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Preface

The present, fourth volume in the series Evolutionary Equations of the Handbook of Differ-
ential Equations develops further the program initiated in the past three volumes, namely
to provide a panorama of this amazingly rich field, whose roots and fruits are related to the
physical world while its flowers belong to the world of mathematics. With an eye towards
retaining the proper balance between basic theory and its applications, we are including
here review articles by leading experts on the following topics.

Chapter 1, by D. Chae, deals with equations related to the Euler equations for incom-
pressible fluids, and examines the development of singularities in finite time.

The recent development in the mathematical theory of the compressible Navier–Stokes
equations is addressed in Chapter 2 by E. Feireisl.

In Chapter 3, A. Miranville and S. Zelik discuss the large time behavior of solutions of
dissipative partial differential equations, in bounded or unbounded domains, and establish,
in particular, the existence of global and exponential attractors.

The aim of Chapter 4, by A. Novick-Cohen, is to present recent results in the theory of
the Cahn–Hilliard equation as well as related problems.

The problem of existence, regularity and stability of solutions to systems of evolutionary
equations governing the flow of viscoelastic fluids is the focus of Chapter 5, by M. Renardy.

The following Chapter 6, by L. Simon, is devoted to the application of the theory of
monotone operators to parabolic and functional-parabolic equations or systems thereof.

In Chapter 7, by A. Vasseur, the recent results in hydrodynamic limits, especially those
corresponding to hyperbolic scaling, are addressed.

Chapter 8, by A. Visintin, gives a detailed introduction into the modeling of phenomena
which can be described by the Stefan-type problems together with analysis of their weak
formulation.

Finally, A. Wazwaz’s Chapter 9 deals with the Korteweg–deVries equation and some of
its modifications and describes various methods for constructing solutions.

We are indebted to the authors, for their valuable contributions, to the referees, for their
helpful comments, and to the editors and staff of Elsevier, for their assistance.

Constantine Dafermos
Milan Pokorný
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CHAPTER 1

Incompressible Euler Equations: The Blow-up
Problem and Related Results

Dongho Chae*

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
E-mail: chae@skku.edu
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2 D. Chae

Abstract
The question of spontaneous apparition of singularity in the 3D incompressible Euler equa-

tions is one of the most important and challenging open problems in mathematical fluid me-
chanics. In this survey article we review some of recent approaches to the problem. We first
review Kato’s classical local well-posedness result in the Sobolev space and derive the cel-
ebrated Beale–Kato–Majda criterion for finite time blow-up. Then, we discuss recent refine-
ments of the criterion as well as geometric type of theorems on the sufficiency condition for
the regularity of solutions. After that we review results excluding some of the scenarios lead-
ing to finite time singularities. We also survey studies of various simplified model problems.
A dichotomy type of result between the finite time blow-up and the global in time regular
dynamics is presented, and a spectral dynamics approach to study local in time behaviors of
the enstrophy is also reviewed. Finally, progresses on the problem of optimal regularity for
solutions to have conserved quantities are presented.
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1. Introduction

The motion of homogeneous incompressible ideal fluid in a domain Ω ⊂ R
n is described

by the following system of the Euler equations.

(E)

⎧⎪⎨
⎪⎩
∂v

∂t
+ (v · ∇)v = −∇p, (x, t) ∈ Ω × (0,∞),

div v = 0, (x, t) ∈ Ω × (0,∞),
v(x, 0) = v0(x), x ∈ Ω,

where v = (v1, v2, . . . , vn), vj = vj (x, t), j = 1, 2, . . . , n, is the velocity of the fluid
flows, p = p(x, t) is the scalar pressure, and v0(x) is a given initial velocity field satisfying
div v0 = 0. Here we use the standard notion of vector calculus, denoting

∇p =
(
∂p

∂x1
,
∂p

∂x2
, . . . ,

∂p

∂xn

)
, (v · ∇)vj =

n∑
k=1

vk
∂vj

∂xk
, div v =

n∑
k=1

∂vk

∂xk
.

The first equation of (E) follows from the balance of momentum for each portion of fluid,
while the second equation can be derived from the conservation of mass of fluid during
its motion, combined with the homogeneity(constant density) assumption on the fluid. The
system (E) is first derived by L. Euler in 1755 [77]. Unless otherwise stated, we are con-
cerned on the Cauchy problem of the system (E) on Ω = R

n, but many of the results
presented here are obviously valid also for Ω = R

n/Zn (periodic domain), and even for
the bounded domain with the smooth boundary with the boundary condition v · ν = 0,
where ν is the outward unit normal vector. We also suppose n = 2 or 3 throughout this
paper. In this article our aim to survey recent results on the mathematical aspects the 3D
Euler equations closely related to the problem of spontaneous apparition of singularity
starting from a classical solutions having finite energy. If we add the dissipation term

μ�v = μ∑n
j=1

∂2v

∂x2
j

, where μ > 0 is the viscosity coefficient, to the right-hand side of the

first equation of (E), then we have the Navier–Stokes equations, the regularity/singularity
question of which is one of the seven millennium problems in mathematics. In this article
we do not treat the Navier–Stokes equations. For details of mathematical studies on the
Navier–Stokes equations see e.g. [144,57,112,84,107,117,109]. We also omit other impor-
tant topics such as existence and uniqueness questions of the weak solutions of the 2D Euler
equations, and the related vortex patch problems, vortex sheet problems, and so on. These
are well treated in the other papers and monographs [117,37,45,112,133,135,153,154,148,
139] and the references therein. For the survey related the stability question please see for
example [79] and references therein. For the results on the regularity of the Euler equa-
tions with uniformly rotating external force we refer [2], while for the numerical studies
on the blow-up problem of the Euler equations there are many articles including [101,102,
94,7,80,11,89–91,127]. For various mathematical and physical aspects of the Euler equa-
tions there are many excellent books, review articles including [1,8,45,47,49,52,79,81,82,
86,115,117,118,29,152]. Obviously, the references are not complete mainly due to author’s
ignorance.
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1.1. Basic properties

In the study of the Euler equations the notion of vorticity, ω = curl v, plays important
roles. We can reformulate the Euler system in terms of the vorticity fields only as follows.
We first consider the 3D case. Let us first rewrite the first equation of (E) as

(1.1)
∂v

∂t
− v × curl v = −∇

(
p + 1

2
|v|2

)
.

Then, taking curl of (1.1), and using elementary vector identities, we obtain the following
vorticity formulation:

(1.2)
∂ω

∂t
+ (v · ∇)ω = ω · ∇v,

(1.3)div v = 0, curl v = ω,
(1.4)ω(x, 0) = ω0(x).

The linear elliptic system (1.3) for v can be solved explicitly in terms of ω, assuming ω
decays sufficiently fast near spatial infinity, to provides us with the Biot–Savart law,

(1.5)v(x, t) = 1

4π

∫
R3

(x − y)× ω(y, t)
|x − y|3 dy.

Substituting this v into (1.2), we obtain an integro-differential system for ω. The term in
the right-hand side of (1.2) is called the vortex stretching term, and is regarded as the
main source of difficulties in the mathematical theory of the 3D Euler equations. Let us
introduce the deformation matrix S(x, t) = (Sij (x, t))

3
i,j=1 defined as the symmetric part

of the velocity gradient matrix,

Sij = 1

2

(
∂vj

∂xi
+ ∂vi

∂xj

)
.

From the Biot–Savart law in (1.5) we can explicitly compute

(1.6)

S(x, t) = 3

8π
p.v.

∫
R3

[(y × ω(x + y, t))⊗ y + y ⊗ (y × ω(x + y, t))]
|y|5 dy

(see e.g. [117] for the details on the computation). The kernel in the convolution integral
of (1.6) defines a singular integral operator of the Calderon–Zygmund type (see e.g. [137,
138] for more details). Since the vortex stretching term can be written as (ω · ∇)v = Sω,
we see that the singular integral operator and related harmonic analysis results could have
important roles to study the Euler equations.

In the two-dimensional case we take the vorticity as the scalar, ω = ∂v2

∂x1
− ∂v1

∂x2
, and the

evolution equation of ω becomes

(1.7)
∂ω

∂t
+ (v · ∇)ω = 0,

where the velocity is represented in terms of the vorticity by the 2D Biot–Savart law,

(1.8)v(x, t) = 1

2π

∫
R2

(−y2 + x2, y1 − x1)

|x − y|2 ω(y, t) dy.
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Observe that there is no vortex stretching term in (1.7), which makes the proof of global
regularity in 2D Euler equations easily accessible. In many studies of the Euler equations
it is convenient to introduce the notion of ‘particle trajectory mapping’, X(·, t) defined by

(1.9)
∂X(a, t)

∂t
= v(X(a, t), t), X(a, 0) = a, a ∈ Ω.

The mappingX(·, t) transforms from the location of the initial fluid particle to the location
at time t , and the parameter a is called the Lagrangian particle marker. If we denote the
Jacobian of the transformation, det(∇aX(a, t)) = J (a, t), then we can show easily (see
e.g. [117] for the proof) that

∂J

∂t
= (div v)J,

which implies that the velocity field v satisfies the incompressibility, div v = 0 if and only
if the mapping X(·, t) is volume preserving. At this moment we note that, although the
Euler equations are originally derived by applying the physical principles of mass conser-
vation and the momentum balance, we could also derive them by applying the least action
principle to the action defined by

I(A) = 1

2

∫ t2

t1

∫
Ω

∣∣∣∣∂X(x, t)∂t

∣∣∣∣
2

dx dt.

Here, X(·, t) :Ω → Ω ⊂ R
n is a parameterized family of volume preserving diffeomor-

phism. This variational approach to the Euler equations implies that we can view solutions
of the Euler equations as a geodesic curve in the L2(Ω) metric on the infinite dimensional
manifold of volume preserving diffeomorphisms (see e.g. [1,8,75] and references therein
for more details on the geometric approaches to the Euler equations).

The 3D Euler equations have many conserved quantities. We list some important ones
below.

(i) Energy,

E(t) = 1

2

∫
Ω

∣∣v(x, t)∣∣2 dx.

(ii) Helicity,

H(t) =
∫
Ω

v(x, t) · ω(x, t) dx.

(iii) Circulation,

ΓC(t) =
∮

C(t)

v · dl,

where C(t) = {X(a, t) | a ∈ C} is a curve moving along with the fluid.
(iv) Impulse,

I (t) = 1

2

∫
Ω

x × ω dx.
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(v) Moment of Impulse,

M(t) = 1

3

∫
Ω

x × (x × ω) dx.

The proof of conservations of the above quantities for the classical solutions can be done
without difficulty using elementary vector calculus (for details see e.g. [117,118]). The
helicity, in particular, represents the degree of knotedness of the vortex lines in the fluid,
where the vortex lines are the integral curves of the vorticity fields. In [1] there are detailed
discussions on this aspects and other topological implications of the helicity conservation.
For the 2D Euler equations there is no analogue of helicity, while the circulation conserva-
tion is replaced by the vorticity flux integral,∫

D(t)

ω(x, t) dx,

where D(t) = {X(a, t) | a ∈ D ⊂ Ω} is a planar region moving along the fluid in Ω . The
impulse and the moment of impulse integrals in the 2E Euler equations are replace by

1

2

∫
Ω

(x2,−x1)ω dx and − 1

3

∫
Ω

|x|2ω dx respectively.

In the 2D Euler equations we have extra conserved quantities; namely for any continuous
function f the integral∫

Ω

f
(
ω(x, t)

)
dx

is conserved. There are also many known explicit solutions to the Euler equations, for
which we just refer [108,117]. In the remained part of this subsection we introduce some
notations to be used later for 3D Euler equations. Given velocity v(x, t), and pressure
p(x, t), we set the 3× 3 matrices,

Vij = ∂vj

∂xi
, Sij = Vij + Vji

2
, Aij = Vij − Vji

2
, Pij = ∂2p

∂xi∂xj
,

with i, j = 1, 2, 3. We have the decomposition V = (Vij ) = S + A, where the symmetric
part S = (Sij ) represents the deformation tensor of the fluid introduced above, while the
antisymmetric part A = (Aij ) is related to the vorticity ω by the formula,

(1.10)Aij = 1

2

3∑
k=1

εijkωk, ωi =
3∑

j,k=1

εijkAjk,

where εijk is the skewsymmetric tensor with the normalization ε123 = 1. Note that
P = (Pij ) is the Hessian of the pressure. We also frequently use the notation for the
vorticity direction field,

ξ(x, t) = ω(x, t)

|ω(x, t)| ,
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defined whenever ω(x, t) �= 0. Computing partial derivatives ∂/∂xk of the first equation of
(E), we obtain the matrix equation

(1.11)
DV

Dt
= −V 2 − P, D

Dt
= ∂

∂t
+ (v · ∇)v.

Taking symmetric part of this, we obtain

DS

Dt
= −S2 − A2 − P,

from which, using the formula (1.10), we have

(1.12)
DSij

Dt
= −

3∑
k=1

SikSkj + 1

4

(|ω|2δij − ωiωj )− Pij ,
where δij = 1 if i = j , and δij = 0 if i �= j . The antisymmetric part of (1.11), on the other
hand, is

DA

Dt
= −SA− AS,

which, using the formula (1.10) again, we obtain easily

(1.13)
Dω

Dt
= Sω,

which is the vorticity evolution equation (1.2). Taking dot product (1.13) with ω, we im-
mediately have

(1.14)
D|ω|
Dt

= α|ω|,
where we set

α(x, t) =

⎧⎪⎨
⎪⎩

3∑
i,j=1

ξi(x, t)Sij (x, t)ξj (x, t) if ω(x, t) �= 0,

0 if ω(x, t) = 0.

1.2. Preliminaries

Here we introduce some notations and function spaces to be used in the later sections.
Given p ∈ [1,∞], the Lebesgue space Lp(Rn), p ∈ [1,∞], is the Banach space defined
by the norm

‖f ‖Lp :=

⎧⎪⎪⎨
⎪⎪⎩

( ∫
Rn

∣∣f (x)∣∣p dx

) 1
p

, p ∈ [1,∞),
ess sup

x∈Rn

∣∣f (x)∣∣, p = ∞.
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For j = 1, . . . , n the Riesz transform Rj of f is given by

Rj (f )(x) = (n+1
2 )

π
n+1

2

p.v.

∫
Rn

xj − yj
|x − y|n+1

f (y) dy

whenever the right-hand side makes sense. The Hardy space H1(Rn) ⊂ L1(Rn) is defined
by

f ∈ H1(
R
n
)

if and only if ‖f ‖H1 := ‖f ‖L1 +
n∑
j=1

‖Rjf ‖L1 <∞.

The space BMO(Rn) denotes the space of functions of bounded mean oscillations, defined
by

f ∈ BMO
(
R
n
)

if and only if

‖f ‖BMO := sup
Q⊂Rn

1

Vol(Q)

∫
Q

|f − fQ| dx <∞,

where fQ = 1
Vol(Q)

∫
Q
f dx. For more details on the Hardy space and BMO we refer

[137,138]. Let us set the multi-index α := (α1, α2, . . . , αn) ∈ (Z+ ∪ {0})n with |α| =
α1 + α2 + · · · + αn. Then, Dα := D

α1
1 D

α2
2 · · ·Dαnn , where Dj = ∂/∂xj , j = 1, 2, . . . , n.

Given k ∈ Z and p ∈ [1,∞) the Sobolev space,Wk,p(Rn) is the Banach space of functions
consisting of functions f ∈ Lp(Rn) such that

‖f ‖Wk,p :=
(∫

Rn

∣∣Dαf (x)∣∣p dx

) 1
p

<∞,

where the derivatives are in the sense of distributions. For p = ∞ we replace the Lp(Rn)
norm by the L∞(Rn) norm. In particular, we denote Hm(Rn) = Wm,2(Rn). In order
to handle the functions having fractional derivatives of order s ∈ R, we use the Bessel
potential space Lsp(R

n) defined by the Banach spaces norm,

‖f ‖Ls,p :=
∥∥(1−�) s2 f ∥∥

Lp
,

where (1 − �)s/2f = F−1[(1 + |ξ |2)s/2F(f )(ξ)]. Here F(·) and F−1(·) denoting the
Fourier transform and its inverse, defined by

F(f )(ξ) = f̂ (ξ) = 1

(2π)n/2

∫
Rn

e−ix·ξ f (x) dx,

and

F−1(f )(x) = f̌ (x) = 1

(2π)n/2

∫
Rn

eix·ξ f (ξ) dξ,

whenever the integrals make sense. Next we introduce the Besov spaces. We follow [145]
(see also [141,109,45,130]). Let S be the Schwartz class of rapidly decreasing functions.
We consider ϕ ∈ S satisfying Supp ϕ̂ ⊂ {ξ ∈ R

n | 1
2 � |ξ | � 2}, and ϕ̂(ξ) > 0 if

1
2 < |ξ | < 2. Setting ϕ̂j = ϕ̂(2−j ξ) (In other words, ϕj (x) = 2jnϕ(2j x).), we can adjust
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the normalization constant in front of ϕ̂ so that∑
j∈Z

ϕ̂j (ξ) = 1 ∀ξ ∈ R
n \ {0}.

Let s ∈ R, p, q ∈ [0,∞]. Given f ∈ S′, we denote �jf = ϕj ∗ f . Then the homoge-
neous Besov seminorm ‖f ‖Ḃsp,q is defined by

‖f ‖Ḃsp,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∑
j∈Z

2jqs‖ϕj ∗ f ‖qLp
) 1
q

if q ∈ [1,∞),

sup
j∈Z

(
2js‖ϕj ∗ f ‖Lp

)
if q = ∞.

For (s, p, q) ∈ [0,∞) × [1,∞] × [1,∞] the homogeneous Besov space Ḃsp,q is a quasi-
normed space with the quasi-norm given by ‖ · ‖Ḃsp,q . For s > 0 we define the inhomoge-

neous Besov space norm ‖f ‖Bsp,q of f ∈ S′ as ‖f ‖Bsp,q = ‖f ‖Lp + ‖f ‖Ḃsp,q . Similarly,

for (s, p, q) ∈ [0,∞) × [1,∞) × [1,∞], the homogeneous Triebel–Lizorkin seminorm
‖f ‖Ḟ sp,q is defined by

‖f ‖Ḟ sp,q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∥∥∥∥
( ∑
j∈Z

2jqs
∣∣ϕj ∗ f (·)∣∣q

) 1
q
∥∥∥∥
Lp

if q ∈ [1,∞),
∥∥∥sup
j∈Z

(
2js

∣∣ϕj ∗ f (·)∣∣)∥∥∥
Lp

if q = ∞.

The homogeneous Triebel–Lizorkin space Ḟ sp,q is a quasi-normed space with the quasi-
norm given by ‖ ·‖Ḟ sp,q . For s > 0, (p, q) ∈ [1,∞)×[1,∞) we define the inhomogeneous

Triebel–Lizorkin space norm by

‖f ‖Fsp,q = ‖f ‖Lp + ‖f ‖Ḟ sp,q .
The inhomogeneous Triebel–Lizorkin space is a Banach space equipped with the norm,
‖ · ‖Fsp,q . We observe that Bsp,p(R

n) = F sp,p(Rn). The Triebel–Lizorkin space is a general-
ization of many classical function spaces. Indeed, the followings are well established (see
e.g. [145])

F 0
p,2

(
R
n
) = Ḟ 0

p,2

(
R
n
) = Lp(Rn) (1 < p <∞),

Ḟ 0
1,2

(
R
n
) = H1(

R
n
)

and Ḟ 0
∞,2 = BMO

(
R
n
)
,

F sp,2
(
R
n
) = Ls,p(Rn).

We also note sequence of continuous embeddings for the spaces close toL∞(Rn) [145,95].

(1.15)Ḃ
n/p

p,1

(
R
n
)
↪→ Ḃ0

∞,1
(
R
n
)
↪→ L∞

(
R
n
)
↪→ BMO

(
R
n
)
↪→ Ḃ0∞,∞

(
R
n
)
.

Given 0 < s < 1, 1 � p � ∞, 1 � q � ∞, we introduce another function spaces Ḟ s
p,q

defined by the seminorm,
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‖f ‖Ḟ s
p,q
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥
( ∫

Rn

|f (x)− f (x − y)|q
|y|n+sq dy

) 1
q
∥∥∥∥
Lp(Rn, dx)

if 1 � p �∞, 1 � q <∞,∥∥∥∥ess sup
|y|>0

|f (x)− f (x − y)|
|y|s

∥∥∥∥
Lp(Rn, dx)

if 1 � p �∞, q = ∞.
On the other hand, the space Ḃsp,q is defined by the seminorm,

‖f ‖Ḃsp,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∫
Rn

‖f (·)− f (· − y)‖qLp
|y|n+sq dy

) 1
q

if 1 � p �∞, 1 � q <∞,

ess sup
|y|>0

‖f (·)− f (· − y)‖Lp
|y|s if 1 � p �∞, q = ∞.

Observe that, in particular, Ḟ s∞,∞ = Ḃs∞,∞ = Cs , which is the usual Hölder seminormed
space for s ∈ R+Z. We also note that if q = ∞, Ḃsp,∞ = Ṅ s

p, which is the Nikolskii space.

The inhomogeneous version of those spaces, F s
p,q and Bsp,q are defined by their norms,

‖f ‖F s
p,q
= ‖f ‖Lp + ‖f ‖Ḟ s

p,q
, ‖f ‖Ḃsp,q = ‖f ‖Lp + ‖f ‖Ḃsp,q ,

respectively. We note that for 0 < s < 1, 2 � p <∞, q = 2, F s
p,2
∼= Lps (Rn), introduced

above (see [137, p. 163]). If n
min{p,q} < s < 1, n < p < ∞ and n < q � ∞, then F s

p,q

coincides with the Triebel–Lizorkin space F sp,q(R
n) defined above (see [145, p. 101]). On

the other hand, for wider range of parameters, 0 < s < 1, 0 < p � ∞, 0 < q � ∞, Bsp,q
coincides with the Besov space Bsp,q(R

n) defined above.

2. Local well-posedness and blow-up criteria

2.1. Kato’s local existence and the BKM criterion

We review briefly the key elements in the classical local existence proof of solutions in
the Sobolev space Hm(Rn), m > n/2 + 1, essentially obtained by Kato in [97] (see also
[117]). After that we derive the celebrated Beale, Kato and Majda’s criterion on finite time
blow-up of the local solution in Hm(Rn), m > n/2 + 1 in [4]. Taking derivatives Dα on
the first equation of (E) and then taking L2 inner product it with Dαv, and summing over
the multi-indices α with |α| � m, we obtain

1

2

d

dt
‖v‖2

Hm = −
∑
|α|�m

(
Dα(v · ∇)v − (v · ∇)Dαv,Dαv)

L2

−
∑
|α|�m

(
(v · ∇)Dαv,Dαv)

L2 −
∑
|α|�m

(
Dα∇ p,Dαv)

L2

= I + II + III.
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Integrating by part, we obtain

III =
∑
|α|�m

(
Dαp,Dα div v

)
L2 = 0.

Integrating by part again, and using the fact div v = 0, we have

II = −1

2

∑
|α|�m

∫
Rn

(v · ∇)∣∣Dαv∣∣2
dx = 1

2

∑
|α|�m

∫
Rn

div v
∣∣Dαv∣∣2

dx = 0.

We now use the so-called commutator type of estimate [104],∑
|α|�m

∥∥Dα(fg)− fDαg∥∥
L2 � C

(‖∇f ‖L∞‖g‖Hm−1 + ‖f ‖Hm‖g‖L∞
)
,

and obtain

I �
∑
|α|�m

∥∥Dα(v · ∇)v − (v · ∇)Dαv∥∥
L2‖v‖Hm � C‖∇v‖L∞‖v‖2

Hm.

Summarizing the above estimates, I , II, III, we have

(2.1)
d

dt
‖v‖2

Hm � C‖∇v‖L∞‖v‖2
Hm.

Further estimate, using the Sobolev inequality, ‖∇v‖L∞ � C‖v‖Hm for m > n/2 + 1,
gives

d

dt
‖v‖2

Hm � C‖v‖3
Hm.

Thanks to Gronwall’s lemma we have the local in time uniform estimate

(2.2)
∥∥v(t)∥∥

Hm � ‖v0‖Hm

1− Ct‖v0‖Hm
� 2‖v0‖Hm

for all t ∈ [0, T ], where T = 1
2C‖v0‖Hm . Using this estimate we can also deduce the

estimate

(2.3)sup
0�t�T

∥∥∥∥∂v∂t
∥∥∥∥
Hm−1

� C
(‖v0‖Hm

)
directly from (E). The estimates (2.2) and (2.3) are the two key a priori estimates for the
construction of the local solutions. For actual elaboration of the proof we approximate
the Euler system by mollification, Galerkin projection, or iteration of successive linear
systems, and construct a sequence of smooth approximate solutions to (E), say {vk(·, t)}k∈N

corresponding to the initial data {v0,k}k∈N respectively with vk → v0 in Hm(Rn). The
estimates for the approximate solution sequence provides us with the uniform estimates
of {vk} in L∞([0, T ];Hm(Rn)) ∩ Lip([0, T ];Hm−1(Rn)). Then, applying the standard
Aubin–Nitche compactness lemma, we can pass to the limit k → ∞ in the equations
for the approximate solutions, and can show that the limit v = v∞ is a solution of the
(E) in L∞([0, T ]);Hm(Rn). By further argument we can actually show that the limit v
belongs to C([0, T ];Hm(Rn)) ∩ AC([0, T ];Hm−1(Rn)), where AC([0, T ];X) denotes
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the space of X valued absolutely continuous functions on [0, T ]. The general scheme of
such existence proof is standard, and is described in detail in [114] in the general type of
hyperbolic conservation laws. The approximation of the Euler system by mollification was
done for the construction of local solution of the Euler (and the Navier–Stokes) system
in [117].

Regarding the question of finite time blow-up of the local classical solution in Hm(Rn),
m > n/2 + 1, constructed above, the celebrated Beale–Kato–Majda theorem (called the
BKM criterion) states that

(2.4)lim sup
t↗T∗

∥∥v(t)∥∥
Hs = ∞ if and only if

∫ T∗

0

∥∥ω(s)∥∥
L∞ ds = ∞.

We outline the proof of this theorem below (for more details see [4,117]). We first recall
the Beale–Kato–Majda’s version of the logarithmic Sobolev inequality,

(2.5)‖∇v‖L∞ � C‖ω‖L∞
(
1+ log

(
1+ ‖v‖Hm

))+ C‖ω‖L2

form > n/2+1. Now suppose
∫ T∗

0 ‖ω(t)‖L∞ dt := M(T∗) <∞. Taking L2 inner product
the first equation of (E) with ω, then after integration by part we obtain

1

2

d

dt
‖ω‖2

L2 =
(
(ω · ∇)v, ω)

L2 � ‖ω‖L∞‖∇v‖L2‖ω‖L2 = ‖ω‖L∞‖ω‖2
L2,

where we used the identity ‖∇v‖L2 = ‖ω‖L2 . Applying the Gronwall lemma, we obtain

(2.6)
∥∥ω(t)∥∥

L2 � ‖ω0‖L2 exp

(∫ T∗

0

∥∥ω(s)∥∥
L∞ ds

)
= ‖ω0‖L2 exp

[
M(T∗)

]
for all t ∈ [0, T∗]. Substituting (2.6) into (2.5), and combining this with (2.1), we have

d

dt
‖v‖2

Hm � C
[
1+ ‖ω‖L∞

[
1+ log

(
1+ ‖v‖Hm

)]‖v‖2
Hm

]
.

Applying the Gronwall lemma we deduce

(2.7)
∥∥v(t)∥∥

Hm � ‖v0‖Hm exp

[
C1 exp

(
C2

∫ T∗

0

∥∥ω(τ)∥∥
L∞ dτ

)]

for all t ∈ [0, T∗] and for some constants C1 and C2 depending on M(T∗). The inequal-
ity (2.7) provides the with the necessity part of (2.4). The sufficiency part is an easy con-
sequence of the Sobolev inequality,∫ T∗

0

∥∥ω(s)∥∥
L∞ ds � T∗ sup

0�t�T∗

∥∥∇v(t)∥∥
L∞ � CT∗ sup

0�t�T∗

∥∥v(t)∥∥
Hm

for m > n/2 + 1. There are many other results of local well-posedness in various func-
tion spaces (see [14,15,17,20,44,45,96,98,99,111,142,143,147,148,153]). For the local ex-
istence proved in terms of a geometric formulation see [75]. For the BKM criterion for so-
lutions in the Hölder space see [3]. Immediately after the BKM result appeared, Ponce de-
rive similar criterion in terms of the deformation tensor [128]. Recently, Constantin proved
local well-posedness and a blow-up criterion in terms of the active vector formulation [51].
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2.2. Refinements of the BKM criterion

The first refinement of the BKM criterion was done by Kozono and Taniuchi in [105],
where they proved

THEOREM 2.1. Let s > n/p + 1. A solution v of the Euler equations belonging to
C([0, T∗);Ws,p(Rn)) ∩ C1([0, T∗);Ws−2,p(Rn)) blows up at T∗ in Ws,p(Rn), namely

lim sup
t↗T∗

∥∥v(t)∥∥
Ws,p = ∞ if and only if

∫ T∗

0
‖ω‖BMO = ∞.

The proof is based on the following version of the logarithmic Sobolev inequality for
f ∈ Ws,p(Rn), s > n/p, 1 < p <∞,

‖f ‖L∞ � C
(
1+ ‖f ‖BMO

(
1+ log+ ‖f ‖Ws,p

))
(see [105] for details of the proof). We recall now the embedding relations (1.15). Further
refinement of the above theorem is the following (see [14,20]).

THEOREM 2.2.
(i) (super-critical case) Let s > n/p + 1, p ∈ (1,∞), q ∈ [1,∞]. Then, the local in

time solution v ∈ C([0, T∗);Bsp,q(Rn)) blows up at T∗ in Bsp,q(R
n), namely

lim sup
t↗T∗

∥∥v(t)∥∥
Bsp,q

= ∞ if and only if
∫ T∗

0

∥∥ω(t)∥∥
Ḃ0∞,∞ dt = ∞.

(ii) (critical case) Let p ∈ (1,∞). Then, the local in time solution v ∈ C([0, T∗);
B
n/p+1
p,1 (Rn)) blows up at T∗ in Bn/p+1

p,1 (Rn), namely

lim sup
t↗T∗

∥∥v(t)∥∥
B
n/p+1
p,1

= ∞ if and only if
∫ T∗

0

∥∥ω(t)∥∥
Ḃ0∞,1

dt = ∞.

The proof of (i) is based on the following version of the logarithmic Sobolev inequality
for f ∈ Bsp,q(Rn) with s > n/p with p ∈ (1,∞), q ∈ [1,∞].

‖f ‖L∞ � C
(
1+ ‖f ‖Ḃ0∞,∞

(
log+ ‖f ‖Bsp,q + 1

))
.

In [106] Kozono, Ogawa and Taniuchi obtained similar results to (i) above independently.
In all of the above criteria, including the BKM theorem, we need to control all of the

three components of the vorticity vector to obtain regularity. The following theorem proved
in [22] states that actually we only need to control two components of the vorticity in the
slightly stronger norm than the L∞ norm (recall again the embedding (1.15)).

THEOREM 2.3. Let m > 5/2. Suppose v ∈ C([0, T∗);Hm(R3)) is the local classical
solution of (E) for some T1 > 0, corresponding to the initial data v0 ∈ Hm(R3), and
ω = curl v is its vorticity. We decompose ω = ω̃ + ω3e3, where ω̃ = ω1e1 + ω2e2, and
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{e1, e2, e3} is the canonical basis of R
3. Then,

lim sup
t↗T∗

∥∥v(t)∥∥
Hm = ∞ if and only if

∫ T∗

0

∥∥ω̃(t)∥∥2
Ḃ0
∞,1

dt = ∞.

Note that ω̃ could be the projected component of ω onto any plane in R
3. For the solution

v = (v1, v2, 0) of the Euler equations on the x1 − x2 plane, the vorticity is ω = ω3e3 with
ω3 = ∂x1v

2 − ∂x2v
1, and ω̃ ≡ 0. Hence, as a trivial application of the above theorem we

reproduce the well-known global in time regularity for the 2D Euler equations.
Next we present recent results on the blow up criterion in terms of Hessian of the pres-

sure. As in the introduction we use P = (Pij ), S = (Sij ) and ξ to denote the Hessian of the
pressure, the deformation tensor and the vorticity direction field respectively, introduced in
Section 1. We also introduce the notations

Sξ

|Sξ | = ζ, ζ · Pξ = μ.
The following is proved in [30].

THEOREM 2.4. If the solution v(x, t) of the 3D Euler system with v0 ∈ Hm(R3), m > 5
2 ,

blows up at T∗, namely lim supt↗T∗ ‖v(t)‖Hm = ∞, then necessarily,∫ T∗

0
exp

( ∫ τ

0

∥∥μ(s)∥∥
L∞ ds

)
dτ = ∞.

Similar criterion in terms of the Hessian of pressure, but with different detailed geomet-
ric configuration from the above theorem is obtained by Gibbon, Holm, Kerr and Roulstone
in [87]. Below we denote ξp = ξ × Pξ .

THEOREM 2.5. Letm � 3 and T
3 = R

3/Z3 be a periodic box. Then, there exists a global
solution of the Euler equations v ∈ C([0,∞);Hm(T3)) ∩ C1([0,∞);Hm−1(T3)) if∫ T

0

∥∥ξp(t)∥∥L∞ dt <∞, ∀t ∈ (0, T )
excepting the case where ξ becomes collinear with the eigenvalues of P at T .

Next, we consider the axisymmetric solution of the Euler equations, which means ve-
locity field v(r, x3, t), solving the Euler equations, and having the representation

v(r, x3, t) = vr(r, x3, t)er + vθ (r, x3, t)eθ + v3(r, x3, t)e3

in the cylindrical coordinate system, where

er =
(
x1

r
,
x2

r
, 0

)
, eθ =

(
−x2

r
,
x1

r
, 0

)
, e3 = (0, 0, 1), r =

√
x2

1 + x2
2 .

In this case also the question of finite time blow-up of solution is wide open (see e.g. [89,
90,11] for studies in such case). The vorticity ω = curl v is computed as

ω = ωrer + ωθeθ + ω3e3,
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where

ωr = −∂x3v
θ , ωθ = ∂x3v

r − ∂rv3, ω3 = 1

r
∂r

(
rvθ

)
.

We denote

ṽ = vrer + v3e3, ω̃ = ωrer + ω3e3.

Hence, ω = ω̃+ �ωθ , where �ωθ = ωθeθ . The Euler equations for the axisymmetric solution
are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vr

∂t
+ (ṽ · ∇̃)vr = −∂p

∂r
,

∂vθ

∂t
+ (ṽ · ∇̃)vθ = −v

rvθ

r
,

∂v3

∂t
+ (ṽ · ∇̃)v3 = − ∂p

∂x3
,

div ṽ = 0,
v(r, x3, 0) = v0(r, x3),

where ∇̃ = er
∂
∂r
+ e3

∂
∂x3

. In the axisymmetric Euler equations the vorticity formulation
becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ωr

∂t
+ (ṽ · ∇̃) = ωr(ω̃ · ∇̃)vr ,

∂ω3

∂t
+ (ṽ · ∇̃) = ω3(ω̃ · ∇̃)v3,[

∂

∂t
+ ṽ · ∇̃

](
ωθ

r

)
= (ω̃ · ∇̃)

(
vθ

r

)
,

div ṽ = 0, curl ṽ = �ωθ .
In the case of axisymmetry we only need to control just one component of vorticity (the
angular component) to get the regularity of solution. The following theorem is proved
in [40].

THEOREM 2.6. Let v ∈ C([0, T∗);Hm(R3)), m > 5/2, be the local classical axisymmet-
ric solution of (E), corresponding to an axisymmetric initial data v0 ∈ Hm(R3). Then, the
solution blows up in Hm(R3) at T∗ if and only if for all (γ, p) ∈ (0, 1)× [1,∞] we have∫ T∗

0

∥∥ωθ(t)∥∥L∞ dt

+
∫ T∗

0
exp

[∫ t

0

{∥∥ωθ(s)∥∥L∞(
1+ log+

(∥∥ωθ(s)∥∥Cγ ∥∥ωθ(s)∥∥Lp))
(2.8)+ ∥∥ωθ(s) log+ r

∥∥
L∞

}
ds

]
dt = ∞.
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We observe that although we need to control only ωθ to get the regularity, the its norm,
which is in Cγ , is higher than the L∞ norm used in the BKM criterion. If we use the
‘critical’ Besov space Ḃ0

∞,1(R3) we can derive slightly sharper criterion than Theorem 2.6
as follows (see [22] for the proof).

THEOREM 2.7. Let v ∈ C([0, T∗);Hm(R3)) be the local classical axisymmetric solution
of (E), corresponding to an axisymmetric initial data v0 ∈ Hm(R3). Then,

(2.9)lim sup
t↗T∗

∥∥v(t)∥∥
Hm = ∞ if and only if

∫ T∗

0

∥∥ �ωθ(t)∥∥Ḃ0∞,1
dt = ∞.

We observe that contrary to (2.8) we do not need to control the high regularity norm, the
Cγ norm of vorticity in (2.9). We can also have the regularity of the axisymmetric Euler
equation by controlling only one component of the velocity, the swirl velocity vθ as in the
follows proved in [38].

THEOREM 2.8. Let v ∈ C([0, T∗);Hm(R3)), m > 5/2, be the local classical axisymmet-
ric solution of (E), corresponding to an axisymmetric initial data v0 ∈ Hm(R3). Then, the
solution blows up in Hm(R3) at T∗ if and only if∫ T∗

0

(
‖∇̃vθ‖L∞ +

∥∥∥∥∂vθ∂r
∥∥∥∥
L∞

∥∥∥∥1

r

∂vθ

∂x3

∥∥∥∥
L∞

)
dt = ∞.

2.3. Constantin–Fefferman–Majda’s and other related results

In order to study the regularity problem of the 3D Navier–Stokes equations Constantin and
Fefferman investigated the geometric structure of the integral kernel in the vortex stretch-
ing term more carefully, and discovered the phenomena of ‘depletion effect’ hidden in the
integration ([55], see also [48] for detailed exposition related to this fact). Later similar
geometric structure of the vortex stretching term was studied extensively also in the blow-
up problem of the 3D Euler equations by Constantin, Fefferman and Majda [56]. Here we
first present their results in detail, and results in [25], where the BKM criterion and the
Constantin–Fefferman–Majda’s criterion are interpolated in some sense. Besides those re-
sults presented in this subsection we also mention that there are other interesting geometric
approaches to the Euler equations such as the quaternion formulation by Gibbon and his
collaborators [83,85–87]. We begin with a definition in [56]. Given a set W ∈ R

3 and
r > 0 we use the notation Br(W) = {y ∈ Br(x); x ∈ W }.
DEFINITION 2.1. A set W0 ⊂ R

3 is called smoothly directed if there exists ρ > 0 and
r, 0 < r � ρ/2 such that the following three conditions are satisfied.

(i) For every a ∈ W ∗
0 = {q ∈ W0; |ω0(q)| �= 0}, and all t ∈ [0, T ), the vorticity

direction field ξ(·, t) has a Lipschitz extension (denoted by the same letter) to the
Euclidean ball of radius 4ρ centered at X(a, t) and

M = lim
t→T

sup
a∈W ∗

0

∫ t

0

∥∥∇ξ(·, t)∥∥
L∞(B4ρ(X(a,t)))

dt <∞.
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(ii) The inequality

sup
B3r (Wt )

∣∣ω(x, t)∣∣ � m sup
Br (Wt )

∣∣ω(x, t)∣∣
holds for all t ∈ [0, T ) with m � 0 constant.

(iii) The inequality

sup
B4ρ(Wt )

∣∣v(x, t)∣∣ � U

holds for all t ∈ [0, T ).

The assumption (i) means that the direction of vorticity is well behaved in a neighbor-
hood of a bunch of trajectories. The assumption (ii) states that this neighborhood is large
enough to capture the local intensification of ω. Under these assumptions the following
theorem is proved in [56].

THEOREM 2.9. AssumeW0 is smoothly directed. Then there exists τ > 0 and Γ such that

sup
Br(Wt )

∣∣ω(x, t)∣∣ � Γ sup
Bρ(Wt0 )

∣∣ω(x, t0)∣∣
holds for any 0 � t0 < T and 0 � t − t0 � τ .

They also introduced the notion of regularly directed set, closely related to the geometric
structure of the kernel defining vortex stretching term.

DEFINITION 2.2. We sat that a set W0 is regularly directed if there exists ρ > 0 such that

sup
aW ∗

0

∫ T

0
Kρ

(
X(a, t)

)
dt <∞,

where

Kρ(x) =
∫
|y|�ρ

∣∣D(
ŷ, ξ(x + y), ξ(x))∣∣∣∣ω(x + y)∣∣ dy

|y|3
and

D
(
ŷ, ξ(x + y), ξ(x)) = (

ŷ · ξ(x)) Det
(
ŷ, ξ(x + y), ξ(x)).

Under the above assumption on the regularly directed sets the following is proved also
in [56].

THEOREM 2.10. Assume W0 is regularly directed. Then there exists a constant Γ such
that

sup
a∈W0

∣∣ω(
X(a, t), t

)∣∣ � Γ sup
a∈W0

∣∣ω0(a)
∣∣

holds for all t ∈ [0, T ].
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The original studies by Constantin and Fefferman in [55] about the Navier–Stokes equa-
tions, which motivated the above theorems, are concerned mainly about the regularity of
solutions in terms of the vorticity direction fields ξ . We recall, on the other hand, that the
BKM type of criterion controls the magnitude of vorticity to obtain regularity. Incorpo-
ration of both the direction and the magnitude of vorticity to obtain regularity for the 3D
Navier–Stokes equations was first initiated by Beirão da Veiga and Berselli in [6], and de-
veloped further by Beirão da Veiga in [5], and finally refined in an ‘optimal’ form in [35]
(see also [39] for a localized version). We now present the Euler equation version of the
result in [35].

Below we use the notion of particle trajectory X(a, t), which is defined by the classical
solution v(x, t) of (E). Let us denote

Ω0 =
{
x ∈ R

3 | ω0(x) �= 0
}
, Ωt = X(Ω0, t).

We note that the direction field of the vorticity, ξ(x, t) = ω(x, t)/|ω(x, t)|, is well-defined
if x ∈ Ωt for v0 ∈ C1(R3)withΩ0 �= ∅. The following is the main theorem proved in [25].

THEOREM 2.11. Let v(x, t) be the local classical solution to (E) with initial data v0 ∈
Hm(R3), m > 5/2, and ω(x, t) = curl v(x, t). We assumeΩ0 �= ∅. Then, the solution can
be continued up to T + δ as the classical solution, namely v(t) ∈ C([0, T + δ];Hm(R3))

for some δ > 0, if there exists p, p′, q, q ′, s, r1, r2, r3 satisfying the following conditions,

(2.10)
1

p
+ 1

p′
= 1,

1

q
+ 1

q ′
= 1,

and

(2.11)
1

r1
+ p′

r2

(
1− sq ′

3

)
+ 1

r3

{
1− p′

(
1− sq ′

3

)}
= 1

with

(2.12)0 < s < 1, 1 � 3

sq ′
< p �∞, 1 � q �∞,

and

r1 ∈ [1,∞], r2 ∈
[
p′

(
1− sq ′

3

)
,∞

]
,

(2.13)r3 ∈
[

1− p′
(

1− sq ′

3

)
,∞

]
such that for direction field ξ(x, t), and the magnitude of vorticity |ω(x, t)| the followings
hold

(2.14)
∫ T

0

∥∥ξ(t)∥∥r1Ḟ s∞,q (Ωt )
dt <∞,

and

(2.15)
∫ T

0

∥∥ω(t)∥∥r2
Lpq

′
(Ωt )

dt +
∫ T

0

∥∥ω(t)∥∥r3
Lq
′
(Ωt )

dt <∞.
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In order to get insight implied by the above theorem let us consider the special case of
p = ∞, q = 1. In this case the conditions (2.14)–(2.15) are satisfied if

(2.16)ξ(x, t) ∈ Lr1(0, T ;Cs(R3)),
(2.17)ω(x, t) ∈ Lr2(0, T ;L∞(

R
3)) ∩ Lr3(0, T ;L∞(

R
3)),

with

(2.18)
1

r1
+ 1

r2

(
1− s

3

)
+ s

3r3
= 1.

Let us formally pass s → 0 in (2.16) and (2.18), and choose r1 = ∞ and r2 = r3 = 1, then
we find that the conditions (2.16)–(2.17) reduce to the BKM condition, since the condition
ξ(x, t) ∈ L∞(0, T ;C0(R3)) ∼= L∞((0, T )×R

3) is obviously satisfied due to the fact that
|ξ(x, t)| ≡ 1.

The other case of interest is q ′ = 3/s, where (2.14)–(2.15) are satisfied if

(2.19)ξ(x, t) ∈ Lr1(0, T ; Ḟ s

∞, 3
3−s

(
R

3)), ∣∣ω(x, t)∣∣ ∈ Lr2(0, T ;L3/s(
R

3)).
with 1/r1 + 1/r2 = 1. The condition (2.19) shows explicitly the mutual compensation
between the regularity of the direction field and the integrability of the vorticity magnitude
in order to control regularity/singularity of solutions of the Euler equations.

Next we review the result of non-blow-up conditions due to Deng, Hou and Yu [71,72].
We consider a time t and a vortex line segment Lt such that the maximum of vorticity over
the whole domain is comparable to the maximum of vorticity on over Lt , namely

Ω(t) := sup
x∈R3

∣∣ω(x, t)∣∣ ∼ max
x∈Lt

∣∣ω(x, t)∣∣.
We denote L(t) := arc length of Lt ; ξ , n and κ are the unit tangential and the unit normal
vectors to Lt and the curvature of Lt respectively. We also use the notations,

Uξ(t) := max
x,y∈Lt

∣∣(v · ξ)(x, t)− (v · ξ)(y, t)∣∣,
Un(t) := max

x∈Lt
∣∣(v · n)(x, t)∣∣,

M(t) := max
x∈Lt

∣∣(∇ · ξ)(x, t)∣∣,
K(t) := max

x∈Lt
κ(x, t).

We denote by X(A, s, t) the image by the trajectory map at time t > s of fluid particles at
A at time s. Then, the following is proved in [72].

THEOREM 2.12. Assume that there is a family of vortex line segment Lt and T0 ∈ [0, T ∗),
such that X(Lt1, t1, t2) ⊇ Lt2 for all T0 < t1 < t2 < T ∗. Also assume that Ω(t) is
monotonically increasing and maxx∈Lt |ω(x, t)| � c0Ω(t) for some c0 when t is suffi-
ciently close to T ∗. Furthermore, we assume there are constants CU,C0, cL such that

1. [Uξ(t)+ Un(t)K(t)L(t)] � CU(T
∗ − t)−A for some constant A ∈ (0, 1),

2. M(t)L(t),K(t)L(t) � C0,
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3. L(t) � cL(T
∗ − t)B for some constant B ∈ (0, 1).

Then there will be no blow-up in the 3D incompressible Euler flow up to time T ∗, as long
as B < 1− A.

In the endpoint case of B = 1− A they deduced the following theorem [71].

THEOREM 2.13. Under the same assumption as in Theorem 2.10, there will be no blow-
up in the Euler system up to time T ∗ in the case B = 1 − A, as long as the following
condition is satisfied:

R3K < y1
(
RA−1(1− A)1−A/(2− A)2−A)

,

where R = eC0/c0,K := CUc0/(cL(1− A)), and y1(m) denotes the smallest positive y
such that m = y/(1+ y)2−A.

We refer [71,72] for discussions on the various connections of Theorems 2.10 and 2.11
with numerical computations.

3. Blow-up scenarios

3.1. Vortex tube collapse

We recall that a vortex line is an integral curve of the vorticity, and a vortex tube is a
tubular neighborhood in R

3 foliated by vortex lines. Numerical simulations (see e.g. [46])
show that vortex tubes grow and thinner (stretching), and folds before singularity happens.
We review here the result by Córdoba and Fefferman [66] excluding a type of vortex tube
collapse.

Let Q = I1 × I2 × I3 ⊂ R
3 be a closed rectangular box, and let T > 0 be given.

A regular tube is a relatively open set Ωt ⊂ Q parameterized by time t ∈ [0, T ), having
the form Ωt = {(x1, x2, x3) ∈ Q: θ(x1, x2, x3, t) < 0} with θ ∈ C1(Q × [0, T )), and
satisfying the following properties:

|∇x1,x2θ | �= 0 for (x1, x2, x3, t) ∈ Q× [0, T ), θ(x1, x2, x3, t) = 0;
Ωt(x3) :=

{
(x1, x2) ∈ I1 × I2: (x1, x2, x3) ∈ Ωt

}
is non-empty,

for all x3 ∈ I3, t ∈ [0, T );
closure

(
Ωt(x3)

) ⊂ interior(I1 × I2)

for all x3 ∈ I3, t ∈ [0, T ).
Let u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) be a C1 velocity field defined on Q× [0, T ).

We say that the regular tube Ωt moves with the velocity field u, if we have(
∂

∂t
+ u · ∇x

)
θ = 0 whenever (x, t) ∈ Q× [0, T ), θ(x, t) = 0.
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By the Helmholtz theorem we know that a vortex tube arising from a 3D Euler solu-
tion moves with the fluid velocity. The following theorem proved by Córdoba and Fef-
ferman [66] says for the 3D Euler equations that a vortex tube cannot reach zero thickness
in finite time, unless it bends and twists so violently that no part of it forms a regular tube.

THEOREM 3.1. LetΩt ⊂ Q(t ∈ [0, T )) be a regular tube that moves with C1, divergence
free velocity field u(x, t).

If
∫ T

0
sup
x∈Q

∣∣u(x, t)∣∣ dt <∞, then lim inf
t→T−

Vol(Ωt ) > 0.

3.2. Squirt singularity

The theorem of excluding the regular vortex tube collapse was generalized by Córdoba,
Fefferman and de la Lave [70], which we review here. We first recall their definition of
squirt singularities. Let Ω ⊂ R

n be an open set. We denote Xt(a) = X(a, t), which is a
particle trajectory generated by a C1 vector field u :Ω×[0, T )→ R

n such that div u = 0.
We also set Xt,s(a) as the position at time t of the trajectory which at time t = s is a. We
have obvious relations,

Xt(a) = Xt,0(a), Xt,s = Xt ◦X−1
s , Xt,s ◦Xs,s1 = Xt,s1 .

For S ⊂ Ω , we denote by

XΩt,sS =
{
x ∈ Ω | x = Xt(a), a ∈ S, Xs(a) ∈ Ω, 0 � s � t

}
.

In other words, XΩt,sS is the evolution of the set S, starting at time a, after we eliminate
the trajectories which step out of Ω at some time. By the incompressibility condition on
u, we have that Vol(Xt,sS) is independent of t , and the function t �→ Vol(Xt,sS) is non-
increasing.

DEFINITION 3.1. Let Ω−,Ω+ be open and bounded sets. Ω− ⊂ Ω+. Therefore,

dist
(
Ω−,Rn −Ω+

)
� r > 0.

We say that u experiences a squirt singularity in Ω−, at time T > 0, when for every
0 � s < T , we can find a set Ss ⊂ Ω+ such that

(i) Ss ∩Ω− has positive measure, 0 � s < T ,
(ii) limt→T Vol(XΩ

+
t,s Ss) = 0.

The physical intuition behind the above definition is that there is a region of positive
volume so that all the fluid occupying it gets ejected from a slightly bigger region in finite
time. Besides the vortex tube collapse singularity introduced in the previous subsection the
potato chip singularity and the saddle collapse singularity, which will be defined below,
are also special examples of the squirt singularity, connected with real fluid mechanics
phenomena.
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DEFINITION 3.2 (potato chip singularity). We say that u experiences a potato chip singu-
larity when we can find continuous functions

f± : R
n−1 × [0, T )→ R

such that

f+(x1, . . . , xn−1, t) � f−(x1, . . . , xn−1, t),

t ∈ [0, T ], x1, . . . , xn−1 ∈ B2r (Πx
0),

f+(x1, . . . , xn−1, 0) � f−(x1, . . . , xn−1, 0), x1, . . . , xn−1 ∈ Br(Πx0),

lim
t→T−

[
f+(x1, . . . , xn−1, t)− f−(x1, . . . , xn−1, t)

] = 0

∀x1, . . . , xn−1 ∈ B2r (Πx
0)

and such that the surfaces

Σ±,t =
{
xn = f±(x1, . . . , xn−1, t)

} ⊂ Ω
are transformed into each other by the flow

X(Σ±,0, t) ⊃ Σ±,t .
In the above Π is projection on the first n− 1 coordinates.

Previously to [70] potato chip singularities were considered in the 2D and 3D flows
by Córdoba and Fefferman [69,67] respectively in the name of ‘sharp front’. In particular
the exclusion of sharp front in the 2D quasi-geostrophic equation is proved in [69]. The
following notion of saddle collapse singularity is relevant only for 2D flows.

DEFINITION 3.3 (saddle collapse singularity). We consider foliation of a neighborhood of
the origin (with coordinates x1, x2) whose leaves are given by equations of the form

ρ := (
y1β(t)+ y2

) · (y1δ(t)+ y2
) = const

and (y1, y2) = Ft (x1, x2), where β, δ : [0, T )→ R
+ are C1 foliations, F is a C2 function

of x, t , for a fixed t , and Ft is an orientation preserving diffeomorphism. We say that the
foliation experiences a saddle collapse when

lim inf
t→T

β(t)+ δ(t) = 0.

If the leaves of the foliation are transported by a vector field u, we say that the vector field
u experiences a saddle collapse.

The exclusion of saddle point singularity in the 2D quasi-geostrophic equation (see Sec-
tion 4.3 below) was proved by Córdoba in [65]. The following ‘unified’ theorem is proved
in [70].
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THEOREM 3.2. If u has a squirt singularity at T , then
∫ T
s

supx |u(x, t)| dt = ∞ for all
s ∈ (0, T ). Moreover, if u has a potato chip singularity, then∫ T

s

sup
x

∣∣Πu(x, t)∣∣ dt = ∞.

3.3. Self-similar blow-up

In this subsection we review the scenario of self-similar singularity studied in [32] (see
also [50] for a related study). We first observe that the Euler system (E) has scaling property
that if (v, p) is a solution of the system (E), then for any λ > 0 and α ∈ R the functions

(3.1)vλ,α(x, t) = λαv(λx, λα+1t), pλ,α(x, t) = λ2αp(λx, λα+1t)

are also solutions of (E) with the initial data vλ,α0 (x) = λαv0(λx). In view of the scaling
properties in (3.1), the self-similar blowing up solution v(x, t) of (E), if it exists, should be
of the form,

(3.2)v(x, t) = 1

(T∗ − t) α
α+1

V

(
x

(T∗ − t) 1
α+1

)

for α �= −1 and t sufficiently close to T∗. If we assume that initial vorticity ω0 has compact
support, then the non-existence of self-similar blow-up of the form given by (3.2) is rather
immediate from the well-known formula, ω(X(a, t), t) = ∇aX(a, t)ω0(a). We want to
generalize this to a non-trivial case. Substituting (3.2) into (E), we find that V should be a
solution of the system

(SE)

{
α

α + 1
V + 1

α + 1
(x · ∇)V + (V · ∇)V = −∇P,

divV = 0

for some scalar function P , which could be regarded as the Euler version of the Leray
equations introduced in [110]. The question of existence of non-trivial solution to (SE)
is equivalent to the that of existence of non-trivial self-similar finite time blowing up so-
lution to the Euler system of the form (3.2). Similar question for the 3D Navier–Stokes
equations was raised by Leray in [110], and answered negatively by Necas, Ruzicka and
Sverak [122], the result of which was refined later by Tsai in [146] (see also [119] for a
generalization). Combining the energy conservation with a simple scaling argument, the
author of this article showed that if there exists a non-trivial self-similar finite time blow-
ing up solution, then its helicity should be zero [18]. Mainly due to lack of the Laplacian
term in the right-hand side of the first equations of (SE), we cannot expect the maximum
principle, which was crucial in the works in [122] and [146] for the 3D Navier–Stokes
equations. Using a completely different argument from those previous ones, in [32] it is
proved that there cannot be self-similar blowing up solution to (E) of the form (3.2), if
the vorticity decays sufficiently fast near infinity. Given a smooth velocity field v(x, t), the
particle trajectory mapping a �→ X(a, t). The inverse A(x, t) := X−1(x, t) is called the
back to label map, which satisfiesA(X(a, t), t) = a, andX(A(x, t), t) = x. The existence
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of the back-to-label map A(·, t) for our smooth velocity v(x, t) for t ∈ (0, T∗), is guaran-
teed if we assume a uniform decay of v(x, t) near infinity, independent of the decay rate
(see [51]). The following is proved in [32].

THEOREM 3.3. There exists no finite time blowing up self-similar solution v(x, t) to the
3D Euler equations of the form (3.2) for t ∈ (0, T∗) with α �= −1, if v and V satisfy the
following conditions:

(i) For all t ∈ (0, T∗) the particle trajectory mappingX(·, t) generated by the classical
solution v ∈ C([0, T∗);C1(R3;R3)) is a C1 diffeomorphism from R

3 onto itself.
(ii) The vorticity satisfies Ω = curlV �= 0, and there exists p1 > 0 such that Ω ∈

Lp(R3) for all p ∈ (0, p1).

We note that the condition (ii) is satisfied, for example, if Ω ∈ L1
loc(R

3) and there exist
constants R,K and ε1, ε2 > 0 such that |Ω(x)| � Ke−ε1|x|ε2 for |x| > R, then we have
Ω ∈ Lp(R3;R3) for all p ∈ (0, 1). Indeed, for all p ∈ (0, 1), we have∫

R3

∣∣Ω(x)∣∣p dx =
∫
|x|�R

∣∣Ω(x)∣∣p dx +
∫
|x|>R

∣∣Ω(x)∣∣p dx

� |BR|1−p
(∫

|x|�R
∣∣Ω(x)∣∣ dx

)p
+Kp

∫
R3

e−pε1|x|ε2 dx <∞,

where |BR| is the volume of the ball BR of radius R.
In the zero vorticity case Ω = 0, from div V = 0 and curlV = 0, we have V = ∇h,

where h(x) is a harmonic function in R
3. Hence, we have an easy example of self-similar

blow-up,

v(x, t) = 1

(T∗ − t) α
α+1
∇h

(
x

(T∗ − t) 1
α+1

)
,

in R
3, which is also the case for the 3D Navier–Stokes with α = 1. We do not consider this

case in the theorem.
The above theorem is actually a corollary of the following more general theorem.

THEOREM 3.4. Let v ∈ C([0, T );C1(R3;R3)) be a classical solution to the 3D Euler
equations generating the particle trajectory mappingX(·, t) which is a C1 diffeomorphism
from R

3 onto itself for all t ∈ (0, T ). Suppose we have representation of the vorticity of the
solution, by

(3.3)ω(x, t) = Ψ (t)Ω(
Φ(t)x

) ∀t ∈ [0, T )
where Ψ (·) ∈ C([0, T ); (0,∞)), Φ(·) ∈ C([0, T );R3×3) with det(Φ(t)) �= 0 on [0, T );
Ω = curlV for some V , and there exists p1 > 0 such that |Ω| belongs to Lp(R3) for all
p ∈ (0, p1). Then, necessarily either det(Φ(t)) ≡ det(Φ(0)) on [0, T ), or Ω = 0.

For the detailed proof of Theorems 3.3 and 3.4 we refer [32].
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3.4. Asymptotically self-similar blow-up

In this subsection we consider the possibility of more refined scenario of self-similar sin-
gularity than in the previous subsection, called the asymptotically self-similar singularity.
This means that the local in time smooth solution evolves into a self-similar profile as the
possible singularity time is approached. The similar notion was considered previously by
Giga and Kohn in their study of semilinear heat equation [88]. Their sense of convergence
of solution to the self-similar profile is the pointwise sense with a time difference weight
to make it scaling invariant, and cannot apply directly to the case of Euler system. It is
found in [33] that if we make the sense of convergence strong enough, then we can apply
the notion of asymptotically self-similar singularity to the Euler and the Navier–Stokes
equations. The following theorem is proved in [33].

THEOREM 3.5. Let v ∈ C([0, T );B3/p+1
p,1 (R3)) be a classical solution to the 3D Euler

equations. Suppose there exist p1 > 0, α > −1, V̄ ∈ C1(R3)with limR→∞ sup|x|=R |V̄ (x)|
= 0 such that Ω̄ = curl V̄ ∈ Lq(R3) for all q ∈ (0, p1), and the following convergence
holds true:

lim
t↗T (T − t)

α−3
α+1

∥∥∥∥v(·, t)− 1

(T − t) α
α+1

V̄

( ·
(T − t) 1

α+1

)∥∥∥∥
L1
= 0,

and

sup
t∈(0,T )

(T − t)
∥∥∥∥ω(·, t)− 1

T − t Ω̄
( ·
(T − t) 1

α+1

)∥∥∥∥
Ḃ0∞,1

<∞.

Then, Ω̄ = 0, and v(x, t) can be extended to a solution of the 3D Euler system in [0, T +
δ] × R

3, and belongs to C([0, T + δ];B3/p+1
p,1 (R3)) for some δ > 0.

We note that the above theorem still does not exclude the possibility that the sense of vor-
ticity convergence to the asymptotically self-similar singularity is weaker than L∞ sense.
Namely, a self-similar vorticity profile could be approached from a local classical solution
in the pointwise sense in space, or in the Lp(R3) sense for some p with 1 � p < ∞.
In [33] we also proved non-existence of asymptotically self-similar solution to the 3D
Navier–Stokes equations with appropriate change of functional setting (see also [93] for
related results).

The proof of the above theorem follows without difficulty from the following blow-up
rate estimate [33], which is interesting in itself.

THEOREM 3.6. Let p ∈ [1,∞) and v ∈ C([0, T );B3/p+1
p,1 (R3)) be a classical solution to

the 3D Euler equations. There exists an absolute constant η > 0 such that if

(3.4)inf
0�t<T

(T − t)∥∥ω(t)∥∥
Ḃ0∞,1

< η,

then v(x, t) can be extended to a solution of the 3D Euler system in [0, T + δ] × R
3, and

belongs to C([0, T + δ];B3/p+1
p,1 (R3)) for some δ > 0.
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We note that the proof of the local existence for v0 ∈ B3/p+1
p,1 (R3) is done in [14,20]

(see also [147]). The above theorem implies that if T∗ is the first time of singularity, then
we have the lower estimate of the blow-up rate,

(3.5)
∥∥ω(t)∥∥

Ḃ0∞,1
� C

T∗ − t ∀t ∈ [0, T∗)
for an absolute constantC. The estimate (3.5) was actually derived previously by a different
argument in [18]. We observe that (3.5) is consistent with both of the BKM criterion [4]
and the Kerr’s numerical calculation in [101] respectively.

The above continuation principle for a local solutions in B3/p+1
p,1 (R3) has obvious appli-

cations to the solutions belonging to more conventional function spaces, due to the embed-
dings,

Hm
(
R

3) ↪→ C1,γ (
R

3) ↪→ B
3/p+1
p,1

(
R

3)
form > 5/2 and γ = m−5/2. For example the local solution v ∈ C([0, T );Hm(R3)) can
be continued to be v ∈ C([0, T + δ];Hm(R3)) for some δ, if (5.4) is satisfied. Regarding
other implication of the above theorem on the self-similar blowing up solution to the 3D
Euler equations, we have the following corollary (see [33] for the proof).

COROLLARY 3.1. Let v ∈ C([0, T∗);B3/p+1
p,1 (R3)) be a classical solution to the 3D Euler

equations. There exists η > 0 such that if we have representation for the velocity by (3.2),
and Ω̄ = curl V̄ satisfies ‖Ω̄‖Ḃ0∞,1

< η, then Ω̄ = 0, and v(x, t) can be extended to a solu-

tion of the 3D Euler system in [0, T∗ + δ]×R
3, and belongs to C([0, T∗ + δ];B3/p+1

p,1 (R3))

for some δ > 0.

4. Model problems

Since the blow-up problem of the 3D Euler equations looks beyond the capability of cur-
rent analysis, people proposed simplified model equations to get insight on the original
problem. In this section we review some of them. Besides those results presented in the
following subsections there are also studies on the other model problems. In [73] Dinaburg,
Posvyanskii and Sinai analyzed a quasi-linear approximation of the infinite system of ODE
arising when we write the Euler equation in a Fourier mode. Friedlander and Pavlović [80]
considered a vector model, and Katz and Pavlović [100] studied dyadic model, both of
which are resulted from the representation of the Euler equations in the wave number
space. Okamoto and Ohkitani proposed model equations in [126], and a ‘dual’ system to
the Euler equations was considered in [21].

4.1. Distortions of the Euler equations

Taking trace of the matrix equation (1.11) for V , we obtain �p = − trV 2, and hence the
Hessian of the pressure is given by

Pij = −∂i∂j (�)−1 trV 2 = −RiRj trV 2,
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where Rj denotes the Riesz transform (see Section 1). Hence we can rewrite the Euler
equations as

(4.1)
DV

Dt
= −V 2 − R[

trV 2], R[·] = (
RiRj [·]

)
.

In [47] Constantin studied a distorted version of the above system,

(4.2)
∂V

∂t
= −V 2 − R[

trV 2], R[·] = (
RiRj [·]

)
,

where the convection term of the original Euler equations is deleted, and showed that a so-
lution indeed blows up in finite time. Note that the incompressibility condition, trV = 0, is
respected in the system (4.2). Thus we find that the convection term should have significant
role in the study of the blow-up problem of the original Euler equations.

On the other hand, in [113] Liu and Tadmor studied another distorted version of (4.1),
called the restricted Euler equations,

(4.3)
DV

Dt
= −V 2 + 1

n

(
trV 2)I.

We observe that in (4.3) the convection term is kept, but the non-local operator RiRj (·)
is changed into a local one −1/nδij , where the numerical factor −1/n is to keep the in-
compressibility condition. Analyzing the dynamics of eigenvalues of the matrix V , they
showed that the system (4.3) actually blows up in finite time [113].

4.2. The Constantin–Lax–Majda equation

In 1985 Constantin, Lax and Majda constructed a one-dimensional model of the vortic-
ity formulation of the 3D Euler equations, which preserves the feature of non-locality in
vortex stretching term. Remarkably enough this model equation has an explicit solution
for general initial data [58]. In this subsection we briefly review their result. We first ob-
serve from Section 1 that vorticity formulation of the Euler equations is Dω

Dt
= Sω, where

S = P(ω) defines a singular integral operator of the Calderon–Zygmund type on ω. Let us
replace ω(x, t) ⇒ θ(x, t), D

Dt
⇒ ∂

∂t
, P(·) ⇒ H(·), where θ(x, t) is a scalar function on

R× R+, and H(·) is the Hilbert transform defined by

Hf (x) = 1

π
p.v.

∫
R

f (y)

x − y dy.

Then we obtain, the following 1D scalar equation from the 3D Euler equation,

(CLM):
∂θ

∂t
= θHθ.

This model preserve the feature of non-locality of the Euler system (E), in contrast to
the more traditional one-dimensional model, the inviscid Burgers equation. We recall the
identities for the Hilbert transform:

(4.4)H(Hf ) = −f, H(fHg + gHf ) = (Hf )(Hg)− fg,
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which imply H(θHθ) = 1
2 [(Hθ)2 − θ2]. Applying H on both sides of the first equation

of (CLM), and using the formula (4.4), we obtain

(CLM)∗: (Hθ)t + 1

2

(
(Hθ)2 − (θ)2) = 0.

We introduce the complex valued function,

z(x, t) = Hθ(x, t)+ iθ(x, t).

Then, (CLM) and (CLM)∗ are the imaginary and the real parts of the complex Riccati
equation,

zt (x, t) = 1

2
z2(x, t).

The explicit solution to the complex equation is

z(x, t) = z0

1− 1
2 tz0(x)

.

Taking the imaginary part, we obtain

θ(x, t) = 4θ0(x)

(2− tHθ0(x))2 + t2θ2
0 (x)

.

The finite time blow-up occurs if and only if

Z = {
x | θ0(x) = 0 and Hθ0(x) > 0

} �= ∅.

In [134] Schochet find that even if we add viscosity term to (CLM) there is a finite time
blow-up. See also [131,132] for the studies of other variations of (CLM).

4.3. The 2D quasi-geostrophic equation and its 1D model

The 2D quasi-geostrophic equation (QG) models the dynamics of the mixture of cold and
hot air and the fronts between them.

(QG)

⎧⎨
⎩
θt + (u · ∇)θ = 0,
v = −∇⊥(−�)− 1

2 θ,

θ(x, 0) = θ0(x),

where ∇⊥ = (−∂2, ∂1). Here, θ(x, t) represents the temperature of the air at (x, t) ∈
R

2 × R+. Besides its direct physical significance (QG) has another important feature that
it has very similar structure to the 3D Euler equations. Indeed, taking ∇⊥ to (QG), we
obtain (

∂

∂t
+ v · ∇

)
∇⊥θ = (∇⊥θ · ∇)v,

where

v(x, t) =
∫

R2

∇⊥θ(y, t)
|x − y| dy.
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This is exactly the vorticity formulation of 3D Euler equation if we identify

∇⊥θ ⇐⇒ ω.

After first observation and pioneering analysis of these feature by Constantin, Majda and
Tabak [59] there have been so many research papers devoted to the study of this equation
(also the equation with the viscosity term, −(−�)αθ , α > 0, added) [48,53,60,61,65,64,
62,68–70,63,149–151,16,25,26,42,124,73,103,10]. We briefly review some of them here
concentrating on the inviscid equation (QG).

The local existence can be proved easily by standard method. The BKM type of blow-up
criterion proved by Constantin, Majda and Tabak in [59] is

(4.5)lim sup
t↗T∗

∥∥θ(t)∥∥
Hs = ∞ if and only if

∫ T∗

0

∥∥∇⊥θ(s)∥∥
L∞ ds = ∞.

This criterion has been refined, using the Triebel–Lizorkin spaces [16]. The question of
finite time singularity/global regularity is still open. Similarly to the Euler equations case
we also have the following geometric type of condition for the regularity. We define the
direction field ξ = ∇⊥θ/|∇⊥θ | whenever |∇⊥θ(x, t)| �= 0.

DEFINITION 4.1. We say that a setΩ0 is smoothly directed if there exists ρ > 0 such that

sup
q∈Ω0

∫ T

0

∣∣v(X(q, t), t)∣∣2 dt <∞,

sup
q∈Ω∗0

∫ T

0

∥∥∇ξ(·, t)∥∥2
L∞(Bρ(X(q,t))) dt <∞,

where Bρ(X) is the ball of radius ρ centered at X and

Ω∗0 =
{
q ∈ Ω0;

∣∣∇θ0(q)
∣∣ �= 0

}
.

We denote OT (Ω0) = {(x, t) | x ∈ X(Ω0, t), 0 � t � T }. Then, the following theorem
is proved [59].

THEOREM 4.1. Assume that Ω0 is smoothly directed. Then

sup
(x,t)∈OT (Ω0)

∣∣∇θ(x, t)∣∣ <∞,
and no singularity occurs in OT (Ω0).

Next we present an ‘interpolated’ result between the criterion (4.5) and Theorem 4.1,
obtained in [25]. Let us denote bellow,

D0 =
{
x ∈ R

2 | ∣∣∇⊥θ0(x)
∣∣ �= 0

}
, Dt = X(D0, t).

The following theorem [25] could be also considered as the (QG) version of Theorem 2.9.
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THEOREM 4.2. Let θ(x, t) be the local classical solution to (QG) with initial data θ0 ∈
Hm(R2), m > 3/2, for which D0 �= ∅. Let ξ(x, t) = ∇⊥θ(x, t)/|∇⊥θ(x, t)| be the
direction field defined for x ∈ Dt . Then, the solution can be continued up to T < ∞
as the classical solution, namely θ(t) ∈ C([0, T ];Hm(R2)), if there exist parameters
p, p′, q, q ′, s, r1, r2, r3 satisfying the following conditions,

(4.6)
1

p
+ 1

p′
= 1,

1

q
+ 1

q ′
= 1,

and

(4.7)
1

r1
+ p′

r2

(
1− sq ′

2

)
+ 1

r3

{
1− p′

(
1− sq ′

2

)}
= 1

with

(4.8)0 < s < 1, 1 � 2

sq ′
< p �∞, 1 � q �∞,

and

(4.9)r1 ∈ [1,∞], r2 ∈
[
p′

(
1− sq ′

2

)
,∞

]
, r3 ∈

[
1− p′

(
1− sq ′

2

)
,∞

]

such that the followings hold:

(4.10)
∫ T

0

∥∥ξ(t)∥∥r1Ḟ s∞,q (Dt )
dt <∞,

and

(4.11)
∫ T

0

∥∥∇⊥θ(t)∥∥r2
Lpq

′
(Dt )

dt +
∫ T

0

∥∥∇⊥θ(t)∥∥r3
Lq
′
(Dt )

dt <∞.

In order to compare this theorem with the Constantin–Majda–Tabak criterion (4.5), let
us consider the case of p = ∞, q = 1. In this case the conditions (4.10)–(4.11) are satisfied
if

(4.12)ξ(x, t) ∈ Lr1(0, T ;Cs(R2)),
(4.13)

∣∣∇⊥θ(x, t)∣∣ ∈ Lr2(0, T ;L∞(
R

2)) ∩ Lr3(0, T ;L∞(
R

2)).
with

1

r1
+ 1

r2

(
1− s

2

)
+ s

2r3
= 1.

If we formally passing s → 0, and choosing r1 = ∞, r2 = r3 = 1, we find that the
conditions (4.12)–(4.13) are satisfied if the Constantin–Majda–Tabak condition in (4.5)
holds, since the condition

ξ(x, t) ∈ L∞(
0, T ;C0(

R
2)) ∼= L∞(

(0, T )× R
2)
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is automatically satisfied. The other is the case q ′ = 2/s, where (4.10)–(4.11) are satisfied
if

(4.14)ξ(x, t) ∈ Lr1(0, T ; Ḟ s

∞, 2
2−s

(
R

2)), ∣∣∇⊥θ(x, t)∣∣ ∈ Lr2(0, T ;L 2
s
(
R

2))
with 1/r1 + 1/r2 = 1, which shows mutual compensation of the regularity of the direc-
tion field ξ(x, t) and the integrability of the magnitude of gradient |∇⊥θ(x, t)| to obtain
smoothness of θ(x, t).

There had been a conjectured scenario of singularity in (QG) in the form of hyperbolic
saddle collapse of level curves of θ(x, t) (see Definition 3.3). This was excluded by Cór-
doba in 1998 ([65], see also Section 3.2 of this article). Another scenario of singularity,
the sharp front singularity, which is a two-dimensional version of potato chip singularity
(see Definition 3.2 with n = 2) was excluded by Córdoba and Fefferman in [69] under the
assumption of suitable velocity control (see Section 3.2).

We can also consider the possibility of self-similar singularity for (QG). We first note
that (QG) has the scaling property that if θ is a solution of the system, then for any λ > 0
and α ∈ R the functions

(4.15)θλ,α(x, t) = λαθ(λx, λα+1t)

are also solutions of (QG) with the initial data θλ,α0 (x) = λαθ0(λx). Hence, the self-similar
blowing up solution should be of the form,

(4.16)θ(x, t) = 1

(T∗ − t) α
α+1

Θ

(
x

(T∗ − t) 1
α+1

)

for t sufficiently close T∗ and α �= −1. The following theorem is proved in [32].

THEOREM 4.3. Let v generates a particle trajectory, which is a C1 diffeomorphism from
R

2 onto itself for all t ∈ (0, T∗). There exists no non-trivial solution θ to the system (QG)
of the form (4.16), if there exists p1, p2 ∈ (0,∞], p1 < p2, such that Θ ∈ Lp1(R2) ∩
Lp2(R2).

We note that the integrability condition on the self-similar representation function Θ in
the above theorem is ‘milder’ than the case of the exclusion of self-similar Euler equations
in Theorem 3.3, in the sense that the decay condition is of Θ (not ∇⊥Θ) near infinity is
weaker than that of Ω = curlV .

In the remained part of this subsection we discuss a 1D model of the 2D quasi-
geostrophic equation studied in [36] (see [121] for related results). The construction of
the one-dimensional model can be done similarly to the Constantin–Lax–Majda equation
introduced in Section 4.2. We first note that

v = −R⊥θ = (−R2θ, R1θ),

whereRj , j = 1, 2, is the two-dimensional Riesz transform (see Section 1). We can rewrite
the dynamical equation of (QG) as

θt + div
[
(R⊥θ)θ

] = 0,
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since div(R⊥θ) = 0. To construct the one-dimensional model we replace:

R⊥(·)⇒ H(·), div(·)⇒ ∂x

to obtain

θt +
(
H(θ)θ

)
x
= 0.

Defining the complex valued function z(x, t) = Hθ(x, t)+ iθ(x, t), and following Cons-
tantin–Lax–Majda [58], we find that our equation is the imaginary part of

zt + zzx = 0,

which is complex Burgers’ equation. The characteristics method does not work here. Even
in that case we can show that the finite time blow-up occurs for the generic initial data as
follows.

THEOREM 4.4. Given a periodic non-constant initial data θ0 ∈ C1([−π, π]) such that∫ π
−π θ0(x) dx = 0, there is no C1([−π, π] × [0,∞)) periodic solution to the model equa-

tion.

For the proof we refer [36]. Here we give a brief outline of the construction of an explicit
blowing up solution. We begin with the complex Burgers equation:

zt + zzx = 0, z = u+ iθ

with u(x, t) ≡ Hθ(x, t). Expanding it to real and imaginary parts, we obtain the system:{
ut + uux − θθx = 0,
θt + uθx + θux = 0.

In order to perform the hodograph transform we consider x(u, θ) and t (u, θ) We have,

ux = J tθ , θx = −J tu,
ut = −Jxθ , θt = Jxu,

where J = (xutθ − xθ tu)−1. By direct substitution we obtain,{−xθ + utθ + θtu = 0,
xu − utu + θtθ = 0

as far as J−1 �= 0. This system can be written more compactly in the form:

−(x − tu)θ + (tθ)u = 0,

(x − tu)u + (tθ)θ = 0,

which leads to the following Cauchy–Riemann system,

ξu = ηθ , ξθ = −ηu,
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where we set η(u, θ) := x(u, θ)− t (u, θ)u, ξ(u, θ) := t (u, θ)θ . Hence, f (z) = ξ(u, θ)+
iη(u, θ) with z = u+ iθ is an analytic function. Choosing f (z) = log z, we find,

(4.17)tθ = log
√
u2 + θ2, x − tu = arctan

θ

u
,

which corresponds to the initial data, z(x, 0) = cos x + i sin x. The relation (4.17) defines
implicitly the real and imaginary parts (u(x, t), θ(x, t)) of the solution. Removing θ from
the system, we obtain

tu tan(x − tu) = log

∣∣∣∣ u

cos(x − tu)
∣∣∣∣,

which defines u(x, t) implicitly. By elementary computations we find both ux and θx blow
up at t = e−1.

4.4. The 2D Boussinesq system and Moffatt’s problem

The 2D Boussinesq system for the incompressible fluid flows in R
2 is

(B)ν,κ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂v

∂t
+ (v · ∇)v = −∇p + ν�v + θe2,

∂θ

∂t
+ (v · ∇)θ = κ�θ,

div v = 0,
v(x, 0) = v0(x), θ(x, 0) = θ0(x),

where v = (v1, v2), vj = vj (x, t), j = 1, 2, (x, t) ∈ R
2 × (0,∞), is the velocity vector

field, p = p(x, t) is the scalar pressure, θ(x, t) is the scalar temperature, ν � 0 is the
viscosity, and κ � 0 is the thermal diffusivity, and e2 = (0, 1). The Boussinesq system has
important roles in the atmospheric sciences (see e.g. [116]). The global in time regularity
of (B)ν,κ with ν > 0 and κ > 0 is well-known (see e.g. [13]). On the other hand, the
regularity/singularity questions of the fully inviscid case of (B)0,0 is an outstanding open
problem in the mathematical fluid mechanics. It is well-known that inviscid 2D Boussinesq
system has exactly same structure to the axisymmetric 3D Euler system off the axis of
symmetry (see e.g. [115] for this observation). This is why the inviscid 2D Boussinesq
system can be considered as a model equation of the 3D Euler system. The problem of
the finite time blow-up for the fully inviscid Boussinesq system is an outstanding open
problem. The BKM type of blow-up criterion, however, can be obtained without difficulty
(see [38,41,43,74,140] for various forms of blow-up criteria for the Boussinesq system).
We first consider the partially viscous cases, i.e. either the zero diffusivity case, κ = 0
and ν > 0, or the zero viscosity case, κ > 0 and ν = 0. Even the regularity problem
for partial viscosity cases has been open recently. Actually, in an article appeared in 2001,
M.K. Moffatt raised a question of finite time singularity in the case κ = 0, ν > 0 and
its possible development in the limit κ → 0 as one of the 21th century problems(see the
Problem no. 3 in [120]). For this problem Córdoba, Fefferman and de la Llave [70] proved
that special type of singularities, called ‘squirt singularities’, is absent. In [27] the author
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considered the both of two partial viscosity cases, and prove the global in time regularity
for both of the cases. Furthermore it is proved that as diffusivity (viscosity) goes to zero the
solutions of (B)ν.κ converge strongly to those of zero diffusivity (viscosity) equations [27].
In particular the Problem no. 3 in [120] is solved. More precise statements of these results
are stated in Theorems 4.5 and 4.6 below.

THEOREM 4.5. Let ν > 0 be fixed, and div v0 = 0. Let m > 2 be an integer, and
(v0, θ0) ∈ Hm(R2). Then, there exists unique solution (v, θ) with θ ∈ C([0,∞);Hm(R2))

and v ∈ C([0,∞);Hm(R2)) ∩ L2(0, T ;Hm+1(R2)) of the system (B)ν,0. Moreover, for
each s < m, the solutions (v, θ) of (B)ν,κ converge to the corresponding solutions of (B)ν,0
in C([0, T ];Hs(R2)) as κ → 0.

We note that Hou and Li also obtained the existence part of the above theorem indepen-
dently in [92]. The following theorem is concerned with zero viscosity problem with fixed
positive diffusivity.

THEOREM 4.6. Let κ > 0 be fixed, and div v0 = 0. Let m > 2 be an integer. Let m > 2
be an integer, and (v0, θ0) ∈ Hm(R2). Then, there exists unique solutions (v, θ) with
v ∈ C([0,∞);Hm(R2)) and θ ∈ C([0,∞);Hm(R2)) ∩ L2(0, T ;Hm+1(R2)) of the
system (B)0,κ . Moreover, for each s < m, the solutions (v, θ) of (B)ν,κ converge to the
corresponding solutions of (B)0,κ in C([0, T ];Hs(R2)) as ν → 0.

The proof of the above two theorems in [27] crucially uses the Brezis–Wainger inequal-
ity in [9,76]. Below we consider the fully inviscid Boussinesq system, and show that there
is no self-similar singularities under milder decay condition near infinity than the case of
the 3D Euler system. The inviscid Boussinesq system (B) = (B)0,0 has scaling property
that if (v, θ, p) is a solution of the system (B), then for any λ > 0 and α ∈ R the functions

(4.18)vλ,α(x, t) = λαv(λx, λα+1t
)
, θλ,α(x, t) = λ2α+1θ

(
λx, λα+1t

)
,

(4.19)pλ,α(x, t) = λ2αp
(
λx, λα+1t

)
are also solutions of (B) with the initial data

v
λ,α
0 (x) = λαv0(λx), θ

λ,α
0 (x) = λ2α+1θ0(λx).

In view of the scaling properties in (4.18), the self-similar blowing-up solution (v(x, t),
θ(x, t)) of (B) should of the form,

(4.20)v(x, t) = 1

(T∗ − t) α
α+1

V

(
x

(T∗ − t) 1
α+1

)
,

(4.21)θ(x, t) = 1

(T∗ − t)2α+1
Θ

(
x

(T∗ − t) 1
α+1

)
,

where α �= −1. We have the following non-existence result of such type of solution
(see [32]).
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THEOREM 4.7. Let v generates a particle trajectory, which is a C1 diffeomorphism from
R

2 onto itself for all t ∈ (0, T∗). There exists no non-trivial solution (v, θ) of the sys-
tem (B) of the form (4.20)–(4.21), if there exists p1, p2 ∈ (0,∞], p1 < p2, such that
Θ ∈ Lp1(R2) ∩ Lp2(R2), and V ∈ Hm(R2), m > 2.

Recalling the fact that the system (B) has the similar form as the axisymmetric 3D Euler
system, we can also deduce the non-existence of self-similar blowing up solution to the
axisymmetric 3D Euler equations of the form (3.2), if Θ = rV θ satisfies the condition of

Theorem 4.7, and curlV = Ω ∈ Hm(R3), m > 5/2, where r =
√
x2

1 + x2
2 , and V θ is the

angular component of V . Note that in this case we do not need to assume strong decay of
Ω as in Theorem 3.3. See [32] for more details.

4.5. Deformations of the Euler equations

Let us consider the following system considered in [34].

(P1)

⎧⎪⎨
⎪⎩
∂u

∂t
+ (u · ∇)u = −∇q + (1+ ε)∥∥∇u(t)∥∥

L∞u,

divu = 0,
u(x, 0) = u0(x),

where u = (u1, . . . , un), uj = uj (x, t), j = 1, . . . , n, is the unknown vector field
q = q(x, t) is the scalar, and u0 is the given initial vector field satisfying divu0 = 0.
The constant ε > 0 is fixed. Below denote curl u = ω for ‘vorticity’ associated the ‘ve-
locity’ u. We first note that the system of (P1) has the similar non-local structure to the
Euler system (E), which is implicit in the pressure term combined with the divergence free
condition. Moreover it has the same scaling properties as the original Euler system in (E).
Namely, if u(x, t), q(x, t) is a pair of solutions to (P1) with initial data u0(x), then for any
α ∈ R

uλ(x, t) = λαu(λx, λα+1t
)
, qλ(x, t) = λ2αq

(
λx, λα+1t

)
is also a pair of solutions to (P1) with initial data uλ0(x) = λαu0(x). As will be seen
below, we can have the local well-posedness in the Sobolev space, Hm(Rn),m > n/2+ 2,
as well as the BKM type of blow-up criterion for (P1), similarly to the Euler system (E).
Furthermore, we can prove actual finite time blow-up for smooth initial data if ω0 �= 0. This
is rather surprising in the viewpoint that people working on the Euler system often have
speculation that the divergence free condition might have the role of ‘desingularization’,
and might make the singularity disappear. Obviously this is not the case for the system (P1).
Furthermore, there is a canonical functional relation between the solution of (P1) and that
of the Euler system (E); hence the word ‘deformation’. Using this relation we can translate
the blow-up condition of the Euler system in terms of the solution of (P1). The precise
contents of the above results on (P1) are stated in the following theorem.

THEOREM 4.8. Given u0 ∈ Hm(Rn) with div u0 = 0, where m > n
2 + 2, the following

statements hold true for (P1).
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(i) There exists a local in time unique solution u(t) ∈ C([0, T ] : Hm(Rn)) with T =
T (‖u0‖Hm).

(ii) The solution u(x, t) blows-up at t = t∗, namely

lim sup
t→t∗

∥∥u(t)∥∥
Hm = ∞ if and only if

∫ t∗

0

∥∥ω(t)∥∥
L∞ dt = ∞,

where ω = curlu. Moreover, if the solution u(x, t) blows up at t∗, then necessarily,∫ t∗

0
exp

[
(2+ ε)

∫ τ

0

∥∥∇u(s)∥∥
L∞ ds

]
dτ = ∞

for n = 3, while∫ t∗

0
exp

[
(1+ ε)

∫ τ

0

∥∥∇u(s)∥∥
L∞ ds

]
dτ = ∞

for n = 2.
(iii) If ‖ω0‖L∞ �= 0, then there exists time t∗ � 1/(ε‖ω0‖L∞) such that solution u(x, t)

of (P1) actually blows up at t∗. Moreover, at such t∗ we have∫ t∗

0
exp

[
(1+ ε)

∫ τ

0

∥∥∇u(s)∥∥
L∞ ds

]
dτ = ∞.

(iv) The functional relation between the solution u(x, t) of (P1) and the solution v(x, t)
of the Euler system (E) is given by

u(x, t) = ϕ′(t)v(x, ϕ(t)),
where

ϕ(t) = λ
∫ t

0
exp

[
(1+ ε)

∫ τ

0

∥∥∇u(s)∥∥
L∞ ds

]
dτ.

(The relation between the two initial datum is u0(x) = λv0(x).)
(v) The solution v(x, t) of the Euler system (E) blows up at T∗ < ∞ if and only if for

t∗ := ϕ−1(T∗) < 1/(ε‖ω0‖L∞) both of the followings hold true∫ t∗

0
exp

[
(1+ ε)

∫ τ

0

∥∥∇u(s)∥∥
L∞ ds

]
dτ <∞,

and ∫ t∗

0
exp

[
(2+ ε)

∫ τ

0

∥∥∇u(s)∥∥
L∞ ds

]
dτ = ∞.

For the proof we refer [34]. In the above theorem the result (ii) combined with (v) shows
indirectly that there is no finite time blow-up in 2D Euler equations, consistent with the
well-known result. Following the argument on p. 542 of [18], the following fact can be
verified without difficulty:

We set

(4.22)a(t) = exp

(∫ t

0
(1+ ε)∥∥∇u(s)∥∥

L∞ ds

)
.
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Then, the solution (u, q) of (P1) is given by

u(x, t) = a(t)U(x, t), q(x, t) = a(t)P (x, t),
where (U, P ) is a solution of the following system,

(aE)

⎧⎪⎨
⎪⎩
∂U

∂t
+ a(t)(U · ∇)U = −∇P,

divU = 0,
U(x, 0) = U0(x).

The system (aE) was studied in [18], when a(t) is a prescribed function of t , in which
case the proof of local existence of (aE) in [18] is exactly same as the case of (E). In the
current case, however, we need an extra proof of local existence, as is done in the next
section, since the function a(t) defined by (4.22) depends on the solution u(x, t) itself. As
an application of Theorem 4.8 we can prove the following lower estimate of the possible
blow-up time (see [34] for the detailed proof).

THEOREM 4.9. Let p ∈ (1,∞) be fixed. Let v(t) be the local classical solution of the 3D
Euler equations with initial data v0 ∈ Hm(R3), m > 7/2. If T∗ is the first blow-up time,
then

(4.23)T∗ − t � 1

C0‖ω(t)‖Ḃ3/p
p,1

, ∀t ∈ (0, T∗)

where C0 is the absolute constant in (Q2).

In [18] the following form of lower estimate for the blow-up rate is derived.

(4.24)T∗ − t � 1

C̃0‖ω(t)‖Ḃ0∞,1

,

where C̃0 is another absolute constant (see also the remarks after Theorem 3.6). Although
there is (continuous) embedding relation, Ḃ3/p

p,1 (R
3) ↪→ Ḃ0

∞,1(R3) for p ∈ [1,∞] (see
Section 1), it is difficult to compare the two estimates (4.23) and (4.24) and decide which
one is sharper, since the precise evaluation of the optimal constants C0, C̃0 in those in-
equalities could be very difficult problem.

Next, given ε � 0, we consider the following problem.

(P2)

⎧⎪⎨
⎪⎩
∂u

∂t
+ (u · ∇)u = −∇q − (1+ ε)∥∥∇u(t)∥∥

L∞u,

divu = 0,
u(x, 0) = u0(x).

Although the system of (P2) has also the same non-local structure and the scaling properties
as the Euler system and (P1), we have the result of the global regularity stated in the
following theorem (see [34] for the proof).
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THEOREM 4.10. Given u0 ∈ Hm(Rn) with div u0 = 0, where m > n
2 + 2, then the

solution u(x, t) of (P2) belongs to C([0,∞): Hm(Rn)). Moreover, we have the following
decay estimate for the vorticity,

∥∥ω(t)∥∥
L∞ � ‖ω0‖L∞

1+ ε‖ω0‖L∞ t ∀t ∈ [0,∞).

We also note that solution of the system (P2) has also similar functional relation with
that of the Euler system as given in (iv) of Theorem 4.8.

Next, given ε > 0, we consider the following perturbed systems of (E).

(E)ε±

⎧⎪⎨
⎪⎩
∂u

∂t
+ (u · ∇)u = −∇q ± ε‖∇u‖1+ε

L∞ u,

div u = 0,
u(x, 0) = u0(x).

If we set ε = 0 in the above, then the system (E)0± becomes (E). For ε > 0 we have
finite time blow-up for the system (E)ε+ with certain initial data, while we have the global
regularity for (E)ε− with all solenoidal initial data in Hm(R3), m > 5/2. More precisely
we have the following theorem (see [31] for the proof).

THEOREM 4.11.
(i) Given ε > 0, suppose u0 = uε0 ∈ Hm(R3) with div u0 = 0 satisfies ‖ω0‖L∞ >

(2/ε)1/ε, then there exists T∗ such that the solution u(x, t) to (E)+ε blows up at T∗,
namely

lim sup
t↗T∗

∥∥u(t)∥∥
Hm = ∞.

(ii) Given ε > 0 and u0 ∈ Hm(R3) with divu0 = 0, there exists unique global in
time classical solution u(t) ∈ C([0,∞);Hm(R3)) to (E)ε−. Moreover, we have the
global in time vorticity estimate for the solution of (E)ε−,

∥∥ω(t)∥∥
L∞ � max

{
‖ω0‖L∞,

(
1

ε

) 1
ε
}

∀t � 0.

The following theorem relates the finite time blow-up/global regularity of the Euler sys-
tem with those of the system (E)ε±.

THEOREM 4.12. Given ε > 0, let uε± denote the solutions of (E)ε± respectively with the
same initial data u0 ∈ Hm(R3), m > 5/2. We define

ϕε±(t, u0) :=
∫ t

0
exp

[
±ε

∫ τ

0

∥∥∇uε±(s)∥∥1+ε
L∞ ds

]
dτ.

(i) If ϕε−(∞, u0) = ∞, then the solution of the Euler system with initial data u0 is
regular globally in time.
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(ii) Let t∗ be the first blow-up time for a solution uε+ of (E)ε+ with initial data u0 such
that ∫ t∗

0

∥∥ωε+(t)∥∥L∞ dt = ∞, where ωε+ = curl uε+.

If ϕε+(t∗, u0) < ∞, then the solution of the Euler system blows up at the finite time
T∗ = ϕε+(t∗, u0).

We refer [31] for the proof of the above theorem.

5. Dichotomy: singularity or global regular dynamics?

In this section we review results in [28]. Below S, P and ξ(x, t) are the deformation ten-
sor, the Hessian of the pressure and the vorticity direction field, associated with the flow,
v, respectively as introduced in Section 1. Let {(λk, ηk)}3k=1 be the eigenvalue and the
normalized eigenvectors of S. We set λ = (λ1, λ2, λ3), and

|λ| =
(

3∑
k=1

λ2
k

) 1
2

, ρk = ηk · Pηk for k = 1, 2, 3.

We also denote

ηk(x, 0) = ηk0(x), λk(x, 0) = λk,0(x), λ(x, 0) = λ0(x),

ρk(x, 0) = ρk,0(x)
for the quantities at t = 0. Let ω(x, t) �= 0. At such point (x, t) we define the scalar fields

α = ξ · Sξ, ρ = ξ · Pξ.
At the points where ω(x, t) = 0 we define α(x, t) = ρ(x, t) = 0. We denote α0(x) =
α(x, 0), ρ0(x) = ρ(x, 0). Below we denote f (X(a, t), t)′ = Df

Dt
(X(a, t), t) for simplicity.

Now, suppose that there is no blow-up of the solution on [0, T∗], and the inequality

(5.1)α
(
X(a, t), t

)∣∣ω(
X(a, t), t

)∣∣ � ε
∣∣ω(
X(a, t), t

)∣∣2

persists on [0, T∗]. We will see that this leads to a contradiction. Combining (5.1)
with (1.14), we have

|ω|′ � ε|ω|2.
Hence, by Gronwall’s lemma, we obtain∣∣ω(

X(a, t), t
)∣∣ � |ω0(a)|

1− ε|ω0(a)|t ,
which implies that

lim sup
t↗T∗

∣∣ω(
X(a, t), t

)∣∣ = ∞.
Thus we are lead to the following lemma.
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LEMMA 5.1. Suppose α0(a) > 0, and there exists ε > 0 such that

(5.2)α0(a)
∣∣ω0(a)

∣∣ � ε
∣∣ω0(a)

∣∣2
.

Let us set

(5.3)T∗ = 1

εα0(a)
.

Then, either the vorticity blows up no later than T∗, or there exists t ∈ (0, T∗) such that

(5.4)α
(
X(a, t), t

)∣∣ω(
X(a, t), t

)∣∣ < ε
∣∣ω(
X(a, t), t

)∣∣2
.

From this lemma we can derive the following:

THEOREM 5.1 (vortex dynamics). Let v0 ∈ Hm(Ω), m > 5/2, be given. We define

Φ1(a, t) = α(X(a, t), t)

|ω(X(a, t), t)|
and

Σ1(t) =
{
a ∈ Ω | α(

X(a, t), t
)
> 0

}
associated with the classical solution v(x, t). Suppose a ∈ Σ1(0) and ω0(a) �= 0. Then
one of the following holds true.

(i) (finite time singularity) The solution of the Euler equations blows-up in finite time
along the trajectory {X(a, t)}.

(ii) (regular dynamics) On of the following holds true:
(a) (finite time extinction of α) There exists t1 ∈ (0,∞) such that α(X(a, t1), t1) =

0.
(b) (long time behavior of Φ1) There exists an infinite sequence {tj }∞j=1 with t1 <

t2 < · · · < tj < tj+1 → ∞ as j → ∞ such that for all j = 1, 2, . . .
we have Φ1(a, 0) > Φ1(a, t1) > · · · > Φ1(a, tj ) > Φ1(a, tj+1) > 0 and
Φ1(a, t) � Φ1(a, tj ) > 0 for all t ∈ [0, tj ].

As an illustration of proofs for Theorems 5.2 and 5.3 below, we give outline of the proof
of the above theorem. Let us first observe that the formula∣∣ω(

X(a, t), t
)∣∣ = exp

[∫ t

0
α
(
X(a, s), s

)
ds

]∣∣ω0(a)
∣∣,

which is obtained from (1.14) immediately shows that ω(X(a, t), t) �= 0 if and only if
ω0(a) �= 0 for the particle trajectory {X(a, t)} of the classical solution v(x, t) of the Euler
equations. Choosing ε = α0(a)/|ω0(a)| in Lemma 5.1, we see that either the vorticity
blows up no later than T∗ = 1/α0(a), or there exists t1 ∈ (0, T∗) such that

Φ1(a, t1) = α(X(a, t1), t1)

|ω(X(a, t1), t1)| <
α0(a)

|ω0(a)| = Φ1(a, 0).

Under the hypothesis that (i) and (ii)-(a) do not hold true, we may assume a ∈ Σ1(t1)

and repeat the above argument to find t2 > t1 such that Φ1(a, t2) < Φ1(a, t1), and also
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a ∈ Σ1(t2). Iterating the argument, we find a monotone increasing sequence {tj }∞j=1 such
that Φ1(a, tj ) > Φ1(a, tj+1) for all j = 1, 2, 3, . . . . In particular we can choose each tj
so that Φ1(a, t) � Φ1(a, tj ) for all t ∈ (tj−1, tj ]. If tj → t∞ < ∞ as j → ∞, then we
can proceed further to have t∗ > t∞ such that Φ1(a, t∞) > Φ1(a, t∗). Hence, we may set
t∞ = ∞, which finishes the proof.

The above argument can be extended to prove the following theorems.

THEOREM 5.2 (dynamics of α). Let v0 ∈ Hm(Ω), m > 5/2, be given. In case
α(X(a, t), t) �= 0 we define

Φ2(a, t) = |ξ × Sξ |2(X(a, t), t)− ρ(X(a, t), t)
α2(X(a, t), t)

,

and

Σ+2 (t) =
{
a ∈ Ω | α(

X(a, t), t
)
> 0, Φ2

(
X(a, t), t

)
> 1

}
,

Σ−2 (t) =
{
a ∈ Ω | α(

X(a, t), t
)
< 0, Φ2

(
X(a, t), t

)
< 1

}
,

associated with v(x, t). Suppose a ∈ Σ+2 (0) ∪ Σ−2 (0). Then one of the following holds
true.

(i) (finite time singularity) The solution of the Euler equations blows-up in finite time
along the trajectory {X(a, t)}.

(ii) (regular dynamics) One of the following holds true:
(a) (finite time extinction of α) There exists t1 ∈ (0,∞) such that α(X(a, t1), t1) =

0.
(b) (long time behaviors of Φ2) Either there exists T1 ∈ (0,∞) such that

Φ2(a, T1) = 1, or there exists an infinite sequence {tj }∞j=1 with t1 < t2 < · · ·
< tj < tj+1 →∞ as j →∞ such that one of the followings hold:
(b.1) In the case a ∈ Σ+2 (0), for all j = 1, 2, . . . we haveΦ2(a, 0) > Φ2(a, t1)

> · · · > Φ2(a, tj ) > Φ2(a, tj+1) > 1 and Φ2(a, t) � Φ2(a, tj ) > 1 for
all t ∈ [0, tj ].

(b.2) In the case a ∈ Σ−2 (0), for all j = 1, 2, . . . we haveΦ2(a, 0) < Φ2(a, t1)

< · · · < Φ2(a, tj ) < Φ2(a, tj+1) < 1 and Φ2(a, t) � Φ2(a, tj ) < 1 for
all t ∈ [0, tj ].

THEOREM 5.3 (spectral dynamics). Let v0 ∈ Hm(Ω), m > 5/2, be given. In case
λ(X(a, t), t) �= 0 we define

Φ3(a, t) =
∑3
k=1[−λ3

k + 1
4 |ηk × ω|2λk − ρkλk](X(a, t), t)
|λ(X(a, t), t)|3 ,

and

Σ3(t) =
{
a ∈ Ω | λ(X(a, t), t) �= 0, Φ3

(
X(a, t), t

)
> 0

}
associated with v(x, t). Suppose a ∈ Σ3(0). Then one of the following holds true:

(i) (finite time singularity) The solution of the Euler equations blows-up in finite time
along the trajectory {X(a, t)}.
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(ii) (regular dynamics) One of the followings hold true:
(a) (finite time extinction of λ) There exists t1 ∈ (0,∞) such that λ(X(a, t1), t1) =

0.
(b) (long time behavior of Φ3) Either there exists T1 ∈ (0,∞) such that

Φ3(a, T1) = 0, or there exists an infinite sequence {tj }∞j=1 with t1 < t2 < · · ·
< tj < tj+1 → ∞ as j → ∞ such that for all j = 1, 2, . . . we
have Φ2(a, 0) > Φ3(a, t1) > · · · > Φ3(a, tj ) > Φ3(a, tj+1) > 0 and
Φ3(a, t) � Φ3(a, tj ) > 0 for all t ∈ [0, tj ].

For the details of the proof of Theorems 5.2 and 5.3 we refer [28].
Here we present a refinement of Theorem 2.1 of [30], which is proved in [28].

THEOREM 5.4. Let v0 ∈ Hm(Ω), m > 5/2, be given. For such v0 let us define a set
Σ ⊂ Ω by

Σ = {
a ∈ Ω | α0(a) > 0, ω0(a) �= 0, ∃ ε ∈ (0, 1) such that

ρ0(a)+ 2α2
0(a)− |ξ0 × S0ξ0|2(a) � (1− ε)2α2

0(a)
}
.

Let us set

(5.5)T∗ = 1

εα0(a)
.

Then, either the solution blows up no later than T∗, or there exists t ∈ (0, T∗) such that

ρ
(
X(a, t), t

)+ 2α2(X(a, t), t)− |ξ × Sξ |2(X(a, t), t)
(5.6)> (1− ε)2α2(X(a, t), t).

We note that if we ignore the term |ξ0 × S0ξ0|2(a), then we have the condition,

ρ0(a)+ α2
0(a) �

(−2ε + ε2)α2
0(a) < 0,

since ε ∈ (0, 1). Thus Σ ⊂ S, where S is the set defined in Theorem 2.1 of [30]. One
can verify without difficulty that Σ = ∅ for the 2D Euler flows. Regarding the question
if Σ �= ∅ or not for 3D Euler flows, we have the following proposition (see [30] for more
details).

PROPOSITION 5.1. Let us consider the system the domainΩ = [0, 2π ]3 with the periodic
boundary condition. In Ω we consider the Taylor–Green vortex flow defined by

(5.7)u(x1, x2, x3) = (sin x1 cos x2 cos x3,− cos x1 sin x2 cos x3, 0).

Then, the set

S0 =
{(

0,
π

4
,

7π

4

)
,

(
0,

7π

4
,
π

4

)}
is included in Σ of Theorem 4.4. Moreover, for x ∈ S0 we have the explicit values of α
and ρ,

α(x) = 1

2
, ρ(x) = −1

2
.
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We recall that the Taylor–Green vortex has been the first candidate proposed for a finite
time singularity for the 3D Euler equations, and there have been many numerical calcula-
tions of solution of (E) with the initial data given by it (see e.g. [7]).

6. Spectral dynamics approach

Spectral dynamics approach in the fluid mechanics was initiated by Liu and Tadmor [113].
They analyzed the restricted Euler system (4.3) in terms of (pointwise) dynamics of the
eigenvalues of the velocity gradient matrix V . More specifically, multiplying left and right
eigenvectors of V to (4.3), they derived

Dλj

Dt
= −λ2

j +
1

n

n∑
k=1

λ2
k, j = 1, 2, . . . , n,

where λj , j = 1, 2, . . . , n, are eigenvalues V , which are not necessarily real values. In this
model system they proved finite time blow-up for suitable initial data. In this section we
review the results in [23], where the full Euler system is concerned. Moreover, the we are
working on the dynamics of eigenvalues of the deformation tensor S (hence real valued),
not the velocity gradient matrix. We note that there were also application of the spectral
dynamics of the deformation tensor in the study of regularity problem of the Navier–Stokes
equations by Neustupa and Penel [123]. In this section for simplicity we consider the 3D
Euler system (E) in the periodic domain,Ω = T

3 (= R
3/Z3). Below we denote λ1, λ2, λ3

for the eigenvalues of the deformation tensor S = (Sij ) for the velocity fields of the 3D
Euler system. We will first establish the following formula,

(6.1)
d

dt

∫
T3

(
λ2

1 + λ2
2 + λ2

3

)
dx = −4

∫
T3
λ1λ2λ3 dx,

which has important implications (Theorems 6.1–6.3 below). Indeed, using (1.12), we can
compute

1

2

d

dt

∫
T3
SijSij dx =

∫
T3
Sij
DSij

Dt
dx

= −
∫

T3
SikSkjSij dx − 1

4

∫
T3
ωiSijωj dx

+ 1

4

∫
T3
|ω|2Sii dx +

∫
T3
PijSij dx

= −
∫

T3
SikSkjSij dx − 1

8

d

dt

∫
T3
|ω|2 dx,

where we used the summation convention for the repeated indices, and used the L2-version
of the vorticity equation,

(6.2)
1

2

d

dt

∫
T3
|ω|2 dx =

∫
T3
ωiSijωj dx



44 D. Chae

which is immediate from (1.13). We note∫
T3
|ω|2 dx =

∫
T3
|∇v|2 dx =

∫
T3
VijVij dx =

∫
T3
(Sij + Aij )(Sij + Aij ) dx

=
∫

T3
SijSij dx +

∫
T3
AijAij dx =

∫
T3
SijSij dx + 1

2

∫
T3
|ω|2 dx.

Hence, ∫
Rn

Sij Sij dx = 1

2

∫
T3
|ω|2 dx.

Substituting this into (6.2), we obtain that

d

dt

∫
T3
SijSij dx = −4

3

∫
T3
SikSkjSij dx,

which, in terms of the spectrum of S, can be written as

(6.3)
d

dt

∫
T3

(
λ2

1 + λ2
2 + λ2

3

)
dx = −4

3

∫
T3

(
λ3

1 + λ3
2 + λ3

3

)
dx.

We observe from the divergence free condition, 0 = div v = Tr S = λ1 + λ2 + λ3,

0 = (λ1 + λ2 + λ3)
3

= λ3
1 + λ3

2 + λ3
3 + 3λ2

1(λ2 + λ3)+ 3λ2
2(λ1 + λ3)+ 3λ3(λ1 + λ2)+ 6λ1λ2λ3

= λ3
1 + λ3

2 + λ3
3 − 3

(
λ3

1 + λ3
2 + λ3

3

)+ 6λ1λ2λ3.

Hence, λ3
1 + λ3

2 + λ3
3 = 3λ1λ2λ3. Substituting this into (6.3), we completes the proof

of (6.1).
Using the formula (6.1), we can first prove the following new a priori estimate for the

L2 norm of vorticity for the 3D incompressible Euler equations (see [23] for the proof).
We denote

H
m
σ =

{
v ∈ [

Hm
(
T

3)]3∣∣ div v = 0
}
.

THEOREM 6.1. Let v(t) ∈ C([0, T );Hm
σ ), m > 5/2 be the local classical solution of the

3D Euler equations with initial data v0 ∈ H
m
σ with ω0 �= 0. Let λ1(x, t) � λ2(x, t) �

λ3(x, t) are the eigenvalues of the deformation tensor Sij (v) = 1
2 (
∂vj
∂xi
+ ∂vi

∂xj
). We de-

note λ+2 (x, t) = max{λ2(x, t), 0}, and λ−2 (x, t) = min{λ2(x, t), 0}. Then, the following
estimates hold.

exp

[∫ t

0

(
1

2
inf
x∈T3

λ+2 (x, t)− sup
x∈T3

∣∣λ−2 (x, t)∣∣
)

dt

]

� ‖ω(t)‖L2

‖ω0‖L2
� exp

[ ∫ t

0

(
sup
x∈T3

λ+2 (x, t)−
1

2
inf
x∈T3

∣∣λ−2 (x, t)∣∣
)

dt

]

for all t ∈ (0, T ).
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The above estimate says, for example, that if we have the following compatibility con-
ditions,

sup
x∈T3

λ+2 (x, t)  inf
x∈Ω

∣∣λ−2 (x, t)∣∣  g(t)
for some time interval [0, T ], then

∥∥ω(t)∥∥
L2 � O

(
exp

[
C

∫ t

0
g(s) ds

])
∀t ∈ [0, T ]

for some constant C. On the other hand, we note the following connection of the above
result to the previous one. From the equation

D|ω|
Dt

= α|ω|, α(x, t) = ω · Sω
|ω|2

we immediately have

∥∥ω(t)∥∥
L2 � ‖ω0‖L2 exp

(∫ t

0
sup
x∈T3

α(x, s) ds

)

� ‖ω0‖L2 exp

(∫ t

0
sup
x∈T3

λ1(x, s) dτ

)
,

where we used the fact λ3 � α � λ1, the well-known estimate for the Rayleigh quotient.
We note that λ+2 (x, t) > 0 implies we have stretching of infinitesimal fluid volume in two
directions and compression in the other one direction (planar stretching) at (x, t), while
|λ−2 (x, t)| > 0 implies stretching in one direction and compressions in two directions
(linear stretching). The above estimate says that the dominance competition between planar
stretching and linear stretching is an important mechanism controlling the growth/decay in
time of the L2 norm of vorticity.

In order to state our next theorem we introduce some definitions. Given a differentiable
vector field f = (f1, f2, f3) on T

3, we denote by the scalar field λi(f ), i = 1, 2, 3, the
eigenvalues of the deformation tensor associated with f . Below we always assume the
ordering, λ1(f ) � λ2(f ) � λ3(f ). We also fix m > 5/2 below. We recall that if f ∈ H

m
σ ,

then λ1(f )+ λ2(f )+ λ3(f ) = 0, which is another representation of div f = 0.
Let us begin with introduction of admissible classes A± defined by

A+ =
{
f ∈ H

m
σ

(
T

3) ∣∣ inf
x∈T3

λ2(f )(x) > 0
}
,

and

A− =
{
f ∈ H

m
σ

(
T

3) ∣∣ sup
x∈T3

λ2(f )(x) < 0
}
.

Physically A+ consists of solenoidal vector fields with planar stretching everywhere, while
A− consists of everywhere linear stretching vector fields. Although they do not represent
real physical flows, they might be useful in the study of searching initial data leading
to finite time singularity for the 3D Euler equations. Given v0 ∈ H

m
σ , let T∗(v0) be the

maximal time of unique existence of solution in H
m
σ for the system (E). Let St : H

m
σ → H

m
σ
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be the solution operator, mapping from initial data to the solution v(t). Given f ∈ A+, we
define the first zero touching time of λ2(f ) as

T (f ) = inf
{
t ∈ (

0, T∗(v0)
) ∣∣ ∃x ∈ T

3 such that λ2(Stf )(x) < 0
}
.

Similarly for f ∈ A−, we define

T (f ) = inf
{
t ∈ (

0, T∗(v0)
) ∣∣ ∃x ∈ T

3 such that λ2(Stf )(x) > 0
}
.

The following theorem is actually an immediate corollary of Theorem 6.1, combined with
the above definition of A± and T (f ). We just observe that for v0 ∈ A+ (resp. A−) we
have λ−2 = 0, λ+2 = λ2 (resp. λ+2 = 0, λ−2 = λ2) on Ω × (0, T (v0)).

THEOREM 6.2. Let v0 ∈ A± be given. We set λ1(x, t) � λ2(x, t) � λ3(x, t) as the
eigenvalues of the deformation tensor associated with v(x, t) = (Stv0)(x) defined t ∈
(0, T (v0)). Then, for all t ∈ (0, T (v0)) we have the following estimates:

(i) If v0 ∈ A+, then

exp

(
1

2

∫ t

0
inf
x∈T3

∣∣λ2(x, s)
∣∣ ds

)
� ‖ω(t)‖L2

‖ω0‖L2

� exp

(∫ t

0
sup
x∈T3

∣∣λ2(x, s)
∣∣ ds

)
.

(ii) If v0 ∈ A−, then

exp

(
−

∫ t

0
sup
x∈T3

∣∣λ2(x, s)
∣∣ ds

)
� ‖ω(t)‖L2

‖ω0‖L2

� exp

(
−1

2

∫ t

0
inf
x∈T3

∣∣λ2(x, s)
∣∣ ds

)
.

(See [23] for the proof.) If we have the compatibility conditions,

inf
x∈T3

∣∣λ2(x, t)
∣∣  sup

x∈T3

∣∣λ2(x, t)
∣∣  g(t) ∀t ∈ (

0, T (v0)
)
,

which is the case for sufficiently small box T
3, then we have

‖ω(t)‖L2

‖ω0‖L2
 

⎧⎪⎪⎨
⎪⎪⎩

exp

(∫ t

0
g(s) ds

)
if v0 ∈ A+,

exp

(
−

∫ t

0
g(s) ds

)
if v0 ∈ A−

for t ∈ (0, T (v0)). In particular, if we could find v0 ∈ A+ such that

inf
x∈T3

∣∣λ2(x, t)
∣∣ � O

(
1

t∗ − t
)

for time interval near t∗, then such data would lead to singularity at t∗.
As another application of the formula (6.1) we have some decay in time estimates for

some ratio of eigenvalues (see [23] for the proof).
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THEOREM 6.3. Let v0 ∈ A± be given, and we set λ1(x, t) � λ2(x, t) � λ3(x, t) as in
Theorem 3.1. We define

ε(x, t) = |λ2(x, t)|
λ(x, t)

∀(x, t) ∈ T
3 × (

0, T (v0)
)
,

where we set

λ(x, t) =
{
λ1(x, t) if v0 ∈ A+,
−λ3(x, t) if v0 ∈ A−.

Then, there exists a constant C = C(v0) such that

inf
(x,s)∈T3×(0,t)

ε(x, s) <
C√
t
∀t ∈ (

0, T (v0)
)
.

Regarding the problem of searching finite time blowing up solution, the proof of the
above theorem suggests the following:

Given δ > 0, let us suppose we could find v0 ∈ A+ such that for the associated solution
v(x, t) = (Stv0)(x) the estimate

(6.4)inf
(x,s)∈T3×(0,t)

ε(x, s) � O

(
1

t1/2+δ

)
,

holds true, for sufficiently large time t . Then such v0 will lead to the finite time singularity.
In order to check the behavior (6.4) for a given solution we need a sharper and/or localized
version of Eq. (6.1) for the dynamics of eigenvalues of the deformation tensor.

7. Conservation laws for singular solutions

For the smooth solutions of the Euler equations there are many conserved quantities as de-
scribed in Section 1 of this article. One of the most important conserved quantities is the to-
tal kinetic energy. For non-smooth (weak) solutions it is not at all obvious that we still have
energy conservation. Thus, there comes very interesting question of how much smoothness
we need to assume for the solution to have energy conservation property. Regarding this
question L. Onsager conjectured that a Hölder continuous weak solution with the Hölder
exponent 1/3 preserve the energy, and this is sharp [125]. Considering Kolmogorov’s scal-
ing argument on the energy correlation in the homogeneous turbulence the exponent 1/3
is natural. A sufficiency part of this conjecture is proved in a positive direction by an inge-
nious argument due to Constantin–E–Titi [54] (see also [78]), using a special Besov type
of space norm, Ḃs3,∞ with s > 1/3 (more precisely, the Nikolskii space norm) for the ve-
locity. See also [12] for related results in the magnetohydrodynamics. Remarkably enough
Shnirelman [136] later constructed an example of weak solution of 3D Euler equations,
which does not preserve energy. The problem of finding optimal regularity condition for a
weak solution to have conservation property can also be considered for the helicity. Since
the helicity is closely related to the topological invariants, e.g. the knottedness of vortex
tubes, the non-conservation of helicity is directly related to the spontaneous apparition of
singularity from local smooth solutions, which is the main theme of this article. In [19] the
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author of this article obtained a sufficient regularity condition for the helicity conservation,
using the function space Ḃs9

5 ,∞
, s > 1/3, for the vorticity. These results on the energy and

the helicity are recently refined in [24], using the Triebel–Lizorkin type of spaces, Ḟ s
p,q ,

and the Besov spaces Ḃsp,q (see Section 1 for the definitions) with similar values for s, p,
but allowing full range of values for q ∈ [1,∞].

By a weak solution of (E) in R
n × (0, T ) with initial data v0 we mean a vector field

v ∈ C([0, T );L2
loc(R

n)) satisfying the integral identity:

−
∫ T

0

∫
Rn

v(x, t) · ∂φ(x, t)
∂t

dx dt −
∫

Rn

v0(x) · φ(x, 0) dx

−
∫ T

0

∫
Rn

v(x, t)⊗ v(x, t): ∇φ(x, t) dx dt

(7.1)−
∫ T

0

∫
Rn

divφ(x, t)p(x, t) dx dt = 0,

(7.2)
∫ T

0

∫
Rn

v(x, t) · ∇ψ(x, t) dx dt = 0

for every vector test function φ = (φ1, . . . , φn) ∈ C∞0 (Rn × [0, T )), and for every scalar
test function ψ ∈ C∞0 (Rn × [0, T )). Here we used the notation (u ⊗ v)ij = uivj , and
A : B = ∑n

i,j=1AijBij for n × n matrices A and B. In the case when we discuss the
helicity conservation of the weak solution we impose further regularity for the vorticity,

ω(·, t) ∈ L 3
2 (R3) for almost every t ∈ [0, T ] in order to define the helicity for such weak

solution. Hereafter, we use the notation Ẋ s
p,q (resp.Xsp,q ) to represent Ḟ s

p,q (resp. Ḟ s
p,q ) or

Ḃsp,q (resp. Ḃsp,q ). The following is proved in [24].

THEOREM 7.1. Let s > 1/3 and q ∈ [2,∞] be given. Suppose v is a weak solution of the
n-dimensional Euler equations with v ∈ C([0, T ];L2(Rn)) ∩ L3(0, T ; Ẋs3,q (Rn)). Then,
the energy is preserved in time, namely

(7.3)
∫

Rn

∣∣v(x, t)∣∣2 dx =
∫

Rn

∣∣v0(x)
∣∣2 dx

for all t ∈ [0, T ).

When we restrict q = ∞, the above theorem reduce to the one in [54]. On the other
hand, the results for Triebel–Lizorkin type of space are completely new.

THEOREM 7.2. Let s > 1/3, q ∈ [2,∞], and r1 ∈ [2,∞], r2 ∈ [1,∞] be given, sat-
isfying 2/r1 + 1/r2 = 1. Suppose v is a weak solution of the 3D Euler equations with
v ∈ C([0, T ];L2(R3)) ∩ Lr1(0, T ; Ẋs9

2 ,q
(R3)) and ω ∈ Lr2(0, T ; Ẋ s

9
5 ,q
(R3)), where the

curl operation is in the sense of distribution. Then, the helicity is preserved in time, namely

(7.4)
∫

R3
v(x, t) · ω(x, t) dx =

∫
R3
v0(x) · ω0(x) dx

for all t ∈ [0, T ).
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Similarly to the case of Theorem 7.1, when we restrict q = ∞, the above theorem reduce
to the one in [19]. The results for the case of the Triebel–Lizorkin type of space, however,
is new in [24].

As an application of the above theorem we have the following estimate from below of
the vorticity by a constant depending on the initial data for the weak solutions of the 3D
Euler equations. We estimate the helicity,∫

R3
v(x, t) · ω(x, t) dx �

∥∥v(·, t)∥∥
L3

∥∥ω(·, t)∥∥
L

3
2

� C
∥∥∇v(·, t)∥∥

L
3
2

∥∥ω(·, t)∥∥
L

3
2

� C
∥∥ω(·, t)∥∥2

L
3
2
,

where we used the Sobolev inequality and the Calderon–Zygmund inequality. Combining
this estimate with (7.4), we obtain the following:

COROLLARY 7.1. Suppose v is a weak solution of the 3D Euler equations satisfying the
conditions of Theorem 7.2. Then, we have the following estimate:

∥∥ω(·, t)∥∥2

L
3
2

� CH0, ∀t ∈ [0, T )

where H0 =
∫

R3 v0(x) · ω0(x) dx is the initial helicity, and C is an absolute constant.

Next we are concerned on the Lp-norm conservation for the weak solutions of (QG).
Let p ∈ [2,∞). By a weak solution of (QG) in D × (0, T ) with initial data v0 we mean a

scalar field θ ∈ C([0, T );Lp(R2) ∩ L p
p−1 (R2)) satisfying the integral identity:

(7.5)−
∫ T

0

∫
R2
θ(x, t)

[
∂

∂t
+ v · ∇

]
φ(x, t) dx dt −

∫
R2
θ0(x)φ(x, 0) dx = 0,

(7.6)v(x, t) = −∇⊥
∫

R2

θ(y, t)

|x − y| dy

for every test function φ ∈ C∞0 (R2 × [0, T )), where ∇⊥ in (7.6) is in the sense of distri-
bution. We note that contrary to the case of 3D Euler equations there is a global existence
result for the weak solutions of (QG) for p = 2 due to Resnick [129]. The following is
proved in [24].

THEOREM 7.3. Let s > 1/3, p ∈ [2,∞), q ∈ [1,∞], and r1 ∈ [p,∞], r2 ∈ [1,∞]
be given, satisfying p/r1 + 1/r2 = 1. Suppose θ is a weak solution of (QG) with θ ∈
C([0, T ];Lp(R2)∩L p

p−1 (R2))∩Lr1(0, T ;Xsp+1,q(R
2)) and v ∈ Lr2(0, T ; Ẋ s

p+1,q(R
2)).

Then, the Lp norm of θ(·, t) is preserved, namely

(7.7)
∥∥θ(t)∥∥

Lp
= ‖θ0‖Lp

for all t ∈ [0, T ].
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[80] S. Friedlander, N. Pavlović, Blow-up in a three dimensional vector model for the Euler equations, Comm.
Pure Appl. Math. 42 (2004) 705–725.

[81] U. Frisch, Turbulence, Cambridge University Press, 1995.
[82] U. Frisch, T. Matsumoto, J. Bec, Singularities of Euler flow? Not out of blue!, J. Statist. Phys. 113 (5–6)

(2003) 761–781.
[83] B. Galanti, J.D. Gibbon, M. Heritage, Vorticity alignment results for the three-dimensional Euler and

Navier–Stokes equations, Nonlinearity 10 (1997) 1675–1694.



Incompressible Euler equations 53

[84] G. Galdi, An Introduction to the Mathematical Theory of Navier–Stokes Equations, I, II, Springer-Verlag,
1994.

[85] J.D. Gibbon, A quaternionic structure in the three-dimensional Euler and ideal magneto-hydrodynamics
equations, Physica D 166 (2002) 17–28.

[86] J.D. Gibbon, Ortho-normal quaternion frames, Lagrangian evolution equations and the three-dimensional
Euler equations, arXiv: math-ph/0610004, 2006.

[87] J.D. Gibbon, D.D. Holm, R.M. Kerr, I. Roulstone, Quaternions and particle dynamics in Euler fluid flow,
Nonlinearity 19 (2006) 1969–1983.

[88] Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl.
Math. 38 (1985) 297–319.

[89] R. Grauer, T. Sideris, Numerical computation of three dimensional incompressible ideal fluids with swirl,
Phys. Rev. Lett. 67 (1991) 3511–3514.

[90] R. Grauer, T. Sideris, Finite time singularities in ideal fluids with swirl, Physica D 88 (2) (1995) 116–132.
[91] J.M. Greene, R.B. Pelz, Stability of postulated, self-similar, hydrodynamic blowup solutions, Phys.

Rev. E 62 (6) (2000) 7982–7986.
[92] T.Y. Hou, C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dynam.

Systems 12 (1) (2005) 1–12.
[93] T.Y. Hou, R. Li, Nonexistence of local self-similar blow-up for the 3D incompressible Navier–Stokes equa-

tions, Discrete Contin. Dynam. System 18 (4) (2007) 637–642.
[94] T.Y. Hou, R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler

equations, J. Nonlinear Sci. 16 (6) (2006) 639–664.
[95] B. Jawerth, Some observations on Besov and Lizorkin–Triebel spaces, Math. Scand. 40 (1977) 94–104.
[96] T. Kato, On classical solutions of the two dimensional nonstationary Euler equations, Arch. Rational Mech.

Anal. 25 (1967) 188–200.
[97] T. Kato, Nonstationary flows of viscous and ideal fluids in R

3, J. Funct. Anal. 9 (1972) 296–305.
[98] T. Kato, G. Ponce, Well posedness of the Euler and Navier–Stokes equations in Lebesgue spaces Lsp(R

2),
Rev. Mat. Iberoamericana 2 (1986) 73–88.

[99] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl.
Math. 41 (1988) 891–907.

[100] N. Katz, N. Pavlovic, Finite time blowup for a dyadic model of the Euler equations, Trans. Amer. Math.
Soc. 357 (2) (2005) 695–708.

[101] R.M. Kerr, Evidence for a singularity of the 3-dimensional, incompressible Euler equations, Phys.
Fluids A 5 (1993) 1725–1746.

[102] R.M. Kerr, Computational Euler history, arXiv: physics/0607148, 2006.
[103] A. Kiselev, F. Nazarov, A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic

equation, Invent. Math. 167 (3) (2007) 445–453.
[104] S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the

incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981) 481–524.
[105] H. Kozono, Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with applications to the Euler

equations, Commun. Math. Phys. 214 (2000) 191–200.
[106] H. Kozono, T. Ogawa, T. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity crite-

rion to some semilinear evolution equations, Math. Z. 242 (2) (2002) 251–278.
[107] O.A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, 1969.
[108] H. Lamb, Hydrodynamics, Cambridge Univ. Press, 1932.
[109] P.G. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem, Research Notes in Mathemat-

ics Series, vol. 431, Chapman & Hall/CRC, 2002.
[110] J. Leray, Essai sur le mouvement d’un fluide visqueux emplissant l’espace, Acta Math. 63 (1934) 193–248.
[111] L. Lichtenstein, Über einige Existenzprobleme der Hydrodynamik homogener unzusammendrückbarer, rei-

bunglosser Flüssikeiten und die Helmholtzschen Wirbelsalitze, Math. Z. 23 (1925) 89–154, Math. Z. 26
(1927) 193–323, 387–415, Math. Z. 32 (1930) 608–725.

[112] P.L. Lions, Mathematical Topics in Fluid Mechanics, vol. 1, Incompressible Models, Oxford University
Press, 1996.

[113] H. Liu, E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows, Commun. Math.
Phys. 228 (2002) 435–466.



54 D. Chae

[114] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl.
Math. Sci., vol. 53, Springer, 1984.

[115] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39
(1986) 187–220.

[116] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in
Mathematics, vol. 9, AMS/CIMS, 2003.

[117] A. Majda, A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press, 2002.
[118] C. Marchioro, M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer-Verlag,

1994.
[119] J.R. Miller, M. O’Leary, M. Schonbek, Nonexistence of singular pseudo-self-similar solutions of the

Navier–Stokes system, Math. Ann. 319 (4) (2001) 809–815.
[120] H.K. Moffatt, Some remarks on topological fluid mechanics, in: R.L. Ricca (Ed.), An Introduction to the

Geometry and Topology of Fluid Flows, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001,
pp. 3–10.

[121] A. Morlet, Further properties of a continuum of model equations with globally defined flux, J. Math. Anal.
Appl. 221 (1998) 132–160.

[122] J. Necas, M. Ruzicka, V. Sverak, On Leray’s self-similar solutions of the Navier–Stokes equations, Acta
Math. 176 (2) (1996) 283–294.

[123] J. Neustupa, P. Penel, Regularity of a weak solution to the Navier–Stokes equation in dependence on eigen-
values and eigenvectors of the rate of deformation tensor, in: Progr. Nonlinear Differential Equations Appl.,
vol. 61, Birkhäuser, Basel, 2005, pp. 197–212.

[124] K. Ohkitani, M. Yamada, Inviscid and inviscid-limit behavior of a surface quasi-geostrophic flow, Phys.
Fluids 9 (1997) 876–882.

[125] L. Onsager, Statistical hydrodynamics, Nuovo Cimento Suppl. 6 (1949) 279–287.
[126] H. Okamoto, K. Ohkitani, On the role of the convection term in the equations of motion of incompressible

fluid, J. Phys. Soc. Japan 74 (10) (2005) 2737–2742.
[127] R. Pelz, Symmetry and hydrodynamic blow-up problem, J. Fluid Mech. 444 (2001) 299–320.
[128] G. Ponce, Remarks on a paper by J.T. Beale, T. Kato and A. Majda, Commun. Math. Phys. 98 (1985)

349–353.
[129] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. Thesis, Uni-

versity of Chicago, Chicago (1995).
[130] T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial

Differential Equations, Walter de Gruyter, Berlin, 1996.
[131] T. Sakajo, Blow-up solutions of the Constantin–Lax–Majda equation with a generalized viscosity term,

J. Math. Sci. Univ. Tokyo 10 (1) (2003) 187–207.
[132] T. Sakajo, On global solutions for the Constantin–Lax–Majda equation with a generalized viscosity term,

Nonlinearity 16 (4) (2003) 1319–1328.
[133] V. Scheffer, An inviscid flow with compact support in space–time, J. Geom. Anal. 3 (4) (1993) 343–401.
[134] S. Schochet, Explicit solutions of the viscous model vorticity equation, Comm. Pure Appl. Math. 39 (4)

(1986) 531–537.
[135] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equations, Comm. Pure Appl. Math. L

(1997) 1261–1286.
[136] A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Commun. Math.

Phys. 210 (2000) 541–603.
[137] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Prince-

ton, NJ, 1970.
[138] E.M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Prince-

ton Univ. Press, Princeton, NJ, 1993.
[139] E. Tadmor, On a new scale of regularity spaces with applications to Euler’s equations, Nonlinearity 14

(2001) 513–532.
[140] Y. Taniuchi, A note on the blow-up criterion for the inviscid 2-D Boussinesq equations, in: R. Salvi (Ed.),

The Navier–Stokes Equations: Theory and Numerical Methods, in: Lecture Notes in Pure and Applied
Math., vol. 223, 2002, pp. 131–140.

[141] M.E. Taylor, Tools for PDE, Mathematical Surveys and Monographs, vol. 81, Amer. Math. Soc., 2000.



Incompressible Euler equations 55

[142] R. Temam, On the Euler equations of incompressible flows, J. Funct. Anal. 20 (1975) 32–43.
[143] R. Temam, Local existence of solutions of the Euler equations of incompressible perfect fluids, in: Lecture

Notes in Mathematics, vol. 565, Springer, Berlin, 1976, pp. 184–195.
[144] R. Temam, Navier–Stokes Equations, second ed., North-Holland, Amsterdam, 1986.
[145] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Boston, 1983.
[146] T.-P. Tsai, On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy esti-

mates, Arch. Rational Mech. Anal. 143 (1) (1998) 29–51.
[147] M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998) 197–214.
[148] M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann.

Sci. École Norm. Sup. (4) 32 (1999) 769–812.
[149] J. Wu, Inviscid limits and regularity estimates for the solutions of the 2-D dissipative quasi-geostrophic

equations, Indiana Univ. Math. J. 46 (4) (1997) 1113–1124.
[150] J. Wu, Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equations 56 (2001)

1–13.
[151] J. Wu, The quasi-geostrophic equations and its two regularizations, Comm. Partial Differential Equa-

tions 27 (5–6) (2002) 1161–1181.
[152] X. Yu, Localized non-blow-up conditions for 3d incompressible Euler flows and related equations, Ph.D.

Thesis, California Institute of Technology (2005).
[153] V.I. Yudovich, Non-stationary flow of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., Akad.

Nauk SSSR 3 (1963) 1032–1066.
[154] V.I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incom-

pressible fluid, Math. Res. Lett. 2 (1995) 27–38.



CHAPTER 2

Mathematical Methods in the Theory of Viscous
Fluids*

E. Feireisl
Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic

Contents
1. Balance laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2. Formulation of basic physical principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.1. Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2. Balance of momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3. First law of thermodynamics, total energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4. Second law of thermodynamics, entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5. Kinetic energy dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6. Navier–Stokes–Fourier system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.7. Bibliographical comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3. Constitutive theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1. Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2. Thermodynamics stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3. Transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4. Effect of thermal radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5. Real gas state equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6. Bibliographical comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4. A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1. Total mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2. Energy estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3. A priori estimates based on the energy dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4. Renormalized equation of continuity and refined density estimates . . . . . . . . . . . . . . . . . . 72
4.5. A priori estimates, summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6. Bibliographical comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5. Weak sequential stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1. Preliminaries, Div–Curl lemma, and related results . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

*Work supported by grant 201/05/0164 of GA ČR.
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1. Balance laws

Continuum mechanics describes a fluid in terms of observable and measurable macro-
scopic quantities: the density, the velocity, the absolute temperature, etc. The basic physical
principles are expressed through balance laws that can be written in a general form:

(1.1)

∫
B

r(t2, ·) dx −
∫

B

r(t1, ·) dx +
∫ t2

t1

∫
∂B

F(t, ·) · n dσx dt =
∫ t2

t1

∫
B

s(t, ·) dx dt,

where the symbol r denotes the volumic density, F is the flux, and s stands for the produc-
tion rate of an observable quantity. Here, the time t ∈ [0, T ) ⊂ R and the spatial position
x ∈ Ω , where Ω ⊂ R

3 is the physical domain occupied by the fluid, play a role of in-
dependent reference variables, while B is an arbitrary subset of Ω . The reference system
attached to the physical space corresponds to the Eulerian description of motion.

It is easy to check that (1.1) gives rise to

(1.2)∂t r + divx F = s in (0, T ) × Ω

as soon as all quantities are continuously differentiable. However, the hypothesis of
smoothness of the state variables is questionable, in particular in the case of the fluid den-
sity and other extensive quantities. Thus we should always keep in mind, that the “correct”
formulation of a balance law is represented by the integral identity (1.1) rather than the
partial differential equation (1.2).

On the other hand, given a vector field [r, F] satisfying (1.2), we can define its normal
trace on a space–time cylinder [t1, t2]×B by means of the classical Gauss–Green theorem
as ∫

B

r(t2, ·)ϕ(t2, x) dx −
∫

B

r(t1, ·)ϕ(t1, x) dx +
∫ t2

t1

∫
∂B

ϕ(t, x)F(t, x) · n dσx dt

=
∫ t2

t1

∫
B

s(t, x)ϕ(t, x) dx dt

(1.3)−
∫ t2

t1

∫
B

[
r(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

]
dx dt

to be satisfied for all test functions ϕ ∈ C1([0, T ) × Ω).
Motivated by the previous discussion, we introduce a weak formulation of the balance

law (1.1) as a family of integral identities

(1.4)
∫ T

0

∫
Ω

(r∂tϕ + F · ∇xϕ) dx dt = 〈s, ϕ〉,

for any ϕ ∈ C1([0, T ) × Ω), where the production rate s can be a measure distributed on
the set (0, T ) × Ω .

In accordance with formula (1.5), the measure s can capture the boundary behavior of
the normal trace of the vector [r, F] on the space–time cylinder [0, T ) × Ω , in particular,
we recover the initial distribution r0 = r(0, ·), together with the boundary flux Fb = F · n
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taking

(1.5)〈s, ϕ〉 = −
∫

Ω

r0ϕ(0, ·) dx −
∫ T

0

∫
∂Ω

Fbϕ dσx dt + 〈g, ϕ〉,

where g is a (bounded) Radon measure on (0, T ) × Ω .
Thus relations (1.4), (1.5) can be formally interpreted as a partial differential equation

(1.6)∂t r + divx F = g in (0, T ) × Ω,

supplemented with the initial condition

(1.7)r(0, ·) = r0,

and the boundary condition

(1.8)F · n|∂Ω = Fb.

Although the classical formulation (1.6)–(1.8) is widely used in the literature, the weak
formulation expressed through (1.4), (1.5) seems to reflect better our understanding of
macroscopic variables in continuum fluid mechanics as integral means rather than quan-
tities that are well defined at each particular point of the underlying physical space. For
further aspects of the weak formulation of conservation laws, the reader may consult the
monograph by Dafermos [33], or a recent study by Chen and Torres [27].

2. Formulation of basic physical principles

Following the approach discussed in the previous section, we adopt the “weak” interpre-
tation of the basic physical principles expressed through families of integral identities al-
though they will be written in the classical way as a system of partial differential equations.
Otherwise, the material presented below is classical and may be found in all standard texts
devoted to continuum fluid mechanics: Batchelor [9], Chorin and Marsden [28], Gallavotti
[61], Lamb [84], Lighthill [86], Truesdell [121,120,123], Truesdell and Rajagopal [122],
among others.

2.1. Conservation of mass

The total mass mB of the fluid contained in a set B ⊂ Ω at an instant t is given as

mB =
∫

B

�(t, ·) dx,

where � stands for the density. Accordingly, the physical principle of mass conservation
can be expressed in terms of the integral identity

(2.1)∂t� + divx(�u) = 0,
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where u denotes the velocity of the fluid. Equation (2.1) is supplemented with the initial
condition

(2.2)�(0, ·) = �0,

and the boundary conditions

(2.3)�u · n|∂Ω = 0.

As already pointed out, relations (2.1)–(2.3) are to be understood in the weak sense speci-
fied in (1.4)–(1.5).

2.2. Balance of momentum

Following the same line of arguments as in the preceding sections we can write the balance
of momentum in the form

(2.4)∂t (�u) + divx(�u ⊗ u) = divx T − �f,

where T denotes the Cauchy stress tensor, and f is a given external force. In addition, the
fluids are characterized by Stokes’ relation

(2.5)T = S − pI,

where S denotes the viscous stress tensor, and p is a scalar function termed pressure.
The initial distribution of momentum is given through

(2.6)(�u)(0, ·) = (�u)0.

A proper choice of the boundary conditions for the fluid velocity offers more possibil-
ities. Taking (2.3) for granted, we can assume that u satisfies the complete slip boundary
condition

(2.7)(Sn) × n|∂Ω = 0

or, alternatively, the no-slip boundary condition

(2.8)u|∂Ω = 0.

Note that both (2.7) and (2.8) are conservative in the sense that the kinetic energy flux
vanishes on the boundary of Ω .

Similarly to (1.4), (1.5), the weak formulation of (2.4)–(2.6) reads∫ T

0

∫
Ω

(�u · ∂tϕ + �u ⊗ u : ∇xϕ + p divx ϕ) dx dt

(2.9)=
∫ T

0

∫
Ω

(S : ∇xϕ − �f · ϕ) dx −
∫

Ω

(�u)0 · ϕ(0, ·) dx

for any ϕ ∈ C1
0([0, T ) × Ω; R

3) satisfying

ϕ · n|∂Ω = 0.
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If the no-slip boundary conditions (2.8) are imposed, we have to require, in addition, that

ϕ|∂Ω = 0.

In contrast with the weak formulation of conservation laws introduced in the previous
section, the satisfaction of the “vectorial” boundary conditions (2.3), (2.8) must be incor-
porated both in the choice of the functional space for u and the space of test functions.
Furthermore, the no-slip boundary condition requires the existence of a trace of u on ∂Ω .

2.3. First law of thermodynamics, total energy balance

Formally, we can take the scalar product of (2.4) with u in order to deduce the kinetic
energy balance

∂t

(
1

2
�|u|2

)
+ divx

((
1

2
�|u|2 + p

)
u
)

− divx(Su)

(2.10)= −S : ∇xu + p divx u + �f · u.

The first law of thermodynamics asserts that the energy of the fluid is a conserved quan-
tity provided f ≡ 0 and there is no energy flux through the boundary. Accordingly, intro-
ducing the specific internal energy e we get the energy balance equation in the form

∂t

(
1

2
�|u|2 + �e

)
+ divx

((
1

2
�|u|2 + e + p

)
u
)

+ divx q − divx(Su)

(2.11)= �f · u,

where the symbol q denotes the internal energy flux. If the system is energetically isolated,
in particular if the boundary conditions (2.3), (2.7), or, alternatively (2.8), are supplemented
with

(2.12)q · n|∂Ω = 0,

Eq. (2.11) integrated over Ω gives rise to the total energy balance

(2.13)
d

dt

∫
Ω

(
1

2
�|u|2 + �e

)
dx =

∫
Ω

�f · u dx.

2.4. Second law of thermodynamics, entropy

Subtracting (2.10) from (2.11) we obtain

(2.14)∂t (�e) + divx(�eu) + divx q = S : ∇xu − p divx u,

which is an equation governing the time evolution of the internal energy.
In the absence of any dissipative mechanism in the system, meaning when q = 0, S = 0,

Eq. (2.14) takes the form

(2.15)∂t (�e) + divx(�eu) + p divx u = 0.
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The basic idea leading to the concept of entropy asserts that (2.15) can be written as a
conservation law for a new state variable s termed entropy:

(2.16)∂t (�s) + divx(�su) = 0.

Now, assume that both e and s depend on � and another internal variable ϑ called ab-
solute temperature. Consequently, by help of (2.1), Eq. (2.15) can be written as

De · ∂t

[
�

ϑ

]
+ u · De · ∇x

[
�

ϑ

]
− p

�2
(∂t� + u · ∇x�) = 0;

whence, necessarily,

H(�, ϑ)Ds = De + pD

(
1

�

)
,

where the factor H can be adjusted by a suitable choice of the temperature scale. Adopting
the standard relation ϑ ≈ ∂e/∂s we arrive at Gibbs’ equation

(2.17)ϑDs(�, ϑ) = De(�, ϑ) + p(�, ϑ)D

(
1

�

)
.

Accordingly, the internal energy balance (2.14) divided on ϑ gives rise to the entropy
balance equation

(2.18)∂t (�s) + divx(�su) + divx

(
q
ϑ

)
= σ,

with the entropy production rate

(2.19)σ = 1

ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
.

In addition, the second law of thermodynamics asserts that

(2.20)S : ∇xu � 0, −q · ∇xϑ � 0

for any admissible fluid motion.
Note that equations (2.11), (2.14), and (2.18) are equivalent, meaning they provide the

same information on the state of the system, as long as all state variables are sufficiently
smooth. However, the situation may be rather different in the framework of the weak solu-
tions considered in this paper.

2.5. Kinetic energy dissipation

As already pointed out above, the two terms appearing in the entropy production rate intro-
duced in (2.19) are responsible for the irreversible transfer of the mechanical energy into
heat. Accordingly, both (2.4) and (2.18) may be considered as “parabolic”, while (2.1) rep-
resents a hyperbolic equation. We assume the simplest possible form of S, q, namely that
these quantities are linear functions of the velocity gradient and the temperature gradient,
respectively. It can be shown (see e.g. Chorin and Marsden [28]) that the only form of S
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conformable with the principle of material frame indifference reads

(2.21)S = μ

(
∇xu + ∇xut − 2

3
divx uI

)
+ η divx uI,

while

(2.22)q = −κ∇xϑ,

where the transport coefficients μ, η, and κ are non-negative scalar functions of ϑ and �,
as the case may be. Relation (2.22) is usually called Fourier’s law.

2.6. Navier–Stokes–Fourier system

The mathematical theory to be developed in this study is based on the Navier–Stokes–
Fourier system of equations

(2.23)∂t� + divx(�u) = 0,

(2.24)∂t (�u) + divx(�u ⊗ u) + ∇xp = divx S + �f,

(2.25)∂t (�s) + divx(�su) + divx

(
q
ϑ

)
= σ,

(2.26)
d

dt

∫
Ω

(
1

2
�|u|2 + �e

)
dx =

∫
Ω

�f · u dx,

supplemented with the boundary conditions

(2.27)u · n = (Sn) × n|∂Ω = 0, or u|∂Ω = 0,

(2.28)q · n|∂Ω = 0,

where the thermodynamics functions p, e, and s are interrelated through Gibbs’ equation

(2.29)ϑDs = De + pD

(
1

�

)
,

S and q obey

(2.30)S = μ

(
∇xu + ∇xut − 2

3
divx uI

)
+ η divx uI,

(2.31)q = −κ∇xϑ,

and the entropy production rate is a non-negative measure on the set [0, T ] × Ω satisfying

(2.32)σ � 1

ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
.

The inequality sign in (2.32) certainly deserves some comment. To begin with, it is
well-known that solutions of the inviscid (Euler) system may produce entropy although,
formally, the dissipative terms S, q are not present in the equations. On the other hand,
even if the dissipation effect due to viscosity and heat conductivity is taken into account,
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it is not known, at least in the framework of the weak solutions, that the kinetic energy
balance is given by (2.10). Thus, in general, we are not able to exclude a hypothetical
possibility of the production of entropy, which is not captured by the quantity on the right-
hand side of (2.19), the latter being absolutely continuous with respect to the standard
Lebesgue measure. Indeed this very interesting scenario has been studied by Duchon and
Robert [40], Eyink [46], among others. Related results concerning the validity of the kinetic
energy balance have been obtained by Nagasawa [101]. On the point of conclusion, let
us remark that (2.23)–(2.32) imply (2.19) as soon as all quantities are smooth enough
(see [50]).

2.7. Bibliographical comments

Since the truly pioneering work of Leray [85], extended in an essential way by Ladyzhen-
skaya [82], Temam [118], Caffarelli et al. [25], Antontsev et al. [5], P.-L. Lions [88,89],
among many others, the theory of weak solutions based on the function spaces of Sobolev
type has become an important part of modern mathematical physics. In particular, the the-
ory of compressible fluid flow for general (large) data is more likely to rely on the concept
of “genuinely weak” solutions incorporating various types of discontinuities and other ir-
regular phenomena that are expected to come into play (see, for instance, Desjardins [36],
Hoff [66,68], Hoff and Serre [69], Vaigant [124], among others). Pursuing further this di-
rection some authors developed the theory of measure valued solutions in order to deal
with rapid oscillations that solutions may develop in a finite time (see DiPerna [38], Málek
et al. [93]).

The weak formulation of the full Navier–Stokes–Fourier system was introduced in [50],
following the previous studies [42,49]. The idea of replacing the entropy equation by en-
tropy inequality + total energy balance is reminiscent of the concept of weak solution with
“defect measure” employed, for instance, by Alexandre and Villani [3] in the context of
the Boltzmann equation.

An alternative way to avoid the mathematical difficulties inherent to the theory of New-
tonian fluids consists in introducing more complex constitutive equations relating the vis-
cous stress and the heat flux to the affinities ∇xu, ∇xϑ . Thus, for example, the mathemat-
ical theory of viscous multipolar fluids, based on the general ideas of Green and Rivlin
[62], was developed by Nečas and Šilhavý [102] in order to provide a general framework
for studying viscous, compressible fluids and to present a suitable alternative to the bound-
ary layer theory (see Bellout et al. [15]). The reader may consult the review paper by Málek
and Rajagopal [94] for other constitutive theories as well as a comprehensive list of relevant
literature.

3. Constitutive theory

In order to develop a rigorous mathematical theory of the Navier–Stokes–Fourier system
introduced in Section 2.6, the material properties of the fluid in question must be specified.
To this end, we discuss briefly the constitutive theory based on the principles of statistical
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mechanics applicable to gases. Note that for liquids, the constitutive theory is mostly based
on heuristic and phenomenological arguments that lead in some cases to rather different
constitutive equations, in particular for the pressure and the transport coefficients. The
basic reference material for this part are the monographs by Becker [12], Bridgman [22],
Chapman and Cowling [26], Eliezer et al. [44], Gallavotti [60], Müller and Ruggeri [99],
among others.

3.1. Equation of state

The thermal equation of state is a relation determining the pressure p in terms of the state
variables �, ϑ . The caloric equation of state relates the specific internal energy e to the
pressure p.

The simplest example of a caloric equation of state is that of a monoatomic gas, where
the molecular pressure pM is interrelated to the internal energy eM as

(3.1)pM(�, ϑ) = 2

3
�eM(�, ϑ)

(see Eliezer et al. [44]). As pM , eM have to comply with Gibbs’ equation (2.29), the only
admissible form of pM reads

(3.2)pM(�, ϑ) = ϑ5/2P

(
�

ϑ3/2

)
= �ϑ

P (Z)

Z
, Z = �

ϑ3/2
.

We recover the perfect gas law provided P(Z)/Z = const.
It is easy to check that the corresponding entropy sM satisfies

(3.3)sM(�, ϑ) = S

(
�

ϑ3/2

)
,

where

(3.4)S′(Z) = −3

2

5
3P(Z) − P ′(Z)Z

Z2
.

Note that s is uniquely determined by (3.4) up to an additive constant. The specific shape of
the entropy function with regards to the so-called third law of thermodynamics is discussed
by Belgiorno [13,14].

3.2. Thermodynamics stability

The hypothesis of thermodynamics stability asserts that
• the compressibility ∂p

∂�
is strictly positive,

• the specific heat at constant volume ∂e
∂ϑ

is strictly positive.
Consequently, in the case of a general monoatomic gas discussed above, we deduce from
(3.1), (3.2) that

(3.5)

{
P ′(Z) > 0,
5
3 P(Z)−P ′(Z)Z

Z
> 0

}
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for all Z � 0. It can be shown that the hypothesis of thermodynamics stability implies
linear stability of any static state of the system (see Bechtel et al. [11]).

Now, as a direct consequence of (3.5), we get

Z �→ P(Z)

Z5/3
is decreasing function in Z;

whence we may denote

(3.6)p∞ = lim
Z→∞

P(Z)

Z5/3
.

The value of p∞ characterizes the properties of the gas in the degenerate regime where
Z � 1. Most of gases in the degenerate regime behave like a Fermi gas for which

(3.7)p∞ > 0

(see Ruggeri and Trovato [112]). This follows from the fact that a gas under these circum-
stances is a mixture of monoatomic gases among which one component is formed by free
electrons behaving as a Fermi gas (see Battaner [10], Eliezer et al. [44]). From the math-
ematical viewpoint, property (3.7) is crucial providing relatively strong a priori estimates
on the density.

3.3. Transport coefficients

The transport coefficients μ, η, and κ appearing in Newton’s and Fourier’s law (2.21)
and (2.22), respectively, are scalar functions of the absolute temperature ϑ and the density
� as the case may be. Here, we assume that the dependence on � is negligible, which seems
to be the case at least for gases under normal conditions (see Becker [12]).

Accordingly, we suppose that μ = μ(ϑ), η = η(ϑ), and κ = κ(ϑ) are continuously
differentiable functions of ϑ satisfying, in accordance with the second law of thermody-
namics,

(3.8)μ(ϑ) � μ0 > 0, η(ϑ) � 0, κ(ϑ) � κ0 > 0 for all ϑ > 0.

As a matter of fact, the existence theory discussed below requires certain coercivity prop-
erties of μ and κ , in particular,

μ(ϑ) → ∞, κ(ϑ) → ∞ for ϑ → ∞.

Note that for monoatomic gases μ(ϑ) ≈ √
ϑ , while η ≡ 0. The interesting fact that

the viscosity of a gas is independent of the density is called Maxwell’s paradox (see
Becker [12]).

3.4. Effect of thermal radiation

We report briefly on the effect of thermal radiation on the fluid motion, where a purely
phenomenological, or macroscopic, description is adopted, the radiation being treated as a
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continuous field, and both the wave (classical) and photonic (quantum) aspects are taken
into account.

In the quantum picture, the total pressure p in the fluid is augmented, due to the presence
of the photon gas, by a radiation component pR related to the absolute temperature ϑ

through the Stefan–Boltzmann law:

(3.9)pR = a

3
ϑ4, with a constant a > 0.

Furthermore, in accordance with Gibbs’ relation (2.29), the specific internal energy e of
the fluid must by supplemented with a term

(3.10)eR = eR(�, ϑ) = a

�
ϑ4, equivalently, pR = 1

3
�eR,

while the related specific entropy reads

(3.11)sR = sR(�, ϑ) = 4a

3

ϑ3

�
.

Similarly, the heat conductivity of the fluid is enhanced by a radiation component

(3.12)qR = −κRϑ3∇xϑ, with a constant κR > 0.

It seems worth-noting that certain models take into account also a radiative component of
the viscosity although its impact on the motion becomes relevant only under extreme tem-
perature regimes occurring, for instance, in the interiors of big stars (see Oxenius [107]).

At the level of mathematical analysis, the presence of the radiation component in the
state equation gives rise to a compactification effect on the temperature field. The fact
that the radiation entropy is an intensive quantity prevents the fast time oscillations of the
temperature regardless the hypothetical appearance of vacuum zones (see [41,42]).

