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Preface 

Analog automation is a multidisciplinary science that studies techniques, tools 
and technologies for the design and implementation of analog controllers for 
dynamic processes, the controller being a device for automatic correction of possible 
errors between the set point quantity and the corresponding response. 

Therefore, in an uncertain operating environment that is subjected to unknown 
disturbances or unpredictable noise, a dynamic process equipped with an appropriate 
controller can provide good dynamic performances (stability, overshoot, rapidity) 
and static performances (precision, robustness). 

According to the history of automation, the first mechanical controller, known as 
the “water clock”, was invented in Greece by Ktesibios around 270 BC [STU 96]. 
After 23 centuries, in 1956, analog electronic controllers were developed [FRI 82, 
THO 07]. The first computer-aided digital feedback control processes were then 
implemented in major industries in the United States starting from 1950 [BAK 12]. 
Moreover, starting from the 1970s, the digital automation techniques assisted by 
microprocessor and PLC (programmable logic controller) have progressively 
occupied the wide SMI (small and medium-sized industries) sector, which had been 
beyond the reach of these computers until that time. They were, indeed, bulky, 
expensive and difficult to program. Furthermore, they had high maintenance costs 
and were sensitive to industrial environments. 

Nevertheless, after the emergence of the first PC (personal computer) generations in 
the 1980s, followed by the development of microcomputer models featuring 
increasingly high performances at low costs (industrial PC, multimedia PC, PC/pad 
and PC/panel), the range of application of computer-aided digital control technology 
has rapidly extended to SMIs in various fields: manufacturing, textile, food-
processing industry, chemical industry, energy, robotics, telescopic devices, 
avionics, bio-mechatronics, home automation, etc. 
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Given the lack of reference manuals intended to serve as a learning bridge between 
analog and digital control systems, this book will allow the readers to easily master 
analog automation skills and then to rapidly become introduced to the techniques for 
design and simulation of modern PC-aided digital control systems. The book is mainly 
addressed to students and teachers of engineering schools, to teachers’ training 
schools for technical education and to vocational training centers for applied sciences.  

Indeed, readers will discover in this book the following relevant main elements: 

– the stakes of computer-aided control in the set of control technologies for 
dynamic processes; 

– a summary of the theory of analog control systems; 

– a clear presentation of the experimental modeling of dynamic processes, with 
or without input delay; 

– modern tools for the rapid design of optimal PID controllers; 

– techniques for computer-aided synthesis and simulation of digital control 
loops, with a detailed case study of speed and position servomechanisms; 

– methods for the discretization of dynamic process state models; 

– Matlab® programs for teaching purposes, allowing the convenient 
introduction, if needed, of the digital and graphic results presented; 

– a variety of corrected exercises at the end of each chapter. 

The analog and digital control systems presented in this book are the result of the 
continuously enhanced teaching of the “Computer-aided automation of feedback 
control systems” course, which the author has taught since 2000 in the “Electrical 
Engineering” department of ENSET (École Normale Supérieure d’Enseignement 
Technique), a technical higher education school of the University of Douala, and in the 
“Computer Science Engineering” department of ESSET (Écoles Supérieures des 
Sciences et Techniques), scientific and technical higher education schools of Douala 
and Nkongsamba. 

The author acknowledges the favorable effects of the scientific research grant 
offered by MINESUP (Ministry of Higher Education) of Cameroon. It has facilitated 
the access to support and scientific and technical research resources needed for editing 
activities involved in this book project. 
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Introduction 

I.1. Architectural and technological context 

I.1.1. Analog automation 

In automation, dynamic processes are part of a class of analog power systems 
that can be controlled in an open or closed loop. This is why the characteristic input, 
state and output signals of a dynamic process, are continuous time functions. Therefore, 
the architecture of an analog control loop of a dynamic process is homogeneous as 
regards the nature of signals involved, in which case the connection between the controller 
and the dynamic process does not require A/D (analog/digital) and D/A (digital/analog) 
conversion devices of signals involved. 

In practice, the study of analog feedback control systems relies on design 
techniques available in automation, as well as on implementation technologies used 
in analog electronics. Nevertheless, in demanding application fields, analog control 
technology presents technical problems, the most important of which are [MBI 17]: 

– large dimensions (volume, weight), especially for a significant number of 
control loops; 

– aging of the controller components, which can lead to long-term parameter 
variations beyond acceptable thresholds; 

– high sensitivity to noise and disturbances in the environment; 

– lack of flexibility in terms of extension of the control device; 

– complexity of advanced control strategy implementation; 

– poor performance of the analog devices for monitoring, log book development, 
data archiving, etc. 
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I.1.2. Computer-aided control 

A computer-aided control loop is a “hybrid” dynamic system. In fact, it involves 
continuous signals related to the dynamic process, while the signals involved in the 
computer operation are characterized by discrete quantities. In automated process 
engineering, this hybrid nature consequently generates the following new problems: 

– the requirement to install between the computer and the analog process an 
interfacing device for combined A/D (analog/digital) and D/A (digital/analog) 
conversions [BOL 04, MBI 12]; 

– the need to train automation experts in the field of fundamental techniques and 
tools for the study of sampled signals and dynamic systems; 

– the need for the automation experts to adapt to the computer science 
environment; 

– the ongoing retraining of automation professionals faced with the rapid 
evolution of computer technologies and tools for the development of software 
applications for teaching and professional purposes. 

Despite the above-mentioned technical problems, computer-aided controllers 
[FAD 09] offer new perspectives. In the class of digital processors, computers play 
an increasingly key role in industrial automation [MBI 05]. Indeed, modern 
technology for computer-aided control offers the following specific advantages: 

– tremendous possibilities in terms of multitasking, with simultaneous services 
for video processing and virtual instrumentation with data monitoring [MBI 15a, 
MBI 15b]. Moreover, industrial automation computers can also be used for the 
monitoring of industrial LAN (local area network), nano-systems [DUR 15] and 
embedded bio-systems [SAL 16] that are equipped at the field level of PIC 
(programmable integrated circuit) [SHA 13], FPGA (field programmable gate 
array) [MAS 10, JAS 11, ZAH 11, GÜR 16], CPLD (complex programmable logic 
device) [GRO 08] and PLC (programmable logic controller) [BIA 85]; 

– a wide variety of high-performance machine models: standard PCs/laptops, 
PCs/Pads, industrial PCs/laptops with a compact or rackable case and protection 
index of the order of IP68 [PAR 07]; 

– a wide range of ports and extension slots; 

– numerous advanced devices for operator dialog: touchscreen, giant screen and 
mobile terminal; 
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– a wide availability of free device drivers for popular development tools such as 
Visual C++, Visual Basic, Visual C#, Matlab® and LabVIEW. These drivers allow 
a significant reduction of efforts required for the implementation of instrumentation 
and control functions; 

– a wide variety of advanced resources and implementations of new structures of 
intelligent digital controllers; 

– impressive memory capacity of data storage media of programs and data: DVD 
of the order of Go (Gigaoctet), USB drive and memory card of the order of Go and 
internal or external hard disk of the order of To (Teraoctet); 

– huge multitasking possibilities (control loop monitoring, screen, digital control 
processor, virtual instrument, etc.); 

– advanced means for easy realization of remote feedback control systems. 

I.2. Scientific and teaching context 

I.2.1. Analog automation 

The scientific tools used in analog feedback control for the mathematical 
representation of dynamic processes and controllers are: 

– the transfer function (of Laplace variable s) defined in the frequency domain; 

– the continuous state model. 

The analog control structures that can be synthesized in the frequency domain, in 
order to obtain good indicators of closed-loop dynamic and static performances, 
vary from simple proportional controller to PID (proportional–integral–derivative) 
controller, passing through phase-lead or phase-delay controllers. Moreover, the 
control structures that can be synthesized in the space state vary from simple state 
feedback controller to LQR (linear quadratic regulator) controller with partial or full 
state observer, passing through the state controller with full set point tracking error. 

I.2.2. Computer-aided control  

Computer-aided control involves similar scientific constituents and tools, created 
from those available in analog automation. This is the case for: 

– dynamic and static performance indicators; 

– transfer function in z (where z = eTs, T being the sampling period);  
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– discrete PID controller; 

– discrete state model; 

– discrete state feedback; 

– discrete LQR, etc.  

Given these similarities, the purpose of this book can now be stated. 

I.3. Purpose of the book 

This is an original textbook, designed for readers of Master 1 and Master 2 levels 
who are interested in a detailed study of analog automation solutions and in the 
discovery and rapid understanding of the elements of computer-aided control 
technology. 

I.4. Organization of the book’s content 

The book is organized into two parts, each of which is structured in coherent 
chapters.  

Part 1 deals with analog control systems. It is in fact a summary of processes and 
results of the theory of analog control systems. In this part, the models of dynamic 
processes are detailed in Chapter 1, followed, in Chapter 2, by a clear presentation 
of the experimental modeling technique. Finally, Chapter 3 presents a summary of 
analog feedback control systems. 

Part 2 presents techniques for the synthesis and simulation of digital control systems. 
Synthesis elements in the frequency domain of digital control systems are described 
in Chapter 4. Then, Chapter 5 focuses on computer-aided simulations of digital control 
systems. Moreover, Chapter 6 is an introduction to discrete state models of dynamic 
processes. The constituent elements of this part can be generalized in the case of 
digital control systems with more complex architecture [FOU 87, KYR 16]. 

It is worth remembering that the corrected exercises in this book can be found at 
the end of each chapter, in order to consolidate the acquired knowledge. Appendix 1 
provides a table of the z-transforms of simple transfer functions that are commonly 
used in practice for the accurate discretization of transfer functions. Finally, a 
descriptive table of Matlab commands used in the teaching programs presented in 
this book can be found in Appendix 2.  



PART 1 

Analog Feedback Control Systems





1 

Models of Dynamic Processes 

1.1. Introduction to dynamic processes 

1.1.1. Definition, hypotheses and notations 

From an input and output perspective, a dynamic process, as illustrated in 
Figure 1.1, represents a controllable physical system, whose law governing the  
joint evolution in time of characteristic input variables U(t) and output variables  
Y(t), for example, can be algebraically modeled by a differential equation  
[LUE 79]. 

 

Figure 1.1. Controllable dynamic process 

According to the simplifying hypotheses adopted for the mathematical 
representation of the dynamic processes studied in this book, these processes have 
the following traits: 

a) They can be modeled using ordinary differential equations. 

b) They are univariate, or, in other words, U(t) and Y(t) are scalar quantities. 

c) They are of finite order, in which case the highest degree of the differential 
term (of the output quantity) contained in the characteristic dynamic equation is equal to 
n, with 1 ≤ n < ∞. 

Analog Automation and Digital Feedback Control Techniques, First Edition. Jean Mbihi. 
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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d) They have constant parameters, and therefore, the response profile to an input 
signal does not depend on the instant when the input signal is applied. 

e) They are linear in the vicinity of the fixed operating point, which means that 
the dynamic behavior to be studied is additive and homogeneous in the space of 
small variations u(t) of U(t) and y(t) of Y(t). 

f) They are deterministic, in the sense that the characteristic quantities of the 
dynamic behavior are not probabilistic. 

g) They are slightly disturbed, in which case the quantitative effect of an unknown 
disturbance at the output to be controlled is sufficiently limited and it can consequently 
be compensated in closed-loop by a robust control strategy. 

h) They can be with or without pure input delay, in which case τ0 ≥ 0. If τ0 > 0, 
an input quantity applied to the process at instant t has no effect until the previous 
instant t + τ0. This type of pure input delay phenomenon (or dead time) is quite 
present in processes in biology, ecology, transportation, signal processing and 
transmission, etc. 

The basic notations employed are defined as follows: 

– U(t) ϵ :ℜ  main scalar input; 

– Y(t) ϵ :ℜ  scalar output; 

– { }P  U, Y=   : rated operating point; 

– u(t), y(t), w(t) : variations of U(t) and Y(t), respectively, around { }P  U, Y .=    

The following relation can therefore be written: 

u U,  y(t)  Y-YU= − =   [1.1] 

1.1.2. Implications of hypotheses 

Hypotheses (a), (b) and (c) defined in section 1.1.1 entail that the general 
structure of the differential equations of the dynamic processes considered can be 
written as: 

    
0

0 1

n 1 ( )( )  ( )
( ), ..., , ( ), ...,    

m

m

n

n n
d U td Y t d Y tF U t Y t

d t dt dt
τ

τ
−

−
 −

= − 
 

 [1.2] 
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with 0τ : pure delay time or dead time of input U. 

Therefore, the rated operating point { }P  U, Y =    defined by [1.1] is necessarily 

a solution of [1.2]. Consequently, relation [1.2] leads to relation [1.3]: 

    
0

0 1

n 1 ( )( )  ( )
( ), ..., , ( ), ...,    

m

m

n

n n
d U td Y t d Y tF U t Y t

d t dt dt
τ

τ
−

−
 −

= − 
 

    [1.3] 

Hypothesis (e) stated in section 1.1.1 entails that expression [1.2] can be 

linearized around { }P  U, Y =   . Therefore, a first-order Taylor series expansion of 

[1.2], followed by the simplification of the result by replacing the right term of  
[1.2] with the equivalent left term, leads to the linear differential equation [1.4]: 

( ) ( )

( ) ( )

    

  
i 0

n n m ( ) ( )0 0
n n

0

( ) ( )0 0

.( ) ( )
     

( )

F .
                                    

Y(t)

j

j

j

i
U t U t

ii

i

Y t Y t
j

F dd Y t d Y t
dt dt dtd U t

dt P

d
dtd

dt P

τ τ

τ τ

τ
− − −

=

− − −

 
 

∂  
− =     −   ∂    

  
 


∂  
+  

    ∂     












n-1

j 0
 

=









  [1.4] 

Hypothesis (e) also entails that the initial conditions of small variations u(t) and 
y(t) yielded by [1.1] are null, this being due to the additive property in the space of 
small variations. 

1.1.3. Dynamic model: an automation perspective 

From the automation perspective, a dynamic model is a new mathematical 
representation of [1.4], whose algebraic structure can be directly treated by tools 
available in automation. It is the case of Matlab® [ATH 13]. The two types of 
dynamic models commonly used are the transfer function and the state model. 
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1.2. Transfer functions 

1.2.1. Existence conditions 

The existence conditions of the transfer function of a dynamic process from  
[1.4] are dictated by hypothesis (d) defined in section 1.1.1. In other words, the 
parameters of [1.4] are necessarily constant. 

1.2.2. Construction 

Introducing the notations of small variations in [1.4] yields: 

 

( ) ( )

( ) ( )

  

 
i 0

n m ( )0
n

0

n-1 ( )0

j 0

 

.( )
        

( )

F .
                           

Y(t)

i
u t

ii

i

j u t
jj

j

F dd y t
dt dtd U t

dt P

d
dtd

dt P

τ

τ

τ
−

=

−

=

 
 

∂  
=     −   ∂    

  
 
 

∂ 
+  

  ∂     









 [1.5] 

The application of Laplace transform to [1.5] yields: 

 

( )

( )

i 0

m
0

0

n-1

j 0

.
( )    ( )   

( )

F .
                  ( )

Y(t)

       

n i
i

i

j
j

j

s
s

F
Y s s U s e

d U t
dt P

s Y s
d

dt P

τ

τ

−

=

=

 
 

∂ 
=  

 − ∂    
  
 
 

∂ 
+  

  ∂     









 [1.6] 
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Then the factorization of terms common to U(s) and Y(s) in [1.6] leads to 
relation [1.7]: 

( ) ( )
i 0

n-1 m
0

0j 0

F . .
 -   ( )    ( )

Y(t) ( )

sjn i
j i

j i

S
F

s Y s s U s e
d d U t

dtdt P P

τ

τ
−

==

    
    

∂ ∂    =       −    ∂ ∂              

 
 

 [1.7] 

Thus, in the frequency domain, the linear structure obtained for the small 
variations in the vicinity of the rated point can be written: 

( )

( )

i 0

m

0

0

n-1

j 0

.
 

( )

( )     ( )   

F .
 -   

Y(t)
j

i
i

i

n
j

j

s

S

F
s

d U t
dt PY s U s e

s
d

dt P

τ

τ=

−

=

 
 

∂ 
  − ∂     =

 
 

∂ 
   ∂     









 [1.8] 

Considering that:  

( ) ( )
0

. F .
,       

( ) Y(t)i j

ji

F
bi aj

d U t d
dtdt PP

τ
∂ ∂

= = −
   −

∂∂         

 [1.9] 

the expression of the transfer function deduced from [1.9] can be written as: 

( )
( )  

( )c
Y sG s
U s

=  [1.10]  

with m ≤ n (feasibility condition). 
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1.2.3. General structure of a transfer function 

The general structure of a transfer function [1.10] of a dynamic process, which is 
deduced from [1.8] and [1.9], is written as: 

( )cG s = 0

1
1 1 0

1
1 1 0

...( )

( ) ...

m m c
sm m

n n
n

b s b s b s bY s e
U s s a s a s a

τ
−

−−
−

−

+ + + +
=

+ + + +
 [1.11] 

1.2.4. Tools for the analysis of the properties of transfer functions 

The main specialized tools for the analysis of properties of transfer functions are: 

– step response diagrams, for the measurement of static gain, critical times (rise, 
response), overshoot, accuracy, etc.; 

– Bode gain and phase diagrams, for the observation and estimation of static gain, 
cut-off frequencies, resonance frequencies and gain, bandwidth, etc.; 

– Nyquist plot, for the observation and estimation of the gain margin (gain for 
which the phase is equal to – π), phase margin (phase for which the gain is equal to 
unity), resonance gain, etc. 

These tools and many others are at present integrated into automatic CAD 
(Computer-Aided Design) tool ranges, such as Sisotool, LTIview and Matlab/ 
Simulink, in order to reduce the computer-aided design and simulation efforts of 
automatic feedback control systems. 

1.2.5. First- and second-order transfer functions 

First- and second-order transfer functions have great practical value. Indeed, their 
characteristic properties are analytically known. Moreover, they can be combined for 
the synthesis of transfer functions of order higher than 2. 

A first-order (without zero) transfer function can be written as: 

( )
( )

( ) 1
s

c

KY sG s
U s sτ

= =
+

 [1.12] 

with: 

– Ks: static gain; 

– τ: time constant.  
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Therefore, the response y(t) of [1.12] to an input step signal U(s) = E0/s, obtained 
from the inverse Laplace transform of Y(s) = Gc(s) U(s), can be written as: 

0

0

0 0

0 if   

( )   
1 if  t

t

s

t

y t
K E e

τ
τ

τ

τ
−

−

<


 =  − ≥   
 

 [1.13] 

For a second-order system, it can be written: 

2

2 2

( )
( )

( ) 2
s n

c
n n

KY sG s
U s s s

ω
ξω ω

= =
+ +

 [1.14] 

with: 

– Ks: static gain; 

– ωn : natural angular frequency; 

– ξ : damping coefficient. 

In this case, the inverse Laplace transform of Y(s) leads to equation [1.15], y(t) for 
a step input U(s) = E0/s [KAT 90]: 

1:   ( )
0

( ) 20 12 11 sin 1 ( ) tan
021

 1:      ( ) 1 (1 )

 1:   ( )  
0

2 21 1

1
2 22 1 1

y t K Es
tne tn

tny t e tn
y t K Es

t tn n n n
e en

n n n n

ξ

ξ ω τ
ξ

ω ξ τ
ξξ

ω
ξ ω

ξ

ξω ω ξ ξω ω ξ
ω

ξ ξω ω ξ ξω ω

< =

− −   −  −  − − − +      −    

−
= = − +

> =

   − + − − − −   
   

+ −
− + − − 2 1ξ















              −        

 [1.15] 
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Figure 1.2 presents the examples of graphic profiles of responses to a step E0 
(with y(∞) = Ks E0 = 1) of simple dynamic systems. Then Figure 1.3 presents the 
corresponding Bode diagrams. 

 

Figure 1.2. Step response to simple dynamic models. For a  
color version of this figure, see www.iste.co.uk/mbihi/automation.zip 
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Figure 1.3. Bode diagrams of simple dynamic models. For a  
color version of this figure, see www.iste.co.uk/mbihi/automation.zip 
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Moreover, Table 1.1 summarizes the basic characteristic properties that result in 
each case. 

Finally, the damped model of n identical poles (without zero) can be written in 
the following form: 

0

( )
( )

( ) (1 )
s

c n

KY sG s
E s sτ

= =
+

 [1.16] 

It is important to note that, in experimental modeling, the basis of well-known 
graphic profiles, summarized in Figure 1.2, is an important source of inspiration 
when choosing an appropriate structure of representation of a real dynamic process to 
be modeled. This important remark will be revisited in chapter 2. 

Properties First-order process Second-order process 
Static gain Ks Ks 

Bandwidth (cut-off 
frequency) 

1

2
fb π τ

=  2 4 21 2 4 4 2
2

nfb
ω

ξ ξ ξ
π

= − + − +  

Overshoot – log( )
21

d ξ π

ξ
= −

−
 if 1ξ <  

Rise time – 21
Tm

n

π

ω ξ
=

−
 if 1ξ <  

Response time  
at r % 

100
log

100
Tr

r
τ  =  − 

 

100
log

(%)
rTr
nξ ω

 
 
 =  

Gain margin gm = +∞  gm = +∞  

Phase margin + 90° – 

Table 1.1. Basic properties of dynamic processes of first and second orders 

1.3. State models 

1.3.1. Definition 

The state X(t) of a dynamic process designates a quantity of information that is 
sufficient to predict at each instant t its future behavior. Figure 1.4 presents the 
variables of a dynamic process described in the state space. 
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Figure 1.4. Variables of a dynamic process in the state space 

In fact, the state model of a dynamic process corresponds to a new representation 
of [1.2] in a state space χ. A simple technique for building a state model from  
[1.2] involves drawing up an operational scheme, then making the appropriate 
choice of state variables, in order to write the state equations of the new model. It can 
already be anticipated at this stage that, based on [1.2], it is possible to build an infinity 
of state model representations of a dynamic process. 

1.3.2. Illustrative example 

Let us consider, without any loss of generality, a simplified case of [1.2], given 
by [1.17]: 

 

0 

n 1

n 1

( ) ( ) ( )
( ), ( ), , ...,

n

n
d Y t dY t d Y tF U t Y t

dtdt dt
τ

−

−

 
= − 

 
 [1.17] 

In these conditions, Figure 1.5 represents the operational calculus scheme of 
[1.17], which is obtained by means of simple algebraic operators (integrators, 
adders, etc.). For the sake of clarity, the notation Y(k)(t) = dkY(t) / dtkk = 1, 2, …, n 
has been adopted in this figure. 

 

Figure 1.5. Operational calculus scheme for a dynamic model 
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Let X1(t), X2(t), …, Xe(t) be the choice of state variables indicated in this scheme 
and let us consider X(t) = [X1(t) X2(t) … Xe(t)]T. In these conditions, a new 
representation of [1.17] from Figure 1.5 is given by [1.18]: 

1

2

2
3

0

1

( )

( )
( )

( )
( )

...                         (a)
...

( ( ), ( ), )
( )

( ) ( )                                                         

n

dX t
dt X t

dX t X t
dX t dt

dt

F X t U t tdX t
dt

Y t X t

τ

 
 

  
  
  
  = =
  
  
   −  

  
=              (b)   















 [1.18] 

At this stage, it is therefore important to note that the choice of state variables for 
a dynamic process is not unique, and that some chosen states may be devoid of physical 
sense. Moreover, the elaboration of nonlinear state model [1.18] from [1.17] does not 
require linearity and time-invariance hypotheses. 

1.3.3. General structure of the state model 

The general structure of the state model of a univariate and time-invariant 
dynamic system can be written as: 

0

0

( )
( ( ), ( ), )

( ) ( ( ), ( ), )

dX t f X t U t t
dt

Y t h X t U t t

τ

τ

 = −

 = −

 [1.19] 

with: 

– X(t): state variable (dimension n); 

– U(t): scalar command quantity; 

– Y(t): scalar output quantity (dimension p); 

– f(.): vector function (generally nonlinear); 

– h(.): scalar function (generally nonlinear). 

Thus, in contrast to the dynamic models described by transfer functions, state 
representations are a less restrictive approach to modeling.  
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Indeed, modeling in state space facilitates the study of: 

– a wide variety of types of processes: univariate or multivariable, linear or 
nonlinear, time-variant or time-invariant, deterministic or stochastic; 

– changes in state representation, with the purpose of elaborating canonical state 
models that are easier to handle and to analyze; 

– characteristic properties of stability, controllability, stabilizability, observability 
and detectability; 

– advanced structures of controllers. 

It is nevertheless worth mentioning that the practical use in real time of a state 
model requires real state sensors or state observers otherwise. 

1.4. Linear state models with constant parameters 

There is great practical interest in linear state models with constant parameters. 
Indeed, the study of more complex state models requires knowledge of their properties. 

1.4.1. Linearization-based construction 

A linear state model can be elaborated by applying Taylor series expansion to  

[1.19] in the vicinity of an operating point P  = ( ,U  ,X  Y ). Indeed, given u(t), x(t) 
and y(t), the corresponding small variations in U(t), X(t) and Y(t), respectively, 
around the operating point, defined by [1.20]: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x t X t X t
u t U t U t
y t Y t Y t

 = −


= −
 = −





 [1.20] 

then the Taylor series expansion of [1.1] of [1.19] in the constant parameter 
hypothesis leads to [1.21], and then to [1.22]: 

0
0

0
0

( ) (.) (.)
( , ) ( ( ) ) ( ( ) ) 

( ) ( )

(.) (.)
( ) ( , ) ( ( ) ) ( ( ) )

( ) ( )

dX t f ff X U X t X U t U
dt X t U tP P

h hY t h X U X t X U t U
X t U tP P

τ
τ

τ
τ

   ∂ ∂
= + − + − −   ∂ ∂ −   


  ∂ ∂ = + − + − −   ∂ ∂ −   

   
 

   
 

 [1.21] 
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0
0

( ) (.) (.)
( , ) ( ( ) ) ( ( ) )  

( ) ( )

                                                                                                 

(.)
( ) ( , )

(

dX t f ff X U X t X U t U
dt X t U tP P

hY t h X U
X t

τ
τ

  ∂ ∂
− = − + − −  ∂ ∂ −   

∂
− =

∂

   
 

 
0

0

(.)
( ( ) ) ( ( ) )

) ( )

hX t X U t U
U tP P

τ
τ






    ∂ − + − −   ∂ −   

 
 

  [1.22] 

Since the operating point P is necessarily a solution of [1.23]: 

( )
( , )     

Y(t)  ( , )

dX t f X U
dt

h X U


=


 =

  

  
 [1.23] 

then the insertion in [1.22] of the terms on the left of [1.23] yields [1.24]: 

0
0

0
0

( ) ( ) (.) (.)
( ( ) ) ( ( ) )

( ) ( )( ) ( )

(.) (.)
( ) ( )) ( ( ) ) ( ( ) )

( ) ( )( ) ( )

dX t dX t f fX t X U t U
dt dt X t U tP t P t

h hY t Y t X t X U t U
X t U tP t P t

τ
τ

τ
τ

   ∂ ∂
− = − + − −   ∂ ∂ −   


  ∂ ∂ − = − + − −   ∂ ∂ −   

  
 

  
 

 [1.24] 

1.4.2. Structure of a linear state model with constant parameters 

A linear state model with constant parameters, obtained by inserting in [1.24] the 
small variations defined by [1.20], can be written as: 

0

0

( ) (.) (.)
( ) ( )

( ) ( )

(.) (.)
( ) ( )

( ) ( )

dx t f fx t u t
dt X t U tP P

h hy x t u t
X t U tP P

τ

τ

    ∂ ∂
= + −    ∂ ∂   


   ∂ ∂ = + −    ∂ ∂   

 

 

 [1.25] 

Finally, considering that:  

(.) (.)
,

( ) ( )

(.) (.)
,

( ) ( )

c c

c c

f fA B
X t U tP P
h hC D
X t U tP P

    ∂ ∂
= =    ∂ ∂   


   ∂ ∂ = =    ∂ ∂   

 

 

 [1.26] 
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then the linear state model of a dynamic process with constant parameters is given 
by [1.27]: 

0

0

( )
( ) ( )

( ) ( )

c c

c c

dx t A x t B u t
dt

y C x t D u t

τ

τ

 = + −

 = + −

 [1.27] 

The parameters of [1.27] have the following significance: 

– Ac: state matrix of order n x n; 

– Bc: input coupling gain (column vector of order n x 1); 

– Cc: output coupling gain (line vector of order 1 x n); 

– Dc: direct input to output transfer gain (scalar). 

Moreover, the descriptive block diagram of a state model described by [1.27] is 
represented in Figure 1.6. 

 

Figure 1.6. Block diagram of a linear state model with constant parameters 

At this point, it is important to mention that the application of Laplace transform 
to [1.27], followed by the elimination of X(s) between the state and output equations, 
then by the factorization of terms in U(s) and Y(s), leads to a transfer function given  
by [1.28]: 

( )( ) 0
1

 
( )

(  )
( )

– s
c n cc c c

Y sG C s I A Bs
U s

D e τ− −+= =  [1.28] 



18     Analog Automation and Digital Feedback Control Techniques 

Thus, it becomes clear that the transfer function of a linear dynamic process with 
constant parameters represents the controllable and observable part of that process. 
In these conditions, the numerator and the denominator of the rational part of  
[1.28] should nevertheless have no common roots. 

1.4.3. Properties of a model without pure input delay (τ0 = 0) 

The basic properties of [1.27] with (τ0 = 0) are: 

– stability; 

– controllability; 

– stabilizability; 

– observability; 

– detectability. 

An in-depth study of these properties is explained in detail in the theory of linear 
dynamic systems [CHE 84]. 

1.4.3.1. Stability 

In the internal sense, stability designates the ability of a dynamic system to 
return to the equilibrium state after a transient disturbance. 

The stability test of [1.27] is positive if all the eigenvalues of Ac, which coincide 
with the roots of the characteristic polynomial, have negative real parts. Otherwise, the 
dynamic process model is not stable. 

1.4.3.2. Controllability 

Controllability designates the property of existence of a command U(t) allowing 
[1.27] to evolve in a finite time from an initial state x(t0) to a final state x(tf). 

The controllability test of [1.27] is positive if one of the following equivalent 
conditions is satisfied: 

– rank of the controllability matrix: 

2 1... n
C c c c c c c cM B A B A B A B− =    [1.29] 

is equal to n; 
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– For any eigenvalue λ of Ac, the rank of the associated matrix: 

[ ]O n c cM I A Bλ λ= −  [1.30] 

is equal to n.  

Otherwise, [1.27] is uncontrollable. 

1.4.3.3. Stabilizability 

A dynamic model is stabilizable if it is not controllable and if all uncontrollable 
eigenvalues of Ac are stable (positive real part). 

1.4.3.4. Observability 

Observability designates the property of reconstruction in finite time of the state 
x(t0) from any reachable state x(ta), knowing the command U(t) that has generated 
the passage of [1.27] from the initial state x(t0) to x(ta). 

The observability test of [1.27] is positive if one of the following equivalent 
conditions is met: 

– Rank of the observability matrix: 

2

1

...

c

c c

O c c

n
c c

C
C A

M C A

C A −

 
 
 
 =
 
 
 
 

 [1.31] 

is equal to n; 

– For any eigenvalue λ of Ac, the rank of the associated matrix: 

n c
O

c

I A
M

Cλ

λ − 
=  
 

 [1.32] 

is equal to n. 

Otherwise, [1.27] is not observable. 
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1.4.3.5. Detectability 

A dynamic model is detectable if it is not observable and if all unobservable 
eigenvalues are stable (positive). 

1.5. Similarity transformation 

The similarity transformation of a state model defined by [1.33]: 

0

0

( )
( ) ( )

( ) ( )

c c

c c

dx t A x t B u t
dt

y C x t D u t

τ

τ

 = + −

 = + −

 [1.33]  

enables the creation of a new state representation equivalent to [1.33] by means of a 
regular matrix P of linear transformation z(t) = Px(t), where z(t) becomes the new 
state vector considered. 

Thus, knowing that x(t) = P– 1(t) z(t), after arrangement and simplification of 
terms the state model [1.33] becomes: 

0
1

1
0

( )
( ) ( )

( ) ( )

Pc c

Pc c

dz t PA z t P B u t
dt

y C x t D u t

τ

τ

−

−

 = + −

 = + −

 [1.34] 

Considering 1 1
, , ,c c c c cP Pc c cA PA B P B F P F C C− −= = = =   , then [1.34] becomes: 

0

0

( )
( ) ( )

( ) ( )

c c

c c

dz t A z t B u t
dt

y C x t D u t

τ

τ

 = + −

 = + −

 


 [1.35]  

Thus, [1.33] and [1.35] are similar state representations. Moreover, among all 
possible similarity transformations, the most interesting in practice are those that 
lead to canonical structures. 

