. Rotter, J. Burgdörfer, Semiclassical theory for transmission through
open billiards: convergence towards quantum transport. Phys. Rev. E 67(1), 016206 (2003)

35. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124(6),
1866 (1961)

36. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev.
Mod. Phys. 82(3), 2257 (2010)



References 11

37. J. Fransson, M. Kang, Y. Yoon, S. Xiao, Y. Ochiai, J. Reno, N. Aoki, J.P. Bird, Tuning the
Fano resonance with an intruder continuum. Nano Lett. 14(2), 788 (2014)

38. J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M.A. Kastner, H. Shtrikman, D. Mahalu,
U. Meirav, Fano resonances in electronic transport through a single-electron transistor. Phys.
Rev. B 62(3), 2188 (2000)

39. S. Klaiman, N. Moiseyev, H.R. Sadeghpour, Interpretation of the Fano lineshape reversal in
quantum waveguides. Phys. Rev. B 75(11), 113305 (2007)

40. M. Mendoza, P.A. Schulz, R.O. Vallejos, C.H. Lewenkopf, Fano resonances in the conduc-
tance of quantum dots with mixed dynamics. Phys. Rev. B 77(15), 155307 (2008)

41. J.U. Nöckel, A.D. Stone, Resonance line shapes in quasi-one-dimensional scattering. Phys.
Rev. B 50(23), 17415 (1994)

42. S. Rotter, F. Libisch, J. Burgdörfer, U. Kuhl, H. Stöckmann, Tunable Fano resonances in
transport through microwave billiards. Phys. Rev. E 69(4), 046208 (2004)

43. A.I. Magunov, I. Rotter, S.I. Strakhova, Fano resonances in the overlapping regime. Phys.
Rev. B 68(24), 245305 (2003)

44. E. Persson, K. Pichugin, I. Rotter, P. Šeba, Interfering resonances in a quantum billiard. Phys.
Rev. E 58(6), 8001 (1998)

45. E. Persson, I. Rotter, H. Stöckmann, M. Barth, Observation of resonance trapping in an open
microwave cavity. Phys. Rev. Lett. 85(12), 2478 (2000)

46. I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems. J.
Phys. A Math. Theor. 42(15), 153001 (51pp) (2009)

47. P. Šeba, I. Rotter, M. Müller, E. Persson, K. Pichugin, Collective modes in an open microwave
billiard. Phys. Rev. E 61(1), 66 (2000)

48. P. Šeba, I. Rotter, M. Müller, E. Persson, K. Pichugin, Open microwave cavities. Physica E
9(3), 484 (2001)

49. N. Aoki, R. Brunner, A.M. Burke, R. Akis, R. Meisels, D.K. Ferry, Y. Ochiai, Direct imaging
of electron states in open quantum dots. Phys. Rev. Lett. 108(13), 136804 (2012)

50. R. Brunner, R. Meisels, F. Kuchar, R. Akis, D.K. Ferry, J.P. Bird, Draining of the sea of chaos:
role of resonant transmission and reflection in an array of billiards. Phys. Rev. Lett. 98(20),
204101 (2007)

51. D. Buchholz, P. Drouvelis, P. Schmelcher, Tunable transmission via quantum state evolution
in oval quantum dots. Europhys. Lett. 81(3), 37001 (2008)

52. V. Kotimäki, E. Räsänen, H. Hennig, E.J. Heller, Fractal dynamics in chaotic quantum
transport. Phys. Rev. E 88(2), 022913 (2013)

53. C. Payette, G. Yu, J.A. Gupta, D.G. Austing, S.V. Nair, B. Partoens, S. Amaha, S. Tarucha,
Coherent three-level mixing in an electronic quantum dot. Phys. Rev. Lett. 102(2), 026808
(2009)

54. S. Rotter, B. Weingartner, N. Rohringer, J. Burgdörfer, Ballistic quantum transport at high
energies and high magnetic fields. Phys. Rev. B 68(16), 165302 (2003)

55. I.V. Zozoulenko, A.S. Sachrajda, C. Gould, K. Berggren, P. Zawadzki, Y. Feng, Z. Wasilewski,
Few-electron open dots: single level transport. Phys. Rev. Lett. 83(9), 1838 (1999)

56. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory.
Phys. Rev. 115(3), 485 (1959)

57. D. Frustaglia, M. Hentschel, K. Richter, Quantum transport in nonuniform magnetic fields:
Aharonov-Bohm ring as a spin switch. Phys. Rev. Lett. 87(25), 256602 (2001)

58. O. Kalman, P. Foldi, M.G. Benedict, F.M. Peeters, Magnetoconductance of rectangular arrays
of quantum rings. Phys. Rev. B 78(12), 125306 (2008)

59. G. Timp, A.M. Chang, J.E. Cunningham, T.Y. Chang, P. Mankiewich, R. Behringer, R.E.
Howard, Observation of the Aharonov-Bohm effect for !c�>1. Phys. Rev. Lett. 58(26), 2814
(1987)

60. U. Sivan, Y. Imry, C. Hartzstein, Aharonov-Bohm and quantum Hall effects in singly
connected quantum dots. Phys. Rev. B 39(2), 1242 (1989)

61. Y. Wang, J. Wang, H. Guo, Magnetoconductance of a stadium-shaped quantum dot: a finite-
element-method approach. Phys. Rev. B 49(3), 1928 (1994)



12 1 Introduction

62. S. Jana, A. Chakrabarti, Aharonov-Bohm ring with a side-coupled atomic cluster: magneto-
transport and the selective switching effect. Phys. Rev. B 77(15), 155310 (2008)

63. K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Tuning of the Fano effect through a quantum
dot in an Aharonov-Bohm interferometer. Phys. Rev. Lett. 88(25), 256806 (2002)

64. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Fano resonance in a quantum wire
with a side-coupled quantum dot. Phys. Rev. B 70(3), 035319 (2004)

65. T. Nakanishi, K. Terakura, T. Ando, Theory of Fano effects in an Aharonov-Bohm ring with
a quantum dot. Phys. Rev. B 69(11), 115307 (2004)

66. Z.Y. Zeng, F. Claro, A. Pérez, Fano resonances and Aharonov-Bohm effects in transport
through a square quantum dot molecule. Phys. Rev. B 65(8), 085308 (2002)

67. M.R. Poniedziałek, B. Szafran, Magnetic forces and localized resonances in electron transfer
through quantum rings. J. Phys. Condens. Matter 22(46), 465801 (2010)

68. M.R. Poniedziałek, B. Szafran, Multisubband transport and magnetic deflection of Fermi
electron trajectories in three terminal junctions and rings. J. Phys. Condens. Matter 24(8),
085801 (2012)

69. B. Szafran, F.M. Peeters, Lorentz-force–induced asymmetry in the Aharonov-Bohm effect in
a three-terminal semiconductor quantum ring. Europhys. Lett. 70(6), 810 (2005)

70. L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405 (1931)
71. C.W.J. Beenakker, H. van Houten, Quantum transport in semiconductor nanostructures. Solid

State Phys. 44, 1 (1991)
72. K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the

fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45(6), 494 (1980)
73. R.B. Laughlin, Quantized Hall conductivity in two dimensions. Phys. Rev. B 23(10), 5632

(1981)
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Chapter 2
Electrons in Low-Dimensional Mesoscopic
Systems

In this chapter the basic principles of nanoscale semiconductor structures are
presented along with the circumstances under which quantum effects dominate the
properties of current-carrying electrons. Within this mesoscopic regime, the concept
of an ‘open electron billiard’ is introduced as a prototype, idealized nanoelectronic
transport device in which quantum coherence is maintained. Under the associated
approximations to the system Hamiltonian, we finally analyze the characteristics of
quantum states resulting from low-dimensional confinement.

2.1 Two-Dimensional Electron Systems

The constriction of freely moving electrons to a plane, and their further confinement
into desired geometric structures at the nanoscale, provide a unique platform for the
theoretical investigation and experimental observation of quantum effects. We now
briefly outline the basic ingredients which enable the realization of such systems
at the interface between semiconductor crystals. We make brief use of capitalized
notation R D .x; y; z/ � .r; z/ and K D .kx; ky; kz/ � .k; kz/ for three-dimensional
vectors, before separating out the planar vectors r and k of the actual 2D transport
system.

2.1.1 Band Structure and Effective Mass

The dynamics of electrons within solids is governed by their interaction with the
atoms of the crystal lattice and with all other electrons, and the determination of their
spectral properties and response to external forces constitute a complicated quantum
many-body problem. The essential electronic behavior is, however, successfully
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16 2 Electrons in Mesoscopic Low-Dimensional Systems

described in using effective potentials in a single-particle picture. In the presence of
the periodic crystal potential Vcr.R/ in a solid, electrons occupy Bloch eigenstates

�K.R/ D eiK�RuK.R/; (2.1)

labeled by the crystal momentum „K, where uK.R/ follows the periodicity of Vcr.
The corresponding energy levels arrange into bands En.K/, the form of the nth
band in a certain direction K being determined by the type of atoms in the solid
and their structure within the unit cell of the lattice. For intrinsic semiconductors,
the chemical potential � lies within the gap between the top EV of a (set of)
fully populated valence band(s) and the bottom EC of a (set of) empty conduction
band(s), so that there are no free charge carriers at low temperatures. Free carriers
are provided by doping the crystal with donor (acceptor) impurities which yield
available states within the gap close to EC (EV) and can thereby excite electrons
(holes) into the principal minimum (maximum) of the conduction (valence) band.
A ‘gas’ of electrons (or holes) is thus created, with motion along wave vectors
around the Fermi surface in the Brillouin zone. In Fig. 2.1a the band structure of
the semiconductor GaAs is shown together with its Brillouin zone (resulting from
its zincblende crystal structure), with focus on the direct primary band gap.

In the vicinity of a local band extremum .E0n;K
0/, the dispersion relation can be

described by a quadratic form

En.K/ D E0n C
„2
2

X

ij

M�1
ij .ki � k0i /.kj � k0j /; (2.2)

where M is the (inertial) effective mass tensor,

Mij D „2
�
@2En.K/
@ki@kj

��1
D „2

�
@vj

@ki

��1
; (2.3)

defined by equating the rate of change in crystal momentum with externally acting
forces F, and comparing to the change in the group velocity V D .vx; vy; vz/ D
rKEn.K/=„,

F D d

dt
„K , d

dt
vi D

X

j

M�1
ij Fj; (2.4)

in analogy to semiclassical dynamics [1]. For a semiconductor with a direct gap
between EV and EC at the center point � (K D 0) of the Brillouin zone, such as
GaAs (see Fig. 2.1a), the dispersion around the principal minimum of the conduction
band is parabolic with an isotropic, diagonal effective mass Mij D m�ıij,

E.K/ D EC C „
2

2m�K
2 (2.5)
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Fig. 2.1 (a) Band structure of GaAs along the directions in K-space indicated on the Brillouin
zone shown in the lower inset (reproduced from [2]). The upper inset shows the (direct) band gap
between the approximately parabolic conduction and valence bands for electrons with energies
close to the band gap edges, with a spherical Fermi surface at the center of the Brillouin zone (lower
inset). (b) Upon contact with n-doped AlGaAs (upper panel) with ionized donors (+), which has a
larger band gap aligned with that of GaAs, conduction electrons (-) from the n-AlGaAs diffuse into
the GaAs, and a charge accumulation at the interface induces an electrostatic potential which bends
the band edges downwards along z (lower panel). When the chemical potential (dashed line) on
both sides equilibrates, the conduction band edge develops a quantum well on the GaAs side due
to the band edge discontinuity across the heterojunction. If the well supports bound states (ground
state density shown), then a 2DEG along the .x; y/-interface can form for Fermi energies within
the well

(we now drop the band index n, since we will focus exclusively on the conduction
band). Thus, the electron gas forming at just above EC effectively consists of
particles moving freely on a spherical equienergetic surface, just like they would
in free space, but with a (typically smaller) mass m� ¤ me determined by the
curvature of the dispersion E.K/ at the band minimum. The corresponding electron
dynamics under the impact of, e.g., impurities, charge accumulation, or externally
applied voltages, can therefore effectively be described by a potential term V.R/ in
a single-particle Hamiltonian, where the effect of the crystal potential Vcr.R/ has
been incorporated through the mass tensor M.

2.1.2 Heterojunctions and Band Engineering

To further manipulate the behavior of the freely moving conduction band electrons
(or valence band holes), different semiconducting crystals can be combined to form
heterostructures with typically planar interfaces, or ‘junctions’, between materials
of altering composition. The band structure of such inhomogeneous systems, and
primarily the band edges EC and EV relevant for the effectively free motion, become
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spatially dependent in the direction where the material changes, or direction of
‘growth’ of the heterostructure, which we will take to be the z-axis. The aim
of this ‘band engineering’ is to design desirable and controllable charge carrier
properties by combining layers of suitable material parameters and thickness, and
appropriately doped with donor or acceptor impurities. More specifically, the 3D
motion of the effectively free electrons can be restricted to the 2D plane defined
by a heterojunction along the z-axis between materials with different band gaps. We
now describe the formation of such a 2D electron system (2DES) in a GaAs/AlGaAs
heterostructure.

The most commonly used methods to grow a heterostructure are molecular beam
epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), by which
high quality interfaces with minimal roughness and imperfections can be fabricated
[3], of great important for controllable electron transport along heterojunctions.
In MBE, beams containing the heterostructure constituents (here Ga, As and Al,
as well as a potential donor dopant Si) at tunable concentration impinge on a
substrate in ultrahigh vacuum. In MOCVD, the constituents are carried by hydrogen
in gaseous form and consecutively deposited on a heated substrate by chemical
reaction. In order to avoid structural defects at the heterojunctions arising from
a mismatch in the lattice spacing between the grown materials, constituents are
suitably chosen so that the resulting compound crystals will have similar lattice
constant.1 Moreover, in order to form a 2DES at a heterojunction, the contacted
materials should optimally have aligned band gaps with relatively small conduction
band edge difference, which in turn requires similar electron affinity, the energy
needed for an electron at EC to escape from the crystal [3]. These requirements
are fulfilled for the growth of AlxGa1�xAs on a GaAs substrate, where a mixing
portion x D 0:3 retains the direct band gap of GaAs and induces a conduction band
edge difference �EC D 0:33 eV. The difference in band gap and edge energies
for the separate materials—or connected over a heterojunction, but before thermally
equilibrating—is schematically shown in the upper panel of Fig. 2.1b for an AlGaAs
layer grown on top of GaAs.

To introduce free charge carriers to the system, the AlGaAs layer is doped with
donor impurities (typically Si), which ionize to release electrons into the conduction
band minimum and thereby elevate the local chemical potential [1]. The donor-
doped material is denoted n-AlGaAs, and the simplified process resulting in a
2DES, sketched in Fig. 2.1b, is as follows [3]. When the n-AlGaAs layer brought
into contact with the GaAs substrate through the growth procedure, the conduction
band edge becomes a function of the depth, EC.z/, where we set z D 0 at the
heterojunction. Part of the ionized donor electrons now diffuse across the junction
into the GaAs region. There they lose part of their kinetic energy, as dictated by

1The strong effect of mechanical strain resulting from lattice constant mismatch between the
materials of a heterostructure can in fact also be used as an advantage in terms of flexibility in
fabrication, larger �EC or increased mobility (smaller effective mass m�), but are not as widely as
the standard GaAs/AlGaAs setting we focus on here.
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the discontinuity �EC in the band edge between the materials, which prevents
them from returning to the n-AlGaAs layer. The system therefore equilibrates, with
aligned chemical potential, into an accumulation of electrons at the heterojunction,
resulting in an electrostatic potential barrier which suppresses further diffusion of
electrons into the GaAs and bends EC.z/ across the band edge discontinuity.

Finally, a narrow potential well of approximately triangular profile, which
we separately denote as VJ.z/, has formed over a small width wJ across the
heterojunction. Within this junction well, motion along the z-axis is quantized into
(a finite number of) energy levels �n, measured from the bottom EC.z D 0/ � E0C
of the well, with corresponding (bound) wave functions �n.z/. In the narrow well
these levels will have relatively large energy spacing, so that, at sufficiently low
temperature, the electrons occupy only the lowest level �0, with a nodeless wave
function �0.z/. They are thus restricted to a small vertical width at the interface
but can move freely, with their effective mass m�, in the x- and y-directions, thus
constituting a 2D free electron gas. Since the transversally confining potential
separates out, the single-electron wave function can generally be written as

�.R/ D eik�r�0.z/; (2.6)

and the 3D free-electron-like dispersion in (2.5) accordingly reduces to a 2D
version,

E.k/ D E0C C �0 C
„2
2m� k

2; (2.7)

which, in practice, will be offset to the ground level of the junction well,
E0C C �0 � 0.

2.1.3 Modulation Doping and Band Diagram

The above procedure of doping a region in the heterostructure while populating
another region with the provided charge carriers is called ‘remote doping’. Although
the donor impurities in the n-AlGaAs layer provide the free electrons in the spatially
separated 2DES, the positively charged ions left back still form a disordered
potential landscape in the plane of the 2DES which causes (in general undesired)
random elastic scattering effects. Therefore, in practice an additional, undoped
AlGaAs layer (a ‘spacer’) is grown between the GaAs and n-AlGaAs layers, which
separates the donor impurity ions further from the 2DES (see Fig. 2.2). With this
so called ‘modulation doping’, the properties charge carriers in the 2DES can be
adjusted according to the needs and purpose of the setup. A thick spacer reduces the
density of electrons in the 2DES, but at the same time increases their mobility, the
latter being of higher importance for the lateral (i.e., within the xy-plane) electronic
transport we will concentrate on.
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Fig. 2.2 (a) Band diagram EC.z/ (black line) of a heterostructure consisting of a GaAs substrate on
top of which an undoped AlGaAs spacer layer, a doped n-AlGaAs layer and a GaAs cap are grown,
with band edge discontinuity 	EC between GaAs and AlGaAs. (b) Section of a nanoelectronic
device defined (on the left) by top gate voltages VG1;2;3 applied to independent cap electrodes. For
sufficiently negative voltages, the band diagram in (a) is modified (yellow line) locally below the
top gates such that the Fermi level � lies below the ground energy level �0 of the heterojunction
well at z D 0. The 2DEG is thus depleted below the top gates leading to an effective confinement
potential defining the device. As shown on the right, confinement can alternatively be achieved by
etching away material (e.g., by electron-beam lithography) from the heterostructure, with depletion
being caused by highly occupied surface states (see text)

The electrostatic Coulomb potential of each donor impurity ion in the plane of
the 2DES is now weakened by the presence of the spacer, and further screened by
the electrons themselves. For a spacer thickness d, the effective potential that an

electron feels at 3D distance Rimp D
q
r2imp C d2 from a pointlike impurity can

modeled by [3]

Vscr.Rimp/ D A.d/

R3imp

D e2

4
�0�b

qTF.1C qTFd/

q3TF

1

.r2imp C d2/
3
2

; (2.8)

where �b denotes the relative permittivity of the material. The Thomas-Fermi screen-
ing wave number qTF is, for the low temperatures we will consider, approximated
by qTF � 2=aB, where aB is the effective Bohr radius. Typical values for a GaAs
semiconductor are �b D 13:8 and aB D 9:8 nm.

Above the doped n-AlGaAs layer, the heterostructure is typically further
equipped with an undoped ‘cap’ layer (GaAs in Fig. 2.2) which shields the donor
charges from the sample surface, on top of which metallic gates at tunable voltage
may be positioned. The band edge EC.z/, which has bended upwards along z in the
doped later due to the accumulation of positive charges, develops a discontinuity
at the interface to the cap, much like the one at z D 0; see Fig. 2.2a. This well is,
however, empty of occupying electrons, since it lies above the Fermi level � in the
present configuration. The chemical potential �G at the metal gate on the surface
of the heterostructure is usually ‘pinned’ by partly occupied surface states below
the conduction band edge, and � D �G C eVG can be controlled by an applied
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gate bias voltage VG (note that the electron charge is set to qe D �e < 0). Besides
the above general characteristics, the exact form of the band diagram sketched in
Fig. 2.2a requires a full self-consistent determination of the electrostatic potential
building up and the associated charge density, with the layer thicknesses and dopant
concentration as inputs [3].

2.2 Coherent Transport Devices

Having established a simple picture of effectively free electronic motion at het-
erostructure interfaces, we now briefly describe how 2D transport devices can be
designed and under what circumstances quantum effects can be observed in such
setups. These conditions will provide the basis for the modeling of electronic
transport in the following chapters.

2.2.1 Shaping the 2D Electron System

Once a 2DES has formed at the heterojunction between two semiconductors, as
described above, the effectively free 2D electrons can be further restricted into areas
of desirable shape. As will be seen in Chaps. 6, 7 and 8, the particular form of the
confinement of the electron gas in the xy-plane, in combination with an externally
applied magnetic field, may lead to interesting quantum transport effects and enable
their controllability. Two common experimental techniques to create confinement
patterns into a 2DES are biased top gates and chemical etching [4].

By assembling a metallic gate on top of the cap layer of the heterostructure, the
Fermi energy at the 2DES, and in turn its electronic density, can be adjusted by
application of a bias voltage on the gate, as alluded to previously. Thus, if the bias
is such that the Fermi level lies sufficiently below the lowest quantized level of the
transversal well, � < �0, then at low temperature the level remains unpopulated and
the 2DES becomes depleted under the gate. A top gate with a particular geometry or
even different top gates next to each other can then be used to deplete the electron
gas and thereby give it a desirable shape by adjusting the gate bias. This approach
is schematically shown on the left side of Fig. 2.2, where � > �0 (populated 2DES)
is assumed for zero gate bias (or absence of gate), while the electron gas is depleted
below some negative threshold voltage. In a simplified picture one can think of
a spatially dependent well ground level �0.r/, whose difference from the Fermi
level �0 defines an effective potential V.r/ which confines 2DES in the xy-plane.
Note, however, that the gate voltage does not only shift the �0 alone (and thus
the Fermi energy), but also modifies the band diagram of the heterostructure in
total. Moreover, the depletion profile of the 2DES does not follow exactly that of
the gate(s) on top, but depends on the thickness of the intervening layers and on
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the applied bias. In other words, the lateral shape of confining potential V.r/ will
be smoothened with respect to the top gates and characterized by some boundary
softness, that is, a gradual rather than stepwise variation under the top gate edges.

Instead of depleting the 2DES via gate voltages, the in-plane motion of electrons
can alternatively be restricted by ‘cutting away’ parts of the heterostructure material
itself, as shown in Fig. 2.2. This is done by lithographically marking (e.g., by
electron-beam lithography) a desired pattern on a layer of material which can
afterwards be removed by wet or dry chemical etching (that is, dissolving the
material in solution or in a plasma). In this way, patterned devices can be grown
where vertical sidewalls restrict the 2DES. If the all layers are cut down to the
substrate, then the 2DES is physically terminated at the sidewall and further depleted
by surface states. For some materials (e.g., GaAs), such surface states can be so
highly occupied that only the cap layer needs to be etched, with the 2DES then
depleted similarly to the case of a negative top gate bias. In fact, also the top
gates deposited onto a grown heterostructure are generally patterned by etching. An
advantage of using top gates is the ability to vary the effective confining potential
V.r/ during an experiment by tuning their bias voltage. On the other hand, etched
heterostructures can provide sharper confinement and thus a more precise definition
of the device geometry.

To serve as a transport device, the 2D confinement leaves two or more openings,
usually in the form of narrow constrictions called ‘quantum point contacts’, to areas
connected to metallic electrodes (the terminals), between which a charge current
can flow (see Fig. 2.3a). In a two-terminal setup, e.g., the current flows from a
‘source’ to a ‘drain’ side gate under an applied voltage differenceVSD (see Fig. 2.3b).
If the confinement forms a straight segment of constant width, along which the
(in-plane) transversal potential profile does not vary, the system is referred to as
a quasi-1D (Q1D) ‘quantum wire’ and is of particular conceptual importance in
transport theory, as we will see in the following. Further confining the 2DES in all
directions creates a quasi-0D ‘quantum dot’ of controllable geometry, whose quasi-
bound levels typically mediate resonant transport, and also multiply connected

VS VD

VGi S D

I = GVSD

Fig. 2.3 (a) Two-terminal transport device defined by top gate electrodes with tunable voltages
VGiD1;::;6 which confine the 2DEG at a heterojunction underneath. A source electrode at voltage
VS and a drain electrode at voltage VD are attached to the part of the 2DEG extending into the
device region at the center. (b) The device is theoretically treated as an open system connected to
electrodes at chemical potentials �S;D D eVS;D. The current I D GVSD D G.VS � VD/ flowing
through the device, where G its conductance, is determined in the Landauer-Büttiker theory of
transport developed in Chap. 3
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(ring-shaped) systems can be formed which provide spatially separated pathways
for the electronic motion. Finally, elements such as the above can be connected
into arrays and lattices, adding to the plethora of transport structures which can be
fabricated.

2.2.2 Mesoscopic Length Scales

With the fabrication techniques described above, the 2DES can be confined to
regions of size as small as tenths of nanometers, and so the created devices are called
‘nanoelectronic’. At such system sizes, electronic behavior can thus no longer be
described by assigning macroscopic material (bulk) properties; at the same time, the
devices are formed over lengths considerably larger than the material lattice constant
and cannot be treated at the microscopic level of isolated atoms or molecules.
They therefore belong to an intermediate, mesoscopic regime, where quantum
effects drastically enter the description of electronic transport. Two length scales
of fundamental importance for the transport properties of a mesoscopic system are
the elastic and inelastic mean free paths of electrons.

The elastic mean free path

le D vF�e (2.9)

is the average length an electron travels at Fermi velocity vF D „kF=m� Dp
2EF=m� before being elastically scattered, e.g., by a (static) potential of (remote)

impurities, within a scattering time �e. The latter can be found from the mobility
� D e�e=m� of a sample, which in turn depends on the charge density of the
2D electron gas at a particular heterojunction, and yields the diffusion constant
D D v2F�e=d D vFle=d in d dimensions. Irrespective of its strength, static potential
disorder does not break the phase coherence of the electronic wave function, leading
to sample-specific (reproducible) quantum interference effects. It imposes, however,
limitations on the controllability of transport in a designed confinement potential,
since the randomly (though coherently) scattered waves lead to substantial quantum
fluctuations in measured quantities as system parameters are varied, such as the so-
called universal conductance fluctuations [5].

The inelastic mean free path

lin D vF�' (2.10)

is the length an electron travels during the phase-breaking time �' , the mean time
between consecutive dephasing events, without being elastically scattered, and can
be combined with le into the phase coherence (Thouless) length

l' D
p
D�' D

p
linle: (2.11)
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Such are the inelastic scattering of electrons with lattice phonons or with other
electrons, upon which the phase coherence of the scattered electron is lost, other
processes which entangle the electronic states with the environment, or even
scattering in an applied time-dependent potential which in general also breaks
coherence.2 The inelastic and phase coherence lengths are thus not universally
determined for a (doped) material, but depend basically on the properties of a
particular setup. They also decrease with increasing temperature, usually being of
the order of a few �m at about 1K, but can also be made larger in a high-mobility
2DES (e.g., lin D 5�m and l' D 1:62�m at a GaAs/AlGaAs heterojunction with
mobility � D 105 cm2=Vs [5]).

For a typical mesoscopic semiconductor, the characteristic length scales are
typically related as

le < l' < lin (2.12)

at low temperatures [6].
If the size L (the maximal lateral length) of mesoscopic device designed on a

heterostructure is smaller than the phase coherence length (or inelastic mean free
path), L < l' (lin), then the wave function in a single electron picture remains
coherent during scattering within the confining potential V.r/. This gives rise to
observable interference phenomena and thereby a manifestation of the quantum
mechanical nature of electronic transport. With the fabrication techniques outlined
above (modulation-doped heterostructures), mesoscopic transport systems can be
realized where also the remote impurity potential becomes negligible in the plane
of the 2DES, so that also the elastic mean free path exceeds the system size even at
small Fermi wavelength �F D 2
=kF. Under such circumstances we thus have

� < L < le; l' (2.13)

and transport is said to be ballistic [6], with the electron waves in the 2DES scattered
only by the boundaries of the confining potential (and not in the bulk of the device).
This is the regime we will consider primarily here, with an investigation of the
impact of disorder in Chap. 6.

The potential used to simulate such ballistic transport devices is usually chosen
uniform (zero) within a 2D region of certain geometry, and the model systems are
coined open quantum billiards, in resemblance of particle billiards used to study
classical dynamics. In this spirit, treating the same system quantum mechanically
has established evidence of a quantum-to-classical ‘crossover’ [7–9] as well as
signatures of ‘quantum chaos’ [10–12]. Regarding electronic transport, the basic
experimental probes of quantum interference effects are the shape of the billiard
(and the confining potential in general), the positions of the terminal openings, the

2Note that each type of inelastic scattering is generally characterized by a different dephasing time
depending on the circumstances, with � determined from an average inelastic scattering rate [13].
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Fermi energy, and an externally applied magnetic field [6], all of which affect the
relative phases between propagating waves in the system.

2.2.3 Approximations to the Hamiltonian

The effective mass approximation, described above, remains valid if the 3D single-
electron envelope [14, 15] wave function �.R/ varies slowly over length scales of
the size of the unit lattice cell(s) of the heterostructure. For a heterostructure grown
in the z-direction with diagonal mass tensor M and spherical Fermi surface (as is
the simple case for an [Al]GaAs heterostructure), the conduction band electrons are
then described by a time-independent Schrödinger equation

Heff�.R/ D E �.R/; (2.14)

governed by the effective single-particle Hamiltonian

Heff D 1

2m�

�„
i
rr C eA.r/

�2
C 1

2

„
i

@

@z

1

m�.z/
„
i

@

@z
C Veff.R/; (2.15)

where a magnetic vector potential A.r/ has been included through the (in-plane)
minimal-coupling [16] canonical momentum

p D � C qeA D � � eA D „
i
rr; (2.16)

(� D p C eA � mv being the kinetic momentum), to produce a perpendicular
magnetic field

B D r � A ? r D .x; y/: (2.17)

The effective mass is assumed to change only along the direction of growth (z) of
the different materials, acquiring the value m�.z 6 0/ � m�

0 in the layer just below
the heterojunction (where the 2DES forms) with the corresponding kinetic operator
allowing for current conservation along z [5].

The effective 3D potential

Veff.R/ D EC.z/C Vimp.R/C Vdev.R/C Vint.R/ (2.18)

is here taken to include:

(i) the conduction band edge profile EC.z/ resulting from the sample growth,
(ii) the total potential Vimp.R/ produced by any donor (or acceptor) impurity

distribution (screened in the region of the 2DES),
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(iii) the effective potential Vdev.R/ induced by metallic gates or surface charges at
etched edges of the transport device, used to confine the 2DES, and

(iv) a contribution Vint.R/ from many-body interactions, as approximated by a self-
consistent Hartree potential or by density-functional theory [5].

In the vicinity 0 6 z 6 wJ of the 2DES at the heterojunction, we assume the total
effective potential to acquire a separable form for motion in the junction plane and
normal to it,

Veff.r;wJ 6 z 6 0/ D VJ.z/C V.r/; (2.19)

where VJ.z/ is the (approximately triangular) junction potential well trapping the
2DES and V.r/ is the lateral potential defining the 2D transport device setup.

Since we will primarily be studying the impact of the quantum billiard geometry
at low energies, we will further mostly assume billiards with ‘hard walls’, that is, a
very steep lateral potential change in Vdev.r;wJ 6 z 6 0/ at the confining bound-
aries. The impact, and advantages, of a ‘soft wall’ boundary will be investigated
in Chap. 7. Experimentally, current technology indeed allows for the fabrication of
very sharp nanoelectronic device patterns, with potential slope of several meV/nm
[17–19], which can be tuned by additional gates [18, 19].

To include the coupling of the electron spin, represented by the Pauli matrix
vector � , to the magnetic field, a Zeeman term

H� D gL�B� � B (2.20)

should be included, where gL is the effective Landé factor of the material [15, 20]
and �B D e„=2mc is the Bohr magneton, which shifts the energy levels of spin-up
and spin-down electrons (the z-component in the perpendicular field) by˙ 1

2
gL�BB.

Spin also couples to the orbital motion of the electrons, which further shifts the
energy bands and lifts band degeneracies in the presence of inversion asymmetry in
the (crystal or confining) potential, even for B D 0. Spin-orbit coupling is therefore
particularly relevant for the splitting of heavy and light hole bands and thus for
the impact of excitons on the optical properties of low-dimensional heterostructures
near band gaps [3]. For a 2DES in the xy-plane, spin-orbit interaction is usually
described by a Rashba Hamiltonian [21]

HSO D ˛.� � k/ � Oz; (2.21)

where the coupling constant ˛ depends on the heterostructure details [15]. The
effect can be tuned by external gates [22] and thus be used to study spin-dependent
transport [23–27]. Here, we will restrict ourselves to ‘spinless electrons’, thus
neglecting the Zeeman splitting and spin-orbit coupling terms in the Hamiltonian,
which can be justified for not too strong magnetic fields and highly symmetric
structures with adjustable 2DES density [24], respectively. Even in cases where
this does not apply, however, the impact of spin coupling is of secondary relevance
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to the particular aspects of transport controllability to be studied in Chaps. 6–8:
Specifically, our aim will be to control smooth (background) variations of transport
in varying Fermi energy, so that fine shifts (spin-dependent or not) of resonant
features are not expected to affect qualitatively the overall behavior.

2.3 Magnetoelectric Subbands and Transport Channels

For energies within junction well, E < VJ.�wJ/, the effective Schrödinger
equation (2.14) for the 2DES in a static setup simplifies to

(
1

2m�
0

�„
i
rr C eA.r/

�2
C V.r/� „

2

2m�
0

@2

@z2
C VJ.z/

)
�.R/ D E �.R/; (2.22)

now with a single effective mass m�
0 and with a separable solution of the form

�.R/ D  .r/�n.z/; (2.23)

where �n.z/ is the nth bound state wave function in the junction well corresponding
to the energy level �n, and  .r/ is the scattering wave function of the lateral open
transport system (open billiard) with continuous in-plane wave vector k.

Approximating the junction by a triangular well (see Fig. 2.2a), that is, a linear
potential (VJ.z < 0/ / �z) emerging from a hard wall (VJ.z D 0/ ! 1), the
transversal solutions are given by Airy functions [3, 28], sketched in Fig. 2.4b. These
vanish at the z D 0 interface and are, with increasing energy, increasingly localized
towards the substrate bulk (more negative z), into which they decay exponentially. In
absence of the ‘device’ potential and for weak impurity scattering at the 2DES plane,
we can set V.r/ D 0 in (2.19) to obtain, at zero magnetic field, free-electron plane
wave solutions  .r/ D eir�k for the in-plane motion. The energy is then given by

E D En;k D �n C „2
2m�

0

k2; (Q2D) (2.24)

where �n are the Airy eigenenergies [28], whose level spacing reduces as energy
increases since the well widens (note that the energy is here offset to the band edge
minimum, E0C � 0). With a given (Fermi) energy E, an electron can now move
in subbands corresponding to the transversal energies with �n < E, with in-plane
momentum magnitude „k D p

2m�
0 .E � �n/ in the nth subband. The higher the

transversal subband occupied, the lower the available kinetic energy for in-plane
motion. Since the junction well can be made relatively narrow, its levels lie enough
apart that only the first subband is occupied at low temperature and Fermi energy,
�0 < E < �1, and we arrive at the previous equations (2.6) and (2.7).



28 2 Electrons in Mesoscopic Low-Dimensional Systems

Fig. 2.4 Energy quantization into subbands. (a) Energy (blue lines) and momentum (red lines)
quantization for simultaneous confinement in a triangular junction well VJ.z/ and a square quantum
wire well Vw.y/, respectively. For a given energy, the motion of a state in the first level �0 of VJ.z/
is further quantized in the y-direction, with allowed values of k along the red lines. (b) Energy
levels and wave functions of VJ.z/ (top), corresponding subbands of in-plane motion (middle) and
density of states (bottom). (c) Energy levels and wave functions of Vw.y/ (top), corresponding
subbands of motion along x (middle) and density of states (bottom), where the shown energy range
is assumed to lie within the first subband of the z-confinement

In a similar manner, if the 2DES is further confined into a quantum wire (as
described in Sect. 2.2.1), say, along the x-axis, motion is quantized also laterally in
the y-direction. Considering a steep confining potential V.r/ D Vw.x; y/ in (2.22),
we will assume, for simplicity, an ideal quantum wire with hard walls separated by
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a width w,

Vw.x; y/ D V0w �
�
jyj � w

2

�
D
�

0; jyj < w
2

(inside the wire)
V0w; jyj > w

2
(otherwise)

; V0w !1
(2.25)

where � is the unit step (Heaviside) function. As explained later in Sect. 3.1,
the infinite extent of the wire in each longitudinal (˙x) direction represents the
connection of the transport device to an electrode.

Under the boundary conditions imposed by this wire potential (vanishing wave
function at the planes y D ˙w=2), the in-plane part of the total wave function can
now be written

 .x; y/ D �m.y/eikxx � ˚.x; y/; (2.26)

where

�m.y/ D
r
2

w
�
�

cos.ky;my/; m odd;
sin.ky;my/; m even;

ky;m D m


w
(2.27)

are the transversal modes of the quantum wire (in analogy to the modes of the
electromagnetic field in a light waveguide) with eigenenergies

Em D „2
2m�

0

k2y;m D
m2
2„2
2m�

0w
2
; m D 1; 2; : : : (2.28)

whose level spacing now increases with m. For the total energy we thus have

E D En;m;kx D �n C Em C „
2

2m�
0

k2x ; (Q1D) (2.29)

so that, for each subband n of the heterojunction well, we now have motion
along the wire in parabolic subbands m with longitudinal momentum „kx Dp
2m�

0 .E � Em � �n/, as shown in Fig. 2.4. Considering the width of the wire to
be larger than that of the heterojunction, w > wJ , we can assume that the level
spacing of the lowest levels is smaller for the wire confinement, so that the energy
can cover a number N of multiple wire-subbands within the first junction-subband,
�0 < E1 < E2 < : : : < EN < �1.

The quantization of the 3D effectively-free-electron momentum into heterojunc-
tion and QW subbands is schematically shown in Fig. 2.4. While the confinement
at the heterojunction plane allows for the formation of the 2DES, the motion in the
subbands of the QW confinement provides the origin of transport channels and the
associated quantization of conductance in mesoscopic structures, as will be shown
in Chap. 3.
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Landau Levels

For a homogeneous fieldB normal to the xy-plane, the vector potential can be chosen
to be of the form

A.x; y/ D .� � 1/By OxC �Bx Oy; (2.30)

where � D 0 or 1 yields the Landau gauges A D .�By; 0; 0/ or .0;Bx; 0/ and
� D 1=2 yields the symmetric gauge A D .�By=2;Bx=2; 0/. Setting � D 0, the
stationary Schrödinger equation for  .r/ becomes

� „2
2m�

0

@2

@y2
C 1

2
m�
0!

2
c Œ y � yc�

2 C V.x; y/

�
 .x; y/ D E .x; y/; (2.31)

where !c D eB=m�
0 is the classical cyclotron frequency and

yc D � px
qeB
D „

ieB

@

@x
: (2.32)

In the absence of confinement, V.x; y/ D 0, the Hamiltonian commutes with px and
thus has eigensolutions of the form

 .x; y/ D �l.y/eikxx; (2.33)

where the �l.y/ are now the eigenfunctions (a Gaussian function times Hermite
polynomials) of a harmonic oscillator shifted by yc D „kx=eB, which in turn is the
(conserved) center ordinate of a classical cyclotron orbit [29]. Consequently, the
states arrange into infinitely degenerate Landau levels with eigenenergies

El D
�
l� 1

2

	
„!c; l D 1; 2; : : : (2.34)

yielding zero group velocity, with the corresponding classical cyclotron radii being
rl D v=!c D

p
2m�

0El=eB. The magnetic length `m D r0 D
p„=eB is the radius

of a disk enclosing the magnetic flux quantum 0 D h=e, and the degeneracy of the
ground Landau level is counted by the number of such disks resulting in flux density
B for a given area of the 2DES.

Edge States

In the presence of a QW confinement along the x-axis, V.r/ D V.y/, the longitudinal
momentum „kx (and thus the cyclotron center ordinate yc) is still conserved under
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the chosen gauge � D 0 in (2.30), but the degeneracy of the Landau levels is lifted
and Q1D magnetoelectric subbands form. This is seen analytically [30, 31] for a
harmonic confinement potential V.y/ D m�

0!
2y2=2, which can be combined with

the magnetic one into an oscillator potential with hybrid frequencye! D p!2 C !2c ,
such that a continuous term is added to the total energy [5],

E D En;l;kx D �n CeEl C „
2

2 Qm� k
2
x ; l D 1; 2; : : : ; (2.35)

in similarity to (2.29) but with magnetically defined band thresholds througheEl D
.l�1=2/„e!, and with rescaled effective mass Qm� D m�

0 .e!=!/2 and cyclotron center
ordinate Qyc D yc!c=e!. Note that, for a given field strength B and energy E, states
with larger jkxj are transversally localized (as approximated by their cyclotron center
ordinate) closer the edges of the wire, with positive (negative) group velocity vn;l D
„kx= Qm� D ˙Œ2.E � �n �eEl/= Qm��1=2 at the upper (lower) border, since yc / kx.

These edge states are more clearly visualized in association to their classical
counterparts in a hard-wall QW potential, (2.25), where reflection is specular at
the boundaries. The dispersion can here be found numerically [5] and is sketched in
Fig. 2.5 for a relatively strong field together with characteristic classical trajectories.
The bands are no longer parabolic: The lower the band, the more it tends to flatten
in the bulk (around the axis) of the wire, so that these states have vanishing group
velocity. Closer to the wire edges, the bands bend upwards and the associated states
thus propagate in opposite x-directions on opposite edges. Edge states correspond
to classical skipping orbits with w=2 � jycj < rl < w=2C jycj, bulk-confined states
(with no contribution to transport) to cyclotron orbits with rl < w=2 � jycj, and
transversally extended states to traversing trajectories with rl > w=2C jycj.

Fig. 2.5 Energy dispersion with magnetoelectric subbands for a hard-wall quantum wire of width
w in a magnetic field corresponding to cyclotron frequency !c (right), and selected traversing (1),
skipping (2) and cyclotron (3) classical trajectories with guiding centers yc D px=eB corresponding
to points in the dispersion subbands. Right- and left-moving skipping orbits (corresponding to edge
states) lie within the upper and lower parabolas 2m�

0 E D ŒeB.yc � w=2/�2 [29], with cyclotron
orbits between them and traversing orbits in their overlap
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2.4 Density of States

Apart from the reduction and controllability of scattering processes in the 2DES
(compared to 3D systems), its lower dimensionality also simplifies the observation
and description of quantum effects in electron transport due to its modified density
of states (DOS). The DOS in energy,N .E/, is a simple property characterized by the
dimensionality of a system, and provides information about the distribution of states,
even when details of the states themselves and their energy levels are unknown. It is
determined by the number of states N .E/dE available in the energy interval from E
to EC dE, and can thus be generally defined as a sum

N .E/ D
X

n

ı.E � En/ (2.36)

on the levels En of any system, which is converted to an integral for (quasi-)
continuous spectra. In the case of a band structure En.K/, the sum runs over all
crystal momenta „K and all bands n as well as eventual band and spin degeneracies.

To obtain the DOS per unit volume, D.E/, states can be counted first in d-
dimensional K-space, the wave vectors being quantized by imposed (periodic)
boundary conditions on a box, and then transformed to a DOS in energy through
the system’s dispersion relation. This gives a density Dd.K/ D 2=.2
/d per unit
.length/d in K-space, where the factor 2 accounts for electronic spin degeneracy.
For a ‘truly’ free-electron dispersion relation E D „2

2m�

Pd
iD1 k2i , the DOS in energy

E > 0 per unit volume becomes [3]

D1.E/ D 1


„

r
2m�
E
; D2.E/ D m�


„2 ; D3.E/ D m�


2„3
p
2m�E (2.37)

for d D 1; 2; 3 dimensions, respectively. Here, the 1=
p
E divergence of the 1D

density as well as the constancy of the 2D density are to be noted, which have
important implications for the theory of transport to be developed. A common
feature in all dimensions is that the density increases with the effective mass m�.

For the confined Q1D and Q2D systems discussed previously, the dimensional
characteristics in (2.37) are repeated in each subband. Inserting the corresponding
dispersions, (2.29), (2.24), into the defining equation (2.36) and integrating over the
wave vectors (times 2 for spin, and accounting for both positive and negative kx in
Q1D), we obtain, respectively,

DQ1D.E/ D m�
0


„2
s
2„2
m�
0

X

n;m

�.E � �n � Em/p
E � �n � Em

; DQ2D.E/ D m�
0


„2
X

n

�.E � �n/:
(2.38)
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The density thus increases stepwise for each populated subband of the unconfined
2DES, and with subband threshold divergencies (which are attenuated under more
realistic conditions) for the ideal QW confinement.

In the presence of a magnetic field, the unconfined 2DES of (piecewise) constant
DOS condenses into the discrete Landau levels, each level l populated by all states
between El ˙ „!c=2, so that the Fermi level is discontinuously (for an ideal 2DES)
pinned to the successive lower Landau levels with increasing field B to keep the
number of electrons constant [3]. In the Q1D confinement, the density behaves like
DQ1D.E/ above, though with magnetoelectric subband thresholds.

Charge Density

The density of electrons in energy and space of a system at chemical potential �
is obtained by multiplying the DOS with the probability density for an electron to
occupy a state of energy E at temperature�, given by the Fermi-Dirac distribution
(or occupation) function,

f .EI�;�/ D
�
1C exp

�
E � �
kB�

	��1
; (2.39)

where kB is Boltzmann’s constant. Integrated over all available energies, the spatial
electronic density for a homogeneous system (with a spatially invariant D) is thus
defined as

n.�/ D
Z

E
dE D.E/f .EI�;�/; (2.40)

where, for the conduction electrons relevant here, the lower limit of integration is
set to the bottom EC of the conduction band. In the case of a 2DEG, we insert DQ2D

into (2.40) to obtain

nQ2D.�/ D
X

n

ni.�/ D m�
0


„2 kB�
X

i

ln

�
1C exp

�
� � �i
kB�

	�
; (2.41)

where nn is the charge carrier density in the nth subband of the heterojunction
confinement and energies are offset to EC.

In the limit of zero temperature, the Fermi-Dirac distribution approaches a step
function at �,

f .EI�;� ! 0/! �.�� E/; (2.42)

meaning that, at very low temperatures, only states close to the Fermi level can
contribute to dynamical phenomena such as transport, since all other states are either
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completely empty or completely occupied, and the electron gas is referred to as
‘degenerate’. The electron density is then practically given by integrating up to � in
(2.40), or, alternatively, taking the limit � ! 0 in (2.41), which yields

nQ2D.�/ D
X

i

ni.�/j�!0 D
m�
0


„2
X

i

.�� �i/�.�� �i/: (2.43)

Further, in the so called ‘quantum limit’ of low electronic energy, to which we will
restrict ourselves here, only the first subband i D 1 is populated, which yields a
density directly proportional to the Fermi energy EF D � � �1,

nQ2D D n2D D n1.�;� ! 0/ D m�
0


„2EF D k2F
2

; (2.44)

that is, the 2D density 2=.2
/2 in k-space times the area 
k2F of the Fermi surface
(a circle in 2D). Note here that, since the electron density normally does not vary
with temperature [3], (2.41) for the first subband (i D 1) can be divided by (2.44) to
give a temperature dependence of the chemical potential,

�.�/ D �1 C ln

�
exp

�
�F

�

	
� 1

�
; (2.45)

where �F D EF=kB is the Fermi temperature, so that EF � �.�/ � �1. This
dependence of � is negligible, however, for the low temperatures � � �F which
establish the degenerate 2DEG.
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Chapter 3
Coherent Electronic Transport:
Landauer-Büttiker Formalism

Having described the transverse quantization of motion into subbands in low-
dimensional mesoscopic systems, we will now see how these are utilized to describe
coherent transport through devices like quantum billiards within the effective
independent-electron picture. This is done within the Landauer-Büttiker theory of
transport in multiterminal structures, which relates the scattering matrix of the
system to its electrical conductance. After presenting the general framework, we
focus on the linear response regime of transport.

3.1 Leads and Reservoirs

In order to cause the electrons of a 2DES to flow through a designed transport
device, a bias voltage VSD is applied between a source and a drain electrode attached
to it through metallic contacts. The contacts are typically attached to regions of the
2DES which extend spatially beyond the mean free path and, more importantly,
the coherence length of the electrons, and connected to the actively coherent
(and ballistic) region of the device—in our case a quantum billiard structure—
via constrictions in the form of quantum point contacts, the terminals. Any phase
relation between distant points during scattering within the device is thus completely
lost upon exiting through one of the device terminals, and the contacts are thus
said to be ‘decohering’. Since inelastic scattering takes place in the contact regions,
energy can be redistributed among the charge carriers, allowing for dissipation of
the power generated by a flowing current.

In the state of current flow, the total system is not in equilibrium, and therefore
no true Fermi level can be assigned to it. However, if the applied bias voltage VSD

is small enough, the system is not driven strongly out of equilibrium, and local
quasi-Fermi levels [1] �S and �D can be assigned to the source and drain reservoirs,
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respectively, energetically separated by the potential energy due to the bias,

�S � �D D eVSD: (3.1)

Recall that we define the electron charge as qe D �e < 0, so that a positive
voltage on the drain lowers the electronic energy by �eV . The quasi-Fermi levels
themselves depend on the local charge concentration and on the temperature �,
but for the weak deviations from equilibrium and low temperatures we will be
considering, it is commonly assumed that the electrons provided by each reservoir
for transport through the device are distributed according to a corresponding Fermi-
Dirac occupation function,

fp.EI�/ � f .EI�p; �/; p D S;D: (3.2)

Electrons that arrive at or emerge from the terminals are thus statistically
distributed in the Fermi sea of available electronic levels. Therefore, the contact
regions can be thought of as electron reservoirs releasing or accepting electrons
without practically affecting the local chemical potentials �p. Electrons entering a
contact region from the side of the device through the connecting terminal cannot
be coherently re-entered (backscattered) into the device, but are rather absorbed by
the Fermi sea in the reservoir. For an individual electron, the situation would be
equivalent if the terminal were connected to a still perfectly coherent contact, but
in the form of a ideal quantum wire extending to infinity, a semi-infinite lead. The
connection of a general multiterminal transport device to electron reservoirs can
therefore be represented by attaching an equal number of such semi-infinite leads,
each lead p lying at a Fermi level �p, as shown in Fig. 3.1a, with energies occupied
according to fp.EI�/. In dependence of the width of the terminal constriction

Fig. 3.1 Sketch of a three-terminal transport device. (a) The gate-induced confinement potential
separates the 2DEG in the device region from electrodes at local quasi-Fermi levels �1;2;3,
which correspond to decohering electron reservoirs. (b) The device is modeled by a quantum
billiard attached (at the dotted lines) to straight semi-infinite leads of widths corresponding to
the constrictions in the device. An incoming wave (here from lead 3) is scattered via the S-matrix
of the system outwards into all channels of all leads
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wp, the representing lead supports propagation in corresponding (magnetoelectric)

subbands E. p/m .kx/, where the x-axis is locally aligned along each lead.

3.2 Scattering Matrix and Transmission Function

With leads representing the connection to electron reservoirs, which in turn corre-
spond to the attached (biased) electrodes, the open 2D cavity of the transport device
alone can now be treated as a scattering system: Electron waves incident in one of
the leads enter the cavity, scatter off the 2D confining potential and are transmitted
into other leads or reflected into the same lead, as shown in Fig. 3.1b.

3.2.1 Lead Eigenmodes

Supplying each lead p with an in-plane coordinate system .xp; yp/, in the asymptotic
region xp !1 of the pth lead the scattering wave function  .r/ at energy E can be
written as

 .xp; yp/ D
NpX

mD1

X

sDC;�
a. p/m;s˚

. p/
m;s .xp; yp/; xp !1 (3.3)

with the lead eigenfunctions now defined as

˚. p/
m;s .xp; yp/ D

'
. p/
m .yp/q
v
. p/
m

eisk
. p/
x;mxp ; s D C;� (3.4)

where v. p/m D „k. p/x;m=me (we will denote the in-plane effective mass by me from
here on) is the longitudinal velocity in the mth channel of the lead with transverse
wave function '. p/m , and the sign s D C (�) denotes propagation outwards (inwards)
within the lead.

The lead eigenstates are now flux normalized [2, 3] with respect to the longitudi-
nal motion along xp,

h˚.q/
n;s0.E

0/j˚. p/
m;s .E/i D ıqpınmıs0sı.E0 � E/; (3.5)
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so that the probability current carried by a mode with unit amplitude is simply

Oj. p/m;s D s Oxp; (3.6)

independent of the channel momentum „k. p/x;m.
For simplicity, we will assume ‘flat’ leads of widths wp with zero (infinite)

potential inside (outside), as described by the ideal QW potential (2.25) along
x D xp, so that the corresponding transversal wave functions '. p/m .yp/ and energy

levels E. p/m are given by (2.27) and (2.28). The modes m are summed up to the total
number of open channels in the lead

Np.E/ D
X

m

�


E � E. p/m

� D int
�Qkp.E/


; (3.7)

where the scaled momentum Qkp D wpk=
 (for the flat leads considered) serves as
a continuous channel number for lead p. Note here that the energy is offset to the
zero-point energy of the Q2D confinement of the 2DES above the conduction band
minimum at z D 0, that is, we set �0 � 0 in (2.29). Higher channels with m > Np

are closed for propagation since the longitudinal wavenumber in that case becomes
imaginary, k. p/x;m D ˙ij�. p/x;mj; the corresponding (physically allowed) solutions, called
evanescent modes, decay exponentially as xp ! 1 and are therefore not included
in the asymptotic expansion (3.3).

