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Preface 

Functional analysis, partly because of its many applications, has 
become a very popular mathematical discipline. My own lectures on 
the subject have been attended by applied mathematicians, prob- 
abilists, classical and numerical analysts, and even an algebraic 
topologist. This book grew out of my attempts to present the mate- 
rial in  a way that was interesting and understandable to people with 
such diverse backgrounds and professional goals. I have aimed at an 
audience of professional mathematicians who want to learn some 
functional analysis, and second-year graduate students who are tak- 
ing a course in the  subject. The only background material needed is 
what is usually covered in a one-year graduate level course in 
analysis, and an acquaintance with linear algebra. The book is de- 
signed to enable the reader to get actively involved in the develop- 
ment of the mathematics. This can be done by working the starred 
problems that appear at the end of nearly every section. I often refer 
to these exercises during subsequent discussions and proofs. So- 
lutions to those starred problems appearing in the introductory chap- 
ters (Chapters 1-4) can be found in Appendix A. 

vii 



viii PREFACE 

The introductory chapters contain the basic facts from the theory 
of normed spaces. Here the mathematics is developed through the 
discussion of a sequence of gradually more sophisticated questions. 
We begin with the most naive approach of all. In Sections 2 and 3 of 
Chapter I ,  we study finite dimensional normed spaces and ask which 
of our results are true in the infinite dimensional case. Of course this 
approach does not lead very far, but it does guide us to some useful 
facts. I n  order to carry our discussion of normed spaces further, we 
take a hint  from the history of the subject and learn something about 
integral equations. This is done in Chapter 2, where we also discuss 
the Riesz theory of compact operators. A key result in that theory is 
the theorem associating to each compact operator a pair of com- 
plementary subspaces. At this point we inquire into the connection 
between such pairs of subspaces and continuous projection 
operators and ask if every closed linear subspace of a normed space 
has a complement. The discussion of these questions, which oc- 
cupief some of Chapter 2 and most of Chapter 3, leads us to some 
very deep theorems. I t  also exhibits the importance of continuous, 
linear functionals. 

Chapter4 deals with the weak topology of a normed space, and it  
also contains an introduction to the theory of locally convex spaces. 
The latter material is used to prove that a Banach space whose unit 
ball is compact for the weak topology is reflexive. It is used again in 
Chapter 5 and in Chapter 7. 

One advantage of the approach sketched above is that the impor- 
tant theorems stand out as those which must be appealed to again 
and again to answer our questions. I t  should also be mentioned that 
several of the questions discussed in the text have been the subject 
of a great many research papers. I have made no attempt to give an 
account of all of this work. However, the closely related problems of 
characterizing reflexive Banach spaces and characterizing those 
Banach spaces that are dual spaces are discussed further in Appen- 
dix B. 

The last three chapters of the book are independent of one 
another, and each deals with a special topic. In Chapter 5, John 
Kelley's elegant proof of the Krien-Milman theorem is presented. 
That theorem is used to settle the question, Is every Banach space 
the dual of some other Banach space? (See Chapter 5 for a more 
precise statement.) Chapter 5 also contains the theorem of Eberlein. 
I have presented Eberlein's original proof of his famous theorem 
because I feel that i t  gives insights into this result not found in more 
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modern proofs. It does not yield the most general result known; but, 
I feel, the gain in insight is well worth the slight loss in generality. 
Chapter 6 contains a sample of the interesting, and sometimes sur- 
prising, ways that functional analysis enters into discussions of 
classical analysis. This material can be read immediately after Sec- 
tion 1 of Chapter 4. Distributions are discussed in the last chapter. 
The Fourier transform is treated early (Section 3) because it requires 
less machinery than some of the other topics. However, Fourier 
transforms are not used in any subsequent section. Applications of 
the theory of distributions to harmonic analysis (Section 3) and to 
partial differential equations (Section 5e) are also discussed. 
Readers who are interested only in distributions can read Chapter 7 
immediately. They will however occasionally have to go back to 
Chapter 4 and read some background material. 

I would like to take this opportunity to thank Andrea Blum for 
writing Appendix A. She patiently solved each of these problems 
and proved that they really can be done. I discussed my ideas for a 
book with R. P. Boas of Northwestern University and John S.  
Lomont of the University of Arizona. They each made valuable 
suggestions, and it is my pleasure now to thank them both. I would 
also like to thank Louise Fields for the excellent job she did typing 
the final version of the manuscript. 

Rrmuvks on Notation. The chapters are divided into sections. 
If in a discussion, in say Chapter 4, I want to refer to Theorem I in 
Section 3 of that same chapter, I write “Section 3, Theorem I .” If in 
that same discussion I want to refer to Theorem I in Section 3 of 
some other chapter, say Chapter I ,  then rather than say “Theorem I 
of Section 3 to Chapter I , ”  I simply write “Section 1.3, Theorem I .” 
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CHAPTER 1 

Preliminaries 

Our treatment of functional analysis begins with a long discussion 
of normed vector spaces. The two most important classes of normed 
spaces are the Hilbert spaces and the Banach spaces. Although every 
Hilbert space is a Banach space, the two classes are always treated 
separately. The concept of a Hilbert space has its origin in the papers 
of David Hilbert on the theory of integral equations, and it is well 
known that Hilbert was attracted to this area by the pioneering work 
of I. Fredholm. Hilbert space theory, by which I mean not only the 
study of these spaces but also of the continuous, linear operators on 
them, is one of the most important branches of functional analysis. 
However, to do the subject justice, we would have to double the length 
of this book and so, except for an occasional remark, we shall say no 
more about it. 

Stefan Banach was not the first mathematician to investigate the 
spaces that now bear his name. He did, however, make many impor- 
tant contributions to their study. His book, “Theory of Linear Opera- 

1 



2 1. PRELIMINARIES 

tions ” [2], contains much of what was known about these spaces at the 
time of its publication (1932), and some of the deepest results in 
the book are due to Banach himself. The strange title is explained in 
the preface. Banach writes: “The theory of operations, created by V. 
Volterra, has as its object the study of functions defined on infinite 
dimensional spaces.” He goes on to discuss the importance of this 
theory and some of its applications. Now Volterra is recognized, along 
with Fredholm, as one of the founders of the modem theory of integral 
equations, and it was undoubtedly his work in this area that led him to 
the theory of operations. 

One fact is clear from our epigrammatic sketch of the history of the 
theory of normed spaces, and that is that a large portion of this theory 
has its roots in the study of integral equations. This fact is worth 
keeping in mind. 

1. Norms on a Vector Space 

We shall begin our formal discussion of normed spaces here. In all 
that follows R and C will denote the field of real numbers and the field 
of complex numbers, respectively. We shall always assume that these 
two fields have their standard, metric, topologies, and all of the vector 
spaces that we consider will be defined over one or the other of these 
two fields. Sometimes it is not necessary to specify over which of these 
fields a certain vector space is defined. In that case we shall speak of a 
vector space over K .  

Definition 1. Let E be a vector space over the field K .  A nonnega- 
tive, real-valued function p on E is said to be a norm on E if: 

(a) p ( x  + y )  5 p ( x )  + p ( y )  for all x, and y in E ;  
(b) p(ax) = 1 a 1 p ( x )  for all x in E and all a in K ;  
(c) p ( x )  = 0 if, and only if, x = 0. 

If p is a norm on E it is customary to denote, for each x in E,  the 
number p ( x )  by (Ix((. A vector space E on which a norm is defined will 
be called a normed space. If we want to emphasize the norm, say ( 1 . 1 1 .  
on E,  we shall speak of the normed space ( E ,  I ( . ( [ ) .  

There is a natural metric associated with ( E ,  1 1 . 1 1 ) ;  we define the 
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distance between any two points x and y of E to be (Ix - yl( .  This 
metric gives us a topology on E that we call the norm topology of 
(E, I( I(), or the topology induced on E by ( 1  * (I. Whenever we speak of, 
say, a norm convergent sequence in E, or a convergent sequence in 
(E, I( * I[), we mean a sequence of points of E that is convergent for the 
metric topology induced on E by 11 * (I. Similarly, we shall speak of norm 
compact subsets of E (or compact subsets of (E, 1 ) .  ( I ) ) ,  of norm contin- 
uous functions on E, etc. 

The plane (i.e., the vector space over R of all ordered pairs of real 
numbers) with I((x, y)I( defined to be the square root of x2 + y 2  is, 
perhaps, the most familiar example of a normed space. More generally, 
for any fixed, positive integer n, the vector space over K of all ordered 
n-tuples of elements of K (we shall call it K") can be given a norm by 
defining I((xl, x2, ..., x,,)ll to be the square root of I x j ( ' .  This 
will be called the Euclidean norm on K". 

It is easy to see that, if there is one norm on a vector space E, then 
there are infinitely many of them; for if (1 * (1 is a norm on E then so is 

( 1  * I( where, for the fixed positive real number A and each x in E, we 
define (Ix(I1 to be AIIxII. There may be other norms on (E, II.II) besides 
those that can be obtained from 1) - (1 in this way. On the vector space 
RZ, for example, we have defined II(x, y)(I to be the square root of 
x2 + yz. But we could also define a norm on this space by taking 
(1 (x, y)(I to be 1 x 1 + I y 1, or by taking ( 1  (x, y)II to be the maximum of 
the numbers 1x1, I y l .  Now in the applications of the theory 
of normed spaces one is often concerned with a family of continuous, 
linear operators on a specific normed space. Here we are using the 
term " linear operator " to mean a linear map from a vector space into 
itself. Clearly the set of all continuous, linear operators on a given 
normed space is determined by the topology on that space and not by 
the particular norm that induces that topology. So it seems reasonable 
to say that two norms on a vector space are equivalent if they induce 
the same topology on the space. This idea is worth further discussion. 

Given a normed space (E, 1 1 . 1 1 )  and a point xo in E, the map 
+(x) = x + xo is clearly onto, one-to-one, and continuous. It also has 
a continuous inverse: 4- '(x) = x - xo . So 4 is a homeomorphism 
from E with the norm topology onto itself. Since the point xo is arbi- 
trary, this means that the neighborhoods of any point of E are just 
translates of the neighborhoods of zero. Hence we may compare the 
topologies induced on E by two different norms by just comparing the 
systems of neighborhoods of zero in these two topologies. 
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Definition 2. Let ( E ,  1 1 . 1 1 )  be a normed space. The set { x  in 
E I l]xll I l} is called the unit ball of E. We shall denote it by J ,  or 
~ l ( l l . l l ) .  

If  r g l  is taken to mean {rx  J x  in J,} ,  then any neighborhood of 
zero contains some set in the family { r g l  Ir in R,  r > 0). 

Definition 3. Let E be a vector space over K and let 1 1 .  I /  ,, 11 * / I  , be 
two norms on E.  We shall say that 1) * 1) is weaker than 1 ) .  ) I 2 ,  and we 
shall write I / .  1 1  , I I / .  I /  , , if there is a positive number I such that 
la,( / I .  I /  ,) c Bl ( 1 1 . 1 1  l). We shall say that I /  and 1 1 . 1 1  are equivalent, 
and we shall write I / .  I /  E 1 1 .  11,, if we have both 1 1 .  11, I I / .  11 and 
tl . 11 1 5 I1 . It2 ’ 

Suppose that 1 1 . 1 1  1, I / .  11 , are two norms on E with 1 1  * I/ I I / .  1 1  ,. Let 
I be a positive number such that I%?,(11. [ I 2 )  c gl( 1 1 . 1 1  l). For any non- 
zero vector x in E w e  have ~ ~ I x l ~ x [ ~ ~ l [ ~ l  51. Hence I ~ ~ x ~ ~ l  I ( / x ( ( ,  for 
all nonzero elements of E, and clearly this holds for the zero vector 
also. Thus we can state: Two norms 1 1  * ( 1  and 1 )  * 11 on a vector space E 
are equivalent iffthere are positive constants I and p such that IIIxII 5 
( ( x ( ( ~  I pl/xl l l  for  every x in E.  

The identity map on a vector space E, I , ,  is defined by the equation 
I ,  x = x for all x in E .  This map is, of course, an isomorphism from the 
vector space E onto itself. If II.II and 1 1 .  )I , are two norms on E, then 
the discussion above shows that ( 1 .  (1 , is weaker than (1.  (1, iff the map ZE 
is continuous from ( E ,  ( 1  * ( 1  ,) onto ( E ,  11 * 11 1), and that ( 1 . 1 1  is equivalent 
to 1 1 . 1 1  , iff I E  is a homeomorphism between these two spaces. 

Definition 4. Let (El, 1 1 . 1 1  1 )  and (E,, 1 1 . 1 1  ,) be two normed spaces 
over the same field. Let T be an isomorphism from El onto E,. We 
shall say that T is a topological isomorphism if it is a homeomorphism 
fmm (-El? 1 1 .  11 I )  onto ( E ,  t 11.112). 

We note that two norms 11 ,, 1 1 . 1 1  , on a vector space E are equiva- 
lent iff the identity map is a topological isomorphism from ( E ,  1 1 . 1 1  1) 

onto (E, I / .  112). 
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EXERCISES 1 

A number of useful facts, facts that will be referred to later on in the 
text, are scattered among the exercises. Any problem that is referred to 
later on is marked with a star. The number of starred problems will 
decrease as the material gets more difficult. 
*1. Let ( E ,  II.II) be a normed space, let {x,} be a sequence of points of 

E,  and suppose that this sequence converges to a point xo of E for 
the norm topology. Show that limllx, 11 = I(xo 11. 

*2. Let E, F be two normed spaces over the same field and let u be a 
linear map from E into F .  
(a) Show that u is continuous on E iff it is continuous at zero. 
(b) Show that u is continuous on E iff there is a constant M such 

that l/u(x)ll I M for all x in the unit ball of E .  Hint: If u is 
continuous at zero but no such M exists, then for each posi- 
tive integer n we can find a point x, in E such that (Ix, ( 1  I 1 
and IIu(x,)l/ 2 n. 

(c) Show that u is continuous on E iff there is a constant M such 
that 11u(x)ll I Mllxll for all x in E .  

3 .  We have defined three different norms on the vector space R2.  
Sketch the unit ball of each of these three normed spaces. Show 
that any two of our three norms are equivalent. 
Let E,  F be two normed spaces over the same field and let u be a 
topological isomorphism from E onto F.  Denote the norm on E 
by 11 . I I E  and the norm on F by / I  . I J F .  
(a) For each x in E define 1 I(x(I 1 to be I I u ( x ) I / ~ .  Show that 

I / I  * / I  1 is a norm on E and that it is equivalent to I ( .  I I E .  
(b) For each y in F define I IJyl( I as follows: Let x be the unique 

element of E such that U(X) = y and take 1 J/yl\ 1 to be J I x J / ~ .  
Show that I 1 1 . 1 1  1 is a norm on F and that it is equivalent to 

*4. 

/ I  I1 

/ I  ' / I F  . 
(c) Suppose now that E is just a vector space over K ,  F is a 

normed space over K ,  and u is an isomorphism from E onto 
F .  The function 1 ( 1 .  ( 1  1 defined on E as in (a) is still a norm 
on E .  Show that if E is given this norm then u becomes a 
topological isomorphism from E onto F.  If E is a normed 
space and F is just a vector space then similar remarks can 
be made about the function defined on F as in (b). 
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4 4 .  Let E,  F be two normed spaces over the same field and let u be a 
topological isomorphism from E onto F .  If 1 . 1  and 1 .  I are 
norms on E and F ,  respectively, that are equivalent to the original 
norms on these spaces, show that u is a topological isomorphism 
from ( E ,  1 * 1 E )  onto ( F ,  1 .  I F ) .  

2. Finite Dimensional Normed Spaces 

Before continuing with our general discussion it is instructive to 
investigate the properties of a special class of normed spaces. We have 
in mind spaces ( E ,  1 1 . 1 1 )  for which E is a finite dimensional vector space 
over K .  Such spaces do arise in applications. 

Recall that a vector space over K is said to be finite dimensional if, 
for some nonnegative integer n, it has a basis containing n elements; 
the number n is called the dimension of the space. We allow n to be 
nonnegative in order to include the trivial vector space, i.e., the vector 
space over K whose only element is the zero vector. A basis for this 
space is, by convention, the empty set. Hence the trivial vector space 
has dimension zero. It is easy to see that any finite dimensional vector 
space over K can be given a norm. In fact 

Theorem 1. 
are equivalent. 

Any two norms on a finite dimensional vector space 

Proof. Let F be a finite dimensional vector space over K and let 
1 ) .  11 and 11.  )I2 be two norms on F .  Choose a basis xl, x 2 ,  . . . , x, for F 
and define a third norm, 1 . 1 ,  as follows: For each x in F there is a 
unique set of scalars u, ,  u 2 ,  . . . , u, such that x = 1 ajxj. Take I x I to 
be the maximum of the numbers I u1 1, I a2 1, . . . , I a, I. Suppose that 
each of the norms 11 * 11 , and II.II is equivalent to 1 . 1 .  Then there are 
positive scalars m,, M1 and m2, M2 such that 

m1 1x1 5 IlXIll < M I  1x1 and m2lxl  5 llxIl2 5M2 

(m2/Ml)llxlll I m 2 J x l  5 IIx112 I M 2 I x l  5 (M2/m,)lIxll 

for each x in F .  It follows that 

for each x in F ,  and hence 1 1 . 1 1  and ( 1 .  ( I 2  are equivalent. 
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Now let I / .  11 denote either /I or 1 1 .  [ I 2 .  We shall show that ( 1 .  I( is 
equivalent to 1 .  I .  If x = ujxj then 

IIxIl C l a j l  llxjll 1x1 (C IIxjII). 
Since (C (Ixj 1 1 )  is a constant we see that )I * 1) is weaker than 1 .  I on F. 
Let S = {x in F 1 I x 1 = l} and choose a sequence {yk} of points of S 
such that limljy, 11 = inf{(lx(l Ix in S). For each y k  there are scalars akl,  

j = 1, 2, . . . , n and every k. These inequalities imply that there is a 
subsequence of {yk) (call it {yk)  also) such that lim a k j  exists and equals, 
say, aj for j  = 1,2, . . . , n. Let y = a jx j  and note that {ykf converges to 
y for 1 . 1 ,  i.e., lim J y  - yk  I = 0. It follows that J y  1 = 1 (Exercises 1, 
problem 1) and hence, in particular, y # 0. 

At this point we make an observation. Let L be the maximum of the 
numbers JIxj 11, j = 1, 2, . . . , n. If a positive number E is given then the 
elements x = p i x j  and z = 1 yjxj of F will satisfy the inequality 
IIx - zJI < E, if Ipj  - y j  1 < &/An for each j ,  i.e., if ( x  - z 1 < &/An. This 
fact, together with the remarks contained in the last paragraph, implies 
that limIJyk 1) = IJyJI. So JJyJl = inf{llxll J x  in S> and since y # 0 this 
infimum is positive. Now if x is any nonzero element of F, then x/ I x 1 
is in S and hence (IxIJ 2 I(yl( I x 1 .  It follows that 1 .  1 is weaker than ( 1 . 1 1  
on F. 

ak2, . . . , ak,, such that J'k = C UkjXj. Since each yk E s, I akj 1 5 1 for 

Corollary 1. If two finite dimensional normed spaces over K have 
the same dimension, then they are topologically isomorphic. 

Proof. It suffices to show that if a normed space (F, I(. 11)  over K 
has (finite) dimension n then it is topologically isomorphic to the space 
K" with the Euclidean norm. There is an isomorphism u from F onto 
K". We can use this map to define a new norm on F as follows: For 
each x in F let I JlxJl 1 be the norm of u ( x )  in K" (Exercises 1, problem 
4a). When F is given this new norm u becomes a topological isomor- 
phism (Exercises 1, problem 4c). However, Theorem 1 shows that 

1 11 * (1 1 is equivalent to I ( .  11 on F. Hence u is a topological isomorphism 
from (F, JJ.I I )  onto K" (Exercises 1, problem 5) .  

Theorem 1 has two other useful corollaries. In order to state them 
we need some more terminology. The proofs of these corollaries will be 
left to  the reader (see problem 1 below). We have already noted that a 
normed space (E, JI.11) has an associated metric. If E, with this metric, 
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is a complete metric space then we shall say that ( E ,  ( l . ( l )  is a complete 
normed space. More explicitly: 

Definition 1. Let ( E ,  ( 1 . 1 1 )  be a normed space and let {xn} be a 
sequence of points of E .  We shall say {x,} is a Cauchy sequence if the 
limit, as rn and n tend to infinity, of (Jx, - x, 1) is zero. We shall say that 
( E ,  I I . l \ )  is a complete normed space, or that ( E ,  I / .  1 1 )  is a Banach space, 
if every Cauchy sequence of points of E converges to a point of E .  

Corollary 2. Any finite dimensional normed space is a Banach 
space. 

If G is a linear subspace of a normed space ( E ,  1 1 .  Il), then G can be 
given a norm in a natural way; simply regard each element of G as an 
element of E and take its norm in E .  More formally we have an 
inclusion map j from G into E, j(x) = x for each x in G, and we define 
the norm of x E G to be 1 1  j(x)ll. This is called the subspace norm on G .  
Whenever we work with a linear subspace of a normed space we shall 
always assume, without explicit mention, that it has the subspace 
norm. 

Corollary 3. Any finite dimensional linear subspace of a normed 
space E is a closed subset of E .  

A linear subspace of a normed space E that is also a closed subset of 
E will be called a closed, linear subspace of E .  

We know that any closed, bounded subset of, say, R2 is compact. 
This is also true for each of the spaces K". Is anything like this true for 
normed spaces? This question will lead us to one of the fundamental 
differences between finite dimensional and infinite dimensional 
normed spaces. 

Definition 2. Let ( E ,  )1.(l) be a normed space and let S be a subset 
of E .  We shall say that S is a bounded subset of E if there is a positive 
scalar A such that S c Ad,. 

It is clear that a normed space has the property that each of its 
closed, bounded subsets is compact iff the unit ball of the space is 
compact. 

Theorem 2. The unit ball of a normed space is compact iff the 
space is finite dimensional. 
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Proof: The sufficiency of our condition follows from Corollary 1. 
Let (F, 1 ) .  11) be a normed space over K and assume that the unit ball of 
this space is compact. If F is not finite dimensional then we can find a 
sequence {x,} of points of F such that any finite subset of {x,} is linearly 
independent. For each positive integer k let Fk be the linear subspace of 
F that is generated by xl, x2,  . . . , Xf . Note that, by Corollary 3, Fk is a 
closed, linear subspace of Fk+ for each k. Suppose that we can choose, 
for each k, a point yk in Fk+ such that llyk 11 = 1 and JIx - y, ( 1  2 +for 
all x in F, . Then {yk} is contained in the unit ball of (F, / [ . [ I )  and, since 
Ilyk - yk+ )I 2 3 for every k, no subsequence of {yk} is convergent. This 
contradiction shows that F must be finite dimensional. We shall now 
show that we can choose an element yk with the properties stated 
above. 

Lemma. Let E be a normed space over K, let G be a closed, linear 
subspace of E and let 6 be a real number; 0 I 6 < I. If G # E, then 
there is a point yo in E such that IJy, 1) = 1 and IJx - yo )I 2 6 for all x 
in G. 

Proof. Choose y in E, y not in G, and let d be the positive number 
inf{ Ily - x I I  I x in G). For any fixed point xo in G we may write 

IIX - (Y - X0)IlY - xo It - It = I l M Y  - xo I1 - (Y - X0))tIY - xo I1 - I1 

This last term is greater than or equal to dlJy - xo 1) - for every x in G. 
The point yo may be found by first taking xo in G such that 
lly - xo 1 )  < d6-  ', and then setting yo equal to (y - xo)(ly - xo 1) - l .  

We shall give many examples of normed spaces in the following 
pages. In all of these examples we begin with a family of functions each 
member of which is defined on the same set, say S, and takes its values 
in K or in some fixed vector space over K .  Such a family will be called 
a space of functions on S if it is a vector space with respect to the fol- 
lowing operations: For anyf; g in the family and any ct in K, (f+ g)(s) 
=f(s) + g(s) for each s in S and af(s) = a [ f ( s ) ]  for each s in S. Thus 
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if S is, for example, [0, I] = (x in R ( 0  5 x I I}, then the family of all 
K-valued, continuous functions on S is a space of functions on S. 

EXERCISES 2 

*1. Prove Corollaries 2 and 3 to Theorem 1. Prove the statement 
made just after Definition 2. Prove that a Cauchy sequence in a 
normed space (E,  1 ) .  11) is a bounded set. 

*2. Let E be a normed space over K .  For any subset S of E let cl S 
denote the closure of S .  
(a) If H is a linear subspace of E prove that cl H is a closed, 

linear subspace of E .  
(b) If B is any bounded subset of E prove that cl B is a bounded 

subset of E .  
*3. Let E,  F be two normed spaces over the same field and let u be a 

linear map from E into F.  
(a) Prove that u is continuous on E iff the set u(B)  = {u(x) 1 x in 

B} is bounded in F whenever the set B is bounded in E .  
(b) If E is a finite dimensional normed space show that u is 

continuous. 
Let I ,  denote the space of all sequences {x,} of points of K such 
that sup( I x, I 1 n = 1, 2, . . .} is finite. 
*(a) Show that I ,  is an infinite dimensional space of functions 

on the positive integers. 
*(b) For each x = {x,} E I ,  define ~ I x ~ I ,  to be sup{ Ix,I In = 1, 

2, . . .}. Show that this function is a norm on I,. 
(c) Let F = (x = (x,} in I ,  Ix, = 0 except for finitely many n}. 

Show that F is a linear subspace of I,. What is the closure 
of F in I,? 

(d) Referring to Corollaries 2 and 3 what can you say about: 
(i) the dimension of F ;  
(ii) the vector space F with the subspace norm? 

4. 

5. Let ll denote the space of all sequences {x,} of points of K such 
that Ix, I < co. 
*(a) Show that Il is an infinite dimensional space of functions 

on the positive integers. 
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*(b) For each x = {x,} in I ,  define llxll to be cp= , I x, 1 .  Show 
that this function is a norm on I,. 

(c) Let F = {x = {x,) in Il  Ix, = 0 except for finitely many n}. 
Show that F is a linear subspace of 1, .  What is the closure 
of F in I , ?  

(d) Referring to Corollary 2 what can you say about F with the 
subspace norm? 

3. Infinite Dimensional Spaces. 
Hamel and Schauder Bases 

In our treatment of finite dimensional normed spaces we made 
repeated use of the fact that any such space has a basis. Let us take a 
look now at some of the generalizations of this concept. 

Definition 1. Let X be a vector space over K .  A subset 3? of X is 
said to be a Hamel basis for X if it has the two following properties: 

(a) Any finite subset of X is linearly independent. 
(b) Given any x in X there is a finite subset h, ,  h 2 ,  . . . , h, of A? 

such that x, h , ,  hZ, ..., h, is linearly dependent. 

It is an easy application of Zorn’s lemma [15, Theorem 25(e), p. 331 
to prove that any linearly independent subset of X is contained in a 
Hamel basis for X .  In particular, any vector space over K has a Hamel 
basis. Observe that, by (b), every element of X is a linear combination 
of some finite subset of A?. Furthermore, if we require that the 
coefficients in such a linear combination be nonzero, then, by (a), both 
the finite set and the coefficients are uniquely determined by x. So for 
each x in X we can find a unique finite set h, ,  . . . , h, in A? and a unique 
set of nonzero elements al ,  a2 ,  . . . , a,, of K such that x = xs , aj h j .  
Define IIx IXIl to be the maximum of the numbers I uj  I , j  = 42 ,  . . . , n. 
Clearly JIx I is the norm for X and we have proved: Any vector 
space over K can be given a norm. 

There is one important space for which a Hamel basis can be 
exhibited. A K-valued function f on [0, 11 is said to be a polynomial 
function if there is a nonnegative integer n and elements ao, al, . . . , a, 
of K such that f ( x )  = x=o a jx i  for all x in [0, 11. The set of all 
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polynomial functions on [0, 13 is a space of functions on [0, 13 that we 
shall denote by Y[O, 13. Clearly { 1, x, x2, . . .} is a Hamel basis for 
9[0, 13. 

The set of all K-valued, continuous functions on [0, 13 is a space of 
functions, which we will denote by V[O, 13. We can define a norm for 
this space as follows: For eachfin %[O, 13 let I ( f ( ( ,  be the maximum of 
the numbers { I f ( x ) l ) O  I x I 1). Observe that a sequence of contin- 
uous functions is convergent for this norm iff it is uniformly convergent 
on [0, 13. Hence (V[O, 13, 1 1  * 11,) is a Banach space. Notice that, in 
contrast to the finite dimensional case, P[O, 13 is a linear subspace of 
V[O, 13 that is dense in this space for the norm topology; this follows 
from the Weierstrass approximation theorem [ 10, Corollary 7.3 1, 
p. 961. We can use the existence of such a subspace to prove that two 
norms on an infinite dimensional space need not be equivalent. 

Let XI be a Hamel basis for Y[O, 13. We can find a Hamel basis S 
for V[O, 13 that contains Choose any point ho that is in J'? but not 
in X I  and define 40(ho)  = 1, 4 , ( h )  = 0 for all h in X', h # ho. Then 
extend & to all of V[O, 13 by requiring that it be linear. It is clear that 
Cpo is a continuous, linear map from (V[O, 13, 11. I XI\) into K because 

Imax{IajI  I l ~ j ~ n l C  I4o(h j ) (  5 IlfI**U(I 
for each f in %[O, 13. If 4o were continuous on (V[O, 13, 1 1 . 1 1  m), then 
{ f  I 40(f) = 0) would be a closed, linear subspace of (V[O, 13, 1 1 .  11,). 
But this last set contains 9[0,  11, which is dense in (%[O, 11, ( ( . I ( , ) .  
Hence if +o were continuous on (C[O, 13, ( 1 .  it would have to be 
identically zero, contradicting the fact that 40(ho)  # 0. Observe that 
1 1 . 1  ,@/I and 11. / I  , could not be equivalent norms on V[O, 13. 

We have just seen that a nonzero linear map, from a normed space 
E into the underlying field, whose null space is dense in E must be 
discontinuous. The converse is also true. Before proving it let us give 
these maps a name. 

Definition 2. Let X be a vector space over K .  A linear map from X 
into K is called a linear functional on X .  The set of all linear func- 
tionals on X will be denoted by X ' .  

It is clear that X' is a space of functions on X. We shall call it the 
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algebraic dual space of X or, more simply, the algebraic dual of X .  If 
(E,  I ( .  1 1 )  is a normed space over K ,  then an element 4 of E’ is contin- 
uous on (E,  (1 * 1 1 )  iff it is bounded on the unit ball of E (Exercises 1, 
problem 2b). If 4 is not continuous then {+(x) I x in E, llxll I 1) is all of 
K .  This is obvious if K = R. The proof, when K = C ,  is left to the 
reader (see problem 6 below). 

Lemma 1. Let (E ,  I ( .  1 1 )  be a normed space over K and let 4 be a 
nonzero element of E ’ .  Then the following conditions on I$ are 
equivalent : 

(a) 4 is continuous on (E,  I ( .  11). 
(b) The null space of 4 is a proper, closed linear subspace of 

(c) The null space of 4 is not dense in ( E ,  ( 1 . 1 1 ) .  
(E,  II .II)* 

Proof: We need only show that (c) implies (a). Let N ( 4 )  be the 
null space of 4. If we assume that (c) is true, then there is an open set G 
in E that is nonempty and does not meet N ( 4 ) .  From the discussion in 
Section 1 there is, for each point x of G, a positive scalar I such that 
{x + I y  l y  in 9,} is disjoint from N ( 4 ) .  If 4 is not continuous then 
{ $ ( I y )  ( y in B1} is all of K .  In particular, for some yo in Bl, 4 ( I y o )  = 

--4(x). But then x + I yo  is in N ( 4 )  and we have reached a 
contradiction. 

There is another type of basis that has proved itself useful in the 
study of certain normed spaces. For various reasons, which need not 
concern us at the moment, one usually defines this type of basis only 
for a Banach space. 

Definition 3. Let (B, I / .  1 1 )  be a Banach space over K .  A sequence 
{x,} of points of B is said to be a Schauder basis for B if for each 
element x in B there is a unique sequence {a,) of points of K such that 

lim x - C u j x j  = 0. 
n-rm l l  1 1  

A Banach space need not have a Schauder basis. If (B, 1 ) .  1 1 )  is a 
Banach space over R and {x,) is a Schauder basis for B, then the 
countable set {cj”=l q j x j  In is a positive integer and q j ,  1 sj I n, are 
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arbitrary rational numbers} is dense in (B, 11 * 11). Similarly, a Banach 
space over C that has a Schauder basis must contain a countable dense 
set. Hence, if a Banach space is to have a Schauder basis, then it must 
have the following property. 

Definition 4. A normed space (E, 11 1 1 )  is said to be a separable 
normed space if E has a countable subset that is dense in E for the 
norm topology. 

It is useful to notice that any subset of a separable normed space is 
separable, i.e., if (E, 11 * 1 1 )  is a separable normed space and if S is any 
subset of E, then S contains a countable set whose closure in E includes 
all of S [21, Proposition 13, p. 1381. 

We have seen that only a separable Banach space can have a 
Schauder basis. For many years it was not known whether every separ- 
able Banach space did in fact have such a basis. The question was 
finally settled, in the negative, by Enflo [6]. There is an extensive litera- 
ture on the subject of Schauder bases (see [ 191 and [22]). However, this 
subject is, we feel, too specialized to be included in this text and, except 
for the results stated in problems 2 and 3 (which we will use in Chapter 
3), we will make no further reference to it. 

The space ( I , ,  II.II), defined in problem 5 of Exercises 2, will be 
referred to later on. Let us show that this is a Banach space. Let 
{ u " ( n  = 1, 2, ...} be a Cauchy sequence in this space; here 
Y" = {xi ( j  = 1, 2, . . .} for each n. Then if E > 0 is given there is an 
integer N such that 1111" - umll , < E whenever both m and n are 2 N ,  
i.e., zm= I x i  - x7 I < E whenever both m and n are 2 N. Two things 
follow from this : 

(a) For each fixed j the sequence (xi I n = 1, 2, . . .} is a Cauchy 
sequence in the field K. 

(b) For each fixed integer k, z= , 1x7 - x7 1 < E whenever both 
m and n are 2 N. 

For each j let xj E K be the limit of {xi I n = 1,2, . . .}. We shall show 
that u = {xj 1 j = 1, 2, . . .} is in I,. To do this, for any fixed k let u k  = (x,, 
x2 ,  ..., x k ,  0, ...) and let u; = (x;, x l ,  ..., xi ,  0, 0, . ..) for each n. 
Clearly u k  and each u; is in I , .  Hence 

k 

I I u k I I l  5 l l U k -  u ; I I 1  f ll';lll s E +  l x y l  
j= 1 

whenever n 2 N. If we fix n 2 N and let k tend to infinity, we find that z?=, lxjl  I E +  IIu"II1.Henceu={xj}isinIl. 
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The only thing left to prove is that liml(u" - u(I1 = 0. By (b) we see 
that, for any fixed k, c!= 1 x; - x j  1 I E whenever n 2 N. Holding 
n 2 N fixed and letting k tend to infinity gives )Iu" - u[1 I E whenever 
n 2 N. 

EXERCISES 3 

1. Show that (W[O, I], ( [  .I),) is a separable Banach space. 
*2. Consider the normed space (I,, ( 1 . 1 )  ,) defined in problem 4 of 

Exercises 2. 
(a) Show that this space is complete. Hint: Refer to the proof 

that ( I l ,  1) . 1) 1) is complete. 
(b) For each fixed, positive integer n let en be the sequence with 

1 in the nth place and zero everywhere else. Prove that the 
set el, e 2 ,  . . . is not a Hamel basis for I, and that it is not a 
Schauder basis for I,. 

(c) Let co = {{x,}  in I, (lim x, = 0). Show that co is a closed, 
linear subspace of ( I , ,  Il-ll,) and that el, e2 ,  ... is a 
Schauder basis for co. 

(d) Prove that (I,, ( 1 .  (1,) can not have a Schauder basis. 
*3. Show that the set el,  e2,  . . . (see problem *2b) is not a Hamel basis 

for Il  but that it is a Schauder basis for ( I l ,  ( 1 .  1) l). 
*4. Let X be a vector space over K. A linear subspace Y of X is said 

to have codimension one in X if the following is true: There is an 
xo in X such that for any x in X we can find y in Y and 1 in K, 
both depending on x, for which x = y + Axo. 
(a) Show that a proper, linear subspace of X has codimension 

one iff it is the null space of some nonzero element of X'. 
(b) Let 0, 4 be nonzero elements of X'. Show that the null 

space of 6 is contained in the null space of 4 iff there is a 
scalar 1 such that 4 = 16. 

*5 .  Let n be a fixed, positive integer and consider the space K". Iffis 
any linear functional on K" show that there is a unique n-tuple 
(cl, c2 ,  ..., c"), each cj E K, such that 
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for all x = (x,, . . . , x,) in K". Hence a linear subspace of codimen- 
sion one in K" coincides with the set of all solutions to an equa- 
tion of the form c1 x1 + c2x2 + *. .  + c,x, = 0, where cl, c 2 ,  .. ., 
c, are fixed elements of K not all zero. 
Let ( E ,  1 1 . 1 1 )  be a normed space over C. If 4 E E' is not contin- 
uous on E,  prove that {@(x) (x in E, ( /XI(  I I) is all of C. Hint: If 
xo E E ,  (Ixo )I I 1 then eiexO is also in E,  I[eiexO 1 )  = llxo 11, and 
4(eiexo) = ei84(xo). 

6. 



C H A P T E R  2 

Operator Theory 

From one point of view the study of the finite dimensional normed 
spaces is rather disappointing. Apart from the few, mostly negative, 
results mentioned in Section 1.3, it has taught us little about general 
normed spaces. In fact, since, as we have seen, most of the theorems 
that are true for this class of spaces are true only for this class it is clear 
that we have been exploring a kind of blind alley. So, if our investiga- 
tion of general normed spaces is to  proceed any further, we must find 
another way of approaching them. We have already mentioned the 
importance of the work on integral equations for the early develop- 
ment of the theory of normed spaces. Let us take a look at an integral 
equation. 

1. Compact Linear Operators 

Consider the Banach space (V[O, 11, I / .  l l m )  and a function K ( x ,  f) 
that is continuous for 0 I t ,  x 5 1. If an element g(x) E %[O, 11 is 

17 
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given, we may ask whether there is an element U(X) of this space such 
that 

1 

U(X) = g(x) + K(x, t )u ( t )  d t .  
0 

(*I 
Equation (*) is a Fredholm equation of the second kind. Such equa- 
tions arise in many applications of mathematics [24]. 

K(x, t ) f ( t )  d t  (call it Kf(x)) is 
also in W[O, 11. Furthermore, if 

Iff(x) E W[O, I] then the function 

M = m a x { I K ( x , r ) l l O I t , x <  1) 

then IKf(x)l I M(lf(( ,  for all x, i.e., ((Kf((, I Mllfllm. Thus the 
map K that takes eachf(x) in V[O, 11 to Kf(x) is a continuous, linear 
operator on the Banach space (V[O, 13, 1 ) .  ll,). Let I denote the identity 
operator on our Banach space, and note that the equation (*) has a 
solution in W[O, 11 for a given function g(x) iff g(x) lies in the range of 
I - K .  Also, solutions to (*), when they exist, will be unique iff the null 
space of I - K contains only the zero vector. So, to answer questions 
about the existence and uniqueness of solutions to equation (*) we 
should investigate the range and the null space of the operator I - K .  
We shall do that, but first let us examine the operator K more closely. 

Let {h,(x)} be a bounded sequence in (V[O, 11, I I . I l m ) ;  say 
Ilhn(x)llm I 1 for all n. Then certainly {Kh,(x)} is a bounded sequence. 
But more is true. We have, for any fixed n, 

I I max{ I K(x, t )  - K(y ,  t )  I I t } .  

Now K(x, t )  is uniformly continuous. Thus, given E > 0 we can find a 
6 > 0 such that I Kh,(x) - Kh,(y) I < E whenever ( x  - y I < 6, and 
this is true for every n. It follows that (Kh,(x)} is equicontinuous on 
[0, 11 and so, by the Ascoli-Arzela theorem [21, Theorem 33, p. 1791, 
some subsequence of it converges uniformly (i.e., for 1 1 .  11,). So the 
operator K maps any sequence in V[O, 13 that is bounded for l ~ ~ ~ l m  
onto one that has a convergent subsequence for 1 1 . 1 )  , . 

Definition 1. Let (B,  I / .  1 1 )  be a Banach space and let K be a contin- 
uous, linear operator on B. We shall say that K is a compact operator 
on B, or simply that K is compact, if for any sequence {x,} of points of 
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B that is bounded for ( 1 .  (1 the sequence {Kx,) has a subsequence that is 
convergent for (1 . I(. 

It is easy to see that a continuous, linear operator on a Banach 
space is a compact operator iff it maps any bounded set onto a set 
whose closure is compact. 

We have seen that questions about the existence and uniqueness of 
solutions to certain integral equations lead to questions about the 
range and null space of an operator of the form I - K ,  where I is the 
identity operator and K is a compact operator on a certain Banach 
space (B, 1) * 11). Let these symbols retain this meaning for the rest of this 
section, and let N ( I  - K )  be the null space of I - K .  

Theorem 1. The null space of I - K is a finite dimensional sub- 
space of B. 

Proof: The null space of I - K is a closed, linear subspace of B. 
Let .9d = (x in N ( I  - K )  1 I1x11 I: l}. Since N(I  - K )  is { y  in B 1 y = Ky},  
we must have K(B) = 98. Thus K(B) is a compact set. But 98 is the unit 
ball of the Banach space N ( I  - K )  and so this space must be finite 
dimensional (Section 1.2, Theorem 2). 

Applying Theorem 1 to equation (*), we see that there is a finite 
linearly independent set ul(x), u2(x), ..., uk(x) in %‘[O, 13 that spans 
N ( I  - K ) ,  and if u,(x) is a solution to (*) for a given function g(x), then 
the general solution is 

k 

~ ( x )  = u,(x) + C ajuj(x); 
j= 1 

a l ,  a2 ,  ..., ak are arbitrary scalars. 
If y is in the range of I - K ,  denote this linear subspace of B by 

R(I  - K ) ,  then there is an x in B such that y = ( I  - K)x. Even more is 
true. 

Lemma 1. There is a number M with the following property: For 
each y in R(I - K )  there is an x in B such that y = ( I  - K ) x  and 
llxll MIlyll. 