Indeed, canonical structures are easier to treat and analyze. It is, for example, the 
case of Jordan canonical structures, for which the columns of matrix Q = P– 1 are 
formed of generalized eigenvectors in Jordan form associated with the eigenvalues 
of matrix Ac. 
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1.6. Exercises and solutions 

Exercise 1.1. 

A dynamic process, with U(t) as input quantity and Y(t) as output quantity, is 
modeled by the following differential equation: 

( ) 0

( )
sin ( ) 2 ( )

dY t Y t U t
dt

τ= + −  

with τ0 > 0. 

1) What does the parameter τ0 represent? 

2) What are the structural properties of this dynamic system? 

3) Prove that a nominal profile of the said dynamic system is given by: 

( ) 100 ,Y t π=  
( )

0
dY t

dt
=


 and 0

sin (100 )
( )  

2
U t

πτ− = −  

4) Find the law of linear approximation around this nominal profile as a function 
of small variations y(t), u(t) of the quantities Y(t) and U(t), respectively. 

Solution – Exercise 1.1. 

The given differential equation can be written as: 

( ) 0

( )
sin ( ) 2 ( )

dY t Y t U t
dt

τ= + −  

1) Parameter τ0 represents the pure input delay u(t). 

2) Structural properties: this dynamic process is: 

- deterministic; 

- univariate; 

- with pure input delay; 

- with constant parameters; 

- nonlinear. 
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3) Since ( ) 100 ,Y t π= ( )
0

dY t
dt

=


, 0

sin(100 )
( )

2
U t πτ− = − , it is then sufficient 

to verify that the profile thus given is a particular solution of the proposed differential 
equation. It is indeed easy to verify that: 

( ) 0

sin(100 ) ( )
sin ( ) 2 ( ) in(100 ) 2 0

2

dY tY t U t s
dt

πτ π+ − = − = =
   

Therefore, the given nominal profile is a solution of the proposed differential 
equation. 

4) Law of linear approximation: 

Let u and y be the respective variations of U(t) and Y(t) around the nominal 
profile: 

( )

( )

0
0

0 ( )( )

0

0 0

sin ( ) ( )( )
( ) 2 ( )

( ) ( )

         cos ( ) ( ) 2 ( )

         cos(100 ) ( ) 2 ( ) ( ) 2 ( )

P tP t

Y t U tdy t y t u t
dt Y t U t

Y t y t u t

y t u t y t u t

τ
τ

τ

τ

π τ τ

∂ ∂ −
= + −

∂ ∂ −

= + −

= + − = + −



  

Exercise 1.2. 

The response y(t) of a dynamic operator with constant parameter(s), under a Dirac 
unit impulse δ(t), applied at instant t0 = 0, corresponds to Figure 1.7: 

 

Figure 1.7. Response of a dynamic system with input δ(t) 

It should be recalled that δ(t) = 1, if t = 0, and δ(t) = 0 otherwise. 

1) What is the value of the input dead time?  

2) Find the expression of y(t). 
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3) Find the transfer function of the system. 

4) Represent the response of the same system when the same impulse is applied 
again at instant t2 = 4 s. 

Solution – Exercise 1.2. 

1) The value of the input dead time is τ0 = 0 s. 

2) Expression of y(t): 

y(t) = u(t) – u(t – 1), where u(t) designates the unit step function. 

3) Transfer function B(s) of the system: 

Knowing that function B(s) corresponds to the Laplace transform of the pulse 
response, it can be written: 

B(s) = L(y(t)) = L(u(t) – u(t – 1)) = 1/s – e– 2s/s = (1 – e – s)/s 

4) Response when the same impulse is applied once again after 4 s: starting from 
the instant 4 s, the profile of y(t) represented in Figure 1.8 is unchanged, since the 
system is time invariant. 

 

Figure 1.8. Profile of y(t) 

Exercise 1.3. 

A dynamic system is described by the differential equation: 

3 2
( )

3 2

( ) ( )
2 4 ( ) ( 2)dY t

dt
d Y t d Y t Y t U t

dt dt
− − − = −  
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with: 

– U(t): input quantity; 

– Y(t): output quantity. 

1) What are the structural properties of this dynamic system? 

2) Establish the corresponding operational calculus scheme. 

3) Given the state variables X1(t) = Y(t), X2(t) = Y(1)(t) and X3(t) = Y(2)(t), find 
the state model of the system. 

Solution – Exercise 1.3. 

The given differential equation can be written as: 

3 2
( )

3 2

( ) ( )
2 4 ( ) ( 2)dY t

dt
d Y t d Y t Y t U t

dt dt
− − − = −  

1) Structural properties of this dynamic system:  

- univariate; 

- linear; 

- with constant parameters; 

- deterministic. 

2) Operational calculus scheme (see Figure 1.9). For the sake of clarity, the 
relation Y(k)(t) = dkY / dtk has been written for k = 1, 2 and 3.  

 

Figure 1.9. Operational calculus scheme 
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3) System state model with state variables X1(t) = Y(t), X2(t) = Y(1)(t) and 
X3(t) = Y(2)(t): 

Based on the scheme, the following relations can be written: 

1 2
2 3

3
3 2 1

( ) ( )
( ),   ( ),  

( )
( ) 2 ( ) 4 ( ) ( 2)

dX t dX t
X t X t

dt dt
dX t

X t X t X t U t
dt

= =

= + + + −
 

Therefore: 

1

1

2
2

3
3

( )

0 1 0 ( ) 0
(( )( )

0 0 1 ( ) 0 ( 2)

4 2 1 ( ) 1
( )

dX t
dt X t

dX tdX t X t U t
dt dt

X tdX t
dt

 
 
       
       = = + −       
             
  

 

Exercise 1.4. 

A simple pendulum schematized in Figure 1.10 is subjected to a motor torque 
Cm(t). 

 

Figure 1.10. Schematic representation of a simple pendulum 

Parameters R and m denote the length and the estimated point mass, respectively, 
Kf and g being the friction coefficient and the gravitational acceleration, 
respectively. 
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Considering X = Ɵ (motion angle) as an angular position variable, the dynamic 

behavior of this pendulum is given in these conditions by the following differential 
equation: 

2
2

( )

2

( )
sin( ( )) ( )f m

t dX tdXm R K m R g X t C t
dtdt

+ + =  

1) What are the structural properties of this differential equation? 

2) Using the small variations around the rated operating point defined by the 

respective quantities (2) 0,X =  (1) 0,X =  / 4X π=  and ( ) 2 / 2mC m g R= , verify 

that this rated operating point belongs to the trajectory of the angular motion of this 
pendulum. 

3) Find the equivalent linear equation in the vicinity of the rated point. 

4) Calculate the expression of the transfer function corresponding to the output 
Y(t) = X(t). 

5) Find the expression of the static gain Ks of this pendulum. 

Solution – Exercise 1.4. 
2 (2) (1)( ) ( )

sin( ( )) ( )

f

m

m R X t K X t
m R g X t C t

+

+ =
 

1) Structural properties of this differential equation: 

– univariate; 

– nonlinear; 

– time-invariant; 

– deterministic. 

2) Verification of the rated operating point defined by the respective quantities 
(2) 0,X = (1) 0,X =  / 4X π=  and ( ) 2 / 2mC m g R= . 

Indeed, the following relation can be written: 

2 (2) (1)

0 0 2

2

( ) ( ) sin( ( )) sin( / 4) ( )f mm R X t K X t m R g X t mgR C tπ+ + = =   
    
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3) The dynamic equation of the system can be written in the form: 

(2) (1) (1)

2 2

( )
( ) ( ) sin( ( )) ( ( ), ( ), ( ))

f m
m

K C tgX t X t X t F X t X t C t
RmR mR

= − − + =  

Therefore: 

( )

( )

( )

( ) 2

2

.

( )

.
cos( ( )) 0

( )

. 1
 

( )

f
j

m

KF
X t m RP
F g X t
X t RP
F
C t m RP

∂
= −

∂

∂
= − =

∂

∂
=

∂








 

Therefore: 

(2) (1)

2 2

( )
( ) ( ) cos( ( )) ( )

f mK c tgx t x t X t x t
RmR mR

= − − +  

Then: 

(2) (1)

2 2

( )2
( ) ( ) ( )

2
f mK c tgx t x t x t

RmR mR
= − − +  

4) Expression of the transfer function corresponding to Y(t) = X(t): by applying 
Laplace transform, we obtain: 

2

2

2

1/ ( )( )
( )

( ) 2

2

c
fm

m RY sG s
KC s gs s

RmR

= =
+ +

 

5) Expression of static gain: 

21/ ( ) 2 1
(0)

2 2

2

cs
m R

K G
g m Rg

R

 
= = =  

 
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Exercise 1.5. 

Let us consider a robotic axis represented in Figure 1.11. The motor torque F(t) 
of the actuator drives the moving arm through an elastic transmission connection. 

 

Figure 1.11. Schematic representation of a robotic axis 

The kinematic equations of motion of this robotic axis, as a result of the 
application of Lagrange laws, are considered to have the following form: 

2
2 2

2

1
1 1 22

1 1

2

2
12

( )
sin( ( )) (( ( ) ( ))

( ) ( )
(( ( ) ( ))

d t m Kg L t t t
J Jdt

d t F tK t t
J Jdt

θ
θ θ θ

θ
θ θ


 = − − −




= − +


 

with:  

– L: length of the driven arm; 

– m: estimated point mass of the driven arm; 

– K: stiffness coefficient of the elastic connection; 

– g: gravitational acceleration; 

– J1: moment of inertia of the actuator shaft; 

– J2: moment of inertia of the arm. 

1) Represent the operational calculus scheme of this dynamic system. 

2) Let us consider the state variables 1 1( ) ( ),X t tθ= 1
2

( )
( ) ,

t
X t

dt
θ

=  

3 2( ) ( ),X t tθ=  2
4

( )
( ) .

d t
X t

dt
θ

=  Find the corresponding nonlinear state model. 
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3) Find the equivalent linear state model around a rated point P = [ 1 0X =
2X

3X  4X F ]T. 

Solution – Exercise 1.5. 

The kinematic equations of motion of the robotic axis are: 

(2)
1 1 1 2

1 1

(2)
2 1 2

2 2

( ) sin( ( )) (( ( ) ( ))

( )
( ) (( ( ) ( ))

m Kt g L t t t
J J

F tKt t t
J J

θ θ θ θ

θ θ θ

 = − − −

 = − +


 

1) The operational calculus scheme of the robot corresponds to Figure 1.12. 

 

Figure 1.12. Operational calculus scheme of the robot 

2) Let us consider the state variables: 

1 1( ) ( ),X t tθ=  (1)
2 1( ) ( ),X t tθ=  3 2( ) ( ),X t tθ=  (1)

4 2( ) ( ).X t tθ=   

 

 



30     Analog Automation and Digital Feedback Control Techniques 

The nonlinear state model is written as: 

2 2

1 1

1
2

2
sin( 1) ( 1 3)

3
4

4( ) 1
( 1 3) ( )

dX X
dt

dX m Kg L X X X
dt J J

dX X
dt

dX t K X X F t
dt J J

 =

 = − − −

 =


 = − +


 

3) Find the equivalent linear state model around the rated point P  = [ 1X 2X 3X  

4X F ]T. The equivalent linear model around the point P is written as follows, as a 

function of small variations x1, x2, x3, x4 and f : 

2 2

1 1

1
2

2
1 3

3
4

4( ) 1
( 1 3) ( )

dx x
dt

m g L Kdx Kx x
dt J J

dX x
dt

dX t K x x f t
dt J J

 =


  +
= − + 

  
 =

 = − +

 

Exercise 1.6. 

List the hypotheses required for the construction of a dynamic model of LTI 
type.  

Solution – Exercise 1.6. 

List of hypotheses required for the construction of an LTI model of a dynamic 
process: 

– rated profile ( )P t  is a fixed point P ; 

– linear profile in the vicinity of the rated point P ; 

– time-invariant process; 

– null initial conditions for small variations. 
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Exercise 1.7. 

A deterministic LTI dynamic process with input delay admits u(t), x(t) and y(t) as 
input, state and output variables, respectively. It can be modeled by a transfer 
function or by a state model. 

1) Write the general expression of this transfer function. 

2) Write the general expression of this state model. 

3) List the weaknesses of an open-loop control law of this process. 

Solution – Exercise 1.7. 

1) General structure and interpretation of the transfer function: 

( )cG s = 0

1
1 1 0

1
1 1 0

...( )

( ) ...

m m
sm m

n n
n

b s b s b s bY s e
U s s a s a s a

τ
−

−−
−

−

+ + + +
=

+ + + +
 

Gc(s) represents the Laplace transform of the pulse response. 

2) General structure and interpretation of the state model: 

0

0

( )
( ) ( )

( ) ( )

c c

c c

dx t A x t B u t
dt

y C x t D u t

τ

τ

 = + −

 = + −

 

with:  

– Ac : state matrix; 

– Bc : input matrix; 

– Cc : output matrix; 

– Dc : direct input-to-output transfer matrix. 

3) List of weaknesses of an open-loop control law of this process: 

- poor performances in ideal conditions (without disturbance or noise); 

- sensitivity to disturbances; 

- sensitivity to noise. 
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Exercise 1.8. 

The transfer function Gc(s) of a dynamic process can be used to find, either 
directly or by calculation, several intrinsic quantities of the modeled process. Which 
ones? 

Solution – Exercise 1.8. 

The intrinsic quantities of Gc(s) are: 

– order of the rational part; 

– input delay; 

– zeros; 

– poles; 

– static gain. 

Exercise 1.9. 

What are the characteristic quantities of the transfer function Gc(s) of a dynamic 
process, which can be estimated (if they exist) from the Bode magnitude and phase 
diagrams? 

Solution – Exercise 1.9. 

The characteristic quantities of the transfer function Gc(s) that can be estimated 
(if they exist) from Bode diagrams: 

– static gain; 

– order; 

– resonance frequency; 

– bandwidth; 

– gain margin; 

– phase margin. 
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Exercise 1.10. 

Let us consider the transfer function Gc(s) = 1000/(s2 + 4s + 100). 

1) Determine the static gain. 

2) Determine the natural frequency ωn and the damping coefficient ξ of Gc(s). 

3) Sketch the Bode diagrams of Gc(s). 

Solution – Exercise 1.10. 

Let us consider Gc(s) = 1000/(s2 + 4s + 100). 

1) Static gain: 10. 

2) Natural frequency ωn = 10 rad/s and damping coefficient ξ = 0.2. 

3) The Bode diagrams of Gc(s) are represented in Figure 1.13. 

 

Figure 1.13. Bode diagrams of Gc(s) 
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Exercise 1.11. 

The state model of a dynamic process is given by: 

1
1 2

2
2

1

( )
2 ( ) ( )

( )
( ) 10 ( )

( ) ( )

dx t
x t x t

dt
x t

x t u t
dt

y t x t

 = − +

 = − +

=

  

with: 

– u: input quantity; 

– (x1, x2): state quantity; 

– y: output quantity. 

1) Deduce the characteristic matrices {Ac, Bc, Cc, Dc} of this model. 

2) Analyze the stability property. 

3) Analyze the controllability property. 

4) Analyze the observability property. 

5) Let us consider the linear and reversible state transformation ,z P x=  with 

3 1
,

5 2
P  

=  
 

 [ ]1 2 ,
Tx x x=  and [ ]1 2 .

Tz z z=  Find the new state model associated 

with z. 

Solution – Exercise 1.11. 

The state model of a dynamic process is given by: 

1
1 2

2
2

1

( )
2 ( ) ( )

,
( )

( ) 10 ( )

( ) ( )

dx t
x t x t

dt
x t

x t u t
dt

y t x t

 = − +

 = − +

=

 

1) Characteristic matrices {Ac, Bc, Cc, Dc} of this model are: 

[ ]2 1 0
; ; 1 0 ; 0

0 1 10 c cAc Bc C D
−   

= = = =   −   
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2) Stability property: 

The eigenvalues (poles) {–2, –1} of Ac are real and negative. The system is 
therefore stable. 

3) Controllability property: 

The controllability matrix 
0 10

10 10
Ctr  

=  
 

 is regular. The system is therefore 

controllable.  

4) Observability property: 

The observability matrix 
1 0

2 1
Obs  

=  − 
 is regular, the system is therefore 

observable. 

5) Let us consider ,z P x=  with 
3 1

,
5 2

P  
=  
 

 [ ]1 2 ,
Tx x x=  and [ ]1 2 .

Tz z z=  

If [ ]2 1 0
, 1 0

0 1 10
A B C

−   
= = =   −   

, then the previous state model can be 

written in the form: 

( )
( ) ( )

( ) ( )

dx t A x t B u t
dt

y t C x t

 = +

 =

 

Then, knowing that 1 ,x P z−=  this yields 1/ ( ) /dx dt P dz t dt−=  and the new 

state model in z is written as: 

1

1

( )
( ) ( )

( ) ( )

dz t PAP z t PB u t
dt

y t C P z t

−

−

 = +

 =

 

Or: 

[ ]

22 12 10( )
( ) ( )

35 19 20

( ) 2 1 ( )

dz t z t u t
dt

y t z t

 −   
= +    −   

 = −
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Exercise 1.12. 

The state model of a univariate dynamic process is given by: 

1
1 2

2
2

1

( )
2 ( ) ( )

,
( )

( ) 10 ( 0, 2)

( ) ( )

dx t
x t x t

dt
x t

x t u t
dt

y t x t

 = − +

 = − + −

=

 

with: 

– u: input quantity; 

– [ ]1 2

Tx x x=  : state quantity; 

– y: output quantity. 

1) Find the equivalent transfer function G(s). 

2) Write the differential equation governing u(t) and y(t) using the identified 
transfer function. 

Solution – Exercise 1.12. 

The state model of a univariate dynamic process is given by: 

1
1 2

2
2

1

( )
2 ( ) ( )

,
( )

( ) 10 ( 0, 2)

( ) ( )

dx t
x t x t

dt
x t

x t u t
dt

y t x t

 = − +

 = − + −

=

 

1) Transfer function G(s): 

1 0.2 0.2
2 2

10
( ) ( )

3 2
s sG s C s I A B e e

s s
− − −= − =

+ +
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2) Differential equation governing u(t) and y(t) based on G(s): 

0.2

2

( ) 10
( )

( ) 3 2
sY sG s e

U s s s
−= =

+ +
, 

therefore, 2 0.2  ( ) 3 ( ) 2 ( ) 10 ( )ss Y s s Y s Y s e U s−+ + = , then, according to Laplace 

transform properties, this yields: 

2 ( ) ( )
3 2 ( ) 10 ( 0.2)

dy t dy t y t u t
dt dt

+ + = −  

Exercise 1.13. 

Prove that the controllability and observability properties of a state model described 
by the matrices {Ac, Bc, Cc, Dc} are invariant during a state transformation based on 
a regular matrix P. 

Solution – Exercise 1.13. 

1) Invariance of controllability: 

Let P be a regular matrix of state transformation z = Px. In this case, the 
controllability matrix in the space of the state vector z is written:  

2 1... nx
cM B A B A B A B− =    with 1 1

c cA PA P B PB C C P− −= = = . 

Therefore: 

( ) ( )
( ) ( ) ( ) ( ) ( )

2 11 1 1

2 11 1 1

2 1 2 1

...

      ...

      ... ...

      

n

c c c c c c c

n
c c c c c c c

n n
c c c c c c c c c c c c c c

z
c

x
c

M PB PA P PB PA P PB PA P PB

PB PA P P B P A P P B P A P P B

PB PA B PA B PA B P B A B A B A B

P M

−− − −

−− − −

− −

 =   
 =  
   = =   

=

 

Since P is a regular matrix, then Mz and Mc have the same rank, hence the  
conservation of controllability property during a similarity transformation by a regular 
matrix P. 
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2) Invariance of observability: 

if 2

1

...

c

c c
z
o c c

n
c c

C
C A

M C A

C A −

 
 
 
 =
 
 
 
  

, then a reasoning analog to the previous one leads to: 

1

1

1 1

2 1 2 1 2

1 11 1 1

... ... ...

c

P P Pc c c c
z P P Po c c c c

n nnP P Pc c cc c

CP CC
C A C AC A

M C A C A C A P

C A C AC A

−

−

− −

− −

− −− − −

                   = = =                      

 

Moreover, consequently, z
oM and x

oM have the same rank. In other words, the 

observability property is preserved during a similarity transformation by a regular 
matrix P. 



2 

Experimental Modeling  
Approach of Dynamic Processes 

2.1. Introduction to experimental modeling 

2.1.1. Problem statement 

In practice, frequency models and state space representations of dynamic 
processes, presented in Chapter 1, can be analytically elaborated on the basis of 
physics and energy laws (in Lagrange’s sense), governing the joint time evolution of 
constitutive elements at various levels: material, component, part, mechanism, 
subsystem, equipment or process. 

Nevertheless, most real dynamic processes are essentially complex, because of the 
lack or the insufficiency of perfect knowledge on the dynamic behavior of their 
constituents. Therefore, in most practical cases, the approach used in the elaboration 
of rigorous models of real dynamic processes is experimental, relying on data 
obtained from tests and measurements. 

2.1.2. Principle of experimental modeling 

Experimental modeling involves the elaboration of a rigorous dynamic model of 
a real process, based on data of the experimental response to tests and measurements 
under appropriate conditions. The model can be searched through appropriate 
scientific techniques, such as:  

– direct calculation based on technical indicators observed on the graph of the 
experimental step response (Broïda method); 

– Strejc method [BSA 94]; 

Analog Automation and Digital Feedback Control Techniques, First Edition. Jean Mbihi. 
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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– direct calculation based on technical indicators observed on the graph of the 
frequency response [BON 10]; 

– digital processing of experimental data according to an optimization criterion, for 
example:  

- least squares of measurement error [TRI 88]; 

- minimum variance of the estimation error [BAG 93];  

- maximum likelihood of conditional probability density with respect to the 
parameter(s) of the observation error [FRA 90]. 

2.1.3. Experimental modeling methodology 

The project management methodology in case of experimental modeling of a 
dynamic process is represented in Figure 2.1, which points out the following main 
stages: 

– inspection of the process site; 

– experimentation; 

– pre-processing; 

– structural choice; 

– parameter estimation; 

– post-processing. 

2.1.3.1. Site inspection of the real process 

During the process site inspection stage, technical data required for planning 
experimental resources and protocols are collected. 

The technical report drawn after the inspection stage is used for: 

– controlling the experimental study conditions, as follows: 

- ambient temperature, undertaken risks, safety factors; 

- process constituents (mechanisms and subsystems); 

- input quantity (quantities): number, nature, allowable range; 

- output quantity (quantities): number, nature, allowable range; 

- performance indicator(s); 
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– plan the appropriate means to be deployed for conducting tests and 
measurements. These are: 

- measuring instruments and special probes; 

- signal generators; 

- virtual instruments; 

- specialized instrumentation software; 

- human resources and their skill levels. 

  

Figure 2.1. Experimental modeling methodology 
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2.1.3.2. Experimentation 

The stage of experimentation involves exciting the real process with an 
appropriate test signal, then saving the response on a digital data medium. The test 
signal used at this stage can be: step, square, ramp, sine or arbitrary signal, 
depending on the instrumentation constraints and on the requirements of the 
algorithm to be used for optimal estimation of the searched model. 

Nowadays, a virtual instrumentation system (represented in Figure 2.2) is a flexible 
and rapid tool that allows a real dynamic process to be subjected to automated tests and 
measurements. It comprises a (standard or industrial model) PC/Laptop or a PC/Tablet 
featuring a virtual instrumentation software application [MBI 12] and a MDAQ 
(Multifunction Data Acquisition) board. 

  

Figure 2.2. Virtual instrumentation system 

Moreover, it is also possible to conduct remote tests on a real process by means 
of a remote virtual instrumentation system through the Internet, as shown in Figure 2.3. 

  

Figure 2.3. Remote virtual instrumentation system 
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In-depth technical elements on this broad topical subject, as well as a platform 
prototype that can be remotely operated through the Internet, are provided in a 
second volume related to automation and industrial computer science, entitled 
Advanced Techniques and Control Technology and Computer-Assisted Regulation, 
published by ISTE. 

2.1.3.3. Pre-processing 

Pre-processing of real-time acquired data is necessary only if, after inspection of 
measured data, there are undesirable effects to be eliminated by filtering (rejection 
of undesirable frequency ranges), by coupling (extraction of offset values) or by 
resampling. 

2.1.3.4. Structural choice 

In the time or frequency domain, structural choice involves observing the graphic 
profiles of data in order to ingeniously deduce the mathematical structure of the 
family of models considered admissible. For example, the ingenuity required at this 
stage might lead to drawing analogies between the graphic profiles of observed 
experimental responses and properly known profiles of responses of simple dynamic 
models (of order 1, 2 or higher), subjected to similar types of test signals. 

2.1.3.5. Parameter estimation 

The parameter estimation stage involves finding, within the family of retained 
models, the parameters of the best candidate, whose dynamic behavior generated by 
simulation fits best the experimental measurements, according to the optimization 
criterion involved and to the set precision margin. 

2.1.3.6. Post-processing 

In the post-processing stage, it is possible to reduce the order of the estimated 
model if the model of reduced order provides a good precision margin. In all cases, 
at this stage, it is important to analyze the dynamic and static performances of the 
retained model, in order to better assess the limits that will justify the design of a 
closed-loop control law. 

2.1.3.7. Analysis 

The analysis stage involves the study of fundamental properties (bandwidth, 
stability, rapidity, sensitivity, validity thresholds, etc.) of the optimal model 
elaborated on the basis of experimental data. These properties constitute a first basis 
of reliable technical knowledge required for the design and implementation of a 
strategy for the automatic control of the dynamic process being considered. 
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2.2. Step response-based modeling 

2.2.1. Model of order 1 

The response to a step u(t – τ0) of magnitude E0 of a transfer function of 

order 1 0( )
1

ss
c

K
G s e

s
τ

τ
−=

+
 is written: 

0

0 0

0

0 if   

( )   
1 if  ts

t

t

y t
K E e

τ
τ

τ

τ
−

−

<
  =  − ≥     

 [2.1] 

Thus, the profile of the experimental response to step E0 of the process to be 
modeled is similar to that represented in Figure 2.4. 

 

Figure 2.4. Identification of parameters of a model of order 1  
based on the response to a step u(t – τ0) of magnitude E0 

2.2.2. Under-damped model of order 2 (ξ < 1) 

For an under-damped model of order 2 whose transfer function is written by: 

2

2 2
( )

2
osns

c
n n

K
G s e

s s
τω

ξω ω
−=

+ +
  with ξ < 1  [2.2] 
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The theoretical response to a step E0 is given by: 

( ) 20
2 1

0 02

1
( ) 1 sin 1 ( ) tan

1

tn

s
ey t K E t

ξ ω τ ξ
ξ τ

ξξ
−

− −   −   = − − − +
   −    

  [2.3] 

The graphic profile of this experimentally obtained response corresponds to 
Figure 2.5, which will be used as a basis for the estimation of characteristic 
parameters of [2.2]. 

Knowing that y(∞) = KsiE0, then the 1st peaking point of [2.3] can be obtained by 
solving the equation dy(t) / ddt = 0. This detailed solving [KAT 90] yields the 
following expressions of the characteristic parameters to be estimated (damping 
coefficient ξ, natural angular frequency and response time Tr (at r %)): 

( )21

2 2
 

2

log
hence  

log ( )

100
log

, ( %)
1

r
n

n
m

d
d e

d

rT r
T

ξ π

ξ ξ
π

πω
ξ ωξ

−
−


 = =
 +

  
  

  = = −

 [2.4] 

 

Figure 2.5. Graphic profile of the step response of a model of order 2 (with ξ < 1) 



46     Analog Automation and Digital Feedback Control Techniques 

2.2.3. Damped model of order ≥ 2 (Strejc method) 

Strejc technique is in this case an appropriate tool for elaborating Gc(s) based on 
data measured on the experimental response to a step E0. This technique is 
applicable to graphic profiles similar to those of under-damped dynamic systems. 
The general structure of the Gc(s) model to be determined is written: 

0

0

( )
( )

( ) (1 )
ss

n

KY sG s e
E s s

τ

τ
−= =

+
, with Ks = Y(∞)/E0, [2.5] 

with: 

– Ks : static gain; 

– τ : time constant; 

– n : order; 

– τ0 : pure delay time (if applicable). 

The response of [2.5] to a step E0 is written in the form: 

1

0
0

( / )
( ) 1

!

t kn

s
k

ty t K E e
k

τ τ  −− 
 

=

 
 = −
 
 

  [2.6] 

Thus, the graphic profile of the experimental response ym(t) to a step E0 of the 
real process to be modeled by the Strejc model will have to be damped. In these 
conditions, the principle of Strejc technique for experimental modeling is represented in 
Figure 2.6. 

The existence of inflection point P can be proved by calculating the first and 
second derivatives of [2.6]. Indeed, the following equations can be written: 

( ) 1

0

/
'( )

( 1)!

nt

s

t
y t K E e

n
τ τ

τ

− − 
 =

−
 [2.7] 

( ) 2

0 2

/
''( ) 1

( 1)!

nt

s

t ty t K E e n
n

τ τ
ττ

− − 
   = − − −  

 [2.8] 
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Figure 2.6. Strejc method for experimental modeling 

It can be noted that [2.8] is equal to zero only at point Q of coordinates: 

( )
1

1
1 1 0

0

( 1)
( 1) , ( ) 1

!

kn
n

s
k

nt n y t K E e
k

τ
−

− −

=

 −
= − = − 

 
  [2.9] 

then the equation of the tangent at point Q is: 

0( ) ( )s
Q u

a

K E
y t t T

T
= −  [2.10] 

Since [2.8] and [2.10] have the same slope at point Q of abscissa t1, the 
following relations can be written: 

( ) ( ) 1
0( 1)

0

1

1( )

( 1)!

n
sn

s
at

K Endy t K E e
dt n Tτ

−
− − −

= =
−

 [2.11] 

Therefore, this yields: 

( )

( 1)

1

1)!

1

n
a

n

T n e
nτ

−

−

−
=

−
 [2.12] 



48     Analog Automation and Digital Feedback Control Techniques 

Similarly, knowing that [2.8] and [2.10] have the same ordinates at point Q, then: 

( )
1

1
1 0 0

0

( 1)
( ) 1 ( 1)

!

kn
n u

s s
k a a

Tny t K E e K E n
k T T

τ−
− −

=

  −
= − = − −  

   
  [2.13]  

Therefore: 

( )1
( 1)

0

1
( 1) 1

!

kn
nu

ka a

nT
n e

T T k
τ −

−

=

−
= − − +   [2.14] 

Finally, knowing that the expression of τ/Ta is deduced from [2.12], this leads to:  

( ) ( )1
1

( 1)

( 1)
1

1 1
1 1

!( 1)!

n kn
nu

n
ka

n nT
e

T kn e

− −
−

−
=

 − −
 = − + +
 −  

  [2.15] 

Relations [2.5]–[2.15] are the foundation of the Strejc method illustrated in 
Figure 2.6. Matlab® program “strejc.m” enables the digital generation of the first 30 
lines of the Stretch table. Table 2.1 is an example of the Strejc table generated by 
this program. 

No. Matlab program “strejc.m” 
1 clear;   M = 30;  %  M  first values 

2 for n = 1:M     

3 N(n) = n;   Fn_1=1;  n_1= n-1; 

4 for  i = 1:n_1  Fn_1= Fn_1*i; end                  

5     Fn_1 = Fn_1;    Fn = Fn_1*n ; Sn=0;   

6     Ta_Tau(n) = Fn_1*exp(n_1)/(n_1^n_1); Tau_Ta(n) =1/Ta_Tau(n);            

7     for  k = 1:n_1     

8               Fk =1;      

9               for   i = 1:k,   Fk = Fk*i;  end                                 

10                       Sn = Sn +  n_1^k/Fk; 

11     end 

12        Tu_Ta(n) = Tau_Ta(n) * n_1 -1+ (1+Sn)*exp(-n_1); 

13        Tu_Tau(n) = (Tu_Ta(n)) * (Ta_Tau(n));      

14 end 

15     DATA  =   [ N'    Tu_Ta'      Tu_Tau'     Ta_Tau'] 
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According to Figure 2.6, the operating procedure of the Strejc method is as 
follows: 

– read ym(∞), then calculate Ks = ym(∞)/E0; 

– read the value of τ0 on the time axis (see Figure 2.6(b)) if it is perceptible 
within a sufficiently extended time scale; 

– draw the tangent at inflection point P of the response ym(t). This tangent cuts the 
time axis at point S and the ordinate axis at point Q (see Figure 2.6(a) or 2.6(b)); 

– read the corresponding values of Tu and Ta and calculate R = Tu/Ta; 

– in Strejc Table 2.1, determine the order n* for which R = Tu/Ta = R(n*, 2). If the 
exact value of n* associated with R is not in the table, consider n* = next smaller 
integer; 

– in the Strejc table, read the value R(n*, 3) = Tu/τ or R(n*, 4) = Ta/τ, then 
calculate the parameter τ by the relation τ = Tu/R(n*, 3) or τ = Tu/R(n*, 4). 