3.5. Real gas state equation

Summing up the results discussed in Sections 3.1, 3.4, the state equation of a real gas takes
the form

(3.13)p(�, ϑ) = pM(�, ϑ) + pR(ϑ).

In particular, for a (mixture of) monoatomic gas(es), we have

(3.14)p(�, ϑ) = ϑ5/2P

(
�

ϑ3/2

)
+ a

3
ϑ4,

and, similarly,

(3.15)e(�, ϑ) = 3

2
ϑ

ϑ3/2

�
P

(
�

ϑ3/2

)
+ a

ϑ4

�
,

(3.16)s(�, ϑ) = S

(
�

ϑ3/2

)
+ 4a

3

ϑ3

�
,

where the functions P , S were introduced in Section 3.1.
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3.6. Bibliographical comments

It should be noted that the coupling of radiation effects with fluid dynamics is a complex
physical problem, where the complete system of equations should include a new balance
law for the intensity of radiation (see e.g. Buet and Després [24], Mihalas [97]), and, strictly
speaking, the classical formulation of the equations of motion should be replaced by a
relativistic one as the zero mass particles (photons) are involved.

However, there are simplified models based on asymptotic analysis and certain physical
hypotheses (specifically, the matter together with the radiation are in local thermodynami-
cal equilibrium), which give rise to the same system of field equations (2.23)–(2.26), where
the constitutive equations for the pressure and the heat conductivity coefficient κ contain
the extra “radiative” terms depending on the temperature discussed in Section 3.4 (see Ox-
enius [107]). As a matter of fact, these models were introduced in astrophysics in order
to study the dynamics of radiative stars (see [41,42]). More material on this issue can be
found in the monographs by Battaner [10] and Bose [17].

4. A priori estimates

A priori estimates represent a corner stone of any mathematical theory related to a non-
linear problem. These are bounds imposed in a natural way on the solutions by the fact
that they satisfy a system of differential equations endowed with a family of data (initial,
boundary, driving forces, among others). The modern theory of non-linear partial differen-
tial equations is based on the abstract function spaces notably the Sobolev spaces, that have
been identified by means of a priori bounds associated to certain classes of model equa-
tions. A priori estimates are of purely formal character, being derived under the hypothesis
that the solution in question is smooth. However, as we shall see below, all a priori bounds
that can be derived for the Navier–Stokes–Fourier system actually hold even within the
much larger class of the weak solutions discussed in Section 1. This is mainly because all
nowadays available a priori bounds arise as a direct consequence of the energy conserva-
tion or the entropy balance already included in the weak formulation of the problem. In
this section, we review a complete list of known a priori estimates that can be deduced
for the Navier–Stokes–Fourier system. The proofs of several estimates are mostly sketched
whereas a more detailed analysis may be found in [50].

4.1. Total mass conservation

The total mass conservation follows as a direct consequence of (2.23). Indeed it is easy to
see that

(4.1)
∫

Ω

�(t, ·) dx =
∫

Ω

�(0, ·) dx for any t ∈ [0, T ].
Since � is a non-negative quantity, we deduce that

(4.2)ess sup
t∈(0,T )

∥∥�(t)
∥∥

L1(Ω)
� c(data).
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Such a bound is of particular interest on unbounded domains, where it provides a valuable
piece of information concerning the asymptotic behavior of � for |x| → ∞.

4.2. Energy estimates

The energy estimates follow directly from the total energy balance (2.26). Indeed we can
use a Gronwall type argument in order to see that the total energy of the fluid remains
bounded in terms of the initial data on any compact time interval [0, T ] as soon as

(4.3)ess sup
(t,x)∈(0,T )×Ω

∣∣f(t, x)
∣∣ � c.

Thus we infer that

(4.4)ess sup
t∈(0,T )

∫
Ω

(
1

2
�|u|2 + �e(�, ϑ)

)
(t) dx � c(T , data).

Hypothesis (4.3) can be relaxed to boundedness of the driving force in a certain Lebesgue
norm. On the other hand, the bound (4.3) is satisfactory in most applications.

Under the hypotheses of Section 3.5, we can deduce from (4.4) that

(4.5)ess sup
t∈(0,T )

‖√� u‖L2(Ω;R3) � c,

and, on condition that p∞ > 0 in (3.6),

(4.6)ess sup
t∈(0,T )

∥∥�(t)
∥∥

L5/3(Ω)
� c.

Finally, taking the radiation effects into account (see Section 3.5), we obtain

(4.7)ess sup
t∈(0,T )

∥∥ϑ(t)
∥∥

L4(Ω)
� c.

The energy estimates provide a priori bounds uniform in time. They are “conservative”
in nature and as such completely reversible in time. In particular, the bounds imposed on
the initial data are preserved by the flow, there is no smoothing effect.

4.3. A priori estimates based on the energy dissipation

Integrating the entropy balance (2.25) we obtain

(4.8)

∫
Ω

�s(�, ϑ)(τ ) dx + σ
[[0, τ ] × Ω

] =
∫

Ω

�s(�, ϑ)(0) dx for a.a. τ ∈ [0, T ].

Similarly to the preceding considerations, we assume that we can control the right-hand
side of (4.8) in terms of the initial data. On the other hand, if Ω is a bounded domain, it
can be shown that

(4.9)ess sup
t∈(0,T )

∫
Ω

�s(�, ϑ)(t) dx � c(data)

in terms of the energy estimates established above.
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Consequently, the entropy production represented by the measure σ must be bounded,
in particular,

(4.10)
∫ T

0

∫
Ω

1

ϑ
S : ∇xu dx +

∫ T

0

∫
Ω

κ(ϑ)
|∇xϑ |2

ϑ2
dx � c(data).

Since our basic hypothesis requires the transport coefficients μ and κ to be bounded
below away from zero, we immediately deduce that

(4.11)
∫ T

0

∫
Ω

∣∣∇x log(ϑ)
∣∣2

dx dt � c(data),

together with

(4.12)
∫ T

0

∫
Ω

μ(ϑ)

ϑ

∣∣∣∣∇xu + ∇ t
xu − 2

3
divx uI

∣∣∣∣
2

dx dt � c.

If, in addition, the heat conductivity coefficient κ satisfies certain coercivity properties
as, for instance, (3.12), we get

(4.13)
∫ T

0

∫
Ω

|∇xϑ |2 dx dt � c(data).

The estimates on the velocity gradient are more delicate. The easy way, of course, is to
assume that

μ(ϑ) ≈ ϑ for ϑ � 1.

Under these circumstances, a generalized version of Korn’s inequality can be used in order
to deduce from (4.5), (4.12) that

(4.14)
∫ T

0

∫
Ω

|∇xu|2 dx dt � c(data).

Unfortunately, in accordance with the physical background, a realistic behavior of μ is
rather

(4.15)μ(1 + √
ϑ ) � μ(ϑ) � μ(1 + √

ϑ ),

yielding only∫ T

0

∫
Ω

1√
ϑ

∣∣∣∣∇xu + ∇ t
xu − 2

3
divx uI

∣∣∣∣
2

dx dt � c.

Thus the resulting estimate must be “interpolated” with (4.7), (4.13), in order to obtain

(4.16)

∥∥∥∥∇xu + ∇ t
xu − 2

3
divx uI

∥∥∥∥
L2(0,T ;Lq(Ω;R3×3))

� c(data),

where, in general, q < 2.
The concrete value of the Lebesgue exponent q in (4.16) depends on μ, specifically, it

can be shown that

(4.17)q = 8

5 − α
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as soon as

(4.18)μ
(
1 + ϑα

)
� μ(ϑ) � μ̄

(
1 + ϑα

)
for all ϑ � 0.

It turns out that the critical value of α equals 2/5, more precisely,

(4.19)
2

5
< α � 1,

for which (4.16), (4.17), together with (4.5), (4.6), and the standard Sobolev embedding
relations, guarantee that

�u ⊗ u is bounded in Lp
(
(0, T ) × Ω; R

3×3) for a certain p > 1

in terms of the data (see [50] for details).
Unlike their counterparts derived in Section 4.2, the estimates based on dissipation are

“irreversible” in time, yielding higher regularity of solutions than that assumed for the ini-
tial data. This regularizing effect is instantaneous, meaning available at any positive time
but not uniform in time. These estimates are absolutely necessary in order to develop the
existence theory as they prevent fast oscillations of u and ϑ with respect to the spatial vari-
able. On the other hand, the technical condition (4.19) was needed in order to eliminate
possible concentrations in the convective term. The presence of oscillations and concen-
trations in the families of solutions to non-linear problems represents one of the principal
difficulties to be handled by the mathematical theory (cf. Evans [45]).

4.4. Renormalized equation of continuity and refined density estimates

A priori estimates related to a non-linear problem should be at least so strong that all quan-
tities may be equi-integrable, meaning the set of solutions is pre-compact in the Lebesgue
space L1 endowed with the weak topology. The estimates obtained in the previous part
were based on boundedness of the total energy of the system, in particular, they are not
strong enough in order to guarantee equi-integrability of this quantity, and a similar diffi-
culty occurs for the pressure. In this section, we derive refined density and pressure esti-
mates “computing” directly the pressure term in (2.9).

We start with a renormalized formulation of the equation of continuity (2.1) introduced
by DiPerna and P.-L. Lions [39]. Formally, multiplying (2.1) on b′(�), where b is an arbi-
trary function, we obtain

(4.20)∂tb(�) + divx

(
b(�)u

) + (
b′(�)� − b(�)

)
divx u = 0

to be satisfied in (0, T ) ×Ω . Equation (4.20) is equivalent to (2.1) as soon as all quantities
in question are smooth. At the level of the weak solutions introduced in Section 1, however,
Eq. (4.20) represents an extra piece of information that must be incorporated in the concept
of the weak solutions. Note that a slightly more convenient formulation of (4.20) reads

(4.21)∂t

(
�B(�)

) + divx

(
�B(�)u

) + b(�) divx u = 0
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to be satisfies in the sense specified in Section 1 for any b, B such that

(4.22)b ∈ C[0,∞) ∩ L∞(0,∞), b(0) = 0, B(�) =
∫ �

1

b(z)

z2
dz.

In the following, we always tacitly suppose that the continuity equation is satisfied also in
the sense of renormalized solutions.

In order to deduce more precise pressure and density estimates, we first assume that u
satisfies the complete slip boundary condition (2.3), (2.7). In particular, the quantity

ϕ(t, x) = ψ(t)∇x
−1
N

[
b(�) − 1

|Ω|
∫

Ω

b(�) dx

]
, ψ ∈ D(0, T ),

where −1
N denotes the inverse of the standard Laplacean endowed with the homogeneous

Neumann boundary condition, can be taken as an admissible test function in (2.9). Notably
the pressure term can be expressed in the form∫ T

0

∫
Ω

ψp(�, ϑ)b(�) dx − 1

|Ω|
∫ T

0

(
ψ

∫
Ω

b(�) dx

)(∫
Ω

p(�, ϑ) dx

)
dt

=
∫ T

0

∫
Ω

ψS : ∇x∇x
−1
N

[
b(�) − 1

|Ω|
∫

Ω

b(�) dx

]
dx dt

−
∫ T

0

∫
Ω

ψf · ∇x
−1
N

[
b(�) − 1

|Ω|
∫

Ω

b(�) dx

]
dx dt

−
∫ T

0

∫
Ω

ψ�u ⊗ u : ∇x∇x
−1
N

[
b(�) − 1

|Ω|
∫

Ω

b(�) dx

]
dx dt

+
∫ T

0

∫
Ω

ψ�u · ∇x
−1
N divx

(
b(�)u

)
dx dt

−
∫ T

0

∫
Ω

∂tψ�u · ∇x
−1
N

[
b(�) − 1

|Ω|
∫

Ω

b(�) dx

]
dx dt

+
∫ T

0

∫
Ω

ψ�u · ∇x
−1
N

[(
b(�) − b′(�)�

)
divx u

(4.23)−
∫

Ω

(
b(�) − b′(�)�

)
divx u dx

]
dx dt.

At this stage, it is a bit tedious but entirely routine matter to combine the uniform esti-
mates obtained in Sections 4.2, 4.3 with the standard elliptic estimates for N , in order to
deduce that all integrals on the right-hand side of (4.23) are already bounded in terms of
the data as soon as

b(�) ≈ �β, with β > 0 small enough

(see [50,55] for details). Consequently, we conclude that

(4.24)
∫ T

0

∫
Ω

p(�, ϑ)�β dx dt � c(data).
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Thus we get, by virtue of (3.6), (4.7), (4.13) that

(4.25)
∫ T

0

∫
Ω

pM(�, ϑ)q dx dt � c(data)

for a certain q > 1, and the same estimate can be shown for the internal energy den-
sity �eM(�, ϑ). Note that similar bounds on the radiation components follow from esti-
mates (4.7), (4.13).

The situation becomes more delicate when u satisfies the no-slip boundary condi-
tion (2.8). In this case, the operator ∇x

−1 must be replaced by a generalized inverse
div−1

x satisfying the homogeneous Dirichlet boundary condition. More specifically, we can
replace ∇x

−1 by B, where the operator B enjoys the following properties:
• B is a bounded operator from L̃p(Ω) to W 1,p(Ω; R

3) for any 1 < p < ∞, where L̃p

is the subspace of Lp(Ω) of functions of zero mean,

•

divx B[v] = v, B[v]|∂Ω = 0 for any v ∈ L̃p(Ω),

• if, in addition, v = divx h, where h · n|∂Ω = 0, we have∥∥B[divx h]∥∥
Lq(Ω;R3)

� c(p, q)‖h‖Lq(Ω;R3) for any 1 < q < ∞.

An example of operator B was constructed by Bogovskii [16], a detailed analysis of its
basic properties may be found in Galdi [59], or Novotný and Straškraba [105].

The pressure estimates derived in this part have “dispersive” character. They do not
improve smoothness but assert better integrability of the density in the space–time cylinder.

4.5. A priori estimates, summary

In the preceding part we have derived practically all known a priori estimates available for
the Navier–Stokes–Fourier system. These bounds are strong enough in order to guarantee
weak compactness of all quantities in the Lebesgue space L1 except for the entropy pro-
duction rate σ , which is known to be bounded only as a non-negative measure on the set
[0, T ] × Ω .

The spatial gradients ∇xu and ∇xϑ are bounded in some Lebesgue norm, in particular,
u and ϑ do not exhibit uncontrollable spatial oscillations. On the other hand, there is no
such a bound available for the density �.

The time derivatives of the state variables are bounded only in a very weak sense, in
particular, there is no control on the time oscillations of the extensive quantities on the
“vacuum” region where � = 0.

There is an interesting feature of the weak formulation of the Navier–Stokes–Fourier
system used in the present study, namely, all a priori estimates are real estimates imposed
by the data on any weak solution of the problem. This fact plays a crucial role in the
asymptotic analysis discussed in Sections 6, 7 below.
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4.6. Bibliographical comments

The fundamental importance of a priori estimates in the theory of non-linear partial differ-
ential equations was recognized in the classical monographs by Friedman [58], Ladyzhen-
skaya et al. [83], or J.-L. Lions [87], among many others. The reader should keep in mind
that all a priori estimates discussed in the present study are related to the large data solu-
tions without any restriction on the length of the existence interval.

The energy and entropy estimates based on the mechanical energy dissipation are
straightforward. The renormalized solutions were introduced by DiPerna and Lions [39]
in order to identify a physically relevant class of uniqueness for general transport equa-
tions. Their pioneering result have been generalized recently by Ambrosio et al. [4].

A local version of the pressure estimates was used by P.-L. Lions [89] in the context of
the isentropic Navier–Stokes system. Their extension up to the boundary of the physical
domain was obtained in [55] (see also P.-L. Lions [90]).

Quite recently, a new entropy-like identity conditioned by a very particular form of the
viscosity coefficients depending on the density � was discovered by Bresch and Desjardins
[18,19], Bresch et al. [20] (see also Mellet and Vasseur [96]). This identity gives rise to
very strong a priori estimates of ∇x� in a certain Lebesgue space on condition that the
viscosity coefficients μ = μ(�), η = η(�) are interrelated in a specific way.

5. Weak sequential stability

The problem of weak sequential stability represents a central issue of the analysis of any
non-linear problem. Having established all a priori bounds available we consider a fam-
ily {�n, un, ϑn}∞n=1 of solutions of the full Navier–Stokes–Fourier system (2.23)–(2.32)
assuming, in accordance with (4.5)–(4.7) and (4.16), that

(5.1)�n → � weakly-(∗) in L∞(
0, T ; L5/3(Ω)

)
,

ϑn → ϑ weakly-(∗) in L∞(
0, T ; L4(Ω)

)
(5.2)and weakly in L2(0, T ; W 1,2(Ω; R

3)),
and

(5.3)un → u weakly in L2(0, T ; W 1,q
(
Ω; R

3)),
with q = 8/(5 − α), 2/5 < α � 1.

Our goal in this section is to show that the limit quantity {�, u, ϑ} represents another
weak solution of the same problem. In particular, we must be able to perform the limit in
all non-linear constitutive relations involving both �n and ϑn, which amounts to proving
strong (pointwise) convergence of {�n}∞n=1, {ϑn}∞n=1. Let us point out that the velocity
fields un do not, or at least are not known to converge almost everywhere in the cylinder
(0, T )×Ω but only on the set where the limit density � is strictly positive. The hypothetical
existence of the vacuum zones, that means, zones where � vanishes, seems to be one of the
major stumbling blocks of the present theory.
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5.1. Preliminaries, Div–Curl lemma, and related results

Div–Curl lemma developed in the framework of the theory of compensated compactness
became one of the most efficient tools of the modern theory of partial differential equations
(see Murat [100], Tartar [117], Yi [126]).

LEMMA 5.1 (DIV–CURL lemma). Let {Un}∞n=1, {Vn}∞n=1 be two sequences of vector fields
such that

Un → U weakly in Lp
(
R

N ; R
N

)
,

Vn → V weakly in Lq
(
R

N, R
N

)
,

where

1 < p, q < ∞,
1

p
+ 1

q
= 1

r
< 1.

Assume, in addition, that

{divx U}∞n=1 is precompact in W−1,s
(
R

N
)
,

and

{curl Vn}∞n=1 is precompact in W−1,s
(
R

N ; R
N×N

)
for a certain s > 1.

Then

Un · Vn → U · V weakly in Lr
(
R

N
)
.

In order to realize the strength of this result, let us point out that any sequence of (weak)
solutions of a conservation law

∂t rn + divx Fn = sn

can be written in the form

DIVt,x[rn, Fn] = sn

in a 4-dimensional space–time cylinder (0, T ) × Ω . Note that the argument of Lemma 5.1
can be easily localized.

On the other hand, consider a family of functions {Vn}∞n=1 such that

‖∇xVn‖Lq(0,T ;Lq(Ω;R3)) � c for a certain q > 1,

in particular,∥∥CURLt,x

[
H(Vn), 0, 0, 0

]∥∥
Lq((0,T )×Ω,R4×4)

� c

for any H ∈ W 1,∞(R).
Thus a direct application of DIV–CURL lemma implies

(5.4)rnH(Vn) → rH(V ) weakly in Lr
(
(0, T ) × Ω

)
for any H ∈ W 1,∞(R)
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as soon as

rn → r, Fn → F weakly in Lr
(
(0, T ) × Ω

)
for a certain r > 1,

H(Vn) → H(V ) weakly-(∗) in L∞(
(0, T ) × Ω

)
,

and

{sn}∞n=1 is bounded in M
([0, T ] × Ω

)
.

Note that (5.4), being a kind of “biting limit” (see Brooks and Chacon [23]), yields

(5.5)rnVn → rV weakly in L1((0, T ) × Ω
)

as soon as both {rn}∞n=1 and {Vn}∞n=1 are equi-integrable (weakly precompact) in
L1((0, T ) × Ω). Here V denotes the corresponding weak limit of {Vn}∞n=1.

In such a way, we can easily identify the weak limit of all convective terms in (2.23)–
(2.26). Accordingly, letting n → ∞ we obtain

(5.6)∂t� + divx(�u) = 0,

(5.7)∂t (�u) + divx(�u ⊗ u) + ∇xp(�, ϑ) = divx S + �f,

(5.8)∂t

(
�s(�, ϑ)

) + divx

(
�s(�, ϑ)u

) + divx

(
q
ϑ

)
= σ,

(5.9)
d

dt

∫
Ω

(
1

2
�|u|2 + �e(�, ϑ)

)
dx =

∫
Ω

�f · u dx,

supplemented with the boundary conditions

(5.10)u · n = (Sn) × n|∂Ω = 0, or u|∂Ω = 0,

(5.11)

(
q
ϑ

)
· n|∂Ω = 0.

We have used the standard notation, where bar denotes a weak L1-limit of a composed
function.

Similarly, we deduce from (4.20)

(5.12)∂t

(
�B(�)

) + divx

(
�B(�)u

) + b(�) divx u = 0.

Here, we should note that the same results could be obtained by means of a “more
classical” tool, namely the Lions–Aubin lemma (see Lions [87]). However, the arguments
via DIV–CURL lemma seem more straightforward and apply also to the case when the
production term is represented by a measure.

5.2. Strong convergence of the temperature

Our goal is to show that the sequence {ϑn}∞n=1 converges a.a. in (0, T ) × Ω . By virtue
of (4.7), (4.13),

ϑn → ϑ weakly in L2(0, T ; W 1,2(Ω)
)
,
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therefore we have to exclude possible time oscillations. At this stage, the presence of the
radiation component of the entropy plays a crucial role.

Let us start with a preliminary result that can be considered as a fundamental theorem
of the theory of Young measures (see Ball [7], Pedregal [108]).

THEOREM 5.1. Let {Un}∞n=1 be an equi-integrable (weakly precompact) sequence of func-
tions in L1(Q; R

M), Q ⊂ R
N .

Then {Un}∞n=1 possesses a subsequence (not relabeled) such that there exists a parame-
trized family of probability measures {νy}y∈Q on RM enjoying the following property:

F(·, U)(y) = 〈
νy, F (y, ·)〉 for a.a. y ∈ Q,

whenever F = F(y, U) is a Caratheodory function on Q × R
M and

F(·, Un) → F(·, U) weakly in L1(Q).

In accordance with the hypothesis of thermodynamics stability, the entropy is a strictly
increasing function of ϑ , more specifically,

(5.13)

∫ T

0

∫
Ω

(
�ns(�n, ϑn) − �ns(�n, ϑ)

)
(ϑn − ϑ) dx dt � 4a

3

∫ T

0

∫
Ω

|ϑn − ϑ |4 dx dt.

Here again, we have taken advantage of the radiation component �sR . Consequently, it is
enough to observe that the left-hand side of (5.13) tends to zero.

To this end, we first repeat the arguments of Section 5.1 in order to show that

(5.14)�s(�, ϑ)ϑ = �s(�, ϑ)ϑ.

On the other hand, by the same token, we can use the renormalized equation (4.21) to
deduce that

b(�)h(ϑ) = b(�)h(ϑ) for all bounded continuous functions b, h.

Such a relation can be expressed in terms of the Young measures as

(5.15)ν
(�,ϑ)
t,x = ν

�
t,x ⊗ νϑ

t,x for a.a. (t, x) ∈ (0, T ) × Ω,

where ν(�,ϑ), ν�, and νϑ denote the Young measure associated to {(�n, ϑn)}∞n=1, {�n}∞n=1,
and {ϑn}∞n=1, respectively.

Thus, as a direct consequence of Theorem 5.1, we get

�ns(�n, ϑ)(ϑn − ϑ) → 0 weakly in L1((0, T ) × Ω
)
,

which, together with (5.14) yields the desired conclusion. We infer that

(5.16)ϑn → ϑ in L4((0, T ) × Ω
)
.

Without the radiation component of s, we would only get pointwise convergence of the
temperature on the set where the limit density � is strictly positive. This is the main reason
why the effect of radiation is taken into account in the present theory.



Mathematical methods in the theory of viscous fluids 79

5.3. Strong convergence of the density

The pointwise convergence of the densities, necessary in order to pass to the limit in the
non-linear constitutive relations, represents one of the most delicate tasks of the theory.
The main idea is to use the renormalized form of the equation of continuity in order to
describe the time evolution of oscillations.

To begin with, let us introduce the cut-off functions

(5.17)Tk(z) = kT

(
z

k

)
, z � 0, k � 1,

where T ∈ C∞[0,∞) satisfies

T (z) =
⎧⎨
⎩

z for 0 � z � 1,

concave for 1 � z � 3,

2 for z � 3.

By virtue of (5.12), we have

(5.18)∂t

(
�Lk(�)

) + divx

(
�Lk(�)u

) + Tk(�) divx u = 0,

where

Lk(�) =
∫ �

1

Tk(z)

z2
dz.

The next natural step is to write the renormalized equation for the limit �, u, namely

(5.19)∂t

(
�Lk(�)

) + divx

(
�Lk(�)u

) + Tk(�) divx u = 0.

However, at this stage, it is not obvious that (5.19) holds. It is worth noting that the regu-
larizing technique introduced by DiPerna and P.-L. Lions [39] does not apply here because
of the low degree of integrability of � (and also u). Consequently, in order to proceed, we
evoke the method developed in [47] introducing the oscillations defect measure associated
to the sequence {�n}∞n=1 as

(5.20)oscp[�n → �](Q) = sup
k�1

(
lim sup
n→∞

∫
Q

∣∣Tk(�n) − Tk(�)
∣∣p dx dt

)
.

We report the following result (see [53,50]):

PROPOSITION 5.1. Let Q ⊂ (0, T ) × Ω be a domain. Suppose that

�n → � weakly in L1(Q),

un → u weakly in Lr
(
Q; R

3),
∇xun → ∇xu weakly in Lr

(
Q; R

3×3), r > 1,

and

oscp[�n → �](Q) < ∞ for a certain p such that
1

p
+ 1

r
< 1.

Let, in addition, {�n, un}∞n=1 satisfy the renormalized equation (4.21) in D′(Q).
Then �, u satisfy (4.21) in D′(Q).
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In view of Proposition 5.1, we have to find a suitable oscillations defect measure in order
to justify (5.19). To this end, we make use of the quantity termed effective viscous flux.

Take

ϕ(t, x) = ψ(t)φ(x)∇x
−1[1ΩTk(�)

]
, ψ ∈ D(0, T ), φ ∈ D(Ω)

as a test function in the momentum balance (2.9). The symbol −1 denotes the inverse
of the Laplace operator defined on the whole space R

3 by means of convolution with the
Poisson kernel. After a bit lengthy but entirely straightforward manipulation, we obtain∫ T

0

∫
Ω

ψφ
(
p(�n, ϑn)Tk(�n) − Sn : R[

1ΩTk(�n)
])

dx dt

=
∫ T

0

∫
Ω

ψφ
(
�nun · R[

1ΩTk(�n)un

] − (�nun ⊗ un) : R[
1ΩTk(�n)

])
dx dt

(5.21)+
6∑

j=1

Ij,n,

where

I1,n = −
∫ T

0

∫
Ω

ψφ�nun · ∇x
−1[1Ω

(
Tk(�n) − T ′

k(�n)�n

)
divx un)

]
dx dt,

I2,n = −
∫ t

0

∫
Ω

ψφ�nf · ∇x
−1[1ΩTk(�n)

]
dx dt,

I3,n = −
∫ T

0

∫
Ω

ψp(�n, ϑn)∇xφ · ∇x
−1[1ΩTk(�n)

]
dx dt,

I4,n =
∫ T

0

∫
Ω

ψSn : ∇xφ ⊗ ∇x
−1[1ΩTk(�n)

]
dx dt,

I5,n = −
∫ T

0

∫
Ω

ψ(�nun ⊗ un) : ∇xφ ⊗ ∇x
−1[1ΩTk(�n)

]
dx dt,

and

I6,n = −
∫ T

0

∫
Ω

∂tψφ�nun · ∇x
−1[1ΩTk(�n)

]
dx dt.

The symbol R = Ri,j denotes a pseudodifferential operator of zero order Ri,j =
∂xi

−1∂xj
, or, in terms of the Fourier symbol

Ri,j [v] = F−1
ξ→x

[
ξiξj

|ξ |2 Fx→ξ [v]
]
,

where F denotes the standard Fourier transform.
Similarly, using

ϕ(t, x) = ψ(t)φ(x)∇x
−1[1ΩTk(�)

]
, ψ ∈ D(0, T ), φ ∈ D(Ω),
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as a test function in the weak formulation of the limit equation (5.7) we obtain∫ T

0

∫
Ω

ψφ
(
p(�, ϑ)Tk(�) − S : R[

1ΩTk(�)
])

dx dt

=
∫ T

0

∫
Ω

ψφ
(
�u · R[

1ΩTk(�)u
] − (�u ⊗ u) : R[

1ΩTk(�)
])

dx dt

(5.22)+
6∑

j=1

Ij ,

where

I1 = −
∫ T

0

∫
Ω

ψφ�u · ∇x
−1[1Ω

(
Tk(�n) − T ′

k(�n)�n

)
divx un

)]
dx dt,

I2 = −
∫ t

0

∫
Ω

ψφ�f · ∇x
−1[1ΩTk(�)

]
dx dt,

I3 = −
∫ T

0

∫
Ω

ψp(�, ϑ)∇xφ · ∇x
−1[1ΩTk(�)

]
dx dt,

I4 =
∫ T

0

∫
Ω

ψS : ∇xφ ⊗ ∇x
−1[1ΩTk(�)

]
dx dt,

I5 = −
∫ T

0

∫
Ω

ψ(�u ⊗ u) : ∇xφ ⊗ ∇x
−1[1ΩTk(�)

]
dx dt,

and

I6 = −
∫ T

0

∫
Ω

∂tψφ�u · ∇x
−1[1ΩTk(�)

]
dx dt.

Now, we claim that all quantities on the right-hand side of (5.21) tend to their counter-
parts in (5.22), in particular,

lim
n→∞

∫ T

0

∫
Ω

ψφ
(
p(�n, ϑn)Tk(�n) − Sn : R[

1ΩTk(�n)
])

dx dt

(5.23)=
∫ T

0

∫
Ω

ψφ
(
p(�, ϑ)Tk(�) − S : R[

1ΩTk(�)
])

dx dt.

The easy part of the proof of (5.23) is to observe that, by virtue of the regularizing effect
of the operator ∇x

−1, Ij,n → Ij as n → ∞ for any j = 1, . . . , 6 (see [50,53] for
details).

In order to handle the remaining term, we report the following result that can be viewed
as a direct consequence of DIV–CURL lemma.

LEMMA 5.2. Let

Un → U weakly in Lp
(
R

3; R
3),

Vm → V weakly in Lq
(
R

3; R
3),
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where p, q � 1

1

p
+ 1

q
= 1

r
< 1.

Then

Un · R[Vn] − Vn · R[Un] → U · R[V] − V · R[U] weakly in Lr
(
R

3).
In order to see the conclusion of Lemma 5.2, it is enough to rewrite

Un · R[Vn] − Vn · R[Un] = (
Un − R[Un]

) · R[Vn] − (
Vn − R[Vn]

) · R[Un],
and to apply Lemma 5.1 as

divx

(
Un − R[Un]

) = divx

(
Vn − R[Vn]

) = 0,

curlR[Un] = curlR[Vn] = 0.

Since ∫ T

0

∫
Ω

ψφ
(
�nun · R[

1ΩTk(�n)un

] − (�nun ⊗ un) : R[
1ΩTk(�n)

])
dx dt

=
∫ T

0

∫
R3

ψun · (
R[φ�nun]1ΩTk(�n) − R

[
1ΩTk(�n)

]
φ�nun

)
dx dt,

we deduce, by means of Lemma 5.2, that(
R[φ�nun]1ΩTk(�n) − R

[
1ΩTk(�n)

]
φ�nun

)
→ (

R[φ�u]1ΩTk(�) − R
[
1ΩTk(�)

]
φ�u

)
in L2(0, T ; W−1,q ′(

R
3; R

3)),
un → u weakly in L2(0, T ; W 1,q

(
R

3; R
3)),

for certain conjugate exponents q, q ′ provided un was extended as a function belonging to
W 1,q (R3; R

3) outside Ω . Accordingly, relation (5.23) follows.
At this stage, the crucial observation is that relation (5.23), rewritten in the form

lim
n→∞

∫ T

0

∫
Ω

ψ
(
φp(�n, ϑn)Tk(�n) − Tk(�n)R : [ηSn]

)
dx dt

(5.24)=
∫ T

0

∫
Ω

ψ
(
φp(�, ϑ)Tk(�) − Tk(�)R : [φS]) dx dt

gives rise to

lim
n→∞

∫ T

0

∫
Ω

ψφ

(
p(�n, ϑn)Tk(�n) − Tk(�n)

(
4

3
μ(ϑn) + η(ϑn)

)
divx un

)
dx dt

(5.25)

=
∫ T

0

∫
Ω

ψφ

(
p(�, ϑ) Tk(�) − Tk(�)

(
4

3
μ(ϑ) + η(ϑ)

)
divx u

)
dx dt,

where the quantity p − ((4/3)μ + η) divx u is usually termed the effective viscous flux.
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Note that quantities appearing (5.24) and (5.25) differ by a commutator of R with the
operator of multiplication on a scalar function μ. Consequently, in order to see how (5.24)
yields (5.25), we need the following result that may be viewed as a particular application
of the general theory developed by Coifman and Meyer [30] (see Coifman et al. [29,49]).

LEMMA 5.3. Let μ ∈ W 1,2(R3) be a scalar function and V ∈ Lr ∩ L1(R3; R
3) a vector

field, r > 6/5.
Then ∥∥(∇x

−1 divx

)[μV] − μ
(∇x

−1 divx

)[V]∥∥
Wω,p(R3)

� c‖μ‖W 1,2(R3)‖V‖Lr∩L1(R3;R3)

for a certain ω > 0, p > 1.

Since

Tk(�n) → Tk(�) in Cweak
([0, T ]; Lq(Ω)

)
for any 1 < q < ∞,

Lemma 5.1, together with (5.24), imply (5.25).
On the other hand, relation (5.25) yields immediately

pM(�, ϑ)Tk(�) −
(

4

3
μ(ϑ) + η(ϑ)

)
Tk(�) divx u

(5.26)= pM(�, ϑ)Tk(�) −
(

4

3
μ(ϑ) + η(ϑ)

)
Tk(�) divx u.

Now, it can be shown that

(5.27)pM(�, ϑ)Tk(�) − pM(�, ϑ)Tk(�) � cosc8/3[�n → �]((0, T ) × Ω
);

whence, after a certain manipulation (see [50]), we deduce that

(5.28)oscp[�n → �]((0, T ) × Ω
)

< ∞ for a certain p >
8

3 + α
.

Indeed the pressure pM can be written in the form pM = pmon(�, ϑ) + pconv(�), where
pmon is non-decreasing in �, while pconv(�) is a convex function pconv ≈ �5/3. Moreover,
it can be checked by direct inspection that

�5/3Tk(�) − �5/3Tk(�) � lim
n→∞

∫ T

0

∫
Ω

∣∣Tk(�n) − Tk(�)
∣∣8/3 dx dt

(for details see [50]).
By virtue of (4.16), (4.17), and Proposition 5.1, the limit functions �, u satisfy equa-

tion (5.19), and, consequently,

d

dt

∫
Ω

(
� log(�) − � log(�)

)
dx +

∫
Ω

(
Tk(�) divx u − Tk(�) divx u

)
dx

=
∫

Ω

(
Tk(�) divx u − Tk(�) divx u

)
dx.



84 E. Feireisl

Letting k → ∞ we conclude that

(5.29)
∫

Ω

(
� log(�) − � log(�)

)
(τ ) dx �

∫
Ω

(
� log(�) − � log(�)

)
(0) dx,

in other words

�n → � a.a. on (0, T ) × Ω

as soon as we choose the initial distribution of the densities precompact in L1(Ω).

5.4. Existence theory

The a priori estimates derived in Section 4, together with the stability property established
in Section 5, form a suitable platform for the existence theory based on the concept of the
weak solutions in the sense specified in Section 1. We report the following result.

THEOREM 5.2. Let Ω ⊂ R
3 be a domain of class C2+ν . Suppose the viscous stress is

given by Newton’s rheological law (2.21), while the heat flux satisfies Fourier’s law (2.22),
where the transport coefficients μ = μ(ϑ), η = η(ϑ), κ = κ(ϑ) are continuously differ-
entiable functions of the absolute temperature ϑ such that

(5.30)
∣∣μ′(ϑ)

∣∣ � c, μ
(
1 + ϑα

)
� μ(ϑ) � μ̄(1 + ϑ),

(5.31)0 � η(ϑ) � η
(
1 + ϑα

)
,

for a certain 2/5 < α � 1,

(5.32)κ
(
1 + ϑ3) � κ(ϑ) � κ

(
1 + ϑ3)

for all ϑ � 0. Let the pressure be given through formula

(5.33)p(�, ϑ) = ϑ5/2P

(
�

ϑ3/2

)
+ a

3
ϑ4, a > 0,

where the function P ∈ C1[0,∞) satisfies (3.5), (3.6), and e, s are given by (3.15), (3.16).
Finally, assume the initial data take the form

�(0, ·) = �0, (�u)(0, ·) = �0u0, and

(5.34)�s(�, ϑ)(0, ·) = �0s(�0, ϑ0),

where

0 < � � �0(x) � �, u0 ∈ L2(Ω; R
3),

(5.35)0 < ϑ � ϑ0(x) � ϑ for a.a. x ∈ Ω.

Then problem (2.23)–(2.32), supplemented with the initial conditions (5.34), admits a
weak solution on the set (0, T ) × Ω for any T > 0.
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Since for any weak solution we have t �→ �(t, ·), t �→ (�u)(t, ·) weakly continuous
in L1, the initial conditions for � and �u make sense. On the other hand, it can be shown
that

�s(�, ϑ)(t, ·) → �0s(�0, ϑ0) weakly in L1(Ω)

as soon as ϑ0 ∈ W 1,∞(Ω).
In the remaining part of this study, we take advantage of the existence theory in order

to discuss two fundamental issues concerning the global in time solutions: the behavior of
solutions for large times, and the problems involving singular limits.

5.5. Bibliographical comments

The problem of existence of solutions to various systems studied in the framework of the
mathematical fluid dynamics has a long history and very active present. To begin with, a
complete list of relevant results lies definitely beyond the scope of the present study. Here,
we focus only on the problems related to viscous fluid flows with large data defined on an
arbitrary time interval – global-in-time solutions.

After the seminal work of Leray [85], Hopf [73] established the existence of global in
time weak solutions of the incompressible Navier–Stokes system on a bounded domain
in R

3. Later on, Ladyzhenskya [80,81] showed uniqueness and regularity of the weak so-
lutions in the two-dimensional case.

Another significant step in the theory is achieved by the proof of global existence for
the barotropic compressible fluid flow by P.-L. Lions [89]. An extension of this result to
the case of more realistic values of the adiabatic coefficient has been obtained in [47,53].
In this context, it is worth-noting that Vaigant and Kazhikhov [125] succeeded in showing
global existence of regular solutions in the barotropic case in the two-dimensional physical
space under rather artificial conditions imposed on the bulk viscosity coefficient depending
on the density.

The crucial quantity of the existence theory for compressible fluids is the effective vis-
cous flux introduced in Section 5.3. Although the central role of this quantity has been
already recognized by Hoff [65] and Serre [116], the real breakthrough was accomplished
by P.-L. Lions [89], who first observed the “weak continuity” property stated in (5.25).
This result was later generalized to the case of variable viscosity coefficients in [49].

The existence theory for the full Navier–Stokes–Fourier system, based on the entropy
inequality and the total energy balance equation, was developed in [50]. Recently, Bresch
and Desjardins [19] proposed an alternative approach based on strong a priori estimates of
the density gradient under the main hypothesis that the shear and bulk viscosity coefficient
are explicit functions of the density interrelated in a very specific way. Results for the
system subjected by certain symmetry condition were obtained by Jiang and Zhang [75].

Quite recently, a new approach to the existence problem was proposed by Hoff [72],
based on the concept of irregular but still unique solutions emanating from small initial
data.

The corresponding stationary problem has been studied by many authors, the most re-
cent results can be found in Frehse et al. [57], Mucha and Pokorný [98], or Plotnikov and
Sokolowski [109].
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In order to conclude, let us point out that almost all the above-mentioned results concern
the large data – large time problems in the natural 3-dimensional physical space. On the
other hand, the theory is much more complete in the one-dimensional geometry (see the
monograph Antontsev et al. [5], Hoff [64,66], Jiang [74], Serre [115], Zlotnik [130], among
many others), while the 2-D case differs from the 3-D case only by technical details.

6. Long-time behavior

The theory and applications of infinite dimensional dynamical systems have attracted the
attention of scientists for a long time. The long-time behavior as well as other dynami-
cal issues arise in many equations modeling phenomena that change in time. A typical
example is provided by the Navier–Stokes–Fourier system governing the motion of a gen-
eral viscous, compressible and heat conducting fluid introduced in Section 2.6. Because of
the nonlinearities occurring in these equations, the long-term dynamics has always been
expected to be quite complicated and possibly intimately related to the phenomena of tur-
bulence. Most of the recent results is related to reduced system: either the isentropic or
isothermal models or, even more restrictedly, the incompressible Navier–Stokes equations.
The common feature of these systems is that the mechanical energy is converted into heat
while the effect of the resulting temperature changes on the dynamics is completely ne-
glected. Such an assumption may be quite satisfactory on medium time scales but it is
definitely not suitable for describing the long-time behavior, in particular, for energeti-
cally isolated systems. The main objective of this section is to examine the full system
of equations taking into account the second law of thermodynamics and, in particular, the
entropy production corresponding to the irreversible transfer of the mechanical energy into
heat. Our results may be thought of, in a certain sense, as a mathematical verification of
the celebrated minimum entropy production principle (see Onsager [106], Rajagopal and
Srinivasa [111]).

Given a bounded driving force f = f(t, x), the main issue to be discussed below is the
long time behavior of solutions to the complete Navier–Stokes–Fourier system. The central
idea is based on the fact that in entropy producing processes like those we have to deal with,
the long time dynamics is surprisingly simple: either the system is truly conservative, that
means, f(t, x) ≈ ∇xF (x), and then all solutions tend to a unique equilibrium (static) state,
or all mechanical energy is converted (dissipated) into heat, and, accordingly, the total
energy becomes infinite:

(6.1)E(t) =
∫

Ω

(
1

2
�|u|2 + �e(�, ϑ)

)
dx → ∞ as t → ∞.

As a matter of fact, some simplified models provide a more complicated picture. Con-
sider, for instance, an isentropic flow governed by the Navier–Stokes system:

(6.2)

⎧⎪⎨
⎪⎩

∂t� + divx(�u) = 0,

∂t (�u) + divx(�u ⊗ u) + a∇x�
γ = divx S + �f,

u|∂Ω = 0.

⎫⎪⎬
⎪⎭
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In this model, the entropy production is rather artificially set to be zero therefore the
“reversible” part of the internal energy is not converted into heat, which, strangely enough,
leads to a more complicated dynamics in the long run. It can be shown that all (weak)
solutions of system (6.2) enter, after a certain time depending on the size of the initial data,
a bounded absorbing set provided γ > 5/3, and f is a bounded measurable function of
x and t (see [55]). Moreover, all trajectories are asymptotically compact with respect to a
natural “energy” norm, and the system admits a global attractor (see [48]). If, in addition,
the function f is time-periodic, there exists a time periodic solution (see [51]).

An interesting situation occurs when we take f(t, x) = ∇xF (x). In this case, it is known
that

�u(t) → 0 in L1
(
Ω; R

3
)
,

�(t) → {static states} ≡ {�s | a∇x�
γ
s = �s∇xF } in Lγ (Ω)

}
as t → ∞

provided γ > 3/2. If, in addition, the level sets {x ∈ Ω | F(x) > k} are connected for
any k ∈ R, then �(t) → �s as t → ∞ for a suitable static solution �s (see [54]). To the
best of our knowledge, the problem of convergence to a single equilibrium remains open
for a general potential F . This problem is closely related to inevitable occurrence of the
vacuum zones in the static density distribution if the total mass of the fluid is sufficiently
small. Such a problem, although very interesting mathematically, seems to be of purely
theoretical character as in practical situations the isentropic, meaning constant entropy
process, is definitely not a good approximation as far as the long-time behavior of the
underlying physical system is concerned.

Pursuing further the path of simplification, one can consider the incompressible Navier–
Stokes system

(6.3)

⎧⎪⎨
⎪⎩

divx u = 0,

∂tu + divx(u ⊗ u) + ∇xp = μu + f,

u|∂Ω = 0.

⎫⎪⎬
⎪⎭

Here, of course, the case f = ∇xF is not very interesting since f can be “absorbed” by the
pressure, and u → 0 in L2(Ω; R

3) for t → ∞. On the other hand, for a general f, the
dynamics can be quite complex and still not well-understood.

6.1. Stationary driving force

Let us examine the complete Navier–Stokes–Fourier system introduced in Section 2.6
driven by a time-independent force f = f(x). In addition, in many physically realistic
cases, we have f = ∇xF for a Lipschitz potential F . Accordingly, it is easy to deduce
from (2.23), (2.26) that the system admits a Lyapunov function, specifically,

(6.4)
d

dt

∫
Ω

[
1

2
�|u|2 + �e(�, ϑ) − �F

]
(t) dx = 0.

Moreover, it follows from (2.25) that the total entropy production is finite,

(6.5)σ
[[0,∞) × Ω

]
< ∞,
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and

(6.6)
∫

Ω

�s(�, ϑ)(t) dx ↗ S∞ as t → ∞.

Consequently, it is easy to deduce from (6.5) that

�u(t) → 0 as t → ∞,

while

(�, ϑ)(t) → {
(�s, ϑs) | �s = �s(x), ϑs = const > 0, p(�s, ϑs) = �s∇xF

}
.

In other words, the ω-limit set of each trajectory {�, �u, ϑ}t�0 is formed by static states
– solutions of the system with zero velocity. In order to determine the limit state, we use
the three Lyapunov functionals: (i) the total mass∫

Ω

�s dx =
∫

Ω

�(t, ·) dx for all t > 0;
(ii) the energy∫

Ω

(
�se(�s, ϑs) − �sF

)
dx = lim

t→∞

∫
Ω

[
1

2
�|u|2 + �e(�, ϑ) − �F

]
(t) dx;

and (iii) the entropy∫
Ω

�ss(�s, ϑs) dx = lim
t→∞

∫
Ω

�s(�, ϑ)(t) dx.

It turns out that these three quantities fully determine the limit state �s , ϑs .
If f �= ∇xF , the total energy of the system is no longer a conserved quantity. The contin-

uous supply of the mechanical energy provided by f is converted into heat by the dissipative
effects of viscosity and heat conductivity of the fluid. The resulting “degenerate” internal
energy tends to infinity, more precisely,

lim
t→∞

∫
Ω

1

2

(
�|u|2 + �e(�, ϑ)

)
(t) dx = ∞.

The previous considerations can be summarized in the following assertion (see [56]):

THEOREM 6.1. Under the hypotheses of Theorem 5.2, assume that the driving force
f = f(x) is a bounded measurable function independent of the time t .

Then either f �= ∇xF , and∫
Ω

1

2

(
�|u|2 + �e(�, ϑ)

)
(t) dx → ∞ as t → ∞,

or f = ∇xF , and there exist a positive bounded function �s and positive constant ϑs such
that

�u(t) → 0 in L1(Ω; R
3),

�(t) → �s in L1(Ω),
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and ∫
Ω

�s(�, ϑ)(t) dx →
∫

Ω

�ss(�s, ϑs) dx

as t → ∞.

6.2. Time-dependent driving force

The general case when f = f(t, x) can be handled by means of the following result
(see [56]).

THEOREM 6.2. Under the hypotheses of Theorem 5.2, assume that the driving force f
belongs to L∞(0,∞; L∞(Ω; R

3)).
Then either∫

Ω

1

2

(
�|u|2 + �e(�, ϑ)

)
(t) dx → ∞ as t → ∞,

or

ess sup
t∈(0,T )

∫
Ω

1

2

(
�|u|2 + �e(�, ϑ)

)
(t) dx = E∞ < ∞.

Furthermore, in the latter case, any sequence of times τn → ∞ contains a subsequence
such that

fn → ∇xF weakly-(∗) in L∞(
0, T ; L∞(

Ω; R
3))

for any T > 0, where we have set

fn(t, x) = f(t + τn, x),

and where F = F(x), F ∈ W 1,∞(Ω). The potential F may be different for different
choices of τn → ∞.

As a direct consequence of the previous theorem we obtain, in contrast with the isen-
tropic model, that the complete Navier–Stokes–Fourier system under the conservative
boundary conditions does not admit time-periodic solutions for time periodic driving forces
unless the latter is a gradient of a time independent potential F .

6.3. Bibliographical comments

There is a vast literature concerning the long-time behavior of solutions to the incompress-
ible Navier–Stokes system. A good reference material are the monographs by Babin and
Vishik [6], Constantin et al. [31,32], Ladyzhenskaya [82], or Temam [119,118], among
others. The most recent results are available in the survey of Bardos and Nicolaenko [8].

On the other hand, the results on the long-time behavior for compressible and/or heat
conductive fluids emanating form large data are in relatively short supply. Rigorous results
in the 1-D case were obtained by Hoff and Ziane [70,71], the 3-D case was studied by
Novotný and Straškraba [104,103].
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7. Singular limits

Many recent papers and research monographs explain the role of scaling arguments in
the rigorous analysis of complex models arising in mathematical fluid dynamics. Such a
procedure leads often to simplified systems of equations that capture the essential piece
of information on a concrete fluid flow suppressing irrelevant phenomena. These systems
typically arise because of a singularity in the governing equations related to the flow regime
in question. This approach has become of particular relevance in meteorology, where the
huge scale differences in atmospheric flows give rise to a large variety of qualitatively
different models (see the survey papers by Klein et al. [79], Klein [77], or the lecture notes
of Majda [92]).

Many interesting applications of fluid dynamics involve the asymptotic behavior of so-
lutions as certain parameters vanish or become infinite. As a model case, consider the full
Navier–Stokes–Fourier system introduced in Section 2.6:

(7.1)∂t� + divx(�u) = 0,

(7.2)∂t (�u) + divx(�u ⊗ u) + 1

Ma2
∇xp = divx S + 1

Fr2
�∇xF,

(7.3)∂t (�s) + divx(�su) + divx

(
q
ϑ

)
= σ,

(7.4)
d

dt

∫
Ω

(
Ma2

2
�|u|2 + �e − Ma2

Fr2
�F

)
dx = 0,

supplemented with the complete slip boundary conditions

(7.5)u · n = (Sn) × n|∂Ω = 0,

and the no-flux boundary conditions

(7.6)q · n|∂Ω = 0,

where the thermodynamics functions p, e, and s are interrelated through Gibbs’ equation

(7.7)ϑDs = De + pD

(
1

�

)
,

S and q obey

(7.8)S = μ

(
∇xu + ∇xut − 2

3
divx uI

)
+ η divx uI,

(7.9)q = −κ∇xϑ,

and the entropy production rate is a non-negative measure on the set [0, T ] × Ω satisfying

(7.10)σ � 1

ϑ

(
Ma2

S : ∇xu − q · ∇xϑ

ϑ

)
.

The dimensionless parameters Ma and Fr are called the Mach number and the Froude
number, respectively. Our aim is to examine the singular limit

(7.11)Ma = ε, Fr = √
ε, ε → 0.
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The low Mach number flows play a dominant role in many important areas of fluid me-
chanics including incompressible viscous non-steady aerodynamics, non-linear acoustics,
and non-adiabatic atmospheric flows. When Ma approaches zero, the pressure becomes al-
most constant, while the speed of sound tends to infinity. Accordingly, the fluid flow in this
asymptotic regime becomes incompressible (isochoric). If simultaneously the Froude num-
ber is small, a formal asymptotic expansion produces a very useful model – the Oberbeck–
Boussinesq approximation (see Rajagopal et al. [110], Zeytounian [128]) :

(7.12)divx U = 0,

(7.13)�̄
(
∂tU + divx(U × U)

) + ∇xΠ = divx

(
μ(ϑ̄)

(∇xU + ∇ t
xU

)) + r∇xF,

(7.14)�̄cp(�̄, ϑ̄)
(
∂tΘ + divx(ΘU)

) − divx(GU) − divx

(
κ(ϑ̄)∇xΘ

) = 0,

(7.15)r + �̄α(�̄, ϑ̄)Θ = 0,

where �̄ and ϑ̄ represent constant reference values of the density and the temperature,
respectively, and

(7.16)G = �̄ϑ̄α(�̄, ϑ̄)F,

cp(�, ϑ) = ∂e(�, ϑ)

∂ϑ
+ α(�, ϑ)

ϑ

�

∂p(�, ϑ)

∂ϑ
,

(7.17)α(�, ϑ) = 1

�

∂�p

∂ϑp
(�, ϑ).

System (7.12)–(7.15) is supplemented with the boundary conditions

(7.18)U · n = Σn × n|∂Ω = 0, where Σ = ∇xU + ∇ t
xU,

(7.19)∇xΘ · n|∂Ω = 0.

The remaining part of this chapter is devoted to a sketch of a rigorous justification of
the limit passage from (7.1)–(7.10) to (7.12)–(7.19). The basic reference material to be
consulted for all details is [52].

7.1. Uniform estimates

Let us start with a simple heuristic argument. In order to recover the limit system, we need
uniform bounds independent of ε that are at least as strong as the standard energy estimates
available for the incompressible Navier–Stokes system. In particular, the velocity gradients
must be uniformly square integrable. Such estimates are typically provided by (7.10) as
soon as we can show that the entropy production rate is of order ε2. In particular, we get

∇xϑ ≈ ε,

meaning the temperature perturbations of order ε must be bounded, specifically,

(7.20)
ϑ − ϑ̄

ε
≈ 1 for a certain ϑ̄ .
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Let {�ε, uε, ϑε}ε>0 be a family of weak solutions to the Navier–Stokes–Fourier sys-
tem (7.1)–(7.10) defined on a fixed time interval (0, T ). To begin with, it is easy to see that
the total mass of the fluid is a conserved quantity, specifically,

d

dt

∫
Ω

�ε(t, ·) dx = 0.

Accordingly, we suppose

(7.21)
∫

Ω

(
�ε(t, ·) − �̄

)
dx = 0 for all t ∈ [0, T ],

where �̄ > 0 is a constant independent of ε.
In order to obtain more estimates, we introduce an auxiliary function

(7.22)Hϑ̄(�, ϑ) = �e(�, ϑ) − ϑ�s(�, ϑ),

which is reminiscent of the Helmholtz free energy.
As a direct consequence of the hypothesis of thermodynamics stability discussed in

Section 3.2, the function Hϑ̄ enjoys two remarkable properties of coercivity:

(7.23)• � �→ Hϑ̄(�, ϑ̄) is a strictly convex function on [0,∞),

(7.24)

• ϑ �→ Hϑ̄(�, ϑ) admits a strong, non-degenerate local minimum at ϑ = ϑ̄ .

Now the total energy balance (7.4), together with the entropy production equation (7.3),
give rise to the total dissipation balance∫

Ω

(
1

2
�ε|uε|2 + 1

ε2

[
Hϑ̄(�ε, ϑε) − ∂Hϑ(�̄, ϑ̄)

∂�
(�ε − �̄) − Hϑ̄(�, ϑ̄)

]

− 1

ε
�εF

)
(τ ) dx + ϑ̄

ε2
σε

[[0, τ ] × Ω
]

=
∫

Ω

(
1

2
�ε|uε|2 + 1

ε2

[
Hϑ̄(�ε, ϑε) − ∂Hϑ(�̄, ϑ̄)

∂�
(�ε − �̄) − Hϑ̄(�, ϑ̄)

]

(7.25)− 1

ε
�εF

)
(0) dx

for a.a. τ ∈ [0, T ], where we have used (7.21).
The quantity on the right-hand side of (7.25) can be controlled in terms of the initial

data. In particular, taking

(7.26)

∥∥∥∥�ε(0, ·) − �̄

ε

∥∥∥∥
L∞(Ω)

,

∥∥∥∥ϑε(0, ·) − ϑ̄

ε

∥∥∥∥
L∞(Ω)

, ‖uε‖L2(Ω;R3) � c

we easily observe that the right-hand side of (7.25) remains bounded uniformly for ε → 0.
In order to facilitate future considerations, we introduce the “essential” and “residual”

sets

Mess = {
(�, ϑ) ∈ R

2 | �̄/2 < � < 2�̄, ϑ̄/2 < ϑ < 2ϑ̄
}
,
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Mres = [0,∞)2 \ Mess,

together with the associated “essential” and “residual” parts of a measurable quantity hε:

hε = [hε]ess + [hε]res,

[hε]ess = hε1{(t,x)|[�ε(t,x),ϑε(t,x)]∈Mess},
[h]res = hε1{(t,x)|[�ε(t,x),ϑε(t,x)]∈Mres}.

In view of the coercivity properties established in (7.23), (7.24), it is not difficult to show
that [

Hϑ̄(�ε, ϑε) − ∂Hϑ(�̄, ϑ̄)

∂�
(�ε − �̄) − Hϑ̄(�, ϑ̄)

]

(7.27)�
{

c
(|� − �̄|2 + |ϑ − ϑ̄ |2) if [�, ϑ] ∈ Mess,

c
(
�e(�, ϑ) + ϑ̄�

∣∣s(�, ϑ)
∣∣) if [�, ϑ] ∈ Mres.

In addition

(7.28)inf
[�,ϑ]∈Mres

Hϑ̄(�, ϑ) � inf
[�,ϑ]∈∂Mess

Hϑ̄(�, ϑ) > 0

(see [52]).
Accordingly, as a direct consequence of the total dissipation balance (7.25), we obtain

the following uniform estimates

(7.29)

ess sup
t∈[0,T ]

∥∥∥∥
[
�ε − �̄

ε

]
ess

∥∥∥∥
L2(Ω)

� c, ess sup
t∈[0,T ]

∥∥∥∥
[
ϑε − ϑ

ε

]
ess

∥∥∥∥
L2(Ω)

� c,

(7.30)ess sup
t∈(0,T )

‖√�ε uε‖L2(Ω;R3) � c,

(7.31)ess sup
t∈(0,T )

∥∥[
�εe(�ε, ϑε) + ϑ̄�ε

∣∣s(�ε, ϑε)
∣∣]

res

∥∥
L1(Ω)

� c,

and

(7.32)ess sup
t∈(0,T )

∣∣{x ∈ Ω
∣∣ [�ε(t, x), ϑε(t, x)

] ∈ Mres
}∣∣ � ε2c.

Moreover,

(7.33)‖σε‖M+([0,T ]×Ω) � ε2c,

in particular, by virtue of (7.10),

(7.34)

∥∥∥∥∇x

ϑε − ϑ̄

ε

∥∥∥∥
L2((0,T )×Ω;R3)

,

∥∥∥∥∇x

log(ϑε) − log(ϑ̄)

ε

∥∥∥∥
L2((0,T )×Ω;R3)

� c,

and, by means of the standard Korn inequality,

(7.35)‖∇xuε‖L2((0,T )×Ω;R3×3) � c.



94 E. Feireisl

The uniform estimates obtained above are sufficient in order to pass to a limit in the
family {�ε, uε, ϑε}ε>0, in particular, we obtain

(7.36)
�ε − �̄

ε
→ �(1) weakly-(∗) ∈ L∞(

0, T ; Lq(Ω)
)
,

(7.37)
ϑε − ϑ̄

ε
→ ϑ(1) weakly in L2(0, T ; W 1,2(Ω)

)
,

and

(7.38)�εuε → �̄U weakly-(∗) in L∞(
0, T ; L2(Ω; R

3)),
(7.39)uε → U weakly in L2(0, T ; W 1,2(Ω; R

3)).
The value of the Lebesgue exponent q in (7.36) is determined by the coercivity prop-

erties of the function Hϑ̄ established in (7.23). In particular, if the constant p∞ in (3.6) is
strictly positive, we have q = 5/3.

7.2. Asymptotic limit

With the uniform estimates established in the preceding part, it is a routine matter to iden-
tify the limit system of equations satisfied by the quantities �(1), U, ϑ(1), with the only
problematic issue represented by the convective term in the momentum equation (7.2).
Note that

∇xp(�ε, ϑε) = ∇x

(
p(�ε, ϑε) − p(�, ϑ̄)

)
,

1

ε
�ε∇xF = �ε − �̄

ε
∇xF + �̄

ε
∇xF,

therefore

∇x

(
p(�ε, ϑε) − p(�̄, ϑ)

ε
− �̄F

)

≈ ∇x

(
∂p(�̄, ϑ̄)

∂�

�ε − �̄

ε
+ ∂p(�, ϑ̄)

∂ϑ

ϑε − ϑ̄

ε
− �̄F

)
→ 0,

while, in accordance with (7.36), (7.37),(
∂p(�̄, ϑ)

∂�

�ε − �̄

ε
+ ∂p(�, ϑ̄)

∂ϑ

ϑε − ϑ̄

ε
− �̄F

)

(7.40)→
(

∂p(�̄, ϑ̄)

∂�
�(1) + ∂p(�̄, ϑ̄)

∂ϑ
ϑ(1) − �̄F

)
.

Fixing F so that
∫
Ω

F dx = 0 we conclude that

(7.41)
∂p(�̄, ϑ̄)

∂�
�(1) + ∂p(�̄, ϑ̄)

∂ϑ
ϑ(1) − �̄F = 0,
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which yields a desired relation between �(1) and ϑ(1) facilitating the limit process in the
entropy equation (7.3). Indeed setting Θ = ϑ(1) we recover (7.14), (7.15) performing the
asymptotic limit ε → 0 in (7.3) (see [52]).

Thus the major unsolved problem is to identify the asymptotic limit of the convective
term �εuε ⊗ uε in (7.2). To this end, let us introduce the Helmholtz decomposition

(7.42)v = H[v] + H⊥[v],
where

H⊥[v] = ∇xΨ, Ψ = divx v in Ω,

(7.43)∇xΨ · n|∂Ω = 0,

∫
Ω

Ψ dx = 0.

Applying H to (7.2), meaning taking H[ϕ] as a test function in the weak formulation,
we deduce that

t �→
∫

Ω

�εuε · w dx is a precompact family in C[0, T ]
for any fixed w ∈ D

(
Ω; R

3), divx w = 0

as both singular terms in (7.2) vanish. Such a piece of information, in combination
with (7.36), (7.39), is sufficient in order to conclude that

(7.44)H[uε] → H[U] = U in L2((0, T ) × Ω; R
3).

Consequently, in order to identify the asymptotic limit of (7.2), we have to handle the
term H⊥[�εuε] ⊗ H⊥[uε]. More specifically, it is enough to show that

(7.45)
∫ T

0

∫
Ω

H⊥[�εuε] ⊗ H⊥[uε] : ∇xϕ dx dt → 0

for any ϕ ∈ C1((0, T ) × Ω; R
3), ϕ · n|∂Ω = 0, divx ϕ = 0. It is important to note that we

need (7.45) only for solenoidal test functions ϕ. As a matter of fact, strong convergence
of the gradient components H⊥[uε] is not expected. As we shall see below, the quantity
divx H⊥[�εuε] ⊗ H⊥[uε] can be written as a sum of a vanishing part and a gradient which
is sufficient for (7.45) to hold.

7.3. Acoustic equation

In order to describe the possible time oscillations of the gradient part of the velocity, we
use the acoustic equation:

(7.46)ε∂t rε + divx Vε = ε divx h1
ε + σε,

(7.47)ε∂tVε + ω∇xrε = ε
(
divx H

2
ε + h3

ε

)
,

where we have set

rε = 1

ω

(
ω

�ε − �̄

ε
+ Λ

�εs(�ε, ϑε) − �εs(�, ϑ̄)

ε
− �̄F

)
, Vε = �εuε,
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ω = ∂�p(�̄, ϑ̄) + |∂ϑp(�̄, ϑ̄)|2
�̄2∂ϑs(�̄, ϑ̄)| , Λ = ∂ϑp(�̄, ϑ̄)

�̄∂ϑs(�̄, ϑ̄)
.

Equations (7.46), (7.47) can be deduced directly from (7.1)–(7.3). Moreover, it can be
shown, by means of the uniform estimates (7.29)–(7.35), that∥∥h1

ε

∥∥
L1((0,T )×Ω;R3)

,
∥∥H

2
ε

∥∥
L1((0,T )×Ω;R3×3)

,
∥∥h3

ε

∥∥
L1((0,T )×Ω;R3)

� c

uniformly for ε → 0.
As already pointed out, in order to show (7.45), we have to observe that

(7.48)divx

(
H⊥[�εuε] ⊗ H⊥[uε]

) ≈ ∇xχε + “small terms”.

We give a formal argument assuming all quantities are sufficiently smooth. However, this
formal argument can be used in the rigorous proof as the problem can be reduced to a finite
number of modes in the spectral decomposition associated to the wave operator in (7.46),
(7.47) (see [52]).

To begin with, we write

H⊥[�εuε] ⊗ H⊥[uε] ≈ 1

�̄
H⊥[�εuε] ⊗ H⊥[�εuε],

where, in accordance with (7.43),

H⊥[�εuε] = ∇xΨε, Ψε = divx[�εuε].
Consequently,

divx

(
H⊥[�εuε] ⊗ H⊥[�εuε]

)
(7.49)= divx(∇xΨε ⊗ ∇xΨε) = 1

2
∇x |∇xΨε|2 + Ψε∇xΨε,

where, by means of the acoustic system (7.46), (7.47),

Ψε∇xΨε = ω
1

2
∇xr

2
ε + ε

[(
divx h1

ε − σε

ε

)
∇xΨε − ∂t (rε∇xΨε)

(7.50)+H⊥(
divx H

2
ε + h3

ε

)]
.

Relations (7.49), (7.49) give rise, at least formally, to (7.48).

7.4. Bibliographical comments

The approach pursued in this section leans on the concept of weak solutions to the com-
plete Navier–Stokes–Fourier system developed in [50]. Similarly to the results by Bresch
et al. [21], Desjardins et al. [37], Lions and Masmoudi [91] (for more references see the
survey paper by Masmoudi [95]) devoted to the barotropic Navier–Stokes system, our the-
ory is based on the uniform bounds available in the framework of weak solutions defined
on an arbitrarily large time interval (0, T ).



Mathematical methods in the theory of viscous fluids 97

Note that there is an alternative approach proposed in the pioneering paper by Klainer-
man and Majda [76] (see also Ebin [43]) followed by Danchin [34,35], Hoff [67], Scho-
chet [114,113], among others, which is based on uniform estimates in Sobolev spaces of
higher order confined to a possibly very short existence time interval (0, T ). The most rele-
vant results for the complete Navier–Stokes–Fourier system in this direction were obtained
quite recently by Alazard [1,2].

Formal results oriented towards applications and numerical analysis can be found in
Klein et al. [79], and Klein [78]. A nice survey and many open problems are provided by
the monographs of Majda [92], Zeytounian [129,127].

Another application of the singular limit approach was given by Hagstrom and
Lorentz [63], where they show global-in-time existence for the Navier–Stokes system pro-
vided the Mach number is low and the solutions are close to a regular solution of the
incompressible system.
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[93] J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDE’s,

Chapman and Hall, London, 1996.
[94] J. Málek, K.R. Rajagopal, Mathematical issues concerning the Navier–Stokes equations and some

of its generalizations, in: Evolutionary Equations, vol. II, in: Handbook of Differential Equations,
Elsevier/North-Holland, Amsterdam, 2005, pp. 371–459.

[95] N. Masmoudi, Examples of singular limits in hydrodynamics, in: C. Dafermos, E. Feireisl (Eds.), Handbook
of Differential Equations, III, Elsevier, Amsterdam, 2006.

[96] A. Mellet, A. Vasseur, On the barotropic compressible Navier–Stokes equations, Comm. Partial Differential
Equations 32 (1–3) (2007) 431–452.

[97] B. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics, Dover Publications, Dover,
1984.

[98] P.B. Mucha, M. Pokorný, On a new approach to the issue of existence and regularity for the steady com-
pressible Navier–Stokes equations, Nonlinearity 19 (8) (2006) 1747–1768.

[99] I. Müller, T. Ruggeri, Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37,
Springer-Verlag, Heidelberg, 1998.

[100] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. 5 IV (1978) 489–507.
[101] T. Nagasawa, A new energy inequality and partial regularity for weak solutions of Navier–Stokes equations,

J. Math. Fluid Mech. 3 (2001) 40–56.
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1. Introduction

The study of the asymptotic behavior of dynamical systems arising from mechanics and
physics is a capital issue, as it is essential, for practical applications, to be able to under-
stand, and even predict, the long time behavior of the solutions of such systems.

A dynamical system is a (deterministic) system which evolves with respect to the time.
Such a time evolution can be continuous or discrete (i.e., one only measures the state of
the system at given times, e.g., every hour or every day). We will essentially consider
continuous dynamical systems in this survey.

In many situations, the evolution of the system can be described by a system of ordinary
differential equations (ODEs) of the form

(1.1)y′ = f (t, y), y = (y1, . . . , yN),

together with the initial condition

(1.2)y(τ) = yτ , τ ∈ R.

Assuming that the above Cauchy problem is well-posed, we can define a family of solving
operators U(t, τ ), t � τ , τ ∈ R, acting on some subset Φ of R

N (called the phase space),
i.e.,

U(t, τ ) : Φ → Φ,

yτ �→ y(t),

where y(t) is the solution of (1.1)–(1.2) at time t . It is easy to see that this family of
operators satisfies

U(τ, τ ) = Id, U(t, s) ◦ U(s, τ ) = U(t, τ ), t � s � τ, τ ∈ R,

where Id denotes the identity operator. We say that this family of operators forms a process.
When the function f does not depend explicitly on the time (in that case, we say that the
system is autonomous), we can write

U(t, τ ) = S(t − τ),

where the family of operators S(t), t � 0, satisfies

S(0) = Id, S(t) ◦ S(s) = S(t + s), t, s � 0.

We say that this family of solving operators S(t), t � 0, which maps the initial datum at
t = 0 onto the solution at time t , forms a semigroup. Furthermore, we say that the pair
(S(t),Φ) (or (U(t, τ ),Φ) for a nonautonomous system) is the dynamical system associ-
ated with our problem.

The qualitative study of such finite dimensional dynamical systems goes back to the
pioneering works of Poincaré on the N -body problem in the beginning of the 20th century
(see, e.g., [25]; see also [64] and the references therein for the study of discrete dynamical
systems in finite dimensions). In particular, it was discovered, at the very beginning of
the theory, that even relatively simple systems of ODEs can generate very complicated
(chaotic) behaviors. Furthermore, these systems are extremely sensitive to perturbations,
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in the sense that trajectories with close, but different, initial data may diverge exponentially.
As a consequence, in spite of the deterministic nature of the system, its temporal evolution
is unpredictable on time scales larger than some critical value which depends on the error
of approximation and on the rate of divergence of close trajectories, and can show typical
stochastic behaviors.

Such behaviors have first been observed and established for the pendulum equation per-
turbed by time periodic external forces, namely,

y′′(t) + sin
(
y(t)

)(
1 + ε sin(ωt)

) = 0,

ε, ω > 0. Another, important, example is the Lorenz system, obtained by truncation of
the Navier–Stokes equations (more precisely, one considers here a three-mode Galerkin
approximation (one in velocity and two in temperature) of the Boussinesq equations),

x′ = σ(y − x),

y′ = −xy + rx − y,

z′ = xy − bz,

where the positive constants σ , r , and b correspond to the Prandtl number, the Rayleigh
number, and the aspect ratio, respectively; in the original work of Lorenz (see [146]), these
numbers take the values 10, 28, and 8

3 , respectively. This system gives an approximate de-
scription of a two-dimensional layer of fluid heated from below: the warmer fluid formed at
the bottom tends to rise, creating convection currents, which is similar to what is observed
in the atmosphere. For a sufficiently intense heating, the time evolution has a sensitive de-
pendence on the initial conditions, thus representing a very irregular (chaotic) convection.
This fact was used by Lorenz to justify the so-called “butterfly effect”, a metaphor for the
imprecision of weather forecast. Other well-known relatively simple systems which exhibit
chaotic behaviors are the Minea system [170] and the Rössler system [202].

Very often, the trajectories of such chaotic systems are localized, up to some transient
process, in some subset of the phase space having a very complicated geometric structure,
e.g., locally homeomorphic to the Cartesian product of R

m and some Cantor set, which
thus accumulates the nontrivial dynamics of the system, the so-called strange attractor
(see, e.g., [27]). One noteworthy feature of a strange attractor is its dimension. First, in
order for the sensitivity to initial conditions to be possible on the strange attractor, this
dimension has to be strictly greater than 2, so that the dimension of the phase space has
to be greater than 3; let us assume, for simplicity, that this dimension is equal to 3, as in
the Lorenz system. Then the volume of the strange attractor must be equal to 0; indeed,
in systems having a strange attractor, one observes a contraction of volumes in the phase
space. Thus, the dimension of a strange attractor is noninteger, strictly between 2 and 3,
and we need to use other dimensions than the Euclidean dimension to measure it. Several
dimensions, which are not equivalent and yield different values of the dimension in con-
crete applications, can be used (roughly speaking, some notions of dimensions are related
to the connectedness of the sets that one measures, others are related to the way that these
sets are embedded into the ambient space, for instance). We will mainly consider in this
article the box-counting (or entropy) dimension (see below; see also [84]), which we will
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call the fractal dimension. Other possible notions of dimensions are the Hausdorff dimen-
sion or the Lyapunov dimension (see [84]). Thus, the main features of a strange attractor
are

• the trajectories (at least those starting from a neighborhood) are attracted to it;
• close, but different, trajectories may diverge;
• it has a noninteger (fractal) dimension (for instance, for the Lorenz system, numer-

ical investigations show that this dimension is close to, but greater than, 2, namely,
2.05. . . , which means that there is a “strong” contraction of volumes).

Now, for a distributed system whose initial state is described by functions depending on
the spatial variable, the time evolution is usually governed by a system of partial differential
equations (PDEs). In that case, the phase space Φ is (a subset of) an infinite dimensional
function space; typically, Φ = L2(Ω) or L∞(Ω), where Ω is some domain of R

N . We
will thus speak of infinite dimensional dynamical systems.

A first, important, difference, when compared with ODEs, is that the analytical structure
of a PDE is much more complicated. In particular, we do not have a unique solvability re-
sult in general, or such a result can be very difficult to obtain. We can, for instance, mention
the three-dimensional Navier–Stokes equations, for which a proper global well-posedness
result is not known yet (see, e.g., [218]). Nevertheless, the global existence and unique-
ness of solutions has been proven for a large class of PDEs arising from mechanics and
physics, and it is therefore natural to investigate whether the features mentioned above for
dynamical systems generated by systems of ODEs, and, in particular, the strange attractor,
generalize to systems of PDEs.

Such behaviors can be observed in a large class of PDEs which exhibit some energy
dissipation and are called dissipative PDEs. Roughly speaking, the highly complicated
behaviors observed in such systems usually arise from the interaction of the following
mechanisms:

• energy dissipation in the higher part of the Fourier spectrum;
• external energy income in its lower part (in order to have nontrivial dynamics, the

system has to also account for the energy income);
• energy flux from the lower to the higher Fourier modes, due to the nonlinear terms of

the equations.
As already mentioned, this class of PDEs contains a large number of equations from me-

chanics and physics; we can mention for instance reaction–diffusion equations, the incom-
pressible Navier–Stokes equations, pattern formation equations (e.g., the Cahn–Hilliard
equation in materials science and the Kuramoto–Sivashinsky equation in combustion), and
damped wave equations.

It is worth emphasizing once more that the phase space is an infinite dimensional func-
tion space. However, experiments showed that, as in the case of finite dimensional dy-
namical systems, the trajectories are localized, up to some transient process, in a “thin”
invariant subset of the phase space having a very complicated geometric structure, which
thus accumulates all the essential dynamics of the system.

From a mathematical point of view, this led to the notion of a global attractor (see [22,
49,51,119,136,137,197,211], and [217]; see also [15] and [195] for some historical com-
ments). Assuming that the problem is well-posed and that the system is autonomous (i.e.,
that the time does not appear explicitly in the equations), we have, as in the finite dimen-
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sional case, the semigroup S(t), t � 0, acting on the phase space Φ, which maps the initial
condition onto the solution at time t . Then we say that A ⊂ Φ is the global attractor for
S(t) if

(i) it is compact in Φ;
(ii) it is invariant, i.e., S(t)A = A, ∀t � 0;

(iii) ∀B ⊂ Φ bounded,

lim
t→+∞ dist

(
S(t)B,A

) = 0,

where dist denotes the Hausdorff semi-distance between sets (we assume that Φ is
a metric space with distance d) defined by

dist(A,B) := sup
a∈A

inf
b∈B

d(a, b).

This is equivalent to the following: ∀B ⊂ Φ bounded, ∀ε > 0, ∃t0 = t0(B, ε) such that
t � t0 implies S(t)B ⊂ Uε , where Uε is the ε-neighborhood of A.

We note that it follows from (ii) and (iii) that the global attractor, if it exists, is unique.
Furthermore, it follows from (i) that it is essentially thinner than the initial phase space Φ;
indeed, in infinite dimensions, a compact set cannot contain a ball and is nowhere dense. It
is also not difficult to prove that the global attractor is the smallest (for the inclusion) closed
set enjoying the attraction property (iii); it thus appears as a suitable object in view of the
study of the long time behavior of the system. It is also the maximal bounded invariant
set. We finally note that A attracts all the trajectories (uniformly with respect to bounded
sets of initial data), and not just those starting from a neighborhood. The global attractor
is sometimes called the maximal or the universal attractor (which is reasonable in view of
the above considerations), although these denominations are less used nowadays.

It has also been early conjectured that the invariant attracting sets mentioned above,
and, in particular, the global attractor, should be, in a proper sense, finite dimensional
and that the dynamics, restricted to these sets, should be effectively described by a finite
number of parameters. The notions of dimensions mentioned above, and, in particular, the
fractal dimension, should again be appropriate to measure the dimension of these sets. So,
when this conjecture is true, the effective dynamics, restricted to the global attractor, is
finite dimensional, even though the initial phase space is infinite dimensional. This also
suggests that such systems cannot produce any new dynamics which are not observed in
finite dimensions, the infinite dimensionality only bringing (possibly essential) technical
difficulties.

Starting from the pioneering works of Ladyzhenskaya (see, e.g., [135,136], and the ref-
erences therein), this finite dimensional reduction, based on the global attractor, has been
given solid mathematical grounds in the past decades for dissipative systems in bounded
domains. In particular, the existence of the finite dimensional global attractor has been
proven for many classes of dissipative PDEs, including the examples mentioned above.
We refer the reader to [22,49,119,136,137,197,211], and [217] for extensive reviews on
this subject.

Now, the global attractor may present several defaults. Indeed, it may attract the trajecto-
ries at a slow rate. Furthermore, in general, it is very difficult, if not impossible, to express
the convergence rate in terms of the physical parameters of the problem. This can be seen
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on the following real Ginzburg–Landau equation in one space dimension:

∂tu − ν∂2
xu + u3 − u = 0, x ∈ [0, 1], ν > 0,

u(0, t) = u(1, t) = −1, t � 0,

see Remark 2.25. A second drawback, which can also be seen as a consequence of the first
one, is that the global attractor may be sensitive to perturbations; a given system is only
an approximation of reality and it is thus essential that the objects that we study are robust
under small perturbations. Actually, in general, the global attractor is upper semicontinuous
with respect to perturbations, i.e.,

dist(Aε,A0) → 0 as ε → 0+,

where A0 is the global attractor associated with the nonperturbed system and Aε that as-
sociated with the perturbed one, ε > 0 being the perturbation parameter. Very roughly
speaking, this property means that the global attractor cannot explode under small pertur-
bations. Now, the lower semicontinuity, i.e.,

dist(A0,Aε) → 0 as ε → 0+,

which, roughly speaking, means that the global attractor cannot implode also, is much
more difficult to prove (see, e.g., [195]). Furthermore, this property may not hold. This can
already be seen in finite dimensions by considering the following ODE (see [195]):

x′ = (
1 − x2)(1 − λ2), λ ∈ [−1, 1].

Then, when λ = 0, Aλ = [0, 1], whereas Aλ = {1} for λ < 0 and Aλ = [−√
λ, 1]

for λ > 0. Thus, there is a bifurcation phenomenon at λ = 0 and the global attractor is
not lower semicontinuous at λ = 0. It thus follows that the global attractor may change
drastically under small perturbations. Furthermore, in many situations, the global attractor
may not be observable in experiments or in numerical simulations. This can be due to
the fact that it has a very complicated geometric structure, but not necessarily. Indeed,
we can again consider the above Ginzburg–Landau equation. Then, due to the boundary
conditions, A = {−1}. Now, this problem possesses many metastable “almost stationary”
equilibria which live up to a time t� ∼ eν−1/2

. Thus, for ν small, one will not see the global
attractor in numerical simulations. Finally, in some situations, the global attractor may fail
to capture important transient behaviors. This can be observed, e.g., on some models of
one-dimensional Burgers equations with a weak dissipation term (see [28]). In that case,
the global attractor is trivial, it is reduced to one exponentially attracting point, but the
system presents very rich and important transient behaviors which resemble some modified
version of the Kolmogorov law. We can also mention models of pattern formation equations
in chemotaxis for which one observes important transient behaviors, i.e., patterns, which
are not contained in the global attractor (see [215]).

It is thus also important to construct and study larger objects which contain the global
attractor, are more robust under perturbations, attract the trajectories at a fast (typically,
exponential) rate, and are still finite dimensional. Two such objects have been proposed,
namely, an inertial manifold (see [95]) and an exponential attractor (see [65]). We will
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discuss these objects in more details in the next sections, with an emphasis on exponential
attractors (which are as general as global attractors).

An interesting question is whether one has a similar reduction principle for nonau-
tonomous dissipative PDEs (in bounded domains). A first difference, compared with au-
tonomous systems, is that both the initial and final times play an important role; assuming
that the problem is well-posed, it defines a process U(t, τ ), t � τ , τ ∈ R, which maps
the initial condition at time τ onto the solution at time t . For such systems, the notion of a
global attractor is no longer adequate (in particular, we will not be able to construct proper
time independent invariant sets), and one needs to consider other notions of attractors.

A first approach, initiated by Haraux (see [121]) and further studied and developed by
Chepyzhov and Vishik (see, e.g., [45] and [49]), is based on the notion of a uniform at-
tractor. Actually, in order to construct the uniform attractor, one considers, together with
the initial equations, a whole family of equations. Then one proves the existence of the
global attractor for a proper semigroup on an extended phase space, and, finally, projecting
this global attractor onto the first component, one obtains the uniform attractor. The ma-
jor drawback of this approach is that the extended dynamical system is essentially more
complicated than the initial one, which leads, for general (translation compact, see Sec-
tion 3; see also [45] and [49]) time dependences, to an artificial infinite dimensionality of
the uniform attractor. This can already be seen on the following simple linear equation:

∂tu − �xu = h(t), u|∂Ω = 0,

in a bounded smooth domain Ω , whose dynamics is simple, namely, one has one exponen-
tially attracting trajectory. However, for more or less general external forces h, the associ-
ated uniform attractor has infinite dimension and infinite topological entropy (see [49]).

Nevertheless, for periodic and quasiperiodic time dependences, one has in general finite
dimensional uniform attractors (i.e., if the same is true for the global attractor of the corre-
sponding autonomous system). Furthermore, one can derive sharp upper and lower bounds
on the dimension of the uniform attractor, so that this approach is appropriate and relevant
in those cases.

A second approach, which resembles the so-called kernel sections proposed by Chep-
yzhov and Vishik (see [44] and [49]), but was studied and developed independently, is
based on the notion of a pullback attractor (see, e.g., [62,129], and [207]). In that case, one
has a time dependent attractor {A(t), t ∈ R}, contrary to the uniform attractor which is
time independent. More precisely, a family {A(t), t ∈ R} is a pullback attractor for the
process U(t, τ ) if

(i) the set A(t) is compact in Φ, ∀t ∈ R;
(ii) it is invariant, i.e., U(t, τ )A(τ ) = A(t), ∀t � τ , τ ∈ R;

(iii) it satisfies the following pullback attraction property:

∀B ⊂ Φ bounded, ∀t ∈ R, lim
s→+∞ dist

(
U(t, t − s)B,A(t)

) = 0.

One can prove that, in general, A(t) has finite dimension, ∀t ∈ R, see, e.g., [38]
and [139]. Now, the attraction property essentially means that, at time t , the attractor A(t)

attracts the bounded sets of initial data coming from the past (i.e., from −∞). However,
in (iii), the rate of attraction is not uniform in t , so that the forward convergence does not
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hold in general (see nevertheless [35,40], and [138] for cases where the forward conver-
gence can be proven). We can illustrate this on the following nonautonomous ODE:

y′ = f (t, y),

where f (t, y) := −y if t � 0, (−1 + 2t)y − ty2 if t ∈ [0, 1], and y − y2 if t � 1. Then
one has the existence of a pullback attractor {A(t), t ∈ R}, namely, A(t) = {0}, ∀t ∈ R.
However, for t � 1, every trajectory, different from {0}, starting from a small neighborhood
of 0, will leave this neighborhood, never to enter it again. This clearly contradicts our
intuitive understanding of attractors.

So, these two theories of attractors for nonautonomous systems do not yield an entirely
satisfactory finite dimensional reduction principle, contrary to the autonomous case, since
we have either an artificial infinite dimensionality or no forward attraction in general. We
will see below that the construction of exponential attractors allows to overcome the main
drawback of pullback attractors, namely, the problem of the forward attraction, as proven
in [73]; indeed, one has an exponential uniform control on the rate of attraction. This yields
a satisfactory reduction principle for nonautonomous dynamical systems associated with
dissipative PDEs in bounded domains.

Now, while the theory of attractors for dissipative dynamical systems in bounded do-
mains is rather well understood, the situation is different for systems in unbounded domains
and such a theory has only recently been addressed (and is still progressing), starting from
the pioneering works of Abergel [1] and Babin and Vishik [21]. The main difficulty in this
theory is the fact that, in contrast to the case of bounded domains discussed above, the dy-
namics generated by dissipative PDEs in unbounded domains is (as a rule) purely infinite
dimensional and does not possess any finite dimensional reduction principle. Furthermore,
the additional spatial “unbounded” directions lead to the so-called spatial chaos and the in-
teractions between spatial and temporal chaotic modes generate a space–time chaos which
also has no analogue in finite dimensions.

As a consequence, most of the ideas and methods of the classical (finite dimensional)
theory of dynamical systems do not work here (as such systems have infinite Lyapunov
dimension, infinite topological entropy, . . .). Thus, we are faced with dynamical phenom-
ena with new levels of complexity which do not have analogues in the finite dimensional
theory and we need to develop a new theory in order to describe such phenomena in an
accurate way.

It is also interesting to note that, in the case of bounded domains, the dimension of the
global attractor grows at least linearly with respect to the volume of the spatial domain
and, thus, for sufficiently large domains, the reduced dynamical system may be too large
for reasonable investigations. Furthermore, as shown in [16], the spatial complexity of the
system (e.g., the number of topologically different equilibria) grows exponentially with
respect to the volume of the spatial domain. Therefore, even in the case of relatively small
dimensions, the reduced system can be out of reach of reasonable investigations, due to its
extremely complicated structure. As a consequence, it seems more natural, at least from a
physical point of view, to replace large bounded domains by their limit unbounded ones
(e.g., the whole space or cylindrical domains), which, of course, requires a systematic study
of dissipative dynamical systems associated with PDEs in unbounded domains.

We will discuss such (for most of them new) developments in Section 5 of this survey.
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In a last section, we will briefly discuss extensions of the theory of attractors to ill-
posed problems, with an emphasis on the so-called trajectory attractor, see, e.g., [46,47,49],
and [210]. Indeed, for many interesting problems, including the three-dimensional Navier–
Stokes equations, various types of damped hyperbolic equations (e.g., damped wave equa-
tions with supercritical nonlinearities), . . . , the well-posedness of the solution operator
S(t) has not been proven yet or/and the proper choice of the phase space is not known.
Furthermore, e.g., for dissipative systems with non-Lipschitz nonlinearities or for systems
arising from the dynamical approach of elliptic boundary value problems in unbounded
domains, nonuniqueness results and the ill-posedness of the associated solution operator
are known.

2. The global attractor

2.1. Main definitions

Let E be a Banach space with norm ‖ · ‖E (actually, in most results, E can more generally
be a complete metric space; furthermore, in some cases, e.g., for the so-called trajectory
attractors, see Section 6 (see also Theorem 2.20), even metric spaces may be inadequate).
We consider a semigroup S(t), t � 0, acting on E, i.e., we assume that the phase space Φ

is the whole space E (it is not difficult to adapt the definitions when Φ is a subset of E),

(2.1)S(t) : E → E, ∀t � 0,

(2.2)S(0) = Id,

(2.3)S(t + s) = S(t) ◦ S(s), ∀t, s � 0,

where Id denotes the identity operator. We will also need some continuity property on S(t),
and we assume from now on that

(2.4)S(t) is continuous from E into itself, ∀t � 0.

REMARK 2.1.
(a) It was recently proven in [186] that condition (2.4) can be relaxed and that one can

prove the existence of global attractors under the following, much weaker, condition:

(2.5)if xk → x and S(t)xk → y, then y = S(t)x.

A semigroup satisfying (2.5) is called a closed semigroup (see also [244] for an-
other type of condition, contained in (2.5)). Condition (2.5) is also important for
concrete applications; indeed, there are situations in which xk → x only implies
that S(t)xk → S(t)x for the weak topology (this is the case, e.g., for the damped
wave equation with a nonlinear damping, see [186]). However, in contrast to the
usual continuous case, the global attractor may not be connected (see the next sub-
section) for closed semigroups (even if the initial absorbing set is connected) and
some additional assumptions are necessary to guarantee this property.
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(b) In general, the operators S(t), t � 0, are not one-to-one (this property is equivalent
to the backward uniqueness property, see, e.g., [217]). When S(t), t > 0, is one-to-
one, we can define its inverse, which we denote by S(−t). It is then easy to see that
the family S(t), t ∈ R, enjoys properties (2.1)–(2.3), and we say that it forms a group
acting on E. One new feature of the infinite dimensional theory, compared with the
finite dimensional one, is that, in general, as already mentioned, the operators S(t),
t < 0, are not defined everywhere.

DEFINITION 2.2. A set X ⊂ E is invariant for S(t) if

S(t)X = X, ∀t � 0.

If S(t)X ⊂ X, ∀t � 0, we say that X is positively invariant and, if X ⊂ S(t)X, ∀t � 0,
we say that X is negatively invariant.

A first, simple, example of invariant sets is given by fixed points (also called stationary
trajectories or solutions) or by sets of fixed points (a ∈ E is a fixed point if S(t)a = a,
∀t � 0). A second example is given by complete trajectories or by sets of complete tra-
jectories. Let u0 belong to E. Then the forward, or positive, trajectory starting at u0 is the
set {

S(t)u0, t � 0
}
.

A backward, or negative, trajectory ending at u0, if it exists, is a set of points of the form⋃
t�0

u(t), u(t) ∈ S(−t)−1u0, ∀t � 0

(we can note that a negative trajectory, if it exists, is not necessarily unique). Finally, a com-
plete trajectory through u0, if it exists, is the union of the positive and a negative trajecto-
ries. It is not difficult to show that the positive trajectory is positively invariant, a negative
trajectory is negatively invariant, and a complete trajectory is invariant.

Another, more complicated, example of invariant sets is given by ω-limit sets; these sets
are also essential in view of the construction of global attractors.

DEFINITION 2.3. Let u0 belong to E. The ω-limit set of u0 is the set

ω(u0) :=
⋂
s�0

⋃
t�s

S(t)u0,

where the closure is taken in E. Similarly, for B ⊂ E, the ω-limit set of B is the set

ω(B) :=
⋂
s�0

⋃
t�s

S(t)B.

We have the following important characterization of ω-limit sets: x ∈ ω(B) if and only
if there exist sequences {xk, k ∈ N} and {tk, k ∈ N}, with xk ∈ B, ∀k ∈ N, and tk → +∞
as k → +∞, such that S(tk)xk → x as k → +∞.
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REMARK 2.4. Similarly, we define the α-limit set of B, if it exists, by

α(B) :=
⋂
s�0

⋃
t�s

S(−t)−1B.

We then have the

PROPOSITION 2.5. We assume that B ⊂ E, B �= ∅, and that there exists t0 � 0 such that⋃
t�t0

S(t)B is relatively compact in E. Then ω(B) is nonempty, compact, and invariant.

We are now ready to formulate some mathematical concepts of dissipativity. To this end,
we need to recall the notions of absorbing and attracting sets for the semigroup S(t).

DEFINITION 2.6.
(i) A bounded set B0 ⊂ E is a bounded absorbing set for S(t) if, ∀B ⊂ E bounded,

∃t0 = t0(B) such that t � t0 implies S(t)B ⊂ B0.
(ii) A set K ⊂ E is attracting if, ∀B ⊂ E bounded,

lim
t→+∞ dist

(
S(t)B,K

) = 0,

where dist (or distE if it is necessary to precise the topology) is the Hausdorff semi-
distance between sets in E, defined by

dist(A,B) := sup
a∈A

inf
b∈B

‖a − b‖E

(note that dist(A,B) = 0 only implies A ⊂ B̄).

The existence of an absorbing set is often used as a mathematical definition of a dissipa-
tive system. Following this tradition, we give the following definition.

DEFINITION 2.7. The semigroup S(t) is dissipative in E if it possesses a bounded absorb-
ing set B ⊂ E.

In applications, this property is usually verified by proving a so-called dissipative esti-
mate of the form

(2.6)
∥∥S(t)u0

∥∥
E

� Q
(‖u0‖E

)
e−αt + C∗, t � 0,

where the monotonic function Q and the positive constants α and C∗ are independent of
u0 ∈ E.

REMARK 2.8. A different notion of an absorbing set is considered in [119]: the semigroup
S(t) is called point dissipative if there exists a bounded set B0 ⊂ E such that, ∀u0 ∈ E,
∃t0 = t0(u0) such that t � t0 implies S(t)u0 ∈ B0.
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We however have to note that the above mathematical definition of dissipativity is not
sufficient to capture the typical physical properties of dissipative systems (see the intro-
duction). Indeed, let us consider the semigroup generated by the following equation in an
infinite dimensional Hilbert space E:

y′(t) = y(t)
(
1 − ∥∥y(t)

∥∥2
E

)
, y(0) = y0 ∈ E.

Then this semigroup obviously satisfies a dissipative estimate as above and is dissipative
according to the above mathematical definition. However, we do not have here an energy
dissipation in the higher Fourier modes (in fact, the energy increases or decreases simul-
taneously in all modes depending on whether or not ‖y(t)‖E � 1). Thus, it is difficult to
consider this semigroup as a dissipative system from a physical point of view.

In order to avoid such a situation, some kind of asymptotic compactness of the semigroup
(e.g., the existence of a compact absorbing/attracting set; this naturally gives a decay in the
higher part of the Fourier spectrum) should be postulated. This asymptotic compactness
can naturally be expressed in terms of the so-called Kuratowski measure of noncompact-
ness.

DEFINITION 2.9. Let B be a bounded subset of E. The Kuratowski measure of noncom-
pactness of B is the quantity

κ(B) := inf{d, B has a finite covering with balls of E

with diameter less than d}.
The Kuratowski measure of noncompactness enjoys the following properties (see [119]):
• κ(B) = 0 if and only if B is relatively compact in E;
• κ(B) = κ(B̄);
• B1 ⊂ B2 implies κ(B1) � κ(B2);
• κ(B1 + B2) � κ(B1) + κ(B2).

DEFINITION 2.10. We say that the semigroup S(t) is asymptotically compact if, for every
bounded set B ⊂ E, the Kuratowski measure of noncompactness of the image S(t)B tends
to zero as t → +∞,

lim
t→+∞ κ

(
S(t)B

) = 0, ∀B bounded in E.

We are now ready to define the main object of this survey, namely, a global attractor.

DEFINITION 2.11. A set A ⊂ E is a global attractor of the semigroup S(t) on E if the
following properties are satisfied:

(i) it is a compact subset of E;
(ii) it is invariant, S(t)A = A, ∀t � 0;

(iii) it is an attracting set for S(t) on E.

It follows from this definition that the dissipativity and asymptotic compactness of the
associated semigroup are necessary for the existence of a global attractor. As we will see
below, these conditions are also sufficient.
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As already mentioned in the introduction, the global attractor, if it exists, is unique.
Furthermore, it is the smallest closed set which attracts the bounded subsets of E and the
maximal bounded invariant set. We also note that it attracts the trajectories starting from
the whole phase space (uniformly with respect to bounded sets of initial data), and not just
those starting from a neighborhood.

We now formulate a simple, but very useful, result on the structure of the global attractor.
To do so, we first give the following definition.

DEFINITION 2.12. The kernel (in the terminology of Chepyzhov and Vishik) K ⊂
L∞(R, E) of the semigroup S(t) is the set of all bounded complete trajectories of the
semigroup S(t), i.e., the functions u : R → E such that

S(t)u(s) = u(t + s) and
∥∥u(s)

∥∥
E

� Cu < +∞, ∀s ∈ R, t ∈ R+.

Then we have the following result, which follows from the invariance of A, see,
e.g., [22].

THEOREM 2.13. The global attractor A (if it exists) is generated by the set K of all
bounded complete trajectories of S(t),

(2.7)A = K(0) := {
u(0), u ∈ K

}
.

In other words, u0 ∈ A if and only if there exists a bounded complete trajectory u such
that u(0) = u0. Furthermore, A = K(s), for every s ∈ R.

REMARK 2.14. Together with the concept of a global attractor given above, the so-called
local attractors are widely used in the theory of dynamical systems. Such an attractor only
attracts the images of all bounded subsets of some neighborhood U (A ⊂ U). The largest
neighborhood which satisfies this property is then called the basin of attraction of the
attractor A. Another weaker concept of an attractor can be obtained by relaxing the attrac-
tion property. To be more precise, instead of requiring that all trajectories starting from a
bounded subset of the phase space have a uniform rate of attraction to the attractor (see
Definition 2.6), one may allow every trajectory to have its own (nonuniform) rate of at-
traction. This leads to the so-called pointwise attractor which has been used, e.g., in the
original works of Ladyzhenskaya, see [137] and the references therein.

In some situations, e.g., for equations in unbounded domains, the attraction holds in
a weaker topology, defined by some topological space E1, E ⊂ E1. To describe such a
situation, Babin and Vishik proposed the terminology (E,E1)-attractor, see [22]. Roughly
speaking, an (E,E1)-attractor attracts the bounded subsets of E in the topology of the
space E1 (thus, the space E is used here only to determine the class of bounded sets). In
particular, if E1 corresponds to E endowed with the weak topology, then one speaks of
weak attractors. Furthermore, it is sometimes more convenient (especially, in the theory
of the so-called trajectory attractors, see Section 6 below) to use more general classes of
“bounded” sets which are not generated by any Banach space E and can be fixed almost
arbitrarily. The only property of “bounded” sets which seems to be important for the theory
of attractors is the following one.
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DEFINITION 2.15. A class B of subsets of E is called a class of “bounded” sets if

(2.8)B ∈ B and B1 ⊂ B imply B1 ∈ B.

Then, naturally, a set B ∈ B is an absorbing set for the semigroup S(t) if it absorbs the
images of all “bounded” sets (i.e., all sets belonging to B), see [207].

2.2. Existence of the global attractor

As mentioned in the previous subsection, ω-limit sets play an important role in the con-
struction of global attractors. Indeed, one has the following result, based on Proposition 2.5
(see, e.g., [22] and [217]).

THEOREM 2.16. We assume that the semigroup S(t) is continuous and has a compact
absorbing set B0. Then it possesses the global attractor A such that A = ω(B0). Further-
more, A is connected.

We note that, owing to Proposition 2.5, one only needs to prove the attraction property
to have the existence of the global attractor; this property follows from the fact that B0 is an
absorbing set. In concrete situations, the above result will apply to (most) parabolic systems
in bounded domains, since one has some compact regularizing effect in finite time. For
damped hyperbolic equations and for parabolic equations in unbounded domains, we need
a more general result, since such a regularizing effect is not available. However, noting
that one has, in some sense, some compact regularizing effect at infinity, the following
existence result, due to Babin and Vishik (see, e.g., [22]), can be used in most situations.

THEOREM 2.17. We assume that the semigroup S(t) is continuous and possesses a com-
pact attracting set. Then it possesses the connected global attractor A. Furthermore, if K

is a compact attracting set, then A = ω(K).

REMARK 2.18. In order to prove that the attractor A is connected, one only needs the
existence of a connected bounded absorbing set. Since the balls in a Banach space are
always connected, this property holds automatically if the phase space E is the whole
Banach space. In a more general setting, i.e., when E is a metric, or even a topological,
space, this assumption should be added in order to ensure the connectedness.

We give another attractor’s existence result which exploits the Kuratowski measure of
noncompactness (see [119]). Although it is formally equivalent to Theorem 2.17, in prac-
tice, it can be used in a more general setting, namely, when the existence of a compact
attracting set is difficult to verify directly (however, the existence of such a set a posteriori
follows from that of the global attractor), see, e.g., [185] and [198].

THEOREM 2.19. We assume that the semigroup S(t) is continuous, dissipative (i.e., it
possesses a bounded absorbing set B0), and asymptotically compact (in the sense of Defi-
nition 2.10). Then it possesses the connected global attractor A such that A = ω(B0).
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We now discuss a general strategy to verify the conditions of the above attractor’s exis-
tence theorems in applications.

The existence of a compact absorbing set (for Theorem 2.16) is typical of parabolic
problems in bounded domains for which the semigroup S(t) usually consists of compact
operators for t > 0. In that case, one usually has a smoothing property of the form∥∥S(t)

∥∥
E1

� t−βQ
(‖u0‖E

)
, t ∈ (0, 1],

where E1 is some stronger space (i.e., it is compactly embedded into E) and where the
monotonic function Q and the positive constant β are independent of u0, see [22,119,
217], and the references therein. Then, together with the dissipative estimate (2.6), this
smoothing property guarantees that a ball in E1 with a sufficiently large radius R is a
compact absorbing set for S(t). According to Theorem 2.16, this yields the existence of
the global attractor A ⊂ E1 and its boundedness in E1.

However, for more general classes of dissipative systems (e.g., damped hyperbolic equa-
tions), the smoothing property in finite time does not hold and should be replaced by an
asymptotically smoothing property,

(2.9)S(t) = S1(t) + S2(t), Si(t) : E → E, i = 1, 2,

where the operators S2(t) are compact for every fixed t � 0 (i.e., S2(t)B is precompact in
E for every bounded subset B of E and every t � 0) and the operators S1(t) tend to zero
as t → +∞,

lim
t→+∞

∥∥S1(t)B
∥∥

E
= 0, for every B ⊂ E bounded,

where ‖B‖E := supx∈B ‖x‖E , B ⊂ E (we emphasize here that only the maps S(t) should
be continuous in E, and no additional continuity assumption on S1(t) and S2(t) is required).

It is not difficult to see that decomposition (2.9) is formally equivalent to the asymp-
totic compactness (in the sense of the Kuratowski measure of noncompactness, see Defi-
nition 2.10) and, consequently, together with the dissipative estimate (2.6), this gives the
existence of the global attractor, due to Theorem 2.19 (when the space E is a uniformly
convex Banach space, this decomposition can be artificially reduced to that of continuous
operators S1(t) and S2(t), see [114] and [217]).

Very often, in applications, S2(t) maps E into some stronger space E1 (which is com-
pactly embedded into E). If, in addition, the operators S2(t) are uniformly bounded in E1
as t → +∞,

(2.10)sup
t∈R+

∥∥S2(t)B
∥∥

E1
< +∞, for every B ⊂ E bounded,

decomposition (2.9), together with the dissipative estimate (2.6), guarantee that a ball in
E1 with a sufficiently large radius is a compact attracting set for S(t) and one can apply
Theorem 2.17 to prove the existence of the global attractor A and to verify, in addition,
that A is bounded in E1. This is the usual way to verify the further regularity of global
attractors, see [22] and [217] for details.

However, it is sometimes very difficult, if not impossible, to verify the additional bound-
edness (2.10) and the operators S2(t) may a priori grow as t → +∞, see, e.g., [54]. In that
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case, decomposition (2.9) is not strong enough to construct a compact attracting set (at least
in a direct way) and Theorem 2.17 is not applicable. Nevertheless, as already mentioned,
the boundedness property (2.10) is not necessary to verify the asymptotic compactness and
Theorem 2.19 gives the existence of the global attractor A. The main drawback of this
scheme is that we now only have the compactness of A in E and cannot conclude that
A belongs to a more regular space E1. So, Theorem 2.19 cannot be used to prove further
regularity results on the attractors.

We also recall another equivalent definition of asymptotic compactness, namely, in the
terminology of Ladyzhenskaya (see, e.g., [137]), S(t) is asymptotically compact if

for every {xk, k ∈ N} bounded and {tk, k ∈ N} such that tk → +∞,

(2.11)
{
S(tk)xk, k ∈ N

}
is relatively compact in E.

Ball proposed in [24] a general method in order to verify (2.11), based on energy func-
tionals. Roughly speaking, this method is based on the simple observation that a weakly
convergent sequence in a Hilbert (and, more generally, a reflexive Banach) space converges
strongly if the corresponding sequence of norms converges to the norm of the limit func-
tion. Then, in order to verify (2.11), one first extracts a weakly convergent subsequence
from {S(tk)xk} by using the dissipativity and the fact that bounded subsets are precompact
in the weak topology and then verifies the convergence of the norms by passing to the limit
in the associated energy equality.

This method was applied with success to many equations, both in bounded and
unbounded domains, see [24,34,63,110,113–115,125,126,148,180–182,198,199,217,226–
228], and [229].

To conclude, we give a result related to global attractors for abstract classes of “boun-
ded” sets (see [207]) which generalizes the concept of (E,E1)-attractors (in the terminol-
ogy of Babin and Vishik) and is very useful, e.g., in the theory of attractors in unbounded
domains, for ill-posed dissipative systems, and for attractors in weak topologies.

THEOREM 2.20. Let E be a topological space and S(t) be a semigroup acting on E.
Assume also that a class of “bounded” subsets B of E satisfying (2.8) is given. Let finally
S(t) possess a “bounded”, compact (in E), and metrizable absorbing set B0 ∈ B and be
continuous on B0, for every fixed t � 0. Then there exists a compact and “bounded” global
attractor A ⊂ B0 which is generated by all “bounded” complete trajectories of S(t) in E.

REMARK 2.21. We refer the reader to [119,135,150,186], and [244] for other existence
results for the global attractor.

2.3. Attractors for semigroups having a global Lyapunov function

DEFINITION 2.22. Let X be a subset of E and L : X → R be a continuous function. The
function L is a global Lyapunov function for S(t) on X if

(i) ∀u0 ∈ X, the function t �→ L(S(t)u0) is decreasing (i.e., L is decreasing along the
trajectories);
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(ii) if L(S(t)u0) = L(u0) for some t > 0, then u0 is a fixed point of S(t) (i.e., L is
strictly decreasing along the trajectories which are not reduced to fixed points).

Let N be the set of all fixed points of S(t),

N := {
z ∈ E, S(t)z = z, ∀t � 0

}
.

Let z ∈ N . The unstable set Mun(z) of z is the set of all points u ∈ E such that S(t)u is
defined for all t � 0 and limt→−∞S(t)u = z. Similarly, the stable set Ms(z) of z is the
set of all points u ∈ E such that limt→+∞S(t)u = z. More generally, let X be an invariant
subset of E. Then the unstable set of X is the (possibly empty) set

Mun(X) :=
{
u� ∈ E, u� belongs to a complete trajectory u(t), t ∈ R,

and lim
t→−∞ dist

(
u(t),X

) = 0
}
.

Similarly, the stable set of X is the (possibly empty) set

Ms(X) :=
{
u� ∈ E, u� belongs to a complete trajectory u(t), t ∈ R,

and lim
t→+∞ dist

(
u(t),X

) = 0
}
.

REMARK 2.23. We assume that S(t) possesses the global attractor A. We can note that
N ⊂ A. Furthermore, it is not difficult to show that Mun(z) ⊂ A, ∀z ∈ N ; we also
note that Mun(z) and Ms(z) are invariant by S(t). Finally, if X is an invariant set, then
Mun(X) ⊂ A, and Mun(A) = A.

We have the following result on the structure of the global attractor for a semigroup
having a global Lyapunov function.

THEOREM 2.24. We assume that the semigroup S(t) possesses a continuous global Lya-
punov function. Then

A = Mun(N ).

If, furthermore, N is finite, N = {z1, . . . , zm}, and t �→ S(t)x is continuous, ∀x ∈ E, then

A =
m⋃

i=1

Mun(zi)

and every trajectory u(t), t ∈ R, lying on A satisfies

lim
t→−∞ u(t) = zi, lim

t→+∞ u(t) = zj , zi �= zj , zi, zj ∈ N .

REMARK 2.25. We further assume that S(t) is differentiable in E (to be more precise,
S(t) ∈ C1+δ(E,E), δ > 0), ∀t ∈ R+. A fixed point z is hyperbolic if the spectrum of
S′(t)z does not intersect the unit circle, t > 0. In that case, the unstable set of z, Mun(z),
is a k-dimensional submanifold of E, where k is the stability index of z (see [22] for
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more details). Therefore, if N is finite and all the fixed points are hyperbolic, the global
attractor A of a semigroup having a continuous global Lyapunov function is a finite union
of smooth finite dimensional submanifolds of the phase space. Such global attractors are
called regular attractors by Babin and Vishik (see, e.g., [22]). They also possess several
additional “good” properties and, to the best of our knowledge, it is the only general class
of attractors for which a more or less complete description of their structure is available. In
particular, regular attractors are automatically exponential, i.e., for every bounded subset
B ⊂ E, the following estimate holds:

(2.12)dist
(
S(t)B,A

)
� Q

(‖B‖E

)
e−αt , t � 0,

where the positive constant α and the monotonic function Q are independent of B. Further-
more, regular attractors are preserved under general sufficiently regular perturbations (the
perturbed system may not have a Lyapunov function and may even be nonautonomous,
see [22,77,111,225], and the references therein). Finally, for one-dimensional scalar par-
abolic equations, it is even possible to find explicitly the so-called permutation matrix of
the attractor (which shows whether or not two equilibria are connected by a heteroclinic
trajectory) and, on some occasions, to describe the topological structure of the attractor
in terms of the physical parameters of the problem, see [31,91], and [92] for details. We
however note that, although the finiteness of the set of fixed points and the hyperbolicity
of these fixed points are, in some proper sense, generic properties, see [22], they are very
difficult, if not impossible, to prove for concrete examples and given values of the physical
parameters of the problem, except for scalar parabolic equations in one space dimension.
Furthermore, even if the regularity of the attractor can be proven, one usually cannot com-
pute explicitly the constant α and the function Q in the exponential attraction property
(2.12) and these quantities can be extremely bad. Indeed, in the example

∂tu − ν∂2
xu + u3 − u = 0, x ∈ [0, 1], ν > 0,

u(0, t) = u(1, t) = −1, t � 0,

mentioned in the introduction, the global attractor A = {−1} is obviously regular and one
can take α = 2 in formula (2.12) (this is determined by the hyperbolicity constant of the
equilibrium u0 = 1). However, the function Q satisfies

Q(r) � e2eCν−1/2

, r � 0.

Thus, even for a reasonably small ν, one will never “see” this regular attractor in numerical
simulations. This phenomenon is related to the existence of metastable almost-equilibria
with an extremely large lifetime in the phase space of this equation (it is also worth men-
tioning that they are situated far from the global attractor and have “nothing in common”
with the properties of the global attractor). As we will see in the next section, this confus-
ing drawback can be overcome by using the general concept of an exponential attractor, for
which the constant α and the function Q can reasonably be found in terms of the physical
parameters of the problem.

We conclude this subsection by the following result on the existence of the global attrac-
tor for a semigroup having a global Lyapunov function (see [59]; see also [119] and [135])
which can be useful in applications (see, e.g., [59] and [174]).
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THEOREM 2.26. We make the following assumptions:
(i) t �→ S(t)x is continuous, ∀x ∈ E;

(ii) S(t) possesses a continuous global Lyapunov function L such that L(x) → +∞ if
and only if ‖x‖E → +∞;

(iii) the set of fixed points of S(t), N , is bounded in E;
(iv) S(t) is asymptotically compact, i.e., ∀B ⊂ E bounded,

lim
t→+∞ κ

(
S(t)B

) = 0,

where κ is the Kuratowski measure of noncompactness.
Then S(t) possesses the connected global attractor A such that A = Mun(N ).

REMARK 2.27. Theorem 2.26 can be useful, e.g., when the dissipative estimate (2.6)
and the existence of a bounded absorbing set can be difficult to establish (see, e.g., [59]
and [174]), although the existence of the global attractor implies the existence of a bounded
absorbing set (it suffices to take any ε-neighborhood of the global attractor). Thus, the dis-
sipativity can be obtained in an implicit way by using the Lyapunov function and the fact
that the set of equilibria is bounded. Roughly speaking, the dissipativity is related to the
fact that every trajectory converges to the set of equilibria (due to the Lyapunov function
and the asymptotic compactness) and, since the set of equilibria is bounded, the energy of
a “large” solution must decay (due to property (ii) of a Lyapunov function).

2.4. Dimension of the global attractor

As mentioned in the introduction, we will essentially consider the fractal (or box-counting)
dimension here.

DEFINITION 2.28. Let X ⊂ E be a (relatively) compact set. For ε > 0, let Nε(X) be
the minimal number of balls of radius ε which are necessary to cover X. Then the fractal
dimension of X is the quantity

(2.13)dimF X := lim sup
ε→0+

log2 Nε(X)

log2 (1/ε)

(
= lim sup

ε→0+

ln Nε(X)

ln (1/ε)

)

(note that dimF X ∈ [0,+∞]). Furthermore, the quantity Hε(X) := log2 Nε(X) is called
the Kolmogorov ε-entropy of X.

The fractal dimension satisfies the following properties (see [84]):
• dimF (X1 × X2) � dimF X1 + dimF X2;
• if f : X1 → X2 is Lipschitz, then dimF X2 � dimF X1;
• if X is a smooth m-dimensional manifold, then dimF X = m.

It is important to note that, for sets which are not manifolds, the fractal dimension can be
noninteger; for instance, if X is the ternary Cantor set in R, then

dimF X = ln 2

ln 3
< 1
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(see [84]). Furthermore, it follows from the definition that, if the minimal number of balls
of radius ε which are necessary to cover X satisfies

Nε(X) � c

(
1

ε

)d

,

where c and d are independent of ε, then

dimF X � d.

A strong interest, for considering the fractal dimension over other dimensions, is given
by the (modified) Hölder-Mañé theorem (see [65,94], and [122]). We start with the follow-
ing definition.

DEFINITION 2.29. (See [123].) A Borel subset X of a Banach space E is prevalent if there
exists a compactly supported probability measure μ such that μ(X + x) = 1, ∀x ∈ E.
A non-Borel set which contains a prevalent set is also prevalent.

REMARK 2.30. Prevalence extends the notion of “Lebesgue almost every” from Euclid-
ean spaces to infinite dimensional spaces (see [123] for a discussion on this subject).

THEOREM 2.31 (Modified Hölder–Mañé theorem, [122]). Let X ⊂ E be compact and
such that dimF X = d and N > 2d be an integer. Then almost every (in the sense of
prevalence) bounded linear projector P : E → R

N is one-to-one on X and has a Hölder
continuous inverse.

It follows from Theorem 2.31 that, if the global attractor has finite fractal dimension,
then, fixing a projector P satisfying the assumptions of the theorem, the reduced dynamical
system (S̄(t), Ā), where S̄(t) := P ◦ S(t) ◦ P −1 and Ā := P(A), is a finite dimensional
dynamical system (i.e., in R

N ) which is Hölder continuous with respect to the initial data.
This result, and the fractal dimension, thus play an important role in the finite dimensional
reduction theory of infinite dimensional dynamical systems.

REMARK 2.32. The Hausdorff dimension (see [84]) is also frequently used to measure the
dimension of the global attractor (see, e.g., [22,49], and [217]). However, Theorem 2.31
does not hold for the Hausdorff dimension.

The next result (see [234]; see also [136]) gives a general method to prove the finite
fractal dimensionality of a compact set.

THEOREM 2.33. Let X be a compact subset of E. We assume that there exist a Banach
space E1 such that E1 is compactly embedded into E and a mapping L : X → X such that
L(X) = X and

(2.14)‖Lx1 − Lx2‖E1
� c‖x1 − x2‖E, ∀x1, x2 ∈ X.

Then the fractal dimension of X is finite and satisfies

dimF X � H 1
4c

(
BE1(0, 1)

)
,
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where c is the constant in (2.14) and BE1(0, 1) is the unit ball in E1 (note that it is relatively
compact in E).

In applications to parabolic systems in bounded domains, one usually proves that, for
instance, (2.14) is satisfied for L = S(1). Then, owing to the invariance property, one
deduces from Theorem 2.33 that the global attractor has finite fractal dimension. We will
come back to the “smoothing” property (2.14), and its generalizations (in particular, to
damped hyperbolic systems), in the next section when discussing the construction of ex-
ponential attractors.

It is essential, in view of the finite dimensional reduction principle given by Theo-
rem 2.31, to find sharp estimates on the dimension of the global attractor in terms of the
physical parameters of the problem. In general, the best upper bounds are obtained by the
so-called volume contraction method, which is based on the study of the evolution of in-
finitesimal k-dimensional volumes in the neighborhood of the attractor (see [22,49,197],
and [217]); see however [67] for a sharp upper bound based on (2.14). One then proves
that, if the dynamical system contracts the k-dimensional volumes, then the fractal di-
mension of A is less than k. This method requires some differentiability property of the
semigroup S(t).

DEFINITION 2.34. A map L : X → X, X ⊂ E, is uniformly quasidifferentiable on X if,
for every x ∈ X, there exists a linear operator L′(x) (called quasidifferential) such that∥∥L(x + v) − L(x) − L′(x)v

∥∥
E

= o
(‖v‖E

)
holds uniformly with respect to x ∈ X, v ∈ X, x + v ∈ E.

We now assume that E is a Hilbert space. We have the following result (see [41]; see
also [22,49], and [217]).

THEOREM 2.35. We assume that X is an invariant subset of E and that S(t) is uniformly
quasidifferentiable on X, with x �→ S′(t)x continuous, ∀t � 0, and that, for some t� > 0,

ω̄d(X) := sup
x∈X

ωd

(
S′(t�)x

)
< 1,

where, for a bounded linear operator L : E → E,

ωd(L) := sup
Bd

Vold(L(Bd))

Vold(Bd)
,

Vold being the d-dimensional volume and the supremum being taken over all d-
dimensional ellipsoids. Then

dimF X � d.

We can note that, when E is a Hilbert space, then, if Ed is a vector subspace of E of
dimension d , a bounded linear operator L maps a d-dimensional ellipsoid Bd ⊂ Ed onto
the d-dimensional ellipsoid L(Bd) ⊂ L(Ed). Furthermore, Vold(Bd) is well-defined. The
quantity ωd(L) measures the changes of d-dimensional volumes under the action of L.
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REMARK 2.36. Another powerful and useful method to prove the finite dimensionality of
the global attractor is based on the so-called l-trajectories: one needs minimal regularity
on the solutions in order to apply this method, see [32,53,54,152–154,173,190], and [192].
In particular, this method allows to prove the finite dimensionality of the global attractor
associated with generalized Navier–Stokes equations (see [134]) for which the smoothing
property (2.14) and the quasidifferentiability are not known (see [152,153], and [154]); the
quasidifferentiability was however recently proven in [124] for some of these models in
two space dimensions.

It is also essential to derive lower bounds on the dimension of the global attractor and
to compare them with the known upper bounds. The derivation of lower bounds is based
on the following observation: the global attractor always contains the unstable sets of equi-
libria. Thus, the stability index of a properly constructed (hyperbolic) equilibrium yields
a lower bound on the dimension of the global attractor (see [22] for more details; see
also [144,145,171,179], and [217] for examples).

2.5. Robustness of the global attractor

Very often, one needs to consider regular or singular perturbations of the system under
study; indeed, as mentioned in the introduction, a given system is only an approximation
of reality. A natural question is how these perturbations will affect the asymptotic behavior
of the system. One natural idea is to “compare” the global attractors of the perturbed and
nonperturbed systems; such results were first established in [118] for systems having a
global Lyapunov function and then in [20] for general systems.

We thus consider a family of semigroups {Sλ(t), λ ∈ I }, I ⊂ R interval (more generally,
I can be some topological space), acting on E such that Sλ(t) possesses the global attractor
Aλ, ∀λ ∈ I .

DEFINITION 2.37.
(i) The attractors Aλ are upper semicontinuous at λ0 ∈ I if

lim
λ∈I→λ0

dist(Aλ,Aλ0) = 0.

(ii) The attractors Aλ are lower semicontinuous at λ0 ∈ I if

lim
λ∈I→λ0

dist(Aλ0 ,Aλ) = 0.

(iii) The attractors Aλ are continuous at λ0 ∈ I if they are both upper and lower semi-
continuous at λ0.

In general, global attractors are upper semicontinuous, i.e., we can prove the upper semi-
continuity property under natural, and relatively easy to check in applications, conditions.
We have, for instance, the following results (see [119]).

THEOREM 2.38. Let λ0 belong to I . We assume that there exist δ > 0, t0 > 0, and a
compact subset K of E such that
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(i)
⋃

λ∈(λ0−δ,λ0+δ)∩I Aλ ⊂ K;
(ii) for every sequences {λk, k ∈ N} and {xk, k ∈ N}, λk ∈ I , xk ∈ Aλk

, such that
λk → λ0 and xk → x0 as k → +∞, then

Sλk
(t0)xk → Sλ0(t0)x0 as k → +∞.

Then the attractors Aλ are upper semicontinuous at λ0.

THEOREM 2.39. Let λ0 belong to I . We make the following assumptions:
(i) there exist δ > 0, t0 > 0, and a bounded subset B0 of E such that⋃

λ∈(λ0−δ,λ0+δ)∩I

Aλ ⊂ B0;

(ii) ∀ε > 0, ∀t � t0, there exists θ = θ(ε, t), 0 < θ < δ, such that∥∥Sλ(t)xλ − Sλ0(t)xλ

∥∥
E

� ε, ∀xλ ∈ Aλ, ∀λ ∈ (λ0 − θ, λ0 + θ) ∩ I.

Then the attractors Aλ are upper semicontinuous at λ0.

Thus, roughly speaking, if the perturbation Sλ(t) is continuous with respect to λ and the
associated absorbing sets are uniformly bounded, the attractors Aλ are upper semicontinu-
ous.

We also mention a simple theorem which follows in a straightforward way from the
definition of upper semicontinuity and which, however, is especially useful for singular
perturbations and, as a rule, gives the “simplest” way to establish the upper semicontinuity
of attractors (see [22]).

THEOREM 2.40. Let the attractors Aλ possess the following property: for every sequences
{λk, k ∈ N} and {xk, k ∈ N}, λk ∈ I , xk ∈ Aλk

, such that λk → λ0 ∈ I , there exists
a subsequence xkn which converges to some x0 ∈ Aλ0 . Then the attractors Aλ are upper
semicontinuous at λ0.

In applications, the assumption of Theorem 2.40 is verified based on the fact that the
global attractor is generated by bounded complete trajectories (see Theorem 2.13). Thus,
there only remains to extract, from a sequence of complete trajectories uλk

∈ Kλk
, a sub-

sequence converging to some complete trajectory uλ0 ∈ Kλ0 of the limit system. The
advantage of this approach is that the semigroups Sλ(t) (which, for singular perturbations,
may have bad properties such as boundary layers, lack of regularity in finite time, . . .) are
not involved in the process and the result can be obtained by directly passing to the limit
in the associated equations for uλk

, see [22] for details.

REMARK 2.41. Although everything seems satisfactory as far as the upper semicontinuity
of global attractors is concerned, the situation changes drastically if one is interested in
estimating the distance between the perturbed and nonperturbed attractors in terms of the
physical parameters of the problem. Indeed, this distance is naturally related to the rate
of attraction to the limit attractor and, as already mentioned, this rate of attraction is, in
general, impossible to find in terms of the physical parameters of the problem.
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Now, the lower semicontinuity property is much more difficult to prove; actually, as
mentioned in the introduction, it may even not hold. We need, in order to prove this
property, much more restrictive assumptions. For instance, we have the following result
(see [22]).

THEOREM 2.42. Let λ0 ∈ I , the attractors Aλ be uniformly bounded in E, i.e., Aλ ⊂ B0
for every λ ∈ I , for some bounded subset B0 of E, and the following uniform (with respect
to λ) attraction property hold:

(2.15)dist
(
Sλ(t)B0,Aλ

)
� β(t), t � t0, λ ∈ I,

where β : R+ → R+ is some monotonic function which tends to zero as t → +∞. Assume
also that Sλ is continuous at λ0 in the following sense: for every T ∈ R+,

(2.16)sup
t∈[0,T ]

sup
x∈B0

∥∥Sλ(t)x − Sλ0(t)x
∥∥

E
→ 0 as λ → λ0.

Then the attractors Aλ are lower semicontinuous at λ0.

REMARK 2.43. Under some natural additional assumptions, condition (2.15) of a uniform
rate of attraction is necessary and sufficient to have the lower semicontinuity. However,
it is completely unclear how to verify such a condition in applications (to the best of our
knowledge, no general method to prove this uniform rate of attraction has been developed).
An exception is again the case where the limit attractor Aλ0 possesses a global Lyapunov
function and is regular, see Remark 2.25. Indeed, as already mentioned, regular attrac-
tors attract bounded subsets exponentially, see (2.12), and persist under sufficiently regular
perturbations. Furthermore, the rate of attraction to the perturbed regular attractor Aλ re-
mains exponential and uniform with respect to λ, for λ close to λ0, i.e., (2.15) holds with
β(t) := Ce−αt , α > 0. This, in turn, gives the upper and lower semicontinuity, together
with the estimate

(2.17)distsym(Aλ,Aλ0) � C|λ − λ0|γ ,

where distsym denotes the symmetric Hausdorff distance between sets defined by

distsym(A,B) := max
(
dist(A,B), dist(B,A)

)
and for some positive constants C and 0 < γ < 1, see, e.g., [22] for details. In some
cases, it is also possible to prove that the dynamical system considered is Morse–Smale,
which means that the dynamics, restricted to the regular attractor, is also preserved, up to
homeomorphisms, under perturbations (see [31,119], and [195] for more details). Finally,
for some one-dimensional scalar parabolic equations, the uniform rate of attraction is pos-
sible to establish even when the equilibria are nonhyperbolic (due to relatively simple and
completely understood structures of degenerate equilibria, see [133]). However, as men-
tioned in Remark 2.25, even though regular attractors are, in some proper sense, generic,
it is in general very difficult, if not impossible, to prove that the global attractor is regular
for given values of the physical parameters of the problem. Furthermore, even when the
regularity can be proven, it is also impossible, in general, to obtain explicit estimates on
the rate of exponential attraction. So, the constants C and γ in (2.17) are also implicit.
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REMARK 2.44. We refer the reader to [120] for different approaches for the comparison
of attractors under perturbations.

REMARK 2.45. It follows from the above considerations that the existing perturbation the-
ory of global attractors has a purely qualitative nature and no quantitative result (e.g., ex-
plicit estimates in terms of the physical parameters of the problem) is available in general.
As we will see in the next section, this drawback can be overcome by using the so-called
exponential attractors for which the analogues of estimates (2.12) and (2.17) hold with-
out any assumption on the hyperbolicity of the equilibria and the existence of a Lyapunov
function and all the constants can be computed explicitly.

3. Exponential attractors

3.1. Inertial manifolds

We established in Subsection 2.4 a finite dimensional reduction principle for infinite di-
mensional dynamical systems based on the finite fractal dimensionality of the global at-
tractor, via the Hölder–Mañé theorem. However, even though it is very important, this finite
dimensional reduction principle has essential drawbacks. Indeed, the reduced dynamical
system (S̄(t), Ā) given by the Hölder–Mañé theorem is only Hölder continuous and can-
not thus be realized in a satisfactory way as a dynamical system generated by a system of
ODEs, i.e., a system of ODEs which is well-posed. Furthermore, reasonable conditions on
the global attractor which would guarantee that the Mañé projectors are Lipschitz are not
known. A second drawback is that the complicated geometric structure of the attractors
A and Ā make the use of this finite dimensional reduction principle in computations haz-
ardous: essentially, one only has a heuristic estimate on the number of unknowns which
are necessary to capture all the dynamical effects in approximations.

It thus appears reasonable to embed the global attractor into a proper smooth finite di-
mensional manifold. The dynamics, reduced to this manifold, would then be realized as
a (at least Lipschitz) system of ODEs which could be used in numerical simulations and
would be a good approximation of the dynamics of the original system. This led Foias,
Sell, and Temam to propose the notion of an inertial manifold in [95].

DEFINITION 3.1. A Lipschitz finite dimensional manifold M ⊂ E is an inertial manifold
for the semigroup S(t) if

(i) it is positively invariant, i.e., S(t)M ⊂ M, ∀t � 0;
(ii) it satisfies the following asymptotic completeness property:

∀u0 ∈ E, ∃v0 ∈ M such that

(3.1)
∥∥S(t)u0 − S(t)v0

∥∥
E

� Q
(‖u0‖E

)
e−αt , t � 0,

where the positive constant α and the monotonic function Q are independent of u0.

It follows from this definition that an inertial manifold, if it exists, contains the global
attractor and attracts the trajectories exponentially fast (and uniformly with respect to
bounded sets of initial data).
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Furthermore, the existence of such a set would confirm, in a perfect way, the heuristic
conjecture on a finite dimensional reduction principle of infinite dimensional dissipative
dynamical systems. Indeed, the dynamics, restricted to an inertial manifold, can be de-
scribed by a system of ODEs which is Lipschitz continuous (and thus well-posed), called
the inertial form of the system. Furthermore, the asymptotic completeness property gives,
in a particularly strong form, the equivalence of the initial dynamical system (S(t), E) with
its inertial form (S(t),M).

REMARK 3.2. In turbulence, i.e., for the incompressible Navier–Stokes equations, the ex-
istence of an inertial manifold would also yield an exact interaction law between the small
and the large structures of the flow (see, e.g., [93]).

Several methods have been proposed to construct inertial manifolds (by the Lyapunov–
Perron method, by constructing converging sequences of approximate inertial manifolds,
by the so-called graph-transform method, . . .); we refer the interested reader to [58,95,197,
211,217], and the references therein for more details.

However, all the known constructions of inertial manifolds make use of a restrictive
condition, namely, the so-called spectral gap condition (see [95]), which requires arbitrar-
ily large gaps in the spectrum of the linearization of the initial system (see [95] for more
details). In general, this property can only be verified in one space dimension. Nevertheless,
the existence of inertial manifolds has been proven for a large number of equations, essen-
tially in one and two space dimensions; we refer the reader to [58,95,197,211,217], and the
numerous references therein. However, the existence of an inertial manifold is still an open
problem for several physically important equations, such as the two-dimensional incom-
pressible Navier–Stokes equations. Furthermore, nonexistence results have been proven
for damped Sine–Gordon equations by Mora and Solà-Morales [183].

REMARK 3.3. Notions of approximate inertial manifolds have been proposed when the
existence of an (exact) inertial manifold is not known and, in particular, for the incom-
pressible Navier–Stokes equations. We refer the reader to, e.g., [95,96,99], and [217] for
more details.

3.2. Construction of exponential attractors

It follows from the previous subsection that it is not always possible to embed the global
attractor into a proper smooth finite dimensional manifold. Nevertheless, and also in view
of the possible defaults of the global attractor as discussed in the introduction, it can be use-
ful to construct larger (not necessarily smooth) sets which contain the global attractor, are
still finite dimensional, and attract the trajectories exponentially fast. This led Eden, Foias,
Nicolaenko, and Temam to propose the notion of an exponential attractor (also sometimes
called an inertial set) in [65].

DEFINITION 3.4. A compact set M ⊂ E is an exponential attractor for S(t) if
(i) it has finite fractal dimension, dimF M < +∞;
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(ii) it is positively invariant, S(t)M ⊂ M, ∀t � 0;
(iii) it attracts exponentially the bounded subsets of E in the following sense:

∀B ⊂ E bounded, dist
(
S(t)B,M

)
� Q

(‖B‖E

)
e−αt , t � 0,

where the positive constant α and the monotonic function Q are independent of B.

It follows from this definition that an exponential attractor, if it exists, contains the global
attractor (actually, the existence of an exponential attractor M yields the existence of the
global attractor A ⊂ M, since it is a compact attracting set, see Theorem 2.17; note that
S(t) is still assumed to satisfy the continuity assumption (2.4)).

Thus, an exponential attractor is still finite dimensional, like the global attractor (and
one still has the finite dimensional reduction principle given by the Hölder–Mañé theo-
rem); actually, proving the existence of an exponential attractor is also one way of proving
that the global attractor has finite fractal dimension. Compared with an inertial manifold,
an exponential attractor is not smooth in general, but one still has a uniform exponential
control on the rate of attraction of the trajectories.

Now, the main drawback of exponential attractors is that the relaxation to positive invari-
ance makes these objects nonunique; actually, once we have the existence of an exponen-
tial attractor, we have the existence of a whole family of exponential attractors (see [65]).
Therefore, the question of the best choice of an exponential attractor, if this makes sense,
is a crucial one. One possibility, to overcome this drawback, is to find a “simple” algorithm
which maps a semigroup S(t) onto an exponential attractor M(S); by simple, we have in
particular in mind the numerical realization of such an algorithm.

The first construction of exponential attractors, due to Eden, Foias, Nicolaenko, and
Temam [65], was not constructible; indeed, Zorn’s lemma had to be used in order to con-
struct exponential attractors. This construction consists in a way in constructing a “fractal
expansion” of the global attractor A. Very roughly speaking, one considers an iterative
process in which one adds, at each step, a “cloud” of points around the global attractor.
The difficulty is that, at each step, one needs to control the dimension of this new cloud
of points around the global attractor, and also ensure that the new set remains positively
invariant, without increasing its dimension. The key idea which allows to control the num-
ber of points added at each step is the so-called squeezing property which says, roughly
speaking, that either the higher modes are dominated by the lower ones or that the flow
is contracted exponentially: a mapping S : X → X, where X is a compact subset of a
Hilbert space E, enjoys the squeezing property on X if, for some δ ∈ (0, 1

4 ), there exists
an orthogonal projector P = P(δ) with finite rank such that, for every u, v ∈ X, either∥∥(I − P)(Su − Sv)

∥∥
E

�
∥∥P(Su − Sv)

∥∥
E

or

‖Su − Sv‖E � δ‖u − v‖E.

We can note that this property makes an essential use of orthogonal projectors with finite
rank, so that the corresponding construction is valid in Hilbert spaces only.

The construction of [65] essentially applies to semigroups which possess a compact ab-
sorbing set (although a construction valid for damped wave equations is also given in [65]).
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It was then improved by Babin and Nicolaenko (in the sense that one could also consider
semigroups which possess a compact attracting set) in [18] (see also [66]). We have, based
on the construction of [18], the following result (see [80,81], and [172]).

THEOREM 3.5. Let E and E1 be two Hilbert spaces such that E1 is compactly embedded
into E and S(t) : X → X be a semigroup acting on a closed subset X of E. We assume
that

(i) there exist orthogonal projectors Pk : E → E, k ∈ N, with finite rank such that∥∥(I − Pk)y
∥∥

E
� c(k)‖y‖E1, ∀y ∈ E1, c(k) → 0 as k → +∞;

(ii) ∀x1, x2 ∈ X, ∀t > 0,∥∥S(t)x1 − S(t)x2
∥∥

E1
� h(t)‖x1 − x2‖E,

where the function h is continuous;
(iii) (t, x) �→ S(t)x is Lipschitz on [0, T ] × B, ∀T > 0, ∀B ⊂ X bounded.

Then S(t) possesses an exponential attractor M on X (i.e., M satisfies all the assertions
of Definition 3.4 with E replaced by X).

REMARK 3.6.
(a) Actually, (i) follows from the compact embedding E1 ⊂ E. Furthermore, it follows

from (i) and (ii) that the squeezing property is satisfied for some t� > 0.
(b) Condition (ii) can be replaced by the more general condition

∀x1, x2 ∈ X, ∀t � 0, S(t)x1 − S(t)x2 = S1(t, x1, x2) + S2(t, x1, x2),

where ∥∥S1(t, x1, x2)
∥∥

E
� d(t)‖x1 − x2‖E,

d continuous, t � 0, d(t) → 0 as t → +∞,

and ∥∥S2(t, x1, x2)
∥∥

E1
� h(t)‖x1 − x2‖E, t > 0, h continuous.

This more general condition allows to construct exponential attractors for damped
hyperbolic equations (see [82] and [98]).

(c) One essential difficulty, when constructing exponential attractors for damped hyper-
bolic equations, is to prove that the exponential attractors attract the bounded subsets
of the whole phase space, and not those starting from a subspace of the phase space
only (typically, consisting of more regular functions), see [65]. This difficulty was
overcome in [83] by proving the following transitivity property of the exponential
attraction: let (E, d) be a metric space and S(t) be a semigroup acting on E such
that

d
(
S(t)x1, S(t)x2

)
� c1eα1t d(x1, x2), t � 0, x1, x2 ∈ E,
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for some positive constants c1 and α1. We further assume that there exist three sub-
sets M1, M2, and M3 of E such that

dist
(
S(t)M1,M2

)
� c2e−α2t , t � 0, α2 > 0,

and

dist
(
S(t)M2,M3

)
� c3e−α3t , t � 0, α3 > 0.

Then

dist
(
S(t)M1,M3

)
� c4e−α4t , t � 0,

where c4 := c1c2 + c3 and α4 := α2α3/(α1 + α2 + α3).

We note that condition (ii) in Theorem 3.5 resembles the smoothing property (2.14);
actually, in order to prove Theorem 3.5, one only needs to prove that S(t�) satisfies (2.14)
for a proper t�. Now, this smoothing property is sufficient in order to construct exponen-
tial attractors and one does not need the squeezing property (and, thus, one does not need
orthogonal projectors with finite rank); therefore, exponential attractors can also be con-
structed in Banach spaces.

Let thus E and E1 be two Banach spaces such that E1 is compactly embedded into E

and let X be a bounded subset of E. Let finally S : X → X be a (nonlinear) mapping. We
then consider the discrete dynamical system (or semigroup) generated by S, i.e., we set

S(0) := Id, S(n) := S ◦ · · · ◦ S (n times), n ∈ N.

It is easy to see that this family of operators satisfies (2.2)–(2.3), but for t, s ∈ N. Then we
say that M ⊂ X is an exponential attractor for this discrete semigroup on X if

(i) it is compact in E and has finite fractal dimension;
(ii) it is positively invariant, i.e., SM ⊂ M;

(iii) dist(S(n)X,M) � ce−αn, n ∈ N, where c and α > 0 only depend on X.
We then have the

THEOREM 3.7. (See [68].) We assume that the mapping S enjoys the smoothing property
(2.14) on X, i.e.,

‖Sx1 − Sx2‖E1
� c‖x1 − x2‖E, ∀x1, x2 ∈ E.

Then the discrete dynamical system generated by the iterations of S possesses an exponen-
tial attractor M ⊂ X.

Let us now consider a continuous semigroup S(t) acting on X, i.e.,

S(t) : X → X, t � 0.

In order to construct an exponential attractor for S(t) on X, we usually proceed as follows.
We assume that S(t�) satisfies the smoothing property (2.14) for some t� > 0. We then
have, owing to Theorem 3.7, an exponential attractor M� for the discrete dynamical system
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generated by the mapping S� := S(t�) and we set

M :=
⋃

t∈[0,t�]
S(t)M�.

Finally, if (t, x) �→ S(t)x is Lipschitz (or even Hölder) on [0, t�] × X, we can prove that
M is an exponential attractor for S(t) on X (see [65]).

REMARK 3.8.
(a) In applications to PDEs, it is in general not restrictive at all to consider a bounded

invariant subset X ⊂ E instead of the whole space E. Indeed, X usually is a posi-
tively invariant bounded absorbing set; we note that, if B0 is a bounded absorbing set
for S(t), then B1 := ⋃

t�t0
S(t)B0, where t0 is such that t � t0 implies S(t)B0 ⊂ B0

and the closure is taken in E, is a positively invariant bounded absorbing set. There-
fore, the exponential attractors still attract all the bounded subsets of E.

(b) For applications to damped hyperbolic equations, we will need a weaker form of a
smoothing property, and, more precisely, some asymptotically smoothing property
(see Remark 3.6(b)). More precisely, the existence of an exponential attractor still
holds if (2.14) is replaced by one of the following weaker conditions (see [68]):

S = S1 + S2, where

‖S1x1 − S1x2‖E � α‖x1 − x2‖E, ∀x1, x2 ∈ X, α <
1

2
,

(3.2)‖S2x1 − S2x2‖E1
� c‖x1 − x2‖E, ∀x1, x2 ∈ X,

or

Sx1 − Sx2 = S1(x1, x2) + S2(x1, x2), ∀x1, x2 ∈ X, where∥∥S1(x1, x2)
∥∥

E
� α‖x1 − x2‖E, α <

1

2
,

(3.3)
∥∥S2(x1, x2)

∥∥
E1

� c‖x1 − x2‖E.

(c) If E1 and E2 are Hilbert spaces, then we can prove that, if α < 1
8 , (3.2) and (3.3)

imply the squeezing property (see [67]; see also Remark 3.6(a)).
(d) Based on the above results, one has been able to prove the existence of exponential

attractors in many situations, see [6,7,60,61,68,70,71,74,85,100–103,105–109,116,
117,157,175–177,184], and [216]. Actually, exponential attractors are as general as
global attractors: to the best of our knowledge, exponential attractors exist indeed
for all equations of mathematical physics for which we can prove the existence of
the finite dimensional global attractor.

(e) Another construction of exponential attractors in Banach spaces was proposed by
Le Dung and Nicolaenko in [140]. This construction consists in adapting the orig-
inal construction of [65] to a Banach setting. We can note that it is based on con-
ditions which are contained in (and are more restrictive than) those given above.
Furthermore, it is worth noting that the construction given in [68] is very simple, in
particular, when compared to those of [65] and [140].
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(f) The method of l-trajectories is also very efficient to construct exponential attractors.
In particular, this method allows to prove the smoothing property in a simple way.
Furthermore, as already mentioned, it requires minimal regularity on the solutions.
We refer the reader to [32,78,153,173,178,191,192,203], and [206] for more details;
a necessary and sufficient condition on the existence of an exponential attractor is
also given in [191].

3.3. Robust families of exponential attractors

As already mentioned in the introduction and Subsection 2.5, global attractors can be sen-
sitive to perturbations; more precisely, the lower semicontinuity property may not hold.
Furthermore, even though this property is, in some proper sense, generic (see, e.g., [195]),
it is in general very difficult, if not impossible, to prove it for given values of the physi-
cal parameters in applications. Similarly, regular attractors (see Remark 2.25) are robust
(see [22]), and, in particular, lower semicontinuous, but, again, it is in general very diffi-
cult, if not impossible, to prove the existence of such sets for given values of the physical
parameters.

It is also worth noting that inertial manifolds are robust under perturbations; indeed,
they are hyperbolic manifolds, see [200]. However, as mentioned in Subsection 3.1, the
existence of such sets is not known for several important equations and may even not hold.

Now, since exponential attractors attract exponentially fast the trajectories, with a uni-
form control on the rate of attraction, it is reasonable to expect that these sets are robust
under perturbations and that one should be able to construct robust families of exponential
attractors, of course, up to the “best choice”, since they are not unique.

It is possible, based on the initial construction of [65], to construct families of expo-
nential attractors which are upper and lower semicontinuous (see, e.g., [65,82], and [98]).
However, this continuity only holds up to some time shift, i.e., one has a result of the form

lim
ε→0+ lim sup

t→+∞
[
dist

(
Sε(t)Mε,M0

) + dist
(
S0(t)M0,Mε

)] = 0,

where (Sε(t),Mε) and (S0(t),M0) are the perturbed and nonperturbed dynamical sys-
tems, respectively, ε > 0 being the perturbation parameter. Consequently, we essentially
have, as far as the lower semicontinuity is concerned,

lim
ε→0+ dist(A0,Mε) = 0,

where A0 is the global attractor associated with the nonperturbed system, which is not
satisfactory.

This result was improved in [70] (see also [74]) and one has the

THEOREM 3.9. (See [70].) Let E and E1 be two Banach spaces such that E1 is com-
pactly embedded into E and let X be a bounded subset of E. We assume that the family of
operators Sε : X �→ X, ε ∈ [0, ε0], ε0 > 0, satisfies the following assumptions:

(i) (Uniform, with respect to ε, smoothing property) ∀ε ∈ [0, ε0], ∀x1, x2 ∈ X,

‖Sεx1 − Sεx2‖E1
� c1‖x1 − x2‖E,

where c1 is independent of ε.
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(ii) (The trajectories of the perturbed system approach those of the nonperturbed one,
uniformly with respect to ε, as ε tends to 0) ∀ε ∈ [0, ε0], ∀i ∈ N, ∀x ∈ X,∥∥Si

εx − Si
0x

∥∥
E

� ci
2ε,

where c2 is independent of ε and, for a mapping L, Li := L ◦ · · · ◦ L (i times).
Then, ∀ε ∈ [0, ε0], the discrete dynamical system generated by the iterations of Sε pos-
sesses an exponential attractor Mε on X such that

1. the fractal dimension of Mε is bounded, uniformly with respect to ε,

dimF Mε � c3,

where c3 is independent of ε;
2. Mε attracts X, uniformly with respect to ε,

dist
(
Si

εX,Mε

)
� c4e

−c5i , c5 > 0, i ∈ N,

where c4 and c5 are independent of ε;
3. the family {Mε, ε ∈ [0, ε0]} is continuous at 0,

distsym(Mε,M0) � c6ε
c7,

where c6 and c7 ∈ (0, 1) are independent of ε and distsym denotes the symmetric
Hausdorff distance between sets defined by

distsym(A,B) := max
(
dist(A,B), dist(B,A)

)
.

REMARK 3.10.
(a) The constants ci , i = 3, . . . , 7, can be computed explicitly in terms of the physical

parameters of the problem in concrete situations. It is worth noting that this is not the
case in general for the constants c6 and c7 in the estimate of the symmetric distance
when such a result can be proven for global attractors, e.g., for regular attractors.

(b) In [70], in order to construct this family of exponential attractors, one first constructs
M0 and one then constructs Mε , ε > 0, based on M0. Therefore, Mε depends
on Sε , but also on S0, and the continuity only holds at ε = 0.

(c) We also mention [7] for robustness results with respect to numerical approximations.

In applications to PDEs, Theorem 3.9 applies to parabolic systems (in bounded do-
mains). In order to construct a robust family of exponential attractors Mε for the continu-
ous semigroups Sε(t), ε ∈ [0, ε0], associated with such systems, we usually first prove the
existence of a uniform (with respect to ε) bounded absorbing set, i.e., a bounded subset B0
of E, independent of ε, such that, ∀B ⊂ E bounded, ∃T0 independent of ε such that

t � T0 implies Sε(t)B ⊂ B0, ∀ε ∈ [0, ε0].
We then consider the discrete mappings S

T0
ε := Sε(T0), ∀ε ∈ [0, ε0] (possibly for a larger,

but still independent of ε, T0). We thus have S
T0
ε :B0 → B0, ∀ε ∈ [0, ε0], and we then

prove that the S
T0
ε , ε ∈ [0, ε0], satisfy the assumptions of Theorem 3.9, which yields the

existence of a robust family of discrete exponential attractors MT0
ε , ε ∈ [0, ε0]. Finally, we
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set

Mε :=
⋃

t∈[0,T0]
Sε(t)MT0

ε .

Then, if (t, x) �→ Sε(t)x is Lipschitz, or even Hölder, on [0, T0] × B0, the exponential
attractors Mε , ε ∈ [0, ε0], satisfy

• dimF Mε � c′
1, ε ∈ [0, ε0];

• ∀B ⊂ E bounded,

dist
(
Sε(t)B,Mε

)
� c′

2e−c′
3t , t � 0, ε ∈ [0, ε0], c′

3 > 0;
• distsym(Mε,M0) � c′

4ε
c′

5 , ε ∈ [0, ε0], c′
5 ∈ (0, 1);

where the constants c′
i , i = 1, . . . , 5, are independent of ε and can be computed explicitly

in terms of the physical parameters of the problem.
For damped hyperbolic equations, we should replace (2.14) by some asymptotically

smoothing property (see Remark 3.8(b)). More generally, we have, for singularly perturbed
problems, the following result, proven in [83] (see also [104] for a reformulation of this
result).

THEOREM 3.11. We consider two families of Banach spaces E(ε) and E1(ε), ε ∈ [0, ε0]
(which are embedded into a larger topological space V ), such that, ∀ε ∈ [0, ε0], E1(ε)

is compactly embedded into E(ε). We further assume that these compact embeddings are
uniform with respect to ε in the sense that

Hδ

(
BE1(ε)(0, 1), E(ε)

)
� c1(δ), ∀δ > 0,

where Hδ(·, E(ε)) denotes the Kolmogorov δ-entropy in the topology of E(ε) and c1 is
a monotonic function which is independent of ε. We then consider a family of closed sets
Bε ⊂ E(ε), with B0 bounded in E(0), and a family of maps Sε : Bε → Bε , ε ∈ [0, ε0],
such that

(i) ∀ε ∈ [0, ε0], B0 ⊂ E(ε) and

‖b0‖E(ε) � c2‖b0‖E(0) + c3ε, ∀b0 ∈ B0,

where c2 and c3 are independent of ε;
(ii) ∀ε ∈ [0, ε0], Sε = Cε +Kε , where Cε and K′

ε map Bε into E(ε) and, ∀b1
ε , b2

ε ∈ Bε ,∥∥Cεb
1
ε − Cεb

2
ε

∥∥
E(ε)

� c4
∥∥b1

ε − b2
ε

∥∥
E(ε)

,∥∥Kεb
1
ε − Kεb

2
ε

∥∥
E1(ε)

� c5
∥∥b1

ε − b2
ε

∥∥
E(ε)

,

where c4 < 1
2 and c5 are independent of ε;

(iii) there exist nonlinear “projectors” Πε : Bε → B0, ε ∈ [0, ε0], such that ΠεBε =
B0 and ∥∥Sεbε − Sk

0Πεbε

∥∥
E(ε)

� c6c
k
7ε, ε ∈ [0, ε0],

where c6 and c7 are independent of ε.
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Then there exists a family of exponential attractors Mε ⊂ Bε for the dynamical systems
generated by the maps Sε, ε ∈ [0, ε0], such that

1. dimF Mε � c8, ε ∈ [0, ε0];
2. distE(ε)(S

k
ε Bε,Mε) � c9e−c10k , ε ∈ [0, ε0], k ∈ N, c10 > 0;

3. distsym(Mε,M0) � c11ε
c12 , ε ∈ [0, ε0], c12 ∈ (0, 1); where the constants ci ,

i = 8, . . . , 12, are independent of ε and can be computed explicitly.

REMARK 3.12.
(a) In order to construct a robust family of exponential attractors for continuous semi-

groups Sε(t), ε ∈ [0, ε0], we essentially proceed as indicated above (see, e.g., [83]).
(b) Condition (ii) in Theorem 3.11 can be replaced by the more general condition

Sεb
1
ε − Sεb

2
ε = Cε

(
b1
ε , b

2
ε

) + Kε

(
b1
ε , b

2
ε

)
,

where ∥∥Cε

(
b1
ε , b

2
ε

)∥∥
E(ε)

� c4
∥∥b1

ε − b2
ε

∥∥
E(ε)

, c4 <
1

2
,∥∥Kε

(
b1
ε , b

2
ε

)∥∥
E1(ε)

� c5
∥∥b1

ε − b2
ε

∥∥
E(ε)

,

∀ε ∈ [0, ε0], ∀b1
ε , b2

ε ∈ Bε .
(c) We refer the reader to [60,61,70,74,83,101–105,108,109,116,117,175,176], and [177]

for applications of Theorems 3.9 and 3.11 (or generalizations).
(d) As in [70], the exponential attractors Mε , ε > 0, constructed in [83] depend both

on Sε and S0. These constructions were improved in [73], where the following re-
sult was proven (we will come back to this construction, and its generalizations, in
the next section when discussing nonautonomous systems). Let E and E1 be two
Banach spaces such that E1 is compactly embedded into E. We then consider a
mapping S which satisfies the following conditions:

• it maps the δ-neighborhood (for the topology of E) Oδ(B) of a bounded subset
B of E into B, for a proper constant δ > 0;

• ∀x1, x2 ∈ Oδ(B), one has the smoothing property (2.14),

‖Sx1 − Sx2‖E1
� K‖x1 − x2‖E.

Then the discrete dynamical system generated by the iterations of S possesses an exponen-
tial attractor M(S) ⊂ B such that

• it is compact in E1 and

dimF M(S) � c1;
• distE1(S

kB,M(S)) � c2e−c3k , k ∈ N, c3 > 0;
• the map S �→ M(S) is Hölder continuous in the following sense: ∀S1, S2 satisfying

the above conditions (for the same constants δ and K),

distsym,E1

(
M(S1),M(S2)

)
� c4‖S1 − S2‖c5, c5 > 0,

where

‖S‖ := sup
h∈Oδ(B)

‖Sh‖E1
.
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Furthermore, all the constants ci , i = 1, . . . , 5, only depend on B, E, E1, δ, and K (in par-
ticular, they are independent of the concrete choice of S) and can be computed explicitly.
We thus now have a mapping S �→ M(S) and, owing to the Hölder continuity of this map-
ping, we can now construct robust families of exponential attractors which are continuous
at every point, and not just at ε = 0 as in the previous constructions.

