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Preface to the Second Edition

The main differences between this edition and the first (apart from the correc-
tion of numerous typos) is the addition of a substantial amount of material,
including four wholly new chapters. As a consequence, through the choice
of various subsets of the chapters, this book can be appropriate for a single
upper-division or graduate course in linear algebra, or an upper-division or
graduate sequence. Furthermore, this book can function as a supplementary
text for a graduate course on classical groups. As with the first edition, the
approach remains general (nearly everything is done over arbitrary fields) and
structural. We have also attempted to continue to build up to significant re-
sults from a few simple ideas. Following is a description of how the new edition
specifically differs from its predecessor.

The first nine chapters of the edition have been carried over to the new edition
with very few substantive changes. The most obvious is renumbering: A chap-
ter has been inserted between Chapters 8 and 9 so that Chapter 9 has now
become Chapter 10. Apart from the addition of several new exercises across
these chapters, the most significant changes are:

Chapter 5 has been renamed “Normed and Inner Product Spaces” since we
have added a section at the end of the chapter on “normed vector spaces”.
Here we introduce several norms that are not induced by an inner product
such as the lp-norm for p ≥ 1 and the l∞-norm. We show that all norms on
a finite-dimensional real or complex space are equivalent, which implies that
they induce the same topology.

In Chapter 8 we have added a section on orthogonal spaces over perfect fields
of characteristic two and we prove Witt’s theorem for such spaces.

In Chapter 10 (previously 9), the fourth section on symmetric and exterior al-
gebras has been split into two separate sections. Additionally, we have added a
section on Clifford algebras, which is a powerful tool for studying the structure
of orthogonal spaces.

The new chapters are as follows:

Chapter 8 is devoted to sesquilinear forms, which generalize the notion of a
multilinear form. In the first section we introduce the basic concepts, including
the notion of a reflexive sesquilinear form and obtain a characterization: such
forms are equivalent to Hermitian or skew-Hermitian forms. In the second

xiii
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section we define what is meant by a unitary space, an isometry of a unitary
space, and prove Witt’s theorem for non-degenerate unitary spaces.

Chapter 11 deals with linear groups and groups of isometries. In the first sec-
tion we define the special linear group as well as the concept of a transvection.
We prove that the special linear group is generated by transvections. We de-
termine the center of the special linear group and prove that, with three small
exceptions, the special linear group is perfect. We then show that when the
special linear group is perfect, the quotient group by its center is a simple
group. The second section is concerned with the symplectic group, the group
of isometries of a non-degenerate symplectic space. Section three investigates
the group of isometries of a non-degenerate singular orthogonal space over a
field of characteristic not two. The final section is devoted to the group of
isometries of a non-denerate isotropic unitary space.

Chapter 12 is devoted to some additional topics in linear algebra (more specif-
ically, matrices). In the first section we introduce the notion of a matrix or
operator norm and develop many of its properties. Section two is concerned
with the Penrose–Moore pseudoinverse, which is a generalization of the no-
tion of an inverse of a square matrix. The subsequent section takes on the
subject of non-negative square matrices, real n× n matrices, all of whose en-
tries are non-negative. Section four is devoted to the location of eigenvalues
of a complex matrix. The main result is the Gers̆gorin disc theorem. The final
section deals with functions of square matrices defined by polynomials and
power series.

The final chapter deals with three important applications of linear algebra.
Section one is devoted to the method of least squares, which can be used to
estimate the parameters of a model to a set of observed data points. In the
second section we introduce coding theory that is ubiquitous and embedded
in all the digital devices we now take for granted. In our final section we
discuss how linear algebra is used to define a page rank algorithm that might
be applied in a web search engine.

Writing this new edition, while time-consuming, has nonetheless been a plea-
sure, particularly the opportunity to write about the classical groups (a re-
search interest of mine) as well as important applications of linear algebra.
That pleasure will be heightened if the reader gets as much out of reading the
text as I have by writing it.

Bruce Cooperstein
September 2014
Santa Cruz, California



Preface to the First Edition

My own initial exposure to linear algebra was as a first-year student at Queens
College of the City University of New York more than four decades ago, and
I have been in love with the subject ever since. I still recall the excitement I
felt when I could prove on the final exam that if A is an n × n matrix then
there exists a polynomial f(x) such that f(A) = 0nn. It is only fitting that
this result plays a major role in the first half of this book.

This book started out as notes for a one quarter second course in linear algebra
at the University of California, Santa Cruz. Taken primarily by our most
sophisticated and successful juniors and seniors, the purpose of this course was
viewed as preparing these students for the continued study of mathematics.
This dictated the pedagogical approach of the book as well as the choice of
material.

The pedagogical approach is both structural and general: Linear algebra is
about vector spaces and the maps between them that preserve their structure
(linear transformations). Whenever a result is independent of the choice of an
underlying field, it is proved in full generality rather than specifically for the
real or complex field.

Though the approach is structural and general, which will be new to many stu-
dents at this level, it is undertaken gradually, starting with familiar concepts
and building slowly from simpler to deeper results. For example, the whole
structure theory of a linear operator on a finite dimensional vector space is
developed from a collection of some very simple results: mainly properties of
the division of polynomials familiar to a sophisticated high school student as
well as the fact that in a vector space of dimension n any sequence of more
than n vectors is linearly dependent (the Exchange Theorem).

The material you will find here is at the core of linear algebra and what a
beginning graduate student would be expected to know when taking her first
course in group or field theory or functional analysis:

In Chapter 1, we introduce the main object of the course: vector spaces over
fields as well as the fundamental concepts of linear combination, span of vec-
tors, linear independence, basis, and dimension. We also introduce the concept
of a coordinate vector with respect to a basis, which allows us to relate an
abstract n dimensional vector space to the concrete space Fn, where F is a
field.

xv
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In almost every mathematical field, after introducing the basic object of study,
one quickly moves on to the maps between these objects that preserve their
structure. In linear algebra, the appropriate functions are linear transforma-
tions, and Chapter 2 is devoted to their introduction.

Over the field of rational, real, or complex numbers most of the material of
Chapters 1 and 2 will be familiar but we begin to add sophistication and
gravitate more towards the structural approach at the end of Chapter 2 by
developing the algebra of the space L(V,W ) of linear transformations, where
V and W are finite-dimensional vector spaces. In particular, we introduce
the notion of an algebra over a field and demonstrate that the space L(V, V )
of linear operators on a finite-dimensional vector space V is an algebra with
identity.

Chapter 3 is devoted to the algebra of polynomials with coefficients in a field,
especially concentrating on those results that are consequences of the division
algorithm, which should be familiar to students as “division of polynomials
with remainder.”

In Chapter 4, we comprehensively uncover the structure of a single linear
operator on a finite-dimensional vector space. Students who have had a first
course in abstract algebra may find some similarity in both the content and
methods that they encountered in the study of cyclic and finite Abelian groups.
As an outgrowth of our structure theory for operators, we obtain the various
canonical forms for matrices.

Chapter 5 introduces inner product spaces, and in Chapter 6, we study oper-
ators on inner product spaces. Thus, in Chapter 5, after defining the notion
of an inner product space, we prove that every such space has an orthonormal
basis and give the standard algorithm for obtaining one starting from a given
basis (the Gram-Schmidt process). Making use of the notion of the dual of a
vector space, we define the adjoint of a linear transformation from one inner
product space to another. In Chapter 6, we introduce the concepts of normal
and self-adjoint operators on an inner product space and obtain character-
izations. By exploiting the relationship between operators and matrices, we
obtain the important result that any symmetric matrix can be diagonalized
via an orthogonal matrix.

This is followed by a chapter devoted to the trace and determinant of lin-
ear operators and square matrices. More specifically, we independently define
these concepts for operators and matrices with the ultimate goal to prove
that if T is an operator, and A any matrix which represents T (with respect
to some basis) then Tr(T ) = Trace(A) and det(T ) = det(A). We go on to
prove the co-factor formula for the determinant of a matrix, a result missing
from most treatments (and often taken as the definition of the determinant
of a matrix). The chapter concludes with a section in which we show how we
can interpret the determinant as an alternating n-multilinear form on an n
dimensional vector space and we prove that it is unique.
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The final two chapters consist of elective material at the undergraduate level,
but it is hoped that the inclusion of these subjects makes this book an ideal
choice for a one-term graduate course dedicated to linear algebra over fields
(and taught independent of the theory of modules over principal ideal do-
mains). The first of these two chapters is on bilinear forms, and the latter on
tensor products and related material. More specifically, in Chapter 8, we clas-
sify nondegenerate reflexive forms and show that they are either alternating
or symmetric. Subsequently, in separate sections, we study symplectic space
(a vector space equipped with a non-degenerate alternating form) and or-
thogonal space (a vector space equipped with a nonsingular quadratic form).
The final section of the chapter classifies quadratic forms defined on a real
finite-dimensional vector space.

The ultimate chapter introduces the notion of universal mapping problems,
defines the tensor product of spaces as the solution to such a problem and ex-
plicitly gives a construction. The second section explores the functorial proper-
ties of the tensor product. There is then a section devoted to the construction
of the tensor algebra. In the final section we construct the symmetric and
exterior algebras.

Hopefully the reader will find the material accessible, engaging, and useful.
Much of my own mathematical research has involved objects built out of
subspaces of vector spaces (Grassmannians, for example) so I have a very
high regard and appreciation for both the beauty and utility of linear algebra.
If I have succeeded with this book, then its student readers will be on a path
to the same recognition.

Bruce Cooperstein
University of California, Santa Cruz
December 2009
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Symbol Description

N The set of natural
numbers

Q The field of ratio-
nal numbers

R The field of real
numbers

C The field of com-
plex numbers

F[x] The algebra of
polynomials in a
variable x with
coefficients in the
field F

F(n)[x] The space of all
polynomials of de-
gree at most n with
entries in the field
F

D(f) The derived poly-
nomial of the poly-
nomial f

Fpn The finite field of
cardinality pn for a
prime p and a nat-
ural number n

c The conjugate of a
complex number c

Fn The vector space of
n-tuples with en-
tries in the field F

spt(f) The set of x such
that f(x) 6= 0

A♯B The concatenation
of two finite se-
quences A and B

U +W The sum of two

subspaces U and
W of a vector space

U ⊕W The direct sum of
two vector spaces
U and W

Mmn(F) The space of all
m×nmatrices with
entries in the field
F

Dn(F) The space of all di-
agonal n×n matri-
ces with entries in
the field F

Un(F) The space of all
lower triangular
n×n matrices with
entries in the field
F

V = U1 ⊕ · · · ⊕ Uk The vector space
V is the internal
direct sum of sub-
spaces U1, . . . , Uk

⊕i∈IUi The external di-
rect sum of the
collection of vector
spaces {Ui|i ∈ I}

u ≡ v (mod W ) The vector u is
congruent to the
vector w modulo
the subgroup W

V/W The quotient space
of the space V by
the subspace W

Span(v1, . . . ,vn) The span of a se-
quence (v1, . . . ,vn)
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of vectors from a
vector space

Emn
ij The m × n ma-

trix, which has a
single non-zero en-
try occurring in the
(i, j)-position

M(X,F) The space of all
functions from the
set X to the field F

Mfin(X,F) The space of all
functions from the
set X to the field
F, which have finite
support

dim(V ) The dimension of a
vector space V

[v]B The coordinate
vector of a vector
v with respect to a
basis B

Proj(X,Y ) The projection
map with respect
to the direct sum
decomposition X⊕
Y

Range(T ) The range of a
transformation T

Ker(T ) The kernel of the
linear transforma-
tion T

L(V,W ) The space of all
linear transforma-
tions from the vec-
tor space V to the
vector space W

IX The identity map
on the set X

dim(V ) The dimension of
the vector space V

MT (BV ,BW ) The matrix of the
linear transforma-
tion T : V → W
with respect to the

bases BV of V and
BW of W

S ◦R The composition
of the functions R
and S

CA(a) The centralizer of
the element a the
algebra A

T−1 The inverse of an
invertible function
T

GL(V ) The general linear
group of V consist-
ing of the invert-
ible operators on
the vector space V

MIV (B,B′) The change of ba-
sis matrix from B
to B′

gcd(f, g) The greatest com-
mon divisor of the
polynomials f(x)
and g(x)

Ann(T,v) The order ideal of
the vector v with
respect to the oper-
ator T

µT,v(x) The minimal poly-
nomial of the oper-
ator T with respect
to the vector v

〈T,v〉 The T -cyclic sub-
space generated by
the vector v

Ann(T, V ) The annihilator
ideal of the opera-
tor T on the vector
space V

µT (x) The minimal poly-
nomial of the oper-
ator T

χT (x) The characteristic
polynomial of the
operator T

C(f(x)) The companion
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matrix of the poly-
nomial f(x)

Jm(p(x)) The generalized
Jordan m-block
centered at the
companion matrix
C(p(x)) of the irre-
ducible polynomial
p(x)

Jm(λ) The Jordan m-
block centered at
the element λ of
the underlying field
F

v ·w The dot product
of real n-vectors v

and w

Trace(A) The trace of the
square matrix A

Atr The transpose of
the matrix A

u ⊥ v The vectors u and
v of an inner prod-
uct space are or-
thogonal

u⊥ The orthogonal
complement to the
vector u of an in-
ner product space

‖ u ‖ The norm of the
vector u of an in-
ner product space.

W⊥ The orthogonal
complement to a
subspace W of
an inner product
space

ProjW (v) The orthogonal
projection of the
vector v onto the
subspace W of
an inner product
space

ProjW⊥ (v) The projection of
v orthogonal to W

in an inner product
space

V ′ The dual space of
the vector space V

T ′ The transpose of a
linear transforma-
tion

T ∗ The adjoint of an
linear transforma-
tion T between in-
ner product spaces√

T The semi-positive
square root of a
semi-positive oper-
ator T on an inner
product space

Tr(T ) The trace of an op-
erator T

det(T ) The determinant of
an operator T on a
vector space

det(A) The determinant of
the square matrix
A

sgn(σ) The sign of a per-
mutation σ

Dk(c) The diagonal type
elementary matrix
obtained from the
identity matrix by
multiplying the kth

row by c
Pij The elementary

matrix obtained
from the identity
matrix by exchang-
ing the ith and jth

rows
Tij(c) The elementary

matrix obtained
from the identity
matrix by adding
c times the ith row
to the jth row

B(V,W ;X) The space of all bi-
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linear maps from
V ×W to X

B(V 2;X) The space of all bi-
linear maps from
V 2 = V × V to X

Mf (BV ,BW ) The matrix of the
bilinear form f on
V ×W with respect
to the bases BV of
V and BW of W

RadL(f) The left radical of
a bilinear form f

RadR(f) The right radical of
a bilnear form f

u ⊥f v The vector u is
orthogonal to the
vector w with re-
spect to the bilin-
ear form f

ρx The reflection in
the non-singular
vector x in an or-
thogonal space

V ⊗W The tensor product
of vector spaces V
and W

v ⊗w The tensor prod-
uct of the vectors v
and w

S ⊗R The tensor product
of linear transfor-
mations S and R

A⊗B The Kronecker or
tensor product of
matrices A and B

Tk(V ) The k-fold tensor
product of the vec-
tor space V

T (V ) The tensor algebra
of the vector space
V

F{x, y} The polynomial al-
gebra in two non-
commuting vari-

ables x, y over the
field F

T (S) The tensor algebra
homomorphism in-
duced by the linear
transformation S

Symk(V ) The k-fold sym-
metric product of
the vector space V

Sym(V ) The symmetric al-
gebra of the vector
space V

∧(V ) The exterior alge-
bra of the vector
space V

∧k(V ) The kth exterior
product of the vec-
tor space V

v1 ∧ · · · ∧ vk The exterior prod-
uct of vectors
v1, . . . ,vk

∧k(S) The kth exterior
product of linear
transformation S

∧(S) The exterior al-
gebra homomor-
phism induced by
a linear transfor-
mation S

‖ · ‖1 The l1 norm of Rn

or Cn

‖ · ‖p The lp norm of Rn

or Cn

‖ · ‖2 The l1 norm of Rn

or Cn

‖ · ‖∞ The l∞ norm of Rn

or Cn

‖ · ‖p,q The matrix norm
induced by the lp
and lq norms of Rn

or Cn

‖ · ‖F The Frobenius ma-
trix norm

R′
i(A) The deleted row
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sum of a square
complex matrix A

C′
i(A) The deleted col-

umn sum of a
square complex
matrix A

Γi(A) The ith Gers̆gorin
row disc of the
square couple ma-
trix A

∆j(A) The jth Gers̆gorin

column disc of the
square couplex ma-
trix A

χ(P,H) The group of
transvections with
center P and axis
H

χ(P ) The group of all
transvections with
center P
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The most basic object in linear algebra is that of a vector space. Vector spaces
arise in nearly every possible mathematical context and often in concrete ones
as well. In this chapter, we develop the fundamental concepts necessary for
describing and characterizing vectors spaces. In the first section we define and
enumerate the properties of fields. Examples of fields are the rational numbers,
the real numbers, and the complex numbers. Basically, a field is determined by
those properties necessary to solve all systems of linear equations. The second
section is concerned with the space Fn, where n is a natural number and F
is any field. These spaces resemble the real vector space Rn and the complex
space Cn. In section three we introduce the abstract concept of a vector space,
as well as subspace, and give several examples. The fourth section is devoted to
the study of subspaces of a vector space V . Among other results we establish
a criteria for a subset to be a subspace that substantially reduces the number
of axioms which have to be demonstrated. In section five we introduce the
concepts of linear independence and span. Section six deals with bases and
dimension in finitely generated vector spaces. In section seven we prove that
every vector space has a basis. In the final section we show, given a basis for
an n-dimensional vector space V over a field F, how to associate a vector in
Fn. This is used to translate questions of independence and spanning in V to
the execution of standard algorithms in Fn.

Throughout this chapter it is essential that you have a good grasp of the
concepts introduced in elementary linear algebra. Two good sources of review
are ([1]) and ([17]).

1
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1.1 Fields

While a primary motivation for this book is the study of finite dimensional real
and complex vector spaces, many of the results apply to vector spaces over an
arbitrary field. When possible we will strive for the greatest generality, which
means proving our results for vector spaces over an arbitrary field. This has
important mathematical applications, for example, to finite group theory and
error correcting codes. In this short section, we review the notion of a field.
Basically, a field is an algebraic system in which every linear equation in a
single variable can be solved. We begin with the definition.

Definition 1.1 A field is a set F that contains two special and distinct ele-
ments 0 and 1. It is equipped with an operation + : F×F → F called addition,
which takes a pair a, b in F to an element a+ b in F. It also has an operation
· : F×F → F called multiplication, which takes a pair a, b in F to an element
a · b. Additionally, (F, 0, 1,+, ·) must satisfy the following axioms:

(A1) For every pair of elements a, b from F, a+ b = b+ a.

(A2) For every triple of elements a, b, c ∈ F, a+ (b+ c) = (a+ b) + c.

(A3) For every element a ∈ F, a+ 0 = a.

(A4) For every element a in F there is an element b such that a+ b = 0.

(M1) For every pair of elements a, b in F, a · b = b · a.
(M2) For every triple of elements a, b, c in F, (a · b) · c = a · (b · c).
(M3) For every a ∈ F, a · 1 = a.

(M4) For every a ∈ F, a 6= 0, there is an element c such that a · c = 1.

(M5) For all elements a, b, c from F, a · (b + c) = a · b+ a · c.

Axiom (A1) says that the operation of addition is commutative and (A2)
that it is associative. Axiom (A3) posits the existence of a special element
that acts neutrally with respect to addition; it is called zero. For an element
a ∈ F, the element b of axiom (A4) is called the negative of a and is usually
denoted by −a. (M1) says that multiplication is commutative and (M2) that
it is associative. (M3) asserts the existence of a multiplicative identity.
(M4) says that every element, apart from 0, has a multiplicative inverse.
Finally, (M5) says that multiplication distributes over addition.

Example 1.1 The set of rational numbers, Q = {m
n |m,n ∈ Z, n 6= 0}, is

a field.
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Example 1.2 All numbers that are the root of some polynomial

anX
n + an−1X

n−1 + · · ·+ a1X + a0

where ai are integers is a field, known as the field of algebraic numbers. It
contains

√
2, i (a root of X2+1), as well as the roots of X2+X+1. However,

it does not contain π or e. We denote this field by A.

Example 1.3 The set of real numbers, R, consisting of all the numbers
that have a decimal expansion, is a field. This includes all the rational num-
bers, as well as numbers such as

√
2, π, e which do not belong to Q.

Example 1.4 The set of complex numbers, denoted by C, consists of all
expressions of the form a+ bi, where a, b are real numbers and i is a number
such that i2 = −1. These are added and multiplied in the following way: For
a, b, c, d ∈ R,

(a+ bi) + (c+ di) = (a+ c) + (b + d)i, (1.1)

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i. (1.2)

For a real number a we will identify the complex number a + 0i with a in R
and in this way we may assume the field of real numbers is contained in the
field of complex numbers.

Example 1.5 Denote by Q[i] the set of all numbers r + si where r, s ∈ Q
and i2 = −1. With the addition given by Equation (1.1) and multiplication by
Equation (1.2). This is a field.

Example 1.6 Denote by Q[
√
2] the set of all numbers r+s

√
2, where r, s ∈ Q.

The addition and multiplication are those inherited from R.

Definition 1.2 When E and F are fields then we say that E is a subfield of
F, equivalently, that F is an extension of E if E ⊂ F, and the operations of E
are those of F restricted to E× E.

Remark 1.1 If E is a subfield of F and F is a subfield of K, then E is a
subfield of K.
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Example 1.7 The rational field Q is a subfield of R and also a subfield of A.
Also, the field Q[i] is a subfield of A. Q[

√
2] is a subfield of R and of A.

Remark 1.2 If F is a field and E is a nonempty subset of F, in order to
prove E is a subfield it suffices to show i) if a, b ∈ E then a − b, ab ∈ E; and
ii) if 0 6= a ∈ E then a−1 ∈ E. That addition and multiplication in F are
commutative and associative and that multiplication distributes over addition
is immediate from the fact that these axioms hold in F.

All of the examples of fields have thus far been infinite, however, finite fields
exist. In particular, for every prime p, there exists a field with p elements. More
generally, for every prime power pn, there exists a field with pn elements,
denoted by Fpn or GF (pn). Vector spaces over finite fields have important
applications, for example, in the construction of error correcting codes used
for all forms of digital communication, including cellphones, CDs, DVDs, and
transmissions from satellites to earth.

Example 1.8 A field with three elements

The underlying set of F3, the field with three elements, is {0, 1, 2}. The addi-
tion and multiplication tables are shown below. We omit the element 0 in the
multiplication table since 0 multiplied by any element of the field is 0.

⊕3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

⊗3 1 2
1 1 2
2 2 1

Properties of Complex Numbers

Because of the important role that the complex numbers play in the subse-
quent development, we discuss this particular field in more detail.

Definition 1.3 For a complex number z = a + bi (a, b ∈ R), the norm of z
is defined as ‖ z ‖=

√
a2 + b2.

The conjugate of z = a+ bi is the complex number z = a− bi.
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Theorem 1.1 i) If z, w are complex numbers, then ‖ zw ‖=‖ z ‖ · ‖ w ‖ .
ii) If z is a complex number and c is a real number, then ‖ cz ‖= |c|· ‖ z ‖ .
iii) If z = a+bi is a complex number with a, b ∈ R, then zz̄ = a2+b2 =‖ z ‖2 .

These are fairly straightforward, and we leave them as exercises.

For later application, we will require one more result about the complex num-
bers, this time asserting properties of the complex conjugate.

Theorem 1.2 i) If z and w are complex numbers, then z + w = z̄ + w̄.

ii) If z and w are complex numbers, then zw = z̄w̄.

iii) Let z be a complex number and c a real number. Then cz = cz̄.

Proof Parts i) and iii) are left as exercises. We prove ii). Let z = a+bi, w =
c + di with a, b, c, d real numbers. Then zw = (ac − bd) + (ad + bc)i and
zw = (ac− bd)− (ad+ bc)i.

On the other hand, z̄ = a− bi, w̄ = c − di and z̄w̄ = (a − bi)(c− di) = [ac−
(−b)(−d)]+[(a)(−d)+(−b)(c)]i = (ac−bd)+[−ad−bc]i = (ac−bd)−(ad+bc)i
and so zw = z̄w̄ as claimed.

The field of complex numbers is especially interesting and important because
it is algebraically closed. This means that every non-constant polynomial
f(x) with complex coefficients can be factored completely into linear factors.
This is equivalent to the statement that every non-constant polynomial f(x)
with complex coefficients has a complex root.

Example 1.9 Determine the roots of the quadratic polynomial x2 + 6x+ 11.

We can use the quadratic formula, which states that the roots of the quadratic

polynomial ax2 + bx+ c are −b±
√
b2−4ac
2a .

Applying the quadratic formula to x2 + 6x + 11, we obtain the roots
−6±

√
36−44
2 = −3±

√
−2.

The negative square root
√
−2 can be expressed as a purely imaginary number:

±
√
−2 = ±

√
2
√
−1 = ±

√
2i since i2 = −1 in the complex numbers. Therefore,

the roots of the polynomial x2 + 6x+ 11 are

−3 +
√
2i,−3−

√
2i.

Notice that the roots are complex conjugates. This is always true of a real
quadratic polynomial which does not have real roots. In this case, the roots
are a conjugate pair of complex numbers as can be seen from the quadratic
formula.
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Exercises

1. Prove i) of Theorem (1.1).

2. Prove ii) and iii) of Theorem (1.1).

3. Assume that C is a field. Verify that its subset Q[i] is a field.

4. Prove i) of Theorem (1.2).

5. Prove iii) of Theorem (1.2).

6. Let F5 have elements {0, 1, 2, 3, 4} and assume that addition and multipli-
cation are given by the following tables:

⊕5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

⊗5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

a) How can we immediately tell from these tables that the operations of ad-
dition and multiplication are commutative?

b) How can you conclude from the addition table that 0 is an additive identity?

c) How can we conclude from the addition table that every element has an
additive inverse relative to 0?

d) How can we conclude from the multiplication table that 1 is a multiplicative
identity?

e) How can we conclude from the multiplication table that every non-zero
element has a multiplicative inverse relative to 1?

7. Making use of the multiplication table for the field F5 in Exercise 6, find
the solution to the linear equation 3x + 2 = 4, where the coefficients of this
equation are considered to be elements of F5.

8. Find the solution in field of the complex numbers to the linear equation
2x− (1 + 2i) = −ix+ (2 + 2i).

9. In Exercises 7 and 8, which properties of the field did you use?
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1.2 The Space Fn

What You Need to Know

To make sense of the material in this section, you should be familiar with the
concept of a field as well as its basic properties, in particular, that addition
and multiplication are commutative and associative, the distributive law holds,
and so on.

We begin with a definition:

Definition 1.4 Let n be a positive integer. By an n-vector with entries in

a field F, we will mean a single column of length n with entries in F:




a1
a2
...
an


 .

The entries which appear in an n-vector are called its components.

Two n-vectors a =




a1
a2
...
an


 and b =




b1
b2
...
bn


 are equal if and only if ai = bi for

all i = 1, 2, . . . , n and then we write a = b.

The collection of all n-vectors with entries in F is denoted by Fn and this is
referred to as “F n-space.”

Note that

(
1
2

)
6=



1
2
0


 since the former is a 2 vector and the latter a 3 vector

and equality is only defined when they are both vectors of the same size.

The remainder of this short section is devoted primarily to the algebra of Fn.
We will define two operations called addition and scalar multiplication

and make explicit some of the properties of these operations. We begin with
the definition of addition.

Definition 1.5 To add (find the sum of) two Fnvectors u,v simply add the
corresponding components. The result is a vector in Fn:




a1
a2
...
an


 +




b1
b2
...
bn


 =




a1 + b1
a2 + b2

...
an + bn


 .
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The second operation involves an element c of F (which we refer to as a scalar)
and an n-vector u.

Definition 1.6 The scalar multiplication of c ∈ F and u ∈ Fn is defined
by multiplying all the components of u by c. The result is a vector in Fn. This
is denoted by cu.

c




a1
a2
...
an


 =




ca1
ca2
...
can


 .

The particular vector (−1)u (where −1 is the element of F such that (−1) +
1 = 0) is especially important. The vector (−1)u is called the opposite or
negative of u. We will denote this by −u. Further, as a convention, we will
write u− v for u+ (−v).

Also of importance is the vector whose components are all zero:

Definition 1.7 The zero vector in Fn is the n-vector all of whose compo-
nents are zero. We denote it by 0n, or just 0 when the length n is clear from
the context.

Definition 1.8 For a given n, we will denote by eni the n-vector which has
only one non-zero component, a one, which occurs in the ith row. When the
n is understood from the context, we will usually not use the superscript.

Example 1.10 As an example, in F3 we have

e1 =



1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1


 .

When we fix n and consider the collection of n-vectors, Fn, then the following
properties hold. These are precisely the conditions for Fn to be a vector space,
a concept that is the subject of the next section.
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Theorem 1.3 Properties of vector addition and scalar multiplication

Let u,v,w be n-vectors with entries in the field F (that is, elements of Fn)
and b, c be scalars (elements of F). Then the following properties hold.

i) (u+ v) +w = u+ (v +w). Associative law
ii) u+ v = v + u. Commutative law
iii) u+ 0 = u. The zero vector is an additive identity
iv) u+ (−u) = 0. Existence of additive inverses
v) b(u + v) = bu+ bv. A distributive law of scalar multiplication over vector
addition
vi) (b + c)u = bu+ cu. A distributive law
vii) (bc)u = b(cu). An associative law
viii) 1u = u.
ix) 0u = 0.

Proof Throughout let u =




u1
u2
...
un


 ,v =




v1
v2
...
vn


 ,w =




w1

w2

...
wn


 .

i) Then

(u+ v) +w =




(u1 + v1) + w1

(u2 + v2) + w2

...
(un + vn) + wn




and

u+ (v +w) =




u1 + (v1 + w1)
u2 + (v2 + w2)

...
un + (vn + wn)


 .

Since the addition in a field satisfies (ui + vi) + wi = ui + (vi + wi) for all i,
it follows that these vectors are identical.

In a similar fashion, ii) holds since it reduces to showing that the components
of u+ v and v+u are equal. However, the ith component of u+ v is ui + vi,
whereas the ith component of v+u is vi+ui which are equal since the addition
in F is commutative.

iii) This holds since we are adding 0 to each component of u and this leaves
u unchanged.

iv). The ith components of u+(−u) is ui+(−ui) = 0 and therefore u+(−u) =
0.
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v) The ith component of b(u+ v) is b(ui + vi), whereas the ith component of
bu + bv is bui + bvi, and these are equal since the distributive property holds
in F.

vi) The ith component of (b+c)u is (b+c)ui and the ith component of bu+cu
is bui + cui, which are equal, again, since the distributive property holds in F.

vii) The ith component of (bc)u is (bc)ui. The i
th component of b(cu) is b(cui),

and these are equal since multiplication in F is associative.

viii) Here, each component is multiplied by 1 and so is unchanged, and there-
fore u is unchanged.

ix) Each component of u is multiplied by 0 and so is 0. Consequently, 0u = 0.

Exercises

In Exercises 1–3, assume the vectors are in C3 and perform the indicated
addition.

1.




1
i

3 + i


+



−1 + 2i
−2 + i
1− 3i


 2.




1− i
3 + 2i
−2 + 5i


+




1 + i
3− 2i
−2− 5i




3.



2− 3i
2 + i
1 + 4i


+



−2− 3i
−2 + i
−1 + 4i




In Exercises 4–6, assume the vectors are in C3 and compute the indicated
scalar product.

4. (1 + i)



2 + i
1− i
i


 5. i




2 + 3i
−1 + 2i

−i


 6. (2− i)




i
1 + i
2 + i




In Exercises 7 and 8, assume the vectors are in F3
5 and perform the given

addition.

7.



2
4
1


+



3
1
4


 8.



1
2
3


+



3
4
3




In Exercises 9 and 10, assume the vectors are in F3
5 and compute the scalar

product.

9. 3



2
3
4


 10. 4



2
4
3




11. Find all vectors v ∈ C2 such that (1 + i)v +

(
2− i
1 + 2i

)
=

(
6 + i
3 + 6i

)
.

12. Find all vectors v in F2
5 such that 2v +

(
3
4

)
=

(
1
3

)
.
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1.3 Vector Spaces over an Arbitrary Field

What You Need to Know

In this section it is essential that you have mastered the concept of a field

and can recall its properties. You should also be familiar with the space Fn,
where F is a field.

We jump right in and begin with the definition of a vector space.

Definition 1.9 Let F be a field and V a nonempty set equipped with maps α :
V ×V → V called addition and µ : F×V → V called scalar multiplication.
We will denote α(u,v) by u+v and refer to this as the sum of u and v. We
denote µ(c,u) by cu and refer to this as the scalar multiple of u by c. V is
said to be a vector space over F if the following axioms are all satisfied:

(A1) u+ v = v + u for every u,v ∈ V. Addition is commutative.

(A2) u + (v +w) = (u + v) +w for every u,v,w in V. Addition is asso-
ciative.

(A3) There is a special element 0 called the zero vector such that u+0 = u

for every u ∈ V. This is the existence of an additive identity.

(A4) For every element u in V there is an element, denoted by −u, such that
u+ (−u) = 0. The symbol −u is referred to as the opposite or negative of u.
This is the existence of additive inverses.

(M1) a(u + v) = au + av for every scalar a and vectors u,v ∈ V. This is a
distributive axiom of scalar multiplication over vector addition.

(M2) (a + b)u = au + bu for every vector u and every pair of scalars a, b.
This is another distributive axiom.

(M3) (ab)u = a(bu) for every vector u and every pair of scalars a, b. This is
an associative axiom.

(M4) 1u = u.

In a moment, we will prove some abstract results; however, for the time being,
we enumerate a few examples.

Definition 1.10 Denote by F[x] the collection of all polynomials in the vari-
able x with coefficients in the field F.

Example 1.11 The set F[x] with the usual addition of polynomials and mul-
tiplication by constants is a vector space over F.
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Definition 1.11 Let X and Y be sets. We will denote by M(X,Y ) the col-
lection of all maps (functions) from X to Y.

Example 1.12 Let X be a nonempty set and F a field. For two functions
g, h in M(X,F) define addition by (g + h)(x) = g(x) + h(x), that is, the
pointwise addition of functions. Likewise scalar multiplication is given by
(cg)(x) = cg(x). In this way M(X,F) becomes a vector space with zero vector
the function OX→F, which satisfies OX→F(x) = 0 for all x ∈ X.

Example 1.13 This example generalizes Example (1.12): Let V be a vector
space over the field F and X a set. For two functions f, g ∈ M(X,V ), define
addition by (f+g)(x) = f(x)+g(x). Define scalar multiplication by (cf)(x) =
cf(x), where c ∈ F, f ∈ M(X,V ), and x ∈ X. Then M(X,V ) is a vector
space over F with zero vector the function OX→V : X → V, which satisfies
OX→V (x) = 0V for all x ∈ X, where 0V is the zero vector of V.

Example 1.14 The set of all solutions of the differential equation d2y
dx2 +y = 0

is a real vector space. Since solutions to the equation are functions with co-
domain R, we use the addition and scalar multiplication introduced in Example
(1.12). Note solutions exist since, in particular, sin x, cos x satisfy this dif-
ferential equation.

Example 1.15 Let U and W be vectors spaces over a field F. Denote by
U×W the Cartesian product of U and W , U×W = {(u,w) : u ∈ U,w ∈W}.
Define addition on U×W by (u1,w1)+(u2,w2) = (u1+u2,w1+w2). Define
scalar multiplication on U ×W by c(u,w) = (cu, cw).

Set 0U×W = (0U ,0W ). This makes U×W into a vector space. This is referred
to as the external direct sum of U and W and denoted by U ⊕W.

Example 1.16 Let I be a set and for each i ∈ I assume Ui is a vector space
over the field F with zero element 0i. Let

∏
i∈I Ui consist of all maps f from

I into ∪i∈IUi such that f(i) ∈ Ui for all i.

For f, g ∈∏i∈I Ui define the sum by (f + g)(i) = f(i)+ g(i). For f ∈ ∏i∈I Ui

and a scalar c, define the scalar product cf by (cf)(i) = cf(i). Finally, let O
be the map from I to ∪i∈IUi such that O(i) = 0i for every i.

Then
∏

i∈I Ui is a vector space with O as zero vector. This space is referred
to as the direct product of the spaces {Ui|i ∈ I} .

We now come to some basic results. It would not be very desirable if there
were more than one zero vector or if some vectors had more than one opposite
vector. While it might seem “obvious” that the zero vector and the opposite
of a vector are unique, we do not take anything for granted and prove that,
indeed, these are true statements.
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Theorem 1.4 Some uniqueness properties in a vector space

Let V be a vector space. Then the following hold:

i) The element 0 in V is unique. By this we mean if an element e of V satisfies
u+ e = e+ u = u for every vector u in V , then e = 0.

ii) The opposite (negative) of a vector u is unique, that is, if v is a vector
that satisfies u+ v = v + u = 0, then v = −u.

Proof i) Suppose that u+e = e+u = u for every u in V. We already know
that u + 0 = 0 + u = u for every vector u in V. Consider the vector 0 + e.
Plugging 0 into u + e = e + u = u, we obtain that 0 + e = 0. On the other
hand, plugging e into u+ 0 = 0+ u = u, we get 0+ e = e. Thus, e = 0.

ii) Suppose u + v = v + u = 0. We know that u + (−u) = (−u) + u = 0.
Consider (−u) + (u + v). By the first equation we have (−u) + (u + v) =
(−u)+0 = −u. However, by associativity, we have (−u)+(u+v) = [(−u)+
u] + v = 0+ v = v. Therefore, −u = v.

We have shown that the zero vector and the opposite (negative) of a vector
are unique. We now determine how these “behave” with respect to scalar
multiplication, which is the purpose of the next result.

Theorem 1.5 Let V be a vector space, u a vector in V, and c a scalar. Then
the following hold:

i) 0u = 0.

ii) c0 = 0.

iii) If cu = 0, then either c = 0 or u = 0.

iv) (−c)u = −(cu).

Proof i) We use the fact that 0 = 0+0 in F to get 0u = (0+0)u = 0u+0u.
Now add −(0u) to both sides: −0u+0u = −0u+[0u+0u] = [−0u+0u]+0u,
the last step by associativity. This give the equality 0 = 0+0u = 0u as desired.

ii) and iii) are left as exercises.

iv) We make use of part i) and the fact that for any element c of F, 0 = c+(−c)
to get 0 = 0u = [c + (−c)]u = cu + (−c)u. Add −cu to both sides of the
equality: −cu + 0 = −cu + [cu + (−c)u] = [−cu + cu] + (−c)u, the last
step justified by associativity. This becomes −cu + 0 = 0 + (−c)u and so
−cu = (−c)u.

Exercises

1. Prove part ii) of Theorem (1.5).

2. Prove part iii) of Theorem (1.5).
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3. Let v be an element of a vector space V. Prove that −(−v) = v.

4. Let V be a vector space. Prove the following cancellation property: for
vectors v,x,y, if v + x = v + y, then x = y.

5. Let V be a vector space. Prove the following cancellation property: Assume
c 6= 0 is a scalar and cx = cy, then x = y.

6. Let X be a set and F a field. Prove that M(X,F) is a vector space with
the operations as given in Example (1.12).

7. Let V be a vector space over the field F and X a set. Prove that M(X,V )
with the operations defined in Example (1.13) is a vector space over F.

8. Let U and W be vector spaces over the field F. Prove that U ⊕W defined
in Example (1.15) is a vector space.

9. Let F be a field, I a set and for each i ∈ I assume Ui a vector space over F
with identity element 0i. Prove that

∏
i∈I Ui defined in Example (1.16) is a

vector space over F with zero vector the function O : I → ∪i∈IUi defined by
O(i) = 0i.

10. In this exercise F2 = {0, 1} denotes the field with two elements. Let X be
a set and denote by P(X) the power set of X consisting of all subsets of X.
Define an addition on P(X) by U ⊖W = (U ∪W ) \ (U ∩W ). Define 0 ·U = ∅
and 1 · U = U for U ∈ P(X). Prove that P(X) with these operations is a
vector space over F2 = {0, 1} with ∅ the zero vector and the negative of a
subset U of X is U.

11. Let V =

{(
a
b

)
|a, b ∈ R+

}
. Define “addition” on V by

(
a1
b1

)
+

(
a2
b2

)
=

(
a1a2
b1b2

)
.

Further, define “scalar multiplication” for c ∈ R by c

(
a
b

)
=

(
ac

bc

)
.

Prove that V is a vector space over R where

(
1
1

)
is the zero vector and

−
(
a
b

)
=




1
a

1
b


 .
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1.4 Subspaces of Vector Spaces

In this section, we consider subsetsW of a vector space V, which are themselves
vector spaces when the addition and scalar multiplication operations of V are
restricted to W. We establish a criteria for a subset to be a subspace, which
substantially reduces the number of axioms that have to be demonstrated.

What You Need to Know

It is important that you have mastered the concept of a vector space, in
particular, all the axioms used to define it. You should know the properties of
the zero vector and the negative (opposite) of a vector and be able to solve a
system of linear equations with real coefficients either by applying elementary
equation operations or using matrices (and Gaussian elimination).

We begin this section with an example.

Example 1.17 Let F be a field, V = F3, and W =







x
y
0


 |x, y ∈ F



 . Notice

that W is a nonempty subset of V. Moreover, note that the sum of two vectors
from W is in W :



x1
y1
0


+



x2
y2
0


 =



x1 + x2
y1 + y2

0


 .

In a similar fashion, if c ∈ F is a scalar and w ∈W, then cw ∈W.

Clearly, the zero vector of V is contained in W. Moreover, if v =



x
y
0


 ∈ W,

then −v =



−x
−y
0


 ∈ W.

It is fairly straightforward to show that all the properties of a vector space hold
for W, where the addition is the restriction of the addition of V to W ×W
and the scalar multiplication is the restriction of the scalar multiplication of
V to F×W.

When W is a subset of a vector space V and the sum of any two vectors
from W are also in W, we say that “W is closed under addition.” When any
scalar multiple of a vector in W is in W, we say, W is closed under scalar
multiplication. Example (1.17) motivates the following definition:
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Definition 1.12 Subspace of a vector space

A nonempty subset W of a vector space V is called a subspace of V if W
is itself a vector space under the addition and scalar multiplication inherited
from V.

The next result gives simple criteria for a subset to be a subspace.

Theorem 1.6 Characterization of subspaces of a vector space

A nonempty subset W of a vector space V is a subspace if and only if the
following two properties hold:

i) For all u,v ∈ W, the sum u+ v is in W (W is closed under addition).

ii) For every vector u in W and scalar c, the vector cu is in W (W is closed
under scalar multiplication).

Proof Assume that W is a subspace. By the definition of addition in a vector
space for u,v ∈ W,u + v is an element in W. In a similar fashion, for u

in W and scalar c, cu ∈ W. Thus, W is closed under addition and scalar
multiplication.

Conversely, assume that W is nonempty (it has vectors) and that i) and ii)
hold. The axioms (A1) and (A2) hold since they hold in V and the addition
in W is the same as the addition in V. We next show that the zero element
of V belongs to W. We do know that W is nonempty so let u ∈ W. By ii),
we know for any scalar c that also cu ∈ W. In particular, 0u ∈ W. However,
by part i) of Theorem (1.5), 0u = 0. Consequently, 0 ∈ W. Since for all
v ∈ V,0+ v = v, it follows that this holds in W as well and (A3) is satisfied.

We also have to show that for any vector u ∈W , the opposite of u belongs to
V. However, by ii) we know that (−1)u ∈ W. By part iv) of Theorem (1.5),
(−1)u = −u as required. All the other axioms (M1)–(M4) hold because they
do in V.

Definition 1.13 Let (v1,v2, . . . ,vk) be a sequence of vectors in a vector space
V and c1, c2, . . . , ck elements of F. An expression of the form c1v1+ · · ·+ckvk

is called a linear combination of (v1,v2, . . . ,vk).

The next theorem states that if W is a subspace of a vector space V and
(w1,w2, . . . ,wk) is a sequence of vectors from W , then W contains all linear
combinations of (w1,w2, . . . ,wk).

Theorem 1.7 Let V be a vector space, W a subspace, and (w1,w2, . . . ,wk)
a sequence of vectors from W. If c1, c2, . . . , ck are scalars, then the linear com-
bination c1w1 + c2w2 + · · ·+ ckwk ∈ W.
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Proof The proof is by induction on k. The case k = 1 is just the second part
of Theorem (1.6). Suppose k = 2. We know by the second part of Theorem
(1.6) that c1w1 and c2w2 ∈ W . Then by part i) of Theorem (1.6) c1w1 +
c2w2 ∈ W.

Now suppose the result is true for any sequence of k vectors (w1,w2, . . . ,wk)
and scalars (c1, c2, . . . , ck) and suppose we are given a sequence of vectors
(w1,w2, . . . ,wk,wk+1) in W and scalars (c1, c2, . . . , ck, ck+1). By the induc-
tive hypothesis, v = c1w1+c2w2+· · ·+ckwk ∈W. The vectors v and wk+1 are
in W . Now the vector c1w1+c2w2+· · ·+ckwk+ck+1wk+1 = 1v+ck+1wk+1 ∈
W by the case for k = 2.

We now proceed to some examples of subspaces.

Example 1.18 If V is a vector space then V and {0} are subspaces of V.
These are referred to as trivial subspaces. The subspace {0} is called the
zero subspace. Often we abuse notation and write 0 for {0}.

Example 1.19 Let F(n)[x] := {f(x) ∈ F[x] : deg(f) ≤ n}. Then F(n)[x] is a
subspace of F[x]. Two typical elements of F(n)[x] are a0+a1x+ · · ·+anxn, b0+
b1x+ · · ·+ bnx

n. Their sum is (a0 + b0) + (a1 + b1)x+ . . . (an + bn)x
n, which

is in F(n)[x]. Also, for a scalar c, c(a0 + a1x+ · · ·+ anx
n) = (ca0) + (ca1)x+

· · ·+ (can)x
n, which is also in F(n)[x].

Example 1.20 We denote by C(R,R) the collection of all continuous func-
tions from R to R. This is a subspace of M(R,R). This depends on the fol-
lowing facts proved (stated) in the first calculus class:

The sum of two continuous functions is continuous.

A scalar multiple of a continuous function is continuous.

Example 1.21 Let F be field and a an element of F. Set W = {f(x) ∈
F(n)[x] : f(a) = 0}. Suppose that f(x), g(x) ∈ W so that f(a) = g(a) = 0. By
the definition of (f+g)(x), it follows that (f+g)(a) = f(a)+g(a) = 0+0 = 0.
So, W is closed under addition. On the other hand, suppose f ∈ W and c is
scalar. We need to show that cf ∈ W, which means we need to show that
(cf)(a) = 0. However, (cf)(a) = cf(a) = c0 = 0.

Definition 1.14 Let X be a set and F a field. The support of a function
f ∈ M(X,F) is denoted by spt(f) and is defined to be {x ∈ X |f(x) 6= 0}.
We will say that f ∈ M(X,F) has finite support if spt(f) is a finite set.
Otherwise, it has infinite support. We will denote by Mfin(X,F) the collection
of all functions f : X → F, which have finite support.
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Example 1.22 If X is a set and F a field, then Mfin(X,F) is a subspace of
M(X,F).

Definition 1.15 Let F be a field, I a nonempty set, and for i in I, let Ui

be a vector space over F with zero element 0i. For f ∈ ∏i∈I Ui (see Example
(1.16)) define the support of f, denoted by spt(f), to be the collection of those
i ∈ I such that f(i) 6= 0i. We say that f has finite support if spt(f) is a finite
set. Denote by ⊕i∈IUi the set {f ∈∏i∈I Ui | spt(f) is finite }.

Example 1.23 If {Ui | i ∈ I} is a collection of vector spaces over a field F
then ⊕i∈IUi is a subspace of

∏
i∈I Ui. This is the external direct sum of

the spaces {Ui|i ∈ I} .

Remark 1.3 If I is a finite set and {Ui | i ∈ I} is a collection of vector
spaces over a field F then the external direct sum and the direct product of
{Ui | i ∈ I} are identical.

Example 1.24 Let K ⊂ L be fields. Using the addition in L and the restric-
tion of the multiplication of L to K × L, L becomes a vector space over K.
This example is used throughout field theory and, in particular, Galois theory.

Theorem 1.8 Suppose U and W are subspaces of the vector space V. Then
U ∩W is a subspace.

Proof By U ∩W, we mean the intersection, all the objects that belong to both
U and W. Note that U ∩W is nonempty since both U and W contain 0 and
therefore 0 ∈ U ∩W.
We have to show that U∩W is closed under addition and scalar multiplication.
Suppose x and y are vectors in U ∩W. Then x and y are vectors that are
contained in both U and W. Since U is a subspace and x,y ∈ U, it follows that
x + y ∈ U. Since W is a subspace and x,y ∈ W, it follows that x + y ∈ W.
Since x+y is in U and in W, it is in the intersection and therefore U ∩W is
closed under addition.

For scalar multiplication: Assume x ∈ U ∩W and c is a scalar. Since x is in
the intersection it is in both U and W. Since it is in U and U is a subspace,
cx is in U. Since x is in W and W is a subspace the scalar multiple cx is in
W. Since cx is in U and cx is in W it is in the intersection. Therefore U ∩W
is closed under scalar multiplication.
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Definition 1.16 Let U,W be subspaces of a vector space V. The sum of U
and W , denoted by U +W, is the set of all vectors which can be written as a
sum of a vector u from U and a vector w from W,

U +W := {u+w|u ∈ U,w ∈W}.

More generally, if U1, U2, . . . , Uk are subspaces of V, then the sum of
U1, U2, . . . , Uk is the set of all elements of the form u1 + u2 + · · · + uk with
ui ∈ Ui. This is denoted by U1 + U2 + · · ·+ Uk.

Example 1.25 If U1, U2, . . . , Uk are subspaces of the vector space V, then
U1 +U2 + · · ·+Uk is a subspace of V. We prove this in the case of the sum of
two subspaces and leave the general case as an exercise.

Theorem 1.9 If U and W are subspaces of a vector space V, then U +W is
a subspace of V.

Proof Suppose x,y ∈ U +W. Then there are elements u1 ∈ U,w1 ∈ W so
x = u1 +w1 and elements u2 ∈ U,w2 ∈ W so that y = u2 +w2. Then

x+ y = (u1 +w1) + (u2 +w2) = (u1 + u2) + (w1 +w2).

Since U is a subspace u1 +u2 ∈ U, and since W is a subspace, w1 +w2 ∈W.
Therefore, x+y = (u1+u2)+ (w1+w2) ∈ U +W. So U +W is closed under
addition.

We leave the case of scalar multiplication as an exercise.

Definition 1.17 Let U1, U2, . . . , Uk be subspaces of a vector space V. We say
that V is a direct sum of U1, U2, . . . , Uk, and we write V = U1⊕U2⊕· · ·⊕Uk if
every vector in V can be written uniquely as a sum of vectors u1+u2+· · ·+uk

where ui ∈ U for 1 ≤ i ≤ k. Put more abstractly, the following hold:

i. If v ∈ V then there exists u1,u2, . . . ,uk with ui ∈ Ui such that v =
u1 + u2 + · · ·+ uk; and

ii. If ui,wi ∈ Ui and u1 +u2 + · · ·+uk = w1 +w2 + · · ·+wk, then ui = wi

for all i.
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Example 1.26 Let U1 =







a
0
0


 | a ∈ F



 , U2 =







0
b
0


 | b ∈ F



 , and U3 =







0
0
c


 | c ∈ F



 . Then F3 = U1 ⊕ U2 ⊕ U3.

Theorem 1.10 Let U1, U2, . . . , Uk be subspaces of a vector space V. For i a
natural number, 1 ≤ i ≤ k set Wi =

∑
j 6=i Ui. Then V = U1 ⊕U2 ⊕ · · · ⊕Uk if

and only if the following two conditions hold: i) V = U1 + U2 + · · ·+ Uk; and
ii) Ui ∩Wi = {0} for each i.

Proof Suppose V = U1 ⊕ U2 ⊕ · · · ⊕ Uk and v ∈ Ui ∩Wi. Then there are
uj ∈ Uj , j 6= i such that v =

∑
j 6=i uj . Then u1 + · · ·+uj−1 + (−v) +uj+1 +

· · ·+uk = 0 is an expression for 0 as a sum of vectors from Ui. However, since
V is the direct sum, there is a unique expression for the zero vector as a sum
of vectors from the Ui, namely, 0 = 0 + · · ·+ 0. Therefore, for i 6= j,uj = 0
and −v = 0.

Conversely, assume i) and ii) hold. By i) V is the sum of U1, U2, . . . , Uk. We
therefore need to prove that if ui,wi ∈ Ui and

u1 + u2 + · · ·+ uk = w1 +w2 + · · ·+wk, (1.3)

then ui = wi for all i.

It follows from Equation (1.3) that

ui−wi = (w1−u1)+· · ·+(wi−1−ui−1)+(wi+1−ui+1)+· · ·+(wk−uk). (1.4)

The vector on the left-hand side of Equation (1.4) belongs to Ui, and the vector
on the right-hand side of Equation (1.4) belongs to Wi. By ii) ui − wi = 0
from which it follows that ui = wi as required.

The following definition is exceedingly important and used extensively when
we study the structure of a linear operator:

Definition 1.18 Let V be a vector space and U a subspace of V . A subspace
W is said to be a complement of U in V if V = U ⊕W.

We complete the section with a construction that will be used later in a
subsequent section.



Vector Spaces 21

Definition 1.19 Let V be a vector space and W a subspace. We will say two
vectors u,v ∈ V are congruent modulo W and write u ≡ v (mod W ) if
u− v ∈ W.

Lemma 1.1 Let W be a subspace of the vector space V. Then the relation
“congruent modulo W” is an equivalence relation.

Proof We have to prove that the relation is reflexive, symmetric, and tran-
sitive.

Reflexive: Since every subspace of V contains 0, in particular 0 ∈ W. Since
for every vector v,v − v = 0, it follows that v ≡ v (mod W ) and the relation
is reflexive.

Symmetric: We have to prove if u ≡ v (mod W ) then v ≡ u (mod W ). If
u ≡ v (mod W ), then u − v ∈ W. But then (−1)(u − v) = v − u ∈ W and,
consequently, v ≡ u (mod W ) as required.

Transitive: We have to prove if u ≡ v mod W ) and v ≡ x (mod W ) then
u ≡ x (mod W ). From u ≡ v (mod W ) we conclude u − v ∈ W. Similarly,
v ≡ x (mod W ) implies that v − x ∈ W. Since W is a subspace, it is closed
under addition. Therefore (u− v)+ (v−x) = u−x ∈W . Thus, u ≡ x (mod
W ).

Definition 1.20 For W a subspace of a vector space V and a vector u from
V, we define the coset of u modulo W to be u+W = {u+w|w ∈W}.

Lemma 1.2 Let W be a subspace of the vector space V and let u ∈ V. Then
the equivalence class of the relation congruent modulo W containing u is the
coset u+W.

Proof Denote the equivalence class of u for the relation congruent modulo
W by [u]W . We have to show that [u]W ⊆ u+W and u+W ⊆ [u]W .

Suppose v ∈ u+W. Then there exists a vector w ∈ W such that v = u+w.
Then u− v = u− (u+w) = −w ∈W, and we conclude that u ≡ v (mod W )
and therefore v ∈ [u]W and thus u+W ⊆ [u]W .

Suppose v ∈ [u]W so that u ≡ v (mod W ). Then u − v = w ∈ W. Then
v = u + (−w) ∈ u + W, and so [u]W ⊆ u + W and we have the desired
equality.
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Remark 1.4 It follows from Lemma (1.2) for any vectors u,v ∈ V that
either u+W = v +W or (u +W ) ∩ (v +W ) = ∅ since distinct equivalence
classes are disjoint.

Lemma 1.3 Let W be a subspace of a vector space V . The following hold:

i) If u1 ≡ u2 (mod W ) and v1 ≡ v2 (mod W ), then u1 + v1 ≡ u2 + v2 (mod
W ).

ii) If u ≡ v (mod W ) and c is scalar, then cu ≡ cv (mod W ).

Proof i) If u1 ≡ u2 (mod W ), then u1 − u2 ∈ W. Similarly, v1 − v2 ∈ W.
Since W is a subspace (u1 − u2) + (v1 − v2) = (u1 + v1)− (u2 + v2) ∈ W. It
then follows that u1 + v1 ≡ u2 + v2 (mod W ).

ii) Suppose u ≡ v (modW ). Then u−v ∈ W. SinceW is a subspace c(u−v) =
cu− cw ∈ W. Whence cu ≡ cv (mod W ).

Theorem 1.11 Let W be a subspace of V . Denote by V/W the collection of
cosets of V modulo W . For two cosets [u]W and [v]W we define their sum,
denoted by [u]W + [v]W , as [u + v]W . Also, for [u]W and a scalar c define
c · [u]W = [cu]W . Then these operations are well defined and make V/W into
a vector space with identity element [0]W .

Proof The operations are well defined follows from Lemma (1.3). We have
to show that the axioms of a vector space hold:

(A1) Let u,v ∈ V. [u]W + [v]W = [u+ v]W = [v + u]W since the addition of
vectors in V is commutative. Moreover, [v+u]W = [v]W +[u]W , and therefore
addition of vectors in V/W is commutative.

(A2) Let u,v,x ∈ V. Then

([u]W + [v]W )+ [x]W = [u+ v]W + [x]W = [(u+ v) +x]W = [u+ (v+x)]W ,

since vector addition in V is associative. However, by the definition of addi-
tion, [u + (v + x)]W = [u]W + [v + x]W = [u]W + ([v]W + [x]W ) and so the
addition of V/W is associative.

(A3) For u ∈ V, [u]W + [0]W = [u+ 0]W = [u]W , and so [0]W is an additive
identity for V/W.

(A4) For u ∈ V, [u]W + [−u]W = [u+ (−u)]W = [0]W .

(M1) For vectors u,v ∈ V and scalar a, a · ([u]W + [v]W ) = a · [u + v]W =
[a · (u+ v)]W = [a · u+ a · v]W = [a · u]W + [a · v]W = a · [u]W + a · [v]W .
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(M2) For u ∈ V and scalars a, b we have (a + b) · [u]W = [(a + b) · u]W =
[au+ bu]W = [a · u]W + [b · u]W = a · [u]W + b · [u]W .

(M3) For u ∈ V and scalars a, b, b · (a · [u]W ) = b · [a · u]W = [b · (a · u)]W =
[(ba) · u]W = (ba) · [u]W .

(M4) For u ∈ V, 1 · [u]W = [1 · u]W = [u]W .

Thus, the axioms all hold and V/W is a vector space.

Definition 1.21 If W is a subspace of V, the vector space V/W is called the
quotient space of V modulo W .

Exercises

In Exercise 1 and 2, demonstrate that the subset W = {f(a, b) : a, b ∈ R} is
not a subspace of R(2)[x] for the given f(a, b).

1. f(a, b) = (2a− 3b+ 1) + (−2a+ 5b)X + (2a+ b)X2.

2. f(a, b) = ab+ (a− b)X + (a+ b)X2.

3. Set W =







x
y
z


 ∈ R3| 3x− 2y + 4z = 0



 . Prove that W is a subspace of

R3.

4. Let V be a vector space, F a collection of subspaces of V with the following
property: If X,Y ∈ F , then there exists a Z ∈ F such that X ∪Y ⊂ Z. Prove
that ∪U∈FU is a subspace of V.

5. Let V be a vector space U,W subspaces. Prove that U +W is closed under
scalar multiplication.

6. Let V be a vector space and assume that U,W are proper subspaces of V
and that U is not a subset ofW andW is not a subset of U. Prove that U ∪W
is closed under scalar multiplication but is not a subspace of V.

7. Give an example of a vector space V and non-trivial subspaces X,Y, Z of
V such that V = X ⊕ Y = X ⊕ Z but Y 6= Z. (Hint: You can find examples
in R2.)

8. Find examples of non-trivial subspaces X,Y, Z ⊂ R2 such that X+Y = R2

and X ∩Z = Y ∩Z = {0}. (This implies that (X +Y )∩Z 6= X ∩Z +Y ∩Z.)
9. Let X be a set and F a field. Prove that Mfin(X,F) is a subspace of
M(X,F).
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10. Let X be a set, F a field, and Y ⊂ X. Prove that {f ∈ M(X,F)|f(y) = 0
for all y ∈ Y } is a subspace of M(X,F).

11. Let X be a set, F a field, and x a fixed element of X. Prove that
{f ∈ M(X,F)|f(x) = 1} is not a subspace of M(X,F).

12. Let F be a field, I a nonempty set, and for each i ∈ I, Ui a vector space
over F with zero element 0i. Prove that ⊕i∈IUi is a subspace of

∏
i∈I Ui.

13. Let X,Y, Z be subspaces of a vector space V and assume that Y ⊂ X.
Prove that X ∩ (Y +Z) = Y + (X ∩Z). This is known as the modular law of
subspaces.

14. Let Modd(R,R) consists of all function f : R → R such that f(−x) = f(x)
for all x ∈ R. Prove that Modd(R,R) is a subspace of M(R,R).
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1.5 Span and Independence

What You Need to Know

To make sense of this new material, you should have a good grasp of the
following concepts: field, a vector space over a field F, subspace of a vector
space V , and linear combination of a finite sequence of vectors v1,v2, . . . ,vk

from a vector space V. You should know the algorithm for using elementary
row operations to obtain an echelon form, respectively, the reduced echelon
form, of an arbitrary real matrix. You should also know how to make use of this
to determine whether a sequence of vectors from Rn is linearly independent
or spans Rn.

We begin with some fundamental definitions:

Definition 1.22 Let (v1,v2, . . . ,vk) be a sequence of vectors in V. The set of
all linear combinations of (v1,v2, . . . ,vk) is called the span of (v1,v2, . . . ,vk)
and is denoted by Span(v1,v2, . . . ,vk). By convention, the span of the empty
sequence is the trivial subspace {0}.
If V = Span(v1,v2, . . . ,vk), then we say that (v1,v2, . . . ,vk) spans V and
(v1,v2, . . . ,vk) is a spanning sequence for V.

More generally, for an arbitrary set S of vectors from V the span of S,
Span(S), is the collection of all vectors v for which there is some finite
sequence (v1,v2, . . . ,vk) from S such that v is a linear combination of
(v1,v2, . . . ,vk).

Thus, Span(S) is the union of Span(F ) taken over every finite sequence F of
vectors from S.

Before we proceed to a general result we need to introduce a useful concept
and prove a short lemma.

Definition 1.23 Let A = (u1,u2, . . . ,uk) and B = (v1,v2, . . . ,vl) be two
finite sequences of vectors in a vector space V. By the join of the two
sequences A and B, we mean the sequence obtained by putting the vec-
tors of B after the vectors in A and denote this by A♯B. Thus, A♯B =
(u1,u2, . . . ,uk,v1,v2, . . . ,vl).
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Lemma 1.4 Let A and B be finite sequences from the vector space V. Then
any vector in Span(A) or Span(B) is in Span(A♯B).

Proof To see this, suppose x = a1u1+ a2u2+ · · ·+ akuk. Then x = a1u1+
a2u2 + · · ·+ akuk + 0v1 + 0v2 + · · ·+ 0vl ∈ A♯B.

Similarly, if y = b1v1 + b2v2 + · · · + blvl, then y = 0u1 + 0u2 + · · ·+ 0uk +
b1v1 + b2v2 + · · ·+ blvl ∈ Span(A♯B).

Thus, Span(A), Span(B) ⊂ Span(A♯B).

Theorem 1.12 Let S be sequence from V.

i) Span(S) is a subspace of V.

ii) If W is a subspace of V and W contains S, then W contains Span(S).

Proof We first prove i) in the case that S is finite.

We have to show Span(S) is closed under addition and closed under scalar
multiplication.

Span(S) is closed under addition: We need to show if u,v ∈ Span(S)
then u + v ∈ Span(S). We can write u = a1v1 + a2v2 + · · · + akvk,v =
b1v1 + b2v2 + · · ·+ bkvk for some scalars ai, bi ∈ F, 1 ≤ i ≤ k.

Now u + v = (a1v1 + a2v2 + · · · + akvk) + (b1v1 + b2v2 + · · · + bkvk). By
associativity and commutativity of addition this is equal to

(a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (ak + bk)vk,

an element of Span(v1,v2, . . . ,vk).

Span(S) is closed under scalar multiplication: We must show if u ∈
Span(S), and c ∈ F then cu ∈ S. We can write u = a1v1+ a2v2+ · · ·+ akvk.
Then cu is equal to (ca1)v1 + (ca2)v2 + · · · + (cak)vk ∈ Span(S) by vector
space axiom (M3). This completes the finite case.

The infinite case

Let F = {Span(A)|A ⊂ S, |A| is finite }. Then Span(S) = ∪W∈FF. Now
suppose F1, F2 ∈ F , say, F1 = Span(A1) and F2 = Span(A2). Set A

′ = A1♯A2

and F ′ = Span(A′). By Lemma (1.4), F1∪F2 ⊂ F ′. It then follows by Exercise
1.4.9 that Span(S) is a subspace.

ii) This follows from Theorem (1.7).

Remark 1.5 The two parts of Theorem (1.12) imply that Span(S) is the
“minimal” subspace of V which contains S, that is, if W is a subspace con-
taining S and W ⊂ Span(S), then W = Span(S).

Some important consequences of Theorem (1.12) are the following:
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Corollary 1.1 i) IfW is a subspace of a vector space V , then Span(W ) =W.

ii) If S is a subset of a vector space V, then Span(Span(S)) = Span(S).

Theorem 1.13 Let S = (v1, . . . ,vk) be a sequence of (distinct) vectors.
Assume for some i the vector vi is a linear combination of S \ (vi) =
(v1, . . . ,vi−1,vi+1, . . . ,vk). Then Span(S) = Span(S \ (vi)).

Proof By relabeling the vectors if necessary, we assume that vk is a linear
combination of v1,v2, . . . ,vk−1, say,

vk = a1v1 + a2v2 + · · ·+ ak−1vk−1 (1.5)

We need to show that Span(v1,v2, . . . ,vk) = Span(v1,v2, . . . ,vk−1). Since
Span(v1,v2, . . . ,vk−1) ⊂ Span(v1,v2, . . . ,vk) we only have to show that
Span(v1,v2, . . . ,vk) is contained in Span(v1,v2, . . . ,vk−1).

Suppose u ∈ Span(v1,v2, . . . ,vk) so that

u = c1v1 + c2v2 + · · ·+ ckvk. (1.6)

Substituting Equation (1.5) into Equation (1.6), we get u = c1v1 + c2v2 +
· · ·+ ck−1vk−1 + ck(a1v1 + a2v2 + · · ·+ ak−1vk−1).

After distributing in the last term and rearranging, we get u = (c1+cka1)v1+
(c2+cka2)v2+· · ·+(ck−1+ckak−1)vk−1 an element of Span(v1,v2, . . . ,vk−1).

We now come to our second fundamental concept:

Definition 1.24 A finite sequence of vectors, (v1,v2, . . . ,vk) from a vector
space V is linearly dependent if there are scalars c1, c2, . . . , ck, not all zero,
such that c1v1 + c2v2 + · · ·+ ckvk = 0.

The sequence (v1,v2, . . . ,vk) is linearly independent if it is not linearly
dependent. This means if c1, c2, . . . , ck are scalars such that c1v1 + c2v2 +
· · ·+ ckvk = 0 then c1 = c2 = · · · = ck = 0.

Remark 1.6 The term “linearly dependent” suggests that at least one of the
vectors depends on the others. We will show below that this is, indeed, true
and, in fact, equivalent to the standard definition given above. The reason the
above definition is chosen over the more intuitive formulation is that it admits
a fairly straightforward algorithm that can be performed once to determine
whether a finite sequence of vectors is linearly dependent, whereas in the latter
case one would have to perform an algorithm checking whether each vector is
a linear combination of the remaining vectors, which is much more work.



28 Advanced Linear Algebra

Remark 1.7 Any finite sequence of vectors that contains a repeated vector is
linearly dependent. Therefore, if a finite sequence of vectors is linearly inde-
pendent, the vectors are distinct. In this case we can speak of a finite set of
linearly independent vectors. We make use of this in extending the definition
of linear independence and linear dependence to infinite sets of vectors.

Definition 1.25 An infinite set of vectors is linearly dependent if it con-
tains a finite subset that is linearly dependent. Otherwise, S is linearly in-
dependent.

Example 1.27 The sequence (2 + 4x − 5x2 − x3, 1 − x3, x − x3, x2 − x3) is
linearly dependent since

(2 + 4x− 5x2 − x3) + (−2)(1− x3) + (−4)x− x3) + 5(x2 − x3) = 0.

Example 1.28 The sequence (1, x, x2, . . . , xn) is linearly independent in
F(n)[x].

The following result gives useful criteria for a finite sequence of vectors to be
linearly dependent.

Theorem 1.14 Let k ≥ 2 and S be the sequence (v1,v2, . . . ,vk).

i) S is linearly dependent if and only if for some j the vector vj is a linear
combination of the sequence obtained from S when vj is deleted.

ii) Assume (v1, . . . ,vi) is linearly independent for some i ≥ 1 (note that
this implies, in particular, that v1 6= 0). Then S is linearly dependent if and
only there is a j > i such that vj is a linear combination of the sequence
(v1, . . . ,vj−1).

Proof i) Assume S is linearly dependent. Then there are scalars c1, c2, . . . , ck
not all zero, such that c1v1 + c2v2 + · · · + ckvk = 0. Suppose cj 6= 0. Then
cjvj = (−c1)v1+(−c2)v2 + · · ·+(−cj−1)vj−1 +(−cj+1)vj+1 + · · ·+(−ck)vk.
Dividing both sides by cj , we obtain

vj =
∑

i6=j

(
− ci
cj

)
vi. (1.7)

We conclude from Equation (1.7) that vj ∈ Span(v1, . . . ,vj−1,vj+1, . . . ,vk).
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Conversely, suppose vj is in Span(v1, . . . ,vj−1,vj+1, . . .vk). Then there are
scalars c1, c2, . . . , cj−1, cj+1, . . . , ck such that

vj = c1v1 + · · ·+ cj−1vj−1 + cj+1vj+1 + · · ·+ ckvk. (1.8)

Subtracting vj from both sides, we obtain

0 = c1v1 + · · ·+ cj−1vj + (−1)vj + cj+1vj+1 + · · ·+ ckvk.

Since the coefficient of vj is −1 6= 0, it follows that (v1, . . . ,vk) is linearly
dependent.

ii) Suppose for some j > i that vj is a linear combination of the sequence
(v1, . . . ,vj−1). Then by the first part it follows that (v1, . . . ,vj) is linearly
dependent, whence (v1, . . . ,vk) is linearly dependent.

On the other hand, suppose that (v1,v2, . . . ,vk) is linearly dependent. Let
c1v1 + c2v2 + . . . ckvk = 0 be a non-trivial dependence relation. Choose j
maximal so that cj 6= 0. We claim that j > i. For otherwise, (v1, . . . ,vj) is
linearly dependent and a subsequence of (v1, . . . ,vi) from which it follows that
(v1, . . . ,vi) is linearly dependent, contrary to the hypothesis. Thus, j > i as
claimed. With this choice of j, we have c1v1 + . . . cjvj = 0. Subtracting cjvj

from both sides, we obtain c1v1 + . . . cj−1vj−1 = −cjvj . Dividing by −cj , this
becomes (− c1

cj
)v1 + (− c2

cj
)v2 + · · ·+ (− cj−1

cj
)vj−1 = vj which proves that vj is

a linear combination of the sequence (v1, . . . ,vj−1).

The next result is extremely important. The first part will be used in the
subsequent section to show the existence of bases in a finitely generated vector
space. The second part will be the foundation for the notion of the coordinate
vector.

Theorem 1.15 Let S = (v1,v2, . . . ,vk) be a linearly independent sequence
of vectors in a vector space V.

i) If v is not in the span of S, then we get a linearly independent sequence by
adjoining v to S, that is, (v1,v2, . . . ,vk,v) is linearly independent.

ii) Any vector u in the span of S is expressible in one and only one way as a
linear combination of v1,v2, . . . ,vk.

Proof i) Suppose to the contrary that (v1,v2, . . . ,vk,v) is linear dependent.
Then there are scalars c1, c2, . . . , ck, c not all zero such that c1v1 + c2v2 +
. . . ckvk+cv = 0. Suppose c = 0. Then some cj 6= 0, and we have a non-trivial
dependence relation on (v1, . . . ,vk), contrary to the hypothesis. Thus, c 6= 0.
But then cv = (−c1)v1 + · · · + (−ck)vk from which we get v = (− c1

c )v1 +
· · · + (− ck

c )vk and therefore v ∈ Span(v1,v2, . . . ,vk), also contrary to our
hypothesis. Thus, (v1,v2, . . . ,vk,v) is linearly independent.
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ii) Suppose u = a1v1 + · · · + akvk = b1v1 + . . . bkvk. Subtracting the second
expression from the first then, after rearranging and regrouping terms, we
obtain (a1 − b1)v1 + · · · + (ak − bk)vk = 0. Since (v1,v2, . . . ,vk) is linearly
independent, a1 − b1 = a2 − b2 = · · · = ak − bk = 0 from which we conclude
that ai = bi for 1 ≤ i ≤ k.

Exercises

1. Let X,Y be sequences or subsets of a vector space V. Assume X ⊂ Span(Y )
and Y ⊂ Span(X). Prove that Span(X) = Span(Y ).

2. Let u,v be vectors in the space V over the field F and c a scalar. Prove
that Span(u,v) = Span(u, cu+ v).

3. Let u,v be vectors in the space V over the field F and c a non-zero scalar.
Prove that Span(u,v) = Span(cu,v).

4. Let c12, c13, and c23 be scalars and v1,v2,v3 vectors. Prove that

Span(v1,v2,v3) = Span(v1, c12v1 + v2, c13v1 + c23v2 + v3).

5. Prove if S consists of a single vector v then S is linearly dependent if and
only if v = 0.

6. Let u,v be non-zero vectors. Prove that (u,v) is linearly dependent if and
only if the vectors are scalar multiples of one another.

7. Prove if one of the vectors of a sequence S = (v1,v2, . . . ,vk) is the zero
vector then S is linearly dependent.

8. Remark (1.7) asserted that if a sequence contains repeated vectors then it
is linearly dependent. Prove this.

9. Prove if a sequence S contains a subsequence S0, which is linearly depen-
dent, then S is linearly dependent.

10. Prove that a subsequence of a linearly independent sequence of vectors is
linearly independent.

11. Assume that (u1, . . . ,uk) is linearly independent and that (v1,v2, . . . ,vl)
is linearly independent. Prove that (u1, . . . ,uk,v1, . . . ,vl) is linearly indepen-
dent if and only if Span(u1,u2, . . . ,uk) ∩ Span(v1,v2, . . . ,vl) = {0}.
12. Let (u1, . . . ,uk) be a sequence of vectors in a vector space V and v,w
vectors from V. Assume that w ∈ Span(u1, . . . ,uk,v),w /∈ Span(u1, . . . ,uk).
Prove that v ∈ Span(u1, . . . ,uk,w).

13. Let V be a vector space and assume that (v1,v2,v3) is a linearly indepen-
dent sequence from V , w is a vector from V , and (v1 +w,v2 +w,v3 +w) is
linearly dependent. Prove that w ∈ Span(v1,v2,v3).



Vector Spaces 31

1.6 Bases and Finite-Dimensional Vector Spaces

In this section, we introduce the concepts of basis and dimension. We will
prove that every vector space that can be spanned by a finite sequence of
vectors (referred to as a finitely generated vector space) has a basis and that
every basis for such a space has the same number of vectors.

What You Need to Know

It is essential that you have a good grasp of the following concepts: vector space
over a field F, subspace of a vector space V , linear combination of vectors, span
of a sequence or set of vectors, linear dependence and linear independence of a
sequence or set of vectors. It is also important that you understand Theorem
(1.15). Finally, given a sequence of vectors (v1,v2, . . . ,vk) from Rn you will
need to know how to find a basis for Span(v1,v2, . . . ,vk).

We begin with an important definition:

Definition 1.26 Let V be a nonzero vector space over a field F. A subset
B of V is said to be a basis if the following are satisfied: 1) B is linearly
independent; and 2) Span(B) = V, that is, B spans V.

It is our goal in this section and the following to prove that all vector spaces
have bases. In this section, we will limit our treatment to those vector spaces
that have a finite basis (finite dimensional vector spaces) while the next section
is devoted to spaces which do not have a finite basis.

The spaces that we will treat presently are those that can be spanned by a
finite number of vectors. We give a formal name to such spaces:

Definition 1.27 A vector space V is finitely generated if it is pos-
sible to find a finite sequence of vectors (v1,v2, . . . ,vk) such that V =
Span(v1,v2, . . . ,vk).

Example 1.29 The spaces Fn and F(n)[X ] are finitely generated.

The spaces F[X ], F (R), C(R), C1(R) are not finitely generated. Also, if X is
an infinite set, then Mfin(X,F) and M(X,F) are not finitely generated.

We now come to an elegant theorem, which will imply the existence of bases
in a finitely generated vector space.
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Theorem 1.16 (Exchange Theorem) Assume V can be generated by n
vectors. Then any sequence of vectors of length greater than n is linearly de-
pendent.

Proof Let X = (x1, . . . ,xn) be a spanning sequence of V , and Y =
(y1, . . . ,yn,yn+1) a sequence of length n+1.We prove Y is linearly dependent.

Since y1 ∈ Span(X), it follows that (y1)♯X is linearly dependent. Since y1 6= 0
it follows from part ii) of Theorem (1.14) that some xi is a linear combination
of the preceding vectors in the sequence (y1,x1, . . . ,xn). By reordering the
vectors of X, if necessary, we can assume that xn is a linear combination
of Z1 = (y1,x1, . . . ,xn−1). Since we are assuming that xn ∈ Span(Z1), it
follows that Span(Z1) = Span(X) = V.

Now consider the sequence (y2)♯Z1. Since y2 ∈ Span(Z1), it follows that
(y2)♯Z1 is linearly dependent. Again by ii) of Theorem (1.14) some vector
in the sequence is a linear combination of the preceding vectors. Since (y2,y1)
is linearly independent, there must be some j with 1 ≤ j ≤ n − 1 such that
xj is a linear combination of the preceding vectors (y2,y1,x1, . . . ,xj−1). By
relabeling, if necessary, we can assume that xn−1 is a linear combination of
Z2 = (y2,y1, . . . ,xj−1,xj+1, . . . ,xn). By the same reasoning as before, Z2 is
a spanning set.

We can continue in this way, replacing vectors from X with vectors from Y,
obtaining at each step a spanning sequence. After n iterations we get that Zn =
(yn,yn−1, . . . ,y2,y1) is a spanning sequence. But then yn+1 ∈ Span(Zn) from
which it follows that Y is linearly dependent as claimed.

The following corollary immediately follows from Theorem (1.16). It has many
far-reaching consequences.

Corollary 1.2 Assume the sequence (x1, . . . ,xm) from the vector space V is
linearly independent and the sequence (y1, . . . ,yn) spans V . Then m ≤ n.

Theorem 1.17 Let V be a finitely generated vector space, say, V =
Span(v1,v2, . . . ,vn). Then V has a basis with at most n elements.

Proof By the exchange theorem, no linearly independent sequence has more
than n vectors. Choose a linearly independent sequence B = (w1,w2, . . . ,wm)
with m as large as possible. Such sets exist because m must be less than or
equal to n.

We claim that Span(B) = V. Suppose to the contrary that Span(B) 6= V
and let v ∈ V \ Span(B). By i) of Theorem (1.15) the sequence B ∪ (v)
is linearly independent, which contradicts the maximality of m. Thus, B is
linearly independent and spans V, from which it follows that B is a basis.
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Remark 1.8 It is not difficult to show that every spanning sequence can be
contracted to a basis. This can be used to develop an algorithm for constructing
a basis starting from a spanning sequence.

By the same proof as Theorem (1.17), we can conclude a stronger statement.

Theorem 1.18 Let V be a vector space and assume there is an integer n such
that every linearly independent sequence from V has at most n vectors. Then
V has a basis with at most n vectors.

Because of the similarity to Theorem (1.17) we omit the proof.

Suppose now that V is a finitely generated vector space and has a spanning
set with n vectors. If W is a subspace of V, then any linearly independent
sequence ofW is a linearly independent sequence of V, and therefore its length
is bounded by n. Consequently, the theorem applies to W :

Theorem 1.19 Assume that V can be generated by a sequence of n vectors.
Then every subspace W of V has a basis with n or fewer vectors.

A natural question arises: Can there be bases with different numbers of vec-
tors? The next theorem says that every basis must have the same number of
elements.

Theorem 1.20 If a vector space V has a basis with n elements, then every
basis has n elements.

Proof Let B be a basis with n elements and B′ any other basis. Since B′ is
an independent sequence and B spans, it follows from Corollary (1.2) that B′

has at most n elements, in particular, it is finite. So let us suppose that B′,
specifically, has m elements. We have just argued that m ≤ n.

On the other hand, since B′ is a basis we have Span(B′) = V. Because B
is a basis, it is linearly independent. Thus, by the Corollary (1.2) , n ≤ m.
Therefore, we conclude that m = n.

Definition 1.28 Let V be a finitely generated vector space. The common
length of all the bases of V , is the dimension of V. If this common num-
ber is n then we write dim(V ) = n.

Example 1.30 1. dim(Fn) = n. The sequence of vectors (en1 , e
n
2 , . . . , e

n
n) is

a basis.

2. dim(F(n)[X ]) = n+ 1. The sequence of vectors (1, x, x2, . . . , xn) is a basis.
There are n+ 1 vectors in this sequence.
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The same arguments used to prove the invariance of the size of basis in a
finitely generated vector can be used to prove the next result:

Theorem 1.21 Let V be a vector space of dimension n. Let S =
(v1,v2, . . . ,vm) be a sequence of vectors from V. Then the following hold:

i) If S is linearly independent, then m ≤ n.

ii) If S spans V, then m ≥ n.

Suppose now that V is an n-dimensional vector space. Then V is finitely
generated and therefore every subspace W of V has a basis and is also finite
dimensional. Since a basis of W consists of linearly independent vectors from
V we can conclude the following:

Theorem 1.22 Let W be a subspace of an n-dimensional vector space V .
Then the following hold:

i) dim(W ) ≤ n.

ii) A subspace W of V has dimension n if and only if W = V.

You may have noticed in elementary linear algebra that in the space Rn it
was sufficient to check that a sequence (v1, . . . ,vn) is a basis if and only if it
is linearly independent if and only if it spans. This is true in general, a result
to which we now turn.

Theorem 1.23 Let V be an n-dimensional vector space and S =
(v1,v2, . . . ,vn) be a sequence of vectors from V. Then the following hold:

i) If S is linearly independent then S spans V and S is a basis of V.

ii) If S spans V then S is linearly independent and S is a basis of V.

Proof i) Suppose S does not span. Then there is a vector v ∈ V,v /∈
Span(S). But then S♯(v) is linearly independent. However, by Theorem (1.16),
it is not possible for an independent sequence to have length n+1 and we have
a contradiction. Therefore, S spans V and is a basis.

ii) This is proved similarly and is left as a exercise.

Recall, we previously stated that any spanning sequence in a finitely generated
vector space V can be contracted to a basis and any linearly independent set
can be expanded to a basis. We state and prove these formally:
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Theorem 1.24 Let V be an n-dimensional vector space and S =
(v1,v2, . . . ,vm) a sequence of vectors from V.

i) If S is linearly independent and m < n, then S can be expanded to a basis.

ii) If S spans V and m > n, then some subsequence of S is a basis of V .

Proof i) Let B = (v1,v2, . . . ,vk) be a linearly independent sequence con-
taining S with k as large as possible. Note that since m < n and S does
not span V and there exists a vector v ∈ V \ Span(S). By i) of Theorem
(1.15), (v1,v2, . . . ,vm,v) is linearly independent and therefore k > m. We
now claim that B is a basis. If not, since B is linearly independent, it must be
the case that B is not a spanning sequence, that is, Span(B) 6= V. However, if
w ∈ V \Span(B), then B♯(w) is linearly independent by i) of Theorem (1.15),
which contradicts the maximality of the length of B.
ii) This is left as an exercise.

Theorem 1.25 Let V be a finite dimensional vector space and U a subspace
of V. Then U has a complement in V.

Proof This is left as an exercise.

We complete the section with one more result, which gives a characterization of
a basis. We will make use of this result in a subsequent section on coordinates.
With the introduction of coordinates with respect to a basis, we will be able
to transfer various questions in an abstract vector space to corresponding
questions in the space Fn.

Theorem 1.26 A sequence B = (v1,v2, . . . ,vk) from the vector space V is
a basis of V if and only if for each vector v in V there are unique scalars
c1, c2, . . . , ck such that v = c1v1 + c2v2 + · · ·+ ckvk.

Proof Suppose B is a basis and v ∈ V. Since Span(B) = V, there are scalars
c1, . . . , ck such that c1v1+c2v2+ . . . ckvk = v. By Theorem (1.15), the scalars
c1, c2, . . . , ck are unique.

Conversely, assume that for every vector v there are unique scalars c1, . . . , ck
such that v = c1v1 + c2v2 + · · · + ckvk. This implies that B spans V. On the
other hand, the hypothesis applies to 0. Therefore, there are unique scalars
c1, · · · , ck such that c1v1 + · · · + ckvk = 0. However, 0 = 0v1 + · · · + 0vk.
By the uniqueness assumption, ci = 0 for all i = 1, 2, . . . , n. Therefore B is
linearly independent and it follows that B is a basis.
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Example 1.31 We have seen that when K ⊂ L is an extension of fields
then we can make L into a vector space over K by defining addition to be the
addition of elements in L and the scalar multiplication the restriction to K×L
of the multiplication in L. The situation where L is finite dimensional over K
plays an important role in Galois theory. The dimension is usually referred to
as the degree of L over K.

A particular example is given by Q ⊂ Q[
√
5]. In this case, the degree is 2 and

(1,
√
5) is a basis for Q[

√
5] over Q.

Exercises

1. Let V be a four-dimensional vector space.

a) Explain why it is not possible to span V with three vectors.

b) Explain why V cannot have a linearly independent set with five vectors.

2. Assume that U andW are distinct subspaces (U 6=W ) of a four-dimensional
vector space V and dim(U) = dim(W ) = 3. Prove that dim(U ∩W ) = 2 and
U +W = V. (Do not invoke Exercise 6).

3. Assume that U andW are subspaces of a vector space V and that U ∩W =
{0}. Assume that (u1,u2) is a basis for U and (w1,w2,w3) is a basis for W.
Prove that (u1,u2,w1,w2,w3) is a basis for U +W.

4. Prove the second part of Theorem (1.23).

5. Prove the second part of Theorem (1.24).

6. Let V be a finite dimensional vector space and U,W subspaces. Prove that
dim(U +W ) + dim(U ∩W ) = dim(U) + dim(W ).

7. Let dim(V ) = 5. Assume that X and Y are linearly independent sequences
of length 3. Prove that Span(X) ∩ Span(Y ) 6= {0}.
8. Assume dim(V ) = n, dim(U) = k, dim(W ) = n− k and U +W = V. Prove
that U ∩W = {0} and V = U ⊕W.

9. In F6, give an example of two independent and disjoint sequences of vectors
(v1,v2,v3) and (w1,w2,w3) such that:

(a) Span(v1,v2,v3) = Span(w1,w2,w3).

(b) dim[Span(v1,v2,v3) ∩ Span(w1,w2,w3)] = 2.

(c) dim[Span(v1,v2,v3) ∩ Span(w1,w2,w3)] = 1.

10. a) Determine how many bases exist for the two-dimensional space F2
3 over

the field F3.

b) Determine how many bases exist for the two-dimensional space F2
5 over the

field F5.
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c) Let p be a prime. Determine how many bases exist for the two-dimensional
space F2

p over the field Fp.

11. Prove Theorem (1.25).

12. Assume (v1, . . . ,vk) is a spanning sequence of V and W is a proper sub-
space of V . Prove there exists an i such that vi /∈ W .

13. Assume V is an n-dimensionalvector space and X,Y are k-
dimensionalsubspaces of V . Prove there exists an n− k dimensional subspace
Z of V such that V = X ⊕ Z = Y ⊕ Z.
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1.7 Bases and Infinite-Dimensional Vector Spaces

In this section, we complete the proof that every vector space has a basis by
extending the result to spaces which are not finitely generated. The key to
the proof is Zorn’s lemma, which is equivalent to the axiom of choice. We will
also show that the cardinalities of any two bases are equal.

What You Need to Know

To make any sense of what we are doing in this section, you will need to have
mastered these concepts: vector space over a field F, subspace of a vector space
V, linear combination of vectors, span of a sequence or set of vectors, linear
dependence, and linear independence of a sequence or set of vectors.

You will also need some familiarity with the concept of a partially ordered
set (POSET) and related concepts such as a chain in a POSET, a maximal
element in a POSET, and an upper bound for a subset of a POSET. Also, we
will make use of results from set theory, specifically the Schroeder–Bernstein
theorem. A reasonably good treatment of partially ordered sets, the axiom of
choice, Zorn’s lemma and the Schroeder–Bernstein theorem can be found in a
beginning book on set theory such as Naive Set Theory by Paul Halmos ([9]).

We will now show that an arbitrary vector space V has a basis.

Theorem 1.27 Let V be a vector space over a field F. Assume I ⊂ V is an
independent set and S ⊂ V is a spanning set. Then there exists J ⊂ S such
that I ∪ J is a basis of V.

Proof We first deal with the case that I spans V. In this situation, I is a
basis and so we can set J = ∅. Therefore, we may assume that Span(I) 6= V.
We now create a POSET in the following way:

Let X consist of all subsets J of S such that I ∪ J is linearly independent.
For J, J ′ ∈ X, we write J ≤ J ′ if and only if J ⊂ J ′. We first claim that
X 6= {∅}. To see this, note that since I is not a basis, it must be the case
that Span(I) 6= V. On the other hand, if S ⊂ Span(I), then V = Span(S) ⊂
Span(Span(I)) = Span(I), a contradiction. Therefore, there exists a vector
s ∈ S \ Span(I). We claim that I ∪ {s} is linearly independent.

Suppose to the contrary that I ∪ {s} is linearly dependent. Then there is a
finite subset K of I ∪ {s} that is linearly dependent. Among all such subsets,
let K0 be one that is minimal under inclusion. Now if s /∈ K0, then K0 ⊂ I, in
which case I is linearly dependent, which contradicts our hypothesis. Therefore
s ∈ K0. Suppose K0 = (v1,v2, . . . ,vk, s) with vi ∈ I for 1 ≤ i ≤ k. Since K0

is linearly dependent, there are scalars c1, . . . , ck, c such that
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c1v1 + c2v2 + . . . ckvk + cs = 0.

Since K0 is minimal among subsets of I ∪ {s}, which are linearly dependent,
all the ci and c are non-zero. But then we have

s =
(
−c1
c

)
v1 +

(
−c2
c

)
v2 + · · ·+

(
−ck
c

)
vk,

which implies that s ∈ Span(v1,v2, . . . ,vk) ⊂ Span(I), a contradiction. Thus,
I ∪ {s} is linearly independent and {s} ∈ X .
We next show that every chain in X has an upper bound in X . Thus, let
C = {Jα|α ∈ A} be a chain in X . Recall that this means if α, β ∈ A then
either Jα ⊂ Jβ or Jβ ⊂ Jα.

Set J = ∪α∈AJα. Clearly, for all β ∈ A, Jβ ⊂ J so J is a candidate for an
upper bound for C, but we need to know that J ∈ X . We therefore must prove
that I ∪ J is linearly independent.

Suppose to the contrary that I ∪J is linearly dependent. Then there is a finite
subset K of I∪J, which is linearly dependent. Set K∩J = (v1,v2, . . . ,vn). By
the definition of J for each i, there is an αi ∈ A such that vi ∈ Jαi

. Since it is
easy to see that any finite chain contains an upper bound, there is k ≤ n such
that Jαi

⊂ Jαk
. In particular, K ∩ J ⊂ Jαk

, and consequently, K ⊂ I ∪ Jαk
.

However, this implies that I ∪Jαk
is linearly dependent, which contradicts the

assumption that Jαk
∈ X . Thus, I ∪ J is linearly independent as claimed.

We can now invoke Zorn’s lemma so that X contains maximal elements. Thus,
let M ⊂ S be a maximal element of X . We claim that I ∪M is a basis of V.
Since M ∈ X , we know that I ∪M is linearly independent. Therefore, it only
remains to show that I ∪M spans V. However, if Span(I ∪M) 6= V, then by
the argument used at the beginning of the proof there must exist a vector s ∈ S,
which is not in Span(I ∪M) and then (I ∪M) ∪ {s} is linearly independent.
But it then follows that M ∪ {s} is linearly independent, contained in S, and
I ∪ [M ∪{s}] is linearly independent. That is, M ∪{s} is in X . However, this
contradicts the assumption that M is a maximal element of X . Thus, it must
be the case that Span(I ∪M) = V and I ∪M is a basis of V. This completes
the proof.

As an immediate corollary, we have:

Corollary 1.3 Let V be a vector space which is not finitely generated. Then
the following hold:

i) Assume I is an independent subset of V. Then there exists a basis B of
V such that I ⊂ B. Put another way, every linearly independent subset of a
vector space can be extended to a basis.

ii) Assume that S is a spanning set of V. Then there exists a basis B of V
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such that B ⊂ S. Put another way, any spanning set of a vector space V can
be contracted to a basis.

iii) Bases exist in V.

Proof i) Set S = V . Then S is a clearly a spanning set. By Theorem (1.27),
there exists a subset J ⊂ S = V such that B = I ∪ J is a basis of V.

ii) Let I be the empty set. By Theorem (1.27), there exists a subset J of S
such that I ∪ J = ∅ ∪ J = J is a basis of V.

iii) Take I = ∅ and apply i) or take S = V and apply ii) to get a basis in V.

The result from the last section that all bases in a finite dimensional vector
space have the same number of elements can be extended to arbitrary spaces
in the following sense: If B,B′ are bases of a vector space V, then there exists a
bijection f : B → B′. This means the sets B and B′ have the same cardinality.
In what follows below, we will write B � B′ if there exists an injective function
f : B → B′.

Theorem 1.28 Let V be a vector space with bases B and B′. Then there exists
a bijective function f : B → B′.

Proof If either B or B′ is finite, then both are finite and have the same
number of elements by Theorem (1.20). Therefore, we may assume that both B
and B′ are infinite. We show that card(B) � card(B′) and card(B′) � card(B).
Thus, let B = {vb|b ∈ B} so that B and B are sets of the same car-
dinality. Since B′ is basis, each vb ∈ Span(B′). This means that there is
a finite subset of vectors Ωb ⊂ B′ such that vb ∈ Span(Ωb). Set Ω =
∪b∈BΩb. Since Span(Ωb) ⊂ Span(Ω) and vb ∈ Span(Ωb), we have for all
b ∈ B,vb ∈ Span(Ω). On the other hand, since B is a basis, in particular,
it is a spanning set. It follows that Span(Ω) contains a spanning set. But
then Span(Ω) = Span(Span(Ω)) = V and consequently, Ω is a spanning set.
However, Ω is a subset of the basis B′. This implies that Ω = B′. Thus,

B′ = ∪b∈BΩb.

Since each Ωb is finite and B is infinite it follows that card(∪b∈BΩb) �
card(B) = card(B). Therefore, card(B′) � card(B).
By the exact argument, we also have card(B) � card(B′). It now follows from
the Schroeder–Bernstein theorem that card(B) = card(B′).
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Exercises

1. LetX be a set and F a field. For Y ⊂ X, let χY : X → F be the characteristic
function of Y, that is, the function defined by

χY (x) =

{
1 : x ∈ Y
0 : x /∈ Y.

When Y = {y}, y ∈ X let χy denote χ{y}. Prove that {χx|x ∈ X} is a basis
of Mfin(X,F).

2. Show that the cardinality of a basis of R considered as a vector space over
Q is the same as the cardinality of R.

3. Let V be an infinite dimensional vector space and U a subspace of V . Prove
that U has a complement in V.

4. Assume V is an infinite dimensional vector space and n is a natural number.
Prove that V has a subspace U such that dim(V/U) = n.
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1.8 Coordinate Vectors

In this section, we consider a finite dimensional vector space V over a field F
with a basis B = (v1,v2, . . . ,vn) and show how to associate with each vector
v ∈ V an element of Fn.

What You Need to Know

It goes without saying that you need to be familiar with the concepts of a
vector space and subspace. More specifically, essential to the understanding of
the material in this section are the following: linear combination of a sequence
of vectors, a linearly dependent (independent) sequence of vectors, the span
of a sequence of vectors, a sequence of vectors S spans a subspace of a vector
space, basis of a vector space, and the dimension of a finitely generated vector
space.

Recall the following, which was proved for finite dimensional vector spaces in
Section (1.6):

Theorem (1.26) A sequence B = (v1,v2, . . . ,vk) of a vector space V is a basis
of V if and only if for each vector v in V there are unique scalars c1, c2, . . . , ck
such that v = c1v1 + c2v2 + · · ·+ ckvk.

Example 1.32 Set v1 =



1
1
1


 ,v2 =



1
2
1


 ,v3 =



3
2
2


 . The sequence

(v1,v2,v3) is a basis of R3. We can write



−1
1
0


 uniquely as a linear combi-

nation of v1,v2,v3 as follows,



−1
1
0


 = v1 + v2 − v3.