No. u

a

T
R

T
=  uT

τ
 aT

τ
 No. u

a

T
R

T
=  uT

τ
 aT

τ
 

1 0 0 1.0000 16 1.1046 10.7836 9.7622 

2 0.1036 0.2817 2.7183 17 1.1534 11.6254 10.0789 

3 0.2180 0.8055 3.6945 18 1.2009 12.4720 10.3859 

4 0.3194 1.4254 4.4635 19 1.2470 13.3230 10.6841 

5 0.4103 2.1002 5.1186 20 1.2919 14.1780 10.9742 

6 0.4933 2.8113 5.6991 21 1.3358 15.0368 11.2568 

7 0.5700 3.5489 6.2258 22 1.3786 15.8990 11.5325 

8 0.7092 5.0810 7.1640 23 1.4205 16.7645 11.8017 

9 0.7092 5.0810 7.1640 24 1.4615 17.6329 12.0650 

10 0.7732 5.8685 7.5898 25 1.5016 18.5041 12.3226 

11 0.8341 6.6673 7.9930 26 1.5410 19.3780 12.5750 

12 0.8924 7.4756 8.3767 27 1.5796 20.2543 12.8224 

13 0.9484 8.2924 8.7437 28 1.6175 21.1330 13.0651 

14 1.0023 9.1165 9.0959 29 1.6548 22.0139 13.3034 

15 1.0543 9.9471 9.4349 30 1.6914 22.8969 13.5374 

Table 2.1. Table of the first 30 lines of the Strejc table 
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2.3. Frequency response-based modeling 

The frequency response-based experience involves the application at process 
input of a sine command signal u(t) = um sin(ω t), whose frequency f = ω/2π is 
variable, and to realize in steady state, for each frequency, the magnitude ymax(ω) 
and the phase φ(ω) of the response y(t) = ymax sin(ωt + φ). 

Then the transfer function Gc(s) to be modeled with s = jω is determined by 
means of the quantities observed on Bode diagram, which is drawn from the 
measurement field {ω, ymax(ω), φ(ω)} in a logarithmic scale, of abscissa log10(ω) and 
ordinates: 

10

( )
( ) 20 log  :   Magnitude graph

( )

( ) :   Phase graph

m
dB

m

y
G

u
ω

ω
ω

φ ω

 
=   

   [2.16] 

 

Figure 2.7. Bode diagram of a process of order 1. For a  
color version of this figure, see www.iste.co.uk/mbihi/automation.zip 

The knowledge bases of Bode diagrams of simple models to be considered 
according to the similarity to an observed experimental profile are presented in 
Figure 2.7 for a process of order 1. Figures 2.8 and 2.9 show the respective cases of 
process of order 2, which is damped if ξ ≥ 1, and under-damped if ξ < 1, where ξ is 
the damping coefficient. 
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Figure 2.8. Bode diagram of a damped process of order 2. For a  
color version of this figure, see www.iste.co.uk/mbihi/automation.zip 

 

Figure 2.9. Bode diagram of an under-damped process of order 2.  
For a color version of this figure, see www.iste.co.uk/mbihi/automation.zip 
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2.4. Modeling based on ARMA model 

2.4.1. ARMA model 

An ARMA (Auto Regressive Moving Average) model is a discrete representation 
of a dynamic process by a linear recurrence equation. Its purpose is: 

– to estimate the parameters of a process by means of identification techniques 
based on the optimality criterion (quadratic error, covariance matrix of the 
estimation error, density of conditional probability of the measurements with respect 
to parameters), hence the possibility of quantifying the precision of the results provided 
by the optimal estimator; 

– to extend its use to identification problems that are nonlinear with respect to 
parameters; 

– to analyze an experimental response obtained for a sufficiently persistent 
standard (square, ramp, sawtooth) or arbitrary input signal. 

For a better understanding of the structure of an ARMA model, let us consider 
the example of a linear discrete dynamic process, described by the transfer function: 

1
0 1 1

1
1 1

...( )
( )

( ) ...

n n
n n

n n
n n

z z zY zG z
U z z z z

β β β β
α α α

−
−

−
−

+ + + +
= =

+ + + +
 [2.17] 

The n initial conditions are supposed to be null (or known, if they are not null). 
In these conditions, the recurrence equation associated with G(z) in discrete time for 
k = n, n + 1,…, N is written as: 

1 2 1

0 1 2 1 n

( ) ( ( 1) ( 2) ... ( 1) ( ))
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 [2.18] 

Or in the following compact form:  
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Thus, each output sample y(k) results from a linear combination of recent inputs 
and outputs, which explains the “ARMA model” designation. 

NOTE ON THE DIMENSION OF THE SPACE OF PARAMETERS IN [2.19]. –  

In relation [2.19], if vector β has first m parameters that are simultaneously null, 
they should then be omitted with their respective coefficients in hT(k) in order to 
reduce the dimension of the space of parameters to be identified with value 
M = (2n + 1) – m. 

If 1

1

( )
 ( )

( )

Y zG z
U z z

β
α

= =
+

, then n = 1 and β0 = 0. 

In this case, relation [2.19] becomes: 
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Let us consider: 
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 [2.21] 

Then the compact form of ARMA model [2.19] is written as follows: 

y(k) = hT(k)θ [2.22] 

with k = n, n + 1,…, N.  

It can therefore be noted that relation [2.22] is equivalent to the model of a linear 
static process with respect to the vector of parameters θ. 

NOTES.–  

– Relation [2.22] is very useful in automation practice for the experimental 
modeling of certain devices (sensors/transducers, amplifiers, etc.) whose 
input/output characteristic is linear with respect to parameters. It is the case of a 
polynomial characteristic, where hi(u(k)) = ui(k). 
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– When the criterion of estimation error to be minimized with respect to θ is 
quadratic, the problem of optimal parameter estimation of an ARMA model (of dynamic 
or static origin), described by [2.21] or [2.22], admits an analytical solution that will 
be proved in the next section. On the other hand, if the model is nonlinear with respect 
to θ, or if the optimization criterion considered is an arbitrary nonlinear function, the 
parameter estimation can only be realized by an iterative method for nonlinear 
optimization (Gauss–Newton, Gradient, etc.). 

– Certain types of models that are nonlinear with respect to parameters can be 
transformed into equivalent linear models by simple change in descriptive variables. 
Several examples of this type of models are: 
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 [2.23] 

In the first two cases, it suffices to set Y = log(h(x)), then Y = 1 / h(x) in the third 
case. 

2.4.2. Parameter estimation of an ARMA model 

The methods for parameter estimation of an ARMA model seek to determine the 
best parameters for which the error between measurements and the estimated 
response is minimum with respect to the optimization criterion. These methods 
generally require samples of the experimental response, obtained for a persistent input 
sequence (sufficiently wide frequency range). Furthermore, they rely on an 
optimization criterion of the model estimation error and allow the characterization of 
the precision of the estimated optimal parameters. 

As regards the least squares method that will be considered below, the criterion 
function to be minimized corresponds to the variance (square of quadratic norm) of the 
estimation errors of the model cumulated over a horizon of N measurements. Indeed, 
let us consider: 

– ym(k): the value of measurement at stage k for k = 1, 2,…, N – 1; 

– y(k): the value corresponding to the response of the estimated value; 

– ( ( ), ) ( ) ( ) ( ) ( ) :T T
m mh k y k y k y k h kε θ θ= − = −  the estimation error at stage k. 
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Considering these notations, the function criterion over a horizon of N 
measurements is: 
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Thus, considering: 
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Then [2.26] becomes: 

( )* -1
m( ) ( )   Y ( )N P N Nθ =  [2.28] 

Since vectors h(k) contained in P(N) depend on the input sequence {u(k)}, the 
existence of optimal solution [2.28] can be compromised by a non-persistent input 
sequence. Should that be the case, an input signal with sufficiently rich frequency range 
(square, ramp, triangle, sawtooth or arbitrary signal) can be used. 

2.5. Matlab-aided experimental modeling 

Relations [2.26] to [2.28] can be programmed in Matlab. Nevertheless, they only 
calculate the best estimated parameters of a transfer function in z. Therefore, the 
identification of the parameters of a transfer function Gc(s) requires a preliminary 
discretization in the form G(z), so that relations [2.26] to [2.28] are applicable. 
Moreover, the reconstruction in case of necessity of the parameters of Gc(s) knowing 
those of G(z) is generally not trivial, unless it is realized digitally by means of Matlab 
command “ d2c”. 

Thus, it proves to be more rapid, in practice, to use Matlab command “tfest”, 
which has a wider context of use. A similar command “sest” is also available in case 
of parameter identification of a state model. 

Let us consider, for example, the data t and y(t), represented numerically and 
graphically in Figure 2.10, resulting from the experimental response to a test signal 
(unit step signal) of a speed servomechanism. Furthermore, let us suppose that vectors 
of data t and y(t) are saved in a current folder of Matlab working environment, in 
“t.mat” and “y.mat” formats, respectively. In these conditions, the purpose is to use 
the Matlab command “ tfest” to identify a transfer function of the process that takes 
the form: 

-
0s

c
K

G (s)  e
1

s

s
τ

τ
=

+
  [2.29] 

with: 

– Ks and τ: parameters to be identified; 

– τ0: fixed at 0.25 s. 
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Figure 2.10. Identification data. For a color version of  
this figure, see www.iste.co.uk/mbihi/automation.zip 

The following Matlab program “idprocdyn.m” allows the identification and 
display of the estimated model of this dynamic process of order 1. 

No. Matlab program “idprocdyn.m” 
1 %  N.B.: t.mat and  y.mat are in the current folder of Matlab 

2 load t ; load y ;                              %     Loading of data t, y 

3 T = 0.2480;                                   %     Sampling period 

4 u = ones(length(t),1);                     %      Input step  

5 Data = iddata(y, u,T);                    %     Creation of Object Identification  

6 Np =1;  Nz = 0;                             %     Number of desired poles and zeros 

7 IoDelay = 0.25;                             %     Value of input delay, if known 

8 Gc = tfest(Data,Np, Nz, IoDelay)    %     Identification of Gc(s) 

9 ysim = lsim(Gc, u, t);                     %     Step response of the estimated model 

10 plot(te, ye,'o',t, ysim, 'k');                 %     Graph of responses 

11 xlabel('t(s)'); ylabel('y (rad/s'); grid   %    Labels of axes 
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The execution of this Matlab code leads to the following solution: 

Ks = 2.06/1.189, τ = 1/1.189. 

Figure 2.11 then shows the graphs of the experimental response with that issued 
from the numerical simulation of the estimated model. 

  

Figure 2.11. Experimental response and response of the estimated model 

Moreover, the procedure for using command “sest” of Matlab for the 
identification of a state model of the process would be similar. 

2.6. Exercises and solutions 

Exercise 2.1. 

After having consulted the methodology for the management of an experimental 
modeling project, list in chronological order the 10 main factors that are critical for the 
quality of the dynamic process model to be estimated. 
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Solution – Exercise 2.1. 

The 10 main factors that are critical for the quality of the dynamic process model 
to be estimated are: 

– technical characteristics of the testing instruments; 

– complexity of the process to be studied; 

– testing and measurement conditions (operating ranges, disturbances); 

– types of test signals (step, ramp, square, triangle, sine, arbitrary); 

– (analog or digital) technology of data medium; 

– data representation and graphical analysis tool; 

– nature of the family of models (linear, nonlinear, with or without delay); 

– type of model to be estimated (transfer function, Bode diagram, etc.); 

– estimation criterion (classical, least square). 

– desired precision of the estimation 

Exercise 2.2. 

Figure 2.12 presents the graph of the response y(t) to a step E0 = 2 of a dynamic 
process of order 1. 

  

Figure 2.12. Graph of response y(t) 
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Based on this graph, estimate the static gain Ks and the time constant τ of this 
process, and then determine the corresponding transfer function. 

Solution – Exercise 2.2. 

The data that can be directly measured on the graph of the open-loop step 
response (see Figure 2.13) are y(∞) and τ. 

  

Figure 2.13. Graph of the response to the open-loop step. For a  
color version of this figure, see www.iste.co.uk/mbihi/automation.zip 

The measurements conducted are used for the calculation of: 

– Ks = y(∞) / E0 = 4/2 (static gain), and τ = 2 s (time constant); 

– Gc(s) = Y(s)/E0(s) = 2/(2s + 1). 

Exercise 2.3. 

Figure 2.14 presents a boost chopper controlled by duty-cycle modulation via an 
embedded IR2101 driver (see Figure 2.14(b)). 

a) Based on the graph of the step response x(t) = E0 = 4V (see Figure 2.14(d)), 
estimate the static gain Ks, as well as the instant Tm and the corresponding relative 
value d of the first overshoot. 
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b) Calculate the damping factor ξ and the natural angular frequency ωn. 

c) Determine the open-loop transfer function G(s) = Vs(s)/X(s). 

d) Using Matlab, represent the response of the model defined by G(s). 

  

Figure 2.14. Boost chopper controlled by DCM circuit. For a color  
version of this figure, see www.iste.co.uk/mbihi/automation.zip 
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Solution – Exercise 2.3. 

The parameters to be measured on the virtual response of Figure 2.15 are the 
following: 

– static gain Ks; 

– relative overshoot d; 

– instant Tm of the first overshoot. 

  

Figure 2.15. Virtual response 

a) The measured values are: 

- Ks = Vs(∞)/E0 = 29.5/4 = 7.3756; 

- d = (36.7 – 29.5)/29.5 = 0.2441; 

- Tm = 6.2 ms. 

b) In this case, the damping factor ξ, the natural angular frequency ωn and the 
transfer function G(s) = Vs(s)/X(s) can be calculated as follows: 
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c) The transfer function of this Boost chopper with DCM is given by: 
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d) Graphs of the responses to step E0 = 4V: 

The following lines of Matlab program serve to draw the response to the step 
represented in Figure 2.16: 

>> s = tf(‘s’); E0 = 4; G=2.257*E0/(s^2+0.4549 *s + 0.3085); step(G); 
>> grid; xlabel(‘temps(s)’); ylabel(‘Volts’) 

  

Figure 2.16. Graph of the response to step E0 = 4V 

Exercise 2.4. 

A lighting system with power controllable by voltage dimmable electronic ballasts 
generates in the working zone a luminous flux w(t) under a control voltage u(t). The 
transfer function of this system, initially obtained experimentally, is given by: 

0.005

2

( ) 0.4914
( )

( ) (1 0.035 )
sW sG s e

U s s
−= =

+
  

a) Based on the graph of the experimental response of G(s) to be drawn with 
Matlab, find the transfer function Ge(s) of an approximate virtual model of order 1 in 
the Ziegler–Nichols sense. Then represent on the same Matlab figure the graph of 
the initial model of order 2 and of the approximate model of order 1 found. 

b) Estimate the approximate model of order 1 and the graphs of the step 
responses. 

Solution – Exercise 2.4. 

a) The measurements required for the estimation of the approximate virtual 
model Ge(s) of order 1, based on the graph of G(s), are:  

- Ks = 0.4914; 
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- Tm = 0.0151 s; 

- Ta = 0.062 s. 

b) The Matlab program for the production of graphs of G(s) and Ge(s) is the 
following: 

 

>>  T0=0.005; Tf = 0.4;  T=0:T0:Tf;  
>>  t = tf('s');  Go = exp(-0.005*s)*0.4914/((1+0.035*s)^2);   [Yo, 
To] = step(Go,T); 
 

>> Ks = 0.4914;    Tm = 0.0151;  Ta = 0.062;  s = tf('s');  
>> Ge = Ks*exp(-Tm*s)*1/((Ta*s+1));   [Ye, Te] = step(Ge,T); 
>> plot(T, Yo,  '.',  T, Ye, 'k'); grid 

Exercise 2.5. 

The graph of the response to step E0 = 2V of a dynamic process of order 2 is 
represented in Figure 2.17. 

a) Based on this graph, estimate the pure input delay τ0, the static gain Ks, the 
relative overshoot d, the damping factor ξ and the natural angular frequency ωn of 
this dynamic process. 

b) Determine the corresponding transfer function Gc(s). 

  

Figure 2.17. Graph of the response to step E0 = 2V 
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Solution – Exercise 2.5. 

The measurements D and Tm realized on the graph of the step response are 
presented in Figure 2.18. 

  

Figure 2.18. Measurements D and Tm 

a) The measurements realized on the graph of the step response yield: 

- τ0 = 1 s; 

- Ks = y(∞)/E0 = 2 / 2 = 1; 

- D = 2.6 – 2 = 0.6; 

- d = D/2 = 0.3; 

- Tm = 2,75 s,  ( )
2 2

log
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π
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Exercise 2.6. 

Estimate the static gain Ks as well as the time constants τ1 and τ2 of a linear 
dynamic process of order 2, whose Bode diagram is represented in Figure 2.19. 

Then find the corresponding transfer function Gc(s). 

 

Figure 2.19. Bode diagram of a dynamic process of order 2 

Solution – Exercise 2.6. 

The measurements realized on the Bode diagram yield approximately the 
following (see Figure 2.20): 

– Gs = 14 dB; 

– ω1 = 1 rad/s; 

– ω2 = 10 rad/s. 

This leads to: 

– Ks = 10 Gs / 20 = 5; 

– τ1 = 1 / ω1 = 1; 

– τ2 = 1 / ω2 = 0.1.  
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Therefore: 
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Figure 2.20. Measurements on Bode diagram. For a color  
version of this figure, see www.iste.co.uk/mbihi/automation.zip 

Exercise 2.7. 

Figure 2.21 represents the graph of the response y(t) to a step E0 = 2 of a 
dynamic process of order n. Using the Strejc method: 

a) Estimate from this graph the static gain Ks, the order n and also the multiple 
time constant τ; 

b) Find the corresponding transfer function Gc(s). 
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Figure 2.21. Graph of the response y(t) to a step E0 = 2 

Solution – Exercise 2.7. 

The measurements Tu and Ta realized on the graph of the step response (see 
Figure 2.22) are given by: 

  

Figure 2.22. Measurements of Tu and Ta 
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a) The measurements realized on the graph of the step response yield: 

- Ks = y(∞)/E0 = 16/2 = 8; 

- Tu = 1.8 s; 

- Ta = 9 s. 

Therefore, Tu /Ta = 0.2 s, which yields approximately n = 3 in the Strejc table of 
parameters.  

Moreover, Tu/τ = 0.805; therefore, τ ≅  Tu/0.805 = 2.236 s. 

b) 
( )3 3 2

8 8
( )

11.8 s + 15 s  + 6.708 s + 11 2.236
cG s

s
= =

+
 = 8 

Exercise 2.8. 

The experimental model for the estimation of a physical parameter β of a 
medium has the form ym(k) = λ + ν(k), where ν(k) designates the measurement noise 
in stage k, with k ∈ {1, 2, 3,…, N}. Using the results of the least squares parameter 
estimation technique, prove that the best estimate β*(N) corresponds to the average 
of measurements. 

Solution – Exercise 2.8. 

In this case where ym(k) = λ + ν(k), hT(k) = 1 for any k = 1, 2,…, N, and the 
optimal solution becomes: 

* 1( )

N

k
k

y
N

N
β ==


 

Exercise 2.9. 

Let us consider a sensor whose theoretical static characteristic has the form 
y = β1 x + β0, where x designates the input quantity and y the output quantity. Using 
the results of the least squares parameter estimation technique, calculate the best 
estimates *

0 ( )Nβ  and *
1 ( )Nβ . 
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Solution – Exercise 2.9. 

In this case, it can be written: 
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Exercise 2.10. 

The methods for experimental modeling studied in this chapter have in each case 
advantages and drawbacks. Fill in the model Table 2.2, which allows a comparison of 
methods according to the mentioned criteria. 

Comparison of methods for parameter identification 
 

Comparison criteria 
Classical methods 

(without 
optimization) 

Least squares 
method 

Category of processes (dynamic or static)   

Type of model (Gc(s), ARMA, etc.)   

Type of test signal   

Estimation criterion   

Algorithmic complexity   

Calculation methods   

Quality indicators   

Extension to nonlinear models    

Table 2.2. Table for the comparison of modeling methods 

Solution – Exercise 2.10. 

The comparative table of these methods is the following: 

Comparison of methods for parameter identification 
Comparison criteria Classical methods 

(without optimization) 
Least squares method 

Category of processes 
(dynamic or static) 

Dynamic Dynamic and static 

Type of model (Gc(s), ARMA, etc.) Gc(s) ARMA 

Type of test signal Step, sine Arbitrary signal 

Estimation criterion  Quadratic error 

Algorithmic complexity Low High 

Calculation methods Direct Programmable 

Quality indicators Empirical Precision calculation  

Possible extension to nonlinear models No Yes 

Table 2.3. Comparison of modeling methods 
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Exercise 2.11. 

Interpret the elements constituting the following Matlab command line: 
Gc = tfest(Data, Np, Nz, IoDelay) 

Solution – Exercise 2.11. 

In the following Matlab command line, Gc = tfest(Data, Np, Nz, IoDelay), the 
constitutive elements are: 

– Data: table of identification data; 

– Np: number of desired poles of the transfer function to identify; 

– Nz: number of desired zeros of the transfer function to identify; 

– IoDelay: pure input delay; 

– Gc: returned result (identified transfer function). 



3 

Review of Analog Feedback  
Control Systems 

3.1. Open-loop analog control 

3.1.1. Principle 

The principle of open-loop analog control of a dynamic process is illustrated in 
Figure 3.1, where r(t) designates the desired response and u(t) the direct control 
obtained when r(t) is shaped by a conformer with characteristic u(r). Thus, the open-
loop control law u(r(t)) does not take into account the corresponding response y(t) 
generated at the output. 

 

Figure 3.1. Open-loop control of a dynamic process 

Analog Automation and Digital Feedback Control Techniques, First Edition. Jean Mbihi. 
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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3.1.2. Open-loop control 

In most practical cases, applying open-loop control in a real context raises 
serious problems, most important of which are: 

– sensitivity to the effects of unknown disturbances on the effective behavior of 
the dynamic power process; 

– sensitivity to the effects of structural and parametric uncertainties of the 
dynamic model used for the calculation of the predicted command; 

– insufficient or weak dynamic and static performances. 

In automation theory, the permanent presence of these unpredictable factors in 
the environment of real dynamic processes justifies the practical interest of feedback 
control, i.e. of regulation. 

3.2. Analog control system 

The principle of an analog feedback control system of a dynamic process (see 
Figure 3.2) involves the application of a control law u(t) or U(s), allowing the 
reduction of the possible error between desired output and generated response y(t) or 
Y(s). 

 

Figure 3.2. Control principle of a dynamic process 

Several configurations of block diagrams of analog control systems are possible 
from Figure 3.2. Figure 3.3 corresponds to an example of a generic block diagram, 
where H(s), Gc(s), Dc(s) and Hc(s) are the transfer functions of conformer/sensor, 
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controller and dynamic process, respectively. Moreover, the signals shown in 
Figure 3.3 are: 

– Yr: desired response; 

– U: control input; 

– Y: observed or desired output; 

– υ: power process disturbance; 

– W: measurement noise. 

  

Figure 3.3. Generic block diagram of analog control systems 

3.3. Performances of an analog control system 

3.3.1. Closed-loop transfer functions 

Considering, without loss of generality, that in Figure 3.3 H(s) = 1, it can be 
verified that in these conditions: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )  ( )

1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( )
c c c c c

c c c c c c

G s D s G s G s D s
Y s U s s W s

G s D s G s D s G s D s
ν= + −

+ + +
 [3.1] 

Thus, the characteristic transfer functions of an analog control system are: 

– ( ) ( ) ( )O c cG s G s D s=  (Loop gain) [3.2] 

– 
1

( )
1 ( ) ( )s

c c
G s

G s D s
=

+
 (Sensitivity function) [3.3] 

– 
( ) ( )

( )
1 ( ) ( )

c c
c

c c

G s D s
F p

G s D s
=

+
 (Closed-loop transfer function)  [3.4] 
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In practice, control is expected to meet the following constraints: 

– Go(s) >> 1 at low frequencies, when noise is nearly absent, in order to 
guarantee a proper follower behavior, since Gc(s) → 0 and Fc(s) →1; 

– Go(s) << 1 at high frequencies, when desired response and disturbance are nearly 
absent, so that noise is sufficiently damped; 

– 
( ) ( )

( )
1 ( ) ( )c

c c

c c

G s D s
F s

G s D s
=

+
 stable (if the roots of the equation 1 ( ) 0OG s+ =  have 

negative real parts in the complex plane of variable p). 

3.3.2. Performance quantities 

The performance quantities that allow the synthesis of control laws in the 
frequency domain knowing the model of dynamic process are: 

– Stability, which characterizes in the internal sense the property of a process to 
return within finite time to its initial equilibrium state after a disturbance. On the other 
hand, it characterizes in the input/output sense the fact that every bounded input 
results in a bounded output. 

– Static precision, quantifiable by the error percentage, in steady state, between the 
desired output and the generated response. 

– Rapidity, defined on the basis of time response to a control input. 

– Optimality, characterized by the possibility of a control law to provide the 
optimal value of a functional criterion. 

3.4. Simple analog controllers 

Let us remember that a controller (central device of the control system in Figure 3.3) 
is modeled in the frequency domain by its transfer function Dc(s). For modest levels 
of performance, the use of controllers described by simple transfer functions may be 
sufficient. This is the case of: 

– proportional controller: 

( ) ;c cD s K=   [3.5] 

– phase-lead controller: 

(1 )
( )

1
c

c
K s

D s
s

τ
α τ
+

=
+

 with α < 1;  [3.6] 
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– phase-lag controller: 

(1 )
( )

1 ( )
c

c
K s

D s
s

τ
α τ

+
=

+
 with α > 1.  [3.7] 

On the other hand, for higher levels of performance, PID/PIDF controllers, 
which will be studied in detail below, can be used. 

3.5. PID/PIDF controllers 

3.5.1. Structure and role of the parameters of a PID/PIDF controller 

A simple PID controller is described by the transfer function: 

 
1

( ) 1c dp pd
i

i

K
D s K K s K T s

s T s
 

= + + = + +  
 

 [3.8] 

with: 

– Kp: proportional gain; 

– Ti: Kp/Ki (integral time constant); 

– Td: Kd/Kp (differential time constant). 

On the other hand, a PIDF (PID-Filter) is an extended variant of PID, defined by 
four parameters. The transfer function of the PIDF controller has the form: 

 s 1
( ) 1

1  1
d d

c p p
f f

i

i

K K T s
D s K K

s T s T s T s
 

= + + = + +  + + 
 [3.9] 

It is worth noting that the rational structure of a PIDF controller defined by [3.9] 
is proper, unlike that of a standard PID controller [3.8]. Moreover, parameters Kp, 
Ki, Kd and Tf play complementary roles if they are adequately sized. Figure 3.4 
presents typical examples of closed-loop step response profiles of a dynamic process 

modeled by 
2

20
( )

0.1
cG s

s s
=

+ +
, controllable by P, PI, PID and PIDF controllers, 

with Kp = 0.05; Ki = 0.005; Kd = 0.035 and Tf = 0.25 s. 
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Figure 3.4. Roles of parameters of a PIDF controller 

A visual analysis of the morphological configurations between the step responses 
observed in Figure 3.4 leads to the following observations: 

– Kp is a stability parameter. It allows a closed-loop system under a P controller 
to start until reaching a permanent state that is close to the desired output profile. 
The generated static error may nevertheless be significant. 

– Ki is a static precision parameter. It allows a closed-loop system under a PI 
controller to cancel the static error in steady state. Nevertheless, the integral action of 
Ki generates a degradation of transient performances (undesired magnitude overshoots, 
significant response time, etc.); 

– Kd is a transient compensation parameter. It allows a closed-loop system under a 
PID controller to correct the possible degrading effects caused by the integral action of 
Ki. However, the differential action of Kd may lead to a closed-loop structure of rational 
and not proper type, which involves the risk of undesirable deformation of the 
bandwidth; 

– Tf is a structural quality parameter. It allows a closed-loop system under a 
PIDF controller to have a proper rational structure and to offer a good bandwidth. 
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3.5.2. Ziegler–Nichols methods for parameter calculation 

Among the published experimental techniques for determining the parameters of 
a PID controller, the easiest to implement are those of Ziegler–Nichols [ZIE 42]. 
They however rely either on the test results of the open-loop step response or on the 
experimental research on the closed-loop limit gain, for which the first oscillations 
occur. 

Figure 3.5 shows (for each type of test considered) the quantities to measure on 
the graphic profile of the corresponding experimental response, in order to calculate 
the Ziegler–Nichols parameters according to the algorithmic specifications presented 
in Table 3.1. Let us remember that, for Figure 3.5(a), Ta = τ (time constant of the 
process of order 1). 

Tests Control Kp Ti Td 

Profile of the open-loop step 
response (order 1) 

Figure 3.5(a) 

P (E0 / H) (Ta / Tm) – – 

PI 0.9(E0 / H) (Ta / Tm) 3.33 Tm – 

PID 1.2(E0 / H) (Ta / Tm) 2 Tm Tm / 2 

Profile of the open-loop step 
response (order ≥ 2) 

Figure 3.5(b) 

P (E0 / H) (Ta / Tm) – – 

PI 0.9(E0 / H) (Ta / Tm) 3.33 Tm – 

PID 1.2E0Ta / (HTm) 2 Tm Tm/2 

Profile of the closed-loop 
oscillating response  

(stability limit) 
Figure 3.5(c) 

P 0.5 Kosc – 0 

PI 0.45 Kosc Tosc / 1.2 0 

PID 0.6 Kosc Tosc / 2 Tosc / 8 

Table 3.1. Determination of PID parameters by Ziegler–Nichols methods 

3.5.3. Calculation of parameters by pole placement 

The pole placement method allows the calculation of PID parameters knowing 
the transfer function Gc(s) of an open-loop dynamic process. This method involves 
solving the system of equations resulting from the comparison of a desired closed-
loop characteristic polynomial P(λ) and a characteristic polynomial given by the 
equation 1 + Dc(s) Gc(s) = 0. 
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Figure 3.5. Open-loop response of the test to step E0. For a  
color version of this figure, see www.iste.co.uk/mbihi/automation.zip 

For example, let us consider the following case: 

( )
(1 )

( )c p d

c

i

K
G s

s s
K

D s K K s
s

τ
=

+

= + +

 [3.10] 

In this case, it can be verified that: 

23

( )( ) ( )
( )

1 ( ) ( ) (1 )

pic c
c

c c p id

K K K sG s D s
F s

G s D s s K K s K K s K Kτ

+
= =

+ + + + +
 [3.11] 
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or: 

23

( )
(1 )

i

pp
c

pd i

K
s

KK K
F s

K KK K K K
s s s

τ
τ τ τ

 
+  

 =
+

+ + +
 [3.12] 

Therefore, if p1, p2 and p3 are desired closed-loop poles that are considered 
known, then the searched parameters can be found by solving the equation: 

3 2
)1 2 3

3 2
( ) ( )1 2 3 1 2 1 3 2 3 1 2 3

(1 )
( ) ( ) (

 

pd K KK K K
s s s s p s p s p

s p p p s p p p p p p s p p p
τ τ τ

− + + −

+
+ + + = − − −

= + + +
 [3.13] 

The equalization of coefficients of the same degree on each side of the equality 
leads to the following solution: 

1 2 3

( )1 2 1 3 2 3

1 ( )1 2 3

K
p p p

Kd K

i K

Kp p p p p p p

K p p p

τ

τ

τ

+

+ + +
= −

−

= +

=

 [3.14] 

3.5.4. Direct calculation of optimal PID parameters 

Most methods for the direct calculation of optimal PID parameters rely on the 
functional criteria of error between desired response and output. Examples of criteria 
are as follows [OGA 90, TAV 03]: 

– 
0

IAE  ( )  e t dt∞=   (Integral Absolute Error)  [3.15]  

– 
0

ITAE  ( )  t e t dt∞=  (Integral Time Absolute Error)  [3.16]  

– 2
0

ISE  ( ) dte t∞=   (Integral Square Error)  [3.17]  

– 2
0

ITSE  ( ) dtt e t∞=   (Integral Time Square Error)  [3.18]  

– ( )2
0ISTE   ( )t e t dt∞=   (Integral Square Time Error)  [3.19] 
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Literature mentions various types of optimization algorithms, whose results are 
published as tables, which allow the direct calculation of optimal parameters of a 
PID controller for some criteria chosen in [3.15] to [3.19]. Nevertheless, most of 
these tables are not readily exploitable directly, except for dynamic models of 
specific structure. 