4. Nonautonomous systems

We now consider a system of the form

∂u

∂t
= F(t, u), u|t=τ = uτ , τ ∈ R,

in a Banach space E, i.e., we now assume that the time appears explicitly in the equations
(e.g., in the forcing terms). Assuming that the problem is well-posed, we have the process
U(t, τ ), t � τ , τ ∈ R, acting on E,

U(t, τ ) : E → E,

uτ �→ u(t),

which maps the initial datum at time τ onto the solution at time t .
For such a system, both the initial and final times are important, i.e., the trajectories are

no longer (positively) invariant by time translations. Thus, the notion of a global attractor
is no longer adequate and has to be adapted.

4.1. Uniform attractors

We consider in this subsection an approach initiated by Haraux [121] and further developed
by Chepyzhov and Vishik [45] and [49].

We rewrite the equations in the form

(4.1)
∂u

∂t
= Fσ0(t)(u),

where σ0(t) consists of all the time dependent terms of the equations and is called the
symbol of the system. For instance, if F(t, u) = F̃ (u) + f (t), then σ0(t) := f (t).

The idea in the approach described here is to actually consider, together with (4.1),
a whole family of equations. To do so, we assume that σ0 belongs to some complete metric
space Θ (e.g., Θ := Cb(R,M), where M is a complete metric space and Cb denotes the
bounded continuous functions). We then consider the translations group T (h), h ∈ R,
defined by

T (h)f (s) := f (s + h), s, h ∈ R,

and we assume that T (h)Θ ⊂ Θ and T (h) is continuous on Θ , ∀h ∈ R. We finally define
the hull of σ0 as the set

H(σ0) := {
T (h)σ0, h ∈ R

}
,
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where the closure is taken in Θ . We say that H(σ0) is the symbol space and, for simplicity,
we denote it as Σ (see also Remark 4.1 below). It is not difficult to see that Σ is invariant
by the translations group, i.e.,

(4.2)T (h)Σ = Σ, ∀h ∈ R.

REMARK 4.1. More generally, we can take any subset of Θ which is invariant by the
translations group as symbol space Σ ; we will however restrict ourselves to the above
symbol space in this subsection.

Now, together with Eq. (4.1), we consider the whole family of equations

(4.3)
∂u

∂t
= Fσ(t)(u), σ ∈ Σ.

Assuming that (4.3) is well-posed, ∀σ ∈ Σ , we have the family of processes {Uσ (t, τ ),

t � τ, τ ∈ R, σ ∈ Σ} acting on E.

DEFINITION 4.2. A set AΣ ⊂ E is a uniform (with respect to σ ) attractor for the family
of processes {Uσ (t, τ ), t � τ, τ ∈ R, σ ∈ Σ} if

(i) it is compact in E;
(ii) it attracts the bounded subsets of E, uniformly with respect to σ , i.e.,

∀B ⊂ E bounded, lim
t→+∞ sup

σ∈Σ

dist
(
Uσ (t, τ )B,AΣ

) = 0;

(iii) it is minimal among the closed sets which enjoy the attraction property (ii).

REMARK 4.3. In general, the uniform attractor is not invariant (we say that X ⊂ E is
invariant if Uσ (t, τ )X = X, ∀t � τ , τ ∈ R, ∀σ ∈ Σ) and, in some sense, the invariance is
replaced by the minimality property (iii); in particular, it follows from (ii) and (iii) that the
uniform attractor, if it exists, is unique.

We then have the following result which is the analogue of Theorem 2.17, see [45]
and [49].

THEOREM 4.4. We assume that the family of processes {Uσ (t, τ ), t � τ, τ ∈ R, σ ∈ Σ}
possesses a compact uniformly (with respect to σ ) attracting set, i.e., a compact subset K

of E such that

∀B ⊂ E bounded, lim
t→+∞ sup

σ∈Σ

dist
(
Uσ (t, τ )B,K

) = 0.

Then it possesses the uniform attractor AΣ .

REMARK 4.5.
(a) It is easy to extend the other notions and definitions given for semigroups, e.g.,

bounded absorbing sets, to families of processes (see [45] and [49]).
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(b) Theorem 4.4 does not require any continuity assumption on the processes, contrary
to Theorem 2.17. This is due to the fact that the invariance property is replaced by
the minimality property.

In applications, we need further assumptions on the symbol space in order to prove the
existence of the uniform attractor, and we assume from now on that the initial symbol σ0
is translation compact, i.e., that Σ is compact in Θ (see however [147,149], and [151]
in which the translation compactness is relaxed; more precisely, one considers classes of
time dependences which are translation bounded (i.e., Σ is bounded), but not translation
compact).

A first example of translation compact symbols is given by quasiperiodic symbols. More
precisely, σ0 is quasiperiodic (with values in a metric space M) if it can be written in the
form

σ0(s) = ϕ(αs), α = (α1, . . . , αk), k ∈ N,

where ϕ is 2π-periodic in each argument and α1, . . . , αk are rationally independent (for
k = 1, the symbol is periodic). We further assume that ϕ ∈ C(Tk,M), where T

k is the k-di-
mensional torus. Then the hull of σ0 in Cb(R,M) coincides with {ϕ(αs + ω), ω ∈ T

k}.
Actually, in that case, we take the torus T

k as symbol space; we can note that the mapping
ω �→ ϕ(αs+ω) is continuous, but not necessarily one-to-one. Furthermore, the translations
group T (h), h ∈ R, acts on T

k by the relation

T (h)ω = h(1, . . . , 1) + ω
(
mod T

k
)
, ω ∈ T

k, h ∈ R.

Other examples of translation compact symbols are given by almost periodic (in Bochner–
Amerio sense) symbols in Cb(R,M) (see [45] and [49] for more details and other examples
of translation compact symbols).

One interesting feature of nonautonomous systems with translation compact symbols is
that we can reduce the construction of the uniform attractor to that of the global attractor
for a semigroup acting on a proper extended phase space; this also yields further properties
on the uniform attractor.

Noting that, owing to the well-posedness,

UT (h)σ (t, τ ) = Uσ (t + h, τ + h), ∀t � τ, τ ∈ R, ∀σ ∈ Σ, ∀h ∈ R,

it is not difficult to show that the family of operators

S(t) : E × Σ → E × Σ,

(4.4)(u, σ ) �→ (
Uσ (t, 0)u, T (t)σ

)
,

t � 0, forms a semigroup on E × Σ .
We further assume that, ∀t � τ , τ ∈ R,

(u, σ ) �→ Uσ (t, τ )u is continuous from E × Σ into E

(we say that the family of processes {Uσ (t, τ ), t � τ, τ ∈ R, σ ∈ Σ} is (E × Σ,E)-
continuous). Then the semigroup S(t) satisfies the continuity property (2.4) on E × Σ .
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We can now use the results of Subsection 2.2 to construct the global attractor A for S(t)

on the extended phase space E × Σ . In particular, if the family of processes {Uσ (t, τ ),

t � τ, τ ∈ R, σ ∈ Σ} possesses a compact uniformly attracting set, then S(t) possesses
a compact attracting set (note that Σ is compact) and we have the following result.

THEOREM 4.6. We assume that the family of processes {Uσ (t, τ ), t � τ, τ ∈ R, σ ∈ Σ}
is (E × Σ)-continuous and possesses a compact uniformly attracting set. Then the semi-
group S(t) defined in (4.4) possesses the connected global attractor A. Furthermore, if Π1
(resp., Π2) denotes the projector onto E (resp., Σ), then

AΣ = Π1A
is the uniform attractor for the family of processes {Uσ (t, τ ), t � τ, τ ∈ R, σ ∈ Σ} and

Π2A = Σ.

REMARK 4.7. It follows from Theorem 4.6 that, under the assumptions of this theorem,
the uniform attractor AΣ is connected.

We say that u(s), s ∈ R, is a complete trajectory for the process U(t, τ ), t � τ , τ ∈ R,
acting on E if

U(t, τ )u(τ) = u(t), ∀t � τ, τ ∈ R

(as in Subsection 2.1, we can also define the forward and backward trajectories) and we
define the kernel of this process as the set

K :=
{
u : R → E, u is a complete trajectory of the process U(t, τ ),

sup
t∈R

∥∥u(t)
∥∥

E
< +∞

}
.

We then have the

THEOREM 4.8. Under the assumptions of Theorem 4.6, the global attractor A associated
with the semigroup S(t) defined by (4.4) satisfies

A =
⋃
σ∈Σ

Kσ (0) × {σ },

where Kσ is the kernel of the process Uσ (t, τ ). Furthermore, the uniform attractor AΣ =
Π1A satisfies

AΣ =
⋃
σ∈Σ

Kσ (0).

REMARK 4.9.
(a) It follows from the invariance of A that

AΣ =
⋃
σ∈Σ

Kσ (s), ∀s ∈ R.
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(b) It follows from the above results that, under the assumptions of Theorem 4.6, the
process Uσ (t, τ ) possesses at least one bounded complete trajectory, ∀σ ∈ Σ .

REMARK 4.10. It is also possible to construct, for the initial process Uσ0(t, τ ), the uni-
form, now with respect to τ ∈ R, attractor. We refer the reader to [49] for more details and
conditions which ensure that this attractor coincides with AΣ .

An important issue is whether the uniform attractor AΣ has finite (fractal) dimension.
A natural way to prove such a result would be to prove that the global attractor A for the
semigroup S(t) defined by (4.4) has finite (fractal) dimension. Then, since the projector Π1
is Lipschitz, we would infer that AΣ has also finite dimension. Unfortunately, as mentioned
in the introduction, the dynamics of S(t) is much more complicated than that of the initial
system in general and A has infinite dimension in general; we also saw that the uniform
attractor can already be infinite dimensional for simple linear equations.

Thus, in general, the uniform attractor does not yield a finite dimensional reduction
principle. Essentially, we are only able to prove the finite dimensionality of the uniform
attractor for quasiperiodic processes (see [49]; see however [212] for a finite dimensional
result for asymptotically periodic processes).

REMARK 4.11. A direct way to study the dimension of AΣ consists in computing its
Kolmogorov ε-entropy (see Definition 2.28; see also [49] for details). In particular, if the
Kolmogorov ε-entropy of AΣ satisfies

Hε(AΣ) � d log2
1

ε
+ c,

where c and d are independent of ε, then

dimF AΣ � d.

The use of the Kolmogorov entropy allows in particular to obtain sharp bounds on the
dimension of AΣ for quasiperiodic processes, see [49].

4.2. Pullback attractors

We saw in the previous subsection that the uniform attractor does not yield a satisfactory
finite dimensional reduction principle in general, i.e., for a general translation compact
symbol. Furthermore, even though the time appears explicitly in the equations, the uniform
attractor is time independent.

In this subsection, we introduce a second notion of a nonautonomous attractor, now time
dependent.

We consider a process U(t, τ ), t � τ , τ ∈ R, acting on a Banach space E,

U(t, τ ) : E → E, t � τ, τ ∈ R,

and we assume that

U(t, τ ) is continuous on E, ∀t � τ, τ ∈ R.
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DEFINITION 4.12. A family {A(t), t ∈ R} is a pullback attractor for the process U(t, τ )

if
(i) A(t) is compact in E, ∀t ∈ R;

(ii) it is invariant in the following sense:

U(t, τ )A(τ ) = A(t), ∀t � τ, ∀τ ∈ R;
(iii) it satisfies the following attraction property, called pullback attraction:

∀B ⊂ E bounded, ∀t ∈ R,

(4.5)lim
s→+∞ dist

(
U(t, t − s)B,A(t)

) = 0.

REMARK 4.13. The pullback attraction (4.5) essentially means that, at time t , the set A(t)

attracts the bounded sets of initial data coming from −∞.

REMARK 4.14.
(a) We can note that Definition 4.12 is too general to have the uniqueness of a pull-

back attractor, if it exists. Indeed, let us consider the following simple dissipative
autonomous ODE:

y ′ + y = 0.

Then it possesses the global attractor A = {0}. However, any trajectory y(t) =
Ce−t , t ∈ R, generates a pullback attractor (e.g., A(t) = {0, Ce−t }, t ∈ R)! Thus,
the uniqueness of a pullback attractor fails and additional conditions must be added
in order to restore such a property (see [36] and [40]). For instance, the uniqueness
holds if one has some “backward boundedness”, e.g.,

(4.6)sup
s∈R+

‖A(t − s)‖E

(
:= sup

s∈R+
sup

x∈A(t−s)

‖x‖E

)
� Ct , t ∈ R.

(b) If the system is autonomous and we further assume that (4.6) holds, then we recover
the global attractor. Indeed, in that case, we can write U(t, τ ) = S(t−τ), where S(t)

is a semigroup, and we have, in the pullback attraction property, U(t, t − s) = S(s).

REMARK 4.15. The above definition of a pullback attractor resembles that of the so-called
kernel sections introduced by Chepyzhov and Vishik, see [44,45], and [49]. Actually, in
order to prove that these two objects are equivalent, i.e.,

(4.7)A(t) = K(t) := {
u(t), u ∈ K

}
, t ∈ R,

where K is the kernel (i.e., the set of all bounded complete trajectories of the associated
process), we need to make further assumptions. In particular, this equivalence holds if one
has the backward boundedness (4.6), together with some forward dissipativity (e.g., the
existence of a (forward) bounded uniformly absorbing set for the process). Furthermore,
as proven, e.g., in [45] (see also [49]), the kernel sections (i.e., the pullback attractor here)
have finite fractal dimension in E,

dimF A(t) < +∞, t ∈ R,
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under assumptions which are very close to those given in Subsection 2.4 for autonomous
systems, see [44,45], and [49] for more details. However, pullback attractors have been
introduced and further studied independently; it is also worth noting that they have been
extended to cocycles in the context of random dynamical systems as well, see, e.g., [62].

DEFINITION 4.16. The family {K(t), t ∈ R} is pullback attracting for the process U(t, τ )

if, ∀t ∈ R, ∀B ⊂ E bounded,

lim
s→+∞ dist

(
U(t, t − s)B,K(t)

) = 0.

The following result is the analogue of Theorem 2.17 for pullback attractors (see,
e.g., [35]).

THEOREM 4.17. We assume that the process U(t, τ ) possesses a compact pullback at-
tracting family {K(t), t ∈ R} (i.e., K(t) is compact, ∀t ∈ R). Then it possesses a pull-
back attractor {A(t), t ∈ R}. Furthermore, if the compact pullback attracting family
{K(t), t ∈ R} satisfies (4.6), then a pullback attractor {A(t) ⊂ K(t), t ∈ R} also satis-
fies (4.6) and is unique (in this class).

REMARK 4.18.
(a) As in the case of semigroups, one usually proves the existence of a compact pullback

attracting family {K(t), t ∈ R} by introducing a proper decomposition U(t, τ ) =
U1(t, τ ) + U2(t, τ ), see [35].

(b) Actually, all notions, definitions, and properties introduced for global attractors have
a “pullback counterpart”, see, e.g., [39,214], and [230]. For instance, the pullback
version of Theorem 2.19 is given in [214] (see also [39]).

An interesting feature of pullback attractors is that, in general, A(t) has finite fractal
dimension, ∀t ∈ R (see, e.g., [38] and [139]; see also Remark 4.15), so that the finite
dimensional reduction principle given by the Hölder–Mañé theorem holds. Unfortunately,
as mentioned in the introduction, the forward convergence, i.e.,

lim
t→+∞ dist

(
U(t, τ )B,A(t)

) = 0, ∀B ⊂ E bounded, ∀τ ∈ R,

does not hold in general, due to the fact that the pullback attraction property (4.5) is not
uniform with respect to t ∈ R (see however [35] and [40] for examples for which the
forward attraction holds); we also gave an example of an equation for which the pullback
attractor satisfying (4.6) (we recall that we have the uniqueness in this class) does not
reflect the asymptotic behavior of the solutions of the system. Thus, again, this notion
of a nonautonomous attractor does not yield a satisfactory finite dimensional reduction
principle in general.

REMARK 4.19. Nonautonomous inertial manifolds (also called integral manifolds) were
studied, e.g., in [42] (see also [12,130,131], and [162]). In that case, under natural assump-
tions, the forward exponential convergence, and even the asymptotic completeness (i.e., a
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property similar to (3.1)) hold. However, we also have here the drawbacks mentioned in
Subsection 3.1 and, in particular, very restrictive spectral gap conditions are necessary to
prove the existence of such objects. We also mention that, when the process U(t, τ ) is, in
some proper sense, close to an autonomous semigroup S(t) which possesses a global Lya-
punov function and has a regular attractor, the associated pullback attractor A(t), t ∈ R, is
also regular (i.e., it is a finite union of finite dimensional submanifolds of E, of course, now
depending on t) and uniformly (forward and pullback) exponentially attracting, see [42,43,
77,111], and [225] for details.

4.3. Finite dimensional reduction of nonautonomous systems

We saw in the two previous subsections that neither the uniform attractor nor a pullback
attractor yield a satisfactory finite dimensional reduction principle in general. We noted
however that the problem of the forward attraction for pullback attractors is due to the fact
that the pullback attraction (4.5) may not be uniform with respect to t . Therefore, if we are
able to construct (possibly) larger sets for which the pullback attraction is uniform with
respect to t , then we will also obtain the forward attraction: the concept of an exponential
attractor appears as a natural one to reach this goal and it is thus important to extend it to
processes.

We first consider a discrete process U(l,m), l, m ∈ Z, l � m, acting on E, i.e.,

U(l, l) = Id, ∀l ∈ Z,

U(l,m) ◦ U(m, n) = U(l, n), ∀l � m � n, l,m, n ∈ Z.

We set U(n) := U(n + 1, n), n ∈ Z. It is then easy to see that the process U(l,m) is
uniquely determined by the family {U(l), l ∈ Z}; indeed,

U(n + k, n) = U(n + k − 1) ◦ U(n + k − 2) ◦ · · · ◦ U(n), n ∈ Z, k ∈ N.

We have the following result, which extends to (discrete) processes that given in Re-
mark 3.12(d).

THEOREM 4.20. (See [73].) We consider a second Banach space E1 such that E1 is com-
pactly embedded into E and a bounded subset B of E1. We make the following assump-
tions:

(i) ∀l ∈ Z, U(l) maps the δ-neighborhood ( for the topology of E1) Oδ(B) of B onto
B, where δ is independent of l;

(ii) ∀l ∈ Z, U(l) satisfies the smoothing property (2.14) on Oδ(B),∥∥U(l)x1 − U(l)x2
∥∥

E1
� K‖x1 − x2‖E, ∀x1, x2 ∈ Oδ(B),

where K is independent of l, x1, and x2.
Then the discrete process U(l,m) possesses a nonautonomous exponential attractor{

MU(n), n ∈ Z
}

such that
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1. ∀n ∈ Z, MU(n) ⊂ B and is compact in E1;
2. ∀n ∈ Z, MU(n) has finite fractal dimension (in the topology of E1),

dimF MU(n) � c1,

where c1 is independent of n;
3. it is positively invariant in the following sense:

U(l,m)MU(m) ⊂ MU(l), l � m, l,m ∈ Z;
4. it satisfies the following exponential attraction property:

(4.8)distE1

(
U(l + m, l)B,MU(l + m)

)
� c2e−c3m, l ∈ Z, m ∈ N,

where c2 and c3 are independent of l and m;
5. the map U �→ {MU(n), n ∈ Z} is uniformly Hölder continuous in the following

sense: for every processes U1(l,m) and U2(l,m) such that Ui (l), i = 1, 2, satisfy
(i) and (ii), ∀l ∈ Z (for the same constants δ and K), there holds

distsym,E1

(
MU1(l),MU2(l)

)
(4.9)� c4 sup

m∈(−∞,l)∩Z

{
e−c5(l−m)

∥∥U1(m) − U2(m)
∥∥c6

}
,

where c4, c5 > 0, and c6 > 0 are independent of l, U1, and U2 and

‖S‖ := sup
h∈Oδ(B)

‖Sh‖E1 .

Furthermore, all the constants only depend on B, E, E1, δ, and K and can be computed
explicitly in terms of the physical parameters of the problem.

REMARK 4.21.
(a) It follows from (4.8) that the pullback attraction holds, but one now has the forward

attraction (and, even better, one has a uniform forward attraction). Since, ∀l ∈ Z,
MU(l) has finite fractal dimension, this shows that the asymptotic behavior of (dis-
crete) nonautonomous systems is also, in some proper sense, finite dimensional in
general, as in the case of autonomous systems.

(b) It also follows from (4.9) that the influence of the past decays exponentially, in
agreement with our physical intuition.

(c) We can also construct the exponential attractor {MU(n), n ∈ Z} such that the
following cocycle identity holds:

MU(l + m) = MTmU (l), l, m ∈ Z,

where TkU(l,m) := U(l + k,m + k), k, l,m ∈ Z, l � m.
(d) If U(l) ≡ S, ∀l ∈ Z, i.e., if the system is autonomous, we recover the exponential

attractor constructed in Remark 3.12(d).
(e) If the dependence of U(l) on l is periodic or quasiperiodic, then the same holds for

the dependence of MU(l) on l.



Attractors for dissipative PDEs 147

REMARK 4.22. As mentioned several times, the smoothing property (2.14) is typical of
parabolic systems and, e.g., for damped hyperbolic systems, it has to be generalized. In
particular, if the second assumption of Theorem 4.20 is replaced by the following: ∀l ∈ Z,
∀x1, x2 ∈ Oδ(B), B being a proper closed subset of E1,∥∥U(l)x1 − U(l)x2

∥∥
E1

� (1 − ε)‖x1 − x2‖E1 + K‖x1 − x2‖E,

where ε ∈ (0, 1) and K are independent of l, x1, and x2, then, assuming that B can
be covered by a finite number of balls of radius δ (in the topology of E1) with centers
belonging to B, Theorem 4.20 also holds. We can obtain a similar result under the fol-
lowing more general (asymptotically) smoothing property: ∀l ∈ Z, ∀x1, x2 ∈ Oδ(B),
U(l)x1 − U(l)x2 = v1 + v2, where

‖v1‖E � (1 − ε)‖x1 − x2‖E,

‖v2‖E1 � K‖x1 − x2‖E,

where ε ∈ (0, 1) and K are independent of l, x1, and x2. However, in that case, all proper-
ties are obtained for the topology of E instead of that of E1, see [73] for more details.

The next step is to extend such constructions to continuous processes U(t, τ ), t � τ ,
τ ∈ R.

For instance, for a parabolic system in a bounded domain, we usually proceed as follows.
We first consider a uniform (with respect to τ ∈ R) bounded absorbing set B in E1 (i.e.,
∀B0 ⊂ E1 bounded, ∃t0 = t0(B0) such that t � t0 implies U(t + τ, τ )B0 ⊂ B, ∀τ ∈ R).
We further assume that the map U(T + τ, τ ) satisfies the assumptions of Theorem 4.20,
∀τ ∈ R, for B as above and for some T > 0, δ > 0, and K which are independent of τ

(typically, in applications, we can take δ = 1). Then, for every τ ∈ R, we consider the
discrete process

Uτ (l,m) := U(τ + lT , τ + mT ), l,m ∈ Z, l � m.

Thus, owing to Theorem 4.20, we can construct, for every τ ∈ R, a discrete exponential
attractor {MU(l, τ ), l ∈ Z} which satisfies all the assertions of this theorem. In addition,
it satisfies the following properties:

MU(l, τ ) = MU(0, lT + τ), l ∈ Z, τ ∈ R;
MTsU (l, τ ) = MU(l, τ + s), l ∈ Z, s, τ ∈ R,

where TsU(t, τ ) := U(t + s, τ + s), t � τ , s, τ ∈ R. We finally set

MU(t) :=
⋃

s∈[0,T ]
U(t, t − T − s)MU(0, t − T − s), t ∈ R.

Then, assuming that L : (t, τ, x) �→ U(t, τ )x is Lipschitz with respect to the x-variable
and satisfies proper Hölder type properties with respect to t and τ , typically,∥∥U(τ + s + t, τ )x − U(τ + t, τ )x

∥∥
E

� c|s|1/2,
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where c is independent of t � 0, τ ∈ R, s � 0, and x ∈ B, and

∥∥U(t + τ + s, τ + s)x − U(t + τ, τ )x
∥∥

E
� cec′t |s|γ ,

t � T , s ∈
[

0,
T

2

]
, γ > 0,

where c is independent of t , τ , s, and x ∈ B (see [73] for more details), we can prove the
following result.

THEOREM 4.23. (See [73].) The family {MU(t), t ∈ R} is a nonautonomous exponential
attractor for the process U(t, τ ) in E1 which satisfies the following properties:

1. ∀t ∈ R, MU(t) is compact in E1 and has finite fractal dimension,

dimFMU(t) � c′
1, ∀t ∈ R,

where c′
1 is independent of t ;

2. it is positively invariant,

U(t, τ )MU(τ) ⊂ MU(t), t � τ, τ ∈ R;
3. it satisfies the following exponential attraction property:

distE1

(
U(t + τ, τ )B,MU(t + τ)

)
� c′

2e−c′
3t , τ ∈ R, t � 0,

where c′
2 and c′

3 > 0 are independent of t and τ and where B is the bounded
absorbing set introduced above;

4. it satisfies the following Hölder continuity property: for every processes U1(t, τ )

and U2(t, τ ) such that Ui(t + T , t), i = 1, 2, satisfy the assumptions of Theo-
rem 4.20 (for the constants δ and K introduced above), ∀t ∈ R, then

distsym,E1

(
MU1(t),MU2(t)

)
� c′

4 sup
s�0

{
e−c′

5s
∥∥U1(t, t − s) − U2(t, t − s)

∥∥c′
6
}
,

where c′
4, c′

5 > 0, and c′
6 > 0 are independent of t ∈ R.

Furthermore, all the constants can be computed explicitly.

REMARK 4.24.
(a) We can give a more precise Hölder continuity result in concrete applications,

see [73].
(b) We also have the following Hölder continuity with respect to the time:

distsym,E1

(
MU(t + s),MU(t)

)
� c′

7|s|c
′
8 , t ∈ R, s � 0,

where c′
7 and c′

8 > 0 are independent of t and s.
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REMARK 4.25.
(a) We again have properties which are similar to those listed in Remark 4.21. In par-

ticular, we have the (uniform) forward attraction and, since MU(t) has finite fractal
dimension, ∀t ∈ R, we obtain a satisfactory finite dimensional reduction principle
for nonautonomous systems in bounded domains.

(b) Such exponential attractors were constructed for nonautonomous reaction–diffusion
equations (in bounded domains) in [73]. However, this construction has a univer-
sal nature and should be applicable to most equations (in bounded domains) for
which the finite dimensionality of pullback attractors can be proven (e.g., the two-
dimensional incompressible Navier–Stokes equations, the Cahn–Hilliard equation,
damped hyperbolic equations, . . .).

REMARK 4.26. It follows from the Hölder continuity that we can construct robust families
of nonautonomous exponential attractors which are continuous at every point, as in the
autonomous case.

5. Dissipative PDEs in unbounded domains

As mentioned in the introduction, the study of the dynamics of dissipative systems in large
and unbounded domains necessitates to develop new ideas and methods, when compared
with the above sections, devoted to systems in bounded domains. Indeed, we are faced here
with new phenomena which do not have analogues in the finite dimensional theory.

Our aim in this section is to give a short survey of the recent progress in this direction, in-
cluding the so-called entropy theory, the description of the space–time chaos via Bernoulli
schemes with an infinite number of symbols and its relations with the Kotelnikov formula,
the Sinai–Bunimovich space–time chaos for continuous media, . . . .

We start by introducing and discussing the appropriate class of weighted and uniformly
local Sobolev spaces, which is one of the main technical tools in the theory.

5.1. Weighted and uniformly local phase spaces: basic dissipative estimates

We first note that, in contrast to the case of bounded domains, many physically relevant and
interesting solutions of PDEs in unbounded domains (such as spatially periodic patterns,
traveling waves, wave trains, spiral waves, . . .) are not spatially localized and, thus, usually
have infinite energy. Therefore, the typical, for bounded domains, choice of the phase space
as Φ = L2(Ω) or Wl,p(Ω) does not seem to be reasonable here. On the other hand, all the
above mentioned structures are bounded as |x| → +∞ and, therefore, belong to the phase
space Φ = L∞(Ω). However, the analytical properties of PDEs in L∞-spaces are very
bad (there is no maximal regularity, no analytic semigroups, . . .), so that this choice of a
phase space only works for relatively simple equations (for which the maximum principle
holds).

Instead, it was suggested in [1,21], and [165], to use weighted and so-called uniformly
local Sobolev spaces which, on the one hand, contain all the sufficiently regular spatially
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bounded solutions and, on the other hand, enjoy regularity, embedding, and interpolation
properties which are very similar to those of usual Sobolev spaces in bounded domains.

In order to introduce these spaces, we first need to define the appropriate class of admis-
sible weight functions (see [75] and [237] for details).

DEFINITION 5.1. Let μ > 0 be arbitrary. A function φ : R
n → R is a weight function

with an exponential growth μ if there holds

(5.1)φ(x + y) � Cφeμ|y|φ(x), φ(x) > 0,

for every x, y ∈ R
n.

The most important examples of such weight functions are the following ones:

(5.2)φε,x0(x) := e−ε|x−x0|, ε ∈ R, x0 ∈ R
n,

or their smooth analogues,

(5.3)ϕε,x0(x) := e−ε
√

1+|x−x0|2 , ε ∈ R, x0 ∈ R
n.

Obviously, these weight functions are weight functions with an exponential growth |ε| and
the constant Cφ is independent of x0. Another important class of weight functions consists
of the so-called polynomial weights,

(5.4)θN,x0(x) := (
1 + |x − x0|2

)−N/2
, N ∈ R, x0 ∈ R

n,

which are also sometimes useful. Obviously, these weight functions have an exponential
growth μ, for every μ > 0.

We are now ready to introduce the proper classes of Sobolev spaces.

DEFINITION 5.2. Let Ω be a sufficiently regular unbounded domain, φ be a weight func-
tion with an exponential growth, and 1 � p � +∞. Then the associated weighted spaces
L

p
φ(Ω) and weighted uniformly local spaces L

p
b,φ(Ω) are defined by the following norms:

‖u‖p

L
p
φ

:=
∫

Ω

φp(x)
∣∣u(x)

∣∣p dx,

(5.5)‖u‖L
p
b,φ

:= sup
x0∈Ω

{
φ(x0)‖u‖Lp(Ω∩B1

x0
)

}
,

where BR
x0

denotes the R-ball in the space R
n centered at x0. For simplicity, we will write

L
p
b (Ω) instead of L

p

b,1(Ω) and we naturally define the Sobolev spaces W
l,p
φ (Ω) (resp.,

W
l,p
b,φ(Ω)) as the spaces of distributions whose derivatives up to the order l belong to

L
p
φ(Ω) (resp., L

p
b,φ(Ω)).

We note that L∞(Ω) ⊂ L2
b(Ω) and, consequently, all the dissipative structures men-

tioned above indeed belong to the uniformly local phase space Φ := L2
b(Ω). Furthermore,

we also have the embedding L∞(Ω) ⊂ L2
φ(Ω) if the weight function φ is integrable (i.e.,

φ ∈ L1(Ω)). The important relations between weighted and uniformly local spaces are
collected in the following proposition (see [237]).
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PROPOSITION 5.3. Let Ω be a sufficiently regular unbounded domain and let φ be a
weight function with an exponential growth ε. Then, for every μ > ε, the following norms
are equivalent:

‖u‖p

L
p
φ

∼
∫

Ω

φp(x0)

∫
Ω

e−μ|x−x0|∣∣u(x)
∣∣p dx dx0,

(5.6)‖u‖p

L
p
b,φ

∼ sup
x0∈Ω

{
φp(x0)

∫
Ω

e−μ|x−x0|∣∣u(x)
∣∣p dx

}
,

with constants which depend on ε, μ, and Cφ , but are independent of the concrete form
of φ.

REMARK 5.4. Relations (5.6) allow to reduce the calculation and estimation of any
weighted norm (for a weight function with an exponential growth) to those of the spe-
cial exponential weight functions φμ,x0(x). In particular, relations of this type allow to
reduce most results concerning embeddings and interpolation estimates for the weighted
and uniformly local spaces, together with the associated regularity results for linear ellip-
tic and parabolic operators, to the corresponding ones for the weight functions φε,x0(x)

or ϕε,x0(x) (and, thanks to the natural change of function ũ = uϕ−ε,x0 , to the classical
spaces without weight). Furthermore, all the constants in such estimates only depend on
the weight exponent and Cφ (and on some regularity constants of the boundary) and are
independent of the concrete choice of φ and the shape of Ω , see [75,165,237,242], and
the references therein. This also explains why the linear theory of PDEs in uniformly local
spaces is very similar to that in the unweighted spaces.

We are now ready to return to the main issues of this subsection, namely, the definition of
the proper phase spaces Φ for dissipative PDEs in unbounded domains and the derivation
of the basic dissipative estimate

(5.7)
∥∥S(t)u0

∥∥
Φ

� Q
(‖u0‖Φ

)
e−αt + C, u0 ∈ Φ, t � 0, α > 0.

A “general” answer to these questions can be formulated as follows:
(1) use the uniformly local Sobolev spaces W

l,p
b (Ω) or L

p
b (Ω) as phase spaces, e.g., in

a Hilbert setting, i.e., p = 2;
(2) use the so-called weighted energy estimates and weighted regularity theory to obtain

a dissipative estimate in the spaces W
l,p
φε,x0

(Ω);

(3) pass from the weighted to the uniformly local spaces by using the second estimate
of (5.6) with φ = 1.

This machinery has been successfully applied to many physically relevant PDEs in un-
bounded domains, including various types of reaction–diffusion equations (see [9,75,76,
165], and [237]), damped wave equations (see [87] and [235]), elliptic equations in un-
bounded domains (see [166] and [224]), and even the Navier–Stokes equations in a strip
(see [242]).

For the reader’s convenience, we illustrate below such a scheme on the relatively simple
example of a reaction–diffusion system in Ω = R

3 (see [237] for more details):

(5.8)∂tu = a�xu − λu − f (u) + g, u|t=0 = u0.
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Here, u = (u1, . . . , uk) is an unknown vector-valued function, a is a constant diffusion
matrix satisfying the standard assumption a + a∗ > 0, λ > 0 is a fixed constant, g corre-
sponds to the external forces and belongs to L2

b(R
3)k , and f is a given nonlinear interaction

function satisfying the following standard dissipativity assumptions:

(5.9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1. f ∈ C1
(
R

k, R
k
);

2. f (u) · u � −C;
3. f ′(u) � −K;
4.

∣∣f (u)
∣∣ � C

(
1 + |u|p);

u ∈ R
k , C, K � 0, where u.v denotes the usual inner product in R

k and p � 0 is arbitrary.

THEOREM 5.5. Let the above assumptions hold. Then, for every u0 ∈ Φb := L2
b(R

3)k ,
problem (5.8) possesses a unique solution u(t) ∈ Φb and the following dissipative estimate
holds:

(5.10)
∥∥u(t)

∥∥
L2

b
� C‖u0‖L2

b
e−αt + C

(
1 + ‖g‖L2

b

)
, t � 0,

where the positive constants α and C are independent of u0.

PROOF. We only give a formal derivation of the dissipative and uniqueness estimates. The
remaining details can be found in [237]. We multiply Eq. (5.8) by uφ2, where φ(x) =
φε,x0(x) := e−ε|x−x0|, for a sufficiently small ε which will be fixed below, and integrate
with respect to x ∈ R

n. Then we have

1/2∂t

∥∥u(t)
∥∥2

L2
φ

+ (
a∇xu(t),∇x

[
φ2u(t)

]) + λ
∥∥u(t)

∥∥2
L2

φ

(5.11)= −(
f

(
u(t)

) · u(t), φ2) + (
φ2u(t), g

)
(here and below, (·,·) denotes the scalar products in L2(R3), L2(R3)k , and L2(R3)3k).
According to the dissipativity assumption (5.9)(2), we see that

(5.12)−(
φ2, f (u) · u

)
� C‖φ‖2

L2 = Cε−3

and, thus, the nonlinear term can be controlled. Furthermore, thanks to the obvious inequal-
ity

(5.13)
∣∣∇xφε,x0(x)

∣∣ � Cεφε,x0(x),

together with the positivity of a, we conclude that, if ε > 0 is small enough, the following
estimate holds:(

a∇xu,∇x

[
φ2u

]) + λ‖u‖2
L2

φ

� 2α
(‖∇xu‖2

L2
φ

+ ‖u‖2
L2

φ

) − Cε
(|u|, |∇xu|φ2)

(5.14)� α
(‖∇xu‖2

L2
φ

+ ‖u‖2
L2

φ

)
,

for some positive constant α which is independent of x0. Inserting these estimates
into (5.11), we deduce that

∂t

∥∥u(t)
∥∥2

L2
φ

+ 2α
∥∥u(t)

∥∥2
W

1,2
φ

� C
(
1 + ‖g‖2

L2
φ

)
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and the Gronwall inequality gives

∥∥u(T )
∥∥2

L2
φε,x0

+
∫ T +1

T

∥∥u(t)
∥∥2

W
1,2
φε,x0

dt

(5.15)� C
∥∥u(0)

∥∥2
L2

φε,x0

e−2αT + C
(
1 + ‖g‖2

L2
φε,x0

)
.

It is crucial here that the constants C and α in this inequality are independent of x0. There-
fore, taking the supremum over x0 ∈ R

3 and using the second relation of (5.6) with
φ = 1, we deduce the required dissipative estimate (5.10) in the uniformly local phase
space Φb = L2

b(R
3)k .

We now verify the uniqueness. Let u1(t) and u2(t) be two solutions of (5.8) and set
v(t) := u1(t) − u2(t). Then this function solves the linear equation

(5.16)∂tv = a�xv − λv − l(t)v, l(t) :=
∫ 1

0
f ′(su1(t) + (1 − s)u2(t)

)
ds.

We note that, due to the third (quasimonotonicity) assumption of (5.9), we have l(t) � −K .
Multiplying now equation (5.16) by vφ2

ε,x0
, using the last inequality, and arguing exactly

as in the derivation of the dissipative estimate, we obtain

(5.17)
∥∥v(t)

∥∥2
L2

φε,x0

� CeKt
∥∥v(0)

∥∥2
L2

φε,x0

,

for some positive constant C which is independent of x0. This estimate gives the unique-
ness and finishes the proof of the theorem. �

REMARK 5.6. We see that the growth restriction (5.9)(4) has not been used in the proof
of uniqueness and of the derivation of the dissipative estimate. However, this assumption
is necessary in order to show that the associated solution satisfies Eq. (5.8) in the sense of
distributions. Furthermore, as shown in [237], f (u(t)) and �xu(t) belong to L2

b(R
3)k , for

every t > 0, so that the equation can be understood as an equality in L2
b(R

3)k .

REMARK 5.7. Estimates (5.15) and (5.17) show that the reaction–diffusion problem (5.8)
is well-defined not only in the uniformly local phase space Φb = L2

b(R
3)k , but also in

the larger phase space Φε := L2
e−ε|x|(R

3)k , provided that ε > 0 is small enough. Roughly
speaking, this space contains not only all functions which are bounded as |x| → +∞,
but also functions which grow at most like eε|x| at infinity. Thus, the alternative choice of
the weighted phase space Φε (or the choice of weighted spaces with polynomial weights
as in the first articles on this subject, see [21]) is also possible here, see also [18,75],
and [227]. However, such a choice has essential drawbacks related to the addition of the
above spatially unbounded solutions. Indeed, on the one hand, all the dissipative structures
mentioned above are bounded as |x| → +∞, so that the class of bounded (uniformly
local) solutions seems physically natural and sufficient. On the other hand, the analytical
properties of the equations in spaces of spatially unbounded functions are essentially more
complicated (in particular, even in the case that we consider, there is no differentiability
with respect to the initial data in Φε). Furthermore, even the uniqueness in such classes
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is strongly related to the restrictive quasimonotonicity assumption (5.9)(3) and can be vi-
olated if it is not satisfied, see [75]. Thus, the choice of the uniformly local phase spaces
seems more general and preferable.

REMARK 5.8. We note that, in contrast to bounded domains, the space C∞(Ω) is not
dense in the uniformly local space L2

b(Ω). As a consequence, even the linear equation (5.8)
with f = g = 0 does not generate an analytic semigroup in L2

b(R
3)k and, in particular,

the solution u(t) is not continuous at t = 0 for generic u0 (i.e., u /∈ C([0, T ], L2
b(R

3)k)).
However,

u ∈ C
([0, T ], L2

φ

(
R

3)k)
,

for every φ ∈ L1(R3), see, e.g., [236]. This inconvenience can be overcome by introducing
a more restrictive uniformly local space L̃2

b(Ω) as follows:

L̃2
b(Ω) := [

C∞(Ω)
]
L2

b(Ω)
,

where [·]V denotes the closure in the space V . Roughly speaking, u ∈ L̃2
b(Ω) means the

boundedness of the L2
b-norm, plus some kind of “translation compactness”. Indeed, as

proven in [236], at least for Ω = R
n, the space L̃2

b(Ω) coincides with the space of the so-
called translation compact functions introduced by Chepyzhov and Vishik for the theory of
nonautonomous attractors, see [49]. We recall that the function u ∈ L2

b(R
n) is translation

compact if its hull,

H(u) := [
Tsu, s ∈ R

n
]
L2

loc
, Tsu(x) := u(x + s), s, x ∈ R

n,

is compact in the local space L2
loc(R

n). Under such a more restrictive choice of the phase
space, the analytic semigroups theory works and the continuity of u(t) also holds, see [9]
and the references therein. We note however that, although it is crucial for the general ana-
lytic semigroups approach, the above density problem does not seem to be essential for the
weighted energy methods considered here, since every u ∈ L2

b(Ω) can obviously be ap-
proximated by smooth functions in the local topology of L2

loc(Ω), and this is enough in or-
der to establish the existence of a solution, see, e.g., [75] and [237]. Furthermore, verifying
the artificial translation compactness requirement is an extremely difficult (unsolvable?)
problem for more complicated equations (such as the two-dimensional and, especially, the
three-dimensional Navier–Stokes equations in cylindrical domains, see [242] and [243]).
Thus, we will no longer consider the space L̃2

b(Ω) in this survey.

5.2. Attractors and locally compact attractors

We now consider the theory of attractors in the uniformly local phase spaces. The first
essential difference here is that, contrary to bounded domains, the embedding

(5.18)W
1,2
b (Ω) ⊂ L2

b(Ω)
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is not compact. Thus, the usual smoothing (or asymptotically smoothing) properties are
not sufficient to establish the existence of a compact attractor in the uniformly local phase
spaces. As a consequence, the global attractor only exists in some exceptional cases (which
will be considered in the next subsection) in the initial phase space and, in order to construct
a general theory, the compactness assumption must be weakened. In particular, as shown
in [237], already for the simple real Ginzburg–Landau equation in R,

∂tu = ∂2
xu + u − u3,

the associated set of equilibria is not compact in L2
b(R). Thus, this equation cannot have a

compact global attractor in the phase space L2
b(R).

This difficulty is overcome by a systematic use of the local topology of L2
loc(Ω) and

the related locally compact global attractors. To be more precise, the set A is the locally
compact global attractor for the semigroup S(t) acting on the uniformly local phase space
Φb := W

l,p
b (Ω) if:

(i) it is bounded in Φb and compact in the local topology of Φloc := W
l,p

loc (Ω̄);
(ii) it is invariant, S(t)A = A, ∀t � 0;

(iii) it attracts the bounded subsets of the phase space Φb in the local topology of Φloc.
This means that, for every bounded subset B of Φb and every bounded subdomain Ω1
of Ω ,

lim
t→+∞ distWl,p(Ω1)

(
S(t)B|Ω1 ,A|Ω1

) = 0,

where u|Ω1 denotes the restriction of the function u (defined in Ω) to the subdomain Ω1.

REMARK 5.9. It is not difficult to see that the attractor defined above is a (Φb,Φloc)-
attractor in the terminology of Babin and Vishik, and, consequently, its existence can be
verified, e.g., by using the general attractor’s existence Theorem 2.20. However, in con-
trast to the case of usual global attractors, the compactness assumption on the absorb-
ing/attracting sets should now be verified in the local topology of Φloc only. Since the
embedding

W
l+α,p
b (Ω) ⊂ W

l,p

loc (Ω̄)

is compact for α > 0, verifying such a compactness assumption can be reduced (exactly
as in the case of bounded domains) to the derivation of an appropriate smoothing property
for the equations under study.

For the reader’s convenience, we illustrate the above theory on the reaction–diffusion
system (5.8) (see [68,75,76,161], and [165] for more general classes of reaction–diffusion
equations, [52,87], and [235] for damped wave equations, and [242] and [243] for the
Navier–Stokes equations in unbounded domains).

THEOREM 5.10. Let the assumptions of Theorem 5.5 hold. Then the semigroup S(t)

possesses the locally compact global attractor A in the uniformly local phase space
Φb = L2

b(R
3)k .
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SKETCH OF THE PROOF. According to the abstract attractor’s existence theorem men-
tioned above, we need to verify that the semigroup S(t) is continuous in the local topology
of Φloc := L2

loc(R
3)k on every bounded subset of Φb and that there exists a compact (in

the topology of Φloc) absorbing set (for bounded subsets of Φb).
The continuity follows in a standard way from estimate (5.17). Thus, we only need to

construct a compact absorbing set.
As usual, the basic dissipative estimate (5.10) guarantees that the ball of radius R, BR :=

{u, ‖u‖L2
b

� R}, in the phase space Φb is an absorbing set if R is large enough. However,
this ball is obviously not compact in Φloc. For this reason, we construct a new absorbing
set in the following standard way:

B := [
S(1)BR

]
Φloc

.

Since the embedding W
1,2
b (R3)k ⊂ Φloc is compact, it is sufficient, in order to prove

that the set B is compact in Φloc (and, thus, finish the proof of the theorem), to prove a
smoothing property on the solutions of problem (5.8) of the following form:

(5.19)
∥∥u(1)

∥∥2
W

1,2
b

� C
(
1 + ∥∥u(0)

∥∥2
L2

b
+ ‖g‖2

L2
b

)
,

where the constant C is independent of u.
In order to prove (5.19), we multiply Eq. (5.8) by the following expression:

(5.20)t

3∑
i=1

∂xi

(
φ2∂xi

u(t)
) =: t.Tφu(t),

where φ(x) = φε,x0(x) := e−ε|x−x0| and ε > 0 is small enough. Then, integrating with
respect to x, we have

1

2
∂t

(
t
∥∥∇xu(t)

∥∥2
L2

φ

) + λt
∥∥∇xu(t)

∥∥2
L2

φ
+ t

(
a�xu(t), Tφu(t)

)
(5.21)= ∥∥∇xu(t)

∥∥2
L2

φ
− t

(
φ2f ′(u(t)

)∇xu(t),∇xu(t)
) + t

(
g, Tφu(t)

)
.

Using now the positivity of a and estimate (5.13), we note that

(a�xu, Tφu) �
(
a�xu, φ2�xu

) − Cε
(
φ2|�xu|, |∇xu|)

(5.22)� α‖�xu‖2
L2

φ

− Cε2‖∇xu‖2
L2

φ

,

for some positive constant α. Using this estimate, together with the quasimonotonicity
assumption f ′(u) � −K , we deduce from (5.21) that

∂t

(
t
∥∥∇xu(t)

∥∥2
L2

φ

) + λt
∥∥∇xu(t)

∥∥2
L2

φ
+ t

∥∥�xu(t)
∥∥2

L2
φ

� C(t + 1)
(‖g‖2

L2
φ

+ ∥∥∇xu(t)
∥∥2

L2
φ

)
.

Integrating this estimate with respect to t ∈ [0, 1] and using (5.15) to estimate the time
integral of ∇xu, we find

(5.23)
∥∥u(1)

∥∥2
W

1,2
φε,x0

� C
(
1 + ‖g‖2

L2
φε,x0

+ ∥∥u(0)
∥∥2

L2
φε,x0

)
,
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where the constant C is independent of x0. Taking the supremum over x0 ∈ R
3 in both

sides of this inequality and using (5.6), we obtain the required smoothing property (5.19),
which finishes the proof of Theorem 5.10. �

REMARK 5.11. The trick consisting in multiplying equation (5.8) by the expression
Tφu (suggested in [237]) allows to estimate the nonlinear term f (u) in an optimal way
by only using the quasimonotonicity assumption (exactly as in bounded domains). In
contrast to this, the straightforward multiplication of the equation by φ2�xu (as per-
formed in [18] and [21]) gives, when integrating by parts in the nonlinear term, the ad-
ditional “bad” term (∇xφ

2f (u)T ,∇xu) and the extremely restrictive growth assumption
p � 1 + min{4/n, 2/(n − 2)} in (5.9)(4) is necessary in order to handle it. Thus, in three
space dimensions, this yields that p < 7/3, and even cubic nonlinearities cannot be treated.
The above mentioned simple trick allows to avoid to impose a growth restriction to prove
the existence of attractors.

5.3. The finite dimensional case

Before discussing the general infinite dimensional case in the next sections, we consider
some rather exceptional cases in which the global attractor remains finite dimensional.
As we will see below, in such cases, in spite of the fact that the underlying domain is
unbounded, the attractor is localized (up to exponentially decaying terms) in some bounded
domain (due to some special structural assumptions on the nonlinearity and the external
forces). Thus, the corresponding theory is very similar to that in bounded domains and
seems to be well-understood now (see [1,18,21,68,71,75,90,160,235], and the references
therein).

As above, we consider, for simplicity, the reaction–diffusion system (5.8), although the
approach described below has a general nature, see, e.g., [235] for nonlinear damped wave
equations, [88] for degenerate parabolic equations, and [10] for the Navier–Stokes equa-
tions.

The most commonly used structural assumption on the nonlinearity f (suggested
in [21]) is the following one:

(5.24)f (u) · u � 0, ∀u ∈ R
k

(compare with (5.9)(2)). In addition, some decay assumptions on the external forces g as
|x| → +∞ are necessary. In order to formulate them, we need to introduce some more
specific classes of uniformly local spaces.

DEFINITION 5.12. Let Ω be a sufficiently smooth unbounded domain. The space
Ẇ

l,p
b (Ω) consists of all functions u ∈ W

l,p
b (Ω) which satisfy

(5.25)lim|x0|→+∞ ‖u‖Wl,p(Ω∩B1
x0

) = 0.

Roughly speaking, the space Ẇ
l,p
b (Ω) consists of all functions u ∈ W

l,p
b (Ω) which decay

as |x| → +∞. In particular, obviously, Wl,p(Ω) ⊂ Ẇ
l,p
b (Ω).
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Finally, following [68], we impose a decay assumption on the external forces g of the
form

(5.26)g ∈ L̇2
b

(
R

3)k
.

The following simple lemma (see [71]) is a key technical tool in the theory.

LEMMA 5.13. Let g ∈ L̇2
b(Ω)k and set

Rg(x0) := ‖g‖2
L2

φε,x0

,

for some positive ε. Then

(5.27)lim|x0|→+∞ Rg(x0) = 0.

Returning to the reaction–diffusion system (5.8) and to the weighted dissipative esti-
mate (5.15), we see that, owing to the structural assumption (5.24) (instead of f (u) · u �
−C), the constant 1 disappears in the right-hand side of (5.15) and we have an homoge-
neous estimate,

(5.28)
∥∥u(t)

∥∥2
L2(B1

x0
)k

� C1
∥∥u(t)

∥∥2
L2

φε,x0

� C2e−αt
∥∥u(0)

∥∥2
L2

φε,x0

+ C2‖g‖2
L2

φε,x0

,

where the positive constants C2 and α are independent of x0 and u. In particular, the first
term in the right-hand side vanishes on the attractor and we have

(5.29)‖u‖2
L2(

B1
x0

)k � C2Rg(x0), ∀u ∈ A.

Thus, owing to Lemma 5.13, A ⊂ L̇2
b(R

3)k and, besides, (5.29) gives a uniform “tail es-
timate” as |x| → +∞ with respect to all functions on the attractor. This tail estimate,
together with the embedding A ⊂ W

1,2
b (R3)k which follows from the smoothing property

(5.19), guarantee the compactness of the (locally compact) attractor A on the initial topol-
ogy of the phase space as well. Finally, a slightly more accurate analysis of estimate (5.28)
allows to check the asymptotic compactness of the associated semigroup S(t) in Φb. Thus,
we have the following result (see [68] and [71] for a detailed proof).

THEOREM 5.14. Let the assumptions of Theorem 5.5 hold and let, in addition, the struc-
tural assumptions (5.24) and (5.26) be satisfied. Then the semigroup S(t) associated with
the reaction–diffusion system (5.8) possesses the compact global attractor A on the initial
uniformly local phase space Φb (exactly as in bounded domains).

Furthermore, exactly as in bounded domains, we have the finite dimensionality of the
above global attractor in the phase space.

THEOREM 5.15. Let the assumptions of the previous theorem hold. Then the global at-
tractor A has finite fractal dimension. Furthermore, the associated semigroup possesses a
finite dimensional exponential attractor M in the phase space Φb.
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The proof of this theorem is also based on the uniform tail estimate (5.29) and can be
found in [68] and [71].

REMARK 5.16. In the original article [21], the uniform tail estimate on the global attractor
was proven in an alternative and more complicated way. To be more precise, the equations
were considered in the phase space Φφ := L2

φ(Ω)k , with growing weight functions of the

form φ(x) := (1 + |x|2)N , N > 0 (thus, Φφ consists of functions which decay sufficiently
fast at infinity). Then the compactness of the global attractor in Φφ was deduced by proving
the embedding

A ⊂ L2
φα (Ω)k ∩ W

1,2
φ (Ω)k,

for some α > 1. This however requires the artificial restriction g ∈ L2
φ(Ω)k and some

additional assumptions on f . In particular, the Hilbert case φ = 1 was not covered by this
approach. This drawback was overcome in [227], in which a more accurate method to es-
timate the tails in the Hilbert case Φ = L2(Ω)k was suggested and the compactness of the
attractor for φ = 1 was proven. An alternative very simple and effective way to handle the
Hilbert case φ = 1 is based on the so-called energy method, see [24,198], and [217]. This
approach is based on the elementary fact that a weakly convergent sequence in a Hilbert
(reflexive) space converges strongly if the associated sequence of norms converges to the
norm of the limit function. The convergence of the norms is then verified by passing to the
limit in the energy equality. Thus, the asymptotic compactness of the semigroup can be
verified without requiring to work on weighted spaces. This approach is especially helpful
for complicated equations (such as the Navier–Stokes equations) for which estimates in
weighted spaces are rather difficult to obtain, see [217]. A drawback of this approach is
that it does not give any qualitative nor quantitative information on the spatial structure of
the global attractor, which are available when using weighted spaces, and only works in
the Hilbert case. However, it is worth noting that, as usual, the global attractor (if it ex-
ists) is independent of the choice of the admissible phase space, see [75], so that all cases
mentioned above are actually contained in the general Theorems 5.14 and 5.15.

REMARK 5.17. We finally mention that the constant λ in (5.8) can be replaced by
x-dependent functions λ(x) which are not necessarily positive everywhere, see [9]
and [160]; actually, it is sufficient to require that

(a∇xv,∇xv) + (λv, v) � λ0‖v‖2
W 1,2, ∀v ∈ W 1,2(

R
3)k

, λ0 > 0.

Indeed, all the estimates given above can be obtained by repeating word by word the corre-
sponding proofs. Another slight generalization consists in considering functions f which
depend on x and requiring that, instead of (5.24),

f (x, u) · u � −C(x), x ∈ R
3, u ∈ R

k,

where C belongs to L̇1
b(R

3).

We now formulate, following essentially [235] (see also [71]), some natural generaliza-
tions of the structural assumption (5.24) and discuss the spatial asymptotics of the global
attractor.
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ASSUMPTION A. Let the nonlinearity f and the external forces g ∈ L2
b(R

3)k be such that
there exists a solution Z0(x) of the associated elliptic equilibrium problem

(5.30)

a�xZ0 − λZ0 − f (Z0) + g = 0, x ∈ R
3\BR

0 , Z0 ∈ W
2,2
b

(
R

3\BR
0

)k
,

outside a large ball BR
0 of R

3 which satisfies the following property:

(5.31)
[
f

(
v + Z0(x)

) − f
(
Z0(x)

)] · v � 0, v ∈ R
k, x ∈ R

3\BR
0 .

The following generalization of Theorem 5.14 gives the spatial asymptotics of the global
attractor up to exponentially small terms.

THEOREM 5.18. Let the assumptions of Theorem 5.5 hold and let Assumption A be sat-
isfied. Then the associated semigroup S(t) possesses the global attractor A in the phase
space Φb which satisfies the following estimate:

(5.32)‖u0 − Z0‖L2(B1
x0

)k � Ce−α|x0|, |x0| > R + 1, u0 ∈ A,

where the positive constants C and α are independent of u0 ∈ A and x0.

SKETCH OF THE PROOF. Let Z̃0(x), Z̃0 ∈ W
2,2
b (R3)k , be some extension of Z0(x) inside

the ball BR
0 . Then this function satisfies

(5.33)a�xZ̃0 − λZ̃0 − f (Z̃0) + g = g̃,

where g̃ ∈ L2
b(R

3)k and supp g̃ ⊂ BR
0 .

We now set v(t) := u(t) − Z̃0. Then this function solves

(5.34)∂tv = a�xv − λv − [
f (v + Z̃0) − f (Z̃0)

] + g̃.

We recall that, owing to Assumption A, [f (v + Z̃0) − f (Z̃0)] · v � 0, for x /∈ BR
0 . Using

the quasimonotonicity assumption f ′(v) � −K to estimate this term inside the ball BR
0 ,

we infer [
f

(
v(x) + Z̃0(x)

) − f
(
Z0(x)

)] · v(x)

� −K
∣∣v(x)

∣∣2
χR(x)

(5.35)� −K
(∣∣u(x)

∣∣2 + ∣∣Z̃0(x)
∣∣2)

χR(x), x ∈ R
3,

where χR(x) is the characteristic function of the ball BR
0 .

Multiplying now equation (5.34) by φ2
ε,x0

v(t) and arguing exactly as in the derivation
of (5.15) and (5.28), we conclude that

(5.36)‖v‖2
L2

φε,x0

� C
(‖uχR‖2

L2
φε,x0

+ ‖Z̃0χR‖2
L2

φε,x0

+ ‖g̃χR‖2
L2

φε,x0

)
,

where the constant C is independent of x0 and v ∈ A− Z̃0. Multiplying this inequality by
the weight function

φ(x0) := inf
z∈BR

0

eα|x0−z|,
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with α < ε (which, obviously, is a weight function with an exponential growth α), taking
the supremum over x0 ∈ R

3, and using the second equivalence in (5.6), we finally find

(5.37)‖v‖2
L2

b,φ

� C
(‖uχR‖2

L2
b

+ ‖Z̃0χR‖2
L2

b

+ ‖g̃‖2
L2

b

)
� C1,

where we have implicitly used the fact that the L2
b-norm of the attractor is bounded. There

remains to note that (5.37) is equivalent to (5.32) to finish the proof of Theorem 5.18. �

REMARK 5.19. If, in addition, the attractor A is bounded in Cb(R
3)k by some constant L,

it is, obviously, sufficient to verify estimate (5.31) from Assumption A only for |v| � 2L.
We also note that Theorem 5.18 shows, in particular, that the spatial asymptotics (5.32)
holds with Z0 replaced by any true equilibrium of the problem.

We conclude the section by giving two examples to illustrate the above theorem.

EXAMPLE 5.20. Let the assumptions of Theorem 5.14 hold. We claim that Assumption A
is automatically satisfied here and, therefore, the global attractor A possesses the spatial
asymptotics (5.32). Indeed, as proven in [237], A is globally bounded in W

2,2
b (R3)k . This

fact, together with a proper interpolation inequality and the tail estimate (5.29), yield

(5.38)‖u‖C(B1
x0

)k � C
[
Rg(x0)

]1/4
.

Therefore, the global attractor also belongs to Ċb(R
3)k and is bounded in this space. In

particular, any equilibrium z0(x) of this problem satisfies lim|x|→+∞ z0(x) = 0. Thus, in
order to verify Assumption A, with Z0 = z0, it is sufficient to check that there exists ε > 0
such that

(5.39)
[
f (v + z) − f (z)

] · v � −λ/2|v|2,
for every v, z ∈ R

k , |v| � 2L (L is the C-diameter of the attractor) and |z| � ε. Indeed,
Assumption A then holds with f replaced by f (u) + λ/2u, for a sufficiently large R =
R(ε). In order to verify inequality (5.39), we consider two cases, namely, |v| � δ and
|v| > δ, where δ > 0 is a sufficiently small number to be fixed. In the first case, both v and
z are small, so that inequality (5.39) follows from the continuity of f ′ and the fact that,
owing to assumption (5.24), f (0) = 0 and f ′(0) � 0. We now consider the second case
(δ > 0 has been fixed at this stage). It is sufficient, in view of inequality (5.24) and the
assumption |v| > δ, to find ε > 0 such that

f (v + z) · z + f (z) · v � λδ/2,

for every |z| � ε and |v| � 2L. Since f (0) = 0, the existence of such an ε = ε(δ, L)

is straightforward, see [235] for more details. Thus, Assumption A is verified and Theo-
rem 5.18 (together with the W

2,2
b -bound on the attractor) now gives

(5.40)
∣∣u(x) − z0(x)

∣∣ � Ce−α|x|, ∀u ∈ A, x ∈ R
3.
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REMARK 5.21. In particular, we see that, although the rate of convergence to zero of
the external forces g determines that of any function belonging to the global attractor, the
“thickness” of the attractor decays exponentially, no matter how slow this rate is. Thus, the
attractor is, in fact, concentrated (up to exponentially small terms) in a bounded domain.
This property clarifies the nature of the finite dimensionality of the attractor in that case.
Furthermore, to the best of our knowledge, such an exponential localization holds for all
examples for which the finite dimensionality is known.

EXAMPLE 5.22. We consider the real Ginzburg–Landau equation in R
3,

(5.41)∂tu = �xu + u − u3 + g.

We claim that Assumption A is satisfied if g ∈ L2
b(R

3) and

(5.42)lim inf|x|→+∞ g(x) >
2

3
√

3
.

Indeed, an elementary analysis shows that[
f (v + z) − f (z)

] · v � 0, ∀v ∈ R, f (u) := u3 − u,

if and only if |z| > 2√
3

. On the other hand, assumption (5.42) guarantees that the function

W0(x) := 2√
3

+ ε is a subsolution of (5.41) if ε is small enough and |x| is large enough.
Therefore, by the comparison principle, there exists a solution Z0 of the equilibrium equa-
tion (5.30) outside a large ball which satisfies Z0(x) > 2√

3
+ ε and Assumption A is

verified. Thus, we see that, under assumption (5.42), the global attractor is spatially local-
ized (in the sense of estimate (5.40)) and, for this reason, it is compact in L2

b(R
3) and finite

dimensional. As already mentioned in the previous section, when g = 0, the associated
global attractor is not compact in L2

b(R
3) (and is infinite dimensional).

5.4. The infinite dimensional case: entropy estimates

Starting from this section, we consider the general case in which the dimension of the
global attractor is infinite. Indeed, the simplest way to understand why this dimension
must be infinite in general is to consider the real one-dimensional Ginzburg–Landau equa-
tion (5.41) with zero external forces; we also consider the space periodic solutions with
period 2L. Then the associated dynamical system acting on the space L2

per([−L,L]) of 2L-
periodic functions is dissipative and possesses the (finite dimensional) global attractor AL.
Furthermore, we see that, by computing the dimension of the unstable set at u = 0,

dimF AL � dimMun(0) � 2L

π
.

On the other hand, since the phase space L2
per([−L,L]) is contained in the phase space

Φb := L2
b(R), we also have the embedding

AL ⊂ A,
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where A is the (locally compact) global attractor of the equation in the whole space. Thus,
since the dimension of AL grows as L → +∞, the dimension of A cannot be finite.

This simple example shows that, in contrast to bounded domains, we cannot now ex-
pect any finite dimensional reduction in general and the dynamics reduced to the global
attractor remains infinite dimensional. However, it is intuitively clear that the attractor A
is essentially “thinner” than the initial phase space and, in some proper sense, the reduced
dynamics can be described by less degrees of freedom here as well. Now, in order to make
this observation rigorous, we need to be able to compare the “thickness” of infinite dimen-
sional sets.

One possible approach to this problem (which is widespread in the approximation the-
ory, see, e.g., [219]) consists in using the Kolmogorov ε-entropy, see Definition 2.28. In-
deed, owing to the Hausdorff criterium, the entropy Hε(X,M) is finite for every ε > 0 and
every compact subset X of the metric space M . Then, according to formula (2.13), the set
X is finite dimensional if and only if

Hε(X,M) � d log2
1

ε
+ C,

for some constants C and d which are independent of ε → 0+. So, under this approach,
the infinite dimensionality of X just means that the quantity Hε(X) has another, more
complicated, asymptotics as ε → 0+, which is to be found or estimated.

To the best of our knowledge, the idea of using the Kolmogorov ε-entropy in the theory
of attractors was suggested by Chepyzhov and Vishik in [221] in order to study the infinite
dimensional uniform attractors of nonautonomous dynamical systems in bounded domains.
However, such an approach appears as especially adapted to the study of equations in
unbounded domains and, starting from [56] and [233], the ε-entropy has become one of
the most powerful technical tools in view of the study of the locally compact attractors in
large and unbounded domains.

We start our considerations by giving several examples of asymptotics of the ε-entropy
for some typical infinite dimensional function spaces.

EXAMPLE 5.23. Let Ω be a regular bounded domain, M := Wl1,p1(Ω), and X be the
unit ball of the space Wl2,p2(Ω), with

1

p1
− l1

n
>

1

p2
− l2

n
.

Then it is well-known that X is (pre)compact in M , so that Hε(X,M) is well-defined and
satisfies

(5.43)C1

(
1

ε

)n/(l2−l1)

� Hε(X,M) � C2

(
1

ε

)n/(l2−l1)

,

where the constants C1 and C2 are independent of ε, see, e.g., [219].

Thus, the typical asymptotics of the entropy of Sobolev spaces embeddings are polyno-
mial with respect to ε−1. The next example shows the typical behavior of the entropy for
classes of analytic functions embeddings.



164 A. Miranville and S. Zelik

EXAMPLE 5.24. Let K be the set of all analytic functions f in a ball BR of radius R in C
n

such that ‖f ‖C(BR) � 1 and let M be the space C(BRe), where BRe := {z = (z1, . . . , zn) ∈
C

n, Im zi = 0, i = 1, . . . . , n, |z| � 1}. Thus, K consists of all functions of C(BRe) which
can be holomorphically extended to the ball BR and for which the C-norm of this extension
is less than one. Then

(5.44)C1

(
log2

1

ε

)n+1

� Hε(K,M) � C2

(
log2

1

ε

)n+1

,

see [132].

In particular, the above asymptotics show, in a mathematically rigorous way, that the
set of real analytic functions is indeed essentially smaller than that of functions with finite
smoothness Ck .

We now recall that, here, the global attractor is not compact, but only locally compact,
in the phase space. In order to compare such types of sets, we need to introduce, follow-
ing [132], the so-called entropy per unit volume or mean ε-entropy.

DEFINITION 5.25. Let K be a locally compact set in some uniformly local space Φb :=
W

l,p
b (Rn). Then, for every hypercube [−R,R]n, the entropy Hε(K|[−R,R]n) of the restric-

tion of K to this hypercube is well-defined. By definition, the mean ε-entropy of K is the
following (finite or infinite) quantity:

(5.45)H̄ε(K,Φb) := lim sup
R→+∞

1

(2R)n
Hε(K|[−R,R]n).

As we will see below, the next example is crucial for the theory of attractors in un-
bounded domains.

EXAMPLE 5.26. Let Bσ (Rn), σ ∈ R+, be the subspace of L∞(Rn) consisting of all
functions u whose Fourier transform û has a compact support,

supp û ⊂ Bσ
0 := {

ξ ∈ R
n, ‖ξ‖ � σ

}
.

It is well known that the space Bσ (Rn) consists of entire functions (i.e., functions which
are analytic on the whole space R

n) with an exponential growth. Furthermore, if B(σ ) is
the unit ball in this space (endowed with the usual L∞-metric), then

(5.46)C1 log2
1

ε
� H̄ε

(
B(σ )

)
� C2 log2

1

ε
,

where C1 and C2 depend on σ , but are independent of ε, see [132]. Moreover, we have,
concerning the entropy of the restrictions B(σ )|[−R,R]n ,

(5.47)C1R
n log2

1

ε
� Hε

(
B(σ )|[−R,R]n

)
� C2

(
R + log2

1

ε

)n

log2
1

ε
,

where C1 and C2 are independent of ε and R. We can note that these estimates are sharp
for R � log2

1
ε

and for R ∼ log2
1
ε
, but, for R � log2

1
ε
, the lower bound is far from
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being optimal and can be corrected as follows:

(5.48)Hε

(
B(σ )|[−R,R]n

)
� CR

(
log2(1/ε)

(log2 log2 1/ε)n

)n+1

,

where CR depends on R, but is independent of ε. The proof of estimates (5.47) and (5.48)
can be found in [236].

Finally, we also mention the analogue of Example 5.23 for the uniformly local case.

EXAMPLE 5.27. Let the exponents li and pi , i = 1, 2, be the same as in Example 5.23.
Let also K be the unit ball in the space W

l2,p2
b (Rn) and set M := W

l1,p1
b (Rn). Then

(5.49)C1

(
1

ε

)n/(l2−l1)

� H̄ε(K,M) � C2

(
1

ε

)n/(l2−l1)

,

where the constants C1 and C2 are independent of ε. Actually, these estimates immediately
follow from (5.43).

We are now ready to formulate the universal entropy estimates for the uniformly local
attractors of dissipative systems in unbounded domains which, as we will see below, are
natural generalizations of the fractal dimension estimates to systems in unbounded do-
mains. These estimates have the following form:

(5.50)Hε

(
A|Ω∩BR

x0
, Φb

(
Ω ∩ BR

x0

))
� C vol

(
Ω ∩ B

R+L log2 1/ε
x0

)
log2

1

ε
,

where vol(·) denotes the usual Lebesgue measure in R
n and the constants C and L are

independent of R, x0, and ε. Thus, (5.50) gives upper bounds on the entropy of the restric-
tions of the attractor A to all bounded subdomains Ω ∩ BR

x0
which depend on the three

parameters R, x0, and ε.
The above formula has a general nature, independent of the concrete class of dissipative

systems considered, and has been verified for various classes of reaction–diffusion systems
(see [76,233,236], and [237]), for damped wave equations (see [235]), and even for elliptic
boundary value problems in unbounded domains (see [166]). Indeed, roughly speaking, it is
sufficient, in order to prove such estimates, to verify a weighted analogue of the “parabolic”
smoothing property (2.14),

(5.51)
∥∥S(1)u1 − S(1)u2

∥∥
W

1,2
φμ,x0

� L‖u1 − u2‖L2
φμ,x0

, u1, u2 ∈ A,

for some fixed μ and every x0 in Ω (or its “hyperbolic” analogues (3.2) and (3.3)), see [235]
and [236]. Thus, these entropy estimates are also based on rather simple and general
(weighted) energy estimates and do not use any specific property of the dissipative sys-
tem under study. This somehow clarifies the nature of their universality. We also mention
that the upper entropy estimates are sharp with respect to the three parameters R, x0, and R

(appropriate examples of lower bounds will be given in the next subsections).
In order to further clarify these universal entropy estimates, we conclude this subsection

by considering the most interesting particular cases and by comparing them with the typical
asymptotics given above.
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EXAMPLE 5.28. Let Ω be a bounded domain. Then vol(Ω ∩ BR
x0

) = vol(Ω) if R is large
enough. Therefore, (5.50) gives

Hε(A) � C vol(Ω) log2
1

ε
.

Thus, in the case of bounded domains, the entropy formula allows to recover the stan-
dard result on the finite dimensionality of the global attractor and reflects in a correct way
the typical dependence of the dimension on the size of the domain (dimF A ∼ vol(Ω),
see [22]). However, even in that case, the entropy estimate gives some additional infor-
mation which may be important, especially for large bounded domains, namely, it allows
to estimate the entropy of the restrictions A|B1

x0
and, thus, to study the “thickness” of the

attractor with respect to the position inside the domain.

EXAMPLE 5.29. We now assume that Ω = R
n. Then vol(Ω ∩ BR

x0
) = cRn and (5.50)

reads

(5.52)Hε

(
A|BR

x0

)
� C

(
R + L log2

1

ε

)n

log2
1

ε
.

We see that this estimate coincides with the upper bound (5.47) for the space Bσ (Rn) of
entire functions and, in particular, dividing (5.52) by Rn and passing to the limit R → +∞,
we also obtain the analogue of (5.46),

(5.53)H̄ε(A) � C log2
1

ε

(for the one-dimensional real Ginzburg–Landau and damped wave equations, this estimate
was obtained independently in [55] and [57]). Thus, we see that the “thickness” of the
attractor A is of the order of that of the class Bσ (Rn) of entire functions and is essen-
tially less than that of the class of finite smoothness, see Examples 5.23 and 5.27 (and,
in particular, it is essentially less than the thickness of any absorbing set). However, even
when all the terms in the equations are entire, the attractor is usually not entire (the sim-
plest example is the real Ginzburg–Landau equation) and only the analyticity in a strip
Rμ := i[−μ,μ]n × R

n takes place. The mean entropy for such classes of functions has
an asymptotics of the form (log2

1
ε
)1+p, for some p > 0, and is worse than (5.53). There-

fore, even in the real analytic case, the nature of the universal entropy estimates cannot be
explained by regularity arguments and reflects the dynamical reduction of the number of
degrees of freedom by the dissipative dynamics. Furthermore, we emphasize here that the
analyticity is not necessary for the validity of the entropy estimates. In particular, these es-
timates hold for the reaction–diffusion system (5.8) under the assumptions of Theorem 5.5,
see [237]. In that case, the regularity of f and g only yields that A ⊂ W

2,2
b (Ω)k , so that

the best entropy estimates which can be extracted from this regularity is polynomial with
respect to ε−1 (ε−3/2 to be more precise).

REMARK 5.30. Estimates (5.50) can be rewritten in the more compact equivalent form

(5.54)Hε(A, Φe−|x−x0|) � C

(
log2

1

ε

)n+1

,
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i.e., the entropy of the attractor can be equivalently computed in weighted phase spaces
with the exponential weight functions e−|x−x0|. In particular, in the spatially homogeneous
case, the sole space Φe−|x| with x0 = 0 is sufficient. Indeed, using the simple “summation”
properties of the Kolmogorov entropy, one can easily show that (5.54) implies (5.50). Ac-
tually, estimate (5.50) has first been obtained precisely in this form, see [233]. However,
we prefer to use the more complicated formulation (5.50) in order to avoid artificial weight
functions in the formulation and to prevent from the confusing feeling that log2 terms in
the entropy estimates are related to the artificial choice of exponential weight functions and
are, thus, also artificial.

5.5. Infinite dimensional exponential attractors

In this subsection, we discuss the theory of exponential attractors for systems in un-
bounded domains, following essentially [72]. Since even the global attractor (which is al-
ways contained in an exponential attractor) is now infinite dimensional, one cannot expect
an exponential attractor to be finite dimensional. Thus, this assumption must be relaxed in
Definition 3.4. On the other hand, this assumption cannot be simply omitted, since, other-
wise, any compact absorbing set would be an exponential attractor, which does not make
sense. In any case, one wants to make an exponential attractor as small as possible (i.e., to
add a “minimal number” of new artificial points to the global attractor) and, therefore, it is
natural to use the Kolmogorov entropy to control its “thickness”; in particular, it is natural
to look for an exponential attractor which satisfies the universal entropy estimates (5.50)
known for global attractors (an analogous idea was also used in [69] for infinite dimen-
sional exponential attractors for nonautonomous problems in bounded domains).

Another difference, when compared with bounded domains, is the fact that the locally
compact global attractor only attracts the bounded sets in the local topology (counterex-
amples for the attraction in the uniform topology of the initial phase space can be easily
constructed, see [236]). Thus, one would expect the same type of attraction for exponential
attractors as well. However, as shown in [72], this drawback of the theory of global attrac-
tors can be overcome by constructing proper exponential attractors and one can obtain the
(exponential) attraction in the topology of the initial phase space.

Thus, based on the above considerations, the following modifications of the concept of
an exponential attractor are natural.

DEFINITION 5.31. Let S(t) be a dissipative semigroup in the uniformly local Sobolev
space Φb := W

l,p
b (Ω), for a regular unbounded domain Ω . A set M is an (infinite di-

mensional) exponential attractor for the semigroup S(t) if the following conditions are
satisfied:

(i) it is bounded in Φb and compact in Φloc;
(ii) it is positively invariant, S(t)M ⊂ M, t � 0;

(iii) it attracts exponentially the bounded subsets of Φb in the uniform topology of Φb,
i.e., there exist a monotonic function Q and a positive constant α such that, for
every bounded subset B ⊂ Φb, the following estimate:

(5.55)distΦb

(
S(t)B,M

)
� Q

(‖B‖Φb

)
e−αt

holds, for every t � 0;
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(iv) it satisfies the universal entropy estimates (5.50), for some positive constants C and
L which are independent of R, x0, and ε.

The following theorem, proven in [72], gives the existence of such an object for the
reaction–diffusion system (5.8).

THEOREM 5.32. Let the assumptions of Theorem 5.5 be satisfied. Then the associated
semigroup S(t) possesses an infinite dimensional exponential attractor M in the phase
space Φb = L2

b(R
3)k in the sense of the above definition.

This result is, to the best of our knowledge, the only one on the existence of infinite di-
mensional exponential attractors in unbounded domains. However, its construction mainly
exploits the smoothing estimate (5.51) on the difference of two solutions, but does not in-
volve the specific properties of the reaction–diffusion system (5.8). Thus, we expect that
the existence of such an exponential attractor is a general fact which can be established
for all dissipative systems in unbounded domains for which the validity of the universal
entropy estimates is satisfied (for the global attractor).

We conclude this subsection by considering the problem of the approximation of equa-
tions in an unbounded domain by appropriate equations in large bounded domains. It is
well-known that the global attractor is not robust with respect to this singular limit and
can change drastically. To illustrate this, we consider the one-dimensional real Ginzburg–
Landau equation with a transport term,

(5.56)∂tu = ∂2
xu − L∂xu + u − u3, L > 2,

and approximate it by analogous equations in the bounded domains ΩR := [−R,R], end-
owed with Dirichlet boundary conditions. Then, as shown in [72], the global attractor AR

for the approximate problem is trivial for every (finite) R, AR = {0}. However, the limit
attractor for R = +∞ is completely nontrivial and has infinite dimension and infinite
topological entropy. Thus, this approximation problem seems to be very difficult as far as
global attractors are concerned and, probably, cannot be solved in a reasonable way.

In contrast to this, as the following theorem (proven in [72]) shows, this approximation
problem has a natural and adequate solution in terms of exponential attractors.

THEOREM 5.33. Let the reaction–diffusion system (5.8) in the unbounded domain
Ω = R

3 satisfy the assumptions of Theorem 5.5 and let S∞(t) be the associated dissi-
pative semigroup acting on Φb = L2

b(R
3)k . We also consider the same problem in the

large, but bounded, ball ΩR = BR
0 in R

3 with Dirichlet boundary conditions and we let
SR(t) be the dissipative semigroup associated with this problem on Φb(R) := L2

b(B
R
0 )k .

Then there exists a family of closed bounded sets MR , R ∈ [R0,+∞], of Φb(R) such
that, for every finite R, MR is an exponential attractor for SR(t) in the usual sense and,
for R = +∞, the corresponding set is an infinite dimensional exponential attractor for
S∞(t). Furthermore, the following additional properties are satisfied:

(1) the sets MR are uniformly (with respect to R) bounded in Φb(R);
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(2) there exist a positive constant α and a monotonic function Q such that, for every R

and every bounded subset B of Φb(R),

distΦb(R)

(
SR(t)B,MR

)
� Q

(‖B‖Φb(R)

)
e−αt

(uniform exponential attraction);
(3) uniform entropy estimates:

Hε

(
MR|ΩR∩Br

x0

)
� C vol

(
ΩR ∩ B

r+L log2 1/ε
x0

)
log2

1

ε
,

where the constants C and L are independent of R, r � R, x0, and ε;
(4) the attractors MR tend to M∞ in the following sense:

(5.57)distsym,Φb(r)(MR|Ωr ,M∞|Ωr ) � Ce−γ (R−r),

where the positive constants C and γ are independent of R and r � R.

In particular, estimate (5.57) shows that, if we want to approximate the attractor M∞
with an accuracy ε inside the ball Ωr , it is sufficient to construct the usual finite dimen-
sional exponential attractor MR(ε) for the reaction–diffusion problem in a ball of radius
R(ε) = r + L log2

1
ε
. We also note that one cannot expect that MR approximates M∞ in

the whole ball ΩR , since the additional boundary conditions on ∂ΩR for the approximate
problems should be satisfied. Nevertheless, estimate (5.57) also shows that the influence of
the boundary and the boundary conditions decays exponentially with respect to the distance
to the boundary (in agreement with our physical intuition).

5.6. Complexity of space–time dynamics: entropy theory

In the previous subsections, we gave sharp upper bounds on the Kolmogorov ε-entropy
which characterize the “size” or “thickness” of the attractors. Starting from this subsection,
we describe some general dynamical properties of a dissipative system in a large or an
unbounded domain, restricted to its global attractor.

As already mentioned, contrary to bounded domains, the reduced dynamics now remains
infinite dimensional and dynamical effects of essentially new higher levels of complexity
(which are not observable in the classical finite dimensional theory of dynamical systems)
may appear. In particular, the Lyapunov and topological entropy dimensions for such dy-
namics are usually infinite, see [239]. For this reason, most ideas and methods from the
classical theory fail (at least in a straightforward way) to describe these new types of dy-
namics. Thus, a new theory, which is only developing now, is required.

Another essential difference from the classical theory is the fact that, in addition to
complicated temporal dynamics, the solutions may have very irregular (chaotic) spatial
structures, i.e., the so-called spatial chaos may appear. Furthermore, as a result of the
chaotic temporal evolution of spatially chaotic structures, the so-called space–time chaos
may appear.

The most studied case is that of spatial chaos which is already observable on the set of
temporal equilibria of the dynamical system. Indeed, the equilibria satisfy some elliptic
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equation of the form

(5.58)a�xu − f (u) + g = 0,

so that the number of independent variables is reduced by one, which is an essential sim-
plification. So, in the particular case of one space variable, (5.58) becomes an ODE and
the (spatially) chaotic behaviors of its solutions can be successfully studied by classical
theories (homoclinic bifurcation analysis, variational methods for constructing complex
solutions, . . . , see [4,127,187], and the references therein). Furthermore, many interesting
multi-dimensional problems in cylindrical domains can be reduced to this one-dimensional
one by using the so-called spatial center manifold reduction, see [3,30,128,163,164], and
the references therein. Also, direct generalizations of the techniques from ODEs to multi-
dimensional elliptic PDEs of the form (5.58) (e.g., the shadowing lemma, variational meth-
ods, . . .) are available, see, e.g., [8] and [194]. We finally mention a rather simple and very
effective method to construct spatially chaotic patterns which are, in addition, stable with
respect to the time developed in [2,13,14], and [16]. This method is based on the study of
homotopy properties of the level sets of the nonlinear term f and related energy function-
als and is somehow close to the variational methods, see the recent survey [15] for more
details.

We however note that all the above mentioned methods give examples of spatial chaotic
behaviors with finite topological entropy (usually related to the Bernoulli scheme M :=
{0, 1}Z or Mn := {0, 1}Z

n
in the multi-dimensional case), which is typical of ODEs, but

does not capture the “whole” complexity of the spatial dynamics, since its topological en-
tropy is usually infinite, see [55,166,237], and [239]. In order to overcome this problem, an
alternative method, related to the so-called infinite dimensional essentially unstable mani-
folds and the Kotelnikov formula, which gives a description of the spatial chaos in terms of
the Bernoulli scheme Mn := [0, 1]Zn

with a continuous number of symbols and an infinite
topological entropy, has been suggested in [237]. This method will be discussed in more
details in the next subsection.

Now, the case of full space–time dynamics is essentially less understood. However, even
here, some reasonable progress related to the so-called Sinai–Bunimovich space–time for
continuous media has recently been obtained. This topic will be discussed in a subsequent
subsection.

In the remaining of this subsection, we discuss (following essentially [239] and [241])
topological and smooth invariants for the space–time dynamics which are strongly based
on the universal entropy estimates on the global attractor and give useful “upper bounds” on
the possible complexity of the dynamics. For simplicity, we restrict ourselves to Ω = R

n

and to spatially homogeneous dissipative systems (i.e., the coefficients and external forces
do not depend explicitly on x; this constitutes a natural analogue of “autonomous” sys-
tems for space–time dynamics). In that case, the attractor A possesses a very important
additional structure, namely, the group {Th, h ∈ R

n} of spatial shifts acts on it,

(5.59)ThA = A, h ∈ R
n, Thu(x) := u(x + h), h, x ∈ R

n.

Thus, in addition to the temporal evolution semigroup S(t), we also have the action of the
spatial shifts group Th on the attractor which, obviously, commutes with S(t). As a result,
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the extended (n + 1)-parametric spatio-temporal semigroup S(t, h),

(5.60)S(t, h)A = A, S(t, h) := S(t) ◦ Th, t � 0, h ∈ R
n,

acts on the attractor.
Following [237] and [239], we will treat this multi-parametric semigroup as a dynami-

cal system with multi-dimensional “time” (t, h) ∈ R+ × R
n, which describes the space–

time behavior of the dissipative system under study, and we will describe the space–time
chaos by finding appropriate dynamical invariants of this action. In particular, under this
approach, the spatial x and temporal t directions are treated in a unified way. Some justi-
fications for such a unification will be given at the end of the next subsection when giving
examples for which these directions are indeed equivalent (in spite of the fact that they
seem essentially different from an intuitive point of view).

In order to introduce these invariants, we need to make some reasonable assumptions on
the attractor A, namely,

(i) it is locally compact on some uniformly local Sobolev phase space Φb = Φb(R
n)

which is embedded into L∞(Rn);
(ii) the dissipative system is spatially homogeneous, i.e., the extended semigroup (5.60)

acts on the attractor;
(iii) the universal entropy estimates (5.52) hold;
(iv) the evolution semigroup S(t) is Lipschitz continuous in a weighted space

Φe−ε|x|(Rn) on the attractor,∥∥S(t)u0 − S(t)u1
∥∥

Φe−ε|x| � Cekt‖u0 − u1‖Φe−ε|x| ,

(5.61)u0, u1 ∈ A, t � 0,

for some fixed ε > 0 and positive constants C and L which are independent of t ,
u0, and u1.

We note that the assumption Φb ⊂ L∞(Rn) is not essential and was introduced in [239]
just to avoid additional technicalities.

The first, and most natural, dynamical invariant of the action of (5.60) is its topological
entropy, see [127] for details.

DEFINITION 5.34. We endow the attractor A with the topology of L∞
e−|x|(R

n) and define,
for every R ∈ R+, an equivalent metric dR on A by

dR(u0, u1) := sup
(t,h)∈R·[0,1]n+1

∥∥S(t, h)u0 − S(t, h)u1
∥∥

L∞
e−|x|

,

(5.62)u0, u1 ∈ L∞
e−|x|

(
R

n
)
.

Since A is bounded in Φb and compact in Φloc, it is compact in L∞
e−|x|(R

n) (thanks to
the embedding Φb ⊂ L∞(Rn)) and, therefore, it is also compact in the metric of dR and
the Kolmogorov ε-entropy Hε(A, dR) is well-defined. Then the topological entropy of the
action of S(t, h) on A is the following quantity:

(5.63)htop
(
S(t, h),A

) := lim
ε→0+ lim sup

R→+∞
1

Rn+1
Hε(A, dR).
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REMARK 5.35. Although this definition depends on the specific metric, it is well known
(see, e.g., [127]) that the topological entropy only depends on the topology and is inde-
pendent of the choice of the equivalent metric on A. Furthermore, it is also not difficult
to show that the space L∞(Rn) in the definition of dR can be replaced by Φe−|x|(Rn),
see [239]. However, we define dR by special exponentially weighted metrics keeping in
mind other invariants which will depend on this choice.

We now recall that the topological entropy for one-parametric evolution semigroups
S(t) is usually finite in the classical theory of dynamical systems. The following theorem,
proven in [239], can be considered as a generalization of this principle to spatially extended
systems.

THEOREM 5.36. Let the attractor A satisfy the above conditions. Then the topological
entropy of the action of the extended space–time semigroup S(t, h) is finite,

htop
(
S(t, h),A

)
< +∞.

Furthermore, it coincides with the so-called topological entropy per unit volume (intro-
duced by Collet and Eckmann, see [55] and [57]) and can be computed by the following
simplified formula:

htop(S(t, h),A)

= lim
ε→0+ H̄ε

(
K, L∞(

R
n+1))

(5.64)= lim
ε→0+ lim

R→+∞
1

Rn+1
Hε

(
K|R·[0,1]n+1 , L

∞(
R · [0, 1]n+1)),

where K ⊂ L∞(R, Φb) ⊂ L∞(Rn+1) is the set of all bounded trajectories of the dissipa-
tive system (the so-called kernel in the terminology of Chepyzhov and Vishik, see [49]) and
H̄ε(K) denotes its mean ε-entropy, see Definition 5.25.

REMARK 5.37. It can also be shown that any sufficiently regular bounded subdomain
V ⊂ R

n can be chosen as a “window” instead of [0, 1]n+1 in (5.64), namely,

H̄ε(K, L∞(
R

n+1) = lim
R→+∞

1

vol(R · V )
Hε

(
K|R·V , L∞(R · V )

)
.

We now note that the complexity of the dynamical behaviors of the extended sys-
tem (5.60) may essentially differ in different directions. In particular, for the so-called ex-
tended gradient systems, see [97,213,238], and [239], the space–time topological entropy
htop(S(t, h),A) vanishes, due to the simpler temporal dynamics induced by the gradient
structure, which however does not reduce the complexity of the spatial dynamics. In order
to capture these directional dynamical effects, it seems natural to consider the k-parametric
subsemigroups S

Vk (t, h) of the extended space–time dynamical system S(t, h) generated
by the restrictions of the argument (t, h) to k-dimensional linear subspaces of the space–
time R

n+1,

(5.65)S
Vk (t, h) := {

S(t, h), (t, h) ∈ Vk, t � 0, h ∈ R
n
}
,
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and to study their invariants with respect to the linear space Vk and its dimension k. For
instance, the choice V1 = Rt gives the purely temporal dynamics, S

V1(t, h) = S(t), the
choice Vn = R

n
x gives the spatial dynamics and spatial chaos, S

Vn(t, h) = Th, and the
intermediate choices of planes Vk describe the interactions between the temporal and the
spatial chaotic modes, e.g., the complexity of profiles of traveling waves.

In particular, it seems natural to study the topological entropies htop(S
Vk (t, h),A) of

the action of these semigroups on the attractor (i.e., the directional topological entropies
introduced by Milnor for cellular automata, see [169]). Now, in contrast to the cellular
automata, these entropies are typically infinite for dissipative dynamics if k < n + 1. In
order to overcome this difficulty, it was suggested in [239] to modify the definition of
the topological entropy by taking into account the typical rate of divergence of the mean
entropy as ε → 0+.

DEFINITION 5.38. Let Vk be a k-dimensional plane in R
n+1 and let [0, 1]kVk

be its unit
hypercube generated by some orthonormal basis in Vk . Analogously to (5.62), for every
R > 0, we introduce a new metric d

Vk

R by

d
Vk

R (u0, u1) := sup
(t,h)∈R·[0,1]kVk

∥∥S(t, h)u0 − S(t, h)u1
∥∥

L∞
e−|x|

,

(5.66)u0, u1 ∈ L∞
e−|x|

(
R

n
)
.

Then a modified topological entropy ĥtop(S
Vk ) of the action of the directional dynamical

system S
Vk (t, h) on the attractor is given by the following quantity:

(5.67)ĥtop
(
S

Vk (t, h),A
) := lim sup

ε→0+

(
log2

1

ε

)k−n−1

lim sup
R→+∞

1

Rk
Hε

(
A, d

Vk

R

)
,

see [239] for details.

We see that the above definition differs from the classical one by the presence of a nor-
malizing factor (log2 1/ε)k−n−1 which guarantees that this quantity is finite. In particular,
if the modified entropy is strictly positive (examples of such cases will be given in the next
subsection), then the corresponding classical topological entropy must be infinite.

The next theorem from [239] establishes the finiteness of these modified quantities and
gives some of their basic relations.

THEOREM 5.39. Let the assumptions of Theorem 5.36 hold. Then, for every k and every
k-dimensional plane Vk , the associated modified entropy ĥtop(S

Vk ) is finite,

ĥtop
(
S

Vk (t, h),A
)

< +∞.

Furthermore, if Vk1 ⊂ Vk2 , then

(5.68)ĥtop
(
S

Vk2 (t, h),A
)

� Lk2−k1 ĥtop
(
S

Vk1 (t, h),A
)
,

where L is some constant which is independent of ki and Vki
, i = 1, 2.
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REMARK 5.40. Inequalities (5.68) can be considered as a natural generalization of the
classical inequality relating the fractal dimension to the topological entropy to the spa-
tially extended case. Indeed, in the case of an ODE (without spatial directions), we have
n = 0 and, as it can easily be shown, ĥtop(S

V0) coincides with the fractal dimension of A,
ĥtop(S

V1) gives the classical topological entropy, and (5.68) reads

htop
(
S(t),A

)
� L dimF A,

which coincides with a classical inequality, see [127]. Roughly speaking, the invariant
ĥtop(S

Vk ) has the structure of a topological entropy in the directions of Vk and of a (gener-
alized) fractal dimension in the orthogonal directions, see [239] and [241] for details.

REMARK 5.41. Inequalities (5.68) are particularly useful to verify whether or not some
modified directional entropy is strictly positive. In particular, the positivity of the full
space–time entropy htop(S(t, h),A) (which, e.g., corresponds to the presence of the so-
called Sinai–Bunimovich space–time chaos in the system, see the next subsections) implies
that all the above modified entropies are strictly positive. On the contrary, if

lim
ε→0+

(
log2

1

ε

)−n−1

Hε

(
A, L∞

e−|x|
(
R

n
)) = 0,

then all the above modified entropies automatically vanish.

REMARK 5.42. Analogues of the simplified formulas (5.64) to compute the directional
entropies are also deduced in [239]. In particular, for the spatial dynamics Vn = R

n
x , we

have a particularly simple formula,

(5.69)ĥsp(A) := ĥtop(Th,A) = lim sup
ε→0+

(
log2

1

ε

)−1

H̄ε(A).

Thus, contrary to the usual Kolmogorov ε-entropy which measures the “thickness” of a set
(of the attractor here), the mean ε-entropy is more related to the complexity of its spatial
structure.

REMARK 5.43. To conclude this subsection, it is worth noting that, in contrast to the full
space–time topological entropy, the directional entropies introduced above are not topolog-
ical invariants, but only Lipschitz continuous invariants (like the fractal dimension), due to
the presence of the term log2

1
ε

in the definition. Furthermore, it is possible to show that
there is no topological invariant which is typically finite and strictly positive when k < n.
When k = n (e.g., for spatial dynamics and spatial chaos), such an invariant exists, namely,
the so-called mean topological dimension introduced in [142] (for the Bernoulli scheme
with a continuous number of symbols) which can be obtained as in Definition 5.38, but by
taking the additional infimum with respect to all metrics which induce the local topology
on A, see [239] for details.



Attractors for dissipative PDEs 175

5.7. Lower bounds on the entropy, the Kotelnikov formula, and spatial chaos

In this subsection, we discuss, following essentially [237] and [239], the derivation of
lower bounds on the Kolmogorov ε-entropy and related lower bounds on the complexity
of the dynamics. We start by recalling that, in bounded domains, one usually estimates
the dimension of the global attractor from below by finding a proper equilibrium with a
large instability index and by constructing the associated unstable set. Since an unstable
set always belongs to the global attractor, the instability index of this equilibrium then gives
a lower bound on its dimension, see [22,217], and the references therein.

Thus, it seems natural to try to extend this theory to unbounded domains and to obtain
lower bounds on the ε-entropy from the existence of large (infinite dimensional) unsta-
ble sets for appropriate equilibria. However, the main difficulty here is that, contrary to
bounded domains, the spectrum of an equilibrium usually consists of continuous curves
(or continuous sets) and does not have reasonable spectral gaps in order to use the usual
theory of unstable manifolds. As a consequence, the unstable set of an equilibrium is usu-
ally not a manifold and a straightforward extension fails.

This obstacle can be overcome by using (following [75,237], and [239]) the so-called
essentially unstable manifolds which consist of the initial data of the solutions which tend
to an equilibrium as t → −∞ with a sufficiently fast exponential rate. As the following
theorem (proven in [239]) shows, no spectral gap condition is required for the existence of
such manifolds.

THEOREM 5.44. Let X be a Banach space and let S : X → X be a nonlinear map satis-
fying

(5.70)S(u) = S0u + K(u), K ∈ C1+α(X,X), K(0) = K ′(0) = 0,

for some 0 < α � 1 and some linear operator S0 ∈ L(X,X). Let then the linearization S0
of the operator S at zero be exponentially unstable, i.e.,

r(S0) := sup
∣∣σ(S0, X)

∣∣ > 1,

where σ(L, V ) denotes the spectrum of the operator L in the space V . We finally assume
that there exists a closed invariant subspace X+ of S0 such that

(5.71)inf
∣∣σ(S0|X+ , X+)

∣∣ > θ0 > 1, θ1+α
0 > r(S0).

Then there exists a ball B := BX+(0, ρ) and a C1,α map V :B → X such that∥∥V(x+) − x+
∥∥

X
� C‖x+‖1+α

X , x+ ∈ B.

Furthermore, for every u0 ∈ V(B), there exists a backward trajectory {u(n)}n∈Z− such
that

u(n + 1) = S
(
u(n)

)
, u(0) = u0,

∥∥u(n)
∥∥

X
� Cθn

0 , n ∈ Z−,

and, consequently, V(B) is an essentially unstable manifold of the equilibrium u = 0 of
the map S.
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We see that, in contrast to the usual theory of unstable manifolds, see, e.g., [22], neither
the finite dimensionality of X+ nor any spectral gap assumption (and nor even the existence
of a complement to X+ in X) are required.

We illustrate the application of this theorem to dissipative dynamical systems on the
simple example of the real Ginzburg–Landau equation in R

n,

(5.72)∂tu = �xu + u − u3,

and we consider the equilibrium u = 0. In that case, the first variation equation reads

(5.73)∂tv = �xv + v.

Let S(t) and S0(t) be the solution operators associated with equations (5.72) and (5.73)
in X := L∞(Rn), respectively. Then condition (5.70) is obviously satisfied for S = S(1),
S0 = S0(1), and α = 1. In order to find the space X+, it is sufficient to write the Fourier
transform of S0,

Ŝ0(t)u0(ξ) = e(1−|ξ |2)t û0(ξ).

This shows that r(S0) = e and that the unstable part of the spectrum is related to the
functions B1(R

n), the support of the Fourier transform of which belongs to the unit ball,
see Example 5.26. Furthermore, condition (5.71) is satisfied if we take X+ := Bσ (Rn),
with σ < 1√

2
.

Thus, thanks to Theorem 5.44 and to the fact that an unstable manifold always belongs
to the global attractor, we have verified that the attractor A contains a smooth image of a
ball B of the space Bσ (Rn) (of entire functions with an exponential growth). Combining
this embedding with the lower bounds on the ε-entropy of the spaces Bσ (Rn) collected in
Example 5.26, we obtain the following result.

THEOREM 5.45. The Kolmogorov ε-entropy of the global attractor A of the real
Ginzburg–Landau equation has lower bounds which are analogous to estimates (5.47)
and (5.48) and, consequently, the universal entropy estimates (5.52) are sharp.

Of course, the approach based on infinite dimensional essentially unstable manifolds
described above is not related to any specific property of the Ginzburg–Landau equation,
but has a universal nature. Actually, only the existence of at least one spatially homo-
geneous exponentially unstable equilibrium is necessary to apply this method (and, as a
consequence, to obtain sharp lower bounds on the entropy), see [75,76,237], and [239] for
applications of this method to various types of reaction–diffusion systems and [235] for
damped hyperbolic equations.

As a next step, we mention that the embedding V :B(σ ) → A of the unit ball B(σ ) =
BBσ

(0, 1) in the space of entire functions into the attractor A gives much more than just
estimates on the ε-entropy. Indeed, since the dissipative system and the equilibrium are
spatially homogeneous, the unstable manifold map V commutes with the spatial shifts Th,

Th ◦ V = V ◦ Th, h ∈ R
n,
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and, consequently, we have obtained a smooth embedding of the spatial dynamics on the
space Bσ (Rn) of entire functions into that on the attractor A,

(5.74)V :
(
B(σ ), Th

) → (A, Th),

see [237] for details. Thus, the shifts dynamics on the unit ball B(σ ) gives a universal
model for the spatial dynamics on the attractor.

In order to clarify the complexity of this model dynamics, we need to introduce a special
type of Bernoulli shift dynamics.

DEFINITION 5.46. Let Mn := [0, 1]Zn
be endowed with the Tikhonov topology. We re-

call that Mn consists of all functions v : Z
n → [0, 1] and the Tikhonov topology can be

generated by the following metric:

(5.75)‖v1 − v2‖φ := sup
m∈Zn

{
φ(m)

∣∣v1(m) − v2(m)
∣∣}, v1, v2 ∈ Mn,

where φ is an arbitrary weight function such that lim|m|→+∞ φ(m) = 0. We define the
action of the group Z

n on Mn in the following standard way:

Tlv(m) := v(l + m), v ∈ Mn, l,m ∈ Z
n,

and interpret the group (Mn, Tl ) as a multi-dimensional Bernoulli scheme with a contin-
uum of symbols ω ∈ [0, 1].

Our approach to the study of the dynamics generated by the shifts group (B(σ ), Th)

is based on the following elementary observation: according to the classical Kotelnikov
formula (see [29] and [132]), every function w ∈ Bσ (R)∩L2(R) can be uniquely recover-
ed from its values on the lattice ρZ, ρ = π

σ
,

(5.76)w(x) =
+∞∑

l=−∞
w(ρl)

sin(σx − πl)

σx − πl

(see also the Whittaker–Shennon–Kotelnikov formula, e.g., in [29], which allows to re-
cover an arbitrary function w ∈ Bσ (Rn) from its values on a lattice). Given an arbitrary se-
quence v = {vl}l∈Z ∈ l2, formula (5.76) allows to construct a function w ∈ Bσ (R)∩L2(R)

such that w(ρl) = vl , for every l ∈ Z. Furthermore, the spatial shifts Tρlw of this function
obviously correspond to the shifts Tlv of the sequence v. This leads to a description of the
spatial dynamics on Bσ (R) ∩ L2(R) in terms of the Bernoulli scheme introduced above
(with the additional restriction v ∈ l2). The extension of representation (5.76) in the spirit
of the Whittaker–Shennon–Kotelnikov formula leads to the following result, see [239].

LEMMA 5.47. For every σ > 0, there exist ρ = ρ(σ ) and a map

(5.77)U : Mn → B(σ ) such that Tρl ◦ U = U ◦ Tl , l ∈ Z
n.

Furthermore, for every polynomial weight θ = θN,x0 (see (5.4) with N > 0), there holds

C−1
1 ‖v1 − v2‖θ �

∥∥U(v1) − U(v2)
∥∥

L∞
θ

� C1‖v1 − v2‖θ ,

where C1 depends on N , but is independent of vi ∈ Mn, i = 1, 2.
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Combining this lemma with (5.74), we obtain the following result, see [237] for details.

THEOREM 5.48. Let A be the global attractor of the real Ginzburg–Landau equa-
tion (5.72). Then there exist a positive constant ρ and a map

(5.78)U : Mn → A such that U ◦ Tl = Tρl ◦ U, l ∈ Z
n.

Furthermore, U is continuous in the local topology (and even Lipschitz continuous in ap-
propriate weighted spaces).

Thus, we see that the Bernoulli scheme (Mn, Tl ) can be considered as a universal model
for the spatial dynamics on the attractor A. Indeed, on the one hand, this model has infinite
topological entropy and strictly positive modified entropy ĥsp(Mn, Tl ) (see (5.69)),

(5.79)1 = ĥsp(Mn, Tl ) = ρnĥsp
(
U(Mn), Th

)
� ĥsp(A, Th) < +∞,

and, therefore, this gives an example of spatial dynamics of “maximal” complexity (in the
sense of the entropy theory). On the other hand, (5.78) holds under very weak assumptions
on the dissipative system under study (namely, the existence of at least one spatially homo-
geneous exponentially unstable equilibrium, see [237] and [239]) and thus has a universal
nature.

To conclude this section, we briefly discuss the possibility of extending such a complex-
ity description from the spatial dynamics Vn = R

n
x to the dynamics of S

Vn(t, h), where
Vn contains the temporal direction, e.g., Vn = span{et , ex2 , . . . , exn}. As above, we restrict
ourselves to the real Ginzburg–Landau equation, but now with a transport term along the
x1-axis,

(5.80)∂tu = �xu − L∂x1u + u − u3,

although the result also holds for the general reaction–diffusion system (5.8) under the
assumptions of Theorem 5.5, plus the spatial homogeneity and the exponential instability
of the zero equilibrium, see [241].

The main idea here is to “change” the temporal t and spatial x1 directions by considering
x1 as a new “time” and t as one of the “spatial” variables. Then, describing the spatial chaos
in this new dissipative system by the scheme introduced above, we would automatically
obtain the description of the n-directional space–time chaos in the plane Vn. In order to
realize this strategy, we consider equation (5.80) in the half-space x1 > 0, endow it with
the following unusual “initial” condition:

(5.81)

{
∂tu = �xu − L∂x1u + u − u3, t ∈ R, (x2, . . . , xn) ∈ R

n−1, x1 > 0,

u|x1=0 = u0 ∈ Ψb := L∞(
R

n
)
,

and treat it as an “evolutionary” equation with respect to the time variable x1 and the
spatial variables t , x2, . . . , xn. Clearly, this problem is ill-posed if L = 0 (as well as for
small L). However, as proven in [239] and [241], it indeed generates a well-posed and
smooth dissipative system in Ψb if L is large enough (L > 2 for the real Ginzburg–Landau
equation). Furthermore, the zero equilibrium remains exponentially unstable for this new
system, so that the theory of essentially unstable manifolds is applicable and gives the
following result, see [239].
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THEOREM 5.49. Let A be the global attractor of the real Ginzburg–Landau equa-
tion (5.80) with a sufficiently large transport term (L > 2). Then there exist a positive
constant σ and a map W :B(σ ) → A, which is continuous in the local topology, such that

S(t) ◦ W = W ◦ Ttex1
, Thexi

◦ W = W ◦ Thexi
,

(5.82)i = 2, . . . , n, h ∈ R, t � 0,

where Th�ev(x) := v(x + h�e), h ∈ R, x ∈ R
n.

A combination of this result and Lemma 5.47 gives the desired embedding of the
Bernoulli scheme (Mn, Tl ) into the n-directional space–time dynamics of S

Vn(t, h). In
particular, this embedding shows that the modified topological entropy of this dynamics is
strictly positive,

ĥtop
(
S

Vn(t, h),A
)

> 0,

and, owing to inequalities (5.68), the modified entropy of the temporal evolution group
S(t) (V1 = Rt ) is also strictly positive,

ĥtop
(
S(t),A

)
> 0.

We also recall that the modified entropy for S(t) differs from the classical topological
entropy by the presence of a factor (log2

1
ε
)−n in the definition and, consequently, its posi-

tivity implies that the classical topological entropy is infinite,

(5.83)htop
(
S(t),A

) = +∞.

To the best of our knowledge, this is the first example of a reasonable dissipative system
with an infinite topological entropy.

REMARK 5.50. To conclude, we note that, although the above method gives an adequate
description of the n-directional complexity and the n-directional space–time chaos for an
arbitrary plane Vn under weak assumptions on the system, it does not give reasonable in-
formation on the full (n+1)-directional space–time complexity, since one direction should
be interpreted as the time and we should have exponential divergence in this direction. Fur-
thermore, the (n + 1)-dimensional Bernoulli scheme Mn+1 cannot be embedded into the
global attractor, since its space–time entropy htop(S(t, h),A) is finite, see Theorem 5.36.

5.8. Sinai–Bunimovich space–time chaos in PDEs

In this concluding subsection, we discuss very recent results concerning the full (n + 1)-
directional space–time chaos and, in particular, we give examples of dissipative systems in
unbounded domains with a strictly positive space–time topological entropy,

(5.84)htop
(
S(t, h),A

)
> 0,

which shows that space–time dynamics with a maximum level of complexity (from the
point of view of the entropy theory) can indeed appear in dissipative systems generated by
PDEs.
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We first recall that, in spite of a huge amount of numerical and experimental data on
various types of space–time irregular and turbulent behaviors in various physical systems,
see, e.g., [112,155,156,193], and the references therein, there are very few rigorous math-
ematical results on this topic and mathematically relevant models which describe such
phenomena.

The simplest and most natural known model which exhibits such phenomena is the so-
called Sinai–Bunimovich space–time chaos which was initially defined and found for dis-
crete lattice dynamics, see [5,33,188], and [189]. We also recall that this model consists of
a Z

n-grid of temporally chaotic oscillators coupled by a weak interaction. Then, if a single
chaotic oscillator of this grid is described by the Bernoulli scheme M1 := {0, 1}Z (now
with only two symbols ω ∈ {0, 1}, in contrast to the previous subsection!), the uncoupled
system naturally has an infinite dimensional hyperbolic set which is homeomorphic to the
multi-dimensional Bernoulli scheme Mn+1 := {0, 1}Z

n+1 = (M1)Z
n
. The temporal evo-

lution operator is then conjugated to the shift in Mn+1 along the first coordinate vector and
the other n coordinate shifts are associated with the spatial shifts on the grid. Finally, owing
to the stability of hyperbolic sets, the above structure survives under a sufficiently small
coupling. Thus, according to this model, the space–time chaos can naturally be described
in terms of the multi-dimensional Bernoulli scheme Mn+1.

It is worth noting that, although this model is clearly not relevant to describe the space–
time chaos in the so-called fully developed turbulence (since it does not reproduce the
typical properties, such as energy cascades and the Kolmogorov laws, which are believed
to be crucial for the understanding of this phenomenon), it can be useful and relevant to
describe weak space–time chaos and weak turbulence (close to the threshold), where the
generation and long-time survival of such global spatial patterns are still possible. Fur-
thermore, to the best of our knowledge, it is the only mathematically rigorous model which
gives positive space–time topological entropy and an associated space–time dynamics with
maximal complexity.

Thus, the possibility of having htop(S(t, h)) positive is clear for space-discrete lattice
dissipative systems. However, verifying the existence of such space–time dynamics in
continuous media described by PDEs is an extremely complicated problem. Furthermore,
even the existence of a single PDE which possesses such an infinite dimensional Bernoulli
scheme has been a long-standing open problem.

The first examples of reaction–diffusion systems in R
n with Sinai–Bunimovich space–

time chaos were recently constructed in [167]. We describe below this construction in more
details.

We consider the following special space–time periodic reaction–diffusion equation:

(5.85)∂tu = γ�xu − fλ(t, x, u) in R
n, γ > 0,

where the nonlinearity fλ has the following structure: there exists a smooth bounded do-
main Ω0 � (0, 1)n such that, for every x ∈ [0, 1]n, there holds

(5.86)fλ(t, x, u) :=
{

f (t, u) for x ∈ Ω0,

λu for x ∈ [0, 1]n\Ω0,

where f (t, u) is a given function (which is assumed to be 1-periodic with respect to t) and
λ � 1 is a large parameter. Then we extend (5.86) by space-periodicity from [0, 1]n to
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the whole space R
n. Thus, we have a periodic grid of “islands” Ωl := l + Ω0, l ∈ Z

n,
on which the nonlinearity fλ coincides with f (t, u) and can generate nontrivial dynamics.
These islands are separated from each other by the “ocean” Ω− := R

n\(⋃l∈Zn Ωl), where
we have the strong absorption provided by the nonlinearity fλ(t, x, u) ≡ λu.

It is intuitively clear that, for a sufficiently large absorption coefficient λ, the solutions of
Eq. (5.85) should be small in the absorption domain Ω− and, consequently, the interactions
between the islands are also expected to be small, and the dynamics inside the islands are
“almost-independent”. Thus, if the reaction–diffusion system in Ω0,

(5.87)∂tv = γ�xv − f (t, v) in Ω0, v = 0 on ∂Ω0,

which describes the limit dynamics inside one “island” as λ = +∞, possesses a hyperbolic
set Γ0, then, according to the structural stability principle, the whole system (5.85) should
have a hyperbolic set which is homeomorphic to (Γ0)

Z
n

if the absorption parameter λ is
large enough. Furthermore, if, in addition, the initial hyperbolic set Γ0 is homeomorphic
to the Bernoulli scheme {0, 1}Z, then (5.85) contains an (n + 1)-dimensional Bernoulli
scheme {0, 1}Z

n+1 ∼ ({0, 1}Z)Z
n
, in a complete analogy with the Sinai–Bunimovich lattice

model.
These intuitive arguments were rigorously justified in [167], where the following result

was obtained.

THEOREM 5.51. Let the limit equation (5.87) possess a hyperbolic set which is home-
omorphic to the usual Bernoulli scheme M1 = {0, 1}Z and let some natural assump-
tions on f be satisfied. Then there exists λ0 = λ0(f,M1) such that, for every λ > λ0,
problem (5.85) possesses an infinite dimensional hyperbolic set which is homeomorphic
to Mn+1 = {0, 1}Z

n+1
. Furthermore, the action of the space–time dynamics on this set

(restricted to (t, h) ∈ Z
n+1) is conjugated to the Bernoulli shift on Mn+1.

Since the existence of a hyperbolic set which is homeomorphic to M1 for the reaction–
diffusion system (5.87) in a bounded domain is well-known (the existence of a single
transversal homoclinic trajectory is sufficient in order to have such a result, see [127];
see also [167] for an explicit construction), the above theorem indeed provides examples
for Sinai–Bunimovich space–time chaos in reaction–diffusion systems and, in particular,
examples of reaction–diffusion systems with a strictly positive space–time topological
entropy. Furthermore, owing to the stability of hyperbolic sets, the space discontinuous
nonlinearity fλ can then be replaced by close C∞ ones and, finally, by embedding the
space–time periodic system that we obtain into a larger autonomous one (one creates the
space–time periodic modes by using the additional equations), examples of space–time
autonomous reaction–diffusion systems of the form (5.8) were also constructed in [167].

REMARK 5.52. We note that the spatial grid Z
n (which is crucial for the Sinai–

Bunimovich model) is directly modulated by the special spatial structure of the nonlin-
earity fλ in the continuous model (5.85) (see (5.86)) and, therefore, the above approach
does not allow to find such phenomena in many physically relevant equations for which the
structure of the nonlinearity is a priori given (such as the Navier–Stokes equations, the real
and complex Ginzburg–Landau equations, . . .). In order to overcome this drawback, an



182 A. Miranville and S. Zelik

alternative, potentially more promising, approach was suggested in [168], where the spa-
tial grid is obtained by using the so-called spatially-localized solutions (pulses, standing
solitons, . . .) initially situated in the nodes of the grid. Then, due to the “tail”-interaction
between solitons, a weak temporal dynamics appears and this dynamics allows a center
manifold reduction to a lattice system of ODEs (roughly speaking, this system describes
the temporal evolution of the soliton centers, see [79,168], and [204] for details). Finding
then the Sinai–Bunimovich space–time chaos in these reduced lattice equations, one can
lift it to the initial PDE. The advantage of this method is that the spatial grid is now modu-
lated in an implicit way by the positions of localized solutions in space and the center man-
ifold reduction, and the underlying dissipative system may be autonomous and spatially
homogeneous. In particular, this approach was realized in [168] for the one-dimensional
space–time periodically perturbed Swift–Hohenberg equation,

(5.88)∂tu + (
∂2
x + 1

)2
u + β2u + u3 + κu2 = h(t, x),

for values of β and κ for which the existence of a spatially localized soliton is known.
To be more precise, for these values of β and κ , the existence of a hyperbolic set M2

for (5.88) is proven for special (rather artificial) space–time periodic external forces h with
arbitrary small amplitudes. The presence of these external forces are unavoidable for the
Swift–Hohenberg model, since it belongs to the class of the so-called extended gradient
systems and, when h = 0, its space–time topological entropy vanishes, see [239], and
the Sinai–Bunimovich space–time chaos is then impossible. Finally, we also mention a
very recent result [220] in which the above method allowed to prove the existence of a
Sinai–Bunimovich space–time chaos for the one-dimensional complex Ginzburg–Landau
equation,

∂tu = (1 + iβ)∂2
xu + γ u − δu|u|3 + ε,

where β ∈ R, γ, δ ∈ C, and ε is an arbitrary small real parameter. Contrary to the above
examples, this equation is already space–time homogeneous and does not contain any arti-
ficial nonlinearity or external forces. This confirms that the Sinai–Bunimovich space–time
chaos may appear in natural PDEs arising from mathematical physics.

6. Ill-posed dissipative systems and trajectory attractors

In this concluding subsection, we briefly discuss possible extensions of the theory of at-
tractors to ill-posed problems. Indeed, in all the above results, we required the solution
operator

(6.1)S(t) : u0 �→ u(t)

to be well-defined and continuous (in a proper phase space). However, as mentioned in the
introduction, in several cases, such a result is not known or does not hold.

There exist two approaches to handle dissipative systems without uniqueness.
The first one allows the solution operator (6.1) to be multi-valued (set-valued) and then

extends the theory of attractors to semigroups of multi-valued maps. Actually, all the results
on the existence of the global attractor given in Subsection 2.2 have their natural analogues
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in the multi-valued setting, see [11,19,23,24,50,158,159,201,208,209], and the references
therein; see also [37,141], and [231] for nonautonomous systems.

An alternative, more geometric, approach consists in changing the phase space of the
problem and in passing to the so-called trajectory phase space and the associated trajectory
dynamical system, which is single-valued, and, thus, the usual theory of attractors can be
applied, see [46–49,89,210,211,222,223,232], and the references therein. We illustrate this
approach on the simple example of an ODE in E = R

n, see [49] for details,

(6.2)u′ + f (u) = 0, u(0) = u0,

for some, at least, continuous nonlinearity f . We also assume that the system is dissipative,
so that it is globally solvable for every u0 ∈ E and the following estimate holds:

(6.3)
∥∥u(t)

∥∥
E

� Q
(∥∥u(0)

∥∥
E

)
e−αt + CF , t � 0,

for some positive constants α and CF and monotonic function Q and for every solution u

of (6.2). This holds, e.g., if f satisfies a dissipativity assumption of the form

f (u) · u � −C + β|u|2, u ∈ R
n, C, β > 0.

Let us assume for a while that f is Lipschitz continuous. Then we have the uniqueness of
solutions and, for every two solutions u1(t) and u2(t), the following estimate holds:

(6.4)
∥∥u1(t) − u2(t)

∥∥
E

� CeKt
∥∥u1(0) − u2(0)

∥∥
E
, t � 0,

where the constants C and K depend on ‖ui(0)‖E , i = 1, 2.
In this classical case, the dissipative estimate (6.3) guarantees the existence of a compact

absorbing set for the semigroup S(t) associated with problem (6.2) via (6.1) (we recall that
dim E < +∞). Thus, this semigroup possesses the global attractor Agl on E which has
the usual structure,

(6.5)Agl = K|t=0,

where K ⊂ Cb(R, E) is the kernel (i.e., the set of all bounded complete trajectories of
problem (6.2), see Subsection 2.1).

We now define a trajectory phase space for problem (6.2) as follows:

(6.6)Ktr := {
u ∈ Cb(R+, E), u(t) = S(t)u0, u0 ∈ E, t � 0

}
.

In other words, Ktr consists of all positive trajectories of (6.2) starting from all points
u0 ∈ E. Then, owing to the uniqueness, Ktr is isomorphic to E by the solution operator
Su0 := u(·) = S(·)u0,

S : E → Φb := Cb(R+, E), S(E) = Ktr,

(6.7)S−1u = u(0), u ∈ Ktr, S−1Ktr = E.

Furthermore, as it is not difficult to see, the semigroup S(t) is conjugated to the time
translations on Ktr under this isomorphism,

Tt : Ktr → Ktr, Tt = S ◦ S(t) ◦ S−1,

(6.8)Ttu(s) := u(t + s), t � 0, s ∈ R.
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We call the shifts semigroup {Tt , t � 0} acting on the trajectory phase space the trajectory
dynamical system associated with problem (6.2).

We now fix a class of bounded sets and a topology on Ktr via this isomorphism. Indeed,
obviously, the set B ⊂ E is bounded if and only if S(B) is bounded in Φb (see the dissi-
pative estimate (6.3)) and S is an homeomorphism if we endow the phase space Ktr with
the topology of Φloc := Cloc(R+, E) (due to the Lipschitz continuity (6.4)).

Thus, owing to the homeomorphism S, the existence of the global attractor Agl for
the semigroup S(t) on E is equivalent to that of the (Φb,Φloc)-global attractor Atr of
the trajectory dynamical system (Tt ,Ktr) (we recall that a (Φb,Φloc)-attractor attracts the
bounded subsets of Φb in the topology of Φloc, see [22]). We refer the attractor Atr as the
trajectory attractor associated with problem (6.2). As usual, this trajectory attractor is also
generated by the set K of all bounded complete trajectories of the problem,

(6.9)Atr = K|t�0, Agl = Atr|t=0.

A key observation here is that, although crucial for the usual global attractor Agl, the
uniqueness and continuity (6.4) are not necessary for the existence of the global attractor
Atr for the trajectory dynamical system (Tt ,Ktr) and can be relaxed. Indeed, the phase
space Ktr is well-defined and the shifts semigroup Tt acts continuously on it, no matter
whether or not the uniqueness holds (only the dissipative estimate (6.3) is necessary to en-
sure that Ktr ⊂ Φb; of course, we also need the continuity of f to ensure that the solutions
exist and Ktr is not empty). Furthermore, the dissipative estimate (6.3) also guarantees that
the set

Btr := {
u ∈ Ktr, ‖u‖Φb

� R
}

is a Φb-absorbing set for Tt . Finally, this absorbing set is compact in the Φloc-topology
(since E is finite dimensional and we have a uniform control on the norm of du/dt for
every u ∈ Btr from Eq. (6.2)). Thus, the existence of the trajectory attractor Atr is verified
when f is only continuous and we have the following theorem.

THEOREM 6.1. Let the nonlinearity f in (6.2) be continuous and let the dissipative es-
timate (6.3) be satisfied for all solutions. Then the trajectory dynamical system (Tt ,Ktr)

possesses the (Φb,Φloc)-global attractor Atr (which is the trajectory attractor associated
with problem (6.2)) which is generated by all bounded complete trajectories of the system,

(6.10)Atr = K|t�0.

It is also worth noting that, projecting this trajectory attractor Atr, we obtain the global
attractor Am−v

gl for the multi-valued semigroup S(t) associated with problem (6.2) in a
standard way,

(6.11)Am−v
gl = Atr|t=0,

see [49] for details.
Thus, we see that, although the trajectory approach usually essentially gives the same

object as the multi-valued semigroup (see (6.11)), it allows, on the one hand, to avoid the
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use of “unfriendly” multi-valued maps and, on the other hand, to study the long time be-
havior for ill-posed problems by using the classical theory of attractors for single-valued
semigroups. We also note that the trick consisting in passing from the usual to the tra-
jectory dynamical system may be useful even when the uniqueness holds. In particular,
the aforementioned l-trajectories method for estimating the dimension of global attractors
and constructing exponential attractors is essentially based on this trick, see [153] and the
references therein. Furthermore, this trick was also used in [167] to prove the persistence
of hyperbolic trajectories when the perturbation is not small in the initial phase space, but
only in some averaged time-integral norms.

However, it is worth mentioning that the above trajectory approach has not been applied
to artificial problems like (6.2) (for which the nonuniqueness appears due to the lack of
regularity on f ), but to extremely complicated equations such as the three-dimensional
Navier–Stokes equations and even to equations in compressible fluid mechanics for which
only minimal information on the associated weak solutions is available. This leads to sev-
eral unusual “common” delicate points in the theory which we would like to outline before
passing to more relevant examples.

REMARK 6.2. (a) Very often, the dissipative estimate (6.3) can be verified not for every
solution belonging to some function space, but only for some special weak solutions (e.g.,
obtained by Galerkin approximations, as for the three-dimensional Navier–Stokes equa-
tions). So, one should somehow exclude the “pathological”, possibly non-dissipative, tra-
jectories from the trajectory phase space Ktr. By doing this, one should, however, take a
special care to preserve the action of the shifts semigroup on Ktr. In particular, the di-
rect way which consists in incorporating the dissipative estimate into the phase space Ktr,
i.e., in defining Ktr as the set of all trajectories satisfying a dissipative estimate of the
form (6.3), may fail for this very reason. Indeed, typically, for ill-posed problems, we can
construct a solution which satisfies the energy inequality between t = 0 and any t = T

(which gives the dissipative estimate), but not between t = τ and t = T for τ > 0
(see the example of a damped wave equation below). So, in that case, we cannot verify
a dissipative estimate of the form (6.3) starting from t = τ and, for this reason, we lose
the invariance TtKtr ⊂ Ktr which is crucial in the theory! This problem can be over-
come (following [47]) by using, instead of (6.3), a weaker dissipativity assumption of the
form

(6.12)
∥∥u(t)

∥∥
E

� Cue−αt + CF or ‖Ttu‖Φb
� Cue−αt + CF , t � 0,

where the positive constants α and CF are the same as in (6.3), except that Cu is now some
constant depending on u (without specifying any relation with u(0)). Such dissipative in-
equalities are, obviously, invariant with respect to time shifts and the action of Tt on Ktr is
recovered.

(b) In order to prove the existence of the global attractor, one usually uses a compact
absorbing/attracting set Btr ⊂ Ktr. The semi-compactness is usually not a problem, since
the weak and weak-∗ topologies are used, and immediately follows from energy estimates.
The fact that the limit points of Btr solve the equations is also not an essential problem,
since, with a proper choice of the topology of Φloc, it can usually be done as in the proof
of existence of a weak solution (which should be done before proving the existence of
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attractors!). However, since Ktr does not contain all the solutions of the problem, these
limit points may not belong to Ktr and the existence of a compact absorbing set may be
lost in such a procedure. For instance, without a special care, the limits of solutions which
are all obtained by Galerkin approximations may not satisfy this property. Analogously,
concerning the dissipative inequalities (6.12), if one defines an absorbing set in the natural
way, namely, Btr := {u ∈ Ktr, ‖u‖Φb

� R}, then it may very well be not closed, since an
estimate of the form (6.12) may be lost under the limit procedure. Thus, the closure of the
absorbing/attracting set indeed requires an additional attention. These considerations show
that the use of the space Φb to define the class of bounded sets is not sufficient and more
general abstract definitions of “bounded” sets should be used instead, see Definition 2.15.
In particular, for dissipative inequalities of the form (6.12), it is sufficient to define the
class of bounded sets in the following natural way:

(6.13)B ⊂ Ktr is “bounded” if and only if Cu � CB < +∞, u ∈ B.

In other words, B is “bounded” if there exists a uniform constant CB such that (6.12) holds
with Cu replaced by CB , for every u ∈ B. Then the existence of a “bounded” absorb-
ing set is an immediate consequence of (6.12) and such estimates are preserved under the
limit procedure, see [49] for details. This problem, when Ktr only consists of solutions
obtained by some (e.g., Galerkin) approximation scheme can also be solved in a similar
way, see [240] and the examples below.

EXAMPLE 6.3. Here, we briefly consider the application of the trajectory approach to the
three-dimensional Navier–Stokes equations in a bounded domain Ω (see [47,49], and [211]
for more detailed expositions),

(6.14)

{
∂tu + (u,∇x)u = ν�xu − ∇xp + g, v > 0,

div u = 0, u|∂Ω = 0, u|t=0 = u0.

Let, as usual, H and H1 be the closures of the smooth divergent free vector fields in Ω

which vanish on the boundary in the metrics of L2(Ω)3 and W 1,2(Ω)3, respectively. Then,
as is well-known (see, e.g., [49,143], and [217]), for every u0 ∈ H , the Navier–Stokes
problem possesses at least one global weak energy solution

u ∈ Φb := L∞(R+,H) ∩ L2
b(R+,H1)

which satisfies, in addition, an energy inequality in the following differential form:

(6.15)
1

2

d

dt

∥∥u(t)
∥∥2

H
+ ν

∥∥∇xu(t)
∥∥2

H
� (u, g)H .

To be more precise, this inequality should be understood in the sense of distributions, i.e.,

−1

2

∫ +∞

0

∥∥u(t)
∥∥2

H
· φ′(t) dt + ν

∫ +∞

0

∥∥∇xu(t)
∥∥2 · φ(t) dt

(6.16)�
∫ +∞

0
φ(t) · (

g, u(t)
)
H

dt
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holds for every φ ∈ C∞
0 (R+) such that φ(t) � 0. In particular, this energy inequality

implies that, for almost every t, τ ∈ R+, t � τ , the following dissipative estimate holds:

∥∥u(t)
∥∥2

H
+ ν

∫ t

τ

e−α(s−τ)
∥∥∇xu(s)

∥∥2
H

ds

(6.17)�
∥∥u(τ)

∥∥2
H

e−α(t−τ) + C‖g‖2
L2,

for some positive constants C and α which only depend on ν and Ω . Since the existence
or the nonexistence of other weak solutions u ∈ Φb (which do not satisfy the energy in-
equality and, thus, are nondissipative) is not known yet, it is natural to define the trajectory
phase space Ktr as the set of all weak solutions satisfying this energy inequality,

(6.18)Ktr := {
u ∈ Φb, u solves (6.14) and satisfies (6.15)

}
.

Indeed, since the energy inequality is shift-invariant, the phase space Ktr thus defined is
also invariant with respect to the shifts semigroup Tt , Tt : Ktr → Ktr, and, therefore, the
trajectory dynamical system (Tt ,Ktr) is well-defined. Furthermore, the dissipative esti-
mate (6.17) implies that

(6.19)‖Ttu‖2
Φb

� C‖u‖2
L∞(R+,H)e

−αt + C‖g‖2
L2, t � 0,

for every u ∈ Ktr and for positive constants C and α which are independent of u and t .
Therefore, the R-ball in Φb, intersected with Ktr,

BR := {
u ∈ Ktr, ‖u‖Φb

� R
}
,

is a Φb-absorbing set for the trajectory semigroup Tt on Ktr if R is large enough. Thus,
there only remains to fix the topology of Φloc on Ktr in such a way that this ball is compact.
To be more precise, we set

Φloc := L
∞,w∗
loc (R+,H) ∩ L

2,w
loc (R+,H1),

where w and w∗ denote the weak and weak-∗ topologies, respectively. We recall that a
sequence un converges to u in the space Φloc if and only if, for every T > 0, the sequence
un|[0,T ] converges to u|[0,T ] weakly in L2([0, T ],H1) and weakly-∗ in L∞([0, T ],H),
see [49] for details. Then every bounded subset of Φb is precompact and metrizable in Φloc,
see, e.g., [205], and we only need to verify that B is closed in Ktr in the Φloc-topology. As
already mentioned in Remark 6.2, this can be done as in the justification of the passage to
the limit N → +∞ in Galerkin approximations for weak energy solutions u, see [49] for
details. Thus, the assumptions of the (Φb,Φloc)-attractor’s existence theorem (see Theo-
rem 2.20 and [22]) are verified and, consequently, the trajectory dynamical system (Tt ,Ktr)

possesses the global attractor Atr which attracts the bounded subsets of Φb in the topology
of Φloc. As usual, the trajectory attractor Atr is generated by all bounded complete solutions
of the Navier–Stokes system (of course, satisfying the energy inequality) via (6.10) and its
restriction at t = 0 gives the global attractor of the associated semigroup of multi-valued
maps (i.e., (6.11) holds), see [47] and [49] for details. To conclude with the Navier–Stokes
equations, we mention that, although the above trajectory attractor attracts the bounded
subsets of Φb in the weak topology of Φloc only, this weak convergence implies the strong
convergence in slightly larger spaces (due to compactness arguments). In particular, for
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every bounded subset B ⊂ Ktr, every T ∈ R+, and every δ > 0, we have

(6.20)lim
t→+∞ distC([0,T ],H−δ)∩L2([0,T ],H1−δ)

(TtB|[0,T ],Atr|[0,T ]) = 0,

where Hs is a scale of Hilbert spaces associated with the Stokes operator in Ω , see [49]. We
also recall that, although nothing is known, in general, concerning the additional regularity
and/or the structure of the attractor Atr of the three-dimensional Navier–Stokes problem,
there are several special cases for which such results can be proven. In particular, for thin
domains Ω = [−h, h] × Ω0, where Ω0 is a bounded two-dimensional domain and h is
a small parameter (depending on ν), endowed with Dirichlet boundary conditions on ∂Ω0
and Neumann boundary conditions on {−h, h} × Ω , the smoothness Atr ⊂ Cb(R+,H1),
which is enough for the uniqueness on the attractor, follows from [196]. Another nontrivial
example is a three-dimensional Navier–Stokes system with an additional rotation term,

∂tu + (u,∇x)u + ω × u = ν�xu − ∇xp + g

in the domain Ω = [0, T1]×[0, T2]×[0, T3] with periodic boundary conditions. As proven
in [17], if ω is large enough and the periods Ti , i = 1, 2, 3, satisfy some nonresonance
conditions, the attractor Atr is also smooth and the uniqueness holds on the attractor.

EXAMPLE 6.4. As a next example, we consider “the second” (after the three-dimensional
Navier–Stokes equations) classical ill-posed problem, namely, a damped wave equation
with a supercritical nonlinearity,

(6.21)

{
ε∂2

t u + γ ∂tu − �xu + f (u) = g,

u|∂Ω = 0, u|t=0 = u0, ∂tu|t=0 = u′
0,

in a bounded smooth domain Ω of R
3. Here, ε and γ are positive parameters, g ∈ L2(Ω)

corresponds to given external forces and the nonlinearity f ∈ C2(R) is assumed to satisfy
the following dissipative and growth assumptions:

(6.22)1. f ′(u) � −C + C1|u|p−1, 2.
∣∣f ′′(u)

∣∣ � C
(
1 + |u|p−2),

C,C1 > 0, u ∈ R, p � 0. It is well-known, see, e.g., [22], that, in the subcritical p < 3 and
critical p = 3 cases, problem (6.21) is well-posed in the energy phase space W

1,2
0 (Ω) ×

L2(Ω) and possesses the global attractor A, see also [119,136,217], and the references
therein. In contrast to this, in the supercritical case p > 3, the well-posedness of (6.21) in
a proper phase space is still an open problem (the limit exponent p = 3 can be shifted till
p = 5 when Ω = R

3, see [86], but, to the best of our knowledge, this result is not known
for bounded domains). On the other hand, it is well-known (see, e.g., [49] and [143]) that,
for every (u0, u

′
0) ∈ E := W

1,2
0 (Ω) ∩ (Lp+1(Ω) × L2(Ω)), equation (6.21) possesses at

least one global weak energy solution

u ∈ Φb := L∞(
R+,W

1,2
0 (Ω) ∩ Lp+1(Ω)

) × W 1,∞(
R+, L2(Ω)

)
which satisfies the dissipative estimate

(6.23)
∥∥(

u(t), ∂tu(t)
)∥∥

E
� Q

(∥∥(
u(0), ∂tu(0)

)∥∥
E

)
e−αt + Q

(‖g‖L2

)
, t � 0,
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where the positive constant α and monotonic function Q are independent of u. As shown
in [47] and [49], this is sufficient to verify the existence of the trajectory attractor. How-
ever, we are now exactly in the situation mentioned in Remark 6.2. Indeed, in contrast to
the three-dimensional Navier–Stokes equations, here, the dissipativity estimate cannot be
formulated as a differential inequality similar to (6.15) and the dissipative estimate (6.23)
is the best known one. As already mentioned, this estimate is not shift-invariant and, there-
fore, cannot be directly used to define the space Ktr (this is related to the fact that, when
constructing the solution u(t), e.g., by Galerkin approximations, we can easily guarantee
that un(0) converges strongly to u(0) in E, but, for un(τ) with τ > 0, we only have a weak
convergence, which does not yield the convergence of the norms and, consequently, t = 0
cannot be replaced by t = τ in (6.23)). Thus, following the general scheme described in
Remark 6.2, we consider a dissipative estimate in a weaker, but shift-invariant form,

(6.24)‖Ttu‖Φb
� Cue−αt + C∗, C∗ = Q

(‖g‖L2

)
, α > 0, t � 0,

where Cu is a constant which depends on u, and define the trajectory phase space Ktr by
using this dissipative estimate,

Ktr := {
u ∈ Φb, u solves (6.21) and satisfies (6.24)

}
.

Thus, the trajectory dynamical system (Tt ,Ktr) is well-defined. Furthermore, following
the general scheme, we also define a class of “bounded” sets via (6.13). Then the existence
of a “bounded” absorbing set, e.g., of the form B := {u ∈ Ktr, Cu � 1}, immediately
follows from the dissipative estimate (6.24) and the definition of “bounded” sets. So, there
only remains to fix a topology on Ktr in such a way that the absorbing set B is compact.
This can be done by using the local weak-∗ topology on Φb, exactly as in the case of the
three-dimensional Navier–Stokes equations, namely,

(6.25)Φloc := L
∞,w∗
loc

(
R+,W

1,2
0 (Ω) ∩ Lp+1(Ω)

) × L
∞,w∗
loc

(
R+, L2(Ω)

)
.

Then B is precompact and metrizable in Φloc, since it is bounded in Φb, see [205], and the
fact that it is closed in Ktr can be verified in a standard way, see [47] and [49] for details.
Thus, the assumptions of the attractor’s existence theorem (see Theorem 2.20) are verified
and the semigroup (Tt ,Ktr) possesses the global attractor Atr (i.e., the trajectory attractor)
which attracts the “bounded” (in the sense of (6.13)) subsets of Ktr in the topology of Φloc.
Again, the trajectory attractor Atr is generated by all bounded complete solutions (satis-
fying ‖u‖Φb

� C∗) via (6.10) and its restriction at t = 0 gives the global attractor of the
associated semigroup of multi-valued maps constructed in [19] (i.e., (6.11) holds), see [47]
and [49] for details.

EXAMPLE 6.5. In this example, we consider, following [240], an alternative way to con-
struct a trajectory attractor for the damped wave equation (6.21) which a priori contains a
“smaller number” of possible pathological solutions and, as a consequence, some reason-
able results concerning its structure are available. To this end, we first recall a construction
of Galerkin approximations for (6.21). Let {ek}+∞

k=1 be an orthonormal basis in L2(Ω) (say,
generated by the eigenvectors of the Laplacian with Dirichlet boundary conditions) and de-
note by PN the orthoprojector onto the first N vectors of this basis. Then the N -th Galerkin
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approximation for (6.21) reads

(6.26)ε∂2
t uN + γ ∂tuN − �xuN + PNf (uN) = PNg, uN ∈ PNL2(Ω).

Actually, the weak energy solutions mentioned in the previous example are usually con-
structed by solving the Galerkin ODEs (6.26) and by then passing to the limit N → +∞
in a proper sense, namely,

(6.27)u := Φloc − lim
k→+∞ uNk

,

where the space Φloc is the same as in the previous example, see (6.25). The main idea
is now to restrict ourselves to the solutions which can be obtained via (6.27) only and to
define the trajectory phase space Ktr as follows:

(6.28)Ktr := {
u ∈ Φb, u solves (6.21) and is obtained via (6.27)

}
.

The main problem here is that the weak limit of solutions which can all be obtained by
the above Galerkin approximations may a priori not satisfy this property, so that the usual
bounded subsets of Φb may not be closed in Ktr. In order to overcome this difficulty and
to define the proper class of “bounded” sets, we need to introduce the following functional
on Ktr:

(6.29)M(u) := inf
{

lim inf
k→+∞

∥∥(
uNk

(0), ∂tuNk
(0)

)∥∥
E
, u = Φloc − lim

k→+∞ uNk

}
,

where the infimum is taken over all sequences uNk
of Galerkin solutions which converge

weakly to a given solution u. We now define the class of M-bounded sets of Ktr as the sets
on which the functional M is uniformly bounded. Then, as shown in [240], the trajectory
dynamical system (Tt ,Ktr) possesses an M-bounded absorbing set and the weak limit of a
sequence un belonging to any M-bounded set belongs to Ktr (i.e., it can be obtained by the
above Galerkin approximations). Thus, according to the abstract attractor’s existence the-
orem, the trajectory dynamical system (Tt ,Ktr) possesses the global attractor AGal

tr which
attracts all M-bounded sets in the topology of Φloc. It is worth noting once more that, in
contrast to the trajectory attractor Atr constructed above, this new attractor AGal

tr ⊂ Atr
possesses several good properties which are not available for Atr and, in particular,

(1) it is connected in Φloc (since the simplest M-bounded sets BR := {u ∈ Ktr,

M(u) � R} are connected; this follows from the fact that they can be approxi-
mated, in Φloc, by analogous sets for the Galerkin approximations which are clearly
connected);

(2) every complete trajectory belonging to this attractor tends in a proper sense to the
set of equilibria as time goes to plus or minus infinity;

(3) every complete trajectory u(t) on AGal
tr is smooth for sufficiently small t , i.e., there

exists T = Tu such that u(t) ∈ W 2,2(Ω) ⊂ C(Ω) for t � Tu, and every solution is
unique (in the above class) as long as it is smooth. So, the only way for a singular
solution to appear on the attractor AGal

tr is by a blow up of a strong solution, see [240]
for details;

(4) as proven in [240], the whole attractor AGal
tr is smooth if the coefficient ε > 0 is

small enough, AGal
tr ⊂ Cb(R+,W 2,2(Ω)).
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A drawback of such a construction is that AGal
tr depends on the concrete approximation

scheme (e.g., different Galerkin bases may lead to different attractors). However, the attrac-
tor Atr constructed in the previous example also depends a priori on the artificial constant
C∗ in the dissipative estimate (6.24).

REMARK 6.6. To conclude, we note that the above trajectory approach has been success-
fully applied not only to ill-posed evolutionary problems, but also to elliptic boundary
value problems in unbounded domains (for which the nonuniqueness does not appear as
a consequence of poorly understood analytical properties of the equations under study,
but is related to the classical ill-posedness of the Cauchy problem for elliptic equations),
see [166,222], and [223] for trajectory attractors for elliptic problems in cylindrical do-
mains and [26] and [232] for more general classes of unbounded domains. Finally, we also
note that most of the results considered in this subsection can naturally be extended to
nonautonomous ill-posed problems as well, see [49] for details.
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[152] J. Málek, J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids,

J. Diff. Eqns. 127 (1996) 498–518.
[153] J. Málek, D. Pražák, Large time behavior via the method of l-trajectories, J. Diff. Eqns. 18 (2002) 243–279.
[154] J. Málek, D. Pražák, On the dimension of the global attractor for the modified Navier–Stokes equations,

in: M.S. Birman (Ed.), Nonlinear Problems of the Mathematical Physics and Related Topics, Kluwer Aca-
demic, Dordrecht, 2002.



Attractors for dissipative PDEs 197

[155] P. Manneville, Dissipative Structures and Weak Turbulence, Perspectives in Physics, Academic Press,
Boston, MA, 1990.

[156] P. Manneville, Dynamical systems, temporal vs. spatio-temporal chaos, and climate, in: Nonlinear Dy-
namics and Pattern Formation in the Natural Environment, Noordwijkerhout, 1994, in: Pitman Res. Notes
Math. Ser., vol. 335, Longman, Harlow, 1995, pp. 168–187.

[157] K. Matsuura, Exponential attractors for 2D magneto-micropolar fluid flow in a bounded domain, Discrete
Cont. Dyn. Systems Suppl. (2005) 634–641.

[158] V. Melnik, Multivalued semiflows and their attractors, Dokl. Akad. Nauk 343 (1995) 302–305 (in Russian).
[159] V. Melnik, J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued

Anal. 6 (1998) 83–111.
[160] S. Merino, On the existence of the global attractor for semilinear RDE on R

n, J. Diff. Eqns. 132 (1996)
87–106.

[161] A. Mielke, The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds
and attractors, Nonlinearity 10 (1997) 199–222.

[162] A. Mielke, Essential manifolds for an elliptic problem in an infinite strip, J. Diff. Eqns. 110 (1994) 322–
355.

[163] A. Mielke, The Ginzburg–Landau equation in its role as a modulation equation, in: B. Fiedler (Ed.), Hand-
book of Dynamical Systems, vol. 2, Elsevier, Amsterdam, 2002, pp. 759–834.

[164] A. Mielke, P. Holmes, Spatially complex equilibria of buckled rods, Arch. Rational Mech. Anal. 101 (1988)
319–348.

[165] A. Mielke, G. Schneider, Attractors for modulation equations on unbounded domains-existence and com-
parison, Nonlinearity 8 (1995) 743–768.

[166] A. Mielke, S. Zelik, Infinite-dimensional trajectory attractors for elliptic boundary-value problems on
cylindrical domains, Russian Math. Surveys 57 (2002) 753–784.

[167] A. Mielke, S. Zelik, Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction–diffusion
systems in R

n, J. Dyn. Diff. Eqns. 19 (2007) 333–389.
[168] A. Mielke, S. Zelik, Weak interaction in multi-pulse structures and space–time chaos in reaction–diffusion

equations, Mem. Amer. Math. Soc., in press.
[169] J. Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988) 357–385.
[170] Gh. Minea, Remarques sur l’unicité de la solution stationnaire d’une équation de type Navier–Stokes, Rev.

Roumaine Math. Pures Appl. 21 (1976) 1071–1075.
[171] A. Miranville, Lower bound on the dimension of the attractor for the Bénard problem with free surfaces,

Nonlinear Anal. 25 (1995) 1079–1094.
[172] A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method, C. R.

Acad. Sci. Paris, Sér. I 328 (1999) 145–150.
[173] A. Miranville, Finite dimensional global attractors for a class of doubly nonlinear parabolic equations,

Cent. Eur. J. Math. 4 (2006) 163–182.
[174] A. Miranville, V. Pata, On the semilinear wave equation with locally distributed damping, in: T. Aiki,

N. Kenmochi, M. Niezgódka, M. Otani (Eds.), The Proceedings of Third Polish–Japanese Days on Mathe-
matical Approach to Nonlinear Phenomena: Modelling, Analysis and Simulations, in: Gakuto International
Series on Mathematical Sciences and Applications, vol. 23, Gakkotosho, Tokyo, Japan, 2005, pp. 188–197.

[175] A. Miranville, S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations,
Electron. J. Diff. Eqns. 2002 (2002) 1–28.

[176] A. Miranville, S. Zelik, Robust exponential attractors for Cahn–Hilliard type equations with singular po-
tentials, Math. Methods Appl. Sci. 27 (2004) 545–582.

[177] A. Miranville, S. Zelik, Exponential attractors for the Cahn–Hilliard equation with dynamic boundary
conditions, Math. Methods Appl. Sci. 28 (2005) 709–735.

[178] A. Miranville, S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic
type, Nonlinearity 8 (2007) 1773–1797.

[179] A. Miranville, M. Ziane, On the dimension of the attractor for the Bénard problem with free surfaces,
Russian J. Math. Phys. 5 (1997) 489–502.

[180] I. Moise, R. Rosa, On the regularity of the global attractor of a weakly damped, forced Korteweg–de Vries
equation, Adv. Diff. Eqns. 2 (1997) 257–296.



198 A. Miranville and S. Zelik

[181] I. Moise, R. Rosa, X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity 11
(1998) 1369–1393.

[182] I. Moise, R. Rosa, X. Wang, Existence of uniform attractors for noncompact nonautonomous dissipative
systems via energy equations, Discrete Cont. Dyn. Systems 10 (2004) 473–496.

[183] X. Mora, J. Solà-Morales, Existence and non-existence of finite-dimensional globally attracting invariant
manifolds in semilinear damped wave equations, in: Dynamics of Infinite-Dimensional Systems, Lisbon,
1986, in: NATO Adv. Sci. Inst. F. Comput. Systems Sci., vol. 37, Springer-Verlag, Berlin, 1987.

[184] V. Pata, M. Squassina, On the strongly damped wave equation, Commun. Math. Phys. 253 (2005) 511–533.
[185] V. Pata, S. Zelik, Global and exponential attractors for 3-D wave equations with displacement dependent

damping, Math. Methods Appl. Sci. 29 (2006) 1291–1306.
[186] V. Pata, S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Comm.

Pure Appl. Anal. 6 (2007) 481–486.
[187] L. Peletier, W. Troy, Spatial Patterns. Higher Order Models in Physics and Mechanics, Progress in Non-

linear Differential Equations and their Applications, vol. 45, Birkhaüser Boston, Boston, MA, 2001.
[188] Ya.B. Pesin, Ya.G. Sinaı̆, Space–time chaos in the system of weakly interacting hyperbolic systems,

J. Geom. Phys. 5 (1988) 483–492.
[189] Ya.B. Pesin, Ya.G. Sinaı̆, Space-time chaos in chains of weakly interacting hyperbolic mappings, in: Dy-

namical Systems and Statistical Mechanics, Moscow, 1991, in: Adv. Soviet Math., vol. 3, Amer. Math.
Soc., Providence, RI, 1991, pp. 165–198.

[190] D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping,
J. Dyn. Diff. Eqns. 14 (2002) 763–776.

[191] D. Pražák, A necessary and sufficient condition on the existence of an exponential attractor, Cent. Eur. J.
Math. 1 (2003) 411–417.

[192] D. Pražák, On the dimension of the attractor for the wave equation with nonlinear damping, Comm. Pure
Appl. Anal. 4 (2005) 165–174.

[193] M.I. Rabinovich, A.B. Ezersky, P.D. Weidman, The Dynamics of Patterns, World Sci. Publishing, River
Edge, NJ, 2000.

[194] P.H. Rabinowitz, Multibump solutions of a semilinear elliptic PDE on R
n, in: Degenerate Diffusions, Min-

neapolis, MN, 1991, in: IMA Vol. Math. Appl., vol. 47, Springer, New York, 1993, pp. 175–185.
[195] G. Raugel, Global attractors of partial differential equations, in: Handbook of Dynamical Systems, vol. 2,

North-Holland, Amsterdam, 2002, pp. 885–982.
[196] G. Raugel, G.R. Sell, Navier–Stokes equations in thin 3D domains. III. Existence of a global attractor, in:

Turbulence in Fluid Flows, in: IMA Vol. Math. Appl., vol. 55, Springer, New York, 1993, pp. 137–163.
[197] J.C. Robinson, Infinite-Dimensional Dynamical Systems, Texts in Applied Mathematics, Cambridge Uni-

versity Press, Cambridge, 2001.
[198] R. Rosa, The global attractor for the 2D Navier–Stokes flow on some unbounded domains, Nonlinear

Anal. 32 (1998) 71–85.
[199] R. Rosa, The global attractor of a weakly damped, forced Korteweg–de Vries equation in H 1(R), Mat.

Contemp. 19 (2000) 129–152.
[200] R. Rosa, R. Temam, Inertial manifolds and normal hyperbolicity, Acta Appl. Math. 45 (1996) 1–50.
[201] R. Rossi, A. Segatti, U. Stefanelli, Attractors for gradient flows of non convex functionals and applications,

Arch. Ration. Mech. Anal. 187 (2008) 91–135.
[202] O. Rössler, An equation for continuous chaos, Phys. Lett. A 57 (1978) 397–398.
[203] A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal.

Appl. 339 (2008) 281–294.
[204] B. Sandstede, Stability of travelling waves, in: Handbook of Dynamical Systems, vol. 2, North-Holland,

Amsterdam, 2002, pp. 983–1055.
[205] H. Schaefer, M. Wolff, Topological Vector Spaces, second edition, Springer-Verlag, New York, 1999.
[206] G. Schimperna, A. Segatti, Attractors for the semiflow associated with a class of doubly nonlinear parabolic

equations, Asymptotic Anal. 56 (2008) 61–86.
[207] B. Schmalfuss, Attractors for the non-autonomous dynamical systems, in: International Conference on

Differential Equations, vols. 1, 2, Berlin, 1999, in: World Sci. Publishing, River Edge, NJ, 2000, pp. 684–
689.



Attractors for dissipative PDEs 199

[208] A. Segatti, Global attractor for a class of doubly nonlinear abstract evolution equations, Discrete Cont.
Dyn. Systems 14 (2006) 801–820.

[209] A. Segatti, On the hyperbolic relaxation of the Cahn–Hilliard equation in 3-D: approximation and long
time behaviour, Math. Models Methods Appl. 17 (2007) 411–438.

[210] G.R. Sell, Global attractors for the three-dimensional Navier–Stokes equations, J. Dyn. Diff. Eqns. 8
(1996) 1–33.

[211] G.R. Sell, Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, vol. 143,
Springer-Verlag, New York, 2002.

[212] F. Shuhong, Finite dimensional behavior of periodic and asymptotically periodic processes, Nonlinear
Anal. 28 (1997) 1785–1797.
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1. Introduction

The present chapter is devoted to the Cahn–Hilliard equation [16,15]:

(1)ut = ∇ · M(u)∇[
f (u) − ε2�u

]
, (x, t) ∈ Ω × R

+,

(2)n · ∇u = n · M(u)∇[
f (u) − ε2�u

] = 0, (x, t) ∈ ∂Ω × R
+,

(3)u(x, 0) = u0(x), x ∈ Ω.

Here 0 < ε2 � 1 is a “coefficient of gradient energy”, M = M(u) is a “mobility” coeffi-
cient, and f = f (u) is a “homogeneous free energy”. The equation was initially developed
to describe phase separation is a two component system, with u = u(x, t) representing the
concentration of one of the two components. Typically, the domain Ω is assumed to be a
bounded domain with a “sufficiently smooth” boundary, ∂Ω , with n in (2) representing the
unit exterior normal to ∂Ω . It is reasonable to consider evolution for times t > 0, or on
some finite time interval, 0 < t < T < ∞.