3.2.2 Transmission Amplitudes and Coefficients

It is the linearity of the (effective) Schrödinger equation that allows for its general
solution to be written in the form of the superposition (3.3), and the amplitudes
a. p/m;s, which will generally vary among different leads and modes, are thus linearly
interrelated in the basis fj˚. p/

m;s ig of the eigenchannels. In a transport setting, it is
natural to treat the electrons coming out from the device at a given energy E as the
response of the system to those injected, on which one usually has an experimental
handle. Accordingly, the amplitudes of outwards scattered states j˚. p/

m;Ci in all leads

p D 1; 2; : : : ;NL are expressed as a linear combination of the ingoing ones j˚. p/
m;�i

through a square scattering matrix S of dimension NS DPNL
pD1 Np,

EaC.E/ D S.E/Ea�.E/; (3.8)
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where the NS � 1 column ‘vectors’ Ea˙ collect all in- and outgoing amplitudes,

Eas D

0
BBBB@

a.1/s

a.2/s
:::

a.NL/
s

1
CCCCA
; a. p/s D

0
BBBB@

a. p/1;s
a. p/2;s
:::

a.p/Np;s

1
CCCCA
; s D C;�: (3.9)

Denoting by j . p/n;Ci the scattering state with ingoing wave only in mode n of

lead p and scattered outgoing waves in all leads and modes, and by j . p/n;�i the time
reversed state, with outgoing wave only in mode n of lead p and ingoing in all leads
and modes, the (energetically ‘on-shell’) scattering matrix (S-matrix) elements can
be expressed as the projection [4]

h .q/n;�.E0/j . p/m;C.E/i D Snm
qp ı.E

0 � E/; (3.10)

and the asymptotic (xq !1) wave function in lead q of a scattering state j . p/m;s i at
energy E is

 . p/m;s .xq; yq/ D ıqp˚.q/
m;�s.xq; yq/C

NqX

nD1
Snm
qp ˚

.q/
n;s .xq; yq/; s D C;�: (3.11)

In other words, Snm
qp represents the probability amplitude to scatter from ingoing

mode m in lead p into outgoing mode n in lead q at a given energy E. This becomes
evident in terms of the probability flux

j. p/ D
NpX

nD1
. j. p/n;C C j. p/n;�/ D

NpX

nD1
.ja. p/n;Cj2 � ja.p/n;�j2/Oxp; (3.12)

of the asymptotic state (3.3): The probability of an ingoing flux in (lead,mode)D
. p;m/ to transmit into (lead,mode)D .q; n/ is given by the partial transmission
coefficient

Tnm
qp D

j jqn;Cj
j jpm;�j

D ja
q
n;Cj2
japm;Cj2

D jSnm
qp j2: (3.13)

The total transmission coefficient, or transmission function Tqp.E/, from lead p to
lead q is obtained by summing over all channels,

Tqp �
X

n

X

m

Tnm
qp D TrŒSqp

� Sqp �; (3.14)

where Sqp is the sub-matrix of S connecting the mode amplitudes of leads p and q.
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Unitarity

Each of the two sets of scattering states fj . p/m;s ig with s D C;� (the ‘physical’
one with outgoing scattered waves, s D C, being more closely connected to
experiment), forms a complete orthonormal basis [2, 5, 6], and are therefore
connected by a unitary transformation. The connection is given by (3.10), which
means that the total S-matrix is unitary,

S�S D INS : (3.15)

This is also seen from a more physical perspective in terms of the probability flux
through the system. Indeed, unitarity of S ensures the conservation flux, as seen
directly from (3.8): The total ingoing flux is given by kEa�k2 D Ea��Ea�, and this norm
is preserved under the transformation,

X

p

X

n

j jqn;Cj D kEaCk2 D S�SkEa�k2 D kEa�k2 D
X

q

X

n

j jqn;�j; (3.16)

only if (3.15) holds, so that the outgoing flux equals the ingoing one.
Choosing a particular mode m in a lead p, the unitarity of S implies that its

partial transmission coefficients to all modes in all leads, but also conversely, the
coefficients from all leads and modes to the chosen one, will add to unity,

X

q

X

n

Tnm
qp D

X

q

X

n

Tmn
pq D 1 8 m; p: (3.17)

Summing over all open channels m D 1; 2; : : : ;Np in lead p (assuming that Np 6
Nq), this leads to the sum rule

X

q

Tqp.E/ D
X

q

Tpq.E/ D Np.E/ (3.18)

for the transmission functions of a multiterminal setup at energy E.

Symmetry

In the absence of a magnetic field and assuming a real, static potential, the
Hamiltonian of the system is time-reversal invariant, that is, it commutes with the
anti-unitary operator T of time reversal. In a stationary picture, and disregarding
the electron spin, the operation of T reduces to complex conjugation [7]. With
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application of T on an asymptotic scattering state, we can use (3.10) to get [8]

Snm
qp D h .q/n;�j . p/m;Ci D hT  .q/n;�jT  . p/m;Ci� D h . p/m;�j .q/n;Ci D Smn

pq ; (3.19)

meaning that the S-matrix is, apart from unitary, also symmetric,

S> D S: (3.20)

To see this from the amplitudes in (3.8), we notice that, if the Hamiltonian obeys
time reversal invariance, then the complex conjugate of a scattering state solution
with asymptotics (3.3) will be a solution of the same Schrödinger equation at the
same energy. Its (modified) in- and outgoing asymptotic amplitudes will thereby be
connected by the same S-matrix, yielding [by use of (3.8)]

Ea�
� D SEa�

C ) EaC D ŒS���1Ea� ) S�S D I; (3.21)

which, combined with (3.15), leads to the symmetry of S, (3.20).
Time-reversal invariance is broken in the presence of an external magnetic

field B, since the Hamiltonian (in general) becomes complex by the coupling
of the magnetic vector potential with the momentum operator; this breaking is
evident classically, where the Lorentz force deflects oppositely moving charges
in opposite directions. However, one can aptly argue that, since any magnetic
field is itself produced by moving charges, its direction would also be reversed
under time reversal. Thus, following the considerations leading to (3.21), we
now have S�.�B/S.B/ D I, which, since the unitarity condition still applies,
S�.B/S.B/ D I, leads to the reciprocity relation

Snm
qp .B/ D Smn

pq .�B/ (3.22)

for the S-matrix [9, 10], which is related to the principle of microscopic reversibility
[11]. In fact, relation (3.22) follows directly from the Schrödinger equation (2.22)
by considering the scattering eigenstates in (3.10): the complex conjugate of a state
j . p/m;s i is an eigenstate of the same Hamiltonian at the same energy but with the
vector potential (and thereby also the magnetic field) reversed, that is A ! �A
in (2.22).

3.2.3 Connected Scatterers

We now consider the case where two scatterers S1 and S2, described by the S-
matrices S.1/ and S.2/, respectively, are connected through a number of leads, such
that each connection lead of S1 is prolonged into a connection lead of S2 of equal
width (in other words, no additional scattering is caused within the connected leads).
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Fig. 3.2 Two three-terminal scatterers with individual scattering matrices S.1/ and S.2/ connected
via single lead. An incoming wave in one of the unconnected (outer) leads is scattered via the total
scattering matrix Suu of (3.28) into all unconnected leads, with multiple reflections taking place
within the connected (inner) lead

This is illustrated in Fig. 3.2 for a single connection lead. To find the total S-matrix of
the connected system in terms of S.1/ and S.2/, we regroup the lead amplitudes, in-
and outgoing (s D ˙), of the total system of both scatterers before being connected
into those in the lead(s) to be connected, Eac, and those in the leads that remain
unconnected, Eau, and partition the total (unconnected) S-matrix Sı accordingly,

EaC D SıEa� I Eas D
� Eaus
Eacs

	
; Sı D

�
Sı
uu Sı

uc

Sı
cu Sı

cc

	
; s D C;�: (3.23)

The u- and c-blocks of the total S-matrix of the unconnected system are in
turn block-diagonal in the two scatterers, connecting only ingoing to outgoing
amplitudes of the same scatterer 1 or 2,

Eals D
 
Eals;1
Eals;2

!
; Sı

kl D
 
S.1/kl 0

0 S.2/kl

!
; k; l D u; c: (3.24)

When the scatterers are connected, the outgoing amplitudes EacC;1 of S1 are
coupled to the ingoing amplitudes Eac�;2 of S2, and similarly Eac�;1 to EacC;2, by a
connection matrix C which is block-antidiagonal in the scatterers,

EacC D CEac� I C D
 
0 C12
C�12 0

!
D C�1; C12 D diag

�
eiı. p/n

�
; (3.25)

where the block C12 is a diagonal matrix (for appropriate numbering of the
connection leads p) containing phase shifts for each channel n which depend on
the length of the connection lead(s), the longitudinal channel momenta, as well as
on any applied magnetic vector potential.
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Inserting the connection condition (3.25) into (3.23) yields a system of equations,

� EauC
CEac�

	
D
�
Sı
uu Sı

uc

Sı
cu Sı

cc

	� Eau�
Eac�

	
; (3.26)

from which the amplitudes Eac� in the connected lead(s) can be eliminated, in order
to directly relate the amplitudes Eau˙ in the unconnected leads. We finally obtain

EauC D SuuEau�; (3.27)

where

Suu D Sı
uu C Sı

ucŒC � Sı
cc�

�1Sı
cu D Sı

uu C Sı
ucRSı

cu (3.28)

is the desired S-matrix of the connected system, of the dimension of the unconnected
part of Sı. We see that the connection between the scatterers acts as a ‘perturbation’
on the original S-matrix, by contributing additional scattering ‘paths’ for incoming
waves: They can either scatter directly to the outgoing leads, as represented by Sı

uu,
or they can scatter to the connection leads (through Sı

uc), where they are multiply
reflected (as expressed by Sı

cc), to finally be scattered back to the outgoing leads
(through Sca). The multiple reflection in the connection region is more intuitively
illustrated by writing the matrix R in (3.28) in its power series representation (recall
that C2 D I),

R D ŒC � Sı
cc�

�1 D CŒI � Sı
ccC��1 D C

(
I C

1X

nD1
ŒSı

ccC�n
)
; (3.29)

where successive terms contribute scattering ‘paths’ with increasing number of
reflections within the connection, picking up the channel phases of C upon each
reflection.

The general form (3.28) for connected scatterers will be encountered once
more when we treat the complete (as opposed to asymptotic) scattering problem
computationally in Chap. 5 (and in particular Sect. 5.5), with the S-matrix replaced
by the resolvent (Green function) of the Hamiltonian. It should be noted here that the
connected S-matrix (3.28) is approximative, since the individual matrices S.1/ and
S.2/ have been defined here asymptotically, for open channels only. For short enough
connection leads, evanescent modes of closed channels decaying from one scatterer
can still have substantial amplitude when reaching the other scatterer and ‘leak’ into
it, thereby contributing to the scattering and in the connected system. Moreover,
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evanescent modes from two scatterers decaying into a common connecting lead can
‘interfere’ into a contribution to the total current.1

As becomes clear in Sect. 4.2.2, S-matrix can be generalized naturally to include
evanescent modes [4, 12] from the projection of the system’s propagator (Green
function) onto eigenstates of closed channels. We will not make explicit use of
this version here, but treat connected scatterers directly and uniformly within the
Green function approach, Sect. 5.5. In this framework the total S-matrix, and thus
(multiterminal) transmission function, will be determined for an arbitrary device
potential.

3.2.4 Two-Terminal System

For a device with NL D 2 leads, which we take to be identical supporting equal
number of open channels N1 D N2 D N.E/ at a given energy E, the lead state
amplitudes Ea˙ are connected by the unitary and symmetric two-terminal S-matrix

S D
�
S11 S12
S21 S22

	
D
�
r t
t r0

	
; (3.30)

partitioned into four N � N matrices containing the transmission amplitudes (t) to
scatter between the modes of different leads and reflection amplitudes to scatter
from the modes of lead 1 (r) or lead 2 (r0) back to the same lead. Due to the unitarity
of S (conservation of probability flux), (3.15), the transmission function (3.14),

T.E/ D T12.E/ D T21.E/ D TrŒt�.E/t.E/�; (3.31)

1Consider, for example, an open (1) and a closed (2) channel in a lead segment (along x and around
x D 0) connecting two scatterers, where the wave function can be written as

 D  1 C  2 I  1 D �1.ae
ikx C be�ikx/;  1 D �2.ce

��x C de�x/; k; � > 0;

�1 and �2 being the corresponding orthonormal transversal modes. The exponentially increasing
part is here physical because of the finite extent of the segment, and originates from the state
decaying into it from the right. In contrast to the probability density, where the counterpropagating
waves interfere while the decaying modes do not, the total current density consists of an incoherent
sum of the propagating mode currents and a coherent combination 2Im.cd�/� from the decaying
modes,

j / .jaj � jbj/k C .cd� � d�c/i�;

which separate upon the y-integration over the orthonormal transversal wave functions. Thus,
unless cd� happens to be real, there is a contribution to transport from the closed channels between
the scatterers.
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adds up with the total reflection to the number of open channels,

T.E/C R.E/ D N.E/; (3.32)

where R D T11 D T22 D TrŒr�r� D TrŒ.r0/�r0�.
In the presence of a magnetic field, the reciprocity relation (3.22) for two attached

leads together with the unitarity condition (3.32) leads to a total transmission from
lead 1 to lead 2

T21.B/ D N � T11.B/ D N � T11.�B/ D T21.�B/ D T12.B/; (3.33)

that is, equal to the transmission from 2 to 1. In a two-terminal setup the symmetry
of the transmission coefficient in (3.31) is thus preserved even when a magnetic
field breaks time-reversal invariance an thereby also the symmetry of the S-matrix.
Alternatively, transmission is independent of the sign (direction along a fixed axis)
of the field, regardless of the geometrical symmetry of the confining potential.

This symmetry might seem counterintuitive in terms of the classical dynamics
of a charged particle deflected by a magnetic field within an arbitrary confinement
(asymmetric with respect to the two lead positions), since the (ballistic) trajectories
would in general be completely different for opposite fields. However, note that
each reflected trajectory (returning to the incoming lead) coincides with a time-
reversed reflected trajectory at opposite field [13]. Baring in mind that R expresses
a probability of reflection, it corresponds to a sum over all possible reflected
trajectories in the classical counterpart (supplied with phases in a semiclassical
treatment), thus yielding the symmetry of R (and of T by particle conservation) in
B-field. Further, the two-terminal magnetic symmetry of transmission relies on the
(coherent) single-particle picture employed, and is generally broken by the effects
of many-body interactions [13].

3.3 Two-Terminal Landauer Formula

We now derive the relation between electrical current and transmission for two
electrodes connected to the device, and examine the cases of low temperature and
applied bias.

3.3.1 General Case of Coherent Transport

Considering a two-terminal setup, the electronic current I flowing through the device
under a small (positive) bias voltage VSD applied between source and drain contacts
will be equal, due to charge conservation, to the net current IS traversing the source
terminal of the device. This will in turn consist of the net current Iin flowing inwards
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from the source terminal to the device, minus the current Iout flowing outwards from
the device to the source terminal and originating from the drain contact,

I D IS D Iin � Iout: (3.34)

We here assume that the voltage drop VSD is measured at the contacts between which
the current I flows (a two-terminal measurement), and further, that no scattering
occurs between the contacts and the terminals, so that the leads attached to the
device lie at the chemical potentials (quasi-Fermi levels) �S and �D of the source
and drain reservoirs.

The ingoing current per unit energy consists of the electrons in all open channels
m D 1; 2; : : : ;NS.E/ of the Q1D source lead with partial (per channel and direction)
state densities DQ1D;m.E/ and occupation weight fS.E/ [given in (2.39)] which
move inwards (thus 1=2 of the total states) with velocities vSm.E/ without being
reflected into the lead (with probability Rmn into channel m). Since the electrons
originate from the thermalizing (decohering) contacts, each contribution is added
incoherently, and integration over energy gives

Iin D e
Z 1

0

dE fS.E/
NSX

mD1
DS

Q1D;m.E/v
S
m.E/

 
1 �

NSX

nD1
Rnm
SS .E/

!
; (3.35)

where the sign of the charge �e is dropped with the convention that the direction
of current is opposite to the motion of electrons. For brevity, the lower limit of
integration is set to 0, though only energies E > E0C C �0 (above the ground state
of the junction confinement) contribute. Similarly, the outgoing current is given by
the states m of the drain lead transmitted to the source (with probability Tnm into
channel n),

Iout D e
Z 1

0

dE fD.E/
NDX

mD1
DD

Q1D;m.E/v
D
m.E/

NDX

nD1
Tnm
SD .E/; (3.36)

where ES
NS

> ED
ND

has been assumed for the highest channel thresholds (so that all
drain channels are open for transmission into the source lead).

These expressions simplify significantly by noticing that the product of the partial
DOS (including spin degeneracy) with the channel velocity in a Q1D is an invariant
(see (2.38) and (2.29), with energy offset at E0C C �0),

Dp
Q1D;m.E/v

p
m D

me


„2
s

„2
2me.E � Em/

„kx;m
me
D 1


„ 8 m; p D S;D (3.37)

independent of the details of the leads such as type of Q1D confinement, material
etc. [14, 15]. Taking into account also the two-terminal transmission symmetry



3.3 Two-Terminal Landauer Formula 49

TSD D TDS � T and the unitarity condition T C R D NS, the total current acquires
the form

I D e


„
Z 1

0

dE T.E/ Œ f .EI�S; �/ � f .EI�D; �/�; (3.38)

in dependence of the bias through the difference �S � �D D eVSD in local Fermi
levels entering the distributions fS;D. Equation (3.38) is a Q1D form of the Tsu-Esaki
formula originally applied for tunneling, but is more commonly referred to as the
Landauer formula after its use in (planar) mesoscopic nanostructures.

Low Temperature Limit

At very low temperatures, the Fermi-Dirac occupation function can be approximated
by step functions for each lead,

f .EI�p; � ! 0/! �.�p � E/; p D S;D; (3.39)

so that only electrons from the reservoirs with energies within the sharp interval
�D < E < �S contribute effectively to the charge flow, since all states below �D in
the source lead are occupied. The current then takes the form

I D e


„
Z �S

�D

dE T.E/; (3.40)

a simple integral of the transmission function profile over the finite energy interval
equal to the applied bias, �E D eVSD. If the bias is strong enough to push the
quasi-Fermi level in the drain lead below E0C C �0 (the lowest available level of
the heterojunction confinement above the bottom of the conduction band), then no
states are available in the source lead for the electrons from the drain to occupy, so
that only electrons from the source above E0C C �0 contribute.

In general, the charge carrier density in the source and drain contact regions will
depend on the transmission of the device, since the latter determines the portion
of electrons on either side of the scatterer during transport: Considering the case
of a single channel, NS D ND D 1, the density on the source (drain) side will be
weighted by .1 C R/fS.D/ C TfD.S/, respectively [16]. This will in turn modify the
‘local equilibrium’ quasi-Fermi levels of the leads in the immediate vicinity of the
scatterer on the source and drain side to �0

S and �0
D, respectively, which will lie

less far apart than �S and �D. In the present low temperature limit, step functions
can replace the Fermi-Dirac distributions (now with the new levels �0

S;D), and the
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potential drop across the scatterer can be simply approximated by [16]

�0
S � �0

D D .1 � T/.�S � �D/ (3.41)

for sufficiently small bias voltage.

3.3.2 Linear Response Regime

For very small bias, �S � �D D eVSD ! 0, though still at finite temperature, the
Fermi functions can be expanded in series around the equilibrium chemical potential
taken to be the average� D .�DC�S/=2. To first order in V , the difference in (3.38)
can be approximated as [1]

f .EI�S; �/� f .EI�D; �/ D f

�
EI�C e

VSD

2
;�

	
� f

�
EI�� e

VSD

2
;�

	

(3.42)

� eVSD F�.E � �/; VSD ! 0 (3.43)

where

F�.E/ � @f .EI�;�/
@�

ˇ̌
ˇ̌
�D0
D � @f .E

0I�;�/
@E0

ˇ̌
ˇ̌
E0DEC�

D 1

4kB�
sech2

�
E

2kB�

	

(3.44)

is the thermal broadening function [17]. The current then becomes proportional to
the small applied bias at given temperature and chemical potential,

Ilin D G.�;�/VSD; (3.45)

with the proportionality factor G.�;�/ being the conductance function given by
the convolution of the transmission function with the thermal broadening function
in energy,

G.�;�/ D G0 .T ı F�/.�/ D G0

Z 1

0

dE T.E/ F�.� � E; �/; (3.46)

using the fact that F�.E/ is even in E, where

G0 D e2


„ D 2
e2

h
(3.47)

is the conductance quantum for spin-degenerate electronic transport (for each
spin component alone, or for “spinless” electrons, the factor 2 is absent). When
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Fig. 3.3 Conductance G=G0 of a circular hard-wall billiard of radius R D 220 nm with two
symmetrically attached leads of width w D 0:3R, at temperatures � D 0 (black), 0.1, 0.5, 1.0,
1.5 K (red to orange), as a function of dimensionless total momentum (channel number) k
=w.
The scaled thermal broadening function QF� D sech2. k
=w

2kB�
/ is shown on the right; its convolution

with T D G.� D 0/=G0 yields the corresponding G-profiles

(3.45) applies, the transport is said to be in ‘linear response’, with the charge flow
determined by the equilibrium properties of the system (such as � and �), and it is
this regime we will address in Chaps. 6, 7 and 8.

The (shifted) thermal broadening function F�.�� E/ (also known as the Fermi-
Dirac probability density function [14]) is peaked symmetrically at E D �, it
is normalized to unity,

R C1
�1 dE F� D 1, and its full width at half maximum is

proportional to kB�. It is plotted (scaled by its maximum 4kB�) in Fig. 3.3 together
with its effect on the transmission profile of a type of quantum billiard device
studied later in Chap. 6, producing conductance profiles in varying Fermi energy
EF D ��E0C � �0 at different temperatures. It is clear that F� has a smearing effect
on the transmission function, increasingly washing away detailed features in T.EF/

as � is raised; the transmission is said to be ‘thermally averaged’ around a given
value of EF .

The conductance function (3.46) can be used to write the general expression for
the current for finite bias and temperature, (3.38), as [14, 17]

I D 1

e

Z �S

�D

d� G.�;�/; (3.48)

where � in (3.46) is now treated just as a variable of integration �. This shows that
linear response of the current to the applied voltage can be established even at finite
bias [that is, not restricted to the limit VSD ! 0, as in (3.42)], under the condition
that G.�;�/ is constant in energy within the interval �D < � < �S, which leads
again to the linear I-V-relation, (3.45).

The smoothness of G.�;�/ depends on the profile of the transmission function
T.E/, in combination with the smearing effect of the thermal averaging in (3.46).
Due to impurity scattering, with mean free path smaller than then coherence length,
le < l' in a mesoscopic system (see Sect. 2.2.2), T.E/ typically varies rapidly as
a result of multiple interference of scattered waves. Even in the absence of elastic
disorder, realized, e.g., by a thick spacer layer (see Fig. 2.2), multiple scattering at
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the boundaries within an electron billiard usually leads to a strongly fluctuating
transmission function. Therefore, linear response at a given temperature � is
retained only for a bias far below the thermal width, eVSD D �S��D � kB�, so that
any variation in T.E/ has been smeared out by the thermal average in G.�;�/. The
challenge to maintain linear response in a coherent transport device over larger bias
(even larger than the thermal width) thus relies on the elimination of random strong
fluctuations in the transmission, despite multiple wave interference. This consists
in (1) depleting resonance widths to a minimum, since narrow resonant features
are smeared out already by a small thermal width, and (2) keeping the overall
(background) transmission profile smooth. In fact, this twofold task will constitute
a central aim in Chaps. 6, 7 and 8, where the strategy will be to use the shape of the
electron billiard (including confinement potential and lead positioning) to decouple
resonant states from a magnetically controlled transmission background.

3.3.3 Transmission as Conductance

In the limit of zero temperature, the shifted thermal broadening function F�.��E/
represents a Dirac ı-function peaked at �,

F�!0.� � E/ D ı.�� E/; (3.49)

which, when inserted into (3.46), yields that the linear conductance coincides with
the transmission function evaluated at the Fermi energy,

G.�;� ! 0/ D G0T.�/ D e2


„T.�/; (3.50)

when measured in units of G0. This is referred to as the zero-temperature Landauer
formula.

Considering a prefect quantum wire as the device, with N.�/ open channels at
the Fermi level in which electrons transmit perfectly (R D 0), current conservation
gives T.�/ D N.�/. Thus, assuming that the voltage drop along the device is
measured between the source and contacts [thereby coinciding with VSD in (3.45)],
the conductance I=VVS will increase in steps of G0 as � crosses (e.g., by tuning
an applied top gate voltage) the subband thresholds of the wire. In other words,
G0 constitutes the conductance of a single, perfect 1D channel, and therefore a
‘conductance quantum’. The experimental observation of conductance quantization
[18, 19] was an important step to corroborate the present formalism of coherent
transport.

Note that, in spite of its intuitive form (since T indeed simply expresses the ease
with which electrons transmit through the device), (3.50) should not be considered
obvious [20], since it gives the conductance between the decohering source and
drain electrodes in terms of the scattering matrix elements connecting only the
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idealized leads in between. There has been no treatment here of the contacts
where these leads connect to electron reservoirs, apart from the contacts being
reflectionless. This assumption further raises the question why there should be a
conductance quantum at all, as manifest in (3.50) for a QW: An ideal, perfectly
transmitting wire above would be expected to provide zero resistance to the current
flux.

In fact, it is essential to assume measurement of current and voltage drop at the
same contacts (that is, connected through the same leads to the scatterer) to arrive
at (3.38) and thus its limit in (3.50). If the voltage drop were measured only across
the device itself by separate voltage probes, attached though a different pair of ‘non-
invasive’ contacts to the ideal leads [in the sense that they do not affect T.E/], then
the modified local quasi-Fermi levels�0

S;D of (3.41) should be assigned (considering
a single open channel). The alternative current-voltage relation I D G0V 0

SD in turn
yields a four-terminal single-channel conductance

G0 D G0
T

1 � T
D G

R
; (3.51)

which is the one originally derived by Landauer. Using this formula, the resistance
.G0/�1 of a single-channel perfect QW indeed vanishes. The total resistance of the
device can now be written as a series addition

G�1 D .G0/�1 C G�1
0 (3.52)

of the resistance of the scatterer itself and of a contact resistance G�1
0 corresponding

to the additional voltage drop in the leads. The origin, and quantization, of the
contact resistance for a single channel can be traced to the broadening of a
single isolated energy level when brought in contact with a reservoir of many
closely spaced levels [17]. The concept of broadening will be introduced below
in the effective Hamiltonian treatment of scattering, Sect. 4.3. For the multi-channel
version of (3.51) and (3.52), the individual channel velocities are taken into account
[16]. However, by treating T as the average transmission per channel, the N-channel
case can be approximated by the replacement G0 ! G0N [17].

3.4 Multiterminal Conductance

The discussion above concerning the different expressions of the conductance for
two- and four-terminal measurements, summarized in (3.51), calls for a general
approach to coherent transport in devices with more than two attached leads, as
the one depicted in Fig. 3.1. In the four-terminal Landauer formula, current flows
between the source and drain contacts, and the additional leads attached on either
side of the scatterer are assumed to be ideal voltage probes that draw (or contribute)
no net current, though remain in a local equilibrium with the quasi-Fermi levels
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�0
S;D whose difference is measured. Büttiker [10] introduced a unifying framework

in which such current and voltage probes are treated equivalently as decohering
contacts connected to the mesoscopic device, between which the coherent electronic
propagation is described by the S-matrix of the scattering region.

3.4.1 Current from Scattering States

Considering a structure with NL leads connected to current or voltage probes, we
can thus make use of the multiterminal S-matrix and the associated scattering states
of Sect. 3.2 to arrive at the currents in the terminals p D 1; 2; : : : ;NL. Taking into
account the cancellation of channel velocity and DOS, (3.37), the charge current
carried by a scattering state j˚.q/

n;Ci in lead p at energy E > En (so that channel n is
open) is given by [see (3.11)]

i.q/n;CIp.E/ D
e


„

0

@ıpq �
Np.E/X

mD1
jSmn

pq .E/j2
1

A ; (3.53)

that is, an incident flux if p D q minus the fluxes transmitted from mode n in lead q
into any mode (including the incident one for p D q) in lead p. Each scattering
state j˚.q/

n;Ci is in equilibrium with the corresponding reservoir [17] at chemical
potential �q, which feeds the device with electrons according to its occupation
function fp.EI�/ (given in (2.39) with q D 1; 2; : : : ;NL). Thus, the total current
in terminal p is obtained by summing over all scattering states (i.e., over n for each
q and over all q), each weighted by its corresponding occupation function fq, and
integrating over energy,

Ip D
Z

E
dE

NLX

qD1

NqX

nD1
i.q/n;CIp.E/fq.EI�/ (3.54)

D
Z

E
dE

e


„

0

@Np.E/fp.EI�/�
NLX

qD1
Tpq.E/fq.EI�/

1

A ; (3.55)

where (3.14) has been used. Taking flux conservation into account, expressed in
the form of the sum rule in (3.18), the current can intuitively be written as the
difference between the total flux transmitted from lead p to all other leads and the
total weighted flux from all other leads into lead p (noticing that the reflected flux
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q D p back to lead p cancels out),

Ip D e


„
Z

E
dE

0

@
NLX

qD1
Tqp.E/fp.EI�/�

NLX

qD1
Tpq.E/fq.EI�/

1

A ; (3.56)

but also as the total flux from all leads to lead p, weighted by the corresponding
differences in occupation functions (note that fp.E/ is a common factor of all
summands in the sum over q),

Ip D e


„
Z

E
dE

NLX

qD1
Tpq.E/

�
fp.EI�/� fq.EI�/


: (3.57)

This last form generalizes the two-terminal current, (3.38), to the multiterminal
case. Equation (3.57) could, in fact, be arrived at equivalently by starting with an
argument similar to that in (3.34), (3.35) and (3.36), that is, treating in- and outflow
separately. We have chosen here to treat the elementary current as that carried
by a scattering state, (3.53), which includes in- and outflow simultaneously since
the wave function of the scattering state generally extends into all leads, though
occupied according to the lead of incidence. Forming a complete set, scattering
states thus describe transport naturally without introducing ambiguities concerning
the Pauli exclusion principle for the lead state occupation of electrons ‘arriving’ at a
terminal [17, 21], since an electron (or two of opposite spin) occupying a scattering
state automatically occupies lead states in all leads.

3.4.2 Conductance Matrix

Assigning a voltage Vp to each quasi-Fermi level �p, in the limit of small voltage
differences between the leads all levels tend to a common one, �p ! � 8 p, and
the difference fp � fq in (3.57) can be approximated through the thermal broadening
function (3.44), like in the two-terminal case. The current in terminal p thus becomes
a linear combination of the voltage differences Vpq to all other terminals (the
contribution of the same terminal obviously vanishes),

Ip D
NLX

qD1
GpqVpq; Vpq � Vp � Vq D �p � �q

e
! 0 (3.58)
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where the two-terminal conductance from lead q to lead p is given in direct analogy
to (3.46),

Gpq.�;�/ D G0 .Tpq ı F�/.�/ D e2


„
Z 1

0

dE Tpq.E/ F�.� � E; �/: (3.59)

Collecting all currents and voltages into NL � 1 vectors I D .I1; I2; : : : ; INL/
> and

V D .V1;V2; : : : ;VNL/
>, (3.58) can be written in the matrix form [16, 22]

I D �V; �pq � ıpq
X

q0

Gpq0 � Gpq: (3.60)

Due to current conservation, the elements of any row or column of � add
to zero [since the sum in (3.18) commutes with the integration in (3.59)]. This
becomes more evident in the limit of zero temperature, where the (dimensionless)
conductance and transmission coefficients coincide, and � becomes

�pq.�;� ! 0/ D e2


„ .ıpqNp � Tpq/: (3.61)

Further, since the derivation of � was based on the multiterminal scattering matrix
S, the associated reciprocity relations in the presence of a magnetic field carry over
to the general conductance coefficients,

Gpq.�;�IB/ D Gqp.�;�I �B/; (3.62)

thus demonstrating the Onsager-Casimir microreversibility principle [11, 23] for
coherent electron transport.

3.4.3 Current and (Fictitious) Voltage Probes

Once the linear response conductance matrix � has been determined from the
scattering matrix of the system, with contacts at a given temperature and close to the
common chemical potential �, the distinction between current and voltage probes
(which were treated equivalently) can be reintroduced: Considering a device with NL

probes in total, current probes are those upon which externally set voltages Ve
p (p D

1; 2; : : : ;Ne) are applied, and at which the flowing currents Iep measured, whereas
voltage probes ideally let no current through, Iip0 D 0 (p0 D 1; 2; : : : ;Ni D NL�Ne),

in order to reliably measure their voltages Vi
p0 which are determined internally by

the system. With this grouping of the elements of current and voltage vectors I and
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V, the matrix equation (3.60) can be written as

�
Ie

Ii

	
D
�
�ee �ei

�ie �ii

	�
Ve

Vi

	
; (3.63)

where the diagonal blocks �ee.ii/ connect external (internal) currents and voltages,
while the off-diagonal blocks provide the coupling between external and internal
probes. Setting Ii D 0 for the internal (voltage probe) currents, and eliminating Vi

from the system of (3.63), we obtain the external currents in terms of the external
voltages alone, but through an effective conductance matrix Q� (of dimension Ne),

Ie D Q�Ve; Q� D �ee ��ei.�ii/�1�ie: (3.64)

This form of Q� is in analogy to the combined scattering matrix (3.28) of two
connected scatterers (with unconnected/connected amplitudes playing the role of
external/internal probes), and is quite general when treating the effect of a subsystem
(or perturbation) on the (linear) response of a system. We will encounter it again
when partitioning the Hamiltonian of the system in the Green function approach to
scattering in Sect. 4.3.

Since the current through (ideal) voltage probes is zero, their only effect on
the electronic transport between other terminals is that they constitute sources of
decoherence: Electrons reinjected from the voltage probes (to maintain Ii D 0
above) have no phase relation to the ones entering them, assuming that the contacts
are reflectionless (see Sect. 3.1). The Büttiker formalism has therefore been used to
phenomenologically model decoherence, that is, to introduce incoherent scattering
without treating the microscopic phase-breaking processes [10, 24]. The internal
probes are now fictitious: They need no longer be attached to the device through
real contacts (although they might), but can be distributed over the system as
localized scatterers which destroy the phase information of the electron waves (since
multiterminal transmission coefficients are added incoherently). After determining
the total conductance matrix �, internal voltages are eliminated by imposing zero
internal currents, and the conductance matrix of between the ‘real’ terminals is given
by Q�.

In the multiterminal systems studied here in Chaps. 5 and 8, we will not apply
fictitious Büttiker probes to model decoherence; each (real) terminal will itself serve
as a source of decoherence, but also of dissipation (since net flux will be transmitted
through it), for the electron transport between other terminals.
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Chapter 4
Stationary Scattering in Planar Confining
Geometries

In the Landauer-Büttiker formalism developed previously, the multiterminal trans-
mission function of a mesoscopic device constitutes the core of the description
of coherent electron transport. In this chapter it will be seen how the asymptotic
scattering matrix of the system as well as spatially resolved quantities of interest
such as the full scattering wave function can be formally determined and practi-
cally calculated from the system Hamiltonian. This is achieved within the Green
function formalism in terms of an effective, energy-dependent and non-Hermitian
Hamiltonian describing the scattering region connected to the peripheral leads.
The theoretical framework is reviewed from the particular viewpoint of (planar)
confinement with generic, geometrically defined asymptotic scattering channels,
highlighting the involved concepts and the main observable interference effects in
transmission, Fano resonances and Aharonov-Bohm oscillations.

4.1 In-Plane Hamiltonian

As alluded to in Sect. 2.2.3, we will assume a total effective single-electron potential
that is separable into its z-dependence along the vertical direction of growth of
the heterostructure and the in-plane xy-dependence; see (2.19). Considering the
quantum limit of a 2DES, motion is restricted to the lowest subband of the vertical
confinement, as explained in Sect. 2.3, and we now work with the 2D projected
Hamiltonian simply denoted as H, which reads

H D 1

2m
Œ p � qeA.r/�

2 C V.r/ D 1

2m

�„
i
rr C eA.r/

�2
C V.r/; (4.1)
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where r D .x; y/ D xOxC yOy, with in-plane effective mass m and vector potential A.
The electrostatic potential V.r/ is here the sum

V.r/ D Vdev.r/C Vint.r/; (4.2)

where Vdev.r/ is the in-plane confinement potential resulting from the device design
through depleting gates or direct etching, and Vint.r/ is the effective single-particle
potential approximating electron-electron interactions, see Sect. 2.2.3. Interactions
are usually included as the mean field, or Hartree, electrostatic potential Vint.r/ �
VH.r/ created by the average density n.r/ of all electrons in the system through
Poisson’s equation,

rrŒ"0".r/rrVH.r/� D �e2n.r/; (4.3)

where ".r/ is the relative permittivity of the semiconducting medium which can vary
spatially for the inhomogeneous device composition [1, 2]. The spatially varying
electron density in the open system is generally given by

n.r/ D
X

p

NpX

mD1

Z C1

�1
dE fp.EI�/j . p/m;CIE.r/j2 (4.4)

in terms of the wave functions of the scattering states j . p/m;CIEi � j . p/m;C.E/i
with incident wave in mode m of lead p, weighted by the occupation functions
fp of the corresponding reservoir and added incoherently in the Landauer-Büttiker
framework (see Sect. 3.4). The scattering states are in turn energy eigenstates of the
stationary Schrödinger equation

ŒE �H �  .r/ D 0 (4.5)

with the corresponding (asymptotic) boundary conditions.1 Equations (4.3)
and (4.5) can then be solved self-consistently by iteratively updating VH.r/ in
(4.5) from the solution of (4.3) with n.r/ previously obtained from (4.5), until VH.r/
converges—a procedure known as a ‘Schrödinger-Poisson solver’.

Since the focus in later chapters will be primarily on the combined effects of
the device geometry and magnetic fields in a highly resolved parameter space, we
will simply consider a fixed potential from the beginning (usually of the hard-wall
billiard type). The extensive work on self-consistent device potentials [3–5] can
then be consulted to add approximative potential gradients to simulate more realistic
setups, as done in Chap. 7.

1The subband energy of the vertical z-confinement is here included in the potential, and the
energy E is thus the total energy of the in-plane motion, that is, offset to the ground level �0 of
heterojunction well.
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4.2 Greenian Formulation of Scattering

Let us now introduce some elemental concepts of Green functions in single-particle
scattering theory, in part following [2, 6–9]. Instead of exposing the subject in its
formal rigor, we will adapt the description to a more intuitive understanding of the
elastic scattering processes in terms of propagators in time and space.

4.2.1 Green Functions

For a linear differential operator L acting in (2D) space r and time t, the inhomoge-
neous differential equation

L .r; t/ D ˚.r; t/ (4.6)

expresses the spatiotemporal evolution, or response, of the function .r; t/ governed
by L in the presence of the ‘source’ term ˚.r; t/. The Green function G.r; r0I t; t0/
associated with L is defined as the response to a source localized at r0 at time t0,

LG.r; r0I t; t0/ D ı.r� r0/ı.t � t0/: (4.7)

It can be interpreted as the function that transfers, or propagates, the effect of the
source ˚ on the response  from .r0; t0/ to .r; t/, in the form

 .r; t/ D
Z

dr0
Z

dt0 G.r; r0I t; t0/˚.r0; t0/; (4.8)

as can be verified from (4.6) and (4.7). In other words, G resolves the total effect of
the source ˚ on  at a point .r; t/ under the action of L into the partial effects of ˚
from individual points .r0; t0/, which added produce the total response.

In many-body quantum theory, Green functions are defined as (various types
of inter-dependent) correlation functions between field operators of interacting
particles [2, 6, 10]. In the effective single-electron picture we have adapted to in
Chap. 2, we start with the time-dependent Schrödinger equation,

�
i„ @
@t
�H

�
 .r; t/ D 0; (4.9)
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and the Green function for the differential operator L D i„ @
@t � H thus obeys the

Green equation

�
i„ @
@t
�H

�
G.r; r0I t; t0/ D ı.r� r0/ı.t � t0/: (4.10)

In the presence of an excitation ˚.r; t/ D ˚.r/ı.t � ti/ at some initial time ti, the
solution  .r; t/ of the associated inhomogeneous equation,

�
i„ @
@t
�H

�
 .r; t/ D ˚.r/ı.t � ti/; (4.11)

will have a temporal discontinuity at t D ti [2],

i„ Œ .r; tCi / �  .r; t�i /� D ˚.r/: (4.12)

Treating ti as the time signifying an initial (C) or final (�) condition, we can define
corresponding wave functions  ˙.r; t/ �  .r; t/�.˙.t � ti// to be the solutions to
(4.11) at times t ? ti. The spatial part ˚ of the inhomogeneous term in (4.11) then
simply imposes, through (4.12), the initial or final condition on C.r; t/ or  �.r; t/,
respectively,

˙ i„ ˙.r; ti̇ / D ˚.r/: (4.13)

From (4.8),  C.r; t/ and  �.r; t/ are then given by

 ˙.r; t/ D ˙i„
Z

dr0
Z

dt0 G˙.r; r0I t; t0/ ˙.r0; ti/ı.t0 � ti/

D ˙i„
Z

dr0 G˙.r; r0I t; ti/ ˙.r0; ti/ (4.14)

in terms of the associated retarded and advanced Green functions GC.r; r0I t; t0/ and
G�.r; r0I t; t0/, respectively, which in turn are solutions to (4.10). This is written in
representation-independent form as

j ˙.t/i D ˙i„G˙.t; ti/ j ˙.ti/i ; (4.15)

such that G˙.r; r0I t; t0/ D hrjG˙.t; t0/ jr0i is the spatial representation of the
operator G˙.t; t0/, which we call the resolvent, or Greenian,2 of the Hamiltonian

2In order to avoid a multitude of namings for G, since it is encountered as the Green operator acting
on states, as the Green function in spatial representation, or even as the Green (function) matrix in
the discretized (spatial) representation to follow, we will use the relatively unconventional though
unifying term ‘Greenian’, just as is commonly done for the Hamiltonian.
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operator (strictly speaking, of the operator L D i„ @
@t �H). In view of the general

unitary evolution of the state j .t/i from time t0 to time t,

j .t/i D U.t; t0/ j .t0/i ; (4.16)

we identify the time-dependent Greenian in (4.15) as the unitary evolution operator
U associated to H, supplied with the information on the initial condition at t D ti
due to the source,

G˙.t; ti/ D ˙ 1i„ U.t; ti/�.˙.t � ti//: (4.17)

Considering a time independent Hamiltonian, the evolution operator reads

U.t; t0/ D exp

�
� i

„ .t � t0/H
�
; (4.18)

so that an eigenstate j E.t/i of the Hamiltonian with eigenenergy E evolves simply
as

j E.t/i D e� i
„
H.t�t0/ j E.t

0/i D e� i
„
E.t�t0/ j E.t

0/i � e�i!.t�t0/ j E.t
0/i ;

(4.19)
that is, with a (relative) probability density j E.t0/j2 constant in time, or stationary.

Spectral Expansion

We can now use the (limiting) integral representation of the Heaviside step function
in (4.17) with � D t � ti,

�.�/ D ˙ i

2

lim
�!0

Z C1

�1
d�

e�i��=„

� ˙ i�
; � > 0; (4.20)

together with the completeness and orthonormality of the eigenstates jni of the
Hermitian operator H,3

XZ

n;k

jn;ki hn;kj D 1I H jn;ki D En;k jn;ki ; (4.21)

3The symbol
PR

n;k is here used explicitly to denote the summation over discrete eigenstates n
together with the integration over continuous (momentum) eigenvalues k. For notational simplicity,
we also use 1 throughout to denote the identity operator.
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to obtain the energy dependent Greenian from the Fourier transform of (4.17), as
follows (setting ti � 0 for simplicity):

G˙.E/ D
Z C1

�1
dteiEt=„G˙.t; ti D 0/ (4.22)

D 1

2
„ lim
�!0

Z C1

�1
dteiEt=„U.t; ti D 0/

Z C1

�1
d�

e�i�t=„

� ˙ i�
(4.23)

D 1

2
„ lim
�!0

Z C1

�1
d�
Z C1

�1
dt
ei.E�H��/t=„

� ˙ i�
(4.24)

D lim
�!0

Z C1

�1
d�
ı.E �H � �/

� ˙ i�
(4.25)

D lim
�!0

ŒE �H˙ i���1: (4.26)

The retarded and advanced Greenians are thus obtained by taking the real limit of
the complex (energy) argument � D E˙ i� of the resolvent operator G,

G˙.E/ D lim
�!0

G.E˙ i�/; G.�/ � Œ� �H��1: (4.27)

The completeness of the eigenstates of H, already used implicitly in the steps (4.24)
! (4.25)! (4.26) above, allows the Greenian to be written in its spectral expansion

G.�/ D
XZ

n;k

jn;ki hn;kj
� � En;k

; (4.28)

a form that provides a powerful tool to calculate the Green function in spatial
representation,

G.r; r0I �/ D hrjG.�/ jr0i ; (4.29)

for the Hamiltonian under consideration (once its eigenstate wave functions hrjn;ki
are known), usually by contour integration in the complex k-plane for a continuous
energy spectrum En.k/.

Greenian as a Spatial Propagator

Let us start now with an initial excitation j˚0i which is stationary at energy E
(that is, time-periodic with constant density) but under some other Hamiltonian H0,
j˚0.t0/i D e�iEt0=„ j˚0i. This state is here simply imposed as a source. The state
j .t/i at time t > t0 of the system governed by H will be given by the contribution
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of all times up to t through the propagatorGC.t; t0/, which is now the inverse Fourier
transform of GC.E/ [9], causally evolving the excitation:

j .t/i D
Z t

�1
dt0 GC.t; t0/ j˚0.t0/i (4.30)

D lim
&!0C

1

2
„
Z t

�1
dt0
Z C1

�1
dE0 GC.E0/ e�.iE0C&/.t�t0/=„ e�iEt0=„ j˚0i ;

(4.31)

where a convergence parameter & > 0 has been included which is taken to zero in
the end,

D lim
&!0C

1

2
„
Z C1

�1
dE0 GC.E0/ e�i.E0�i&/t=„

Z t

�1
dt0 e�i.E�E0Ci&/t0=„ j˚0i

(4.32)

D lim
&!0C

1

2
i

Z C1

�1
dE0 GC.E0/

E0 � E � i&
e�iEt=„ j˚0i (4.33)

D lim
&!0C

G.E C i&/ e�iEt=„ j˚0i ) j .t/i D GC.E/ e�iEt=„ j˚0i : (4.34)

Projected in position space, (4.34) shows that the retarded (causal) Green function
GC.r; r0IE/ can also be regarded as a spatial propagator of an initial time-periodic
excitation from r0 to r at energy E, such that the temporal oscillation (that is,
the energy) remains invariant. In the general case of an excitation j˚0.E/i DR C1

�1 dt0 exp.iEt0=„/ j˚0.t0/i which is not (necessarily) periodic, the response will
be a superposition of harmonic phases [11],

j .t/i D 1

2
„
Z C1

�1
dE e�iEt j˚.E/i ; (4.35)

where each weighing component is propagated by the Greenian, j˚.E/i D
GC.E/ j˚0.E/i. In the cases of elastic scattering to be studied here, we will consider
lead eigenstates at energy E, of the form (3.4), to be the excitation, that is, apart
from a phase dependent on the longitudinal position in the lead, we have transversal
modes in one (or more) of the leads as source, and (4.34) can be used.

From (4.27) it is seen immediately that the Greenian fulfills the property

GC.E/ D ŒG�.E/�� (4.36)

which, in its spatial representation, yields the reciprocity relation [3, 11]

GC.r; r0IE;B/ D ŒG�.r0; rIE;�B/��; (4.37)
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in similarity to the one for the S-matrix, (3.22). Thus, complex conjugation
corresponds to the time reversal of propagation in the system. We have again
included the magnetic field reversal accompanying time reversal, since the complex
conjugated eigenstates, which are inserted in the spectral representation (4.28), are
solutions of the same Schrödinger equation with reversed magnetic field [6].

4.2.2 Scattering Matrix from Greenian

As we have seen, the retarded Greenian GC.E/ acts in the form of a generalized
‘scattering matrix’, which connects wave function amplitudes not only asymptot-
ically (in the leads in the case of an open quantum billiard) and between specific
eigenmodes, but the amplitudes at any two points in the system. The Greenian thus
carries the information of the scattering process continuously through the system
and, evaluated at its asymptotic regions, will naturally be related to the S-matrix
elements.

To arrive at this relation for an open quantum billiard, we consider the response
from a localized (ı-like) excitation in one of the leads connected to the scatterer,
as shown schematically in Fig. 4.1, which is given by the spatial representation
of GC.E/, as seen previously. An excitation at point r0

p D .x0
p; y

0
p/ in lead p will

generate a wave in the form of a superposition of partial waves (in its channels m)
with expansion coefficients c. p/m;s.x0

p; y
0
p/, as given in Sect. A.1 in Appendix A where

the Green function of a perfect wire is derived. The sign s for each wave is the
opposite of the direction of that wave; see (A.13) and (A.14). The partial waves
going inwards are scattered in the cavity and transmitted to all channels n of the
other leads q ¤ p or reflected back to same lead q D p, according to the S-matrix of
the system. Each lead p is equipped with a local Cartesian coordinate system .xp; yp/
with unit vector Oxp pointing outwards from the scatterer.

Fig. 4.1 The response GC.rq; r0

pIE/ to an excitation at point r0

p D .x0

p; y
0

p/ in a lead p of

a multiterminal scatterer will generate partial waves with expansion coefficients c. p/m;s.r0

p/, with
s D sgn.xqDp � x0

p/, which are scattered via the scattering matrix S into the modes of all leads
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Since we aim at the scattering matrix elements, we consider the ‘final’ points
rq D .xq; yq/ to be in the asymptotic region of the leads, so that the asymptotic
expression of the scattering wave function (3.11) can be used for the transmitted
and reflected amplitudes, taking into account only open channels. Some ambiguity
seems to arise from the fact that the ‘initial’ point of excitation within lead p can
be chosen to lie closer [2] or farther [12, 13] from the scatterer than the point of
evaluation of GC.E/ in the same lead, that is, xqDp � x0

p > 0 or < 0, respectively.
We here treat both cases simultaneously and show that the result is independent of
this choice. In the absence of magnetic fields, the response at rq D .xq; yq/ at energy
E will be, according to the above [see (3.11) and (A.13)],

GC.rq; r0
pIE/ D

X

m

h
e . p/

m;C.rq/ � ıqp�.xq � x0
p/
e̊.q/

m;�.rq/

c. p/m;C.r

0
p/

C
X

m

ıqp�.xq � x0
p/
e̊.q/

m;C.rq/ c. p/m;�.r0
p/ (4.38)

D
X

m

ıqpe̊.q/m;sc
. p/
m;�s C

X

m

X

n

eSnm
qp
e̊.q/

n;C.rq/c
. p/
m;C.r

0
p/; (4.39)

with the sign

s D sgn.xqDp � x0
p/ (4.40)

determined by the relative position of excitation and evaluation point in lead p,
where

c. p/m;˙.r
0
p/ D

e̊. p/
m;˙.r0

p/

i„v. p/m

; e̊.q/
n;˙.rq/ �

q
v
.q/
n ˚

.q/
n;˙.rq/ D �.q/n . yq/ exp.˙ik.q/n xq/:

(4.41)

Note that the ingoing wave e̊. p/m;� of the scattering state e . p/
m;C is replaced by an

outgoing wave for xqDp � x0
p > 0 (there is here no wave coming in from xp !1),

but with opposite phase �ik.q/m xq of the plane wave coefficient.
In order to use the form of the quantum wire response GC

qw (see Appendix A)
in lead p, and to preserve the symmetry of channel indices in Snm

qp (see below), the
asymptotic scattering states used in the expression for GC above,

e . p/
m;s.rq/ D ıqpe̊.q/m;�s.rq/C

X

n

eSnm
qp
e̊.q/

n;s .rq/; s D C;� (4.42)

[cf. (3.11)], are given in terms of ‘rescaled’ lead eigenstates [cf. (3.4)] e̊. p/m;˙ which
are not flux normalized [2, 12, 14], and whose amplitudes in generic lead states are
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connected by a non-unitary scattering matrix

eSnm
qp D

s
v
. p/
m

v
.q/
n

Snm
qp : (4.43)

As mentioned above, the Greenian resembles a generalized scattering matrix which
connects spatially separated wave amplitudes at arbitrary positions and not only
asymptotically. However, the flux normalization pertaining to the unitarity of the
associated S-matrix (whose elements are current transmission amplitudes) relies on
the well defined (asymptotic) velocities vm in the channels, and can be incorporated
in the connection between the corresponding mode amplitudes. This is not the case
for the connection of wave amplitudes between arbitrary spatial points, to which no
particular velocity is assigned; this becomes obvious for points inside the scatterer,
where there are no channels to begin with. Therefore, it is more natural to express
Green functions in terms of ‘bare’ eigenfunctions which are not flux normalized
(though possibly space-normalized) and thus independent of the presence or not of
a geometry with asymptotic leads.

Inserting the c. p/m;˙.r0
p/ and e̊.q/n;˙.rq/ into (4.38), we obtain

GC.xq; yq; x0
p; y

0
pIE/ D

X

m

1

i„v. p/m

ıqp�
q
m. yq/�

p
m. y

0
p/e

is.k
q
mxq�k

p
mx0

p/

C
X

m

X

n

1

i„v. p/m

eSnm
qp �

q
n. yq/�

p
m. y

0
p/e

i.kqnxqCk
p
mx0

p/; (4.44)

and it is now clearly seen that the excitation in lead p has caused scattered outgoing
states at rq in all leads q plus the directly generated outgoing (s D C) or ingoing
(s D �) wave in lead q D p. The initially generated amplitudes are given by the
lead Green function in lead p and are proportional to the transversal wave function
at the excitation point r0

p, as expected [6]. Note also that GC is symmetric under the
exchange rq $ r0

p (recall that we have assumed zero magnetic field in the leads).
We can now use the orthogonality of the transversal eigenstates of the leads in

order to isolate the desired S-matrix elements: multiplying by �qn0 . yq/�
p
m0 . y

0
p/ and

integrating over the cross section of lead q at xq and lead p at x0
p, we have

Z
dyq

Z
dy0

p �
q
n0 . yq/G

C.xq; yq; x0
p; y

0
pIE/�pm0 . y0

p/

D ıqp
X

m

ımn0ımm0
eis.kqmxq�k

p
mx0

p/

i„v. p/m

C
X

m

X

n

s
v
. p/
m

v
.q/
n

Snm
qp ınn0ımm0

ei.kqnxqCk
p
mx0

p/

i„v. p/m

(4.45)

D ıqpın0m0
eijkqn0 xq�k

p
m0 x

0

pj

i„
q
v
.q/
n0 v

. p/
m0

C Sn0m0
qp

ei.k
q
n0xqCk

p
m0 x

0

p/

i„
q
v
.q/
n0 v

. p/
m0

; (4.46)
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where the first term has been symmetrized in the indices since it vanishes for q ¤ p
or n0 ¤ m0. We thus arrive at the desired relation between the S-matrix elements
and the Green function (dropping now the prime on r0

p above),

Snm
qp .E/ D

�
i„
q
v
.q/
n v

. p/
m

Z
dyq

Z
dyp �

q
n. yq/ GC.xq; yq; xp; ypIE/�pm. yp/

� ıqpınmeijkqnxq�k
p
mxpj i e�i.kqnxqCk

p
mxp/; (4.47)

confirming that S is symmetric [see (3.20)], Snm
qp D Smn

pq , in the considered time-
reversal invariant setting. It is here implicit that

E
m;k

. p/
m
D E

n;k
.q/
n
D E; E

m;k
. p/
m
D E. p/m C

„2
2me

k. p/m ; (4.48)

so that energy is conserved during the elastic scattering. Equation (4.47) is usually
attributed to Fisher and Lee [14] who derived it for an effectively 1D setting.
The case of an arbitrary confinement geometry with attached leads connected to
reservoirs (the ‘quantum billiards’ described in Sect. 2.2) introduces conceptual
implications, to be discussed at the end of Sect. 4.2.3. A generalized multiterminal
version of the Fisher-Lee relation for such systems was developed subsequently by
Stone and Szafer [13] and analyzed in a time-dependent picture by Sols [12].