Table 3.2 presents an example of a table for calculating PID parameters [TAV 
03] based on reduction to unitless quantities {K Kp, Ti / τm, Ti / τm}, followed by a 
process of numerical optimization in this new homogeneous parametric space. It is 
intended for open-loop dynamic models described by the following transfer function: 

( )
1

m sKG s e
s

τ

τ
−=

+
 [3.20] 

Criteria 
Optimal parameters 

pK  iT  dT  

IAE 

0 ( )  e t dt∞  

1

0.2 mK τ
τ

 + 
 

 0.3 1.2

0.08

m
m

m

τ
τ

τ
τ
τ

+

+

 
 
 
 
 
 

 
90

m

m

τ
τ
τ

 
 
 

 

ITAE 

0 ( )  t e t dt∞  

0.8

0.1 mK τ
τ

 + 
 

 1
0.3m

m

τ
τ
τ

 
 
 +
  

    

 

0.06

0.04

m

m

τ
τ
τ

 +  
 

 

ISE 

2( ) dt0 e t∞  

0.3 0,75

0.05

m

mK

τ
τ

τ
τ

  + 
 
 + 
 

 
2.4

0.4

m

m

τ
τ
τ

+
 

90

m

m

τ
τ
τ

 
 
 

 

Table 3.2. Table for the calculation of the parameters of an optimal  
PID controller according to IAE, ITAE and ISE optimization criteria 

Matlab® functions “iaepid.m”, “itaepid.m” and “isepid.m” presented below 
allow the calculation of PID controller parameters according to IAE, ITAE and ISE 
criteria, respectively. In each case, the arguments of the function to call are: 

– K: static gain; 

– Tau ≡ τ: time constant; 
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– Taud ≡ τd: pure input delay; 

– TF: final time. 

Moreover, the returned values are: 

– KpTiTd: vector of optimal parameters Kp, Ti, Td ; 
– Time: time vector. 

No. “iaepid.m” function 

1 function   [KpTiTd,  Y,  Time] =  iaepid(K, Tau, Taud, TF) 

2 Td_T = Taud/Tau; 

3 s = tf(‘s’);    G = exp(-Taud*s)*K/(1+Tau*s);% G(p) 

4 Kp = (1/K)*(1)/(Td_T+0.2); 

5 Ti  =  Taud*(0.3*Td_T+1.2)/(Td_T+0.08); % Ti 

6 Td = (Taud/90)/Td_T;                  % Td 

7 D = Kp*(1+1/(Ti*s)+Td*s);               %  D(p) 

8 F = feedback(series(D,G),1);             %  F(p) 

9 KpTiTd = [Kp, Ti, Td];          %  Kp; Ti, Td 

10 [Y, Time] =  step(F, TF);             %  Step response 
 

No.  “itaepid.m” function 

1 function    [KpTiTd,   Y,  Time] = itaepid(K, Tau, Taud, TF) 

2 Td_T = Taud/Tau;   

3 s =  tf(‘s’);  G = exp(-Taud*s)*K/(1+Tau*s);   % G(p 

4 Kp = (1/K)*(0.8)/(Td_T+0.1);             % Kp 

5 Ti = Taud*(0.3 + 1/Td_T);                   % Ti 

6      Td = (Taud*0.06)/(Td_T+0.04);     % Td    

7       D = Kp*(1+1/(Ti*s)+Td*s);                     % D(p)  

8        F = feedback(series(D,G),1);                   % F(p) 

9             KpTiTd = [Kp Ti Td];                         % Kp; Ti, Td 

10      [Y,  Time] =  step(F,TF);                       % Step response 
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No. “isepid.m” function 

1 function  [KpTiTd, Y, Time]  =  isepid(K, Tau, Taud, TF) 

2 Td_T = Taud/Tau;   

3 S =  tf(‘s’);   G = exp(-Taud*s)*K/(1+Tau*s);     %    G(p) 

4 Kp = (1/K)*(0.3*Td_T+0.75)/(Td_T+0.05);       %    Kp 

5 Ti = 2.4*Taud/(Td_T+0.4);                  % Ti 

6 Td = (Taud/90)/Td_T;                          % Td 

7  D = Kp*(1+1/(Ti*s)+Td*s);                % D(p) 

8  F = feedback(series(D,G),1) ;             % F(p) 

9            KpTiTd = [Kp, Ti, Td];                       % Kp; Ti, Td 

10    [Y, Temps]   =  step(F,TF);                         % Step response 

As an illustration, if: 

 5
( )

1 1.5
s

cG s e
s

−=
+

 [3.21] 

Then the above “itaepid.m” function can be used to calculate the results 
presented in Figure 3.6. The detailed study leading to this figure and to other criteria 
will be presented in a solved exercise to be found at the end of this chapter. 

  

Figure 3.6. Results of the application of ITAE criterion of Table 3.2 
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3.5.5. LQR-based indirect calculation of optimal PID parameters 

In this case, the problem of the PID controller is reformulated and solved in the 
space state similar to that of an LQR (Linear Quadratic Regulator), which is easier to 
solve. Then the searched parameters of the optimal PID are calculated based on those 
of the resulting LQR [OBR 08]. This topical subject will be examined in detail in 
section 3.7. 

3.5.6. Implementation of analog controllers 

The structures of simple analog controllers can be readily implemented by means 
of several embedded operational amplifiers and passive components (resistors and 
capacitors). Table 3.3 presents the electronic diagrams of simple analog P 
controllers, with phase-lead/lag, with PID and PIDF action, as well as the 
corresponding transfer functions. 

 

Table 3.3. Electronic diagrams and transfer functions of simple analog controllers 
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As will be shown further, dynamic models of analog controllers can be easily 
discretized in order to be implemented by a digital processor. 

Nowadays, the digital environment offers new algorithmic possibilities for 
implementing structures of adaptive PID/PIDF controllers, using connectionist 
components of artificial intelligence, based on: 

– fuzzy logic [VAI 07]; 

– neural network [MOH 10]. 

3.6. Controllers described in the state space 

Let us consider a deterministic dynamic process described by the following state 
model, assumed controllable: 

( )
( ) ( )  c c

dx t A x t B u t
dt

= +  [3.22] 

with: 

– Ac: n × n matrix; 

– Bc: n × 1 matrix. 

3.6.1. Principle and block diagram of a linear state feedback 

The principle of linear state feedback involves the determination of required 
values of a gain K matrix, so that the control law given by the relation: 

( ) ( ) Refu t K x t= − +  [3.23] 

meets the considered performance criterion. The resulting structure of the linear 
state feedback law is described by the following relation: 

( )
( ) ( ) Refc c c

dx t A B K x t B
dt

= − +  [3.24] 

and corresponds to the block diagram in Figure 3.7. In this case, the dynamic 
behavior of [3.24] is dictated by (Ac – BcK) matrix. 
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Figure 3.7. Structure of a linear state feedback law 

3.6.2. Techniques for calculating the state feedback gain 

Each type of state feedback controller differs from other types by the algorithmic 
technique used for the calculation of gain matrix K, which offers the expected 
closed-loop performance level. 

Automation literature provides a wide variety of algorithms for the calculation of 
state feedback matrix K of an LTI process. 

Several basic techniques for calculating the gains K of analog controllers are: 

– Pole(s) placement, which involves finding vector K for which the characteristic 
polynomial of matrix (Ac – BcK) coincides with a fixed polynomial 

1
1 1 0( ) ... .n n

nP a a aλ λ λ λ−
−= + + + + This involves finding the unknown vector  

K = [K1 K2 … Kn] by the identification of n terms of the nth-order equation: 

1
1 1 0...n n

n c c nI A B K a a aλ λ λ λ−
−− + = + + + +  [3.25] 

Under these conditions, there are two Matlab commands, namely “place” and 
“acker” that can be used to rapidly calculate the numerical value of gain K according 
to the corresponding syntaxes: 

- K = place(Ac, Bc, Vectpoles) % Basic algorithm 

- Kack = acker(Ac, Bc, Vectpoles) % Ackermann algorithm 

where “VectPoles” designates the Matlab vector consisting of fixed poles. 

– Linear Quadratic Regulator (LQR), which involves finding the gain vector  
K(t) that minimizes or maximizes (as applicable) a functional criterion of the  
following form: 

1 T
0 1 10

J  x ( ) ( ) ( ) ( ) ( ( ), )
t T

t
t Qx t u t Ru t dt x t tψ= + +  [3.26] 
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Under the dynamic constraint described by the state model: 

( )
( )

( ) ( ) ( )

c c

c c

dx t A x B u t
dt

y t C x t D u t

= +

= +
 [3.27] 

where Q ≥ 0, ѱ ≥ 0 and R > 0 are symmetric matrices. 

The instantaneous solution K(t) is obtained by solving the Riccati dynamic 
matrix equation: 

1( )
( ) ( ) ( ) ( ):T T

c c c c
dS t Q A S t S t A S t B R B S t

dt
−− = + + −  [3.28]  

This searched vector K(t) is given by the following relations:  

1( )  R ( ) T
cK t B S t−=  [3.29] 

In practice, the suboptimal solution S(∞) = S∞ of the steady equation deduced 
from [3.28] is written as: 

10 ( )T T T
c c c cQ A S S A S B R B S−

∞ ∞ ∞ ∞= + + −  [3.30]  

The suboptimal steady gain K∞ = R– 1BTS∞ obtained after solving [3.30] can be 
used, if needed, in many practical problems of real-time feedback control. In this 
case, the Matlab command “lqr” can be used to rapidly solve equation [3.30] 
according to the following reduced syntax: 

[Kinf, Sinf] = lqr(Ac, Bc, Q, R) % Resolution of [3.30]. 

3.6.3. Integral action state feedback 

The use of a state feedback controller allows the stabilization of a closed-loop 
dynamic process. In terms of precision, the state feedback effect must be reinforced 
by an integral action of the set point tracking error. Figure 3.8 presents the block 
diagram of an example of a feedback control system that uses integral action state 
feedback. 
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This system is described by the following dynamic equations: 

( )
( ) ( )

( )
( ) ( )

( ) ( )

c c

c

c

dx t A x t B u t
dt

dx ti y t y C x t yr rdt
y t C x t

= +

= − = −

=

 [3.31] 

  

Figure 3.8. State feedback control system with integral action 

From a matrix perspective, [3.31] can be written as: 

[ ]

( )
( )0 0

( )
( ) ( )0 0 1

( )
( ) 0

( )

dx t
x tA Bdt c c u t yrdx t x tCci i

dt
x t

y t Cc x ti

 
          = + −              
  

 
=  

 

 [3.32] 

with: 

( )
( ) ( ) ( )

( )i
i

x t
u t K x t K x t K Ki i x t

 
 = − − = −   

 
 [3.33] 

This yields: 

[ ]

( )
( ) ( )0 0

( ) ( ) ( )0 0 1

( )
( ) 0

( )

c

c

dx t
x t x tA Bdt c K K yridx t x t x tCi i i

dt
x t

y t Cc x ti

 
             = − −                   
  

 
=  

 

 [3.34] 
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hence the following final structure of the state feedback control system with integral 
action: 

[ ]

( )
( ) 0

( )( ) 10

( )
( ) 0

( )

dx t
A B K B K x tdt c c c i yrx tdx t C ii c

dt
x t

y t Cc x ti

 
  − −       = −            
  

 
=  

 

 [3.35]  

For any steady feedback law, the steady states (for t → ∞) can be obtained by 
solving the equation: 

[ ]

( )0 0

( )0 10

( )
( ) 0

( )

A B K B K xc c c i yrxC ic
x

y Cc xi

− − ∞      
= −      ∞      

∞ 
∞ =  ∞ 

 [3.36] 

Hence: 

[ ]

1
( ) 0

( ) 10

( )
( ) 0

( )

cA B K B Kx c c i yrx Ci c
x

y Cc xi

−− −∞     
= −     ∞       

∞ 
∞ =  ∞ 

 [3.37] 

3.6.4. State feedback with integral action and observer 

Practical implementation of the state feedback control law requires states that are 
accessible to measurement, which is not always the case, due to unavailability or to 
high costs of an appropriate instrumentation system for state measurement. The 
technical solution to this practical problem is a state estimator, which is an electronic 
device allowing full or partial reconstruction of the process state based on possible 
measurements. 
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Figure 3.9 presents the block diagram of a linear feedback control system with 
state estimator. Direct analysis of this diagram yields the following combined 
equations of the whole (state feedback and estimator): 

( )
( ) ( )

( )
( ) ( )

ˆ( )
ˆ ˆ( ) ( ) ( ( ) ( ))

r

dx t A x t B u tc cdt
dx ti y t y C x t yr cdt
dx t A x t B u t L y t y tc cdt

= +

= − = −

= + + −

 [3.38] 

  

Figure 3.9. State feedback control system with integral action and observer  

Considering that: 

ˆ( )x x tε = −  

and the following control law based on estimated state feedback under integral 
action: 

ˆ( ) ( ) ( )u t K x t K x ti i= − −  [3.39] 

it can be written: 

ˆ( ) ( ) ( )
( ) ( ) ( ) ( )

d t dx t dx t A t L C t A L C tc c c cdt dt dt
ε ε ε ε= − = + = +  [3.40] 
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Therefore, the following final structure of the global system of equations is 
written: 

( )

0 ( ) 0
( )

0 0 ( ) 1

0 0 0( )( )

i

dx t
dt A B K B K x tc c c idx ti C x t yc rdt

A L C tc cd t
dt

εε

 
 

− −     
     = −     
     +      

 
 

 [3.41] 

The state feedback gain [K Ki] and the estimation gain L can thus be determined 
independently. 

3.6.5. State feedback with output error compensator 

This type of situation is manifest when the feedback law has a dynamic behavior, 
which can consequently be described in the state space (see Figure 3.10). 

  

Figure 3.10. Control system with dynamic state feedback 

Thus, the behavior of a PI controller in the state space is similar to a simple 
example of dynamic state feedback law, whose internal state corresponds to the 
integral of the output error. Smith predictor is another example of a dynamic state 
feedback law that is commonly used for the control of processes with time delay. 

3.7. Principle of equivalence between PID and LQR controllers 

The equivalence principle between PID and LQR controllers was identified a 
long time ago [OBR 08]. 
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3.7.1. Proof of the equivalence principle 

The new idea conveyed by this principle to be proven below, directly applicable 
to dynamic processes of order 2, is that the design of a PID controller, optimal in the 
sense of minimal tracking errors of the desired output, can be reduced for the same 
process to that of an equivalent LQR controller modeled in the state space. 

Indeed, let us consider a dynamic process that admits u(t) as control input and 
y(t) as output, which is modeled by an open-loop transfer function: 

2

2 2

( )
( )

( ) 2
s n

n n

KY sG s
U s s s

ω
ξω ω

= =
+ +

 [3.42] 

The objective is to equip this process with a PID controller described by: 

( )
( )  

( ) p d
iKU sD s K K s

E s s
= = + +  [3.43] 

that minimizes, for example, the quadratic norm of the tracking error E(s) of a fixed 
desired output. 

The graphic interpretation of the PID control loop formed by [3.42] and [3.43] 
corresponds to Figure 3.11. 

  

Figure 3.11.  PID control loop of a second-order process 

In order to bring the PID design problem into the space state, the following 
differential equation of order 2 obtained from the Laplace inverse transform of [3.42] 
can be used: 

2
2 2( )

2 ( )n s nn
d y t dy y K u t

dt dt
ξω ω ω= − − +  [3.44] 
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For a control problem of Figure 3.12, let us consider, without loss of generality, 
that Ref = 0, which yields y = Ref – e = – e. Thus, [3.44] becomes: 

2
2 2

2

( )
2 ( )n s nn

d e t de e K u t
dtdt

ξω ω ω− = + +  [3.45] 

or otherwise expressed: 

2
2 2( )

2 ( )n s nn
d e t de e K u t

dt dt
ξω ω ω= − − −  [3.46] 

State variables x1, x2 and x3 indicated in Figure 3.11 are defined in the time 
domain by: 

1 2 3 ,  ,      
dex e x e dt x
dt

= = =  [3.47] 

At this stage, the relation between [3.46] and [3.47] can therefore be expressed in 
the form: 

1
3

2
1

2
2 23

3 12

 ,

2 ( )n s nn

dx de x
dt dt
dx

e x
dt

dx d e x x K u t
dt dt

ξω ω ω

 = =

 = =



= = − − +


 [3.48] 

which corresponds to the following state model: 

2 2

1

1
2

2

3
3

( )

( )0 0 1 0
( )

( )1 0 0 0 ( )

0 2 ( )( ) n s nn

dx t
dt x t

dx t
x t u t

dt
Kx tdx t

dt

ω ξω ω

 
 
      
      = +      
      − −      
 
 

 [3.49] 
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Considering that: 

c c
2 2

0 0 1 0

1 0 0 0   C [1    0     0]    D 0

0 2
c

n s nn

A B
Kω ξω ω

   
   = = = =   
   − −   

 [3.50] 

1

2

3

0 0

0 0   R r

0 0

q
Q q and

q

 
 = = 
  

 [3.51] 

then the solution to the LQR problem over a finite time horizon, associated with 
[3.49], is given by: 

–1( ) ( )   with    R T
cu t K x t K B S= − =  [3.52] 

where S is the solution of the Riccati equation: 

10 T T T
c c c cQ A S S A SB R B S−= + + −  [3.53] 

Given [3.51] and knowing that the solution to [3.53] has the form: 

11 12 13

21 22 23

31 32 33

S S S
S S S S

S S S

 
 =  
  

 [3.54] 

then the expression of gain K defined in [3.52] becomes: 

2 2 2

11 12 13
-1

21 22 23

31 32 33

1 20 0( ) R ( ) ( )

     31 32 33 ( )       

T
c

s n s n s n

S S S
S S S
S S S

Ks nru t B S x t x t

K K KS S S x t
r r r

ω

ω ω ω

=
 

 = −   
  

 
=  
 

 [3.55] 

The conclusion can therefore be drawn that the PID controller defined by [3.43] 
and the LQR controller given by [3.55] are structurally equivalent. 
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3.7.2. Equivalence relation 

To conclude, the relation governing the equivalence principle between PID and 
LQR controllers results from the equality of expressions [3.43] and [3.55] in the 
time domain: 

[ ]
1

2

3

( )( )

( )     1   2  3 ( ) ( )

( ) ( )
p i d

LQR
PID

e t dtx t
u t K K K x t K K K e t

x t de t
dt

 
  
    = − = −    
     
 






  [3.56] 

In terms of gains, the following relations are obtained: 

2

2

2

1

2

3

31

32

33   

s n

s n

s n

p

i

d

K
K K S

r
K

K K S
r

K
K K S

r

ω

ω

ω


= =


 = =



= =


 [3.57] 

3.7.3. Case study 

Figure 3.12 shows the schematic diagram of a Buck chopper under direct  
open-loop control via duty-cycle modulation, where: 

– Ref = 2 volts; 

– Vc = 15 volts; 

– R1 = 2.32 kΩ;  

– R2 = 10 kΩ;  

– R = 1.2 kΩ; 

– C1 = 33 nF; 

– R4 = 1 kΩ;  

– E = 12 volts; 

– L = 1 mH; 

– C = 220 uF; 

– Rs = 2.3 Ω. 
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Figure 3.12. Buck chopper with duty-cycle modulation control 

A virtual modeling-based estimation of the transfer function of this chopper 
based on the response to a desired response Ref = 1 volt has led to the following 
parameters of the equivalent model of order 2:  

– Ks = 2.75 (static gain); 

– ωn = 2116.7 rad/s (natural angular frequency); 

– ξ = 0.3626 (damping). 

The objective is to design an optimal PID controller of this system based on 
solving the equivalent LQR problem. 

Stage 1: Creation of the open-loop state model 

Let us consider the block diagram of the PID control system in Figure 3.13, 
where three state variables x1, x2 and x3 are fixed. 

 

Figure 3.13. PID control loop of a second-order process 
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The resulting state model is then given by:  

1

1
2

2

3
3

( )

( )0 0 1 0
( )

( )1 0 0 0 ( )

4 480 400 0 1535 12 321 000( )( )

dx t
dt x t

dx t
x t u t

dt
x tdx t

dt

 
 
      
      = +      
      − − −     
 
 

  [3.58] 

Stage 2: LQR design and simulation for a desired response Ref = 6 volts. 

The following “pidlqr.m” program is used for finding the optimal values of K 
and S by adjustment of values of Q and R = r, based on fixed initial conditions, then 
for simulating the trajectories of the control system by optimal PID controller 
equivalent to LQR. 

No. “pidlqr.m” program 

1 % Stage 1 - Definition of the state model 

2 Ks = 2.75;   zeta = 0.3626;   wn = 2116.7; 

3      A= [0   0  1;   1  0  0 ;  -wn^2   0   -2*zeta*wn] ; 

4 B = [0 ;  0;  Ks*wn^2];   C = [1  0  0]; 

5 % Stage 2 – LQR design 

6 q1= 0.08;   q2 = 2000;  q3 = 0.15e-7;  r = 20;   % Final values 

7 Q = diag([q1, q2, q3]);          

8 [K,  S] = lqr(A,B,Q,r),   %  Calculation and display of K and S of Ric  

9 Kp = K(1);   Ki = K(2);  Kd = K(3);       % PID parameters 

10 Ref = 6;                                                  % Set point quantity 

11 T = 0.1e-3; Tfin = 0.3;  time = 0:T:Tfin;  % Time space 

12 s = tf(‘s’);                                                  % Laplace operator             

13 PIDbo = Ks*wn^2/(s^2+2*zeta*wn*s+wn^2);  % Process 

14 D = (Kp+Ki/s+Kd*s);                                       % Controller 

15 PIDbf = feedback(series(PIDbo,D),1);   %  Closed loop     

16 Ypid = Ref* step(PIDbf, temps);           %  Step response   

17 e = Ref-Ypid;                                         %  Tracking error 

18 plot(temps, Ypid,’k’, temps, e,’r’);          %  Trajectories 

19 xlabel(‘Temps (s)’); ylabel(‘Amplitude (volts)’) 

20 axis([0, Tfin, -0.5, 6.5]);  grid 
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The values of PID gains obtained by executing this program are: 

1

2

3

2.7154

0.9535

0.1347   

p

i

d

K K

K K
K K

= =


= =
 = =

 [3.59] 

Moreover, the trajectories of the optimal control system under PID controllers 
thus designed and simulated are represented in Figure 3.14. 

   

Figure 3.14. Results of optimal control by optimal PID controller 

3.8. Exercises and solutions 

Exercise 3.1. 

List five structures of process control laws that can be synthesized in the 
frequency domain.  

Solution – Exercise 3.1. 

Here is a list of five structures of process control laws that can be synthesized in 
the frequency domain: 

– proportional controller; 

– phase-lead controller; 

– phase-lag controller; 

– PID controller; 

– PIDF controller. 
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Exercise 3.2. 

List six structures of process control laws that can be synthesized in the state 
space. 

Solution – Exercise 3.2. 

Here is a list of six structures of process control laws that can be synthesized in 
the state space: 

– state feedback; 

– state feedback with observer; 

– state feedback augmented by the tracking error integral to the desired response; 

– linear quadratic controller; 

– linear stochastic controller; 

– linear Gaussian controller. 

Exercise 3.3. 

A position servomechanism is modeled by the open-loop transfer function Gc(s) 
and by the controller transfer function denoted by Dc(s), with: 

( )
( 1 )

m
c

K
G s

s sτ
=

+
, ( )( ) 1 1/ ( )c p i dD s K T s T s= + +  

It is assumed that Km = 0.375 and τ = 0.35 s. 

a) Find the expression of the closed-loop transfer function Fc(s) = 
Gc(s)Dc(s) / (1 + Gc(s)Dc(s)), then write Fc(s) in the form:  

1 0
3 2

2 1 0

)( ) ( )
( )

1 ( ) ( )
c c

c
sc c s s

a s aG s D s
F s

G s D s a a a
+

= =
+ + + +

  

where a2, a1 and a0 are constants to be determined depending on the parameters of 
Gc(s) and Dc(p). 

b) Deduce the expressions of parameters Kp, Ti and Td of the PID controller as a 
function of a2, a1 and a0. 

 

 



Review of Analog Feedback Control Systems     101 

c) Knowing that the closed-loop characteristic polynomial is written as: 

λ(s) = s3 + 3.3543 s2 + 7.1380 s + 0.53 

calculate the corresponding values of parameters Kp, Ti and Td. 

d) Generate the numerical expression of Fc(s), then use Matlab to draw the graph 
of the step response. 

Solution – Exercise 3.3. 

a) After expansion and arrangement of terms, the expression of F(s) can be 
written as: 

3 2

( ) ( )
( )

1 ( ) ( )

1

        
1 p p

c c
c

c c

m p

i

m p m md

i
s

G s D s
F s

G s D s
K K

s
T

K T K K K K K
s s

T

τ

τ τ τ

=
+

 
+ 

 =
+

+ + +

 

Therefore: 

1
2 1 0

1
; ;

p pm p m md

i i

K T K K K K K a
a a a

T Tτ τ τ
+

= = = =  

b) Expression of PID controller parameters: 

11 1
;1

0

a a
 ; a  

ai p d
m m p

T K T
K K K

ττ −
= = =  

c) If λ(s) = s3 + 3.3543s2 + 7.1380s + 0.53, then: 

- a2 = 3.354; 

- a1 = 7.1385; 

- a0 = 0.53.  

Therefore: 

11 1
6.6621;1

0

a a
13.9961 ; a  0.0696

ai p d
m m p

T s K T s
K K K

ττ −
== = = = =  

d) Graph of the step response of Fc(s): 

3 2

7.138 0.1785( ) ( )
( )

1 ( ) ( ) 3.354 7.385 0.785

sG s D sF s
G s D s s s s

+
= =

+ + + +
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The following Matlab lines of code can be used to draw the step response 
represented in Figure 3.15: 

>> a1= 7.1664; a2 = 3.4233; a0 = 0.1784;  

>> s = tf(‘s’); Fc = (a1*s+a0)/(s^3+a2*s^2 + a1*s + a0); step(Fc); grid 

  

Figure 3.15. Step response 

Exercise 3.4. 

Let us consider a speed regulation system whose open-loop control voltage is 
u(t). The transfer function of this system is given by: 

0  
0

( ) e ; 1.1; 0.93 s; 0.25 s
1  

ss
c s

K
G s K

s
τ τ τ

τ
−= = = =

+
   

Use Matlab to generate the closed-loop step response of this system, knowing 
that the parameters of the PI controller involved are: 

– Kp = 1.9; 

– Ti = 0.57 s. 

Solution – Exercise 3.4. 

0  
0

( ) e ; 1,1; 0.93s; 0.25 s
1  

ss
c s

K
G s K

s
τ τ τ

τ
−= = = =

+
 

% required Matlab code 
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>> Ks = 1.1;   Ta = 0.93; Tm = 0.25;  Kp = 1.9;   Ti = 0.57;   Td = 0.0; 

>> s = tf(‘s’);  Gc = exp(-Tm*s)*Ks/(1+Ta*s);   D = Kp+1/(Ti*s)+Td*s;  

>> Fpi= feedback(series(Gc, D),1);   step(Fpi);   grid 

The closed-loop step response corresponds to Figure 3.16. 

  

Figure 3.16. Closed-loop step response 

Exercise 3.5. 

The transfer function of a speed servomechanism is given by: 

( )
1 a

T ss mK
G s e

T s
−

=
+

 

with: 

– Ks = 5; 

– Ta = 8 s; 

– Tm = 3 s. 

a) Determine the parameters of the PI controller required by the Ziegler–
Nichols technique. 

b) Use Matlab to generate the graph of the closed-loop step response. 
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Solution - Exercise 3.5. 

( )
1 a

T ss mK
G s e

T s
−

=
+

 

with: 

– Ks = 5; 

– Ta = 8 s; 

– Tm = 3 s. 

a) Based on the known structure of the open-loop transfer function of the system, 
let us consider Ks = 5, Ta = 8 s, Tm = 3 s. Then the parameters of the PI controller 
required in the Ziegler–Nichols sense are given by: 

/0.9 (1/ ) ( ) 0.48, 3.3 9.9p a m mK Ks T T Ti T s= = = =  

b) Matlab lines of code for generating the step response: 

>> Ks = 5;  Tm = 3; Ta = 8; s = tf(‘s’); G = Ks*exp(-Tm*s)*1/(Ta*s+1); 

>> Kp = 0.9*(1/Ks)*(Ta/Tm),  Ti = 3.3*Tm, D = Kp*(1+1/(Ti*s); 

>> F=feedback(series(G,D),1), step(F); grid 

This step response corresponds to Figure 3.17: 

  

Figure 3.17. Closed-loop step response 
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Exercise 3.6. 

A power lighting system generates a lighting level w(t) under control voltage 
u(t). The transfer functions G(s) of the system and those of the simplified virtual 
model Ge(s) are given, respectively, by: 

0.005  

2

0.0141 

( ) 0.4914
( )

( ) (1 0.035 p)

0.4914
( )

1 0.955

s

s
e

W sG s e
U s

G s e
s

−

−

= =
+

=
+

  

a) Draw the graphs of the step response of G(s) and Ge(s) on the same Matlab 
figure. 

b) Based on the graph of Ge(s), determine the required PID controller parameters 
using the Ziegler-Nichols technique. 

c) Draw the graph of the closed-loop response to a lighting set point of 500 lux, 
in the presence of the previously determined PID controller, using the Ge(s) 
simplified model. 

d) What conclusions can be drawn? 

Solution – Exercise 3.6. 

The given transfer functions are: 

0.005  

2

0.0141 

( ) 0.4914
( )

( ) (1 0.035  )

0.4914
( )

1 0.955

s

s
e

W sG s e
U s s

G s e
s

−

−

= =
+

=
+

 

a) Approximate model of order 1 and graphs of step responses: 

The following Matlab program can be used to answer the above questions, and 
the resulting graphs are shown in Figure 3.18. 

>>  T0=0.005; Tf = 0.4;  T=0:T0:Tf;  

>>  t = tf(‘s’);  Go = exp(-0.005*s)*0.4914/((1+0.035*s)^2);    
[Yo, To] = step(Go,T);  

>> Ks = 0.4914;   Tm = 0.0151;  Ta = 0.062;  s = tf(‘s’);  

>> Ge = Ks*exp(-Tm*s)*1/((Ta*s+1));   [Ye, Te] = step(Ge,T); 

>> plot(T, Yo,  ‘.’,  T, Ye, ‘k’); grid 
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Figure 3.18. Graphs of step responses of G(s) and Ge(s). For a  
color version of this figure, see www.iste.co.uk/mbihi/automation.zip 

b) PID parameters calculated based on the approximate model: 

Let us consider: 

- Ks = 0.4914; 

- Ta = 0.055 s; 

- Tm = 0.0141 s; 

Then: 

- Kp = 1.2 (1/Ks) (Ta/Tm) = 2.2803; 

- Ti = 2*Tm = 0.0302; 

- Td = 0.0076. 

c) Graph of responses (see Figure 3.19). 

d) To conclude, the design of a PID controller of a damped system of order 2 by 
means of the Ziegler-Nichols method can be similar to that of an equivalent system 
of order 1. 

A further conclusion is that it is possible that the design of a controller of a 
complex system comes down to that of an equivalent simplified system. 
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Figure 3.19. Graphs of step responses of G(s) and Ge(s). For a color  
version of this figure, see www.iste.co.uk/mbihi/automation.zip 

Exercise 3.7. 

a) Edit and save in a Matlab current folder the “iaepid.m”, “itaepid.m” and 
“isepid.m” functions proposed in section 3.5. 

b) Let us consider a dynamic process characterized by the following transfer 
function: 

( )
1 a

T ss mK
G s e

T s
−

=
+

 

with:  

– Ks = 5; 

– Ta = 1.5 s; 

– Tm = 1 s. 

Edit the following “KpTiTd.m” program, in order to test and compare 
“iaepid.m”, “itaepid.m” and “isepid.m” functions provided in section 3.5, using the 
G(s) parameters below. Then draw the graphical representation of the results 
obtained.  
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No. “KpTiTd.m” program 

1 Ks = 5 ; Ta = 1.5 ; Tm = 1 ;     Tfin = 10;   

2  [KpTiTd_iae,  y_iae,  temps_iae]   =  iaepid(Ks, Ta, Tm, Tfin); 

3  [KpTiTd_itae, y_itae,  temps_itae] =  itaepid(Ks, Ta, Tm, Tfin); 

4  [KpTiTd_ise,  y_ise,  temps_ise]    =  isepid(Ks, Ta, Tm, Tfin); 

5  plot(temps,  y_ise, ‘b’,  temps, y_iae, ‘k’, temps,  y_itae, ‘r’);  

6  grid;   xlabel(‘Temps (s)’); 

Solution – Exercise 3.7. 