Concentration should be understood as referring either to volume fraction or to mass
fraction, depending on the physical system under investigation. By volume fraction we
mean the volume fraction per unit volume of say component “A”, in a system containing
two components which we shall denote by “A” and “B”. The meaning of mass fraction
is analogous. Thus the Cahn–Hilliard equation constitutes a continuous, as opposed to a
discrete or lattice description, of the material undergoing phase separation. Such a descrip-
tion is appropriate under many but not all circumstances. Note that the definition of u(x, t)

implies that u(x, t) should satisfy 0 � u(x, t) � 1. Moreover, if u(x, t), the concentration
of component A, is known, then the concentration of the second component is given by
1−u and is hence also known; thus the evolution of the composition of the two component
system is being predicted by a single scalar Cahn–Hilliard equation.

In the context of the Cahn–Hilliard equation, the two components could refer, for ex-
ample, to a system with two metallic components, or two polymer components, or say,
two glassy components. Frequently in materials science literature, concentration is given
in terms of mole fraction or equivalently number fraction, rather than in terms of volume
fraction or mass fraction. A mole refers to 6.02252 × 1023 molecules (Avogadro’s number
of molecules), and the mole fraction of component A refers to the number of A molecules
per mole of the two component system, locally evaluated. Mole fraction of number frac-
tion are equivalent to volume fraction if the molar volume (the volume occupied by one
mole) is independent of composition, which is rarely strictly correct [15]. For example, in
a two component polymer systems when many of the polymers are long, the configuration
of the polymers, i.e. whether they are “stretched out” or “rolled up”, typically depends on
composition, which in turn influences the molar volume. Notice also that often temperature
does not appear explicitly in the Cahn–Hilliard equation, since the model is based on the
assumption that the temperature is constant; such an assumption requires careful tempera-
ture control and is also rarely strictly fulfilled in reality. The model also assumes isotropy
of the system, which can also only be approximately correct for metallic systems [5,77,
87], for which the equations were designed, which have an inherent crystalline structure
unless they are in a liquid phase. Nevertheless, the Cahn–Hilliard equation has been seen to
contain many of the dominant paradigms for phase separation dynamics, and as such, has
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played, and continues to play, an important role in understanding the evolution of phase
separation.

Why does the Cahn–Hilliard equation appear in so many different contexts, and what be-
havior is predicted by the Cahn–Hilliard equation which is common to all these systems?
Off-hand, what is being modeled with the Cahn–Hilliard equation is phase separation, in
other words, the segregation of the system into spatial domains predominated by one of
the components, in the presence of a mass constraint, and what one wishes to accomplish
here is to model the dynamics in a sufficiently accurate fashion so that many of the various
features of the resultant pattern formation evolution that one sees in nature during phase
separation can be explained and predicted. In materials science this pattern formation is
referred to as the microstructure of the material, and the microstructure is highly influen-
tial in determining many of the properties of the material, such as strength, hardness, and
conductivity. The Cahn–Hilliard model is rather broad ranged in its evolutionary scope; it
can serve as a good model for many systems during early times, it can give a reasonable
qualitative description for these systems during intermediary times, and it can serve as a
good model for even more systems at late times. Often, the late time evolution is so slow
that the pattern formation or microstructure becomes effectively frozen into the system
over time scales of interest, and hence it is the long time behavior of the system which is
seen in practice.

The Cahn–Hilliard equation also appears in modeling many other phenomena. These
include the evolution of two components of intergalactic material [80], the dynamics of
two populations [19], the biomathematical modeling of a bacterial film [46], and certain
thin film problems [69,79]. We apologies to the reader that most of the details pertaining to
the modeling of these phenomena are outside the scope of the present survey. Nevertheless,
we invite the interested reader to have a look at the forthcoming book by the author of
this survey, entitled From Backwards Diffusion to Surface Diffusion: the Cahn–Hilliard
Equation [65], where these and other details will be treated in greater depth.

We hope that this survey will clarify for the reader the notions of backwards diffusion
and surface diffusion and their connection with the Cahn–Hilliard equation, and will con-
vey something of the nature of the physical phenomena which accompany phase separation
and how the Cahn–Hilliard equation manages to capture these features.

2. Backwards diffusion and regularization

Let us consider a simple variant of the Cahn–Hilliard equation in which f (u) = −u + u3

and M(u) = M0, where M0 > 0 is constant. Let t ∈ (0, T ), 0 < T < ∞, and Ω = (0, L).
In most applications, Ω ∈ R

n with n = 2 or n = 3 is most physically relevant. However,
let us focus temporarily on the n = 1 case for simplicity. Thus,

(4)

⎧⎪⎨
⎪⎩

ut = M0
[−u + u3 − ε2uxx

]
xx

, (x, t) ∈ ΩT ,

ux = M0
[−u + u3 − ε2uxx

]
x

= 0, (x, t) ∈ ∂ΩT ,

u(x, 0) = u0(x), x ∈ Ω,
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where ΩT = (0, T ) × Ω and ∂ΩT = {0, L} × (0, T ). Note that u(x, t) = ū constitutes
a steady state of (4), where ū is an arbitrary constant; however if u(x, t) is to represent
concentration, clearly one must assume that 0 � ū � 1.

Let us now suppose that u0(x) = ū+ ũ0(x), where ũ0(x) represents a small perturbation
from spatial uniformity. Setting u(x, t) = ū + ũ(x, t), (4) yields that

(5)

⎧⎪⎨
⎪⎩

ũt = M0
[−ũ + [ū + ũ]3 − ε2ũxx

]
xx

, (x, t) ∈ ΩT ,

ũx = M0
[−ũ + [ū + ũ]3 − ε2ũxx

]
x

= 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x) := u0(x) − ū, x ∈ Ω.

Assuming (5) to be well-posed and ũ(x, t) to be small, we neglect terms which are nonlin-
ear in ũ(x, t) and obtain to leading order the linearized problem

(6)

⎧⎪⎨
⎪⎩

ũt = M0
[−(

1 − 3ū2
)
ũ − ε2ũxx

]
xx

, (x, t) ∈ ΩT ,

ũx = M0
[−(

1 − 3ū2
)
ũ − ε2ũxx

]
x

= 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω.

We recall that we have assumed earlier that 0 < ε2 � 1. Suppose that we optimistically
neglect terms in the system (6) which contain a factor of ε2. This yields

(7)

⎧⎪⎨
⎪⎩

ũt = −M0(1 − 3ū2)ũxx, (x, t) ∈ ΩT ,

ũx = −M0(1 − 3ū2)ũx = 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω.

If we stop and consider for a moment (7), we can see that for 3ū2−1 > 0, it is equivalent
to the classical diffusion equation with Neumann boundary conditions

(8)

⎧⎨
⎩

ũt = Dũxx, (x, t) ∈ ΩT ,

ũx = 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω,

whose solutions decay to 1
L

∫ L

0 ũ0(x) dx. For 3ū2 − 1 > 0, it is equivalent to

(9)

⎧⎨
⎩

ũt = −Dũxx, (x, t) ∈ ΩT ,

ũx = 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω.

Now (9) is precisely the backwards diffusion equation, which can be obtained from the
classical diffusion equation by redefining time t → −t so that time will “run backwards.”
The problem (9) is notoriously ill-posed as can be verified by noting that for ũ0 ∈ L2(Ω),
it possesses the formal separation of variables solution

(10)ũ(x, t) = A0

2
+

∞∑
n=1

Ane
n2π2

L2 t
cos(nπx/L),

where the coefficients Ai , i = 0, 1, 2, . . . , correspond to the Fourier coefficients of the
initial conditions,

(11)ũ(x, 0) = ũ0(x) = A0

2
+

∞∑
n=1

An cos(nπx/L).
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Its amplitude grows without bound

(12)
∥∥ũ(x, t)

∥∥2
L2[0,L] = A2

0

2
+

∞∑
n=1

A2
ne

2n2π2

L2 t ;

even for initial data based on a single mode, ũ0(x) = Ak cos(kπx/L),

(13)
∥∥ũ(x, t)

∥∥2
L2[0,L] = A2

ke
2k2π2

L2 t
.

This clearly makes little physical sense in terms of a model for phase separation, although
in other contexts, such as image processing [17], it has been successfully implemented. In
particular, we see that the solution, u(x, t) = ū + ũ(x, t) does not remain bounded within
the interval [0, 1] over time.

Thus both problems, (8) and (9), make little physical sense as models for phase separa-
tion. Hence, the higher order terms proportional to ε2 are truly necessary in the physical
model, and cannot be made light of easily. Seemingly this would provide a compelling rea-
son to include such regularizing terms, but in fact regularizing terms were already added
much before the dynamics for phase separation came under consideration, when equilib-
rium considerations lead to the search for a free energy with “phase separated” steady states
possessing certain regularity and uniqueness properties. This reflects the independent sci-
entific contribution of Gibbs (1893) [35] and van der Waals (1973) [81].

The reader should have no difficulty in ascertaining that (6), where the regularizing terms
have been included, can be formulated as a well-posed problem, and it is fairly straightfor-
ward to verify that (5) and (4) can be carefully formulated as well-posed problems as well.
However, before discussing existence, uniqueness, and well-posedness, we first briefly con-
sider what are the physical phenomena one should like to model with the Cahn–Hilliard
equation, and which are the most important variants of the Cahn–Hilliard equation which
one should like to consider.

3. The Cahn–Hilliard equation and phase separation

We now outline what are the physical features and phenomena which one should like to
be described by the Cahn–Hilliard equation. The process of phase separation in two com-
ponent systems is accompanied by pattern formation and evolution. A typical scenario we
should like to model is that of quick quenching. Let Ω ⊂ R

3 initially contain two compo-
nents which are roughly uniformly distributed, so that u(x, 0) ≈ u0(x) ≡ ū. We should
suppose that ū ∈ [0, 1] if u(x, t) is to represent concentration. If there is no flux of material
into or out of Ω , then the total amount of each component should be conserved,

(14)
1

|Ω|
∫

Ω

u(x, t) dx = ū, 0 � t � T .

Let the initial temperature be given by Θ0, and let the temperature of the system be now
rapidly lowered (quick quenched) to some new temperature, Θ1 � Θ0. In two component
metallic alloy systems, the average thermal conductivity is high, and the temperature of the
system will equilibrate rapidly to the new temperature. With this in mind, the assumption
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Fig. 1. A typical phase diagram. Here (ū,Θ0) lies above the binodal curve in the stable region, (ū,Θ1) lies in
the “metastable region” which lies between the spinodal curve and the binodal curve, and (ū,Θ2) lies below the

spinodal curve.

is made that the temperature equilibrates immediately to lower temperature, Θ1. The equi-
libration process can be modeled by coupling the Cahn–Hilliard equation with an energy
balance equation. This augmented system is known as a conserved phase field model [12].

The dynamics which appears in the system Ω in the wake of quick quenching can be
roughly explained with the help of phase diagrams as developed by Gibbs [35] within the
framework of classical thermodynamics. In the present context, this implies that whether or
not phase separation is predicted, as well as the nature of the phase separation which can be
expected, are determined by the location of (ū,Θ0) and (ū,Θ1) within the phase diagram.
While phase diagrams of varying levels of complexity can occur, a simplest nontrivial level
of phase diagram which can describe phase separation is portrayed in Figure 1.

In the phase diagram, there are two curves which should be noted. One is an upper curve,
known as the binodal or the coexistence curve, and other is a lower curve, known as the
spinodal. The two curves intersect at point, (ūcrit,Θcrit), known as the critical point. If both
(ū,Θ0) and (ū,Θ1) lie above the binodal, no phase separation is expected to occur and the
system is expected to persist in its initially uniform state, u(x, t) ≡ ū. Hence the region
above the binodal is known as the stable or one-phase region. For phase separation to
occur, the initial state (ū,Θ0) should lie above both the binodal and spinodal, and the final
state (ū,Θ1) should lie somewhere below the binodal, either above or below the spinodal.

If (ū,Θ1) lies below the spinodal curve and ū 
= ūcrit, then phase separation is predicted
to onset via spinodal decomposition. During the onset of spinodal decomposition, the sys-
tem is distinguished by a certain “fogginess” reflecting the simultaneous growth of pertur-
bations with many different wavelengths. Spinodal decomposition is fairly well described
by the Cahn–Hilliard equation. If (ū,Θ1) lies below the binodal but above the spinodal,
phase separation can be expected to occur by nucleation and growth. During this process,
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phase separation occurs via the appearance or nucleation of localized perturbations in the
uniform state ū which persist and grow if they are sufficiently large. Though we mention
the nucleation and growth process, it is not well modeled by the Cahn–Hilliard equation,
and alternative approaches have been developed for purpose such as the Lifshitz–Slyozov
theory of Oswald ripening [49] and its extensions [42,4].

We caution the reader that if (ū,Θ0) or (ū,Θ1) are too close to (ūcrit,Θcrit), then the
above descriptions are inappropriate, since critical phenomena [23], such as critical slow-
ing down, will accompany the phase separation. Such effects are characteristic of second
order phase transitions, as opposed to our earlier description, which was appropriate for
first order phase transitions. Arguably Θ1 should be taken not too far from Θcrit, other-
wise inertial and higher order effects may become important; these effects would render
the Cahn–Hilliard model inaccurate, and make it difficult to control the phase separation
process and the resultant microstructure. What distinguishes a first order phase transition
from a second or higher order phase transition is the degree of continuity or regularity of
the system as the system crosses from the stable regime above the binodal into the unstable
regime which lies below it, see e.g. [50].

Whether phase separation occurs via spinodal decomposition or via nucleation and
growth, eventually the system saturates into well-defined spatial domains in which one
of the two components dominates, so that u ≈ uA or by u ≈ uB , where uA and uB denote
the binodal or limiting miscibility gap concentrations when Θ = Θ1. See Figure 1. The
average size of these spatial domains increases over time, as larger domains grow at the
expense of smaller domains. This process is called coarsening, and the dynamics of the
system may now be characterized by the motion of the boundaries or interfaces between
these various domains. Because of mass balance, (14), the relative volume or area of the
domains where u ≈ uA and u ≈ uB remains unchanged, but the overall amount of “do-
main interface” decreases as some limiting configuration is seemingly approached. While
nucleation and growth is somewhat of a weak spot for the Cahn–Hilliard theory, the Cahn–
Hilliard equation can give some reasonable description of the coarsening process, even if
the initial stages of the phase separations were dominated by nucleation and growth.

Let us now consider two important cases of the Cahn–Hilliard equation formulation
given in (1)–(3), to which we shall refer to later repeatedly.

4. Two prototype formulations

Perhaps the easiest formulation to consider is that given in (4) which was discussed in
Section 2. We shall refer to this case as the constant mobility-quartic polynomial case, or
more briefly, the constant mobility Cahn–Hilliard equation, and it is summarized below.

4.1. The constant mobility – quartic polynomial case

Let

(15)M(u) = M0 > 0, where M0 is a constant, and f (u) = −u + u3.
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It follows from (15) that

(16)f (u) = F ′(u), F (u) = 1

4

(
u2 − 1

)2
.

Within this framework, the Cahn–Hilliard equation is given by

(17)

{
ut = M0�(−u + u3 − ε2�u), (x, t) ∈ Ω × (0, T ),

n · ∇u = n · ∇�u = 0, (x, t) ∈ ∂Ω × (0, T ),

in conjunction with appropriate initial conditions. The value of M0 may be set to unity by
rescaling time, but we maintain M0 in the formulation since it is frequently maintained in
the literature, [62]. Note that (17) is invariant under the transformation u → −u, because u

in (17) represents the difference between the two concentrations, u ≡ uA −uB = 2uA −1.
Thus, in terms of the physical interpretation, u(x, t) should assume values in the interval
[−1, 1].

The analysis and treatment of this case is relatively easy since (17) constitutes a fourth
order semilinear parabolic equation, whose treatment is similar to that of second semilinear
parabolic equations such as the reaction diffusion equation,

(18)ut = ε2�u − f (u),

which arises in a wide variety of applications, from populations genetics to tiger spots,
[56,57]. Nevertheless, one of the mainstays in the treatment of second order equations, the
maximum principle, does not carry over easily into the fourth order setting [53]. An exis-
tence theory can be given, for example, in terms of Galerkin approximations [78] which
can also be used to construct finite element approximations that can be implemented nu-
merically. From numerical calculations and analytical consideration, it can be seen that
for a sensible choice of initial conditions, (17) gives a reasonable description of spinodal
decomposition and of coarsening.

An unfortunate feature of the constant mobility Cahn–Hilliard variant (17) is that its
solutions need not remain bounded between −1 and 1, even if the initial data lies in this in-
terval. This drawback can be avoided by employing a formulation, written in terms of one
of the concentrations, in which the mobility is taken to degenerate when u = 0 and u = 1,
and the free energy is taken to be well behaved, as was demonstrated in one space dimen-
sion by Jingxue [44]. Such a formulation does not occur so naturally in the context of phase
separation, but is does occur naturally in other contexts, such as in structure formation in
biofilms [46]. In the context of phase separation, it is natural in including a degenerate
mobility to also include logarithmic terms in the free energy. This seemingly less natural
formulation is in fact well-based in terms of the physics; the logarithmic terms reflect
entropy contributions and the vanishing of the mobilities reflects jump probability consid-
erations [72]. We shall refer to this formulation as the degenerate mobility-logarithmic free
energy case, or for short, the degenerate Cahn–Hilliard equation, and it is explained below.

4.2. The degenerate mobility – logarithmic free energy case

Here we assume that

(19)M(u) = u(1 − u) and f (u) = F ′(u),
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where

(20)F(u) = Θ

2

{
u ln u + (1 − u) ln(1 − u)

} + αu(1 − u),

with Θ > 0, α > 0. In (20), Θ denotes temperature, or more accurately a scaled tempera-
ture. The resultant Cahn–Hilliard formulation is now:

(21)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = ∇ · M(u)∇
{

Θ

2
ln

[
u

1 − u

]
+ α(1 − 2u) − ε2�u

}
, (x, t) ∈ ΩT ,

n · ∇u = 0, (x, t) ∈ ∂ΩT ,

n · M(u)

{
Θ

2u(1 − u)
∇u − 2α∇u − ε2∇�u

}
= 0, (x, t) ∈ ∂ΩT ,

where ΩT = Ω × (0, T ) and ∂ΩT = ∂Ω × (0, T ), and the equation and boundary
conditions are to be solved in conjunction with appropriate initial data, u0(x). Since u(x, t)

represents here the concentration of one of the two components, u0(x) and u(x, t) should
satisfy 0 � u0(x), u(x, t) � 1.

Formally, referring to (19), (21) can be written more simply as

(22)

⎧⎨
⎩ ut = Θ

2
�u − ∇ · M(u)∇{

2αu + ε2�u
}
, (x, t) ∈ ΩT ,

n · ∇u = n · M(u)∇�u = 0, (x, t) ∈ ∂ΩT .

Note though that (22) is in fact only meaningful for u ∈ [0, 1], and M(u) has only been
defined on that interval.

The mobility in (19) is referred to as a degenerate mobility, since it is not strictly pos-
itive. A concentration dependent mobility was already considered by Cahn in 1961 [15],
and a degenerate mobility similar to (19) appeared in the work by Hillert in 1956 [40,39] on
a one-dimensional discretely defined precursor of the Cahn–Hilliard equation. The use of
logarithmic terms in the free energy, which arises naturally due to thermodynamic entropy
consideration, also appeared in the papers [40,39] as well as in the 1958 paper of Cahn
and Hilliard [16]. See also the discussions in [26,41]. The problem formulated in (21) con-
stitutes a degenerate fourth order semilinear parabolic problem. Galerkin approximations
can be used to prove existence and to construct finite element schemes by first regularizing
the free energy. The payoff for working with the more complicated formulation is that it
yields more physical results; namely, for (21) and for Ω ⊂ R

n, n ∈ N, if u0 ∈ [0, 1], then
u(x, t) ∈ [0, 1] for t � 0. Details follow in the next section.

However, early on the degenerate and concentration dependent mobilities were replaced
by constant mobilities and logarithmic terms in the free energy were expanded into polyno-
mials, to simplify the analysis and to enable some qualitative understanding of the equation.
In fact, very early analyzes were totally linear. Surprisingly this was not such a bad path
to take since the dominant unstable modes are typically sustained longer that a straight
forward linear analysis would suggest, see Section 6. It seems that nonlinear effects were
first included by de Fontaine in 1967 [22], who did so in the context of early numerical
studies of the Cahn–Hilliard equation.

For detailed derivations of both variants, see [65,66,34]. Physically speaking, it is more
natural to first justify the degenerate Cahn–Hilliard equation with logarithmic free energy
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terms and then to obtain the constant mobility Cahn–Hilliard equation with a polynomial
free energy by making suitable approximations.

5. Existence, uniqueness, and regularity

For the constant mobility Cahn–Hilliard equation with a polynomial free energy, a proof
of existence and uniqueness was given in 1986 by Elliott and Songmu [27], which also
contains a finite element Galerkin approximation scheme. To be more precise, setting

H 2
E(Ω) = {

v ∈ H 2(Ω) | n · ∇v = 0 on ∂Ω
}
,

where n denotes the unit exterior normal to ∂Ω , and ΩT = Ω × (0, T ), it follows from
[27] that

THEOREM 5.1. If Ω is a bounded domain in R
n, n � 2, with a smooth boundary, then

for any initial data u0 ∈ H 2
E(Ω) and T > 0, there exists a unique global solution in

H 4,1(ΩT ).

The proof relies on Picard iteration and on a priori estimates obtained by multiply-
ing (17) by u, f (u)−ε2�u, and �2u. By taking more regular initial data, classical solutions
may also be obtained. Of some physical interest is the estimate obtained by multiplying
(17) by f (u) − ε2�u, namely

(23)F(t) − F(0) = −
∫

ΩT

∣∣∇{
f (u) − ε�u

}∣∣2 dx dt,

where

(24)F(t) =
∫

Ω

{
F(u) + ε2

2
|∇u|2

}
dx.

The quantity f (u) − ε2�u is frequently identified as the chemical potential, μ = μ(x, t).
Of interest also is the estimate obtained by multiplying (17) by φ ≡ 1, namely

(25)
∫

Ω

u(x, t) dx =
∫

Ω

u0(x) dx,

which can be understood as a statement of conservation of mass or conservation of the
mean.

From (23), (25), it also follows that

F(t) − F(0) =
∫

ΩT

〈
f (u) − ε2�u, ut

〉
H 1(Ω),(H 1(Ω))′ dt

(26)= −‖ut‖2
L2(0,T ;H−1(Ω))

,

and hence the Cahn–Hilliard equation is frequently referred to as H−1 gradient flow.
In [58] (see [78] for an extended explanation), using essentially the same estimates and

a Galerkin approximation based on the eigenfunctions of A, where A is the Laplacian with
Neumann boundary conditions, it is proven that
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THEOREM 5.2. For u0(x) ∈ L2(Ω), Ω ⊂ R
n, n � 3, there exists a unique solution,

u(x, t), to the constant mobility Cahn–Hilliard equation, and u(x, t) satisfies

(27)

u ∈ C
([0, T ]; L2(Ω)

) ∩ L2(0, T ; H 1(Ω)
) ∩ L4(0, T ; L4(Ω)

)
, ∀T > 0,

and F(t) decays along orbits. If, moreover, u0(x) ∈ H 2
E(Ω), then

(28)u ∈ C
([0, T ]; H 2

E(Ω)
) ∩ L2(0, T ;D(

A2)), ∀T > 0.

To get (27), (17) needs only to be tested by u. The result (28) follows by testing (17)
by �2u. Uniqueness may be demonstrated by testing with the inverse of A, suitably de-
fined, acting on the difference of two solutions, see the discussion in [11].

Proofs of similar existence results for (17) can also be given within the framework of the
theory of semilinear operators [61]. More specifically, taking L2(Ω) to be the underlying
space, and defining the A1 = ε2� with domain D(A1), the operator A1 can be shown to
be a sectorial operator and existence may be proved by using a variation of constant formu-
lation and results of Henry [38] and Miklavčič [54]. Within the framework of dynamical
systems [61,78], it is easy to prove using (23) that

THEOREM 5.3. As t → ∞, u(x, t) converges to its ω-limit cycle which is compact, con-
nected, and invariant. If the steady states are isolated, then solutions converge to a steady
state.

In a sense, Theorem 5.3 has served as the starting point for many rich studies with re-
gard to the identification of steady states [63,64,36,28,82–86], the existence and properties
of attractors [58,59], the behavior of solutions in the neighborhood of attractors [3], the
stability of steady states [61], and the list given here is admittedly very far from being
complete.

As to existence theories for the degenerate Cahn–Hilliard equation, apparently the first
result in this direction was given in 1992 by Jingxue [44]. The existence theory given there
is for Ω = [0, 1], and it is for the Cahn–Hilliard equation with a degenerate mobility but
with a nonsingular free energy.

THEOREM 5.4. Let M(s) be a Hölder continuous function and f ′(s) be a continuous
function,

M(0) = M(1) = 0, M(s) � 0 for s ∈ (0, 1).

Let u0 ∈ H 3
0 (I ), 0 � u0(x) � 1. Then problem (1)–(3) has a generalized solution u

satisfying 0 � u(t, x) � 1.

Here u ∈ Cα(Ω̄T ), α ∈ (0, 1) is said to be a generalized solution if
(1) D3u ∈ L2

loc(Gu) and
∫
Gu

M(u)(D3u)2 < ∞, where

Gu = {
(x, t) ∈ Ω̄T | M

(
u(x, t)

)
> 0

}
.



The Cahn–Hilliard equation 213

(2) u ∈ L∞(0, T ; H 1(0, 1)), Du is locally Hölder continuous in Gu and Du|Γ ∩Gu = 0
holds in the classical sense, where Γ = {{(0, t), (1, t)} | t ∈ [0, T ]}.

(3) For any φ ∈ C1(Ω̄T ), the following integral equality holds:

−
∫ 1

0
u(x, T )φ(x, T ) dx +

∫ 1

0
u0(x)φ(x, 0) dx +

∫
ΩT

uφt

+
∫

Gu

M(u)
(
ε2D3u − Df (u)

)
Dφ = 0.

The definition of generalized solution given here and the method of proof are in the spirit
of the analysis by Bernis and Friedman [9] of the thin film equation.

For the degenerate Cahn–Hilliard equation with logarithmic free energy, one has the
following results due primarily to Elliott and Garcke [24,47,65],

THEOREM 5.5. Let Ω ⊂ R
n, n ∈ N, where ∂Ω ∈ C1,1 or Ω is convex. Suppose that

u0 ∈ H 1(Ω) and 0 � u0 � 1. Then there exists a pair of functions (u, J ) such that

(a) u ∈ L2(0, T ; H 2(Ω)
) ∩ L∞(

0, T ; H 1(Ω)
) ∩ C

([0, T ]; L2(Ω)
)
,

(b) ut ∈ L2(0, T ; (
H 1(Ω)

)′)
,

(29)(c) u(0) = u0 and ∇u · n = 0 on ∂Ω × (0, T ),

(d) 0 � u � 1 a.e. in ΩT := Ω × (0, T ),

(e) J ∈ L2(ΩT , R
n
)

which satisfies ut = −∇ · J in L2(0, T ; (H 1(Ω))′), i.e.,∫ T

0

〈
ζ(t), ut (t)

〉
H 1,(H 1)′ =

∫
ΩT

J · ∇ζ

for all ζ ∈ L2(0, T ; H 1(Ω)) and

J = −M(u)∇ · (−ε2�u + f (u)
)

in the following weak sense:∫
ΩT

J · η = −
∫

ΩT

[
ε2�u∇ · (

M(u)η
) + (Mf ′)(u)∇u · η

]
for all η ∈ L2(0, T ; H 1(Ω, R

n)) ∩ L∞(ΩT , R
n) which fulfill η · n = 0 on ∂Ω × (0, T ).

(f) Moreover, letting F(t) be as defined in (24), then for a.e. t1 < t2, t1, t2 ∈ [0, T ],

F(t2) − F(t1) � −
∫ t2

t1

∫
Ω

1

M(u)
|J |2 dx.

The proof here is based on existence results for a regularized equation, where the mo-
bility is given by Mε(u) and the free energy is given by fε(u), and implementation of an
additional estimate obtained by testing the equation with Φε

′(u), where Φε
′′(u) = 1

Mε
,

which yields an entropy like estimate [9], which enables the bounds 0 � u(x, t) � 1 to be
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demonstrated. We note that the “entropy” Φ, such that Φ ′′(u) = 1
M

, had been employed
earlier in the Cahn–Hilliard context in stability studies [60]. For a discussion of uniqueness
and numerical schemes, see [8].

6. Linear stability and spinodal decomposition

In Section 2, linear stability of the spatially uniform state u(x, t) = ū was considered in one
spatial dimension for the constant mobility Cahn–Hilliard equation. Setting Ω = [0, L]
and u(x, t) = ū + ũ(x, t), the following linear stability problem was obtained

(30)

⎧⎪⎨
⎪⎩

ũt = M0
[−(

1 − 3ū2
)
ũ − ε2ũxx

]
xx

, (x, t) ∈ ΩT ,

ũx = M0
[−(

1 − 3ū2
)
ũ − ε2ũxx

]
x

= 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω.

It was shown in Section 2 that when ε is set to zero and the regularizing terms are dropped
from the analysis, then (30) is equivalent to the backwards diffusion equation for ū2 < 1/3,
and it is equivalent to the (forward) diffusion equation for ū2 > 1/3. We have already seen
that when the regularizing terms in ε are included, then (17) is well-posed, so no problems
with ill-posedness are expected here.

It is easy to verify that in the multi-dimensional case, linearization of the constant mo-
bility Cahn–Hilliard equation about the spatially homogeneous steady state, u(x, t) = ū,
yields the linear stability problem,

(31)

⎧⎪⎨
⎪⎩

ũt = M0
((

1 − 3ū2
)
�ũ − ε�2ũ

)
, (x, t) ∈ ΩT ,

n · ∇ũ = n · ∇�ũ = 0, (x, t) ∈ ∂ΩT ,

ũ0(x, 0) = ũ0(x), x ∈ Ω.

If we wish, we may proceed as in the analysis in [58,78,24] and construct a solution of (31)
based on the eigenfunctions of A, the Laplacian with Neumann boundary conditions. This
yields

ũ(x, t) = A0(0)

2
+

∞∑
k=1

Ak(0)eσ(λk)tΦk(x),

where λk and Φk are the eigenvalues and the eigenfunctions of A, Ak(0) are the coefficients
in the eigenfunction expansion for ũ0(x), and

(32)σ(λk) = ((
1 − 3ū2) − ε2λk

)
λk.

One question of physical interest is number of unstable (or “growing”) modes, in other
words, the number of k ∈ Z+ such that σ(λk) > 0. Another question of physical interest is
the identification of the dominant (or “fastest growing”) mode, in other words, identifying
λk such that σ(λk) is maximal.

In one dimension with Ω = [0, L], λk = (kπ/L)2 and (32) yields the “dispersion
relation”

(33)σ̄ (k) := σ(λk) = k2π2

L2

[
1

4
− ε2k2π2

L2

]
,
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for k ∈ Z+. Examining σ̄ (k) it is easily seen that σ̄ (k) vanishes at k1 = 0 and k2 =
L/(2επ), it is positive for k ∈ (k1, k2), it has a unique critical point (a maximum) at
k3 = L/(2

√
2 επ), and it is negative elsewhere. Even if k3 /∈ Z+, the mode k3 is known

as the fastest growing mode. From (33), it follows that

(34)# growing modes =
⎧⎨
⎩

[
L

√
1 − 3ū2

επ

]
, |ū| <

1√
3
,

0, otherwise,

where [s] refers to the integer value of s. From (34), it follows that as L increases or as ε

decreases, the number of growing modes increases. Note that if L is sufficiently small or
ε is sufficiently large, then there are no growing modes at all. Thus the parameter range
for linear instability depends on L and ε, as well as on ū. While ε reflects a material
property of the system, L, which reflects the size of the system, can be varied with relative
ease. Since in most systems, the size of the system is very large relative to the size of the
(micro-)structures under consideration, the limit of the parameter range of instability as
ε/L → 0 is of physical relevance. And in this limit, the parameter range for instability is
given by

(35)
−1√

3
� ū � 1√

3
.

The limiting compositions limε/L→0 ū± = ± 1√
3

are known as the spinodal compositions.
What does this have to do with the way the terminology spinodal was used in Section 3?

We note first that the one dimensional analysis may be readily generalized to higher dimen-
sions by recalling that also in higher dimensions one has that λk ∼ k2. Moreover, the analy-
sis may also be readily generalized to treat the degenerate Cahn–Hilliard equation, (21), if
ū is taken to lie strictly in the interval (0, 1) and perturbations are taken sufficiently small.
(For the special cases, ū = 0 or 1, there are no perturbations which conserve the original
mass constraint, and it make some physical sense to impose such a constraint.) For (21),
the spinodal compositions can be easily verified to depend also on temperature, and hence
the parameter range for linear stability can be prescribed in terms of (ū,Θ), as was done
in Section 3.

As time goes on, the importance of the nonlinear terms becomes more and more pro-
nounced. It is the nonlinear effects which keep the amplitude of the solution from becoming
unbounded and which cause the system to saturate near the binodal values, uA and uB . Af-
ter the initial stages of saturation, certain regions, in which uA or uB dominate, grow at
the expense of other regions and coarsening begins. As the nonlinear effects set in, the
differences between the two Cahn–Hilliard variants become more pronounced, as we shall
see shortly. One would expect, however, that the patterning in the phase separation would
be dominated by the fastest growing mode over a period of time roughly proportional
to the inverse of the growth rate of the fastest growing mode. Actually, often it remains
dominant over a considerably longer time interval. This rather surprising result has been
demonstrated for the constant mobility Cahn–Hilliard equation, see [75,51,52].
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7. Comparison with experiment

What can be said with regard to is experimental verification of the Cahn–Hilliard theory?
While qualitative comparison between numerical calculation and experimental data has
been known for years to be reasonable [15,43], more quantitative indicators are clearly
desirable. At the onset on spinodal decomposition, linear theory predicts a dominant grow-
ing mode (see Section 6), and as the system evolves into phase separated domains which
coarsen, the dominant length scale in the system gets larger. Two approaches have been
developed to quantitatively compare the evolution of length scales.

One approach is based on the structure function

S(k, t) ≡ ∣∣{u − ū}̂ (k, t)
∣∣2

,

where ū = ū(t) := 1
|Ω|

∫
Ω

u(x, t) dx, and “̂ ” denotes the Fourier transform. If the length
scale characterizing the patterns of the phase separation are much smaller than the length
scales of Ω , edge effects should become negligible. In this case if Ω ⊂ R

2, then

(36)S(k, t) ≈ 1

4π2

∣∣∣∣
∫

R2×R2
f (x̄, t)f (ȳ, t) e−k·(x̄−ȳ) dx̄ dȳ

∣∣∣∣
2

, ∀k ∈ R
2,

where f (s, t) = u(s, t) − ū(t). Structure function analysis can be implemented from the
earliest stages of phase separation and throughout the coarsening regime. Various conjec-
tures and predictions have been made with regard to possible self-similar behavior and
scaling laws for growth of the characteristic length, based in part on analysis of the evolu-
tion of the structure factor, see e.g. [30]. Although there has been no rigorously verification
of these prediction, some rigorous upper bounds on coarsening rates can be given [47,67].

Another approach which has been developed more recently is computational evaluation
of Betti numbers to study the topological changes occurring during phase separation [32].
Betti numbers, βk , k = 0, 1, . . . , are topological invariants which reflect the topological
properties of the structure [45]. The first Betti number, β0 counts of the number of con-
nected components, and the second Betti number, β1 counts of the number of loops (in
two dimensions) or the number of tunnels (in three dimensions). Reasonable qualitative
agreement between theory and experiment [43] has been reported.

8. Long time behavior and limiting motions

It is constructive to be able to describe coarsening, and to obtain an accurate description
of the motion of the interfaces. It turns out that to leading order, the Mullins–Sekerka
problem and motion by surface diffusion give such a description. They both constitute
free boundary problems where in the present context, the free boundaries refer to the inter-
faces between the phases. The constant mobility and the degenerate mobility Cahn–Hilliard
equations differ in their behavior during coarsening stages. More specifically, the behavior
of the constant mobility Cahn–Hilliard equation during coarsening can be described by
the Mullins–Sekerka problem, and the behavior for the degenerate mobility Cahn–Hilliard
equation is approximated by surface diffusion if Θ = O(ε1/2). It is of interest to note
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that the Mullins–Sekerka problem and motion by surface diffusion appeared in various
other problems, especially in materials science [55,6], long before their connection with
the Cahn–Hilliard equation became known.

How does one pass from the Cahn–Hilliard equation which describes the evolution of
the concentration at all points in the system, to a description of the evolution which focuses
on the motion of the interfaces? One such approach is to derive limiting motions by uti-
lizing certain formal asymptotic expansions. Such an approach was developed to describe
limiting motions for the Allen–Cahn equation [74] and for the phase field equations [13],
and could be generalized to the Cahn–Hilliard context by Pego [71] for the case of constant
mobility and by Cahn, Elliott and Novick-Cohen [14] in the case of degenerate mobility.
As to the justification of the formal asymptotic analysis, under appropriate assumptions
the passage from the Cahn–Hilliard equation to the Mullins–Sekerka problem can be made
rigorous [1,2,18]. The passage from the degenerate Cahn–Hilliard equation to motion by
surface diffusion has yet to be rigorously justified, however numerical computations indi-
cate that the limiting motion has been correctly identified [8].

Since during coarsening the system has already saturated into domains dominated by
one of the two binodal concentrations, we can envision the domain Ω during coarsening as
being partitioned by N interfaces, Γi , i = 1, . . . , N , and the description of the evolution
of the system can be given in terms of these N partitions.

8.1. The Mullins–Sekerka problem

In the Mullins–Sekerka problem [55], the following laws govern the evolution of the inter-
faces for t ∈ (0, T ), 0 < T < ∞. See Figure 2. Away from the interfaces

(37)�μ = 0, x ∈ Ω\Γ,

and along the interfaces

(38)V = −[n · ∇μ]+−, x ∈ Γ,

and

(39)μ = −κ.

Along ∂Ω , the boundary of Ω ,

(40)n · ∇μ = 0, x ∈ Γ ∩ ∂Ω,

and

(41)Γ ⊥ ∂Ω, x ∈ Γ ∩ ∂Ω.

In (37)–(39), μ = μ(x, t) denotes the chemical potential which in the context of the
formulation of the Cahn–Hilliard equation can be identified as μ = f (u)−ε2�u. Note that
here, in the limiting problem, the concentration u = u(x, t) no longer appears explicitly,
but only via the chemical potential, μ. In (38), V = V (x, t) denotes the normal velocity at
the point x ∈ Γ , and n = n(x, t) denotes an unit exterior normal to one of the components
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Fig. 2. Limiting motion as t → ∞ for Case I: the Mullins–Sekerka problem.

Γi which comprises Γ . The orientations can be chosen arbitrarily for the parameterizations
of the curves Γi , i = 1, . . . , N . The normal velocity V can be defined by V = n · �V where
�V = �V (x, t) is the velocity of the interface at x ∈ Γ . See e.g. Gurtin [37] for background.
One should note that Γ is time dependent in this formulation. In (38), [n · ∇μ]+− denotes
the jump in the normal derivative of μ across the interface at x ∈ Γ . In (39), κ denotes the
mean curvature. For curves in the plane,

κ = 1

R
,

where R is the signed radius of the inscribed circle which is tangent to Γ at x ∈ Γ , and the
sign of the radius is taken here to be positive if the inscribed circle lies on the “exterior” or
“left” side of the curve whose orientation has been fixed. In R

3,

κ = 1

2

(
1

R1
+ 1

R2

)
,

where R1, R2 are the principle radii of curvature. See Gurtin [37] or Finn [29].
Clearly the Mullins–Sekerka problem is a nonlocal problem in that the motion of the

interfaces cannot be ascertained without taking into account what is happening within the
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domains bounded by the interfaces. For existence results for the Mullins–Sekerka problem,
and a discussion of some of its qualitative properties, see for example, [2,18].

8.2. Surface diffusion

For the degenerate Cahn–Hilliard equation, if the scaled temperature Θ is sufficiently small
and if logarithmic terms are included in the free energy, then the long time coarsening
behavior can be formally shown to be governed by surface diffusion. By this we mean that
the evolution of the interfaces Γ = Γ1 ∪ Γ2 ∪ · · · ∪ ΓN is given by

(42)V = −π2

16
�sκ, x ∈ Γ,

(43)n · ∇sκ = 0, x ∈ Γ ∩ ∂Ω,

(44)Γi ⊥ ∂Ω, i = 1, . . . , N, x ∈ Γ ∩ ∂Ω.

The boundary condition (43) is an analogue of the no-flux boundary condition, and the
boundary condition (44) is a geometric analogue of the Neumann boundary condition.

In (42)–(44), V , κ and Γ have the same connotation as in our earlier discussion of the
Mullins–Sekerka problem, and �s denotes the surface Laplacian or Laplace–Beltrami op-
erator, see [31]. Here the motion is geometric in that the motion of the interfaces is deter-
mined by the local geometry of the interfaces themselves. A formal asymptotic derivation
of (42)–(44) is given in [14]. The system (42)–(44) can also be shown to describe the long
time coarsening behavior for the deep quench limit [68].

To gain some intuition into the predicted motion, note that in the plane (see Figure 3)
the system (42)–(44) can be written as

(45)

⎧⎪⎪⎨
⎪⎪⎩

V = −π2

16
κss, x ∈ Γ,

κs = 0, x ∈ Γ ∩ ∂Ω,

Γi ⊥ ∂Ω, i = 1, . . . , N, x ∈ Γ ∩ ∂Ω.

Here s is an arc-length parameterization of the components; i.e., along Γi , i ∈ {1, . . . , N},

s(p) =
∫ p

p0

√
ẋ2 + ẏ2 dτ,

where {(x(τ ), y(τ )) | p0 � τ � p} is an arbitrary parameterization of Γi and p0 refers to
an arbitrary point on Γi . For (45), local existence can be demonstrated for smooth initial
data, and perturbation of circles can be shown to evolve towards circles while preserving
area [25].

9. Upper bounds for coarsening

In this section we present some rigorous results on upper bounds for coarsening. The first
results given in this direction are by Kohn and Otto [47] in the context of the Cahn–Hilliard
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Fig. 3. Limiting motion as t → ∞ for Case II: motion by surface diffusion.

equation. Their results are for (a) the Cahn–Hilliard equation with constant mobility, (17),
and for (b) the degenerate Cahn–Hilliard equation, (21), where the mobility is taken as (19)
and the temperature, Θ , is set to zero. The Θ = 0 limit problem described in (b) in fact
constitutes a free boundary obstacle problem [10], though solutions for it may be obtained
via limits of solutions of (21) with Θ > 0, for which the existence and regularity results of
Section 5 apply. For simplicity, in [47] periodic boundary conditions are assumed and the
mean mass, ū, is taken to be equal to 1/2. They demonstrate upper bounds for the dominant
length scale during coarsening, of the form ∝ t1/3 for (a), and of the form ∝ t1/4 for (b).
Stated more precisely, they proved that there exist constants Cα such that if L3+α(0) �
1 � E(0) and T � L3+α(0), where E denotes a scaled free energy and L is a (W 1,∞)∗
norm of u, then

1

T

∫ T

0
EθrL−(1−θ)r dt � CαT −r/(3+α),

for all r , θ such that

0 � θ � 1, r < 3 + α, θr > 1 + α, (1 − θ)r < 2,
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where α = 0 for (a) and α = 1 for (b). Their analysis is based on three lemmas which
should hold at long times when the system has sufficiently coarsened. The first of these
lemmas gives a bound of the form 1 � dEL where d is an O(1) constant, the second lemma
gives a differential inequality involving E, L, and their time derivatives, and the third
lemma uses the results of the first two lemmas to obtain upper bounds. Similar analyses
have appeared more recently in various related settings [48,21,70].

While the predictions of Kohn and Otto are quite elegant, various deviations from the
results in [47] have been seen [33,76,7], in particular strong mean mass dependence and
slower than predicted rates. Moreover, the validity of their results requires that sufficiently
large systems must be considered at sufficiently large times, which hinders ready numer-
ical verification. As a partial remedy, the results of Kohn and Otto have been general-
ized in [67], and upper bounds for coarsening have now been given for all temperatures
Θ ∈ (0,Θcrit), where Θcrit denotes the “critical temperature”, and for arbitrary mean
masses, ū ∈ (uA, uB), where uA and uB denote the binodal concentrations. In [67], the
domain Ω ⊂ R

N , N = 1, 2, 3, is taken to be bounded and convex, and the analysis ap-
plies either to the Neumann and no flux boundary conditions given in (22) or to periodic
boundary conditions. Moreover, the upper bounds for the length scale are valid for all
times t > 0, even before coarsening has truly commenced. By giving the upper bounds in
terms of explicit temperature and mean mass dependent coefficients, it becomes clear that
transitional and cross-over behavior may be occur, as has been reported in [33,73]. The
remainder of this section is devoted to explaining some of the assumptions, analysis, and
results of [47,67] in greater depth.

The starting point for the analysis in both [47,67] is the following scaled variant of the
degenerate Cahn–Hilliard equation,

(46)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (1 − u2)∇[
θ

2
ln

[
1 + u

1 − u

]
− u − �u

]
, (x, t) ∈ ΩT ,

n · ∇u = 0, (x, t) ∈ ∂ΩT ,

n · (
1 − u2)∇[

θ

2
ln

[
1 + u

1 − u

]
− u − �u

]
= 0, (x, t) ∈ ∂ΩT ,

u(x, 0) = u0(x), x ∈ Ω,

which may be obtained by writing (21) in terms of the variables

(47)u′ = 2u − 1, x′ = (
α1/2/ε

)
x, t ′ = (

α2M0/ε
2)t, θ = Θ/α,

then dropping the primes. In the context of (46), θ = 1 corresponds to the critical tem-
perature. By setting θ = 1 − δ, x′ = (δ/2)1/2, t ′ = (δ2/4)t , and u′ = (3δ)−1/2u in (46),
and letting δ → 0 and dropping the primes, the constant mobility Cahn–Hilliard equation,
(17), with M0 = 1 is obtained. For this reason, case (a) treated in [47] is referred to there
as the “shallow quench” limit. Letting θ → 0 in (46), case (b), which is referred to in [47]
as the “deep quench” limit, is obtained.

Why consider E−λ(t)L1−λ(t), 0 � λ � 1, as a reasonable measure for the dominant
length scale in the system? Since the mean mass, ū = 1

|Ω|
∫
Ω

u(x, t) dx, is time invariant
for (46), it is convenient to define a first length scale, L(t) as

L(t) := sup
ξ∈A

1

|Ω|
∫

Ω

u(x, t) ξ(x) dx,
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where

A :=
{
ξ ∈ W 1,∞

∣∣∣ ∫
Ω

ξ dx = 0 and sup
Ω

|∇ξ | = 1

}
.

A second length scale, E−1(t), can be defined based on the free energy, F(t), which was
introduced in (24). In terms of the rescalings (47), we obtain that

(48)E(t) := 1

|Ω|F(t) = 1

2|Ω|
∫

Ω

{
|∇u|2 +

[
∂W

∂u

]2}
|u=u(x,t)

dx,

where

(49)
∂W

∂u
= [(

1 − u2) + θ
{
(1 + u) ln(1 + u) + (1 − u) ln(1 − u)

} + e(θ)
]1/2

.

In (49), e(θ) is determined by requiring that ∂W
∂u

= 0 at u = u±, where u± denote here the
two unique minima of ∂W

∂u
, such that u+ = −u− > 0. A straightforward calculation yields

that

(50)θ = 2u±
ln(1 + u±) − ln(1 − u±)

=
[ ∞∑

k=0

1

2k + 1
u2k±

]−1

,

and hence, in particular, u± = u±(θ), as one would expect. That E−1(t) acts as a length
scale measuring the amount of perimeter during coarsening can be seen by noting that (48)
implies that

(51)E(t) � 1

|Ω|
∫

Ω

∣∣∇W(u)
∣∣ dx.

During the later stages of coarsening when the system is approximately partitioned into
regions in which u = u+ and in which u = u−, the inequality in (51) can be expected to
be closely approximated by equality. The expression on the right-hand side of (51) scales
as length−1 and gives, for such partitioned systems, a measure of the amount of interfacial
surface area per unit volume times the “surface energy”, σ = W(u+) − W(u−). Note that
for well partitioned systems, (u+ − u−)‖u‖−1

W 1,∞ gives a rough lower bound on interfacial

widths, hence |Ω|(u+ − u−)−1‖u‖W 1,∞ gives an upper bound on the amount of interfacial
area within the volume |Ω|, and therefore, in some sense, L(t) and E−1(t) are measuring
similar quantities. If L(t) and E−1 both act as reasonable measures of “length” during
coarsening, clearly E−λL(1−λ)(t), 0 � λ � 1 also constitutes a reasonable measure.

In treating temperatures θ ∈ [0, 1] and mean masses u− < ū < u+, the following
technical results are useful:

CLAIM 9.1. Let 0 < θ < 1, u− < ū < u+, and let u(x, t) denote a solution to (46). Then

∂W

∂u
(u) � Ψ (θ)

∣∣u2 − u2±
∣∣,

where

Ψ (θ) := 1

u2±

[
−1 + 2

u±

{
ln(1 − u±) + ln(1 + u±)

ln(1 − u±) − ln(1 + u±)

}]
,
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and

1

|Ω|
∫

Ω

(
u2± − u2) dx � 2[E + θ ln 2].

The following lemmas [67], which make use of the estimates in Claim 9.1, are extensions
and generalization Lemmas 1, 2, and 3 from [47].

LEMMA 9.1. Let 0 < θ < 1 and u− < ū < u+. Then

(52)
(
u2± − ū2) �

[
32L(t)

(
5E(t)

u+[Ψ (θ)]1/2
+ 3|∂Ω|

|Ω|
)]1/2

+ F(E; θ), 0 < t,

where

(53)F(E; θ) = min

{[
2E

Ψ (θ)

]1/2

, 2[θ ln 2 + E]
}
.

LEMMA 9.2. Let 0 < θ < 1 and u− < ū < u+. Then

(54)|L̇|2 � −(
1 − u2±

)
Ė − F(E; θ)Ė, 0 < t,

where F(E; θ) is as defined in (53).

LEMMA 9.3. Suppose that

(55)|L̇|2 � −AEαĖ, 0 � t � T ,

and

(56)0 � α � 1, 0 � ϕ � 1, r < 3 + α, ϕr > 1 + α, (1 − ϕ)r < 2.

If, in addition to (55), (56),

(57)LE � B, 0 � t � T ,

then

(58)
1

T

[∫ T

0
ErϕL−(1−ϕ)r dt + L(0)(3+α)−r

]
� ϑ1T

−r/(3+α),

where ϑ1 = ϑ1(A,B, α, r, ϕ).
If, in addition to (55), (56),

(59)E � C, 0 � t � T ,

then

(60)
1

T

[∫ T

0
EϕrL−(1−ϕ)r dt + L(0)2−(1−ϕ)r

]
� ϑ2T

−(1−ϕ)r/2,

where ϑ2 = ϑ2(A,C, α, r, ϕ).
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REMARK 9.1. The inequalities in (56) imply that 2
1−ϕ

> 3 + α, hence the upper bound
predicted by (60) is slower than in (58).

We shall now see how Lemmas 9.1, 9.2, and 9.3 imply upper bounds for coarsening. Let
us first consider the expression for F(E; θ). If 0 < θ < 1 and E is sufficiently small, then
F(E; θ) = [2E/Ψ (θ)]1/2. If the term 3|∂Ω|

|Ω| in (52), which represents boundary effects,
is sufficiently small, Lemma 9.1 can be used to imply either a bound of the form (57)
or a bound of the form (59). In particular, if E is sufficiently small, then a bound of the
form (57) is implied. It now follows from Lemma 9.2, depending on the relative size of the
terms (1 − u2±) and [2E/Ψ (θ)]1/2, that Lemma 9.3 holds with either α = 0 or α = 1/2.
In particular, if E is sufficiently small, then Lemma 9.3 holds with α = 0. This yields the
shallow quench result of [47].

Suppose that θ = 0. If E is sufficiently small, then F(E; θ) = 2E. Again, Lemma 9.1
can be seen to imply either a bound of the form (57) or a bound of the form (59), with a
bound of the form (57) being implied if E is sufficiently small. When θ = 0, then referring
to (50), u± = ±1. Hence if F(E; θ) = 2E, Lemma 9.2 implies that (55) holds with α = 1.
This yields the deep quench result of [47].

More generally, Lemmas 9.1 and 9.2 can be used to demonstrate that if ū ∈ (u−, u+)

and θ ∈ [0, 1), then for any t > 0, there exists times 0 � T1 < T2 such that for all
t ∈ (T1, T2), (55) holds for some α ∈ {0, 1

2 , 1} and either (57) or (59) holds. Noting the
autonomy of the differential inequality, (55), it is possible to conclude

THEOREM 9.1. Let u(x, t) be a solution to (46) in the sense of Theorem 5.5 such that
u− < ū < u+ and 0 < θ < 1, then at any given time t � 0, if boundary effects are
negligible then upper bounds of the form

1

t − T1

[∫ t

T1

ErϕL−(1−ϕ)r dt + L(T1)
(3+α)−r

]
� ϑ1(t − T1)

−r/(3+α),

or

1

t − T2

[∫ t

T2

EϕrL−(1−ϕ)r dt + L(T2)
2−(1−ϕ)r

]
� ϑ2(t − T2)

−(1−ϕ)r/2,

may be prescribed, for appropriate values of the parameters.

The boundary terms, which are neglected in Theorem 9.1, may be incorporated by suit-
ably redefining E. Over time, E decreases, and the relative size of the terms on the right-
hand side of (52), (54) changes in accordance also with the size of ū and θ . In this manner,
a variety of time depend predictions for upper bounds on coarsening follow from Theo-
rem 9.1, with transitions which may clearly depend on both ū and θ , [67,76,33]. A com-
plete discussion of these results is quite involved [67], and a complete understanding of
the actual coarsening rates requires refinement of the bounds [20] and considerable further
work.

A CLOSING REMARK. Roughly fifty years have passed since the Cahn–Hilliard equation
was proposed as a model for phase separation [16,15]. While many aspects of its dynamics
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have been studied, many aspects remain to be analyzed. The author of this chapter apolo-
gies that the list of references which follow cannot claim to be complete. Clearly it is a
tribute to the robustness of the equation, that the details that have been forthcoming from
the analysis all seem to contribute to the overall picture and not to lead to the dismissal of
the model. The Cahn–Hilliard equation continues to be proposed as a relevant model in a
variety of new contexts, and it continues to be generalized in a variety of new directions,
[62,65].

Illustrations: Courtesy of Niv Aharonov.
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1. The equations describing viscoelastic flows

In Section 9 of Book II of his Principia, Newton [123] states the hypothesis that “The resis-
tance arising from the want of lubricity in the parts of a fluid is, other things being equal,
proportional to the velocity with which the parts of the fluid are separated from one an-
other.” He then proceeds to apply this hypothesis to analyze the velocity field surrounding
a cylinder in uniform rotation. The generalization of Newton’s hypothesis to more gen-
eral flows had to await the work of Navier [122] and Stokes [203], who formulated the
equations that now bear their name.

The motion of an incompressible continuous medium is described by the equation of
momentum balance,

(1)ρ

(
∂v
∂t

+ (v · ∇)v
)

= div T − ∇p,

the incompressibility condition,

(2)div v = 0,

and a constitutive law. Here ρ is the density, v is the velocity, p is the pressure, and T is the
“extra” stress (extra meaning in addition to the pressure). The constitutive law describes
how this extra stress is related to the motion of the fluid. Newton’s hypothesis, as general-
ized by Navier and Stokes, states that this extra stress is proportional to the symmetric part
of the velocity gradient,

(3)T = η
(∇v + (∇v)T

)
.

The proportionality constant η is called the viscosity.
The stress postulated by Newton’s law is basically a friction force. The hypothesis is ade-

quate for many fluids, such as water, air, gasoline, liquid metals etc. Other liquids, however,
have a microstructure, which can be altered by a flow, and the stresses in such fluids de-
pend on this flow-microstructure interaction. Examples include polymers, liquid crystals,
suspensions, and foams. The first statement on a connection between microstructure and
rheological properties appears to be due to Lucretius [109]:

“We see how quickly through a colander
The wines will flow; how, on the other hand,
The sluggish olive-oil delays: no doubt,
Because ’tis wrought of elements more large,
Or else more crook’d and intertangled. Thus
It comes that the primordials cannot be
So suddenly sundered one from other, and seep,
One through each several hole of anything.”
The first generalization of the Newtonian fluid that comes to mind is to replace the linear

dependence on the velocity gradient by a nonlinear one. Such models, known as the gener-
alized Newtonian fluid, are useful and have inspired a substantial mathematical literature.
They cannot, however, account for the physics of the fluid-microstructure interaction just
alluded to.
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This article will focus on the analysis of models which were developed primarily for
polymeric liquids. The basic physics governing the flow of such liquids is quite simple to
describe. In their rest state, the long chain molecules of the polymers assume a randomly
coiled shape. The drag exerted in a flow can stretch them out. Since a stretched molecule
is a state of lower entropy than a coiled molecule, this increases the free energy, leading to
a restoring force, which produces an elastic stress.

Putting this insight into mathematical equations is far from easy. It is clear that the defor-
mation of molecules in response to a flow is not instantaneous, and therefore the stress will
depend not only on the instantaneous velocity gradient, but on the history of the motion.
Attempts to formulate specific models have been of two kinds: “Phenomenological” mod-
els postulate a relationship chosen of a certain form and then attempt to fit such a relation
to available data. “Molecular” models attempt to capture essential aspects of the physics
governing the interaction between molecular structure and flow in a simplified system that
might be viewed as a “caricature” of the real polymer molecules.

1.1. General considerations

In general, the motion of a fluid is described in terms of the relative deformation gradient.
If y(x, t, s) is the position at time s of the fluid particle which occupies position x at time t ,
we define the relative deformation gradient F(x, t, s) by

(4)Fij (x, t, s) = ∂yi(x, t, s)

∂xj

.

In a viscoelastic fluid, the stress tensor depends on the history of this relative deformation
gradient:

(5)T(x, t) = F
(
F(x, t, s)

)t

s=−∞.

One general restriction on the form of this dependence is the principle of frame indiffer-
ence [130,208], which expresses the condition that stresses result only from deformations
and are not affected by merely rotating the medium. The result of this principle is that T
depends only on the combination

(6)C(x, t, s) = FT (x, t, s)F(x, t, s),

known as the relative Cauchy strain, and that this functional is isotropic:

(7)T(x, t) = G
(
C(x, t, s)

)t

s=−∞,

and

(8)G
(
QC(x, t, s)QT

)t

s=−∞ = Q
[
G
(
C(x, t, s)

)t

s=−∞
]
QT

for every orthogonal matrix Q. With the notable exception of the Newtonian fluid, the
principle of material frame indifference specifically precludes linear constitutive relations.

It is not possible to formulate useful models without some a priori assumption about the
nature of the functional dependence on the history. At the “phenomenological” level, three
approaches have been used:
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(1) Taylor expansion around s = t .
(2) A history dependence resulting from solving a differential system.
(3) A history dependence expressed by integrals.
Taylor expansion around s = t leads to the Rivlin–Ericksen fluids [195]. Such models do

not lead to mathematical equations with desirable well-posedness and stability properties
[16] and should be used only within the context of perturbation expansions. Differential
and integral models will be discussed below.

1.2. Differential models

Differential models attempt to formulate a system of differential equations for the stress.
In general, the form of a differential model is

(9)
∂T
∂t

+ (v · ∇)T = G(∇v, T),

or, more generally, we may allow several parts of the stress, each governed by an equation
of this form,

T =
N∑

i=1

Ti ,

(10)
∂Ti

∂t
+ (v · ∇)Ti = Gi (T1, T2, . . . , TN,∇v).

Differential constitutive theories are nonlinear generalizations of Maxwell’s theory of
linear viscoelasticity [119]. It is possible to classify the possibilities allowed by material
frame indifference if, for instance, G is required to be quadratic [131], and, not surprisingly,
many popular constitutive models are of such a form. As pointed out by Oldroyd [130],
there are two natural candidates for a frame indifferent version of Maxwell’s theory, the
upper convected Maxwell model,

(11)
∂T
∂t

+ (v · ∇)T − (∇v)T − T(∇v)T + λT = μ
(∇v + (∇v)T

)
,

and the lower convected Maxwell model,

(12)
∂T
∂t

+ (v · ∇)T + (∇v)T T + T(∇v) + λT = μ
(∇v + (∇v)T

)
.

(When using the gradient of a vector in matrix products, we follow the convention that
the first index refers to the vector component and the second index to the direction of
differentiation.) The experimental facts on polymeric liquids as well as molecular theories
(see below) heavily favor the upper convected model. A number of popular models modify
the upper convected Maxwell model by adding additional quadratic terms to the equation,
for instance, the Giesekus model [52],

(13)· · · + κT2 = · · · ,
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the Phan–Thien–Tanner (PTT) model [134],

(14)· · · + κT(tr T) = · · · ,
and the Johnson–Segalman model [84],

(15)· · · + 1 − a

2

[
T

(∇v + (∇v)T
) + (∇v + (∇v)T

)
T

] = · · · ,

where, in each instance, the dots indicate the terms already there in the upper convected
Maxwell model. For any of these models, an additional Newtonian term may be added
to the stress. The upper convected Maxwell model, modified by addition of a Newtonian
viscous contribution, is known in the literature as the Oldroyd B model.

1.3. Integral models

Boltzmann’s theory of linear viscoelasticity [6] postulates a relationship of the form

T(x, t) = η
(∇v(x, t) + (∇v(x, t)

)T )
(16)+

∫ ∞

0
G(t − s)

(∇v(x, s) + (∇v(x, s)
)T )

ds.

Here the function G is usually assumed to be positive, monotone decreasing and convex,
in fact, all molecular models lead to completely monotone functions as long as molecular
inertia is neglected.

It is natural to attempt a nonlinear frame-invariant generalization. One such model is the
K-BKZ model introduced by Kaye [89] and Bernstein, Kearsley and Zapas [4]. With

(17)I1 = tr C−1(x, t, s), I2 = tr C(x, t, s),

this model can be put in the form

T(x, t) =
∫ t

−∞
∂W(I1, I2, t − s)

∂I1

(
C−1(x, t, s) − I

)
(18)− ∂W(I1, I2, t − s)

∂I2

(
C(x, t, s) − I

)
ds.

The model has a formal analogy with elasticity, if we replace the equilibrium position of
a particle in an elastic body by the position y(x, t, s) of a particle at a prior time. It con-
tains the arbitrary assumption that, although the dependence for fixed s is nonlinear, the
contributions from different times s superpose in an additive fashion. This assumption,
of course, serves only to restrict the possibilities to a manageable class and has no com-
pelling physical basis. Refinements of the model which relax this assumption have been
considered.
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1.4. Molecular models

The essential feature of polymeric liquids is the presence of long chain molecules. In mod-
eling efforts, such chain molecules are represented by chains of beads and rods or beads
and springs, which move under the influence of the forces in the springs, forces exerted
by the surrounding fluid, and stochastic forces. The trickier part of the modeling, however,
is how to represent the environment with which a polymer molecule interacts. There are
three basic approaches:

(1) Dilute solution theories visualize the polymer molecule as surrounded by a New-
tonian fluid (the “solvent”), and the interaction is by hydrodynamic drag forces de-
pending on the difference between the velocity of a “bead” in a polymer molecule
and the surrounding liquid.

(2) Network theories are motivated by theories of rubber elasticity. In rubber elasticity,
a segment of a polymer molecule is thought of as being constrained at certain “end
points,” while being able to move in between. Thus molecules are linked together in
a network. In a liquid, such networks are temporary, and hypotheses are needed to
describe the formation and decay of network junctions and how they move with the
fluid.

(3) Reptation theories visualize the molecule as slithering inside a tube formed by the
other polymer molecules.

I refer to [206] for an account of the history of molecular modeling efforts and references
to the original literature.

Only in the simplest cases and under additional ad hoc “approximations” do molecular
models lead to constitutive models of differential or integral type as discussed above. We
shall discuss this in the case of dilute solution theories, which are the conceptually sim-
plest type of model and the one most amenable to “rigorous” development. The following
description is somewhat sketchy, for a more detailed discussion see e.g. Volume 2 of [5].

In the simplest case, the polymer molecule is thought of as a “dumbbell” consisting of
two beads connected by a spring. The spring connecting the beads exerts a spring force
F(R). On each of the beads, we have a balance between this spring force, a friction force
exerted by the surrounding fluid, modeled as a Stokes drag, and a stochastic force due to
Brownian motion.

The result of this balance is an equation of the form

(19)Ṙ = ∇v · R − 2

ζ
F(R) + 1

ζ
S

for the vector R connecting the beads. Hence F(R) is the spring force, S is a stochastic
term, and ζ is a constant related to the friction coefficient of the beads.

Under reasonable assumptions on the stochastic forces, the methods of stochastic dif-
ferential equations can be used to convert the stochastic differential equation (19) to a
Fokker–Planck equation. We assume hat each macroscopic volume element in space con-
tains a large number of polymer molecules and that the distribution of their connector
vectors R can be described by a probability density ψ(R, x, t). For each x and t , the total



236 M. Renardy

probability is equal to 1:

(20)
∫

R3
ψ(R, x, t) dR = 1.

If the stochastic forces on each bead are described by a Wiener process, and their magnitude
is proportional to kT , then the Fokker–Planck equation is

(21)
∂ψ

∂t
+ (v · ∇x)ψ = 2kT

ζ
	Rψ + divR

[
−∇v(x, t) · Rψ + 2

ζ
F(R)ψ

]
.

Here 	R and divR indicate differential operators with respect to the variable R.
The contribution to the stress tensor resulting from the tension in the springs is given by

(22)Tp(x, t) = n

∫
R3

RF(R)ψ(R, x, t) dR.

The product RF which appears here is the dyadic product, and n is the number density of
polymer molecules. The total stress in the polymer solution is then modeled as the sum of
this “polymer contribution” and a viscous “solvent stress.”

The Fokker–Planck equation is actually a PDE involving an additional variable R which
needs to be solved in order to determine the constitutive behavior. Thus, in a three-
dimensional time-dependent flow, we have a total of seven independent variables, one for
time, three for x and another three for R. If one tries to go from dumbbells to more “re-
alistic” chains, the computational effort quickly becomes impractical. Only if the spring
force is linear it is possible to derive a closed set of differential equation for the quadratic
moments

(23)C =
∫

R3
RRψ(R, x, t) dR.

The tensor C is called the configuration tensor. The resulting constitutive model is the upper
convected Maxwell model. For nonlinear dumbbells, this is not possible unless we cheat. In
a nonlinear dumbbell, the spring force is given by γ (|R|2)R, where γ is the spring constant.
If we replace the spring constant of the actual spring by the spring constant of an average
spring, i.e. we change γ (|R|2) by γ (tr C), then it is again possible to derive a closed system
for the tensor C which does not require the solution of the Fokker–Planck equation. This is
referred to as the Peterlin “approximation,” but it is not an approximation in any rigorous
asymptotic sense. Rather, it is an attempt to obtain a more tractable problem which retains
the qualitative physics of the original problem. In this sense, most “molecular” models in
use by rheologists are perhaps more aptly described as “molecularly inspired.”

Comparisons between Peterlin and “real” dumbbells have recently been an active topic
of numerical simulation. Usually, such simulations are based not on the Fokker–Planck
equation, but on the original stochastic differential equation.
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2. Existence results for initial value problems

2.1. Local existence

Viscoelastic materials are intermediate between the viscous and elastic case, and it is nat-
ural to approach existence by viewing them as perturbations of either case. We shall illus-
trate this in the example of one dimensional shear flow of a K-BKZ fluid. The equation of
motion is of the form

(24)ρutt = ηuxxt +
∫ ∞

0
a
(
t − s, ux(t) − ux(s)

)
x

ds.

Here u represents the displacement, and η is a possible Newtonian contribution to the
viscosity. If η is positive, it is natural to construct solutions via the iteration

(25)ρun+1
t t = ηun+1

xxt +
∫ ∞

0
a
(
t − s, un

x(t) − un
x(s)

)
x

ds.

If, on the other hand, η is zero and a is smooth, solutions can be constructed using the
iteration

(26)ρun+1
t t =

∫ ∞

0
a
(
t − s, un+1

x (t) − un
x(s)

)
x

ds.

In the first case, each step of the iteration simply involves solving the heat equation; in
the second case, a nonlinear wave equation needs to be solved at each step of the iterative
process. Existence is based on proving that the mapping defined by the iteration (with the
imposition of suitable initial and boundary conditions) is a contraction in an appropriately
chosen function space. We note that the case of creeping flow is also important, since
inertia is often negligible in viscoelastic flows. In that case, (26) simplifies to

(27)
∫ ∞

0
a
(
t − s, un+1

x (t) − un
x(s)

)
x

ds = 0,

i.e. the problem to be solved at each step of the iteration is elliptic.
There is no essential difference between viscoelastic fluids and solids when it comes to

local existence results, and many results in the literature are stated for viscoelastic solids.
For earlier reviews of the literature, I refer, for instance, to [147,152]. Creeping flow prob-
lems seem to have been the first to be solved, see e.g. [1] for an early reference. Early
existence results for “parabolic” models of viscoelasticity appear, for instance in [73,143].
One-dimensional hyperbolic problems are discussed in [21,22,74,77,111]. In the three-
dimensional case, the incompressibility constraint complicates matters. Even the elastic
case was tackled only in the mid 1980s [32,81]. Kim [90] seems to have been the first to
prove a three-dimensional existence result for a viscoelastic fluid, the techniques can be
extended to general K-BKZ fluids [147]. A different approach for integral models can be
found in [144]. Existence of solutions for differential models is proved in [155].

An interesting possibility arises when η = 0, but the kernel a in (24) has a singularity
as s → t . Such models are not perturbations of the hyperbolic case as models with smooth
kernels, and an iteration along the lines of (26) would not work. An existence theory for
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models with singular kernels was developed in [79,80,148]. Regularity of solutions is inter-
esting for such models, because the linear problem is known to have smoothing properties
[142,78]. I refer to [26,27,39,60,61,136] for research on this issue.

The first existence result for molecular dumbbell models was established in [158]. For
more recent additional work on this subject, see [2,87,88,104,215].

2.2. Stability of the rest state

The first rigorous proof for the linear stability of the rest state of viscoelastic fluids is due
to Slemrod [199,200]. Since viscoelastic fluids are dissipative, we expect that solutions
with small initial data will exist globally and decay to the rest state at a rate determined
by the linearized problem. For parabolic equations, such a result can be established in a
fashion which treats the nonlinearities as a perturbation to the linearization; for equations of
hyperbolic type the situation is more delicate. Nishida [124] and Matsumura [117] were the
first to establish global existence and asymptotic decay for quasilinear hyperbolic equations
with damping under the hypothesis of small initial data.

Since then, an extensive literature has developed on using the energy method to prove
analogous results for systems with viscoelastic damping. Much of it focuses on viscoelas-
tic solids. There is a difference to the case of fluids, since in a fluid only velocities, but not
displacements, can be expected to go to zero. The first global existence result for viscoelas-
tic fluids is due to Kim [90], he considers a special case of the K-BKZ fluid, his results are
extended to more general K-BKZ fluids in [147]. While Kim’s result is for a fluid filling
all of space, the result in [147] is for periodic boundary conditions. Brandon and Hrusa [8]
consider one-dimensional shearing motions and specifically address the issues associated
with the spatially unbounded case, which is more difficult since decay is not exponential.

Results on asymptotic decay for differential models of viscoelastic flow were pioneered
by Guillopé and Saut [63,64]. For subsequent extensions and refinements, see e.g. [11,70,
100,105,121]. A result on asymptotic decay for molecular dumbbell models was recently
obtained in [87].

2.3. Global existence

For the Navier–Stokes equations, it is well known that a global smooth solution for the
Dirichlet initial-boundary value problem exists in two space dimensions. In three dimen-
sions, global existence, but not uniqueness, of a weak solution is known (see for in-
stance [207]). Whether a global smooth solution exists in three dimensions is one of the
Millenium Problems of the Clay Mathematics Institute.

For viscoelastic fluids, our knowledge is much more fragmentary. Global existence of
smooth solutions is known for some shear flow problems. All these results have in common
that the constitutive model has a Newtonian part and a shear thinning viscoelastic part.
For the Newtonian case, the problem is simply the heat equation, and the essence of the
argument is that the viscoelastic terms can be kept under control. Results along those lines
were established by Engler [37] for shear flows of certain K-BKZ fluids, by Guillopé and
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Saut [63] for the Johnson–Segalman model, and by Renardy [191] for a class of differential
models.

Lions and Masmoudi [106] prove the global existence of weak solutions for the coro-
tational Oldroyd model. The estimates rely crucially on the corotational structure and the
result is unlikely to carry over to more general models. In [2] global existence is proved
for a regularized system of equations for dumbbell models. A number of papers exploit
the regularizing effect of singular kernels to obtain global weak solutions of various model
equations arising from viscoelasticity [3,38,60,61,108]. These results are not immediately
applicable to multidimensional incompressible fluids.

Nonlinear hyperbolic systems in one dimension do not allow global smooth solutions
and generally form shocks in finite time (see the next section below). It is of interest to show
existence of weak solutions beyond that point. Few results along these lines are known
which allow for the dissipative terms associated with viscoelasticity, and they are limited
to rather special models, see [13,127].

3. Development of singularities

3.1. Hyperbolic shocks

The explicit solution of scalar hyperbolic conservation laws in terms of characteristics
shows that, in general, characteristics will intersect in finite time, precluding the global
existence of smooth solutions to initial value problems. For pairs of conservation laws,
Lax [99] gave a proof of development of singularities in finite time. The proof is based on
analyzing the evolution of Riemann invariants.

The first indication of what might happen if hyperbolic equations are augmented by
viscoelastic damping is in the work of Coleman, Gurtin and Herrera [17,18] on accelera-
tion waves propagating into a medium at rest. For concreteness, consider one-dimensional
motions of a viscoelastic medium described by an integral model of the form

(28)utt (x, t) =
∫ t

−∞
m(t − s)h

(
ux(x, t), ux(x, s)

)
x

ds.

We assume that u = 0 ahead of a wave front x > ct and that there is a jump in the second
derivatives of u across this front. The analysis of [17,18] shows that the wave speed is
given by

(29)c2 = h,1 (0, 0)

∫ ∞

0
m(s) ds,

and that the amplitude A of the jump satisfies the equation

(30)Ȧ = αA2 − βA,

where

α = − 1

2c2
h,11 (0, 0)

∫ ∞

0
m(s) ds,
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(31)β = − 1

2c2
h,2 (0, 0)m(0).

Here the notation h,i indicates the derivative of h with respect to the ith argument. If α �= 0,
then solutions to (30) will become infinite in finite time if the initial value of A has the same
sign as α and is sufficiently large. On the other hand, if the initial value of A has absolute
value less than |β/α|, then A will tend to zero regardless of sign. Thus acceleration waves
of sufficiently large amplitude will evolve into a stronger singularity. The analysis also
makes suggestions for singular kernels. If m has a strong enough singularity that it fails
to be integrable, then the wave speed is infinite. On the other hand, if m is integrable,
but m(0) = ∞, then waves propagate with finite speed, but the amplitude goes to zero
instantly.

The first result on development of singularities from smooth data in a model of one-
dimensional viscoelasticity is due to Slemrod [201]. Subsequently, a number of results
along these lines appeared in [59,72,112,139]. A fairly general approach was given by No-
hel and Renardy [126] for differential models and by Dafermos [20] for integral models.
The idea of the proof is an extension of Lax’s argument. With viscoelastic damping, there
are no Riemann invariants, but there are “approximate” Riemann invariants, and develop-
ment of singularities can be established by mimicking the Lax proof and controlling the
error terms.

Nothing is known on a rigorous basis on what happens beyond the development of sin-
gularities. As reviewed in the previous section, results on existence of weak solutions are
very limited and even these results do not elucidate the structure of singularities beyond
their formation. It is of course to be expected that singularities take the form of shock fronts
with discontinuities in ut and ux , and numerical evidence supports this [116,198].

The case of “weakly” singular kernels were m is integrable, but m(0) is infinite raises
intriguing questions. As pointed out above, acceleration waves are not possible in this case.
On the other hand, traveling wave solutions with discontinuities in first derivatives of u are
possible [58,147]. It is not known whether such discontinuities can evolve from initially
smooth data.

3.2. Breakup of liquid jets

The problem of global existence for the Navier–Stokes equations is open only in the case of
flows bounded by walls. In free surface flows global existence does not hold. One example
of development of a singularity in finite time is the breakup of liquid jets into droplets.
This is a flow which involves strong elongation and is profoundly affected by the presence
of polymers which have a strong resistance to elongation.

Linear stability of an inviscid cylindrical jet was first studied by Rayleigh [140,141],
and the extension of the results to the viscous case was completed by Chandrasekhar [10].
While experiments on jets of viscoelastic fluids show a strong stabilizing effect of vis-
coelasticity [53,54], linear stability analysis actually shows a destabilizing effect [53,94,
120]. This observation led to the conclusion that the stabilizing effect of polymers arises
in the later stages of deformation where the high elongational resistance of the polymer
becomes important [40,53]. Numerical simulations confirm this [7,41].
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Formal asymptotic solutions for the approach to breakup in Newtonian jets were found
in the mid-1990s by Papageorgiou [132] for the case of Stokes flow and by Eggers [33–35]
(see also [9]) for the case with inertia. Underlying these solutions is a slender body ap-
proximation which assumes that axial velocity and stresses are approximately constant in
the cross-section of the jet, and a similarity ansatz. The inertialess and inertial solution are
profoundly different, while the case without inertia leads to a solution that is symmetric
about the pinch point, the inertial solution is highly asymmetric.

The breakup of jets is most easily analyzed in a Lagrangian formulation. In this formu-
lation, we consider the deformation of the jet from a reference configuration, in which the
jet has a uniform thickness δ. Let X be the position of a fluid particle in this reference
configuration and let x(X, t) be the actual position of a fluid particle in space. The stretch
is defined by s = ∂x/∂X. In the slender body approximation, the evolution of the jet is
governed by the equations (see e.g. [187])

st = uX,

(32)ρut = ∂

∂X

(
Txx − Trr

s
+ σ

δ
√

s

)
.

Here u is the axial velocity, Txx and Trr are the axial and radial components of stress, ρ is
the density and σ is the coefficient of surface tension. In the Newtonian case, the stresses
are given by Txx = 2ηst/s, Trr = −ηst/s. In the case without inertia, this leads to the
equation

(33)3ηst = λ(t)s2 − σ

δ
s3/2,

where λ(t) is an unknown integration constant representing the force in the jet. Equa-
tion (33) would not be difficult to analyze if λ(t) were given, but λ(t) must be determined
as part of the solution. For the similarity solutions below, we should require that u does not
blow up outside the self-similar region; integration of the first equation of (32) then yields
the condition

(34)
∫ ∞

−∞
st (X, t) dX = 0.

With the breakup time fixed at t = 0 and the pinchoff point at X = 0, self-similar
solutions for breakup are of the form

(35)s(X, t) = (−t)−αφ

(
X

(−t)β

)
, u(X, t) = (−t)β−α−1ψ

(
X

(−t)β

)
.

Similarity solutions have been found for Stokes flow as well as the case with inertia. In the
Newtonian case, we have α = 2, while β = 5/2 in the inertial case, and β ∼ 2.17487 is
the solution of a transcendental equation in the Stokes case. Numerical evidence supports
the belief that generic initial data will evolve towards self-similar breakup, but no proof for
this exists at this point (see [178,190] for partial results).

Viscoelastic fluids have a strong resistance to elongational flow, which makes them resist
breakup. Indeed, in [166], a global existence result for (32) without inertia is shown if
the constitutive model is the Oldroyd B fluid. At very high elongation rates, however,
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the elongational viscosity of polymers decreases again, and many models reflect such a
decrease. In contrast to the Oldroyd B fluid, these models allow for self-similar breakup in
a similar fashion to the Newtonian case. In the inertialess case, this has been analyzed for
a number of viscoelastic models, for specifics, I refer to the review article [187] and the
original papers [47,179–181]. Two qualitative features arise in viscoelastic fluids which are
new compared to the Newtonian case:

(1) Some models allow for a breakup mechanism driven by elastic forces in which sur-
face tension is not involved. Basically, this requires a model which is sufficiently
elongation thinning at large deformations. Elastic forces are then sufficient to pull
the fluid out of the neck without a need for surface tension. This was first observed
in the numerical simulations of Hassager and Kolte [71] and then confirmed by
analysis for a number of models [47,180,181].

(2) While a Newtonian jet pinches at a point in space, some models of viscoelastic flow
predict breakup over a finite length (i.e. at the moment of breakup the fragments
are already a finite distance apart). This occurs if α = β in the similarity solutions
discussed above. See [179–181] for details.

Viscoelastic jets with the inclusion of inertia are less well studied. Some results for the
Giesekus model appear in [182]. The behavior is quite similar to the Newtonian case. On
the other hand, the behavior of power law fluids [28,29,186] can be quite different from
the Newtonian situation.

4. Steady flows

4.1. Existence theory

The first result on existence of steady flows of viscoelastic fluids is due to Renardy [145],
who considered multimode Maxwell models. For the upper convected Maxwell fluid, we
have the momentum equation

(36)ρ(v · ∇)v = div T − ∇p + f,

the incompressibility constraint, and the constitutive law,

(37)(v · ∇)T − (∇v)T − T(∇v)T + λT = ηλ
(∇v + (∇v)T

)
.

Here f is a given body force assumed sufficiently small, and we consider flows in a bounded
domain with homogeneous Dirichlet boundary conditions for the velocity. By taking the
divergence of the constitutive law and inserting the result in the momentum equation, we
obtain the equation

T : ∂2v + ηλ	v − ρ(v · ∇)(v · ∇)v − ∇q

= −(∇v + (∇v)T
)∇p − ρ(∇v)(v · ∇)v + λρ(v · ∇)v

(38)− (v · ∇)f − λf + (∇v)f.

Here q stands for the combination (v · ∇)p + λp. For slow flows, equation (38) is a per-
turbation of the Stokes equation, and an existence result for steady flows was obtained
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by an iteration which alternates between solving (38) and integrating the constitutive law
along streamlines. The reformulation involving equation (38) was later used in numerical
simulations [15], where the equation was named the explicitly elliptic momentum equa-
tion (EEME). The result in [145] is for fluids with differential constitutive models. An
adaptation of the method for integral models was given in [149].

Guillopé and Saut [65] assume that the constitutive law is a small perturbation of the
Newtonian fluid. By doing so, they are able to prove existence of steady flows which are
not necessarily perturbations of the rest state, but perturbations of a given Newtonian flow.
They need to assume that the Newtonian flow is stable.

A number of papers have extended the method of [145] to consider flows in unbounded
domains, such as exterior flows, see e.g. [129,128,135]. The method has also been extended
to compressible flows [118,205,66–68].

For the Navier–Stokes equations, a continuation argument based on degree theory and
a priori estimates can be used to show existence of steady flows even for large data (see
e.g. Chapter II of [207]). For viscoelastic flows, no sufficiently good a priori estimates are
known to prove such a result. A regularized problem which allows a global existence proof
for steady flows is considered in [36].

4.2. Inflow boundaries

Many problems considered in the applications of fluid dynamics have inflow and outflow
boundaries. For instance, in modeling a manufacturing process, it is usually necessary to
focus on a specific part, where the fluid enters and leaves from and to other parts of the
process. Boundary conditions imposed at such boundaries are a mathematical artifact, since
in reality there is no boundary. For the Navier–Stokes equations, from a mathematical point
of view, it makes little difference whether homogeneous or inhomogeneous conditions are
imposed on the velocity. Viscoelastic fluids, however, have stresses which depend on the
deformation history experienced before the fluid entered the flow domain. It is therefore not
sufficient to prescribe velocities at inflow boundaries. Naturally, it is necessary to restrict
the type of constitutive model to formulate meaningful boundary value problems here, and
the work in the literature so far has focused on differential models of Maxwell or Jeffreys
type.

To show the nature of the problem, we focus on the simplest case. We consider the
linearization of a Maxwell model at uniform flow. The flow domain is the strip 0 < x < 1
in the plane, with periodic boundary conditions in the y-direction. The unperturbed flow
has uniform velocity U > 0 in the x-direction and zero stresses. The linearized equations
are the momentum equation

(39)ρU
∂v
∂x

= div T − ∇p,

incompressibility,

(40)div v = 0,
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and the constitutive law

(41)U
∂T
∂x

+ λT = ηλ
(∇v + (∇v)T

)
.

We can derive an “EEME equation” by applying the operator U∂/∂x +λ to the momen-
tum equation and using the constitutive law. This yields the equation

(42)ρU2 ∂2v
∂x2

+ ρλ
∂v
∂x

= ηλ	v − ∇q,

where

(43)q = U
∂p

∂x
+ λp.

If ρU2 < ηλ, then (42), together with the incompressibility condition, is of elliptic type
and allows for a unique (up to a constant in q) solution for v and q if Dirichlet conditions
for the velocity (subject to balance of total flux) are imposed. Once we know v and q, we
can determine T and p from (41) and (43). To do so, we need data for T and p on the
inflow boundary x = 0.

This, however, overlooks the fact that (42) is in fact not equivalent to the original mo-
mentum equation. Since we applied the operator U∂/∂x + λ to the momentum equation
in order to get (42), we need to impose the original momentum equation at the inflow
boundary to get back. Thus, at x = 0, we require that

∂T11

∂x
+ ∂T12

∂y
− ∂p

∂x
= ρU

∂u

∂x
,

(44)
∂T12

∂x
+ ∂T22

∂y
− ∂p

∂y
= ρU

∂v

∂x
.

We can use (41) and (43) to eliminate the x-derivatives on the left hand side of these
equations:

1

U

(
2ηλ

∂u

∂x
− q − λT11 + λp

)
+ ∂T12

∂y
= ρU

∂u

∂x
,

(45)
1

U

(
ηλ

(
∂u

∂y
+ ∂v

∂x

)
− λT12

)
+ ∂T22

∂y
− ∂p

∂y
= ρU

∂v

∂x
.

On the inflow boundary x = 0, these two equations give ∂p/∂y+λT12/U and ∂T12/∂y+
λp/U in terms of the other variables. We can thus find T12 and p on the inflow boundary
by solving these two ODEs, and only data for T11 and T22 need to be prescribed.

If nonlinear terms are included in the equations, solutions can be constructed by an it-
eration which alternates between solving the EEME equation, the ODEs on the inflow
boundary as discussed above, and the constitutive law [150]. In three dimensions, the pre-
scription of inflow boundary conditions is less straightforward. Basically, four conditions
are needed in addition to velocities, but it is not possible to identify four components of the
stress tensor. In [150], this is dealt with by expanding T on the inflow boundary in a Fourier
series and choosing different components to be prescribed, depending on the Fourier com-
ponent. Alternatively, certain combinations of derivatives of T can be prescribed on the
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inflow boundary [154]. For Jeffreys type models, which include a Newtonian viscous term
in addition to a Maxwell stress, the situation is more straightforward; a well-posed prob-
lem results if velocities are prescribed on both boundaries, and viscoelastic stresses are
prescribed on the inflow boundary, no conditions restricting these stresses arise [151]. Of
course, even in the Newtonian case, boundary conditions on inflow boundaries need not be
Dirichlet conditions; for viscoelastic fluids, problems combining traction boundary condi-
tions with stress conditions on the inflow boundary are discussed in [153,167]. For Jeffreys
fluids, an appropriate choice of boundary conditions is the prescription of traction and all
components of viscoelastic stress. The same is true for Maxwell models in the case of
two space dimensions [167]. Inflow boundaries may join walls at corners, as for instance
in a Poiseuille flow. An existence result addressing the behavior at such corners is shown
in [159].

If ρU2 > ηλ in (42), the equation is no longer elliptic. This change of type is re-
flected in the need for prescribing one more inflow boundary condition and one less out-
flow boundary condition. Well-posedness of such problems is addressed in [157]. In the
two-dimensional case for a Maxwell fluid, for instance, a possible set of boundary condi-
tions is the prescription of the stream function on both boundaries, and vorticity, its normal
derivative, and the diagonal components of the stress tensor at the inflow boundary.

Little is known about time dependent flows with inflow boundaries. An existence result
appears in [170], but it is limited to the upper convected Maxwell model and a choice of
inflow boundary conditions specifically “concocted” to make the estimates work.

4.3. The high Weissenberg number limit

Newtonian flows at high Reynolds number become extremely complex. If we simply set
the viscosity to zero, we obtain the Euler equations. However, solving the Euler equations
does not actually tell us what happens at high Reynolds number for a number of reasons:

(1) The Euler equations allow for a high degree of nonuniqueness. For instance, every
parallel velocity field in a pipe is a solution of the Euler equations. So this tells us
nothing about the flow rate we should expect at a high Reynolds number.

(2) Solutions of the Euler equations cannot satisfy all the boundary conditions. This
leads to boundary layers near walls.

(3) Instabilities play an important role, and the dynamics becomes very complex.
In viscoelastic flows, the Weissenberg or Deborah number is a dimensionless measure

of the importance of elasticity. If the Weissenberg number is high, similar issues to those
listed above arise. There is actually a connection between high Weissenberg number flows
and the Euler equations, which was pointed out in [171] for the upper convected Maxwell
model, but is actually more general. Recall that the source of elasticity in polymeric fluids
is the stretching of polymer molecules by the flow. At high Weissenberg number, we can
expect these stretched molecules to align in whatever direction the flow stretches them in,
leading to a predominant component of the stress which is one-dimensional. Let us write
this component in the form

(46)T = γ uuT ,
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where u is a vector, and γ is a scalar. For given T of this form, we can always choose γ

and u in such a way that

(47)div(γ u) = 0.

If we now assume creeping flow and insert (46) into the equation of motion, we find

(48)div T − ∇p = γ (u · ∇)u − ∇p = 0.

Equations (47) and (48) are the compressible Euler equations. There are some crucial dif-
ferences to compressible Newtonian flow, however. First of all, u is not the velocity and γ

is not the density, although p is the pressure. Second, the sign of the pressure term is differ-
ent, reflecting the fact that elastic stresses in polymers are tensile while Reynolds stresses
are compressive. Finally, there is no equation of state linking p to γ .

We note that so far we have neither invoked a specific constitutive law nor even men-
tioned the velocity of the fluid. All we have used is that the stress is one-dimensional. For
the upper convected Maxwell model, in the high Weissenberg number limit, we have the
following approximation to the constitutive equation:

(49)(v · ∇)T − (∇v)T − T(∇v)T = 0.

It is shown in [171] that, in a two-dimensional flow, there are the following relationships
between v and u and γ introduced above:

(50)v · ∇γ = 0, v × (γ u) = Ke3.

Here e3 is the out-of-plane unit vector and K is an arbitrary constant. The condition that v
be divergence-free leads to the “equation of state”

(51)div u = φ(γ ).

In this equation, φ is not a specific function, but an arbitrary function. In particular, φ can
be zero, and γ can be constant; in this case we recover the incompressible Euler equations.

4.4. Stress boundary layers

In this subsection, we are concerned not with the impact of viscoelasticity on high
Reynolds number boundary layers, but with a completely different type of boundary layer
that is of purely elastic origin. Sharp stress gradients near walls or separating streamlines
are ubiquitous in numerical simulations of flows at moderately high Weissenberg num-
bers. Unlike traditional boundary layers, these boundary layers have nothing to do with
satisfying additional boundary conditions.

The classical “toy problem” for a boundary layer is an equation like

(52)εu′(x) + u(x) = f (x), u(0) = 0,

where ε is a small parameter. If we just set ε = 0, we get u(x) = f (x), but unless
f (0) happens to be zero, this does not satisfy u(0) = 0. Near x = 0, we need to modify
the solution. In fact, near x = 0, we can set y = x/ε, v(y) = u(εy), and we get the
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approximation

(53)v′(y) + v(y) = f (0),

with the solution v(y) = f (0)(1 − exp(−y)). The two approximations “match” in the
sense that

(54)lim
y→∞ f (0)

(
1 − exp(−y)

) = lim
x→0

f (x).

In contrast, let us consider the problem

(55)Wy
∂u

∂x
+ u = f (x, y)

for y > 0, where, for the sake of concreteness, we assume f (x, y) is 2π-periodic in x. We
assume that W is large. Note that no boundary condition is involved. If we formally set W

to infinity, we find the solution

(56)u(x, y) = 1

2π

∫ 2π

0
f (x, y) dx.

However, setting W to infinity becomes an invalid approximation if y is small of order
1/W . If we set y = z/W , we obtain the approximation

(57)z
∂u

∂x
+ u = f (x, 0).

Again, the two approximations match; the limit of the inner solution for z → ∞ equals the
limit of the outer solution for y → 0.

An analogous type of boundary layer arises in viscoelastic flows near a wall. Basically,
viscoelastic fluids have memory, and high Weissenberg number means long range mem-
ory. Near the wall, however, fluid particles move very slowly, and at the wall itself, the
stresses are determined purely by the local velocity gradient. As an example, we consider
two-dimensional flow of the upper convected Maxwell fluid in the half-plane y > 0. The
governing equations in the case of creeping flow are, in dimensionless form,

W

[
u

∂T11

∂x
+ v

∂T11

∂y
− 2

∂u

∂x
T11 − 2

∂u

∂y
T12

]
+ T11 = 2

∂u

∂x
,

W

[
u

∂T12

∂x
+ v

∂T12

∂y
− ∂u

∂y
T22 − ∂v

∂x
T11

]
+ T12 = ∂u

∂y
+ ∂v

∂x
,

W

[
u

∂T22

∂x
+ v

∂T22

∂y
− 2

∂v

∂x
T12 − 2

∂v

∂y
T22

]
+ T22 = 2

∂v

∂y
,

∂u

∂x
+ ∂v

∂y
= 0,

(58)
∂2

∂x∂y
(T11 − T22) +

(
∂2

∂y2
− ∂2

∂x2

)
T12 = 0.

At the wall, y = 0, where the velocities are zero, we find that

(59)T22 = 0, T12 = ∂u

∂y
, T11 = 2W

(
∂u

∂y

)2

.
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Let us assume that the wall shear rate ∂u/∂y is of order 1, and that variations in x occur
over a length scale of order 1. Then T11 is of order W , while T12 is of order 1. To balance
∂2T11/∂x∂y with ∂2T12/∂y

2, we should scale y with a factor 1/W . A fully consistent
scaling for the boundary layer is obtained if we set

y = z/W, u = ũ(x, z)/W, v = ṽ(x, z)/W 2,

(60)T11 = WT̃11(x, z), T12 = T̃12(x, z), T22 = T̃22(x, z)/W.

Retaining only the leading order terms in W , we obtain the following set of equations (the
tildes have been suppressed)

u
∂T11

∂x
+ v

∂T11

∂z
− 2

∂u

∂x
T11 − 2

∂u

∂z
T12 + T11 = 0,

u
∂T12

∂x
+ v

∂T12

∂z
− ∂u

∂z
T22 − ∂v

∂x
T11 + T12 = ∂u

∂z
,

u
∂T22

∂x
+ v

∂T22

∂z
− 2

∂v

∂x
T12 − 2

∂v

∂z
T22 + T22 = 2

∂v

∂z
,

∂u

∂x
+ ∂v

∂z
= 0,

(61)
∂2T11

∂x∂z
+ ∂2T12

∂z2
= 0.

These boundary layer equations for the upper convected Maxwell fluid were first derived
in [172]. They can be put into a simpler form by transforming the stresses to a basis aligned
with the velocity field and making the streamfunction an independent variable in place
of z [172]. For other models, different scalings apply, due to different behavior of the
stresses at the wall. For instance, for the Giesekus model the boundary layer thickness is
of order W−1/2, while for the PTT model it is of order W−1/3 [69]. In [172] similarity
solutions of the boundary layer equations are discussed. These similarity solutions play
a role in the reentrant corner singularity, which we shall discuss in the next subsection.
In [176], an existence result is proved for solutions of the boundary layer equations which
match a given periodic shear rate in the outer flow, provided that this given shear rate is
sufficiently close to a constant.

Singular features in the high Weissenberg number limit also appear along streamlines
coming off a wall, e.g. the wake of an obstacle or the lid in a driven cavity. The structure of
such layers remains to be understood. At this point, analysis has been limited to the simpler
problem of stress integration in a given velocity field. See [174,212] for high Weissenberg
number flow past a cylinder and [184] for flow in a driven cavity.

4.5. The reentrant corner singularity

The flow through a sudden contraction is one of the most studied problems in viscoelastic
fluid mechanics, experimentally as well as numerically. From a mathematical point of view,
one of the major interests in this problem is the presence of corners.
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The regularity of steady flow solutions is restricted if the boundary of the flow domain
is not smooth. For Newtonian fluids, the behavior near corners is dominated by Stokes
flow, i.e. by a linear elliptic equation. Dean and Montagnon [23] were the first to obtain
formal approximations for two-dimensional Stokes flow near a corner using separation of
variables in polar coordinates for the biharmonic equation. Kondratiev [93] developed a
rigorous theory of existence and regularity for solutions of the Navier–Stokes equations
in domains with corners; see also the monograph of Grisvard [62] for an overview of this
subject.

For a corner between two walls, the velocity gradient at the corner is zero if the angle is
less than 180 degrees, while it is infinite if the angle is greater. For viscoelastic flows, this
makes a profound difference. Formally, any fluid can be approximated by the Newtonian
fluid in the limit of zero velocity gradient. We can therefore expect the behavior near a
convex corner to be dominated by Stokes flow even in non-Newtonian fluids and hope to
analyze the corner behavior as a perturbation. A rigorous existence result along such lines
is obtained for instance in [48]. On the other hand, if the corner is concave, the velocity
gradient and stress are expected to be infinite, and the corner behavior is governed by the
high Weissenberg number asymptotics, i.e. it is intrinsically nonlinear and dependent on
the constitutive law.

The problem of integrating stresses in a fixed velocity field (assumed Newtonian) is
studied in [163,173,49]. The full problem is very difficult even for formal asymptotics. At
the formal level, a solution has been obtained for the upper convected Maxwell model.
This solution is constructed by matched asymptotics; in the core region away from walls
a potential solution of the Euler equations (see the previous section) applies, while near
the walls the leading asymptotics is given by a similarity solution of the boundary layer
equations.

We shall focus our discussion on the case of a 270 degree corner which is relevant for
the contraction flow, but similar arguments apply for any angle. Potential flow in a 270
degree corner is given by the stream function

(62)ψ̃ = r2/3 sin

(
2θ

3

)
,

where r and θ are the usual polar coordinates. In potential flow of a UCM fluid at high
Weissenberg number, we must have the same streamlines, so the actual streamfunction ψ

is a function of ψ̃ : ψ = f (ψ̃). For the corner asymptotics, only the behavior of f as
ψ → 0 is relevant. By matching the order of magnitude of stresses in the potential flow
with viscometric stresses which must apply near the wall, it can be determined (see [76])
that

(63)f (ψ̃) ∼ ψ̃7/3.

Moreover, the potential flow solution loses its validity if θ is of order r1/3.
The boundary layer equations for the UCM fluid have similarity solutions which satisfy

a system of nonlinear ODEs with the independent variable ξ = r−1/3θ . To complete the
asymptotic solution, such a solution must be found which matches to the potential flow
solution as ξ → ∞. This can be done only numerically. For the upstream boundary, solu-
tions were constructed by Renardy [168], and the more difficult downstream problem was
recently solved by Rallison and Hinch [138].
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The corner asymptotics of the Oldroyd B fluid is identical to that of the UCM fluid. If
the Newtonian term is made to dominate over the viscoelastic term, however, the region
where viscoelastic stresses dominate shrinks, and a transition to Stokes flow occurs a short
distance from the corner. This limit is investigated in [45].

In the solution discussed above, it is assumed that there is an upstream boundary with
flow towards the corner. Some experiments and numerical results show a lip vortex, which
makes the flow along both walls away from the corner. A recent paper by Evans [46] aims
to explain such flows in terms of a hypothesized double layer structure [44], but the results
are not conclusive at this point.

Numerical simulations encounter significant difficulties near reentrant corners. A down-
stream instability in the integration along streamlines, pointed out in [165] is likely to be a
significant contributor to such difficulties.

5. Instabilities and change of type

5.1. Flow instabilities

The numerous instabilities which occur in Newtonian flows have always been a topic of
much interest for mathematicians and have inspired a great body of work in dynamical
systems, asymptotics and other field of mathematics. I refer to [31] for an overview of
Newtonian flow instabilities. Viscoelastic effects can significantly alter the characteristics
of these instabilities or lead to entirely new instabilities. Over the last thirty years, a signif-
icant literature has studied instabilities in viscoelastic flows, using analysis, numerics and
experiments. The following discussion will limit itself to highlighting a few points, and I
shall not attempt a more thorough review. The review articles of Larson [96] and Shaqfeh
[197] are an excellent starting point for further reading.

(1) Parallel shear flows: In the 1970s it was widely believed that flow instabilities in par-
allel shear flow might explain extrudate instabilities in polymer processing known
as melt fracture (we shall discuss melt fracture in the next subsection). A num-
ber of claims of instability emerged, based on faulty approximations or spurious
numerics. As numerical capabilities became more developed, it became clear that,
although viscoelastic effects lower the threshold for the Newtonian instability in
plane Poiseuille flow, the search for purely elastic instabilities turned out negative,
at least for the upper convected Maxwell and Oldroyd B models [146,204]. On the
other hand, Wilson and Rallison [213] have found a flow instability in the Poiseuille
flow of a strongly shear thinning White–Metzner fluid. Instabilities associated with
non-monotone constitutive laws will be discussed in the next subsection.

(2) Shear flows with curved streamlines: The viscoelastic Taylor problem has been stud-
ied extensively. Purely elastic instabilities without inertia were first discovered by
Larson, Shaqfeh and Muller [97]. Analogous instabilities occur in other shear flows
with curved streamlines, such as Dean flow, flow between rotating discs, cone and
plate flow and more complex flows such as the driven cavity problem.

(3) The Bénard problem: Since the Bénard instability is an instability of the rest state,
the onset for viscoelastic fluids is identical to that for Newtonian fluids if it is through
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a zero eigenvalue. However, for sufficiently elastic fluids, an oscillatory onset is
possible [57,211].

(4) Interfacial instabilities: In parallel shear flow of two layers, the shear stress is contin-
uous at the interface, but first and second normal stresses can have jump discontinu-
ities. These discontinuities can drive instabilities and lead to interfacial waves. The
first studies demonstrating such instabilities are due to Renardy [193] and Chen [12].

(5) Elongational flows: The effect of viscoelasticity on elongational flow instabilities,
such as draw resonance in fiber spinning, has been found to be stabilizing. The effect
of elasticity on jet breakup has already been discussed in an earlier section.

From the point of view of rigorous mathematical analysis, flow instabilities raise a num-
ber of questions, which are well understood in Newtonian flows, but largely open in the
viscoelastic case.

(1) Is linear stability actually determined by the spectrum as is commonly assumed?
(2) How can we characterize continuous parts of the spectrum?
(3) Does linear stability imply nonlinear stability for small perturbations?
(4) Is there a center manifold reduction which gives a rigorous underpinning to the study

of bifurcation?
The abstract techniques used to resolve these issues in the Newtonian case do not work
for non-Newtonian flows or, more generally, for problems involving nonlinear hyperbolic
PDEs; in particular, results which allow the determination of linear stability from the lo-
cation of spectra do not apply to hyperbolic PDEs, see [164] for a counterexample. On the
other hand, linear stability can be inferred if a resolvent estimate is known in addition to
the location of the spectrum [51,75,137,82]. Rigorous stability results in viscoelastic flows
are at this point rather fragmentary.

The first rigorous linear stability proof is for creeping plane Couette flow of the upper
convected Maxwell fluid [160]. It is based on solution of the linearized equations in closed
form, building on earlier work of Gorodtsov and Leonov [55], who solved the eigenvalue
problem in closed form. Other positive results concern parallel shear flows of fluids of Jef-
freys type [162,164], i.e. fluids with differential constitutive laws that include a Newtonian
contribution. The technique in these papers exploits the separation of variables which is
possible in parallel flow, which allows the reduction of the problem to ordinary differen-
tial equations. For the latter, it is then possible to relate resolvent bounds to the location
of spectra by using a reduction to finite dimensions which exploits the correspondence
between solutions and initial data.

Guillope and Saut [64,65] consider viscoelastic flows which are a perturbation of New-
tonian flows and prove that they inherit the Newtonian stability characteristics. Renardy
[169] allows somewhat larger perturbations. The result of [169] does not guarantee that the
viscoelastic flow inherits stability from the Newtonian case, but it does guarantee resolvent
estimates for large imaginary part which allow the determination of stability from spectra.
The results of these papers also include a nonlinear stability result for small disturbances.

In [183], the theory of evolution semigroups [14] is applied to show that creeping flow of
an upper convected Maxwell fluid has spectrally determined linear stability. Unfortunately,
the proof exploits a cancellation which occurs only for this specific constitutive law.

Some results characterizing the spectra for flows of the upper convected Maxwell and
Oldroyd B fluids were obtained in [55,214,175].



252 M. Renardy

The only rigorous result on bifurcations in viscoelastic flows that I am aware of is [161],
where a version of the center manifold theorem is proved that is applicable to the viscoelas-
tic Bénard problem.

5.2. Constitutive instabilities

Many popular models of viscoelastic flows, for instance, the Giesekus, Johnson–Segalman
and Doi–Edwards models, allow for a nonmonotone dependence of shear stress on shear
rate in steady shear flow. If this occurs, the flow is unstable in the range where shear stress
decreases with shear rate and the flow domain separates into regions of increasing shear
rate, separated by a jump in shear rate. In contrast to the analogous situation in elasticity
or generalized Newtonian fluids, the instability need not be associated with ill-posedness
of the equations, see e.g. the analysis of the Johnson–Segalman model in [85].

Consider, for instance, a plane Poiseuille flow of the Johnson–Segalman model. The
flow domain is [−L,L], and we assume that the shear stress is given by a Newtonian part
ηvx and a polymeric contribution τ . If f̄ is the pressure gradient, we have, in creeping
flow,

(64)τ + ηvx = −f̄ x.

Moreover, the constitutive law of the Johnson–Segalman fluid, with

(65)T =
(

σ τ

τ γ

)
,

leads to

σt − (1 + a)τvx + λσ = 0,

τt −
[

1 + a

2
γ − 1 − a

2
σ + μ

]
vx + λτ = 0,

(66)γt + (1 − a)τvx + λγ = 0.

In a steady flow, this leads to

(67)τ = λμvx

λ2 + (1 − a2)v2
x

,

i.e. the total shear stress is

(68)
λμvx

λ2 + (1 − a2)v2
x

+ ηvx.

This is a nonmonotone function of vx if −1 < a < 1 and η < μ/(8λ).
The system (66) can be reduced to a system of two equations by introducing the combi-

nation

(69)Z = 1 + a

2
γ − 1 − a

2
σ.



Mathematical analysis of viscoelastic fluids 253

In a Poiseuille flow, we can also eliminate vx from (64):

(70)vx = −f̄ x − τ

η
.

For any fixed x, we can then analyze the dynamics of (66) using phase plane methods.
The stability of solutions with discontinuous shear rates and the dynamics of stresses

when this situation occurs has been analyzed in a number of papers in the literature, see
for instance [43,92,91,113–115,125]. Both the Johnson–Segalman model and the Giesekus
model, which leads to a rather analogous situation, have been studied.

While the shear stress is continuous across a discontinuity in shear rate, the normal
stresses are usually not continuous. This can lead to an instability of the interface driven
by a normal stress jump, just like the instability at the interface between two different
fluids [194].

Much of the work on constitutive instabilities was originally driven by an attempt to
understand the phenomenon of melt fracture. Melt fracture is an instability which occurs
when certain polymer melts are extruded at sufficient high flow rates. Associated phe-
nomena include a sudden increase in flow rate (“spurt”), and surface distortions on the
extrudate, which can take the form of small scale irregularities (“sharkskin”), a periodic
oscillation between sharkskin and smooth regions, or a gross snakelike distortion (“gross
melt fracture”). I refer to the review article of Denn [25] for a more detailed description
of melt fracture and attempts to explain it. The idea of explaining it by constitutive insta-
bilities is that the spurt occurs when the wall shear stress reaches the relative maximum
on the shear stress vs. shear rate curve and that a Hopf bifurcation leading to periodic
dynamics can explain the stick-slip oscillations. Such a Hopf bifurcation has been found
[115] when the flow rate rather than the pressure gradient is held fixed. The explanation
of melt fracture by constitutive instabilities is at this point a minority view among rhe-
ologists, primarily due to the lack of more direct evidence for constitutive instabilities in
polymer melts. On the other hand, constitutive instabilities associated with nonmonotone
shear stress appear to occur in wormlike micelles [202]. Wormlike micelles are surfactant
solutions in which surfactant particles align to form larger structures, which in many ways
influence the rheology in the same way as chain molecules in a polymer.

An alternative explanation that has been offered for the spurt phenomenon is slip at the
wall. If the slip velocity is a nonmonotone function of the wall shear stress, slip will also
result in instability [133] and there is a possibility of stick-slip oscillations. A more subtle
instability mechanism arises if a memory dependence is assumed, i.e. the slip velocity
depends not just on the current wall shear stress, but on the history of wall shear stress, see
[156,56].

5.3. Characteristics and change of type

The equations governing a Maxwell-like viscoelastic fluid form a first order quasilinear
system. The analysis of characteristics yields necessary conditions for well-posedness in
the usual fashion. A change of type in the time dependent equations can lead to Hadamard
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instability, while a change of type in the steady flow equations leads to the possibility of
shock fronts.

The first papers analyzing such issues in viscoelastic flows are due to Rutkevich [196]
and Ultman and Denn [209]. In the mid-1980s, more comprehensive studies appeared, see
Joseph, Renardy and Saut [85], Luskin [110] and Hulsen [83]. Further work on character-
istics and change of type can be found in the monograph of Joseph [86] and, for instance,
in [19,50,95].

We shall give a brief discussion of characteristics for the Johnson–Segalman model,
along the lines of [85].

The equations are

ρ

(
∂v
∂t

+ (v · ∇)v
)

= div T − ∇p,

div v = 0,

(71)

∂T
∂t

+ (v · ∇)T − 1 + a

2

(∇vT + T(∇v)T
)

+ 1 − a

2

(
T∇v + (∇v)T T

) + λT = μ
(∇v + (∇v)T

)
.

This is a quasilinear system of 10 equations (six in 2-D flows), which we can put in the
form

(72)A0(q)qt + A1(q)qx + A2(q)qy + A3(q)qz = F(q).

To investigate characteristic surfaces (see e.g. [185] for the basic definitions), we need to
consider the equation

(73)det

(
ωA0 +

3∑
l=1

ξlAl

)
= 0.

This equation can be shown to reduce to the following:

|ξ |2β4
(

ρβ2 − |ξ |2
(

μ + 1 + a

2
Taa − 1 − a

2
Λ1

))

(74)×
(

ρβ2 − |ξ |2
(

μ + 1 + a

2
Taa − 1 − a

2
Λ2

))
= 0.

Here,

(75)β = ω + v1ξ1 + v2ξ2 + v3ξ3, Taa = n · Tn,

where n is a unit vector in the direction of (ξ1, ξ2, ξ3). Moreover, with P denoting the
orthogonal projection along n, Λ1 and Λ2 are the eigenvalues of PTP. In two dimensions,
we get β2 instead of β4, and there is only one of the last two factors.

The following consequences can be deduced:
(1) Well-posedness: If ω as determined by (74) is not real, localized short wave distur-

bances can be expected to grow in a catastrophic manner, and ill-posedness of the
initial value problem occurs. It turns out that solutions of (74) with ω not real exist
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if one of the terms

(76)μ + 1 + a

2
Taa − 1 − a

2
Λi

is negative. This is the case for an appropriate choice of ξ if

(77)
1 − a

2
Λmax − 1 + a

2
Λmin > μ,

where Λmax and Λmin are the largest and smallest eigenvalues of T. Eigenvalues of
T are greater than −μ/a if a is positive, and less than −μ/a if a is negative. Hence
no ill-posedness occurs if a = ±1.

(2) Change of type in steady flow: This occurs if the fluid speed exceeds the speed of
propagation of shear waves. For T = 0, the condition becomes

(78)ρ|v|2 > μ.

For nonzero T, wave speeds become stress-dependent and anisotropic. This change
of type is analogous to transonic flow in gas dynamics. The phenomenon of de-
layed die swell, in particular, can be explained as analogous to a gas dynamic shock.
Joseph [86] was the first to advance the hypothesis of such a connection, which is
further established by the numerical simulations of Delvaux and Crochet [24] and
the analysis of Entov [42].

(3) Boundary conditions: For subcritical flows (i.e. the speed of the fluid is less than
the wave speed), we need four conditions at an inflow boundary, in addition to the
usual Newtonian boundary conditions. If the flow becomes supercritical, we have to
drop a velocity boundary condition at the outflow boundary, and we need an extra
condition at the inflow boundary. See the discussion of inflow boundary conditions
in the section on steady flows.

6. Controllability of viscoelastic flows

Controllability is the possibility of steering a system from a given initial state to a desired
final state using a control input from a given class. In the context of continuum mechanics,
the control is usually a body force given in a part of the spatial domain or a boundary con-
dition. Questions of controllability have been widely studied in elasticity and Newtonian
fluid mechanics, but viscoelastic flows raise new issues.

A number of papers on controllability of linear viscoelastic media [98,101–103,107]
extend results from the elastic case to viscoelastic media. In those works, the variables
which are controlled are the displacement and velocity. This, however, is in a sense not the
right problem. Unlike the elastic case, displacement and velocity do not constitute a “state”
which determines the further evolution of the system. For a fluid with a differential consti-
tutive law of Maxwell type, for instance, a state of the system appropriately is determined
by velocity and stresses. The question whether stresses, in addition to velocities, can be
controlled turns out to be far from straightforward.
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Doubova et al. [30] pose this question, unfortunately the controllability results they claim
are not true as stated. For a linear Maxwell fluid, the stress obeys the equation

(79)Tt + λT = μ
(∇v + (∇v)T

)
.

It is obvious from this equation that the stress is the symmetric part of a gradient of a
divergence-free vector if this is initially the case. It is therefore not possible to steer to a
state of stress not satisfying this constraint, whatever we may do with a body force in the
equation of motion or with boundary conditions. It is likely that the results of [30] hold if
stresses are restricted accordingly (the paper is a brief announcement and no full version
seems to have appeared). This raises an interesting question of what happens in nonlinear
situation where symmetric parts of gradients are no longer an invariant subspaces for the
evolution of stresses.

A few recent articles by Renardy [188,189,192] investigate parallel shear flows of vis-
coelastic fluids. For a linear Maxwell model, the governing equations are

(80)ρvt = τx, τt + λτ = μvx + f,

where v is the velocity, τ the shear stress, and f is a given body force. For simplicity, we
consider homogeneous Dirichlet boundary conditions: v(0, t) = v(L, t) = 0. For given
initial conditions for v and τ , we want to pick the control f on (a, b) ⊂ (0, L) in such
a way that v and τ assume given values at a final time t = T . Equations (80) can be
reformulated as a lower order perturbation of the wave equation. Existing results in the
literature [210] then guarantee exact controllability under the usual assumption that T is
large enough for waves to propagate back and forth across the uncontrolled region. In
[188], multimode Maxwell models with several relaxation times are also considered. In
this case, unless (a, b) = (0, L), only approximate controllability holds.

For linear viscoelastic shear flow, there is only one nonzero component of stress, the
shear stress. In the nonlinear case, there are first and second normal stresses. Thus the linear
problem makes no suggestion on whether we can control the normal stresses. In [189],
homogeneous shear flows are considered, with the shear rate in the role of the control.
For the upper convected Maxwell model, the second normal stress difference is identically
zero, and for the remaining two stress components the set of states reachable from a given
initial condition is described by an inequality. Similar results are derived for a number of
other constitutive models. In [192], the control of spatially inhomogeneous shear flows is
analyzed. It is shown that the inequality between shear and normal stress derived in [189]
ensures reachability of a final state only if a body force is allowed on the entire interval
(0, L). If (a, b) is a proper subset of (0, L), additional restrictions of a nonlocal nature
apply.

These fragmentary results show that the question of controllability of nonlinear vis-
coelastic flows is far from straightforward. In general, the characterization of final states
which can be reached from a given initial state is likely to be quite difficult.

7. Concluding remarks

Like all articles of its kind, this article reflects the interests and activities of its author.
In selecting topics, a number of choices were made. First of all, I have focused on equa-
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tions arising from the modeling of viscoelastic polymeric liquids. This means that a siz-
able mathematical literature on other kinds of non-Newtonian fluids, e.g. generalized New-
tonian fluids, micropolar fluids and liquid crystals has been ignored. On the mathematical
side, I have focused on topics generally of interest to analysts working in partial differential
equations, such as questions of existence, stability, and development of singularities. I have
not attempted to review the extensive literature on a number of other aspects of viscoelastic
flow, for instance numerical simulation.

While the analysis of viscoelastic flows has made major progress over the past thirty
years, the article also points to a number of major open questions in the field, which have
so far yielded only fragmentary results and which pose interesting challenges for the future.
Among those, I mention in particular the following:

(1) Questions of global existence (or possibly the lack of it) for large data, both for
initial value problems and steady flows.

(2) A rigorous proof for the asymptotics of jet breakup.
(3) The understanding of flows in the high Weissenberg number limit.
(4) The rigorous analysis of stability and bifurcation.
(5) The characterization of final states (in terms of stress as well as motion) to which a

flow can be controlled.
A more comprehensive discussion of many of the topics touched upon in this article can

be found in the author’s monograph [177].
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1. Introduction

The aim of this chapter is to formulate main notions and results in the theory of monotone
type operators and apply them to (possibly nonlinear) parabolic differential equations and
parabolic functional differential equations.

It is well known the importance of linear and nonlinear parabolic partial differential
equations in physical, chemical, biological etc. applications (e.g. in the classical models
of heat conduction, diffusion). The classical results on linear and quasilinear second order
parabolic equations can be found in the monographs [24,35,40] and also in books [6,50,
52,72].

Partial functional differential equations arise in biology, chemistry, physics, climatology
(see, e.g., [4,5,11,16,18–20,30,31,42,54,74] and its references). The systematic study of
such equations from the dynamical systems and semigroups point of view began in the 70s.
Several results in this direction can be found in monographs [50,72,74]. This approach
is mostly based on arguments used in the theory of ordinary differential equations and
functional differential equations (see [2,3,21,27–29,48,49]).

In classical work [41] of J.L. Lions one can find the fundamental results on monotone
type operators and their applications to nonlinear partial differential equations. Fur-
ther important monographs are written by E. Zeidler [75] and H. Gajewski, K. Gröger,
K. Zacharias [26], S. Fučik, A. Kufner in [25]. A good summary of further results on
monotone type operators, based on degree theory (see, e.g., [17]) and its applications to
nonlinear evolution equations is in the works [7] and [47] of V. Mustonen and J. Berkovits.
By using the theory of monotone type operators one obtains directly global existence of
solutions, also for higher order nonlinear parabolic equations, satisfying certain conditions
which are more restrictive (in some sense) than in the case of the previous approach.

It turned out that one can apply the theory of monotone type operators (e.g. pseudo-
monotone operators) to nonlinear parabolic functional differential equations and systems to
get existence, uniqueness theorems on weak solutions and results on qualitative properties
of solutions, including “non-uniformly parabolic” equations.

The above mentioned works [26,41,75] contain also applications of monotone type oper-
ators to nonlinear elliptic equations. In works [23,36–39,45,46,73] one can find extensions
of the applications to strongly nonlinear elliptic equations and boundary value problems on
unbounded domains. Further, it was possible to apply the theory to functional elliptic equa-
tions and elliptic variational inequalities with usual and “non-local” boundary conditions
(see, e.g. [55–57,71]).

Now we give the structure of this chapter. In Section 2 the abstract Cauchy problem is
considered for first order evolution equations in a finite interval. These general results will
be applied in Sections 3–7. In Section 3 the main results on existence, uniqueness and con-
tinuous dependence of the weak solutions of higher order nonlinear parabolic differential
equations are shown. In Section 4 higher order nonlinear functional parabolic equations
are considered, where only the lower order terms contain functional dependence. In Sec-
tion 5 second order nonlinear parabolic functional differential equations are studied, where
also the main part contains functional dependence. Section 6 is devoted to existence and
qualitative properties of solutions of parabolic functional differential equations in (0,∞).
Finally, in Section 7 we study further applications of monotone type operators, e.g. to sys-
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tems of functional parabolic equations. In Sections 3–7 several examples are given for the
“general” results.

2. Abstract Cauchy problem for first order evolution equations

Here we summarize the main definitions and theorems on first order (possibly nonlinear)
evolution equations, based on the theory of monotone type operators. The detailed exposi-
tion of the results and proofs see, e.g., in the monographs [25,26,41,75] and in the works
[7,47].

2.1. Basic definitions

DEFINITION 2.1. Let V be a Banach space, 0 < T < ∞, 1 � p < ∞. Denote by
Lp(0, T ; V ) the set of measurable functions f : (0, T ) → V such that ‖f ‖p

V is integrable
and define the norm by

‖f ‖p

Lp(0,T ;V )
=

∫ T

0

∥∥f (t)
∥∥p

V
dt.

Lp(0, T ; V ) is a Banach space over R and C, respectively (identifying functions that are
equal almost everywhere on (0, T )). If V is separable then Lp(0, T ; V ) is separable, too.
If V is uniformly convex and 1 < p < ∞ then Lp(0, T ; V ) is uniformly convex.

Denoting by V � the dual space of V and by 〈·,·〉 the dualities in spaces V �, V , we have
for all f ∈ Lp(0, T ; V ), g ∈ Lq(0, T ; V �) with 1 < p < ∞, 1/p + 1/q = 1 the Hölder
inequality∣∣∣∣

∫ T

0

〈
g(t), f (t)

〉
dt

∣∣∣∣ �
[∫ T

0

∥∥g(t)
∥∥q

V � dt

]1/q[∫ T

0

∥∥f (t)
∥∥p

V
dt

]1/p

.

Further, for 1 < p < ∞ the dual space of Lp(0, T ; V ) is isomorphic and isometric with
Lq(0, T ; V �). Thus we may identify the dual space of Lp(0, T ; V ) with Lq(0, T ; V �).
Consequently, if V is reflexive then Lp(0, T ; V ) is reflexive for 1 < p < ∞.

DEFINITION 2.2. Let V be a real separable and reflexive Banach space and H a real
separable Hilbert space with the scalar product (·,·) such that the embedding V ⊂ H is
continuous and V is dense in H . Then the formula

〈ṽ, u〉 = (v, u), u ∈ V, v ∈ H

defines a linear continuous functional ṽ over V and it generates a bijection between H and
a subset of V �, i.e. we may write

V ⊂ H ⊂ V �

which will be called an evolution triple.
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A typical example for an evolution triple is the following. Let Ω ⊂ R
n be a bounded

domain, m a nonnegative integer and 1 � p < ∞. Denote by Wm,p(Ω) the Sobolev space
of (real valued) measurable functions u : Ω → R with the norm

‖u‖Wm,p(Ω) =
[ ∑

|α|�m

∫
Ω

∣∣Dαu
∣∣p dx

]1/p

where Dα = D
α1
1 · · · Dαn

n , Dj = ∂/∂xj . (The detailed investigation of Sobolev spaces see,
e.g., in [1].) Let V be a closed linear subspace of Wm,p(Ω) with 2 � p < ∞, m � 1 and
H = L2(Ω). Then V ⊂ H ⊂ V � is an evolution triple.

Now we define generalized derivatives of functions u ∈ Lp(0, T ; V ).

DEFINITION 2.3. Let V ⊂ H ⊂ V � be an evolution triple, u ∈ Lp(0, T ; V ). If there exits
w ∈ Lq(0, T ; V �) such that∫ T

0
ϕ′(t)u(t) dt = −

∫ T

0
ϕ(t)w(t) dt

for all ϕ ∈ C∞
0 (0, T ) (i.e. for all infinitely times differentiable functions on (0, T ) with

compact support) then w is called generalized derivative of u.

In the above equality u(t) ∈ V is considered as an element of V �. In this case we shall
write shortly u′ ∈ Lq(0, T ; V �); the generalized derivative is unique.

THEOREM 2.1. Let V ⊂ H ⊂ V � be an evolution triple, 1 < p < ∞, 1/p + 1/q = 1,
0 < T < ∞. Then

W 1
p(0, T ; V,H) = {

u ∈ Lp(0, T ; V ): u′ ∈ Lq(0, T ; V �)
}

with the norm

‖u‖ = ‖u‖Lp(0,T ;V ) + ‖u′‖Lq(0,T ;V �)

is a Banach space. W 1
p(0, T ; V,H) is continuously embedded into C([0, T ]; H) (the space

of continuous functions v : [0, T ] → H with the supremum norm) in the following sense:
to u ∈ W 1

p(0, T ; V,H) there is a uniquely defined ũ ∈ C([0, T ]; H) such that u(t) = ũ(t)

for a.e. t ∈ [0, T ]. Further, the following integration by parts formula holds for arbitrary
u, v ∈ W 1

p(0, T ; V,H) functions and 0 � s < t � T :

(2.1)
(
u(t), v(t)

) − (
u(s), v(s)

) =
∫ t

s

[〈
u′(τ ), v(τ )

〉 + 〈
v′(τ ), u(τ )

〉]
dτ.

(In the last formula u(t), u(s) mean the values of the above ũ ∈ C([0, T ]; H) in t, s,
respectively.) In the case v = u we obtain from (2.1)

∥∥u(t)
∥∥2

H
− ∥∥u(s)

∥∥2
H

= 2
∫ t

s

〈
u′(τ ), u(τ )

〉
dτ

for any u ∈ W 1
p(0, T ; V,H).

In [41] it is proved
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THEOREM 2.2. Let V ⊂ H ⊂ V � be an evolution triple and V1 a Banach space such that
V ⊂ V1 ⊂ V � where the embedding V1 ⊂ V � is continuous and the embedding V ⊂ V1 is
compact.

Then (with 1 < p < ∞) the embedding W 1
p(0, T ; V,H) ⊂ Lp(0, T ; V1) is compact.

Now we can formulate the “abstract” Cauchy problem. Let V ⊂ H ⊂ V � be an evo-
lution triple, 1 < p < ∞, 1/p + 1/q = 1, 0 < T < ∞ and A : Lp(0, T ; V ) →
Lq(0, T ; V �) a given (nonlinear) operator; u0 ∈ H , f ∈ Lq(0, T ; V �). We want to find
u ∈ W 1

p(0, T ; V,H) satisfying

(2.2)u′ + A(u) = f, u(0) = u0.

By Theorem 2.1 the initial condition u(0) = u0 makes sense. Sometimes problem (2.2)
is considered in the case when the domain of the operator A is not the whole space
Lp(0, T ; V ).

2.2. Evolution equations with monotone operators

We shall formulate existence and uniqueness theorems on problem (2.2). Let X be a Ba-
nach space, X� its dual space and denote by [·,·] the dualities in X�, X.

DEFINITION 2.4. Operator A : X → X� is called monotone if[
A(x1) − A(x2), x1 − x2

]
� 0 for all x1, x2 ∈ X.

A is called bounded if it maps bounded sets of X into bounded sets of X�.
A is called hemicontinuous if for arbitrary fixed u, v,w ∈ X the function

λ 
→ [A(u + λv),w], λ ∈ R,

is continuous.
Finally, A is called demicontinuous if it is continuous with respect to the strong topology

in X and the weak topology in X�.

DEFINITION 2.5. Operator A : X → X� is called pseudomonotone if

(2.3)(un) → u weakly in X and lim sup
n→∞

[
A(un), un − u

]
� 0

imply

(2.4)lim
n→∞

[
A(un), un − u

] = 0 and
(
A(un)

) → A(u) weakly in X�.

Operator A : X → X� is called of class (S+) if (2.3) implies

(un) → u strongly in X.
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It is not difficult to show (see, e.g., [41,75]) that if A : X → X� is monotone,
bounded and hemicontinuous then it is pseudomonotone. Further, if A is bounded and
pseudomonotone then it is demicontinuous. Finally, if A is demicontinuous and of class
(S+) then it is pseudomonotone.

DEFINITION 2.6. Operator A : X → X� is called coercive if

lim‖x‖→∞
[A(x), x]

‖x‖ = +∞.

THEOREM 2.3. Let V ⊂ H ⊂ V � be an evolution triple, 1 < p < ∞, 0 < T < ∞.
Assume that for all fixed t ∈ [0, T ], Ã(t) : V → V � is monotone, hemicontinuous and
bounded in the sense

(2.5)
∥∥Ã(t)(v)

∥∥
V � � c1‖v‖p−1

V + k1(t)

for all v ∈ V , t ∈ [0, T ] with suitable constant c1 and function k1 ∈ Lq(0, T ). Further,
Ã(t) is coercive in the sense: there are constant c2 > 0, k2 ∈ L1(0, T ) such that

(2.6)
〈
Ã(t)(v), v

〉
� c2‖v‖p

V − k2(t)

for all v ∈ V , t ∈ [0, T ]. Finally, for arbitrary u, v ∈ V , the function

t 
→ 〈
Ã(t)(u), v

〉
, t ∈ [0, T ] is measurable.

Then for arbitrary f ∈ Lq(0, T ; V �) and u0 ∈ H there exists a unique solution of problem
(2.2) with the operator A defined by [A(u)](t) = [Ã(t)](u(t)).

PROOF. According to [75] the proof is based on Galerkin’s approximation. Since V is sep-
arable, there exists a countable set of linearly independent elements w1, . . . , wk, . . . such
that their finite linear combinations are dense in V . We shall find the m-th approximation
of a solution u in the form

um(t) =
m∑

k=1

akm(t)wk with some akm ∈ W 1,q (0, T )

such that for a.e. t ∈ [0, T ]〈
u′

m(t), wj

〉 + 〈
Ã(t)

[
um(t)

]
, wj

〉 = 〈
f (t), wj

〉
,

(2.7)um(0) = um0 ∈ span(w1, . . . , wm), j = 1, . . . , m

where (um0) → u0 in H . (2.7) is a system of ordinary differential equations for akm:

m∑
k=1

a′
km(t)(wk,wj ) +

〈
Ã(t)

[
m∑

k=1

akm(t)wk

]
, wj

〉
= 〈

f (t), wj

〉
,

(2.8)ajm(0) = αj0, j = 1, . . . , m

which can be transformed to explicit form since det(wk,wj ) �= 0.
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By the last assumption of Theorem 2.3

aj (t, z) = aj (t, z1, . . . , zm) =
〈
Ã(t)

[
m∑

k=1

zkwk

]
, wj

〉

is measurable in t (with fixed z) and continuous in z = (z1, . . . , zm), because

A : Lp(0, T ; V ) → Lq(0, T ; V �)

is monotone, hemicontinuous, bounded by the assumptions of the theorem, thus it is
pseudomonotone and so it is demicontinuous. From (2.5) follows that |aj (t, z)| locally
can be estimated by an integrable M(t). Consequently, by theorem of Carathéodory, there
exists a solution of (2.8) in a neighbourhood of 0. The coercivity condition (2.6) implies
that the solution um can be extended to the whole [0, T ].

Further, by using the notations X = Lp(0, T ; V ), X� = Lq(0, T ; V �), we obtain that

(2.9)‖um‖X, sup
t∈[0,t]

∥∥um(t)
∥∥

H
, m = 1, 2, . . . , are bounded,

hence ‖A(um)‖X� is bounded, too. Since X,X� and H are reflexive, there exists a subse-
quence of (um), again denoted by (um), such that

(um) → u weakly in X,
(
A(um)

) → w weakly in X�,

(2.10)
(
um(T )

) → z weakly in H.

By using (2.10) and the relation (um(0)) → u0 in H , one can derive from (2.7), as
in [75]

(2.11)u′ ∈ W 1
p(0, T ; V,H), u′ + w = f, u(0) = 0, u(T ) = z,

(2.12)lim sup
m→∞

[
A(um), um − u

]
� 0.

Since A is pseudomonotone, (2.10), (2.12) imply w = A(u) which means that u is a solu-
tion of (2.2). �

Uniqueness of the solution follows from monotone property of A : X → X�.

REMARK 2.1. According to the above proof, a subsequence of the Galerkin solutions (um)

converges weakly to a solution u of (2.2). Since u is unique, the total sequence (um) is also
weakly converging to u. By Theorem 2.2, (um) converges to u in the norm of Lp(0, T ; V1)

if V is compactly embedded in V1 and V1 is continuously impeded in V �. Further, one can
show (see, e.g. [75]) that (um) → u in the norm of C([0, T ]; H), too.

If the operator A : X → X� is of class (S+), then

(um) → u strongly in X since

(um) → u weakly in X and lim sup
m→∞

[
A(um), um − u

]
� 0.
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REMARK 2.2. Assume that the conditions of Theorem 2.3 are satisfied such that Ã(t) is
uniformly monotone in the sense

(2.13)
〈[
Ã(t)

]
(v1) − [

Ã(t)
]
(v2)

〉
� c‖v1 − v2‖p

V , v1, v2 ∈ V

with some constant c > 0, for all t ∈ [0, T ]. Then the solution of (2.2) continuously de-
pends on f and u0: if uj is a solution of (2.2) with f = fj , u0 = u0j (j = 1, 2) then for
all t ∈ [0, T ]∥∥u1(t) − u2(t)

∥∥2
H

+ c‖u1 − u2‖p

Lp(0,T ;V )

(2.14)� c̃‖f1 − f2‖q

Lq(0,T ;V �)
+ ‖u10 − u20‖2

H

with some constant c̃.

One gets inequality (2.14) by Young’s inequality, applying (2.2) to u1 − u2.

2.3. Evolution equations with pseudomonotone operators

When proving existence of solutions of (2.2), we used that A is pseudomonotone, and
not directly monotonicity of A. However, in applications to evolution equations, we can
generally prove pseudomonotonicity of A : Lp(0, T ; V ) → Lq(0, T ; V �) only if A is
monotone. In order to get existence for more general operators A, it is convenient to intro-
duce a generalization of pseudomonotone operators.

DEFINITION 2.7. Denote by L the operator defined by

D(L) = {
u ∈ W 1

p(0, T ; V,H): u(0) = 0
}
, Lu = u′.

Then L is a closed linear densely defined monotone map from D(L) ⊂ X to X�. Further,
L is maximal monotone, which means that its graph is not a proper subset of any monotone
set in X × X�.

DEFINITION 2.8. Let X be a reflexive Banach space and M a linear densely defined
maximal monotone map from D(M) ⊂ X to X�. A bounded, demicontinuous operator
A : X → X� is called pseudomonotone with respect to D(M) if for any sequence (un) in
D(M) with

(un) → u weakly in X, (Mun) → Mu weakly in X� and

lim sup
m→∞

[
A(un), un − u

]
� 0,

we have

lim
n→∞

[
A(un), un − u

] = 0 and
(
A(un)

) → A(u) weakly in X�.

By using degree theory (see, e.g. [17]), in [7] it was proved
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THEOREM 2.4. Let X be a reflexive and uniformly convex Banach space. Assume that M

is a closed linear densely defined maximal monotone map from D(M) ⊂ X to X� and
A : X → X� is bounded, demicontinuous, pseudomonotone with respect to D(M) and it is
coercive.

Then for arbitrary f ∈ X� there exists u ∈ D(M) such that

(2.15)Mu + A(u) = f.

We shall apply the following particular case of Theorem 2.4

THEOREM 2.5. Let V be a reflexive, separable and uniformly convex Banach space, 1 <

p < ∞, V ⊂ H ⊂ V � an evolution triple, X = Lp(0, T ; V ). Assume that A : X → X� is
bounded, demicontinuous, pseudomonotone with respect to D(L), given in Definition 2.7
and it is coercive in the sense∫ t

0 〈[A(u)](τ ), u(τ )〉 dτ

‖u‖Lp(0,t;V )

→ +∞ uniformly in t ∈ [0, T ]
(2.16)as ‖u‖Lp(0,t;V ) → ∞.

Finally, assume that A : Lp(0, T ; V ) → Lq(0, T ; V �) is of Volterra type: the restriction
of A(u) to [0, t] depends only on the restriction of u to [0, t] for all u ∈ Lp(0, T ; V ),
t ∈ [0, T ].

Then for arbitrary f ∈ X� there exists u ∈ D(L) such that

Lu + A(u) = f, i.e.

u ∈ Lp(0, T ; V ), u′ ∈ Lq
(
0, T ; V �

)
,

(2.17)u′(t) + [
A(u)

]
(t) = f (t) for a.e. t ∈ (0, T ) and u(0) = 0.

Theorem 2.5 can be proved also by Galerkin’s method, similarly to the proof of Theo-
rem 2.3. In the last case one obtains (instead of (2.8)) the problem

m∑
k=1

a′
km(t)(wk,wj ) +

〈[
A

(
m∑

k=1

akm(t)wk

)]
(t), wj

〉
= 〈f (t), wj 〉,

(2.18)ajm(0) = 0, j = 1, . . . , m

which is a system of functional differential equations for a1m, . . . , amm with the above
homogeneous initial condition. By using the assumptions of Theorem 2.5, one can show
that Carathéodory conditions for the system of functional differential equations are fulfilled
and therefore (see [27]) there exist local solutions for all m.

By (2.16) the solutions can be extended to [0, T ] and (2.9) holds. Further, one shows in
the same way that (2.10)–(2.12) are valid. Finally, it is not difficult to derive from〈

u′
m(t), wj

〉 + 〈[
A(um)

]
(t), wj

〉 = 〈
f (t), wj

〉
,

um(0) = 0, j = 1, . . . , m
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that (u′
m) is bounded in Lq(0, T ; V �). Thus there exists a subsequence of (um) (again

denoted by (um)) for which

um ∈ D(L), (Lum) → Lu weakly in X� = Lq
(
0, T ; V �

)
.

Since A is pseudomonotone with respect to D(L), we obtain w = A(u) and so u is a
solution of (2.17).

REMARK 2.3. If operator A : Lp(0, T ; V ) → Lq(0, T ; V �) is monotone then solution of
(2.17) is unique (as in the case of Theorem 2.3).

Assume that A is strictly monotone in the sense:

(2.19)
∫ t

0

〈[
A(u1)

]
(τ ) − [

A(u2)
]
(τ )

〉
dτ � c

∫ t

0

∥∥u1(τ ) − u2(τ )
∥∥2

H
dτ

for all t with some constant c > 0. Then the solution of (2.17) depends continuously
on f ∈ L2(QT ) and u0 ∈ H : if uj is a solution of (2.17) with f = fj ∈ L2(QT ),
u0 = u0j ∈ H (j = 1, 2) then for all t ∈ [0, T ]∥∥u1(t) − u2(t)

∥∥2
H

+ c‖u1 − u2‖2
L2(0,T ;H)

(2.20)� c̃‖f1 − f2‖2
L2(0,T ;H)

+ ‖u10 − u20‖2
H

with some constant c̃.

(See Remark 2.2.)

REMARK 2.4. Uniqueness and continuous dependence of the solution of (2.17) can be
obtained also in the following way. Let ũ(t) = exp(−dt)u(t) be a new unknown function
with some constant d > 0. Problem (2.17) is equivalent with

ũ′(t) + exp(−dt)
[
A

(
exp(dt)ũ

)]
(t) + dũ(t) = exp(−dt)f (t),

(2.21)ũ(0) = 0.

If for some d > 0 operator B, defined by

(2.22)
[
B(ũ)

]
(t) = exp(−dt)

[
A

(
exp(dt)ũ

)]
(t) + dũ(t)

is monotone then the solution of (2.17) is unique.
If the operator B defined by (2.22) is strictly monotone in the sense (2.19) then one

obtains an analogous inequality to (2.20).

REMARK 2.5. According to the sketched proof of Theorem 2.5, a solution to (2.17) can
be obtained as weak limit in Lp(0, T ; V ) of a subsequence of (um) of Galerkin’s solutions.
If the solution is unique (see Remark 2.4), then the total sequence (um) converges weakly
in Lp(0, T ; V ) and (by Theorem 2.2) strongly in Lp(0, T ; V1) to the solution u.

We shall use Theorem 2.5 to prove existence of weak solutions of nonlinear par-
abolic differential equations and functional parabolic equations. In the last case operator
A : Lp(0, T ; V ) → Lq(0, T ; V �) is such that [A(u)](t) depends not only on u(t).
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Clearly, Theorem 2.3 follows from Theorem 2.5 in the case u0 = 0, because the
assumptions of Theorem 2.3 imply that A : Lp(0, T ; V ) → Lq(0, T ; V �), defined by
[A(u)](t) = Ã(u(t)), is bounded, hemicontinuous, monotone, thus pseudomonotone and
it is coercive.

REMARK 2.6. Problem

u′ + A(u) = f, u(0) = u0 with some u0 ∈ V

has also a solution with the same assumptions on A, because this problem is equivalent to
the problem for ũ = u − u0

ũ′ + A(ũ + u0) = f, ũ(0) = 0

and B(ũ) = A(ũ + u0) satisfies the assumptions of Theorems 2.4, 2.5, respectively.

REMARK 2.7. Let a < T be a fixed positive number and B : [0, T ] × Lp(−a, 0; V ) →
Lq(0, T ; V �) a given (nonlinear) operator. Consider the following problem on functional
differential equations: to find v ∈ Lp(−a, T ; V ) such that v′ ∈ Lq(−a, T ; V �),

v′(t) + [
B(t, vt )

]
(t) = f (t) for a.a. t ∈ [0, T ]

(2.23)and v(t) = ψ(t), t ∈ [−a, 0]
where f ∈ Lq(0, T ; V �) and ψ ∈ Lp(−a, 0; V ) are given functions with the property
ψ ′ ∈ Lq(−a, 0; V �) and vt is defined by

vt (τ ) = v(t + τ), τ ∈ [−a, 0].
Problem (2.23) can be reduced to a problem of type (2.17) as follows.

Assume that we have a function v0 ∈ Lp(−a, T ; V ) such that v′
0 ∈ Lq(−a, T ; V �) and

the restriction of v0 to [−a, 0] is ψ (v0 is an extension of ψ). Then v is a solution of (2.23)
if and only if the restriction of v − v0 to [0, T ] is a solution of

(2.24)u′(t) + [
A(u)

]
(t) = f (t) + v′

0(t) for a.e. t ∈ [0, T ], u(0) = 0

with u ∈ Lp(0, T ; V ), u′ ∈ Lq(0, T ; V �), where operator A is defined by[
A(u)

]
(t) = [

B
(
t, (Nu + v0)t

)]
(t), t ∈ [0, T ],

(2.25)[Nu](τ ) = u(τ) for τ ∈ [0, T ], [Nu](τ ) = 0 for τ ∈ [−a, 0).

3. Second order and higher order nonlinear parabolic differential equations

In this section we shall apply results of Section 2 to initial-boundary value problems of
certain nonlinear parabolic partial differential equations and prove existence (in some cases
uniqueness and continuous dependence) of weak solutions of these problems in a finite
time interval [0, T ].



Application of monotone type operators to PDE’s 279

3.1. Definition of the weak solution

In order to define weak solutions, at first for simplicity consider the following initial-
boundary value problem:

Dtu −
n∑

j=1

Dj

[
fj (t, x, u,Du)

] + f0(t, x, u,Du) = g

(3.1)in QT = (0, T ) × Ω,

(3.2)u = 0 on [0, T ] × ∂Ω,

(3.3)u(0, x) = u0(x), x ∈ Ω.

where Ω ⊂ R
n is a bounded domain with “sufficiently smooth” boundary, D = (D1, . . . ,

Dn), Dj = ∂/∂xj . Assume that u ∈ C1,2(QT ) is a (classical) solution of (3.1) where f0 is
continuous and for j = 1, . . . , n fj is continuously differentiable (except of the variable t)
in QT . C1,2(QT ) denotes the set of functions which are once continuously differentiable
with respect to t and twice continuously differentiable with respect to x in QT . Multiplying
(3.1) by a test function v ∈ C1

0(Ω) (i.e. with a continuously differentiable function with
compact support), we obtain by Gauss theorem

∫
Ω

(Dtu)v dx +
n∑

j=1

∫
Ω

fj (t, x, u,Du)Djv dx +
∫

Ω

f0(t, x, u,Du)v dx

(3.4)=
∫

Ω

gv dx.

Clearly, a function u ∈ C1,2(QT ) satisfies (3.1) if and only if (3.4) holds for all v ∈ C1
0(Ω).

Assume that functions fj satisfy the growth condition for all (t, x) ∈ QT , ξ0 ∈ R,
ξ ∈ R

n

(3.5)
∣∣fj (t, x, ξ0, ξ)

∣∣ � c1
(|ξ0|p−1 + |ξ |p−1) + k1(t, x)

with some constants p > 1, c1 > 0 and a function k1 ∈ Lq(QT ) (where q is defined
by 1/p + 1/q = 1). Let V = W

1,p

0 (Ω), i.e the closure of C1
0(Ω) in W 1,p(Ω). Then by

Hölder’s inequality, for each t ∈ [0, T ] the formula

〈[
Ã(t)

]
u(t), v

〉 =
n∑

j=1

∫
Ω

fj (t, x, u,Du)Djv dx +
∫

Ω

f0(t, x, u,Du)v dx,

(3.6)u ∈ Lp(0, T ; V ), v ∈ V

defines a linear continuous functional [Ã(t)]u(t) on V , i.e. Ã(t) maps V into V � and the
operator A defined by

(3.7)
[
A(u)

]
(t) = [

Ã(t)
]
u(t), t ∈ [0, T ]
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maps Lp(0, T ; V ) into Lq(0, T ; V �). (For a function u ∈ Lp(0, T ; W
1,p

0 (Ω)) we denote
also by u the function (t, x) 
→ [u(t)](x).) Further, formula

(3.8)[G, v] =
∫ T

0

〈
G(t), v(t)

〉
dt =

∫ T

0

∫
Ω

gv dx dt, v ∈ Lp(0, T ; V )

defines a linear continuous functional G on Lp(0, T ; V ) if g ∈ Lq(QT ).
Thus we may write equalities (3.3), (3.4) in the form

(3.9)Dtu + A(u) = G, u(0) = u0

where

G ∈ Lq(0, T ; V �), A : Lp(0, T ; V ) → Lq(0, T ; V �),

consequently, Dtu ∈ Lq(0, T ; V �). As before, in Eq. (3.9) we identify u(t, ·) with u(t)

and Dtu with u′.

DEFINITION 3.1. Let Ω ⊂ R
n be a bounded domain, V = W

1,p

0 (Ω), p � 2 and define
operator A : Lp(0, T ; V ) → Lq(0, T ; V �) by (3.6), (3.7), G ∈ Lq(0, T ; V �) by (3.8) and
let H = L2(Ω). A function u ∈ Lp(0, T ; V ), satisfying Dtu = u′ ∈ Lq(0, T ; V �) and
Eq. (3.9), is called a weak solution of (3.1)–(3.3).

Since V = W
1,p

0 (Ω) and H = L2(Ω) define an evolution triple V ⊂ H ⊂ V �,
u ∈ Lp(0, T ; V ), Dtu = u′ ∈ Lq(0, T ; V �) imply u ∈ C([0, T ]; L2(Ω)) by Theorem 2.1
and so the initial condition u(0) = u0 makes sense. Clearly, a sufficient smooth function
u ∈ Lp(0, T ; V ) satisfies the problem (3.1)–(3.3) if and only if it satisfies (3.9).

Similarly, in the case V = W 1,p(Ω) (with sufficiently smooth ∂Ω) a sufficiently smooth
function u ∈ Lp(0, T ; V ) satisfies (3.9) if and only if it is a classical solution of (3.1), (3.3)
and the (Neumann) boundary condition

(3.10)
n∑

j=1

fj (t, x, u,Du)νj = 0 on [0, T ) × ∂Ω

where ν = (ν1, . . . , νn) denotes the outer normal unit vector on ∂Ω . Therefore, we define
the weak solution of (3.1), (3.3), (3.10) as follows.

DEFINITION 3.2. Let Ω ⊂ R
n be a bounded domain, V = W 1,p(Ω), p � 2 and define

operator A : Lp(0, T ; V ) → Lq(0, T ; V �) by (3.6), (3.7), G ∈ Lq(0, T ; V �) by (3.8) and
let H = L2(Ω). A function u ∈ Lp(0, T ; V ), satisfying Dtu = u′ ∈ Lq(0, T ; V �) and
equation (3.9), is called a weak solution of (3.1), (3.3), (3.10).

Weak solutions of initial-boundary value problems with nonhomogeneous Dirichlet
boundary conditions can be defined in the following way.

DEFINITION 3.3. Let u� ∈ W 1,p(QT ) be a given function, V = W
1,p

0 (Ω). If ũ ∈
W 1

p(0, T ; V,H) satisfies (similarly to (3.9))

Dt ũ + A(ũ + u�) = G − Dtu
�, ũ(0) = u0 − u�(0)
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(where A is defined by (3.6), (3.7) for v ∈ W 1,p(Ω)) then u = ũ + u� is called a weak
solution of (3.1), (3.3) and the boundary condition

(3.11)u|ΓT
= u�|ΓT

where u�|ΓT
is the trace of u� ∈ W 1,p(QT ) on ΓT = [0, T ] × ∂Ω .

The definition of the trace see, e.g., in [1]. Now we define the weak solution of (3.1),
(3.3) with nonhomogeneous Neumann boundary condition.

DEFINITION 3.4. Weak solution of (3.1), (3.3) and

(3.12)
n∑

j=1

fj (t, x, u,Du)νj = h(t, x, u) on ΓT

is a function u ∈ W 1
p(0, T ; V,H) with V = W 1,p(Ω) if u satisfies

Dtu + A(u) + B(u) = G, u(0) = u0

where A is defined by (3.6), (3.7) and B is defined by

[
B(u), v

] = −
∫ T

0

[∫
ΓT

h
(
t, x, u(t)|∂Ω

)
v(t)|∂Ω dσ

]
dt.

Here h : QT × R → R is a Carathéodory function, satisfying∣∣h(t, x, ξ0)
∣∣ � c1|ξ0|p−1 + k̃1(t, x),

k̃1 ∈ Lq(ΓT ), u(t)|∂Ω denotes the trace of u(t) ∈ W 1,p(Ω) on ∂Ω .
By Gauss theorem, a sufficiently smooth u ∈ Lp(0, T ; V ) is a weak solution of (3.1),

(3.3), (3.12) iff it is a classical solution.

3.2. Application of monotone operators

Now we shall apply the results in Section 2 to higher order parabolic differential equations.
Let Ω ⊂ R

n be a bounded domain, m � 1 an integer, p � 2 and V be a closed linear
subspace of Wm,p(Ω), H = L2(Ω).

In order to define operator Ã(t), introduce the following notation. Let M and N be the
number of multiindices β and γ satisfying |β| � m, |γ | � m−1, respectively. The vectors
ξ ∈ R

M will also be written in the form ξ = (η, ζ ) where η ∈ R
N consists of coordinates

ξγ for which |γ | � m − 1 and ζ ∈ R
M−N consists of coordinates ξβ with |β| = m.

Assume that
(A1) The functions fα : QT × R

M → R satisfy the Carathéodory conditions, i.e. they
are measurable in (t, x) for each fixed ξ ∈ R

M and continuous in ξ for a.e. fixed
(t, x) ∈ QT .
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(A2) There exist constant c1 > 0 and k1 ∈ Lq(QT ) such that

∣∣fα(t, x, ξ)
∣∣ � c1|ξ |p−1 + k1(t, x) (|α| � m)

for a.e. (t, x) ∈ QT , all ξ ∈ R
M .

(A3)
∑

|α|�m[fα(t, x, ξ) − fα(t, x, ξ�)](ξα − ξ�
α) � 0 for a.e. (t, x) ∈ QT , all ξ, ξ� ∈

R
M .

(A4) There exist constant c2 > 0, k2 ∈ L1(QT ) such that∑
|α|�m

fα(t, x, ξ)ξα � c2|ξ |p − k2(t, x)

for a.e. (t, x) ∈ QT , each ξ ∈ R
M .

THEOREM 3.1. Assume (A1)–(A4). Then operator Ã(t), defined by

(3.13)
〈[
Ã(t)

]
(ũ), ṽ

〉 =
∑

|α|�m

∫
Ω

fα(t, x, ũ, . . . ,Dβũ, . . .)Dαṽ dx,

where |β| � m, ũ, ṽ ∈ V , satisfies the conditions of Theorem 2.3. Consequently, the
operator A, defined by [A(u)](t) = [Ã(t)](u(t)), i.e.

[
A(u), v

] =
∫ T

0

〈[
Ã(t)

](
u(t)

)
, v(t)

〉
dt

=
∑

|α|�m

∫
QT

fα

(
t, x, u, . . . ,Dβ

x u, . . .
)
Dα

x v dx dt,

(3.14)u, v ∈ Lp(0, T ; V )

maps Lp(0, T ; V ) into Lq(0, T ; V �), it is bounded, demicontinuous, monotone (thus
pseudomonotone) and coercive. Therefore, for arbitrary f ∈ Lq(0, T ; V �) and u0 ∈ H

problem (2.2) (with operator (3.14)) has a unique solution.

It is easy to see that by (A1), (A2), Hölder’s inequality and Lebesgue’s dominated conver-
gence theorem A : Lp(0, T ; V ) → Lq(0, T ; V �) is bounded and demicontinuous. Clearly,
(A3) implies that A is monotone and (A4) implies that A is coercive.

A simple sufficient condition for (A3) is (see [22]):

THEOREM 3.2. Assume that the functions fα are continuously differentiable with respect
to ξ and the matrix(

∂fα

∂ξβ

)
|α|,|β|�m

is positive semidefinite for a.e. (t, x) ∈ QT , all ξ ∈ R
M . Then (A3) holds.
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This theorem follows from the formula∑
|α|�m

[
fα(t, x, ξ) − fα(t, x, ξ�)

]
(ξα − ξ�

α)

(3.15)=
∑

|α|�m

[∫ 1

0

∑
|β|�m

∂fα

∂ξβ

(
t, x, ξ� + τ(ξ − ξ�)

)
(ξβ − ξ�

β) dτ

]
(ξα − ξ�

α).