As we see from (4.47), the S-matrix elements depend on the coordinates rp; rq
where GC is evaluated. In 1D scattering, this dependence is conventional since
it only introduces constant phases fixed by the choice of the (common) spatial
origin. In the present 2D scattering, this is not the case: Considering the spectral
expansion of GC.E/ into (scattering) eigenstates of the system Hamiltonian, (4.28),
we anticipate that its projection onto the lead eigenmodes in (4.47) can generally
contain contributions from evanescent modes in the leads and not only from
propagating ones. Although we started out to obtain the (asymptotic) S-matrix, there
is no formal reason to truncate the sums over m and n above to open channels,
and thus the matrix elements Snm

qp in (4.47) are generalized to evanescent modes m

for which E. p/m > E (and which thus have an imaginary longitudinal wave vector
k. p/m ) causing exponential decay into lead p. An extended S-matrix is thus defined
which includes evanescent modes by analytic continuation of the channel momenta
in the complex k-plane [8]. This extended S-matrix is, however, non-unitary, since
the evanescent modes do not allow for the propagation of flux away from the system
in order to conserve the total current.

To extract the S-matrix elements between open channels only, the points of
evaluation of GC.E/ should be taken to the asymptotics xp; xq ! 1, where
the evanescent contributions have vanished. Alternatively, though, one can simply
discard matrix elements corresponding to closed channels by multiplying (4.47)
with step functions �.E�E.p/m / and �.E�E.q/n /. Doing so, the positions xp; xq indeed
become a matter of convention, introducing only phase factors. They could be set
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at the origins of the attached leads, xp; xq � 0p, which in turn are put right after
the opening of the quantum billiard into each lead (or shifted outwards to points
where any applied magnetic field has vanished; see below). The final formula to be
used for obtaining the S-matrix elements from the Greenian can then be compactly
written as

Snm
qp .E/ D i„

q
v
.q/
n v

. p/
m h�qnjGC.E/j�pmi � ıqpınm; (4.49)

where the shorthand notation

h�qnjGC.E/j�pmi D
Z

dyq

Z
dyp �

q
n. yq/GC.xq � 0; yq; xp � 0; ypIE/�pm. yp/

(4.50)

for the chosen projection of the Greenian onto the lead modes has been used, and it
is implicitly understood that only open channels m and n are taken into account.

Scattering Matrix in Magnetic Fields

Throughout the above discussion the absence of magnetic field has been assumed.
In particular, the steps pertaining to the simple relation of the S-matrix elements to
the spatial projection of the Greenian on the lead modes relies on a zero magnetic
field in the leads, which renders the transversal mode eigenfunctions orthogonal.
In the presence of a magnetic field in the leads, the orthogonality is broken [6]
due to the coupling of spatial and motional degrees of freedom (see Sect. 2.3),
and thus transversal modes cannot be simply projected out as in (4.46). More
precisely, a modified orthogonality relation and associated projection can be used
to extract S-matrix elements in terms of GC, as shown by Baranger and Stone [15],
implemented also more recently [16] to study transport through quantum billiards
at high magnetic fields.

A simpler approach, which we will make use of here, is to let the applied
magnetic field in the model system spatially attenuate within the leads along their
directions Oxp, until it vanishes at distant points xp D L. p/B . If this adaptation
region is long enough, so that the field drops off very gradually outside the billiard
confinement geometry, the setup qualifies in simulating a transport device where
a homogeneous field is applied; the stronger the simulated field, the longer the
required adaptation regions.4 In practice, this ‘adaptation’ region for the magnetic
field in the leads is included as part of the scattering structure itself, and the origins

4Although the adaptation region for the magnetic field attenuation is usually implemented in
practice to describe a homogeneous applied field, it is by far no extraordinary challenge for current
technology to produce local magnetic field gradients, even at the nanoscale [17]. This can be
achieved, e.g., by fabrication of hybrid structures with superconducting nanopatterned components
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xp D 0p of the actual attached leads are shifted by the length L. p/B . The Fisher-Lee
formula for zero field, (4.49), is then used with GC projected on the lead modes at
the shifted positions where B.xp D 0p; yp/ D 0. Employing a linear decrease of the
magnetic field in simulations, the following form of the peripheral vector potential
in the lead coordinates rp can be used:

A.rp/ D �Byp
 
1 � xp C L. p/B

L. p/B

!
Oxp; (4.51)

where B is the field strength in the billiard region, which will be homogeneous in
the studies undertaken here. It is appropriate to set the vector potential in the local
Landau gauge A.rp/ k Oxp so that no spurious contributions from @Ay=@xp enter the
field B.rp/ D r � A.rp/ [6, 21].

This approach had early proved sufficient for the study of magnetotransport in
multiterminal devices [22, 23] and is particularly suitable for the investigation of
the combined effects of the applied field and the geometry of the billiard itself, as
pursued in Chaps. 6, 7 and 8. These effects are determined by the dynamics within
the billiard region together with positioning of the lead openings. The magnetic field
adaptation region merely provides a very smooth ‘magnetic ramp’ for the incoming
electrons, since they need to overcome the Landau energy in the magnetoelectric
subbands, which becomes relevant at higher fields (see Sect. 2.3). In other words,
once the electron wave has made it into the billiard, the transport properties
(including orbital and interference effects) are determined by the homogeneous
field there. If the field had extended homogeneously into the leads then this energy
threshold would just be a sharp one instead; the dynamics of electrons just above
the magnetoelectric threshold is not expected to alter much for a small field gradient
in the model. The actual length of the adaptation region in simulations may be
determined by the convergence of the transmission function with varying field
gradient.

Apart from using the simple zero-field Fisher-Lee formula, the method described
has the further advantage that analytical expressions can be derived for the (semi-
infinite) lead Green function in the considered case of flat, hard-wall model leads, as
is done in Appendix A. Note, however, that for leads p and q in different directions,
Oxp ¬ Oxq, an implication is added by the adaptation regions by the different local
gauges for the vector potential. In order to avoid artificial field components from
discontinuities of A.r/ at the lead openings, the gauge in each lead must match the
one of the billiard just before the opening, which can be achieved in two different
ways: Either

[18] which expel the magnetic field locally, or by using ferromagnetic microstructures which
produce field variation patterns [19, 20] with large field gradients.
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(i) a smooth function A.r/ is determined that matches the gauges at each lead
opening for a given billiard geometry and lead positioning, or

(ii) the total device structure is ‘dissected’ into the main scatterer, the lead parts
with the field adaptation regions, and the semi-infinite leads with zero field, and
then the propagators for the different parts are successively ‘combined’ into a
total GC after being transformed to a common gauge,

where one of the two approaches can be followed according to the needs of
each individual case. Method (i) is obviously more restricted, since it is specific
for given lead positions. Method (ii) can be uniformly used for treating arbitrary
billiard geometries and lead positions, which renders it particularly powerful for the
cases of interest here, but requires a procedure for ‘combining’ spatially separated
Greenians—this will partially be the objective of the computational approach in
Chap. 5.

4.2.3 Elements of Formal Scattering Theory

In most scattering systems, the total Hamiltonian of the system is written as the
sum of an ‘unperturbed’ part H0 and a ‘perturbing’ part V which causes the actual
scattering processes considered. In potential scattering, H0 usually describes the
kinetic energy of a free particle, and V.r/ D ı.r � r0/ hrjV jr0i D hrjV jri is the
local (diagonal) potential off which it is scattered. Alternatively, H0 might already
include a potential for which the solution is already known, like the (ideal) confining
potential of a quantum wire. In any case, with this separation the Schrödinger
equation can be written

�
i„ @
@t
�H0

�
j i D V j i ; H0 C V � H; (4.52)

so that, in analogy with (4.11), the term V j i takes the form of a source for the
system governed by H0. The general stationary state of the system is then formally
written in terms of the Greenian G0 D .� �H0/

�1, with � D E ˙ i�, associated to
the unperturbed Hamiltonian H0 in the form of a ‘response’ [24]

j i D j 0i C G0V j i (4.53)

to the ‘source term’ V j i with retarded and advanced versions

j ˙.E/i D j 0.E/i C G0̇ .E/V j ˙.E/i (4.54)

D j 0.E/i C 1

E �H0 ˙ i�
V j ˙.E/i ; (4.55)
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where a solution j 0i to the homogeneous problem .E � H0/ j 0i D 0 has been
added and, as usual, it is understood that the limit � ! 0 is taken, as in (4.27). Of
course, the ‘source’ term V j i is here unknown, and (4.53) constitutes an integral
equation for j i, known as the Lippmann-Schwinger equation [25, 26]; in spatial
representation, it reads

 ˙.rIE/ D  0.r;E/C
Z

dr0G˙.r; r0IE/V.r0/ .r0IE/: (4.56)

Recursion of (4.56), that is, repeated re-insertion of  ˙.rIE/, yields the so-called
Brillouin-Wigner series for  ˙ [24].

An analogous integral equation can be formed for the Greenian itself: With A0 �
� � H0, and assuming the existence of the power series expansion of ŒA0 � V ��1,
we can make use of the identity [25]

ŒA0 � V ��1 D A�1
0 CA�1

0 V ŒA0 � V ��1 D A�1
0 C ŒA0 � V ��1VA�1

0 (4.57)

to write an integral (Lippmann-Schwinger-like) equation for G in terms of the
unperturbed Greenian G0,

G D G0 C G0VG D G0 C GVG0; (4.58)

which in spatial representation becomes

G.r; r0/ D G0.r; r0/C
Z

dsG0.r; s/V.s/G.s; r0/: (4.59)

Equation (4.58) is often referred to as the Dyson equation for the single-particle
picture of the scattering system considered [24] due to its similarity to the form
obtained in diagrammatic perturbation theory for many-body systems: The associ-
ated so-called ‘self-energy’ operator ˙ , which modifies the vacuum propagator in
the presence of interactions, reduces here simply to the influence of the external
perturbing potential V . We will encounter a more suggestive form of the analogue
of a self-energy in Sect. 4.3.2 after spatially partitioning the scattering system.

We can write (4.58) alternatively as

G D G0 C G0T G0 (4.60)

in terms of the transition operator [27]

T D V CVG0V CVG0CVG0V C � � � D V Œ1� G0V ��1 D Œ1�VG0��1V (4.61)

satisfying the equations

T D V C VG0T D V C T G0V : (4.62)
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The transition operator plays a central role in scattering off finite-range potentials
since its matrix elements between an initial and a final unperturbed (asymptotic)
state yields the corresponding scattering amplitude. Here, in (4.60), we see that
T represents the multiple (virtual) scattering processes (expressed by V in the
scattering region connected by the unperturbed propagator G0.

To obtain a ‘closed form’ for j ˙i, though necessarily containing the full
propagator G of the system, we can restate equation (4.52) for the unperturbed
system (assuming stationary scattering) as [25]

A j 0i � Œ � �H � j 0i D �V j 0i ; (4.63)

and express its formal solution in terms of G D A�1 by adding a solution j i to the
homogeneous problem A j 0i D 0, just as was done equivalently in (4.53). This
yields

j i D j 0i C GV j 0i (4.64)

D Œ1C G0 C G0VG0 C : : : �V j 0i ; (4.65)

where in the second equality the full propagator G has been expanded into a (Born)
series in the potential by its recursive insertion into (4.58). Keeping only the first
order in V in (4.65) gives the (first) Born approximation to the scattering state.5 The
counterpart of (4.54) now becomes

j ˙.E/i DW˙.E/ j 0.E/i ; (4.66)

where [from the series expansion in (4.65)]

W˙.E/ D 1C G˙.E/V D 1

1 � G0̇ .E/V
(4.67)

is the wave (or Møller) operator, parametrized here in energy for the stationary
(time-independent) picture considered. W˙ is in turn closely connected to the
transition operator through the relations [27]

T˙ D VW˙ DW˙V ; (4.68)

where the ˙ sign corresponds to taking G0̇ in (4.61), meaning that their matrix
elements provide equivalent information for a given potential.

In correspondence to a time-dependent picture [28], j 0i in (4.66) represents
either an initial state j˚ii or a final state j˚f i of the system described by the

5This approximation was employed by Born in the same paper [29] where, in a footnote, the
interpretation of the squared absolute wave function amplitude as a probability (density) was
originally proposed.
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Hamiltonian H0, transformed by W˙ to the scattering state j Ci or j �i,
respectively, of the actual system described by H at the same energy E. In this
sense, the wave operators define the system’s scattering operator S as

S DW��WC; (4.69)

whose matrix elements (constituting the S-matrix introduced previously) in the basis
of unperturbed states are given by the projection of the outgoing on the ingoing
scattering state,

Sˇ˛ D h˚f IˇjSj˚iI˛i D h˚f IˇjW��WCj˚iI˛i D h �̌j C̨i ; (4.70)

where the indices ˛; ˇ denote (asymptotic) quantum numbers such as channels and
momenta. This is in direct analogy to (3.10), with ˛; ˇ representing (collectively)
the lead and mode indices associated with an open quantum billiard system.

The Need for a Spatial Decomposition of Confined Systems
Connected to Leads

We have seen how, in the framework of stationary scattering theory, the asymptotic
response of an open system to an incoming excitation, given by its S-matrix, is
directly related to the resolvent (the Greenian) of the governing Hamiltonian. It also
provides the general approach for treating modifications or additional contributions
to a given Hamiltonian in the form of recursive (Dyson-like) expressions for the
Greenian, as in (4.58), which will be utilized in the following chapters to efficiently
assemble desired system setups. More importantly, however, the above outline of
the formalities of scattering theory reveal an essential peculiarity of the generic case
of the open system we consider, that is, a 2D confining potential with openings into
semi-infinite leads: Contrary to the case of scattering off a potential which vanishes
asymptotically, allowing for the inclusion of solutions j 0i of the homogeneous
Schrödinger equation .E � H0/ j 0i D 0 to the scattering states j i, here the
potential V.r/ by definition extends to infinity in the form of the (multiple) perfect
lead confinement. Since perturbed and unperturbed states must obey common
(asymptotic) boundary conditions, the latter are necessarily identified as eigenstates
of an ‘unperturbed’ Hamiltonian H0 which includes, however, the asymptotic
confinement; any additional modification V is then added to the active scattering
region upon which the leads are attached. In fact, the original generalization of
the Fisher-Lee formula in [13] to multiterminal geometries, (4.47), made use of
a disorder potential present in the scattering region, with the derivation based
essentially on (4.70); once the general relation between the S-matrix amplitudes
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and GC is established, it naturally holds also for vanishing disorder, that is, for the
geometrically defined scatterer alone.6

The particular implications of asymptotic confinement in modeling quantum
transport is underlined when commonly expressing the on-shell scattering operator
in terms of the (causal) transition operator TC � T for scattering off a finite-range
potential (a localized scatterer in otherwise free space) as [27, 28]

S.E/ D 1 � 2
ı.E �H0/T ; (4.71)

with matrix elements thus given by

Sˇ˛ D ıˇ˛ � 2
ı.Eˇ � E˛/ h˚f IˇjT j˚iI˛i : (4.72)

The role of T is here clearly revealed: It is responsible for the actual scattering part
of the S-matrix arising due to the presence of the potential. This also holds for a
potential with translationally invariant asymptotic confinement, such as a perfect
quantum wire with a finite scatterer within it. For V D 0 [and thus T D 0 in (4.71)],
any incoming state is preserved and no scattering occurs.

For a generic multiterminal system, the term ıˇ˛ in (4.72) at most expresses the
orthogonality of ‘unperturbed’ scattering eigenstates j 0I˛i of H0 (containing the
asymptotic confinement), which would be transformed into ‘perturbed’ states j ˙̨i
in the presence of an additional potential V . Since we want, however,Sˇ˛ to express
scattering between different lead states, as in (3.10) (that is, with ˛ � .m; p/), the
form in (4.72) cannot be used here appropriately because the term ıˇ˛ would imply
total reflection into the incoming lead at any energy.7

In other words, there are no ‘free’ states corresponding to unperturbed wave
propagation in the total system of the 2D cavity connected to leads, since the corre-
sponding Hamiltonian causes scattering already due to the geometric confinement
alone. The closest notion of free wave propagation is that of the isolated lead states,
that is, eigenstates of separate leads disregarding the cavity, which were indeed used
to obtain the S-matrix in Sect. 4.2.2. It thus becomes clear that, in order to treat
the multiterminal system within integral scattering theory (using the resolvents of
the Hamiltonian), a spatial decomposition of the total system into the scattering
region and the connected leads at the level of the Hamiltonian itself is needed. As

6In a derivation of the Fisher-Lee formula based on the scattering formalism of the present chapter,
which will not be repeated here, flux normalized asymptotic lead states can be used throughout:
Since the scattering state is initially expressed in terms of the spatially represented Greenian [13,
14] and then projected on the lead eigenstates to obtain the S-matrix (and not vice versa), the lead
indices present in the corresponding fluxes enter symmetrically among the leads. In the (perhaps
more intuitive) derivation presented in Sect. 4.2.2, the selective evaluation of the Green function
from a selected lead n carries this index via the flux normalization in this lead, which would replaceq
v
.q/
n v

. p/
m with v.q/n in (4.47). To avoid this technical issue, the rescaled (in general non-unitary)

S-matrix equation (4.43) has to be used in (4.42).
7On the other hand, if the total confining potential is included in V , as was done in Chap. 3, ıˇ˛
would have no meaning since no leads would exist for V D 0.
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will be seen in the following, this scheme will allow for the formulation of the
scattering problem in terms of an effective Hamiltonian for the isolated scatterer
which incorporates the presence of the semi-infinite leads. Conceptually, we turn
from a description through eigenstates of different Hamiltonians (perturbed and
unperturbed in the presence and absence of a scattering potential, respectively) with
the same boundary conditions to a description through eigenstates of the same total
Hamiltonian but with different boundary conditions (corresponding to the separate
parts of configuration space).

4.3 Non-Hermitian Approach to Scattering

Following the discussion above, we now outline the formulation of the scattering
problem in terms of a propagator for the scattering region alone which incorporates
the coupling to the attached leads, based on the motivated spatial decomposition.

4.3.1 Decomposition of Configuration Space

As before, we start with the total Hamiltonian H describing single-electron motion
within a potential V.r/ D hrjV jri consisting of a 2D cavity attached to NL

semi-infinite leads which in turn represent the connection to (separate) electron
reservoirs. We now consider a connected spatial domain DS � R2 containing the
scattering (or ‘reaction’) region (the region where coherent transport is assumed for
a mesoscopic device), enclosed by a fictitious boundary @DS which cuts the attached
leads transversally at some depth into each lead, as shown in Fig. 4.2. The leads

Fig. 4.2 (a) Decomposition of a multiterminal system into a scatterer domain DS attached to
NL D 3 non-overlapping lead domains Dq, q D 1; 2; 3, with DL D SNL

qD1Dq. The scatterer

projected Hamiltonian HS is coupled to the lead-projected Hamiltonian HL
PNL

qD1Hq through a

coupling operator �
PNL

qD1 �q. (b) The scattering system can be mapped to an isolated scatterer

with non-Hermitian Hamiltonian QHS D HS C ˙ , where the self-energy operator ˙ D PNL
qD1 ˙q

represents the coupling to the leads
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(starting from @DS) thus belong to the complement NDS D R2 �DS of DS, which
can be further refined into the actual (rectangular) regions Dq of the different leads
q and the ‘exterior’ space Dext between them. In summary:

DS [ NDS D R2; NDS D Dext [DL; DL D
NL[

qD1
Dq: (4.73)

In order to maintain a representation-independent formulation here, we define
spatial projection operators [30] Q and P as

Q D Q2 D
Z

DS

dr jri hrj ; (4.74)

P D P2 D
Z

NDS

dr jri hrj D
Z

Dext

dr jri hrj C PL; (4.75)

which project any state onto the scattering and lead regions, respectively, with

PL D
NLX

q

Pq; Pq D
Z

Dq

drq jrqi hrqj ; (4.76)

projecting onto the leads. Since Q and P cover the whole configuration space, and
since any lead state vanishes in the exterior region NDext, the completeness relations

QC P D 1 D QC PL; (4.77)

are fulfilled (recall that the symbol 1 is used to denote the identity operator), as is
the ‘complementarity’

QP D 0 D PQ (4.78)

of the projections.
Writing a total stationary scattering state of the system (at energy E) as

j Ei D .QC P/ j Ei � j i C j˚i ; (4.79)

where Q j Ei D j i and P j Ei D j˚i D P
q j˚qi are cavity and (collec-

tively expressed) lead states at energy E, respectively, the associated stationary
Schrödinger equation

.E �H/ j Ei D .E �H/.Q j i C P j˚i/ D 0 (4.80)
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is decomposed, by acting from the left with Q or P , respectively, as

HQQ j i CHQP j˚i D E j i ; (4.81)

HPP j˚i CHPQ j i D E j˚i : (4.82)

The projected parts

HQQ D QHQ � HS; HPP D PHP � HL (4.83)

of the Hamiltonian govern the system in the isolated scatterer and lead regions,
respectively, while

HQP D QHP D ŒPHQ�� D H�

PQ � � (4.84)

stands for the coupling between the two subdomains, which ensures hermiticity of
H in any representation.

4.3.2 Effective Scattering Hamiltonian for Finite System

The above decomposition scheme for configuration space is the basis of the reaction
matrix (R-matrix) theory of scattering [31], originally developed by Wigner and
Eisenbud [32], which has been applied extensively to quantum transport in open
billiards [30, 33–35]. In this context, the scatterer- and lead-projected states are
expanded in the corresponding eigenbases, and an explicit (singular [30]) form of
the coupling operators (4.84) is assumed. Our target here is the Greenian of the
scatterer, in the presence of the leads, for a generic transport device setup, to be
represented on a discretized spatial basis (tight-binding lattice) in Chap. 5. With this
in mind, we keep the present approach at the general level of decomposition.

It is instructive, nevertheless, to make a conceptual distinction between the
scatterer and the leads, in that the latter are connected to (large) electron reservoirs
in the transport model, following [1]. Without the distinction, the system of (4.81)
and (4.82) is completely symmetric in the two subdomains, and can be solved
equivalently for either j i or j˚i in terms of the coupling to the complementary
subdomain. Let us now write the lead state as

j˚i D j˚Li C j˚Si ; (4.85)

where j˚Li represents the state of the isolated lead (occupied by electrons originat-
ing from the reservoir) and j˚Si the contribution from the scatterer into the lead
upon their connection (through the coupling �), and consider for a moment the
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eigenvalue problem .E�HL/ j˚Li D 0 of the isolated lead.8 Adding and subtracting
an imaginary part i� to the lead Hamiltonian HL, this becomes a ‘scattering’
problem for j˚Li at a given energy E,

.E �HL C i�/ j˚Li D j˚Ri ; (4.86)

where Ci� represents an outflow (loss) of electrons from the lead, compensated
by an inflow (gain) of electrons from the reservoir represented by the source term
j˚Ri D i� j˚Li. The rate �, which adds a width to each energy level of the isolated
lead, is to be taken to zero in a final calculation, as usual, but it is conceptually
important here that even its infinitesimal presence does not alter the description: In
contrast to the isolated scatterer, whose density of states would be affected by the
level broadening due to its finite energy level spacing (depending on the confining
potential), the leads connected to the large reservoirs have practically (and semi-
infinite leads truly) continuous density of states, with level spacing smaller than any
fictitious �. With this distinction, it becomes natural to add the infinitesimal �i� to
the lead Hamiltonian, to determine the state in the scatterer after the connection.

The system of (4.81) and (4.82) can now be written in operator-matrix notation
(recall that no representation has yet been chosen) as

�
E �HS ��
��� E �HL C i�

	�j i
j˚i

	
D
�
0

j˚Ri
	
; (4.87)

where the equilibrating in- and outflow ˙i� j˚Li between leads and reservoirs just
discussed is assumed unaffected by the presence of the scattered state j˚Si in the
leads. Eliminating j˚Ri from (4.86) and (4.87) we obtain

�
E �HS ��
��� E �HL C i�

	� j i
j˚Si

	
D
�
� j˚Li
0

	
�
�j Li
0

	
; (4.88)

whose lower equation yields

j˚Si D GC
L �

� j i ; (4.89)

where

GC
L .E/ D ŒE �HL C i���1 (4.90)

is the retarded Greenian of the lead region. We thus see that the billiard state j i is
coupled onto the leads by �� and acts a source which excites the scattered state j˚Si
in the lead by action of its propagator GL.

8Treating all leads on an equal footing, we have dropped here the index q of an individual lead,
and describe all leads collectively by HL.
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We can now reinsert equation (4.89) into (4.88) to arrive at the following equation
for j i:

ŒE �HS �˙C.E/� j i D j Li ; (4.91)

where

˙˙.E/ D �GL̇ .E/�
� (4.92)

is the so-called self-energy operator (including here both its retarded (+) and
advanced (-) version), with the formal solution

j i D QGS j Li D QGS� j˚Li ; (4.93)

where

QGS.E/ D ŒE �HS �˙C.E/��1: (4.94)

is the Greenian of a modified Hamiltonian describing the scatterer coupled to the
leads. In similarity to (4.89), j Li now represents an inhomogeneous source term
from (incident) states in the leads which give rise to the scattering state j i in
the billiard region. The decomposition scheme has thus allowed for a description
of scattering in the total (infinitely extended) system in terms of the projection
to the system of interest—the scatterer constituting the active transport device. In
the (discretized) spatial representation to be employed in Chap. 5, this truncates the
dimension of the Hamiltonian matrix from infinity to that of the scatterer alone. The
price to pay is that the scatterer is now governed by a Hamiltonian

QHC
S .E/ D HS C˙C.E/ (4.95)

which is non-hermitian and energy dependent due to the presence of the lead
propagator GC

L in ˙C.

Self-Energy, Broadening and Spectral Operators

The Greenians associated with the modified scatterer Hamiltonian are written [see
(4.57)]

QGS D ŒE � QHS�
�1 D GS C GS˙ QGS D GS C QGS˙GS (4.96)

(with the retarded/advanced ˙ sign suppressed), where no infinitesimal i� is now
needed since QHS is already complex and thus moves the poles away from the real E-
axis. The above form gives the self-energy˙ its name more suggestively due to the
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formal similarity of (4.96) to Dyson’s equation, as mentioned below equation (4.58):
The self-energy here represents the influence of the ‘environment’ of the attached
leads on the unperturbed propagator GS D Œ� � HS�

�1 of the isolated scatterer by
coupling (through �) the single particle to ‘itself’ in a separate spatial region (the
lead propagatorGL). Distinguishing again between different leads in a multiterminal
setup, the total self-energy is given by the sum

˙.E/ D
NLX

p

˙p.E/; ˙p D �pGp�
�
p (4.97)

of the (in general different) self-energies due to individual leads, meaning that
their influences on the scatterer state are independent. It should be noted here
that (4.96) is so far an exact result within the employed single-electron picture.
In contrast to self-energies in many-body theory, which provide an approximative
account of electron-electron or electron-phonon interactions [24], here the effect of
the (externally defined) leads is taken into account exactly through the self-energy
terms.9

To deduce the connection between the self-energy and the spectral properties
of the scattering system, we write the effective (non-hermitian, energy dependent)
Hamiltonian QHC

S .E/ and its adjoint QH�
S .E/ as [1]

QHṠ .E/ D HS C˙˙.E/ D HS C	HS.E/	 i

2
� .E/; (4.98)

where

	HS D ˙H D 1

2
Œ˙C C˙�� (4.99)

is the hermitian component of the self-energy, while its anti-hermitian component
is used to define the broadening operator

� D 2i˙A D iŒ˙C �˙�� D �iŒ. QGC
S /

�1 � . QG�
S /

�1� (4.100)

which determines the broadening (resonant widths) of the scatterer states due to
their coupling to the lead continua. To illustrate this, we consider the generalized
eigenvalue problem for the effective Hamiltonian [36]

QHṠ .E/ j .˙/n i D ŒHS C˙˙.E/� j .˙/n i D QEṅ j .˙/n i ; (4.101)

9Moreover, one of the reasons for maintaining a representation-independent description here
is to separate the notion of the effective scatterer propagator from its discrete spatial (matrix)
representation to be used in the next chapter. Using the more common [3, 6] matrix formulation
from the beginning might suggest that its validity is subject to the approximative tight-binding
approach, which is not the case.
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where the right (+) and left (-) eigenstates j .˙/n i (not to be confused with the out-
and ingoing scattering states of the hermitian Hamiltonian of previous sections) have
the property

j .�/n .�/i D j .C/n .��/i (4.102)

in the complex energy �-plane and the (quasi-particle) eigenenergies are proper
solutions [36–38] of

QEC
n .�/ D � (4.103)

with

QEC
n .�

�/ D Œ QEC
n .�/�

�; QE�
n D Œ QEC

n �
� (4.104)

The energy dependent ‘eigenvalues’ are complex due to the non-hermiticity of
QHṠ .E/ and can be written as

QEṅ .E/ D h .˙/n j QHṠ .E/j .˙/n i D En C	En.E/	 i

2
�n.E/: (4.105)

The presence of the leads thus shifts the eigenlevels En of the isolated scatterer by
	En and broadens them to finite widths �n (proportional to the escape rate from
the scatterer in a time dependent picture), according to the real and imaginary
parts of the self-energy, respectively. Being eigenstates of adjoint non-hermitian
Hamiltonian operators, the states j .˙/n i fulfill the bi-orthonormality relation [11]

h .C/n j .�/m i D ınm; (4.106)

and therefore the spectral expansion of the Greenian [see (4.28)] is now written
[36, 39]

QGṠ .E/ D
X

n

j .˙/n i h .�/n j
E � En �	En.E/˙ i

2
�n.E/

: (4.107)

The spectral effects of the leads become more explicit if we consider the spectral
operator of the scatterer, defined here as

F � iŒ QGC
S � QG�

S � D QGC
S �
QG�
S D QG�

S �
QGC
S ; (4.108)

where (4.100) has been used in the latter equalities. With the right/left eigenstate
expansion of QGṠ .E/, (4.107), it can be written as [6, 36]

F.E/ D
X

n

j .C/n i �n h .�/n j
.E � En �	En/2 C .�n=2/2 : (4.109)
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The spectral operator describes the response of the system upon an external
excitation, taking the role of a generalized density of states in a given representation
which incorporates the presence of the leads (the openness of the system). We see
from (4.109) that, if the self-energy operator were constant or slowly varying in E,
then F would have a Lorentzian form peaked at EnC	En. The energy dependence
of the shifts 	En and broadenings �n, however, which is enhanced for stronger
coupling to the leads (represented by the operator � ), typically leads to a drastically
varying (and largely unpredictable) energy-dependent response. This will be seen
in practice when studying the transmission through the open billiard setups in the
following chapters, where the challenge will be to control the energy dependent
transport properties.

Local Density of States

The role of the spectral operator as a generalized density operator is illuminated if
we write it in the form [1]

F.E/ D 2
ı.E � QHS/ (4.110)

where the eigenbasis of the scatterer Hamiltonian has implicitly been used. The
(representation-independent) trace of F indeed gives the DOS in energy for the
open system, which becomes the usual DOS [see (2.36)] in the limit of vanishing
coupling to the leads,

N .E/ D 1

2

TrŒF.E/� D

X

n

�n

.E � En �	En/2 C .�n=2/2 (4.111)

!
X

n

ı.E � En �	En/ .�n ! 0/: (4.112)

In real-space representation, the local density of states (LDOS) is given by the
diagonal elements of the spectral function,

�.rIE/ D 1

2

hrjF.E/jri D 1

2

F.r; rIE/ D � 1



Im QGC

S .r; rIE/: (4.113)

Again using the spectral expansion of F , the LDOS reads

�.rIE/ D
X

n

 .C/n .r/ .�/�n .r/
�n

.E � En �	En/2 C .�n=2/2 (4.114)

!
X

n

j n.r/j2ı.E � En �	En/ .�n ! 0/; (4.115)
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and hence is also determined by the coupling to the leads, while converging to the
DOS with each state weighted by its (isolated) probability density when the lead
couplings vanish.

Since, now, the self-energies due to different leads are additive, see (4.97), the
same holds for the broadening operators, and the spectral operator can therefore
also be viewed as a sum of contributions Fp from all leads p D 1; 2; : : :NL:

F D
NLX

pD1
Fp; Fp D QGC

S �p QG�
S ; (4.116)

where

�p D iŒ˙C
p �˙�

p �;

NLX

pD1
�p D �: (4.117)

A partial LDOS can then be defined as

�p.rIE/ D 1

2

hrjFp.E/jri D 1

2

hrj QGC

S �p QG�
S jri ; (4.118)

representing the spatially resolved response of the system upon an excitation (that
is, an incoming matter wave) selectively in lead p.

As we will see, the LDOS provides a unique tool to gain insight into the
transport properties and spectral features of the open quantum billiards to be
studied. It also constitutes a quantity which is accessible experimentally for typical
quantum transport setups by probing the charge density with the device under
bias. Indeed, the spectral function entering (4.113) and (4.118) can be measured
via the differential conductance of a device [40], and even direct imaging of
spatially resolved densities in electron billiards via scanning gate microscopy [41]
has recently been reported.

4.3.3 Connection to Electronic Transport

With the spatial decomposition of the total system into scatterer and attached leads,
the formalism presented can be embedded into the Landauer-Büttiker picture of
electronic transport, that is, by considering coherent transport—within the scatterer
region—of matter waves emitted and absorbed incoherently from the leads, each of
which is in local equilibrium with an electron reservoir.



86 4 Stationary Scattering in Planar Confining Geometries

Local Charge Density

The actual local charge density in the scattering region is obtained by weighing the
partial LDOS from each lead by the Fermi distribution function of the reservoir with
which the lead is in equilibrium,

n.r/ D
X

p

Z C1

�1
dE �p.r/fp.EI�/ (4.119)

where a factor 2 (not present) may be included to account for spin degeneracy.10 This
is in accordance with the Landauer picture of transport developed in Chap. 3, where
electrons are emitted incoherently from the reservoirs, and thus the corresponding
probability densities instead of the scattering wave functions themselves are added
in the charge density; see (4.4) where the lead channels are explicitly summed over.

This result is rigorously obtained as the space-represented diagonal of the (single-
particle) density operator in non-equilibrium Green function theory [10, 21, 40],
originally developed by Keldysh [42] and Kadanoff and Baym [43] and appropri-
ately formulated and extensively employed later for stationary electronic transport
in mesoscopic devices [44–48] and molecular junctions [49, 50] as well as for
time dependent transport [51–56]. It relies on the so-called fluctuation-dissipation
theorem [10, 40] for the equilibrium single-particle propagators in many-fermion
systems,

Ge
0.E/ � �iG<.E/ D F.E/f0.E/ .electrons/; (4.120)

Gh
0 .E/ � iG>.E/ D F.E/Œ1� f0.E/� .holes/; (4.121)

which connects the (Fourier transformed) two-time electron and hole correlation
functions G<ij .t; t0/ � �i hc�j .t0/ci.t/i and G>ij .t; t0/ � i hci.t/c�j .t0/i (c�j and ci being
electronic creation and annihilation operators), respectively, describing fluctuations
of the particle numbers, to their dissipation to the environment described by F
(through the broadening operator � , as seen above).11 The equilibrium condition is

10In the considered 2D system the charge density naturally has units Œarea��1 (integrated over
some area it gives the average number of enclosed electrons), though it is occasionally explicitly
multiplied also with electronic charge e (in order to give the enclosed charge when integrated).
11G<ij .t; t0/ and G>ij .t; t0/ are the so-called lesser and greater Green functions, respectively, defined
as the corresponding expectation values of products of creation and annihilation operators (that
is, as correlation functions) in the second quantization picture for many-body systems. They are
related, owing to the fluctuation-dissipation theorem, to the retarded and advanced Green functions
through the relation

G> � G< D GC � G�; (4.122)
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described by the Fermi distribution function f0.E/, suppressing here the temperature
dependence�.

For a system in equilibrium with a single reservoir at chemical potential �0
(which we imagine to be connected to the system through a perfect lead), we thus
have the electronic density operator [1]

%0 D
X

n

j ni f0.En/ h nj D f0. QHS/ D
Z

dE

2

F.E/f0.E/ D

Z
dE

2

Ge
0.E/

(4.123)

where (4.110) has been used.
The non-equilibrium character of the system now enters when the device is

connected to multiple reservoirs, each at equilibrium with a different chemical
potential �p. In the multiterminal setup, the spectral function is split into the
contributions from each lead, (4.116), and the reduced density operator for the
scatterer is a weighted sum [57] of the operators j p

mi h p
mj due to each lead p,

% D
X

p

X

m

j p
mi fp.Em/ h p

mj (4.124)

D
X

p

Z
dEfp.E/

X

m

ı.E � Em/ j p
mi h p

mj (4.125)

D
X

p

Z
dEfp.E/ QGC

S �

"
X

m

ı.E � Em/ j˚p
mi h˚p

mj
#
�� QG�

S (4.126)

D
X

p

Z
dE

2

fp.E/ QGC

S �F .L/
p .E/�� QG�

S ; (4.127)

where F .L/
p .E/ D 2
ı.E�Hp/ D iŒGC

p �G�
p � is the spectral function of the isolated

lead p, in analogy to (4.110) and (4.108), and where scatterer state j p
mi is excited by

a source term � j˚p
mi from lead p, see (4.93) [1]. With �F .L/

p .E/�� D iŒ˙C
p �˙�

p � D
�p, and writing the non-equilibrium electronic correlator as [see (4.116)]

Ge.E/ D
X

p

Ge
p.E/ D

X

p

Fp.E/fp.E/; (4.128)

which connects the occupancy of states (represented by G?) to their spectral features (represented
by G˙).
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we have, finally, the multiterminal charge density operator

% D
X

p

Z
dE

2

Fp.E/fp.E/ D

Z
dE

2

Ge.E/; (4.129)

whose space-represented diagonal yields the electron density in (4.119), n.r/ D
hrj%jri.

Since we will be focusing on the effects of geometry on magnetotransport in the
linear response regime, as described in Sect. 3.3.2, the chemical potential will be
the same in all attached reservoirs, so that the spatial distribution of electrons within
the device is effectively described by the LDOS (4.113) alone. The non-equilibrium
case outlined above also provides, however, the generic connection of the effective
scatterer Hamiltonian (and an associated transmission function) to the electronic
current in the Landauer-Büttiker picture, as is shown next.

Transmission Trace Formula

To express the charge current Iq at a terminal p of a multiterminal device in terms of
the elements in the present spatial decomposition scheme, it is natural to start from
the continuity equation for the total net current

I@DS D
NLX

p

Ip D 0 (4.130)

flowing between the defined scatterer domain DS and the surrounding leads (see
Fig. 4.2), which vanishes for the steady state transport we consider according to
Kirchoff’s law (conservation of charge). I@DS equals the rate of change of the total
charge Q within the scatterer, that is, the probability density integrated over DS, in
which the projected state is j i, see (4.79) and (4.93); applying also the divergence
theorem we have12

I@DS

�e �
d

dt

Q

e
D � d

dt
h j i D � d

dt

Z

DS

dr j .r/j2 (4.131)

D
Z

DS

drr � j.r/ D
Z

@DS

ds j.s/ � On@DS D
NLX

p

Z
dyp j.xp 2 @DS; yp/ � Oxp;

(4.132)

12Note that the symbol dr is used simply as a shorthand for the 2D volume element of integration
dr � dxdy (and not to denote an infinitesimal vector); ds is the 1D surface element on @DS with
outward normal unit vector On@D S coinciding with the direction Oxp in each (straight) lead p.
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with the probability current density [generally in the presence of a vector potential
A.r/]

j.r/ D 1

2mi
Œ �.r/.r C ieA/ .r/�  .r/.r � ieA/ �.r/� (4.133)

D 1

m
ReŒ �.r/r .r/�C e

m
A.r/j .r/j2; (4.134)

simply showing that the total net current is indeed the sum of net currents flowing
at the terminals. Using the relation

i„r � j.r/ D  .r/ŒHS .r/�� �  �.r/ŒHS .r/�; (4.135)

and substituting hrjHSj i from (4.82) the total charge current can be written as

I@DS D �
e

„ .2Im h j Li � h j� j i/ ; (4.136)

which illustrates the role of the broadening � as an escape rate which balances the
outgoing flux to that corresponding to the incident source state(s) j Li.

To establish the direct connection of the terminal currents to the scatterer
Greenian, we define a total charge current operator [1, 57]

J D d

dt
% D

X

p

Jp; (4.137)

whose trace gives the charge current I D �e Tr.J /. Employing the time-dependent
Schrödinger equation corresponding to (4.87),

i„ d
dt
j i D .HS C˙C/ j i C � j˚Li (4.138)

to substitute the eigenstates j p
mi in (4.124), the partial current operator of lead p

becomes (with energy arguments dropped for clarity)13

Jp D 1

i„
Z

dE

2


˚
ŒHS;Ge�C˙C

p Ge � Ge˙�
p C fp.�p QG�

S � QGC
S �p/

�
(4.139)

13We here use d
dt j i h j D . ddt j i/ h j C j i . ddt h j/ and the fact that the Hamiltonian of the

isolated scatterer is hermitian.
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where (4.127), (4.129) and �F .L/
p �� D �p have been used. The net current at

terminal p, including the factor 2 for spin degeneracy, is then given by

Ip D 2eTr D e


„
Z

dE TrŒ fp�pF � �pGe�; (4.140)

which, using (4.128) and (4.116), can be written as a sum of weighted differences
. fp � fq/ over all leads q ¤ p (excluding the terminal of incidence),

Ip D e


„
Z

dE
NLX

q

. fp � fq/TrŒ�pFq�; (4.141)

while the contribution from the same terminal q D p obviously vanishes. We
have thus arrived at the multiterminal Landauer-Büttiker formula, (3.57), where the
transmission function has acquired the compact form

Tpq D TrŒ�pFq� D TrŒ�p QGC
S �q QG�

S �; p ¤ q (4.142)

known as the Meir-Wingreen [58] (or Caroli [59]) formula. It is important to notice
that the trace formula for Tpq is a general result relying here only on the assumption
of coherent transport within the scattering region and the incoherent contribution
of electrons from the terminals. Indeed, the presence of the open boundaries (leads)
has been incorporated exactly in the stationary scattering through the self energies.14

Note further that, although the trace is representation-independent, the information
of the spatial decomposition of the total Hamiltonian is necessarily carried over via
the lead indices p; q. In particular, the reciprocity relation of Tpq in a magnetic field,
following from (4.37), can be rigorously shown [60] in a real-space representation.

4.4 Multi-state Interference Effects

Having developed the framework of scattering through a multiterminal confined
system, we now briefly outline the general effects arising from the interference
between multiple available states and the particular aspects of these effects for the
electron billiard systems to be studied. Multi-state interference in electron billiard
manifests itself when varying either the wave vector of the incoming wave or the
strength of the magnetic field penetrating the billiard, giving rise to Fano resonances

14Equation (4.142) is often derived directly from the Fisher-Lee formula (4.49) by considering
explicit self-energy matrices in a specific representation, usually within a certain approximation
scheme such as the tight-binding approach which we will employ in practice in the following
chapters.
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[61] and Aharonov-Bohm oscillations [62], respectively. When the geometry of
the billiard or generally the parameters of the confining potential are varied, these
two effects are effectively combined, since the underlying interfering states are
collectively modified. In essence, characteristic fluctuations of the linear response
conductance of mesoscopic systems arising from coherent transport, such as the
so-called universal conductance fluctuations [63], can be deduced from combined
multi-state interference.

4.4.1 Fano Interference

In a generic setting of stationary potential (single-particle) scattering, a resonance
occurs when the incoming scattering state becomes energetically degenerate with
a quasi-bound state supported by the potential. Quasi-bound states are here to be
thought of as states which would be truly bound in the absence of the coupling
of the reaction region to its environment. In the present context, we saw that this
coupling is expressed by the self-energy operator ˙ , with matrix elements whose
real and imaginary part cause a shift and a broadening of a the energy level of given
state �, respectively. On the one hand, the level broadening expresses the rate at
which a particle in this state can escape from the reaction region, and on the other
hand it signifies the accessibility of the same state by a particle impinging from the
outside.

In collision theory, it is usually the case that the target (or projectile, or
both) possesses internal structure, with internal states corresponding to individual
scattering potentials—in most cases differing through a shift in energy—which
then constitute different channels of scattering. Now, bound states of higher lying
channels may energetically lie in the continuum of lower lying channels, and their
coupling to this continuum renders them quasi-bound.15

If an energy eigenstate in the continuum of one channel becomes energetically
degenerate (that is, within the spectral width) with a quasi-bound state of another
(higher lying) channel, then scattering can occur either through the direct path of
the continuum or the indirect path of the resonant quasi-bound state, with the total
scattering cross section (the 3D counterpart of transmission) resulting from the
superposition of the two paths. As shown by Fano [61], the interference between
the a resonant path and a background continuum necessarily results in a zero of
scattering cross section within the spectral width of the resonance, since the two

15The type of coupling between states in different channels is specific to the system considered;
Fano used the general notion of (many-body) configuration interaction between the quasi-bound
state and the continuum in the context of atomic auto-ionization [61]. In the simplest case, the
coupling amounts to the (real-space) projection between the state wave functions via the (single-
particle effective) Hamiltonian in the reaction region of the scattering potential [64–66].
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Fig. 4.3 Fano resonance lineshape. (a,b) Plot of the normalized Fano lineshape formula � D
.� C q/.�2 C 1/�1.1 C q2�/

�1 for different values of the asymmetry parameter q. The curve has
a zero at � D �q, is antisymmetric in ˙q and becomes a symmetric Lorentzian dip or peak
for q D 0 or jqj ! 1, respectively. (c) Plot of the transmission function (4.147) across an
isolated Fano resonance, choosing a constant background transmission NT D jS12j2 D 0:2 and lead
couplings �1 D pS12=2 and �2 D .1C 2i/

pS12=2, for different resonance width parameters � .
For � > 1, the asymmetry parameter q12 becomes complex, such that the maximum is lowered
from one and the Fano minimum is raised from zero

states interfere with opposite phase on one side of the resonance position.16 This is
schematically illustrated in Fig. 4.3.

As a result of the coexistence with a zero in the scattering intensity, the usual
symmetric lineshape of a Lorentzian peak around Er

� D E� C 	E� is generically
modified into an asymmetric lineshape, with the degree of asymmetry determined
by the ratio

q� D 1


V�
EI�
h r

� jT jii
h EjT jii ; (4.143)

between the transition matrix elements of an initial state jii to the resonant state
j r

�i and to the non-resonant continuum state j Ei, where VEI� is the (energy
dependent and in general complex) coupling between the latter two (�� D 2
jVEI� j2
being the spectral width of the resonant state). The lineshape of the scattering cross
section �� in the vicinity of the resonance then acquires the form

�� D .� C q�/2

�2 C 1 ; � D E � Er
�

��=2
(4.144)

16Fano originally [67, 68] considered a single channel and neglected the energy shift of the
quasi-bound state, and treated the subject later more rigorously [61]. A generalization to multiple
channels and overlapping resonances was provided by Feshbach [69] in the context of nuclear
reaction theory, using a projection scheme as here in Sect. 4.3.1 but in state space (into closed
and open channels) instead of configuration space. The subject of discrete states coupled to the
continuum by configuration interaction was firstly treated, however, by Majorana in 1931 [70–72].



4.4 Multi-state Interference Effects 93

in terms of the dimensionless energy variable �. This is Fano’s famous lineshape
formula, with its ubiquitous presence across various fields of physics owing to
its general applicability to wave propagation in systems with many degrees of
freedom (supporting simultaneous resonant and non-resonant paths). In particular,
with the advent of mesoscopic physics, it has found numerous applications in the
investigation of nanoscale structures [73]. The peak and zero are given by

��;max.� D 1=q�/ D 1C q2� (4.145)

��;min.� D �q�/ D 0; (4.146)

so that q� determines the asymmetry of the lineshape, which becomes a (symmetric)
Lorentzian dip or peak for q� D 0 or jq�j ! 1, respectively; see Fig. 4.3.

The Fano asymmetry parameter q� , introduced phenomenologically in the
general lineshape formula, depends on the specific characteristics of the system
under consideration. Recently, however, a general classification of Fano resonances
with respect to the types of complex poles of a system’s Green functions has been
proposed, with microscopically determined asymmetry parameters using model
Hamiltonians [74].

Adapted to the quantum billiard system with asymptotic Q1D lead confinement
considered here, the Fano formula for the partial transmission coefficients Tnm

qp D
jSnm

qp j2 from (lead,mode)D . p;m/ to .q; n/ in the vicinity of the resonant energy Er
�

can be written as [65, 75]

Tnm
qp D NTnm

qp

j� C qnmqpI�j2
�2 C 1 ; qnmqpI� D i� 2i

NSnm
qp

�nqI� Q�mpI�
��

; (4.147)

where �nqI� D h˚.q/
n j C

� i ; Q�mpI� D h˚. p/
m j �

� i are the projections of the resonant left

and right eigenstates of the effective Hamiltonian QHS on the lead eigenstates. This
expression arises from a superposition

Snm
qp D NSnm

qp C i
�nqI� Q�mpI�

E � Er
� C i��=2

(4.148)

of a non-resonant background S-matrix element NSnm
qp (with NTnm

qp D j NSnm
qp j2),

not including the resonant state �, and the resonant one expressed via the (bi-
orthonormal) spectral expansion of the open system’s Green function; see (4.107).

In the case of an isolated Fano resonance in single-channel scattering, as in
the case of a long-lived resonant state � in a two-terminal quantum dot in the
first channel of the leads, the asymmetry parameter q� is real [65] and the Fano
zero occurs. In the case of multiple channels or leads q� is in general complex
and the lineshape minimum is lifted from zero. The same occurs for overlapping
resonances, that is, with resonant widths larger than their spacing in energy [64].
Further, considering that additional leads/channels act effectively as sources of
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decoherence for a selected channel in the Landauer-Büttiker transport picture,
complex asymmetry parameters in single-channel transport can be used as probes
of decoherence in the system [76]; Fano resonances have even been used to identify
the type of decoherence (dissipation versus unitary dephasing) according to the loci
of q-parameters in the complex plane [77].

To make the connection between Fano interference and the spectral and self-
energy operators of the previous sections, we note that the diagonal matrix element
of the retarded Greenian QGC

S with respect to a resonant state j C
� i can be written, in

the vicinity of the (complex) resonant energy QEC
� , as [37, 38]

QG�� � Z��
� � QEC

� .�/

ˇ̌
ˇ̌
�DQEC

�

; Z�� �
�
1 � @˙

C
��.�/

@�

��1
; (4.149)

so that the corresponding matrix element of the spectral operator becomes

F��.E/ D 1




jIm QEC
� ReZ�� � .E � Re QEC

� /ImZ�� j
.E � Re QEC

� /
2 C .Im QEC

� /
2

: (4.150)

We thus identify the appearance of a Fano energy dependence with resonant
width �� D 2jIm QEC

� j and strength jReZ��j, and with jImZ�� j determining the
asymmetry of the lineshape [38]. The asymmetric lineshape is then carried over to
the transmission function through the trace formula (4.142) once taking into account
the coupling to the relevant leads p and q.

A conceptual difference should here be noted between channel-coupled scatter-
ing in free space due to the internal structure of the reactants and scattering through
a geometrically confined structure via attached leads: In the former case, scattering
occurs with different potentials (energetically shifted) in channels defined globally,
with channel thresholds determined by the portion of energy attributed to the
internal structure (e.g., the Zeeman energy of spins in a magnetic field). In contrast,
electron transport through a quantum billiard device occurs in channels defined
only in the attached leads and through a common scattering potential defined by the
confinement in the billiard region. Here, the total energy, which was partitioned
into transversal modes in the leads, becomes available for propagation within the
cavity. Moreover, as discussed above, there is no freely propagating component
in the scattered wave: the background, non-resonant part in the Fano interference
consists here simply of another, broader resonant state coupled very strongly to the
leads.

In fact, the whole transmission spectrum of a single quantum billiard will in
principle consist of multiple overlapping Fano resonances [64, 66] with complex
asymmetry parameters, which collectively give rise to a highly fluctuating transport
response in a typical mesoscopic structure. The central challenge addressed in later
chapters will be to gain control over the transport behavior in this overlapping Fano
regime through the geometry of the confining potential.
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Fig. 4.4 Aharonov-Bohm interference. (a) In an ideal 1D loop (here a circular ring), an incoming
wave  from the left follows the two possible paths along the arms of the ring, with wave function
 1 and  2 on the upper and lower arm, respectively. The interference of the two waves at the exit
on the right, and in turn the transmission amplitude, depends periodically on the flux  piercing the
loop, even if does not overlap with the arms. (b) In a loop structure with arms of finite width, several
paths are available within the arms leading to multimode AB interference, and in applications
the (uniform) magnetic field is usually present also within the leads and arms. (c) For a singly
connected device structure, paths along the boundary additionally interfere with bulk paths, but
also bulk paths with other bulk paths, leading to collective overlapping AB oscillations in the
transmission

4.4.2 Aharonov-Bohm Oscillations

The fundamental importance of potentials in quantum theory, as opposed to the
fields they produce, was underlined by Aharonov and Bohm [62, 78] by considering
electrons interfering at the intersection of distinct paths. The so-called Aharonov-
Bohm effect consists in the influence of a magnetic vector potential (or time
dependent scalar potential) on the observable quantum behavior of a charged
particle, even when it moves in regions where the magnetic (or electric) field
vanishes. The effect can be suitably demonstrated for an electron moving on a line
containing an ideal 1D ring (or a loop of arbitrary shape) penetrated by a magnetic
flux  whose density B vanishes on the ring, as shown in Fig. 4.4. The spatially
confined magnetic field B D r � A is produced by a vector potential A.r/ which
modifies the (minimal coupling) kinetic momentum into � D p � qA D pC eA.

Assuming zero reflection at the connecting nodes, an incident stationary elec-
tronic wave of unit amplitude from the left will propagate through the upper (1) and
lower (2) arm of the ring with wave functions17

 i D 1

2
exp

�
i

„ . pi � ri C eA � ri/
�
; i D 1; 2: (4.151)

While being in-phase at the entrance point rin of the loop, along the two (oriented)
paths C1 and C2 the two waves  1 and 2 acquire different phase shifts, which at the

17The normalization is chosen such that j 1.rin/ C  2.rin/j2 D 1 at the entrance point rin of the
loop.
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exit point rout become

#i D 1

„
Z

Ci

pi � drC
e

„
Z

Ci

A � dr � �i C 'i; i D 1; 2; (4.152)

in dependence of the gauge of A, where �i D #i.A D 0/ are the phase shifts due to
the momentum alone.