Such an expression is very important and a useful tool for both theory and
computation. We therefore give it a name:

Definition 1.29 Let B = (v1,v2, . . . ,vn) be a basis for the vector space V
and let v be a vector in V. If v = c1v1 + c2v2 + · · · + cnvn, then the vector


c1
c2
...
cn


 , denoted by [v]B, is called the coordinate vector of v with respect

to B.
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Remark 1.9 In general, if B 6= B′, then [v]B 6= [v]B′ . In particular, this is
the case if B′ is obtained from B by permuting its vectors. This is why we have
emphasized that a basis of a finite dimensional vector space is not simply a
set of independent vectors that span the vector space V but also has a specific
order (and so is a sequence of vectors).

Example 1.33 Let B = (v1,v2,v3) be the basis of Example (1.32) and v =

−1
1
0


. then [v]B =




1
1
−1


 .

On the other hand, if B′ = (v1 − v2,v2,v3), then [v]B′ =




1
2
−1


 .

If B∗ = (v2,v3,v1), then [v]B∗ =




1
−1
1


 .

Example 1.34 Let f1(x) =
1
2 (x− 1)(x− 2), f2(x) = −x(x − 2) and f3(x) =

1
2x(x − 1). Then B = (f1, f2, f3) is a basis for R(2)[x], the vector space of all
polynomials of degree at most two. This basis is quite special: For an arbitrary
polynomial g(x) ∈ R(2)[x],

[g]B =



g(0)
g(1)
g(2)


 .

As a concrete example, let g(x) = x2−x+1. Then g(0) = 1, g(1) = 1, g(2) = 3.
We check:

f1(x)+f2(x)+3f3(x) =
1

2
(x−1)(x−2)−x(x−2)+

3

2
x(x−1) = x2−x+1 = g(x).

Therefore, [g]B =



1
1
3


, as predicted.

Theorem 1.29 Let V be a finite dimensional vector space with basis B =
(v1,v2, . . . ,vn). Suppose w,u1, . . . ,uk are vectors in V. Then w is a linear
combination of u1,u2, . . . ,uk if and only if [w]B is a linear combination of
[u1]B, [u2]B, . . . , [uk]B. More precisely, w = c1u1 + c2u2 + · · · + ckuk if and
only if [w]B = c1[u1]B + c2[u2]B + · · ·+ ck[uk]B.
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Proof Suppose

[w]B =




w1

w2

...
wn


 , [u1]B =




u11
u21
...
un1


 , . . . [uk]B =




u1k
u2k
...
unk


 . (1.9)

Equation (1.9) can be interpreted to mean

w = w1v1 + w2v2 + · · ·+ wnvn

u1 = u11v1 + u21v2 + · · ·+ un1vn

...

uk = u1kv1 + u2kv2 + · · ·+ unkvn.

Now suppose w = c1u1 + · · ·+ ckuk. Then w =

c1(u11v1 + u21v2 + · · ·+ un1vn) + · · ·+ ck(u1kv1 + u2k + · · ·+ unkvn) =

(c1u11 + c2u12 + · · ·+ cku1k)v1 + · · ·+ (c1un1 + c2un2 + · · ·+ ckunk)vn.

Thus,

[w]B =




c1u11 + c2u12 + · · ·+ cku1k
c1u21 + c2u22 + · · ·+ cku2k

...
c1un1 + c2un2 + · · ·+ ckunk


 = c1




u11
u21
...
un1


+c2




u12
u22
...
u32


+· · ·+ck




u1k
u2k
...
unk




= c1[u1]B + c2[u2]B + · · ·+ ck[uk]B.

It is straightforward to reverse the argument.

By taking w to be the zero vector, 0V , we get the following:

Theorem 1.30 Let V be a finite dimensional vector space with basis B =
(v1,v2, . . . ,vn). Let u1, . . . ,uk be vectors in V. Then (u1,u2, . . . ,uk) is lin-
early independent if and only if ([u1]B, [u2]B, . . . , [uk]B) is linearly indepen-
dent. In fact, c1u1 + · · ·+ ckuk = 0V is a dependence relation of (u1, . . . ,uk)
if and only if c1[u1]B + · · ·+ ck[uk]B = 0n is a dependence relation in Fn.
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Exercises

1. a) Verify that F = (1 + x, 1 + x2, 1 + 2x− 2x2) is a basis of F(2)[x].

b) Compute the coordinate vectors [1]F , [x]F , [x2]F .

2. Suppose B1 = (u1,u2,u3) and B2 = (v1,v2,v3) are bases for the three-
dimensional vector space V . Let [uj]B2 = cj . Suppose x ∈ V and [x]B1 =

a1
a2
a3


 . Prove that [x]B2 = a1c1 + a2c2 + ancn.

3. Let f1(x) = − 1
6 (x − 1)(x − 2)(x − 3), f2(x) = 1

2x(x − 2)(x − 3), f3(x) =
− 1

2x(x− 1)(x− 3), f4(x) =
1
6x(x− 1)(x− 2).

a) Prove that F = (f1, f2, f3, f4) is a basis for R(3)[x].

b) If g(X) ∈ R(3)[x], prove that [g]F =




g(0)
g(1)
g(2)
g(3)


 .

4. Let F = (f1, f2, f3, f4) be the basis of R(3)[x] from Exercise 3. Compute
the coordinate vectors of the standard basis, (1, x, x2, x3) with respect to F .
5. Let B be a basis for the finite dimensional vector space V over the
field F and let (u1,u2, . . . ,uk) be a sequence of vectors in V. Prove that
Span(u1, . . . ,uk) = V if and only if Span([u1]B, . . . , [uk]B) = Fn.

6. Let B be a basis for the n-dimensional vector space V over the field F and
let (u1,u2, . . . ,un) be a sequence of vectors in V. Prove that (u1, . . . ,un) is
a basis for V if and only if ([u1]B, . . . , [un]B) is a basis for Fn.
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It is typical in the study of algebra to begin with the definition of its basic ob-
jects and investigate their properties. Then it is customary to introduce maps
(functions, transformations) between these objects that preserve the algebraic
character of the object. The relevant types of maps when the objects are vector
spaces are linear transformations. In this chapter, we introduce and begin
to develop the theory of linear transformations between vector spaces. In the
first section, we define the concept of a linear transformation and give exam-
ples. In the second section, we define the kernel of a linear transformation. We
then obtain a criterion for a linear transformation to be injective (one-to-one)
in terms of the kernel. In section three, we prove some fundamental theorems
about linear transformations, referred to as isomorphism theorems. In section
four we consider a linear transformation T from an n-dimensional vector space
V to an m-dimensional vector space W and show how, using a fixed pair of
bases for V and W, respectively, to obtain an m× n matrix M for the linear
transformation. This is used to define addition and multiplication of matrices.
In the fifth section, we introduce the notion of an algebra over a field F as well
as an isomorphism of algebras. We show that for a finite-dimensional vector
space V over a field F the space L(V, V ) of linear operators on V is an algebra
over F.We will also introduce the spaceMnn(F) of n×n matrices with entries
in the field F and show that this is an algebra isomorphic to L(V, V ) when
dim(V ) = n. In the final section, we study linear transformations that are bi-
jective. We investigate the relationship between two matrices, which arise as
the matrix of the same transformation but with respect to different bases for
the domain and codomain. This gives rise to the notion of a change of basis

matrix. When the transformation is an operator on a space V this motivates
the definition of similarity of operators and matrices.

47
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2.1 Introduction to Linear Transformations

In this section, we introduce the concept of a linear transformation from one
vector space to another and investigate some basic properties.

What You Need to Know

To comprehend the new material of this section, you should have mastered
the following concepts: Vector space, dimension of a vector space, finite-
dimensional vector space, basis of a vector space, and linear combination of
vectors. You should also know what is meant by a function from a set X to a
set Y and related concepts such as the domain, codomain, the image of an el-
ement, and the range of a function. Consult, if necessary, a good introductory
textbook on mathematical proof such as ([20]) or ([6]).

In mathematics, the terms function, transformation, and map are used inter-
changeably and are synonyms. However, in different areas of mathematics one
term predominates while in another area a different usage may be more com-
mon. So, in calculus, we typically use the term function. In abstract algebra,
which deals with groups and rings, we more often use the term map. In linear
algebra, the common usage is the term transformation.

Before plunging into the material we first review some concepts related to the
notion of a function.

Definition 2.1 Let f : X → Y be a function of a set X into a set Y. The
set X is called the domain of f and Y is the codomain. For an element
x ∈ X the element f(x) of Y is referred to as the image of x. The range of
f , denoted by Range(f), is the set of all images, Range(f) := {f(x)|x ∈ X}.
This is also referred to as the image of f .

Intuitively, a linear transformation between vector spaces should preserve the
algebraic properties of vector spaces, specifically the addition and scalar mul-
tiplication. The formal definition follows:

Definition 2.2 Let V and W be vector spaces over the field F. A linear
transformation T : V → W is a function (map, transformation), which
satisfies the following two conditions:

i. for every v1,v2 ∈ V, T (v1 + v2) = T (v1) + T (v2); and

ii. for every v ∈ V and scalar c ∈ F, T (cv) = cT (v).

We will denote the collection of all linear maps from V to W by L(V,W ).
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Example 2.1 1. Let V and W be a vectors spaces. For all v ∈ V, define
T (v) = 0W . This is the zero map from V to W and is denoted by 0V→W .

2. Define D : F[x] → F[x] by

D(a0 + a1x+ · · ·+ anx
n) = a1 + 2a2x+ · · ·+ nanx

n−1.

The map D is called a derivation of F[x].

3. Let V and W be vector spaces over the field F. Let B = (v1,v2, . . . ,vn) be a
basis for V, (w1,w2, . . . ,wn) a sequence of n vectors in W . Define T : V →W
by T (a1v1 + a2v2 + · · · + anvn) = a1w1 + a2v2 + · · · + anwn. That this is a
linear transformation will be established below in Theorem (2.5).

4. Let F be the collection of functions from F to F and a ∈ F. Define Ea :
F → F by Ea(f) = f(a). This is called evaluation at a.

5. Let V be a vector space. Define IV : V → V by IV (v) = v for all v ∈ V.
This is the identity map on V .

6. Let V be a vector space and W a subspace of V. Recall that V/W is the
quotient space of V moduloW . Define a map πV/W : V → V/W by πV/W (u) =
[u]W = u +W. This is a linear transformation called the quotient map of
V modulo W .

Theorem 2.1 Let T : V → W be a transformation. Then T is linear if and
only if for every pair of vectors v1,v2 ∈ V and scalars c1, c2 ∈ F, T (c1v1 +
c2v2) = c1T (v1) + c2T (v2).

Proof Suppose T is a linear transformation and v1,v2 ∈ V, c1, c2 ∈ F. Then
T (c1v1 + c2v2) = T (c1v1) + T (c2v2) by the first property of a linear trans-
formation. But then T (c1v1) = c1T (v1), T (c2v2) = c2T (v2) by the second
property, from which it follows that T (c1v1 + c2v2) = c1T (v1) + c2T (v2).

On the other hand, suppose T satisfies the given property. Then, when we take
v1,v2 ∈ V, c1 = c2 = 1, we get T (v1 + v2) = T (v1) + T (v2), which is the first
condition.

Taking v1 = v,v2 = 0, c1 = c, c2 = 0, we get T (cv) = cT (v).

Example 2.2 Let V be a vector space and assume V = X ⊕ Y for subspaces
X and Y of V. For every v ∈ V, there are unique vectors x ∈ X,y ∈ Y such
that v = x + y. Denote by Proj(X,Y )(v) the vector x. Then Proj(X,Y ) is a
linear transformation from V to V. The proof of this is the subject of the next
theorem.
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Theorem 2.2 Proj(X,Y ) : V → V is a linear transformation.

Proof Suppose v1,v2 ∈ V and c1, c2 are scalars. We need to show that
Proj(X,Y )(c1v1 + c2v2) = c1Proj(X,Y )(v1) + c2Proj(X,Y )(v2).

Let x1,x2 ∈ X and y1,y2 ∈ Y such that

v1 = x1 + y1,v2 = x2 + y2. (2.1)

By the definition of Proj(X,Y ) we have

Proj(X,Y )(v1) = x1, P roj(X,Y )(v2) = x2. (2.2)

By (2.1) we have

c1v1+c2v2 = c1(x1+y1)+c2(x2+y2) = (c1x1+c2x2)+(c1y1+c2y2). (2.3)

Since X is a subspace of V, c1x1 + c2x2 ∈ X and since Y is a subspace,
c1y1+c2y2 ∈ Y. By the definition of Proj(X,Y ), (2.2), and (2.3) it follows that
Proj(X,Y )(c1v1 + c2v2) = c1x1 + c2x2 = c1Proj(X,Y )(v1) + c2Proj(X,Y )(v2)
as we needed to show.

Definition 2.3 Assume that V = X ⊕ Y, the direct sum of the subspaces X
and Y. The mapping Proj(X,Y ) is called the projection map with respect
to X and Y. It is also called the projection map of V onto X relative
to Y .

Remark 2.1 The ordering of X and Y makes a difference in the definition
of Proj(X,Y ) and, in fact, Proj(X,Y ) 6= Proj(Y,X). Also, the choice of a com-
plement to X makes a difference: If V = X ⊕ Y = X ⊕ Z with Y 6= Z then
Proj(X,Y ) 6= Proj(X,Z).

Theorem 2.3 Let T : V →W be a linear transformation. Then the following
hold:

i) T (0V ) = 0W ; and

ii) T (u− v) = T (u)− T (v).

Proof i) Since 0V + 0V = 0V , we get

T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ).

Adding the negative of T (0V ), to both sides we get
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0W = T (0V ) + (−T (0V )) = [T (0V ) + T (0V )] + (−T (0V )) =

T (0V ) + [T (0V ) + (−T (0V ))] = T (0V ) + 0W = T (0V ).

ii) T (u − v) = T ((1)u + (−1)v) = (1)T (u) + (−1)T (v) = T (u) − T (v) by
Theorem (2.1).

We next show that the range of a linear transformation T : V → W is a
subspace of W.

Theorem 2.4 Let T : V → W be a linear transformation. Then Range(T )
is a subspace of W.

Proof Suppose that w1,w2 are in Range(T ) and c1, c2 are scalars. We need
to show that c1w1 + c2w2 ∈ Range(T ). Now we have to remember what it
means to be in Range(T ). A vector w is in Range(T ) if there is a vector v ∈ V
such that T (v) = w. Since we are assuming that w1,w2 are in Range(T ),
there are vectors v1,v2 ∈ V such that T (v1) = w1, T (v2) = w2. Since V
is a vector space and v1,v2 are in V and c1, c2 are scalars, it follows that
c1v1 + c2v2 is a vector in V. Now T (c1v1 + c2v2) = c1T (v1) + c2T (v2) =
c1w1 + c2w2 by our criteria for a linear transformation, Theorem 2.1). So,
c1w1 + c2w2 is the image of the element c1v1 + c2v2 and hence in Range(T )
as required.

Lemma 2.1 Let T : V →W be a linear transformation. Let v1,v2, . . . ,vk be
vectors in V and c1, c2, . . . , ck be scalars. Then

T (c1v1 + c2v2 + · · ·+ ckvk) = c1T (v1) + c2T (v2) + · · ·+ ckT (vk). (2.4)

Proof When k = 1, this is just the second property of a linear transformation
and there is nothing to prove. When k = 2 the result follows from Theorem
(2.1).

The general proof is by mathematical induction on k. Assume for all k-
sequences of vectors (v1,v2, . . . ,vk) from V and scalars (c1, c2, . . . , ck) that
T (c1v1 + c2v2 + · · ·+ ckvk) = c1T (v1) + c2T (v2) + · · ·+ ckT (vk).

We must show that this can be extended to (k + 1)-sequences of vectors
and scalars. Let (v1,v2, . . . ,vk,vk+1) be a sequence of vectors from V and
(c1, c2, . . . , ck, ck+1) scalars. Set u = c1v1 + · · · + ckvk and w = ck+1vk+1.
Then T (c1v1 + · · · + ckvk + ck+1vk+1) = T (u + w) = T (u) + T (w) by the
additive property of linear transformations. Thus,

T (c1v1 + · · ·+ ckvk + ck+1vk+1) = T (c1v1 + · · ·+ ckvk) + T (ck+1vk+1).
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By the inductive hypothesis, T (c1v1+c2v2+ · · ·+ckvk) = c1T (v1)+c2T (v2)+
· · · + ckT (vk). By the scalar property of a linear transformation, T (w) =
T (ck+1vk+1) = ck+1T (vk+1) and combining these gives the result.

Theorem 2.5 Let V be an n-dimensional vector space over the field F with
basis BV = (v1,v2, . . . ,vn) and W a vector space over F. Let (w1,w2, . . . ,wn)
be a sequence of vectors from W. Define a function T : V →W as follows:

T (c1v1 + c2v2 + · · ·+ cnvn) = c1w1 + c2w2 + · · ·+ cnwn. (2.5)

Then T is a linear transformation. Moreover, every linear transformation from
V to W is defined in this way.

Proof It follows from Lemma (2.1) that any linear transformation T is de-
fined in this way, so it remains to show that every such T is a linear trans-
formation.

Let c be a scalar and v an arbitrary vector. We need to show that T (cv) =
cT (v). Since B is a basis for V , there are unique scalars c1, c2, . . . , cn such
that v = c1v1+ . . . cnvn. Then c ·v = c ·(c1v1+ . . . cnvn) = (cc1)v1+(cc2)v2+
. . . (ccn)vn. By the definition of T we have

T (cv) = T ((cc1)v1 + (cc2)v2 + . . . (ccn)vn)

= (cc1)w1 + . . . (ccn)wn

= c · (c1w1) + · · ·+ c · (cnwn)

= c · [c1w1 + . . . cnwn]

= cT (c1v1 + . . . cnvn) = cT (v).

Now let u,v ∈ V. We must show that T (u+ v) = T (u) + T (v). Since B is a
basis for V, there are unique scalars (b1, . . . , bn) and (c1, c2, . . . , cn) such that
u = b1v1 + · · ·+ bnvn,v = c1v1 + · · ·+ cnvn. Then

u+ v = (b1v1 + · · ·+ bnvn) + (c1v1 + · · ·+ cnvn) =

(b1 + c1)v1 + · · ·+ (bn + cn)vn.

As a consequence,

T (u+ v) = T ([b1 + c1]v1 + · · ·+ [bn + cn]vn)

= (b1 + c1)w1 + · · ·+ (bn + cn)wn

= [b1w1 + c1w1] + · · ·+ [bnwn + cnwn

= [b1w1 + . . . bnwn] + [c1w1 + · · ·+ cnwn]

= T (u) + T (v)

as required.
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Putting Lemma (2.1) and Theorem (2.5) together we obtain the following:

Theorem 2.6 Let V be a finite-dimensional vector space over a field F with
basis BV ,W an F-vector space, and (w1,w2, . . . ,wn) a sequence of vectors
from W. Then there exists a unique linear transformation T : V → W such
that T (vj) = wj for j = 1, 2, . . . , n.

Proof By Lemma (2.1) the only possibility for T is given by T (c1v1 + · · ·+
cnvn) = c1w1 + · · ·+ cnwn. By Theorem (2.5), T is well defined and a linear
transformation.

It is possible to extend Theorem (2.6) to infinite-dimensional vector spaces.
We leave this as an exercise.

Theorem 2.7 Let V and W be F-vector spaces and B a basis for V. Then
every function f : B → W can be extended in a unique way to a linear
transformation T from V to W.

Proof Since every element of V is a linear combination of finitely many
elements of B, it follows from Lemma (2.1) that there is at most one extension.
We leave the existence of a linear transformation as an exercise (with extensive
hints).

The significance of Theorem (2.7) is that when B is a basis of the vector space
V then V is universal among all pairs (f,W ) where W is an F-vector space
and f : B →W is a map. The notion of a universal mapping problem will be
more fully developed in the chapter on tensor products.

Let V andW be vector spaces over a field F.We introduce operations of scalar
multiplication and addition on the set L(V,W ) in such a way that it becomes
a vector space over F.

Definition 2.4 1) Let T ∈ L(V,W ) and c ∈ F. Define (cT ) : V → W by
(cT )(v) = c · T (v). This is referred to as the scalar multiplication of T by
c.

2) Let S, T ∈ L(V,W ). Define (S+T ) : V →W by (S+T )(v) = S(v)+T (v).
This is the sum of the transformations S and T.
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Lemma 2.2 i) Let T ∈ L(V,W ) and c be an element of F. Then (cT ) ∈
L(V,W ).

ii). Let S, T ∈ L(V,W ). Then S + T ∈ L(V,W ).

Proof i) Let u,v ∈ V. Then

(cT )(u+ v) = ·T (u+ v) = c · (T (u) + T (v)) =

c · T (u) + c · T (v) = (cT )(u) + (cT )(v).

Let u ∈ V and b a scalar. Then

(cT )(bu) = c · T (bu) = c · (b · T (u)) = (cb) · T (u) =
(bc) · T (u) = b · (c · T (u)) = b · (cT )(u).

This proves that cT ∈ L(V,W ).

ii) We leave this as an exercise.

Corollary 2.1 Let V,W be vector spaces over the field F. Then L(V,W ) with
the given definitions of addition and scalar multiplication is a vector space.

Exercises

1. Define T : F3 → F(2)[x] by T



a
b
c


 = (a + b − 2c) + (a − b)x + (a − c)x2.

Prove that T is a linear transformation.

2. Define T : F(3)[x] → F2 by T (a3x
3 + a2x

2 + a1x+ a0) =

(
a2a3
a0 + a1

)
. Show

that T is not a linear transformation.

3. Define T : F2 → F3 by T

(
a
b

)
=




2a− 3b
−a+ 2b
4a+ 5b


 . Prove that T is a linear

transformation.

4. Let V be the real two-dimensional vector space of Exercise 11 of Section

(1.3). Define T : R2 → V by T

(
x
y

)
=

(
ex

ey

)
. Prove that T is a linear

transformation.

5. Let S : U → V and T : V → W be linear transformations. Prove that T ◦S
is a linear transformation.

6. Prove part ii) of Lemma (2.2).
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In Exercicses 7–8, let V be a vector space over a field F and assume that
V = X ⊕ Y. Set P1 = Proj(X,Y ) and P2 = Proj(Y,X).

7. Prove the following hold:

a) P1 ◦ P1 = P1, P2 ◦ P2 = P2;
b) P1 + P2 = IV ; and
c) P1 ◦ P2 = P2 ◦ P1 = 0V→V .

8. Let U be a vector space over F and T : U → V a map. Assume that P1 ◦ T
and P2 ◦T are linear transformations. Prove that T is a linear transformation.

9. Assume P1, P2 ∈ L(V, V ) satisfy

a) P1 + P2 = IV ; and
b) P1P2 = P2P1 = 0V→V .

Set X = Range(P1), Y = Range(P2). Prove that V = X ⊕ Y.

10. Assume dim(V ) = n, dim(W ) = m with n > m and let T : V → W be
a linear transformation. Prove that there exists a nonzero vector v ∈ V such
that T (v) = 0W .

11. Let V be a vector space andW a subspace of V. Prove that the map πV/W :
V → V/W given by πV/W (v) = [v]W = v +W is a linear transformation.

12. Let T : V → W be a linear transformation of vector spaces. Assume
(w1,w2, . . . , wm) is a spanning sequence of W and wj ∈ Range(T ) for all j.
Prove that Range(T ) = W so that T is surjective (onto).

13. Let T : V →W be a linear transformation and (v1,v2, . . . ,vn) a basis for
V. Prove that Range(T ) = Span(T (v1), T (v2), . . . , T (vn)).

14. Let V be an n-dimensional vector space over F with basis BV =
(v1,v2, . . . ,vn) and letW be an m-dimensional space over F with basis BW =
(w1,w2, . . . ,wm). Define a map Eij : V → W by Eij(c1v1 + · · · + cnvn) =
cjwi. Prove that {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for L(V,W ) and
therefore dim(L(V,W )) = mn.

15. Prove Theorem (2.7). (See the hints in the appendix at the end of the
book.)

16. Assume T : V → W is a linear transformation, (v1, . . . ,vk) a sequence
of vectors from V, and set wi = T (vi), i = 1, . . . , k. Assume (w1, . . . ,wk) is
linearly independent. Prove that (v1, . . . ,vk) is linearly independent.
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2.2 The Range and Kernel of a Linear Transformation

In this section, we introduce the notion of the kernel of a linear transformation.
The kernel of a linear transformation, like the range, is a subspace. We obtain
a criterion for a linear transformation to be injective (one-to-one) in terms of
the kernel. We demonstrate how the dimensions of the kernel and range are
related in the fundamental rank-nullity theorem.

What You Need to Know

For the material of this section to be meaningful, you should understand the
following concepts: vector space over a field, subspace of a vector space, span of
a sequence or set of vectors, a sequence of vectors spans a subspace of a vector
space, a sequence of vectors is linearly dependent/independent, a sequence
of vectors is a basis of a vector space, dimension of a vector space, range
of a function (map, transformation), surjective function, injective function,
and linear transformation. The following are algorithms you should be able
to perform: Solve a linear system of equations with coefficients in a field F;
given a finite spanning sequence for a subspace of a vector space, find a basis
for the subspace and compute the dimension of the subspace.

In order to avoid being repetitious, we will adopt the convention that when
we say T : V → W is a linear transformation it is understood that V and W
are vector spaces over a common field.

We begin with a definition:

Definition 2.5 Let T : V → W be a linear transformation. The kernel of
T, denoted by Ker(T ), consists of all vectors in V which go to the zero vector
of W , Ker(T ) := {v ∈ V |T (v) = 0W }.

Recall, we defined the range of T, denoted by Range(T ), to be the set of
all images of T : Range(T ) = {T (v)|v ∈ V }. When T : V → W is a linear
transformation, we proved in Theorem (2.4) that Range(T ) is a subspace. We
now show that Ker(T ) is a subspace of V.

Theorem 2.8 Let T : V →W be a linear transformation. Then Ker(T ) is a
subspace of V.

Proof Suppose that v1,v2 are in Ker(T ) and c1, c2 are scalars. Since we
are assuming that v1,v2 are in Ker(T ) this means that T (v1) = T (v2) = 0W .
Applying T to c1v1 + c2v2: T (c1v1 + c2v2) = c1T (v1) + c2T (v2) = c10W +
c20W = 0W + 0W = 0W . So, c1v1 + c2v2 is in Ker(T ) as required.
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Example 2.3 1. Let D : R(3)[x] → R(2)[x] be the derivative. Then Ker(D) =
R, Range(D) = R(2)[x].

2. Let D2 be the map from the space of twice differentiable functions to F [R]

given by D2(f) = d2f
dx2 . What is the kernel of D2 + I?

It is the set of all functions that satisfy the second-order differential equation

d2f(x)

dx2
+ f(x) = 0.

3. Let V be a four-dimensional vector space with a basis (v1,v2,v3,v4) and
W a three-dimensional vector space with basis (w1,w2,w3) both over the
field F. Suppose T : V → W is a linear transformation and T (v1) =
w1, T (v2) = w2, T (v3) = w3 and T (v4) = c1w1 + c2w2 + c3w3. Then
Ker(T ) = Span(c1v1 + c2v2 + c3v3 − v4).

Since the range and the kernel of a linear transformation are subspaces, they
have dimensions. For future reference, we give names to these dimensions:

Definition 2.6 Let V andW be vector spaces over the field F and T : V →W
be a linear transformation. We will refer to the dimension of the range of T as
the rank of T and denote this by rank(T ). Thus, rank(T ) = dim(Range(T )).
The dimension of the kernel of T is called the nullity of T . We denote this
by nullity(T ). Thus, nullity(T ) = dim(Ker(T )).

The next result relates the rank and nullity of a linear transformation when
the domain is a finite-dimensional vector space.

Theorem 2.9 (Rank and nullity theorem for linear transformations)

Let V be an n-dimensional vector space and T : V →W be a linear transfor-
mation. Then n = dim(V ) = rank(T ) + nullity(T ).

Proof Let k = nullity(T ). Choose a basis (v1,v2, . . . ,vk) for Ker(T ). Ex-
tend this to a basis (v1,v2, . . . ,vn) for V. We claim two things:

1) (T (vk+1), . . . , T (vn)) is linearly independent; and 2) (T (vk+1), . . . , T (vn))
spans Range(T ).

If both of these are true, then the result will follow since (T (vk+1), . . . , T (vn))
is then a basis for Range(T ) and we will have rank(T ) = n − k as required.
So let us prove the two claims.

1) The first thing we must demonstrate is that

Span(v1,v2, . . . ,vk) ∩ Span(vk+1,vk+2, . . . ,vn) = {0V }.
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Since (v1,v2, . . . ,vn) is a basis, in particular, it is linearly independent. Sup-
pose then that c1v1 + c2v2 + . . . ckvk = ck+1vk+1 + · · · + cnvn is a vec-
tor in the intersection. It follows from this that c1v1 + c2v2 + · · · + ckvk −
ck+1vk+1 − · · · − cnvn = 0V . Since v1,v2, . . . ,vn is a basis, we must have
c1 = c2 = · · · = cn = 0 and therefore c1v1 + · · ·+ ckvk = 0V as claimed.

Suppose now that ck+1T (vk+1) + · · · + cnT (vn) = 0W . Since ck+1T (vk+1) +
· · · + cnT (vn) is the image of u = ck+1vk+1 + · · · + cnvn, the vector u is in
Ker(T ). But then ck+1vk+1 + · · ·+ cnvn is in Span(v1,v2, . . . ,vk) and so is
in the intersection, Span(v1,v2, . . . ,vk) ∩ Span(vk+1, . . . ,vn), which we just
proved is the trivial subspace {0V }. Therefore, ck+1vk+1 + · · · + cnvn = 0V .
Since the sequence (vk+1, . . . ,vn) is linearly independent it follows that ck+1 =
ck+2 = · · · = cn = 0. Therefore, the sequence (T (vk+1), T (vk+2), . . . , T (vn))
is linearly independent as claimed.

2) Since every vector in V is a linear combination of (v1,v2, . . . ,vn) it follows
that the typical element of the Range(T ) is T (c1v1 + c2v2 + · · · + cnvn) =
c1T (v1)+c2T (v2)+ · · ·+ckT (vk)+ck+1T (vk+1)+ . . . cnT (vn). However, since
v1,v2, . . . ,vk ∈ Ker(T ) this is equal to ck+1T (vk+1) + . . . cnT (vn), which is
just an element of Span(T (vk+1), . . . T (vn)) as claimed.

Before proceeding to some further results, we review the concept of an injective
(one-to-one) function and surjective (onto) function.

Definition 2.7 Let f : X → Y be a function. Then f is said to be injective
or one-to-one if whenever x 6= x′, then f(x) 6= f(x′). Equivalently, if f(x) =
f(x′) then x = x′. The function f is said to be surjective or onto if Y =
Range(f). Finally, f is bijective if it both injective and surjective.

There is a beautiful criterion for a linear transformation to be injective, which
we establish in our next theorem.

Theorem 2.10 Assume T : V → W is a linear transformation. Then T is
injective if and only if Ker(T ) = {0V }.

Proof Suppose T is one-to-one. Then there is at most one vector v ∈ V
such that T (v) = 0W . Since 0V maps to 0W , it follows that Ker(T ) = {0V }.
On the other hand, suppose Ker(T ) = {0V }, v1,v2 are vectors in V , and
T (v1) = T (v2). We need to prove that v1 = v2. Since T (v1) = T (v2), it
follows that T (v1) − T (v2) = 0W . But T (v1) − T (v2) = T (v1 − v2) and
consequently v1 − v2 ∈ Ker(T ). But then v1 − v2 = 0V , whence v1 = v2 as
desired.



Linear Transformations 59

Example 2.4 (1) Let E : R(2)[x] → R3 be the transformation given by

E(f) =



f(1)
f(2)
f(3)


 . This transformation is one-to-one.

(2) Consider the transformation T : R(2)[x] → R2 given by T (f) =

(
f(1)
f(2)

)
.

Now, Ker(T ) = Span((x− 1)(x− 2)).

The first part of the next theorem indicates how an injective transformation
acts on a linearly independent set. The second part gives a criterion for a
transformation to be injective in terms of the image of a basis under the
transformation.

Theorem 2.11 i) Let T : V → W be an injective linear transforma-
tion and (v1,v2, . . . ,vk) a linearly independent sequence from V. Then
(T (v1), . . . , T (vk)) is linearly independent.

ii) Assume that T : V → W is a linear transformation and B =
(v1,v2, . . . ,vn) is a basis for V. If (T (v1), T (v2), . . . , T (vn)) is linearly in-
dependent then T is injective.

Proof i) Consider a dependence relation on (T (v1), . . . , T (vk)): Suppose for
the scalars c1, c2, . . . , ck that c1T (v1) + c2T (v2) + . . . ckT (vk) = 0W . We need
to show that c1 = c2 = · · · = ck = 0. Because T is a linear transformation, we
have

T (c1v1 + c2v2 + · · ·+ ckvk) = c1T (v1) + c2T (v2) + · · ·+ ckT (vk)

= 0W .

This implies that the vector c1v1+c2v2+ · · ·+ckvk is in Ker(T ). However, by
hypothesis, Ker(T ) = {0V }. Therefore, c1v1+ c2v2+ · · ·+ ckvk = 0V . But we
are also assuming that (v1,v2, . . . ,vk) is linearly independent. Consequently,
c1 = c2 = · · · = ck = 0 as required.

ii) Let u ∈ Ker(T ). We must show that u = 0V . Since B is a basis there
are scalars c1, c2, . . . , cn such that u = c1v1 + c2v2 + · · · + cnvn. Since
u ∈ Ker(T ), T (u) = 0W , by our properties of linear transformations, we
can conclude that

T (u) = T (c1v1 + c2v2 + · · ·+ cnvn)

= c1T (v1) + c2T (v2) + · · ·+ cnT (vn)

= 0W .
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However, we are assuming that (T (v1), T (v2), . . . , T (vn)) is linearly indepen-
dent. Consequently c1 = c2 = · · · = cn. Therefore, u = c1v1 + c2v2 + · · · +
cnvn = 0V as required.

In some of the examples above, you may have noticed that when T : V →W
is a linear transformation and dim(V ) = dim(W ) then T injective appears to
imply T is surjective and vice versa. This is, indeed, true and the subject of
the next theorem.

Theorem 2.12 (“Half is good enough for linear transformations”)

Let V and W be n-dimensional vector spaces and T : V → W be a linear
transformation.

i) If T is injective, then T is surjective.
ii) If T is surjective, then T is injective.

Proof i) Suppose T is injective. Let (v1,v2, . . . ,vn) be a basis for V. By The-
orem (2.11), the sequence (T (v1), T (v2), . . . , T (vn)) is linearly independent in
W. SinceW has dimension n, by Theorem (1.23), (T (v1), T (v2), . . . , T (vn)) is
a basis for W. Since Span(T (v1), T (v2), . . . , T (vn)) = Range(T ), we conclude
that T is surjective.

ii) Assume now that T is surjective. Then (T (v1), . . . , T (vn)) spans W . By
Theorem (1.23), the sequence (T (v1), . . . , T (vn)) is linearly independent, and
then by Theorem (2.11) T is injective.

We give a special name to bijective linear transformations and also to the
vector spaces which are connected by such transformations.

Definition 2.8 If the linear transformation T : V → W is bijective then we
say that T is an isomorphism. If V and W are vector spaces and there exists
an isomorphism T : V →W , we say that V and W are isomorphic.

The next theorem validates the intuition that vector spaces like F4,F(3)[x] are
alike (and the tendency to treat them as if they are identical).

Theorem 2.13 Two finite-dimensional vector spaces V and W are isomor-
phic if and only if dim(V ) = dim(W ).

Proof If T : V →W is an isomorphism, then it takes a basis of V to a basis
of W and therefore dim(V ) = dim(W ).

On the other hand, if dim(V ) = dim(W ), choose bases (v1,v2, . . . ,vn) in V
and (w1,w2, . . . ,wn) in W and define T (c1v1 + c2v2 + . . . cnvn) = c1w1 +
c2w2 + · · ·+ cnwn.
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T is a linear transformation. Suppose some vector u = c1v1 + c2v2 +
. . . cnvn ∈ Ker(T ). Then c1w1 + c2w2 + · · · + cnwn = 0W . However, since
(w1,w2, . . . ,wn) is a basis for W, it is linearly independent and it follows that
c1 = c2 = · · · = cn = 0. Therefore, u = 0V and thus Ker(T ) = {0V }. Conse-
quently, T is injective. Since the dimensions are equal by Theorem (2.12), T
is an isomorphism.

Example 2.5 Assume the field F has at least three elements. If 0, 1, and a
are distinct elements of F, then the transformation which takes f ∈ F(2)[x] to

f(0)
f(1)
f(a)


 is an isomorphism.

Exercises

1. Let T : R6 → R(4)[x] be a linear transformation and assume that the
following vectors are a basis for Range(T ):

(1 + x2 + x4, x+ x3, 1 + x+ 2x2).

What is the rank and nullity of T ?

2. Let a 6= b ∈ F. Define a linear transformation T : F(3)[x] → F2 by T (f) =(
f(a)
f(b)

)
. Describe the kernel of T (find a basis) and determine the rank and

nullity of T.

3. Let T : R(3)[x] → R4 be the linear transformation given by

T (a+ bx+ cx2 + dx3) =




a+ 2b+ 2d
a+ 3b+ c+ d
a+ b− c+ d
a+ 2b+ 2d


 .

Determine bases for the range and kernel of T and use these to compute the
rank and nullity of T.

4. Show that the linear transformation T : F4 → F(2)[x] given by T







a
b
c
d





 =

(a − d) + (b − d)x + (c − d)x2 is surjective. Then explain why T is not an
isomorphism.

5. Show that the linear transformation T : F3 → F(3)[x] given by T



a
b
c


 =

(a+ b) + (b+ c)x+ (a− 2b− 2c)x2 + (a+ 2b+ c)x3 is injective. Explain why
T is not an isomorphism.
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6. Determine whether the map T : F(2)[x] → F3 given by T (a+ bx + cx2) =


a− b + c
a+ b + c
a+ 2b+ 4c


 is an isomorphism.

7. Assume that S : U → V and T : V → W are both surjective functions.
Prove that T ◦ S is surjective.

8. Assume that S : U → V and T : V → W are both injective functions.
Prove that T ◦ S is injective.

9. Assume that S : U → V and T : V → W are both isomorphisms. Prove
that T ◦ S is an isomorphism.

10. Assume V and W are finite-dimensional vector spaces and T : V → W
is an isomorphism. Prove that the inverse function T−1 : W → V is a linear
transformation.

11. Let V and W be finite-dimensional vector spaces and T : V →W a linear
transformation. Prove that if T is surjective then dim(V ) ≥ dim(W ).

12. Let V and W be finite-dimensional vector spaces and T : V →W a linear
transformation. Prove that if T is injective then dim(V ) ≤ dim(W ).

13. Let V and W be finite-dimensional vector spaces and T : V → W be a
surjective linear transformation. Prove that there is a linear transformation
S :W → V such that T ◦ S = IW .

14. Let V and W be finite-dimensional vector spaces and T : V → W be
an injective linear transformation. Prove that there is a linear transformation
S :W → V such that S ◦ T = IV .

15. Let V be a finite-dimensional vector space and assume that T1, T2 ∈
L(V, V ) and Ker(T1) = Ker(T2). Define a map R : Range(T1) → Range(T2)
by S(T1(v)) = T2(v). Prove that R is well-defined and a linear transforma-
tion. (Well defined means if v ∈ Range(T1) then S(v) does not depend on the
choice of u ∈ V such that v = T1(u).)

16. Let V be an n-dimensional vector space over a field F and T an operator
on V. Prove that Ker(T n) = Ker(T n+1) and Range(T n) = Range(T n+1).

17. Let V be an n-dimensional vector space over a field F and T an operator
on V. Prove that V = Range(T n)⊕Ker(T n).

18. Let V be a finite-dimensional vector space over a field F and T an operator
on V. Prove that Range(T 2) = Range(T ) if and only if Ker(T 2) = Ker(T ).

In Exercises 19 and 20 assume V is a vector space over F of dimension n and
T : V → V is a linear operator of rank k.

19. a) Let V be an n-dimensional vector space, S, T ∈ L(V, V ), and rank(T ) =
k. Assume TS = 0V→V . Prove that rank(S) ≤ n − k. b) Prove that there
exists S of rank n− k such that TS = 0V→V .
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20. a) Let V be an n-dimensional vector space, S, T ∈ L(V, V ), and rank(T ) =
k. Assume ST = 0V→V . Prove that rank(S) ≤ n − k. b) Prove that there
exists S of rank n− k such that TS = 0V→V .

21. Assume T is a linear operator on V and T 2 = 0V→V . Prove that rank(T ) ≤
dim(V )

2 .

22. Assume V is a vector space with basis (v1, . . . ,v2m). Give an example of
a linear operator T on V of rank m such that T 2 = 0V →V .
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2.3 The Correspondence and Isomorphism Theorems

In this section, we prove some fundamental theorems about linear transfor-
mations. In particular, we relate the range of a transformation to the quotient
space of the domain by the kernel of the transformation.

What You Need to Know

For the material of this section to be meaningful, you should understand the
following concepts: vector space over a field, subspace of a vector space, span of
a sequence or set of vectors, a sequence of vectors spans a subspace of a vector
space, a sequence of vectors is linearly dependent/independent, a sequence
of vectors is a basis of a vector space, dimension of a vector space, range
of a function (map, transformation), surjective function, injective function,
bijective function, linear transformation, kernel of a linear transformation,
quotient of a vector space by a subspace, and isomorphism of vector spaces.

Let V be a vector space and U a subspace. We will denote by Sub(V, U)
the collection of all subspaces of V that contain U. We also set Sub(V ) =
Sub(V, {0}).

Definition 2.9 Let f : A → B be a function and C a subset of B. The
preimage of C is f−1(C) := {a ∈ A|f(a) ∈ C}. In other words, f−1(C)
consists of all elements of the domain A which map into C.

Theorem 2.14 Let T : V →W be a linear transformation. Then the follow-
ing hold:
i) If X is a subspace of V, then T (X) is a subspace of W.
ii) If Y is a subspace ofW, then T−1(Y ) is a subspace of V containing Ker(T ).
iii) Assume X1, X2 are subspaces of V both containing Ker(T ). If T (X1) =
T (X2), then X1 = X2.

Proof i) Since T|X : X →W (T restricted to X) is a linear transformation,
this follows from Theorem (2.4) since T (X) is the range of T|X .

ii) Let πW/Y : W → W/Y be the map given by πW/Y (w) = w + Y = [w]Y .
Then πW/Y is a linear transformation. Set S = πW/Y ◦T : V →W/Y. Since S
is the composition of linear transformations, it is a linear transformation. Note
that Y = Ker(πW/Y ). Suppose T (x) ∈ Y. Then S(x) = πW/Y (x) = 0W/Y .
On the other hand, if x ∈ Ker(S), then πW/Y (T (x)) = T (x) + Y = Y, and,
consequently, T (x) ∈ Y. It therefore follows that T−1(Y ) = Ker(S). It now
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follows from Theorem (2.8) that T−1(Y ) is a subspace of V. Moreover, since
0W ∈ Y,Ker(T ) = T−1({0W }) ⊂ T−1(Y ).

iii) We need to show that X1 ⊂ X2 and X2 ⊂ X1. Suppose x1 ∈ X1. Then
T (x1) ∈ T (X1) = T (X2). Then there exists x2 ∈ X2 such that T (x1) = T (x2).
Then T (x1−x2) = T (x1)−T (x2) = 0W . Therefore x1−x2 is in Ker(T ). Set
x1 − x2 = v ∈ Ker(T ). Then x1 = x2 + v. However, since Ker(T ) ⊂ X2, it
follows that x2 + v ∈ X2. Thus, x1 ∈ X2. Since x1 is arbitrary, we conclude
that X1 ⊂ X2. In exactly the same way, X2 ⊂ X1 and we have equality.

When T : V →W is surjective we can say quite a bit more:

Theorem 2.15 (Correspondence Theorem) Let T : V → W be a sur-
jective linear transformation. Then the following hold:
i) If Y is subspace of W, then T (T−1(Y )) = Y.
ii) The map T : Sub(V,Ker(T )) → Sub(W ) is bijective and therefore gives a
one-to-one correspondence.

Proof i) Suppose x ∈ T−1(Y ). Then by the definition of T−1(Y ), T (x) ∈ Y,
and, consequently, T (T−1(Y )) ⊂ Y. On the other hand, since T is surjective,
if y ∈ Y, then there exists x ∈ V such that T (x) = y. Since y ∈ Y clearly
x ∈ T−1(Y ). Then y = T (x) ∈ T (T−1(Y )). Since y is arbitrary in Y we
conclude that Y ⊂ T (T−1(Y )).

ii) In part iii) of Theorem (2.14), we proved that map induced by T from
Sub(V,Ker(T )) → Sub(W ) is injective. By i) above, it is surjective and,
consequently, bijective.

The next theorem will set us up for proving the first isomorphism theorem.
More specifically, we prove that when T : V → W is a linear transformation
and X is a subspace of Ker(T ), there is a natural way to induce a linear
transformation on the quotient space V/X.

Theorem 2.16 Let T : V → W be a linear transformation and assume that
X ⊂ Ker(T ). Define T̂ : V/X → W by T̂ ([u]X) = T (u). Then T̂ is well
defined and a linear transformation.

Proof When we say that T̂ is well defined, it means the image, T ([u]X),
which is defined on an equivalence class of V modulo X, does not depend on
the choice of a representative of the equivalence class. Thus, we have to prove
if u ≡ v (mod X) then T (u) = T (v). If u ≡ v, then u − v ∈ X ⊂ Ker(T ).
Then 0W = T (u− v) = T (u)− T (v) from which it follows that T (u) = T (v)
as required.



66 Advanced Linear Algebra

We now prove that T̂ is a linear transformation. We need to prove

1. T̂ ([u]X + [v]X) = T̂ ([u]X) + T̂ ([v]X); and

2. T̂ (c · [u]X) = c · T̂ ([u]X).

1. T̂ ([u]X + [v]X) = T̂ ([u + v]X) = T (u + v) = T (u) + T (v) = T̂ ([u]X) +

T̂ ([v]X).

2. T̂ (c · [u]X) = T̂ ([c · u]X) = T (c · u) = c · T (u) = c · T̂ ([u]X).

As a consequence of Theorem (2.16), we can now prove the following:

Theorem 2.17 (First Isomorphism Theorem) Let T : V → W be a

linear transformation. Define T̂ : V/Ker(T ) → W by T̂ ([u]Ker(T )) = T (u).

Then T̂ is well defined and an isomorphism of V/Ker(T ) onto Range(T ).

Proof That T̂ is well defined and a linear transformation follows from The-
orem (2.16). Clearly Range(T̂ ) = Range(T ), so when considered as a trans-

formation with codomain Range(T ), T̂ is surjective. It remains to show that

T̂ is injective. Suppose T̂ ([u]Ker(T )) = 0W . Then T (u) = 0W . It then follows
that u ∈ Ker(T ), and, consequently, [u]Ker(T ) = Ker(T ) = 0V/Ker(T ). Thus,

T̂ is injective and therefore an isomorphism.

If there is a first isomorphism theorem, then there must be a second. It follows:

Theorem 2.18 (Second Isomorphism Theorem) Let V be a vec-
tor space with subspaces W ⊆ X. Then the quotient spaces V/X and
(V/W )/(X/W ) are isomorphic.

Proof Let T : V → V/X denote the linear transformation given by T (u) =

[u]X . Since W ⊂ X, we get an induced transformation T̂ : V/W → V/X

given by T̂ ([u]W ) = T (u) = [u]X . Since T is surjective, T̂ is surjective. We

determine Ker(T̂ ): Suppose [u]W ∈ Ker(T̂ ). Then T̂ ([u]W ) = T (u) = [u]X =

0V/X = X. Therefore, [u]W ∈ Ker(T̂ ) if and only if u ∈ X and, consequently,

Ker(T̂ ) = X/W. By the First Isomorphism Theorem, V/X is isomorphic to

(V/W )/Ker(T̂ ) = (V/W )/(X/W ) as desired.

Our final result is often referred to as the Third Isomorphism Theorem.

Theorem 2.19 Let X and W be subspaces of the vector space V. Then
(X +W )/W is isomorphic to X/(X ∩W ).
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Proof Let T be the map from X+W to (X+W )/W given by T (u) = [u]W .
Let T ′ denote the restriction of this map to X. We claim first that T ′ is
surjective. Let [u]W be an arbitrary element of (X+W )/W. Then there exists
x ∈ X and w ∈ W such that u = x+w. But then [u]W = [x]W from which
it follows that T ′(x) = T (u) = [u]W . This proves the claim.

It now follows from the First Isomorphism Theorem that (X + W )/W is
isomorphic to X/Ker(T ′). We determine Ker(T ′). Suppose x ∈ X and
T ′(x) = [x]W = 0(X+W )/W . Then x ∈ W. Since x ∈ X, it follows that
x ∈ X∩W. Consequently, Ker(T ′) = X∩W. Thus, X/(X∩W ) is isomorphic
to (X +W )/W as required.

Exercises

1. Let V be a vector space with subspaceW . Suppose X1+W = V = X2+W.
Prove that X1/(X1 ∩W ) is isomorphic to X2/(X2 ∩W ).

2. Let V be a vector space with subspaceW . Suppose X1, X2 are complements
to W in V. Prove that X1 and X2 are isomorphic.

3. Let V be a vector space over the field F and consider F to be a vector space
over F of dimension one. Let f ∈ L(V,F), f 6= 0V→F. Prove that V/Ker(f) is
isomorphic to F as a vector space.

4. Let V be a vector space and U 6= V, {0} a subspace of V. Assume T ∈
L(V, V ) satisfies the following: a) T (u) = u for all u ∈ U ; and b) T (v) +U =
v + U for all v ∈ V . Set S = T − IV . Prove that S2 = 0V→V .

5. Let V be a vector space and assume S ∈ L(V, V ) is not 0V →V but S2 =
0V→V . Set T = S + IV and U = Ker(S). Prove the following:

a) Let v ∈ V. Then T (v) = v if and only if v ∈ U.

b) T (v) + U = v + U for all v ∈ V .

6. Let U, V be vector spaces with respective subspaces X and Y. Prove that
(U ⊕ V )/(X ⊕ Y ) is isomorphic to (U/X)⊕ (V/Y ). Here U ⊕ V refers to the
external direct sum of U and W .

7. Let V be a vector space and T ∈ L(V, V ) an isomorphism. The graph of T
is the subset Γ := {(v, T (v))|v ∈ V }. Prove the following:

a) Γ is a subspace of V ⊕ V ; and

b) (V ⊕ V )/Γ ∼= V.

8. Let U and W be subspaces of the vector space V and assume that
dim(V/U) = m, dim(V/W ) = n. Prove that dim(V/(U ∩W )) ≤ m+ n.
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2.4 Matrix of a Linear Transformation

In this section, we consider a linear transformation T from an n-dimensional
vector space V to an m-dimensional vector space W and show how, using a
fixed pair of bases from V and W, respectively, to obtain an m× n matrix M
for the linear transformation. In this way we obtain a correspondence between
L(V,W ) and the setMmn(F) of all m×n matrices. This is then used to define
addition and multiplication of matrices.

What You Need to Know

For the material of this section to be meaningful, you should understand the
following concepts: vector space over a field, subspace of a vector space, span
of a sequence or set of vectors, what it means for a sequence of vectors to
span a subspace of a vector space, what it means for a sequence of vectors to
be linearly dependent/independent, what it means for a sequence of vectors
to be a basis of a vector space, the dimension of a vector space, the range
of a function (map, transformation), surjective function, injective function,
bijective function, linear transformation, and coordinate vector of a vector in
a finite-dimensional vector space. The following are algorithms you should be
able to perform: Solve a linear system of equations with coefficients in a field
F; given a finite spanning sequence for a subspace of a vector space, find a basis
for the subspace and compute the dimension of the subspace; and compute
the coordinate vector of a vector v in a finite-dimensional vector space V with
respect to a basis B of V.

The notion of a matrix is probably familiar to the reader from elementary
linear algebra, however for completeness we introduce this concept as well as
some of the related concepts terminology we will use in later sections.

Definition 2.10 Let F be a field. A matrix over F is defined to be a rectan-
gular array whose entries are elements of F. The sequences of numbers which
go across the matrix are called rows and the sequences of numbers that are
vertical are called the columns of the matrix. If there are m rows and n
columns, then it is said to be an m by n matrix and we write this as m× n.

The numbers which occur in the matrix are called its entries. The one which
is found at the intersection of the ith row and the jth column is called the ijth

entry, often written as (i, j)−entry.

Of particular importance is the n × n matrix whose (i, j)-entry is 0 if i 6= j
and 1 if i = j. This is the n× n identity matrix. It is denote d by In.

Definition 2.11 Assume A is an m × n matrix with (i, j)−entry aij. The
transpose of A, denoted by Atr, is the n ×m matrix whose (k, l)−entry is
alk.
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Example 2.6 Let A =

(
1 2 3
4 5 6

)
. Then Atr =



1 4
2 5
3 6


.

Let T : V → W be a linear transformation from an n-dimensional vector
space V to an m-dimensional vector spaceW,BV = (v1,v2, . . . ,vn) be a basis
for V , and BW = (w1,w2, . . . ,wm) be a basis for W.

Then the image T (vj) of each of the basis vectors vj can be written in a
unique way as a linear combination of (w1, . . . ,wm). Thus, let aij , 1 ≤ i ≤ m
be the scalars such that T (vj) = a1jw1 + a2jw2 + · · ·+ amjwm, which is the
same thing as

[T (vj)]BW
=




a1j
a2j
...

amj


 .

Let A be the m × n matrix whose jth column is aj = [T (vj)]BW
=




a1j
a2j
...
anj




and hence has entries aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. Thus,

A = (a1 a2 . . . an) = ([T (v1)]BW
[T (v2)]BW

. . . [T (vn)]BW
).

Now suppose v ∈ V and [v]BV
=




c1
c2
...
cn


, which means that v = c1v1 + c2v2 +

· · ·+cnvn. Note that this is the unique expression of v as a linear combination
of the basis BV = (v1,v2, . . . ,vn).

By Lemma (2.1)

T (v) = T (c1v1 + c2v2 + · · ·+ cnvn)

= c1T (v1) + c2T (v2) + . . . cnT (vn). (2.6)

From (2.6) and Theorem (1.29) it follows that

[T (v)]BW
= c1[T (v1)]BW

+ c2[T (v2)]BW
+ · · ·+ cn[T (vn)]BW

= c1a1 + c2a2 + · · ·+ cnan.
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Thus, we can compute the coordinate vector of T (v) with respect to BW from
the coordinate vector of v with respect to BV by multiplying the components
of [v]BV

by the corresponding columns of the matrix A.

The matrix A = (a1 a2 . . . an) = ([T (v1)]BW
[T (v2)]BW

. . . [T (vn)]BW
) is

a powerful tool for both computation and theoretic purposes and the subject
of the following definition.

Definition 2.12 Let T : V → W be a linear transformation from an n-
dimensional vector space V to an m-dimensional vector space W, BV =
(v1,v2, . . . ,vn) be a basis for V, and BW = (w1,w2, . . . ,wm) a basis for W.

Let A be the m× n matrix whose jth column is aj = [T (vj)]BW
=




a1j
a2j
...
anj


.

A = (a1 a2 . . . an) = ([T (v1)]BW
[T (v2)]BW

. . . [T (vn)]BW
).

Then A is the matrix of T with respect to the bases BV and BW . We
will denote this by MT (BV ,BW ).

Remark 2.2 Let V be an n-dimensional vector space with basis BV =
(v1,v2, . . . ,vn), W an m-dimensional vector space with a basis BW =
(w1,w2, . . . ,wm). Let A = (a1 a2 . . . an) be an arbitrary m × n matrix.

Set uj = a1jw1 + a2jw2 + · · ·+ amjwm so that [uj]BW
=




a1j
a2j
...

amj


 = aj. By

Theorem (2.5), there exists a unique linear transformation T : V → W such
that T (vj) = uj. It is then the case that MT (BV ,BW ) = A. Consequently,
every m× n matrix A is the matrix of some linear transformation from V to
W with respect to the bases BV and BW .

Recall that we have defined operations of addition and scalar multiplication
on L(V,W ) in such a way that it becomes a vector space. On the other hand,
we presently do not have a definition of addition or scalar multiplication of
matrices. We will use the definition for transformations and Remark (2.2) to
define addition and scalar multiplication of matrices.

Suppose A = (a1 a2 . . . an) is the matrix of T : V → W with respect to
bases BV and BW and c ∈ F is scalar. Then

[(cT )(vj)]BW
= [c · T (vj)]BW

= c[T (vj)]BW
= caj.
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It therefore follows that the matrix of cT is the matrix obtained from A by
multiplying each entry of A by the scalar c. This motivates our definition of
scalar multiplication of a matrix:

Definition 2.13 Let A be an m × n matrix and c ∈ F a scalar. Then cA is
the matrix obtained from A by multiplying each of its entries by c

c




a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn


 =




ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n
...

... . . .
...

cam1 cam2 . . . camn


 .

As an immediate consequence of the definition, we have the following:

Theorem 2.20 Let BV ,BW be bases for V and W, respectively. Let T ∈
L(V,W ) and c ∈ F. Then McT (BV ,BW ) = cMT (BV ,BW ).

Now, let T, S ∈ L(V,W ) and let A = (a1 a2 . . . an) = MT (BV ,BW ), B =
(b1 b2 . . . bn) = MS(BV ,BW ). We compute the matrix of T +S with respect
to the bases BV and BW .

Since (T + S)(vj) = T (vj) + S(vj), we therefore have

[(T + S)(vj)]BW
= [T (vj) + S(vj)]BW

= [T (vj)]BW
+ [S(vj)]BW

= aj + bj .

It follows that the matrix of T + S is obtained from the matrices of T and S
by adding the corresponding columns and, hence, the corresponding entries.
We use this to define the sum of two matrices.

Definition 2.14 Let A =




a11 . . . a1n
a21 . . . a2n
... . . .

...
am1 . . . amn


 , B =




b11 . . . b1n
b21 . . . b2n
... . . .

...
bm1 . . . bmn


 .

Then the sum of A and B is the matrix obtained by adding the corresponding
entries of A and B:

A+B =




a11 + b11 . . . a1n + b1n
a21 + b21 . . . a2n + b2n

... . . .
...

am1 + bm1 . . . amn + bmn


 .

An immediate consequence of the definition is:
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Theorem 2.21 Let BV ,BW be bases for V and W, respectively. Let T, S ∈
L(V,W ). Then MT+S(BV ,BW ) = MT (BV ,BW ) +MS(BV ,BW ).

We as yet also do not have a definition for multiplication of matrices. We begin
by defining the product of an m × n matrix and an n-vector (n × 1 matrix)
and then extend to a product of an m× n matrix and an n× p matrix. The
definition will be motivated by the relationship between the coordinate vector
[v]BV

, the coordinate vector [T (v)]BW
, and the matrix of T with respect to

BV and BW .

Definition 2.15 Let A be an m× n matrix with columns a1,a2, . . . ,an and

let c =




c1
c2
...
cn


 be an n-vector. Then the product of A and c is defined to be

Ac = c1a1 + c2a2 + · · ·+ cnan.

An immediate consequence of defining the product this way is the following:

Theorem 2.22 Let V be an n-dimensional vector space with basis BV ,W
an m-dimensional vector space with basis BW , and T : V → W a linear
transformation. Then for an arbitrary vector v ∈ V

[T (v)]BW
= MT (BV ,BW )[v]BV

.

It remains to define a general product of matrices. The definition is again
motivated by the properties of the matrix of a linear transformation. We
have previously seen in Exercise 15 of Section (2.1) if T : V → W and S :
W → X are linear transformations then the composition S ◦ T : V → X is a
linear transformation. Ideally, if BV ,BW , and BX are bases for V,W , and X ,
respectively, then

MS◦T (BV ,BX) = MS(BW ,BX)MT (BV ,BW ).

We therefore investigate the relationship betweenMS(BW ,BX),MT (BV ,BW ),
and MS◦T (BV ,BX).

Toward that end, we compute the coordinate vector of (S◦T )(vj) with respect
to the basis BX . Let us set MT (BV ,BW ) = A and MS(BW ,BX) = B. By the
definition of composition

(S ◦ T )(vj) = S(T (vj)).
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Taking coordinate vectors, we get

[(S ◦ T )(vj)]BX
= [S(T (vj))]BX

.

By Theorem (2.22), it follows that

[S(T (vj)]BX
= B[T (vj)]BW

.

By the definition of MT (BV ,BW ), it follows that

[T (vj)]BW
= aj ,

and therefore the jth column of MS◦T (BV ,BX) is Baj . This is the motivation
for the following:

Definition 2.16 Let A be an m× n matrix with columns a1,a2, . . . ,an and
B a p×m matrix. Then the product of B and A is defined to be the p× n
matrix whose jth column is Baj. Thus,

BA = (Ba1 Ba2 . . . Ban).

As a consequence of this definition, we have:

Theorem 2.23 Let V be an n-dimensional vector space with basis BV ,W
an m-dimensional vector space with basis BW , and X a p-dimensional vector
space with basis BX . Let T : V → W and S : W → X be linear transforma-
tions. Then

MS◦T (BV ,BX) = MS(BW ,BX)MT (BV ,BW ). (2.7)

We complete this section with a final definition:

Definition 2.17 Let A be an m × n matrix with entries in the field F. The
null space of A, denoted by null(A), consists of all vectors v in Fn such that
Av = 0m ∈ Fm.

Exercises

In Exercises 1 and 2 assume the following: T : V →W is a linear transforma-
tion, BV = (v1, . . . ,vn) is a basis for V , BW = (w1, . . . ,wm) is a basis for W ,
and A = MT (BV ,BW ) is the matrix of T with respect to BV and BW .

1. Prove that T is surjective if and only if the columns of A span Fm.
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2. Prove that T is injective if and only if the columns of A are linearly inde-
pendent (as vectors in Fm).

3. Give an example of a 2×2 real matrix A such that A 6= 02×2 but A
2 = 02×2.

Use this to give an example of an operator T : R2 → R2 such that T 6= 0R2→R2

but T 2 = 0R2→R2 .

4. Give an example of 2 × 2 real matrices A,B such that AB 6= 02×2 but
BA = 02×2.

5. Assume T : R3 → R3 is a linear transformation and

T






1
0
−1




 =



1
1
1


 , T






0
1
−1




 =



1
1
0


 , T





0
0
1




 =



1
0
0


 .

Let

S =





1
0
0


 ,



0
1
0


 ,



0
0
1




 .

Determine MT (S,S).
6. Assume T ∈ L(Fn,Fm). Prove that there is a matrix A such that T (v) =
Av.

7. Let A be anm×nmatrix with entries in the field F and assume the sequence
consisting of the columns of A spans Fm. Prove that there is an n×m matrix
B such that AB = Im, the m×m identity matrix.

8. Let A be anm×nmatrix with entries in the field F and assume the sequence
consisting of the columns of A is linearly independent in Fm. Prove that there
exists an n×m matrix B such that BA = In, the n× n identity matrix.

9. Show that the columns of the matrix A =



1 1 1 1
1 2 −1 3
1 0 3 −2


 ∈ M34(Q)

span Q3. Then find a rational 4× 3 matrix B such that AB = I3.

10. Show that the columns of the matrix A =




1 1 1
1 2 0
1 2 1
1 3 −1


 ∈ M43(Q) are

linearly independent in Q4. Then find a rational 3 × 4 matrix B such that
BA = I3.

11. Let V andW be vector spaces over the field F with dim(V ) = n, dim(W ) =
m with bases BV and BW , respectively. Assume T : V → W is a linear
transformation and A = MT (BV ,BW ). Prove that a vector v ∈ Ker(T ) if
and only if [v]BV

∈ null(A).
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2.5 The Algebra of L(V,W ) and Mmn(F)

In this section, we will introduce the notion of an algebra over a field F as
well as the concept of an isomorphism of algebras. We will show that for an
n-dimensional vector space V over a field F the space L(V, V ) of operators on
V is an algebra over F. We will show that the space Mnn(F) of n×n matrices
with entries in the field F is an algebra isomorphic to L(V, V ).

What You Need to Know

The following concepts are fundamental to understanding the new material
in this section: vector space over a field F, basis of a vector space, dimension
of a vector space, linear transformation T from a vector space V to a vector
spaceW, the composition of functions, linear operator on a vector space V, an
isomorphism from a vector space V to a vector space W, and the matrix of a
linear transformation T : V →W with respect to bases BV for V and BW for
W.

Since we will often refer to the collection of m× n matrices with entries in a
field F, for convenience we give it a symbol and a name:

Definition 2.18 Let F be a field and m,n natural numbers. By Mmn(F), we
shall mean the set of all m× n matrices with entries in F. This is the space
of all m× n matrices.

Recall that L(V,W ) consists of all linear transformations T : V →W and that
we have defined scalar multiplication and addition on L(V,W ) as follows:

Scalar Multiplication: For T ∈ L(V,W ) and c ∈ F, the transformation cT :
V →W is given by

(cT )(v) = c · T (v).

Addition: For T, S ∈ L(V,W ) and v ∈ V

(T + S)(v) = T (v) + S(v).

With these operations, L(V,W ) has the structure of a vector space over F.

Let V be an n-dimensional vector space with basis BV = (v1,v2, . . . ,vn)
and W an m-dimensional vector space with basis BW = (w1,w2, . . . ,wm).
Consider the map µ : L(V,W ) → Mmn(F) given by µ(T ) = MT (BV ,BW ).
It follows from Remark (2.2) that the map µ is surjective. Moreover, since
a linear transformation is uniquely determined by its images on a basis, it
follows that the map µ is injective and therefore a bijection.
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We defined scalar multiplication of a matrix A ∈ Mmn(F) and c ∈ F in such
a way that

µ(cT ) = c · µ(T ).

Likewise, we defined the notion of the sum of matrices A,B in Mmn(F) such
that

µ(T + S) = µ(T ) + µ(S).

It now follows from this that Mmn(F) has the structure of a vector space over
F and as vector spaces L(V,W ) and Mmn(F) are isomorphic.

In our next result, we prove that when it is possible to compose linear trans-
formations then associativity holds (in fact, we could prove this holds more
generally whenever it is possible to compose functions between sets, however,
we will not need this fact). We will then use this to show that matrix multi-
plication, when it can be performed, is associative.

Theorem 2.24 Let V,W,X, and Y be spaces with respective dimensions
n,m, l, and k and let T : V → W,S : W → X and R : X → Y be linear
transformations. Then R ◦ (S ◦ T ) = (R ◦ S) ◦ T.

Proof Let v ∈ V. Then [R ◦ (S ◦ T )](v) = R((S ◦ T )(v) = R(S(T (v)). On
the other hand, [(R◦S)◦T ](v) = (R◦S)(T (v)) = R(S(T (v)), and so we have
equality.

As an immediate consequence of Theorem (2.24), we have:

Theorem 2.25 Let A ∈ Mmn(F), B ∈ Mlm(F) and C ∈ Mkl(F). Then
C(BA) = (CB)A.

Proof Let V,W,X, and Y be spaces with respective dimensions n,m, l, and
k, and with respective bases BV ,BW ,BX , and BY . Let T be the unique transfor-
mation in L(V,W ) such that MT (BV ,BW ) = A; let S be the transformation in
L(W,X) such that MS(BW ,BX) = B; and R the transformation in L(X,Y )
such that MR(BX ,BY ) = C. By Theorem (2.24), R ◦ (S ◦ T ) = (R ◦ S) ◦ T.
It then follows that MR◦(S◦T )(BV ,BY ) = M(R◦S)◦T (BV ,BY ). By repeated
application of Theorem (2.23), we have
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MR◦(S◦T )(BV ,BY ) = MR(BX ,BY )MS◦T (BV ,BX)

= MR(BX ,BY )[MS(BW ,BX)MT (BV ,BW )]

= C(BA).

On the other hand, again by repeated application of Theorem (2.23), we have

M(R◦S)◦T (BV ,BY ) = MR◦S(BW ,BY )MT (BV ,BW )

= [MR(BX ,BY )MS(BW ,BX)]MT (BV ,BW )

= (CB)A.

Thus, C(BA) = (CB)A as asserted.

We next show certain distributive properties hold for transformations and
then use Theorems (2.21) and (2.23) to show that they hold for matrices.

Theorem 2.26 Let V,W, and X be vector spaces over the field F with dimen-
sions n,m, l, respectively.

i) Let T1, T2 ∈ L(V,W ) and S ∈ L(W,X). Then S ◦(T1+T2) = S ◦T1+S ◦T2.
ii) Let T ∈ L(V,W ) and S1, S2 ∈ L(W,X). Then (S1+S2)◦T = S1◦T+S2◦T.

Proof i) Let v ∈ V. Then [S ◦ (T1 + T2)](v) = S((T1 + T2)(v)) by the
definition of composition. S((T1+T2))(v)) = S(T1(v)+T2(v)) by the definition
of T1 + T2. Then S(T1(v) + T2(v)) = S(T1(v1)) + S(T2(v)) by the additive
property for linear transformations. However, S(T1(v)) = (S ◦ T1)(v) and
S(T2(v)) = (S ◦ T2)(v). Thus, [S ◦ (T1 + T2)](v) = [S ◦ T1](v) + [S ◦ T2](v),
and, consequently, S ◦ T1 + S ◦ T2 = S[T1 + T2].

ii) This is proved similarly.

We prove the corresponding result for matrix multiplication.

Theorem 2.27 (Distributive Properties of Matrices)

i) Let A1, A2 ∈Mmn(F) and B ∈Mlm(F). Then B(A1 +A2) = BA1 +BA2.

ii) Let A ∈Mmn(F) and B1, B2 ∈Mlm(F). Then (B1 +B2)A = B1A+B2A.
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Proof Because of their similarity, we only write down the proof of i). Let
V,W,X be vector spaces over F of dimensions n,m, l, respectively, and let
BV ,BW , and BX be bases of the respective spaces. Let Ti ∈ L(V,W ) such that
MTi

(BV ,BW ) = Ai, i = 1, 2 and S ∈ L(W,X) such that MS(BW ,BX) = B.
By Theorem (2.26), S ◦ (T1 + T2) = S ◦ T1 + S ◦ T2. It then follows
that MS◦(T1+T2)(BV ,BX) = MS◦T1+S◦T2(BV ,BX). By Theorems (2.23) and
(2.21), we have

MS◦(T1+T2)(BV ,BX) = MS(BW ,BX)MT1+T2(BV ,BW )

= B(A1 +A2).

On the other hand, by Theorem (2.21), we have the equality

MS◦T1+S◦T2(BV ,BX) = MS◦T1(BV ,BX) +MS◦T2(BV ,BX).

Then by Theorem (2.23), this sum is equal to

MS(BW ,BX)MT1(BV ,BW ) +MS(BW ,BX)MT2(BV ,BW )

= BA1 +BA2.

Thus, B(A1 +A2) = BA1 +BA2.

For the remainder of this section, assume that V is an n-dimensional vector
space over F. We will denote by IV the identity transformation from V to
V. The following theorem enumerates many of the fundamental properties of
L(V, V ).

Theorem 2.28 The following properties hold for L(V, V ):

i) L(V, V ) with the defined scalar multiplication and addition is a vector space
over F.

ii) The product (composition) of any two elements of L(V, V ) is again an ele-
ment of L(V, V ). This defines a multiplication L(V, V )× L(V, V ) → L(V, V ).
This multiplication satisfies:

(a) It is associative: For any R,S, T ∈ L(V, V ), (RS)T = R(ST ).

(b) IV is a two-sided multiplicative identity element for L(V, V ). That is, for
any T ∈ L(V, V ), T IV = IV T = T.

(c) The right and left distributive laws hold: If R,S, T ∈ L(V, V ), then
R(S + T ) = RS +RT and (S + T )R = SR+ TR.

(d) For any R,S ∈ L(V, V ) and scalar c, (cR)S = R(cS) = c(RS).
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By what we have shown, the corresponding properties hold for Mnn(F) as
well. The next definition provides a context for these properties.

Definition 2.19 A vector space A over a field F is said to be an associative
algebra over F if, in addition to the vector space operations, there is a func-
tion µ : A×A→ A denoted by µ(a, b) = ab and referred to as multiplication,
which satisfies the following axioms:

(M1) Multiplication is associative: For all a, b, c ∈ A, (ab)c = a(bc).

(M2) The right and left distributive property holds: For all a, b, c ∈ A, (a+b)c =
ac+ bc and c(a+ b) = ca+ cb.

(M3) For all a, b ∈ A and scalar γ ∈ F, (γa)b = a(γb) = γ(ab).

If, in addition, there is an element 1A such that for all a ∈ A, 1Aa = a1A = a,
then we say that A is an algebra with (multiplicative) identity.

It is clear from the definition that if V is a vector space over a field F, then
L(V, V ) is an algebra with identity over F. Likewise, the space of all n × n
matrices, Mnn(F), is an algebra over F. Perhaps you have a sense that they
are virtually the same algebra, just described differently. This intuition is
hopefully put into perspective by the following definition:

Definition 2.20 Let A and B be algebras over the field F. An algebra ho-
momorphism from A to B is a linear transformation γ : A → B that ad-
ditionally satisfies γ(ab) = γ(a)γ(b) for all a, b ∈ A. An algebra isomor-
phism from A to B is a homomorphism γ from A to B, which is bijective.
When γ : A → B is an isomorphism, we say that the algebras A and B are
isomorphic.

We can now state:

Theorem 2.29 Let V be an n-dimensional vector space over the field F. Then
L(V, V ) and Mnn(F) are isomorphic F-algebras.

Algebras arise in many mathematical fields, from group theory and ring theory
to functional analysis, differential geometry, and topology, and have applica-
tions in many branches of science.

We conclude this section with a couple of definitions that will be referred to
in the exercises and in later chapters.
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Definition 2.21 Let a be a nonzero element in an algebra A.

The element a is a zero divisor if there is a nonzero element b such that
either ab = 0 or ba = 0.

On the other hand, if A has an identity, the element a is a unit if there is an
element b such that ab = ba = 1.

Definition 2.22 An ideal in an algebra A with identity is vector subspace I
of A which further satisfies: If r ∈ A and b ∈ I, then rb ∈ I and br ∈ I. An
algebra A is said to be simple if the only ideals in A are A and {0A}.

Exercises

1. Assume V is a vector space over the field F with dim(V ) ≥ 2. Show by
example that the multiplication of L(V, V ) is not commutative.

2. Assume V is a vector space over the field F with dim(V ) ≥ 2. Show by
example that there exist zero divisors in L(V, V ).

3. Let A be an algebra with identity over a field F and a ∈ A. Set CA(a) =
{b ∈ A|ab = ba}. This is the centralizer of a in A. Prove that CA(a) is an
algebra with identity.

4. Prove that Mnn(F) is a simple algebra, that is, prove that the only ideals
in Mnn(F) are {0nn} and Mnn(F).

5. Let Unn(F) denote the collection of upper triangular matrices with entries

in F, that is, all matrices of the form




a11 a12 . . . a1n
0 a22 . . . a2n
...

... . . .
...

0 0 . . . ann


 . Thus, the

(i, j)-entry is zero if i > j. Prove that under the definition of addition and
multiplication of matrices, Unn(F) is an algebra with identity.

6. Let Unn(F) be the collection of strictly upper triangular matrices, that is,
the upper triangular matrices with zeros on the diagonal. Prove that Unn(F)
is an ideal of the algebra Unn(F).

7. Let V be a finite-dimensional vector space over a field F with dim(V ) ≥ 2.
Prove that every nonzero element of L(V, V ) is either a unit or a zero divisor.
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2.6 Invertible Transformations and Matrices

In this section, we investigate linear transformations that are bijective. We
show that a linear transformation is bijective if and only if it has an inverse
(which is also a linear transformation). We investigate the relationship be-
tween two matrices that arise as the matrix of the same transformation but
with respect to different bases. This gives rise to the notion of a change of
basis matrix, which is always invertible. Of particular importance is the sit-
uation where the transformation is an operator on a space V and motivates
the definition of similar operators and matrices.

What You Need to Know

For the material of this section to be meaningful, you should understand the
following concepts: vector space over a field, subspace of a vector space, span of
a sequence or set of vectors, a sequence of vectors spans a subspace of a vector
space, a sequence of vectors is linearly dependent/independent, a sequence
of vectors is a basis of a vector space, dimension of a vector space, range
of a function (map, transformation), surjective function, injective function,
bijective function, linear transformation, isomorphism of vector spaces, and
kernel of a linear transformation.

We begin with a definition:

Definition 2.23 Let V and W be vector spaces and T ∈ L(V,W ). By a left
inverse to T we mean a linear transformation S ∈ L(W,V ) such that S ◦T =
IV . By a right inverse to T we mean a linear transformation S ∈ L(W,V )
such that T ◦ S = IW . By an inverse to T we mean a linear transformation
S ∈ L(W,V ) such that S ◦ T = IV , T ◦ S = IW . When T has an inverse, we
say that T is invertible.

In the next lemma, we prove that if a transformation T ∈ L(V,W ) has a left
and a right inverse then they are identical and hence an inverse for T.

Lemma 2.3 Let T ∈ L(V,W ). Assume R is a right inverse of T and S is a
left inverse of T. Then R = S and T is invertible.

Proof Consider S ◦ (T ◦ R). Since T ◦ R = IW , we have S ◦ (T ◦ R) =
S ◦ IW = S. On the other hand, by associativity of composition S ◦ (T ◦R) =
(S ◦ T ) ◦R = IV ◦R = R. Thus, R = S as claimed.
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The following is an immediate corollary:

Corollary 2.2 Assume T ∈ L(V,W ) is invertible. Then T has a unique in-
verse.

The next result gives criteria for the existence of left and right inverses of a
transformation T ∈ L(V,W ).

Theorem 2.30 Assume V and W are finite-dimensional and let T ∈
L(V,W ). Then the following hold:

i) T has a left inverse if and only if Ker(T ) = {0V } (if and only if T is
injective).

ii) T has a right inverse if and only if Range(T ) = W (if and only if T is
surjective).

iii) T is invertible if and only if T is bijective.

Proof i) Assume T has a left inverse S and that v ∈ Ker(T ). Then T (v) =
0W . Now S ◦ T = IV and therefore (S ◦ T )(v) = v. On the other hand,
(S ◦ T )(v) = S(T (v)) = S(0W ) = 0V . Thus, v = 0V and Ker(T ) = {0V },
which implies that T is injective.

Conversely, assume that Ker(T ) = {0V } and therefore that T is injective.
Let BV = (v1, . . . ,vn) be a basis for V and set wi = T (vi) for i = 1, 2, . . . , n.
Since T is injective, (w1, . . . ,wn) is linearly independent by Theorem (2.11).
Extend (w1, . . . ,wn) to a basis BW = (w1, . . . ,wm). By Theorem (2.6), there
exists a unique linear transformation S : W → V such that S(wi) = vi if
1 ≤ i ≤ n and S(wi) = 0V if n < i ≤ m. Since (S ◦ T )(vi) = vi for 1 ≤ i ≤ n
it follows that S ◦ T = IV .

ii) Suppose T has a right inverse S. Let w ∈ W be arbitrary and set v = S(w).
Then T (v) = T (S(w)) = (T ◦ S)(w) = IW (w) = w. Thus, w ∈ Range(T )
and T is surjective.

Conversely, assume that Range(T ) =W (so that T is surjective). Let BW be
a basis for W and for each w ∈ BW choose a vector v ∈ V such that T (v) = w

and denote this vector by S(w). This defines a map from the basis BW into
the vector space V. S extends in a unique way to a linear transformation from
W to V. Note that for w ∈ BW , T (S(w)) = w. This implies that T ◦ S = IW .

iii) This follows from i) and ii) and Lemma (2.3).
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Theorem 2.31 Let n be a natural number and assume dim(V ) = dim(W ) =
n. Let T be a linear transformation from V to W. Then the following are
equivalent:
i) T is invertible.
ii) Ker(T ) = {0V }.
iii) Range(T ) = W.

Proof i) implies ii). If T is invertible, then T has, in particular, a right
inverse and so by Theorem (2.30) T is injective.

ii) implies iii). By Theorem (2.10) T is injective. Now the implication follows
from Theorem (2.12).

iii) implies i). By Theorem (2.12) T is also injective. Then T has a left inverse
and then by Lemma (2.3) an inverse and T is invertible.

This next theorem indicates what happens when we compose two invertible
linear transformations. The proof is left as an exercise.

Theorem 2.32 Let V,W,X be vector spaces over the field F. Assume S : V →
W and T :W → X are invertible linear transformations. Then T ◦S : V → X
is invertible and (T ◦ S)−1 = S−1 ◦ T−1.

Let V be a vector space over a field F. The collection of invertible operators
in L(V, V ) will be denoted by GL(V ). For S, T invertible operators on V,
that is, S, T ∈ GL(V ), define the product, ST , to be the composition S ◦ T.
Theorem (2.32) says that the product belongs to GL(V ). Since composition
of maps is associative, the product is associative. There exists an identity
element, namely, IV , and each element has an inverse relative to IV . In the
mathematical literature, such an algebraic structure is called a group. We
refer to GL(V ) as the general linear group on V .

We now turn our attention to matrices. In what follows, we denote the n× n
identity matrix by In.

Definition 2.24 An n×n matrix A is is said to be invertible if there exists
an n× n matrix B such that AB = BA = In.

We next characterize invertible matrices:

Theorem 2.33 Let V,W be n dimensional vector spaces, BV and BW be bases
of V and W, respectively. Let T ∈ L(V,W ) and set A = MT (BV ,BW ). Then
A is invertible if and only if T is invertible.
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Proof Assume T is invertible. Let S ∈ L(W,V ) be the inverse of T and set
B = MS(BW ,BV ). Then AB = MT◦S(BV ,BV ) = MIV (BV ,BV ) = In. In
exactly the same way, BA = In and therefore A is invertible.

Conversely, assume that A is invertible and let B be the n × n matrix such
that AB = BA = In. Let S ∈ L(W,V ) be the linear transformation such
that MS(BW ,BV ) = B. Then In = AB is the matrix of MT◦S(BW ,BW ) and
therefore T ◦ S = IW . In a similar fashion S ◦ T = IV .

Example 2.7 Let B = (v1,v2, . . . ,vn) and B′ = (v′
1,v

′
2, . . . ,v

′
n) be two bases

of the space V. Then the matrix MIV (B,B′) is invertible by Theorem (2.33).
Note the jth column of this matrix consists of [IV (vj)]B′ = [vj ]B′ .

Definition 2.25 If B,B′ are bases of V then MIV (B,B′) is called the change
of basis matrix from B to B′.

Remark 2.3 Assume that V is an n-dimensional vector space. Then for
any basis B of V , the matrix MIV (B,B) = In. Now let B,B′ be bases
for V. Then In = MIV (B,B) = MIV (B,B′)MIV (B′,B) and In =
MIV (B′,B′) = MIV (B′,B)MIV (B,B′). It follows that the change of basis
matrices MIV (B,B′) and MIV (B′,B) are inverses of each other.

The next lemma indicates how the change of basis matrix relates coordinates
with respect to different bases. It is an immediate consequence of the defini-
tions.

Lemma 2.4 Let B and B′ be bases of the space V and v ∈ V. Then [v]B′ =
MIV (B,B′)[v]B

Proof Recall, if T : V → W is a linear transformation with bases BV and
BW , respectively, and v ∈ V then [T (v)]BW

= MT (BV ,BW )[v]BV
. The result

follows by taking V =W,BV = B,BW = B′ and T = IV .

In this next lemma, we indicate how the matrix of a linear transformation
T : V →W is affected by a change in bases in the spaces V and W.

Lemma 2.5 Let V be a finite-dimensional vector space with bases BV and
B′
V , and W a finite-dimensional vector space with bases BW and B′

W . Let P
be the change of basis matrix MIV (BV ,B′

V ) and Q the change of basis matrix
MIW (BW ,B′

W ).

Let T : V → W be a linear transformation and set A = MT (BV ,BW ), the
matrix of T with respect to BV and BW and B = MT (B′

V ,B′
W ) the matrix of

T with respect to B′
V and B′

W . Then B = QAP−1.
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Proof This follows from

B = MT (B′
V ,B′

W )

= MIW (BW ,B′
W )MT (BV ,BW )MIV (B′

V ,BV )

= QAP−1.

When T is a linear operator on V, it is customary to use the same basis for the
domain and the codomain. In this case, we speak about the matrix of T with
respect to a basis B. The following lemma indicates the effect on the matrix
of a linear operator when the basis is changed:

Lemma 2.6 Let V be a finite-dimensional vector space with bases B and B′.
Let T : V → V be a linear operator. Let A = MT (B,B) be the matrix of T
with respect to the basis B and B = MT (B′,B′) the matrix of T with respect
to B′. Let P = MIV (B,B′) be the change of basis matrix from B to B′. Then
B = PAP−1.

Proof This follows from Lemma (2.5) by taking V =W,BV = BW = B, and
B′
V = B′

W = B′.

Definition 2.26 Two operators T1, T2 ∈ L(V, V ) are said to be similar if
there exists an invertible operator S on V such that T2 = ST1S

−1.

Definition 2.27 Two square matrices A and B are said to be similar if there
is an invertible matrix P such that B = PAP−1.

Remark 2.4 Let T ∈ L(V, V ) be an operator, B,B′ bases of V. Then MT (B)
and MT (B′) are similar matrices.

As we will learn in Chapter 4, similar operators are “structurally” the same.
They play an important role in group theory, particularly representation the-
ory. Exercises 11–14 below deal with similar operators and matrices.

Exercises

1. Show that the matrix




2 −3 1
−1 2 0
−1 1 −2


 is invertible and determine its in-

verse.
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2. Let S be the operator on R(2)[x] given by

S(a+ bx+ cx2) = (a+ 2b+ c) + (2a+ 3b+ 2c)x+ (a+ 3b+ 2c)x2.

Show that S is invertible by explicitly exhibiting S−1.

3. Let V and W be vector spaces, BV = (v1,v2, . . . ,vn) a basis for V, and
T ∈ L(V,W ). Prove that T is invertible if and only if (T (v1), T (v2), . . . , T (vn))
is a basis for W.

4. Let V be a finite-dimensional vector space over a field F. Prove that there
is a one-to-one correspondence between the units in L(V ) and the collection
of all bases of V.

5. Determine the number of units in L(F3
2,F

3
2).

6. Determine the number of units in L(F3
3,F

3
3).

7. Let V be a finite-dimensional vector space over a field F. Assume T ∈
L(V, V ), T 6= 0V . Prove that either T is invertible or there exists a nonzero
operator S such that ST is the zero operator.

8. Prove Theorem (2.32).

9. Let V be a finite-dimensional vector space over the field F and let S ∈
L(V, V ) be an invertible operator. Define Ŝ : L(V, V ) → L(V, V ) by Ŝ(T ) =

S ◦ T. Prove that Ŝ is an invertible operator on L(V, V ).

10. An operator S : V → V is said to be nilpotent if Sk is the zero map
for some natural number k. Prove if S is nilpotent then IV − S is invertible.
(Hint: Consider the product of IV − S and (IV + S + S2 + · · ·+ Sk−1.)

11. Prove that the relation on L(V, V ) given by similarity is an equivalence
relation.

12. Assume the operators T1, T2 ∈ L(V, V ) are similar and that B is a basis
of V. Prove that MT1(B,B) and MT2(B,B) are similar matrices.

13. Let T1, T2 ∈ L(V, V ) and B a basis for V. Assume that MT1(B,B) and
MT2(B,B) are similar. Prove that T1 and T2 are similar.

14. Let T1, T2 ∈ L(V, V ) and B,B′ be bases for V. Assume that MT1(B,B) and
MT2(B′,B′) are similar matrices. Prove that operators T1 and T2 are similar.
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In this chapter, we build on high school algebra and develop the algebraic
theory of polynomials. In section one we show that under the usual operations
of addition and multiplication the collection of all polynomials with coefficients
in a field F is a commutative algebra with identity. We define the concepts
of greatest common divisor (gcd) and least common multiple (lcm) of two
polynomials and make use of the division algorithm (division with remainders)
to establish the existence and uniqueness of the gcd and lcm. In section two
we prove some general results about roots of polynomials and then specialize
to polynomials with coefficients in the fields R and C.
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3.1 The Algebra of Polynomials

What You Need to Know

Elementary properties of polynomials, such as how to add and multiply poly-
nomials and how to compute the quotient and remainder when one polynomial
is divided by another.

We begin by recalling the definition of a polynomial in a variable x and intro-
duce some notation and terminology which will facilitate the discussion.

Definition 3.1 Let F be a field. By a polynomial with coefficients in F,
we mean an expression of the form amx

m+am−1x
m−1+ · · ·+a1x+a0, where

ai ∈ F and x is an abstract symbol called an indeterminate or variable. The
scalars ai are the coefficients of the polynomial f(x). The zero polynomial
is the polynomial all of whose coefficients are zero. We denote this by 0.

Suppose f(x) 6= 0. The largest natural number k such that the coefficient ak is
not zero is called the degree of f(x) and the term akx

k is called the leading
term. If the coefficient of the leading term is 1 we say the polynomial f(x) is
monic.

We will denote by F[x] the collection of all polynomials with entries in F and
by F(m)[x] all polynomials of degree at most m.

We define the sum of two polynomials.

Definition 3.2 Let f(x) and g(x) be two polynomials of degree k and l, re-
spectively. Set m = max{k, l} so that both f(x) and g(x) are in F(m)[x]. We
can then write them as f(x) = amx

m + am−1x
m−1 + · · · + a1x + a0 and

g(x) = bmx
m+ bm−1x

m−1+ · · ·+ b1x+ b0. Then the sum of f(x) and g(x) is

f(x)+g(x) = (am+bm)xm+(am−1+bm−1)x
m−1+ · · ·+(a1+b1)x+(a0+b0).

We now define scalar multiplication:

Definition 3.3 Let f(x) = amx
m + am−1x

m−1 + · · · + a1x + a0 ∈ F[x] and
c ∈ F be a scalar. Then c·f(x) = (cam)xm+(cam−1)x

m−1+· · ·+(ca1)x+(ca0).

The following is tedious but straightforward.
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Theorem 3.1 The collection F[x] with the operations of addition and scalar
multiplication is an infinite dimensional vector space over F with a basis
{1} ∪ {xk|k ∈ N}.

There is more algebraic structure to F which we introduce in the following
definition:

Definition 3.4 Let f(x) = amx
m + am−1x

m−1 + · · · + a1x + a0 and g(x) =
bnx

n + bn−1x
n−1 + · · ·+ b1x+ b0 be polynomials with entries in F. Then the

product f(x)g(x) is defined by

f(x)g(x) =

m+n∑

l=0

(
∑

j+k=l

ajbk)x
l.

Hopefully, this is familiar since it coincides with the product of polynomials
learned in high school algebra: To get the coefficient of xl in the product, you
multiply all terms ajx

j and bkx
k, where j + k = l and add up.

Remark 3.1 Assume f(x) 6= 0 has leading term amx
m and g(x) 6= 0 has

leading term bnx
n. Then f(x)g(x) has leading term ambnx

m+n. Therefore,
f(x)g(x) is non-zero and has degree m+ n.

The next theorem collects the basic properties of multiplication.

Theorem 3.2 Let f, g, h ∈ F[x]. Then the following hold:

i) (fg)h = f(gh). Multiplication of polynomials is associative.

ii) fg = gf. Multiplication of polynomials is commutative.

iii) The polynomial 1 is a multiplicative identity: 1 · f = f · 1 = f.

iv) (f + g)h = fh+ gh. Multiplication distributes over addition.

v) If f(x)g(x) = 0, then either f(x) = 0 or g(x) = 0.

As a consequence of Theorems (3.1) and (3.2), we can conclude:

Theorem 3.3 F[x] is a commutative algebra with identity over F.

Lemma 3.1 Assume f(x) 6= 0 and f(x)g(x) = f(x)h(x). Then g(x) = h(x).
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Proof If f(x)g(x) = f(x)h(x), then f(x)g(x) − f(x)h(x) = f(x)[g(x) −
h(x)] = 0. Since f(x) 6= 0 by v) of Theorem (3.2) it follows that g(x)−h(x) =
0, whence g(x) = h(x) as claimed.

The next lemma is just a formal statement of how you divide one polynomial
by another to obtain a quotient and a remainder.

Lemma 3.2 Let f(x) and d(x) 6= 0 be polynomials with coefficients in F.
Then there exists unique polynomials q(x) and r(x), which satisfy f(x) =
q(x)d(x) + r(x), where either r(x) = 0 or deg(r(x)) < deg(d(x)).

Proof We prove the existence of q(x) and r(x) by the second principle of
mathematical induction on deg(f(x)). If f(x) = 0, there is nothing to prove.
Suppose deg(f(x)) = 0 (so f(x) is a constant polynomial, that is, an element
of F). If d(x) has degree 0, then set q(x) = f

d and r(x) = 0. If d(x) is not
constant, then set q(x) = 0 and r(x) = f(x). This takes care of the base case.

Now assume that deg(f(x)) = n > 0 and the result has been obtained for all
polynomials g(x) with deg(g(x)) < n. Suppose deg(d(x)) > deg(f(x)). Then
set q(x) = 0 and r(x) = f(x).

We may now assume that deg(d(x)) ≤ deg(f(x)). Let the leading term of d(x)
be bmx

m and the leading term of f(x) be anx
m. Set g(x) = f(x)− an

bm
xn−md(x).

By construction, an

bm
xn−md(x) has the same leading term as f(x) and, con-

sequently, deg(g(x)) < n. Therefore, our inductive hypothesis can be invoked:
there are polynomials q1(x) and r(x) with r(x) = 0 or deg(r(x)) < deg(d(x))
such that g(x) = q1(x)d(x) + r(x). Now set q(x) = bn

am
xn−m + q1(x). Then

g(x) = f(x) − bn
am
xn−md(x) = q1(x)d(x) + r(x) and therefore f(x) =

[ bnam
xn−m + q1(x)]d(x) + r(x) = q(x)d(x) + r(x). This establishes the exis-

tence of q(x) and r(x).

We now prove uniqueness. Suppose f(x) = q(x)d(x)+r(x) = q′(x)d(x)+r′(x).
Then [q(x) − q′(x)]d(x) = r′(x) − r(x). Suppose q(x) − q′(x) 6= 0. Then the
degree of the left-hand side is at least deg(d(x)). On the other hand, the right-
hand side has degree bounded above by max{deg(r(x)), deg(r′(x))}, which is
less than deg(d(x)). Therefore, we must have r(x) − r′(x) = 0 so that r(x) =
r′(x) and then q(x)− q′(x) = 0.

When we invoke Lemma (3.2) we will say that we are applying the division
algorithm.

Definition 3.5 Let f(x), g(x) be polynomials with entries in F. We will say
that f(x) divides g(x) and write f(x)|g(x) if there is a polynomial q(x) ∈ F[x]
such that g(x) = f(x)q(x).
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The following lemma makes explicit many of the properties of the relation
“divides.”

Lemma 3.3 Let f(x) be a non-zero polynomial. Then the following hold:

i) If f(x) divides g(x) and g(x) divides h(x), then f(x) divides h(x).

ii) If f(x) divides g(x) and h(x), then d(x) divides g(x)+h(x) and g(x)−h(x).
iii) If f(x) divides g(x) and h(x), then for all polynomials a(x), b(x), f(x)
divides a(x)g(x) + b(x)h(x).

iv) If f(x) divides g(x) and g(x) divides f(x), then there are non-scalars
a, b 6= 0 such that g(x) = af(x), f(x) = bg(x).

Proof i) Suppose g(x) = a(x)f(x) and h(x) = b(x)g(x). Then h(x) =
b(x)[a(x)f(x)] = [b(x)a(x)]f(x) and so by the definition, f(x)|h(x).
ii) Suppose g(x) = a(x)f(x) and h(x) = b(x)f(x). Then g(x) ± h(x) =
a(x)f(x) ± b(x)f(x) = [a(x)± b(x)]f(x).

iii) Assume f(x) divides g(x) and h(x). Then f(x) divides a(x)g(x) by i).
Similarly, if f(x) divides h(x), then f(x) divides b(x)h(x) by i). Then by ii)
f(x) divides a(x)g(x) + b(x)h(x).

iv) Let g(x) = a(x)f(x), f(x) = b(x)g(x). Then f(x) = b(x)[a(x)f(x)] =
[b(x)a(x)]f(x). Since f(x) 6= 0 it follows that b(x)a(x) = 1. It follows from
Remark (3.1) that both a(x), b(x) have degree zero; that is, they are non-zero
elements of F.

If this relation reminds you of the relation of divides for integers, that is a
good observation because the similarity is more than superficial. And, like
that relation, there is a notion of greatest common divisor and least common
multiple.

Definition 3.6 Let f(x) and g(x) be polynomials, not both zero. A polynomial
d(x) is said to be a greatest common divisor (gcd) of f(x) and g(x) if the
following hold:

i) d(x) is monic;

ii) d(x)|f(x) and d(x)|g(x); and
iii) if d′(x)|f(x) and d′(x)|g(x), then d′(x)|d(x).

The definition refers to “a” greatest common divisor; however, in the next
lemma we show that there is at most one gcd.
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Lemma 3.4 Assume f(x) and g(x) are polynomials, not both zero. If a gcd
exists for f(x) and g(x), then it is unique.

Proof Suppose d1(x) and d2(x) are both gcd’s for f(x) and g(x). By the
definition, d1(x)|f(x) and d1(x)|g(x). Since d2(x) is a gcd, it follows that
d1(x)|d2(x). Similarly, since d2(x)|f(x) and d2(x)|g(x) and d1(x) is a gcd, we
can conclude that d2(x)|d1(x). Now by iv) of Lemma (3.3), it follows that there
is an element a ∈ F such that d2(x) = ad1(x). Since both d1(x) and d2(x) are
monic, a = 1 and d2(x) = d1(x).

In our next theorem, we show the existence of the gcd of two polynomials.

Theorem 3.4 Let f(x), g(x) be polynomials, not both zero. Then the gcd of
f(x) and g(x) exists.