Proof: Suppose that the lemma is false. Then for each positive 
integer n there is a point y ,  in R(I  - K )  such that whenever x, E B 
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satisfies the equation y, = (I - K ) x ,  it must also satisfy the inequality 
IIx, 11 > nl/y ,  11. Clearly y ,  # 0 because the inequality is strict. For 
n = 1, 2, . . . choose w, in B such that (I - K ) w ,  = y,. Now no w, is in 
N(I - K )  and this subspace is closed, so each of the numbers 
d ,  = inf{ ( 1  w,  - x I( I x in N (  I - K ) }  is positive. Hence for each n we can 
choose u, in N ( I  - K )  such that d, I / I  w, - u,  I( < 2 4 .  

Define z ,  to be (w, - u,) ( /w,  - u, I ( - '  for n = 1, 2, . . . Since {z,) is a 
bounded sequence and K is a compact operator we may assume that 
{Kz,}  is convergent. Now I - K applied to IIw, - u, )Iz, is just 
( I  - K ) w , ,  which is y,. Thus we have IIw, - u,  / I  llz, 11 > n(ly ,  11. It fol- 
lows that 

l l ( I  - K)z,ll = llY,II Ilwn - ",I$ < IIzn Illn = l/n, 
and so lim(I - K ) z ,  = 0. Since we can write z ,  = (I - K)z ,  + Kz, ,  it is 
clear that lim z ,  exists. Call this limit z. Then since ( I  - K ) z  = 
lim(I - K ) z ,  = 0, z is in N(I - K ) .  But 

l lzn - 211 = I1 Ilwn - 1 1 -  '(Wn - 0,) - 211 
1 1  

= I1 w, - (% + I1 w, - 4 I1 2) I/ I1 w, - u, I1 - 2 d ,  /I w, - t', I1 - 2 T .  

This contradicts the fact that lirn z ,  = z. 

Theorem 2. The range of I - K is a closed linear subspace of B.  

Proof. Let {y,} be a sequence of points of R(I - K )  that converges 
to y E B. Let M be the number whose existence was proved in Lemma 
1. For each integer n we can choose x, in B such that y ,  = (I - K ) x ,  
and I(x, (1 5 MI/y, (1. Since {y,) is a convergent sequence it is bounded 
(Exercises 1.2, problem 1) and so {x,) is bounded. Hence we may 
assume that { K x , }  is convergent. Clearly x, = y ,  + K x , ,  for each n, 
and so {x,) must converge to some point, say x, of B. But then 

(I - K ) x  = lim(I - K ) x ,  = lim y ,  = y 

and so y E R(1 - K ) .  

We will have more to say about the range and null space of I - K 
in the next section. Let us now return to our integral equation and see 
how we might go about solving it. The equation reads 

1 

~ ( x )  = Y(X) + K(x, t )u ( t )  dt, 
0 

(*) 
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or 
U(X) = g(x) + K u ( x ) .  

Suppose that g(x) E %[O, 11 is given and construct a sequence in 
V[O, 13 as follows: Take f o ( x )  = 0, ,fl(x) = g(x) + Kfo(x), f2(x) = 

g(x) + Kfl(x), . . . ,fn(x) = g(x) + Kf,- '(x), . . . . If {.fn(x)) is convergent 
to, say, u(x)  for 1 1 . 1 1  oo, then 

U ( X )  = limfn(x) = g(x) + lim Kfn- l(x) = g(x) + Ku(x); 

i.e., U(X) is a solution to (*). So in order that (*) have a solution it is 
sufficient that the sequence {f,(x)) converge for 1 ) .  1) cD . 

For any u(x) in %'[O, I] let Kou(x) = u(x), K'u(x) = Ku(x) ,  and, for 
n 2 2, let K"u(x) = K[K"-'u(x)]. We have 

f O ( 4  = 0, 
f i ( X )  = g(x) + KfO(X) = dx), 

f2(x) = d x )  + K f , ( x )  = g(x) + K g ( x ) ,  

Hence if n > rn, then 

f,(~) - f m ( x )  = Kmg(x) + K"+'g(x) + ... + K"-'g(x). 

Thus a sufficient condition for the sequence ( fn}  to converge in 
(%'[O, I], l l . l l m )  is that the series cT=o IIK"g(x)JJ be convergent. 

EXERCISES 1 

*1. Let ( E ,  ( [ . [ I )  be a normed space over K and let Y ( E )  be the space 
of all continuous, linear operators on E. 
(a) For each u in Y ( E )  show that 

suPillu(x)ll I Ilxll 5 1) 

= SUP~IIU(X)II I IIXII = 1) 

= SUP{IlU(-4ll llxll- ' I x  # 01. 

(b) For each u in P ( E )  define (Iu[( to be the number 
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sup{llu(x)ll 1 IJx(I 5 l}  (see Exercises 1.1, problem 2b). Prove 
that I ( .  ( 1  is a norm for Y ( E ) .  

Let (B,  II*II) be a Banach space, let 9 ( B )  be the space of all 
continuous, linear operators on B, and let Y , ( B )  be the set of all 
compact operators on B. 

2. 

(a) Prove the statement made just after Definition 1. 
(b) Show that Y@) is a linear subspace of 9 ( B ) .  
(c) If T E 9 ( B )  and K E Y c ( B )  show that both T 0 K and 

K 0 T are in 9 , ( B ) .  
*(d) If K is in Y c ( B )  and n is any positive integer show that 

there is an operator S ,  in Y C ( B )  such that ( I  - K)" = 
1 - S , .  Hint: Use the binomial theorem. 

(e) If T E Y ( B )  and if the range of T is a finite dimensional 
subspace of B show that T E Y , ( B ) .  

3. Referring to problems 2 and lb above show that Y c ( B )  is a 
closed, linear subspace of Y ( B ) .  

4. Let K ( x ,  t )  be continuous for 0 I t I x 5 1, let g ( x )  E V[O, 11 be 
given and consider the equation 

u ( x )  = g(x) + lx K ( x ,  t )u(t )  d t .  
0 

(**) 

This is a Volterra integral equation of the second kind. 
(a) For eachf E W[O, 13 define K f ( x )  to be fi K ( x ,  t ) f ( t )  dt .  Let 

K be the operator on V[O, 11 that takes eachf(x) to K f ( x ) .  
Show that K is a compact operator on (%[O, 11, 1 1 .  

(b) Show that the equation (**)has a solution in V[O, 11 for any 
given function g(x) E W[O, 13. Hint: If 

= max{ I K(x, t )  1 10 I t _< x 5 1) 

then cn"= 0 II K"g I1 m 5 eM I1 9 II m . 

2. Riesz Theory and Complementary Subspaces 

Here we shall continue with our study of compact operators. 
Throughout this section (B, II.II) will denote a Banach space, I the 
identity operator on B and K a compact operator on B. For each 
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n = 0, 1, 2, . .. let N ,  be the null space of ( I  - K)”; recall that 
( I  - K)’ = I ,  (I - K)” = ( I  - K ) ( I  - K)”-’ for n 2 1. Clearly 
( O } = N o c N 1  C N ~ ~ . ~ * C N , C N , + ~  c’”. 

Theorem 1. For each n the space N ,  is finite dimensional. 
Furthermore, there is an integer p such that N ,  # N,+ for n = 0, 1, 
2, . . . , p -  1 b u t N , = N , + ,  f o r n 2 p .  

+ Proof: We have already proved that N1 is finite dimensional (Sec- 
tion 1, Theorem 1). But since ( I  - K)” = I - S ,  for some compact 
operator S, (Exercises 1, problem 2d) the finite dimensionality of N ,  
also follows from this theorem. 

Suppose that N ,  # N,+ for n = 0, 1, 2, . . . . For each n choose x, 
in N , +  such that ()x, 11 = 1 and inf{llx, - yll ) y in N,}  2 9. Apply K to 
this sequence. If s > r then 

( ( K x ,  - Kx, (1 = I(x, - { ( I  - K)x ,  + X, - ( I  - K)x,}((  2 f. 
But this contradicts the fact that K is a compact operator and we must 
conclude that N ,  = N,+ for some n. Let p be the first integer for 
which this is so. We shall now show that N ,  = N,-  for all n > p .  If x is 
in N ,  then ( I  - K)P+’[ (I  - K ) ” - P - l ~ ]  = ( I  - K)”x = 0. So the ele- 
ment ( I  - K ) ” - P - l x  is in NP+’.  But NP+’ = N ,  and so 
( I  - K)”-  ‘x = ( I  - K ) P [ ( I  - K)”-P- ‘XI = 0. This says that x, an arbi- 
trary element of N , ,  is in N , -  provided n > p .  

Now let R, be the range of the operator ( I  - K)” for n = 0, 1,2, . . . . 
C l e a r l y B = R o I R l  I R ~ I * . . ~ R , I R , + ~  z.... 

Theorem 2. Each of the spaces R, is a closed, linear subspace of B. 
Furthermore, there is an integer q such that R, # R,+ for n = 0, 1, 
2, ..., q - 1 but R, = R,+l for n 2 q. 

Proof: By Section I, Theorem 2, we know that R1 is closed. Since 
( I  - K)” = I - S, for some compact operator S ,  (Exercises 1, problem 
2d), the fact that each R, is closed also follows from this theorem. 

The argument given in the second paragraph of the proof of 
Theorem 1 can be used here to show that there is some integer n such 
that R, = R,+ ’. Let q be the first such integer. Since Rq+ = R, and 
( I  - K)R, = R,+ we have R,+ = ( I  - K)R,+ = ( I  - K ) R , ,  i.e., 
Rq+ = Rq+ ’. The fact that R, = R,+ for all n 2 q can now be proved 
by induction. 
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One might suspect that for a fixed, compact operator K the integers 
p and q are equal. That this is the case is a corollary of the following 
theorem. 

Theorem 3. Let q be the integer whose existence was proved in 
Theorem 2. Then 

(a) N ,  n R, = (01, 
(b) N ,  + R ,  = (x + y I x  in N , ,  y in R,} = B, 
(4 K ( N , )  = N , ,  
(4 K ( R , )  = R,  . 

Furthermore, the restriction of the operator I - K to R, has a contin- 
uous linear inverse. 

Proof: (a) We shall actually prove that N ,  n R,  = (0) for any 
integer m. Suppose that z is in the intersection. For each n 2 q we must 
have a point z ,  in B such that z = ( I  - K)”z ,  because R,  = R, for 
n 2 q. If we assume that z # 0 then z ,  # N ,  for every n. But clearly z ,  
does belong to N , , ,  because z belongs to N , .  However, if n is large 
enough, N , , ,  = N ,  and we have reached a contradiction. 

(b) If z E B there is a y in B such that ( I  - K),z  = ( I  - K)’,y. 
Hence ( I  - K), [z  - ( I  - K),y]  = 0 and we have shown that 
z - ( I  - K),y  is in N , .  But then z, which is equal to [ z  - ( I  - K),y] + 
( I  - K),y, is in N ,  + R , ,  and so the sum of these spaces must be all of 
B. 

(c) Note that K ( N , )  c N o  and ( I  - K ) N ,  c N k F l  c N k  far all 
k 2 1. Hence 

K ( N k ) =  [ I  - ( I  - K ) ] N k  C Nk -t ( I  - K)Nk C Nk + N k =  N k .  

(d) Note that R, ,  = ( I  - K ) R ,  = R,  and argue as in (c). 
Finally, let I - K 1 R, denote the restriction of I - K to R,. It is 

clear, by (c), that I - K is a continuous, linear operator on R , .  The 
null space of I - K I R, is N 1  n R,  = (0) by (a). Thus I - K I R,  is 
one-to-one and hence has a linear inverse. The fact that this inverse is 
continuous follows from Lemma 1.1. 

Corollary 1. The integers p and q defined in Theorems 1 and 2 are 
equal. 

Proof: Let x be any point of N , ,  and find y E N , ,  z E R,  such 
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that x = y + z. Clearly 

( I  - K)'+'z = (I - K ) ' + ' ( x  - y )  = 0. 

But z E R,, I - K 1 R, has an inverse, and ( I  - K)R, c R,. It follows 
that z = 0 and hence that x E N , .  So N q +  , = N ,  and we must con- 
clude that q 2 p because p is the first integer for which these spaces 
coincide. Now ( I  - K)PN, is the zero subspace. Hence 

R p  = ( I  - K ) P B  

= ( I  - K)"R, + ( I  - K ) P N ,  = ( I  - K)'R, = R,+, = R,, 

and so p 2 q. 

Theorem 3 is very useful for more detailed studies of the properties 
of compact operators [3 ] .  It also leads to some interesting questions 
about Banach spaces. The spaces N ,  and R, are both closed, their 
intersection contains only the zero vector, and their sum is all of B. 
Given a closed linear subspace G of a Banach space B is it always 
possible to find a closed linear subspace H of B such that G n H = (0) 
and G + H = B? Are such pairs of closed linear subspaces always 
related to continuous, linear operators on B and, if so, what is the 
connection between the operator and the spaces? These questions will 
take us very far in our study of Banach spaces. To begin discussing 
them we need some terminology. 

Definition 1. Let X be a vector space over K .  Two linear sub- 
spaces Y ,  Z of X are said to be supplementary subspaces of X (we also 
say that each is a supplement of the other in X )  if their intersection 
contains only the zero vector and their sum Y + Z = {y + z ly in Y ,  z 
in Z ) ,  is all of X. 

A linear map P from X into itself is said to be a projection operator 
on X if P[Px] = P x  for every x in X. 

Given a projection operator P on X the subspaces Y = {x in 
X I P x  = 0) and Z = { P x  1 x is in X }  are supplementary subspaces of X .  
Note that I - P is also a projection operator on X, that the range of 
this operator is equal to the null space of P,  and that the null space of 
this operator is equal to the range of P.  Thus if P is a continuous 
projection operator on a Banach space B then both the null space of P 
and the range of P are closed. 
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The even and odd functions illustrate these ideas. Consider the 
Banach space (%[ - 1, 11, 11 . I )  a), We mean, of course, the space of con- 
tinuous functions on [- 1, 13 with (If(lm = max{ lf(x)I( - 1 I x < 1). 
For any point f in this space define Pf(x) to be 2 -  ' { f ( x )  + f (  -x)}. 
The operator P that takesf(x) in %[ - 1, I] to Pf(x) is clearly a contin- 
uous projection operator. Hence the range of P, {f 1 f (  -x) =f(x) for 
all x in [ - 1, l]}, and the null space of P, {f I f (  -x) = - f ( x )  for all x 
in [- 1, l]}, are supplementary subspaces of U[ - 1, 13, and each of 
them is closed. 

Definition 2. Let B be a Banach space and let G, H be two sup- 
plementary subspaces of B. If both of these spaces is closed in B, then 
we shall say that they are complementary subspaces of B (we shall also 
say that each is a complement of the other in B). 

EXERCISES 2 

1. Let f be a continuous, linear functional on a Banach space B 
(Section 1.3, Definition 2). Suppose that xo E B and f(xo) = 1. 
Define Tx, for each x in B, to bef(x)x, . 
(a) Show that T is a compact operator on B. 
(b) Identify the spaces N ,  and R ,  of Theorems 1 and 2. What is 

the integer p in this case? 
2. Let T be a compact operator on a Banach space B. Show that the 

range of T is a separable, linear subspace of B (Section 1.3, 
Definition 4). 

Let X be a vector space over K .  
(a) Show that every linear subspace of X has a supplement in X .  
(b) Let Y, 2 be two linear subspaces of X .  Show that Z is a 

supplement for Y in X iff there is a projection operator on X 
whose range is Y and whose null space is Z .  

4. Give an example of a pair of complementary subspaces in 

* 5 .  Let B be a Banach space and let G be a closed linear subspace of 
B. Let H be a subspace of B that is a supplement for G in B. It is 
instructive to try to prove that H is closed or that the closure of H 

3. 

( 4 3 9  l l . I lm)  and ( 1 1 7  l l * l l l ) .  
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is a complement for G. We shall see (Chapter 3)  that neither of 
these need be true. 

Let X be a vector space over K .  We shall say that a linear sub- 
space Y of X has finite codimension in X if the quotient space 
X / Y  is finite dimensional. The dimension of the quotient space is 
taken to be the codimension of Y in X .  

(a) If Y has codimension n in X show that there is a linearly 
independent set 4 l, 42, . . ., 4" in X' such that, if N ( 4 j )  is 
the null space of 4 j  for each j ,  Y = nj.=l N ( 4 j ) .  

*(b) Let 41, 42, . . ., 4 p  be a (finite) linearly independent subset 
of X ' .  Suppose that & E X #  and that N ( ~ , ) I >  
njp= N ( 4 j ) .  Show that &, 41, .. ., +,, is a linearly depen- 
dent set. Hint: Use induction on p .  If p = 1 the result is 
already known (Exercise 3, problem 4b). Since 42 is a 
linear functional on N(41), N ( 4 , )  n N(4,) has codimen- 
sion two in X .  Similarly, if N = ogl N(4j), XjN has a 
dimension s p .  Since the dimension of X / N  is equal to that 
of ( X / N ) # ,  these spaces have dimension p .  

(c) Let (E, I/ * 1 1 )  be a normed space and let G be a closed, linear 
subspace of E that has finite codimension in E. Prove that 
G has a complement in E .  

6 .  

3. The Open-Mapping Theorem 

Given a continuous projection on a Banach space B it is clear (see 
the next to last paragraph in Section 2) that the range and the null 
space of this projection are complementary subspaces of B. Suppose 
now that a pair of complementary subspaces, say G and H ,  of B are 
given. We may ask whether there exists a continuous projection on B 
whose range is G and whose null space is H .  Since G + H = B and 
G n H = {0} we may define P(g + h )  to be g for all g in G, h in H .  Then 
P is certainly a projection on B, the range of P is G, and the null space 
of P is H. But is P continuous? Let us look more closely at this 
operator. 

We can define a map 4 from the product space G x H onto B by 
letting 4[(g, h) ]  = g + h. This map is linear and one-to-one so 4-l 
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exists, and it is a linear map. We can also define a map n: from G x H 
onto G by letting n[(g, h)]  = g. Notice that P = n 0 4-l. 

For each pair (9, h )  in G x H let II(g, h)ll be the maximum of the 
numbers ~ ~ g ~ ~ ,  ( ( h l ( .  We leave it to the reader to show that we have 
actually defined a norm on G x H and that, with this norm, G x H is a 
Banach space (problem 1 below). Since Iln:[(g, h)]I( = ( / g ( (  I 11(g, h)ll 
and 114[(g, h)]ll I2/1(g,  h)ll, both of these maps are continuous. But in 
order to prove that P is continuous we have to show that 4-l is 
continuous. Summing up what we know about 4 we are led to the 
following question : Does a linear, one-to-one, continuous map from 
one Banach space onto a second Banach space have a continuous 
inverse? This difficult question will occupy us for the remainder of this 
section. Our first two results are rather technical. 

Lemma 1. A normed space ( E ,  I l - I I )  is a Banach space iff it 
satisfies the following condition: For any sequence {xi} of points of E 
the sequence xi 1 n = 1,2, . . .} converges to a point of E whenever 
the series clp"_ llxi I /  is convergent. 

Proof. Assume that ( E ,  \ I . \ [ )  is a Banach space, let {xi} be a se- 
quence of points of E,  and assume that ckm,l lIxil\ is convergent. For 
any two positive integers m, n, with m > n,  we have 

Since this last sum tends to zero as rn and n tend to infinity, 
{I:= xi I n = 1, 2, . . .} is a Cauchy sequence in ( E ,  1 1 . 1 1 ) .  

Now assume that the normed space ( E ,  I /  * 1 1 )  satisfies our condition. 
Let (y,} be a Cauchy sequence in this space. We may choose a sub- 
sequence {z,,} of {y,} such that llzi - z j  11 < 2-'  for all j 2 i .  Let x1 = z1 
and, for i > 1, let xi = zi - z ; - ~ .  Clearly c;=l xi = z ,  and 

xi = lim z ,  
exists in E. But since {z,} is a subsequence of (y,} and since (y,} is a 
Cauchy sequence, {y,} must converge to a point of E .  

JIxi I /  I llzl / I  + 1 for all n. It follows that lim 

Lemma 2. Let (El, l l . I I 1 )  and ( B 2 ,  I / . 1 I 2 )  be two Banach spaces 
over the same field and suppose that T is a continuous linear map from 
B ,  onto B,. If So is {x E El I llxl/ < I} then for some r > 0 the set 
T(S,) = { Tx Ix in So} contains ( y  E B2 1 I /y l /z  < r} .  

Proqf. For each n = 0, 1, 2, ... let S ,  = (x E El 1 JIxJJI < 2-"} .  
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Since B ,  = u;= , k S ,  and T is onto we must have B2 = UP= , kT(S , ) .  
By the Baire category theorem [ 19, Corollary to Theorem 15, p. 1391 
there is an integer k for which the closure of the set kT(Sl) (denote this 
by cl[kT(S,)]) has nonempty interior. Thus for some point z' in B2 and 
some positive real number q', cl[kT(Sl)] 3 {y in B2 I lly - ~ ' 1 1 ,  < q'}. 
Now the map that takes each y in B ,  onto k y  is a homeomorphism 
from ( B , ,  / I  * 1 1 2 )  onto itself. Hence cl[T(S,)] contains a ball; i.e., there is 
a point z in B, and a positive number q such that cl[T(S,)] 3 { y  in 

cl[T(S,)] - z contains { y  in B 2 ~ / ~ y ~ ~ 2  < q}.  But since z is in cl[T(S,)], 
B2 1 IIY - 4 2  < v } .  Clearly cf.T(S,)I = {Y + Z I  llrll* < q }  and so 

cl[T(S,)] - z c cl[T(S,)] - cl[T(S,)] c 2cl[T(S,)] 
= c1[2T(S1)] = cl[T(So)]. 

We have shown that cl[T(S,)] contains an open ball, centered at 
zero in B, , having radius q. Clearly cl[T(S,)] will contain an open ball, 
centered at zero in B , ,  having radius q2-", n = 1, 2, . . . . 

Now let y be a point of B,, lljill, < q2- I .  Since y is in the closure of 
T ( S , )  we can find a point x 1  in S ,  such that J ( y  - Tx,  / I 2  < q2-,. Then 
the point y - T x ,  is in the closure of the set T(S,), and so there is a 
point x ,  in S2 such that l / ( y  - T x , )  - T x ,  11, < q 2 - j .  We can continue 
this selection process. After x,, x , ,  ..., x,-  , have been chosen we 
choose x, in S, such that 

Consider the sequence { x i }  of B ,  that we obtain. We have Cz , lIxi 11 < 

converges to a point of B, for ~ / ~ ~ ~ , ,  Denote the limit of this last 
sequence by xi"=, x i ,  observe that this point is in So, and that 
T(Iz, x i )  = 1'2 , T ( x i )  = y .  Hence y is in T(So). It follows that { y  in 
B, 1 lly112 < q2- ' } is contained in T(So). 

2-' = 1 and so, by Lemma 1, the sequence {I:= x i  I n = 1,2, . . ., x 

Remark. I t  is worthwhile observing that the proof of Lemma 2 
shows the following: The image under a continuous, linear map of one 
Banach space in a second Banach space is either all of the second 
Banach space or it is a set of the first category in the latter space. 

We shall now prove that the question raised in the beginning of this 
section (concerning continuity of the inverse) has an affirmative 
answer. This fact is a special case of the next result. 
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Theorem 1 (Open-Mapping Theorem). Let T be a continuous, 
linear map from one Banach space onto a second Banach space. Then 
T maps any open subset of its domain onto an open subset of its range. 

Proof. Let B1, B ,  be the domain and the range, respectively, of T. 
These two spaces are, by hypothesis, Banach spaces. If 0 is an open 
subset of Bl ,  if y is a point of T(0), and if x is a point of 0 such that 
Tx = y, then there is an open ball .H, centered at x, such that & c 8 for 
8 is an open set. Clearly J - x is an open ball centered at zero in B l .  
By Lemma 2 the set T ( J  - x) contains an open ball J', centered at 
zero, in B ,  . But T ( d )  - y = T [ J  - x] 3 d'. This says that T(%?), and 
hence T(O), contains y + d', i.e., T(0)  is a neighborhood of y .  

Referring again to the discussion given at the beginning of this 
section we have : 

Corollary 1. Let B be a Banach space and let G be a closed, linear 
subspace of B.  Then G has a complement in B iff there is a continuous 
projection operator on B whose range is G .  

EXERCISES 3 

*1. Let (El ,  i l . I I 1 )  and ( E , ,  II.11,) be two normed spaces over the 
same field. For each pair (xl, x,) in El x E ,  define ll(xlr x2)llp to  
be the maximum of the numbers /Ixl I l l  and I/x2 11,. 
(a) Prove that / I .  / I p  is a norm for El x E,. This is called the 

product space norm for El x E ,  . Whenever we work with a 
product of two normed spaces we shall always assume that 
it has the product space norm. 

(b) Let n, be defined on El x E ,  by nl[(xl, x,)] = xl. Show 
that n l  is a continuous map from El  x E ,  onto E,.  

(c) If both (El,  / I .  1 1  1 )  and ( E , ,  1 1 .  11,) are Banach spaces prove 
that (El x E, ,  / I .  11,) is a Banach space. 

2. Let ( E ,  1 1 . 1 1 )  be a normed space and let a be a nonzero scalar. 
Define a map A from E into itself by letting Ax = ax for all x in E .  
Show that A is a homeomorphism from ( E ,  1 1 . 1 1 )  onto itself. 

3. For this problem we must recall the Banach spaces 
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(LJO, 13, II.II,) from real analysis. These spaces are defined in 
Chapter 6.  A detailed treatment of them can be found in [ 101 or 
[21]. Fix p > 1. 
(a) Prove LJO, 13 c L,[O, 13, but LJO, 11 # L,[O, 11. 
(b) Prove that the inclusion map from (L,[O, I], ~ ~ ~ ~ ~ p )  into 

(L,[O, 11, 1 ) .  11 1) is continuous. 
(c) Conclude (see the remark after Lemma 2) that Lp[O, 11 is a 

set of the first category in (Ll[O, 11, l l . / l l ) .  
Let (B,  I / .  1 1 )  be a Banach space and let 11 * (1 be a second norm on 
B. Suppose that there is a constant M such that l/x/I I Mllxll, for 
all x in B. If (B,  ( 1 .  [I 1) is also a Banach space prove that the norms 
1 1 . 1 1  and I( 

4. 

, are equivalent. 

4. Quotient Spaces of I ,  

We have gotten away from the question raised in Section 2. Recall 
that we asked whether every closed, linear subspace of a Banach space 
B has a complement in B. The results of this section will be useful in 
settling this question. Here we are going to use the open-mapping 
theorem to prove an interesting representation theorem for separable 
(Section 1.3, Definition 4) Banach spaces. 

Let (B, ) / . I ) )  be a separable Banach space and recall the space of 
sequences ( I l ,  1 ) .  1 )  defined in Exercises 1.2, problem 5. If {x,} is a fixed, 
countable subset of @, the unit ball of (B,  1 ) .  I]), which is dense in 3, 
then we can define a linear map T from 1, into B as follows: For any 
point { t , }  of I I  let T[(t,}] = c,"= t ,  x,. Since 

W m 

1) T[{'J)l/I c I ' J l  ) Ix ,  I/ I c I tJ  I = i l { t J } I / 1 5  
j =  1 J = 1  

T is a continuous linear map from (I1, I / .  / I  1 )  into (B, 1 ) .  11). Let us show 
that T is onto. 

For any point x in 9 choose x,, in {x,} such that / J x  - x,, 1) < 3. 

The set {fx, ( j  # n , )  is dense in +3, and so there is a point xn2 in {xJ 
such that II(x - x,,) - fxn2 11 < 2-* .  We can even assume that n2 > n , .  
Continue selecting points in this way. After xnl, xn2,  . . . , xnP have been 
chosen, choose x,,,, satisfying /Jx  - ZfZ,' 2-'+'xnt ( 1  < 2 - k - 1  and 
with nk+ > n k .  Define { t , )  E I ,  as follows: t ,  = 0 if n # nk for all k ;  

1 
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f,, = 2 - k +  if ti = nk. Clearly T[{fn}]  = x and so B is contained in the 
range of T. 

Let G be the null space of T. Then, of course, G c Il and the linear 
map T induces an isomorphism from I ,  / G  onto B. Call this isomor- 
phism T*. If  I I  /C has a norm, say 1 1 .  11,) if ( I ,  / G ,  1 ) .  11,) is a Banach 
space, and if T* is continuous from ( I ,  / G ,  11 * 11,) onto (B, 11 * I\), then by 
the open-mapping theorem T* is a topological isomorphism. In other 
words, if we can define a norm 11 * ( I 4  on Il /G with the properties just 
stated, then we shall have proved: 

Theorem 1. Every separable Banach space is topologically iso- 
morphic to some quotient space of ( I , ,  1 1 . 1 1  

Let ( E ,  1 1 . 1 1 )  be a normed space and let G be a linear subspace of E. 
For each x in E let x denote the element of E/G that contains x. Define 
a function I / .  on E/G as follows: IIxII, = inf{llx + 911 ( g  in G }  for each 
x in E/G.  This is clearly a nonnegative function on E/G, and it is easy to 
see that Ilx + j l / ,  5 11x11, + lIy11, and Ilaill, = la1 Ilx114 for all x, y in 
E/G and all a in K .  

Lemma 1. The function 1 1 .  1 1 4  is a norm for E/G iff G is closed. 

Proof. Suppose that G is a closed, linear subspace of E. Let i be 
an element of E/G such that I(x((, = 0, and let x be a fixed element ofx. 
For any positive integer n there is a point gn in G such that IIx + g,, 11 < 
l/n. But then the sequence { -qn} ofpoints of G converges to x. Since G 
is closed it follows that x E G and so x = 0. 

Now assume that G is not closed and let x be a point that is not in 
G but is in the closure of G .  If {qn} is a sequence of points of G that 
converges to x then ~ ~ x ~ ~ ,  5 inf{IIx - gn 11 In = 1, 2, ...}. Since the 
infimum is zero, ((x(/, = 0. But x # 0 and so 11.  11, could not be a norm 
on EIG. 

Definition 1. Let (E ,  1 ) .  1 1 )  be a normed space and let G be a closed, 
linear subspace of E. The norm on E/G defined just before the state- 
ment of Lemma 1 is called the quotient norm on E / G .  

Whenever we work with the quotient space of a normed space and 
one of its closed, linear subspaces, we shall always assume, without 
explicit mention, that it has the quotient space norm. We shall also 
omit the subscript q on the quotient norm. 
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Theorem 2. Let (B, 1 1 . 1 1 )  be a Banach space and let G be a closed, 
linear subspace of B. Then BIG is a Banach space. 

Proof. Let {x,,} be a Cauchy sequence in BIG. Then there is a 
subsequence {x,,,} of {x,,} such that I(i,,, - xnm 11 < 2-k for all rn 2 k ;  in 
particular I IxnX+, - x,,, (1 < 2-k for every k .  It follows, from Definition 
1, that there are elements x,, of xn,, xn2 of x n 2 ,  ... such that 
~/x,,,+~ - xnk (1 < 2-k for all k .  Now if 1 > k then 

Hence {x,,,} is a Cauchy sequence in the Banach space (B, )I.II). Let 
x E B be the limit of this sequence. Since IJx, - XI1 5 (Ix,, - XI/, {x,,J 
converges to i for the norm of BIG. But then {x,,} must converge to x 
for this norm. 

EXERCISES 4 

1. Let (E,  l l.II) be a normed space and let G be a closed linear 
subspace of E .  For each x in E let N ( x )  be the unique element of 
E/G that contains x. Let N be the map that takes each x in E to 
N ( x )  E E/G. Show that N is continuous. 

2. Let ( E ,  1 ) .  1 1 )  be a normed space and let (B, 1 ( 1 .  I( 1 ) be a Banach 
space. Suppose that T is a continuous, linear map from E onto B 
with null space G .  We may define a map T* from E/G onto B as 
follows: For each X in E/G choose x in X arbitrarily, and let 
T*X = Tx. 
(a) Show that T* is a continuous, linear map from E/G onto 

(b) If (E,  I / .  1 1 )  happens to be a Banach space show that T* is a 
topological isomorphism. 

*3. Let (B, /l.II) be a Banach space and let G be a closed, linear 

(4 I II . 11 I ). 
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subspace of B. Show that any two complements of G in B are 
topologically isomorphic. 

5. The Closed Graph Theorem 

The closed graph theorem is a particularly useful relative of the 
open-mapping theorem. 

Definition 1. Let T be a linear map from the normed space 
(El,  ((.(/,)intothenormedspace(E,, Il.11,).Theset{(x, Tx)lxin EI}, 
which we shall denote by 9 ( T ) ,  is called the graph of T. 

We leave it to the reader to show that 9 ( T )  is a linear subspace of 
E ,  x E 2  and that, if T is continuous, 9 ( T )  is closed in the product 
space. The remarkable fact is that, for Banach spaces, the converse is 
true. 

Theorem 1 (Closed Graph Theorem). A linear map from one 
Banach space into a second Banach space is continuous iff its graph is 
closed in the product of the two spaces. 

Proof: Let T be a linear map from the Banach space (Bl, ( I . \ (  
into the Banach space (B,,  1 ) .  (1,). If %(T) is closed in B1 x B 2  then, 
since B,  x B2 is a Banach space (Exercises 3, problem lc), g(T) ,  with 
the subspace norm, is itself a Banach space. For each (x, y )  in B1 x B2 
let p(x, y)  = x, q(x, y )  = y, and let be the restriction of p to %(T). By 
the open-mapping theorem 11-l is a continuous, linear map from 
(B , ,  1 1 . 1 1  onto Y(T). Hence the continuity of the map T follows from 
the equation T = q 0 z-'. 

Corollary 1. Let (B,  ( I . ( ( )  be a Banach space and let G, H be two 
closed, linear subspaces of B such that G n H = {O). Then G + H is 
closed iff there is a constant a such that ( /x ( (  i a ( / x  + y(l for all x in G 
and all y in H .  

Proof. Assume that G + H is closed in (B ,  l \ . I I )  and define a linear 
map T from G + H onto G by setting T(x + y) = x for all x + y in 
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G + H .  We shall show that 9 ( T )  is a closed subset of (G + H )  x G. Let 
{ ( w , ,  Tw,)} be a sequence in %(T)  that converges to some point of this 
product space. Then {w,} and {Tw,) must both converge. Writing 
w, = x, + y,, where x, E G and y,, E H for all n, we see that {w,} and 
{x,) must both converge. It follows that {y,} is convergent. Since G,  H ,  
and G + H are closed, these sequences converge to points wo , xo , yo in 
G + H ,  G ,  and H ,  respectively. But wo is clearly xo + y o  and so 
Two = xo , i.e., 9 ( T )  is a closed set. By Theorem 1, T is continuous and 
hence /Jxjl I /)TI1 / / x  + jlI/ for all x in G,  y in H (Exercises 1.1, problem 
2b and Exercises 2.1, problem lb). 

The proof that our condition is sufficient to insure that G + H is 
closed is left to the reader. 

The following example shows that the open-mapping theorem need 
not be true for normed spaces that are not Banach spaces. Consider 
(%[O, 11, / j . l l )  and let F be the linear subspace of g[O, 13 consisting of 
all functionsfsuch thatf’ exists on (0, 1) and is uniformly continuous 
on that interval. I f f €  F then there is one and only one function that is 
continuous on [0, I ]  and is equal to,f’ on (0, 1). Denote this function 
by f ‘  also. Thus, defining Tf=f ’  for allfE F,  we have a linear map 
from the normed space F into the Banach space W[O, I]. Since 
F # g[O, 11 but F does contain every polynomial function, F can not 
be a Banach space. The set {x” 1 n = 1,2, 3, . . .} is bounded (Section 1.2, 
Definition 2) in F.  However, { Tx” In = 1, 2, . . .} = {nx”- 1 n = 1,2, . . .} 
is not bounded in (‘%I[O, 11, / I .  I t  follows (Exercises 1.2, problem 3a) 
that T can not be continuous. But it is easy to see that the graph of T is 
closed. 

EXERCISES 5 

1 .  Let (El ,  / l . / i l ) ,  ( E 2 ,  1 1 . / 1 2 )  be two normed spaces, let T b e a  linear 
map from El into E , ,  and let %(T)  be the graph of T. 
(a) Show that 9 ( T )  is a linear subspace of El x E , .  
(b) If T is continuous prove that %(T)  is closed in E ,  x E , .  

2. Referring to Corollary 1 prove that the condition stated is 
sufficient to insure that G + H is closed in B. 

3. Let T be a linear, one-to-one, continuous map from the Banach 
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space (Bl, 1) * )I onto the Banach space ( B ,  , 11. (I ,). Use the closed 
graph theorem to prove that T has a continuous inverse. Hint: 
The map ( x ,  y )  + ( y ,  x) is an isomorphism from Y ( T )  onto 

4. Show that the discontinuous, linear map defined at the end of this 
section has a closed graph. 

Y(T-1). 



C H A P T E R  3 

Linear Functionals 

1. Special Subspaces of I ,  and I , .  
The Dual Space 

We have been talking about complementary subspaces of a Banach 
space for some time now. We know about their connection with con- 
tinuous, projection operators and we have seen some examples. But 
the fact is that a closed, linear subspace of a Banach space may not 
have a complement. Here are some examples: 

(a) The Banach space ( I , ,  1 1 . 1 1 )  consists of all bounded sequences 
{x,} with II{x,}ll = sup{ 1 x, 1 1 n = 1, 2, . . .}. For each fixed, positive 
integer k let f,(x) =,L({x,}) = xk for all x in I,. So f k  maps each 
bounded sequence onto its kth term. Clearly eachf, is a continuous, 
linear functional on ( I , ,  I / .  11,) (Section 1.3, Definition 2) and if, for x 
in 1, ,f,(x) = 0 for all k ,  then x = 0. 

37 
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The sequences that converge to zero comprise a closed, linear sub- 
space (we called it co (Exercises 1.3, problem 2)) of I,. If co had a 
complement H in 1, then there would be a topological isomorphism 4 
from l,/co onto H (Exercises 2.4, problem 3). For each k ,  let 
h, = f k  0 4. Then { h k }  is a countable set of continuous, linear func- 
tionals on I ,  /co that has the following property: 

(*) If x is in Im/co and if h k ( x )  = 0 for all k ,  then x = 0. 
We shall show that co does not have a complement in 1, by showing 
that no countable set of continuous, linear functionals on I ,  /co can 
have property (*). 

Let Z ,  denote the set of all positive integers. We can regard I ,  as 
the space of all bounded functions on Z ,  . If U is a subset of Z ,  then 
the function that is one at each point of U and is zero at each point that 
is not in U is called the characteristic function of U .  Any such function 
is in I,. We must now prove some facts about Z ,  and about I ,  /co . 

( i )  There is an uncountable family { U ,  I a in A} of subsets of Z ,  
such that each U ,  is an infinite set, and U ,  n U b  is finite for a # b. 

Let Ic/ be a one-to-one correspondence from the rationals in (0, 1) 
onto 2, and let A be the set of all irrationals in (0, 1). For each a in A 
let Ub be the terms of any sequence of rationals in (0, 1) that converges 
to a. Setting U ,  = cc/( UL) for each a in A we obtain a family of sets with 
the required properties. 

(ii) For each a in A let x, be the element of I ,  /co that contains the 
characteristic function of the set U ,  (we mean, of course, the family 
described in (i)). Let g be any continuous, linear functional on 1, /co . 
Then {x, I g(x,) # 0) is countable. 

We need only show that, for each n in Z ,  , {x, I I g(x,) I 2 l / n }  is 
finite. Choose __ and fix n and let xl, .  . . , x, be in the set under discussion. 
Let bj  = g(x j )  I g(xj) 1 -  for j = 1,2, . . . , n (the bar denotes the complex 
conjugate) and let x = b j x j .  Clearly x E I ,  /co , the norm of x is 
less than or equal to one, and g(x) 2 m/n .  Since g is continuous, m must 
be finite. 

If { A j }  is any countable set of continuous, linear functionals on 
I ,  /co , then there are only countably many x, such that hj(x,)  # 0 for 
j = 1, 2, . . . . Since A is uncountable this implies that for some x, # 0 
every hj (x , )  = 0. Thus co is a closed, linear subspace of ( I , ,  / I .  I /  ,) that 
has no complement in I,. 
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The first person to prove that co does not have a complement in I, 
seems to have been Sobczyk [ 2 3 ] .  He observed that this is an easy 
consequence of a result of Phillips [20]. The elegant proof given above 
is due to Whitely [25]. 

(b) In order to present our next example we shall need some 
preliminary results. These are interesting in their own right. If (y,) is in 
I ,  and {x,i is any sequence such that 1 x, 1 <: 00, then 

Hence 1 x, jln is convergent and we have shown, moreover, that every 
element of I ,  defines a continuous, linear functional on (I,, 11 * ( 1  ,). 

The sequence e l ,  e l ,  . . ., ek, . . ., where ek = (o ,O,  . . ., 0, 1,0,0, . . .) 
(the 1 is in the kth place) is a Schauder b a i s  for (I,, 1 1 .  )I ,) (Exercises 1.3, 
problem 3 ) .  For any continuous, linear functionalf on (I,, I / .  I/ ,) the 
sequence { , f (e j ) )  is in I,. If x is in 1, then IimIjx - c;= , ajej 11 = 0 for 
some unique sequence of constants a,, a * ,  ... , Clearly f ( x )  = 

1 a j f (e j ) ,  i.e., the continuous linear functional f is defined by the ele- 
ment { , f (e j ) i  of I ,  . Thus the space of all continuous, linear functionals 
on ( I l ,  i l.II,) is isomorphic to the vector space 1,. 

Lemma 1. A sequence {x,) of points of I ,  is norm convergent to 
zero iff limf(x,) = 0 for any continuous, linear functionalfon 1,.  

The proof is rather tricky and so we shall try to give the idea behind 
it first. Suppose that {x,) is a sequence in I , .  Each x, is itself a sequence, 
say x, = { t i (n)  1 i = 1, 2 ,  . . .}. Assume that lim , f ( x , )  = 0 for each contin- 
uous linear functionalfon I , .  Then, since e l ,  e 2 ,  . . . are in I,, each t i(n) 
converges to zero as n tends to infinity, i.e., limn+, t i (n)  = 0 for i = 1, 
-, 3 
lim,+m ri  t i ( n )  = 0 for i = 1, 2, . . . . Now write 

. . . . If  11 = {rij is in I , ,  then ~(x,,) = 

P ( X n )  = 1 q f i ( n )  + c’,rn(n) + c c’ifi(.). 