Clearly, the following assumption implies that operator Ã(t) (given by (3.13)) is uniformly
monotone in the sense (2.13):

(A′
3)

∑
|α|�m[fα(t, x, ξ) − fα(t, x, ξ�)](ξα − ξ�

α) � c|ξ − ξ�|p with some constant

c > 0, for a.e. (t, x) ∈ QT , all ξ, ξ� ∈ R
M .

By using (3.15), in [22] it is shown that a sufficient condition for (A′
3) is

(3.16)
∑

|α|,|β|�m

∂fα

∂ξβ

(t, x, ξ)yαyβ � c̃
∑

|α|�m

|ξα|p−2|yα|2

with some constant c̃ > 0, for all ξ, y ∈ R
M . Therefore, if (A1), (A2), (A′

3), (A4) (or
instead of (A′

3), (3.16)) hold then by Remark 2.2 the unique solution of problem (2.2)
continuously depends on f and u0 in the sense of (2.14). If (A1), (A2), (A4) and (instead
of (A′

3))

(3.17)
∑

|α|�m

[
fα(t, x, ξ) − fα(t, x, ξ�)

](
ξα − ξ�

α

)
� c

∣∣ξ0 − ξ�
0

∣∣2

hold with some constant c > 0 then the solution of problem (2.2) continuously depends on
f and u0 in the sense (2.20).

A simple example satisfying (A1), (A2), (3.16), (A4) is in the case m = 1 (considered in
the first part of this section)

(3.18)fj (t, x, ξ) = ξj |ζ |p−2, j = 1, . . . , n, f0(t, x, ξ) = kη|η|p−2

where ξ = (η, ζ ), η = ξ0 ∈ R, ζ = (ξ1, . . . , ξn) ∈ R
n, k is a positive constant and instead

of multiindices α satisfying |α| � 1, we use indices j = 1, . . . , n. In this case the original
differential operator (corresponding to A) is

(3.19)−�pu + ku|u|p−2 = −
n∑

j=1

Dj

[
(Dju)| grad u|p−2] + ku|u|p−2.

(Operator �p is called p-Laplacian.)
A simple case when assumptions (A1)–(A4) are fulfilled:

(3.20)fα(t, x, ξ) = aα(t, x)f̃α(ξα) + bα(t, x)

where aα is measurable satisfying

0 < c3 � aα(t, x) � c4, bα ∈ Lq(QT )

with constants c3, c4; f̃α are monotone nondecreasing functions satisfying

c5|ξα|p−1 � |f̃α(ξα| � c6|ξα|p−1, ξα ∈ R

with positive constants c5, c6. ((A4) can be shown by Young’s inequality.)
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REMARK 3.1. According to Definitions 3.1, 3.2, a solution of problem (2.2) with the
operator (3.14) is a weak solution of (3.1)–(3.3) in the case m = 1, V = W

1,p

0 (Ω) and it
is a weak solution of (3.1), (3.3), (3.10) in the case m = 1, V = W 1,p(Ω).

Similarly, for m > 1, a solution of (2.2) with operator (3.14), V = W
m,p

0 (Ω) and V =
Wm,p(Ω) is considered as a weak solution of a classical initial-boundary value problem
for the equation

Dtu +
∑

|α|�m

(−1)|α|Dα
x

[
fα(t, x, u, . . . ,Dβ

x u, . . .)
] = f

(where |β| � m) with homogeneous Dirichlet and Neumann boundary condition, respec-
tively.

REMARK 3.2. Instead of (A4) assume
(A′

4)
∑

|α|�mfα(t, x, ξ)ξα � c2|ζ |p−k2(t, x) with a constant c2 > 0 and k2 ∈ L1(QT ).

Since in W
m,p

0 (Ω) (with bounded Ω ⊂ R
n) the norm

‖ũ‖′ =
[ ∑

|α|=m

∫
Ω

|Dαũ|p
]1/p

is equivalent with the original norm

‖ũ‖ =
[ ∑

|α|�m

∫
Ω

∣∣Dαũ
∣∣p]1/p

,

we obtain that in the case V = W
m,p

0 (Ω) the assertions of Theorem 3.1 hold if we assume
(A1)–(A3), (A′

4).

Thus we obtain e.g. existence of a weak solution of the problem for equation

Dtu − �pu = f

with homogeneous Dirichlet boundary condition.

3.3. Application of pseudomonotone operators

Now we formulate a theorem which is an application of Theorem 2.5. Instead of (A3)
assume

(A′′
3)

∑
|α|=m[fα(t, x, η, ζ ) − fα(t, x, η, ζ �)](ξα − ξ�

α) > 0 for a.e. (t, x) ∈ QT , all

η ∈ R
N , and ζ, ζ � ∈ R

M−N if ζ �= ζ �.

THEOREM 3.3. Let V ⊂ Wm,p(Ω) a closed linear subspace and assume (A1), (A2),
(A′′

3), (A4). Then operator A : Lp(0, T ; V ) → Lq(0, T ; V �), defined by (3.14) is bounded,
demicontinuous, pseudomonotone with respect to D(L) and it is coercive (in the sense
(2.16)). Consequently, for arbitrary f ∈ Lq(0, T ; V �) there exists a solution u ∈ D(L) of
(2.17). Finally, operator A is of class (S+).
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By (A1), (A2), Hölder’s inequality and Vitali’s theorem we obtain that A is bounded and
demicontinuous, further, by (A4) A is coercive. In [44] it is proved that (by (A1), (A2),
(A′′

3)) A is pseudomonotone with respect to D(L). (One can prove this fact also similarly
to the elliptic case, considered in [12].) In [47] is proved: (A1), (A2), (A′′

3), (A4) imply that
A is of class (S+).

REMARK 3.3. In the case V = W
m,p

0 (Ω) (A1), (A2), (A′′
3), (A′

4) imply the existence of a
solution to (2.17) because according to Remark 3.2 A is coercive in this case.

REMARK 3.4. According to Remark 2.1, a subsequence of the Galerkin solutions con-
verges strongly (not only weakly) in Lp(0, T ; V ) and in C([0, T ], L2(Ω)) to solution u.
If the solution is unique, the total sequence is converging to u strongly in Lp(0, T ; V ) and
in C([0, T ], L2(Ω)). By Remark 2.4, the solution is unique if

(3.21)
∑

|α|�m

[
fα(t, x, ξ) − fα(t, x, ξ�)

]
(ξα − ξ�

α) � −c
(
ξ0 − ξ�

0

)2

for some (sufficiently large) constant c > 0. (By ξ0 is denoted the coordinate of ξ , be-
longing to the multiindex (0, . . . , 0).) Further, it is not difficult to show that the solution
continuously depends on f ∈ L2(QT ), u0 ∈ L2(Ω) in the sense (2.20).

REMARK 3.5. In Theorems 3.1, 3.3 it was assumed that Ω ⊂ R
n is bounded and p � 2.

If Ω is unbounded or 1 < p < 2 then generally we do not have the continuous embedding
Wm,p(Ω) ⊂ L2(Ω). In this case we obtain existence of solutions to problems (2.2), (2.17),
respectively, if instead of X = Lp(0, T ; V ), X� = Lq(0, T ; V �) we consider

X = Lp(0, T ; V ) ∩ L2(QT ), and thus X� = Lq(0, T ; V �) + L2(QT ).

(See [41,43,44,75].)
Due to Theorem 3.3, we obtain the existence of solutions to (2.17) with operator (3.14)

without monotonicity assumption on lower order terms fα (|α| � m − 1) and without
monotonicity assumption on fα with respect to η if |α| = m. However, for all α, fα(t, x, ξ)

are assumed to satisfy (p − 1)-th power growth condition in ξ .
For m = 1, we obtain existence of weak solutions to equations e.g. of the following

type:

Dtu − �pu + f0(t, x, u,Du) = f

where f0 satisfies the Carathéodory condition and∣∣f0(t, x, ξ)
∣∣ � c1|ξ |p−1 + k1(t, x)

with some constant c1 > 0, k1 ∈ Lq(QT ),

(3.22)f0(t, x, η, ζ )η � c2|η|p − k2(t, x)

with some constant c2 > 0, k2 ∈ L1(QT ). If V = W
1,p

0 (Ω) then by Remark 3.3 instead
of (3.22) it is sufficient to assume e.g. the sign condition

f0(t, x, η, ζ )η � 0.
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3.4. Strongly nonlinear equations

In [10,13] F.E. Browder and H. Brezis considered “strongly nonlinear” parabolic equations
containing a term g(t, x, u) which could be quickly increasing in u. By using main ideas
of these works, one can prove the following more general result on “strongly nonlinear”
parabolic equations (see [58,59]).

Assume that
(S1) For |α| � m−1 functions gα : QT ×R

N → R satisfy the Carathéodory conditions.
(S2) g0(t, x, η)ξ0 � 0 for a.e. (t, x) ∈ QT , all η ∈ R

N , ξ0 ∈ R, further, there exists a
continuous nondecreasing function ψ : R → R with ψ(0) = 0 and a constant c3
such that ∣∣g0(t, x, η)

∣∣ �
∣∣ψ(ξ0)

∣∣ � c3
[∣∣g0(t, x, η)

∣∣ + |η|p−1 + 1
]
.

(g0 and ξ0 denote gα, ξα , respectively, for |α| = 0, p � 2.)
(S3) |gα(t, x, η)|q � k3(ξ0)g0(t, x, η)ξ0 for

1 � |α| � m − 1, a.e. (t, x) ∈ QT , all η ∈ R
N

where k3 is a continuous function satisfying lim∞ k3 = 0, 1/p + 1/q = 1.

THEOREM 3.4. Let V = W
m,p

0 (Ω) (with bounded Ω ⊂ R
n), assume (A1), (A2), (A′′

3),
(A4) and (S1)–(S3). Then for each f ∈ Lq(0, T ; V �), u0 ∈ V ∩ L∞(Ω) there exists
u ∈ Lp(0, T ; V ) ∩ C([0, T ], L2(Ω)) such that

g0(t, x, . . . ,D
γ
x u, . . .) and ug0(t, x, . . . ,D

γ
x u, . . .) ∈ L1(QT )

(|γ | � m − 1
)
,

gα(t, x, . . . ,D
γ
x u, . . .) ∈ Lq(QT ) for 1 � |α| � m − 1

(|γ | � m − 1
)
,

u is a distribution solution in QT of the equation

Dtu +
∑

|α|�m

(−1)|α|Dα
x

[
fα(t, x, . . . ,Dβ

x u, . . .)
]

+
∑

|α|�m−1

(−1)|α|Dα
x

[
gα(t, x, . . . ,D

γ
x u, . . .)

] = f (|β| � m, |γ | � m − 1)

and u(0) = u0.
Further, u satisfies the following system of energy inequalities: for each t̃ ∈ [0, T ] and

for each v ∈ Lp(0, T ; V ) ∩ C1([0, T ], L2(Ω)) with v(0) = u0 and v ∈ L∞(QT ) we have∫ t̃

0

〈
Dtv(t), u(t) − v(t)

〉
dt + 1

2

∥∥u(t̃) − v(t̃)
∥∥2

L2(Ω)

+
∑

|α|�m

∫
Qt̃

fα(t, x, . . . ,Dβ
x u, . . .)

(
Dα

x u − Dα
x v

)
dt dx

+
∑

|α|�m−1

∫
Qt̃

gα

(
t, x, . . . , D

γ
x u, . . .

)(
Dα

x u − Dα
x v

)
dt dx

(3.23)=
∫ t̃

0

〈
f (t), u(t) − v(t)

〉
dt.
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If g0 = ψ , gα = 0 for |α| � 1 and (the monotonicity condition) (A3) is satisfied then the
solution of (3.23) is unique.

The proof of Theorem 3.4 is based on truncation of the functions gα to obtain bounded
functions gk

α , a compact embedding theorem (see [13]) and also on an approximation the-
orem formulated in [10] and [13]. The proof of the last theorem combines the techniques
of Hedberg’s approximation theorem in Sobolev spaces with convolutions in time.

REMARK 3.6. According to assumptions (S1)–(S3) of Theorem 3.4, gα may be “quickly
increasing” in u.

4. Parabolic functional differential equations containing functional dependence in
lower order terms

In this section we shall apply Theorem 2.5 to get existence of weak solutions (in a finite in-
terval [0, T ]) of initial-boundary value problems for functional parabolic equations which
are perturbations of parabolic partial differential equations (with 2m order elliptic part) by
lower order functional terms. Such equations arise e.g. in models considered in [11,18,19,
30,31,51,54,74].

4.1. Existence theorems

We shall consider equations of the form

Dtu +
∑

|α|�m

(−1)|α|Dα
x

[
fα(t, x, . . . ,Dβ

x u, . . .)
]

(4.1)+
∑

|α|�m−1

(−1)|α|Dα
x

[
Hα(u)

] = f in QT = (0, T ) × Ω

where |β| � m, Ω ⊂ R
n is a bounded domain (with sufficiently smooth boundary) and,

denoting by V a closed linear subspace of the Sobolev space Wm,p(Ω) (m � 1, p � 2,
1/p + 1/q = 1),

Hα : Lp(0, T ; V ) → Lq(QT )

is a bounded (possibly nonlinear) operator. We shall consider weak solutions of the above
equations with some (possibly nonlinear) boundary conditions on ΓT = [0, T ]×∂Ω which
may contain functional dependence.

Assume that
(A5) Hα : Lp(0, T ; V ) → Lq(QT ), Gα : Lp(0, T ; V ) → Lq(ΓT ) are bounded (pos-

sibly nonlinear) operators of Volterra type which are demicontinuous from
Lp(0, T ; Wm−δ,p(Ω)) to Lq(QT ) and Lq(ΓT ), respectively, for some δ > 0,
δ < 1 − 1/p. Further,

(4.2)lim‖u‖→∞
‖Hα(u)‖q

Lq(QT )
+ ‖Gα(u)‖q

Lq(ΓT )

‖u‖p

Lp(0,T ;V )

= 0.
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Then we may define operator B1 : Lp(0, T ; V ) → Lq(0, T ; V �) by

[
B1(u), v

] =
∑

|α|�m−1

∫
QT

Hα(u)Dα
x v dt dx

(4.3)+
∑

|α|�m−1

∫
ΓT

Gα(u)Dα
x v dt dσx, u, v ∈ Lp(0, T ; V ).

(In the last formula we consider the trace of Dα
x v(t, ·) on ∂Ω .)

THEOREM 4.1. Assume (A1), (A2), (A′′
3), (A4), (A5) and consider the operator A = A1

defined by (3.14). Then (A1 + B1) : Lp(0, T ; V ) → Lq(0, T ; V �) is bounded, demicon-
tinuous, pseudomonotone with respect to D(L), it is coercive and of Volterra type. Conse-
quently, for any f ∈ Lq(0, T ; V �) there exists u ∈ D(L) satisfying

(4.4)Dtu + (A1 + B1)(u) = f, u(0) = 0.

Now we sketch the proof of Theorem 4.1 which can be found in [60]. By Theorem 3.3,
A1 : Lp(0, T ; V ) → Lq(0, T ; V �) is bounded, demicontinuous, pseudomonotone with re-
spect to D(L) and it is coercive. By (A5) and Hölder’s inequality B1 : Lp(0, T ; V ) →
Lq(0, T ; V �) is bounded and demicontinuous.

Further, assuming

(uj ) → u weakly in Lp(0, T ; V ), (Luj ) → Lu weakly in Lq(0, T ; V �)

(4.5)and lim sup
j→∞

[
(A1 + B1)(uj ), uj − u

]
� 0,

by Theorem 2.2 (on compact embedding) there is a subsequence of (uj ) (again denoted
by (uj )) for which

(4.6)(uj ) → u in Lp
(
0, T ; Wm−δ,p(Ω)

)
where δ > 0 is chosen according to (A5) (δ < 1 − 1/p). Since the trace operator
Wm−δ,p(Ω) → Wm−1,p(∂Ω) is continuous (because δ + 1/p < 1, see [1]),

lim
j→∞

[
B1(uj ), uj − u

] = 0 and
(
B1(uj )

) → B1(u)

(4.7)weakly in Lq
(
0, T ; V �

)
by (A5). Consequently, (4.5) yields

(4.8)lim sup
j→∞

[
A1(uj ), uj − u

]
� 0.

Since A1 is pseudomonotone with respect to D(L), we obtain from (4.5), (4.8)

lim
j→∞

[
A1(uj ), uj − u

] = 0,
(
A1(uj )

) → A1(u) weakly in Lq(0, T ; V �)

thus by (4.7) A1 + B1 is pseudomonotone with respect to D(L).
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Finally, (A4), (A5) imply

[A1(u) + B1(u), u]
‖u‖ �

c2‖u‖p − c�
2

‖u‖ − [B1(u), u]
‖u‖

(4.9)

� ‖u‖p−1
[
c2 − ‖B1(u)‖Lq(0,T ;V �)

‖u‖p−1

]
− c�

2

‖u‖ → +∞

if ‖u‖ → ∞ because

‖B1(u)‖Lq(0,T ;V �)

‖u‖p−1
=

[‖B1(u)‖q

‖u‖p

]1/q

→ 0.

(4.9) means that A1 + B1 is coercive. Clearly, A1 + B1 is of Volterra type.

REMARK 4.1. In the case V = W
m,p

0 (Ω), Gα = 0 (for all α), the solution of (4.4) is
called a weak solution of (4.1) with 0 initial and Dirichlet boundary condition. In the case
m = 1, V = W 1,p(Ω) the solution of (4.4) can be considered as a weak solution of (4.1)
with 0 initial condition and the following Neumann boundary condition of functional type
(see Definition 3.4):∑

|α|=1

fα(t, x, u,Du)να = −G0(u) on ΓT .

REMARK 4.2. Assume that functions fα satisfy (A3) or (3.21), Gα = 0 for all α and
Hα are extended to L2(QT ) such that they satisfy the Lipschitz condition with some con-
stant c3 ∥∥exp(−dτ)

[
Hα

(
exp(dτ)u1

)] − exp(−dτ)
[
Hα

(
exp(dτ)u2

)]∥∥
L2(Qt )

(4.10)� c3‖u1 − u2‖L2(Qt )

for all u1, u2 ∈ Lp(0, T ; V ), t ∈ [0, T ] and d > 0. Then, choosing sufficiently large
positive number d , we obtain uniqueness of the solution u and continuous dependence of
u on f, u0 in the sense (2.20).

REMARK 4.3. If the conditions of Remark 4.2 hold, m = 1, fα(t, x, ξ) is linear in ξ

with sufficiently smooth coefficients (depending on (t, x)), then, by using results on in-
terior regularity of solutions of linear parabolic partial differential equations (see, e.g.,
[40] Theorem 6.6), we obtain for the solution u of (4.4) that Diju,Dtu ∈ L2

loc(QT ) if
f ∈ L2

loc(QT ).
In a similar way, combining Remark 4.2 with regularity results on solutions of qua-

silinear parabolic differential equations, it is possible to obtain results on smoothness of
solutions to functional parabolic problems.

4.2. Examples

Now we formulate several examples for Hα,Gα satisfying (A5).
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EXAMPLE 4.1. Let Gα = 0 for all α and

[
Hα(u)

]
(t, x) =

∫ t

0
hα

(
t, τ, x, . . . ,D

γ
x u(τ, x), . . .

)
dτ, (t, x) ∈ QT or

[
Hα(u)

]
(t, x) =

∫
Ω

[∫ t

0
hα(t, τ, x, y, . . . ,D

γ
x u(τ, y), . . .) dτ

]
dy,

(t, x) ∈ QT

where |γ | � m − 1, functions hα satisfy the Carathéodory conditions and∣∣hα(t, τ, x, η)
∣∣ � c3

(|η|)|η|p−1 + k3(t, x),

(4.11)
∣∣hα(t, τ, x, y, η)

∣∣ � c3
(|η|)|η|p−1 + k3(t, x),

respectively, with a continuous function c3, lim∞ c3 = 0, k3 ∈ Lq(QT ).

First we show the first part of (A5). By (4.11) and Hölder’s inequality

Hα : Lp(0, T ; V ) → Lq(QT )

is bounded. If (uj ) → u in the norm of Lp(0, T ; Wm−1,p(Ω)) then D
γ
x uj (t, x) →

D
γ
x u(t, x) for a.e. (t, x) ∈ QT , for a subsequence (|γ | � m − 1). By (4.11) the sequences

of functions

τ 
→ hα

(
t, τ, x, . . . ,D

γ
x u(τ, x), . . .

)
,

(τ, y) 
→ hα

(
t, τ, x, y, . . . ,D

γ
x u(τ, y), . . .

)
,

are equiintegrable, thus Vitali’s theorem implies that(
Hα(uj )

) → Hα(u) a.e. in QT .

Similarly, by (4.11) functions |Hα(uj ) − Hα(u)|q are equiintegrable in QT , thus(
Hα(uj )

) → Hα(u) in Lq(QT )

for a subsequence. It is easy to show that the statement holds for the total sequence, too.
(Assuming the converse, one gets a contradiction.)

Now we show (4.2) in the case Gα = 0. By (4.11) for arbitrary ε > 0 number a > 0 can
be chosen such that∣∣hα(t, τ, x, η)

∣∣q � const
(
εq |η|p + ∣∣k3(t, x)

∣∣q)
if |η| > a.

Consequently,∫
QT

∣∣hα

(
t, τ, x, . . . , D

γ
x u(τ, x), . . .

)∣∣q dτ dx

=
∫

Qa
T

∣∣hα

(
t, τ, x, . . . ,D

γ
x u(τ, x), . . .

)∣∣q dτ dx

+
∫

QT \Qa
T

∣∣hα

(
t, τ, x, . . . ,D

γ
x u(τ, x), . . .

)∣∣q dτ dx

� const εq‖u‖p

Lp(0,T ;V )
+ c(ε)
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where

Qa
T = {

(τ, x) ∈ QT :
∣∣(. . . , Dγ

x u(τ, x), . . .
)∣∣ � a

}
which implies (4.2) (with Gα = 0) because∫

QT

∣∣Hα(u)
∣∣q dx dt

� const
∫ T

0

[ ∫
QT

∣∣hα

(
t, τ, x, . . . , D

γ
x u(τ, x), . . .

)∣∣q dτ dx

]
dt.

Similarly can be considered the other form of Hα(u).
If assumptions of Remark 4.2 hold such that m = 1 and hα = h0 satisfies global

Lipschitz condition in η then (4.10) is valid and we have uniqueness and continuous de-
pendence of the solution.

REMARK. By a simple modification of (4.4) and this example we obtain a problem of type
(2.23). Define operator

B : [0, T ] × Lp(−a, 0; V ) → Lq(0, T ; V �)

of Remark 2.7 by

〈[
B(t, w)

]
(t), v

〉 =
∑

|α|�m

∫
Ω

fα

(
t, x, . . . ,Dβ

x w(0, x), . . .
)
Dαv(x) dx

+
∑

|α|�m−1

∫
Ω

[∫ 0

−a

hα

(
t, s, x, . . . ,D

γ
x w(s, x), . . .

)]
dsDαv(x) dx,

t ∈ [0, T ], w ∈ Lp(−a, 0; V ), v ∈ V.

Then according to (2.25) for u = w − v0〈[
A(u)

]
(t), v

〉 = 〈[
B

(
t, (Nu + v0)t

)]
(t), v

〉
=

∑
|α|�m

∫
Ω

fα

(
t, x, . . . , Dβ

x u(t, x) + Dβ
x v0(t, x), . . .

)
Dαv(x) dx

+
∑

|α|�m−1

∫
Ω

[∫ t

0
hα

(
t, τ, x, . . . ,D

γ
x u(τ, x)

+ D
γ
x v0(τ, x), . . .

)]
dτDαv(x) dx

+
∑

|α|�m−1

∫
Ω

[∫ 0

t−a

hα

(
t, τ, x, . . . , D

γ
x ψ(τ, x), . . .

)]
dτDαv(x) dx,

for t < a, for t � a instead of the last term we have 0. By Remark 2.7 problem (2.23)
is equivalent to (2.24) which (in this case) is such a problem which was considered in
Theorem 4.1 and in Example 4.1.
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EXAMPLE 4.2. One proves similarly that the following operators Hα satisfy (A5) (with
Gα = 0): [

Hα(u)
]
(t, x) = hα

(
t, x, . . . , Fγ (D

γ
x u), . . .

)
, (t, x) ∈ QT , |α|, |γ | � m − 1

where Fγ : Lp(QT ) → Lp(QT ) are linear continuous operators of Volterra type, functions
hα satisfy the Carathéodory conditions and (similarly to (4.11))

(4.12)
∣∣hα(t, x, η)

∣∣ � c3
(|η|)|η|p−1 + k3(t, x)

with a continuous function c3, lim∞ c3 = 0, k3 ∈ Lq(QT ).
The operators Fγ may have e.g. one of the forms

[
Fγ (v)

]
(t, x) =

∫ t

0
gγ (t, τ, x)v(τ, x) dτ,

[
Fγ (v)

]
(t, x) =

∫ t

0

∫
Ω

gγ (t, τ, ξ, x)v(τ, ξ) dτ dξ

(gγ may be e.g. L∞ functions),[
Fγ (v)

]
(t, x) = v

(
χγ (t), ψγ (x)

)
where 0 � χγ (t) � t , χ ′

γ (t) > 0; the functions ψγ : Ω̄ → Ω̄ are C1 diffeomorphisms.

From Example 4.2 one gets a problem of type (2.23) similarly to Example 4.1.
Analogous examples are for Gα satisfying (A5):

EXAMPLE 4.3.

[
Gα(u)

]
(t, x) =

∫ t

0
hα

(
t, τ, x, . . . ,D

γ
x u(τ, ·)|∂Ω(x), . . .

)
dτ, (t, x) ∈ ΓT ,

[
Gα(u)

]
(t, x) =

∫
∂Ω

[∫ t

0
hα

(
t, τ, x, y, . . . ,D

γ
x u(τ, ·)|∂Ω(y), . . .

)
dτ

]
dσy,

(t, x) ∈ ΓT

where D
γ
x u(τ, ·)|∂Ω denotes the trace of D

γ
x u(τ, ·) on ∂Ω (|γ | � m − 1) and functions hα

satisfy conditions which are analogous to (4.11), (4.12).

EXAMPLE 4.4.[
Gα(u)

]
(t, x) = hα

(
t, x, . . . , Fγ (D

γ
x u|ΓT

), . . .
)
,

(t, x) ∈ ΓT , |α|, |γ | � m − 1

where Fγ : Lp(ΓT ) → Lp(ΓT ) are linear continuous operators of Volterra type, functions
hα satisfy Carathéodory conditions and analogous conditions to (4.12).

Similar examples for Fγ see in Example 4.2. One can prove that Examples 4.3, 4.4
satisfy (A5) as it was shown for Example 4.1.
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4.3. Strongly nonlinear equations

Now we formulate an existence result on strongly nonlinear parabolic functional differ-
ential equations which is a generalization of Theorem 3.4 on strongly nonlinear parabolic
differential equations. We assume that functions gα : QT × R

N → R satisfy assumptions
(S1)–(S3), further, assume

(S4) h1
α, h2

α : (0, T ) × QT × R
N → R satisfy the Carathéodory conditions for |α| �

m − 1,

hα = h1
α + h2

α.

(S5) The following estimates hold for a.e. (t, τ, x) and all η ∈ R
N (|α| � m − 1):∣∣h1

α(t, τ, x, η)
∣∣ � c5

(|η|)|η|p−1 + k5(t, x),∣∣h2
α(t, τ, x, η)

∣∣q � c6
(|ξ0|

)
g0(τ, x, η)ξ0

where c5, c6 are continuous functions, lim∞ c5 = 0, lim∞ c6 = 0, k5 ∈ Lq(QT ).
(The second estimation is analogous to (S3).)

THEOREM 4.2. Let V = W
m,p

0 (Ω) with a bounded domain Ω ∈ R
n. Assume (A1), (A2),

(A′′
3), (A4), (S1)–(S5). (I.e. we assume conditions of Theorem 3.4 and (S4), (S5).)
Then for each f ∈ Lq(0, T ; V �), u0 ∈ V ∩ L∞(Ω) there exists u ∈ Lp(0, T ; V ) ∩

C([0, T ], L2(Ω)) such that

g0
(
t, x, u, . . . ,D

γ
x u, . . .

)
, ug0

(
t, x, u, . . . ,D

γ
x u, . . .

) ∈ L1(QT )(|γ | � m − 1
)
,

gα

(
t, x, u, . . . ,D

γ
x u, . . .

) ∈ Lq(QT )(|γ | � m − 1
)

for 1 � |α| � m − 1,

(t, x) 
→
∫ t

0
h2

α

(
t, τ, x, u(τ, x), . . . ,D

γ
x u(τ, x), . . .

)
dτ ∈ Lq(QT )(|γ | � m − 1

)
,

u is a distribution solution in QT of

Dtu +
∑

|α|�m

(−1)|α|Dα
x

[
fα(t, x, . . . ,Dβ

x u, . . .)
]

+
∑

|α|�m−1

(−1)|α|Dα
x

[
gα(t, x, . . . ,D

γ
x u, . . .)

]

+
∑

|α|�m−1

(−1)|α|Dα
x

∫ t

0

[
hα

(
t, τ, x, . . . , D

γ
x u(τ, x), . . .

)]
dτ = f

and u(0) = 0.
Further, u satisfies the following system of energy inequalities: for each t̃ ∈ [0, T ] and

v ∈ Lp(0, T ; V ) ∩ C1([0, T ], L2(Ω)
)

with v(0) = u0 and v ∈ L∞(QT )
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we have ∫ t̃

0

〈
Dtv(t), u(t) − v(t)

〉
dt + 1

2

∥∥u(t̃) − v(t̃)
∥∥2

L2(Ω)

+
∑

|α|�m

∫
Qt̃

fα(t, x, . . . ,Dβ
x u, . . .)(Dα

x u − Dα
x v) dt dx

+
∑

|α|�m−1

∫
Qt̃

gα(t, x, . . . , D
γ
x u, . . .)(Dα

x u − Dα
x v) dt dx

+
∑

|α|�m−1

∫
Qt̃

[ ∫ t

0
hα(t, τ, x, . . . ,D

γ
x u, . . .) dτ

]
(Dα

x u − Dα
x v) dt dx

=
∫ t̃

0

〈
f (t), u(t) − v(t)

〉
dt.

The proof of Theorem 4.2 can be found in [58,59].

REMARK 4.4. According to assumptions of Theorem 4.2, gα and h2
α may be “quickly

increasing” in u.

5. Parabolic equations containing functional dependence in the main part

In this section we shall consider second order quasilinear parabolic functional differential
equations where also the main part of the equation contains functional dependence on the
unknown function. In [14,15] M. Chipot, L. Molinet and B. Lovat considered equation

(5.1)Dtu −
n∑

i,j=1

Di

[
aij

(
l
(
u(t, ·)))Dju

] + a0
(
l
(
u(t, ·)))u = f in R

+ × Ω

where Ω ⊂ R
n is a bounded domain with sufficiently smooth boundary,

(5.2)
n∑

i,j=1

ai,j (ζ )ξiξj � λ|ξ |2 for all ξ ∈ R
n, ζ ∈ R

with some constant λ > 0,

l
(
u(t, ·)) =

∫
Ω

g(x)u(t, x) dx

with a given g ∈ L2(Ω). The existence and asymptotic properties (as t → ∞) of solutions
to initial-boundary value problems for (5.1) were proved. Equation (5.1) was motivated by
the diffusion process (for heat or population) where the diffusion coefficient depends on a
nonlocal quantity.
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5.1. Existence theorems

By using the theory of monotone type operators, now we shall consider for simplicity sec-
ond order quasilinear parabolic functional differential equations which are generalizations
of (5.1). (It would be possible to consider higher order parabolic equations, too, by using
analogous argument.) We shall apply the results of Section 2 to equations of the form

Dtu −
n∑

i=1

Di

[
ai

(
t, x, u(t, x),Du(t, x); u

)]
(5.3)+ a0

(
t, x, u(t, x),Du(t, x); u

) = f

where the functions

ai : QT × R
n+1 × Lp(0, T ; V ) → R

with a closed linear subspace V of W 1,p(Ω), 2 � p < ∞, satisfy conditions which are
generalizations of assumptions (A1), (A2), (A′′

3), (A4) such that it will be possible to apply
Theorem 2.5 and (also modifying the proof of Theorem 2.5) to obtain existence results
for (5.3).

On functions ai assume, by using the notation X = XT = Lp(0, T ; V )

(B1) The functions ai : QT × R
n+1 × X → R satisfy the Carathéodory conditions

for arbitrary fixed u ∈ X and they have the Volterra property: ai(t, x, ζ0, ζ ; u)

depends only on the restriction of u to [0, t] (i = 0, 1, . . . , n).
(B2) There exist bounded (nonlinear) operators g1 : X → R

+ and k1 : X → Lq(QT )

such that ∣∣ai(t, x, ζ0, ζ ; u)
∣∣ � g1(u)

[|ζ0|p−1 + |ζ |p−1] + [
k1(u)

]
(t, x),

i = 0, 1, . . . , n

for a.e. (t, x) ∈ QT , each (ζ0, ζ ) ∈ R
n+1 and u ∈ X.

(B3)
∑n

i=1[ai(t, x, ζ0, ζ ; u) − ai(t, x, ζ0, ζ
�; u)](ζi − ζ �

i ) > 0 if ζ �= ζ �.
(B4) There exist bounded operators g2 : X → R

+, k2 : X → L1(QT ) such that

(5.4)
n∑

i=0

ai(t, x, ζ0, ζ ; u)ζi �
[
g2(u)

][|ζ0|p + |ζ |p] − [
k2(u)

]
(t, x)

for a.e. (t, x) ∈ QT , all (ζ0, ζ ) ∈ R
n+1, u ∈ X and

(5.5)lim‖u‖→∞

[
g2(u)‖u‖p−1

X − ‖k2(u)‖L1(QT )

‖u‖X

]
= +∞.

(B5) There exists δ > 0 such that if (uk) → u weakly in X = Lp(0, T ; V ), strongly in
Lp(0, T ; W 1−δ,p(Ω)) then for i = 0, 1, . . . , n

ai

(
t, x, uk(t, x),Duk(t, x); uk

) − ai

(
t, x, uk(t, x),Duk(t, x); u

) → 0

in Lq(QT ).
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DEFINITION 5.1. Define operator A : X → X� by

[
A(u), v

] =
∫

QT

[
n∑

i=1

ai

(
t, x, u(t, x),Du(t, x); u

)
Div

+ a0
(
t, x, u(t, x),Du(t, x); u

)
v

]
dt dx,

u, v ∈ X = Lp(0, T ; V ).

THEOREM 5.1. Assume (B1)–(B5). Then A : X → X� is bounded, demicontinuous,
pseudomonotone with respect to D(L), coercive and of Volterra type. Consequently, by
Theorem 2.5 for any f ∈ X� there exists a solution u ∈ D(L) of

(5.6)Dtu + A(u) = f, u(0) = 0.

PROOF. Boundedness of A follows from (B1), (B2) and by (B1) A is of Volterra type.
Further, if u(k) → u strongly in X then

ai(t, x, uk,Duk; uk) − ai(t, x, u,Du; u)

= [
ai(t, x, uk,Duk; uk) − ai(t, x, uk,Duk; u)

]
+ [

ai(t, x, uk,Duk; u) − ai(t, x, u,Du; u)
]

where the first term in the right hand side tends to 0 in Lq(QT ) by (B5) and (for a sub-
sequence) the second term also tends to 0 in Lq(QT ) by Vitali’s theorem and (B1), (B2).
Thus A : X → X� is continuous (and so it is demicontinuous). Clearly, (B4) implies that A

is coercive.
Finally, we show that A is pseudomonotone with respect to D(L). For a fixed û ∈ X

define operator Ãû by

[
Ãû(u), v

] =
∫

QT

[
n∑

i=1

ai

(
t, x, u(t, x),Du(t, x); û

)
Div

+ a0
(
t, x, u(t, x),Du(t, x); û

)
v

]
dt dx,

where u, v ∈ X. Then (B1)–(B4) and Theorem 3.3 imply that Ãû is pseudomonotone with
respect to D(L).

Assume that

uk ∈ D(L), (uk) → u weakly in X,

(5.7)(u′
k) → u′ weakly in X� and lim sup

k→∞
[
A(uk), uk − u

]
� 0.

Then by Theorem 2.2

(5.8)(uk) → u strongly in Lp
(
0, T ; W 1−δ,p(Ω)

)
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for a subsequence (again denoted by (uk)). (5.7), (5.8) and (B5) imply

(5.9)lim
k→∞

[
A(uk) − Ãu(uk), uk − u

] = 0,

hence

(5.10)lim sup
k→∞

[
Ãu(uk), uk − u

]
� 0.

Since Ãu is pseudomonotone with respect to D(L) we obtain from (5.9), (5.10)

lim
k→∞

[
A(uk), uk − u

] = 0 and
(
A(uk)

) → A(u) weakly in X�

because (Ãu(uk) − A(uk)) → 0 in X� by (5.7), (5.8) and (B5). So we have shown that A

is pseudomonotone with respect to D(L).
Now instead of (B4) we assume
(B′

4) There exist bounded operators

g2 : X → C
([0, T ]), k2 : X → L1(QT )

such that [g2(u)](t) > 0 for t ∈ [0, T ] and for all u ∈ X

(5.11)

n∑
i=0

ai(t, x, ζ0, ζ ; u)ζi �
[
g2(u)

]
(t)

[|ζ0|p + |ζ |p] − [
k2(u)

]
(t, x)

for a.e. (t, x) ∈ QT , all (ζ0, ζ ) ∈ R
n+1 and with some positive constants,

0 � σ� < p − 1, 0 � σ < p − σ�

(5.12)
[
g2(u)

]
(t) � const ‖u‖−σ�

Xt
if ‖u‖Xt � 1,

(5.13)
∥∥k2(u)

∥∥
L1(Qt )

� const ‖u‖σ
Xt

if ‖u‖Xt � 1,

for any u ∈ XT = Lp(0, T ; V ), t ∈ [0, T ].
Then from Theorem 5.1 directly follows �

THEOREM 5.2. Assume (B1)–(B3), (B′
4), (B5). Then for arbitrary f ∈ X� there exists a

solution u ∈ D(L) of (5.6).

REMARK 5.1. According to (5.12), we have an existence theorem on (5.6) if the equation
is not uniformly parabolic in the sense, analogous to the condition (5.2) in the linear case.
(See Example 5.1.)

5.2. Examples

EXAMPLE 5.1. Let ai have the form

ai(t, x, ζ0, ζ ; u) = [
B1(u)

]
(t, x)α1

i (t, x, ζ0, ζ ) + [
B2(u)

]
(t, x)α2

i (t, x, ζ0, ζ ),

i = 1, . . . , n,
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a0(t, x, ζ0, ζ ; u) = [
B1(u)

]
(t, x)α1

0(t, x, ζ0, ζ ) + [
B3(u)

]
(t, x)α2

0(t, x, ζ0, ζ )

where αl
i satisfy the Carathéodory conditions (i = 0, 1, . . . , n, l = 1, 2),∣∣α1

i (t, x, ζ0, ζ )
∣∣ � c1

(|ζ0|p−1 + |ζ |p−1) + k1(x), i = 0, 1, . . . , n

with some constant c1, k1 ∈ Lq(Ω),
n∑

i=1

[
α1

i (t, x, ζ0, ζ ) − α1
i (t, x, ζ0, ζ

�)
]
(ζi − ζ �

i ) > 0 if ζ �= ζ �,

n∑
i=0

α1
i (t, x, ζ0, ζ )ζi � c2

(|ζ0|p + |ζ |p) − k2(x)

with some constant c2 > 0, k2 ∈ L1(Ω) (thus α1
i satisfy (A1), (A2), (A′′

3), (A4)),∣∣α2
i (t, x, ζ0, ζ )

∣∣ � c1
(|ζ0|ρ + |ζ |ρ)

, 0 � ρ, σ � + ρ < p − 1, i = 0, 1, . . . , n,

n∑
i=1

[
α2

i (t, x, ζ0, ζ ) − α2
i (t, x, ζ0, ζ

�)
]
(ζi − ζ �

i ) � 0,

n∑
i=1

α2
i (t, x, ζ0, ζ )ζi � 0.

Further,

B1 : Lp
(
0, T ; W 1−δ,p(Ω)

) → L∞(QT ),

B2 : Lp
(
0, T ; W 1−δ,p(Ω)

) → Lp/(p−1−ρ)(QT ),

B3 : Lp
(
0, T ; W 1−δ,p(Ω)

) → L(p−σ�)/(p−σ�−1−ρ)(QT )

are bounded and continuous (possibly nonlinear) operators of Volterra type satisfying the
conditions[

B1(u)
]
(t, x) � const ‖u‖−σ�

Xt
if ‖u‖Xt � 1

with some positive constant and with 0 � σ < p − σ�

[
B2(u)

]
(t, x) � 0,

∫
QT

∣∣B3(u)
∣∣ p−σ�

p−1−σ�−ρ � const ‖u‖σ
Lp(0,T ;W 1−δ,p(Ω))

.

By using Young’s and Hölder’s inequalities, one can show that assumptions of Theo-
rem 5.2 are fulfilled.

Operators B1, B2, B3, satisfying the above conditions, may have e.g. the forms[
B1(u)

]
(t, x) = b1

([
H(u)

]
(t, x)

)
,

[
B2(u)

]
(t, x) = b2

([
G(u)

]
(t, x)

)
,

(5.14)
[
B3(u)

]
(t, x) = b3

([
G0(u)

]
(t, x)

)
where functions bj (j = 1, 2, 3) are continuous and satisfy (with some positive constants)

b1(θ) � const

1 + |θ |σ� ,
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0 � b2(θ) � const |θ |p−1−ρ̂ ,
∣∣b3(θ)

∣∣ � const |θ |p−1−ρ�

with ρ � ρ̂ � p − 1, σ� + ρ < ρ� � p − 1. Further,

H : Lp
(
0, T ; W 1−δ,p(Ω)

) → C(QT ),

G,G0 : Lp
(
0, T ; W 1−δ,p(Ω)

) → Lp(QT )

are linear continuous operators of Volterra type.
The operator H may have e.g. one of the forms

[
H(u)

]
(t, x) =

∫
Qt

d(t, x, τ, ξ)u(τ, ξ) dτ dξ where d is continuous in (t, x),

sup
(t,x)∈QT

∫
QT

∣∣d(t, x, τ, ξ)
∣∣q dτ dξ < ∞,

[
H(u)

]
(t, x) =

∫
Γt

d(t, x, τ, ξ)u(τ, ξ) dτ dσξ where d is continuous in (t, x),

sup
(t,x)∈QT

∫
ΓT

∣∣d(t, x, τ, ξ)
∣∣q dτ dσξ < ∞,

Γt = (0, t) × ∂Ω, assuming δ < 1 − 1/p.

The operators G,G0 may have also the above forms with the following modified condi-
tions: ∫

QT

[∫
QT

∣∣d(t, x, τ, ξ)
∣∣q dτ dξ

]p/q

dt dx < ∞,

∫
QT

[∫
ΓT

∣∣d(t, x, τ, ξ)
∣∣q dτ dσξ

]p/q

dt dx < ∞, assuming δ < 1 − 1/p,

respectively, or they may have one of the forms∫ t

0
d(t, x, τ )u(τ, x) dτ,

∫
Ω

d(t, x, ξ)u(t, ξ) dξ

where ∫ T

0
sup
x∈Ω

[∫ T

0

∣∣d(t, x, τ )
∣∣q dτ

]p/q

dt < ∞,

∫
Ω

sup
t∈[0,T ]

[∫
Ω

∣∣d(t, x, ξ)
∣∣q dξ

]p/q

dx < ∞,

respectively.
The operators B2, B3, satisfying the above conditions, may have also the forms in the

point (t, x)∫ t

0
h
(
t, τ, x, u(τ, x)

)
dτ or h

(
t, x, u

(
χ(t), x

))
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where ∣∣h(t, τ, x, θ)
∣∣ � const |θ |p−1−ρ0 ,

∣∣h(t, x, θ)
∣∣ � const |θ |p−1−ρ0

with ρ < ρ0 � p − 1 for B2 and σ� + ρ < ρ0 � p − 1 for B3, 0 � χ(t) � t , χ ∈ C1,
χ ′ > 0 and h � 0 for B2.

5.3. Non-uniformly parabolic equations

Now we formulate an existence theorem when the condition of uniform parabolicity is not
satisfied also for “small” u. Instead of (B′

4) assume
(B′′

4) The inequality (5.11) is satisfied such that (instead of (5.12), (5.13)) we have with
some positive constants, for all t ∈ [0, T ][

g2(u)
]
(t) � const ‖u‖Lp1 (Qt ) if ‖u‖Lp1 (Qt ) < 1,[

g2(u)
]
(t) � const ‖u‖−σ�

Lp1 (Qt )
if ‖u‖Lp1 (Qt ) � 1,∥∥k2(u)

∥∥
L1(Qt )

� const ‖u‖Lp1 (Qt ) if ‖u‖Lp1 (Qt ) < 1,∥∥k2(u)
∥∥

L1(Qt )
� const ‖u‖σ

Lp1 (Qt )
if ‖u‖Lp1 (Qt ) � 1,

where 1 � p1 � p, 0 � σ� < p − 1, 0 � σ < p − σ�. Further,

ai(τ, x, ζ0, ζ ; u) = 0 for τ ∈ [0, t] if u(τ) = 0 for τ ∈ [0, t]
(i = 0, 1, . . . , n).

THEOREM 5.3. Assume (B1)–(B3), (B′′
4), (B5). Then for any f ∈ Lq1(QT ) (where 1/p1 +

1/q1 = 1) there exists a solution of (5.6).

The proof is a modification of the proof of Theorem 2.5 (based on Galerkin’s method).
Assumption (B′′

4) does not imply the coerciveness of A (given in 2.16), but it is not difficult
to show that by (B′′

4) the sequence of Galerkin’s approximations is bounded in Lp(0, T ; V ).
The detailed proof can be found in [69].

EXAMPLE 5.2. Let ai have the form as in Example 5.1 and[
B1(u)

]
(t, x) = b1

([
H(u)

]
(t, x)

)
where the function b1 satisfies

b1(θ) � const |θ | if |θ | < 1, b1(θ) � const

|θ |σ� if |θ | > 1, b1(0) = 0

with some positive constants, 0 � σ� < p − 1 and

[
H(u)

]
(t, x) =

[ ∫
Qt

d(t, x, τ, ξ)
∣∣u(τ, ξ)

∣∣p1 dτ dξ

]1/p1

, 1 � p1 � p,
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d(t, x, τ, ξ) is between two positive constants. Further,

B2(u) = 0,
[
B3(u)

]
(t, x) = b3

([
G0(u)

]
(t, x)

)
, |b3(θ)| � const |θ |p−1−ρ�

where σ� + ρ < ρ� � p − 1, G0 : Lp(QT ) → Lp(QT ) is a bounded linear operator of
Volterra type,

(p − σ�)
p − 1 − ρ�

p − 1 − σ� − ρ
� 1.

Then assumptions of Theorem 5.3 hold.

5.4. Modified conditions on nonlocal terms

Now we formulate a modification of assumption (B5) which makes possible to investigate
equations considered in Example 5.1 where the operator H in B1 may have more general
form. At the same time, instead of (B4) we have to assume a stronger condition:

(B�
4)

∑n
i=0 ai(t, x, ζ0, ζ )ζi � c2[|ζ0|p+|ζ |p]−[k2(u)](t, x) with some constant c2 > 0

for a.e. (t, x) ∈ QT , all (ζ0, ζ ) ∈ R
n+1, u ∈ Lp(0, T ; V ) where

lim‖u‖X→∞
‖k2(u)‖L1(QT )

‖u‖p
X

= 0

and k2 is continuous as a map from Lp(0, T ; W 1−δ,p(Ω)) to L1(QT ).
Instead of (B5) assume
(B�

5) If (uk) → u weakly in X = Lp(0, T ; V ), strongly in Lp(0, T ; W 1−δ,p(Ω)) and
(ζ0k) → ζ0, (ζk) → ζ then for a.e. (t, x) ∈ QT , i = 0, 1, . . . , n

ai(t, x, ζ0k, ζk; uk) → ai(t, x, ζ0, ζ ; u) as k → ∞.

THEOREM 5.4. Assume (B1)–(B3), (B�
4), (B�

5). Then operator A : X → X� (given in Def-
inition 5.1) is bounded, demicontinuous, pseudomonotone with respect to D(L), it is coer-
cive and of Volterra type. Consequently, for any f ∈ X� there exists a solution u ∈ D(L)

of (5.6).

The proof of this theorem is based on arguments in the proof of existence theorem on
nonlinear elliptic equations in [12] (the detailed proof see in [34]).

EXAMPLE 5.3. It is not difficult to show that assumptions of Theorem 5.4 are fulfilled for
the equation, considered in Example 5.1 with operators Bj , defined in (5.14) if

c3 � b1(θ) � c4, 0 � b2(θ) � c5|θ |p−1−ρ̂ ,
∣∣b3(θ)

∣∣ � c5|θ |p−1−ρ�

with some positive constants c3 - c5, ρ < ρ� � p − 1, ρ � ρ̂ � p − 1. Now operator H

may be more general, it may have the same forms as operator G and G0 in Example 5.1.
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6. Parabolic functional differential equations in (0,∞)

In this section we shall study solutions of parabolic differential equations and functional
parabolic equations in (0,∞). It will be proved a general existence theorem and certain
qualitative properties of the solutions in (0,∞). The general results will be applied to
problems considered in Sections 4 and 5.

6.1. Existence of solutions in (0,∞)

First we formulate some basic definitions.

DEFINITION 6.1. Let V be a Banach space, 1 � p < ∞. The set L
p

loc(0,∞; V ) consists
of all functions f : (0,∞) → V for which the restriction f |(0,T ) of f to (0, T ) belongs to
Lp(0, T ; V ) for each finite T > 0.

Further, by using the notations Q∞ = (0,∞) × Ω , Γ∞ = (0,∞) × Ω , denote by
L

q

loc(Q∞) and L
q

loc(Γ∞) the set of functions f : Q∞ → R and g : Γ∞ → R, respectively,
for which f |QT

∈ Lq(QT ), g|ΓT
∈ Lq(ΓT ) for arbitrary finite T > 0.

DEFINITION 6.2. Let A : Lp

loc(0,∞; V ) → L
q

loc(0,∞; V �) be of Volterra type, i.e. for
each u ∈ L

p

loc(0,∞; V ), t > 0, [A(u)](t) depends only on u|[0,t]. Then the “restriction of
A to [0, T ]”, denoted by AT , is the operator AT : Lp(0, T ; V ) → Lq(0, T ; V �), defined
by

AT (u) = A(uT ), u ∈ Lp(0, T ; V ) where

uT (t) = u(t) for t ∈ [0, T ] and uT (t) = 0 for t > T .

THEOREM 6.1. Let V be a reflexive, separable and uniformly convex Banach space, 1 <

p < ∞ and V ⊂ H ⊂ V � an evolution triple (H is a Hilbert space), A : L
p

loc(0,∞; V ) →
L

q

loc(0,∞; V �) an operator of Volterra type such that for each finite T > 0, the restriction
of A to [0, T ], AT : Lp(0, T ; V ) → Lq(0, T ; V �) satisfies the assumptions of Theorem 2.5,
i.e. it is bounded, demicontinuous, pseudomonotone with respect to D(L) and it is coercive
in the sense (2.16).

Then for arbitrary f ∈ L
q

loc(0,∞; V �) there exists u ∈ L
p

loc(0,∞; V ) such that u′ ∈
L

q

loc(0,∞; V �) and

(6.1)u′(t) + [
A(u)

]
(t) = f (t) for a.e. t ∈ (0,∞), u(0) = 0.

By using Theorem 2.5, one can prove Theorem 6.1 as follows. Let (Tj ) be an increas-
ing sequence of positive numbers with lim(Tj ) = +∞. Due to Theorem 2.5 there exist
functions uj ∈ Lp(0, Tj ; V ) such that u′

j ∈ Lq(0, Tj ; V �) and

u′
j (t) + [

ATj
(uj )

]
(t) = f (t) for a.e. t ∈ [0, Tj ], uj (0) = 0.

Volterra property implies that u = uj |[0,Tk] satisfies

u′(t) + [
ATk

(u)
]
(t) = f (t) for a.e. t ∈ [0, Tk]
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if Tk < Tj . Coercivity of AT implies that for all fixed finite T > 0 (and sufficiently large j ),
uj |[0,T ] is bounded in Lp(0, T ; V ). The boundedness of AT implies that AT (uj |[0,T ]) is
bounded in Lq(0, T ; V �).

Therefore, by a “diagonal process”, one can select a subsequence of (uj ) (again denoted
by (uj )) such that for each fixed Tk , (uj |[0,Tk]) is weakly converging in Lp(0, Tk; V ) and
(u′

j |[0,Tk]) is weakly converging in Lq(0, Tk; V �) as j → ∞. Thus we obtain a function

u ∈ L
p

loc(0,∞; V ) such that u′ ∈ L
q

loc(0,∞; V �), u(0) = 0, further,

(uj |[0,Tk]) → u|[0,Tk] weakly in Lp(0, Tk; V ) and

(u′
j |[0,Tk]) → u′|[0,Tk] weakly in Lp

(
0, Tk; V �

)
as j → ∞.

Since

u′
j (t) + [

ATk
(uj )

]
(t) = f (t) for a.e. t ∈ [0, Tk], uj (0) = 0,∫ Tk

0

〈[
ATk

(uj )
]
(t), uj (t) − u(t)

〉
dt

= [
ATk

(uj ), uj − u
]
Tk

= [f, uj − u]Tk
− [u′

j , uj − u]Tk

= [f, uj − u]Tk
− 1

2

∥∥uj (Tk) − u(Tk)
∥∥2

H
+ [u′, uj − u]Tk

,

hence

lim sup
j→∞

[
ATk

(uj ), uj − u
]
Tk

� 0

which implies (6.1) for t ∈ [0, Tk].
Combining Theorem 6.1 with previous existence theorems in [0, T ], one obtains exis-

tence theorems in [0,∞). E.g., from Theorem 4.1 one gets

THEOREM 6.2. Assume that for functions fα : Q∞ × R
M → R assumptions (A1), (A2),

(A′′
3), (A4) are satisfied for any finite T and the restrictions (Hα)T , (Gα)T of operators of

Volterra type

Hα : Lp

loc(0,∞; V ) → L
q

loc(Q∞), Gα : Lp

loc(0,∞; V ) → L
q

loc(Γ∞)

to [0, T ] satisfy (A5) for any finite T > 0.
Then for arbitrary f ∈ L

q

loc(0,∞; V �) there exists u ∈ L
p

loc(0,∞; V ) such that u′ ∈
L

q

loc(0,∞; V �) and (6.1) holds.

Similarly, from Theorem 5.2 one obtains

THEOREM 6.3. Assume that the restrictions to

QT × R
n+1 × Lp(0, T ; V ) of ai : Q∞ × R

n+1 × L
p

loc(0,∞; V ) → R

satisfy (B1)–(B3), (B′
4), (B5) for any finite T > 0. Then for arbitrary f ∈ L

q

loc(0,∞; V �)

there exists u ∈ L
p

loc(0,∞; V ) such that u′ ∈ L
q

loc(0,∞; V �) and (6.1) holds.
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REMARK 6.1. Combining the arguments in the proof of Theorems 4.2 and 6.1, one can
formulate and prove existence theorems on strongly nonlinear equations (considered in
Theorem 4.2) in (0,∞) (see also [66]).

6.2. Boundedness of solutions

Now we formulate a theorem on the boundedness of ‖u(t)‖H , t ∈ (0,∞) for the solutions
of (6.1).

THEOREM 6.4. Assume that the assumptions of Theorem 6.1 are fulfilled and for arbitrary
v ∈ L

p

loc(0,∞; V ) with v′ ∈ L
q

loc(0,∞; V �) the inequality〈[
A(v)

]
(t), v(t)

〉
(6.2)� c1

∥∥v(t)
∥∥p

V
− c2

[
sup

τ∈[0,t]
∥∥v(τ)

∥∥p1
H

+ ϕ(t) sup
τ∈[0,t]

∥∥v(τ)
∥∥p

H
+ 1

]
holds where c1, c2 > 0 are constants, 0 < p1 < p, ϕ � 0 is a function with the property
lim∞ ϕ = 0. Further, ‖f (t)‖V � is bounded for t ∈ (0,∞).

Then for a solution u of (6.1) (with arbitrary initial condition) ‖u‖H is bounded for
t ∈ (0,∞) and

(6.3)
∫ T2

T1

∥∥u(t)
∥∥p

V
dt � c3(T2 − T1), 0 � T1 < T2

with some constant c3 not depending on T1, T2.

THE MAIN STEPS OF THE PROOF. By using the notation y(t) = ‖u(t)‖2
H we obtain from

(6.1), (6.2) the inequality for a.e. t ∈ (0,∞) (with some positive constants c1, c2)

1

2
y′(t) + c1

∥∥u(t)
∥∥p

V
�

∥∥f (t)
∥∥

V �

∥∥u(t)
∥∥

V
+ c2

[
sup
[0,t]

yp1/2 + ϕ(t) sup
[0,t]

yp/2 + 1
]
,

hence by Young’s inequality (with some positive constants c3, c4)

(6.4)
1

2
y′(t) + c3

∥∥u(t)
∥∥p

V
� c4

∥∥f (t)
∥∥q

V � + c2

[
sup
[0,t]

yp1/2 + ϕ(t) sup
[0,t]

yp/2 + 1
]
.

Since the embedding V ⊂ H is continuous and ‖f (t)‖V � is bounded, we find the inequality

(6.5)y′(t) + c�
[
y(t)

]p/2 � c5

[
sup
[0,t]

yp1/2 + ϕ(t) sup
[0,t]

yp/2 + 1
]

with some positive constants c�, c5.
Assuming that y(t) is not bounded, for any M > 0 there are t0 > 0 and t1 ∈ [0, t0] such

that

M + 1 � y(t1) = sup
[0,t0]

y > M.
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Since y is continuous, there is a δ > 0 such that

y(t) > M if t1 − δ � t � t1.

Hence by (6.5)

y(t1) − y(t1 − δ) + c�δMp/2

� c5

[
(M + 1)p1/2 + (M + 1)p/2

∫ t1

t1−δ

ϕ(t) dt + 1

]

which is impossible for all M > 0 because y(t1)−y(t1 − δ) � 0, p1 < p and lim∞ ϕ = 0.
Finally, from (6.4) and boundedness of y(t) we obtain (6.3). �

Theorem 6.4 directly implies

THEOREM 6.5. Assume that conditions of Theorem 6.2 are fulfilled such that for arbitrary
v ∈ L

p

loc(0,∞; V ) with v′ ∈ L
q

loc(0,∞; V �) the inequality

∫
Ω

∣∣Hα(v)
∣∣q dx +

∫
∂Ω

∣∣Gα(v)
∣∣q dσx

(6.6)� c2

[
sup

τ∈[0,t]
∥∥v(τ)

∥∥p1

L2(Ω)
+ ϕ(t) sup

τ∈[0,t]
∥∥v(τ)

∥∥p

L2(Ω)
+ 1

]

holds for all t ∈ (0,∞) with constants c2 > 0, 0 < p1 < p and a function ϕ � 0 with the
property lim∞ ϕ = 0. Further, ‖f (t)‖V � is bounded for t ∈ (0,∞).

Then for a solution u of (6.1) (with arbitrary initial condition) ‖u‖H is bounded for
t ∈ (0,∞) and (6.3) holds.

Similarly to the proof of Theorem 6.4 one can prove (see [69])

THEOREM 6.6. Assume that assumptions of Theorem 6.3 are satisfied such that for all
v ∈ L

p

loc(0,∞; V ) with v′ ∈ L
q

loc(0,∞; V �) the inequalities

(6.7)
[
g2(v)

]
(t) � const

[
sup

τ∈[0,t]

∥∥v(τ)
∥∥−σ�

L2(Ω)
+ 1

]
,

∫
Ω

[
k2(v)

]
(t, x) dx

(6.8)� const
[

sup
τ∈[0,t]

∥∥v(τ)
∥∥σ

L2(Ω)
+ ϕ(t) sup

τ∈[0,t]
∥∥v(τ)

∥∥p−σ�

L2(Ω)
+ 1

]

hold with some positive constants, 0 < σ� < p − 1, 1 � σ < p − σ�, lim∞ ϕ = 0 and
‖f (t)‖V � is bounded for t ∈ (0,∞).

Then for a solution u of (6.1) (with arbitrary initial condition) ‖u‖H is bounded for
t ∈ (0,∞) and (6.3) holds.
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6.3. Attractivity

Now we formulate conditions which imply that limt→∞ ‖u(t)‖H = 0.

THEOREM 6.7. Assume that the conditions of Theorem 6.1 are satisfied such that for all
v ∈ L

p

loc(0,∞; V ) with v′ ∈ L
q

loc(0,∞; V �) we have

(6.9)
〈[
A(v)

]
(t), v(t)

〉
� c1

∥∥v(t)
∥∥p

V
− ϕ(t)

[
sup
[0,t]

∥∥v(t)
∥∥p

H
+ 1

]
with a constant c1 > 0, lim∞ ϕ = 0 and limt→∞ ‖f (t)‖V � = 0.

Then for a solution u of (6.1) (with arbitrary initial condition)

lim
t→∞

∥∥u(t)
∥∥

H
= 0.

One can derive this theorem from Theorem 6.4 as follows. Since y(t) = ‖u(t)‖2
H is

bounded, we obtain similarly to (6.5) inequality

(6.10)y′(t) + c�
[
y(t)

]p/2 � ψ(t)

where lim∞ ψ = 0, c� is a positive constant. Assuming that y(t) does not converge to 0 as
t → ∞, it is not difficult to get a contradiction.

Now we formulate two corollaries (particular cases) of Theorem 6.7 (see [60,62,69]).

THEOREM 6.8. Assume that the conditions of Theorem 6.2 are satisfied such that ( for the
function in (A4))

lim
t→∞

∫
Ω

k2(t, x) dx = 0

and for all v ∈ L
p

loc(0,∞; V ) with v′ ∈ L
q

loc(0,∞; V �)∫
Ω

∣∣Hα(v)
∣∣q dx +

∫
∂Ω

∣∣Gα(v)
∣∣q dσx � ϕ(t)

[
sup

τ∈[0,t]

∥∥v(τ)
∥∥p

H
+ 1

]
where lim∞ ϕ = 0 and limt→∞ ‖f (t)‖V � = 0.

Then for a solution of equation (6.1)

lim
t→∞

∥∥u(t)
∥∥

L2(Ω)
= 0.

THEOREM 6.9. Assume that the conditions of Theorem 6.6 are fulfilled such that for all
v ∈ L

p

loc(0,∞; V ) with v′ ∈ L
q

loc(0,∞; V �)∫
Ω

[
k2(v)

]
(t, x) dx � ϕ(t)

[
sup

τ∈[0,t]
∥∥v(τ)

∥∥p−σ�

H
+ 1

]
where 0 < σ� < p − 1, lim∞ ϕ = 0 and limt→∞ ‖f (t)‖V � = 0.

Then for a solution of (6.1)

lim
t→∞

∥∥u(t)
∥∥

L2(Ω)
= 0.
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6.4. Stabilization of solutions

In a similar way, one gets a result on the stabilization of the solution to (6.1) as t → ∞.

THEOREM 6.10. Assume that the conditions of Theorem 6.1 are satisfied. Further, there
exist operators

A∞ : V → V � and B : Lp

loc(0,∞; V ) × V → L
q

loc(0,∞; V �)

such that for all u ∈ L
p

loc(0,∞; V ), v ∈ V , t ∈ (0,∞)

(6.11)
〈[
A(u)

]
(t) − [

B(u, v)
]
(t), u(t) − v

〉
� c

∥∥u(t) − v
∥∥p

V

with some constant c > 0 and

(6.12)lim
t→∞

∥∥[
B(u, v)

]
(t) − A∞(v)

∥∥
V � = 0.

Further, assume that there is f∞ ∈ V � such that

(6.13)lim
t→∞

∥∥f (t) − f∞
∥∥

V � = 0

and u∞ ∈ V satisfies

(6.14)A∞(u∞) = f∞.

Then for a solution u of (6.1) (with arbitrary initial condition)

(6.15)lim
t→∞

∥∥u(t) − u∞
∥∥

H
= 0, lim

T →∞

∫ T +a

T −a

∥∥u(t) − u∞
∥∥p

V
dt = 0

for arbitrary fixed a > 0.

PROOF. From (6.1), (6.14) one obtains〈(
u(t) − u∞

)′
, u(t) − u∞

〉 + 〈[
A(u)

]
(t) − A∞(u∞), u(t) − u∞

〉
(6.16)= 〈

f (t) − f∞, u(t) − u∞
〉
.

By (6.11) and Young’s inequality for arbitrary ε > 0〈[
A(u)

]
(t) − A∞(u∞), u(t) − u∞

〉
= 〈[

A(u)
]
(t) − [

B(u, u∞)
]
(t), u(t) − u∞

〉
+ 〈[

B(u, u∞)
]
(t) − A∞(u∞), u(t) − u∞

〉
� c

∥∥u(t) − u∞
∥∥p

V
− εp

p

∥∥u(t) − u∞
∥∥p

V

(6.17)− 1

qεq

∥∥[
B(u, u∞)

]
(t) − A∞(u∞)

∥∥q

V �

and

(6.18)
∣∣〈f (t) − f∞, u(t) − u∞

〉∣∣ � εp

p

∥∥u(t) − u∞
∥∥p

V
+ 1

qεq

∥∥f (t) − f∞
∥∥q

V � .
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Choosing sufficiently small ε > 0, one obtains from (6.16)–(6.18) (similarly to (6.10),
(6.4), (6.5)) for y(t) = ‖u(t) − u∞‖2

H

(6.19)y′(t) + c̃
∥∥u(t) − u∞

∥∥p

V
� ψ(t), y′(t) + c�

[
y(t)

]p/2 � ψ(t)

where c� > 0, c̃ > 0 and by (6.12), (6.13) lim∞ ψ = 0 which imply (6.15). �

Now we show how Theorem 6.10 can be applied to the problems considered in Sec-
tions 4, 5 and (in that cases) why exists a (unique) solution of (6.14).

THEOREM 6.11. Assume that conditions of Theorem 6.2 and (A′
3) (the condition

of uniform monotonicity) are satisfied such that for all u ∈ L
p

loc(0,∞; V ) with u′ ∈
L

q

loc(0,∞; V �)

(6.20)lim
t→∞

∥∥[
Hα(u)

]
(t)

∥∥
Lq(Ω)

= 0, lim
t→∞

∥∥[
Gα(u)

]
(t)

∥∥
Lq(∂Ω)

= 0,

further, for a.e. x ∈ Ω , all ξ ∈ R
M

(6.21)lim
t→∞ fα(t, x, ξ) = f ∞

α (x, ξ).

Then defining A∞ by

(6.22)
〈
A∞(v), w

〉 =
∑

|α|�m

∫
Ω

f ∞
α (x, v, . . . ,Dβv, . . .)Dαw dx, v,w ∈ V,

for arbitrary f∞ ∈ V � there exists a solution u∞ of (6.14) and (6.15) holds.

In this case conditions of Theorem 6.10 are satisfied with A(u) = A1(u) + B1(u),
B(u, v) = B1(u) + A1(v) where A1, B1 are defined by (3.14) and (4.3), respectively.
Because, (A′

3) implies (6.11) and (6.20), (6.21), (A2) imply (6.12). Further, by (A1), (A2),
(A′

3), (A4) and (6.21) A∞ : V → V � is bounded, demicontinuous, monotone and coercive,
thus there is a solution u∞ ∈ V of (6.14). (See, e.g., [41,75].)

THEOREM 6.12. Assume that the conditions of Theorem 6.3 are fulfilled such that in (B2)

we have operators

g1 : Lp

loc(0,∞; V ) → R+, k1 : Lp

loc(0,∞; V ) → Lq(Ω);
and for arbitrary u ∈ L

p

loc(0,∞; V ) with bounded ‖u‖L2(Ω), for every ζ0, ζ and a.e. x

lim
t→∞ ai(t, x, ζ0, ζ ; u) = ai,∞(x, ζ0, ζ ), i = 0, 1, . . . , n,

exist and is finite; ai,∞ satisfy the Carathéodory conditions. Further, let f∞ ∈ V � be such
that

lim
t→∞

∥∥f (t) − f∞
∥∥

V � = 0.
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Finally, for every fixed u ∈ L
p

loc(0,∞; V )

n∑
i=0

[
ai(t, x, ζ0, ζ ; u) − ai(t, x, ζ �

0 , ζ �; u)
]
(ζi − ζ �

i )

� c
[
(ζ0 − ζ �

0 )p + |ζ − ζ �|p] − [
k3(u)

]
(t, x)

with some constant c > 0,

lim
t→∞

∫
Ω

[
k3(u)

]
(t, x) dx = 0 if

∫
Ω

∣∣u(t, x)
∣∣2 dx is bounded.

Then there exists a unique u∞ ∈ V satisfying A∞(u∞) = f∞ where A∞ : V → V � is
defined by

〈
A∞(w), v

〉 =
n∑

i=1

∫
Ω

ai,∞
(
x,w(x),Dw(x)

)
Div dx

+
∫

Ω

a0,∞
(
x,w(x),Dw(x)

)
v dx, w, v ∈ V.

Further, for the solution of (6.1) we have (6.15).

(The detailed proof see in [67].)

REMARK 6.2. It is not difficult to formulate conditions for the examples considered in
Sections 4 and 5 when the theorems of this section can be applied. (See [60,62,66,67,69].

REMARK 6.3. One can formulate and prove analogous theorems on the boundedness of
the solutions and on limt→∞ ‖u‖L2(Ω) = 0 for the solutions of strongly nonlinear equa-
tions (considered in Theorem 4.2), see Remark 6.1, [62,66]. In this case one applies the
system of energy equalities (in Theorem 4.2) to v = 0 to get differential inequalities for
y(t) = ‖u‖2

L2(Ω)
which are analogous to (6.5), (6.10), respectively.

Now we show another type of stabilization result on certain equations of particular type.
Here we formulate it for Example 4.2. More general example see in [61].

THEOREM 6.13. Let the functions fj be defined by

fj (t, x, ζ0, ζ ) = fj (x, ζ0, ζ ) = aj (x)ζj |ζj |p−2, j = 1, . . . , n,

f0(t, x, ζ0, ζ ) = f0(x, ζ0, ζ ) = a0(x)ζ0|ζ0|p−2 + g(x, ζ0)

where the measurable functions aj satisfy 0 < c0 � aj (x) � c′
0 with some constants c0, c

′
0

and g is a Carathéodory function satisfying∣∣g(x, ζ0)
∣∣ � c1|ζ0| + k1(x) with a constant c1 and k1 ∈ Lq(Ω).

Assume that h is a Carathéodory function satisfying∣∣h(t, x, θ)
∣∣ � χ(t)

[|θ | + k2(x)
]
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with some functions χ ∈ L2(0,∞), k2 ∈ L2(Ω) and

F0 : Lp

loc(Q∞) → L
p

loc(Q∞)

is a linear operator of Volterra type such that for any u ∈ L
p

loc(Q∞)∫
Ω

∣∣F0(u)
∣∣2

(t, x) dx � c2 sup
τ∈[0,t]

∫
Ω

u(τ, x)2 dx

with some constant c2. Finally,

f ∈ L∞(
0,∞; L2(Ω)

)
, Dtf ∈ L2

loc

(
0,∞; L2(Ω)

)
,∫ ∞

0

[∫
Ω

∣∣Dtf (t, x)
∣∣2 dx

]1/2

dt < ∞.

Then for a weak solution u ∈ L
p

loc(0,∞; V ) (with a closed linear subspace V of W 1,p(Ω))
of the initial-boundary value problem for

Dtu −
n∑

j=1

Dj

[
fj (t, x, u,Du)

] + f0(t, x, u,Du) + g(x, u)

(6.23)+ h
(
t, x,

[
F0(u)

]
(t, x)

) = f, (t, x) ∈ Q∞, u(0) = u0

(defined by (6.1)) we have

(6.24)Dtu ∈ L2(0,∞; L2(Ω)
)

and u ∈ L∞(0,∞; V ).

THE MAIN STEPS OF THE PROOF. Define the functional Φ : V ⊂ L2(Ω) → R by

Φ(w) =
∫

Ω

[
n∑

j=1

aj (x)|Djw|p + a0(x)|w|p
]

dx, w ∈ V.

Then Φ is a convex nonnegative lower semicontinuous functional (see, e.g., [9,18]) and let
∂Φ be the subdifferential of Φ. One can show that the weak solution of the problem for
(6.23) is the (unique) strong solution of u(0) = u0,

du

dt
+ (∂Φ)u(t)  b(t) = f − g(x, u) − h

(
t, x, F0(u)

) ∈ L2(0, T ; L2(Ω)
)

for any finite T ; for a.e. t∥∥∥∥du

dt

∥∥∥∥
2

L2(Ω)

+ d

dt

[
Φ

(
u(t)

)] =
(

b(t),
du

dt
(t)

)
L2(Ω)

(see [9]). Integrating the last equality over (σ, τ ), by the assumptions of the theorem we
find

1

2

∫ τ

σ

[∫
Ω

|Dtu|2 dx

]
dt + Φ

(
u(τ)

) − Φ
(
u(σ)

)
� const.

Since Φ � 0, we obtain (6.24). (The detailed proof see in [61].) �
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Consider a sequence (tk) → ∞ and define functions Uk by

Uk(s, x) = u(tk + s, x), s ∈ (−a, b), x ∈ Ω

with some fixed a > 0, b > 0.

REMARK 6.4. By Theorem 6.5 (Uk) is a bounded sequence in Lp(−a, b; V ) and in
L∞(−a, b; L2(Ω)) for a weak solution u of (6.23).

Define the ω limit set associated to u by

ω(u) = {
u∞ ∈ V : ∃(tk) → ∞ such that u(tk, ·) → u∞ in Lp(Ω)

}
.

By using arguments of [18], one can prove (see [61])

THEOREM 6.14. Let the assumptions of Theorem 6.13 be satisfied. On operator F0 as-
sume that there exists a finite ρ > 0 such that [F0(u)](t, x) depends only on the restriction
of u to (t − ρ, t) × Ω for arbitrary t . Further, there exists f∞ ∈ L2(Ω) such that

lim
T →∞

∫ T +1

T −1

∥∥f (t) − f∞
∥∥

L2(Ω)
dt = 0.

Then for any weak solution of the problem for (6.23), ω(u) �= ∅. If u∞ ∈ ω(u) then there
is a sequence (tk) → +∞ such that

Uk → u∞ in Lp
(
(−1, 1) × Ω

)
and weakly in Lp(−1, 1; V ).

Further, u∞ is a solution of the stationary problem

n∑
j=1

∫
Ω

fj (x, u∞,Du∞)Djw dx +
∫

Ω

f0(x, u∞,Du∞)w dx = 〈f∞, w〉,

w ∈ V.

7. Further applications

In this section we shall consider applications of Section 2 to systems of parabolic differen-
tial equations and functional parabolic equations, further, equations with contact conditions
(transmission problems).

7.1. Systems of parabolic equations and functional parabolic equations

It is not difficult to extend the results of Sections 3–6 to systems of parabolic differential
equations and functional parabolic equations. Set V = V1 × · · · × Vr where Vl is a closed
linear subspace of Wm,p(Ω). E.g. instead of (A1), (A2), (A′′

3), (A4) we assume
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(Ar
1) The functions

f (l)
α : QT × R

Mr → R

are measurable in (t, x) ∈ QT and continuous in ξ = (ξ1, . . . , ξr ) ∈ R
Mr .

(Ar
2) |f (l)

α (t, x, ξ)| � |ξ |p−1 + k1(t, x) where ξ = (ξ (1), . . . , ξ (r)), |α| � m, l =
1, . . . , r , k1 ∈ Lq(QT ).

(Ar
3)

∑r
l=1

∑
|α|=m[f (l)

α (t, x, η(1), ζ (1), . . . , η(r), ζ (r)) − f
(l)
α (t, x, η(1), ζ

(1)
� , . . . , η(r),

ζ
(r)
� )](ξ (l)

α − ξ
(l)
α,�) > 0 if ζ �= ζ� (ξ (l) = (η(l), ζ (l)), ζ = (ζ (1), . . . , ζ (r))).

(Ar
4)

∑r
l=1

∑
|α|�m[f (l)

α (t, x, ξ)ξ
(l)
α � c2|ξ |p −k2(t, x) with k2 ∈ L1(QT ) and c2 > 0.

Then we may define the operator A by

[
A(u), v

] =
r∑

l=1

∑
|α|�m

f (l)
α

(
t, x, . . . , Dβ

x u(1)(t, x), . . . ,Dβ
x u(r)(t, x), . . .

)
× Dα

x v(l)(t, x) dt dx,

(7.1)

u = (
u(1), . . . , u(r)

) ∈ Lp(0, T ; V ), v = (
v(1), . . . , v(r)

) ∈ Lp(0, T ; V ).

Further, define

D(L) = {
u ∈ Lp(0, T ; V ): u′ ∈ Lq(0, T ; V �), u(0) = 0

}
.

So we obtain the following extension of Theorem 3.3 to systems.

THEOREM 7.1. Assume (Ar
1)–(Ar

4). Then the operator A : Lp(0, T ; V ) → Lq(0, T ; V �)

is bounded, demicontinuous, pseudomonotone with respect to D(L) and coercive. Conse-
quently, for arbitrary f ∈ Lq(0, T ; V �) there exists a solution u = (u(1), . . . , u(r)) ∈
D(L) of the system[

Dtu
(l)

]
(t) + [

A
(
u(l)

)]
(t) = f (l)(t), t ∈ (0, T ),

u(l)(0) = 0, l = 1, . . . , r.

This theorem can be proved by using arguments of [12] by F.E. Browder, similarly to
the case of a single parabolic equation.

Similarly, one gets the following extension of Theorem 4.1 on parabolic functional dif-
ferential equations to systems. Assume

(Ar
5) H

(l)
α : Lp(0, T ; V ) → Lq(QT ), G

(l)
α : Lp(0, T ; V ) → Lq(QT ) (l = 1, . . . , r) are

bounded (possibly nonlinear) operators of Volterra type which are demicontinuous
from Lp(0, T ; (Wm−δ,p(Ω))r ) to Lq(QT ) and Lq(ΓT ), respectively, for some
0 < δ < 1 − 1/p and have the property

lim‖u‖→∞
‖H(l)

α (u)‖q

Lq(QT )
+ ‖G(l)

α (u)‖q

Lq(ΓT )

‖u‖p

Lp(0,T ;V )

= 0, l = 1, . . . , r.
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Then we may define operator B1 : Lp(0, T ; V ) → Lq(0, T ; V �) by

[
B1(u), v

] =
r∑

l=1

∑
|α|�m−1

∫
QT

H(l)
α (u)Dα

x v(l) dt dx

(7.2)

+
r∑

l=1

∑
|α|�m−1

∫
ΓT

G(l)
α (u)Dα

x v(l) dt dσx, u, v ∈ Lp(0, T ; V ).

THEOREM 7.2. Assume (Ar
1)–(Ar

5) and consider A = A1 defined by (7.1). Then (A1 +
B1) : Lp(0, T ; V ) → Lq(0, T ; V �) is bounded, demicontinuous, pseudomonotone with
respect to D(L), it is coercive and of Volterra type. Thus for any f ∈ Lq(0, T ; V �) there
exists a solution u = (u(1), . . . , u(r)) ∈ D(L) of

(7.3)Dtu + (A1 + B1)(u) = f, u(0) = 0.

REMARK 7.1. Similarly to the case of a single equation, assume
r∑

l=1

∑
|α|�m

[
f (l)

α (t, x, ξ (1), . . . , ξ (r)) − f (l)
α

(
t, x, ξ (1)

� , . . . , ξ (r)
�

)](
ξ (l)
α − ξ (l)

α,�

)

� −c

r∑
l=1

(
ξ

(l)
0 − ξ

(l)
0,�

)2

for (sufficiently large) constant c > 0, G
(l)
α = 0 for all α, l and H

(l)
α satisfy the Lipschitz

condition ∥∥exp(−dτ)
[
H(l)

α

(
exp(dτu)

) − H(l)
α

(
exp(dτu�)

)]∥∥
L2(Qt )

� c3‖u − u�‖[L2(Qt )]r
with some constant c3 > 0, not depending on u, u�, d > 0. Then (7.3) may have at most
one solution. (See Remark 4.2.)

REMARK 7.2. One can apply “abstract” Theorems 6.1, 6.4, 6.7, 6.10 to systems consid-
ered in Theorem 7.2 and obtain results on systems which are analogous to Theorems 6.2,
6.5, 6.8, 6.11, respectively.

7.2. Contact problems

Now we formulate problems for nonlinear functional parabolic equations with “nonlocal”
contact conditions (see [64,65]). Let Ω ⊂ R

n be a bounded domain having the uniform C1

regularity property (see [1]) which is divided into two subdomains Ω1,Ω2 by means of a
smooth surface S which has no intersection point with ∂Ω; the boundary of Ω1 is S and
the boundary of Ω2 is S ∪ ∂Ω (such that Ω1 and Ω2 have the C1 regularity property). We
shall consider equations for u(l) = u|Ql

T
, l = 1, 2

Dtu
(l) −

n∑
j=1

Dj

[
f

(l)
j (t, x, u(l),Du(l))

] + f
(l)
0 (t, x, u(l),Du(l))



314 L. Simon

(7.4)+ H(l)(u(1), u(2)) = f (l), (t, x) ∈ Ql
T = (0, T ) × Ωl, l = 1, 2,

with (for simplicity) homogeneous initial and boundary conditions

(7.5)u(0, x) = 0, x ∈ Ω1 ∪ Ω2,

(7.6)u(2) = 0 on ΓT = [0, T ] × ∂Ω

where H(l) : Lp(Q1
T ) × Lp(Q2

T ) → Lq(Ql
T ) are bounded (possibly nonlinear) operators,

p � 2. On the common part ST = [0, T ] × S of boundaries of Q1
T and Q2

T we shall
formulate nonlocal “transmission conditions”. Similar problems were considered by W.
Jäger and N. Kutev in [32] for quasilinear elliptic equations with nonlinear contact condi-
tion of “Dirichlet type”, in [33] similar problems were considered for parabolic equations
(by using the theory of monotone type operators). Such problems are motivated e.g. by
reaction–diffusion phenomena in porous medium.

First we consider problem (7.4)–(7.6) with the following (possibly nonlinear) contact
condition:

(7.7)
n∑

j=1

f
(l)
j (t, x, u(l),Du(l))|ST

νl
j = G(l)(u(1), u(2)), l = 1, 2

where νl = (νl
1, . . . , ν

l
n) are the normal unit vectors on S (ν1 = −ν2), G(l) : Lp(0, T ; V ) →

Lq(ST ) are bounded (possibly nonlinear) operators, V = V1 × V2 where V1 = W 1,p(Ω1),
V2 = {w ∈ W 1,p(Ω2): w|∂Ω = 0}.

Assume that functions f
(l)
j satisfy conditions (A1), (A2), (A′′

3), (A4) (for m = 1), then
we may define operators

A = (
A(1), A(2)

)
: Lp(0, T ; V ) → Lq(0, T ; V �),

A(l) : Lp(0, T ; Vl) → Lq(0, T ; V �
l ), l = 1, 2

(according to (3.14) or (7.1)) by[
A(l)(u(l)), v(l)

]

(7.8)

=
∫

Ql
T

[
n∑

j=1

f
(l)
j (t, x, u(l),Du(l))Djv

(l) + f
(l)
0 (t, x, u(l),Du(l))v(l)

]
dt dx.

Further, assume
(Ac

5) H (l) : Lp(Q1
T )×Lp(Q2

T ) → Lq(Ql
T ) are bounded (possibly nonlinear) and demi-

continuous operators of Volterra type (p � 2); G(l) : Lp(0, T ; V ) → Lq(ST ) are
bounded (nonlinear) operators of Volterra type which are demicontinuous from
Lp(0, T ; W 1−δ,p(Ω1) × W 1−δ,p(Ω2)) into Lq(Ql

T ) and Lq(ST ), respectively
with some positive δ < 1 − 1/p;

lim‖u‖→∞

‖H(l)(u)‖q

Lq(Ql
T )

+ ‖G(l)(u)‖q

Lq(ST )

‖u‖p

Lp(0,T ;V )

= 0, l = 1, 2.

(Consequently, (Ar
5) is satisfied.)
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Then we may define operators B = (B(1), B(2)), B(l) : Lp(0, T ; V ) → Lq(0, T ; V �
l ) by

[B(u), v] = [B(1)(u), v(1)] + [B(2)(u), v(2)],
[
B(l)(u), v(l)

] =
∫

Ql
T

H (l)(u)v(l) dt dx −
∫

ST

G(l)(u)v(l) dt dσx,

u = (u(1), u(2)) ∈ Lp(0, T ; V ), (v(1), v(2)) ∈ Lp(0, T ; V ).

Theorem 7.2 implies

THEOREM 7.3. Assume that functions f
(l)
j satisfy (A1), (A2), (A′′

3), (A4) (for m = 1) and

operators H(l),G(l) satisfy (Ac
5). Then operator (A + B) : Lp(0, T ; V ) → Lq(0, T ; V �)

is bounded, demicontinuous, pseudomonotone with respect to D(L), it is coercive and of
Volterra type. Consequently, for any f = (f (1), f (2)) ∈ Lq(0, T ; V �) there exists u =
(u(1), u(2)) ∈ Lp(0, T ; V ) such that Dtu

(l) ∈ Lq(0, T ; V �
l ),

(7.9)Dtu
(l) + A(l)(u(l)) + B(l)(u(1), u(2)) = f (l), u(l)(0) = 0, l = 1, 2.

Similarly to Definition 3.4, a solution of (7.9) is called a weak solution of problem (7.4)–
(7.7), because a “sufficiently smooth” function u satisfies (7.4)–(7.7) iff it is a solution
of (7.9).

REMARK 7.3. Similarly to Remark 7.1, assume that

n∑
j=0

[
f

(l)
j (t, x, ξ) − f

(l)
j (t, x, ξ�)

]
(ξj − ξ�

j ) � −c(ξ0 − ξ�
0 )2, l = 1, 2

with some constant c > 0,

2∑
l=1

∫
ST

[
G(l)(u) − G(l)(v)

]
(u(l) − v(l)) dt dσx � 0, u, v ∈ Lp(0, T ; V ),

and for all u, v ∈ Lp(0, T ; V )∥∥exp(−dτ)
[
H(l)

(
exp(dτ)u

) − H(l)
(
exp(dτ)v

)]∥∥
L2(Qt )

� c3‖u − v‖[L2(Qt )]2

with some constant c3, not depending on u, v and the number d > 0. Then (7.9) may have
at most one solution.

REMARK 7.4. Applying “abstract” Theorems 6.1, 6.4, 6.7, 6.10, we obtain results on
solutions of (7.9) which are analogous to Theorems 6.2, 6.5, 6.8, 6.11, respectively (see
Remark 7.2).

EXAMPLE 7.1. The assumptions of Theorem 7.3 are fulfilled on H(l) if[
H(l)(u)

]
(t, x)

= γ l

(
t, x, u(l)

(
χl(t), x

)
,

∫
Ω

l̂

dl̂(y)u(l̂)
(
χ

l̂
(t), y

)
dy

)
, (t, x) ∈ Ql

T
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where l̂ = 1 if l = 2 and l̂ = 2 if l = 1; χl ∈ C1, χ ′
l > 0, 0 � χl(t) � t , dl are L∞

functions; γ l are Carathéodory functions satisfying

(7.10)
∣∣γ l(t, x, θ1, θ2)

∣∣ � cl(θ1, θ2)|θ |p−1 + kl
1(x)

with continuous functions cl , lim∞ cl = 0, kl
1 ∈ Lq(Ωl).

Operators H(l) may have also the form[
H(l)(u)

]
(t, x)

=
∫ t

0
γ l

(
t, τ, x, u(l)(τ, x),

∫
Ω

l̂

dl̂(y)u(l̂)(τ, y) dy

)
dτ, (t, x) ∈ Ql

T

l = 1, 2 where γ l satisfy analogous condition to (7.10).
Operators G(l) satisfy the assumptions of Theorem 7.3 if they have one of the forms[

G(l)(u)
]
(t, x)

= gl

(
t, x,

∫
S

u(1)
(
χ(t), y

)
dσy,

∫
S

u(2)
(
χ(t), y

)
dσy

)
, (t, x) ∈ ST ,

[
G(l)(u)

]
(t, x) = gl

(
t, x, u(1)

(
χ(t), x

)
, u(2)

(
χ(t), x

))
, (t, x) ∈ ST , l = 1, 2

where functions gl satisfy analogous conditions to (7.10)
The conditions of Remark 7.3 are satisfied for H(l),G(l) if γ l(t, x, θ1, θ2) satisfy global

Lipschitz condition in (θ1, θ2),[
G(l)(u)

]
(t, x) = gl

(
t, x, u(1)(t, x), u(2)(t, x)

)
and the monotonicity condition

2∑
l=1

[
gl(t, x, θ1, θ2) − gl(t, x, θ�

1 , θ�
2 )

]
(θl − θ�

l ) � 0

holds.

Now we formulate (instead of (7.7)) another contact condition on ST for the solutions
of (7.4)–(7.6). Let ψ : [0, T ] → [0, T ] be a C1 function satisfying

ψ ′ > 0, 0 � ψ(t) � t, ψ(0) = 0.

Further, let LS : Lp(S) → Lp(S) be a linear and continuous operator. One of the contact
boundary conditions on ST is given by the equality on the traces

(7.11)u
(1)
ψ (t, ·)|S = LS

(
u(2)(t, ·) |S

)
for a.e. t ∈ [0, T ],

where function u
(1)
ψ is defined by

u
(1)
ψ (τ, x) = u(1)

(
ψ(τ), x

)
, τ ∈ [0, T ], x ∈ Ω1.
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EXAMPLE 7.2. One may consider e.g. the following linear and continuous operators LS :

[
LS(w(2))

]
(x) =

∫
S

a(x, z)w(2)(z) dσz, x ∈ S

where a is a given L∞ function or[
LS(w(2))

]
(x) = a(x)w(2)

(
ϕ(x)

)
, x ∈ S

where a ∈ L∞, ϕ : S → S is a sufficiently smooth bijection.

Denote by V0 the following closed linear subspace of V :

V0 = {
(w(1), w(2)) ∈ V : w(1)|S = LS(w(2)|S)

}
.

So the contact boundary condition (7.11) means that(
u

(1)
ψ , u(2)

) ∈ Lp(0, T ; V0).

Further, (u(1), u(2)) is a (classical) solution of (7.4)–(7.6) iff ũ = (ũ(1), ũ(2)) = (u
(1)
ψ , u(2))

satisfies (by using the transformation t = ψ(τ))

Dτ ũ
(l) −

n∑
j=1

Dj

[
f̃

(l)
j (τ, x, ũ(l), Dũ(l))

] + f̃
(l)
0 (τ, x, ũ(l), Dũ(l))

(7.12)+H̃ (l)(ũ(l), ũ(2)) = f̃ (l)(τ, x), (τ, x) ∈ (0, T ) × Ωl, l = 1, 2,

(7.13)ũ(0, x) = 0, x ∈ Ω1 ∪ Ω2,

(7.14)ũ = 0 on ΓT

where

f̃
(1)
j (τ, x, ζ0, ζ ) = ψ ′(τ )f

(1)
j

(
ψ(τ), x, ζ0, ζ

)
, f̃

(2)
j = f 2

j , j = 0, 1, . . . , n,[
H̃ (1)(ũ(l), ũ(2))

]
(τ, x) = ψ ′(τ )

[
H(1)(u(l), u(2))

](
ψ(τ), x

)
, H̃ (2) = H(2),

f̃ (1)(τ, x) = ψ ′(τ )f (1)
(
ψ(τ), x

)
, f̃ (2) = f (2).

Define operator A = (A(l), A(2)) : Lp(0, T ; V0) → Lq(0, T ; V �
0 ) by (7.8) such that func-

tions f
(l)
j are substituted by f̃

(l)
j and define operator B = (B(1), B(2)) : Lp(0, T ; V0) →

Lq(0, T ; V �
0 ) by

[
B(l)(ũ), ṽ(l)

] =
∫

Ql
T

H̃ (l)(ũ)ṽ(l) dt dx, ũ = (ũ(1), ũ(2)) ∈ Lp(0, T ; V0),

ṽ = (ṽ(1), ṽ(2)) ∈ Lp(0, T ; V0).

It is not difficult to show that if f
(l)
j , H (l) satisfy (A1), (A2), (A′′

3), (A4) and (Ac
5) then

f̃
(l)
j , H̃ (l) satisfy the same conditions, thus by Theorem 7.3 operator

(A + B) = (
A(1) + B(1), A(2) + B(2)

)
: Lp(0, T ; V0) → Lq(0, T ; V �

0 )



318 L. Simon

is bounded, demicontinuous, pseudomonotone with respect to D(L), coercive and it is of
Volterra type. Consequently, for arbitrary f̃ ∈ Lq(0, T ; V �

0 ) there exists ũ ∈ Lp(0, T ; V0)

such that Dτ ũ ∈ Lq(0, T ; V �
0 ),

(7.15)[Dτ ũ
(l), v(l)] + [

A(l)(ũ(l)), v(l)
] + [

B(l)(ũ(1), ũ(2)), v(l)
] = [f̃ (l), ṽ(l)],

for l = 1, 2, all ṽ = (ṽ(1), ṽ(2)) ∈ Lp(0, T ; V0),

(7.16)ũ(l)(0) = 0, l = 1, 2.

According to the above argument, if u = (u(1), u(2)) satisfies (7.4)–(7.6), (7.11) then ũ =
(u

(1)
ψ , u(2)) ∈ Lp(0, T ; V0) and (7.15) holds for all ṽ ∈ Lp(0, T ; W

1,p

0 (Ω1)×W
1,p

0 (Ω2)).
By using Gauss theorem, one obtains that for a “sufficiently smooth” function ũ (7.15)
holds for all ṽ ∈ Lp(0, T ; V0) iff u satisfies (7.4)–(7.6), (7.11) and the following contact
(orthogonality) condition:

n∑
j=1

[∫
ST

f̃
(2)
j (τ, x, ũ(2),Dũ(2))νj ṽ

(2) dσ

(7.17)−
∫

ST

f̃
(1)
j (τ, x, ũ(1),Dũ(1))νj ṽ

(1) rdσ

]
= 0

for each (ṽ(1), ṽ(2)) ∈ V0. (ν = (ν1, . . . , νn) denotes the normal unit vector on ST .) There-
fore, it is natural

DEFINITION 7.1. If ũ = (u
(1)
ψ , u(2)) ∈ Lp(0, T ; V0) is a solution of (7.15) (for each

ṽ ∈ Lp(0, T ; V0)) then u is called a weak solution of the contact problem (7.4)–(7.6),
(7.11), (7.17).

Due to the above argument, Theorem 7.3 implies

THEOREM 7.4. Assume that f
(l)
j satisfy (A1), (A2), (A′′

3), (A4) (for m = 1) and H(l)

satisfy (Ac
5). Then for arbitrary f ∈ Lq(0, T ; V �) there exists a weak solution of (7.4)–

(7.6), (7.11), (7.17).

REMARK 7.5. According to Remark 7.3 one can formulate conditions which imply the
uniqueness of the weak solution.

At the end we mention several other applications of monotone type operators to nonlin-
ear (functional) evolution equations.

By using arguments of the work [53] by J. Rauch, one can handle functional parabolic
equations with discontinuous dependence on the unknown function (see [68]). Further,
modifying the arguments of the limit process in Galerkin’s approximation, it is possible to
prove some results on approximation of the solution by solutions of perturbed problems
(e.g. instead of unbounded domain Ω considering problems in “large” bounded domains.
(See, e.g., [63].)
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Finally, in applications arise problems for systems, consisting of a parabolic equation
and another type of equations, e.g. of a one variable functional differential equation and
(possibly) an elliptic partial differential equation (see [16,42]). Such problems are consid-
ered (by means of monotone type operators) in [8,70].
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Abstract
Hydrodynamic limits study the relation between the fluid and kinetic descriptions of a trans-

port phenomenon. In different area of physics and engineering, kinetic models have been
developed and studied to shed some light on phenomenon far from thermodynamical equi-
librium. Those models are far more accurate. However, they are still numerically too much
costly, and the fluid descriptions cannot be completely avoided. It is then crucial to describe
precisely the relation between these two kind of models, especially close to discontinuities,
where the difference between the models are expected to be the deepest.

We present in this chapter a general theory of hydrodynamic limits based on the so-called
relative entropy method. We give general conditions ensuring that a given conservation law
(or balance law) can be obtained as hydrodynamic limit from a given kinetic equation. Several
examples in gas dynamics are provided.

Relative entropy methods are known to provide asymptotic limits until the first time of
appearance of singularities. We give first hints how to apply it beyond certain kind of singu-
larities.

Keywords: Hydrodynamic limit, asymptotic limit, fluid equation, conservation law, balance
law, dissipative solution, relative entropy, isentropic gas dynamic, isotherm gas dynamic, ki-
netic equation, nonlinear Fokker–Planck equation
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1. Introduction

Hydrodynamic limits are the study of the links between fluid description of a transport
phenomenon, like Euler equation, and its kinetic description, like Boltzmann equation.
Different kinetic models have been introduced to describe motion of rarefied gases, far
from thermodynamical equilibrium. The study of such models goes back to the work of
Maxwell and Boltzmann. Since then, models have been specially designed for plasmas
[64], quantum gases [72], dispersed particles [48,94] with application in nuclear physics,
micro-electronic, medical science, chemical engineering.

Those models are very accurate. Compared to the fluid model, they involved a new
variable, most of the time a velocity variable (or in some cases, energy variable), which
increases a lot the complexity of the numerical tests. Today, they are still too much costly
in computation time, and fluid description cannot be avoided. It is then very important to
quantify the relation between the two descriptions, especially near singularities where the
difference is expected to be the widest.

The relations between the fluid-dynamic description and the kinetic picture can be in-
vestigated from various points of view. A possible strategy is to study dissipative waves in
the time-asymptotic sense (for the Boltzmann equation, see for instance [44] and [70]).

Another one is to study the so called small Knudsen number limit of the kinetic equation.
This corresponds to enhance the kinetic collision operator, responsible for the trend to the
thermodynamical equilibrium, at a factor 1/ε.

Traditionally, we distinguish two kind of such limits (see [50]). One, called the diffu-
sive scaling, considers a time scaling of the same order than the scaling of the collision
operator. This is still a long time asymptotic, but with a strong collision operator. This
kind of asymptotic leads to parabolic equations (see for instance [58,57,59,10,9,80]). The
hydrodynamic limit of the Boltzmann equation in this regime leads to the incompressible
Navier–Stokes equations. The complete, rigorous, global in time derivation of this limit
has been performed in a series of stunning works [55,83,73,82,66], following the program
initiated by Bardos, Golse and Levermore [7,8].

The second kind, called sometimes hyperbolic scaling, is the one studied in this chapter.
It leads to conservation laws (or balance laws if source terms are in play). In the context
of Boltzmann equation, it leads to the compressible temperature dependent Euler equa-
tions. Convergence on small time, depending on the regularity of the initial data, have been
obtained by Caflisch [34]. Results after discontinuities are far more difficult. In the scalar
case, and for the one-dimensional isentropic gas dynamics, general results in the large have
been obtained thanks to the large family of entropies [68,67,13]. For Boltzmann equation in
the one-dimensional case, stunning results have been recently obtained on situation involv-
ing shocks, following the fine study of micro-macro decomposition of Boltzmann equation
by Tai-Ping Liu and Shih-Hsien Yu [69], see [70,63,96]. In the multi-dimensional setting,
general global in time results are, at this time, completely out of reach since the existence of
the limit problem is not even known. However, the hydrodynamic limits to special discon-
tinuous solutions of the limit conservation law (or balance law) is already very interesting
since it sheds some light on the intimate consistence between the kinetic and the related
fluid model.
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This chapter is dedicated to recent results obtained in the multi-dimensional case. It is
based on the so-called relative entropy method. This method has been first used in the con-
text of asymptotic limits by Horng-Tzer Yau [95]. It is based on the weak/strong uniqueness
result on conservation laws with strictly convex entropy. This result can be find in [42]. It
combines ideas of DiPerna [45] and Dafermos [41]. This method has been widely used to
obtained asymptotic limits to different conservation laws (see for instance [27,30,29,81]).
In the context of Hydrodynamic limit to hyperbolic conservation laws, it has been used in
[15,56] and [75]. For incompressible limits from Boltzmann equation, it has been used in
[24,51], and [66]. A elegant connection between relative entropy and relaxation has been
established by Tzavaras [89]. If we consider a regular initial value for the limit equation,
the method gives the convergence up to the first time of appearance of discontinuities. On
a special one dimensional problem, the method was already used after shocks by Chen and
Frid [40]. We present in this article some particular examples where the method provides
convergence beyond discontinuities. For this matter, very weak notion of global in time
solutions, the dissipative solutions, are considered. This notion is a direct extension of the
dissipative solution introduced by Lions in [65] for incompressible Euler equations. This
gives a framework where hydrodynamic limits can be performed for large time. However,
the result is meaningful, only if we can have some uniqueness result on the dissipative
solutions, to ensure that we get the expected solution at the limit. This can be performed
on some special examples. In particular, we consider the convergence to an axisymmet-
ric solution involving vacuum at the origin. The strength of the method is that there is no
need of compactness tool. It requires only some abstract structure on the models, and some
compatibility conditions between the kinetic and the fluid descriptions. The scope of appli-
cation of the method will depend a lot on the validity of the dissipative solutions. It can be
expected that those kind of solutions are meaningful only for some kind of discontinuities.

2. Fluid equations, relative entropy, and dissipative solutions

The modeling of the motion of a fluid involved conservation laws (or balance laws if ex-
ternal forces are in play). Generally, the state of the fluid, at any time t � 0 and any space
position x ∈ Ω , can be described by a finite number of conserved quantities: U(t, x). This
can be, for instance, the density, the momentum (product of the density by the velocity) and
possibly the energy. To avoid boundary problem, we consider only Ω = R

N or Ω = T
N .

To fix the notation, let us denote V ⊂ R
p, convex open set, the interior of the domain of

values of the conserved quantities.

2.1. Conservation laws and balance laws

The evolution in time of the conserved quantities is described by a system of equations of
the form:

(1)∂tU + divx A(U) = Q(U, x),



Recent results on hydrodynamic limits 327

where t ∈ R
+, x ∈ Ω , A :V → R

Np and Q :V × Ω → R
p. Note that this system of

equations is completely characterized by the matrix valued flux function A and the vector
valued source term function Q. When Q = 0 we say that (1) is a conservation law. In the
general case, we talk of balance law. For a general presentation of conservation laws and
balance laws, we refer to the books of Dafermos [42], Serre [85], and Bressan [31] for the
theory of solutions with small bounded variations (see also [71]).

REMARK. In fluid dynamics, most of the time the flux function is continuously defined
only on the open set V , but the solutions can reach some values on the boundary of V . For a
model like the isentropic gas dynamics system, involving as conserved quantity the density
ρ and the momentum ρu, we would have: V = (0,∞) × R

N . But the solutions can reach
the vacuum (ρ, P ) = (0, 0). Unfortunately, the flux of momentum, (1/ρ)(P ⊗P)+INργ ,
where IN is the N × N identity matrix, is not continuous at (0, 0). The problem will be
dealt later using the notion of entropy.

2.2. Convex entropy

A function η :V → R of class C2(V) is called an entropy of system (1) if there exists
a vector valued function G :V → R

N , G = (G1, . . . , GN), satisfying for every j =
1, . . . , p, k = 1, . . . , n, and W ∈ V:

(2)∂jGk(W) =
p∑

i=1

∂iη(W)∂jAki(W).

The concept is important due to the following easy result.

LEMMA 1. Consider U ∈ W 1,∞([0, T ) × Ω) with values in V , solution to (1). Then U

verifies also the entropy equality

(3)∂tη(U) + divx G(U) = η′(U) · Q(U, x).

PROOF. Taking the dot product of (1) with η′(U) we find:

p∑
i=1

∂iη(U)∂tUi +
∑
i,j,k

∂iη(U)∂jAki(U)∂xk
Uj = η′(U) · Q(U).

Using (2), this gives:∑
i

∂iη(U)∂tUi +
∑
j

∂jGk(U)∂xk
Uj = η′(U) · Q(U).

The chain rule formula gives the desired result. �

Even if we consider a regular initial value U0 ∈ W 1,∞(Ω) with values in V , there exists
a maximal time T > 0, which could be finite (see Sideris [86] for the Euler system), such
that there exists a unique solution U ∈ W 1,∞([0, T ) × Ω) with values in V to (1). We will
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consider only system for which the total entropy
∫

η(U(t, x)) dx is uniformly bounded in
time. At the blow-up time T , we can have a blow-up of the Lipschitz norm (appearance
of shocks), and we can also have the values of U reaching some points of the boundary
of V (typically, appearance of vacuum). Thanks to the conservation of total entropy, the
meaningful such values W which can be reached are such that they are limits of sequence
Uk ∈ V with lim sup η(Uk) < ∞.

Hence, to study global problem in time, we introduce:

(4)U =
{
W ∈ R

p \ ∃(Wk)k∈N ∈ (V)N, lim
k→∞ Wk = W, lim sup

k→∞
η(Wk) < ∞

}
.

The set U is the natural set of values of solution of (1) with finite entropy η.
We then extend the values of the entropy η onto U in the following way:

(5)η(W) = lim inf
V	W→W

η(W ), W ∈ U .

An entropy η is called a convex entropy if for any W ∈ V , the matrix (∂i∂j η(W))ij is
nonnegative. We have the following result:

LEMMA 2. Let η be a convex entropy, then U is a convex subset of R
p and η is a convex

function on U , that is:

η
(
sW1 + (1 − s)W2

)
� sη(W1) + (1 − s)η(W2),

for every W1, W2 ∈ U , and every 0 � s � 1.

PROOF. Consider W1,W2 ∈ U . Then there exists W1,k,W2,k ∈ V converging respectively
to W1,W2 with lim sup η(W1,k) < ∞ and lim sup η(W2,k) < ∞. Since V is convex, for
every 0 � s � 1, sW1,k + (1 − s)W2,k ∈ V converges to sW1 + (1 − s)W2. The function
η is convex on V , so we get:

lim sup η
(
sW1,k + (1 − s)W2,k

)
� s lim sup η(W1,k) + (1 − s) lim sup η(W2,k) < ∞.

Hence sW1 + (1 − s)W2 ∈ U and U is convex. Now, for any sequences W1,k,W2,k valued
in V converging respectively to W1,W2, from the convexity of η in V and the definition of
the extension of η on U , we have:

η
(
sW1 + (1 − s)W2

)
� lim inf η

(
sW1,k + (1 − s)W2,k

)
� lim inf

(
sη(W1,k) + (1 − s)η(W2,k)

)
.

For every ε > 0, considering sequences such that:

lim
k→∞ η(W1,k) � η(W1) + ε,

lim
k→∞ η(W2,k) � η(W2) + ε,

we get

η
(
sW1 + (1 − s)W2

)
� sη(W1) + (1 − s)η(W2) + ε.
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Passing in the limit ε → 0 gives the desired result. �

We say that η is a strictly convex entropy if it is a convex entropy and it verifies that for
any bounded subset D of V , there exists a constant C0 > 0 such that

∇2η(W) � C0IN for any W ∈ D,

where IN is the N × N identity matrix.

REMARK 1. Most of the physically relevant systems carry a strictly convex entropy. This
condition is known also to ensure the hyperbolicity of the system, which is necessary to
get the stability of linear waves (see [85]).

REMARK 2. However, in most of the cases involved in compressible mechanics, the en-
tropy functional is not continuously defined in the whole set U . Indeed a degeneracy occurs
at vanishing density ρ = 0. This motivates to define the entropy only on the interior of U .
This is why we first define η on V and then extend it on U .

2.3. Relative entropy

Consider a function Z ∈ C1(V) with values in R
q , where q is a positive integer. We intro-

duce a so-called relative quantity associated to Z, Z(.|.) :V × V → R
q defined by

(6)Z(U |V ) = Z(U) − Z(V ) − Z′(V ) · (U − V ).

For example, the relative flux is defined, for q = np, by

(7)A(U |V ) = A(U) − A(V ) − A′(V ) · (U − V ),

and the relative entropy, for q = 1, by

(8)η(U |V ) = η(U) − η(V ) − η′(V ) · (U − V ), U, V ∈ V .

The relative entropy (8) is extended to U × V using (5). If η is strictly convex we have the
following result.

LEMMA 3. Let η be a strictly convex entropy, then the relative entropy η(·|·) is nonnegative
on U × V and, for (U, V ) ∈ U × V , η(U |V ) = 0 if and only if U = V .

PROOF. Since η ∈ C2(V), for U,V ∈ V we have:

η(U |V ) =
∫ 1

0

∫ 1

0
η′′(V + st (U − V )

) : [(U − V ) ⊗ (U − V )
]
t ds dt,

which gives the result in this case.
Consider now U ∈ U \ V and V ∈ V . Let us denote r = |U − V |. Take 0 < δ < r/2

such that B(V, 2δ) ⊂ V . Since η is strictly convex, η′′(W) � CIN on the ball B(V, δ). For
every ε we consider Uk ∈ B(U, r/2) converging to U such that lim η(Uk) � η(U)+ε. For
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every k, and for 1/2 � t � 1 and s � δ/(2r) we have V + st (Uk − V ) ∈ B(V, δ), since

st |Uk − V | � st
3r

2
� 3

4
δ.

So

η′′(V + st (Uk − V )
) : [(Uk − V ) ⊗ (Uk − V )

]
� Cr2/4.

Hence:

η(Uk|V ) � Crδ

16
.

Passing to the limit gives

η(U |V ) � Crδ

16
− ε.

Passing to the limit in ε → 0 gives that η(U |V ) > 0. �

REMARK. The relative entropy associated to a strictly convex entropy can be then used to
measure the gap between two states U and V , whenever U lies in U and V in V .

2.4. Admissible balance laws

We restrict our study to system whose nonlinearity are completely controlled by a relative
entropy. Especially, it will be shown that regular solutions, and some special class of dis-
continuous solutions, of an admissible conservation law (or balance law) on V are stable
in the class of dissipative solutions, without additional bound requirement. The notion of
admissible balance laws was introduced by Berthelin and Vasseur in [15].

We say that the system (1) is an admissible balance law on V if it has a strictly convex
entropy η on V such that for any U,V ∈ V:

(9)
∣∣A(U |V )

∣∣ � Cη(U |V ),

and

(10)
∣∣Q(U)η′(U |V ) + η′′(V )

[
Q(U) − Q(V )

]
(U − V )

∣∣ � Cη(U |V ),

and if for any i = 1, . . . , p, there exists an increasing nonnegative function Φi ∈ C0(R+)

such that

lim inf
y→∞

Φi(y)

|y| = ∞,

(11)Φi

(|Wi |
)

� |W | + η(W), for every W ∈ V .

We will show later that the systems of isentropic gas dynamics, isothermal gas dynamics,
the shallow water system with barometry, and a bi-fluid model are admissible conservation
laws or balance laws on the natural space of conserved quantities.

We say that the system (1) is locally admissible on V , if it has a strictly convex entropy
η on V such that for any i = 1, . . . , p, there exists an increasing nonnegative function
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Φi ∈ C0(R+) verifying (11), and such that for every bounded subset D ⊂ V , there exists
C(D) such that for every V ∈ D, U ∈ V:

(12)
∣∣A(U |V )

∣∣ � C(D)η(U |V ),

and

(13)
∣∣Q(U)η′(U |V ) + η′′(V )

[
Q(U) − Q(V )

]
(U − V )

∣∣ � C(D)η(U |V ).

REMARK. Note that, at least when U and V are small, η(U |V ) has a quadratic form. This
justifies the form of (10) and (13).

2.5. Weak entropy solutions

Solutions to balance laws can exhibit some discontinuities in finite time. Therefore, when
considering global solutions in time, it is necessary to consider a weaker notion of solution.
A natural notion in the context of conservation laws and balance laws is the so-called Weak
entropy solution.

Consider a balance law (1) bearing a strictly convex entropy. We say that U is a weak
entropy solution of (1) with initial value U0 if for every test function V ∈ C∞

c ([0,∞)×Ω)

with values in R
N , φ ∈ C∞

c ([0,∞) × Ω) with values in R, we have:

∫
Ω

V (0, x) · U0(x) dx +
∫ ∞

0

∫
Ω

U(t, x) · ∂tV dx dt

+
∫ ∞

0

∫
Ω

A(U)(t, x) : ∇V dx dt +
∫ ∞

0

∫
Ω

Q(U)(t, x) · V dx dt = 0,

∫
Ω

φ(0, x)η(U0)(x) dx +
∫ ∞

0

∫
Ω

η(U)(t, x)∂tφ dx dt

+
∫ ∞

0

∫
Ω

G(U)(t, x) · ∇φ dx dt +
∫ ∞

0

∫
Ω

η′(U) · Q(U)φ dx dt � 0.

Hence, a weak entropy solution verifies (1) in the sense of distribution and the following
inequality, also in the sense of distribution:

(14)∂tη(U) + divx G(U) � η′(U) · Q(U, x).

Lemma 1 ensures that Lipschitz solutions to (1) verify (14) with equality. However this is
not anymore the case when solutions develop singularities. Moreover those solutions are
not unique if only (1) is considered. In one dimension (N = 1), solutions of (1) (14) are
unique, provided that the initial value is small in BV (see [31,71]). However, no result of
this kind is known in the multi-dimensional case. Up to now, weak entropy solutions are
not known to exist for N � 2.
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2.6. Dissipative solutions

Dissipative solutions are a very weak class of solutions. They are not even known to be
solution in the sense of distribution. This notion of solution has been first introduced for
incompressible Euler equations by Lions [65]. Its justification is that it verifies the so-
called strong/weak principle, that is, if there exists a classical solution, then it is the unique
possible dissipative solution. Portilheiro introduced in [79] a related notion of dissipative
solution for scalar conservation laws, reminiscent to the perturbed test function method
developed by Evans in [46] for viscosity solutions. Portilheiro showed that his notion of
dissipative solution is equivalent with the classical notion of entropy solution. Note, how-
ever, that our notion of dissipative solution is weaker than the one of Portilheiro. It would
be of great interest to know if its result can be extended to this weaker class.

First we define the dissipative test functions which will be used to “test” the dissipative
solution. We call dissipative test functions, any V ∈ W 1,∞([0, T ]×Ω)∩L∞(0, T ; L1(Ω))

with values in V and satisfying

X(V ) = ΨA(V )∇x

[
η′(V )

] ∈ L∞([0, T ] × Ω
)

where ΨA(V ) = 1{V ∈V | sup(∇x [η′(V )]:A(U |V )|U∈U)<0},∣∣E(V )
∣∣∣∣η′′(V )

∣∣ ∈ L∞([0, T ] × Ω
)
,

where E(V ) = ∂tV + divx A(V ) − Q(V ),

(15)V (0, ·) = V 0 ∈ L1(Ω), η(V 0) ∈ L1(Ω), η′(V 0) ∈ L∞(Ω).

REMARK. If Ω = T
N , then the two first requirements in (15) are consequences of V ∈

W 1,∞([0, T ] × T
N). Indeed, [0, T ] × T

N is compact, so V ([0, T ] × T
N) ∈ V is compact.

But η ∈ C2(V) so there exists CT such that |E(V )| + |∂ij η(V )| � CT on [0, T ] × T
N .

Consider an initial value U0 ∈ L1(Ω) with values in U and with finite entropy η(U0) ∈
L1(Ω). We call dissipative solution of (1) on [0, T ], with initial value U0, any function
U ∈ L∞(0, T ; L1(Ω)) with values in U verifying η(U) ∈ L∞(0, T ; L1(Ω)), such that
for any dissipative test function V ∈ W 1,∞([0, T ] × Ω) verifying (15)∫

Ω

η(U |V )(t, x) dx �
(∫

Ω

η(U0|V 0) dx

)
exp

(∫ t

0
σV (τ) dτ

)

(16)+
∫ t

0
exp

(∫ t

τ

σV (s) ds

)∫
Ω

η′′(V ) : (E(V ) ⊗ (V − U)
)

dx dτ,

for all t ∈ [0, T ], where:

σV (s) = CV

(
1 + ∥∥X(V )(s)

∥∥
L∞(Ω)

)
.

If (1) is admissible on V , CV = C, the constant defined in (9) and (10). If (1) is locally
admissible on V and Ω = T

N , CV = C(DV ) with DV = V ([0, T ] × T
N), where C(D) is

defined by (12) and (13).
We say that U is a dissipative solution of (1) on [0, T ) if it is a dissipative solution on

[0, T ] for every T < T .
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2.6.1. A structure lemma To clarify the link between classical solution and dissipative
solution, we first present the following lemma, first due to Dafermos [41] and DiPerna [45]:

LEMMA 4. For the entropy η ∈ C2(V) verifying (2) on V , and for any

V,U ∈ W 1,∞([0, T ] × Ω
)

with values in V , we have

∂tη(U |V ) = [∂tη(U) + divx G(U) − η′(U)Q(U)
]

− η′′(V ) · [∂tV + divx A(V ) − Q(V )
] · (U − V )

− η′(V ) · [∂tU + divx A(U) − Q(U)
]

− divx

[
G(U |V )

]+ η′(V ) · divx

[
A(U |V )

]
+ Q(V ) · η′(U |V ) + [Q(U) − Q(V )

] · (η′(U) − η′(V )
)
.

REMARK. Notice that if V and U are regular solutions to (1), the 3 first lines vanish.
The fourth line has a divergence form, hence its integral is vanishing. Finally the two last
terms are quadratic with respect to U − V (at least when |U − V | � R) as η is. Hence,
from this proposition, we can expect to have a good structure to use Gronwall lemma on∫

η(U |V ) dx.

REMARK. This lemma is true for any Lipschitz functions U and V . The equality depends
only on the structure of system (1) endowed with a strictly convex entropy (2).

PROOF. From the definition of relative quantity (6), we have

∂tη(U |V ) = ∂tη(U) − ∂tη(V ) − ∂t

[
η′(V )

] · (U − V ) − η′(V ) · ∂t (U − V )

= [∂tη(U) + divx G(U) − η′(U)Q(U)
]

− [∂tη(V ) + divx G(V ) − η′(V )Q(V )
]

− η′′(V ) · [∂tV + divx A(V ) − Q(V )
] · (U − V )

− η′(V ) · [∂tU + divx A(U) − Q(U)
]

(17)+ η′(V ) · [∂tV + divx A(V ) − Q(V )
]+ R1 + R2,

where

R1 = η′(U) · Q(U) − η′(V ) · Q(V ) − η′′(V ) · Q(V ) · (U − V )

− η′(V ) · Q(U) + η′(V ) · Q(V )

(18)= Q(V )η′(U |V ) + [η′(V ) − η′(U)
] · [Q(V ) − Q(U)

]
,

and

R2 = divx

[
G(V ) − G(U)

]+ η′′(V ) · divx A(V ) · (U − V )

+ η′(V ) · divx

[
A(U) − A(V )

]
.
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The existence of the associated entropy flux G gives the relation (see (2)).

∂iGk(W) =
∑
j

∂j η(W) ∂iAkj (W), ∀k, i, ∀W ∈ V .

A derivation of this relation with respect to Wl gives∑
j

∂lj η(W)∂iAkj (W) = ∂ilGk(W) −
∑
j

∂j η(W)∂ilAkj (W).

We use this relation with W = V and get

η′′(V ) · divx A(V ) · (U − V )

=
∑

∂lj η(V )∂xk

[
Akj (V )

]
(Ul − Vl)

=
∑

∂lj η(V )∂iAkj (V )∂xk
Vi(Ul − Vl)

=
∑

∂ilGk(V )∂xk
Vi(Ul − Vl) −

∑
∂jη(V )∂ilAkj (V )∂xk

Vi(Ul − Vl),

now

−∂jη(V )∂ilAkj (V )∂xk
Vi(Ul − Vl)

= ∂jη(V )
[−∂xk

[
∂lAkj (V )

]
(Ul − Vl)

]
= ∂jη(V )

[−∂xk

[
∂lAkj (V )(Ul − Vl)

]+ ∂lAkj (V )∂xk
(Ul − Vl)

]
,

therefore, we obtain

R2 = divx

[
G(V ) − G(U)

]+∑ ∂ilGk(V )∂xk
Vi(Ul − Vl)

+
∑

∂jη(V )
[−∂xk

[
∂lAkj (V )(Ul − Vl)

]+ ∂lAkj (V )∂xk
(Ul − Vl)

]
+ η′(V ) · divx

[
A(U) − A(V )

]
= divx

[
G(V ) − G(U)

]+∑ ∂xk

[
∂lGk(V )

]
(Ul − Vl)

−
∑

∂jη(V )∂xk

[
∂lAkj (V )(Ul − Vl)

]
+
∑

∂jη(V )∂lAkj (V )∂xk
(Ul − Vl)

+
∑

∂jη(V )∂xk

[
Akj (U) − Akj (V )

]
.

We can rewrite (2) in the following way∑
j

∂j η(V )∂lAkj (V ) = ∂lGk(V ).

Thus we find

R2 = divx

[
G(V ) − G(U)

]+∑ ∂xk

[
∂iGk(V )(Ui − Vi)

]
+
∑

∂jη(V )∂xk

[
Akj (U |V )

]
(19)= − divx G(U |V ) + η′(V ) · divx A(U |V ).

Equation (17) with (18) and (19) gives the desired relation. �
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REMARK. We notice that in particular, the term R2 of the proof satisfies∫
Ω

R2 dx =
∫

Ω

∑
jk

∂j η(V )∂xk

[
Akj (U |V )

]
dx

= −
∫

Ω

∑
jk

∂xk

[
∂jη(V )

]
Akj (U |V ) dx.

2.6.2. Weak/strong principle We consider a system (1) which is either admissible on V ,
or locally admissible on V with Ω = T

N . The following result is due to Dafermos [41]
and DiPerna [45].

PROPOSITION 1 (Weak/strong principle). Let T > 0, and U ∈ W 1,∞([0, T ] × Ω) ∩
L∞(0, T ; L1(Ω)) satisfy (15) for every T < T with values in V and be solution to (1). If
(1) is admissible on V then U is the unique dissipative solution on [0, T ) of (1) with initial
value U0. If (1) is locally admissible on V and Ω = T

N then the result is still true.

PROOF. Let us begin with the uniqueness result. Consider U a dissipative solution. The
function U is a dissipative test function verifying U(0, ·) = U0 and E(U) = 0. Hence we
get for every t � 0:∫

Ω

η(U |U)(t, x) dx � 0.

Thanks to Lemma 3, η(U |U) � 0, so η(U |U) = 0 almost everywhere. Hence, thanks to
Lemma 3, U = U almost everywhere.

We show now that U is a dissipative solution. Consider a test function V ∈ W 1,∞([0, T ]
× Ω) with values in V and verifying (15). We use Lemma 4 with V and U . Since U is a
strong solution of (1), the third line vanishes. But thanks to Lemma 1, U verifies also
the entropy equality (3), hence the first line vanishes too. Integrating in x, the fourth line
vanishes, and integrating by part the fifth line gives:

d

dt

∫
Ω

η(U |V ) dx = −
∫

Ω

η′′(V ) · [∂tV + divx A(V ) − Q(V )
] · (U − V ) dx

−
∫

Ω

∑
jk

∂xk

[
∂jη(V )

]
Akj (U |V ) dx

+
∫

Ω

[
Q(V ) · η′(U |V ) + [Q(U) − Q(V )

]
× (η′(U) − η′(V )

)]
dx.

If (1) is admissible on V , we get:

d

dt

∫
Ω

η(U |V ) dx � C
(
1 + ∥∥X(V )

∥∥
L∞(Ω)

) ∫
Ω

η(U |V ) dx

−
∫

Ω

η′′(V ) · [∂tV + divx A(V ) − Q(V )
] · (U − V ) dx.
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Gronwall’s lemma gives the desired result. We consider now the case where (1) is locally
admissible on V and Ω = T

N . We have V ∈ W 1,∞([0, T ] × T
N) with values in V open.

The function V is continuous, [0, T ]×T
N is compact so V ([0, T ]×T

N) ⊂ V is compact.
So the result holds with

CV = C
(
V
([0, T ] × T

N
))

,

where C(D) is defined in (12) and (13). �

2.6.3. Stability Another feature of the dissipative solution is that they are stable on strong
perturbation on the initial value. This is part of the strength of the concept, since it makes
easier to construct such solution. We still assume that (1) is (at least) locally admissible
on V .

PROPOSITION 2 (Stability). Let Uk be a sequence of dissipative solutions to (1) on
[0, T ), with T � ∞, with values in U , such that Uk and η(Uk) are uniformly bounded
in L∞(0, T ; L1(Ω)) for every T < T , and such that Uk(0, ·) and η(Uk(0, ·)) converge
strongly to U0 and η(U0) in L1(Ω). Then, up to a subsequence, Uk converges weakly in
L

p

loc(0, T ; L1
loc(Ω)) to a dissipative solution to (1) with initial value U0, for 1 � p < ∞.

If Φi(y) � |y|γi for y > 0, then the component Ui,k converges weakly to Ui in
L

p

loc(0, T ; Lq(Ω)) for 1 � p < ∞ and 1 � q < γi .

PROOF. Consider an increasing sequence T n < T , Tn → T . The functions Uk and η(Uk)

are uniformly bounded in L∞(0, T n; L1(Ω)), so, since (1) is (at least) locally admissible
on V , Φi(Ui,k) is uniformly bounded in L∞(0, T n; L1(Ω)). By a diagonal extraction, up to
a subsequence, Ui,k converges weakly to a limit Ui in Lp(0, T n; L1

loc(Ω)) for 1 � p < ∞,
for any n � 1. If Ui,k is uniformly bounded in L∞(0, T n; L

γ

i (Ω)), then, up to a subse-
quence, Ui,k converges weakly in L

p

loc(0, T ; Lq(Ω)) for 1 � p < ∞ and 1 � q < γi .
Passing to the limit, this gives that for any test function V ∈ W 1,∞([0, T ] × Ω) with val-
ues in V (and decreasing fast enough for large |x| if Ω = R

N ), and verifying (15), we have
for any t < T :

lim
k→∞

∫
Ω

η(Uk|V )(t, x) dx �
(∫

Ω

η(U0|V 0) dx

)
exp

(∫ t

0
σV (τ) dτ

)

−
∫ t

0
exp

(∫ t

τ

σV (s) ds

)∫
η′′(V ) : (E(V ) ⊗ (V − U)

)
dx dτ.

Since, thanks to Lemma 3, η(·|·) is convex with respect to the first variable on U , we get:∫
Ω

η(U |V )(t, x) dx � lim
k→∞

∫
Ω

η(Uk|V )(t, x) dx.

This gives the desired result for those test function V . Notice that we can then relax the
condition of fast decrease in |x|, in the case of Ω = R

N , on the test function V . Hence U

is a dissipative solution on [0, T ). �
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2.6.4. Approximated solutions Dissipative solution is a useful concept for asymptotic
limits. We give here a general framework. We fix T � ∞. Consider a sequence of functions
Uε, Aε, Qε, ηε, Gε, and Rε, in L1(0, T ; L1(Ω)) for any T < T such that A(Uε), Q(Uε),
η′(Uε) · Q(Uε) are in L1(0, T ; L1(Ω)) for T < T and:

(20)∂tUε + divx Aε = Qε,

(21)∂tηε + divx Gε � Rε,

(22)Uε(0, ·) = U0
ε , ηε(0, ·) = η0

ε ,

in the sense of distribution. We assume in addition that for every t, x, ε:

(23)ηε(t, x) � η
(
Uε(t, x)

)
.

Then we have the following result:

PROPOSITION 3. For every ε, every T < T , and every dissipative test function

V ∈ W 1,∞([0, T ] × Ω
) ∩ L∞(0, T ; L1(Ω)

)
verifying (15), we have for every t < T :∫

Ω

{(
ηε − η(Uε)

)
(t) + η(Uε|V )(t)

}
dx

�
(

],
∫

Ω

{
η
(
U0

ε |V 0)+ η0
ε − η

(
U0

ε

)}
dx

)
exp

(∫ t

0
σV (τ) dτ

)

+
∫ t

0
exp

(∫ t

τ

σV (s) ds

)∫ [
η′′(V ) : (E(V ) ⊗ (V − Uε)

)+ Rε

]
dx dτ,

where

Rε = [Rε − η′(Uε)Q(Uε)
]+ ∇xη

′(V )
[
A(Uε) − Aε

]+ η′(V )
[
Qε − Q(Uε)

]
.

Hence, if the quantities

(24)A(Uε) − Aε, Q(Uε) − Qε, Rε − η′(Uε)Q(Uε),

converges to 0 weakly in L1((0, T ) × Ω), for every T < T , U0
ε converges strongly to

U0 in L1(Ω), and both η(U0
ε ) and η0

ε converge strongly to η(U0) in L1(Ω), then up to a
subsequence, Uε converges weakly in L

p

loc(L
1
loc) for 1 � p < ∞, to a dissipative solution

U of (1) on [0, T ) with initial value U0. If Φi(y) � |y|γi for y > 0, then the component
Uε,i converges weakly to Ui in L

p

loc(0, T ; Lq(Ω)) for 1 � p < ∞ and 1 � q < γi .

PROOF. By density, Lemma 4 is still valid for V a dissipative test function and U = Uε

such that Uε, η(Uε), A(Uε), Q(Uε), and η′(Uε) · Q(Uε) are in L1([0, T ] × Ω). It gives:

∂t

{
ηε − η(Uε) + η(Uε|V )

} = divx

(
G(Uε) − Gε

)− (η′(Uε) · Q(Uε) − Rε

)
− η′′(V ) : [E(V ) ⊗ (Uε − V )

]
+ η′(V )

[
divx

(
Aε − A(Uε)

)− (Qε − Q(Uε)
)]
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− divx

(
G(Uε|V )

)+
∑
j,k

∂j η(V )∂xk

[
Akj (Uε|V )

]
+ Q(V ) · η′(Uε|V ) + [Q(Uε) − Q(V )

] · [η′(Uε) − η′(V )
]
.

Integrating with respect to x, we find:

d

dt

∫
Ω

{
ηε − η(Uε) + η(Uε|V )

}
dx �

(
1 + ∥∥X(V )

∥∥
L∞(Ω)

)
CV

∫
Ω

η(Uε|V ) dx

+
∫

Ω

[
Rε − η′(Uε)Q(Uε)

]
dx +

∫
Ω

η′′(V ) : [E(V ) ⊗ (V − Uε)
]

dx

+
∫

Ω

∇xη
′(V ) : [A(Uε) − Aε

]
dx +

∫
Ω

η′(V )
[
Qε − Q(Uε)

]
dx.

Integrating in time gives the desired result. �

REMARK. Indeed, it is enough to have the quantities (24) which converge to 0 in the sense
of distribution. Then we can pass to the limit for regular test function V ∈ D([0, T ] × Ω).
Then, by density, we check that the inequality of dissipative solution holds, indeed, for any
dissipative test functions.

2.7. Examples of admissible balance laws

We give some examples of admissible systems for which the previous study is valid. We
will also show why the system of full Euler system of heat conducting flow is not included.
Those two first results can be found in [15]. The bi-fluid model was studied by Mellet and
Vasseur in [75] with viscosity and boundary conditions.

2.7.1. Isentropic gas dynamics The multidimensional system of isentropic gas dynamics
reads:

(25)

{
∂tρ + divx(ρu) = 0, t ∈ R

+, x ∈ R
N,

∂t (ρu) + divx(ρu ⊗ u + Iργ ) = ρF, t ∈ R
+, x ∈ R

N.

for 1 < γ � N+2
N

, and a given extern force field F . The associated entropy is

(26)η(ρ, ρu) = ρ
u2

2
+ h(ρ),

where h(ρ) = 1
γ−1ργ .

The conservative variables are U = (ρ, ρu) = (ρ, P ) and the set V = (0,∞) × R
N .

The entropy written in the conservative variables is:

η(ρ, P ) = |P |2
2ρ

+ h(ρ).

This entropy is regular in V and strictly convex. Indeed,

η′′(ρ, P ) = 1

ρ

( |P |2/ρ2 + h′′(ρ) −P T /ρ

−P/ρ IN

)
,
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where P T is the transpose of the vector P and I is the N × N identity matrix. The eigen-
value 1 has multiplicity (n − 1). The sum of the two other eigenvalues is given from the
trace S = |P |2/ρ2 + 1 + h′′(ρ) and the product is the determinant Pr = h′′(ρ), which are
nonnegative since h is convex. The smallest λ of those two eigenvalues is such that:

λ = Pr

S
+ λ2 � Pr

S
� C > 0,

for (ρ, P ) ∈ (α, β) × B(0, R), 0 < α < β < ∞, R > 0.
Following (4), we find that:

U = V ∪ (0, 0).

The relative entropy is

η(U |U∗) = ρ

2
|u − u∗|2 + h(ρ|ρ∗).

The relative flux of the system is

A(U |U∗) = (0, ρ(u − u∗) ⊗ (u − u∗) + h(ρ|ρ∗)I
)
.

We clearly have the existence of a constant C such that

(27)
∣∣A(U |U∗)

∣∣ � Cη(U |U∗),

for every U,U∗ ∈ V . For the system (25), the source terms reads

Q(ρ, P, x) = (0, ρF (x)
)
.

This gives

Q(U∗)η′(U |U∗) = −(u∗ − u)(ρ∗ − ρ)F,

and [
Q(U) − Q(U∗)

](
η′(U) − η′(U∗)

) = (u∗ − u)(ρ∗ − ρ)F,

and finally

(28)Q(U∗)η′(U |U∗) + [Q(U) − Q(U∗)
](

η′(U) − η′(U∗)
) = 0.

Moreover, since γ > 1:

ργ

γ − 1
� η(ρ, P ),

|P |2γ /(γ+1) � (ργ )1/(γ+1)

( |P |2
ρ

)γ /(γ+1)

� η(ρ, P ).

This, together with (27) and (28), ensures that (25) is admissible in V = (0,∞)×R
N with

γ1 = γ and γi = 2γ /(γ + 1) for 2 � i � N .
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2.7.2. Isothermal gas dynamic The multidimensional system of isothermal gas dynamics
in T

N reads:

(29)

{
∂tρ + divx(ρu) = 0, t ∈ R

+, x ∈ T
N,

∂t (ρu) + divx(ρu ⊗ u + Iρ) = ρF, t ∈ R
+, x ∈ T

N,

A nonnegative associated entropy is

(30)η(ρ, ρu) = ρ
u2

2
+ ρ ln ρ + 1

e
.

The conservative variables are U = (ρ, ρu) = (ρ, P ) and the set V = (0,∞) × R
N . The

entropy written in the conservative variables is:

η(ρ, P ) = |P |2
2ρ

+ ρ ln ρ + 1

e
.

This entropy is regular in V and strictly convex. The proof is the same than for the isen-
tropic case since h(ρ) = ρ ln ρ + 1/e is convex. Following (4), we find that:

U = V ∪ (0, 0).

The relative entropy is

η(U |U∗) = ρ

2
|u − u∗|2 + ρ ln(ρ/ρ∗) − (ρ − ρ∗).

The relative flux of the system is

A(U |U∗) = (0, ρ(u − u∗) ⊗ (u − u∗) + (ρ ln(ρ/ρ∗) − (ρ − ρ∗)
)
I
)
.

We clearly have the existence of a constant C such that

(31)
∣∣A(U |U∗)

∣∣ � Cη(U |U∗),

for every U,U∗ ∈ V . For the system (29), the source term is dealt in the same way:

(32)Q(U∗)η′(U |U∗) + [Q(U) − Q(U∗)
](

η′(U) − η′(U∗)
) = 0.

In the isotherm case, (11) is also verified:[
ρ ln(ρ)

]
+ � η(ρ, P ),

|P |
√

ln
(|P | + 1

)
� C

(∣∣(ρ, P )
∣∣+ η(ρ, P )

)
.

For the last inequality we have to separate the cases |P | > ρ2 and |P | < ρ2. In the second
case, it is smaller than

|P |√
ρ

√
ρ

√
2
(
ln(ρ + 1)

)
� |P |2

2ρ
+ ρ ln(1 + ρ).

In the first case, η(ρ, P ) � ρ3/2 and we can use the proof for the isentropic system
with γ = 3. This, with estimates (31) and (32) ensures that (29) is admissible in V =
(0,∞) × R

N .
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REMARK. We study this system in T
N to deal with the non integrability of the entropy

in R
N . This problem can be address in R

N considering the entropy

|x|2ρ + ρ ln ρ + |P |2
2ρ

.

But this is not strictly speaking included in the previous theory since the entropy depends
also on x. We have chosen to restrict the theory to entropy depending only on U for the
sake of clarity.

2.7.3. A bi-fluid model We consider the following system of hydrodynamic equations in
the torus x ∈ T

N :

(33)

⎧⎨
⎩

∂tn + divx(nu) = 0, t > 0, x ∈ T
N,

∂tρ + divx(ρu) = 0, t > 0, x ∈ T
N,

∂t

(
(ρ + n)u

)+ divx

(
(ρ + n)u ⊗ u

)+ ∇x(n + ργ ) = 0, t > 0, x ∈ T
N.

This kind of multi-fluid system is widely used in the modeling of particle/fluid interaction.
The conservative variables are U = (n, ρ, P ) = (n, ρ, (ρ + n)u). The set V = (0,∞) ×
(0,∞) × R

N . The following function is a nonnegative entropy for this system

η(n, ρ, P ) = (n + ρ)
u2

2
+ 1

γ − 1
ργ + n log n + 1

e

= P 2

2(n + ρ)
+ 1

γ − 1
ργ + n log n + 1

e
,

with entropy flux function

G(U) = P

n + ρ

[
P 2

2(n + ρ)
+ γ

γ − 1
ργ + n + n log n

]
.

From definition (4), we have

U = ([0,∞) × (0,∞) ∪ (0,∞) × [0,∞)
)× R

N ∪ (0, 0, 0).

We can show, as for the isentropic and isotherm cases, that η is strictly convex. A simple
computation shows that the relative entropy associated with (33) is

η(U |U∗) = (n + ρ)
|u − u∗|2

2
+ 1

γ − 1
p1(ρ|ρ∗) + p2(n|n∗)

with

p1(ρ|ρ∗) = ργ − ρ∗γ − γ ρ∗γ−1
(ρ − ρ∗),

p2(n|n∗) = n log n − n∗ log n∗ − (log n∗ + 1)(n − n∗)

= n log
n

n∗ + (n∗ − n).

(Note that the pi(·|·) are the relative quantities associated to p1(ρ) = ργ and p2(n) =
n log n.) The system (33) can be written in the form (1), with U = (n, ρ, P ) (we recall that
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P = (n + ρ)u) and

A(U) = 1

n + ρ

⎛
⎜⎜⎜⎝

nP1 nP2 nP3
ρP1 ρP2 ρP3
C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞
⎟⎟⎟⎠ ,

where

Cij = PiPj + (n + ργ )(n + ρ)δij .

LEMMA 5. Assume 1 < γ < 2, then the system (33) is locally admissible in V = (0,∞)×
(0,∞) × R

N with:

[n ln n]+ � η(n, ρ, P ),

ργ /(γ − 1) � η(n, ρ, P ),

|P |
√

ln
(
1 + |P |) � C

(
η(n, ρ, P ) + ∣∣(n, ρ, P )

∣∣).
PROOF. First we can show, following the proofs for the isentropic gas and isotherm gases:

n ln(n + 1) � 2η(n, ρ, P ) + n ln 2,

ργ � η(n, ρ, P ),

|P |
√

ln
(
1 + |P |) � C

(
η(n, ρ, P ) + ∣∣(n, ρ, P )

∣∣).
Let D be a compact set of V . For any such compact set, there exists 0 < λ < Λ verifying
for any (n∗, ρ∗, P ∗) ∈ D

λ � n∗ + ρ∗ � Λ.

We want to show that there exists C(λ−1,Λ) such that∣∣A(U |U∗)
∣∣ � Cη(U |U∗)

for any U = (n, ρ, (n + ρ)u), U∗ = (n∗, ρ∗, (n∗ + ρ∗)u∗) satisfying

λ � ρ∗ + n∗ � Λ.

First, we check that the relative flux is given by

A(U |U∗) =
(

(α − α∗)(ρ + n)(ui − u∗
i )

(β − β∗)(ρ + n)(ui − u∗
i )

(ρ + n)(ui − u∗
i )(uj − u∗

j ) + p1(ρ|ρ∗)δij

)

with α = n
n+ρ

, α∗ = n∗
n∗+ρ∗ , β = ρ

n+ρ
and β∗ = ρ∗

n∗+ρ∗ . and we recall that the relative

entropy satisfies

η(U |U∗) = (n + ρ)
|u − u∗|2

2
+ 1

γ − 1
p1(ρ|ρ∗) + p2(n|n∗),
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with

p1(ρ|ρ∗) = ργ − ρ∗γ − γ ρ∗γ−1
(ρ − ρ∗) = γ

2
ξ

γ−2
1 (ρ − ρ∗)2,

p2(n|n∗) = n log n − n∗ log n∗ − (log n∗ + 1)(n − n∗) = 1

2

1

ξ2
(n − n∗)2

for some ξ1 between ρ and ρ∗ and ξ2 between n and n∗.
The relative flux A(U |U∗) involves the following terms:

(34)
∣∣(α − α∗)(ρ + n)(ui − u∗

i )
∣∣, ∣∣(β − β∗)(ρ + n)(ui − u∗

i )
∣∣

and

(35)(ρ + n)(ui − u∗
i )(uj − u∗

j ), p1(ρ|ρ∗)
and it is readily seen that the last two terms (35) are bounded above by 2η(U |U∗). More-
over, the terms in (34) are equal since α + β = 1, α∗ + β∗ = 1. We note that∣∣(α − α∗)(ρ + n)(ui − u∗

i )
∣∣ � (α − α∗)2(ρ + n) + (ρ + n)

∣∣(ui − u∗
i )
∣∣2,

where the second term is bounded above by 2η(U |U∗). So we are left with the task of
showing that the quantity

I = (α − α∗)2(n + ρ)

is bounded above by η(U |U∗).
To that purpose, we need to distinguish the case where n+ρ is larger than Λ and the case

where n + ρ is smaller than Λ. In each case, we will use one of the following expression
for α − α∗:

(36)α − α∗ = ρ(n − n∗) + n(ρ∗ − ρ)

(n + ρ)(n∗ + ρ∗)
or

(37)α − α∗ = ρ∗(n − n∗) + n∗(ρ∗ − ρ)

(n + ρ)(n∗ + ρ∗)
.

• When n + ρ < Λ, using the fact that ρ < Λ and ρ∗ � Λ, we get ξ1 < Λ. Since
γ − 2 < 0 we deduce

p1(ρ|ρ∗) � C(Λ)(ρ − ρ∗)2.

Similarly, using the fact that n < Λ and n∗ � Λ, we have ξ2 < Λ which yields

p2(n|n∗) � C(Λ)(n − n∗)2.

Finally, using (36) together with the fact that n/(n + ρ) � 1 and ρ/(n + ρ) � 1, we
get

I � (n + ρ)

( |n − n∗|
(n∗ + ρ∗)

+ |ρ∗ − ρ|
(n∗ + ρ∗)

)2

� Λ

λ

(
(n − n∗)2 + (ρ∗ − ρ)2)
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and therefore

I � C(Λ, λ)
[
p1(ρ|ρ∗) + p2(n|n∗)

]
.

• When n + ρ > Λ, we first note that using (37) and the fact that n∗/(n∗ + ρ∗) � 1,
we have

I � (|ρ∗ − ρ| + |n − n∗|)2

(n + ρ)
� (n − n∗)2

n + ρ
+ (ρ − ρ∗)2

n + ρ
.

In order to control the first term, we again distinguish two situations:
– When n � Λ, then n∗ < n, and so ξ2 < n. Therefore

p2(n|n∗) >
1

n
(n − n∗)2 >

(n − n∗)2

n + ρ
.

– When n < Λ, then 1/ξ2 > 1/ max(n, n∗) > 1/Λ, and since (n−n∗)2

ρ+n
< 1

Λ
(n−n∗)2,

we get

p2(n|n∗) > C(Λ)(n − n∗)2 > C(Λ)Λ
(n − n∗)2

ρ + n
,

where we used the fact that n + ρ � Λ.
In either case, we have

(n − n∗)2

n + ρ
� C(Λ)p2(n|n∗).

Finally, we proceed similarly to show that the term (ρ−ρ∗)2

n+ρ
is controlled by p1(ρ|ρ∗):

– When ρ > Λ, then ξ1 � ρ and so ξ
γ−2
1 > ργ−2 > C(Λ)/ρ (using the fact that

γ > 1). Since

(ρ∗ − ρ)2

n + ρ
� (ρ − ρ∗)2

ρ
,

we deduce

(ρ∗ − ρ)2

n + ρ
< Cξ

γ−2
1 (ρ∗ − ρ)2 � p1(ρ|ρ∗).

– When ρ < Λ, then ξ
γ−2
1 > (max(n, n∗))γ−2 > Λγ−2, and since

(ρ − ρ∗)2

ρ + n
<

1

Λ
(ρ − ρ∗)2

(we recall that we still have n + ρ > Λ), we get

p1(n|n∗) > C(Λ)(ρ − ρ∗)2 > C(Λ)
(ρ − ρ∗)2

ρ + n
.

The proof of Lemma 5 is now complete. �



Recent results on hydrodynamic limits 345

2.7.4. A counterexample: The Euler system with temperature We show that the Euler
system with temperature is not admissible on V = (0,∞) × R

N × (0,∞). The full gas
dynamics of Euler with temperature reads

∂tρ + divx(ρu) = 0, t ∈ R
+, x ∈ R

N,

∂t (ρu) + divx(ρu ⊗ u + INρT ) = 0, t ∈ R
+, x ∈ R

N,

∂t

(
ρ

|u|2
2

+ N

2
ρT

)
+ divx

(
ρu

|u|2
2

+ N + 2

2
ρT u

)
= 0, t ∈ R

+, x ∈ R
N.

The conservative variables are

U = (ρ, P,E) =
(

ρ, ρu, ρ
|u|2

2
+ N

2
ρT

)
and the flux is

A(U) =
(

ρu, ρu ⊗ u + ρT IN, ρu
|u|2

2
+ N + 2

2
ρT u

)
.

The entropy is

η(U) = ρ ln

(
ρ

(2πT )N/2

)
− N

2
ρ

and the associated flux is G(U) = η(U)u. The expression of the flux A in conservative
variables is

A(U) =
(

P,
1

ρ
P ⊗ P + 2E

N
IN − 1

Nρ
|P |2IN ,

N + 2

N

P

ρ
E − 1

N

P

ρ2
|P |2

)
.

Then we get

∂ρAP (U) = −u ⊗ u + 1

N
|u|2IN ,

∂Pi
(AP )jk(U) = δijuk + δikuj − δjk

2ui

N
,

∂EAP (U) = 2

N
IN,

∂ρAE(U) = −N − 2

2
u

|u|2
2

− N + 2

2
uT ,

∂Pi
(AE)j (U) = δij

( |u|2
2

+ N + 2

2
T

)
− 2

N
uiuj ,

∂EAE(U) = N + 2

N
u,

and the relative flux is

(38)Aρ(U |U∗) = 0,

(39)AP (U |U∗) = ρ(u − u∗) ⊗ (u − u∗) − 1

N
ρ|u − u∗|2IN ,
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(40)

AE(U |U∗) = 1

2
ρ
(|u|2 − |u∗|2)(u − u∗) + N + 2

2
ρ(u − u∗)(T − T ∗)

− 1

N
ρu∗|u − u∗|2.

We compute now the relative entropy. Since linear part in a function disappears in any
relative quantity, we have to compute the flux of

η̃(U) =
(

1 + N

2

)
ρ ln ρ − N

2
ρ ln

(
2E

N
− |P |2

Nρ

)
,

which satisfies

∂ρη̃(U) = 1 + ln ρ + N

2
− N

2
ln T − |u|2

2T
, ∂P η̃ = u

T
, ∂Eη̃ = − 1

T
,

and thus we get

(41)η(U |U∗) = h(ρ|ρ∗) + Nρ

2T ∗ h(T ∗|T ) + ρ

2T ∗ |u − u∗|2,
where h(x) = x ln x.

We see that (9) or (10) are not verified in this case because of the cubic power in velocity
in AE(U |U∗) since such a term do not appear in η(U |U∗).

2.8. Examples of uniqueness results for dissipative solutions

The notion of dissipative solutions is very efficient to show asymptotic limits. However, the
limit makes sense only if this notion is relevant. Global weak entropy solutions for general
multi-dimensional conservation laws is not known. The validity of this notion can be tested
only on meaningful examples where reasonable solutions are known to exist. This can be
done through uniqueness result for this kind of solutions.

The weak/strong principle gives the first of this kind of uniqueness result. We consider
now two other particular examples of uniqueness results for solutions of isentropic or
isotherm gas dynamics, involving singularities.

We denote h(ρ) = ργ /(γ − 1) for the isentropic gas and h(ρ) = ρ ln ρ for the isotherm
gas. We recall that for those systems

η′(U) = (−|u|2 + h′(ρ), u
)
.

2.8.1. Rarefaction waves In this subsection, we consider a one-dimensional problem,
Ω = R or Ω = T.

PROPOSITION 4. Fix 1 � γ < ∞. Consider an initial value U0 = (ρ0, ρ0u0) ∈ L1(Ω)∩
L∞(Ω) with ρ0 � C > 0, piecewise smooth with a finite number of discontinuities, each
of them corresponding to rarefaction waves. Then there exists T > 0, and U∗ ∈ C0(0, T ;
L1(Ω))∩W 1,1((ε, T )×Ω), for every 0 < ε < T , such that U∗ is a weak entropy solution
of (25) with N = 1. In addition U∗ is the only dissipative solution on [0, T ).
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In this case the singularities exist only at t = 0.

PROOF. We have

∇xη
′(U∗) : A(U |U∗) = ∂xu

∗(ρ|u − u∗|2 + h(ρ|ρ∗)
)
.

For t > 0, in every rarefaction area, we have

∂xu
∗(t, x) � 0,

and so X(U∗(t, x)) = 0, since h is convex and so h(ρ|ρ∗) � 0. Hence σU∗ depends only
on the smooth part of the initial datum, lies in L∞([0, T ]).

For every ε > 0, Vε(t, x) = U∗(ε + t, x) is a dissipative test function, so, from the
weak/strong principle, it is the only dissipative solution to (25) on [0, T − ε) with initial
value U∗(ε, ·). This function converges in L1(Ω) to U∗, so from the stability property of
dissipative solutions, U∗ is a dissipative solution on [0, T ).

Consider an other dissipative solution U . Since Vε is a dissipative test function with
E(Vε) = 0, we have for t < T :∫ 1

0
η(U |Vε)(t, x) dx �

(∫ 1

0
η
(
U0(x)|U∗(ε, x)

)
dx

)
exp
(
T ‖σU∗‖L∞(0,T )

)
.

Passing to the limit ε → 0 and using the fact that U∗ ∈ L∞((0, T ) × Ω) ∩ C0(0, T ;
L1(Ω)), we find that for every t > 0:∫ 1

0
η(U |U∗)(t, x) dx � 0.

Lemma 3 ensures that U = U∗. �

2.8.2. Axisymmetric solution with vacuum at the origin Let ψ ∈ C1(0,∞), be such that
ψ(r) = 0 for r > 1/3 and ψ(y) � y everywhere. We consider the following steady

isentropic solution Vψ = (ρ, u)(r =
√

x2
1 + x2

2 , θ, x3) in T
3 of the system (25):

ρ(r) =
(

γ − 1

γ

∫ r

0

ψ2(y)

y
dy

)1/(γ−1)

, 0 < r < 1/3, x3 ∈ T,

u = ψ(r)�eθ (θ), 0 < r < 1/3, 0 � θ < 2π, x3 ∈ T,

where

�eθ (θ) = (− sin θ, cos θ) = 1

r
(−x2, x1), �er(θ) = (cos θ, sin θ) = 1

r
(x1, x2).

We complete (ρ, u) in T
3 such that the density ρ is continuous and constant outside

B(0, 1/3) and u = 0 outside B(1, 1/2). We have

divx(ρu) = ρ(r)

r
div(−x2, x1) + ∇

(
ρ(r)

r

)
· r�eθ = 0,
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ρ(u · ∇)u = −ρ
ψ(r)2

r
�er(θ)

= − γρ

γ − 1
∂r

(
ρ(r)γ−1)�er(θ)

= −∂r(ρ
γ )�er(θ) = −∇ργ .

Hence, Vψ is solution to the isentropic system. In the neighborhood of r = 0, we have
ρ(r) = Cγ r2/(γ−1). Hence, there is vacuum at r = 0, and ρ is not Lipschitz continuous at
this point for γ > 3. We have the following uniqueness result.

PROPOSITION 5. The axisymmetric flow Vψ is the unique dissipative solution with same
initial value.

PROOF. In this context, the singularity comes from the vacuum. the family of solutions Vε

defined by

uε(r, θ) = ψ(r)�eθ (θ), ρε(r) =
(

ε + γ − 1

γ

∫ r

0

ψ2(y)

y
dy

)1/(γ−1)

,

are dissipative test functions. Note that

∇xuε = ψ ′(r)�er ⊗ �eθ − ψ(r)

r
�eθ ⊗ �er .

So ‖∇xuε‖L∞ � 1 + ‖ψ ′‖L∞ is uniformly bounded. Hence uε is uniformly Lipschitz but
not for sure C1. From the stability of dissipative solutions, Vψ is a dissipative solution.
Consider now an other dissipative solution U with same initial value. Since ∇xη

′(Vε) =
∇xueps, and (25) is admissible on V , we get for t < T∫

T3
η(U |Vε)(t, x) dx �

(∫
T3

η
(
Vψ(x)|Vε(x)

)
dx

)
exp
(
CT
(
1 + ‖ψ ′‖L∞

))
.