Proof Let J = {a(x)f(x) + b(x)g(x)|a(x), b(x) ∈ F[x]}. Then J satisfies the
following:

a) If F (x), G(x) ∈ J, then F (x) +G(x) ∈ J.

b) If F (x) ∈ J and c(x) ∈ F[x], then c(x)F (x) ∈ J.

We leave the proof of these as exercises. Recall this means that J is an ideal of
F[x]; see Definition (2.22). Let d(x) be a monic polynomial in J with deg(d(x))
minimal. Such a polynomial d(x) exists by the well-ordering principle for the
natural numbers. We claim that d(x) is the gcd of f(x) and g(x). Clearly, d(x)
is monic so the first of the criteria holds. Also, suppose d′(x) is a polynomial
and d′(x)|f(x) and d′(x)|g(x). Then by iii) of Lemma (3.3), d′(x) divides all
F (x) ∈ J. In particular, d′(x) divides d(x). Therefore, the third criterion for
a gcd is satisfied. It remains to show that d(x)|f(x) and d(x)|g(x).
Suppose the second criterion is not satisfied. Then d(x) does not divide f(x)
or d(x) does not divide g(x). Without loss of generality, we may assume d(x)
does not divide f(x). Applying the division algorithm to f(x) and d(x) we can
conclude that there are unique polynomials q(x) and r(x) such that

f(x) = q(x)d(x) + r(x), deg(r(x)) < deg(d(x)),

the latter since we are assuming that r(x) 6= 0. However, r(x) = f(x) +
(−q(x))d(x). Since f(x), d(x) ∈ J, it follows by a) and b) above that r(x) ∈ J.
Let r′(x) be the unique scalar multiple of r(x), which is monic. Then also
r′(x) ∈ J. However, deg(r′(x)) = deg(r(x)) < deg(d(x)) and this contradicts
the minimality of the degree of d(x) among monic polynomials in J. Thus,
d(x)|f(x). In exactly the same way, we conclude that d(x)|g(x) and d(x) is
the gcd of f(x) and g(x).
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Our next result leads the way to an algorithm for finding the gcd of two
polynomials.

Lemma 3.5 Let f(x), g(x) be two polynomials with f(x) 6= 0. Write
g(x) = q(x)f(x) + r(x) with deg(r(x)) < deg(f(x)). Then gcd(f(x), g(x)) =
gcd(f(x), r(x)).

Proof Set d(x) = gcd(f(x), g(x)) and d′(x) = gcd(f(x), r(x)). It suffices to
show that d(x)|d′(x) and d′(x)|d(x) by iv) of Theorem (3.3). By the definition
of the gcd, d(x)|f(x) and d(x)|g(x). Then d(x)|g(x) − q(x)f(x) = r(x). Since
d′(x) is the gcd of f(x) and r(x), it follows from the third part of the definition
that d(x)|d′(x).
Now by the first part of the definition, since d′(x) is the gcd of f(x) and r(x)
we know that d′(x)|f(x) and d′(x)|r(x). Then d′(x)|q(x)f(x) + r(x) = g(x).
Since d(x) is the gcd of f(x) and g(x), by the third part of the definition it
follows that d′(x)|d(x).

In the following, we describe an algorithm for finding the gcd of two polyno-
mials.

The Euclidean Algorithm

Let f(x) and g(x) be polynomials with f(x) 6= 0. Define a sequence of poly-
nomials as follows: Set g1(x) = g(x) and d1(x) = f(x).

Suppose gk(x) and dk(x) have been defined and dk(x) 6= 0. Write gk(x) =
qk(x)dk(x) + rk(x), where either rk(x) = 0 or deg(rk(x)) < deg(dk(x)). Then
set gk+1(x) = dk(x) and dk+1(x) = rk(x). If dk+1(x) = rk(x) = 0, stop.

Since deg(r1(x)) < deg(f(x)) and either rk(x) = 0 or deg(rk+1(x)) <
deg(rk(x)),c polynomial which is a scalar multiple of rm(x). We claim that
d(x) is the gcd of f(x) and g(x). From Lemma (3.5), we have

gcd(f(x), g(x)) = gcd(g1(x), d1(x))

= gcd(d1(x), r1(x))

= gcd(d2(x), r2(x)

= . . .

= gcd(dm(x), rm(x)

= gcd(dm+1(x), rm+1(x)).

However, dm+1(x) = rm(x) and rm+1(x) = 0. It follows that the gcd is the
monic polynomial of least degree, which is a multiple of rm(x) and this is the
unique scalar multiple of rm(x) which is monic.



94 Advanced Linear Algebra

In our next definition we define the least common multiple (lcm) of two poly-
nomials.

Definition 3.7 Let f(x) and g(x) be polynomials, not both zero. A least
common multiple of f(x) and g(x) is a polynomial l(x) which satisfies the
following:

a) l(x) is monic;
b) f(x)|l(x) and g(x)|l(x); and
c) if f(x)|m(x) and g(x)|m(x) then l(x)|m(x).

We leave the proof that the least common multiple of two polynomials exists
as an exercise. Our immediate goal is to prove something like the Funda-
mental Theorem of Arithmetic, which states that every natural number
greater than one is either a prime or a product of primes. Toward that end,
we introduce the concept of an irreducible polynomial, which is the analog
for polynomials of a prime number among the integers. We also define the
concept of relatively prime polynomials.

Definition 3.8 A non-constant polynomial f(x) is said to be irreducible if
whenever f(x) = g(x)h(x), either g(x) is a constant (element of F) or h(x) is
a constant. If f(x) is not irreducible then it is reducible.

Definition 3.9 Let f(x) and g(x) be polynomials, not both zero. Then f(x)
and g(x) are said to be relatively prime if the only polynomials that
divide both f(x) and g(x) are constants. Note that this is equivalent to
gcd(f(x), g(x)) = 1.

Corollary 3.1 Let f(x), g(x) ∈ F[x] and set 〈f(x), g(x)〉F[x] = {a(x)f(x) +
b(x)g(x)|a(x), b(x) ∈ F[x]}. Then f(x) and g(x) are relatively prime if and
only if 〈f(x), g(x)〉F[x] = F[x].

Proof Assume gcdf(x), g(x)) = 1. Then by the proof of Theorem (3.4) there
are polynomials a(x), b(x) such that a(x)f(x) + b(x)g(x) = 1 and then for
any polynomial h(x) we have [h(x)a(x)]g(x) + [h(x)b(x)]g(x) = h(x) so that
〈f(x), g(x)〉F[x] = F[x].

Conversely, if 〈f(x), g(x)〉F[x] = F[x] then, in particular, 1 ∈ 〈f(x), g(x)〉F[x]
so that there are polynomials a(x), b(x) such that a(x)f(x)+b(x)g(x) = 1 from
which we conclude by the proof of Theorem (3.4) that gcd(f(x), g(x)} = 1 and
f(x), g(x) are relatively prime.
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Lemma 3.6 Assume f(x) and g(x) are relatively prime and f(x)|g(x)h(x).
Then f(x)|h(x).

Proof Since gcd(f(x), g(x)) = 1, and there are polynomials a(x), b(x) such
that a(x)f(x) + b(x)g(x) = 1. Then h(x) =

[a(x)f(x) + b(x)g(x)]h(x) = [a(x)f(x)]h(x) + [b(x)g(x)]h(x)

= [a(x)h(x)]f(x) + b(x)[g(x)h(x)].

Clearly, f(x) divides [a(x)h(x)]f(x). Since by hypothesis f(x) divides
g(x)h(x), it follows by i) of Lemma (3.3) that f(x) divides b(x)[g(x)h(x)].
Then by ii) of Lemma (3.3) f(x) divides [a(x)h(x)]f(x) + b(x)[g(x)h(x)] =
h(x).

A useful corollary is the following:

Corollary 3.2 Assume p(x) is irreducible and p(x)|g1(x)g2(x) . . . gs(x). Then
for some j, 1 ≤ j ≤ s, p(x) divides gj(x).

Proof The proof is by induction on s. Clearly, if s = 1 there is nothing
to prove. We next prove the result for s = 2. Suppose p(x)|g1(x)g2(x) and
p(x) does not divide g1(x). Since p(x) is irreducible it follows that p(x) and
g1(x) are relatively prime. Then by Lemma (3.6) it follows that p(x)|g2(x) as
required.

Now assume the result is true for s and that p(x)|g1(x)g2(x) . . . gs(x)gs+1(x).
Set h1(x) = g1(x) . . . gs(x) and h2(x) = gs+1(x). Then by the previous para-
graph either p(x)|h1(x) = g1(x) . . . gs(x) or p(x)|h2(x) = gs+1(x). In the latter
case, we are done. In the former case, we can apply the inductive hypothesis
and conclude that p(x) divides gj(x) for some j, 1 ≤ j ≤ s.

Another useful corollary is:

Corollary 3.3 Let f(x), g(x) be relatively prime polynomials. Assume h(x)
is a polynomial with f(x)|h(x) and g(x)|h(x). Then f(x)g(x)|h(x).

Proof Let h1(x) ∈ F[x] such that h(x) = f(x)h1(x). Since g(x)|h(x) =
f(x)h1(x) and gcd(f(x), g(x)) = 1 by Lemma (3.6) it follows that g(x)|h1(x).
Let h2(x) ∈ F[x] such that h1(x) = g(x)h2(x). Then h(x) = f(x)g(x)h2(x) so
that f(x)g(x)|h(x).
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In our next theorem, we show that every non-zero polynomial can be written
as a product of a scalar and monic irreducible polynomials. The main idea is
the use of the second principle of mathematical induction.

Theorem 3.5 Let f(x) be a non-constant polynomial. Then there is a scalar
a and monic irreducible polynomials p1(x), p2(x), . . . , pt(x) such that

f(x) = ap1(x)p2(x) . . . pt(x).

Proof Let the leading coefficient of f(x) be a and set f ′(x) = 1
af(x) so that

f(x) is monic. It suffices to prove that f ′(x) can be written as a product of
monic irreducible polynomials, so without loss of generality we may assume
that f(x) is monic.

The proof is by the second principle of mathematical induction on deg(f(x)).
If deg(f(x)) = 1, then f(x) is irreducible and there is nothing to prove. We
now proceed to the inductive step. Assume that deg(f(x)) = n and every monic
polynomial of positive degree less than n can be expressed as a product of monic
irreducible polynomials. If f(x) is irreducible, there is nothing to prove so we
may assume that f(x) is reducible. It then follows that there are polynomials
g(x) and h(x) with deg(g(x)), deg(h(x)) > 0 such that f(x) = g(x)h(x). If the
leading coefficient of g(x) is b and the leading coefficient of h(x) is c, then the
leading coefficient of f(x) is bc. Since f(x) is monic, it follows that bc = 1.
By replacing (g(x), h(x)) by (cg(x), bh(x)), we may assume that g(x) and h(x)
are monic. Now g(x) and h(x) are non-constant and deg(g(x)), deg(h(x)) <
deg(f(x)). Therefore, by the inductive hypothesis, we can express g(x) as a
product of monic irreducible polynomials, and we can express h(x) as a product
of monic irreducible polynomials. But then by multiplying g(x) by h(x), we
obtain an expression for f(x) as a product of monic irreducible polynomials.

When f(x) is a non-constant polynomial, and we write f(x) =
ap1(x)p2(x) . . . pt(x), where pi(x) are monic irreducible polynomials, we re-
fer to this as a prime or complete factorization of f(x).

Our next objective is to prove the essential uniqueness of a prime factorization
of a polynomial.

Theorem 3.6 Let f(x) be a non-constant polynomial and assume that

f(x) = ap1(x)p2(x) . . . pt(x) = bq1(x)q2(x) . . . qs(x),

where a, b are scalars and each pi(x) and qj(x) is a monic irreducible polyno-
mial. Then a = b, t = s, and there is a permutation π of {1, 2, . . . , t} such that
pi(x) = qπ(i)(x).
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Proof The proof is by the second principle of induction on deg(f(x)). If
deg(f(x)) = 1, then f(x) = ax+ c for some scalars a, c and f(x) = a(x+ c

a )
and this is the unique factorization of f(x).

Suppose now that deg(f(x)) = n > 1 and the result has been established for
all non-constant polynomials with degree less than n and assume that f(x) =
ap1(x)p2(x) . . . pt(x) = bq1(x)q2(x) . . . qs(x), where a, b are scalars and each
pi(x) and qj(x) is a monic irreducible polynomial.

Since pi(x) are all monic, the product p1(x) . . . pt(x) is monic and therefore a
is the leading coefficient of f(x). Similarly, b is the leading coefficient of f(x).
Consequently, a = b. We can therefore divide by a = b. After doing so we have
the equality

p1(x)p2(x) . . . pt(x) = q1(x)q2(x) . . . qs(x).

We next prove that t = s. Now pt(x)|p1(x)p2(x) . . . pt(x) = q1(x) . . . qs(x).
We claim that there is some j, 1 ≤ j ≤ s such that pt(x) = qj(x). By
Corollary(3.2), there exists some j, 1 ≤ j ≤ s such that pt(x)|qj(x).
By relabeling, if necessary we can assume that pt(x)|qs(x). However, since
qs(x) is an irreducible, if pt(x)|qs(x), then there is a scalar c such that qs(x) =
cpt(x). Since both pt(x) and qs(x) are monic we conclude that pt(x) = qs(x).

Since p1(x) . . . pt−1(x)pt(x) = q1(x) . . . qs−1(x)qs(x) = q1(x) . . . qs−1(x)pt(x)
and pt(x) 6= 0 by Lemma (3.1), it follows that p1(x) . . . pt−1(x) =
q1(x) . . . qs−1(x). Since deg(p1(x) . . . pt−1(x)) is less than deg(p1(x) . . . pt(x))
we can apply the inductive hypothesis and conclude that t− 1 = s− 1 and that
there exists a permutation π of {1, 2, . . . , t − 1} = {1, 2, . . . , s − 1} such that
pi(x) = qπ(i)(x).

We conclude this section with the following:

Lemma 3.7 Assume that f(x) is relatively prime to g(x) and h(x). Then
f(x) is relatively prime to g(x)h(x).

Proof Let d(x) be the gcd of f(x) and g(x)h(x) and assume to the contrary
that d(x) 6= 1. Let p(x) be an irreducible polynomial, which divides d(x). Then
p(x) divides f(x) and p(x) divides g(x)h(x). Since p(x) is irreducible and
p(x) divides g(x)h(x), by Corollary (3.2), either p(x) divides g(x) or p(x)
divides h(x). Suppose p(x) divides g(x). Then p(x) divides gcd(f(x), g(x)) = 1,
a contradiction. We get a similar contradiction if p(x) divides h(x). Thus,
d(x) = 1 and f(x), g(x)h(x) are relatively prime as claimed.
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Exercises

1. Find the gcd of x3 + x2 + x+ 1 and x5 + 2x3 + x2 + x+ 1.

In Exercises 2 and 3, let J be as defined in Theorem (3.4).

2. Prove that J is closed under addition. That is, prove if F (x), G(x) ∈ J,
then F (x) +G(x) ∈ J.

3. Prove that J is closed under multiplication by elements of F[x]. That is,
prove if F (x) ∈ J and c(x) ∈ F[x], then c(x)F (x) ∈ J.

4. Let J ⊂ F[x] be an ideal, J 6= {0}. Among all non-zero monic polynomials
in J , let d(x) have minimal degree. Prove that every element of J is a multiple
of d(x) and that d(x) is unique. Such a polynomial is called a generator of
J.

5. Let f(x), g(x) be polynomials, not both zero, and let d(x) = gcd(f(x), g(x)).
Suppose f(x) = d(x)f∗(x), g(x) = d(x)g∗(x). Prove that f∗(x), g∗(x) are
relatively prime.

6. Assume f(x), g(x) ∈ F[x], are monic, with gcd(f(x), g(x)) = d(x). Set

l(x) = f(x)g(x)
d(x) . Prove that l(x) is a least common multiple of f(x) and g(x).

7. Assume f(x) and g(x) are polynomials, not both zero. Prove that a least
common multiple of f(x) and g(x) is unique.

8. Assume f(x) is an irreducible polynomial, g(x) is a polynomial, and f(x)
does not divide g(x). Prove that f(x) and g(x) are relatively prime.

9. Assume f(x) and g(x) are relatively prime polynomials. Prove that the
lcm{f(x), g(x)} is the unique monic scalar multiple of f(x)g(x).

10. Let F ⊂ K be fields. Suppose f(x) and g(x) are polynomials with coeffi-
cients in F, h(x) a polynomial with coefficients in K, and f(x) = g(x)h(x).
Prove that h(x) has entries in F.

11. Assume f(x) = p1(x)
e1 . . . pt(x)

et , where p1(x), . . . , pt(x) are irreducible
and distinct. Prove that f(x) has exactly (e1 + 1) . . . (et + 1) monic factors.
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3.2 Roots of Polynomials

What You Need to Know

The division algorithm for polynomials with coefficients in a field.

We begin with some definitions:

Definition 3.10 Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 be a polynomial
with coefficients in F and let b ∈ F. Then by f(b), which we refer to as f(x)
evaluated at b, or the value of f(x) at b, we mean the element of F obtained
by substituting b for x in the expression anx

n + an−1x
n−1 + · · ·+ a1x+ a0

f(b) = anb
n + an−1b

n−1 + · · ·+ a1b + a0.

Definition 3.11 By a root of f(x), we mean an element λ of F such that
f(λ) = 0.

The following theorem is often included in second-year high school algebra
courses and goes by the name of the root-remainder theorem:

Theorem 3.7 Let f(x) be a non-constant polynomial and λ ∈ F. Set r =
f(λ). Then r is the remainder when f(x) is divided by x− λ.

Proof Write f(x) = q(x)(x − λ) + R(x), where either R(x) = 0 or
deg(R(x)) < deg(x − λ) = 1. In either case, R(x) is a scalar (element of
F). Now evaluate at λ:

r = f(λ) = q(λ)(λ − λ) +R = q(λ) · 0 +R = 0 +R = R.

An immediate corollary to the theorem is the following:

Corollary 3.4 Let f(x) be a polynomial. Then λ is a root of f(x) if and only
if x− λ divides f(x).

The previous corollary allows us to define the multiplicity of the root of a
polynomial:



100 Advanced Linear Algebra

Definition 3.12 Let f(x) be a polynomial and λ an element of F. The scalar
λ is said to be a root of multiplicity k of f(x) if (x− λ)k divides f(x) but
(x− λ)k+1 does not divide f(x).

As a further corollary, we can show that a polynomial of degree n has at most
n roots (counting multiplicity).

Corollary 3.5 Let f(x) be a polynomial of degree n. Then f(x) has at most
n roots, counting multiplicity. In particular, f(x) has at most n distinct roots.

Proof Let λi, 1 ≤ i ≤ t, be the distinct roots of f(x) with λi occurring
with multiplicity ei. For i 6= j, 1

λj−λi
[(x − λi) − (x − λj)] = 1, and therefore

x − λi and x − λj are relatively prime. It follows from Lemma (3.7) that
(x−λi)ei and (x−λj)ej are relatively prime. It then follows from Exercise 9 of
Section (3.1) that (x−λ1)e1 (x−λ2)e2 . . . (x−λt)et divides f(x). Consequently,
deg(f(x)) ≥ e1 + e2 + · · ·+ et.

For the remainder of this section, we turn our attention to polynomials with
real and complex coefficients. The importance of the field C is that it is alge-
braically closed, a concept we now define:

Definition 3.13 A field F is said to be algebraically closed if every non-
constant polynomial f(x) has a root in F.

Theorem 3.8 Assume the field F is algebraically closed and f(x) is a poly-
nomial of degree n ≥ 0. Then there exist elements a and λi, 1 ≤ i ≤ n in F
such that

f(x) = a

n∏

i=1

(x− λi).

Proof The proof is by induction on deg(f(x)). If deg(f(x)) = 1, say, f(x) =
ax+ b, then λ = − b

a is a root and f(x) = a(x− λ).

Assume that all polynomials of degree n have n roots in F and that deg(f(x)) =
n + 1. Since F is algebraically closed there exists λ ∈ F such that f(λ) = 0.
Then by Corollary (3.4), x− λ divides f(x). Let g(x) be the polynomial such
that f(x) = g(x)(x − λ). Then g(x) has degree n, and so by the inductive
hypothesis, there are elements a, λi, 1 ≤ i ≤ n in F such that
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g(x) = a
n∏

i=1

(x− λi).

Set λn+1 = λ. Then

f(x) = a

n+1∏

i=1

(x− λi).

Remark 3.2 If follows immediately from Theorem (3.8) that if F is alge-
braically closed and f(x) has degree n, then f(x) has exactly n roots in F,
counting multiplicity.

Theorem 3.9 Fundamental Theorem of Algebra

The complex field, C, is algebraically closed.

Proof The essential element of the proof is a result from complex analy-
sis, known as Liouville’s theorem, which states that a bounded entire function
(holomorphic function) must be constant. In the present case, if f(x) is a
polynomial with complex coefficients and no root, then 1

f(x) will be a bounded

entire function, whence constant, which is a contradiction. For more details
consult a textbook on complex analysis such as ([7]).

The Fundamental Theorem of Algebra has consequences for polynomials with
real coefficients:

Lemma 3.8 Let f(x) be a polynomial with real coefficients. Suppose λ ∈ C
is a root of f(x) and λ is not real. Then λ is also a root of f(x).

Proof Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. Then

0 = f(λ) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0.

Taking the complex conjugate we get

0 = 0 = f(λ) = anλ
n
+ an−1λ

n−1
+ · · ·+ a1λ+ a0.

Since each ai is real, ai = ai. Consequently,

0 = anλ
n
+ an−1λ

n−1
+ . . . a1λ+ a0 = f(λ).
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As a corollary, we have the following:

Corollary 3.6 Let f(x) be a real monic irreducible polynomial. Then either
deg(f(x)) = 1 or 2.

Proof Since a real polynomial is a complex polynomial, there exists a complex
root λ. Suppose λ is real. Then x−λ divides f(x) in C[x] and then by Exercise
10 of Section (3.1), x−λ divides f(x) in R[x]. Since f(x) is a monic irreducible
polynomial it follows that f(x) = x− λ.

So assume that λ ∈ C \ R. Then by Lemma (3.8) it follows that λ is also a
root of f(x). Write λ = a + bi so that λ = a − bi. Then (x − λ)(x − λ) =
x2 − 2ax+ (a2 + b2) is a real quadratic polynomial. Moreover, (x− λ)(x− λ)
divides f(x) in C[x] and therefore, again by Exercise 10 of Section (3.1),
x2 − 2ax + (a2 + b2) divides f(x) in R[x]. Since f(x) is a monic irreducible
polynomial it follows that f(x) = x2 − 2ax+ (a2 + b2).

We will need to know when a real monic polynomial x2+ bx+ c is irreducible.
The answer is supplied by the following:

Lemma 3.9 The real monic quadratic polynomial x2 + bx + c is irreducible
if and only if b2 − 4c < 0.

Proof By adding and subtracting ( b2 )
2 from x2 + bx+ c we obtain

x2 + bx+ c = x2 + bx+

(
b

2

)2

+ c−
(
b

2

)2

= (x+
b

2
)2 − b2 − 4c

4
.

If b2 − 4c = 0, then f(x) has the root − b
2 with multiplicity 2. If b2 − 4c > 0

then setting γ =
√
b2 − 4c, we see that − b

2 ± γ
2 = −b±γ

2 are real roots of f(x).
On the other hand, if b2 − 4c is negative, then for all real x, f(x) > 0, and
there are no real roots.

Theorem 3.10 Let f(x) be a non-constant real polynomial. Then there are
real numbers c, r1, r2, . . . , rs and real monic, irreducible, quadratic polynomials
p1(x), p2(x), . . . , pt(x) such that

f(x) = c(x− r1)(x− r2) . . . (x− rs)p1(x)p2(x) . . . pt(x).



Polynomials 103

Proof This follows from Theorem (3.5) and Corollary (3.6).

Exercises

1. Assume f(x) is a real polynomial of degree 2m + 1, where m is a natural
number. Prove that f(x) has a real root.

2. Give an example of a real polynomial of degree four, which has no real roots
and four distinct complex roots.

3. Assume f(x) = xn+an−1x
n+· · ·+a1x+a0 is a complex polynomial and λ ∈

C is a root of f(x). Prove that λ is a root of f(x) = xn+an−1x
n−1+. . . a1x+a0.

4. Determine a real polynomial of least degree which is divisible by x2 − 3x+
(3− i).

5. Assume that f(x) and g(x) are real polynomials and that 3 + 4i is a root
of both polynomials. Prove that f(x) and g(x) have a common irreducible
quadratic real polynomial as a factor.

In Exercises 6–9 for a polynomial
∑n

i=0 aix
i ∈ F[x] the formal derivative,

D(f(x)), is given by D(f(x)) :=
∑n

i=1 iaix
i−1.

6, Let g(x), g(x) ∈ F[x]. Prove that D(f(x) + g(x)) = D(f(x)) +D(g(x)).

7. For f(x) ∈ F[x] and c ∈ F, prove that D(cf(x)) = cD(f(x)).

8. Let f(x), g(x) ∈ F[x]. Prove that D(f(x)g(x)) = D(f(x))g(x) +
f(x)D(g(x)).

9. Let f(x) be a polynomial of degree n with coefficients in a field F. Assume
that f(x) is a product of linear polynomials in F[x]. Prove that f(x) has n
distinct roots if and only if f(x) and D(f(x)) are relatively prime.

10. Let α1, α2, . . . , αn be distinct elements of the field F. Set

F (x) =

n∏

i=1

(x− αi), Fj(x) =
F (x)

(x− αj)
, j = 1, 2, . . . , n.

Further, set fj(x) =
Fj(x)
Fj(αj)

. Prove that B = (f1(x), f2(x), . . . , fn(x)) is linearly

independent in F(n−1)[x], and, consequently, a basis. (Hint: Note that fi(αj) =
0 if i 6= j and fi(αi) = 1.)

11. Let α1, α2, . . . , αn be distinct elements of the field F and let βi ∈ F for 1 ≤
i ≤ n. Prove that there exists a unique polynomial f(x) such that f(αi) = βi
for all i = 1, 2, . . . , n.

In Exercises 12 and 13, B is the basis for F(n−1)[x] of Exercise 10.
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12. Let g(x) ∈ Fn−1[x]. Prove that the coordinate vector of g(x) with respect

to B is




g(α1)
g(α2)

...
g(αn)


.

13. Determine the change of basis matrix from S = (1, x, x2, . . . , xn−1) to B.
Conclude that this matrix is invertible.
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In this chapter we determine the structure of a single linear operator on a
finite-dimensional vector space. The first section deals with the concept of
an invariant subspace of an operator and the annihilator of a vector with
respect to an operator. In section two we introduce the notion of a cyclic
operator and uncover its properties. Section three concerns maximal vectors,
in particular, we show that such vectors exist. Section four develops the theory
of indecomposable operators. In section five we obtain our main structure
theorem. This is applied in section six where we are able to obtain nice matrix
representations for the similarity class of an operator. In the final section we
specialize and apply these results to operators on finite-dimensional real and
complex vector spaces.

For a different approach to the results of this chapter, based on the theory of
finitely generated modules over principal ideal domains, see ([13]).

105
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4.1 Invariant Subspaces of an Operator

In this section, we begin by defining what it means to evaluate a polynomial
at an operator T on a vector space V. We further introduce the notion of a
T -invariant subspace for an operator T on a finite-dimensional vector space
V over a field F. Finally, we define the concept of an eigenvector as well as
what it means for an operator to be cyclic.

What You Need to Know

The following concepts are fundamental to understanding the new material in
this section: vector space over a field F, basis of a vector space, dimension of a
vector space, linear operator on a vector space V, matrix of a linear operator
T : V → V with respect to basis B for V, a polynomial of degree d with
coefficients in a field F, a monic polynomial, divisibility of polynomials, and
an ideal in F[x].

Let V be a vector space of dimension n and T : V → V a linear operator on
V. We begin by giving meaning to f(T ) for a polynomial f(x):

Definition 4.1 Let f(x) = amx
m+am−1x

m−1+ · · ·+a1x+a0. Then by f(T )
we mean the linear operator amT

m + am−1T
m−1 + . . . a1T + a0IV .

Definition 4.2 Let T ∈ L(V, V ) and v ∈ V. The order ideal of v with
respect to T , denoted by Ann(T,v), we mean the set of all polynomials f(x)
such that v ∈ Ker(f(T )), that is, f(T )(v) = 0:

Ann(T,v) = {f(x) ∈ F[x]|f(T )(v) = 0}.

In the definition, we refer to Ann(T,v) as an ideal; in Exercise 1 you verify
this.

A priori there is no reason to believe that for an arbitrary vector v ∈ V that
there are any non-zero polynomials f(x) such that f(T )(v) = 0. However, in
our next theorem, we prove for any vector v, Ann(T,v) 6= {0}.

Theorem 4.1 Let V be an n-dimensional vector space, T a linear operator
on V, and v a non-zero vector in V. Then there exists a non-zero polynomial
f(x) of degree at most n such that f(T )(v) = 0.
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Proof Since the dimension of V is n, any sequence of n + 1 vec-
tors is linearly dependent by Theorem (1.16). In particular, the sequence
(v, T (v), T 2(v), . . . , T n(v)) is linearly dependent.

Consequently, there are scalars ai, 0 ≤ i ≤ n, not all zero, such that

a0v + a1T (v) + a2T
2(v) + · · ·+ an−1T

n−1(v) + anT
n(v) = 0.

Set f(x) = a0 + a1x + · · · + anx
n. Then f(x) 6= 0 since some ai 6= 0 and

deg(f(x)) ≤ n. Moreover,

f(T )(v) = (a0IV + a1T + · · ·+ an−1T
n−1 + anT

n)(v)

= a0v + a1T (v) + a2T
2(v) + · · ·+ an−1T

n−1(v) + anT
n(v)

= 0.

Thus, f(x) ∈ Ann(T,v).

As previously mentioned, in Exercise 1, you are asked to prove for any operator
T and vector v ∈ V , Ann(T,v) is an ideal in the algebra F[x]. By Exercise 4
of Section (3.1), Ann(T,v) contains a monic polynomial µ(x) such that every
polynomial in Ann(T,v) is a multiple of µ(x). Recall such a polynomial is
called a generator of Ann(T,v). This motivates the following definition:

Definition 4.3 Let V be a finite-dimensional vector space, T an operator on
V, and v a vector in V. The unique monic generator of Ann(T,v) is called the
minimal polynomial of T with respect to v. It is also sometimes referred
to as the order of v with respect to T . It is denoted here by µT,v(x).

Remark 4.1 Suppose g(x) ∈ F[x] and g(T )(v) = 0. Then µT,v(x) divides
g(x).

Example 4.1 Let T : R3 → R3 be defined by

T (v) =




2 −1 1
−3 4 −5
−3 3 −4


 v.

Let v =



−1
2
2


 . Determine µT,v(x).
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T (v) =



−2
1
1


 , T 2(v) =



−4
5
5


 , T 3(v) =



−8
7
7


 .

We find the null space of the matrix

A = (v T (v) T 2(v) T 3(v)) =



−1 −2 −4 −8
2 1 5 7
2 1 5 7


 .

The reduced echelon form of A is



1 0 2 2
0 1 1 3
0 0 0 0


 .

We conclude from this that null(A) = Span








−2
−1
1
0


 ,




−2
−3
0
1







.

Each of these basis vectors corresponds to a polynomial in Ann(T,v): From the

vector




−2
−1
1
0


 we obtain the polynomial f(x) = x2−x−2 = (x+1)(x−2). The

vector




−2
−3
0
1


 gives the polynomial g(x) = x3−x2−3x−2 = (x+1)(x2−x−2) =

(x+1)2(x−2). It now follows that Ann(T,v) = {a(x)f(x)|a(x) ∈ F[x]}. Thus,
µT,v(x) = x2 − x− 2.

We now proceed to prove some results about the annihilator ideal and minimal
polynomial of an operator with respect to a vector. These will be fundamental
to our main goal of understanding the structure of a single linear operator.
Before doing so, we introduce some additional definitions:

Definition 4.4 Let V be a vector space and T an operator on V. A subspace
W of V is said to be T -invariant if T (w) ∈W for all w ∈W.

Remark 4.2 Assume V is a vector space, T ∈ L(V, V ) and W is a T -
invariant subspace. Then the restriction of T to W, denoted by T|W , is an
operator on W.
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Definition 4.5 Let V be a finite-dimensional vector space, T an operator on
V, and v a vector from V. Then the T -cyclic subspace generated by v

is {f(T )(v)|f(x) ∈ F[x]}. We will denote this by 〈T,v〉. By the order of the
T -cyclic subspace 〈T,v〉 generated by v, we will mean the polynomial µT,v(x).

Example 4.2 Let T be an operator on the finite-dimensional vector space V.
For any subset of vectors {v1,v2, . . . ,vk} from Ker(T ), Span(v1,v2, . . . ,vk)
is a T -invariant subspace. In particular, if v ∈ Ker(T ) then 〈T,v〉 =
Span(v) = {av|a ∈ F} is T -invariant.

A more interesting example is when v /∈ Ker(T ) and Span(v) is T -invariant.
In this case, T (v) = λv for some non-zero scalar λ. This motivates the fol-
lowing definition.

Definition 4.6 Let T be an operator on a vector space V. A vector v is said
to be an eigenvector of T with eigenvalue λ if T (v) = λv. The spectrum
of the operator T is the set of all eigenvalues of T . This is denoted by Spec(T ).

We have a corresponding definition for matrices:

Definition 4.7 Let A be an n × n matrix with entries in the field F. An
eigenvector of A is an n× 1 matrix X such that AX = λX for some scalar
λ ∈ F. The scalar λ is an eigenvalue of A. The spectrum of the matrix A
is the set of all eigenvalues of A. This is denoted by Spec(A).

Remark 4.3 When computing the spectrum of an operator or matrix it is
important to specify what field one is over. As an example, the spectrum of

the matrix

(
0 1
−1 0

)
when viewed as a real matrix is the empty set, whereas

it is {i,−i} when viewed as a complex matrix.

The following definition will make an appearance later when we introduce the
notion of a norm of an operator.

Definition 4.8 Let V be a finite-dimensional vector space over C and T :
V → V an operator. The spectral radius of T, denoted by ρ(T ), is the
maximum of {|λ||λ ∈ Spec(T )}.

The following theorem enumerates many of the properties of the T -cyclic
subspace generated by a vector v.
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Theorem 4.2 Let V be a finite-dimensional vector space, T an operator on
V, and v a vector from V. Then the following hold:

i) 〈T,v〉 is a T -invariant subspace of V.

ii) If W is a T -invariant subspace of V, and v ∈W, then 〈T,v〉 ⊂W.

iii) If µT,v(x) has degree d, then (v, T (v), . . . , T d−1(v)) is a basis for 〈T,v〉.

Proof i) We need to show that 〈T,v〉 is closed under addition and scalar
multiplication and for an arbitrary x ∈ 〈T,v〉 that T (x) ∈ 〈T,v〉.
Suppose x,y ∈ 〈T,v〉 and c ∈ F. By the definition of 〈T,v〉, there are
polynomials f(x) and g(x) such that x = f(T )(v) and y = g(T )(v). Then
x+ y = f(T )(v) + g(T )(v) = (f(T ) + g(T ))(v) = [(f + g)(T )](v) ∈ 〈T,v〉.
We also have cx = c(f(T )(v) = [cf(T )](v) = [(cf)(T )](v). Since (cf)(x) is a
polynomial it follows that cx ∈ 〈T,v〉.
Finally, assume x ∈ 〈T,v〉. Then there exists a polynomial f(x) such that
x = f(T )(v). Set g(x) = xf(x). Now T (x) = T (f(T )(v)) = (Tf(T ))(v) =
g(T )(v) ∈ 〈T,v〉 as required.

ii) Assume W is a T -invariant subspace of V and v ∈ W. Then by induction
T k(v) ∈W for all natural numbers k. SinceW is a subspace, it is closed under
scalar multiplication and therefore for any scalar ak, akT

k(v) ∈ W. Finally,
W is closed under addition from which we can conclude that an arbitrary sum
a0v + a1T (v) + · · ·+ akT

k(v) ∈ W. But this implies for all polynomials f(x)
that f(T )(v) ∈W , hence 〈T,v〉 ⊂ W.

iii) We need to prove that (v, T (v), . . . , T d−1(v)) is linearly independent and
spans 〈T,v〉.
Suppose a0v + a1T (v) + · · · + ad−1T

d−1(v) = 0. Set f(x) = a0 + a1x +
· · · + ad−1x

d−1. Then f(x) ∈ Ann(T,v). By assumption, the least degree of
a non-zero polynomial in Ann(T,v) is d. If f(x) 6= 0, then deg(f(x)) < d, a
contradiction. Thus, f(x) = 0 and a0 = a1 = · · · = ad−1 = 0. Consequently,
the sequence (v, T (v), . . . , T d−1(v)) is linearly independent.

Next, let f(x) ∈ F[x] be arbitrary. Write f(x) = q(x)µT,v(x) + r(x), where
r(x) = 0 or deg(r(x)) < µT,v(x) = d. If r(x) = 0 the f(T )(v) =
q(T )(µT,v(T )(v)) = 0 so f(T )(v) ∈ Span(v, T (v), . . . , T d(v)). We may there-
fore assume that r(x) 6= 0.

Let r(x) = b0 + b1x+ · · ·+ bd−1x
d−1. Now

f(T )(v) = [q(T )µT,v(T ) + r(T )](v) = q(T )(µT,v(T )(v)) + r(T )(v).

However, µT,v(T )(v) = 0 and therefore
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f(T )(v) = r(T )(v) = b0v + b1T (v) + · · ·+ bd−1T
d−1(v),

which proves that (v, T (v), . . . , T d−1(v)) spans 〈T,v〉.

Let V be a finite-dimensional vector space. We shall see below that there
are polynomials that annihilate T independent of any particular vector. This
motivates the following definition:

Definition 4.9 Let V be a finite-dimensional vector space, T an operator on
V . Then the annihilator ideal of T on V , denoted by Ann(T, V ) or just
Ann(T ), consists of all polynomials f(x) such that f(T ) is the zero operator:

Ann(T ) = {f(x) ∈ F[x]|f(T )(v) = 0, ∀v ∈ V }.

Again we are confronted with the question of whether there are non-zero
polynomials in Ann(T ). The next theorem answers this affirmatively:

Theorem 4.3 Let V be an n-dimensional vector space and T an operator on
V. Then there exists a non-zero polynomial f(x) of degree at most n2 such
that f(T ) = 0V→V .

Proof We have previously shown that dim(L(V, V )) is n2. As a consequence
any sequence of n2 + 1 operators is linearly dependent, in particular, the se-
quence

(IV , T, T
2, . . . , T n2

).

It therefore follows that there are scalars ai, 0 ≤ i ≤ n2, not all zero such that

a0IV + a1T + a2T
2 + · · ·+ an2T n2

= 0V →V .

Set f(x) = a0+a1x+a2x
2+ · · ·+an2xn

2

. Then deg(f(x)) ≤ n2 and f(x) 6= 0
since some coefficient is non-zero. Finally, f(T ) = 0V →V .

Definition 4.10 Let V be a finite-dimensional vector space and T a linear
operator on V . The unique monic polynomial of least degree in Ann(T, V ) is
called the minimal polynomial of T . This polynomial is denoted by µT (x).
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Remark 4.4 Suppose g(x) ∈ F[x] and g(T )(v) = 0 for all vectors v ∈ V.
Then it is consequence of the definition that µT (x)|g(x).

Remark 4.5 Let T be an operator on a finite-dimensional vector space V
and v ∈ V . Then µT,v(x)|µT (x).

Remark 4.6 If dim(V ) = n, we presently have deg(µT (x)) ≤ n2 but we will
make a substantial improvement on this.

Exercises

1. Give an explicit description of an operator T ∈ L(R3,R3) such that T (U) 6=

U, where U =







x1
x2
0


 | x1, x2 ∈ R



 .

2. Let V be a finite-dimensional vector space over the field F and assume U
is a subspace, U 6= V, {0}. Prove that there is an operator T ∈ L(V, V ) such
that T (U) 6= U.

3. Determine the minimal polynomial of the operator T from Example (4.1)

with respect to the vector



0
0
1


.

4. Find µT,y(x) for the operator T of Example (4.1) if y =



0
1
0


 .

5. Let V be a finite-dimensional vector space over the field F, S, T ∈ L(V, V ),
and assume ST = TS. If v ∈ V is an eigenvector of S with eigenvalue λ, prove
that T (v) is also an eigenvector of S with eigenvalue λ.

6. Let V be a finite-dimensional vector space and assume that T ∈ L(V, V ) is
invertible and U is a T -invariant subspace of V. Prove that U is a T−1-invariant
subspace of V.

7. Assume V is a finite-dimensional vector space over a field F, where 2 6= 0
and T ∈ L(V, V ) satisfies T 2 = IV . Set E1 = {v ∈ V |T (v) = v} and E−1 =
{v ∈ V |T (v) = −v}. Prove that V = E1 ⊕ E−1.

8. Let T : R3 → R3 be the linear operator given by T



x1
x2
x3


 =



x3
x1
x2


 .

Determine all T -invariant subspaces of R3.

9. Let T : R3 → R3 be the linear operator given by T



x1
x2
x3


 =



x2
x3
0


 .

Determine all T -invariant subspaces of R3.
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10. Let V be a vector space over the field F and T an operator on V. Set
P(T ) = {f(T )|f(x) ∈ F[x]}. Prove that P(T ) is an algebra over F.

11. Let V be a finite-dimensional vector space over a field F, T ∈ L(V, V ),
and v ∈ V . Prove that Ann(T,v) is an ideal of F[x].

12. Prove if U,W are T -invariant subspaces of the space V then U +W and
U ∩W are a T -invariant subspaces of V.

13. Prove that Ann(T ) is an ideal in F[x].

14. Let T be an operator on the finite-dimensional vector space V. Prove that
if T has an eigenvector, then µT (x) has a linear factor. The converse is true,
but we leave it to section three.

15. Let T be an operator on the finite-dimensional vector space V and let B
be a basis for V. Prove that a vector v is an eigenvector of T with eigenvalue
λ if and only if the coordinate vector [v]B is an eigenvector of the matrix
MT (B,B) with eigenvalue λ.

16. Let T be an operator on a finite-dimensional vector space V , B =
(v1, . . . ,vn) a basis for V , and f(x) ∈ F[x]. Set A = MT (B,B). Prove that
f(T ) = 0V→V if and only if f(A) = 0nn.

17. Let S be an operator on the finite-dimensional vector space V and B be a
basis for V. Let S′ be the operator such that MS′(B,B) = MS(B,B)tr. Prove
that S and S′ have the same minimal polynomial. (Hint: For a square matrix
A and a polynomial f(x), f(Atr) = f(A)tr).

18. Assume T is an invertible linear operator on the finite-dimensional vector
space V and v is an eigenvector of T with eigenvalue λ. Prove that v is an
eigenvector of T−1 with eigenvalue 1

λ .

19. Assume T is a linear operator on the finite-dimensional vector space V
over the field F and v is an eigenvector of T with eigenvalue λ. If f(x) ∈ F[x],
prove that v is an eigenvector of f(T ) with eigenvalue f(λ).

20. Let V be a finite-dimensional vector space over the field F;S, T linear
operators on V ; and assume that S is invertible. If v is an eigenvector of
T with eigenvalue λ, prove that S−1(v) is an eigenvector of S−1TS with
eigenvalue λ.

21. Let S, T be linear operators on the finite-dimensional vector space V over
a field F. Prove that µST (x) divides xµTS(x) and µTS(x) divides xµST (x).
Use this to conclude that ST and TS have the same eigenvalues.

22. Let T be a linear operator on the finite-dimensional vector space V over
the field F, and g(x) ∈ F[x]. Prove that Ker(g(T )) is a T -invariant subspace
of V .
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4.2 Cyclic Operators

In this short section, we assume that V is a finite-dimensional vector space,
T is a linear operator on V , and v is a vector from V such that V = 〈T,v〉.
We investigate properties of such an operator.

What You Need to Know

The following concepts are fundamental to understanding the new material
in this section: vector space over a field F, basis of a vector space, dimension
of a vector space, linear operator on a vector space V, matrix of a linear
operator T : V → V with respect to a basis B for V, a polynomial of degree
d with coefficients in a field F, the evaluation f(T ) of a polynomial f at an
operator T of a finite-dimensional vector space V, invariant subspace of an
operator T on a vector space V, the T -cyclic subspace 〈T,v〉 generated by a
vector v, the annihilator ideal of a vector with respect to an operator, the
minimal polynomial of an operator with respect to a vector, the annihilator
ideal of an operator T, the minimal polynomial of an operator T, eigenvalue
and eigenvector of an operator T.

Definition 4.11 Let V be a finite-dimensional vector space and T an operator
on V. T is said to be a cyclic operator if there is a vector v ∈ V such that
V = 〈T,v〉.

Lemma 4.1 Assume T is a cyclic operator on the finite-dimensional vector
space V and 〈T,v〉 = V. Then µT,v(x) = µT (x).

Proof By Remark (4.1), we know that µT,v(x) divides µT (x) since
µT (T )(v) = 0V→V (v) = 0. On the other hand, for any vector
u ∈ V, there is a polynomial g(x) such that u = g(T )(v). Then
µT,v(T )(u) = µT,v(T )(g(T )(v)) = [µT,v(T )g(T )](v) = [g(T )µT,v(T )](v) =
g(T )(µT,v(T )(v)) = g(T )(0) = 0. Thus, µT,v(T )(u) = 0 for all vectors u ∈ V .
By Remark (4.4), we can conclude that µT (x) divides µT,v(x). Consequently,
by Lemma (3.3), there is a scalar a such that µT (x) = aµT,v(x). However,
since both polynomials are monic, it follows that a = 1 and they are equal.

For the remainder of this section, we assume that T is a cyclic operator on
the finite-dimensional vector space V and that V = 〈T,v〉. For convenience of
notation, we set f(x) = µT (x) = µT,v(x). In our next result, we investigate
µT,g(T )(v)(x).
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Theorem 4.4 Let g(x) ∈ F[x]. Set y = g(T )(v), d(x) = gcd(f(x), g(x)) and

h(x) = f(x)
d(x) . Then h(x) = µT,y(x).

Proof Note that d(x) is monic and divides µT,v(x). Since µT,v is monic
the quotient, h(x), is monic. We show that h(x) divides µT,y(x) and µT,y(x)
divides h(x). Since both are monic, equality will follow.

We claim that h(T )(y) = 0. Let g(x) = d(x)g′(x). We then have

h(T )(y) = h(T )[g(T )(v)] = [h(T )g(T )](v) =

[h(T )(d(T )g′(T ))](v) = [f(T )g′(T )](v) = [g′(T )f(T )](v) =

g′(T )(f(T )(v)) = g′(T )(0) = 0.

Since h(T )(y) = 0 it follows from Remark (4.1) that µT,y(x) divides h(x).

On the other hand,

0 = µT,y(T )(y) = µT,y(T )(g(T )(v)) = [µT,y(T )g(T )](v).

Therefore, by Remark (4.1), f(x) = µT,v(x) divides µT,y(x)g(x). Since f(x) =
d(x)h(x) and g(x) = d(x)g′(x), it follows that h(x) divides µT,y(x)g

′(x). How-
ever, by Exercise 7 of Section (3.1), h(x) and g′(x) are relatively prime. Con-
sequently, h(x) divides µT,y(x).

In our final result, we prove that every T -invariant subspace of V = 〈T,v〉 is
cyclic.

Theorem 4.5 Let W be a T -invariant subspace of V = 〈T,v〉. Then there
exists a vector w ∈ W such that W = 〈T,w〉. If g(x) = µT,w(x) then g(x)
divides f(x). Moreover, for each monic divisor g(x) of f(x), there is a unique
T -invariant subspace W of V such that µT|W

(x) = g(x).

Proof If W = {0}, then W = 〈T,0〉, and we are done. Therefore, we may
assume that W 6= {0}. Let u 6= 0 be a vector in W. Let k(x) be a polynomial
such that u = k(T )(v).

Now let J = {l(x) ∈ F[x]|l(T )(v) ∈ W}; this is an ideal of F[x]. We have
just demonstrated that there exists non-zero polynomials in J. Choose a monic
polynomial h(x) in J of minimal degree and set w = h(T )(v). We claim that
W = 〈T,w〉. Suppose to the contrary that y ∈W \〈T,w〉. Let y = m(T )(v) for
a polynomial m(x). Suppose h(x) divides m(x), say, m(x) = q(x)h(x). Then
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m(T )(v) = [q(T )h(T )](v) = q(T )(h(T )(v) = q(T )(w) ∈ 〈T,w〉, contradicting
our assumption. Thus, h(x) does not divide m(x). Now apply the division
algorithm to write m(x) = q(x)h(x) + r(x) with r(x) 6= 0 and deg(r(x)) <
deg(h(x)).

Now

r(T )(v) = [m(T )− q(T )h(T )](v) =

m(T )(v)− q(T )(h(T )(v)) = y − q(T )(w) ∈W.

However, since deg(r(x)) < deg(h(x)), this contradicts the minimality of the
degree of h(x). This proves that W = 〈T,w〉 as claimed.

We next demonstrate that h(x) divides f(x). Set d(x) = gcd(f(x), h(x)). We
need to show that d(x) = h(x). Write h(x) = h′(x)d(x), f(x) = f ′(x)d(x).
Also set w′ = d(T )(v) and W ′ = 〈T,w′〉. Since w = h′(T )(w′) it follows
that w ∈ W ′ and therefore W ⊂ W ′. On the other hand, f ′(x) and h′(x) are
relatively prime. Therefore, there are polynomials a(x) and b(x) such that

a(x)f ′(x) + b(x)h′(x) = 1.

Multiplying by d(x) we get

a(x)f ′(x)d(x) + b(x)h′(x)d(x) = a(x)f(x) + b(x)h(x) = d(x).

It then follows that

w′ = d(T )(v) = [a(T )f(T ) + b(T )h(T )](v)

= a(T )f(T )(v) + b(T )h(T )(v)

= b(T )(w),

the latter equality since f(T ) = 0V→V . We can therefore conclude that w′ ∈
〈T,w〉 = W and therefore W ′ = W. This implies that d(x) ∈ J. Since d(x)
divides h(x) and h(x) was chosen to have minimal degree among polynomials
in J , we can conclude that d(x) and h(x) have the same degree. However, both
are monic and this implies that d(x) = h(x).

Now set g(x) = µT,w(x). Since w = h(T )(v) by Theorem (4.4), it follows that

g(x) = µT (x)
h(x) , which divides µT (x) = f(x) as claimed.

Next we need to show for any monic divisor g(x) there is a unique T -invariant

subspace W = 〈T,w〉 such that µT,w(x) = g(x). Set h(x) = f(x)
g(x) and w =

h(T )(v). Then by Theorem (4.4), we know that

µT,w(x) =
f(x)

gcd(f(x), h(x))
=
f(x)

h(x)
= g(x).
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This proves the existence of W.

On the other hand, suppose w′ ∈ V and µT,w′(x) = g(x). Let w′ = k(T )(v)

and set d(x) = gcd(f(x), k(x)). Then g(x) = f(x)
d(x) and therefore d(x) = h(x).

If we write k(x) = k′(x)h(x), then w′ = k(T )(v) = k′(T )h(T )(v) = k′(T )(w)
and hence w′ ∈ 〈T,w〉. Then W ′ ⊂ W. However, dim(W ′) = deg((g(x)) =
dim(W ), and we can finally conclude that W ′ =W.

Exercises

1. Let T : R3 → R3 be the transformation given by

T (v) =




2 −2 3
1 0 2
−1 2 0


v.

a) Set z =



0
0
1


 . Prove that R3 = 〈T, z〉 and determine µT,z(x).

b) Set u = (T 2 + IV )(z). Determine µT,u(x).

2. Let T : R4 → R4 be given by

T (v) =




0 0 0 −4
1 0 0 0
0 1 0 −5
0 0 1 0


 .

Set z =




1
0
0
0


 . Prove that R4 = 〈T, z〉 and determine µT (x).

3. Assume the operator T on the vector space V has no non-trivial invariant
subspaces. Prove that T is cyclic.

4. Give an example of a cyclic operator T on R4 such that the subspaces






x1
x2
x3
0


 | x1, x2, x3 ∈ R




,








x1
x2
0
0


 | x1, x2 ∈ R





and








x1
0
0
0


 | x1 ∈ R





are

T -invariant.

5. Assume T is a cyclic operator on R3. Let N be the number of T -invariant
subspaces. Prove that N ∈ {4, 6, 8}.
6. Give an example of a cyclic operator T on R3, which has exactly four
subspaces that are T -invariant.
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7. Give an example of a cyclic operator T on R3, which has exactly six sub-
spaces that are T -invariant. .

8. Assume T is a cyclic operator on R4. Let N be the number of T -invariant
subspaces. Prove that N ∈ {3, 4, 5, 6, 8, 9, 12, 16}.
9. Give an example of a cyclic operator T on R4, which has exactly three
subspaces that are T -invariant.

10. Give an example of a cyclic operator T on R4, which has exactly 12
subspaces that are T -invariant.

11. Give an example of a cyclic operator T on R4, which has exactly 16
subspaces that are T -invariant.

12. Let V be an n-dimensional vectors space. Assume T : V → V is cyclic, say
V = 〈T,v〉. Let S ∈ L(V, V ) and assume that ST = TS. Prove there exists a
polynomial g(x) ∈ F(n−1)[x] such that S = g(T ).
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4.3 Maximal Vectors

In this section, we consider a linear operator T on a finite-dimensional vector
space V . We prove the existence of vectors v such that µT,v(x) = µT (x).

What You Need to Know

The following concepts are fundamental to understanding the new material
in this section: vector space over a field F, basis of a vector space, dimension
of a vector space, linear operator on a vector space V, matrix of a linear
operator T : V → V with respect to a base B for V, a polynomial of degree
d with coefficients in a field F, the evaluation f(T ) of a polynomial f(x) at
an operator T of a finite-dimensional vector space V, invariant subspace of
an operator T on a vector space V, the T -cyclic subspace 〈T,v〉 generated by
a vector v, the annihilator ideal of a vector with respect to an operator, the
minimal polynomial of an operator with respect to a vector, the annihilator
ideal of an operator T, the minimal polynomial of an operator T, eigenvalue
and eigenvector of an operator T.

We begin with an important definition:

Definition 4.12 A vector z such that µT,z(x) = µT (x) is called a maximal
vector for T.

The purpose of this section is to prove that maximal vectors always exist. In
our first result we consider vectors v,w such that µT,v(x) and µT,w(x) are
relatively prime.

Lemma 4.2 Let V be a finite-dimensional vector space, T an operator on V ,
and v,w vectors in V. Assume gcd(µT,v(x), µT,w(x)) = 1. Then the following
hold:

i) 〈T,v〉 ∩ 〈T,w〉 = {0};
ii) µT,v+w(x) = µT,v(x)µT,w(x).

iii) 〈T,v +w〉 = 〈T,v〉 ⊕ 〈T,w〉.

Proof i) For convenience, set f(x) = µT,v(x) and g(x) = µT,w(x). Since
gcd(f(x), g(x)) = 1, there are polynomials a(x) and b(x) such that a(x)f(x)+
b(x)g(x) = 1. Then a(T )f(T )+b(T )g(T ) = IV . Suppose now that x ∈ 〈T,v〉∩
〈T,w〉. Then f(T )(x) = g(T )(x) = 0. But we then have
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x = IV (x)

= [a(T )f(T ) + b(T )g(T )](x)

= a(T )(f(T )(x) + b(T )(g(T )(x)

= a(T )(0) + b(T )(0)

= 0.

ii) Set h(x) = µT,v+w(x). We show that h(x)|f(x)g(x) and f(x)g(x)|h(x) and
since both are monic we get equality.

First,

[f(T )g(T )](v +w) = (f(T )g(T ))(v) + (f(T )g(T ))(w)

= g(T )(f(T )(v)) + f(T )(g(T )(w))

= g(T )(0) + f(T )(0) = 0.

By Remark (4.1), it follows that h(x)|f(x)g(x).
On the other hand, 0 = h(T )(v + w) = h(T )(v) + h(T )(w) from which we
conclude that h(T )(v) = −h(T )(w). The former vector, h(T )(v), is in 〈T,v〉
and the latter, −h(T )(w) is in 〈T,w〉. By i) 〈T,v〉 ∩ 〈T,w〉 = {0}. Thus,
h(T )(v) = h(T )(w) = 0. Again by Remark (4.1) it follows that f(x)|h(x) and
g(x)|h(x). Then the lcm of f(x) and g(x) divides h(x). However, since f(x)
and g(x) are relatively prime and monic, the lcm of f(x) and g(x) is f(x)g(x).
Thus, f(x)g(x) divides h(x) as we claimed.

iii) Since 〈T,v〉 and 〈T,w〉 are T -invariant by Exercise 12 of Section (4.1),
the sum 〈T,v〉 + 〈T,w〉 is T -invariant and contains v +w. Therefore, by ii)
of Theorem (4.2), 〈T,v +w〉 ⊂ 〈T,v〉+ 〈T,w〉.
By part i), 〈T,v〉 ∩ 〈T,w〉 = {0}. It follows from this that dim(〈T,v〉 +
〈T,w〉) = dim(〈T,v〉) + dim(〈T,w〉) = deg(f(x)) + deg(g(x)), the latter
equality by iii) of Theorem (4.2). On the other hand, by the same result,
dim(〈T,v+w〉) = deg(µT,v+w(x)) = deg(f(x)g(x)) by the second part above.
It now follows that 〈T,v +w〉 = 〈T,v〉+ 〈T,w〉 = 〈T,v〉 ⊕ 〈T,w〉.

Lemma 4.3 Let V be an n-dimensional vector space with basis B =
(v1,v2, . . . , vn). Let T be an operator on V and set fi(x) = µT,vi

(x) and
let l(x) be the lcm of f1(x), f2(x), . . . , fn(x). Then l(x) is the minimal poly-
nomial of T.
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Proof Since µT (T )(v) = 0 for all vectors v it follows, in particular, that
µT (T )(vi) = 0, i = 1, 2, . . . , n. Then by Remark (4.1) we have that fi(x)|µT (x)
for all i and, consequently, l(x)|µT (x).

On other hand, since fi(x)|l(x), l(T )(vi) = 0. Since l(T ) takes each vector of
the basis to the zero vector, l(T ) is the zero operator. Then by Remark (4.4)
we can say that µT (x)|l(x). Since µT (x) and l(x) are both monic µT (x) = l(x).

We now come to our prime objective:

Theorem 4.6 Let V be an n-dimensional vector space and T an operator on
V . Then there exists a vector z such that µT (x) = µT,z(x).

Proof Let B = (v1,v2, . . . ,vn) be a basis for V and set fi(x) = µT,vi
(x) and

l(x) = µT (x). By Lemma (4.3), l(x) is the lcm of (f1(x), f2(x), . . . , fn(x)).

Let the prime factorization of l(x) be

p1(x)
e1p2(x)

e2 . . . pt(x)
et ,

where pi(x) is a monic irreducible polynomial and ei is a natural number,
i = 1, 2, . . . , t.

Since l(x) is the lcm of f1(x), f2(x), . . . , fn(x), for each i, there exists an
index ji such that pi(x)

ei divides fji(x). Write fji(x) = pi(x)
eigji(x) and set

wi = gji(T )(vji). Since gji(x) divides fji(x), the gcd of gji(x) and fji(x) is
gji(x). By Theorem (4.4), the minimal polynomial of T with respect to wi is
the quotient of fji(x) by gji(x). However, fji(x) = pi(x)

eigji(x) and therefore
µT,wi

(x) = pi(x)
ei .

Now set z1 = w1 and suppose that for 1 < k < t and that zk has been defined.
Set zk+1 = zk +wk+1 and z = zt. We claim that for each k, 1 ≤ k ≤ t that
µT,zk

(x) = p1(x)
e1p2(x)

e2 . . . pk(x)
ek . If so, then the vector z will satisfy the

conclusion of the theorem.

By part ii) Lemma (4.2), the minimal polynomial of T with respect to z2 =
w1 + w2 is p1(x)

e1p2(x)
e2 . Now assume that 1 < k < t and the minimal

polynomial of T with respect to zk is p1(x)
e1p2(x)

e2 . . . pk(x)
ek . The minimal

polynomial of T with respect to wk+1 is pk+1(x)
ek+1 , which by Lemma (3.7)

is relatively prime to p1(x)
e1 p2(x)

e2 . . . pk(x)
ek . By another application of

part ii) of Lemma (4.2) the minimal polynomial of zk+1 = zk + wk+1 is
p1(x)

e1p2(x)
e2 . . . pk+1(x)

ek+1 . This completes the theorem.

As an immediate corollary we have:
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Corollary 4.1 Let V be an n-dimensional vector space and T an operator on
V. Then the degree of µT (x) is at most n.

Exercises.

1. Let T : R3 → R3 be the operator given by

T (v) =



−1 3 −2
−1 3 −4
−1 1 −2


v.

a) For each of the standard basis vectors ei find µT,ei
(x).

b) Compute µT (x).

c) Find a maximal vector for T.

2. Let T : F3
5 → F3

5 be the operator given by

T (v) =



4 3 3
4 3 1
4 1 3


 v.

Determine µT (x) and find a maximal vector for T.

3. Let T : R4 → R4 be the operator given by

T (v) =




2 0 0 0
2 0 0 −1
−1 1 0 −1
0 0 1 −1


 v.

Determine µT (x) and find a maximal vector for T.

4. Let V be a finite-dimensional vector space and T an operator on V. Assume
v1, . . . ,vk are eigenvectors for V with distinct eigenvalues α1, . . . , αk. Prove
the sequence (v1, . . . ,vk) is linearly independent.

5. Assume T ∈ L(R4,R4) and µT,v1(x) = x2 + 1, µT,v2(x) = x + 1 and
µT,v3(x) = x − 2. Prove that T is a cyclic operator and that v1 + v2 + v3

is a maximal vector.

6. Let T ∈ L(F4
3,F

4
3) and v1,v2,v3,v4 vectors from F4

3 such that µT,v1(x) =
x2+1,v2 = T (v1), µT,v3(x) = x+1 and µT,v4(x) = x− 1. Prove that a vector
c1v1 + c2v2 + c3v3 + c4v4 is maximal if and only if c3 and c4 are non-zero and
at least one of c1, c2 is non-zero.

7. Let V be a finite-dimensional vector space and T an operator on V. Assume
µT (x) is an irreducible polynomial. Prove that every non-zero vector in V is
a maximal vector.

8. Assume T ∈ L(F5
5,F

5
5) and µT (x) = x5 − x. Prove that T has exactly 45

maximal vectors.
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4.4 Indecomposable Linear Operators

In this section we continue with our investigation into the structure of a linear
operator T on a finite-dimensional vector space V. In particular, we determine
when it is not possible to express V as the direct sum of two T -invariant
subspaces. This leads to the definition of a T -indecomposable subspace of V.

What You Need to Know

The following concepts are fundamental to understanding the new material
in this section: vector space over a field F, basis of a vector space, dimension
of a vector space, linear operator on a vector space V, matrix of a linear
operator T : V → V with respect to a basis B for V, a polynomial of degree
d with coefficients in a field F, the evaluation f(T ) of a polynomial f at an
operator T of a finite-dimensional vector space V, invariant subspace of an
operator T on a vector space V, the T -cyclic subspace 〈T,v〉 generated by a
vector v, the annihilator ideal of a vector with respect to an operator, the
minimal polynomial of an operator with respect to a vector, the annihilator
of an operator T, the minimal polynomial of an operator T, eigenvalue and
eigenvector of an operator T, and the maximal vector for an operator on a
finite-dimensional vector space.

We begin with some fundamental definitions:

Definition 4.13 Let V be a finite-dimensional vector space, T an operator
on V, and U a T -invariant subspace. By a T -complement to U in V we shall
mean a T -invariant subspace W such that V = U ⊕W.

Definition 4.14 Let V be a finite-dimensional vector space and T an operator
on V. T is said to be an indecomposable operator if no non-trivial T -
invariant subspace has a T -invariant complement. In the contrary situation,
where there exists non-trivial T -invariant subspaces U and W such that V =
U ⊕W, we say T is decomposable.

Example 4.3 Let T : R3 → R3 be given by

T (v) =



3 1 1
1 3 1
1 1 3


 v.
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The subspace U = Span






1
0
−1


 ,




0
1
−1




 is T -invariant. The subspace

W = Span





1
1
1




 is a T -invariant complement to U .

Example 4.4 Let T : R2 → R2 be the operator given by

T (v) =

(
1 1
0 1

)
v.

The operator T is an indecomposable operator.

Definition 4.15 Let V be a non-zero finite-dimensional vector space and T
an operator on V. T is said to be an irreducible operator if the only T -
invariant subspaces are V and {0}.

Example 4.5 Let T : R2 → R2 be the operator given by

T (v) =

(
0 1
−1 0

)
v.

The operator T is an irreducible operator.

Our main goal is to prove that an operator T is indecomposable if and only if
T is cyclic and µT (x) = p(x)m, where p(x) is an irreducible polynomial. We
begin by characterizing irreducible operators.

Theorem 4.7 Let V be an n-dimensional vector space and T an operator on
V. Then T is irreducible if and only if T is cyclic and µT (x) is an irreducible
polynomial.

Proof Assume T is irreducible. Let v ∈ V,v 6= 0. Then 〈T,v〉 is a T -
invariant subspace and since it contains v 6= 0 we must have 〈T,v〉 = V. This
proves that T is cyclic. Suppose µT (x) = f(x)g(x), where 1 ≤ deg(f(x)) < n.
Set w = f(T )(v). Then by Theorem (4.4) µT,w(x) = g(x) and 〈T,w〉 is a
non-trivial T -invariant subspace, contrary to assumption. Thus, µT (x) has no
non-trivial factorizations and is irreducible.

On the other hand, assume that V = 〈T,v〉 and µT (x) = p(x) is irreducible.
Suppose w ∈ V,w 6= 0. Then there exists a polynomial h(x), deg(h(x)) < n

such that w = h(T )(v). By Theorem (4.4), µT,w(x) = p(x)
gcd(h(x),p(x)) . Since

deg(h(x)) < n = deg(p(x)), it follows that p(x) does not divide h(x). Since
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p(x) is irreducible we can conclude that h(x) and p(x) are relatively prime.
Therefore, µT,w(x) = p(x). It then follows that dim(〈T,w〉) = n = dim(V ).
Consequently, V contains no non-trivial T -invariant subspace and T is irre-
ducible as claimed.

As an immediate corollary, we have:

Corollary 4.2 Let V be a vector space, T an operator on V , and v a vector
in V such that µT,v(x) = p(x) is irreducible. Let W be a T -invariant subspace
of V. Then either 〈T,v〉 ⊂ W or 〈T,v〉 ∩W = {0}.

In our next result we prove the easy part of our main theorem:

Theorem 4.8 Let V be a finite-dimensional vector space and T an operator
on V. Assume T is cyclic and µT (x) = p(x)m, where p(x) is an irreducible
polynomial and m is a natural number. Then T is indecomposable.

Proof If m = 1, then T is irreducible, whence indecomposable. We may
therefore assume that m > 1. Let v be a vector such that V = 〈T,v〉. Set
u = p(T )m−1(v). Then by Theorem (4.4), µT,u(x) = p(x) and U = 〈T,u〉
is irreducible by Theorem (4.7). Now suppose W is a non-trivial T -invariant
subspace of V. Then by Theorem (4.5) there is a vector w ∈ W such that
W = 〈T,w〉 and µT,w(x) divides µT,v(x) = p(x)m. Suppose µT,w(x) = p(x)k.
Set y = p(T )k−1(w). Then µT,y(x) = p(x). By Theorem (4.5), it follows that
〈T,y〉 = 〈T,u〉 and therefore U ⊂W. As a consequence of this, if W1,W2 are
non-zero T -invariant subspaces of V then U ⊂ W1 ∩W2 and, in particular,
W1 ∩ W2 6= {0}. Therefore no non-trivial T -invariant subspace can have a
T -invariant complement.

The rest of this section will be devoted to proving the converse of Theorem
(4.8): If T is an indecomposable operator on a finite-dimensional vector space
V , then T is cyclic and µT (x) = p(x)m where p(x) is an irreducible polyno-
mial. We first show if the minimal polynomial of T has two or more distinct
irreducible factors then T is decomposable.

Lemma 4.4 Assume µT (x) = f(x)g(x), where f(x) and g(x) are relatively
prime. Then Ker(f(T )) = Range(g(T )) and Ker(g(T )) = Range(f(T )).
Moreover, V = Ker(f(T ))⊕Ker(g(T )).
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Proof For convenience, we set Kf = Ker(f(T )) and Kg = Ker(g(T )).
Also, set Rf = Range(f(T )), Rg = Range(g(T )). We claim that Rf ⊂ Kg

and Rg ⊂ Kf . To see this, suppose that u ∈ Rf so that there is a vector x

with u = f(T )(x). Then g(T )(u) = g(T )(f(T )(v)) = (g(T )f(T ))(v) = 0.
Thus, u ∈ Kg. Since u was arbitrary in Rf , it follows that Rf ⊂ Kg. In
exactly the same way, Rg ⊂ Kf .

We next show that Kf ∩Kg = {0}. Suppose u ∈ Kf ∩Kg. Since f(x), g(x)
are relatively prime there are polynomials a(x), b(x) such that a(x)f(x) +
b(x)g(x) = 1. Then a(T )f(T ) + b(T )g(T ) = IV . Then

u = IV (u) = [a(T )f(T ) + b(T )g(T )](u) = a(T )[f(T )(u)] + b(T )[g(T )(u)].

However, since u ∈ Kf ∩Kg, f(T )(u) = g(T )(u) = 0. We then have

u = a(T )[f(T )(u)] + b(T )[g(T )(u)] = 0

as claimed.

Since Rf ⊆ Kg it follows that Kf ∩Rf = {0} so that Kf +Rf = Kf ⊕Rf . By
Theorem (2.9) dim(Kf ) + dim(Rf ) = dim(V ) and therefore Kf ⊕ Rf = V .
Since Rf ⊆ Kg we also have Kf + Kg = Kf ⊕ Kg = V . Thus, dim(Rf ) =
dim(V )−dim(Kf ) = dim(Kg). Since Rf ⊂ Kg it then follows that Rf = Kg.
Similarly, Rg = Kf .

It now follows that if T is indecomposable on V then µT (x) = p(x)m for some
irreducible polynomial. It remains to show that T is cyclic.

Lemma 4.5 Let V be a finite-dimensional vector space and T an operator on
V with minimal polynomial p(x)m where p(x) is irreducible of degree d. Then
dim(V ) is a multiple of d.

Proof The proof is by the second principle of mathematical induction on
dim(V ). Let u be a vector with µT,u(x) = p(x). If V = 〈T,u〉 then dim(V ) =
d. Otherwise, set U = 〈T,u〉, V = V/U, and let T : V → V be given by
T (U +w) = U + T (w). The minimal polynomial of T , µT (x), divides p(x)

m

and so the inductive hypothesis applies. Therefore dim(V ) is a multiple of d.
Since dim(V ) = dim(U) + dim(V ) and dim(U) = d, it follows that dim(V )
is a multiple of d.

The following lemma is fundamental to our goal. Basically, it says that if the
subspace of V consisting of all vectors of order p(x) is cyclic, then V is cyclic.
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Lemma 4.6 Let V be a finite-dimensional vector space and T an operator on
V. Assume the minimal polynomial of T is p(x)m where p(x) is irreducible of
degree d. Set W = {w ∈ V |p(T )(w) = 0} and let z be a maximal vector for
T . If W ⊂ 〈T, z〉, then V = 〈T, z〉.

Proof Set Z = 〈T, z〉. We prove the contrapositive statement: If V 6= Z then
there exists w ∈W \Z. First note that that for every vector v ∈ V, µT,v(x) =
p(x)k for some k, 0 ≤ k ≤ m. Let J consist of those natural numbers j such
that there exists v ∈ V \ Z with µT,v(x) = p(x)j . Let k be the least element
in J and choose v /∈ Z such that µT,v(x) = p(x)k. Set y = p(T )(v). Then
µT,y(x) = p(x)k−1 and therefore by the minimality of k it must be the case that
y ∈ Z. We claim that 〈T,y〉 6= Z. Assume to the contrary that 〈T,y〉 = Z.
Then µT,y(x) = µT (x) = p(x)m so that µT,v(x) = p(x)m+1 which is not
possible. Suppose now that y = f(T )(z). Then µT,y(x) =

µp(x)m

gcd(f(x),µT,z(x))
=

p(x)k−1. It follows that p(x) divides f(x). Let g(x) be the polynomial such that
f(x) = p(x)g(x) and set u = g(T )(z). Then p(T )(u) = y. Now set w = v−u.
Then w /∈ Z since v /∈ Z and u ∈ Z. Also, p(T )(w) = p(T )(v − u) =
p(T )(v)− p(T )(u) = y − y = 0.

Theorem 4.9 Let V be a finite-dimensional vector space and T be an op-
erator on V such that the minimal polynomial of T is p(x)m, where p(x) is
irreducible of degree d. Let z be a maximal vector in V for T . Then 〈T, z〉 has
a T -invariant complement X in V.

Proof By Lemma (4.5), dim(V ) = dk for some natural number k. The proof
is by induction on k. If k = 1 then V = 〈T,u〉 for any u 6= 0 and we can take
X = {0}.
Suppose the result has been established for spaces V with dim(V ) = dk. We
need to prove that it is true for a space of dimension d(k + 1). If V = 〈T, z〉,
then we can take X = {0} so we may assume that V 6= 〈T, z〉, that is, T
is not cyclic. Then by Lemma (4.6) there is a vector w ∈ V \ 〈T, z〉 such
that p(T )(w) = 0. Set W = 〈T,w〉 and V = V/W. The dimension of V
is d(k + 1) − d = dk. Let T : V → V be the induced operator given by
T (W + y) = W + T (y). The minimal polynomial of the vector W + z in V
with respect to T is p(x)m. Consequently, our inductive hypothesis holds: there
exists a T -invariant subspace X, which is a complement to 〈T ,W + z〉 in V .
Let X be the unique subspace of V such that W ⊂ X and X/W = X. Then
X is T -invariant, and we claim that X is a complement to 〈T, z〉 in V.
Since {W} = {0V } = 〈T ,W + z〉 ∩X = [(W + 〈T, z〉)/W ]∩ [X/W ] it follows
that 〈T, z〉 ∩X is contained in W. However, W ∩ 〈T, z〉 = {0} and therefore
〈T, z〉 ∩X = {0}.



128 Advanced Linear Algebra

On the other hand, suppose v ∈ V is arbitrary. Then W + v is a vector in V
and we can find z′ ∈ 〈T, z〉 and x ∈ X such that W +v = (W +z′)+(W +x).
This implies that v − (z′ + x) ∈ W ⊂ X. Consequently, v ∈ 〈T, z〉 +X. This
completes the proof.

The second part of our main theorem is now a corollary of this:

Theorem 4.10 Let V be a finite-dimensional vector space and T an indecom-
posable operator on V. Then T is a cyclic operator and the minimal polynomial
of T is p(x)m, where p(x) is an irreducible polynomial.

Proof We already observed, subsequent to Lemma (4.4), that if T is inde-
composable then µT (x) = p(x)m, where p(x) is irreducible. Suppose T is not
cyclic. Let z be a maximal vector. Since 〈T, z〉 6= V , by Theorem (4.9), 〈T, z〉
has a T -invariant complement. It then follows that T is decomposable.

Exercises

1. Let T : R3 → R3 be the operator given by

T (v) =



−3 1 2
−4 1 4
0 0 −1


v.

Determine whether T is decomposable or indecomposable.

2. Let T : R3 → R3 be the operator given by

T (v) =



−1 1 0
0 −1 1
0 0 −1


 v.

Determine whether T is decomposable or indecomposable.

3. Let T : R3 → R3 be the operator given by

T (v) =



0 0 8
1 0 −12
0 1 6


 v.

Determine whether T is decomposable or indecomposable.

4. Assume S is a cyclic operator on the finite-dimensional vector space U and
that µS(x) = p(x) is irreducible. Prove that every non-zero element of the
algebra P(S) is invertible and its inverse lies in P(S). (See Exercise 10 of
Section (4.1).)
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5. Let V be a finite-dimensional vector space with basis B = (v1, . . . ,vn).
Let T be an operator on V and assume that the minimal polynomial of T is
p(x)m, where p(x) is an irreducible polynomial. Prove that some vector vi is
maximal.

6. Let V be a finite-dimensional vector space with basis B = (v1, . . . ,vn).
Assume T ∈ L(V, V ) is indecomposable. Prove that V = 〈T,vi〉 for some
i, 1 ≤ i ≤ n.

7. Assume T : R2n+1 → R2n+1 is an indecomposable operator. Prove that
there is a real number a such that µT (x) = (x− a)2n+1.

8. Let T : R2n → R2n be an indecomposable operator. Prove that the number
of T -invariant subspaces of V is either 2n+ 1 or n+ 1.

9. Let p be a prime and T : F4
p → F4

p be an indecomposable but not irreducible
operator. Prove that the number of maximal vectors is either p4−p3 or p4−p2.
10. Let T be an operator on a finite-dimensional vector space. Prove that T
is indecomposable if and only if there is a unique maximal proper T -invariant
subspace of V.
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4.5 Invariant Factors and Elementary Divisors

In this section, we consider an operator T on a finite-dimensional vector space
V and investigate how V can be decomposed as a direct sum of T -invariant
subspaces. One such way is as indecomposable, hence, cyclic, subspaces. Such a
decomposition leads to the concept of elementary divisors of T. An alternative
method leads to the definition of the invariant factors of T.

What You Need to Know

The following concepts are fundamental to understanding the new material in
this section: vector space over a field F, basis of a vector space, dimension of a
vector space, linear operator on a vector space V, matrix of a linear operator
T : V → V with respect to a basis B for V, a polynomial of degree d with coef-
ficients in a field F, the evaluation f(T ) of a polynomial f at an operator T of
a finite-dimensional vector space V, invariant subspace of an operator T on a
vector space V, the T -cyclic subspace 〈T,v〉 generated by a vector v, the anni-
hilator ideal of a vector with respect to an operator, the minimal polynomial
of an operator with respect to a vector, the annihilator ideal of an operator
T, the minimal polynomial of an operator T, eigenvalue and eigenvector of
an operator T, maximal vector for an operator on a finite-dimensional vector
space, T -invariant complement to a T -invariant subspace,and an indecompos-
able linear operator.

We begin with the following result which makes use of Theorem (4.9):

Theorem 4.11 Let T ∈ L(V, V ) have minimal polynomial a power of p(x)
where p(x) is irreducible of degree d. Then there are vectors v1,v2, . . . ,vr ∈ V
such that

V = 〈T,v1〉 ⊕ · · · ⊕ 〈T,vr〉
with µT,vi

(x) = p(x)mi with m1 ≥ m2 · · · ≥ mr.

Proof Let dim(V ) = dk. The proof is by the second principle of mathematical
induction on k. Assume µT (x) = p(x)m and let v ∈ V with µT,v(x) = p(x)m,
that is, v is a maximal vector. If V = 〈T,v〉, then we are done with r = 1.
Suppose V 6= 〈T,v〉. By Theorem (4.9), there is a T -invariant complement
X to 〈T,v〉 in V. The dimension of X is dk − dm = d(k − m) < dk. Set
T = T|X . We can apply the inductive hypothesis to (T ,X) and find vectors

v2, . . . ,vr such that X = 〈T ,v2〉 ⊕ · · · ⊕ 〈T ,vr〉 with µT,vi
(x) = p(x)mi with

m2 ≥ m3 ≥ · · · ≥ mr. Note that 〈T ,vi〉 = 〈T,vi〉 for 2 ≤ i ≤ r. Set v1 = v.
Then µT,v(x) = p(x)m. Since m ≥ m2 we have satisfied the conclusions of the
result.
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The next result shows that while there may be many choices for the sequence
of vectors (v1, . . . ,vr) the natural numbers r and m1, . . . ,mr are unique.

Theorem 4.12 Let V be a finite-dimensional vector space and T an operator
on V such that µT (x) = p(x)l where p(x) is an irreducible polynomial of
degree d. Assume that V = 〈T,v1〉 ⊕ · · · ⊕ 〈T,vr〉 with µT,vi

(x) = p(x)mi

and m1 ≥ m2 ≥ · · · ≥ mr and also that V = 〈T,u1〉 ⊕ · · · ⊕ 〈T,us〉 with
µT,uj

(x) = p(x)nj with n1 ≥ n2 ≥ · · · ≥ ns. Then r = s and for each
i,mi = ni.

Proof We know that dim(V ) is a multiple of d by Lemma (4.5). Let
dim(V ) = dM. The proof is by the second principle of mathematical induction
on M. If M = 1, then clearly r = s = m1 = n1 = 1 and there is nothing to
prove. So assume the result is true for any operator S acting on a space U,
where µS(x) is a power of an irreducible polynomial p(x) of degree d, and the
dimension of U is dM ′ with M ′ < M.

Let W = Ker(p(T )) and set v′
i = p(T )mi−1(vi),u

′
j = p(T )nj−1(uj). Then

W = 〈T,v′
1〉 ⊕ · · · ⊕ 〈T,v′

r〉 = 〈T,u′
1〉 ⊕ · · · ⊕ 〈T,u′

s〉.

It follows that dr = dim(W ) = ds, and, therefore, r = s.

Set V = V/W and let T : V → V be defined by

T (W + y) =W + T (y).

Let r′ be the largest natural number such that mr′ > 1, and similarly define
s′ to be the largest natural number such that ns′ > 1. Set v′

i = W + vi for
1 ≤ i ≤ r′ and u′

j =W + uj for 1 ≤ j ≤ s′. Then

V = 〈T ,v′
1〉 ⊕ · · · ⊕ 〈T ,v′

r′〉
= 〈T ,u′

1〉 ⊕ · · · ⊕ 〈T ,u′
s′〉.

Moreover, µT ,v′
i
(x) = p(x)mi−1 and µT ,u′

j
(x) = p(x)nj−1.

By the inductive hypothesis, r′ = s′ and for all i, 1 ≤ i ≤ r′ = s′,mi − 1 =
ni − 1, from which we conclude that mi = ni. On the other hand, the number
of mi = 1 is r − r′ and the number of nj = 1 is s − s′ = r − r′ and this
completes the theorem.

We now turn to the more general case.
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Theorem 4.13 Let V be a finite-dimensional vector space, T an operator on
V , and assume the minimal polynomial of T is µT (x) = p1(x)

e1 . . . pt(x)
et ,

where the polynomials pi(x) are irreducible and distinct.

For each i, let

Vi = V (pi) = {v ∈ V |pi(T )ei(v) = 0} = Ker(pi(T )
ei).

Then each of the spaces Vi is T -invariant and

V = V1 ⊕ V2 ⊕ · · · ⊕ Vt.

Proof That each Vi is T -invariant follows from Exercise 22 of Section (4.1).
We first prove that V1+ · · ·+Vt = V1⊕· · ·⊕Vt. Thus, let I = {i1, i2, . . . , ik} be
a subset of {1, 2, . . . , t}. Then the minimal polynomial of T restricted to VI =
Vi1 + · · ·+ Vik is pi1(x)

ei1 . . . pik(x)
eik . It then follows that if I, J are disjoint

subsets of {1, 2, . . . , t} then VI ∩ VJ = {0}. In particular, for I = {i} and
J = {1, 2, . . . , t}\{i} this holds. This implies that V1+ · · ·+Vt = V1⊕· · ·⊕Vt.
To complete the proof we need to prove that V = V1 +V2 + · · ·+Vt. We prove
this by induction on t ≥ 2.

The initial case follows from Lemma (4.4) so we have to prove the inductive
step. Suppose the result is true for some t ≥ 2.We prove that it is true for t+1.
Assume that the minimal polynomial of the linear operator T on the space V is
p1(x)

e1 . . . pt(x)
etpt+1(x)

et+1 , where the polynomials p1(x), . . . , pt(x), pt+1(x)
are distinct (monic) irreducible polynomials.

As previously seen, f(x) = p1(x)
e1 and g(x) = p2(x)

e2 . . . pt(x)
etp

et+1

t+1 are
relatively prime. By Lemma (4.4), Ker(f(T )) and Ker(g(T )) are T -invariant
and

V = Ker(f(T ))⊕Ker(g(T )).

Set W = Ker(g(T )) and T ′ = T|W . The minimal polynomial of T ′ is g(x) =
p2(x)

e2 . . . pt(x)
etp

et+1

t+1 (x). By the inductive hypothesis

W = Ker(p2(T
′)e2)⊕ · · · ⊕Ker(pt(T

′)et))Ker(pt+1(T
′)).

Since T ′ = T|W , it follows that Ker(pi(T
′)ei ) = Ker(pi(T )

ei). Since V =
Ker(p1(T )

e1)⊕W, it now follows that

V = Ker(p1(T )
e1)⊕Ker(p2(T )

e2)⊕ · · · ⊕Ker(pt+1(T )
et+1).
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Definition 4.16 Let V be a finite-dimensional vector space and T an oper-
ator on V with minimal polynomial µT (x) = p1(x)

e1 . . . pt(x)
et, where pi(x)

are distinct irreducible polynomials. The T -invariant subspace Ker(pi(T )
ei)

is called the Sylow-pi(x) subspace of the operator T .

Definition 4.17 Let V be a vector space, T a linear operator on V, and as-
sume that the minimal polynomial of T is p1(x)

e1 . . . pt(x)
et , where pi(x) are

distinct irreducible polynomials. Set Vi = Ker(pi(T )
ei). Suppose

Vi = 〈T,vi1〉 ⊕ · · · ⊕ 〈T,vi,si〉,

where µT,vij
(x) = pi(x)

fij , fi1 ≥ fi2 ≥ · · · ≥ fi,si . Then the polynomials
pi(x)

fij are the elementary divisors of T.

We next show that under the hypotheses of Theorem (4.13), if W is a T -
invariant subspace of V then the Sylow-pi(x) subspace of W is W ∩ Vi and,
consequently, W = (W ∩ V1)⊕ · · · ⊕ (W ∩ Vt).

Theorem 4.14 Let V be a finite-dimensional vector space, T an operator
on V, and assume µT (x) = p1(x)

e1 . . . pt(x)
et where the pi(x) are distinct,

monic, irreducible polynomials. Set Vi = Ker(pi(T )
ei) and assume that W is

a T -invariant subspace of V. Then

W = (W ∩ V1)⊕ (W ∩ V2)⊕ · · · ⊕ (W ∩ Vt).

Proof Since (W ∩ Vi)∩ (W ∩ Vj) ⊂ Vi ∩ Vj = {0} for i 6= j we need to show
that W = (W ∩ V1) + (W ∩ V2) + · · ·+ (W ∩ Vt).
Let w ∈ W and write w = w1 + · · · + wt with wi ∈ Vi. Suppose wi 6= 0.
Then we need to show that wi ∈ W . Set µT,w(x) = p1(x)

f1 . . . pt(x)
ft =

g(x). If wi 6= 0, then fi > 0. Let g(x) = pi(x)
fih(x). Then h(x) and pi(x)

fi

are relatively prime. Consequently, there are polynomials a(x), b(x) such that
a(x)pi(x)

fi + b(x)h(x) = 1. Then a(T )pi(T )
fi + b(T )h(T ) = IV . From this it

follows that

wi = b(T )h(T )(w) ∈ 〈T,w〉.
On the other hand, since W is T -invariant and w ∈ W, 〈T,w〉 ⊂ W by The-
orem (4.2).
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Theorem 4.15 Let V be a finite-dimensional vector space and T a linear
operator on V with minimal polynomial µT (x). Let v be a vector such that
µT,v(x) = µT (x). Then 〈T,v〉 has a T -invariant complement in V.

Proof Let the prime factorization of µT (x) be p1(x)
e1 . . . pt(x)

et . Set Vi =
Ker(pi(T )

ei) so that V = V1 ⊕ · · · ⊕ Vt. Let xi be the vector in Vi such that
v = x1 + · · ·+ xt. Then µT,xi

(x) = pi(x)
ei . Note that

〈T,v〉 = 〈T,x1〉 ⊕ · · · ⊕ 〈T,xt〉.

By Lemma (4.9) each 〈T,xi〉 has a T -invariant complement Wi in Vi. Note
that

Wi ∩ (W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wt)

⊂ Vi ∩ (V1 + · · ·+ Vi−1 + Vi+1 + · · ·+ Vt) = {0},

and therefore W1+W2+· · ·+Wt =W1⊕· · ·⊕Wt. SetW =W1+W2+· · ·+Wt.
Then W is T -invariant and a complement to 〈T,v〉 in V.

Our final structure theorem is the following:

Theorem 4.16 Let V be a finite-dimensional vector space and T a linear
operator on V. Then there are vectors w1,w2, . . . ,wr such that the following
hold:

i. V = 〈T,w1〉 ⊕ · · · ⊕ 〈T,wr〉.
ii. If di(x) = µT,wi

(x) then dr(x)|dr−1(x)| . . . |d1(x) = µT (x).

Proof The proof is by the second principle of induction on dim(V ). If
dim(V ) = 1, there is nothing to prove so assume dim(V ) > 1. Let v be a
vector in V such that µT,v(x) = µT (x). If V = 〈T,v〉 then we are done, so we
may assume that V 6= 〈T,v〉. By Lemma (4.15), there is a T -invariant com-
plement W to 〈T,v〉 in V. The dimension of W is less than the dimension of
V. Set T ′ = T|W . By the inductive hypothesis, there are vectors u1, . . . ,ur−1

in W such that

i. W = 〈T ′,u1〉 ⊕ · · · ⊕ 〈T,ur−1〉.
ii. If fi(x) = µT ′,ui

(x) then fr−1(x)|fr−2(x)| . . . |f1(x). However, for each
i, 1 ≤ i ≤ r − 1, µT ′,ui

(x) = µT,ui
(x). Moreover, since µT,v(x) = µT (x) it

follows that µT,u1(x)|µT,v(x). Set v1 = v,vi = ui−1 for 2 ≤ i ≤ r. It is then
the case that

V = 〈T,v1〉 ⊕ 〈T,v2〉 ⊕ · · · ⊕ 〈T,vr〉.

Moreover, for i > 1, di(x) = µT,vi
(x) = fi−1(x) and therefore

dr(x)|dr−1(x)| . . . d2(x) and d2(x)|µT (x) = µT,v = d1(x).
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Definition 4.18 The polynomials d1(x), d2(x), . . . , . . . , dr(x) are called the
invariant factors of T .

Definition 4.19 Let V be an n-dimensional vector space and T be a linear
operator on V. The polynomial (of degree n) obtained by multiplying the in-
variant factors of T is called the characteristic polynomial of T . It is
denoted by χT (x).

Note that one of the invariant factors is µT (x) and therefore µT (x) divides
the characteristic polynomial, χT (x). Since µT (T ) = 0V→V , we have proved
the following:

Theorem 4.17 χT (T ) = 0V→V .

The fact that the operator obtained when the characteristic polynomial of
T is evaluated at T is the zero operator goes by the name of the Cay-
ley–Hamilton theorem. In this guise it is immediate as a consequence of
how we have defined the characteristic polynomial. The form in which the
Cayley–Hamilton theorem is meaningful will be taken up in a later chapter.

As a consequence of the result that every independent sequence from a vec-
tor space can be extended to a basis, we proved that every subspace has a
complement. This can be interpreted to mean that every subspace invariant
under the identity map, IV , has an invariant complement. Are there other
operators that have the same property? There are, but before we get to a
characterization, we first give a name to such operators:

Definition 4.20 Let T be a linear operator on a finite-dimensional vector
space V . The operator T is said to be completely reducible if every T -
invariant subspace U has a T -complement.

Completely reducible operators are characterized by the following theorem
whose proof we leave as an exercise.

Theorem 4.18 Let T be a linear operator on a finite-dimensional vector
space. Then T is completely reducible if and only if the minimum polynomial
of T has distinct irreducible factors.

Suppose T is an operator and we want to compute T n(v) for some natural
number n. Such a computation can be simplified significantly if there is a basis
B such that MT (B,B) is diagonal. We illustrate with an example.
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Example 4.6 Let T : R2 → R2 be given by

T (v) =

(
8 −3
14 −7

)
= Av.

Compute the matrix of T 4 with respect to the standard basis S =((
1
0

)
,

(
0
1

))
.

Set B =

((
1
2

)
,

(
1
3

))
. Note that

T

(
1
2

)
=

(
2
4

)
= 2

(
1
2

)

T

(
1
3

)
=

(
−1
−3

)
= −

(
1
3

)
.

Therefore, the matrix of T with respect to B is B =

(
2 0
0 −1

)
. Now if we let

Q be the change of basis matrix from the B to the standard basis S,
Q = MI

R2
(B,S) then

Q−1AQ =

(
2 0
0 −1

)
= B.

It then follows that [Q−1AQ]4 = Q−1A4Q =

(
2 0
0 −1

)4

=

(
16 0
0 1

)
. Then

A4 = Q

(
16 0
0 1

)
Q−1 =

(
46 17
90 29

)
.

Definition 4.21 We call a linear operator T on a finite-dimensional vector
space V diagonalizable if there exists a basis B for V such that MT (B,B)
is a diagonal matrix.

There is a very nice characterization of diagonalizable operators which we
state but leave as an exercise.

Theorem 4.19 Let V be a finite-dimensional vector space and T a linear
operator on V. Then T is diagonalizable if and only if T is completely reducible
and µT (x) factors into linear factors.
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Exercises

1. Let S be an operator on a finite-dimensional real vector space U and assume
that

U = 〈S,u1〉 ⊕ 〈S,u2〉 · · · ⊕ 〈S,u6〉
and

µS,u1(x) = µS,u2(x) = (x2 + 1)5, µS,u3(x) = (x2 + 1)4

µS,u4(x) = µS,u5(x) = (x2 + 1)2, µS,u6(x) = x2 + 1.

Set Ui = {u ∈ U |(S2 + IU )
i(u) = 0} for i = 1, 2, 3, 4, 5, 6. Determine the

dimension of each Ui.

2. Let T be a linear operator on the finite-dimensional real vector space V
and assume that the elementary divisors of T are as follows:

(x+ 2)2, (x+ 2)2, x+ 2;

(x2 + 1)3, (x2 + 1)2, (x2 + 1)2, x2 + 1;

(x2 − x+ 1)4, (x2 − x+ 1)3, (x2 − x+ 1)2, (x2 − x+ 1)2.

Determine the invariant factors of T as well as the dimension of V.

3. Let T ∈ L(R4,R4) be the operator given by

T (v) =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 v.

Determine the invariant factors of T.

4. Let T ∈ L(R4,R4) be the operator given by

T (v) =




0 −1 0 0
1 0 1 0
0 0 0 −1
0 0 1 0


 v.

Determine the invariant factors of T.

5. Let T ∈ L(R4,R4) be the operator given by



138 Advanced Linear Algebra

T (v) =




−3 2 2 −4
−3 1 4 −4
−2 0 3 −2
−1 0 2 −1


 v.

Determine the elementary divisors and the invariant factors of T.

6. Let T ∈ L(F4
2,F

4
2) be the operator given by

T (v) =




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 .

Determine the elementary divisors and the invariant factors of T.

7. Prove Theorem (4.18).

8. Prove Theorem (4.19).

9. Let T be a linear operator on a finite-dimensional vector space V over an
infinite field F (for example, Q,R,C) and let p1(x), . . . , pt(x) be the distinct
irreducible polynomials that divide µT (x). Prove that there exists infinitely
many T -invariant subspaces if and only if there are infinitely many T -invariant
subspaces in the pi-Sylow subspace V (pi) for some i.

10. Let T be a linear operator on a finite-dimensional vector space V over an
infinite field F. Prove that T is a cyclic operator if and only if there are finitely
many T -invariant subspaces.

11. Let T be an operator on the finite-dimensional vector space V over the
field F and assume that µT (x) = p(x)mq(x)n, where p(x), q(x) are distinct
irreducible polynomials in F[x], with at least one of m,n greater than 1. Let
a(x), b(x) be polynomials such that a(x)p(x)m + b(x)q(x)n = 1. Set f(x) =
a(x)p(x)mq(x) + b(x)q(x)np(x). Prove that f(T ) is a nilpotent operator.

12. Let T be an operator on a vector space V of dimension n and assume that
µT (x) = p(x)m, where p(x) is an irreducible polynomial of degree d. For each
j < m, set Ui = {v ∈ v|p(T )i(v) = 0} and mi = dim(Ui). Note that d divides
mi for each i.

a) Prove that the number of elementary divisors (invariant factors) of T is
equal to m1

d .

b) For j > 1, prove that the number of elementary divisors divisible by p(x)j

is equal to
mj−mj−1

d .

13. Let V be an n-dimensional vector space over a field F, T ∈ L(V, V ) with
µT (x) = p1(x)

e1 . . . pt(x)
et where p1(x), . . . , pt(x) are distinct irreducible poly-

nomials with deg(pi(x)) = di. Set Vi = Ker(pi(T )
n) so that V = V1⊕· · ·⊕Vt.

Set mi =
dim(Vi)

di
. Prove that χT (x) = p1(x)

m1 . . . pt(x)
mt .
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4.6 Canonical Forms

In this section, we continue to study the structure of a linear operator T on
a finite-dimensional vector space V. We make use of the two ways we have of
decomposing the space V into a direct sum of T -invariant subspaces to obtain
bases of V for which the matrix of T takes a nice form.

What You Need to Know

In order to fully understand the new material in this section you should have
mastered the following concepts: a vector space is a direct sum of subspaces,
basis of a finite-dimensional vector space, operator on a finite-dimensional
vector space, coordinate vector with respect to a basis, matrix of a linear
transformation, minimal polynomial of an operator T on a finite-dimensional
vector space, for an operator T on a finite-dimensional vector space V a T -
invariant subspace, for an operator T on a finite-dimensional vector space V a
T -cyclic subspace, an invariant factor of a linear operator T, and an elementary
divisor of T of a linear operator T .