, v i t i ( n )  and clearly 

n -  1 m 

i = l  i = n +  1 

Suppose, on the assumption that {x,) does not tend to zero for the I ,  
norm, that we can find c > 0 and c’ = {o i )  in I, with 1 vi I = 1 for all i 
such that 1 C;:: ui t i (n)  1 < 45, 1 L’, r,(n) 1 > 3615, and 

I $+ lui t i (n)  1 4 5  

for each n. When n = 1 we have 10, t l (  1) I > 345, i.e., we have a 
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"hump" in the first term. We know the hump cannot stay there be- 
cause t i t  rl(n)  tends to zero as n increases. But when n = 2, 
luzt2(2)1 > 345, so our hump now appears in the second term. I t  
moved. When n = 3 the hump is in the third term, and so on. As n 
increases the hump "glides" toward infinity. Now clearly, if we can do 
this, 

I4un)  I 
a 

= I 2 l'ifi(n) 1 2 I f . n f n ( n )  1 - 
I =  1 

so lim t ) (x , )  is not zero and we have our contradiction. The proof 
below is a refinement of this idea. 

ProofofLenima 1 .  The necessity of our condition is clear. Assume 
that ( x n )  satisfies this condition and, for each n, let x, = { t i (n )  I i = 1, 2, 
3, . . .). If this sequence does not converge to zero for the norm of I t ,  
then there is an E > 0 and infinitely many integers n, , j  = 1,2, . . . , such 
that Il.u,,, / /  = Cp", I I rl(n,) 1 > E .  Choose N l  so large that 

N1 

Next choose complex numbers i l l ,  L ' ~ ,  . . . , 1 1 ~ ~  of modulus one so that 
N I  NI 

I =  I I= 1 
C " l t l ( n l ) =  C l t l ( n l ) l  > 445. 

Observe that, if L', is any complex number of modulus one when 
i > N, ,  [ C  t t l  f l ( n l )  [ > 345 > 45. Now takej, so large that n,, is large 
enough to imply that Cyl l r l (n Jz ) [  I ~ / 5 ;  this is possible because of 
our assumption on (w,) and the fact that the sequences e l ,  e , ,  . . . are in 
I,. Now take N, > N ,  so that 

We can choose complex numbers L ' , ~  I + 1, uN I + ,, . . . , t i N z  of modulus one 
so that 

N 2  C viti(nj2) = C I ti(njz) I > 3&/5. 
N r + l  

Again if uk is any complex number of modulus one for k other than 
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N ,  + 1, ..., N 2  then 

This process can be repeated and, using induction, we can obtain a 
sequence { u i }  such that ( u i )  = 1 for all i, and so (z+} E I,, and 

I ui t i ( n j k )  1 > 4 5  for k = 1, 2, . . . . This is a contradiction. 

If (B,  l i . I / )  is a separable Banach space, there is a closed linear 
subspace G of ( I , ,  I / . / /  ,) such that (B,  / I . / I )  and lI /G are topologically 
isomorphic (Section 2.4, Theorem I ) .  Suppose that G has a comple- 
ment, say H ,  in I I .  Let B be the family of all continuous, linear func- 
tionals on H that are restrictions to H of continuous, linear functionals 
on I , .  Then, by Lemma 1, a sequence {x,] of points of H converges to 
zero iff limf(x,) = 0 for everyfE 9. It follows that there is a family, 
say 9, of continuous, linear functionals on (B,  / / . I / )  such that {y,} c B 
converges to zero iff lim g(y,) = 0 for every g E 9. Hence, to prove that 
there is a closed, linear subspace of I,  that does not have a complement 
it suffices to show that there is a separable Banach space (B, 1 ) .  /I) and a 
sequence (y,} of points of B such that lim g(y,) = 0 for every contin- 
uous, linear functional on (B,  1 ) .  I/), and yet {y,} is not convergent to 
zero. We shall show that the separable Banach space (co , 1 ) .  /I ,) has a 
sequence with these properties. 

If {y,} E I l  and {x,) is any element of c o ,  then I x,y, 1 I 
/l{xn}/lm ll{y,}l/ and so every element of Il  defines a continuous, linear 
functional on co . We have seen that el ,  e2,  . . . is a Schauder basis for co 
(Exercises 1.3, problem 2). Let f be a continuous, linear functional on 
( C O  , 11 ./I,), let M ( f )  = sup{ I ,f(x) 1 I x E co , / / X I /  5 1) and consider the 
sequence { f (e , ) } .  For {x,} E c o ,  f({x,}) = x.f(e,). Letting sgn a = 
ir/(a I for a # 0, sgn(0) = 0, it is clear that uk = (sgnf(e,), sgnf(e,), 
..., sgnf(e,), 0, 0, ...) is in co and has norm one. But for any k ,  

f ( u k )  = 1: If(e,)I I M ( f ) .  Hence {f(e,)} is in 1, and the space of 
continuous, linear functionals on co is isomorphic to I , .  

Now, co is certainly separable, and IIe, 1) = 1 for all n, yet 
lim f(e,) = 0 for every continuous, linear functionalf on c,, . 

Our work so far has clearly shown that the continuous, linear 
functionals on a normed space can be very useful in studying that 
space. In each of our examples there were always many obvious con- 
tinuous, linear functionals on the given spaces. If, however, one con- 
siders a general normed space, then it is not clear, at this stage of our 
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discussion, that there are any continuous, linear functionals on the 
space except the trivial one, i.e., the map that takes each point to zero. 
Let us ignore this difficulty for the moment. 

Definition 1. Let ( E ,  ] \ . \ I )  be a normed space. The vector space of 
all continuous, linear functionals on ( E ,  I / .  1 1 )  will be called the dual 
space of ( E ,  / I .  I ] )  or, simply, the dual of E,  and it will be denoted by E'. 

Iff is a continuous, linear functional on the normed space ( E ,  1 1 .  I]), 
then the number sup{ I f(x) I 1x in E,  /Ix/J s 1)  will be denoted by I l f ( l .  
It is easy to see that the function that takes eachfin E' to IlfIl is a norm 
for E'. Whenever we speak of a norm on the dual of a normed space we 
shall always mean the norm defined in this way. This is sometimes 
called the dual space norm. Clearly, for anyfin E', I f ( x ) l  I lIf11 J/x /J  
for all x in E. 

Theorem 1. The dual of a normed space is always a Banach space. 

Proof. Let ( E ,  1l.Il) be a normed space and let {f,) be a Cauchy 
sequence in the normed space E'. Then given E > 0 we can choose an 
integer N such that \ I f ,  -fm 11 < E whenever m 2 N and n 2 N .  For 
any x in E we have If,(.) -fm(x) I 5 I I f ,  - f m  11 / (XI [  and so {f,(x)) is a 
Cauchy sequence in the field K .  Hence, for each x in E ,  we can let 
f ( x )  = limf,(x). Clearly, f is a linear functional on E and 1 f ( x )  - 
,f,(x) 1 5 t'l/x/J for all x, whenever m 2 N .  Let M = sup{lIf, I\ 1 n = 1,2, 
. . .) (Exercises 1.2, problem 1). Then 

l.f(x)l 5 I.f(x) -fm(x)I + I.fm(x)I 5 ( E  + M)ll~11 

for all x in E,  and s o f ~  E'. 
Finally, 

ll f - f m  / I  = I f ( x )  -fm(x) I I 1 I ~ l l  5 11 5 E 

for m 2 N .  This says that {fn} converges toffor the dual space norm. 

It is sometimes possible to identify the dual of a given normed 
space (see problem 1 below). When we say that two normed spaces can 
be identified we mean that they are equivalent in the following sense: 

Definition 2. Let ( E ,  l l . I I )  and ( F ,  I 11 11 1 ) be two normed spaces 
over the same field. An isomorphism 4 from E onto F is said to be an 
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equivalence if I ll4(x)ll I = llxll for all x in E .  We shall say that two 
normed spaces are equivalent if there is an equivalence from one of 
these spaces onto the other. 

EXERCISES 1 

1. 

2. 

(a) Show that the dual of ( 1 1 ,  1 ) .  11 1) is equivalent to ( I , ,  1 1 .  11,). 
(b) Show that the dual of (c,, 1 1 .  / I m )  is equivalent to (11, ((.I1 
(a) What can you say about any projection operator on (l,, 

( 1 .  (1 ,) whose range is c,? 
(b) What can you say about any supplement for c, in l,? 
(c) Let H be a subspace of I ,  that is a supplement for c, in I,. 

What can you say about cl H n c,? 

(b) Show that the analog of Lemma 1 is true for any Banach 
space that is topologically isomorphic to (11, 1 ) .  1) l). 

(c) Show that, if H is any linear subspace of (II,  1 1 .  /I1), a se- 
quence of points of H, t ~ ” } ,  converges to zero for the norm of 
H iff lim f(x,) = 0 for every continuous, linear functional on 
H .  

(a) Referring to the paragraph just after Definition 1, show that 
the function defined there is a norm for E‘. 

(b) Iffis any element of E‘ prove that 

3. (a) Prove the “necessity” part of Lemma 1. 

4. 

llfll = SUP{ I f(4 I l/xl/ - Ix in E, x # 0)  

= sup{ I f ( x )  I x in E, (JxJ/  = 1). 

*5 .  Let ( E ,  l l . \ l )  and ( F ,  1 1 1 .  /I I ) be  two normed spaces and let Y ( E ,  F )  
be the space of all continuous, linear maps from E into F.  If 
T E 9 ( E ,  F )  let 11 TI/, = sup{ 1 T(x)/l 1 1 x in E,  Jix/l I I} (see Exer- 
cises 1.2, problem 3a). 
(a) Show that 1 1 .  ) I I  is a norm for Y ( E ,  F ) .  
(b) If (F,  / I .  11 I )  is a Banach space then show that ( 9 ( E ,  F ) ,  

1 1 .  I l l )  is also a Banach space. Hint: Modify the proof of 
Theorem 1. 

6 .  Let E be a vector space over K .  A map 4 from E x E into K is 
called an inner product on E if: 
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(i) 4(ax + by, z )  = a4(x, z )  + b(y, z )  for all x, y, z in E and 
all scalars a, b ;  

(ii) 4(x, y )  = $(y, x) for all x, y in E ;  
(iii) 4(x, x) 2 0 for all x in E with equality iff x = 0. It is 

customary to denote 4(x, y) by (x, y ) .  

(a) Let E be a vector space and let (, ) be an inner product on 
E.  Show that the function that takes x in E to the square 
root of (x, x) is a norm on E .  This is the norm induced by 
the inner product. 

(b) Let n be a positive integer and consider the vector space C". 
For x = (xl, ..., x,) and y = (yl, ..., y,,) in this space let 
(x, y) = c; xk & .  Show that ( , ) is an inner product on C". 

(c) Show that the norm induced on C" by the inner product 
defined in (b) is the Euclidian norm on C". Thus C" is com- 
plete for this norm. If H is a vector space over K ,  ( , ) is an 
inner product on H and H is complete for the norm induced 
by this inner product, then we say that ( H ,  ( , )) is a Hilbert 
space. We shall not say very much about these spaces (but 
see Chapter 6) .  However, we must mention the following 
remarkable result: A Banch space is a Hilbert space iff each 
of its closed, linear subspaces has a complement [18]. 

2. The Hahn-Banach Theorem 

Our long discussion of complementary subspaces began with the 
observation that such a pair of subspaces is associated with every 
compact operator (Section 2.2, Theorem 3 ) .  This led us to ask whether 
every closed, linear subspace of a Banach space has a complement. We 
answered that question in the last section. Let us go back now and 
recall that when we associated a pair of complementary subspaces with 
a compact operator one member of the pair was finite dimensional. So 
we may ask : Does every finite dimensional subspace of a Banach space 
have a complement? The answer is "yes," as we shall now show. 
Incidentally, the reader may wonder why we did not ask this more 
modest question right at the start (i.e., right after we proved Theorem 3 
of Section 2.2). We could have, but the general question would have 
arisen sooner or later anyway. 
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Suppose that ( E ,  11 * 11) is a normed space (there is no need to assume 
completeness, as we shall see) over the field K .  Let G be a one- 
dimensional subspace of E .  Then for any fixed, nonzero element x of G, 
G = {Ax 1 A in K } .  Now assume that there is a continuous, linear func- 
tional 4 on E such that 4(x) = 1. If H denotes the null space of 4 then 
H is certainly closed and G n H = (0). For any y in E, 4(y)x is in G 
and y - 4(y)x  is in H .  Hence y = 4(y)x + [ y  - 4 ( y ) x ] ,  and we have 
shown that H is a complement for G in E .  

It is easy to find a continuous, linear functionalfon G such that 
f ( x )  = 1. Simply set f ( x )  = 1 and define f on all of G by linearity 
(Exercises 1.2, problem 3b). What we need is a continuous, linear 
functional 4 on E such that 4(x) = 1, i.e., a continuous, linear func- 
tional on E such that 4 ( y )  = f ( y )  for all y in G .  So we shall have shown 
that G has a complement in E once we have shown that every contin- 
uous, linear functional on G is the restriction to G of some continuous, 
linear functional on E .  The next theorem proves this and more. It 
implies, in particular, that there are always plenty of continuous, linear 
functionals on any normed space. We stress that in the statement of the 
theorem G need not be finite dimensional. 

Theorem I (Hahn-Banach Theorem). Let (E, I ( .  1 1 )  be a normed 
space over K and let G be a linear subspace of E .  Given any contin- 
uous, linear functionalfon G there is a continuous, linear functionalf* 
on E such that: 

( i )  f (x)  = f * ( x )  for each x in G ;  
(4 llfll = S.P{lf(.)l Ix E G,  IIXII 5 11 =supW*(y) l  l Y  E E ,  

IlYll 5 1) = /lf*l/. 
Proof: Define a new norm on E, p ,  as follows: p ( y )  = I ( f l (  Ily(( for 

each y in E.  Observe that, for each x in G, 1 f(x)l 5 p(x). Now we 
distinguish two cases: 

(a) Assume that K is R, the field of real numbers. Choose a point y 
in E but not in G and let V be the linear subspace of E generated by G 
and y. We shall show that there is a linear functional g on V that agrees 
with f o n  G and satisfies 1 g ( u )  I I p ( u )  for all u in V.  Observe that, since 
p ( u )  2 0 for all u, we shall have proved this last inequality once we have 
shown that g(u)  5 p ( u )  for all u in V. Now V = {Ay + x 13, in R, x in G }  
and g is t o  be linear, so g is completely determined once we define g(y)  
since g(3,y + x) = Ag(y) + f ( x ) .  The problem then, is to define g(y)  in 
such a way that the inequality g(u)  I p ( u )  holds for every u in V .  
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If  xl, x2 are in G, then 

f ( X 1 )  +f(x2)  =fb1 + x2) 5 P(X1 + x2) 
= P[bl - Y) + (x2 + Y)I 5 P(X1 - Y) + P(X2 + Y). 

Hence 

-Ax,  - Y )  + S ( X l )  5 P(X2  + Y )  -f(Xz). 
Since x1 and x2 are arbitrary elements of G we have, taking the sup and 
the inf over G, sup{-p(x - y) +f(x)} I inf(p(x + y) -f(x)}. Thus we 
can choose a real number a that is between this supremum and 
infinum. Choose such an a and set g(y) = a. We shall now prove that 
the functional defined in this way satisfies the required inequality. 

If I > 0, 
g(Ay + x)  = i a  +f(x)  = A[a +f(x/A)] 

5 4P(XlA + Y) - f (x / I )  + f ( x / 4 1  
= Ip(x/I + y) = p(x + I y ) .  

If A = --p,  ,u > 0, then 

9( -PY  + .) = -Pa +.m 
= p [ - a  +f(X/P)] 5 P[P(X/P - Y) -f(X/P) +f(X/P)I 

5 PP(X/P - Y) = P(X - PY), 
We have shown that we can extend A in the required way, to 

subspaces of E that properly contain G .  In order to extendfto all of E 
we must appeal to Zorn’s lemma. 

Let E = {( V,  g) 1 V is a linear subspace of E that contains G; g is a 
linear functional on I/ that agrees with f on G and satisfies Jg(u)l 5 
p(u) for all u in V ) .  Partially order E as follows: (Vl, g l )  5 ( V 2 ,  g 2 )  iff 
Vl c V2 and g2 agrees with g1 on V,. We now apply Zorn’s lemma to 
prove that there is a maximal element ( U ,  h )  of E .  If U # E then we can 
choose y in E but not in U and then extend h to a linear functional h* 
on the linear subspace W generated by U and y. As we saw above this 
can be done in such a way that h and h* agree on U and 1 h*(w) 1 5 
p(w) for all w in W. But then (W,  h*)  is in E ,  ( U ,  h )  5 (W,  h*) and 
U # W. This contradicts the maximality of ( U ,  h).  

We have proved the Hahn-Banach theorem for normed spaces 
over the field R. Before proving the theorem for normed spaces over C 
we must make some remarks about vector spaces over C .  
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If V is a vector space over C we can consider maps,ffrom I/ into C 
such thatf(x + y )  =f(x)  + f ( y )  for all x, y in V andf(ctx) = ctf(x) for 
all x in I/ and all real ct. Such maps will be called real linear functionals 
on V.  Iffis a real linear functional on V whose range is contained in R 
then we shall say thatfis  a real-valued, real linear functional on V.  

(b) Assume now that K is the field C .  The given linear functionalf 
on G can be written as follows:f(x) = g(x) + ih (x ) ,  where g and h are 
real-valued, real linear functionals on G. We want to extend g and h to 
real-valued, real linear functionals g* and h* on E in such a way that 
the functional g* + ih* extendsfand satisfies our inequality. The first 
step is to observe that 

g(ix) + ih(ix) = f ( i x )  = f ( x )  = i[g(x) + ih(x)]. 

Hence h(x) = -g(ix) for all x in G. Since [ g(x) I I I f (x )  I I p(x) on G 
there is, by (a), a real-valued, real linear functional g* on E such that 
1 g*(y) I I p ( y )  for all y in E and g*(x) = g(x) for all x in G .  Setf*(y) = 

g*(y) - ig*(iy) for all y in E. Then f *  is a complex-valued, complex 
linear functional on E and, for x in G ,  

f*(x) = g*(x) - ig*(ix) = g(x) - ig(ix) = g(x) + ih(x) =f(x).  

To establish our inequality we fix y in E and writef*(y) = re". Then 
I f * ( y ) )  = y = e-is .f * ( Y )  = f* (e - i eY)  

and we can write: 

1 f * ( y )  1 =.f*(e-"y)  = g*(e-"y) = Ig*(e-"y) I 
I p(e-"y) = I e-ie I p ( y )  = p ( y ) .  

Corollary 1. Every finite dimensional subspace of a normed space 
has a complement. 

Proof. Let ( E ,  \ l . l i )  be a normed space, let F be a finite dimen- 
sional subspace of E and let xl ,  . . . , x, be a basis for F.  For each fixed j, 
1 s j  5 n, definef,(xi) = 0 for i #J,h(xj)  = 1, and extendfj to all of F 
by linearity. Clearly each fj is a continuous, linear functional on F 
(Exercises 1.2, problem 3b). Extend each6 to a linear functionalfl on 
E that is continuous on ( E ,  1 1 .  /I), and let N ( f j * )  be the null space of this 
extension. Clearly G = N ( f j * )  is a closed, linear subspace of E 
and F n G = (0). To prove that G is a complement for F in E we need 
only show that E = F + G. But if y E E then cj.= ff(y)xj  is in F and 
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y - 
done. 

f j * ( y )x j  is in G. Since the sum of these elements is y, we are 

Corollary 2. Let ( E ,  1 1 . 1 1 )  be a normed space and let xo be any 
nonzero element of E .  Then there is an element f *  E E‘ such that 
I l f * l l  = 1 and.f*(xo) = 11x0 11. 

Proof. Let G = {Axo 1 R in K) and define a continuous, linear func- 
tional f on G as follows: , f(Rxo) = Rllxo 1) for all x = Axo in G .  Then 

in K ,  A # 0)  = 1. We may takef* to be any “norm preserving”exten- 
sion off, i.e., any element of E’ whose restriction to G isfand whose 
norm equals that off. 

( j f l l  = SUP{ If(.)( IIxtI- I-x is in G, x # 0)  = SUP( I A  I 11x0 It t t~xo I t -  12 

Corollary 3. Let (E,  / I . / / )  be a normed space, let G be a closed, 
linear subspace of E,  and let xo be a point of E that is not in G. Let 
d = inf{ llxo - X I \  I x in G}. Then there is an element f *  in E’ such that 
I l f * l l  = l , f * ( x o )  = d, andf*(x) = 0 for all x in G. 

Proof. Set V = {x + Axo ( x  in G, R in K} ,  let , f (xo)  = d , f ( x )  = 0 
for all x in G, and definefat all other points of I/ by linearity. Once we 
have shown thatfhas  norm one on V then we can takef* to be any 
element of E‘ whose restriction to V isfand whose norm is one. Now 

xll- l}  = sup{ (L(dl(Ax, - X I ( - ’  I x  in G, L in K }  = sup{dllxo - X I / - ’  Ix  
in G} = d/inf{Ilxo - x/I Ix  in G }  = d/d = 1 .  

l l f t l  = SUP{ I f ( u )  I llutl- I in v 9  u # 0)  = SUP{ I f (k l  - x)  I l t ~xo  - 

EXERCISES 2 

1. Let ( E ,  I I . I l )  be a normed space over K .  Let x be any nonzero 
element of E .  Show that there is an element f~ E’ such that 
f ( x )  # 0. The null space of a linear functional on E is called a 
hyperplane in E (see Section 1.3, Lemma 1, and Exercises 1.3, 
problem 4). Show that any closed, linear subspace of ( E ,  1I.ll) is the 
intersection of the closed hyperplanes that contain it. 

2. Let ( E ,  1l.lt) be a normed space and let {x,} be a sequence of points 
of E .  We shall say that {x,} is a weak Cauchy sequence if {f(x,)} is 
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a Cauchy sequence for eachfin E‘. We shall say that {x,} is weakly 
convergent to the point xo of E if lim f(x,) =f(x,) for everyfin E‘. 
Finally, we shall say that ( E ,  1 ) .  11) is weakly (sequentially) complete 
if every sequence of points of E that is a weak Cauchy sequence is 
weakly convergent to a point of E .  
(a) If {x,) is weakly convergent to xo E E and also to yo E E,  

show that xo = y o .  
(b) Show that a weakly complete normed space is a Banach 

space. 
(c) Show that any closed, linear subspace of a weakly complete 

Banach space is itself weakly complete. 
(d) If  the Banach space ( E ,  / l . l / )  is weakly complete and if (F,  

1 1 ) .  )I I )  is topologically isomorphic to (E ,  / I .  /I), show that F is 
weakly complete. 

(e) Show that ( I I ,  1 1 .  )I is weakly complete. Hint: Look over the 
proof of Lemma 1 (Section 1).  

3. The Banach-Steinhaus Theorem 

A set cl of continuous, linear functionals on a normed space ( E ,  I ( .  I ( )  
can be “bounded ” in at least two different senses. First, since E’ has a 
norm the set can be bounded for this norm; i.e., sup{ I / f  / /  1 f in  Cn} can be 
finite. If this is the case then we shall say that (1’ is a norm bounded set. 
It can also happen that sup{ I f (x )  I I f in C)} is finite for each x in E. 
When this is true we shall say that (0 is pointwise bounded on E .  A 
norm bounded set in E‘ is certainly pointwise bounded on E. The 
surprising fact is that, if ( E ,  ( 1 .  ( 1 )  is complete, then the converse is true. 

Theorem 1 (Banach-Steinhaus Theorem). Let (B, 1 1 . 1 1 )  be a 
Banach space. Then a subset of B’ is norm bounded iff it is pointwise 
bounded on B. 

Proof. Let 0 be a subset of B’ that is pointwise bounded on B. We 
may assume that I‘! is countable, and so we may write D = { f ,  In = 1,2, 

We shall now show that to prove that {f ,}  is norm bounded it 
suffices to prove that there is an xo in B, a 6 > 0, and a k > 0 such that 

. . .}. 



50 3. LINEAR FUNCTIONALS 

If,(x)I < k for all n and all x in {x E B( /(x - xo(( 5 6). It is conve- 
nient to denote this set by d(6, xo). Suppose that this condition is 
satisfied for an xo in B and numbers 6, k .  Let x be a point of B with 
llxl\ I 6. Then 

] fn(x) I I 1 .fn(x + ~ 0 )  - f n ( X 0 )  1 I 1 .fn(x + ~ 0 )  1 + I f n ( x 0 )  I 2 2' 

for every n because II(x + x o )  - xo 11 = ( /x(J I 6. Thus 1 f,(x) 1 5 2k for 
every n and every x in the set 4(6, 0). Now if y is any nonzero point of 
B, then 6~~/1y(I  - is in .A?(& 0). So 1 f , ( y )  1 5 ZkJ(yIJ6-  for all n. Then 
clearly / I f .  ( 1  i 2 k 6 -  ' for every n. 

Now suppose that for any ball Y (i.e., any set of the form &(6, xo)) 
and any k > 0 there is an integer n and a point x in .Yj such that 

1 f n ( x )  I 2 k .  Choose a ball 9, a point x 1  E 9, and an integer n( 1) such 
that I fn(l)(xl)l > 1. Since,f,,,) is continuous this inequality is satisfied 
at each point of a ball $9' contained in ,Y and containing x, whose 
diameter is less than 2 - ' .  By our assumption there is a point x2  E Y', 
and an integer n ( 2 )  such that 1 fn (2 ) (x2 )  1 > 2 .  As before, this must hold 
at each point of some ball 9, contained in 9, and containing x2 
whose diameter is less than 2-' .  Now choose x3 E 9, and an integer 
n(3)  such that I ht3)(x3) 1 > 3. Using the continuity off,,,) we find a 
ball 9, contained in .cP2 and containing xj such that I fn (3 , (x )  1 > 3 for 
all x E 9, and the diameter of .Y3 is less than 2 - j .  Continue in this 
way. After Y,, c Y 2 , .  . . , 9,- have been chosen, choose xk E :yk-, and 
an integer n ( k )  such that 1 &)(xk)  I > k .  By the continuity Off,,,) this 
inequality must hold at each point of a ball 9, contained in yik- and 
containing X k  whose diameter is less than 2 - k .  

Now we use the fact that (B ,  1 1 . 1 1 )  is a Banach space. Because of this, 
the set n?= > f k  is not empty. But if y is a point in this intersection, then 
] fn(k)(y) I > k for k = 1, 2 ,  . . . , contradicting the fact that = { f,} is 
pointwise bounded on B. 

This theorem has many important applications. We shall discuss 
some of these later on (Chapters 5 and 6 ) .  Right now let us show that 
the theorem need not be true for normed spaces that are not complete. 

Let F be the linear subspace of ll consisting of all sequences that 
have only a finite number of nonzero terms. Clearly, F is dense in ( I l ,  
/ I .  /I '). For each fixed, positive integer n letfn({tk}) = f, for each ( fk}  in F .  
Clearly,,f, E F' and /If, 11 I 1 for every n. Consider (nf,} c F'. For any 
i tk}  in F it is clear that ?f,({fk)) = nt, = 0 for n sufficiently large. It 
follows that {r&} is pointwise bounded on F .  But (Inf, 11 2 I nf,(e,) 1 = n, 
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where en is the sequence having one in the nth position and zeros 
elsewhere. Thus {/In$, 1 1 )  is not a bounded set. 

EXERCISES 3 

Referring to.the first part of the proof of Theorem 1, why can we 
assume that the set 0 is countable? 
Let (B,  ( 1 . 1 1 )  be a Banach space, let ( E ,  I 1 1 .  ( 1  1 ) be a normed space, 
and let S be a subset of Y ( B ,  E )  (Exercise 3.1, problem 5) .  If, for 
each x in B, the set {Tx 1 T in S} is bounded in ( E ,  I )I * 1) 1 ), show that 
there is a positive constant M such that 1 1 1  Tx([ I I MlIxll for all x 
in B and each T in S. 
Let (B,  I ( .  1 1 )  be a Banach space and let { f n }  be a sequence in B'. 
Suppose that lim &(x) exists for each x in B and, for each x, define 
g(x) to be this limit. Show that g E B'. 
Let ( E ,  1 1 . 1 1 )  be a normed space and let S be a subset of E .  Show 
that S is bounded in (E ,  1 1 . 1 1 )  iff sup{ I f(x) I 1 x in S} is finite for each 
f in  E'. 

4. The Completion of a Normed Space. 
Reflexive Banach Spaces 

The dual of the normed space ( E ,  ( 1 . 1 1 )  is the Banach space E'. This 
space also has a dual. It is usually denoted by E", is called the bidual of 
( E ,  ((./I) and consists, of course, of all continuous, linear functionals 
on E'. For each fixed x in E define Z ( f )  to bef(x) for all f in E'. It 
is clear that 1 is a linear functional on E', and since 
Ii(f)l = I f ( x ) l  5 l / f [ l  [lxll we see that i is in E". Hence we can 
define a map 4 from E into E" by letting +(x) = i for each x in E. This 
map is linear and ll4(x)ll = I(xI/ for each x in E (Section 2, Corollary 2 
to Theorem 1). So + is an equivalence (Section 1, Definition 2) from ( E ,  
11 ' [I) onto a linear subspace of E". We shall call 4 the canonical embed- 
ding of (E ,  ( 1 . 1 1 )  into E" and we shall often identify E with its image in 
E .  These observations have an immediate application. 
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Theorem 1. Every normed space is equivalent to a dense, linear 
subspace of a Banach space. 

Proof. Let ( E ,  1 1 . 1 1 )  be a normed space, let 4 be the canonical 
embedding of ( E ,  1 1 . 1 1 )  into E", and let 4 ( E )  be the image of E in E" 
under 4. Clearly ( E ,  1 1 . 1 1 )  and 4 ( E )  are equivalent and + ( E )  is a dense, 
linear subspace of its closure cl + ( E )  in (E", 1 1 . 1 1 ) .  But (E", 1 1  * 1 1 )  is a 
Banach space (Section 1, Theorem 1). Hence cl 4 ( E )  is also a Banach 
space. 

Definition 1. A Banach space is said to be a reflexive Banach 
space if the canonical embedding maps the space onto its bidual. 

If B is a reflexive Banach space, then the canonical embedding is an 
equivalence from B onto its bidual. There are nonreflexive Banach 
spaces that are equivalent to their biduals [ 121. Of course, in such a 
case, the equivalence is not the canonical map. 

We have already seen that the dual of a separable Banach space 
need not be separable (Exercises 1, problem la). However: 

Theorem 2. Let ( E ,  11 . l l )  be a normed space and suppose that E' is 
a separable Banach space. Then ( E ,  I ( .  1 1 )  is separable. 

Proof. Let S = {,fin E' 1 l l f l l  = 1). We can choose a sequencef,, 
f 2 ,  . . . that is dense in S. For each n choose x, in E with IIx, 11 = 1 and 

1 fn(x,) 1 > f. Let G be the closure of the linear subspace of E generated 
by the set {x,}. We shall show that G = E .  Suppose that there is a point 
xo that is in E but not in G. By the third corollary to the Hahn-Banach 
theorem (Section 2) we can find an element g of E' such that g(x,) # 0 
but g(x) = 0 for all x in G. We can also assume that llgll = 1. Now 

for every n. But since g E S and {f,} is dense in this set we have reached 
a contradiction. So G = E and, using this fact, we shall show that ( E ,  
I / .  1 1 )  is separable. 

Suppose that E is defined over the field R. Let Y = {I:= ctJ xJ 1 n is 
finite; a , ,  a 2 ,  . . . , a, are in R }  and let ,X = q,xJ 1 n is finite; q,, 
q 2 ,  . . . , q, are rational numbers}. It is clear that 9 is dense in G and that 
# is a countable set. Now given c;= ctjxJ in Y and c > 0 we may 
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choose rational numbers q,,  . . ., qn such that la j  - q j  1 < E/n for 
1 < j  I n. Then q j x j  is in .W and 111 a j x j  - q j x j  I /  < E.  Hence 
,X is a countable, dense subset of ( E ,  1 1 . 1 1 ) .  

If  E is defined over the field C the proof is similar to the one just 
given and we leave it to the reader. 

EXERCISES 4 

* 1. Let ( E ,  1 1 . 1 1 )  be a normed space. A Banach space that has a dense, 
linear subspace that is equivalent to (E,  l i.II) will be called a 
completion of ( E ,  I / .  1 1 ) .  
(a) Show that any two completions of ( E ,  II.II) are equivalent. 
(b) If (B ,  1 1 . 1 1 )  is a completion of ( E ,  / I .  \I), show that B’ and E‘ are 

equivalent. 
2. To solve this problem one has to use some facts from real variable 

theory (see [9] or [21]). 
(a) Let 9 be the space of all polynomial functions on [0, 11. For 

eachfin 9 let ( ( f l l ,  = sup{ If(.) 1 10 x < 1). Identify the 
completion (up to equivalence, of course) of (9, 1 1 . 1 1  ,). 

(b) For any fixed, real number p 2 1 define a norm on %[O, 11 as 
follows: For each f in W[O, 13 let l l f l l ,  be the pth root of 
1; 1 f ( x )  I p  dx .  Identify the completion of (%‘[O, 11, (1 . 11,). 

(a) If ( B ,  1 1 . 1 1 )  is a reflexive Banach space show that (B’, 1 1 . 1 1 )  is a 
reflexive Banach space. 

(b) If (B, 1 1 . 1 1 )  is a separable, reflexive Banach space show that 
every dual space of ( B ,  I ( .  1 1 )  (i.e., B’, B”, (B”)’, etc.) is a separ- 
able Banach space. 

(c) Show that (co, ( 1 .  11,) and (11, 1 1 .  (1 are not reflexive Banach 
spaces. 

Let ( E ,  1 1 . 1 1 )  be a normed space and letfE E‘ have norm one. For 
any E > 0 show that there is an x, in E with IIx, 1 1  = 1 andf(x,) > 
1 - E .  Give an example to show that there need not be an xo in E 
such that I(xo 11 = 1 andf(x,) = 1. Hint: Consider ( I l ,  I I . I I 1 )  and 
its dual (I,, ( 1 .  11,). 

3. 

4. 
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C H A P T E R  4 

The Weak Topology 

1. Topology from a Family of Seminorms 

We come now to one of the most fascinating topics in the theory of 
normed spaces. This is the investigation of the weak topology and its 
relatives. In order to treat the subject properly we shall have to intro- 
duce new concepts and prove some peripheral, but interesting, results. 
However, most of this material will be used again, especially in the last 
chapter. An example of the kind of problem that we can solve using the 
ideas developed here is this: We know that I ,  is the dual of 11, and that 
1, is the dual of c, . What about c,; what space, if any, is it the dual of? 
More generally, given a Banach space B , ,  is it always possible to find a 
Banach space B2 such that B ,  and B2 are equivalent? This problem is 
solved in Chapter 5 .  

Definition 1. A real-valued function p on a vector space X is said 
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to be a seminorm on X if: 

(i) p ( x  + y )  I p ( x )  + p ( y )  for all x ,  y in X .  
(ii) p(crx) = ( a  ( p ( x )  for all x in X and all scalars a. 

For example, iff  is a linear functional on X then we can define a 
seminorm on X by setting p,.(x) = 1 f ( x )  1 for all x in X .  In this way we 
obtain a whole family of seminorms on X .  

Lemma 1. Let p be a seminorm on X .  Then p ( 0 )  = 0 and 1 p ( x )  - 
p ( y )  I 5 p ( x  - y )  for all x, y in X ;  in particular, p ( x )  2 0 for all x .  

Hence we have our result. 

Let X be a vector space and let { p ,  I y in r) be a family of seminorms 
on X .  There is a standard method of defining a topology on X by 
means of this family. We will give this method in three steps that will 
be referred to, collectively, as the construction process. 
(a) Let Y. be the family of all subsets of X that are formed in the 

following way: Choose a finite subset p l ,  p 2 ,  . . . , p ,  of {p , } ,  the 
same number of positive real numbers E ~ ,  c 2 ,  ..., E , ,  and let 
V = V ( p l ,  . . ., p , ;  E ~ ,  . . ., E , )  = { x  in X ( p j ( x )  < E~ for 1 I j 2 n}. 

(b) For any point x of X we shall say that a set U containing x is a 
neighborhood of x if there is some V E f such that x + V c U .  

(c) Let t = t ( { p , } )  be the family of all subsets of X that are neighbor- 
hoods of each of their points. 

Lemma 2. The family of sets t = t ( { p , } )  is a topology on X and 
each p ,  is continuous on X for this topology. The topology is Haus- 
dorff iff {p , }  satisfies the following: (Separation Condition) For each 
nonzero x in X there is some p] ,  such that p , ( x )  # 0. 

Proof: It is clear that X itself and the empty set are in t. We have 
to show that the union of any family of sets in t is a set in t ,  and that the 
intersection of any finite family of sets in t is a set in t .  The first of these 
is clearly true. Let {Oj  1 j = 1,2, . . . , ) I }  be a finite family of sets in t. If the 
point x is in the intersection of these sets then for each j there is a set 5 
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in $’. such that x + V, c Oj. To prove that n;= Oj is a neighborhood 
of x it is sufficient to prove that n;= 5 is in V .  But this is obvious. 

Choose any pr . It is clear, from Lemma 1, that p y  is continuous on 
X iff it is continuous at zero. So given F > 0 we have to show that for 
some neighborhood, say V,  of zero, p y ( x )  < E for all x in V ;  i.e., we have 
to find some V E 3 ‘  such that p y ( x )  < E for all x in V.  But {x in 
X 1 p , ( x )  < E )  is in V .  by definition, and so p ,  is continuous at zero, 
hence on all of X, for the topology t .  

Now let us prove the last statement. Assume that for x # 0 in X 
there is some py such that p , ( x )  # 0. Then, if x ,  y are in X and x # y ,  
there is some py such that p y ( y  - x )  > 0. So p , ( y )  > p , (x ) .  Let 
d = p , ( y )  - p , ( x )  and let V = ( z  in X J p y ( z )  < d/2}. We claim that 
x + V and y + V are neighborhoods of x and y ,  respectively, that are 
disjoint. To prove this let z belong to both of these sets. Then 
z - x E V and z - y E V ,  and so p y ( z  - x )  < 4 2  and p,(z - y) < d/2. 
But then 

P,(Y - X) I pr(y - z )  + P , ( Z  - X) < 4 
which is a contradiction. So the separation condition does imply that t 
is Hausdorff. The converse is easy. 

Remark. Let X be a vector space, let { p , )  be a family of seminorms 
on X, and let r = f({py}). The space X with the topology t will be 
denoted by X [ r ] .  A continuous, linear functional on X [ t ]  is said to be a 
t-continuous, linear functional. Similarly, we shall speak of f -  

neighborhoods of zero in X, ?-compact sets, t-convergent sequences, 
etc. 

If ( E ,  1l.lI) is a normed space and E’ is its dual space, then the family 
of seminorms {ps  1 f i n  E‘} (recall that p s ( x )  = 1 f ( x )  1 for all x in E )  on 
E satisfies the separation condition (Section 3.2, Corollary 2 to the 
Hahn-Banach theorem). The Hausdorff topology t ( { p s ) )  will be 
denoted by a(E, E‘) and will be called the weak topology on E. 

A typical a(E, E’)-neighborhood of zero contains a set of the form 
(x in E 1 1 ,fi(x) I < c j  for 1 I j I n )  (see (a) and (b) of the construction 
process). This last set contains a sufficiently small ball centered at  zero; 
i.e., there is a 6 > 0 such that 

V = {x in E I I f;:(x) 1 < e j  for 1 I j I n )  2 {x in E 1 ~~x~~ < 6) .  

Hence, by (b) and (c) of the construction process, every a(E, E’)-open 
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subset of E is open for the norm topology. Notice that I/ contains 
n;= {x in E I S,(x) = 0). This intersection is a linear subspace of finite 
codimension in E (Exercises 2.2, problem 6 ) .  Suppose that the norm 
and the weak topologies on E were to coincide. Then the unit ball of E ,  
which is a norm neighborhood of zero, would have to contain a sub- 
space of finite codimension in E. Now the only linear subspace of E 
that is contained in the unit ball is the zero subspace. This will have 
finite codimension in E iff E is finite dimensional. Hence we have 
proved : 

(1)  On an injnite dimensional normed space the weak topology i s  
strictly weaker than the norm topology. 

By Lemma 2 eachf'in E' is a(E, E')-continuous on E. Combining 

The space of all weakly continuous, linear,functionals on a normed 
space E coincides with E'. 

If,fis any element of E' and N ( f )  is the null space 0f.L then N ( f )  is 
a linear subspace of E that is closed for both the weak and the norm 
topologies. Let H be any norm closed, linear subspace of E. If x E E,  
x $ H ,  then there is, by Corollary 3 to the Hahn-Banach theorem, an 
elementfof E' such thatf(x) # 0 andf(y) = 0 for all y in H .  Define H1 
to be ( f in  E' 1 .f vanishes on H } .  Then H = n { N ( , f )  1 f i n  H I ) ,  and so 
H is closed for the weak topology; i.e., we have shown: 

( 3 )  A linear subspace of a normed space i s  closed,for the weak topology 
[ff i t  i s  closed for the norm topology. 

Now consider the dual space E' of the normed space E. This has a 
norm and a weak topology also (i.e., a(E', E")). There is, however, 
another useful topology on E'. For each fixed x in E define p,(f) to be 

1 ,f(x) 1 for all f in E'. The family of seminorms ( p ,  1 x in E} defines a 
Hausdorff topology on E', which we shall call the weak* topology on 
E'. This topology is written a(E', E). 

Since E c E (Section 3.4) the construction process shows that 
a(E', E )  is weaker than o(E', E"). We can say more. But first we shall 
prove: 

(4) The space of all weak* continuous, linear functionals on E' coincides 
with E. 

To prove this let 4 be a o(E', E)-continuous, linear functional on 

this with ( 1 )  we have: 

(2) 
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E'. Then { f ~  E' I I4(,f) I < I}  contains a a(E', E)-neighborhood of 
zero. Hence there is a finite set x l ,  x 2 , .  . . , x ,  in E and positive numbers 
e l ,  E ~ ,  . . . , E ,  such that I @(f) I < 1 wheneverfis in { g  E E' 1 I g ( x j )  I < E~ 

for 1 ~j I n}.  In particular, if N ( i j )  is the null space in E' of the 
functional i j  (see Section 3.4 for the notation ij), l@(f)l < 1 when- 
everfe  N ( i j ) .  But iffis in this intersection, then so is IIffor all 
scalars 2. Thus 1 @(A,) I < 1 for all II and this implies 4 ( f )  = 0, i.e., 
N ( 4 )  3 n;= N ( i j ) .  It follows that 4 is a linear combination of X I , .  . . , 
x ,  (Exercises 2.2, problem 6) and so 4 E E. 