( )
1 a

T ss mK
G s e

T s
−

=
+

 

with: 

– Ks = 5; 

– Ta = 1.5 s; 

– Tm = 1 s. 

a) Entry of functions and program. 

b) Test results (see Figure 3.20): 

 

Figure 3.20. Test results. For a color version of this  
figure, see www.iste.co.uk/mbihi/automation.zip 
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Exercise 3.8. 

What are the two most important practical constraints when implementing a state 
feedback control system? 

Solution – Exercise 3.8. 

The practical constraints when implementing a state feedback control system are: 

– Controllability or stabilizability of the pair (Ac, Bc); 

– Observability of the pair (Ac, Cc). 

Exercise 3.9. 

a) What is the role of integral feedback in a state feedback control diagram? 

b) Draw the block diagram of the integral state feedback control system 
(Figure 3.21). 

c) Analyze the stability and static precision properties of this control diagram for 
a desired step response yr = 3, knowing that the parameters are as follows: 

[ ]1 0 0
; ; 1 0 ; [20 10]; 20

2 2 1
Ac Bc Cc K Ki   

= = = = =   − −   
 

  

Figure 3.21. Block diagram of integral feedback control 

Solution – Exercise 3.9. 

a) Integral feedback allows the output to follow the desired response. 

b) Block diagram of integral state feedback control. 
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c) Stability and static precision of this diagram, knowing that: 

[ ]
( )1 0 0

; ; 1 0 ; [20 10]; 20
( )2 2 1

x t
Ac Bc Cc K Kix ti

    
= = = = =    − −     

 

– Stability: 

The closed-loop system is described by the following equations: 

[ ]

( ) 0
( )

0
( )( ) 0

1

( )
( ) 0

( )

dx t
A B K B K x tdt c c c i yrx tdx t C ii c

dt
x t

y t Cc x ti

     − −       = −                
 

=  
 

 

with: 

Af = 

0 1 0

22 12 20
0

1 0 0

A B K B Kc c c i
Cc

 − −   = − − −        

 

The characteristic polynomial of Af is written as: 

p(λ) = λ3 + 12λ2 + 22λ + 20 

It can be verified that one of the roots is λ1 = – 10, and the other two are – 1 ± j. 
Since all these roots (or closed-loop poles) have negative real parts, the stability 
condition of the closed-loop control system is met. 

– Desired output tracking precision: 

It is sufficient to calculate the quantity y(∞), and then compare it to the 
reference: 

[ ]

1 0 0 0 1 0 3
( )

0 3 1 0 0 0 0
( ) 0

1 0,6 0,05 1., 1 3,3

3
( )

( ) 0 1 0 0 0 3
( )

3,3

cA B K B Kx
yx C

x
y C x

c c i
r

i c

c
i

−        − −∞           = − = =          ∞              − − − −       
 ∞   ∞ = = =      ∞     
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As expected, it can be noted that, in steady state, the output is equal to the 
desired output yr = 3. 

Exercise 3.10. 

Let us consider a servomechanism represented by the state model: 

0 1 0 0
( )

0 0 4, 438 ( ) 0 ( )

0 12 24 20

dx t x t u t
dt

  
  = +   
  − −   

 

Considering

0 1 0 0

0 0 4, 438 , 0 ,

0 12 24 20

A B
  
  = =   
  − −   

 it can be verified that the system 

is controllable (rank 3 for the controllability matrix) by executing the following 
Matlab control lines: 

>> A = [0 1 0;   0 0 4.438;   0 -12 -24];    B = [0;   0;   20];  

>> Mc = rank(ctrb(A,B)), % Controllability matrix [A B A^2*B];   

>> rg = rank(Mc), % Mc rank calculation 

a) Find the components’ values of gain K = [k1 k2 k3] of the state feedback 
u(t) = – Kx(t) + Ref, knowing that the desired closed-loop characteristic polynomial 
has the form: 

pr(λ) = λ3 + 30λ2 + 162λ + 432 

b) Solve a) by using Matlab commands “place” and “acker”. 

c) Find the state equation of the closed-loop servomechanism. 

d) Use Matlab to draw the closed-loop response for Ref = 1. 

Solution – Exercise 3.10. 

a) Knowing that Af = A – BK with K = [K1 K2 K3] and that: 


0 1 0 0

( )
0 0 4, 438 ( ) 0 ( )

0 12 24 20

BA

dx t x t u t
dt

  
  = +   
  − −   


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Then the closed-loop characteristic polynomial under the state feedback law of 
gain K = [k1 k2 k3] can be written as: 

p(λ, K) = det(λI3 – Af) 

Expansion and simplification of the terms of p(λ, K) leads to: 

p(λ, K) = p3 + (24 + 20k3)p2 + (53,2560 + 88,72k2)p + 88,76k1 

The components of K result from identifying the same degree coefficients of 
characteristic polynomials pr(λ) and p(λ, K). This identification leads to: 

- 88.76k1 = 432; 

- 88.76k2 + 53.2560 = 162; 

- 20k3 + 24 = 30. 

Hence, the searched values of K: 

- K1 = 4.8671; 

- K2 = 1.2251; 

- K3 = 0.3. 

b) Calculation of K using Matlab “place” command: 

To use the “place” command, we have to know the desired closed-loop poles, 
which are the roots of the characteristic equation: 

λ3 + 30λ2 + 162λ + 432 = (λ + 24) (λ2 + 6λ + 18) = 0 

These roots are: 

- λ1 = – 24; 

- λ2 = – 3 + 3i; 

- λ3 = – 3 – 3i. 

Matlab can then be used to calculate gain K, as follows: 

>> poles = [-24 -3+3i  -3-3i]; 

>> K = place(A, B, poles), Kack = acker(A, B, poles) 
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The execution of this command line yields the same results: 

K = 4.8671          1.2251     0.3000 

Kack = 4.8671    1.2251     0.3000 

c) Closed-loop state equation: 

Knowing that: 

0 1 0 0
( )

0 0 4, 438 ( ) 0 ( )

0 12 24 20

dx t x t u t
dt

  
  = +   
  − −   

 

with u(t) = – Kx(t) + Ref, or expressed otherwise: 

1 2 30 1 0 0 0
( )

0 0 4, 438 ( ) 0 4,8671 1, 2251 0, 3 ( ) 0 Re

0 12 24 20 20

0 1 0 0

        0 0 4.4380 ( ) 0 Re

20 1 12 20 2 24 20 3 20

K K Kdx t x t x t f
dt

x t f
K K K

            = − +           − −     
  
  = +   
  − − − − −   

 

 

d) Closed-loop response: 

The Matlab program used is as follows: 

No. The program used 

1 A= [0  1  0 ;   0  0  4.438 ; 0   -12   -24] ; B = [0 ;  0 ;  -20] 

2 C= [1  0  0 ] 

3 K = [4.8671    1.2251   0.3 ] ; 

4 Af = A-B*K; Bf = B; 

5   SysSS = ss(Af, Bf, C, 0);   [Y,T,X] =  step(SysSS); 

6   plot(T, X(:,1),  ‘r’,  T,   X(:,2),  ‘b’, T, X(:,3),  ‘k’);  grid 
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The graph of the response obtained is as follows: 

 

Figure 3.22. Graph of the response obtained 

Exercise 3.11. 

Let us consider a servomechanism represented by the state model: 

0 1 0 0 0

0 0 4.438 7.396 0( )
( ) ( )

0 12 24 0 20

0 0 0 1 0

dx t x t u t
dt

   
   −   = +
   − −
   −   

 

The following lines of Matlab can be used to verify that the system is 
controllable: 

>> A = [0 1 0 0; 0 0 4.438 – 7.396; 0 – 12 – 24 0; 0 0 0 – 1]; 

>> B = [0; 0; 20; 0]; rg = rank(ctrb(A, B)) 

Moreover, the data required by the LQR command over an infinite time horizon 
are: 

9 0 0 0

0 0 0 0
, 1

0 0 0 0

0 0 0 0

Q r

 
 
 = =
 
 
 
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a) Calculate gain K of LQR using the following lines of the Matlab program: 

No. Lines of program 

1 A = [0    1   0    0;   0  0   4.438  -7.396;  0 -12  -24  0; 0  0  0  -1];   

2 B = [0;   0;  20; 0];    C= [0  0  1  0];     rg = rank(ctrb(A,B)) 

3 Q = diag([9  0  0  0]),  r = 1;   K = lqr(A, B, Q, r) 

b) Calculate the parameters of the closed-loop state model, then use Matlab to 
represent the state trajectories, knowing that: 

u = – Kx + Ref, with Ref = 1. 

No. Lines of program 

4 Af = A- B* K ;  Bf = B ; 

5 SysSS = ss(Af, Bf,  C,  0);   [Y, T, X] =  step(SysSS); 

6 plot(T,  X(:,1),   ‘r’,  T,    X(:,2),  ‘b’, T,  X(:,3),  ‘k’);  grid 

Solution – Exercise 3.11. 

The known data for the synthesis of LQR commands over a finite time horizon 
are: 

0 1 0 0 0

0 0 4.438 7.396 0( )
( ) ( )

0 12 24 0 20

0 0 0 1 0

dx t x t u t
dt

   
   −   = +
   − −
   −   

, 

9 0 0 0

0 0 0 0
, 1

0 0 0 0

0 0 0 0

Q r

 
 
 = =
 
 
 

  

a) The execution of the following Matlab program lines: 

>> A = [0    1 0    0;   0 0 4.438 -7.396;  0 -12 -24 0; 0  0  0 -1];   

>> B = [0;   0;  20; 0];   rg = rank(ctrb(A,B)) 

>> Q = diag([9 0 0 0]), r = 1;    K = lqr(A, B, Q, r) 

yields: K = [3.0000    0.8796    0.1529 – 1.8190] 



116     Analog Automation and Digital Feedback Control Techniques 

b) The following lines of Matlab code calculate the full closed-loop state model, 
then display the optimal state trajectories (see Figure 3.23): 

>> % Data A, B and Ref = 1 must be saved  

>>  %  Data A,   B  and  Ref = 1, must be saved  

>>  Af = A-B*K; Bf = B * Ref; 

>>  SysSS = ss(Af, Bf, [0 0 1], 0);   [Y,T,X] =  step(SysSS);  

  

Figure 3.23. Optimal state trajectories. For a color version  
of this figure, see www.iste.co.uk/mbihi/automation.zip 

Exercise 3.12. 

The state model of a Buck chopper with duty-cycle modulation control is given by: 

[ ]

2
2

1
00( )

( ) ( )
2

( ) 1 0 ( )

s n
n n

dx t x t u tC
K Cdt C

y t x t

ωω ξω

      = −     − −  
 =

 

with: 

– Ksi = 2.75; 

– en = 2116.7 rad/s; 

– ξ = 0.3626. 
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a) Type and then test the Matlab program below, which allows the study of the 
optimal control problem by LRQ knowing that: 

0, 07 0
, 0.6

0 0, 5
Q R 

= = 
 

 

No. Program lines 

1 Tfin = 6e-03;   wn = 2116.7;   zeta = 0.3626;    

2 Ks = 2.75;   Cs = 220e-06; 

3 A=  [0  1/Cs;   -Cs*wn^2    -2*zeta*wn];   

4 B = [0; Ks*wn^2*Cs]; C = [1  0]; D = 0; 

5 Sys = ss(A,B,C,D);   [Ybo, Tbo, Xbo] = step(Sys, Tfin); 

6 Q = diag([0.07  0.5]);   R = 0.6;    [K,  S] = lqr(A,B,Q,R) 

Then find the calculated state model, as well as the values of optimal gain K. 

b) Complete the previous program with the one below, in order to generate on 
the same Matlab figure optimal open-loop and closed-loop trajectories of states in 
the presence of a desired output Ref = 1 volt. Then generate the figure of the obtained 
trajectories. 

No. Continuation of the previous program 

7 Ref = 1;   Af = A-B*K; Bf = B * Ref;    

8 SysSS = ss(Af, Bf, [1  0], 0);    

9 [Yss, Tss, Xss] =  step(SysSS, Tfin); 

10 plot(Tbo, Xbo,  Tss,  Xss);  grid 

Solution – Exercise 3.12. 

[ ]

2
2

1
00( )

( ) ( )
2

( ) 1 0 ( )

s n
n n

dx t x t u tC
K Cdt C

y t x t

ωω ξω

      = −     − −  
 =
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with: 

– Ks = 2.75; 

– ωn = 2116.7 rad/s; 

– ξ = 0.3626; 

– 
0.07 0

, 0.6.
0 0.5

Q R 
= = 
 

 

a) The open-loop state model is given by: 

[ ]

3 30 4.5455 0( )
10 ( ) 10 ( )

0.9857 1.5350 2.7107

( ) 1 0 ( )

dx t x t u t
dt

y t x t

    
= −    − −   

 =

 

The optimal gain obtained is K = [0.1353 0.7016]. 

b) The execution of the complete program leads to the graphic results presented in 
Figure 3.24: 

  

Figure 3.24. Graphic results. For a color version of  
this figure, see www.iste.co.uk/mbihi/automation.zip 
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Exercise 3.13. 

A pulse width modulated Buck chopper with controlled voltage u(t) is modeled 
by: 

6 6

0 0 1 0
( )

1 0 0 ( ) 0 ( )

1.755 10 0 629.8 1.667 10

dx t x t u t
dt

x x

   
   = +   
   − − −   

 

Considering the following optimal control data over an infinite horizon: 

07

6

9

10 0 0

0 10 0 , 1

0 0 10

Q R r

−

−

 
 = = = 
 
 

 

a) Use the Matlab program to solve the LQR∞ problem below: 

No. Program lines 

1 A= [0 0 1; 1 0 0;    -1.755e6  0  -629.8];  B = [0; 0; -1.667e6]; 

2 sys = ss(A, B, [1 0 0],0); 

3 Q = [1e-07   0    0;    0   1e6    0;    0   0   1e-9 ];    r = 1;   

4 [KLqr,  Sinf, E] =  lqr(sys,Q,r); 

5 Sinf,   KLqr 

6 Ref = 1;  Af = A-B*KLqr;  Bf = B;  sysf = ss(Af,Bf,  [1 0 0],  0); 

7 [y, T, X] =  step(sysf);    Y = Ref - y;  u = -KLqr * X’;   

8 plot (T, y, ‘k’, T, Y,’b’, T, u, ‘r’);  grid 

Then: 

1) Specify the Riccati matrix S∞ obtained, as well as the corresponding gain K∞ 
of state feedback through LQR: u = – K∞x(t) + Ref ; 

2) Observe the graph of y = e, Y = Ref – y and of u with Ref = 1, then verify that 
the displayed trajectories are as predicted. 
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b) Complete the previous program with the one below:  

No. Continuation of the previous program 

9 Ref = 1; sys = ss(A, B, C, 0);    Gc = tf(sys),   

10 s = tf(‘s’); Dc = (Kp+Ki/s+Kd*s), 

11 Fpid = feedback(series(Gc,Dc),1), 

12 [Ypid, Tpid] = step(Fpid); y = Ref-Ypid;   

13 plot(Tpid, Ypid, Tpid,y); grid 

c) Find the following results: 

1) Parameters Kp, Ki, and Kd of the optimal PID controller equivalent to LQR; 

2) Transfer functions G(s) of the open-loop process, D(s) of the optimal PID 
controller and closed-loop Fpid(p); 

3) The graphs of the output signal ypid(t) and of the set point tracking error e(t). 

Solution – Exercise 3.13. 

a) 
6 6

0 0 1 0
( )

1 0 0 ( ) 0 ( )

1.755 10 0 629.8 1.667 10

dx t x t u t
dt

x x

   
   = +   
   − − −   

 

07

6

9

10 0 0

0 10 0 , 1

0 0 10

Q R r

−

−

 
 = = = 
 
 

 

1) After entry and execution of the provided Matlab code lines, the following 
results are displayed: 

7.5815e-04 0.9969  4.2501e-07

0.9969 1.7613e+03 5.9988e-04 ,

4.2501e-07 5.9988e-04 3.7137e-10
InfS

 
 =  
  

 

KLqr = [– 0.7085 – 1000.0    – 0.0006] 
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2) Kpid = [– 0.7085 – 1000.0    – 0.0006] 

The trajectories obtained for desired output Ref = 1 are represented in 
Figure 3.25. 

b) The calculated KPid gain is:  

1) KPid = [– 0.7085  – 1000.0  – 0.0006]; 

2) Transfer functions: 

-1.667e06
( )

ps + 629.8 s + 1.755e06cG s =  

2  -0.0006191 s   0.7085 s 1000
( )cD s

s
− −=  

2

3 2 

  1032 s  + 1.181e06 s + 1.667e09
( )

  s  + 1662 s + 2.936e06 s + 1.667e09
Fpid s =   

 

Figure 3.25. Resulting trajectories 
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3) Graphs of the signals obtained (see Figure 3.26): 

 

Figure 3.26. Graph of signals obtained 

Exercise 3.14. 

What are the main problems encountered when implementing analog controllers? 

Solution – Exercise 3.14. 

The main problems of the implementation of analog controllers are: 

– significant overall dimensions; 

– very costly changes in parameters and extensions; 

– ageing of constituent components; 

– high noise sensitivity. 



PART 2 

Synthesis and Computer-aided Simulation  
of Digital Feedback Control Systems





4 

Synthesis of Digital Feedback Control 
Systems in the Frequency Domain 

4.1. Synthesis methodology 

The synthesis of digital feedback control systems in the frequency domain 
involves: 

– finding the discrete transfer function G(z) of the sampled model of the dynamic 
process; 

– using an appropriate method to find the discrete transfer function D(z) of the 
feedback controller; 

– establishing and validating, based on simulation, the control diagram thus 
synthesized. 

4.2. Transfer function G(z) of a dynamic process 

4.2.1. Sampled dynamic model 

A sampled dynamic model results from sampling with period T of a continuous 
dynamic model, equipped with an upstream digital-to-analog converter (DAC) and a 
downstream analog-to-digital converter (ADC). Figure 4.1 describes the 
methodology for the synthesis of a sampled dynamic process. 

Indeed, the DAC that operates upstream of the dynamic process plays the role of a 
zero-order holder, whose impulse response for 0 ≤ t < T is given by b0(t). In other 
words, the theoretical transfer function B0(s) = U(s) / U*(s) of a DAC corresponds to 
the Laplace transform of b0(t). 

Analog Automation and Digital Feedback Control Techniques, First Edition. Jean Mbihi. 
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Moreover, the presence upstream of the process of an ADC that acts as a sampler 
leads to the diagram of the sampled dynamic process, presented in Figure 4.1c, 
where the input and output quantities are u*(t) and y*(t), respectively. 

 

Figure 4.1. Synthesis of a sampled dynamic model. For a color  
version of this figure, see www.iste.co.uk/mbihi/automation.zip 

4.2.2. Discretization of Gc(p) if input delay τ0 = 0  

4.2.2.1. Principle of zero-order holder 

In Figure 4.1, the impulse response b0(t) of the zero-order holder operating 
upstream of the dynamic process model, as well as the corresponding transfer 
function B0(s), are given by: 

0

0 00

 
  

1 ( 1)
( )

0  otherwise 

1 1
( )

T T s T
s t s t

if kT t k T
b t

if

eB s e dt e
s s

−
− −

 ≤ < +
= 

 
−  = = − =   

 [4.1] 

Knowing that z = eTs, the presence of the term z– 1 = e– Ts in [4.1] can be noted. 

4.2.2.2. Calculation of G(z) based on Gc(s) 

Considering Gc(s) = Y(s)/U(s), the transfer function of the process, according to 
Figure 4.1(b), the following can be written as: 

0( ) ( ) ( ) *( )cY s G s B s U s=  [4.2] 
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or the Laplace transform Y*(s) of the sampled signal obtained by sampling of [4.2] 
at frequency 1/T = ω0 / 2π can be written as: 

0

0

0

1
*( ) ( ) ( ) * ( )                    (a)

1
           ( ) ( )  * ( )                              (b)

1
           ( ) ( )

O O O

O O

O

c
k

c
k

c O
k

Y s G s j k B s j k U s jk
T

G s j k B s j k U s
T

G s j k B s j k
T

ω ω ω

ω ω

ω ω

∞

=−∞
∞

=−∞
∞

=−∞

 = + + + 
 
 = + + 
 
= + +








( )0

* ( )

 U*(s)                               (c)

           ( ) ( ) *   U*(s)  G*(s) U*(s)                                          (d)c

G s

G s B s


 


= =


  [4.3] 

The passage from [4.3a] to [4.3b] relies on the periodicity of U*(s) with period 
ω0. Then, since in [4.3b] U*(s) no longer depends on the summation index k, 
equality [4.3c] results. Finally, the passage from [4.3c] to [4.3d] results from the 
periodicity of the Fourier transform of the sampled quantity (Gc(s)B0(s))*. 

Applying z-transform to [4.3d] yields: 

( ) ( ) ( ) ( )0 0* ( ) ( ) ( ) * ( ) ( ) ( ) * ( )c cZ Y s Z G s B s U s Z G s B s Z U s= =  [4.4] 

Therefore: 

0

-T s

( )  ( ( ) ( ) )  U(z)

1
        ( )  U(z)

( )1
         U(z)

c

c

c

Y z Z G s B s

eZ G s
s

G sz Z
z s

=

 −=  
 
−   =    

   

 [4.5] 

Thus, the discrete transfer function of a linear process described by a continuous 
transfer function Gc(s) is written as: 

( )( ) 1
(z)   

( )
cG sY z zG Z

U z z s
−   = =    

   
 [4.6] 
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One of the following two tools can be used in practice, as applicable, to calculate 
G(z) from relation [4.6]: 

– the table of z-transforms in order to obtain an analytical expression (Appendix 
1 provides an example of table of z-transforms); 

– Matlab® command “c2d” (Gc, T, “zoh”), which returns a numerical expression 
of G(z). 

In all cases, it is important to validate the expression of G(z) obtained by 
simulation of the respective responses of Gc(s) and G(z) with the same types of 
inputs. 

4.2.3. Discretization of Gc(s) if input delay τ0 # 0  

Let us consider the following transfer function Gc(s): 

0
0( )

( ) ( )
( )c

sY sG s G s e
U s

τ−= =  [4.7] 

with: 

1

01
0 1

0

( ) ( )

n
j

j
j

c n c c c n
n i

i
i

b s
G s C s I A B D

s a s

−

=−
−

=

= − + =
+




 [4.8] 

4.2.3.1. Discretization of Gc(s) based on the Padé transform 

4.2.3.1.1. Principle 

This method first involves the substitution in [4.7] of the term 0 se τ−
 by its Padé 

transform [ma / na], then the use of the step invariance method in order to discretize 
the new transfer function whose numerator and denominator have the orders 
M = m + ma and N = n + na, respectively. 

4.2.3.1.2. Padé transform of the function 0 se τ−  

Table 4.1 presents the first terms [0 / 0] to [2 / 3] of the Padé transform of 
function xe , knowing that 0x sτ= − . 
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For example, for a transfer function 
1

( )
1c

sG s e
s

−=
+

, the Padé approximant of 

order [0 / 1] of Gc(s) is: 
1 1

( )
1 1cG s

s s
   ≈    + +   

. Then applying the step invariance 

discretization technique, the following is obtained: 

2

1 1
( )

s (s 1)

zG z Z
z

 −=  
+  ( )21

T

T T

z z Te z
z z e z e

−

− −
= − −

− − −
 [4.9] 

ma / na ma = 0 ma = 1 ma = 2 

na = 0 1 1 x+  
2

1
2

xx+ +  

na = 1 
1

1 x−
 

1
2

1
2

x

x

+

−
 

22
1

3 6

1
3

x x

x

+ +

−
 

na = 2 2

1

1
2

xx− +
 

2

1
3

2
1

3 6

x

x x

+

− +
 

2

2

1
2 12

1
2 12

x x

x x

+ +

− +
 

na = 3 2 3

1

1
2 6

x xx− + −
 

2 3

1
4

3
1

4 4 24

x

x x x

+

− + −
 

2 3

1
4

3
1

4 4 24

x

x x x

+

− + −
 

Table 4.1.  Padé approximant of xe with x = – τ0p 

4.2.3.2. Discretization of Gc(s) by z-transform 

Applying the step invariance discretization technique leads to: 

0 0
( )1

( )
sG szG z Z e

z s
τ−−   =    

   
 [4.10] 

Let us consider an integer m ∈ {1, 2, 3,…}, so that:  

τ0 = mT  [4.11] 
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where T designates the discretization period. In this case, [4.10] becomes: 

( )0 0  ( ) ( )1 1
( )

mm T s T sG s G sz zG z Z e Z e
z s z s

−−− −      = =       
      

 [4.12] 

In [4.12], Z(.) represents the z-transform associated with operator T sz e= , while 

the term ( ) mT s me z=  is similar to a modified z operator. 

Thus, [4.12] becomes: 

0 0( ) ( )1 1
( )    m mG s G sz zG z Z z z Z

z s z s
− −− −      = =       

      
  [4.13] 

It can be noted in [4.13] that the time delay effect is reflected in the frequency 
domain by m poles p1 = p2 =... = pm = 0. Since the transfer function G0(s) in [4.12] is 

rational and strictly proper, then the exact expression of the term 0 ( )G s
Z

s
 
 
 

 can 

be determined from a z-transforms table. If needed, it can also be numerically 
calculated with the Matlab command “c2d”. 

In practice, the values of m and T in [4.12] can be determined by identifying on the 
graph of hyperbolic constraint T = τ0 /m, a point (m*, T*) for which the value of T* 
to be used for discretization is satisfactory. 

4.2.3.3. Structure of a z-transfer function 

4.2.3.3.1. Expression 

The solution to the previous discretization problem indicates that the general 
expression of the transfer function G(z) of a rational and strictly proper dynamic 
process has the following form: 

1
1 1 1

1
1 1

1

...( )
( )

( ) ...

n
n i

ni
i n n

n n n
n n i n n

i
i

b z
b z b z bY zG z

U z z a z a z az a z

−
−

= −
−

− −

=

+ + +
= = =

+ + + ++




  [4.14] 
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4.2.3.3.2. Recurrence equation 

The recurrence equation is a numerical series allowing the simulation in discrete 
time of the response of G(z) to a known input sequence. Indeed, based on [4.14], the 
following can be written as: 

1 1
1 1 1 1( ) ( ... ) ( ) ( ... )n n n

n n n nY z z a z a z a U z b z b z b− −
− −+ + + + = + + +   [4.15] 

or still: 

1 ( 1) 1 ( 1)
1 1 1 1( ) (1 ... ) ( ) ( ... )n n n n

n n n nY z a z a z a z U z b z b z b z− − − − − − − −
− −+ + + + = + + +

 [4.16] 

Thus, the recurrence equation allowing the implementation of the frequency 
dynamic model [4.14], during simulation or in real time, depending on the context, is 
obtained by projecting relation [4.16] in discrete time space, taking into account the delay 
property of the z-transform. This recurrence equation is written as: 

( )
1

( ) ( ) ( ) ( ) ,
n

i i
i

y kT y k b u k i a y k i
=

≡ = − − −  [4.17]  

with the following initial conditions to be considered under the hypothesis of signal 
causality: 

( )
1

(0) 0

, with 1, 2, ..., 1
( ) ( ) ( )  

k

i i
i

y
k n

y k b u k i a y k i
=

=
 = − = − − −


 [4.18] 

4.2.3.4. Properties of G(z) 

The properties of a transfer function are indicators of the dynamic and static 
performances of the modeled process. These indicators are: 

– Realizability, which expresses the non-anticipative dynamic behavior, in the 
sense that at each discrete instant, the output does not depend on the future of the 
input. The realizability test is reflected by the fact that the degree of the numerator 
of the transfer function in z is below that of the denominator. For example, the 
transfer function H(z) = Y(z) / X(z) = (z2 + az + b) / (z + c) admits at instant kT, a 
recurrence equation: 

y(k) = – cy(k – 1) + x(k + 1) + ax(n) + bx(n – 1) [4.19] 
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that depends on the future value x(n + 1). It is therefore not realizable; 

– Stability, which expresses the fact that the process can return to an equilibrium 
state after a disturbance. Knowing that z = eTs, the stability test reflects the fact that 
all the poles of the z-transfer function are contained in the disk of unit radius; 

– Rapidity, which expresses the time after which the response to an input is 
contained in the vicinity of r % of the steady-state response; 

– Precision, which expresses the margin of static error and is reflected by the 
steady-state error between the desired output and the response obtained. For 
example, if H(z) = Y(z)/Xr(z), the error ∈ (z) is defined by the relation: 

∈ (z) = Y(z) – Xr(z) =
( ) 1

( ) ( ) ( )
1 ( ) 1 ( )r r r

H z X z X z X z
H z H z

− =
+ +

   [4.20] 

Hence, the following expressions of position error (∈p) and speed error (∈v): 

∈p = 
1

1 1
( 1)

1 1 ( )) (1)z

zLim z
z H z H→

  − =  − +  
 [4.21] 

∈v = 
2

1 1
( 1)

( ) ( 1) ( )( 1)z z

T z T z
Lim z Lim

H z z H zz→∞ →∞

      
− =        −−      

 [4.22]  

– Robustness, which expresses the level of sensitivity of the output response in 
the presence of uncertain phenomena such as disturbances, noises and variations of 
parameters. 

4.2.4. Examples of calculation of G(z) by discretization of Gc(s) 

4.2.4.1. Calculation of G(z) from the table of Laplace transforms 

Let us consider the transfer function: 

2
( )  

2
c

bG s
s a s b

=
+ +

  [4.23] 

with b > a2, e.g. a = 1 and b = 6. 

The problem to be solved involves the calculation and validation of the 
analytical expression of the corresponding z-transfer function, denoted as G(z), 
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which will be obtained by the discretization of Gc(s) considering a symbolic 
sampling period T. 

From relation [4.23], the following can be written as: 

2

1
( )  

( 2 )

z bG z Z
z s s a s b

 − =    + +   
  [4.24] 

Then, knowing that: 
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 [4.25] 

and that 2
0 ,b aω = −  using the table of z-transforms yields: 
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  [4.26] 

After reduction in the same denominator and arrangement of terms of [4.26] in 
decreasing power orders of z, this becomes: 
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In particular, if a = 1, b = 6, and T = 0.1 s, relation [4.27] becomes: 

1 2

2
1 2

1 2 1 2

( )
( )

( )

0.2796; 0.02615; 1.765; 0.8187  

zY zG z
U z z z

β β
α α

β β α α

+
= =

+ +
= = = − =

 [4.28] 

The recurrence equation resulting from [4.28] can be written as: 

1 1 2 2( ) y(k-1) + u(k-1) - y(k-2) + u(k-2),y k a b a b= −  [4.29] 

with: 

– y(0) = 0; 

– y(1) = β1u(0). 

Thus, the recursive treatment of [4.29] for the purpose of numerical simulation 
of the response to an arbitrary sequence of discrete controls can be performed with 
any numerical analysis tool. 

The following “EquaRec.m” program can be used for calculating the first 
N samples of the step response to recurrence equation [4.29]. 

No. “EquaRec.m” program 

1  a =1;  b = 6;                                     %   Process parameters  

2 T = 0.1;                                             %   Sampling period    

3 b1= 0.02796;    b2 = 0.02615;         %   β1 and β2  

4 a1= -1.765;   a2 = 0.8187;           %   α1 and α2 

5      u = ones(1,N);                             %   Step of N values  

6  yk(1) = 0;  yk(2) = b1 * u(1);     %  Initial conditions of y(k) 

7 N= 11;   t(1) = 0;   t(2) = T;         %  Initial conditions in t(k) 

8 for  k = 3:N,                                     %  Recurrence equation loop 

9       t(k)  = (k-1)*T ;                         %  Values of discrete time 

10          uk = u(k) ;                               %  Control value s 

11    byk(k) = -a1* yk(k-1) - a2 *yk(k-2) + b1 * uk + b2 * uk;  % Output 

12  end                                                  %   End of loop 

13 [t’    u’    yk’ ]                                  %  Display of the table of values 
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The numerical values resulting from the execution of the previous program are 
presented in Table 4.2. 