Passing to the limit gives that η(U |Vψ) = 0 almost everywhere and so U = Vψ thanks to
Lemma 3. �

3. Kinetic equations

We introduce a new variable v ∈ R
N called velocity variable, and we call kinetic function

any nonnegative function f : R
+ × Ω × R

N → R. In a physical setting, like the nonlinear
Fokker–Planck equation (see Section 3.1), f (t, x, v) represents the microscopic density of
particles at time t , with velocity in the cube centered at v with radius dv, and position in
the cube centered in x with radius dx. Most of the kinetic equations can be written in the
following form.

∂tf + v · ∇xf + F(x) · ∇vf = Q(f, v),

(42)f (0, ·, ·) = f 0,
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where F ∈ C∞(Ω) is a given function, and Q : R×R
N → R is a nonlinear operator called

collision term. In the Fokker–Planck case, this collision operator models the collision of
the particles on an inert gas (Brownian motion), see [94] or [35]. The typical assumption
to derive kinetic models, is to neglect the size of the particle, which leads to an operator on
f in v only. We assume the existence of a : R

N → R
p such that for every f ∈ R

(43)
∫

RN

a(v)Q(f, v) dv = 0.

The quantity U(t, x) = ∫
RN a(v)f (t, x, v) dv are then called conserved quantities, or

macroscopic quantities. This are derived from microscopic quantities conserved during
the collisions in play. In the non-linear Fokker–Planck equation, they are the mass and the
momentum. We assume also the existence of kinetic entropy functional H(f, v) and a non-
negative dissipation of entropy functional D(f ) � 0, such that H is convex in f and such
that for every nonnegative function f ∈ C∞

c (RN)

(44)
∫

RN

dH

df
(f, v)Q(f, v) dv = −D(f ) � 0.

Historically, the concept of entropy has been developed together with the kinetic equations,
by the founders Boltzmann, and Maxwell. For a good review on kinetic equation, especially
Boltzamnn equation, we refer to [38] (see also [39]). See also [72] for an introduction of
models coming from the micro-electronics.

We introduce now some technical assumptions ensuring a good enough control (at least
for this theory), of global in time solutions of those kinetic equations. We say that (42)
is admissible if there exists constants α,C > 0 such that for every nonnegative function
f ∈ C∞

c (RN), f > 0

∣∣∣∣
∫

RN

(∣∣a(v)
∣∣+ ∣∣a(v) ⊗ v

∣∣+ ∣∣H(f, v)
∣∣+ ∣∣divv a(v)

∣∣)f +
∣∣∣∣∂H

∂v
(f, v)

∣∣∣∣ dv

∣∣∣∣
(45)� C

∫
RN

(
αf + H(f, v)

)
dv.

We say that (42) is admissible up to a constant if there exists constants α,C > 0 such that
for every nonnegative function f ∈ C∞

c (RN), f > 0,

∣∣∣∣
∫

RN

(∣∣a(v)
∣∣+ ∣∣H(f, v)

∣∣+ ∣∣a(v) ⊗ v
∣∣+ ∣∣∇va(v)

∣∣)f +
∣∣∣∣∂H

∂v
(f, v)

∣∣∣∣ dv

∣∣∣∣
(46)� C

(∫
RN

(
αf + H(f, v)

)
dv + 1

)
.

In this case we restrict ourselves to the case Ω = T
N .

For Eqs. (42) which are either admissible or admissible up to a constant, we call entropy
solutions on (0,∞) × Ω × R

N with initial value f 0 ∈ L1(Ω × R
N), f 0 � 0, H(f 0, v) ∈
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L1(Ω × R
N), any function f ∈ L∞

loc(0,∞; L1(Ω × R
N)) such that (42) is verified in the

sense of distribution and the following inequality is also verified in the sense of distribution

d

dt

∫
Ω

∫
RN

H(f, v) dv dx � −
∫

Ω

D(f ) dx +
∫

Ω

∫
RN

F · ∂H

∂v
(f, v) dv dx,

(47)
∫

Ω

∫
RN

H
(
f (0, x, v), v

)
dv dx =

∫
Ω

∫
RN

H
(
f 0(x, v), v

)
dv dx.

We introduce three different examples of such kinetic equations.

REMARK. We call admissible kinetic equations, the kinetic equations verifying (45), by
analogy with admissible conservation laws verifying (9) and (10). But we should keep in
mind that in (9) the relative entropy is involved when in (45), only the entropy is involved.

3.1. Nonlinear Fokker–Planck equation

We consider a gas subject to Brownian motion and an external force F ∈ C∞(TN). The
microscopic density functional is then solution to the following Fokker–Planck equation,
see [35]

∂tf + v · ∇xf + F · ∇vf + divv

(
(u − v)f − ∇vf

) = 0,

(48)t > 0, x ∈ T
N, v ∈ R

N,

where u is the mean velocity of the gas defined for t, x such that
∫

f (t, x, v) dv > 0 by

u(t, x)

∫
RN

f (t, x, v) dv =
∫

RN

vf (t, x, v) dv.

This models has been studied by several authors, even considering coupling with Poisson
equation and boundary conditions [36,21,19]. We have a(v) = (1, v) which means that
the conserved quantities are the macroscopic density ρ = ∫

f dv and the macroscopic
momentum ρu = ∫ vf dv. The kinetic entropy functional is given by

H(f, v) =
( |v|2

2
+ ln(f )

)
f.

Note that H is not nonnegative. We have the following result.

LEMMA 6. We denote

Q(f, v) = divv

(
(v − u)f + ∇vf

)
.

Then for every function f ∈ C∞
c (RN), f > 0, (43), (44) and (46) are fulfilled, with:

D(f ) =
∫

RN

|(v − u)f + ∇vf |2
f

dv � 0.

Hence (48) is admissible up to a constant.
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PROOF. Estimate (43) is fulfilled thanks to the divergence form of Q and the definition
of u. A simple calculation gives∫

RN

dH

df
(f, v)Q(f, v) dv =

∫
RN

( |v|2
2

+ 1 + ln f

)
divv

(
(v − u)f + ∇vf

)
dv

= −
∫

RN

(v + ∇vf/f )
(
(v − u)f + ∇vf

)
dv

= −
∫

RN

|(v − u)f + ∇vf |2
f

dv,

where we have used the fact that∫
RN

u · ((v − u)f + ∇vf
)

dv = 0.

This gives (44) with the desired form on D. To verify (46), it is enough to control
∫
((1 +

|v|2 + | ln f |)f dv. The difficulty comes from the fact that H is not nonnegative. This can
be solved in a very classical way. The result follows the fact that there exists C > 0 such
that

(49)
∫

f �1
f | ln f | dv �

∫
RN

(
1 + |v|2

8

)
f dv + C.

Indeed this implies that:

3
∫

f dv +
∫

H(f, v) dv =
∫ (

3 + |v|2
2

)
f dv +

∫
f ln f dv

=
∫ (

3 + |v|2
2

)
f dv +

∫
f | ln f | dv − 2

∫
f �1

f | ln f | dv

�
∫ |v|2

4
f dv +

∫
f dv − 2C + 1

2

∫
f | ln f | dv.

So ∫ (| ln f | + 1 + |v|2)f dv � 4

(
3
∫

f dv +
∫

H(f, v) dv

)
+ 8C,

which leads to (46). To show (49), we write:∫
f �1

f | ln f | dv �
∫

e−|v|2/8−1�f �1
f | ln f | dv +

∫
f �e−|v|2/8−1

f | ln f | dv

�
∫

RN

(
1 + |v|2/8

)
f dv +

∫
RN

(|v|2/8 + 1
)

e−|v|2/8−1 dv

� C +
∫

RN

(
1 + |v|2/8

)
f dv.

In the second line we have used that f | ln f | is decreasing for f < 1/e. �

We have now the following result of global existence in time of solution of (48).
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THEOREM 1. Let f 0 ∈ L1(TN × R
N) be a nonnegative initial value with finite entropy:∫

TN

∫
RN

H(f 0, v) dv dx < ∞.

Then there exists an entropy solution f ∈ L∞
loc(0,∞; L1(TN × R

N)) to (48).

The proof of this result can be found in [36]. It makes use of the so-called averaging
lemmas giving some compactness on moments of f in v. See [1,53,52,78].

3.2. Kinetic formulation of balance laws

In this section, we introduce a nice kinetic theory which is not associated to a micro-
scopic physical phenomena. The theory of kinetic formulation of conservation laws and
balance laws has been introduced, mainly, for numerical purposes. Kaniel, in his pio-
neering work [62], introduced a nonphysical kinetic model to model the isentropic gas
dynamic. The key idea was to develop equations involving local equilibrium function
(or “Maxwellian functions”) which are compactly supported in v (compared to the usual
Gaussian for the Boltzmann equation). Brenier [25], and independently Giga and Myakawa
[49], developed the numerical “transport-collapse” method to compute scalar conservation
laws, based on this principle. (See also Brenier [26], for applications on systems.) This the-
ory was later extensively developed, both for theoretical purpose (see Lions Perthame and
Tadmor [68,67] but also [28,12,14,43,91,92]), and to construct efficient numerical schemes
[24,23]. Note that the aim is not to compute the kinetic equation itself which is far more
costly to compute, but rather, to take advantage of the kinetic structure to design effective
macroscopic numerical schemes. The method has been extended also for balance laws in-
volving extern sources [20,77,5,4,33,32]. In this context, the hydrodynamic limit is linked
to the study of the validation of the numerical scheme. The study of the behavior near sin-
gularities can describe the consistence of those schemes in singular situations. For a review
on the kinetic theory of conservation laws, see Perthame [76].

In the following we present a model for the multi-variable isentropic balance laws which
can be found in Bouchut [22]. For γ > 1 we consider the following BGK kinetic equa-
tion associated to the system of balance laws of the isentropic gas dynamic (25) with the
same γ .

(50)∂tf + v · ∇xf + F(x) · ∇vf = Mf − f,

where the unknown is f = f (t, x, v) ∈ R with t ∈ R
+, x, v ∈ R

N . The force term
F : R

N → R
N is given. The equilibrium function Mf is defined in the following way

(51)Mf (t, x, v) = M
(
ρ(t, x), ρu(t, x), v

)
,

with

ρ(t, x) =
∫

RN

f (t, x, v) dv,

ρu(t, x) =
∫

RN

vf (t, x, v) dv,
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where the Maxwellian M : R
p × R

N → R is given by

(52)M(ρ, ρu, v) = 1|u−v|N�cnρ for γ = N + 2

N
,

(53)M(ρ, ρu, v) = c

(
2γ

γ − 1
ργ−1 − |v − u|2

)d/2

+
else.

The constants are given by

cn = n/|Sn|,
d = 2

γ − 1
− n,

c =
(

2γ

γ − 1

)−1/(γ−1)
�(γ /(γ − 1))

πN/2�(d/2 + 1)
.

We set a(v) = (1, v). We have the following result (see Perthame [76]).

LEMMA 7. The kinetic entropy is the following:

H(f, v) = |v|2
2

f, for γ = N + 2

N
,

H(f, v) = |v|2
2

f + 1

2c2/d

f 1+2/d

1 + 2/d
else.

Then for every function f ∈ C∞
c (RN), f > 0, we have

(54)
∫

RN

H
(
M(U, v), v

)
dv �

∫
RN

H(f, v) dv.

Moreover, (43), (44), and (45) are fulfilled, with:

D(f ) =
∫

RN

H(Mf |f, v) + H(f, v) − H(Mf, v) dv � 0,

where H(Mf |f, v) is the relative entropy with v fixed, namely

H(Mf |f, v) = H(Mf, v) − H(f, v) − ∂H

∂f
(f, v)(Mf − f ).

Hence (50) is admissible.

PROOF. Let us denote

U = (ρ, ρu) =
∫

RN

a(v)f dv.

Estimate (43) is fulfilled by construction of Mf since:∫
RN

a(v)M(U, v) dv = U.
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To get (44) it is enough to check that, from the definition of relative quantity:

∂H

∂f
(Mf − f ) = −(H(Mf |f, v) + H(f ) − H(Mf )

)
.

Since H is convex with respect to the variable f , H(Mf |f, v) � 0. Estimate (54) can be
found in [76].

The estimate (45) is clearly fulfilled since all the term can be controlled by:∫
RN

[(
1 + |v|2)f + H(f, v)

]
dv,

which is smaller than∫
RN

f + 2H(f, v) dv. �

We have now the following result of global existence in time of solution of (50) which
can be found in [22].

THEOREM 2. Let f 0 ∈ L1(Ω × R
N) be a nonnegative initial value with finite entropy:∫

TN

∫
RN

H(f 0, v) dv dx < ∞.

Then there exists an entropy solution f ∈ L∞
loc(0,∞; L1(Ω × R

N)) to (50).

3.3. Coupled system of Navier–Stokes Fokker–Planck equations

We consider the following system of equations in Ω = T
N :

(55)∂tf + v · ∇xf + divv

(
(u − v)f − ∇vf

) = 0,

(56)∂tρ + divx(ρu) = 0,

(57)∂t (ρu) + divx(ρu ⊗ u) + ∇xρ
γ − ν�u = (J − nu),

where n = ∫ f (x, v, t) dv and J = ∫ vf (x, v, t) dv.
This system of equations models the evolution of dispersed particles in a compressible

fluid. This kind of system arises in a lot of industrial applications. One example is the analy-
sis of sedimentation phenomenon, with applications in medicine, chemical engineering or
waste water treatment (see [11,48,84,88]). Such systems are also used in the modeling
of aerosols and sprays with applications, for instance, in the study of Diesel engines (see
Williams [94,93]).

At the microscopic scale, the cloud of particles is described by its distribution function
f (x, v, t), solution to a Vlasov–Fokker–Planck equation. The fluid, on the other hand, is
modeled by macroscopic quantities, namely its density ρ(x, t) � 0 and its velocity field
u(x, t) ∈ R

N . We assume that the fluid is compressible and isentropic, so that (ρ, u) solves
the compressible Euler or Navier–Stokes system of equations. The fluid-particles interac-
tions are modeled by a friction (or drag) force exerted by the fluid onto the particles. This
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force is assumed to be proportional to the relative velocity of the fluid and the particles:

Fd = (u(x, t) − v
)
.

The right hand-side in the Euler equation takes into account the action of the cloud of
particles on the fluid:

Ff = −
∫

Fdf dv =
∫ (

v − u(x, t)
)
f (x, v, t) dv.

For the sake of simplicity, we assume that the pressure term is given by

p = ργ ,

though more general pressure terms could be taken into consideration.
This particular Vlasov–Navier–Stokes system of equations is used, for instance, in the

modeling of reaction flows of sprays (see Williams [94,93]) and is at the basis of the code
KIVA-II of the Los Alamos National Laboratory (see O’Rourke et al. [2] and Amsden [3]).
We refer to the nice paper of Carrillo and Goudon [37] for a discussion on various modeling
issues and stability properties of this system of equations. Mathematical studies on related
model can be found in [60,61,16].

Although this system is not exactly of the form (42), the study of its hydrodynamic limit
is very similar. For this reason we introduce it here.

We have the following global existence result which can be found in Mellet and Vasseur
[74] in a more general setting dealing with boundary conditions. See also [36].

THEOREM 3. Let f0(x, v) � 0, ρ0(x) � 0 and u0(x) be integrable and such that:∫
TN

(∫
RN

( |v|2
2

+ ln f 0
)

f 0 dv + ρ0|u0|2
2

+ ρ0γ

γ − 1

)
dx < ∞.

Assume moreover that f0 ∈ L∞(TN × R
N) and that

ν > 0 and γ > 3/2.

Then, there exists a weak solution (f, ρ, u) of (55)–(57) defined globally in time. Moreover,
this solution satisfies the usual entropy inequality:∫

TN

H
(
f (t), ρ(t), u(t)

)
dx +

∫ t

0

∫
TN

D(f, u) dx ds + ν

∫ t

0

∫
TN

|∇u|2 dx ds

(58)�
∫

TN

H(f0, ρ0, u0) dx,

where:

H(f, ρ, u) =
∫

RN

[ |v|2
2

f + f ln f

]
dv + ρ

|u|2
2

+ 1

γ − 1
ργ + 1

e
,

D(f, u) =
∫

RN

∣∣(u − v)f − ∇vf
∣∣2 1

f
dv.
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4. Hydrodynamic limits

Kinetic theory provides a more refined models, valid even when thermodynamical local
equilibrium is not fulfilled. However, it is more complicated and far more costly to compute
than the related macroscopic model. We investigate in this section the link between those
two kinds of models.

4.1. Compatibility conditions

We consider a kinetic equation (42) with a convex entropy H . We say that this kinetic
equation is consistent with the balance law (1) if there exists a constant C0 � 0 such that
for any f ∈ C∞

c (RN), f � 0

(59)η(U) = inf

(
H(f )

∣∣∣ ∫
RN

a(v)f dv = U

)
,

with

(60)H(f ) =
∫

RN

H
(
f (v), v

)
dv + C0,

and there exists a constant C such that for any f ∈ C∞
c (RN), f � 0

(61)

∣∣∣∣A(U) −
∫

RN

v ⊗ a(v)f dv

∣∣∣∣ � C
(√

H
√

D + D
)
,

(62)

∣∣∣∣Q(U) −
∫

RN

(
F(x) · ∇v

)
a(v)f dv

∣∣∣∣ � C
(√

H
√

D + D
)
,

(63)

∣∣∣∣η′(U) · Q(U) −
∫

RN

(F · ∇v)

[
∂H

∂f
(f, v)

]
f dv

∣∣∣∣ � C
(√

H
√

D + D
)
,

where

(64)U =
∫

RN

a(v)f (v) dv.

This is a consistency property. It shows that, when the dissipation of kinetic entropy D

is small, then the macroscopic flux quantities
∫

v ⊗ a(v)f dv correspond to the fluid flux
function taken at the conservative quantities A(U). The condition (59) is a consistency
property between the kinetic entropy functional and the fluid entropy functional. It requires
that any kinetic functional f with conserved quantities a given U ,

∫
a(v)f dv = U , has an

macroscopic entropy bigger than the entropy functional given at this U .

4.2. Scaling

We consider Eq. (42) at a scale where the collision operator Q is predominant. For this
matter, we introduce a parameter ε > 0 and the related family of equation:

(65)∂tfε + v · ∇xfε + F · ∇vfε = Q(fε, v)

ε
,
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(66)fε(0, x, v) = f 0
ε (x, v).

PROPOSITION 6. We consider a kinetic equation (42). We assume that it is either admissi-
ble, or admissible up to a constant with Ω = T

N . Let fε ∈ L∞
loc(0,∞; L1(Ω)) be a family

of entropy solution to the rescaled equation (65), (66) with f 0
ε � 0 such that

∫
f 0

ε dv dx

and
∫∫

H(f 0
ε , v) dv dx are uniformly bounded. Then, for every T > 0, there exists CT > 0

such that for every ε > 0

(67)sup
0�t�T

∫
Ω

∫
RN

(
fε + ∣∣H(fε, v)

∣∣) dv dx � CT ,

(68)
∫ T

0

∫
Ω

D(fε) dx dt � CT ε.

PROOF. Using (46) and (47) we find

d

dt

∫
Ω

∫
RN

(
H(fε, v) + αfε

)
dv dx +

∫
D(fε)

ε
dx

� C

(∫
Ω

∫
RN

(
H(fε, v) + αfε

)
dv dx + 1

)
.

If (42) is admissible, this is verified even without the term +1. If it is admissible up to a
constant, this is still true with Ω = T

N . Using Gronwall’s argument gives that for every
0 � t � T∫∫ (

H(fε, v) + αfε

)
dv dx �

(∫
Ω

∫
RN

(
H(f 0

ε , v) + αf 0
ε

)
dv dx

)
eCt + eCt

C

� CT .

Then ∫ t

0

∫
Ω

D(fε) dx dt

ε
�
[ ∫

Ω

∫
RN

(
H(fε, v) + αfε

)
dv dx

]0

t

+ C

∫ t

0

∫
Ω

∫
RN

(
H(fε, v) + αfε

)
dv dx ds + Ct � CT .

Finally, from (46), we have∫∫ ∣∣H(f, v)
∣∣ dv dx � C

(∫∫ (
H(fε, v) + αfε

)
dv dx + 1

)
� CT . �

4.3. Asymptotic limit

We show in this section, how the previous formalism can be used to obtain asymptotic
limits. The following theorem is mainly due to Berthelin and al [15].

THEOREM 4. Let (42) be a kinetic equation, either admissible or admissible up to a con-
stant, with convex kinetic entropy H , and consistent with a (at least) locally admissible
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balance law (1) on V . If either (42) is only admissible only up to a constant, or (1) is only
locally admissible on V , then we consider only the case Ω = T

N . We consider a family of
entropy solutions fε to the rescaled kinetic equations (65). We set

Uε(t, x) =
∫

RN

a(v)fε(t, x, v) dv,

and assume that for every t, x

Uε(t, x) ∈ U .

We assume in addition the convergence of initial data, that is there exists U0 ∈ L1(Ω)

such that

(69)U0
ε

L1(Ω)−→ U0,

and

(70)
∫

Ω

∣∣∣∣
∫

RN

H
(
f 0

ε , v
)

dv − η(U0)

∣∣∣∣ dx → 0,

when ε tends to 0. Then, there exists U , dissipative solution to (1) on (0,∞)×Ω with initial
value U0 such that, up to a subsequence, Uε converges weakly to U in L

p

loc(0,∞; L1
loc(Ω))

for any 1 � p < ∞. If Φi(y) � yγi , then the Uε,i converges weakly to Ui in L
p

loc(0,∞;
Lq(Ω)) for 1 � p < ∞ and 1 � q < γi . In particular, we have the following special
cases.

• If U is a dissipative test function on [0, T ), and there exists C0 > 0 such that

(71)
∫

Ω

η
(
U0

ε |U0) dx +
∫

Ω

∣∣∣∣
∫

RN

H
(
f 0

ε , v
)

dv − η
(
U0

ε

)∣∣∣∣ dx � C0
√

ε,

then, for every t < T , there exists a constant Ct such that

(72)
∫

RN

η(Uε|U)(s, x) dx � Ct

√
ε for any s ∈ [0, t].

Moreover, the whole family Uε converges strongly to U in C0(0, T ; L1
loc), for T < T .

If Φi(y) � |y|γi for y > 0, then the component Uε,i converges strongly to Ui in
C0(0, T ; L

q

loc(Ω)) for 1 � p < ∞, 1 � q < γi and T < T .
• If U0 is a initial value verifying the hypothesis of Proposition 4 (discontinuities lead-

ing to rarefaction waves) then the whole family Uε converges to U∗ on (0, T ).

PROOF OF THEOREM 4. Thanks to Proposition 6 and (59), η(Uε) is uniformly bounded in
L∞(0, T ; L1(Ω)) for every T > 0. Since (1) is admissible on V , (11) implies that, up to a
subsequence, Uε converges weakly to a U in L

p

loc(L
1
loc), where η(U) + |U | is in L∞

loc(L
1).

Multiplying the kinetic equation by a(v) and integrating with respect to v, we find that Uε

is solution to (20) with

Aε =
∫

RN

v × a(v)fε dv,
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Qε =
∫

RN

(F · ∇v)a(v)fε dv.

Multiplying the kinetic equation by ∂H
∂f

(fε, v) and integrating with respect to v, we find
that Uε verifies (21) with

ηε =
∫

RN

H(fε, v) dv,

Gε =
∫

RN

vH(fε, v) dv,

Rε =
∫

RN

(F · ∇v)

[
∂H

∂f
(fε, v)

]
fε dv.

Estimate (23) follows (59). Proposition 6 gives that

∫ T

0

∫
Ω

Dε dx dt � CT ε

converges to 0. Since (42) is consistent with (1), we have

∫ T

0

∫
Ω

Rε dx dt

� C

(√∫ T

0

∫
Ω

H(fε) dx dt

√∫ T

0

∫
Ω

Dε dx dt +
∫ T

0

∫
Ω

Dε dx dt

)

� CT

√
ε.

Hence, Proposition 3 gives the result.
If U is an dissipative test function on [0, T ), using Proposition 3 with V = U , we have,

thanks to (61), (62):∫
Ω

(
ηε − η(Uε)

)
(t) dx +

∫
Ω

η(Uε|U)(t) dx

� C0
√

ε exp

(∫ t

0
σU(τ) dτ

)

+ C

∫ t

0
exp

(∫ t

τ

σU (s) ds

){√
Hε

√
Dε + Dε

}
dx dt

� CT

√
ε.

Hence, η(Uε|U) converges to 0 in C0(0, T ; L1(Ω)), for T < T . Thanks to (11), Uε con-
verges strongly to U in C0(0, T ; L1

loc(Ω)). By uniqueness of the limit, the whole family is
converging.

If U0 verifies the hypothesis of Proposition 4, then the uniqueness result of this propo-
sition gives the result. �
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4.4. Hydrodynamic limit from Fokker–Planck equation to isothermal system of gas

In this section, we study the convergence from the rescaled Fokker–Planck kinetic equation
to the isothermal system (29). We study the equation for x ∈ Ω = T

N . The result can be
found in [15]. The rescaled kinetic equation reads

∂tfε + v · ∇xfε + F · ∇vfε + divv((uε − v)fε − ∇vfε)

ε
= 0,

x ∈ T
N, v ∈ R

N,

(73)fε(0, x, v) = f 0
ε (x, v), x ∈ T

N, v ∈ R
N,

where uε is defined for t, x such that
∫

fε(t, x, v) dv > 0 by

uε(t, x)

∫
RN

fε(t, x, v) dv =
∫

RN

vfε(t, x, v) dv.

We have the following results.

THEOREM 5. Let F be in C2(TN) ∩ L∞(TN). Let fε be a family of entropy solutions
to (73). We set

Uε(t, x) =
∫

RN

(1, v)fε(t, x, v) dv = (ρε, ρεuε).

We assume the convergence of initial data, that is(∫
RN

(
f 0

ε , vf 0
ε ,H(f 0

ε )
)

dv

)
L1(TN )−→ (

ρ0, ρ0u0, ρ0u02
/2 + ρ0 ln

(
ρ0/(2πN/2)

))
,

when ε tends to 0. Then, there exists (ρ, u), dissipative solution on (0,∞) × Ω to (29)
with initial value (ρ0, ρ0u0) such that ρε converges weakly to ρ in L

p

loc(0,∞; L1
loc(T

N))

for any 1 � p < ∞ and ρεuε converges weakly to ρu in L
p

loc(0,∞; L1
loc(T

N)) for any
1 � p < ∞. In particular, we have the following special cases.

• If there is T > 0 such that U = (ρ, ρu) ∈ W 1,∞([0, T ] × T
N) ∩ L∞(0, T ; L1),

with ρ > 0 and u ∈ W 1,∞([0, T ] × T
N), for every T < T , then the whole family

(ρε, ρεuε) converges strongly in C0(0, T ; L1
loc(T

N)) to (ρ, ρu) for every T < T .
• If U0 is a discontinuous initial value verifying the hypothesis of Proposition 4 (rar-

efaction wave), or Vψ defined in Section 2.8.2, then the whole sequence Uε converges
to U∗ on [0, T ).

The only technical point in the rest of the proof, is to show that (48) is consistent with
(29). We can then use Theorem 4 since (48) and (29) are admissible. We have a(v) = (1, v)

and

Q(f, v) = divv

(
(v − u)f + ∇vf

)
, (ρ, ρu) =

∫
RN

a(v)f dv.

The functional η(U) = ρ|u|2/2 + h(ρ) + 1/e is a strictly convex entropy, since it is the
sum of the strictly convex entropy (30) and a linear function of U . Estimate (59) is verified
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since

η(U) =
∫

RN

H

(
ρ

(2π)N/2
e|v−u|2/2, v

)
dv �

∫
RN

H(f, v) dv.

The estimates (62) and (63) are straightforward since

∂f H(f, v) = |v|2
2

+ 1 + ln f.

Indeed ∫
RN

∂f H(f, v)F (x) · ∇vf dv = −ρuF(x)

= −η′(ρ, ρu)Q(ρ, ρu).

To show (61), we have to estimate∣∣∣∣A(U) −
∫

RN

v ⊗ a(v)f dv

∣∣∣∣.
In this case, it is quite easy. The first component is zero. The second one is

E2 =
∣∣∣∣ρu ⊗ u + ρI −

∫
RN

v ⊗ vf dv

∣∣∣∣,
which can be rewritten as

E2 =
∣∣∣∣
∫

RN

v ⊗ [(u − v)f − ∇vf
]

dv

∣∣∣∣,
since ∫

RN

v ⊗ ∇vf dv = −
∫

RN

f dv.

Thus we get∣∣∣∣A2(U) −
∫

RN

v ⊗ a2(v)f dv

∣∣∣∣
�
(∫

RN

|v|2f dv

)1/2(∫
RN

((v − u)f + ∇vf )2

f
dv

)1/2

,

which concludes the proof.

4.5. Hydrodynamic limits to isentropic gas dynamics

As a consequence of the Theorem 4, we show the asymptotic limit of the rescaled BGK
models to the system of isentropic gas dynamics. The results presented here are due to
Berthelin and al [15]. The rescaled kinetic equation from (50) for 1 < γ � N/(N + 2) is

∂tfε + v · ∇xfε + F(x) · ∇vfε = Mfε − fε

ε
, t > 0, x ∈ R

N, v ∈ R
N,

(74)fε(0, ·, ·) = f 0
ε , x ∈ R

N, v ∈ R
N.
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THEOREM 6. Let F be in C2(RN) ∩ L∞(RN). Let fε be a family of entropy solutions
to (74). We set

Uε(t, x) =
∫

RN

(1, v)fε(t, x, v) dv = (ρε, ρεuε).

We assume the convergence of initial data, that is(∫
RN

(
f 0

ε , vf 0
ε ,H(f 0

ε )
)

dv

)
L1(RN)−→ (

ρ0, ρ0u0, ρ0u02 + ρ0γ
/(γ − 1)

)
,

when ε tends to 0. Then, there exists (ρ, u), dissipative solution on (0,∞)×R
N to (25) with

initial value (ρ0, ρ0u0) such that ρε converges weakly to ρ in L
p

loc(0,∞; L
q

loc(R
N)) for any

1 � p < ∞ and 1 � q < γ , and ρεuε converges weakly to ρu in L
p

loc(0,∞; L
q

loc(R
N))

for any 1 � p < ∞ and 1 � q < 2γ /(γ + 1). In particular we have the special following
cases:

• If there is T > 0 such that U = (ρ, ρu) ∈ W 1,∞([0, T ] × R
N) ∩ L∞(0, T ; L1),

with ρ > 0 and u ∈ W 1,∞([0, T ] × R
N), for every T < T , then the whole family

ρε converges strongly in C0(0, T ; L
p

loc(R
N)) to ρ for every 1 � p < γ and the

whole family ρεuε converges strongly to ρu in C0(0, T ; L
q

loc(R
N)) for every 1 � q <

2γ /(γ + 1) and T < T .
• If U0 is a discontinuous initial value verifying the hypothesis of Proposition 4 (rar-

efaction wave), or the steady state Vψ defined in Section 2.8.2, then the whole se-
quence Uε converges to U∗ on [0, T ).

The only difficulty to apply Theorem 4 is to show that (50) is consistent with (25),
namely:

PROPOSITION 7. For every nonnegative f ∈ C∞
c (RN) we have

(75)

∣∣∣∣
∫

RN

(
v ⊗ a(v)

)
(f − Mf ) dv

∣∣∣∣ � C(
√
H

√
D + D).

In particular (50) is consistent to (25).

We postpone the proof of this proposition to prove Theorem 6.

PROOF OF THEOREM 6. The system (25) is admissible on V = (0,∞) × R
N , U = V ∪

(0, 0). Thanks to Lemma 7, (50) is admissible. Thanks to Proposition 7, (50) is consistent
with (25). Hence, Theorem 6 is a direct consequence of Theorem 4, since

Φρ(y) = yγ , Φρu(y) = y2γ /(γ+1).

Indeed

|ρu| 2γ
γ+1 � (

√
ρ )2γ

(√
ρ |u|)2. �
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Let us first show that (75) implies that (50) is consistent with (25). Estimate (59) comes
from (54). Since

A(U) =
∫

RN

v ⊗ a(v)Mf dv,

and

Q(U) =
∫

RN

(
F(x) · ∇v

)
a(v)Mf dv,

it gives

(76)

∣∣∣∣A(U) −
∫

RN

v ⊗ a(v)f dv

∣∣∣∣ =
∣∣∣∣
∫

RN

v ⊗ a(v)(Mf − f ) dv

∣∣∣∣,
(77)

∣∣∣∣Q(U, x) −
∫

RN

(
F(x) · ∇v

)
a(v)f dv

∣∣∣∣ =
∣∣∣∣
∫

RN

F (x)∇va(v)(f − Mf ) dv

∣∣∣∣,
and ∣∣∣∣η′(U)Q(U) −

∫
F(x) · ∇v

[
∂H

∂f
(f, v)

]
f dv

∣∣∣∣ = 0.

We have ∫
RN

∂vi
aj (v)(f − Mf ) dv = δi+1,j

∫
RN

(f − Mf ) dv = 0,

thus (62) and (63) are satisfied. Finally (75) and (76) give (61). It remains to show (75).
We will consider only the simpler case γ = (N +2)/N . For the full range we refer to [15].

Case γ = (N + 2)/N . We have

D(f ) =
∫

RN

|v|2(f − Mf ) dv.

But we need to control∣∣∣∣
∫

RN

v ⊗ a(v)(Mf − f ) dv

∣∣∣∣,
which is more delicate. We set a1(v) = 1 and a2(v) = v such that a = (a1, a2). Similarly,
we define A1(U) = ρu and A2(U) = ρu ⊗ u + Iργ . Since

A(U) =
∫

RN

v ⊗ a(v)Mf dv,

the first component of | ∫
RN v ⊗ a(v)(Mf − f ) dv| is still zero here. Now we have∣∣∣∣A2(U) −

∫
RN

v ⊗ vf dv

∣∣∣∣ =
∣∣∣∣
∫

RN

(v − u) ⊗ (v − u)(Mf − f ) dv

∣∣∣∣
�
∫

RN

|v − u|2|Mf − f | dv.
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The first equality uses

(78)
∫

a(v)[Mf − f ] dv = 0.

Thus to control the second component, we want to show that∫
RN

|v − u|2|Mf − f | dv

can be controlled (at least for bounded entropy) by the dissipation of entropy∫
RN

|v|2(f − Mf ) dv.

For γ = (N + 2)/N , Proposition 7 is then a consequence of the following result.

PROPOSITION 8. For every f ∈ L1(RN) verifying 0 � f � 1, and every u ∈ R
N we

denote

ρ =
∫

RN

f (v) dv,

F =
∫

RN

|v − u|2∣∣f (v) − M(ρ, u, v)
∣∣ dv,

D =
∫

RN

|v|2(f (v) − M(ρ, u, v)
)

dv.

Then there exists a constant CN such that, for every f ∈ L1(RN) verifying 0 � f � 1,

F � CN(ρN+2/(2N)
√

D + D)

� CN(
√
H

√
D + D).

To prove this result, we first introduce some notations and prove preliminary results.
Notice that, thanks to (78),

D =
∫

RN

|v − u|2(f (v) − M(ρ, u, v)
)

dv.

Then changing v by v+u if necessary, we see that we can restrict ourself to the case u = 0.
We first reduce the problem to a one dimensional problem. We introduce the following
quantities:

f̄ (r) = 1

|SN |
∫

SN

f (rσ ) dσ,

M(r) = 1

|SN |
∫

SN

M(ρ, 0, rσ ) dσ = 1{rN�cNρ}(r).

Since the integral of f is equal to the integral of M(ρ, 0, ·), we have

(79)
∫ ∞

0
rN−1f̄ (r) dr =

∫ ∞

0
rN−1M(r) dr.
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We denote r1 = (cNρ)
1
N , we have

F = |SN |
∫ ∞

0
rN+1

∣∣f̄ (r) − M(r)
∣∣ dr

= |SN |
(∫ r1

0
rN+1(1 − f̄ (r)

)
dr +

∫ ∞

r1

rN+1f̄ (r) dr

)
,

D = |SN |
∫ ∞

0
rN+1(f̄ (r) − M(r)

)
dr

= |SN |
(

−
∫ r1

0
rN+1(1 − f̄ (r)

)
dr +

∫ ∞

r1

rN+1f̄ (r) dr

)
.

We define in addition

M =
∫ r1

0
rN−1(1 − f̄ (r)

)
dr =

∫ ∞

r1

rN−1f̄ (r) dr,

the last equality comes from (79) and M(r) = 1{r�r1}(r). We have to do a different treat-
ment for values close to r1 and far from this value. For this purpose we consider r2 > r1 a
new number which will be fixed later on. Then we denote

M1 =
∫ r2

r1

rN−1f̄ (r) dr,

M2 =
∫ ∞

r2

rN−1f̄ (r) dr.

We have M = M1 + M2. Then we define 0 < r0 < r1 (in a unique way when r2 is chosen)
in the following way

M1 =
∫ r1

r0

rN−1(1 − f̄ (r)
)

dr.

Then, from the definition to M and since M is the sum of M1 and M2, we have

M2 =
∫ r0

0
rN−1(1 − f̄ (r)

)
dr.

In the same way we define F1, F2,D1,D2 in the following way

F1 =
∫ r2

r0

rN+1
∣∣f̄ (r) − M(r)

∣∣ dr

=
∫ r1

r0

rN+1(1 − f̄ (r)
)

dr +
∫ r2

r1

rN+1f̄ (r) dr,

F2 =
∫ r0

0
rN+1

∣∣f̄ (r) − M(r)
∣∣ dr +

∫ ∞

r2

rN+1
∣∣f̄ (r) − M(r)

∣∣ dr

=
∫ r0

0
rN+1(1 − f̄ (r)

)
dr +

∫ ∞

r2

rN+1f̄ (r) dr,

D1 =
∫ r2

r0

rN+1(f̄ (r) − M(r)
)

dr
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= −
∫ r1

r0

rN+1(1 − f̄ (r)
)

dr +
∫ r2

r1

rN+1f̄ (r) dr,

D2 =
∫ r0

0
rN+1(f̄ (r) − M(r)

)
dr +

∫ ∞

r2

rN+1(f̄ (r) − M(r)
)

dr

= −
∫ r0

0
rN+1(1 − f̄ (r)

)
dr +

∫ ∞

r2

rN+1f̄ (r) dr.

Notice that F1, F2,M1,M2 are nonnegative (as integrals of nonnegative functions) and
verify

M = M1 + M2,

F = F1 + F2,

D = D1 + D2.

We can show, in addition, that D1 and D2 are nonnegative too.

LEMMA 8. We have

D1 � 0, D2 � 0.

PROOF. We show the result for D1 (the proof is similar for D2). We have∫ r2

r1

rN+1f̄ (r) dr =
∫ r2

r1

r2(rN−1f̄ (r)
)

dr � r2
1 M1,∫ r1

r0

rN+1f̄ (r) dr =
∫ r1

r0

r2(rN−1f̄ (r)
)

dr � r2
1 M1.

Since D1 is the difference of those two terms we find that D1 is nonnegative. �

We first consider the values far from r1.

LEMMA 9. We can dominate F2 by D2 in the following way:

F2 � D2

(
r2

1 + r2
2

r2
2 − r2

1

)
.

PROOF. We have∫ ∞

r2

rN+1f̄ (r) dr � r2
2M2

� r2
2

1

r2
0

∫ r0

0
rN+1(1 − f̄ (r)

)
dr

�
r2

2

r2
1

∫ r0

0
rN+1(1 − f̄ (r)

)
dr.
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Hence we have

D2 �
(

r2
2

r2
1

− 1

)∫ r0

0
rN+1(1 − f̄ (r)

)
dr.

But F2 can be expressed in the following way

F2 = D2 + 2
∫ r0

0
rN+1(1 − f̄ (r)

)
dr.

Those two expressions lead to

F2 � D2

(
r2

1 + r2
2

r2
2 − r2

1

)
. �

We consider now the values close to r1.

LEMMA 10. There exists a > 0 and a constant CN depending only on N such that if
|r2 − r1| � ar1 then

F1 � CNa2ρ(N−2)/2N
√

D1.

PROOF. We split the proof in several parts.
(i) Minimization of the entropy dissipation. We define α and β such that

M1 =
∫ β

r1

rN−1 dr =
∫ r1

α

rN−1 dr.

From the definition of M1, notice that β � r2. In the same way we have α � r0. We want
to show that

D1 �
∫ β

r1

rN+1 dr −
∫ r1

α

rN+1 dr.

First we calculate∫ r2

r1

rN+1f̄ (r) dr −
∫ β

r1

rN+1 dr

=
∫ β

r1

r2[rN−1(f̄ (r) − 1)
]

dr +
∫ r2

β

r2[rN−1f̄ (r)
]

dr

=
∫ r2

β

r2[rN−1f̄ (r)
]

dr −
∫ β

r1

r2[rN−1(1 − f̄ (r)
)]

dr

� β2
[ ∫ r2

β

rN−1f̄ (r) dr −
∫ β

r1

rN−1(1 − f̄ (r)
)

dr

]

� β2(M1 − M1) = 0.

In the same way we calculate∫ r1

r0

rN+1(f̄ (r) − 1
)

dr +
∫ r1

α

rN+1 dr



368 A.F. Vasseur

=
∫ α

r0

rN+1(f̄ (r) − 1
)

dr +
∫ r1

α

rN+1f̄ (r) dr

� α2
[ ∫ α

r0

rN−1(f̄ (r) − 1
)

dr +
∫ r1

α

rN−1f̄ (r) dr

]
� 0.

Summing those two last inequalities gives the desired result.
(ii) Taylor expansion of the critical entropy dissipation. We call critical entropy dissipa-

tion the function defined by

Dc =
(∫ β

r1

rN+1 dr −
∫ r1

α

rN+1 dr

)
,

where α and β are defined in (i). Then we have

nM1 = βN − rN
1 ,

nM1 = rN
1 − αN,

(n + 2)Dc = βN+2 − 2rN+2
1 + αN+2,

therefore

Dc

rN+2
1

= α + β − 2r1

r1
+ n + 1

2

((
β − r1

r1

)2

+
(

α − r1

r1

)2)

+ O

((
β − r1

r1

)3

+
(

α − r1

r1

)3)
.

Now

M1

rN
1

= β − r1

r1
+ n − 1

2

(
β − r1

r1

)2

+ O

(
β − r1

r1

)3

= r1 − α

r1
− n − 1

2

(
r1 − α

r1

)2

+ O

(
r1 − α

r1

)3

,

hence

0 = β + α − 2r1

r1
+ n − 1

2

[(
β − r1

r1

)2

+
(

r1 − α

r1

)2]

+ O

((
β − r1

r1

)3

+
(

r1 − α

r1

)3)
.

Finally we obtain

Dc

rN+2
1

=
[(

β − r1

r1

)2

+
(

r1 − α

r1

)2]
+ O

((
β − r1

r1

)3

+
(

r1 − α

r1

)3)

= 2

(
M1

rN
1

)2

+ O

((
β − r1

r1

)3

+
(

r1 − α

r1

)3)
.
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Hence, there exists η > 0 and δ > 0 such that

Dc � δ

rN−2
1

M2
1

whenever ∣∣∣∣β − r1

r1

∣∣∣∣+
∣∣∣∣ r1 − α

r1

∣∣∣∣ � η.

(iii) Final estimation. From the definition of α, there exists a > 0 such that |(r1 − α)/r1| �
η whenever |(β − r1)/r1| � a. Remember that r2 � β. Hence if |r2 − r1| � ar1 then∣∣∣∣β − r1

r1

∣∣∣∣+
∣∣∣∣ r1 − α

r1

∣∣∣∣ � η,

and

F1 � r2
2 M1 � a2δ

√
Dc r

(N+2)/2
1

� CNa2
√

D1 ρ(N+2)/(2N).

The first inequality uses the definition to F1, the second one uses the result of (ii), and the
third one uses the definition to r1 and the result of (i). �

Now we are able to prove the estimate of Proposition 8.

PROOF OF PROPOSITION 8. We fix a and r2 verifying the properties of Lemma 10. Thanks
to Lemmas 9 and 10 we have:

F � F1 + F2 � D2

(
1 + a

a

)
+ CNρ(N+2)/2N

√
D1

� C′
N

(
D + ρ(N+2)/2N

√
D
)
.

�

4.6. Hydrodynamic limits of the Fokker–Planck Navier–Stokes system

We consider the case x ∈ T
N . We denote

η
(
n, ρ, (n + ρ)u

) = (ρ + n)
|u|2

2
+ ργ

γ − 1
+ n ln

n

(2π)N/2
+ 1

e
.

Note that it is an entropy of the system (33).

THEOREM 7. Let (f 0
ε , ρ0

ε , u0
ε) be a family of initial value such that f 0

ε � 0, ρ0 � 0 and

there exists (n0, ρ0, (n0 + ρ0)u0) such that∫
RN

fε dv
L1(TN )−→ n0, ρ0

ε

L1(TN)−→ ρ0,

∫
RN

vfε dv + ρ0
ε u0

ε

L1(TN )−→ (n0 + ρ0)u0,

with

H
(
f 0

ε , ρ0
ε , u0

ε

) L1(TN)−→ η
(
n0, ρ0, (n0 + ρ0)u0),
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when ε → 0. We consider entropy solutions fε to the rescaled Fokker–Planck Navier–
Stokes systems:

∂tfε + v · ∇xfε + divv((uε − v)fε − ∇vfε)

ε
= 0,

∂tρε + divx(ρεuε) = 0,

∂t (ρεuε) + divx(ρεuε ⊗ uε) + ∇xρ
γ
ε − νε�uε = (Jε − nεuε)

ε
,

(fε, ρε, ρεuε)(t = 0) = (f 0
ε , ρ0

ε , ρ0
ε u0

ε

)
,

where nε = ∫ fε(x, v, t) dv and Jε = ∫ vfε(x, v, t) dv. Assume moreover that

0 < νε � ε and γ ∈ (1, 2).

Then, up to a subsequence, the family Uε = (nε, ρε, ρεuε + Jε) converges weakly in
Lp(0, T ; L1

loc(T
N)), for every T < ∞ and 1 � p < ∞, to a dissipative solution U =

(n, ρ, (n+ρ)u) of the bi-fluid system (33) on [0,∞), with initial value U0 = (n0, ρ0, (n0+
ρ0)u0). In particular, we have the following special situation.

• If U is a dissipative test function on [0, T ), and there exists C0 > 0 such that∫
TN

η
(
U0

ε |U0) dx +
∫

TN

∣∣H(f 0
ε , ρ0

ε , ρ0
ε u0

ε

)− η
(
U0

ε

)∣∣ dx � C0
√

ε,

then, for every t < T , there exists a constant Ct such that

(80)
∫

RN

η(Uε|U)(s, x) dx � Ct

√
ε for any s ∈ [0, t].

Moreover, the whole family Uε converges strongly to U in C0(0, T ; L1
loc).

• If U0 is a discontinuous initial value as in Proposition 4 (rarefaction waves) then the
whole sequence converges to U∗ on (0, T ).

This result can be found in [75] where viscosity is taken into account. See also [37].

PROOF. We first prove a consistency result of the asymptotic system with the kinetic
model. Integrating the kinetic equation of the rescaled problem with respect to v, we find

∂tnε + divx Jε = 0.

Moreover, multiplying the same equation by v and integrating with respect to v, we get

∂t

∫
vfε dv = − divx

∫
v ⊗ vfε dv + 1

ε

∫
(uε − v)fε dv

and thus

∂t (Jε + ρεuε) + divx

(∫
RN

v ⊗ vfε dv + ρεuε ⊗ uε − νε∇xuε + ργ
ε IN

)
= 0.

We can rewrite this system in the form

∂tUε + divx Aε = 0,
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where

Aε =
(

Jε, ρεuε,

∫
RN

v ⊗ vfε dv + ρεuε ⊗ uε − νε∇xuε + ργ
ε IN

)
.

We can then use Proposition 3. We need to control∣∣∣∣
∫

RN

(uε − v)fε dv

∣∣∣∣,
∣∣∣∣
∫

RN

(uε ⊗ uε − v ⊗ v + I )fε dv

∣∣∣∣, νε∇xuε,

by the dissipation.
1 – We have∣∣∣∣

∫
(uε − v)fε dv

∣∣∣∣ =
∣∣∣∣
∫

(uε − v)fε − ∇vfε dv

∣∣∣∣
�
(∫

fεdv

)1/2(∫ ∣∣(uε − v)fε − ∇vfε

∣∣2 1

fε

dv

)1/2

and therefore∫ t

0

∫
Ω

∣∣∣∣
∫

(uε − v)fε dv

∣∣∣∣ dx ds � C

√∫ t

0
D(fε) ds � C

√
ε.

2 – Next, we write∫
(uε ⊗ uε − v ⊗ v + IN)fε dv

=
∫ [

uε ⊗ (uε − v) + (uε − v) ⊗ v + IN

]
fε dv

=
∫

uε

√
fε ⊗ [(uε − v)

√
f ε − 2∇v

√
f ε

]+ uε ⊗ 2
√

f ε∇v

√
f ε dv

+
∫ [

(uε − v)
√

f ε − 2∇v

√
f ε

]⊗ v
√

f ε + 2
√

f ε∇v

√
f ε ⊗ v + INfε dv

=
∫

uε

√
fε ⊗ [(uε − v)

√
f ε − 2∇v

√
f ε

]+ uε ⊗ ∇vfε dv

+
∫ [

(uε − v)
√

f ε − 2∇v

√
f ε

]⊗ v
√

f ε + ∇vfε ⊗ v + INfε dv

=
∫

uε

√
fε ⊗ [(uε − v)

√
f ε − 2∇v

√
f ε

]
dv

+
∫ [

(uε − v)
√

f ε − 2∇v

√
f ε

]⊗ v
√

f ε dv

and so ∫ t

0

∫
Ω

∣∣∣∣
∫

(uε ⊗ uε − v ⊗ v + IN)fε dv

∣∣∣∣ dx ds

�
(∫ t

0

∫
Ω

∫ (|uε|2 + |v|2)fε dv dx ds

)1/2
√∫ t

0
D(fε) ds.
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It only remains to see that the term
∫
(|uε|2 + |v|2)fε dv is bounded uniformly by

H(fε, ρε, ρεuε). Using the entropy inequality, we already know that the quantity∫ |v|2fε dv dx is bounded, so it is enough to check that
∫∫

(uε − v)2fε dv dx is bounded.
To that purpose, we write∫

(uε − v)2fε dv dx =
∫∫

(uε − v)
√

fε

[
(uε − v)

√
f ε − 2∇v

√
fε

]
dv dx

+
∫∫

(uε − v)∇vfε dv dx

�
(∫

(uε − v)2fε dv dx

)1/2√
D(fε) +

∫
fε dv dx,

which gives∫ t

0

∫
(uε − v)2fε dv dx ds �

∫ t

0

∫
D(fε) dx ds + 2

∫ t

0

∫
fε dv dx ds.

and yields the result. We can then apply Proposition 3. �

5. Conclusion and open problems

In this chapter, a general theory on hydrodynamic limit has been presented. It showed
how some rather general conditions on the structure of the kinetic, and fluid models and
compatibility requirements between the two descriptions, can ensure the validity of the
hydrodynamic limit. However, it ends, leaving a lot of unsolved problems.

• The case of the hydrodynamic limit of the Boltzmann equation is not treated by this
method. The first difficulty is that the limit conservation law, the temperature depen-
dent Euler system, is not admissible on the whole set of values (ρ, u, T ) ∈ V =
(0,∞)×R

N × (0,∞) (see Section 2.7.4). Therefore, the method would require some
a priori bounds on the solutions of the rescaled kinetic equations. It would be inter-
esting, however, to see in which extent a refined study of the Boltzmann equation, as
in [69], is unavoidable.

• The method relies heavily on the validity of the dissipative solutions. It is then neces-
sary to derive uniqueness results for this kind of solutions, at least on special meaning-
ful singular ones. It is not obvious at all if this can be done for any type of singularities.
Shocks seems to be at odd with the theory. Even negative results would be interesting
to show the limit of the method.

• Boundary conditions involving boundary layers are known to produce a great richness
of phenomena (see Sone [87], and also [6,54,90]). This has been completely avoided
here.

• In different areas of physics and engineering, kinetic models which do not conserve
energy are used. Those models do not have classical nontrivial thermodynamical equi-
librium. However, recent results show some rich behavior in large time asymptotic
(see [18,17,47]). The derivation of associated fluid models is a great challenge.
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Abstract
The classical Stefan model is a free boundary problem that represents thermal processes in

phase transitions just by accounting for heat-diffusion and exchange of latent heat. The weak
and the classical formulations of the basic Stefan system, in one and in several dimensions of
space, are here reviewed. The basic model is then improved by accounting for surface tension,
for nonequilibrium, and dealing with phase transitions in binary composites, where both heat
and mass diffuse. The existence of a weak solution is proved for the initial- and boundary-value
problem associated to the basic Stefan model, and also for a problem with phase relaxation
and nonlinear heat-diffusion. Some basic analytical notions are also briefly illustrated: convex
calculus, maximal monotonicity, accretiveness, and others.
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0. Introduction

Il n’y a pas des problèmes résolus, il n’y a que des problèmes plus ou moins résolus.
(There are no solved problems, there are just problems that are more or less solved.)

Henri Poincaré

The model of solid-liquid transitions that Josef Stefan formulated in 1889 provides a
good example for this aphorism of Poincaré. Existence of a solution for that problem was
proved by Lev Rubinstein in 1947. Tenths of thousands of papers and a number of meetings
have then been devoted to this model and its extensions, and research on this topic is still
in full development.1

The present work has a twofold purpose: to introduce the basic Stefan problem and some
more refined models of (first-order) phase transitions, and also to illustrate some methods
for the analysis of associated nonlinear initial- and boundary-value problems. These two
aspects might hardly be separated, for the interplay between modelling and analysis is the
blood and life of research on Stefan-type problems.

Phase transitions occur in many relevant processes in physics, natural sciences, and en-
gineering: almost every industrial product involves solidification at some stage. Examples
include metal casting, steel annealing, crystal growth, thermal welding, freezing of soil,
freezing and melting of the earth surface water, food conservation, and others. All of these
processes are characterized by two basic phenomena: heat-diffusion and exchange of la-
tent heat of phase transition. A model accounts for this basic behaviour in terms of partial
differential equations (shortly, PDEs): this is known as the Stefan problem, and was exten-
sively studied in the last half century.

Because of the size of the existing literature, it has been mandatory to operate a dras-
tic selection: important topics like numerical approximation, solid–solid phase transitions,
shape-memory alloys, and others will be omitted. Here we shall confine throughout to mod-
elling and analysis of solid-liquid transitions.2 It is natural to recognize this phenomenon
as an example of free boundary problem (shortly, FBP), for the evolution of the domains
occupied by the phases is not known a priori. This is also labelled as a moving boundary
problem, for the interface between the two phases evolves in time. Many mathematicians
addressed the Stefan problem from this point of view, especially for univariate systems and
in the framework of classical function spaces (i.e., Ck).

Phase transitions may also be regarded from a different perspective. Heat diffusion and
exchange of latent heat may also be formulated in weak form, since they are accounted
for by the energy balance equation, provided that this is meant in the sense of distribu-
tions. This leads to the formulation of an initial- and boundary-value problem in a fixed
space–time domain for a nonlinear parabolic equation. This nonlinearity is expressed via a
maximal monotone graph, and the problem may thus be reduced to a variational inequality.
The natural framework is here provided by the Sobolev spaces.

1 This provides evidence of the richness of Stefan-type problems and of the phenomena they represent, and also
confirms the fertility of the academic mind in finding new results to offer to the attention of the community.

2 In recent years the term phase transition has come in use among applied analysts with reference to stationary
two-phase systems, too. Here we remain with the more traditional use: for us phase transitions are transitions,
namely processes.
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The two approaches above are known as the classical and the weak formulation of the
Stefan problem. However, rather than being two formulations of the same problem, these
represent two alternative models of phase transitions, that turn out to be equivalent only
in special cases. The classical model is a genuine FBP, for it is based on the assumption
that the phases are separated by an (unknown) smooth interface that also evolves smoothly;
this approach allows for the onset of metastable states at the interior of the phases. On the
other hand the weak formulation makes no direct reference to any phase interface: this may
or may not exist, anyway it does not explicitly occur in the statement of the model. Solid
and liquid phases may actually be separated by a set having nonempty interior, a so-called
mushy region, that represents a fine-length-scale mixture of the two phases. In this respect
the weak formulation is more general than the classical one, but it excludes metastable
states. These issues are illustrated in Section 1.

The Stefan model is simple to be stated, combines analytical and geometrical aspects,
has a suggestive physical substrate, is relevant for a number of applications, and is the
prototype of a large class of evolutive FBPs. However it provides an oversimplified picture
of (first-order) phase transitions, and is far from accounting for the richness of the physics
of this large class of phenomena. In Section 2 we then improve the basic Stefan model
by accounting for surface tension and for nonequilibrium at the phase interface. We also
consider composite materials, in which the heat equation must be coupled with the equation
of mass-diffusion, and the transition temperature depends on the chemical composition.
Dealing with coupled diffusion, it seems especially convenient to use an approach based
on the entropy balance and on the second principle of thermodynamics. This leads to the
formulation of an initial- and boundary-value problem for a parabolic system of equations
with two nonlinearities.

In Section 3 we then deal with some methods for the analysis of the weak formulation
of the basic Stefan problem in several space dimensions. Several analytical procedures
may be applied for that purpose: Lp-techniques, transformation by either space- or time-
integration, and semigroup methods provide well-posedness and regularity properties in
the framework of Sobolev spaces.

In Section 4 we study a multi-nonlinear extension of the Stefan problem, that accounts
for nonlinear heat conduction and phase relaxation. We provide the weak formulation of
an initial- and boundary-value problem in the framework of Sobolev spaces, and prove
existence of a solution in any time interval, via a procedure that rests upon the notion of
saddle point.

Convex calculus is often applied in the analysis of FBPs. In Section 5 we review basic
results of that theory, and also illustrate some other analytical tools that are used in this
work: maximal monotonicity, accretiveness, De Giorgi’s notion of Γ -convergence, and so
on. We conclude with a bibliographical note and with a collection of few hundred refer-
ences on Stefan-type problems – just a small sample from an overwhelming literature. An
effort has been done to quote some references also for the most investigated issues, where
making a wise selection is hardly possible.

This paper is just meant as an introduction to Stefan-type models of phase transitions.
Sections 3 and 4 are devoted to the analysis of nonlinear PDEs, and may be read inde-
pendently of Sections 1 and 2 that deal with modelling – however the reader should be
aware that divorcing analysis from modelling somehow spoils this theory. In the spirit of
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this Handbook, it seemed appropriate to devote special attention to the analysis of the weak
formulation of the basic Stefan problem. For the benefit of the less experienced reader, we
provide detailed arguments in Sections 3 and 4, devote some room to illustrate the basic
analytical tools in Section 5, and also quote a number of fundamental monographs. A some-
how didactical attitude has been maintained throughout, although this author cannot forget
the Italian saying “chi sa fa, chi non sa insegna”.3

A part of this paper is based on Chapters II, IV, V of this author’s monograph [453],
the reader is referred to for a more detailed account. On the other hand, the analysis of
Section 4 provides new results.

1. The Stefan model

This first part is mainly devoted to the construction of two alternative formulations of the
basic Stefan model of phase transitions, and to illustrate some related problems.4 First
we introduce the main physical assumptions and the weak formulation in several space
dimensions, and then state the associated classical formulation. We illustrate how these
models are based on partially different physical hypotheses, and compare some of their
properties. In this part we deal with a homogeneous material, neglect surface tension, and
assume either local stability or local metastability; these restrictions will be dropped in
Section 2.

We shall also outline a vector extension of the Stefan model that accounts for processes
in ferromagnetic materials having negligible hysteresis, the quasi-steady Stefan problem,
the Hele-Shaw model, and the hyperbolic Stefan problem. Finally, a brief historical note
updates Section IV.9 of Visintin [453].

1.1. Weak formulation

We shall always deal with solid–liquid (and liquid–solid) phase transitions, although our
developments also apply to other first-order phase transitions. Here we shall represent
phase transitions in an especially simplified way, focusing upon the thermal aspects, that
is, heat-diffusion and exchange of latent heat. We shall neglect stress and deformation in
the solid, convection in the liquid, change of density.5

We shall assume that the process occurs at constant volume, although in experiments
usually it is the pressure that is maintained constant. Our developments however take over
to systems that are maintained at constant pressure, at the only expense of some minor
changes in the terminology: for instance, the term internal energy should then be replaced
by enthalpy.6

3 “Who knows, makes. Who does not know, he teaches.”
4 Throughout this work, we shall just refer to first-order phase transitions. These exhibit a latent heat of phase

transition, at variance with second-order phase transitions.
5 These simplifications might hardly be assumed in the case of vapour–liquid systems. This is the main reason

for our preference for solid–liquid systems.
6 See e.g. the discussion of Section 7 of Penrose and Fife [373].
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DEFINITION. Let us denote by Ω a bounded domain of the Euclidean space R3, which is
occupied by a homogeneous material capable of attaining two phases, liquid and solid. Let
us fix a constant T > 0, set Q := Ω × ]0, T [, and use the following notation:
u: density of internal energy – namely, internal energy per unit volume,
θ : relative temperature – namely, difference between the actual absolute (Kelvin) tem-

perature τ and the value τE at which a planar solid–liquid interface is at thermodynamic
equilibrium,
χ (∈ [−1, 1]): rescaled liquid fraction: χ = −1 in the solid, χ = 1 in the liquid (the

actual liquid fraction is 1
2 (χ + 1)),

�q: heat flux per unit surface,
k(θ, χ): thermal conductivity – a positive-definite 3 × 3-tensor,
f : intensity of a space-distributed heat source (or sink) – namely, heat either produced

or absorbed per unit volume.

One may assume that at a mesoscopic length-scale (namely, an intermediate scale be-
tween that of macroscopic observations and that of molecular phenomena) just liquid and
solid phases may be present, that is, χ = ±1 at each point. At the macroscopic length-
scale however a so-called mushy region (or mushy zone), namely a fine solid–liquid mix-
ture, may appear. This is characterized by −1 < χ < 1, which corresponds to a liquid
concentration 0 < (χ + 1)/2 < 1.

The energy balance. Let us assume that the density of internal energy u is a known func-
tion of the state variables θ and χ :

(1.1.1)u = û(θ, χ) in Q.

This functional dependence is characteristic of the specific material. Under the above phys-
ical restrictions, the global energy balance reads

(1.1.2)
∂u

∂t
+ ∇ · �q = f in D′(Q) (∇· := div).

This equation may just be expected to hold in the sense of distributions, for in general
u and �q will be discontinuous at phase interfaces, as we shall see ahead. We couple this
balance with the Fourier conduction law

(1.1.3)�q = −k(θ, χ) · ∇θ in Q,

the thermal conductivity k being a prescribed positive-definite tensor function. We thus get
the global heat equation

(1.1.4)
∂u

∂t
− ∇ · [k(θ, χ) · ∇θ] = f in D′(Q).

A phase-temperature relation is then needed to close the system, besides of course ap-
propriate boundary- and initial-conditions.
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Fig. 1. Constitutive relation between the density of internal energy, u, and the temperature, θ .

The temperature-phase rule. Although Eq. (1.1.2) describes processes that are outside
(and possibly far from) equilibrium, here we assume local thermodynamic equilibrium. By
this we mean that in a neighbourhood of each point the system is governed by the same
constitutive relations as at equilibrium.

This hypothesis excludes the occurrence of undercooled and superheated states, that we
shall illustrate ahead. This thus yields the following temperature-phase rule:

(1.1.5)θ � 0 in Q1, θ � 0 in Q2,

where by Q1 and Q2 we denote the subsets of Q that correspond to the liquid and solid
phases, respectively. Defining the multi-valued sign function,

sign(ξ) := {−1} if ξ < 0,

(1.1.6)sign(0) := [−1, 1], sign(ξ) := {1} if ξ > 0,

the conditions (1.1.5) also read

(1.1.7)χ ∈ sign(θ) in Q.

By eliminating χ from (1.1.1) and (1.1.7), for the density of internal energy and the tem-
perature we get a relation of the form

(1.1.8)u ∈ α(θ) in Q,

where α : R → 2R is a multi-valued maximal monotone function (cf. Section 5.5); see
Figure 1.7

Notice that under the hypothesis of local thermodynamic equilibrium k(θ, χ) · ∇θ is
independent of χ ; indeed k is determined by χ where θ �= 0, and ∇θ = �0 in the interior of
the set where θ �= 0. Setting k̃(θ) := k(θ, α(θ)), we may then write �q = −k̃(θ) · ∇θ in Q.

The system (1.1.5), (1.1.8) must be coupled with an initial condition for u and with
boundary conditions either for θ or for the normal component of the heat flux. This consti-
tutes the weak formulation of the two-phase Stefan problem in several space dimensions.

7 By 2A we denote the power set of any set A.
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(Traditionally, one speaks of a two-phase problem, for the temperature evolution is un-
known in both phases.)

Let us denote by �ν the outward-oriented unit normal vector on the boundary Γ of Ω .
For instance, one may choose a partition {ΓD, ΓN } of Γ and assume that

(1.1.9)θ = θD on ΣD := ΓD × ]0, T [,
(1.1.10)k̃(θ) · ∂θ

∂ν
= h on ΣN := ΓN × ]0, T [,

for a prescribed boundary temperature θD and a prescribed incoming heat flux h. We may
now formulate a problem in the framework of Sobolev spaces.

PROBLEM 1.1.1 (Weak formulation of the multi-dimensional two-phase Stefan problem).
Find θ ∈ L2(0, T ;H 1(Ω)) and u ∈ L2(Q) such that (1.1.8), (1.1.9) are fulfilled and∫∫

Q

[(
u0 − u

)∂v
∂t

+ (
k̃(θ) · ∇θ) · ∇v

]
dx dt =

∫∫
Q

f v dx dt +
∫∫

ΣN

hv dS dt

(1.1.11)∀v ∈ H 1(Q), v = 0 on
(
Ω × {T }) ∪ΣD.

Here by dS we denote the bidimensional Hausdorff measure. Note that by integrating
(1.1.11) by parts in space and time we retrieve (1.1.4), (1.1.10) and an initial condition
for u. This problem will be studied in Section 3.

1.2. Classical formulation

The classical formulation of the Stefan problem is based on two main hypotheses, which
are at variance with those that underlie the weak formulation:

(i) no mushy region is either initially present or is formed during the process,
(ii) the liquid and solid phases are separated by a regular surface that also evolves reg-

ularly.
On the other hand here the condition of local thermodynamic equilibrium is restricted

to the phase interface. Consistently with the hypotheses (i), we assume that all the solid
(either initially present or formed during the process) is in the crystalline state, so that it is
free of latent heat; this is at variance with the behaviour of amorphous solids like glasses
and polymers, see Section 2.2. Let us label quantities relative to the liquid and solid phases
by 1 and 2, respectively, assume that the constitutive function û is differentiable, and use
the following further notation:
Qi : open subset of Q corresponding to the ith phase, for i = 1, 2,
S := ∂Q1 ∩ ∂Q2: (possibly disconnected) manifold of R4 representing the space–time

points at solid–liquid interfaces,
St := S ∩ (Ω × {t}): configuration of the solid–liquid interface at the instant t ∈ [0, T ],
CV := ∂û/∂θ (cf. (1.1.1)): heat capacity (at constant volume) per unit volume – namely,

heat needed to increase the temperature of a unit volume by one degree; this equals the
product between the mass density and the specific heat,
L := ∂û/∂χ : density of latent heat of phase transition – namely, heat needed to melt a

unit volume of solid.
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We thus get

(1.2.1)
∂u

∂t
= CV (θ, χ)

∂θ

∂t
+ L(θ, χ)

2

∂χ

∂t
in D′(Q).

(Note that χ/2 has a unit jump across the interface.) This relation is set in the sense of
distributions, for the phase function χ is discontinuous across phase interfaces. In each
phase the energy balance reads ∂u/∂t = −∇ · �q + f . Denoting the heat capacity and the
thermal conductivity in the phase i by CV i(θ) and ki(θ), we then retrieve the heat equation
in each phase:

(1.2.2)CV i(θ)
∂θ

∂t
− ∇ · [ki(θ)∇θ] = f in Qi (i = 1, 2).

The Stefan condition. Let us assume that S is sufficiently regular and that the temperature
θ is continuous across the solid–liquid interface S. At any instant t let us denote by �n ∈ R3

a unit vector field normal to St oriented from the liquid to the solid, by �qi the heat flux
per unit surface that is either contributed or absorbed by the ith phase through St .8 For
instance, let us assume that in a small time interval dt an element dS of the phase interface
advances with normal velocity �v · �n through the solid phase. Excluding any tangential
contribution along the interface, the net heat flux absorbed by dS in dt then equals dQ =
(�q1 · �n− �q2 · �n) dS. The melting process transforms this heat into an amount of latent heat
that is proportional to the volume spanned by dS in dt . Thus

(1.2.3)�q1 · �n− �q2 · �n = L(θ)�v · �n on S.
This equality also holds in case of freezing; in that case both members are negative, and
represent the heat released at the solid–liquid interface. In either case, by the Fourier law,
(1.2.3) yields the Stefan condition

(1.2.4)k1(θ) · ∂θ1

∂n
− k2(θ) · ∂θ2

∂n
= −L(θ)�v · �n on S,

where we denote by ∂θi/∂n the normal derivative of θ on S relative to the ith phase. If
g ∈ C1(Q) is such that S = {(x, t) ∈ Q: g(x, t) = 0} and ∇g �= �0, then ∇g·�v+∂g/∂t = 0
and �n|∇g| = ∇g on S (possibly after inverting the sign of g). The condition (1.2.4) is then
equivalent to

(1.2.5)
[
k1(θ) · ∇θ1 − k2(θ) · ∇θ2

] · ∇g = L(θ)
∂g

∂t
on S.

Metastability. In the framework of the classical formulation of the Stefan problem, we
allow for the occurrence of metastable states at the interior of the phases, namely,

undercooling (also called supercooling), i.e., θ < 0 in the liquid, and
superheating, i.e., θ > 0 in the solid.
Nevertheless we assume local thermodynamic equilibrium at the phase interface. For a

homogeneous material, neglecting surface tension effects this corresponds to

(1.2.6)θ = 0 on S.
8 The moving interface is not a material surface, and only the normal component of its velocity has a physical

meaning.
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In the Stefan condition (1.2.4) we may then replace L(θ) by L(0) and ki(θ) by ki(0)
(i = 1, 2).

The evolution of the solid–liquid interface is unknown. In principle, this lack of in-
formation is compensated by setting two quantitative conditions at the free boundary S,
namely, (1.2.4) and (1.2.6). Appropriate conditions on the initial value of θ and on the ini-
tial phase configuration must also be provided, as well as boundary conditions like (1.1.9)
and (1.1.10). As an example we consider the following model problem, under natural reg-
ularity assumptions on the data f , θ0, θD , h.

PROBLEM 1.2.1 (Classical formulation of the multi-dimensional two-phase Stefan prob-
lem). Find θ ∈ C0(Q̄) and a partition {Q1,Q2,S} of Q such that:

(i) Q1 and Q2 are open sets;
(ii) S = ∂Q1 ∩ ∂Q2 is a regular 3-dimensional manifold, and St := S ∩ (Ω × {t}) is

a regular surface, for any t ∈ ]0, T [;
(iii) ∂θ/∂t , ∂2θ/∂xi∂xj (for i, j ∈ {1, 2, 3}) exist and are continuous in Q1 and in Q2;
(iv) the normal derivative ∂θi/∂n exists on the respective sides of S;
(v) S̄ ∩ (Ω × {0}) is prescribed, and

(1.2.7)CV i(θ)
∂θ

∂t
− ∇ · [ki(θ) · ∇θ] = f in Qi (i = 1, 2),

(1.2.8)k1 · ∂θ1

∂n
− k2 · ∂θ2

∂n
= −L�v · �n on S,

(1.2.9)θ = 0 on S;
(1.2.10)θ = θD on ΣD, k(θ) · ∂θ

∂ν
= h on ΣN,

(1.2.11)θ = θ0 in Ω × {0}.

(Here and elsewhere, S and St might be disconnected.) If the temperature vanishes iden-
tically in one of the phases, one often speaks of a one-phase Stefan problem.9 Besides
phase transitions, this problem may represent a number of physical phenomena.10 If the
source term f vanishes identically, the occurrence of undercooled and superheated states
may be excluded by assuming natural sign conditions on the initial and boundary data,
because of the maximum and minimum principles.

The one-dimensional Stefan problem. Next we deal with a univariate system, e.g. an in-
finite slab, that we represent by a finite interval Ω = ]a, b[. We assume that a < s0 < b,
and that for instance the interval ]a, s0[ (]s0, b[, resp.) represents the solid (liquid, resp.)
phase at t = 0. If we exclude the formation of new phases, the solid–liquid interface S
then coincides with the graph of a function s : [0, T ] → [a, b] such that s(0) = s0. Let us

9 This traditional terminology is slightly misleading, for there are two-phases, although the temperature is
unknown just in one of them.
10 For instance, dissolution of a bubble gas in liquid, see e.g. Friedman [229, part III]; diffusion with chemical
reaction, see e.g. Boley [70]; Darcy’s filtration through porous media, see e.g. Bear [52,53]; swelling of polymers,
see e.g. Astarita and Sarti [32]. These and other examples are illustrated in the rich account of Primicerio [378].
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Fig. 2. Evolution of the free boundary in a one-dimensional Stefan problem.

assume that

CV i ∈ C0(R), ki ∈ C1(R), CV i, ki > 0 (i = 1, 2),

(1.2.12)f ∈ C0(Q̄), θa, θb ∈ C0([0, T ]), θa < 0, θb > 0,

θ0 ∈ C0([a, b]), θ0 < 0 in ]a, s0[, θ0 > 0 in
]
s0, b

[
.

The previous equations coupled with natural initial and boundary conditions yield the
following problem; cf. Figure 2.

PROBLEM 1.2.2 (Classical formulation of the one-dimensional two-phase Stefan prob-
lem). Find s ∈ C0([0, T ]) ∩ C1(]0, T [) and θ ∈ C0(Q̄) such that, setting

Q1 := {
(x, t) ∈ Q: x > s(t)

}
, Q2 := {

(x, t) ∈ Q: x < s(t)
}
,

∂θ/∂t , ∂2θ/∂x2 ∈ C0(Qi) (i = 1, 2), the limits [ki(θ)∂θ/∂x](s(t) ± 0, t) exist for any
t ∈ ]0, T [, and

(1.2.13)CV i(θ)
∂θ

∂t
− ∂

∂x

(
ki(θ)

∂θ

∂x

)
= f in Qi (i = 1, 2),(

k1(θ)
∂θ

∂x

)(
s(t)+ 0, t

)−
(
k2(θ)

∂θ

∂x

)(
s(t)− 0, t

) = −L(θ)ds

dt
(t)

(1.2.14)for 0 < t < T,

(1.2.15)θ
(
s(t), t

) = 0 for 0 < t < T,

(1.2.16)θ(a, t) = θa(t), θ(b, t) = θb(t) for 0 < t < T,

(1.2.17)s(0) = s0, θ(x, 0) = θ0(x) for a < x < b.

1.3. Comparison between the weak and the classical formulation

Despite of the terminology, in general the classical and the weak formulations of the Stefan
problem (CSP and WSP, resp.) are not different formulations of the same physical model,
and rest upon different physical assumptions.

An ideal experiment. The next example looks especially enlightening of the difference
between the CSP and the WSP. Let a solid system be initially at a uniform temperature,
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θ(·, 0) = θ0 < 0, and be exposed to a constant and uniform heat source of intensity
f̂ = 1, e.g. by infrared radiation. If the system is thermally insulated, according to the
WSP the temperature remains uniform in Ω , and the energy balance (1.1.4) is reduced to
the ordinary differential equation du/dt = 1, namely,

(1.3.1)CV (θ, χ)
dθ

dt
+ L(θ)

2

dχ

dt
= 1 in [0, T ].

Initially the temperature thus increases linearly. As θ vanishes it stops, melting starts with-
out superheating, and χ increases linearly in time from −1 to 1, uniformly throughout Ω .
For a time-interval the temperature remains null, and the whole body consists of a mush
with increasing liquid content. As χ reaches the value 1, this mush has completed the liq-
uid transformation, and the temperature increases again. Thus, according to the WSP, no
phase interface is formed, and phase transition occurs throughout by the transformation
process “solid → mush → liquid.”

The CSP provides a completely different picture: no front of phase transition is formed,
and θ just grows linearly in time, so that the solid is indefinitely superheated. Physically
this is obviously unrealistic; it would be more reasonable to expect that a liquid phase is nu-
cleated as a certain threshold is attained. But this behaviour is not accounted for by the CSP.

Equivalence between the CSP and the WSP. Let us now exclude the occurrence of mushy
regions and of metastable states, and assume that the solid–liquid interface is regular and
evolves regularly, so that both the weak and the classical formulation apply. The next state-
ment bridges the two models.

PROPOSITION 1.3.1. Let the pair (θ,S) fulfill the regularity conditions of Problem 1.2.1,
and let χ fulfill (1.1.7). The system (1.2.2), (1.2.4) is then equivalent to the distributional
equation

(1.3.2)CV (θ, χ)
∂θ

∂t
+ L(θ)

2

∂χ

∂t
− ∇ · [k(θ, χ) · ∇θ] = f in D′(Q).

PROOF. Let us denote by �ν := (�νx, νt ) ∈ R4 the unit vector field normal to S, oriented
towards Q1, say. As the vector (∇g, ∂g/∂t) is parallel to �ν, the Stefan condition (1.2.5)
also reads

(1.3.3)
[
k1(θ) · ∇θ1 − k2(θ) · ∇θ2

] · �νx = L(θ)νt on S.
Denoting the duality pairing between D′(Q) and D(Q) by 〈·,·〉, a simple calculation yields〈

CV (θ, χ)
∂θ

∂t
+ L(θ)

2

∂χ

∂t
− ∇ · [k(θ, χ) · ∇θ], ϕ〉

=
∫∫

Q

{
CV (θ, χ)

∂θ

∂t
ϕ − χ

∂

∂t

L(θ)ϕ

2
+ [

k(θ, χ) · ∇θ] · ∇ϕ
}

dx dt

=
∫∫

Q\S

{
CV (θ, χ)

∂θ

∂t
− ∇ · [k(θ, χ) · ∇θ]}ϕ dx dt

(1.3.4)

±
∫
S

{
L(θ)νt − �νx · [k1(θ) · ∇θ1 − k2(θ) · ∇θ2

]}
ϕ dS ∀ϕ ∈ D(Q).
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Table 1
Comparison between the classical and the weak formulations of the basic Stefan model, i.e., Problems 1.1.1
and 1.2.1

Classical formulation (CSP) Weak formulation (WSP)

Energy balance heat equation in Q1, Q2
Stefan condition on S

energy balance in D′(Q)

Unknowns θ , S θ , χ
Local equilibrium condition θ = 0 on S χ ∈ sign(θ) a.e. in Q
Phase characterization global, via S local, via sign(θ)
Mushy regions excluded allowed
Metastable states allowed excluded
Analytical features free boundary problem degenerate PDE
Function spaces classical Ck-spaces Sobolev spaces
Well-posedness for Ω ⊂ R for any time for any time
Well-posedness for Ω ⊂ R3 just for small time for any time

The selection of the sign of the latter integral depends on the orientation of �ν.
The system (1.2.2), (1.2.4) is thus equivalent to (1.3.2). (Loosely speaking, in the latter

equation the Dirac-type masses of the second and third addendum cancel each other.) �

Comparison of analytical properties. The CSP consists of nondegenerate equations set
in unknown domains, hence it is a genuine free boundary problem. On the other hand in
the WSP the domain is fixed but the equation is degenerate.

The one-dimensional CSP is well posed in any time interval, under natural assump-
tions.11 On the other hand in several space dimensions in general the CSP has a solution
only in a small time interval. It is true that under suitable quantitative restrictions on the
data a solution exists in any time interval, and may also be very regular.12 But if one ex-
cludes special configurations, in general the classical solution may fail after some time,
even if the heat source term f vanishes identically. Actually, discontinuities may occur in
the temperature evolution as the topological properties of the phase interface change: e.g.,
a connected component may split into two components, or conversely the latter may merge
into a single one. On the other hand under simple hypotheses the WSP is well posed in
any time interval in any number of space dimensions, see Section 3.1, and may also be
solved numerically by means of standard techniques. These differences are summarized in
Table 1.

1.4. A Stefan-type problem arising in ferromagnetism

Phase transitions occur in many physical phenomena. Here we outline a macroscopic
model of ferromagnetism without hysteresis that is reminiscent of the Stefan model, al-
though in this case the unknown field is a vector and the equations have a different struc-
ture.13

11 See e.g. Meirmanov [331].
12 See e.g. Borodin [73], Prüss, Saal and Simonett [380]. Compare also with Friedman and Kinderlehrer [236],
Nochetto [358].
13 Problems of this sort were studied e.g. by Bossavit [75–78], Bossavit and Damlamian [79], Visintin [448,449].
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Let the domain Ω be occupied by a ferromagnetic material, denote the magnetic field
by �H , the magnetization by �M , and the magnetic induction by �B; in Gauss units, �B =
�H + 4π �M . Let us also denote the electric field by �E, the electric displacement by �D, the

electric current density by �J , the electric charge density by ρ̂, and the speed of light in
vacuum by c.

Dealing with electromagnetic processes, in general it is not natural to formulate a
boundary-value problem in a Euclidean domain. In fact the exterior evolution may af-
fect the interior process, and it is not easy to account for this interaction at a distance by
prescribing appropriate boundary conditions. For this reason we rather set the Maxwell
equations in the whole space R3, and assume different constitutive relations inside and
outside Ω . The Ampère–Maxwell, Faraday and Gauss laws respectively read

(1.4.1)c∇ × �H = 4π �J + ∂ �D
∂t

in Q∞ := R3 × ]0, T [,

(1.4.2)c∇ × �E = −∂ �B
∂t

in Q∞ (∇× := curl),

(1.4.3)∇ · �B = 0, ∇ · �D = 4πρ̂ in Q∞.

These equations must be coupled with appropriate constitutive relations, with initial condi-
tions for �D and �B, and with suitable restrictions on the behaviour of �H and �E at infinity.14

We assume that the magnetic material is surrounded by air, and that �J equals a prescribed
time-dependent field, �Jext, outside Ω; this might be due for instance to an electric current
circulating in an exterior conductor. We extend this field by setting �Jext := �0 in Ω . We
also assume that a prescribed electromotive force �Eapp, that may be due e.g. to an electric
generator, is applied to the system. Denoting by σ the electric conductivity, the Ohm law
then reads

(1.4.4)�J = σ( �E + �Eapp)+ �Jext in Q∞.

We assume that σ = 0 outside Ω , and that the field �E does not vary too rapidly in Ω .15

On the other hand in metals the conductivity σ is very large. In Eq. (1.4.1) in Ω the Ohmic
current �J thus dominates the displacement current ∂ �D/∂t , which may then be neglected;
this is named the eddy-current approximation. As

(1.4.5)�D = ε �E in Q,

with a constant electric permittivity ε, (1.4.1) then yields

c∇ × �H = 4πσ( �E + �Eapp) in Q,

(1.4.6)c∇ × �H = 4π �Jext + ε
∂ �E
∂t

in Q∞ \Q.

By (1.4.2) we may eliminate the field �E, and thus get

14 In the functional formulation, the behaviour at infinity is implicit in the Sobolev spaces.
15 This is an a priori assumption on the unknown field �E, and should be verified a posteriori.
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Fig. 3. Constitutive relation between the moduli of the colinear vectors �H and �B, for an (isotropic) ferromagnetic
material with negligible hysteresis.

4πσ
∂ �B
∂t

+ c2∇ × ∇ × �H = 4πcσ∇ × �Eapp in Q,

(1.4.7)ε
∂2 �B
∂t2

+ c2∇ × ∇ × �H = 4πc∇ × �Jext in Q∞ \Q.
However, as we said, we shall not formulate the problem separately inside and outside the
domain Ω . Although ferromagnetic materials exhibit hysteresis, soft iron with high field-
saturation and other metals are characterized by so narrow a hysteresis loop, that in first
approximation this may be replaced by a maximal monotone graph; see Secttion 5.5. Let
us then prescribe the following constitutive relation:

(1.4.8)�B ∈ �H + 4πM �β( �H) (=: �F( �H)) in Q, �B = �H in Q∞ \Q,
where M is a positive constant and �β is the subdifferential of the modulus function:

(1.4.9)�β(�v) :=

⎧⎪⎨
⎪⎩
{ �v

|�v|
}

if �v �= �0,{�v ∈ R3: |�v| � 1
}

if �v = �0,
∀�v ∈ R3;

cf. Figure 3 (see Section 5.2). In this case, the unmagnetized and magnetically saturated
phases are respectively characterized by �B = �0 and | �B| � 4πM. In general, the occur-
rence of a mixed phase characterized by 0 < | �B| < 4πM in a subdomain of Ω (a sort of
magnetic mushy region) is not a priori excluded.

More generally, we may assume that �F : R3 → 2R3
is a (possibly multi-valued) maxi-

mal monotone mapping.
The system (1.4.2)–(1.4.6), (1.4.8), (1.4.9) is a vector parabolic–hyperbolic problem.

More precisely, it is quasilinear parabolic in Q and semilinear hyperbolic in Q∞ \Q. The
former setting may be compared with Problem 1.1.1, namely the weak formulation of the
Stefan problem: the vector fields �H , �M , and �B play similar roles to those of the scalar
variables θ , χ and u, respectively.
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If the system has planar symmetry, that is, if all variables only depend on two space
coordinates (x, y, say), and if the fields �H and �B are parallel to the orthogonal z-axis,
then they may be represented by their z-components, H and B. In this case in the second-
order equation (1.4.7) the operator ∇ × ∇× equals −� (here the bidimensional Laplace
operator), and Eqs. (1.4.7) are thus reduced to

4πσ
∂B

∂t
− c2�H = g1 in Q,

(1.4.10)ε
∂2B

∂t2
− c2�H = g2 in Q∞ \Q,

for prescribed scalar fields g1 and g2.

A vector free boundary problem. If �F is multi-valued, then formally the system (1.4.2)–
(1.4.6), (1.4.8), (1.4.9) is the weak formulation of a free boundary problem. In general it
is not obvious a priori that the magnetically saturated and unsaturated phases are separated
by an interface, even under regularity hypotheses. However under appropriate restrictions
(e.g., planar symmetry) we are reduced to a scalar problem, for which conditions are known
that guarantee the existence of an interface. The next statement concerning the free bound-
ary conditions may be compared with Proposition 1.3.1.

PROPOSITION 1.4.1 (Discontinuity conditions). Let us assume that:
(i) S ⊂ Q is a smooth 3-dimensional manifold, and St := S ∩ (Ω×{t}) is a (possibly

disconnected) smooth surface, for any t ∈ ]0, T [;
(ii) �B, �H , ∂ �B/∂t , ∇ × ∇ × �H ∈ L1(Q \ S)3;

(iii) the traces of �B and ∇ × �H exist on both sides of S.
For any t ∈ [0, T ] let us denote by �ν ∈ R3 a unit vector field normal to St , by v := �v · �ν the
(normal) speed of St , and by �·� the difference between the traces on the two sides of St .
Let us also assume that:

(iv) �ν × � �H � = �0 a.e. on S.16

Then Eq. (1.4.7)1 in the sense of distributions is equivalent to the same equation point-
wise in Q \ S, coupled with the Rankine–Hugoniot-type condition

(1.4.11)4πσv� �B� = c2�ν × �∇ × �H � a.e. on S.

This statement may be checked via a similar argument to that of Proposition 1.3.1, that
we omit. Moreover, the Gauss law ∇ · �B = 0 and the identity ∇ · (∇ × �H) = 0 in the sense
of distributions entail that

(1.4.12)�ν · � �B� = 0, �ν · �∇ × �H � = 0 a.e. on S.

1.5. Other Stefan-type problems

The quasi-steady Stefan problem and the Hele–Shaw problem. If either the heat capacity
CV is very small or the temperature evolves very slowly, then one may replace the heat

16 By the Ampère law (1.4.1), this assumption is equivalent to the absence of surface currents.
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equation (1.1.4) by the quasi-stationary equation

(1.5.1)−∇ · [k(θ, χ) · ∇θ] = f in Qi (i = 1, 2).

The energy balance (1.1.4) is then reduced to

(1.5.2)
L(θ)

2

∂χ

∂t
− ∇ · [k(θ, χ) · ∇θ] = f in D′(Q),

in place of (1.1.4). Of course as an initial condition here one must just specify χ(·, 0). This
also applies to material diffusion in heterogeneous systems, for the time-scale of mass-
diffusion is rather small (much smaller than that of heat-diffusion); see Section 2.3.

This setting is also known as the Hele–Shaw problem, since in the two-dimensional case
it represents the evolution of a Hele–Shaw cell. This consists of two slightly separated
parallel plates partially filled with a viscous fluid. If some fluid is injected into the cell with
a syringe the fluid expands, and the evolution of the pressure p may be represented by

(1.5.3)

⎧⎨
⎩
∂χ

∂t
− ∇ · [k(p, χ) · ∇p] = f in D′(Q),

χ ∈ sign(p) a.e. in Q,

with f � 0.17 This model may also represent the industrial process of electrochemical
machining, by which a metal body is either machined or formed by using it as an anode in
an electrolytic cell.18 A rather different setting is obtained if the fluid is extracted from the
Hele–Shaw cell. In this case f � 0 and p � 0, and the condition (1.5.3)2 must be replaced
by

(1.5.4)χ ∈ sign(−p) a.e. in Q.

This problem is known as the inverse Hele–Shaw problem, since it is equivalent to a back-
ward Hele–Shaw problem, and is ill-posed.19

The hyperbolic Stefan problem. It is well known that the heat equation represents in-
stantaneous propagation of heat, at variance with one of the main issues of the Einstein
theory of relativity. As most of applications of the Stefan problem do not involve relativis-
tic velocities, this shortcoming has no practical relevance. Anyway this drawback may be
eliminated by replacing the Fourier conduction law (1.1.3) by a suitable relaxation dynam-
ics. Here we illustrate four alternatives, and refer to Joseph and Preziosi [281,282] for a
detailed review of conduction laws and associated heat waves (in the linear setting). For the
sake of simplicity, throughout this discussion we shall assume that k is a positive constant
scalar.20

17 See e.g. Ambrose [21], Antontsev, Meirmanov and Yurinsky [27], DiBenedetto and Friedman [176], Elliott
and Janovsky [192], Escher and Simonett [195,196], Lacey et al. [303], Howison [277], Kim [288,289], Richard-
son [386,387], Saffman and Taylor [416].
18 See e.g. Alexiades and Cannon [7], Elliott [189], McGeough [325], McGeough and Rasmussen [326].
19 See e.g. DiBenedetto and Friedman [176], Nie and Tian [351].
20 Here the relevant assumption is the independence of χ , for that on θ may be treated via the Kirchhoff trans-
formation (3.1.15).
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(i) In alternative to (1.1.3), after [120] one may use the Cattaneo law

(1.5.5)τ
∂ �q
∂t

+ �q = −k∇θ in Q,

where τ is a relaxation constant. The parabolic system (1.1.4), (1.1.8) is accordingly re-
placed by the quasilinear hyperbolic system

(1.5.6)

⎧⎨
⎩ τ

∂2u

∂t2
+ ∂u

∂t
− k�θ = τ

∂f

∂t
+ f in D′(Q),

u ∈ α(θ) in Q,

still with α a maximal monotone function R → 2R. The analysis of this problem is rather
challenging. However, usually τ is so small that for most applications the Fourier approxi-
mation is acceptable.21

(ii) One may also insert a further relaxation term into the Cattaneo law (1.5.5):

(1.5.7)τ
∂ �q
∂t

+ �q = −k∇θ − k1
∂∇θ
∂t

in Q.

By coupling this equation with the energy balance law (1.1.2), we get a third-order differ-
ential equation:

(1.5.8)τ
∂2u

∂t2
+ ∂u

∂t
− k�θ − k1

∂

∂t
�θ = τ

∂f

∂t
+ f in Q,

that must then be coupled with the inclusion (1.1.8). Here one may prove well-posedness
of a weak formulation for an associated boundary- and initial-value problem.

(iii) After Gurtin and Pipkin [261] one may also consider a dynamics with memory:

(1.5.9)�q(x, t) = −
∫ +∞

0
h(s)∇θ(x, t − s) ds for (x, t) ∈ Q,

for a prescribed positive-definite, decreasing and integrable kernel h(s). This equation is
more general than the Cattaneo law, that is retrieved for h(s) = (k/τ) exp{−s/τ }. The
analysis of the integro-differential problem that is obtained by coupling the energy balance
law (1.1.2) with the inclusion (1.1.8) and with (1.5.9) exhibits difficulties comparable to
those of the quasilinear hyperbolic system (1.5.6).

(iv) On the other hand, if after Coleman and Gurtin [131] one also allows for the occur-
rence of a Dirac mass δ0 in the kernel h, by assuming

�q(x, t) = −k1

τ
∇θ(x, t)+

(
k1

τ 2
− k

τ

)∫ +∞

0
e−s/τ∇θ(x, t − s) ds

(1.5.10)for (x, t) ∈ Q

one then retrieves the (more feasible) third-order equation (1.5.7).

21 See e.g. Colli and Recupero [141]. The physical aspects of hyperbolic and parabolic models are discussed e.g.
in Herrera and Pavón [265]. Incidentally notice that, although the occurrence of a relaxation term like τ∂ �q/∂t
might be expected to have effects just on a (short) transient, in [265, p. 122] it is maintained that “transient
phenomena may affect the way in which the system leaves the equilibrium, thereby affecting the future of the
system even for time scales much larger than the relaxation time.”
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Initial- and boundary-value problems for the above equations were analysed in several
works.22

We represented phase transitions in an extremely simplified way, neglecting physically
relevant aspects like stress and deformation in the solid, convection in the liquid, change
of density, microforces, and so on.23 In Section 2 we shall address several other extensions
of the Stefan model.

1.6. Historical note

In 1831 Lamé and Clapeyron [306] formulated what seems to be the first model of phase
transition.24 However the basic mathematical model of this phenomenon is traditionally
named after the Austrian physicist Josef Stefan, who in 1889 studied the melting of the
polar ices, dealing with several aspects of the one- and two-phase problem in a single
dimension of space, see [430].

The first result of existence of a solution (for a large class of data) is be due to L. Ru-
binstein, who formulated the one-dimensional two-phase Stefan problem in 1947 in terms
of a system of integral equations, and proved existence and uniqueness of a solution in a
small time interval [406–408]. Further integral formulations of the one-dimensional Stefan
problem were then studied.25

Several techniques were used to prove well-posedness, results of approximation, regu-
larity, asymptotic behaviour, and other properties.26 Many physically motivated general-
izations were also investigated, and a fairly satisfactory understanding of a large class of
single-dimensional problems was thus achieved.

The early research on the Stefan problem concentrated on the classical formulation of
the univariate model. The introduction of weak formulations for nonlinear partial differ-
ential equations in the 1950s provided the key tool for the extension of the Stefan prob-
lem to the multi-dimensional setting in the early 1960s. The first results in this direction
were achieved by Kamenomostskaya [283] and Oleı̆nik [364].27 Although these pioneering
works were followed by an extensive research, for some time this new trend was somehow
controversial, since for some researchers just the classical formulation was the genuine
mathematical model of phase transitions. This also prompted the study of the regularity of
the weak solution.

22 See e.g. Aizicovici and Barbu [5], Barbu [48], Colli and Grasselli [134–137], Friedman [235], Showalter and
Walkington [422].
23 The convection in phase transitions was studied e.g. in Cannon and DiBenedetto [113], Cannon, DiBenedetto
and Knightly [114,115], Casella [118], DiBenedetto and Friedman [177], DiBenedetto and O’Leary [178], Hoff-
mann and Starovoitov [273], Rodrigues [398], Rodrigues and Urbano [399,400], Wang [462], Xu and Shillor
[473]. Thermodynamic theories of phase transitions in presence of microforces were developed e.g. in Bonetti
and Frémond [72], Frémond [224], Fried and Gurtin [226–228], Gurtin [256].
24 The process of technical solidification is older. The first cast objects (in copper) date back to more than 6000
years ago. . . .
25 See Evans [199], Sestini [420], Friedman [229], Kolodner [295], Jiang [280], and others.
26 See e.g. Cannon and Hill [116], Friedman [230, Chapter 8] and [231–233], Fasano and Primicerio [210,211],
Fasano, Primicerio and Kamin [215], Rubinstein, Fasano and Primicerio [411], Schaeffer [418], and others.
27 See also Ladyženskaja, Solonnikov and Ural’ceva [305, Section V.9].
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Results on the regularity of the solid–liquid interface for the multi-dimensional one-
phase Stefan model were obtained by reformulating the problem as a variational inequal-
ity by means of a variable transformation due to Baiocchi [44,45], Duvaut [184], and
Frémond [223].28 Under appropriate restrictions Friedman and Kinderlehrer [236], Caf-
farelli [96,97], Kinderlehrer and Nirenberg [290,291] proved that the weak solution is also
classical. Continuity of the temperature was showed by Caffarelli and Friedman [99] for the
multi-dimensional one-phase problem. An analogous result was obtained by DiBenedetto
[174,175], Ziemer [477], and Caffarelli and L.C. Evans [98] for the two-phase problem.
In [323] Matano proved that any weak solution of a one-phase Stefan problem in an exte-
rior region eventually becomes a classical solution after a finite time, and that the shape of
the free boundary approaches that of a growing sphere as t → +∞.

In 1979 Meirmanov [327,328] proved the existence of the classical solution of the multi-
dimensional two-phase Stefan problem in a small time interval; see also [329,331]. An
analogous result was also shown by Hanzawa [263] for the one-phase problem by means
of the Nash–Moser regularity theory.29

Mushy regions were first investigated for the one-dimensional Stefan problem by
Atthey [38] (who introduced that denomination), Lacey and Tayler [304], Fasano and
Primicerio [214], Meirmanov [329,330], Primicerio [379], and others. After the introduc-
tion of weak solutions, these regions were also studied in several space dimensions by
Andreucci [23], Bertsch, De Mottoni and Peletier [62], Bertsch and Klaver [63], Götz
and Zaltzman [247,248], Lacey and Herraiz [301,302], Rogers and Berger [403] (see also
Berger, Brezis and Rogers [60]), and in several other papers. See also the survey [205] of
Fasano.30

Free boundary problems. We already pointed out that the Stefan problems is a free
boundary problem (FBP). Many other FBPs were formulated and studied in the last
decades. Examples also include more general models of phase transitions, see Section 2.
Free boundaries also occur as fronts between saturated and unsaturated regions in filtra-
tion through porous media, between plastic and elastic phases in continuous mechanics,
between conducting and superconducting phases in electromagnetism, just to mention few
cases. Relevant examples also come from reaction–diffusion, fluid dynamics, biomathe-
matics, and so on.

Since the early years, the research on Stefan-type problems stimulated and was par-
alleled by that on other FBPs. Several of these problems are of industrial interest, and
offer opportunities of collaboration among mathematicians, physicists, engineers, material

28 This transformation is illustrated in Section 3.3.
29 The existence of regular viscosity solutions was proved by Athanasopoulos, Caffarelli and Salsa, see [33–
36,100]. Regularity results were also obtained by DiBenedetto and Vespri [180], Koch [294], Borodin [73],
Bizhanova [64], Bizhanova and Rodrigues [65], Bizhanova and Solonnikov [66], Prüss, Saal and Simonett [380],
and others.
30 The development of the mathematical analysis of phase transitions would hardly have been conceivable with-
out the achievements of mathematical-physicists and applied scientists. We just select a small sample from a
huge literature: Cahn [106–108], Cahn and Hilliard [109], Collins and Levine [146], Frémond [224], Fried and
Gurtin [226–228], Gurtin [250–258], Gurtin and Soner [262], Hilliard [268], Langer [308,309], Mullins and Sek-
erka [346,347], Penrose and Fife [373,374], Romano [404], Wang et al. [461].
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scientists, biologists, and other researchers. A large community of mathematicians, engi-
neers and applicative scientists spread over the world has been formulating and studying
those problems for many years, and have regularly been meeting in major conferences.
The proceedings of those conferences provide a comprehensive picture of the development
of research on FBPs in the last decades; see the item (V) of the Bibliographical Note in
Section 6.

2. More general models of phase transitions

As we saw, the classical and the weak formulations of the Stefan problem are both based on
a number of simplifying assumptions. Even under favourable circumstances, these models
should then be regarded just as first approximations of melting and freezing processes, both
from the qualitative and quantitative viewpoint. Nevertheless the Stefan model is the basis
for the construction of more refined models of phase transitions, since heat-diffusion and
exchange of latent heat underlie any (first-order) phase transition.

In this second part we illustrate some physically justified extensions of the Stefan model.
We amend the basic Stefan problem by inserting the Gibbs–Thomson law, and derive the
latter by defining a suitable free energy functional. We then replace the equilibrium con-
ditions (1.1.7) and (1.2.6) (for the weak and classica formulations of the Stefan model,
respectively) by a kinetic law, that accounts for decay towards local equilibrium.

Next we concentrate our attention upon phase transitions in binary alloys. First, we out-
line a model that is often used in engineering, that essentially consists in coupling heat
and mass-diffusion, and point out some physical and mathematical drawbacks. We then
introduce an alternative and more satisfactory model, in which the constitutive laws are
formulated consistently with the second principle, along the lines of the theory of nonequi-
librium thermodynamics.

Finally, we outline the phase-field model and the Cahn–Hilliard equation for phase sep-
aration, and relate models set at different length-scales by means of De Giorgi’s notion of
Γ -limit (cf. Section 5.8).

2.1. The Gibbs–Thomson law

Undercooling and superheating. So far we dealt with phase transitions in pure materials,
assuming local thermodynamic equilibrium at the solid–liquid interface, and neglecting
surface tension effects. If these restrictions are dropped, then the interface (relative) tem-
perature, θ , need not vanish. In the framework of the classical formulation, the interface
condition (1.2.6) is actually replaced by a more general law of the form

(2.1.1)θ = θs.t. + θn.e. + θimp. on S.
The first term on the right accounts for surface tension, and is proportional to the mean
curvature of the solid–liquid interface. The second contribution is related to deviations
from local thermodynamic equilibrium, and depends on the rate of phase transition. The
third one accounts for the presence of secondary components (so-called impurities). The
two latter corrections are especially relevant for applications to metallurgy and to other
engineering processes.
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By the continuity of the temperature at the solid–liquid interface, Eq. (2.1.1) entails the
onset of undercooling and/or superheating in the interior of the phases, so that here the
temperature-phase rule (1.1.5) necessarily fails. Next we shall examine the above three
terms separately.

The Gibbs–Thomson law. First we deal with the term θs.t.. Let us assume that at any in-
stant t the solid–liquid interface St is a surface of class C2, denote by κ its mean curvature
(assumed positive for a convex solid phase). The interface condition (1.2.6) may then be
replaced by the Gibbs–Thomson law

(2.1.2)θ = −2στE
L

κ on S.

The quantities τE and L were already introduced in Section 1.1. σ is known as the co-
efficient of surface tension (or capillarity), and is equal to the surface density of the free
energy at the solid–liquid interface, see Section 2.5. For the sake of simplicity, we shall
assume that L and σ are constant.

For water at atmospheric pressure at about 0 ◦C, 2στE/L is of the order of 10−5 cm,
so that the deviation from the null temperature is significant just for mesoscopic curva-
ture radii. The effects of the Gibbs–Thomson law are nevertheless perceivable also at the
macroscopic length-scale, for it accounts for the undercooling prior to solid nucleation.31

Contact angle condition. The curvature condition (2.1.2) may be represented by a
second-order elliptic equation for the (local) parametric formulation of the solid–liquid
interface S. For any t ∈ ]0, T [ it is natural to associate to this equation a condi-
tion at the line of contact between St and the boundary Γ of the domain Ω . For any
(x, t) ∈ S̄ ∩ (Γ × ]0, T [), let us denote by ω(x, t) the angle formed by the normal to St ,
oriented towards the liquid phase Ω1(t), and the outward normal to Ω at x. We thus pre-
scribe the contact angle condition

(2.1.3)cosω = σS − σL

σ
on S̄ ∩ (Γ × ]0, T [),

where σL and σS (here also assumed to be constant) are equal to the surface density of free
energy at a surface separating the liquid and solid phases, resp., from an external material.
Of course (2.1.3) makes sense only if

(2.1.4)|σS − σL| � σ.

We may now formulate the Stefan–Gibbs–Thomson Problem, or (Stefan Problem with
Surface Tension) just by replacing (1.2.9) by (2.1.2) and (2.1.3) in the formulation of Prob-
lem 1.2.1.32

In general this problem cannot have a solution for large time, for discontinuities may
occur at the solid–liquid interface, just as for the classical formulation of the basic Stefan

31 For some materials this may even be of the order of hundreds of degrees. See e.g. the monographs quoted in
the item (VI) of the Bibliographical Note in Section 6.
32 If the heat capacity CV = ∂u/∂θ vanishes in both phases, then this is often referred to as the Mullins–Sekerka
problem. This especially applies to material diffusion in heterogeneous systems.
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problem. However several properties are known to hold for small-time evolution,33 and for
the weak solution for any time.34 An anisotropic variant representing crystal growth was
also studied.35

Free energy. Let us define the perimeter functional P as in (5.7.2). In the framework of
a mesoscopic model, the (Helmholtz) free energy of a solid–liquid system may be repre-
sented as follows, but for an additive contribution that depends on the temperature field:36

(2.1.5)Φθ,σ (χ) :=

⎧⎪⎪⎨
⎪⎪⎩
σP (χ)+ σL − σS

2

∫
Γ

γ0χ dΓ − L

2τE

∫
Ω

θχ dx

∀χ ∈ Dom(P ),

+∞ ∀χ ∈ L1(Ω) \ Dom(P ).

By Proposition 5.7.1, whenever the inequality (2.1.4) is satisfied,37 Φθ,σ is lower semicon-
tinuous and has at least one absolute minimizer. Moreover, whenever θ ∈ Lp(Ω) for some
p > 3, by Theorem 5.7.2 any relative minimizer of Φθ,σ fulfills the Gibbs–Thomson law
(2.1.2) and the contact angle condition (2.1.3).

Limit as σ → 0. On the macroscopic length-scale σ = 0. It is easily seen that, as σ → 0
(whence σS − σL → 0 by (2.1.4)), the functional Φθ,σ Γ -converges in the sense of De
Giorgi (cf. Section 5.8) to

(2.1.6)Φθ(χ) :=
⎧⎨
⎩− L

2τE

∫
Ω

θχ dx if |χ | � 1 a.e. in Ω,

+∞ otherwise.

This functional is convex and lower semicontinuous in L1(Ω), and its minimization is
clearly equivalent to the temperature-phase rule (1.1.5). In Section 2.5 we shall further
discuss the form of the free energy functional at different length-scales.

Surface tension plays an important role in several phase transition phenomena. For in-
stance it accounts for phase nucleation, see e.g.38 Capillarity effects are also relevant for
crystal growth.39

33 See e.g. Chen, Hong and Yi [127], Chen and Reitich [128], Escher, Prüss and Simonett [198], Mucha [342,
343], Radkevitch [382,383].
34 See e.g. Garcke and Sturzenhecker [238], Luckhaus, [313], Luckhaus and Sturzenhecker [316], Röger [401,
402], Savaré [417].
35 See e.g. Amar and Pomeau [22], Giga and Rybka [243], Gurtin and Matias [259], Herring [266], Rybka [413–
415].
36 It would be more precise, but rather cumbersome, to denote this functional by Φθ,σ,σL−σS . By γ0 we denote

the (continuous) trace operator BV(Ω) → L1(Γ ).
37 Incidentally note that the condition (2.1.4) does not hold for all materials; for instance, for gold in contact
with its vapour it fails. This means that solid and vapour should always be separated by a monoatomic liquid
layer; see Chalmers [124, p. 85]. In this case (2.1.3) is meaningless, and actually S̄ ∩ (Γ × ]0, T [) = ∅.
38 See e.g. Visintin [451–454,456].
39 See e.g. Almgren, Taylor and Wang [15], Almgren and Wang [16], Cahn and Taylor [110,439], Crank and
Ockendon [150], Eck, Knabner and Korotov [187], Gurtin and Matias [259], Giga and Rybka [243], Ishii and
Soner [279], Rybka [413–415], Taylor [438].
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(a) (b)

Fig. 4. Kinetic undercooling and superheating in part (a). Phase relaxation in part (b).

2.2. Kinetic undercooling and phase relaxation

In this section we represent the decay of a liquid–solid system towards local equilibrium
via two basic modes of evolution: a kinetic law at the solid–liquid interface, and so-called
phase relaxation. These modes are respectively associated with the classical and weak for-
mulations of the basic Stefan problem, cf. Sections 1.1 and 1.2. We also reformulate this
process from the point of view of nonequilibrium thermodynamics, in which the local for-
mulation of the second principle plays a central role.

First mode: Directional solidification (or Columnar Growth or Kinetic Undercooling).
A close inspection of the process of solidification shows that this is driven by undercool-
ing; see e.g. the monographs quoted in the item (VI) of the Bibliographical Note in Sec-
tion 6. We shall assume that melting is also driven by superheating, consistently with the
symmetry of the representation of these phenomena that characterizes the Stefan model.40

In the framework of the classical formulation in a univariate system, we may replace the
equilibrium condition θ(s(t), t) = 0, cf. (1.2.6), by the kinetic law

(2.2.1)
ds

dt
(t)+ γ

(
θ
(
s(t), t

)) = 0,

for a kinetic function γ that depends on the material; cf. Figure 4(a). By replacing (1.2.9)
with (2.2.1) in Problem 1.1.2, one gets the one-dimensional two-phase Stefan problem with
kinetic law.

In the metallurgical literature, this mode of solidification is named directional solidifica-
tion, and the corresponding undercooling is often referred to as kinetic undercooling; see
e.g. Visintin [446].

40 In general solidification is more relevant and exhibits a richer phenomenology than melting, as it is confirmed
by the wealthy of morphologies that appear for instance in crystal growth. This asymmetry between solidification
(or rather crystallization) and melting stems from the process of nucleation and growth: building the crystal
structure is harder than destroying it.
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For many materials γ : R → R may be assumed to be continuous and strictly increasing,
with γ (0) = 0. In several cases one may also deal with the corresponding linearized law

(2.2.2)
ds

dt
(t)+ cθ

(
s(t), t

) = 0,

where c is a positive constant. However we shall see that this does not apply to all sub-
stances.

Second mode: Equiaxed solidification (or phase relaxation). Dealing with the weak
formulation of the Stefan problem, next we replace the condition of local equilibrium
“χ ∈ sign(θ) in Q,” cf. (1.1.7), by a nonequilibrium law. As this inclusion also reads
sign−1(χ) � θ in Q, it is natural to consider the relaxation law

(2.2.3)a
∂χ

∂t
+ sign−1(χ) � θ in Q,

or equivalently,

(2.2.4)

⎧⎨
⎩

−1 � χ � 1 in Q,(
a
∂χ

∂t
− θ

)
(χ − v) � 0 ∀v ∈ [−1, 1], in Q,

for some relaxation coefficient a; cf. Figure 4(b). For materials that are characterized by
an increasing kinetic function γ , we may replace the right-hand side of (2.2.3) by γ (θ). In
the metallurgical literature this mode of phase transition is referred to as equiaxed solidifi-
cation.41

Comparison of the two modes. The laws (2.2.1) and (2.2.3) describe different evolution
modes, although both represent relaxation towards local equilibrium. Equation (2.2.1) ac-
counts for motion of the interface separating two pure phases, without formation of any
mushy region. On the other hand, the second mode represents phase transition by formation
of a mushy region, and (2.2.3) describes the evolution of the liquid concentration in that
zone. From an analytical viewpoint, these two modes are naturally associated with the clas-
sical and weak formulations of the Stefan problem, respectively. The extension of the first
mode to several space dimensions actually requires a revision of the mathematical model.

Directional and equiaxed growth are the basic modes of solidification, and may also
combine to form a hybrid mode. For instance, in casting metal an equiaxed zone is at first
formed in contact with the wall of the mould, and gives soon raise to a columnar region
that advances towards the interior. Solid nucleation also occurs in the bulk, and an equiaxed
solid phase grows in the remainder of the liquid. Eventually the two solid phases impinge
on, and occupy the whole volume; see Figure 5. These physical aspects are illustrated e.g.
in Flemings [222, Chapter 5], Kurz and Fisher [299, Section 1.1.2].

Glass formation. As we anticipated, for some materials the kinetic function is not
monotone. For steel, polymers, and materials capable of forming a glass, the viscosity

41 See e.g. the monographs quoted in the item (VI) of the Bibliographical Note in Section 6.
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Fig. 5. Part (a) illustrates how columnar and equiaxed solidification may interact in a univariate system. Part (b)
represents the grain structure of a crystal that grew from an undercooled liquid in a vessel: the solid columns

advanced from the border, and impinged on the equiaxed grains which formed in the bulk.

Fig. 6. Kinetic function for an amorphous material, e.g. a polymer.

increases so much with the undercooling, that the mobility of particles in their migration
to reach the crystal sites is strongly impaired.

Although a glass apparently behaves like a solid, it has the fine-scale structure of a
highly-viscous undercooled liquid, and indeed retains a large part of the latent heat of
phase transition. Its crystal structure is largely uncomplete, and the material is accordingly
said to be amorphous. For these materials the kinetic function has the qualitative behaviour
of Figure 6. A glass is formed by quenching (i.e., very rapidly cooling) the liquid material
to a temperature below θ̃ . The glass will eventually crystallize, but this may easily need
geological time-scales.42 A similar process occurs in the austenite-pearlite transformation
in eutectoid carbon steel.43

The entropy balance. We shall represent the density of internal energy, u, as a convex and
lower semicontinuous function of the density of entropy, s, and of the phase function, χ .

42 Phase transitions in polymers and related industrial processes were studied e.g. by Andreucci et al. [24],
Astarita and Sarti [32], Fasano [207], Fasano and Mancini [208], Fasano, Meyer and Primicerio [209].
43 See e.g. Agarwal and Brimacombe [4], Cahn [106], Hawboldt, Chau and Brimacombe [264], Scheil [419]
for an outline of the phenomenon, and Brokate and Sprekels [91, Chapter 8], Hömberg [275], Verdi and Vis-
intin [444], Visintin [450] for its mathematical analysis.
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Thus u = û(s, χ), i.e. more explicitly44

u(x, t) = û
(
s(x, t), χ(x, t)

)
for (x, t) ∈ Q.

By the very definition of the absolute (Kelvin) temperature, τ , the function û is differen-
tiable w.r.t. s and

τ = ∂û

∂s
(s, χ) (=: τ̂ (s, χ)).

As τ̂ > 0, the entropy may equivalently be represented as a concave function of u and χ ,
that is, s = ŝ(u, χ). Because of the constraint −1 � χ � 1, the functions û and ŝ cannot be
differentiable at χ = ±1. We shall accordingly use the notion of (partial) subdifferential,
see Section 5.2. The differential notation is however too convenient for being dropped
without a second thought, especially considering that û and ŝ may be differentiable where
−1 < χ < 1; we shall actually assume them to be so. We shall thus write differential
formulas only for the restriction to these values of χ . For instance, we define the potential
λ by setting

(2.2.5)du = τ ds + λ dχ, ds = 1

τ
du− λ

τ
dχ where −1 < χ < 1.

More precisely, distinguishing between the potential λ and its functional representations
λ̂1(s, χ) and λ̂2(u, χ), and denoting the partial subdifferential w.r.t. χ by ∂χ , we have45

(2.2.6)λ̂1(s, χ) ∈ ∂χ û(s, χ), − λ̂2(u, χ)

τ
∈ ∂χ ŝ(u, χ) for −1 � χ � 1.

The energy balance (1.1.2) and (2.2.5) yield the entropy balance equation

∂s

∂t
= 1

τ

∂u

∂t
− λ

τ

∂χ

∂t
= −∇ · �q

τ
+ �q · ∇ 1

τ
− λ

τ

∂χ

∂t
+ f

τ

(2.2.7)= −∇ · �js + π + f

τ
in Q,

where we set

(2.2.8)�js := �q
τ

: entropy flux (per unit surface),

(2.2.9)π := �q · ∇ 1

τ
− λ

τ

∂χ

∂t
: entropy production rate (per unit volume).

Thus

(2.2.10)π := �J · �G, where �J :=
(

�q, ∂χ
∂t

)
, �G :=

(
∇ 1

τ
,−λ

τ

)
.

The quantity f/τ is the rate of entropy production per unit volume, due to an external
source or sink of heat. By the local formulation of the second principle of thermodynam-
ics,46

44 By this “hat notation” we shall distiguish between the physical field, u = u(x, t), and the function that
represents how it depends on other variables, u = û(s, χ).
45 Here the symbol of inclusion is needed, for the subdifferential may be multivalued, see Section 5.2.
46 See e.g. the monographs quoted in the item (VII) of the Bibliographical Note in Section 6.
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π � 0, π = 0 at local equilibrium

(2.2.11)(Clausius–Duhem inequality).

Because of the arbitrariness of �G, assuming a linear dependence between �J and �G, by this
inequality we infer47 the following linearized conduction and phase relaxation laws:

(2.2.12)�q = K · ∇ 1

τ
, that is, �q = −K

τ 2
· ∇τ,

(2.2.13)a
∂χ

∂t
= −λ

τ
, that is, a

∂χ

∂t
∈ ∂χ ŝ;

here the tensor K and the scalar a are positive-definite functions of the state variables.
These two equations may respectively be compared with the Fourier law (1.1.3) and with
the phase relaxation dynamics (2.2.3). Thus

(2.2.14)π � 0; π = 0 ⇔ ∇τ = �0, λ = 0.

Linearization. The occurrence of the term 1/τ in the above formulas raises the need of
granting that τ > 0. This has been a source of technical difficulties in the analysis, that
were overcome only at the expense of a certain effort.48 That achievement is valuable in
itself, and a result which allows for extreme temperatures is clearly of interest. However,
one might wonder whether in practice the risk of getting τ close to zero is physically sig-
nificant, and if so whether it is legitimate to extrapolate our models to those temperatures.
Actually, constitutive relations typically just have a limited range of validity. This leads us
to introduce a simplified model, that we shall study in Section 4.

Let us first define the function49

(2.2.15)ϕ := u− τEs, that is, ϕ = ϕ̂(u, χ) := u− τEŝ(u, χ),

and notice that by (2.2.5)

(2.2.16)dϕ = du− τE

τ
du− τE

∂ŝ

∂χ
dχ = θ

τ
du− τE

∂ŝ

∂χ
dχ.

Thus ∂ϕ̂/∂χ = −τE∂ŝ/∂χ for −1 < χ < 1, and more generally in terms of partial
subdifferentials ∂χ ϕ̂ = −τE∂χ ŝ for −1 � χ � 1.

The energy balance (1.1.2) and the entropy balance (2.2.7) yield the balance of the func-
tion ϕ:

∂ϕ

∂t
= ∂u

∂t
− τE

∂s

∂t
= −∇ · �q + f + τE∇ · �q

τ
− τEπ − τE

τ
f

(2.2.17)= −∇ ·
(
θ

τ
�q
)

− τEπ + θ

τ
f,

47 In Section 2.4 we shall illustrate this derivation in a more general framework.
48 See Sprekels and Zheng [429], Zheng [476].
49 This potential is named available free energy and tends to a minimum as equilibrium is approached in a
source-free isolated system, cf. (2.2.17) below; see Müller and Weiss [345, Chapter 7]. In [255,257] Gurtin
referred to it as a Gibbs function; actually, this function was first introduced by Gibbs dealing with uniform fields.
It may also be noticed that relaxation towards thermal equilibrium is much faster than other relaxation processes,
so that the difference between ϕ and ψ is not quantitatively relevant.
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with π defined as in (2.2.9):

(2.2.18)τEπ := �q · ∇ τE

τ
− λτE

τ

∂χ

∂t
= −�q · ∇ θ

τ
− λ

(
1 − θ

τ

)
∂χ

∂t
.

Next we linearize the system (2.2.17) and (2.2.18) w.r.t. θ . For any function σ , let us set
σ(ρ) = o(ρ) whenever σ(ρ)/ρ → 0 as ρ → 0. As

θ

τ
= θ

τE
+ o

(
θ

τE

)
,

∇ θ

τ
= τE

∇θ
τ 2

= ∇θ
τE

(
1 + θ

τE

)−2

= ∇θ
τE

[
1 − 2

θ

τE
+ o

(
θ

τE

)]
,

we get

(2.2.19)dϕ =
[
θ

τE
+ o

(
θ

τE

)]
du− τE

∂ŝ

∂χ
dχ,

(2.2.20)
∂ϕ

∂t
= −∇ ·

{[
θ

τE
+ o

(
θ

τE

)]
�q
}

− τEπ +
[
θ

τE
+ o

(
θ

τE

)]
f,

(2.2.21)τEπ = −�q · ∇θ
τE

[
1 − 2

θ

τE
+ o

(
θ

τE

)]
− λ

[
1 − θ

τE
+ o

(
θ

τE

)]
∂χ

∂t
.

Notice that in these formulas the terms in square brackets are all positive.
Neglecting infinitesima, we thus get

(2.2.22)dϕ = θ

τE
du− τE

∂ŝ

∂χ
dχ,

(2.2.23)
∂ϕ

∂t
= −∇ ·

(
θ

τE
�q
)

− τEπ + θ

τE
f,

(2.2.24)τEπ = −�q · ∇θ
τE

(
1 − 2

θ

τE

)
− λ

(
1 − θ

τE

)
∂χ

∂t
.

2.3. Phase transitions in heterogeneous systems

In this section we extend the Stefan model to phase transitions in mixtures of two mate-
rials. The diffusion of heat is here coupled with that of the constituents, so that we have
a system of equations instead of a single parabolic equation. In this case the interface is
characterized by a discontinuity not only of the heat flux, but also of the mass flux and
of the composition of the mixture. We shall first introduce a classical formulation, and
then derive a weak one.50 Some physical and mathematical drawbacks will also arise, and

50 This procedure is opposite to that we followed in Sections 1.1 and 1.2, that however might be applied here,
too.



408 A. Visintin

these will induce us to reformulate this phenomenon by a different model in the next sec-
tion.

Mass diffusion. We confine ourselves to a composite of two constituents. We might also
deal with a larger number of species, but even in this simple setting we shall encounter
some difficulties in the analysis. More precisely, we shall deal with a binary alloy, that is,
a homogeneous mixture of two substances, that are soluble in each other in all proportions
in each phase, outside a critical range of temperatures. Here homogeneity means that the
constituents are intermixed on the atomic length-scale to form a single phase, either solid
or liquid. We shall regard one of the two components as the solute, for instance that with
the lower solid–liquid equilibrium temperature, and the other one as the solvent. We shall
also use the following notation:
c: concentration of the solute (per unit volume),
�jc: flux of the solute (per unit surface),
D1 (D2, resp.): mass diffusivity of the solute in the liquid (in the solid, resp.).
Although the coefficient D2 is much smaller than D1, it need not vanish.51

In a simplified formulation, we assume that the specific heat and the heat conductivity
may depend on the temperature and on the phase, but not on the (solute) concentration. We
also assume that the mass diffusivity may depend on the concentration and on the phase,
but not on the temperature. Thus

(2.3.1)CV i = CV i(θ), ki = ki(θ), Di = Di(c) for i = 1, 2.

If the two constituents have different temperatures of phase transition, then that of the
mixture depends on the concentration. The latent heat is then a prescribed function of the
temperature: L = L(θ).

As for pure substances, the heat equation is here fulfilled in the interior of each phase

(2.3.2)CV i(θ)
∂θ

∂t
− ∇ · [ki(θ) · ∇θ] = f in Qi (i = 1, 2),

and is complemented by the Stefan condition at the solid–liquid interface S:

(2.3.3)k1(θ) · ∂θ1

∂n
− k2(θ) · ∂θ2

∂n
= −L(θ)�v · �n on S.

The principle of mass conservation, ∂c/∂t + ∇ · �jc = 0, and the Fick law, �jc =
−Di(c)∇c, yield the equation of mass-diffusion in each phase:

(2.3.4)
∂c

∂t
− ∇ · [Di(c)∇c

] = 0 in Qi (i = 1, 2).

Let us introduce some further notation:
�jci : mass flux (per unit surface) across S contributed by the phase i,
ci : limit of c on S from the phase i,

51 Moreover the liquid diffusivityD1 is much smaller than the heat conductivity k in either phase. One might also
assume that D1 = D2 = 0, as in the Mullins–Sekerka problem, where however the capillarity is also accounted
for.
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Fig. 7. The graph of η1 and η2 (respectively named liquidus and solidus) represent states of stable thermodynamic
equilibrium at the solid–liquid interface for a noneutectic composite. The states outside the lens-shaped region

(and with 0 � c � 1) are also stable, whereas those inside are either metastable or unstable.

�v: (normal) velocity of St ,
�n ∈ R3: unit vector field normal to St oriented from the liquid to the solid.
By mass conservation we have

(2.3.5)�jc2 · �n− �jc1 · �n = (c2 − c1)�v · �n on S.
The Fick law then yields another discontinuity condition:

(2.3.6)D1(c1)
∂c1

∂n
−D2(c2)

∂c2

∂n
= (c2 − c1)�v · �n on S.

The reader will notice the analogy between the balance laws (2.3.2) and (2.3.4) in the
interior of the phases, and the difference between the discontinuity conditions (2.3.3) and
(2.3.6) at the solid–liquid interface: the field c is discontinuous across S, at variance with θ .
Actually, the concentration, c, should be compared with the density of internal energy, u,
rather than with the temperature, θ . Ahead we shall introduce a further field, w, that is
continuous at the solid–liquid interface, and plays an analogous role to that of θ .

Phase separation. At the solid–liquid interface, the temperature and the concentration
fulfill an equilibrium relation of the form

(2.3.7)θ = η1(c1) = η2(c2) on S,
where η1 and η2 are known functions. Their graphs are traditionally named liquidus and
solidus, for obvious reasons. For a noneutectic composite,52 we may also assume that

(2.3.8)
ηi ∈ C1([0, 1]), η′

i < 0 (i = 1, 2), η1 > η2 in ]0, 1[,
η1(0) = η2(0) = 0, η1(1) = η2(1) (=: θ̃ ) < 0 (see Figure 7).

At local thermodynamic equilibrium, the temperature-phase rule (1.1.5) is here replaced
by a temperature-concentration-phase rule:

(2.3.9)θ � η1(c) in Q1, θ � η2(c) in Q2.

52 A composite is named a eutectic if η1(c̄) = η2(c̄) for some eutectic concentration c̄ ∈ ]0, 1[.
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The states where η2(c) < θ < η1(c) are in either metastable or unstable thermodynamic
equilibrium. Whenever the variables are forced to attain those intermediate values, e.g. by
rapid cooling of a liquid system, one or more nuclei of the secondary phase are formed,
and grow until the two phases have attained the respective concentrations of equilibrium:
ci = η−1

i (θ) (i = 1, 2). Under isothermal conditions, this process of phase separation
(also known as spinodal decomposition) is represented by the Cahn–Hilliard equation,
that we briefly illustrate in Section 2.5.

Next we introduce a classical formulation, that extends that of the basic Stefan model,
cf. Problem 1.2.1.

PROBLEM 2.3.1 (Classical formulation of the multi-dimensional problem of phase transi-
tion in binary alloys). Find θ, c :Q → R and a partition {Q1,Q2,S} of Q such that:

(i) Q1 and Q2 are open sets;
(ii) S ⊂ Q is a regular 3-dimensional manifold, and St := S ∩ (Ω × {t}) is a regular

surface, for any t ∈ ]0, T [;
(iii) θ , c, ∂θ/∂t , ∂c/∂t , ∂2θ/∂xi∂xj , ∂2c/∂xi∂xj (for i, j ∈ {1, 2, 3}) exist and are

continuous in Q1 and in Q2;
(iv) the normal derivatives ∂θi/∂n and ∂ci/∂n exist on the respective sides of S;
(v) Eqs. (2.3.2)–(2.3.4), (2.3.6), (2.3.7) are fulfilled;

(vi) θ and c attain prescribed values on Ω × {0} and on ΓD × ]0, T [;
(vii) the normal derivatives ∂θ/∂ν and ∂c/∂ν attain prescribed values on ΓN × ]0, T [;

(viii) S̄ ∩ (Ω × {0}) is also prescribed.

Here the occurrence of metastable states is not excluded, just as for Problem 1.2.1.

A transformation of variable. In view of deriving a weak formulation of Problem 2.3.1,
let us introduce the new variable53

(2.3.10)w := ηi(c)
(∈ [θ̃ , 0]) in Qi (i = 1, 2),

so that by (2.3.7) and (2.3.9)

(2.3.11)w is continuous across S, w = θ on S,
(2.3.12)θ � w in Q1, θ � w in Q2.

Setting ζi := η−1
i for i = 1, 2, we have

(2.3.13)c = ζi(w), ∇c = ζ ′
i (w)∇w in Qi (i = 1, 2).

Let us also set

(2.3.14)D̃i(w) := −Di

(
ζi(w)

)
ζ ′
i (w) (> 0) ∀w ∈ [θ̃ , 0] (i = 1, 2),

so that the Fick law also reads

(2.3.15)�jc := −Di(c)∇c = D̃i(w)∇w in Qi (i = 1, 2).

53 In Section 2.4 we shall see that ∇w is proportional to −∇μ, where by μ we denote the relative chemical
potential, namely the difference between the chemical potentials of the two components.
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Fig. 8. Constitutive relation between the variables θ and w at the solid–liquid interface. As 0 � c � 1, only
θ̃ � w � 0 is physically meaningful. The liquid phase is characterized by w < θ , the solid phase by w > θ .

Defining the phase function χ as above (i.e., χ = 1 in the liquid, χ = −1 in the solid),
the phase rule (1.1.7) is here replaced by

(2.3.16)χ ∈ sign(θ − w) in Q (cf. Figure 8).

Let us now set

CV (θ, χ) := CV 1(θ)
1 + χ

2
+ CV 2(θ)

1 − χ

2
,

(2.3.17)
k(θ, χ) := k1(θ)

1 + χ

2
+ k2(θ)

1 − χ

2
,

D̃(w, χ) := D̃1(w)
1 + χ

2
+ D̃2(w)

1 − χ

2
,

∀(θ, w, χ) ∈ R × [θ̃ , 0] × [−1, 1].
By Proposition 1.3.1, the heat equations (2.3.2) and the Stefan condition (2.3.3) may be
expressed in weak form by the single equation

(2.3.18)CV (θ, χ)
∂θ

∂t
+ L(θ)

2

∂χ

∂t
− ∇ · [k(θ, χ) · ∇θ] = 0 in D′(Q).

That argument yields the analogous statement for mass-diffusion.

PROPOSITION 2.3.1. Let the pair (u,S) fulfill the regularity conditions of Problem 2.3.1,
define w as in (2.3.10), and set χ := −1 in Q2, χ := 1 in Q1. The system (2.3.4), (2.3.6)
is then equivalent to

(2.3.19)
∂c

∂t
+ ∇ · [D̃(w, χ)∇w] = 0 in D′(Q).

Notice that by (2.3.13)

(2.3.20)c = ζ1(w)
1 + χ

2
+ ζ2(w)

1 − χ

2
in Q.

Thus c is a decreasing function of w, and Eq. (2.3.19) is forward parabolic.
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Table 2
Comparison between heat and mass-diffusion in binary alloys. By �vi� := v1 − v2 we denote the jump of a
quantity v across the solid–liquid interface S

Heat diffusion Mass diffusion

continuous variable temperature θ new variable w
discontinuous variable internal energy u solute concentration c

equation in each phase CV i(θ)
∂θ

∂t
− ∇ · [ki (θ)∇θ] = f

∂c

∂t
− ∇ · [Di(c)∇c] = 0

jump condition across S
�
ki (θ)

∂θi

∂n

�
= −L(θ)�v · �n

�
Di(c)

∂ci

∂n

�
= (c2 − c1)�v · �n

equation in D′(Q) ∂u

∂t
− ∇ · [k(θ, χ)∇θ] = f

∂c

∂t
+ ∇ · [D̃(w, χ)∇w] = 0

Equations (2.3.16), (2.3.18), (2.3.19) and (2.3.20) for the unknown functions θ , c, w, χ ,
coupled with appropriate initial and boundary conditions, constitute the weak formulation
of the problem of phase transition in binary alloys. We derived these equations from the
classical formulation; alternatively one might also derive them directly from the laws of
heat and mass conservation set in the whole space–time domain Q.

Linearized constitutive laws. If the solute concentration c is small (as it often occurs in
practice), it is possible to linearize the functions η1 and η2, that is, to replace (2.3.7) by

(2.3.21)θ = η′
i (0)ci =: − 1

ri
ci on S (i = 1, 2),

with 0 � r2 < r1; cf. Figure 9. By setting

(2.3.22)w := − 1

ri
ci (� 0) in Qi (i = 1, 2),

from (2.3.20) we thus get

(2.3.23)c = −r1wχ + 1

2
− r2w

1 − χ

2
in Q.

Although the linearization only applies for small values of c, here the range of c is assumed
to be the whole R+, which corresponds to w � 0.

A nonparabolic system of equations. The model above has extensively been used by ma-
terial scientists and engineers, and their numerical approximation provided quantitatively
acceptable results.54 However, as far as this author knows, even existence of a weak solu-
tion is not known for this problem in the multi-variate setting, in spite of the simplifications
that are inherent in this model. Actually Problem 2.3.1 does not seem prone to analysis.
The equations of heat and mass-diffusion (2.3.18) and (2.3.19) are separately parabolic;

54 See e.g. the monographs quoted in the item (VI) of the Bibliographical Note in Section 6. This model was
also investigated by mathematicians, see e.g. Alexiades and Cannon [7], Alexiades and Solomon [8], Alexiades,
Solomon and Wilson [9,425,464,465], Bermudez and Saguez [61], Crowley [151], Crowley and Ockendon [152],
Fix [219], Ockendon and Tayler [363], Tayler [437].
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Fig. 9. Linearized liquidus and solidus curves.

however, coupled with (2.3.16), as a system they miss this property, for the multi-valued
mapping

(2.3.24)R2 → 2R2
:

(
θ

w

)
�→
(
u

c

)
=
(

CV (θ, χ)θ + L(θ) sign(θ − w)

ζ1(w)
1+sign(θ−w)

2 + ζ2(w)
1−sign(θ−w)

2

)
fails to be monotone. This is easily checked, as this property fails for the discontinuous
part of that mapping:

(2.3.25)R2 → 2R2
:

(
θ

w

)
�→
(

L(θ) sign(θ − w)
1
2 [ζ1(w)− ζ2(w)] sign(θ − w)

)
.

This analytical issue has a physical counterpart: the model of this section does not account
for cross effects between heat and mass-diffusion: a temperature gradient induces a mass
flux (Soret effect), and in turn a gradient of chemical potential causes a heat flux (Dufour
effect).55 Although in several cases the omitted terms do not seem to be quantitatively very
significant, their absence impairs the analytical structure of the problem. Another physical
drawback of this model was pointed out in Alexiades and Cannon [7], Alexiades, Wilson
and Solomon [9].

These physical and mathematical drawbacks are overcome by the theory of nonequilib-
rium thermodynamics, that we illustrate in the next section. There the constitutive relations
are dictated by the second principle, rather than being just extrapolated from the uncoupled
heat and mass-diffusion, as above.

2.4. Approach via nonequilibrium thermodynamics

The physical and mathematical drawbacks that emerged in the last section induce us to
represent phase transitions in binary alloys via an alternative and more successful approach,
that also applies to more general heterogeneous systems. This is based on the following
main elements:

(i) the first principle of thermodynamics and the principle of mass conservation (i.e.,
two balance laws),

55 See e.g. the monographs quoted in the item (VII) of the Bibliographical Note in Section 6.
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(ii) a constitutive relation for the entropy density (namely, the Gibbs formula),
(iii) three further constitutive relations, the so-called phenomenological laws, that are

consistent with a local formulation of the second principle of thermodynamics, and
include a dynamics of phase-relaxation.

The first two issues lead to the formulation of a doubly-nonlinear second-order system
of PDEs. The third requirement accounts for dissipation, which in analytical terms corre-
sponds to the forward parabolicity of the problem. This approach is based on the theory of
nonequilibrium thermodynamics.56

Although one might deal with any number of constituents and also allow for chemical
reactions, see e.g. Luckhaus and Visintin [317], in this simplified presentation we still
confine ourselves to a nonreacting (noneutectic) binary system. As we did in Section 2.2,
but at variance with the model of Section 2.3 and with previous works, here we also account
for phase nonequilibrium by including the phase function among the state variables.

Balance laws and Gibbs formula. In view of extending the derivation of the entropy
balance of Section 2.2 to binary alloys, let us define some further notation:
μ: difference between the chemical potential of the two constituents,
�ju: flux of energy (per unit surface), due to flux of heat and mass,
h: intensity of a prescribed energy source or sink, due to injection or extraction either of

heat or mass.
In the absence of chemical reactions, the principles of energy and mass conservation

yield

(2.4.1)
∂u

∂t
= −∇ · �ju + h in Q,

(2.4.2)
∂c

∂t
= −∇ · �jc in Q.

We shall assume that the internal energy is a prescribed convex function of the en-
tropy density, s, of the solute concentration, c, and of the phase function, χ ; that is,
u = û(s, c, χ). The specific form of the function û obviously depends on the constituents.

Consistently with the discussion of Section 2.2, because of the constraints 0 � c � 1
and −1 � χ � 1, we may assume û to be differentiable for (c, χ) ∈ ]0, 1[ × ]−1, 1[, but
not on the boundary of this set. Let us extent ûwith value +∞ for (c, χ) /∈ ]0, 1[×]−1, 1[.
We may thus assume this function to be differentiable for (c, χ) in this open rectangle, but
not on its boundary. We must then deal with the partial subdifferentials ∂cû, ∂χ û (see Sec-
tion 5.2), which coincide with the respective derivatives only in ]0, 1[×]−1, 1[. Reminding
the definition of the absolute temperature, τ = ∂sû(s, c, χ), for any selection

(2.4.3)μ ∈ ∂cû(s, c, χ), λ ∈ ∂χ û(s, c, χ),

we thus have

u = û(s, c, χ),

(2.4.4)du = τ ds + μ dc + λ dχ ∀(s, c, χ) ∈ (Dom û)0.

56 See e.g. the monographs quoted in the item (VII) of the Bibliographical Note in Section 6. The mathematical
aspects of this formulation were studied e.g. in Alexiades, Wilson and Solomon [9], Donnelly [182], Luck-
haus [314], Luckhaus and Visintin [317].
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As ∂sû(s, c, χ) = τ > 0, this constitutive relation may also be written in the equivalent
form s = ŝ(u, c, χ). Moreover (2.4.4) is equivalent to the Gibbs-type formula

s = ŝ(u, c, χ),

(2.4.5)ds = 1

τ
du− μ

τ
dc − λ

τ
dχ ∀(u, c, χ) ∈ (Dom ŝ)0,

and more generally

1

τ
∈ ∂uŝ(u, c, χ), −μ

τ
∈ ∂cŝ(u, c, χ), −λ

τ
∈ ∂χ ŝ(u, c, χ)

(2.4.6)∀(u, c, χ) ∈ Dom ŝ.

Consistently with a basic postulate of nonequilibrium thermodynamics, we assume that
(2.4.4) and (2.4.5) also apply to systems that are not too far from equilibrium. Actually,
the limits of validity of the whole theory strongly depend on those of the Gibbs formula
(2.4.5).

Entropy balance. Let us multiply (2.4.1) by 1/τ and (2.4.2) by −μ/τ . By (2.4.6) we thus
get the entropy balance equation

∂s

∂t
= 1

τ

∂u

∂t
− μ

τ

∂c

∂t
− λ

τ

∂χ

∂t

(2.4.7)

= − 1

τ
∇ · �ju + h

τ
+ μ

τ
∇ · �jc − λ

τ

∂χ

∂t

= −∇ · �ju − μ �jc
τ

+ �ju · ∇ 1

τ
− �jc · ∇μ

τ
− λ

τ

∂χ

∂t
+ h

τ

= −∇ · �js + π + h

τ
in Q,

where we set

(2.4.8)�js := �ju − μ �jc
τ

: entropy flux (per unit surface),

(2.4.9)

π := �ju · ∇ 1

τ
− �jc · ∇μ

τ
− λ

τ

∂χ

∂t
:

entropy production rate (per unit volume).

The quantity h/τ is the rate at which entropy is either provided to the system or extracted
from it by an external source or sink of heat. Note that �ju = �q + μ �jc, where �q is the heat
flux; (2.4.8) and (2.4.9) then also read

(2.4.10)�js = �q
τ
, π = �q · ∇ 1

τ
− �jc
τ

· ∇μ− λ

τ

∂χ

∂t
.

According to the local formulation of the second principle of thermodynamics, the en-
tropy production rate is pointwise nonnegative, and vanishes only at equilibrium. This is
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tantamount to the Clausius–Duhem inequality:

π � 0 for any process, and

(2.4.11)π = 0 only if ∇τ = ∇μ = �0 and ∂χ/∂t = 0.

Moreover, π = 0 (π > 0, resp.) corresponds to a reversible (irreversible, resp.) process.
We must then formulate constitutive laws consistent with (2.4.11).

Phenomenological laws. Let us introduce some further definitions:
�J := ( �ju, �jc, ∂χ/∂t): generalized fluxes,
z := (1/τ ,−μ/τ,−λ/τ) (∈ Dom(s∗)): dual state variables, z′ := (1/τ ,−μ/τ),
�G := (∇(1/τ),−∇(μ/τ),−λ/τ): generalized forces.57

Along the lines of nonequilibrium thermodynamics, we assume that the generalized
fluxes are functions of the dual state variables and of the generalized forces, via consti-
tutive relations called phenomenological laws,

(2.4.12)�J = �F(z, �G) ∀z ∈ Dom(s∗)
(⊂ R+ × R2), ∀ �G ∈ (R3)2 × R,

that must be consistent with the second principle, cf. (2.4.11). The mapping �F must thus
be positive-definite w.r.t. �G. Close to thermodynamic equilibrium, namely, for small gen-
eralized forces, one may also assume that this dependence is linear. As the first two com-
ponents of �J and �G are vectors and the third one is a scalar, the above linearized relations
uncouple, because of the Curie principle: “generalized forces cannot have more elements
of symmetry than the generalized fluxes that they produce.”58 Thus

(2.4.13)

( �ju
�jc
)

= L(z) ·
( ∇ 1

τ

−∇ μ
τ

) (= L(z) · ∇z′),
(2.4.14)a(z)

∂χ

∂t
= −λ

τ
, that is, a(z)

∂χ

∂t
∈ ∂χ ŝ.

(In (2.4.13) the dot denotes the rows by columns product of a tensor of (R3)2×2 by a vector
of (R3)2.) Consistently with (2.4.11), for any z the tensor L(z) is assumed to be positive-
definite, and a(z) > 0. A fundamental result of nonequilibrium thermodynamics due to
Onsager states that the tensor L(z) is symmetric:

(2.4.15)L =
(
L11 L12
L21 L22

)
, L12(z) = L21(z)

(∈ R3) ∀z ∈ Dom(s∗).

The phenomenological laws (2.4.13) and (2.4.14) may then be represented in gradient
form, for a suitable potential Φ:

(2.4.16)�J = ∇Φ(z, �G) ∀z ∈ Dom(s∗), ∀ �G ∈ (R3)2 × R,

where by ∇Φ we denote the gradient w.r.t. the second argument, �G.

57 Notice that −λ/τ occurs as a dual state variable and also as a generalized force. See Section 5.2 for the
definition of the conjugate concave function s∗.
58 See e.g. the monographs quoted in the item (VII) of the Bibliographical Note in Section 6.
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In conclusion, we have represented processes in two-phase composites by the quasi-
linear parabolic system (2.4.1), (2.4.2), (2.4.6), (2.4.13), (2.4.14). This system is doubly
nonlinear, and the techniques of Alt and Luckhaus [17], DiBenedetto and Showalter [179],
and others may be used.

A transformation of the state variables. The vector of state variables z := (1/τ ,−μ/τ,
−λ/τ) may equivalently be replaced by z̃ := (1/τ , μ,−λ/τ); let us also set z̃′ :=
(1/τ , μ). As the corresponding transformation ∇z′ → ∇ z̃′ is linear and �ju = �q + μ �jc,
by a simple calculation the linearized phenomenological laws (2.4.13) may equivalently be
reformulated in terms of these new variables:

(2.4.17)

( �q
�jc
)

= M(z̃) ·
( ∇ 1

τ

− 1
τ
∇μ

) (=: M̃(z̃) · ∇ z̃′).
(The latter equality represents the definition of the tensor M̃.) Like L, the tensor M is
also positive-definite for any z̃. By the symmetry of L it is easily checked that M is also
symmetric, at variance with M̃. These conclusions may also be attained by applying the
above argument based on the second principle to (2.4.10), instead of (2.4.9).

If the tensor M(z̃) is diagonal and depends continuously on its arguments, then by the
developments of the final part of Section 2.2 we retrieve Fourier- and Fick-type laws:

(2.4.18)
�q = M11(z̃)∇ 1

τ
= − 1

τ 2
E

M11z̃∇θ
[

1 − 2
θ

τE
+ o

(
θ

τE

)]
,

�jc = − 1

τ
M22(z̃)∇μ = − 1

τE
M22(z̃)∇μ

[
1 − θ

τE
+ o

(
θ

τE

)]
,

with M11 and M22 positive scalars (more generally, positive-definite 3 × 3-tensors). On
the other hand, a nondiagonal tensor M would also account for the Soret and Dufour cross
effects.

As M22 and D̃i(w) (cf. (2.3.14)) are both positive, by comparing (2.3.15) with (2.4.18)
we see that ∇w is proportional to −∇μ.

REMARKS. (i) It is possible to define a function analogous to (2.2.15), with the further
dependence on c:

(2.4.19)ϕ := u− τEs, that is, ϕ = ϕ̂(u, c, χ) := u− τEŝ(u, c, χ).

Along the lines of (2.2.15)–(2.2.21), one may reformulate the entropy balance in terms of
ϕ, θ , μ and λ, and then linearize the state variables 1/τ , −λ/τ , and −μ/τ in a neighbour-
hood of τ = τE .

(ii) An approach based on nonequilibrium thermodynamics may also be applied to other
coupled phenomena with phase transition, e.g. thermal and electromagnetic processes in a
ferromagnetic body (with negligible hysteresis), see Visintin [449].

2.5. Diffuse-interface models and length-scales

In this section we introduce the Landau–Ginzburg representation of the free energy of
a two-phase system, the associated Cahn–Hilliard and Allen–Cahn dynamics, and the
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Penrose–Fife and phase-field models. As these models are set at a finer length-scale than
the (macroscopic) scale that we considered in Section 1, we relate these free energy func-
tionals and that of Section 2.1 by means of De Giorgi’s notion of Γ -limit.59

Double wells. Along the lines of the Landau–Ginzburg theory of phase transitions, see
e.g. Landau and Lifshitz [307], here we fix two positive parameters b and ε, and represent
the free energy of a solid–liquid system by a functional of the form

(2.5.1)Fθ,ε(χ) :=
∫
Ω

(
εb|∇χ |2 + 1

ε

(
1 − χ2)2 − L

2τE
θχ

)
dx ∀χ ∈ H 1(Ω),

plus a constant that may depend on the temperature field. By the direct method of the
calculus of variations,60 for any ε > 0 this functional has an absolute minimizer.

The terms εb|∇χ |2 and the double well potential (1 − χ2)2/ε compete for the mini-
mization of Fθ,ε(χ). As the second term is minimized by χ = ±1, a temperature having
nonuniform sign may induce sharp variations of χ between −1 to 1; but high gradients of
χ are penalized by the first term. Compromising between these two exhigences, for small
ε any relative minimizer of Fθ,ε(χ) attains values that are close to ±1 in the whole Ω , but
for thin transition layers. The actual physical value of the coefficients b, ε is so small that
the layer thickness is typically of the order of nanometers.

The functional (2.5.1) is Fréchet differentiable, and its functional derivative reads

(2.5.2)DFθ,ε(χ) = −2εb�χ + 4

ε
χ
(
χ2 − 1

)− Lθ

2τE
∀χ ∈ H 1(Ω).

Because of the nonconvexity, a stationary point of Fθ,ε may either be an absolute mini-
mizer, or a relative minimizer (namely, the absolute minimizer of the restriction of Fθ,ε to
some neighbourhood of that point), or a saddle point, or even a relative maximizer. These
points may respectively be interpreted as states of stable, metastable, and (for the two latter
cases) unstable equilibrium.61

Two relaxation dynamics. The phase function χ may be regarded as an order parameter;
the same applies to the solute concentration in alloys, the magnetization in ferromagnetics,
the polarization in ferroelectrics, and so on. One may distinguish between phenomena in
which for an isolated system the integral of the order parameter is conserved, and those
in which it is not. Phase separation in alloys belongs to the first class, phase transition in
solid–liquid systems to the second one.

Conserved-integral dynamics. Along the lines of Hohenberg and Halperin [274], in the
first case one typically represents processes by a relaxation dynamics of the form

(2.5.3)a
∂χ

∂t
− ∇ · {K · ∇[DFθ,ε(χ)]} = 0 in Q;

59 See e.g. the monographs quoted in the item (XIV) of the Bibliographical Note in Section 6.
60 See e.g. Braides and Defranceschi [82], Buttazzo, Giaquinta and Hildebrandt [94], Carbone and De Arcangelis
[117], Dacorogna [154], Dal Maso [155]), Evans and Gariepy [201], Giusti [245].
61 The notion of metastability is (implicitly) referred to a time-scale. A (nonabsolute) relative minimizer will
appear as stable at a sufficiently fine time-scale, and as unstable at a sufficiently long time-scale. Steel, polymers
and glasses are examples of these stable-looking relative minimizers, up to geological time-scales.
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here a is a positive relaxation coefficient, and K is a positive-definite tensor that may de-
pend on the state variables. For instance let us consider a binary alloy and denote by c the
concentration of one component; in this case L = 0. By coupling Eq. (2.5.3) with the ho-
mogeneous boundary condition {K ·∇[DFθ,ε(c)]} ·ν = 0, one then sees that

∫
Ω
c(x, t) dx

is constant in time. After Cahn [107,108], Cahn and Hilliard [109], for isothermal processes
one thus gets the Cahn–Hilliard equation of phase separation:

(2.5.4)a
∂c

∂t
+ ∇ ·

{
K · ∇

[
−2εb�c + 4

ε
c
(
c2 − 1

)]} = λ in Q,

where λ is the (unknown) Lagrange multiplier associated to the constraint on the integral
of χ . The phenomenon of phase separation and the analytical properties of the Cahn–
Hilliard equation were studied in a large literature.62

Nonconserved-integral dynamics. On the other hand for solid–liquid systems the typ-
ical dynamics of the phase function χ (and more generally that of nonconserved order
parameters) reads

(2.5.5)a
∂χ

∂t
+DFθ,ε(χ) = 0 in Q.

For Fθ,ε(χ) as in (2.5.1), this yields the Allen–Cahn (or Landau–Ginzburg) equation, see
Allen and Cahn [13]:

(2.5.6)a
∂χ

∂t
− 2εb�χ + 4

ε
χ
(
χ2 − 1

) = Lθ

2τE
in Q.

The Penrose–Fife and phase-field models. So far we dealt with the representation of the
free energy functional and with its dynamics. For nonisothermal processes equation (2.5.6)
must be coupled with the energy balance. As we saw, the theory of nonequilibrium ther-
modynamics leads one to formulate the Fourier law as the proportionality between the heat
flux and −∇(1/τ), cf. (2.2.12). An approach of this sort was proposed by Penrose and Fife
in [373,374], and then studied in many works.63

By linearizing 1/τ in a neighbourhood of 1/τE we have ∇(1/τ) � −∇θ/τ 2
E , and the

Fourier law is reduced to the form (1.1.3). By coupling this law with the energy balance
(1.1.2) and with the free energy dynamics (2.5.6), one obtains the so-called phase-field
model, which was first proposed by Fix [219–221] and Collins and Levine [146], and was
then extensively studied by Caginalp and others.64

62 See e.g. Alikakos, Bates and Chen [10], Bates and Fife [50,51], Blowey and Elliott [69], Caginalp [104],
Chen [126], Chen, Hong and Yi [127], Elliott [190], Elliott and Garke [191], Elliott and Zheng [194], Escher and
Simonett [197], Kessler et al. [287], Novick-Cohen and Segel [361], Pego [372], Rappaz and Scheid [385]. See
also Alt and Pawlow [18–20], Fabrizio, Giorgi and Morro [204], for the extension to nonisothermal processes.
63 See e.g. Bonetti et al. [71], Chen and Fife [125], Colli and Laurençot [139], Colli and Plotnikov [140], Colli
and Sprekels [142,143], Fife [217], Hilliard [268], Kenmochi and Kubo [286], Miranville, Yin and Showal-
ter [333], Sprekels and Zheng [429], Wang et al. [461], Zheng [476].
64 See e.g. Aizicovici and Barbu [5], Caginalp [101–104], Caginalp and Xie [105], Colli, Gilardi and Gras-
selli [132], Colli et al. [133], Fried and Gurtin [226–228], Miranville, Yin and Showalter [333], Krejčí, Rocca and
Sprekels [297], Novick-Cohen [359,360], Plotnikov and Starovoitov [375].
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A limit procedure. As we already pointed out, the parameter ε defines a nanoscopic
length-scale. It is then of interest to study the limit of the free energy Fθ,ε as ε vanishes, in
order to retrieve a model at a larger length-scale. The notion of Γ -limit in the sense of De
Giorgi, see Section 5.8, is especially appropriate to represent the asymptotic behaviour of
the absolute minimizers of Fθ,ε, see Proposition 5.8.2.65

PROPOSITION 2.5.1 (Γ -limit)66. Let θ ∈ L1(Ω) and σ = 4
√
b/3. As ε → 0, the family

of functionals {Fθ,ε} Γ -converges to Φθ,σ in L1(Ω) (here with σL = σS), cf. (2.1.5).