Since the space of all a(E', E")-continuous, linear functionals on E' 

The topology a(E, E) is weaker than a(E', E") and when E # E" 
these topologies are distinct. 

A linear subspace of E' that is norm closed need not be weak* 
closed, but we can say somethin about its weak* closure. We need 
some notation first. For any 2 ear subspace M of E' let M ,  = { x  in 
E I f ( x )  = 0 for everyfin M }  and let (M,)' be {fin E' I f ( x )  = 0 for all 
x in M l } .  It is clear that both M ,  and (M,)I are linear subspaces. Also, 
since M ,  = n { N ( f )  I .fin M }  and (M,)' = 0 { N ( i )  I x in M,}, M ,  is 
closed in E and (M,), is weak* closed in E'. 

Lemma 3. The weak* closure of any linear subspace of M of E' 

coincides with E" (by (2)) we have: 

(5) 

coincides with (M,),. 

Proof. Since M c (M,),  all we have to do  is show that iffo is not 
in the weak* closure of M then it is not in (M,)'. Assume thatf, in E' 
is not in the weak* closure of M .  We shall find a point xo of M ,  such 
that f o ( x o )  # 0. Our assumption implies that there is a weak* neigh- 
borhood offo that does not meet M ;  i.e., there is a finite set xl, . . . , x, in 
E and E > 0 such that no point g E M can satisfy 1 g ( x i )  - f o ( x i )  I < E 

for 1 I i I n. Define a map 4 from E' into K" by letting 4(g) = ( g ( x , ) ,  
. . . , g ( x , ) )  for every g E E'. Clearly 4 ( M )  is a linear subspace of K" and 
4(f0) is not in this subspace. Thus there is a linear functional on K" 
that is zero on 4 ( M )  and is not zero at 4(fo) (by the Hahn-Banach 
theorem, Corollary 3); i.e., there are constants cI, c 2 ,  . . . , c, such that c c i g ( x j )  = 0 for all g E M and 1 c i f o ( x i )  # 0 (Exercises 1.3, problem 
5). Let x o  = c i x j  and note that our last statement becomes: 
q(xo) = 0 for all g in M (hence xo E M,) and f o ( x , )  # 0 (hence 
.fo !i (ML)l). 
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Suppose that 4 is in E" but is ,not in E. Then N ( 4 )  = { f in 
E ' l4( f )  = 0) is a norm closed, linear subspace of E' whose 
a(E, E)-closure is (N(4)L)1. Now N ( 4 ) ,  = {x in E I f (x) = 0 for every 
f in  N ( 4 ) ) .  If x E E is in this set then x = 124 (Exercises 1.3, problem 4). 
But 4 $ E and so this is possible only for 12 = 0; i.e., N ( 4 ) ,  is the linear 
subspace of E whose only element is the zero vector. Clearly then 
(N($),)' is all of E and so N ( 4 )  is a(E', E)-dense in E'. We have 
proved : 

( 6 )  If E # E ,  then there are linear subspaces of E that are both norm 
closed and weak" dense in E'. 

The next theorem exhibits another important difference between 
the weak and weak* topologies. This result has many applications and 
we shall discuss some of these later on. 

Theorem 1 (Alaoglu's Theorem). The unit ball, in the dual of any 
normed space, is compact for the weak* topology. 

Proof. Let (E, 1 1 . 1 1 )  be a normed space over K and, for each x in E, 
let K ( x )  be K .  An element O of n { K ( x )  I x  in E} is a function from E, 
the index set, into K .  Hence, it makes sense to speak of 8(x). Every 
element of E' can be regarded as a point in the product space; i.e., there 
is a map from E' into fl { K ( x )  I x in E}. Identify E' with its image in the 
product space under this map. Notice that, since E is the index set for 
the product space, the product topology restricted to E' is just a(E', E). 

Let G9' be the unit ball of E' and, for each x in E, let D ( x )  = { z  in 
K I I z I  5 11x11). If g E 3' then, for any x, Ig(x)l I llgll llxll I llxII. and 
so 9' is contained in the compact set n { D ( x )  I x in E}. If we can show 
that $8' is closed in this product, we shall be done. Let 8 be a point in 
fl { D ( x )  I x in E} that is in the closure of $8'. The first thing we shall d o  
is show that 0 E E'. Given E > 0 and x, y in E we can find g E 24' such 
that 

I g b )  - Q(x) I < E ,  I S(Y)  - 8(Y) I < E ,  

and 

Ig(x + Y )  - e(x + Y)I < 8 
because 0 is in the closure of g' for the product space topology. Now g 
is linear and so we get I e(x + y )  - O(x) - O(y)  I < 38 and, since E was 
arbitrary, e(x + y )  = O(x) + 6 ( y )  for all x, y in E. In a similar way one 
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can show that 8(ax) = a8(x) for all a in K and all x in E .  So 8 is linear. 
Recall now that 0 E n { D ( x )  1 x in E } .  This means 1 8(x) I I llxll for all 
x in E and so the linear map 8 must be continuous on E .  In fact, 8 E ,&’. 

For a reflexive Banach space (Section 3.4, Definition 1 )  B the weak 
and weak* topologies on B’ coincide; i.e., a(B’, B )  = a(B’, W )  because 
B = B”. More is true in this case. Since B = B” we must also have 
B‘ = B”’. Hence cr(B, B’) and o(B”, B”’) = a(B”, B’) coincide on B. 
This says that, when B is a reflexive Banach space, the weak topology 
on B is actually a weak* topology. Applying Alaoglu’s theorem we 
have : 

Corollary 1. The unit ball of a reflexive Banach space is compact 
for the weak topology. 

We shall investigate the converse of Corollary 1 later on. 

EXERCISES 1 

*1. Let X be a vector space over K and let { p , }  be a family of semi- 
norms on X .  We refer to step (a) of the construction process. 
(a) Show that, if U E $- ,  there is a set V E 9” such that 

V S V C U .  
(b) If Z.7 E V ’  show that there is a set V E V -  and a neighbor- 

hood N of zero in K such that aV c U for all a in N .  
(c) Let t = l ( { p ? } ) .  Show that a sequence {x,) c X is t -  

convergent to x E X iff lim p , ( x  - x,) = 0 for each y. 

Let (E ,  1 1 . 1 1 )  be a normed space. We refer to Exercises 3.2, problem 
2. 
(a) Show that {x,) c E is a weak Cauchy sequence iff for every 

a(E, E’)-neighborhood V of zero in E there is an integer N 
such that x, - x, E V whenever both rn, n 2 N .  

(b) Show that {x,} c E is weakly convergent to x E E iff 
lim ,f(x - x,) = 0 for every f in E’. 

Let ( E ,  / I .  1 1 )  be a normed space and let S be a subset of E .  We shall 
say that S is a total subset of E i f fg  E‘ andf(x) = 0 for all x E S 
implies f = 0. 

*2. 

*3. 
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(a) Show that S is a total subset of E iff the linear subspace 
generated by S is dense in E.  

(b) Show that ( E ,  l \ . l J )  is separable iff it contains a countable, 
total subset. 

Let ( E ,  J j . 1 1 )  and ( F ,  1 J j . J J  1 ) be two normed spaces and suppose 
that u is a linear map from E into F .  Define a map u* from F' into 
E' as follows: For each 4 E F', u*(+) is the element of E' defined 
by u*(u)(x) = 4[u(x)] for all x in E .  This is called the adjoint of u.  
(a) Show that u* is linear. If u is continuous prove that u* is 

continuous when E' and F' have their norm topologies. If u 
is continuous show that J J u J J  = J Ju*J /  and also that u* is con- 
tinuous when E' and F' have their weak* topologies. Hint: 
For each fixed x E E we have 

*4. 

I l l~(x)l l  I = SUP{ 14[44 I I4 E F'#4 5 1). 
But @[u(x)] = u*(r$)(x) by definition. Thus IIu(x)ll I 
sup{ Iu*(4)(x)I 14 E F', ((q5(( 5 1). It follows that 

1 ~ ~ u ( x ) ~ ~  I I /Iu*ll l\xII, and so llull I IIu*ll. The reverse 
inequality is easy to prove. 

(b) If u is an equivalence from E onto F (Section 3.1, Definition 
2) show that u* is an equivalence. 

*5.  Let (E ,  II.JI) be a separable normed space. Show that any se- 
quence in E' that is bounded for the norm of E' has a subsequence 
that is o(E', E)-convergent. Hint: Let (f,} be a bounded sequence 
in the Banach space E' and let {xj} be a countable, dense subset of 
( E ,  IJ.11). For each fixedj the set { f n ( x j )  In = I ,  2, . . .> is bounded in 
K and hence has a convergent subsequence. For an interesting 
and useful application of this result see [27, Theorem 2b, p. 1031. 

2. Sets Which Define Seminorms 

Seminorms arise in another, more geometric, way. Let X be a 
vector space over the field K and let A be a subset of X that contains 
the zero vector. Suppose that x E X and that x is in a A  = {ay I y E A }  
for some positive scalar a. In this case we define p A ( x )  to be inf{a > 0 I x 
is in aA}. If x is never in a multiple of A then we set p A ( x )  = + 00. The 
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function p A  from x into R u { + a} is called the gauge function of A .  
Notice that if R 2 0, pA(Rx) = RpA(x) for any x. 

Definition 1. A subset A of a vector space X is said to be a convex 
set if for any two points x, y of A and any real number a, 0 I a I 1, the 
point ax + (1 - a)y is in A.  

Lemma 1. Let A be a convex set that contains the zero vector and 
let pA be the gauge function of A .  Then pA(x + y )  5 p A ( x )  + p A ( y )  for 
all x, y .  

Proof. For any positive numbers I and p we have ( I  + y)A c 
I A  + yA. Since A is convex, 

Hence, for a convex set A ,  (1 + y)A = I A  + P A .  
Our inequality is certainly satisfied if p A ( x )  or pA(y )  is + 00. Assume 

that p A ( x )  = s and p,(y) = t ,  where both are finite, and let E > 0 be 
given. We can choose 2, y such that 

S I I < S + E ,  xisin2.A 
and 

t I p < t + E, y is in yA. 

It follows from this that x + y is in RA + y A  = ( R  + y)A, and so 
p A ( x  + y )  I s + t + 2 ~ .  The inequality follows from this. 

Definition 2. Let A be a subset of the vector space X. 

(a) We shall say that A is a balanced set if a A  c A for all scalars a 
such that la  I I 1. 

(b) We shall say that A is an absorbing set if for any x in X there 
is some scalar a > 0 such that a A  contains x. 

Observe that a balanced set always contains the zero vector and 
that the gauge function of an absorbing set is a real-valued function. 

Lemma 2. The gauge function of a balanced set A satisfies: 
p A ( I x )  = I I I p A ( x )  for all scalars I and all vectors x. 

Proof. Since the equation is true for all I > 0 we need only prove 
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it for scalars 1 such that 1 A 1 = 1. But if 1 ,I 1 = 1 then, since A is 
balanced, a vector x E A iff it belongs to LA. 

The following theorem summarizes our results so far. 

Theorem 1. Let X be a vector space over K .  The gauge function of 
an absorbing, balanced, convex subset of X is a seminorm on X .  
Conversely, if p is a seminorm on X ,  then the set A = {x I p ( x )  < 1) is 
an absorbing, balanced, convex set such that pA = p .  

EXERCISES 2 

1. Let X be a vector space over K.  
Prove that the intersection of any family of convex (respec- 
tively, balanced) subsets of X is a convex (respectively, bal- 
anced) subset of X .  
Given a subset S of X define the convex hull of S to be the 
intersection of the family of all convex subsets of X that 
contain S. Show that the convex hull of S is {c;= a j x j  I n is 
a positive integer; x l r  . . . , x, are in S; al, . . . , c1, are nonnega- 
tive numbers with 
Define the balanced, convex hull of S to be the intersection 
of the family of all balanced, convex subsets of X that con- 
tain s. Show that this is equal to {g= u j x j  I n is a positive 
integer; xlr  . . . , x, are in S ;  ctl, . . . , a, are elements of K with 

Define the balanced hull of S in the natural way (see (b) and 
(c)). Show that the balanced, convex hull of S is equal to the 
convex hull of the balanced hull of S ,  but that it need not 
equal the balanced hull of the convex hull of S. 

aj  = 1). 

c;=l (ujl I 1 ) .  

2. Let ( E ,  / I  * 1 1 )  be a normed space over K ,  and let b be the unit ball of 
this space. 

(a) Show that a balanced, closed, convex subset C of ( E ,  1 1  * 1 1 )  is 
the unit ball corresponding to some norm on E that is 
weaker than 1 1 .  I/ if, for some a > 0, c1J c C .  

(b) If, in addition to the conditions on C stated in (a), we 
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assume that the set is bounded, then show that the gauge 
function of C is a norm on E that is equivalent to I / .  ( I .  

(c) Let (B, l [ . l l )  be a Banach space and let C be an absorbing 
balanced, bounded, closed, convex subset of B. Show that 
the gauge function of C is a norm on B that is equivalent to 
/ I  ‘ 1 1 .  

3. Locally Convex Spaces. Kolmogorov’s Theorem 

Here we shall examine the topology defined by a family of semi- 
norms in some detail. Throughout this section X will be a vector space 
over K ,  { p p  I y in r} a family of seminorms on X ,  and t the topology 
t ( { p , } ) .  We invite the reader to look over the construction process given 
just after Definition 1 in Section 1. In  particular, recall that any t -  
neighborhood of, say xo E X ,  contains a set of the form xo + V ,  where 
V E  3 . .  

Lemma 1. We consider the space X [ t ]  and we give X x X ,  K x X 

(i)  The map from X x X into X that takes each pair (x, y)  onto 

(ii) The map from K x X into X that takes each pair (a, x) onto 

their respective product space topologies. Then : 

x + p is continuous. 

ax is continuous. 

Proof. If xo, yo in X and a r-neighborhood W of xo + yo are 
given, we can find U E $ such that xo + yo + U c W. By problem l a  
of Exercises 1, there is a V E 3 .  such that V + V c U .  Now 
(xo + V )  x (yo + V )  is a neighborhood of (xo, y o )  in X x X and our 
map takes the neighborhood to xo + V + yo + V c xo + yo + 
U c W. This proves (i). 

Now let a. E K ,  xo E X ,  and a neighborhood W of a. xo be given. 
We want to find a neighborhood N of a. in K and a neighborhood 
U 2 ( x 0 )  of xo in X such that (ax - a o x o )  E W whenever (a, x)  E N x 
U 2 ( x 0 ) .  There is a set V E 3 such that a. xo + V c W, and we can find 
another set U E 9. such that U + U + U c V (Exercises 1, problem 
la). The set U is balanced and absorbing (Section 2, Theorem 1) and so 

(1) i f x - x , E U , t h e n a ( x - x , ) E U f o r a l l a w i t h  la1 5 1 ;  
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(2) there is a number E > 0 such that ax, E U for all a with 

Suppose (we shall prove this in a moment) that we can find a set 
U l  E I 'such that 

( E l  < E .  

( 3 )  a o u ,  c U ,  

and let U ,  be any element of 9' that is contained in U ,  n U .  Set 
N = {a E K 1 ( a  - a, 1 I min(1 ,~) )  and set U , ( x o )  = x, + U , .  I f  
(a, x) E N x U2(xO) ,  then (a - ao)xo E U by (2), ag(x - xg) E U by 
( 3 )  and the fact that (x - xo) E U ,  c U1, and (a - a,)(x - x,) E U by 
(1)  and the fact that (x - x,) E U ,  c U .  But 

ax - aoxo = (a - a,)x, + a(x - x,) + (a - ao)(x - x,) 

and so ax - a,xg is in U + U + U c V.  

and any a, E K there is a set U E 3 'such that a. U c V .  We know that 
there is a set U E I ' with U + U c V.  Hence, by induction, we can 
find, for any integer n, a set U ,  E d ' such that 2"U, c I/. Choose n so 
that la, I I 2". Then, since U ,  is a balanced set, a,2-"U c U .  Thus 
a, U c 2"U c V .  

We shall now complete the proof by showing that for any V E f 

Definition 1. Let X be a vector space over K and let s be any 
topology on X. We shall say that s is compatible with the vector space 
structure of X and that X [ s ]  is a topological vector space, if X with the 
topology s satisfies conditions ( i )  and (ii) of Lemma 1. 

A normed space with its norm topology is a topological vector 
space; this is, since a norm is a seminorm, a special case of Lemma 1 .  
Observe that if X [ s ]  is a topological vector space and x, is any fixed 
point of X ,  the map that takes each x in X to x + xg is a homeomor- 
phism. Hence the s-neighborhoods of any point are just translates of 
the s-neighborhoods of zero and, just as for normed spaces, we can 
compare compatible topologies on a vector space by comparing the 
neighborhoods of zero in these topologies. 

Now the only topological vector spaces that we have seen are those 
whose topologies could be defined by means of a family of seminorms. 
We may ask whether the topology of every topological vector space 
arises in this way. More precisely, given any topological vector space 
X [ s ] ,  does there exist a family of seminorms (p , )  on X such that 
s = f({p?;)? This is what we will mean if we say that the topology on a 
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certain X[s] can be defined by a family of seminorms. The answer to 
our question is, in general, “ n o ”  [16, p. 1561, but we can give a nice 
characterization of those spaces for which the answer is “ yes.” 

Definition 2. A topological vector space X[s] is said to be a locally 
convex space if every s-neighborhood of zero in X contains a convex 
s-neighborhood of zero. 

It is easy to see that if t is defined by a family of seminorms, then 
X[t] is a locally convex space. 

Lemma 2. Let X[s] be a locally convex space. Then every s- 
neighborhood of zero in X contains an s-neighborhood of zero that is 
an absorbing, balanced, convex, s-open set. 

Pro05 Let U be any s-neighborhood of zero. Clearly, U contains 
an open s-neighborhood of zero (the interior of U ,  for example), so let 
us assume that U is open. If xo is in X then clearly Oxo E U and hence 
there is a neighborhood N of 0 in K such that axo E U for all a in N ;  
i.e., there is a positive number p’ such that axo E U if I a /  < p’. From 
this we see immediately that U is absorbing since x,, E (l /a)U when- 
ever a is a positive number that is less than p’. 

Now the zero vector is in U and so there is an s-neighborhood V of 
zero in X and a neighborhood N of zero in K such that N x V c U .  
Clearly N can be taken to be {a in K I I a 1 < /3”} for some positive 
number r .  Choose, and fix, a positive number B such that D < 8”. 
Then aV c U if I a I I p. Then choose an s-neighborhood V, of zero 
such that (l/p)Vo c V.  If a is in K and l a (  I 1, then 
avo = aB( l/p)Vo c (ap)V c U because 1 afi 1 2 8. Thus the balanced 
s-neighborhood u {avo I 1 a I I 1) is in U.  

We have seen that U is absorbing and that U contains a balanced 
s-neighborhood of zero; call it U , .  Since X[s] is a locally convex space 
we can find a convex s-neighborhood U 2  of zero that is contained in 
U,.  I f  V is the balanced, convex hull of U ,  (Exercises 2, problem lc), 
then V is an absorbing, balanced, convex s-neighborhood of zero that 
is contained in U.  But the interior of V also has these properties and it 
is clearly an open set. This proves the lemma. 

Theorem 1. The family of all topological vector spaces whose 
topologies can be defined by a family of seminorms coincides with the 
family of all locally convex spaces. 
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Proof. We need only prove the sufficiency of this condition. Let 
X [ s ]  be a locally convex space and let Y '  be the family of all absorbing, 
balanced, convex, open neighborhoods of zero in X .  For each V in f 
let P, be the gauge function of V ,  and let t = t ( {PV I V in V}).  Then 
X [ t ]  is a locally convex space. We shall show now that s = t .  

Let Y - ( t )  denote the family of sets defined in part (a) of the con- 
struction process. If W is any t-neighborhood of zero in X then W 
contains a set V E 3 . ( t ) .  There is a finite set V,, . . . , V ,  in $ . and 
numbers e,, . . . , e, such that I/ = (x in X 1 POj(x)  < c j  for 1 5 j 5 n}. 
Now 

{x 1 P" j (x)  < E j }  = E j { X  I P",(X) < 1) = E j  vj 
so V = n e j  vj is in $ -. This proves that t is weaker than s. The fact 
that s is weaker than t is proved similarly. 

The normed spaces are a subfamily of the family of all Hausdorff, 
locally convex spaces. This subfamily was neatly characterized by 
Kolmogorov, and we shall present his characterization now. 

Definition 3. Let X [ t ]  be a locally convex space. A subset B of X is 
said to be a t-bounded set if, for every t-neighborhood U of zero, there 
is a scalar A such that B c AU. 

Theorem 2. Let X [ t ]  be a locally convex space. There is a norm on 
X such that the norm topology is equivalent to t iff there is a t- 
bounded t-neighborhood of zero in X .  

Proof: Suppose that there is a norm ( 1 .  I /  on X such that the norm 
topology is equivalent to t .  Then, if d is the unit ball of ( X ,  /I * [I), J is a 
t-neighborhood of zero. But since t is equivalent to the norm topology 
any t-neighborhood V of zero must contain some multiple of J ;  i.e., 
there is a p > 0 such that V 3 pd. Clearly then, (l/p)V 3 d and .#I is a 
t-bounded set. 

Now suppose that X [ t ]  contains a t-bounded t-neighborhood of 
zero. We may assume that W is balanced, t-closed, and convex. The 
gauge function q of W is a seminorm on X .  Suppose that, for some 
x E X, q(x )  = 0. Then for each positive integer n there is an x, E W 
such that x, = nx.  Let p be any t-continuous seminorm on X ,  let 
U = {x in X ( p ( x )  < I),  and choose R in K such that W c RU. Then 
p ( x )  < R for all x in W .  Combining these observations we have 
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p ( x )  < A/n for every n. It follows that p(x) = 0 and, since t is a Haus- 
dorff, locally convex topology, x = 0. Thus q is a norm on X .  We must 
now show that the topology induced on X by q is equivalent to t .  This 
is easy. Since W is a t-neighborhood of zero t is stronger than the norm 
topology, but since W is bounded t is weaker than this topology. 

EXERCISES 3 

*1. Let X [ t ]  be a locally convex space and letfbe a linear functional 
on X .  

(a) If xo is a fixed point of X show that the map that takes each 
point x of X to x + x,, is a homeomorphism in X [ t ] .  

(b) Show that f is t-continuous on X iff it is t-continuous at 
zero. Show that f is t-continuous at  zero iff there is a t -  
neighborhood U of zero such that sup{ I f ( x )  I 1 x in U }  is 
finite. 

(c) Assume t h a t f #  0 and show that the following conditions 
on f a re  equivalent: 

(i) f i s  t-continuous on X .  
(ii) The null space off is a proper, t-closed, linear sub- 

space of X .  
(iii) The null space offis not t-dense in X. (Hint: See the 

proof of Lemma 1 in Section 1.3.) 
(d) Suppose that (B,  / l .II) is a nonreflexive Banach space. 

Using (c) show that there are linear subspaces of B’ that are 
norm closed but o(B’, B)-dense in B’. 

2. Let X [ t ]  be a locally convex space. Show that every f-  
neighborhood of zero in X contains an absorbing, balanced, 
convex, t-closed t-neighborhood of zero. 

3. Let X [ t ]  be a locally convex space, let B be a subset of X ,  and let 
t = t ( {p , } ) ,  where { p ,  I y in r} is a family of seminorms on X .  
*(a) Show that B is t-bounded iff sup{p,(x) I x  in B} is finite for 

every y .  
(b) If B is r-bounded show that the t-closure of B is r-bounded. 

*(c) I f  4 is a continuous, linear map from x [ t ]  into a locally 
convex space Y[s] ,  show that $ ( B )  is s-bounded in Y when- 
ever B is t-bounded in X .  
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(d) Let (E, \ \ . I \ )  be a normed space. Refer to the Banach- 
Steinhaus theorem to prove: A subset of E is norm 
bounded iff it is o(E, E')-bounded (Exercises 3.3, problem 
4 ). 

4. The Hahn-Banach Theorem. 
Reflexive Banach Spaces 

The topology of any locally convex space can be defined by means 
of a family of seminorms. This makes locally convex spaces convenient 
to work with. But these spaces are convenient for another reason. We 
shall see that an analog of the Hahn-Banach theorem is true for locally 
convex spaces. One consequence of this result will enable us to prove 
that a Banach space whose unit ball is compact for the weak topology 
is necessarily reflexive. The theorem also has other applications and we 
shall explore some of these later. 

Recall that if X is a vector space over K ,  a real-valued, real linear 
functional on X is a mapffrom X into R such thatf(x + y )  = f ( x )  + 
f ( y )  for all x, y in X ,  andf(ax) = af(x) for all x in X and all a in R. 

Theorem 1. Let X [ t ]  be a locally convex space, let C be a closed, 
convex subset of X ,  and let xo be any point of X that is not in C. Then 
there is a t-continuous, real-valued, real linear functionalf on X such 
that f (x , )  > sup{f(x) I x in C}. 

Proof. There is a family of seminorms { p , }  on X such that 
t = [ ( { p ? ; ) .  Also, there is a t-neighborhood U of zero in X such that 
xo + U is disjoint from C. We may suppose that there is a finite set p I ,  
..., pn in { p , )  and positive numbers ..., E , ,  such that U = { x  in 
X Ip,(x) < c, for 1 5 i I a}. Let I/ = {x in X I p , ( x )  < ~ , / 2  for 1 I i I n),  
let C = u {x + I/ I x in C ) ,  and note that c" is a t-open set that contains 
C but does not contain xo . We shall now show that there is no loss in 
generality in assuming that is a convex set that has zero in its 
interior. 

Take u, 11 in c" and a real number a with 0 i a I 1. Then 
u = x + u l ,  u = y + u I ,  where x, y are in C and u l r  z i l  are in V. Clearly, 

au + ( 1  - a)u = {ax + (1 - a)y} + {au l  + (1 - a)u1}. 
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Since the first term on the right is in C and the second is in I/ their sum 
is in c" and so c' is a convex set. Now let z be any point of the t-open set 
c'. Clearly c" - z has zero in its interior and if we can find a t- 
continuous, real-valued, real linear functional f on X such that 
f (xo - z )  > sup{f(y) 1 y in c' - z} then we shall have proved the 
theorem. So we can, and now do, assume that c' is a convex set that 
contains zero in its interior. 

Let p be the gauge function of c' and note that since c' is a neigh- 
borhood of zero, p is real valued (Section 3, Lemma 2). Regard X as a 
vector space over R, definef(Ax,) to be A p ( x o )  for all real scalars 1, and 
note thatf(x) I p ( x )  for all x in the subspace {Axo 11 in R}  of X .  We 
now refer to part (a) of the proof of the Hahn-Banach theorem (Sec- 
tion 3.2, Theorem 1). I t  is shown there that we can extendf to a 
real-valued, real linear functional F on X in such a way that F ( x )  I 
p ( x )  for all x. Clearly 

~ ( x , )  = p ( x o )  > I 2 sup{p(x) I x in z'} 
2 sup{p(x) I x in C )  2 sup{F(x) 1 x in C). 

Hence we shall be finished once we have shown that F is t-continuous 
on X .  

Since F(x) I p ( x )  on X we must have F( -x )  I p (  - x )  or F ( x )  2 
- p (  - x) for all x in X .  Hence for all x in X ,  - p (  - x)  I F ( x )  I p ( x ) .  
Now c' contains a balanced, t-neighborhood U of zero (Section 3, 
Lemma 2). Clearly, p( - x)  = p ( x )  for x in U and so p ,  and hence F ,  is 
bounded by one on U .  It follows that F is t-continuous on X .  

Corollary 1. Let X [ t ]  be a locally convex space, let C be a ba- 
lanced, closed, convex subset of X ,  and let xo be a point of X that is not 
in C. Then there is a continuous, linear functional h on X such that 
I h(x0)  I > SUP{ I h(x) I I x in C ) .  

Proof: Regard X as a vector space over R and use Theorem 1 to 
find a continuous, real-valued, real linear functional f on X such that 
f ( x o )  > sup{f(x) Ix in C } .  There is a number c1 that is strictly less than 
f ( x o )  and strictly greater than the supremum. Since C is balanced we 
can assume that c1 = 1. Define h ( x )  - f (x)  - i f ( i x )  for all x in X .  By 
part (b) of the proof of the Hahn-Banach theorem (Section 3.2, 
Theorem l), h is a continuous, linear functional on the complex vector 
space X .  Also, 1 h(xo)  1 2 1 f (xo) 1 > 1. If x is any element of C we have 

h ( x )  = pe", I h ( x )  I = p = e-"h(x) = h(e-"x). 
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But p is a real number and so h(e-"x) = p means h(e-'"x) =f(e-"x). 
Since e-'"x is in C because C is balanced and f is bounded by 1 on C, 
p 5 1. 

Let us return now to the study of the weak topology of a normed 
space. Theorem 1 has some interesting implications in this situation. 
We shall continue numbering our results as we did in Section 1. 

(7) A conuex subset o f a  normed space ( E ,  1 1 . 1 1 )  is closedfor the norm 
topology iff it is closed for the weak topology. 

We need only prove that a convex, norm closed subset of E is 
closed for the weak topology. Let C be such a set and suppose that 
xo E E is not in C. By Theorem 1 there is a real-valued, real linear 
functional f on E that is norm continuous and satisfies f (xo) > a > 
sup{ f(x) ( x  in C}; here a is some real number. At this point we distin- 
guish two cases: 

(a) If  E is a vector space over R, then f E E' and so f is 
a(E, E')-continuous on E .  But then {x in E I f ( x )  > a}  is a weak neigh- 
borhood of xo that is disjoint from C .  Since xo was any point of E that 
is not in C we conclude that C is o(E, E')-closed. 

(b) If E is a vector space over C we could reason as we did in (a) 
once we show thatfis weakly continuous on E .  We know (see part (b) 
of the proof of the Hahn-Banach theorem) that h ( x )  = f (x) - ifM is 
in E'. I t  follows that h ( x )  is a(E, E')-continuous on E .  Clearly h ( x )  = 
f(x) + if(;.) is also a(E, E')-continuous on E ;  it is the composition of 
h ( x )  and the map that takes each z E C to Z E C .  But since f(x) = 

$ [ h ( x )  + II(.] we see that f is o(E, E')-continuous on E. 

(8) I n  any injinite dimensional normed space ( E ,  I / .  1 1 )  the norm closed 
set S = {x in E I ~~x~~ = 1) is dense in the unit ball o f E f o r  the weak 

Let .d be the unit ball of E,  $8 = {x I ilxll I I}, and note that J is 
a(E, E')-closed by (7). Since S c b we need only show that any point 
of E whose norm is less than one is in the weak closure of S. Choose 
xo E E,  /Ixo 1 1  < 1, and let V be a weak neighborhood of xo. Then I/ 
contains xo + U ,  where U is of the form {x in E 1 If;(.) I < E ,  for 

t opology. 

1 I i 5 n}. so 
{Y lY E xo  + U )  

- - {Y I Y - xo E U )  = { y  I IJ (y  - xo) 1 < E ,  for I I i I n}. 
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Since E is infinite dimensional we can choose z in ();= N ( f , ) ,  z # 0; 
here N ( f ; )  = {x 1 &(x) = 0). Note that, for any scalar a, az is in 
n;= N ( f , )  and so x,, + ctz is in V .  Since the map a -, az is continuous 
from K to E, the map ctz + az + xo is continuous from E to E,  and the 
map az + xo + J/az + xo 1 1  is continuous from E to K ,  it follows that 
ct + /Iaz + xo 11 is a continuous map from K to K .  We are trying to 
show that S is a(E, E‘)-dense in .J. We chose xo, ljxo 1 1  < 1, and an 
arbitrary weak neighborhood I/ of xo.  What we must do is show that 
I/ n S # 0. When a = 0, llaz + xo /I = /Ixo 11 < 1. Writing 
ctz = az + xo - xo we see that (a1 I/z/I - /Ixo 1 1  5 /Iaz + xo /I and so 
//ctz + xo (I tends to infinity as a tends to infinity. By continuity, then, 
there is some number a. such that lJaoz + xo 1 )  = 1, and, since 
a0 z + xo is always in V,  a. z + xo is in S n I/. This proves (8). 

The unit ball of E” (call it d’) is weak* closed by Alaoglu’s theorem 
(Theorem 1 of Section 1). Let A be the unit ball of E,  regard E as a 
subspace of E”, and let cl .& denote the a(E”, El)-closure of a. We 
know cl d c &”. Suppose $ J ~  is in A“ but is not in cl J. Since cl d is a 
balanced, closed, convex subset of E”[a(E”, E’)]  there is, by Corollary 
1, a continuous, linear functionalfon this space such that 1 f (40) I > 
sup{ I f ( x )  1 Ix in cl A}. But, by ( 4 ) , f ~  E‘. So 

which is a contradiction. We have proved: 

(9) (H. Goldstine) The unit ball o f a  normed space ( E ,  / I  * 1 1 )  is  dense in 
the unit ball of E“ for the weak* topology. 

Theorem 2. A Banach space is reflexive iff its unit ball is compact 
for the weak topology. 

Proof. We have already proved the necessity of this condition 
(Section 1, Corollary 1 to Theorem 1). Let (B, / I .  1 1 )  be a Banach space 
whose unit ball d$ is compact for the weak topology. Since a(B, B’) is 
just the restriction to B c B” of the topology a(B”, B’), d is 
a(B”, B’)-compact in B“. But by (9) this says that the unit ball of B 
coincides with the unit ball of B”. and hence that B = B”. 



This Page Intentionally Left Blank



( :HAP’TF,K 5 

More about Weak Topologies 

1. Dual Spaces and the Krien-Milman Theorem 

At the beginning of Chapter 4 we asked whether every Banach 
space is equivalent to a dual space. We are now in a position to  answer 
this question. First, let us be more precise about what we mean by a 
“dual space.” We shall say that a Banach space B is a dual space if 
there is a Banach space B ,  such that B and B; are equivalent (Section 
3.1, Definition 2). Since a normed space and its completion have the 
same dual (Exercises 3.3, problem lb), the assumption that B ,  is a 
Banach space involves no loss in generality. As a matter of fact, the 
assumption that B and B’ are equivalent, rather than just topologically 
isomorphic, also involves no loss in generality (see problem 1). 

Lemma 1. I f  the Banach space (B,  1 1 . 1 1 )  is a dual space, then there 
is a Hausdorff, locally convex topology t on B, compatible with the 

75 
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vector space structure of B (Section 4.3, Definition I) ,  such that the 
unit ball of (B, l / . I ! )  is t-compact. 

Proof. By hypothesis there is a Banach space B1 and an equiv- 
alence u from B onto B;.  The adjoint of u (Exercises 4.1, problem 4) 
u* is a linear map from BY onto B‘, and so Q = u*(B , )  is a linear 
subspace of B’. Each f in Q defines a seminorm on B (recall that 
p r ( x )  = 1 f ( x )  I for all x in B). The family of all these seminorms 
defines a locally convex topology on B, compatible with the vector 
space structure of B (Section 4.3, Lemma I), which we shall denote by 
a(B, Q). We will now show that u is a homeomorphism from 

Since u* is an equivalence (Exercises 4.1, problem 4b), a typical 
a(B, Q)-neighborhood of zero is formed as follows: Take a finite set y,, 
y 2 ,  . . ., y n  in B , ,  the same number of positive real numbers E ] ,  E ~ ,  . . ., 
E , ,  and let V = { x  E B I I u*(y,)x 1 I E ,  for 1 I i I n}. Clearly 

B[o(B, Q)] onto B,[a(B;, B, ) ] .  

u( V )  = { f E B’, I f =  ~ ( x )  for some x E V }  

= { f ~  8; I f =  u ( x )  and Iu*(yI)x 1 _< E : ~  for 1 _< i I n} 

= { f ~ B ’ , ~ ~ f ( y , ) ~  < & , f o r  1 ~ i s n }  

(see the definition of u*). This last set is a typical 
o(B;, B,)-neighborhood of zero in B;. Thus u is a homeomorphism 
between these two spaces (see the discussion in Section 4.3 just after 
Definition 1). In particular, we see that o(B,  Q) is a Hausdorff 

Now set t = a(B, Q). It follows immediately that, since u maps the 
unit ball of B onto the unit ball of B;, the unit ball of B is t-compact 
(Section 4.4, Theorem 1). 

topology. 

Krein and Milman [I71 were the first to prove that the compact 
subsets of a Hausdorff, locally convex space have a useful geometric 
property. Their remarkable theorem will enable us to settle the 
question under discussion here, and this is only one of its many 
applications. 

Definition 1. Let X be a vector space over K ,  let A be a nonempty 
subset of X, and let B be a subset of A. If the conditions x, y in A, a a 
real number such that 0 < a < 1, and ax + ( 1  - a ) y  in B imply that 
both x and y are in B, then we shall say that B is an extreme subset of 
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A. An extreme subset of A that consists of a single point will be called 
an extreme point of A .  

For example, if A is the solid unit square in R 2  (i.e., 
A = {(x, y)10  I x I 1, 0 I y I 1 ) )  then the boundary of A is an ex- 
treme subset of A, and the vertices of the square are extreme points of 
A.  If A is the unit disk in the complex plane then each point of the unit 
circle is an extreme point of A. 

Theorem 1 (Krein-Milman Theorem). Every compact subset of a 
Hausdorff, locally convex space has extreme points. Furthermore, the 
closed, convex hull of the extreme points of any such set is equal to the 
closed, convex hull of the set itself. 

Proof: Let X [ t ]  be a Hausdorff, locally convex space and let A be 
a compact subset of X .  Let YP be the family of all closed, extreme 
subsets of A and notice that d is not the empty family since it contains 
A.  Partially order 9 by inclusion, let % be a chain in this partially 
ordered set, and note that, since A is compact, the set T = (7{S IS E V} 
is nonempty. It is easy to see that T is a lower bound for W and hence 
by Zorn’s lemma d contains a minimal element A, . 

Suppose that A ,  contains two distinct points xl, x 2 .  Choose a 
continuous, real-valued, real linear functional f on X [ t ]  such that 
f ( x , )  #.f(x2) (Section 4.4, Theorem I). Let A ,  = (x E A, I fattains its 
maximum on A, at x}. Clearly A l  is a closed, proper subset of A , .  If we 
can show that A ,  is an extreme subset of A, then we shall have reached 
a contradiction. With this in mind we suppose that x, y are in A, that a 
is a real number such that 0 < a < 1, and that ax  + ( 1  - a)y is in A,. 
This last condition says that f attains its maximum over A ,  at 
ax + ( 1  - a)). But since f is linear this means thatfattains its maxi- 
mum over A ,  at both x and y ;  i.e., both x and y are in A , .  Thus A has 
extreme points. 

Let B be the set of all extreme points of A,  and let c.c.(B), c.c.(A) 
denote the closed, convex hulls of B and A,  respectively. To prove that 
these two sets are equal it is sufficient to prove that A is contained in 
c.c.(B). Suppose that the point z E A is not in c.c.(B). We can (Section 
4.4, Theorem 1)  find a continuous, real-valued, real linear functional g 
on X [ t ]  such that g(z) > sup{g(x)lx in c.c.(B)}. Let A ,  = { y  E A 1g 
attains its maximum on A at y}.  Since A ,  is a nonempty compact set, it 
has an extreme point w. But because of the way g was chosen, w could 
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not be an extreme point of A. Thus there are distinct points w l ,  w2  of A 
and a real number OI, 0 < o! < 1, such that w = OIW , + (1 - O I ) ~ , .  But 
since g is linear and attains its maximum on A at w, it attains this 
maximum at each of the points w l ,  w, ;  i.e., both w1 and w ,  are in A , .  
This contradicts the fact that w is an extreme point of A , .  

Combining the Krein-Milman theorem with Lemma 1 we see that 
a Banach space whose unit ball has no extreme points could not be a 
dual space. Such spaces do exist. Consider, for instance, (L,[O, 11, 
I / . / /  ,). Given ,f in this space with I I . f I I l  = 1, we can choose a real 
number c such that J;, I f ( t )  I dt = 2- '. Having done that we definef, 
and f, as follows: f l ( t )  = 2f(t) for 0 2 t < c, , f l ( f )  = 0 for c I t ;  
, f 2 ( r )  = 0 for 0 I t < c andf2(t) = 2f(t) for c I t I 1. Clearlyf,,f, are 
in the unit ball of Ll,fl #fi, a n d f =  2-I,f1 + 2-'f2. 

EXERCISES 1 

I .  Let B be a Banach space and suppose that there is a Banach space 
B, such that B and B; are topologically isomorphic. Show that 
there is a Banach space B, such that B and B; are equivalent. 

Let X be a vector space over K ,  let A be a balanced subset of X ,  
and let x be an extreme point of A.  Show that for any D E K ,  
I o 1 = 1, ox is also an extreme point of A.  

2. 

Show that the extreme points of the unit ball of I ,  are the 
points {x,,) E I ,  such that I x, I = 1 for all n. 
Show that the extreme points of the unit ball of 1 ,  are the 
points of,,, n = 1,2, . . . , where 1 (r I = 1, and en is the sequence 
with one in the nth place and zeros elsewhere. 
Show that (co , 1 1 .  I /  ,) is not a dual space. 

Let B be an infinite dimensional Banach space whose unit 
ball has only a finite number of extreme points. Show that B 
is not a dual space. 
Show that a pointf'in (C[O, I], ( 1 .  11,) is an extreme point of 
the unit ball of this space iff I , f ( t )  I = 1 for all t .  
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(c) Show that the Banach space of real-valued, continuous func- 
tions on [O, I ]  is not a dual space. 

2. The EberleinSmulian Theorem 

We have seen that the unit ball in the dual of any normed space, is 
weak* compact (Section 4.1, Theorem 1). If the normed space is separ- 
able, then any sequence of points in this ball has a weak* convergent 
subsequence (Exercises 4.1, problem 5). Let us take a look at the dual 
of the nonseparable space ( I , ,  / I .  11 m).  For each n define u, E lm as 
follows: u n ( { x k ) )  = x, for every { x k )  E I,. Clearly u l ,  u 2 ,  u j ,  . . . are all 
in the unit  ball of l',, . Let {u,,; be any subsequence of {u,}. We shall 
show that {u,,) is not weak* convergent. All we have to do is to find 
{ x k )  E I, for which limj+m u,,({xk))  does not exist. Define a sequence as 
follows: I f  k = nj  let xk = 2-'[1 + (-  1)j];  if k # nj for all,j, let xk = 0. 
Then (xkJ is in I, and u , j { x k ) )  = 2- '[ 1 + (-  1 y']. Clearly lim u,,({xk)) 
does not exist and we have proved: 

(10) A sequence ofpoints of a weak* compact set need not have a weak* 
coniwryent subsequence. 