Let V be a finite-dimensional vector space and T a linear operator on V. We
have thus far exhibited two fundamental ways to decompose V as a direct
sum of T -invariant subspaces:

i. By cyclic subspaces whose orders are the invariant factors of T.

ii. By cyclic subspaces whose orders are the elementary divisors of T.

The objective of this section is to use the results of Section (4.5) in order to
choose a basis B for V such that the matrix MT (B,B) has a particularly “nice
form.” We begin with a definition that makes precise the notion of a “nice
form” of a matrix.

Definition 4.22 A square matrix of the form




A1 0
·

·
·

0 As



,

where the Ai are square matrices occurring along the diagonal and all entries
outside these matrices are zero is called a block diagonal matrix.



140 Advanced Linear Algebra

Example 4.7 The matrix

A =




2 −1 0 0 0 0
1 2 0 0 0 0
0 0 −4 0 0 0
0 0 0 3 1 0
0 0 0 0 3 1
0 0 0 0 0 3




is a block diagonal matrix with three diagonal blocks:

A1 =

(
2 −1
1 2

)
, A2 =

(
−4
)
, A3 =



3 1 0
0 3 1
0 0 3


 .

The next lemma indicates the connection of block diagonal matrices to our
objective.

Lemma 4.7 Let V be a finite-dimensional vector space, T a linear operator
on V , and assume that V = V1 ⊕ · · · ⊕Vs, where each space Vi is T -invariant.
Set Ti = T|Vi

and let Bi be a basis for Vi and B = B1♯ . . . ♯Bs the basis for
V obtained by concatenating sequences Bi. Let A = MT (B,B) and Ai =
MTi

(Bi,Bi). Then A is block diagonal with s diagonal blocks equal to the Ai.

In light of this, we turn our attention to ways for choosing a basis for a space
with a cyclic operator T.

Definition 4.23 Let f(x) = xm+am−1x
m−1+· · ·+a1x+a0. The companion

matrix of f(x) is the m×m matrix

C(f) =




0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

... . . .
...

...
0 0 . . . 1 −am−1



.

Lemma 4.8 Let V be a finite-dimensional vector space and T a linear oper-
ator on V . Assume that T is cyclic, say, V = 〈T,v〉 and µT (x) = µT,v(x) =
f(x) = xm + am−1x

m−1 + · · ·+ a1x+ a0.

Set v1 = v. Assume that vk has been defined and k < m. Then set vk+1 =
T (vk) = T k(v). Then B = (v1,v2, . . . ,vm) is a basis for V and MT (B,B) =
C(f), the companion matrix of f(x).
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Proof That B is a basis was proved in part iii) of Theorem (4.2).

Now suppose k < m. Then T (vk) = vk+1 and consequently the coordinate

vector of T (vk) with respect to B is




0
0
...
0
1
0
...
0




, where the single 1 occurs in the

k + 1 position.

On the other hand,

Tm + · · ·+ a1T + a0IV (v) = Tm(v) + · · ·+ a1T (v) + a0v = 0.

Therefore,

T (vm) = Tm(v) = −am−1T
m−1(v)− · · · − a1T (v)− a0v =

−am−1vm − am−2vm−1 − · · · − a1v2 − a0v1.

Thus, the coordinate vector of T (vm) with respect to B is




−a0
−a1
...

−am−2

−am−1



. It now

follows that MT (B,B) = C(f) as asserted.

Definition 4.24 Let V be a finite-dimensional vector space and T be a linear
operator on V. By applying Lemma (4.7) and Lemma (4.8) to the direct sum
decomposition of V obtained from the invariant factors, we obtain the rational
canonical form of T.

We next turn our attention to a cyclic operator T on a space V with µT (x) =
p(x)m, where p(x) = xd + ad−1x

d−1 + · · ·+ a1x+ a0 is irreducible.

Theorem 4.20 Let T be a linear operator on the space V and assume that
V = 〈T,v〉 and µT,v(x) = µT (x) = p(x)m, where p(x) = xd+ad−1x

d−1+ · · ·+
a1x+ a0 is irreducible. Let B be the following sequence of vectors
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v1 = v,v2 = T (v), . . . ,vd = T d−1(v);

vd+1 = p(T )(v),vd+2 = Tp(T )(v); . . .v2d = T d−1p(T )(v);

...

v(m−1)d+1 = p(T )m−1(v),v(m−1)d+2 = Tp(T )m−1(v), . . .

vmd = T d−1p(T )m−1(v).

Then B is a basis for V. Moreover, the matrix of T with respect to B is




C(p) 0d×d 0d×d . . . 0d×d 0d×d

L C(p) 0d×d . . . 0d×d 0d×d

...
...

... . . .
...

...
0d×d 0d×d 0d×d . . . C(p) 0d×d

0d×d 0d×d 0d×d . . . L C(p)



, (4.1)

where C(p) is the companion matrix of p(x) and L is a d × d matrix with a
single non-zero entry, a 1 in the (1,d)-position.

Proof Since V is cyclic, the dimension of V is equal to the degree of µT (x)
and is therefore md. There aremd vectors in the sequence so it suffices to prove
that the sequence is independent. Note that the largest degree of a polynomial
xkp(x)l with 0 ≤ k ≤ d − 1, 0 ≤ l ≤ m − 1 is d − 1 + d(m − 1) = md − 1. It
follows from this that any non-trivial dependence relation on B will give rise to
a polynomial g(x) of degree less than md such that g(T ) = 0V→V contradicting
the assumption that the minimal polynomial of T has degree md. Thus, B is
a basis.

We now compute the coordinate vector of T (vj) with respect to B. Suppose
j = kd+ l, where 0 ≤ k ≤ m− 1 and 1 ≤ l < d. Then vj = T l−1p(T )k(v) and
T (vj) = T lp(T )k(v) = vj+1. On the other hand, if j = kd with 1 ≤ k < m
then

T (vj) = T (T d−1p(T )k−1)(v)

= T dp(T )k−1(v) = [p(T )− a0IV − a1T − · · · − ad−1T
d−1]p(T )k−1(v)

= p(T )k(v) − a0p(T )
k−1(v)− a1Tp(T

k−1(v)− · · · − ad−1p(T )
k−1(v)

= vkd+1 − a0v(k−1)d+1 − a1v(k−1)d+2 − · · · − ad−1vkd.
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Then the coordinate vector of T (vkd) has zeros in entries 1 through (k − 1)d
followed by the entries of the vector




−a0
−a1
...

−ad−1

1




and then zeros through the end. This is the kdth column of the matrix in
Equation (4.1).

Finally, suppose j = md. Then

T (vj) = T (vmd)

= T (T d−1p(T )m−1)(v) = T dp(T )m−1

= [p(T )− a0IV − a1T − · · · − ad−1T
d−1]p(T )m−1(v)

= p(T )m(v)− a0p(T )
m−1(v) − a1Tp(T

m−1(v)− · · · − ad−1p(T )
m−1(v)

= −a0v(m−1)d+1 − a1v(m−1)d+2 − · · · − ad−1vkd.

Then the coordinate vector of T (vmd) has d(m − 1) zeros followed by


−a0
−a1
...

−ad−1


 , which is the last column of the matrix in Equation (4.1). This

completes the proof of the theorem.

Definition 4.25 The matrix in Equation (4.1) is called the generalized
Jordan m-block centered at C(p(x)). It is denoted by Jm(p(x)).

Definition 4.26 Let T be a linear operator on a finite-dimensional vector
space V. The block diagonal matrix whose diagonal blocks are the generalized
Jordan blocks for the elementary divisors of T is called the generalized Jor-
dan form of T.

Example 4.8 Let T be a linear operator on the space R10 and have minimum
polynomial (x2+2x+2)3 and characteristic polynomial (x2+2x+2)5. Then T
will have either two or three generalized Jordan blocks, depending on whether
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the elementary divisors (invariant factors) are (x2 + 2x+ 2)3, (x2 + 2x+ 2)2

or (x2 + 2x+ 2)3, x2 + 2x+ 2, x2 + 2x+ 2.

In the former case, the generalized Jordan blocks are




0 −2 0 0
1 −2 0 0
0 1 0 −2
0 0 1 −2


 ,




0 −2 0 0 0 0
1 −2 0 0 0 0
0 1 0 −2 0 0
0 0 1 −2 0 0
0 0 0 1 0 −2
0 0 0 0 1 −2



.

In the latter case, there are two blocks

(
0 −2
1 −2

)
and then one block




0 −2 0 0 0 0
1 −2 0 0 0 0
0 1 0 −2 0 0
0 0 1 −2 0 0
0 0 0 1 0 −2
0 0 0 0 1 −2



.

Exercises

1. Find the rational canonical form of a linear transformation on a vector space
over Q whose elementary divisors are (x2 + x+ 1)2, (x2 + x+ 1), (x2 + 2)2.

2. Let T ∈ L(Q2,Q2) be given by T (v) =

(
1 −1
1 3

)
v. Find the rational

canonical form of T .

3. Let T ∈ L(Q3,Q3) be given by T (v) =




1 −1 −4
1 −1 −3
−1 2 −2


v. Find the ratio-

nal canonical form of T .

4. Let T ∈ L(C4,C4) be given by T (v) =




−5 −1 9 8
−1 7 −2 −2
−2 7 −1 −3
−1 4 −2 1


 v. Find the

Jordan canonical form of T.

5. Let T be the operator on M22(Q) defined by T (m) =

(
2 0
1 2

)
m. Find the

generalized Jordan canonical form.

6. Let T be an operator on a four-dimensional vector space V over the field
F2 and assume that T 2 = IV but T 6= IV . Determine all possible generalized
Jordan canonical forms of T.
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7. Let T be an operator on a six-dimensional vector space V over the field F2

and assume that T 4 = IV but T 2 6= IV . Determine all possible generalized
Jordan canonical forms of T.

8. Assume T is a nilpotent operator on a four-dimensional vector space. De-
termine all the possible Jordan canonical forms of T. (An operator T on an
n-dimensional space V is nilpotent if T n = 0V→V ).

9. Prove if a nilpotent operator T is completely reducible, then T = 0V→V .

10. Assume T is a linear operator on a finite-dimensional space V and that
the minimal polynomial of T is p(x)e for an irreducible polynomial p(x) with
e > 1. Prove that p(T ) is a nilpotent operator.

11. Let S be an operator on the finite-dimensional vector space V and B be a
basis for V. Let S′ be the operator such that MS′(B,B) = MS(B,B)tr. Prove
that S and S′ have the same elementary divisors.

12. Let T be the operator on Q4 defined by T (v) =




−2 −2 −2 4
5 4 3 −3
−5 −3 −1 −4
−4 −3 −2 1


v.

Find the generalized Jordan form of T.
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4.7 Operators on Real and Complex Vector Spaces

In this short section we turn our attention specifically to the structure of an
operator on a finite-dimensional real or complex vector space. We make use
of the general structure theorems and results on canonical forms to determine
the (generalized) Jordan canonical form for a real or complex operator.

What You Need to Know

To successfully navigate the material of this new section you should by now
have mastered the following concepts: finite-dimensional vector space, real
vector space, complex vector space, operator on a vector space, eigenvalue of
an operator on a vector space, eigenvector of an operator on a vector space,
invariant factors and elementary divisors of an operator on a finite-dimensional
vector space, generalized Jordan canonical form of an operator on a finite-
dimensional vector space.

Operators on Complex Vector Spaces

Recall, the complex numbers are algebraically closed, which means that every
polynomial of degree n factors into n linear polynomials, equivalently, a monic
irreducible polynomial has the form x− λ for some scalar λ ∈ C.

Also recall, for a linear operator T on a vector space V , a vector v is an
eigenvector with eigenvalue λ if T (v) = λv.

Definition 4.27 Assume V is a vector space and λ is an eigenvalue of the
operator T ∈ L(V, V ). The subspace Ker(T − λIV ) is the eigenspace of λ.
Its dimension is called the geometric multiplicity of λ.

Definition 4.28 Let V be an n-dimensional vector space, T an operator on
V , and λ an eigenvalue of T. Set Vλ = {v ∈ V |(T −λIV )

n(v) = 0}. Elements
of Vλ are generalized eigenvectors. The algebraic multiplicity of λ is
dim(Vλ).

Let V be a finite-dimensional complex vector space, T a linear operator on V
with distinct eigenvalues λ1, λ2, . . . , λt. By Theorem (4.13)

V = Vλ1 ⊕ · · · ⊕ Vλt
.

Moreover,

n = dim(V ) = dim(Vλ1 ) + dim(Vλ2 ) + · · ·+ dim(Vλt
).
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As a consequence of Corollary (4.11), each Vi = Vλi
has a decomposition

Vλi
= 〈T,ui,1〉 ⊕ · · · ⊕ 〈T,ui,si〉.

Suppose now that v is a generalized eigenvector for the eigenvalue λ and
µT,v(x) = (x− λ)m. It is a consequence of Theorem (4.20) that the following
vectors are a basis for 〈T,v〉.

v = v1, (T −λI)(v) = v2, (T −λI)2(v) = v3, . . . ,vm = (T −λI)m−1(v) (4.2)

It also follows from Theorem (4.20) that the matrix of T|〈T,v〉 with respect to
the basis (4.2) is




λ 0 0 0 . . . 0
1 λ 0 0 . . . 0
0 1 λ 0 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . λ



. (4.3)

Definition 4.29 The matrix of Equation (4.3) is called a Jordan block of
size m centered at λ. It is denoted by Jm(λ).

Now suppose we decompose Vi = Vλi
as 〈T,ui1〉 ⊕ . . . 〈T,uisi〉, where

µT,uij
(x) = (x − λi)

mij , and mi1 ≥ mi2 ≥ · · · ≥ miri . Then we can choose
bases for each 〈T,uij〉 as above and their join is a basis for Vi. With respect
to this basis, the matrix of T |Vi

is the block diagonal matrix




Jmi1(λi) 0 0 . . . 0
0 Jmi2(λi) 0 . . . 0
...

...
... . . .

...
0 0 0 . . . Jmiri

(λi)


 .

If we denote this matrix by M(Vi), then by taking the join of such bases for
each Vi the matrix of T with respect to this basis will be




M(V1) 0 0 . . . 0
0 M(V2) 0 . . . 0
...

...
... . . .

...
0 0 0 . . . M(Vt)


 .



148 Advanced Linear Algebra

Definition 4.30 Let T be a linear operator on a finite-dimensional complex
vector space V . The block diagonal matrix whose diagonal blocks are the Jordan
blocks for the elementary divisors of T is called the Jordan canonical form
of T .

Operators on Real Vector Spaces

Recall that a monic irreducible polynomial over R has either the form x − a
or x2 + bx + c, where b2 − 4c < 0. Consequently, if T is an operator on a
finite-dimensional real vector space then the elementary divisors are either of
the form (x− a)d or (x2 + bx+ c)d with b2 − 4c < 0.

In the former case, a generalized Jordan block is a Jordan block and has the
form




a 0 0 . . . 0 0
1 a 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . a 0
0 0 0 . . . 1 a



.

In the latter case, a generalized Jordan block has the form




A 02×2 02×2 . . . 02×2 02×2

L A 02×2 . . . 02×2 02×2

...
...

... . . .
...

02×2 02×2 02×2 . . . A 02×2

02×2 02×2 02×2 . . . L A



.

where A =

(
0 −b
1 −c

)
and L =

(
0 1
0 0

)
.

We can now state:

Theorem 4.21 Let T be an operator on a real finite-dimensional vector
space. Then there exists a basis B such that MT (B,B) is block diagonal and
each block is either of the form




a 0 0 . . . 0 0
1 a 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . a 0
0 0 0 . . . 1 a




for a real scalar a or
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A 02×2 02×2 . . . 02×2 02×2

L A 02×2 . . . 02×2 02×2

...
...

... . . .
...

02×2 02×2 02×2 . . . A 02×2

02×2 02×2 02×2 . . . L A



,

where A =

(
0 −b
1 −c

)
, L =

(
0 1
0 0

)
and b2 − 4c < 0.

Exercises

1. For a linear operator T on a finite-dimensional complex vector space V,
prove the following are equivalent:

i. T is completely reducible.

ii. The minimal polynomial of T has no repeated roots.

iii. V has a basis consisting of eigenvectors for T.

iv. The Jordan canonical form of T is a diagonal matrix.

2. For a linear operator T on an n-dimensional complex vector space V, prove
the following are equivalent:

i. There does not exist a direct sum decomposition V = U ⊕W with U,W
non-trivial T -invariant subspaces;

ii. The Jordan canonical form of T consists of a single Jordan block of size n.

3. The following matrix is the rational canonical form of a real linear oper-
ator T. Determine the invariant factors, (real) elementary divisors, minimal
polynomial, and the characteristic polynomial of T.




0 0 0 −1 0 0 0
1 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0




4. Determine the generalized Jordan canonical form of the operator of Exercise
3.

5. Suppose the matrix of Exercise 3 is the matrix of a complex operator T on
C7 with respect to the standard basis. Determine the Jordan canonical form
of T.
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6. Give an example of two linear operators S, T on a finite-dimensional complex
space such that χS(x) = χT (x), µS(x) = µT (x) but S and T are not similar.

7. Find all Jordan forms of a linear operator on C8 that have minimum poly-
nomial x2(x+ 2i)3.

8. Assume S, T are linear operators on a finite-dimensional complex space V
and ST = TS. Prove that there exists a basis B for V such that MS(B,B)
and MT (B,B) are both in Jordan canonical form.

9. Compute the generalized canonical Jordan form of the linear operator on

R4 that has matrix




0 0 0 −16
1 0 0 0
0 1 0 8
0 0 1 0


 with respect to the standard basis.

10. Let T be an operator on a finite-dimensional complex vector space V.
Prove that there are operators D and N such that T = D + N and which
satisfy the following:

i. D is diagonalizable.

ii. N is nilpotent.

iii. DN = ND.

Moreover, prove that there are polynomials d(x), n(x) such that D =
d(T ), N = n(T ) and use this to prove the D and N are unique.

11. Assume V is a real finite-dimensional vector space. Prove that T does not
have a real eigenvalue if and only if every T -invariant subspace of V has even
dimension. In particular, dim(V ) is even.

12. Give an example of a linear operator T on R2 such that T does not have
an eigenvalue but T 2 is diagonalizable.

13. Let S, T be operators on Cn with S invertible. Assume that ST is diago-
nalizable. Prove that TS is diagonalizable.
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This chapter is about real and complex vector spaces equipped with an inner
product or, more generally, a norm. An inner product can be usefully thought
of as a generalization of the dot product defined on Rn whereas a norm assigns
to each vector a “length.” In the first section we define the concept of an inner
product, give several examples, and investigate basic properties. In section two
we indicate how we can obtain a norm from an inner product, in particular,
we prove that the Cauchy–Schwartz inequality holds for an inner product
space as well as the triangle inequality. In section three we introduce several
new concepts including that of an orthogonal sequence of vectors in an inner
product space, an orthogonal basis, orthonormal sequence of vectors, and an
orthonormal basis. We show how to obtain an orthogonal (orthonormal basis)
of a finite-dimensional inner product space when given a basis of that space.
In section four we prove that if U is a subspace of an finite-dimensional inner
product space (V, 〈 , 〉) then V is the direct sum of U and its orthogonal
complement. This is used to define the orthogonal projection onto U. In section
five we define the dual space V ′ of a finite-dimensional vector space V . We
also define, for a basis BV in V , the basis, BV ′ , of V ′ dual to BV . For a
linear transformation T from a finite-dimensional vector space V to a finite-
dimensional space W , we define the transpose transformation T ′ from W ′ to
V ′. We investigate the relationship between that matrix of T with respect
to bases BV and BW and the matrix of the transpose transformation T ′ with
respect to the bases BW ′ and BV ′ , which are dual to BW and BV , respectively.
In section six, we make use of the transpose of a linear transformation T : V →
W to define the adjoint transformation, T ∗ :W → V , of T . In section seven we
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introduce the general notion of a normed vector space, give several examples,
and characterize the norm that arises from an inner product space.

5.1 Inner Products

What You Need to Know

In order for the new material in this section to make sense you should have
a fundamental understanding of the following concepts: a real vector space,
a complex vector space, the space Rn, the space Cn, the space Mnn(R), and
the space Mnn(C), the dot product on R.

We recall the definition of the dot product:

Definition 5.1 Let u =




u1
u2
...
un


 ,v =




v1
v2
...
vn


 be two real n-vectors. Then the

dot product of u and v is given by u � v = u1v1 + u2v2 + · · ·+ unvn.

It is the dot product that allows one to introduce notions like the length
(norm, magnitude) of a vector as well as the angle between two vectors.

The basic properties of the dot product are enumerated in the following:

Theorem 5.1 Let u,v,w be vectors from Rn and γ any scalar. Then the
following hold:

1. u � u ≥ 0 and u � u = 0 if and only if u = 0. We say that the dot product
is positive definite.

2.u � v = v � u. We say that the dot product is symmetric.

3. (u+ v) �w = u �w+ v �w. We say that the dot product is additive in the
first argument.

4. For all (γu) · v = u · (γv) = γ(u · v). We say the dot product is homoge-
neous with respect to scalars.

We take the properties of the dot product as the basis for our definition of a
real or complex inner product space. Because the definition encompasses both
real and complex spaces, the conditions are slightly modified from Theorem
(5.1).
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Definition 5.2 Let V be a vector space over the field F, where F ∈ {R,C}.
An inner product on V is a function

〈 , 〉 : V × V → F,

which satisfies:

1. For every vector u, 〈u,u〉 is a non-negative real number and 〈u,u〉 = 0 if
and only if u = 0. This means that 〈 , 〉 is positive definite.

2. For all vectors u,v, and w, 〈u+v,w〉 = 〈u,w〉+ 〈v,w〉. We say that 〈 , 〉
is additive in the first argument.

3. For all vectors u,v and scalars γ, 〈γu,v〉 = γ〈u,v〉. We say that 〈 , 〉 is
homogeneous in the first argument.

4. For all vectors u and v, 〈u,v〉 = 〈v,u〉. We say that 〈 , 〉 is conjugate
symmetric.

By an inner product space, we mean a pair (V, 〈 , 〉) consisting of a real
or complex vector space V and an inner product 〈 , 〉 on V.

In 4) of the definition, 〈v,u〉 refers to the complex conjugate of 〈v,u〉.

Definition 5.3 By the usual inner product on the space Cn we mean the
inner product defined by




w1

w2

...
wn


 ·




z1
z2
...
zn


 = w1z1 + w2z2 + · · ·+ wnzn.

The inner product spaces (Rn, ·) and (Cn, ·) with the usual inner product are
often referred to as Euclidean inner product spaces .

Example 5.1 Let V = Fn,F ∈ {R,C} and let a = (α1, α2, . . . , αn) where αi

are positive real numbers. Define

〈



w1

w2

...
wn


 ,




z1
z2
...
zn




〉
= α1w1z1 + α2w2z2 + · · ·+ αnwnzn.

This is the weighted Euclidean inner product with weights a.
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Example 5.2 Let V = Fn where F ∈ {R,C}, S be an invertible operator on
V and let 〈 , 〉EIP denote the Euclidean inner product on V. Define

〈u,v〉S = 〈S(u), S(v)〉EIP .

Example 5.3 Let F ∈ {R,C}. Recall that F(n)[x] is the space of dimension
n+ 1 consisting of all polynomials with coefficients in F of degree at most n.
For f(x), g(x) ∈ F(n)[x] set

〈f(x), g(x)〉 =
∫ 1

0

f(x)g(x)dx.

This defines an inner product on F(n)[x].

Definition 5.4 Let A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann


 . The trace of A is defined

to be the sum of the diagonal entries:

Trace(A) = a11 + a22 + · · ·+ ann.

Example 5.4 Let F ∈ {R,C}. For A,B ∈Mnn(F) set

〈A,B〉 = Trace(AtrB).

Here Atr is the transpose of the matrix A. This defines an inner product on
Mnn(F).

This is known as the Frobenius inner product.

Exercises

1. Prove Theorem (5.1).

2. Prove that if 〈 , 〉 is an inner product on a real or complex space V , then
for vectors u,v and scalar γ

〈u, γv〉 = γ〈u,v〉.

3. Prove that if 〈 , 〉 is an inner product on a real or complex space V then
for vectors u,v and w
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〈u,v +w〉 = 〈u,v〉+ 〈u,w〉.

4. Prove that the function defined in Example (5.1) is an inner product.

5. Prove that the function defined in Example (5.2) is an inner product.

6. Prove that the function defined in Example (5.4) is an inner product.

7. Assume that Vi, i = 1, 2 are vector spaces over F ∈ {R,C} and 〈 , 〉i, i = 1, 2
is an inner product on Vi. Set V = V1 ⊕ V2 and define 〈 , 〉 : V × V → F by

〈(u1,u2), (v1,v2)〉 = 〈u1,v1〉1 + 〈u2,v2〉2
for u1,v1 ∈ V1,u2,v2 ∈ V2. Determine whether 〈 , 〉 is an inner product on
V. Prove your conclusion.

8. Let (V, 〈 , 〉) be an inner product space and L = (v1,v2, . . . ,vn) a sequence
of vectors. Prove that L is linearly independent if and only if the following
matrix is invertible:

A =




〈v1,v1〉 〈v2,v1〉 . . . 〈vn,v1〉
〈v1,v2〉 〈v2,v2〉 . . . 〈vn,v2〉

...
... . . .

...
〈v1,vn〉 〈v2,vn〉 . . . 〈vn,vn〉


 .

9. Let c1, c2, . . . , cn ∈ R. Define a function 〈 , 〉 : Rn × Rn → R by

〈

x1
...
xn


 ,



y1
...
yn



〉

= c1(x1y1) + · · ·+ cn(xnyn).

Prove that if 〈 , 〉 is an inner product then ci > 0 for all i.

10. Let V = Mfin(N,R), the real space of all maps f from N to R such
that spt(f) = {i ∈ N|f(i) 6= 0} is finite. Define 〈 , 〉 : V × V → R by
〈f, g〉 =∑∞

i=1 f(i)g(i). Prove that 〈 , 〉 is an inner product space on V.

11. Let (V, 〈 , 〉) be a complex inner product space. For vectors v,w, set
〈v,w〉R = 1

2 [〈v,w〉+〈w,v〉]. Consider V to be a real vector space. Is (V, 〈 , 〉R)
an inner product space? Support your answer with a proof.
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5.2 Geometry in Inner Product Spaces

What You Need to Know

To succeed with the new material in this section, you will need to be familiar
with the concept of a real inner product space, a complex inner product spaces,
as well as subspaces of a vector space.

We begin with a definition.

Definition 5.5 Let (V, 〈, 〉) be an inner product space. When 〈u,v〉 = 0 we
say that u,v are perpendicular or orthogonal. When u and v are orthog-
onal we often represent this symbolically by writing u ⊥ v.

Example 5.5 Let f(x) = x, g(x) = 2− 3x, which are polynomials in R(2)[x].
Then

∫ 1

0

f(x)g(x) =

∫ 1

0

(2x− 3x2)dx = (x2 − x3)|10 = 0− 0 = 0.

Thus, x ⊥ (2− 3x).

Definition 5.6 Let (V, 〈 , 〉) be an inner product space and u be a vector in
V. The orthogonal complement to u, denoted by u⊥, is the set

{v ∈ V |〈v,u〉 = 0}.

More generally, if U ⊂ V then U⊥ is the set

{v ∈ V |〈v,u〉 = 0, ∀u ∈ U}.

We next define a notion of a norm of a vector. This can usefully be thought
of as the length of a vector.

Definition 5.7 Let (V, 〈 , 〉) be an inner product space. The norm, length,
or magnitude of the vector u, denoted by ‖ u ‖, is defined to be

√
〈u,u〉.

The norm is always defined since 〈u,u〉 ≥ 0 and therefore we can always take
a square root.
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Example 5.6 Find the norm of the vectors f(x) = x and g(x) = x2 in the
inner product space of Example (5.3).

〈x, x〉 =
∫ 1

0
x2dx = 1

3 [x
3|10 = 1

3 . So, ‖ x ‖=
√

1
3

〈x2, x2〉 =
∫ 1

0 x
4dx = 1

5 [x
5|10 = 1

5 . Therefore, ‖ x2 ‖=
√

1
5 .

Definition 5.8 For two n-vectors u,v in an inner product space (V, 〈 , 〉) the
distance between them, denoted by d(u,v), is given by d(u,v) =‖ u− v ‖ .

Example 5.7 Find the distance between the vectors A =

(
1 1
1 1

)
and B =

(
1 4
5 13

)
in the inner product space of Example (5.4) with n = 2.

A−B =

(
0 −3
−4 −12

)
.

(A−B)tr(A−B) =

(
0 −4
−3 −12

)(
0 −3
−4 −12

)

=

(
16 48
48 153

)
.

The trace of this matrix is 16 + 153 = 169. Therefore, the distance from A
to B is

√
169 = 13.

Remark 5.1 If u is a vector and c is a scalar, then ‖ cv ‖= |c| ‖ u ‖ .

A consequence of Remark (5.1) is the following:

Theorem 5.2 Let u be a non-zero vector. Then the norm of 1
‖u‖u is 1.

Proof ‖ 1
‖u‖u ‖ = | 1

‖u‖ | ‖ u ‖ = 1
‖u‖ ‖ u ‖= 1.

Definition 5.9 A vector u of norm one is called a unit vector. When we
divide a non-zero vector by its norm we say we are normalizing the vector
and the vector so obtained is said to be a unit vector in the direction of
u.
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We next embark on proving several fundamental theorems about inner product
spaces. The next theorem should be familiar in the case that V = R2 with the
Euclidean inner product:

Theorem 5.3 Pythagorean theorem

Let (V, 〈 , 〉) be an inner product space and u,v ∈ V be orthogonal. Then

‖ u+ v ‖2=‖ u ‖2 + ‖ v ‖2 .

Proof ‖ u+ v ‖2= 〈u+ v,u+ v〉 = 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉

= 〈u,u〉+ 〈v,v〉 =‖ u ‖2 + ‖ v ‖2 .

In our next result, we show how, given two vectors, u,v with v 6= 0 we can
decompose u into a multiple of v and a vector orthogonal to v.

Lemma 5.1 Let u,v be vectors with v 6= 0. Then there is a unique scalar α
such that u− αv is orthogonal to v.

Proof We compute the inner product of u− αv and v:

〈u− αv,v〉 = 〈u,v〉 − α〈v,v〉. (5.1)

Setting the expression in (5.1) equal to zero and solving for α we obtain

α =
〈u,v〉
〈v,v〉 =

〈u,v〉
‖ v ‖2 .

Definition 5.10 Let u,v be vectors in an inner product space (V, 〈 , 〉) with
v 6= 0. The vector 〈u,v〉

‖v‖2 v is the orthogonal projection of u onto v. The

vector u− 〈u,v〉
‖v‖2 v is the projection of u orthogonal to v. The expression

u =
〈u,v〉
‖ v ‖2v +

(
u− 〈u,v〉

‖ v ‖2v
)

is referred to as an orthogonal decomposition of u with respect to v.
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Theorem 5.4 (Cauchy–Schwartz Inequality)

Let (V, 〈 , 〉) be an inner product space and u,v be vectors in V. Then

|〈u,v〉| ≤‖ u ‖‖ v ‖ (5.2)

with equality if and only if the sequence (u,v) is linearly dependent.

Proof If either u = 0 or v = 0, then both |〈u,v〉| and ‖ u ‖‖ v ‖ are zero
and we get equality. So assume u,v 6= 0. In this case, we can decompose u

orthogonally with respect to v:

u =
〈u,v〉
‖ v ‖2v +w,

where w = u − 〈u,v〉
‖v‖2 v is orthogonal to v. We can apply the Pythagorean

theorem (Theorem (5.3)) to get

‖ u ‖2 = ‖ 〈u,v〉
‖ v ‖2v ‖2 + ‖ w ‖2

= (
|〈u,v〉|
‖ v ‖2 )2 ‖ v ‖2 + ‖ w ‖2

=
|〈u,v〉|2
‖ v ‖4 ‖ v ‖2 + ‖ w ‖2

=
|〈u,v〉|2
‖ v ‖2 + ‖ w ‖2

≥ |〈u,v〉|2
‖ v ‖2 .

Thus, ‖ u ‖2≥ |〈u,v〉|2
‖v‖2 . Multiplying both sides of the inequality by ‖ v ‖2 and

taking square roots, we obtain

‖ u ‖ · ‖ v ‖ ≥ |〈u,v〉|.

Note that we get equality precisely when w = 0, which is when u is a multiple
of v, that is, when (u,v) is linearly dependent.

Assume u,v are non-zero vectors in a real inner product space (V, 〈 , 〉). Then,
as an immediate consequence of the Cauchy–Schwartz inequality we have

−1 ≤ 〈u,v〉
‖ u ‖‖ v ‖ ≤ 1.

Recall, for any real number r on the interval [−1, 1] there is a unique θ ∈ [0, π]
such that cos θ = r. We use this to define the notion of an angle between u,v:
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Definition 5.11 Let (V, 〈 , 〉) be a real inner product space and u,v vectors
in V. If one, but not both u and v, is the zero vector, define the angle between
u,v, denoted by ∠(u,v), to be π

2 . If both u,v are non-zero vectors, then the

angle between u,v, ∠(u,v), is the unique θ ∈ [0, π] such that cos θ = 〈u,v〉
‖u‖‖v‖ .

We can use the Cauchy–Schwartz inequality to prove a familiar theorem from
Euclidean geometry. Suppose that u,v,u+ v are the sides of a triangle. The
lengths of the sides of this triangle are ‖ u ‖, ‖ v ‖ and ‖ u+v ‖. One typically
learns in Euclidean geometry that the sum of the lengths of any two sides of
a triangle must exceed the length of the third side. This holds in any inner
product space:

Theorem 5.5 (Triangle Inequality) Let (V, 〈 , 〉) be an inner product space
and u,v be vectors in V. Then

‖ u+ v ‖ ≤ ‖ u ‖ + ‖ v ‖ . (5.3)

Moreover, when u,v 6= 0 we have equality if and only if there is a positive λ
such that v = λu (we say that u and v are parallel in the same direction).

Proof Note that when either u or v is the zero vector there is nothing to
prove and we have equality, so assume that u,v 6= 0. Applying properties of
an inner product we get

‖ u+ v ‖2= 〈u+ v,u+ v〉
by the definition of the norm;

= 〈u,u〉+ 〈v,v〉+ 〈u,v〉+ 〈v,u〉
by the additive property of the inner product;

= ‖ u ‖2 + ‖ v ‖2 +〈u,v〉+ 〈v,u〉
by the definition of the norm;

= ‖ u ‖2 + ‖ v ‖2 +〈u,v〉+ 〈u,v〉
by conjugate symmetry;

= ‖ u ‖2 + ‖ v ‖2 +2Re(〈u,v〉);

‖ u ‖2 + ‖ v ‖2 + 2Re(〈u,v〉) ≤ ‖ u ‖2 + ‖ v ‖2 + 2|〈u,v〉| (5.4)
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≤ ‖ u ‖2 + ‖ v ‖2 +2 ‖ u ‖ · ‖ v ‖ (5.5)

by the Cauchy–Schwartz inequality;

= (‖ u ‖ + ‖ v ‖)2.
By taking square roots, we obtain the required inequality.

In Equation (5.5), we have equality if and only |〈u,v〉| =‖ u ‖ · ‖ v ‖ if and
only if u is a multiple of v. In Equation (5.4), we have equality if and only
if 2Re(〈u,v〉) = |〈u,v〉|. Together these imply that 〈u,v〉 =‖ u ‖ · ‖ v ‖. If
u = cv for a positive real number, then this holds. On the other hand, suppose
u = γv, where either γ is real and negative or γ is not real. Then equality
does not hold. This completes the theorem.

The following theorem is often referred to as the Parallelogram Equality:

Theorem 5.6 Assume u,v ∈ V. Then

‖ u+ v ‖2 + ‖ u− v ‖2= 2(‖ u ‖2 + ‖ v ‖2).

Proof Let u,v be in V . We then have

‖ u+ v ‖2 + ‖ u− v ‖2 = 〈u+ v,u+ v〉+ 〈u− v,u− v〉
= ‖ u ‖2 + ‖ v ‖2 +〈u,v〉+ 〈v,u〉+ ‖ u ‖2

+ ‖ v ‖2 −〈u,v〉 − 〈v,u〉
= 2 ‖ u ‖2 +2 ‖ v ‖2
= 2(‖ u ‖2 + ‖ v ‖2).

We state two results for later reference. We prove the first and leave the second
as an exercise.

Lemma 5.2 Let (V, 〈 , 〉) be a real inner product space. Then

〈u,v〉 = (‖ u+ v ‖2 − ‖ u− v ‖2)
4

.

Proof ‖ u+ v ‖2 − ‖ u− v ‖2= 〈u+ v,u+ v〉 − 〈u− v,u− v〉

=‖ u ‖2 + ‖ v ‖2 +〈u,v〉+ 〈v,u〉 − (‖ u ‖2 + ‖ v ‖2 −〈u,v〉 − 〈v,u〉)

= 2〈u,v〉+ 2〈u,v〉 = 4〈u,v〉. Dividing by 4 yields the result.
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The identity asserted in the next lemma will prove useful in the Chapter 6.
We leave its proof as an exercise.

Lemma 5.3 Let (V, 〈 , 〉) be a complex inner product space. Then

〈u,v〉 = ‖ u+ v ‖2 − ‖ u− v ‖2 + ‖ u+ iv ‖2 i− ‖ u− iv ‖2 i
4

.

Exercises

1. Let u ∈ U. Prove that u⊥ is a subspace of V.

2. If dim(V ) = n and u 6= 0, prove that dim(u⊥) = n− 1.

3. Let (V, 〈 , 〉) be an n-dimensional inner product space and W a subspace
of V. Prove that W ∩W⊥ = {0}.
4. Let V = R(2)[x] with the inner product of Example (5.3). Find a basis for
the orthogonal complement to x2 + x+ 1.

5. Let V =M22(R) with the inner product of Example (5.4). Find the distance

between the matrices A =

(
1 1
−1 1

)
and

(
5 4
−4 5

)
.

6. Let V =M22(R) with the inner product of Example (5.4). Find the orthog-
onal complement to the identity matrix.

7. Let V =M22(R) with the inner product of Example (5.4). Find the orthog-
onal complement to the subspace of diagonal matrices.

8. Let V = R(2)[x] with the inner product of Example (5.3). Find the distance
between x and x2.

9. Verify that v and u− 〈u,v〉
‖v‖2 v are orthogonal.

10. Prove Lemma (5.3).

11. Let x1, . . . , xn, y1, . . . , yn be real numbers. Prove that




n∑

j=1

(xjyj)



2

≤




n∑

j=1

x2j
j






n∑

j=1

jy2j


 .

12. Let (V, 〈 , 〉) be an inner product space and d( , ) the corresponding
distance function. Prove the following hold:

a) d(u,v) ≥ 0 and d(u,v) = 0 if and only if u = v.

b) d(u,v) = d(v,u).

c) d(u,w) ≤ d(u,v) + d(v,w).
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13. Let V =M22(R) with the inner product of Example (5.4). Find the angle

between the identity matrix I2 =

(
1 0
0 1

)
and the all 1 matrix J2 =

(
1 1
1 1

)
.

14. Let u,v be vectors in an inner product space (V, 〈 , 〉) and assume that
‖ u+ v ‖=‖ u ‖ + ‖ v ‖ . Prove for all c, d ∈ R that

‖ cu+ dv ‖2= c2 ‖ u ‖2 + d2 ‖ v ‖2 .

15. Let (V, 〈 , 〉1) and (V, 〈 , 〉2) be real inner product spaces with associated
distance functions d1 and d2. If d1(u,v) = d2(u,v) for all vectors u,v ∈ V
prove that 〈u,v〉1 = 〈u,v〉2 for all vectors u,v.

16. Let (V, 〈 , 〉) be an inner product space, x ∈ V a unit vector, and y ∈ V .
Prove 〈y,x〉〈x,y〉 ≤ 〈y,y〉.
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5.3 Orthonormal Sets and the Gram–Schmidt Process

What You Need to Know

Understanding the new material in this section depends on mastery of the
following concepts: basis of a finite-dimensional vector space, coordinate vector
of a vector in a finite-dimensional vector space with respect to a given basis,
inner product space, and orthogonal vectors in an inner product space.

We begin with an example:

Example 5.8 a) Show that the vectors

v1 =



1
1
1


 ,v2 =




2
−1
−1


 ,v3 =




0
1
−1




are mutually orthogonal with respect to the dot product.

b) Prove that the sequence of vectors (v1,v2,v3) is a basis for R3.

c) Find the coordinate vector of u =



1
2
3


 with respect to v1,v2,v3.

a) We compute the dot products directly

v1 � v2 = (1)(2) + (1)(−1) + (1)(−1) = 0;

v1 � v3 = (1)(0) + (1)(1) + (1)(−1) = 0;

v2 � v3 = (2)(0) + (−1)(1) + (−1)(−1) = 0.

b) We could reduce the matrix (v1 v2 v3) and show that it is invertible but we
give a non-computational argument.

Quite clearly, v2 is not a multiple of v1 and therefore (v1,v2) is linearly
independent. If (v1,v2,v3) is linearly dependent, then v3 must be a linear
combination of (v1,v2) by part ii) of Theorem (1.14). So assume that v3 is a
linear combination of (v1,v2), say, v3 = c1v1 + c2v2.

Then v3 � v3 = v3 � (c1v1 + c2v2) = c1(v3 � v1) + c2(v3 � v2) by additivity and
the scalar property of the dot product.

By a) v3 � v1 = v3 � v2 = 0 and therefore, v3 � v3 = 0. But then by positive
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definiteness, v3 = 03, a contradiction. Therefore v3 is not a linear combination
of (v1,v2) and (v1,v2,v3) is linearly independent. Since the dimension of R3

is 3, it follows that (v1,v2,v3) is a basis.

c) We could find the coordinate vector of u by finding the reduced echelon form
of the matrix (v1 v2 v3 | u), but we instead make use of the information we
obtained from a).

Write u = a1v1 + a2v2 + a3v3 and take the dot product of u with v1,v2,v3,
respectively:

u �v1 = (a1v1+a2v2+a3v3) �v1 = a1(v1 �v1)+a2(v2 �v1)+a3(v3 �v1) (5.6)

by additivity and the scalar property of the dot product.

However, we showed in a) that v1,v2,v3 are mutually orthogonal. Making use
of this in Equation (5.6) we get

u � v1 = a1(v1 � v1). (5.7)

A direct computation show shows that u �v1 = 6 and v1 �v1 = 3 and therefore
6 = 3a1. Thus, a1 = 2. In exactly the same way, we obtain a2 = − 1

2 , a3 = − 1
2 .

Remark 5.2 If v1, . . . ,vk are non-zero vectors such that for i 6= j, 〈vi,vj〉 =
0 then the vectors are distinct.

Example (5.8) is the motivation for the next definition:

Definition 5.12 A sequence (v1,v2, . . . ,vk) of non-zero vectors in an in-
ner product space (V, 〈 , 〉) is said to be an orthogonal sequence if for
i 6= j, 〈vi,vj〉 = 0. A set of vectors {v1, . . . ,vk} is an orthogonal set
if the sequence (v1, . . . ,vk) is an orthogonal sequence. If dim(V ) = n,
(v1,v2, . . . ,vn) is a basis for V and an orthogonal sequence then it is said
to be an orthogonal basis for V.

Orthogonal sequences behave like the one in Example (5.8). In particular, they
are linearly independent:

Theorem 5.7 Let S = (v1,v2, . . . ,vk) be an orthogonal sequence in the inner
product space (V, 〈 , 〉). Then S is linearly independent.
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Proof The proof is by induction on k. Since the vectors in an orthogonal
sequence are non-zero, if k = 1 (the initial case), then the result is true since
a single non-zero vector is linearly independent. We now do the inductive case.

So assume that every orthogonal sequence of k vectors is linearly independent
and that S = (v1,v2, . . . ,vk,vk+1) is an orthogonal sequence. We need to
show that S is linearly independent. Since (v1,v2, . . . ,vk) is an orthogonal
sequence of length k, by the inductive hypothesis, it is linearly independent.

If S is linearly dependent, then it must be the case that vk+1 is a linear com-
bination of (v1,v2, . . . ,vk). So assume that vk+1 = c1v1 + c2v2 + · · ·+ ckvk.
We then have

‖ vk+1 ‖2 = 〈vk+1,vk+1〉

=

〈
k∑

i=1

civi,vk+1

〉

=

k∑

i=1

ci〈vi,vk+1〉.

Since S is an orthogonal sequence, for each i < k + 1, 〈vi,vk+1〉 = 0 from

which we can conclude that ‖ vk+1 ‖2=∑k
i=1 ci〈vi,vk+1〉 = 0. It then follows

from positive definiteness that vk+1 = 0. However, by the definition of an or-
thogonal sequence, vk+1 6= 0, and we have a contradiction. Thus, S is linearly
independent.

It is also the case that for an orthogonal sequence S = (v1,v2, . . . ,vk) in an
inner product space (V, 〈 , 〉) it is easy to compute the coordinates of a vector
in Span(S) with respect to S:

Theorem 5.8 Let S = (v1,v2, . . . ,vk) be an orthogonal sequence and u a
vector in Span(S). If u = c1v1 + c2v2 + · · ·+ ckvk is the unique expression of

u as a linear combination of the vectors in S then cj =
〈u,vj〉
〈vj ,vj〉 .

Proof Assume u = c1v1 + c2v2 + · · ·+ ckvk, then 〈u,vj〉 =

〈(c1v1 + c2v2 + · · ·+ ckvk),vj〉 =
k∑

i=1

ci〈vi,vj〉 (5.8)

by the additivity and scalar properties of the dot product.

Because 〈vj ,vi〉 = 0 for j 6= i, Equation (5.8) reduces to 〈u,vj〉 = cj〈vj ,vj〉.
Since vj is non-zero, 〈vj ,vj〉 6= 0, and we can deduce that cj = 〈u,vi〉

〈vj ,vj〉 as

claimed.
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The following is a consequence of Theorem (5.8): If W is a subspace of V,
S is an orthogonal sequence and a basis for W, then the computation of the
coordinates of a vector u inW with respect to S is quite easy. The computation
of coordinates is even simpler when the vectors in an orthogonal sequence are
unit vectors. We give a name to such sequences.

Definition 5.13 Let (V, 〈 , 〉) be an inner product space. An orthogonal se-
quence S consisting of unit vectors is called an orthonormal sequence. If
W is a subspace of V,S is a basis for W , and S is an orthonormal sequence,
then S is said to be an orthonormal basis for W .

The remainder of this section is taken up describing a method for obtaining
an orthonormal basis for a subspace W of an inner product space (V, 〈 , 〉),
given a basis of W. The method is known as the Gram–Schmidt process.

The Gram–Schmidt Process

Assume that W is a subspace of V and that (w1,w2, . . . ,wm) is a basis
for W.We shall first define an orthogonal sequence of vectors (x1,x2, . . . ,xm)
recursively. Moreover, this sequence will have the property that for each k, 1 ≤
k ≤ m,Span(x1,x2, . . . ,xk) = Span(w1,w2, . . . ,wk). We then obtain an
orthonormal basis by normalizing each vector. More specifically, we will set
vi =

1
‖xi‖xi, i = 1, 2, . . . ,m.

To say that we define the sequence recursively means that we will initially
define x1. Then, assuming that we have defined x1,x2, . . . ,xk with k < m
satisfying the required properties, we will define xk+1 such that i) xk+1 is or-
thogonal to x1,x2, . . . ,xk and ii) Span(x1, . . . ,xk+1) = Span(w1, . . . ,wk+1).
Since the sequence (w1,w2, . . . ,wk+1) is linearly independent it will then fol-
low that the sequence (x1,x2, . . . ,xk+1) is linearly independent. In particular,
xk+1 will not be the zero vector.

The Definition of x1

We begin with the definition of x1 which we set equal to w1.

The Recursion

To get a sense of what we are doing, we first show how to define x2 in terms
of w2 and x1 and then x3 in terms of x1,x2 and w3 before doing the general
case.

Defining x2

The idea is to find a linear combination x2 of w2 and x1, which is orthog-
onal to x1. The vector x2 will be obtained by adding a suitable multiple of
x1 to w2. Consequently, we will have that Span(x1,x2) = Span(x1,w2) =
Span(w1,w2).
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Rather than just write down a formula, we compute the necessary scalar:
Assume that x2 = w2 + ax1 and that 〈x2,x1〉 = 0. Then

0 = 〈x2,x1〉 = 〈(w2 + ax1),x1〉 = 〈w2,x1〉+ a〈x1,x1〉. (5.9)

Solving for a we obtain

a = −〈w2,x1〉
〈x1,x1〉

. (5.10)

Using the value of a obtained in Equation (5.10), we set x2 = w2− 〈w2,x1〉
〈x1,x1〉x1.

Defining x3

Now that we have defined x1 and x2 we find a vector x3 which is a linear
combination of the form x3 = w3+a1x1+a2x2. We want to determine a1, a2
such that x3 is orthogonal to x1 and x2. Since x3 and x1 are supposed to be
orthogonal, we must have

0 = 〈x3,x1〉 = 〈w3 + a1x1 + a2x2,x1〉

= 〈w3,x1〉+ a1〈x1,x1〉+ a2〈x2,x1〉. (5.11)

Because x1 and x2 are orthogonal we get

0 = 〈w3,x1〉+ a1〈x1,x1〉, a1 = −〈w3,x1〉
〈x1,x1〉

. (5.12)

In an entirely analogous way, using the fact that x3 and x2 are supposed to
be orthogonal we obtain

a2 = −〈w3,x2〉
〈x2,x2〉

. (5.13)

Thus,

x3 = w3 −
〈w3,x1〉
〈x1,x1〉

x1 −
〈w3,x2〉
〈x2,x2〉

x2. (5.14)

Since x3 is obtained by adding a linear combination of x1 and x2 to w3

we have that Span(x1,x2,x3) = Span(x1,x2,w3). Since Span(x1,x2) =
Span(w1,w2) it then follows that Span(x1,x2,x3) = Span(w1,w2,w3).
Since (w1,w2,w3) is linearly independent, dim(Span(w1,w2,w3)) = 3. It
then must be the case that x3 6= 0.
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The General Recursive Case

We now do the general case. So assume that x1,x2, . . . ,xk have been defined
with k < m satisfying

i) 〈xi,xj〉 = 0 for i 6= j; and

ii) Span(x1,x2, . . . ,xk) = Span(w1, w2, . . . ,wk).

Set

xk+1 = wk+1 −
k∑

j=1

〈wk+1,xj〉
〈xj ,xj〉

xj. (5.15)

We show that 〈xk+1,xi〉 = 0 for all i = 1, 2, . . . , k.

〈xk+1,xi〉 = 〈wk+1 −
∑k

j=1
〈wk+1,xj〉
〈xj ,xj〉 xj ,xi〉

= 〈wk+1,xi〉 −
k∑

j=1

〈wk+1,xj〉
〈xj,xj〉

〈xj,xi〉. (5.16)

Since 〈xj ,xi〉 = 0 for i 6= j, Equation (5.16) becomes

〈wk+1,xi〉 −
〈wk+1,xi〉
〈xi,xi〉

〈xi,xi〉 = 〈wk+1,xi〉 − 〈wk+1,xi〉 = 0. (5.17)

So, indeed, xk+1 as defined is orthogonal to x1,x2, . . . ,xk.

Since xk+1 is obtained from wk+1 by adding a linear combination of
(x1,x2, . . . ,xk) to wk+1, it follows that Span(x1,x2, . . . ,xk,xk+1) =
Span(x1,x2, . . . ,xk,wk+1). Since Span(x1, . . . ,xk) = Span(w1, . . . ,wk) we
can conclude that Span(x1, . . . ,xk,xk+1) = Span(w1, . . . ,wk,wk+1). In par-
ticular, this implies that xk+1 6= 0.

Now normalize each xi to obtain vi:

vi =
1

‖ xi ‖
xi, i = 1, 2, . . . ,m.

Since each vi is obtained from xi by scaling, it follows that Span(v1,v2, . . . ,vk) =
Span(x1,x2, . . . ,xk) = Span(w1,w2, . . . ,wk) for each k = 1, 2, . . . ,m.

We state what we have shown as a theorem:
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Theorem 5.9 (Gram–Schmidt Process)

Let W be a subspace of the inner product space (V, 〈 , 〉) with basis
(w1,w2, . . . ,wm). Define x1 = w1.

Assume that x1,x2, . . . ,xk have been defined with k < m. Set

xk+1 = wk+1 −
k∑

j=1

〈wk+1,xj〉
〈xj ,xj〉

xj,

vi =
1

‖ xi ‖
xi, i = 1, 2, . . . ,m.

Then the following hold:

i. The sequence of vectors (v1,v2, . . . ,vm) is an orthonormal basis of W.

ii. Span(v1,v2, . . . ,vk) = Span(w1,w2, . . . ,wk), for each k = 1, 2, . . . .m.

When the inner product space (V, 〈 , 〉) is finite-dimensional, every subspace
of V has a basis; as a consequence of the Gram–Schmidt process, we have the
following theorem:

Theorem 5.10 Let W be a subspace of a finite-dimensional inner product
space (V, 〈 , 〉). Then W has an orthonormal basis.

To complete our results, we state the following theorem, which we leave as an
exercise.

Theorem 5.11 LetW be a subspace of the n-dimensional inner product space
(V, 〈 , 〉). Then dim(W ) + dim(W⊥) = n.

Exercises

1. In the Gram–Schmidt process, check that 〈x2,x1〉 = 0.

2. Prove that x3 defined by Equation (5.14) is orthogonal to x1,x2.

3. Assume U ⊂ W are subspaces of an inner product space (V, 〈 , 〉). Prove
that W⊥ ⊂ U⊥.

4. Prove Theorem (5.11).

5. Let (V, 〈 , 〉) be a finite dimension inner product space and W a subspace
of V. Prove that V =W ⊕W⊥.

6. Let W be a subspace of a finite-dimensional inner product space (V, 〈 , 〉).
Prove W = (W⊥)⊥.
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7. Assume U,W are subspaces of the finite-dimensional inner product space
(V, 〈 , 〉). Prove that (U +W )⊥ = U⊥ ∩W⊥ and (U ∩W )⊥ = U⊥ +W⊥.

An n×nmatrix A with entries aij , 1 ≤ i, j ≤ n is upper triangular if aij = 0
for i > j.

8. Let V be an inner product space with basis B = (w1,w2, . . . ,wm). Let B′

be the basis obtained by the Gram–Schmidt process. Prove that the change
of basis matrix from B′ to B,MIV (B′,B), and the change of basis matrix of
B to B′,MIV (B,B′), are upper triangular.

9. Starting with the basis (1, x, x2) for R(2)[x], use the Gram–Schmidt process
to obtain an orthonormal basis.

10. Assume (v1, . . . ,vk) is an orthonormal sequence in an inner product space
(V, 〈 , 〉) and u ∈ V. Prove the following inequality (known as the Bessel
inequality)

k∑

i=1

|〈u,vi〉|2 ≤ ‖ u ‖2

with equality if and only if u ∈ Span(v1, . . . ,vk).

11. Let V = M22(R) with the inner product of Example (5.4). Let W =
Span(J2). Find an orthonormal basis for W⊥. Here J2 is the 2 × 2 matrix
with all entries equal to 1.

12. Let (v1, . . . ,vn) be an orthonormal basis for the inner product space
(V, 〈 , 〉) and x,y ∈ V. Prove Parseval’s identity

〈x,y〉 =
n∑

i=1

〈x,vi〉〈vi,y〉.
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5.4 Orthogonal Complements and Projections

What You Need to Know

Understanding the new material in this section depends on mastery of the
following concepts: basis of a finite-dimensional vector space, coordinate vector
of a vector in a finite-dimensional vector space with respect to a given basis,
inner product space, orthogonal vectors in an inner product space, orthogonal
sequence in an inner product space, orthonormal sequence in an inner product
space, and orthogonal basis in an inner product space, orthonormal basis in
an inner product space.

Let (V, 〈 , 〉) be in inner product space and W a subspace of V. Recall in
Section (5.2) we defined the orthogonal complement W⊥ to W :

W⊥ = {v ∈ V |〈v,w〉 = 0 for all w ∈W}.
In various places in this chapter, we have demonstrated parts of the next
theorem (or assigned them as exercises):

Theorem 5.12 Let (V, 〈 , 〉) be an n-dimensional inner product space and
W a subspace of V . Then the following hold:

1. W⊥ is subspace of V.

2. W ∩W⊥ = {0}.
3. dim(W ) + dim(W⊥) = n.

4. W +W⊥ = V.

5. W ⊕W⊥ = V.

By the definition of direct sum it then follows that for every vector v ∈ V,
there are unique vectors w ∈ W,u ∈ W⊥ such that v = w+ u. We make use
of this in the following definition:

Definition 5.14 Let W be a subspace of the n-dimensional inner product
space (V, 〈 , 〉) and let v ∈ V. Assume that v = w + u with w ∈ W,u ∈ W⊥.
Then the vector w is called the orthogonal projection of v onto W and is
denoted by ProjW (v). The vector u is called the projection of v orthogonal
to W and is denoted by ProjW⊥ (v).
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Remark 5.3 1) With a direct sum decomposition V =W⊕W⊥ we previously
defined a linear transformation Proj(W,W⊥). The transformation Proj(W,W⊥)

and ProjW are the same transformation. Likewise, Proj(W⊥ ,W ) = ProjW⊥ .

2) For a vector w ∈ W,ProjW (w) = w. Since for any vector v ∈
V, ProjW (v) ∈ W we conclude that Proj2W (v) = (ProjW ◦ ProjW )(v) =
ProjW (ProjW (v)) = ProjW (v).

The next example in real Euclidean space shows how to find the orthogonal
projection of a vector u onto a subspace W when given a basis of W.

Example 5.9 Let w1 =




1
1
1
1


 ,w2 =




1
1
1
−1


 , and w3 =




1
1
−2
1


 and denote

by W the span of (w1,w2,w3). Compute ProjW (u) if u =




6
6
−3
2


.

We want to find the vector c1w1+ c2w2 + c3w3 such that u− (c1w1 + c2w2+
c3w3) is in W⊥. In particular, for each i we must have

[u− (c1w1 + c2w2 + c3w3)] ·wi =

u ·wi − c1(w1 ·wi)− c2(w2 ·wi)− c3(w3 ·wi) = 0. (5.18)

For each i, Equation (5.18) is equivalent to

c1(w1 ·wi) + c2(w2 ·wi) + c3(w3 ·wi) = u ·wi. (5.19)

This means that



c1
c2
c3


 is a solution to the linear system with augmented

matrix



w1 ·w1 w2 ·w1 w3 ·w1 | u ·w1

w1 ·w2 w2 ·w2 w3 ·w2 | u ·w2

w1 ·w3 w2 ·w3 w3 ·w3 | u ·w3


 . (5.20)

It follows from Exercise (5.1.8) that this system has a unique solution, which
we now compute.

In our specific case we must solve the linear system with augmented matrix
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4 2 1 | 11
2 4 −1 | 7
1 −1 7 | 20


 . (5.21)

This system has the unique solution



1
2
3


 .

Example (5.9) suggests the following theorem, which provides a method for
computing ProjW (u) when given a basis for the subspace W.

Theorem 5.13 LetW be a subspace of the n-dimensional inner product space
(V, 〈 , 〉) with basis B = (w1,w2, . . . ,wk) and let u be a vector in V. Then

ProjW (u) = c1w1 + c2w2 + . . . ckwk, where




c1
c2
...
ck


 is the unique solution to

the linear system with augmented matrix




〈w1,w1〉 〈w2,w1〉 . . . 〈wk,w1〉 | 〈u,w1〉
〈w1,w2〉 〈w2,w2〉 . . . 〈wk,w2〉 | 〈u,w2〉

...
... . . .

...
...

...
〈w1,wk〉 〈w2,wk〉 . . . 〈wk,wk〉 | 〈u,wk〉


 . (5.22)

When given an orthogonal basis for W , it is much easier to compute the
orthogonal projection of a vector v onto W because the matrix of Equation
(5.22) becomes a diagonal matrix. We illustrate with an example in the real
Euclidean space R4 with the dot product before formulating this as a theorem.

Example 5.10 Let w1 =




1
1
1
1


 , w2 =




1
1
−1
−1


, and set W = Span(w1,w2).

Find the orthogonal projection of the vector v =




1
3
−4
6


 onto W.

We claim that ProjW (v) = v·w1

w1·w1
w1 +

v·w2

w2·w2
w2.

We compute this vector
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v ·w1

w1 ·w1
w1 +

v ·w2

w2 ·w2
w2 =

6

4




1
1
1
1


+

2

4




1
1
−1
−1


 =




2
2
1
1


 . (5.23)

The vector w =




2
2
1
1


 is a linear combination of w1 and w2 and so in W. We

need to show that the vector v −w =




−1
1
−5
5


 is orthogonal to w1 and w2.

(v −w) ·w1 =




−1
1
−5
5


 ·




1
1
1
1


 = −1 + 1− 5 + 5 = 0. (5.24)

(v −w) ·w2 =




−1
1
−5
5


 ·




1
1
−1
−1


 = −1 + 1 + 5− 5 = 0. (5.25)

Theorem 5.14 Let W be a subspace of the inner product space (V, 〈 , 〉) and
B = (w1,w2, . . . ,wk) be an orthogonal basis for W. Let u be a vector in V.
Then

ProjW (u) =
k∑

j=1

〈u,wj〉
〈wj ,wj〉

wj .

Proof Set w =
∑k

i=1
〈u,wi〉
〈wi,wi〉wi, an element of W. We need to show that

u−w is perpendicular to wi for i = 1, 2, . . . , k.

From the additive and scalar properties of the inner product 〈 , 〉 we can
conclude that 〈u − w,wi〉 = 〈u,wi〉 − 〈w,wi〉 for each i. From the additive
and scalar properties of the inner product, we have

〈w,wi〉 =
〈

k∑

j=1

〈u,wj〉
〈wj ,wj〉

wj ,wi

〉
=

k∑

j=1

〈u,wj〉
〈wj ,wj〉

〈wj ,wi〉. (5.26)
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On the right-hand side of (5.26), the only term that is non-zero is
〈u,wi〉
〈wi,wi〉 〈wi,wi〉 = 〈u,wi〉 since for j 6= i, 〈wj ,wi〉 = 0. Thus, 〈w,wi〉 =

〈u,wi〉. It now follows that

〈u−w,wi〉 = 〈u,wi〉 − 〈u,wi〉 = 0

as desired.

You might recognize the expression v·wi

wi·wi
wi as the projection of the vector v

onto wi. We therefore have the following:

Theorem 5.15 Let (w1,w2, . . . ,wk) be an orthogonal basis for the subspace
W of V and u a vector in V. Then

ProjW (u) = Projw1(u) + Projw2(u) + · · ·+ Projwk
(u).

We complete this section with one more result in which we apply what we have
obtained to solving the following general problem: Given a subspace W of an
inner product space (V, 〈 , 〉) and a vector u, determine the vector w ∈ W
which has the least distance to u. The following theorem is often called the
Best Approximation Theorem.

Theorem 5.16 Let W be a subspace of the inner product space (V, 〈 , 〉) and
u a vector in V. Then for any vector w ∈W,w 6= ProjW (u), we have

‖ u− ProjW (u) ‖ < ‖ u−w ‖ .

Proof Set ŵ = ProjW (u). Then the vector u− ŵ ∈W⊥ and so orthogonal
to every vector in W. In particular, u− ŵ is orthogonal to ŵ −w.

Now u −w = (u − ŵ) + (ŵ −w). Since u − ŵ is orthogonal to ŵ −w we
have

‖ u−w ‖2=‖ (u − ŵ) + (ŵ −w) ‖2=‖ u− ŵ ‖2 + ‖ ŵ −w ‖2 (5.27)

by Theorem (5.3). Since w 6= ProjW (u) = ŵ, ŵ −w 6= 0 and consequently,
‖ ŵ −w ‖6= 0. From (5.27) we conclude that

‖ u−w ‖2 > ‖ u− ŵ ‖2 (5.28)

from which the result immediately follows by taking square roots.
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FIGURE 5.1
Projection of vector onto subspace.

In Figure (5.1) we illustrate Theorem (5.16).

Definition 5.15 LetW be a subspace of the inner product space (V, 〈 , 〉) and
let u ∈ V. The distance of u to W is the minimum of {‖ u−w ‖: w ∈W},
that is, the shortest distance of the vector u to a vector in W. By Theorem
(5.16), this is ‖ u− ProjW (u) ‖ . We denote the distance of the vector u to
the subspace W by dist(u,W ).

Exercises

1. Let W = Span(




1
1
1
1


 ,




1
0
1
0


) and u =




1
2
3
4


 . Compute ProjW (u) and

ProjW⊥ (u).

2. Let V =M22(R) with the inner product of Example (5.4) and let W be the
subspace of trace zero matrices. Find ProjW (J2) where J2 is the all 1 matrix,

J2 =

(
1 1
1 1

)
.
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3. Let R(3)[x] be equipped with the inner product 〈f, g〉 =
∫ 1

0 f(t)g(t)dt and
set W = Span(1, x, x2). Compute ProjW (x3).

4. Find the distance of the point (2,3,4) from the plane x+ 2y − 2z = 5.

5. Find the distance of the point (1,−1, 1,−1) from the affine hyperplane
x1 + 2x2 + 3x3 + x4 = 7.

6. Let L be the line {(t + 1,−2t, 3t− 2,−t+ 1)|t ∈ R}. Find the distance of
the origin from L.

7. Using the inner product 〈f, g〉 =
∫ 1

0
f(t)g(t)dt on the space C([0, 1]), find

the best approximation to the function
√
x in the subspace R(2)[x].

8. Let (V, 〈 , 〉) be an n-dimensional real inner product space and S =
(v1,v2, . . . ,vn) an orthonormal basis of V. Let W be a subspace of V
with an orthonormal basis B = (w1,w2, . . . ,wk). Set P = ProjW and
A = ([w1]S [w2]S . . . [wk]S). Prove that the matrix of ProjW with respect
to S is AAtr.

9. Continuing with the hypothesis of Exercise 8, prove that Q = MP (S,S)
satisfies Q2 = Q and Qtr = Q.

10. Let (V, 〈 , 〉) be an n-dimensional real inner product space and let S =
(v1,v2, . . . ,vn) be an orthonormal basis of V. LetQ be a matrix, which satisfies
Q2 = Q and Qtr = Q. Assume that Q = MT (S,S) and let W = Range(T )
and U = Ker(T ). Prove that U =W⊥ and T = ProjW .

11. Let W,U be subspaces of the inner product space (V, 〈 , 〉). Prove that

(ProjU ◦ ProjW )(v) = ProjU (ProjW (v)) = 0

for every vector v ∈ V if and only if W ⊥ U.

12. Let W be a subspace of the inner product space (V, 〈 , 〉) and u a vector
in V. Prove that ‖ ProjW (u) ‖ ≤ ‖ u ‖ with equality if and only if u ∈W.

13. Let W be a subspace of the inner product space (V, 〈 , 〉) and u a vector
in V. Prove that dist(u,W ) ≤ ‖ u ‖ with equality if and only if u ∈ W⊥.
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5.5 Dual Spaces

What You Need to Know

To make sense of the material in this section you will need a fundamental
understanding of the following concepts: finite-dimensional vector space V,
basis of a finite-dimensional vector space, linear transformation from a finite-
dimensional vector space V to a finite-dimensional vector space W, and the
matrix of a linear transformation T from a space V to a spaceW with respect
to bases BV of V and BW of W.

We begin with a definition:

Definition 5.16 Let V be a finite-dimensional vector space over a field F.
The dual space of V , denoted by V ′, is L(V,F), that is, the vector space of
all linear transformations from V to F, the latter regarded as a vector space
of dimension one. Elements of V ′ are called linear functionals.

Lemma 5.4 Let V be a vector space over F with basis B = (v1, . . . ,vn). Then
there exists linear functionals f1, f2, . . . , fn such that

fj(vj) = 1, fj(vi) = 0, i 6= j. (5.29)

Moreover, B′ = (f1, f2, . . . , fn) is a basis for V ′.

Proof The existence of the function fi is immediate since for any function
f : B → F there exists a unique extension of f to a linear transformation on
V by Theorem (2.6).

To see that B′ is linearly independent, suppose f = c1f1 + . . . cnfn = 0V→F.
Then f(u) = 0 for all u ∈ V. In particular, f(vj) = cj = 0.

To see that B′ spans V ′, let f ∈ V ′. Set cj = f(vj) and g = c1f1 + . . . cnfn.
Since f and g are both linear functionals it suffices to prove that f(vj) = g(vj)
for all j = 1, 2, . . . , n. We know that f(vj) = cj . On the other hand, g(vj) =∑n

i=1 cifi(vj) = cjfj(vj) = cj .

Definition 5.17 Let V be a vector space with basis B = (v1, . . . ,vn). The
basis B′ = (f1, f2, . . . , fn) of V ′ such that Equation (5.29) holds is called the
basis of V ′ dual to B or simply the dual basis to B.
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In the next result, we show how a linear transformation T from a finite-
dimensional vector space V to a finite-dimensional vector space W induces a
linear transformation T ′ from W ′ to V ′.

Theorem 5.17 Let V,W be finite-dimensional vector spaces over the field
F and T : V → W be a linear transformation. Define T ′ : W ′ → V ′ by
T ′(g) = g ◦ T. Then T ′ ∈ L(W ′, V ′).

Proof First, we must verify that T ′(g) ∈ V ′. However, this is immediate:
Since g and T are linear it follows that the composition g ◦ T is linear.

We also need to show that T ′ is linear. Suppose g1, g2 ∈ W ′ and v ∈ V. Then

T ′(g1 + g2)(v) = [(g1 + g2) ◦ T ](v)
= (g1 + g2)(T (v))

= g1(T (v)) + g2(T (v))

= T ′(g1)(v) + T ′(g2)(v)

= [T ′(g1) + T ′(g2)](v).

Thus, T ′(g1 + g2) = T ′(g1) + T ′(g2).

Now suppose g ∈W ′, α ∈ F. Then

T ′(αg)(v) = [(αg) ◦ T ](v)
= (αg)(T (v))

= α(g(T )(v)

= α(T ′(g)(v)).

Therefore, T ′(αg) = αT ′(g).

Definition 5.18 Let V and W be finite-dimensional vector spaces and T ∈
L(V,W ). Then the map T ′ ∈ L(W ′, V ′) is called the transpose of T.

The next theorem relates the transpose of a linear transformation to the trans-
pose of a matrix.

Theorem 5.18 Let V be a vector space with basis BV = (v1,v2, . . . ,vn), W
be a vector space with basis BW = (w1,w2, . . . ,wm), and T ∈ L(V,W ). Let
BV ′ = (f1, f2, . . . , fn) be the basis dual to BV and BW ′ = (g1, g2, . . . , gm) be
the basis dual to BW . Then MT ′(BW ′ ,BV ′) = MT (BV ,BW )tr.



Normed and Inner Product Spaces 181

Proof Assume that

[T (vj)]BW
=




a1j
a2j
...

amj


 (5.30)

and

[T ′(gi)]BV ′ =




b1i
b2i
...
bni


 . (5.31)

We need to show that bji = aij . Recall, Equation (5.30) means that

T (vj) =
m∑

k=1

akjwk (5.32)

and Equation (5.31) is equivalent to

T ′(gi) =
n∑

l=1

blifl. (5.33)

Let us apply T ′(gi) to the vector vj . On the one hand,

T ′(gi)(vj) = (gi ◦ T )(vj) = gi(T (vj)) = gi

(
m∑

k=1

akjwk

)
= aij . (5.34)

In Equation (5.34) we have used the fact that gi(wi) = 1 and gi(wk) = 0 for
k 6= i. On the other hand,

[T ′(gi])(vj) =

(
n∑

l=1

blifl)

)
(vj) =

n∑

l=1

blifl(vj) = bji. (5.35)

In Equation (5.35) we have used the fact that fj(vj) = 1, fl(vj) = 0 if l 6= j.

We have therefore shown that aij = bji as required.

Exercises

1. Let S ′ = (f1, f2, f3, f4) be the basis of (R4)′ that is dual to the standard
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basis S of R4. Verify that B =







1
2
1
0


 ,




2
3
0
1


 ,




1
1
0
2


 ,




2
3
1
1





 is a basis for R4

and find the basis of (R4)′ dual to B (expressed as a linear combination of S ′).

2. Let V,W be finite-dimensional vector spaces. Show that the transpose map
T → T ′ from L(V,W ) to L(W ′, V ′) is a vector space isomorphism.

3. Assume V and W are finite-dimensional vector spaces and let T → T ′ be
the transpose map from L(V,W ) to L(W ′, V ′). Prove that T is one-to-one if
and only if T ′ is onto and T is onto if and only if T ′ is one-to-one.

4. Assume V andW are finite-dimensional vector spaces and let T → T ′ be the
transpose map from L(V,W ) to L(W ′, V ′). Prove that T is an isomorphism
if and only if T ′ is an isomorphism.

5. Assume V andW are finite-dimensional vector spaces and let T → T ′ be the
transpose map from L(V,W ) to L(W ′, V ′). Prove that rank(T ) = rank(T ′).

6. Assume V andW are finite-dimensional vector spaces and let T → T ′ be the
transpose map from L(V,W ) to L(W ′, V ′). Prove nullity(T ) = nullity(T ′) if
and only if dim(V ) = dim(W ).

7. Let V be an n-dimensional vector space and assume (f1, . . . , fn) is a basis

of V ′. Prove that the map T : V → Fn given by T (v) =



f1(v)

...
fn(v)


 is an

isomorphism.

8. Let (π1, . . . , πn) be the basis in (Fn)′ dual to the standard basis S. Let
T ∈ L(V,Fn) and set fi = πi ◦ T. Assume T is an isomorphism. Prove that
(f1, . . . , fn) is basis of V

′.

9. Let V be an n-dimensional vector space and assume (f1, . . . , fn) is a basis
of V ′. Prove that there exists x1, . . . ,xn ∈ V such that fj(xj) = 1 for j =
1, 2, . . . , n and fj(xi) = 0 if j 6= i.

10. Let V be a finite-dimensional vector space and U a subspace of V. Set
U ′ = {f ∈ V ′|U ⊂ Ker(f)}. Prove that U ′ is a subspace of V ′ and that

dim(U) + dim(U ′) = dim(V ).

11. Let V be an n-dimensional vector space and U,W subspaces of V. Prove
that (U +W )′ = U ′ ∩W ′, (U ∩W )′ = U ′ +W ′.

12. Assume V = U ⊕ W (an external direct sum). Define γ : U ′ ⊕ W ′ →
(U ⊕W )′ by γ(f, g)(u+w) = f(u) + g(w). Prove that γ is an isomorphism.

13. Let V,W,X be finite-dimensional vector spaces over a field F. Assume
T ∈ L(V,W ) and S ∈ L(W,X). Prove that (S ◦ T )′ = T ′ ◦ S′.



Normed and Inner Product Spaces 183

14. Let V be a finite-dimensional vector space, T ∈ L(V, V ) and assume that
U is a T -invariant subspace of V. Prove that U ′ is T ′-invariant.

15. Let V be a finite-dimensional vector space, T ∈ L(V, V ). Prove that
µT (x) = µT ′(x).

16. Let V,W be finite-dimensional vector spaces over a field F and T ∈
L(V,W ). Prove the following:

i. Ker(T ′) = Range(T )′.

ii. Range(T ′) = Ker(T )′.

iii. Ker(T ) = Range(T ′)′.

iv. Range(T ) = Ker(T ′)′.
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5.6 Adjoints

What You Need to Know

To make sense of the present material, it is essential that you have mastered
the following concepts: finite-dimensional inner product space, linear trans-
formation from a vector space V to a vector space W , kernel and range of
a linear transformation, dual space of a vector space V, matrix of a linear
transformation from a finite-dimensional vector space to a finite-dimensional
vector W , dual basis to a basis in a vector space V, and transpose of a linear
transformation T from a vector space V to a vector space W.

In our first result we show that in an inner product space (V, 〈 , 〉) over
F ∈ {R,C} there is a natural correspondence between vectors in the dual
space V ′ and the vectors in V. We will make use of this in defining the adjoint
of an operator.

Theorem 5.19 Let (V, 〈 , 〉) be a finite-dimensional inner product space and
assume that f ∈ V ′. Then there exists a unique vector v ∈ V such that
f(u) = 〈u,v〉 for all u ∈ V.

Proof Let S = (v1, . . . ,vn) be an orthonormal basis for V and assume that
f(vi) = ai, i = 1, 2, . . . , n. Set v = a1v1 + a2v2 + . . . anvn. We claim that
f(u) = 〈u,v〉 for all vectors u ∈ V. Suppose u = b1v1+ b2v2+ · · ·+ bnvn ∈ V.
Then

f(u) = f(b1v1 + b2v2 + · · ·+ bnvn)

= b1f(v1) + b2f(v2) + . . . bnf(vn)

= b1a1 + b2a2 + . . . bnan.

On the other hand,

〈u,v〉 = 〈b1v1 + b2v2 + · · ·+ bnvn, a1v1 + a2v2 + . . . anvn〉

=

n∑

i=1

n∑

j=1

〈bivi, ajvj〉 =
n∑

i=1

n∑

j=1

biaj〈vi,vj〉 (5.36)

= b1a1 + b2a2 + . . . bnan. (5.37)

In Equation (5.36) we have used the additivity in each argument of 〈 , 〉, homo-
geneity in the first argument, as well as conjugate homogeneity in the second
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argument. In Equation (5.37) we have used the fact that S is a orthonormal
basis. This proves the existence of v.

Suppose that f(u) = 〈u,x〉 for all u ∈ V. Then 〈u,v − x〉 = 0 for all u ∈ V.
In particular, 〈v − x,v − x〉 = 0 so by positive definiteness, v − x = 0, and
this proves that v is unique.

Remark 5.4 Let (V, 〈 , 〉) be a finite-dimensional inner product space. For
f ∈ V ′ let f ′ denote the vector v in V such that f(u) = 〈u,v〉 . The bijection
f → f ′ from V ′ to V is always additive. If the base field is the reals, then the
map f → f ′ is linear. However, if the base field is the complex numbers, then
it is not linear but rather satisfies (γf)′ = γf ′.

Suppose now that V,W are finite inner product spaces and T ∈ L(V,W ). We
make use of the bijection ′ : V ′ → V to obtain a map T ∗ ∈ L(W,V ) as follows:

Let w ∈ W,v ∈ V. Define f(v) = 〈T (v),w〉W . We claim that f ∈ V ′. To
validate this claim, we need to show 1)f(v1 + v2) = f(v1) + f(v2) and 2)
f(cv) = cf(v).

1) Since T is linear f(v1 + v2) = 〈T (v1 + v2),w〉W = 〈T (v1) + T (v2),w〉W .
By the additivity of 〈 , 〉W in the first variable, we have

〈T (v1) + T (v2),w〉W = 〈T (v1),w〉W + 〈T (v2),w〉W = f(v1) + f(v2).

2) This holds by the linearity of T and the homogeneity of 〈 , 〉W in the first
variable.

Since f ∈ V ′ there is a vector f ′ ∈ V such that f(v) = 〈T (v),w〉W = 〈v, f ′〉V .
We will denote the vector f ′ by T ∗(w). In this way, we have obtained a
function T ∗ : W → V such that for all v ∈ V and w ∈W

〈T (v),w〉W = 〈v, T ∗(w)〉V . (5.38)

We claim that T ∗ : W → V is a linear map. We show that it is additive: Let
w1,w2 ∈ W and let v ∈ V . Then 〈v, T ∗(w1 +w2)〉V = 〈T (v),w1 +w2〉W by
Equation (5.38). Since 〈 , 〉W is additive in the second variable we have

〈T (v),w1 +w2〉W = 〈T (v),w1〉W + 〈T (v),w2〉W
= 〈v, T ∗(w1)〉V + 〈v, T ∗(w2)〉V
= 〈v, T ∗(w1) + T ∗(w2)〉V .

It then follows that 〈v, T ∗(w1 + w2) − T ∗(w1) − T ∗(w2)〉V = 0 for every
v ∈ V . In particular, this holds for v = T ∗(w1 +w2)− T ∗(w1)− T ∗(w2). It
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then follows by positive definiteness that T ∗(w1+w2)−T ∗(w1)−T ∗(w2) = 0
as required.

Now let w ∈ W, c ∈ F and v ∈ V . Then

〈v, T ∗(cw)〉V = 〈T (v), cw〉W
= c〈T (v),w〉W
= c〈v, T ∗(w)〉V
= 〈v, cT ∗(w)〉V .

We can now conclude that for every v ∈ V ,

0 = 〈v, T ∗(cw)〉V − 〈v, cT ∗(w)〉V = 〈v, T ∗(cw)− cT ∗(w)〉V .

In particular, this is true for v = T ∗(cw) − cT ∗(w) and then by positive
definiteness, T ∗(cw) = cT ∗(w) as we needed to show.

Definition 5.19 Let (V, 〈 , 〉V ) and (W, 〈 , 〉W ) be finite-dimensional inner
product spaces and T ∈ L(V,W ). The map T ∗ ∈ L(W,V ) is called the adjoint
of T. It is the unique linear map from W to V satisfying Equation (5.38).

We will refer to Equation (5.38) as the fundamental equation defining the
adjoint.

Remark 5.5 We have several times above shown the following: Assume
(V, 〈 , 〉) is an inner product space, u,v are vectors in V , and 〈u,x〉 = 〈v,x〉
for every vector x ∈ V . Then u = v. We will hereafter just invoke this rather
than repeat the argument.

The following result enumerates some properties of the map T → T ∗ from
L(V,W ) to L(W,V ).

Theorem 5.20 Let (V, 〈 , 〉V ), (W, 〈 , 〉W ), (X, 〈 , 〉X) be finite-dimensional
inner product spaces over the field F ∈ {R,C}. Then the following hold:

i) If S, T ∈ L(V,W ) then (S + T )∗ = S∗ + T ∗;

ii) If T ∈ L(V,W ) and γ ∈ F then (γT )∗ = γT ∗.;

iii) If S ∈ L(V,W ) and T ∈ L(W,X) then (TS)∗ = S∗T ∗;

iv) If T ∈ L(V,W ) then (T ∗)∗ = T ; and

v) I∗V = IV .
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Proof i) Let v ∈ V,w ∈W. Then

〈v, (S + T )∗(w)〉V = 〈(S + T )(v),w〉W
= 〈S(v) + T (v),w〉W
= 〈S(v),w〉W + 〈T (v),w〉W
= 〈v, S∗(w)〉V + 〈v, T ∗(w)〉V
= 〈v, S∗(w) + T ∗(w)〉V
= 〈v, (S∗ + T ∗)(w)〉V .

Consequently, (S + T )∗(w) = S∗(w) + T ∗(w) for all w ∈ W, and therefore,
(S + T )∗ = S∗ + T ∗.

ii) Let v ∈ V,w ∈W and γ a scalar. Then

〈v, (γT )∗(w)〉V = 〈(γT )(v),w〉W
= 〈γT (v),w〉W
= γ〈(T (v),w〉W
= γ〈v, T ∗(w)〉V
= 〈v, γT ∗(w)〉V .

We can therefore conclude that (γT )∗ = γT ∗.

iii) Let v ∈ V,x ∈ X. Then ST (v) ∈ X and by the fundamental equation
defining (ST )∗ we have

〈v, (ST )∗(x)〉V = 〈(ST )(v),x〉X
= 〈S(T (v)),x〉X .

Since T (v) ∈ W , by the fundamental equation defining S∗ we have

〈S(T (v)),x〉X = 〈T (v), S∗(x)〉W .

In turn, since v ∈ V and S∗(x) ∈ W, we have by the fundamental equation
applied to T

〈T (v), S∗(x)〉W = 〈v, T ∗(S∗(x))〉V
= 〈v, (T ∗S∗)(x)〉V .

It then follows for all vectors x ∈ X that (ST )∗(x) = T ∗S∗(x) as required.

The last two parts are straightforward, and we leave them as exercises.
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We next uncover the relationship between the range and kernel of T ∈ L(V,W )
and the adjoint T ∗ ∈ L(W,V ).

Theorem 5.21 Let (V, 〈 , 〉V ), (W, 〈 , 〉W ) be finite-dimensional inner prod-
uct spaces and T ∈ L(V,W ). Then

i. Ker(T ∗) = Range(T )⊥;

ii. Range(T ∗) = Ker(T )⊥;

iii. Ker(T ) = Range(T ∗)⊥; and

iv. Range(T ) = Ker(T ∗)⊥.

Proof i) Suppose w ∈ Ker(T ∗). Then 〈v, T ∗(w)〉V = 〈v,0V 〉V = 0 for
all v ∈ V. By the definition of T ∗, 〈v, T ∗(w)〉V = 〈T (v),w〉W . This implies
that w ⊥ T (v) for all v ∈ V and hence w ∈ Range(T )⊥. Thus, Ker(T ∗) ⊂
Range(T )⊥.

Let w ∈ Range(T )⊥. Then for all v ∈ V, 〈T (v),w〉W = 0. But then by the
definition of T ∗, 〈v, T ∗(w)〉V = 0. In particular, 〈T ∗(w), T ∗(w)〉V = 0 so by
positive definiteness, T ∗(w) = 0V and w ∈ Ker(T ∗).

Since (T ∗)∗ = T it follows that iii) holds as a consequence of i). From i)
we also deduce that Ker(T ∗)⊥ = [Range(T )⊥]⊥ = Range(T ) and conse-
quently iv) holds. Finally, since Ker(T ) = Range(T ∗)⊥, we have Ker(T )⊥ =
[Range(T ∗)⊥]⊥ = Range(T ∗) so that also ii) holds.

We come to our final theorem, which relates the matrix of T and T ∗ when
they are computed with respect to orthonormal bases of V and W.

Theorem 5.22 Let (V, 〈 , 〉V ) and (W, 〈 , 〉W ) be inner product spaces with
orthonormal bases BV = (v1,v2, . . . ,vn) and BW = (w1,w2, . . . ,wm) for V
and W, respectively. Let A = MT (BV ,BW ) and B = MT∗(BW ,BV ). Then

B = A
tr
.

Proof Set [T (vj)]BW
=




a1j
a2j
...

amj


 and [T ∗(wi)]BV

=




b1i
b2i
...
bni


. We can interpret

the former to mean that

T (vj) = a1jw1 + a2jw2 + · · ·+ amjwm. (5.39)
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On the other hand, as a consequence of the latter, we can conclude that

T ∗(wi) = b1iv1 + b2iv2 + · · ·+ bnivn. (5.40)

We need to prove that bji = aij or equivalently, that aij = bji. We do so
by computing each of 〈T (vj),wi〉W = 〈vj , T

∗(wi)〉V making use of Equations
(5.39) and (5.40).

On the one hand,

〈T (vj),wi〉W =

〈
m∑

k=1

akjwk,wi

〉

W

=
m∑

k=1

akj〈wk,wi〉W = aij ,

the latter equality since BW is an orthonormal basis of W. On the other hand,

〈vj , T
∗(wi)〉V =

〈
vj ,

n∑

l=1

blivl

〉

V

=

m∑

l=1

bli〈vj ,vl〉V = bji.

Thus, aij = bji as required.

Exercises

1. Let R3 be equipped with the usual inner product (dot product). Let f :

R3 → R be the linear form f



x
y
z


 = 2x+ 3y − z. Find a vector v ∈ R3 such

that f(u) = u · v.

2. Let R(2)[x] be equipped with the inner product 〈f, g〉 =
∫ 1

0 f(t)g(t)dt. Let
γ : R(2)[x] → R be given by γ(f) = −f(1)−f(2). Find a vector p(x) ∈ R(2)[x]
such that γ(f) = 〈f(x), p(x)〉.
3. Let V = M22(C) equipped with the inner product of Example (5.4). Let
π :M22 → C be the map:

π

(
a11 a12
a21 a22

)
= a11 − a22.

Find a vector A ∈M22(C) such that π(B) = 〈B,A〉 = Trace(BtrA).

4. Prove part iii) of Theorem (5.20).
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5. Prove part iv) of Theorem (5.20).

6. Let T ∈ L(V, V ) and λ ∈ F. Prove that λ is an eigenvalue of T if and only
if λ is an eigenvalue of T ∗.

7. Assume T : V → W is an invertible linear transformation where V,W are
finite-dimensional inner product spaces. Prove that T ∗ : W → V is invertible
and (T ∗)−1 = (T−1)∗.

8. Assume (V, 〈 , 〉V ) and (W, 〈 , 〉W ) are finite-dimensional inner product
spaces and T : V → W is an injective linear transformation. Prove that
T ∗T : V → V is bijective.

9. Assume (V, 〈 , 〉V ) and (W, 〈 , 〉W ) are finite-dimensional inner product
spaces and T : V → W is a surjective linear transformation. Prove that
TT ∗ :W →W is bijective.

10. Assume (V, 〈 , 〉) is an inner product space, T ∈ L(V, V ), and U is a
subspace of V. Prove that U is T -invariant if and only if U⊥ is T ∗-invariant.

11. Let (V, 〈 , 〉) be an inner product space and T ∈ L(V, V ). Assume v ∈
Ker(T ∗T ). Prove that T (v) = 0.

12. Let (V, 〈 , 〉) be a finite-dimensional inner product space. Make V ⊕V into
an inner product space by defining 〈(x1,y1), (x2,y2)〉 = 〈x1,x2〉 + 〈y1,y2〉.
Let S : V ⊕ V → V ⊕ V be defined by S(x,y) = (y,−x). Compute S∗.

13. Let (V, 〈 , 〉V ) and (W, 〈 , 〉V ) be finite-dimensional inner product spaces
and T ∈ L(V,W ). Prove that rank(T ) = rank(T ∗).

14. Let (V, 〈 , 〉) be a finite-dimensional complex inner product space with an
orthonormal basis (v1, . . . ,vn). Prove that there exists a nonsingular operator
S : V → V such that S(v1) = x, S∗(y) = v1 if and only if 〈x,y〉 = 1.
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5.7 Normed Vector Spaces

In this section we generalize from the notion of a norm in an inner product
space to an abstract norm on a vector space which can be thought of as
assigning a length or magnitude to each vector. We will give several examples.
We will define the concept of equivalent norms and prove that any two norms
on a finite-dimensional real or complex space are equivalent. We will also give
a characterization of the norm which arises from an inner product space. This
material is the foundation for the field of function analysis.

What You Need to Know

Understanding the new material in this section depends on mastery of the
following concepts: real and complex inner product space, norm of a vector in
an inner product space, unit vector in an inner product space, the space Rn,
the space Cn. You will also need to be familiar with the notion of a topological
space, a metric space, the limit of a sequence in a topological space, a Cauchy
sequence in a metric space, a continuous function between topological spaces,
and a compact subset of a topological space. A brief introduction to these
concepts can be found in Appendix A.

Assume (V, 〈 , 〉) is an inner product space and ‖ · ‖ is the norm defined on
V by ‖ v ‖=

√
〈v,v〉. Then we showed that ‖ · ‖ satisfies the following:

1. For every vector v, ‖ v ‖ is a non-negative real number and ‖ v ‖= 0 if and
only if v = 0.

2. If c is a scalar and v a vector then ‖ cv ‖= |c| ‖ v ‖.
3. If u,v are vectors then ‖ u+ v ‖ ≤ ‖ u ‖ + ‖ v ‖.
Property 3 was referred to as the triangle inequality. We generalize from
the notion of a norm defined by an inner product to that of an abstract norm
by taking these properties as its axioms.

Definition 5.20 Let V be a vector space over F ∈ {R,C}. A norm on V is
a function ‖ · ‖ from V to R which satisfies the following:

1. For every vector v, ‖ v ‖ is a non-negative real number and ‖ v ‖= 0 if and
only if v = 0.

2. If c is a scalar and v a vector then ‖ cv ‖= |c| ‖ v ‖.
3. If u,v are vectors then ‖ u+ v ‖≤‖ u ‖ + ‖ v ‖.
A pair (V, ‖ · ‖) consisting of a real or complex vector space V and a norm on
V is referred to as a normed vector space.
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Definition 5.21 Let (V, ‖ ‖) be a normed space. For vectors x,y define the
distance, d(x,y, ) between x and y to be d(x,y) =‖ x− y ‖.

.

The following is nearly immediate:

Theorem 5.23 Let d( , ) be the distance function defined by a norm ‖ ‖
on a vector space V . Then the following are satisfied:

1. d(x,y) ≥ 0 with equality if and only if x = y.
2. d(x,y) = d(y,x).
3. d(x, z) ≤ d(x,y) + d(y, z).

We leave these as exercises.

Theorem (5.23) says that the distance function defined on a normed space
(V, ‖ ‖) is a metric. This can be used to define a topology on V which
allows us to introduce such concepts as the limit of a sequence, continuity of
functions, and so on. We now enumerate some examples.

Example 5.11 Let (V, 〈 , 〉) be an inner product space. We have seen that
‖ v ‖=

√
〈v,v〉 is a norm. This is the norm on V induced by the inner

product 〈 , 〉.
As a specific example, let V = Fn where F ∈ {R,C}. Recall the Euclidean
inner product on V is defined by 〈x,y〉 = xtry. The norm induced by this
inner product is given by

‖



x1
...
xn


 ‖ =

√
x1x1 + · · ·+ xnxm = (|x1|2 + . . . |xn|2)

1
2 .

Example 5.12 Let V = Fn where F ∈ {R,C} and p be a real number p ≥ 1.
Set

‖



x1
...
xn


 ‖p= (|x1|p + · · ·+ |xn|p)

1
p .

This is the lp-norm on V . Note that when p = 2 this is the norm of Example
(5.11).
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Let V = Fn with F ∈ {R,C} and p be a real number, p ≥ 1. Clearly, ‖ x ‖p≥ 0
with equality if and only if x = 0. Also, ‖ cx ‖p= |c| ‖ x ‖p for any scalar
c. Thus, to establish that ‖ ‖p is a norm requires proving that the triangle

inequality holds. That is, we need to prove for x =



x1
...
xn


 ,y =



y1
...
yn


 then

(
n∑

k=1

|xk + yk|p
) 1

p

≤
(

n∑

k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

. (5.41)

The inequality in (5.41) is known as Minkowski’s inequality. A proof can be
found in ([4, p. 136]).

Apart from the l2-norm, another important example is the l1-norm which is
defined as follows:

‖



x1
...
xn


 ‖1=

n∑

k=1

|xk|.

Yet another common norm is the l∞-norm. This is defined by

‖



x1
...
xn


 ‖∞= max{|x1|, . . . , |xn|}. (5.42)

We leave it as an exercise to verify that Equation (5.42) defines a norm.

As mentioned above, in a normed space (V, ‖ ‖) the distance function defined
by the norm is a metric and it can be used to define the notion of an open
set, whence a topology on V .

Definition 5.22 Let (V, ‖ ‖) be a normed vector space with induced dis-
tance function d. Let u ∈ V and r be a positive real number. The open ball
centered at u with radius r, denoted by Br(u), is the set of all v ∈ V
such that d(u,v) < r. A subset X of V is said to be open if for every x ∈ X
there is a positive real number r (which may depend on x) such that Br(x) is
contained in X.

Remark 5.6 If T is the set of open subsets of V then (V, T ) is a topological
space.

In the next several examples we illustrate what the open balls look like for
the three norms ‖ ‖p where p ∈ {1, 2,∞} for V = R2.
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Example 5.13 The open ball of radius 1 centered at

(
0
0

)
in the normed

space (R2, ‖ ‖1) consists of all those vectors x =

(
x1
x2

)
such that ‖ x ‖1

|x1|+ |x2| < 1. This is shown in Figure (5.2).

FIGURE 5.2
Unit ball with respect to l1-norm.

Example 5.14 The open ball of radius 1centered at

(
0
0

)
in the normed

space (R2, ‖ ‖2) consists of all those vectors x =

(
x1
x2

)
such that ‖ x ‖=

√
x21 + x22 < 1, equivalently, x21 + x22 < 1. This is shown in Figure (5.3).

FIGURE 5.3
Unit ball with respect to l2-norm.
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Example 5.15 The open ball of radius 1 centered at

(
0
0

)
in the normed

space (R2, ‖ ‖∞) consists of all those vectors x =

(
x1
x2

)
such that ‖ x ‖=

max{|x1|, |x2} < 1. This is shown in Figure (5.4).

FIGURE 5.4
Unit ball with respect to l∞-norm.

Because there is a metric on V , we can define such concepts as the limit of
a sequence, a Cauchy sequence, continuous function between normed vector
spaces as well as other notions from analysis. We refer the reader unfamiliar
with these notions to Appendix A.

Definition 5.23 A normed vector space (V, ‖ ‖) is said to be a complete
normed space if every Cauchy sequence has a limit. A complete normed
vector space is referred to as a Banach space.

Each of our examples of normed spaces is a Banach space. We prove this for
the l2-norm and leave the others as exercises.

Theorem 5.24 Let V = Fn,F ∈ {R,C}. Then (V, ‖ ‖2) is a Banach space.

Proof Assume {xk}∞k=1 is a Cauchy sequence. Suppose xk =



x1k

...
xnk


. We
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claim for each j, 1 ≤ j ≤ n, that {xjk}∞k=1 is a Cauchy sequence. This follows
since |xjk − xjl|2 ≤∑n

i=1 |xik − xil|2 =‖ xk −xl ‖22 and the fact that {xk}∞k=1

is a Cauchy sequence. Since R and C are complete it follows that the sequence

{xjk}∞k=1 has a limit which we denote by xj . Set x =



x1
...
xn


. We claim that

limk→∞xk = x. Thus, let ǫ > 0. Since limk→∞xjk = xj there is an Nj such
that if k ≥ Nj then |xj − xjk | < ǫ√

n
. Set N = max{N1, . . . , Nn} and suppose

k > N . Then |xj−xjk|2 < ǫ2

n . Consequently, ‖ x−xk ‖22=
∑

j=1 |xj−xjk|2 <
ǫ2 from which we conclude that ‖ x− xk ‖2< ǫ.