The total wave function at the exit will be the superposition of  1 and  2 with
square modulus (equal here to the transmission coefficient)

T D j .rout/j2 D j 1.rout/C  2.rout/j2 D 1

2
.1C cos.	� C	'//: (4.153)

The phase difference between the two paths due to the vector potential, 	', is
proportional to the gauge-independent total flux  of the field through the surface S
enclosed by the loop:

	' D '1 � '2 D e
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�Z
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A � dr�

Z

C2
A � dr

	
D e
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D e
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I

loop
A � dr D e

„
Z

S
B � ds D e

„ D 2



0
; (4.154)

where we define 0 � h=e as the magnetic flux quantum. The transmission thus
oscillates in varying magnetic flux with period 0.18

Since the experimental verification of such AB oscillations [79], they have been
extensively studied in various mesoscopic ring-like systems [80] in the context of
magnetotransport. The experimental setups, of course, far from fulfill the simplistic
assumptions of the toy model above, thereby posing challenges for the unambiguous
confirmation of the effect [81]. The following variations on the above description,
among other more system specific ones, modify the observed oscillations:

(i) Even for ideally controllable systems used in simulations, the elements
composing the structure (the ring and the attached leads) are not strictly 1D
but have finite width [63], as shown schematically in Fig. 4.4b. In the picture of
interfering paths, there will thus be an infinite set of trajectories contributing to
the interference at the exit. Alternatively, propagation in the leads and ring arms
occurs in different transversal modes [82], and there will be a finite coupling
between modes in the leads to modes in the ring caused by the connecting
nodes, but also coupling between the modes in each arm due to its curvature

18Note that this is the ‘first order’ AB effect for the loop system considered: There will in principle
be contributions from any number of windings of paths around the loop, including half windings if
reflection at the nodes is included [2]. As a result, higher frequencies appear in the AB oscillations;
these are, however, suppressed in experimental spectra due to the finite electronic coherence length.
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[83]. Finally, each transmission coefficient Tnm between modes m and n of the
leads will be a coherent (squared) sum of transmission amplitudes between the
leads and the ring arms [6], introducing additional frequencies in the observed
oscillations.

(ii) Although the original aim was the manifestation of the influence ofA in regions
of vanishing B, most experiments as well as simulations are carried out with
an external magnetic field covering the whole structure (since it is not trivial
to confine the flux to an area in the interior of the loop), though still referring
to AB oscillations in the transport. The presence of the field in the ring arms
further alters the oscillations by modifying the couplings between transversal
modes and by deforming the wave function at higher field strengths.

(iii) The nodes connecting the loop to the leads are in general not reflectionless
(also in a 1D model [84]), meaning that the AB oscillation pattern changes
in energy due to (broad or narrow) single-channel resonant states in the ring
arms. Even for a fixed energy, however, the AB oscillations may be modified
due to the B-field dependence of resonant states. In particular, Fano resonances
will inevitably form due to quasi-bound states in the connecting node regions
or in the arms, whose energy position and width in general varies with the
magnetic field. Specifically, a Fano resonance may generally be shifted [85]
onto the fixed energy considered by varying B, thus drastically affecting the
AB oscillations in transmission. In fact, the interplay between the AB effect
and Fano interference from scatterers connected to the arm(s) of a quantum
ring has been a topic of intensive interest [75, 86–88], not least as a mechanism
for tunable magnetotransport.

The above aspects of AB oscillations in quantum rings are generalized for the
quantum billiard systems studied here, as will be seen in Chaps. 6, 7 and 8. There
are now additional (semiclassical) paths in the bulk of the billiard interfering with
each other and with those along the boundary, as illustrated in Fig. 4.4c, leading to a
superposition of AB oscillations with frequencies corresponding to the virtual loops
formed by the paths. In the full quantum picture at low energies, the wave functions
are in general spatially extended across the whole 2D area of the billiard and cannot
be identified with well defined paths as for the ring systems. AB-like oscillations
in transmission can here be recognized as the interference of quasi-degenerate
(close in energy) states at the terminals, with the phase of each modulated by the
applied magnetic field. In fact, specific confining geometries may lead to spatial
distributions of states at zero field which are localized along (wide but distinct) paths
along the periphery of the billiard or in its interior, allowing for an association of the
resulting transmission oscillations in B-field to the flux penetrating the system. An
extreme case is that of interfering edge states at high field strengths: Interestingly,
the transport in the extended system is then mediated by effectively 1D states like in
the toy model we started with above, and clear oscillations with definite periodicity
are induced in the magnetotransport [89]. Finally, AB-like interference can occur
along effective loop structures forming around potential hills of the potential
landscape in the 2DEG of electronic nanostructures, caused by (remote) impurities
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or other sources of disorder. Such loops, whose coherent coupling is modulated
by a magnetic field, appear and disappear in a random manner with varying Fermi
energy (as it enters valleys or covers hills in the potential, respectively) and can form
the basis for an intuitive understanding of the widely investigated phenomena of
weak localization [90, 91] and universal conductance fluctuations [92] in disordered
mesoscopic systems [3].
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Chapter 5
Computational Quantum Transport
in Multiterminal and Multiply Connected
Structures

In this chapter we will address the actual determination of the propagator of a
system, in terms of which all quantities of interest for coherent transport are derived.
To maintain a high flexibility in setup variations, the numerical computation is
performed on a tight-binding grid upon which arbitrary device confining potentials
can be defined. After a brief review of relevant computational schemes, we
introduce the matrix form of the discretized theory, and then develop a block-
partitioning technique for computing transport as well as local density properties
of multiterminal systems with arbitrary geometry and topology. The approach
constitutes an extended version of the recursive Green function method based on
the assembly of multiply connected structures from given inter- and intra-connected
subsystems with multiple leads. It is combined with a block-reordered recursive
computation of subsystem propagators, thus enabling the efficient investigation of a
large diversity of system setups in a highly resolved parameter space.

5.1 Computational Schemes for Quantum Transport

The computation of the stationary propagator of the active scattering region of
a mesoscopic device in the presence of attached leads lies at the core of the
Landauer picture of transport based on the Greenian formulation of confined
scattering. Formally, the propagator is obtained by a straightforward inversion of the
discretized Hamiltonian matrix once the effect of the leads have been incorporated
via self-energies. However, for the grid resolution required to describe arbitrary
potential variations and also to remain close to the continuum of the effective mass
description, the cost of a direct inversion becomes prohibitive, both in terms of
computational time and storage. In fact, though, only parts of the full Greenian are
relevant for the description of the response of the system upon an external excitation.
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Moreover, within the tight-binding approximation, used in the vast majority of
approaches, the grid Hamiltonian matrix is sparse which makes its full storage and
processing redundant.

An approach which takes into the sparse structure of the Hamiltonian is the so-
called recursive Green function (RGF) method which has become a standard in
nanoelectronic device modeling [1]. The original formulation of the method [2–4]
addressed the computation of transport properties in terms of the inter-terminal part
of the propagator, while later implementations [5, 6] have included the computation
of local device quantities such as the LDOS and current densities derived from the
terminal-to-interior propagator. In its standard form, the RGF technique is based on
a decomposition of the grid-discretized scatterer into (vertical) slices of sites [7–
9], which are recursively appended by solving a matrix Dyson equation involving
the isolated slice Greenians. This scheme can be extended to the case where the
connected parts are extended (rectangular) stacks of slices (of constant potential)
whose Greenians can be obtained analytically [8].

The computational efficiency in the standard RGF implementation is essentially
determined by the (vertical) extent along the slices whose isolated Hamiltonians
are inverted. The modeled systems thus preferably have an elongated geometry
composed of long (horizontal) arrays of short connected slices. For systems with
considerable extent in both directions, such as quantum antidot superlattices [10],
hybrid versions of the RGF have been developed [11–14] where the slices are
computed in their eigenstate representation, adapted to straight boundaries or
smooth boundary variations.

A specialization of the connection of extended units is the ‘modular’ RGF
method developed by Rotter et al. [15], where the eigenstate expansion of individual
parts is used and allows for ballistic transport computations at high energies [16]
and strong magnetic fields [17]. Although a multitude of geometries and interesting
effects can be studied, the advantage in performance is here practically obtained
for structures that can be dissected into basic module shapes (rectangles, circles
etc.) and potentials (e.g. parabolic confinement [18]) with analytically known
eigenfunctions, or separable potentials with rapidly calculated eigenfunctions.

For large system sizes of arbitrary potential, efficient computations with high
performance can be achieved through parallelized computation of the device
propagator among multiple communicating processors. A parallel implementation
of the RGF algorithm was developed by Drouvelis et al. [19] based on a Schur
complement partitioning scheme for the Hamiltonian and generalized to multiple
terminals by D. Buchholz. Other renormalization schemes for parallel solvers
of sparse systems have also been proposed [20, 21]. In parallel processing the
communication between processors must be taken into account, which may limit
the performance advantage for smaller systems. Especially when a well resolved
parameter space is desired (such as energy, magnetic field, and geometry/potential
parameters), it can be preferable to let independent processors perform serial
computations for different parameters (thus avoiding communication overhead)
instead of parallelized computations for fewer parameters.
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An important development of Greenian based methods is the generalization to
multiple attached electrodes on the boundary of the device scattering region instead
of only source and drain contacts on opposite ends. Multiterminal computations
were initially adapted to specific geometries such as Hall bars [22–24] and have
been further generalized since. In a method by Mamaluy et al. [25, 26] the eigenstate
expansion of the Greenian is computed numerically for arbitrary dot potentials and
coupled to multiple attached leads. Within the tight-binding approach, Wimmer et
al. [27] have developed an optimal matrix reordering algorithm for efficient transport
computations based on graph partitioning. Another recent method for multiterminal
transport utilizes a circular slicing procedure [28]. Finally, the ‘knitting’ algorithm
by Kazymyrenko et al. [29] provides a computational scheme for generic device
geometries with arbitrary lead attachment, where the scatterer sites are appended
(knitted) one by one onto the part already included.

In the following, we will develop a hybrid computational scheme which com-
bines the latter knitting concept with a modular decomposition of the transport
device region. The method enables the assembly of multiply connected composite
structures from a finite number of different module types, with arbitrarily positioned
multiple lead terminals. The propagator of a single multiterminal module is
computed via a block-reordered RGF iteration which separates the surface (lead-
connected) part from the interior allowing for a selective computation of local
quantities (state and current densities). The assembly of modules is based on a
block-Gaussian elimination scheme to solve the matrix Dyson equation for inter-
connection between two modules or intra-connection of a module with itself. This
provides a flexible and efficient way to perform transport computations on generic
looped devices with internal structure assembled from different or repeated units.

5.2 From Operators to Matrices

To start with the description of a numerical approach to the transport problem, we
now introduce the tight-binding grid on which abstract operators of the previously
developed theory are represented. This gives the opportunity to define the notation
and theoretical formalities of the resulting matrix formulation, but also to address
particular considerations arising from the system discretization.

5.2.1 Grid Discretization and Tight-Binding Hamiltonian

In order to treat the scattering system numerically, we need to ‘discretize’ it,
meaning that we select a discrete set of points in 2D space, the grid, on which any
spatially represented quantity is evaluated. The points of the grid on which the wave
function of interest will actually reside we call sites, and, since we will ultimately
express the scattering problem within a finite 2D domain D (see Sect. 4.3.1), those
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sites can be counted by a single running index ˛. Considering a uniform square
grid oriented as the Cartesian coordinate system .x; y/, we can represent each site
position as

r˛ D .x˛; y˛/ D .sa0; ra0/) ˛ $ .s; r/; (5.1)

each site index ˛ thus corresponding to a pair .s; r/, where the index s counts
y-oriented ‘slices’ of the grid along the x-direction and r counts x-oriented ‘rows’
along the y-direction, with common distance a0 (the lattice constant) between
consecutive gridpoints in each direction. For the infinitely extended scattering
system the total number of slices ns and rows nr is of course infinite, ns D P

s D
nr D P

r D 1.1 Further, we consider states jr˛i, localized on each site ˛, which
form a complete orthonormal set,

hr˛jrˇi D ı˛ˇ;
X

˛

jr˛i hr˛j D 1; (5.2)

so that any state j i is represented as a column vector Ψ with components

‰˛ D hr˛j i : (5.3)

The Hamiltonian of the system

H D
X

˛;ˇ

jr˛iH˛ˇ hrˇj (5.4)

is now represented by the square matrix

H D KC V; (5.5)

where V˛ˇ D ı˛ˇV.r˛/ is the (local) potential at site ˛ and K is the grid-represented
kinetic energy operator.2 The stationary Schrödinger equation in the single-band

1Note that, for a system infinitely extended in both x- and y-directions, like the generic multitermi-
nal scatterer attached to semi-infinite leads, the coordinates .s; r/ can in general not be counted in a
slice- or row-major scheme (e.g., bottom to top and then left to right) by a single site index ˛, since
some slice or row may contain infinite sites. The only alternative would be a rather inconvenient
outward spiral-like counting scheme for ˛. With the decomposition scheme used here, together
with the tight-binding approximation to follow, only sites of the finite scatterer domain will be
used in the description, such that a single-index counting is well defined.
2Bold upright letters (H,Ψ), possibly with sub- or superscripts, will be used to denote matrices
represented on the spatial grid, with their thin variant (H˛ˇ ,‰˛) denoting individual matrix
elements.
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effective mass picture of the 2DEG is now written in the matrix form

.E �H/Ψ D 0 )
X

ˇ

.Eı˛ˇ �H˛ˇ/‰ˇ D 0 8˛ 2 D; (5.6)

where E D EI and I is the identity matrix of dimension equal to the number of sites
within the total domain

D D DS [DL D DS [
NL[

qD1
NDq (5.7)

of the scatterer (DS) attached to NL leads, which in turn will be determined by the
imposed boundary conditions.

Tight-Binding Approximation

Employing a finite difference approximation to the first one-dimensional partial
derivative of an arbitrary function f .x; y/,

@f

@x

ˇ̌
ˇ̌
rD.x˛Ca0=2;y/

D 1

a0
Œ f .x˛ C a0; y/ � f .x˛; y/�; (5.8)

we get the second derivative on slice s as

@2f

@x2

ˇ̌
ˇ̌
rD.x˛;y/

D 1

a20
Œ f .x˛ C a0; y/ � 2f .x˛; y/C f .x˛ � a0; y/�; (5.9)

and similarly for row r, so that the five-point stencil Laplacian evaluated at site ˛
becomes

r2f ˇ̌rDr˛D.sa0;ra0/ D
1

a20
Œ f.sC1;r/ C f.s�1;r/ C f.s;rC1/ C f.s;r�1/ � 4f.s;r/�; (5.10)

where we have defined f.s;r/ � f .sa0; ra0/. In the absence of a magnetic vector
potential the Hamiltonian matrix elements on the grid are thus given by

H˛˛0 D H.s;r/.s0;r0/ D K.s;r/.s0;r0/ C V.s;r/.s0;r0/ (5.11)

D � „
2

2ma20
Œıs˙1;s0ır;r0 C ıs;s0ır˙1;r0 � 4ıs;s0ır;r0 �C V.s;r/ıs;s0ır;r0 (5.12)

D Œ4tC V.s;r/�ıs;s0ır;r0 � tŒıs˙1;s0ır;r0 C ıs;s0ır˙1;r0 � (5.13)
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where t � „2
2ma20

is the hopping energy. Writing the Hamiltonian as

H D
X

˛

jr˛iU˛ hr˛j C
X

˛¤ˇ
jr˛i J˛ˇ hrˇj (5.14)

we see that the approximation procedure used for the kinetic term K effectively
contributes an energy t (which increases when the grid nodes come closer) to the
‘on-site’ energy of site ˛ from each one of its four nearest neighbors,

U˛ D V.r˛/C 4t; (5.15)

while ‘hopping’ to one of those sites costs energy t,

J˛ˇ D �t; jr˛ � rˇj D a0: (5.16)

In other words, we have obtained the simplest form of a tight-binding Hamiltonian,
used widely as an approximation to describe a lattice of atoms where only
interactions with the closest neighboring atoms are taken into account [30, 31]—
though here the ‘atoms’ have no internal structure. Despite this similarity, the
mathematical grid used here does not simulate the atomic lattice of the material
(heterojunction between two semiconductors) where electrons propagate; it merely
approximates numerically the continuous medium within the effective mass picture
we started out with, and approaches this continuum as a0 ! 0.

Peierls Phase Factor

In the presence of a magnetic vector potential

A.r˛/ D A˛ D Ax.r˛/OxC Ay.r˛/Oy D Ax
˛ OxC Ay

˛ Oy; (5.17)

the diagonal (on-site) matrix elements of the lattice Hamiltonian remain unchanged,
and the off-diagonal (hopping) elements acquire a local Aharonov-Bohm-like phase
factor, known as the Peierls phase factor [32], corresponding to the straight path
from a site ˛ to a nearest neighbor ˛0,

JA¤0
˛˛0 D JAD0

˛˛0 exp

 
i
e

„
Z r˛

r˛0

dr � A.r/
!
: (5.18)

Relying on the gauge invariance of the Schrödinger equation (and thus of observable
quantities), Peierls’ phase factor is here exact and unambiguous [33] for the
(trivially) orthonormal basis set of the grid, within the tight-binding framework. An
approximation does enter for generic spatially varying magnetic fields if we evaluate
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the path integral by means of the trapezoidal rule,

Z r˛

r˛0

dr � A.r/ � 1

2
.r˛ � r˛0/ � .A˛ C A˛0/; (5.19)

for adjacent grid points ˛ and ˛0. However, for the cases of homogeneous (in the
billiard) or linearly varying (in the leads) B.r/, which we will consider here, also
this interpolation becomes exact. It yields the following explicit form of hopping
elements:

J.s;r/.s0;r0/ D �t
�
ısC1;s0ır;r0 e�i
a0ŒAx

.s;r/CAx
.sC1;r/�=0

C ıs�1;s0ır;r0 eCi
a0ŒAx
.s;r/CAx

.s�1;r/�0

C ıs;s0ırC1;r0 e�i
a0ŒA
y
.s;r/CA

y
.s;rC1/

�=0

C ıs;s0ır�1;r0 eCi
a0ŒA
y
.s;r/CA

y
.s;rC1/�=0

�
; (5.20)

where 0 is the flux quantum.

Hard-Wall Boundaries

As its name implies, a ‘hard wall’ along the boundary of a given 2D domain D
means that any wave inside the domain is perfectly reflected at the boundary, that
is, the wave function  .rIE/ describing it vanishes just outside the boundary for
arbitrarily high energies E. This is achieved by letting V.r/ ! 1 for r … D in the
theoretical model, leading to (homogeneous) Dirichlet boundary conditions along
the boundary,

 .r/ D 0; r 2 @D; (5.21)

due to the required continuity of the wave function.
In the spatially discretized system, the boundary @D is drawn between gridpoints

lying inside (2 D) an outside (2 ND) the scatterer, and the Dirichlet condition
amounts to setting the wave function of those outside to zero. In the tight-binding
scheme, this is equivalent to setting the hopping elements between nearest neighbor
gridpoints on either side of the boundary to zero,

‰˛ D 0; r˛ 2 ND , J˛ˇ D 0; rˇ 2 D: (5.22)

The discrete Schrödinger equation (5.6) is then solved only for the scattering domain
of interest (including the leads) D D DS [ DL which is separated from the
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Fig. 5.1 Schematic of a two-dimensional device discretized on a uniform square grid of lattice
constant a0. The scatterer is contained in the spatial domain DS with 1059 internal sites (blue)
and 21 surface sites (red) connected to three leads (yellow, domain DL) which together with the
scatterer make u the total domain D of the model device defined by hard-wall boundary conditions.
An arbitrary scatterer potential (e.g. with smooth boundaries) is generally contained within a finite
rectangular computational box (gray sites), and after its design slices and rows are counted within
D. The schematic illustrates that (i) the device can have multiple, arbitrarily positioned semi-
infinite leads attached along the x- or y-direction, (ii) a tilted lead (p D 3) can be implemented by
smooth (adiabatic) continuation in a larger computational box into a straight horizontal or vertical
outer lead, (iii) leads can be attached directly on appropriate boundary segments of the device
(p D 1) or after lead stubs (p D 2; 3) extending to the box boundary, (iv) the scatterer can contain
hard-wall holes (antidots) whose sites are discarded from the Hamiltonian

surrounding gridpoints. In other words, gridpoints outside the hard-wall boundary
are simply discarded from the Hamiltonian matrix. A schematic of an arbitrary
multiterminal device—with very crude grid resolution—is shown in Fig. 5.1, with a
scattering region (blue nodes) attached to three leads (yellow nodes) and the rest of
the grid (white nodes) discarded.
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Note that the Dirichlet boundary need not necessarily define the active confine-
ment geometry: It can just as well be used as a finite grid section on which a smooth
potential is defined, which becomes large enough along a designed boundary to
practically confine the wave function (i.e., cause it to drop off exponentially to zero
before reaching the hard-wall boundary of the finite grid) at energies of interest. Any
chosen scatterer potential should also match the potential in the leads at the terminal
openings.

5.2.2 Dispersion Relation

The degree of approximation in the tight-binding approach can be estimated more
quantitatively by comparing the dispersion relations for a ‘free’ 2D matter wave
(in the sense of an electron in a 2DEG) in the continuous and discrete space. In
the continuous case, the free particle stationary wave function  k.r/ / eik�r yields
the parabolic dispersion E.k/ D „2k2=2m. In the discrete case, the corresponding
plane wave ‰˛ D ‰.s;r/ / eikxsa0eikyra0 is a solution of the free Schrödinger
equation (5.6) (that is, in the absence of confinement or magnetic field), with tight-
binding Hamiltonian matrix elements (5.13), if the energy is related to the (discrete)
wave vectors as [1, 34]

E.kx; ky/ D 2tŒ1 � cos.kxa0/�C 2tŒ1 � cos.kya0/� (5.23)

a0!0���! t.k2x C k2y/a
2
0 D
„2k2
2m

: (5.24)

The discrete dispersion thus becomes parabolic in the continuum limit a0 ! 0, as
expected, and the deviation for finite a0 provides an estimate for the accuracy of
the simulation in terms of spatial resolution: The larger the energy of the incoming
matter wave, the finer the grid should be in order to simulate the energy continuum
in the effective mass picture of the 2DEG.

When the confinement potential is introduced to create the quantum billiard,
wave propagation is free only along the attached Q1D leads. Just like in the con-
tinuum case, we then obtain a free particle dispersion relation for the longitudinal
direction for each energy subband of the transversal lead confinement. For flat
leads (zero potential) with hard-wall boundaries, we have the sinusoidal transverse
eigenfunctions (2.27), now with discrete wave numbers

kpy;m D
m


.Np
w C 1/a0 ; (5.25)
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where Np
w is the number of transversal sites in the wire.3 The total, mode-resolved

dispersion relation thus becomes

Ep
m.kx/ D 4t � 2t cos.kxa0/� 2t cos

�
m


Np
w C 1

	
; (5.26)

which yields the corresponding velocity

vpm D
1

„
@Ep

m

@kx

ˇ̌
ˇ̌
kxDk

p
x;m

D 2ta0
„ sin



kpx;ma0

� D „
meffa0

sin


kpx;ma0

�
(5.27)

in mode m of lead p, to be used in the following, where kpx;m for a given energy E is
obtained as

kpx;m D
1

a0
arccos

�
2 � E

2t
� cos

�
m


Np
w C 1

	�
(5.28)

by inverting equation (2.29).
Note here that, although the full dispersion relation determines kpx;m, the channel

thresholds alone are given by the energies Em D 2tŒ1 � cos.ky;ma0/�. The relative
deviation between the continuum and discrete channel thresholds	Em=Econt

m D 1�
2Œ1� cos.ky;ma0/�=.ky;ma0/2 with ky;m D m
=.NwC1/ illustrates the approximation
introduced in dependence of the number of transversal sites used in a lead: For
Nw D 32, as will be the case in following implementations, we have relative
deviation 	Em=Econt

m D 0:000755; 0:003017; 0:006779 for thresholds m D 1; 2; 3,
respectively.

5.3 Scattering via Spatial Decomposition

We will now use the decomposition scheme developed in Sect. 4.3 to express the
scattering problem in terms of an effective Hamiltonian projected on the scattering
region DS alone. Within the tight-binding approximation, this will provide an exact
mapping of the infinite-dimensional, grid-represented scattering problem to a finite-
dimensional one, though described by an energy-dependent and non-Hermitian
Hamiltonian. The corresponding Greenian will then provide any quantity of interest
such as transmission functions and state densities.

3On the grid, one can think of the boundary @D as drawn in the middle between gridpoints (see
inset of Fig. 5.1), so that hard-wall (Dirichlet) boundaries for lead p are implemented by setting
 .xp; yp D �a0=2/ D  .xp; yp D Nwa0 C a0=2/ D 0 at the gridpoints just outside the lead; the
effective width of the lead is thus w D .Np

w C 1/a0 .
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5.3.1 Truncation of the Hamiltonian

Although imposing Dirichlet boundary conditions—either as a hard-wall scatterer
boundary or around a computational box within which a smooth confining potential
is defined—discards most part of the 2D grid, the Hamiltonian matrix (5.5) is still
of infinite dimension due to the formal semi-infinite extent of the leads: y-oriented
leads yield a finite number ns < 1 of infinite slices (nr D 1) of sites within the
total scattering domain D, and x-oriented (or any non-y-oriented) leads yield an
infinite number ns D1 of finite slices (nr <1).

We now consider the decomposition of the total scattering domain into that
containing the actual scatterer, DS, and the one containing all leads, DL. As shown
in Sect. 4.3 the open scatterer system can be described by a modified Hamiltonian
QHC
S .E/ D HSC˙C.E/, where the (generally energy-dependentand non-Hermitian)

retarded self-energy operator ˙ takes into account exactly the presence of the
attached leads, achieved formally by using operators that project any state onto
DS and DL. Represented on the introduced discrete spatial grid, this effective
Hamiltonian becomes a matrix

QH.E/ D HCΣ.E/ D HC £g.E/£� (5.29)

where the matrix £ provides the coupling from sites in DL to sites in DS and g is
the Greenian of the isolated leads (describing propagation between sites in DL in
the absence of the coupling, £ D 0).4 The subscript S indicating the scatterer is here
omitted; adapting to matrix notation, we also suppress the ‘retarded’ superscript C
on Σ and g, with the ‘advanced’ superscript � replaced by Hermitian conjugation,
ΣC � Σ) Σ� D Σ�.

The Hamiltonian H of the isolated scatterer has dimension N equal to the number
of sites within DS, and in the tight-binding approximation arising from the finite-
difference scheme for the kinetic operator it acquires the block-tri-diagonal form

H D

0
BBBBBBBBBB@

::: :::
::: Hs�1;s�1 Hs�1;s

0

Hs;s�1 Hs;s Hs;sC1

0
HsC1;s HsC1;sC1

:::
::: :::

1
CCCCCCCCCCA

; s D 1 W Ns; (5.30)

4Note that, in the tight-binding grid representation, and for a uniform grid, each matrix product
is accompanied by a constant factor a20, corresponding to the element of 2D spatial integration
of matrix elements in the continuum limit. To simplify notation, we choose to absorb these
constants in the corresponding multiplied matrices; for example, the symbol G will denote the
grid-represented Green function multiplied by the surface element a20 .



114 5 Computational Quantum Transport in Multiterminal and Multiply Connected. . .

where each block Hs;s on the diagonal is in turn a tri-diagonal matrix

Hs;s D

0
BBBBBBBBB@

: : :
: : :

: : : U.s;s/.r�1;r�1/ J.s;s/.r�1;r/
0

J.s;s/.r;r�1/ U.s;s/.r;r/ J.s;s/.r;rC1/

0
J.s;s/.rC1;r/ U.s;s/.rC1;rC1/

: : :

: : :
: : :

1
CCCCCCCCCA

; r D 1 W N.s/r ;

(5.31)

corresponding to a slice s of N.s/r scatterer sites .s; r D 1 W N.s/r /, so that

N D
NsX

sD1
N.s/r (5.32)

is the dimension of H and the total ‘size’ of the linear problem to solve, where we
use the shorthand notation a W b � a; aC1; aC2; : : : ; b. Counting s D 1 W Ns along
x from the leftmost slice of the finite scatterer domain, the double indexing can be
mapped unambiguously to a single index ˛ $ .s; r/.

Note that the domain DS, whose sites are exclusively included in representing
H, may be multiply connected, that is, contain ‘holes’ where Ψ vanishes due to an
internal hard-wall boundary, as shown in Fig. 5.1.5 Thus, although the diagonals
of the blocks Hs;s are always full, with the sites enclosed in the hole being
discarded, the side-diagonals (upper and lower) may contain zeros corresponding
to unconnected sites on either side of the hole.

Also, since the slices of included sites are generally of different lengths N.s/r , the
blocks Hs;s˙1 on the side-block-diagonals of H are sparse (with at most one non-
zero element per row or column) but in general rectangular N.s/r � N.s˙1/r matrices,
and not square diagonal as would be the case for a rectangular domain DS.

With the addition of the self energies representing the connection to the semi-
infinite leads, the total Hamiltonian matrix QH acquires blocks which do not follow
the above structure, to be discussed next. It should be noted, however, that the
matrix elements of Σ are assigned solely to sites within the scatterer domain DS,
independently of whether a tight-binding approximation is employed or not. In
other words, the truncation of the Hamiltonian matrix itself relies only on the

5Such structures are called ‘antidots’ in the context of nanoelectronic systems, since they expel
the electrons instead of trapping them like quantum dots do. If their (negative) potential is low,
then their appearance may depend on the quasi-Fermi level in the 2DEG, leading to fluctuating
Aharonov-Bohm-like loops, as discussed in Sect. 4.4.2. For strong and steep enough potential, the
antidot can be modeled by a correspondingly shaped closed hard wall, with the enclosed sites
discarded from the Hamiltonian matrix, as done in Figs. 5.1 and 5.2.



5.3 Scattering via Spatial Decomposition 115

projection scheme applied to the domain decomposition into scatterer and leads, and
the approximation involved is independently determined by the type of coupling and
grid resolution.6

Self-Energies

The coupling matrix £ is the sum of matrices £p coupling the leads p to the scatterer,
which, in the tight-binding approach, consist simply of the hopping elements J˛ˇ
across the lead interfaces,

£ D
NLX

pD1
£p; £pI˛ˇ D J˛ˇ; ˛ 2 DS; ˇ 2 Dp; (5.33)

and £pI˛ˇ D 0 otherwise. Thus, the self-energy matrix

Σ D
NLX

pD1
Σp; Σp D £p g.E/£�p; (5.34)

also has nonzero elements only for sites adjacent (nearest neighbors) to the first sites
in the leads at local coordinates r˛Ip � .xp D a0; yp/. It couples, however, all such
‘surface’ or ‘lead-coupled’ sites of the scatterer connected to a terminal p to each
other via the matrix elements g˛pˇp of the lead Greenian along the interface,

†pI˛ˇ D £pI˛˛p g˛pˇp £
�

pIˇpˇ D t2 g˛pˇp : (5.35)

With the self-energy due to the leads, the scatterer thus effectively interacts with
‘itself’, beyond nearest neighbors at the surface sites.

A schematic of a four-terminal toy scatterer with 42 sites is shown in Fig. 5.2a,
with the corresponding effective Hamiltonian QH (or the structurally equivalent
matrix QΔ � E� QH, ultimately to be inverted) shown in Fig. 5.2b. For horizontal leads
attached to a single slice on the left or on the right of the scatterer, the self-energy
contributes full blocks on the diagonal of QH, and the block-tri-diagonal structure is
preserved. For vertical leads (more than two sites wide), however, the self-energy
couples slices with sites which are not nearest neighbors, and QH is no longer block-
tridiagonal: In principle, any block of QH can be populated sparsely by the elements
of Σ.

6For example, if next-to-nearest-neighbor coupling were included (that is, via a higher order, nine-
point stencil approximation to the 2D Laplacian), the coupling matrix £ would ‘reach’ further (by
one more site in each direction) across the interfaces to the leads, but since £� projects back onto
the scatterer domain [see (4.84)], the matrix Σ remains of the size of H.



116 5 Computational Quantum Transport in Multiterminal and Multiply Connected. . .

Fig. 5.2 (a) Toy device with 26 internal sites (blue) and 16 surface sites (red) of which 14 are
connected to four terminals (yellow) and two represent decoherence probes. The scatterer also
has a hole of four discarded sites. The legend on the right indicates the effective Hamiltonian
on-site and hopping matrix elements describing the truncated scatterer, where lead sites (yellow)
participate via the their Green function in the self-energy Σ. (b) Effective Hamiltonian matrix QH
(or equivalently QΔ D E � QH) of the lead-connected scatterer with all sites (including red surface
sites) indexed from left to right by slice numbers s D 1 W 9 and from bottom to top by row number
r D 1 W N.s/r in each slice. Self-energies (on-site = red, nearest-neighbor coupling = orange,
remote coupling = brown) contribute full diagonal blocks for horizontal leads (attached on the left
or right) and scattered off-diagonal blocks for vertical leads (attached on the bottom or top). (c)
Block-reordered QΔ-matrix by indexing first internal sites and then surface sites as numbered in
(a), with leads numbered as encountered from left to right and bottom to top. The reordered matrix
has block-tridiagonal internal superblock QΔ��, block-diagonal surface superblock QΔ�� and surface-
internal coupling QΔ�� D Œ QΔ����. Indicated subblocks QΔ��

s;s, QΔ��
s;sC1 and QΔ��

s D Œ QΔ��
s �

� are used in
sth iteration of the BGE process
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For the flat hard-wall semi-infinite leads considered here, the Green function for
zero magnetic field is derived in Sect. A.2 in Appendix A; in the grid representation,
the lead Greenian connecting sites ˛p; ˇp along the interface of lead p to the scatterer
is then [34]

gp
@D D �

1

t

X

m

¦p
me

ikpx;ma0¦p�
m ) gp˛pˇp D �

1

t

X

m

¦
p
mI˛pe

ikpx;ma0¦
p�
mIˇp (5.36)

where ¦p
m is the Np

w � 1 transversal wave function column vector of lead p (which
is chosen real for zero magnetic field). The self-energy matrix for the scatterer sites
connected to lead p thus becomes

Σp D �t
X

m

¦p
me

ik
p
x;ma0¦p�

m ) †pI˛ˇ D �t
X

m

¦
p
mI˛pe

ik
p
x;ma0¦

p�
mIˇp ; (5.37)

which is seen to be manifestly non-Hermitian and energy-dependent. The sum is
here over all modes in lead p, which, in the discretized system, are restricted to
the number of considered transversal sites Np

w. Note that evanescent modes with
Ep
m > E, corresponding to exponential decay through an imaginary kpx;m, are here

inherently taken into account in the summation.

5.3.2 Open System Propagator

With the self-energies Σp added to the truncated scatterer Hamiltonian H, the
Greenian of the open system is given by the grid-represented form of (4.94),

QG D .E� QH/�1 D .E �H �Σ/�1: (5.38)

which is obtained here equivalently by matrix algebra after decomposing the system
into scatterer and attached leads, as shown below in Sect. 5.4.1 Formally, the
propagator is thus obtained by a single matrix inversion. In view of the spatial grid
resolution needed to simulate a quantum device accurately, however, the resulting
N � N matrix is usually too large to be directly inverted in an efficient way.
Recall that matrix inversion and its underlying matrix multiplication are ‘level
3’ operations [35] with computational cost C, or ‘numerical complexity’, scaling
asymptotically as

C / f N3; N 
 1 (5.39)

for large N, meaning that the number of floating point operations (addition or
multiplication of two scalars) performed is approximately proportional to fN3,
where the factor f depends on the particular algorithm used [36]. For example, even
for a moderately resolved circular billiard with a radius of 100 gridpoints we have
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N � 31; 415 and a direct inversion is already computationally expensive. Apart
from the computational cost, only storing the inverse (which, in contrast to the
sparse Hamiltonian QH, is generally a full matrix) requires too much memory to be
practicable.

In fact, though, only a small fraction of the matrix elements of the full Greenian QG
are relevant for describing transport through the system: Since transport in principle
regards the response of the system upon an incident excitation in one of the attached
leads, the essential part of QG is the one which propagates from surface (lead-
connected) sites to the interior of the scatterer and to other surface sites. We will
now briefly list the lattice forms of quantities employed directly or indirectly in the
description of transport, and in the following sections the computational procedure
to efficiently obtain the needed blocks of QG will be presented.

Scattering Wave Function

To find the wave function within the scatterer domain as a response to an incoming
wave in one or more leads at energy E, just like in Sect. 4.3.2, we write the matrix
Schrödinger equation for the total system (scatterer + leads) as

�
E � HS �£

�£� E � HL

	�
Ψ

ΦS CΦL

	
D
�
0
0

	
; (5.40)

where ΦL D P
p Φp is an eigenstate of the isolated lead(s), HLΦL D EΦL. Upon

connection of the lead(s) via £ to the scatterer, ΦL acts as an excitation giving rise
to a wave Ψ in the scatterer and a wave ΦS in the leads. From the lower equation
we have

ΦS D .E � HL/
�1£�Ψ D g£�Ψ; (5.41)

where g D .E � HL/
�1 is the Greenian of the isolated leads.7 Inserting ΦS into the

upper equation in (5.40) yields the scattering wave function in the scatterer region,

Ψ D .E �H �Σ/�1£ΦL D QG£ΦL; (5.42)

as the response to a source ΨL D £ΦL at the interface to the leads, propagated by
the Greenian QG of the connected scatterer. Since, in the Landauer-Büttiker picture
of transport, electrons are injected incoherently in different lead channels from
different reservoirs, in practice ΦL is the wave function of a single mode m in a
single lead p, and the response becomes

Ψ D QG£Φp
m; Φp

m D ¦p
me

i� ; (5.43)

7The coupling of the leads themselves to reservoirs is here implicit, with a corresponding imaginary
term i� absorbed in HL which makes g convergent, as shown in Sect. A.2 in Appendix A.
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where the phase � D �kpmxp � 0 of the incoming wave is conventionally set to zero
considering the origin of the lead at the interface to the scatterer. Further, since only
surface sites are coupled to the leads via £ in the tight-binding approach, it is clear
that only the part of the propagator QG connecting the surface sites at terminal p to
the scatterer interior is needed above for computing Ψ.

Probability Current Density

Because of its non-local character in the discretized spatial representation (due the
finite-difference approximation to the gradient r ), the lattice current density is
not defined at a single site but on the link between two neighboring sites ˛ and ˇ.
Using the spatial representation of the velocity operator v D Œr;H�, the link current
from rˇ to r˛ can be written as [22, 37]

j˛ˇ D
1

2i„.r˛ � rˇ/Œ �.r˛/ hr˛j QHjrˇi .rˇ/� �.rˇ/ hrˇj QHjr˛i .r˛/�; (5.44)

where jr˛ � rˇj D a0. In the finite-difference scheme considered, the x- and y-
components of the current vector between internal lattice sites (not connected to
leads) become

jx˛ˇ D j.s;r/.s˙1;r/ D ˙ a0
2i„ Œ‰

�
.s;r/J.s;r/.s˙1;r/‰.s˙1;r/ �‰�

.s˙1;r/J.s˙1;r/.s;r/‰.s;r/�;
(5.45)

jy˛ˇ D j.s;r/.s;r˙1/ D ˙ a0
2i„ Œ‰

�
.s;r/J.s;r/.s;r˙1/‰.s;r˙1/ �‰�

.s;r˙1/J.s;r˙1/.s;r/‰.s;r/�;
(5.46)

where the hopping matrix elements J.s;r/.s0;r0/ are given in (5.20). For surface sites
connected to the leads also the self-energy coupling elements ˚.s;r/.s˙1;r˙1/ should
be included.

Although the discrete current defined along links between sites, it is convenient
(e. g., in order to visualize current flow) to assign to each site itself a current vector
equal to the sum of the currents on the links connected to the site; this yields a total
‘on-site’ current vector [13]

j˛ D j.s;r/ D Œ j.s;r/.s�1;r/ C j.s;r/.sC1;r/ �OxC Œ j.s;r/.s;r�1/ C j.s;r/.s;rC1/ �Oy (5.47)

D „
2ma0

Imf ‰�
.s;r/Œe

i� s
�‰.s�1;r/ � e�i� s

C‰.sC1;r/�Ox

C‰�
.s;r/Œe

i� r
�‰.s;r�1/ � e�i� r

C‰.s;rC1/�Oy g (5.48)

at site ˛ $ .s; r/, where the Peierls phases � s˙ D 
a0ŒAx
.s;r/ C Ax

.s˙1;r/�=0, � r˙ D

a0ŒA

y
.s;r/ C Ay

.s;r˙1/�=0 depend on the chosen gauge for the vector potential A.
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Thus, once the scattering wave function Ψ has been determined as a response to
an incoming wave from (5.43), the current within the scatterer region is computed
from (5.48) (in the same gauge, of course).8

Broadening Matrices and Spectral Function

The quantities relevant for the actual observables in an electron transport setting are
obtained in their discrete form simply by representing the corresponding operators,
derived in the general framework of Sect. 4.3, on the tight-binding lattice.

Resonant widths (equivalent to decay rates) of quasibound states in the scattering
region are described by the anti-Hermitian part of the self-energy matrix,

Γ D
NLX

pD1
Γp; Γp D iŒΣp �Σ�

p�; (5.49)

with each partial broadening matrix Γ having non-zero on-site and hopping elements
only for sites coupled to the corresponding leads. For flat hard-wall leads, with the
self-energy given by (5.37), their explicit form becomes

Γp D 2t
X

m

¦p
m sinŒkpx;ma0�¦

p�
m D

„
a0

X

m

¦p
mv

p
m¦p�

m ; (5.50)

where the discrete dispersion relation (5.26) was used.
Together with the propagator QG, the broadening matrices determine the lattice

spectral function of the system, which also can be written as the sum of partial
spectral matrices [see (4.116)],

F D
NLX

pD1
Fp; Fp D QGΓp

QG�
; (5.51)

with each part Fp determining the observable response upon an excitation (incoming
electron) in the corresponding lead p. Note here that, since Γp has nonzero elements
only for sites connected to lead p, to obtain Fp only the corresponding part of
the propagator QG needs to be computed [like for Ψ in (5.43)]; that is, the part
propagating from the interior of the scatterer to lead p (or its Hermitian conjugate
propagating from the lead to the interior), and not the (comparatively huge)

8Note that the Ψ is determined from the effective Hamiltonian QH, and only the evaluation of
the current at surface points is skipped here for simplicity, since they do not affect the current
streamline pattern in the interior which is of interest. If leadpoints were added as Büttiker
decoherence probes in the bulk of the scatterer, then the current should be evaluated at those sites
as well, including the corresponding self-energy couplings on the links.
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part propagating between sites in the interior. Nevertheless, the Fp are generally
full matrices of the dimension N of the scattering region, providing the spatial
correlations between all site upon excitations at the terminals. In practice, however,
not all of their elements are required for the analysis of transport properties.

Local Density of States

The diagonal elements of the spectral matrix F provide the total LDOS of the
scatterer [cf. (4.113)],9

¡ D 1

2

diag.F/ ) ¡˛ D 1

2

F˛˛ D � 1



ImG˛˛; (5.52)

which can be viewed as a generalized probability density with incoherent contribu-
tions from excitations in the lead channels. As seen in Sect. 4.2.3, these contributions
are weighted by the Fermi occupation functions of the reservoirs connected through
the corresponding terminals in order to obtain the charge distribution in the device.
For equilibrium transport, where all reservoirs are assumed at the same chemical
potential, the (scaled) charge density is effectively described by � above. We will
here, however, still use the partial LDOS

¡p D
1

2

diag.Fp/ ) ¡pI˛ D 1

2

FpI˛˛ D 1

2


X

ˇ;ˇ0

G˛ˇ$pIˇˇ0G�
˛ˇ0 ; (5.53)

as a tool to analyze the spatial distribution of the response from an incident wave in
a lead p.

Scattering Matrix and Transmission Function

The mode-resolved S-matrix of a multiterminal scatterer in the tight-binding grid
representation is given by the discrete version of the Fisher-Lee formula (4.49)
(choosing the convention of setting the origin in each lead at the terminal interface),

Snm
qp D i„

q
v
.q/
n v

p
m ¦q�

n
QGqp¦

p
m � ıqpınm (5.54)

where QGqp is the part of the scatterer Greenian propagating from lead p to lead q,
with the mode velocities vpm given in (5.27) (recall here that the factor a0 from the

9The symbol diag( ) denotes (with a single matrix argument) the column vector of the diagonal
elements or (with multiple arguments) the (block-) diagonal matrix with elements (matrices) on
the diagonal.
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matrix product in the first term is absorbed in QGqp, so that the result is indeed dimen-
sionless). The transmission function Tqp.E/ D P

n;m Tnm
qp .E/ D

P
n;m jSnm

qp .E/j2
[see (3.14)] determines, upon thermal averaging, the linear-response conductance
between terminals p and q, as was seen in Sect. 3.3.2, which is of primary interest
in equilibrium transport.

If resolution into channel transmission coefficients Tnm
qp is not needed, some

computational cost (and storage) is saved by employing directly the trace for-
mula (4.142) for the transmission, which in the discretized tight-binding case reads

Tpq D TrŒΓpFq� D TrŒΓp
QGΓq
QG�
�; p ¤ q; (5.55)

with the trace taken explicitly over the diagonal elements of grid-represented
matrices; that is, a single number is computed and stored for each lead pair instead
of an S-matrix of dimension equal to the number of transversal sites in the leads. In
fact, (5.55) is readily obtained from (5.54) by taking the absolute square and using
(5.50). As noted previously, however, it should be kept in mind that the trace formula
is of general validity for coherent transport and does not rely on the tight-binding
approximation.

Whether we want to determine resolved matrix elements Snm
qp or the transmission

Tpq, it is clear that only the part QGqp of propagator connecting leads p and q needs to
be computed, which is typically a very small portion of the full QG-matrix. This fact
will be exploited in the computational method developed in the following sections.

Natural Units

For convenience as well as numerical stability in computations, but also as a means
of presenting results in an easily scalable fashion, in the following we adapt to a
‘natural’ system of units where the length scale is defined by the lattice constant a0,
that is, we set a0 � 1. In addition, we set

„ D meff D e D a0 � 1 (5.56)

in terms of which all other units of interest are defined.10 In particular, the natural
units of energy and magnetic flux density become

ŒE� D „2
meffa20

; ŒB� D „
ea20

; (5.57)

10Note that, in contrast to the units used in the theory of previous chapters, here we do not set
c D 1 for the speed of light. In fact, since Œlength� D a0 and time D „=ŒE� D meffa

2
0=„, velocity

scales as a�1
0 .
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respectively, that is, both scale as a�2
0 . In this manner, E- or B-resolved results

can be scaled according to the size of the system in correspondence to realistic
length scales, taking into account the conditions under which coherent transport
would be achieved experimentally. Appendix E provides tables including derived
natural units for relevant quantities (Table E.1), the conversion factors for certain
quantities for an experimentally relevant choice a0 D 2 nm (Table E.2), as well as
the numerical values of relevant constants (Table E.3) for easy reference. In natural
units, the hopping energy has the value t D „2

2meffa
2
0

D 1
2
.

5.4 Computation of the Propagator

Having established the grid-discretized versions of quantities of interest and their
relation to the open system Greenian, we will now address its actual computation
for a generic multiterminal quantum billiard system. First, we describe a generic
partitioning scheme for the matrix Hamiltonian pertaining to a solution based on
block-Gaussian elimination (BGE), and then present two alternative computational
procedures for the relevant multiterminal QG-matrix parts.

5.4.1 Block-Partitioning of the Hamiltonian

An often recurring concept in the following will be the partitioning of a grid-
discretized Hamiltonian matrix QH, which could be the total (effective) Hamiltonian
matrix of the system or some part of it, into blocks H1 and H2 on the block-diagonal
coupled by a block-antidiagonal matrix W,

QH D
� QH11 QH12
QH21 QH22

	
� HCW D

�
H1 W12

W21 H2

	
; (5.58)

for which the corresponding Greenian QG is to be computed in terms of the Greenians
G1 ofH1 andG2 of H2 as well the couplingsW12 andW21. As shown in Appendix B,
the total Greenian of the connected subdomains D1 and D2, described by H1 and
H2 when isolated, is found by BGE to be

QG D
� QG11

QG12QG21
QG22

	
D
� QG11

QG11W12G2

G2W21
QG11 G2 CG2W21

QG11W12G2

	
(5.59)

D
�
G1 CG1W12

QG22W21G1 G1W12
QG22QG22W21G1

QG22

	
; (5.60)
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with

QG11 D ŒE1 � .H1 CΣ1/�
�1; Σ1 � W12G2W21; (5.61)

QG22 D ŒE2 � .H2 CΣ2/�
�1; Σ2 � W21G1W12; (5.62)

where Σ1 and Σ2 are the self-energies of subsystems 1 and 2 due to the coupling to
2 and 1, respectively. This is equivalent to solving the matrix Dyson equation

QG D GCGW QG D GC QGWG (5.63)

for the disconnected subsystems [8] with block-diagonal propagator

QG D
�
G1 0
0 G2

	
; (5.64)

perturbed by the interaction W between them. Solving in terms of Σ1, the explicit
propagators between sites in the domains D1 and D2 then read

QG21 D G2W21.I1 �G1Σ1/
�1G1; (5.65)

QG11 D G1 CG1Σ1.I1 �G1Σ1/
�1G1; (5.66)

QG12 D G1.I1 �Σ1G1/
�1W12G2; (5.67)

QG22 D G2 CG2W21G1.I1 �Σ1G1/
�1W12G2; (5.68)

as shown in Sect. B.2 in Appendix B, where I1 is the identity matrix of the dimension
of H1.

A particular case of the above partition scheme arises when decomposing the
infinitely extended scattering system into scatterer and attached semi-infinite leads.
We then obtain the Greenian of the open scatterer QGS � QG11 in terms of the self-
energy Σ � Σ1 due to coupling to the leads in the familiar form of (5.38), with
coupling matrix £ � W12 and lead Greenian G22 D GL D g. The partitioning here
simply consists in implicitly counting first all the sites within DS and then those
in DL.

For actually computing the parts of the inverse QGS D .E � QHS/ needed for the
observables relevant to transport (such as transmission and LDOS), the scatterer
Hamiltonian is further partitioned into blocks QHs;s0 corresponding to slices s; s0 of
DS. In the present context, the subsystems 1 and 2 will correspond to subdomains
D1 and D2 of the discretized scatterer domain D consisting of one or more slices of
(internal or lead-connected) sites. The BGE procedure will then be applied on the
level of single slices and parts of connected slices.
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5.4.2 Standard Recursive Green Function Method

Considering the toy scatterer in Fig. 5.2a, if we count all sites of the scatterer
(internal/blue and lead-connected/red) from left to right (starting from the leftmost
slice s � 1) and bottom to top (starting from the lowest site .s; r D 1/ in each
slice), we obtain the effective Hamiltonian matrix illustrated in Fig. 5.2b. It consists
of a block-tridiagonal matrix corresponding to the internal sites, with self-energy
elements †˛ˇ added including hoppings between all surface sites connected to a
each lead; the †˛ˇ can thus, in general, occupy any block of QH, since remote (not
nearest-neighbor) slices can be coupled by vertical leads.

We can now assemble the scatterer slice by slice, starting from the left and, for
each slice sC 1 added to the part of already assembled slices 1 W s, solve the Dyson
equation (5.63) by identifying

G D
�
G1Ws 0
0 GsC1

	
; W D

�
0 H.1Ws;sC1/ CΣ.1Ws;sC1/

H.sC1;1Ws/ CΣ.sC1;1Ws/ 0

	

(5.69)

as the propagator of the isolated domains D1Ws [ Ds and the coupling between
them, respectively. The solution for QG � QG1WsC1 is given by performing BGE on
the corresponding block-partitioned Hamiltonian QH � QH1WsC1 in (5.58) and, since
the slice s C 1 being attached is the smaller of the two subsystems, the solution
form in (5.59) with (5.61) is chosen where G2 � GsC1 must be computed while
G1 � G1Ws is already known from the previous iteration. The explicit forms of the
propagators between sites in the connected domains are then given by (5.65)–(5.68)
For each added slice s C 1, the same computational steps are performed using, as
input, the output QG1Ws from the previous iteration, and so the procedure is referred to
as the recursive Green function (RGF) method.

Let us now assume that we are only interested in the transmission function Tqp
(or the mode-resolved scattering matrix Snm

qp ) between the terminals of a trans-
port device. We then only need the propagator between surface (lead-connected)
gridpoints of the scatterer. Considering the toy scatterer in Fig. 5.2a, with the first
(horizontal) lead connected to the first slice, according to the above procedure we
start by computing the Greenian QGsD1 D .EsD1 � HsD1 � ΣsD1/�1 and QGsD2 D
.EsD2 � HsD2 � ΣsD2/�1 of the first and second slices (here ΣsD2 happens to be
zero) which become the inputs G1 and G1 to compute QG � QG1W2 from (5.59). In the
same manner QG1W3 is computed in the next step, with slice s D 3 being connected to
the second lead (which happens here to be a decoherence probe).

In performing the computation, we may discard the computation of the propaga-
tor between internal sites of slices 2 and 3 which is not required. However, in order
to obtain the lead-to-lead parts of the propagator QG1W3 needed, we have now also
computed the propagator between internal sites of slice 3 to surface sites of slice 1.
In other words, with the standard RGF method the complete BGE including back-
substitution is performed for each added slice in the recursion in order to obtain the
corresponding Greenian, even though the added slice contains internal points.
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We next introduce a scheme which avoids this issue by a further block-
partitioning of the Hamiltonian into internal and surface blocks, enabling selective
computation of needed propagators.

5.4.3 Reordered Block-Gaussian Elimination Scheme

In order to separate the computation of the surface-surface part from the internal-
surface part of the scatterer propagator, we reorder the matrix

QΔ D E� QH D Δ�Σ D E �H �Σ (5.70)

as shown in Fig. 5.2c for the toy scatterer in Fig. 5.2a. The reordering essentially
consists in scanning through the scatterer domain from the left slice-by-slice (and
from bottom to top in each slice), though first only indexing all internal sites of
the scatterer; the surface sites are then indexed lead-by-lead in the order they are
encountered from left to right and then from bottom to top, with the index following
the local y-coordinate in each lead (that is, anti-clockwise), as shown by the numbers
on the red sites in Fig. 5.2a.

The QΔ-matrix (or, equivalently, Hamiltonian) then acquires the large-scale block-
partitioned form

QΔ D
� QΔ�� QΔ��

QΔ�� QΔ��

	
; (5.71)

where the off-diagonal blocks QΔ�� D Œ QΔ���� couple the surface part (labeled �) to
the internal part (labeled �).