 

Table 4.2. Results of the numerical calculation of [4.29] 

4.2.4.2. Use of specialized Matlab commands 

4.2.4.2.1. Commands “c2d” and “dstep” (or “dlsim”) 

The numerical expression of G(z) knowing Gc(s) can be directly calculated and 
processed with the following the Matlab commands: 

– “c2d” (Gc, T, “zoh”): discretization of object Gc(s); 

– “dstep”: simulation of the step response over a given time horizon; 

– “dlsim”: simulation of the response for an input sequence to be specified. 

4.2.4.2.2. Example 

The following “RepInd.m” program allows the simulation and representation of 

the step response of 
2

( ) 6
( ) ,

( ) 2 6
c

Y sG s
U s s s

= =
+ +

 as well as the resulting one, G(z) 

for T = 0.1 s. 
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No. “RepInd.m” program 

1 a =1;  b = 6;                                         %   Process parameters 

2 T = 0.1; t = 0:T:6;   N = length(t);            %   Time 

3  Gc = tf(b, [1  2*a  b]) ;                            %   Gc(p) = b/(p^2+2 a p + b) 

4 yc = step(Gc, t);                                   %   Step response of Gc(s) 

5 Gz  = c2d(Gc, T,’zoh’)                              %   G(z) calculated by c2d 

6 [numz , denz] = tfdata(Gz,’v’)                %   Parameters of  G(z)   

7 yz = dstep(numz, denz, length(t));           %   Step response of G(z) 

8 plot(t, yc, ‘r’);    grid;  hold;                       %  Graph of yc  

9 stem(t, yz);   xlabel(‘Temps (s)’);              %  Graph of yz 

Figure 4.2 shows a comparison of the graphs of step responses of Gc(s) and G(z). 
The quasi-null errors between these responses at sampling instants allow the validation 
of the quality of the equivalent discrete model. 

  

Figure 4.2. Comparison of step responses of Gc(s) and G(z). For a  
color version of this figure, see www.iste.co.uk/mbihi/automation.zip 

4.3. Transfer function D(z): discretization method 

4.3.1. Interest of discretization 

The transfer function of an analog controller can be realized by means of basic 
components of analog electronics (operational amplifiers, resistors and capacitors) 
assembled as a printed circuit board. 
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On the contrary, a digital controller is in reality a software module (see 
Figure 4.3) that automatically calculates, at each sampling period T, the numerical 
compensation law u(kT) of the error e(kT) = y(kT) – yr(kT) between the desired 
output yr(k) and the effective response y(k) of a dynamic process. The structure of 
this law is a recurrence equation similar to that of a digital filter. 

The discretization of the transfer function Dc(s) of an analog controller is a 
technique used to synthesize in the discrete domain a transfer function D(z), 
equivalent to Dc(s) according to some criterion, for an implementation using 
programmable technology. 

  

Figure 4.3. Software nature of a digital controller law 

Two classes of methods for the discretization of transfer functions of controllers 
can be identified: 

– invariance methods, which aim at identifying a discrete model whose response 
to a given type of input signal is equivalent to that of a continuous model; 

– transformation methods, based on the transposition of the continuous model 
towards the discrete domain, according to a fixed conformal corresponding law. 

4.3.2. Discretization of Dc(s) by invariance methods 

4.3.2.1. Impulse invariance method 

This method involves three stages: 

– calculation of the z-transform of Dc(s) denoted as Z(Dc(s)). The term Z(Gc(s)) 
characterizes in the exact sense the z-transform of the impulse response of the 
discrete compensator, while Dc(s) represents the Laplace transform of the impulse 
response of the analog compensator; 
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– determination of the constant k allowing Dc(s) and D(z) to have the same static 
gain for s→ 0; 

– calculation of the equivalent discrete transfer function: D(z) = kZ(Dc(s)). 

The three previous stages, relative to the calculation of D(z) from Dc(s), are 
summarized by the following relation: 

( )0

1

( )
( ) ( )  

( ( ))
c s

c
c z

D s
D z Z D s

Z D s
→

→

 
=   
 

  [4.30] 

EXAMPLE.– For ( )c
aD s

s a
=

+
, the following can be written as: 

( ( ))c aT

a z
Z D s

z e−
=

−
; 0

1

( ) 1

( ( ))

aT
c s

c z

D s ek
Z D s a

−
=

=

−= =   [4.31] 

Therefore: 

( )1
( )

aT

aT

e z
D z

z e

−

−

−
=

−
 [4.32] 

4.3.2.2. Discretization of Dc(z) by step invariance 

The algorithm of the step invariance method is given by: 

( )1
( ) cD szD z Z

z s
−   =    

   
   [4.33] 

EXAMPLE.– Let us consider the transfer function ( )c
aD s

s a
=

+
. In the presence of a 

zero-order holder, the following relation can be written as: 

1
( )

( )

z aD z Z
z s s a

 − =    +   
 [4.34] 
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Using the table of z-transforms, the following can be written as: 

(1 ) (1 )1
( )

( 1)( ) ( )aT aT

aT aTz e ezD z
z z z e z e− −

− −− −− = =  − − − 
 [4.35] 

4.3.3. Discretization of Dc(s) by transformation methods 

4.3.3.1. Discretization by the first-order Euler transformation 

The transformation used corresponds in this case to the Padé approximant [1 / 0] of 
eTs, which corresponds to the first-order Taylor expansion of eTs or 1 ,z T s= +  

hence the law of transformation: 

z-1
    s

T
→  [4.36] 

Thus, if Gc(s) designates the transfer function of a continuous system, then: 

[ ] 1
 

( ) ( ) zc s
T

D z D s −
→

=  [4.37] 

EXAMPLE.– If ( )c
aD s

s a
=

+
, then: 

( )
1 1

a aTD z
z Z aTa
T

= =
− − ++

 [4.38] 

It is worth noting, for this example, that Gc(s), when s → 0 and D(z), when z → 1 
have the same static gain equal to 1. 

4.3.3.2. Discretization by the second-order Euler transformation 

The transposition used in this case corresponds to the Padé approximant [1 / 0] 

of eTs, 
1 

1  
z

T s
=

−
, hence the law of transformation: 

z-1
   s

T z
→  [4.39] 
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Thus, if Dc(s) designates the transfer function of a continuous system, then: 

[ ] 1
 

( ) ( ) zc s
T z

D z D s −
→

=  [4.40] 

EXAMPLE.– If ( )c
aD s

s a
=

+
, then: 

( )
1 (1 ) 1

a T zaD z
z a T za
Tz

= =
− + −+

 [4.41] 

For this example, Dc(z) for s → 0 and D(z) for z → 1 have the same static gain. 

4.3.3.3. Discretization of Dc(p) by the Tustin transformation 

The transformation used in this case corresponds to the Padé approximant [1 / 1] 

of z = eTs, which yields 
1

2

1
2

T s
z

T s

+
=

−
, hence the transformation: 

2 1

1

zs
T z

−   →    +   
 [4.42] 

Thus, if Gc(s) designates the transfer function of a continuous system, then:  

[ ] 2 1
 

1

( ) ( ) zc s
T z

D z D s −   →   +   

=  [4.43] 

EXAMPLE.– If ( )
aD s

s a
=

+
, then: 

( 1)
( )

2 1 ( 2) 2

1

aT zaD z
z aT z aTa

T z

+
= =

− + + −  + + 

 [4.44] 
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Let us note as well, for this example, that Gc(s) and G(z) have the same static 
gain, hence:  

 0   1
( )  ( )c s z

D s D z→ →
=  = 1 [4.45] 

4.3.3.4. Discretization by the transformation of pole(s) and zero(s) 

In this case, the transformation is limited to the poles and zeros of the transfer 
function. Therefore, given a transfer function Dc(s) with known poles and zeros, the 
problem to be solved is to find the transfer function D(z) with the following 
characteristics: 

– all the poles of D(z) result from the transformation of poles q of Dc(s) using the 
function eTq ; 

– all the finite zeros of D(z) result from the transformation of zeros v of Dc(s) by 
the function eTv ; 

– the static gain of D(z) is equal to that of Dc(p) or: 

 0  1 
( ) ( )c s z

D s D z
→ →

=  [4.46] 

EXAMPLE.– Let us consider the transfer function ( )c
aD s

s a
=

+
 characterized by:  

– no zero; 

– one pole at s = – a; 

– static gain of 1. 

Thus, it can be written as:  

( ) aT

KD z
z e−

=
−

 [4.47] 

or, the following should be true: 

( 1) ( 0) 1
1

caT

KD z D s
e−

→ = = → =
−

 [4.48] 
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Hence: 

1 TK e−= −  and 
1

( )
aT

aT

eD z
z e

−

−

−=
−

  [4.49] 

4.3.4. z-Transfer functions of simple controllers 

Let us consider the following simple controllers: 

– Phase-lead/lag, defined by the transfer function: 

(1 )
( ) ;

1
c

c

K s
D s

s
τ

α τ
+

=
+

 [4.50] 

with α < 1 (if phase-lead, and phase-lag if otherwise);  

– PID, defined by the transfer function: 

1
( )  1 ;c p d p d

i

KiD s K K s K T s
s T s

 
= + + = + + 

 
 [4.51] 

with: 

- Ti = Kp / Ki ; 
- Td = Kd / Kp. 

– PIDF, defined by the transfer function: 

 1
( ) 1 ;

1 1  
d d

c p p
f i f

K s T sKiD s K K
s T s T s T s

 
= + + = + +  + + 

  [4.52] 

Tables 4.3, 4.4 and 4.5 present the expressions of D(z) of common simple 
controllers, modeled by [4.50], [4.51] and [4.52], respectively, depending on the 
possible methods of discretization considered. 
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Methods for 
calculating D(z) 

(1 )
( )

1
c

c
K sD s

s
τ

α τ
+=

+
 

Step invariance 
(1 ) 1

( )

( )

T

c T
z eD z K

z e

α τ

α τ

α

α

−

−

+ − −=
−

 

Euler transformation 1 
( )

( ) c
z TD z K
z T

τ τ
α τ α τ

+ −=
+ −

 

Euler transformation 2 
( )

( )
( )c

T zD z K
T z

τ τ
α τ α τ
+ −=

+ −
 

Tustin transformation  
( 2 ) 2

( )
( 2 ) 2c

T z TD z K
T z T

τ τ
α τ α τ

+ + −=
+ + −

 

Transformation of 
poles and zeros 

(1 ) ( )
( )

(1 ) ( )

T T

c TT

e z eD z K
e z e

α τ τ

α ττ

− −

−−

− −=
− −

 

Table 4.3. D(z) for phase-lead/lag controller 

Calculation 
methods  

1
( ) 1c p d

i

D s K T s
T s

 
= + + 

 
 

Direct linear 
transformation  

2 1 2 1

( )
1

d d d

i

T T T Tz z
T T T TD z Kp

z

 + − + + − 
 =

−
 

Inverse linear 
transformation 

2

2

1 (1 2 )

( )

d d d

i
p

T T T Tz z
T T T T

D z K
z z

 
+ + − + + 

 =
−

 

Tustin 
transformation 

2

2

2 1 ( 4 ) 2 1
2 2

( )
1

d d d

i i i
p

T T T T T Tz z
T T T T T T

D z K
z

 
+ + + − + + − 

 =
−

 

Table 4.4. D(z) for PID controller 
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4.3.5. General structure of D(z) and recurrence equation 

The discretization examples presented in Tables 4.3, 4.4 and 4.5 indicate that the 
general structure of D(z) can be written in the form: 

1
0 0 1 1

1
1 1

1

...( )
( )

( ) ...

m
m j

j m m
j m m

m m m
m n i m m

i
i

z
z z zU zD z

E z z z zz z

β
β β β β

α α αα

−
−

= −
−

− −

=

+ + + +
= = =

+ + + ++




 [4.53] 

The following can therefore be written as: 

1 1
1 1 0 1 1( ) ( ... ) ( ) ( ... )m m m m

m m m mU z z z z E z z z zα α α β β β β− −
− −+ + + + = + + + + [4.54] 

or expressed differently: 

1 ( 1)
1 1

1 ( 1)
0 1 1

( ) (1 ... )

( ) ( ... )

m m
m m

m m
m m

U z z z z

E z z z z

α α α
β β β β

− − − −
−

− − −
−

+ + + +

= + + + +
 [4.55] 

Thus, the resulting recurrence equation for real-time programming is obtained by 
direct transposition of [4.55] in discrete time, thanks to the delay properties of the  
z-transform. This direct transposition leads to: 

1 2 1

0 1 2 1

( ) ( 1) ( 2) ... ( ( 1)) ( )

 ( ) ( 1) ( 2) ... ( ( 1)) ( )
m m

m m

u k u k u k u k m u k m
e k e k e k e k m e k m

α α α α
β β β β β

−

−

= − − − − − − − − − −
+ + − + − + + − − + −

  [4.56] 

Hence, the compact notation: 

( )0
1

( ) ( ) ( ) ( )
m

i i
i

u k e k u k i e k iβ α β
=

= + − − + −  [4.57] 

with the initial conditions: 

( )
0

0
1

(0) (0)

with  1, 2, ..., 1
( ) ( ) ( ) ( ) ,

k

i i
i

u e
k m

u k e k e k i u k i

β

β β α
=

=
 = − = + − − −


  [4.58] 
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Methods for 
calculating D(z) 

1
( ) 1

1  
d

c p
i f

T sD s K
T s T s

 
= + +  + 

 

Euler 1 

( )2
0 1 2

( )
( 1) ( )

p

i f f

K a z a z a
D z

T z T z T T
+ +

=
− + −

 

with 
0

1

2

( ) ( ) 2

( ) ( )

i f d i

i f i f d i

i f d i

a TT T T
a T T T T T T T T
a T T T T T T

 = +


= − + − −
 = − − +

 

Euler 2 

( )
( )

2
0 1 2

( )
( 1) ( )

p

i f f

K a z a z a
D z

T z T T z T

+ +
=

− − −
 

with 
0

1

2

( ) ( )

( ) ( ) 2

i f d i

f f i d i

i f d i

a T T T T T T
a T T T T T T T T
a TT T T

 = + + +


= + + + +
 = +

 

Tustin method 

( )
( )

2
0 1 2

( )
2 ( 1) ( 2 ) 2

p

i f f

K a z a z a
D z

T z T T z T T

+ +
=

− + + −
 

with 

0

2
1

2

( 2 ) ( 2 ) 4

2 8 ( )

( 2 ) ( 2 ) 4

i if d

i f d

i if d

a T T T T T T

a T T T T

a T T T T T T

= + + +
 = − +


= − − +

 

Table 4.5. D(z) for PIDF controller 

4.3.6. Discretization of transfer functions with Matlab 

The numerical expression of D(z) can also be directly calculated from Dc(s) using 
the Matlab command “c2d” (Gc, T, “zoh”). In this case, the optional argument to be 
specified as third argument depending on the desired discretization technique can be 
substituted by: 

– “impulse” (impulse invariance); 

– “zoh” (step invariance by zero-order holder); 

– “Tustin” (Tustin); 

– “matched” (poles-zeros). 
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4.4. Transfer function D(z): model method 

4.4.1. Principle of the model method 

Let us consider: 

– G(z) the transfer function in z of a dynamic process; 

– F(z) the desired closed-loop transfer function. 

The model approach involves finding D(z), so that: 

( ) ( )( )
( )

R ef ( ) 1 ( ) ( )

D z G zY zF z
z D z G z

= =
+

  [4.59] 

Under these conditions, the unknown D(z), found from [4.59], can be written as: 

( )
( )

( ) (1 ( ))

F zD z
G z F z

=
−

  [4.60] 

4.4.2. Examples of direct design of digital controllers 

4.4.2.1. Example 1 

The z-transfer function of a dynamic process is given by: 

2

0.3678 0.2644
( )

1.3678 0.3678

z
G z

z z
+

=
− +

 [4.61] 

while the desired closed-loop one is written as: 

2

0.3678 0.2644
( )

0.6322

z
F z

z z
+

=
− +

 [4.62] 

Using [4.3] and [4.4] in [4.2], it can be verified that: 

2

2

1/ ( ) ( )/(1 ( ))

1.3678 0.3678 0.3678 0.2644
( ) 1

0.3678 0.2644 1.3678 0.3678

G z F z F z

z z z
D z

z z z

−

   − + +
= =   + − +   

 

 [4.63] 

It can be noted that [4.63] corresponds to a digital proportional controller. 
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4.4.2.2. Example 2 

Let us consider a dynamic process whose transfer function in z is written as: 

1
( )

a T

a T

eG z
z e

−

−

−=
−

  [4.64] 

Then, the closed-loop transfer function to be obtained is: 

1 (1 )
( )

(1 )

a T a T

a T a T

K e e
F z

z K e e

− −

− −

+ − −
=

+ − −
  [4.65] 

where K is a constant, allowing the stabilization of F(z). It is clear that the static gain 
of F(z) for z = 1 is equal to 1. 

Using [4.64] and [4.65] in [4.60], it can be verified that D(z) is given by: 

( )
( ) ( 1)

1

a Tz eD z K
z

−−
= +

−
 [4.66] 

It can be noted that [4.8] corresponds to a digital PI controller. 

4.4.2.3. Example 3 

Let us consider this time a dynamic process that is described in the frequency 
domain by the z-transfer function: 

0.00641
( )

0.9829
G z

z
=

−
 

The objective is to calculate the z-transfer function of a digital controller, which leads 
to closed-loop stability, null static error, with a real pole in the range [– 0.98 0.98]. 
The task is to calculate the transfer function D(z) of the mentioned digital controller. 

An example of transfer function F(z) that meets the desired closed-loop control 
specifications is written as: 

0.0033
( )

0.967
F z

z
=

−
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Indeed, the real pole of F(z) given by z = 0.967 is below 1 (stability condition) 
and the static gain F(1) is equal to 1 (condition for null static error).  

Given this choice, D(z) can be calculated with [4.60]. Indeed, it can be verified 
that: 

( ) 0.0033
( )

(1 ( )) 0.9703

0.5148 0.4268( )
( )

( ) (1 ( )) 0.9703

F zD z
F z z

zF zD z
G z F z z

= =
− −

−
= =

− −

 [4.67] 

4.4.3. Conditions for the use of model approach 

The examples presented previously show that direct design of digital controllers 
from the model approach is not always trivial, given the multiple conditions and 
constraints that need to be reflected in the form of a closed-loop transfer function 
F(z). The basic conditions to be satisfied by F(z) are: realizability, stability, static 
precision and rapidity. 

4.4.3.1. Realizability condition in the strict sense of F(z) 

F(z) should be realizable in the strict sense (degree of the numerator strictly 
smaller than that of the denominator). 

4.4.3.2. Stability condition due to zeros of G(z) 

Relation [4.60] shows that the numerator of G(z) becomes a part of the 
denominator of D(z). Thus, all unstable zeros of G(z) become unstable poles of D(z). 
Therefore, [4.60] is not applicable if G(z) admits an unstable zero. 

4.4.3.3. Static precision condition 

Moreover, the desired F(z) function has to be stable, with a static gain equal to 1. 

4.4.3.4. Rapidity condition 

It is also possible to predict good dynamic performances by setting an upper 
bound of time response, overshoot, etc. 
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4.4.4. Practical rules for using the model approach 

The good practices rules presented below are valuable tools that facilitate the 
task of direct design of digital controllers when applying the model approach. 

4.4.4.1. Rule applicable to first-order G(z) 

If G(z) is of first order, the model structures to be used are: 

0 1

1

( )
b z b

G z
z a

+
=

+
 [4.68] 

1

1

1
( )dF z

z
α
α

+
=

+
 [4.69] 

1

1 1
1

0 1 1 0 1

1 1

1

( )
( ) (1 )

1 ( ) ( 1)
(1 )

z z a
D z

a z a b z b z
z b z

α
α

α
α
α

+
+ +

= = +
+ + + −−

+ +

 [4.70] 

4.4.4.2. Rule applicable to second-order G(z) 

If G(z) is of second order, then the model structures to be used are: 

2
0 1 2

2
1 2

( )
b z b z b

G z
z a z a

+ +
=

+ +
 [4.71] 

0 11 2

2
0 1 1 2

1
( )

z
F z

z z
β βα α

β β α α
   ++ +

=   + + +   
 [4.72] 

( )
( ) ( )

2
1 20 1

0 12
0 1 0 1 2

2 0 1 0 1
0 1 1 1

0 1 1 0

1

( )
1 1

z a z a
z

b z b z b
D z

z z

α α
β β

β β

α α α α
α β α β

β β β β

+ + + +
+ + + + + 

=
     + + + +

+ − + −       + +     

 [4.73] 

 



150     Analog Automation and Digital Feedback Control Techniques 

4.4.4.3. Rule applicable for nth (n > 2) order G(z) 

In this case, the structures of simple and realistic models that would provide a 
null static error after n sampling periods can be written as: 

1
0 0 1 1

1
1 1

1

...
( )

...

n
n j

j n n
j n n

n n n
n n i n n

i
i

b z
b z b z b z b

G z
z a z a z az a z

−
−

= −
−

− −

=

+ + + +
= =

+ + + ++




 [4.74]  

( )
1 2

1 1 2 1

1 2 1

1

...
( )

. ..

n
n j

j n n
j n n

n n
n n n

i
i

z
z z z

F z
zz

β
β β β β

β β β ββ

−
− −

= −

−

=

+ + +
= =

+ + +




  [4.75]  

4.4.4.4. Rules for validating the calculated functions F(z) and D(z) 

The validation of F(z) involves the simulation of its response to an appropriate 
test signal, in order to verify that design specifications have been correctly 
interpreted. 

Moreover, the validation of D(z) calculated from [4.60] involves the simulation 
of closed-loop response of: 

F(z) = D(z)G(z) / (1 + G(z)D(z)) [4.76] 

in order to verify the reliability of the numerical calculation of [4.60]. 

This explains the inescapable importance of the numerical simulation techniques 
to be presented in the next chapter in the practice of direct design of digital 
controllers. 

4.5. Discrete block diagram of digital control 

The previous developments lead to the equivalent block diagram of a digital 
control system represented in the frequency domain. 

Figure 4.4 shows the synthesis principle of the mentioned equivalent discrete 
block diagram, where the digital controller and the discrete dynamic process are 
modeled by transfer functions D(z) and G(z), respectively. 
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Figure 4.4. Synthesis principle of discrete block diagram 

4.5.1. Closed-loop characteristic transfer functions 

Direct analysis of the block diagram in Figure 4.4c under the disturbance model 
W(z) and the measurement noise model Wm(z) leads to: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) m
G z D z G z G z D zY z Yr z W z W z

G z D z G z D z G z D z
= + −

+ + +
 [4.77] 

Thus, the characteristic transfer functions of a digital feedback control system 
are the following: 

– 0 ( ) ( ) ( )G z G z D z= (loop gain) [4.78] 

– 
1

( )
1 ( ) ( )mG z

G z D z
=

+
 (sensitivity function) [4.79] 

– 
( ) ( )

( )
1 ( ) ( )r

G z D zG z
G z D z

=
+

 (closed-loop transfer function)   [4.80] 
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Similarly to the analog case, let us note that Gr(z) + Gw(z) = 1. Moreover, the 
following should be the case in practice: 

– G0(z) >> 1 in the low frequency zone, where noise is nearly absent, in order to 
guarantee a proper follower behavior since Gr(z) → 1; 

– G0(z) << 1 in the high frequency range, where desired output and disturbance 
are nearly absent, so that noise is sufficiently damped; 

– stability, which corresponds to the fact that all the roots of the characteristic 
equation 1 ( ) 0OG z+ =  must have modules below 1. 

4.5.2. Sampling frequency 

All the cases presented in the previous developments show that the transfer 
functions D(z) and G(z) of a digital control loop are closely dependent on the sampling 
frequency fs = 1 / T used. It is therefore important to know the practical conditions for 
choosing the range of fs for which quantities D(z) and G(z) are sufficiently reliable. 

4.5.2.1. Practical choices of sampling frequency 

A digital controller behaves in most practical cases as a low-pass digital filter. 
Consequently, the bandwidth of the closed-loop transfer function F(z) = Y(z) / Yr(z) is 

limited to the cut-off frequency fb for which the gain is reduced by 2  with respect 
to the static gain (low frequency). 

Considering that the discrete output signal Y(z) is therefore essentially constituted of 
frequency components below fb, then the value of fe should verify the sampling 
theorem expressed by the following relation: 

2s bf f≥  or otherwise expressed 
1

2 b

T
f

≤  [4.81] 

In practice, a reasonable sampling frequency is 10 to 30 times that of Nyquist, 
which is 2fb, which corresponds to the following range: 

1 1

60 20b b

T
f f

≤ ≤  [4.82] 
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4.5.2.2. Sampling frequency of a first-order process 

For a first-order dynamic process represented by 
1

( )
1

F s
sτ

=
+

, the following 

can be written as: 

fp = 1/τ [4.83] 

In practice, the sampling period T can therefore be chosen within the range: 

60 20
Tτ τ≤ ≤  or 

20 60
efτ τ

≤ ≤  [4.84] 

4.5.2.3. Sampling period of a second-order process 

For a second-order process described by 
2

2 2
( )

2   
n

n n

F s
s s

ω
ξ ω ω

=
+ +

, it can be 

proved by solving the equation 
( )

2

2 2

1
( )

22 ( )

n
b

b n b n

F j
j j

ω
ω

ω ξω ω ω
= =

+ +
 that: 

2 4 21 2 4 4 2
2

n
bf

ω
ξ ξ ξ

π
= − + − +  [4.85] 

Thus, in practice the sampling frequency can be chosen within the range:  

1
20 60eb bf f f

T
≤ = ≤  [4.86] 

or: 

1 1

60 20b b
T

f f
≤ ≤  [4.87] 

4.5.2.4. Sampling period of a nth (n > 2) order process 

When the model of a dynamic process has an order above 2, the exact calculation 
of the cut-off frequency fb is generally not possible. In this case, an approximate 
value of fb can be determined by numerical simulation, by reading the value of the 
frequency fb for which the gain of the Bode diagram decreases by –3 dB with respect 

to the low frequency gain, which corresponds to a damping by a factor of 2  with 
respect to the low frequency gain. 
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4.6. Exercises and solutions 

Exercise 4.1. 

Determine the hypotheses to consider for the calculation of a transfer function in 
z by the discretization of the transfer function Gc(s) with the step invariance 
technique. 

Solution – Exercise 4.1. 

The hypotheses to consider for the step invariance technique are: 

– zero-order holder upstream of the process and sampler downstream of the 
process; 

– existence of the z-transform of the quantities involved. 

Exercise 4.2. 

Explain the general principle as well as the practical interest of the discretization 
of transfer functions by transformation techniques. 

Solution – Exercise 4.2. 

The general principle and the practical interest of the transformation techniques 
are: 

– General principle: based on a reversible criterion of passage from the complex 
z-space to the complex s-space; 

– Practical interest: no need for a table of z-transforms. 

Exercise 4.3. 

A dynamic process preceded by a DAC and followed by an ADC has the transfer 

function ( )
( )c

aG s
s s a

=
+

. Find the equivalent discrete transfer function G(z) 

considering a symbolic discretization period T. 
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Solution – Exercise 4.3. 

If ( )
( )c

aG s
s s a

=
+

, then: 

2

1
( ) ,  

( )

z aG z Z
z s s a

 − =    +   
 

or: 

2 2

1 1 1

( )( )

a
a s a s as s a s

= − +
++

 

therefore: 

2 2

z (1/a) z (1/a) 
- ,

z-1( )) ( 1) aT

a TzZ
s s a z z e−

 
= + + − − 

 

hence: 

2

z (1/a) z(1/a) 1
( ) -  

z-1( 1) aT

z TzG z
z z z e−

 − = +   − −   
 

After reduction in the same denominator, this yields: 

( ) ( )
2

1 11
( )   

(1 )

aT aT aT

aT aT

e aT z e aTe
G z

a z e z e

− − −

− −

+ − + − − =   − + + 
 

Exercise 4.4. 

A dynamic process preceded by a DAC and followed by an ADC has the 
following transfer function: 

2

( ) 1
( )

( ) 2 4
c

Y sG s
U s s s

= =
+ +
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a) Find the bandwidth of Gc(s), then prove that a sampling period T = 0.1 s is 
satisfactory for the discretization of Gc(s). 

b) Find the transfer function G(z) of the process for T = 0.1 s. 

c) Validate this transfer function by the Matlab-aided simulation, then generate 
the graphs of step responses of Gc(s) and G(z) on the same Matlab figure. 

Solution – Exercise 4.4. 

a) Bandwidth of Gc(s) and the Nyquist frequency:  

Gc(s) is a second-order transfer function with: 

- ωn = 2 rad/s; 

- ξ = 1/2. 

Hence: 

2 4 21 2 4 4 2
2

n
bf

ω
ξ ξ ξ

π
= − + − + = 0.4049 Hz. 

Therefore, the Nyquist minimum sampling rate is 2fb = 0.8098 Hz. 

The sampling rate recommended in the problem statement is f = 1/0.1 = 10 Hz. 
This value is therefore practically reliable for the discretization of Gc(s). 

b) Transfer function G(z) of the process with T = 0.1 s: 

2 2

1 1 1 1
( )

( 2 4) ( 2 4)

z zG z Z Z
z zs s s s s s

  − −   = =      + + + +      
 

or: 

2 2

2 2

2 2

2 2

4 1 2
 

( 2 4) 2 4

1 1 1
                        

2 4 2 4

1 1 1
                        

( 1) 4 1 ( 1) 4 1

1 1 1 3
                        

( 1) 3 ( 1) 33

s
ss s s s s

s
s s s s s

s
s s s

z
s s s

+= −
+ + + +

+= − −
+ + + +

+= − −
+ + − + + −

 += − −  + + + + 
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Therefore: 

2

2 2 2

2

1
cos( 3 ) sin( 3 )

1 z 3
 

4(z-1)( 2 4) ( 2 cos( 3 ) )

1
( 1) cos( 3 ) sin( 3 )

3z
1

14 (z-1)
cos( 3 ) sin( 3 )

2

T

T T

T

T

z e T T z
Z

s s s z e T z e

z z e T T

z e T T z

−

− −

−

−

 
− −    = − + + − + 

   
− − −   

     = −       − −    

 

Several stages of term reduction in the same denominator lead to: 

2

1 1
( )

( 2 4)

zG z Z
z s s s

 − =    + +   

2

2 2

1 1
1 2 cos( 3 ) cos( 3 ) sin( 3 ) cos( 3 ) sin( 3 )

3 3
 

4( 2 cos( 3 ) )

        

T T T T

T T

e T e T T z e e T T

z e T z e

− − − −

− −

    − + − + − −    
    =

− +
 

In particular, if T = 0.1 s, the previous relation becomes:  

2

( ) 0.27 0.0122
( )  

( ) 1.7826 0.8187

Y z zG z
U z z z

− += =
− +

  

c) Step responses of Gc(s) and G(z): 

The required step responses can be simulated with the following Matlab 
program: 

1 % Step responses of Gc(s) and G(z) 

2 T= 0.1;  t = 0:T:6;   N= length(t);    

3 Numz = [-0.0127   0.0488]/4;   Denz = [1  -1.7826   0.8187] ;   

4 yz = dstep(Numz, Denz, N);  

5 stem(t, yz); axis([0 6 -0.05 0.4]); 

6 sysc = tf(1,[1  2  4]) ;   yc = step(sysc,t);   hold on;   

7 plot(t,yc);    hold off 
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The results displayed after the execution of the proposed program are presented 
in Figure 4.5. 

 

Figure 4.5. Result of the execution of the proposed program 

It can be noted that the response of the discrete model is sufficiently close to the 
graphic profile that could be obtained by sampling the continuous model response. 
The sampling rate used for the synthesis of G(z) from Gc(s) is therefore practically 
appropriate. 

Exercise 4.5. 

Let us consider a phase-lead/lag controller, defined by the following transfer 
function: 

1 2

1 1 2 2

1 ( ) 1 (
( ) ;

1 ( ) 1 ( )c
s s

D s
s s

τ τ
α τ α τ

   + +
=    + +   

 

with α1 < 1 and α2 > 1 or conversely. 

Find the equivalent transfer function D(z) using the discretization technique 
based on the pole(s) and zero(s) transformation. 
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Solution – Exercise 4.5. 