Because we will need it shortly, we recall the definition of a continuous function
between normed vector spaces.

Definition 5.24 Let (V, ‖ ‖V ) and (W, ‖ ‖W ) be two normed spaces
over the same field F ∈ {R,C} and f : V → W a function. The function f
is said to be continuous at x0 if for every ǫ > 0 there is a δ (which may
depend on ǫ) such that if ‖ x − x0 ‖V < δ then ‖ f(x) − f(x0) ‖W < ǫ.
The function f is continuous if it is continuous at x for every x ∈ V .

In a subsequent section (in Chapter 12) we define the concepts of operator
and matrix norms we will show that a linear function between two finite-
dimensional normed spaces is continuous. Our immediate goal, however, is to
define the notion of equivalent norms on a space and to show that all norms
on Fn,F ∈ {R,C} are equivalent.

Definition 5.25 Let ‖ ‖ and ‖ ‖⋆ be norms on a real or complex vector
space V . We say that ‖ ‖ is equivalent to ‖ ‖⋆ if there are positive real
numbers c and d such that c ‖ x ‖⋆≤‖ x ‖≤ d ‖ x ‖⋆ for every vector x.

The following is entirely straightforward.

Theorem 5.25 Equivalence of norms on a vector space V over F ∈ {R,C}
is an equivalence relation.

Our next objective is to prove that all norms on a finite-dimensional real or
complex vector space V are equivalent. We begin with a definition.

Definition 5.26 A subset C of a normed linear space (V, ‖ ‖) is bounded
if there exists a positive real number r such that C ⊂ Br(0).

The following theorem is usually proved in a first course in analysis. It is
known as the real Heine–Borel theorem.
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Theorem 5.26 A subset C of R is compact if and only if C is closed and
bounded.

In a first course in functional analysis, Theorem (5.26) is extended to an
arbitrary finite-dimensional normed space (V, ‖ ‖):

Theorem 5.27 Let (V, ‖ ‖) be a finite-dimensional normed space. A subset
C of V is compact if and only if C is closed and bounded.

We can conclude from Theorem(5.26), Theorem (5.27), and Theorem (A.3)
the following:

Theorem 5.28 Let (V, ‖ ‖) be a finite-dimensional normed space and C a
compact subset of V . Then there exists elements m,M ∈ C such that

‖ m ‖≤‖ x ‖≤‖M ‖
for every x ∈ C.

Before proving the equivalence of norms we will need the following lemma.

Lemma 5.5 Let (V, ‖ ‖) be normed space and x,y ∈ V . Then

|‖ x ‖ − ‖ y ‖| ≤ ‖ x− y ‖ .

Proof For any vectors x and y we have

‖ x ‖ = ‖ (x− y) + y ‖
≤ ‖ x− y ‖ + ‖ y ‖ .

Consequently,

‖ x ‖ − ‖ y ‖≤‖ x− y ‖ .

By interchanging x and y we get

‖ y ‖ − ‖ x ‖ ≤ ‖ y − x ‖
= ‖ x− y ‖ .

Thus,
| ‖ x ‖ − ‖ y ‖ | ≤ ‖ x− y ‖ .
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As an immediate corollary we have:

Corollary 5.1 Let (V, ‖ ‖) be a normed space. Then the function
‖ ‖: V → R is continuous.

Before proceeding to the proof that all norms on a finite-dimensional space
over F ∈ {R,C} are equivalent, we state a lemma which we will need. We
leave its proof as an exercise.

Lemma 5.6 Let ‖ · ‖ be an arbitrary norm on Fn, where F ∈ {R,C}. Let
S∞
1 be the collection of all vectors x ∈ Fn such that ‖ x ‖∞= 1. Then S∞

1 is
closed and bounded in (V, ‖ · ‖).

Theorem 5.29 Let V be a finite-dimensional real or complex vector space.
Then all norms on V are equivalent.

Proof Assume V has dimension n and choose a basis B = (v1, . . . ,vn) for
V . Let T : Fn → V be the linear transformation defined by

T






x1
...
xn





 = x1v1 + · · ·+ xnvn.

T is an isomorphism. If ‖ ‖ is a norm on V then define a norm φ on Fn by
φ(x) =‖ T (x) ‖. Suppose now that ‖ ‖⋆ is a second norm on V and φ⋆ is
defined by φ⋆(x) =‖ T (x) ‖⋆. Then ‖ ‖ and ‖ ‖⋆ are equivalent if and only
if φ and φ⋆ are equivalent and therefore we may assume that V = Fn. We will
show that an arbitrary norm ‖ ‖ on Fn is equivalent to the ∞-norm.

As in Lemma (5.6), let S∞
1 consist of those vectors v ∈ V such that ‖ v ‖∞= 1.

By Lemma (5.6), S∞
1 is compact in (V, ‖ · ‖). Since ‖ ‖: V → F is continuous,

{‖ x ‖ |x ∈ S∞
1 } has a minimum and a maximum which are both positive since

0 /∈ S∞
1 . Let c and d be the minimum and maximum, respectively. Then for

any non-zero vector x ∈ V, 1
‖x‖∞

x is a unit vector with respect to the l∞-norm.

Consequently

c ≤ ‖ 1

‖ x ‖∞
x ‖ ≤ d.

Whence

c ≤ ‖ x ‖
‖ x ‖∞

≤ d .

Now multiply by ‖ x ‖∞ to obtain
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c ‖ x ‖∞ ≤ ‖ x ‖ ≤ d ‖ x ‖∞

as was to be shown.

In our final result of this section we characterize the norms which arise from
an inner product. Recall when (V, 〈 , 〉) is an inner product space and ‖ ‖ is
the norm induced by 〈 , 〉 the parallelogram property holds: For x,y ∈ V

‖ x+ y ‖2 + ‖ x− y ‖2= 2(‖ x ‖2 + ‖ y ‖2).

It is easy to see that this does not hold for the l1-norm or the l∞-norm. In
our final result of this section we characterize norms that arise from an inner
product as those that satisfy the parallelogram property.

Theorem 5.30 Let (V, ‖ ‖) be a finite-dimensional normed space. Then
‖ ‖ is induced by an inner product if and only if the parallelogram property
holds.

Proof We have already seen in Theorem (5.6), if ‖ ‖ is induced by an inner
product then the parallelogram property holds, so we must prove the converse.
We do so in the case that V is a complex space. The real case can be deduced
from this. For x,y ∈ V set

〈x,y〉 = 1

4
(‖ x+ y ‖2 − ‖ x− y ‖2 +i ‖ x+ iy ‖2 −i ‖ x− iy ‖2).

We will show that 〈 , 〉 is an inner product and the norm induced by it is ‖ ‖.
We do this in a series of steps.

1. We claim that 〈x,x〉 =‖ x ‖2. We compute:

〈x,x〉 =
1

4
(4 ‖ x ‖2 +i|1 + i|2 ‖ x ‖2 −i|1− i|2 ‖ x ‖2)

=
1

4
‖ x ‖2 (4 + 4i− 4i)

= ‖ x ‖2 .

2. We next show that 〈y,x〉 = 〈x,y〉. Note that

‖ x+ iy ‖2=‖ y − ix ‖2, ‖ x− y ‖2=‖ y − x ‖2,

‖ x+ y ‖2=‖ y + x ‖2, ‖ x− iy ‖2=‖ y + ix ‖2 .
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Then

〈x,y〉 = 1

4
(i ‖ y − ix ‖2 − ‖ y − x ‖2 −i ‖ y + ix ‖2 + ‖ y + x ‖2).

Consequently,

〈x,y〉 =
1

4
(−i ‖ y − ix ‖2 − ‖ y − x ‖2 +i ‖ y + ix ‖2 + ‖ y + x ‖2)

= 〈y,x〉.

3. For any vector x, 〈x,0〉 = 0. We compute

〈x,0〉 = 1

4
(‖ x ‖2 − ‖ x ‖2 −i ‖ x ‖2 +i ‖ x ‖2) = 0.

4. Let x,y,u,v ∈ V . Then

〈x,y〉+ 〈u,v〉 = 2[〈x+ u

2
,
y + v

2
〉+ 〈x− u

2
,
y − v

2
〉], (5.43)

This is where we use the parallelogram property. The left-hand side is equal to

1

4
(‖ x+ iy ‖2 − ‖ x− y ‖2 −i ‖ x− iy ‖2 + ‖ x+ y ‖2)+

1

4
(‖ u+ iv ‖2 − ‖ u− v ‖2 −i ‖ u− iv ‖2 + ‖ u+ v ‖2).

We now compute the right-hand side. Note that 〈aw, az〉 = |a|2〈w, z〉. As a
consequence we have

1

2
(〈x+ u

2
,
y + v

2
〉) + 1

2
〈x− u

2
,
y − v

2
〉) = 1

8
(〈x+u,y+ v〉+ 〈x−u,y− v〉).

〈x+ u,y + v〉+ 〈x− u,y − v〉 =

‖ (x+ u) + i(y + v) ‖2 − ‖ (x+ u)− (y + v) ‖2 − ‖ (x+ u)− i(y + v) ‖2 +

‖ (x+ u) + (y + v) ‖2 + ‖ (x− u) + i(y − v) ‖2 − ‖ (x− u)− (y − v) ‖2 −



Normed and Inner Product Spaces 201

‖ (x− u)− i(y − v) ‖2 + ‖ (x− u) + (y − v) ‖2 .

By the parallelogram property we have

‖ (x+ u) + i(y + v) ‖2 + ‖ (x− u) + i(y − v) ‖2=

‖ (x+ iy) + (u+ iv) ‖2 + ‖ (x+ iy)− (u + iv) ‖2=

2(‖ x+ iy ‖2 + ‖ u+ iv ‖2); (5.44)

‖ (x+ u)− (y + v) ‖2 + ‖ (x− u)− (y − v) ‖2=

‖ (x− y) + (u− v) ‖2 + ‖ (x− y)− (u− v) ‖2=

2(‖ x− y ‖2 + ‖ u− v ‖2) (5.45)

‖ (x+ u)− i(y + v) ‖2 + ‖ (x− u)− i(y − v) ‖2=

‖ (x− iy) + (u− iv) ‖2 + ‖ (x− iy)− (u − iv) ‖2=

2(‖ x− iy ‖2 + ‖ u− iv ‖2) (5.46)

‖ (x+ u) + (y + v) ‖2 + ‖ (x− u) + (y − v) ‖2=

‖ (x+ y) + (u+ v) ‖2 + ‖ (x+ y)− (u+ v) ‖2=

2(‖ x+ y ‖2 + ‖ u+ v ‖2). (5.47)

Multiply both sides in Equation (5.44) by i
8 , both sides of Equation (5.45) by

− 1
8 , both sides of Equation (5.46) by − i

8 , and both sides of Equation of (5.47)
by 1

8 , and add. The identity of Equation (5.43) is obtained.

5. For any vectors x,y we have 〈2x,y〉 = 2〈x,y〉. In Equation (5.43) take
x = x,y = y,u = x,v = 0. We then have
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〈x,y〉 = 〈x,y〉+ 〈x,0〉

= 2(〈2x
2
,
y

2
〉+ 〈0, y

2
〉)

= 2〈2x
2
,
y

2
〉

=
1

2
〈2x,y〉.

It follows that 〈2x,y〉 = 2〈x,y〉.
6. For any vectors x,u,y we have

〈x,y〉+ 〈u,y〉 = 〈x+ u,y〉.

In Equation (5.43) set x = x,u = u,y = y,v = y. We then have

〈x,y〉+ 〈u,y〉 = 2(〈x+ u

2
,
2y

2
〉+ 〈x− u

2
,
0

2
〉)

=
1

2
〈x+ u, 2y〉

=
1

2
· 〈2y,x+ u〉

=
1

2
· (2〈y,x+ u〉)

= (
1

2
· 2)〈y,x+ u〉

= 〈y,x+ u〉
= 〈x+ u,y〉.

7. For any vectors x,y, 〈−x,y〉 = −〈x,y〉. By step 6 we have

〈x,y〉+ 〈−x,y〉 = 〈0,y〉.

By step 3 〈0,y〉 = 0.

8. For any vectors x,y and natural number m, 〈mx,y〉 = m〈x,y〉. We prove
this by induction. The base case is clear and we have already established this for
m = 2. Suppose for some m ≥ 2 that 〈mx,y〉 = m〈x,y〉. Now (m+1)〈x,y〉 =
m〈x,y〉 + 〈x,y〉. By the inductive hypothesis m〈x,y〉 = 〈mx,y〉. By step 6
we have 〈mx,y〉+ 〈x,y〉 = 〈mx+ x,y〉 = 〈(m+ 1)x,y〉 as was to be shown.

9. Let m,n be natural numbers. Then 〈mn ,y〉 = m
n 〈x,y〉. We first prove this

for m = 1. We have
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〈x,y〉 = 〈(n · 1
n
)x,y〉

= 〈n · ( 1
n
· x),y〉

= n〈 1
n
· x,y〉.

Now divide both sides by n to get 1
n · 〈x,y〉 = 〈 1n · x,y〉.

We apply this to the general case:

〈m
n

· x,y〉 = 〈m · ( 1
n
· x),y〉

= m · 〈 1
n
· x,y〉

= m · ( 1
n
· 〈x,y〉)

= (m · 1
n
) · 〈x,y〉

=
m

n
· 〈x,y〉.

10. Putting steps 7 and 9 together, it follows for any rational number q that
〈qx,y〉 = q〈x,y〉.
11. Fix y. Then the function that takes x to 〈x,y〉 is a continuous function.
Define a function f : V → R by f(x) =‖ x+ y ‖. Then f is continuous. This
is immediate since | ‖ x+ y ‖ − ‖ x′ + y ‖ | ≤‖ x− x′ ‖. It follows that each
of the following functions is continuous:

x →‖ x+ y ‖2,x →‖ x− y ‖2,

x →‖ x+ iy ‖2,x →‖ x− iy ‖2 .

Since any linear combination of continuous functions is continuous, it follows
that x → 〈x,y〉 is continuous.

12. If β is a real number then 〈βx,y〉 = β〈x,y〉. Let {qn}∞n=1 be a sequence
of rational numbers such that

lim
n→∞

qn = β.

Since 〈·,y〉 is a continuous function we have
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lim
n→∞

〈qnx,y〉 = 〈 lim
n→∞

qnx,y〉 = 〈βx,y〉.

However, 〈qnx,y〉 = qn〈x,y〉 and therefore

lim
n→∞

〈qnx,y〉 = lim
n→∞

qn〈x,y〉 = β〈x,y〉.

13. For any vectors x and y, 〈ix,y〉 = i〈x,y〉.
By the definition of 〈 , 〉 we have

〈ix,y〉 =
1

4
(‖ ix+ iy ‖2 − ‖ ix− y ‖2 −i ‖ ix− iy ‖2 + ‖ ix+ y ‖2)

=
1

4
(i ‖ x+ y ‖2 − ‖ x+ iy ‖2 −i ‖ x− y ‖2 + ‖ x− iy ‖2)

= i · (1
4
‖ x+ y ‖2 +i ‖ x+ iy ‖2 − ‖ x− y ‖2 −i ‖ x− iy ‖2)

= i〈x,y〉.

14. For any vectors x,y and complex number γ we have 〈γx,y〉 = γ〈x,y〉.
Let α, β ∈ R such that γ = α+ iβ. Then

〈γx,y〉 = 〈(α + iβ)x,y〉
= 〈αx+ iβx,y〉
= 〈αx,y〉 + 〈iβx,y〉
= α〈x,y〉 + i〈βx,y〉
= α〈x,y〉 + iβ〈x,y〉
= (α + iβ)〈x,y〉
= γ〈x,y〉.

A good source for further reading on this topic is ([4]).

Exercises

1. Compute the lp -norm with p ∈ {1, 2,∞} of the following vectors:

a)




−4
2
−1
2


 b)




3
−6
0
2




2. Find the distance between the two vectors of Exercise 1 with respect to the
lp-norm with p ∈ {1, 2,∞}.
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3. Find the distance from the origin to the line x+2y = 3 with respect to the
l∞-norm.

4. Prove Theorem (5.23).

5. Prove that the function ‖



x1
...
xn


 ‖

el∞ = max{|x1|, . . . , |xn|} is a norm.

6. Prove that the topology defined on R2 by the l2-norm and by the l∞-norm
are identical.

7. Prove that (Rn, ‖ ‖1) is a Banach space.

8. Prove that (Rn, ‖ ‖∞) is a Banach space.

9. Prove Theorem (5.25).

10. Let 1 ≤ p ≤ ∞. Let e1, e2 be the first two standard basis vectors of Rn.
Prove that ‖ e1 + e2 ‖2p + ‖ e1 − e2 ‖2p= 2(‖ e1 ‖2p + ‖ e2 ‖2p) if and only if
p = 2.

11. Prove Lemma (5.6).
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Linear Operators on Inner Product Spaces
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In this chapter we study two special types of operators on an inner product
space: self-adjoint and normal. We completely characterize these operators
and determine how the underlying space decomposes with respect to such an
operator. In the first section we assume that (V, 〈 , 〉) is a finite-dimensional
inner product space and we define the concepts of a normal and self-adjoint
operator. Many properties of normal and self-adjoint operators are uncov-
ered in preparation for proving the spectral theorems. We also characterize
the matrix of normal and self-adjoint operators with respect to an orthonor-
mal basis. In the second section we characterize self-adjoint operators on a
finite-dimensional inner product spaces as well as normal operators on a finite-
dimensional complex inner product space. In particular, we show that these
operators are diagonalizable with respect to an orthonormal basis. This has
consequences for the similarity classes of Hermitian and real symmetric ma-
trices. In section three we consider a normal, but not self-adjoint, operator
on a finite-dimensional real inner product space. The most important result
is that T is completely reducible. From this we will be able to deduce that a
real normal operator has a particularly nice generalized Jordan canonical form
with respect to an orthonormal basis. In section four we define the concept of
an isometry on an inner product space and obtain several characterizations. It
is shown that the collection of isometries on an inner product space is a group.
When the inner product space is real, this is the orthogonal group; when it is
complex it is the unitary group. In the last section, we introduce the notion
of a positive operator on a inner product space (V, 〈 , 〉). We characterize the
positive operators and show that every positive operator has a unique positive
square root. We make use of the square root to get the polar decomposition
of an arbitrary operator and then prove the singular value theorem for real
and complex linear transformations.

207
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6.1 Self-Adjoint and Normal Operators

Throughout this section, we assume that (V, 〈 , 〉) is a finite-dimensional inner
product space. We define the concepts of a normal and self-adjoint operator
on a finite-dimensional inner product space. Many properties of normal and
self-adjoint operators are uncovered in preparation for proving the spectral
theorems of the next section. The matrix of a normal or self-adjoint operator
with respect to an orthonormal basis is characterized.

What You Need to Know

You will need to have mastery of the following concepts to make sense of the
material in this section: real and complex inner product space, orthonormal
basis of a finite-dimensional inner product space, linear operator, adjoint of a
linear operator on an inner product space, and the matrix of a linear operator
on a finite-dimensional vector space with respect to a basis.

We begin with several definitions of various types of operators in real and com-
plex inner product spaces. We then spend the rest of the section uncovering
the basic properties of these operators.

Definition 6.1 An operator T ∈ L(V, V ) is said to be self-adjoint if T ∗ = T.
A complex self-adjoint operator is referred to as a Hermitian operator; a real
self-adjoint operator is called a symmetric operator.

Remark 6.1 For any operator T on V, the product T ∗T is self-adjoint by
parts iii) and iv) of Theorem (5.20).

Definition 6.2 Let T be an operator on a complex inner product space
(V, 〈 , 〉). If T ∗ = −T, then T is said to be skew-Hermitian. If (V, 〈 , 〉) is
a real inner product space and T ∗ = −T, then T is skew-symmetric.

Definition 6.3 Let A be an n × n complex matrix. Then A is a Hermi-
tian matrix if Atr = A. A real Hermitian matrix satisfies Atr = A and is a
symmetric matrix.

Our very first theorem connects self-adjoint operators with Hermitian
matrices.
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Theorem 6.1 Let T ∈ L(V, V ) and B = (v1,v2, . . . ,vn) be a orthonormal
basis. Then T is self-adjoint if and only if MT (B,B) is a Hermitian matrix.

Proof Set A = MT (B,B). By Theorem (5.22), the matrix of T ∗ with respect

to B is given by MT∗(B,B) = A
tr
. If A is Hermitian then MT (B,B) =

MT∗(B,B) so that T = T ∗. If T = T ∗ then A
tr

= MT∗(B,B) = MT (B,B) =
A and A is a Hermitian matrix.

Our next result constrains the kinds of eigenvalues a self-adjoint operator can
have, more specifically, they must be real.

Theorem 6.2 Let T be a self-adjoint operator on V , and let λ an eigenvalue
of T. Then λ ∈ R.

Proof Assume 0 6= v is a eigenvector of T with eigenvalue λ. Then

λ ‖ v ‖2 = 〈λv,v〉 = 〈T (v),v〉 = 〈v, T ∗(v)〉
= 〈v, T (v)〉 = 〈v, λv〉 = λ〈v,v〉 = λ ‖ v ‖2 .

Since v 6= 0, ‖ v ‖6= 0, and consequently, λ = λ so that λ is real.

Corollary 6.1 Let A be an n×n Hermitian matrix. Then the eigenvalues of
A are real.

Proof Let (V, 〈 , 〉) be a complex inner product space and S an orthonormal
basis of V. Let T be the operator on V such that MT (S,S) = A. Then by
Theorem (6.1), T is a self-adjoint operator. By Theorem (6.2), the eigenvalues
of T are real. Then by Exercise 15 of Section (4.1) the eigenvalues of A are
real.

Remark 6.2 Since a real symmetric matrix is a Hermitian matrix it is a
consequence of Corollary (6.1) that the eigenvalues of a real symmetric matrix
are real.

In our next definition, we introduce another important class of operators,
which includes self-adjoint operators.
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Definition 6.4 Let T be an operator on an inner product space (V, 〈 , 〉). T
is normal if T and T ∗ commute: TT ∗ = T ∗T. Clearly self-adjoint operators
are normal.

The next lemma will be crucial for proving the complex spectral theorem.

Lemma 6.1 Let (V, 〈 , 〉) be a complex inner product space and T : V → V a
normal operator. Then there exists a non-zero vector v, which is an eigenvector
for T and for T ∗. Moreover, if T (v) = λv, then T ∗(v) = λv.

Proof Since T is an operator on a complex space there is a λ ∈ C
such that Vλ = {u ∈ V |T (u) = λu} 6= {0}. Assume u ∈ Vλ. Then
T (T ∗(u)) = (TT ∗)(u) = (T ∗T )(u), the latter since TT ∗ = T ∗T. However,
(T ∗T )(u) = T ∗(T (u)) = T ∗(λu) = λT ∗(u). We have therefore shown that Vλ
is T ∗-invariant. Again, since the field is the complex numbers, the operator
T ∗ restricted to Vλ must have a non-zero eigenvector, v. It remains to show
that T ∗(v) = λ(v). Assume T ∗(v) = βv. We then have

λ〈v,v〉 = 〈λv,v〉 = 〈T (v),v〉
= 〈v, T ∗(v)〉 = 〈v, βv〉 = β〈v,v〉.

It now follows that β = λ, so β = λ.

Exercises

1. Prove if S, T ∈ L(V, V ) are self-adjoint then S + T is self-adjoint.

2. Prove if T is self-adjoint and γ ∈ R then γT is self-adjoint.

3. Let T be an arbitrary operator on a finite-dimensional inner product space
(V, 〈 , 〉). Set R = 1

2 (T
∗ + T ), S = 1

2 i(−T + T ∗). Prove the following:

i. R and S are self adjoint;

ii. T = R+ iS; and

iii. if T = R1 + iS1, where R1, S1 are self-adjoint, then R1 = R,S1 = S.

4. Let T be an arbitrary operator on a finite-dimensional inner product space
(V, 〈 , 〉). Set R = 1

2 (T
∗ +T ), S = i

2 (−T +T ∗). Prove that T is normal if and
only if RS = SR.

5. By Exercises 1 and 2, the collection of self-adjoint operators in L(V, V ) is
a real vector space. If dim(V ) = n, determine the dimension of this space.

6. Let (V, 〈 , 〉) be an inner product space and S, T ∈ L(V, V ) be self-adjoint
operators. Prove ST is self-adjoint if and only if ST = TS.
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7. Let (V, 〈 , 〉) be an inner product space. Give an example of self-adjoint
operators S, T ∈ L(V, V ) such that ST is not self-adjoint.

8. Let T ∈ L(V, V ) be a normal operator. Prove that ‖ T (v) ‖=‖ T ∗(v) ‖ for
every v ∈ V.

9. Let T ∈ L(V, V ) be a normal operator. Prove that Ker(T ) = Ker(T ∗).

10. Assume T ∈ L(V, V ) is normal. Prove that Range(T ) = Range(T ∗).

11. Let T be an operator on the finite-dimensional inner product space (V, 〈 , 〉)
and assume that TT ∗ = T 2. Prove that T is self-adjoint.

12. Assume T is a normal operator on the inner product space (V, 〈 , 〉) and
that T is nilpotent. Prove T = 0V →V .

13. Assume T is normal and λ is a scalar. Prove that T − λIV is normal.

14. Let (V, 〈 , 〉) be an inner product space and V = U ⊕W a direct sum. Set
T = Proj(U,W ). Prove that the following are equivalent:

i. T is normal;

ii. W = U⊥;

iii. T is self-adjoint.
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6.2 Spectral Theorems

In this section we prove the real and complex spectral theorems. The real
spectral theorem states that an operator T on a finite-dimensional real inner
product space (V, 〈 , 〉) is self-adjoint if and only if there exists an orthonormal
basis B of V consisting of eigenvectors for T . The complex spectral theorem
states that an operator T on a finite-dimensional complex inner product space
(V, 〈 , 〉) is normal if and only if there exists an orthonormal basis B of V
consisting of eigenvectors for T

What You Need to Know

To make sense of the material in this section it is essential that you have mas-
tery of the following concepts: real inner product space, complex inner product
space, orthogonal complement of a subspace of an inner product space, op-
erator on a vector space, an invariant subspace of an operator on a vector
space, completely reducible operator on a vector space, adjoint of a linear
operator on an inner product space, self-adjoint operator on an inner prod-
uct space, normal operator on an inner product space, orthonormal basis of a
finite-dimensional inner product space, and an eigenvector and eigenvalue of
an operator on a vector space.

We begin with a definition:

Definition 6.5 Let V be a finite-dimensional vector space. An operator T
on V is diagonalizable if there is a basis B for V such that MT (B,B) is a
diagonal matrix. This is equivalent to the existence of a basis for V consisting
of eigenvectors of T.

If V is equipped with an inner product then T is orthogonally diagonaliz-
able if there is an orthonormal basis S of V such that MT (S,S) is a diagonal
matrix. This is equivalent to the existence of an orthonormal basis of V con-
sisting of eigenvectors of T.

Our first result establishes that complex normal operators are orthogonally
diagonalizable. This result is referred to as the complex spectral theorem.

Theorem 6.3 Let (V, 〈 , 〉) be a complex inner product space and T an oper-
ator on V . Then T is normal if and only if T is orthogonally diagonalizable.
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Proof Assume T is orthogonally diagonalizable and S = (v1, . . . ,vn) is an
orthonormal basis of V consisting of eigenvectors for T. Then MT (S,S) =
diag{λ1, . . . , λn} for complex numbers λ1, . . . , λn. Then MT∗(S,S) =
diag{λ1, . . . , λn}. It follows that MT (S,S) and MT∗(S,S) commute since
any two diagonal matrices commute, whence T and T ∗ commute and T is
normal.

Conversely, assume that T is normal. We prove that T is orthogonally diag-
onalizable by induction on dim(V ). If dim(V ) = 1, there is nothing to prove.
So assume the result is true for complex inner product spaces of dimension
n− 1 and that dim(V ) = n. By Lemma (6.1), there exists a non-zero vector v

and scalar λ ∈ C such that T (v) = λv and T ∗(v) = λv. Replacing v by 1
‖v‖v

we may assume that v is a unit vector.

Since v is an eigenvector for T ∗, Span(v) is T ∗-invariant. Then by Exercise
10 of Section (5.6), v⊥ is T -invariant since (T ∗)∗ = T . Since v is also an
eigenvector for T, Span(v) is T -invariant and again by Exercise 10 of Section
(5.6) v⊥ is T ∗-invariant.

Let T̂ be the restriction of T to v⊥ and, similarly, let T̂ ∗ be the restriction
of T ∗ to v⊥. We claim that T̂ is normal and toward that end we show that
(T̂ )∗ = T̂ ∗ and T̂ commutes with (T̂ )∗.

Let u,w ∈ v⊥. Then 〈u, (T̂ )∗(w)〉 = 〈T̂ (u),w〉 = 〈T (u),w〉 = 〈u, T ∗(w)〉.
It follows from this that for all u,w ∈ v⊥ we have 〈u, (T̂ ∗ − (T̂ )∗)(w)〉 = 0.

This implies that (T̂ ∗− (T̂ )∗)(w) = 0 for all w ∈ v⊥ and therefore (T̂ )∗ = T̂ ∗

on v⊥. Since T and T ∗ commute, it follows that T̂ and (T̂ )∗ commute and

therefore T̂ is normal.

As a consequence of the normality of T̂ , we can apply the induction hypothesis:
there is a orthonormal basis of v⊥, (v1,v2, . . . ,vn−1) consisting of eigenvectors
for T. Set vn = v. Since Span(v) ∩ v⊥ = {0},v /∈ Span(v1, . . . ,vn−1). Then
(v1,v2, . . . ,vn) is linearly independent and thus a basis for V. Since vj ⊥ vn

for j < n, and vn is a unit vector, (v1, . . . ,vn) is an orthonormal basis. We
have thus shown that there exists an orthonormal basis of V consisting of
eigenvectors for T.

We now move on to the real spectral theorem. We begin by proving that a
real self-adjoint operator has an eigenvector.

Lemma 6.2 Let (V, 〈 , 〉) be a real inner product space and T ∈ L(V, V ) be
a self-adjoint operator on V. Then T has an eigenvector.

Proof Let S be an orthonormal basis of V and set A = MT (S,S). By Re-
mark (6.2) the eigenvalues of A are real. Let λ be an eigenvalue of A. Then
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A−λIn is a singular matrix and hence there exists a real n×1 matrix X such
that (A − λIn)X = 0n×1. If v is the vector in V such that [v]S = X, then
T (v) = λv and v is an eigenvector of T with eigenvalue λ.

Theorem 6.4 Let (V, 〈 , 〉) be a real inner product space and T ∈ L(V, V ).
Then T is self-adjoint if and only if T is orthogonally diagonalizable.

Proof Assume first that there exists an orthonormal basis of V consisting
of eigenvectors for T. Then A = MT (S,S) is a real diagonal matrix. It then
follows that Atr = A and hence T ∗ = T .

Conversely, assume that T is self-adjoint. We prove that T is orthogonally
diagonalizable by induction on dim(V ). If dim(V ) = 1, there is nothing to
prove, so assume the result is true for spaces of dimension n − 1 and that
dim(V ) = n. Let v be an eigenvector of T (which we may assume has norm
one). Then Span(v) is a T -invariant subspace and since T is self-adjoint it

follows that Span(v)⊥ = v⊥ is T -invariant. Consider T̂ , the restriction of T
to v⊥. Let u,w ∈ v⊥. Then

〈T̂ (u),w〉 = 〈T (u),u〉 = 〈u, T (u)〉 = 〈u, T̂ (u)〉
and therefore T̂ is self-adjoint. By the inductive hypothesis, there exists an
orthonormal basis (v1,v2, . . . ,vn−1) for v⊥ consisting of eigenvectors for T̂
(hence eigenvectors for T ). If we set vn = v, then (v1, . . . ,vn) is an orthonor-
mal basis for V consisting of eigenvectors for T.

Exercises

1. Assume T is a normal operator on a complex inner product space (V, 〈 , 〉).
Prove that there exists a polynomial g(x) such that T ∗ = g(T ).

2. Assume T is an operator on a complex inner product space (V, 〈 , 〉). Prove
the following are equivalent:

i) T is normal.

ii) Every T -invariant subspace is T ∗-invariant.

iii) If U is T -invariant, then U⊥ is T -invariant.

3. Let T be the operator on C2 such that with respect to the standard or-

thonormal basis S =

((
1
0

)
,

(
0
1

))
the matrix of T is

(
4 −i
i 4

)
. Verify that

T is self-adjoint and find an orthonormal basis B such that MT (B,B) is di-
agonal.
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4. Let T be the operator on R3 such that with respect to the standard or-

thonormal basis S the matrix of T is the all 1 matrix,



1 1 1
1 1 1
1 1 1


 . Find an

orthonormal basis B such that MT (B,B) is diagonal.

5. Assume T is an operator on R3, that B =





1
1
1


 ,




1
−1
0


 ,




0
1
−1




 is a

basis of eigenvectors for T , and that the corresponding eigenvalues of T are
the real numbers a, b, c. Prove that T is self-adjoint if and only if b = c.

6. Let T be an operator on R4 and assume







1
1
1
1


 ,




1
1
−1
−1


 ,




1
−1
1
−1





 are

eigenvectors of T with eigenvalues 2, −3, and 4, respectively. Prove that T is

self-adjoint if and only if




1
−1
−1
1


 is an eigenvector of T.

7. Let (V, 〈 , 〉) be a complex inner product space and T a normal operator
on V. Prove that T is self-adjoint if and only if all eigenvalues of T are real.

8. Let (V, 〈 , 〉) be a finite inner product space, S, T commuting self-adjoint
operators on V. Prove that there exists an orthonormal basis B = (v1, . . . ,vn),
consisting of simultaneous eigenvectors for S and T.

9. Assume T is a normal operator on the complex finite-dimensional inner
product space (V, 〈 , 〉). Prove that Range(T k) = Range(T ) and Ker(T k) =
Ker(T ) for all natural numbers k.

10. Let T be a completely reducible operator on the finite complex inner
product space (V, 〈 , 〉). Prove that there exists an inner product on V such
that T is normal.

11. Let T be an operator on the finite-dimensional inner product (V, 〈 , 〉).
Assume there exists an invariant subspace U of V, U 6= V, {0} such that U⊥

is T -invariant and T|U , T|U⊥
are self-adjoint. Prove that T is self-adjoint.

12. Prove or give a counterexample: Assume T is a self-adjoint operator on
the finite-dimensional inner product space (V, 〈 , 〉) and U,W are T -invariant
subspaces such that V = U ⊕W. Then W = U⊥.

13. Assume T is an operator on the finite-dimensional inner product space V
and the minimum polynomial of T is x2 − x. Let U = E1 be the subspace
of fixed vectors and W = Ker(T ). Prove that T is self-adjoint if and only if
W = U⊥.
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14. Assume T is a skew-Hermitian but not a Hermitian operator on a finite-
dimensional complex inner product space V. Prove that the non-zero eigen-
values of T are pure imaginary.

15. Assume T is a self-adjoint operator on an inner product space (V, 〈 , 〉).
Prove that 〈T (u),u〉 ∈ R for all u ∈ V.
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6.3 Normal Operators on Real Inner Product Spaces

In this section we study normal operators on a finite-dimensional real inner
product space which are not self-adjoint. We first prove that such an operator
is completely reducible. We then go on to show that there exists an orthonor-
mal basis, B, such that MT (B,B) has a particularly nice form.

What You Need to Know

You will need a mastery of the following concepts to successfully understand
the new material of this section: real finite-dimensional inner product space,
normal operator on an inner product space, self-adjoint operator on an inner
product space, orthonormal basis of a finite-dimensional inner product space,
matrix of an operator with respect to a basis, block diagonal matrix, com-
pletely reducible linear operator, and the generalized Jordan canonical form
of an operator.

We begin with a couple of preparatory lemmas which we require to obtain our
main structure theorem. Throughout this section, we assume that (V, 〈 , 〉) is
a finite-dimensional real inner product space.

Lemma 6.3 Let T be a normal operator on V. Then for all vectors v ∈ V,
‖ T (v) ‖=‖ T ∗(v) ‖ .

Proof ‖ T (v) ‖2= 〈T (v), T (v)〉 = 〈v, (T ∗T )(v)〉 = 〈v, (TT ∗)(v)〉 =
〈T ∗(v), T ∗(v)〉 =‖ T ∗(v) ‖2 .

Corollary 6.2 Let T be a normal operator on V and assume that v is an
eigenvector of T with eigenvalue λ. Then v is an eigenvector of T ∗ with eigen-
value λ.

Proof Since T is normal the operator T − λIV is normal by Exercise 13 of
Section (6.1). Moreover, since λ is real, (T −λIV )∗ = T ∗−λIV . We now have

0 =‖ (T − λIV )(v) ‖=‖ (T ∗ − λIV )(v) ‖
and therefore T ∗(v) = λv.

Lemma 6.4 Let (V, 〈, 〉) be a finite-dimensional real inner product space and
T be a normal operator on V. Assume U is a T -invariant subspace of V. Then
the following hold:

i) U⊥ is T−invariant.
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ii) U is T ∗−invariant.

iii) (T|U )
∗ = (T ∗)|U .

iv) (T|U⊥)∗ = (T ∗)|U⊥ .

v) T|U is normal.

vi) T|U⊥ is normal.

Proof i) Let (u1,u2, . . . ,uk) be an orthonormal basis for U and extend it
to an orthonormal basis S = (u1,u2, . . . ,un) of V. Set A = MT (S,S). Since
U is T -invariant, for each j ≤ k it follows that T (uj) ∈ U and consequently,
T (uj) is a linear combination of (u1,u2, . . . ,uk). It follows from this that
each A[uj ]S is a linear combination of ([u1]S , [u2]S , . . . , [uk]S).

We note that MT∗(S,S) = Atr. Since MTT∗(S,S) = AAtr,MT∗T (S,S) =
AtrA, and T is normal, it follows that AAtr = AtrA.

Let (W, 〈 , 〉) be an n-dimensional complex inner product space with an or-
thonormal basis SW = (w1,w2, . . . ,wn). Let TW be the operator on W such

that MTW
(SW ,SW ) = A. It then follows that MT∗

W
(SW ,SW ) = A

tr
= Atr

since A is a real matrix. Since AAtr = AtrA we can conclude that TW is
normal.

Let X be the subspace of W spanned by (w1, . . . ,wk). By construction,
[TW (wj)]SW

= [T (uj)]S . In particular, since T (uj) is a linear combination
of (u1,u2, . . . ,uk) for j ≤ k, it follows that TW (wj) is a linear combina-
tion of (w1, . . . ,wk) for j ≤ k. Therefore, X is a TW -invariant subspace
of W. Since TW is normal we can conclude by Exercise 2 of Section (6.2)
that X⊥ is TW -invariant. In particular, for j > k the coordinate vector
[TW (wj)]SW

begins with k 0’s. However, [TW (wj)]SW
= [T (uj)]S , which im-

plies for j > k, T (uj) ∈ Span(uk+1, . . . ,un) = U⊥. Thus, U⊥ is T -invariant
as claimed.

ii) Since U⊥ is T -invariant by i) it follows that U = (U⊥)⊥ is T ∗-invariant.

iii) Let S = T|U and u,v ∈ U. Then 〈S(u),v〉 = 〈T (u),v〉 = 〈u, T ∗(v)〉. Since
T ∗(v) ∈ U it follows that S∗ = (T ∗)|U .

iv) The proof of this is exactly the same as iii).

v) This follows from iii) and the fact that T is normal.

vi) This follows from iv) and the fact that T is normal.

Since for any subspace U of an inner product space (V, 〈 , 〉), V = U ⊕ U⊥

the following is an immediate consequence of Lemma (6.4):

Corollary 6.3 Let T be normal operator on the real inner product space
(V, 〈 , 〉). Then T is completely reducible.
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As a consequence of Corollary (6.3), if U = 〈T,u〉 is indecomposable, then
µT,u(x) is an irreducible polynomial. This then implies that µT,u(x) is either
a linear polynomial, x− λ, or else a quadratic of the form x2 + bx+ c, where
b2−4c < 0.We will show that the matrix of T|U with respect to an orthonormal
basis of U takes a particularly simple form.

Lemma 6.5 Assume that (V, 〈 , 〉) is a two-dimensional real inner product
space. Then the following are equivalent:

1) T is normal but not self-adjoint.

2) There exists an orthonormal basis S for V such that MT (S,S) =(
α −β
β α

)
, where β > 0.

Proof 1) implies 2). Assume T is normal and let S = (v1,v2) be an or-

thonormal basis and assume A = MT (S,S) =
(
α γ
β δ

)
. Then MT∗(S,S) =

Atr =

(
α β
γ δ

)
.

Since T is normal,

α2 + β2 =‖ T (v1) ‖2=‖ T ∗(v1) ‖2= α2 + γ2.

It then follows that β2 = γ2. If β = γ, then A = Atr and T is self-adjoint,
contrary to assumption. Therefore, γ = −β.
Since T is normal, we must have

(
α −β
β δ

)(
α β
−β δ

)
=

(
α β
−β δ

)(
α −β
β δ

)

(
α2 + β2 β(α − δ)
β(α − δ) β2 + δ2

)
=

(
α2 + β2 β(δ − α)
β(δ − α) β2 + δ2

)
.

Then β(α−δ) = β(δ−α). If β = 0, then A is symmetric, contrary to assump-
tion. Therefore α− δ = δ − α, which implies that α = δ.

It remains to show that we can choose the basis such that β > 0. Of course, if
β > 0 there is nothing more to do, so assume β < 0.

In this case, replace S with S ′ = (v1,−v2). Then MT (S ′,S ′) =

(
α −δ
δ α

)
,

where δ = −β > 0.
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2) implies 1): If MT (S,S) = A =

(
α −β
β α

)
, then MT∗(S,S) = Atr =

(
α β
−β α

)
. By straightforward multiplication we obtain

AAtr =

(
α2 + β2 0

0 α2 + β2

)
= AtrA.

Since MTT∗(S,S) = MT∗T (S,S) it follows that TT ∗ = T ∗T and T is normal.

We now get a characterization of normal operators, which are not self-adjoint,
on a real inner product space:

Theorem 6.5 Let T be an operator on (V, 〈 , 〉), a finite-dimensional real
inner product space. Then the following are equivalent:

1) T is normal and not self-adjoint.

2) There is an orthonormal basis S such that MT (S,S) is a block diagonal

matrix and each diagonal block is either 1times1 or 2×2 of the form

(
α −β
β α

)

where β > 0. Moreover, some block is 2× 2.

Proof We first prove that 2) implies 1). It is straightforward to see that if
S is an orthonormal basis and A = MT (S,S) has the given form, then Atr

commutes with A: Atr is also block diagonal and it has 1 × 1 blocks where A
does with identical entries and these clearly commute. Where A has a 2 × 2

matrix

(
α −β
β α

)
, Atr has the block

(
α β
−β α

)
and, as we have previously

seen in Lemma (6.5), these two matrices commute. Since A and Atr commute
it follows that T and T ∗ commute.

1) implies 2). The proof is by the second principle of mathematical induction
on dim(V ). The first non-trivial case is dim(V ) = 2. This is the content of
Lemma (6.5). So assume that dim(V ) = n > 2 and the result is true for
any normal, non-self-adjoint operator acting on a real inner product space of
dimension less than n.

Suppose T has an eigenvector, v, with eigenvalue λ. Without loss of generality,
we can assume ‖ v ‖= 1. By Corollary (6.2), v is an eigenvector for T ∗

and by Lemma (6.4), v⊥ is T -invariant and T ∗-invariant. Moreover, T|v⊥ is
normal. By the induction hypothesis, there exists an orthonormal basis S =
(v1,v2, . . . ,vn−1) of v⊥ such that the matrix B of T|v⊥ with respect to S is

block diagonal with each diagonal block is 1×1 or 2×2 of the form

(
α −β
β a

)
.

Set vn = v and S ′ = (v1,v2, . . . ,vn). Then
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MT (S ′,S ′) =

(
B 0n−1×1

01×n−1 λ

)
.

Note if all the blocks are 1× 1 then the matrix is symmetric and the operator
T is self-adjoint. Therefore, at least one block is 2× 2 and the matrix has the
required form.

Assume then that T does not have an eigenvector. Let U be a T -invariant
subspace with dim(U) minimal. Then as V is a real vector space and T is
completely reducible, as previously remarked, dim(U) = 2. By Lemma (6.4),
U⊥ is T -invariant and T ∗-invariant and T|U , T|U⊥ are normal. It follows from
Lemma (6.5) that there is an orthonormal basis SU for U such that A =

MT|U
(SU ,SU ) =

(
α −β
β α

)
with β > 0. Since dim(U⊥) < dim(V ), T|U⊥ is

normal, and T|U has no eigenvectors, it follows that there is an orthonormal

basis SU⊥ for U⊥ such that B = MT
|U⊥

(SU⊥ ,SU⊥) is block diagonal and

every block is of the form

(
γ −δ
δ γ

)
where δ > 0. Set S = SU ♯SU⊥ . Then S

is an orthonormal basis of V and

MT (S,S) =
(

A 02×n−2

0n−2×2 B

)
,

which has the required form.

Exercises

1. Give an example of a normal operator T on a four-dimensional real in-
ner product space, which does not have an eigenvector and has exactly four
invariant subspaces.

2. Give an example of a normal operator T on a four-dimensional real inner
product space such that i) T has no eigenvectors, and ii) T has infinitely many
invariant subspaces.

3. Let (V, 〈 , 〉) be a real inner product space of dimension two and T ∈ L(V, V )
a normal operator, which is not self-adjoint. Prove that there is a real linear
polynomial f(x) such that T ∗ = f(T ).

4. Let (V, 〈 , 〉) be a real inner product space and T ∈ L(V, V ) a normal oper-
ator. Assume that the minimal polynomial of T is a real irreducible quadratic.
Prove that there is a real linear polynomial f(x) such that T ∗ = f(T ).

5. Let (V, 〈 , 〉) be a real inner product space and T ∈ L(V, V ) a normal
operator, which is not self-adjoint. Prove there is a polynomial f(x) such that
T ∗ = f(T ).

6. Let (V, 〈 , 〉) be a real inner product space and T ∈ L(V, V ) a normal
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operator, which is not self-adjoint. Let S ∈ L(V, V ). Prove that TS = ST if
and only if ST ∗ = T ∗S.

7. Let (V, 〈 , 〉) be a real inner product space of dimension 2 and T ∈ L(V, V )
a normal operator, which is not self-adjoint. Assume S ∈ L(V, V ) commutes
with T. Prove that S is a linear combination of T and IV and consequently
normal.

8. Let T be a normal operator on the real finite-dimensional inner product
space V and assume all the eigenvalues of T are complex and distinct. Let
S ∈ L(V, V ) commute with T, that is, ST = TS. Prove if U is a T -invariant
subspace, then U is S-invariant.

9. Let T be a normal operator on a real finite-dimensional inner product space
and assume all the eigenvalues of T are complex and distinct. Let S ∈ L(V, V )
commute with T , that is, ST = TS. Prove that S is normal.

10. Let T be a normal operator on the real finite-dimensional inner product
space and assume all the eigenvalues of T are complex and distinct. Set C(T ) =
{S ∈ L(V, V )|ST = TS}. Prove that dim(C(T )) = dim(V ) and is even.

11. Assume T is a normal operator on R4 equipped with the dot product and
assume the minimal polynomial of T is x2 − 2x+ 3. Determine dim(C(T )).

12. Assume T is an invertible skew-symmetric operator on a finite-dimensional
real inner product space (V, 〈 , 〉). Prove that every eigenvalue of T is purely
imaginary.
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6.4 Unitary and Orthogonal Operators

In this section we define the notion of an isometry of an inner product space
and prove that the collection of all isometries on an inner product space
(V, 〈 , 〉) is a group. We then go on to characterize the isometries of a finite-
dimensional inner product space.

What You Need to Know

You will need to have a mastery of the following concepts: inner product
space, orthonormal basis of a finite-dimensional inner product space, self-
adjoint operator on an inner product space, matrix of a linear transformation,
and eigenvalues and eigenvectors of an operator. Also, you should be familiar
with the concept of a group, which can be found in Appendix B.

We begin with a definition:

Definition 6.6 Let (V, 〈 , 〉) be a finite-dimensional inner product space. An
operator T on V is an isometry if for all v ∈ V, ‖ T (v) ‖=‖ v ‖ . An isometry
of a complex inner product space is also referred to as a unitary operator and
an isometry of a real inner product space is called an orthogonal operator.

The following theorem is a simple application of the definition:

Theorem 6.6 Let (V, 〈 , 〉) be a finite-dimensional inner product space. Then
the following hold:

i) If T is an isometry then T is bijective and T−1 is also an isometry.

ii) If S, T are isometries then ST is an isometry.

We leave these as exercises.

Remark 6.3 It is a consequence of Theorem (6.6) that the collection of all
isometries of an inner product space (V, 〈 , 〉) is a group. When V is real we
denote this group by O(V, 〈 , 〉) and when the space complex by U(V, 〈 , 〉).
Before proceeding to our first main result, we need a lemma concerning com-
plex inner products.

Lemma 6.6 Let (V, 〈 , 〉) be a complex inner product space and u,v ∈ V.
Then the following hold:

i) ‖ u+ v ‖2 − ‖ u− v ‖2= 2[〈u,v〉+ 〈u,v〉].
ii) i(‖ u+ iv ‖2 − ‖ u− iv ‖2) = 2[〈u,v〉 − 〈u,v〉].
iii) ‖ u+ v ‖2 − ‖ u− v ‖2 +i ‖ u+ iv ‖2 −i ‖ u− iv ‖2= 4〈u,v〉.
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Proof i)

‖ u+ v ‖2 − ‖ u− v ‖2 = 〈u+ v,u+ v〉 − 〈u− v,u− v〉
= (‖ u ‖2 + ‖ v ‖2 +〈u,v〉+ 〈v,u〉)
− (‖ u ‖2 + ‖ v ‖2 −〈u,v〉 − 〈v,u〉)
= 2[〈u,v〉+ 〈v,u〉] = 2[〈u,v〉+ 〈u,v〉].

We have therefore shown that

‖ u+ v ‖2 − ‖ u− v ‖2= 2[〈u,v〉+ 〈u,v〉]. (6.1)

ii) Substituting iv for v we get

‖ u+ iv ‖2 − ‖ u− iv ‖2 = 2[〈u, iv〉+ 〈u, iv〉]
= −2i[〈u,v〉 − 〈u,v〉].

Multiplying by i, we obtain

i(‖ u+ iv ‖2 − ‖ u− iv ‖2) = 2[〈u,v〉 − 〈u,v〉]. (6.2)

iii) Adding Equations (6.1) and (6.2) yields iii).

The next theorem establishes a number of equivalences for an operator to be
an isometry.

Theorem 6.7 Let (V, 〈 , 〉) be a finite-dimensional inner product space and
T an operator on V . Then the following are equivalent:

1) T is an isometry.

2) 〈T (u), T (v)〉 = 〈u,v〉 for all u,v ∈ V.

3) T ∗T = IV .

4) If S = (v1,v2, . . . ,vn) is an orthonormal basis of V , then T (S) =
(T (v1), . . . , T (vn)) is an orthonormal basis.

5) There exists an orthonormal basis S = (v1,v2, . . . ,vn) of V such that
T (S) = (T (v1), . . . , T (vn)) is an orthonormal basis.

6) T ∗ is an isometry.

7) 〈T ∗(u), T ∗(v)〉 = 〈u,v〉 for all u,v ∈ V.

8) TT ∗ = IV .
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9) If S = (v1,v2, . . . ,vn) is an orthonormal basis of V , then T ∗(S) =
(T ∗(v1), . . . , T

∗(vn)) is an orthonormal basis.

10) There exists an orthonormal basis S = (v1,v2, . . . ,vn) of V such that
T ∗(S) = (T ∗(v1), . . . , T

∗(vn)) is an orthonormal basis.

Proof We prove, cyclically, that 1)–5) are equivalent. This will also imply
that 6)–10) are equivalent. We then show that 3) and 8) are equivalent.

1) implies 2): Suppose V is a real inner product space. Then

4〈T (u), T (v)〉 = ‖ T (u) + T (v) ‖2 − ‖ T (u)− T (v) ‖2
= ‖ T (u+ v) ‖2 − ‖ T (u− v) ‖2
= ‖ u+ v ‖2 − ‖ u− v ‖2= 〈u,v〉.

Suppose V is a complex inner product space. Then by Lemma (6.6)

4〈T (u), T (v)〉 = ‖ T (u) + T (v) ‖2 − ‖ T (u)− T (v) ‖2
+ i ‖ T (u) + iT (v) ‖2 −i ‖ T (u)− iT (v) ‖2
= ‖ T (u+ v) ‖2 − ‖ T (u− v) ‖2
+ i ‖ T (uiv) ‖2 −i ‖ T (u− iv) ‖2
= ‖ u+ v ‖2 − ‖ u− v ‖2
+ i ‖ u+ iv ‖2 −i ‖ u− iv ‖2
= 4〈u,v〉.

2) implies 3): If 〈T (u), T (v)〉 = 〈u,v〉, then 〈T ∗T (u),v〉 = 〈u,v〉 for all u,v.
Then 〈(T ∗T − IV )(u),v〉 = 0 for all u,v. Setting v = (T ∗T − IV )(u) we get
‖ (T ∗T − IV )(u) ‖= 0. Therefore, (T ∗T − IV )(u) = 0 for all u ∈ V and hence
T ∗T − IV = 0V→V , which implies that T ∗T = IV .

3) implies 4): Assume S = (v1,v2, . . . ,vn) is an orthonormal basis.

‖ T (vi) ‖2= 〈T (vi), T (vi)〉 = 〈T ∗T (vi),vi〉 = 〈vi,vi〉 = 1.

Assume i 6= j then

〈T (vi), T (vj)〉 = 〈T ∗T (vi),vj〉 = 〈vi,vj〉 = 0.

Thus, T (S) is an orthonormal basis.

4) implies 5): This is immediate.

5) implies 1). Let v be an arbitrary vector. Assume
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v = a1v1 + a2v2 + . . . anvn.

Then

‖ v ‖2=‖ a1 ‖2 + · · ·+ ‖ an ‖2 .

T (v) = T (a1v1 + a2v2 + . . . anvn) = a1T (v1) + a2T (v2) + . . . anT (vn). Since
T (S) is an orthonormal basis,

‖ T (v) ‖2=‖ a1T (v1) + a2T (v2) + . . . anT (vn) ‖2=‖ a1 ‖2 + · · ·+ ‖ an ‖2

and therefore
‖ T (v) ‖2=‖ v ‖2 .

Finally, for an operator T on a finite-dimensional vector space, T ∗T = IV if
and only if TT ∗ = IV , and therefore 3) and 8) are equivalent.

In our next result we characterize the matrix of an isometry with respect to
an orthonormal basis.

Theorem 6.8 Let (V, 〈 , 〉) be a finite-dimensional inner product space, T
an operator on V, S an orthonormal basis, and A = MT (S,S). Then the
following hold:

i) If V is a complex inner product space, then T is an isometry if and only if

A−1 = A
tr
.

ii) If V is a real inner product space, then T is an isometry if and only if
A−1 = Atr.

Proof i) Assume T is an isometry. Then T ∗ = T−1. Then A−1 =

MT−1(S,S) = MT∗(S,S) = A
tr
.

Conversely, assume A−1 = A
tr
. Since A−1 = MT−1(S,S) and A

tr
=

MT∗(S,S), it follows that T−1 = T ∗ and therefore T ∗T = IV . Thus, T is
an isometry by part iii) of Theorem (6.7).

ii) This is similar to i) and left as an exercise.

Definition 6.7 An n×n complex matrix is said to be unitary if A
tr

= A−1.

Definition 6.8 A square real matrix is said to be orthogonal if Atr = A−1.
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We complete this section with two results, Schur’s lemma for operators and
Schur’s lemma for matrices. The latter will be used in Section (12.4) to estab-
lish Schur’s inequality for the spectral radius of a complex matrix.

Lemma 6.7 Let T be an operator on an n-dimensional complex inner product
space (V, 〈 , 〉). Then there exists an orthonormal basis B = (w1, . . . ,wn) such
that for each k, 1 ≤ k ≤ n the subspace Span(w1, . . . ,wk) is T -invariant.

Proof The proof is by induction on n. If n = 1, there is nothing to prove
so assume that n > 1 and that the result is true for operators on spaces of
dimension n−1. Since (V, 〈 , 〉) is a complex inner product space, there exists
an eigenvector w for T . If 〈w,w〉 6= 1 then by replacing w by 1

‖w‖w we can

assume that ‖ w ‖= 1. SetW = Span(w), U =W⊥, and P = Proj(U,W ). Also

let T̂ be the restriction of PT to U . Note that a subspace X of U is T̂ -invariant
if and only if X+W is T -invariant. By the inductive hypothesis, there exists an
orthonormal basis (u1, . . . ,un−1) of U such that for each k, 1 ≤ k ≤ n− 1 the

subspace Span(u1, . . . ,uk) is T̂ -invariant. Now for 2 ≤ j ≤ n set wj = uj−1.
Since w1 ⊥ uj for 1 ≤ j ≤ n − 1 it follows that B = (w1, . . . ,wn) is an
orthonormal basis of V . Let k satisfy 1 ≤ k ≤ n− 1. Then Span(u1, . . . ,uk)

is T̂ -invariant and therefore Span(w1,u1, . . . ,uk) = Span(w1, . . . ,wk+1) is
T -invariant.

We now prove the matrix version:

Lemma 6.8 Let A be an n× n complex matrix. Then there exists a unitary
matrix Q such that QAQ∗ is upper triangular.

Proof Let Cn be equipped with the Euclidean inner product:

〈

x1
...
xn


 ,



y1
...
yn



〉

= x1y1 + · · ·+ xnyn.

Let TA : Cn → Cn be the operator given by TA(x) = Ax. Let S be the standard
basis of Cn so that MTA

(S,S) = A. By Schur’s lemma for operators, Lemma
(6.7), there exists an orthonormal basis B = (w1, . . . ,wn) such that for every
k, 1 ≤ k ≤ n, Span(w1, . . . ,wk) is TA-invariant. It follows that MTA

(B,B) is
upper triangular. Let I be the identity operator on Cn and set Q = MI(B,S).
Then Q is a unitary matrix by Exercise 5 below so that Q−1 = Q∗. Then
MTA

(B,B) = MI(B,S)MTA
(S,S)MT (S,B) = QAQ∗.
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Exercises

1. Prove that an isometry is injective, hence bijective. Prove that the inverse
of an isometry is an isometry.

2. Prove that the product (composition) of isometries is an isometry.

3. Let S = (v1,v2, . . . ,vn) be an orthonormal basis of V and let λi ∈ F satisfy
|λi| = 1. Define T : V → V such that T (vi) = λivi. Prove that T is an
isometry.

4. Prove part ii) of Theorem (6.8).

5. Let (V, 〈 , 〉) be a complex inner product space and assume S1 =
(u1, . . . ,un),S2 = (v1, . . . ,vn) are orthonormal bases of V. Prove that the
change of basis matrix MIV (S1,S2) is a unitary matrix.

6. Let (V, 〈 , 〉) be a real inner product space and assume S1 =
(u1, . . . ,un),S2 = (v1, . . . ,vn) are orthonormal bases of V. Prove that the
change of basis matrix MIV (S1,S2) is an orthogonal matrix.

7. Prove the following matrix version of the complex spectral theorem: Let A

be a complex n × n matrix. Prove that AA
tr

= A
tr
A if and only if there is

a unitary matrix Q such that QAQ−1 is a diagonal matrix. Moreover, if A is
Hermitian, that is, A = Atr, then the diagonal entries of A are real numbers.

8. Prove the following matrix version of the real spectral theorem: Let A be a
real n× n matrix. Then A is symmetric if and only if there is an orthogonal
matrix Q such that QAQtr is a diagonal matrix.

9. Let (V, 〈 , 〉) be a real inner product space and T an operator on V. Prove
that T is an isometry if and only if there exists an orthonormal basis S such
that MT (S,S) is block diagonal and each block is either 1× 1 with entry ±1

or 2× 2 of the form

(
cos θ −sin θ
sin θ cos θ

)
for some θ, 0 < θ < π.

10. Assume T is an isometry of the inner product space (V, 〈 , 〉) and that T
is self-adjoint. Prove that T 2 = IV and there exists an orthonormal basis B
such that MT (B,B) is diagonal and all the diagonal entries are ±1.

11. Assume T is a self-adjoint operator on an inner product space (V, 〈 , 〉)
and T 2 = IV . Prove that T is an isometry.

12. Give an example of a normal operator T on a complex inner product space,
which is an isometry but T 2 6= IV .

13. Let T be a unitary operator of a finite-dimensional inner product space
(V, 〈 , 〉) and a U a T -invariant subspace. Prove that U⊥ is T -invariant.

14. Let A be a unitary matrix. Assume A is upper triangular. Prove that A
is diagonal.

15. Let (V, 〈 , 〉) be an n−dimensional inner product space. Assume U1, U2



Linear Operators on Inner Product Spaces 229

are k-dimensional subspaces and R : U1 → U2 is a linear map which satisfies
‖ R(u) ‖=‖ u ‖ . Prove that there exists an isometry S such that S|U1

= R.

16. Let V be a real inner product space of odd dimension and S ∈ L(V, V ) an
orthogonal transformation. Prove that there is a vector v such that S2(v) = v.

17. Let (V, 〈 , 〉) be a finite-dimensional inner product space and U a subspace,
U 6= V, {0}. Set T = Proj(U,U⊥) − Proj(U⊥,U). Prove that T is a self-adjoint
isometry of V.

18. Let S be an operator onR4 have eigenvectors







1
1
1
1


,




1
1
−1
−1


,




1
−1
1
−1


,




1
−1
−1
1







with corresponding eigenvalues 2,3,4,5. Let T be the operator on R4 having

eigenvectors







1
1
1
1


 ,




1
1
−1
−1


 ,




1
−1
1
−1


 ,




1
0
0
0





 with corresponding eigenvalues

2,3,4,5. Prove that there exists an invertible operatorQ such thatQ−1SQ = T,
but it is not possible for Q to be an isometry.
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6.5 Polar and Singular Value Decomposition

In this section we obtain the polar decomposition of an operator on a finite-
dimensional inner product space. It is, in some ways, the generalization of
the decomposition of an arbitrary nonzero complex number z as the product
of a pair (r, u) where r is a positive real number and u is a complex num-
ber with modulus one. In the more general setting, these will be replaced
by a semi-positive Hermitian operator (defined below) and a unitary oper-
ator, respectively. Polar decomposition is a fundamental tool in the theory
of finite-dimensional Lie groups and Lie algebras. We subsequently develop
the singular value decomposition of a linear map between two inner product
spaces. The singular value decomposition has many applications, in particular
to image compression, data mining, text mining, face recognition, as well as
many others.

What You Need to Know

You will need to have a mastery of the following concepts: linear transforma-
tion from a vector space V to a vector space W, kernel of a linear transforma-
tion, linear operator on the vector space V, inner product space, self-adjoint
operator on an inner product space, basis of a finite-dimensional vector space,
matrix of a linear transformation, and eigenvalues and eigenvectors of an op-
erator.

We begin with a definition:

Definition 6.9 Let (V, 〈 , 〉) be an inner product space. An operator T is
semipositive if T is self-adjoint and 〈T (u),u〉 ≥ 0 for all u ∈ V. A self-
adjoint operator is positive if 〈T (u),u〉 > 0 for all non-zero vectors u ∈ V.

Example 6.1 Let U be a subspace of the inner product space (V, 〈 , 〉) and let
P = Proj(U,U⊥), the orthogonal projection onto U. Then P is a semi-positive
operator.

Example 6.2 Let S be any operator on an inner product space (V, 〈 , 〉).
Then T = S∗S is a semi-positive operator. We have previously seen that S∗S
is self-adjoint. We need to show that 〈(S∗S)(v),v〉 ≥ 0 for every v ∈ V. We
have

〈(S∗S)(v),v〉 = 〈S(v), S(v)〉 =‖ S(v) ‖2≥ 0.
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Definition 6.10 Let T be an operator on a space V. An operator S on V is
said to be a square root of T if S2 = T.

Example 6.3 If V is a two-dimensional vector space then IV has infinitely
many square roots: in addition to ±IV let (v1,v2) be any basis of V and let
S(v1) = v1, S(v2) = −v2. Then S

2 = IV .

Following is our main result, characterizing positive operators.

Theorem 6.9 Let (V, 〈 , 〉) be an inner product space and T ∈ L(V, V ). Then
the following are equivalent:

1. T is a semi-positive operator.

2. T is self adjoint and all the eigenvalues of T are non-negative.

3. T has a semi-positive square root.

4. T has a self-adjoint square root.

5. There is an operator S such that T = S∗S.

Proof 1) implies 2): Since T is a semi-positive operator, T is self-adjoint.
Suppose v is a eigenvector of T with eigenvalue λ. Then

λ ‖ v ‖= 〈λv,v〉 = 〈T (v),v〉 ≥ 0

since T is semi-positive. Since ‖ v ‖> 0, it follows that λ ≥ 0.

2) implies 3). Since T is self-adjoint, there exists an orthonormal basis
S = (v1,v2, . . . ,vn) consisting of eigenvectors of T. Set λj = T (vj). By as-
sumption, λj ≥ 0. Define S as follows: If λj = 0, then S(vj) = 0 =

√
λjvj.

If λj > 0, then S(vj) =
√
λjvj .

Since S is an orthonormal basis and MS(S,S) is diagonal with real entries
it follows that S is self-adjoint by the spectral theorem. We need to prove that
S is semi-positive. Suppose now that v = a1v1 + a2v2 + · · ·+ anvn. Then

〈S(v),v〉 = 〈S(a1v1 + a2v2 + · · ·+ anvn), a1v1 + a2v2 + · · ·+ anvn〉
= 〈

√
λ1a1v1 + · · ·+

√
λnanvn, a1v1 + a2v2 + · · ·+ anvn〉

=
√
λ1a1a1 + · · ·+

√
λnanan

=
√
λ1|a1|2 + . . .

√
λn|an|2 ≥ 0,

since each
√
λj ≥ 0 and |aj |2 ≥ 0. Thus, S is a semi-positive operator.
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3) implies 4). Since a semi-positive square root is a self-adjoint square root,
this is immediate.

4) implies 5). Let S be a self-adjoint square root of T. Then S∗S = S2 = T.

5) implies 1). Assume T = S∗S for some operator S and let v be an arbitrary
vector in V. Then

〈T (v),v〉 = 〈(S∗S)(v),v〉 = 〈S(v), S(v)〉 =‖ S(v) ‖2≥ 0.

Theorem 6.10 Assume T is a semi-positive operator. Then T has a unique
semi-positive square root.

The proof of this result is left as an exercise.

Definition 6.11 Let T be a semi-positive operator on an inner product space
(V, 〈 , 〉). The unique semi-positive square root of T will be referred to as the
square root of T and is denoted by

√
T .

Lemma 6.9 Let T be a linear operator on the inner product space (V, 〈 , 〉).
Then for any vector v,

‖ T (v) ‖=‖
√
T ∗T (v) ‖ .

Proof For v ∈ V,

‖ T (v) ‖2 = 〈T (v), T (v)〉
= 〈(T ∗T )(v),v〉 = 〈(

√
T ∗T )2(v),v〉

= 〈
√
T ∗T (v),

√
T ∗T (v)〉 =‖

√
T ∗T (v) ‖2 .

Corollary 6.4 Let T be an operator on the inner product space (V, 〈 , 〉).
Then Ker(T ) = Ker(

√
T ∗T ).

Proof A vector v is in Ker(T ) if and only if ‖ T (v) ‖= 0 if and only if
‖
√
T ∗T (v) ‖= 0 if and only if v ∈ Ker(

√
T ∗T ).

The next result shows how we can express an arbitrary operator as a compo-
sition of a semi-positive operator and an isometry.
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Theorem 6.11 Let (V, 〈 , 〉) be an inner product space and T an operator on
V. Then there exists an isometry S on V such that T = S

√
T ∗T .

Proof By Corollary (6.4), Ker(T ) = Ker(
√
T ∗T ). By Exercise 15 of Sec-

tion (2.2) the map R : Range(
√
T ∗T ) → Range(T ) given by R(

√
T ∗T (v)) =

T (v) is well-defined and linear. By Lemma (6.9), R is an isometry from
Range(

√
T ∗T ) to Range(T ). By Exercise 16 of Section (6.4), there exists an

isometry S of V such that S|Range(
√
T∗T ) = R. It is clear from the construction

that S
√
T ∗T = T.

Definition 6.12 Let T be an operator on a finite dimension inner product
space (V, 〈 , 〉). The decomposition T = S

√
T ∗T is referred to as the polar

decomposition of T .

The next result gives a particularly nice representation of a linear transfor-
mation between two finite-dimensional inner product spaces. It is referred to
as the Singular Value Decomposition of the transformation.

Theorem 6.12 Let (V, 〈 , 〉V ) and (W, 〈 , 〉W ) be finite-dimensional inner
product spaces and T : V → W a linear transformation. Then there exists
orthonormal bases BV = (v1, . . . ,vn) and BW = (u1, . . . ,um) and unique
positive scalars s1 ≥ · · · ≥ sr such that T (vj) = sjuj if j ≤ r and T (vj) = 0W

if j > r.

Proof First of all, the operator T ∗T on V is a semi-positive operator. Let
r = rank(T ∗T ) so that r ≤ n, the dimension of V . Let (v1, . . . ,vr) be an
orthonormal basis for Range(T ∗T ) consisting of eigenvectors of T ∗T with
the notation chosen so that if (T ∗T )(vj) = αj then α1 ≥ · · · ≥ αr > 0. Let
(vr+1, . . . ,vn) be an orthonormal basis for Ker(T ∗T ) so that B = (v1, . . . ,vn)
is an orthonormal basis of V consisting of eigenvectors of T ∗T.

Now for j ≤ r, set sj =
√
αj and uj = 1

sj
T (vj). We claim that (u1, . . . ,ur)

is an orthonormal sequence from W. For suppose 1 ≤ i, j ≤ r, then

〈ui,uj〉W = 〈 1
si
T (vi),

1

sj
T (vj)〉W

=
1

sisj
〈T (vi), T (vj)〉W

=
1

sisj
〈(T ∗T )(vi),vj〉V

=
1

sisj
〈αivi,vj〉W

=
s2i
sisj

〈vi,vj〉W .
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Finally, 〈vi,vj〉 is 1 if i = j and 0 otherwise. In the former case, we get

〈ui,uj〉W =
s2i
s2i

= 1 and in the latter case 〈ui,uj〉W = 0, as required.

Now extend (u1, . . . ,ur) to an orthonormal basis (u1, . . . ,um) of W. All that
remains is to show that T (vj) = 0W if j > r. However, (T ∗T )(vj) = 0V . This
implies that 〈(T ∗T )(vj),vj〉V = 0 whence 〈T (vj), T (vj)〉W = 0 from which
we conclude that T (vj) = 0W as desired.

It remains to prove uniqueness. Suppose then that (x1, . . . ,xn), (y1, . . . ,ym)
and t1 ≥ t2 . . . tr > 0 satisfy the conclusions of the theorem. Then, for 1 ≤
i ≤ m and 1 ≤ j ≤ n, we have

〈T ∗(yi),xj〉V = 〈yi, T (xj)〉W .

The latter is ti if i = j ≤ r and 0 otherwise. This implies that T ∗(yi) = tixi

if 1 ≤ i ≤ r and is 0V if i > r. We then have for 1 ≤ j ≤ r that

(T ∗T )(xj) = T ∗(tjyj) = tjT
∗(yj) = t2jvj .

If j > r then (T ∗T )(xj) = T ∗(0W ) = 0V . Consequently, if 1 ≤ j ≤ r, then t2j
is an eigenvalue of T ∗T and therefore, given how (t1, . . . , tr) are ordered, we
must have tj = sj .

Definition 6.13 Let (V, 〈 , 〉V ) and (W, 〈 , 〉W ) be finite-dimensional inner
product spaces and T : V → W a linear transformation. The unique scalars
s1, . . . , sr are the singular values of the transformation T.

If A is an m× n complex matrix, the singular values of A are the singular
values of the transformation TA : Cn → Cm given by multiplication on the left
by A.

Theorem (6.12) has the following nice factorization theorem for a matrix. We
leave the proof as an exercise.

Corollary 6.5 Let A be an m × n matrix of rank r with positive singular
values s1 ≥ · · · ≥ sr. Let S be the m × n matrix whose (i, j)-entry is si if
i = j ≤ r and 0 otherwise. Then there exists an m×m unitary matrix Q, and
n× n unitary matrix P such that

A = QSP.

Definition 6.14 Let A be an m × n matrix of rank r with positive singular
values s1 ≥ · · · ≥ sr. Let S be the m × n matrix whose (i, j)-entry is si if
i = j ≤ r and 0 otherwise. The expression A = QSP is referred to as a
singular value decomposition of the matrix A.
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Exercises

1. Prove Theorem (6.10).

2. Let (V, 〈 , 〉) be a complex inner product space and T ∈ L(V, V ) a normal
operator. Prove that T has a square root.

3. Let (V, 〈 , 〉) be a two-dimensional real inner product space and assume
that T ∈ L(V, V ) is a normal operator but not self-adjoint. Prove that T has
a square root.

4. Let (V, 〈 , 〉) be a 2n-dimensional real inner product space. Assume that
T ∈ L(V, V ) is a normal operator and that T does not have any eigenvectors.
Prove that T has a square root.

5. Prove that the sum of two semi-positive operators is semi-positive.

6. Assume T is a semi-positive operator on an inner product space (V, 〈 , 〉)
and c ∈ R+. Prove that cT is a semi-positive operator.

7. Prove that a semi-positive operator is invertible if and only if it is positive.

8. Assume T is a positive operator on the inner product space (V, 〈 , 〉). Prove
that T−1 is a positive operator.

9. Assume that T is a positive operator on the inner product space V. Define
[ , ] : V × V → V by [v,w] = 〈T (v),w〉. Prove that [ , ] is an inner product
on V.

10. Assume that T is a positive operator on the inner product space V. Define
[ , ] : V × V → V as in Exercise 9. Let S be an operator on V and denote by
S⋆ the adjoint of S with respect to [ , ]. Prove that S⋆ = T−1S∗T.

11. Let (V, 〈 , 〉) be a finite-dimensional inner product space, R a self-adjoint
operator, and T a positive operator. Prove that TR and RT are diagonalizable
operators with real eigenvalues.

12. Prove a semi-positive operator T is an isometry if and only if T is the
identity operator.

13. Assume S, T are semi-positive operators on the inner product space
(V, 〈 , 〉). If ST = TS, then ST is a semi-positive operator.

14. Give an example of semi-positive operators S, T on a finite-dimensional
inner product space (V, 〈 , 〉) such that ST is not a semi-positive operator.

15. In the polar decomposition T = S
√
T ∗T , with S an isometry, prove that

S is unique if and only if T is invertible.

16. Let T : R3 → R3 be multiplication by the matrix




0 1 1
−1 0 1
−1 −1 0


 . Find

an isometry S such that T = S
√
T ∗T .



236 Advanced Linear Algebra

17. Prove Corollary (6.5).

18. Let T be an operator on an inner product space (V, 〈 , 〉). Prove that TT ∗

and T ∗T have the same eigenvalues and that each eigenvalue occurs with the
same multiplicity in TT ∗ and T ∗T.

19. Assume T is a semi-positive operator on a finite-dimensional inner product
space (V, 〈 , 〉). Prove that the singular values of T are the eigenvalues of T.

20. Let T be an operator on a finite-dimensional inner product space (V, 〈 , 〉).
Assume the polar decomposition of T is T = SP where S is an isometry and
P is a semi-positive operator. Prove T is normal if and only if SP = PS.
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Trace and Determinant of a Linear Operator
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In this chapter, we study the trace and determinant of an operator. In the first
section, we define the trace of a linear operator T on a finite-dimensional vector
space V in terms of the characteristic polynomial, χT (x), of the operator. We
also define the trace of a square matrix. We then relate these two concepts
of trace by proving that if T is an operator on the finite-dimensional vector
space V and B is any basis of V , then the trace of the operator T and the
trace of the matrix MT (B,B) are the same. In the course of this, we establish
many of the properties of the trace. In the second section, we introduce the
determinant of a linear operator T on a finite-dimensional vector space V ,
again in terms of the characteristic polynomial, χT (x), of the operator. We
also define a determinant of a square matrix. We then relate these two by
proving that if T is an operator on the finite-dimensional vector space V
and B is any basis of V , then the determinant of the operator T and the
determinant of the matrix MT (B,B) are the same. In the concluding section,
we show how the determinant can be used to define an alternating n-linear
form on an n-dimensional vector space and prove that this form is unique.
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7.1 Trace of a Linear Operator

Let V be a finite-dimensional vector space over the field F and T : V → V
be a linear operator. In this section we define the concept of the trace of T
in terms of the characteristic polynomial of T . Let B be a basis of V and
A = MT (B,B), the matrix of T with respect to B. We previously defined the
trace of T . In our main theorem we show that the trace of T and the trace of
A are equal. This is then used to prove that the map Tr : L(V, V ) → F is a
linear transformation.

What You Need to Know

You will need to have a mastery of the following concepts: basis of a finite-
dimensional vector space, linear operator on a vector space, matrix of a linear
operator with respect to a basis B, the minimal polynomial of an operator, the
invariant factors of an operator, the elementary divisors of an operator, the
characteristic polynomial of an operator, eigenvalues and eigenvectors of an
operator, direct sum decomposition of a vector space, a T -invariant subspace
for an operator T on a vector space V, invertible matrix, block diagonal matrix,
and the companion matrix of a polynomial.

We begin with a definition:

Definition 7.1 Let V be a finite-dimensional vector space and T an operator
on V. Assume the characteristic polynomial of T is

χT (x) = xn + an−1x
n−1 + · · ·+ a0.

The trace of T , denoted by Tr(T ), is defined to be −an−1.

Remark 7.1 Suppose the characteristic polynomial χT (x) factors into linear
factors (for example, when the field is C):

χT (x) = (x− λ1)(x− λ2) . . . (x− λn),

where λi are the eigenvalues of T repeated with their algebraic multiplicity.
Then the trace of T is the sum of the eigenvalues of T (taken with their
algebraic multiplicity):

Tr(T ) = λ1 + λ2 + · · ·+ λn.
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Example 7.1 Let T : C3 → C3 be multiplication by the matrix

0 0 −5
1 0 −3
0 1 1


 . Then χT (x) = (x+1)(x−[1+2i])(x−[1−2i]) = x3−x2+3x+5.

In this case, the trace is 1.

Note that as a real operator the characteristic polynomial is (x+1)(x2−2x+5).

We will learn shortly how to compute the trace of an operator given a matrix
of the operator. Some examples will convince you that it is always the sum of
the diagonal entries of such a matrix. Let A be n× n matrix,

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann


 .

We previously defined the trace of A, T race(A) = a11 + a22 + · · · + ann, the
sum of the diagonal entries.

Theorem 7.1 Assume A,B are n × n matrices. Then Trace(AB) =
Trace(BA).

Proof Let

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann


 and B =




b11 b12 . . . bnn
b21 b22 . . . b2n
...

... . . .
...

bn1 bn2 . . . bnn


 .

Then the (i, j)-entry of AB is
∑n

k=1 aikbkj and therefore

Trace(AB) =

n∑

i=1

n∑

k=1

aikbki.

By the same reasoning,

Trace(BA) =

n∑

k=1

n∑

i=1

bkiaik.

They are identical.
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Corollary 7.1 If C is an n× n matrix and P is an invertible n× n matrix,
then

Trace(P−1CP ) = Trace(C).

Corollary 7.2 Let V be an n-dimensional vector space, T an operator on V,
and B,B′ bases for V. Then

Trace(MT (B,B)) = Trace(MT (B′,B′)).

Let V be a finite-dimensional vector space, T an operator on V, and B a
basis for V. It is our goal to show that Tr(T ) = Trace(MT (B,B)). In light of
Corollary (7.2), it suffices to show the existence of at least one basis for which
this is so. Before we get to the proof. we first establish a lemma about the
characteristic polynomial.

Lemma 7.1 Let V be a finite-dimensional vector space and T an operator on
V . Assume V = U ⊕W, where U,W are T -invariant subspaces. Let TU = T|U
and TW = T|W . Then

χT (x) = χTU
(x)χTW

(x).

Proof Let µT (x) = p1(x)
e1 . . . pt(x)

et be the minimal polynomial of T.

Set Vi = Vpi(x) = null(pi(T )
dim(V )) and mi = dim(Vi)

deg(pi(x))
. Then V =

V1 ⊕ V2 ⊕ · · · ⊕ Vt and it follows from Exercise 13 of Section (4.5) that
χT (x) = p1(x)

m1 . . . pt(x)
mt .

It follows from Theorem (4.14) that U = (U ∩V1)⊕· · ·⊕ (U ∩Vt) and likewise
W = (W ∩ V1) ⊕ · · · ⊕ (W ∩ Vt). Since V = U ⊕ W, it then follows that
Vi = (Vi ∩ U)⊕ (Vi ∩W ). Therefore, dim(Vi ∩ U) + dim(Vi ∩W ) = dim(Vi).
This holds for each i. It now follows that

χT (x) = χTU
(x)χTW

(x).

Corollary 7.3 Let V be a finite-dimensional vector space and T an operator
on V . Assume V = V1⊕· · ·⊕Vk where Vi is T -invariant. Set Ti = T|Vi

. Then
χT (x) = χT1(x) . . . χTk

(x).

Proof This follows from Lemma (7.1) by induction on k.
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The following is immediate:

Lemma 7.2 Assume the matrix A is block diagonal with diagonal blocks
A1, A2, . . . , Ak. Then

Trace(A) = Trace(A1) + · · ·+ Trace(Ak).

Theorem 7.2 Let V be a finite-dimensional vector space, T an operator on
V, and B a base for V. Then

Tr(T ) = Trace(MT (B,B)).

Proof Since Trace(MT (B,B)) is independent of the base B, it suffices to
prove the result for some base B of V.

We have seen that there are vectors v1, . . . ,vk ∈ V such that

V = 〈T,v1〉 ⊕ 〈T,v2〉 ⊕ · · · ⊕ 〈T,vk〉.
Let Ti = T|〈T,vi〉

. Then by Lemma (7.1),

χT (x) = χT1(x) . . . χTk
(x).

Suppose χTi
(x) = xdi +aix

di−1+gi(x) where gi(x) has degree less than di−1.
Then

χT1(x) . . . χTk
(x) = xd1+···+dk + (a1 + · · ·+ ak)x

d1+···+dk−1 + g(x),

where the degree of g(x) is less than d1 + · · ·+ dk − 1.

Consequently, Tr(T ) = a1+ · · ·+ak = Tr(T1)+ · · ·+Tr(Tk). Let Bi is a basis
for 〈T,vi〉 and set B = B1♯ . . . ♯Bk. Then

Trace(MT (B,B)) = Trace(MT1(B1,B1)) + · · ·+ Trace(MTk
(Bk,Bk))

by Lemma (7.2). Therefore, it suffices to prove the result in the special case
that T is cyclic: V = 〈T,v〉 for some vector v ∈ V.

Assume V is cyclic and V = 〈T,v〉. Then µT (x) = χT (x) = µT,v(x). Suppose
µT,v(x) = xn + bn−1x

n−1 + · · ·+ b1x+ b0. We have seen that the following is
an independent sequence of vectors and consequently a basis for V :

B = (v, T (v), . . . , T n−1(v)).
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Then MT (B,B) = C(xn + bn−1x
n−1 + · · ·+ b1x+ b0) =




0 0 0 . . . 0 −b0
1 0 0 . . . 0 −b1
0 1 0 . . . 0 −b2
...

...
... . . .

...
...

0 0 0 . . . 0 −bn−2

0 0 0 . . . 1 −bn−1



.

Thus, Trace(MT (B,B)) = −bn−1 as required.

Corollary 7.4 Let V be a finite-dimensional vector space and S, T operators
on V. Then

i) Tr(S + T ) = Tr(S) + Tr(T );

ii) Tr(ST ) = Tr(TS); and

iii) for a scalar c, T r(cT ) = cT r(T ).

Proof i) Let B be a basis for V. Then

Tr(S + T ) = Trace(MS+T (B,B))
= Trace(MS(B,B)) +MT (B,B))
= Trace(MS(B,B)) + Trace(MT (B,B))
= Tr(S) + Tr(T ).

ii) and iii) are left as exercises.

Exercises

1. Let A and B be n × n matrices. Prove that Trace(A + B) = Trace(A) +
Trace(B).

2. Let A be an n × n matrix and c ∈ F a scalar. Prove that Trace(cA) =
cT race(A).

3. Prove Corollary (7.1).

4. Prove Corollary (7.2).

5. Prove part ii) of Corollary (7.4).

6. Prove part iii) of Corollary (7.4).
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7. Prove that (x1, x2, x3) = (0, 0, 0) is the only solution to the system of
equations

x1 + x2 + x3 = 0,
x21 + x22 + x23 = 0,
x31 + x32 + x33 = 0.

8. Assume A is a 3 × 3 complex matrix and that Trace(A) = Trace(A2) =
Trace(A3) = 0. Prove that A3 = 03×3. Recall, this means that A is nilpotent.

9. Generalize Exercise 8: Assume A is an n × n complex matrix and
Trace(Ak) = 0 for 1 ≤ k ≤ n. Prove that A is nilpotent.

10. Let V be a finite-dimensional vector space and T on operator on V. Assume
Tr(ST ) = 0 for all S ∈ L(V, V ). Prove that T = 0V→V .

11. Assume T is an operator on a finite-dimensional real vector space and all
the eigenvalues of T are real. Prove that Tr(T 2) ≥ 0.

12. Assume T is a complex operator such that T 2 = T. Prove that Tr(T ) is a
non-negative integer.

13. Assume (V, 〈 , 〉) is a real finite-dimensional inner product space and T is
an operator on V. Prove that Tr(T ∗) = Tr(T ).

14. Assume (V, 〈 , 〉) is a complex finite-dimensional inner product space and
T is an operator on V. Prove that Tr(T ∗) = Tr(T ).

15. Let V be a finite-dimensional vector space. Denote by sl(V ) the collection
of all operators with trace zero: sl(V ) := {T ∈ L(V, V )|Tr(T ) = 0}. Prove
that sl(V ) is a subspace of L(V, V ) of dimension n2 − 1.

16. Let T be an operator on an inner product space (V, 〈 , 〉). Prove that
Tr(T ∗T ) > 0 if T 6= 0V→V .

17. Assume V is a finite-dimensional vector space over a field F of characteristic
zero and T is an operator on V with Tr(T ) = 0. Prove that there is a basis B
for V such that MT (B,B) has all zeros on the diagonal.

18. Let F be a field and assume |F| ≥ n. Let A be an n × n matrix all of
whose diagonal entries are zero. Prove that there exist matrices B,C such
that BC − CB = A.

19. Assume V is a finite-dimensional vector space over a field F of characteristic
zero and T is on operator on V with Tr(T ) = 0. Prove that there are operators
R and S such that T = RS − SR.
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7.2 Determinant of a Linear Operator and Matrix

Let V be a finite-dimensional vector space over a field F and T : V → V a
linear operator. In this section we define what is meant by the determinant
of T in terms of the characteristic polynomial of T . We also define what is
meant by the determinant of a square matrix by an explicit formula. In our
main theorem we prove that the determinant of T is equal to the determinant
of MT (B,B) where B is any basis of V .

What You Need to Know

You will need to have a mastery of the following concepts: basis of a finite-
dimensional vector space, linear operator on a vector space, matrix of a linear
operator with respect to a basis B, characteristic polynomial of an operator,
eigenvalues and eigenvectors of an operator, direct sum decomposition of a
vector space, a T -invariant subspace for an operator T on a space V, upper
and lower triangular (square) matrix, invertible matrix, block diagonal matrix,
and the companion matrix of a polynomial.

We begin with a definition for the determinant of a linear operator:

Definition 7.2 Let V be a finite-dimensional vector space and T an operator
on V. Assume χT (x) = xn + an−1x

n−1 + · · · + a1x + a0. Then we define the
determinant of T , denoted by det(T ), to be (−1)na0.

Example 7.2 Assume T ∈ L(V ) is a diagonalizable operator with eigenvalues
λ1, λ2, . . . , λn. Then

χT (x) = (x− λ1)(x − λ2) . . . (x− λn)

has constant term (−1)nλ1λ2 . . . λn. In this case,

det(T ) = (−1)n(−1)nλ1 . . . λn = λ1 . . . λn.

More generally, assume over some field the distinct eigenvalues of T are
λ1, λ2, . . . , λm. Set Vλi

= {v ∈ V |(T − λiIV )
dim(V )(v) = 0}. It is then the

case that

V = Vλ1 ⊕ · · · ⊕ Vλm
.

We then have

χT (x) = (x− λ1)
dim(Vλ1

)(x− λ2)
dim(Vλ2

) . . . (x− λm)dim(Vλm ).
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Consequently, χT (x) has constant term (−1)nλ
dim(Vλ1

)
1 . . . λ

dim(Vλm )
m and

det(T ) = λ
dim(V1)
1 . . . λdim(Vm)

m .

Lemma 7.3 Let V be a finite-dimensional vector space and T an operator on
V. Assume

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

where the Vi are T -invariant. Set Ti = T|Vi
. Then

det(T ) = det(T1)× det(T2)× · · · × det(Tk).

Proof Let χTi
(x) = gi(x) = xdi + · · · + ai so that det(Ti) = (−1)diai. Note

that n = dim(V ) = deg(χT (x)) = d1 + d2 + · · ·+ dk. It follows from Corollary
(7.3) that

χT (x) = g1(x)g2(x) . . . gk(x) = xn + · · ·+ (a1a2 . . . ak).

Thus, det(T ) = (−1)na1a2 . . . ak. On the other hand,

det(T1)× · · · × det(Tk) = (−1)d1a1 × (−1)d2a2 × · · · × (−1)dkak

= (−1)d1+d2+···+dna1a2 . . . ak

= = (−1)na0a1 . . . ak = det(T ).

Definition 7.3 Let [1, n] denote the set {1, 2, . . . , n} and Sn the collection of
bijective functions from [1, n] to [1, n] whose elements we refer to as permu-
tations. One way to denote such a function is to indicate the image of each
element. For example

σ =

(
1 2 3 4 5 6 7 8
3 5 8 4 1 7 6 2

)
.

We can also write a permutation as a product of “disjoint” cycles:
(13825)(4)(67) where it is understood that for distinct elements i1, . . . , it of
[1,n] that the cycle (i1 i2 . . . it) is to be interpreted as the function which
fixes every j which is not in {i1, . . . , it} and takes i1 to i2, i2 to i3 and so
on, and finally, it to i1. The product of two such cycles is interpreted as the
composition of functions, going from right to left so that (13)(12) = (123).

An easy calculation shows that (1,m)(1,m − 1) . . . (13)(12) = (123 . . .m).
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Therefore, every permutation is a product of 2 cycles, also called transposi-

tions. While the number of transpositions used to write a fixed permutation
is not unique, the parity of such an expression is unique. For example,

(23) = (13)(12)(13). To see that parity is preserved, set

∆ =
∏

1≤i<j≤n

(Xi −Xj).

For τ ∈ Sn, define τ(∆) =
∏

j>i(Xτ(i) −Xτ(j)). This will be ±∆. When τ is
a transposition, τ = (k, l), then τ(∆) = −∆ which can be seen as follows.

First, if {i < j} ∩ {k, l} = ∅ then τ leaves Xj − Xi invariant. On the other
hand, if i < k then τ takes (Xk −Xi)(Xl −Xi) to (Xl −Xi)(Xk −Xi) and
so is invariant. Similarly, τ fixes (Xi − Xk)(Xi − Xl) if l < i. Suppose then
that k < i < l. Then τ takes (Xi −Xk)(Xl −Xi) to (Xi −Xl)(Xk −Xi) =
(Xi −Xk)(Xl − Xi) and so is again invariant. There is one remaining term:
Xl − Xk which τ takes to Xk −Xl = (−1)(Xl −Xk). Thus, τ(∆) = −∆ as
claimed.

One can also see that for permutations σ, γ that (σγ)(∆) = σ(γ(∆). From
this, the parity claim follows.

Definition 7.4 Say a permutation is even if it is a product of an even num-
ber of transpositions and odd otherwise. For a permutation σ, we define the
sign of σ, denoted by sgn(σ), to be 1 if if σ is even and sgn(σ) = −1 if σ is
odd. Note if τ is a transposition then sgn(τσ) = −sgn(σ).

We are now ready to define the determinant of a square matrix.

Definition 7.5 Let A =




a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
an1 an2 . . . ann


. Then

det(A) =
∑

π∈Sn

sgn(π)aπ(1),1aπ(2),2 . . . aπ(n),n.

Remark 7.2 If π ∈ Sn, then sgn(π) = sgn(π−1) and

{(π(1), 1), (π(2), 2), . . . , (π(n), n)} = {(1, π−1(1)), (2, π−1(2)), . . . (n, π−1(n))}.
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Moreover, as π ranges over Sn, so does π−1. Consequently, det(A) is also
equal to

∑

γ∈Sn

sgn(γ)a1,γ(1)a2,γ(2) . . . an,γ(n).

Our ultimate goal will be to prove the following theorem and draw inferences
from it:

MAIN THEOREM

Let V be a finite-dimensional vector space, T an operator on V, and B =
(v1,v2, . . . ,vn) a basis for V. Then det(T ) = det(MT (B,B)).

Example 7.3

a) Suppose A is upper triangular, A =




a11 a12 . . . a1n
0 a22 . . . a2n
...

... . . .
...

0 0 . . . ann


 . Then

det(A) = a11a22 . . . ann.

We can see this as follows: Since ai1 = 0 for i > 1 the only permutations
π for which the product aπ(1),1aπ(2),2 . . . aπ(n),n 6= 0 are those with π(1) = 1.
So we may assume π(1) = 1 and consequently, π(2) 6= 1. Since ai2 = 0
for i > 2 the only permutations with π(1) = 1 and such that the product
aπ(1),1aπ(2),2 . . . aπ(n),n 6= 0 have π(2) = 2. We can continue this way and see
that the only permutation for which aπ(1),1aπ(2),2 . . . aπ(n),n 6= 0 is the identity
permutation.

b) Suppose A is lower triangular, A =




a11 0 . . . 0
a21 a22 . . . 0
...

... . . .
...

an1 an2 . . . ann


 . Then

det(A) = a11a22 . . . ann.

The proof here is similar to a) except we work backwards: We first show if
aπ(1),1aπ(2),2 . . . aπ(n),n 6= 0 then it must be the case that π(n) = n, then show
that π(n− 1) = n− 1, and continue to eventually show that π = Id[1,n].

Note that a diagonal matrix is both upper and lower triangular so these exam-
ples apply to the case that a matrix is diagonal. In particular, the determinant
of In is 1.

c) If the matrix A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 has a row of zeros, then det(A) = 0.

This follows since at least one of the factors of a1,π(1) . . . an,π(n) is zero and
therefore the product is zero.
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In the following we introduce types of matrices which will be referred to as
elementary matrices. The crux of our proof will be to show that for any ele-
mentary matrix E and an arbitrary matrix A, det(EA) = det(E)det(A).

Definition 7.6 .

1) For a scalar c, denote by Tij(c) the matrix obtained from In by adding c
times the ith row to the jth row.

2) For a pair of natural numbers 1 ≤ k < l ≤ n, denote by Pkl = (aij) the
matrix obtained from In by exchanging the kth and lth rows.

3) For a non-zero scalar c and a natural number i, 1 ≤ i ≤ n, denote by Di(c)
the matrix obtained from the identity matrix by multiplying the ith row by c.

The matrices Tij(c), Pkl, and Di(c) are referred to as elementary matrices.

Remark 7.3 1) If i < j then Tij(c) is upper triangular with ones on the
diagonal. If i > j then Tij(c) is lower triangular with ones on the diagonal.
In either case, det(Tij(c)) = 1.

2) The determinant of Pkl is -1 as can be seen as follows: Denote the elements
of Pkl by aij . Suppose π ∈ Sn and aπ(1),1aπ(2),2 . . . aπ(n),n 6= 0. Then for
j /∈ {k, l} we must have π(j) = j. On the other hand akk = all = 0 and
akl = alk = 1. It must then be the case that π(k) = l, π(l) = k and so π is the
transposition (kl), which has sgn((kl)) = −1. Consequently, det(Pkl) = −1 as
claimed.

3) If 1 ≤ i ≤ n and c 6= 0 is a scalar, then det(Di(c)) = c. This follows since
Di(c) is a diagonal matrix all of whose diagonal entries are 1 except one which
is c.

Lemma 7.4 Assume the matrix B is obtained from the matrix A by exchang-
ing the kth and lth rows. Then det(B) = −det(A).

Proof Set B = (bij) and τ = (kl). Then for all i and j, bij = aτ(i),j. It then
follows that for π ∈ Sn

bπ(1),1bπ(2),2 . . . bπ(n),n = aπτ(1),1aπτ(2),2 . . . aπτ(n),n

and therefore

det(B) =
∑

π∈Sn

sgn(π)bπ(1),1bπ(2),2 . . . bπ(n),n

=
∑

π∈Sn

sgn(π)aπτ(1),1aπτ(2),2 . . . aπτ(n),n.
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Since τ = (kl) is a transposition, it follows that sgn(πτ) = −sgn(π) and
therefore

sgn(π)aπτ(1),1aπτ(2),2 . . . aπτ(n),n = −sgn(πτ)aπτ(1),1aπτ(2),2 . . . aπτ(n),n.