Our result (10) is in striking contrast to the situation in a metric 
space. We know that a subset A of a metric space is compact iff every 
sequence of points of A has a subsequence that converges to a point of 
A. Also, A is compact iff every sequence of points of A has an adherent 
point in A. Now let E be a normed space. Which of the above equiv- 
alences is true for subsets of the topological space E[o(E,  E')]? This 
question will occupy us for the remainder of this chapter. Our first 
theorem, which will take a while to prove, is a generalization of a result 
of Smulian [see 16, p. 31 I]. 

Theorem 1. Let ( E ,  I / .  1 1 )  be a normed space and let A be a subset 
of E that is a(E, E')-compact. Then every sequence of points of A has a 
subsequence that is a(E, E')-convergent to a point of A.  

( 1  1 )  kt ( E ,  lI.11) be a separable, normed space. Then E' contains a 
couniuble, weak* dense set. 

Let {x,; be a countable, total subset of E (Exercises 4.1, problem 3) 
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such that Ilx, I /  = 1 for all n .  Define a metric d on E' as follows: For 
each pair ( ,A y) E E' x E' let d(,f; g )  = I."=, 2 - " ) ( f -  y)(xn)l. Let .#' 
be the unit ball of E' and consider the identity map I from .4' with the 
topology induced on it by a(E', E) onto .d' with the topology induced 
on it by d .  We shall show that I is a homeomorphism. 

If,fo E 4' then a d-neighborhood of.fo is 

Since A' is norm bounded we can choose m so that 
cF+l 2-"  I ( , f - -  g)x,,l < 4 2  for all ,f, g in ,4'. Thus I-' of our d- 
neighborhood of ,fo contains the a(E, E)-neighborhood 
{ , f ~  .&'I I(f-.fo)x,,I < 2"(2rn)-'e for n = 1, 2, ..., m} of,fo, i.e., I is 
continuous. But since .d' is o(E' ,  E)-compact, I is a homeomorphism 
[21, Proposition 5, p. 1591. 

We have just shown that J', with the topology induced on it by 
a(E', E ) ,  is a compact metric space. It  follows [21, Proposition 13, 
p. 1631 that A' contains a countable, a(E', E)-dense set. But 
E' = u."= n 1 '  and so E' also contains such a set. 

(12) Let (E, I / .  1 1 )  be a separable, normed space and let A be any 
o (E ,  E')-compuct subset of E. Then the topology induced on A by 
o(E, E ' )  is rnetrizable. 

Let (f") be any weak* dense sequence in E'. We can define a metric 
d on E by letting d(x, y )  = c:= 2-" 1 f,(x - y )  I for all x, y in E. Since, 
by the Banach-Steinhaus theorem, A is bounded, the argument used to 
prove (1 1) shows that the topology induced on A by a(E, E') coincides 
with the topology induced on A by d. 

(13) Lrt ( E ,  1l.Il) be a nornied space and let H be a closed, linear 
.subspace of E. Then the dual of H is equivulent to E J H .  

Recall that H1 = (f E E' 1 ,fvanishes on H } .  The quotient norm was 
defined in Section 2.4, Definition 1. For f~ H' consider the set 
F = {g E E' I ,f= g on H } .  We can identify this set with an element of 
E ' / H L ,  which we shall call q5(f). Thus we have a map q5 from H' onto 
E'IH', and clearly q5 is an isomorphism. Now liq5(f)li = inf{l\gil 19 E F }  
and so I I + ( , f ) l 1  2 lJ,fll. But, by the Hahn-Banach theorem, there is a 
y E F such that (1g/1 = I I , f / I .  Hence l \ q 5 ( f ) l i  = I l . f l 1  for allfE H' .  

(14) Lrr (E, 1 l . l I )  be a normed space and let H be a closed, linear 

This result has an immediate corollary: 
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subspace of E. Then the restriction to H of the topology o ( E ,  E ’ )  
coincides with the topology a(H, H‘). 

We can now prove Theorem 1. Let {a,) be any sequence of points of 
A and let H be the closed, linear subspace of E generated by {u,}. H is 
a(E, E’)-closed (Section 4.1, (3)) and so H n A is o ( H ,  H’)-compact in 
H (we are using (14)). But H is separable, so, by (12), {a,} has a 
a(E, El)-convergent subsequence. 

W. F. Eberlein [5] was the first to show that if (B, ( 1 . 1 1 )  is a Banach 
space, a subset A of B is a(B, B’)-compact iff every sequence of points 
of A has a a(B, B’)-adherent point in A.  We shall present his proof 
below. The following result, which is true only for Banach spaces (see 
(16)), plays a crucial role in this proof. 

(15) Let (B,  l / . I I )  be u Banach space. A norm closed, hyperplane in B’ is 
weak* closed iff its intersection with the unit ball of B‘ is weak* 
closed. 

Recall that a hyperplane in B’ is a linear subspace that has co- 
dimension one in B’. The necessity of our condition is obvious. Let H be 
a norm closed hyperplane in B’, let .d‘ be the unit ball of B’, and let 
cl(H n &’) denote the weak* closure of H n A’. We want to show 
that cl(H n ,&‘) -- H n A?‘ implies H is weak* closed in B’. The proof 
will be given in stages: 

(a) H is either weak* closed or weak* dense in B’. 
We know that H is the null space of some element 4 E B” (Exer- 

cises 1.3, problem 4, and Section 1.3, Lemma 1). If 4 # B, then H is 
weak* dense in B’ (Exercises 4.3, problem lc). 

(b) If H is weak* dense in B’, then B 0 H I  is norm closed in B .  
Consequently, there is an u > 0 such that uJ/xJ/  I IJx + yll for allx E B, 
all y E H I .  

Let 4 be an element of B“ whose null space is H .  Then H I  = {A4 A 
in K} and clearly B n HI = (0). Let (z,} be a sequence of points of 
B 0 H I  that is norm convergent to zo E B”. Since B is a Banach space 
it is closed in B” and so there is a continuous, linear functional i,b on B” 
such that $(4) # 0, $(x)=O for all x E B (by the Hahn-Banach 
theorem). Now for each n, z ,  = x, + A,+ where x, E B, A, E K .  Apply- 
ing $ to {x, + A,4} we see that both (x,} and {A,} converge to, say, 
xo E B, A. E K.  Clearly zo = xo + A o 4 .  

The second statement follows from the first and Section 2.5, Corol- 
lary 1 to Theorem 1.  
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We shall say that cl(H n ~ 9 ’ )  contains a ball iff there is an E > 0 
such that { f ~  B’)  1 l . f I )  I E }  c cl(H n .8‘). 

(c) I f  cl(H n ;&’) does not contain a ball then, for any E > 0, there 
is an x, in B such that sup{ 1 ,f(x,) I ) .fin H n A’) I E ( I X ,  ( 1 .  

Suppose that this is false. Then for some 6 > 0 we have 
sup{ I f ( x )  I I f~ H n ,#‘} > SIlxll for all x E B. Now the ball c#h is not 
contained in cl(H n H) by hypothesis. Thus there is a point ,fo E 
that is not in cl(H n &’). Since this weak* closure is balanced and 
convex, there is a point xo E B such that xo(,fo) > 
sup{ 1 , f(xo) ) 1 f~ H n A’) > 6)1xo 1 ) .  Thus 

11x0 I1 l l f o  I1 2 . M o )  > fillxo 11 
implies / i f o  11 > 6, a contradiction. 

(d) H is weak* dense in B’ iff cl(H n ,A?’) contains a ball. If 
cl(H n A’) contains a ball then, since the weak* closure of H contains u;=, n cl(H n d’), H is weak* dense in B’. 

Assume that H is weak* dense in B’. We want to prove that 
cl(H n .M‘) contains a ball. Suppose that it does not. Then, for any 
E > 0, we can find x, in B such that sup{ 1 f ( x , , )  I I f in  H n &’I I E I I x ,  1 1  
by (c). Regard x,: as a linear functional on H and extend it, without 
changing its norm, to a linear functional x* on B’. Clearly x* = x, + y ,  
y E H I .  Also, 

I / x * l /  =sup{lx*( . f ) )  I . f E ‘ ~ ’ l = S U P { ( X J : ( f ) )  1.f‘ ~’’} ~ E ~ ~ x t . ~ ~  

because the norm of x* is equal to the norm of x, on H .  So I/x, + j j l l  I 
E ( I x ,  ( 1 .  Now by (b) we have c(/(x, 11 I IIx,: + J.’((~ hence e/(x,: / /  I EIIx,. 11. 
Since E > 0 is arbitrary, this last inequality is impossible. 

Finally, if H n .&‘ is weak* closed then, since H is a proper sub- 
space of B’, H r\ &‘ could not contain a ball. I t  follows from (d) and (a) 
that H is weak* closed in B’. 

(16) A normed space ( E ,  1 1 . 1 1 )  is u Banach space if any norm closed, 
hyperplane in E whose intersection with the unit ball of’ E’ is 
weak* closed, is weak* closed. 

To prove (16) we need only show that in the dual of any incomplete 
normed space there is a norm closed, weak* dense hyperplane whose 
intersection with the unit ball is weak* closed. Let ( E ,  1 1 . 1 1 )  be an 
incomplete normed space and let ( E ,  / j . I I)  be its completion (Exercises 
3.4, problem la). We know that E and have the same dual space E‘ 
(Exercises 3.4, problem lb). Let .‘x E E,  2 $ E and regard jC as a linear 
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functional on E'. 2 is not a(E', E)-continuous on E' (Section 4.1, (4)). 
So the null space of i, N ( i ) ,  is a(E', E)-dense in E' (Exercises 4.3, 
problem lc). But, if 9' is the unit ball of E', the set N ( 2 )  n J' is 
o(E',  E)-compact. Thus the Hausdorff topology o(E', E )  must coincide 
with cr(E', I?) on this set [21, Proposition 5, p. 1591. Hence N ( 2 )  n g' 
is a(E', E)-closed. 

Remark 1 .  In the dual of a Banach space the following is true: A 
norm closed, linear subspace is weak* closed iff its intersection with 
the unit ball is weak* closed. I believe that this was first proved by S. 
Banach. A proof can be found in [ 16, (6), p. 2731. 

Theorem 2 (W. F. Eberlein). Let (B, I / .  1 1 )  be a Banach space. For 
any weakly closed subset A of B the two following conditions are 
equivalent: (a) A is a(B, B')-compact. (b) Every sequence of points of A 
has a o(B,  B')-adherent point in A.  

Assume (b) and notice that, by the Banach-Steinhaus 
theorem, this implies A is norm bounded. Thus, by Alaoglu's theorem, 
the closure of A in B"[cr(B", B')] is o ( B ,  B')-compact. Hence to prove 
that (b) implies (a) it suffices to show that this closure is contained in B. 
Let 4 be an element of B" that is in the a(B", B')-closure of A .  The null 
space of 4, N ( 4 ) ,  is a norm closed hyperplane in B'. By ( 1 9  4 will be in 
B iff N ( 4 )  n J', where d' is the unit ball of B', is weak* closed. 

To prove that N ( 4 )  n &' is weak* closed we need only show that if 
g E B' is In the a(B', B)-closure of this set, then 4 ( g )  = 0. Let g E B' be 
in this closure and notice that we can find xo E A such that g(xo) = 

$(g) because {tj E B" 1 1 $(g) - #(g) 1 < l/n} contains x, E A for n = 1, 
2, . . . , and we can take xo to be any a(B, B')-adherent point of {x,} that 
is in A.  Given E > 0, { f ~  B'I lg(xo) - f ( xo ) I  < 4 2 )  contains a point 
fl E N ( 4 )  n 4'. By the argument just given we can find x1 E A such 

for i = 0, 1 )  contains f2 E N ( 4 )  n &'. So now we choose x2 E A such 
that 4 ( g )  = g(x2), 4(f,) =f1(x2), 4( f2)  =f2(x2). Continue in this way. 
After xo, xl, ..., x k  and fi, f 2 ,  ..., fk have been chosen, choose 

f k +  E N ( 4 )  n J', which is in { f ~  B'I I g (x l )  -f(xl)l < ~ / 2  for i = 0, 
1, 2, . .., k } ,  and then choose x k +  E A such that #(g)  = g(x,+ 
4( f , )  =f,(x,+ I )  for j = 1, 2, ..., k + 1 .  In this way we generate two 
sequences {x,,},"=~ c A, {fm};=l c N ( 4 )  n A', which satisfy: ( i )  
fm(x,,) = 0 for m 2 n (because fm(x,) = 4(fm) = 0 for m I n ) ;  (ii) 
g ( x n )  = +(g) for all n ;  (iii) 14(g) - fm(x,,) 1 < ~ / 2  for n < rn. 

Proof: 

that 4(Y)  = Y(XI)? 4(fl) =f1(x1). Now { f E  B'I Is(xJ - f ( X J  I < 4 2  



84 5. MORE ABOUT WEAK TOPOLOGIES 

Now we are assuming condition (b) and so {x,) c A has a 
a(B, B’)-adherent point y E A. So for any 6 > 0 and any integer M ,  
{x E BI If,(x) -f,(y)I < 6 for m = 1, 2, .. ., M }  contains infinitely 
many points of the sequence {x,). It follows, from (i), that 1 f,(y) 1 < 6 
for m = 1, 2, . . ., M ,  and this impliesf,(y) = 0 for all m. The point y is 
in the a(B, B’)-closure of {x,} and so (Section 4.4, (7)) it is in the norm 
closure of the convex hull of {x,} (for the definition of convex hull see 
Exercises 4.2, problem lb). So there is a z in this convex hull such that 
lJy - z J J  < ~ / 2 .  We must have z = a, x, (Exercises 4.2, problem 
lb), where a, 2 0 for all n and x:= a, = 1. Set m = P + 1 and con- 
sider inequality (iii). We have I4(g) - . fm(xn) I < 4 2  for n < m = 
P + 1, and so 

I Cp(d - f P +  1(xo) I < E / 2 ,  I4(d - fP+ I ( X 1 )  I < E/2, 

...) I 4(9) - f P +  1 (x,) I < $2.  

If we multiply each of these inequalities by the appropriate a, and add 
we get I4(d - f p +  &)I < 4.2. But 

I4(9) I 5 I4b) - f P +  1(z) I + I f P +  1(z) 

-.fP+l(Y)I <E/2+ I l f P + l l l  I I Z - Y l l  < E  

since each.1, E %?I. Now since E > 0 was arbitrary $(g)  must be zero 
and the proof is complete. 

Combining Theorems 1 and 2 we obtain a result that is often called 
the Eberlein-Smulian theorem. 

Theorem 3. Let (B, 1 1 . 1 1 )  be a Banach space. For any weakly 
closed subset A of B the three following conditions are equivalent: 

(a) A is a(B, B’)-compact. 
(b) Every sequence of points of A has a subsequence that is 

(c) Every sequence of points of A has an adherent point in A .  
a(& B’)-convergent to a point of A. 

Remark 2. Referring to Theorem 3, a set with property (a) is 
called a weakly compact set. A set with property (b) is called a sequen- 
tially weakly compact set, and one with property (c) is called a 
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countably weakly compact set. For another proof of the Eberlein- 
Smulian theorem see [26]. 

EXERCISES 2 

(a) 

(b) 

Let T ,e a compact space. Show :..at any sequence of points 
of T has an adherent point in T. 
Let S be a topological space. Show that the two following 
conditions on S are equivalent: (i) Every sequence of points 
of S has an adherent point in S. (ii) Every countable open 
covering of S has a finite subcovering. 

Let I be an uncountable set. For each u E I let C,, = [0, 13 and, in 
the compact set n { C ,  I u E I ) ,  consider G = {{x,) 1 x, = 0 except for 
countably many u E I}. Show that G is not compact and yet every 
sequence of points of G has a subsequence which converges to a 
point of G .  

Let ( E ,  / I .  1 1 )  be a normed space and let H be a closed, linear sub- 
space of E .  Show that the dual of E / H  (Section 2.4, Definition 1) is 
equivalent to H I .  

Show that a Banach space is reflexive iff each of its closed, linear, 
separable subspaces is reflexive. 
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C H A P T E K  6 

Applications to Analysis 

1. Applications to Trigonometric Series 

The theory of normed spaces has some nice applications to the 
study of Fourier series. In order to present these we shall have to recall 
some of the properties of the L,-spaces of real variable theory. A 
detailed treatment of these spaces can be found in either [lo] or [21]. 

One can define an equivalence relation on the set of all complex- 
valued, measurable functions on [ -9 .] by calling two such functions 
equal if they differ only on a set of measure zero. The equivalence 
classes are, by convention, also called functions and these are the 
elements of our L,-spaces. For real p ,  p 2 1, let 
L, = { ,f I J 1 f(x) J p  d x  < oo}, where we agree that, throughout this 
chapter, any integral without limits goes from - n to 71. Iff is in L, we 
define ~ ~ , f ~ ~ , ,  to be the pth root of I f ( x ) I P  dx. Each of the spaces 
(L,, 1 1  . I/  ,,) is a Banach space. 

87 
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If p > 1, then the dual of (L,, /l.II,) can be identified with the space 
(Lq,  1 1 .  l l q ) ,  where p-  + 4-  = 1. This means that if G is any contin- 
uous, linear functional on L,, then there is a unique element g in L, 
such that JjGJ] = ligllq and G(, f )  = f(x)y(x) dx for allf in L,. The 
dual of (Ll, / I .  / I  1 )  can be identified with the space (L ,  , I / .  I /  ,), where 
L, is the space of all essentially bounded functions and, for f in L, , 
~ l f ~ ~ m  is the essential supremum off. In this connection we also recall 
the Holder inequality: Iff and g are in L, and Lq, respectively, where 

I t  is convenient to identify each f in L, with its extension, by 271- 
periodicity, to all of R ;  i.e., for any x G R , f ( x )  = f ( y ) ,  where y is the 
unique element of (-71, n] such that x - y is an integral multiple of 2n. 
With this convention, for any p, any .f in L,, and any t in R, we can 
definef,(x) to be f (x  - t )  and havef, E L,, ] I f ,  11, = ~ l . f ~ l , .  Also, there 
follows: 

P -  + 4-  = 1, then IlfgII1 5 Ilfll, IIYl lq. 

Lemma 1. Let f~ L,, p finite. Then for any s in R, 
m - s  1i.h -f ,  ( 1  = 0. 

Proof. For any E > 0 we can choose a continuous function g such 
that 1 J . f -  gJlp < 44. Then 

li.h-.fvllps Il.h-g1l/p+ 1191-Ys l l p+  1 1 9 s - . f s l l , ~ ~ / 2 +  I l 9 1 - Y s l l p .  

Since g is continuous this last term can be made as small as we please 
by choosing 1 t - s 1 sufficiently small. 

Definition 1. Let f E Ll .  The numbers 

j y n )  = (1/2n) j f (x )e- ' "x  dx, n = 0, & 1, + 2 ,  . . . )  

are called the Fourier coefficients off: The functionfl defined on the 
integers, is called the Fourier transform off: 

Notice that, since [ - n, n] has finite measure, we have defined the 
Fourier coefficients, and the Fourier transform, of any L,-function. We 
record here, for later use, the following: 

Theorem 1 (Riemann-Lebesgue). I f f €  L1, then 

limn- * , f ( n )  = 0. 

Proof: By definition,f(n) = (1/2n) 1 f(x)e-i"x dx and, because of 
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This last term tends to zero, as n ---* IfI 00, by lemma 1. 

The following problem is of interest to harmonic analysts. Given a 
sequence {c, 1 n = 0, f 1, +2, . . .}, find necessary and sufficient condi- 
tions for {c,} to be the Fourier transform of a function in Lp; i.e., we 
want necessary and sufficient conditions for the existence of a function 
,f,.fin L, for some p ,  such that f ( n )  = c, for all n. 

It is clear that the partial sums of the series c, einx are in Lp 
for every p .  If these partial sums converge for the norm of some Lp 
space, then the limit is a function in L,, whose Fourier transform is {c,). 
Thus the convergence for some L,,-norm of our series is a sufficient 
condition for {c,} to be the Fourier transform of an Lp-function. 
However, as we shall soon see, we can do much better than this. 

At this point we have to recall a familiar topic from the theory of 
infinite series. If a , ,  a,, az , . . . is any sequence of complex numbers, the 
Cesaro means of this sequence are the numbers 

- 

a, + a1 + a2 

3 
.... a0 + a1 

01 =a, ,  0 2  = ~~ 0 3  = - -__ 1 2 ’  

I f  nl ,  0 2 ,  03, . . . converges to, say, 0, then we say that the sequence a,, 
a,, a 2 ,  . . . is Cesaro convergent to 0. A convergent sequence is Cesaro 
convergent to its (ordinary) limit, but there are divergent sequences 
that are Cesaro convergent; 1, 0, 1, 0, 1, 0, . . . , for example, is Cesaro 
convergent to 1/2. Now consider a series cT= - ak. For each n = 0, 1, 
2, . . . let s, = p-, ak . If this sequence {s,} is Cesaro convergent to, say, 
s’, then we say that the given series is Cesaro convergent to s’. 

Recall that we assumed a sequence (c,) was given and we asked for 
necessary and sufficient conditions for this sequence to be the Fourier 
transform of an L,,-function. We can give such conditions in terms of 
the Cesaro means of the series - c, einx and here, at last, is where 
we use some functional analysis. Let n,(x) be the nth Cesaro mean of 
this series. Then, if n > I m 1, the mth Fourier coefficient of on(.) is 
[ ( n  - 1 m I )/n]c,. Hence 1/2n) a,(x)e- imx dx = c, for every 
rn. Now suppose that for some p > 1 the sequence {a,(x)} is bounded 
for the Lp-norm; i.e., suppose that for some p > 1, sup{lla,(x)ll, I n = 

0, 1, 2, . ..) < co. Since p > 1, Lp is the dual of the Banach space 4, 
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where p - l  + q - '  = 1. But then, by Alaoglu's theorem (Section 4.1, 
Theorem l), the sequence {o,(x)} has a a(&, &)-adherent point; i.e., 
there is an h E L P- such that for any y E L,, and any E > 0, 
I S [a,(x)s(x) - h(x)y(x)] dx I < E for infinitely many n. Now eimx is in 
L, and so, combining our observations, h^(rn) = c, for all rn. Hence we 
have proved: 

inx Theorem 2. If, for some p > 1, the Cesaro means of - c, e 
are bounded for the &-norm, then the sequence {c,} is the Fourier 
transform of a function in this space. 

Since L,  is not a dual space (Section 5.1, last paragraph) the proof 
given above cannot be used for this space. What we do here is simply 
assume that the Cesaro means converge. 

Theorem 3. I f  the Cesaro means of the series I."= - cu c, einx con- 
verge for the &-norm, then the sequence {c,) is the Fourier transform 
of a function in this space. 

We shall talk about the converses of these theorems later on. Right 
now we want to investigate the following question: If the Fourier 
transform ,f of an L -function ,f is known, can we obtain f and, if so, 
how? The series f.;=-, f (n )e inX  and its Cesaro means suggest 
themselves. 

Definition 2. I f f €  L,, then the series - f (n )e inx  is called the 
Fourier series for 1: 

We shall need a convenient expression for the Cesaro means of a 
Fourier series. The nth partial sum of the Fourier series forf(cal1 it 
%(Xi .f )) is 

Hence, if K , ( x  - y )  denotes the nth Cesaro mean of the series 
x Y m  eik(x-p) ,  then the nth Cesaro mean of the Fourier series forf(we 
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shall denote it by an(x;f) is 

Lemma 2. Let K n ( x )  be the nth Cesaro mean of the series 
Xrrn eikx. Then for n = 1, 2, 3, . . . we have: 

(ii) K,(x) 2 0 for all x;  

Furthermore, if I is any open interval containing zero, then 
limn+m sup{K,(x) I x E (-n, n], x $ I) = 0. 

Proof: Observe that 
n n 

( n  + l)K,+ l(x) - nK,(x) = c elkx + 1 e- lkx .  

0 1 

These last two series are geometric and their sums are 
1 - 1)x 1 - , - l ( n + l ) X  

- 1, ~~ ~ 

1 - e - ' x  and ~~ 

1 - elx 

respectively. Adding these we obtain the formula 

cos nx - cos(n + 1). 
1 - cos x 

( n  + l )Kn+ 1(x) - ~ K , ( x )  = ~~~ 

~~ 

Now K , ( x )  = 1 so, using our formula, we can find K 2 ( x ) .  Then, know- 
ing K z ( x ) ,  we can use our formula again to get K 3 ( x ) ,  and so on. This 
proves (i) and (ii) follows immediately from (i). To prove (iii) we note 
that iff  is identically equal to 1 then the same is true of each Cesaro 
mean of the Fourier series for f. Hence, by (*), 1 = 

(1/2n) f Kn(x - y )  d y .  Setting x = 0 and noting that, from (i), each 
K , ( x )  is an even function, we have (iii). 

Finally, if 0 < 6 < n and 6 I Ix  I I n, then [sin(1/2x)I2 2 
[sin( 1/26)12. So, if I is an open interval containing zero and if 6 > 0 is 
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so small that (-6, 6) c I ,  then 

S U ~ { K , ( X ) J X E ( - ~ , ~ ] , X ~ ~ } I S U ~ { K , ( X ) ~ ~ I  1x1 In} 

I [sin( 1/26)]- 2 /n .  

Clearly the limit, as n tends to infinity, of the last of these is zero. 

Theorem 4. If a function lies in L,, 1 I p < co, then the Cesaro 
means of its Fourier series converge to this function for the L,-norm. If  
the function lies in L,, then the Cesaro means of its Fourier series 
converge to this function for the weak* topology. 

Proof. LetfE L,, p finite. We want to estimate ((on -f)),,, where 
on is the nth Cesaro mean of the Fourier series fort  Since L, is the dual 
of L p ,  by the first corollary to the Hahn-Banach theorem (Section 3.2, 
Theorem 1) we can choose g E L, such that ) )g) ) ,  = 1 and )/on - f ) j ,  = 

j [an(x)  -.f(x)Is(.) dx. NOW 

by (*) and ( i i i )  of Lemma 
This last integral is 

2. 

which is, by the Holder inequality, I (1/2n) j 1l.h -fI l ,K,(t)  dr. So 

Ion - f l ~ p  (1/2n) i JJL - f p I I K n ( t )  df 

and, if 6 > 0 is fixed, 
.a 

- d  I t (  26 
/Ion -,flip 5 (1/2n) j + ( 1 / 2 ~ ) {  

5 SUP 1I.h -flip + 21/.fIlpsupKn(t). 
- S < t < 6  ) I (  > d  

The first of these can be made small by choosing 6 sufficiently small 
(Lemma 1). Once 6 is chosen the second term can be made small by 
choosing n sufficiently large (Lemma 2). This proves the theorem for 
finite p. 
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Now suppose that!€ L, . For any function g E L, we have: 

5 SUP I ( l i24  j [ f ( x  - t )  -f(x)Is(x) dxj + 2ll.f l lm suPKn(f). 
- 6 5 1 5 6  11126 

To prove the theorem it suffices to show that the first term on the right 
can be made arbitrarily small by choosing 6 sufficiently small. But 
clearly 

and the result follows from lemma 1 

Theorem 5. A sequence {c”} is the Fourier transform of a function 
in L,, p > 1, iff the Cesaro means of the series c,einx are uniformly 
bounded for the L,-norm. The given sequence is the Fourier transform 
of a function in L1 iff the Cesaro means of the series converge for the 
L,-norm. 

Proof. For p = 1 the theorem follows from Theorems 2 and 3. For 
1 i= p < co, it  follows from Theorems 1 and 3. The only thing left to 
prove is that iff E L, , then the Cesaro means of its Fourier series are 
uniformly bounded for the La-norm. But this follows from Theorem 3 
and the Banach-Steinhaus theorem (Section 3.3, Theorem 1). 

Remark. The first person to investigate the Cesaro summability of 
Fourier series was Fejer [ 13, 6, p. 81. The sequence of functions ( K , ( x ) }  
is called Fejer’s kernel. 

EXERCISES 1 

1. Recall that the space L, has an inner product: ( f .  g )  = 

g in L2 . Clearly ( , ) is linear in the first 1 f(x)s(x) dx for all 
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I o h )  - f b )  I 5 (1/2n) s 1 Ax - t )  - f ( x )  Kit )  dt  
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(c) Use (b) to conclude that the polynomials are dense in 
(CP, 1 1 7  It . ltm). 

2. Miscellaneous Applications 

We are going to  present two applications of the Banach-Steinhaus 
theorem. The first of these is to a problem in the theory of divergent 
series. Observe that the product 1; 1 0 0 0 0  0 1 :::I 121 

3 0 0 ’ . .  a2 
- l l r r  ... 
4 4 4 4  . . . . .  . . . . . . . .  . . . . .  

gives us the Cesaro means of the sequence a0, a,, , . . . So the given 
sequence is Cesaro convergent iff the sequence obtained by multiplying 
it on the right by the matrix given above is convergent. From this point 
of view Cesaro convergence is a special case of the following: Let A be 
a doubly infinite matrix, i.e., A = (aij), where 1 I i < 00, 1 s j < co. 
Given x = ( x , ,  x 2 ,  . . .), define A i ( x )  = aikxk, i = 1, 2, . . . . We 
shall say that x = {x , )  is A-convergent to the number b if A i ( x )  exists 
for i = 1, 2, . . . and limi+= Ai(x) = h. 

The problem we want to solve is this: Which doubly infinite 
matrices A have the property that every convergent sequence is A- 
convergent to its (ordinary) limit? A matrix that has this property will 
be called a regular matrix. 

Lemma 1. Let ( B ,  1 1 . 1 1 )  be a Banach space and let { f n }  be a se- 
quence in B’. There is an f E B’such that lim f n ( x )  = f ( x )  for all x E B iff 
{.fn} is a norm bounded set and limf,(y) =f(y)  for all y in some total 
subset of B. 

Proqf If there is a n f 6  B’ such that lim,f,(x) = f ( x )  for all x in B, 
then, since B is a Banach space, {f,} is norm bounded (Section 3.3,  
Theorem 1). 

Assume that {,ilj and f satisfy our two conditions. Then clearly 
limf,(z) = , f ( z )  for all z in the linear span of our total subset. Given 
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.Y E B and I: > 0 choose z in this linear span such that 1I.x - z/I < I :  
(Exercises 4.1, problem 3). Then 

I . f(-Y) - .fJ.Y)I 5 Jj.fJjJJ.~ - =I/ + )./'(=) - .fn(z)l + ll./nl\jl.Y - =I1 
I 2 M t :  + l , f ( z )  - ,/i(z)l, 

where M is a constant that is greater than 1 1 , f I l  and l l , f ,  I /  for all n. The 
last term can be made as small as we please by taking n sufficiently 
large. 

Theorem 1 (Silverman-Toeplitz). The matrix A = (u i j )  is a regu- 

laii 1 I M for i = 1, 

lar matrix iff: 

(i) There is a number M such that 12 
2, . . . .  

(ii) limi ai j  = 0 for j = 1, 2, . . . . 
(iii) limi+m xT= uij  = I .  

Pro?( Clearly c, the vector space of all convergent sequences, is a 
closed, linear subspace of ( I m ,  1 1 . 1 1  ,). Hence (c, 1 1 .  I /  m )  is a Banach 
space. Observe that for each {x,} E c, (lim x, I 5 II{xn}lim. So the 
linear functional (6 on c, defined by %({x,}) = lim x,, is continuous on 
(c, / I .  11,). Let e ,  = ( I ,  I ,  1, . . .) and, for each n, let e, = (0, 0, . . . ,O ,  1,0, 
0, . . .) where the 1 is in the nth place. Clearly each e n ,  n = 0, 1, . . ., is in 
c and %(eo) = I ,  %(en)  = 0 for n = 1, 2,  .. . . 

Assume that A has properties (i), (ii), and (iii). Using (i) we can 
write 

a2 m 

IAi(x)I 5 C laijl l x j l  5 ll{xjIllm 1 laijl 5 Mll{xjJ/lm 
j =  I j =  1 

for any x = { x j }  E c. So each A i  E c' and llAi I /  5 M for i = 1,2 ,  .... We 
want to prove that lim A i ( x )  = V(x) for each x E c. To do that it 
suffices, by Lemma 1, to show that this holds on a total subset of c. 
Clearly e , ,  e l ,  . . . is such a set. Also, for j = 1, 2,  . .., limi+m Ai(ej) = 

limi+m aij = 0 (by (ii)) = %(rj ) ,  and 

limi.+m Ai(eo)  = limi+m C aij = I 

(by (iii)) = %'(e,). So if A has properties (i), (ii), and (iii), then it is a 
regular matrix. 

j =  1 
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Now suppose that A is a regular matrix. Then every convergent 
sequence is A-convergent to its (ordinary) limit. In particular, eo, 
e l ,  . . . are each A-convergent to their limits. This says that conditions 
(ii) and (iii) are necessary. We will now show that (i) is necessary. 
Recall that A i ( { x j } )  = cj"= a i j x j  and, since A is regular, Ai is a linear 
functional on c. Fix i and, for each n, let A y ) ( x )  = x= aij  x j .  Clearly 
A!") E c' for n = 1, 2, . . ., and lim.,+m Aj")(x) = A i ( x )  for every x E c. 
We conclude that each Ai  is in c'. 

Now since A is a regular matrix limi,m A i ( x )  exists for every x E c. 
Hence, by the Banach-Steinhaus theorem, there is a number M such 
that lJAi 11 I M for all i. Choose an integer N and, fo r j  = 1, 2, . . ., N ,  
define x j  = aij(aij(-' if a. # 0, xj = 0 if aij = 0. Then set x j  = 0 for all 
j > N .  Clearly, x = { x j }  is in c, l[xllrn I 1, and A i ( x )  = Ey= (aij  1 I 
lIAi )I 5 M .  Since N is arbitrary we are done. 

? 

In 1876 du Bois-Reymond surprised the mathematical community 
by constructing a continuous function whose Fourier series diverges at 
a single point [13, Part I, 4, p. 71. We are going to use the Banach- 
Steinhaus theorem to prove the existence of such functions. Incidently, 
continuous functions whose Fourier series diverge on a dense set 
(having measure zero) have been constructed [13, Part 11, 11, p. 201. 
However, to my knowledge, the problem of finding a continuous func- 
tion whose Fourier series diverges on a set of positive measure, or 
proving that such functions do not exist, remains open. 

Let C(-n ,  711 be the space of all continuous functions on R such 
that f ( x )  =f(x + 271) for all x .  We shall give this space the sup norm 
(i.e., l l f l / m  =sup{ I f ( x ) I  [ x  E R}) ,  and we note that (C(-n ,  713, lI.Ilrn) 
is a Banach space. For anyfin this space write the Fourier series of,fin 
the form f u o  + Cp= (ak cos kx + bk sin kx) ,  where 

ak = (l/n) j f ( x )  cos kx dx ,  and bk = (l/n) f ( x )  sin kx dx ,  k = 1, 
2, . . . . We want to derive an expression for the nth partial sum of this 
series. To do this we first note that the geometric series 

a0 = ( 1 / 4  j f ( x )  dx ,  

and so 
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Multiply the numerator and the denominator of the right-hand 
side of this expression by e - l X i 2  and then equate the real parts of both 
sides to obtain 

sin +(2n + 1 ) .  
k = l  2 sin f x  ' 

Now let s,(x) be the nth partial sum of the Fourier series for$ Then 

~~ 

1 "  + C cos k x  = ~ 

1 n 

s, ,(x) = a, + 1 (ak cos k x  + b, sin k x )  
k = l  

+ sin kji sin k x ]  d y  

So, letting 

we have 

The sequence {Dn(y)}  is called Dirichlet's kernel. 
For each n the map that takes each,'€ C (  - n, n] to the nth partial 

sum of its Fourier series evaluated at zero (i.e., f -  s,(O)) is a linear 
functional on this space, which we shall denote by u,. Clearly, 
u,( . f )  = ( W n )  j .f(rW) LjY. 

Lemma 2. Each of the functionals u,, n = 0, 1, 2, .. ., is contin- 
uous on (C( - n, n], / I  . / /  ,). Furthermore, for each n, the norm of u, is 
the number I,, = (1/2n) 1 D,(y)  I dy. 

Proqf Fix n and let E > 0 be given. All we have to do is construct 
a functionfe C(-n ,  n] such that [ l f l / m  I 1 and Iu,(f)I 2 1, - E .  
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Let sgn(0) = 0 and, for real x # 0, let sgn(x) = x Ix 1 I .  Note that 
sin 4(2n + 1)y = 0 at the points y = 21n/(2n + l), I = 0, f 1, +2, . . . .  
For 6 > 0, 6 < n/(2n + I ) ,  definefa(y) = sgn(D,(y)) for 

2/71 . 2(1+ 1). 
+ b I Y I  - - 6, 2 n +  1 2 n +  1 

and define it to be linear for 

Clearly 
2n + 1, we see that 

/la, = 1. Also, since I D,(y) I = 11 + 2 1 cos kY 1 I 

6 
2 I ,  - 

n 

6 C (2n + 1) = 1, - 
1=0 n 

Z n f  I 

(2n + 1 ) ( 2 ~  + 2) 

2 1 n - E  

for 6 sufficiently small. 
This proves the lemma. 

Suppose that the Fourier series of every function in C ( - a  n] is 
convergent at zero; i.e., suppose that limn+m u,(f) exists for everyfin 
our space. Then, by the Banach-Steinhaus theorem, there is a number 
M such that 1, = /Iu, / I  I M for all n. Thus to prove that there is a 
continuous function whose Fourier series diverges at zero we need 
only prove that I ,  = 00. 

In the interval 

(41 + 1). (41 + ? I n ]  [ 4 n + 2  ' 4 n + 2  

we have Isin i (2n + 1)yl 2 4 / 2 .  Hence 

(41 + 1). (41 + 3)nI Jz T~ C Zn Jintegral of 1 sin i y i - '  from ~ 4 n + 2  to 4 n + 2  1. 
l = O  I 
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For y > 0, sin fy < fy, and so 

2n (41 + 1)n (41 + 3)xI 
1=0 I 4 n + 2  4 n + 2 - (  

1, > 2 1 Jintegral of 2y -1  from ~- to 

and this tends to infinity as n + 00. 
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The Theory of Distributions 

1. Some Function Spaces. Partitions of Unity 

The theory of distributions plays a fundamental role in any modern 
treatment of partial differential equations (see [7, 113) and it has impor- 
tant applications to harmonic analysis [14]. That theory will be in- 
troduced here. We will need some of the ideas presented in Sections 4.2 
and 4.3, and we must begin by discussing various spaces of functions 
defined on certain subsets of R". In all that follows R will denote a 
nonempty, open subset of R", where n is arbitrary but, in any discus- 
sion, fixed. When we speak of a " function in R," without any other 
qualification, we will always mean a complex-valued function that is 
defined in R and is measurable with respect to Lebesgue measure in R. 
The integral of any function in R will always mean the Lebesgue 
integral, and if  no limits are given, we will understand that the integra- 
tion is over all of R. The space of all continuous functions in R will be 

101 
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denoted by Co((n). Note that if ,f is in this space, then neither 
sup( I , f (s)  1 1 .Y in R) nor 1 f ( x )  dx need be finite. 

Definition 1. For each,fE Co((n) we define the support of,f, supp,f, 
to be the closure in R of {x 1 f(x) # 0). If  suppfis a compact set then 
we shall say that ,f has compact support in R. The set of all such 
functions (i.e., [ , f ~  Co((n) I supp.f is compact)) will be denoted by 
c: (Q 1. 

I f , f E  C:(R"), we can define JJ.fJJ, to be sup( J,f(x) l  I x  in R"!. We 
leave it to the reader to show that (C:(R"), 1 1 . 1 1  a) is a Banach space. 
Also, for any real number p 2 1, we can put a norm 1 1 .  l i p  on Cg(R") as 
follows: For each .f in our space let l l , f l l , ,  be the pth root of 
S I , f ( x )  IP rlx. The completion of the normed space (Cg(R"), II.II,) is the 
Banach space (L,(R"), 1 ) .  11,) [lo]. 

Definition 2. For each nonnegative integer k let Ck(R) denote the 
space of all those functions in R that have continuous partial deriva- 
tives of order up to and including k ;  by the partial derivatives of order 
zero we mean, of course, the function itself. We define C",(n) to be 
i f €  C"((n) I ,f has compact support in R). The spaces nk"=o C"((n) and n&, C'",(n) will be denoted by C"(R) and C,"(R), respectively. An 
element of Cm(R) will be called a C"-function in R. 

I t  is easy to give examples of C"-functions in R". The function that 
takes each x = (x,, x2 ,  . . . , x,) in R" to I x 1' = x: + . . . + xf is such a 
function. Recall that,f(t) = exp( - t - ' )  for t > 0 and = 0 for t 2 0 is in 
C;(R)  [ I ,  pp. 121, 2501. To give an example ofa function in CC(R") we 
just let w o ( x )  = exp[- (1 - ~ x ~ ' ) - ' ]  for 1x1 < 1 and = 0 for 1x1 2 1. 
The support of w0 is the unit ball of R". By multiplying coo by a suitable 
constant we obtain a nonnegative C"-function o whose support is the 
unit ball of R", which is positive in the interior of this ball, and for 
which 1 ~ ( x )  dx = 1 .  We will make repeated use of this function. 

Lemma 1. I f  11 E Cg(R") and if 6 > 0 is given, then we can find a 
function u,. in C: (R") such that Iu(.Y) - u, (x )  I I 6 for all x; i.e., 
C: ( R " )  is dense in the Banach space (CE(R"), I / .  1 1  =). 

P r m J  Choose c > 0 and define 

l I , , ( x )  = i l I (x - Ey)(o(y) l ~ J s  = E - n  1 u(y)w[(x - y ) / E ~  dy .  
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I t  is clear from the second of these that we are integrating over the 
compact set supp u. For y E supp u, w [ ( x  - Y ) / E ]  is nonzero only in the 
ball of radius E centered at y .  Hence u, is in Cg(R"). But more is true. To  
compute any partial derivative of u , (x )  we differentiate o[(x - y) /~ ]  
under the integral sign. Hence, since w is a C"-function, 
u,(x) E C;(R"). 

Now 

over {y 1 1 u(y) - u ( x )  I I 6)) + E - "  (integral of this same function over 
iy 1 I u ( y )  - u(x )  1 > 6;). The first of these is 

I hE-" i w[ (x  - 41)/e~ d y  I 6. 

To estimate the second integral we note that, since it has compact 
support, u is uniformly continuous. Hence there is a y > 0 such that 

1 u ( y )  - u ( x )  1 > 6 implies 1 x - y 1 > 7 .  If we choose E > 0 to  be smal- 
ler than ;J, then ~ [ ( x  - y ) / c ]  = 0 for any y such that l x - y I > y, i.e., 
for any y such that I u ( y )  - u ( x )  I > 6. Thus for any such E the second 
integral is zero. 