For 1 2

1 1 2 2

1 ( ) 1 ( )
( )

1 ( ) 1 ( )c
s s

D s
s s

τ τ
α τ α τ

   + +
=    + +   

 

            = 1 2

1 2 1 1 2 2

1/ 1/1

1/ ( ) 1/ ( )

s s
s s

τ τ
α α α τ α τ

   + +
   + +   

  

Hence:  

1 2

1 1 2 2

/ /

/ ( ) / ( )
( )

T T

T T

z e z eD z K
z e z e

τ τ

α τ α τ

− −

− −

   − −=    − −   
 

In order to find K, the following equation must be solved: 

1 2

1 1 2 2

/ /

/ ( ) / ( )

1 1
( 1) (0) 1

1 1

T T

cT T

e eD z K D
e e

τ τ

α τ α τ

− −

− −

   − −= = = =   − −   
 

This yields: 

1 1 2 2

1 2

/ ( ) / ( )

/ /

1 1

1 1

T T

T T

e eK
e e

α τ α τ

τ τ

− −

− −

   − −=    − −   
 

Finally, the result is: 

1 1 2 2 1 2

1 2 1 1 2 2

/ ( ) / ( ) / /

/ / / ( ) / ( )

1 1
( )

1 1

T T T T

T T T T

e e z e z eD z
e e z e z e

α τ α τ τ τ

τ τ α τ α τ

− − − −

− − − −

       − − − −=        − − − −       
 

Exercise 4.6. 

List the causes that may lead to loss of properties during the discretization of a 
transfer function. 

Solution – Exercise 4.6. 

The causes that may lead to loss of properties during the discretization of a 
transfer function are: 

– calculation errors; 

– inappropriate choice of the discretization period. 
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Exercise 4.7. 

What are the main practical difficulties encountered in the use of the model 
approach for direct design in the frequency domain of digital controllers? 

Solution – Exercise 4.7. 

The difficulties encountered are: 

– preliminary demand to synthesize the transfer function G(z) of the process by 
discretization of continuous model (if available) or by parameter identification ARMA 
(if test results are available); 

– transposition of the desired closed-loop specifications in the form of a transfer 
function F(z) to be exploited; 

– availability of a tool for digital simulation of discrete dynamic models. 

Exercise 4.8. 

Let us consider a dynamic process described in the frequency domain by the  
z-transfer function: 

0.3678 ( 0.7189)
( )

( 1) ( 0.3678)

z
G z

z z
+

=
− −

 

The objective is to calculate the transfer function in z of a digital controller 
allowing a closed-loop stable behavior, a null static error and having a zero  
z = – 0.7189 and two conjugated poles p1,2 = 0.2380 ± j 0.5280. 

a) calculate the desired closed-loop transfer function F(z); 

b) calculate the transfer function D(z) of the required digital controller. 

Solution – Exercise 4.8. 

a) A transfer function F(z) according to the desired closed-loop control 
specifications can be written as: 

2

0.5 ( 0.7189)
( )

0.476 0.3354

z
F z

z z
+

=
− +
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b) Direct calculation leads to: 

2

0.5 ( 0.7189)( )

(1 ( )) 0.976 0.024

( ) 0.3678
( ) 1.3594

( ) (1 ( )) 0.024

zF z
F z z z

F z zD z
G z F z z

+
=

− − −
− = =  − + 

 

Exercise 4.9. 

In practice, the range for choosing the discretization period of a transfer function 
is contained between two finite bounds: Tmin and Tmax. Explain why these two bounds 
have to be finite. 

Solution – Exercise 4.9. 

The reasons for which the bounds Tmin and Tmax have to be finite are: 

– Tmin must be finite because the maximum frequency of a real clock source that 
can be used to generate the required sampling period is finite. 

– Tmax must be finite because the maximum period of discretization to be used is 
imposed by the Nyquist minimum sampling rate with respect to the bandwidth of the 
process. 

Exercise 4.10. 

Let us consider the transfer function 
( ) 1

( )
( ) 1c

Y sG s
U s s

= =
+

 to be discretized using 

the step invariance technique. Find: 

a) the expression of the step response y(t) of Gc(s); 

b) the theoretical range of choice of the discretization period of Gc(s); 

c) the equivalent transfer function G(z) for symbolic T; 

d) the recurrence equation depending on T; 

e) the general expression of y(k) depending on T, for k = 0, 1, 2,… 
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Solution – Exercise 4.10. 

Given 
( ) 1

( )
( ) 1c

Y sG s
U s s

= =
+

 to be discretized with the step invariance technique.  

a) The step response: 

For a step, U(s) = 1 / s. Therefore Y(s) = 
1

( 1)s s +
, which yields: 

y(t) = (1 – e– t) 

b) The theoretical range of choice of the discretization period T: 

The bandwidth of Gc(s) is limited to ωb = 1 rad/s or fb = ωb/(2π) Hz. The 
theoretical range of T is T < 2π/ωb or T < 6.28 s. 

c) The equivalent transfer function G(z) for T = 0.1 s: 

( 1) 1 1
( )

 ( 1)

T

T

z eG z Z
z s s z e

−

−

 − −= = + − 
 

d) The recurrence equation: 

( ) ( ) (1 ) ( )T TzY z e Y z e U z− −− = −  

therefore: 

1 1( ) ( ) (1 ) ( )T TY z e z Y z e z U z− − − −− = −  

hence: 

( ) ( ) ( 1) (1 ) ( 1)T Ty kT y k e y k e u k− −≡ = − + − −  

with y(0) = 0. 

e) The general expression of y(k) ≡ y(kT) 

k = 0 → y(0) = 0 

k = 1 → y(1) = 1 – e– T 

k = 2 → y(2) = e– Ty(1) + 1 – e– T = e– T(1 – e– T) + 1 – e– T = 1 – e– 2T 

k = 3 → y(3) = e– Ty(2) + 1 – e– T = e– T(1 – e– 2T) + 1 – e– T = 1 – e– 3T 
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Assuming that: 

y(k) = 1 – e– kT, 

then: 

y(k + 1) = e– T(1 – e– kT) + 1 – e– T = 1 – e– (k + 1)T 

therefore: 

y(k) = 1 – e– kT, for k = 0, 1, 2,… 

Exercise 4.11. 

A digital controller is defined by the transfer function: 

( )
( )

( )

a zU zD z
E z z b

= =
+

 

Find: 

a) the stability conditions of this controller depending on the values of parameter 
b; 

b) the recurrence equation required for an implementation by a digital processor; 

c) the general expression of the impulse response based on an analytical calculation 
of the first samples of this response; 

d) the general expression of the step response based on an analytical calculation 
of the first samples of this response; 

e) the graph of the step response identified, considering that a = 1, b = – 1/2, 
T = 0.05 s (sampling period) and first N = 11 data samples. Any calculation and data 
numerical analysis tool can be used to answer this question. 

Solution – Exercise 4.11. 

A digital controller is defined by the transfer function: 

( )
( )

( )

a zU zD z
E z z b

= =
+
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a) Stability: 

D(z) admits only one pole for z = – b. The stability condition is then: |b| < 1. 

b) Recurrence equation:  

Let us write: zU(z) + bU(z) = azE(z) 

Multiplying both members of the equality by z– 1 yields: 

U(z) + bz– 1U(z) = aE(z) 

which drives in discrete time the relation: 

u(kT) = – bu((k-1)T) + ae(kT) 

with u(0) = ae(0) and for k = 0, 1, 2,... 

c) The general expression of the impulse response u(kT) = δ(kT), with 

δ(kT) = 1 if k = 0 and δ(kT) = 0 if otherwise. 

u(0) = a ; 
u(T) = – ab ; 
u(T) = ab2 ; 

… 

Let us assume at this stage that: 

u(kT) = a(– b)kT 

In this case: 

u((k + 1)T) = – bu(kT) = (– b)a (– b)kT = a(– b)(k + 1)T 

Therefore, for any k = 0, 1, 2,…, the following can be written as: 

u(kT) = a(– b)kT 

d) The general expression of the step response u(k), with: 

u(kT) = 1 if k ≥ 0 and u(kT) = 0 if otherwise. 
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It can be readily verified that: 

u(0) = a 

u(T) = – a(1 – bT) 

u(2T) = a(1 – b + b2T) 

u(3T) = a(1 – b + b2T – b3T) 

… 

Let us assume at this stage that: 

( )2 3

T

Sum of (k+1) terms of a geometric  progression 

  with first term unity and ratio b

( ) 1 ( ) ( ) ... ( )T T T kTu kT a b b b b

−

= + − + + − + + −  

          
( 1)1 ( )

1

k Tba
b

+ − −
=  + 

 

If up to k order: 

( 1)1 ( )
( )

1

k Tbu kT a
b

+ − −
=  + 

 

then, at (k + 1) order, it can be written as: 

( ) ( )

( 1) ( 1)

( 1) ( 1)

( 2

(( 1) ) ( ) (( 1) )

1 ( ) 1 ( )
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It can be concluded that for any k: 

( 1)1 ( )
( )

1

k Tbu kT a
b

+ − −
=   + 

 

e) In order to represent the graph of the step response, the following Matlab 
program has been used for implementing and drawing the solution to the recurrence 
equation: 

1 % Step response program 

2 k = 0:10;            %  Indices discrete time of simulation 

3 a=1; b = -1/2;  T= 0.05;                           % Parameters 

4 tk = k*T;   u = (1-(-b) .^ (k+1))  /(b+1);   %  Command calculation 

5 stem(tk,  u);                                              %  Graph 

6 xlabel(‘k T (s)’);   ylabel(‘u (kT)’); 

7 title (‘Réponse Indicielle’);   grid;   axis([0   0.5    0   2.5] 

The graph resulted from the execution of the proposed program is presented in 
Figure 4.6. 

  

Figure 4.6. Graph resulted from the execution of the proposed program 
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Exercise 4.12. 

A digital controller that admits e(k) and x(k) as input and output signals, 
respectively, is defined by a recurrence equation of the form: 

u(k) = e– aT u(k – 1) + (1 – e– aT) e(k – 1) 

Find: 

a) the expression of the corresponding transfer function D(z), then analyze the 
stability conditions; 

b) the general expression of the impulse response based on an analytical calculation 
of the first samples of this response; 

c) the general expression of the step response based on an analytical calculation of 
the first samples of this response; 

d) the graph of the identified step response, considering that a = 1, T = 0.1 s 
(sampling period) and first N = 61 data samples. Any calculation and data numerical 
analysis tool can be used to answer this question. 

Solution – Exercise 4.12. 

The recurrence equation of the digital controller has the form: 

u(k) = e– aT u(k – 1) + (1 – e– aT) e(k – 1) 

a) Expression of the corresponding transfer function D(z): 

The translation in real time of the recurrence equation leads to:  

U(z) = e– aT z– 1 U(z) + (1 – e– aT) z– 1 E(z) 

Multiplying both members of the equality by z– 1 leads to: 

zU(z) = e– aT U(z) + (1 – e– aT)  E(z) 

hence, the searched expression: 

( ) 1
( )

( )

aT

aT

U z eD z
E z z e

−

−

−= =
−

 

Therefore, the stability condition is: 

1aTe− <  
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b) General expression of the impulse response: 

Considering the notation y(k) ≡ y(kT), it can be written as: 

u(0) = 0 

u(1) = (1 – e– aT)δ(0) = 1 – e– aT 

u(2) = e– aTu(1) = e– aT(1 – e– aT)  

u(3) = e– aTu(2) = (e– aT)2 (1 – e– aT) 

Assuming that at order k: 

u(k) ≡ u(kT) = (e– aT)n – 1 (1 – e– aT) 

then, at order k + 1: 

u(k + 1) = e– aTu(k) = e– aT(e– aT)n – 1 (1 – e– aT) = (e– aT)k (1 – e– aT) 

Therefore, for any k, the following can be written as: 

u(k) = (e– aT)k – 1 (1 – e– aT) 

c) General expression of the step response: 

u(0) = 0 

u(1) = 1 – e– aT 

u(2) = e– aTu(1) + (1 – e– aT) = (1 + e– aT) (1 – e– aT) 

u(3) = e– aTu(2) + (1 – e– aT) = (1 + e– aT + e– 2aT) (1 – e– aT) 

Assuming that at order k: 

u(k) ≡ u(kT) = (1 + e– aT + e– 2aT +… + e– (k – 1)aT) (1 – e– aT) 

then, at order k + 1: 

u(k + 1) = e– aTu(k) + (1 – e– aT) 

              = e– aT(1 + e– aT + e– 2aT +… + e– (k – 1)aT) (1 – e– aT) + (1 – e– aT) 

              = (e– aT(1 + e– aT + e– 2aT +… + e– (k – 1)aT) + 1) (1 – e– aT) 

              = (1 + e– aT + e– 2aT +… + e– kaT) (1 – e– aT) 
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Therefore, for any k, the following can be written as: 

u(k) ≡ u(kT) = (1 + e– aT + e– 2aT +… + e– (k – 1)aT) (1 – e– aT) 

                     = ((1 – e– kaT)/(1 – e– aT)) (1 – e– aT) = 1 – e– kaT 

d) Graphs of the step response, considering the values a = 1, T = 0.1 s: 

In order to represent the graph of the step response, the solution to the recurrence 
equation found with the following Matlab program has been implemented and 
drawn: 

1 % Step response 

2 a = 1;  T = 0.1; k = 0:60;  tk = k*T; 

3 ustep = (1-exp(-k*a*T));   

4 stem(tk,ustep);   xlabel(‘k T (s)’); 

5 ylabel(‘u (kT)’);  title (‘Step response’);  

6 grid;   axis([0 6 0 1.2]) 

The graph of this step response is presented below: 

  

Figure 4.7. Graph of the step response 
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Exercise 4.13.  

In an analog control loop, the transfer functions of the process and of the 
controller are designated by Gc(s) and Dc(s), respectively, with: 

( ) 1/ 2
( )

( ) ( 1/ 2)c
Y sG s
U s s s

= =
+

 

( ) 6( 1/ 2)
( )

( ) 3c
U s sD s
E s s

+= =
+

  

The objective is to study this analog control loop in view of the computer-aided 
implementation of the analog controller. 

Find: 

a) the expression of the closed-loop transfer function Fc(s); 

b) the bandwidth of Fc(s), then prove that a discretization period T = 400 ms to 
be used afterwards is satisfactory for the synthesis of the equivalent control loop in 
discrete time; 

c) the transfer function G(z) of the process, then validate the expression obtained 
by drawing and comparing the step responses of Gc(s) and G(z); 

d) the transfer function D(z) of the controller by the pole(s) and zero(s) 
transformation method; 

e) the recurrence equations of F(z) and D(z); 

f) the first samples of the step response of F(z) and of the corresponding digital 
command; 

g) the graphs of the step response and of the digital control using the first 
12 samples found. 

Solution – Exercise 4.13. 

In an analog control loop, let us consider: 

( ) 1/ 2
( )

( ) ( 1/ 2)c
Y sG s
U s s s

= =
+

 

( ) 6( 1/ 2)
( )

( ) 3c
U s sD s
E s s

+= =
+
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a) The expression of the closed-loop transfer function Fc(s) is: 

6( 1/ 2) 1/ 2
( ) ( )( ) 3 ( 1/ 2)

( )
6( 1/ 2) 1/ 2( ) 1 ( ) ( )

3 ( 1/ 2)

c c
c

r c c

s
D s G sY s s s sF s

sY s D s G s
s s s

+
+ +

== = =
++ +
+ +

  

The expansion leads to: 

3 2 2

( ) 3 ( 0.5)3 1, 5
( )

( ) 3.5 4.5 1.5 ( 0.5)( 3 3)
c

r

Y s ssF s
Y s s s s s s s

++= = =
+ + + + + +

  

Therefore: 

2

( ) 3
( )

( ) ( 3 3)
c

r

Y sF s
Y s s s

== =
+ +

 

b) Bandwidth of Fc(s) and discretization period T = 1 s:  

Fc(s) is of second order, with ωn = 
3

3 / ,
2n rad sω ξ= =  

2 4 21 2 4 4 2
2

n
bf

ω
ξ ξ ξ

π
= − + − + = 0.2167 Hz  

or a maximum theoretical discretization period T = 1/(2fb) = 2.3072 s. Therefore, 
T = 1 ms is an acceptable value. 

c) Transfer function G(z) of the process and validation: 

( )
( )

0.5

2 2 0.5

1( 1) 1/ 2 1
( )

( 1/ 2) ( 1) 0.5( 1)
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Expansion and simplification lead to: 
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In particular, for T = 400 ms: 

2

0.03746 0.03505
( )

1.819 0.8187

zG z
z z

+=
− +

 

The following Matlab console program allows the validation of G(z) by 
comparing the associated step response to that of Gc(s): 

1 % Step response 

2 T = 0.4;  k = 0:6;  tk = k*T; N = length(tk);   

3 sysGc  =  tf(1/2, [1  1/2   0]) ,    

4 numGz = [0.03746   0.03505], 

5 denGz = [1  -1.819    0.8187] 

6 yGc =  step(sysGc,tk);   

7 yGz = dstep(numGz, denGz,N); 

8 plot(tk,yGc);   xlabel (‘temps (s)’);   hold on;    

9 stem(tk, yGc,’o’),  grid; hold off 

The result of the comparison is shown in Figure 4.8. 

 

Figure 4.8. Result of the comparison 



Synthesis of Digital Feedback Control Systems in the Frequency Domain     173 

d) Transfer function D(z) of the controller with the pole(s) and zero(s) 
transformation method: 

Transformation refers to a zero for s = – 1/2 and a pole for s = – 3.  

This yields: 

3 0.5

0.5 3

3.855 3.156( ) 1
( )

( ) 0.30121

T T

T T

zU z e z eD z
E z ze z e

− −

− −

    −− −= = =    −− −   
  

e) System of recurrence equations resulting from D(z) = U(z)/E(z) and  
G(z) = Y(z) / Yr(z): 

The relations to be translated into recursive equations are: 

( ) ( ) ( )rE z Y z Y z= − , input quantity of the controller 

0 1
0 1 1

1

( )
( ) , with  3.855; 3.156; 0.3012

( )

b z bU zD z b b a
E z z a

+
= = = = − = −

+
  

1 2

2
1 2

( )
( ) ,  

( )

zY zG z
U z z z

β β
α α

+
= =

+ +
 

1 2 1 2with 0.03746; 0.03505; 1.819; 0.8187β β α α= = = − =  

This leads to the following recursive equations: 

1 2 1 2

1 0 1

( ) ( 1) ( 2) ( 1) ( 2)

( ) ( ) ( )

( ) ( 1) ( ) ( 1)
r

y k y k y k u k u k
e k y k y k
u k a u k b e k b e k

α α β β= − − − − + − + −
 = −
 = − − + + −

 

with initial conditions: 

y(0) = 0, e(0) = yr = 1 (step response)  

u(0) = b0e(0) 

y(1) = β1u(0), e(1) = yr(1) – y(1) 

u(1) = – a1u(0) + b0e(1) + b1e(0) 
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f) The first 12 samples of u and y for a desired step response: 

The following Matlab program has been used for calculating samples from the 
recursive equations and drawing graphic representation of the results obtained: 

1 % Simulation for the first 12 samples 

2 clear, clg 

3 T = 0.4  % Sampling period 

4 % Controlling parameter 

5 b0 = (1-exp(-3*T))/(1-exp(-0.5*T)); 

6 b1 = -b0*exp(-0.5*T);  a1 = -exp(-3*T);  

7 % Process parameters 

8 bet0 = 0;   bet1= (-1+0.5*T+exp(-0.5*T))/0.5; 

9 bet2 = (1-0.5*T*exp(-0.5*T)-exp(-0.5*T))  /0.5;   

10 alp1= -(1+exp(-0.5*T));   alp2=exp(-0.5*T) 

11 N = 12; yr = ones(N,1);  % Unit step set points 

12 % Initial conditions   

13 Temps(1) = 0;  Temps(2) = T;  Temps(3)=2*T;    

14 y(1) = 0;   e(1) = yr(1); u(1) = b0* e(1); 

15 y(2) =  bet1* u(1);   e(2) = yr(2) - y(2); 

16 u(2) = -a1* u(1) + b0* e(2) + b1* e(1);     

17 for  k = 3:N  % Processing of recursive equations 

18 Temps(k) = (k-1)*T;     

19 y(k) = -alp1*y(k-1)-alp2*y(k-2)+bet1*u(k-1)+bet2*u(k-2); 

20 e(k) = yr(k)-y(k);     

21 u(k) = -a1*u(k-1)+b0*e(k)+b1*e(k-1);  

22 End 

23 plot(Temps, u,’--’);    hold ;    stem(Temps,y); grid 

24 xlabel(‘Temps (s)’); title (‘y(kT) et u(kT)’); 
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The first 12 samples calculated are presented in Table 4.6. 

 

Table 4.6. Table of the first 12 samples 

g) The graphs of the step response and of the digital control are presented in 
Figure 4.9. 

 

Figure 4.9. Graphs of the step response and of the digital control 



 



5 

Computer-aided Simulation of  
Digital Feedback Control Systems 

5.1. Approaches to computer-aided simulation 

Let us consider a digital feedback control system admitting the following 
quantities: 

– Ref: desired output; 

– U: input; 

– Y: output. 

Let us also consider the z-transfer functions of the process and of the controller, 
given by G(z) and D(z), respectively, as follows: 

1
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Under these conditions, the simulation of the digital feedback control diagram, 
modeled by the transfer function F(z) = Y(z) / Ref(z) = D(z)G(z) / (1 + D(z)G(z)) 
knowing [5.1] and [5.2], involves analyzing, by means of an appropriate software, the 
behavior (graphic profile, dynamic and static performances) of the output quantity 
generated under a desired output applied over a finite time horizon. 

In general, three digital simulation approaches can be considered, depending on 
the needs, namely: 

– programming of joint recurrence equations deduced from [5.1] and [5.2]; 

– macro programming; 

– graphic simulation. 

5.2. Programming of joint recurrence equations 

5.2.1. Formulation 

Considering the expansions performed in Chapter 4, the joint recurrence 
equations resulting from [5.1] and [5.2] can be generalized in the following form: 
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 [5.3] 

with: 

e(k) = yr(k) – y(k), k = 0, 1, 2,…  [5.4] 

It is worth noting that the linear and recursive structure of [5.3] can be readily 
implemented in design time or in real time with any classic or Windows-oriented 
programming tool. 
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5.2.2. Example of Matlab® programming 

Let us consider here an analog control loop represented by the block diagram in 
Figure 5.1. 

 

Figure 5.1. Analog control loop 

The problem to solve involves: 

– analyzing the behavior of the continuous dynamic model of this analog control 
loop; 

– establishing in the frequency domain the equivalent discrete block diagram for 
various possible discretization techniques; 

– simulating the resulting step responses of the continuous model and of the 
discrete models for several choices of sampling periods; 

– analyzing and comparing the obtained simulation results. 

5.2.2.1. Choice of sampling period 

The analog control loop is described by the following transfer function: 
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A simple expansion yields: 
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Factorization followed by simplification of the common term in numerator and 
denominator leads to: 

2

1
( )

1
cF s

s s
=

+ +
=

2

2 22
n

n ns s
ω

ξ ω ω+ +
  [5.7] 

with: 

– ωn = 1 rad/s; 

– ξ = 0.5. 

As regards to discretization of analog models, it is worth noting that the closed-
loop bandwidth of this analog feedback control system is given by the expression: 

2 4 21 2 4 4 2
2

n
bf

ω
ξ ξ ξ

π
= − + − + = 0.2040 Hz  [5.8] 

Therefore, the sampling period T can be chosen in the interval: 

1 1

60 20b b
T

f f
≤ ≤  → 0.0817 0.2451s T s≤ ≤   [5.9] 

5.2.2.2. Calculation of G(z) by discretization of Gc(s) 

The use of step invariance technique, combined with the results of a table of  
z-transforms, leads to:  
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After reduction in G(z) to the same denominator and arrangement of terms, the 
following expression is obtained: 
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Computer-aided Simulation of Digital Feedback Control Systems     181 

5.2.2.3. Calculation of D(z) using the step invariance method 

For Dc(s) = (1 + 10s)/(1 + s), the transfer function D(z) of the controller, which 
results from the discretization of Dc(s) by step invariance, is written as: 

0 1

1

( )
z

D z
z

β β
α

+
=

+
  [5.13] 

with:  

– β0 = 10; 

– β1 = – 9.923;  

– α1 = – 0.9231. 

5.2.2.4. Closed-loop simulation based on the recurrence equations 

In this case, for a programming tool that has no 0 index, the joint recurrence 
equations of [5.3] and [5.4] are written as: 

0
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     [5.14] 

The “SimEquaRec.m” program allows the numerical simulation of [5.14] and the 
production of graphic results presented in Figure 5.2. 

No. “SimEquaRec.m” 
1 a = 1/10;   tau = 1/a;   

2 T=  0.08;    t = 0:T:12;  N = length(t);     % Time data  

3 b1= (exp(-a*T)+a*T-1)/a;    b2 = (1-exp(-a*T)-a*T*exp(-a*T))/a; 

4 a1= - (1+exp(-a*T));             a2 =  exp(-a*T);  

5 beta0  =  1/a ;                                                    % beta0 =1/0.1;       

6 beta1  = (1/a)*(-1+ a*(1-exp(-T/(a*tau))));     %  beta1= -9.923; 

7 alpha1 =  -exp(-T/(a * tau));                             %  alpha1  = -0.9231;    

8 yr = ones(N,1);                                                  %   N   Samples 
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9 y(1) = 0;   e(1) = 0;  u(1) = beta0*e(1); 

10 y(2) = b1*u(1) - a1*y(1);    e(2) = yr(2)-y(2); 

11 u(2) = beta0*e(2) + beta1*e(1) - alpha1*u(1); 

12 for k = 3:N                                                        %  Simulation loop 

13        y(k) =  b1 *u(k-1) -a1*y(k-1) + b2*u(k-2) - a2*y(k-2); 

14        e(k) =  yr(k)-y(k);                            

15       u (k) =  beta0*e(k)+beta1*e(k-1) - alpha1*u(k-1); 

16 End 

17   subplot(211);   plot( t,y,’k’);   grid;   xlabel(‘Temps(s)’); ylabel(‘Y(t)’);  

18   subplot(212);   plot(t,u,’k’);    grid;   xlabel(‘Temps(s)’); ylabel(‘U(t)’); 

Figure 5.2 presents the graphic results obtained after complete execution of the 
proposed program. It can be noted that, in a steady state, when the static error is 
nearly null, the digital control tends to zero. 

 

Figure 5.2. Result of the step response simulation using Matlab programming 
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5.3. Simulation using Matlab macro programming 

Let us resume the example presented in the previous section, in which the 
transfer functions of the process and of the controller are given, respectively, by: 

c

( )     
( )

with  1/10,  10
1

D ( )
1

cG s
s s

s
s

s

α
α α τ

τ

 = + = =
+ = +

   [5.15] 

The graphic responses of control systems in continuous and discrete time for 
T = 0.1 s can be more rapidly simulated using the following “MacroSim.m” macro 
program: 

No. “MacroSim.m” program 
1 T = 0.3;  t = 0:T:12;   N= length(t);  % Time  

2 a = 1/10;   tau = 10 ;                       ;                           

3 Gc = tf(a, [1 a 0]) ;  Dc = tf([tau 1], [a * tau    1]);        

4 Fc = feedback(series  (Gc, Dc),1);   % Object Fc(p)  

5 yc = step(Fc, t);                  % Step response of Gc(s) 

6      [NumGz ,  DenGz] = c2d(Gc, T, ‘zoh’) ;   % Discretization   

7 Gz = tf(NumGz ,  DenGz);            % Object G(z) 

8 yzBo = dstep(NumGz, DenGz,N);  % Response of G(z) 

9 [NumDz ,  DenDz] = c2d(Dc, T, ‘zoh’) % Discretization 

11 Dz = tf (NumDz, DenDz, T) ;                 % Object D(z) 

12 Fz = feedback(series  (Dz, Gz),1);          % Object F(z) 

13 [NumFz, DenFz] = tfdata(Fz, ‘v’);           % Parameters 

14     yd = dstep(NumFz, DenFz ,N);       % Step response 

15 plot(t,yc, ‘k’, t,yd, ‘o’ );  grid ;  xlabel(‘Temps (s)’);  ylabel(‘Y’); 

16 gtext(‘--- Continu  ‘);      gtext(‘ooo Discret’)   
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The specialized commands used in this Matlab macro program are: 

– “tf ”: transfer function object; 

– “series”: algebraic operator for the serialization of transfer functions; 

– “feedback”: algebraic operator for the looping of transfer functions; 

– “c2d”: operator for the discretization of continuous dynamic models. 

 

Figure 5.3. Step responses obtained in continuous and discrete time 

The execution of the proposed Matlab macro program leads to the result in 
Figure 5.3, where the step responses obtained in continuous and discrete time 
coincide with the result in Figure 5.2, obtained using the programming of joint 
recurrence equations. 

In the previous program, the sampling period T or the technique used for the 
discretization of Dc(s) can be modified. In the second case, the expressions of D(z) 
obtained and summarized in Table 5.1 all have the following form: 

0 1

1

( )
z

D z
z

β β
α

+
=

+
 [5.16] 
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Methods for calculating D(z) for T = 0.1 s D(z) for 
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Step invariance 
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z
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zD z
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Tustin transformation 
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zD z
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−

 

Transformation of poles and zeros 
9.154 8.973

( )
0.8187

zD z
z

−=
−

 

Table 5.1. D(z) for various discretization methods 

A block diagram is thus obtained, having a variable structure of the digital 
control loop (Figure 5.4). 

 

Figure 5.4. Variable structure block diagram of the digital control loop 

 

Figure 5.5. Step responses for T = 0.1 s. For a color  
version of this figure, see www.iste.co.uk/mbihi/automation.zip 
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Figure 5.6. Closed-loop step responses for T = 0.3 s. For a color  
version of this figure, see www.iste.co.uk/mbihi/automation.zip 

Figure 5.5 presents the simulation results of closed-loop step responses, obtained 
with various controller discretization methods, with the following values of the 
sampling period: T = 0.1 s. A nearly perfect superposition of responses can be noted, 
due to an appropriate choice of the sampling period T = 0.1 s. On the contrary, the 
results presented in Figure 5.6 show that an increase in T to 0.3 s generates significant 
gaps between the discretization methods used. 

5.4. Graphic simulation 

Graphic simulation tools provide an environment for setting up simulation diagrams 
based on ranges of input and output virtual components and data processing. It is the 
case for Simulink environment and for Graphical User Interface (GUI) in Matlab. In 
all cases, a Matlab or Simulink GUI application can communicate during execution 
time with specialized modular procedures, implemented using C/C++ programming 
or Matlab macro programming. 

An example of graphic simulation results of an analog feedback control system 
in the Matlab/Simulink environment corresponds to Figure 5.7. This tool has been 
configured for simulation with the fourth-order Runge–Kutta algorithm, for a sampling 
period T = 0.1 s. The equivalent discrete control system can also be easily simulated 
using discrete operators from the Simulink toolbox. 
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Figure 5.7. Graphic simulation in the Simulink environment 

At this stage, it is very important to note that, despite the ease of graphic 
simulation without programming, the digital simulation conditions to be configured 
in the menus and deep submenus of the Simulink environment can prove difficult to 
locate, handle and interpret from the perspective of allowable adjustment ranges. 

The case study presented in the next section of this chapter has been 
implemented and thoroughly tested with the Matlab GUIDE (Graphical User 
Interface Development). 

5.5. Case study: simulation of servomechanisms  

5.5.1. Simulation of a speed servomechanism 

5.5.1.1. Transfer function G(z) of the process 

If the transfer function Gc(s) of the process is subjected to an input delay τ, the 
following can be written as:  
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  [5.17] 
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Thus, the discretization of Gc(s), considering a delay index m = τ0/T (where T is 
the sampling period), leads to: 
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Tm m

K e
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z e z
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τ

−

−+

−
=

−
  [5.18] 

It is worth remembering that in the absence of input delay, τ0 = 0, or m = 0, then 
in this case [5.18] becomes: 
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  [5.19] 

The simulation data considered are the following: 

0.250( ) 6.8483
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( ) 1 1 0.841
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τ

τ
− −= = =

+ +
 [5.20] 

For τ = 0.5 s and τ0 = 0.25 s, the graph and the table of numerical values of the 
function T = τ0 / m are presented in Figure 5.8. 

 

Figure 5.8. Graph and table of values of the function T(m) = τ0 / m 
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Figure 5.9. Open-loop step responses 

Considering the means required for the real-time implementation of the sampling 
clock, the reasonable values of T to be used for discretization can be chosen in the 
range from 30 to 50 ms. Under these conditions, Figure 5.9 presents the results of  
the comparison of step responses, simulated by considering the transfer functions 
Dc(s) and D(z). 

5.5.1.2. Transfer functions D(z) of the PIDF controller 

The controller used here is a PIDF (proportional, integral, derivative, with first-
order filter) controller. In this case, the transfer function Dc(s) is written as: 

0
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 ( )
( ) (1 )

p s
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Y s KG s e
U s s s

τ

τ
−= =

+
   [5.21] 

Although [5.21] can be discretized directly using the Matlab command “c2d”, it is 
more advantageous in this specific case to use a discretization approach, leading to 
an analytical structure of D(z) with symbolic parameters. 