This result directly follows from Theorem 5.8.4. By Corollary 5.8.3 the latter statement
entails that, if uε is an absolute minimizer of the functional Fθ,ε for any ε, then there exists
a state u ∈ L1(Ω) such that, as ε vanishes along a suitable sequence (not relabelled),

(2.5.7)uε → u in L1(Ω), Fθ,ε(uε) → Φθ,σ (u) = infΦθ,σ .

Macroscopic-mesoscopic, and microscopic length-scales. We represented the free energy
of solid–liquid systems at three length-scales, see Table 3:

(i) At the macroscopic scale the functionalΦθ is convex, cf. (2.1.6), and processes may
be described by the weak formulation of the Stefan problem, i.e., Problem 1.1.1.
At this length-scale a mushy region may appear, corresponding to the condition
|χ | < 1 a.e.. The solid–liquid interface may accordingly be either sharp or dif-
fuse.

(ii) At the mesoscopic scale σ � 1 the functional Φθ,σ is nonconvex, cf. (2.1.5),
and evolution may be represented by the Stefan–Gibbs–Thomson problem. Here
|χ | = 1 a.e., and thus one distinguishes solid from liquid parts, also in the mushy
region. In other terms, what at the macroscopic scale appears as a mushy region is
here resolved in its liquid and solid constituents.

(iii) At the microscopic scale ε � σ the functional Fθ,ε is also nonconvex, cf. (2.5.1),
and evolution may be described by the phase-field model. Here χ varies smoothly:
the interface is represented by a nanoscopic transition layer, and may thus be re-
garded as diffuse. In this case |χ | < 1 a.e., but intermediate values of χ represent
a transition layer rather than a mushy region.

For instance, length-scales of the order of the millimeter, of the micrometer and of the
nanometer may loosely be labelled as macroscopic, mesoscopic and microscopic, respec-
tively. The process of zooming out from the microscopic to the mesoscopic scale is here
represented by the Γ -limit as ε → 0. On the other hand the Γ -limit as σ → 0 accounts
for the passage from the mesoscopic to the macroscopic scale.

For evolution problems the asymptotic analysis is more delicate. A large literature was
devoted to the models of Cahn–Hilliard, Allen–Cahn, Mullins–Sekerka, Stefan–Gibbs–
Thomson, in particular to establish asymptotic relations among them.67

65 The analysis of the limit behaviour of the relative minimizers would also be of interest, but needs a different
approach; see e.g. Dal Maso and Modica [156,157].
66 See Luckhaus and Modica [315], Modica [335,336] for related results.
67 See e.g. Alikakos, Bates and Chen [10], Alikakos, Bates, Chen and Fusco [11], Alikakos, Fusco and Kar-
ali [12], Caginalp [103,104], Escher and Simonett [197], Evans, Soner and Souganidis [202], Garroni and
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Table 3
Comparison among some properties of the solid–liquid interface at different length-scales

Macroscopic scale Mesoscopic scale Microscopic scale

Stefan model Stefan–Gibbs–Thomson model Phase-field model
Sharp/diffuse interface Sharp interface Diffuse interface
Convex free energy Nonconvex free energy Nonconvex free energy
|χ | � 1 |χ | = 1 |χ | � 1
No ∇χ in free energy σ

∫
Ω |∇χ | εb

∫
Ω |∇χ |2 dx

χ ∈ L∞(Ω) χ ∈ L∞(Ω) ∩ BV(Ω) χ ∈ L∞(Ω) ∩H 1(Ω)

Discussion. The Landau–Ginzburg potential Fθ,ε may look rather appealing to the math-
ematical analyst: its principal part is quadratic in the derivatives, the nonconvexity is con-
fined to the null-order term and is smooth. This functional is Frechét differentiable, and
the differential part of the derivative is linear, so that the Euler equation is semilinear. The
Cahn–Hilliard and Allen–Cahn relaxation dynamics are easily formulated, and are also
semilinear. What better?

On the other hand, its Γ -limit as ε → 0, namely the functional Φθ,σ , cf. (2.1.5), misses
all these nice features. Its principal part is nonquadratic (even worse: it has critical growth
of degree 1), and is not integrable: it is just a Borel measure. Here the nonconvexity is
highly nonsmooth: it is the characteristic constraint, namely |χ | = 1. The functional Φθ,σ
is nondifferentiable, and the associated dynamics is also nontrivial: it consists of the mean
curvature flow with forcing term.68 What worse?

All elements seem to indicate that Fθ,ε should be preferred to Φθ,σ . In favour of the
latter there are however two features: Φθ,σ (χ) is more appropriate for mesoscopic models,
and it may be discretized by means of a coarser mesh, for it is set at a larger length-scale
than Fθ,ε.69

3. Analysis of the weak formulation of the Stefan model

In Section 1.1 we represented the weak formulation of the basic Stefan model as an initial-
and boundary-value problem for the quasilinear parabolic system

(3.0.1)

⎧⎨
⎩
u ∈ α(θ),

∂u

∂t
− ∇ · [k(θ) · ∇θ] = f

in Q,

Niethammer [239], Luckhaus and Sturzenhecker [316], Krejčí, Rocca and Sprekels [297] Miranville, Yin
and Showalter [333], Niethammer [352,353], Plotnikov and Starovoitov [375], Röger [402], Soner [427,428],
Stoth [432], and the detailed review of Soner [426].
68 See e.g. the monographs Almgren and Wang [16], Buttazzo and Visintin [95], Damlamian, Spruck and Vis-
intin [163], Evans and Spruck [203], Giga [242] and references therein.
69 One might also question the use of a continuous model at a microscopic (actually, nanoscopic) length-scale: is
it really justified to apply differential calculus at a scale at which the discrete structure of matter starts becoming
perceivable?
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for a multi-valued maximal monotone function α, cf. Problem 1.1.1. In this part we il-
lustrate a number of classical methods that may be used for the analysis of this problem.
Specifically, we deal with:

(i) approximation by implicit time-discretization (Section 3.1),
(ii) a priori estimates in L2-spaces (Section 3.1),

(iii) passage to the limit via compactness, monotonicity and lower semicontinuity tech-
niques (Section 3.1),

(iv) a contraction procedure in L1(Ω) (Section 3.2),
(v) a priori estimates in L∞(Ω) (Section 3.2),

(vi) a priori estimates in Lq(Ω) (Section 3.2),
(vii) a variable transformation via time-integration (Section 3.3),

(viii) a variable transformation via inversion of the elliptic operator (Section 3.3),
(ix) nonlinear semigroups of contractions in H−1(Ω) and in L1(Ω) (Section 3.4).70

3.1. L2-techniques

In this section we prove the existence of a solution of the weak formulation of the basic
Stefan problem in any prescribed time interval, show its structural stability, and derive
some regularity results. This gives us the opportunity to illustrate some basic techniques
for the analysis of quasilinear parabolic equations in Sobolev spaces.71

As above we shall assume that Ω is a bounded domain of R3 of Lipschitz class, denote
its boundary by Γ , fix any T > 0, and set Q := Ω × ]0, T [, Σ := Γ × ]0, T [. We also fix
a subset ΓD of Γ of positive bidimensional Hausdorff measure, and set ΓN := Γ \ ΓD ,

V := {
v ∈ H 1(Ω): γ0v = 0 on ΓD

}
,

where γ0 denotes the trace operator.72 This is a Hilbert space equipped with the customary
H 1-norm, which by the Friedrichs-Poincaré inequality is equivalent to

‖v‖V :=
(∫

Ω

|∇v|2 dx

)1/2

.

We shall identify the space L2(Ω) with its dual L2(Ω)′. As V is a dense subspace of
L2(Ω), the dual space L2(Ω)′ may in turn be identified with a subspace of V ′. This yields
the Hilbert triplet

(3.1.2)V ⊂ L2(Ω) = L2(Ω)′ ⊂ V ′, with dense and compact injections.

We shall denote by 〈·,·〉 the duality pairing between V ′ and V , and define the linear, con-
tinuous and coercive operator

A :V → V ′, 〈Au, v〉 :=
∫
Ω

∇u · ∇v dx ∀u, v ∈ V,

70 This part rests upon the classical theory of linear and nonlinear PDEs, see e.g. the monographs quoted in the
items (X)–(XIII) of the Bibliographical Note in Section 6.
71 See e.g. the monographs quoted in the item (XIII) of the Bibliographical Note in Section 6, Alt and Luck-
haus [17], Brezis [83], Damlamian [158], Damlamian and Kenmochi [161], and many others.
72 See e.g. Lions and Magenes [312].
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whence Au = −�u in D′(Ω). We also assume that73

ϕ : R → R̃
(:= R ∪ {+∞})

(3.1.3)is lower semicontinuous and convex, and ϕ �≡ +∞,

denote its convex conjugate function by ϕ∗, and notice that ∂ϕ∗ = (∂ϕ)−1, cf. (5.2.11).
Finally, we fix any

(3.1.4)u0 ∈ L2(Ω), f ∈ L2(0, T ;V ′),

and introduce our weak formulation.

PROBLEM 3.1.1. Find u ∈ L2(Q) and θ ∈ L2(0, T ;V ) such that

(3.1.5)u(θ − v) � ϕ(θ)− ϕ(v) ∀v ∈ Dom(ϕ), a.e. in Q,

(3.1.6)

∫∫
Q

[(
u0 − u

)∂v
∂t

+ ∇θ · ∇v
]

dx dt =
∫ T

0
〈f, v〉 dt

∀v ∈ L2(0, T ;V ) ∩H 1(0, T ;L2(Ω)
)
, v(·, T ) = 0.

Interpretation. By Proposition 5.2.5 the variational inequality (3.1.5) is tantamount to the
inclusion

(3.1.7)u ∈ ∂ϕ(θ) a.e. in Q.

The variational equation (3.1.6) yields

(3.1.8)
∂u

∂t
+ Aθ = f in V ′ a.e. in ]0, T [,

whence ∂u/∂t = f − Aθ ∈ L2(0, T ;V ′). Thus u ∈ H 1(0, T ;V ′), and by integrating
(3.1.6) by parts in time we get

(3.1.9)u|t=0 = u0 in V ′ (in the sense of the traces of H 1(0, T ;V ′)).

In turn (3.1.8) and (3.1.9) yield (3.1.6). In view of interpreting Eq. (3.1.8), let us now take

(3.1.10)g ∈ L2(Q), h ∈ L2(ΓN × ]0, T [),
and define f ∈ L2(0, T ;V ′) by setting

〈
f (t), v

〉 := ∫
Ω

g(x, t)v(x) dx +
∫
ΓN

h(x, t)γ0v(x) dσ

(3.1.11)∀v ∈ V, for a.a. t ∈ ]0, T [.
In this case Eq. (3.1.8) then yields the differential equation

(3.1.12)
∂u

∂t
−�θ = g in D′(Q),

73 This function ϕ should not be confused with that of Section 2.2.
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whence �θ = ∂u/∂t − g ∈ H−1(0, T ;L2(Ω)). Denoting by ∂/∂ν the external normal
derivative, the trace ∂θ/∂ν is then an element of H−1(0, T ;H 1/2

00 (ΓN)
′).74 By partial inte-

gration of (3.1.6) we then retrieve the Neumann condition

(3.1.13)
∂θ

∂ν
= h in H−1(0, T ;H 1/2

00 (ΓN)
′).

Moreover the definition of V obviously yields the Dirichlet condition

(3.1.14)γ0θ = 0 on ΓD × ]0, T [.
In conclusion, if f is as in (3.1.10) and (3.1.11), then (3.1.6) is a weak formulation of the
system (3.1.12)–(3.1.14).

REMARK. Let k be a continuous, bounded and positive function R → R. If we replace
�θ by ∇ · [k(θ)∇θ ] in Eq. (3.1.12), then by the Kirchhoff transformation

(3.1.15)K :V → V : θ �→ θ̃ :=
∫ θ

0
k(ξ) dξ

we get ∇·[k(θ)∇θ ] = �θ̃ . As K is invertible, the inclusion (3.1.7) may then be replaced by
u ∈ ∂ϕ(K−1(θ̃)) a.e. inQ, which is also of the form u ∈ ∂ϕ̃(θ̃), for a lower semicontinuous
and convex function ϕ̃ : R → R̃. A formulation like Problem 3.1.1 for the unknown pair
(u, θ̃) is thus retrieved in this case, too.

THEOREM 3.1.1 (Existence). Assume that the hypotheses (3.1.3) and (3.1.4) are satisfied.
If

(3.1.16)∃L,M > 0: ∀(ξ, η) ∈ graph(∂ϕ), |ξ | � L|η| +M,

(3.1.17)ϕ∗(u0) ∈ L1(Ω),

then Problem 3.1.1 has a solution such that u ∈ L∞(0, T ;L2(Ω)).

PROOF. (i) Approximation. We shall prove existence of a solution by means of a classic
procedure: time-discretization, derivation of a priori estimates, and passage to the limit.75

We fix any m ∈ N, set

(3.1.18)

k := T

m
, u0

m := u0,

f nm := 1

k

∫ nk

(n−1)k
f (τ ) dτ in V ′, for n = 1, . . . , m,

and approximate our problem by the following implicit time-discretization scheme.

74 By H 1/2
00 (ΓN ) we denote the Hilbert space of the restrictions to ΓN of the functions of H 1/2(Γ ), that vanish

a.e. in Γ \ ΓN , H 1/2(Γ ) being the space of the traces of the functions of H 1(Ω). See e.g. Lions and Magenes
[312, vol. I] and other monographs on Sobolev spaces, that are quoted in the item (XII) of the Bibliographical
Note in Section 6.
75 See e.g. the discussion in the introduction of Lions [311].
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PROBLEM 3.1.1m. Find unm ∈ L2(Ω) and θnm ∈ V for n = 1, . . . , m, such that for
n = 1, . . . , m

(3.1.19)
unm − un−1

m

k
+ Aθnm = f nm in V ′,

(3.1.20)unm ∈ ∂ϕ
(
θnm
)

a.e. in Ω.

In view of solving this problem step by step, let us fix any n ∈ {1, . . . , m}, assume that
un−1
m ∈ L2(Ω) is known, and define the lower semicontinuous, convex, coercive functional

J nm(v) :=
∫
Ω

[
ϕ(v)+ k

2
|∇v|2 − un−1

m v
]

dx − k
〈
f nm, v

〉 ∀v ∈ V.

By the direct method of the calculus of variations, this functional has a minimizer θnm ∈ V .
Hence 0 ∈ ∂J nm(θ

n
m) in V ′, whence by Theorem 5.2.3

(3.1.21)0 ∈ ∂ϕ
(
θnm
)+ kAθnm − un−1

m − kf nm in V ′, ∀n ∈ {1, . . . , m}.
This inclusion is equivalent to the system (3.1.19) and (3.1.20).

(ii) A priori estimates. First notice that by (3.1.20) and (5.2.11), for n = 1, . . . , m

θnm ∈ (∂ϕ)−1(unm) = ∂ϕ∗(unm) a.e. in Ω,

whence

(3.1.22)θnm
(
unm − un−1

m

)
� ϕ∗(unm)− ϕ∗(un−1

m

)
a.e. in Ω.

Let us now multiply (3.1.19) by kθnm and sum for n = 1, . . . , �, for any � ∈ {1, . . . , m}. By
(3.1.22) this yields

(3.1.23)

∫
Ω

[
ϕ∗(u�m)− ϕ∗(u0)] dx + k

�∑
n=1

∫
Ω

∣∣∇θnm∣∣2 dx

� k

�∑
n=1

∥∥f nm∥∥V ′
∥∥θnm∥∥V � ‖f ‖L2(0,T ;V ′)

(
k

�∑
n=1

∥∥θnm∥∥2
V

)1/2

.

By (3.1.16) it is easy to check that

(3.1.24)ϕ∗(η) � 1

2L
(η −M)2 ∀η ∈ R such that |η| � M.

The inequality (3.1.23) then yields

(3.1.25)max
n=1,...,m

∥∥unm∥∥L2(Ω)
, k

m∑
n=1

∥∥θnm∥∥2
V

� C1.

(By C1, C2, . . . we shall denote several constants that are independent of m.)
For any family {vnm}n=0,...,m of functions Ω → R, let us now set

vm := piecewise linear time-interpolate of v0
m, . . . , v

m
m, a.e. in Ω,

(3.1.26)v̄m(·, t) := vnm a.e. in Ω,∀t ∈ ](n− 1)h, nh
[
, for n = 1, . . . , m.
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Defining um, ūm, θ̄m, f̄m in this way, the system (3.1.19), (3.1.20) and the estimates (3.1.25)
also read

(3.1.27)
∂um

∂t
+ Aθ̄m = f̄m in V ′, a.e. in ]0, T [,

(3.1.28)ūm ∈ ∂ϕ(θ̄m) a.e. in Q,

(3.1.29)‖um‖L∞(0,T ;L2(Ω)), ‖θ̄m‖L2(0,T ;V ) � C2.

Hence Aθ̄m is uniformly bounded in L2(0, T ;V ′), and by comparing the terms of (3.1.27)
we get

(3.1.30)‖um‖H 1(0,T ;V ′) � C3.

(iii) Limit procedure. By the uniform estimates (3.1.29) and (3.1.30), there exist θ , u
such that, possibly taking m → ∞ along a subsequence (not relabelled),

(3.1.31)θ̄m → θ weakly in L2(0, T ;V ),
(3.1.32)um → u weakly star in L∞(0, T ;L2(Ω)

) ∩H 1(0, T ;V ′).

By passing to the limit in (3.1.27) we then get (3.1.8). In view of proving (3.1.5), first notice
that by the compactness of the injection V ⊂ L2(Ω) and by Sobolev-space interpolation76

L∞(0, T ;L2(Ω)
) ∩H 1(0, T ;V ′) ⊂ C0([0, T ];V ′)

(3.1.33)with compact injection,

so that by (3.1.32)

(3.1.34)um → u strongly in C0([0, T ];V ′).
Hence ‖ūm − um‖V ′ → 0 uniformly in ]0, T [, and we get∫∫

Q

ūmθ̄m dx dt

(3.1.35)=
∫ T

0
〈ūm − um, θ̄m〉 dt +

∫∫
Q

umθ̄m dx dt →
∫∫

Q

uθ dx dt.

By (3.1.20), (3.1.31), (3.1.32), (3.1.35), applying Corollary 5.5.5 we then get (3.1.5).
Finally, by (3.1.34) the initial condition for u (cf. (3.1.18)) is preserved in the limit. �

REMARK. By the self-adjointness of the operator −�, existence of a solution might also
be proved without exploiting the compactness of the injection V ⊂ L2(Ω), by a procedure
that is only based on the convexity and lower semicontinuity of the function ϕ.77

76 See e.g. Lions and Magenes [312].
77 See e.g. Visintin [453, Section II.3].
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Next we show that our problem is structurally stable.

THEOREM 3.1.2 (Weakly-continuous dependence on the data). Let us assume that {ϕn},
{fn}, {u0

n} are sequences that fulfill the assumptions of Theorem 3.1.1, with L and M

independent of n in (3.1.16). Let us also assume that the sequence {ϕ∗
n(u

0
n)} is bounded in

L1(Ω), and that

(3.1.36)ϕn → ϕ uniformly in R,

(3.1.37)fn → f weakly in L2(0, T ;V ′),
(3.1.38)u0

n → u0 weakly in L2(Ω).

For any n, let (un, θn) be a solution of the corresponding Problem 3.1.1n.78 Then there
exist θ and u such that, as n → ∞ along a suitable sequence (not relabelled),

(3.1.39)un → u weakly star in L∞(0, T ;L2(Ω)
) ∩H 1(0, T ;V ′),

(3.1.40)θn → θ weakly in L2(0, T ;V ).
This entails that (u, θ) is a solution of Problem 3.1.1.

We shall see that the solution of Problem 3.1.1 is unique, so that it is not necessary to
extract any subsequence in (3.1.39) and (3.1.40).

OUTLINE OF THE PROOF.79 By multiplying Eq. (3.1.8)n by θn and then using the proce-
dure of the proof of Theorem 3.1.1, one may easily derive uniform estimates like (3.1.29)
and (3.1.30). One can then pass to the limit as above as n → ∞ along a subsequence,
and show that (u, θ) is the solution of Problem 3.1.1 by mimicking the argument of Theo-
rem 3.1.1. �

Regularity. Several regularity properties may be proved for the solution of Problem 3.1.1,
by deriving further a priori estimates on the approximate solution. Next we just illustrate
three examples, all based on the symmetry of the elliptic operator (i.e., �).

PROPOSITION 3.1.3 (First regularity result). If the assumptions of Theorem 3.1.2 are
satisfied and

∃c > 0: ∀(ξi, ηi) ∈ graph(∂ϕ) (i = 1, 2),

(3.1.41)(ξ1 − ξ2)(η1 − η2) � c(ξ1 − ξ2)
2,

then Problem 3.1.1 has a solution such that

(3.1.42)θ ∈ Hr
(
0, T ;L2(Ω)

) ∀r < 1
2 .

78 By this we denote the problem that is obtained from Problem 3.1.1 by replacing the functions u, θ, . . . by
un, θn, . . . . We shall use this sort of notation several repeatedly.
79 See Visintin [453, Section II.3] for details.
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OUTLINE OF THE PROOF.80 The first part of the proof of Theorem 3.1.1 yields (3.1.29) and
(3.1.30). In view of deriving a further uniform estimate, let us first fix any h ∈ ]0, T [ and
define the shift operator (τhv)(t) := v(t + h) for any t ∈ R and any function v : R → R.
Let us then set θm(·, t) := θm(·, 0) for any t < 0, multiply the approximate equation
(3.1.27) by θm − τ−hθm, and then integrate with respect to t . This procedure provides a
uniform estimate for θm in Hr(0, T ;L2(Ω)). �

PROPOSITION 3.1.4 (Second regularity result). If the assumptions of Theorem 3.1.2 and
(3.1.41) are satisfied and moreover81

(3.1.43)θ0 := ∂ϕ∗(u0) ∈ V,

(3.1.44)f ∈ L2(Q)+W 1,1(0, T ;V ′),

then Problem 3.1.1 has a solution such that

(3.1.45)u ∈ L∞(0, T ;L2(Ω)
)
, θ ∈ H 1(0, T ;L2(Ω)

) ∩ L∞(0, T ;V ).

OUTLINE OF THE PROOF.82 By (3.1.41) we have∫
Ω

(
unm − un−1

m

)(
θnm − θn−1

m

)
dx � c

∫
Ω

(
θnm − θn−1

m

)2 dx

(3.1.46)for n = 1, . . . , �.

Multiplying (3.1.19) by θnm− θn−1
m and summing for n = 1, . . . , �, for any � ∈ {1, . . . , m},

one then gets uniform estimates on um and θm that yield (3.1.45) in the limit. �

PROPOSITION 3.1.5 (Third regularity result). If (3.1.3), (3.1.16), (3.1.41) are satisfied and

(3.1.47)f = f1 + f2,
√
t f1 ∈ L2(Q),

√
t
∂f2

∂t
∈ L1(0, T ;V ′),

then Problem 3.1.1 has a solution such that

(3.1.48)
√
t
∂θ

∂t
∈ L2(Q),

√
t θ ∈ L∞(0, T ;V ).

Hence θ ∈ H 1(δ, T ;L2(Ω)) ∩ L∞(δ, T ;V ) for any δ > 0, without any hypothesis for
the initial datum u0.

OUTLINE OF THE PROOF.83 The further regularity (3.1.48) stems from an estimation pro-
cedure that follows the lines of the argument that we used above to derive (3.1.25); the
main difference is that here one multiplies (3.1.19) by nk(θnm−θn−1

m ), instead of θnm−θn−1
m .

80 See Visintin [453, Section II.2] for details.
81 Notice that (3.1.41) entails that the mapping ∂ϕ∗ is single-valued.
82 See Visintin [453, Section II.2] for details.
83 See Visintin [453, Section II.2] for details.
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Notice that

�∑
n=1

〈
Aθnm, nk

(
θnm − θn−1

m

)〉
� �k

2

∫
�

∣∣∇θ�m∣∣2 dx − k

2

�−1∑
n=0

∫
�

∣∣∇θnm∣∣2 dx,

and the latter sum is uniformly estimated because of (3.1.25). One thus gets a uniform
estimate for θm that corresponds to (3.1.48). �

By a judicious choice of the test function, one may also prove results of local regularity
in space and time, see e.g. Visintin [453, Section II.4].

3.2. L1- and L∞-techniques

In this section we prove the well-posedness of Problem 3.1.1 by using an L1-contraction
technique.84 We then show the essential boundedness of the solution via cut-off and ap-
proximation procedures.

An L1-result. Next we prove that the solution of Problem 3.1.1 depends monotonically
and Lipschitz-continuously on the data in the L1-metric. This technique is at the basis of
the semigroup approach that we shall illustrate in Section 3.4.

THEOREM 3.2.1 (Monotone and L1-Lipschitz-continuous dependence on the data). As-
sume that the assumptions of Theorem 3.1.1 are satisfied. For i = 1, 2, let

(3.2.1)u0
i ∈ L2(Ω), fi ∈ L2(0, T ;V ′), f1 − f2 ∈ L1(Q),

and (ui, θi) be a solution of the corresponding Problem 3.1.1. Setting ũ := u1 − u2,
ũ0 := u0

1 − u0
2, f̃ := f1 − f2, we then have85∫

Ω

ũ+(x, t) dx

(3.2.2)�
∫
Ω

(
ũ0)+(x) dx +

∫ t

0
dτ
∫
Ω

f̃+(x, τ ) dx for a.a. t ∈ ]0, T [,∫
Ω

∣∣ũ(x, t)∣∣ dx

(3.2.3)�
∫
Ω

∣∣ũ0(x)
∣∣ dx +

∫ t

0
dτ
∫
Ω

∣∣f̃ (x, τ )∣∣ dx for a.a. t ∈ ]0, T [.

PROOF. (i) At first we assume that

(3.2.4)
∂ϕ is Lipschitz-continuous and fulfills (3.1.41);

u0
i and fi fulfill (3.1.43) and (3.1.44), for i = 1, 2;

84 See also e.g. Bénilan [54], Damlamian [158,160].
85 By ξ+ we denote the positive part of any real number ξ .
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afterwards we shall drop these restrictions. By Proposition 3.1.4 then θi, ui ∈ H 1(0, T ;
L2(Ω)) for i = 1, 2. Let us also define the Heaviside graph H and its Yosida regularized
functionHλ := λ−1[I− (I+λH)−1] (by I we denote the identity operator) for any λ > 0:

(3.2.5)H(η) :=
⎧⎨
⎩

{0} if η < 0,

[0, 1] if η = 0,

{1} if η > 0,

Hλ(η) :=
⎧⎨
⎩

0 if η < 0,

λη if 0 � η � λ,

1 if η > λ.

Let us then write (3.1.8) for i = 1, 2, take the difference between these equations, multiply
it by Hλ(θ̃), and integrate it in Ω . As∫

Ω

∇ θ̃ · ∇Hλ(θ̃) dx =
∫
Ω

H ′
λ(θ̃)|∇ θ̃ |2 dx � 0 a.e. in ]0, T [,

we get

(3.2.6)
∫
Ω

∂ũ

∂t
Hλ(θ̃) dx �

∫
Ω

f̃Hλ(θ̃) dx �
∫
Ω

f̃+ dx a.e. in ]0, T [.
Let us then pass to the limit as λ → 0+. Note that

Hλ(θ̃) → ψ :=
{

0 where θ̃ � 0,

1 where θ̃ > 0
a.e. in Q,

so that ψ ∈ H(θ̃) a.e. in Q. Moreover H(θ̃) = H(ũ) a.e. in Q, for by the auxiliary
assumption (3.2.4) ∂ϕ and (∂ϕ)−1 are both monotone and single-valued. Hence ψ ∈ H(ũ)

a.e. in Q. By the Lebesgue dominated-convergence theorem, we thus get

d

dt

∫
Ω

ũ+ dx =
∫
Ω

∂

∂t
ũ+ dx =

∫
Ω

∂ũ

∂t
ψ dx =

∫
Ω

∂ũ

∂t
lim
λ→0

Hλ(θ̃) dx

(3.2.7)= lim
λ→0

∫
Ω

∂ũ

∂t
Hλ(θ̃) dx �

∫
Ω

f̃+ dx a.e. in ]0, T [.
This yields (3.2.2) by time integration.

(ii) Let us now drop the auxiliary hypothesis (3.2.4), and approximate ϕ, u0
i , fi (i =

1, 2) by means of sequences {ϕn}, {u0
in}, {fin} that fulfill (3.2.4) for any n. For any n

the inequality (3.2.2) thus holds for the difference of the corresponding solutions, ũn. By
Theorem 3.1.2,

ũn → ũ weakly in L2(Ω), ∀t ∈ [0, T ],
whence, by the convexity of the positive-part mapping,

(3.2.8)lim inf
n→∞

∫
Ω

(ũn)
+(x, t) dx �

∫
Ω

ũ+(x, t) dx ∀t ∈ [0, T ].
By writing (3.2.2) for ũn and then passing to the inferior limit as n → ∞, we then get
(3.2.2) for ũ. The inequality (3.2.3) is finally obtained by exchanging u1 and u2 in (3.2.2),
and then adding the two inequalities. �

COROLLARY 3.2.2. Under the assumptions of Theorem 3.1.1, the solution of Prob-
lem 3.1.1 is unique and depends monotonically and Lipschitz-continuously on the data
u0 and f .
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The technique of Theorem 3.2.1 also allows one to derive some results of time regularity,
that here we omit.86

L∞-results. L∞-estimates may be derived in two ways, multiplying the equation either
by a cut-off of the solution, or by a power of the solution and then letting the exponent
diverge. The second procedure also provides Lq -estimates for any fixed q > 2, but, at
variance with the first one, it does not need the uniqueness of the solution.

PROPOSITION 3.2.3 (Maximum and minimum principles). Assume that (3.1.3), (3.1.4),
(3.1.16) and (3.1.17) hold. If

∃M > 0, ∃θ0 ∈ L1(Ω): θ0 ∈ ∂ϕ∗(u0),
(3.2.9)θ0 � M (θ0 � −M, resp.) a.e. in Ω,

(3.2.10)f � 0 (f � 0, resp.) in the sense of D′(Q),

then the solution of Problem 3.1.1 is such that

(3.2.11)θ � M (θ � −M, resp.) a.e. in Q.

PROOF. By Theorem 3.1.1 and Corollary 3.2.2, Problem 3.1.1 has one and only one so-
lution. Let us assume that θ0 � M , f � 0. For any measurable selection b of ∂ϕ∗
(= (∂ϕ)−1), let us also set

Φ(v) :=
∫ v

0

[
b(ξ)−M

]+ dξ (� 0) ∀v ∈ Dom(∂ϕ∗);

notice that this integral is independent of the selection. Let us then multiply (3.1.8) by (θ−
M)+ (∈ L2(0, T ;V )), and integrate in time. Note that (3.2.9) and (3.2.10), respectively,
yield

Φ
(
u0) = 0 a.e. in Ω,

〈
f, (θ −M)+

〉
dτ � 0 a.e. in ]0, T [.

Moreover by Proposition 5.2.7∫
Ω

Φ(u) dx ∈ W 1,1(0, T ),

〈
∂u

∂t
, (θ −M)+

〉
= d

dt

∫
Ω

Φ(u) dx.

We thus get∫
Ω

Φ
(
u(x, T )

)
dx +

∫ T

0
dt
∫
Ω

∣∣∇(θ −M)+
∣∣2 dx � 0,

whence ∇(θ −M)+ = 0 a.e. in Q. As θ ∈ V this yields (θ −M)+ = 0 a.e. in Q, namely
θ � M .

The case of θ0 � −M and f � 0 may be dealt with similarly, using −(θ−M)−in place
of (θ −M)+. �
86 See e.g. Visintin [453, Section II.3].
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PROPOSITION 3.2.4 (Lq -estimate). Assume that (3.1.3) and (3.1.16) are fulfilled, and that
for some q > 2

(3.2.12)u0 ∈ Lq(Ω), f ∈ Lq(Q) ∩ L2(0, T ;V ′).
Then the solution of Problem 3.1.1 is such that u ∈ L∞(0, T ;Lq(Ω)), and∥∥u(·, t)∥∥

Lq(Ω)
�
[
1 + (

q‖f ‖Lq(Q)
)1/q + ∥∥u0

∥∥
Lq(Ω)

]
exp

(
t‖f ‖Lq(Q)

)
(3.2.13)∀t ∈ ]0, T ].

PROOF. By Theorem 3.1.1 and Corollary 3.2.2, Problem 3.1.1 has one and only one solu-
tion. Let us at first assume that ∂ϕ is Lipschitz-continuous; afterwards we shall drop this
auxiliary hypothesis. Let us also fix any M > 0, and set

αq(v) = |v|q−2v, βM(v) := min
{
max{v,−M},M} ∀v ∈ R,

γqM = αq ◦ βM ◦ ∂ϕ in R, uM = βM(u) a.e. in Q.

Hence αq(uM) = γqM(θ) by (3.1.7). Note that the function γqM is Lipschitz-continuous
and nondecreasing. Let us multiply Eq. (3.1.8) by αq(uM) = γqM(θ) (∈ L2(0, T ;V )) and
integrate in time. Note that 〈Aθ, γqM(θ)〉 = ∫

Ω
∇θ · ∇γqM(θ) dx � 0. By the Schwarz–

Hölder inequality we then get∫
Ω

(∣∣uM(x, t)∣∣q − ∣∣u0(x)
∣∣q) dx

= q

∫ t

0

〈
∂u

∂t
, αq(uM)

〉
dτ

� q‖f ‖Lq(Ω×]0,t[)
∥∥|uM |q−1

∥∥
Lq/(q−1)(Ω×]0,t[)

= q‖f ‖Lq(Q)
(∫ t

0
dτ
∫
Ω

∣∣uM(x, τ )∣∣q dx

)(q−1)/q

(3.2.14)� q‖f ‖Lq(Q)
∫ t

0
dτ
∫
Ω

(
1 + ∣∣uM(x, τ )∣∣q) dx ∀t ∈ ]0, T ].

The Gronwall Lemma 3.2.5 yields∫
Ω

∣∣uM(x, t)∣∣q dx �
(
q‖f ‖Lq(Q) +

∫
Ω

∣∣u0(x)
∣∣q dx

)
exp

(
qt‖f ‖Lq(Q)

)
,

for any t ∈ ]0, T ]. By passing to the limit as M → +∞ and then taking the qth root of
both members, we finally get (3.2.13).

If ∂ϕ is not Lipschitz-continuous, one can approximate it via Yosida approximation and
then apply Theorem 3.1.2. �

LEMMA 3.2.5 (Gronwall).87 Let g, a, b : [0, T [ → R be continuous functions, with a

nondecreasing and b � 0. If

(3.2.15)g(t) � a(t)+
∫ t

0
b(τ)g(τ ) dτ ∀t ∈ [0, T [,

87 See e.g. Walter [460, Section I.1].



Introduction to Stefan-type problems 433

then

(3.2.16)g(t) � a(t) exp

(∫ t

0
b(τ) dτ

)
∀t ∈ [0, T [.

COROLLARY 3.2.6. Assume that (3.1.3) and (3.1.16) are fulfilled, and that

(3.2.17)u0 ∈ L∞(Ω), f ∈ L∞(Q) ∩ L2(0, T ;V ′).

Then the solution of Problem 3.1.1 is such that u ∈ L∞(Q).

PROOF. It suffices to apply Proposition 3.2.4 for any q > 2, and then to pass to the limit
as q → +∞ in (3.2.13). �

3.3. Two integral transformations

In this section we discuss two natural transformations of Problem 3.1.1. By integrating
Eq. (3.1.8) in time, we eliminate the time derivative that acts on u. Because of (3.1.7),
Problem 3.1.1 may then be formulated as a variational inequality. A similar conclusion
may be attained by applying the operator A−1 to (3.1.8). Actually, as it is the case for
several parabolic problems, these two transformations are essentially equivalent, and yield
analogous regularity properties. The theory of variational inequalities has extensively been
applied to PDEs.88

Time-integral transformation. The transformation that here we illustrate was indepen-
dently introduced by Duvaut [184,185] and Frémond [223]. This technique was inspired
by an integral transformation, that Baiocchi introduced for a free boundary problem aris-
ing in porous medium filtration, see Baiocchi [44], and Baiocchi and Capelo [45]. Let us
set

(3.3.1)z(·, t) :=
∫ t

0
θ(·, τ ) dτ, F (t) :=

∫ t

0
f (τ) dτ + u0 ∀t ∈ [0, T ],

and note that, by integrating (3.1.8) in time and coupling it with (3.1.7), we get

(3.3.2)∂ϕ

(
∂z

∂t

)
+ Az � F in V ′, ∀t ∈ [0, T ].

By definition of subdifferential, cf. (5.2.5), this inclusion is equivalent to the following
variational inequality:〈

Az− F,
∂z

∂t
− v

〉
+
∫
Ω

[
ϕ

(
∂z

∂t

)
− ϕ(v)

]
dx � 0

(3.3.3)∀v ∈ V, a.e. in ]0, T [.
88 See e.g. the monographs quoted in the item (XI) of the Bibliographical Note in Section 6.
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Notice that, as z(·, 0) = 0 a.e. in Ω ,∫ t̃

0

〈
Az− F,

∂z

∂t

〉
dt

= 1

2

∫
Ω

∣∣∇z(·, t̃ )∣∣2 dx +
∫ t̃

0

〈
∂F

∂t
, z

〉
dt − 〈

F(t̃ ), z(·, t̃ )〉 ∀t̃ ∈ ]0, T ].

Although in terms of the new variable z the regularity that is prescribed for u in
Problem 3.1.1 corresponds to z ∈ H 1(0, T ;V ), here we reformulate the variational
inequality (3.3.3) under weaker regularity requirements for z. Let us first assume that
f ∈ L2(0, T ;V ′) and u0 ∈ V ′, so that

(3.3.4)F ∈ W 1,1(0, T ;V ′).

PROBLEM 3.3.1. Find z ∈ L∞(0, T ;V ) ∩H 1(0, T ;L2(Ω)) such that

1

2

∫
Ω

∣∣∇z(·, t̃ )∣∣2 dx +
∫ t̃

0

〈
∂F

∂t
, z

〉
dt − 〈

F(t̃ ), z(·, t̃ )〉

(3.3.5)+
∫ t̃

0
dt
∫
Ω

[
ϕ

(
∂z

∂t

)
− ϕ(v)

]
dx �

∫ t̃

0
〈Az− F, v〉 dt

∀v ∈ V, for a.a. t̃ ∈ ]0, T [,
(3.3.6)z(·, 0) = 0 a.e. in Ω.

THEOREM 3.3.1 (Existence and uniqueness). If (3.1.3), (3.1.4), (3.1.16), (3.1.17) are sat-
isfied and

(3.3.7)∃L̂, M̂ > 0: ∀(ξ, η) ∈ graph(∂ϕ), |η| � L̂|ξ | + M̂,

then Problem 3.3.1 has one and only one solution.

OUTLINE OF THE PROOF.89 Let us set z0
m := 0 a.e. in Ω , Fn

m := F(nk) in V ′ for any
n ∈ {1, . . . , m}, and

Ĵ nm(v) :=
∫
Ω

[
kϕ

(
v − zn−1

m

k

)
+ 1

2
|∇v|2

]
dx − 〈

Fn
m, v

〉 ∀v ∈ V.

These functionals are convex, lower semicontinuous and coercive, and may thus be mini-
mized recursively. Each of them has a (unique) minimum point znm, which thus solves the
implicit time-discretization scheme:

(3.3.8)∂ϕ

(
znm − zn−1

m

k

)
+ Aznm � Fn

m in V ′, for n = 1, . . . , m.

Let us define the time-interpolate functions zm as in (3.1.26). Multiplying (3.3.8)
by znm − zn−1

m , one may easily derive a uniform estimate for zm in L∞(0, T ;V ) ∩
89 See Visintin [453, Section II.5].



Introduction to Stefan-type problems 435

H 1(0, T ;L2(Ω)). Therefore there exists z such that, possibly extracting a subsequence,

zm → z weakly star in L∞(0, T ;V ) ∩H 1(0, T ;L2(Ω)
)
.

By passing to the limit in the approximate variational inequality, by lower semicontinuity
one then obtains (3.3.5). The proof of uniqueness is straightforward. �

Inversion of the Laplace operator. In view of introducing our second integral transfor-
mation, let us first revisit the functional setting of Problem 3.1.1. We shall use the inverse
operator A−1 :V ′ → V . For instance, if g ∈ L2(Ω), h ∈ L2(ΓN) and

〈f, v〉 =
∫
Ω

g(x)v(x) dx +
∫
ΓN

h(x)γ0v(x) dσ ∀v ∈ V,

then

(3.3.9)u = A−1f ⇔ u ∈ V, −�u = g a.e. in Ω,
∂u

∂ν
= h a.e. on ΓN,

for in this case the normal trace ∂u/∂ν is an element of L2(ΓN).
By applying the operator A−1 to (3.1.8), we have

(3.3.10)A−1 ∂u

∂t
+ θ = A−1f =: F in V, a.e. in ]0, T [.

By coupling this equation with (3.1.7) we then get the inclusion

(3.3.11)A−1 ∂u

∂t
+ ∂ϕ∗(u) � F in V, a.e. in ]0, T [,

which is equivalent to the following variational inequality:〈
A−1 ∂u

∂t
− F, u− v

〉
+
∫
Ω

[
ϕ∗(u)− ϕ∗(v)

]
dx � 0

(3.3.12)∀v ∈ L2(Ω), a.e. in ]0, T [.
Assuming (3.1.4), namely

(3.3.13)u0 ∈ V ′, F ∈ L2(0, T ;V ),
we can now introduce a further weak formulation of our problem.

PROBLEM 3.3.2. Find u ∈ L2(Q) ∩H 1(0, T ;V ′) such that (3.3.12) is satisfied, and

(3.3.14)u|t=0 = u0 in V ′ (in the sense of the traces of H 1(0, T ;V ′)).

THEOREM 3.3.2 (Existence and uniqueness). If (3.1.3), (3.1.4), (3.1.16), (3.1.17) and
(3.3.13) are satisfied, then Problem 3.3.1 has one and only one solution.



436 A. Visintin

OUTLINE OF THE PROOF. 90 One may approximate the inclusion (3.3.11) via implicit
time-discretization, and then derive a priori estimates by multiplying the approximate
equation by the approximate solution unm. This yields a uniform estimate for the linear
interpolate function um in L2(Q) ∩ H 1(0, T ;V ′). Hence a suitable subsequence of {um}
weakly converges in this space. By passing to the limit in the approximate variational in-
equality, Eq. (3.3.12) follows by lower semicontinuity. The proof of uniqueness is straight-
forward. �

3.4. Semigroup techniques

In this section we apply to Problem 3.1.1 methods of the theory of nonlinear semigroups
of contractions in Hilbert and Banach spaces, cf. Section 5.6. We shall see that in this
framework the spaces H−1(Ω) and L1(Ω) play special roles.91 In the first case we shall
retrieve the method of inversion of the Laplace operator that we just illustrated, whereas in
the second one we shall exploit the L1-contraction procedure of Theorem 3.2.1.

Change of pivot space. Here we continue our discussion on the inversion of the opera-
tor A, under the assumption that ΓD has positive (N − 1)-dimensional Hausdorff measure.
Let us first notice that the bilinear forms

(3.4.1)(u, v)V :=
∫
Ω

∇u · ∇v dx ∀u, v ∈ V,

(3.4.2)(u, v)V ′ := (
A−1u,A−1v

)
V

= 〈
A−1u, v

〉 ∀u, v ∈ V ′

are scalar products in the Hilbert spaces V and V ′, respectively, and that

(3.4.3)(Au, v)V ′ := 〈u, v〉 =
∫
Ω

uv dx ∀u ∈ V, ∀v ∈ L2(Ω).

Let us now denote the space V ′ by H, in order to avoid any possible confusion with the
dual spaces that we are going to introduce, and define the Riesz operator

R : H → H′, 〈Ru, v〉 = (u, v)H ∀u, v ∈ H.

As L2(Ω) ⊂ H with continuous and dense injection, we can identify H′ with a subspace
of L2(Ω)′. This yields

RL2(Ω) ⊂ RH = H′ ⊂ L2(Ω)′ with dense and compact injections.

The space H is thus identified with R−1(H′), and accordingly plays the role of pivot space.
This approach is at variance from the more usual procedure of identifying L2(Ω) with its
dual, cf. (3.1.2). Henceforth we shall omit to display the operator R.

90 See Visintin [453, Section II.5].
91 See e.g. Bénilan [55], Bénilan and Crandall [57], Bénilan, Crandall and Pazy [58], Bénilan, Crandall and
Sacks [59], Berger, Brezis, and Rogers [60], Brezis [83,84], Brezis and Pazy [88], Crandall and Pierre [148],
Magenes, Verdi and Visintin [321], Rogers and Berger [403].
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By (3.4.3), in the space H the variational equation (3.1.8) also reads

(3.4.4)

(
∂u

∂t
, v

)
H

+
∫
Ω

θv dx = (f, v)H ∀v ∈ H,

which is equivalent to (3.3.10). In this way we have thus retrieved Problem 3.3.2.
This technique was studied by Lions [311, Section 2.3].

L2-semigroups. Whenever the mapping ∂ϕ∗ is nonlinear, the operator u �→ −�∂ϕ∗(u)
is nonmonotone in L2(Ω). Next we shall see that, if properly defined, this operator is
maximal and cyclically monotone in H, in the sense of Section 5.5. Let us first assume that

(3.4.5)∃c, M̂ > 0: ∀v ∈ R3, ϕ∗(v) � c|v|2 + M̂,

so that ϕ∗(v) ∈ L1(Ω) for any v ∈ L2(Ω). One may see that this condition is equivalent
to (3.3.7). Let us then define the (possibly multivalued) operator

(3.4.6)

{
Λ2 : Dom(Λ2) := L2(Ω) ⊂ H → 2H :
u �→ A∂ϕ∗(u) := {

Aθ : θ ∈ V, θ ∈ ∂ϕ∗(u) a.e. in Ω
}
.

Note that, for any u ∈ L2(Ω) and any θ ∈ V , θ ∈ ∂ϕ∗(u) a.e. in Ω if and only if

(Aθ, u− v)H =
∫
Ω

θ(u− v) dx �
∫
Ω

ϕ∗(u) dx −
∫
Ω

ϕ∗(v) dx ∀v ∈ L2(Ω).

By this variational inequality Λ2 coincides with the subdifferential of the proper, convex,
and lower semicontinuous functional

(3.4.7)H → R : v �→
⎧⎨
⎩
∫
Ω

ϕ∗(v) dx if v ∈ L2(Ω),

+∞ if v ∈ H \ L2(Ω).

By Theorem 5.5.3, the operator Λ2 is then maximal and cyclically monotone. One may
then apply the classical theory of semigroups of nonlinear contractions in Hilbert spaces,
see Section 5.6, to the equation

(3.4.8)
∂u

∂t
+Λ2(u) = f in H, a.e. in ]0, T [.

In this way one retrieves Theorem 3.3.2 and several other results. In fact this semigroup
approach is essentially equivalent to the inversion of the Laplace operator.

L1-semigroups. TheL1-contraction technique that we used in the proof of Theorem 3.2.1
suggests investigating the accretiveness of the multi-valued operator u �→ −�∂ϕ∗(u) in
L1(Ω), in the framework of the theory of nonlinear semigroups of contractions in Banach
spaces. We still assume (3.3.7), but there we also require that ΓD = Γ , namely that the
homogeneous Dirichlet condition is fulfilled on the whole boundary.92 We then define the

92 More general boundary conditions are considered e.g. in Bénilan [55], Magenes, Verdi and Visintin [321].
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operator

(3.4.9)

{
Λ1 : Dom(Λ1) ⊂ L1(Ω) → L1(Ω) : u �→ −�∂ϕ∗(u) :={−�θ ∈ L1(Ω): θ ∈ L1(Ω), γ0θ = 0 on Γ, θ ∈ ∂ϕ∗(u) a.e. in Ω

}
.

For any

(3.4.10)u0 ∈ L1(Ω), f ∈ L1(Q),

we now reformulate the weak Stefan problem as follows.

PROBLEM 3.4.1. Find a continuous vector-valued function u : [0, T ] → L1(Ω), that is
absolutely continuous in ]0, T [ and such that

(3.4.11)
∂u

∂t
+Λ1(u) � f in L1(Ω), a.e. in ]0, T [,

(3.4.12)u(·, 0) = u0 a.e. in Ω.

In general this problem has no solution. Actually, the occurrence of phase interfaces is
not consistent with the condition u(·, t) ∈ Dom(Λ1), for�θ = �∂ϕ∗(u) is a nonintegrable
Borel measure whenever the Stefan condition (1.2.4) is fulfilled. We shall then investigate
a weaker notion of solution.

LEMMA 3.4.1.93 Assume that α is a maximal monotone mapping R → 2R such that
α(0) � 0. Let p ∈ [1,+∞[ and set p′ = p/(p − 1) if p �= 1, p′ = +∞ if p = 1. If

u ∈ Lp(Ω), �u ∈ Lp(Ω), γ0u = 0 a.e. on Γ,

(3.4.13)h ∈ Lp
′
(Ω), h ∈ α(u) a.e. in Ω,

then − ∫
Ω
h�u dx � 0.

THEOREM 3.4.2. Assume that (3.1.3), (3.1.16) and (3.3.7) hold, and that ΓD = Γ . The
operator Λ1 is then T- and m-accretive in L1(Ω), that is,

∀ui ∈ Dom(Λ1), ∀ −�θi ∈ Λ1(ui) (i = 1, 2), ∀λ > 0,

(3.4.14)
∥∥(u1 − u2)

+∥∥
L1(Ω)

�
∥∥[u1 − u2 − λ�(θ1 − θ2)

]+∥∥
L1(Ω)

,

(3.4.15)∀λ > 0, ∀f ∈ L1(Ω), ∃u ∈ Dom(Λ1): u+ λΛ1(u) � f a.e. in Ω.

PROOF. (i) In view of proving (3.4.14), let us first fix any ui ∈ Dom(Λ1), and select any
−�θi ∈ Λ1(ui) for i = 1, 2. Let us then set

h(x) :=
{

1 if either u1(x) > u2(x) or θ1(x) > θ2(x),

0 otherwise
for a.a. x ∈ Ω.

93 See Brezis and Strauss [89, p. 566], where this result is stated in more general form, for a class of unbounded

m-accretive operators in L1(Ω) that fulfill a maximum principle.
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Note that h is measurable and, defining the Heaviside graphH as in (3.2.5), h ∈ H(u1−u2)

∩H(θ1 − θ2) a.e. in Ω . Lemma 3.4.1 then yields − ∫
Ω
h�(θ1 − θ2) dx � 0. Hence∫

Ω

[
u1 − u2 − λ�(θ1 − θ2)

]+ dx �
∫
Ω

[
u1 − u2 − λ�(θ1 − θ2)

]
h dx

�
∫
Ω

(u1 − u2)h dx =
∫
Ω

(u1 − u2)
+ dx,

that is (3.4.14). As an analogous statement is fulfilled with the negative part in place of the
positive part, we get

∀ui ∈ Dom(Λ1), ∀−�θi ∈ Λ1(ui) (i = 1, 2), ∀λ > 0,

(3.4.16)‖u1 − u2‖L1(Ω) �
∥∥u1 − u2 + λ�(θ1 − θ2)

∥∥
L1(Ω)

;
namely, Λ1 is accretive in L1(Ω).

(ii) Next we prove (3.4.15). Let us first assume that f ∈ L2(Ω). The functional

J :V → R̃ : v �→
∫
Ω

(
ϕ(v)+ λ

2
|∇v|2 − f v

)
dx

is convex, lower semicontinuous, and coercive; hence it has a minimum point θ ∈ V . Thus
∂J (θ) � 0 in V ′, that is,

u := f + λ�θ ∈ ∂ϕ(θ) in V ′;
hence u ∈ L2(Ω), by (3.1.16). For any f ∈ L2(Ω) thus there exists a pair (θ, u) ∈ V ×
L2(Ω) such that �θ ∈ L2(Ω) and

(3.4.17)θ ∈ ∂ϕ∗(u), u− λ�θ = f a.e. in Ω.

Let us now consider any f ∈ L1(Ω) and any sequence {fn} in L2(Ω) that converges
to f strongly in L1(Ω). For any n let (θn, un) solve (3.4.17)n. By the accretiveness of
Λ1, {un} is a Cauchy sequence in L1(Ω); hence it converges to some u strongly in this
space. By comparing the terms of (3.4.17)n, we see that the sequence {�θn} is then uni-
formly bounded in L1(Ω). Possibly extracting a subsequence, θn then converges to some
θ strongly in L1(Ω). Therefore, possibly extracting further subsequences, θn and un con-
verge a.e. in Ω . By passing to the limit in (3.4.17)n a.e. in Ω , we then infer (3.4.17) for the
pair (θ, u). �

Theorems 3.4.2 and 5.6.1 yield the next statement.

THEOREM 3.4.3. Assume that (3.1.3), (3.1.16) and (3.3.7) are satisfied and that ΓD = Γ .
For any u0 ∈ L1(Ω) and any f ∈ L1(Q), Problem 3.4.1 then has one and only one mild
solution (in the sense of Section 5.6).

This solution depends Lipschitz-continuously and monotonically on the data.

REMARKS. (i) If f ∈ BV(0, T ;L1(Ω)) and u0 ∈ Dom(Λ1), then u : [0, T ] → L1(Ω)

is Lipschitz-continuous. However, consistently with our previous remark, u need not be
a strong solution, for the space L1(Ω) does not fulfill the Radon–Nikodým property, cf.
Section 5.6.
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(ii) So far we studied quasilinear parabolic P.D.E.s containing a single nonlinear term.
One may also deal with doubly nonlinear equations, namely equations that contain two
nonlinear functions, for instance of the form

(3.4.18)
∂

∂t
α(u)− ∇ · �γ (∇u) � f in Q,

(3.4.19)α

(
∂u

∂t

)
− ∇ · �γ (∇u) � f in Q,

with α and �γ given (possibly multi-valued) maximal monotone mappings. In general these
two equations are not mutually equivalent. For instance an equation of the form (3.4.18) is
met in nonequilibrium thermodynamics: the Gibbs relation and the phenomenological laws
provide the two nonlinearities, see the system (2.4.1), (2.4.2), (2.4.6), (2.4.13), (2.4.14).
Equations of the form (3.4.19) arise in a number of diffusion problems, with α equal to the
subdifferential of a so-called dissipation potential, see e.g. Germain [241].

4. Phase relaxation with nonlinear heat diffusion

In this part we deal with an initial- and boundary-value problem for a quasilinear (actually,
multi-nonlinear) parabolic P.D.E., that represents phase transition coupled with nonlinear
heat-diffusion and with phase relaxation;94 cf. Section 2.2. We provide the weak formu-
lation of an initial- and boundary-value problem in the framework of Sobolev spaces, and
prove existence of a solution in any prescribed time interval.

This part includes some elements of novelty. A rather general constitutive relation is
assumed between internal energy, temperature, and phase; this also allows for (possibly
nonlinear) dependence of the heat capacity on the phase. Existence of an approximate
solution is here proved via a saddle point formulation. Compactness by strict convexity
(cf. Section 5.4) is applied in the limit procedure, besides more standard techniques of
compactness, convexity and lower semicontinuity. This approach might also be extended
to coupled heat- and mass-diffusion, as well as to other models.95

4.1. Weak formulation

In this section we formulate our problem in the framework of Sobolev spaces.
Let the setsΩ , Γ ,Q, the space V , the operatorA, and the duality pairing 〈·,·〉 be defined

as in Section 3.1. Let us assume that the following functions are also given:

ϕ : R2 → R̃
(:= R ∪ {+∞}) proper, convex and lower semicontinuous,

(4.1.1)Dom(ϕ) = R × [−1, 1],
94 This mode of phase transition was studied in many works, see e.g. Bénilan, Blanchard and Ghidouche [56],
Blanchard, Damlamian and Ghidouche [67], Blanchard and Ghidouche [68], Frémond and Visintin [225], Vis-
intin [446,447] and [453, Chapter V].
95 See Visintin [459]. This part rests upon the classical theory of linear and nonlinear PDEs, see e.g. the mono-
graphs quoted in the items (XI), (XII), (XIII) of the Bibliographical Note in Section 6.



Introduction to Stefan-type problems 441

Φ : R × R3 → R such that

(4.1.2)Φ(·, �ξ) is continuous ∀�ξ ∈ R3,

Φ(θ, ·) is convex and lower semicontinuous ∀θ ∈ R.

We shall deal with the system

(4.1.3)(θ, r) ∈ ∂ϕ(u, χ),

(4.1.4)�q ∈ −∂2Φ(θ,∇θ),
(4.1.5)

∂u

∂t
+ ∇ · �q = g,

(4.1.6)a
∂χ

∂t
+ r = 0,

in Q, coupled with initial conditions for u and χ , and with boundary conditions for u
and �q. Here a is a positive constant. By ∂2Φ we denote the partial subdifferential of Φ
w.r.t. the second argument, here ∇θ ; see Section 5.2. The inclusion (4.1.3) accounts for a
dependence of the heat capacity on the phase.96 In the next section we shall see that the
system (4.1.3)–(4.1.6) is consistent with the second principle of thermodynamics, provided
that the function ϕ represents the function of (2.2.15), cf. (2.2.20) and (2.2.21).97

Let us assume that

(4.1.7)u0, χ0 ∈ L2(Ω),
(
u0, χ0) ∈ Dom(∂ϕ) a.e. in Ω,

(4.1.8)f ∈ L2(0, T ;V ′),
and introduce our weak formulation.

PROBLEM 4.1.1. Find u, θ , χ , r , �q such that

u, r ∈ L2(Q), χ ∈ H 1(0, T ;L2(Ω)
)
,

(4.1.9)θ ∈ L2(0, T ;V ), �q ∈ L2(Q)3,

(u, χ) ∈ Dom(ϕ) and ∀(ũ, χ̃) ∈ Dom(ϕ),

(4.1.10)θ(u− ũ)+ r(χ − χ̃ ) � ϕ(u, χ)− ϕ(ũ, χ̃) a.e. in Q,

(4.1.11)�q · (�ξ − ∇θ) � Φ(θ,∇θ)−Φ(θ, �ξ) ∀�ξ ∈ L2(Ω)3, a.e. in Q,∫∫
Q

[(
u0 − u

)∂v
∂t

− �q · ∇v
]

dx dt =
∫ T

0
〈f, v〉 dt

(4.1.12)∀v ∈ H 1(0, T ;L2(Ω)
) ∩ L2(0, T ;V ), v(·, T ) = 0,

(4.1.13)a
∂χ

∂t
+ r = 0 a.e. in Q,

(4.1.14)χ(·, 0) = χ0 a.e. in Ω.

96 In Section 1 we had no difficulty in dealing with this dependence under the hypothesis of local equilibrium,
for in that case the phase is determined by the temperature. On the other hand, if that hypothesis is dropped, the
analysis is less obvious.
97 This constant factor is here included in ϕ, in order to simplify the lay-out of formulas. This rescaling is
immaterial for the present analysis.
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If f is defined as in (3.1.11), this problem is the weak formulation of an initial- and
boundary-value problem for the system (4.1.3)–(4.1.6). The system (4.1.13) and (4.1.14)
is trivially integrated: χ(·, t) = χ0 − 1

a

∫ t
0 r(·, τ ) dτ a.e. in Q.

REMARK. Setting

U = (u, χ), V = (θ, r), γ (V,∇V ) = (
∂2Φ(θ,∇θ), r

)
, F = (f, 0)

(4.1.15)Λ(�z1, z2) = (−∇ · �z1, z2) ∀(�z1, z2) ∈ R3 × R,

the system (4.1.3)–(4.1.6) reads as a doubly nonlinear system:

(4.1.16)V ∈ ∂ϕ(U), W ∈ γ (V,∇V ), ∂U

∂t
+ΛW = F.

Because of the multiple nonlinearity of this problem, here the results of Section 3 are
not directly applicable. Nevertheless those techniques are at the basis of the theorem of
existence, that we prove in the next section.98

4.2. Existence of a weak solution

In view of stating our existence result, let us first define the partial conjugate ψ : R ×
[−1, 1] → R̃ (:= R ∪ {+∞}) of the function ϕ w.r.t. u, cf. (5.2.3):

(4.2.1)ψ(θ, χ) := sup
u∈R

[
uθ − ϕ(u, χ)

] ∀(θ, χ) ∈ R × [−1, 1].

By Theorem 5.3.3,

ψ(·, χ) is convex and lower semicontinuous ∀χ ∈ [−1, 1],
(4.2.2)ψ(θ, ·) is concave and upper semicontinuous ∀θ ∈ R.

THEOREM 4.2.1 (Existence). Assume that (4.1.7)–(4.1.8) are satisfied, and that

the function ψ may be represented in the form

ψ(θ, r) = ψ1(θ)+ ψ2(θ, r) ∀(θ, χ) ∈ R × [−1, 1],
(4.2.3)where ψ1 is strictly convex and everywhere finite,

ψ2(·, χ) is convex and lower semicontinuous ∀χ ∈ [−1, 1],
ψ2(θ, ·) is concave and upper semicontinuous ∀θ ∈ R,

(4.2.4)∃a1, a2 > 0: ∀(u, χ) ∈ Dom(ϕ), ϕ(u, χ) � a1|u|2 − a2,

(4.2.5)
∃a3, . . . , a6 > 0: ∀(θ, �ξ) ∈ R × R3,

a3|�ξ |2 − a4 � Φ(θ, �ξ) � a5|�ξ |2 + a6,

(4.2.6)∃a7 > 0: ∀θ ∈ R, Φ(θ, �0) � a7.

Then Problem 4.1.1 has a solution such that u ∈ L∞(0, T ;L2(Ω)).
98 Boundary- and initial-value problems for doubly-nonlinear PDEs were studied in many works; see e.g. Alt
and Luckhaus [17], Colli and Visintin [145], DiBenedetto and Showalter [179], Damlamian, Kenmochi and
Sato [162], Visintin [453, Chapter III], and references therein.
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The reader will notice that in (4.2.3) the function ψ1 is independent of χ , so that strict
convexity is only assumed for the dependence of ψ1 on θ . We do not assume ψ to be
strictly concave w.r.t. the phase variable χ , for this would exclude the occurrence of a
sharp interface between the phases. See the remarks after the proof of this theorem.

PROOF. We proceed via approximation by time-discretization, derivation of a priori esti-
mates, and passage to the limit, as we did for Theorem 3.1.1.

(i) Approximation. Let us fix any m ∈ N, set

k := T

m
, u0

m := u0, χ0
m := χ0 a.e. in Ω,

(4.2.7)f nm := 1

k

∫ nk

(n−1)k
f (τ ) dτ in V ′, for n = 1, . . . , m,

fix any θ0 ∈ L2(Ω), and introduce the following approximate problem.99

PROBLEM 4.1.1m. Find unm, θnm, χnm, rnm, �qnm for n = 1, . . . , m such that

(4.2.8)unm, χ
n
m, r

n
m ∈ L2(Ω), θnm ∈ V, �qnm ∈ L2(Ω)3,

(4.2.9)
(
θnm, r

n
m

) ∈ ∂ϕ
(
unm, χ

n
m

)
a.e. in Ω,

(4.2.10)�qnm ∈ −∂2Φ
(
θn−1
m ,∇θnm

)
a.e. in Ω,

(4.2.11)
∫
Ω

(
unm − un−1

m

k
v − �qnm · ∇v

)
dx = 〈

f nm, v
〉 ∀v ∈ V,

(4.2.12)a
χnm − χn−1

m

k
+ rnm = 0 a.e. in Ω.

Let us define the double subdifferential ∂̃ψ(θ, χ) := (∂θψ(θ, χ), ∂χ (−ψ)(θ, χ)) as in
(5.3.17). By Theorem 5.3.3, the inclusion (4.2.9) is equivalent to the system

(
unm, r

n
m

) ∈ ∂̃ψ
(
θnm, χ

n
m

)
, i.e.,

{
unm ∈ ∂θψ

(
θnm, χ

n
m

)
,

rnm ∈ ∂χ (−ψ)
(
θnm, χ

n
m

)
(4.2.13)a.e. in Ω.

We shall prove the existence of a solution of Problem 4.1.1m recursively. Let us fix any
n ∈ {1, . . . , m}, assume that un−1

m , θn−1
m , χn−1

m are known, define the closed and convex
set X := V × L∞(Ω; [1, 1]) and set

J nm(θ, χ) :=
∫
Ω

[
ψ(θ, χ)− a

2
χ2 − un−1

m θ + aχn−1
m χ + kΦ

(
θn−1
m ,∇θ)] dx

(4.2.14)− k
〈
f nm, θ

〉 ∀(θ, χ) ∈ X.

Notice that

99 It is necessary to select a value for θ0, because this function occurs in (4.2.10) for n = 1. Nevertheless this
function is not prescribed among the data, and it turns out that it is immaterial which value is selected, for the
function θ need not have a trace for t = 0.
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(4.2.15)
V → R : θ �→ Jnm(θ, χ)

is convex and lower semicontinuous, ∀χ ∈ L∞(Ω; [1, 1]),
(4.2.16)

L∞(Ω; [1, 1]) → R :χ �→ Jnm(θ, χ)

is concave and upper semicontinuous, ∀θ ∈ V ;
moreover by (4.2.5) the functional J nm is coercive w.r.t. θ , that is,

(4.2.17)Jnm(θ, χ) → +∞ as ‖θ‖V → +∞, ∀χ ∈ (Ω; [−1, 1]).
(The coerciveness of Jnm w.r.t. χ makes no sense, for this variable is confined to the interval
[−1, 1].) By Theorem 5.3.2, the functional J nm has then a saddle point in X, namely

∃(θnm, χnm) ∈ X such that

(4.2.18)J nm
(
θnm, χ

)
� J nm

(
θ, χnm

) ∀(θ, χ) ∈ X.

Hence ∂̃J nm(θ
n
m, χ

n
m) � (0, 0), that is

(4.2.19)∂θJ
n
m

(
θnm, χ

n
m

) � 0 in V ′,
(4.2.20)∂χ

(−J nm)(θnm, χnm) � 0 a.e. in Ω.

For a suitable selection of the fields

unm ∈ ∂θψ
(
θnm, χ

n
m

)
, rnm ∈ ∂χ (−ψ)

(
θnm, χ

n
m

)
, �qnm ∈ −∂2Φ

(
θn−1
m ,∇θnm

)
,

a.e. in Ω , the inclusions (4.2.19) and (4.2.20) yield (4.2.11) and (4.2.12). The functions
unm, θnm, χnm, rnm, �qnm thus solve Problem 4.1.1m.

(ii) A priori estimates. In view of deriving the balance of the function ϕ, let us first notice
that by (4.2.9)

�∑
n=1

[(
unm − un−1

m

)
θnm + (

χnm − χn−1
m

)
rnm
]

(4.2.21)�
�∑

n=1

[
ϕ
(
unm, χ

n
m

)− ϕ
(
un−1
m , χn−1

m

)]
= ϕ

(
u�m, χ

�
m

)− ϕ
(
u0, χ0) a.e. in Ω.

Moreover, by the inclusion (4.2.10) and by the hypotheses (4.2.5), (4.2.6),

(4.2.22)
−�qnm · ∇θnm � Φ

(
θn−1
m ,∇θnm

)−Φ
(
θn−1
m , �0)

� a3
∣∣∇θnm∣∣2 − a4 − a7 a.e. in Ω,∀n.

Let us now take v = kθnm in (4.2.11), multiply (4.2.12) by χnm − χn−1
m , and sum these

formulas for n = 1, . . . , �, for any � ∈ {1, . . . , m}. By (4.2.21) we get∫
Ω

[
ϕ
(
u�m, χ

�
m

)− ϕ
(
u0, χ0)] dx − k

�∑
n=1

∫
Ω

�qnm · ∇θnm dx

(4.2.23)+ ak

�∑
n=1

∫
Ω

∣∣∣∣χnm − χn−1
m

k

∣∣∣∣
2

dx � k

�∑
n=1

〈
f nm, θ

n
m

〉
,
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and then by (4.2.22)

∫
Ω

[
ϕ
(
u�m, χ

�
m

)− ϕ
(
u0, χ0)] dx + a3k

�∑
n=1

∫
Ω

∣∣∇θnm∣∣2 dx

(4.2.24)

+ ak

�∑
n=1

∫
Ω

∣∣∣∣χnm − χn−1
m

k

∣∣∣∣
2

dx � (a4 + a7)�k|Ω| + k

�∑
n=1

∥∥f nm∥∥V ′
∥∥θnm∥∥V .

By (4.2.4) we then get

(4.2.25)max
n=1,...,m

∥∥unm∥∥L2(Ω)
, k

m∑
n=1

∥∥θnm∥∥2
V
, k

m∑
n=1

∥∥∥∥χnm − χn−1
m

k

∥∥∥∥
2

L2(Ω)

� C1.

(By C1, C2, . . . we shall denote constants independent of m.) Using the notation (3.1.26)
and setting τkv(t) = v(t − k) for any function v of time, next we write the system (4.2.9)–
(4.2.12) and the estimates (4.2.25) in terms of the time-interpolate functions:

(4.2.26)(θ̄m, r̄m) ∈ ∂ϕ(ūm, χ̄m) a.e. in Q,

(4.2.27)�̄qm ∈ −∂2Φ(τkθ̄m,∇ θ̄m) a.e. in Q,

(4.2.28)
∂um

∂t
+ ∇ · �̄qm = f̄m in V ′,

(4.2.29)a
∂χm

∂t
+ r̄m = 0 a.e. in Q,

(4.2.30)‖um‖L∞(0,T ;L2(Ω)), ‖θ̄m‖L2(0,T ;V ), ‖χm‖H 1(0,T ;L2(Ω)) � C2.

By (4.2.27) and by the second inequality of (4.2.5), we then have

(4.2.31)‖�̄qm‖L2(Q)3 � C3, whence ‖∇ · �̄qm‖L2(0,T ;V ′) � C4.

By comparing the terms of the approximate equation (4.2.28), we thus get

(4.2.32)‖um‖H 1(0,T ;V ′) � C5.

(iii) Limit procedure. By the above uniform estimates, there exist u, θ , χ , r , �q such that,
possibly taking m → ∞ along a subsequence,100

(4.2.33)um → u weakly star in L∞(0, T ;L2(Ω)
) ∩H 1(0, T ;V ′),

(4.2.34)χm → χ weakly star in L∞(Q) ∩H 1(0, T ;L2(Ω)
)
,

(4.2.35)θm, θ̄m → θ weakly in L2(0, T ;V ),
(4.2.36)rm, r̄m → r weakly in L2(Q),

(4.2.37)�qm, �̄qm → �q weakly in L2(Q)3.

100 Dealing with spaces of (vector-valued) time-dependent functions, the weak (star) convergence of the linear
interpolates is equivalent to that of the piecewise-constant interpolates, and the two limits coincide, provided that
no time differentiability is involved. The convergences (4.2.33) and (4.2.34) thus entail ūm → u weakly star in
L∞(0, T ;L2(Ω)) and χ̄m → χ weakly star in L∞(Q).
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Possibly taking m → ∞ along a further subsequence, we may also assume that

(4.2.38)χm(·, T ) → χ(·, T ) weakly star in L∞(Ω).

By passing to the limit in (4.2.28) and (4.2.29) we then get (4.1.12) and (4.1.13). Because
of (4.2.34) the initial condition of χ is preserved in the limit. We are thus just left with the
proof of (4.1.10) and (4.1.11), that we shall perform in the next steps.

(iv) Proof of (4.1.10). By (3.1.33), the convergence (4.2.33) yields

(4.2.39)um → u strongly in C0([0, T ];V ′).
As ūm − um → 0 in L2(0, T ;V ′), by (4.2.35) we then get∫∫

Q

ūmθ̄m dx dt

(4.2.40)=
∫ T

0
V ′ 〈ūm − um, θ̄m〉V dt +

∫∫
Q

umθ̄m dx dt →
∫∫

Q

uθ dx dt.

Moreover by (4.1.13), (4.2.29) and (4.2.38)

lim sup
m→∞

∫∫
Q

r̄mχ̄m dx dt = −a lim inf
m→∞

∫∫
Q

∂χm

∂t
χ̄m dx dt

(4.2.41)

= −a

2
lim inf
m→∞

∫
Ω

(∣∣χm(x, T )∣∣2 − ∣∣χ0
∣∣2) dx

� −a

2

∫
Ω

(∣∣χ(x, T )∣∣2 − ∣∣χ0
∣∣2) dx

= −a
∫∫

Q

∂χ

∂t
χ dx dt =

∫∫
Q

rχ dx dt.

Note that the inclusion (4.2.9) also reads∫∫
Q

[
θ̄m(ūm − ũ)+ r̄m(χ̄m − χ̃)

]
dx dt �

∫∫
Q

[
ϕ(ūm, χ̄m)− ϕ(ũ, χ̃)

]
dx dt

(4.2.42)∀(ũ, χ̃) ∈ L2(Q) such that (ũ, χ̃) ∈ Dom(ϕ), a.e. in Q.

By (4.2.40) and (4.2.41), passing to the limit in the latter inequality (more precisely, the
superior limit in the left side and the inferior limit in the right side), we get

(4.2.43)

∫∫
Q

[
θ(u− ũ)+ r(χ − χ̃ )

]
dx dt �

∫∫
Q

[
ϕ(u, χ)− ϕ(ũ, χ̃)

]
dx dt

∀(ũ, χ̃) ∈ L2(Q)2: (ũ, χ̃) ∈ Dom(ϕ), a.e. in Q,

and this is tantamount to (4.1.10).
(v) Strong convergence of θ̄m. We claim that

(4.2.44)θm → θ strongly in L1(Q).

First note that, by Rockafellar’s Theorem 5.2.3,

∂θ [ψ1 + ψ2](θ, χ) = ∂θψ1(θ)+ ∂θψ2(θ, χ).
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The analogous property for ∂χ is trivial, as ψ1 is independent of χ . Regarding ψ1(θ) as
a function of (θ, χ) that is independent of χ , and defining ∂̃ as in (5.3.17), we thus have
∂̃(ψ1 + ψ2) = ∂̃ψ1 + ∂̃ψ2. The hypothesis (4.2.3) and the inclusion (4.2.9) then yield

(ūm, r̄m) ∈ ∂̃ψ1(θ̄m)+ ∂̃ψ2(θ̄m, χ̄m) a.e. in Q,∀m;
thus there exist ū1m, ū2m ∈ L2(Q) such that

(4.2.45)

⎧⎨
⎩
(ūm, r̄m) = (ū1m, 0)+ (ū2m, r̄m),

(ū1m, 0) ∈ ∂̃ψ1(θ̄m),

(ū2m, r̄m) ∈ ∂̃ψ2(θ̄m, χ̄m)

a.e. in Q, ∀m.

By Theorem 5.3.4 the operators ∂̃ψ1 and ∂̃ψ2 are maximal monotone. We can thus apply
Proposition 5.5.4, or rather the Remark (i) that follows that statement, taking (ūi , 0), (θ, χ),
∂̃ψi in place of ui , u∗, βi , respectively (for i = 1, 2). We thus infer that

(4.2.46)(u1, 0) ∈ ∂̃ψ1(θ), namely u1 ∈ ∂ψ1(θ) a.e. in Q.

Let us also recall (4.2.33) and (4.2.35). By the strict convexity of ψ1 (cf. (4.2.3)), by
(4.2.40) and by Proposition 5.4.3, the claim (4.2.44) then follows.

(vi) An auxiliary inequality. We claim that

lim sup
m→∞

−
∫ t

0
dτ
∫
Ω

�̄qm · ∇ θ̄m dx � −
∫ t

0
dτ
∫
Ω

�q · ∇θ dx

(4.2.47)∀t ∈ ]0, T ].
In view of proving this inequality, notice that (4.2.23) also reads

(4.2.48)

∫
Ω

[
ϕ(um, χm)(·, t)− ϕ

(
u0, χ0)] dx −

∫ t

0
dτ
∫
Ω

�̄qm · ∇ θ̄m dx

+ a

∫ t

0
dτ
∫
Ω

∣∣∣∣∂χm∂t
∣∣∣∣
2

dx �
∫ t

0
〈f̄m, θ̄m〉 dτ for a.e. t ∈ ]0, T [.

Moreover by (4.1.10) and by Proposition 5.2.7∫ t

0

〈
∂u

∂τ
, θ

〉
dτ +

∫ t

0
dτ
∫
Ω

∂χ

∂τ
r dx =

∫
Ω

[
ϕ(u, χ)(·, t)− ϕ

(
u0, χ0)] dx

(4.2.49)for a.e. t ∈ ]0, T [.
Note that Eq. (4.1.5) holds in L2(0, T ;V ′), cf. (4.1.12). Let us next multiply (4.1.5)

by θ , multiply (4.1.13) by 1
a
∂χ/∂t , sum these formulas, and integrate in time. By (4.2.49)

this yields

(4.2.50)

∫
Ω

[
ϕ(u, χ)(·, t)− ϕ

(
u0, χ0)] dx −

∫ t

0
dτ
∫
Ω

�q · ∇θ dx

+ a

∫ t

0
dτ
∫
Ω

∣∣∣∣∂χ∂t
∣∣∣∣
2

dx =
∫ t

0
〈f, θ〉 dτ for a.e. t ∈ ]0, T [.
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Notice that, by the lower semicontinuity of the convex integral functionals,

(4.2.51)

lim inf
m→∞

(∫
Ω

ϕ(um, χm)(·, t) dx + a

∫ t

0
dτ
∫
Ω

∣∣∣∣∂χm∂t
∣∣∣∣
2

dx

)

�
∫
Ω

ϕ(u, χ)(·, t) dx + a

∫ t

0
dτ
∫
Ω

∣∣∣∣∂χ∂t
∣∣∣∣
2

dx ∀t ∈ ]0, T ].

The formulas (4.2.48), (4.2.50), (4.2.51) yield (4.2.47).
(vii) Proof of (4.1.11). For any �ξ ∈ L2(Ω)3,

(4.2.52)

∫∫
Q

�̄qm · (�ξ − ∇ θ̄m) dx dt �
∫∫

Q

[
Φ(τkθ̄m,∇ θ̄m)−Φ(τkθ̄m, �ξ)

]
dx dt.

Moreover, by (4.1.2), (4.2.44) and by the lower semicontinuity of the integral functional
associated to Φ(θ, ·),

(4.2.53)lim inf
m→∞

∫∫
Q

Φ(τkθ̄m,∇ θ̄m) dx dt �
∫∫

Q

Φ(θ,∇θ) dx dt,

(4.2.54)
∫∫

Q

Φ(τkθ̄m, �ξ) dx dt →
∫∫

Q

Φ(θ, �ξ) dx dt.

By (4.2.47), (4.2.53) and (4.2.54), by passing to the superior limit in the left side and to the
inferior limit in the right side of (4.2.52), we then get

(4.2.55)
∫∫

Q

�q · (�ξ − ∇θ) dx dt �
∫∫

Q

[
Φ(θ,∇θ)−Φ(θ, �ξ)] dx dt

for any �ξ ∈ L2(Ω)3, that is (4.1.11). �

Modelling remarks. (i) In Problem 4.1.1 we formulated the constitutive law (4.1.3) in
terms of the convex potential ϕ. This relation is equivalent to

(4.2.56)u ∈ ∂θψ(θ, χ), r ∈ ∂χ (−ψ)(θ, χ).
Next we show that for the two-phase system it is equivalent to construct the functions ψ
and ϕ. Let us assume that the constitutive relation between u and θ is known in each phase;
that is,

(4.2.57)u ∈ ∂ψs(θ) in the solid, u ∈ ∂ψ�(θ) in the liquid,

for given convex functions ψs and ψ�. This suggests to set ψ(θ,−1) := ψs(θ), ψ(θ, 1) :=
ψ�(θ), and to extend ψ(θ, χ) by linear interpolation:

(4.2.58)ψ(θ, χ) := ψs(θ)
1 − χ

2
+ ψ�(θ)

1 + χ

2
∀(θ, χ) ∈ R × [−1, 1].

This function is not globally convex w.r.t. the pair (θ, χ); actually, it is convex in θ and
linear (hence concave) in χ . By Theorem 5.3.3, a convex function ϕ(u, χ) is then retrieved
by partially conjugating ψ(θ, χ) w.r.t. θ , and in turn ψ is the partial conjugate of ϕ w.r.t. u:
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ϕ(u, χ) := sup
θ∈R

[
uθ − ψ(θ, χ)

] ∀(u, χ) ∈ R × [−1, 1],
(4.2.59)ψ(θ, χ) := sup

u∈R

[
uθ − ϕ(u, χ)

] ∀(θ, χ) ∈ R × [−1, 1].

This is equivalent to the dual interpolation procedure. Setting ϕs := ψ∗
s and ϕ� := ψ∗

� ,
the prescribed relations (4.2.57) indeed also read

(4.2.60)θ ∈ ∂ϕs(u) in the solid, θ ∈ ∂ϕ�(u) in the liquid.

By interpolation a nonconvex function ϕ̃ is obtained:

(4.2.61)ϕ̃(u, χ) := ϕs(u)
1 − χ

2
+ ϕ�(u)

1 + χ

2
∀(u, χ) ∈ R × [−1, 1].

(ii) The equality (4.2.50) accounts for the balance of the function ϕ (here rescaled by
the factor τE), cf. (2.2.15) and (2.2.17). The first term is the total variation of

∫
Ω
ϕ dx

in the time interval [0, �k]. The opposite of the second and the third terms represent the
(nonnegative) amount of ϕ that is dissipated in that time interval. The second member is
the contribution of the heat source (or sink) f . The function ϕ is the potential of (2.2.15)
rescaled by the constant factor τE , and this balance accounts for the consistency of this
model with the second principle of thermodynamics, as we saw in Section 2.2.

(iii) If the function ψ were strictly convex w.r.t. χ , then ψχ(θ, χ) would depend on χ
continuously for 0 < χ < 1 for any θ . This would exclude the occurrence of sharp inter-
faces between the phases, so that Problem 4.1.1 would represent heat-diffusion with phase
transition smoothed out in a temperature interval.101 In this case the above argument might
also be simplified, for Corollary 5.4.2 would also entail the strong convergence of χm in
L1(Q), without the need of the hypothesis (4.2.3).

One might prove several further results for Problem 4.1.1. For instance, the solution
depends weakly-continuously on the data in the sense of Theorem 3.1.2. In presence of a
composite material, one might also homogenize this problem along the lines of [458].102

On the other hand the uniqueness of the solution does not seem obvious, because of the
multiple nonlinearity of the problem. However, if (4.1.14) is reduced to the linear Fourier
law �q = −k · ∇θ , after time integration the uniqueness may be proved along the lines of
Section 3.3.

5. Convexity and other analytical tools

The analysis of Stefan-type problems requires several tools of linear and nonlinear func-
tional analysis. In this appendix we briefly review basic notions of convex analysis, max-
imal monotone and accretive operators, nonlinear semigroups of contractions in Banach
spaces, Γ -convergence, and others. We review some definitions, and state few results that
are referred to in the remainder of this survey. We just display some of the most simple
proofs. For an appropriate treatment we refer to the literature that is quoted in the respec-
tive sections.
101 This is physically acceptable for several materials, e.g. of organic origin.
102 The homogenization of phase transitions was also studied e.g. by Ansini, Braides and Chiadò Piat [26],
Bossavit and Damlamian [79], Damlamian [159], Rodrigues [393], Visintin [458].
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5.1. Convex and lower semicontinuous functions

In this and in the next two sections we outline some notions and properties of convex
analysis.103

We assume throughout that B is a real Banach space equipped with the norm ‖ ·‖.104 By
means of the pairing 〈·,·〉, we put B in duality with its dual space B∗, by equipping these
spaces respectively with the weak and the weak star topology. In this way B will play the
role of the dual of B∗, even if B is not reflexive. For any function F :B → R̃ := R∪{+∞}
let us set

(5.1.1)Dom(F ) := {
v ∈ B :F(v) < +∞}

: (effective) domain of F,

(5.1.2)epi(F ) := {
(v, a) ∈ B × R: F(v) � a

}
: epigraph of F.

Let us also define the indicator function of any set K ⊂ B:

(5.1.3)IK :B → R̃ : v �→
{

0 if v ∈ K,

+∞ if v /∈ K.

This definition allows one to reformulate constrained minimization problems as uncon-
strained ones, for

(5.1.4)u = infK F ⇔ u = infB(F + IK).

Any set K ⊂ B is said to be convex if either it is empty or

(5.1.5)λv1 + (1 − λ)v2 ∈ K ∀v1, v2 ∈ K, ∀λ ∈ ]0, 1[.
A function F :B → R̃ is said to be convex if

(5.1.6)

F
(
λv1 + (1 − λ)v2

)
� λF(v1)+ (1 − λ)F (v2)

∀v1, v2 ∈ B, ∀λ ∈ ]0, 1[,
with obvious conventions for the arithmetical operations in R̃. If the inequality (5.1.6) is
strict for any v1 �= v2, the function F is said to be strictly convex. The function F is said to
be lower semicontinuous if the set {v ∈ B: F(v) � a} is closed for any a ∈ R. F is said
to be proper if it is not identically equal to +∞.

PROPOSITION 5.1.1.
(i) A function F :B → R̃ is convex (lower semicontinuous, resp.) if and only if epi(F )

is convex (closed, resp.).
(ii) A set K ⊂ B is convex (closed, resp.) if and only if IK is convex (lower semicontin-

uous, resp.).

103 See e.g. the monographs quoted in the item (VIII) of the Bibliographical Note in Section 6.
104 This theory might also be developed in the more general framework of topological vector spaces, see e.g.
Ekeland and Temam [188], Moreau [339]. One may also deal with complex spaces, just replacing the duality
pairing by its real part.
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PROPOSITION 5.1.2.
(i) If {Fi :B → R̃}i∈I is a family of convex (lower semicontinuous, resp.) functions,

then their upper hull F : v �→ supi∈I Fi(v) is convex (lower semicontinuous, resp.).
(ii) If {Ki}i∈I is a family of convex (closed, resp.) subsets of B, then their intersection⋂

i∈I Ki is convex (closed, resp.).

Let us denote by Γ (B) the class of functions F :B → R̃ that are the upper hull of
a family of continuous and affine functions B → R. This consists of the class Γ0(B)

of proper, convex, lower semicontinuous functions, and of the function identically equal
to +∞.

By part (ii) of Proposition 5.1.2, for any set K ⊂ B the intersection of the convex
and closed subsets of B that contain K is convex and closed; this is named the closed
convex hull of K , and is denoted by co(K). Similarly, let us consider any function
F :B → ]−∞,+∞] that has a convex lower bound. By part (i) of Proposition 5.1.2,
the upper hull of all affine lower bounds of F is convex and lower semicontinuous; this is
the largest lower bound of F in Γ (B), and is named the Γ -regularized function of F . Its
epigraph coincides with the closed convex hull of the epigraph of F .

5.2. Legendre–Fenchel transformation and subdifferential

Let F :B → R̃ be a proper function. The function

(5.2.1)F ∗ :B∗ → R̃ : u∗ �→ sup
u∈B

{〈u∗, u〉 − F(u)
}

is called the (convex) conjugate function of F . If F ∗ is proper, its conjugate function

(5.2.2)F ∗∗ :B → R̃ : u �→ sup
u∗∈B∗

{〈u∗, u〉 − F ∗(u∗)
}

is called the biconjugate function of F . (Notice that we defined F ∗∗ on B rather than
the bidual space B∗∗.) If the function F depends on two (or more) variables, one may
also introduce the partial conjugate function w.r.t. any of these variables. For instance, if
F :B2 → R̃, then its partial conjugate w.r.t. the first variable reads

(5.2.3)G :B∗ × B → R̃ : (u∗, w) �→ sup
u∈B

{〈u∗, u〉 − F(u,w)
}
.

THEOREM 5.2.1. For any proper function F :B → R̃ such that F ∗ is also proper,

(5.2.4)
F ∗ ∈ Γ (B∗); F ∗∗ � F ;
F ∗∗ = F ⇔ F ∈ Γ (B); (F ∗)∗∗ = F ∗.

Moreover, F ∗∗ coincides with the Γ -regularized function of F (Fenchel–Moreau theorem).
The conjugacy transformation F �→ F ∗ is a bijection between Γ0(B) and Γ0(B

∗).

We define the subdifferential ∂F : Dom(F ) ⊂ B → 2B
∗

(the power set) of any proper
function F :B → R̃ as follows:
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Fig. 10. The drawn subtangent straight-line is characterized by the equation z = 〈u∗, v − u〉 + F(u), or equiva-
lently z = 〈u∗, v〉 − F ∗(u∗), for any u∗ ∈ ∂F (u).

∂F (u) := {
u∗ ∈ B∗: 〈u∗, u− v〉 � F(u)− F(v), ∀v ∈ B

}
(5.2.5)∀u ∈ Dom(F ),

cf. Figure 10. Dually, we define ∂F ∗ : Dom(F ∗) ⊂ B∗ → 2B :

∂F ∗(u∗) := {
u ∈ B: 〈u, u∗ − v∗〉 � F ∗(u∗)− F ∗(v∗), ∀v∗ ∈ B∗}

(5.2.6)∀u∗ ∈ Dom(F ∗).

Note that ∂F (u) = ∅ is not excluded, so that one may also take the subdifferential of an
either nonconvex or nonlower-semicontinuous function at any point of its domain. We also
set

∂F (u) := ∅ ∀u ∈ B \ Dom(F ), ∂F ∗(u∗) := ∅ ∀u∗ ∈ B∗ \ Dom(F ∗).

If the function F depends on two or more variables, one may also introduce the partial
subdifferential w.r.t. one of its arguments, extending the notion of partial derivative. For
instance, if F :B2 → R̃, then the partial subdifferential ∂uF (u,w) is defined as in (5.2.5),
by freezing the dependence on the argument w.

PROPOSITION 5.2.2. Let F :B → R̃. Then for any u ∈ B and any u∗ ∈ B∗:

(5.2.7)F(u)+ F ∗(u∗) � 〈u∗, u〉,
(5.2.8)u∗ ∈ ∂F (u) ⇔ F(u)+ F ∗(u∗) = 〈u∗, u〉,
(5.2.9)u∗ ∈ ∂F (u) ⇒ u ∈ ∂F ∗(u∗),

(5.2.10)
[
F(u) = F ∗∗(u), u ∈ ∂F ∗(u∗)

] ⇒ u∗ ∈ ∂F (u),

(5.2.11)F ∈ Γ0(B) ⇒ ∂F ∗ = (∂F )−1.

(5.2.7) follows from the definition of F ∗. By taking the supremum over all test functions
v in (5.2.5), we get F(u) + F ∗(u∗) � 〈u∗, u〉 whenever u∗ ∈ ∂F (u); (5.2.7) then entails
the equality. The opposite implication directly follows from the definition of F ∗. (5.2.8) is
thus established. The statements (5.2.9)–(5.2.11) are easily proved by means of (5.2.8).
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THEOREM 5.2.3 (Rockafellar). Let F1, F2 :B → R̃. Then

(5.2.12)∂F1(u)+ ∂F2(u) ⊂ ∂(F1 + F2)(u) ∀u ∈ Dom(F1) ∩ Dom(F2).

The opposite inclusion holds whenever F1 and F2 are both convex and lower semicon-
tinuous, and either F1 or F2 is continuous at some point u0 ∈ Dom(F1) ∩ Dom(F2).

PROPOSITION 5.2.4. Let F :B → R̃ be convex and proper. Then F is locally Lipschitz-
continuous at the interior of Dom(F ), and there ∂F �= ∅.

EXAMPLE. Let B be a real Hilbert space, denote it by H , and identify it with its dual
space, so that the duality pairing coincides with the scalar product: 〈u, v〉 = (u, v) for any
u, v ∈ H . Let also 1 � p < +∞ and set p′ = p/(p − 1) if p > 1, p′ = ∞ if p = 1. Let
us consider the functional Fp(u) = ‖u‖p/p for any u ∈ H . If p > 1, then

(5.2.13)∂Fp(u) = ‖u‖p−2u ∀u ∈ H, F ∗
p(v) = 1

p′ ‖v‖p
′ ∀v ∈ H.

On the other hand for p = 1,

∂F1(u) = {‖u‖−1u
} ∀u ∈ H \ {0}, ∂F1(0) = {

v ∈ H : ‖v‖ � 1
}
,

(5.2.14)F ∗
1 (v) = 0 if ‖u‖ � 1, F ∗

1 (v) = +∞ otherwise.

In particular, if H = R then ∂F1 coincides with the multi-valued sign function:

sign(u) := {−1} if u < 0, sign(0) := [−1, 1],
(5.2.15)sign(u) := {1} if u > 0.

Here (5.2.7) and (5.2.8) read

(5.2.16)

1

p
‖u‖p + 1

p′ ‖v‖p
′ � (u, v),

v = ‖u‖p−2u ⇔ 1

p
‖u‖p + 1

p′ ‖v‖p
′ = (u, v)

∀u, v ∈ H.

(For H = R, the former inequality is the classical Young inequality.) A similar example
applies if B is a Banach space, but this requires the introduction of the notion of duality
mapping.

PROPOSITION 5.2.5. For any proper, convex, lower semicontinuous function F :B → R̃,
any u ∈ B and any u∗ ∈ B∗, the following statements are mutually equivalent:

(5.2.17)u∗ ∈ ∂F (u),

(5.2.18)u ∈ ∂F ∗(u∗),
(5.2.19)u ∈ Dom(F ), 〈u∗, u− v〉 � F(u)− F(v) ∀v ∈ B,

(5.2.20)u∗ ∈ Dom(F ∗), 〈u, u∗ − v∗〉 � F ∗(u∗)− F ∗(v∗) ∀v∗ ∈ B∗,
(5.2.21)〈u, u∗〉 � F(u)+ F ∗(u∗),
(5.2.22)〈u, u∗〉 = F(u)+ F ∗(u∗).
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The equivalence between (5.2.17) and (5.2.18) follows from (5.2.10). The inclusions
(5.2.17) and (5.2.18) are respectively equivalent to the variational inequalities (5.2.19)
and (5.2.20), by the definitions of ∂F and ∂F ∗. The inequality (5.2.21) is equivalent
to (5.2.19) by the definition of F ∗. Finally, (5.2.21) is equivalent to (5.2.22) because of
(5.2.7).

The next statement is just a particular case of the latter proposition.

COROLLARY 5.2.6. For any (nonempty) closed convex set K ⊂ B, any u ∈ B and any
u∗ ∈ B∗, the following statements are mutually equivalent:

(5.2.23)u∗ ∈ ∂IK(u),

(5.2.24)u ∈ ∂I ∗
K(u

∗),
(5.2.25)u ∈ K, 〈u∗, u− v〉 � 0 ∀v ∈ K,

(5.2.26)〈u, u∗ − v∗〉 � I ∗
K(u

∗)− I ∗
K(v

∗) ∀v∗ ∈ B∗,
(5.2.27)u ∈ K, 〈u, u∗〉 � I ∗

K(u
∗),

(5.2.28)u ∈ K, 〈u, u∗〉 = I ∗
K(u

∗).

The next statement is often applied.

PROPOSITION 5.2.7. Let B∗ be a Banach space, F :B → R̃ be convex and lower semi-
continuous, and p ∈ [1,+∞[. If

(5.2.29)u ∈ W 1,p(0, T ;B), w ∈ Lp
′
(0, T ;B∗),

(5.2.30)w ∈ ∂F (u) a.e. in ]0, T [,
then

(5.2.31)F(u) ∈ W 1,1(0, T ),
d

dt
F (u) =

〈
w,

du

dt

〉
a.e. in ]0, T [.

5.3. Saddle points

Let U , V be nonempty subsets of two real topological vector spaces X1, X2 (resp.), and
L :U × V → R. (We assume that this function is finite in order to simplify the presenta-
tion.) Note that

(5.3.1)inf
u∈U L(u, v̄) � sup

v∈V
L(ū, v) ∀(ū, v̄) ∈ U × V.

A point (ū, v̄) ∈ U × V is called a saddle point of L whenever the opposite inequality is
fulfilled, or equivalently

(5.3.2)L(ū, v) � L(u, v̄) ∀(u, v) ∈ U × V.

This is also equivalent to the so-called min-max equality:

(5.3.3)min
u∈U sup

v∈V
L(u, v) = max

v∈V inf
u∈U L(u, v).



Introduction to Stefan-type problems 455

In view of the next two statements, we shall say that a function f :X → R is quasi-
convex if for any a ∈ R the sublevel set {v ∈ X: f (v) � a} is convex, and that it is quasi-
concave if −f is quasi-convex. Obviously, any convex (concave, resp.) function is quasi-
convex (quasi-concave, resp.), but the converse may fail: for instance, any nondecreasing
real function is quasi-convex.

The next statement is often used in the study of saddle points.

THEOREM 5.3.1 (Fan inequality). LetK be a compact convex subset of a real topological
vector space X, and ϕ :K2 → R be such that

(5.3.4)ϕ(·, y) is lower semicontinuous ∀y ∈ K,

(5.3.5)ϕ(x, ·) is quasi-concave ∀x ∈ K.

Then

(5.3.6)min
x∈K sup

y∈K
ϕ(x, y) � sup

y∈K
ϕ(y, y).

THEOREM 5.3.2 (Existence of a saddle point – Von Neumann – Sion). Let U and V be
nonempty compact convex subsets of two real topological vector spaces X1 and X2 (resp.),
and L :U × V → R be such that

L(·, v) is quasi-convex and lower semicontinuous ∀v ∈ V,

(5.3.7)L(u, ·) is quasi-concave and upper semicontinuous ∀u ∈ U.

Then L has a saddle point, and more precisely

(5.3.8)min
u∈U max

v∈V L(u, v) = max
v∈V min

u∈U L(u, v).

We just show that, under the strengthened hypotheses that L(·, v) is convex and L(u, ·)
is concave, this statement follows from Theorem 5.3.1. Let us first set

ϕ
(
(ũ, ṽ), (u, v)

) := L(ũ, v)− L(u, ṽ) ∀(ũ, ṽ), (u, v) ∈ K := U × V,

and notice that the hypotheses of Fan’s theorem are fulfilled. There exists then (ū, v̄) ∈ K

such that

(5.3.9)

ϕ
(
(ū, v̄), (u, v)

) = min
(ũ,ṽ)∈K

sup
(u,v)∈K

ϕ
(
(ũ, ṽ), (u, v)

)
� sup

(u,v)∈K
ϕ
(
(u, v), (u, v)

) = 0.

Thus (ū, v̄) fulfills (5.3.3), namely it is a saddle point of L. Actually, by the compactness
of U and V , in this case the min-max equality has the more precise form (5.3.8).

The function L may be allowed to attain the values ±∞, but then some care must be
paid in defining lower and upper semicontinuity.105

105 See e.g. Rockafellar [388], [389, Section 33].
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THEOREM 5.3.3. Let B1, B2 be two real Banach spaces, F ∈ Γ0(B1 ×B2), and L be the
partial conjugate of F w.r.t. u:

(5.3.10)L(u∗, w) = sup
u∈B1

{〈u∗, u〉 − F(u,w)
} ∀(u∗, w) ∈ B∗

1 × B2.

Then: (i)

(5.3.11)L(·, w) is convex and lower semicontinuous ∀w ∈ B2,

(5.3.12)L(u∗, ·) is concave ∀u∗ ∈ B∗
1 .

(In general L(u∗, ·) need not be upper semicontinuous.)
(ii) Moreover, let B1 be reflexive, and F be coercive with respect to u locally uniformly

with respect to w, in the sense that

∀ bounded S ⊂ B2, ∀M > 0,

(5.3.13)
{
u ∈ B1: F(u,w) � M, ∀w ∈ S

}
is bounded.

Then L(u∗, ·) is upper semicontinuous for any u∗ ∈ B∗
1 .

(iii) Under the above hypotheses, for any (u,w) ∈ B1×B2 and any (u∗, w∗) ∈ B∗
1 ×B∗

2 ,

(5.3.14)

{
u∗ ∈ ∂uF (u,w),

w∗ ∈ ∂wF(u,w)
⇔

{
u ∈ ∂u∗L(u∗, w),
w∗ ∈ ∂w(−L)(u∗, w).

(iv) Conversely, if L :B∗
1 × B2 → R fulfills (5.3.11) and (5.3.12), then the mapping

(5.3.15)G(u,w) := sup
u∗∈B∗

1

{〈u∗, u〉 − L(u∗, w)
} ∀(u,w) ∈ B1 × B2

is convex and lower semicontinuous. Moreover, if L fulfills (5.3.10) then F = G.

PARTIAL PROOF. (i) The statement (5.3.11) directly follows from part (i) of Proposi-
tion 5.1.2.

In view of proving (5.3.12), let us fix any u∗ ∈ B∗
1 , any u′, u′′ ∈ B1, any w′, w′′ ∈ B2

and any λ ∈ ]0, 1[. By the convexity of F we have

L
(
u∗, λw′ + (1 − λ)w′′)
�
〈
u∗, λu′ + (1 − λ)u′′〉− F

(
λu′ + (1 − λ)u′′, λw′ + (1 − λ)w′′)

� λ
(〈u∗, u′〉 − F(u′, w′)

)+ (1 − λ)
(〈u∗, u′′〉 − F(u′′, w′′)

)
.

By taking the supremum with respect to u′ and u′′, we then get

L
(
u∗, λw′ + (1 − λ)w′′) � λL(u∗, w′)+ (1 − λ)L(u∗, w′′).

The property (5.3.12) has thus been proved.
(ii) Let us fix any sequence {wn} in B2 that weakly converges to some w ∈ B2;

{wn} is necessarily bounded. If M := lim supn→∞ L(u∗, wn) = −∞ then trivially
L(u∗, w) � M . If instead M > −∞ then there exists a sequence {un} in B1 such that
for n large enough

(5.3.16)
〈u∗, un〉 − F(un,wn) � L(u∗, wn)+ 1/n ∀n ∈ N if M < +∞,
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〈u∗, un〉 − F(un,wn) � n ∀n ∈ N if M = +∞.

By (5.3.13) the sequence {un} is confined to a bounded subset of the reflexive space B1.
Hence there exists u ∈ B1 such that, as n diverges along a further subsequence (not rela-
belled), un → u weakly in B1. Passing to the limit in (5.3.16) on this subsequence, by the
lower semicontinuity of F we then get

〈u∗, u〉 − F(u,w) � lim sup
n→∞

(〈
u∗, un

〉− F(un,wn)
)

� M.

Thus L(u∗, w) � M .
(iii) For the proof of (5.3.14) see e.g. Barbu and Precupanu [49, p. 135], Rockafellar

[388], [389, p. 395].
(iv) The convexity and lower semicontinuity of G follow from Proposition 5.1.2.

As G(·, w) is the biconjugate function of (·, w), by Theorem 5.2.1 we conclude that
F = G. �

For any function L :U × V → R, let us define the double subdifferential

(5.3.17)∂̃L :U × V → 2B
∗
1 × 2B

∗
2 : (u, v) �→ (

∂uL(u, v), ∂v
[−L(u, v)]).

This definition is especially convenient if L is convex-concave, cf. (5.3.18) below.
Incidentally, note that any (u, v) is a saddle point of L if and only if (0, 0) ∈ ∂̃L(u, v).

THEOREM 5.3.4.106 Let U and V be nonempty, closed, convex subsets of two real Banach
spaces B1 and B2 (respect.), with at least one of them reflexive. Let L :U × V → R be
such that

L(·, v) is convex and lower semicontinuous ∀v ∈ V,

(5.3.18)L(u, ·) is concave and upper semicontinuous ∀u ∈ U.

The operator ∂̃L is then maximal monotone.107

5.4. Compactness by strict convexity

Let K be a closed subset of RN . A point ξ ∈ K is said extremal for K if

(5.4.1)

ξ = λξ ′ + (1 − λ)ξ ′′ ∈ K, ξ ′, ξ ′′ ∈ K, 0 < λ < 1 ⇒ ξ = ξ ′ = ξ ′′.

LetΩ be a domain of RN . A multi-valued mappingK :Ω → 2RM
is said to be measurable

if there exists a sequence of measurable single-valued functions {km :Ω → RM} such that⋃
m∈N km(x) is dense in K(x) for a.a. x ∈ Ω .108

106 See e.g. Barbu and Precupanu [49, p. 137], Rockafellar [388], [389, p. 396], [390].
107 See Section 5.6 for the definition of the latter notion.
108 See e.g. Castaing and Valadier [119, Section III.2], Ioffe and Tihomirov [278, Section 8.1].
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THEOREM 5.4.1 109. K :Ω → 2RM
be measurable, and K(x) be closed and convex for

a.a. x ∈ Ω . If

(5.4.2)vn → v weakly in L1(Ω)M,

(5.4.3)vn(x) ∈ K(x) for a.a. x ∈ Ω, ∀n,
(5.4.4)v(x) is an extremal point of K(x) for a.a. x ∈ Ω,

then

(5.4.5)vn → v strongly in L1(Ω)M.

By and large, the rational behind this result is that if a sequence of function converges
weakly in L1(Ω)M without oscillating around the limit value, then it also converges
strongly. For instance, this applies to any L1-weakly vanishing sequence of nonnegative
scalar functions. (On the other hand, it fails in Lp-spaces with p > 1.)

COROLLARY 5.4.2. If ϕ : RM → R̃ is strictly convex, lower semicontinuous, and

(5.4.6)un → u weakly in L1(Ω)M,

(5.4.7)
∫
Ω

ϕ(un) dx →
∫
Ω

ϕ(u) dx (< +∞),

then

(5.4.8)un → u strongly in L1(Ω)M,

(5.4.9)ϕ(un) → ϕ(u) strongly in L1(Ω).

OUTLINE OF THE PROOF. By (5.4.7) and by the convexity of ϕ, it is not difficult to
see that ϕ(un) → ϕ(u) weakly in L1(Ω). Note that (u, ϕ(u)) is an extremal point of
K := epi(ϕ) ⊂ RM+1 a.e. in Ω . It then suffices to apply Theorem 5.4.1 taking vn =
(un, ϕ(un)). �

PROPOSITION 5.4.3. In Corollary 5.4.2 the assumption (5.4.7) holds whenever

(5.4.10)wn := ∂ϕ(un) → w := ∂ϕ(u) weakly in L1(Ω)M,

(5.4.11)
∫
Ω

un · wn dx →
∫
Ω

u · w dx.

(∂ϕ is single-valued, because of the hypothesis of strict convexity.)

PROOF. The Fenchel property yields

(5.4.12)

∫
Ω

ϕ(un) dx +
∫
Ω

ϕ∗(wn) dx =
∫
Ω

un · wn dx,∫
Ω

ϕ(u) dx +
∫
Ω

ϕ∗(w) dx =
∫
Ω

u · w dx.

109 See Visintin [445], [453, Section X.1].
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By the lower semicontinuity of these integral functionals and by (5.4.11), we then infer
(5.4.7) (and

∫
Ω
ϕ∗(wn) dx → ∫

Ω
ϕ∗(w) dx). �

Dually, if the conjugate function ϕ∗ is strictly convex, then (5.4.6), (5.4.10) and (5.4.11)
entail the strong L1-convergence of the sequence {wn}.

5.5. Maximal monotone operators

In this section we briefly illustrate the notion of maximal monotone operator in a real
Banach space B.110

An operator A :B → 2B
∗

is said monotone if, setting graph(A) := {(u, u∗): u∗ ∈
A(u)},

(5.5.1)〈u∗ − v∗, u− v〉 � 0 ∀(u, u∗), (v, v∗) ∈ graph(A).

This operator is said maximal monotone if it is monotone and its graph is not properly
included in that of any other monotone operator B → 2B

∗
. It is said cyclically monotone if

∀m ∈ N (m � 2), ∀{(ui, u∗
i )
}
i=1,...,m ⊂ graph(A),

(5.5.2)
m∑
i=1

〈u∗
i , ui − ui−1〉 � 0 (setting u0 = um).

(For m = 2 the inequality (5.5.1) is obviously retrieved.) By the Hausdorff maximal chain
theorem (a consequence of the Zorn lemma), it is easy to see that any monotone operator
A :B → 2B

∗
can be extended to a maximal monotone operator. The inverse of a monotone

operator is defined as the operator that has the inverse graph: u ∈ A−1(u∗) if and only
if u∗ ∈ A(u). If A is maximal monotone, then the inverse operator A−1 is also maximal
monotone.

THEOREM 5.5.1. Let B be reflexive and A :B → 2B
∗

be maximal monotone. If

(5.5.3)
〈w, v〉
‖v‖ → +∞ as w ∈ A(v), ‖v‖ → ∞,

then for any f ∈ B∗ there exists u ∈ B such that A(u) � f .

The latter theorem extends the next result to Banach spaces.

THEOREM 5.5.2 (Minty and Browder). Let H be a real Hilbert space. A monotone oper-
ator A :H → 2H is maximal monotone if and only if the mapping A+ λI is surjective for
some (equivalently, for any) λ > 0.

THEOREM 5.5.3 (Rockafellar). For any F ∈ Γ0(B) the operator ∂F is maximal
monotone.

An operator A :B → 2B
∗

is maximal monotone and cyclically monotone if and only if
A = ∂F for some proper lower semicontinuous convex function F :B → R̃.

110 See e.g. the monographs quoted in the item (IX) of the Bibliographical Note in Section 6.
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PROPOSITION 5.5.4. Let α1, α2 :B → 2B
∗

be two maximal monotone operators, {u1n},
{u2n} be two sequences in B, and {u∗

n} be a sequence in B∗. If

(5.5.4)u∗
n ∈ α1(u1n) ∩ α2(u2n) ∀n ∈ N,

(5.5.5)uin → ui weakly in B, for i = 1, 2,

(5.5.6)u∗
n → u∗ weakly star in B∗,

(5.5.7)lim inf
n→∞ 〈u∗

n, u1n + u2n〉 � 〈u∗, u1 + u2〉,
then u∗ ∈ α1(u1) ∩ α2(u2).

PROOF. By (5.5.4),

〈u∗
n − v∗

i , uin − vi〉 � 0 ∀(vi, v∗
i ) ∈ graph(αi), for i = 1, 2;

by adding these two inequalities we get

〈u∗
n, u1n + u2n〉 −

∑
i=1,2

(〈u∗
n, vi〉 + 〈v∗

i , uin − vi〉
)

� 0.

By passing to the inferior limit as n → ∞, the hypotheses (5.5.5)–(5.5.7) yield

〈u∗, u1 + u2〉 −
∑
i=1,2

(〈u∗, vi〉 + 〈v∗
i , ui − vi〉

)
� 0.

By selecting either v1 = u1 or v2 = u2, we then obtain

〈u∗ − v∗
i , ui − vi〉 � 0 ∀(vi, v∗

i ) ∈ graph(αi), for i = 1, 2,

namely u∗ ∈ α1(u1) ∩ α2(u2). �

REMARKS.
(i) The latter statement also admits a dual formulation. In fact, denoting by βi the in-

verse of the operator αi (i = 1, 2), the hypothesis (5.5.4) and the thesis respectively
also read

(5.5.8)u1n ∈ β1(u
∗
n), u2n ∈ β2(u

∗
n) ∀n ∈ N,

(5.5.9)u1 ∈ β1(u
∗), u2 ∈ β2(u

∗).

(ii) Although we stated Proposition 5.5.4 for two operators, the further extension to an
either finite or even countable family of maximal monotone operators is straightfor-
ward. On the other hand for α1 = α2 we get the next statement, that is often applied
in the analysis of nonlinear problems.

COROLLARY 5.5.5. Let α :B → 2B
∗

be a maximal monotone operator and {(un, u∗
n)} be

a sequence in B × B∗. If

(5.5.10)u∗
n ∈ α(un) ∀n ∈ N,

(5.5.11)un → u weakly in B,
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(5.5.12)u∗
n → u∗ weakly star in B∗,

(5.5.13)lim inf
n→∞ 〈u∗

n, un〉 � 〈u∗, u〉,
then u∗ ∈ α(u).

5.6. M-accretive operators and semigroups

In this section we illustrate nonlinear semigroups of contractions in Banach spaces.111

After dealing with (multi-valued) operatorsB → B∗, next we consider a different notion
of monotonicity for operators that map B to itself. Of course this distinction makes sense
only if B is not a Hilbert space. An operator A :B → 2B is said accretive if

∀ui ∈ Dom(A), ∀vi ∈ A(ui) (i = 1, 2), ∀λ > 0,

(5.6.1)‖u1 − u2‖ �
∥∥u1 − u2 + λ(v1 − v2)

∥∥.
A is said m-accretive if it is accretive and I+λA is surjective for some λ > 0 (equivalently,
for any λ > 0). By the Minty and Browder Theorem 5.5.2, an operator that acts on a Hilbert
space is m-accretive if and only if it is maximal monotone.

Cauchy problem. Let A : B → 2B , T > 0, f ∈ L1(0, T ;B), u0 ∈ Dom(A) (the strong
closure of the domain of A), and consider the equation

(5.6.2)
du

dt
+ A(u) � f in ]0, T [.

A function u : ]0, T [ → B is called a strong solution of this equation if
(i) u is absolutely continuous on any interval [a, b] ⊂ ]0, T [, and strongly differen-

tiable a.e. in ]0, T [,
(ii) u ∈ Dom(A) a.e. in ]0, T [, and

(iii) Eq. (5.6.2) is fulfilled a.e. in ]0, T [.
On the other hand, u : ]0, T [ → B is called a mild solution of (5.6.2) if there exists a

sequence {(un, fn)} such that un is a strong solution of the same equation with fn in place
of f for any n, and

un → u in B, locally uniformly in ]0, T [,
(5.6.3)fn → f strongly in L1(0, T ;B).

These notions are easily extended to the Cauchy and periodic problems associated with
(5.6.2):

(5.6.4)(CP)

⎧⎨
⎩

du

dt
+ A(u) � f in ]0, T [,

u(0) = u0,

(5.6.5)(PP)

⎧⎨
⎩

du

dt
+ A(u) � f in ]0, T [,

u(0) = u(T ).

Here u is also assumed to be continuous at t = 0 for (CP), at t = 0, T for (PP).

111 See e.g. see e.g. the monographs quoted in the item (X) of the Bibliographical Note in Section 6.
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THEOREM 5.6.1. Let B be a Banach space and A :B → 2B be an m-accretive operator.
Then:

(i) If f ∈ L1(0, T ;B) and u0 ∈ Dom(A), then the Cauchy problem (CP) has a mild
solution.

(ii) If fi ∈ L1(0, T ;B), u0
i ∈ Dom(A), and ui is a corresponding mild solution of

(CP) for i = 1, 2, then∥∥u1(t)− u2(t)
∥∥

(5.6.6)�
∥∥u0

1 − u0
2

∥∥+
∫ t

0

∥∥f1(s)− f2(s)
∥∥ ds ∀t ∈ [0, T ].

(The mild solution is thus unique.)
(iii) If the mild solution of (CP) is absolutely continuous on any interval [a, b] ⊂ ]0, T [

and is strongly differentiable a.e. in ]0, T [, then it is a strong solution.
(iv) If f : ]0, T [ → B has bounded variation and u0 ∈ Dom(A), then the mild solution

of (CP) is Lipschitz-continuous in [0, T ].
(v) If the operator A − aI is accretive for some constant a > 0, then the periodic

problem (PP) has one and only one mild solution.

A Banach space B is said to have the Radon–Nikodým property if any Lipschitz-
continuous mapping [0, 1] → B is strongly differentiable a.e. in ]0, T [. This holds if
either B is reflexive or it is separable and has a pre-dual. For instance, this applies to all re-
flexive Banach spaces and to �1, but neither to L1(Ω) nor to L∞(Ω).112 By parts (iii) and
(iv) of Theorem 5.6.1, the mild solution of the Cauchy problem (CP) is a strong solution
whenever B has the Radon–Nikodým property, f : ]0, T [ → B has bounded variation and
u0 ∈ Dom(A).

Let us now assume that f ≡ 0. For any u0 ∈ Dom(A) let u be the mild solution of
(CP), and set S(t)u0 := u(t) for any t � 0. The mapping t �→ S(t) is then a continuous
semigroup of contractions, for it is a continuous semigroup and

(5.6.7)
∥∥S(t)u0

1 − S(t)u0
2

∥∥ �
∥∥u0

1 − u0
2

∥∥ ∀t � 0,∀u0
1, u

0
2 ∈ Dom(A).

For any Lipschitz-continuous operator F : B → B, the above results are easily extended
to the operator Ã := A + F . In this case, denoting by ω the Lipschitz constant of F ,
t �→ S(t) is a continuous semigroup of ω-contractions, for (5.6.7) is replaced by

(5.6.8)
∥∥S(t)u0

1 − S(t)u0
2

∥∥ � eωt
∥∥u0

1 − u0
2

∥∥ ∀t � 0, ∀u0
1, u

0
2 ∈ Dom(A).

T-accretiveness. A Banach space B is called a Banach lattice if it is an ordered set
such that any finite nonempty subset admits infimum and supremum, and, setting |u| :=
sup{u,−u} and u � v if u = inf{u, v}, it satisfies the following conditions, for any
u, v,w ∈ B:

(i) if u � v then u+ w � v + w,
(ii) if u � v and α > 0, then αu � αv,

(iii) if u � v then −v � −u,

112 See, e.g., Bénilan [54], Diestel and Uhl [181, Chapter III], Kufner, John and Fučík [298, Section 2.22.5].
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(iv) if |u| � |v| then ‖u‖ � ‖v‖.
For any u ∈ B, let us set

u+ := sup{u, 0} and u− := sup{−u, 0}.
An operator A :B → 2B is then said to be T-accretive if

∀ui ∈ Dom(A),∀vi ∈ A(ui) (i = 1, 2), ∀λ > 0,

(5.6.9)
∥∥(u1 − u2)

+∥∥ �
∥∥[u1 − u2 + λ(v1 − v2)

]+∥∥.
Any T-accretive operator in B is also accretive whenever

(5.6.10)‖u+‖ � ‖v+‖, ‖u−‖ � ‖v−‖ ⇒ ‖u‖ � ‖v‖ ∀u, v ∈ B.

THEOREM 5.6.2. If B is a Banach lattice and A is m- and T-accretive, then the mild
solution of the Cauchy problem (CP) depends monotonically on the data. That is, if ui is
the mild solution corresponding to u0

i , fi (i = 1, 2) and u0
1 � u0

2, f1 � f2, then u1 � u2.

5.7. Perimeter and curvature

In this section we state a result about sets of finite perimeter in the sense of Caccioppoli.113

For any measurable function v :Ω → R, let us first define the total variation functional

(5.7.1)
∫
Ω

|∇v| := sup

{∫
Ω

v∇ · �η: �η ∈ C1
0(Ω)

N, |�η| � 1 in Ω

}
.

The domain of this operator in L1(Ω) is thus the space BV(Ω). Let us also set

(5.7.2)P(v) :=
⎧⎨
⎩

1

2

∫
Ω

|∇v| (� +∞) if |v| = 1 a.e. in Ω,

+∞ otherwise.

If v ∈ Dom(P ) then P(v) is the perimeter in Ω in the sense of Caccioppoli of the set
Ω+ = {x ∈ Ω: v(x) = 1}. Whenever Ω+ is of Lipschitz class, this perimeter coincides
with the bidimensional Hausdorff measure of ∂Ω+.

Let us now fix any g ∈ L1(Ω), any constants a > 0 and b, and set

(5.7.3)Φ(v) :=
⎧⎨
⎩ a

∫
Ω

|∇v| + b

∫
Γ

γ0v dσ +
∫
Ω

gv dx ∀v ∈ Dom(P ),

+∞ ∀v ∈ L1(Ω) \ Dom(P ).

This operator is well-defined, for the trace operator γ0 maps BV(Ω) to L1(Γ ) (and is
continuous).

PROPOSITION 5.7.1.114 Under the above assumptions, the functionalΦ is lower semicon-
tinuous with respect to the strong topology of L1(Ω) if and only if |b| � a. In that case Φ
has an (in general nonunique) absolute minimizer.

113 See e.g. the monographs quoted in the item (XV) of the Bibliographical Note in Section 6.
114 See e.g. Massari and Pepe [322].
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The existence of a minimizer of Φ then follows by the direct method of the calculus of
variations.115

THEOREM 5.7.2 (Gibbs–Thomson law and contact angle condition). Let |b| � a, g ∈
W 1,p(Ω) with p > 3, u ∈ L1(Ω) and

(5.7.4)lim inf
Φ(v)−Φ(u)

‖v − u‖L1(Ω)

� 0 as v → u in L1(Ω).

Then:
(i) The boundary S in Ω of the set Ω+ := {x ∈ Ω: u(x) = 1} is a surface of class

C1,(p−N)/2p.
(ii) Denoting by �n the unit normal vector to the surface S oriented towards Ω+, κ :=

1
2∇S · �n ∈ Lp(S).116 Moreover, equipping S with the two-dimensional Hausdorff
measure and denoting by γ0 the trace operator W 1,p(Ω) → W 1−1/p,p(S),

(5.7.5)κ = γ0g a.e. on S.

(iii) If Γ is of classC1, then, denoting by ω the angle between �n and the outward normal
vector to Γ , and equipping S ∩ Γ with the one-dimensional Hausdorff measure,

(5.7.6)cosω = b/a a.e. on S ∩ Γ.

Part (i) follows from a classic result of Almgren [14]. Parts (ii) and (iii) may be proved
by representing S locally in Cartesian form, and then letting the first variation of Φ vanish
for any local Cartesian perturbation of the interface.117

5.8. Γ -convergence

In this section we state De Giorgi’s notion of Γ -convergence, and some basic results of
this theory.118

Let (X, d) be a metric space, fn (n ∈ N) and f be functions X → R ∪ {±∞}. If for
some u ∈ X

(i) for any sequence {un} in X,

(5.8.1)if un → u then lim inf
n→∞ fn(un) � f (u),

(ii) there exists a sequence {un} in X such that

(5.8.2)un → u and lim sup
n→∞

fn(un) � f (u),

115 See e.g. Braides and Defranceschi [82], Buttazzo, Giaquinta and Hildebrandt [94], Carbone and De Arcan-
gelis [117], Dacorogna [154], Dal Maso [155], Evans and Gariepy [201], Giusti [245].
116 κ is the tangential divergence of �n/2 over S, in the sense of H−1(S), say. Thus κ equals the mean curvature
of S.
117 See e.g. Visintin [453, Section VI.4].
118 See e.g. the pioneering papers De Giorgi [168], De Giorgi and Franzoni [169], and the monographs quoted
in the item (XIV) of the Bibliographical Note in Section 6.
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then we say that fn Γ -converges to f (in (X, d)) at u, and write fn(u)
Γ→ f (u). If this

occurs for any u ∈ X, then we say that fn Γ -converges to f , and write fn
Γ→ f . The

function f is then lower semicontinuous.

PROPOSITION 5.8.1 (Compactness). Let (X, d) be a separable metric space119 and {fn}
be a sequence of functions X → R̃. A subsequence of {fn} then Γ -converges to some
function f :X → R̃.

PROPOSITION 5.8.2 (Minimization). Let (X, d) be a metric space, and {fn} is a sequence
of functions X → R̃ such that fn Γ -converges to f . If a sequence {un} ⊂ X and u ∈ X

are such that

(5.8.3)fn(un) � inf fn + 1

n
∀n, un → u in X,

then fn(un) → f (u) and f (u) = inf f . (Thus inf fn → inf f .)

PROOF. By (5.8.1), f (u) � lim infn→∞ fn(un). Moreover, for any v ∈ X, there exists a
sequence {vn} ⊂ X such that vn → v in X and fn(vn) → f (v). As by (5.8.3), fn(un) �
f (vn)+ 1

n
for any n, we get

f (u) � lim inf
n→∞ fn(un) � lim

n→∞ fn(vn) = f (v) ∀v ∈ X.

Thus f (u) = inf f . If {ũn} is the sequence prescribed by (5.8.2), then

f (u) � lim sup
n→∞

fn(ũn) � lim sup
n→∞

(inf fn) � (by (5.8.3)) lim sup
n→∞

fn(un).

Thus fn(un) → f (u). �

The two latter propositions entail the next statement, that shows that the notion Γ -
convergence is especially appropriate for the study of the limit behaviour of minimization
problems.

COROLLARY 5.8.3. Let (X, d) be a separable metric space, {fn} be a sequence of func-
tions X → R̃, and {un} be a compact sequence of X such that fn(un) = inf fn for any n.
Then there exist f and u such that, as n → ∞ along a suitable sequence (not relabelled),

(5.8.4)fn
Γ→ f, un → u in X, fn(un) → f (u) = inf f.

The next statement has been applied to several models of multi-phase systems. It may be
noticed that in this case the intersection between the domain of the sequence of functionals,
H 1(Ω) ∩ L4(Ω), and that of the Γ -limit, {v ∈ BV(Ω): |v| = 1 a.e. in Ω}, is reduced to
the two constant functions v ≡ ±1.

119 I.e., a space equipped with a countable basis of open sets, in the topology induced by the metric.
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THEOREM 5.8.4.120 Let Ω be a Lipschitz domain of RN , and for any v ∈ L1(Ω) set (cf.
(5.7.1))

(5.8.5)fn(v) :=
⎧⎨
⎩
∫
Ω

(
1

n
|∇v|2 + n

(
v2 − 1

)2) dx if v ∈ H 1(Ω) ∩ L4(Ω),

+∞ otherwise,

(5.8.6)f (v) :=
⎧⎨
⎩

4

3

∫
Ω

|∇v| if |v| = 1 a.e. in Ω,

+∞ otherwise.

The sequence fn then Γ -converges to f in L1(Ω). (Note that f = 8
3P , cf. (5.7.2).)

Half of this proof is not difficult, and allows us to justify the occurrence of the constant
4/3 in (5.8.6). Setting a(y) := 2y3/3 − 2y for any y ∈ R, by the obvious inequality
b2 + c2 � 2bc, for any sequence {un} in H 1(Ω) we have

fn(un) =
∫
Ω

(
1

n
|∇un|2 + n

(
u2
n − 1

)2) dx

� 2
∫
Ω

|∇un||u2
n − 1| dx =

∫
Ω

∣∣∇a(un)∣∣ dx.

Notice also that, if un → u in L1(Ω) and lim infn→∞ fn(un) < +∞, then |u| = 1 a.e.
in Ω . Hence

lim inf
n→∞ fn(un) �

⎧⎨
⎩
∫
Ω

∣∣∇a(u)∣∣ if |u| = 1 a.e. in Ω,

+∞ otherwise.

Moreover, as |a(±1)| = 4/3,∫
Ω

∣∣∇a(u)∣∣ = ∣∣a(±1)
∣∣ ∫

Ω

|∇u| = 4

3

∫
Ω

|∇u| if |u| = 1 a.e. in Ω.

We thus checked (5.8.1). The construction of a recovery sequence fulfilling (5.8.2) is
less obvious and is here omitted.
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[350] J. Nečas, I. Hlaváček, Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction, Else-

vier, Amsterdam, 1982.
[351] Q. Nie, F.R. Tian, Singularities in Hele–Shaw flows, SIAM J. Appl. Math. 58 (1998) 34–54.
[352] B. Niethammer, Derivation of the LSW-theory for Ostwald ripening by homogenization methods, Arch.

Ration. Mech. Anal. 147 (1999) 119–178.
[353] B. Niethammer, Ostwald ripening: the screening length revisited, Calc. Var. Partial Differential Equa-

tions 13 (2001) 33–68.
[354] P. Neittanmäki (Ed.), Numerical Methods for Free Boundary Problems, Birkhäuser, Basel, 1991.
[355] M. Niezgódka, Stefan-like problems, in: A. Fasano, M. Primicerio (Eds.), Free Boundary Problems: Theory

and Applications, Pitman, Boston, 1983, pp. 321–347.
[356] M. Niezgódka, I. Pawlow, Recent Advances in Free Boundary Problems, Control and Cybernetics 14 (1985)

1–307.
[357] M. Niezgódka, P. Strzelecki (Eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow,

1996.
[358] R.H. Nochetto, A class of nondegenerate two-phase Stefan problems in several space variables, Comm.

Partial Differential Equations 12 (1987) 21–45.
[359] A. Novick-Cohen, Conserved phase-field equations with memory. Curvature flows and related topics, in:

A. Damlamian, J. Spruck, A. Visintin (Eds.), Curvature Flows and Related Topics, Gakkotosho, Tokyo,
1995, pp. 179–197.

[360] A. Novick-Cohen, A Stefan/Mullins–Sekerka type problem with memory, J. Integral Equations Appl. 9
(1997) 113–141.

[361] A. Novick-Cohen, L.A. Segel, Nonlinear aspects of the Cahn–Hilliard equation, Physica D 10 (1984)
278–298.

[362] J.R. Ockendon, W.R. Hodgkins (Eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon
Press, Oxford, 1975.

[363] J.R. Ockendon, A.B. Tayler, A model for alloy solidification, in: A. Bossavit, A. Damlamian, M. Frémond
(Eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston, 1985, pp. 157–165.

[364] O.A. Oleı̆nik, A method of solution of the general Stefan problem, Soviet Math. Dokl. 1 (1960) 1350–1353.
[365] O.A. Oleı̆nik, M. Primicerio, E.V. Radkevich, Stefan-like problems, Meccanica 28 (1993) 129–143.



Introduction to Stefan-type problems 481

[366] R. Pamplin (Ed.), Crystal Growth, Pergamon Press, Oxford, 1975.
[367] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Basel, 1985.
[368] P.D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer,

Heidelberg, 1993.
[369] P. Papon, J. Leblond, P.H.E. Meijer, The Physics of Phase Transitions: Concepts and Applications,

Springer, Heidelberg, 2002.
[370] D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type, Ed. Academiei, Bucharest, 1978.
[371] N.H. Pavel, Nonlinear Evolution Operators and Semigroups, Springer, Berlin, 1987.
[372] R. Pego, Front migration in the nonlinear Cahn–Hilliard equation, Proc. Roy. Soc. London Ser. A 422

(1989) 261–278.
[373] O. Penrose, P.C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase

transitions, Physica D 43 (1990) 44–62.
[374] O. Penrose, P.C. Fife, On the relation between the standard phase-field model and a “thermodynamically

consistent” phase-field model, Physica D 69 (1993) 107–113.
[375] P.I. Plotnikov, V.N. Starovoitov, The Stefan problem with surface tension as a limit of phase field model,

Differential Equations 29 (1993) 395–404.
[376] I. Prigogine, Thermodynamics of Irreversible Processes, Wiley-Interscience, New York, 1967.
[377] M. Primicerio, Problemi a contorno libero per l’equazione della diffusione, Rend. Sem. Mat. Univers.

Politecn. Torino 32 (1973–1974) 183–206.
[378] M. Primicerio, Problemi di diffusione a frontiera libera, Boll. Un. Matem. Ital. A 18 (1981) 11–68.
[379] M. Primicerio, Mushy regions in phase-change problems, in: R. Gorenflo, K.-H. Hoffmann (Eds.), Applied

Functional Analysis, Lang, Frankfurt, 1983, pp. 251–269.
[380] J. Prüss, J. Saal, G. Simonett, Existence of analytic solutions for the classical Stefan problem, Math.

Ann. 338 (2007) 703–755.
[381] V.V. Pukhnachev, Motion of a viscous fluid with free boundaries, Novosibirsk. Gos. Univ., Novosibirsk,

1989 (in Russian).
[382] E. Radkevitch, Gibbs–Thomson law and existence of the classical solution of the modified Stefan problem,

Soviet Dokl. Acad. Sci. 43 (1991) 274–278.
[383] E. Radkevitch, Conditions for the existence of a classical solution of a modified Stefan problem (the Gibbs–

Thomson law), Russian Acad. Sci. Sb. Math. 75 (1993) 221–246.
[384] E. Radkevich, A.C. Melikulov, Free Boundary Problems, FAN, Tashkent, 1992 (in Russian).
[385] J. Rappaz, J.F. Scheid, Existence of solutions to a phase-field model for the isothermal solidification process

of a binary alloy, Math. Methods Appl. Sci. 23 (2000) 491–513.
[386] S. Richardson, Hele–Shaw flow with a free boundary produced by the injections of a fluid into a narrow

channel, J. Fluid. Mech. 56 (1972) 609–618.
[387] S. Richardson, Some Hele–Shaw flow with time-dependent free boundaries, J. Fluid. Mech. 102 (1981)

263–278.
[388] R.T. Rockafellar, A general correspondence between dual minimax problems and convex programs, Pacific

J. Math. 25 (1968) 597–611.
[389] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1969.
[390] R.T. Rockafellar, Monotone operators associated with saddle functions and minimax problems, Part 1, in:

Proc. Sympos. Pure Math., vol. XVIII, American Mathematical Society, Providence, RI, 1970, pp. 241–
250.

[391] R.T. Rockafellar, The Theory of Subgradients and its Applications to Problems of Optimization: Convex
and Nonconvex Functions, Heldermann, Berlin, 1981.

[392] R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Springer, New York, 1998.
[393] J.-F. Rodrigues, Free boundary convergence in the homogenization of the one-phase Stefan problem, Trans.

Amer. Math. Soc. 274 (1982) 297–305.
[394] J.-F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987.
[395] J.-F. Rodrigues, The variational inequality approach to the one-phase Stefan problem, Acta Appl. Math. 8

(1987) 1–35.
[396] J.-F. Rodrigues (Ed.), Mathematical Models for Phase Change Problems, Birkhäuser, Basel, 1989.
[397] J.-F. Rodrigues, The Stefan problem revisited, in: J.-F. Rodrigues (Ed.), Mathematical Models for Phase

Change Problems, Birkhäuser, Basel, 1989, pp. 129–190.



482 A. Visintin

[398] J.-F. Rodrigues, Variational methods in the Stefan problem, in: A. Visintin (Ed.), Modelling and Analysis
of Phase Transition and Hysteresis Phenomena, Springer, Heidelberg, 1994, pp. 147–212.

[399] J.-F. Rodrigues, M.G. Urbano, On the stationary Boussinesq–Stefan problem with constitutive power-laws,
Internat. J. Non-Linear Mech. 33 (1998) 555–566.

[400] J.-F. Rodrigues, M.G. Urbano, On a three-dimensional convective Stefan problem for a non-Newtonian
fluid, in: A. Sequeira, H. Beirão da Veiga, J.H. Videman (Eds.), Applied Nonlinear Analysis, Kluwer Aca-
demic/Plenum Publishers, New York, 1999, pp. 457–468.

[401] M. Röger, Solutions for the Stefan problem with Gibbs–Thomson law by a local minimisation, Interfaces
Free Bound. 6 (2004) 105–133.

[402] M. Röger, Existence of weak solutions for the Mullins–Sekerka flow, SIAM J. Math. Anal. 37 (2005) 291–
301.

[403] J.W. Rogers, A.E. Berger, Some properties of the nonlinear semigroup for the problem ut − �f (u) = 0,
Nonlinear Anal. TMA 8 (1984) 909–939.

[404] A. Romano, Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore,
1993.

[405] T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2005.
[406] L. Rubinstein, On the determination of the position of the boundary which separates two phases in the

one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR 58 (1947) 217–220 (in Russian).
[407] L. Rubinstein, On the solution of Stefan’s problem, Bull. Acad. Sci. URSS. Sér. Géograph. Géophys. (Izves-

tia Akad. Nauk SSSR) 11 (1947) 37–54 (in Russian).
[408] L. Rubinstein, On the question of the process of propagation of freezing in frozen soil, Bull. Acad. Sci.

URSS. Sér. Géograph. Géophys. (Izvestia Akad. Nauk SSSR) 11 (1947) 489–496 (in Russian).
[409] L. Rubinstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971. Russian edi-

tion: Zvaigzne, Riga, 1967.
[410] L. Rubinstein, The Stefan problem: Comments on its present state, J. Inst. Math. Appl. 24 (1979) 259–277.
[411] L. Rubinstein, A. Fasano, M. Primicerio, Remarks on the analyticity of the free boundary for the one-

dimensional Stefan problem, Ann. Mat. Pura Appl. 125 (1980) 295–311.
[412] L. Rubinstein, B. Martuzans, Free Boundary Problems Related to Osmotic Mass Transfer through Semi-

permeable Membranes, Gakkotosho, Tokyo, 1995.
[413] P. Rybka, The crystalline version of the modified Stefan problem in the plane and its properties, SIAM J.

Math. Anal. 30 (1999) 756–786.
[414] P. Rybka, On convergence of solutions of the crystalline Stefan problem with Gibbs–Thomson law and

kinetic undercooling, Interfaces Free Bound. 2 (2000) 361–379.
[415] P. Rybka, On the modified crystalline Stefan problem with singular data, J. Differential Equations 181

(2002) 340–366.
[416] P.G. Saffman, G.I. Taylor, The penetration of fluid into a porous medium or Hele–Shaw cell, Proc. Roy.

Soc. A 245 (1958) 312–329.
[417] G. Savaré, Compactness properties for families of quasistationary solutions of some evolution equations,

Trans. Amer. Math. Soc. 354 (2002) 3703–3722.
[418] D. Schaeffer, A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Differ-

ential Equations 20 (1976) 266–269.
[419] E. Scheil, Anlauf Zeit den Austenitumwandlung, Archiv für Eisenhüttenwesen 8 (1935) 565.
[420] G. Sestini, Esistenza di una soluzione in problemi analoghi a quello di Stefan, Rivista Mat. Univ. Parma 3

(1952) 3–23; 8 (1958) 1–209.
[421] R.E. Showalter, Monotone Operators in Banch Spaces and Nonlinear P.D.E.s, Amer. Math. Soc., Provi-

dence, RI, 1997.
[422] R.E. Showalter, N.J. Walkington, A hyperbolic Stefan problem, Quart. Appl. Math. XLV (1987) 769–781.
[423] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis,

vol. 3, Australian National University, Canberra, 1983.
[424] V.P. Skripov, Metastable Liquids, Wiley, Chichester, 1974.
[425] A.D. Solomon, V. Alexiades, D.G. Wilson, A numerical simulation of a binary alloy solidification process,

SIAM J. Sci. Statist. Comput. 6 (1985) 911–922.
[426] H.M. Soner, Ginzburg–Landau equation and motion by mean curvature. I. Convergence, J. Geom. Anal. 7

(1997) 437–475.



Introduction to Stefan-type problems 483

[427] H.M. Soner, Ginzburg–Landau equation and motion by mean curvature. II. Development of the initial
interface, J. Geom. Anal. 7 (1997) 477–491.

[428] H.M. Soner, Convergence of the phase-field equation to the Mullins–Sekerka problem with kinetic under-
cooling, Arch. Rational Mech. Anal. 131 (1995) 139–197.

[429] J. Sprekels, S. Zheng, Global smooth solutions to a thermodynamically consistent model of phase-field type
in higher space dimensions, J. Math. Anal. Appl. 176 (1993) 200–223.

[430] J. Stefan, Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur. 98
(1889) 473–484;
Also Sitzungber., Wien, Akad. Mat. Natur. 98 (1889) 614–634, 965–983, 1418–1442.

[431] J. Steinbach, A Variational Inequality Approach to Free Boundary Problems with Applications in Mould
Filling, Birkhäuser Verlag, Basel, 2002.

[432] B. Stoth, Convergence of the Cahn–Hilliard equation to the Mullins–Sekerka problem in spherical symme-
try, J. Differential Equations 125 (1996) 154–183.

[433] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer, Berlin, 2007, UMI,
Bologna.

[434] D.A. Tarzia, Una revisión sobre problemas de frontera móvil y libre para la ecuación del calor. El problema
de Stefan, Math. Notae 29 (1981/82) 147–241.

[435] D.A. Tarzia, A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan
problem, Progetto Nazionale MPI Equazioni di Evoluzione e Applicazioni Fisico-Matematiche, Florence,
1988.

[436] D.A. Tarzia, A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan
and related problems, Universidad Austral, Departamento de Matematica, Rosario, 2000.

[437] A.B. Tayler, A mathematical formulation of Stefan problems, in: J.R. Ockendon, W.R. Hodgkins (Eds.),
Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford, 1975, pp. 120–137.

[438] J.E. Taylor, Mean curvature and weighted mean curvature, Acta Metall. Mater. 40 (1992) 1475–1485.
[439] J.E. Taylor, J.W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Stat.

Phys. 77 (1994) 183–197.
[440] J. van Tiel, Convex Analysis. An Introductory Text, Wiley, Chichester, 1984.
[441] D. Turnbull, Phase Changes, Solid State Phys. 3 (1956) 225–306.
[442] A.R. Ubbelohde, The Molten State of Matter, Wiley, Chichester, 1978.
[443] M.M. Vaı̆nberg, The Variational Method and the Method of Monotone Operators in the Theory of Nonlinear

Equations, Halsted Press, New York–Toronto, 1973. Russian edition: Nauka, Moscow, 1972.
[444] C. Verdi, A. Visintin, A mathematical model of the austenite-pearlite transformation in plain steel based

on the Scheil additivity rule, Acta Metall. 35 (1987) 2711–2717.
[445] A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations 9

(1984) 439–466.
[446] A. Visintin, Stefan problem with phase relaxation, IMA J. Appl. Math. 34 (1985) 225–245.
[447] A. Visintin, Supercooling and superheating in phase transitions, IMA J. Appl. Math. 35 (1985) 233–256.
[448] A. Visintin, Study of the eddy-current problem taking account of Hall’s effect, Appl. Anal. 19 (1985) 217–

226.
[449] A. Visintin, Coupled thermal and electromagnetic evolution in a ferromagnetic body, Z. Angew. Math.

Mech. 67 (1987) 409–417.
[450] A. Visintin, Mathematical models of solid–solid phase transformations in steel, IMA J. Appl. Math. 39

(1987) 143–157.
[451] A. Visintin, Surface tension effects in phase transitions, in: J. Ball (Ed.), Material Instabilities in Continuum

Mechanics and Related Mathematical Problems, Claredon Press, Oxford, 1988, pp. 505–537.
[452] A. Visintin, The Stefan problem with surface tension, in: J.F. Rodrigues (Ed.), Mathematical Models of

Phase Change Problems, Birkhäuser, Basel, 1989, pp. 191–213.
[453] A. Visintin, Models of Phase Transitions, Birkhäuser, Boston, 1996.
[454] A. Visintin, Two-scale model of phase transitions, Physica D 106 (1997) 66–80.
[455] A. Visintin, Introduction to the models of phase transitions, Bull. Un. Mat. Ital., Serie VIII, I-B (1998)

1–47.
[456] A. Visintin, Nucleation and mean curvature flow, Comm. Partial Differential Equations 23 (1998) 17–35.
[457] A. Visintin, Transizioni di fase ed isteresi, Bull. Unione Mat. Ital., Serie VIII, I-B (2000) 31–77.



484 A. Visintin

[458] A. Visintin, Homogenization of a doubly-nonlinear Stefan-type problem, SIAM J. Math. Anal. 39 (2007)
987–1017.

[459] A. Visintin, Phase transition and glass formation in binary alloys, submitted for publication.
[460] W. Walter, Differential and Integral Inequalities, Springer, Berlin, 1970.
[461] S.-L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun, G.B. McFadden,

Thermodynamically-consistent phase-field models for solidification, Physica D 69 (1993) 189–200.
[462] X.F. Wang, The Stefan problem with nonlinear convection, J. Partial Differential Equations 5 (1992) 66–86.
[463] M. Willem, Analyse Convexe et Optimization, Ed. C.I.A.C.O., Louvain-La-Neuve, 1989.
[464] D.G. Wilson, A.D. Solomon, V. Alexiades, Progress with simple binary alloy solidification problems, in:

A. Fasano, M. Primicerio (Eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston, 1983,
pp. 306–320.

[465] D.G. Wilson, A.D. Solomon, V. Alexiades, A model of binary alloy solidification, Internat. J. Numer. Meth-
ods Engrg. 20 (1984) 1067–1084.

[466] D.G. Wilson, A.D. Solomon, P.T. Boggs (Eds.), Moving Boundary Problems, Academic Press, New York,
1978.

[467] D.G. Wilson, A.D. Solomon, J.S. Trent, A Bibliography on Moving Boundary Problems with Key Word
Index, Oak Ridge National Laboratory, 1979.

[468] D.P. Woodruff, The Solid–Liquid Interface, Cambridge Univ. Press, Cambridge, 1973.
[469] L.C. Woods, The Thermodynamics of Fluid Systems, Clarendon Press, Oxford, 1975.
[470] L.C. Wrobel, C.A. Brebbia (Eds.), Computational Modelling of Free and Moving Boundary Problems,

vols. I, II, Computational Mechanics Publ., Southampton, 1991, p. 1993.
[471] L.C. Wrobel, C.A. Brebbia (Eds.), Computational Modelling of Free and Moving Boundary Problems in

Heat and Fluid Flow, Computational Mechanics Publ., Southampton, 1993.
[472] L.C. Wrobel, C.A. Brebbia, B. Sarler (Eds.), Computational Modelling of Free and Moving Boundary

Problems, vol. III, Computational Mechanics Publ., Southampton, 1995.
[473] X. Xu, M. Shillor, The Stefan problem with convection and Joule’s heating, Adv. Differential Equations 2

(1997) 667–691.
[474] M. Yamaguchi, T. Nogi, The Stefan Problem, Sangyo-Tosho, Tokyo, 1977 (in Japanese).
[475] E. Zeidler, Nonlinear Functional Analysis and its Applications, vols. I – IV , Springer, New York, 1985.
[476] S. Zheng, Global existence for a thermodynamically consistent model of phase field type, Differential

Integral Equations 5 (1992) 241–253.
[477] W.P. Ziemer, Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans.

Amer. Math. Soc. 271 (1982) 733–748.
[478] W.P. Ziemer, Weakly Differentiable Functions, Springer, New York, 1989.



CHAPTER 9

The KdV Equation

Abdul-Majid Wazwaz
Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA

Contents
1. Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

1.1. Preliminary profile solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
2. The family of the KdV equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

2.1. Third-order KdV equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
2.2. Fifth-order KdV equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
2.3. Higher-order KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
2.4. The K(n, n) equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

3. The methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
3.1. The tanh–coth method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
3.2. The sine–cosine method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
3.3. Hirota’s bilinear method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

4. Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
5. The KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

5.1. Using the tanh–coth method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
5.2. Using the sine–cosine method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
5.3. Multiple-soliton solutions of the KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . 500

6. The modified KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
6.1. Using the tanh–coth method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
6.2. Using the sine–cosine method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
6.3. Multiple-solitons of the mKdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

7. The potential KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
7.1. Using the tanh–coth method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
7.2. Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

The tanh–sech ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
The coth–csch ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

7.3. Using the tanh–sech ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
7.4. Using the coth–csch ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
7.5. Multiple-solitons of the potential KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . 521

HANDBOOK OF DIFFERENTIAL EQUATIONS
Evolutionary Equations, Volume 4
Edited by C.M. Dafermos and M. Pokorný
© 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S1874-5717(08)00009-1

485



486 A.-M. Wazwaz

8. The generalized KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
8.1. Using the tanh–coth method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
8.2. Using the sine–cosine method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

9. The Gardner equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
9.1. Using the tanh method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
9.2. A cosh ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
9.3. A sinh ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
9.4. A sech ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
9.5. A csch ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
9.6. A csch–coth ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
9.7. A sech–tanh ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

10. Generalized KdV equation with two power nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 531
10.1. Using the tanh method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
10.2. Using the sine–cosine method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
10.3. Other hyperbolic functions methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Using cosh ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
Using sinh ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Using tanh and coth ansatze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Using sech and csch ansatze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

11. Fifth-order KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
11.1. Using the tanh–coth method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
11.2. The first criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
11.3. Using the first criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

The Lax equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
The Sawada–Kotera (SK) equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
The Kaup–Kupershmidt (KK) equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
The Ito equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

11.4. The second criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
11.5. Using the second criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

The Lax equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
The SK equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

11.6. Multiple-solitons of the fifth-order KdV equation . . . . . . . . . . . . . . . . . . . . . . . . 542
The Lax equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
The Sawada–Kotera equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
The Kaup–Kupershmidt equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

12. Seventh-order KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
12.1. The sech method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

13. Ninth-order KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
13.1. The sech method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

14. The coupled KdV or the Hirota–Satsuma equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
14.1. Using the tanh–coth method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
14.2. Multiple-soliton solutions of the Hirota–Satsuma system . . . . . . . . . . . . . . . . . . . . 556
14.3. Multiple-soliton solutions by another method . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

15. Compactons and the K(n, n) equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
15.1. The K(n, n) equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
15.2. Variant of the K(n, n) equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

16. Compacton-like solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565



The Korteweg–de Vries equation 487

1. Historical background

In 1844 the Scottish John Scott Russell was the first to observe the solitary waves. Russell
was watching a boat being drawn along the Edinburgh–Glasgow canal by a pair of horses
[4,15,70]. He observed that when the boat stopped suddenly, the bow wave continued for-
ward along the canal without any change of its form or speed. Russell observed a large
protrusion of water slowly traveling on the Edinburgh–Glasgow canal without change in
shape for eight miles an hour, but he lost it after two miles. He called the bulge of water,
that he observed, a “great wave of translation” [4]. The wave was traveling along the chan-
nel of water for a long period of time while still retaining its original identity. This single
humped wave of bulge of water is now called solitary waves or solitons [1,3,2,5]. Russell
was convinced that his discovery is of great significance, but unfortunately was ignored for
many years. The solitons – localized, highly stable waves that retain its identity (shape and
speed), upon interaction – was discovered experimentally by Russell [15,30]. The remark-
able discovery motivated Russell to conduct physical laboratory experiments to emphasize
his observance and to study these solitary waves. He empirically derived the relation

(1)c2 = g(h + a),

that determines the speed c of the solitary wave, where a is the maximum amplitude above
the water surface, h is the finite depth and g is the acceleration of gravity. The solitary
waves are therefore called gravity waves.

In 1895, Diederik Johannes Korteweg (1848–1941) together with his Ph.D student, Gus-
tav de Vries (1866–1934) derived analytically a nonlinear partial differential equation, well
known now as the KdV equation [34]. The KdV equation is used to model the disturbance
of the surface of shallow water in the presence of solitary waves. The KdV equation is a
generic model for the study of weakly nonlinear long waves, incorporating leading order
nonlinearity and dispersion [47]. Also, it describes surface waves of long wavelength and
small amplitude on shallow water [78,48,49,80]. The KdV equation in its simplest form is
given by

(2)ut + auux + uxxx = 0.

This equation incorporates two competing effects: nonlinearity represented by uux , and
linear dispersion represented by uxxx . Nonlinearity tends to localize the wave while dis-
persion spreads it out [11,12]. The balance between these two weak nonlinearity and dis-
persion explains the formulation of solitons that consist of single humped waves. The equi-
librium between these two effects is stable [32–39,41,40,42].

In 1965, Norman J. Zabusky (1929–) and Martin D. Kruskal (1925–2006) investigated
numerically the nonlinear interaction of a large solitary-wave overtaking a smaller one, and
the recurrence of initial states [79]. They discovered that solitary waves undergo nonlinear
interaction following the KdV equation. Further, the waves emerge from this interaction
retaining its original shape and amplitude, and therefore conserved energy and mass. The
only effect of the interaction was a phase shift. The remarkable discovery, that solitary
waves retain their identities and that their character resembles particle like behavior, moti-
vated Zabusky and Kruskal [79] to call these solitary waves solitons. Zabusky and Kruskal
[79] marked the birth of soliton, a name intended to signify particle like quantities [64,65,
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62,63]. The interaction of two solitons emphasized the reality of the preservation of shapes
and speeds and of the steady pulse like character of solitons [70], therefore the collision of
KdV solitons is considered elastic.

A soliton can be defined as a solution of a nonlinear partial differential equation that
exhibits the following properties [64,65,62,63,66–77]:

(i) the solution should demonstrate a wave of permanent form;
(ii) the solution is localized, which means that the solution either decays exponentially

to zero such as the solitons provided by the KdV equation, or converges to a con-
stant at infinity such as the solitons given by the Sine–Gordon equation;

(iii) the soliton interacts with other solitons preserving its character.
There are many types of traveling waves that are of particular interest in solitary wave

theory. Three of these types are: the solitary waves, which are localized traveling waves,
asymptotically zero at large distances [6–8,10,9], the periodic solutions, and the kink waves
which rise or descend from one asymptotic state to another [50–55]. Another type is the
peakons that are peaked solitary wave solutions [8,59]. In this case, the traveling wave so-
lutions are smooth except for a peak at a corner of its crest. Peakons are the points at which
spatial derivative changes sign [61,78] so that peakons have a finite jump in first derivative
of the solution u(x, t). Cuspons are other forms of solitons where solution exhibits cusps
at their crests [59–61]. Unlike peakons where the derivatives at the peak differ only by a
sign, the derivatives at the jump of a cuspon diverges. It is important to note that the soliton
solution u(x, t), along with its derivatives, tends to zero as |x| → ∞.

In 1993, Rosenau and Hyman [56] discovered a new class of solitons that are termed
compactons, which are solitons with compact spatial support such that each compacton
is a soliton confined to a finite core. Compactons are defined by solitary waves with the
remarkable soliton property that after colliding with other compactons, they reemerge with
the same coherent shape [56]. These particle like waves exhibit elastic collision that are
similar to the soliton interaction associated with completely integrable PDEs supporting
an infinite number of conservation laws. It was found that a compacton is a solitary wave
with a compact support where the nonlinear dispersion confines it to a finite core, therefore
the exponential wings vanish.

The genuinely nonlinear dispersive K(n, n) equations, a family of nonlinear KdV like
equations is of the form

(3)ut + a(un)x + (un)xx = 0, a > 0, n > 1,

which supports compact solitary traveling structures for a > 0. The existence and stability
of the compact entities was examined by many authors such as in [42,54–56,68–77].

The definitions given so far for compactons are [70]:
(i) compactons are solitons with finite wavelength;

(ii) compactons are solitary waves with compact support;
(iii) compactons are solitons free of exponential tails;
(iv) compactons are solitons characterized by the absence of infinite wings;
(v) compactons are robust soliton-like solutions.

Two important features of compactons structures are observed, namely:
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(i) unlike the standard KdV soliton where u(ξ) → 0 as ξ → ∞, the compacton is
characterized by the absence of the exponential tails or wings, where u(ξ) does not
tend to 0 as ξ → ∞;

(ii) unlike the standard KdV soliton where width narrows as the amplitude increases,
the width of the compacton is independent of the amplitude.