We are going to prove that C r ( R " )  is dense in (Lp(R"), I j . I I p )  for any 
real p 2 1.  In order to do  this we will need another lemma. First recall: 
A real-valued function $ on R is said to be a convex function if for each 
xo E R there is an m in R such that $( t )  2 $(xo) + m(t - xo) for all 
t E R ;  i.e., the graph of $ lies above the line that passes through 
( x 0 ,  $(xo)) and has slope m. The function $ ( t )  = 1 t l p  is a convex func- 
tion if p 2 1. 

Lemma 2 (Jessen's Inequality). Let p be a totally finite (i.e., 
p(R") < a), positive measure on R" and let .f be a real-valued, p -  
integrable function on R". Then for any convex function t,b we have 
$(J.f4/J I J $(.O dP/J 4 1 .  

Proof Setting xo = 1 f d p / {  d p  we can, since $ is a convex func- 
tion, find a number m such that $( , f )  2 $(xo) + m ( , f -  x,,). Hence 
J $( . f )  d p  2 $(xo) J d p  + m J j ' d p  - mxo J d p  because p is a positive 
measure. 
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Recalling how xo was defined we have 

Since p is totally finite we can divide by f dp.  

Theorem 1. For each real number p 2 1 the space CF(R")  is dense 
in the Banach space (,!,,(R"), ~ ~ ~ ~ ~ p ) .  

Proof. Fix p and recall the nonnegative C"-function o introduced 
just before Lemma 1. I f  u E L,(R"), then, for any positive E ,  the function 

U I ( X )  = 1 u(x - EV)W(4') dy = E - "  1 u(y)w[(x - y)/c] l ly 

is well defined because W [ ( X  - y)/c] is in L,(R"). We observe, as we did 
in the proof of Lemma 1, that u,(x) is a C"-function with compact 
support in R". Thus, to prove the theorem, it suffices to show that u I ( x )  
tends to u(x) for the ,!,,-norm as E tends to zero. 

The first thing that we want to establish is that l(u, / I p  5 ( I U ( / ~ .  We 
have /lu, 11; = J I J u(x - r ; y ) o ~ ( y )  d y  I p  tlx. Set $ ( t )  = I t I p ,  recall that 
this is a convex function, and set d p  = o j ( y )  dy.  Then, by Lemma 2, 

But since w(y)  d y  = 1, this says that 1s u(x - ~y)W(y) d y l p  I s 1 u(x - ~ y )  I p o ( y )  dy .  Now we can write: 

Given q > 0 we choose a continuous function with compact sup- 
port (call it u )  such that ( ( u  - ulIp < q. Then clearly, (Iu, - u, ( I p  < q and 
so 

Ilu - 4 IIP 5 IIu - [ > l i p  + 110 - 4 IIp + 114 - 4 I l P  < 2rl + 110 - 0, / I p .  
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But, by Lemma I,  u, tends to u uniformly over Rn as E tends to zero. 
Hence 1Iu - u, /I,, tends to zero with E and the theorem is proved. 

We are now going to study C"-functions in R. Our main result, 
which will take a while to prove, is that there exists a C"-partition of 
unity subordinate to any open covering of R. 

Lemma 3. Let {R, I v E I }  be any open covering of R. Then there is 
a countable, open covering {uk} of R such that: 

( i )  Each uk has compact closure. 
(ii) For each k there is a v with uk c R,, . 

(iii) Each point of il has a neighborhood that meets only a finite 
number of the sets {uk}. 

Proof. For each positive integer k let Kk = {x E R" 1 distance of x 
to R" - R is 2 I lk  and the distance from x to zero is I k ) .  Clearly 
each Kk is a compact set in R. Also, if int Kk denotes the interior of Kk, 
K ,  c int Kk+ for all k ,  and R = u?= K ,  . 

Let K ,  = 0 for k I 0. For each fixed i, L, = K i  n (51 - int Ki- 1)  

is a compact set and = int K i +  n {R - Ki- 2}  is an open neighbor- 
hood of this set. Each point x of Li has an open neighborhood W ( x )  
that is contained in and is also contained in some R,. A finite 
number of these neighborhoods, say w. 1, w, 2 ,  . . ., w, ,(,), cover L,. 
Choose such a finite open covering for each i. Since w, c K i +  for 
each i and all j ,  each of these sets has compact closure. Thus 
{w. 1 i = 1, 2, . . . ; 1 I j I I(i)) is a countable open covering of R that 
has properties (i) and (ii). 

We are going to show that { w, j }  has property (iii). Let z E R and 
let i be the first integer for which z E int K , .  Then z $ int Ki- and so 
we can find a neighborhood V of z such that V c int K , ,  
V n  int K i - 2  = 0. Let y e  V n  W m , j .  Then Y E  Wm,j and so y is in 
int K , + l  n {R-Km-,} .Nowif rn<i -2 , thenrn+ 1 ~ i - 2 a n d s o  
y in int K i P 2 .  But V n int K i - 2  = 0. Thus rn must be 2 i - 2. Also, 
if i + 1 < rn, then i - 1 < rn - 2, and so i I rn - 2. Then y E R - 
K m - 2  c R - K i  c 0 - int K , .  But V c int K , ,  and so m < i + 1. We 
conclude that V n Wm* # 0 only for i - 2 I rn < i + 1, and so V 
meets only a finite number of the sets { w. j } .  

Definition 3. Let {Q, l v  E I} be any covering of il; we do not 
assume that the sets Q, are open, although they may be, and we do  not 
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assume that I is countable, although i t  may be. If  every point of R has 
some neighborhood that meets only finitely many of the sets R,. , then 
we shall say that in,] is a locally finite covering of 0. 

Lemma 4, Let { L i k )  be a countable, locally finite, open covering of 
R. Then there is a countable, open covering { V,) of R such that the 
closure of vk is contained in U ,  for each k .  

Proof  I t  suffices to find a sequence (I/k) of open sets such that: (a) 
the closure of V, c uk for every k ;  (b) for each positive integer m the 
sets V, with k I ni and the sets U ,  with k > m cover R. 

We shall define the sequence { h) by induction. If U is any subset of 
R let cl U denote the closure of U in R. Suppose that we have defined 
the sets V, with k < 1 such that (a) is satisfied for k < I and (b) is 
satisfied for nz < 1. Let W = ( U k  < , I/k) u ( Uk > , U,). Clearly, W is open, 
and note that R - U ,  c W by (b) with m = I - 1. There is an open 
subset Z of R such that R - U ,  c Z c cl Z c W .  If  we set V, = R - 
cl Z, we have V, c R - Z c U , .  Also, since R - Z is closed in C!, 
cl V, c U , .  Finally, since V, u W = R, we see that (b) is satisfied for 
t?l = 1. 

One more lemma and we shall be able to prove our main theorem. 

Lemma 5. Let {U,; be a countable, locally finite, open covering of 
R. Suppose that each Uk has compact closure. Then there is a family 
{/I,) c Cg(R) such that: 

( i )  / j k ( X )  2 0 for all x in Q and each k = 1, 2 ,  . . .  . 
( i i )  supp [ j k  c uk for each k .  

( i i i )  1;; I /I,(.k(x) = 1 for each x E R. 

Proof By Lemma 4 we can find an open covering ( I /k j  of Q such 
that cl V, c U ,  for every k ;  here cl V, denotes the closure of V,. Fix k 
and, for each x E cl V,, let B ( x )  be a closed ball centered at x and con- 
tained in U k  . Since cl V, is compact it can be covered by the interior of a 
finite number of these balls, say B1, B 2 , .  . . , B, . For each i, 1 I i 5 I ,  let 
x i  be the center and E~ the radius of B i .  Let w be the function introduced 
just before Lemma 1 and define pi(.) to be &,:"w[(x - xi)/ei] for i = 1, 
2, . . . , 1. Clearly, each pi is a nonnegative function in Cz(Q). Also, 
supp p i  = B, and p i  > 0 in the interior of Bi for each i. It follows that 
the function ) ' k ( X )  = pi (x)  is in C;(R), supp Y k  c Uk, and )'k > 0 
oncl V,. 
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Now recall that ( U k )  is locally finite and that { I /kj  covers R. Thus 
)(Y) = I;=, y k ( X )  is a well-defined (?"-function in fi that is positive at 
each point of R. Clearly, the sequence [ j k ( X )  = y k ( X ) / Y ( X ) ,  k = 1, 2, . . . , 
satisfies conditions (i), (ii), and (iii). 

Theorem 2. 
a family (a,  1 v E I )  of C"-functions in R such that: 

(a) a,(x)  2 0 for all x E R and each v E I .  
(b) A ,  z supp a, c R, for each v E I .  
(c) [ A ,  I v E 1; is locally finite; 
(d) 1 {a,(x)/v E 1; = 1 for each x E R. 

The family {a, 1 v E I )  is called a locally finite, C"-partition of unity 

Let (R, 1 v E 11 be an open covering ofR. Then there is 

subordinate to the covering (0, I \ I  E I ] .  

Proof:  By Lemma 3 there is a countable, locally finite, open cover- 
ing ([I,) of 0, with each Uk having compact closure, such that each u k  

is contained in some n,. . Using {uk] and Lemma 5 we can find a 
sequence ( / j k ]  c C:(n) having properties (i), (ii),  and (i i i )  of that 
lemma. For each positive integer k let I ( k )  = {v E 11 I i k  c !&I. Each of 
these sets is nonempty and so, by the axiom of choice [ 15, Theorem 25, 
p. 331, there is a function T from the positive integers into I such that 
T ( k )  E I ( k )  for every k .  For each V E  I define a,.(x) to be 
1 ([Ih(.y) I T(k)  = v ; .  Clearly, ( a J . ~ ) j  is a family of C"-functions that has 
property (a). 

To prove that {a,,} has property (b) first set C,, = 
u{supp T ( k )  = v}. Clearly C,. c R,, . Suppose that x E A,. = 
supp a, . Then every neighborhood of x meets some set supp [I,, , where 
T ( k )  = 11. On the other hand, some neighborhood of x meets only a 
finite number of the sets U k ,  hence only a finite number of the sets 
supp /I,. I t  follows that for some I ,  with T(1) = v, x E supp /I,. But then 
.x E C,. and we have shown that A,. c C,. c R,. for each v E 1. Thus {av]  
has property (b). I n  order to prove that {av)  has property (c) it suffices 
to prove that the family {C,.lv E I )  is locally finite. For each x E R 
there is a neighborhood V of x and a finite set H of positive integers 
such that V n Uk = 0 for k 4 H .  Then V n supp ,Ok = 0 for k 4 H .  
From this we see that if v # (T(k)lk E H )  then, since C,, would be the 
union of sets supp /jkr where k cf H, V n C,. = 0. But since 
( T ( k )  I k E H i  is a finite set we have shown that {C,,) is a locally finite 
family. 
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Finally, for each x E R, 

Corollary 1. Let 0, C be two subsets of R, 0 an open set, C a 
closed set, and suppose that C c 0 c R. Then there is a function 
4 E Y ( R )  such that: 

( i )  0 I 4 ( x )  I 1 for all x E R; 
( i i )  4(x) = 1 for all .Y E C. 

( i i i )  +(.x) = 0 for all x E R - 0. 

Proof: There is a C"-partition of uni ty  (call i t  a l ,  a 2 )  that is 
subordinate to the open covering 0 = R , ,  R - C = R 2 .  Clearly 
4( .~)  = rxI(x) for all x has properties (i), (ii), and (iii). 

EXEKCISES 1 

* I .  A multi-index is an ordered n-tuple of nonnegative integers. If  
s = ( s  I ,  s 2 ,  . . . , s,,) is a multi-index we let I s I = s + s2 + . . . + s, 
and, for each ,f in C"I(R"), we let 

Let K be a fixed, compact subset of R" and let ' s , (R")  = 

{ , f ~  C,U(R")Isupp,fc K ) .  For each nonnegative integer m define 
pn, as follows: p,,,(,f) = sup( lOy(x)l 1x E K ,  1s 1 I m )  for each 
, f ~  VK(Rn).  
(a) Show that each p,,, is a seminorm on ( / ( , (R")  (Section 4.2, 

Definition 3 ) .  
(b) I f f €  V,(R") is not the zero function show that p,(f) # 0 

for some m. 
(c) The family [ p m  1 m = 0, 1, 2 ,  . . .) defines a Hausdorff, locally 

convex topology on (/l,(Rn) (Section 4.1; see the construc- 
tion process just after Lemma I) .  Call this topology [([p,,,]). 
Show that there is a countable fundamental system of 
t({pmj)-neighborhoods of zero in 's,(P). 
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* 2 .  Let X be a vector space over K and let {p , }  be a countable family 
of seminorms on X .  For each positive integer m define qm(x)  to be 
sup(p,(x) I 1 I j I m )  for each x E X .  

Show that each qm is a seminorm on X and that qm(x)  I 
qm+ ,(x) for all x E X and each m = 1, 2, . .. . 
If (p , )  satisfies the separation condition (Section 4.1, Lemma 
2)  then so does {q,,], and conversely. 
Show that the families {p,) and (4.1 define equivalent topolo- 
gies on X .  Hint: It suffices to show that every 
t({p,})-neighborhood of zero in X contains a 
t({q,))-neighborhood of zero, and conversely. 
Let R be any open subset of R", and let C be a closed subset 
of R and 0 an open subset of R such that C c 0. Show that 
there is an open subset W of R such that 
c c w c c 1 w c 0 .  
Prove that the union of any locally finite family of closed 
subsets of R" is a closed subset of R". 

2. Frkhet Spaces 

Locally convex spaces whose topologies can be defined by means of 
a countable family of seminorms arise frequently enough to warrant 
some special attention. The one example we have seen, U,(R") (defined 
in Exercises 1, problem 1)  will be useful later on. Another useful 
example will be given at the end of this section. 

Theorem 1. Let X be a vector space over K and let t be a Haus- 
dorff, locally convex topology on X .  Then the following are equivalent: 

(a) 
(b) There is in X a countable, fundamental system of t- 

(c) The topology t can be defined by means of a countable family 

The topology t is metrizable. 

neighborhoods of zero. 

of seminorms that satisfies the separation condition. 

Pvoqf I t  is clear that (a) implies (b). Assume (b) and let {V,) be a 
countable, fundamental system of [-neighborhoods of zero in X such 
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that U ,  3 U,,+l for all n. We may assume that each Li,  is absorbing, 
balanced, and convex (Section 4.3, Lemma 2). Let p,, be the gauge 
function of U ,  for each it (Section 4.2, just before Definition 1). Then 
(Section 4.2, Theorem 1) each p, is a seminorm on X .  Clearly, the 
topology defined by the family (p,) coincides with t (Section 4.3, proof 
of Theorem I ) .  To prove that (c) implies (a) we need: 

Lemma 1. Let s be a Hausdorff, locally convex topology on X 
defined by a sequence of seminorms (p,) such that p,(x) I P,+ l(x) for 
all x and all n. For each x E X define 1 x I to be 2;' 2-"p,(x) x 
(1 + p,,(x))- I .  Then: 

(i) 1x1 = O i f f x = O .  
(ii) 

(iii) 
( iv )  For any x E X and any I E K such that III I 1, 

(v) I f  the sequence {A,} (of scalars) converges to zero, then, for 
each x E X ,  { I I ,  x I } converges to zero. 

Finally, if we define p(x, y )  to be I x - y I for all x, y E X ,  then p is a 
metric on X and p is translation invariant; i.e., p(x + z ,  y + z )  = 

p(x, y )  for all x, y, z in X .  

1x1 = I - x (  for each x E X .  
Ix + y )  5 Ix  I + ( y I for all x, y in X. 

12x1 s 1x1. 

Proqf. Properties (i) and (ii) of 1 .  I and the fact that Ix  I 2 0 for 
all x, are obvious. The function that takes each real number (x to 
a( 1 + a)- is an increasing function for CI # - 1 (just take its deriva- 
t ive). Hence : 
(1 )  a(l + a)- '  I p(1 + p)- '  for - 1 < a I 0. 
If I E K ,  \ I  1 I 1, then p,( Ix)  = ( A  (p,,(x) I p,(x) (Section 4.1, 
Definition 1). Using ( 1 )  we may write 

p n ( I x ) ( [  + ~ n ( A x ) ) - '  I p n ( x ) ( l  + pn(x))-' 

and property (iv) follows from this. 

(Section 4.1, Definition I ) .  Hence 
We shall use ( I )  to prove (iii). Recall that p,(x + y )  I p,(x) + pn(y)  

pn(x + ~1)(1 + P ~ ( X  + ~ 1 ) -  5 (pn(x)  + p n ( Y ) ) ( l  + pn(x) + pn(y) ) -  ' 
I p n ( x ) ( l  + pn(x) ) -  ' + p n ( y ) ( l  + P ~ ( Y ) ) -  

and (iii) follows from this. 
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Properties (i), (ii), and (i i i )  imply that p(x ,  y )  = I x - y 1 is a trans- 
lation invariant metric on X .  Let s '  be the topology defined on X by p.  
We shall investigate the relationships between the s -  and the 
s'-neighborhoods of zero in X .  

Let U = {x E X I Ix  I I 2 - k } .  We shall show that U contains the set 
v = {x E X ) P k +  I(x) I 2 - ' k + 1 ) } .  If x E V then p l ( x )  I p 2 ( x )  I ...  I 
p k +  1 ( ~ )  I 2 - ( k + 1 )  and so, since p,,(.x)( 1 + pf l ( ,x ) ) - I  I p , (x ) ,  

k f  1 m 

On the other hand p,(x)(l + p n ( x ) ) - '  I 1 and so 
m m 

1 2 - " p , ( x ) ( l  + p f l ( x ) ) - l  I c 2-" = 2- (k+2) .  
k + 2  k+2 

( 3  1 

Combining ( 2 )  and ( 3 )  we get I x  I I 2 - k  and so x E U .  Thus s is 
stronger than s'. 

Now let W = {x E X l p , ( x )  I 2 - ( m + k + 1 ) \  ,. We shall show that W 
contains W' = (x E X 1 Ix  1 I 2 - ( m + k +  I ) ) .  I f  x E W', then certainly 
2-"pm(x)(  I + p , (x ) ) -  l I 2 - ( m + k +  I ) .  From this it follows that p, (x)  x 
( I  + p , ( x ) ) -  I 2 - ( k +  ' )  and that p,(x)(  1 - 2- ' "+  I ) )  I 2 - ' k +  I ) .  Thus 
p m ( x )  I 2 T ( k + 1 )  - 1 I 2 - k ,  which says x E W. 

I f  (A,,] is a sequence of scalars that converges to zero, then for each 
x E X the sequence {Aflx) is s-convergent to zero. But then {Af l . )  is 
s'-convergent to zero and this proves (v). 

Since every s-neighborhood of zero contains an s'-neighborhood of 
zero, and conversely, and since p is translation invariant, the topolo- 
gies s and s '  must coincide on X .  

We now return to the proof of Theorem 1. Assume (c) and let {pnf 
be a sequence of seminorms such that t = t ( { p J ) .  By problem 2 of 
Exercises I ,  there is an increasing sequence of seminorms {q,,) on X 
such that r = t({qf l)).  But, by Lemma 1, r({qflf)  is metrizable. 

Definition 1. A locally convex space whose topology is metrizable 
will be called a metrizable, locally convex space. A complete, metri- 
zable, locally convex space (i.e., one in which every sequence that is 
Cauchy for the metric converges for the metric to a point of the space) 
will be called a Frechet space. 

Remark. Let X[t] be a locally convex space. We recall (Section 
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4.3, Definition 3) that a subset B of X is said to be t-bounded if for each 
r-neighborhood, say V ,  of zero in X there is a scalar A such that 
B c AU. Suppose that t is a metrizable topology and that p is a metric 
that defines t .  A set B c X is bounded for the metric if sup{p(x, y )  1 x, y 
in B) is finite. Note that such a set need not be t-bounded. In fact, 
Lemma 1 shows that X can be bounded for the metric. Whenever we 
speak of a bounded subset of a metrizable, locally convex space X [ t ]  
we shall always mean a set that is t-bounded in X .  

Let s = (sl, s,, . . ., s,) be a multi-index (Exercises 1, problem 1). 
We define s! to be s,!  s,! . . .  s,! and, if x = (xl, ..., x,,), xs to be 
xr'x? ... x:. I f  m is any positive integer then (xl + x, + ... + x , ) ~  = 
C { (m! / s ! ) x"  1 1s I = m}. 

Lemma 2. For a C"-function fon  R" the two following conditions 
are equivalent: 

For any positive integer k ,  any multi-index s, and any E > 0, 
there is a number G > 0 such that I ( 1  + Ix I ' ))"Pf(x)I I E for 

For any two multi-indices r and s and any E > 0 there is a 

( I )  

1x1 >o. 

(2) 
number CT > 0 such that 1 x r P f ( x )  1 I E for 1 x 1 > CT. 

The expression (1 + 1 x ) 2 ) k  is a linear combination of mon- 
omials of the form x Z r  = x:'Ix~'* . . . xirn, with 1 r I 5 k .  Hence, for any 
multi-index s, there is a constant M such that 

Proof: 

max{ I ( 1  + l x  l')kDo.ll'(x) 1 l x  E R"} 

5 M max max{ I x'D"fx) I I 1 r I I 2k ,  x E R"}. 

Thus (2) implies (1). But since ( x r  1 I (1 + Ix 1'))" for I Y  I I 2k ,  we see 
that (1)  implies (2). 

Definition 2. A C"-function on R" is said to be a rapidly decreas- 
ing function on R" if it satisfies condition (2) of Lemma 2. The set of all 
rapidly decreasing functions on R" will be denoted by .Y(R"). 

I t  is obvious that .Y(R") is a space of functions on R" (Section 1.2, 
paragraph before Exercises 2) and that C;(R") c Y(R") .  Also, iffis an 
element of .Y(R"), then so is any partial derivative, of any order, 0f.f 

We can define two countable families of seminorms on .Y(R"). 
First, for any two multi-indices r and s, we can define q r , s ( f )  to be 
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maxi I x'D"fx)  I 1 x E R"} for allf E .Y(R"). It is obvious that each q,, is 
a seminorm on Y ( R " ) ,  that {qr ,  s} is a countable family, and that this 
family satisfies the separation condition. The second family is defined 
as follows: For each positive integer k and each multi-index s let 
p k .  , ( f )  = max{ I (1 + 1 x I')'D:f(x) 1 I x E R"} for all SE Y(R") .  The 
family { P k ,  ,} is a countable family of seminorms that satisfies the separ- 
ation condition. By Theorem 1 each of these families defines a metri- 
zable, locally convex topology on .Y(R"). The proof of Lemma 2 shows 
that these two topologies are equivalent. 

From here on we shall always assume, often without explicit 
mention, that Y ( R " )  has the metrizable, locally convex topology 
defined by one or the other of the families of seminorms discussed 
above. We shall denote this topology by td. 

Theorem 2. The space .Y(R") is a Frechet space, and CF(R") is 
dense in this space. 

Proof: Let { f m }  be a td-Cauchy sequence of points of 9 ( R n ) .  Then 
lim qr. , ( fn - f m )  = 0, as m, n tend to infinity, for any r and s. Let 
1 r 1 = 0. Then, by letting 1 s 1 = 0, 1, 2, . . . , we see that { f m } ,  and each 
(DY,), is uniformly Cauchy over R". So { f m )  converges, uniformly over 
R", to a function f. The function f~ Cm(R") and, for every s, {Dsfm} 
converges uniformly over R" to D Y  I t  follows that ( x r D s ( f - f m ) )  tends 
to zero, uniformly over R", as rn tends to infinity, for every fixed pair r,  
s. Hence the inequality 

1 xrD"fx) I 5 1 xrDs(f-Sm)(x) 1 + I x'DSfm(x) I 
shows that f E 9'( R"). 

In order to prove that Cg(R")  is dense in Y ( R " )  we first use the 
Corollary to Theorem 2 (Section 1) to find a C"-function y such that 
0 I y(x) I 1 for all x, y(x) = 1 if I x I I 1, and y (x )  = 0 if I x 1 > 2. Let 
f~ ,Y(R") and E > 0 be given. Let k be a positive integer, let s be a 
multi-index, and for any integer j let yj(x)  = y(x/j). Then 

I (1 + I X  I2)'Dsif(x)(1 - Yj(x))) I 
51 ( s ) ) D ~ - ~ ( ~  - yj(x))l 1(1 + IxI')"f(x)I~ 

where (s) = s ! / r ! ( s  - r ) !  and s - r = ( s l  - r l ,  s2 - r 2 ,  ..., s, - In). 

Suppose that we have 1 summands. There is a constant C such that 
1 DS--l( 1 - y j ( x ) )  I I C for all x; C is independent of j .  Also, there is a 
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CT > 0 such that 1 (1  + 1 x I’)’DO‘f(x) 1 I E/(IC) for 1 x 1 > u and 1 r I I 
1 s 1 .  By choosingj > 0 we have I (1  + I x ) 2 ) k D ” ( , f ( ~ )  - f ( x )y j ( x ) )  1 I E 

for all x. 

EXERCISES 2 

1. Show that gK(Rn) in problem 1 of Exercises 1, given the topology 
defined by the countable family of seminorms also discussed in 
that problem, is a Frechet space. 

2. Let X[r] be a metrizable, locally convex space and let {B , }  be any 
sequence of t-bounded subsets of X. Show that there is a sequence 
of positive numbers {A,} such that uF= , A, B, is a t-bounded set. 
Hint: First show that we can assume that B, t B,+l for all n. 
Next let {U,,] be a decreasing, fundamental sequence of t-  
neighborhoods of zero in X and, for each n, choose A, so that 
A,Bn c U,.  

(a) Show that exp( - 1 x 12/2) is in .Y(R). Hint: Use L‘Hospital’s 
rule. 

(b) I f  4 E Y ( R )  show that 1 l 4 ( x )  exp( - i x y )  dx 1 is finite for 
every fixed y. 

(c) Prove that J e-xz i2  dx = ( 2 7 ~ ) ~ ’ ~  as follows: First note that 
[J e-x2/2 dxI2 = JJ exp[ - ( x2  + y 2 ) / 2 ]  dx  d y .  Then evaluate 
this double integral using polar coordinates. 

*3. 

3. The Fourier Transform 

For f in L , [  - n, n] we defined the Fourier transform f off to be 
(1/2n) f_(x)e-i”X dx, n = 0, k 1, ... (Section 6.1, Definition I). We 
saw that f has some useful properties and we found that the map that 
takes eachfe L,[  -n, 711 tofhas an inverse (Section 6.1, Theorem 3). A 
similar “transform,” also called the Fourier transform, can be defined 
for many classes of functions, and even more general objects. For 
example, if f~ L, (R) ,  then we may define f l y )  to be 
( 1/2n)li2 J f(x)e-iXY d x .  (Some writers leave out the factor ( 1 / 2 ~ ) ” ~ ,  
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and others replace it by 1/2n. For a discussion of this point see [ 14, 
p. 1221.) Clearly, 1 f ( y )  1 i ( 1/2x)LiZ/l,fJI , and, by trivially modifying 
the proof of the Riemann-Lebesgue theorem (Section 6.1, Theorem l),  
one can show that l imy+km , f ( y )  = 0. Also, since I f ( y  + z )  - 
, f (y ) I  5 f I ,f(x) I Idxz - 11 dx and the integrand is bounded by 
2 I f (x )  I and tends to zero everywhere as z -+ 0,fis uniformly contin- 
uous. So we have a map,f-t,fl that takes each.fE L, (R)  to a function 
that is uniformly continuous and vanishes at infinity on R. Note that it 
is helpful to have two real lines in mind here. One of them, R, is the 
domain of our L,-functions and the other one (call it I?) is the domain 
of their Fourier transforms. 

Now what properties does the mapf-tfhave? In particular, does it 
have an inverse? Also, since R has infinite measure, L,(R) is not con- 
tained in L,(R)  when p > 1. So how would we define the Fourier 
transform for f~ L,(R), p > l ?  We shall be able to answer these 
questions at the end of this section. A more detailed treatment of the 
Fourier transform on L, (R)  can be found in [S] or [ 141. The latter also 
contains a discussion of the Fourier transform on L,(R). For a much 
more general treatment of the entire subject see [9]. 

Definition 1. For each function 4 in : f ( R )  let $(y) = 

(1 /27~)"~ J +(x)e-'"' dx. We regard the function $(y) (Exercises 2, 
problem 3b) as defined on a second copy R of R. 

Lemma 1. For any function 4 E Y ( R )  the function $ E .V(R). 
The map, call it 9, that takes each function 4 E Y ( R )  to the function 
$ E 9 ( R )  is linear and continuous. 

Proof Choose 4 E ,Y(R).  We shall first show that 4 is a 
C"-function. For any p we have: 

We may write 

where k is an integer, and if I x I 2 1, then 
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However, 4 E .Y'(R), and so the maximum is finite. Thus, since 
j ( 1 x Ip/( 1 + x2)p+ ') dx is clearly finite, 4 is a C"-function. 

Return now to the definition of 4 and integrate by parts. We get 

The first term on the right is zero because 4 E Y ( R ) .  Repeated integra- 
tion by parts gives (iy)'$(y) = (1/2n)'" J D44(x)e-'"Y dx. Combining 
this equation with equation (*) above we get 

( - i y  
(***) (iY)qDp4(J4 = ( 2 n ) l / 2  . i Dq[xP4(x)]e-ixe dx. 

Hence, for any CT > 0, 1 yqDP4(y) 1 I I j Dq[xp4(x)]e-ixp dx 1 over 
( X I  1x1 I cr} plus j 1Dq[xp@(x)]1 dx over {x l lx l  > CT}. We shall use this 
inequality to show that, for any F. > 0, 1 y q D p $ ( y )  1 is less than c for all y 
sufficiently large. This will prove that 4 E :/(a) (Section 2, Definition 
2). The first term on the right-hand side of our inequality is of the form 

. f ( ~ ) e - ' " ~  dx, where cr is fixed and f is differentiable. The proof of 
the Riemann-Lebesgue theorem (Section 6.1, Theorem 1) shows that 
this term tends to zero as y -+ +_ 00. We will now show that the second 
term can be made as small as we please by taking CT sufficiently large. 
At  the same time we shall see that .P is continuous. 

Suppose first that p = 3,  y = 2. Then j IDq[xp4(x)] I dx over 
{x  1 ( x  I > 0) becomes 

I ). I . Y ~ + " ( X ) I  dx + 6 [ Ix24'(x)I  dx + 6 1 Ix4(x) 1 dx 

(by the Leibnitz formula). Using inequality (**) we find that 

1 D'[.+(.x)] 1 dx 

plus two similar terms. Since each of the functions 4, 4" is in ,Y'(R) 
and, for k sufficiently large, each of the integrals is convergent we see 
that j I D2[x34(x)] I dx can be made as small as we please by taking CT 
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sufficiently large. Also, recalling the definitions of the seminorms 4,. 
and P k .  (Section 2, just after Definition 2), we see that: q2, 3( i$)  = 
max 1 y3D2i$(y) I I M p 3 + , ,  *(q5) plus two similar terms; here M is a 
constant that is greater than J ( I x 13/( 1 + x ~ ) ~ + ~ )  dx. It follows that .% 
is continuous. 

The proof for the general case is similar to the one just given 
because, by the Leibnitz formula, Dq[xPq5(x)] is a linear combination of 
terms xrDsq5(x). 

I t  will be useful to know the Fourier transform of e-x2’2. This 
function is in .Y’(R) (Exercises 2, problem 3a) and we shall need the 
formula proved in part (c) of that problem. 

Lemma 2. 

(1pZ)1/2 \ e-x2/2e- ixv  dx = , -y2 /2 .  

Prm$ First write 

d t .  

shows that 
-1 to  A, 1 to 

For any o > O  the Cauchy integral theorem 
iC. exp( - z 2 / 2 )  dz = 0 if C is the rectilinear path joining 
A + ir, 1 + i t ]  to - A  + io, and -A + iv to -1. Hence we may write 

1 . 1, o = \ exp( - t2/2) d t  + Jo exp[ - (A + iu)/21i d o  
‘-1 

-1 .o  
+ (. exp[ - ( t  + iv)2/2] dr + 1 exp[ - ( - 2  + iu)2/21i du. 

‘ A  * 1’ 

Notice that the second and fourth terms in this equation tend to zero 
as A tends to infinity. Transposing the third term we find that 
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Finally, if 4(x) = P - " ' ~ ,  then 

We want to prove that the map 9, defined in the statement of 
Lemma I ,  has a continuous inverse. To d o  that we shall need Lemma 2 
and the next result. 

Theorem 1 (Parseval Relations). For any two functions 4, $ in 
Y ( R )  and Y'(Z?), respectively, we have j r$(y)$(y) d y  = 1 ~ ( x ) $ ( x )  dx. 

Observe that, if $ E .V(R),  for any E > 0 the function 4(x)  = $(cx) 
is in Y ( R )  and ~ ( J Y )  = ( I/E)$(J>/E). 

Theorem 2. The map .% that takes each element of .SY(R) to its 
Fourier transform has an inverse that is linear and continuous. In 
particular, 9 is one-to-one and onto. 

Proqf: Define a linear map from .Y(R) to .Y'(R) as follows: For 
each $ in :/'(I?) let I&) = (1 /27~)"~  J $(y)elXy dy,  and let our map take 
$ to $. Anticipating our result, we shall denote this map by 9 - l .  It is 
clear that 9- ' is linear and the proof of Lemma 1 shows that it is 
continuous. So all we have to do is prove that 9 and 9- ' really are 
inverses of each other. 
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For i,b in .Y(R^) and any fixed E > 0 let a ( y )  = i ,b (~y) .  Then, as we 
observed above, &(z)  = E- '$ (z /E) .  Equation (*) in the proof of 
Theorem 1 reads, in this case, J a(y)&y)eixy d y  = J i ( w ) 4 ( w  + x )  dw 
and this is equal to E -  J $ ( E -  ' w ) ~ ( w  + x )  dw = J $(u )@(x  + E U )  du 
where u = E -  'w. If, in particular, we take $(x) to be exp( - x 2 / 2 ) ,  then 

1 exp[ - ( ~ y ) ~ / 2 ] 4 ( y ) e ' " ~  d y  = [ $(u)$~(x  + E U )  du. 

In this equation let E -+ 0. We find: 

by Lemma 2.  Thus (27~)"~[&)]  = ( 2 7 ~ ) " ~ 4 ( x ) ,  which proves the 
theorem. 

Theorem 3 (also called Parseval's Relation). For any two func- 
q5(y)$(y) dy = $(x)$(x) dx, where the 

Proof: By Theorem 1, J $(y )$ (y )  dy  = J @(x)$(x) d x .  Since 
4(y) = 3 [ , $ ( x ) ]  we need only show that $(x) = , F [ $ ( y ) ] .  But 
F [ $ ( y ) ]  = (1/27~)"~ J $(x)e-'")' dx = complex conjugate of 

tions 4, i,b in 9 ( R )  we have 
bar denotes complex conjugation. 

At this point the reader may well wonder what it is that we are 
doing. After all, it is clear that Lp(R)  is not contained in ,Y'(R). So how 
is the Fourier transform on 9 ( R )  going to help us answer the 
questions raised earlier? The answer is rather interesting. What we 
shall do is show that Lp(R)  is contained in the "dual" of the locally 
convex space .Y'(R). Our results so far, about Y ( R ) ,  will enable us to 
define a Fourier transform on this dual. Thus, in particular, we get a 
Fourier transform on L,(R) this way. We shall make all this precise 
now. 

Remark. Let X [ t ]  be a locally convex space. The vector space of 
all t-continuous, linear functionals on X will be called the dual space of 
X [ t ]  and will be denoted by X'. X '  is not the trivial vector space 
(Section 4.4, Corollary 1 to Theorem 1). For eachfc  X'  let p,(x) = 
I , f ( x )  1 for all x E X .  The family {pf [ . f ~  X ' }  defines a locally convex 
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topology on X (just as in Section 4.1), which we shall call the weak 
topology on X and denote by o ( X ,  X’ ) .  Similarly, we define a weak* 
topology a(X’, X )  on X’ by means of the family {p,lx E X}, where 
P , ( f )  = I .f(x) 1 for allfE X ’ .  

Definition 2. A continuous, linear functional on .Y’(R) will be 
called a temperate distribution in R.  The set of all temperate distribu- 
tions in R (i.e., the dual of . Y ( R ) )  will be denoted by .Y’(R).  

Lemma 3. For T E .c/“(R^) let F(+)  = T ( 4 )  for every q5 E .Y(R). 
Then f is in Y ’ ( R ) .  Furthermore, the map 9 that takes each T E .V’(R) 
to f E .Y’(R) is continuous when these two spaces have their weak* 
topologies. 

Proof If T E .V’(R) then f(+) = T ( 4 )  = T c’ 8(+). Since both -9 
and T are continuous, F is continuous, i.e., F E .Y’(R). 

Since 9 is obviously linear we shall have proved that it is contin- 
uous once we have shown that it is continuous at zero. Let I/ be an 
arbitrary weak* neighborhood of zero in .Y’(R). We may assume that 
U = { T  E ,Y”(R)1 1 T(+j)l I E~ for 1 ~j I k } .  Then 

c4.’- ‘ ( U )  = {S E ,Y’(R) 1 B(S) E U )  = (S E Y ( W )  1 s E U )  

= { S  E , u ” ( R ) ~  IS(4j)l I t j  for I 5 j 5 k )  

= { s E Y ( R ) ( ( s ( ~ ~ ~ ) (  I E j f o r  I r j ~ k } .  

Since this last set is a weak* neighborhood of zero in .Y’(R^) we are 
done. 

Definition 3. For each T E ,Y”(l?) we define the Fourier transform 
of T to be the temperate distribution f, where F(+) = T(4)  for all 
4 E .Y(R)  (see Exercises 4.1, problem 4). 

Lemma 4. For j ” ~  L,(R), 1 I p I 00, let T,(+) = f(x)+(x) dx 
for every 4 E .Y(R) .  Then TJ is a temperate distribution in R.  Further- 
more, ifJ  g are in L,(R) and T,(+) = T,($) for all + E .Y(R), thenf= g. 
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The first of these is finite because 4(x) restricted to [-a, 03 is in 
L,(R). The second term is 5 E 1 If(.)( 1 + xz)-"I dx over {x 11x1 > a}, 
and this is 5 E ( ( ~ J ( ~  ll(l + ~ ~ ) - " 1 1 ~ ,  which is finite for k sufficiently large. 
Thus we have shown that Ts is a linear functional on ,Y(R) and a 
similar argument shows that E .Y'(R). 

Now letf, g E L,(R) and suppose that T, = T,. Then, in particular, 
j f (x)4(x)  L/X  = 1 g(.x)4(x) dx for all 4 E C$(R). Hence, ifp > l , f =  g 
because C,"(R) is dense in the Banach space L,(R) (Section 1, Theorem 
1). If  g are in L,(R)  we have fL(x) = 1 f ( x  - ~ y ) w ( y )  dy = 

E - '  s f ( y ) o [ ( x  - y ) / ~ ]  d y  and, by hypothesis, this is equal to 
E -  s g(y)o[(x - y ) / ~ ]  d y  = g,(x); here w is the function defined in Sec- 
tion 1 just before Lemma 1. Now, as E -+ O , f ,  and gE tend to fand  g, 
respectively, for the L,-norm (Section 1, proof of Theorem 1). Thus 

Whenever it is convenient we shall identify the L,-function fwith 
the temperate distribution T,. We can, and do, define the Fourier 
transform off to be f, (Definition 3 above). 

F o r f c  L, (R)  we definedf(y) to be (1/2n)"' 1 f(x)e-1"4 dx and we 
noted that, in particular,fE L,(R). Let us show that the temperate 
distribution Tf is equal to 7,. 

f =  9. 

Q 4 )  = [ f(.x)+(x) dx = [ f (x)  [ (1/2n)'l2 [ 4(y)e- 'XY dY 1 dx 

{ I  I .  
(Definition 1) .  By Fubini's theorem [19, Theorem 19, p. 2691 this is 
equal to 

$ ( y )  ( 1 / ~ 2  i f ( X ) e - l ~ ~  dx dy = 1 ( P ( ~ ) P O ~ )  dy = ~ 4 ) .  
Thus for functions in L,(R)  our new definition of the Fourier trans- 

form is consistent with the one we gave earlier. It follows that the 
Fourier transform on L , ( R )  has an inverse. 

Plancherel was the first to show how one could define a Fourier 
transform on L,(R). He also showed that the map that takes each 
f~ L,(R) to its Fourier transform is an equivalence (Section 3.1, 
Definition 2 )  from this space onto itself. The definition of the Fourier 
transform given by Plancherel is different from the one given above [S, 
p. 471; we can however, still get his results. 

Theorem 4. I f f €  L,(R) then there is a function f~ L,(R) such 
that ff = T,. Furthermore, )I f \ /  = 1 l f ) I  
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Proof. I t  follows from Theorem 3 that 1(q5112 = 11c$112 for each 
# E Y ( R ) .  Thus 1 pf(4)l 5 ( ( f ( ( 2  ( ( 1 $ 1 ( ~  for all # E Y ( R ) .  Now this 
inequality holds for all # E C;(R)  and the latter is norm dense in 
L,(R) (Section I ,  Theorem 1). Hence ffdefines a continuous, linear 
functional on the Banach space L,(R). But then there is an f~ L2(R)  
such that (1 ff(l = 

Now work with the temperate distribution Ts and its Fourier trans- 
form. As above, there is a function f~ L,(R) such that IIff;II = I l f ( 1 2  
and F,(g) = j g(x)f(x) dx for all g E L2(R).  In the first paragraph of 
this proof we saw that, in particular, Ff= Ts on C;(R) .  Since the 
latter space is dense in .V'(R) (Section 2, Theorem 2) we must have 
fJ = Tf on .V(R). Thus fJ = ff and so 14(x).f(x)dx = 

j , f ( x )$ (x )  dx for all 4 E C,"(R). 
If T E Y ( R ) ,  4 E C$(R)  then f(#) = T ( $ )  and it is easy to see that 

$(x) = 4( -x). Thus 

and pJ(g) = J g(x)J(x) dx for all g E L2(R) .  

[ 4 ( X ) f ( X )  dx 

= 1 f(x)$(x) dx = f(x)4( - x)  dx = [ f( - x)4(x) dx, 

and so [.f(.x) - f (  - x ) ] ~ ( x )  dx = 0 for all 4 E C,"(R). Clearly, this 
means , ,d (x) = f (  - x)  almost everywhere in R ;  note that (1 f (1 = j-11 2 .  