Also, as π ranges over Sn so does πτ. Setting γ = πτ we get

∑

π∈Sn

sgn(π)aπτ(1),1aπτ(2),2 . . . aπτ(n),n

= −
∑

γ∈Sn

sgn(γ)aγ(1),1aγ(2),2 . . . aγ(n),n = −det(A).

Corollary 7.5 For a matrix A, det(PklA) = det(Pkl)det(A).

Corollary 7.6 Assume in the field F that 1+ 1 6= 0. Let A ∈Mnn(F). If two
rows of A are identical then det(A) = 0.

Proof Suppose rows k and l of A are identical. Then when we switch these
two rows the resulting matrix has determinant equal to −det(A). But this
matrix is identical to A and therefore −det(A) = det(A). Then 2det(A) = 0,
whence det(A) = 0.

Lemma 7.5 Assume the characteristic of the field F is two. Let A ∈Mnn(F).
If two rows of A are identical then det(A) = 0.

Proof Note that since the characteristic of F is two, 1 = −1 and so we can
drop the sign in the expression of the determinant. Also note that it is now
the case if a matrix B is obtained from the matrix A by exchanging two rows
then det(B) = det(A). Assume now that the ith < jth rows are identical.
By exchanging the ith row with the (n − 1)st row and the jth row with the
nth row, we may may assume that (n− 1)st and nth rows are identical. Now
let π an arbitrary permutation. Let π′ be the permutation defined as follows:
π′(k) = π(k) if k < n − 1, π′(n − 1) = π(n), and π′(n) = π(n − 1), that is
π′ = (π(n− 1)π(n))π. By the way we have defined π′, it follows that

a1,π(1) . . . an−1,π(n−1)an,π(n) = a1,π′(1) . . . an−1,π′(n−1)an,π′(n).

Consequently, the sum of these two terms is zero since the characteristic is
two. Summing over all such pairs it then follows that det(A) = 0.
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Lemma 7.6 Let the matrix B be obtained from the matrix A by multiplying
the kth row of A by the scalar c. Then det(B) = c det(A).

Proof We use the expression

det(A) =
∑

γ∈Sn

sgn(γ)a1,γ(1)a2,γ(2) . . . an,γ(n)

for computing the determinant.

Note that each bij = aij if i 6= k and bkj = cakj . Then for each γ

sgn(γ)b1,γ(1) . . . bn,γ(n)

= sgn(γ)a1,γ(1) . . . ak−1,γ(k−1)(cak,γ(k))ak+1,γ(k+1) . . . an,γ(n)

= c× sgn(γ)a1,γ(1)a2,γ(2) . . . an,γ(n).

Summing over all γ ∈ Sn we get det(B) = c× det(A) as required.

Corollary 7.7 Let Dk(c) be the matrix obtained from In by multiplying the
kth row by the scalar c. Then for any matrix A,

det(Dk(c)A) = c det(A) = det(Dk(c))× det(A).

Lemma 7.7 Let the n × n matrix A have rows ai, the matrix B have rows
bi, and assume that ai = bi for i 6= k. Suppose C is the matrix with rows ci,
where ci = ai = bi for i 6= k and ck = ak + bk. Then

det(C) = det(A) + det(B).

Proof We use the expression

det(C) =
∑

γ∈Sn

sgn(γ)c1,γ(1)c2,γ(2) . . . cn,γ(n)

for computing the determinant.

Each term c1,γ(1)c2,γ(2) . . . cn,γ(n) has the form

a1,γ(1) . . . ak−1,γ(k−1)ck,γ(k)ak+1,γ(k+1) . . . an,γ(n)

since cij = aij for i 6= k. On the other hand, ckj = akj + bkj whence
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c1,γ(1)c2,γ(2) . . . cn,γ(n)

= a1,γ(1) . . . ak−1,γ(k−1)(ak,γ(k) + bk,γ(k))ak+1,γ(k+1) . . . an,γ(n)

= a1,γ(1) . . . ak−1,γ(k−1)ak,γ(k)ak+1,γ(k+1) . . . an,γ(n)

+a1,γ(1) . . . ak−1,γ(k−1)bk,γ(k)ak+1,γ(k+1) . . . an,γ(n)

= a1,γ(1) . . . ak−1,γ(k−1)ak,γ(k)ak+1,γ(k+1) . . . an,γ(n)

+b1,γ(1) . . . bk−1,γ(k−1)bk,γ(k)bk+1,γ(k+1) . . . bn,γ(n)

since bij = aij for i 6= k. Multiplying by sgn(γ) and summing over all γ ∈ Sn

we get the desired result.

Corollary 7.8 Assume the matrix C is obtained from the matrix A by adding
c times the lth row of A to the kth row of A. Then det(C) = det(A).

Proof Let the rows of A be ai, 1 ≤ i ≤ n. Let the rows of the matrix B
be bi with bi = ai for i 6= k and bk = cal. From Lemma (7.7), det(C) =
det(A) + det(B). Let B′ be the matrix with rows b′i where b′i = bi for i 6= k
and b′k = bl. Then det(B) = c det(B′) by Lemma (7.6). However, B′ has two
identical rows and therefore det(B′) = 0 by Corollary (7.6) and Lemma (7.5).
Thus, det(B) = 0 and det(C) = det(A) as claimed.

Corollary 7.9 Let A be an n× n matrix. If i 6= j and c is scalar, then

det(Tij(c)A) = det(A) = det(Tij(c))det(A).

Putting Corollaries (7.5), (7.7), and (7.9) together we have the following:

Theorem 7.3 Let A be an n×n matrix and E be an n×n elementary matrix.
Then det(EA) = det(E)det(A).
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Remark 7.4 a) If E is an elementary matrix, then E is invertible and the
inverse of E is of the same type:

Di(c)
−1 = Di

(
1

c

)
, P−1

ij = Pij , Tij(c)
−1 = Tij(−c).

b) If E is an elementary matrix then the transpose of E,Etr, is an elementary
matrix of the same type and det(Etr) = det(E):

Di(c)
tr = Di(c), P

tr
ij = Pij , Tij(c)

tr = Tji(c).

The following result is usually proved in an elementary linear algebra course:

Lemma 7.8 i) The reduced echelon form of an n× n invertible matrix A is
In.

ii) If A is a non-invertible n × n matrix then the reduced echelon form of A
has a zero row.

The following is a consequence of this lemma:

Corollary 7.10 Every invertible matrix is a product of elementary matrices.

A consequence of Corollary (7.10) is

Corollary 7.11 Let B be an n× n matrix. Then B is invertible if and only
if det(B) 6= 0.

Proof Write B = EkEk−1 . . . E1In, where Ei are elementary. We have al-
ready proved for an elementary matrix E and a matrix A that det(EA) =
det(E)× det(A). Then for each i < k,

det(Ei+1(Ei . . . E1In)) = det(Ei+1)det(Ei . . . E1In)

and, consequently,

det(A) = det(Ek)× det(Ek−1)× · · · × det(E1)× det(In).

Since det(Ei) 6= 0 for each i, det(A) 6= 0.

On the other hand, suppose B is not invertible. Let R be the reduced ech-
elon form of B. Then there are elementary matrices E1, . . . , Ek so that
B = EkEk−1 . . . E1R. By the same reasoning as above,

det(B) = det(Ek)× det(Ek−1)× · · · × det(E1)× det(R).

However, R has a zero row and so det(R) = 0. Therefore det(B) = 0.
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We can now prove a fundamental theorem about determinants of matrices:

Theorem 7.4 For n× n matrices A and B, det(AB) = det(A)det(B).

Proof Suppose A or B is not invertible then AB is not invertible. Then by
Corollary (7.11) det(AB) = 0. Also by the aforementioned corollary, either
det(A) = 0 or det(B) = 0, whence det(A)det(B) = 0. We may therefore
suppose A and B are invertible. Write A as a product of elementary matrices:
A = EkEk−1 . . . E1. Then

det(AB) = det(EkEk−1 . . . E1B)

= det(Ek)det(Ek−1 . . . E1B)

...

= det(Ek)det(Ek−1 . . . det(E1)det(B) = det(A)det(B).

Corollary 7.12 Assume A and B are n × n matrices and AB = In. Then

det(B) =
1

det(A)
.

In the next result, we show that the determinant of a matrix and its transpose
are the same. This has an important implication: anything that we have proved
about the relationship of the determinant of a matrix to its rows is equally
true of its columns. For example, if a matrix B is obtained from a matrix A
by exchanging two columns, then det(B) = −det(A).

Corollary 7.13 Let A be an n× n matrix. Then det(Atr) = det(A).

Proof If A is not invertible, then neither is Atr and then det(A) = 0 =
det(Atr) by Corollary (7.12). Thus, we may assume that A is invertible. Then
there are elementary matrices E1, E2, . . . , Ek such that A = Ek . . . E1 and,
as in the proof of Theorem (7.4), we have det(A) = det(Ek) . . . det(E1). Now
Atr = (Ek . . . E1)

tr = Etr
1 . . . Etr

k and det(Atr) = det(Etr
1 ) . . . det(Etr

k ). How-
ever, as noted in part b) of Remark (7.4), for an arbitrary elementary matrix
E, det(Etr) = det(E). In particular, for 1 ≤ i ≤ k, det(Ei) = det(Etr

i ) and
therefore det(A) = det(Ek) . . . det(E1) = det(Etr

1 ) . . . det(Etr
k ) = det(Atr).

The next result tells us that similar matrices have the same determinant:



254 Advanced Linear Algebra

Corollary 7.14 If A is an n× n matrix and Q is an invertible n× n matrix
then det(Q−1AQ) = det(A).

Proof By Theorem (7.4), det(Q−1AQ) = det(Q−1)det(A)det(Q) =
det(Q−1)det(Q)det(A) = det(A) by Corollary (7.12).

An immediate consequence of Corollary (7.14) is:

Corollary 7.15 Let V be a finite-dimensional vector space, T an operator on
V , and B,B′ bases for V. Then det(MT (B,B)) = det(MT (B′,B′)).

The next result expresses the determinant of a block diagonal matrix with
two diagonal blocks in terms of the determinants of the blocks.

Lemma 7.9 Assume C is a block diagonal matrix with two diagonal blocks
A and B. Then det(C) = det(A)× det(B).

Proof Let A be a k × k-matrix and B be an l × l-matrix so that n = k + l.
Let the entries of A be (aij) and the entries of B be (bij). Then the entries of
C are (cij), where

cij = aij if 1 ≤ i, j ≤ k, cij = 0 if 1 ≤ i ≤ k, j > k or 1 ≤ j ≤ k, i > k and

cij = bi+k,j+k for k + 1 ≤ i, j ≤ n = k + l.

Now if σ ∈ Sn and cσ(1),1 . . . cσ(n),n 6= 0, then it must be the case that σ leaves
[1, k] and [k + 1, n] invariant. In this case set,

σ1 = σ|[1,k]
, σ2 = σ|[k+1,n]

.

Also, let σ′
2 ∈ Sl be given by σ′

2(j) = σ2(j + l) − l. Note that sgn(σ) =
sgn(σ1σ2) = sgn(σ1)sgn(σ2) = sgn(σ1)sgn(σ

′
2).

Now we have

det(C) =
∑

σ∈Sn

sgn(σ)cσ(1),1 . . . cσ(n),n

=
∑

σ∈Sn

sgn(σ)cσ1(1),1 . . . cσ1(k),kcσ2(k+1),k+1 . . . cσ2(n),n

=
∑

σ1∈Sk

∑

σ′
2∈Sl

sgn(σ1σ
′
2)aσ1(1),1 . . . aσ1(k),kbσ′

2(1),1
. . . bσ′

2(l),l

=

( ∑

σ1∈Sk

sgn(σ1)aσ1(1),1 . . . aσ1(k),k

)
 ∑

σ′
2∈Sl

sgn(σ′
2)bσ′

2(1),1
. . . bσ′

2(l),l




= det(A)× det(B).
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Theorem 7.5 Let A be a block diagonal matrix with diagonal blocks
A1, A2, . . . , Ak. Then det(A) = det(A1)× det(A2)× det(Ak).

Proof This follows from Lemma (7.9) by induction on k.

We are now in a position to prove our main theorem:

Theorem 7.6 Let V be a finite-dimensional vector space, T an operator on
V, and B a basis for V. Then det(T ) = det(MT (B,B)).

Proof In light of Corollary (7.15) we need only show that there exists some
basis B of V such that det(T ) = det(MT (B,B)). Since we can decompose V
into a direct sum of T -invariant subspaces on which T is cyclic, by Lemma
(7.3) and Theorem (7.5), it suffices to prove the result when T is cyclic, that
is, when there is a vector v ∈ V such that V = 〈T,v〉.
Let µT,v(x) = χT (x) = xn + an−1x

n−1 + · · · + a1x + a0. Set v1 = v and
vk = T k−1(v) for 2 ≤ k ≤ n. Then B = (v1,v2, . . . ,vn) is a basis for V
and MT (B,B) = C(µT (x)), the companion matrix of µT (x). To complete the
proof, we must show that

det(C(µT (x)) = (−1)na0.

Recall,

C(µT (x)) =




0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

... . . .
...

...
0 0 . . . 0 −an−2

0 0 . . . 1 −an−1



.

The only term that is non-zero in the expansion of this determinant is

a21a32 . . . an,n−1a1n = 1n−1(−a0).
The corresponding permutation is the n-cycle π = (123 . . . n). The permutation
π is even if n is odd and odd if n is even. In particular, sgn(π) = (−1)n−1.
Therefore,

det(C(µT (x)) = −a0 × (−1)n−1 = (−1)n × a0

as required.
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We can make use of Theorem (7.6) together with the properties we have
established for the determinant of a matrix to show that the same properties
hold for the determinant of an operator. In our first result, we prove that the
determinant of a product of operators is the product of the determinants.

Corollary 7.16 Let V be a finite-dimensional vector space and S, T linear
operators on V. Then det(ST ) = det(S)det(T ).

Proof Let B be a basis for V. Then det(ST ) = det(MST (B,B)) =
det(MS(B,B)MT (B,B)) = det(MS(B,B))det(MT (B,B)) = det(S)det(T ).

We next show that an operator is invertible if and only if it has non-zero
determinant.

Corollary 7.17 Let V be a finite-dimensional vector space and T an operator
on V. Then the following hold:

i) T is invertible if and only if det(T ) 6= 0.

ii) If T is invertible, then det(T−1) = 1
det(T ) .

Proof i) Let B be a basis for V. Then T is invertible if and only if MT (B,B)
is invertible. But MT (B,B) is invertible if and only if det(MT (B,B)) 6= 0.
Since det(T ) = det(MT (B,B)), T is invertible if and only if det(T ) 6= 0.

ii) Assume T is invertible. Then 1 = det(IV ) = det(TT−1) = det(T )det(T−1)
and consequently, det(T−1) = 1

det(T ) .

Theorem 7.7 Let V be a finite-dimensional vector space, T an operator on
V, and B a basis for V. Set A = MT (B,B). Then χT (x) = det(xIn −A).

Proof By our theorems on the characteristic polynomial and determinants of
block diagonal matrices, it suffices to prove this when T is cyclic. Thus, assume
that V = 〈T,v〉 and let µT (x) = χT (x) = xn + an−1x

n−1 + · · ·+ a1x+ a0. Set
v1 = v, vk = T k−1(v) for 2 ≤ k ≤ n and B = (v1,v2, . . . ,vn), a basis for V.
As shown in the proof of Theorem (7.6), the matrix of T with respect to B is
the companion matrix of µT (x):
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MT (B,B) = C(µT (x)) =




0 0 . . . 0 −a0
1 0 . . . 0 −a1
...

... . . .
...

...
0 0 . . . 0 −an−2

0 0 . . . 1 −an−1



.

To complete the proof, we have to show that

det




x 0 . . . 0 a0
−1 x . . . 0 a1
...

... . . .
...

...
0 0 . . . x an−2

0 0 . . . −1 x+ an−1




= µT (x) = χT (x).

Set B = xIn −A and denote the (i, j)-entry of B by bij. We then have

det(B) =
∑

σ∈Sn

sgn(σ)bσ(1),1 . . . bσ(n),n. (7.1)

Suppose σ(n) = 1. Look at the matrix obtained when the row and column of
b1n are deleted. This matrix is upper triangular with −1’s on the diagonal. So
there is only one permutation σ with σ(n) = 1, such that bσ(1),1 . . . bσ(n),n 6= 0,
namely, the n−cycle (12 . . . n) which has sign (−1)n−1. Thus, the only term in
Equation (7.1) containing b1n which is not zero is (−1)n−1(−1)n−1b1n = a0.

Next suppose that σ(n) = 2. The matrix obtained when the row and column of
b2n are deleted is upper triangular with one x and (n−2) −1’s on the diagonal.
Thus there is a unique permutation σ with σ(n) = 2 giving a non-zero value,
namely, σ = (1)(23 . . . n). The sign of this permutation is (−1)n−2 and the
term we get is (−1)n−2x(−1)n−2b2n = a1x. In a similar fashion, we get the
only possibly non-zero term in the determinant containing bkn with k < n is
bknx

k = akx
k.

On the other hand, consider terms of Equation (7.1) which contain bnn =
x + an−1. Suppose a permutation σ fixes n, σ(n) = n. The matrix obtained
by deleting the nth row and nth column is lower triangular with x’s on the
diagonal. This implies that the only possible permutation σ for which the term
bσ(1),1 . . . bσ(n−1),n−1bn,n is not zero is the identity permutation. In this case,
the sign is +1 and the product of the entries is xn−1(x + bnn) = xn−1(x +
an−1) = xn+an−1x

n−1. Adding all the non-zero terms we get xn+an−1x
n−1+

· · ·+ a1x+ a0 = µT (x) = χT (x).

As a consequence of Theorem (7.7), there is now some real meaning to the
Cayley–Hamilton theorem: If T is an operator on a finite-dimensional vector
space and we set χT (x) = det(xIV − T ), then χT (T ) = 0V→V .
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We complete this section by proving a useful formula for computing the de-
terminant of a square matrix. It is known as the cofactor expansion in the
nth row.

Theorem 7.8 Let A be an n × n matrix. For a pair (i, j) with 1 ≤ i, j ≤ n
let Aij denote the (n − 1) × (n − 1) matrix obtained from A by deleting the
ith row and the jth column. Set Mij(A) = det(Aij) and Cij = Cij(A) =
(−1)i+jMij(A). Then

det(A) = an1Cn1 + an2Cn2 + · · ·+ annCnn.

Proof For 1 ≤ j ≤ n, let Sn,j denote the collection of permutations σ ∈ Sn

such that σ(j) = n. Then Sn = Sn,1∪Sn,2∪· · ·∪Sn,n and for i 6= j, Sn,j∩Sn,k =
∅. Therefore,

det(A) =
n∑

j=1


 ∑

σ∈Sn,j

sgn(σ)aσ(1),1 . . . aσ(n),n


 .

Since for σ ∈ Sn,j , σ(j) = n, we have

n∑

j=1


 ∑

σ∈Sn,j

sgn(σ)aσ(1),1 . . . aσ(n),n




=
n∑

j=1

anj
∑

σ∈Sn,j

sgn(σ)aσ(1),1 . . . aσ(j−1),j−1aσ(j+1),j+1 . . . aσ(n),n.

Setting

κj =
∑

σ∈Sn,j

sgn(σ)aσ(1),1 . . . aσ(j−1),j−1aσ(j+1),j+1 . . . aσ(n),n

it suffices to prove that κj = Cnj .

Now set τn = I[1,n], the identity element of Sn, and for j < n let τj be the
transposition which interchanges j and n and fixes all other k, 1 ≤ k ≤ n− 1.
Also, let H be the subgroup of Sn of those permutations which fix n. Then
H is isomorphic to Sn−1 by the map, which takes σ ∈ H to its restriction to
{1, 2, . . . , n− 1}. It is then the case that Sn,j = Hτj = {στj |σ ∈ H}.
We next show that κn = Cnn = (−1)n+ndet(Ann) = det(Ann). This follows
immediately since

κn =
∑

σ∈H

sgn(σ)aσ(1),1 . . . aσ(n−1),n−1 = det(Ann).
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Now assume that j < n. If i 6= j, i < n, and σ ∈ H, then τj(i) = i and
therefore (στj)(i) = σ(i). On the other hand, (στj)(n) = σ(j). Therefore, if
we set γ = στj we have

aγ(1),1 . . . aγ(j−1),j−1aγ(j+1),j+1 . . . aγ(n),n

= aσ(1),1 . . . aσ(j−1),j−1aσ(j+1),j+1 . . . aσ(j),n.

Thus,

κj =
∑

σ∈H

sgn(στj)aσ(1),1 . . . aσ(j−1),j−1aσ(j+1),j+1 . . . aσ(j),n.

Since sgn(στj) = sgn(σ)sgn(τj) and sgn(τj) = −1 we have κj = −Cj, where

Cj =
∑

σ∈H

sgn(σ)aσ(1),1 . . . aσ(j−1),j−1aσ(j+1),j+1 . . . aσ(j),n.

Now Cj is nothing more than the determinant of the matrix obtained from
Anj by placing the (n − 1)st column of Anj after the (j − 1)st column of
Anj . This can be realized by n − j − 1 exchanges of columns, and there-
fore Cj = (−1)n−j−1det(Anj), and consequently, κj = (−1)n−jdet(Anj) =
(−1)n+jdet(Anj) = Cnj .

Exercises

1. Use properties of determinants to prove that one can compute the deter-
minant of a matrix using a cofactor expansion in any row:

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

2. Prove that one can compute the determinant of a matrix using a cofactor
expansion in any column:

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj .

3. Let T be an operator on a finite-dimensional inner product space (V, 〈 , 〉).
Prove that det(T ∗) = det(T ).

4. Let Jn denote the n×n matrix, all of whose entries are 1. Let jn denote the
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n× 1 matrix, all of whose entries are 1. And, for 1 ≤ i < n, set vi =




0
0
...
1
0
0
...
−1




,

where the 1 occurs in the ith position. Prove the following:

i) jn is an eigenvector of Jn with eigenvalue n.

ii) (v1,v2, . . . ,vn−1) is a basis for null(Jn).

iii) (v1,v2, . . . ,vn−1, jn) is a basis for Rn.

5. Let a and b be scalars and set A = aIn + bJn. Prove that A is similar to
the diagonal matrix diag{a, a, . . . , a, a+ bn} and conclude that

det(A) = an−1(a+ bn).

6. Let α1, . . . , αn be distinct scalars (in an arbitrary field). We previously
proved that there is a basis B = (f1, f2, . . . , fn) of F(n−1)[x] such that fi(αj) =
0 if j 6= i and fi(αi) = 1. Moreover, for a polynomial f ∈ F(n−1)[x], the
coordinate vector of f with respect to B is given by

[f ]B =




f(α1)
f(α2)

...
f(αn)


 .

As a consequence the change of basis matrix from the standard basis S =
(1, x, x2, . . . , xn) to B is

MIV (S,B) =




1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

... . . .
...

αn−1
1 αn−1

2 . . . αn−1
n



.

Such a matrix is called a Vandermonde matrix. A previous exercise asked you
to prove this matrix is invertible. Now prove that its determinant is

∏

1≤i<j≤n

(αj − αi).
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7. Let A be an n × n matrix with entries aij and cofactors Cij . Use the fact
that a matrix which has two identical rows has zero determinant to prove
that, for any i 6= j,

aj1Ci1 + aj2Ci2 + · · ·+ ajnCin = 0.

8. Define the adjoint, Adj(A), of the matrix A to be the matrix whose (i, j)-
entry is the (j, i)-cofactor, Cji of A. Prove that A(Adj(A)) = det(A)In.

9. Let A be an invertible n× n matrix and assume that the entries of both A
and A−1 are integers. Prove that det(A) = ±1.

10. Assume A is an n × n matrix with entries in Z and det(A) = ±1. Prove
that A−1 is an integer matrix.

11. Let T be a Hermitian operator on a finite-dimensional complex inner
product space (V, 〈 , 〉). Prove that det(A) ∈ R.

12. Assume T is an operator on a finite dimension inner product space
(V, 〈 , 〉). Prove det(T ∗T ) is a non-negative real number and is greater than
zero if and only if T is invertible.

13. Let T be an orthogonal operator on a finite-dimensional real Euclidean
space V. Prove that det(T ) = ±1.

14. Let T be a unitary operator on a finite-dimensional complex inner product
space. Prove that |det(T )| = 1.

15. Let T be a skew-symmetric operator on a real inner product space of odd
dimension. Prove that det(T ) = 0.

16. Let A be a (2k + 1) × (2k + 1) matrix with columns v1,v2, . . . ,v2k+1.
Assume

v1 + v3 + · · ·+ v2k+1 = v2 + · · ·+ v2k.

Prove that det(A) = 0.

17. Let A be an n×n rational matrix such that every entry is ±1. Prove that
det(A) is an integer divisible by 2n−1.

18. Let A be an invertible n× n matrix all of whose entries are either 0 or 1.
Determine with a proof the minimum number of 0’s in A.

19. In the determinant game, two players alternate placing a real number in an
n× n matrix. Player 1 wins if the determinant of the final matrix is non-zero
and player two wins if the determinant is zero. Show that if n is even, then
player two has a winning strategy.

20. Assume A,B are (2k+1)× (2k+1) real matrices and AB = −BA. Prove
that not both A and B are invertible.
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7.3 Uniqueness of the Determinant of a Linear Operator

In this section we introduce the concepts of a multilinear map, multilinear
form, as well as an alternating multilinear form. We then show how the deter-
minant can be used to define an alternating n-linear form on an n-dimensional
vector space and subsequently prove that this form is unique.

What You Need to Know

To make sense of the material in this section, you will need to have a mastery of
the following concepts: linear operator on a vector space, and the determinant
of a linear operator on finite-dimensional vector space.

Let V be an n-dimensional vector space with a basis B = (v1, . . . ,vn). Recall,
there is a one-to-one correspondence between operators T on V and sequences
(u1, . . . ,un) of length n from V. Specifically, if (u1, . . . ,un) is such a sequence
then the corresponding operator is given by

T (c1v1 + · · ·+ cnvn) = c1u1 + · · ·+ cnun.

Making use of this correspondence we may interpret the determinant as a
function from V n to F. We use the results of Section (7.2) to record some
properties of this function.

Theorem 7.9 The function det : V n → F satisfies the following:

i) det(u1, . . . ,uj−1,uj + u′
j,uj+1, . . . ,un)

= det(u1, . . . ,uj−1,uj,uj+1, . . . ,un) + det(u1, . . . ,uj−1,u
′
j ,uj+1, . . . ,un).

ii) det(u1, . . . ,uj−1, cuj , . . . ,un) = c det(u1, . . . ,uj−1,uj,uj+1, . . . ,un).

iii) det(u1, . . . ,un) = 0 if ui = uj for some i 6= j.

iv) det(v1,v2, . . . ,vn) = 1.

Proof i) Let S be the operator associated with (u1, . . . ,un) and S
′ the opera-

tor with (u1, . . . ,uj−1,u
′
j,uj+1, . . . ,un). We need to show that det(S+S′) =

det(S) + det(S′).

Let A be the matrix of S with respect to B and A′ the matrix of S′ with respect
to B. Since det(S) = det(A), det(S′) = det(A′) and det(S+S′) = det(A+A′),
we need to prove that det(A+A′) = det(A) + det(A′).

Since also det(A) = det(Atr), det(A′) = det((A′)tr) and det(A + A′) =
det((A+A′)tr), it suffices to prove that det((A+A′)tr) = det(Atr)+det((A′)tr).
However, this now follows from Lemma (7.7).
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ii) The proof of this is similar to part i) making use of Lemma (7.6).

iii) This follows from Lemma (7.6).

iv) The operator that corresponds to B is the identity operator IV and
det(IV ) = 1.

The main purpose of the remainder of this section is to prove that the deter-
minant is the only function from V n to F which satisfies the conclusions of
Theorem (7.9). Before we embark on that task, we first make a few definitions
that will put the conclusions of the theorem into a broader perspective.

Definition 7.7 Let m ≥ 2, V1, . . . , Vm and W be vector spaces over a field F.
A function f : V1 × · · · × Vm → W is said to be an m-multilinear map if
for each j and vectors u1 ∈ V1 . . . ,uj−1 ∈ Vj−1,uj+1 ∈ Vj+1, . . . ,um ∈ Vm,
the map defined by f(u1, . . . ,uj−1,v,uj+1, . . . ,um) is a linear transformation
from Vj to W.

If W = F, the underlying field, then f is referred to as an m-multilinear
form. If m = 2, we refer to f as a bilinear map. Finally, if m = 2 and
W = F, then f is a bilinear form.

With the introduction of this terminology, we can say that when we interpret
the determinant as a function from V n to F that it is an n-multilinear form.

Definition 7.8 Let V and W be vector spaces. An m-multilinear map from
V m to W is said to be alternating if f(u1, . . . ,um) = 0 whenever ui = ui+1

for some i, 1 ≤ i ≤ m − 1. When W = F, we say that f is an alternating
form.

Remark 7.5 As a consequence of Theorem (7.9), we can say that the deter-
minant is an alternating n-multilinear form on the space V which takes the
value 1 on the basis B.

Before reformulating our uniqueness statement, we prove some lemmas about
alternating maps.

Lemma 7.10 Assume f : V m → W is an alternating m-multilinear map.
Then

f(u1, . . . ,ui−1,ui,ui+1, . . . ,um) = −f(u1, . . . ,ui−1,ui+1,ui, . . . ,um).

In words, the result of reversing two consecutive arguments is to multiply by
−1.
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Proof By the definition of an alternating multilinear map, we have

f(u1, . . . ,ui−1,ui + ui+1,ui + ui+1, . . . ,um) = 0.

On the other hand, since f is m-multilinear, we have

f(u1, . . . ,ui−1,ui + ui+1,ui + ui+1, . . . ,um)

= f(u1, . . . ,ui−1,ui,ui, . . . ,um) + f(u1, . . . ,ui−1,ui+1,ui+1, . . . ,um)

+f(u1, . . . ,ui−1,ui,ui+1, . . . ,um) + f(u1, . . . ,ui−1,ui+1,ui, . . . ,um).

Since f is alternating,

f(u1, . . . ,ui−1,ui,ui, . . . ,um) = f(u1, . . . ,ui−1,ui+1,ui+1, . . . ,um) = 0.

Consequently, we have

f(u1, . . . ,ui−1,ui,ui+1, . . . ,um) + f(u1, . . . ,ui−1,ui+1,ui, . . . ,um) = 0

from which it follows that

f(u1, . . . ,ui−1,ui,ui+1, . . . ,um) = −f(u1, . . . ,ui−1,ui+1,ui, . . . ,um).

We can use Lemma (7.10) to prove that an alternating map takes the value
zero whenever two arguments are equal:

Corollary 7.18 Assume f : V m → W is an alternating m-multilinear map.
Then f(u1, . . . ,um) = 0 whenever ui = uj for some i < j.

This is left as an exercise.

The proof of the following corollary is proved in exactly the same way as
Lemma (7.10). It is left as an exercise.

Corollary 7.19 Assume f : V m →W is an alternating map. Then

f(v1, . . . ,vm) = −f(v1, . . . ,vi−1,vj ,vi+1, . . . ,vj−1,vi,vj+1, . . . ,vm).

In words, if two arguments are exchanged, the result is to multiply the original
image by −1.
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Finally, we will require the following result, which tells us the value of an
alternating map on a linearly dependent sequence:

Lemma 7.11 Let f : Vm →W be an alternating m-multilinear map. Assume
(u1, . . . ,um) is linearly dependent. Then f(u1, . . . ,um) = 0W .

Proof If u1 = 0V then by multilinearity, f(u1, . . . ,um) = 0W , so we may
assume u1 6= 0. Since (u1, . . . ,um) is linearly dependent, there is a j > 1 such
that uj is a linear combination of u1, . . . ,uj−1. So assume

uj =

j−1∑

i=1

ciui.

By the multilinearity of f, we have

f(u1, . . . ,uj , . . . ,um) = f(u1, . . . ,uj−1,

j−1∑

i=1

ciui,uj+1, . . . ,um)

=

j−1∑

i=1

cif(u1, . . . ,uj−1,ui,uj+1, . . . ,um).

However, each f(u1, . . . ,uj−1,ui,uj+1, . . . ,um) = 0W since two of its argu-
ments are identical (i < j). Thus, each term of the sum is 0W and hence the
sum is 0W .

Theorem 7.10 Let V be an n-dimensional vector space over the field F
and fix a basis B = (v1, . . . ,vn). Then there exists a unique alternating n-
multilinear form ∆ such that ∆(B) = 1.

We will prove the theorem in a series of lemmas. The main strategy will be to
use the correspondence between V n and L(V, V ), which allows us to interpret
∆ as a function on L(V, V ) and use the hypotheses to draw conclusions about
this map. In particular, we will show that it is a multiplicative map, that
is, ∆(ST ) = ∆(S)∆(T ), and that it is zero on any non-invertible operator.
Certain operators, elementary operators, play an important role in the proof,
and so we begin by introducing these at this point.

Definition 7.9 We denote the operator associated with the sequence
(v1, . . . ,vi−1,vj ,vi+1, . . . ,vj−1,vi,vj+1, . . . ,vn), which exchanges vi and vj

for i < j by P̂ij . We refer to this as an exchange operator.
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Definition 7.10 We denote the operator associated with the sequence
(v1, . . . ,vj−1, cvj ,vj+1, . . . ,vn, ) which fixes all vi, i 6= j and multiplies vj

by the scalar c by D̂j(c). We refer to this as a scaling operator.

Definition 7.11 We denote the operator associated with the sequence
(v1, . . . ,vj−1, cvi + vj ,vj+1, . . . ,vn), which fixes each vk, k 6= j and adds cvi

to vj by T̂ij(c) and refer to this as an elimination operator.

Remark 7.6 The matrix of an elementary operator with respect to B is an
elementary matrix of the corresponding type.

Our first lemma is an immediate consequence of Lemma (7.11):

Lemma 7.12 Let T be a non-invertible operator on V. Then ∆(T ) = 0.

Proof Set uj = T (vj). Since T is non-invertible, (u1, . . . ,un) is linearly
dependent. Then ∆(T ) = ∆(u1, . . . ,un) = 0 by Lemma (7.11).

In our next lemma, we show that ∆(E) = det(E) when E is an elementary
operator.

Lemma 7.13 The following hold:

i) ∆(P̂ij) = −1 = det(P̂ij).

ii) ∆(D̂j(c)) = c = det(D̂j(c)).

iii) ∆(T̂ij(c)) = 1 = det(T̂ij(c)).

Proof i) Set uk = P̂ij(vk). We then have

(u1, . . . ,un) = (v1, . . . ,vi−1,vj ,vi+1, . . . ,vj−1,vi,vj+1, . . . ,vn).

By Corollary (7.19), ∆(P̂ij) = −1 as asserted.

ii) This follows from the multilinearity of ∆.

iii) Set uk = T̂ij(c)(vk). We then have

(u1, . . . ,un) = v1, . . . ,vj−1, cvi + vj ,vj+1, . . . ,vn).
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Whence ∆(T̂ij(c)) = ∆(v1, . . . ,vj−1, cvi + vj ,vj+1, . . . ,vn). By the n-
multilinearity of ∆ we have

∆(v1, . . . ,vj−1, cvi + vj ,vj+1, . . . ,vn)

= c∆(v1, . . . ,vj−1,vi,vj+1, . . . ,vn) + ∆(v1, . . . ,vn).

Since two of the arguments in ∆(v1, . . . ,vj−1,vi,vj+1, . . . ,vn) are equal, we

can conclude that it is zero. It therefore follows that ∆(T̂ij(c)) = 1 as required.

The next result is similar to Theorem (7.3) in both its content and proof.

Lemma 7.14 Let T be an operator on V and E an elementary operator.
Then ∆(TE) = ∆(T )∆(E).

Proof We treat the three types of elementary operators separately. Set
T (vk) = uk. Then ∆(T ) = ∆(u1, . . . ,un).

Assume E = P̂ij and set wk = (T P̂ij)(vk). Then (w1, . . . ,wn) =
(u1, . . . ,ui−1,uj,ui+1, . . . ,uj−1,ui,uj+1, . . . ,un). Then

∆(T P̂ij) = ∆(w1, . . . ,wn)

= (u1, . . . ,ui−1,uj ,ui+1, . . . ,uj−1,ui,uj+1, . . . ,un)

= −∆(u1, . . . ,un) = ∆(u1, . . . ,un)∆(P̂ij).

Now assume that E = D̂i(c) and set wk = (T D̂i(c))(vk). Then
(w1, . . . ,wn) = (u1, . . . ,ui−1, cui,ui+1, . . . ,un). We then have

∆(T D̂i(c)) = ∆(u1, . . . ,ui−1, cui,ui+1, . . . ,un).

By the n-multilinearity of ∆, this is equal to

c∆(u1, . . . ,un) = ∆(u1, . . . ,un)∆(D̂i(c)) = ∆(T )∆(D̂i(c)).

Finally, assume that E = T̂ij(c) and set wk = T̂ij(c)(vk). Then
(w1, . . . ,wn) = (u1, . . . ,uj−1, cui + uj ,uj+1, . . . ,un). It then follows that

∆(T T̂ij(c)) = ∆(u1, . . . ,uj−1, cui + uj,uj+1, . . . ,un). In turn, this is equal
to

∆(u1, . . . ,un) + c∆(u1, . . . ,uj−1,ui,uj+1, . . . ,un) = ∆(u1, . . .un).

The latter holds since ∆(u1, . . . ,uj−1,ui,uj+1, . . . ,un) = 0 because two of its
arguments are equal. Thus,

∆(T T̂ij(c)) = ∆(u1, . . . ,un) = ∆(T ) = ∆(T )∆(T̂ij(c)).
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As a corollary of Lemma (7.14), we have:

Corollary 7.20 Assume an operator T is the product E1E2 . . . Et of elemen-
tary operators. Then ∆(T ) = ∆(E1)∆(E2) . . .∆(Et).

Proof Write T = E1E2 . . . Et. From Lemma (7.14), we can repeatedly write

∆(E1E2) = ∆(E1)∆(E2).

∆([E1E1]E3) = ∆(E1E2)∆(E3) = ∆(E1)∆(E2)∆(E3.)

By continuing this way the result follows.

We can now prove that ∆(T ) = det(T ) for an operator T on V. If T
is non-vertible, then we have seen that ∆(T ) = 0 = det(T ). So assume
T is invertible. Then T is a product of elementary operators (exercise).
So write T = E1E2 . . . Et where the Ei are elementary operators. From
Lemma (7.20), we have ∆(T ) = ∆(E1) . . .∆(Et). By Lemma (7.13), we have
∆(E1) . . .∆(Et) = det(E1) . . . det(Et). Finally, by the multiplicative property
of the determinant, we have det(E1) . . . det(Et) = det(E1 . . . Et) = det(T ).

Exercises

1. Prove Corollary (7.18).

2. Prove that every invertible operator is a product of elementary operators.

3. Let V and W be vector spaces over the field F and m a natural number.
Denote by L(V m,W ) the collection of all m-multilinear maps from V to W .
This is clearly a subset of the vector space M(V m,W ) of all maps from V m

to W. Prove that it is a subspace.

4. Let V and W be vector spaces over the field F and m a natural number.
Let Alt(Vm,W ) be the collection of all alternating m-multilinear maps from
V to W. Prove that this is a subspace of L(V m,W ).

5. Assume V is an n-dimensional vector space over F, W is a vector space
over F, and m > n. Prove that Alt(V m,W ) consists of only the zero map.

6. Let F be a field and set V = F4. For 1 ≤ i < j ≤ 4, define the map fij from
V 2 to F as follows:

fij







a11
a21
a31
a41


 ,




a12
a22
a32
a42





 = det

((
ai1 ai2
aj1 aj2

))
= ai1aj2 − aj1ai2.
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Prove that each fij is an alternating bilinear map.

7. Prove that the sequence of maps (f11, f12, f13, f23, f24, f34) is a basis for
Alt(V 2,F).

8. Let A be a 4 × 3 matrix. For a natural number i, 1 ≤ i ≤ 4, let Ai be the
3× 3 matrix obtained by deleting the ith row of A. If v1,v2,v3 ∈ F4, identify
the sequence (v1,v2,v3) with the matrix whose columns are these vectors.
Define a map gi : V

3 → F by gi(v1,v2,v3) = det((v1,v2,v3)i).

Prove that gi is an alternating 3-linear form.

9. Prove that (g1, g2, g3, g4) is a basis for Alt(V 3,F).
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This chapter is devoted to bilinear forms. We previously defined the concept
of an m-multilinear map from vector spaces V1, . . . , Vm to the vector space
W. A particularly important special case is when m = 2. Such functions
were referred to as bilinear maps. Bilinear maps are important because of
their role in the definition of the tensor product of two spaces, which is the
subject of chapter ten. Bilinear forms (bilinear maps to F, the underlying field)
arise throughout mathematics, in fields ranging from differential geometry and
mathematical physics on the one hand, to group theory and number theory on
the other. In the introductory section of this chapter we develop some basic
properties of bilinear maps and forms, introduce the notion of a reflexive
form, and prove that any reflexive form is either alternating or symmetric.
The second section is devoted to the structure of symplectic space, a vector
space equipped with an alternating form. In the third section, we define the
notion of a quadratic form and develop the general theory of an orthogonal
space. In particular, we proveWitt’s theorem for an orthogonal space when the
characteristic of the field is not two. The fourth section deals with orthogonal
space over a perfect field of characteristic two. Finally, section five is concerned
with real orthogonal spaces.
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8.1 Basic Properties of Bilinear Maps

In this section we develop some basic properties of bilinear maps and forms,
introduce the notion of a reflexive form, and prove that any reflexive form is
either alternating or symmetric.

What You Need to Know

To be successful in understanding the new material of this section, it is es-
sential that you have already mastered the following concepts: vector space,
basis of a vector space, dimension of a vector space, finite-dimensional vector
space, linear transformation, coordinate vector with respect to a basis, matrix
of a linear transformation, an algebra, determinant of a matrix or operator,
multilinear map, multilinear form, bilinear map, and bilinear form.

We begin by recalling the definition of a bilinear map:

Definition (7.7)

Assume V,W,X are vector spaces over a field F. A function f : V ×W → X
is a bilinear map if the following hold:

1) For v1,v2 ∈ V, c1, c2 ∈ F and w in W we have f(c1v1 + c2v2,w) =
c1f(v1,w) + c2f(v2,w).

2) For v ∈ V,w1,w2 ∈W, c1, c2 ∈ F we have f(v, c1w1+c2w2) = c1f(v,w1)+
c2f(v,w2).

In other words, when one of the arguments is fixed, the resulting function is
a linear transformation.

When X = F a bilinear map is referred to as a bilinear form.

We will denote by B(V,W ;X) the collection of all bilinear maps from V ×W
to X. When V =W we will write B(V 2;X).

Example 8.1 Assume A is an algebra over the field F (for example, L(V, V )
or F[x]). Then the multiplication of A is a bilinear map from A×A to A.

Example 8.2 If (V, 〈 , 〉) is a real inner product space, then 〈 , 〉 is a bilinear
form on V.

Example 8.3 For A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
∈M22(F) set

f(A,B) = det(A+B)− det(A)− det(B) = a11b22 + a22b11 − a12b21 − a21b12.

Then f defines a bilinear form on M22(F).
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Example 8.4 AssumeX is an n-dimensional space and BX = (x1,x2, . . . ,xn)
is a basis for X. Assume f1, . . . , fs are bilinear forms on V × W. Define
F : V ×W → X by F (v,w) =

∑n
i=1 fi(v,w)xi. Then F is bilinear map.

Example 8.5 Let V = Fm,W = Fn, and A ∈ Mmn(F). For v ∈ V,w ∈ W
set f(v,w) = vtrAw. Then f is a bilinear form.

Theorem 8.1 Let V,W,X be vector spaces over the field F. Then B(V,W ;X)
is a vector space over F.

Proof Since B(V,W ;X) is a subset of M(V ×W,X) we need to prove i) if
f, g ∈ B(V,W ;X), then f + g ∈ B(V,W ;X); and ii) if f ∈ B(V,W ;X) and
c ∈ F, then cf ∈ B(V,W ;X).

i) Let v1,v2 ∈ V,w ∈ W , and c1, c2 ∈ F. Then, by the definition of the sum
f + g,

(f + g)(c1v1 + c2v2,w) = f(c1v1 + c2v2,w) + g(c1v1 + c2v2,w).

Since both f, g are bilinear, we have

f(c1v1 + c2v2,w) + g(c1v1 + c2v2,w)

= [c1f(v1,w) + c2f(v2,w)] + [c1g(v1,w) + c2g(v2,w)]. (8.1)

After rearranging and regrouping terms in (8.1) we get

c1[f(v1,w) + g(v1,w)] + c2[f(v2,w) + g(v2,w)]

= c1(f + g)(v1,w) + c2(f + g)(v2,w).

This shows that f + g is linear in the first argument. In exactly the same way,
we can show that f + g is linear in the second argument.

ii) Let v1,v2 ∈ V,w ∈ W and c1, c2 ∈ F. Then, by the definition of cf, we
have ,

(cf)(c1v1 + c2v2,w) = c[f(c1v1 + c2v2,w)].

Since f is bilinear, this is equal to

c[c1f(v1,w) + c2f(v2,w)]
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= (cc1)f(v1,w) + (cc2)f(v2,w) = c1(cf)(v1,w) + c2(cf)(v2,w).

which is what we needed to show. In exactly the same way, we can show that
cf is linear in the second argument.

The following lemma is useful toward characterizing the space of bilinear maps
from a pair of spaces V and W to a space X.

Lemma 8.1 Let f be a bilinear map from V ×W to a space X and φ be a
linear transformation from X to F. Then φ ◦ f is a bilinear form.

Proof Assume v1,v2 ∈ V, c1, c2 ∈ F and w ∈W. Then

(φ ◦ f)(c1v1 + c2v2,w) = φ(f(c1v1 + c2v2,w)) = φ(c1f(v1,w) + c2f(v2,w))

since f is bilinear. Since φ is linear

φ(c1f(v1,w) + c2f(v2,w)) = c1φ(f(v1,w)) + c2φ(f(v2,w))

= c1(φ ◦ f)(v1,w) + c2(φ ◦ f)(v2,w).

In exactly the same way, it follows for v ∈ V,w1,w2 ∈ W and c1, c2 ∈ F that

(φ ◦ f)(v, c1w1 + c2w2) = c1(φ ◦ f)(v,w1) + c2(φ ◦ f)(v,w2).

Making use of Lemma (8.1) we now show that when X is a finite-dimensional
vector space then every bilinear map from V ×W to X can be constructed as
in Example (??).

Theorem 8.2 Assume that X is a finite-dimensional vector space with basis
BX = (x1, . . . ,xq) and assume f is a map from V×W toX. For v ∈ V,w ∈ W
let f(v,w) =

∑q
i=1 fi(v,w)xi. Then f is a bilinear map if and only if each

fi is a bilinear form.

Proof If each fi is bilinear, it follows from Example (8.4) that the map f is
bilinear. Set Xi = Span(xi), 1 ≤ i ≤ q and Yi =

∑
j 6=iXi so that V = Xi⊕Yi.

Let πi = Proj(XI ,Yi). Then fi = πi ◦ f , and then by Lemma (8.1) each fi is a
bilinear form.

In our next result, we prove if V and W are finite-dimensional, then every
bilinear form arises as in Example (8.5).
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Theorem 8.3 Let V be an m-dimensional vector space with basis BV =
(v1, . . . ,vm) and W an n-dimensional vector space with basis BW =
(w1, . . . ,wn). Assume f : V ×W → F is bilinear. Set aij = f(vi,wj) for

1 ≤ i ≤ m, 1 ≤ j ≤ n, and A =



a11 . . . a1n
... . . .

...
am1 . . . amn


 . If v =

∑m
i=1 civi and

w =
∑n

j=1 djwj , then

f(v,w) =



c1
...
cm




tr

A



d1
...
dn


 .

This is left as an exercise.

Corollary 8.1 Assume that V,W , and X are finite-dimensional vector spaces
over the field F. Then dim(B(V,W ;X)) = (dim(V ))(dim(W ))(dim(X)).

This is left as an exercise.

Definition 8.1 Let V be a vector space with basis BV = (v1, . . . ,vm), W a
vector space with basis BW = (w1, . . . ,wn), and f ∈ B(V,W ;F), a bilinear
form. The matrix of f with respect to (BV ,BW ) is the m× n matrix whose
(i, j)-entry is f(vi,wj). This matrix is denoted by Mf (BV ,BW ). When V =
W, it is customary to take BW = BV = B, and then Mf (B,B) is the matrix
of f with respect to B.

It is instructive to look at what the effect of changing bases has on the matrix
of a form. The next lemma does so.

Lemma 8.2 Let V be an m-dimensional vector space over the field F with
bases BV = (v1, . . . ,vm) and B′

V = (v′
1, . . . ,v

′
m). Let W be an n-dimensional

vector space over F with bases BW = (w1, . . . ,wn) and B′
W = (w′

1, . . . ,w
′
n).

Assume f ∈ B(V,W ;F). Set A = Mf (BV ,BW ), A′ = Mf(B′
V ,B′

W ), P =
MIV (B′

V ,BV ), and Q = MIW (B′
W ,BW ). Then

A′ = P trAQ.

Proof Let 1 ≤ i ≤ m, 1 ≤ j ≤ n. Denote the (i, j)-entry of A by aij and that
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of A′ by a′ij . We need to compute a′ij = f(v′
i,w

′
j). Suppose [v′

i]BV
=




p1i
p2i
...
pni




and [w′
j ]BW

=




q1j
q2j
...
qmj


 . Then

f(v′
i,w

′
j) = f(

n∑

k=1

pkivk,

m∑

l=1

qljwl)

=

n∑

k=1

m∑

l=1

pkiaklqlj . (8.2)

The expression in (8.2) is just the (i, j)-entry of the matrix P trAQ.

Lemma (8.2) motivates the following definitions:

Definition 8.2 Two m× n matrices A and A′ are said to be equivalent if
there is an invertible m×m matrix R and an invertible n× n matrix Q such
that A′ = RAQ.

Two n× n matrices A and A′ are congruent if there is an invertible n× n
matrix P such that A′ = P trAP.

It is a consequence of Lemma (8.2) that two m × n matrices A and A′ are
matrices of the same form (with respect to different pairs of bases) if and
only if the matrices are equivalent. It is also a consequence of the lemma
that two n× n matrices are matrices of the same bilinear form defined on an
n-dimensional vector space V if and only if the matrices are congruent.

Remark 8.1 Assume f, g are bilinear forms on V ×W. It is then the case
that Mf+g(BV ,BW ) = Mf (BV ,BW ) +Mg(BV ,BW ) and for a scalar c that
Mcf(BV ,BW ) = cMf(BV ,BW ).

It is a consequence of Remark (8.1) that B(V,W ;F) and Mmn(F) are isomor-
phic as vector spaces. The next theorem allows us to see this in a more elegant
and abstract way.

Theorem 8.4 Let V and W be vector spaces. Let W ′ denote the dual space
of W,L(W,F). Then B(V,W ;F) is isomorphic as a vector space to L(V,W ′).



Bilinear Forms 277

Proof Assume f ∈ B(V,W ;F). For v ∈ V, denote by fv the function from
W to F given by fv(w) = f(v,w). By the definition of bilinear form, fv ∈W ′.
Now define ǫ : B(V,W ;F) →W ′ by ǫ(f)(v) = fv. Since f is linear in its first
argument ǫ is a linear map.

On the other hand, suppose F ∈ L(V,W ′). Let F̂ be the map from V ×W to

F given by F̂ (v,w) = (F (v))(w). Then F̂ ∈ B(V,W ;F). Denote by δ the map

from L(V,W ′) such that δ(F ) = F̂ . Then δ is a linear map. The maps δ and
ǫ are inverses of each other.

Suppose now that V is an m-dimensional vector space with basis BV ,W is
an n-dimensional vector space with basis BW , f ∈ B(V,W ;F), and A is the
matrix of f with respect to (BV ,BW ). Suppose v ∈ V and [v]BV

is in the
null space of Atr. Then for all w ∈ W, f(v,w) = 0. Similarly, if w ∈ W and
[w]BW

∈ null(A) then f(v,w) = 0 for all v ∈ V. This motivates the following
definitions:

Definition 8.3 Let V,W be vector spaces and f ∈ B(V,W ;F). The left rad-
ical of f consists of those v ∈ V such that f(v,w) = 0 for all w ∈ W. This
is denoted by RadL(f).

The right radical of f consists of those w ∈ W such that f(v,w) = 0 for
all v ∈W. This is denoted by RadR(f).

Theorem 8.5 Let V,W be vector spaces and f ∈ B(V,W ;F). Then RadL(f)
is a subspace of V and RadR(f) is a subspace of W.

Proof Assume v1,v2 ∈ RadL(f) and w ∈ W. Then f(v1 + v2,w) =
f(v1,w) + f(v2,w) = 0 + 0 = 0 since v1,v2 ∈ RadL(f). Therefore,
v1 + v2 ∈ RadL(f).

Assume v ∈ RadL(f), c ∈ F is a scalar, and w ∈ W. Then f(cv,w) =
cf(v,w) = c · 0 = 0. Thus, cv ∈ RadL(f). This proves that RadL(f) is a
subspace of V. That RadR(f) is a subspace of W is proved in exactly the same
way.

Let V and W be finite-dimensional vector spaces, and f a bilinear form on
V ×W. It is not difficult to see that if RadL(f) = {0V } and RadR(f) = {0W },
then it must be the case that dim(V ) = dim(W ). We leave this as an exercise.
Of course, this is possible if V = W. This situation motivates the following
definition:

Definition 8.4 A bilinear form on a finite-dimensional vector space V is
non-degenerate if RadL(f) = RadR(f) = {0}.
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Lemma 8.3 Assume V is a finite-dimensional vector space and f is a non-
degenerate bilinear form on V . For v ∈ V, denote by fL(v) the function from
V to F given by fL(v)(w) = f(v,w) and by fR(v) the function given by
fR(v)(w) = f(w,v). Then both fLand fR are isomorphisms of V with V ′ =
L(V,F).

Proof Because f is linear in its first argument, the map fL is a transfor-
mation from V to V ′. Since dim(V ) = dim(V ′), to prove this is an isomor-
phism it suffices to prove that Ker(fL) = {0} by Theorem (2.12). However,
if v ∈ Ker(fL), then v ∈ RadL(f) = {0}. That fR is also an isomorphism is
proved in exactly the same way.

The next result gives a practical way of computing the left and right radicals
of a bilinear form f on V.

Lemma 8.4 Let V be a vector space with basis B = (v1, . . . ,vn) and
f a bilinear form. Then RadL(f) = ∩n

i=1Ker(fR(vi)) and RadR(f) =
∩n
i=1Ker(fL(vi)).

Proof Assume u ∈ RadL(f). Then f(u,v) = 0 for all v ∈ V. In particular,
f(u,vi) = 0 for all i, 1 ≤ i ≤ n and u ∈ Ker(fR(vi)) for all i. This proves
that RadL(f) ⊂ ∩n

i=1Ker(fR(vi)).

On the other hand, suppose u ∈ ∩n
i=1Ker(fR(vi)) and v ∈ V.We need to prove

that f(u,v) = 0. Write v = c1v1 + · · · + cnvn. Then f(u,w) = f(u, c1v1 +
· · · + cnvn) = c1f(u,v1) + · · · + cnf(u,vn) = 0. Thus, u ∈ RadL(f) and
∩n
i=1Ker(fR(f(vi) ⊂ RadL(f). Consequently, we have equality. The second

statement is proved in exactly the same way.

Imitating our treatment of inner products we make the following definition:

Definition 8.5 Let f be a bilinear form on a vector space V . We will say
that vectors u,v are orthogonal with respect to f if f(u,v) = 0 and
write u ⊥f v.

Remark 8.2 When f is an inner product the relation of orthogonality is
symmetric, but this is not necessarily the case for an arbitrary bilinear form.
However, it is precisely those bilinear forms for which orthogonality is a sym-
metric relation which will be the object of our interest in the remainder of this
section.
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Definition 8.6 Let f be a bilinear form on a vector space V. We say that f
is reflexive provided that the relation ⊥f is a symmetric relation, that is, for
two vectors u and v, f(u,v) = 0 if and only if f(v,u) = 0.

The following is a consequence of the definition of a reflexive form:

Lemma 8.5 Let f be a reflexive form on the space V. Then RadL(f) =
RadR(f).

Proof Suppose u ∈ RadL(f) and v ∈ V. Then f(v,u) = f(u,v) = 0 and
hence u ∈ RadR(f). This proves RadL(f) ⊂ RadR(f). In exactly the same
way we can prove the reverse inclusion and therefore we have equality.

When f is reflexive, we will write Rad(f) for RadL(f) = RadR(f).

The next two definitions introduce two types of reflexive forms.

Definition 8.7 A bilinear form f : V 2 → F is said to be alternating if
f(v,v) = 0 for all v ∈ V.

The following is not difficult to prove, and we leave it as an exercise:

Lemma 8.6 Assume f : V 2 → F is an alternating bilinear form. Then
f(w,v) = −f(v,w) for all v,w ∈ V.

Remark 8.3 If the field F does not have characteristic two, then the as-
sumption that f(w,v) = −f(v,w) (along with bilinearity) implies that f is
alternating. However, this is not true when 1 + 1 = 0.

The following lemma describes the matrix of an alternating form.

Lemma 8.7 Let V be a finite-dimensional vector space with basis B =
(v1, . . . ,vn) and f : V 2 → F an alternating form. Then the matrix Mf (B,B)
is skew symmetric, Mf (B,B)tr = −Mf(B,B), and has zeros on the diagonal.

Proof Let aij = f(vi,vj). By Lemma (8.6) aji = f(vj ,vi) = −f(vi,vj) =
−aij .
The diagonal entry aii = f(vi,vi) = 0.
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We now come to a second type of reflexive form.

Definition 8.8 A bilinear form f : V 2 → F is said to be symmetric if
f(v,w) = f(w,v) for all v,w ∈ V .

The following lemma describes the matrix of a symmetric form. Its proof is
similar to that of Lemma (8.7).

Lemma 8.8 Let V be a finite-dimensional vector space with basis B =
(v1, . . . ,vn) and f : V 2 → F a symmetric form. Then the matrix Mf (B,B) is
symmetric, Mf (B,B)tr = Mf (B,B). Conversely, if Mf(B,B) is symmetric
then the form f is symmetric.

Clearly, symmetric and alternating forms are reflexive. In the next theorem
we prove the converse.

Theorem 8.6 Assume f : V 2 → F is a reflexive bilinear form. Then f is
either alternating or symmetric.

Proof Let x,y, z ∈ V and consider f(x, f(x,y)z − f(x, z)y). Using bilin-
earity we get

f(x, f(x,y)z − f(x, z)y) = f(x, f(x,y)z)− f(x, f(x, z)y)

= f(x,y)f(x, z)− f(x, z)f(x,y)

= 0.

Since f is reflexive, we get f(f(x,y)z − f(x, z)y,x) = 0.

Using bilinearity we get

f(x,y)f(z,x)− f(x, z)f(y,x) = 0. (8.3)

Setting z = x we obtain the relation

[f(x,y)− f(y,x)]f(x,x) = 0. (8.4)

Assume now that f is not symmetric. We will show that it is alternating. Thus,
suppose that f(u,v) 6= f(v,u) for some pair u and v. Now in Equation (8.4)
set x = u and y = v to get that f(u,u) = 0. On the other hand, setting x = v

and y = u we get f(v,v) = 0. We have thus shown that if f(u,v) 6= f(v,u)
then f(u,u) = f(v,v) = 0.
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Now let w ∈ V be an arbitrary vector. We want to show that f(w,w) = 0.
If f(u,w) 6= f(w,u) or f(v,w) 6= f(w,u), then by what we have just shown
f(w,w) = 0 as desired so we may assume that

f(u,w) = f(w,u) and f(v,w) = f(w,v).

Setting x = u,y = v and z = w in (8.3) and using the fact that f(u,w) =
f(w,u) we get

f(u,w)[f(u,v)− f(v,u)] = 0. (8.5)

Since f(u,v) 6= f(v,u), we conclude from (8.5) that f(u,w) = 0. Similarly,
setting x = v,y = u, z = w we get that f(v,w) = 0.

Now we have

f(u+w,v) = f(u,v) + f(w,v)

= f(u,v)

and

f(v,u+w) = f(v,u) + f(v,w)

= f(v,u).

Since f(u,v) 6= f(v,u) we can conclude that f(u +w,v) 6= f(v,u +w). It
follows that f(u + w,u + w) = 0. Since f(u,u) = f(u,w) = 0 we finally
conclude that f(w,w) = 0. Since w is arbitrary, f is alternating.

The next definition introduces a concept that is closely related to symmetric
forms.

Definition 8.9 A bilinear form f on a finite-dimensional vector space V is
diagonalizable if there is a basis B such that the matrix of f with respect to
B is a diagonal matrix.

It follows from Lemma (8.8) that a diagonalizable form is symmetric. There
is a partial converse that we will prove in a later section.

Exercises.

1. Prove the assertion of Example (8.4).

2. Prove the assertion of Example (8.5).

3. Prove Theorem (8.3).

4. Prove Corollary (8.1)
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5. Assume dim(V ) = m and dim(W ) = n with m < n and f ∈ B(V,W ;F).
Prove that dim(RadR(f)) ≥ n−m.

6. Give an example of a bilinear form on a vector space V such that RadL(f) 6=
RadR(f).

7. Give an example of a degenerate bilinear form on a vector space V such
that RadL(f) = RadR(f) but f is not reflexive.

8. Give an example of a non-degenerate form which is not reflexive.

9. Let f : V 2 → F be a bilinear form and assume the characteristic of F is not
two. Prove that f can be expressed in a unique way as the sum of a symmetric
and alternating form.

10. Prove that the relation of equivalence on n×m matrices is an equivalence
relation.

11. Prove that two n×m matrices have the same rank if and only if they are
equivalent.

12. Prove that the relation of congruence on n× n matrices is an equivalence
relation.

13. Let f ∈ B(V,W ;F) be a bilinear form where V is an n-dimensional
space and W is an m−dimensional space. Show that dim(V/RadL(f)) =
dim(W/RadR(f)).

14. Let f ∈ B(V,W ;F) where V and W are finite-dimensional vectors spaces
over F. Assume RadL(f) = {0V } and RadR(f) = {0W }. Prove dim(V ) =
dim(W ).

15. Prove Lemma (8.6).

16. Let V be a finite-dimensional vector space, f : V × W → F a non-
degenerate bilinear form, and BV = (v1, . . . ,vn) a basis for V. Prove that
there exists a basis BW = (w1, . . . ,wn) for W such that f(vi,wj) = 0 if i 6= j
and 1 if i = j.
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8.2 Symplectic Spaces

This section is devoted to the structure of symplectic space, that is, a vec-
tor space equipped with an alternating form. We introduce the notion of an
isometry of a symplectic space. We quickly specialize to the case that the al-
ternating form is non-degenerate. We show the existence of a certain type of
basis, referred to as a hyperbolic basis. We conclude the section by proving
Witt’s theorem for non-degenerate symplectic spaces.

What You Need to Know

To make sense of the new material of this section, it is essential that you
have already mastered the following concepts: vector space, basis of a vec-
tor space, dimension of a vector space, finite-dimensional vector space, linear
transformation, coordinate vector with respect to a basis, matrix of a linear
transformation, bilinear form, reflexive bilinear form, and an alternating bi-
linear form. Finally, you should be familiar with the notion of a group, which
can be found in Appendix B.

We begin with a definition:

Definition 8.10 A symplectic space is a pair (V, 〈 , 〉) consisting of a
vector space V and a bilinear alternating form 〈 , 〉. The space is non-
degenerate if the form 〈 , 〉 is non-degenerate, that is, Rad(〈 , 〉) = {0}.
The dimension of a symplectic space (V, 〈 , 〉) is the dimension of V.

One of the major goals in this section will be to show that any two non-
degenerate symplectic spaces over the same field with the same dimension are
essentially the same. We need to make precise what we might mean when
we say that two symplectic spaces are the same and we do so in the next
definition.

Definition 8.11 Assume (V, 〈 , 〉V ) and (W, 〈 , 〉W ) are symplectic spaces.
By an isometry from V to W we shall mean a vector space isomorphism
T : V → W such that for all v1,v2 ∈ V, 〈T (v1), T (v2)〉W = 〈v1,v2〉V . When
there exists an isometry T from V to W we will say that (V, 〈 , 〉V ) and
(W, 〈 , 〉W ) are isometric.

The next lemma is not difficult to prove and we leave it as an exercise.



284 Advanced Linear Algebra

Lemma 8.9 Assume (V, 〈 , 〉V ), (W, 〈 , 〉W ), and (X, 〈 , 〉X) are symplectic
spaces and that S : V → W and T : W → X are isometries. Then the
following hold:

i) The inverse map S−1 :W → V is an isometry.

ii) The composition T ◦ S : V → X is an isometry.

Remark 8.4 1) It follows from Lemma (8.9) that the relation that two sym-
plectic spaces are isometric is an equivalence relation.

2) If (V, 〈 , 〉) is a symplectic space then the subset of GL(V ) consisting of all
isometries of V is a group.

In light of the second part of Remark (8.4), we make the following definition:

Definition 8.12 Let (V, 〈 , 〉) be a symplectic space. The collection of all
isometries T : V → V is the symplectic group of (V, 〈 , 〉). It is denoted by
Sp(V ).

If (V, 〈 , 〉) is a symplectic space and U is a vector subspace of V, then it is
natural to consider the symplectic space obtained by equipping U with the
form 〈 , 〉 restricted to U × U. We formalize this in the following definition.

Definition 8.13 Let (V, 〈 , 〉) be a symplectic space. By a subspace of
(V, 〈 , 〉), we shall mean a pair (U, 〈 , 〉U ) consisting of a vector subspace U of V
together with the alternating form obtained by restricting 〈 , 〉 to U×U. By the
radical of the subspace U,Rad(U), we will mean {v ∈ U |〈v,u〉 = 0, ∀u ∈ U}.
The subspace U is non-degenerate if Rad(U) = {0}.

Definition 8.14 If U is a subspace such that U = Rad(U), then for every
pair of vectors u,v ∈ U, 〈u,v〉 = 0. Such subspaces are said to be totally
isotropic.

Definition 8.15 Recall, if (V, 〈 , 〉) is a symplectic space and u,v vectors in
V then u and v are orthogonal if 〈u,v〉 = 0 and we write u ⊥ v.

Now assume that U is a subspace of V. The orthogonal complement to U ,
denoted by U⊥, is the collection of all vectors, which are orthogonal to every
vector in U :

U⊥ = {v ∈ V |〈v,u〉 = 0, ∀u ∈ U}.
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As an immediate consequence of the bilinearity of 〈 , 〉, we have:

Lemma 8.10 Assume U is a subspace of the symplectic space (V, 〈 , 〉). Then
U⊥ is a subspace.

The following lemma is also an easy consequence of the definitions.

Lemma 8.11 Let U be a subspace of a symplectic space (V, 〈 , 〉). Then U ∩
U⊥ = Rad(U).

Proof Assume that v ∈ Rad(U). Then v ∈ U and 〈v,u〉 = 0 for all u ∈ U ,
in which case also v ∈ U⊥. Thus, v ∈ U ∩U⊥ and we have Rad(U) ⊂ U ∩U⊥.

Conversely, assume v ∈ U ∩ U⊥. Then 〈v,u〉 = 0 for all u ∈ U. Since v ∈ U
we can conclude that v ∈ Rad(U). Therefore U ∩ U⊥ ⊂ Rad(U) and we have
equality.

An important consequence of Lemma (8.11) is:

Corollary 8.2 Assume U is a non-degenerate subspace of a symplectic space
(V, 〈 , 〉). Then U ∩ U⊥ = {0}.

Recall when we studied finite-dimensional inner product spaces we proved
that the space was always a direct sum of a subspace and its orthogonal com-
plement. The corresponding statement is not in general true for symplectic
spaces. However, it is true if we restrict ourselves to non-degenerate sub-
spaces. This will depend on the following result which states that dim(U) +
dim(U⊥) = dim(V ).

Lemma 8.12 i) Let (V, 〈 , 〉) be a non-degenerate finite-dimensional sym-
plectic space and U a subspace. Then dim(U) + dim(U⊥) = dim(V ).

ii) If U is a non-degenerate subspace of V, then V = U ⊕ U⊥.

iii) If U is a non-degenerate subspace of V, then U⊥ is non-degenerate.

Proof i) Set n = dim(V ) and k = dim(U). Let (u1, . . . ,uk) be a basis for U
and extend this to a basis (u1, . . . ,un) for V. By Exercise 9 of Section (8.1),
there is a basis (w1, . . . ,wn) of V such that 〈ui,wj〉 = 0 if i 6= j and 1 if
i = j. Suppose w =

∑n
l=1 clwl ∈ U⊥, and i ≤ k. Then

0 = 〈ui,w〉 = 〈ui,
n∑

l=1

clwl〉 =
n∑

l=1

cl〈ui,wl〉 = ci.
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This implies that U⊥ ⊂ Span(wk+1, . . . ,wn). On the other hand, if i ≤ k and
l > k, then 〈ui,wl〉 = 0. Therefore Span(wk+1, . . . ,wn) ⊂ U⊥. Consequently,
U⊥ = Span(wk+1, . . . ,wn). Since (wk+1, . . . ,wn) is linearly independent we
have dim(U⊥) = n− k.

ii) If U is non-degenerate, then U ∩ U⊥ = {0} by Corollary (8.2). Then
U +U⊥ = U ⊕U⊥ and dim(U +U⊥) = dim(U)+dim(U⊥) = dim(V ) by part
i). It follows that U ⊕ U⊥ = V.

iii) We leave this as an exercise.

Corollary 8.3 Let (V, 〈 , 〉) be a finite-dimensional non-degenerate symplec-
tic space and U a subspace of V . Then (U⊥)⊥ = U .

We leave this as an exercise.

We can now prove that the dimension of a finite-dimensional non-degenerate
symplectic space is even and also show the existence of a very special basis
for V.

Theorem 8.7 Let (V, 〈 , 〉) be a finite-dimensional non-degenerate symplectic
space. Then the following hold:

i) The dimension of V is even.

ii) There exists a basis (u1, . . . ,un,v1, . . . ,vn) for V such that

a. 〈ui,uj〉 = 〈vi,vj〉 = 0 for all 1 ≤ i, j ≤ n;

b. 〈ui,vj〉 = 0 for i 6= j; and

c. 〈ui,vi〉 = 1.

Proof i) The proof is by induction on dim(V ). Let u ∈ V. Since V is non-
degenerate it has a trivial radical. In particular, u is not in the radical of 〈 , 〉
and therefore there must exist v ∈ V such that 〈u,v〉 6= 0. Note if 〈u,v〉 = c
then 〈u, 1cv〉 = 1, so without loss of generality we may assume that 〈u,v〉 = 1.

Set U = Span(u,v). If x ∈ Span(v) then 〈u,x〉 6= 0. If x /∈ Span(v),
then x = au + bv with a 6= 0. Then 〈x,v〉 = b 6= 0. This proves that U is
non-degenerate. By Lemma (8.12), U⊥ is non-degenerate. Since dim(U⊥) =
dim(V )− dim(U) = dim(V )− 2, in particular, dim(U⊥) < dim(U). Now we
can invoke the inductive hypothesis and conclude that dim(U⊥) is even. Since
dim(V ) = dim(U⊥) + 2 this implies that dim(V ) is even.

ii) We may now assume that dim(V ) = 2n for some natural number n. We
proceed by induction on n. If n = 1, then we are done by the proof of the
first part. Suppose then that n > 1. Let U = Span(u,v) as in part 1). As
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shown there, U⊥ is non-degenerate and has dimension 2n− 2 = 2(n− 1). We
can therefore invoke the inductive hypothesis and say that there exists a basis
(u1, . . . ,un−1,v1, . . . ,vn−1) such that

a. 〈ui,uj〉 = 〈vi,vj〉 = 0 for all 1 ≤ i, j ≤ n− 1;

b. 〈ui,vj〉 = 0 for i 6= j; and

c. 〈ui,vi〉 = 1.

Now set un = u,vn = v. It is now the case that (u1, . . . ,un,v1, . . . ,vn) is a
basis of V with the required properties.

Definition 8.16 Let (V, 〈 , 〉) be a non-degenerate symplectic space of dimen-
sion 2n. A basis (u1, . . . ,un,v1, . . . ,vn) that satisfies the conclusions of part
ii) of Theorem (8.7) is said to be a hyperbolic basis.

Lemma 8.13 Assume (V, 〈 , 〉) is a non-degenerate symplectic space of di-
mension 2n and U is a totally isotropic subspace. Then the following hold:

i) dim(U) ≤ n; and

ii) U is the radical of U⊥.

We leave these as exercises.

We will use the next lemma in proving the major result of this section. It says
that any linearly independent sequence of mutually orthogonal vectors can be
embedded into a hyperbolic basis.

Lemma 8.14 Let (V, 〈 , 〉) be a non-degenerate symplectic space of dimen-
sion 2n and assume S = (u1, . . . ,uk) is an independent sequence of vectors
satisfying 〈ui,uj〉 = 0 for all i, j. Then S can extended to a hyperbolic basis.

Proof The proof is by induction on n. We first treat the case that k = n. Ex-
tend S to a basis B = (u1, . . . ,u2n). By Exercise 9 of Section (8.1), there exists
a basis (x1, . . . ,x2n) such that 〈ui,xj〉 = 0 if i 6= j and 1 if i = j. Set v1 = x1

and U = Span(u1,v1), a non-degenerate subspace of dimension 2. By Lem-
mas (8.12), U⊥ is a non-degenerate subspace of dimension 2n− 2. Note that
ui ∈ U⊥ for 2 ≤ i ≤ n. We can now invoke the induction hypothesis and con-
clude that there are vectors v2, . . . ,vn ∈ U⊥ such that (u2, . . . ,un,v2, . . . ,vn)
is a hyperbolic basis of U⊥. It then follows that (u1, . . . ,un,v1, . . . ,vn) is a
hyperbolic basis of V.

Suppose now that k < n and set U = Span(u1, . . . ,uk). By Lemma (8.12),
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the dimension of U⊥ is 2n − k > k and by part ii) of Lemma (8.13) U is
the radical of U⊥. Let W be a complement to U in U⊥. Then W is non-
degenerate of dimension 2n− 2k and W⊥ is non-degenerate of dimension 2k
and contains U. By induction, we can extend (u1, . . . ,uk) to a hyperbolic basis
(u1, . . . ,uk,v1, . . . ,vk) of W

⊥. If (uk+1, . . . ,un,vk+1, . . . ,vn) is a hyperbolic
basis of W then (u1, . . . ,un,v1, . . . ,vn) is a hyperbolic basis of V.

Remark 8.5 From the proof of Lemma (8.14), it follows that if W is a non-
degenerate subspace then any hyperbolic basis HW can be extended to a hyper-
bolic basis H of V.

Given a hyperbolic basis H = (u1, . . . ,un,v1, . . . ,vn) and two vectors x,y
expressed as a linear combination of the vectors in H, it is easy to compute
〈x,y〉: Say x =

∑n
i=1(aiui + bivi) and y =

∑n
i=1(ciu+ divi). Then

〈x,y〉 =
n∑

i=1

(aidi − bici). (8.6)

We can use this to prove the following characterization of the isometries of a
symplectic space.

Theorem 8.8 Let (V, 〈 , 〉V ) and (W, 〈 , 〉W ) be 2n-dimensional non-
degenerate symplectic spaces over the field F. Let HV = (u1, . . . ,un,v1, . . . ,vn)
be a hyperbolic basis for V and assume T is a linear transformation from V
to W. Set wi = T (ui) and xi = T (vi). Then T is an isometry if and only if
(w1, . . . ,wn,x1, . . . ,xn) is a hyperbolic basis of W.

Proof Assume (w1, . . . ,wn,x1, . . . ,xn) is a hyperbolic basis for W. Let
y, z ∈ V. We need to show that 〈T (y), T (z)〉W = 〈y, z〉V .
Assume y =

∑n
i=1(aiui+ bivi) and z =

∑n
i=1(ciui+divi). By (8.6), we have

〈y, z〉V =
n∑

i=1

(aidi − bici).

On the other hand, T (y) = T (
∑n

i=1(aiui+bivi)) =
∑n

i=1(aiT (ui)+biT (vi)) =∑n
i=1(aiwi+ bixi). Similarly, T (z) =

∑n
i=1(ciwi+ dixi). We can apply (8.6)

and conclude that

〈T (w), T (x)〉W =

n∑

i=1

(aidi − bici).

Thus, T is an isometry.
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Conversely, assume that T is an isometry. Then

〈wi,wj〉W = 〈T (ui), T (uj)〉W = 〈ui,uj〉V = 0.

〈xi,xi〉W = 〈T (vi), T (vj)〉W = 〈vi,vj〉V = 0.

〈wi,xj〉W = 〈T (ui), T (vj)〉W = 〈ui,vj〉V = 0 if i 6= j and 1 if i = j. Thus,
(w1, . . . ,wn,x1, . . . ,xn) is a hyperbolic basis as claimed.

As a consequence of Theorem (8.8), we have the following:

Theorem 8.9 Let (V, 〈 , 〉V ) and (W, 〈 , 〉W ) be two finite-dimensional non-
degenerate symplectic spaces over the same field F. Then V and W are iso-
metric if and only if dim(V ) = dim(W ).

One of our ultimate goals is to show that if (V1, 〈 , 〉1) and (V2, 〈 , 〉2) are non-
degenerate symplectic spaces of dimension 2n, Ui is a subspace of Vi, i = 1, 2,
and U1, U2 are isometric by a transformation σ, then there is an isometry
S : V1 → V2 such that S|U1

= σ. We will prove several lemmas leading up
to this result. We begin with a result about extending isometries of non-
degenerate subspaces.

Lemma 8.15 Let (V, 〈 , 〉) be a non-degenerate finite-dimensional symplectic
space, U a non-degenerate subspace, and σ an isometry of U. Define S : V →
V as follows: For x = u + v with u ∈ U,v ∈ U⊥, S(x) = σ(u) + v. Then S
is an isometry of V.

Proof Suppose x1 = u1+ v1,x2 = u2+ v2 where ui ∈ U,vi ∈ U⊥. We need
to show that 〈x1,x2〉 = 〈S(x1), S(x2)〉.

〈x1,x2〉 = 〈u1 + v1,u2 + v2〉 = 〈u1,u2〉+ 〈v1,v2〉
since 〈ui,vj〉 = 0. On the other hand,

〈S(x1), S(x2)〉 = 〈S(u1 + v1), S(u2 + v2)〉
= 〈σ(u1) + v1, σ(u2) + v2〉
= 〈σ(u1), σ(u2)〉+ 〈v1,v2〉

by the definition of S and the fact that σ(ui) ∈ U and therefore orthogonal to
vj . However, 〈σ(u1), σ(u2)〉 = 〈u1,u2〉 by hypothesis and therefore we have
the desired equality.
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We now prove a lemma that gives a “transitivity” result for non-zero vectors
of a non-degenerate symplectic space. This is a precursor to the more general
Witt theorem, which we will prove below.

Lemma 8.16 Let (V, 〈 , 〉) be a finite-dimensional non-degenerate symplectic
space and u,v non-zero vectors. Then there exists an isometry T such that
T (u) = v.

Proof First assume that 〈u,v〉 = c 6= 0. Then (u, 1cv) is a hyperbolic basis of
Span(u,v). Likewise, (v,− 1

cu) is a hyperbolic basis of Span(u,v). Therefore,
there exists an isometry σ of Span(u,v) such that σ(u) = v, σ(v) = −u. By
Lemma (8.15), this extends to an isometry of V.

Now suppose 〈u,v〉 = 0. Since V is non-degenerate, there exists a vector w

such that 〈u,w〉 6= 0. Suppose also that 〈v,w〉 6= 0. Then by what we have
shown there are isometries S, T such that S(u) = w, T (w) = v and then
(T ◦ S)(u) = v. Thus, we may assume that 〈v,w〉 = 0.

Since V is non-degenerate, there is a vector x such that 〈v,x〉 6= 0. As in
the previous paragraph, if 〈u,x〉 6= 0, we are done, and therefore we may
assume that 〈u,x〉 = 0. Now set z = w + x. Then 〈u, z〉 = 〈u,w〉 6= 0 and
〈v, z〉 = 〈v,x〉 6= 0, and we are done by the paragraph above.

The next theorem may be considered a generalization of Lemma (8.16). Ba-
sically, it means that if two subspaces of a finite-dimensional non-degenerate
symplectic space (V, 〈 , 〉) are isometric, then there is an isometry of V taking
one to the other. It is known as the Witt Extension Theorem for Symplectic
Space.

Theorem 8.10 Let (V, 〈 , 〉) be a finite-dimensional non-degenerate symplec-
tic space, U and W subspaces of V , and assume that σ is an isometry of U
onto W. Then there exists an isometry S of V such that S restricted to U is
σ.

Proof Suppose first that U is totally isotropic. Let (u1, . . . ,uk) be a basis of
U and set wi = σ(ui). Then (w1, . . . ,wk) is linearly independent and wi ⊥ wj

for all i, j. By Lemma (8.14), we can extend (u1, . . . ,uk) to a hyperbolic basis
(u1, . . . ,un,v1, . . . ,vn), and we can extend (w1, . . . ,wk) to a hyperbolic basis
(w1, . . . ,wn,x1, . . . ,xn). There is a unique linear operator on V such that
S(ui) = wi and S(vi) = xi for 1 ≤ i ≤ n. By Lemma (8.8), S is an isometry.
Since S(ui) = wi = σ(ui), S restricted to U is σ.

Next suppose U is non-degenerate. Then dim(U) = 2k, and we may as-
sume k < n (otherwise, we are done). Choose a hyperbolic basis HU =
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(u1, . . . ,uk,v1, . . . ,vk) of U and set wi = σ(ui) and xi = σ(vi). Then
HW = (w1, . . . ,wk,x1, . . . ,xk) is a hyperbolic basis of W. By Remark (8.5),
HU can be extended to a hyperbolic basis (u1, . . . ,un,v1, . . . ,vn) of V and,
likewise, HW can be extended to a hyperbolic basis (w1, . . . ,wn,x1, . . . ,xn) of
V. As in the previous paragraph, there is a unique linear operator on V such
that S(ui) = wi and S(vi) = xi for 1 ≤ i ≤ n. S is an isometry Tby heorem
(8.8) and S restricted to U is σ.

It remains to consider the case that U is neither totally isotropic nor non-
degenerate. Let RU = Rad(U) and CU be a complement to RU in U. Then CU

is non-degenerate. Let u1, . . . ,uk be a basis of RU and set wi = σ(ui). Also, let
(p1, . . . ,pl, q1, . . . , ql) be a hyperbolic basis for CU . Set yi = σ(pi), zi = σ(qi).
It must now be the case that (w1, . . . ,wk) is a basis for RW , the radical of W ,
and that Span(y1, . . . ,yl, z1, . . . , zl) is a complement to RW in W. Set U ′ =
C⊥

U and W ′ = C⊥
W . Then U ′ is non-degenerate and contains RU . Likewise W

′

is non-degenerate and contains RW . Extend (u1, . . . ,uk) to a hyperbolic basis
(u1, . . . ,um,v1, . . . ,vm) for U ′ and extend (w1, . . . ,wk) to a hyperbolic basis
(w1, . . . ,wm,x1, . . . ,xm) for W ′. Now set S(ui) = wi, 1 ≤ i ≤ m,S(vi) =
xi, 1 ≤ i ≤ m,S(pj) = yj , 1 ≤ j ≤ l and S(qj) = zj , 1 ≤ j ≤ l. Then S is an
isometry of V by Theorem (8.8), and S restricted to U is the map σ.

Exercises

1. Prove Lemma (8.9).

2. Prove Lemma (8.10).

3. Let U be a subspace of a non-degenerate finite-dimensional symplectic
space. Prove that (U⊥)⊥ = U .

4. Prove part iii) of Lemma (8.12).

5. Let U be a totally isotropic subspace of a non-degenerate symplectic space
of dimension 2n. Prove that dim(U) ≤ n.

6. Let U be a totally isotropic subspace of a non-degenerate symplectic space
of dimension 2n. Prove that U = Rad(U⊥).

7. Let (V, 〈 , 〉) be a non-degenerate finite-dimensional symplectic space, v
a non-zero vector in V , and c ∈ F. Define a linear operator T(v,c) on V by
T(v,c)(u) = u+ c〈u,v〉v. Prove that Tv,c is an isometry of V.

8. Let v,w ∈ V and c, d non-zero scalars. Prove that Tv,c and Tw,d commute
if and only u ⊥ w.

9. Let (V, 〈 , 〉) be a non-degenerate 2n-dimensional symplectic space over
the finite field Fq. Determine how many pairs there are of vectors (u,v) with
〈u,v〉 = 1.

10. Let (V, 〈 , 〉) be a non-degenerate 2n-dimensional symplectic space over
the finite field Fq. Use induction and Exercise 9 to show that there are
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qn
2 ∏n

i=1(q
2i − 1) hyperbolic bases and then conclude that this is the order of

the group Sp(V ).

11. Prove Corollary (8.3).
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8.3 Quadratic Forms and Orthogonal Space

In this section we define the notion of a quadratic form and develop the general
theory of an orthogonal space. In particular, we prove Witt’s theorem for an
orthogonal space when the characteristic of the field is not two.

What You Need to Know

To make sense of the new material of this section, it is essential that you
have already mastered the following concepts: vector space, basis of a vec-
tor space, dimension of a vector space, finite-dimensional vector space, linear
transformation, coordinate vector with respect to a basis, matrix of a linear
transformation, bilinear form, reflexive bilinear form, symmetric bilinear form,
and the matrix of a bilinear form.

We begin with a definition:

Definition 8.17 Let V be a vector space over a field F. By a quadratic
form, we mean a function φ : V → F that satisfies the following:

1) For c ∈ F and v ∈ V, φ(cv) = c2φ(v).

2) For v,w ∈ V, the function 〈v,w〉φ = φ(v+w)−φ(v)−φ(w) is a symmetric
bilinear form, referred to as the symmetric form associated with φ.

Let V be a finite-dimensional vector space over a field F, φ is a quadratic form
on V with associated symmetric form 〈 , 〉φ and B a basis of V. Then, by the
matrix of φ with respect to B, we will mean the matrix of 〈 , 〉φ with respect
to B. This is a symmetric matrix.

Remark 8.6 When the field F has characteristic two the symmetric form
associated with a quadratic form on a vector space V is alternating.

Example 8.6 Assume that the characteristic of F is not two and f : V ×V →
F is a symmetric form. Set φ(v) = f(v,v). Then φ is a quadratic form and
the associated form 〈 , 〉φ = 2f.

Example 8.7 Define φ : F2 → F by φ

((
x1
x2

))
= x1x2. This form is referred

to as a two-dimensional hyperbolic form.
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Example 8.8 Assume x2 + bx+ c is an irreducible polynomial over the field

F. Define φ : F2 → F by φ

((
x1
x2

))
= x21 + bx1x2 + cx22. This form is referred

to as a two-dimensional elliptic form.

In analogy with symplectic spaces, we introduce the notion of an orthogonal
space.

Definition 8.18 An orthogonal space is a pair (V, φ) consisting of a vector
space V and a quadratic form φ : V → F.

Before we embark on our investigation of orthogonal spaces, we need to intro-
duce some more terminology.

Definition 8.19 Let (V, φ) be an orthogonal space with associated form 〈 , 〉φ.
Two vectors v,w are said to be orthogonal, and we write v ⊥ w, if 〈v,w〉φ =
0.

Definition 8.20 A vector v is said to be singular if φ(v) = 0 and non-
singular otherwise.

Definition 8.21 Let U be a subspace of V. The orthogonal complement
to U consists of all vectors in V which are orthogonal to all the vectors in U.
This is denoted by U⊥. Thus,

U⊥ := {v ∈ V |〈u,v〉φ = 0, ∀u ∈ V }.

Definition 8.22 For U a subspace of V, the radical of U , denoted by
Rad(U), consists of all the vectors in U, which are orthogonal to every vector
in U. Thus

Rad(U) = U ∩ U⊥.

By the rank of a finite-dimensional orthogonal space (V, φ), we will mean
dim(V )− dim(Rad(V )).

A subspace U is non-degenerate if Rad(U) = {0}. At the other extreme, U
is totally isotropic if U = Rad(U) and totally singular if φ(u) = 0 for
every u ∈ U .

The orthogonal space (V, φ) is non-singular if it is either non-degenerate or
Rad(V ) has dimension one and for any non-zero vector v in Rad(V ), φ(v) 6=
0.
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The following lemma is a simple consequence of the definitions but will prove
to be quite useful. We leave the proof as an exercise.

Lemma 8.17 Let u,v be vectors in an orthogonal space (V, φ). Then φ(v +
w) = φ(v) + φ(w) if and only if 〈v,w〉φ = 0 if and only if v ⊥ w.

Example 8.9 For the orthogonal space of Example (8.7), the vectors

(
c
0

)

and

(
0
c

)
are singular vectors. All other non-zero vectors are non-singular.

This form is non-degenerate.

Example 8.10 The orthogonal space of Example (8.8) has no non-zero sin-
gular vectors. This form is non-degenerate.

Example 8.11 Let F be a field of characteristic two. Define the form φ on
F3 by

φ





x1
x2
x3




 = x1x2 + x23.

This form is degenerate but non-singular. The radical is the span of the vector

0
0
1


 . Note that φ





0
0
1




 = 1.

Remark 8.7 Assume that the characteristic of F is not two. Then an or-
thogonal space (V, φ) is non-degenerate if and only if it is non-singular. This
follows since φ(v) = 0 if and only if 〈v,v〉φ = 0.

In the following definition we make rigorous the notion that two orthogonal
spaces are the “same.”

Definition 8.23 Assume (V1, φ1) and (V2, φ2) are orthogonal spaces over the
field F. An isometry T from (V1, φ1) to (V2, φ2) is a vector space isomorphism
T : V1 → V2 such that for all vectors v ∈ V, φ2(T (v)) = φ1(v).

As in the case of symplectic spaces, we have the following lemma about inverses
and composition of isometries:
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Lemma 8.18 Assume (V1, φ1), (V2, φ2) and (V3, φ3) are orthogonal spaces
and that S : V1 → V2 and T : V2 → V3 are isometries. Then the follow-
ing hold:

i) The inverse map S−1 : V2 → V1 is an isometry.

ii) The composition T ◦ S : V1 → V3 is an isometry.

Remark 8.8 1) It follows from Lemma (8.9) that the relation that two or-
thogonal spaces are isometric is an equivalence relation.

2) If (V, φ) is an orthogonal space, then the subset of GL(V ) consisting of all
isometries of V is a subgroup.

In light of the second part of Remark (8.8), we make the following definition:

Definition 8.24 Let (V, φ) be an orthogonal space. The collection of all
isometries T : V → V is the orthogonal group of (V, φ). It is denoted
by O(V, φ).

Remark 8.9 Let f : V ×V → F be a symmetric bilinear form. By an isometry
of f, we mean a bijective linear map T : V → V such that f(T (v), T (w)) =
f(v,w) for all v,w ∈ V. When (V, φ) is an orthogonal space with associated
form 〈 , 〉φ and the characteristic of F is not two, the isometries of φ and the
isometries of 〈 , 〉φ are the same. However, when the characteristic is two,
the group of isometries of 〈 , 〉φ properly contains the group of isometries of
φ.

For the remainder of this section, we will confine ourselves to non-degenerate
orthogonal spaces over fields of characteristic not two.

We state a number of lemmas that are analogues of results from the section on
symplectic spaces. In most cases, we omit the proofs because of the similarity
to the symplectic case.

Lemma 8.19 i) Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space and U a subspace. Then dim(U) + dim(U⊥) = dim(V ).

ii) If U is a non-degenerate subspace of V , then V = U ⊕ U⊥.

iii) If U is a non-degenerate subspace of V , then U⊥ is non-degenerate.
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Definition 8.25 Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space with associated form 〈 , 〉φ. A basis (u1, . . . ,un) for V is orthogonal
if 〈ui,uj〉φ = 0 for all i 6= j.

The following is a consequence of Lemma (8.17) and mathematical induction.

Lemma 8.20 Assume (u1, . . . ,un) is an orthogonal basis for the orthogonal
space (V, φ) with associated form 〈 , 〉φ. Set di = φ(ui). If v =

∑n
i=1 aiui,

then φ(v) =
∑n

i=1 dia
2
i .

In our next lemma, we prove orthogonal bases always exists. It will be a
consequence of this that a symmetric matrix over a field F of characteristic
not two is congruent to a diagonal matrix.

Lemma 8.21 Assume (V, φ) is a finite-dimensional orthogonal space. Then
there exists an orthogonal basis for V.

Proof We do induction on dim(V/Rad(V )). Of course, if φ is trivial then
any basis of V is an orthogonal basis and, therefore, we may assume V 6=
Rad(V ). Let W be a complement to Rad(V ). If we can show that W has an
orthogonal basis then we can extend this with any basis for Rad(V ), and the
sequence obtained will be an orthogonal basis for V. Therefore, we may assume
that Rad(V ) = {0} and that V is non-degenerate.

Let v ∈ V such that φ(v) 6= 0. Since the characteristic is not two, v /∈ v⊥ and
V = Span(v)⊕v⊥. The subspace v⊥ is non-degenerate and dim(v⊥) = n−1.
We can therefore invoke our inductive hypothesis and conclude that there exists
an orthogonal basis (v1, . . . ,vn−1) for v⊥. Setting vn = v it is then the case
that (v1, . . . ,vn) is an orthogonal basis of V.

Corollary 8.4 Assume F does not have characteristic two and A is an n×n
symmetric matrix. Then A is congruent to a diagonal matrix.

Proof Let S be the standard basis of Fn. Define a symmetric bilinear form,
〈 , 〉 : Fn × Fn → F, by 〈v,w〉 = vtrAw. Then A is the matrix of 〈 , 〉 with
respect to S. Since A is symmetric this form is symmetric. This defines a
quadratic form φ defined by φ(v) = 〈v,v〉.
Let B = (v1, . . . ,vn) be an orthogonal basis for (V, φ) and set φ(vi) = di and
set P = MIFn (B,S). Then the matrix of 〈 , 〉 with respect to B is P trAP =




2d1 0 . . . 0
0 2d2 . . . 0
...

... . . .
...

0 0 . . . 2dn


 .
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Our immediate goal is to prove if vectors v,w satisfy φ(v) = φ(w), then there
is an isometry T with T (v) = w. Toward that goal, we prove the next lemma
which shows the existence of many isometries.

Until otherwise noted, we will henceforth write 〈x,y〉 for 〈x,y〉φ when there
is no confusion.

Lemma 8.22 Let x be a non-singular vector. Define the map ρx : V → V by

ρx(v) = v − 2
〈v,x〉
〈x,x〉x.

Then ρx is an isometry of V.

Proof Let v,w ∈ V. We need to prove that 〈v,w〉 = 〈ρx(v), ρx(w)〉.

〈ρx(v), ρx(w)〉 = 〈v − 2
〈v,x〉

〈x,x〉
x,w − 2

〈w,x〉

〈x,x〉
x〉

= 〈v,w〉 − 〈v, 2
〈w,x〉

〈x,x〉
x〉 − 〈2

〈v,x〉

〈x,x〉
x,w〉+ 〈2

〈v,x〉

〈x,x〉
x, 2

〈w,x〉

〈x,x〉
x〉

= 〈v,w〉 − 2
〈v,x〉〈w,x〉

〈x,x〉
− 2

〈v,x〉〈x,w〉

〈x,x〉
+ 4

〈v,x〉〈w,x〉

〈x,x〉2
〈x,x〉

= 〈v,w〉

Definition 8.26 Let x be a non-singular vector in the orthogonal space (V, φ).
The map ρx is the reflection through x.

We leave it as an exercise to show that ρx is the identity when restricted to
x⊥ and ρx(x) = −x.

This next lemma shows how an isometry can be built up from isometries on
a non-degenerate subspace U and its orthogonal complement.

Lemma 8.23 Let U be a non-degenerate subspace of the orthogonal space
(V, φ) and suppose σ1 : U → U is an isometry and σ2 : U⊥ → U⊥ is an
isometry. Define S : V → V by S(u + v) = σ1(u) + σ2(v), where u ∈ U and
v ∈ U⊥. Then S is an isometry.
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Proof Let u ∈ U,v ∈ U⊥. Since u ⊥ v by Lemma (8.17), φ(u + v) =
φ(u)+φ(v). On the other hand, σ1(u) ∈ U and σ2(v) ∈ U⊥ so σ1(u) ⊥ σ2(v).
Therefore we also have that

φ(S(u + v)) = φ(σ1(u) + σ2(v))

= φ(σ1(u)) + φ(σ2(v))

= φ(u) + φ(v),

the latter equality follows since σ1 and σ2 are isometries.

Theorem 8.11 Assume v,w are vectors and φ(v) = φ(w) 6= 0. Then there
exists an isometry T such that T (v) = w.

Proof Suppose first that v ⊥ w. Set U = Span(v,w). Define σ1 : U → U
by σ1(v) = w, σ1(w) = v. Then σ1 is an isometry. Set σ2 : U⊥ → U⊥ equal
to 1U⊥ , the identity map. By Lemma (8.23), this defines an isometry S such
that S(v) = w, S(w) = v and S restricted to U⊥ is the identity.

Assume now that v and w are not orthogonal. Set x = 1
2 (v + w) and y =

1
2 (x− y). Note that v = x+ y and w = x− y. We claim that x ⊥ y

〈x,y〉 = 〈1
2
(v +w),

1

2
(v −w)〉

=
1

4
(〈v,v〉 − 〈v,w〉+ 〈w,v〉 − 〈w,w〉). (8.7)

Since 〈 , 〉 is symmetric −〈v,w〉 + 〈w,v〉 = 0. Therefore, the expression in
(8.7) is equal to

=
1

4
(〈v,v〉 − 〈w,w〉). (8.8)

Since φ(v) = φ(w), the expression in (8.8) is zero and x ⊥ y as claimed.