Thus, direct application to [5.21] of the Tustin discretization technique leads  
after simplification of the rational structure of D(z), given by relations [5.22] and 
[5.23] to: 
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with: 

0

2

1

2

1

2

(1 ) ( 2 ) 2
2

2

4 ( )

2

( 1) ( 2 ) 2
2

2

4

2

2

2

f d
i

p
f

f d
i

p
f

f d
i

p
f

f

f

f

f

T T T T
T

b K
T T

T T T
T

b K
T T

T T T T
T

b K
T T

T
a

T T

T T
a

T T

  
+ + +  

  = +

  

− +  
  = +
   − − +  

  = +
 −

=
+



 −

=
+

  [5.23] 

At this stage, knowing the transfer functions G(z) and D(z) leads to the 
representation in the frequency domain of the digital feedback control system of a 
lag servomechanism (Figure 5.10).  

 

Figure 5.10. Block diagram of a digital feedback  
control system of a servomechanism 

In the particular case of a PI controller with Kp = 0.6 and Td = 0.75 s, relations 
[5.22] and [5.23] lead to: 
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with: 
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5.5.1.3. Closed-loop simulation of a speed servomechanism 

The results of open-loop and closed-loop simulation of a speed servomechanism 
for m = 8 and T = 30 ms are presented in Figure 5.11. In each case, a nearly perfect 
superposition of step responses of Gc(s) and G(z), which is obtained in continuous 
and discrete time respectively, can be noted. Furthermore, following a disturbance 
applied in a steady state from instant 4.5 s, it can be noted that its effect on the 
closed-loop behavior is rigorously compensated after approximately 1 s. 

 

Figure 5.11. Open-loop and closed-loop responses of a speed servomechanism 

5.5.2. Simulation of a position servomechanism 

5.5.2.1. Open-loop transfer function G(z) 

In this case, the open-loop transfer function is written as: 
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The subsequent discretization of [5.26] by the step invariance method yields: 
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 [5.27] 

Expansion and simplification of [5.27] lead to: 
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The simulation parameters of the open-loop transfer function [5.28] of the 
position servomechanism are: 

– Ks = 1.2 (static gain); 

– τ = 0.5 s (time constant); 

– τ0 = 0.25 s (input delay); 

– m = 8 (integer index of input delay). 

For a servomechanism featuring only a tachometer (speed sensor), the position 
quantity yp can be numerically estimated at each sampling instant kT (with  
k = 1, 2,…) from speed samples ys using the Euler algorithm given by the following 
relation: 

( 1) ( ) ( )p p sy k y k T y k+ = +  [5.29] 

Figure 5.12 shows the results of open-loop simulation of continuous and discrete 
transfer functions of the servomechanism. 
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Figure 5.12. Open-loop step response of the position servomechanism 

5.5.2.2. Specification of the PI controller to be discretized 

The structure of D(z) given by the previous relations maintains its validity, but 
the following updated values of the PI controller parameters should however be 
considered: 

– Kp = 0.445; 

– Ti = 2000 s. 

5.5.2.3. Closed-loop simulation of the position servomechanism 

Figure 5.13 presents the results of the comparison of open-loop and closed-loop 
responses. It can be noted that the controller stabilizes the system and maintains 
precision in a steady state (null static error). 

  

Figure 5.13. Open-loop and closed-loop  
responses of a position servomechanism 
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5.6. Exercises and solutions 

Exercise 5.1. 

Fill in Table 5.2 that compares digital simulation approaches of the following 
feedback control systems: 

APPROACHES 
COMPARISON CRITERIA 

ADVANTAGES DRAWBACKS 
Programming   

Macro programming   

Graphic simulation   

Table 5.2. Table comparing simulation approaches 

Solution – Exercise 5.1. 

The results of the comparison of simulation approaches are presented in 
Table 5.3. 

APPROACHES 
COMPARISON CRITERIA 

ADVANTAGES DRAWBACKS 

Programming 
Code that is readily 

exportable into other 
programming tools 

Heavy programming efforts 

Macro programming Rapid programming Code non-portability 

Graphic simulation No direct programming 

Great difficulties with 
appropriate reconfiguration of 

simulation conditions in various 
submenus 

Table 5.3. Results of the comparison of simulation approaches 

Exercise 5.2. 

Use Table 5.4 as a model to describe the Matlab commands used in the Matlab 
macro program “MacroSim.m” provided in section 5.3. 
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Type Name Role 

Numerical 
analysis 

  

  

…  

Graphic 
representations 

  

  

…  

Table 5.4. Model of table summarizing the Matlab commands used 

Solution – Exercise 5.2. 

The Matlab commands used in the “SimEquaRec.m” macro program are 
described in Table 5.5. 

Type Name Role 
Numerical 

analysis 
“exp” Exponential function of base e 

“ones” Creation of unit vector/matrix 

Graphic 
representations 

“plot” 2D graphic representation of data 

“subplot” 
Subdivision of a figure area into a basis of graphic 
windows “n x m” 

“grid” Grid of the overlay plane 

“xlabel” Writing of the X-axis label 

“ylabel” Writing of the Y-axis label 

Table 5.5. Matlab commands used in the “SimEquaRec.m” program 

Exercise 5.3. 

Use Table 5.6 as a model to describe the Matlab commands used in the Matlab 
macro program “MacroSim.m”. 

Type Name Role 

Numerical 
analysis 

  

  

…  

Graphic 
representations 

  

  

…  

Table 5.6. Matlab commands used in the “MacroSim.m” program 
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Solution – Exercise 5.3. 

The Matlab commands used in the Matlab macro program “MacroSim.m” are 
described in Table 5.7. 

Type Name Role 

Numerical analysis 

“length” Dimension of a data vector 

“tf” Creation of a transfer function object 

“tfdata” 
Extraction of numerator and denominator 
contained in a tf object 

“c2d” Discretization of a dynamic model 

“series” Model serialization operator 

“feedback” Operator for looping the two dynamic models 

Graphic representations 
“step” Continuous time step response 

“dstep” Discrete time step response 

“gtext” Writing a text from a point of the graphic zone 

Table 5.7. Matlab commands used in the “MacroSim.m” program 

Exercise 5.4. 

Under what condition can the graphic simulation of feedback control systems be 
definitely qualified as easy? 

Solution – Exercise 5.4. 

The graphic simulation of feedback control systems is definitely only easy under 
simulation conditions based on default configuration options of menus and submenus. 

Exercise 5.5. 

Let us consider the “MacroSim.m” program of section 5.3. 

a) what parameters should be modified in this program in order to calculate the 
transfer function D(z) of the controller, with other discretization methods specified in 
Table 5.1, under a sampling period T = 0.5 s?  

b) considering the same discretization methods indicated in Figure 5.6 with 
T = 0.5 s, generate the graphs of step responses obtained from modified versions of this 
macro program; 

c) given these simulation results, what conclusion can be drawn regarding the 
choice of T value? 
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Solution – Exercise 5.5. 

a) in the “MacroSim.m” program, T = 0.3 should be modified in line 1, as well 
as “zoh” in line 9; 

b) the new graphs of step responses, obtained from modified versions of this 
program, are presented in Figure 5.14. 

  

Figure 5.14. New graphs obtained. For a color version  
of this figure, see www.iste.co.uk/mbihi/automation.zip 

c) compare the obtained results to those in Figure 5.6: 

It can be noted that, compared to the case presented in Figure 5.6, where the 
sampling period is T = 0.3 s, the behavior gaps between various sampling methods 
are more significant in the transient state for T = 0.5 s, which is to be expected, since 
the new value of T is higher. 

 



 



6 

Discrete State Models  
of Dynamic Processes 

6.1. Discretization of the state model of a dynamic process 

Applying to state space, the same reasoning used in Chapter 4 in the context of 
transfer functions leads to the block diagram of the sampled dynamic process 
represented in Figure 6.1. The input variable u(t), state variable x(t) and output 
variable y(t) of the process schematically represented in Figure 6.1(a) are replaced in 
Figure 6.1(b) by their respective sampled quantities u*(t), x*(t) and y*(t). 

 

Figure 6.1. Block diagram of a dynamic process sampled in the state space 

 

Analog Automation and Digital Feedback Control Techniques, First Edition. Jean Mbihi. 
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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6.1.1. Discretization of a state model 

Let us consider a dynamic process, described by the following continuous state 
model: 

{ }
( )

( ) ( )
, , ,

( ) ( ) ( )

c c
c c c c

c c

dx t A x t B u t
A B D Ddt

y t C x t D u t

 = + ≡
 = +

 [6.1] 

Knowing that the state-transition matrix from the initial instant t0 to instant t is 
written as: 

( ) 0
0

– ) (  ,   Ac t tt t eΦ =  [6.2] 

then the expression of the general solution x(t) is: 
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( )  ( 0)  ( ) ( ) c c

tA t t A t
ct
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In particular, if t0 = kT and t = kT + T, then: 
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x kT T e x kT e B u dτ τ τ
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or, in the presence of a zero-order holder, u(τ) = u(kT) if kT ≤ τ < (k + 1)T, 
therefore: 

( )(( 1) )( 1)  ( )   ( )c c
kT TA T A k T

ckT
x k e x kT e B d u kTτ τ
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In order to simplify the term contained in the integral, the following change in 
variable must be made: 

η = (k + 1) T – τ, or 
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This change in variable leads to:  
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(( 1) )  ( )   - ( )cA T A

cT
x k T e x kT e B d u kTη η+ = +   [6.7] 
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hence, the discrete state equation: 

( ) c0
(( 1) )  ( )     B    ( )c

TA T Ax k T e x kT e d u kTη η+ = +   [6.8] 

Thus, using the simplified notations x(kT) ≡ x(k), y(kT) ≡ y(k), the complete 
discrete dynamic model of the process is given by: 

{ } ( 1)  ( )    ( )

 ( )  ( )  ( )

x k A x k B u k
A B C D

y k C x k D u k
+ = +

≡ = +
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with: 

( ) c c c0
A ,  B      B ,   C C ,   D D

TA T Ace e dη η= = = =  [6.10] 

Relations [6.9] and [6.10] lead to the block diagram of the discrete state model of 
a dynamic process, represented in Figure 6.2, where the delay operator of a sampling 
period T is symbolized by z– 1. 

 

Figure 6.2. Block diagram of the discrete state model of a dynamic process 

6.1.2. Discretization of a state model with input delay 

In this case, the dynamic process is described by the following state model: 
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Knowing that the state-transition matrix from the initial instant t0 to instant t is 
written as: 

( ) 0 – 
0

( ),  Ac t tt t eΦ =   [6.12] 

then the expression of the general solution x(t) is: 

( 0) ( )
000( )  ( )   ( ) c cA t t A t

c

t
t

x t e x t e B u dτ τ τ τ− −= + −  [6.13] 

In particular, if t0 = kT and t = kT + T, then: 
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kT TA kT T kT A kT T
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x kT T e x kT e B u dτ τ τ τ
++ − + −+ = + −  [6.14] 

For a positive integer m = 0, 1,…, let us consider: 

τ0 = mT  [6.15] 

Thus, expression [6.15] becomes: 
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kT TA kT T kT A kT T
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x kT T e x kT e B u m T dτ τ τ

++ − + −+ = + −   [6.16] 

Let us now examine the values taken by u(τ – kT) at the integral boundaries: 

– if τ = kT, then u(τ – kT) = u(kT – mT); 

– if τ = kT + T, then u(τ – kT) = u(kT + T – mT). 

Then, given the assumption of zero-order holder, u(τ – kT) is constant within the 
range kT ≤ τ ≤ kT + T, and this constant is u(kT – mT) at the instant τ = kT. 

Thus, expression [6.16] becomes: 

( )
( ) ( )

( ) ( )

( )  ( )   ( ) 

                  ( )   ( ) 

c c

c c

kT TA kT T kT A kT T
ck T

kT TA kT T kT A kT T
ck T

x kT T e x kT e B u kT m T d

e x kT e d B u kT m T

τ

τ

τ

τ

++ − + −

++ − + −

+ = + −

= + −




 [6.17] 

Now, if a change in variable is made such that: 

η = (k + 1)T – τ, or 

              

  ( 1)    0

kT T
k T

d d

τ η
τ η
η τ

=  =
 = +  =
 = −

 [6.18] 
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this yields: 

( )( )( )  ( )  ( )  ( ) c c
kT TA kT T kT A

ck T
x kT T e x kT e d B u kT m Tη τ

++ −+ = + − −  

( ) ( )c0
(( 1) )  ( )     B    ( ( )c

TA T Ax k T e x kT e d u k m Tη η+ = + −   [6.19] 

It can be noted that the discrete state model obtained has an input delay of 
m sampling periods. In order to transform [6.19] into a standard equivalent discrete model 
(see Figure 6.3), m new internal variables considered for the delay encapsulation are 
defined by: 

 

Figure 6.3. System of m new state variables  
allowing the encapsulation of the pure input delay 

1

2

1

( ) ( )

( ) ( ( 1) )

                 . ..

( ) ( 2 )

( ) ( )

n

n

n m

n m

x k u kT mT
x k u kT m T

x k u kT T
x k u kT T

+

+

+ −

+

= −
 = − −

 = −
 = −

 [6.20] 

Under these conditions, a complete n + m dimensional state model is obtained 
and is defined by: 

1 1

2 2

( 1) ( )0 0 0 0

( 1) ( )0 0 1 0 ... 0

( 1) ( ) ( )... 0 0 1 0 ...

... ...0 .. 0 0 1 0

( 1) ( )0 0 ... 0 0 1

n n

n n

n m n m

x k x kA B
x k x k
x k x k u k

x k x k

+ +

+ +

+ +

+      
      +      
      + = +
      
      
      +       

 [6.21] 
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with: 

( ) c c c0
A ,  B     B ,   C C ,   D D  

TA T Ace e dη η= = = =  [6.22] 

6.2. Calculation of {A, B, C, D} parameters of a discrete state model 

6.2.1. Calculation of A = eAT 

6.2.1.1. Calculation of A = eAT by the Jordan diagonalization 

Indeed, if Q is the eigenvectors matrix of Ac associated with the eigenvalues λ1, 

λ2,…, λp of respective multiplicities n1, n2,…, nj,…, np, with
1

p

j
j

n n
=

= , then: 

cA = Q– 1AcQ [6.23] 

where cA  designates the diagonal matrix of Ac according to the Jordan normal form. 

Under these conditions, matrix cA  is formed of p Jordan blocks A1, A2,…, Ap of the 

form: 

1

2

0

...

0

c

p

A
A

A

A

 
 
 =
 
 
  

 [6.24] 

with: 

1 0      .... 0

0 1      ....

. .         .      1

0 0 0      0

j

j
j

j

A

λ
λ

λ

 
 
 =
 
 
  

     (j = 1, 2,…, nj) [6.25] 

Thus, knowing [6.24] and [6.25], A can be calculated as follows: 

c cA A   T –1A e   Q e  Q  T= = = 

1

2
1

0

0

A T

A T

ApT

e
e

Q Q

e

−

 
 
 
 
 
  

 [6.26] 
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with: 

1
2

2

...
( 1)!

0 ...
( 2)!

.
0 ... .

.

. . 0 .

0 0 0 ...

nj jT
jT jT jT

j

nj jT
jT jT

AjT j

jT

jT

T ee Te T e
n

T ee Te
n

e

e
e

λ
λ λ λ

λ
λ λ

λ

λ

−

−

 
 − 
 
 

− =  
 
 
 
 
  

  [6.27] 

6.2.1.2. Calculation of A = eAcT using the Taylor series 

The expansion of cAe T into Taylor series of arbitrary order M leads to: 

c

2 2 3 3 4 4
Ae    ...

1!  2! 3! 4! !

M M
T c c c c cA T A T A T A T A T

I
M

≅ + + + + + + =
( )

0 !

kM
c

k

T A
k=

   [6.28] 

Therefore, if: 

2 2 3 3

( )  ...
 2! 3! 4! ( 1)!

M M
c c c cA T A T A T A T

M I
M

Ψ = + + + + +
−

 [6.29] 

then: 

2 2 1 1

2 2

3 3

Ψ( ) ...
2 3 3* 4 3* 4*...* ( 1)!

          ...
2 3 4 4*...( 2)

          ...
2 3 4 5 5*6*.

M M
c c c c

M M
c c c c

M M
c c c c c

T T T TM I I
M

A T T T TI I I
M

T A T A T T TI I I I

− −

− −

− −

 Α Α Α Α=  +  + + +  +    − 
  Α Α Α=  +  + + +  +      −  

Α  Α Α=  +  + + + +  +
..( 2)

          ...
2 3 4 5
c c c c c

M

T A T T T A TI I I I I
M

   
     −   
   Α  Α Α   =  +  + + + +  +                          

 [6.30]  
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It is therefore sufficient to calculate Ψ(M) using algorithm [6.30], then to 

determine the approximate value of cAe T by: 

A = I + AcTΨM [6.31] 

6.2.1.3. Calculation of A = eAT by the Laplace transform 

Indeed, the Laplace transform of cAe T  is: 

( ) ( )– 1
  s  – AcT

cL e I A=  [6.32] 

Therefore: 

( )( )– 1 – 1  s  – A T
ce L I A=  [6.33] 

6.2.2. Calculation of B 

– If matrix A = cAe T  has already been calculated using the Jordan technique as a 
function of T, it suffices to deduce A(τ) by replacing T with τ, and then to 
analytically calculate the term: 

( )0
   B        Bc

T A
ce dη η=   [6.34] 

– If matrix Ac is reversible, then: 

1   ( )  A T
c cB A e I B−= −  [6.35] 

– B can also be calculated by the previously used polynomial approximation. 
Indeed, knowing that: 

c

2 2 3 3 4 4
A       e    ...

1!  2! 3! 4!
T c c c cA T A T A T A T

I= + + + + +  [6.36] 

then: 

2 2 3 3 4 4 5

0
     T ...

2 2! 3 3! 4 4! 5

T A c c c cA T A T A T A T
e d Iη η = + + + + +   

              

2 2 3 3 4 4 5

2 2 3 3 4 4

       T ...
2!  3! 4! 5!

        ...   
2!  3! 4! 5!

c c c c

c c c c

A T A T A T A T
I

A T A T A T A T
T I T

= + + + + +

 
= + + + + + = Ψ 

 

 [6.37] 



Discrete State Models of Dynamic Processes     207 

Therefore:  

( ) c0
   B     B  

T Ae dη η=  = TψBc [6.38] 

EXAMPLE.– Let us consider the process described by the following state model: 

[ ]0 1 0
, , 1 0 , 0

0 0 1c c c cA B C D   
= = = =   
   

 [6.39] 

The objective is to discretize this model with a sampling period T.  

– Step invariance method: 

0 1 0
0 0

0

1 Te T
    A  e    

0 10 e
c

T
A Te

 
 
 

   
= = = =   

  
 [6.40] 

( )
T T

T 0 0
c T0 0

0

2 2

1 0 0
   B        B   

0 1 1 10

T 0
        2 2

1
0 T

T A
d d

e d d
d

TT

T

η
η η ηη

η η
η

 
       = = =                

   
    = =           

 
 


  [6.41] 

[ ]1 0 , 0c cC C D D= = = =
 [6.42] 

– Method of Taylor series of order M: 

In this case, the following can be written as:  

2

2

0 0

0 0

0 1 0 1 0 1

0 0 0 0 0 01 0
( )  ...

0 1 2! 3! ( 1)!

M
MT T T

M
M

 
 
 

     
            Ψ = + + + +  −  

 [6.43] 

             =

0 1

0 11 0 1
 2

0 1  2!
0

T T

T

 
       + =      
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Therefore: 

c  B    B Tψ= = 
01

2
1

0

T
T

T

          

=

2

2

T

T

 
 
 
  

 [6.44] 

[ ]1 0 , 0c cC C D D= = = =  [6.45] 

– Laplace transform method: 

1 10 0 1 1

0 0 0 0

s s
A L L

s s
− −   −      

= − =        
        

 [6.46] 

2
1 1

2

1 1
1 1 11

A 
0 0 1 0 11

0 t T

s t Ts sL L
ss

s

− −

=

  
         = = = =                    

 [6.47] 

( ) T

0 0

T T 2 2

0 0

T

0

1 0
   B    

0 1 1

T0 0
2 2

1 10 0 T

T Ae d d

Td d T

d T

η η
η η

η η η

η

    
= =     

    
     

        = = =                    

 

 


 [6.48] 

6.2.3. Calculation of C and D 

C = Cc and D = Dc 

6.3. Properties of a discrete state model {A, B, C, D} 

6.3.1. Infinity of state models of one dynamic process 

A dynamic process modeled in the discrete state space admits an infinity of 
discrete state representations. Indeed, let us consider the following discrete state 
model: 

 (( 1) )  ( )   ( )

 ( )  ( )  ( )

x k T A x kT B u kT
y k C x k D u k

+ = +
 = +

 [6.49] 
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Let P be an arbitrary regular matrix of order n; if this model is applied to  
the transformation law ( ) ( )x k P x k= , the following is obtained in the space of 

variable ( ):x k  

-1

-1

 (( 1) )  P ( )   ( )

 ( )  P ( )  ( )

x k T P A x kT P B u kT
y k C x k D u k

 + = +


= +

 


  [6.50] 

When arbitrary matrix P is subjected to variation, an infinity of similar discrete 
state models can be built for a single process. Nevertheless, canonical state models, 
which offer a maximum of null terms, are of greatest practical interest among all 
possible representations. 

6.3.2. Stability 

Relation: 

1( )
( ) ( )

( ) n
Y zG z C z I A B D
U z

−= = − +  [6.51] 

shows that the eigenvalues of state matrix A and the poles of G(z) are identical. 
Consequently, the dynamic system is stable and all the eigenvalues of state matrix A 
have a module below unity. 

6.3.3. Controllability and stabilizability 

The model of a process is controllable if there is a sequence of controls allowing 
the passage from an arbitrary initial state x(k0T) to an arbitrary final state x(kfT) 
within finite time. The controllability test that applies to matrices A and B of the 
discrete state model of dimensions n × n and n × 1, respectively, is defined by: 

( )

[ ]( )

2 1)     ...

)       the eigenvalue   of  A

n

n

a Rank B AB A B A B n

or
b Rank I A B nλ λ

−   = 

 − = ∀

 [6.52] 
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On the contrary, if Rank([A AB A2B … An – 1B]) = p < n, then the dynamic process 
is not controllable. An uncontrollable dynamic system is stabilizable if all the 
uncontrollable eigenvalues have modules below one. In this case, the system can be 
partially controlled in the state subspace generated by the controllable eigenvalues. 

6.3.4. Observability and detectability 

The model of a process is observable if the initial state x(k0T) can be reconstructed 
within finite time, knowing the sequences of controls and outputs obtained up to 
instant tf = kf T. Once more, the observability test applicable to matrices A and C of the 
discrete state model, whose dimensions are n2 and 1 × n respectively, is defined by: 

1

)     
...

)        the eigenvalue   of  A

n

n

C
CA

a Rank n

CA
or

I A
b Rank n

C
λ

λ

−

   
   
    =   
         




  − 

= ∀   
   

 [6.53] 

If Rank([CT ATCT (A2)TCT … (An – 1)TCT)T = q < n, then the dynamic process is 
not observable. This unobservable dynamic process is detectable if the unobservable 
eigenvalues have all modules below one. In this case, the dynamic process can be 
partially observed in the state subspace generated by the observable eigenvalues, 
although some of them are unstable. 

6.4. Exercises and solutions 

Exercise 6.1. 

An analog process is described in the state space by parameters {Ac, Bc, Cc, Dc} 

with 
0 2 1

, , 1, 0
0 0 0c c c cA B C D

−   
= = = =   
   

. Calculate the equivalent discrete 

state model for T = 1 ms (sampling period) using: 

a) an analytical discretization method; 

b) a Matlab® program for numerical calculation using the Taylor series method 
and “c2d” primitive. 
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Solution – Exercise 6.1. 

Matrix Ac is given in diagonal form. It admits two identical and null eigenvalues. 

a) Analytical discretization method: 

0 2 0 1
( 2 )

0 0 0 0

0 2

0 0

0 0

2 2

0

1 2
,

0 1

1 2
,

0 1

1
,

0 00 0

1, 0

T T

T T

c

T

c c

c c

T
A e e

B e d B d

TT T
B B

T
C C D D

η η
η η

η η
η

−    −   
   

− 
 
 

 − 
 = = =  
  


   −    = =         
    − −    

= = =        
       

 = = = =

   

b) Taylor series method and use of “c2d” primitive: 

The Matlab program below is used for this purpose, which yields the following 
results: 

[ ]1 0.002 0.001
, ,  1      0  ,  0

0 1 0
A B C D

−   
= = = =   
   

 

It can be verified that “c2d” yields the same result. 

No. Matlab program for the discretization using Taylor method and c2d command 

1 T = 0.001;                %  Time  

2 M =10;  Ac = [0   -2;    0     0];   Bc = [1   0]’;   Cc = [1   0];   Dc = 0;                        

3 I2 = eye(2);              %   Unity  Matrix of order 2 

4 Psi = eye(2);             %   Initialization of Psi 

5 fac = 1;                     %   Initialization  of  factorial 

6 for k = 1:M                     %  (M) iterations within the loop 

 7      fac = fac *  k;            %   Factorial function  k! 

8      Psiav = Psi;                %  previous value of Psi 

9      Psi = Psi + (T * Ac)^k / (fac * (k+1));      % (k+1)! = k! (k+1) 
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10      Psiar = Psi;                %  Updated value of  Psi   

11 End 

12 ‘Results  obtained using Taylor method 

13      A1 = I2 + T * Ac * Psi;    B1 = Psi * T * Bc; 

14 sysdTaylor = ss(A1, B1, Cc, Dc); 

15  [A, B, C, D] = ssdata(sysdTaylor)     % Result Taylor 

  16 ‘Results  obtained using c2d  method  

  17 sysdC2d = c2d(ss(Ac,Bc,Cc,Dc),T); 

  18 [A, B, C, D] = ssdata(sysdC2d)         %  c2d result 

Exercise 6.2. 

The linear model of a pendulum, which is valid for small variations around the 
functioning point, is given by: 

1

2

( )0 1 0( )
( )

2 3 ( ) 2

x tdx t u t
x tdt

    
= +    − −    

 

Calculate the equivalent discrete state model for T = 1 ms (sampling period) 
using: 

a) an analytical discretization method; 

b) a Matlab program for numerical calculation using the Taylor series method 
and “c2d” primitive. 

Solution – Exercise 6.2. 

a) Analytical method: 

– calculation of A: 

sI – Ac = 
1

2 3

s
s
− 

 + 
 

therefore: 

(sI – A)–1 = 
2 2

2 2

3 1

3 2 3 2
2

3 2 3 2

s
s s s s

s
s s s s

+ 
 + + + + 

− 
 + + + + 

 =

2 1 1 1

1 2 1 2
2 2 2 1

1 2 2 1

s s s s

s s s s

 − − + + + + 
− + − + + + + 
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Thus: 

A = eAcT = L–1((sI – A)–1) = 
2 2

2 2

2

2 2 2

T T T T

T T T T

e e e e
e e e e

− − − −

− − − −

 − −
 − + − 

 

If T = 1 ms, then: 

A = 
1 0.001

0.002 0.997

 
 − 

 

– calculation of B: 

Since matrix Ac is reversible, then: 

1   ( )  Ac T
c cB A e I B−= −  = 

3 11

2 02

− − 
 
 

1 0.001

0.002 0.997

 
 − 

0

2

 
 
 

 =
0

0.002

 
 
 

  

b) Taylor series method: 

The following Matlab program is used for this purpose, yielding the results:  

[ ]1 0.001 0
, ,  1      0  ,  0

0.002 0.9970 0.002
A B C D

−   
= = = =   −   

 

It can then be verified that Taylor method and “c2d” yield the same result. 

No. Matlab program for the discretization using Taylor method and c2d 
command 

1 Clear;   T = 0.001;                %  Time  

2 M =10;  Ac = [0    1;    -2     -3];   Bc = [0   2]’;   Cc = [1   0];   Dc = 0;           

3 I2 = eye(2);              %   Unity Matrix of order 2 

4 Psi = eye(2);             %   Initialization of Psi 

5 fac = 1;                     %   Initialization  of  factorial 

6 for k = 1:M                     %  (M) iterations within the loop 

7      fac = fac *  k;            %   Factorial function  k! 

8      Psiav = Psi;                %  previous value of Psi 

9      Psi = Psi + (T * Ac)^k / (fac * (k+1));      % (k+1)! = k! (k+1) 
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10      Psiar = Psi;                %  Updated value of  Psi   

11 End 

12 ‘Results  obtained using Taylor method 

13      A1 = I2 + T * Ac * Psi;    B1 = Psi * T * Bc; 

14 sysdTaylor = ss(A1, B1, Cc, Dc); 

15  [A, B, C, D] = ssdata(sysdTaylor)     % Result Taylor 

  16 ‘Results  obtained using c2d  method  

  17 sysdC2d = c2d(ss(Ac,Bc,Cc,Dc),T); 

  18 [A, B, C, D] = ssdata(sysdC2d)         %  c2d result 
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Appendix 1 

Table of Z-transforms 

This table has been drawn up from several sources, among which [FRA 90,  
MBI 17]. 
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Table A1.1. Table of z-transforms (T: sampling period) 



Appendix 2 

Matlab® Elements Used in This Book 

Category Elements  Description of elements 

Specific symbols 

% Comment 

= Assignment 

‘ Transpose 

, Argument separator/end of command 

; No display of the result of a command 

… Line continuation 

[,], [;] Brackets of vector/matrix elements 

: Separator of indices of a sequential data 

( )  Parentheses of arguments of a function 

Arithmetic operators 
(applicable to 

vectors/matrices 
according to context) 

+ and .+ Addition 

- and .- Subtraction 

* and .* Multiplication 

/ and ./ Division 

^ and .^ Power 

Relational operators 

< Less than 

<= Less than or equal to 

> Greater than 

>= Greater than or equal to 

= = Equal to 

~= Not equal to 
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General primitives 

clear Data deletion in progress 

clg Deletion of figure content in progress 

function Function defined by the programmer 

load Reading in the disk object *.mat 

num2str Conversion from number to string 

save Storage in the disk object *.mat 

Graphic 
management of 
figure object in 

progress 

axis Ranges of axes of a figure layout 

deploy Deployment of the Matlab application for 
Windows 

figure Figure object 

get Recovery of the property(properties) of GUI object 

grid Grid drawing on the figure 

gtext Text display at a point of a figure object 

guide Activation of the Matlab GUI editor 

hold on/off Management of figure content memorization 

image (GUI) image object 

imshow Image display in progress 

plot Graph plotting with a default pattern 

preview Displays video data on GUI video window 

set Writing of GUI object property 

stem Graph plotting with a stem pattern 

subplot Division of a figure into n x m cells 

text Graphic display of x 

title Titling of a figure 

videoinput Creation of video object 

xlabel Text display in the abscissa 

ylabel Text display in the ordinate 
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Arithmetic 
calculation 

applicable to 
vectors/matrices 

according to context 

cos Cosine function 

diag Creation of diagonal matrix 

exp Exponential function 

floor Rounding to nearest integer less than or equal to 
an element 

length Dimension 

log Logarithm of base e 

ones Unit vector/matrix object 

rank Rank of a matrix 

sin Sine function 

sqrt Square root 

Management of 
dynamic models 

c2d Discretization of continuous model 

ctrb Returns the controllability matrix 

ctrbf Returns the controllable form 

d2c Reconstruction of continuous model 

eig Calculation of eigenvalues and eigenvectors 

feedback Object creation: feedback loop 

iddata Data of identified model 

obsv Calculation of observability matrix 

parallel Object creation: parallel association 

obsvf Returns the observable form 

p = tf(‘p’) Symbolic variable for the transfer function Gc(p) 

series Object creation: series association 

ss Object creation: state model 

s = tf(‘s’) Symbolic variable for Gc(s) 

tf Object creation: transfer function 

tfdata Data of the transfer function object 

tfest Object creation: estimator of Gc(s) 

z = tf(‘z’) Symbolic variable for the transfer function G(z) 

place Pole placement gain 
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Synthesis of 
controllers 

acker Pole placement Ackermann’s gain 

dlqg Parameters of discrete LQG controller 

dlqr Parameters of discrete LQR controller 

lqr Parameters of continuous LQR controller 

lqg Parameters of continuous LQG controller 

Bode Bode diagram 

Model simulation 
(default plot of data 

graph) 

dlsim Discrete time response 

dstep Discrete time step response 

lsim Continuous time response 

step Continuous time step response 

for … end Processing loop 

Programming 
structures  

if … end Simple/multiple conditional switch 

Table A2.1. Matlab elements used in this book 
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