But I(f!I2 5 . f 1 I 2  2 j l . f ( ) 2  by the first part of the proof. We conclude 
that l l f l l z  = Il. f l12 for a l l JE  M R ) .  

Corollary. For anyf E L,(R),,f(x) is the limit, in the Banach space 
L2(R) ,  of {( 1/271)"~ r- ,f(y)e-'"' d y  1 h > 0) as h -+ 00. 

Proof. For h > 0 setfh(x) =f(x) when I x I I h, and set it equal to 
zero otherwise. Clearly, Iimh4m ( / f h  -j(I2 = O and, since ,f+f is an 
equivalence on L2(R) ,  hence,f(x) is the norm limit ofA. In the proof of 
the theorem we saw that 

1 .&(x)4(4 dx 

= 1 ,fh(x)#(x) dx = i h  j-(x) [ ( 1 p n ) l / 2  j 4(y)e-'XY dy ] dx 
' - h  

for all # E C,"(R). Since fh is obviously in L,(R)  we can change the 



4. DISTRIBUTIONS: DEFINITION AND CHARACTERIZATlONS 123 

order of integration to get S [(1/2n)''' r_,, , f ( x ) e - i "y  r lx]4(y)  dy. The 
corollary now follows from the fact that C;(R) is dense in L,(R). 

Remark. Many of the results of this section are valid when the 
various function spaces are defined on R", n > 1. When stated in this 
more general form they have important applications to the theory of 
partial differential equations (see [ 11, 281). 

4. Distributions: Definition and Characterizations 

A distribution in R (recall that R is an open subset of R") is a linear 
functional on C:(i2) that is continuous for a certain locally convex 
topology on this space. We shall define that topology now. 

Let X be the family of all compact subsets of 0. For each K E # 
let c/,(R) = { f ~  C;(R)(suppfc K ]  and, for each nonnegative 
integer t n ,  let p,( f )  = sup{ ( D ' f ( x ) l  Ix E K ,  1 s 1 I m).  Each pm is a 
seminorm on 9,(R) (Exercises 1, problem l), and the family 
{pm 1 m = 0, 1, 2, . . .) defines a metrizable locally convex topology on 
this space, which we shall denote by t ,  . Also, vh(n)[t ,]  is a Frechet 
space (Exercises 2, problem 1). We can now define a topology on 
C;(R) as follows (the terms used were defined in Sections 4.2 and in 
Exercises 4.2, problem lb):  

From euch of the spaces 9,(0) choose a t k -  neighborhood of zero, 
U,, which is absorbing, balanced and conuex, and let U be the convex 
hull of u { U ,  I K E 3';. k t  4 be the family of all set5 which are con- 
structed in this way. 

We are going to show that there is a unique Hausdorff, locally 
convex topology (we shall call it t*) on C;(Q) that has '0 as a fun- 
damental system of neighborhoods of zero. Before doing that, 
however, we must mention some of the properties of the sets in this 
family. For any set S denote the convex hull of S by conv S .  

(i) l f  U ,  I/ are in Jk, then U n V contains a set in #. 

Proof. We have U = conv u ( U ,  I K E A'}, 

I/= conv u { V ,  I K E ,f) 
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where each U ,  , V, is an absorbing, balanced, convex neighborhood of 
zero in (r,(R)[t,]. Clearly, each of the sets U ,  n V, also has these 
properties and U n V 3 conv u { U ,  n V, 1 K E ,#). 

(ii) n { U  I u E JU) = {O). 

Proqf AnyfE C;(Q) is in some 9&2). Iffis also in every set in 
JU, then it is in every [,-neighborhood of zero in this gn,.(R). But since 
t ,  is a Hausdorff topology, f = 0. 

( i i i )  I f  U E 4! unrl a is  u posirive scalar, then a U  E Jd!. 

Proof We have U = conv u { U ,  I K E X ) .  So if y E U ,  then we 
must have y = c:=l a , ~ , ,  where each y, is in some U,, c1, 2 0, for 
i = 1, 2, . . ., n, and I:=, a, = 1 (Exercises 4.2, problem lb). But then 
a)' = 1 a,(ay,), which says cry is in conv U ( o U ,  I K E H } .  Since each 
of the sets aU, is an absorbing, balanced, convex neighborhood of 
zero in V,(Q), this last set is in JU. But oU = conv u { O U ,  I K E 3'); 
hence a U  is in JU. 

Lemma 1. Let X be a vector space over K and let +Y be a family of 
absorbing, balanced, convex subsets of X that has properties (i), (ii), 
and (i i i )  stated above. Then there is a unique Hausdorff, locally convex 
topology on X that has 'd! as a fundamental system of neighborhoods 
of zero. 

Proof For each U E J !  let pu be the gauge function of U (Section 
4.2). By ( i i i )  the family { p u  1 U E 4!) satisfies the separation condition 
(Section 4.1, Lemma 2), and so the topology defined on X by this 
family is Hausdorff. I t  is also locally convex. The construction process 
(Section 4.1) together with properties (i) and (ii) show that 'd! is a 
fundamental system of neighborhoods of zero for this topology. 

Finally, any two locally convex topologies on X that both have 'I/ 
as a fundamental system of neighborhoods of zero must coincide (Sec- 
tion 4.3, paragraph after Definition 1). 

Remurk. Recall the family of sets +?l defined on the space C'r(C2) 
above. There is a unique, Hausdorff, locally convex topology t* on this 
space that has I / !  as a fundamental system of neighborhoods of zero. 
The space C:(Q) together with the topology t* will be called the space 
of test functions in R. The space C$(Q)[t*] will be denoted by "(Q). 
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Definition 1. A continuous, linear functional on 9(Q) will be 
called a distribution in R. The set of all distributions in R (i.e., the dual 
of .9(R)) will be denoted by 9'(R). 

We shall show later on that this terminology is consistent with that 
of Section 3, Definition 2. Right now we are going to examine t* in 
some detail and establish some of its properties. The main result is a 
very useful necessary and sufficient condition for a linear functional on 
CF(f2) to be a distribution in R. 

Lemma 2. For each K E SP let j ,  be the inclusion map from 
9 , ( Q ) [ t K ]  into CF(R). Then t* is the strongest locally convex topology 
on C?(Q) for which each of the maps j K  is continuous. 

Proof If U is any t*-neighborhood of zero in 93(R), then U con- 
tains a set of the form conv u { U ,  I K E &?}, where each U ,  is a 
t,-neighborhood of zero in 9,(Q). Sincej,'(U) ;3 U,, it is clear that 
each j ,  is continuous when C;(Q)  has the topology t*. 

Let t be any locally convex topology on Cg(f2) for which each of 
the maps j ,  is continuous, and let U be any absorbing, balanced, 
convex, t-neighborhood of zero. For each K E P define U ,  to be 
j i  '( U) = CT n 9,(SZ). Since j ,  is linear and continuous, each U ,  is an 
absorbing, balanced, convex, t,-neighborhood of zero in 9,(R). But 
clearly U =I conv u ( U ,  1 K E a}. Since the latter set is a 
t*-neighborhood of zero, t is weaker than t*. 

Corollary. Let G[s]  be any locally convex space and let g be a 
linear map from 9 ( R )  into G[s] .  Then g is continuous iff each of the 
maps g o j ,  is continuous. 

Proof. Let W be an absorbing, balanced, convex, s-neighborhood 
of zero in G and assume that each of the maps g o j ,  is continuous. 
Then ( g  oj,)-'(W) = j i 1 [ g - l ( W ) ]  = g- ' (W) n 9,(Q) is a t,-neigh- 
borhood of zero in 9,(Q), for every K E X.  Since g is also linear, each 
of these sets is absorbing, balanced and convex. Clearly, g -  '( W )  3 
conv U { g -  ' ( W )  n g,(R) 1 K E X ]  and, since the latter set is a 
t*-neighborhood of zero, g is continuous. 

We can use this corollary to prove that a continuous, linear func- 
tional on .Y'(R")[t,] (Section 2, before Theorem 2) is a distribution in R" 
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in the sense of Definition 1.  We have mapsj, from (IIK(R") into CI(R"), 
for each K ,  and we have an inclusion map I from 9 ( R " )  into .V(R"). 
We shall show that I is continuous by showing that each of the maps 
I j ,  is continuous. I f  a compact set K ,  an integer k ,  and a multi-index 
.s are given, we first let M = maxi( 1 + 1.x I Z ) k  1x E K )  and we note that 

max(l(1 + I.xl')'D'f(.x)) 1.x E K ]  I M max(IDsf(x)I I x  E K )  

for any f~ V,(R"). I t  follows from this that I is a continuous, linear 
map from 9 ( R " )  into cJi(Rn)[td]. Now the map I*, defined by 
I * ( S )  = S I for every S E Y ' (R" ) ,  clearly maps .Y'(R") into 9'(R") .  
But, since I (V(R'))  is t,-dense in Y ( R n )  (Section 2, Theorem 2) this 
map must be one-to-one. 

Before proving our main result of this section we must establish the 
following lemma. The reader may want to recall the definition of a 
bounded subset of a locally convex space (Section 4.3, Definition 3). 

Lemma 3. Let X [ t ] ,  Y[s] be two locally convex spaces over the 
same field, and let T be a linear map from X into Y. Assume that the 
topology t is metrizable. Then the map T is continuous iff the set 
T(B)  = ( T ( x )  I x E Bj is s-bounded in Y whenever B is t-bounded in X .  

Prou/!f: I f  T is continuous then, since it is linear, it must map 
bounded sets to bounded sets (Exercises 4.3, problem 3c). Assume that 
T satisfies our condition, let U be a balanced, convex, s-neighborhood 
of zero in Y,  and observe that T -  '( U )  is a balanced, convex subset of 
X that absorbs all bounded sets (i.e., if B c X is a t-bounded set, then 
for some (T > 0, B c a[T- '( U ) ] ) .  

Let [U,j be a countable fundamental system of t-neighborhoods of 
zero and assume that U ,  2 U , ,  , for all n. If T - ' ( U )  is not a t- 
neighborhood of zero in X ,  then, for each n, we can choose x, E n- ' U ,  
such that x, 4 T -  ' ( U ) .  Clearly the sequence {nx,} is r-convergent to 
zero and so it is a r-bounded set. But then {nx,) c a T - ' ( U ) ,  which 
implies that .x, E ( c / n ) T - ' ( U )  c T - ' ( U )  for all n 2 (T. This is a 
contradict ion. 

Theorem 1. A linear functional T o n  C;(R) is a distribution in R 
iff: To every compact subset K of S2 there corresponds a constant C 
and an integer k such that 1 T ( 4 ) (  4 C sup( \ D ' 4 ( x ) \  I x  E K, I s \  5 k }  
for all 4 E 9,(S2). 
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Proof: I t  is clear (Exercises 1, problem I )  that our condition on T 
can be restated as follows: To every compact subset K of R there 
corresponds a constant C and an integer k such that I T(4)  I 5 Cp,(4) 
for all 4 E li,(R). 

To prove this theorem we shall use the Corollary to Lemma 2. If 
T E I;"'(R) then each of the maps T j ,  is continuous; i.e., T j ,  is a 
continuous, h e a r  functional on yK(n)[t,]. It follows that there is a 
constant C and an integer k such that I T jK(4)  1 I Cp,(4) for all 
4 E 'r,(R). Thus any distribution in 51 satisfies our condition. 

Now assume that the linear functional T satisfies our condition. 
Let B be any t,-bounded subset of 'S,(R). Since p , ( B )  is a bounded set 
for each h (Exercises 4.3, problem 3a) our condition implies that 
T j,(B) is bounded set of complex numbers. It follows from Lemma 3 
that T j ,  is a continuous, linear functional on p,(n)[t,]. But since 
this is true for every compact set K in R the Corollary to Lemma 2 
shows that T E V'(f2). 

Theorem 2. A linear functional u on V(R) is a distribution in R iff 
lim ~ ( 4 , )  = 0 for any sequence {#,I of points of 9 ( R )  that has the two 
following properties : 

(i) There is a compact set K c R such that supp 4, c K for all j .  
(ii) For any multi-index s the sequence { D ' ~ , ( X ) ' ,  converges to 

Proof. Condition (i) says that the sequence {+,) is a sequence of 
points of /s,(Q). Condition (ii) says that {4,] tends to zero for the 
topology of 'rK(R). Now recall the Corollary to Lemma 2, which says 
that u is continuous on 9 ( R )  iff u j h  is continuous on CI',(SZ) for every 
K ;  here j K  is the natural inclusion map from 9,(R) into 9(Q). Since 
each .S,(SZ) is a metrizable, locally convex space, u j K  is continuous iff 
lim u jk(4]) = 0 whenever (4,; is a sequence in 9,(R) that converges 
to zero for the topology of this space, i.e., whenever {4,} is a sequence 
in Qh(R) that satisfies condition (11). This proves the theorem. 

zero uniformly over K .  

EXERCISES 4 

1. Define a sequence of compact subsets of R as follows: Let 
K O  = 0 and, for li 2 1, let K, = (x E R" I the distance from x to 
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R” - R is 2 Ilk, and the distance from x to zero is ~ k ] .  Show 
that K, is contained in the interior of K k + ]  for k = 0, 1, . . .  and 
that R = uF=o K , .  

2. Consider the space P ( R ) .  For each compact subset K of R and 
each nonnegative integer nz define p , , , , ( f )  to be 
sup( I D : f ( x )  1 1 x E K ,  1 s I I m )  for each f in this space. 
*(a) Show that each p K .  ,,, is a seminorm on P(Q) and that the 

family of all such seminorms satisfies the separation condi- 
tion (Section 4.1, Lemma 2 ) .  

*(b) Let to be the Hausdorff, locally convex topology defined on 
C“(R) by the family ( p , , ,  1 K E X’, m = 0, 1, 2, ...}. Show 
that to  is metrizable. Hint: Use problem 1 above. 

(c) Show that Cm(R)[to] is a Frechet space. 
Let (1.) be a Cauchy sequence in g(0); i.e., for every contin- 
uous seminorm p on this space, lim p ( f ,  - f m )  = 0 as m, 
n -+ 00. Show that there is a compact subset K of R such that 
supp,f, c K for all n. Hint: Suppose that there is a sequence 
{ x k )  in R that has no accumulation point, and a subsequence 
{ f k )  of (1.; such that j & k )  # 0 for every k. Let {Kk} be an 
increasing sequence of compact subsets of R whose union is 
R, and that satisfies: K O  = 0, x, E K ,  - Kk- for all k 2 1. 
Define p ( f )  to be 2 I?= ~ ~ ~ { f ( x ) / h ( x J J x  E K k  - &- 11. 
Finally, show that p is a continuous seminorm on s ( R )  but 
p ( f ,  -1,) does not tend to zero as m, n -+ 00. 

Use (a) to show that a sequence {fn} of points of 9 (R)  con- 
verges to fE  9(R)  iff: (i) There is a compact subset K of R 
such that suppf, c K for all n. (ii) For any multi-index s, 
( D ” f ( x ) }  converges to D ” f x )  uniformly over K .  

We refer to the sequence of compact sets { K , }  defined in 
problem 1 above. Let ;Cdk(R) = {f E cF(0) 1 s u p p f c  K k )  

and let f k  be the usual topology on this space. If K is any 
compact subset of R and if K c Kk show that the restriction 
of t ,  to PK(R) coincides with t k .  In particular, 

For each k we have an inclusion map j k  from g k ( n ) [ t k ]  into 
C$’(Q). Let t** be the strongest locally convex topology on 
C?(R) for which each of these maps is continuous. Show 
that t** = t * .  
If K is any compact subset of R show that the restriction of 

f,+ 1 1 yk(n) = t k  for all k. 
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t* = t** to 9,(R) coincides with f K .  Hint: It suffices to 
show that t* 19jk(R) = t ,  for every k .  Fix k and let 
V, = {f E gk(R) 1 p,,,,(4) I E ,  for 1 I i I n}. Then for any p 
let V,,, = {YE Q , + , ( R ) ~ p n ~ , ~ ( ~ )  I E ,  for 1 I i I n),  and let 
V =  V,,,. Note that 

V f-7 %+,(Q) = V,+,, n %(R) = V,, 
and, if 

1 < k ,  I/ n 9,@) = [V n 9,(!2)] n 9j,(R) = V ,  n 9,(R).  
Finally, note that V is a t*-neighborhood of zero. 

(d) For any compact subset K of R show that the space g(o)[tK] 
is a closed, linear subspace of 9(R). 

(e) Show that the topology t* is not metrizable. Hint: First 
observe (see problem 3)  that if t* were metrizable then 9 ( R )  
would be a Frechet space. Since g ( R )  = ur= 54,(R) and 
since each gk(n) is closed in 9 ( R )  (by (d)), our claim follows 
from the Baire category theorem. 

5. Distributions: Examples, Properties, 
and Applications 

Here we shall establish the principal properties of distributions and 
present some examples. We shall use the characterization given in 
Theorem 1 of the last section as our starting point. Recall: A linear 
functional Ton  Cr(R) is a distribution in R iff to every compact subset 
K of R there corresponds a constant C and an integer k such that 

1 ~ ( 4 )  I I C sup{ 1 O ” ~ ( X )  1 I x E K ,  I s  I I k }  for all 4 E gK(Q).  

(a) Examples. (i) A functionfin R is said to be locally integrable if 
I f ( x )  1 dx < co (the integration is 

f(x)+(x) d x  
for every compact subset K of R, 
over the set K ) .  For any such functionfdefine Tf(c$) = 

for all 4 E 9(R). Then Tf is a distribution in R. 

Proof: For any compact subset K of R we have 



130 7. THE THEORY OF DISTRIBUTIONS 

for all 4 E Yk(R). So TJ satisfies our criterion for a distribution in R 
where C = jk I f (x) 1 d x  and k = 1. 

( i i )  We recall that a G-delta in R is any subset of R that is the 
intersection of a countable family of open sets, and that a o-ring is a 
family of sets that is closed under complements and countable unions. 
The Baire sets in Rare  the elements of the smallest o-ring that contains 
every compact G-delta. I f  p is a complex-valued measure on the Baire 
sets in R such that I ( K )  < 00 for every compact set K ,  then the 
functional 7;, on 9(R),  defined by T’,(4) = 4(x) dp(x)  for every 
4 E 9(R),  is a distribution in R. 

Proof For any compact subset K of R and any 4 E VK(R) we 
have 

I q4) I 5 I. I4b)  I 4 4 x )  5 IP I ( K )  SUP{ I4b)  I I x E Kl. 

So 7;, satisfies our criterion for C = Ip  I ( K )  and k = 1. 

(iii)For any fixed point a E R define 6, on the Baire sets of R as 
follows: 6 , (A)  = 0 if a 4 A,  cS,(A) = 1 if.a E A.  By (ii) 6, defines a dis- 
tribution in R, which we shall denote by T,. We call T,  the Dirac 
distribution at the point a. 

(b) Multiplication. For any T E 9’(!2) and anyfE  P ( n )  we can 
define a linear functional S on C t  (R) by letting S(4) = T(.f4) for all 4 
in this space. We claim that any such S is a distribution in R. 

Proof. Let K be a compact subset of R, let C and k be such that 
1 T ( 4 )  1 I C sup{ 1 D’+(x)  1 1 x E K ,  1 .s 1 5 k }  for all 4 E YK(R). Recall 
that, for any two multi-indices j = ( j l ,  j 2 ,  . . . , j,) and q = (ql ,  . . . , 4,), 
the symbol (i) means 

where 

We also recall the Leibnitz formula D’(ji4) = CqSj (j,)D4jDfo’-q4, and 
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we let M = sup{ 1 D;f(x) 1 18x E K,  I s  I 5 k ) .  I t  follows that 

(c) Differentiation. 1f.f; @ are in C,"((O, 1) )  then, using integration 
by parts, we find that J . f ' (xW(x) rlx = -1 , f (x)@'(x)  dx. So if dT/dx 
denotes the distribution defined byf'(x) (as in (a), example (i)), then we 
have rlT/dx(@) = - TJ(4') for all @. This observation motivates the 
following: 

Definition 1. Let T be any distribution in R. We define D'T as 
follows: D'T(4) = ( -  l)ISIT(DS&) for all 4 E Y(f2). 

We must show that D'T E Q'(f2). However, for any compact subset 
K of R we have C and k such that I T ( 4 )  I I C sup/ 1 D'@(x) 1 1 x E K ,  
( Y (  I A ]  for all 4 E PK(R), and clearly D'T must satisfy a similar 
inequality. 

I f  !2 = R and H ( x )  = 1 for x 2 0 and = 0 for x < 0, then clearly 
dTH/dx(4) = -J  H(x)#'(x) dx = -10" @(x)  dx = &(O) = %(4), where 
To is the Dirac distribution at zero. So the distributions dTJdx 
and To are equal. 

Definition 2. Let U be an open subset of R. There is an inclusion 
map I from Y(U) into 9 ( R )  that is clearly continuous. Hence I*, where 
I*(T) = T I for all T E Y(Cl), maps Ir'(Cl) into 9 ' ( U ) .  If  T E 9'(!2), 
we shall call T I the restriction of T to U .  We shall say that S, 
T E 9'(!2) are equal in U if their restrictions to U are equal. 

Theorem 1. Let w be an open subset of R" whose closure is 
compact, and suppose that this closure is contained in Q. Then for any 
T E V(R)  there is a n j E  L,(w) and an integer rn such that the distribu- 
tions T and Dy D y  D y  . ' . 03 are equal in w ;  here DY = am/ax7.  
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P r m f  Given T E V(R)  we seek a functionfE L,(w) such that, 
for any d, E Cr(w) ,  we have: (1) T(d,) = (D; l . . .  DY)4 = 

(-  1)'"" J , f ( x ) [ D ;  . . .  D:d,(x)] dx. If  we had such a functionfand ifwe 
let C = /I ,f 11 , then (1)  would yield: (2) 

for all d, E Cg(w). 

some constant C and some integer m. Clearly 
Now suppose that we have a distribution S in R that satisfies (2) for 

{ ( - I)""&' . D:d,(x) 1 4 E C ~ ( W ) )  

is a linear subspace of L,(w), and inequality (2) says that the map that 
takes ( -  1)""DT ... Drd, (x)  to S(4) is continuous on this subspace for 
the ,!,,-norm. By the Hahn-Banach theorem we can extend this map to  
a continuous, linear functional on all of L,(w), whose norm is I C. 
But since L,(w) is the dual of L,(w) this means that there is a function 
f~ L,(w) that satisfies ( I ) ,  and for which I j f I j ,  I C. 

The argument up to this point shows that, to prove the theorem, it 
suffices to show that any T E Y(Q)  satisfies (2) for some constant C 
and some integer i n .  Now the closure of w, cl w, is compact, and so 
there is a constant C and an integer k such that IT(@))  5 
C sup{ 1 D'd,(x) [ 1 x E cl o, 1s I I kj for all 4 E Pc, &2). Let @ E Corn(,) 
and, for fixed j ,  let a, be the upper bound for 
{ I x, 1 I x = (x ,, . . . , x,) E 0). By the mean value theorem sup 1 @(x) 1 I 
a, sup ID, $(x) I for all such $ and, by repeated use of this estimate we 
obtain: (3) 1 T(d,) 1 I C' sup 10: . . .  d,(x) I. For any d, E C:(w) we 
can write d,(x) = ( -  I )"  J D, . . .  D,d,(x) d x ,  where the integration is 
over the set y < x, i.e., y ,  < xl, y 2  < x 2 ,  ..., y, < x,. SO (4) 
supl4(x) 1 5 C' j suplD, ... D , d , ( x ) (  dx. From (3) and (4) we get (2) 
with m = k -k 1. 

Our next result relates the derivative of a distribution that is 
defined by a function to the classical derivative of that function. We 
recall the nonnegative, C"-function w whose support is the unit ball of 
R", which is positive in the interior of that ball, and satisfies 
j w(x) dx = 1 (Section 1, before Lemma 1). 

Theorem 2. Let ,q,.fbe two continuous functions in R and suppose 
that, as distributions, D j g  =,f (here Dj = d / d x j ) ,  i.e., D j  T,(+) = T,(4) 
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for all 4 E 9(R). Then D j g  exists in the classical sense and is equal to 
the function f(x). 

Proof: We want to prove that D j g  exists at each point x E R and 
is equal tof(x). By making suitable use of a function in C,"(R) that is 
one on a neighborhood of x we see that we may assume that both g 
and f have compact support in R. 

For any E > 0 let gE(x) = E-" 1 g(y)w[(x - y ) / ~ ]  dy. We have 
already seen that g,(x) E C;(R) and that it tends to g(x) uniformly in R 
as E tends to zero (Section 1, proof of Lemma 1). Now 

by hypothesis. This last term is E-" 1 f ( y ) w [ ( x  - y ) / ~ ]  d y  = f,(x). Thus 
DjgE(x) tends tof(x) uniformly over R as E tends to zero. It follows that 
D j g ( x )  exists and that it is equal to f(x). 

(d) Support. Iffis a continuous function in R we have defined the 
support of ,L suppf, to be the closure of {x E R 1 f (x )  # 0). We are 
going to define the support of a distribution in R in such a way that, in 
particular, the support of Tf coincides with supp f :  

We shall say that a distribution T in R vanishes on the open subset 
U of R if the restriction of T to U (see Definition 2 above) is zero. 

Lemma 1. If a distribution in R vanishes on each member of a 
family of open sets, then it vanishes on the union of this family. 

Pro05 Let {U, ,  I v E J )  be a family of open subsets of R, let 
T E U'(R), and assume that T vanishes on U,, for each v E J .  We 
construct an open covering of R as follows: Choose p $ J ,  let U be the 
union of the family { U ,  1 v E J } ,  choose C#J E 9(Q) with supp 4 c U ,  
and set U ,  = D - supp 4. Then, setting I = J u {p}, we have a cover- 
ing { U ,  I v E I }  of R. 

There is a C"-partition of unity {a,. I v E I }  that is subordinate to 
this covering (Section 1, Theorem 2). Clearly, 4 = C {a,, 4 1 v E I }  and 
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so T ( 4 )  = (T(a ,  + ) l v  E I } .  Now if v E J ,  then T(a, 4 )  = 0 by 
hypothesis. Also, since supp a,, c U,,  = R - supp 4, a,, 4 = 0 and so 
T ( N , ~ )  = 0. Thus T(4)  = 0 for every 4 E V ( U )  and this says T van- 
ishes on U .  

Definition 3. For each T E Y(R)  consider the family of all open 
subsets W of R such that T vanishes on W. Let U be the union of this 
family. Then we define the support of T, supp T,  to be the set R - U .  

Suppose that .f is a real-valued, continuous function in R and let x 
be any point at which,fis not zero. Then for any neighborhood U of x 
there is a neighborhood V of x such that I/ c U andf i s  of constant 
sign on I/. Choose one more open neighborhood (call i t  W )  of x in such 
a way that, denoting the closure of W by cl W, cl W c V.  There is a 
function 4 E g ( R )  (Section I, Corollary to Theorem 2)  such that: 
0 I +(y) I 1 for all y E R ;  + ( z )  = I for all z E cl W ;  $ ( y )  = 0 for 
y # V .  Then T'(4) = ~ , f ( y ) 4 ( y )  d y  # 0 and so x E supp T,; i.e., we 
have shown that supp , fc  supp Tf . 

Now suppose that z # supp ,f Choose any neighborhood of z that is 
disjoint from supp.f and notice that T,(q5) = 0 for all functions @ 
whose support is in this neighborhood of z .  Thus z # supp T,. So the 
support of the functionfcoincides with the support of the distribution 

We leave it to the reader to compute supp T, whenf'is a complex- 

The next theorem requires that we recall the topology t o  defined on 

T / .  . 

valued, continuous function in R. 

P(n) (Exercises 4, problem 2b). 

Theorem 3. The dual of the locally convex space P(R)[ t , ]  is 
isomorphic to the space of all distributions that have compact support 
in R. 

P r m f  Let S be a linear functional on P ( R )  that is to-continuous 
on this space. I t  is convenient to give the proof in steps. 

( i )  Corresponding to the given linear functional S there is a com- 
pact subset K of R, a nonnegative integer m, and a constant C such 
that: 

(*) I S ( , f )  I I C sup{ ( D ; f ( x )  I 1.x E K ,  1s I I 171) for all j ' ~  P ( R ) .  
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Since S is to-continuous there is a to-neighborhood (call it V )  of 
zero in Cm(R) and a constant C such that 1 S ( f )  1 I C for allfe V. We 
may assume, because of the definition of t o ,  that there is a compact 
subset K of R and a nonnegative integer rn such that 
I/ = { f ~  Cm(R)IpK,,(f) < 1). Condition (*) is equivalent to 

If p K , , ( f )  = 0, then the same is true of cif for any scalar c c ;  i.e., 
cif E I/ for all ci. But then 1 S(cif) 1 I C for all ci implies S ( f )  = 0. Thus 
(*) is true for anyffor which p, ,  ,(I) = 0. 

Now suppose p,, ,(f) # 0. Thenflp,. ,(f) is in Vand so 1 S ( f )  I I 
Cp,, , ( f )  for any such J 

(ii) Here we shall define a one-to-one, linear map y from the dual of 
Cm(R)[t,] into g'(R).  

To the given functional S we have associated a compact set K 
(condition (*) above). Choose, and fix, $ E C,"(R) such that $(x) = 1 
for all x in some open set containing K (Section 1, Corollary to 
Theorem 2). For any f~ Cm(R), f= f$  + (1 - $)f and so S ( f )  = 
S(f$) + S[(1 - $)f]. Since (1 - $)f is  zero in a neighborhood of K ,  
condition (*)tells us that S vanishes at this function. So we have shown 
that S ( f )  = S( f$)  for all f~ Cm(R). 

Now regard S as a linear functional on C,"(Q). We recall the inclu- 
sion maps j ,  from 9,(R) into Cg(R) and we also recall that to prove 
that S is continuous on 9(R)  it suffices to show that, for any K ,  Soj,(B) 
is a bounded set whenever B c 9,(R) is bounded (Section 4, Corollary 
to Lemma 2, and Lemma 3). If B is a bounded subset of 9,(i2) then 
($4 4 E j,(B)) is to-bounded in C"(R)-this follows immediately 
from the way the seminorms defining to are defined. But since S is 
to-continuous on Cm(R), the set {S($$) 1 $ E j,(B)} is bounded. 
However, {S($4) 14 E j K ( W  = P(4) 14 E .iK(B)) by the paragraph 
above. Thus S 0 j ,  is continuous for any K and so S defines a distribu- 
tion y (S )  in 0. 

Clearly y is a linear map from the dual of Cm(R)[to] into 9'(Q). Let 
us show that y is one-to-one. If S, T are in this dual space then so is 
S - T. By the first paragraph of the proof of (ii) we can choose 
$ E C,"(R) such that (S - T ) f =  (S - T)$ffor a l l fe  Cm(R). If y ( S )  = 
y(T), then y(S)$f= y(T)$fbecause $ f ~  g(R) .  But then (S - T ) f =  0 
for a l l fe  P ( R )  and so S = T.  

1 S ( f )  1 I CP,, m ( f )  for a l l f ~  cm(Q). 

( i i i )  We will now show that y (S )  has compact support. 
Recall the compact set K associated with S (condition (*)) and that 

S ( f )  = S($f) for allfE Cm(R), where $ is any C,"-function that is one 
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on a neighborhood of K .  I f  4 E Cz(Q) and supp 4 n K = 0, then we 
can choose $ E C;(Q) such that I) is one on a neighborhood of K ,  but 
I) is zero on supp 4. I t  follows that y(S)$ = 0 and, since this is true of 
every 4 with supp 4 n K = 0, supp y (S )  c K .  

(iv) The only thing left to prove is that y is onto. 
Let So E V(Q) and let K = supp So be compact. We define a linear 

functional S on P(Q) as follows: Let I) be a fixed C"-function that is 
one on a neighborhood of K ,  and set S( f )  = S,($f) for all f ' ~  C m ( Q ) .  
Let B be any [,-bounded subset of P(Q) and note that {$f I f~ BI is a 
bounded subset of V(Q). Since So E Y(Q) and {S( f )  I f~ B) = 
{ S , ( I ) f ) l  f~ B], this set is bounded. I t  follows that S is 1,-continuous 
on C" (Q) (Exercises 4, problem 2b, and Section 4, Lemma 3). To prove 
that y is onto we need only observe that, by the third paragraph of ( i i i ) ,  
y ( S )  = so. 

(e) Convolution. There does not seem to be any really simple way 
of treating this topic. However, the usefulness of the convolution oper- 
ation fully justifies the efforts made to define and study it .  

1f.L g are C"-functions on R and if g has compact support, then the 
convolution of.fand g,.f * g, is defined as follows: 

Observe that, because of our assumptions on f and g, .f * g is well 
defined,f * y(x) = g * , f ( x )  for all x, and,f * g(x) = Tf[g(x  - y)], where 
the distribution Tf is applied to the function g(x - y) of y ;  here x is 
fixed. With this as motivation we can define the convolution of a 
function and a distribution in two important cases. 

Definition 4. Let 4 E V(R") ,  u E 9'(R") .  We define the convolu- 
tion of u and 4 at x, u * 4(x), to be u [ 4 ( x  - y)]. We will sometimes 
write u * @(x) = uY[4(.x - y)], where the notation is meant to empha- 
size the fact that we are applying the distribution u to the function 
@(.x - J,) of y ;  x is fixed. 

If  4 E C 5 ( R " )  and the distribution u has compact support in R", 
then we define u * 4(x) to be U,,[~(X - ?')I. This has meaning (Section 
5, Theorem 3). 

From the definition of the support of a distribution it is immediate 
that u * $(x) = 0 unless the support of u meets the support of $(x - y) 
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(as a function of y);  i.e., u * 4(x) = 0 unless there is a y E supp u such 
that x - y E supp 4. Thus 

supp u * 4 c supp u + supp 4. 
In particular, if both u and 4 have compact support, then so does 
u * 4. 

Lemma 2. If Q, E I;/(R") and ti E a'(R"), then u * 4 E Cm(R").  
Also, for any multi-index s, D"(u * 4 )  = ( P u )  * 4 = u * (D"). The 
same conclusions hold if the function 4 is in Cm(R")  and the distribu- 
tion u has compact support. 

Proof. Let 4 E 9 ( R " )  and let { x J ]  be a sequence of points of R" 
that converges to the point x. Then the C"-functions 4J(y) 5 
4(xJ - y ) ,  j = 1, 2, 3, . . ., converge to the C"-function &(y)  5 
4(x - y )  in the following manner: (i) There is a compact set K such 
that supp 4J c K for all j .  (ii) The sequence (o"4,f converges to D'40 
uniformly over K ,  for any multi-index s. Hence (Section 4, Theorem 2), 
lim ~ ( 4 ~ )  = ~ ( 4 ~ )  for every u E 9 ' (R") .  But this says that 
lim u * ~ ( x J )  = u * Q,(x); i.e., u * Q, is a continuous function. 

In order to prove that u * 4 E C"(R") it suffices to prove the differ- 
entiation formulas stated in the hypothesis. First let s be a multi-index 
such that 1 s I = 1, and let ek be a unit vector along the positive xk axis 
of R". Now 

(u * 4(x + he,) - u * 4 ( x ) } h - '  

= u,[($(x + he, - y )  - $(x - y ) } h -  '1. 
If, in this equation, we let h run through a sequence converging to zero, 
then the quantity in square brackets will converge to d$(x - y)/dx, in 
the manner described in (i) and (ii) above. Since h can run through any 
sequence converging to zero and the conclusion still holds, and since 
u E 9' (Rn) ,  the right-hand side of our equation converges to 
u * (dc$/dx,) as h tends to zero. Hence the left-hand side of our equa- 
tion also converges as h tends to zero, and clearly its limit is 
d(u * 4 ) / d x k .  The proof can now be completed by induction. 

So u * 4 E C" and D"(u * 4 )  = u * Ds4 for all s. The fact that 
D'u * 4 = u * DS4 follows from the definitions. 

In case the function 4 is in C"(R") and the distribution u has 
compact support the proof above goes through almost without change. 
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Corollary 1. Let u E B'(R") and, for each 4 E 9(R") ,  let V(4)  = 
u * 4. The map U ,  from B(R") to C"(R"), has the following property: 
If {q!~~) is a sequence of points of 9 ( R " )  that converges, for the topology 
of 9(R") ,  to &, then lim U ( 4 j )  = U(4 , )  for the topology of Cm(R")). 

If 4 E C"(R") and the distribution u has compact support, then the 
map U ,  U ( 4 )  = u * 4, from Cm(R") to Cm(R") is continuous. 

Lemma 3. Let 4, $ be two C"-functions on R", let u be a distribu- 
tion in R", and assume that any two of these three objects have com- 
pact support. Then (u  * 4 )  * $ = u * (4 * $). 

Proof. Recall that 4 * $(x) = f #(x - y)$(y )  dy, and since these 
functions are in Cm(R") we can approximate the integral by a Riemann 
sum, say E " ~ $ ( X  - eg)$(Eg) EL(.), where E > 0 is fixed and g runs 
through all points with integer coordinates. Observe that L(x) is a 
C"-function of x. Now for any multi-index s, DX(x) = 

E" 1 D s 4 ( x  - Eg)$(Eg), and this converges to (0'4 * $)(x) = 

[Ds(4  * $)](x) uniformly as E goes to zero. I t  follows that the sequence 
{fE(x) ( E  = l/n, n = 1, 2, 3, . . .} converges to 4 * $ for the topology of 
C"(R") if only one of the functions 4, $ has compact support, and that 
it converges to 4 * $ for the topology of B(R") if both of these func- 
tions have compact support. Hence u * (4 * $) = lim u * f ,  in either 
case (Corollary 1 above). Thus [u  * (4  * $)](x) = lim u * f E ( x )  = 

lirn E" C (u * +)(x - Eg)$(Eg) = [ (u  * 4 )  * $I(.) for all x. 

We have already seen (see (a), example (i)) that C"(R") c Q'(R"). 
Let us use Lemmas 2 and 3 to characterize the closure of this subspace. 

Theorem 4. The vector space C"(R") is weak* dense in g'(R"); 
i.e., it is dense in 9 ' ( R " )  for the topology o(9'(R"), 9 (R" ) ) .  

ProoJ: Choose o E C,"(R") with o 2 0, 

SUPP w = {X E R"I ( X I  < 1) 

and f w(x) dx  = 1. For E > 0 let w,(x) be E-"w(x/E) and note that 
u * w, is in C"(R") for every u E 9 ' (R" )  (Lemma 2). Hence, to prove 
the theorem, all we need do is show that u * w E ( $ )  converges to u($) ,  as 
E tends to zero, for all $ E 9(R") .  If $ E 9(R") ,  then $(x) 3 $( -x)  for 
all x is also in 9(R") ,  and u($)  = (u * $)(O) since (u * $) (O)  
= uy[$(O - y) ]  = u,[$(y)] .  Thus what we must show is that 
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u * (u,(x) = [ (u  * w,) * $] (O)  tends to u($) .  But, by Lemma 3, the left- 
hand side is equal to [u * (wE * $ ) ] ( O )  and, since w, * $ converges to $, 
we are done. 

For any fixed distribution u we can define a map U as follows: 
U ( 4 )  = u * 4 (see Corollary 1 to Lemma 2). It is clear that U is linear 
and we have already seen that it maps a convergent sequence onto a 
convergent sequence. This map has one more important property. For 
any fixed It E R" let 7,,4(x) = 4(x - h )  for every 4 E Cm(R"). Then 
7h(u * @)(x) = u * $(x - h )  = u,[@(x - h - y ) ] ,  and 

[u * (Th+)](x) = u y [ T h 4 ( x  - y)] = 'y [#( '  - J' - h)l' 
Hence u * 7 h  4 = 7h(u * 4) and it follows that 7h V(4) = U ( T h 4 ) ;  i.e., U 
commutes with translation. 

Lemma 4. Let U be a linear map from 9 ( R " )  into Cm(R") that 
commutes with translation and maps convergent sequences onto con- 
vergent sequences. Then there is a unique distribution u in R" such that 
U ( 4 )  = u * 4 for all 4 E 9(R"). 

If U is a continuous, linear map from Cm(R") into Cm(R") that 
commutes with translation, then there is a unique distribution u, with 
compact support in R", such that U(4)  = u * 4 for all 4 E Cm(R"). 

Proof. For each 4 E 9 ( R " )  let $(x) = 4( -x)  for all x. The map 
that takes 4 to U ( 4 ) ( 0 )  is a linear functional on g ( R " ) .  Let us assume, 
for the moment, that this map is a distribution (call it u )  in R". Then 

i.e., the equation u * +(x) = U @ ) ( x )  holds when x = 0. But U(7-h +)(O) 
= (u * 0-,,4)(0) = t - h [ l j ( q j ) ( O ) ]  = r-h[u * 4(0)]; i.e., 

U(4)(0) = 44, and so u * 440) = uy[4(0 - Y)l = uy[6(Y)l = U(4)(0); 

U(4)(h)  = * 
for all h. 

If U is a continuous, linear map from C"(R") to Cm(Rn), then the 
map that takes each 6 (4 E Cm(R")) to the number U ( 4 ) ( 0 )  is clearly a 
continuous, linear functional on Cm(R"). Thus this map is a distribu- 
tion with compact support in R" (Section 5, Theorem 3). The remain- 
der of the proof is the same as that given for the case above. 

We shall now show that the distribution u defined, as above, by the 
map U is unique. Suppose that there is another distribution u such that 
U ( 4 )  = u * 4 for all 4 E 9(R") .  Recall the C"-function w that is non- 
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negative, has for its support the unit ball in R", and satisfies 
J ~ ( x )  Ox = 1. For t: > 0 define w,(x) to be E-"w(x /E )  and recall that 
u * ~ ~ ( 4 )  converges to u ( 4 )  for every 4 E Y(R") (see the proof of 
Theorem 4). Thus if  u * (u, = c * w, for all E > 0, then u = u. 

Let u I ,  u2 be two distributions in R". Suppose that u2 has compact 
support. Then u2 * $ E  V(R")  for every 4 E 'J"(R"), and so 
u 1  * (u2 * 4) has meaning and is in Cm(R") (see the paragraph after 
Definition 4, and use Lemma 2). The map that takes each 4 E g ( R " )  to 
u 1  * (u2  * 4) is linear, sequentially continuous (Corollary 1 to Lemma 
2), and translation invariant (paragraph before Lemma 4). Hence, by 
Lemma 4, there is a unique distribution u such that 
u I  * (u2  * 4) = u * 4 for every 4 E 9(R") .  