Since the self-energy matrix elements are now exclusively contained in the QΔ��

block, the Hermitian internal part QΔ�� now retains the block-tridiagonal structure of
the isolated scatterer Hamiltonian (5.30). Considering no coupling between sites of
different leads, the non-Hermitian surface block QΔ�� is block-diagonal,11

QΔ�� D diagNL
pD1. QΔ��

p / D diagNL
pD1.Ep � Hp �Σp/; (5.72)

11Note that this is in accordance with the Landauer-Büttiker framework for transport, on which the
formulation of the scattering problem is based: Recall that semi-infinite leads merely represent
an (ideal form of) electron reservoirs, which in turn correspond to electrodes attached to the
transport device. Coupling (that is, hopping elements) between surface (lead-connected) sites of
two different leads would, in the continuum limit a0, correspond to a connection between the
respective electrodes, in which case they would equilibrate (short-circuit) to the same chemical
potential and effectively constitute a single attached electrode, to be modeled by a single semi-
infinite lead.
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where Σp is the full Np
w�Np

w self-energy matrix for lead p and Hp the corresponding
tridiagonal isolated Hamiltonian matrix for the straight site array connected to lead
p.12 The coupling block QΔ�� D Œ QΔ���� is a block-column of block-rows QΔ��

s (s D
1 W Ns) of sizes N.s/r �Pp N

p
w,

QΔ�� D

0

BBBBBB@

QΔ��
1
:::
QΔ��
s
:::
QΔ��
Ns

1

CCCCCCA
; QΔ��

s D
� QΔ��

sI1 � � � QΔ��
sIp � � � QΔ��

sINL

�
; (5.73)

where s now counts only the slices of internal sites in the reordered indexing.
In the internal-surface block-partitioning scheme, the Green equation to be

solved becomes

� QΔ�� QΔ��

QΔ�� QΔ��

	 QG�� QG��

QG�� QG��

!
D
�
I�� 0��

0�� I��

	
; (5.74)

with obvious superscript notation. We can now perform BGE on this high-level-
partitioned total QΔ-matrix, as shown generically in Sect. 5.4.1. The part QG��

of the
full Greenian propagating between surface sites (from lead to lead) is then simply
given by the inverse Schur complement of the internal QΔ��-block,

QG�� D
h QΔ�� � QΔ��Œ QΔ����1 QΔ��

i�1
; (5.75)

while the part QG��
propagating from the surface to the interior is given by

QG�� D �Œ QΔ�� ��1 QΔ�� QG��
(5.76)

as shown in Appendix B [see (B.6)]. Thus, if only the scattering matrix (5.54)
or the transmission function (5.55) of the system are desired, then only forward

12For simplicity, we consider only horizontal or vertical semi-infinite leads attached to the
computational box containing the scatterer, for which the lead Greenians are easily evaluated. That
surface sites connected to one lead are then y- or x-collinear, respectively, leading the tridiagonal
Hp. Leads at arbitrary angles can be implemented by ‘adiabatic bending’ into a horizontal or
vertical lead by enlarging the computational box accordingly, as shown schematically (for very
low grid resolution) in Fig. 5.1. With sufficiently smooth bending, the Fano resonance width of
quasi-bound states in the bent wire becomes negligible (that is, affects the transmission profile of
the system only at distinct points in energy). If the lattice Greenian for a tilted lead is known, then
attaching the lead can be trivially implemented in the present scheme and would simply introduce
zeros on the side-diagonals of Hp.
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elimination needs to be carried out to obtain QG��
; to compute, additionally, the

scattering wave function (5.43) [and in turn the current density (5.48)] or the
LDOS (5.53), backward substitution is performed which yields QG��

.

Forward Elimination

The final (outer) inversion to be computed in (5.75) is of the relatively small
dimension N� D PNL

pD1 Np
w, equal to the number of sites of the total interface

to the attached leads, and can be carried out directly using an efficient inversion
scheme such as via LU (lower-upper-triangular) factorization; we use the standard
routines zgetrf (LU factorization) and zgetri (inversion of LU-factorized
matrix) from the Linear Algebra PACKage [38]. On the contrary, the intermediate
(inner) inversion Œ QΔ����1 is, despite being sparse, computationally expensive, with
dimension N� equal to the internal sites of the whole scatterer. This is not evident
in the toy example in Fig. 5.2, of course, where N� D 26, N� D 16. Already in
the schematic of Fig. 5.1, though, which has N� D 1059, N� D 21, the difference
in order of magnitude is anticipated. In actual simulations we will usually have
N� � O.104/ while N� D O.101/ (in applications presented here we use N� D
25 D 32), for which (1) the confinement is enough resolved for computed results
to be converged and (2) the deviation of the discrete dispersion from the continuum
limit is negligibly small at the considered energies.

More importantly, however, we do not need the full inverse Œ QΔ����1 to obtain
QG��

and QG��
, as (5.75) and (5.76) above might suggest. Indeed, the strategy to

compute Œ QΔ����1 is, in similarity to the standard RGF, to perform BGE on the
total matrix QΔ on the level of blocks corresponding to slices of the internal part
of the scatterer, though only carrying out the forward elimination steps to obtain the
surface propagator.

With Fig. 5.2 as a guide: The block updates are done until QΔ�� becomes upper
triangular and the large-scale lower off-diagonal block QΔ�� is eliminated, which
leaves the Schur complement Œ QG��

��1 on the lower right (in the place of QΔ�� ).
The pseudocode for the explicit steps of the forward elimination algorithm and the
final inversion of Schur’s complement is as follows ( � denoting assignment of the
expression on the right to the variable on the left):

for s D 1 W Ns � 1
Z  � Œ QΔ��

s;s�
�1 (5.77)

QΔ��
s;sC1  � Z QΔ��

s;sC1 F (5.78)

QΔ��
sC1;sC1  � QΔ��

sC1;sC1 � QΔ��
sC1;s QΔ��

s;sC1 (5.79)

QΔ��
s  � Z QΔ��

s F (5.80)

QΔ��
sC1  � QΔ��

sC1 � QΔ��
sC1;s QΔ��

s (5.81)
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QΔ��  � QΔ�� � QΔ��
s
QΔ��
s (5.82)

end

QG��  � Œ QΔ�� ��1 (5.83)

where s counts the blocks corresponding to slices of internal sites. The colored
blocks QΔ��

s;sC1 and QΔ��
s of the QΔ-matrix are updated and used in the same iteration.

Note that the blocks are generally overwritten (or finally deleted) in memory when
no longer needed. However, the recurring and final inversions are assigned to
separate variables Z and QG��

, respectively, in order to check the inversion for
numerical accuracy (by comparing Z QΔ��

s;s and QG��
Δ�� with the identity matrix).

In particular, the starred (F) expressions saved to the offdiagonal blocks QΔ��
s and

QΔ��
s;sC1 are selectively stored if the corresponding part QG��

of the propagator is to be
computer by backward substitution.

The inversions of the slice blocks are performed directly using the standard
routines zgetrf and zgetri of LAPACK. The numerical complexity of the
forward block-elimination follows the scaling (5.39) of level-3 operations on the
N.s/r -dimensional matrices of the slices for large Ns,

CFE / 6 f
NsX

sD1
ŒN.s/r �

3; Ns 
 1; (5.84)

for the 1 matrix inversion + 5 matrix products in each s-iteration.13 This means that
the scatterer is preferably oriented such that it is narrower (has less internal sites) in
the vertical x-direction. This scaling is the same as for the standard RGF method.
The advantage is here that no backward substitution steps are (unnecessarily)
performed for computing terminal properties (transport coefficients), in contrast to a
standard implementation of the RGF method where back-substitution is performed
internally for each slice iteration. Thus, although the asymptotic scaling of the
complexity is the same, the proportionality factor in (5.84) is smaller since the back-
substitution multiplications are discarded.

Backward Substitution

The backward substitution following forward BGE consists simply of matrix
products of the stored offdiagonal blocks QΔ��

s with the (common) computed surface

13Note here that the proportionality factor is affected by the matrix additions, scaling as ŒN.s/r �2, but
mostly by the fact that the offdiagonal blocks are usually not square.
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propagator QG��
, performed backwards from the last internal slice to the first (Ns W

1 D Ns;Ns � 1; : : : ; 1):

for s D Ns W 1
QG��

s  � � QΔ��
s
QG��

(5.85)

QG��

s  � � QΔ��
s;sC1 QG

��
(5.86)

end

In the same manner, parts QG��

s;s0 of the full propagator between internal sites could be
computed, but they are not used in the present context of transport to obtain relevant
observables. The two iterated matrix multiplications above yield an asymptotic
numerical cost

CBS / 2 f
NsX

sD1
ŒN.s/r �

3; Ns 
 1; (5.87)

which is avoided in the present reordered BGE scheme by performing only the
forward elimination if only surface properties are desired. The exact amount of
computational gain depends, of course, on the particular system setup in terms of its
geometry and topology and, more importantly, on the relative width of the attached
leads determining the size of the (total) terminal interface.

Another advantage of the reordered block partitioning, which is of practical
nature rather than computationally essential, is that the two propagator parts QG��

and QG��
are automatically separated a priori by the indexing order of the sites in

the scatterer. In other words, having counted the sites in the order described above
(see Fig. 5.2), there is no need to keep track of internal versus surface propagator
elements during computation. Further, the indexing convention for the surface sites
(continuous index for each lead) readily yields the multiterminal blocks of QG��

.
Once the recursion is done, the respective parts of QG��

are used in the post-
processing shown in Sect. 5.3.2 to obtain the scattering wave function (5.43) [and in
turn the current density (5.48)] and the (partial) LDOS (5.53), while QG��

yields the
scattering matrix (5.54) and the transmission function (5.55).

5.5 Extended Recursive Green Function Method
for Multiterminal, Multiply Connected Structures

The slice-by-slice recursion in the RGF method, in its standard form or in the
internal-surface block-reordered scheme above, constitutes an efficient way to
compute the system propagator which takes into account the sparsity of the tight-
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binding Hamiltonian. There are cases, however, where it is advantageous to partition
the Hamiltonian on a higher level, decomposing the system into subsystems
containing several slices each. In this section, we present a computational method
based on the general BGE scheme of Sect. 5.4.1 to treat generic structures with
singly or multiply connected subsystems and with multiple terminals.

5.5.1 Modular Partitioning

Relying on the lateral structure of the confining potential, a nanoelectronic device
can be virtually cut into smaller pieces whose individual propagators are computed
with less computational effort in total than for the composite system. The propagator
of the composite system can then be expressed in terms of the propagators of the
individual parts; as discussed in Sect. 5.4.1, this is achieved in the tight-binding
approach by introducing appropriate coupling elements between the parts and then
solving the corresponding matrix Dyson equation. With the individual, spatially
extended parts connected one by one to obtain the total propagator, this procedure
is known as an extended RGF method [1, 8].

A special case arises when the propagator of one or more parts can be determined
analytically, in which case the computation is effectively reduced to the connection
of the parts. Such a method has been developed by Rotter et al. [15], where the
system constituents are coined modules. Since the grid discretization is virtually
effectively circumvented, this method allows for wave transport calculations at
high energies and magnetic fields [17], but is restricted to structures which
are decomposable into analytically solvable subsystems (such as rectangles and
(semi-) circles). We will here use the term ‘module’, meaning though a generic part
of the system which has not necessarily regular geometry, since our aim will be the
study of magnetotransport in devices with the full flexibility of varying geometry
parameters at low energies.

Another particular case arises when the total system consists of units which occur
repeatedly at different locations. Then, the computation is effectively restricted
to the number of different units, since their computed propagators can be reused
in the extended recursion. Consider for example the schematic scatterer shown
in Fig. 5.3, which consists of three different types of connected modules. One of
the modules is a ‘peripheral’ one which forms a lead stub connected to the semi-
infinite leads; in the applications to follow, it will serve (being of appropriate length)
as the magnetic field adaptation region described in Sect. 4.2.2. The other two
modules are of arbitrary geometry/potential and can be connected to any number
of arbitrarily placed (vertical or horizontal) leads. With the three module types
composing the total structure, we only need to compute the corresponding three
individual propagators GA, GB and GC; the remaining computational effort comes
from the connection between the modules along their interfaces.
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Fig. 5.3 Assembly of three different module types A, B and C into a multiterminal looped scatterer
(doubly connected on the level of modules) via five inter-connections and one intra-connection. A
possible order of connections is indicated by the numbers 1–6. Blue boundary segments on the
modules indicate internal (inter- or intra-) connection interfaces and red segments denote surface
(lead-connected) interfaces. The straight stub module C is used as a magnetic field adaptation
region where the field strength drops to zero outwards. In each inter-connection, the module to be
connected (or equivalently the already assembled part) is shifted and rotated into place (so that
the blue connection segments match), and its Greenian is accordingly gauge transformed prior
to connection. Note that here module A is already doubly connected and could itself have been
assembled by appropriate sub-modules

Connectivity: Inter- and Intra-Connection of Modules

Note now that the schematic scatterer in Fig. 5.3 is doubly connected, that is, the
connected modules form a loop in the total system. This gives rise to an implication
in applying the standard form of an extended [1, 8] or modular [15, 17] version of
the RGF method: Using the matrix Dyson equation (5.63) and its solution, (5.65)–
(5.68), for two connected modules, the present setup cannot be assembled in the
considered modular partitioning connecting the modules one by one over a single
connection interface in each step. Letting the lead stub modules aside for a moment:
We would either have to connect A and B into AB and then connect the two AB-
modules over a double interface, or assemble, say, ABA and connect it to B, again
over a double interface.

Apart from complicating the implementation of the connection, a larger interface
leads to larger computational cost through the matrix inversions involved [which
are of the dimension of the interface; see (5.61)]. In order to have only single
connections in each step, after inter-connecting ABA to B over a single interface,
we need to intra-connect the resulting module ABAB with itself over the interface
between the outer (left) A and B, as shown in Fig. 5.3. However, in view of the
standard Dyson equation for connecting two separate subsystems [8], it is not
obvious which paths along the connected structure should now be selected in order
to solve for the total propagator elements.

We now present a unified approach for the inter-connection of two modules
and intra-connection of a module with itself, based on BGE of correspondingly
partitioned QΔ-matrix of the total system.
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5.5.2 Inter-Connection

For the case of inter-connection, the grid-represented Hamiltonian Hi of each of two
modules i D 1; 2 is partitioned into a part describing the section to be connected
(denoted c) and a part describing the section which remains unconnected (denoted
u) with respect to the present connection procedure,

Hi D
�
Huu

i Huc
i

Hcu
i Hcc

i

	
; i D 1; 2; (5.88)

where Huc D ŒHcu�� is the coupling between them; see Fig. 5.4a. Here, Hcc
i contains

matrix elements for the internal scatterer sites along the boundary of the module
specified for connection, and Huu

i the elements for all other internal sites as well as
the surface sites attached to leads or interface sites to be connected to other modules
(or to the module itself via intra-connection).

The inter-connection between the two modules is defined through a Hermitian
coupling matrix W which, in the above partitioning, couples the connection sections
(c) of H1 and H2. The total Hamiltonian matrix describing the connected subsystems
then becomes

QH D HCW D

0

BBBBBBB@

Huu
1 Huc

1 0 0

Hcu
1 Hcc

1 0 Wcc
12

0 0 Huu
2 Huc

2

0 Wcc
21 Hcu

2 Hcc
2

1

CCCCCCCA

; (5.89)

Fig. 5.4 Inter- and intra-connection of modules represented by lines (propagators of disconnected
system) containing the parts c to be connected and u to remain unconnected in the present
connection. (a) Inter-connection of two modules 1 and 2: the parts c of the disconnected modules
are connected to each other via the coupling Wcc

12 D ŒWcc
21�

�. (b) Intra-connection of a module: The
parts c1 and c2, while already indirectly coupled via u, are directly connected to each other via the
coupling Wc1c2 D ŒWc2c1 ��. In both cases, the part u may contain sections (to be) connected to
leads (represented by outgoing lines), to other modules, or to each other
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where the blocks Wcc
12 and Wcc

21 contain the ordinary tight-binding hopping matrix
elements J˛ˇ [see (5.20)] corresponding to the sites to be connected (evaluated in a
common gauge of the vector potential, as discussed below).

Following the BGE procedure given in Sect. C.1 in Appendix C, the propagator
of the connected system in terms of the propagators G1 and G2 of the isolated
modules reads

QG D
0
BBBBBBB@

Guu
1 CGuc

1 Q¢1Gcu
1 Guc

1 CGuc
1 Q¢1Gcc

1 Guc
1 W

cc
12
QGcu

22 Guc
1 W

cc
12
QGcc

22

Gcu
1 CGcc

1 Q¢1Gcu
1 Gcc

1 CGcc
1 Q¢1Gcc

1 Gcc
1 W

cc
12
QGcu
22 Gcc

1 W
cc
12
QGcc
22

QGuc
22W

cc
21G

cu
1

QGuc
22W

cc
21G

cc
1 Guu

2 CGuc
2 ¢2 QGcu

22 G
uc
2 CGuc

2 ¢2 QGcc
22

QGcc

22W
cc
21G

cu
1

QGcc

22W
cc
21G

cc
1 ”Gcu

2 ”Gcc
2

1
CCCCCCCA

;

(5.90)

where

Q¢1 D Wcc
12
QGcc

22W
cc
21 DWcc

12”G
cc
2 W

cc
21; (5.91)

with

” D .Icc �Gcc
2 ¢2/

�1; ¢2 DWcc
21G

cc
1 W

cc
12: (5.92)

The matrix ¢2 is here the self-energy of module 2 due to the coupling to module
1, in analogy to the case where subsystem 1 is a semi-infinite lead. Note that the
subsystems 1 and 2 are equivalent with respect to the connection, and the form of
QG simply results from a ‘lower-major’ elimination order of QΔ (see Appendix B). In
other words, QG is invariant under simultaneous exchange of indices (1 $ 2) and
(left$ right) block-columns and (upper$ lower) block-rows.

Note also that QG in the present form is nested, in the sense that QGcc
22 D ”Gcc

2 is
(indirectly) present in the other blocks QGxy

ij (i; j D 1; 2, x; y D u; c). This dictates the
following order in the computation of the surface part of the connected propagator,
starting with ¢2:

¢2 �! ” �! QGcc
22;
QGcu
22 �! Q¢1; QGuc

22;
QGuu
22

�! QGuu

ij ; i; j D 1; 2:
(5.93)

Thus, six matrix multiplications and a single matrix inversion of the dimension of
the connection interface need to be performed to arrive at Q¢1, and then further matrix
multiplications are needed depending on the part of the propagator required.
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The connected system propagator QGqp from lead p to lead q (which might be
attached to the same module or the connected one) is contained in QGuu

ij . If only the
transmission is needed, then only the surface section u� of the unconnected parts
u need to be considered (discarding the interior sections u�). If also the LDOS (or
wave function) is needed, then the parts QGu�u�

ij and QGcu�
ij are required.

Gauge Transformation of the Green Function

Note that connecting two modules, whose separate propagators were computed in
their individual coordinate systems, implies that one of the modules is shifted and
rotated so that the c-sites along its boundary, to be connected, become adjacent to
the corresponding ones of the other module. In fact, the modules are no longer ‘real
grid’ modules, in the sense that there is no specific coordinate system associated
with the modules in the process of connecting them (the matrix QH is never set
up explicitly); they are abstractly represented by their propagators G1 and G2.
However, the shift and rotation of, say, module 2 to match module 1 at the
connection interface requires a gauge transformation to be applied to G2, so that
the new gauge matches the gauge in which G1 was computed (and no artificial
magnetic field components are introduced at the interface). The explicit form of this
gauge transformation is derived in Appendix D. The coupling elements in W are
then determined according to the common gauge (coinciding with that of G1 in this
example).

5.5.3 Intra-Connection

For the case of intra-connection, the Hamiltonian H of a single module is partitioned
into a part u describing the section which remains unconnected and two parts c1 and
c2 describing the sections to be connected in the present connection procedure; see
Fig. 5.4b. The interface sections c1 and c2 must be of equal size and the sites of c1
must be pairwise nearest neighbors with the sites of c2 on the tight-binding lattice.
Upon connection, they are coupled through a Hermitian matrix W contributing
blocks Wc1c2 D ŒWc2c1 �� to the total Hamiltonian of the connected module which
reads

QH D HCW D

0
BBBB@

Huu Huc1 Huc2

Hc1u Hc1c1 Wc1c2

Hc2u Wc2c1 Hc2c2

1
CCCCA
: (5.94)
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Here, Hcici contains the matrix elements for sites along side i of the connection
interface and Huu the elements for all other internal sites, surface (lead-connected)
sites, or connection interface sites to be connected in another connection procedure.
Huci D ŒHciu�� (i D 1; 2) couples the interior of the module as well as any surface
sites to the present connection interface. W again contains simply the tight-binding
hopping matrix elements J˛ˇ for the nearest neighbor connection sites on each
side of the interface. Note that, since the connection interface sections are here
(neighboring) sections of one and the same module, there is obviously no need to
shift or rotate any module part, and thus no need for a gauge transformation of any
of the propagators Guu, Guci etc. of the disconnected module, since they are already
in the same gauge.

The disconnected module Hamiltonian H is here not block-diagonal, and so
the corresponding Greenian G is generally already a full matrix describing the
propagation between all sections u, c1 and c2. It is thus expected that some more
matrix algebra, in the form of matrix inversion, will be needed to solve the Dyson
equation associated with the connected module. The derivation given in Sect. C.2 in
Appendix C now yields the following propagator of the connected module in terms
of the disconnected module propagator (having set ci ! i for brevity):

QG D
0

BBBB@

Guu C QGuu

W Gu1 C QGu1

W Gu2 C QGu2

W

™.G1u CG11W12 QG2u
/ ™.G11 CG11W12 QG21

/ ™.G12 CG11W12 QG22
/

œ.G2u CG22W21™G1u/ œ.G21 CG22W21™G11/ œ.G22 CG22W21™G12/

1

CCCCA
;

(5.95)

using the shorthand notation

QGuz
W D Gu1W12 QG2z CGu2W21 QG1z

; .z D 1; 2; u/ (5.96)

where

™ D ŒI �G12W21��1; (5.97)

œ D ŒI �G21W12 �G22W21™G11W12��1: (5.98)

Again, the block-matrix QG follows the symmetry of QH under simultaneous index
exchange (1$ 2) and block-column/row permutations.

We now indeed have two matrix inversions of the dimension of the connection
interface in total instead of one, together with six matrix multiplication of the same
dimension to arrive at œ. Like in the inter-connection case, there is an ordered
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procedure to obtain the surface propagator, now starting with ™:

™ �! œ �! QG2u
; . QG21

/; . QG22
/ �! QG1u

; . QG11
/; . QG12

/

�! QGuu
; . QGu1

/; . QGu2
/

(5.99)

where the blocks in brackets are additionally to be computed to obtain internal
properties (LDOS).

The connected system propagator QGqp from lead p to lead q (which might be
attached to the same module or the connected one) is contained in QGuu

ij . If only the
transmission is needed, then only the surface section u� of the unconnected parts
u need to be considered (discarding the interior sections u�). If also the LDOS (or
wave function) is needed, then the parts QGu�u�

ij and QGcu�
ij are required.

5.5.4 Computational Efficiency and Considerations

From the above it becomes clear that, for a typical composite setup consisting of
connected modules, the total computational cost is essentially determined by the
number of different modules used in the assembly. Once the computation of all
necessary elimination steps in the bulk of a module have been carried out pertaining
to its propagator, then the latter can be reused with the relatively very small cost of
operations of the dimension of its connecting interface to another module. Thus, if
the absolute number of modules participating in the total structure is small enough
(i. e., if the number of connection interface operations is negligible compared to the
total number of internal slice operations), then the cost for computing the surface
propagator will scale as

Cmod / 6 f
MX

mD1

Nm
sX

sD1
ŒN.s/r �

3; Nm
s 
 1; (5.100)

where M is the number of different modules used and Nm
s is the (average) number of

slices in the mth of these modules. The preliminary task for a given transport device
geometry is therefore to identify in which way the total structure can be decomposed
into as few different modules as possible, though each with the smallest possible
size.

As mentioned above in reference to the schematic in Fig. 5.3, a composite
structure could in general be assembled by means of inter-connections only, though
over multiple connection interfaces (for example, by connecting modules A and B in
Fig. 5.3 first and then perform connections 2 and 4 in a single inter-connection step
over the double interface). However, for larger number of connected modules, such
multiple interfaces will increase in total size rendering their one-step connection
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inefficient. More importantly, this alternative reduces the flexibility in assembling
diverse setups from a set of modules: only fixed groups of combined modules would
be available as building blocks (like the fixed group AB in the above example). Such
a specialized connection protocol could be useful when assembling a uniform lattice
of identical modules, by connecting modules into a row (over single interfaces) and
then rows to each other (over multiple interfaces). With the use of intra-connections,
modules are added one at a time and can be chosen freely from the set of different
modules as long as their interfaces match (in Fig. 5.3, for example, we could have
put module B on the lower right in the place of A). A useful application thereof
could be the insertion of modules with prescribed defects at desired positions in a
composite structure such as a quantum dot lattice. In total, the developed scheme of
combined inter- and intra-connections thus provides a high flexibility in assembling
multiterminal and multiply connected transport structures of high diversity.

5.6 Transport Through Multiterminal and Multiply
Connected Billiard Systems

We close this chapter with an exemplifying demonstration of the use of the
developed computational techniques on a multiterminal quantum billiard which
is then multiply connected into a multiterminal composite structure, for varying
input energy E and applied magnetic field B. For the single billiard we briefly
analyze the origin of the transmission features and the impact of a magnetic field
on the mode-resolved transmission coefficients. The multiterminal transmission
of the looped transport device is not directly relevant for the controllable (and
thereby desirably smooth in parameter variations) conductance profiles aimed at
in the following chapters. It rather serves to illustrate the very complex transmission
features that may typically arise from the combination of Fano and AB interference
processes, but also gives the opportunity to explore spatial electron density patterns
at individual .E;B/-points.

5.6.1 Single Three-Terminal Elliptic Billiard

As a building block of the composite system we choose a tilted elliptically shaped
hard-wall billiard with two horizontal and one vertical attached leads of equal width
w, as shown in the upper inset of Fig. 5.5. The orientation and positioning of the
lead openings are chosen such that one and the same scatterer can be easily used
repeatedly as a module for inter- and intra-connections later.

For this single multiterminal billiard we compute the mode-resolved transmission
coefficients Tnm

qp from (lead, mode) D . p;m/ to .q; n/ for energies in the first three
open channels of the leads, at zero and finite field strength, as shown compactly
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Fig. 5.5 Mode resolved transmission as a function of � D kw=
 through a three-terminal tilted
elliptic billiard (upper inset) with semi-axes .a; b/ D .100; 52/ and common lead width w D 32

grid points, at B D 0 (upper panel) and B D 0:003 n.u. (lower panel). The lower inset shows the
color code for transmission from mode m to mode n which are open for propagation for � > m; n.
In each panel, Tnm

21 is plotted from below and Tnm
31 is plotted from above, with the black area in the

middle representing the total (summed over all modes) reflection R1 D P
m;n T

nm
11 D T11 back to

the incoming lead 1. The sum R1 C T21 C T31 increases by unity for each new open mode n at
� D n

in Fig. 5.5. The energy variable is here scaled into a dimensionless total incoming
momentum � D kw=
 D p2Ew=
 (recall that „ D m� D 1 in our natural units;
see Table E.1).

The modular version of the RGF technique with inter-connections comes in
handy already for the single scatterer in the transmission computation at finite
magnetic field: The scatterer module is inter-connected at each interface to a finite
and straight lead module (not shown) along which the magnetic field drops off
to zero over an appropriate length (large enough for the transmission results to
have converged) and which is in turn connected to the outer semi-infinite leads
through the contribution of corresponding (zero-field) self-energies. Upon each
inter-connection to the lead module, the Green function of the already assembled
part is gauge-transformed into the axial gauge of the lead module as described
previously.
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Regular Response from Geometric Focusing

Let us first concentrate on the first open channel with the single-mode transmission
coefficients T1121 (plotted from below in each plot) and T1131 (plotted from above, such
that the black region in between represents the reflection coefficient R1 D T1111 ).
We see that the transmission lineshape of T1121 for B D 0 varies rather smoothly
in energy with a regular oscillation within a low envelope, apart from occasional
superimposed very sharp dips and peaks. This is not a universal transmission feature,
but relies on the chosen elongated shape of the hard-wall billiard together with the
positioning of leads 1 and 2: As will be demonstrated in Chap. 6 for oval billiards,
the elongated shape causes a geometric separation of energetically available states
within the billiard into states that are strongly coupled to the leads (with amplitude
that ‘leaks’ into them) and those that are very weakly coupled to the leads (because
of their confinement away from the lead openings). The former type of states
interfere with each other leading to the smooth oscillation of the background, and
the latter constitute long-lived quasi-bound states whose (weak) coupling to the
continuum results in sharp Fano resonances in the transmission lineshape. Note
that, since the setup with attached leads has no mirror symmetry, and thereby
no parity eigenstates in the direction transverse to any pair of attached leads, in
principle all energetically available eigenstates of the isolated billiard contribute
here to transmission.

Boundary Guiding

The transmission T1131 to lead 3 is complementary to T1121 in the chosen setup:
The reflection back into lead 1 is overall small (apart from energies at the lower
threshold), so that any probability flux not going into lead 2 leaves through lead 3.14

This is again due to the design of the setup: Leads 1 and 3 constitute a continuation
of the upper convex boundary of the ellipse, and therefore a wave incident in lead 1
is ‘guided’ along the smooth boundary into lead 3. This mechanism will be exploited
in Chap. 8 to achieve directional magnetotransport in a four-terminal device. In
the present setup, boundary guiding is disturbed by the presence of lead 2, whose
sharp openings (and especially the lower right corner) cause strong diffraction of
the guided wave back into the cavity.

The Fano resonance dips and peaks in T1131 are also complementary to those in
T1121 ; it is clear that, since leads 2 and 3 are closely placed at the far end of the
billiard, confined quasi-bound states will have similar coupling strengths to those
leads and thereby similar resonant shifts and widths. Note, however, that the Fano
minima are lifted from zero, since the two output leads effectively provide two
different scattering channels (already in the first energy subband of the leads) for

14Note that conservation of flux implies T1121 C T1131 C R1 D 1 in the first channel.
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the quasi-bound states to couple to and lead to a complex asymmetry parameter; see
Sect. 4.4.1 and [39, 40].15 For the same reason, the Fano maxima do not reach unity.
Essentially, each lead constitutes a source of decoherence due to dissipation for the
transmission between the other two [41].

Magnetically Dependent Multimode Coupling

In the second and third transport channels of the leads, 2 < � < 4, the zero-field
transmission Tn1

21 in the first mode of leads 1 and 2 is almost completely suppressed,
and transmission is mediated by higher common modes (T2221 and T3321 ) but also by
cross-mode coupling; especially T1321 is enhanced in the third channel 3 < � < 4

(light green in upper panel of Fig. 5.5). On the contrary, the first mode transmission
T1131 to lead 3 remains high throughout all channels: it has the largest longitudinal
momentum in the ingoing lead 1 and is thus less affected by diffraction when guided
along the upper billiard boundary. Additionally, there is large contribution from
higher modes to T31 in the higher channels.

The effect of an applied magnetic field on the transmission spectra is twofold: It
modulates the AB-like phase interference between transmitting states of the billiard,
and simultaneously gives rise to Lorentz deflection of the spatial density distribution
if the field is strong enough. We have here chosen a moderate field B D 0:003 n.u.
corresponding to a cyclotron radius rc � b at the center � D 1:5 of the first channel,
where b is the minor ellipse semi-axis.

In the first channel, the combination of the two effects causes an increased
transmission T1121 in the lower half of the channel, while T1131 there becomes
suppressed and vice versa. This can be understood qualitatively as the dominance
of a skipping orbit which first matches the distance to lead 2 and then skips over
to lead 3 when energy increases, although it should be noted that such classical
descriptions have only a very rough correspondence to the quantum result at the low
energies considered. In the second channel, the partial transmission Tm2

q1 from mode
2 (blue area) is almost completely transferred from lead 3 to lead 2 when the field
is switched on, while the total lowest mode components (red area) remain largely
intact. In the third channel, although the total transmission coefficients T21 and T31
are not much affected on average by the field, there is a drastic redistribution of the
partial coefficients that contribute: Switching on the field suppresses completely the
transmission from mode 3 into lead 2 (Tn3

21 , green areas) and from mode 2 into lead
3 (Tn2

31 , blue areas).
The multiterminal linear-response conductance of the device is proportional to

the total transmission functions summed over all contributing modes. The above
mode-resolved analysis, however, provides insight into what components of the
scattering matrix actually contribute and how these are affected by the applied field.

15The resolution in this transmission spectrum is not fine enough to resolve all Fano resonances,
and the ones that are visible are also not resolved in full detail.
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This in turn adds to an understanding of what processes in the billiard area are
responsible for transport, which can be also be useful in applications. In the present
setup, for example, an additional transversal constriction could be applied to the
incoming lead 1 such that only the third mode is let through. Then, only the Tn3

qp
(green areas) partial coefficients would be non-zero and, according to the above, the
chosen field would switch the conductance from finite to zero in the third channel.

5.6.2 Transmission and Localization Patterns in a Looped
Multiterminal Structure

We now use the previous three-terminal elliptic billiard as a building block to
assemble a composite structure of eight identical ellipses doubly connected into
the structure shown in the inset of Fig. 5.6a. The connected structure consists of two
large loops, each containing the two ellipses on the upper and lower arm, which
are further connected via a smaller loop in the middle. The assembly is done in
analogy to the procedure in Fig. 5.3, using here three intra-connections (since we
have three loops in total), with connecting ‘bridges’ between the ellipses of common
length d D w.16 Note that, apart from the peripheral lead modules which are
used as magnetic field adaptation regions (not shown), we here actually have two
different modules to compute, the three-terminal ellipse and its mirror image with
respect to the x-axis (vertical). This is because, in the presence of magnetic field, the
propagators of mirror images are not equivalent and cannot be obtained by gauge
transformation through shift and/or rotation. With the above setup specifications, the
multiply connected modular RGF method was applied to compute the multiterminal
surface propagator and extracted the transmission coefficients for an .E;B/ grid of
(1400, 2001) points. The average CPU time with the modular connection algorithm
was � 1:72 s per point on a modern quad-core processor.17 In comparison, the
corresponding average CPU time for the composite structure computed directly as a
single large module (including the long magnetic field adaptation stubs at the outer
leads) is � 22:70 s, more than ten times longer, demonstrating the performance
advantage of the modular inter- and intra-connection algorithm.

16We have here in fact also separated the lead stubs from the previous three-terminal module,
which now serve as separate bridge modules, in order to be able to vary the bridge length without
re-computing the ellipse module. This increases the number of inter-connections in the assembly,
but does not practically affect the computation time.
17This is about twice the time � 0:75 s needed for each ellipse module (the original one and
its mirror image) plus some additional time � 0:31 s for a 1024 gridpoints long magnetic field
adaptation module intervening between the billiard and each attached lead.



5.6 Transport Through Multiterminal and Multiply Connected Billiard Systems 143

Fig. 5.6 Transmission maps (a) T21.B; �/ and (b) T21.B; �/ in the first channel 1 < � < 2 (1400
points) and at magnetic field strengths �0:01 6 B 6 0:01 n.u. (2001 points), for the four-terminal
structure shown in the upper inset composed of the three-terminal billiard of Fig. 5.5 connected via
bridges of common length l D w. The upper, right and left panels in (a) show T21.B; �/ along the
cuts .B; � D 1:5/, .B D �0:001; �/ and .B D 0; �/ through the maps, respectively, indicated by
dotted lines. The panels (i)–(x) on the left and right of (b) show the LDOS for an incoming wave
in the upper left lead 1 of the setup at the .B; �/-points indicated in the transmission maps, with the
colormap normalized to the maximum in each subplot and scaled as

p
�.x; y/ to increase contrast
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The transmission function of the structure from lead 1 (upper left) to lead 2
(upper right) and to lead 4 (lower right) within the first channel 1 < � < 2 is
plotted in the central panels of Fig. 5.6a, b, respectively, for the magnetic field in
both ˙z-directions with field strength varying in the interval 0 < jBj < 0:01 n.u..
We refer to these plots of Tqp.B; �/ as transmission maps.

Regimes of Magnetotransport

Although the transmission maps contain irregular detail features, to be addressed
next, there is an overall large-scale structure which is typical and qualitatively
similar for most coherent transport devices.

For low magnetic field strengths, the maps are dominated by multi-state inter-
ference in varying field and energy which leads to complicated and non-universal
features depending on the geometry of the device (on the present case, of the
individual connected billiards).

For intermediate fields the Lorentz deflection of the electron paths becomes dom-
inant, which leads to a large-scale stripe-like pattern (within the V-like area between
the points .B; �/ D .0; 0/ and .max;˙max/). For a hard-wall structure, the stripes
have approximately constant slope and are characteristic of the commensurability
between the bouncing of (qualitatively associated) skipping orbits and the distance
between lead openings: For higher energy, a stronger magnetic field is needed to
maintain a skipping orbit escaping through a given output lead. This regime is thus
largely determined by the lead positioning along the billiard boundaries.

For even stronger field we enter the edge-state regime, where transmission is
determined by the topology of the structure: Independently of the detailed geometry
of a hard-wall flat billiard (with zero potential inside), an edge state will be
mostly transmitted into the next encountered lead on the boundary. As explained in
Sect. 2.3, edge states have their origin in Landau levels which become dispersive in
the vicinity of a boundary. In the Tqp.B; �/-maps they are recognized as transmission
stripes with slope opposite to B (visible here in the lower part 1 < � < 1:25

of the channel): Their energy is lowered with increasing field strength until they
‘condense’ into bulk Landau levels [42] whose energy then increases with the field
strength. For the present setup, we see that T21 is overall maximal (! 1) in the
edge-state area between the first and second Landau level on the right side of the
map in Fig. 5.6a. At low energies there is, however, a small portion of the edge
states transmitted into lead 4, as seen in the bottom part of the map in Fig. 5.6b.18

18Note here that, due to the geometrical x and y mirror symmetry (or symmetry under an in-plane
rotation through 
) of the setup, transmission between leads 1 and 4 is symmetric in B, T41.B/ D
T41.�B/. This is a consequence of the reciprocity relation T41.�B/ D T14.B/ and the fact that the
symmetry operation exchanging leads 1 and 4 brings B k Oz to itself.
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Fano and Aharonov-Bohm Interference

The resolution of the computed transmission maps is high enough to discern the
fine structure of the transmission features in varying energy and magnetic field
which arise from the geometry and topology of the composite structure. These
are determined by the Fano interference between quasi-bound states of each of the
connected billiards in varying energy, and by the AB interference along the various
closed paths present in the looped topology.

The energy dependence of the T21 is more clearly seen in the vertical cuts through
the map at zero field and at a finite negative (pointing inwards) field, shown on the
right and left panels of Fig. 5.6, respectively. In the connected system, the resonant
states of the individual elliptic dots are coupled through the connecting bridges and
therefore the corresponding sharp Fano resonances in energy are multiply split, with
the splitting proportional to the strength of this inter-dot coupling. The background
transmission is also affected by developing additional shape resonances due to
multiple reflection within the bridges. This effect will be studied in more detail
in Chap. 6 for a singly connected dot array, where these shape (or Breit-Wigner)
resonances form transmission bands with increasing number of connected dots. In
the present setup the multiple connectivity leads to a highly irregular transmission
function compared to the one of the single billiard of the previous subsection. This
is because both transmission profiles Ts

21 and Ts
31 of the single billiard are effectively

present in any path taken between leads of the composite system, and thus the
corresponding features are mixed in the final output T21.

The field strength dependence of the transmission coefficients is characterized
by a superposition of AB oscillations with dominant frequencies corresponding
to the approximate area of the loop structures in the setup (note that any pair
of neighboring loops also forms a further larger loop). In particular, the larger
loops containing the elliptic dots give rise to the very fine vertical stripes which
are present essentially over the whole map. The details of this superimposed AB
interference pattern varies along the �-axis due to the energy dependence of the dot
states leaking into the connecting bridges, as discussed previously in Sect. 4.4.2.
The upper panel in Fig. 5.6a shows T21.B/ at the middle � D 1:5 of the channel,
where the fine oscillations are seen on top of the larger transmission feature in the
intermediate field regime. AB oscillations also arise in the strong-field regime from
the interference between (effectively 1D) edge states [42] which is caused by their
diffraction [17] at abrupt changes (corners in the present setup) of the confining
boundary. An applicational perspective of the multiply connected RGF method
developed is the study of such AB oscillations in extended lattices (or networks)
of loops with internal structure.

Density Localization Patterns

The rather complex features of the transmission maps of the particular looped setup
simulated here do not contribute to the controllable conductance aimed at in the
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following chapters. However, it provides a means to study the controllability of the
electronic spatial distribution among the constituent dots of the structure. In the
panels (i)–(x) of Fig. 5.6 the partial LDOS for an incoming wave in lead 1 (upper
left) of the device is shown for different points in .B; �/-space, computed via the
reordered BGE scheme of Sect. 5.4.3. We see that, depending on the regime of
energy and magnetic field, different kinds of localization patterns can be induced.19

States (i), (iii), (iv), (v), (viii), for example, are dominantly localized in the interior
of the constituent ellipses, though each in a different constellation along the loops—
state (viii) additionally shows a strong localization on the central small connecting
loop. States (ii), (vi), (vii), (ix) and (x) are primarily localized along the boundaries
of the ellipses. The latter two are examples of edge state propagation; in (x), different
edge states interfere into a skipping-like pattern leading to AB oscillations in the
transmission [see corresponding point in the upper map T21.B; �/]; in (ix), a single
edge state transmits completely from 1 to 2, though after ‘hopping’ (at the narrow
input constriction) onto the inner boundary of the loops where it builds up a high
density. State (vi) displays the wave guiding caused by the convex elliptic boundary
alone (at zero magnetic field), which extends onto both outer loops. Finally, an
interesting non-local pattern is induced in state (vii), also at zero field: The incoming
wave populates the boundary of the first encountered dot and the remote lower
central dots, though with almost completely depleted density in between. With the
above patterns for this small looped structure at hand, further explorations could
reveal possible manipulation of localized electron waves in larger looped networks
with embedded dot structures.
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Chapter 6
Magnetoconductance Switching by Phase
Modulation in Arrays of Oval Quantum
Billiards

In this chapter we employ oval shaped quantum billiards connected by quantum
wires as the building blocks of a linear quantum dot array which allows for the
control of magnetoconductance in the linear response regime. In particular, we aim
at a maximal finite- over zero-field ratio of the magnetoconductance, achieved by
optimizing the geometry of the billiards. The switching effect arises from a relative
phase change of scattering states in the single oval quantum dot through the applied
magnetic field, which lifts a suppression of the transmission characteristic for a
certain range of geometry parameters. A sustainable switching ratio is reached for
a very low field strength, which is drastically enhanced already in the double-dot
array. The impact of disorder is addressed in the form of remote impurity scattering,
which poses a temperature dependent lower bound for the switching ratio. Excerpts

and figures from [1] reprinted with permission. Copyright (2009) by the American Physical

Society.

6.1 System Setup, Approximations and Computational
approach

We consider a linear array of identical oval billiards connected via bridges of
common length, as shown in Fig. 6.1. The confining potential of the structure is
taken to be of hard-wall character, leading to Dirichlet boundary conditions for the
wave function, with zero potential inside. The shape of an individual oval billiard is
parametrized as [2]
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Fig. 6.1 Geometry of the model hard-wall potential for (a) a single billiard attached to semi-
infinite leads and (b) an array of N connected billiards, with L D w D 0:3 R and oval deformation
parameter ı D 0:5

y./ DR
��
ı

2
� 1

	
cos./� ı

6
cos.3/

�
; (6.1)

with 0 6  < 2
; note that the parametric curve starts at .x; y/ D .0;�R.1� ı=3//.
The parameter ı tunes the deformation of the dot, which becomes a circular billiard
of radius R if ı D 0. In this case the classical dynamics of the closed system is
integrable, whereas for ı > 0 it becomes non-integrable with mixed phase space
[2, 3]. For reference with respect to device specific parameters, a mesoscopic size
of R D 220 nm is used. For the single dot setup, at the right and left ends of the
elongated structure semi-infinite leads of width w D 0:3 R are connected along
the x-axis, representing the coupling to electron reservoirs. The use of semi-infinite
leads models the ideal case of vanishing reflection of the electrons upon reaching
the reservoirs.

In the multidot case, the single cavity is replaced by a chain of N identical oval
dots connected to each other through lead bridges of common length L between
adjacent oval edges, as shown in Fig. 6.1. The bridges have width w and are aligned
with the outer semi-infinite leads.

Restricting ourselves to low temperatures and a small system size we neglect
inelastic processes, and do not account for electron-electron or electron-phonon
interactions. The single particle Hamiltonian is, within an effective mass approach,
of the form

H D 1

2m�

�„
{
r C eA.r/

�2
C V.r/; (6.2)

where an effective electron mass m� D 0:069me is chosen corresponding to a
GaAs/AlGaAs heterojunction. V.r/ is the total electrostatic potential comprised
of the hard-wall boundary of the structure as well as the potential induced by
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impurities to be included later. The vector potential A produces a magnetic field
perpendicular to the plane of the structure (pointing in the positive z-direction). The
field extends homogeneously with strength B in the device region and drops off
linearly to zero in the outer leads; the length of the magnetic field adaptation region
is chosen long enough to effectively simulate an overall homogeneous field. We will
concentrate on the magnetoconductance switching effect at a very low magnetic
field strength (� 0:02T), where the Zeeman splitting for GaAs (� 3:6 �eV) is
negligible (� 0:1%) with respect to the Fermi energies we consider; thereby the
coupling of the electronic spin to the magnetic field is not taken into account. The
weak spin-orbit coupling of the simulated heterostructure is also neglected.

The transmission through the device and the LDOS within it are determined from
the single particle Greenian

G.E/ D ŒE � .HC˙r C˙l/�
�1 (6.3)

of the system at energy E after discretizing the Hamiltonian on a square tight-
binding lattice, with the magnetic vector potential incorporated through Peierls
phase factors [4, 5] (see Sect. 5.2.1). The self-energies˙l=r account for the coupling
of the truncated system to the external semi-infinite leads placed on the left (l) and
right (r); they are analytically obtained for B D 0 and contribute non-Hermitian
blocks to the Hamiltonian matrix, as discussed in Sect. 5.3.1.

The part Grl D hrrjGjrli describing the propagation from the left to the right
lead (where rr=l are points at the corresponding interfaces) for the single dot is
computed using the reordered block-Gaussian elimination scheme of the recursive
Green function method (RGM) presented in Sect. 5.4.3. In the multidot case, the
chain is built up by a repeated module consisting of the oval cavity with lead stubs
of length d D L=2 on the right and left (see Fig. 6.1). Having found Grl for one
module (with no attached outer leads yet), the Green function connecting the two
outer leads in the assembled system is computed using the modular variant of the
RGM described in Sect. 5.5, where the propagator for each inter-connected module
is the solution of a matrix Dyson equation.

The transmission of the device is finally evaluated via the two-terminal trace
formula [6–8]

T.E/ D TrŒ�rG�lG�� (6.4)

with left/right broadening operators �l=r D {Œ˙l=r � ˙�

l=r�. It is worthwhile noting
that in the two-terminal device studied, even in the presence of a magnetic field,
the transmission function is symmetric under exchange of the outer leads, i.e. the
transmission from left to right equals that from right to left [9]. The computed
propagator from the leads to the interior of the device is used to obtain the LDOS at
site r through the relation

�.r;E/ D 1

2

hrjF.E/jri ; F D G� G�; (6.5)
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where F is the spectral operator and � generally a weighted sum of �l and �r

according to the Fermi distributions of incoming states in the two leads. In the cases
presented here, we have chosen � D �l, i.e. �.r;E/ corresponds to the probability
density resulting from an incoming monochromatic wave of energy E from the left
lead.

The calculated transmission determines the macroscopically measurable con-
ductance of the device. In the linear response regime at low temperature �, the
conductance for given Fermi energyEF is obtained by the Landauer formula [10, 11]
in the form

G.EF; �/ D G0

Z 1

0

dE T.E/ F�.EIEF; �/; (6.6)

where G0 D e2


„ is the (spin-degenerate) conductance quantum and

F�.EIEF; �/ D 1

4kB�
sech2

�
E � EF

2kB�

	
(6.7)

is the thermal broadening function [12, 13]. The conductance in this regime is thus
essentially given by the thermally averaged transmission around the electron Fermi
energy, with a thermal width determined by the temperature� (see Sect. 3.3.2).

Within the above theoretical and computational framework, in the following we
will investigate the magnetotransport properties of the single- and multi-dot system
in terms of geometry variations. In Sect. 6.2 we explore the transmission of the
single oval dot and identify the mechanisms underlying the spectral features, in
particular the suppression of zero-field transmission. In Sect. 6.3 the transmission
properties induced by the inter-dot coupling in the array setup are discussed
together with corresponding LDOS characteristics. In Sect. 6.4 we analyze the
magnetoconductance switching effect in dependence of the oval deformation, the
magnetic field strength and the length of the multidot chain at different temperatures,
in order to determine a device setup optimal for switching within an achievable
parameter range. The modification of the switching ratio in the presence of disorder
is studied in Sect. 6.5, and Sect. 6.6 provides a summary of results, concluding on
the functionality of the switching mechanism.

6.2 Single Oval Billiard: Transmission Suppression
from Selective Eigenstate Interference

We start by exploring the transmission characteristics of the single oval open dot
without magnetic field in terms of the eigenstates of its closed dot counterpart,
in order to obtain an understanding of the mechanism underlying the conduc-
tance switching effect aimed at later. This eigenstate analysis of the single-dot
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Fig. 6.2 Transmission function T.�/ of the single oval billiard of Fig. 6.1a in the first channel
1 < � < 2 of the attached leads, for varying deformation parameter ı (with relatively large step
	ı D 0:01 causing discontinuities along ı). The colormap ranges from black (T D 0) to yellow
(T D 1)

transmission was thoroughly carried out by Buchholz et al. in [14], and is here sum-
marized and supplemented with an investigation of further parametric dependences.

In Fig. 6.2 the transmission function T.�/ is shown for scaled dimensionless
momenta � D p2m�Ew=„=
 in the first channel of the attached leads, 1 < � D 2,
as a function of the deformation parameter ı of the oval at zero magnetic field. For
the size of the device specified, the first channel corresponds to a Fermi energy in
the range 1:2meV < EF < 5meV. As the channel number � measures the wave
number in units of 
=w, T.�/ depends only on the ratio w=R. Our calculations show
that changing w=R within 0:2 . w=R . 0:4 introduces mainly a shift in T.�/
according to the implicit energy scaling, i.e. the transmission is largely determined
by the geometry of the billiard and not by the leadwidth. For values of w=R > 2, the
transmission obviously has to acquire the value of the unperturbed quantum wire.
In the following we restrict ourselves to the case of w=R D 0:3.

The aim of this plot is to provide the overall change of T in this 2D (�; ı)
parametric space which is rather coarse: very fine resonant features along � are not
resolved, and the evolution with ı shows discontinuities due to a large variation step.

For large ı the oval is very elongated, so that it essentially constitutes a (non-
adiabatic) perturbation of a homogeneous quantum wire (e. g., for ı D 1:2 the
vertical extent of the oval is 2w). T is then practically maximal (unity) along the
whole channel, apart from distinct narrow resonant dips corresponding to quasi-
bound states which are very weakly coupled to the leads. The dips correspond to the
zeros of Fano resonances, described in Sect. 4.4.1, arising here from the coupling
of the quasi-bound states to the highly transmitting background continuum. As
ı is decreased, these resonances respectively are shifted to lower energies, since
the transversal wavelength of the quasi-bound states overall increases, and become
broader due to a stronger coupling to the leads. Additionally, further narrower
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resonances appear which are also shifted (with a faster pace) with varying ı. Apart
from the resonant features, also the background transmission is drastically modified:
As ı decreases, a �-range of highly suppressed transmission appears in the upper
part of the channel and is shifted downwards. For ı � 0:5 (dotted line in Fig. 6.2),
this ‘suppression valley’ is approximately centered around the middle � � 1:5 of
the channel. As ı is further decreased, broad overlapping resonances appear which
ultimately lead to a highly irregular transmission spectrum for the circular billiard
(ı D 0). Note that the transmission features in varying dot elongation is not specific
to the exact oval shape, but qualitatively similar for, e.g., an elliptical billiard.1

The geometry-induced features of the transmission function can be qualitatively
explained [14] in terms of the eigenstates of the closed oval billiard (that is, where
the semi-infinite leads have been blocked by hard walls at some distance d from the
oval boundary), by analyzing how these contribute to the transmission in the open
system. The closed dot eigenstates for the oval with ı D 1=2 and with a short lead
stubs (d D w=2) are shown in Fig. 6.3. Eigenenergies and eigenvectors of the closed
system Hamiltonian are obtained with standard sparse eigenproblem solvers from
the ARnoldi PACKage [16]. Due to the x- and y-mirror-symmetry and the elongated
shape of the oval, approximate longitudinal and vertical quantum numbers m and
n, respectively, can be assigned to the eigenstates at low energies according to the
spatial pattern of their probability density: State .m; n/ has approximately m�1 and
n � 1 nodes in the x- and y-directions, respectively, within the billiard region.2

Although there are many eigenstates within the energy range of the first propa-
gating channel, only few contribute substantially to the zero-field transmission. First
of all, any eigenstate with even n has vanishing overlap with the ground transversal
lead states due to its negative y-parity, which yields effectively zero coupling to the
leads and thereby no contribution to the transmission for 1 < � < 2. This symmetry
is broken in the presence of the magnetic field, as will be seen in the next section.

Of the remaining states with odd n, the majority (for the chosen ı D 1=2) has a
spatial distribution which practically vanishes in the region of the lead openings and
is concentrated (symmetrically) about the y-axis of the oval; we refer to such states
as ‘confined’ states. They lead to the sharp Fano resonances in the transmission
profile mentioned above, with widths typically much smaller than the level spacing.
For fixed n, the x-extent of the confined states and thereby their coupling to the leads
increases with m, leading to increasing resonant width at higher energies, as seen in
Fig. 6.2.

1In [15] the transmission through a two-terminal elliptical cavity is investigated in terms of the
effect of finite leads, and for particular values of the semiaxes a clear suppression of transmission
is indeed seen which becomes more irregular close to the circular limit.
2Note that, although the symmetry of the dot (and thereby parity of the eigenstates) and the lead
positioning are essential in the description of the transmission features, the nomenclature of nodal
pairs serves simply as a handy way of labeling the states for convenient reference. It becomes
unambiguous at higher energies where the number of nodes varies along cross-sections in each
direction; see, e. g., state � D 102 in the upper row of Fig. 6.3.
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Fig. 6.3 Probability densities of eigenstates � D 1 W 105 (from left to right and bottom to top) of
the closed oval billiard with deformation parameter ı D 0:5 and added stubs of width w D 0:3R
and length d D w=2 on the left and right. Levels � D 22 to 98 (rows 4–14 from the bottom)
for this stub length lie within the first channel of transport, 1 6 �� 6 2. Solid and dotted boxes
indicate leaking states of a common type characterized by approximate (longitudinal, vertical)
pairs of quantum numbers .m; n D 1/ and .m; n D 3/ at low energies, respectively (see text).
The transmission background of the open billiard in the first channel is determined by the terminal
interference of pairs of quasi-degenerate (closest in energy) .m; 1/-states (light red) and .m; 3/-
states (light blue). The grayscale is normalized to the total maximum in the plot and scales asp
��.r/
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The eigenstates (with positive y-parity) which determine the overall (back-
ground) transmission—and hence the linear response conductance through thermal
averaging—are those with a large density at the lead openings leading to a strong
coupling to the leads in the open system; we refer to these states as ‘leaking’
states. The width of the resonances corresponding to such short-lived states exceeds
the level spacing, and the resulting transmission from the multiply overlapping
resonances is no longer described by a simple Fano lineshape as the isolated ones.
The transmission function is rather determined by the interference of leaking states
at the lead openings.

For ı > 1, there are only leaking eigenstates of the type (m; n D 1) which are
energetically well separated and lead to the high transmission background. As ı
decreases, however, also (m; n D 3) states become leaking, and their interference
with the (m0; n D 1) ones drastically modifies the non-resonant transmission.
These two types of leaking states constitute two scattering channels which interfere
constructively or destructively at the outgoing lead. In particular, when ı � 0:5,
the series of (m; 1) and (m0; 3) states (indicated by red dotted and blue solid boxes
in Fig. 6.3, respectively) become pairwise quasi-degenerate, with paired states of
opposite x-parity [14]: Their destructive interference causes the wide suppression
valley in the transmission function around the middle of the channel.