Suppose φ(x) 6= 0. Then ρx(v) = ρx(
1
2 (x + y)) = 1

2 (−x + y) = −w. Then
(ρw ◦ ρx)(v) = w. Suppose, on the other hand, that φ(x) = 0 but φ(y) 6= 0.
Then ρy(v) = ρy(

1
2 (x + y)) = 1

2 (x − y) = w. So, if either φ(x) 6= 0 or
φ(y) 6= 0, then we are done.

Suppose then that φ(x) = φ(y) = 0. Then by Lemma (8.17) φ(v) = φ(12 (x+
y)) = 1

4 (φ(x) + φ(y)) = 0, a contradiction.

We will need a similar result for singular vectors (if they exist). Before proving
this we show that if an orthogonal space (V, φ) has a singular vector then it
must contain a pair (u,v) of singular vectors such that 〈u,v〉 = 1.
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Lemma 8.24 Assume (V, φ) is a non-degenerate orthogonal space and that u
is a singular vector. Then there exists a singular vector v such that 〈u,v〉 = 1.

Proof Since V is non-degenerate, there must exist a vector x such that
〈u,x〉 = c 6= 0. If x is singular, set v = 1

cx.

We may therefore assume that φ(x) 6= 0. Since u is not orthogonal to
x, ρx(u) = y 6= u. Also, Span(u,x) = Span(y,w) and therefore u is not
orthogonal to y. Since ρx is an isometry, φ(u) = φ(ρx(v)) = φ(y) and there-
fore y is a singular vector not orthogonal to v. As in the first paragraph, set
c = 〈u,y〉 and v = 1

cy.

Definition 8.27 A pair of singular vectors (v,w) in an orthogonal space
(V, φ) such that 〈v,w〉 = 1 is called a hyperbolic pair.

Lemma 8.25 Assume (V, φ) is a non-degenerate orthogonal space and u,v
are singular vectors. Then there exists an isometry T of V such that T (u) = v.

Proof We first show that if u is a singular vector and c 6= 0 is a scalar then
there is an isometry T of V such that T (u) = cu. By Lemma (8.24), there
exists a singular vector w such that 〈u,w〉 = 1. Set U = Span(u,w). The
map τ : U → U such that τ(u) = cu, τ(w) = 1

cw is an isometry of U. The
subspace U is non-degenerate. By Lemma (8.23), there is an isometry T of V
such that T restricted to U is τ and T restricted to U⊥ is the identity on U⊥.
Then T (u) = cu.

Now assume that u and v are singular vectors and 〈u,v〉 = c 6= 0. Then
U = Span(u,v) is non-degenerate. The map τ : U → U such that τ(u) = v

and τ(v) = u is an isometry, which can be extended to an isometry T of V
such that T restricted to U⊥ is the identity on U⊥.

Suppose finally that 〈u,v〉 = 0. By Lemma (8.24), there is a singular vector w
such that 〈u,w〉 6= 0. Then, by the previous paragraph, there is an isometry T1
of V such that T1(u) = w. If also 〈v,w〉 6= 0 then there will exist an isometry
T2 of V such that T2(w) = v. Then (T2 ◦ T1)(u) = w. Therefore, we may
assume that 〈v,w〉 = 0.

By Lemma (8.24), there exists a singular vector x such that 〈v,x〉 6= 0 and
there is an isometry T2 : V → V such that T2(x) = v. As in the previous
paragraph, if 〈u,x〉 6= 0, then we are done so we may assume that 〈u,x〉 = 0.

Suppose 〈w,x〉 6= 0. Then there is an isometry T3 of V such that T3(w) = x.
Then T = T2 ◦ T3 ◦ T1 is an isometry such that T (u) = v. Consequently, we
may assume that 〈w,x〉 = 0. However, it is then the case that y = w+x is a
singular vector and 〈u,y〉 = 〈u,w+x〉 = 〈u,w〉 6= 0 and 〈v,y〉 = 〈v,w+x〉 =
〈v,x〉 6= 0 and we are done by the argument of the third paragraph above.
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We need to extend Lemma (8.25), and this is the point of the next lemma.

Lemma 8.26 Let (V, φ) be a non-degenerate orthogonal space and u,v1,v2

be singular vectors such that 〈u,v1〉 = 1 = 〈u,v2〉. Then there is an isometry
T of V such that T (u) = u, T (v1) = v2.

Proof Suppose first that 〈v1,v2〉 6= 0. Set x = v1 − v2. Then 〈u,x〉 =
〈u,v1 − v2〉 = 〈u,v1〉 − 〈u,v2〉 = 1 − 1 = 0. Thus, u ⊥ x. We claim that
φ(x) 6= 0:

φ(x) = φ(v1 − v2) = φ(v1) + φ(v2) + 〈v1,−v2〉. (8.9)

Since v1,v2 are singular, φ(v1) = φ(v2) = 0 and so the expression in (8.9) is
equal to

−〈v1,v2〉 6= 0.

We point out that y = v1 + v2 is orthogonal to x and v1 = 1
2 (x + y). Now

ρx(u) = u since u ⊥ x and

ρx(v1) = ρx

(
1

2
(x+ y)

)
=

1

2
(−x+ y) = v2.

We may therefore assume that 〈v1,v2〉 = 0. By the previous paragraph, it
suffices to show that there exists a singular vector v3 such that 〈u,v3〉 =
1, 〈v1,v3〉 6= 0, and 〈v2,v3〉 6= 0. We remark that the only singular vectors
in Span(u,v1) are in Span(u) ∪ Span(v1) and therefore dim(V ) ≥ 3. U =
Span(u,v1) is non-degenerate and therefore U⊥ is non-degenerate. In partic-
ular, U⊥ contains non-singular vectors. Let z ∈ U⊥ such that φ(z) = c 6= 0
and consider the three-dimensional subspace W = Span(u,v1, z). We claim
that for every non-zero scalar a the vector wa = −a2cu+ v1 + az is singular
and 〈u,wa〉 = 1.

Since (−a2cu+ v1) ⊥ az by Lemma (8.17), it follows that

φ(wa) = φ(−a2cu+ v1) + φ(az).

Since φ(u) = φ(v1) = 0, we have

φ(−a2cu+ v1) + φ(az) = 〈−a2cu,v1〉+ φ(az)

= −a2c〈u,v1〉+ a2φ(z) = −a2c+ a2c = 0.

Moreover,
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〈u,wa〉 = 〈u,−a2cu+ v1 + az〉 = 〈u,v1〉 = 1.

Also note that 〈wa,v1〉 = −a2c 6= 0, and therefore, by what we have shown,
for every a 6= 0 there is an isometry Ta such that Ta(u) = u, Ta(v1) = wa.

Next note that W is not contained in v⊥
2 since u and v2 are not orthogonal.

It then follows that dim(W ∩v⊥
2 ) = 2. There are at most two one-dimensional

subspaces spanned by singular vectors in W ∩ v⊥
2 , one of which is Span(v2).

Since we are assuming that the field F does not have characteristic two, in
particular, F 6= F2. Therefore, there are at least two distinct one-dimensional
spaces Span(wa), and consequently, there is a scalar a such that 〈wa,v2〉 6= 0.
Set v3 = wa for this choice of a. By the first paragraph, there are isometries
T1, T2 such that T1(u) = T2(u) = u, T1(v1) = v3, T2(v3) = v2. Then T =
(T2 ◦ T1) is an isometry satisfying T (u) = u and T (v1) = v2.

As a corollary, we have the following result about pairs (u1,v1), (u2,v2) of
singular vectors such that 〈u1,v1〉 = 〈u2,v2〉 = 1. We leave the proof as an
exercise.

Corollary 8.5 Let (V, φ) be a non-degenerate orthogonal space. Assume u1,
u2, v1, v2 are singular vectors and 〈u1,v1〉 = 〈u2,v2〉 = 1. Then there exists
an isometry T of V such that T (u1) = u2 and T (v1) = v2.

We need a couple more preparatory lemmas before we can prove our main
result:

Lemma 8.27 Assume (V, φ) is a non-degenerate orthogonal space over a field
F of characteristic not two and that U is a totally singular subspace of di-
mension k. Then there exists a non-degenerate subspace W of dimension 2k
containing U.

Proof We do induction on k. If k = 1, the result follows from Lemma
(8.24). Assume the result has been proved for all totally singular subspaces
of dimension k and U is a totally singular subspace of dimension k + 1. Let
u ∈ U be a non-zero vector. By Lemma (8.24) there exists a singular vector
v such that 〈u,v〉 = 1. Set X = Span(u,v). Then X is a non-degenerate
subspace of dimension 2. Then X⊥ is a non-degenerate subspace of V . Set
Y = U ∩ v⊥. Then Y is a totally singular subspace of dimension k contained
in X⊥. By the inductive hypothesis there exists a non-degenerate subspace Z
of X⊥ containing Y with dim(Z) = 2k. The spaces X and Z are mutually
orthogonal. Since each is non-degenerate it follows that X + Z = X ⊕ Z is
non-degenerate. Set W = X ⊕ Z. Then U ⊂ W , W is non-degenerate, and
dim(W ) = 2k + 2 = 2(k + 1).
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Lemma 8.28 Assume (V, φ) is a non-degenerate orthogonal space over a field
F of characteristic not two. Assume (u1, . . . ,uk) is a linearly independent
sequence of singular vectors such that for all i, j ui ⊥ uj. Then there are
singular vectors v1, . . . ,vk such that 〈ui,vj〉 = 0 if i 6= j and 1 if i = j.

Proof By Lemma (8.27), we may assume dim(V ) = 2k. We proceed by
induction on k. When k = 1, the result is a consequence of Lemma (8.24).
Assume that the result is true for k and that dim(U) = k + 1, dim(V ) =
2k + 2. Set W = Span(u2, . . . ,uk+1). Then W is a totally singular subspace
of dimension k. It then follows that dim(W⊥) = k + 2. Since Rad(W⊥) =
W, in particular, u1 is not in Rad(W⊥). Let x ∈ W⊥ be chosen so that
〈u1,x〉 6= 0. Then Span(u1,x) is non-degenerate and contained in W⊥. As
in the proof of Lemma (8.24), there exists a singular vector v1 ∈ Span(u1,x)
such that 〈u1,v1〉 = 1. Now set U1 = Span(u1,v1). U

⊥
1 has dimension 2k

and W = Span(u2, . . . ,uk+1) ⊂ U⊥
1 . We can invoke the inductive hypothesis

and conclude that there are singular vectors v2, . . . ,vk+1 in U⊥
1 such that

〈ui,vj〉 = 0 if 2 ≤ i, j ≤ k+1 and i 6= j and is 1 if i = j. Since ui,vi ⊥ u1,v1

for 2 ≤ i ≤ k + 1, (v1, . . . ,vk+1) is the sequence of desired vectors.

We now have everything necessary to proveWitt’s Theorem for non-degenerate
finite-dimensional orthogonal spaces over fields of characteristic not two.

Theorem 8.12 Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space over a field F with characteristic not two. Assume U1, U2 are subspaces
of V and that τ : U1 → U2 is an isometry. Then there exists an isometry T
of V such that T restricted to U1 is τ.

Proof The proof is by the second principle of induction on n = dim(V ).
If n = 1, there is nothing to prove. So assume the result is true for non-
degenerate orthogonal spaces of dimension less than n and dim(V ) = n.

Assume first that there exists a non-singular vector x in U1. Set y = τ(x).
Then φ(y) = φ(x), so by Lemma (8.11) there is an isometry T1 of V such
that T1(x) = y. Set U3 = T−1

1 (U2) and σ = T−1
1 ◦ τ. Suppose we can find an

isometry S of V such that S restricted to U1 is σ. Then set T = T1 ◦ S, an
isometry. Moreover, for u ∈ U1 we have

T (u) = (T1 ◦ S)(u)
= T1(S(u))

= T1(σ(u))

= T1(T
−1
1 ◦ τ)(u)

= (T1 ◦ T−1
1 )(τ(u))

= τ(u),
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and so T will be the required isometry.

Note that σ(x) = x. Set V ′ = x⊥, U ′
1 = U1 ∩ x⊥, U ′

3 = U3 ∩ x⊥, and σ′ the
restriction of σ to U ′

1. V
′ is a non-degenerate orthogonal space of dimension

n − 1 < n and σ′ is an isometry of U ′
1 to U ′

3. By the inductive hypothesis,
there is a isometry S′ of V ′ such that S′ restricted to U1 is σ′. Extend S′ to
an isometry of V by defining S(x) = x. S is the desired isometry.

We may therefore assume that U1 is totally singular. Let (u1, . . . ,uk) be a
basis for U1 and set wi = τ(ui), 1 ≤ i ≤ k. Then (w1, . . . ,wk) is a basis for
U2. We remark that since τ is an isometry, the vectors wi are singular and
mutually orthogonal.

As a consequence of Lemma (8.28), there is a singular vector v1 such that
〈u1,v1〉 = 1, 〈ui,v1〉 = 0 for 2 ≤ i ≤ k. Likewise, there is a vector x1 such
that 〈w1,x1〉 = 1, 〈wi,x1〉 = 0 for 2 ≤ i ≤ k. By Lemma (8.5), there is an
isometry T1 of V such that T1(u1) = w1, T1(v1) = x1. Set U3 = T−1

1 (U2) and
σ = T−1

1 ◦ τ , which is an isometry from U1 to U3. Note that σ(u1) = u1 and
σ(v1) = v1 and so W = Span(u1,v1) is contained in U1 ∩ U3. If we can find
an isometry S of V such that S restricted to U1 is σ, then we can proceed as
in the previous case and define T = T1◦S, and this will fulfill the requirements
of the theorem.

Set X =W⊥ so that X is non-degenerate of dimension n− 2. Let Y1 = U1 ∩
W⊥, Y3 = U3∩W⊥, and γ be the restriction of σ to Y1. Then γ is an isometry
of Y1 to Y3, subspaces of the non-degenerate space X of dimension n− 2. By
the inductive hypothesis, there is an isometry R of C such that R restricted to
Y1 is γ. Extend R a linear map S on V by defining S(u1) = u1, S(v1) = v1.
Then S is an isometry and S restricted to U1 is σ. This completes the proof.

Definition 8.28 Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space over a field F of characteristic not two. A totally singular subspace U
is said to be maximal if it is not properly contained in a totally singular
subspace.

As we shall see momentarily, any two maximal totally singular subspaces must
have the same dimension, in fact, there must be an isometry taking one to the
other. This is the subject of the following result.

Theorem 8.13 Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space over a field F of characteristic not two. Let U and W be two maximal
totally singular subspaces. Then there exists an isometry τ of V such that
τ(U) =W. In particular, dim(U) = dim(W ).

This is left as an exercise.
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Definition 8.29 Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space over a field F of characteristic not two and U be a maximal totally
singular subspace. Then dim(W ) is referred to as the Witt index.

Exercises

1. Prove Lemma (8.18).

2. Let (V, φ) be a finite-dimensional orthogonal space with associated form
〈 , 〉,B a basis of V , and let A be the matrix of 〈 , 〉φ with respect to B. Prove
that the rank of the matrix A is the rank of the space (V, φ).

3. Let (V, φ) be a finite-dimensional orthogonal space. Assume φ(x) 6= 0. i)
Prove that ρx(x) = −x. ii) Assume y ⊥ x. Prove ρx(y) = y.

4. Let F be a field and ∞ a symbol, which does not represent an element of F
and set F̂ = F∪{∞}.Assume that (V, φ) is a non-degenerate three-dimensional
orthogonal space and contains singular vectors. Set P(V ) = {Span(v)|v 6=
0, φ(v) = 0}. Prove that there is a one-to-one correspondence between P(V )

and F̂.

5. Prove Corollary (8.5).

6. Let (V, φ) be a non-degenerate finite-dimensional orthogonal space over
a field F of characteristic not two. Prove that all maximal totally singular
subspaces have the same dimension.

7. Let (V, φ) be a non-degenerate finite-dimensional orthogonal space over a
field F of characteristic not two and T an isometry. Prove that T is a product
of reflections.

8. Let (V, φ) be a non-degenerate finite-dimensional orthogonal space over a
field F and T : V → V an isometry. Prove that det(T ) = ±1.

9. Let (V, φ) be a non-degenerate finite-dimensional orthogonal space with
index at least two. Assume u,v are singular vectors with u ⊥ v. Define a map
T(u,v) as follows:

T(u,v)(z) = z + 〈z,v〉u − 〈z,u〉v.

a) Prove that T(u,v) is an isometry of V.

b) Prove that T(u,v) restricted to Span(u,v)⊥ is the identity.

c) Prove that Range(T(u,v) − IV ) = Span(u,v).

10. Let l = Span(u,v), where u,v are independent singular vectors and u ⊥
v. Set χ(l) = {T(u,cv)|c ∈ F \ {0}} ∪ {IV }.
a) Prove that T(u,cv) ◦ T(u,−cv) = IV .

b) Assume d 6= −c. Prove that T(u,cv) ◦ T(u,dv) = T(u,(c+d)v).
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11. Assume x = au + bv,y = cu + dv is a basis for l = Span(u,v). Prove
that T(x,y) = T(u,(ad−bc)v).

12. Assume that v ⊥ u ⊥ w and 〈v,w〉 = 1. Set l = Span(u,v). Prove for
every c ∈ F there is a unique T ∈ χ(l) such that T (w) = cu+w.

13. Let (V, φ) be a non-degenerate finite-dimensional orthogonal space with
positive Witt index. Assume u,v are orthogonal vectors with u singular. For
x ∈ u⊥, define δu,v(x) = x+ 〈x,v〉φu. Prove that δu,v is an isometry of u⊥.

14. By Witt’s extension theorem the isometry δu,v is induced by an isometry
of D of (V, φ). Let w be a singular vector in v⊥ such that 〈u,w〉φ = 1. Prove
that D(w) = w − v − φ(v)u. In particular, D is unique.

Let Tu,v denote the unique extension of δu,v to V .

15. If v,w ∈ u⊥, prove that Du,vDu,w = Du,v+w.

16. Assume F is a field in which every element has a square root (this is true of
C). Prove that the isometry class of an n-dimensional orthogonal space (V, φ)
defined over F is determined by the rank of (V, φ).

17. Let (V, φ) be a real orthogonal space. Let P be the collection of all sub-
spaces of V such that φ(u) > 0 for all u ∈ U,u 6= 0. Let M1,M2 be max-
imal elements of P . Prove that there is an isometry S of (V, φ) such that
S(M1) =M2.

18. Let (V, φ) be a non-degenerate three dimensional orthogonal over a finite
field Fq where q is odd (not characteristic two). Prove that (V, φ) is singular.

19. Let (V, φ) be a non-degenerate n dimensional orthogonal over a finite field
Fq where q is odd (not characteristic two). Prove that the Witt index is at
least ⌊n−1

2 ⌋.
In Exercises 20–22 let (V, φ) be a non-degenerate 2m-dimensional orthogonal
over a finite field Fq where q is odd (not characteristic two) with Witt index
m.

20. Use induction on m to prove that the number of singular vectors is
(qm − 1)(qm−1 + 1).

21. Assume u is a singular vector. Prove that the number of singular vectors
v such that 〈u,v〉 = 1 is q2m−2.

22. Prove that the number of bases (u1,v1,u2,v2, . . . ,um,vm) such that each
ui,vi is singular and further satisfy ui ⊥ uj,vi ⊥ vj ,ui ⊥ vj for i 6= j and

〈ui,vi〉 = 1 is 2q2(
m

2 )(qm − 1)Πm−1
i=1 (q2i− 1). Then prove that this is the order

of O(V, φ).

23. Let (V, φ) be a non-degenerate 2m-dimensional orthogonal space with Witt
index m − 1 over the finite field Fq where q is odd. Prove that the order of

O(V, φ) is 2q2(
m
2 )(qm + 1)Πm−1

i=1 (q2i − 1).
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8.4 Orthogonal Space, Characteristic Two

In this section we assume that the characteristic of F is two and that V is a
finite-dimensional vector space over F and φ : V → F is a quadratic form with
associated symmetric form 〈 , 〉. We will assume that the field F is perfect
which we define below. Then we will assume that (V, φ) is non-singular. The
main result of this section is Witt’s extension theorem.

What You Need to Know

To understand the material of this section, you must have already mastered
the following concepts: vector space, basis of a vector space, dimension of
a vector space, finite-dimensional vector space, linear transformation, coor-
dinate vector with respect to a basis, matrix of a linear transformation, and
quadratic form, You should also be familiar with the concept of a group, which
can be found in Appendix B.

Definition 8.30 A field F of characteristic two is said to be perfect if every
element a of F has a square root in F, that is, there exists b ∈ F such that
b2 = a.

Example 8.12 A finite field of characteristic two is perfect. Also, any alge-
braic extension of a finite field of characteristic two is perfect. On the other

hand, the field F2(t) of all rational expressions F (t)
G(t) where F (t), G(t) ∈ F2[t]

is not perfect. In particular, t does not have a square root.

We recall the definition of a non-singular quadratic form:

Definition(8.22) A finite-dimensional orthogonal space (V, φ) with associated
symmetric form 〈 , 〉 over a perfect field of characteristic two is non-singular
if either (V, 〈 , 〉φ is non-degenerate or for every non-zero vector v in the
radical of 〈 , 〉 we have φ(v) 6= 0.

Example 8.13 Let q = 2m for a natural number m and set V = F3
q. For

v =



x1
x2
x3


 let φ(v) = x1x2 + x23. Then (V, φ) is degenerate since x =



0
0
1




is in the radical of the associated symmetric form and φ(x) = 1.However,
φ(x) = 1, therefore φ is non-singular.

In our next result we prove that a degenerate, non-singular orthogonal space
(over a perfect field of characteristic two) has a radical of dimension one.
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Theorem 8.14 Assume F is a perfect field of characteristic two, (V, φ) is a
finite-dimensional non-singular orthogonal space with associated form 〈 , 〉.
Then the radical of 〈 , 〉 has dimension of at most one.

Proof We can assume that 〈 , 〉 is degenerate and prove its radical has
dimension one. Suppose to the contrary that (x,y) is a linearly independent
sequence contained in the radical. Since x,y are in the radical then for every
v ∈ V, 〈x,v〉 = 〈v,y〉 = 0. In particular, 〈x,y〉 = 0. Now set a = φ(x)

and b = φ(y). Let c be a square root of 1
a and d a square root of 1

b
and set

z = cx + dy. Then z, as a linear combination of x and y, belongs to the
radical. However, φ(z) = φ(cx+dy) = c2φ(x)+cd〈x,y〉+d2φ(y) = 1+1 = 0
so that z is a singular vector, a contradiction.

For the remainder of this section, assume that F is a perfect field of charac-
teristic two, (V, φ) is a finite-dimensional non-singular orthogonal space with
associated form 〈 , 〉.

Lemma 8.29 Assume that v ∈ V is a singular vector. Then there exists a
singular vector w such that 〈v,w〉 = 1.

Proof Since v is not in the radical, there exists a vector x such that 〈v,x〉 =
a 6= 0. By replacing x by 1

ax we can assume that 〈v,x〉 = 1. Set φ(x) = b.
If b = 0 then (v,x) is a hyperbolic pair and we are done. Otherwise, set
w = bv + x. Then 〈v,w〉 = 〈v, bv + x〉 = a〈v,v〉 + 〈v,x〉 = 1. Also, φ(w) =
φ(bv + x) = b2φ(v) + b〈v,x〉+ φ(x) = b+ b = 0. Thus, (v,w) is a hyperbolic
pair.

Corollary 8.6 Assume (V, φ) is two-dimensional, non-singular, and contains
singular vectors. Then (V, φ) is non-degenerate.

We leave this as an exercise.

Lemma 8.30 Assume (V, φ) is non-singular of dimensional n ≥ 2 and every
non-zero vector is non-singular. Then n = 2 and (V, φ) is non-degenerate.
Moreover, if (v,w) is a basis of V such that 〈v,w〉 = 1, then the quadratic
polynomial x2 + x+ φ(w) is irreducible in F[x].
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Proof Let v be any non-zero vector not contained in the radical. Set a = φ(v)
and let b ∈ F such that b2 = a. Replacing v by 1

bv, if necessary, we can as-
sume that φ(v) = 1. Next choose w a vector in V \ v⊥. If 〈v,w〉 = c, by
replacing w by 1

cw, if necessary, we may assume that 〈v,w〉 = 1. The two-
dimensional subspace Span(v,w) is non-degenerate. The orthogonal comple-
ment to Span(v,w) has dimension n − 2, so if n > 2, there are non-zero
vectors z ∈ Span(v,w)⊥. Replacing z by a multiple, if necessary, we can as-
sume that φ(z) = 1. However, the vector x = v + z 6= 0 and φ(x) = 0, a
contradiction. Thus, n = 2 and (V, φ) is non-degenerate.

Let α ∈ F and set z = αv+w. Then z is non-zero and consequently, φ(z) 6= 0.
Thus, for no choice of α ∈ F is φ(z) = α2 + α+ φ(w) = 0. Consequently, the
polynomial x2 + x+ φ(w) is irreducible in F[x].

An immediate consequence of the proof of Lemma (8.30) is:

Corollary 8.7 Assume (V, φ) has dimension at least three. Then V contains
non-zero singular vectors.

Corollary 8.8 Assume n = dim(V ) is odd. Then (V, φ) is degenerate.

Proof The proof is by induction on k where n = 2k − 1. If k = 1 there
is nothing to prove. Assume now that the result is true for k ≥ 1 and that
the dimension of V is 2k + 1 ≥ 3. By Corollary (8.7) there exists a non-zero
singular vector v in V and then by Lemma (8.29) there exists a non-zero
singular vector w such that 〈v,w〉 = 1. Then Span(v,w) is non-degenerate.
The dimension of Span(v,w)⊥ is 2k − 1 and by the inductive hypothesis the
radical of Span(v,w)⊥ is non-trivial and this is contained in the radical of V .

We can now classify the finite-dimensional, non-singular orthogonal spaces
over a perfect field of characteristic two:

Theorem 8.15 Assume (V, φ) is a finite-dimensional orthogonal space over
a perfect field of characteristic two. Then one and only one of the following
occurs:

1a) n = 2m and there is a basis (x1, . . . ,xm,y1, . . . ,ym) such that

φ

(
m∑

i=1

(aixi + biyi)

)
=

m∑

i=1

aibi.

1b) n = 2m and there is a basis (x1, . . . ,xm−1,y1, . . . ,ym−1,v,w) such that
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φ

(
m−1∑

i=1

(aixi + biyi) + cv + dw)

)
=

m−1∑

i=1

aibi + c2 + cd+ d2γ

where the polynomial x2 + x+ γ is irreducible in F[x].

2) n = 2m+ 1 and there is a basis (x1, . . . ,xm,y1, . . . ,ym, z) such that

φ

(
m∑

i=1

(aixi + biyi) + cz

)
=

m∑

i=1

aibi + c2.

Proof Suppose first that n = 2m is even. The proof is by induction on m. If
m = 1 then the result follows from Lemma (8.29) if there are singular vectors
in V and from Lemma (8.30) if there are no singular vectors in V .

Now assume the result is true for spaces of dimension 2m with m ≥ 1 and that
dim(V ) = 2(m+1). By the proof of Corollary (8.8) it follows that there exists
a hyperbolic pair of vectors (x,y). Set U = Span(x,y), a non-degenerate
subspace of dimension 2. Then U⊥ is non-degenerate of dimension 2m and the
inductive hypothesis applies. Suppose there is a basis (x1, . . . ,xm,y1, . . . ,ym)
for U⊥ such that

φ

(
m∑

i=1

(aixi + biyi)

)
=

m∑

i=1

aibi.

Set xm+1 = x,ym+1 = y. Then 1a) holds.

On the other hand, suppose there is a basis (x1, . . . ,xm−1,y1, . . . ,ym−1,v,w)
for U⊥ such that

φ

(
m−1∑

i=1

(aixi + biyi) + cv + dw)

)
=

m−1∑

i=1

aibi + c2 + cd+ d2γ,

where the polynomial x2+x+γ is irreducible in F[x]. Set xm = x and ym = y.
Then 1b) holds.

So we may assume that n = 2m+1 is odd. The proof is by induction on m. If
m = 1, then the result follows from the proof of Corollary (8.8). Assume now
that the result is true for spaces of dimension 2m+ 1 where m ≥ 1 and that
dim(V ) = 2(m+1)+ 1 = 2m+3. It follows from Corollary (8.7) and Lemma
(8.29) that there exists a hyperbolic pair (x,y) in V . Set U = Span(x,y), a
non-degenerate subspace of dimension 2. The orthogonal complement, U⊥, to
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U is non-singular of dimension 2m+1 and therefore the inductive hypothesis
applies: there is a basis (x1, . . . ,xm,y1, . . . ,ym, z) such that

φ

(
m∑

i=1

(aixi + biyi) + cz)

)
=

m∑

i=1

aibi + c2.

Set xm+1 = x,ym+1 = y. Now 2) holds.

We now come to Witt’s Extension Theorem for finite-dimensional orthogonal
spaces over a perfect field of characteristic two:

Theorem 8.16 Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space over the perfect field F of characteristic two, with associated symmetric
form 〈 , 〉. Assume X and Y are subspaces of V and σ : X → Y is an
isometry. Then there exists an isometry S of (V, φ) such that S|X = σ.

Proof Case 1) First assume X ∩ Y is a hyperplane of X (and therefore Y )
and that σ restricted to U = X∩Y is the identity. Set W = {σ(x)+x|x ∈ X}
so that dim(W ) = 1 and let x be chosen from X such that w = σ(x)+x spans
W . We also set y = σ(x). We treat separately the two subcases: a) X is not
contained in w⊥ and b) X ⊂ w⊥.

a) Suppose u ∈ U . We claim that 〈u,w〉 = 0:

〈u,w〉 = 〈u, σ(x) + x〉
= 〈u, σ(x)〉 + 〈u,x〉
= 〈σ(u), σ(x)〉 + 〈u,x〉
= 〈u,x〉+ 〈u,x〉
= 0

Since U is a hyperplane of X it follows that X ∩ w⊥ = U . We next show
that y = σ(x) /∈ w⊥. Note that since σ restricted to U is the identity, and
σ(x) 6= x it follows that x /∈ U and 〈w,x〉 6= 0. We then have:

〈y,w〉 = 〈σ(x),w〉
= 〈σ(x),w〉
= 〈σ(x), σ(x) + x〉
= 〈σ(x), σ(x)〉 + 〈σ(x),x〉
= 〈x,x〉+ 〈σ(x),x〉
= 〈x+ σ(x),x〉
= 〈w,x〉
6= 0
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Consequently, Y = σ(X) is not contained in w⊥. Then Y ∩w⊥ is a hyperplane
of Y . Since U is a hyperplane of Y contained in w⊥ it follows that Y ∩w⊥ = U .
Choose a subspace Z so that w⊥ = U ⊕ Z. Since U ⊂ X, we have w⊥ =
U ⊕ Z ⊂ X + Z. Since Z ⊂ w⊥ we have

X ∩ Z ⊂ (X ∩w⊥) ∩ Z
= U ∩ Z = {0}.

In exactly the same way, Y ∩Z = {0}. We now claim that X⊕Z = Y ⊕Z = V .
Now X ⊕Z contains U ⊕Z = w⊥. However, since X is not contained in w⊥

it follows that w⊥ is properly contained in X ⊕ Z. Since w⊥ is a hyperplane
of V , we can conclude that X ⊕ Z = Y ⊕ Z = V .

Suppose now that x′ ∈ Z and z ∈ Z. Then σ(x′) + x′ ∈ W ⊂ Z⊥

and therefore, 〈σ(x′) + x′, z〉 = 0. Equivalently, 〈σ(x′), z〉 = 〈x′, z〉. Thus,
〈z,x′〉 = 〈z, σ(x′)〉. Assume now that v is arbitrary in V . We can write
v = x′ + z for unique vectors x′ ∈ X and z ∈ Z. Now set S(v) = σ(x′) + z.
We claim that S is an isometry which extends σ. Thus, suppose v′ = x′ + z

is an arbitrary vector in V for vectors x′ ∈ X, z ∈ Z. Then

φ(S(v′)) = φ(σ(x′) + z)

= φ(σ(x′)) + 〈σ(x′), z〉+ φ(z)

= φ(x′) + 〈x′, z〉+ φ(z)

= φ(x′ + z)

= φ(v′).

Thus, S is an isometry.

b) Now assume that X ⊂ w⊥. Then, of course, U ⊂ w⊥. We claim that
Y ⊂ w⊥. Since U is a hyperplane of Y , and U is contained in w⊥, it suffices
to prove that y ∈ w⊥.

〈w,y〉 = 〈y + x,y〉
= 〈y,y〉+ 〈x,y〉
= 〈σ(x), σ(x)〉 + 〈x,y〉
= 〈x,x〉+ 〈x,y〉
= 〈x,x+ y〉
= 〈x,w〉
= 0.

We now show that w is singular. We first note that since w = y + x, y =
w + x. Therefore,
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φ(y) = φ(w) + 〈w,x〉+ φ(x)

= φ(w) + φ(x).

Since φ(y) = φ(x) we conclude that φ(w) = 0.

Now by Exercise 14 of Section (1.6), there exists a subspace Z such that w⊥ =
X ⊕ Z = Y ⊕ Z. Let τ be the operator on w⊥ such that τ|X = σ and τ|Z is

the identity map on Z. We claim that this is an isometry of w⊥. A typical
element of X can be written as ax+v where v ∈ U ⊕Z. For such an element,
τ(ax + v) = ay + v. Since w = y + x and v ∈ Z ⊂ w⊥ it follows that
〈y+x,v〉 = 0. Consequently, 〈y,v〉 = 〈x,v〉. We show that τ is an isometry.

φ(τ(ax+ v)) = φ(ay + v)

= φ(ay) + 〈(ay,v〉+ φ(v)

= a2φ(y) + a〈(y,v〉 + φ(v)

= a2φ(x) + a〈(x,v〉+ φ(v)

= φ(ax) + 〈(ax,v〉+ φ(v)

= φ(ax+ v).

It remains to show that we can extend τ to an isometry of V . We have therefore
reduced to the case where X = Y = w⊥, σ acts as the identity on a hyperplane
U of w⊥, for some x ∈ X \ U,w = τ(x) + x. If we set y = τ(x) then also
X = Span(y) ⊕ U . Now choose any element v1 ∈ V,v1 /∈ X = w⊥. Define
F ∈ L(V,F) such that F (t) = 〈σ−1(t),v1〉 if t ∈ w⊥, and F (v1) = 0. Since
〈 , 〉 is non-degenerate, by Lemma (9.5), there exists a vector v2 such that
F (v′) = 〈v′,v2〉 for every vector v′ ∈ V . Then, for every vector v′ ∈ X =
w⊥, 〈σ−1(v′),v1〉 = 〈v′,v2〉. Consequently, 〈v′,v1〉 = 〈σ(v′),v2〉 for every
v′ ∈ X = w⊥. If φ(v1) = φ(v2), then we can extend σ to S by defining
S(v1) = v2. Consider the element v3 = v2 + aw. This element is not in w⊥

since 〈v3,w〉 = 〈v2 + aw,w〉 = 〈v2,w〉 + a〈w,w〉 = 〈v2,w〉 6= 0. We now
compute φ(v3):

φ(v3) = φ(v2 + aw)

= φ(v2) + a〈v2,w〉+ a2φ(w)

= φ(v2) + a〈v2,w〉.
Set a = φ(v1)+φ(v2)

〈v2,w〉 . Then

φ(v3) = φ(v1) +
φ(v1) + φ(v2)

〈v2,w〉 f〈v2,w〉

= φ(v2) + [φ(v1) + φ(v2)]

= φ(v1).



314 Advanced Linear Algebra

We can now extend σ to S : V → V by defining S(v1) = v3.

Case 2) We now do the general case. We proceed by mathematical induction
on m = dim(X). If m = 1 then this is contained in case 1. So assume the
result holds for all isometries σ : X → Y where dim(X) = m − 1 ≥ 1 and
that dim(X) = m. Choose a hyperplane X0 of X and set Y0 = σ(X0). By the
inductive hypothesis there exists an isometry T of V such that T|X0

= σ|X0
.

Set τ = T−1σ. Now τ is an isometry of X and τ restricted to X0 is the
identity. Now by case 1 there is an isometry T ′ of V such that T ′ restricted
to X is τ . Set S = TT ′. This is the desired isometry of V .

Definition 8.31 Let (V, φ) be an orthogonal space. A subspaceM is a totally
singular subspace if φ(v) = 0 for all v ∈M . A subspace M is a maximal
totally singular subspace if it is totally singular and not properly contained
in a totally singular subspace of V .

Corollary 8.9 Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space over a perfect field of characteristic two withM1 andM2 maximal totally
singular subspaces. Then dim(M1) = dim(M2).

This is an exercise.

Definition 8.32 Let (V, φ) be a non-degenerate finite-dimensional orthogonal
space over a perfect field of characteristic two. The common dimension of
every maximal totally singular subspace of V is the Witt index of (V, φ).

Corollary 8.10 Let (V, φ) be a non-degenerate finite-dimensional orthogo-
nal space over a perfect field of characteristic two and assume X and Y are
isometric subspaces of V . Then X⊥ and Y ⊥ are isometric.

This is left as an exercise.

Exercises

1. Prove Corollary (8.6).

2. Prove Corollary (8.9).

3. Prove Corollary (8.10).

4. Let (V, φ) be a non-degenerate 2m-dimensional orthogonal space over a
perfect field of characteristic two. Prove that the Witt index of V is either
m− 1 or m.

5. Let F be a perfect field of characteristic two and set V = F3. Define



Bilinear Forms 315

φ





x1
x2
x3




 = x1x2 + x23. Give an example of isometric subspaces X and

Y of V such that there does not exist an isometry S of V with S(X) = Y .

6. Let (V, φ) be a non-degenerate 2m-dimensional orthogonal space over a per-
fect field of characteristic two and Witt index m. Let (x1, . . . ,xm,y1, . . . ,ym)
be a hyperbolic basis, that is, a basis such that φ(xi) = φ(yi) =
〈xi,xj〉 = 〈yi,yj〉 = 〈xi,yj〉 = 0 for i 6= j and 〈xi,yi〉 = 1. Set
X = Span(x1, . . . ,xm),BX = (x1, . . . ,xm), Y = Span(y1, . . . ,ym),BY =
(y1, . . . ,ym). Assume S is an isometry of V such thatX and Y are S-invariant.
Let SX be the restriction of S to X and SY the restriction of S to Y . Set
MX = MSX

(BX ,BX) and MY = MSY
(BY ,BY ). Prove that M

−1
Y =M tr

X .

7. Let Oi(Vi, φi), i = 1, 2 be two orthogonal spaces with respective associated
symmetric forms 〈 , 〉1 and 〈 , 〉2. Denote by O1 ⊥ O2 the pair (V1⊕V2, φ1+φ2)
where (φ1 + φ2)(v1 + v2) = φ1(v1) + φ2(v2) for vi ∈ Vi. Prove that this is a
orthogonal space with associated symmetric form defined by 〈v1 + v2,w1 +
w2〉 = 〈v1,w1〉1 + 〈v2,w2〉2 for v1,w1 ∈ V1,v2,w2 ∈ V2.

8. Let F be a perfect field of characteristic two and assume the polynomial
x2 + x + δ is irreducible in F[x]. Let E2 denote the orthogonal space (F2, ǫ)

with ǫ

((
a
b

))
= a2 + ab + δb2. Let H2 denote the orthogonal space (F2, γ)

with γ

((
a
b

))
= ab. Prove that E2 ⊥ E2 is isometric to H2 ⊥ H2.
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8.5 Real Quadratic Forms

In this section we study finite-dimensional real orthogonal space. In our main
theorem we characterize such spaces in terms of three invariants: the rank, the
index, and the signature. As a corollary, we determine the number of orbits
when the general linear group acts on the space of symmetric real matrices
via congruence.

What You Need to Know

To understand the material of this section, you must have already mastered
the following concepts: vector space, basis of a vector space, dimension of a
vector space, finite-dimensional vector space, linear transformation, coordi-
nate vector with respect to a basis, matrix of a linear transformation, bilinear
form, matrix of a bilinear form, symmetric bilinear form, quadratic form, real
inner product, orthogonal operator, orthogonal basis, orthogonal matrix, di-
agonalizable matrix, and congruence of matrices.

Before jumping in, we begin with a word on notation. In this section, V will be
a real finite-dimensional vector space with an inner product and a quadratic
form φ. We will use 〈 , 〉 to represent the inner product and 〈 , 〉φ to represent
the symmetric form associated with φ.

We have previously seen that a quadratic form φ (with associated symmetric
form 〈 , 〉φ) on a finite-dimensional vector space over a field F of characteristic
not two can be diagonalized; that is, there exists a basis B = (v1, . . . ,vn) for
V such that the matrix of 〈 , 〉φ is a diagonal matrix. Of course, such a basis
is an orthogonal basis of (V, φ). When the field F is R, we can use our theory
of self-adjoint operators to obtain more.

Theorem 8.17 Let (V, 〈 , 〉) be a finite-dimensional real inner product space
and 〈 , 〉φ a symmetric bilinear form on V. Then there exists an orthonormal
basis B of (V, 〈 , 〉) such that the matrix of 〈 , 〉φ with respect to B is diagonal.

Proof Choose any orthonormal basis O of (V, 〈 , 〉) and let A be the matrix
of 〈 , 〉φ with respect to O. Then A is a symmetric matrix. By Exercise 8
of Section (6.4) there exists an orthogonal matrix Q such that QtrAQ is a
diagonal matrix. Let B be the basis of (V, 〈 , 〉) such that MIV (B,O) = Q.
Since Q is an orthogonal matrix and O is an orthonormal basis it follows
that B is an orthonormal basis. Now the matrix of 〈 , 〉φ with respect to B is
QtrAQ, which is diagonal as required.

The following corollary just restates Theorem (8.17):
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Corollary 8.11 Let (V, 〈 , 〉) be a finite-dimensional real inner product space
and φ a quadratic form on V. Then there exists an orthonormal basis B of
(V, 〈 , 〉) such that B is an orthogonal basis of the orthogonal space (V, φ).

In what follows, we shall classify real orthogonal spaces of dimension n by some
invariants. One of these invariants has already been introduced, the rank of
the space. We recall its definition:

Definition (8.22) Let (V, φ) be a finite-dimensional orthogonal space. The
rank of (V, φ) is dim(V ) − dim(Rad(V )) = dim(V/Rad(V )). As shown in
Exercise 2 of Section (8.3), if B is a basis for V and 〈 , 〉φ is the associated
form, then the rank of (V, φ) is the rank of the matrix of 〈 , 〉φ with respect to
B.
Before introducing the second invariant, we prove a result that goes by the
name of Sylvester’s Law of Inertia.

Theorem 8.18 Let (V, φ) be a real finite-dimensional orthogonal space and
B = (v1, . . . ,vm) an orthogonal basis for φ. Then the following hold:

i) Let π(B) be the number of i such that φ(vi) > 0. Then π(B) is independent
of the basis B.
ii) Let ν(B) be the number of i such that φ(vi) < 0. Then ν(B) is independent
of the basis B.

Proof i) Set π = π(B) and assume B has been ordered so that φ(vi) > 0
for 1 ≤ i ≤ π. Set U = Span(v1, . . . ,vπ). Then for every non-zero vector
v ∈ W,φ(v) > 0. Also, set W = Span(vπ+1, . . . ,vn). For every vector v ∈
W,φ(v) ≤ 0. Note that V = U ⊕W. Suppose U ′ is a subspace of V which
contains U and dim(U ′) > π. Then U ′ ∩W 6= {0}. If v is a non-zero vector
in U ′∩W then φ(v) ≤ 0. Therefore, U is maximal under inclusion amongst all
subspaces X such that φ(x) > 0 for all non-zero x ∈ X. By Witt’s Theorem
for orthogonal spaces, Theorem (8.12), the dimension of such a subspace is an
invariant. Thus, π is independent of the basis B.
ii) This is proved similarly. Alternatively, let φ′ = −φ. Then the number of
vectors vi in the basis B such that φ(vi) < 0 is equal to the number of vectors
vi in the basis B such that φ′(vi) = −φ(vi) > 0.

There are alternative ways to prove the result. One can show that the number
π is equal to the number of positive eigenvalues of any symmetric matrix
which represents the quadratic form.

There is a matrix version of Theorem (8.18):



318 Advanced Linear Algebra

Corollary 8.12 Let A be a real symmetric matrix and D any diagonal matrix
which is in the congruence class of A. Then the number of positive diagonal
entries and the number of negative diagonal entries are independent of the
choice of D.

Definition 8.33 Let (V, φ) be a real orthogonal space of dimension n. Let B
be an orthogonal basis of (V, φ). The invariant π = π(B) is called the index of
the orthogonal space or of the quadratic form φ. The signature is the number
σ = π − ν, where ν is the invariant ν(B). The third invariant is the rank, ρ.

Remark 8.10 Given n, the dimension of the orthogonal space, then any two
of the invariants π, σ, ρ determine the third: since σ = 2π − ρ. Also, ν can be
determined from any two since π + ν = ρ.

The next result is a key step in obtaining a classification of real quadratic
forms on a finite-dimensional space.

Lemma 8.31 Assume (V, φ) is a real orthogonal space of dimension n and
invariants (π, σ, ρ). Then there exists an orthogonal basis

(u1, . . . ,uπ,v1, . . . ,vρ−π ,w1, . . . ,wn−ρ)

where φ(ui) = 1 for i = 1, 2, . . . , π;φ(vj) = −1, for j = 1, 2, . . .ρ − π; and
φ(wk) = 0 for k = 1, . . . , n− ρ.

Proof Let (x1, . . . ,xπ,y1, . . . ,yρ−π, z1, . . . , zn−ρ) be an orthogonal basis,
where φ(xi) > 0, φ(yj) < 0 and φ(zk) = 0. Set ui = 1√

φ(xi)
xi,vj =

1√
−φ(yj)

yj and wk = zk. This is an orthogonal basis which satisfies the con-

clusions of the lemma.

We can now give a classification of quadratic forms on a finite-dimensional
real vector space:

Theorem 8.19 Let (V, φ) and (V ′, φ′) be real orthogonal spaces of dimension
n. Then (V, φ) and (V ′, φ′) are isometric if and only if they have the same
invariants.
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Proof Suppose (V, φ) and (V ′, φ′) are isometric via the linear transformation
T. Suppose (u1, . . . ,uπ,v1, . . . ,vρ−π,w1, . . . ,wn−ρ) is an orthogonal basis of
V with φ(ui) > 0 for 1 ≤ i ≤ π, φ(vj) < 0 for 1 ≤ j ≤ ρ − π and φ(wk) = 0
for 1 ≤ k ≤ n − ρ. Set u′

i = T (ui),v
′
j = T (vj) and w′

k = T (wk). Then
(u′

1, . . . ,u
′
π,v

′
1, . . . ,v

′
ρ−π,w

′
1, . . . ,w

′
n−ρ) is an orthogonal basis of V ′ and

φ′(u′
i) = φ(ui) > 0, 1 ≤ i ≤ π,

φ′(v′
j) = φ(vj) < 0, 1 ≤ j ≤ ρ− π,

φ′(w′
k) = φ(wk) = 0, 1 ≤ k ≤ n− ρ.

It then follows that the invariants for (V ′, φ′) are (π, σ, ρ), the same as (V, φ).

Conversely, assume that (V, φ) and (V ′, φ′) are real orthogonal spaces of di-
mension n and have the same invariants, (π, σ, ρ).

By Lemma (8.31), there is an orthogonal basis (u1, . . . ,uπ,v1, . . . ,vρ−π,w1,
. . . ,wn−ρ) of V with φ(ui) = 1 for 1 ≤ i ≤ π, φ(vj) = −1 for 1 ≤ j ≤ ρ− π
and φ(wk) = 0 for 1 ≤ k ≤ n− ρ.

Likewise, there is an orthogonal basis (u′
1, . . . ,u

′
π,v

′
1, . . . ,v

′
ρ−π,w

′
1, . . . ,w

′
n−ρ)

of V ′ with φ′(u′
i) = 1 for 1 ≤ i ≤ π, φ′(v′

j) = −1 for 1 ≤ j ≤ ρ − π and
φ′(w′

k) = 0 for 1 ≤ k ≤ n− ρ.

Let T : V → V ′ be the linear transformation such that T (ui) = u′
i for 1 ≤

i ≤ π, T (vj) = v′
j for 1 ≤ j ≤ ρ− π and T (wk) = w′

k for 1 ≤ k ≤ n− ρ. We
claim that T is an isometry.

If x =
∑π

i=1 aiui +
∑ρ−π

j=1 bjvj +
∑n−ρ

k=1 ckwk, then

φ(x) =

π∑

i=1

a2i −
ρ−π∑

j=1

b2j .

On the other hand, if x′ = T (x), then

x′ =
π∑

i=1

aiu
′
i +

ρ−π∑

j=1

bjv
′
j +

n−ρ∑

k=1

ckw
′
k,

φ′(x′) =
π∑

i=1

a2i −
ρ−π∑

j=1

b2j = φ(x).

The matrix version of this theorem follows:
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Corollary 8.13 Two real symmetric n×n matrices are congruent if and only
if they have the same invariants.

One class of real orthogonal space of dimension n stands out: when the index
of the orthogonal space is equal to the rank of the space, is equal to n.

Definition 8.34 A finite-dimensional real orthogonal space (V, φ) is said to
be positive definite if φ(x) > 0 for all non-zero vectors x. An n×n real sym-
metric matrix is positive definite if it represents a positive definite quadratic
form.

An example of a positive definite orthogonal space is a real finite-dimensional
inner product space. In fact, the converse also holds: a positive definite or-
thogonal space is a real inner product space.

There is a very nice characterization of positive definite matrices:

Theorem 8.20 Let A be a real n× n symmetric matrix. Then the following
are equivalent:

1) A is positive definite.

2) A is congruent to the identity matrix.

3) A = QtrQ for some invertible matrix Q.

We leave this as an exercise.

Exercises

1. Determine the invariants for the symmetric matrix



0 2 1
2 0 1
1 1 1


 .

2. Determine the invariants for the symmetric matrix



0 2 0
2 1 2
0 2 2


 .

3. Let φ be the orthogonal form defined on R3 by φ(x) = xtrAx, where A
is the matrix of Exercise 1. Find an orthogonal basis (v1,v2,v3) such that
φ(vi) ∈ {−1, 0, 1}.
4. Let φ be the orthogonal form defined on R3 by φ(x) = xtrAx, where A
is the matrix of Exercise 2. Find an orthogonal basis (v1,v2,v3) such that
φ(vi) ∈ {−1, 0, 1}.
5. Determine, with a proof, the number of congruence classes of real n × n
symmetric matrices.
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6. Recall for an orthogonal space (V, φ) the Witt index is the dimension of
a maximal totally singular subspace. Let (V, φ) be a real non-degenerate or-
thogonal space of dimension n with associated form 〈 , 〉φ.
a) Prove that if n is odd then the isometry class of (V, φ) is determined by the
Witt index and the sign of det(A) where A is any matrix representing 〈 , 〉φ.
b) If n is even and the Witt index is less than n

2 , then there are two isometry
classes of (V, φ).

c) If n is even and the Witt index is n
2 , then there is a unique isometry class.

7. Let (V, 〈 , 〉) be a finite-dimensional real inner product space and T a self-
adjoint (symmetric) operator. Define a map [ , ] : V × V → R by [x,y] =
〈x, T (y)〉. Prove that [ , ] is a symmetric bilinear form on V.

8. Let (V, 〈 , 〉) be a finite-dimensional real inner product space and [ , ] a
symmetric bilinear form on V. Prove that there exists a symmetric operator
T on V such that [x,y] = 〈x, T (y)〉.
9. Prove Theorem (8.20).
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In this chapter we generalize the notion of a bilinear form and introduce
the concept of a sesquilinear form. In the first section of this chapter we
develop some of the basic properties of sesquilinear forms and, in analogy with
bilinear forms, introduce the notion of a reflexive sesquilinear form. Examples
are Hermitian and skew Hermitian forms. We then prove that a reflexive
sesquilinear form is equivalent to a Hermitian or skew Hermitian form. The
second section is devoted to the structure of a unitary space, that is, a vector
space equipped with a Hermitian or skew-Hermitian form. In our main result
we prove Witt’s theorem for a non-degenerate unitary space.
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9.1 Basic Properties of Sesquilinear Forms

In this section we introduce the notion of a sesquilinear form. An inner product
on a complex vector space is an example. We then go on to develop the proper-
ties of sesquilinear forms. We define what is meant by a reflexive sesquilinear
form. Examples are Hermitian and skew-Hermitian forms. In our main re-
sult prove that a reflexive sesquilinear form is equivalent to a Hermitian or
skew-Hermitian form.

What You Need to Know

To be successful in understanding the new material of this section, it is es-
sential that you have already mastered the following concepts: vector space,
basis of a vector space, dimension of a vector space, finite-dimensional vector
space, linear transformation, coordinate vector with respect to a basis, matrix
of a linear transformation, an algebra, determinant of a matrix or operator,
multilinear map, multilinear form, bilinear map, and bilinear form.

We begin with a definition:

Definition 9.1 Let F be a field, σ an automorphism of F, and V and W
vectors spaces over F. A map T : V → W is σ-semilinear if the following
hold:

1) For u,v ∈ V, T (u+ v) = T (u) + T (v); and

2) For a ∈ F,v ∈ V, T (av) = σ(a)T (v).

We will denote the collection of all σ-semilinear maps from V to W by
Lσ(V,W ).

Lemma 9.1 Let F be a field and σ an automorphism of F. Let V and W be
vectors spaces over F. Then Lσ(V,W ) is a vector space over F.

Proof Assume S, T ∈ Lσ(V,W ). Clearly S + T is additive so we only need
show that for v ∈ V and a ∈ F that (S + T )(av) = σ(a)(S + T )(v). By the
definition of S + T, (S + T )(av) = S(av) + T (av). Since both S and T are σ
semilinear, S(av) = σ(a)S(v) and T (av) = σ(a)T (v). Then

(S + T )(av) = σ(a)S(v) + σ(a)T (v)

= σ(a)[S(v) + T (v)]

= σ(a)(S + T )(v).
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Next we show if T ∈ Lσ(V,W ) and b ∈ F then bT ∈ Lσ(V,W ). Suppose then
that v,w ∈ V . Then

(bT )(v +w) = b[T (v +w)]

= b[T (v) + T (w)]

= b[T (v)] + b[T (w)]

= (bT )(v) + (bT )(w)

and therefore bT is additive.

Now assume v ∈ V, a ∈ F. Then

(bT )(av) = b[T (av)]

= b[σ(a)T (v)]

= [bσ(a)]T (v)

= [σ(a)b]T (v)

= σ(a)[bT (v)]

= σ(a)[(bT )(v)]

as required.

Lemma 9.2 Assume σ, τ are automorphisms of the field F and U, V,W are
vector spaces over F. Assume S : U →W is a σ-semilinear map and T : V →
W is a τ-semilinear map. Then T ◦ S : U →W is a τ ◦ σ-semilinear map.

This is left as an exercise.

We now introduce the main object of this section:

Definition 9.2 Let F be a field and σ an automorphism of F. Let V be a
vector space over F. A map f : V ×V → F is said to be σ-sesquilinear if the
following hold:

1) f(au+ bv,w) = af(u,w) + bf(v,w);

2) f(w, au+ bv) = σ(a)f(w,u) + σ(b)f(w,v).

Thus, when we fix the second argument of f and allow the first argument to
range over V , we obtain a linear functional. When we fix the first argument
and allow the second to range over V , we obtain a σ-semilinear map from V
to F.
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Example 9.1 If σ = IF, the trivial automorphism, then a σ sesquilinear form
is just a bilinear form.

Example 9.2 Let (V, 〈 , 〉) be a complex inner product space. Then 〈 , 〉 :
V ×V → C is a σ sesquilinear form where σ is complex conjugation: σ(a+bi) =
a− bi for a, b ∈ R.

Example 9.3 Let V = Fn and A ∈Mnn(F). For v =




a1
a2
...
an


 denote by σ(v)

the vector in V obtained by applying σ to each entry of v:

σ(v) =




σ(a1)
σ(a2)

...
σ(an)


 .

Now define f : V × V → F by

f(u,v) = utrAσ(v).

Definition 9.3 Let f, g be sesquilinear forms on V . Then f and g are said to
be equivalent if there exists γ ∈ F such that g = γf . The forms f and g are
similar if there is a linear transformation T : V → V such that g(v,w) =
f(T (v), T (w)) for all v,w ∈ V .

Definition 9.4 Let F be a field and σ an automorphism of F. Let V be a
vector space over F. We denote by SEQσ(V ) the set of all σ-sesquilinear
forms on V .

Our next result is an immediate consequence of Lemma (9.1.

Lemma 9.3 Let F be a field, σ an automorphism of F, and V be a vector
space over F. Then SEQσ(V ) is a vector space over F.

For the remainder of this section assume that F is a field, σ an automorphism
of F, and V is an n-dimensional vector space over F.
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Definition 9.5 Assume f ∈ SEQσ(V ) and let B = (v1, . . . ,vn) be a basis of
V . For 1 ≤ i, j ≤ n set aij = f(vi,vj). The matrix A whose (i, j)-entry is aij
is the matrix of f with respect to B and is denoted by Mf (B).

The following should remind the reader of Theorem (8.3). We leave the proof
as an exercise.

Theorem 9.1 Let f ∈ SEQσ(V ),B = (v1, . . . ,vn) be a basis for V , and
A = Mf (B). Then for any vectors u,v ∈ V we have

f(u,v) = [u]trBAσ([v]B).

An immediate consequence of Theorem (9.1) is

Corollary 9.1 Let B = (v1, . . . ,vn) be a basis of V . For f ∈ SEQσ(V )
the map f → Mf (B) is an isomorphism of vector spaces. Consequently,
dim(SEQσ(V )) = n2.

Most of the definitions and results of Section (8.1) have analogs for sesquilinear
forms. We will focus on the most important ones.

Definition 9.6 Let f be a σ-sesquilinear form. The left radical of f ,
RadL(f), consists of all vectors v such that f(v,w) = 0 for all w ∈ V .
The right radical, RadR(f), is defined similarly: the set of w ∈ V such that
f(v,w) = 0 for all v ∈ V . Both the left and right radical are subspaces of V
as we prove below, but they may not be equal. However, they do always have
the same dimension.

Lemma 9.4 Let f be a σ-sesquilinear form. Then RadL(f) and RadR(f) are
subspaces of V . Moreover, dim(RadL(f)) = dim(RadR(f)).

Proof Choose a basis B = (v1, . . . ,vn) and set A = Mf (B). It is straight-
forward to see that RadL(f) consists of all vectors v such that [v]B is in the
null space of the matrix Atr and RadR(f) consists of all vectors w such that
σ([w]B) is in the null space of A. This implies that both RadL(f) and RadR(f)
are subspaces of V with dimension equal to dim(V )− rank(A).

A consequence of Lemma (9.4) is thatRadL(f) = {0} if and only if RadR(f) =
{0}. We give a name to such forms:
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Definition 9.7 A σ-sesquilinear form f is non-degenerate if RadL(f) =
RadR(f) = {0}.

Lemma 9.5 Assume f is a non-degenerate σ-sesquilinear form and F : V →
F is a linear functional. Then there is a unique vector v ∈ V such that F (w) =
f(w,v).

Proof Let B = (v1, . . . ,vn) be a basis for V . Denote by gi the linear function
on V which is given by gi(w) = f(w,vi). We claim that (g1, . . . , gn) is linearly
independent in L(V,F). Suppose

∑n
i=1 aigi = 0V→F. Set bi = σ−1(ai) and

v =
∑n

i=1 bivi. It then follows that f(w,v) = 0 for w ∈ V , that is, v ∈
RadR(f). Since f is non-degenerate we can conclude that v = 0. Since B is
linearly independent, it then follows that b1 = b2 = · · · = bn = 0. Since σ is
an automorphism of F we then have a1 = · · · = an = 0 and (g1, . . . , gn) is
linearly independent as claimed.

Since the dimension of L(V,F) is n, it now follows that (g1, . . . , gn) is a basis
for L(V,F). Consequently, if F ∈ V ′ then there are scalars ai ∈ F such that
F =

∑n
i=1 aigi. Again set bi = σ−1(ai) and v = b1v1+ · · ·+bnvn. For a vector

w ∈ V we compute f(w,v):

f(w,v) = f(w, b1v1 + . . . bnvn) = f(w, b1v1) + · · ·+ f(w, bnvn)

= σ(b1)f(v,v1) + · · ·+ σ(bn)f(w,vn)

= a1f(w,v1) + · · ·+ anf(w,vn)

= a1g1(v) + · · ·+ angn(v)

= [a1g1 + · · ·+ angn](v)

= F (v).

This shows the existence of v. On the other hand, if also F (w) = f(w,v′) for
all w then v− v′ is in the right radical of f and consequently, v′ = v since f
is non-degenerate.

In a similar way we can prove:

Lemma 9.6 Assume f is a non-degenerate σ-sesquilinear form and F : V →
F is a σ-semilinear transformation. Then there is a unique vector v ∈ V such
that F (w) = f(v,w).
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Definition 9.8 Let f be a σ-sesquilinear form. Define a relation ⊥f on V by
u ⊥f v if and only if f(u,v) = 0. The form f is said to be reflexive when
⊥f is a symmetric relation. Following are examples of reflexive sesquilinear
forms:

Definition 9.9 Assume the automorphism σ has order two, σ2 = IF 6= σ,
and for a ∈ F denote by a the σ image of a, σ(a). Let ǫ ∈ F be chosen such
so that ǫσ(ǫ) = 1. A σ-sesquilinear from f on a vector space V is said to be
(ǫ, σ)-Hermitian if for all v,w ∈ V, f(v,w) = ǫf(w,v).

When ǫ = 1, we say f is σ-Hermitian and when ǫ = −1 we say f is σ-skew
Hermitian.

We will usually drop the use of σ and just refer to an ǫ-Hermitian form.

Example 9.4 Hermitian and skew-Hermitian forms are reflexive. We leave
this as an exercise.

Notation. Let σ be an automorphism of F. We will denote images under σ
using the bar notation: σ(a) = a. If v ∈ Fn, the expression v denotes the
result of applying σ to every entry of v and, similarly, for a matrix A, the
symbol A denotes the matrix obtained from A by applying σ to every entry
of A.

Lemma 9.7 Assume σ has order 2, f is a σ-sesquilinear form on V , and
B = (v1,v2, . . . ,vn) is a basis for V . Let A = Mf (B). Then the following
hold:

i) The form f is Hermitian if and only if Atr = A.

ii) The form f is skew-Hermitian if and only if Atr = −A.

We leave this as an exercise.

Definition 9.10 Assume that σ has order 2. An n × n matrix A is σ-
Hermitian if Atr = A. A is σ-skew-Hermitian if Atr = −A.

We will complete this section with a characterization of reflexive σ-sesquilinear
forms. We begin with a lemma.

Lemma 9.8 Assume σ 6= IF and f is a non-degenerate σ-sesquilinear form
on the space V . Then there exists a vector v such that f(v,v) 6= 0.
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Proof Assume f(v,v) = 0 for all v. Then

0 = f(v +w,v +w) = f(v,w) + f(w,v).

If char(F) 6= 2 then f is alternating and σ = IV . If char(F) = 2 then f is
symmetric and again σ = IF.

Corollary 9.2 Assume that σ 6= IF, and f is a non-degenerate reflexive σ-
sesquilinear form on the space V . Then there exists a basis (v1, . . . ,vn) for V
such that ai = f(vi,vi) 6= 0 while f(vi,vj) = 0 for every i 6= j.

Proof The proof is by induction on n = dim(V ). If n = 1 there is nothing to
prove. Assume that n ≥ 2 and the result holds for spaces with dimension n−1.
By Lemma (9.8) there is a vector v such that a = f(v,v) 6= 0. Now f restricted
to U = v⊥ = {w ∈ V |f(w,v) = 0} is non-degenerate. By the induction
hypothesis there exists a basis (v1, . . . ,vn−1) of U such that ai = f(vi,vi) 6= 0
and f(vi,vj) = 0 for i 6= j. Set vn = v and an = a.

We will need the following result in the course of proving our main theorem.
It is a special case of Hilbert’s theorem 90.

Lemma 9.9 Let E ⊂ F be a Galois extension of degree two with Galois group
generated by σ. Assume a ∈ F satisfies aσ(a) = 1. Then there is an element
b ∈ F such that a = b

σ(b) .

Proof Since the degree of the extension is two, σ2 = IF. The sequence (IF, σ)
of the Galois group of the extension are E ⊂ F is linearly independent as
elements of LE(F,F), the space of E-linear transformations of the space F.
Consequently, there must be an element c ∈ F such that b = c + aσ(c) 6= 0.
Applying σ to b we get

σ(b) = σ(c) + σ(a)σ2(c) = σ(c) + σ(a)c.

Multiplying by a we get

aσ(b) = aσ(c) + aσ(a)c = aσ(c) + c = b.

We now prove our main result.

Theorem 9.2 Assume σ 6= IF and f is a reflexive σ-sesquilinear form on
the space V and dim(V/Rad(f)) ≥ 2. Then σ has order two and there is an
element γ ∈ F such that g = γf is Hermitian.
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Proof Let R be the radical of f and choose a complement U to R. Then
f|U×U is non-degenerate. It suffices to prove the result for (U, f|U×U ) and
therefore we may assume that f is non-degenerate. By Lemma (9.2) there
exists a basis (v1, . . . ,vn) such that ai = f(vi,vi) 6= 0 and f(vi,vj) = 0 for i 6=
j. We will first show for i 6= j, that σ(ai)aj = aiσ(aj), equivalently, that

ai

σ(ai)

is independent of i. Toward that purpose, note that f(ajvi−aivj ,vi+vj) = 0.
By reflexivity, f(vi + vj , ajvi − aivi) = σ(aj)ai − σ(ai)aj = 0 which proves
the claim.

It follows from what we have just proved that ai

aj
∈ F〈σ〉 := {a ∈ F|σ(a) = a},

the fixed field of σ which we denote by E. We next prove that σ2 = IF.

Let c ∈ F and set v′
1 = cv1 and a′1 = f(v′

1,v
′
1) = cσ(c)a1. By the above proof

it follows that
a′
1

a2
∈ E. This implies that cσ(c) ∈ E. We then have

cσ(c) = σ(cσ(c))

= σ(c)σ2(c),

from which we conclude that σ2(c) = c. Since c is arbitrary, it follows that
σ2 = IF. Now set ǫ = a1

σ(a1)
= ai

σ(ai)
. For the remainder of this proof we use

the bar notation: σ(a) = a. We will show that for any v,w ∈ V , f(w,v) =
ǫf(v,w). Let v =

∑n
i=1 civi,w =

∑n
i=1 divi. Then

f(v,w) =

n∑

i=1

ciaidi, f(w,v) =

n∑

i=1

diaici.

Since ai

σ(ai)
= ǫ, ǫai = ai. Thus,

ǫf(v,w) = ǫ

n∑

i=1

ciaidi =

n∑

i=1

ciǫaidi =

n∑

i=1

diaici = f(w,v).

Now set γ = a1 and g = γf . Then f and g are equivalent. We claim that
g(w,v) = g(v,w) for all v,w ∈ V . Thus,

g(w,v) = γf(w,v)

= γǫf(v,w)

= a1ǫf(v,w)

= a1f(v,w)

= γf(v,w)

= γf(v,w)

= g(v,w).
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Exercises

1. Prove Lemma (9.2).

2. Prove Lemma (9.3).

3. Prove Theorem (9.1).

4. Prove Lemma (9.6).

5. Prove Lemma (9.7).

6. Assume f is a non-degenerate σ-sesquilinear form on a space V and that B =
(v1, . . . ,vn) is a basis of V . Prove that there exists a basis B′ = (v′

1, . . . ,v
′
n)

such that f(v′
i,vj) = 0 if i 6= j and f(v′

i,vi) = 1.

7. We continue with the notation and assumptions of Exercise 6. Let B∗ =
(v∗

1 , . . . ,v
∗
n) be the basis of V such that f(v∗

i ,v
′
j) = 0 if i 6= j and

f(v∗
i ,v

′
i) = 1. Assume B∗ = B. Does this imply that f is reflexive? Prove

or give a counterexample.

8. Let F be a field, σ a non-identity automorphism of E satisfying σ2 = IF, and
set E = Fσ. The extension E ⊂ F is Galois of degree two. Define trF/E : F → E
by trR/E(a) = a+ σ(a). Prove Range(trF/E) = E.
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9.2 Unitary Space

In this section we define the notion of a unitary space as well as an isometry
between unitary spaces. We show that the set of all isometries from a unitary
space to itself is a group. In our main theorem we prove Witt’s theorem for
non-degenerate unitary spaces.

What You Need to Know

To be successful in understanding the new material of this section, it is es-
sential that you have already mastered the following concepts: vector space,
basis of a vector space, dimension of a vector space, finite-dimensional vector
space, linear transformation, coordinate vector with respect to a basis, matrix
of a linear transformation, an algebra, determinant of a matrix or operator,
semilinear transformation, sesquilinear form, Hermitian form, skew-Hermitian
form, reflexive sesquilinear form, and the dual space of a vector space.

Let F be a field, σ an automorphism of F of order 2. For convenience we will
write a for σ(a) when a ∈ F. We set E = Fσ = {a ∈ F|a = a} so that the
extension E ⊂ F is a Galois extension of degree two. Let V be a vector space
over F. Recall a map f : V × V → F is said to be σ-Hermitian if

1) f(a1v1 + a2v2,w) = a1f(v1,w) + a2f(v2,w); and

2) f(w,v) = f(v,w).

Also, f is σ skew-Hermitian if 1) holds as well as

2′) f(w,v) = −f(v,w).

Definition 9.11 A unitary space is a pair (V, f) consisting of a finite-
dimensional vector space V over F and a σ-Hermitian form f , for some au-
tomorphism of F satisfying σ 6= IF = σ2.

Definition 9.12 Assume (V, f) is a unitary space. A non-zero vector v is
isotropic if f(v,v) = 0. The space V is isotropic if there exist isotropic
vectors in V . Otherwise the unitary space is anisotropic.

Example 9.5 If (V, 〈 , 〉) is a finite-dimensional complex inner product space,
then it is an anisotropic unitary space.

Definition 9.13 Let (V, f) and (W, g) be unitary spaces over the field F with
respect to the same automorphism σ. An isometry from V to W is a linear
isomorphism T : V → W such that for all vectors u,v ∈ V, g(T (u), T (v)) =
f(u,v).
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Definition 9.14 Let (V, f) be a non-degenerate unitary space. A sequence
S = (v1, . . . ,vm) such that ai = f(vi,vi) 6= 0 for 1 ≤ i ≤ m and f(vi,vj) = 0
for i 6= j is said to be orthogonal. If S is a basis of V , then it is referred to
as an orthogonal basis.

Lemma 9.10 Let (V, f) be a non-degenerate unitary space and S =
(v1, . . . ,vm) be an orthogonal sequence. Then S is linearly independent.

This is left as an exercise.

Lemma 9.11 Let (V, f) be a non-degenerate unitary space, S = (v1, . . . ,vn)
an orthogonal basis, and T an operator on V . Set wi = T (vi). Then T is
an isometry if and only if f(wi,wi) = f(vi,vi) for all i, 1 ≤ i ≤ n and
f(wi,wj) = 0 for all i 6= j.

This is left as an exercise.

Lemma 9.12 Assume (V, f) is a non-degenerate unitary space and assume
T is an isometry. Then T is invertible, T−1 is an isometry, and the collection
of all isometries is a subgroup of GL(V ).

Proof Let B = (v1, . . . ,vn). Set wi = T (vi) and B′ = (w1, . . . ,wn). By
Lemma (9.11) B′ is an orthogonal basis and, consequently, T is invertible. On
the other hand, T−1(wi) = vi and by the aforementioned lemma it follows
that T−1 is an isometry.

Clearly, the composition of isometries is an isometry and it then follows that
the collection of all isometries is a subgroup of GL(V ).

Definition 9.15 Let (V, f) be a non-degenerate unitary space. Denote by
U(V, f) the set {T ∈ L(V, V ) |f(T (v), T (w)) = f(v,w) for all v ∈ V }.
This is referred to as the unitary group of (V, f). Often, when the f is
understood, we will write U(V ) in place of U(V, f).

Definition 9.16 Let (V, f) be a unitary space. A U a subspace of V is said to
be non-degenerate if the restriction of f to U × U is non-degenerate. This
means for every u ∈ U,u 6= 0, there is a vector w ∈ U , such that f(u,w) 6= 0.
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Lemma 9.13 Assume (V, f) is a non-degenerate unitary space, X is a non-
degenerate subspace, and σ : X → X is an isometry. Define S : V → V as
follows: If v = x+ y where x ∈ X,y ∈ X⊥ then S(x+ y) = σ(x) + y. Then
S is an isometry of V . Often, when the f is understood, we will write U(V )
in place of

Proof Let x1,x2 ∈ X,y1,y2 ∈ X⊥. Then

f(S(x1 + y1), S(x2 + y2)) = f(σ(x1) + y1, σ(x2)) + y2) =

f(σ(x1), σ(x2)) + f(σ(x1),y2) + f(y1, σ(x2)) + f(y1,y2)) =

f(σ(x1), σ(x2) + f(y1 + y2) = f(x1,x2) + f(y1 + y2) = f(x1 + y1,x2 + y2).

Lemma 9.14 Assume (V, f) is a non-degenerate unitary space, v is an
isotropic vector in V , and u is a vector satisfying f(v,u) 6= 0. Then there
exists an isotropic vector w ∈ Span(v,u) such that f(v,w) = 1.

Proof Set c = f(v,u). By replacing u with 1
cu we can assume that f(v,u) =

1. If u is isotropic we are done; so assume f(u,u) = d 6= 0. Now f(u,u) =
f(u,u) so that f(u,u) ∈ E = F〈σ〉. By Exercise 8 of Section (9.1), there
exists an element a ∈ F such that a+ a+ f(u,u) = 0. Set w = av+u. Then
f(v,w) = f(v, av + u) = af(v,v) + f(v,u) = 1. Also,

f(w,w) = f(av + u, av + u)

= aaf(v,v) + af(v,u) + af(u,v) + f(u,u)

= a+ a+ f(u,u)

= 0.

Definition 9.17 Let (V, f) be a unitary space. A pair of vectors (v,w) such
that f(v,v) = f(w,w) = 0, f(v,w) = 1 is a hyperbolic pair.

Corollary 9.3 Assume (V, f) is a non-degenerate isotropic unitary space and
v ∈ V is isotropic. Then there exists w, an isotropic vector such that (v,w)
is a hyperbolic pair.

This is left as an exercise.
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Lemma 9.15 Assume (V, f) is a two dimensional non-degenerate isotropic
unitary space. Assume (v1,w1) and (v2,w2) are hyperbolic pairs. Define the
operator T on V by T (av1 + bw1) = av2 + bw2. Then T is an isometry.

This is left as an exercise.

Lemma 9.16 Assume (V, f) is an non-degenerate isotropic unitary space and
v,u are isotropic vectors. Then there exists an isometry T such that T (v) = u.

Proof First, assume that u = av for some a ∈ F. Let w be an isotropic
vector such that (v,w) is a hyperbolic pair. Then (av, 1aw) is also a hyperbolic
pair. By Lemma (9.15), the map T such that T (v) = av, T (w) = 1

aw and
T (x) = x for x ∈ Span(v,w)⊥ is an isometry. Next, assume that f(v,u) 6= 0.
If f(v,u) = 1, then the map T such that T (v) = u, T (u) = v, and T (x) = x

for x ∈ Span(u,v)⊥ is an isometry by the aforementioned lemma. Suppose
then that f(v,u) = c 6= 0. Then. by what we have just proved, there is an
isometry which takes v to 1

cu. By the first case, there is an isometry which
takes 1

cu to u. Composing yields an isometry taking v to u. Thus, we may
assume that (v,u) is linearly independent and u ⊥ v.

By Lemma (9.14), there exists an isotropic vector x such that (v,x) is a
hyperbolic pair and there is an isometry T with T (v) = x. If f(x,u) 6= 0
then there is an isometry S such that S(x) = u. Then the composition ST
takes v to u. Thus, we may assume that f(x,u) = 0. By the above argument
there exists an isotropic vector y such that (y,u) is a hyperbolic pair and
therefore an isometry taking y to u. If f(v,y) 6= 0, then we are done by the
above arguments, so we may assume that f(v,y) = 0. If f(x,y) 6= 0 then
there are isometries T1, T2, T3 such that T1(v) = x, T2(x) = y, T3(y) = u and
the composition T3T2T1 is the desired isometry taking v to u. Thus, we may
assume that f(x,y) = 0. But now z = x + y is isotropic and f(v, z) 6= 0 6=
f(z,u) and we are done.

For the remainder of this section we will assume that (V, f) is a non-degenerate
unitary space. Our main objective is to prove Witt’s Extension theorem. This
will imply that the unitary group U(V, f) has lots of transitivity on subspaces.

Definition 9.18 Let (V, f) be a unitary space with subspcaes X and Y . We
say that an isomorphism σ from X to Y is an isometry if f(σ(x1), σ(x2)) =
f(x1,x2).

Theorem 9.3 Assume X and Y are subspaces of the non-degenerate unitary
space (V, f) and τ : X → Y is an isometry. Then there exists an isometry
T : V → V such that T|X = τ .
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Proof Case 1) First assume X ∩ Y is a hyperplane of X (and therefore Y )
and that τ restricted to U = X ∩Y is the identity. Set W = {τ(z)−z|z ∈ X}
so that dim(W ) = 1 and let x be chosen from X such that w = τ(x)−x spans
W . We also set y = τ(x). We treat separately the two subcases: a) X * w⊥

and b) X ⊆ w⊥.

a) Suppose u ∈ U . We claim that f(u,w) = 0:

f(u,w) = f(u, τ(x)− x)

= f(u, τ(x))− f(u,x)

= f(τ(u), τ(x)) − f(u,x)

= f(u,x)− f(u,x)

= 0.

Since U is a hyperplane of X it follows that X ∩w⊥ = U . We next show that
y = τ(x) /∈ w⊥.

f(y,w) = f(τ(x),w)

= f(τ(x),w)

= f(τ(x), τ(x) − x)

= f(τ(x), τ(x)) − f(τ(x),x)

= f(x,x)− f(τ(x),x)

= f(x− τ(x),x)

= f(−w,x)

6= 0.

Consequently, Y = τ(X) is not contained in w⊥. Then Y ∩w⊥ is a hyperplane
of Y . Since U is a hyperplane of Y contained in w⊥ it follows that Y ∩w⊥ = U .
Choose a subspace Z so that w⊥ = U ⊕ Z. Since U ⊂ X, we have w⊥ =
U ⊕ Z ⊂ X + Z. Since Z ⊂ w⊥ it follows that

X ∩ Z = (X ∩w⊥) ∩ Z
= U ∩X = {0}.

In exactly the same way, Y ∩ Z = {0}. We claim that X ⊕ Z = Y ⊕ Z = V .
Now X ⊕Z contains U ⊕Z = w⊥. However, since X is not contained in w⊥

it follows that w⊥ is properly contained in X ⊕ Z. Since w⊥ is a hyperplane
of V we can conclude that X ⊕ Z. In exactly the same way, Y ⊕ Z = V .

Suppose now that x′ ∈ X and z ∈ Z. Then τ(x′) − x′ ∈ W ⊂ Z⊥ and
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therefore f(τ(x′) − x′, z) = 0, equivalently, f(τ(x′), z) = f(x′, z). Thus,
f(z,x′) = f(z, τ(x′)). Assume now that v is arbitrary in V . We can write
v = x′ + z for unique vectors x′ ∈ X and z ∈ Z. Now set T (v) = τ(x′) + z.
We claim that T is an isometry which extends τ . Thus, suppose v1 = x1 + z1
and v2 = x2 + z2 are two arbitrary vectors in V with x1,x2 ∈ X, z1, z2 ∈ Z.

f(T (v1), T (v2)) = f(T (x1 + z1), T (x2 + z2)

= f(τ(x1) + z1, τ(x2) + z2)

= f(τ(x1), τ(x2)) + f(τ(x1), z2) + f(z1, τ(x2)) + f(z1, z2)

= f(x1,x2) + f(x1, z2) + f(z1,x2)

= f(x1 + z1,x2 + z2)

= f(v1,v2).

Thus, T is an isometry.

b. Now assume that X ⊂ w⊥. Then, of course, U ⊂ w⊥. We claim that
Y ⊂ w⊥. Since U is a hyperplane of Y contained in Y , it suffices to prove
that y ∈ w⊥.

f(w,y) = f(y − x,y)

= f(y,y)− f(x,y)

= f(τ(x), τ(x)) − f(x,y)

= f(x,x)− f(x,y)

= f(x,x− y)

= f(x,−w)

= 0.

In the above we have used the fact that f(y,y) = f(τ(x), τ(x)) = f(x,x) since
τ is an isometry. We she also made use of the fact that −w = x−τ(x) = x−y.

It now follows that w is isotropic since

f(w,w) = f(w,y − x)

= f(w,x)− f(w,y)

= 0.

Thus, w ∈ w⊥. By Exercise 14 of Section (1.6), there exists a subspace Z
such that w⊥ = X ⊕ Z = Y ⊕ Z. Let γ be the operator on w⊥ such that
γ|X = τ and γ|Z is the identity map on Z. We claim that this is an isometry

of w⊥. A typical element of w⊥ can be written as ax+ v where v ∈ U ⊕ Z.
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For such an element, γ(ax+ v) = ay + v. We show that this is an isometry:
Let a1, a2 ∈ F,v1,v2 ∈ U ⊕ Z. Since vi ∈ w⊥ for i = 1, 2 and w = y − x it
follows that f(y,vi) = f(x,vi) for i = 1, 2. We then have

f(a1y + v1, a2y + v2) = a1a2f(y,y) + a1f(y,v2) + a2f(v1,y) + f(v1,v2)

= a1a2f(x,x) + a1f(x,v2) + a2f(v1,x) + f(v1,v2)

= f(a1x+ v1, a2x+ v2).

It remains to show that we can extend γ to an isometry of V . We have therefore
reduced to the case where X = Y = w⊥, τ acts as the identity on a hyperplane
U of w⊥ and for some x ∈ X \ U,w = τ(x) − x. Also, if we set y = τ(x)
then X = Span(y)⊕ U .

Now choose any element v1 ∈ V,v1 /∈ X = w⊥. Define F ∈ L(V,F)
such that F (t) = f(τ−1(t),v1) if t ∈ w⊥ and such that F (v1) = 0. Since
f is non-degenerate, by Lemma (9.5), there exists a vector v2 such that
F (v′) = f(v′,v2) for every vector v′ ∈ V . Then, for every vector v′ ∈ X =
w⊥, f(τ−1(v′),v1) = f(v′,v2). Consequently, f(v

′,v1) = f(τ(v′),v2) for ev-
ery v′ ∈ X = w⊥. If f(v1,v1) = f(v2,v2) then we can extend τ to T by defin-
ing T (v1) = v2. Consider the element v3 = v2 + aw. This element is not in
w⊥ since f(v3,w) = f(v2 + aw,w) = af(v2,w) + af(w,w) = f(v2,w) 6= 0.
We now compute f(v3,v3):

f(v3,v3) = f(v2 + aw,v2 + aw)

= f(v2,v2) + af(v2,w) + af(w,v2) + aaf(w,w)

= f(v2,v2) + af(v2,w) + af(w,v2).

By Exercise 8 of Section (9.1), there is an element b ∈ F such that b + b =
f(v1,v1)− f(v2,v2). Set a = b

f(w,v2)
. With this choice of a we get

f(v2 + aw,v2 + aw) = f(v2,v2) + af(v2,w) + af(w,v2)

= f(v2,v2) +
b

f(w,v2)
f(v2,w) +

b

f(w,v2)
f(w,v2)

= f(v2,v2) +
b

f(w,v2)
f(w,v2) +

b

f(w,v2)
f(w,v2)

= f(v2,v2) + b+ b

= f(v2,v2) + f(v1,v1)− f(v2,v2)

= f(v1,v1).

We can now extend τ to T : V → V by defining T (v1) = v3.
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Case 2) We now do the general case. We proceed by mathematical induction
on k = dim(X). If k = 1 then we are in case 1. So assume the result holds for
all isometries τ : X → Y where dim(Z) = k − 1 ≥ 1 and that dim(X) = k.
Choose a hyperplane X0 of X and set Y0 = τ(X0). By the inductive hypothesis
there exists an isometry R of V such that R|X0

= τ|X0
. Set ρ = R−1τ . Now

ρ is an isometry of X and ρ restricted to X0 is the identity. Now by case 1
there is an isometry S of V such that S restricted to X is ρ. Set T = RS.
This is the desired isometry of V .

As corollaries we have the following:

Corollary 9.4 Let (V, f) be a finite-dimensional non-degenerate isotropic
unitary space. Let U1, U2 be maximal totally isotropic subspaces of V . Then
dim(U1) = dim(U2).

This is left as an exercise.

Definition 9.19 Let (V, f) be a finite-dimensional non-degenerate isotropic
unitary space. The dimension of a maximal totally isotropic subspace of V is
the Witt index of V .

Corollary 9.5 Let (V, f) be a finite-dimensional non-degenerate isotropic
unitary space. Assume U1 and U2 are isometric subspaces of V . Then U⊥

1

and U⊥
2 are isometric.

This is an exercise.

Exercises

1. Prove Lemma (9.10).

2. Prove Lemma (9.11).

3. Prove Corollary (9.3).

4.Prove Lemma (9.15).

5. Prove Corollary (9.4).

6. Prove Corollary (9.5).

7. Let (V, f) be a non-degenerate unitary space of dimension two over the field
F and let E denote the fixed field of the automorphism σ,E = {a ∈ F | σ(a) =
a = a}. Define the norm of an element of E by ‖ a ‖= aa. Assume that the
norm is surjective. Prove that (V, f) is isotropic and spanned by a hyperbolic
pair.

8. Continue with the hypotheses on F,E, and the norm map N : F → E.
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Assume that (V, f) is a non-degenerate unitary space of dimension n. Prove
that the Witt index of V is ⌊n

2 ⌋.
9. Let (V, f) be a finite-dimensional non-degenerate isotropic unitary space
over the field F. Prove that V has a basis of isotropic vectors.

10. Let (V, f) be a finite-dimensional, non-degenerate unitary space. Prove
that there exists an orthogonal basis for V .

11. Assume E ⊂ F is a Galois extension of degree two with Galois group
generated by σ. Denote images under σ with the bar notation. Assume that
the norm map from F to E given by N(a) = aa is surjective. Assume (V, f) is
a non-degenerate unitary space of dimension two over F. Prove that (V, f) is
isotropic.
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This chapter is devoted to tensor products of vector spaces and related top-
ics such as the symmetric and exterior algebras. The term, tensor product,
arises from its applications in differential geometry where it may be applied
to the tangent or cotangent space of a manifold, but its utility is ubiquitous
throughout mathematics. For example, in group theory, the tensor product
is used to construct group representations. In other algebraic contexts, the
tensor product is used to extend the base field of a vector space, for example,
from the field of real numbers to the field of complex numbers.

In the first section, we define the tensor product of vector spaces as the solu-
tion to a certain universal mapping problem and prove that it exists. In the
second section, we make use of the definition of the tensor product to prove
some “functorial” properties, such as how the tensor product behaves with
respect to direct sums. We show how a tensor product of linear transforma-
tions can be defined to obtain a transformation from one tensor product to
another. Finally, we investigate how to compute the matrix of a tensor prod-
uct of transformations from the matrices of those transformations. In section
three, we use the tensor product to construct a universal associative algebra
for a given vector space V , the tensor algebra of V . In section four we introduce
the notion of a Z-graded algebra and related concepts such as a homogeneous
ideal. We apply these ideas to the tensor algebra and construct the symmet-
ric algebra of a vector space as the quotient space of the tensor algebra by
a particular homogeneous ideal. We show that the symmetric algebra of an
n-dimensional vector space over a field F is isomorphic to the algebra of poly-
nomials in n commuting variables. We also show that the symmetric algebra
is a solution to a universal mapping problem. In section five we construct the
exterior algebra of a vector space V as the quotient of the tensor algebra of
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V by a homogeneous ideal. We determine the dimension of this algebra as
well as the dimensions of its homogeneous parts. We will further show how a
linear transformation from a vector space V to a vector space W induces a
linear transformation on the exterior algebra and its homogeneous pieces. In
the final section we introduce the notion of a Clifford algebra of an orthogonal
space (V, φ) and, making use of the tenor algebra of V , show that it exists.
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10.1 Introduction to Tensor Products

In this section we define the tensor product of two or more vector spaces over
a field F and prove its existence and uniqueness (up to isomorphism).

What You Need to Know

To be successful in understanding the new material of this section, it is es-
sential that you have already mastered the following concepts: vector space,
basis of a vector space, dimension of a vector space, finite-dimensional vector
space, linear transformation, coordinate vector with respect to a basis, matrix
of a linear transformation, an algebra over a field, multilinear map, multilinear
form, bilinear map, bilinear form, quotient space defined by a subspace U of
a vector space V , cosets of a subspace U contained in a vector space V.

The tensor product will be the solution to what is known as a universal

mapping problem. It is difficult to give even an informal definition without
introducing category theory and so various examples will have to suffice. The
following is a simple example which illustrates what is going on.

Definition 10.1 Fix a field F and let X be any set. A vector space V over F
is said to be based on X if there is a map i : X → V such that, whenever
there is a map j : X →W, where W is a vector space over F, then there exists
a unique linear transformation T : V →W such that j = T ◦ i.

This universal mapping problem is represented by diagrams such as the those
in Figures (10.1) and (10.2). The first shows the initial conditions: the maps
from X to V and W . The second shows the linear map from V to W. It is
understood that the second diagram “commutes” which means that whichever
path you take from X to W , directly via j or indirectly by first going to V via
i and then to W via the linear map T , the result is the same, that is, j = T ◦ i.

X V

W

i

j

FIGURE 10.1
Initial condition: Vector space based on the set X
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X V

W

i

j

T

FIGURE 10.2
Solution: Vector space based on the set X

A solution to this particular problem will consist of any vector space V which
has a basis B with the same cardinality as X . Then the map i can be taken
to be any bijection between X and B. However, how do we know that such a
vector space exists? Since we will need this for the construction of the tensor
product, we give a formal construction.

Recall by Mfin(X,F) we mean the set of all functions f : X → F such that
the support of f is finite. Here the support of f , denoted by spt(f), consists
of those elements in X such that f(x) 6= 0. Thus, set V = Mfin(X,F). For
x ∈ X, let χx be the map from X to F such that χx(y) = 1 if y = x and
0 otherwise. Finally, define i : X → V by i(x) = χx. Our first claim is the
B = {χx|x ∈ X} is a basis of V.

Suppose that {x1, . . . , xn} is a finite subset of X , c1, . . . , cn are scalars and
f = c1χx1 + . . . cnχxn

= 0, the zero function. Evaluating f at xi we get
0 = f(xi) = ciχxi

(xi) = ci. Thus, each ci = 0 and B is linearly independent.

On the other hand, suppose f ∈ V, f 6= 0. Let spt(f) = {x1, . . . , xn} and
f(xi) = ci. Set g = c1χx1 + · · ·+ cnχxn

. If x ∈ X \ {x1, . . . , xn} then f(x) =
g(x) = 0. On the other hand, g(xi) =

∑n
j=1 cjχxj

(xi) = ci = f(xi). Thus,
f = g, a linear combination of B.
Finally, we claim that (V, i) is a vector space over F based on X. So assume
W is a vector space over F and j : X →W is any map. We need to prove that
there is a unique linear map T : V → W such that T ◦ i = j. Well, we can
define a map τ : B →W by τ(χx) = j(x). Since B is a basis of V by Theorem
(2.7), there is a unique linear map T : V → W such that T restricted to B is
τ. It then follows that (T ◦ i)(x) = T (χx) = τ(χx) = j(x) as required.

Similar problems will define the tensor product, but before we get to that, we
recall an essential definition:

Let V1, . . . , Vm,W be vector spaces over a field F. A map f : V1×· · ·×Vm →W
is m-multilinear, or just multilinear, if the function obtained from Vi to W,
when all the other arguments are fixed, is a linear transformation. That is,
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for v1 ∈ V1, . . . ,vi−1 ∈ Vi−1,vi+1 ∈ Vi+1, . . . ,vm ∈ Vm,vi,v
′
i ∈ Vi and scalars

c, c′ we have

f(v1, . . . ,vi−1, cvi + c′v′
i,vi+1, . . . ,vm)

= cf(v1, . . . ,vi−1,vi,vi+1, . . . ,vm) + c′(v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vm).

Definition 10.2 Let V1, . . . , Vm be vector spaces over a field F. A pair (V, γ)
consisting of a vector space V over F and a multilinear map γ : V1×· · ·×Vm →
V is a tensor product of V1, . . . , Vm over F if, whenever W is a vector space
over F and f : V1 × · · · × Vm → W is a multilinear map, then there exists a
unique linear map T : V →W such that T ◦ γ = f.

Remark 10.1 Let V1, . . . , Vm be vector spaces over F and suppose (V, γ) is
a tensor product of V1, . . . , Vm over F. Since γ : V1 × · · · × Vm → V is a
multilinear map, it is a consequence of the fact that (V, γ) is a tensor product
that there is a unique linear map S : V → V such that S ◦ γ = γ. Since, in
fact, IV ◦ γ = γ it follows that S = IV .

Notation Hereafter, when f : X → Y and g : Y → Z are functions, we will
write gf for the composition g ◦ f unless that latter is required for clarity.

Before we give the construction and prove the existence of the tensor product
we first show that it is essentially unique (up to isomorphism).

Lemma 10.1 Let V1, . . . , Vm be vector spaces over the field F and assume
that (V, γ) and (Z, δ) are tensor products of V1, . . . , Vm over F. Then there
exist unique maps T : V → Z and S : Z → V satisfying the following:

i) ST = IV and TS = IZ ; and

ii) Tγ = δ, Sδ = T.

Proof Since (V, γ) is a tensor product of V1, . . . , Vm over F and δ is a multi-
linear map from V1, . . . , Vm to Z, there exists a unique linear map T : V → Z
such that Tγ = δ. In exactly the same way, there exists a unique linear map
S : Z → V such that Sδ = γ. It then follows that γ = Sδ = S(Tγ) = (ST )γ.
By Remark (10.1), we have ST = IV . In exactly the same way, TS = IZ .
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As a consequence of Lemma (10.1), we can speak of the tensor product of
vector spaces V1, . . . , Vm.

We now proceed to the general construction which makes use of quotient
spaces and cosets of a subspace U of a vector space V. The main idea is to
create a very large vector space, one with basis the set V1×· · ·×Vm and then
to take the quotient of this by a subspace that is created to take into account
the desired multilinearity.

Theorem 10.1 Let V1, . . . , Vm be vector spaces over the field F. Then the
tensor product of V1, . . . , Vm over F exists.

Proof Set X = V1 × · · · × Vm and let (Z, i) be the vector space based on X.
We identify each element x ∈ X with χx. It is important to remember that
elements of X are m-tuples. Because we are in the vector space Z, we can take
scalar multiples of these objects and add them (formally). So, for example, if
vi,v

′
i ∈ Vi, 1 ≤ i ≤ m, then there is an element (v1, . . . ,vm)+ (v′

1, . . . ,v
′
m) in

Z but we cannot combine them in any other way.

Given elements vi ∈ Vi, 1 ≤ i ≤ m and a scalar c, denote by ui,c(v1, . . . ,vm)
the following element of Z:

(v1, . . . ,vi−1, cvi,vi+1, . . . ,vm)− c(v1, . . . ,vi−1,vi,vi+1, . . . ,vm).

Next, assume v1 ∈ V1, . . . ,vm ∈ Vm and v′
i ∈ Vi.

Let ui(v1, . . . ,vi−1, (vi,v
′
i), vi+1, . . . ,vm) denote the following expression,

which is an element of Z:

(v1, . . . ,vi + v′
i, . . . ,vm)− (v1, . . . ,vi, . . . ,vm)− (v1, . . . ,v

′
i, . . . ,vm).

Let U be the subspace of Z generated by all elements ui,c(v1, . . . ,vm) and
ui(v1, . . . ,vi−1, (vi,v

′
i),vi+1, . . . ,vm). Set V = Z/U, the quotient space of Z

by the subspace U. Further, define the map γ : V1 × · · · × Vm → V by

γ(v1, . . . ,vm) = (v1, . . . ,vm) + U.

The image of (v1, . . . ,vm) ∈ V1×· · ·×Vm is the coset of U in Z with represen-
tative (v1, . . . ,vm). We claim that (V, γ) is the tensor product of V1, . . . , Vm
over F. To demonstrate this, we must first prove that γ is a multilinear map.
To do so, we have to show the following:
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1) If vi ∈ Vi, 1 ≤ i ≤ m and c ∈ F, then

γ(v1, . . . ,vi−1, cvi,vi+1, . . . ,vm) = cγ(v1, . . . ,vm). (10.1)

2) If vj ∈ Vj , 1 ≤ j ≤ n and v′
i ∈ Vi, then

γ(v1, . . . ,vi−1,vi + v′
i,vi+1, . . . ,vm)

= γ(v1, . . . ,vi−1,vi,vi+1, . . . ,vm) + γ(v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vm). (10.2)

1) The equality (10.1) is equivalent to

γ(v1, . . . ,vi−1, cvi,vi+1, . . . ,vm)− cγ(v1, . . . ,vm) = 0V .