Similarly, if u ,  has compact support (but u2 need not), then u2 * (p 
is in Ca(R")  and so u 1  * ( u 2  * 4) has meaning and is in C"(R") also. 
Again, there is a distribution u, which is unique, such that 
u 1  * (u2 * 4) = u * for all 4. 

Definition 5. Let u l ,  u2 be two distributions in R" and assume that 
at least one of them has compact support. Then u1 * u2 is defined to be 
the unique distribution u that satisfies u I  * (u2 * 4) = u * 4 for all 
4 E 9(R") .  

Note that, by definition, ( u I  * u 2 )  * 4 = u1  * (uZ * 4). I f  u I ,  u 2 ,  u3  
are in 9 ' (R")  and if all but one of them has compact support, then 

[(L11 * u 2 )  * U j ]  * 4 = (LlI * u2)  * (143 * 4) = U I  * L.2 * (u3 * 4)l 
= [141 * ( ~ 2  * ~ 3 ) 1  * 4 

for all 4 E ' r (R") .  So convolution is associative. 

Lemma 5. I f  u l ,  u 2  are in Y'(R")  and if at least one of these 
distributions has compact support, then u 1  * u 2  = u2  * u l .  

Proof: We have: 
( U I  * 142) * (4 * $1 = U I  * [u2 * (4 * $11 

= u1 * [$ * (.2 * 411 
= (by Lemma 3) u I  * [ ( u 2  * 4) * $1 

(convolution of C"-functions is commutative) = ( u l  * $) * (u2 * (p). 
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Similarly, (u2 * u l )  * (Cp * $) = (ul  * $) * (u2 * 4). So 

(u1 * .2) * (4 * $1 = (u2 * u1) * (4 * $) 

for all 4, $ in P(R"). This says that [(ul * u2) * 41 * I) = 

[ (uZ * u l )  * 41 * $ for all $ and, as we saw in the last paragraph of the 
proof of Lemma 4, this implies ( u l  * u 2 )  * Cp = (u2 * u l )  * 4 for all Cp. 
Using this same argument again we obtain u1 * u2 = u2 * u l .  

Lemma 6. Let u E 9 ' (R")  and let & be the Dirac distribution at 
zero (see (a), example (iii)). Then D'u = (D"T,) * u for any multi-index 
s. Also, if u, ,  u2 E Y'(R") and at least one of these distributions has 
compact support, then D5(u,  * u2) = (Dsul) * u2 = u1 * (Dsu2) for any 
multi-index s .  

Proof. Observe that (u * To) * 4 = u * (To * 4) = u * 4 for all 
Cp E Q(R"). Hence u * To = u and so 

(D'u) * 4 = u * (0'4) (Lemma 2) 

= [u * (D'Cp)] * To = u * [(D'@) * T,]  = u * [4 * (PT,)] 

= u * [(D'T,) * 41 = [u * (D'TO)] * 4 = [(WT,) * U] * 4 

for all 4. It follows that Dsu = (D"T,) * u and the second part of the 
lemma follows immediately from this formula. 

Let P ( w )  be a polynomial of degree m in the n variables wl, w 2 ,  . . . , 
w,; so w = (wl, w 2 ,  . . . , w,)  E R". If we replace each w j  by the operator 
Dj = d/dxj, we obtain a partial differential operator, of order m, with 
constant coefficients. We shall denote this operator by P(D). 

Suppose that for a given operator P ( D )  we have a distribution F in 
R" such that P(D)F,  the operator applied to F ,  is equal to (the Dirac 
distribution at zero). Then, if T is any distribution with compact sup- 
port in R", the equation P(D)S = T can be solved for S since P ( D )  
( F  * T )  = [P(D)F]  * T (by Lemma 6) = * T = T and so 
S = F * T. The distribution F is called a fundamental solution for the 
operator P(D) .  

We shall illustrate these ideas by finding a fundamental solution for 
the Laplacian in R". In order to do  this we shall need the next few 
results. 
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For any fixed E > 0 define OF(+) to be ~ I , I , E [ q 5 ( ~ ) / ~ ]  dx for all 
+ E 9 ( R ) .  Any such + has compact support and if supp c [-a, a], 
then I Or(+) I I max( I+(x) I I x E [-a,  u])2 log U / E .  Hence Qc E 9 ' ( R ) .  

I f  + E P ( R )  we may write +(x) = &(O) + .x$(x), where $(x) is a 
continuous function with $(O) = 4'(0). Choose a so that +(x) = 0 for 
1x1 > u. Then 

' F  < (XI  < a  

= +(O)(log a/f. - log a/&) + I $(x) dx .  
' L  < ( X I C U  

Thus lim,,,, Oc(+) = F a  $(x) d x  and we may define a linear func- 
tional Q, on 9 ( R )  by setting O(+) equal to this limit (for each 

Let us show that Q, is a distribution in R .  I t  suffices to show that for 
every compact subset K of R the map Q, 3 j ,  is continuous on g,(R), 
where, as usual, j, denotes the natural inclusion map. Choose and fix a 
compact subset K of R, choose a sequence ( ~ ( n ) }  of positive numbers 
such that E(n) = 0, and let I/ be a closed, balanced neighbor- 
hood of zero in the underlying field C. We can find another closed, 
balanced neighborhood of zero (call it W )  in C such that W + W c I/. 
Since each a,,,,) is a distribution in R, M = n:=, j ,  OF;,,!) ( W )  is a 
closed, balanced subset of (I'K(R). Now {OF,,,,(+) 1 n = 1, 2, , , .} is 
a bounded set of complex numbers because a,,,,,(+) exists for 
each fixed 4 E 9 ( R ) .  Hence there is a scalar CT such that CT@~(, , ) (+)  E W 
for all n. It follows that CT+ E M and so M is an absorbing set. Thus u;=, nM = QK(R). But I;n,(R) is a Frechet space (Exercises 2 ,  prob- 
lem 1 )  and so, by the Baire category theorem, M contains an open set. 
Let U be a neighborhood of zero in g,(R)  that is contained in M - M .  
We have OE,,,, j , ( u )  c a,(,,) oj,(M - M )  c W - W c V for every n. 
Hence O j,(U) c V and the proof is complete. 

4 E N R ) ) .  

Recall that the Laplacian is the operator V = d2/dxt + d2/dx$ + 
. . .  + d2/d.x; .  We shall assume that n 2 3 and we shall show that the 
following distribution is a fundamental solution for this operator: For 
each # f I;r(R") let 

where r = ( x i  + x i  + ... + and r denotes the gamma function. 
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From the definition of differentiation ((c), Definition 1) and the fact 
that l / F 2  is a harmonic function [4, pp. 252-2581 we see that 

Choose 1 so large that the set supp 4 is contained in the interior of the 
sphere, centered at zero, of radius I and let Q be the open set that is 
bounded by the spheres r = F and r = I ;  here E is a positive number 
that is less than 1. If  dQ denotes the boundary of R and aldn denotes 
differentiation in the direction of the outward normal to an, then, by 
one of Green's identities [4, pp. 252-2581, we may write 

( ' ( u V o - c V u ) d x =  1 I u a0 - u  a u  )da,, 
. Q " X l  i a n  dn 

where dw is the measure on dQ. In the case of interest here 
(lo = c"- ' 00 where da is Lebesgue measure on the unit  sphere (call it 
S) of R". So (3) becomes 

The first integral on the right-hand side of (4) is zero because l / r" -2  is 
a harmonic function. The third integral is bounded by some constant 
times I :  S do, and so it tends to zero with c. To treat the second integral 
we first note that 

Hence this integral becomes 

- ( n - 2 )  1 $ ( x ) r / a =  - ( ~ - ~ ) I S / ( I / ~ S / ) ! '  +(ro)do, 

where IS I denotes the surface area of S; i.e., IS 1 = 27r"'2/r(n/2). Thus, 
if we take the limit, as F. tends to zero, of both sides of (4) we obtain, 
using (2) and the above remarks, the equation 

.I=( r = c  
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where, as usual, To denotes the Dirac distribution at zero. I t  follows 
from this that F is a fundamental solution for the Laplacian. 

If  T is any distribution with compact support in R”, then a solution 
S ofthe equation VS = Tis S = F * T. In  particular, if  T = T,, wheref 
is a C“ -function, then 



A P P E N 1 ) I S  A 

Solutions to Starred Problems 
in Chapters 1-4 

I have said elsewhere that the first four chapters of this text are 
introductory. If that is the case, then my practice of leaving some 
results for the student and then referring to these results later, a prac- 
tice I consider quite reasonable in the latter part of the book, can be 
legitimately criticized. An introductory chapter should contain all but 
the most routine of details. For this reason I have asked one of my 
graduate students, Andrea Blum, to write up her solutions to the 
starred problems in Chapters 1-4. 

EXERCISES 1.1 

Problem 1.  By the triangle inequality I/x - y + yl/ I /(x - y ( (  + 
(ly/J. Hence I / Jx /J  - /lyll I 5 IIx - y/l for all x, y in E .  I f  {xn) is a se- 
quence of points of ( E ,  l / . I I )  that converges to xo E E, (Ix, - xg(I 
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tends to zero as n tends to infinity. Thus 1 llx, 11 - (/xo 11 1 tends to zero 
also. 

Problem 2a. If we assume that u is continuous at zero and if {x,) is 
a sequence of points of E that converges to xo , then lim u(x, - xo) = 0 
because x, - xo] converges to zero. By the linearity of u, this is equiva- 
lent to lim u(x,) = u(xo); i.e., u is continuous at xo . 

Problem 2b. Assume that there is a constant M such that 
~ ~ u ( x ) \ ~  5 M for all x in the unit ball of E .  If {x,} is any sequence of 
nonzero points of E that is convergent to zero, then ~~u(x , , /~~x,  1 1 ) 1 1  5 M 
for all n, or Ilu(x,)ll 5 Ml(x, I /  for all n. Since limllx, 11 = 0 we see that 
lim u(x,,) = 0 in E .  Thus u is continuous at zero and hence, by problem 
2a, continuous on E. 

Now assume that u is continuous on E. Suppose that for each 
positive integer n there is an x, E E such that I/x, 11 I 1 and 
IIu(x,,)ll 2 n. Choose such an x, for n = 1, 2, 3, . . . . Then the sequence 
(x,/IIu(x,)ll} converges to zero in ( E ,  I / .  11). Since u(x,,/~~u(x,)~~) has 
norm one for each n, we have contradicted the continuity of u at zero. 
Hence there must be a number M such that llu(x)lI s M for all x E E 
with llxll I 1. 

Problem 2c. If  there is a constant M such that 11u(x)11 I Ml(xl( for 
all x E E, then clearly u is continuous at zero and hence on E .  Con- 
versely, if u is continuous on E then there is an M such that 
ilu(x)ll I M for all x in the unit ball of E (by problem 2b). If x is any 
element of E that is not in this ball, then x/llx(l is in the unit ball. Hence 
/ ~ u ( x / ~ l x l ~ ) / ~  I M or l~u(x)l~ 5 MIlxll for all x E E. 

EXERCISES 1.3 

Problem 2c. It is clear that co is a linear subspace of I,. Suppose 
that {x" 1 n = 1, 2, . . .} is a sequence of points of co that converges to 
x E I ,  for the la-norm. We want to show that x E co. Here 
x" = {x; I k = 1, 2, ...I for each n and x = {xk 1 k = 1, 2, . . .}. For any 
E > 0 we can find an integer no such that ( /x" - XI / ,  < E for all n 2 no; 
i.e., sup{ 1 x; - xk I 1 k = 1,2, . . .) < E for n 2 no . It follows that, for each 
fixed k,  lirn x; = xk.  Also, if I is any integer, Ix, I 5 Jx,  - x;l + 
Ix;I < E + 1x71 for all n 2 no .  Fix n 2 no .  Then since {x;} E co for this 
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n, lim 1x71 = 0 (as 1 goes to infinity). Hence lim sup J x I  1 I E ,  but since 
e > 0 is arbitrary, lim x 1  = 0. So we have shown that x E co and also 
that c, is closed in ( I r n ,  1 1 .  11 m).  

We will now show that {e, I i = 1, 2, . . .} is a Schauder basis for 
(c,, [ i . l l m ) .  Let x = { x , l n  = 1, 2, . ..) be any element of co. Then 
[ lx -cL=l  x , e , / ~ , = s u p { ~ x , + , ~ ,  ~ x l + , ~ , . . . } .  Since X E C ~  this 
supremum tends to zero as I tends to infinity. So for any x E c, we have 
found numbers (x,} such that limJJx - EL= x, e, )I = 0. The unique- 
ness of these numbers is clear. 

The sequence {en)  is not a Hamel basis for 1, because 
the element { l /nz)  E ll  cannot be written as the linear combination of a 
finite number of these vectors. 

Given x = {x,) E 11, /1x - x,e, ] I 1  = , Ixk 1 .  Since 
I xk  I is finite, the latter sum tends to zero as 1 tends to infinity. So 

we have found numbers {x,} such that limllx - cL= x,e, 11 , = 0. It is 
clear that these numbers are unique. 

Probleni 4a. Let N be a proper, linear subspace of X .  Suppose 
that N is the null space of some nonzero elementfof X’. Then there is 
a point x, E X such that.f(x,) = t ,  t # 0. Clearlyf(x,/t) = 1 and so we 
may assume thatf(x,) = 1 to begin with. I t  is obvious that xo $ N but 
that, for any x E X ,  x -f(x)xo is in N .  Hence for each x in X we may 
write s = [x -f(x)xo] + f(x)x,, which shows that N has codimension 
one in X .  

Now suppose that N has codimension one in X. Then we can find 
xo E X such that for any x E X there is a y E N and a scalar L satisfy- 
ing x = y + Ax,. Since N is proper the vector xo cannot be in N .  
Define a map ffrom X into the underlying field as follows:f(y) = 0 for 
all v E N ,  f (x , )= 1, and f is linear. If x E X can be written 
x = y ,  + A ,  x, and x = yz + L2 x,, where y,, yZ are in Nand A, ,  Lz are 
scalars, then y ,  - y I  = (2, - L 2 ) x 0 .  But since we have already noted 
that xo # N ,  we must conclude that 1, - A, = 0 and hence that 
y,  = y 2 .  Sofis well defined. Clearly the null space offcontains N .  If x 
is in the null  space off, then x = y + Ax, where L = 0 and y E N ;  i.e., 
x E N .  

Let N(O), N ( 4 )  denote the null spaces of 8 and 4, 
respectively. We are assuming that N(O) c N ( 4 ) .  The first thing we 
shall show is that N ( 8 )  = N ( 4 ) .  Suppose that there is a point x’ that is 
in N ( 4 )  but not in N ( 8 ) .  Since N ( 0 )  has codimension one in X we can 
find xo E X such that for every x there is a y E N ( 8 )  and a scalar 1 for 

Probleni 3. 

Problem 4b. 
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which x = 1’ + Ax,. Then x’ = y‘ + A’x, for some y‘ E N ( 8 )  and some 
scalar I’. Since O(x’) # 0, A‘ # 0. But 0 = $(x’) = A’+(xo) and hence 
4(xo) must be zero. I t  follows that 4 = 0 and this is a contradiction. So 

I f  x is any element of X then x = y + Ax, where y E N ( 8 )  = N(4)  
and A is a scalar. So O(x) = AO(x,), or A = O(x)/8(xo). Then $(x) = 

scalar we are done. 

= N4). 

Ad(X0)  = [~(x)/~(.o)14(.0) = [4(xo)/0(-xo)I~(.y). Since 4(xo)/0(xo) is a 

EXERCISES 2.2 

Problem 6h. Let X be a vector space, let 42,  ..., be a 
finite, linearly independent subset of X # ,  and let 4,  be an element of 
X’ whose null space contains n$ N ( 4 j ) ;  here is the null space 
of 4j for each ,j = 1, 2, . . ., p. We claim that the set {&, 41, . . ., 4pj is 
linearly dependent. 

N ( 4 j )  has 
codimension p in X .  We shall prove this by induction on p.  The case 
p = 1 has already been considered (Exercises 1.3, problem 4a, solved 
above). Assume that the result is true when p = k and consider a 
linearly independent set {&, 42, . . ., $,+ containing k + 1 elements. 
Let N ,  = nr=, N(g5j) and note that, by the inductive hypothesis, N, 
has codimension k in X .  Consider the restriction of & +  I to N , ;  call it 
& +  We distinguish two cases: ( i )  N(&+ 2 N ,  so that & +  = 0 ;  
(ii) N(&+ 

I t  is clear that in this case @ k +  E ( X / N k ) # .  Now X / N ,  
has dimension k and, since k is finite, ( X / N , ) #  also has dimension k .  
But {$ ,, 42 ,  ..., 4; is a linearly independent subset of ( X / N k ) #  that 
contains k elements. Thus qbk+ is a linear combination of these ele- 
ments and we have contradicted the linear independence of the set 

The first thing we shall establish is that the space 

= N ( & +  I )  n N ,  is a proper, linear subspace of N , .  
Case ( i ) .  

. . ., 4 k ,  @,+ So case (i)  cannot arise. 
Case ( i i ) .  We have already observed that N, has codimension k in 

X .  This means that there is a k-dimensional subspace X ,  of X such that 
X = N ,  0 X ,  . Hence given any point x E X there are unique elements 
y E N , ,  z E X ,  such that x = y + z. Now by Exercises 1.3, problem 4a 
(solved above), the space N ( 4 ; +  I )  has codimension one in N , .  So there 
is an element x’ E N , ,  x’ $ N(&+ I)r such that N ,  = N ( & +  ,) 0 
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lin{x’}. The element y,  mentioned above, can be written, uniquely, as 
y = y’ + Lx‘ for some y’ E N ( & +  ,) and some scalar 1. Thus x = J?’ + 
(Ax’ + z )  where y’ E N ( & +  and Ax’ + z is in the linear span of 
{x‘, X k ] .  Since x’ $ X , ,  this linear span has dimension k + 1, and hence 
N(&+ ,) = N ( 4 , +  

We now return to problem 6b. Let N ,  = nj.= N ( & j )  and note that 
N ,  has codimension p in X .  Since p is finite both X I N ,  and (XIN,)’ 
have dimension p .  But the set &, . . . , +,} is contained in (XjN,)’, 
is linearly independent, and contains p elements. Thus this set spans 
(XjN,)’. Since &, E (X,”,,)’ it is a linear combination of (PI,  . . ., #,, 
and so {&, 

n N ,  has codimension k + 1 in X .  

. . . , 4,) is a linearly dependent set. 

EXERCISES 2.4 

Problem 3.  Let B be a Banach space and let G be a closed, linear 
subspace of B that has a complement in B. In order to show that any 
two complements of G are topologically isomorphic it suffices to prove 
that any complement, say H ,  of G is topologically isomorphic to the 
Banach space BIG. There is a continuous projection operator P from B 
onto H with null space G. Define a map n from BIG onto H as follows: 
If x E SjG let n(x) = P ( x )  where x is any element of x. Clearly n is 
linear. Also, since P maps B onto H ,  n is onto. If  n(x) = n(j) ,  then 
P ( x )  = P(J , )  for all x E x and all y E j .  it follows that x - y E G, which 
says j c  = j .  So n is one-to-one. Once we have shown that n is contin- 
uous then, by the open-mapping theorem, we will have shown that n is 
a topological isomorphism. Clearly, l/n(x)ll 5 IIPII I/xJI for every x E x. 
Thus ~ ~ n ( x ) l ~  I IlPlI inf{l)x)l J x  E X}. But, by definition, inf(l/xlI1x E X }  

= IIxJj. Hence IIn(jc)il I lJPll ilX11. 

EXERCISES 2.5 

Problem 2. We have two closed, linear subspaces G and H of a 
Banach space (B,  1 1 . 1 1 ) .  Assume that G n H = {0) and that there is a 
scalar c i  such that llgll I crllg + hl/ for all g in G and all h E H. We want 
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to prove that G + H is closed. Let {g, + h,) be a sequence of points of 
G + H that converges to z E B. Then given E > 0 we have 

1Ign - grn I/ 5 al!(yn - Yrn) + (h - hrn)ll 

= all(gn + h n )  - (grn + hrn)l/ 5 a& 

for m, n sufficiently large. It follows that {y,} is a Cauchy sequence of 
points of G, and hence that lirn g,, which we shall call go, is a point of 
G. Since lim{g, + h,) = z and lirn y, = go we see that lirn h, must exist. 
Call this ha and note that h, E H .  But then go + ha = z ,  which says 
G + H is closed. 

EXERCISES 3.4 

Problem l a .  Let (Bl,  1 1 . 1 1  1 )  and (B,, ( 1 .  11,) be two completions of 
( E ,  ! / . ] I ) .  We may regard E as a dense linear subspace of (Bl, ( 1 .  I( 1 )  and 
also of ( B 2 ,  1 1 .  I/,), and 11 * I /  = I( * 11 = ( 1 .  ( I 2  on E. If x E E l ,  x $ E,  then 
there is a sequence of points of E (call it {x,)) that converges to x for 

/ / . / I l .  Define a map 4 from B1 onto B, as follows: For x E E let 
@(x) = x, for x E B1 but not in E let 4(x) = lirn +(x,) for 1 1 .  ( 1  , . 

Since {x,} is a Cauchy sequence in ( E ,  11 . I ! )  and C$(X,) = x, for all n, 
it  is clear that lirn $(x,) exists in ( B ,  , 1 ) .  1) ,). Furthermore, if {x,}, {z,} 
are two sequences of points of E and if lirn x, = lirn z ,  in ( B , ,  1) * I! l ) r  

then {x, - z,) converges to zero for (E,  l / . l l ) .  Thus (@(x,) - +(z,)} also 
converges to zero for ( E ,  I / .  11) and this says that lirn $(x,) = lim 4(z,)  
in (B, , ( 1  11,). Thus 4 i s  well defined. 

I t  is easy to see that q5 is linear. Suppose y E B,, y $ E,  is given. 
There is a sequence {J~,) of points of E that converges to y for /I . /I . But 
then {y,} is Cauchy for 11 * 11, and hence {y,) converges to some element 
x E B1 for 1 1 .  I /  l .  Clearly, +(x) = y and so the map 4 is onto. Suppose 
4(x) = 4 ( z )  for two elements x, z in B1. Choose sequences {x,), {z,) of 
points of E such that lirn x, = x, lirn z ,  = z for ( 1 .  (1 1. Then {4(xn) - 
C$(z,)} converges to zero for 1 1 .  11,. I t  follows that {x, - z,} converges to 
zero for I / . I /  1. Hence x = z and 4 is one-to-one. 

The only thing left to prove is that I I ~ ( X ) \ ~ ,  = llx[l for all x E B,. 
Given x E B, choose {x,) c E such that lirn x, = x. Then since 

while J/xJ/ ,  = lirn Jlx, /I 1, we see that 4 is an equivalence. 
II4(Xn)llz = llx, I1 = Ilx, /I  1 for all n, and since ll4(x)ll2 = limll4(X")II2 
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Problem Ib. Let (B, I ] . ] / )  be the completion of (E,  Il.11). We shall 
show that the Banach spaces B' and E' are equivalent. LetfE E'. For 
any two elements x, y of E we have If(.) - f ( y ) (  i / I f 1 1  / ( x  - y l / .  It 
follows thatfis  uniformly continuous on ( E ,  Jl.II). Now E is dense in 
(B,  1 ) .  IJ), and hencefhas a unique, uniformly continuous extension to 
all of B. Call this extension f: We recall that f ( x )  = f ( x )  for all x E E,  
and that if x E B but is not in E then/(x) = lim ,f(x,), where {x,} is any 
sequence of points of E that converges to x. It is clear from this thatj' 
must be linear wheneverfis linear, and so i f f €  E ' ,~E  B'. Define u from 
E' into B' as follows: For eachfe  E' let u ( f )  =$ It is trivial to show 
that u is linear, one-to-one, and onto. Since JJ f I J  = sup( 1 f (x)  1 ) x  E E, 
[ (x / (  I 1 )  and lJ / l l  = sup{ 1 f ( y )  1 1 y E B, IJyJI I l}, in order to show that 
IIu(f)ll = /If11 for allfE E' it suffices to show that the unit ball of E is 
dense in the unit ball of B. 

Let J be the unit ball of B, & ( E )  the unit ball of E .  We must show 
that each y E J is the limit of a sequence of points of d ( E ) .  Let y E d 
and let (x,} be any sequence of points of E that converges to y .  There 
are two cases: (i) JlylJ < 1; (ii) lJy(J = 1. In case (i) we can choose N so 
that ]/x, - y / /  < 1 - //ylJ for all n 2 N .  Then (Jx, 1 )  I J/x, - y / /  + 
J l y / ]  < 1 for all n 2 N, and so (x, In 2 N }  is a sequence in d ( E )  that 
converges to y.  

In case (ii) let S = {n  I IJx, 11 > 1 ;  and let T = {n 1 /Ix, /I I 1). If  T is 
an infinite set, then {x, ( m  E T}  is a sequence of points of .@(E) that 
converges to y ;  so we may assume that T is a finite set, and hence S is 
an infinite set. Let y ,  = x, J/x, 1 1 -  * for every m E S .  Then {y,) c d ( E ) ,  
lim y ,  = lim x, limJ/x, / I - '  = lim x, . 1 = y .  

EXERCISES 4.1 

Problem l a .  Let U E F". We may assume that there is a finite 
number of seminorms pl ,  p 2 ,  . . . , p n  in the given family, and a finite 
number of positive numbers cl, E ~ ,  ..., E ,  such that 
U = (x E X Ipi(x) < ci for 1 i i I n).  Define V E Y '  as follows: 
V = (x E X J p i ( x )  < ei/2 for 1 i i i n}. We want to show that 
V + V c U .  Let x + y E V + V and note that pi(x + y )  I pi(x) + 
p i ( y )  < ci for 1 I i 5 n. 
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Problern f b .  Let U be as in problem la. Let N = {o! E K 1 ( C I  1 I 1 
and let V = U.  Then aV c U for all o! E N .  

Prohleni lc .  Clearly the sequence (x,) is /-convergent to xo iff 
{x, - xo) is /-convergent to zero. We shall show that (x,) is I -  
convergent to zero iff lim p,(x,) = 0 for every pi , .  First assume that {x,; 
is [-convergent to zero. For each k let V, = {.x Ip,(x) < l / k ! .  Then we 
must have x, E V, for all n sufficiently large. Thus p.$(.xn) < l / k  for all n. 
Now since k is arbitrary, lirn p,(x,) = 0. 

Now suppose that lirn p,.(x,) = 0 for every p ; .  Given any 1-  

neighborhood I/ of zero we may assume that U = (.Y 1 pj(.x) < I : ~  for 
1 5.j 5 k ) .  We can find n ,  such that p,(x,)  < ci for n 2 n,. Similarly, 
we can find n, such that p 2 ( x , )  < 1: ,  for n 2 n, ,  etc. Choose no greater 
than any of the numbers n, ,  n , ,  . . . , nk . Then pj(.x,) < c j  for all n 2 no 
and for ,j = I ,  2, . . ., k ;  i.e., x, E U for all n 2 n o .  

Suppose that S is a total subset of E and that lin S 
(the linear span of S) is not dense in E .  Then the closure of lin S, call i t  
cl(lin S), is a proper, closed, linear subspace of E. By the Hahn-Banach 
theorem there is an elementfE E' that is not zero on all of E but is zero 
on all of cl(lin S). But thenf'vanishes on S but not on all of E, contra- 
dicting the fact that S is total. 

Now suppose that lin S is dense in E. If,/ '€ E' vanishes on S ,  then i t  
must vanish on lin S; this is a consequence of the linearity ofj: But 
then ,f vanishes on a dense subset of E.  Since a continuous, linear 
functional on E is obviously uniformly continuous on E, this is 
impossible. 

Problem 3h. I f  E is separable, then any countable, dense subset of 
E is a countable, total subset of E .  Suppose that E contains a count- 
able, total subset S. By problem 3a the space lin S is dense in E.  Thus 
given c > 0 and x E E there is an element y E lin S such that 
((x - y)1 < c. Now y = EL I ajsj  where s l ,  . . . , s, are in S and a,,  . . . , CI, 

are scalars-let us say real scalars. Let M = max{llsj 1 1  ( j  = 1, 2, . . ., n )  
and for eachj let q j  be a rational number such that ( a j  - qj 1 < c / n M .  
Then 

IIx - C q j s j  II 

Problem 3u. 

I I1x - C aj.sjI/ + IIC ajsj - C qjLsj(/ 

< E -k 1 1 CIj - qj I I l .S j  11 < 26. 

So the set of all linear combinations, with rational coefficients, of 
elements of S is dense in E. Since this set is countable, E is separable. 

Let u be a linear map from ( E ,  I) * 1 1 )  into ( F ,  I II.11 1 ). Problem 4a. 
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Define u* from F' into E' as follows: For each 4 E F',  u* (4 )  is the 
element of E' defined by u*(4)x  = @[u(x)] for all x E E .  We call u* the 
adjoint of u. 

For 4,, 42 in F' and any scalars a, [I we have 

U*(.BI + P4,)x = (a41 + B 4 2 ) [ 4 . ) 1  = .41[.(x)I + B42[u(x)l 

= +*(41)(41 + P[u*(42)(x)I 
for all x E E. Hence u*(a4, + = + B U * ( ~ ~ ) ,  and we have 
shown that u* is linear. 

Suppose that u is continuous and give F' ,  E' their norm topologies. 
Since u is continuous there is a constant M such that I liu(x)ll 1 I 
Mljxll for all x E E. Now sup{Ilu*(+)lI 14 E F',  114iI I I t ,  and 

ilu*(4)li = SUP{ I.*(4)xI I x  E '% IixII I 1 )  

= suP{I4[u(x)ll l x  E 6 IIxlI I 1; 11411 llull. 

Thus sup{Ilu*(4)ll 14 E F',  1(411 I 1 )  I /lull I M .  I t  follows that u* is 
continuous, and also that l/u*li I IIuli. 

We will now show that we actually have lJu*J/ = JIuIJ. For any 
4 E F' and any x E E we have 14[u(x)]  1 I I/+/ /  1 ilu(x)lI 1 .  If x is fixed, 
then we can find 4 E F' such that i]411 = I and 4[u(x) ]  = I llu(x)ll 1 (by 
the Hahn-Banach theorem). It follows that sup( 1 +[u(x)]  1 I 1141i I 
1; = I l lu(x)/l I ; here x is any element of E.  Using the definition of u* we 
may write sup{ 1 u*(4)x I I ll4(i I 1) = 1 liu(x)il I .  But 

SUP{ I.*(4)x I I il4ll I 11 I suPtilLi*/l il4ii iixli i It411 5 1; I ilu*// 11-4 

ibli 5 ilu*il. 

So for every x E E we have I llu(x)/l 1 I ( Iz i * / (  /I.x/(. I t  follows that 

Finally, we want to show that u* is continuous when E' and F' have 
their weak* topologies. Let U be a weak* neighborhood of zero in E'. 
We may assume that there is a finite set x I ,  x 2 ,  ..., x, of points of E 
and positive numbers c l r  e 2 ,  . . . , E,  such that U = { , f ~  E' 1 1 , f ( x i )  1 I ci 
for 1 I i I nl. Then 

I/ = {g E F' I u * ( g )  E U]  = (g E F' 1 Iu*(g)xi \  5 ci for 1 I i 5 n} 

= (g  E F'I lg [u(x i ) ] l  I ci for 1 I i < n )  

is a weak* neighborhood of zero in F'. 
We will now assume that u is an equivalence and we 

shall prove that u* is an equivalence. By problem 4a we know that u* is 
linear, and that it is continuous when E' and F' have their norm 
topologies. I f u * ( + )  = 0 for some C#J E F', then u*(@)x = 0 for all x E E. 

Problem 4b. 
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Thus $[.(.)I = 0 for all x E E. But u is onto and so must be the zero 
functional; i.e., u* is one-to-one. 

Let us now show that u* is onto. Let,fE E ' , f #  0, and let N ( f )  be 
the null  space of,f We know that N ( , f )  has codimension one in E and, 
since u is an equivalence, clearly u[N(f)] = {u(x)(x E N ( f ) )  is a 
closed, linear subspace of codimension one in F.  It follows that there is 
a 9 E F' such that N(g) = u[N(,f)]. Consider u*(g) E E'. Clearly, 
u*(g)x = 0 means g[u(x ) ]  = 0, and so N [ u * ( g ) ]  contains N(,f).  Hence 
u*(y) = 4f for some nonzero scalar A. But then u*(A- ' 9 )  =f and we 
have shown that u* is onto. 

Finally, we shall show that u* is norm preserving. If g E F',  then 
Iu*(dx I = IY["(X)l I 2 Ilgli llu(x)ll = Ilgll llxti for all x E E. so 
llu*(9)li 5 IIYll. Also, I1911 = SUPl(Y(Y)I 1.Y E F,  

IIYII 5 1; = SUP{ lg[u(x)l I Ix E E7 

J / x / J  I 1; because u is an equivalence. Hence llgll I 119 uI/  = / Iu*(g)(I .  
Let {,f,,; be any bounded sequence in E' and let { x i ;  be 

any countable, dense subset of E .  We have I f f l ( x l ) l  5 l l f , ,  11 ljxl 11 5 
JIxI 11, where we assume 1 is a bound for { 1) f,, 11). for all n. Thus there is a 
subsequence { , f , ! j  of {,f,,; such that ( . f : ( x 1 ) }  converges. Now {ff(x2))  is 
a bounded sequence of complex numbers, and so there is a sub- 
sequence {f:; of ( , f : )  such that ( f : ( x z ) }  is convergent. Clearly { f i ( x l ) )  
is also convergent. 

After ( , f f } ,  ( f ;} ,  ..., {fk,} have been chosen, observe that 
(,f:(.Yk+ I ) )  is a bounded sequence of complex numbers, and hence that 
there is a subsequence [ , f i+  ') of (fi) such that {f:' ' ( x i ) }  is convergent 
f o r j = 1 , 2  , . . . ,  k + l .  

Now let y1 =, f f ,  g2 =, f ; ,  g3 =, f i ,  . . ., gk =I:, . . . . It is clear that, 
after the kth term, {g,,} is a subsequence of {f",, and that this is true for 
k = I ,  2 ,  . . . . Hence {g,,(xk)} converges for each k = I, 2 ,  . . . . Now {g,,) is 
contained in the unit ball of E'. This ball is a(E', E)-compact and so 
{g,] must have a o(E,  E)-adherent point go E E .  Since {g,(xk)) con- 
verges its limit must be go(xk) for k = 1, 2, . . . .  

Suppose that x E E and E > 0 are given. First choose xj such that 
I(.x - x i  / I  < 4 3 .  Then 

Problem 5 .  

I BO(X)  - gn(x) 1 2 I YO(-U) - go(xj) I 
+ I go(xj) - g n ( x j )  I + I gn(x j )  - gn(x)  I 

5 /(go it ilx - xi It + lgO(-xj) - g A X j )  I 
+ Ilgn I1 llxj - XiI. 
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The first and last terms are 143. The middle term can be made 5 4 3  
by taking n sufficiently large. 

EXERCISES 4.2 

Problem Ih. Let S be a subset of X and let .% be the family of all 
convex subsets of X that contain S; .B is not empty because X E 3. By 
definition the convex hull of S (we shall denote it by conv (S)) is 

(C 1 C E 31. Define G to be the set {I;= cijxj I n is a positive 
Integer, xl, ..., x, are in S, a I ,  ..., a, are nonnegative scalars with cj”= clj = I ) .  Clearly S c G. 

We shall show that G is convex. Let x, y E G and let 7 be a scalar 
between zero and one. We must show that yx + (1  - y ) y  is in G. 
Clearly, x = cj”= I a j x j  and y = pi y i .  Since all the x i s  and all the 
yi’s are in S all we have to do, in order to prove that yx + (1 - y ) y  is in 
G, is to show that xj”= yaj + cy= I ( 1  - >))Pi = 1. But this is easy be- 
cause the first term is just y and the second is 1 - y .  

I t  follows that conv(S) c G. To prove the reverse inclusion it 
suffices to show that for any C E 9, G c C. Let c,?= I a j x j  E G and let 
C E 3. Clearly xl. . . . , x, are in C because they are in S .  So all we have 
to do is show that, for any finite subset x l ,  . . . , x, of a convex set C and 
any nonnegative scalars c t l r  ..., a, whose sum is one, we have cj”=l u j x j  E C. We shall prove this by induction on n. 

If  n = I the result is trivial, and when n = 2 it is true by the 
definition of convexity. Assume that it is true when n = k - 1 and 
consider 

because c:= I aj  = I .  Let ct j  and clearly we may assume 
p # 0. Since c::: (ctj/p) = 1 we can write the right-hand side of (*) as 
follows: Cj”: ctj(c::: crj/p)xj + ( 1  - c:I; ctj)xk. By our induction 
hypothesis the term zj”: (ccj/p)xj is in C ;  denote this sum by y. So we 
now can write the right-hand side of (*) as: py + (1 - p)xk, and this is 
clearly in C .  

= 
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EXERCISES 4.3 

Problem la .  Let X[t] be a locally convex space, let xo E X, and 
define y(x) to be x + xo for all x E X. I t  is clear that g is a one-to-one 
mapping from X onto itself. Since (x, y )  4 x + y is a continuous func- 
tion from X x X onto X, .(I is continuous. To prove that y is a homeo- 
morphism we need only show that the continuous map h, defined by 
/I ( . )  = x - xo for all x E X ,  is the inverse of g. But h[g(x)] = 

h[x + xO] = (x + xo) - xo = x and 

y[h(x)] = y[x - xo] = (x - xo) + xo = x. 

Problem 1h. Assume that ,f is continuous at zero and let x be any 
point of X ,  V any neighborhood off(x). Then V - f ( x )  is a neighbor- 
hood of zero and so there is a neighborhood of U of zero such that 
f ( U )  c V - f ( x ) .  Now U + x is a neighborhood of x and 

We will now show that ,f is continuous at zero iff it is bounded on 
some t-neighborhood U of zero. If  we assume thatfis continuous at 
zero then {x E X I 1 , f ( x )  1 < 1) is a r-neighborhood of zero on whichfis 
bounded. Conversely, let us assume that I,f(U)I < M for some r- 
neighborhood U of zero. Then given E > 0 we have 1 f ( x )  1 < c: for all x 
in the t-neighborhood (c:/M)U of zero. Hence,fis continuous at zero. 

Problem l c .  We need only show that (iii) implies (i). So we assume 
tha t f#  0 is a linear functional on X ,  that the null space of,f, N ( J ) ,  is 
not dense in X [ r ] ,  and that f i s  not continuous at zero. Our assump- 
tions imply the existence of a nonempty open set G such that 
G n N ( , f )  = 0. If x E G we can find a balanced t-neighborhood U of 
zero such that x + I/ c G. Now by problem lb above, , f ( U )  is not 
bounded. In fact,,f(U) is the entire field K .  So there is a point x’ in U 
such thatS(x’) = -,f(x). Clearly, x + x‘ is in N ( f ) .  But x + x’ is also in 
.Y + U c G, and this is impossible because G n N ( f )  = 0. 

We have X[r], where t = t ( { p , ) )  and (pyly E ri is a 
family of seminorms on X .  We want to show that B c X is r-bounded 
iff sup{p,(x)Jx E B) is finite for every y. Suppose that B is t-bounded. 
Then, for any p s ,  the set U ( p , )  = {x E X Ip,,(x) 5 1) is a t -  
neighborhood of zero. Hence there is a scalar J. such that B c AU(p,). 
But this says p, (x )  I A for all x E B.  

f ( U  + x) (=-.f(V) + . f ( x )  = - , f ( x )  + f ( x )  = v. 

Problem 3u. 
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Now suppose that B satisfies our condition and let U be a t- 
neighborhood of zero. We may assume that there is a finite subfamily 
pi, p 2 ,  ..., pn in {p,) and positive numbers cl, . . . ,  E ,  such that 
U = {x E X (p,(x) I E~ for 1 I j I n}. Now sup p j ( B )  I M j  for j = 1, 
2,. . . , n by assumption. Hence pj [ (e j  M j  ' ) B ]  I c j  for j = 1,2,  . . . , n. Let 
E = min(eji, M = max{Mji. Then ( M E -  ' ) U  contains B. 

Let I$ be a continuous, linear map from X [ r ]  into 
Y[s].  Assume that B is a t-bounded subset of X. We shall show that the 
set +(B) is an s-bounded subset of Y .  Let U be any s-neighborhood of 
zero in Y .  Since q5 is linear (4(0) = 0) and continuous, I $ - l ( U )  is a 
neighborhood of zero in X [ t ] .  Now B is t-bounded and so there is a 
scalar A such that B c 14- '( V ) .  But then q5(B) c l U  and we are done. 

Problem 3c. 
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Reflexive Banach Spaces 

We have characterized the reflexive spaces as those Banach spaces 
in which the unit ball is compact for the weak topology (Section 4.4, 
Theorem 2). Equivalently, they are the Banach spaces in which the unit 
ball is countabiy compact for the weak topology (Section 5.2, Theorem 
3 and Remark 2). There are many, many other characterizations of this 
class of spaces (see, for example, [30, pp. 69-72]). Of all of these the 
most striking is that due to James [33]. He proved that a Banach space 
B is reflexive iff every element of B‘ attains its supremum over the unit 
ball of B. A continuous, linear functional that attains its supremum 
over the unit ball of a Banach space is said to attain its norm. For any 
Banach space B the set of all elements of B’ that attain their norms is 
dense in B’ for the norm topology [29]. 

Many writers have treated more general classes of Banach spaces 
that contain, and are in some way similar to, the reflexive spaces. For 
example, it is clear that every reflexive Banach space is a dual space 
(Section 5.1). A thorough, and very beautiful, discussion ofdual spaces 
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can be found in the classic paper of Dixmier [32]. Equivalent forms of 
some of Dixmier's results were obtained (apparently independently) by 
Ruston [34]. Ruston's approach is illuminating and his proofs are 
different from those of Dixmier. We shall mention only one result. A 
Banach space B is a dual space iff there is a closed, linear subspace Q in 
B' that has the two following properties: (a) I f  d' denotes the unit ball 
of B' then Q n B' is a(B', B)-dense in A'. (b) The unit ball of B is 
compact for the topology o(B, Q )  [32, Theoreme 171. 

A closed, linear subspace of B' that has property (a) is said to be a 
subspace of characteristic one in B'. Such a subspace need not have 
property (b) (see [32, 3 1, Theorem 41). We proved a theorem about the 
completion of a locally convex space that enabled us to connect the 
work of James with that of Dixmier to obtain the following result: A 
separable Banach space B is a dual space iff E' contains a subspace of 
characteristic one each element of which attains its norm [31]. The 
analogous statement for nonseparable Banach spaces is false. 

For more results about dual spaces as well as other generalizations 
of reflexivity we refer the reader to the literature. 
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