It is important to note that Eq. (3) with +a is called the focusing branch of the K(n, n)

equations. The equation

(4)ut − a(un)x + (un)xx = 0, a > 0, n > 1,

is called the defocussing branch of the K(n, n) equations. The studies in [54–56,71–76]
and many of the references therein revealed that Eq. (4) supports solutions with solitary
patterns having cusps or infinite slopes. Further, it was shown that while compactons are
the essence of the focusing branch (+a), spikes, peaks and cusps are the hallmark of the
defocussing branch (−a). This in turn means that the focusing branch (3) and the defo-
cussing branch (4) represent two different models, each leading to a different physical
structure. The remarkable discovery of compactons has led to an intense study over the last
few years. The study of compactons may give insight into many scientific processes [42]
such as the super deformed nuclei, preformation of cluster in hydrodynamic models, the
fission of liquid drops and inertial fusion. The stability analysis has shown that compacton
solutions are stable, where the stability condition is satisfied for arbitrary values of the non-
linearity parameter. The stability of the compactons solutions was investigated by means
of both linear stability and by Lyapunov stability criteria. Moreover, the compactons are
nonanalytic solutions whereas classical solitons are analytic solutions. The points of non-
analyticity at the edge of the compacton correspond to points of genuine nonlinearity of the
differential equation [56]. Compactons such as drops do not possess infinite wings, hence
they interact among themselves only across short distances. Solitons and compactons with
and without exponential wings respectively, are termed by using the suffix-on to indicate
that it has the property of a particle, such as phonon, and photon [64,65,62,63,66].

Solitons play a prevalent role in propagation of light in fibers. optical switching in
slab waveguides, surface waves in nonlinear dielectrics, optical bistability, and propaga-
tion through excitable media. A great deal of research work has been invested in recent
years for the study of the soliton concept. Various methods, analytic and numerical, were
applied to study several evolution equations. The inverse scattering method, tanh method,
Darboux transformation, Jacobi elliptic functions method, sine-cosine method, Ba̋cklund
transformation techniques, and the F-expansion methods are among the methods used. Hi-
rota [24–29] constructed the N -soliton solutions of the evolution equation by reducing it to
the bilinear form. The bilinear formalism established by Hirota [24–29] was a very help-
ful tool in the study of the nonlinear equations and it was the most suitable for computer
algebra. The Hirota bilinear formalism was extensively used in the literature such as in
[17,19,18,20–23,31–33,80] and the references therein.

1.1. Preliminary profile solution

The KdV equation

(5)ut + 6uux + uxxx = 0,
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has a large variety of solutions. The solutions propagate at speed c while retaining its
identity. We usually introduce the new variable ξ = x − ct , so that

(6)u(x, t) = u(ξ).

The soliton solution is spatially localized solution, hence u′, u′′, u′′′ → 0 as ξ → ±∞,
ξ = x − ct .

Using (6) into (5) gives

(7)−cu′ + 6uu′ + u′′′ = 0.

Integrating (7) gives

(8)−cu + 3u2 + u′′ = 0,

where constant of integration is taken to be zero. Multiplying (8) by 2f ′ and integrating
the resulting equation we find

(9)(u′)2 = cu2 − 2u3,

or equivalently

(10)
du√

cu2 − 2u3
= dξ.

Using a change of variable

(11)u = c

2
sech2(μξ),

that will give the soliton solution

(12)u(x, t) = c

2
sech2

√
c

2
(x − ct).

It is obvious that u(x, t) in (12), along with its derivatives, tends to zero as ξ → ∞. We
can also show that

(13)u(x, t) = − c

2
csch2

(√
c

2
(x − ct)

)
,

is also a solution for the KdV equation.
It is also interesting to solve this equation by using Bäcklund transformation, where we

introduce a function v such that u = vx . This will convert the KdV equation to

(14)vxt + 6vxvxx + vxxxx = 0,

where by integrating with respect to x we obtain

(15)vt + 3(vx)
2 + vxxx = 0.

The last equation is called the potential KdV equation; by using the wave variable ξ =
x − ct , we can easily obtain the solutions

(16)

v = √
c tanh

(√
c

2
(x − ct)

)
,

v = √
c coth

(√
c

2
(x − ct)

)
.
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Recall that u = vx , hence we obtain

(17)

u(x, t) = c

2
sech2

(√
c

2
(x − ct)

)
,

u(x, t) = − c

2
csch2

(√
c

2
(x − ct)

)
.

2. The family of the KdV equations

The KdV equations appear in three or more order forms. In what follows, we present a
brief summary of these forms. The complete analysis of each form will be addressed in the
forthcoming sections.

2.1. Third-order KdV equations

The family of third order Korteweg–de Vries is of the form

(18)ut + P(u)ux + uxxx = 0,

where u(x, t) is a function of space x and time variable t . Constants can be used as coef-
ficients of P(u)ux and uxxx , but these constants can be usually scaled out. The nonlinear
term P(u) appears in the following forms

(19)P(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

au,

au2,

aun,

ux,

aun − bu2n.

(i) For P(u) = ±6u we obtain the standard KdV equation

(20)ut ± 6uux + uxxx = 0,

where the factor ±6 is appropriate for complete integrability. This means that the KdV
equation has N -soliton solutions as will be discussed later.

(ii) For P(u) = 6u2, Eq. (18) is called the modified KdV (mKdV) equation and given
by

(21)ut + 6u2ux + uxxx = 0.

The mKdV equation is completely integrable and has infinitely many conserved quantities.
This equation appears in electric circuits and multi-component plasmas. The modified KdV
equation gives algebraic solitons solutions in the form of a rational function [58]. Stability
and instability conditions of algebraic solitons have been investigated thoroughly in [1,3,
2,4,5].

(iii) For P(u) = aun, Eq. (18) is called the generalized KdV (gKdV) equation [13] and
given by

(22)ut + aunux + uxxx = 0, n � 3.
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(iv) For P(u) = ux , Eq. (18) is called the potential KdV equation given by

(23)ut + (ux)
2 + u3x = 0.

It is to be noted that this equation can be obtained from the standard KdV equation by
setting u = vx and integrating the resulting equation with respect to x.

(v) For P(u) = aun − bu2n we obtain a generalized KdV equation with two power
nonlinearities of the form

(24)ut + (aun − bu2n)ux + uxxx = 0.

This last equation describes the propagation of nonlinear long acoustic-type waves [78].
The function f ′, where f = ( a

n+1un+1 − b
2n+1u2n+1) is regarded as a nonlinear correction

to the limiting long-wave phase speed c. If the amplitude is not supposed to be small,
Eq. (24) serves as an approximate model for the description of weak dispersive effects on
the propagation of nonlinear waves along a characteristic direction. It is to be noted that for
n = 1, Eq. (24) is the well-known Gardner equation [16] that is also called the combined
KdV-mKdV equation.

Attention has been focused on equations like (24) in [78] and the references therein due
to its appearance in many branches of physics. The main focus of these works was the
solitary wave solutions, collapsing solitons, algebraic solitons, and solitary wave instabil-
ity. Algebraic solitons decay to zero at infinity or approach nonzero boundary values at an
algebraic rate [33].

2.2. Fifth-order KdV equations

The most well-known fifth-order KdV equations appear in the form

(25)ut + αu2ux + βuxuxx + γ uu3x + u5x = 0,

where α, β, and γ are arbitrary nonzero and real parameters, and u = u(x, t) is a suffi-
ciently smooth function. Because the parameters α, β, and γ are arbitrary and take different
values, this will drastically change the characteristics of the fKdV equation (25). Lots of
forms of the fKdV equation can be constructed by changing the real values of the para-
meters. This equation includes, for specific values of α, β, and γ , the Lax equation [36],
Kaup–Kupershmidt (KP) equation [32,35], Sawada–Kotera (SK) equation [57], and Ito
equation [31] that will be discussed later.

2.3. Higher-order KdV equation

Higher-order KdV equations of the seventh-order and ninth-order are of the form

(26)ut + 6uux + u3x − u5x + αu7x = 0.

and

(27)ut + 6uux + u3x − u5x + αu7x + βu9x = 0,
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respectively. Model equation (26) was examined in [14,43,53] for discussing the structural
stability of the KdV solitons under a singular perturbation. The seventh-order and the ninth-
order equations have infinitely many conservation laws, most of them are polynomials that
depend on u and its derivatives.

2.4. The K(n, n) equation

It is interesting to note that a KdV-like equation was introduced by Rosenau et al. [56] and
given by

(28)ut + a(un)x + b(un)xxx = 0,

where the balance between the nonlinear convection term (un)x and the genuinely dis-
persion term (un)xxx gives rise to the so-called compacton, solitary wave with compact
support and without tails or wings. Eq. (28) was thoroughly investigated in [42,54–56,
66–77] and some of the references therein.

3. The methods

As stated before, several methods were implemented in the literature to handle nonlinear
evolution equations. For single soliton solutions, several methods, such as the tanh method
[44–46], the tanh-coth method [66,67], the sine-cosine method [70], the pseudo spectral
method [44], the inverse scattering method [1], Hirota’s bilinear method, the truncated
Painlevé expansion, and others are used. The tanh–coth method and the sine–cosine method
have been applied for a wide variety of nonlinear problems and will be used in this work.
However, the Hirota bilinear formalism [24–29] and a simplified version of this method
[19,18] will be used to address the concept of multiple soliton solutions. The main features
of the tanh–coth method, sine–cosine method and the Hirota formalism will be presented.

3.1. The tanh–coth method

A wave variable ξ = x − ct converts a PDE

(29)P(u, ut , ux, uxx, uxxx, . . .) = 0,

to an ODE

(30)Q(u, u′, u′′, u′′′, . . .) = 0.

Eq. (30) is then integrated as long as all terms contain derivatives where integration con-
stants are considered zeros.

The standard tanh method is developed by Malfliet [44] where the tanh is used as a new
variable, since all derivatives of a tanh are represented by a tanh itself. Introducing a new
independent variable

(31)Y = tanh(μξ), ξ = x − ct,
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leads to the change of derivatives:

d

dξ
= μ

(
1 − Y 2) d

dY
,

d2

dξ2
= −2μ2Y

(
1 − Y 2) d

dY
+ μ2(1 − Y 2)2 d2

dY 2
,

d3

dξ3
= 2μ3(1 − Y 2)(3Y 2 − 1

) d

dY
− 6μ3Y

(
1 − Y 2)2 d2

dY 2
+ μ3(1 − Y 2)3 d3

dY 3
,

(32)

d4

dξ4
= − 8μ4Y

(
1 − Y 2)(3Y 2 − 2

) d

dY
+ 4μ4(1 − Y 2)2(9Y 2 − 2

) d2

dY 2

− 12μ4Y
(
1 − Y 2)3 d3

dY 3
+ μ4(1 − Y 2)4 d4

dY 4
.

The tanh–coth method [66,67] admits the use of the finite expansion

(33)u(μξ) = S(Y ) =
M∑

k=0

akY
k +

M∑
k=1

bkY
−k,

where M is a positive integer, in most cases, that will be determined. For noninteger M , a
transformation formula is used to overcome this difficulty. Expansion (33) reduces to the
standard tanh method [44–46] for bk = 0, 1 � k � M . Substituting (33) into the reduced
ODE results in an algebraic equation in powers of Y .

To determine the parameter M , we usually balance the linear terms of highest order in the
resulting equation with the highest order nonlinear terms. We then collect all coefficients
of powers of Y in the resulting equation where these coefficients have to vanish. This will
give a system of algebraic equations involving the parameters ak, bk, μ, and c. Having
determined these parameters we obtain an analytic solution u(x, t) in a closed form.

3.2. The sine–cosine method

Proceeding as in the tanh–coth method, Eq. (30) is integrated as long as all terms con-
tain derivatives where integration constants are considered zeros. The sine–cosine method
admits the use of the solutions in the forms

(34)u(x, t) = λ cosβ(μξ), |ξ | � π

2μ
,

and

(35)u(x, t) = λ sinβ(μξ), |ξ | � π

μ
,

where λ,μ, and β are parameters that will be determined, μ and c are the wave number
and the wave speed respectively. Equations (34) and (35) give

(36)(un)′′ = −n2μ2β2λn cosnβ(μξ) + nμ2λnβ(nβ − 1) cosnβ−2(μξ),
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and

(37)(un)′′ = −n2μ2β2λn sinnβ(μξ) + nμ2λnβ(nβ − 1) sinnβ−2(μξ).

Substituting (36) or (37) into (30) gives a trigonometric equation of cosR(μξ) or sinR(μξ)

terms. The parameters are then determined by first balancing the exponents of each pair
of cosine or sine to determine R. We next collect all coefficients of the same power in
cosk(μξ) or sink(μξ), where these coefficients have to vanish. This gives a system of
algebraic equations among the unknowns β, λ and μ that will be determined. The solutions
proposed in (34) and (35) follow immediately.

The algorithms described above certainly work well for a large class of very interesting
nonlinear equations. The main advantage of the tanh–coth method and the sine–cosine
method, presented above, is that the great capability of reducing the size of computational
work compared to existing techniques such as the pseudo spectral method, the inverse
scattering method, Hirota’s bilinear method, and the truncated Painlevé expansion.

3.3. Hirota’s bilinear method

A well-known third method, namely, the Hirota [24–29] bilinear form, will be employed
to handle specific integrable KdV forms. The method is widely used especially to handle
the multi-solitons solutions of many evolution equations. Hirota introduced the bilinear
differential operators

(38)Dm
t Dn

x (a · b) =
(

∂

∂t
− ∂

∂t ′

)m(
∂

∂x
− ∂

∂x′

)n

a(x, t)b(x′, t ′)|x=x′,t=t ′ .

In what follows, we express some of the bilinear differentials operators:

(39)

Dx(a · b) = axb − abx,

D2
x(a · b) = a2xb − 2axbx + ab2x,

DxDt(a · b) = Dx(atb − abt ) = axtb − atbx − axbt + abxt ,

DxDt(a · a) = 2(aaxt − axat ),

D4
x(a · b) = a4xb − 4a3xbx + 6a2xb2x − 4axb3x + ab4x,

Dn(a · a) = 0, for n is odd.

The solution of the canonical KdV equation

(40)ut + 6uux + uxxx = 0,

can be expressed by

(41)u(x, t) = 2
∂2

∂x2
log f,

where f (x, t) is given by the perturbation expansion

(42)f (x, t) = 1 +
∞∑

n=1

εnfn(x, t),
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where ε is a formal expansion parameter. For the one-soliton solution we set

(43)f (x, t) = 1 + εf1,

and for the two-soliton solution we set

(44)f (x, t) = 1 + εf1 + ε2f2,

and so on. The functions f1, f2, f3, . . . can be determined by using the Hirota bilinear
formalism or by direct substitution of (42) into the appropriate equation as will be seen
later. In [19,18], a simplified form of the Hirota’s bilinear formalism was introduced to
minimize the cumbersome work of Hirota’s method. The simplified approach in [19,18]
will be examined in a forthcoming section.

It is important to note that other methods will be used as well. Each method will be
presented properly at specific sections. Before we begin our discussion, it is normal to give
a brief idea about conservation laws of the KdV equation.

4. Conservation laws

An equation of the form

(45)
∂T

∂t
+ ∂X

∂x
= 0,

where T and X are the density and the flux respectively and neither one involves derivatives
with respect to t , is called a conservation law [1,3,2,13]. This means that T and X may
depend on x, t, u, ux, . . . but not ut . Considering the canonical form of this equation by

(46)ut − 6uux + uxxx = 0.

This equation is in conservation form [13] where

(47)T = u, X = uxx − 3u2.

This in turn gives the first conservation law

(48)
∫ ∞

−∞
u dx = constant.

Multiplying (46) by u yields

(49)
∂

∂t

(
1

2
u2

)
+ ∂

∂x

(
uuxx − 1

2
(ux)

2 − 2u3
)

= 0,

that gives the second law of conservation laws

(50)
∫ ∞

−∞
u2 dx = constant.

Multiplying (46) by 3u2 gives

(51)3u2(ut − 6uux + uxxx) = 0.
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Multiplying the partial derivative of (46) with respect to x by ux gives

(52)ux

(
uxt − 6(ux)

2 − 6uuxx + uxxxx

) = 0.

Adding the last two quantities yields

∂

∂t

(
u3 − 1

2
(ux)

2
)

(53)+ ∂

∂x

(
−9

2
u4 + 3u2uxx − 6u(ux)

2 + uxuxxx − 1

2
(uxx)

2
)

= 0.

This gives the third conservation law of the KdV equation

(54)
∫ ∞

−∞

(
u3 − 1

2
(ux)

2
)

dx = constant.

However, it was revealed in [1,3,2,12,13,24–28] that there is an infinite set of conservation
laws for the KdV equation.

The existence of conservation laws has been considered as an indication of the integra-
bility of the KdV. There is an infinite set of independent conservation laws for the KdV
equation. The first five conservation laws of this set are

(55)

∫ ∞

−∞
u dx = constant,∫ ∞

−∞
u2 dx = constant,∫ ∞

−∞

(
u3 − 1

2
(ux)

2
)

dx = constant,∫ ∞

−∞
(
5u4 + 10u(ux)

2 + (uxx)
2) dx = constant,∫ ∞

−∞
(
21u5 + 105u2(ux)

2 + 21u(uxx)
2 + (uxxx)

2) dx = constant,

where each conservation law includes a higher power of u than the preceding law.

5. The KdV equation

As stated before this equation is given by

(56)ut + auux + uxxx = 0.

Substituting the wave variable ξ = x − ct , c is the wave speed, into (56) and integrating
one we obtain

(57)−cu + a

2
u2 + u′′ = 0.



498 A.-M. Wazwaz

5.1. Using the tanh–coth method

Notice that the parameter M is defined in (33) and (32). This means that the highest power
of u2 is 2M , and for u′′ is M + 2 obtained by using (33) and (32) respectively. Balancing
the nonlinear term u2 with the highest order derivative u′′ gives

(58)2M = M + 2,

that gives

(59)M = 2.

The tanh–coth method allows us to use the substitution

(60)u(x, t) = S(Y ) = a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2.

Substituting (60) into (57), collecting the coefficients of each power of Y i, 0 � i � 8,
setting each coefficient to zero, and solving the resulting system of algebraic equations we
obtain the following sets of solutions

(i) First set

(61)

a0 = 3c

a
, a1 = a2 = b1 = 0, b2 = −3c

a
, μ = 1

2

√
c, c > 0.

(ii) Second set

(62)

a0 = − c

a
, a1 = a2 = b1 = 0, b2 = 3c

a
, μ = 1

2

√−c, c < 0.

(iii) Third set

(63)

a0 = 3c

a
, a1 = b1 = b2 = 0, a2 = −3c

a
, μ = 1

2

√
c, c > 0.

(iv) Fourth set

(64)

a0 = − c

a
, a1 = b1 = b2 = 0, a2 = 3c

a
, μ = 1

2

√−c, c < 0.

In view of these results, we obtain the following soliton solutions

(65)

u1(x, t) = 3c

a
sech2

[√
c

2
(x − ct)

]
, c > 0,

u2(x, t) = − c

a

(
1 − 3 tanh2

[√−c

2
(x − ct)

])
, c < 0.

In addition, the traveling wave solutions

(66)

u3(x, t) = −3c

a
csch2

[√
c

2
(x − ct)

]
, c > 0,

u4(x, t) = − c

a

(
1 − 3 coth2

[√−c

2
(x − ct)

])
, c < 0,
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Fig. 1. Graph of a soliton that has an infinite support.

follow immediately. Figure 1 shows a graph of a one-soliton solution characterized by
infinite wings or infinite tails. This shows that u → 0 as ξ → ±∞, ξ = x − ct .

It is obvious that the physical structures of the obtained solutions in (65) depend mainly
on the sign of the wave speed c, we therefore obtain the following plane periodic solutions:

(67)

u5(x, t) = 3c

a
csc2

[√−c

2
(x − ct)

]
, c < 0,

u6(x, t) = − c

a

(
1 + 3 cot2

[√
c

2
(x − ct)

])
, c > 0,

u7(x, t) = 3c

a
sec2

[√−c

2
(x − ct)

]
, c < 0,

u8(x, t) = − c

a

(
1 + 3 tan2

[√
c

2
(x − ct)

])
, c > 0.

5.2. Using the sine–cosine method

Substituting (34) into (57) yields

(68)

− cλ cosβ(μξ) + a

2
λ2 cos2β(μξ),

− λμ2β2 cosβ(μξ) + λμ2β(β − 1) cosβ−2(μξ) = 0.

Equation (68) is satisfied only if the following system of algebraic equations holds

β − 1 �= 0,

2β = β − 2,
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μ2β2λ = −cλ,

(69)
a

2
λ2 = −cλμ2β(β − 1),

which leads to

(70)

β = −2,

μ = 1

2

√−c,

λ = 3c

a
.

The results in (70) can be easily obtained if we also use the sine method (35). Moreover,
the last results give the solutions u1(x, t), u3(x, t), u7(x, t) and u9(x, t) that are obtained
before. It is interesting to point out that the sine–cosine method does not always provide
the same solutions as those given by the tanh–coth method.

5.3. Multiple-soliton solutions of the KdV equation

In this section, we will examine multiple-solitons solutions of the standard KdV equation

(71)ut + 6uux + uxxx = 0.

As stated before, Hirota [24–29] introduced a method to determine exact solutions of non-
linear PDEs. A necessary condition for the direct method to be applicable is that the PDE
can be brought into a bilinear form [19,18]. Hirota proposed a bilinear form where it was
shown that soliton solutions are just polynomials of exponentials as will be seen later.
Finding bilinear forms for nonlinear PDEs, if they exist at all, is highly nontrivial [19,18].
Considering u(x, t) = 2(ln(f ))xx , the bilinear form for the KdV equation is

B(f, f ) = (
D4

x + DxDt

)
f · f = 0.

Hereman et al. [19,18] introduced a simplified version of Hirota method, where exact soli-
tons can be obtained by solving a perturbation scheme using a symbolic manipulation
package, and without any need to use bilinear forms. In what follows, we summarize the
main steps of the simplified version of Hirota’s method.

The simplified version of Hirota method introduces the change of dependent variable

(72)u(x, t) = 2
∂2 ln f (x, t)

∂x2
= 2

ff2x − (fx)
2

f 2
,

to carry out (71) into a quadratic equation

(73)
[
f (fxt + f4x)

] − [
fxft + 4fxf3x − 3f 2

2x

] = 0.

Equation (73) can be decomposed into linear operator L and nonlinear operator N defined
by

(74)

L = ∂2

∂x∂t
+ ∂4

∂x4
,

N(f, f ) = −fxft − 4fxf3x + 3f2xf2x.
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We next assume that f (x, t) has a perturbation expansion of the form

(75)f (x, t) = 1 +
∞∑

n=1

εnfn(x, t),

where ε is a nonsmall formal expansion parameter. Following Hirota’s method and the
simplified version introduced in [19,18], we substitute (75) into (74) and equate to zero the
powers of ε:

O(ε0): B(1 · 1) = 0,

O(ε1): B(1 · f1 + f1 · 1) = 0,

O(ε2): B(1 · f2 + f1 · f1 + f2 · 1) = 0,

O(ε3): B(1 · f3 + f1 · f2 + f2 · f1 + f3 · 1) = 0,

O(ε4): B(1 · f4 + f1 · f3 + f2 · f2 + f3 · f1 + f4 · 1) = 0,

...

O(εn): B

(
n∑

j=0

fj · fn−j

)
= 0,

where the bilinear form B is defined above. It is to be noted that the previous scheme is the
same for every bilinear operator B. This in turn means

(76)O(ε1): Lf1 = 0,

(77)O(ε2): Lf2 = −N(f1, f1),

(78)O(ε3): Lf3 = −f1Lf2 − N(f1, f2) − N(f2, f1),

(79)

O(ε4): Lf4 = − f1Lf3 − f2Lf2 − f3Lf1 − N(f1, f3)

− N(f2, f2) − N(f2, f1),

(80)
...

O(εn): Lfn = −
n−1∑
j=1

[
fjLfn−1 + N(fj , fn−j )

] = 0.

The N -soliton solution is obtained from

(81)f1 =
N∑

i=1

exp(θi),

where

(82)θi = kix − ci t,

where ki and ci are arbitrary constants, ki is called the wave number. Substituting (81) into
(76) gives the dispersion relation

(83)ci = k3
i ,



502 A.-M. Wazwaz

and in view of this result we obtain

(84)θi = kix − k3
i t .

This means that

(85)f1 = exp(θ1) = exp
(
k1(x − k2

1 t)
)
,

obtained by using N = 1 in (81).
Consequently, for the one-soliton solution, we set

(86)f = 1 + exp(θ1) = 1 + exp
(
k1(x − k2

1 t)
)
,

where we set ε = 1. Recall that u(x, t) = 2(ln f )xx , therefore the one soliton solution is
therefore

(87)u(x, t) = 2k2
1 exp(k1(x − k2

1 t))

(1 + exp(k1(x − k2
1 t))2

,

or equivalently

(88)u(x, t) = k2
1

2
sech2

[
k1

2
(x − k2

1 t)

]
.

Setting k1 = √
c in (88) gives the one-soliton solution obtained above in (65) by using the

tanh–coth and the sine–cosine methods. Another soliton solution is obtained in (65).
To determine the two-soliton solution, we first set N = 2 in (81) to get

(89)f1 = exp(θ1) + exp(θ2).

To determine f2, we substitute (81) into (77) to evaluate the right-hand side and equate
it with the left-hand side to obtain

(90)f2 =
∑

1�i<j�N

aij exp(θi + θj ),

where the phase factor aij is given by

(91)aij = (ki − kj )
2

(ki + kj )2
,

and θi and θj are given above in (82). For the two-soliton solution we use 1 � i < j � 2,
and therefore we obtain

(92)f = 1 + exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2),

where the phase factor a12 is given by

(93)a12 = (k1 − k2)
2

(k1 + k2)2
.

This in turn gives

(94)f = 1 + ek1(x−k2
1 t) + ek2(x−k2

2 t) + (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t .
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Fig. 2. A two-soliton solution graph.

To determine the two-soliton solution explicitly, we use (72) for the function f in (94).
Similarly, we can determine f3. Proceeding as before, we therefore set

(95)

f1(x, t) = exp(θ1) + exp(θ2) + exp(θ3),

f2(x, t) = a12 exp(θ1 + θ2) + a23 exp(θ2 + θ2) + a13 exp(θ1 + θ3),

and accordingly we have

f (x, t) = 1 + exp(θ1) + exp(θ2) + exp(θ3)

+ a12 exp(θ1 + θ2) + a23 exp(θ2 + θ3) + a13 exp(θ1 + θ3)

(96)+ f3(x, t).

Figure 2 shows a two-soliton solution.
Substituting (96) into (78) and proceeding as before we find

(97)f3 = b123 exp(θ1 + θ2 + θ3),

where

(98)b123 = a12a13a23 = (k1 − k2)
2(k1 − k3)

2(k2 − k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2
,

and θ1, θ2 and θ3 are given above in (82). For the three-soliton solution we use 1 � i <

j � 3, we therefore obtain

f = 1 + exp(θ1) + exp(θ2) + exp(θ3) + a12 exp(θ1 + θ2)

(99)+ a13 exp(θ1 + θ3) + a23 exp(θ2 + θ3) + b123 exp(θ1 + θ2 + θ3),
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where

(100)aij = (ki − kj )
2

(ki + kj )2
, 1 � i < j � 3, b123 = a12a13a23.

This in turn gives

f = 1 + ek1(x−k2
1 t) + ek2(x−k2

2 t) + ek3(x−k2
3 t)

+ (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t + (k1 − k3)

2

(k1 + k3)2
e(k1+k3)x−(k3

1+k3
3)t

+ (k2 − k3)
2

(k2 + k3)2
e(k2+k3)x−(k3

2+k3
3)t

(101)+ (k1 − k2)
2(k1 − k3)

2(k2 − k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2
e(k1+k2+k3)x−(k3

1+k3
2+k3

3)t .

To determine the three-solitons solution explicitly, we use (72) for the function f in (101).
Similarly, we can determine f4. Substituting (81) into (80) and proceeding as before we

get

(102)f4 = c1234 exp(θ1 + θ2 + θ3 + θ4),

where

c1234 = a12a13a14a23a24a34,

(103)= (k1 − k2)
2(k1 − k3)

2(k1 − k4)
2(k2 − k3)

2(k2 − k4)
2(k3 − k4)

2

(k1 + k2)2(k1 + k3)2(k1 + k4)2(k2 + k3)2(k2 + k4)2(k3 + k4)2
,

and θi, 1 � i � 4, are given above in (82).
For the four-soliton solution we use 1 � i < j � 4 to obtain

f = 1 + exp(θ1) + exp(θ2) + exp(θ3) + exp(θ4)

+ a12 exp(θ1 + θ2) + a13 exp(θ1 + θ3) + a14 exp(θ1 + θ4)

+ a23 exp(θ2 + θ3) + a24 exp(θ2 + θ4) + a34 exp(θ3 + θ4)

+ b123 exp(θ1 + θ2 + θ3) + b134 exp(θ1 + θ3 + θ4)

+ b124 exp(θ1 + θ2 + θ4) + b234 exp(θ2 + θ3 + θ4)

(104)+ c1234 exp(θ1 + θ2 + θ3 + θ4).

Figure 3 shows a three soliton solution.
It is important to note that

(105)

aij = (ki − kj )
2

(ki + kj )2
, 1 � i < j � 4,

b123 = a12a13a23, b134 = a13a14a34, b124 = a12a14a24,

b234 = a23a24a34, c1234 = a12a13a14a23a24a34.

Figure 4 shows two-soliton and three-soliton solutions.
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Fig. 3. A three-soliton solution graph.

Fig. 4. Graphs of two-soliton (left) and three-soliton (right) solutions.

This in turn gives

f = 1 + ek1(x−k2
1 t) + ek2(x−k2

2 t) + ek3(x−k2
3 t) + ek4(x−k2

4 t)

+ a12e(k1+k2)x−(k3
1+k3

2)t + a13e(k1+k3)x−(k3
1+k3

3)t

+ a14e(k1+k4)x−(k3
1+k3

4)t + a23e(k2+k3)x−(k3
2+k3

3)t
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+ a24e(k2+k4)x−(k3
2+k3

4)t + a34e(k3+k4)x−(k3
3+k3

4)t

+ b123e(k1+k2+k3)x−(k3
1+k3

2+k3
3)t + b134e(k1+k3+k4)x−(k3

1+k3
3+k3

4)t

+ b124e(k1+k2+k4)x−(k3
1+k3

2+k3
4)t + b234e(k2+k3+k4)x−(k3

2+k3
3+k3

4)t

(106)+ c1234e(k1+k2+k3+k4)x−(k3
1+k3

2+k3
3+k3

4)t .

To determine the four-solitons solution explicitly, we use (72) for the function f in (106).
In summary, the multi-soliton solutions of the KdV equation can be formally constructed

as:
(i) one-soliton solution:

f = 1 + eθ1,

(ii) two-soliton solution:

f = 1 + eθ1 + eθ2 + a12eθ1+θ2 ,

(iii) three-soliton solution:

f = 1 + eθ1 + eθ2 + eθ3 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3

+ a12a13a23eθ1+θ2+θ3 ,

and so on.
Three facts can be confirmed here:

(i) the first is that soliton solutions are just polynomials of exponentials as emphasized
by Hirota [24–29],

(ii) the three-soliton solution and the higher level soliton solution as well, do not con-
tain any new free parameters other than aij derived for the two-soliton solution,
and

(iii) every solitonic equation that has generic N = 3 soliton solutions, then it has also
soliton solutions for any N � 4 [20–23].

To work with explicit solutions, we set ki = i for example to obtain the following
functions

f = 1 + ex−t ,

f = 1 + ex−t + e2(x−4t) + 1

9
e3(x−3t),

f = 1 + ex−t + e2(x−4t) + e3(x−9t) + 1

9
e3(x−3t) + 1

4
e4(x−7t) + 1

25
e5(x−7t)

+ 1

900
e6(x−6t),

(107)

f = 1 + ex−t + e2(x−4t) + e3(x−9t) + e4(x−16t) + 1

9
e3(x−3t)

+ 1

4
e4(x−7t) + 9

25
e5(x−13t) + 2

25
e5(x−7t) + 1

9
e6(x−12t)

+ 1

49
e7(x−13t) + 1

450
e6(x−6t) + 1

225
e(7x−73t)

+ 9

4900
e(8x−92t) + 1

11025
e9(x−11t) + 1

1102500
e10(x−10t),
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Fig. 5. One-soliton, two-soliton, three-soliton, and four-soliton solutions. Notice that u is plotted against x for
fixed t .

for the one, two, three, and four-soliton solutions respectively. The corresponding solitons
solutions can be easily obtained by inserting f (x, t) from (107) into

(108)u(x, t) = 2
(
ln(f )

)
xx

,

to obtain the related soliton solutions. Figure 5 shows graphs of one, two, three and four
soliton for fixed t .

6. The modified KdV equation

It is interesting to point out that for the canonical modified KdV (mKdV) equation

(109)ut − 6u2ux + uxxx = 0,
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the conservation laws are given by u, u2, u4 + (ux)
2. Recall that a conservation law is the

relation

∂T

∂t
+ ∂X

∂x
= 0,

where T and X are the density and flux respectively. This in turn gives the first three
conservation laws:

T1 = u, X1 = 2u3 + uxx;
T2 = 1

2
u2, X2 = 3

2
u4 + uuxx − 1

2
u2

x;

T3 = 1

4
u4 − 1

4
u2

x, X3 = u6 + u3uxx − 3u2u2
x − 1

2
uxuxxx + 1

4
u2

xx.

The mKdV equation is used to describe nonlinear wave propagation in systems with
polarity symmetry. This equation is used in electrodynamics, wave propagation in size
quantized films, and in elastic media. The mKdV equation is integrable and can be solved
by the inverse scattering method [13].

As stated before this equation is given by

(110)ut + au2ux + uxxx = 0.

Substituting the wave variable ξ = x − ct into (110) and integrating once we obtain

(111)−cu + a

3
u3 + u′′ = 0.

6.1. Using the tanh–coth method

Balancing the nonlinear term u3 with the highest order derivative u′′ gives

(112)3M = M + 2,

that gives

(113)M = 1.

The tanh–coth method allows us to use the substitution

(114)u(x, t) = S(Y ) = a0 + a1Y + b1Y
−1.

Substituting (114) into (111), collecting the coefficients of each power of Y i, 0 � i � 6,
setting each coefficient to zero, and solving the resulting system of algebraic equations we
obtain the following sets of solutions

(i) First set

(115)a0 = a1 = 0, b1 =
√

3c

a
, M =

√
− c

2
, c < 0.
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(ii) Second set

(116)a0 = b1 = 0, a1 =
√

3c

a
, M =

√
− c

2
, c < 0.

(iii) Third set

(117)a0 = 0, a1 = b1 = 1

2

√
3c

a
, M = 1

2

√
− c

2
, c < 0.

(iv) Fourth set

(118)a0 = 0, a1 = −b1 = −1

2

√
− 3c

2a
, M = 1

2

√
c, c > 0.

This in turn gives the following soliton and kink solutions

(119)

u1(x, t) =
√

6c

a
sech

[√
c (x − ct)

]
, c > 0, a > 0,

u2(x, t) =
√

3c

a
tanh

[√
− c

2
(x − ct)

]
, c < 0, a < 0,

respectively, and the following traveling wave solutions

(120)

u3(x, t) =
√

3c

a
coth

[√
− c

2
(x − ct)

]
, c < 0, a < 0,

u4(x, t) =
√

6c

a
sec

[√−c (x − ct)
]
, c < 0, a < 0,

u5(x, t) = 2

√
− 3c

2a
csch

[√
c (x − ct)

]
, c > 0, a < 0.

6.2. Using the sine–cosine method

Substituting (34) into (111) yields

(121)

− cλ cosβ(μξ) + a

3
λ3 cos3β(μξ)

− λμ2β2 cosβ(μξ) + λμ2β(β − 1) cosβ−2(μξ) = 0,

Equation (121) is satisfied only if the following system of algebraic equations holds:

(122)

β − 1 �= 0,

3β = β − 2,

μ2β2λ = −cλ,

a

3
λ3 = −cλμ2β(β − 1),



510 A.-M. Wazwaz

which leads to

(123)

β = −1,

μ = √−c,

λ = 6c

a
.

The results in (123) can be easily obtained if we also use the sine method (35). This in turn
gives the periodic solutions for c < 0, a < 0:

(124)

u(x, t) =
√

6c

a
sec

[√−c(x − ct)
]
, c < 0, a < 0,

u(x, t) =
√

6c

a
csc

[√−c(x − ct)
]
, c < 0, a < 0.

However, for c > 0, a > 0, we obtain the soliton solution

(125)u(x, t) =
√

6c

a
sech

[√
c(x − ct)

]
.

6.3. Multiple-solitons of the mKdV equation

In this section, we will examine multiple-solitons solutions of the modified KdV (mKdV)
equation

(126)ut − 6u2ux + uxxx = 0.

In this section, the simplified version of Hirota method, that was introduced by Hereman
et al. [19,18], where exact solitons can be obtained by solving a perturbation scheme us-
ing a symbolic manipulation package and without any need to use bilinear forms will be
used. Our approach will combine the simplified version in [19,18] and the method used
introduced by in [20–23]. Hietarinta [20–23] first introduced the function

(127)F(x, t) = f (x, t)

g(x, t)
, g(x, t) �= 0.

The bilinear form for the mKdV equation is(
Dt + D3

x

)
f · g = 0, D2

x(f · f + g · g) = 0.

The solution of the mKdV equation is assumed to be of the form

(128)u(x, t) = ∂ log F(x, t)

∂x
= gfx − fgx

gf
.

We next assume that f (x, t) and g(x, t) have perturbation expansions of the form

(129)

f (x, t) = 1 +
∞∑

n=1

εnfn(x, t),

g(x, t) = 1 +
∞∑

n=1

εn
1 gn(x, t),
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where ε and ε1 are nonsmall formal expansion parameters. Following [19,18,20–23], we
define the N -soliton solution

(130)

f1 =
N∑

i=1

ε exp(θi),

g1 =
N∑

i=1

ε1 exp(θi),

where

(131)θi = kix − ci t,

where ki and ci are arbitrary constants, ki is called the wave number.
To obtain the one-soliton solution, we set N = 1 into (130), and by using (129) we find

(132)

f (x, t) = 1 + εf1(x, t),

g(x, t) = 1 + ε1g1(x, t),

and hence

(133)u(x, t) = ∂ log F(x, t)

∂x
= ∂

∂x
log

(
1 + εf1

1 + ε1g1

)
.

This is a solution of (126) if

(134)ε1 = −ε.

Moreover, this shows that the dispersion relation is

(135)ci = k3
i ,

and in view of this result we obtain

(136)θi = kix − k3
i t .

The obtained results give a new definition to (129) to be of the form

(137)

f (x, t) = +
∞∑

n=1

εnfn(x, t),

g(x, t) = 1 +
∞∑

n=1

(−1)nεngn(x, t),

and as a result we obtain

(138)

f1 = exp(θ1) = exp
(
k1(x − k2

1 t)
)
,

g1 = − exp(θ1) = − exp
(
k1(x − k2

1 t)
)
.

Consequently, we find

(139)F = 1 + f1

1 + g1
= 1 + exp(k1(x − k2

1 t))

1 − exp(k1(x − k2
1 t))

.
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This in turn gives the one-soliton solution

(140)u(x, t) = 2k1 exp(k1(x − k2
1 t))

1 − exp(k1(x − k2
1 t))

.

To determine the two-soliton solution, we first set N = 2 in (130) to get

(141)

f1 = exp(θ1) + exp(θ2),

g1 = − exp(θ1) − exp(θ2).

To determine f2, we set

(142)

f2 =
∑

1�i<j�N

aij exp(θi + θj ),

g2 =
∑

1�i<j�N

bij exp(θi + θj )

This in turn gives

(143)

f = 1 + exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2),

g = 1 − exp(θ1) − exp(θ2) + b12 exp(θ1 + θ2).

Substituting (143) into the mKdV equation, we find that (143) is a solution if a12 and b12,
and therefore aij and bij , are equal and given by

(144)aij = bij = (ki − kj )
2

(ki + kj )2
,

where θi and θj are given above in (82). For the two-soliton solution we use 1 � i < j � 2
to get

(145)

f = 1 + ek1(x−k2
1 t) + ek2(x−k2

2 t) + (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t ,

g = 1 − ek1(x−k2
1 t) − ek2(x−k2

2 t) + (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t .

To determine the two-solitons solution explicitly, we use

u(x, t)

= ∂

∂x

(
log

[{
1 + ek1(x−k2

1 t) + ek2(x−k2
2 t) + (k1 − k2)

2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t

}−1

(146)

×
{

1 − ek1(x−k2
1 t) − ek2(x−k2

2 t) + (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t

}−1])
.
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For the three-soliton solution, we follow the discussion presented before. To determine f3

we set

(147)

f1(x, t) = exp(θ1) + exp(θ2) + exp(θ3),

f2(x, t) = a12 exp(θ1 + θ2) + a23 exp(θ2 + θ3) + a13 exp(θ1 + θ3),

g1(x, t) = − exp(θ1) − exp(θ2) − exp(θ3),

g2(x, t) = a12 exp(θ1 + θ2) + a23 exp(θ2 + θ3) + a13 exp(θ1 + θ3),

and accordingly we have

(148)

f (x, t) = 1 + exp(θ1) + exp(θ2) + exp(θ3)

+ a12 exp(θ1 + θ2) + a23 exp(θ2 + θ3) + a13 exp(θ1 + θ3)

+ f3(x, t),

g(x, t) = 1 − exp(θ1) − exp(θ2) − exp(θ3)

+ a12 exp(θ1 + θ2) + a23 exp(θ2 + θ3) + a13 exp(θ1 + θ3)

+ g3(x, t).

Substituting (148) into (126) and proceeding as before we find

(149)

f3 = b123 exp(θ1 + θ2 + θ3),

g3 = −b123 exp(θ1 + θ2 + θ3)

where

(150)b123 = a12a13a23 = (k1 − k2)
2(k1 − k3)

2(k2 − k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2
,

and θ1, θ2 and θ3 are given before. For the three-soliton solution we use 1 � i < j � 3,
we therefore obtain

(151)

f = 1 + exp(θ1) + exp(θ2) + exp(θ3)

+ a12 exp(θ1 + θ2) + a13 exp(θ1 + θ3) + a23 exp(θ2 + θ3)

+ b123 exp(θ1 + θ2 + θ3),

g = 1 − exp(θ1) − exp(θ2) − exp(θ3)

+ a12 exp(θ1 + θ2) + a13 exp(θ1 + θ3) + a23 exp(θ2 + θ3)

− b123 exp(θ1 + θ2 + θ3),

where

(152)

a12 = (k1 − k2)
2

(k1 + k2)2
, a13 = (k1 − k3)

2

(k1 + k3)2
, a23 = (k2 − k3)

2

(k2 + k3)2
,

b123 = a12a13a23.
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This in turn gives

(153)

f (x, t) = 1 + ek1(x−k2
1 t) + ek2(x−k2

2 t) + ek3(x−k2
3 t)

+ (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t + (k1 − k3)

2

(k1 + k3)2
e(k1+k3)x−(k3

1+k3
3)t

+ (k2 − k3)
2

(k2 + k3)2
e(k2+k3)x−(k3

2+k3
3)t

+ (k1 − k2)
2(k1 − k3)

2(k2 − k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2
e(k1+k2+k3)x−(k3

1+k3
2+k3

3)t ,

g(x, t) = 1 − ek1(x−k2
1 t) − ek2(x−k2

2 t) − ek3(x−k2
3 t)

+ (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t + (k1 − k3)

2

(k1 + k3)2
e(k1+k3)x−(k3

1+k3
3)t

+ (k2 − k3)
2

(k2 + k3)2
e(k2+k3)x−(k3

2+k3
3)t

− (k1 − k2)
2(k1 − k3)

2(k2 − k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2
e(k1+k2+k3)x−(k3

1+k3
2+k3

3)t .

The three-soliton solution is therefore given by

(154)u(x, t) = ∂

∂x

(
ln

(
f (x, t)

g(x, t)

))
,

where f (x, t) and g(x, t) are given in (153).
Similarly, we can determine f4. Substituting (130) into (126) and proceeding as before

we get

(155)f4 = g4 = c1234 exp(θ1 + θ2 + θ3 + θ4),

where

c1234 = a12a13a14a23a24a34,

(156)= (k1 − k2)
2(k1 − k3)

2(k1 − k4)
2(k2 − k3)

2(k2 − k4)
2(k3 − k4)

2

(k1 + k2)2(k1 + k3)2(k1 + k4)2(k2 + k3)2(k2 + k4)2(k3 + k4)2
,

and θi, 1 � i � 4 are given above in (131).
For the four-soliton solution we use 1 � i < j � 4, we therefore obtain

f (x, t) = 1 + exp(θ1) + exp(θ2) + exp(θ3) + exp(θ4)

+ a12 exp(θ1 + θ2) + a13 exp(θ1 + θ3) + a14 exp(θ1 + θ4)

+ a23 exp(θ2 + θ3) + a24 exp(θ2 + θ4) + a34 exp(θ3 + θ4)

+ b123 exp(θ1 + θ2 + θ3) + b134 exp(θ1 + θ3 + θ4)

+ b124 exp(θ1 + θ2 + θ4) + b234 exp(θ2 + θ3 + θ4)

+ c1234 exp(θ1 + θ2 + θ3 + θ4),
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g(x, t) = 1 − exp(θ1) − exp(θ2) − exp(θ3) − exp(θ4)

+ a12 exp(θ1 + θ2) + a13 exp(θ1 + θ3) + a14 exp(θ1 + θ4)

+ a23 exp(θ2 + θ3) + a24 exp(θ2 + θ4) + a34 exp(θ3 + θ4)

− b123 exp(θ1 + θ2 + θ3) − b134 exp(θ1 + θ3 + θ4)

− b124 exp(θ1 + θ2 + θ4) − b234 exp(θ2 + θ3 + θ4)

(157)+ c1234 exp(θ1 + θ2 + θ3 + θ4),

where

(158)

a12 = (k1 − k2)
2

(k1 + k2)2
, a13 = (k1 − k3)

2

(k1 + k3)2
, a14 = (k1 − k4)

2

(k1 + k4)2
,

a23 = (k2 − k3)
2

(k2 + k3)2
, a24 = (k2 − k4)

2

(k2 + k4)2
, a34 = (k3 − k4)

2

(k3 + k4)2
,

b123 = a12a13a23, b134 = a13a14a34,

b124 = a12a14a24, b234 = a23a24a34,

c1234 = a12a13a14a23a24a34.

This in turn gives

f (x, t) = 1 + ek1(x−k2
1 t) + ek2(x−k2

2 t) + ek3(x−k2
3 t) + ek4(x−k2

4 t)

+ a12e(k1+k2)x−(k3
1+k3

2)t + a13e(k1+k3)x−(k3
1+k3

3)t

+ a14e(k1+k4)x−(k3
1+k3

4)t + a23e(k2+k3)x−(k3
2+k3

3)t

+ a24e(k2+k4)x−(k3
2+k3

2)t + a34e(k3+k4)x−(k3
3+k3

2)t

+ b123e(k1+k2+k3)x−(k3
1+k3

2+k3
3)t + b134e(k1+k3+k4)x−(k3

1+k3
3+k3

4)t

+ b124e(k1+k2+k4)x−(k3
1+k3

2+k3
4)t + b234e(k2+k3+k4)x−(k3

2+k3
3+k3

4)t

(159)+ c1234e(k1+k2+k3+k4)x−(k3
1+k3

2+k3
3+k3

4)t ,

g(x, t) = 1 − ek1(x−k2
1 t) − ek2(x−k2

2 t) − ek3(x−k2
3 t) − ek4(x−k2

4 t)

+ a12e(k1+k2)x−(k3
1+k3

2)t + a13e(k1+k3)x−(k3
1+k3

3)t

+ a14e(k1+k4)x−(k3
1+k3

4)t + a23e(k2+k3)x−(k3
2+k3

3)t

+ a24e(k2+k4)x−(k3
2+k3

2)t + a34e(k3+k4)x−(k3
3+k3

2)t

− b123e(k1+k2+k3)x−(k3
1+k3

2+k3
3)t − b134e(k1+k3+k4)x−(k3

1+k3
3+k3

4)t

− b124e(k1+k2+k4)x−(k3
1+k3

2+k3
4)t − b234e(k2+k3+k4)x−(k3

2+k3
3+k3

4)t

+ c1234e(k1+k2+k3+k4)x−(k3
1+k3

2+k3
3+k3

4)t .

To determine the four-soliton solution explicitly, we use (128) for the functions f and g in
(159).
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If we set ki = i for example, we obtain the following functions

(160)

f = 1 + ex−t ,

f = 1 + ex−t + e2(x−4t) + 1

9
e3(x−3t),

f = 1 + ex−t + e2(x−4t) + e3(x−9t) + 1

9
e3(x−3t) + 1

4
e4(x−7t)

+ 1

25
e5(x−7t) + 1

900
e6(x−6t),

(161)

f = 1 + ex−t + e2(x−4t) + e3(x−9t) + e4(x−16t) + 1

9
e3(x−3t) + 1

4
e4(x−7t)

+ 9

25
e5(x−13t) + 1

25
e5(x−7t) + 1

9
e6(x−12t) + 1

49
e7(x−13t)

+ 1

900
e6(x−6t) + 1

225
e(7x−73t) + 9

4900
e(8x−92t)

+ 1

11025
e9(x−11t) + 1

1102500
e10(x−10t),

and

g = 1 − ex−t ,

g = 1 − ex−t − e2(x−4t) + 1

9
e3(x−3t),

g = 1 − ex−t − e2(x−4t) − e3(x−9t)

+1

9
e3(x−3t) + 1

4
e4(x−7t) + 1

25
e5(x−7t) + 1

900
e6(x−6t),

g = 1 − ex−t − e2(x−4t) − e3(x−9t) − e4(x−16t) + 1

9
e3(x−3t) + 1

4
e4(x−7t)

+ 9

25
e5(x−13t) + 1

25
e5(x−7t) + 1

9
e6(x−12t) + 1

49
e7(x−13t)

− 1

900
e6(x−6t) − 1

225
e(7x−73t) − 9

4900
e(8x−92t)

(162)− 1

11025
e9(x−11t) + 1

1102500
e10(x−10t),

for the one, two, three, and four-soliton solutions respectively. The corresponding solitons
solutions can be easily obtained by inserting f (x, t) and g(x, t) into

(163)u(x, t) = ∂

∂x

(
ln

(
f (x, t)

g(x, t)

))
,

to obtain the related solitons solutions.
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7. The potential KdV equation

In this section we study the potential KdV equation

(164)ut + au2
x + u3x = 0,

that can be converted to the ODE

(165)−cu′ + a(u′)2 + u′′′ = 0,

by using the wave variable ξ = x − ct . The potential KdV equation will be handled by the
tanh–coth method and other hyperbolic functions methods.

7.1. Using the tanh–coth method

Balancing the nonlinear term (u′)2 with the highest order derivative u′′′ gives

(166)(M + 1)2 = M + 3,

that gives

(167)M = 1,−2.

Case (i): We first consider the case where M = 1. The tanh–coth method allows us to
use the substitution

(168)u(x, t) = S(Y ) = a0 + a1Y + b1Y
−1.

Substituting (168) into (165), proceeding as before and solving the resulting system of
algebraic equations we obtain the following sets of solutions

(i) First set

(169)
a0 = R, R is an arbitrary constant, a1 = 3

√
c

a
,

b1 = 0, M =
√

c

2
, c > 0.

(ii) Second set

(170)

a0 = R, R is an arbitrary constant, a1 = 0, b1 = 3
√

c

a
,

M =
√

c

2
, c > 0.

(iii) Third set

(171)

a0 = R, R is an arbitrary constant, a1 = 3
√

c

2a
,

b1 = 3
√

c

2a
, M =

√
c

4
, c > 0.
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This in turn gives the following kink solution for c > 0

(172)u1(x, t) = R + 3
√

c

a
tanh

[√
c

2
(x − ct)

]
,

and the traveling wave solution

(173)u2(x, t) = R + 3
√

c

a
coth

[√
c

2
(x − ct)

]
.

However, the third set gives u2(x, t) upon using hyperbolic identities. Moreover, for c < 0,
the obtained solutions are complex.

Case (ii): We next consider the case where M = −2. The tanh–coth method allows us
to use the substitution

(174)u(x, t) = S(Y ) = 1
/(

a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2).

Substituting (174) into (165), proceeding as before we found that a2 = b2 = 0. Therefore
we substitute

(175)u(x, t) = S(Y ) = 1/
(
a0 + a1Y + b1Y

−1),
into (165) to obtain the following sets of solutions

(i) First set

(176)a0 = b1 = 0, a1 = a

3
√

c
, M =

√
c

2
, c > 0.

(ii) Second set

(177)a0 = a1 = 0, b1 = a

3
√

c
, M =

√
c

2
, c > 0.

(iii) Third set

(178)

a1 = R, R is an arbitrary constant,

a0 =
√

3cR2 − aR
√

c

3c
, b1 = 0, M =

√
c

2
, c > 0.

(iv) Fourth set

(179)

b1 = R, R is an arbitrary constant,

a0 =
√

3cR2 − aR
√

c

3c
, a1 = 0, M =

√
c

2
, c > 0.

(v) Fifth set

(180)a0 = 0, a1 = b1 = a

6
√

c
, M =

√
c

4
, c > 0.
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(vi) Sixth set

(181)

a1 = b1 = R, R is an arbitrary constant,

a0 =
√

12cR2 − 2aR
√

c

3c
, M =

√
c

4
, c > 0.

This in turn gives the following solutions for c > 0

(182)

u3(x, t) = 3
√

c

a
tanh

[√
c

2
(x − ct)

]
,

u4(x, t) = 3
√

c

a
coth

[√
c

2
(x − ct)

]
,

u5(x, t) = 1
/(√

3cR2 − aR
√

c

3c
+ R tanh

[√
c

2
(x − ct)

])
,

u6(x, t) = 1
/(√

3cR2 − aR
√

c

3c
+ R coth[

√
c

2
(x − ct)]

)
.

The solutions u3 and u4 are the same as u1 and u2 when we set R = 0. However, the last
two sets give u4(x, t) and u6(x, t) respectively. Moreover, for c < 0, the obtained solutions
are complex.

7.2. Other methods

Two ansatze, namely, the tanh–sech, and the coth–csch ansatze will be used to handle
nonlinear equations in general, and the potential KdV equation in particular.

The tanh–sech ansatz The tanh–sech ansatz is of the form

(183)u(x, t) = R + L tanh
[
μ(x − ct)

] + M sech
[
μ(x − ct)

]
,

where R,L,M , and μ are parameters that will be determined by direct substitution.

The coth–csch ansatz The coth–csch ansatz is of the form

(184)u(x, t) = R + L coth
[
μ(x − ct)

] + M csch
[
μ(x − ct)

]
,

where R,L,M , and μ are parameters that will be determined by direct substitution.
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7.3. Using the tanh–sech ansatz

Substituting the tanh–sech ansatz (183) into (165), and proceeding as before we obtain two
sets of parameters given by

(185)

R = any arbitrary constant,

L = 3
√

c

a
,

M = 0,

μ = √
c,

and

(186)

R = any arbitrary constant,

L = 3
√

c

a
, c > 0,

M = i
3
√

c

a
, i2 = −1,

μ = √
c,

where c > 0.
The result in (185) gives the tanh solutions obtained above. The result (186) gives the

complex solution

(187)u(x, t) = R + 3

a

√
c tanh

[√
c(x − ct)

] + i
3

a

√
c sech

[√
c(x − ct)

]
,

However, for c < 0, we obtain the solution

(188)u(x, t) = R − 3

a

√−c tan
[√−c(x − ct)

] − 3

a

√−c sec
[√−c(x − ct)

]
.

7.4. Using the coth–csch ansatz

Substituting the coth–csch ansatz (184) into (165), we obtain two sets of parameters given
by

(189)

R = any arbitrary constant,

L = 3
√

c

a
,

M = 0,

μ = √
c,

and

R = any arbitrary constant,

L = 3
√

c

a
, c > 0,
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M = 3

a

√
c,

(190)μ = √
c,

where c > 0.
The result in (189) gives the coth solution obtained above. The result (190) gives the

kink solution

(191)u(x, t) = R + 3
√

c

a
coth

[√
c(x − ct)

] + 3
√

c

a
csch

[√
c(x − ct)

]
.

However, for c < 0, we obtain the periodic solutions

(192)u(x, t) = R + 3
√−c

a
cot

[√−c(x − ct)
] + 3

√−c

a
csc

[√−c(x − ct)
]
.

7.5. Multiple-solitons of the potential KdV equation

In this section, we will examine multiple-soliton solutions of the potential KdV equation

(193)ut + 3(ux)
2 + uxxx = 0.

We closely follow our approach presented before. We therefore introduce the change of
dependent variable

(194)u(x, t) = 2
∂ ln f (x, t)

∂x
= 2

fx

f
,

to carry out (193) into

(195)fxt − fxft + 3(fxx)
2 − 4fxxxft + fxxxx = 0.

Eq. (195) can be decomposed into linear operator L and nonlinear operator N defined by

(196)

L = ∂2

∂x∂t
+ ∂

∂x4
,

N(f, f ) = −fxft + 3fxfx − 4fxxxft .

We next assume that f (x, t) has a perturbation expansion of the form

(197)f (x, t) = 1 +
∞∑

n=1

εnfn(x, t),

where ε is a nonsmall formal expansion parameter.
The N -soliton solution is obtained from

(198)f1 =
N∑

i=1

exp(θi),

where

(199)θi = kix − ci t,
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where ki and ci are arbitrary constants. Substituting (198) into (193) gives the dispersion
relation

(200)ci = k3
i ,

and in view of this result we obtain

(201)θi = kix − k3
i t .

This means that

(202)f1 = exp(θ1) = exp
(
k1(x − k2

1 t)
)
,

obtained by using N = 1 in (198).
Consequently, for the one-soliton solution, we set

(203)f = 1 + exp(θ1) = 1 + exp
(
k1(x − k2

1 t)
)
,

where we set ε = 1. The one soliton solution is therefore

(204)u(x, t) = 2k1 exp(k1(x − k2
1 t))

1 + exp(k1(x − k2
1 t)

,

obtained upon using (194).
To determine the two-soliton solution, we first set N = 2 in (198) to get

(205)f1 = exp(θ1) + exp(θ2).

To determine f2, we proceed as before to obtain

(206)f2 =
∑

1�i<j�N

aij exp(θi + θj ),

where

(207)aij = (ki − kj )
2

(ki + kj )2
,

and θi and θj are given above in (82). For the two-soliton solution we use 1 � i < j � 2,
and therefore we obtain

(208)f = 1 + exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2),

where

(209)a12 = (k1 − k2)
2

(k1 + k2)2
.

This in turn gives

(210)f = 1 + ek1(x−k2
1 t) + ek2(x−k2

2 t) + (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k3

1+k3
2)t .

To determine the two-soliton solutions explicitly, we use (194) for the function f in (210).
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Similarly, we can determine f3. Proceeding as before, we therefore set

(211)

f1(x, t) = exp(θ1) + exp(θ2) + exp(θ3),

f2(x, t) = a12 exp(θ1 + θ2) + a23 exp(θ2 + θ2) + a13 exp(θ1 + θ3),

and accordingly we have

f (x, t) = 1 + exp(θ1) + exp(θ2) + exp(θ3)

+ a12 exp(θ1 + θ2) + a23 exp(θ2 + θ3) + a13 exp(θ1 + θ3)

(212)+ f3(x, t).

Substituting (212) into (193) and proceeding as before we find

(213)f3 = b123 exp(θ1 + θ2 + θ3),

where

(214)b123 = a12a13a23 = (k1 − k2)
2(k1 − k3)

2(k2 − k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2
.

and θ1, θ2 and θ3 are given above in (199). For the three-soliton solution we use 1 � i <

j � 3, we therefore obtain

f = 1 + exp(θ1) + exp(θ2) + exp(θ3)

+ a12 exp(θ1 + θ2) + a13 exp(θ1 + θ3) + a23 exp(θ2 + θ3)

(215)+ b123 exp(θ1 + θ2 + θ3).

To determine the three-solitons solution explicitly, we use (194) for the function f in (215).
For the four-solitons solution, we proceed as before, hence we skip details.

8. The generalized KdV equation

The generalized KdV (gKdV) equation [13] is given by

(216)ut + aunux + uxxx = 0,

that can be converted to the ODE

(217)−cu + a

n + 1
un+1 + u′′ = 0,

upon using the wave variable ξ = x − ct and integrating once. The gKdV equation is not
integrable, therefore N -soliton solutions do not exist.
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8.1. Using the tanh–coth method

Balancing the nonlinear term un+1 with the highest order derivative u′′ gives

(218)M = 2

n
.

To obtain closed form solutions, M should be an integer. To achieve this goal we use the
transformation

(219)u(x, t) = v1/n(x, t).

The transformation (219) carries Eq. (217) into the ODE

(220)−cn2(n + 1)v2 + an2v3 + n(n + 1)vv′′ + (1 − n2)(v′)2 = 0.

Balancing vv′′ with v3 gives M = 2. Based on this, the tanh–coth method admits the use
of the substitution

(221)u(x, t) = S(Y ) = a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2.

Substituting (221) into (217), collecting the coefficients of each power of Y i, 0 � i � 12,
setting each coefficient to zero, and solving the resulting system of algebraic equations we
obtain a1 = b1 = 0 and the following sets of solutions for c > 0

(i) First set

(222)

a0 = c(n + 1)(n + 2)

2a
, a2 = 0, b2 = −c(n + 1)(n + 2)

2a
,

M = n

2

√
c.

(ii) Second set

(223)

a0 = c(n + 1)(n + 2)

2a
, b2 = 0, a2 = −c(n + 1)(n + 2)

2a
,

M = n

2

√
c.

(iii) Third set

(224)

a0 = c(n + 1)(n + 2)

4a
, a2 = b2 = −c(n + 1)(n + 2)

8a
,

M = n

4

√
c.

In view of these results, and noting that u(x, t) = v1/n(x, t), we obtain the following
soliton solution

(225)u1(x, t) =
{

c(n + 1)(n + 2)

2a
sech2

[
n

2

√
c(x − ct)

]}1/n

,
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Table 1
Solutions u(x, t) of the generalized KdV equation for n � 1, c > 0

n a0 μ Solution u(x, t)

1 3c
a

1
2
√

c u1(x, t) = { 3c
a sech2[ 1

2
√

c(x − ct)
]}1/1

u2(x, t) = {− 3c
a csch2[ 1

2
√

c(x − ct)
]}1/1

2 6c
a

√
c u1(x, t) = { 6c

a sech2[√
c(x − ct)

]}1/2

u2(x, t) = {− 6c
a csch2[√

c(x − ct)
]}1/2

3 10c
a

3
2
√

c u1(x, t) = { 10c
a sech2[ 3

2
√

c(x − ct)
]}1/3

u2(x, t) = {− 10c
a csch2[ 3

2
√

c(x − ct)
]}1/3

4 15c
a 2

√
c u1(x, t) = { 15c

a sech2[
2
√

c(x − ct)
]}1/4

u2(x, t) = { 15c
a csch2[

2
√

c(x − ct)
]}1/4

.

.

.
.
.
.

.

.

.
.
.
.

and the solutions

(226)

u2(x, t) =
{
−c(n + 1)(n + 2)

2a
csch2

[
n

2

√
c(x − ct)

]}1/n

,

u3(x, t) =
{
Γ

(
2 − tanh2

[
n

4

√
c(x − ct)

]
− coth2

[
n

4

√
c(x − ct)

])}1/n

,

where

(227)Γ = c(n + 1)(n + 2)

8a
.

As stated before, the sign of the wave speed c plays an important role on the physical
structures of the obtained solutions. This means that for c < 0, we obtain the following
plane periodic solutions

(228)

u4(x, t) =
{

c(n + 1)(n + 2)

2a
sec2

[
n

2

√−c(x − ct)

]}1/n

,

u5(x, t) =
{

c(n + 1)(n + 2)

2a
csc2

[
n

2

√−c(x − ct)

]}1/n

,

u6(x, t) =
{
Γ

(
2 + tan2

[
n

4

√−c(x − ct)

]
+ cot2

[
n

4

√−c (x − ct)

])}1/n

.

In Table 1, we list a variety of solutions of the generalized KdV equation for n � 1,
c > 0.
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8.2. Using the sine–cosine method

Substituting the cosine assumption (34) into (217) yields

−cλ cosβ(μξ) + a

n + 1
λn+1 cos(n+1)β(μξ)

(229)− λμ2β2 cosβ(μξ) + λμ2β(β − 1) cosβ−2(μξ) = 0,

Equation (229) is satisfied only if the following system of algebraic equations holds:

(230)

β − 1 �= 0,

(n + 1)β = β − 2,

μ2β2λ = −cλ,

a

n + 1
λn+1 = −λμ2β(β − 1),

which leads to

(231)

β = −2

n
,

μ = n

2

√−c, c < 0,

λ =
(

c(n + 1)(n + 2)

2a

)1/n

.

The last results in (231) gives the soliton solutions u1(x, t) and the traveling wave solutions
obtained above by using the tanh–coth method. However, using the sine–cosine method
does not require the use of a transformation formula as is the case of the tanh method when
M is not an integer.

9. The Gardner equation

The Gardner equation, or the combined KdV-mKdV equation, reads

(232)ut + 2auux − 3bu2ux + uxxx = 0, a, b > 0,

where u(x, t) is the amplitude of the relevant wave mode. The KdV equation was comple-
mented with a higher-order cubic nonlinear term of the form u2ux to obtain the Gardner
equation (232). Equation (232) is completely integrable, like the KdV equation, by the in-
verse scattering method. It was found, as we will discuss later, that soliton solutions exist
only for b > 0. Gardner equation is widely used in various branches of physics, such as
plasma physics, fluid physics, quantum field theory. The Gardner equation has been widely
used to model nonlinear phenomena in plasma and solid state physics and in quantum field
theory.

It was found that the tanh–coth method gives the same results as the tanh method. Ac-
cordingly, we will apply the tanh method for simplicity reasons.
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9.1. Using the tanh method

The Gardner equation (232) can be converted to the ODE

(233)−cu + au2 − bu3 + u′′ = 0,

by using the wave variable ξ = x − ct , integrating the ODE and setting the constant of
integration to zero.

Balancing u3 with u′′ gives

(234)M = 1.

The tanh method allows us to use the finite expansion

(235)u(x, t) = S(Y ) = a0 + a1Y.

Substituting (235) into (233), collecting the coefficients of each power of Y , and using any
symbolic computation program such as Mathematica we obtain

(236)

a0 = a

3b
,

a1 = ± a

3b
,

μ = a

3
√

2b
,

c = 2a2

9b
.

This in turn gives the kink solution

(237)u(x, t) = a

3b

(
1 ± tanh

(
a

3
√

2b

(
x − 2a2

9b
t

)))
,

and the traveling wave solution

(238)u(x, t) = a

3b

(
1 ± coth

(
a

3
√

2b

(
x − 2a2

9b
t

)))
.

The last results emphasize the fact that Gardner equation has real solutions only for b > 0.
However, for b < 0, the complex solutions

(239)u(x, t) = a

3b

(
1 ± i tan

(
a

3
√−2b

(
x − 2a2

9b
t

)))
,

(240)u(x, t) = a

3b

(
1 ± i cot

(
a

3
√−2b

(
x − 2a2

9b
t

)))
,

follow immediately.
It was found in [68] that other hyperbolic functions methods can handle Gardner equa-

tion to give more traveling wave solutions. In what follows we examine these schemes.
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9.2. A cosh ansatz

We first assume that

(241)u(x, t) = α

1 + λ cosh(μ(x − ct))
,

where α, λ and μ are parameters that will be determined. Substituting (241) into (232), and
collecting the coefficients of like hyperbolic functions, we find

(242)

− c + aα − bα2 − 2λ2μ2 = 0,

− 2cλ + aαλ − λμ2 = 0,

− cλ2 + λ2μ2 = 0.

Solving this system gives

(243)

α = 3c

a
,

λ = ±
√

4a2 − 18bc

2a
, 2a2 > 9bc,

μ = √
c,

where c is left as a free parameter, c > 0.
Substituting (243) into (241) gives the soliton solution

(244)u(x, t) = 6c

2a ± √
4a2 − 18bc cosh[√c(x − ct)] .

9.3. A sinh ansatz

We next use the sinh ansatz

(245)u(x, t) = α

1 + λ sinh(μ(x − ct))
,

where α, λ and μ are parameters that will be determined. Substituting (245) into (232), and
collecting the coefficients of like sinh functions, we find

(246)

− c + aα − bα2 + 2λ2μ2 = 0,

− 2cλ + aαλ − λμ2 = 0,

− cλ2 + λ2μ2 = 0.

Solving this system gives

(247)

α = 3c

a
,

λ = ±
√

18bc − 4a2

2a
, 9bc > 2a2,

μ = √
c,

where c is left as a free parameter, c > 0.
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Substituting (247) into (245) yields

(248)u(x, t) = 6c

(2a ± √
18bc − 4a2 sinh[√c(x − ct)]) .

9.4. A sech ansatz

We now use the ansatz

(249)u(x, t) = sech(μ(x − ct))

1 + λ sech(μ(x − ct))
,

where λ and μ are parameters that will be determined. Substituting (249) into (232), and
proceeding as before we find

(250)

λ = 3b ± √
9b2 + 16a2

4a
,

μ = ±
√

−9b ± 3
√

9b2 + 16a2

6
,

c = −3b ± √
9b2 + 16a2

12
.

Substituting (250) into (249) gives the soliton solution

u(x, t) =
[

sech

(
±

√
−9b ± 3

√
9b2 + 16a2

6

(
x − −3b ± √

9b2 + 16a2

12
t

))]

×
[

1 + 3b ± √
9b2 + 16a2

4a
sech

(
±

√
−9b ± 3

√
9b2 + 16a2

6

(251)×
(

x − −3b ± √
9b2 + 16a2

12
t

))]−1

.

9.5. A csch ansatz

In a manner parallel to the previous discussion we use the csch ansatz

(252)u(x, t) = csch(μ(x − ct))

1 + λ csch(μ(x − ct))
,

where λ and μ are parameters that will be determined. Substituting (252) into (232), and
proceeding as before we find

(253)

λ = 3b − √
9b2 − 16a2

4a
,

μ =
√

9b + 3
√

9b2 − 16a2

6
,

c = 3b + √
9b2 − 16a2

12
.
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Substituting (253) into (252) yields

u(x, t) =
[

csch

(√
9b + 3

√
9b2 − 16a2

6

(
x − 3b + √

9b2 − 16a2

12
t

))]

×
[

1 + 3b − √
9b2 − 16a2

4a

(254)

× csch

(√
9b + 3

√
9b2 − 16a2

6
(x − 3b + √

9b2 − 16a2

12
t)

)]−1

.

9.6. A csch–coth ansatz

We now introduce the ansatz

(255)u(x, t) = α + λ csch
(
μ(x − ct)

) + η coth
(
μ(x − ct)

)
,

where α, λ, η and μ are parameters that will be determined. Substituting (255) into (232),
collecting the coefficients of the resulting hyperbolic functions and equating it to zero we
find

(256)

α = a

3b
,

λ = η =
√

3(a2 − 3bc)

3b
,

μ =
√

2(a2 − 3bc)

3b
.

It is clear that real solutions exist only if a2 > 3bc.
Substituting (256) into (255) yields the solutions

u(x, t) = a

3b
+

√
3(a2 − 3bc)

3b
csch

(√
2(a2 − 3bc)

3b
(x − ct)

)

(257)+
√

3(a2 − 3bc)

3b
coth

(√
2(a2 − 3bc)

3b
(x − ct)

)
.

9.7. A sech–tanh ansatz

We close our analysis by applying the ansatz

(258)u(x, t) = α + λ sech
(
μ(x − ct)

) + η tanh
(
μ(x − ct)

)
,

where α, λ, η and μ are parameters that will be determined. Substituting (258) into (232),
and proceeding as before we find

α = a

3b
,

λ =
√

3(3bc − a2)

3b
,
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η =
√

3(a2 − 3bc)

3b
,

(259)μ =
√

2(a2 − 3bc)

3b
.

Substituting (259) into (258) yields the solutions

u(x, t) = a

3b
+

√
3(3bc − a2)

3b
sech

(√
2(a2 − 3bc)

3b
(x − ct)

)

(260)+
√

3(a2 − 3bc)

3b
tanh

(√
2(a2 − 3bc)

3b
(x − ct)

)
.

It is worth noting that for the constraint a2 > 3bc, the last solution is an imaginary solution
given by

u(x, t) = a

3b
+ i

√
3(a2 − 3bc)

3b
sech

(√
2(a2 − 3bc)

3b
(x − ct)

)

(261)+
√

3(a2 − 3bc)

3b
tanh

(√
2(a2 − 3bc)

3b
(x − ct)

)
, i2 = −1.

10. Generalized KdV equation with two power nonlinearities

This section is concerned with the generalized KdV equation with two power nonlinearities
of the form

(262)ut + (aun − bu2n)ux + uxxx = 0.

This equation describes the propagation of nonlinear long acoustic-type waves [77]. The
function f ′, where f = ( a

n+1un+1 − b
2n+1u2n+1) is regarded as a nonlinear correction

to the limiting long-wave phase speed c. If the amplitude is not supposed to be small,
Eq. (262) serves as an approximate model for the description of weak dispersive effects
on the propagation of nonlinear waves along a characteristic direction [78]. It is to be
noted that for n = 1, Eq. (262) is the well-known Gardner equation that is also called the
combined KdV-mKdV equation.

10.1. Using the tanh method

We first apply the tanh method presented above on the generalized KdV equation with
power-like nonlinearity

(263)ut + (aun − bu2n)ux + uxxx = 0,
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that can be converted to the ODE

(264)−cu + a

n + 1
un+1 − b

2n + 1
u2n+1 + u′′ = 0,

upon using the wave variable ξ = x − ct and integrating once. Balancing u2n+1 with u′′ in
(264) we find

(265)M + 2 = (2n + 1)M,

so that

(266)M = 1

n
.

To get analytic closed solution, M should be an integer, therefore we set the transformation

(267)u = v1/n.

Using (267) into (264) we find

−cn2(2n + 1)(n + 1)v2 + an2(2n + 1)v3 − bn2(n + 1)v4

(268)+ n(2n + 1)(n + 1)vv′′ + (1 − n2)(2n + 1)(v′)2 = 0.

Balancing vv′′ with v4 gives M = 1. The tanh method presents the finite expansion

(269)v(ξ) = a0 + a1Y.

Substituting (269) into (268), collecting the coefficients of Y , and solving the resulting
system we find the following set of solutions

(270)

a0 = a(2n + 1)

2b(n + 2)
,

a1 = ±a(2n + 1)

2b(n + 2)
,

μ = ± an

2(n + 2)

√
2n + 1

b(n + 1)
,

In view of this we obtain the kink solutions

v1(x, t) = a(2n + 1)

2b(n + 2)

(
1 ± tanh

[
an

2(n + 2)

√
2n + 1

b(n + 1)

(271)×
(

x − a2(2n + 1)

b(n + 1)(n + 2)2
t

)])
,

and the traveling wave solution

v2(x, t) = a(2n + 1)

2b(n + 2)

(
1 ± coth

[
an

2(n + 2)

√
2n + 1

b(n + 1)

(272)×
(

x − a2(2n + 1)

b(n + 1)(n + 2)2
t

)])
,
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and by using (267) we obtain the kinks solutions for the generalized KdV equation (263)
by

u1(x, t) =
{

a(2n + 1)

2b(n + 2)

(
1 ± tanh

[
an

2(n + 2)

√
2n + 1

b(n + 1)

(273)×
(

x − a2(2n + 1)

b(n + 1)(n + 2)2
t

)])}1/n

,

and the traveling wave solution

u2(x, t) =
{

a(2n + 1)

2b(n + 2)

(
1 ± coth

[
an

2(n + 2)

√
2n + 1

b(n + 1)

(274)×
(

x − a2(2n + 1)

b(n + 1)(n + 2)2
t

)])}1/n

.

It is interesting to point out that for n = 1, the functions u1(x, t) and u2(x, t) are the
solutions for the Gardner or the so called KdV-mKdV equation.

10.2. Using the sine–cosine method

Substituting the cosine assumption or the sine assumption as presented before, the method
works only if a = 0 or b = 0. In either case, Eq. (263) will be reduced to the generalized
KdV equation that was investigated in the previous section.

10.3. Other hyperbolic functions methods

It was found in [77] that other hyperbolic functions method can handle Eq. (263) effectively
where solitons solutions can be obtained. To achieve this goal, we assume that

(275)u(x, t) =
(

α

1 + λf (μξ)

)1/n

, ξ = x − ct,

where α, λ and μ are parameters that will be determined, and f (μξ) takes anyone of the
hyperbolic functions.

Using cosh ansatz We first start our analysis by setting f (μξ) = cosh(μξ), hence we set

(276)u(x, t) =
(

α

1 + λ cosh(μξ)

)1/n

, ξ = x − ct.
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Substituting (276) into (264), collecting the coefficients of like powers of the hyperbolic
functions and equating it to zero we obtain

(277)

α = (n + 2)(n + 1)
c

a
,

μ = n
√

c, c > 0,

λ = ±
√

1 − n3 + 5n2 + 8n + 4

2n + 1
× bc

a2
.

In view of (277), we obtain the solitons solutions

(278)

u3(x, t) =
(

(n + 2)(n + 1)c

a ± a

√
1 − n3+5n2+8n+4

2n+1 × bc

a2 cosh
(
n
√

c (x − ct)
)
)1/n

, c > 0.

However, for c < 0, we obtain the solutions

(279)

u4(x, t) =
(

(n + 2)(n + 1)c

a ± a

√
1 − n3+5n2+8n+4

2n+1 × bc

a2 cos(n
√−c(x − ct))

)1/n

, c < 0.

Using sinh ansatz We next use f (μξ) = sinh(μξ), hence we set

(280)u(x, t) =
(

α

1 + λ sinh(μξ)

)1/n

, ξ = x − ct.

Substituting (280) into (264), collecting the coefficients of like powers of the hyperbolic
functions and equating it to zero we obtain

(281)

α = (n + 2)(n + 1)
c

a
,

μ = n
√

c, c > 0,

λ = ±
√

n3 + 5n2 + 8n + 4

2n + 1
× bc

a2
− 1.

In view of (281), we obtain the solutions

(282)u5(x, t) =
(

(n + 2)(n + 1)c

a ± a

√
n3+5n2+8n+4

2n+1 × bc

a2 − 1 sinh(n
√

c (x − ct))

)1/n

.

However, for c < 0, we find the solutions

(283)

u6(x, t) =
(

(n + 2)(n + 1)c

a ± a

√
1 − n3+5n2+8n+4

2n+1
bc

a2 sin(n
√−c (x − ct))

)1/n

, c < 0.
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Using tanh and coth ansatze We next use f (μξ) = tanh(μξ) or f (μξ) = coth(μξ),
hence we set

(284)u(x, t) =
(

α

1 + λ tanh(μξ)

)1/n

, ξ = x − ct.

It was found that the tanh ansatz and the coth ansatz work only for n = 1 where Eq. (262)
will be reduced to the well-known combined KdV-mKdV equation. Substituting (284) into
(264), collecting the coefficients of like powers of the hyperbolic functions and equating it
to zero we obtain

(285)

α = 6bc − a2

ab
,

μ = 1

2

√
a2 − 4bc

2b
, a2 > 4bc,

λ = ±
√

3(a2 − 4bc)

a
.

In view of (285), we obtain the solutions

(286)u7(x, t) =
(

6bc − a2

ab ± b
√

3(a2 − 4bc) tanh( 1
2

√
a2−4bc

2b
(x − ct))

)1/n

.

In a like manner, we can determine other traveling wave solutions in the form

(287)u8(x, t) =
(

6bc − a2

ab ± b
√

3(a2 − 4bc) coth( 1
2

√
a2−4bc

2b
(x − ct))

)1/n

.

However, for a2 < 4bc, we obtain the solutions that blow up at its domain of validity

(288)u9(x, t) =
(

6bc − a2

ab ± b
√

3(4bc − a2) tan( 1
2

√
4bc−a2

2b
(x − ct))

)1/n

,

(289)u10(x, t) =
(

6bc − a2

ab ± b
√

3(4bc − a2) cot( 1
2

√
4bc−a2

2b
(x − ct))

)1/n

.

Using sech and csch ansatze We next consider

f (μξ) = sech(μξ) or f (μξ) = csch(μξ),

hence we set

(290)u(x, t) =
(

α

1 + λ sech(μξ)

)1/n

, ξ = x − ct.

The sech and the csch ansatze work only for n = 1 where Eq. (56) is the well-known
combined KdV-mKdV equation. Substituting (290) into (264), collecting the coefficients
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of like powers of the hyperbolic functions and equating it to zero we obtain

(291)

α = 5a2 + √
a2(25a2 − 96bc)

8ab
,

μ =
√

2b(5a2 − 16bc + √
a2(25a2 − 96bc))

8b
,

λ = ±
√

2(a2 − 6bc)(
√

a2(25a2 − 96bc) − 24bc + 7a2)

2(a2 − 6bc)
.

In view of (291), we obtain the solitons solutions

(292)u11(x, t) =
(

(5a2 + √
a2(25a2 − 96bc))/(8ab)

1 ± λ sech(μ(x − ct))

)1/n

.

On the other hand, using the csch instead of the sech, and proceeding as before we obtain

(293)u12(x, t) =
(

(5a2 + √
a2(25a2 − 96bc))/(8ab)

1 ± λ csch(μ(x − ct))

)1/n

,

where λ and μ are defined above in (291).

11. Fifth-order KdV equation

The fifth-order KdV equation appears in many forms. In this section we will study a class
of fifth-order KdV equation (fKdV) of the form [19,18,31,32,34–36,57]

(294)ut + αu2ux + βuxuxx + γ uu3x + u5x = 0,

where α, β, and γ are arbitrary nonzero and real parameters, and u = u(x, t) is a
sufficiently-often differentiable function. The tanh–coth method will be used to study this
equation in a manner parallel to the preceding discussions. The multiple-soliton solutions
will be investigated as well by using the sense of Hirota’s bilinear formalism. The fKdV
equation (294) describes motions of long waves in shallow water under gravity and in a
one-dimensional nonlinear lattice, and has wide applications in quantum mechanics and
nonlinear optics. It is well known that wave phenomena of plasma media and fluid dynam-
ics are modeled by kink shaped tanh solution or by bell shaped sech solutions.

The parameters α, β, and γ are arbitrary that will drastically change the characteris-
tics of the fKdV equation (294). Many forms of the fKdV equation can be constructed
by changing these parameters. However, four well known forms of the fKdV that are of
particular interest in the literature. These forms are:

(i) The Lax equation [36] is given by

(295)ut + 30u2ux + 20uxuxx + 10uu3x + u5x = 0,

and characterized by

(296)β = 2γ, α = 3

10
γ 2.
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(ii) The Sawada–Kotera (SK) [57] equations is given by

(297)ut + 5u2ux + 5uxuxx + 5uu3x + u5x = 0

and characterized by

(298)β = γ, α = 1

5
γ 2.

(iii) The Kaup–Kupershmidt (KK) [32,35] equation

(299)ut + 20u2ux + 25uxuxx + 10uu3x + u5x = 0

is characterized by

(300)β = 5

2
γ, α = 1

5
γ 2.

(iv) The Ito equation [31]

(301)ut + 2u2ux + 6uxuxx + 3uu3x + u5x = 0,

is characterized by

(302)β = 2γ, α = 2

9
γ 2.

It was found that the Lax, SK and KK equations belong to the completely integrable hier-
archy of higher-order KdV equations. These three equations have infinite sets of conserva-
tion laws [19,18]. However, the Ito equation is not completely integrable but has a limited
number of special conservation laws.

11.1. Using the tanh–coth method

We begin our analysis by rewriting (294) as

(303)ut + α

3
(u3)x + γ (uuxx)x + β − γ

2

(
(ux)

2)
x

+ u5x = 0,

that can be converted to the ODE

(304)−cu + α

3
μu3 + γμ3uu′′ + β − γ

2
μ3(u′)2 + μ5u(iv) = 0,

upon using the wave variable ξ = μx − ct and integrating once. Balancing the terms u(iv)

with u3 in (264) we find

(305)M + 4 = 3M,

so that M = 2. Using the tanh–coth method presented above we set

(306)u(ξ) = a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2.

Substituting (306) into (304), collecting the coefficients of Y , and solving the resulting
system we find the following four sets of solutions [75]
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(1) The first set of parameters is given by

(307)

a0 = −2

3
a2, a1 = b1 = b2 = 0,

c = −2

3
βμ3a2 − 24μ5,

α = −6μ2(60μ2 + βa2 + 2γ a2)

a2
2

.

(2) The second set of parameters is given by

(308)

a0 = A, A is a constant, a1 = b1 = b2 = 0, a2 = − 60μ2

β + γ
,

c = μ[γ (β + γ )2a2
0 − 80γμ2(β + γ )a0 + 80μ4(2β + 17γ )]

10(β + γ )
,

α = γ (β + γ )

10
,

(3) The third set of parameters is given by

(309)

a0 = −2

3
a2, a1 = b1 = 0, b2 = a2,

c = −32

3
βμ3a2 − 384μ5,

α = −6μ2(60μ2 + βa2 + 2γ a2)

a2
2

.

(4) The fourth set of parameters is given by

(310)

a0 = A, A is a constant, a1 = b1 = 0, a2 = − 60μ2

β + γ
,

b2 = − 60μ2

β + γ
,

c = μ[γ (β + γ )2a2
0 − 80γμ2(β + γ )a0 + 320μ4(8β − 7γ )]

10(β + γ )
,

α = γ (β + γ )

10
.

11.2. The first criterion

The first and the third sets of parameters are expressed in terms of μ and a2. It is normal to
examine the result obtained for α from these sets where we find

(311)α = −6μ2(60μ2 + (β + 2γ )a2)

a2
2

,
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that gives

(312)αa2
2 + 6μ2(β + 2γ )a2 + 360μ4 = 0.

This quadratic equation has real solutions only if

(313)
(
6μ2(β + 2γ )

)2 � 1440αμ4,

that gives the first criterion, that we are seeking, given by

(314)α � (β + 2γ )2

40
.

The criterion (314) enables us to use several real values for α, even for fixed values of
the parameters β and γ . In what follows we will derive solitons solutions for all forms of
fifth-order KdV that were presented above.

It is important to point out that the solitons solutions obtained by using the first two sets
of parameters are examined and reported in [75]. It is normal here to examine the new
solitons solutions that will be derived from the third set given in (309).

11.3. Using the first criterion

The Lax equation Lax [36] considered the case where β = 20 and γ = 10. Using
criterion (314) then α � 40. Consequently, Lax considered α = 30 that meets the first
criterion. We first determine a2 by using (311). Substituting these parameters in the third
set (309) gives

(315)

a2 = b2 = −2μ2,−6μ2,

a1 = b1 = 0,

a0 = 4

3
μ2, 4μ2,

c = 128

3
μ5, 896μ5.

This in turn gives the solutions

(316)

u1(x, t) = 4

3
μ2 − 2μ2 tanh2

(
μx − 128

3
μ5t

)

− 2μ2 coth2
(

μx − 128

3
μ5t

)
,

(317)u2(x, t) = 4μ2 − 6μ2 tanh2(μx − 896μ5t) − 6μ2 coth2(μx − 896μ5t),

where μ is a nonzero real parameter.
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The Sawada–Kotera (SK) equation Sawada and Kotera [57] investigated the fKdV equa-
tion for β = 5 and γ = 5, hence given by

(318)ut + 5u2ux + 5uxuxx + 5uu3x + u5x = 0,

so that α = 5 that justifies the first criterion (314).
Following the previous section, we first determine a2 by using (311). Substituting these

values for α, β and γ in the third set (309) we find

(319)

a2 = b2 = −6μ2,−12μ2,

a1 = b1 = 0,

a0 = 4μ2, 8μ2,

c = −64μ5, 256μ5.

This in turn gives the two solutions

(320)u1(x, t) = 4μ2 − 6μ2 tanh2(μx + 64μ5t) − 6μ2 coth2(μx + 64μ5t),

and

u2(x, t) = 8μ2 − 12μ2 tanh2(μx − 256μ5t)

(321)− 12μ2 coth2(μx − 256μ5t),

where μ is a nonzero real free parameter.

The Kaup–Kupershmidt (KK) equation Kaup and Kupershmidt [32,35] studied the case
where β = 25 and γ = 10 that justifies criterion (314). The KK equation is given by

(322)ut + 20u2ux + 25uxuxx + 10uu3x + u5x = 0.

Proceeding as before we find

(323)

a2 = b2 = −3

2
μ2,−12μ2,

a1 = b1 = 0,

a0 = μ2, 8μ2,

c = 16μ5, 2816μ5.

This in turn gives the solutions

(324)u1(x, t) = μ2 − 3

2
μ2 tanh2(μx − 16μ5t) − 3

2
μ2 coth2(μx − 16μ5t),

(325)

u2(x, t) = 8μ2 − 12μ2 tanh2(μx − 2816μ5t)

− 12μ2 coth2(μx − 2816μ5t).
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The Ito equation Ito [31] used β = 6 and γ = 3. Using the criteria set in (314) then
α � 3.6. Consequently, α = 2 was used in the Ito equation given by

(326)ut + 2u2ux + 6uxuxx + 3uu3x + u5x = 0.

Substituting these parameters in the first set we find

(327)

a2 = b2 = −6μ2,−30μ2,

a1 = b1 = 0,

a0 = 4μ2, 20μ2,

c = 0, 1536μ5.

This in turn gives the solutions

u1(x, t) = 20μ2 − 30μ2 tanh2(μx − 1536μ5t)

(328)− 30μ2 coth2(μx − 1536μ5t),

and the solutions

(329)u2(x) = 4μ2 − 6μ2 tanh2(μx) − 6μ2 coth2(μx).

Notice that the second set of solutions is independent of time t . Unlike the other forms of
the fKdV equations where we obtained two pairs of distinct traveling wave solutions, the
Ito equation gave two solutions where the second solution does not depend on time t .

11.4. The second criterion

In (310), we derived the following set

(330)

a0 = A, A is a constant, a1 = b1 = 0, a2 = − 60μ2

β + γ
, b2 = − 60μ2

β + γ
,

c = μ[γ (β + γ )2a2
0 − 80γμ2(β + γ )a0 + 320μ4(8β − 7γ )]

10(β + γ )
,

α = γ (β + γ )

10

as a fourth set of values for the parameters a0, a1, a2, b1, b2, c and α. It is obvious from this
set that, unlike the first set where we have an infinite values for α defined by an inequality,
instead we have a unique value for α for fixed values of β and γ as shown above. This
fixed value for α is only justified for Lax and SK equations. A modification for values of α

should be set for KK and Ito equations to obtain solutions for variants of these equations.
It is obvious that only one soliton solution will be obtained for Lax and the SK equations.
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11.5. Using the second criterion

The Lax equation Lax [36] considered the case where β = 20 and γ = 10. Using (330)
we find

(331)

a0 = a0, a0 is an arbitrary constant,

a1 = b1 = 0,

a2 = b2 = −2μ2,

c = 2μ
(
48μ4 − 40a0μ

2 + 15a2
0

)
,

where μ is left as a free parameter. This in turn gives the solution

u(x, t) = a0 − 2μ2 tanh2(μx − 2μ
(
48μ4 − 40a0μ

2 + 15a2
0

)
t
)

(332)− 2μ2 coth2(μx − 2μ
(
48μ4 − 40a0μ

2 + 15a2
0

)
t
)
.

Selecting a0 = μ2 we obtain the solutions

(333)u(x, t) = μ2 − 2μ2 tanh2(μx − 46μ5t) − 2μ2 coth2(μx − 46μ5t).

The SK equation Substituting β = 5 and γ = 5 in the set (330) we find

(334)

a0 = a0, a0 is an arbitrary constant,

a2 = b2 = −6μ2,

a1 = b1 = 0,

c = μ
(
16μ4 − 40a0μ

2 + 5a2
0

)
.

This in turn gives the solution

u(x, t) = a0 − 6μ2 tanh2(μx − μ
(
16μ4 − 40a0μ

2 + 5a2
0

)
t
)

(335)− 6μ2 coth2(μx − μ
(
16μ4 − 40a0μ

2 + 5a2
0

)
t
)
.

Selecting a0 = μ2 gives the solution

(336)u(x, t) = μ2 − 6μ2 tanh2(μx + 19μ5t) − 6μ2 coth2(μx + 19μ5t).

11.6. Multiple-solitons of the fifth-order KdV equation

In this section, we will examine multiple-solitons solution of the fifth-order KdV equation.
As stated before, Hirota [24–29] proposed a bilinear form where it was shown that soliton
solutions are just polynomials of exponentials.

Hereman et al. [18] introduced a simplified version of Hirota method, where exact soli-
tons can be obtained by solving a perturbation scheme using a symbolic manipulation
package, and without any need to use bilinear forms. In what follows, we summarize the
main steps of the simplified version of Hirota’s method. To achieve our goal, we follow the
approach used in [18].
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We first substitute

(337)u(x, t) = R
∂2 ln f (x, t)

∂x2
= R

ff2x − (fx)
2

f 2
,

into (294), where the auxiliary function f = 1 + exp(θ), θ = kx − wt , and solving the
equation we get

(338)

α = γ 2 + γβ

10
,

R = 60

γ + β
.

The Lax equation For Lax equation, R = 2, therefor we use the transformation

(339)u(x, t) = 2
∂2 ln f (x, t)

∂x2
= 2

ff2x − (fx)
2

f 2
,

that will carry out the Lax equation (295) into a cubic equation in f given by

f 2(fxt + f6x) − f (fxft + 6fxf5x − 5f2xf4x)

(340)+ 10
(
f 2

x f4x − 2fxf2xf3x + f 3
2x

) = 0,

that can be decomposed into linear operator and two nonlinear operators.
Proceeding as before, we assume that f (x, t) has a perturbation expansion of the form

(341)f (x, t) = 1 +
∞∑

n=1

εnfn(x, t),

where ε is a nonsmall formal expansion parameter. Following the simplified version of
Hirota’s method [18], we substitute (341) into (340) and equate to zero the powers of ε.

The N -soliton solution is obtained from

(342)f1 =
N∑

i=1

exp(θi) =
N∑

i=1

exp(kix − ci t),

where

(343)θi = kix − ci t,

where ki and ci are arbitrary constants. Substituting (342) into (340), and equate the coef-
ficients of ε1 to zero, we obtain the dispersion relation

(344)ci = k5
i ,

and in view of this result we obtain

(345)θi = kix − k5
i t .

This means that

(346)f1 = exp(θ1) = exp
(
k1

(
x − k4

1 t
))

,

obtained by using N = 1 in (342).
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Consequently, for the one-soliton solution, we set

(347)f = 1 + exp(θ1) = 1 + exp
(
k1

(
x − k4

1 t
))

,

where we set ε = 1. The one soliton solution is therefore

(348)u(x, t) = 2k2
1 exp(k1(x − k4

1 t))

(1 + exp(k1(x − k4
1 t)))2

,

or equivalently

(349)u(x, t) = k2
1

2
sech2

[
k1

2

(
x − k4

1 t
)]

.

To determine the two-soliton solution, we first set N = 2 in (342) to get

(350)f1 = exp(θ1) + exp(θ2).

To determine f2, we set

(351)f2 =
∑

1�i<j�N

aij exp(θi + θj ),

and therefore we substitute

(352)f = 1 + exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2),

into (340) and proceed as before to obtain the phase factor a12 by

(353)a12 = (k1 − k2)
2

(k1 + k2)2
,

and hence

(354)aij = (ki − kj )
2

(ki + kj )2
, 1 � i < j � N.

This in turn gives

(355)f = 1 + ek1(x−k4
1 t) + ek2(x−k4

2 t) + (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k5

1+k5
2)t .

To determine the two-soliton solutions explicitly, we use (339) for the function f in (355).
Similarly, we can determine f3. Proceeding as before, we therefore set

(356)

f1(x, t) = exp(θ1) + exp(θ2) + exp(θ3),

f2(x, t) = a12 exp(θ1 + θ2) + a23 exp(θ2 + θ2) + a13 exp(θ1 + θ3),

and accordingly we have

f (x, t) = 1 + exp(θ1) + exp(θ2) + exp(θ3)

+ a12 exp(θ1 + θ2) + a23 exp(θ2 + θ3) + a13 exp(θ1 + θ3)

(357)+ f3(x, t).
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Substituting (357) into (340) and proceeding as before we find

(358)f3 = b123 exp(θ1 + θ2 + θ3),

where

(359)b123 = a12a13a23 = (k1 − k2)
2(k1 − k3)

2(k2 − k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2
,

and θ1, θ2 and θ3 are given above in (345). For the three-soliton solution we use 1 � i <

j � 3, we therefore obtain

f = 1 + exp(θ1) + exp(θ2) + exp(θ3)

+ a12 exp(θ1 + θ2) + a13 exp(θ1 + θ3) + a23 exp(θ2 + θ3)

(360)+ b123 exp(θ1 + θ2 + θ3),

where

(361)

a12 = (k1 − k2)
2

(k1 + k2)2
, a13 = (k1 − k3)

2

(k1 + k3)2
,

a23 = (k2 − k3)
2

(k2 + k3)2
, b123 = a12a13a23.

This in turn gives

f = 1 + ek1(x−k4
1 t) + ek2(x−k4

2 t) + ek3(x−k4
3 t)

+ (k1 − k2)
2

(k1 + k2)2
e(k1+k2)x−(k5

1+k5
2)t + (k1 − k3)

2

(k1 + k3)2
e(k1+k3)x−(k5

1+k5
3)t

+ (k2 − k3)
2

(k2 + k3)2
e(k2+k3)x−(k5

2+k5
3)t

(362)+ (k1 − k2)
2(k1 − k3)

2(k2 − k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2
e(k1+k2+k3)x−(k5

1+k5
2+k5

3)t .

To determine the three-solitons solution explicitly, we use (339) for the function f in (362).
The higher level soliton solution can be obtained in a parallel manner. This indeed requires
a tedious work.

As stated before, the Lax equation is characterized by

(363)β = 2γ, α = 3

10
γ 2,

where γ is any arbitrary constant, then the transformation (339) can be generalized to

(364)u = 20

γ

(
ln

(
f (x, t)

))
xx

,

that works for every γ .
We again summarize the three facts presented before:

(i) the first is that soliton solutions are just polynomials of exponentials as emphasized
by Hirota [24–29], and
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(ii) the three-soliton solution and the higher level soliton solution as well, do not con-
tain any new free parameters other than aij derived for the two-soliton solution.

(iii) every solitonic equation that has generic N = 3 soliton solutions, then it has also
soliton solutions for any N � 4 [20–23].

The Sawada–Kotera equation For the SK equation, R = 6, therefor the transformation

(365)u(x, t) = 6
∂2 ln f (x, t)

∂x2
= 6

ff2x − (fx)
2

f 2
,

that will carry out the SK equation (297) into a quadratic equation in f given by

(366)f (fxt + f6x) + (15f2xf4x − 10f 2
3x − 6fxf5x − fxft ) = 0,

that can be decomposed into linear operator and a nonlinear operator.
Following the discussions introduced before, we assume that f (x, t) has a perturbation

expansion of the form

(367)f (x, t) = 1 +
∞∑

n=1

εnfn(x, t).

Substituting (367) into (366) and equate to zero [18] the powers of ε.
The N -soliton solution is obtained from

(368)f1 =
N∑

i=1

exp(θi) =
N∑

i=1

exp(kix − ci t),

where

(369)θi = kix − ci t.

Substituting (368) into (366) and equate the coefficients of ε1 to zero, we obtain the dis-
persion relation

(370)ci = k5
i ,

and in view of this result we obtain

(371)θi = kix − k5
i t .

This means that

(372)f1 = exp(θ1) = exp
(
k1

(
x − k4

1 t
))

,

obtained by using N = 1 in (368).
Consequently, for the one-soliton solution, we set

(373)f = 1 + exp(θ1) = 1 + exp
(
k1

(
x − k4

1 t
))

,

where we set ε = 1. The one soliton solution is therefore

(374)u(x, t) = 6k2
1 exp(k1(x − k4

1 t))

(1 + exp(k1(x − k4
1 t)))2

,
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or equivalently

(375)u(x, t) = 3

2
k2

1 sech2
[
k1

2

(
x − k4

1 t
)]

.

To determine the two-soliton solution, we first set N = 2 in (368) to get

(376)f1 = exp(θ1) + exp(θ2).

To determine f2, we set

(377)f2 =
∑

1�i<j�N

aij exp(θi + θj ),

and therefore we substitute

(378)f = 1 + exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2),

into (366) and proceed as before to obtain the phase factor a12 by

(379)a12 = (k1 − k2)
2(k2

1 − k1k2 + k2
2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
,

and hence

(380)aij = (ki − kj )
2(k2

i − kikj + k2
j )

(ki + kj )2(k2
i + kikj + k2

j )
, 1 � i < j � N.

This in turn gives

f = 1 + ek1(x−k4
1 t) + ek2(x−k4

2 t)

(381)+ (k1 − k2)
2(k2

1 − k1k2 + k2
2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
e(k1+k2)x−(k5

1+k5
2)t .

To determine the two-solitons solution explicitly, we use (365) for the function f in (381).
Similarly, we can determine f3. Proceeding as before, we therefore set

(382)

f1(x, t) = exp(θ1) + exp(θ2) + exp(θ3),

f2(x, t) = a12 exp(θ1 + θ2) + a23 exp(θ2 + θ2) + a13 exp(θ1 + θ3),

and accordingly we have

f (x, t) = 1 + exp(θ1) + exp(θ2) + exp(θ3)

+ a12 exp(θ1 + θ2) + a23 exp(θ2 + θ3) + a13 exp(θ1 + θ3)

(383)+ f3(x, t).

Substituting (383) into (366) and proceeding as before we find

(384)f3 = b123 exp(θ1 + θ2 + θ3),

where

(385)b123 = a12a13a23.
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For the three-soliton solution we use 1 � i < j � 3, we proceed as before to get

f = 1 + ek1(x−k4
1 t) + ek2(x−k4

2 t) + ek3(x−k4
3 t)

+ a12e(k1+k2)x−(k5
1+k5

2)t + a13e(k1+k3)x−(k5
1+k5

3)t + a23e(k2+k3)x−(k5
2+k5

3)t

(386)+ b123e(k1+k2+k3)x−(k5
1+k5

2+k5
3)t

where aij and b123 are defined above in (380) and (385) respectively. To determine the
three-solitons solution explicitly, we use (366) for the function f in (386). The higher level
soliton solution can be obtained in a parallel manner.

As stated before, the Sawada–Kotera equation is characterized by

(387)β = γ, α = 1

5
γ 2,

where γ is any arbitrary constant, then the transformation (365) can be generalized to

(388)u = 30

γ

(
ln

(
f (x, t)

))
xx

,

that works for every γ .

The Kaup–Kupershmidt equation For the KK equation we only summarize the work in
[19,18], where the transformation

(389)u(x, t) = 3

2

∂2 ln f (x, t)

∂x2
= 3

2

ff2x − (fx)
2

f 2
,

is used.
The dispersion relation is given by

(390)θi = kix − k5
i t .

For the one-soliton solution the following function

(391)f = 1 + exp(θ1) + 1

16
exp(2θ1),

so that the one soliton solution is

(392)u(x, t) = 24k12e(k1(−tk14+x))(16 + 4e(k1(−tk14+x)) + e(2k1(−tk14+x)))

(16 + 16e(k1(−tk14+x)) + e(2k1(−tk14+x)))2
.

For the two-soliton solution it was found that

f = 1 + exp(θ1) + exp(θ2) + 1

16
exp(2θ1) + 1

16
exp(2θ2)

+ a12 exp(θ1 + θ2) + b12
[
exp(2θ1 + θ2) + exp(θ1 + 2θ2)

]
(393)+ b2

12 exp(2θ1 + 2θ2),

where

(394)a12 = 2k4
1 − k2

1k2
2 + 2k4

2

2(k1 + k2)2(k2
1 + k1k2 + k2

2)
,
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and

(395)b12 = (k1 − k2)
2(k2

1 − k1k2 + k2
2)

16(k1 + k2)2(k2
1 + k1k2 + k2

2)
.

It is obvious that the two soliton solution u(x, t) can be obtained by substituting (393) into
(389). For the higher level solitons solution, it becomes more complicated and readers are
advised to read [18].

It is well known that the Kaup–Kupershmidt equation is characterized by

(396)β = 5

2
γ, α = 1

5
γ 2,

where γ is any arbitrary constant, then the transformation (389) can be generalized to

(397)u = 15

γ

(
ln

(
f (x, t)

))
xx

,

that works for every γ .

12. Seventh-order KdV equation

The seventh-order KdV equation (sKdV) [14,43,53]

(398)ut + 6uux + u3x − u5x + αu7x = 0,

where α is a nonzero constant, and u = u(x, t) is a sufficiently often differentiable func-
tion. The sech method used in [14,43] will be used to study this equation. The sKdV equa-
tion (398) has been introduced by Pomeau et al. [53], and then investigated by [13,43],
for discussing the structural stability of the KdV equation under singular perturbation. The
sKdV equation possesses the dispersion term u3x and two higher order dispersion terms,
namely, u5x and u7x . Moreover, Eq. (398) has three polynomial type conserved quantities
given by:

(399)

I1 =
∫ ∞

−∞
u dx,

I2 =
∫ ∞

−∞
u2 dx,

I3 =
∫ ∞

−∞

(
−u3 + 1

2
(ux)

2 − 1

2
(uxx)

2 + 1

2
α(u3x)

2
)

dx.

12.1. The sech method

We begin our analysis by rewriting (398) as

(400)−cu + 3u2 + u′′ − u(iv) + αu(vi) = 0,
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by using the wave variable ξ = μ(x − ct) and integrating once. Balancing the terms u(vi)

with u2 in (400) we find

(401)M + 6 = 2M,

so that M = 6. Following [14,43], we assume that the solution is of the form

(402)u(ξ) = a0 + a1 sech6(μξ).

Substituting (402) into (400), collecting the coefficients of sechj , and solving the resulting
system we find the following two sets of solutions

(1) The first set of parameters is given by

(403)

a0 = 0, a1 = 86625

591361
, c = 180000

591361
,

μ = 5√
1538

, α = 769

2500
.

(2) The second set of parameters is given by

(404)

a0 = − 60000

591361
, a1 = 86625

591361
, c = −180000

591361
,

μ = 5√
1538

, α = 769

2500
.

This in turn gives the traveling solitary wave solutions

(405)u1(x, t) = 86625

591361
sech6

(
5√

1538

(
x − 180000

591361
t

))
,

and

(406)u2(x, t) = − 60000

591361
+ 86625

591361
sech6

(
5√

1538

(
x + 180000

591361
t

))
.

In addition, we obtain the following traveling wave solutions

(407)u3(x, t) = − 86625

591361
csch6

(
5√

1538

(
x − 180000

591361
t

))
,

and

(408)u4(x, t) = − 60000

591361
− 86625

591361
csch6

(
5√

1538

(
x + 180000

591361
t

))
.

It is interesting to point out that these traveling solitary wave solutions exist only if the
signs of the coefficients of the are opposite. Moreover, the solutions exist only for fixed
value of α given before in (403).

However, if the coefficients of the terms u3x and u5x have identical positive signs, we
obtain periodic solutions that include sec6(μξ). In this case, we assume that the solution is
of the form

(409)u(ξ) = a0 + a1 sec6(μξ).

Substituting (409) into (400), collecting the coefficients of secj , and solving the resulting
system we find the following two sets of solutions
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(1) The first set of parameters is given by

(410)

a0 = 0, a1 = − 86625

591361
, c = −180000

591361
,

μ = 5√
1538

, α = 769

2500
.

(2) The second set of parameters is given by

(411)

a0 = 60000

591361
, a1 = − 86625

591361
, c = 180000

591361
,

μ = 5√
1538

, α = 769

2500
.

This in turn gives the solutions

(412)u5(x, t) = − 86625

591361
sec6

(
5√

1538

(
x + 180000

591361
t

))
,

(413)u6(x, t) = − 86625

591361
csc6

(
5√

1538

(
x + 180000

591361
t

))
,

(414)u7(x, t) = 60000

591361
− 86625

591361
sec6

(
5√

1538

(
x − 180000

591361
t

))
,

and

(415)u8(x, t) = 60000

591361
− 86625

591361
csc6

(
5√

1538

(
x − 180000

591361
t

))
.

13. Ninth-order KdV equation

The ninth-order KdV equation (nKdV)

(416)ut + 6uux + u3x − u5x + αu7x + βu9x = 0,

where α and β are arbitrary nonzero constants, and u is a sufficiently often differentiable
function. The sech method will be used again to study this equation. The nKdV equation
possesses the dispersion term u3x and three higher order dispersion terms, namely, u5x ,
u7x and u9x and possesses polynomial type conserved quantities.

13.1. The sech method

We begin our analysis by rewriting (416) as

(417)−cu + 3u2 + u′′ − u(iv) + αu(vi) + βu(viii) = 0,

by using the wave variable ξ = μ(x − ct) and integrating once. Balancing the terms u(viii)

with u2 in (417) we find

(418)M + 8 = 2M,
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so that M = 8. Following our discussion above, we assume that the solution is of the form

(419)u(ξ) = a0 + a1 sech8(μξ).

Substituting (419) into (417) and proceeding as before we find the following two sets of
solutions

(1) The first set of parameters is given by

(420)

a0 = 0, a1 = 3816888075

22609585952
, c = 249120900

706549561
,

μ = 1

4

√
5649

26581
, α = 212648

506527
, β = − 11304792976

180266374449
.

(2) The second set of parameters is given by

(421)

a0 = − 83040300

706549561
, a1 = 3816888075

22609585952
, c = −249120900

706549561
,

μ = 1

4

√
5649

26581
, α = 212648

506527
, β = − 11304792976

180266374449
.

This in turn gives the traveling solitary wave solutions

(422)u1(x, t) = 3816888075

22609585952
sech8

(
1

4

√
5649

26581

(
x − 249120900

706549561
t

))
,

(423)u2(x, t) = 3816888075

22609585952
csch8

(
1

4

√
5649

26581

(
x − 249120900

706549561
t

))
,

(424)

u3(x, t) = − 83040300

706549561

+ 3816888075

22609585952
sech8

(
1

4

√
5649

26581

(
x + 249120900

706549561
t

))
,

and

u4(x, t) = − 83040300

706549561

(425)+ 3816888075

22609585952
csch8

(
1

4

√
5649

26581

(
x + 249120900

706549561
t

))
.

The obtained traveling solitary wave solutions exist only if the signs of the coefficients of
the terms u3x and u5x are opposite. Moreover, the solutions exist only for specific values
of α and β obtained above in (420).

However, if the coefficients of the terms u3x and u5x have identical positive signs we
obtain periodic solutions that include sec8(μξ). To achieve our goal, we assume that the
solution is of the form

(426)u(ξ) = a0 + a1 sec8(μξ).

Substituting (426) into (417) and proceeding as before we find the following two sets of
solutions
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(1) The first set of parameters is given by

(427)

a0 = 0, a1 = − 3816888075

22609585952
, c = −249120900

706549561
,

μ = 1

4

√
5649

26581
, α = 212648

506527
, β = 11304792976

180266374449
.

(2) The second set of parameters is given by

(428)

a0 = 83040300

706549561
, a1 = − 3816888075

22609585952
, c = 249120900

706549561
,

μ = 1

4

√
5649

26581
, α = 212648

506527
, β = 11304792976

180266374449
.

This in turn gives the solutions

(429)u5(x, t) = − 3816888075

22609585952
sec8

(
1

4

√
5649

26581

(
x + 249120900

706549561
t

))
,

(430)u6(x, t) = − 3816888075

22609585952
csc8

(
1

4

√
5649

26581

(
x + 249120900

706549561
t

))
,

(431)

u7(x, t) = 83040300

706549561

− 3816888075

22609585952
sec8

(
1

4

√
5649

26581

(
x − 249120900

706549561
t

))
,

and

u8(x, t) = 83040300

706549561

(432)− 3816888075

22609585952
csc8

(
1

4

√
5649

26581

(
x − 249120900

706549561
t

))
.

14. The coupled KdV or the Hirota–Satsuma equations

Hirota and Satsuma [29] proposed a coupled KdV equation which describes interactions
of two long waves with different dispersion relations. The Hirota–Satsuma equations are

(433)

ut = 1

2
uxxx + 3uux − 6vvx,

vt = −vxxx − 3uvx.

If v = 0, Eq. (433) reduces to the KdV equation. In this section we will use the tanh–coth
method and the simplified version of the Hirota bilinear formalism to handle the Hirota–
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Satsuma system. The following three conserved densities

(434)

I1 = u,

I2 = u2 − 2v2,

I3 = 3

2

(
u3 − 1

2
(ux)

2
)

− 3
(
uv2 − (vx)

2),
were confirmed.

14.1. Using the tanh–coth method

Using the wave variable ξ = x − ct , system (433) is converted to

(435)

− cu − 1

2
u′′ − 3

2
u2 + 3v2 = 0,

− cv′ + v′′′ + 3uv′ = 0.

Balancing the nonlinear term u2 with the highest order derivative u′′ in the first equation
of the couple gives

(436)2M = M + 2,

that gives

(437)M = 2.

Substituting for u from the first equation into the second equation, and balancing the non-
linear term v2v′ with the highest order derivative v′′′ in the second equation of the couple
gives

(438)M1 + 3 = 2M1 + M1 + 1,

that gives

(439)M1 = 1.

The tanh–coth method allows us to use the substitution

(440)

u(x, t) = S(Y ) = a0 + a1Y
2 + a2Y

−2,

v(x, t) = S1(Y ) = b0 + b1Y + b2Y
−1,

where we found that u(x, t) does not include Y or Y−1 terms. Substituting (440) into (435),
collecting the coefficients of each power of Y i, 0 � i � 8, setting each coefficient to zero,
and solving the resulting system of algebraic equations we obtain the following sets of
solutions
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(i) First set

(441)

a0 = c

3
+ 2

3
λ2, a1 = −2λ2, a2 = 0,

b0 = 0, b1 = 1√
2
c, b2 = 0,

μ = λ,

where

(442)λ = (2 + √
10)c

2
.

(ii) Second set

(443)

a0 = c

3
+ 2

3
λ2, a1 = 0, a2 = −2λ2,

b0 = 0, b1 = 0, b2 = 1√
2
c,

μ = λ,

(iii) Third set

(444)

a0 = c

3
− 1

3
λ2, a1 = −1

2
λ2, a2 = −1

2
λ2,

b0 = 0, b1 = 1

2
√

2
c, b2 = 1

2
√

2
c,

μ = λ.

In view of these results we obtain the following sets of solutions

(445)

u1(x, t) = c

3
+ 2

3
λ2 − 2λ2 tanh2[λ(x − ct)

]
,

v1(x, t) = 1√
2
c tanh

[
λ(x − ct)

]
.

(446)

u2(x, t) = c

3
+ 2

3
λ2 − 2λ2 coth2[λ(x − ct)

]
,

v2(x, t) = 1√
2
c coth

[
λ(x − ct)

]
and

(447)

u3(x, t) = c

3
− 1

3
λ2 − 1

2
λ2

(
tanh2

[
1

2
λ(x − ct)

]
+ coth2

[
1

2
λ(x − ct)

])
,

v3(x, t) = 1

2
√

2
c

(
coth

[
1

2
λ(x − ct)

]
+ coth

[
1

2
λ(x − ct)

])
.
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14.2. Multiple-soliton solutions of the Hirota–Satsuma system

In this section, we will examine multiple-soliton solutions of the Hirota–Satsuma system

(448)

ut = 1

2
uxxx + 3uux − 6vvx,

vt = −vxxx − 3uvx.

Hirota [29] introduced the dependent variable transformation

(449)

u(x, t) = 2
∂2 ln f (x, t)

∂x2
= 2

ff2x − (fx)
2

f 2
,

v(x, t) = g

f
,

that will convert (448) into the bilinear forms

(450)

Dx

(
Dt − 1

2
D3

x

)
f · f = −3g2,(

Dt + D3
x

)
f · g = 0.

We next assume that f (x, t) and g(x, t) have the perturbation expansions

(451)

f (x, t) = 1 +
∞∑

n=0

εnfn(x, t),

g(x, t) =
∞∑

n=0

σngn(x, t),

where ε and σ are nonsmall formal expansion parameter. Following Hirota’s method and
the simplified version in [18] we first set

(452)

f1(x, t) =
N∑

i=1

exp(2θi),

g1(x, t) =
N∑

i=1

exp(θi),

where

(453)θi = kix − ci t,

where ki and ci are arbitrary constants. Substituting (452) into (448) gives the dispersion
relation

(454)ci = k3
i ,

and in view of this result we obtain

(455)θi = kix − k3
i t .
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This means that

(456)

f1(x, t) = exp(2θ1) = exp
(
2k1

(
x − k2

1 t
))

,

g1(x, t) = exp(θ1) = exp
(
k1

(
x − k2

1 t
))

,

ε = 1

8k4
1

,

σ = 1

obtained by using N = 1 in (452). In what follows we list the solutions obtained by
Hirota [29], and more details can be found there. For the one-soliton solution, it was found
that

(457)

f = 1 + 1

8k4
1

exp(2θ1),

g = exp(θ1).

The one soliton solution is therefore

(458)u(x, t) = 2(ln f )xx, v(x, t) = g/f.

For the two-soliton solution it was found that

(459)

f = 1 + 1

8k4
1

e2θ1 + 1

8k4
2

e2θ2

+ 2

(k1 + k2)2(k2
1 + k2

2)
eθ1+θ2 + (k1 − k2)

4

64k4
1k4

2(k1 + k2)4
e2(θ1+θ2),

g = eθ1 + eθ2 + 1

8k4
1

(k1 − k202

(k1 + k2)2
e2θ1+θ2 + 1

8k4
2

(k1 − k202

(k1 + k2)2
eθ1+2θ2 .

The two-soliton solution is obtained by substituting (459) into (458).
It is interesting to point out that Hirota and Satsuma [29] derived the one and two-soliton

solutions only and used this to suggest the existence of the N -soliton solutions.

14.3. Multiple-soliton solutions by another method

However, Tam et al. [60] applied a slightly different approach and derived entirely new
one, two and three-soliton solutions to the Hirota–Satsuma system.

In [60] the dependent variable transformation

(460)

u(x, t) = 2
∂2 ln f (x, t)

∂x2
= 2

ff2x − (fx)
2

f 2
,

v(x, t) = g

f
,
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was applied to convert (448) into the bilinear forms

(461)

Dx

(
Dt − 1

2
D3

x

)
f · f = −3g2 + Cf 2,(

Dt + D3
x

)
f · g = 0,

where C in an integration constant. For C = 0 we obtain the bilinear forms (450). In [60],
C = 3 was used to convert the last bilinear form to

(462)

Dx

(
Dt − 1

2
D3

x

)
f · f = 3

(
f 2 − g2),(

Dt + D3
x

)
f · g = 0.

It was obtained after some tests and guesses that for the one-soliton solution

(463)

f = 1 + exp(θ1) + 1

32

(
4 + k4

1

)
exp(2θ1),

g = 1 + 1

2

(
2 + k4

1

)
exp(θ1) + 1

32

(
4 + k4

1

)
exp(2θ1).

This result is distinct from that obtained in [29] given in (457). Consequently, the one
soliton solution is therefore

(464)u(x, t) = 2(ln f )xx, v(x, t) = g/f.

For the two-soliton solution it was found that, after correcting some of the coefficients
in [60]

f = 1 + exp(θ1) + exp(θ2) + A1 exp(2θ1) + A2 exp(2θ2) + A3 exp(θ1 + θ2)

+ A4 exp(2θ1 + θ2) + A5 exp(θ1 + 2θ2) + A6 exp
(
2(θ1 + θ2)

)
,

g = 1 + 1

2

(
2 + k4

1

)
exp(θ1) + 1

2

(
2 + k4

2

)
exp(θ2) + B1 exp(2θ1) + B2 exp(2θ2)

+ B3 exp(θ1 + θ2) + B4 exp(2θ1 + θ2) + B5 exp(θ1 + 2θ2)

(465)+ B6 exp
(
2(θ1 + θ2)

)
,

where

Ai = 1

32

(
4 + k4

i

)
, i = 1, 2,

A3 = 2(k4
1 + k4

2) + k4
1k4

2

2(k1 + k2)2(k2
1 + k2

2)
,

Aj+3 = 1

32

(
4 + k4

j

) (k1 − k2)
2

(k1 + k2)2
, j = 1, 2,

A6 = A1A2
(k1 − k2)

4

(k1 + k2)4
,

Bi = 1

32

(
4 + k4

i

)
, i = 1, 2,
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B3 = (k8
1 + k8

2) − k4
1k4

2 + 2(k4
1 + k4

2)

2(k1 + k2)2(k2
1 + k2

2)
,

B4 = 1

2

(
2 + k4

2

) × 1

32

(
4 + k4

1

) (k1 − k2)
2

(k1 + k2)2
,

B5 = 1

2

(
2 + k4

1

) × 1

32

(
4 + k4

2

) (k1 − k2)
2

(k1 + k2)2
,

(466)B6 = A6.

The two-soliton solution is obtained by substituting (465) into (464). The explicit three-
soliton solution can be found in [60]. Because the three-soliton solutions were obtained,
this clearly indicates that the N -soliton solutions, N � 3 exist for the coupled KdV equa-
tions.

15. Compactons and the K(n, n) equation

It is well-known that the nonlinear term uux in the standard KdV equation

(467)ut + αuux + uxxx = 0,

causes the steepening of wave form. At the same time, the dispersion effect term uxxx in
Eq. (467) makes the wave form spread [64,65,62,63]. Due to the balance between the weak
nonlinearity and dispersion, solitons exist. Soliton has been defined by Wadati [62,63] and
others as a nonlinear wave that has the following properties:

(1) A localized wave propagates without change of its properties (shape, velocity, etc.),
(2) Localized waves are stable against mutual collisions and retain their identities. This

means that the nonlinear KdV equation (467) with linear dispersion admits solitary
waves that are infinite in extent or localized waves with exponential tails. For the
Sine–Gordon equation, the kink solution converges to a constant at infinity.

However, the convection term in the genuinely nonlinear dispersive K(n, n) equation

(468)ut + a(un)x + (un)xxx = 0, n > 1,

is nonlinear. Moreover, the dispersion effect term (un)xxx in this equation is genuinely
nonlinear. It is formally derived by Rosenau and Hyman [56] that the delicate interaction
between nonlinear convection with genuine nonlinear dispersion generates solitary waves
with exact compact support that are called compactons. The pioneering study conducted by
Rosenau and Hyman [56] revealed that Eq. (468) generates compactly supported solutions
with nonsmooth fronts. In fact compactons are solitons with finite wavelength, waves with
a compact support or solitons free of exponential wings. Unlike soliton that narrows as the
amplitude increases, the compacton’s width is independent of the amplitude. Compactons
such as drops do not possess infinite wings, hence they interact among themselves only
across short distances. In modern physics, a suffix-on is used to indicate the particle prop-
erty [62], for example phonon, photon, and soliton. For this reason, the solitary wave with
compact support is called compacton to indicate that it has the property of a particle.
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Fig. 6. Graph of a compacton: soliton confined to a finite core free of exponential wings.

The idea of compact localized solutions of nonlinear dispersion has gained a consider-
able amount of interest. Significant studies have been developed in [56,66–77], and many
of the references therein to confirm that purely nonlinear dispersion can cause a deep qual-
itative change in the genuinely nonlinear phenomenon. It was derived that the compactons
are nonanalytic [56] solutions, whereas classical solitons are analytic solutions. The points
of nonanalyticity at the edge of the compacton correspond to points of genuine nonlinearity
for the differential equation and introduce singularities in the associated dynamical system
for the traveling waves.

The K(n, n) equation (468) cannot be derived from a first order Lagrangian except for
n = 1, and it does not possess the usual conservation laws of energy that KdV equa-
tion (467) possessed. The stability analysis has shown that compacton solutions are stable,
where the stability condition is satisfied for arbitrary values of the nonlinearity parameter.
The stability of the compactons solutions was investigated by means of both linear stability
and by Lyapunov stability criteria as well. Compactons were proved to collide elastically
and vanish outside a finite core region. Two important features of compactons structures
are observed:

(1) The compacton is a soliton characterized by the absence of exponential wings,
(2) The width of the compacton is independent of the amplitude.
The compacton concept has been studied by many analytical and numerical methods.

There are many algorithms such as the pseudo spectral method, the tri-Hamiltonian opera-
tors, the finite difference method, and many others. Figure 6 shows a graph of a compacton.

It was shown in [33] that in a continuous system, compact breathers are exact cosine
solutions with strict bounded support. However, in lattices, the core region of the com-
pact breathers can be described by a cosine shape while the tail region decays according
to the super exponential law e−a exp(bn), where a and b are constants that depend on the
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Fig. 7. The compacton graph (left) and the soliton graph without and with infinite wings respectively.

model Hamiltonian. A certain degree of harmonicity in the substrate potential is required
to stabilize the breather compacton solution.

The compactons discovery motivated a considerable work to make compactons be prac-
tically realized in scientific applications, such as the super deformed nuclei, preformation
of cluster in hydrodynamic models, the fission of liquid drops (nuclear physics), inertial
fusion and others.

Moreover, recall that solitary wave solutions may be expressed in terms of sechα , or
arctan(eα(x−ct)). However, the compactons solutions may be expressed in terms of trigono-
metric functions raised to an exponent. The cusps or infinite slopes solutions of the defo-
cussing branches, where a < 0, are expressed in terms of hyperbolic functions raised to an
exponent. Figure 7 shows a compacton (left) and a soliton (right).

The pseudo spectral method and the tri-Hamiltonian operators, among other methods,
were used to handle the K(n, n) equation. However, in this section we will use the tanh–
coth method to handle the K(n, n) equation.

15.1. The K(n, n) equation

The K(n, n) equation

(469)ut + a(un)x + (un)xxx = 0, n > 1,

has been introduced by Rosenau and Hyman in [56]. To determine the traveling-type wave
solution u(x, t) of Eq. (469) we use the wave variable ξ = (x − ct), and integrate the
resulting ODE to transform (469) into an ODE

(470)−cu + aun + (un)′′ = 0,

or equivalently

(471)−cu + aun + nun−1u′′ + n(n − 1)un−2(u′)2 = 0.
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Balancing the terms un−1u′′ and u gives

(472)(n − 1)M + 4 + M − 2 = M,

so that

(473)M = − 2

n − 1
.

To obtain a closed form analytic solution, the parameter M should be an integer. To achieve
this goal we use a transformation formula

(474)u(x, t) = v−1/(n−1)(x, t).

This formula carries (471) into

(475)−c(n − 1)2v3 + a(n − 1)2v2 − bn(n − 1)vv′′ + bn(2n − 1)(v′)2 = 0.

Balancing the terms v3 and vv′′ we find

(476)3M = M + M + 2,

that gives M = 2. The tanh–coth method allows us to use the substitution

(477)v(x, t) = S(Y ) = a0 + a1Y + a2Y
2 + b1

Y
+ b2

Y 2
.

Substituting (477) into (475), collecting the coefficients of each power of Y , and solving
the resulting system of algebraic equations we obtain the following three sets:

(i) The first set

(478)

a0 = a(n + 1)

2cn
, a1 = b1 = b2 = 0, a2 = −a(n + 1)

2cn
,

μ = n − 1

2n

√−a,

and
(ii) The second set

(479)

a0 = a(n + 1)

2cn
, a1 = b1 = a2 = 0, b2 = −a(n + 1)

2cn
,

μ = n − 1

2n

√−a,

Noting that u = v−1/(n−1), we first obtain the solitary patterns solutions

(480)u1(x, t) =
{
− 2cn

a(n + 1)
sinh2

[
n − 1

2n

√−a (x − ct)

]}1/(n−1)

,

(481)u2(x, t) =
{

2cn

a(n + 1)
cosh2

[
n − 1

2n

√−a (x − ct)

]}1/(n−1)

,

for a < 0, where ξ = x − ct .
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Fig. 8. The upper graph is a soliton with infinite support, and the lower graph is a compacton confined to a finite
core free of exponential tails.

However, for a > 0 we obtain the compactons solutions

(482)u3(x, t) =
{ { 2cn

a(n+1)
sin2[n−1

2n

√
a(x − ct)]}1/(n−1), |ξ | � π

μ
,

0 otherwise,

and

(483)u4(x, t) =
{ { 2cn

a(n+1)
cos2[n−1

2n

√
a(x − ct)]}1/(n−1), |ξ | � π

2μ
,

0 otherwise.

The last results are in consistent with the results that other researchers obtained by using
different approaches. Figure 8 shows a graph of a soliton (upper) and a compacton (lower).

15.2. Variant of the K(n, n) equation

A variant of the K(n, n) equation of the form

(484)ut + a(un+1)x + [
u(un)xx

]
x

= 0, a > 0, n � 1,

was investigated by Rosenau [54,55]. This model emerges in nonlinear lattices and was
used to describe the dispersion of dilute suspensions for n = 1. Equation (484) was con-
sidered as a variant of the KdV equation or of the K(n,n) equation.

To determine the traveling-type wave solution u(x, t) of Eq. (484) we use the wave
variable ξ = (x − ct), and integrate the resulting ODE to transform (484) into an ODE

(485)−cu + aun+1 + u(un)′′ = 0,

or equivalently

(486)−cu + aun+1 + nunu′′ + n(n − 1)un−1(u′)2 = 0.
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Balancing the terms unu′′ and u gives

(487)nM + M + 2 = M,

so that

(488)M = −2

n
.

To obtain a closed form analytic solution, the parameter M should be an integer. To achieve
this goal we use a transformation formula

(489)u(x, t) = v−1/n(x, t).

This formula carries (486) into

(490)−cv3 + av2 − vv′′ + 2(v′)2 = 0.

Balancing the terms v3 and vv′′ we find

(491)3M = M + M + 2,

that gives M = 2. The tanh–coth method allows us to use the substitution

(492)v(x, t) = S(Y ) = a0 + a1Y + a2Y
2 + b1

Y
+ b2

Y 2
.

Substituting (492) into (490), collecting the coefficients of each power of Y , and solving
the resulting system of algebraic equations we obtain the following three sets:

(i) The first set

(493)a0 = a

2c
, a1 = b1 = b2 = 0, a2 = − a

2c
, μ =

√−a

2
,

and
(ii) The second set

(494)a0 = a

2c
, a1 = b1 = a2 = 0, b2 = − a

2c
, μ =

√−a

2
.

Noting that u = v−1/n, we first obtain the solitary patterns solutions

(495)u1(x, t) =
{

2c

a
sinh2

[√
a

2
(x − ct)

]}1/n

,

(496)u2(x, t) = −
{

2c

a
cosh2

[√
a

2
(x − ct)

]}1/n

,

for a < 0, where ξ = x − ct .
For a > 0, the following compactons solutions

(497)u(x, t) =
{

{ 2c
a

sin2[
√

a
2 (x − ct)]}1/n, |x − ct | � π

μ
,

0 otherwise,

(498)u(x, t) =
{

{ 2c
a

cos2[
√

a
2 (x − ct)]}1/n, |x − ct | � π

2μ
,

0 otherwise.
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16. Compacton-like solutions

In this section we develop compacton-like solutions for the modified KdV equation

(499)ut + au2ux + uxxx = 0,

where a > 0 is a constant. We first set the compacton-like solutions of Eq. (499) in the
form

(500)u(x, t) = M
cos2k(x − 4k2t)

1 − 2
3 cos2k(x − 4k2t)

,

or in the form

(501)u(x, t) = N
sin2k(x − 4k2t)

1 − 2
3 sin2k(x − 4k2t)

,

where M and N are constants. Substituting (500) and (501) into (499) and solving straight-
forwardly for M and N we obtain

(502)M = N = 4k

3

√
2

a
.

Substituting (502) into (500) and (501) gives the following set of compacton-like solutions

(503)u(x, t) =
{

4k
3

√
2
a

cos2k(x−4k2t)

1− 2
3 cos2k(x−4k2t)

, |(x − 4k2t)| � π
2k

,

0 otherwise,

and

(504)u(x, t) =
{

4k
3

√
2
a

sin2k(x−4k2t)

1− 2
3 sin2k(x−4k2t)

, |(x − 4k2t)| � π
k
,

0 otherwise.

References

[1] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution equations and Inverse Scattering, Cambridge
University Press, Cambridge, 1991.

[2] M.J. Ablowitz, B.M. Herbst, C. Schober, On the numerical solution of the sinh-Gordon equation, J. Comput.
Phys. 126 (1996) 299–314.

[3] M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
[4] J.E. Allen, The early history of solitons (solitary waves), Phys. Scripta 57 (1993) 436–441.
[5] I.L. Bagolubasky, Some examples of inelastic soliton interaction, Comput. Phys. Commun. 13 (2) (1977)

149–155.
[6] D. Baldwin, U. Goktas, W. Hereman, L. Hong, R.S. Martino, J.C. Miller, Symbolic computation of exact

solutions in hyperbolic and elliptic functions for nonlinear PDEs, J. Symbolic Comput. 37 (2004) 669–705.
[7] T.B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. Ser. A 328 (1972) 153–183.
[8] J. Boussinesq, Theorie des ondes et des remous qui se propagent le long d Run canal rectangulaire horizon-

tal, en communiquant au liquide continu dans ce canal des vitesses sensiblement pareilles de la surface au
fond, J. Math. Pures Appl. 17 (1872) 55–108.

[9] R. Camassa, Characteristics and the initial value problem of a completely integrable shallow water equation,
Discrete Contin. Dynam. System Ser. B 3 (1) (2003) 115–139.



566 A.-M. Wazwaz

[10] R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett 71 (11)
(1993) 1661–1664.

[11] P.A. Clarkson, R.J. LeVaque, R. Saxton, Solitary wave interactions in elastic rods, Stud. Appl. Math. 75 (1)
(1986) 95–122.

[12] T. Dauxois, M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2006.
[13] P.G. Drazin, R.S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, 1996.
[14] B.R. Duffy, E.J. Parkes, Travelling solitary wave solutions to a seventh-order generalized KdV equation,

Phys. Lett. A 214 (1996) 271–272.
[15] A.T. Filippov, The Versatile Soliton, Birkhäuser, Boston, 2000.
[16] Z. Fu, S. Liu, Sh. Liu, New kinds of solutions to Gardner equation, Chaos, Solitons and Fractals 20 (2004)

301–309.
[17] U. Goktas, W. Hereman, Symbolic computation of conserved densities for systems of nonlinear evolution

equations, J. Symbolic Comput. 24 (1997) 591–621.
[18] W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential

equations, Math. Comput. Simulation 43 (1997) 13–27.
[19] W. Hereman, W. Zhaung, Symbolic software for soliton theory, Acta Appl. Math., Phys. Lett. A 76 (1980)

361–378.
[20] J. Hietarinta, A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear

equations, J. Math. Phys. 28 (8) (1987) 1732–1742.
[21] J. Hietarinta, A search for bilinear equations passing Hirota’s three-soliton condition. II. mKdV-type bilinear

equations, J. Math. Phys. 28 (9) (1987) 2094–2101.
[22] J. Hietarinta, A search for bilinear equations passing Hirota’s three-soliton condition. III. Sine–Gordon-type

bilinear equations, J. Math. Phys. 28 (11) (1987) 2586–2592.
[23] J. Hietarinta, Introduction to the bilinear method, in: Y. Kosman-Schwarzbach, B. Grammaticos, K.M.

Tamizhmani (Eds.), Integrability of Nonlinear Systems, in: Lecture Notes in Physics, vol. 638, Springer,
Berlin, 2004, pp. 95–105.

[24] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.
[25] R. Hirota, Exact solutions of the Korteweg–de Vries equation for multiple collisions of solitons, Phys. Rev.

Lett. 27 (18) (1971) 1192–1194.
[26] R. Hirota, Exact solutions of the modified Korteweg–de Vries equation for multiple collisions of solitons,

J. Phys. Soc. Japan 33 (5) (1972) 1456–1458.
[27] R. Hirota, Exact solutions of the Sine–Gordon equation for multiple collisions of solitons, J. Phys. Soc.

Japan 33 (5) (1972) 1459–1463.
[28] R. Hirota, Exact N -soliton solutions of a nonlinear wave equation, J. Math. Phys. 14 (7) (1973) 805–809.
[29] R. Hirota, Soliton solutions of a coupled Korteweg–de Vries equation, Phys. Lett. A 85 (8/9) (1981) 407–408.
[30] E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge University Press, Cambridge,

England, 2000.
[31] M. Ito, An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders, J. Phys. Soc.

Japan 49 (1980) 771–778.
[32] D. Kaup, A higher-order water wave equation and the method for solving it, Prog. Theor. Phys. 54 (1975)

396–408.
[33] Y.S. Kivshar, D.E. Pelinovsky, Self-focusing and transverse instabilities of solitary waves, Phys. Rep. 331

(2000) 117–195.
[34] D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal and on

a new type of long stationary waves, Philosophical Magazine 5th Series 36 (1895) 422–443.
[35] B.A. Kupershmidt, A super KdV equation: An integrable system, Phys. Lett. 102 (1984) A, 213–215.
[36] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 62

(1968) 467–490.
[37] P.D. Lax, Periodic solutions of the KdV equation, Comm. Pure Appl. Math. 28 (1975) 144–188.
[38] B. Li, Y. Chen, H. Zhang, Exact travelling wave solutions for a generalized Zakharov–Kuznetsov equation,

Appl. Math. Comput. 146 (2003) 653–666.
[39] Y. Liu, Existence and blow up of solutions of a nonlinear Pochhammer–Chree equation, Indiana Univ.

Math. J. 45 (3) (1996) 797–816.
[40] Z. Liu, T. Qian, Peakons of the Camassa–Holm equation, Appl. Math. Modelling 26 (2002) 473–480.



The Korteweg–de Vries equation 567

[41] Z. Liu, R. Wang, Z. Jing, Peaked wave solutions of Camassa–Holm equation, Chaos, Solitons and Fractals 19
(2004) 77–92.

[42] A. Ludu, J.P. Draayer, Nonlinear modes of liquid drops as solitary waves, Phys. Rev. Lett. 80 (1998) 2125–
2128.

[43] W.-X. Ma, Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A 180 (1993)
221–224.

[44] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys. 60 (7) (1992) 650–654.
[45] W. Malfliet, W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations,

Phys. Scripta 54 (1996) 563–568.
[46] W. Malfliet, W. Hereman, The tanh method: II. Perturbation technique for conservative systems, Phys.

Scripta 54 (1996) 569–575.
[47] T.R. Marchant, N.F. Smyth, Soliton interaction for the extended Korteweg–de Vries equation, IMA J. Appl.

Math. 56 (1996) 157–176.
[48] S. Monro, E.J. Parkes, The derivation of a modified Zakharov–Kuznetsov equation and the stability of its

solutions, J. Plasma Phys. 62 (3) (1999) 305–317.
[49] S. Monro, E.J. Parkes, Stability of solitary-wave solutions to a modified Zakharov–Kuznetsov equation,

J. Plasma Phys. 64 (3) (2000) 411–426.
[50] A.C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985.
[51] A. Parker, On exact solutions of the regularized long wave equation: a direct approach to partially integrable

equations, J. Math. Phys. 36 (7) (1995) 3498–3505.
[52] D. Pelinovsky, R. Grimshaw, An asymptotic approach to solitary wave instability and critical collapse in

long-wave KdV-type evolutions equations, Physica D 98 (1996) 139–155.
[53] Y. Pomeau, A. Ramani, B. Grammaticos, Structural stability of the Korteweg–de Vries solitons under a

singular perturbation, Physica D 31 (1) (1988) 127–134.
[54] P. Rosenau, Nonlinear dispersion and compact structures, Phys. Rev. Lett. 73 (13) (1994) 1737–1741.
[55] P. Rosenau, Compact and noncompact dispersive structures, Phys. Lett. A 275 (3) (2000) 193–203.
[56] P. Rosenau, J.M. Hyman, Compactons: Solitons with finite wavelengths, Phys. Rev. Lett. 70 (5) (1993) 564–

567.
[57] K. Sawada, T. Kotera, A method for finding N -soliton solutions for the KdV equation and KdV-like equation,

Prog. Theor. Phys. 51 (1974) 1355–1367.
[58] H. Schamel, A modified Korteweg–de Vries equation for ion acoustic waves due to resonant electrons,

J. Plasma Phys. 9 (3) (1973) 377–387.
[59] A. Scott, Nonlinear Science, second edition, Oxford University Press, New York, 2003.
[60] H.W. Tam, W.X. Ma, X.B. Hu, D.L. Wang, The Hirota–Satsuma coupled KdV equation and a coupled Ito

system revisited, J. Phys. Soc. Japan 69 (1) (2000) 45–52.
[61] L. Tian, X. Song, New peaked solitary wave solutions of the generalized Camassa–Holm equation, Chaos,

Solitons and Fractals 19 (2004) 621–637.
[62] M. Wadati, The modified Korteweg–de Vries equation, J. Phys. Soc. Japan 34 (1973) 1289–1296.
[63] M. Wadati, The exact solution of the modified Korteweg–de Vries equation, J. Phys. Soc. Japan 32 (1972)

1681–1687.
[64] M. Wadati, K. Sawada, New representation of the soliton solution for the Korteweg–de Vries equation,

J. Phys. Soc. Japan 48 (1) (1980) 312–318.
[65] M. Wadati, K. Sawada, Application of the trace method to the modified Korteweg–de Vries equation, J. Phys.

Soc. Japan 48 (1) (1980) 319–326.
[66] A.M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV

equations, Appl. Math. Comput. 184 (2) (2007) 1002–1014.
[67] A.M. Wazwaz, The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations,

Appl. Math. Comput. 188 (2) (2007) 1467–1475.
[68] A.M. Wazwaz, New solitons and kink solutions for the Gardner equation, Commun. Nonlin. Science Numer.

Simul. 12 (8) (2007) 1395–1404.
[69] A.M. Wazwaz, Solitary wave solutions for modified forms of Degasperis–Procesi and Camassa–Holm equa-

tions, Phys. Lett. A 352 (6) (2006) 500–504.
[70] A.M. Wazwaz, Partial Differential Equations: Methods and Applications, Balkema Publishers, The Nether-

lands, 2002.



568 A.-M. Wazwaz

[71] A.M. Wazwaz, New solitary-wave special solutions with compact support for the nonlinear dispersive
K(m, n) equations, Chaos, Solitons and Fractals 13 (2) (2002) 321–330.

[72] A.M. Wazwaz, Exact specific solutions with solitary patterns for the nonlinear dispersive K(m, n) equa-
tions, Chaos, Solitons and Fractals 13 (1) (2001) 161–170.

[73] A.M. Wazwaz, General compactons solutions for the focusing branch of the nonlinear dispersive K(n, n)

equations in higher dimensional spaces, Appl. Math. Comput. 133 (2/3) (2002) 213–227.
[74] A.M. Wazwaz, General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive

K(n, n) equations in higher dimensional spaces, Appl. Math. Comput. 133 (2/3) (2002) 229–244.
[75] A.M. Wazwaz, Abundant solitons solutions for several forms of the fifth-order KdV equation by using the

tanh method, Appl. Math. Comput. 182 (1) (2006) 283–300.
[76] A.M. Wazwaz, Compactons in a class of nonlinear dispersive equations, Math. Comput. Modelling 37 (3/4)

(2003) 333–341.
[77] A.M. Wazwaz, Kinks and solitons solutions for the generalized KdV equation with two power nonlinearities,

Appl. Math. Comput. 183 (2) (2006) 1181–1189.
[78] G.B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, NY, 1999.
[79] N.J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial

states, Phys. Rev. Lett. 15 (1965) 240–243.
[80] V.E. Zakharov, L.P. Faddeev, The Korteweg–de Vries equation: a completely integrable Hamiltonian system,

Funct. Anal. Appl. 5 (1971) 280–287.



Author Index

Roman numbers refer to pages on which the author (or his/her work) is mentioned. Italic numbers
refer to reference pages. Numbers between brackets are the reference numbers. No distinction is
made between the first author and co-author(s).

Abergel, F. 111, 149, 157, 191 [1]
Abeyaratne, R. 467, 468 [1]
Ablowitz, M.J. 487, 491, 493, 496, 497, 565 [1];

565 [2]; 565 [3]
Abraham, F.F. 467, 468 [2]
Adams, R.A. 271, 281, 288, 313, 319 [1]; 468,

468 [3]
Afendikov, A. 170, 191 [3]; 191 [4]
Afraimovich, V. 170, 180, 191 [2]; 191 [5]
Agarwal, P.K. 404, 468 [4]
Agoshkov, V.I. 352, 373 [1]
Aida, M. 133, 135, 191 [6]; 191 [7]
Aizicovici, S. 397, 419, 469 [5]
Alazard, T. 97, 97 [1]; 97 [2]
Albrecht, J. 467, 469 [6]
Alexandre, R. 65, 97 [3]
Alexiades, V. 395, 412–414, 467, 469 [7];

469 [8]; 469 [9]; 482 [425]; 484 [464];
484 [465]

Alikakos, N.D. 208, 212, 217, 219, 225 [1];
225 [2]; 225 [3]; 225 [4]; 419, 420, 469 [10];
469 [11]; 469 [12]

Allen, J.E. 487, 491, 565 [4]
Allen, S.M. 203, 225 [5]; 419, 469 [13]
Almgren, F. 401, 421, 464, 468, 469 [14];

469 [15]; 469 [16]
Alt, H.W. 417, 419, 422, 442, 469 [17];

469 [18]; 469 [19]; 469 [20]
Amann, H. 269, 319 [2]; 319 [3]
Amar, B. 401, 469 [22]
Amar, J. 216, 226 [30]
Ambrose, D. 395, 469 [21]
Ambrosio, L. 75, 97 [4]
Amsden, A.A. 355, 373 [2]; 373 [3]
Andreucci, D. 398, 404, 467, 469 [23]; 469 [24];

469 [25]
Angenent, S. 170, 191 [8]
Ansini, N. 449, 469 [26]

Antontsev, S.N. 65, 86, 97 [5]; 395, 467,
469 [27]; 469 [28]; 469 [29]

Arcoya, D. 269, 319 [4]
Argoul, P. 467, 469 [30]
Armstrong, R.C. 235, 243, 257 [5]; 258 [15]
Arnold, V.I. 3, 5, 6, 50 [1]
Arpaci, V.A. 251, 264 [211]
Arrieta, J. 151, 154, 159, 191 [9]
Ashby, M.K. 217, 225 [6]
Astarita, G. 388, 404, 468, 469 [31]; 470 [32]
Athanasopoulos, I. 398, 467, 470 [33]; 470 [34];

470 [35]; 470 [36]; 470 [37]
Atthey, D.R. 398, 470 [38]
Attouch, H. 468, 470 [39]; 470 [40]
Aubin, J.-P. 468, 470 [41]; 470 [42]
Audusse, E. 352, 373 [4]; 373 [5]
Avdonin, N.A. 467, 470 [43]

Babin, A.V. 3, 50 [2]; 89, 97 [6]; 107, 108, 111,
116–118, 120, 121, 123–127, 131, 134, 144,
149, 153, 157, 159, 166, 170, 175, 176, 183,
184, 187–189, 191 [2]; 191 [10]; 191 [11];
191 [12]; 191 [13]; 191 [14]; 191 [15];
191 [16]; 192 [17]; 192 [18]; 192 [19];
192 [20]; 192 [21]; 192 [22]

Babuška, I. 237, 257 [1]
Badii, M. 269, 319 [5]
Bagolubasky, I.L. 487, 491, 565 [5]
Bahouri, H. 12, 50 [3]
Baiocchi, C. 398, 433, 467, 468, 470 [44];

470 [45]
Baldwin, D. 488, 565 [6]
Ball, J.M. 78, 97 [7]; 119, 159, 183, 192 [23];

192 [24]
Ball, R.C. 253, 259 [43]
Banas, L. 221, 225 [7]
Bankoff, S.G. 204, 227 [69]

569



570 Author Index

Barbu, V. 269, 319 [6]; 397, 419, 457, 468,
469 [5]; 470 [46]; 470 [47]; 470 [48]; 470 [49]

Bardos, C. 89, 97 [8]; 325, 372, 373 [6]; 373 [7];
373 [8]

Barrett, J.W. 214, 217, 225 [8]; 238, 239, 257 [2]
Barrow-Green, J. 105, 192 [25]
Basaran, O.A. 242, 258 [29]
Batchelor, G.K. 60, 97 [9]
Bates, P.W. 212, 217, 219, 225 [1]; 225 [2];

225 [3]; 419, 420, 469 [10]; 469 [11]; 470 [50];
470 [51]

Battaner, A. 67, 69, 97 [10]
Beale, J.T. 10, 12, 26, 50 [4]
Bear, J. 388, 470 [52]; 470 [53]
Bec, J. 3, 52 [82]
Bechtel, S.E. 67, 97 [11]
Becker, E. 66, 67, 97 [12]
Beirão da Veiga, H. 18, 50 [5]; 50 [6]
Belgiorno, F. 66, 97 [13]; 97 [14]
Bellout, H. 65, 97 [15]; 239, 257 [3]
Ben Abdallah, N. 325, 373 [9]; 373 [10]
Bénilan, Ph. 429, 436, 437, 440, 462, 468,

470 [54]; 470 [55]; 470 [56]; 470 [57];
470 [58]; 470 [59]

Benjamin, T.B. 488, 565 [7]
Berestycki, H. 191, 192 [26]
Bergé, P. 106, 192 [27]
Berger, A.E. 398, 436, 470 [60]; 482 [403]
Beris, A.N. 250, 264 [204]
Berkovits, J. 269, 270, 275, 319 [7]
Bermudez, A. 412, 470 [61]
Bernis, F. 213, 225 [9]
Bernstein, B. 234, 257 [4]
Berres, S. 354, 373 [11]
Berselli, L.C. 18, 50 [6]
Berthelin, F. 325, 326, 330, 338, 352, 357, 360,

361, 363, 373 [12]; 373 [13]; 373 [14]; 373 [15]
Berthonnaud, P. 355, 373 [16]
Bertozzi, A. 3–6, 10, 12, 54 [117]
Bertsch, M. 398, 471 [62]; 471 [63]
Besenyei, Á. 319, 319 [8]
Bird, R.B. 235, 257 [5]
Biryuk, A. 109, 192 [28]
Bizhanova, G.I. 398, 471 [64]; 471 [65];

471 [66]
Blanchard, D. 440, 470 [56]; 471 [67]; 471 [68]
Bloom, F. 65, 97 [15]
Blowey, J.F. 214, 217, 220, 225 [8]; 225 [10];

419, 471 [69]
Boas, R. 177, 192 [29]
Bobylev, A.V. 372, 373 [17]; 373 [18]
Boggs, P.T. 467, 484 [466]
Bogovskii, M.E. 74, 97 [16]
Boley, B.A. 388, 471 [70]

Boltzmann, L. 234, 257 [6]
Bonetti, E. 397, 419, 471 [71]; 471 [72]
Bonilla, L.L. 350, 373 [19]
Borodin, M.A. 391, 398, 471 [73]
Borwein, J.M. 468, 471 [74]
Bose, T.R. 69, 97 [17]
Bossavit, A. 391, 449, 467, 471 [75]; 471 [76];

471 [77]; 471 [78]; 471 [79]; 471 [80]
Botchorishvili, R. 352, 373 [20]
Botta, N. 90, 97, 100 [79]
Bouchut, F. 325, 326, 350, 352, 354, 373 [12];

373 [13]; 373 [14]; 373 [21]; 373 [22];
374 [23]; 374 [24]

Bousfield, D.W. 240, 257 [7]
Boussinesq, J. 488, 565 [8]
Brachet, M.E. 3, 43, 50 [7]
Braides, A. 418, 449, 464, 468, 469 [26];

471 [81]; 471 [82]
Brandon, D. 238, 257 [8]
Braun, R.J. 398, 419, 484 [461]
Brebbia, C.A. 467, 484 [470]; 484 [471];

484 [472]
Brenier, Y. 3, 5, 50 [8]; 326, 352, 374 [25];

374 [26]; 374 [27]; 374 [28]; 374 [29]; 374 [30]
Brenner, M.P. 241, 257 [9]
Bresch, D. 75, 85, 96, 97 [18]; 97 [19]; 97 [20];

97 [21]
Bressan, A. 327, 331, 374 [31]
Brevdo, L. 170, 192 [30]
Brézis, H. 34, 50 [9]; 286, 287, 310, 319 [9];

319 [10]; 398, 422, 436, 438, 468, 470 [60];
471 [83]; 471 [84]; 471 [85]; 471 [86];
471 [87]; 471 [88]; 471 [89]

Brice, J.C. 467, 471 [90]
Bridgeman, P.W. 66, 98 [22]
Brimacombe, J.K. 404, 468 [4]; 477 [264]
Bristeau, M.-O. 352, 373 [4]; 373 [5]; 374 [32];

374 [33]
Brochet, D. 212, 225 [11]
Brokate, M. 269, 287, 319 [11]; 404, 467,

471 [91]
Brooks, J.K. 77, 98 [23]
Browder, F.E. 285–287, 301, 312, 319 [10];

319 [12]; 319 [13]; 468, 472 [92]
Brown, R.A. 243, 258 [15]; 467, 472 [93]
Brunovský, P. 121, 127, 192 [31]
Buet, C. 69, 98 [24]
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Roubíček, T. 468, 482 [405]
Rougirel, A. 134, 198 [203]
Roulstone, I. 14, 16, 53 [87]
Rowlands, G. 487, 566 [30]
Rubinstein, B. 221, 227 [73]
Rubinstein, J. 217, 227 [74]
Rubinstein, L. 397, 467, 482 [406]; 482 [407];

482 [408]; 482 [409]; 482 [410]; 482 [411];
482 [412]

Ruggeri, T. 66, 67, 100 [99]; 101 [112]
Rump, T. 221, 227 [70]
Rumpf, M. 221, 224, 226 [33]
Runst, T. 8, 54 [130]
Rutkevich, I.M. 254, 264 [196]
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