The ‘leakiness’ of the leaking states can be anticipated by varying the length d
of the lead stubs of the closed billiard, as is done in Fig. 6.4. As a consequence of
the perturbing lead stubs (but also of the non-integrable shape of the oval itself),
the spectrum �� as a function of d consists of lines generally undergoing avoided
crossings for states of same parity, upon which the character (m; n nodal pattern)
of the corresponding states is exchanged. The more an eigenstate leaks into the
lead stub, the more it is affected by the imposed Dirichlet boundary condition at
the stub end, and the larger is the shift of the eigenenergy. The slopes of the ��.d/
lines thus provide a relative estimate for the coupling of the zero-field eigenstates to
the leads within the first channel. Confined states and even-n (odd-y-parity) states
correspond to flat lines, as expected from their negligible coupling to the leads.3

The leaking states yield lines with varying slope depending on the details of their
nodal pattern and corresponding energy distribution in the vertical and longitudinal
direction. As we see, they indeed come in quasi-degenerate pairs (10 pairs for the
indicated stub length d D 16 a0); the closeup in Fig. 6.4b shows the two (m; n)-pairs
(11,1),(8,3) and (9,3)(12,1), surrounded by confined and even-n states. Note that
there is no correspondence here of the limit d!1with the semi-infinite leads: The
open boundary conditions in the scattering system are qualitatively different. As d
is increased, more leaking eigenstates simply enter the range of the first channel and
become denser in energy. However, we notice that on average (that is, considering
a finite d-range in Fig. 6.4a) the destructively interfering leaking states within each

3In this case, the practically vanishing influence of varying d on the even-n states is not due to a
zero overlap with an even y-parity lead state, but due to the fact that odd y-parity billiard states
decay exponentially in the lead stubs (and thus reach the ends with practically zero amplitude).
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Fig. 6.4 (a) Scaled energy levels �� D p
2m�E�w=„=
 of the closed billiard of Fig. 6.3 for

varying length d of the added lead stubs. The right panel shows the transmission for the open
billiard at the dotted cut at ı D 1=2 in Fig. 6.2. (b) Closeup of the eigenspectrum ��.d/ indicated
in (a) around the stub length d D 16 a0 (indicated by the vertical line) to be used for the array
setup. The probability densities of all eigenstates within the inset range are shown in the right
panel together with their eigenenergy number � and their approximate (m; n) quantum numbers
labeling the (x; y) nodal patterns. Two pairs of destructively x-interfering leaking states (colored)
are indicated by dotted lines. The solid blue lines connect the .��; d/-points ordered in �� (and thus
all crossings appear as avoided due to the finite resolution 	d D ˛0 D 1 along the d-axis)

pair lie energetically closer in the middle of the channel for the chosen ı D 0:5,
which qualitatively explains the according enhanced suppression in the transmission
function (plotted for comparison in the right panel of Fig. 6.4a).

It should here be pointed out that this mechanism for conductance suppression
does not rely on the exact shape of the oval used, but is robust against moderate
changes of the geometry [14] (such as an elliptic billiard of the same aspect ratio
and size relative to the leads): The decisive ingredient is the geometric separation
of pairwise destructively interfering leaking states from weakly lead-coupled ones.
When ı is further decreased towards the circular limit, this scheme is perturbed by
further eigenstates which become leaking, and then the multiple mixed (not pairwise
destructive) interference of quasi-degenerate states yield an irregular fluctuating
transmission, as seen in Fig. 6.2.
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6.3 Quantum Dot Array: Composite Resonant States
and Magnetically Controlled Transmission Bands

Having analyzed the origin of the suppression valley in the single-dot transmission
function, we now focus on the modification of the transmission when dots are
connected to form an array as well as the impact of an applied magnetic field.
The zero- and finite-field transmission T.�/ through the coupled-dot device is
shown in Fig. 6.5 for different numbers of dots N in the chain, with deformation
parameter ı D 0:5 and interdot distance L D w. As discussed previously, the
zero-field transmission in the single dot case consists of a rather smoothly varying
background, on which sharp Fano resonances are superimposed. In the multi-oval
case the sharp Fano resonances corresponding to confined billiard eigenstates are
N-fold split (this very small splitting is generally not resolved on the scale of
Fig. 6.5); additionally, Breit-Wigner (BW) type resonances of varying width emerge.
The latter subsequently undergo a splitting into N � 1 sub-peaks for an array of
N dots. The resonances of BW type, although generally asymmetric on a varying
background, are distinguished from the Fano resonances by the absence of the
accompanying zero in the transmission. Their origin is the resonant scattering of
the incoming wave through the system on the level of the connected dots, as will be
demonstrated in the following for our setup. For sufficiently many dots (represented
in Fig. 6.5 by the case of N D 20), the multiply split resonances saturate into bands
of densely positioned peaks, which is reminiscent of the band structure of energy
levels in a periodic quantum system. In the presence of the weak field the smooth

Fig. 6.5 Transmission spectra in the first transversal channel for varying number of dots N with
deformation parameter ı D 0:5 and connecting lead length L D w D 0:3 R, at B D 0 (solid black
line) and B D Bc � 20mT (dotted red line)



6.3 Quantum Dot Array: Composite Resonant States and Magnetically. . . 159

Fig. 6.6 (A) T.�/ for B D 0 (solid black line) and B D Bc (dotted red line) for L D w and varying
N, in the vicinity of �p � 1:384, with labels a, b, c, d, e for the transmission resonances referred
to in the text. (B) T.�/ (solid black line) and g.� D 0:2K I �F/ (dashed blue line) for a single
dot (bottom) and for two dots with varying bridge length L, within a small window of the channel
number � covering the energy range of a smooth hill in the single dot transmission

background transmission is overall increased, the sharp resonances are slightly
shifted in energy and the transmittive bands for large N are broader.

As seen in the previous section, the interference of leaking states belonging
to different transversal billiard excitations generates a smooth oscillation in the
single dot transmission T.�/, with constructive interference hills of substantial
T separated by destructive interference dips of vanishing T. The slowly varying
envelope behavior of the transmission spectrum exhibits a wide energy range where
the overall transmission is strongly suppressed. For the specific shape of the cavity
corresponding to the chosen value of ı D 0:5, this suppression valley is centered
around the middle of the first channel.

In order to analyze the transmission of the multidot chain, in Fig. 6.6A we
focus on the transmission around the BW resonance appearing for N D 2 at
� D �p � 1:384, and show its .N � 1/-fold splitting for increasing N. Also
the sharp Fano resonance just below is included, whose splitting (of the order of
�� � 2�10�5 or�E � 0:1 �eV) remains unresolved even at this scale. The N-fold
splitting of the Fano resonances is a consequence of the degeneracy of the confined
single dot eigenstates in the case of N dots, which are coupled very weakly through
the connecting lead due to their strong localization within the ovals. It is thus similar
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to the splitting of the energy levels of atoms brought together to form a weakly
bound molecule, with an energy split proportional to the interatomic coupling. The
BW type resonances of the multidot case, which are narrower (wider) at energies
where the single dot transmission T.ND1/.�/ is lower (higher), are of different origin:
They arise from the resonant scattering of the incoming wave through the system of
the ovals and the connecting bridges via leaking states (which are strongly coupled
to the bridges). Indeed, the emergence of these resonances and their (N � 1)-fold
splitting can effectively be deduced from the 1D scattering through N potential
barriers (or equivalently, N � 1 resonators), where the transmission amplitude of
scattering through each barrier possesses an energy dependent norm and phase. Two
barriers ˛, ˇ with transmissions T˛ , Tˇ give the total transmission [13]

T˛ˇ D T˛Tˇ
1C R˛Rˇ � 2

p
R˛Rˇ cos �

; (6.8)

where R˛=ˇ D 1 � T˛=ˇ and � is the phase shift acquired by reflection from ˇ to
˛ and back to ˇ. For T˛ D Tˇ D T.ND1/ and � _ � this gives rise to resonance
peaks in T.ND2/ which are equidistant in � and have a width that increases with
T.1/. In our case though, due to the structure of the ovals that constitute the barriers,
the phase shift � is not linear in �. This perturbs the periodicity of the resonances,
as we observe for T.2/.�/ in Fig. 6.5, or equivalently, yields an energy dependent
effective resonator length QL.�/ _ �.�/=�. Formula (6.8) can be iterated to obtain
the transmission for N > 2 ovals, i.e.

T.N/ D T˛ˇI T˛ D T.1/; Tˇ D T.N�1/; �˛;ˇ D �1;N�1; (6.9)

where � now results from reflections between 1 and N � 1 barriers. The .N � 1/-
fold splitting of the T.2/ resonance, shown in Fig. 6.6A, and the saturation into a
band in the transmission spectrum for large N, are then reproduced for a system
that is symmetric under the exchange ˛ $ ˇ (which, in our case, renders the dots
identical), provided that the phase difference between transmission and reflection
amplitude of the single barrier is equal to ˙
=2, as is the case for the single oval
with symmetrically attached leads.

Varying the resonator length modifies the conditions for resonant transmission
by shifting the resonances in energy and changing their periodicity. In Fig. 6.6B the
transmission through N D 2 connected dots, as well as the normalized conductance
at � D 0:2K, are plotted over the energy range of a single-dot transmission
hill, for varying connecting bridge length L. With a slight increase in L (L=w D
1:0; 1:1; 1:2; 1:3) the BW resonances are shifted to lower energy, and for longer
bridges (L=w D 10; 100) the number of resonances in the same interval increases.
We notice that the center positions of the (split) Fano resonances are unaffected by
the variation of the bridge length. Detailed features of the transmission lineshape,
such as the Fano resonances and the BW resonance peaks for large L, are washed
out at finite temperature � by thermal averaging through formula (6.6), making



6.3 Quantum Dot Array: Composite Resonant States and Magnetically. . . 161

their contribution to the conductance G.EF/ negligible compared to the smooth
background.

As we see in Fig. 6.6A, the addition of a dot to the existing chain of N
dots at resonance energy lowers the transmission from unity to the single oval
value T.1/.�/ at that energy (note that the transmission at the dips between the
resonances in T.N>4/.�/ can acquire values even lower than T.1/.�/). In particular,
the transmission at the energy position of the central resonance at � D �p oscillates
between unity and T.1/.�p/ with even and odd N, respectively:

T.N even/.�p/ D 1; T.N odd/.�p/ D T.1/.�p/: (6.10)

Furthermore, the resonances for each N are positioned symmetrically around �p,
so that the forming bands in the transmission for large N are centered around the
T.2/.�/ resonance peaks.

In Fig. 6.7 this behavior of the transmission function for varying number of dots
is illustrated in terms of the states forming in the system for N D 1; 2; 3; 4 dots, by
plotting the zero-field LDOS at the energies (rows a,b,c,d,e) of the resonance peaks
labeled (with the same letters) in Fig. 6.6A, for an electron incident on the left. The
spatial oscillations of the LDOS in the incoming lead come from the interference
of the incoming wave with the wave that is backscattered from the dot array. Their
absence is a signature of a resonance peak in the transmission spectrum, as there
is no overall backscattering and transmission is unity. Starting with the single oval
in the first column (Fig. 6.7a1–e1), we see that the incoming wave is reflected at
all energies (a)–(e) around �p, leading to a transmission significantly less than unity
(T.1/.�p/ � 0:07). When a second oval is added, there is an energy between (a)

Fig. 6.7 Zero-field LDOS for N D 1; 2; 3; 4 dots with ı D 0:5 and L D w for energies in the
vicinity of the .N � 1/-fold split resonance peak at � D �p � 1:384, with incoming electron on
the left. Rows (a), (b), (c), (d), (e) correspond to the energies of the resonances labeled with the
same letters in Fig. 6.6A. The colormap for each sub-plot is normalized to its maximal value and
scales as

p
� to enhance contrast
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and (e), namely � D �p represented by row (c), for which the backscattering of the
single oval is canceled by the presence of the added oval and the connecting bridge:
The wave is multiply reflected between the two ovals through the bridge, resulting
in a quasi-standing wave along the chain [see (c2)] that constitutes a resonant state
for the open system, leading to a transmission of unity. A third oval added in front
of the two introduces the backscattering again at �p [see (c3)], while the transmitted
part from this first oval is perfectly propagated through the remaining two as in
(c2). Thus the transmission in (c3) equals the single dot transmission, T.3/.�p/ D
T.1/.�p/. The backscattering of the third oval at �p is canceled by addition of a fourth
oval [see (c4)], just as we went from (c1) to (c2), so that the T.2/.�p/ resonance peak
is recovered in T.4/.�p/, although with a smaller width.

Thus, the sequential cancellation of the backscattered wave leads to the even-
odd oscillations of T.N/.�p/ seen in Fig. 6.6A. Resonant states are also accessed for
3 and 4 dots in (b3) and (a4) below �p and in (d3) and (e4) symmetrically above
�p. Similarly, for each number of dots N there are N � 1 accessible resonant states,
including the one at �p for even N, at energies symmetrically positioned with respect
to �p. Just as the T.2/ resonance is recovered in T.4/, each T.N/ resonance is recovered
at multiples of N, where the resonant state in the chain can be decomposed into
multiple connected resonant states. We notice that the two branches of resonances,
one below and one above �p, are associated with two different leaking eigenstates
of the isolated single oval with lead stubs, with the closest nodal labeling (m; n)
being (8,3) and (11,1)—they inhabit, for example, the central oval in (b3) and (d3),
respectively.4 Their interference in the open single oval system forms the scattering
wave in column (1). These three wave patterns are combined among the N ovals in
the open chain, to form the N � 1 resonant states leading to the peaks around �p.
The formation of resonant states occurs similarly around all T.2/ resonances of BW
type (seen in Fig. 6.5). Characteristically, moving from a T.2/ resonance to the next
one at higher energy adds a node in the quasi-standing wave within the two ovals
and the connecting bridge. Increasing the length of the bridge shifts the resonances
to lower energies and reduces the �-distance between them, as the wavelength in
the quasi-standing wave overall increases, in accordance to the effective resonator
picture described above.

Conclusively, there are two types of resonances to be distinguished in the
transmission spectra for the array of N dots:

1. the series of equidistant Fano resonances, arising from the confined single dot
excitation modes in the continuum of the channel, which are N-fold split due to
coupling between the ovals, and

2. the series of nonequidistant BW resonances, resulting from resonant bridge-
coupled states that form in the chain, which are .N � 1/-fold split.

4Note that the resonant energies in the open system do not happen to coincide with the energies
of the corresponding closed dot eigenstates for the stub length chosen in Fig. 6.6b, but for smaller
stub lengths. This shows that the transmission spectrum cannot generally be deduced from a given
closed dot eigenspectrum.
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Modulation in a Magnetic Field

Following the discussion above, we now consider the influence of a weak perpen-
dicular homogeneous magnetic field on the transport through the device. When
the field is switched on, although the density distributions of the oval eigenstates
remain largely unaffected at this low field strength, their phases are modulated and
consequently the interference of the states contributing to transmission changes.
Thus, depending on the field strength, the transmission spectra for the single and
multiple dots are accordingly modified. In particular, while the pairs of the .m; 1/
and .m; 3/ leaking states responsible for the suppression valley in T.�/ still remain
close in energy, the field changes their Aharonov-Bohm-like phases and prevents
the destructive interference [14]. Also, the even-m states, which did not mediate
transport due to symmetry at zero field, now couple to the leads and in general
contribute to the transmission.

As seen in Fig. 6.5 (dotted line) for the chosen field strength the slowly varying
background of the single oval case is indeed generally raised throughout the channel,
removing the characteristic suppression around its middle in the absence of the
field. The overall very high transmission is interrupted by series of dips in its
lineshape. The existing sharp Fano resonances undergo only a very slight energy
shift (visible for the Fano resonance in Fig. 6.6 A), because the spatial distribution
of the wave function remains practically unaffected at this weak field. Again the
multidot chain provides a more complex transmission spectrum, resulting from the
subsequent matching conditions for the wave function at the connections between
the dots. The BW and Fano resonances are multiply split like in the field free case,
and dips and plateaus become sharper and more pronounced as dots are added to
the chain, saturating into a banded transmission. In contrast to the field free case,
the transmission pattern is now dominated by narrower gaps and wider transmittive
bands. Thus, also for the long chain of dots the overall transmission is drastically
raised by the applied field. A more detailed analysis of the modification of the
conductance with varying field will be presented in the next subsection.

6.4 Conductance Switching

The conductance G.�IEF/ at temperature � and Fermi energy EF is calculated
by thermally averaging the transmission T.E/ around EF according to (6.6). For
direct comparison to T.�/, the dashed curve in Fig. 6.6B shows the normalized
conductance g.�I �F/ D G.�I �F/=G0 D 
„

e2
G.�I �F/ as a function of the Fermi

channel number � D �F D
p
2m�EF=„2 w=
 for � D 0:2K. At zero temperature

the conductance coincides with the transmission, but as � is increased peaks and
dips in the conductance become less pronounced due to the increasing width of
the thermal broadening function (6.7). Already at the low temperature chosen in
Fig. 6.6B (� D 0:2K), the detailed structure of the transmission is essentially lost:
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the sharp resonant peaks are washed out, reflecting their negligible contribution to
the conductance. Also the formation of sharp transmittive bands for the multidot
chain is relaxed with thermal averaging. For long interdot leads (L=w D 10; 100 in
Fig. 6.6B) the conductance features follow the trend of the single dot case, that is, it
exhibits similar hills in energy, yet with smaller amplitude. Similar modifications of
the transmission spectra through thermal averaging hold for the conductance profile
in the presence of the magnetic field (not shown).

A key feature of the oval shaped cavity is the formation of the wide suppression
valley in the transmission spectrum of the first transversal channel, which is essen-
tially retained also for the conductance at low temperature. In order to demonstrate
the suitability of the chain of dots as a magnetically induced conductance switch,
we exploit the lifting of this suppression when the field is turned on, aiming at a
high ratio of finite- over zero-field conductance. In the following we optimize the
switching ratio taking into account all relevant parameters (ı;B;L;N) as well as
finite temperature and impurity scattering effects (see Sect. 6.5). First we consider
the quantity Gmin

off which is the zero-field finite temperature conductance minimized
with respect to the position of the Fermi energy in the first channel.

In Fig. 6.8, gmin
off D Gmin

off =G0 is plotted as a function of ı at different temperatures
for a single oval dot. We see that an optimal value for gmin

off is obtained around ı D
0:5, with a small dip at ı D 0:55, while it increases for larger or smaller deformation
of the oval. It should be noted here that the modification in the spatial extension of
the oval for a change �ı � 0:05 is of the order of 1 %, a challenging accuracy for

Fig. 6.8 Minimal zero-field conductance gmin
off (see text) as a function of the deformation parameter

ı for a single dot, at temperatures (bottom to top) � D 1:0; 1:1; : : : ; 2:0K; the inset shows the
change of the optimized channel number �min with ı at � D 2K (the dependence is the same for
the other temperature values)
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Fig. 6.9 Single dot switching ratio S.1/ at � D �c � 1:46 as a function of the magnetic field, for
temperatures (top to bottom)� D 0:7; 1:0; 1:4K. The inset shows the irregular oscillations for low
field strengths

an experimental realization of the device. We therefore keep the roughly optimized
value of ı D 0:5 as a reference for the following analysis. As shown in the inset of
Fig. 6.8, the channel number �min of this minimum depends approximately linearly
on ı where the corresponding Fermi energies are located close to the center of the
first channel. For ı D 0:5 we have �c D �min.ı D 0:5/ � 1:46 in the single dot
case (N D 1). This shift of the optimal Fermi energy, that holds for all temperatures
considered, is due to the modification of transversal modes inside the dot, which are
shifted to higher energies as the oval becomes narrower with increasing ı.

The single dot switching ratio S.ND1/.B/ D G.ND1/
on .B/=G.ND1/

off at � D �c is
shown in Fig. 6.9 for varying magnetic field strength at different temperatures.
As S.1/.B/ equals the finite field conductance normalized to G.1/off , it describes the
changes of the conductance induced by the field. For low field strengths (inset
of Fig. 6.9) the modulation of the phase of the leaking states in the dot leads
to Aharonov-Bohm (AB) like oscillations in the conductance. At the energies
we consider here, only three of these leaking states are present [14]. However,
the presence of more than two scattering channels inside the dot gives rise to
the superposition of magnetoconductance oscillations, so that S.1/.B/ loses the
periodicity expected for AB oscillations of a 1D quantum ring. As the field strength
is increased, apart from their phase, also the spatial distribution of the states in
the dot is affected. Confined states are eventually deformed into leaking ones,
opening further channels for the transmission. The first magnetoconductance peak
at Bc � 0:02T is seen to be the highest in the low field regime, giving a switching
ratio of S.1/.B D Bc/ � 65 at � D 0:7K. For higher field strengths the transmittive
states are gradually localized into edge states (with classical cyclotron radius . R=4
for B & 0:8T) along the border of the cavity, all within the first Landau level [17].
Following the edges of the billiard, the electrons are now more easily transmitted,
resulting in an increased overall conductance. At a field strength of B � 1:2T
these modes become perfectly transmittive along the edges of the structure, and the
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switching ratio reaches a plateau of maximal value ( S.1/.1:2T . B . 2:2T/ � 70

at � D 0:7K ). For even higher magnetic field strength the transmission decreases
drastically as the incoming electrons gradually fail to overcome the magnetic
barrier provided by the first Landau level, and the conductance drops to zero. At
higher temperatures the features of the magnetoconductance remain; however, as a
broader energy window with higher transmission parts is contributing to the thermal
averaging in (6.6) through the broadening function (6.7), the switching ratio is
generally lowered, because G.1/off increases. Also the amplitude of the oscillations
decreases with temperature, as the magnetically induced changes in the detailed
structure of the transmission have a smaller impact on average. For N > 1 the
magnetoconductance behaves similarly, but the switching ratio overall acquires
higher values, because of the even lower zero-field conductance G.N/off resulting from
the formation of gaps in the transmission spectra.

The magnetoconductance is calculated for spinless particles and hence does not
describe electronic transport for high magnetic field strengths. But, as we are aiming
at a high switching ratio, we concentrate in the following on the first maximum
S.N/c D S.N/.B D Bc/, which occurs approximately at the same field strength
Bc � 20mT for all considered numbers of dots N. For this weak magnetic field we
can neglect the Zeeman splitting. In Fig. 6.10, S.N/c is presented for a varying number
of dots in the chain, again at different temperatures. We allow for the parameter �.N/c ,
which represents the scaled Fermi energy of the incoming electrons, to be optimized
individually in order to minimize G.N/off for each dot number N. At sufficiently low
temperature, by connecting a second oval to the single one we gain a substantial
factor with respect to the increase from S.1/c to S.2/c ( � 320 for � D 0:7K),

Fig. 6.10 Switching ratio S
.N/
c D S.N/.B D Bc � 20mT/ for varying number of dots N with

connecting bridge length L D w, for different temperatures �
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which, as pointed out, results from the lower zero-field conductance. For N > 2

the switching ratio fluctuates around a temperature dependent mean value, due to
its high sensitivity with respect to the optimized G.N/off at low temperatures, which

changes for each N. At higher temperatures the fluctuations are weakened, but S.N/c

is then also lowered drastically.
It is obvious that the optimization of the switching ratio strongly depends on

the temperature: High switching ratios require low temperatures, � . 2K for our
setup. Nevertheless, we see that the current switching functionality of the device
is significantly enhanced throughout the temperature range considered already
with only two connected dots instead of a single one. This is of advantage in an
experimental realization of the system, since optimal switching can be achieved
with a relatively small double-dot system (instead of a long multidot chain) where
phase coherence is more easily maintained.

6.5 The Impact of Impurities

Let us now explore the impact of potential disorder on the magnetoconductance.
This is implemented in the form of remote impurity scattering in the presence of
a modulation-doped layer above the 2D structure. We consider pointlike negatively
charged impurities of 2D density nimp distributed on a plane at distance d above the
2D electron gas (2DEG), excluding them from the region of the semi-infinite leads.
The plane is partitioned into small pieces of area 1=nimp, within each of which one
impurity is placed at random position, thus constituting a quasi-random distribution
of impurities, with an upper bound on their local concentration. The electrostatic
potential of each impurity is screened by the 2DEG at the plane of the device
structure; for the effective potential that an electron feels at lateral distance rimp

from the impurity we use the model screening potential of Sect. 2.1.3,

Vscr.rimp/ D e2

4
�0�b

qTF.1C qTFd/

q3TF

1

.r2imp C d2/
3
2

; (6.11)

where qTF D 2=aB is the low-� Thomas-Fermi screening wave number, with
relative permittivity �b D 13:8 and effective Bohr radius aB D 9:8 nm for a
GaAs [18].

As the distance d of the impurity layer is made very short (d . 30 nm in
the present scaling), the corresponding transmission spectra (not shown here) are
drastically changed with respect to the clean case (see Fig. 6.5), as a result of
the influence of the impurity potential on the transport through the device. The
randomized potential landscape in the dot chain leads to a spatial deformation of
the existing states and a breaking of the symmetries present in the clean system:
The sharp Fano resonances are shifted due to the perturbation of the confined
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Fig. 6.11 Mean value and standard deviation (for 27 impurity configurations) of the switching
ratio S.2/imp.B D Bc/ of two connected dots as a function of the impurity layer distance d at different

temperatures. The dashed lines give the values S.2/c of the disorder free case

eigenstates in each dot, differently for each individual impurity configuration. The
impurity potential also changes the energies of the leaking states, which results in
modified conditions for their coupling to the leads, so that the broad transmission
maxima are shifted, too. Additionally, new transmission peaks are introduced by
leaking states that did not contribute in the clean case due to their symmetry
[14]. For not too short impurity layer distance d though, the described suppression
valley in the conductance of the clean system is retained, still making valid the
concept of magnetic conductance switching. As expected, the effects of disorder
are enhanced as the impurity density is increased (not shown); in the present
analysis we use a value of nimp D 0:0025 nm�2. This rather high density of
remote impurities is employed here in order to intensify their impact on transport
in our simulations, whereas in practice cleaner samples are realizable for use in
semiconductor nanostructures [19, 20].

In Fig. 6.11 the switching ratio in the presence of remote impurities S.2/imp.B D Bc/

is shown as a function of the distance d from the impurity layer, for two connected
ovals. The values of S.2/imp for each d are the average over 27 configurations of
the randomly distributed impurities. When the impurity layer is closer to the 2D
conducting structure, the average switching ratio is in general lower than its value
in the clean system, the latter being practically reached for a distance d & d0.�/,
depending on the temperature. For � � 1K we have d0 � 100 nm, corresponding
to a transport mean free path le � 24�m in the first Born approximation [18].
Nevertheless, the relatively large deviations from the mean indicate that, for each
d . d0.�/, there are certain impurity configurations that provide a switching ratio
much higher or lower than the average. This is due to the high sensitivity of Goff

with respect to the potential pattern that is formed on the plane of the array. If the
impurity configuration is, for example, such that a potential maximum is blocking
the opening of a cavity to a lead, then Goff is suppressed, as the wave coming
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from the lead is strongly backscattered. This backscattering can be lifted when the
magnetic field is turned on, leading to an overall increased switching ratio for this
configuration. On the other hand, when the configuration of the impurities does not
block the leads, Goff in the suppression valley is slightly higher compared to the
clean case due to the additional resonances in the transmission, causing a reduced
switching ratio. Thus, at distances where the potential on the 2DEG plane is not too
strong to permit transmission at all, the randomly distributed impurities lie within
a broad variation between the cases of blocking and non-blocking configurations,
keeping the deviations from the mean high. When the impurities are put too close
to the 2D structure (d . 30 nm), the shape specific suppression feature of the zero-
field transmission is essentially lost, so that the overall conductance is practically
unaffected by the field strength, which thus minimizes the switching effect. For
larger impurity layer distances the mean S.2/imp eventually saturates into the clean
case value with decreasing deviations, as the potential becomes too weak to affect
the transmittive states in the dots.

Using random impurity distributions to investigate the functionality of magnetic
current switching in a more realistic environment, one can speak of a temperature
dependent lower bound of the switching ratio (see Fig. 6.11) depending on the
specific setup. This lower bound is increased as the influence of disorder is
suppressed, that is, when a longer mean free path for the electrons is achieved.
Technological progress actually makes it feasible to reach mean free paths in
heterostructures comparable to the size of realizable nanoscale devices [19, 21, 22].
The almost ballistic nature of electron transport then allows for controllable
conductance switching at low temperatures, in the sense that it is determined by
the specific shape of the conducting device, the electron energy and the applied
magnetic field.

6.6 Summary and Conclusions

Having investigated the transmission properties of a linear array of equidistant
identical oval shaped quantum dots, we demonstrated the functionality of such a
structure as a magnetically controlled switching device in the deep quantum regime.
The switching effect arises from the lifting of a deformation specific suppression
in the transmission of the oval when a weak perpendicular field is turned on. The
suppression valley in the transmission results from the destructive interference of
states in the dots that are strongly coupled to the leads, and is specific to the
elongated shape of the single billiard. This makes the effect relevant in systems
of similarly shaped dots, e.g. elliptical. The switching ratio oscillates with the
magnetic field strength, but as the effect is prominently present even at very weak
fields, we have concentrated on its first peak. We have shown that the extension
of the single dot into a chain of dots causes a much higher switching ratio, due to
a stronger suppression of the zero-field conductance. However, we point out that



170 6 Magnetoconductance Switching by Phase Modulation

almost optimal switching can be obtained by connecting only one more dot to the
single one, giving a multiple value for the switching ratio while keeping the system
size small. This could make the device practically advantageous but also favors
quantum coherence itself, which is the principal requirement for the interference
effects to take place.

The efficiency of switching is lowered with increasing temperature, as the desired
shape specific characteristics of the transmission spectra are thermally washed out,
which poses a limitation to low temperatures (up to about 2 K). In spite of the
possibility to achieve mean free paths of the 2DEG much longer than the extent of
the studied system, we have additionally investigated the robustness of the switching
ratio in the presence of impurity scattering. The switching ratio acquires a higher or
lower value than in the clean case depending, respectively, on whether the impurity
configuration is blocking transport at zero magnetic field or not. Thus, for randomly
distributed impurities a temperature dependent lower bound for the switching ratio
of a sample can be set. The efficiency of magnetoconductance tuning then remains
to be specified for the individual device.

Conclusively, it was demonstrated that electron billiards of specific elongated
geometry and chains thereof can be used, due to interference-induced regularities
in the suppression of their transmission, to design low temperature magnetoconduc-
tance.

References

1. C. Morfonios, D. Buchholz, P. Schmelcher, Magnetoconductance switching in an array of oval
quantum dots. Phys. Rev. B 80(3), 035301 (2009)

2. M.V. Berry, Regularity and chaos in classical mechanics, illustrated by three deformations of a
circular ’billiard’. Eur. J. Phys. 2(2), 91 (1981)

3. H. Makino, T. Harayama, Y. Aizawa, Effects of bifurcations on the energy level statistics for
oval billiards. Phys. Rev. E 59(4), 4026 (1999)

4. T.B. Boykin, R.C. Bowen, G. Klimeck, Electromagnetic coupling and gauge invariance in the
empirical tight-binding method. Phys. Rev. B 63(24), 245314 (2001)

5. R. Peierls, Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80(11–12), 763
(1933)

6. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, Direct calculation of the tunneling
current. J. Phys. C Solid State Phys. 4(8), 916 (1971)

7. D.S. Fisher, P.A. Lee, Relation between conductivity and transmission matrix. Phys. Rev. B
23(12), 6851 (1981)

8. Y. Meir, N.S. Wingreen, Landauer formula for the current through an interacting electron
region. Phys. Rev. Lett. 68(16), 2512 (1992)

9. M. Büttiker, Symmetry of electrical conduction. IBM J. Res. Dev. 32(3), 317 (1988)
10. M. Büttiker, Y. Imry, M.Y. Azbel, Quantum oscillations in one-dimensional normal-metal

rings. Phys. Rev. A 30(4), 1982 (1984)
11. R. Landauer, Electrical resistance of disordered one-dimensional lattices. Phil. Mag. 21(172),

863 (1970)
12. P.F. Bagwell, T.P. Orlando, Landauer’s conductance formula and its generalization to finite

voltages. Phys. Rev. B 40(3), 1456 (1989)



References 171

13. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press,
Cambridge, 1995)

14. D. Buchholz, P. Drouvelis, P. Schmelcher, Tunable transmission via quantum state evolution in
oval quantum dots. Europhys. Lett. 81(3), 37001 (2008)

15. W. Zhe-Xian, M. Yi, D. Ze-Jun, Electronic transport through an open elliptic cavity. Chin.
Phys. 16(11), 3507 (2007)

16. R. Lehoucq, D. Sorensen, C. Yang, ARPACK Users’ Guide (Society for Industrial and Applied
Mathematics, Philadelphia, 1998)

17. S. Rotter, B. Weingartner, N. Rohringer, J. Burgdörfer, Ballistic quantum transport at high
energies and high magnetic fields. Phys. Rev. B 68(16), 165302 (2003)

18. J.H. Davies, The Physics of Low-Dimensional Semiconductors, An Introduction (Cambridge
University Press, Cambridge, 1997)

19. S.S. Buchholz, S.F. Fischer, U. Kunze, D. Reuter, A.D. Wieck, Nonlocal Aharonov–Bohm
conductance oscillations in an asymmetric quantum ring. Appl. Phys. Lett. 94(2), 022107
(2009)

20. K. Friedland, R. Hey, H. Kostial, R. Klann, K. Ploog, New concept for the reduction of impurity
scattering in remotely doped GaAs quantum wells. Phys. Rev. Lett. 77(22), 4616 (1996)

21. M. Knop, M. Richter, R. Massmann, U. Wieser, U. Kunze, D. Reuter, C. Riedesel, A.D.
Wieck, Preparation of electron waveguide devices on GaAs/AlGaAs using negative-tone resist
calixarene. Semicond. Sci. Technol. 20(8), 814 (2005)

22. D. Reuter, D. Kahler, U. Kunze, A.D. Wieck, Layer-compensated selectively doped AlxGa1-
xAs/GaAs heterostructures as a base material for nanolithography. Semicond. Sci. Technol.
16(7), 603 (2001)



Chapter 7
Current Control in Soft-Wall Electron Billiards:
Energy-Persistent Scattering in the Deep
Quantum Regime

In this chapter we use ‘soft-wall’ boundary confinement, that is, a potential profile
with finite slope, to induce charge current controllability in a two-terminal transport
setup. In particular, the isolation of energetically persistent scattering pathways
from the resonant manifold of an elongated electron billiard in the deep quantum
regime is demonstrated. This in turn enables efficient conductance switching at
varying temperature and Fermi velocity, using a weak magnetic field. The effect
relies on the interplay between the elongated soft-wall confinement and magnetic
focusing, which together rescale the scattering pathways and decouple quasi-bound
states from the attached leads. The mechanism proves robust against billiard shape
variations and qualifies as a nanoelectronic current control element. Excerpts and

figures from [1] reprinted with permission. Copyright (2014) by the American Physical Society.

7.1 Persistent Switching Via Geometric Rescaling at Low
Energies

In Chap. 6 it was shown how the elongated (oval) shape of a hard-wall open billiard
may be utilized to switch conductance by means of quantum interference: quasi-
degenerate, lead-coupled states were selectively brought into destructive output
interference, thereby suppressing conductance, with a phase-modulating magnetic
field causing high overall transmittivity. The effect was shown to be relatively
robust with respect to small changes in shape deformation and weak disorder and
requires only a very weak field. However, the fulfillment of the required interference
conditions relies on the steepness of the wall boundaries and is naturally sensitive
to small variations in the field strength. Furthermore, the geometrically induced
suppression valley in conductance fixes the optimal switching Fermi energy to the
center of the first propagation channel.

© Springer International Publishing Switzerland 2017
C.V. Morfonios, P. Schmelcher, Control of Magnetotransport in Quantum Billiards,
Lecture Notes in Physics 927, DOI 10.1007/978-3-319-39833-4_7
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We will now demonstrate an alternative way to achieve conductance control by
exploiting the orbital magnetism in a billiard with appropriately designed soft wall
boundary: In contrast to the previous phase-dominated transport properties at low
field strength, the magnetoconductance will now be controlled via path-dominated
dynamics while remaining in the same energetic regime. Conceptually, we now
pursue the separation of these two types of magnetotransport dynamics, phase-
versus path-dominated, in a regime where they strongly overlap, corresponding to
a suppression of quantum fluctuations in favor of directed pathways at wavelengths
comparable to the system size—the ‘deep quantum regime’.

From an experimental viewpoint, the magnetic field provides a unique macro-
scopic handle on those mesoscopic processes determining the conductance of the
system, and the challenge is to find a way to control them under ‘comfortable’
conditions. In other words: How can a weak magnetic field switch the current
flow through a sizable electron billiard at low bias and finite temperature, and
over a broad Fermi level variation? The answer lies in identifying and designing
transport mechanisms which respond reliably to changes in the field strength while
remaining robust against variations in energy, and at the same time stay separated
from omnipresent quantum fluctuations. The key feature in the observable response
consists in a controllable background transmission, magnetically switched between
its extrema, upon which only narrow interference-induced Fano resonances [2] are
superimposed [3–5]. This requires energetically persistent scattering pathways that
mediate transport or cause complete reflection, but couple only weakly to resonant
states.

This scenario is realized in an open electron billiard with an elliptical soft-wall
potential (see Fig. 7.1). The experimental setup in mind is a quantum dot with
steep boundary potential [6, 7] supplied with additional peripheral gates [8] which
further deplete the internal 2D electronic motion. With a perpendicular magnetic
field B piercing the dot, the combination of the elongated lateral shape with the
soft wall enables an energy-invariant switching mechanism by isolating the required
scattering pathways from the manifold of resonant levels. In short: For B D 0, the
elliptic soft walls collimate the electronic motion into the longitudinal direction,
causing high overall transmission. At a special ‘switching’ field strengthB D Bs, the
incoming electrons are focused [9] into a completely backscattered pathway, which
becomes geometrically rescaled in the presence of the soft wall (as sketched by the
arrows in Fig. 7.1). In both cases, the crucial role of the soft wall is thus to create
energetically persistent scattering pathways while decoupling localized resonant
states from the openings. As a result, the setup enables efficient finite-temperature
current switching for varying Fermi energy, by turning on a weak external magnetic
field.1

1Note that the switching here is the opposite to that of Chap. 6, where the zero-field conductance
was suppressed and raised by the field: we here have the on-state of the switch in absence of the
field, and the off-state for finite field strength.
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Fig. 7.1 System setup and sketch of magnetically focused pathways. (a) Electron billiard defined
by hard-wall confinement (solid line) and a soft-wall potential V.x; y/ decreasing along elliptical
contours to zero (dotted contour), with wall width d in the x- and y-directions. The wall opens up
along y D 0 to attached leads of width w, and its central contour (dashed) has semi-axes a and
b. (a0) Cross section at x D 0 for linear wall potential, with central contour lying at the threshold
of the first propagating channel. (b) Without the soft wall, a magnetically focused, backscattered
pathway (with cyclotron radius R1, red arrows) eventually turns into a transmitted pathway (with
cyclotron radius R2 < R1, orange arrows) for sufficient decrease in energy, while (c) backscattering
would be retained for a correspondingly smaller billiard. With appropriately chosen potential in
(a), similar backscattered paths can persist with varying energy for a common field strength Bs,
with forward propagation favored for B D 0 (blue arrow). Note that the sketched arrows do not
correspond to quantitative classical trajectories, but qualitatively indicate the background overall
electronic motion

It should be pointed out that, for the purely hard-wall billiard boundary
(Fig. 7.1b,c), this type of geometrical rescaling of the magnetically focused path is
not possible: At a given field strength, the electronic path is less deflected for lower
energy [shown schematically by the orange path in (b)], and its specular reflection
on the boundary eventually leads to complete or partial transmission of the electron.
To keep the backscattering character of the focused wave, the hard-wall billiard (and
in turn the scattered electron path) would have to be rescaled as shown in (c). For
an appropriately chosen soft-wall potential profile, as shown quantitatively in the
following, the penetration depth of the backscattered wave into the wall is reduced
with decreasing energy, such that the boundary length is effectively reduced and
focused trajectory retained (rescaled to smaller size) without modifying the dot
confinement.

The chapter is structured as follows. In Sect. 7.2 we present the transmission
spectrum of a chosen soft-wall billiard as a function of magnetic field and compare it
to the one in absence of the soft-wall boundary, thus demonstrating the conductance
switching efficiency of the proposed setup. The form of the transmission spectrum
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is analyzed in terms of the closed billiard eigenspectrum in Sect. 7.3. In Sect. 7.4
the persistent switching mechanism is elucidated by the spatial distribution of the
scattering states and their current density. The alternative current switching prop-
erties of connected billiards are investigated in Sect. 7.5. Finally, Sect. 7.6 explores
the modification and robustness of the switching efficiency in terms of variations in
the billiard shape and soft-wall potential profile. Section 7.7 summarizes the chapter
and concludes on the experimental functionality of the switching device.

7.2 Decoupling of Resonances and Controllable
Finite-Temperature Conductance

With decohering electrodes implemented by attached semi-infinite leads, the effec-
tive (energy dependent and non-Hermitian [10]) Hamiltonian of the open system is
represented on a tight-binding lattice, and the transmission function T is computed
via the extended (modular) recursive Green function scheme developed in Chap. 5.
This allows for efficient and accurate transport calculations in a highly resolved
parameter space for the considered low-energy regime. The conductance G at Fermi
energy EF and temperature � is then obtained from T.E/ within the Landauer-
Büttiker framework presented in Chap. 3; specifically, we use the linear response
formula, (3.46). As seen in Chaps. 4 and 5, upon an excitation in the leads, the
appropriate parts of the Greenian further provide the local density of states �.r/ as
well as the scattering wave function which in turn yields the probability current
density j.r/, adapted here to the lattice model [11, 12]. The choice „ D e D
m D a0 � 1 fixes the units of energy E0 D „2=ma20 and magnetic field strength
B0 D „=ea20 for given effective mass m and lattice constant a0.

The transmission through the soft-wall billiard is shown in Fig. 7.2a as function
of field strength B for the scaled electronic momentum � varying within the first
propagating channel of the attached leads; we refer to this kind of plot as a
‘transmission map’. Qualitatively, the T.B; �/-map for the soft-wall setup shares
certain features with the corresponding map in absence of the soft wall, shown in
Fig. 7.2b: At strong fields and sufficiently low energy (lower right corner of T.B; �/-
maps), transport is mediated by edge states which increasingly interfere with
quasi-degenerate states [13] as energy increases (lower diagonal half). The slope of
the resulting broad reflection and transmission stripes in the T.B; �/-maps portray
the formation of skipping orbits [9] in the billiard: Since their cyclotron radius

scales like R �
q
p2in � 2V=B, where pin denotes the magnitude of the incoming

electron momentum, the (approximate) commensurability between the skipping
intervals and the (half) length of the hard-wall boundary is preserved along lines of
positive slope in the B-�-plane, along which high reflection (transmission) occurs.
This behavior is evident also for the soft-wall billiard at higher energies (upper
right quadrant of Fig. 7.2a), where its hard-wall character dominates. However, the
stripes are now ‘bent’ outwards (to higher B) at lower energies where the soft wall
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Fig. 7.2 Transmission (from 0-black to 1-white) as a function of magnetic field strength B (or flux
quanta ) and scaled incoming momentum � D pinw=
 within the first open channel 1 < � < 2 of
the attached leads, for (a) a billiard with the soft-wall potential of Fig. 7.1 (a0) with .a; b; d;w/ D
.128; 84; 96; 32/ a0 , and (b) the same billiard without soft wall. Right panels: cuts through the
T.B; �/-maps at zero field (marked open big circle) and at the switching field Bs D 0:63�10�3 B0
(marked dot circle) or flux s D 7:32 0 (where 0 D h=e is the flux quantum). For a reference
length unit a0 D 2 nm, the field strength unit is B0 D „=ea20 D 164:55T
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significantly influences the electron dynamics: Since the low-energy states are more
confined by the soft wall, the billiard size effectively decreases, and consequently
the transmission map features broaden along the B-axis (e.g., the isolated edge states
in Fig. 7.2a form at larger B-intervals), causing the interference stripes to bend. In
other words, a stronger focusing field is generally needed to maintain the high or
low T for increasing � in the presence of the soft wall.

Both with and without soft wall, these stripes generally become less prominent
and finally destroyed at weaker fields and higher energies (upper diagonal half
of maps). This is because more billiard states become available above the bulk
Landau levels (as seen in the closed billiard eigenspectrum discussed below in
Sect. 7.3) which are spatially extended and whose multiple interference leads to
broad but highly irregular resonant transmission features in both B and �. In
spite of the very complex dynamics in this regime, the presence of the soft wall
induces a remarkable feature in the T.B; �/-map (Fig. 7.2a): At a relatively weak
field B D Bs, backscattered states almost completely dominate the background
transmission spectrum of the open billiard, forming a vertical and broad reflection
stripe covering the whole channel, upon which only very narrow Fano resonances
are superimposed. The inverse profile is acquired if the field is turned off: At B D 0,
a highly transmitting background is perturbed only by very narrow resonant dips.
Both features, the transmission and reflection stripes at B D 0 and B D Bs,
respectively, are absent without the soft wall (see Fig. 7.2b). This is highlighted by
the cuts through T.B; �/-maps on the right of Fig. 7.2, where overall T.B D 0/ � 1
and T.B D 0/ � 0 for the soft-wall billiard while T.�/ shows strong oscillations
and broad irregular resonances for the purely hard-wall billiard.

At finite temperature, the narrow resonant dips (peaks) at B D 0 (B D Bs)
are effectively washed away by the thermal contribution of the highly transmitted
(reflected) background states around the Fermi level. This is seen in Fig. 7.3a,b,
where the normalized conductance is kept close to unity (zero) over a broad range in
EF even at considerable thermal width kB�. It is important to note that the efficiency
of the effect is actually enhanced at finite temperature compared to the zero-�
transmission spectra, in contrast to conductance control via resonant features which
attenuate even at very low temperatures. In other words, although multiple sharp
Fano resonances can be viewed as individual transmission switches (at different
energies), they become inoperative as such for thermal widths comparable to the
resonant widths. The smearing of sharp resonances is a desired ingredient for the
type of control proposed here, where the whole background is uniformly switched
between zero and maximum. The implemented soft wall potential thus enables
a uniquely robust conductance switching effect, for a large quantum dot (i.e.,
accommodating a large number of resonant levels), and in a regime where quantum
fluctuations typically dominate transport, using a weak magnetic field.
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Fig. 7.3 Dimensionless conductance g D G=G0 (with quantum G0 D e2=
„) in the first open
channel (a) for B D 0 and (b) for B D Bs, for the same billiard as in Fig. 7.2a, at different
temperatures �. With a0 D 2 nm and m D 0:069me (transport at a GaAs/AlGaAs interface):
E0 D 276meV and � D 0; 0:5; 1:0; 3:0K. Vertical lines indicate sample non-resonant momenta
�1;2;3 at which the LDOS and current density are shown in Fig. 7.5

7.3 Closed Billiard Eigenspectrum

The general characteristic features of the transmission maps T.B; �/ (which are
common in the presence and absence of the soft-wall boundary) can be anticipated
by comparison of the maps with the discrete eigenspectrum of the corresponding
closed billiard, as shown in Fig. 7.4 for the soft-wall billiard, where the levels are
plotted on top of its T.B; �/-map. The scaled billiard eigenenergies as a function
of magnetic field strength, ��.B/, constitute a generalization of the well known
Darwin-Fock [14, 15] spectrum (obtained analytically for parabolic confinement)
to arbitrary confining potential. In the present general case, the angular momentum
is not conserved and generally avoided crossings occur between the different levels,
upon which the anticrossing quasi-degenerate states exchange their character (that
is, their spatial density distribution). However, the symmetry of the studied billiards
implies the conservation of x- and y-parity. In variation of the single parameter B,
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Fig. 7.4 Energy levels �� of the closed soft-wall billiard (with the same potential as in Fig. 7.2a,
but with the elliptic hard-wall boundary closing the lead openings) within the energy range of the
first transport channel, for varying magnetic field strength B. For increasing B, the levels condense
(asymptotically) into the bulk Landau levels (of the unconfined electron) indicated by their number
l. The discrete spectrum is plotted on top of a faint copy of the T.B; �/-map of Fig. 7.2a

states of opposite parity can become degenerate leading to exact crossings in the
��.B/-spectrum, since they remain uncoupled, while states of the same parity lead
exclusively to avoided crossings [16, 17] (see also [18] for the case of a spatially
periodic magnetic field).

The structure of the eigenspectrum has regular characteristics for large B and
small �: The energy levels are regularly spaced and gather together asymptoti-
cally for increasing B into bundles corresponding to the Landau levels l of the
unconfined system (see Sect. 2.3).2 Within the confining potential, these states
become increasingly ‘condensed’ in the bulk of the billiard for increasing B and
consequently their energy increases (positive slope in the ��.B/ diagram); they are

2For the �- and B-ranges plotted in Fig. 7.4, only the bundles demarcating the very lowest Landau
levels are clearly discernible (e.g. l D 2; 3); they become fainter with increasing � at fixed low
B because of the participation of an increasing number of crossing or anticrossing levels which
obscure the structure of the spectrum (see, e.g., l D 4; 5; 6).
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thus of ‘paramagnetic’ type, corresponding to classical cyclotron orbits (circulating
anti-clockwise for positive B). On the contrary, states which are delocalized and
extend to the billiard boundary correspond to classical skipping orbits which form
an inner arc of clockwise circulation (for positive B) [19] when bouncing off the
boundary and can be assigned a ‘diamagnetic’ type; their energy decreases with B,
and for sufficiently large B and low � they can be identified as edge states localized
at the billiard boundary (negative slope in the ��.B/ diagram). The above two types
of states coexist in increasing number as the energy successively rises above the
Landau level ‘caustics’ in the spectrum, and for low B and large � (upper left corner
of Fig. 7.4), their crossings and anticrossings form a complicated and irregular level
structure [20].

It is clear that the (diamagnetic) states localized closer to the boundary are the
ones that dominate the overall transport in the open system, since they reach the
lead openings with an increased amplitude. Their strong coupling to the leads causes
their energy levels to broaden and shift significantly, so that the correspondence of
eigenenergies and transmission peaks and dips is lost [21]; the transmission profile
is rather determined by the interference of quasi-degenerate lead-coupled states.
Indeed, we see that the characteristic broad transmission and reflection stripes in
the T.B; �/-map generally occur when level lines of negative slope become quasi-
degenerate in the ��.B/ diagram (see, e.g., the area between the l D 3 and l D
4 bundles); the fewer the lines that meet, the clear the interference pattern in T.
The condensed (paramagnetic) bulk states, on the other hand, correspond to narrow
resonances in the transmission spectrum of the open billiard; their weak coupling to
the leads to small shifts in resonant energy and the correspondence to closed billiard
states is immediate. Indeed, level lines with large positive slope practically coincide
with the sharp antiresonance lines in the T.B; �/-map. Note that bulk states with
small (or zero) slope are still extended enough to contribute to the interference in
transmission; see, e.g., the area between the l D 2 and l D 3 bundles, where strongly
coupled (large level repulsion at anticrossings) diamagnetic and paramagnetic states
coincide with the formation (tails) of the reflection stripes in T.

It is finally remarked that, in terms of closed billiard eigenstates, the very
distinct vertical reflection stripe around B D Bs in the T.B; �/-map, allowing for
energy-persistent conductance suppression, is not of the simple origin of the tilted
stripes at larger B. Indeed, we now have a maximal number of interfering levels
(even discarding the bulk-confined ones of positive slope) which, nevertheless,
produce a well-defined backscattered amplitude whose spatial character persists
in energy (to be analyzed in the next section). This behavior evidently originates
from the impact of the soft wall: In the purely hard-wall billiard, although the
level diagram is qualitatively similar, the multiple interference of low-B extended
states simply produces a complicated irregular transmission variation (see Fig. 7.2
around B D Bs). Note that, in the lower half of the reflection stripe in Fig. 7.4, the
large reflection can partially be attributed to the absence of available states between
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successive multilevel crossings.3 The special impact of the soft wall is most striking
in the upper half of the stripe where diamagnetic states cover the energy interval.

7.4 Switching Between Collimated and Backscattered Wave
Propagation

To understand the influence of the proposed type of soft wall potential along
the transmission (reflection) stripes around B D 0 (B D Bs), and the induced
mechanism underlying conductance control, let us analyze the electronic scattering
states responsible for high (low) background transmission in the absence (presence)
of the field. Figure 7.5a,b displays the local density of states (LDOS) �.x; yI �/ for
electrons incident in the left lead of the billiard at sample non-resonant energies.

For B D 0 (Fig. 7.5a), we see that the effect of the finite potential is to direct
the motion along the axis connecting the leads, thus enhancing transmission. This
is achieved in a twofold way: (1) The special shape of the potential around the
lead openings, forming a stub of free motion into the billiard as a prolongation of
each lead, suppresses the transversal component of the electronic local momentum,
thereby collimating [11, 24] the motion in forward direction (in other words, the soft
wall reduces the diffractive effect of the hard-wall lead openings). (2) Owing to its
elliptic contour, the soft wall depletes the scattering state along the billiard boundary
and further confines it into an elongated profile leaking into both leads. For the same
reason, states corresponding to distinct Fano resonances become well decoupled
from the leads, and thus isolated from a significant (subtractive) contribution to the
overall transport.

For B D Bs (Fig. 7.5b), the scattering state profiles reveal the key role of
the soft wall in energetically sustaining the backscattered pathways. Again, the
mechanism is twofold: (1) States strongly coupled to the incoming lead are now
magnetically focused onto the billiard boundary, so that the electron follows a
pathway which is backscattered after ‘bouncing’ twice off the boundary [21, 25].
The soft wall here crucially comes to the aid of conductance suppression by
‘rescaling’ the dynamics and thus keeping the non-resonant backscattered pathway
energetically invariant: With increasing (decreasing) kinetic energy, the electron
undergoes weaker (stronger) Lorentz deflection at constant B D Bs, but at the
same time penetrates more (less) into the soft wall potential towards the boundary
(compare outer lobes of � in Fig. 7.5b;1,2,3). The soft wall thus effectively increases
the billiard size with energy, and as a result, the magnetically focused, backscattered

3The level diagram here strongly resembles the original Darwin-Fock spectrum, since at such low
energy the wave function poorly resolves the difference of the used confinement from a parabolic
one. The resulting nearly exact multilevel crossings have been studied experimentally for two [22]
and three [23] mixing levels which can coherently form a ‘dark’ state (complete cancellation of
resonance amplitude).
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Fig. 7.5 (a) Scaled LDOS
p
� and (a0) scaled probability current density

pj jj (the flow of j is
depicted by directed streamlines) shown at momenta �1;2;3 indicated by vertical lines in Fig. 7.3,
for electrons incident in the left lead (colormap normalized to maximum value in each plot). (b,b0)
Same as above, but for B D Bs. The dashed (dotted) lines in (a,b) show the potential contour at
V D 
2=2w2 (V D 0)

pathway persists over the whole channel. (2) As in the field-free case, any long-lived
resonant states are further confined away from both leads by the soft wall, rendering
the corresponding Fano peaks extremely narrow.

The actual (stationary) electronic motion in the billiard is depicted in Fig. 7.5a0,
b0 through its probability current density j.x; yI �/. With or without magnetic field,
the wave nature of transport leads to multiple complex vortex structures covering
the billiard, which change dramatically in energy. This detailed charge flow is, of
course, totally different from that of classical particles moving in the billiard area.
Nevertheless, we see that the parts of the flow with maximal density indeed favor
motion along the above described pathways needed for conductance switching in
varying EF, that is, a forward collimated current for B D 0 and a circulating
backscattered current for B D Bs.
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It should be pointed out that, although the soft wall succeeds in geometrically
rescaling the low-field (two-bounce) backscattered pathway, the motion is in general
drastically modified from that in a corresponding purely hard-wall billiard with
spectral boundary reflection [26]. In the present case, the further into the soft wall
the electron reaches, the more it is magnetically deflected due to its reduced (local)
momentum, and the motion is further affected by continuous electrostatic refraction
[27]. These effects are enhanced at stronger fields which localize the scattering
states closer to the boundary over longer parts (unlike the two-bounce paths, which
predominantly enter the wall radially). Therefore, such higher order (four-bounce,
six-bounce, etc.) backscattered pathways [25, 28] cannot persist over large energy
intervals for the same potential. Indeed, in Fig. 7.2a vertical reflection stripes tend to
form also at higher field strengths (B=B0 � 1:8; 2:2, etc.), but are eventually tilted
or destroyed as energy varies. Switching efficiency is thus restricted to smaller �F-
range and lower� at these fields.

Mode-Resolved Higher Channel Transmission

A closer look at the higher energy backscattered state in Fig. 7.5b,3 reveals that its
tail in the right lead belongs the second channel which is closed for propagation for
� < 2. The suppressed transmission of the state could thus be interpreted purely
quantum mechanically (that is, disregarding that the multiply interfering billiard
eigenlevels seen in Fig. 7.4 happen to produce a state qualitatively resembling
a magnetically deflected classical trajectory) as the consequence of vanishing
coupling to ground transversal mode of the outgoing lead due to opposite y-parity.

Indeed, this is confirmed by the mode-resolved transmission coefficients Tmn.�/
plotted in the first three channels in Fig. 7.6. We see that the lowest mode partial
coefficient T11 (dark red), which is the only non-vanishing one in the first channel,
largely continues its trend also in the second channel: the background (non-resonant)
T11 is switched from practically one to zero over a large energy range. Now there
are, however, contributions of scattering from (Tm2) and to (T2n) the second mode
in the leads as well.4 In particular, there is a strong contribution of either of T21,
T12 or T22 in different parts of the second channel for B D Bs, leading to an overall
total T around unity. Although transmission for B D 0 in the second channel is
overall larger, one can clearly no longer speak of an efficient and energy-persistent
conductance switching.

In the third channel transmission coefficients are even more dramatically altered
with respect to the regularity in the first channel. Now the zero-field T11 component
(dark red) is lowered from unity (in fact, performs a slow oscillation pattern in
energy), and at B D Bs it no longer overall suppressed (it forms a slow oscillation

4Note that for B D 0 only odd!odd or even!even mode transitions survive due to the conserved
x-parity of the stationary scattering eigenstates (as evident, e.g., from Fig. 7.5a).
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Fig. 7.6 Mode-resolved transmission coefficients Tmn from transversal mode n to mode m of the
attached leads within the first three channels of transport, 1 6 � 6 4, for (a) B D 0 and (b)
B D Bs. The individual coefficients are plotted cumulatively (on top of each other, with each Tmn
offset to the previous one) with area colors for each mode pair (m; n) indicated in the inset of (a)

opposite to the field-free case, with superimposed broad resonant features). The
higher channel components are substantial at both B D 0 and B D Bs, and
the resulting total transmission (the sum of all partial coefficients) is of similar
overall magnitude (the channel-averaged T is only slightly larger without the field),
and so the switching functionality of this particular setup is evidently lost at this
higher energy. We underline here the importance of the isolation of the classical-
like collimated and backscattered electron paths in the deep quantum regime
of the first channel from resonant contributions: Although the quantum-classical
correspondence generically sets in at higher energies [5, 13], it is here achieved
persistently–in the sense of spatially broad but still well defined wave propagation
paths–in the very low energy regime.

7.5 Conductance Switching in Soft-Wall Billiard Arrays

We now briefly investigate how the switching functionality of the soft-wall potential
is altered when the electron billiards are connected into an N-dot array like in
Chap. 6. In Fig. 7.7 the switching contrast 	g D g.B D 0/ � g.B D Bs/ of the
single soft-wall billiard analyzed so far is compared to a double-dot setup (N D 2)
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Fig. 7.7 Conductance switching contrast �g D g.B D 0/ � g.B D Bs/ in the first channel for
(a) the single soft-wall billiard of Fig. 7.2, and for an array of (b) N D 2 and (c) N D 10 identical
billiards connected via bridges (flat point contacts) aligned to the external leads and of common
length d D w, at different temperatures � (units defined by a0 D 2 nm and m D 0:069me)

and to a longer array of N D 10 connected dots, in the first transport channel.
Since g.B D Bs/ is overall very close to zero for finite temperature, the switching
contrast essentially coincides here with the field-free conductance,	g � g.B D 0/
over most part of the channel. Only in the pure transmission spectrum (g.� D 0/,
thin black line) the smooth background is perturbed by the narrow resonance
features; these are in fact also the only energies at which we may have negative
transmission switching 	g.� D 0/ < 0, while conductance switching is positive,
	g.� > 0/ > 0, practically everywhere for any considered temperature.

The connecting ‘bridges’ again consist of simple straight point contacts of zero
potential and hard-wall boundaries, aligned with the outer leads and of equal width.
As in the oval billiard array of the previous chapter, the dots now act as effective
potential barriers of energy-dependent strength and extent. The common length of
the bridges is chosen small, equal to their width, so that the induced shape (Breit-
Wigner) resonances in the transmission spectrum of the double-dot setup have a
large spacing and do not perturb severely the overall high single-dot transmission
(recall the dependence of Breit-Wigner peak spacing on bridge length in Fig. 6.6).
Indeed, let us concentrate on the � D 0:1K profiles (red lines) in Fig. 7.7, which
essentially show the field-free transmission without the very sharp Fano resonances.
The profile for N D 1 is retained in the N D 2 case, with the difference that dips
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become occasionally deeper and, more importantly for switching, wide peaks now
approach unity (corresponding to the bridge induced Breit-Wigner resonances). For
the long array of N D 10 dots the formation of bands with 	g � 1 and gaps with
	g � 0 is evident. This shows that, at very low temperature, the maximal switching
contrast of unity can be achieved in the soft-wall billiard array, though restricted to
specific and relatively small Fermi energy ranges.

As the temperature is raised, the details of the 	g profiles wash out and the
difference in energy variation between different N is diminished. Ultimately, the
variation in � saturates to a very smooth line for any N (here around the temperature
� D 3K for the parameters considered, thick orange lines); the magnitude of
the line, however, is largest for the single-dot setup. In other words, the finite-
temperature switching efficiency in the proposed billiard system does not rely on
banded transmission induced by an array geometry (where resonant transmission
is forced to unity by local periodicity [29]), but rather on the design of the single-
dot confinement. This brings the experimental advantage that the transport device,
which need only consist of a single dot, can be more easily fabricated at a size
below the electronic coherence length (making the utilized coherent transport model
more accurate) as well as the elastic mean free path (partly eliminating the need
for impurity scattering in the description of the switching effect) for a given
heterojunction setup.

7.6 Billiard Geometry and Soft-Wall Potential Variations

Having demonstrated and explained the proposed mechanism for finite-temperature,
energy-invariant conductance switching, including the modification of the effect for
setups with connected electron billiards, we finally analyze the impact of variations
in the shape of the confining potential as well as the soft-wall boundary profile.
The shape of the billiard is altered by varying the semi-axes a and b of the elliptic
boundary, and in order to present the changes in transport properties compactly we
utilize the average transmission T D R 2

1
T.�/ d� in the first channel (instead of the

full transmission spectra) as a simple estimate of the overall transmittivity through
the device.5 This way we plot the single numbers T for each shape parameter pair
.a; b/, as done in Fig. 7.8a for B D 0 and (a0) for B D Bs. As we see, the field-
free average transmittivity is largest for smaller b for any given a, where the billiard
shape is more elongated along the x-axis and thus increasingly favors the desired

5This estimate gives a fairly accurate account of the transport properties relevant for switching
for the billiard shape and soft-wall used so far, since the background transmission is practically
constant at B D 0;Bs. This holds also in the immediate vicinity of this setup in parameter space.
If the shape is drastically modified, however, T is a rough estimate and the actual background
variation in T.�/ (and the corresponding conductance) for every individual case should be
considered to conclude on energy-dependent switching contrast; this is done here for sample soft-
wall profiles.
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Fig. 7.8 (a,a0): Mean transmission in the first channel, T, for varying mid-wall semi-axes a and
b of the billiard with the linear wall potential of Fig. 7.1a0 with d D 96 a0, at (a) B D 0 and
(a0) B D Bs. The dotted lines indicate the geometry .a; b/ D .128; 84/ a0 chosen in Figs. 7.2,
7.3 and below. (b, c, d): Cross-section V.x D 0; y/ for (b) varying wall width and (c) varying
wall slope for a linear wall profile and (d) varying steepness for a parabolic soft wall profile with
Wood-Saxon-type [30] boundary (thin dashed line). (b0, c0, d0): corresponding conductance change
�g D gBD0 � gBDBs at kB�=E0 D 0:312 � 10�3 for optimal switching field strengths Bs (shown
in the legends in units of 10�3B0), within the first open channel (channel threshold indicated by
vertical lines). Both dotted and dash-dotted lines in (d0) correspond to the dotted potential profile
in (d), but for different Bs. Arrows indicate the maximum of each curve. Lengths are in units of a0.
For a0 D 2 nm and m D 0:069me : E0 D 276meV and � D 1:0K

forward collimation of the incoming electron wave. As discussed, the spectra in
this region have a uniform background close to unity with superimposed sharp
resonances of quasi-bound states decoupled from the leads. When b is increased,
more and more billiard states leak into the leads and their multiple interference
lead to an increasingly irregular transmission background; Fig. 7.8a shows that their
channel average decreases almost uniformly in increasing b, with a global minimum
for the largest billiard considered (both a and b maximal).

At the switching field B D Bs, the transmittivity has a global minimum for an
intermediate degree of elongation of the billiard, for which the boundary shape
combined with the soft wall supports backscattered states similar to the ones
analyzed above. The appropriate shape range can here be roughly estimated by the
commensurability of the bouncing pattern of classical orbits with a given cyclotron
radius of deflection, where also the continuous diffraction of the paths within the
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wall potential has to be taken into account (see, e.g., classical trajectories computed
in [25, 26]). We see that the global minimum in transmittivity is relatively broad
in both a and b, meaning that the needed backscattered states are highly present,
on average, for a substantial range of elongated shapes around the one chosen here
(indicated by the dotted lines in Fig. 7.8a, a0). More importantly, this .a; b/-area of
low T at B D Bs has a large overlap with high T areas at B D 0. This indicates a high
degree of robustness of the conductance switching mechanism against alteration of
the dot shape, which would be important in an experimental realization.

For the shape .a; b/ chosen in the previous sections, Fig. 7.8b0, c0, d0 shows
the switching contrast �g at a reference thermal width kB� for the different
soft wall profiles shown in Fig. 7.8 b, c, d (as cross sections along y > 0 at
x D 0), respectively, including smooth ones (d) that more closely simulate an
experimentally fabricated device [6–8]. As expected from the complicated dynamics
in the low-B regime where switching is pursued, there is a substantial variability
in switching efficiency among the various soft-wall profiles. We stress here that
high switching efficiency is achieved for a broad variety of soft wall profiles at
substantial thermal width, and relies on the enhanced g.B D 0/ and suppressed
g.B D Bs/ of a single and relatively large billiard (of area 
 w2) containing
many resonant levels (> 130 within the first channel at B D 0) which become
isolated from the leads.6 The optimal switching field Bs generally increases with the
steepness of the wall potential, in accordance with the stronger confinement of low-
energy backscattered billiard states. Further, the various curves demonstrate that
optimal switching (maximal �g, see arrows in Fig. 7.8b0, c0, d0) can be adjusted to
different EF by changing the soft wall parameters. For certain setups (dotted line
in (d)), energy-persistent backscattering (large �g) occurs for distinct Bs-values
along separate parts of the channel, meaning that optimal EF for switching can be
magnetically tuned in this case; see dotted and dash-dotted lines in (d0), showing
large�g in the upper and lower channel half, respectively.

7.7 Summary and Conclusions

In this chapter we demonstrated a simple way of isolating the magnetically con-
trollable scattering continuum from the manifold of resonant levels of a many-level
two-terminal electron billiard, persistently in energy. The underlying mechanism
relies on the combined action of an elongated (elliptic) billiard boundary and

6In [25], a magnetoresistance resonance is caused by cascading of similar backscattered states in
an array of smaller billiards (relative to lead openings) with a different kind of soft-wall potential;
this resonant property occurs at very low temperature and is attributed to classical dynamics
through a parabolic model potential. In [26], the same peak is attenuated for a single billiard,
and another peak appears for B D 0, lowering switching efficiency. This is in contrast to the
mechanism proposed here which relies on decoupling of resonances from an efficiently switchable,
energetically robust scattering continuum of a single billiard.
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a designed soft-wall potential, which together decouple quasi-bound states from
the attached leads while simultaneously directing forward field-free transport or
geometrically rescaling magnetically deflected, backscattered paths. This behavior
enables efficient switching of transport over variable Fermi energy from a full
conductance quantum (on-state) to practically zero (off-state) by turning on a weak
magnetic field.

The experimental realization of the proposed switching device is feasible, e.g.,
in Ga[Al]As heterostructures by a combination of local oxidation techniques with
optical or electron-beam lithography [6–8]. This provides a high precision in lateral
dot shape with steep soft-wall potential corresponding to a depletion length� 15 nm
[7]. The quantum dot can be tuned by additional top or planar gates [7, 8], and
large electron mean free paths are achievable at low temperature (e.g., 3–5�m at
4:2K [6]), which is important in order to maintain as high degree of ballisticity
as possible [31]. Since the proposed switching device consists of a single dot, its
fabrication is also facilitated below the electronic coherence length above� � 1K
[8, 9, 29]. Even in the presence of (weak) dephasing, though, the desired switching
effect should in fact be enhanced, since it relies on the suppression of resonant
interference: In similarity to the thermal averaging taken into account, dephasing
would attenuate the Fano extrema [32] and thus contribute to the overall high versus
low conductance needed for robust switching.

In conclusion, the proposed setup constitutes an efficient and robust conductance
switching device operating at finite temperature, weak magnetic field and over broad
Fermi level variation, and is realizable with current experimental techniques.
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Chapter 8
Directional Magnetotransport Control
in Multiterminal Focusing Quantum Billiards

In this chapter we explore the four-terminal transmission of a semi-elliptic open
quantum billiard in dependence of its geometry and an applied magnetic field,
and show that a controllable switching of currents between the four terminals
can be obtained. Depending on the eccentricity of the semi-ellipse and the width
and placement of the leads, high transmittivity at zero magnetic field is reached
either through states guided along the curved boundary or focused onto the straight
boundary of the billiard. For small eccentricity, attachment of leads at the ellipse
foci can yield optimized corresponding transmission, while departures from this
behavior demonstrate the inapplicability of solely classical considerations in the
deep quantum regime. The geometrically determined transmission is altered by
the phase-modulating and deflecting effect of the magnetic field, which switches
the pairs of leads connected by high transmittivity. It is shown that the elliptic
boundary is responsible for these very special transport properties. At higher
field strengths edge states form and the multiterminal transmission coefficients are
determined by the topology of the billiard. The combination of magnetotransport
with geometrically optimized transmission behavior leads to an efficient control
of the current through the multiterminal structure. In particular, the electron flow
can be directed from any input terminal to any output terminal at low temperature
via the applied magnetic field, and at low field strength a current cross-junction is
realizable. Excerpts and figures from [1] reprinted with permission. Copyright (2011) by the
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8.1 From Two-terminal to Multiterminal Conductance
Control: Directional Coupling by Wave Guiding
and Focusing

In the previous two chapters we demonstrated the ability to control the linear-
response electronic current through billiard setups with two outer terminals con-
nected to dehohering electrodes. This controllability was based on the separation
of resonant billiard (confined) states weakly coupled to the leads from strongly
coupled (leaking) ones through the design of the shape and potential profile of
the billiard, and the tunability of the transmission background by a magnetic field
(via phase modulation in Chap. 6 and magnetic focusing in Chap. 7). An implicit
ingredient of the conductance switching efficiency was the symmetric attachment
of the two outer leads on the device region. This way, stationary states at zero
magnetic field are assured to be equally coupled to both leads by symmetry, thereby
uniformly enhancing or diminishing their transport contribution. Specifically, an
incoming wave in the input lead populating a leaking state will also transmit well
into the output lead, with the same terminal interference to energetically neighboring
states. The coupling strength symmetry between the two terminals is then broken by
the applied magnetic field, thus providing a handle on the conductance switching.
Moreover, in two-terminal setups conservation of charge flux ensures that the
conductance is symmetric between the terminals (that is, the current from left to
right equals that from right to left at the same energy), regardless of the placement
of the leads (which can be asymmetric in general) and the complex dynamics within
the billiard (such as magnetically deflected paths which are completely different for
left and right incoming waves).

This situation changes drastically when more than two leads are attached to the
billiard. First of all, any state in the billiard (leaking or confined) will have a finite
coupling to all attached leads. This poses a challenge already to the achievement
of high transmission between two selected leads, let alone its switching, since
in principle a portion of the incoming flux will always escape through the other
leads. It is true that resonant states which happen to couple strongly to the chosen
two leads will lead to high (though not reaching unity) transmission peaks. Such
features do not survive thermal averaging, however, and large conductance relies
on the continuous accessibility of states that are coupled to a selected lead pair
and decoupled from the other leads. For a fixed billiard potential (that is, without
applying localized gates which block lead openings at will), the coupling of the
states to two selected leads is governed by the boundary geometry and lead
placement which must be appropriately designed; the coupling strength can then
be altered via the applied field.

The possibility to magnetically switch the current directionally from any input
lead to any other output lead clearly becomes a highly demanding task. The billiard
geometry now has to be such that (1) the applied field selectively induces strong
coupling to a particular output lead while suppressing the coupling to the other
output leads, for a given input lead, and (2) enables this scheme for any chosen
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input lead. Apart from the key role of the form of billiard boundary geometry, an
important role is here played by the geometrical symmetry of the device, by which
the reciprocity relations for multiterminal conductance [see (3.62)] can be exploited.

We here investigate the transmission behavior of a 4-terminal semi-elliptic
quantum billiard in dependence of its geometrical characteristics and examine how
an injected wave can be directed selectively to a chosen output terminal using a
magnetic field. For the sake of simplicity in recognizing the mechanisms responsible
for the transport behavior, we here consider hard-wall boundary confinement.
With the (semi-) elliptic geometry chosen, the classical dynamics of the closed
billiard is regular, with ballistic particle trajectories divided into so called librators
and rotators, which intersect its major axis at the segment between the foci and
the segments between the foci and the boundary, respectively [2, 3]. Librators
and rotators correspond to quantum eigenmodes [4] localized about the minor
semi-axis (also called ‘bouncing ball modes’) and along the elliptic boundary
(also called ‘whispering gallery modes’ [5]), respectively. Attaching leads to the
straight boundary of the semi-ellipse results in a generalized open mushroom [6]
(Bunimovich) billiard with multiple stems of infinite length. The chaotic trajectories
of the closed mushroom, entering its stems, escape into the leads in the open billiard
and contribute to transmission. The crucial role of the convex billiard boundary in
the quantum transmittivity of rotator states has been described in [5] for a 2-terminal
semi-circular billiard. It is shown here that the zero-field multiterminal transport
between leads attached to the billiard highly depends on the accessibility, through
their coupling to these leads, of both librator and rotator modes.

To analyze this dependence, we calculate the 4-terminal transmission coefficients
for varying eccentricity of the semi-ellipse, exploring the dependence of the
multilead transmittivity on the curvature of the boundary. The crossover from
librator to rotator modes being the dominant transmission mediators is revealed by
altering the lead positions along the straight part of the billiard boundary. It is shown
that an optimal transmittivity between both pairs of symmetrically placed leads can
be achieved by an appropriate choice of eccentricity and lead positioning. This relies
on the guiding and focusing effect of the semi-elliptic boundary on the rotator and
librator modes, respectively. For small eccentricity, the placement of attached leads
at the foci of the ellipse yields a high corresponding overall transmission coefficient,
as would be expected classically. As a result of wave interference and diffraction,
though, this condition does not apply for a generic setup, which implies a departure
from solely classical considerations. The importance of the rotator and librator
modes is further assessed by gradually perturbing the billiard with a circular disk
(antidot) placed on the curved boundary or in the interior.

With restrictions due to symmetry, the magnetic field changes each transmission
coefficient differently; the question thus arises whether the multiterminal setup can
function as a selective switch between the terminals by tuning the magnetic field, in
the sense that transmission of an incoming particle is efficiently favored to specific
leads and suppressed to others, as described above. Calculating the multiterminal
transmission coefficients of selected setups for varying magnetic field, we show
that such output controllability is indeed achieved: Highly efficient directional
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conductance for any input-output lead pair can be achieved at low temperature, as
a consequence of the interplay between the magnetic deflection of electronic orbits,
the geometrically induced effects on the scattering wave function, and the partial
symmetry of the device.

The chapter is organized as follows. In Sect. 8.2 the geometrical setup of the
2D billiard is specified together with a brief reminder of the basic theoretical
and computational framework for multiterminal quantum transport. Section 8.3
summarizes the consequences of the symmetries of the system with respect to the
multiterminal transmission. In Sect. 8.4 the main features of the obtained multilead
transmission spectra are discussed, along with a description of the underlying
mechanisms.1 This is followed by an analysis of the mean transmission components
in dependence of the geometric properties of the billiard in Sect. 8.5. The impact
of the magnetic field on transport is discussed in Sect. 8.6, concluding on the
induced controllability of transmission to selected output leads. The necessity of
the billiard properties for controllable combined output is demonstrated in Sect. 8.7
by comparison to a four-terminal setup of geometrically coupled quantum wires.
Finally, the directional switching functionality of the semi-elliptic electron billiard
is shown in Sect. 8.8 in terms of the linear conductance at finite temperature.
Section 8.9 contains a brief summary and conclusions.

8.2 Setup and Computational Approach

The geometry of the 4-terminal hard-wall billiard is shown in Fig. 8.1. It consists
of a semi-ellipse of eccentricity � D p

1 � b2=a2, where a and b are the major and
minor semi-axes respectively, on the straight border of which four vertical semi-
infinite leads of equal width w < a=2 are attached, symmetrically about the minor
axis of the ellipse x D 0. The elliptic boundary is smoothly continued into the outer
leads 1 and 2, between which the inner leads 3 and 4 are centered at distance l from
the origin. Recall that the semi-infinite leads attached to the closed billiard represent
the coupling to particle reservoirs, from which there is no reflection back into the
billiard.

To calculate the multi-terminal transmission coefficients of the system, Dirichlet
boundary conditions are imposed on the scattering wave function along the bound-
ary of the billiard, defined by a hard-wall potential V.r/.2 Adapting to our natural
units defined by „ D e D m D a0 D 1 (see Appendix E), the single-particle

1It is pointed out that the subject of this chapter are the quantum effects of transport through
the four-terminal semiellipse; classical considerations, including the classical librator and rotator
trajectories as well as the cyclotron radius of deflected orbits, provide a means of interpretation
and comparison of limited validity, since we do not focus on the semiclassical regime.
2We here concentrate on the geometric focusing effect of the boundary, separately from the effect
of its softness in experimental realizations; the latter quantitatively modifies, but does not eliminate,
the geometrically induced transport characteristics, and will not be considered here.
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Fig. 8.1 Geometry of the open billiard with indicated length parameters and lead labeling for
eccentricity � D f=a D p

1� b2=a2 D 0:35, lead width w D a=5, and inner lead positions
˙l D ˙a=2. The two dots at .x; y/ D .˙f ; 0/ are the foci of the (semi-) ellipse and the dashed
lines correspond to alternative setups (see text)

Hamiltonian is written H D .�ir C A/2=2 C V.r/ where the vector potential A
generates a magnetic field B D r � A D BOz which is perpendicular to the plane
of the structure and homogeneous over the extent of the billiard area. The incoming
electron wave is incident in one of the four leads with energy

E D k2

2
D 1

2

�
.kny/

2 C
�n

w

�2� D 1

2

�

w

�2
�2 ; (8.1)

where n D 1; 2; : : : labels the subbands of the longitudinal momentum kny along
the unperturbed leads, generated by the transversal confinement to their common
width w. The scaled momentum � D kw=
 D p2Ew=
 thus varies continuously
in the interval n < � < nC 1 for motion in the nth subband. As before, considering
electronic transport at a GaAs/AlGaAs (m D 0:069me) interface and setting the
lattice constant unit to a0 D 2 nm, the unit of energy becomes E0 D „2=ma20 D
276meV and the unit of field strength B0 D „=ea20 D 164:55T; the lengths in the
system are scaled by a reference ellipse major semi-axis a D 100 a0 D 200 nm.

The transmission coefficients Tij.E/ from lead j to lead i are given by the
Greenian G of the system via the multiterminal trace formula

Tij.E/ D TrŒ�iG�jG�� .i ¤ j/ (8.2)
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with �i D iŒ˙i � ˙�
i �, where ˙i is the partial self-energy due to the ith attached

lead. For i D j, the reflection coefficient of each lead j, Tjj � Rj, is given by the sum
rule

n.E/ D
X

i

Tji.E/ D
X

i

Tij.E/ D
X

i¤j

Tij.E/C Rj.E/; (8.3)

where n.E/ D intŒ�.E/� (integer part of �.E/) denotes here the number of open
channels in the leads (of common width w) at energy E, resulting from the unitarity
of the scattering matrix of the system. Note that, in the presence of a magnetic field,
the magnetoelectric subband thresholds raise in energy with increasing field strength
B: in the bulk of the incoming leads, the energy must overcome the successive
Landau levels, which bend upwards in energy when approaching the lead boundaries
(see Sect. 2.3 and Fig. 2.5).

The relevant parts of the open system propagator G are computed in the tight-
binding approximation of the effective (non-hermitian and energy dependent)
Hamiltonian Heff D H C P4

iD1 ˙i using the modular recursive Green function
technique presented in Chap. 5. The considered setup is assembled using two types
of modules: the semi-elliptic scatterer at constant magnetic field strength B, and
a lead part of length 30w where the magnetic field decreases linearly to zero (its
length ensures that we effectively simulate a device in a homogeneous field; see
Sect. 4.2.2). The modules are subsequently connected to form the complete setup
(consisting of the semi-elliptic module and the four B-field adaptation modules),
with the Green function of the connected modules obtained in each step by solving
the associated matrix Dyson equation by means of the block-Gaussian elimination
scheme developed in Sect. 5.5.

From lead-to-interior part of the propagator G we also compute the partial local
density of states (LDOS) as the diagonal elements of the partial spectral operator Fi,

�i.r;E/ D 1

2

hrjFijri D 1

2

hrjG�iG�jri ; (8.4)

corresponding to the scattering probability density resulting from an incoming
monochromatic wave of energy E in lead i.

8.3 Symmetries of the Transmission Coefficients

Before investigating the multiterminal transmission coefficients in varying geometry
and field, we show how symmetries present in the system can be used to reduce
the number of independent coefficients to be calculated. Time reversal symmetry
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(TRS) yields transpose scattering matrix under inversion of the magnetic field (see
Sect. 3.2.2), implying for the transmission coefficients [7]:

Tij.EIB/ D Tji.EI �B/: (8.5)

This reciprocity relation halves the number of independent transmission coefficients
Ti¤j;j when both field directions are considered. The reflection coefficients Rj D
TiDj;j are given by the sum rule equation (8.3) and remain the same under field
reversal [cf. (8.5)], reducing the number of independent coefficients by the number
of leads. For a 4-terminal billiard the 4 � 4 D 16 coefficients are thus reduced to 6
independent ones.

In our billiard the spatial reflection symmetry about the y-axis introduces
additional relations between symmetric pairs of leads. If leads i (at xi) and j (at
xj) are placed symmetrically to leads i0 (at �xi) and j0 (at �xj), then

Tij.EIB/ D Ti0j0.EI �B/; (8.6)

as the equations of motion for a (charged) particle are invariant under the trans-
formation .x;B/ ! .�x;�B/ in the symmetric billiard. Explicitly, we get the two
additional relations T24.B/ D T13.�B/ and T41.B/ D T32.�B/, reducing the number
of independent coefficients to 4 (if i0 D j and j0 D i, this reflection symmetry
coincides with the TRS).

In the following, we will work explicitly with the coefficients T21, T32, T13
and T34 with input in each one of the four leads, because this set serves best for
our discussion of the results. In Table 8.1 all transmission coefficients Tij.B/ are
explicitly expressed in terms of these four.

Table 8.1 Multiterminal transmission coefficients Tij.B/ from lead j (columns) to lead i (rows),
deduced from the coefficients T21, T32, T13 and T34 at magnetic field strength B (see text). The
surrounding boxes of the Ti¤j;j correspond to the plotted line types in Figs. 8.3–8.9
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8.4 Transmission Spectra at Zero Magnetic Field

The generic features of the zero-field multiterminal transmission spectra are pre-
sented for a geometric setup with relatively high overall transmission between inner
leads, since this will prove to be a key property for the desired controllability of
output terminal. The Tij.�/ are shown in Fig. 8.2A for � within the first channel
(n D 1). All terminal combinations are represented, since their relations in Table 8.1
simplify accordingly for B D �B. Figure 8.2B shows the LDOS at selected energies
for different leads of incident wave. Note that the presence of interference fringes in
a lead signifies back-reflection into that lead.

As we see in T21.�/, transmission is overall close to unity between the outer
leads. This results from rotator modes of the semi-elliptic billiard that would
leak into finite stems at the outer lead positions, and therefore are strongly
coupled to these leads in the open system. These leaking states constitute non-
resonant pathways for transport, whose superposition leads to a high transmission
background in T21 [see LDOS in Fig. 8.2B (i,d)], smoothly varying in energy [8, 9].

States weakly coupled to the outer leads [see LDOS in Fig. 8.2B (i,a) and (i,b)]
constitute resonant pathways, whose interference with the non-resonant pathways
leads to sharp resonances in T21.�/ of width proportional to their coupling, which
possess the characteristic Fano lineshape asymmetry [10–12]. In the case of a
single non-resonant pathway, the asymmetry is caused by a transmission zero close
to the resonant energy, owing to complete destructive interference between the
resonant and non-resonant state. In our system each quasi-bound state (resonant
pathway) in general couples to multiple multiterminal leaking states (non-resonant
pathways), which renders the total interference partially destructive and thus raises
the minimum of the Fano resonance from zero [10]. Corresponding to the eigen-
states of the closed semi-ellipse, the resonances superimposed on the transmission
background appear in series of different quasi-periodicity in �, determined by the
quantization of the wave-number of the semi-elliptic modes (in analogy with the
detailed description in [8] for the oval billiard).

The coefficient T34 is also overall high in the first channel for the chosen
eccentricity and lead positioning, in this case resulting from the strong coupling
mostly of librator modes to the inner leads. The convexity of the boundary plays a
crucial role for this behavior, since it focuses the scattering wave function, incident
in an inner lead, around the middle of the straight boundary of the billiard [see
Fig. 8.2B (ii,c) at which energy T34 practically reaches unity]. Note that, since the
leads in this setup are centered at the foci of the ellipse, classically both librators
and rotators intersect the lead openings; quantum mechanically though, there is a
larger number of eigenmodes of librator type with maxima at the foci [4]. Due to
interference between these modes, setting l D f D �a is not a necessity for the
acquired high inner-lead transmission; it depends also on the chosen �, as will be
shown in Sect. 8.5.

In T34 the sharp resonant dips in the high background are at the same positions
as in T21 but generally of different width, arising from the same quasi-bound states
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Fig. 8.2 (A) The four independent transmission coefficients Tij at zero magnetic field, as a
function of the scaled energy � D k � w=
 D p

2E � w=
 , for the elliptic (� D �3 D 0:35,
black solid line) and circular (blue dotted line) billiard border, both with w D a=5 and l D �3a. (B)
LDOS for the semi-elliptic billiard at different energies (a), (b), (c), (d) indicated by the vertical
lines in (A), with the particle incident in the (i) outer and (ii) inner left lead. The colormap scales
with

p
�.x; y/ from white (� D 0) to black (� D max) and is normalized to its maximal value in

each plot

coupling with different strength to the inner leads. Also, the Fano minima in T34
are of different height than in T21, since different non-resonant transport paths are
provided by the librator modes, interfering with the resonant states. For some sharp
resonances in T34 (e.g. at � � 1:145 and 1:365) the Fano asymmetry is more distinct,
as they lie within a dip of the transmission background.
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As a consequence of probability flux conservation [(8.3)], unit transmission in
either T21 D T12 or T34 D T43 leads to vanishing transmission in both T32 D
T23 D T41 D T14 and T13 D T31 D T24 D T42. Thus, transmission between an
outer and an inner lead, represented by the coefficients T32 and T13 in Fig. 8.2A, is
almost zero over the whole channel for the chosen geometric parameters. It exhibits
resonant peaks, coinciding with dips for the symmetric lead pairs, albeit of rather
low amplitude, since the incoming wave is mostly reflected into the same lead [see
Fig. 8.2B (a)] or transmitted to the symmetrically placed lead [see Fig. 8.2B (b)]. As
each eigenstate of the semi-elliptic billiard is symmetric, it generically couples with
different strength to inner and outer leads; desymmetrized lead positions then lead
to lower transmittivity of the corresponding resonant states in the open system [5].

When the eccentricity of the billiard is slightly changed, the eigenstate wave-
length in the elliptic coordinates is accordingly modified [4] and consequently the
corresponding transmission resonances shift in �. This is evident in Fig. 8.2A for
the semi-circular billiard (dotted cyan line): its area is slightly larger than the semi-
ellipse, so that the resonances are shifted to lower �. The dips in T21 and T34 (or
peaks in T32 and T13) are overall broader for the semi-circular billiard, owing to the
enhanced coupling of its eigenstates to both inner and outer leads. It also shows a
pronounced imbalance between T32 and T13 at low energy: resonant transmission is
larger from an outer lead to the inner lead which is closer to the opposite outer lead,
where rotator modes can be accessed.

8.5 Geometry Dependent Mean Transmission

Having presented the zero-field spectral features and their origins, we proceed to
investigate the overall multiterminal transmittivity in dependence of the geometry
of the setup by computing, for each set of parameters, the channel-integrated mean
transmission coefficients

T
.n/
ij D

Z �DnC1

�Dn
Tij.�/ (8.7)

of the nth transversal subband, which constitute a measure of the overall response
of the system upon an incoming wave in one of the leads.

In order to confirm the role of rotator and librator modes in coupling symmet-
rically placed leads we first explore the effect of a perturbing disk (antidot) on the

mean transmission coefficients. In Fig. 8.3 the T
.nD1/
ij � Tij (the channel superscript

is dropped for n D 1) are shown as a function of varying radius of the disk, for
three different eccentricities. In Fig. 8.3a the disk constitutes a circular recess of the
elliptic boundary, and in Fig. 8.3b it leaves the boundary of the billiard unperturbed,
but partially blocks direct transport in its bulk.

In case (a) the rotator modes are gradually destroyed with increasing r, because
incoming waves from an outer lead are deflected on the concave part of the boundary
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Fig. 8.3 Zero-field channel-averaged transmission coefficients Tij between terminals .i; j/ D
.2; 1/ (red dashed-dotted line), .3; 4/ (blue solid line), .1; 3/ (cyan dotted line), .3; 2/ (green dashed
line) with lead widths and positions as in Fig. 8.2 and eccentricities (from top to bottom row)
�1 D 0:78, �2 D 0:65, �3 D 0:35, for the semi-elliptic billiard with a disk inserted in the billiard
(a) centered at .x; y/ D .0; b/with radius r varying from 0 to b and (b) centered at .x; y/ D .0; b=2/
with r varying from 0 to b=2. The vertical lines denote the threshold radius rt for tunneling within
the first channel (see text)

into the billiard interior (an analogous situation is presented in [5] for a fixed
rectangular cut). Similarly, the librator modes are destroyed since they rely on the
focusing ability, predominantly around the y-axis, of the convex boundary. As a
result, the direct pathways between symmetric leads are depleted, leading to an
abrupt decrease in T21.r/ and T34.r/ above a critical disk radius, which is about
rc � w=3 for all � [note that the scaling r=b stretches the plots horizontally for larger
�: rc.�1/ � 0:10 b, rc.�2/ � 0:08 b; rc.�3/ � 0:06 b]. Below this critical disk radius,
efficient guiding of rotator modes and focusing of librator modes can be considered
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robust to boundary perturbations.3 For smaller �, T34.r/ remains substantial over
larger r, since the larger billiard can support a larger number of direct scattering
pathways between the inner leads. Deflection on the perturbed boundary enhances
scattering to asymmetrically placed leads, leading to increased T32 and T13 from
zero for r ¤ 0.

In case (b) the librator modes are again rapidly destroyed by the disk, resulting
in a decrease of T34.r/ similar to that in (a). Rotator modes sufficiently localized
along the elliptic boundary survive up to some disk size and still connect the
outer leads; especially in (b, �3), T21.r/ forms a characteristic high plateau until
decreasing abruptly when the remaining free width between disk and boundary
becomes smaller than the leadwidth w D a=5.

The latter condition is met above a threshold radius rt given by (a) rt=b D 1 �
.5
p
1 � �2/�1 and (b) 2rt=b D 1 � 2.5p1 � �2/�1, denoted by vertical lines in

Fig. 8.3, at which the energy threshold for transport between opposite sides of the
disk enters the first channel in the leads. When this threshold rises above � D 2 (for
free width smaller than w=2), only tunneling through the constrictions contributes
to T21, T34 and T32, which then practically vanish; in contrast, T13 is enhanced
for large r, particularly in case (b, �1). Furthermore, larger number of accessible
eigenstates causes more resonant features in the transmission spectra, leading to
increased fluctuations of the Tij in continuously varying geometry for larger billiards
(row �3).

Librator- and rotator-like eigenmodes of the billiard were shown to be necessary
for high inner and outer lead transmission; nevertheless, their coupling to the leads
further depends on the eccentricity of the unperturbed billiard for a given lead
positioning. In Fig. 8.4 the Tij are plotted against the ratio b=a D p1 � �2 for
different w. In order to access the limit of zero curvature (� D 1), the straight edge
of the billiard is lowered by one leadwidth (see dashed line in Fig. 8.1). For the true
semi-elliptic setup the features in Tij.b=a/ are shifted to larger b (and thus smaller
�), so that the change in size is compensated and the corresponding eigenmodes
remain approximately at the same energies. T21 and T34 overall increase with b, as
rotator- and librator-like modes start to form which couple outer and inner leads; in
contrast, T32 and T13 overall decrease and possess a common broad minimum. For a
certain eccentricity range a separation between inner and outer leads is thus possible,
in the sense that cross-coupling between them (i.e. between an outer and an inner
lead) is almost eliminated in zero magnetic field. Further, depending on �, rotator-
like modes leaking into the outer leads can interfere into a suppressed transmission
background, causing the characteristic wide dip in T21 for b � a=3. By decreasingw
the transversal subbands are shifted up in energy and the wavelength of the incoming

3The hard-wall disk barriers considered here represent drastic perturbations of the billiard
geometry, constituting device imperfections that modify its transport properties. The more realistic
case of disorder from impurity distributions was previously modeled in Chap. 6 and shown to allow
for robustness of interference-induced magnetotransport up to a limiting disorder strength.
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Fig. 8.4 Tij for varying ratio b=a, with equidistantly attached leads of width (a) w0 D a=3:5 and
(b) w2 D a=7. The light (orange) dashed line shows the eccentricity �. The lower horizontal edge
of the billiard here lies at y D �w (see Fig. 8.1), and the upper edge is varied from straight (b D 0)
to elliptic (0 < b < a) to circular (b D a), as illustrated by the inset pictures in (b)

particle decreases relatively to the billiard size, so that a larger number of eigenstates
is spanned within the first channel. This leads to increased fluctuations of the Tij in
Fig. 8.4b, similar to those in Fig. 8.3 (row �3).

Let us now investigate the overall transmission behavior in dependence of the
placement of the inner leads, which determines their coupling to the different billiard
eigenmodes. As the inner leads are moved away from the center, there is a gradual
crossover of the direct transport paths from librator- to rotator-type states. The
question arises whether it is sufficient, or even necessary, to place the inner leads
at the ellipse foci in order to achieve high transmission between them, as shown in
Fig. 8.2. In the classical picture the separation of librators and rotators by the focal
points is sharp, and in the limit of zero leadwidth, all trajectories coming in from
one focus are scattered directly (by only one reflection at the elliptic boundary)
to the other, leading to unit transmission. For a finite leadwidth, a portion of the
incoming trajectories is scattered onto the straight segments between the leads and
eventually into an outer lead, so that the inner lead transmission is lowered from
unity. In the quantum case, additionally, the spatial separation between librator and
rotator modes is not sharp, especially at the low energies considered; thus, however
narrow, the inner leads couple to both types of modes. Most importantly, though,
the transmission coefficients highly depend on interference phenomena between
the resonant states coupling to the leads. Even if the inner leads are placed close
to the foci, where most eigenmodes possess a probability maximum [4], multiple
destructive interference between them may lead to low overall transmission.

In Fig. 8.5 the variation of the mean transmission components with the inner
lead displacement l is shown for different leadwidths and eccentricities. For large �,
T34.l/ increases to maximum when the inner leads are next to the outer ones, though
with transport dominated by librator modes since the foci lie within the outer lead
openings (w1, �1). This trend is inverted for smaller �, where the foci come closer
to the origin and allow for the coupling to rotator modes. Then (w1, �3) T34.l/ is
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Fig. 8.5 Tij in the unperturbed semi-elliptic billiard, for lead widths (left to right column) w1 D
a=5, w2 D a=7, w3 D a=10:5 and eccentricities (top to bottom row) �1 D 0:78, �2 D 0:65,
�3 D 0:35, as a function of the displacement l of the inner leads from the origin. The vertical lines
show the position of the focal points f=a D � for each setup

maximal for the inner leads close to the origin and decreases to minimum for large
l, as a result of destructive interference in combination with diffraction at the lead
openings [13]. For narrower leads (columns w2 and w3) these features remain, with
enhanced fluctuations like in Fig. 8.4.

We indeed see that placing the inner leads close to the foci does not necessarily
lead to high overall transmission between these leads, demonstrating the departure
from the classically expected behavior of our billiard in the deep quantum regime.
Some of the setups, in particular of Fig. 8.5 (w3, �1), even exhibit a wide minimum
in T34 around l D f .

T21.l/ overall increases with w and �, but remains largely unaffected by the
variations in l. It decreases slightly only when l is large enough for the inner leads to
couple to the same modes as the outer leads, which causes a corresponding increase
in T32 and T13.

For the magnetic control of multiterminal transmission, to be discussed in the
following section, it is important to achieve high inner- and outer-lead zero-field
transmission, while cross-coupling is suppressed; we see that these conditions are
met in our setup by combining small l and � with relatively large w.
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8.6 Transmission in a Magnetic Field

To understand how conductivity between terminals can be selectively manipulated
with the magnetic field, we first analyze its impact on the transmission spectra and
its interplay with the geometric properties. In the presence of the field the resonant
states accordingly shift in energy [14], while its influence on their phase modifies
their coupling to the leads and the interference with other states. Therefore, the
widths of sharp Fano resonances generally change, and the non-resonant pathways
interfere into a different transmission background. If the field is very weak, the
spatial distribution of the eigenmodes remains practically unaffected, as does
their individual coupling to the lead openings. A drastic change in the overall
transmission in a weak field can still take place, though, when a small number of
leaking modes interfere [8]. For a stronger magnetic field the spatial distribution of
the states changes enough to generally yield a completely modified transmission
spectrum. In the classical picture the charged particle moving in the billiard is
deflected into circular orbits of cyclotron (Larmor) radius rL D k=jBj, making the
classification of trajectories into rotators and librators inapplicable. When the field
strength is further increased, rL eventually becomes so small that the particle moves
along skipping trajectories at the billiard edges [15]. The corresponding quantum
scattering wave function is localized into edge states [16], which enable almost
reflectionless transport along the boundary.

In Fig. 8.6a the transmission spectra at (i) zero, (ii-iii) intermediate and (iv) high
magnetic field strength are shown for the unperturbed billiard. As in Sect. 8.4, the
geometry is adjusted for high inner- and outer-lead zero-field transmission; in order
to concentrate on magnetically induced spectral changes, even wider leads are used,
avoiding increased fluctuations from multiple interference of billiard eigenmodes.
The three first channels n D 1; 2; 3 are addressed, showing the typical stepwise
increase of (maximal) transmission with n and the effect of channel mode coupling.
T21 and T34 are overall high in the first channel at B D 0 [(a) (iii)], as previously
discussed, but get modulated in the higher channels by increasingly wide dips
and lowered background transmission caused by multimode interference. The field
strength for (a) (ii) is chosen to suppress inner-lead transmission, which enables the
control of multiterminal transport, as will be shown in Sect. 8.8. Waves coming in
from lead 1 are deflected onto the curved boundary, which decouples them further
from the inner leads, reducing the width of the dips in T21. T34 is overall lowered,
since waves coming in from lead 4 (containing the right ellipse focus) are no longer
focused into lead 3: the librator modes are destroyed in the presence of the deflecting
field. On the contrary, T32 D T14 is drastically increased and T12 (not shown)
is accordingly reduced: the Larmor radius at this field is, approximately, the one
needed to deflect classical trajectories from lead 4 into lead 1 (or from lead 2–
lead 3) without reflection at the boundary, for energies in the first channel. This
condition is not fulfilled anymore at the even higher field strength in (a) (iii), where
edge states start to form. In the first channel, transmission is then favored to the
next neighboring lead (T21, T34 and T13 D T42) and suppressed between other lead
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Fig. 8.6 Transmission coefficients T21 (red), T34 (blue), T32 (green), T13 (cyan), with offsets
3; 2; 1; 0 respectively, as a function of � within the first three transversal subbands n D 1; 2; 3

of leads of width w D w0 D a=3:5, attached equidistantly with l D .a � w=2/=3 D 0:84 f , (a)
for the unperturbed semi-ellipse billiard with � D 0:35 and (b) for the same geometry with a disk
of radius r D b=2 � 2w=3 centered at .0; b=2/, at magnetic field (i) B D 0, (ii) B D 0:002, (iii)
B D 0:005, (iv) B D 0:010, with B D BOz. Arrows and vertical dashed lines indicate �-values at
which the LDOS is shown in Figs. 8.7 and 8.10, respectively
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pairs. The complementarity between the multi-terminal coefficients is here clearly
manifest in the coincidence of the dips in T34 and T13 D T42 with the peaks in
T32 D T14. These resonances appear when the nodal pattern of interfering edge
states (or a multiple of the diameter of the classical skipping orbits) matches the
distance of leads 2 and 3 instead of adjacent leads (this behavior is described in detail
in [16] for a 2-terminal billiard). In the second and third channel, interference of a
larger number of accessible modes enhances again fluctuations in the transmission
background. At very high field strength [(a) (iv)] the edge states lie so far apart
in energy (and classically rL is so small) that plateaus of unit transmission to
clockwise subsequent leads appear for energies in the lowest magnetoelectric
(Landau) subband. When more edge states are energetically accessible we observe
a difference between scattering at smooth and sharp lead openings. Diffraction at
the sharp edges causes mixing and interference of the different edge states [16],
leading to oscillations in T34, T32 and T13. Only the T21 coefficient exhibits perfect
transmission even at higher energy, since the edge states adiabatically follow the
smooth elliptic boundary from lead 1–2. The stepwise increase of transmission with
n, most pronounced in T21, is shifted to higher � with increasing field strength,
following the threshold energies of the magnetic subbands.

To illustrate the effects of geometry in combination with the magnetic field on
the scattering states, the LDOS at a chosen � (vertical dashed lines in Fig. 8.6a) is
shown later in Fig. 8.10 in connection to directed multiterminal conductance.

As in Sect. 8.5, a disk inside the semi-elliptic billiard drastically changes its
transmission properties by blocking direct transport paths between the leads. In
Fig. 8.6b the field dependent spectra are shown for this setup, with the disk leaving
constrictions of minimal width 2w=3with the boundary. The transmission threshold
is then essentially shifted from n to 3n=2, as can be seen by replacing w with 2w=3
in (8.1). Thus, T21, T34, or T32 > n � 1 below � D 3n=2 results from tunneling of
the wave function through the constrictions. Distinct resonant tunneling peaks are
seen below this threshold for n D 2 (that is, 1:5 < � < 3) in T21 and T34 at high
field strength [Fig. 8.6b (iii) and (iv)], mediated by edge states that are localized on
the disk edges (similar to the states leading to sharp reflection resonances, due to
different geometrical setup, in [17]). The LDOS for an incoming electron wave in
the leftmost lead is shown in Fig. 8.7 for such a resonant state (a) and for a state
between the resonances (b). The effective resonator length is, approximately, the

Fig. 8.7 Partial LDOS corresponding to the �-values indicated by the (a) left and (b) right arrow
in Fig. 8.6b (iv), for a wave incident in the leftmost (i D 1) lead
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Fig. 8.8 Mean transmission coefficients Tij as a function of the applied magnetic field B for the
billiard of Fig. 8.6 with increasing disk radius r in the n D 1 subband (top to bottom panels in left
column); for zero and maximal r (top and bottom row, respectively) also the n D 2 and n D 3

subbands are shown. Each plot is of height maxŒT
.n/
ij � D n. The light (orange) dashed line in the

bottom row panels shows the scaled Larmor radius rL=a at the nth channel’s center � D n C 1=2

mean periphery 2
.r C w=3/, leading to the observed peak spacing �� � 0:247

in Fig. 8.6b (iv). On the other hand, scattering upon the disk favors transmission
between leads on the same side of it, so that T13 overall increases and qualitatively
approaches the unperturbed case for strong fields.

In Fig. 8.8 the four independent channel mean components Tij are plotted as a

function of B for different radii r of the inserted disk [rows (i) to (v)]. The T
.2/

ij

and T
.3/

ij are shown for r D 0 (unperturbed billiard) and r D b=2 � w=3 (almost

divided billiard), where also the Larmor radius rL.B/ D 
=w � .nC 1
2
/=jBj at each

channel center is plotted to show the field impact on the classical trajectories. In
absence of the disk [row (i)], T21 is close to unity for B > 0, falling off slowly at
large B as the magnetic threshold enters the channel [see Fig. 8.6a (iv)]. For B < 0

it decreases abruptly with field strength when rL < a, since the incoming waves
in lead 1 are deflected away from the elliptic boundary. T34, which is also large at
B D 0, decreases to a prominent local minimum at B � C0:002, corresponding to
the spectrum in Fig. 8.6a (ii). At the minimum, a large portion of the wave coming
in from lead 4 is deflected into lead 1, leading to a corresponding maximum in
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T14 [with T14.B/ D T41.�B/ D T32.B/, see Table 8.1], which is otherwise close
to zero. It is this drastic change at the intermediate field strength B � C0:002,
different for each mean transmission component, that will serve as a key property to
enable multiterminal transport control for the geometrical parameters used. At even
stronger field the waves from lead 4 follow edge states directly into lead 3, so that
T34 increases again, while T14 D T32 decreases. For B < 0, T34 remains high over
the local minimum of T21 around B D �0:002, before it too falls off for stronger
fields. T13, on the other hand, remains close to zero for all B < 0, increases with the
field strength for B > 0, and finally follows T34 in the edge state regime, where the
pathways 4 ! 3 and 3 ! 1 are almost equivalent along the boundary: indeed, the
T34 and T13 spectra practically coincide in Fig. 8.6a (iv).

On all Tij.B/ curves, though more visible in T21 and T34, relatively small
fluctuations in B are superimposed, which can be regarded as generalized collective
AB oscillations from interference between spatially extended leaking states: the
oscillations in Tij.B/ at each � add up to a large-scale oscillation of the channel
average. The characteristics of Tij remain qualitatively the same in the higher
channels (with maximum D n), mapped onto a larger B-scale: at higher energy
larger field strength yields the same Larmor radius and similar variations as in
Tij.B/. From the above we see that, depending on B, overall transmission is favored
from each lead to certain other leads and suppressed to the rest. We will address this
possibility for directed multiterminal transport in detail in Sect. 8.8.

The modification of the Tij.B/ profiles by the perturbing disk is shown in
Fig. 8.8 (i)–(v), where its radius r is increased so that transmission between leads
on opposite sides is suppressed, as previously described [see Figs. 8.3b and 8.6b].
Thus T21.B/, T34.B/ and T32.B/, although retaining their trends, gradually decrease
to zero for any B when the constrictions become narrower than the leads. In contrast,
T13 increases with r at B D 0, as seen also in Fig. 8.3b, and remains large at strong
B > 0. Also at strong B < 0, though, T13 increases with r, because the edge states
(now clockwise deflected classical orbits) can guide the particle from lead 3 onto
the disk edge and then onto the elliptic boundary to the left of the disk, which it
follows into lead 1. Interestingly, for large enough disk [as in Fig. 8.8 (v), where the
constriction width is w=3] the 4-terminal billiard is effectively divided into two 2-
terminal billiards for n D 1, so that transmission between leads on the same side of
the disk becomes symmetric in B: T13.B/ D T13.�B/ and T24.B/ D T24.�B/, as a
consequence of the sum rule equation (8.3) and the symmetry relation equation (8.5)
for the special case of a system with two leads [18]. This 2-terminal symmetry is not
present in the higher channels [n D 2; 3 in row (v)], where the smaller transversal
wavelength enables transport through the constrictions.

Conclusively, the disk reduces the difference between the (independent) Tij.B/,
thereby weakening the controllability of multiterminal transmission. Nevertheless,
an appropriate disk-like blocking potential switches output from lead 2 to lead 3
(from lead 3 to lead 2) with input in lead 1 (in lead 4) at strong B > 0, which,
in the context of directed transport, constitutes an additional (electric) switching
mechanism based on the geometry-independent behavior of edge states.
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8.7 Bent Coupled Wires

Magnetically induced directed transport in our setup was shown to rely on the
convexity of its boundary, which enables highly transmittive pathways at low
field strength by the formation of librator- and rotator-like modes. These coexist
in the semi-ellipse, so in order to separately investigate the role of boundary-
localized modes in the overall transmission, and the impact of their interference with
gradually upcoming bulk modes, we consider the following setup: two circularly
bent parallel quantum wires coupled through a smooth opening of adjustable width
d at the bend [see sketch in Fig. 8.9a]. The Tij.B/ are plotted in Fig. 8.9a without the
opening (top) and for increasing opening width (second from top to bottom), and are
compared to the case of straight coupled wires [19, 20] in Fig. 8.9b, where curvature
is absent and additional y-symmetry is present. With no opening the transmission in
the two disconnected bent wires at B D 0 is almost perfect: T21 and T34 depart
from unity only due to narrow resonances caused by the curvature of the wires,
which effectively induces an attractive potential [21]. T21 is slightly smaller than
T34, because the resonances for the longer bent part lie closer in �. Both slowly
decrease at stronger fields, as the magnetoelectric subband threshold rises [like
in Fig. 8.6a (iv)]. A detailed study of transmission of similarly bent waveguides in
uniform magnetic fields can be found in [22].

When the wires couple, the 2-terminal B-symmetry of the isolated wires is
broken. As the opening is widened, the rotating modes connecting the outer and
inner leads increasingly interfere with states that extend into the opening, leading
to enhanced back-scattering dips in the corresponding transmission coefficients and
a following decrease in T21 and T34. The role of rotator- and librator-like modes
is here manifest in the inner-lead transmission as d is varied at B � 0. T34 is
high for d � 0, where transport is dominated by rotator-like modes, decreases
at intermediate d, where the rotators are destroyed by the opening in the inner
convex boundary, and increases again for large d (& 6w=4), where the outer
convex boundary focuses the wave function into librator-like modes. At appropriate
strength, the magnetic field favors transport between terminals on either side of
opening by deflection of the particle orbits. T32 increases to a local maximum
at intermediate B > 0, which rises for larger d. T13, on the other hand, rises
significantly only at high B > 0 where the particle is guided by edge states.

For maximal opening d D 3w the setup becomes the 4-terminal semi-circular
billiard, now with smooth lead openings. Controllability of output terminal, as
described in Sect. 8.6, then becomes optimal, and the Tij.B/ profiles are very similar
to the ones in Fig. 8.8 (i). This shows that the smoothness of the lead openings,
as well as the small change in eccentricity and size, although clearly affecting the
dynamics in the scattering system and thereby the detailed spectral features, leave
the overall field dependence qualitatively unchanged.

In Fig. 8.9b the strong field asymptotics of the Tij.B/ for the straight coupled
wires coincide with those of the bent wires, since transport through edge states is
rather affected by the topology, and not by the geometry, of the scatterer. The first
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Fig. 8.9 Tij.B/ for two parallel wires at distance equal to their common width w D a=3:5, coupled
by a smooth opening of width d and circular edges of radius w=2, (a) with the wires bent by an
angle 
 across the coupling and (b) in straight configuration (parallel and equidistant to the x-axis).
In the top plots there is no opening, and then the opening width is increased in steps of w=4 from
d D w=4 to d D 3w (second from top to bottom, with transmission offsets decreasing by one), the
latter yielding in (a) the semi-circular billiard with smooth lead openings

obvious difference here is that the additional reflection symmetry about the x-axis
renders the components T21 and T34, whose difference was central in the discussion
so far, identical. That is, regardless of the field strength, high transmission between
the outer leads can never be combined with low transmission between the inner
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leads, as it can for the bent wires. Also due to spatial symmetry, T32 must now be
symmetric in B, and its broad peak around B D C0:002 for the bent wires is shifted
to B D 0. As a result, crossed-lead transmission (between leads 2; 3 or 1; 4) can no
longer be switched from high to low by inverting the field. At weak fields, T34.B/
varies similarly for bent and straight wires for small d . 6w=4; for large d though,
the straight wires, unlike the bent wires, yield low T34 D T21 aroundB D 0, because
of the absence of modes that are focused at the lead openings or guide the incoming
wave along the boundary. We conclude that the increased symmetry of the straight
leads and the absence of the convex boundary reduce the possible combinations of
magnetically induced transport directions between the terminals.

8.8 Directed Conductance

In the discussion so far we have utilized the channel-integrated mean transmission
[(8.7)] as a tool to compactly describe the average response of the transmission to
parameter changes. The actual measurable conductance coefficients gij connecting
the current flowing inwards at terminal i with the voltage differences to all
other terminals j are, in the linear response regime at temperature ‚, given by
the multiterminal Landauer-Büttiker formula [see (3.59)] in units of the (spin-
degenerate) conductance quantum G0 D e2=
„,

gij.‚IEF/ D
Z C1

�1
Tij.E/F.‚;EFIE/ dE; (8.8)

where F.‚;EFIE/ is the thermal broadening function in the form given in (6.7).
Thus, gij essentially equals the thermally averaged multiterminal transmission
around the electron Fermi energy, with a width proportional to ‚, and coincides
with Tij at ‚ D 0.

The output controllability described in Sect. 8.6 can be enhanced in terms of
the conductance at low temperature and low Fermi energy, where transmission
features are resolved in a smaller �-range than the whole channel. While the local
maxima (minima) of T32 and T34 in Fig. 8.8 (i) suggest a maximal efficiency for
magnetically directed transport of about 50 % in the unperturbed elliptic setup,
adjusting temperature and Fermi energy appropriately can yield corresponding
conductance maxima (minima) close to unity (zero) at these field strengths. To
provide an example, we choose the Fermi energy corresponding to � D �F Dp
2EF � w=
 D 1:425, indicated by dashed vertical lines in the transmission

spectra of Fig. 8.6a (i), (ii), and (iv). The LDOS profiles for electrons incident in
each terminal at the corresponding field strengths are shown in Fig. 8.10, revealing
the variable directional coupling of the scattering states between the terminals.
Note the contribution of rotator- and librator-like states at zero field in Fig. 8.10a,
the magnetically deflected states at moderate field in (b), and the edge states at
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Fig. 8.10 Partial LDOS for incoming wave in lead i D 1; 2; 3; 4 (indicated by N) for (a) B D
0, (b) B D 0:002, and (c) B D 010 n.u., corresponding to the vertical lines at � D 1:425 in
Fig. 8.6a (i), (ii), and (iv), respectively, for the same billiard geometry

strong field in (c). At a temperature ‚ D 100mK, the resulting conductance
coefficients for the same field strengths are shown in Fig. 8.11 as grayscale cells
for the individual gij ordered like in Table 8.1. The diagonal elements gii following
from (8.8) do not contribute to calculated currents, but indicate the degree of
reflectance for ballistic transport and show the depart from unity of the sum of
conductances from or to the other (¤ i) terminals. For the chosen parameters the
conductance coefficients practically reach unity (black cells) for specific terminal
combinations i ! j and practically vanish for the rest (white cells), depending
on the direction and strength of the field. In particular, for each input lead i, the
output can be switched selectively to any lead j ¤ i by appropriately tuning B (as
indicated by the sketched arrows in the lower panels of Fig. 8.11). This relies on the
above discussed interplay of geometry and magnetic field effects. For large jBj (see
B D ˙0:010 blocks in Fig. 8.11) edge states form and conductance is determined
by the topology of the boundary (in general directed edge state transport can also be
implemented, but with finite potential barriers [15, 23, 24] at the lead openings).
At zero and intermediate jBj the output is governed by interference of spatially
extended scattering states leading, for this billiard, to overall high transmittivity
between certain non-neighboring terminals, as seen in the B D 0 and B D ˙0:002
blocks in Fig. 8.11.

This shows that the current can be efficiently directed from a given input to
a selected output terminal. Especially for zero and intermediate magnetic field
strength it is even possible to construct a controllable cross-junction for the currents:
choosing, e.g., leads 1 and 3 as input terminals and leads 2 and 4 as output, current
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Fig. 8.11 Multiterminal conductance coefficients gij at scaled Fermi energy �F D w=
 �p2EF D
1:425 and temperature ‚ D 100mK, for B D 0, B D ˙0:002 and B D ˙0:010. In each 4 � 4

block, row i labels the input and column j the output current terminal. The sketched arrows in
the lower panel indicate the directional coupling of electron flow (not trajectories) between the
terminals in the billiard (opposite direction to the charge current)

is flowing from lead 1 to 2 and from lead 3 to 4 for B D 0. For B D C0:002 current
is flowing mostly from lead 1 to lead 4 and from lead 3 to lead 2, thus exchanging
the directed connections between the terminals with applied magnetic field.

For higher‚ the gij.‚IEF/ in Fig. 8.11 are generally shifted to more intermediate
values, because F.‚;EFIE/ is broadened and additional spectral features are
included in the integration around EF in (8.8). On the other hand, for very low
‚ the transmission spectrum is highly resolved by F.‚;EFIE/ and the gij become
sensitive to small changes in EF . These dependencies are not present in the channel

means T
.n/
ij , which therefore serve to estimate the field strength values suitable for

directed transport in a given billiard; with adjusted temperature and Fermi energy,
the effect can then be optimized by slightly modifying the transmission features
through fine-tuning of B, in order to controllably obtain maximal and minimal gij.

8.9 Summary and Conclusions

We have investigated the ballistic transport properties and low-temperature magne-
toconductance of a 4-terminal semi-elliptic quantum billiard. Analyzing the strong
dependency of the transmission on the magnetic field and geometrical parameters
like eccentricity of the semi-ellipse and placement and width of the leads, we have
shown how electrons can effectively and controllably be guided from one input lead
to any other output lead, including the cross-switching of output from combined
input.

At zero field strength electrons are guided between the two outer or the two
inner leads by modes corresponding to classical rotator or librator trajectories,
respectively. The role of rotator and librator modes has been clarified by introducing
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a perturbing disk, thereby destroying modes selectively. In this context we have
shown that the transmission is robust under small perturbations and that the disk
offers additional possibilities of transmission control. The efficiency of the selective
transmission has been optimized with respect to the geometric parameters. Here it
turns out that the optimal position of the inner leads deviates from the classically
expected one at the focal points of the ellipse and that an eccentricity of about 0.35
for equidistant terminals is optimal.

The application of the magnetic field allows to controllably change the conduc-
tance coefficients: at appropriate field strengths electrons coming from one input
lead can be guided to any other output lead. This results from the deflecting effect
of the field at intermediate strength. Further, by increasing the field strength to the
edge state regime, conductance is mostly determined by the topology of the billiard.
In this regime sharp edges cause mixing and interference of multiple edge states,
leading to oscillations in the transmission spectra, while a smooth boundary guides
the individual edge states without mixing.

To further examine the role of the elliptic boundary, i.e. of the existence of rotator
and librator modes, we have investigated the transmission through a pair of bent
coupled quantum wires and compared it to the topological equivalent setup of two
straight coupled wires. The bent wires show a degree of control superior to the
straight setup, but the semi-ellipse allows for the highest degree of conductance
control. While the channel-averaged transmission clearly shows the possibility of
directed transport, very high switching efficiency is achieved at low but realistic
temperatures and appropriate values of the Fermi energy. The semi-ellipse qualifies
as a magnetically controllable cross-junction for ballistic quantum transport.
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Chapter 9
Summary, Conclusions, and Perspectives

In the present Lecture Notes a self-contained presentation of the fundamental
concepts, theory, and computation of electronic transport was given, as adapted to
open quantum billiard devices, for which the magnetotransport was then analyzed
in dependence of the characteristics of the confining potential. Focusing on the
interplay between the geometry of the setups and the effects of the magnetic field,
it was investigated how special non-universal features in the transmission spectra
arise which enable the efficient control of conductance by different underlying
mechanisms.

The first objective was to review coherent quantum transport theory from the
viewpoint of two-dimensional nanoelectronic billiard structures, following a top-
bottom presentation: In Chap. 2 the concepts and methods of band engineering as
well as the approximations used to arrive at the two-dimensional electron gas were
reviewed, together with the consequences of reduced dimensionality for quantum
states. In Chap. 3 we introduced the Landauer-Büttiker picture of transport and the
identification of transmission as the main component of conductance, discussing
also the associated conceptual issues of modeling attached electrodes and the low-
temperature and -bias limits of the theory. In Chap. 4 the treatment of the resulting
scattering problem in the Green function framework was selectively reproduced in
its general form, highlighting the implications of multiterminal setups with generic
asymptotic lead confinement. This gave us the opportunity to discuss the main types
of interference-induced phenomena inherent in magnetotransport, namely Fano
resonances and Aharonov-Bohm (AB) oscillations, from the viewpoint of billiard
systems.

The actual numerical method developed for the computation of the system prop-
agator, pertaining to all quantities of interest, was presented in Chap. 5 within the
tight-binding approach. We here showed how an extended version of the recursive
Green function technique, in which subsystems are inter- and intra-connected into
a composite structure, can be formulated uniformly in terms of a block-Gaussian
elimination scheme enabling efficient assembly of setups of arbitrary topology.

© Springer International Publishing Switzerland 2017
C.V. Morfonios, P. Schmelcher, Control of Magnetotransport in Quantum Billiards,
Lecture Notes in Physics 927, DOI 10.1007/978-3-319-39833-4_9

219



220 9 Summary, Conclusions, and Perspectives

A low-level reordered block-Gaussian elimination scheme was further developed for
the core computation of single multiterminal subsystems of arbitrary geometry, with
selective output of global quantities (scattering matrix and transmission) as opposed
to local ones (wave function and state and current densities). The method is tailor-
made for efficient transport computations of planar connected structures of complex
geometry and topology in a highly resolved parameter space. As example setups we
studied a three-terminal elliptic billiard and its multiple connection into a looped
composite billiard structure. This setup features complex combinations of Fano and
AB interference in the resulting multiterminal transmission maps (as a function
of energy and magnetic field) as well as characteristic local density patterns. The
following chapters addressed the possibility of appropriate billiard geometries to
enable conductance control by tuning an applied magnetic field.

In Chap. 6 it was shown how efficient switching of magnetoconductance in
the linear response regime can be achieved with two-terminal linear arrays of
oval quantum billiards. The switching effect relies on the property of the single
oval to separate confined states from states leaking into the attached leads. The
leaking states interfere destructively over a broad energy range causing a suppressed
transmission which becomes maximal by the phase modulating effect of a very
weak magnetic field. In the array setup Breit-Wigner peaks were distinguished from
Fano resonances and analyzed in terms of the local density. The formation of bands
in the transmission spectra were shown to enhance the switching ratio which is
large already for the double-dot system. The robustness of the conductance control
functionality was examined in the presence of weak disorder, showing a temperature
dependent lower bound of the switching ratio.

In Chap. 7 we supplied a similarly elongated billiard with soft wall boundaries
whose appropriate design leads to a very efficient control of the electronic cur-
rent over the whole first transport channel of the leads. Here the electron flow
is forwardly collimated for zero field and backscattered at a certain switching
field, persistently in energy. The role of the soft wall is to isolate the resonant
manifold of quasi-bound states of the billiard from the scattering continuum and
simultaneously to rescale the magnetically deflected path-like states which retain
their backscattering character. The mechanism enables enhanced switching contrast
at varying temperature and Fermi energy and proves robust against billiard shape
and soft-wall variations.

In Chap. 8 the challenging task of multiterminal conductance control was
undertaken using a hard-wall semi-elliptic billiard with four leads attached to the
straight edge, showing that magnetically controllable current switching between
the terminals can be obtained. High field-free transmission is here reached via
guiding or focusing by the curved billiard boundary which couples rotator and
librator modes to the outer and inner leads, respectively. A thorough investigation
of this behavior in terms of the geometry parameters and lead positioning was
performed concluding on optimal combinations. The lead pairs connected by
maximal transmission coefficients are switched by the deflecting effect of the
magnetic field. Including the field-free operating state of the device, the electronic
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flow can be selectively directed from any input terminal to any output terminal.
In particular, the device realizes a directional current cross-junction switched by a
weak field at low temperatures.

Concluding the applicational part of the present Lecture Notes, it was
demonstrated how efficient and robust electronic current control may be achieved
with appropriately designed quantum billiards through the interplay between
confinement-induced transmission properties and the effects of applied magnetic
fields—from the phase-modulating via the Lorentz-deflecting to the edge-state
regime of magnetotransport. The proposed two- or four-terminal conductance
switching nanoelectronic elements are of relatively simple geometric form and can
be realized with current technologies. In particular, fabrication of such devices
should be feasible in GaAs/AlGaAs heterostructures by combining local oxidation
techniques with optical or electron-beam lithography [1–4] which enable precise
lateral dot shape and steep boundaries, with the shape tuned by additional top or
planar gates [3, 4] and with size well below the electronic mean free path [1, 2].
The analysis finally gives the message that wave propagation can be tamed into
deterministic and tunable transport features even in the deep quantum regime
by selectively suppressing universal fluctuation features in favor of desired non-
universal behavior.

An immediate and promising extension of the presented aspects of current
control is to consider combinations of the functional elements investigated within
new types of structures. In particular, the remarkable efficiency of switching
induced by certain soft wall profiles in the two-terminal elongated dot makes it
tempting to apply a similar soft boundary to the multiterminal setup studied (along
its convex boundary) to see if it may stabilize and enhance the cross-junction
functionality. Another variation would be to add finite potential barriers or tunable
constrictions—which are also easily realizable—to the lead openings in order to
investigate alternative aspects of controllability. Indeed, the mechanisms pertaining
to conductance control were seen to rely partially on the specific decoupling
of billiard states from the leads, and this effect would be enhanced by such
modifications. Along these lines, a perspective opened is to explore the occurrence
of the very special interference-induced current suppression in the hard-wall oval
billiard also for other geometries and potentials: Similar systematic degeneracies of
opposite- or equal-parity states might exist for different billiard shapes and lead to
tunable regularities in transport. Earlier work by Drouvelis et al. [5] here comes to
the aid of mapping closed billiard spectra to their shapes.

Keeping the two-dimensional billiard type confinement and multiterminal topol-
ogy, a departure to qualitatively different effects is possible by adding ‘ingredients’
to the computational method: One of the advantages of the Green function method
in its tight-binding form is the straightforward generalization and/or modification
to alternative Hamiltonians. For example, the electronic spin can be included
essentially by substituting the matrix elements with spinor blocks, opening the
perspective to study spin-dependent transport and its possible controllability. Apart
from the Zeeman coupling to applied magnetic fields, the different types of states
(confined and leaking, bulk- or boundary-localized) seen in the elongated billiards
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may lead to non-trivial alterations in transport caused by spin-orbit coupling [6, 7].
In a similar manner, hybrid structures with superconducting elements and partial
Andreev reflection processes [8, 9] may be effectively studied in the light of
confinement-induced transport control by implementing a Bogoliubov-deGennes
Hamiltonian [10]. Another easy modification of the square lattice Hamiltonian is to
appropriately delete on-site and modify hopping elements to transform it to a simple
tight-binding honeycomb lattice Hamiltonian to study similar billiards defined
on graphene [11–13] (the mathematical grid used so far now becomes a simple
approximation to the atomic lattice itself). A more advanced modification would
even be to incorporate a Floquet Hamiltonian into the real space one, following
the recent work in [14], to simulate periodically driven (irradiated) billiards. Apart
from the above extensions on the level of the system Hamiltonian, a promising
perspective would finally be to investigate current controllability and the underlying
mechanisms beyond the linear response regime utilizing the full non-equilibrium
Green function formalism [15–19] in a multiterminal setting.

Returning to the presently developed computational tools, and in particular
the inter- and intra-connection technique of the extended Green function scheme
proposed in Chap. 5, appealing mesoscopic setups to study are multiply dot-
connected double quantum wire systems: two straight quantum wires coupled via
multiple short lead stubs containing embedded quantum dots. This would implement
an array of coupled AB ring-like building blocks [20, 21] with four outer terminals,
alternatively seen as a nanoelectronic ‘ladder’ setup [22, 23], though with nodes
and arms of non-trivial geometric structure. The setup would give the opportunity
to study the interrelation between Fano and AB interference by modifying the
confining potential of the embedded dots (e.g., to separate leaking from confined
states, as was done here for a single dot) in multiply connected topologies. An
alternative two-terminal looped setup is the electronic Mach-Zehnder interferometer
[24] which could be coupled to peripheral quantum dots (thus realizing a Mach-
Zehnder-Fano interferometer [25]) in the form of billiards of designed geometries
to tune the interference-induced output.

Finally, we recall that the main advantage of the developed inter- and intra-
connection Green function method is the ability to connect a large number of
few types of arbitrary blocks into multiply connected structures. An interesting
perspective would therefore be to explore the (magneto-) transport properties of
larger networks of connected quantum dots (or antidot superlattices [26]) with
dots of individual internal structure. This type of system reveals the present
method as an ideal applicational tool to accompany the generalization of the newly
developed theory of local symmetries, as presented in [27–30], to two-dimensional
systems. Typical locally symmetric setups would be, e. g., quantum dot lattices with
distributed defects in terms of deformed dots or clusters of different dot types.
Together with further development of the local symmetry concepts and formalism,
such systems may be described and understood from a novel viewpoint and trigger
further explorations of complex structures.
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Appendix A
Green Functions of Leads

In this appendix the spatially represented Green functions of an infinite and semi-
infinite ideal lead (quantum wire) are derived, which are used in Sects. 4.2.2
and 5.3.1, respectively.

A.1 Green Function of an Infinite Quasi-1D Wire

We consider an infinite wire parallel to the x-direction, described by a confining
potential Vw.x; y/ D Vw.y/ (in zero magnetic field). Motion along the wire is
separated from that in the transversal direction, and the solutions of the stationary
Schrödinger equation can be written in the form

˚n;k.x; y/ D �n.y/eikx; (A.1)

where the transversal wave functions �n.y/ are orthonormal solutions of

�
� 1

2m

@2

@y2
C Vw.z/

�
�n.y/ D En�.y/; (A.2)

and k is a continuous wave number yielding energy eigenvalues

En;k D En C „
2

2m
k2 (A.3)

for the total Hamiltonian Hw. The transversal potential can be of arbitrary profile,
but we assume that it supports bound states along y and choose the �n to be real; for
the hard-wall leads we will consider, they are given by (2.27).
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The retarded Green function

GC.r; r0IE/ D lim
�!0
hrjG.EC i�/ jr0i (A.4)

is given through the spectral representation of G in the eigenbasis f˚n;kg,

hrjG.E C i�/ jr0i D
X

n;k

hrj˚n;ki h˚n;kjr0i
E �Hw C i�

D
X

n;k

˚n;k.r/˚n;k.r0/
E � En;k C i�

: (A.5)

Inserting equation (A.1) into (A.2) and replacing the sum over continuous k-values
by an integral weighted by the 1D density of states in k-space, we have

GC
qw.x; y; x

0; y0IE/ D lim
�!0

X

n

Z C1

�1
dk

2

�n.y/�n.y

0/
eik.x�x0/

E � En � „2k2=2mC i�

(A.6)

D � m


„2 lim
&!0

X

n

�n.y/�n.y
0/
Z C1

�1
dk

eik.x�x0/

k2 � k2n.1C i&/

(A.7)

for the quantum wire, where

„2
2m

k2n D E � En D �

&
(A.8)

and the integrand has two poles at

k&̇ D ˙kn
p
1C i& � ˙kn

�
1C i

&

2

�
; & ! 0 (A.9)

which are located in the upper (C) and lower (�) half plane.
The integral can now be solved by contour integration: For x > x0 (x < x0), the

integrand is bounded in the upper (lower) half plane since eik.x�x0/ / e�Imkjx�x0j
with Imk > 0 (Imk < 0), and we define a semicircular anticlockwise (clockwise)
integration contour which encloses the pole at kC

& (k�
& ) with the straight segment on

the real k-axis. With the contribution from the semicircular arcs vanishing at jkj !
1, the integral evaluates, from the residues R˙ of the poles at k&̇ , respectively, to

˙2
iR˙ D ˙2
i lim
k!k˙

&

.k � k&̇ /
eik.x�x0/

.k � kC
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where in the end the limit required in (A.4) is taken. We thus finally obtain

Gq̇w.x; y; x
0; y0IE/ D ˙

X

n

1

i„vn�n.y/�n.y
0/e˙iknjx�x0j; (A.12)

where vn D „kn=m D
p
2.E � En/=m is the longitudinal velocity in the nth channel

Here also the advanced Green function has been included through the reciprocity
relation G� D ŒGC��, where we notice the symmetry in r$ r0 for each Gq̇w.

For a given position x0 of the initial point relative to the position x of the final
point along the wire, GC

qw in (A.12) can be viewed as an .x; y/-dependent wave
function expanded in the eigenstates ˚n;k.x; y/ of the wire, with .x0; y0/-dependent
expansion coefficients [1]; or vice versa for G�

qw. Considering, for definiteness, the
retarded Greenian, we have

GC
qw.x; y; x

0; y0IE/ D
X

n

˚n;s.x; y/ cn;�s.x
0; y0/; (A.13)

where

cn;s.x
0; y0/ D ˚n;s.x0; y0/

i„vn ; s D
� C; x > x0
�; x < x0 ; (A.14)

with ˚n;˙ D ˚n;˙kn . In view of the general discussion on Green functions, this
superposition of wire eigenstates is the response of the system at .x; y/ to a ı-like
excitation at .x0; y0/ at energy E. If these partial waves, while generated at .x0; y0/,
are additionally transmitted through or reflected by some obstacle, then their total
amplitudes upon reaching .x; y/ will be modified by corresponding transmission or
reflection amplitudes. This is the case for the S-matrix elements entering equation
(4.38).

A.2 Interface Green Function of a Semi-Infinite
Quasi-1D Wire

For a semi-infinite quantum wire in the positive x-direction starting at x D 0,
like the leads attached to the scatterer domain in modeling a transport device, we
theoretically assume V.x < 0; y/ D 1 so that the wave function vanishes for x < 0
and thus obeys the Dirichlet boundary condition ˚.x D 0; y/ D 0.

The stationary Schrödinger equation now has eigensolutions

˚n;k.x; y/ D �n.y/ sin.kx/; (A.15)

where the transversal wave functions �n.y/ form an orthonormal set, like in the
infinite wire, and are chosen real in the absence of a magnetic field. Considering
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hard-wall leads of width w, the transversal modes are given by (2.27). In practice,
however, we will set the origin y D 0 at the lead boundary (the right boundary when
viewed in the x-direction) so that the modes are phase shifted into

�n.y/ D
r
2

w
sin.ky;ny/; ky;n D n


w
: (A.16)

The retarded Green function is thus given by

GC
sqw.x; y; x

0; y0IE/ D lim
�!0

X

n

Z C1

0

dk



�n.y/�n.y

0/
sin.kx/ sin.kx0/

E � En � „2k2=2mC i�
;

(A.17)

where two counter-propagating waves with wavenumbers ˙k have been taken into
account for the standing wave along the wire.

Since we aim at the interface part of the lattice Greenian only (at sites adjacent
to the surface sites of the scatterer domain) which is used for the self-energy in
Sect. 5.3.1, we set x D x0 > 0 [2] (the value is specified shortly). This x-local part
can then be written

GC
sqw.x; y; x; y

0IE/ D lim
�!0

X

n

Z C1

�1
dk



�n.y/�n.y

0/
1 � e2ikx

E � En � „2k2=2mC i�

(A.18)

D � m

4
„2 lim
&!0

X

n

�n.y/�n.y
0/
Z C1

�1
dk

1 � e2ikx

k2 � k2n.1C i&/
;

(A.19)

with the substitution „2k2n=2m D E � En D �=& , where the identity

2i sin.kx/ D eikx � e�ikx) 4 sin2.kx/ D 1 � e2ikx C 1 � e�2ikx (A.20)

and the symmetry of sin2.kx/ in k have been used.
The integral has the same poles k&̇ D ˙kn

p
1C i& as for the infinite wire, but

now x > 0 so the contour integration is performed only in the upper half of the
complex k-plane. In similarity to the calculation in (A.10) and (A.11), the residue
theorem yields

GC
sqw.x; y; x; y

0IE/ D �
X

n

2

„vn�n.y/e
iknx�n.y

0/ (A.21)

after rewriting 1 � e2iknx D eiknx.e�iknx � eiknx/ D 2ieiknx sin.knx/.
On the tight-binding lattice, the gridpoints along the edge of the semi-infinite

lead (at the interface to the scatterer) are located at x D a0 [2], that is, one lattice
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constant away from where the grid-represented wave function (A.15), with the Q1D
energy dispersion (5.26), is set to zero (at the first gridpoints outside the lead, which
coincide with the last gridpoints of the attached scatterer). Taking into account also
the mode velocity vn D 2ta0 sin.kna0/=„ [see (5.27)], the retarded and advanced
semi-infinite lead Green functions along the lead edge become

Gṡqw.a0; y; a0; y
0IE/ D � 1

ta0

X

n

�n.y;E/e
˙ikn.E/a0�n.y

0;E/ � g˙.y; y0;E/;

(A.22)
or, in the matrix element notation of Chap. 5,

g˙̨̌ D �1
t

X

n

¦nI˛e˙ikna0¦nIˇ (A.23)

for (any) sites ˛, ˇ along the edge, where the lattice constant a0 has been absorbed
in the matrix g˙ on the uniform grid.



Appendix B
Block-Matrix Inversion and Schur Complement

In this appendix we derive the inverse of a general block matrix in terms of its indi-
vidual blocks, a tool of matrix algebra appearing recurrently in the computation of
lattice Greenians of composite systems. The application to a general decomposition
of a lattice Hamiltonian matrix is included for clarity.

B.1 Inversion by Block-Gaussian Elimination

Consider a square N � N matrix M which has the block structure

M D
�
A B
C D

	
(B.1)

where A is an .N � n/ � .N � n/ matrix and D is an n � n matrix.
If existent, the inverse M�1 of M, with MM�1 D M�1M D IN , where IN is the

N �N identity matrix, can be found by block-Gaussian elimination (BGE) which is
equivalent to multiplying the equation

�
A B
C D

	
M�1 D

�
IN�n 0
0 In

	
(B.2)

from the left by suitable matrices depending on whether the lower block of the first
block-column or the upper block of the second block-column is to be eliminated
initially. We call these procedures ‘lower-major’ and ‘upper-major’ elimination,
respectively.

© Springer International Publishing Switzerland 2017
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Lower-Major Elimination

For lower-major elimination, we multiply equation (B.2) from the left by the matrix
product

PBPDPCPA; (B.3)

with

PA D
�
A�1 0
0 In

	
; PB D

�
IN�n �A�1B
0 In

	

PC D
�
IN�n 0
�C In

	
; PD D

�
IN�n 0
0 S�1

A

	
;

(B.4)

where

SA D D � CA�1B (B.5)

is the Schur complement [3] of the block A in M. Consecutive multiplication from
the left by the matrices PA, PC, PD, PB introduces blocks IN�n, 0, In, 0 in the
positions A, C, D, B of the original matrix M, respectively, thus constituting the
BGE procedure starting with the left block-column. Provided that A and SA are
invertible, the result is

M�1 D PBPDPCPA D
�
A�1 CA�1BS�1

A CA�1 �A�1BS�1
A

�S�1
A CA�1 S�1

A

	
; (B.6)

showing that the lower diagonal block of the inverse matrix equals the inverse of the
Schur complement of the upper diagonal block of the original matrix.

The first three steps of the full lower-major elimination, multiplying by PDPCPA,
requires two matrix inversions A�1 and S�1

A and constitutes a forward elimination
which brings M to an upper-triangular form. The last step of multiplying by PB

is called backward substitution and consists in substituting the already computed
outcome of the forward elimination into the final inverseM�1, which requires matrix
multiplications but no further matrix inversion.

Upper-Major Elimination

For upper-major elimination, we multiply equation (B.2) from the left by the matrix
product

P0
CP

0
AP

0
BP

0
D; (B.7)
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with

P0
A D

�
S�1
A 0
0 In

	
; P0

B D
�
IN�n �B
0 In

	

P0
C D

�
IN�n 0
�D�1C In

	
; P0

D D
�
IN�n 0
0 D�1

	
;

(B.8)

where

SD D A � BD�1C (B.9)

is the Schur complement of the block D in M. Consecutive multiplication from
the left by the matrices P0

D, P0
B, P0

A, P0
C introduces blocks In, 0, IN�n, 0 in the

positions D, B, A, C of the original matrix M, respectively, thus constituting the
BGE procedure starting with the right block-column. Provided that D and SD are
invertible, the result is

M�1 D P0
CP

0
AP

0
BP

0
D D

�
S�1
D �S�1

D BD�1

�D�1CS�1
D D�1 C D�1CS�1

D BD�1
	
; (B.10)

showing that the upper diagonal block of the inverse matrix equals the inverse of the
Schur complement of the lower diagonal block of the original matrix.

The first three steps of the full upper-major elimination, multiplying by P0
AP

0
BP

0
D,

requires two matrix inversions D�1 and S�1
D and constitutes a backward elimination

which brings M to a lower-triangular form. The last step of multiplying by P0
C

is called forward substitution and consists in substituting the already computed
outcome of the backward elimination into the final inverse M�1, which requires
matrix multiplications but no further matrix inversion.

Relation Between Schur Complements

The two alternative routes of BGE above lead to an evident symmetry in the block-
structure of the inverse M�1: The results in (B.6) and (B.10) are mapped to each
other by simultaneously exchanging A $ D, B $ C and (upper$ lower) block-
rows, (left$ right) block-columns. In particular, (B.6) and (B.10) yield the block-
matrix identities

S�1
D D A�1 C A�1BS�1

A CA�1; (B.11)

S�1
A D D�1 C D�1CS�1

D BA�1 (B.12)
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and

S�1
D BD�1 D A�1BS�1

A ; (B.13)

D�1CS�1
D D S�1

A CA�1; (B.14)

which relate the two Schur complements via the blocks of M.

B.2 Application to Block-Partitioned Lattice Hamiltonian

The above general matrix-algebraic manipulations acquire physical meaning in the
context of Greenians if we identify the block matrix M as the matrix EI � QH D Δ
in the lattice Green equation

Δ QG D I )
�
EIN�n � QH11 � QH12
� QH21 EIn � QH22

	
QG D

�
IN�n 0
0 In

	
; (B.15)

with the Hamiltonian matrix

QH D
� QH11 QH12QH21 QH22

	
(B.16)

� HCW D
�
H1 0
0 H2

	
C
�

0 W12

W21 0

	
D
�
H1 W12

W21 H2

	
(B.17)

describing a discretized system of size N (number of sites) decomposed into two
domains D1 of size N � n (described by H1 when isolated), and D2 of size n
(described by H2 when isolated) whose sites are coupled via the block-antidiagonal
matrix W.

The blocks B andC of Appendix B.1 thus become the coupling matrices between
the domains, while the inverses of the blocks A and D are the Greenians of the
isolated domains,

G1 DΔ�1
1 D .EIN�n � H1/�1; G2 DΔ�1

2 D .EIn � H2/�1; (B.18)

which are assumed existent; either because the energy E does not coincide with real
poles of the G1;2, or because the G1;2 have only complex poles (i. e., away from the
real E-axis) due to non-hermiticity of H1;2 (caused, e. g., by coupling to an open
boundary).

Although the domains D1 and D2 can in principle be treated in a symmetric
manner, the order in which to perform the BGE to obtain QG is now dictated, in
practice, by the relative size of the domains: Assuming n < N, is it computationally
preferable to perform (direct) inversion of the smaller matrix Δ2, following the
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upper-major elimination route of Appendix B.1. The analogue of (B.10) then yields

QG D
� QG11

QG12QG21
QG22

	
D
� QG11

QG11W12G2

G2W21
QG11 G2 CG2W21

QG11W12G2

	
; (B.19)

where

QG11 D .EIN�n � H1 �W12G2W21/
�1 (B.20)

is the inverse of the Schur complement of the block EIn �H2 in Δ.

Self-Energy from Subsystem

We recognize that the Hamiltonian for subsystem 1 is effectively modified by the
(non-hermitian and energy dependent) self-energy

Σ1 � W12G2W21 (B.21)

due to the coupling to subsystem 2, with resolvent

QG11 D ŒEIN�n � . QH1 CΣ1/�
�1 (B.22)

in the coupled system.
In the case where subsystem 2 is a semi-infinite lead, we thus recover the (grid-

represented) formulation of an open scatterer in Sects. 4.3 and 5.3. The Greenian of
subsystem 2 is then given analytically, so that no inversion needs to be computed
to obtain it. If D2 is a slice to be added to an existing domain during assembly of
the grid-represented scatterer, then G2 requires the inversion of a relatively small
matrix. On the other hand, if D1 and D2 are extended domains whose isolated
propagators have already been computed, then the order of BGE does not matter.

Relation to Dyson Equation

The propagator from sites in D1 to sites in D2 is given by

QG21 D G2W21
QG11 D G2W21.G

�1
1 �Σ1/

�1 (B.23)

D G2W21.IN�n �G1Σ1/
�1G1; (B.24)



236 B Block-Matrix Inversion and Schur Complement

and the identities (B.11) and (B.14), which become

QG11 D G1 CG1W12
QG22W21G1 (B.25)

and

G2W21
QG11 D QG22W21G1; (B.26)

respectively, yield the propagator between sites in D1,

QG11 D G1 CG1Σ1
QG11 (B.27)

D G1 CG1Σ1.IN�n �G1Σ1/
�1G1: (B.28)

Similarly, we find the propagators

QG12 D G1.IN�n �Σ1G1/
�1W12G2 (B.29)

and

QG22 D G2 CG2W21G1.IN�n �Σ1G1/
�1W12G2: (B.30)

We have thus shown that the BGE scheme applied on the block Hamiltonian matrix
of two connected domains D1 and D2 is equivalent to solving the corresponding
Dyson equation (5.63) of Sect. 5.4.1.



Appendix C
Inter- and Intra-Connection of Modules

In this appendix we apply the BGE scheme of Appendix B to solve the tight-binding
matrix Dyson equation for two the total Greenian of two inter-connected modules
(subsystems of the total systems) and of a module intra-connected to itself.

C.1 Inter-Connection Between Two Modules

Assuming that the Greenians G1 and G2 of two separate modules 1 and 2 have
already been computed as solutions of the uncoupled Green equation

G.E �H/ D .E� H/G D I; (C.1)

where

H D
�
H1 0
0 H2

	
D QH.WD0/ D diag

��
Huu
1 Huc

1

Hcu
1 Hcc

1

	
;

�
Huu
2 Huc

2

Hcu
2 Hcc

2

	�
; (C.2)

G D
�
G1 0
0 G2

	
D
�
Δ�1
1 0
0 Δ�1

2

	
D diag

��
Guu
1 Guc

1

Gcu
1 Gcc

1

	
;

�
Guu
2 Guc

2

Gcu
2 Gcc

2

	�
(C.3)

the Greenian QG of the connected system is expressed in terms of G1, G2 and the
coupling W between them by solving the associated matrix Dyson equation (5.63)
(the dimension of I, E D EI and 0 at different instances is here to be understood from
the respective block matrix structure). As discussed in Sect. 5.4.1 and Appendix
B.2, this is equivalent to perform a BGE on the large-scale partitioned matrix Green
equation

.E � QH/ QG D I (C.4)

© Springer International Publishing Switzerland 2017
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with the connected system Hamiltonian

QH D HCW D

0
BBBBBBB@

Huu
1 Huc

1 0 0

Hcu
1 Hcc

1 0 Wcc
12

0 0 Huu
2 Huc

2

0 Wcc
21 Hcu

2 Hcc
2

1
CCCCCCCA

; (C.5)

where c and u denote the sections of the corresponding module to be connected and
to remain unconnected, respectively, with the Hermitian matrix

W D
�

0 W12

W21 0

	
D antidiag

��
0 0
0 Wcc

12

	
;

�
0 0
0 Wcc

21

	�
(C.6)

coupling the c-sections. The blocks Wcc
12 and Wcc

21 are square matrices of dimension
equal to the (common) number of sites in each module to be connected.

Since both G1 and G2 are known, we use an alternative route essentially
combining the lower- and upper-major elimination orders of Appendix B, by first
multiplying equation (C.4) from the left by G, which allows us to exploit the sparsity
and block-symmetry of the matrix

G QΔ D G.E � QH/ D

0
BBBBBBB@

I 0 0 puc
12

0 I 0 pcc
12

0 puc
21 I 0

0 pcc
21 0 I

1
CCCCCCCA

; (C.7)

where

puc
21 D �Guc

2 W
cc
21; pcc

21 D �Gcc
2 W

cc
21; pcc

12 D �Gcc
1 W

cc
12; puc

12 D �Guc
1 W

cc
2 :

(C.8)

To proceed with the block-elimination, the equation

G.E� QH/ QG D G (C.9)

is now acted upon from the left with the product

P D Puc
12 P

cc
12 R Pcc

21 P
uc
21; (C.10)
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containing the row-operator matrices

Puc
21 D

0

B@
I 0 0 0
0 I 0 0
0 �puc

21 I 0
0 0 0 I

1

CA; Pcc
21 D

0

B@
I 0 0 0
0 I 0 0
0 0 I 0
0 �pcc

21 0 I

1

CA

Pcc
12 D

0
B@

I 0 0 0
0 I 0 �pcc

12

0 0 I 0
0 0 0 I

1
CA; Pcc

12 D

0
B@

I 0 0 �puc
12

0 I 0 0
0 0 I 0
0 0 0 I

1
CA;

(C.11)

which eliminate the blocks puc
21, p

cc
21, p

cc
12, p

uc
12 of G QΔ, respectively. The block-

diagonal central matrix

R D diag

2

4

0

@ I 0

0 I

1

A ;

0

@ I �Guc
2 ¢2”

0 ”

1

A

3

5 ; (C.12)

which is the one providing the inverse Schur complement of H1, contains the self-
energy

¢2 D Wcc
21G

cc
1 W

cc
12 (C.13)

of module 2 due to the coupling to module 1 as well as the inverse

” D .Icc �Gcc
2 ¢2/

�1 (C.14)

of the size of the connection interface. The propagator for the connected system is
finally given by

QG D PG D

0

BBBBBBB@

QGuu
11
QGuc
11
QGuu
12
QGuc
12

QGcu
11
QGcc
11
QGcu
12
QGcc
12

QGuu
21
QGuc
21
QGuu
22
QGuc
22

QGcu
21
QGcc
21
QGcu
22
QGcc
22

1

CCCCCCCA

D (C.15)

0

BBBBBBB@

Guu
1 CGuc

1 Q¢1Gcu
1 Guc

1 CGuc
1 Q¢1Gcc

1 Guc
1 W

cc
12
QGcu
22 Guc

1 W
cc
12
QGcc
22

Gcu
1 CGcc

1 Q¢1Gcu
1 Gcc

1 CGcc
1 Q¢1Gcc

1 Gcc
1 W

cc
12
QGcu
22 Gcc

1 W
cc
12
QGcc
22

QGuc
22W

cc
21G

cu
1

QGuc
22W

cc
21G

cc
1 Guu

2 CGuc
2 ¢2 QGcu

22 G
uc
2 CGuc

2 ¢2 QGcc
22

QGcc
22W

cc
21G

cu
1

QGcc
22W

cc
21G

cc
1 ”Gcu

2 ”Gcc
2

1

CCCCCCCA

;

(C.16)
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where

Q¢1 DWcc
12
QGcc
22W

cc
21 D Wcc

12”G
cc
2 W

cc
21 (C.17)

is a modified form of self-energy of module 1 due to its coupling to module 2.

C.2 Intra-Connection of a Module

For the intra-connection between two (equally sized) boundary sections c1 and c2
(with the sites of the one being pairwise nearest neighbors to the sites of the other)
of a single module, we apply the same concept as for the inter-connection but with
the block-partitioning

H D
0

@
Huu Huc1 Huc2

Hc1u Hc1c1 0
Hc2u 0 Hc2c2

1

A ; (C.18)

G D
0

@
Guu Guc1 Guc2

Gc1u Gc1c1 Gc1c2

Gc2u Gc2c1 Gc2c2

1

A (C.19)

for the disconnected module, where u denotes the part of the module to remain
unconnected (all sites except for the c1- and c2-sites of the connection interface).
Note that G is here already a full matrix, since propagation between the sections c1
and c2 occurs, of course, via the interior u of one and the same module.

The tight-binding matrix Dyson equation (5.63) is now solved for the Greenian
QG of the connected system in terms of the blocks of G and of the coupling matrix

W D
0

@
0 0 0
0 0 Wc1c2

0 Wc2c1 0

1

A ; (C.20)

where again Wcc
12 and Wcc

21 are square matrices of the dimension of the connection
interface which couple sections c1 and c2.

We thus solve the Dyson equation by performing block-Gaussian elimination
on the partitioned Green equation .E � QH/ QG D I with the connected system
Hamiltonian

QH D HCW D

0

BBBB@

Huu Huc1 Huc2

Hc1u Hc1c1 Wc1c2

Hc2u Wc2c1 Hc2c2

1

CCCCA
�

0

BBBB@

Huu Hu1 Hu2

H1u H11 W12

H2u W21 H22

1

CCCCA
; (C.21)
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where we have replaced the connected section superscripts as

c1 ! 1; c2 ! 2 (C.22)

to simplify notation in the expressions to follow.
We first multiply equation (C.4) from the left with G which already eliminates

the first block-column of QΔ D E � QH,

G QΔ D G.E � QH/ D

0

BBBB@

I pu1 pu1

0 p11 p12

0 p21 p22

1

CCCCA
; (C.23)

where

pu1 D �Gu2W21; pu2 D �Gu1W12;

p11 D I �G12W21; p12 D �G11W12; (C.24)

p21 D �G22W21; p22 D I �G21W12:

The equation G.E � QH/ QG D G is then acted upon from the left with the product

P D Pu1 Pu2 P12 Λ P21 Θ; (C.25)

where the row-operator matrices

P21 D
0

@
I 0 0
0 I 0
0 �p21 I

1

A ; P12 D
0

@
I 0 0
0 I �p12
0 0 I

1

A ;

Pu2 D
0

@
I 0 �pu2

0 I 0
0 0 I

1

A ; Pu1 D
0

@
I �p21 0
0 I 0
0 0 I

1

A ;

(C.26)

eliminate the offdiagonal blocks p21, p12, pu2, pu1 of G QΔ, respectively. The block-
diagonal matrices

Θ D

0
BBB@

I 0 0

0 ™ 0

0 0 I

1
CCCA ; Λ D

0
BBB@

I 0 0

0 I 0

0 0 œ

1
CCCA (C.27)
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contain the inverses

™ D Œp11��1 D ŒI �G12W21��1; (C.28)

œ D Œp22 � p21™p12��1 D ŒI �G21W12 �G22W21™G11W12��1 (C.29)

of the size of the connection interface. The propagator for the connected module is
then given by

QG D PG D

0

B@
QGuu QGu1 QGu2

QG1u QG11 QG12

QG2u QG21 QG22

1

CA

(C.30)

D
0

@
GuuC QGuu

W Gu1C QGu1
W Gu2 C QGu2

W

™.G1u CG11W12 QG2u/ ™.G11 CG11W12 QG21/ ™.G12 CG11W12 QG22/

œ.G2u CG22W21™G1u/ œ.G21 CG22W21™G11/ œ.G22 CG22W21™G12/

1

A ;

(C.31)

where the shorthand notation

QGuz
W D Gu1W12 QG2z CGu2W21 QG1z .z D 1; 2; u/ (C.32)

has been used for the upper block-row.



Appendix D
Gauge Transformation of the Greenian

In this appendix we show how the Green function is gauge transformed between two
given axial gauges and derive the general generating function for the transformation
of the Green function of a module into the gauge of another module, as used in the
inter-connection scheme presented in Sect. 5.5.

D.1 Gauge Transformation of the Green Function Between
Two Different Axial Gauges

Observable quantities in quantum theory, such as probability densities, should
be independent of gauge transformations of the electromagnetic potential, and
therefore the wave function under such a transformation acquires at most a phase
factor. Specifically, in the stationary picture used, if the magnetic vector potential is
transformed via a scalar generating function�.r/ of space as

A.r/ �! A0.r/ D A.r/Cr�.r/; (D.1)

then the wave function is transformed as [4]

 .r/ �!  0.r/ D  .r/ exp
h
i
e

„�.r/
i
: (D.2)

From the general eigenstate expansion of the Green function propagating from point
rˇ to point r˛

G.r˛; rˇIE/ D
X

n

 n.r˛/ �
n .rˇ/

E � En ˙ i�
; .�! 0/; (D.3)
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the corresponding gauge transformation of the Green function is

G.r˛; rˇIE/ �! G0.r˛; rˇIE/ D exp
h
i
e

„�.r˛/
i
G.r˛; rˇIE/ exp

h
�i

e

„�.rˇ/
i
:

(D.4)

For the rectangular grid on which the Hamiltonian is discretized, it is convenient
to use an axial gauge

A.r/ D
0

@
Ax

Ay

Az

1

A D
0

@
��By

.1 � �/Bx
0

1

A (D.5)

for the vector potential, where the real parameter � is freely chosen. Upon a gauge
transformation of the vector potential from a gaugeA.r/with parameter � to another
gauge A0.r/ with parameter �0, we imply that their difference is the gradient of a
generating function�.r/,

A0.r/� A.r/ D
0

@
.� � �0/By
.� � �0/Bx

0

1

A D r�.r/: (D.6)

The simplest choice for the generating function is then

�.r/ D .� � �0/Bxy; (D.7)

which leads to the following explicit gauge transformation for the Green function:

G0.r˛; rˇIE/ D exp
h
i
e

„ .� � �
0/Bx˛y˛

i
G.r˛; rˇIE/ exp

h
�i

e

„ .� � �
0/Bxˇyˇ

i
:

(D.8)

Note that the coordinate system here is common for the two axial gauges. Next, we
will derive the generating function for a gauge transformation following an initial
coordinate transformation.

D.2 Gauge Transformation for the Inter-Connection
of Two Modules

In the modular version of the computational method, the propagator of each module
is computed in its own coordinate system. It is preferably aligned so that the vertical
extent is smaller on average (since it corresponds to the size of internal slice block-
matrices to be inverted), and the origin is conventionally set to the center of the
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computational box containing the module. When a module is inter-connected to
another module, it is thus in general necessary to shift and rotate the coordinates of
the first module to match the coordinates of the second module at the connection
(equivalently, the second module could be rotated and shifted, or both; we choose to
transform the first module by convention). The rotation and shift of the coordinate
system, r! r0, introduces a new effective gauge in the first module, A.r/! A0.r0/
(which is not necessarily of the axial form (D.5); see below). In order to connect
the shifted and rotated first module to the second, this new effective gauge has to
be transformed to match the gauge A00.r0/ (with gauge parameter �00) of the second
module in the common coordinate system r0. We will now determine a complete
generating function�.r/ for this gauge transformation.

The coordinate transformation of the first module generally consists of a rotation
by an angle # and an additional shift d,

�
x
y

	
�!

�
x0
y0
	
D
�
c �s
s c

	�
x
y

	
C
�
dx
dy

	
(D.9)

where we use the shorthands c � cos.#/, s � sin.#/. The z-coordinate is omitted
in the following since we do not consider in-plane magnetic fields and thereby set
Az.r/ � 0. The vector potential in the new coordinates in terms of the old one is

A0.r0/ D
 
A0
x.x

0; y0/
A0
y.x

0; y0/

!
D
�
c �s
s c

	�
Ax.r.x0; y0//
Ay.r.x0; y0//

	
; (D.10)

which, when choosing the initial axial gauge (D.5), takes the explicit form

A0.r0/ D B

�
sc.2� � 1/ ��0
1 � �0 �sc.2� � 1/

	�
x0 � dx
y0 � dy

	

D B

� ��0.y0 � dy/
.1 � �0/.x0 � dx/

	
C Bsc.2� � 1/

�
x0 � dx
�.y0 � dy/

	
; (D.11)

where a new gauge parameter

�0 � s2 � �.s2 � c2/ (D.12)

has been defined. As we see, because of the rotation, the new gauge is generally not
of the axial from in the shifted coordinates, but has an additional term [second term
in (D.11)] depending on the original gauge parameter �. Only the axial term [first
term in (D.11)] generates the magnetic field B, but the additional term introduces a
gauge transformation to the wave function. Note that for a symmetric initial gauge,
� D �0 D 1=2, the additional term vanishes for any rotation angle and the gauge
remains axial. The non-axial term also vanishes for arbitrary � if we rotate by
multiples of 
=2, as will indeed be the case for the square lattice.
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We now consider the connection of the shifted and rotated first module to a
second module in an axial gauge with parameter �00 in the new coordinate system,

A00.r0/ D B

� ��00y0
.1� �00/x0

	
; (D.13)

which differs from the general transformed vector potential of the first module by

A00.r0/� A0.r0/ D rr0�.r0/ (D.14)

D B.�0 � �00/

 
y0

x0

!
C B

 
��0dy

.1 � �0/dx

!
C Bsc.2� � 1/

 
�.x0 � dx/
y0 � dy

!
:

(D.15)

The generating function for arbitrary rotation angle can thus be chosen as

�.x0; y0/ D B.�0 � �00/x0y0 C BŒ��0dyx0 C .1 � �0/dxy0�

C Bsc.2� � 1/
�
dxx

0 � dyy
0 � x02 � y02

2

	
; (D.16)

to be used in the general transformation (D.4) of the Green function of the first
module into module into new coordinates and gauge.

On the square grid with vertical or horizontal connection interfaces we will only
have rotation angles of 0, 
=2, 
 , or 3
=2 rad, in which case the last terms including
sc above vanish. Taking also into account the values of �0 from (D.12) in terms of
the original parameter � (which are invariant under rotations by 
), the explicit form
of the generating function for these four rotation angles simplifies to:

��D0.x0; y0/ D ��D
.x0; y0/ D BŒ.� � �00/x0y0 � �dyx0 C .1 � �/dxy0�; (D.17)

��D 

2
.x0; y0/ D ��D 3


2
.x0; y0/ D BŒ.1 � � � �00/x0y0.� � 1/dyx0 C �dxy0�:

(D.18)

Note finally that, for the inter-connection of multiple modules, the ‘first’ module
in a connection is an already assembled module which has obtained its origin and
gauge parameter � from the last connected module.



Appendix E
Natural Units

This appendix provides reference tables with relevant quantities (Table E.1),
conversion factors to SI units (Table E.2), as well as physical constants (Table E.3),
for the system of natural units (n.u.) used in the text. These are obtained by setting

„ D m D e D a0 � 1 (E.1)

for Planck’s constant („), the electronic effective mass in the medium considered
(m), the elementary charge (e), and the lattice constant (a0) of the square computa-
tional grid, and choosing an appropriate value for a0.

Table E.1 Natural units of
commonly used quantities
based on setting
„ D m D e D a0 � 1, and
their equivalent in the
International System (SI) of
units

Quantity n.u. SI

Length a0 m

Mass m kg

Action „ J s D kg m2

s
Charge e C

Time
ma20
„ s

Energy
„2
ma20

J D kg m2

s2

Magnetic flux density
„
ea20

T D J s

C m2

Charge current
e„
ma20

A D C

s
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Table E.2 Conversion factors from our natural units to SI units for the choice a0 D 2 nm and
m D 0:069me (GaAs/AlGaAs interface)

Quantity n.u SI

Length 1 Œa0� 2 � 10�9 m

Mass 1 Œm� 6:28556 � 10�32 kg

Time 1

�
ma20
„
�

2:38405 � 10�15 s

Energy 1

� „2
ma20

�
4:42356 � 10�20 J D 0:27609meV

Magnetic flux density 1

� „
ea20

�
164:555T

Charge current 1

�
e„
ma20

�
6:72044 � 10�5 A

Table E.3 Physical constants in natural units, independent of a0 and m (e, „, h=e) or determined
by the choice a0 D 2 nm, m D 0:069me (kB, c), and their corresponding value in SI units

Physical constant n.u SI

Elementary charge e 1 1:6022 � 10�19 C

Planck constant „ 1 1:0546 � 10�34 kg

Magnetic flux quantum h=e 2
 4:13567 � 10�15 Wb

Boltzmann constant kB 3.12124 K�1 1:3807 � 10�23 J K�1 D 8:6175 � 10�5 eV K�1

Speed of light c 357.36025 2:99792 � 108 m s�1
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