By the definition of γ, we must show that

[(v1, . . . ,vi−1, cvi,vi+1, . . . ,vm) + U ]− [c(v1, . . . ,vm) + U ] = 0V .

Equivalently, we must show that

[(v1, . . . ,vi−1, cvi,vi+1, . . . ,vm)− c(v1, . . . ,vm)] + U = 0V .

Now it is imperative to recall what the zero vector of V is: It is the coset U
and for an element z ∈ Z we get z + U = U precisely when z ∈ U. In the
present case, the representative of the coset is ui,c(v1, . . . ,vm), which, indeed,
belongs to U.

2) is equivalent to showing that

γ(v1, . . . ,vi−1,vi + v′
i,vi+1, . . . ,vm)

−γ(v1, . . . ,vi−1,vi,vi+1, . . . ,vm)

−γ(v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vm) = 0V .

Using the definition of γ, we need to show that

(v1, . . . ,vi−1,vi + v′
i,vi+1, . . . ,vm)

−(v1, . . . ,vi−1,vi,vi+1, . . . ,vm)

−(v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vm) ∈ U.
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However, this is just the element ui(v1, . . . ,vi−1, (vi,v
′
i),vi+1, . . . ,vm), which

is in U as required.

Now that we have established that γ is multilinear we need to prove that the
universal mapping property is satisfied. Toward that end, supposeW is a vector
space over F and f : V1 × · · · × Vm → W is a multilinear map. We need to
show that there exists a unique linear map T : V →W such that Tγ = f.

Recall that V1 × · · · × Vm = X and that Z is the vector space based on X.
Since W is a vector space and f is a map from X to W , by the universal
property of Z there exists a unique linear transformation S : Z → W such
that S restricted to X is f. We next claim that the subspace U is contained
in the kernel of S. It suffices to prove that the generators ui,c(v1, . . . ,vm)
and ui(v1, . . . ,vi−1, (vi,v

′
i),vi+1, . . . ,vm) are in the kernel of S. Consider

S(ui,c(v1, . . . ,vn)).

S(ui,c(v1, . . . ,vn))

= S((v1, . . . ,vi−1, cvi,vi+1, . . . ,vm)− c(v1, . . . ,vm)). (10.3)

By the linearity of S we get that (10.3) is equal to

S((v1, . . . ,vi−1, cvi,vi+1, . . . ,vm))− cS((v1, . . . ,vm)). (10.4)

Since both (v1, . . . ,vi−1, cvi,vi+1, . . . ,vm) and (v1, . . . ,vm) are elements of
X = V1 × · · · × Vm, we therefore have

S((v1, . . . , cvi, . . . ,vm)) = f((v1, . . . , cvi, . . . ,vm)), (10.5)

S((v1, . . . ,vi, . . . ,vm)) = f((v1, . . . ,vi, . . . ,vm)). (10.6)

Substituting (10.5) and (10.6) into (10.4) we get

S((v1, . . . ,vi−1, cvi,vi+1, . . . ,vm))− cS((v1, . . . ,vm))

= f((v1, . . . ,vi−1, cvi,vi+1, . . . ,vm))− cf((v1, . . . ,vm)) = 0W . (10.7)

The latter equality in (10.7) holds because f is multilinear.

Now consider S(ui(v1, . . . ,vi−1, (vi,v
′
i),vi+1, . . . ,vm)). Set x = (v1, . . . ,vi−1,

vi,vi+1, . . . ,vm),x′ = (v1, . . . ,vi−1,v
′
i,vi+1, . . . ,vm), and y = (v1, . . . ,vi−1,vi+

v′
i,vi+1, . . . ,vm) so that ui(v1, . . . ,vi−1, (v1,v

′
i),vi+1, . . . ,vm) = y − x− x′.

Now
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S(ui(v1, . . . ,vi−1, (vi,v
′
i),vi+1, . . . ,vm))

S(y − x− x′) (10.8)

By the linearity of S, (10.8) is equal to

S(y)− S(x)− S(x′) =

S((v1, . . . ,vi+v′
i, . . . ,vm))−S((v1, . . . ,vi, . . . ,vm))−S((v1, . . . ,v

′
i, . . . ,vm)).

Each of (v1, . . . ,vi+v′
i, . . . ,vm), (v1, . . . ,vi, . . . ,vm), and (v1, . . . ,v

′
i, . . . ,vm)

belongs to V1 × · · · × Vm = X and therefore

S((v1, . . . ,vi + v′
i, . . . ,vm)) = f((v1, . . . ,vi + v′

i, , . . . ,vm)),

S((v1, . . . ,vi, . . . ,vm)) = f((v1, . . . ,vi, . . . ,vm)),

S((v1, . . . ,v
′
i, . . . ,vm)) = f((v1, . . . , ,v

′
i, . . . ,vm)).

Then

S((v1, . . . ,vi+v′
i, . . . ,vm))−S((v1, . . . ,vi, . . . ,vm))−S((v1, . . . ,v

′
i, . . . ,vm))

= f((v1, . . . ,vi+v′
i, . . . ,vm))−f((v1, . . . ,vi, . . . ,vm))−f((v1, . . . ,v

′
i, . . . ,vm))

= 0W .

The last equality follows by the multilinearity of f.

Since U is contained in kernel(S) we may use Theorem (2.16) to conclude that
there is a unique linear transformation T : Z/U → W such that T (z + U) =
S(z). We finally claim that Tγ = f :

(Tγ)(v1, . . . ,vm) = T (γ(v1, . . . ,vm)) = T ((v1, . . . ,vm) + U)

= S(v1, . . . ,vm) = f(v1, . . . ,vm).
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We will denote the quotient space Z/U by V1 ⊗ · · · ⊗ Vm and refer to this as
the tensor product of V1, . . . , Vm. Also, for vi ∈ Vi, 1 ≤ i ≤ m, we will denote
by v1 ⊗ · · · ⊗ vn the element γ(v1, . . . ,vm) = (v1, . . . ,vm) + U . Using this
notation, we can reformulate the multilinearity of γ as follows:

For vectors vj ∈ Vj , 1 ≤ j ≤ m and scalar c,

v1 ⊗ . . .vi−1 ⊗ cvi ⊗ vi+1 ⊗ · · · ⊗ vm = c(v1 ⊗ · · · ⊗ vm).

For vectors vj ∈ Vj , 1 ≤ j ≤ m and v′
i ∈ Vi,

v1 ⊗ · · · ⊗ vi−1 ⊗ (vi + v′
i)⊗ vi+1 ⊗ · · · ⊗ vm =

(v1 ⊗ · · · ⊗ vi−1 ⊗ vi ⊗ vi+1 ⊗ vm) + (v1 ⊗ · · · ⊗ vi−1 ⊗ v′
i ⊗ vi+1 ⊗ · · · ⊗ vm.

In our next result, we show how, given bases for V1, . . . , Vm, to obtain a basis
for V1 ⊗ · · · ⊗ Vm.

Theorem 10.2 For each i, 1 ≤ i ≤ m, let Vi be a vector space over F with
basis Bi. Set B = {v1 ⊗ · · · ⊗ vm|vi ∈ Bi, 1 ≤ i ≤ m}. Then B is a basis for
V1 ⊗ · · · ⊗ Vm.

Proof Set X ′ = B1 × · · · × Bm and let Z ′ be the subspace of Z which is
spanned by X ′. Identify each element x = (v1, . . .vm) ∈ X ′ with χx ∈ Z ′.
Since Vi is spanned by Bi for each i there is a unique multilinear map γ′ :
V1×· · ·×Vm → Z ′ such that γ′ restricted to X ′ is the identity. We claim that
(Z ′, γ′) is the tensor product of V1, . . . , Vm.

Toward that end, assume that W is a vector space and f : V1× · · ·×Vm →W
is a multilinear map. Let f̂ be the restriction of f to X ′ ⊂ V1×· · ·×Vm. Since
X ′ is a basis for Z ′, there is a unique linear transformation τ : Z ′ →W such
that τ restricted to X ′ is f̂ . We will be done if we can prove that τ ◦ γ′ = f.
Now τ ◦ γ′ restricted to X ′ is f̂ . Since each Vi is spanned by Bi and f is
multilinear, it follows that τ ◦ γ′ = f as required.

Now by Lemma (10.1) there are isomorphisms τ : Z/U → Z ′ and τ ′ : Z ′ →
Z/U such that τ◦τ ′ = IZ′ and τ ′◦τ = IZ/U . Since X

′ is a basis for Z ′ and τ ′ is
an isomorphism, it then follows that τ ′(X ′) is a basis for Z/U = V1⊗· · ·⊗Vm.

When Vi is finite-dimensional for each i, 1 ≤ i ≤ m, we get the following
result:

Corollary 10.1 Let V1, . . . , Vm be vector spaces over F with dim(Vi) = ni.
Then dim(V1 ⊗ · · · ⊗ Vm) = n1n2 . . . nm.
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We complete this section with an application of the tensor product to algebras.

LetA,A′ be algebras over the field F. Consider the tensor product A = A⊗A′.
We will define a product on this which will make it into an F-algebra. Let ζ
be the map from A×A′ ×A×A′ to A⊗A′ defined by

ζ(a,a′, b, b′) = (ab)⊗ (a′b′).

Then ζ is a four-linear map. It then follows that there is a linear map Z from
A⊗A′ ⊗A⊗A′ to A⊗A′ such that

Z(a⊗ a′ ⊗ b⊗ b′) = (ab)⊗ (a′b′).

This then defines a bilinear map Z ′ from [A⊗A′]2 such that

Z ′(a ⊗ a′, b⊗ b′) = (ab)⊗ (a′b′).

Taking Z ′ as multiplication in A⊗A′, this space becomes an algebra.

Exercises

Many of these exercises involve tensor products of two vector spaces. These
can be generalized to m vector spaces in a straightforward way but have been
limited to this case to simplify the statements and the solutions.

1. Let V1, V2 be vector spaces with respective bases B1,B2. Suppose W is a
vector space and f : B1×B2 →W is a (set) map. Prove that there is a unique

bilinear map f̂ from V1 × V2 →W such that f̂ restricted to B1 × B2 is f.

2. Let V1 and V2 be vector spaces over the field F. Use the fact that the tensor
product is a solution to a universal mapping problem to prove that V1 ⊗ V2
and V2 ⊗ V1 are isomorphic.

3. Let V1 and V2 be vector spaces over the field F. Assume fi ∈ L(Vi,F),
i = 1, 2. Define f : V1 × V2 → F by f(v1,v2) = f1(v1)f2(v2). Prove that f is
a bilinear form.

4. Let V and W be vector spaces over F. An element t of V ⊗W is said to be
decomposable if there are vectors v ∈ V and w ∈ W such that t = v ⊗w

and indecomposable otherwise. Prove if dim(V ) > 1 and dim(W ) > 1, then
there exists indecomposable elements in V ⊗W.

5. Let (v1, . . . ,vn) be linearly independent in the vector space V and wi ∈
W, 1 ≤ i ≤ n, be vectors in the space W. Assume

∑n
i=1 vi ⊗ wi = 0V⊗W .

Prove that w1 = · · · = wn = 0W .

6. Let V and W be finite-dimensional vector spaces over F and Z a vector
space over F. Assume there is a bilinear map f : V ×W → Z which satisfies
the following:
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a) For every z ∈ Z, there is a natural number m and vectors v1, . . . ,vm ∈
V,w1, . . . ,wm ∈W such that z = f(v1,w1) + · · ·+ f(vm,wm).

b) If (x1, . . . ,xn) is a basis for V , yi ∈ W, 1 ≤ i ≤ n, and f(x1,y1) + · · · +
f(xn,yn) = 0, then y1 = · · · = yn = 0W .

Prove that (Z, f) is the tensor product of V and W.

7. Let V,W, and Z be vector spaces over a field F. Use the fact that the tensor
product is a solution to a universal mapping problem to prove that B(V,W ;Z)
is isomorphic to L(V ⊗W,Z).

8. Let V be a vector space over the field F and treat F as a vector space over
F of dimension 1. Prove that F⊗ V is isomorphic to V.

9. Let V,W be vector spaces over a field F and assume that X is a subspace
of V and Y is a subspace of W. Let Z be the subspace of V ⊗W spanned by
all elements x ⊗ y where x ∈ X,y ∈ Y . Prove that Z can be identified with
X ⊗ Y.

10. Let V and W be finite-dimensional vector spaces over the field F and
Y1, Y2 subspaces of W. From Exercise 9, we may identify V ⊗ Y1 and V ⊗ Y2
as subspaces of V ⊗W. Prove that (V ⊗ Y1) ∩ (V ⊗ Y2) = V ⊗ (Y1 ∩ Y2).
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10.2 Properties of Tensor Products

In this section we make use of the definition of the tensor product as the
solution to a universal mapping problem to prove several functorial properties.
We show how a tensor product of linear transformations can be defined to
obtain a transformation from one tensor product to another. We also show
how to compute the matrix of a tensor product of transformations from the
matrices of the transformations.

What You Need to Know

To make sense of the new material in this section, it is essential that you have
mastery over the following concepts: vector space, basis of a vector space,
dimension of a vector space, finite-dimensional vector space, linear transfor-
mation, coordinate vector with respect to a basis, matrix of a linear trans-
formation, an algebra over a field, multilinear map, multilinear form, bilinear
map, bilinear form, and the tensor product of vector spaces.

Most of the proofs in this section will make use of the definition of a tensor
product of vector spaces and exploit the uniqueness of the tensor product as
demonstrated in Theorem (10.1). Our first result will lead to an associativity
property and ultimately be used in the definition of the tensor algebra of a
vector space.

Theorem 10.3 Let V1, . . . , Vs,W1, . . . ,Wt be vector spaces over the field F.
Then (V1⊗· · ·⊗Vs)⊗(W1⊗· · ·⊗Wt) is isomorphic to V1⊗· · ·⊗Vs⊗W1⊗· · ·⊗Wt.

Proof For notational convenience, set

V = V1 ⊗ · · · ⊗ Vs,W =W1 ⊗ · · · ⊗Wt

X = V ⊗W,Y = V1 ⊗ · · · ⊗ Vs ⊗W1 ⊗ · · · ⊗Wt.

Let f be the map from V1 × · · · × Vs ×W1 × · · · ×Wt to X given by

f(v1, . . . ,vs,w1, . . . ,wt) = (v1 ⊗ · · · ⊗ vs)⊗ (w1 ⊗ · · · ⊗wt).

The map f is multilinear and therefore by the universality of Y there is a
linear map T : Y → X such that

T (v1 ⊗ · · · ⊗ vs ⊗w1 ⊗ · · · ⊗wt) = (v1 ⊗ · · · ⊗ vs)⊗ (w1 ⊗ · · · ⊗wt).
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We will prove the existence of a linear map S : X → Y such that

S((v1 ⊗ · · · ⊗ vs)⊗ (w1 ⊗ · · · ⊗wt)) = v1 ⊗ · · · ⊗ vs ⊗w1 ⊗ · · · ⊗wt.

Since X is generated by all elements (v1 ⊗ · · · ⊗ vs)⊗ (w1 ⊗ · · · ⊗wt) and Y
is generated by all elements v1 ⊗ · · · ⊗ vs ⊗w1 ⊗ · · · ⊗wt, it follows that S
and T are inverses of each other and consequently X and Y are isomorphic.

Let wj ∈ Wj , 1 ≤ j ≤ t and let g(w1, . . . ,wt) be the map from V1 × · · · × Vs
to Y given by g(w1, . . . ,wt)(v1, . . . ,vs) = v1 ⊗ · · · ⊗vt ⊗w1 ⊗ · · ·⊗wt. Then
g(w1, . . . ,wt) is a multilinear map and therefore by the universality of V there
exists a linear map σ(w1, . . . ,wt) from V to Y. By varying (w1, . . . ,wt) ∈
W1 × · · ·×Wt, we get a map σ from W1× · · · ×Wt to L(V, Y ). We claim that
σ is a multilinear map. For example, suppose w′

1 ∈ W1. Then

σ(w1 +w′
1,w2, . . . ,wt)(v1 ⊗ · · · ⊗ vs) = g(w1 +w′

1,w2, . . . ,wt)(v1, . . . ,vs)

= v1 ⊗ · · · ⊗ vs ⊗ (w1 +w′
1)⊗ · · · ⊗wt

= v1 ⊗ · · · ⊗ vs ⊗w1 ⊗ · · · ⊗wt + v1 ⊗ · · · ⊗ vs ⊗w′
1 ⊗ · · · ⊗wt

= g(w1, . . . ,wt)(v1, . . . ,vs) + g(w′
1, . . . ,wt)(v1, . . . ,vs)

= σ(w1, . . . ,wt)(v1 ⊗ · · · ⊗ vs) + σ(w′
1,w2, . . . ,wt)(v1 ⊗ · · · ⊗ vs).

Since V is spanned by all vectors of the form v1 ⊗ · · · ⊗ vs it follows that
σ(w1 +w′

1,w2, . . . ,wt) = σ(w1, . . . ,wt) + σ(w′
1, . . . ,wt).

In a similar way, we can prove that σ(cw1, . . . ,wt) = cσ(w1, . . . ,wt). The
other arguments are proved in exactly the same way.

Since σ is a multilinear map from W1 × · · · ×Wt to L(V, Y ), there is a linear
map σ̂ : W → L(V,X) such that for wj ∈ Wj , 1 ≤ j ≤ t, σ̂(w1 ⊗ · · · ⊗wt) =
σ(w1, . . . ,wt). Now define the map h : V ×W → Y by h(v,w) = σ(w)(v).
This is a bilinear map as can be easily checked. It follows by the universal
property of V ⊗W that there is a linear map S : V ⊗W → Y such that for
v ∈ V,w ∈ W,S(v ⊗ w) = h(v,w) = σ̂(w)(v). In particular, this is true if
v = v1 ⊗ · · · ⊗ vs and w = w1 ⊗ · · · ⊗wt. We then get

S((v1 ⊗ · · · ⊗ vs)⊗ (w1 ⊗ · · · ⊗wt)) = σ̂(w1 ⊗ · · · ⊗wt)(v1 ⊗ · · · ⊗ vs)

= σ(w1, . . . ,wt)(v1 ⊗ · · · ⊗ vs)

= v1 ⊗ · · · ⊗ vs ⊗w1 ⊗ · · · ⊗wt.

As an immediate corollary we have
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Corollary 10.2 Let V,W,X be vector spaces over the field F. Then the tensor
products V ⊗ (W ⊗X), (V ⊗W )⊗X, and V ⊗W ⊗X are isomorphic.

The following result can be proved by similar methods using the universal
property of the tensor product. It generalizes Exercise 2 of Section (10.1).

Theorem 10.4 Let V1, . . . , Vm be vector spaces over the field F and π a per-
mutation of {1, 2, . . . ,m}. Then V1⊗· · ·⊗Vm is isomorphic to Vπ(1)⊗· · ·⊗Vπ(m)

by a linear map which takes v1 ⊗ · · · ⊗ vm to vπ(1) ⊗ · · · ⊗ vπ(m).

Our next result shows how to extend transformations defined on two or more
vector spaces to a transformation of their tensor product.

Theorem 10.5 Let V1, . . . , Vn,W1, . . . ,Wn be vector spaces over the field F
and for each i, let Si : Vi → Wi be a linear transformation. Then there is a
unique linear transformation S : V1 ⊗ · · · ⊗ Vn → W1 ⊗ · · · ⊗Wn such that if
vi ∈ Vi, 1 ≤ i ≤ n, then S(v1 ⊗ · · · ⊗ vn) = S1(v1)⊗ · · · ⊗ Sn(vn).

Proof Denote by γ the canonical map from V1 × · · · × Vn to V1 ⊗ · · · ⊗ Vn,

γ(v1, . . . ,vn) = v1 ⊗ · · · ⊗ vn

and similarly denote by γ′ the corresponding map from W1 × · · · × Wn to
W1 ⊗ · · · ⊗Wn.

Let σ be the map from V1 × · · · × Vn to W1 ⊗ · · · ⊗Wn defined by

σ(v1, . . . ,vn) = S1(v1)⊗ · · · ⊗ Sn(vn).

Since γ′ is multilinear and each Si is linear, it follows that σ is multilinear.
By the universal property for V1⊗· · ·⊗Vn, it follows that there exists a unique
linear map S from V1 ⊗ · · ·⊗Vn to W1⊗ · · ·⊗Wn such that S ◦ γ = σ. Taking
the image of (v1, . . . ,vn) we get

S(v1 ⊗ · · · ⊗ vn) = S1(v1)⊗ · · · ⊗ Sn(vn).

Definition 10.3 Let Vi,Wi, 1 ≤ i ≤ n be vector spaces over the field F and
Si : Vi → Wi be linear transformations. We denote by S1 ⊗ · · · ⊗ Sn the
unique linear transformation S : V1 ⊗ · · · ⊗ Vn → W1 ⊗ · · · ⊗Wn such that
S(v1 ⊗ · · · ⊗ vn) = S1(v1) ⊗ · · · ⊗ Sn(vn) for vi ∈ Vi. We refer to this as the
tensor product of the linear transformations S1, . . . , Sn.
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The next lemma indicates what conclusions we can draw about the tensor
product of linear transformations from information about the individual trans-
formations.

Lemma 10.2 Let Si : Vi → Wi be linear transformations of the vectors spaces
V1, . . . , Vn,W1, . . . ,Wn over the field F. Then the following hold:

i) If each Si is surjective, then S1 ⊗ · · · ⊗ Sn is surjective.

ii) If each Si is injective, then S1 ⊗ · · · ⊗ Sn is injective.

iii) If each Si is an isomorphism, then S1 ⊗ · · · ⊗ Sn is an isomorphism.

iv) If Ti : Wi → Xi is a linear transformation where X1, . . . , Xn are vector
spaces over F, then (T1 ⊗ · · · ⊗ Tn)(S1 ⊗ · · · ⊗ Sn) = (T1S1)⊗ · · · ⊗ (TnSn).

v) If each Si is an isomorphism, then (S1 ⊗ · · · ⊗ Sn)
−1 = S−1

1 ⊗ · · · ⊗ S−1
n .

vi) If S′
j : Vj →Wj is also a linear transformation, then

S1⊗· · ·⊗(Sj+S
′
j)⊗· · ·⊗Sn = (S1⊗· · ·⊗Sj⊗· · ·⊗Sn)+(S1⊗· · ·⊗S′

j⊗· · ·⊗Sn).

vii) If c is a scalar, then for 1 ≤ j ≤ n

S1 ⊗ · · · ⊗ cSj ⊗ · · · ⊗ Sn = c(S1 ⊗ · · · ⊗ Sj ⊗ · · · ⊗ Sn).

Proof For notational ease we will prove these in the case that n = 2. The
general proof can be obtained in exactly the same way by changing 2 to n and
inserting dots (. . . ) between 2 and n.

i) We know that W1 ⊗W2 is spanned by all decomposable vectors w1 ⊗ w2,
where wi ∈Wi, i = 1, 2. It therefore suffices to prove that every decomposable
vectors inW1⊗W2 is in the range of S1⊗S2. However, as each Si is surjective,
given w1 ∈ W1,w2 ∈ W2, there exists v1 ∈ V1,v2 ∈ V2 such that S1(v1) =
w1, S2(v2) = w2. Then

(S1 ⊗ S2)(v1 ⊗ v2) = S(v1)⊗ S2(v2) = w1 ⊗w2.

ii) Let Bi be a basis for Vi for i = 1, 2. Then B1⊗B2 = {v1⊗v2|v1 ∈ B1,v2 ∈
B2} is a basis for V1 ⊗ V2. To show that S1 ⊗ S2 is injective, we need to
show that (S1 ⊗ S2)(B1 ⊗ B2) = {(S1 ⊗ S2)(v1 ⊗ v2)|v1 ∈ B1,v2 ∈ B2} =
{S1(v1)⊗ S2(v2)|v1 ∈ B1,v2 ∈ B2} is linearly independent. To do so we need
to show that for every finite subset of D of B1⊗B2 that (S1⊗S2)(D) is linearly
independent.

Suppose D = {x1⊗y1, . . . ,xt⊗yt}, where xi ∈ B1 and yi ∈ B2. Of course, it
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may be the case that not all xi or yi are distinct, so let (v11, . . . ,v1,m1) be dis-
tinct such that {v11, . . . ,v1,m1} = {x1, . . . ,xt} and, similarly, (v21, . . . ,v2,m2)
be distinct such that {v21, . . . ,v2,m2} = {y1, . . . ,yt}. Then D is contained in
E = {v1i⊗ v2j |1 ≤ i ≤ m1, 1 ≤ j ≤ m2}. Therefore, it is suffices to show that
(S1 ⊗ S2)(E) is linearly independent.

Since S1 is injective and (v11, . . . ,v1,m1) is linearly independent, it follows that
(S1(v11), . . . , S1(v1,m1)) is linearly independent inW1. Likewise, (S2(v21), . . . ,
S2(v2,m2)) is linearly independent in W2. Then (S1(v11), . . . , S1(v1,m1)) can
be extended to a basis B′

1 of W1 and (S2(v21), . . . , S2(v2,m2)) can be extended
to a basis B′

2 of W2. By Theorem (10.2), B′
1 ⊗ B′

2 is a basis of W1 ⊗ W2.
In particular, B′

1 ⊗ B′
2 is linearly independent. Consequently, (S1 ⊗ S2)(E) is

linearly independent.

iii) This follows from i) and ii).

iv) The linear map (T1S1)⊗ (T2S2) is the unique linear map from V1 ⊗ V2 to
X1 ⊗X2 that takes v1 ⊗ v2 to (T1S1)(v1) ⊗ (T2S2)(v2). However, the image
of v1 ⊗ v2 under the linear map (T1 ⊗ T2)(S1 ⊗ S2) is (T1 ⊗ T2)(S1(v1) ⊗
S2(v2)) = T1(S1(v1))⊗ T2(S2(v2)) = (T1S1)(v1) ⊗ (T2S2)(v2). Therefore, by
the uniqueness (T1 ⊗ T2)(S1 ⊗ S2) = (T1S1)⊗ (T2S2).

v) By part iv), we have (S1 ⊗ S2)(S
−1
1 ⊗ S−1

2 ) = (S1S
−1
1 )⊗ (S2S

−1
2 ) = IW1 ⊗

IW2 = IW1⊗W2 and (S−1
1 ⊗S−1

2 )(S1⊗S2) = (S−1
1 S1)⊗ (S−1

2 S2) = IV1 ⊗ IV2 =
IV1⊗V2 .

vi) Both maps (S1 + S′
1) ⊗ S2 and S1 ⊗ S2 + S′

1 ⊗ S2 take a vector v1 ⊗ v2

to (S1 + S′
1)(v1)⊗ S2(v2) and consequently they are identical. Likewise, S1 ⊗

(S2 + S′
2) = (S1 ⊗ S2) + (S′

1 ⊗ S2).

vii) Each of the linear maps (cS1)⊗S2, S1⊗(cS2) and c(S1⊗S2) take v1⊗v2 to
the vector c[S1(v1)⊗S2(v2)] and so they are identical linear transformations.

We will shortly investigate the relationship between the matrix of S1⊗· · ·⊗Sn

and the matrices of the transformations S1, . . . , Sn. However, before doing so,
we determine how the tensor product behaves with respect to direct sums. In
order to obtain our main result we need to get a characterization of the direct
sum of finitely many vector spaces.

Assume the vector space V = V1 ⊕ · · · ⊕ Vn is the external direct sum of
the spaces V1, . . . , Vn. Recall that V has as its underlying set the Cartesian
product V1 × · · · × Vn. Addition is given by

(v1, . . . ,vn) + (w1, . . . ,wn) = (v1 +w1, . . . ,vn +wn)

and scalar multiplication by

c(v1, . . . ,vn) = (cv1, . . . , cvn).
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Let 0i denote the zero vector of Vi and ǫi : Vi → V be the linear map defined
by ǫi(vi) = (01, . . . ,0i−1,vi,0i+1, . . . ,0n). Also, let πi : V → Vi be given by
πi(v1, . . . ,vn) = vi. Then the following hold:

a) πiǫi = IVi
; and

b)
∑n

i=1 ǫiπi = IV .

In fact, these properties characterize the space V as the direct sum of the
spaces V1, . . . , Vn. Making use of this we can now prove our result on direct
sums and tensor products:

Theorem 10.6 Assume W and V are vector spaces over the field F and V =
V1 ⊕ · · · ⊕ Vn. Then W ⊗ V is isomorphic to (W ⊗ V1)⊕ · · · ⊕ (W ⊗ Vn).

Proof Set ǫ̂i = IW⊗ǫi, a linear map fromW⊗Vi toW⊗V , and π̂i = IW⊗πi,
a linear map from W ⊗ V to W ⊗ Vi.

By part iv) of Theorem (10.4), we have π̂iǫ̂i = IW ⊗πiǫi = IW ⊗ IVi
. Further-

more, by parts iv) and vi) of that result

n∑

i=1

ǫ̂iπ̂i =

n∑

i=1

(IW ⊗ ǫiπi)

= IW ⊗
n∑

i=1

ǫiπi = IW ⊗ IV .

By the remarks preceding the theorem, these two conditions imply thatW⊗V =
W ⊗ (V1 ⊕ · · · ⊕ Vn) is isomorphic to (W ⊗ V1)⊕ · · · ⊕ (W ⊗ Vn).

We complete this section by determining the matrix for a linear transformation
obtained as the tensor product of linear transformations. We do this for the
case of the tensor product of two spaces, but the results can be extended to
the tensor product of finitely many spaces.

Let X be a vector space with basis BX = (x1, . . . ,xm) and Y a vector space
with basis (y1, . . . ,yn). We have shown by taking the tensor products of the
xi with the yj we obtain a basis for X ⊗ Y. However, our bases are more
than just independent spanning sets: they are ordered. We will adopt the
convention that we order a basis for a tensor product obtained by taking the
tensor product of bases lexicographically. This means that xi ⊗ yj comes
before xk ⊗ yl if either i < k or i = k and j < l. We will denote this basis by
BX ⊗ BY .

Let Si : Vi → Wi be linear transformations for i = 1, 2 and let BVi
=

(vi1, . . . ,vi,ni
) be a basis for Vi, i = 1, 2 and BWi

= (wi1, . . . ,wi,mi
) be a
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basis for Wi, i = 1, 2. Let A = MS1(BV1 ,BW1) and B = MS2(BV2 ,BW2).
Then A is an m1 × n1 matrix and B is an m2 × n2 matrix. Assume the en-
tries of A are aij and the entries of B are bkl. Recall that this means that

[S1(v1j)]BW1
=




a1j
a2j
...

am1,j


 and [S2(v2j)]BW2

=




b1j
b2j
...

bm2,j


 .

We want to determine the matrix of S1⊗S2 with respect to the bases BV1⊗BV2

and BW1 ⊗ BW2 . Thus, we have to determine the coordinates of the image
(S1 ⊗ S2)(v1i ⊗ v2j) with respect to the basis BW1 ⊗ BW2 .

(S1 ⊗ S2)(v1i ⊗ v2j) = S1(v1i)⊗ S2(v2j)

=

m1∑

k=1

akiw1k ⊗
m2∑

l=1

bljw2l

=

m1∑

k=1

m2∑

l=1

akibljw1k ⊗w2l.

Taking into account our lexicographical order, the coordinate vector of (S1 ⊗
S2)(v1i ⊗ v2j) with respect to BW1 ⊗ BW2 is the following vector:




a1ib1j
a1ib2j

...
a1ibm2,j

a2ib1j
a2ib2j

...
a2ibm2,j

...
am1,ib1j
am1,ib2j

...
am1,ibm2,j




.

Let b = [S2(v2j)]BW2
. In words, the coordinate vector of (S1⊗S2) of v1i⊗v2j

with respect to BW1 ⊗ BW2 is b multiplied by a1i followed by b multiplied by
a2i and so on until the last m1 coordinates are obtained by multiplying b by
am1,i. The form of this matrix will be much clearer after the next definition.
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Definition 10.4 Let A be an m1×n1 matrix with entries aij , 1 ≤ i ≤ m1, 1 ≤
j ≤ n1 and B an m2 ×n2 matrix. The tensor or Kronecker product of A
and B, denoted by A⊗B, is the block matrix




a11B a12B . . . a1,n1B
a21B a22B . . . a2,n1B
...

... . . .
...

am1,1B am1,2B . . . am1,n1B.




A⊗B is an m1m2 × n1n2 matrix.

We have thus proved

Theorem 10.7 Let Si : Vi →Wi be linear transformations for i = 1, 2, BVi
=

(vi1, . . . ,vi,ni
) be a basis for Vi, i = 1, 2, and BWi

= (wi1, . . . ,wi,mi
) be a basis

for Wi, i = 1, 2. Finally, set A = MS1(BV1 ,BW1) and B = MS2(BV2 ,BW2).

Then

MS1⊗S2(BV1 ⊗ BV2 ,BW1 ⊗ BW2) = A⊗B.

Exercises

1. Let V1, V2, V3 be vector spaces over a field F and π a permutation of {1, 2, 3}.
Prove that V1 ⊗ V2 ⊗ V3 is isomorphic to Vπ(1) ⊗ Vπ(2) ⊗ Vπ(3).

2. Let Si : Vi → Wi, 1 ≤ i ≤ m be linear transformations, where V1, . . . , Vm
are finite-dimensional vector spaces over the field F. Set Ri = Range(Si) and
R = Range(S1 ⊗ · · · ⊗ Sm). Prove that R = R1 ⊗ · · · ⊗Rm.

3. Let Si : Vi → Wi, 1 ≤ i ≤ m be linear transformations, where V1, . . . , Vm
are finite-dimensional vector spaces over the field F. Set Ki = Ker(Si) and
K = Ker(S1 ⊗ · · · ⊗ Sm). For 1 ≤ j ≤ m, set Xj = V1 ⊗ · · · ⊗ Vj−1 ⊗Kj ⊗
Vj+1 ⊗ · · · ⊗ Vm. Prove that K = X1 + · · ·+Xm.

4. Let A be a k × l matrix and B an m × n matrix. Prove that the rank of
A⊗B is rank(A)rank(B).

5. Let V andW be finite-dimensional vectors spaces, S an operator on V , and
T an operator onW. Prove that S⊗T is nilpotent if and only if S is nilpotent
or T is nilpotent.

6. Let V and W be finite-dimensional vector spaces, S a cyclic diagonalizable
operator on V with eigenvalues α1, . . . , αm, and T a cyclic diagonalizable
operator on W with eigenvalues β1, . . . , βn. Assume that αiβj are all distinct.
Prove that S ⊗ T is cyclic.

7. Give an example of a cyclic diagonalizable operator S on a space V with
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distinct eigenvalues and a cyclic diagonalizable operator T on a spaceW with
distinct eigenvalues such that S ⊗ T is not cyclic.

8. Let V and W be finite-dimensional vector spaces, S an operator on V, and
T an operator on W. Assume (S −αIV )

k = 0V→V and (T − βIW )l = 0W→W .
Prove that [(S ⊗ T )− αβ(IV ⊗ IW )]kl = 0V⊗W→V ⊗W .

9. Let V be a vector space over the field F and let K be an extension of F (a
field which contains F.) We have seen that by using the addition of K and the
restriction of the multiplication of K to F×K, that K becomes a vector space
over F.

Set VK = K ⊗F V (we have attached the subscript F to the tensor product
to indicate that this is a tensor product of F-spaces). Let c ∈ K and v̂ =∑n

i=1 ai ⊗F vi, an element in K⊗F V. Define the product cv̂ by

c

[
n∑

i=1

ai ⊗F vi

]
=

n∑

i=1

(cai)⊗F vi.

Prove that this satisfies the axioms for scalar multiplication and, consequently,
VK, is a vector space overK. This construction is known as “extending the base
field” of the space V. It is often used when non-linear irreducible factors divide
the minimum polynomial of an operator on a space V . In such a situation the
field K is taken to be an extension of F which contains all the roots of all the
irreducible polynomials that divide the minimum polynomial.

10. Assume V is a finite-dimensional vector space over F with basis B =
(v1, . . . ,vn) and that K is an extension field of F. Set v̂i = 1 ⊗F vi and

B̂ = (v̂1, . . . , v̂n). Prove that B̂ is a basis for VK.

11. Let V,W be finite-dimensional vector spaces over F and K an extension
field of F. Let LK(VK,WK) denote all K-linear transformations from the K-
space VK to the K-space WK. Prove that LK(VK,WK) is isomorphic to K ⊗F

L(V,W ) as K-spaces.

12. Assume Si : Vi → Vi, i = 1, 2 are operators of the finite-dimensional vector
spaces V1, V2. Prove that Tr(S1 ⊗ S2) = Tr(S1)Tr(S2).

13. Let E be an m×m elementary matrix. Prove that det(E⊗ In) = det(E)n.

14. Let V1 have dimension m, V2 have dimension n, and let Si : Vi → Vi be
operators. Prove that det(S1 ⊗ S2) = det(S1)

ndet(S2)
m.
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10.3 The Tensor Algebra

In this section we use the tensor product to construct a universal algebra for
a given vector space V.

What You Need to Know

To make sense of the new material in this section, it is essential that you
have mastery over the following concepts: vector space, direct sum of a fam-
ily of vector spaces, basis of a vector space, dimension of a vector space,
finite-dimensional vector space, linear transformation, coordinate vector with
respect to a basis, matrix of a linear transformation, an associative algebra
over a field, multilinear map, multilinear form, bilinear map, bilinear form,
the tensor product of vector spaces, and the tensor product of operators.

Before we begin our construction, we recall the definition of the direct sum

of an arbitrary collection of vector spaces:

Let C = {Vi|i ∈ I} be a collection of vector spaces over F. By the direct sum
⊕i∈IVi we mean the set of all maps f : I → ∪i∈IVi such that a) f(i) ∈ Vi;
and b) spt(f) is finite.

Addition and scalar multiplication in ⊕ C are defined pointwise: (f + g)(i) =
f(i) + g(i) and (cf)(i) = cf(i). Clearly, spt(f + g) ⊂ spt(f) ∪ spt(g) and
spt(cf) = spt(f) for c 6= 0, so, indeed, f + g, cf ∈ ⊕ C.
Let ǫi : Vi → ⊕i∈IVi be the map such that ǫi(v)(j) = 0Vj

if j 6= i and
ǫi(v)(i) = v.

We will need the following theorem that characterizes the direct sum of a
family of subspaces C as the solution to a universal mapping problem.

Theorem 10.8 Let C = {Vi|i ∈ I} be a family of vector spaces over a field F.
Let W be a vector space over F and assume there are linear maps gi : Vi →W.
Then there exists a unique linear transformation G : ⊕i∈IVi → W such that
G ◦ ǫi = gi.

Proof Let f ∈ ⊕i∈IVi so that f is a map from I to ∪i∈IVi with f(i) ∈ Vi
and spt(f) finite. Suppose then that spt(f) = {i1, . . . , it}. Then define G(f) =

t∑

j=1

gij (f(ij)).

We leave it to the reader to show that this is a linear transformation and if G
exists then it must be defined this way, that is, it is unique.
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Theorem 10.9 Assume C = {Vi|i ∈ I} and D = {Wi|i ∈ I} are two families
of vector spaces over a field F, both indexed by the set I. Assume Si : Vi →Wi

are linear transformations. Then there exists a unique linear transformation
S : ⊕i∈IVi → ⊕i∈IWi such that S(f)(i) = Si(f(i)).

Proof Let i ∈ I and let Ŝi : Vi → ⊕i∈IWi as follows: Ŝi(x)(j) = 0Wj
if

j 6= i and Ŝi(x)(i) = Si(x). This is a linear transformation. By Theorem
(10.8) there is a unique linear map S : ⊕i∈IVi → ⊕i∈IWi such that S(f)(i) =

Ŝi(f(i)) = S(f(i)).

We will need the following lemma:

Lemma 10.3 Let C = {Vi|I ∈ I} and D = {Wi|i ∈ I} be two families
of vector spaces over a field F and for each i ∈ I, let Si : Vi → Wi be a
linear transformation. Let S : ⊕i∈IVi → ⊕i∈IWi be the linear map such that
S(f)(i) = Si(f(i)). Then the following hold:

i) If each Si is surjective then S is surjective.

ii) If each Si is injective then S is injective.

iii) If each Si is bijective then S is bijective.

Proof i) Let g ∈ ⊕i∈IWi. Let J = spt(g). Since each Sj is surjective for
j ∈ J there exists vj ∈ Vj such that Sj(vj) = g(j). Now let f ∈ ⊕i∈IVi be the
element with spt(f) = J and for j ∈ J, f(j) = vj. Then S(f) = g and S is
surjective.

ii) Suppose f ∈ Ker(S). Then for each i ∈ I, Si(f(i)) = 0Wi
. However, since

Si is injective it follows that f(i) = 0Vi
and therefore f is the identity of

⊕i∈IVi.

iii. This follows from i) and ii).

We will also need to recall some concepts about algebras over a field F.

An associative algebra over a field F is a pair (A, ·) consisting of a vector
space A over F together with a map · : A×A denoted by (a1, a2) → a1 · a2,
which is bilinear and also satisfies (a1 · a2) · a3 = a1 · (a2 · a3).
Also, if A and A′ are algebras over F, by an algebra homomorphism we mean
a linear transformation σ : A → A′ such that σ(a · b) = σ(a) · σ(b).
Now let V be a vector space over the field F. We define a sequence of vector
spaces Tk(V ) for k ∈ N ∪ {0} = Z≥0 as follows:

T0(V ) = F, T1(V ) = V and for k > 1
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Tk(V ) =

k times︷ ︸︸ ︷
V ⊗ V · · · ⊗ V .

Finally, set

T (V ) = ⊕∞
k=0Tk(V ).

Remark 10.2 Assume V is an n-dimensional vector space and k ∈ Z≥0.
Then the dimension of Tk(V ) is nk.

It is our goal to show that there is a natural definition of multiplication on
T (V ) that makes it into an associative algebra. Before doing so, we introduce
some terminology and notation.

Definition 10.5 Assume x ∈ T (V ),x 6= 0T (V ). Then spt(x) 6= ∅ and is
finite. Assume x(d) 6= 0Td(V ) but x(k) = 0Tk(V ) for all k > d. Then we will
say that the degree of x is d.

An element x ∈ T (V ) is said to be homogeneous of degree d if x ∈ Td(V ).

More generally, when x ∈ T (V ) and i ∈ spt(x) we will say that x(i) is the
homogeneous part of x of degree i.We will often abuse notation and express
x as a sum of its homogeneous parts rather than as a function from Z≥0.

Example 10.1 Let V have dimension one with basis v.

Then Tk(V ) = {c
k times︷ ︸︸ ︷

v ⊗ · · · ⊗ v |c ∈ F}. Thus, the dimension of Tk(V ) is one for
each k. The general element of degree 3 is

c0 + c1v + c2(v ⊗ v) + c3(v ⊗ v ⊗ v) with c3 6= 0.

Example 10.2 Let V have dimension 2 with a basis (v1,v2). Then T2(V ) is
spanned by (v1 ⊗ v1,v1 ⊗ v2,v2 ⊗ v1,v2 ⊗ v2). The typical element of degree
two is

c0 + c1v1 + c2v2 + c11v1 ⊗ v1 + c12v1 ⊗ v2 + c21v2 ⊗ v1 + c22v2 ⊗ v2,

where at least one of c11, c12, c21, c22 is not zero.
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Suppose x ∈ Tk(V ) and y ∈ Tl(V ). Then x⊗ y ∈ Tk(V )⊗ Tl(V ) =

k times︷ ︸︸ ︷
V ⊗ · · · ⊗ V ⊗

l times︷ ︸︸ ︷
V ⊗ · · · ⊗ V .

By Theorem (10.3), Tk(V )⊗Tl(V ) is isomorphic to Tk+l(V ) by a transforma-
tion that takes (v1⊗· · ·⊗vk)⊗ (w1⊗· · ·⊗vl) to v1⊗· · ·⊗vk⊗w1⊗· · ·⊗wl.
Using this isomorphism, we will identify Tk(V ) ⊗ Tl(V ) with Tk+l(V ). We
extend this to a multiplication of T (V ) in the following way:

Assume x has degree d,x = x0 + . . .xd, where xi ∈ Ti(V ) and y has degree
e,y = y0 + · · ·+ ye and assume 0 ≤ k ≤ d+ e. Define

(x · y)k =
∑

i+j=k

xi ⊗ yj .

We then set x · y =
∑d+e

k=0(x · y)k.

Example 10.3 Let V be two-dimensional and spanned by v1,v2 over R. Sup-
pose x = 3 + [−2v1 + v2] + [4(v1 ⊗ v1)− 3(v2 ⊗ v2)] and
y = 1 + [2(v1 ⊗ v2)− (v2 ⊗ v1)] + 2(v1 ⊗ v1 ⊗ v1 ⊗ v2). Then

(x · y)0 = 3,

(x · y)1 = −2v1 + v2,

(x · y)2 = 4(v1 ⊗ v1) + 6(v1 ⊗ v2)− 3(v2 ⊗ v1)− 3(v2 ⊗ v2),

(x · y)3 = −4v1 ⊗ v1 ⊗ v2 + 2v1 ⊗ v2 ⊗ v1 + 2v2 ⊗ v1 ⊗ v2 − v2 ⊗ v2 ⊗ v1,

(x · y)4 = 14(v1 ⊗ v1 ⊗ v1 ⊗ v2)− 4(v1 ⊗ v1 ⊗ v2 ⊗ v1)

− 6(v2 ⊗ v2 ⊗ v1 ⊗ v2) + 3(v2 ⊗ v2 ⊗ v2 ⊗ v1).

We will henceforth write xy for x · y when x,y ∈ T (V ).

Lemma 10.4 The multiplication of T (V ) is bilinear: If x1,x2,y ∈ T (V ) and
c ∈ F, then

(x1 + x2)y = x1y + x2y,

y(x1 + x2) = yx1 + yx2,

(cx)y = x(cy) = c(xy).
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Proof The additive properties hold because of the way multiplication has
been defined. If x and y are decomposable tensors, then the scalar property is
satisfied because of the multilinearity of the tensor product. The scalar property
then holds for arbitrary x and y as a consequence of the additive properties.

Lemma 10.5 For any elements x,y, z ∈ T (V ),

(xy)z = x(yz). (10.9)

Proof This follows from the bilinearity of multiplication and the fact that
(10.9) holds for decomposable vectors.

In consequence of the previous two lemmas, we have:

Theorem 10.10 Let V be a vector space over a field F. Then T (V ) is an
associative algebra over F.

Definition 10.6 Let V be vector space over the field F. Let ι : V → T (V )
be the map ι(v) = (0,v,0T2(V ),0T3(V ), . . . ). This is an injective linear map
and can be used to identify V with the subspace of T (V ) consisting of all
homogenous elements of degree 1 together with 0. The pair (T (V ), ι) is the
tensor algebra of V over F.

Not only is T (V ) an associative algebra, but the pair (T (V ), ι) is universal.
We make the concept of universal precise and prove this assertion in the
following theorem.

Theorem 10.11 Let V be a vector space over a field F, A an associative
algebra over F, and S : V → A a linear transformation. Then there exists a
unique algebra homomorphism σ : T (V ) → A such that σ ◦ ι = S.

Proof Set V k =

k times︷ ︸︸ ︷
V × · · · × V . Define a map Sk : V k → A by

Sk(v1, . . . ,vk) = S(v1)S(v2) . . . S(vk). Then S
k is a multilinear map. By the

universality of Tk(V ), there is then a unique linear map σk : Tk(V ) → A which
maps a decomposable tensor v1 ⊗ · · · ⊗ vk to S(v1) . . . S(vk).

By the universality of the direct sum ⊕k≥0Tk(V ), there is then a unique linear
transformation σ : T (V ) → A such that σ restricted to Tk(V ) is σk. We claim
that σ is an algebra homomorphism. Since σ is a linear transformation it only
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remains to show that σ(xy) = σ(x)σ(y). However, since σ is linear we need
only prove this for x,y homogenous and, in fact, only for the case where x

and y are decomposable tensors. Thus, we may assume that x = v1⊗ · · ·⊗vk

and y = w1 ⊗ · · · ⊗wl. Then

xy = v1 ⊗ · · · ⊗ vk ⊗w1 ⊗ · · · ⊗wl,

σ(xy) = σk+l(v1 ⊗ · · · ⊗ vk ⊗w1 ⊗ · · · ⊗wl)

= S(v1) . . . S(vk)S(w1) . . . S(wl).

On the other hand

σ(x) = σk(v1 ⊗ · · · ⊗ vk) = S(v1) . . . S(vk)

σ(y) = σl(w1 ⊗ · · · ⊗wl) = S(w1) . . . S(wl).

Then

σ(x)σ(y) = [S(v1) . . . S(vk)][S(w1) . . . S(wl)] = σ(xy).

In addition to being universal, the tensor algebra, T (V ), of a vector space V
is an example of a graded algebra, a concept we now introduce.

Definition 10.7 An algebra A is said to be Z-graded if it is the internal
direct sum of subspaces Ak, k ∈ Z, such that

AkAl ⊂ Ak+l.

Elements of Ak are said to be homogeneous of degree k.

When 0 6= x ∈ A, we can write x uniquely as a sum aj1 + · · · + ajt where
j1 < · · · < jt and 0A 6= aji ∈ Aji . We will refer to aji as the homogeneous
part of x of degree ji.

We work out a couple of examples to give the reader a feel for the tensor
algebra.

Example 10.4 Let V be a one-dimensional vector space with basis x. Let xk

denote the vector

k times︷ ︸︸ ︷
x⊗ · · · ⊗ x, which is a basis for Tk(V ). Note that xk · xl =

xk ⊗ xl = xk+l.

A typical element of T (V ) of degree d is (a0, a1x, a2x
2, . . . , adx

d, 0, . . . ). Recall
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we represent this by the expression a0 + a1x + a2x
2 + · · ·+ adx

d. Moreover,
the product of this element with an element b0 + b1x+ · · ·+ bex

e is

d+e∑

k=0

∑

i,j≥0,i+j=k

aibjx
k.

This should be familiar. In this case, the tensor algebra T (V ) is isomorphic
to F[x], the algebra of polynomials in a single variable with coefficients in F.

Definition 10.8 Let x and y be two indeterminates over F, that is, symbols
not used to represent elements in F. Let Wk{x, y} consist of all words of length
k in x and y. We define the product w ·w′ of a word w of length k and a word
w′ of length l as the word of length k + l obtained by concatenating w′ to the
right of w. Set F0{x, y} = F and define Fk{x, y} to be the F-vector space based
on Wk{x, y}. Finally, let F{x, y} be the direct sum of {Fk{x, y}|k ≥ 0}. This
is the algebra of polynomials in two non-commuting variables over F.

When V has dimension two with a basis (x,y) then T (V ) is isomorphic as
an F-algebra to F{x, y}. This can be generalized to larger, finite-dimensional
spaces.

We now investigate the extension of linear transformations between vector
spaces to their respective tensor algebras. Before doing so we define what is
meant by a homomorphism of Z-graded algebras.

Definition 10.9 Assume A = ⊕n∈ZAn and B = ⊕n∈ZBn are Z-graded al-
gebras. A Z-graded algebra homomorphism from A to B is a linear map
γ : A → B such that

1) for every a1, a2 ∈ A, γ(a1a2) = γ(a1)γ(a2); and

2) for every n ∈ Z, γ(An) ⊂ Bn.

In our next theorem we show how a linear transformation S : V →W induces
a Z-graded homomorphism T (S) : T (V ) → T (W ).

Theorem 10.12 Assume V and W are vector spaces over F and S : V →W
is a linear transformation. Then then there exists a unique Z-graded algebra
homomorphism T (S) : T (V ) → T (W ) such that ιW ◦S = T (S)◦ιV . Moreover,
for v1, . . . ,vk ∈ V, T (v1 ⊗ · · · ⊗ vk) = S(v1)⊗ · · · ⊗ S(vk).
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Proof The composition ιW ◦ S is a linear map from V to the associative
algebra T (W ). By Theorem (10.11) there is a unique algebra homomorphism
T (S) : T (V ) → T (W ) such that ιW ◦ S = T (S) ◦ ιV . It remains to show
that T (S) preserves the gradings, that is, for k ∈ Z≥0, T (S)(Tk(V )) ⊂ Tk(W ).
For k ∈ {0, 1} this is clear. Suppose k ≥ 2. It suffices to prove if (v1, . . . ,vk)
is a sequence of vectors from V then T (v1 ⊗ · · · ⊗ vk) ∈ Tk(W ). However,
T (S)(v1 ⊗ · · · ⊗ vk) = S(v1) ⊗ · · · ⊗ S(vk) ∈ Tk(W ). The last part follows
since T (S) is an algebra homomorphism.

Let S : V → W be a linear transformation of vector spaces. We can use
Lemma (10.2) to draw conclusions about the algebra homomorphism T (S)
from information about S. We leave the proof as an exercise.

Lemma 10.6 Let S : V → W be a linear transformation of vector spaces.
Then the following hold:

i) If S is surjective, then T (S) is surjective.

ii) If S is injective, then T (S) is injective.

iii) If S is an isomorphism, then T (S) is an isomorphism.

The map S → T (S) behaves well with respect to composition:

Theorem 10.13 Let V,W, and X be vector spaces over F, R a linear map
from V to W, and S a linear map from W to X. Then T (S ·R) = T (S) ·T (R).

By specializing in Theorem (10.13) to the situation where X = W = V, we
get the following.

Theorem 10.14 The map T induces a homomorphism from the group of
units, GL(V ), in L(V, V ) to the group of units in L(T (V ), T (V )), GL(T (V )).

Exercises

1. Complete the proof of Theorem (10.8).

2. Prove part i) of Lemma (10.6).

3. Prove part ii) of Lemma (10.6).

4. Prove Theorem (10.13).

5. Let V be a three-dimensional vector space over R and assume S ∈ L(V, V )
is an operator with distinct eigenvalues 2, 3, 5. Determine the eigenvalues of
T3(S) : T3(V ) → T3(V ) along with their multiplicities.

6. Let V be two-dimensional vector space over R and assume S ∈ L(V, V ) is
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an operator with distinct eigenvalues 2, 3. Then S is a cyclic operator. Prove
that T2(S) : T2(V ) → T2(V ) is not cyclic.

7. Let R,S be operators on a vector space V. Either give a proof or else a
counterexample to the statement T (R+ S) = T (R) + T (S).

8. Assume S is an operator on the n-dimensional vector space V and let
R = Range(S) and K = Ker(S). Further, set Rl = Range(Tl(S)) and
Kl = Ker(Tl(S)). Is Tl(V/K) isomorphic to Tl(V )/Kl? Give a proof or a
counterexample.

9. Define ιk : V k → Tk(V ) by ιk(v1, . . . ,vk) = v1 ⊗ · · · ⊗ vk. This map is
k-multilinear. Prove that (Tk(V ), ιk) is universal, that is, if W is an F-vector
space and f : V k →W is a k-multilinear map then there exists a unique linear
map F : Tk(V ) →W such that F ◦ ιk = f.

10. Assume S ∈ L(V, V ) is a nilpotent operator. Prove that Tk(S) is a nilpotent
operator for all k.

11. Let V be a finite-dimensional vector space over a field F and S an operator
on V. Find and prove a formula for Tr(Tk(S)) in terms of Tr(S).

12. Let V be an n-dimensional vector space over a field F and S an operator
on V. Find and prove a formula for det(Tk(S)) in terms of det(S).
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10.4 The Symmetric Algebra

In this section we introduce the notion of a homogeneous ideal in a Z-graded
algebra. We apply these ideas to the tensor algebra and construct the sym-
metric algebra of a vector space as quotient space of the tensor algebra by a
particular homogeneous ideal. We also show that the symmetric algebra of an
n-dimensional vector space over a field F is isomorphic to the algebra of poly-
nomials in n commuting variables. We will prove that the symmetric algebra
is a solution to universal mapping problem.

What You Need to Know

To be successful in understanding the material of this section, you should have
already gained mastery of the following concepts: vector space, direct sum of
a family of vector spaces, basis of a vector space, dimension of a vector space,
finite-dimensional vector space, linear transformation, coordinate vector with
respect to a basis, matrix of a linear transformation, an associative algebra
over a field, ideal in an algebra, multilinear map, multilinear form, alternating
multilinear map, alternating multilinear form, the tensor product of vector
spaces, the tensor product of operators, the tensor algebra, and a Z-graded
algebra.

We will also make some use of concepts from ring theory, specifically what it
means for an ideal in a ring to be generated by a set of elements of the ring.

We will need the concept of a homogeneous ideal of a Z-graded algebra and
we begin with this definition.

Definition 10.10 Assume A = ⊕k∈ZAk is a Z-graded algebra. An ideal I of
A is homogeneous if whenever x ∈ I and a is a homogeneous part of x,
then a ∈ I. This is equivalent to the statement that I is equal to the direct
sum of its subspaces Ik = I ∩ Ak.

Remark 10.3 Assume A = ⊕k∈ZAk is a Z-graded algebra and I is a homo-
geneous ideal. Set Ik = I ∩ Ak for k ∈ Z. Then

A/I ∼= ⊕k∈ZAk/Ik.

Consequently, A/I is a Z-graded algebra.

The following result characterizes homogeneous ideals.
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Lemma 10.7 Let I be an ideal in a Z-graded algebra A = ⊕k∈ZAk. Then I is
homogeneous if and only if it is generated as an ideal by a set of homogeneous
elements.

Proof Suppose I is a homogeneous ideal. Then

I = ⊕k∈ZIk,
where Ik = I ∩ Ak. Then I is generated by ∪k∈ZIk as an ideal, a set of
homogeneous elements.

On the other hand, assume that I is generated by a set S of homogeneous
elements. Suppose x ∈ I. Then there are elements s1, . . . , st ∈ S and ele-
ments ai, bi ∈ A, 1 ≤ i ≤ t, such that x = a1s1b1 + · · · + atstbt. Since the
homogeneous part of x of degree k will be the sum of the homogeneous parts
of aisibi of degree k, it suffices to prove that the homogeneous parts of each
aisibi belong to I.
Thus, we need to prove that for a, b ∈ A and s ∈ S, the homogeneous parts of
asb belong to I. Now we can write a = c1 + · · ·+ ck and b = d1 + · · ·+ dl,
where each ci and dj is homogeneous. Then

asb =

k∑

i=1

l∑

j=1

cisdj.

Each cisdj is homogeneous and belong to I and this completes the proof.

Let V be a vector space over a field F. As we have remarked, the tensor algebra
T (V ) is a Z-graded algebra. Recall that ι is the map from V → T (V ) which
takes v ∈ V to (0,v,0T2(V ), . . . ). For ease of notation we will identify v with
ι(v), and in this way treat V as a subspace of T (V ).

Now, let I be the ideal of T (V ) generated by all elements of the form
v1 ⊗ v2 − v2 ⊗ v1. By Lemma (10.7), I is a homogeneous ideal.

Let v1,v2,v3 ∈ V . We note that (v1 ⊗ v2 − v2 ⊗ v1) ⊗ v3 = v1 ⊗ v2 ⊗ v3 −
v2 ⊗ v1 ⊗ v3 is in I. In a similar way, v1 ⊗ v2 ⊗ v3 − v1 ⊗ v3 ⊗ v2 ∈ I. We
also have

v1 ⊗ v2 ⊗ v3 − v2 ⊗ v3 ⊗ v1

= (v1 ⊗ v2 ⊗ v3 − v2 ⊗ v1 ⊗ v3) + (v2 ⊗ v1 ⊗ v3 − v2 ⊗ v3 ⊗ v1).

Since v1 ⊗ v2 ⊗ v3 − v2 ⊗ v3 ⊗ v1 is a sum of elements in I, we conclude that
it belongs to I. Similarly, v1 ⊗ v2 ⊗ v3 − v3 ⊗ v1 ⊗ v2 ∈ I. Finally,

v1 ⊗ v2 ⊗ v3 − v3 ⊗ v2 ⊗ v1
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= (v1 ⊗ v2 ⊗ v3 − v2 ⊗ v3 ⊗ v1) + (v2 ⊗ v3 ⊗ v1 − v3 ⊗ v2 ⊗ v1) ∈ I.

We have thus shown for π any permutation of {1, 2, 3} and vectors v1,v2,v3 ∈
V that v1 ⊗ v2 ⊗ v3 − vπ(1) ⊗ vπ(2) ⊗ vπ(3) ∈ I3. This can be generalized. We
state the result as a lemma, but leave the proof as an exercise.

Lemma 10.8 Let k ≥ 2 be a natural number, π a permutation of {1, 2, . . . , k}
and v1, . . . ,vk vectors in V. Then v1 ⊗ · · · ⊗ vk − vπ(1) ⊗ · · · ⊗ vπ(k) is in Ik.

We define the symmetric algebra to be the quotient of T (V ) by the ideal I.

Definition 10.11 Let V be a vector space over a field F. Denote by Sym(V )
the quotient T (V )/I and by ψ the quotient map from T (V ) to Sym(V ), an al-
gebra over F. Further, set ι̂ = ψ ◦ ι : V → Sym(V ). Then the pair (Sym(V ), ι̂)
is the symmetric algebra of V .

The algebra Sym(V ) is a Z-graded algebra with Symk(V ) = [Tk(V )+I]/I ≡
Tk(V )/Ik where Ik = I ∩ Tk(V ) by Remark (10.3). Since T (V ) is generated
as an algebra by v ∈ V it follows that Sym(V ) is generated by all v + I. Let
v,w ∈ V. Since v⊗w−w⊗ v ∈ I it follows that v+ I and w+ I commute.
Consequently, Sym(V ) is a commutative algebra.

The composition ψ◦ι : V → Sym(V ) is an injection since T1(V )∩I = {0T (V )}.
We will identify an element v ∈ V with ι̂(v) and in this way treat V as a direct
summand of Sym(V ). In the next theorem, we prove that the pair (Sym(V ), ι̂)
satisfies a universal mapping property.

Theorem 10.15 Let V be a vector space over a field F. Assume that A is a
commutative algebra over F and that F : V → A is a linear transformation.
Then there exists a unique algebra homomorphism F̂ : Sym(V ) → A such

that F̂ ◦ ι̂ = F.

Proof Since (T (V ), ι) is universal and F is a linear map from V to A there
is a unique algebra homomorphism F ′ : T (V ) → A such that F ′ ◦ ι = F. We
claim that I is contained in Ker(F ′). Thus, let v,w ∈ V. Then

F ′(v ⊗w −w ⊗ v) = F ′(v ⊗w)− F ′(w ⊗ v)

= F ′(v)F ′(w)− F ′(w)F ′(v)

= F (v)F (w)− F (w)F (v) = 0A.

This last equality is justified since A is a commutative algebra.
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Since I ⊂ Ker(F ′), there is a unique algebra homomorphism F̂ : T (V )/I →
A such that F̂ ◦ ψ(x) = F̂ (x+ I) = F ′(x). It then follows that

F̂ ◦ ι̂ = F̂ ◦ (ψ ◦ ι) = (F̂ ◦ ψ) ◦ ι

= F ′ ◦ ι = F.

We now look at the homogenous parts, Symk(V ), of the symmetric algebra.
There is a natural k-multilinear map τk from V k = V × · · · × V (k factors)
to Symk(V ), namely, τk(v1, . . . ,vk) = ψ(v1 ⊗ · · · ⊗ vk) = v1 ⊗ · · · ⊗ vk + I.
Since this is the composition of ιk : V k → Tk(V ), which is k-multilinear
and ψ, which is linear, indeed, this map is k−multilinear. However, we have
more. Since for any π, a permutation of {1, 2, . . . , k}, and vectors v1, . . . ,vk ∈
V,v1 ⊗ · · · ⊗ vk − vπ(1) ⊗ · · · ⊗ vπ(k) ∈ I we can conclude, in fact, that the

map τ̂k = ψ ◦ τk : V k → Symk(V ) is a symmetric k-multilinear map.

Now suppose f : V k → W is a symmetric k-multilinear map. We claim that
there is a unique linear transformation f̂ : Symk(V ) →W such that f̂◦τ̂k = f.
First of all, by Exercise (9.3.9) we know that (Tk(V ), τk) is universal for k-
multilinear maps. Therefore, there exists a linear map f ′ : Tk(V ) → W such
that f ′◦τk = f.We claim that Ik is contained in the kernel of f ′. Any element
of Ik can be written as a sum of elements of the form x⊗ (u⊗ v− v⊗u)⊗y

where x and y are decomposable vectors. Suppose x = x1 ⊗ · · · ⊗ xs and
y = y1 ⊗ · · · ⊗ yt where xi,yj ∈ V (and s+ 2 + t = k). Now

f ′(x⊗ (u⊗ v − v ⊗ u)⊗ y) =

f ′(x⊗ u⊗ v ⊗ y − x⊗ v ⊗ u⊗ y) =

f ′(x⊗ u⊗ v ⊗ y)− f ′(x⊗ v ⊗ u⊗ y) =

f ′(x1⊗· · ·⊗xt⊗u⊗v⊗y1⊗· · ·⊗yt)−f ′(x1⊗· · ·⊗xt⊗v⊗u⊗y1⊗· · ·⊗yt) =

f(x1, . . . ,xs,u,v,y1, . . . ,yt)− f(x1, . . . ,xs,v,u,y1, . . . ,yt) = 0.

The last equality is justified since f is a symmetric form. Since Ik is contained
in Ker(f ′), there is a unique induced linear transformation f̂ : Symk(V ) =

Tk(V )/Ik to W such that f̂ ◦ ψ = f ′. We then have

f̂ ◦ τ̂k = f̂ ◦ (ψ ◦ τk) = (f̂ ◦ ψ) ◦ τk

= f ′ ◦ τk = f.

We have therefore proved:

Lemma 10.9 Let V be a vector space over the field F. Then the pair
(Symk(V ), τ̂k) is universal for symmetric k-multilinear maps on V .
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We next demonstrate that Sym(V ) is a familiar object when V is an n-
dimensional vector space over F. However, before moving on to this, a further
word about notation. Recall that we are treating V as if it is a subspace of
Sym(V ), specifically, the homogeneous elements of degree 1. Since Sym(V ) is
commutative, the order in which we multiply elements does not matter. For
ease of notation, when v1, . . . ,vk are elements of V we will denote by v1 . . .vk

the element ψ(v1 ⊗ · · · ⊗ vk) in Sym(V ). We now prove:

Theorem 10.16 Let V be a vector over F with basis v1, . . . ,vn. Then
Sym(V ) is isomorphic to F[x1, . . . , xn] the polynomial algebra over F in n
commuting variables.

Proof Define T : V → F[x1, . . . , xn] by T (vi) = xi. Since F[x1, . . . , xn] is
a commutative algebra there exists an algebra homomorphism τ : Sym(V ) →
F[x1, . . . , xn] such that τ(vi) = xi. Since F[x1, . . . , xn] is generated by an
algebra, τ is surjective. Let τk be the restriction of τ to Symk(V ). Then τk
is injective and, consequently, τ is injective. Thus, τ is an isomorphism of
algebras.

As with the case of the tensor algebra, a transformation T from a vector
space V to a vector space W induces an algebra homomorphism Sym(T ) :
Sym(V ) → Sym(W ).

Theorem 10.17 Let V and W be vector spaces over F and T : V → W a
linear transformation. Let (Sym(V ), ι̂V ) and (Sym(W ), ι̂W ) be the symmetric
algebras of V and W , respectively. Then there exists a unique Z-graded algebra
homomorphism, Sym(T ) : Sym(V ) → Sym(W ) such that Sym(T ) ◦ ι̂V =
ι̂W ◦T . Moreover, if v1, . . . ,vk ∈ V then Sym(T )(v1 . . .vk) = T (v1) . . . T (vk).

Proof Consider the composition α = ιW ◦ T : V → Sym(W ). By Theo-
rem (10.15) there is a unique algebra homomorphism Sym(T ) : Sym(V ) →
Sym(W ) such that ιW ◦ T = Sym(T ) ◦ ιV . The last statement follows since
Sym(T ) is an algebra homomorphism. Finally, to show that Sym(T ) is a
Z-graded algebra homomorphism it suffices to show that a typical generator
v1 . . .vk of Symk(V ) is mapped by Sym(T ) to an element of Symk(W ). Since
Sym(T )(v1 . . .vk) = T (v1) . . . T (vk) ∈ Sym(W ) this is the case.

For the symmetric algebra, we have a result similar to Lemma (10.6):

Lemma 10.10 Let T : V → W be a linear transformation of vector spaces.
Then the following hold:

i) If T is surjective, then Sym(T ) is surjective.

ii) If T is injective, then Sym(T ) is injective.

iii) If T is an isomorphism, then Sym(T ) is an isomorphism.
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The following is proved in a way entirely similar to the tensor case:

Lemma 10.11 Let V,W,X be vector spaces over F, T : V → W and S :
W → X linear transformations. Then Symk(ST ) = Symk(S)Symk(T ), and
Sym(ST ) = Sym(S)Sym(T ).

Exercises

1. Let π be a permutation of {1, 2, . . . , n} and v1, . . . ,vn vectors in a vector
space V. Prove that the element (v1⊗· · ·⊗vn)− (vπ(1)⊗· · ·⊗vπ(n)) is in the
ideal I of T (V ), which is generated by all elements of the form v⊗w−w⊗v.

2. Assume V is an n-dimensional vector space over a field F and k is a natural
number. Prove that dim(Symk(V )) =

(
k+n−1

k

)
.

3. Let T be a diagonalizable operator on a finite-dimensional vector space V
over R with eigenvalues α1 ≤ · · · ≤ αn (not necessarily distinct). Prove that
Symk(T ) is diagonalizable for all k and describe its eigenvalues.

4. Let T be an operator on R3 with eigenvalues 1, 2, 4. Determine the eigen-
values of Sym2(T ) with their multiplicities. Is this operator cyclic?

5. Let T be an operator on a four-dimensional vector space V and assume
the characteristic polynomial of T is x4 + a3x

3 + a2x
2 + a1x + a0. Express

Tr(Sym2(T )) in terms of a0, . . . , a3.
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10.5 The Exterior Algebra

In this section we construct the exterior algebra of a vector space V as a
quotient of the tensor algebra of V by a homogeneous ideal. We determine
the dimension of this algebra as well as the dimensions of its homogeneous
parts. Finally, we show how a linear transformation from a vector space V to
a vector space W induces a linear transformation on the exterior algebra and
its homogeneous pieces.

What You Need to Know

To be successful in understanding the material of this section, you should have
already gained mastery of the following concepts: vector space, direct sum of
a family of vector spaces, basis of a vector space, dimension of a vector space,
finite-dimensional vector space, linear transformation, coordinate vector with
respect to a basis, matrix of a linear transformation, an associative algebra
over a field, ideal in an algebra, multilinear map, multilinear form, alternating
multilinear map, alternating multilinear form, a Z-graded algebra, homoge-
nous ideal in a Z-graded algebra, the tensor product of vector spaces, the
tensor product of operators, and the tensor algebra.

Let V be a vector space over a field F. Let J be the ideal of T (V ) generated by
all elements of the form v⊗v. By Lemma (10.7), J is a homogeneous ideal. Let
∧(V ) denote the quotient of T (V ) by J . Also, let φ denote the quotient map
from T (V ) to ∧(V ) so that φ(v) = v+J for v ∈ T (V ). Note that the typical
generator v ⊗ v of J has degree two and therefore J ∩ T1(V ) = {0T (V )}.
Consequently, the map ǫ = φ ◦ ι : V → ∧(V ) is an injection. We can now
define the exterior algebra based on V :

Definition 10.12 By the exterior algebra of the vector space V, we will
mean the pair (∧(V ), ǫ) consisting of the algebra ∧(V ) and the injection ǫ :
V → ∧(V ).

The exterior algebra of a vector space V satisfies a universal mapping property:

Theorem 10.18 Let V be a vector space, A an associative algebra, and as-
sume there is a linear map T : V → A such that for every v ∈ V, T (v)2 = 0A.
Then there exists a unique algebra homomorphism τ : ∧(V ) → A such that
T = τ ◦ ǫ.

Proof Since (T (V ), ι) is universal, there is an algebra homomorphism T ′ :
T (V ) → A such that T ′ ◦ ι = T . We claim that J is contained in ker(T ′). It
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suffices to prove that a typical generating element, v ⊗ v, of J is in ker(T ′).
Since T ′ is an algebra homomorphism, T ′(v⊗v) = T ′(v)T ′(v) = τ(v)2 = 0A,
as required. It then follows that the map τ : ∧(V ) → A such that for x ∈
T (V ), τ(x + J ) = T ′(x) is well-defined (and a homomorphism of algebras).
Since T ′ ◦ ι = T and τ ◦ φ = T ′ we get T = (τ ◦ ι) ◦ φ = τ ◦ (ι ◦ φ) = τ ◦ ǫ as
required.

Note that the quotient algebra ∧(V ) = T (V )/J is Z-graded with ∧k(V ) =
(Tk(V ) + J )/J which is isomorphic to Tk(V )/Jk, where Jk = Tk(V ) ∩ J .
Since ǫ is an injection we use it to identify V with ∧1(V ) and in this way
we treat V as a subspace of ∧(V ). Note that since T (V ) is generated as an
algebra by T1(V ), the algebra ∧(V ) is generated by V. We will use the symbol
∧ to represent multiplication in ∧(V ). So, for example, for v,w ∈ V we have
φ(v ⊗w) = v ∧w.

Next, consider the map from V k to ∧k(V ) given by (w1, . . . ,wk) → w1∧· · ·∧
wk. First of all, this map is k-multilinear since it is the composition of the
multilinear map taking (w1, . . . ,wk) to w1 ⊗ · · · ⊗ wk with the linear map
φ. However, whenever two consecutive arguments are equal, the result is zero
since v ⊗ v ∈ J and therefore v ∧ v = 0. Among other things, this implies
that the map ∧ is alternating and allows us to use the results of Section (7.3).
In particular, we can conclude

w1 ∧ · · · ∧wk = 0 (10.10)

whenever (w1, . . . ,wk) is linearly dependent in V ; and for vectors v,w ∈ V

v ∧w = −w ∧ v. (10.11)

Our next result concerns the universality of ∧k(V ).

Lemma 10.12 Let V and W be vector spaces over a field F and assume that
f : V k → W is an alternating k-multilinear map. Then there exists a unique
linear map F : ∧k(V ) →W such that for vectors v1, . . . ,vk ∈ V

F (v1 ∧ · · · ∧ vk) = f(v1, . . . ,vn).

Proof Since f is a k-multilinear map there exists a unique linear map F ′ :
Tk(V ) →W such that for vectors v1, . . . ,vk ∈ V

F ′(v1 ⊗ · · · ⊗ vk) = f(v1, . . . ,vk).

However, since f is alternating, F ′ vanishes identically on Jk. This implies
that there is a unique linear map F from ∧k(V ) = Tk(V )/Jk to W such that
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for vectors x ∈ Tk(V ), F (φ(x)) = F ′(x). In particular, if v1, . . . ,vk are in V ,
then

F (v1 ∧ · · · ∧ vk) = F ′(v1 ⊗ · · · ⊗ vk) = f(v1, . . . ,vk).

The next theorem begins to undercover some of the structure of ∧(V ) when
V is an n-dimensional vector space. Before we undertake this purpose, we
introduce some notation which will prove useful in what follows.

Let k and n be natural numbers such that 1 ≤ k ≤ n As previously defined,

we let Ω
{k}
n denote the collection of all sequences (i1, . . . , ik), where 1 ≤ i1 <

· · · < ik ≤ n. Further, for B = (w1, . . . ,wn), a sequence of vectors and

(i) = (i1, . . . , ik) ∈ Ω
{k}
n we let w(i) = wi1 ∧ · · · ∧wik . We now find a basis for

each ∧k(V ) when V is an n-dimensional vector space.

Theorem 10.19 Assume V is an n-dimensional vector space with a basis
(v1, . . . ,vn). Then the following hold:

i) If k > n, then ∧k(V ) is trivial.

ii) For k ≤ n, the collection of vectors {v(i)|(i) ∈ Ω
{k}
n } is a basis for ∧k(V ).

In particular, the dimension of ∧k(V ) is
(
n
k

)
.

Proof i) This follows from Equation (10.10) and the fact that any sequence
of n+ 1 or more vectors in V is linearly dependent.

ii) Let wj =
∑n

i=1 aijvi. Then using the fact that w∧w = 0 and v∧w = −w∧
v we can represent w1 ∧ · · · ∧wk as a linear combination of {v(i)|(i) ∈ Ω

{k}
n }.

So it remains to show that this collection of vectors is linearly independent.
We begin with the case that k = n.

We know that ∧n(V ) is spanned by v1 ∧ · · · ∧ vn and so ∧n(V ) has di-
mension at most 1. Define a map from V n to F as follows. Denote by
T(w1,...,wn) the linear operator on V such that T(w1,...,wn)(vj) = wj . Now
set f(w1, . . . ,wn) = det(T(w1,...,wn)). We saw in Section (7.3) that this is an
alternating n-multilinear map. By Lemma (10.12), there exists a linear map
F : ∧n(V ) → F such that for vectors w1, . . . ,wn ∈ W,F (w1 ∧ · · · ∧ wn) =
f(w1, . . . ,wn). Since f is not trivial, F is not trivial and therefore ∧n(V ) is
not trivial. Thus, ∧n(V ) has dimension 1 with basis v1 ∧ · · · ∧ vn.

Now assume that k < n. Suppose now that we have a dependence relation

∑

(i)∈Ω
{k}
n

c(i)v(i) = 0∧(V ). (10.12)

For (i) = (i1 < · · · < ik) ∈ Ω
{k}
n , let (i)′ be the sequence (j1 < · · · < jn−k)
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in Ω
{n−k}
n such that {i1, . . . , ik} ∪ {j1, . . . , jn−k} = {1, . . . , n}. Note that if

(i) 6= (i∗) ∈ Ω
{k}
n , then v(i∗) ∧ v(i)′ = 0∧(V ) whereas v(i) ∧ v(i)′ = ±v1 ∧ · · · ∧

vn 6= 0∧(V ) by the case for k = n established above.

Multiplying (10.12) by v(i)′ we obtain

±c(i)v1 ∧ · · · ∧ vn = 0∧(V ).

Therefore, c(i) = 0 for each (i) ∈ Ω
{k}
n , and consequently, {v(i)|(i) ∈ Ω

{k}
n } is

linearly independent and a basis for ∧k(V ).

We next investigate how linear transformations between vector spaces give
rise to algebra homomorphisms between the corresponding exterior algebras.

Theorem 10.20 Let V and W be vector spaces over F and S : V → W a
linear transformation. Then there exists a unique Z-graded algebra homomor-
phism ∧(S) : ∧(V ) → ∧(W ) such that ∧(S) ◦ ǫV = ǫW ◦ S. Moreover, for
v1, . . . ,vk ∈ V,∧(S)(v1 ∧ · · · ∧ vk) = S(v1) ∧ · · · ∧ S(vk).

Proof Consider the composition α = ǫW ◦ S : V → ∧(W ). For v ∈
V, α(v)2 = α(v) ∧W α(v) = S(v) ∧W S(v) = 0∧(W ). By Theorem (10.12)
there is a unique algebra homomorphism ∧(S) : ∧(V ) → ∧(W ) such that
∧(S) ◦ ǫV = ǫW ◦ S. Since ∧(S) is an algebra homomorphism it follows for
v1, . . . ,vk ∈ V that ∧(S)(v1 ∧ · · · ∧ vk) = S(v1)∧ · · · ∧ S(vk). That ∧(S) is a
Z-graded homomorphism follows from this.

Let V andW be vector spaces over F and S : V →W a linear transformation.
Define Sk : V k → ∧k(W ) by Sk(v1, . . . ,vk) = S(v1) ∧ · · · ∧ S(vk). This is
an alternating k-multilinear map. By the universality of ∧k(V ), there exists a
linear map, denoted by ∧k(S), from ∧k(V ) to ∧k(W ), which takes v1∧· · ·∧vk

to S(v1) ∧ · · · ∧ S(vk). Alternatively, ∧k(S) = ∧(S) restricted to ∧k(V ).

Not surprisingly, we have the following:

Lemma 10.13 Let S : V →W be a linear transformation. Then the following
hold:

i) If S is surjective, then ∧k(S) : ∧k(V ) → ∧k(W ) is surjective.

ii) If S is injective, then ∧k(S) : ∧k(V ) → ∧k(W ) is injective.

iii) If S is an isomorphism, then ∧k(S) : ∧k(V ) → ∧k(W ) is an isomorphism.
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Proof We prove i) and leave the others as exercises. Let BW = (w1, . . . ,wm)

be a basis for W. Clearly, we may assume that k ≤ m. Then {w(i)|(i) ∈ Ω
{k}
m }

is a basis for ∧k(W ) by part ii) of Theorem (10.19). Since S is surjective,
there exist vectors vj ∈ V such that S(vj) = wj . Since BW is a basis for W,
in particular, it is independent. It then follows that (v1, . . . ,vm) is linearly
independent. By the definition of ∧k(S) we have ∧k(S)(v(i)) = w(i) for (i) ∈
Ω

{k}
n , which proves that ∧k(S) is surjective.

The maps induced on the exterior algebra behave nicely with respect to com-
position:

Lemma 10.14 Let R : V → W and S : W → X be linear transformations.
Then ∧k(SR) = ∧k(S) ∧k (R).

This is left as an exercise.

Lemmas (10.13) and (10.14) have the following consequence: Let V be a vector
space. By restricting ∧k to the units in L(V, V ), we obtain a group homomor-
phism into the group of units in L(∧k(V ),∧k(V )).

We complete our treatment by considering an operator S on a finite-
dimensional vector space V with a basis B = (v1,v2, . . . ,vn) and determine
how to compute the matrix of ∧k(S) : ∧k(V ) → ∧k(V ) from the matrix of S
with respect to B.
First of all, we need a basis, which is an ordered, independent, spanning set
of vectors for ∧k(V ). We already have an independent spanning set, namely

{v(i)| (i) ∈ Ω
{k}
n } so we need to order this set. We do so lexicographically.

Thus, we write

(i1, . . . , ik) ≺ (j1, . . . , jk)

if either i1 < j1 or i1 = j1, and in the first place that these differ, say, in the
tth place, we have it < jt.

For example, for n = 4 and k = 2 we have the order

(1, 2) ≺ (1, 3) ≺ (1, 4) ≺ (2, 3) ≺ (2, 4) ≺ (3, 4).

Now assume that the matrix of S with respect to B is A =




a11 . . . a1n
a21 . . . a2n
... . . .

...
an1 . . . ann


 .

Let (i) = (i1, . . . , ik) and (j) = (j1, . . . , jk) be in Ωk. We determine the coef-
ficient of v(i) in ∧k(S)(v(j)) :
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∧k(S)(v(j)) = ∧k(S)(vj1 ∧ · · · ∧ vjk)

= (vj1 ) ∧ · · · ∧ S(vjk)

=

(
n∑

i=1

aij1vi

)
∧ · · · ∧

(
n∑

i=1

aijkvi

)
.

Since we want to compute the coefficient of v(i) = vi1 ∧· · ·∧vik in the sums we
need only take the sums over those i ∈ {i1, . . . , ik}. Thus, we need to compute

(
k∑

t=1

ait,j1vit

)
∧ · · · ∧

(
k∑

t=1

ait,jkvit

)
.

A typical term of this sum is

ait1 ,j1 . . . aitk ,jkvit1
∧ · · · ∧ vitk

.

If any of the indices it1 , . . . , itk are identical, then the term is zero. Therefore,
in order to get a non-zero term, it must be the case that it1 , . . . , itk is a
permutation of i1, . . . , ik. So, let π be a permutation of {1, 2, . . . , k}. Then we
can write the typical non-zero term as

aiπ(1),j1 . . . aiπ(k),jkviπ(1)
∧ · · · ∧ viπ(k),jk .

Now viπ(1),j1 ∧ · · · ∧viπ(k) ,jk will be ±1 times vi1 ∧ · · · ∧vik and the coefficient
is determined by the sign of the permutation π. This should look familiar (go
back and look at the formula for determinant of a matrix). What we get is
the determinant of the k × k matrix




ai1,j1 . . . ai1,jk
ai2,j1 . . . ai2,jk
... . . .

...
aik,j1 . . . aik,jk


 .

This is just the k × k matrix obtained from the matrix A by taking the
intersection of rows i1, . . . , ik with columns j1, . . . , jk.We represent this matrix
by the expression A(i),(j) and the coefficient by a(i),(j). Thus,

a(i),(j) = det(A(i),(j)).

Putting this together we get

∧k(v(j)) =
∑

(i)∈Ωk

a(i),(j)v(i)
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=
∑

(i)∈Ωk

det(A(i),(j))v(i).

We complete our exposition with one final definition:

Definition 10.13 Let V be an n-dimensional vector space, B = (v1, . . . ,vn)
a basis for V , and S : V → V a linear operator. Assume that the matrix of
S with respect to B is A. Let (i), (j) ∈ Ωk

n. Then the numbers det(A(i),(j)) are
the Plucker coordinates for S(v(j)).

Exercises

1. Let V be a vector space of dimension n, k a natural number with 2 ≤ k ≤ n
and π a permutation of {1, . . . , k}. Prove that Jk contains all vectors of the
form

w1 ⊗ · · · ⊗wk − sgn(π)(wπ(1) ⊗ · · · ⊗wπ(k)).

2. Let V be a vector space of dimension n over the field F with a basis B =
(v1, . . . ,vn) and let k be a natural number such that 2 ≤ k ≤ n. Prove Jk is
spanned by all vectors of the form w1⊗· · ·⊗wk−sgn(π)(wπ(1)⊗· · ·⊗wπ(k)),

where (w1, . . . ,wk) ∈ Bk.

3. Continue with the assumptions of Exercise 2. Prove that v1 ⊗ · · · ⊗ vn is
not contained in Jn. Use this to prove the existence of a unique alternating
n-linear form on V, which takes the value 1 on B.
4. Prove Lemma (10.14).

5. Prove part ii) of Lemma (10.13).

6. Let V be a finite-dimensional vector space and S : V → V a nilpotent
operator. Prove that ∧(S) : ∧(V ) → ∧(V ) is nilpotent.

7. Let V be an n-dimensional vector space and S : V → V a diagonalizable
operator with eigenvalues α1, . . . , αn (not necessarily distinct). Prove that
∧k(S) : ∧k(V ) → ∧k(V ) is diagonalizable and determine the eigenvalues of
this operator.

8. If S is an operator on the n-dimensional vector space V, express det(∧k(S))
in terms of det(S).

9. Give an example of an operator S on R4, which has no real eigenvalues such
that ∧2(S) has 2 real eigenvalues.

10. Let V be a space of dimension at least 4 and assume the characteristic of
the underlying field is not 2. Prove that there exists a vector x in ∧(V ) such
that x ∧ x 6= 0.

11. Let V be a vector space of dimension 4k and let B = (v1, . . . ,v4k) be a
basis for V. Set W = ∧2k(V ) and define the map δ :W ×W → F by
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v ∧w = δ(v,w)(v1 ∧ · · · ∧ v4k).

Prove that δ is a non-degenerate symmetric bilinear form.

12. Continue with Exercise 10. In the specific case that n = 4, prove that this
form is hyperbolic.

13. Let V be a vector space of dimension 2k with k odd and let B =
(v1, . . . ,v2k) be a basis for V. SetW = ∧k(V ) and define the map δ : W×W →
F by

v ∧w = δ(v,w)(v1 ∧ · · · ∧ v2k).

Prove that γ is a non-degenerate alternating bilinear form.

14. Let V be a four-dimensional real vector space and S an operator on V
with characteristic polynomial x4−8x3+12x−2.Determine the characteristic
polynomial of ∧2(S).

15. Let α1, α2, α3 be the roots of the polynomial x3 − 6x + 3. Compute the
polynomial of degree 3, which has roots α1α2, α1α3, α2α3.

16. Let α1, α2, α3, α4 be the roots of the polynomial x4−3x3+3. Compute the
polynomial of degree 6, which has roots α1α2, α1α3, α1α4, α2α3, α2α4, α3α4.
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10.6 Clifford Algebras, char F 6= 2

In this section we define the notion of a Clifford algebra of an orthogonal space
(V, φ) and show that it exists making use of the tensor algebra of V .

What You Need to Know

To be successful in understanding the material of this section, you should have
already gained mastery of the following concepts: vector space, direct sum of
a family of vector spaces, basis of a vector space, dimension of a vector space,
finite-dimensional vector space, linear transformation, coordinate vector with
respect to a basis, matrix of a linear transformation, an associative algebra
over a field, ideal in an algebra, the tensor product of vector spaces, the tensor
product of operators, the tensor algebra, a homomorphism from one algebra
to another, and a Z-graded algebra. You will also need to be familiar with the
concept of a quadratic form on a vector space, a symmetric bilinear form on
a vector space, and an orthogonal space as well as concepts from ring theory,
specifically what it means for an ideal in a ring to be generated by a set of
elements of the ring, and the quotient ring of a ring modulo an ideal.

Throughout this section, (V, φ) is an orthogonal space over a field F with as-
sociated symmetric bilinear form 〈 , 〉. We will momentarily define its Clifford
algebra as an application of the tensor algebra of a vector space. The Clifford
algebra of an orthogonal space has many important applications, in particular
to differential geometry, physics, and digital image processing. Subsequently,
we will generally assume that the characteristic of F is not two and that φ is
non-degenerate and uncover some of the more fundamental properties of the
Clifford algebra (in particular, we will compute its dimension).

We begin by recalling some particularly important definitions. Throughout
this section when we refer to an algebra A over a field F we will mean an
associative algebra. When A has a multiplicative identity 1A, then the center
of A (those elements of A which commute with every element of A) contains
a copy of F consisting of all those elements of the form b · 1A where b ∈ F. We
will identify F and {b · 1A|b ∈ F} and thereby treat F as a subalgebra of A.

Let F be a field and A and B two associative algebras over F with multi-
plicative identities 1A and 1B, respectively. By an algebra homomorphism
from A to B we mean a linear map T : A → B such that T (1A) = 1B and
T (xy) = T (x)T (y) for x, y ∈ A.

Recall, for a vector space V over F we defined T0(V ) = F, T1(V ) = V and for
k ∈ N, k ≥ 2, Tk(V ) = V ⊗ · · · ⊗ V (where there are k factors). The tensor
algebra of V is T (V ) = ⊕∞

k=0Tk(V ), the direct sum of {Tk(V )|k ∈ Z≥0}. We
remind the reader that formally, this direct sum consists of infinite sequences
(a0, a1, . . . ) such that ak ∈ Tk(V ) and for some N, an = 0Tn(V ) for all n > N .
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However, for convenience and purposes of exposition we are identifying Tk(V )
with those elements (a0, a1, . . . ) such that aj = 0Tj(V ) for j 6= k and in this
way think of each of the Tk(V ) as a subspace of T (V ).

Definition 10.14 Let (V, φ) be an orthogonal space over the field F with as-
sociated symmetric form 〈 , 〉. By a algebraic realization of (V, φ) we
shall mean a pair (A, d) consisting of an associative algebra A with mul-
tiplicative identity 1A and a linear map d : V → A such that for all
v ∈ V, d(v)2 = d(v)d(v) = φ(v).

Before proceeding to the definition and construction of the Clifford algebra
of an orthogonal space (V, φ), we prove some useful properties shared by all
algebraic realizations.

Lemma 10.15 Assume (A, d) is an algebraic realization of (V, φ). Then for
any u,v ∈ V, 〈u,v〉 = d(u)d(v) + d(v)d(u).

Proof For vectors u,v we have

〈u,v〉 = φ(u+ v)− φ(u)− φ(v)

= d(u+ v)2 − d(u)2 − d(v)2

= [d(u) + d(v)]2 − d(u)2 − d(v)2

= d(u)2 + d(u)d(v) + d(v)d(u) + d(v)2 − d(u)2 − d(v)2

= d(u)d(v) + d(v)d(u).

As an immediate corollary we have:

Corollary 10.3 Let u,v ∈ V . Assume (A, d) is an algebraic realization of
(V, φ). Then u ⊥ v if and only if d(v)d(u) = −d(u)d(v).

Proof First assume that u ⊥ v. By Lemma (10.15), 0 = 〈u,v〉 = d(u)d(v)+
d(v)d(u).

Conversely, assume d(u)d(v) + d(v)d(u) = 0. Then φ(u + v) = d(u + v)2 =
[d(u) + d(v)]2 = d(u)2 + d(u)d(v) + d(v)d(u) + d(v)2 = d(u)2 + d(v)2 =
φ(u) + φ(v). Consequently, 〈u,v〉 = φ(u + v)− φ(u)− φ(v) = 0.

Let (A, d) be a realization of the orthogonal space (V, φ). In our next result
we determine when an element in Range(d) is invertible.
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Lemma 10.16 Let (A, d) be an algebraic realization of the orthogonal space
(V, φ). Let v ∈ V . Then d(v) is invertible in A if and only if φ(v) 6= 0.

Proof Assume that φ(v) 6= 0. Set x = 1
φ(v)d(v). Then xd(v) = 1

φ(v)d(v)
2 =

1. Therefore, x = d(v)−1 and d(v) is invertible. Conversely, assume that d(v)
is invertible, say xd(v) = 1. Then φ(v)x2 = d(v)2x2 = [d(v)x]2 = 1 and so
φ(v) 6= 0.

Let (V, φ) be an orthogonal space. We define the Clifford algebra of (V, φ)
below. It will be an algebraic realization of (V, φ) which is universal amongst
all such realizations.

Definition 10.15 Let (V, φ) be an orthogonal space over a field F. A Clifford
algebra of (V, φ) is an algebraic realization (C, γ) of (V, φ) such that if (A, d)
is an algebra realization then there exists a unique algebra homomorphism
δ : C → A such that δ ◦ γ = d.

The definition above refers to “a” Clifford algebra. As is usually the case, the
Clifford algebra is unique up to a unique algebra homomorphism. We make
this explicit in the following theorem.

Theorem 10.21 Let (V, φ) be an orthogonal space and assume that (C, γ)
and (C1, γ1) are Clifford algebras of (V, φ). Then C and C1 are isomorphic by
a unique algebra isomorphism δ : C → C1 such that δ ◦ γ = γ1.

Proof We first remark that since C is a Clifford algebra of (V, φ) there is a
unique algebra homomorphism ζ : C → C such that ζ ◦γ = γ. Since IC ◦γ = γ
it follows that ζ = IC . Similarly, if ζ1 : C1 → C1 is an algebra homomorphism
and ζ1 ◦ γ1 = γ1 then ζ1 = IC1 .

Since (C1, γ1) is an algebra realization of (V, φ) and (C, γ) is a Clifford algebra
of (V, φ), there exists a unique algebra homomorphism δ : C → C1 such that
δ ◦ γ = γ1. Reversing the roles of (C, γ) and (C1, γ1) we get a unique algebra
homomorphism δ1 : C1 → C such that δ1 ◦ γ1 = γ. It is then the case that
δ1 ◦ δ : C → C is an algebra homomorphism and (δ1 ◦ δ) ◦ γ = δ1 ◦ (δ ◦ γ) =
δ1◦γ1 = γ. Consequently, from the argument of the first paragraph, δ1◦δ = IC .
In exactly the same way, δ ◦ δ1 = IC1 .

Definition 10.16 Assume (V, φ) is an orthogonal space. Let T (V ) be the
tensor algebra of V and denote by Iφ the ideal of T (V ) generated by all el-
ements of the form v ⊗ v − φ(v) · 1F. Set C(V, φ) = C(V ) equal to the quo-
tient T (V )/Iφ and let π be the quotient map from T (V ) to C(V ) so that for
t ∈ T (V ), π(t) = t + Iφ. Let j denote the composition of ι : V → T (V ) with
π so that j = π ◦ ι where ι : V → T (V ) is the map which takes v ∈ V to
(0F,v,0T2(V ), . . . ).
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Before we proceed, a word on convention. We have been treating V as a
subspace of T (V ) by identifying an element v ∈ V with (0F,v,0T 2(V ), . . . ).
Since T1(V ) intersects Iφ trivially, the map j is an injection so that we can
then identify V with its image in C(V ).

Notation. If a = s + Iφ and b = t + Iφ are two elements of C(V ) then we
represent the product (s+ Iφ)(t + Iφ) = (s⊗ t) + Iφ by a · b or simply ab.

Theorem 10.22 Let (V, φ) be an orthogonal space over a field F and let C(V )
be its Clifford algebra. Then (V, f) is realized by C(V ).

Proof Let v be a vector in V . Since v⊗v−φ(v)1F ∈ Iφ it then follows that
π(v ⊗ v − φ(v)1F) = 0C(V ). However,

π(v ⊗ v − φ(v)1F) = π(v ⊗ v)− φ(v)1A

= π(v)2 − φ(v)1A

= j(v)2 − φ(v)1A.

Theorem 10.23 Let (V, φ) be an orthogonal space over a field F. Assume A
is an associative algebra with multiplicative identity which realizes (V, φ), that
is, there exists a linear map d : V → A such that d(v)2 = φ(v)1A for every
v ∈ V . Then there exists a unique homomorphism of F-algebras D : C(V ) → A
such that d = D ◦ j.

Proof Since the tensor algebra is universal, there exists a unique homomor-
phism τ of F-algebras τ : T (V ) → A such that d = τ ◦ ι. We claim that
Iφ is contained in the kernel of τ . Let u ∈ V . Then τ(u ⊗ u − φ(u)) =
τ(u⊗u)−φ(u) ·1A = τ(u)2−φ(u) ·1A = d(u)2−φ(u) ·1A = 0. Consequently,
there exists a unique linear transformation D : C(V ) = T (V )/Iφ → A such
that D(a + Iφ)) = τ(a). For u ∈ V,D(u + Iφ) = τ(u) = d(u) and therefore
D ◦ j = d. Finally, D is unique since C(V ) is generated as an algebra by the
subspace V .

Example 10.5 Let (V, φ) be a non-singular orthogonal space of dimension
one over the field F. Assume v 6= 0 and φ(v) = c. Then C(V ) is spanned by
1 and v. Moreover, v satisfies v2 − c = 0. If c is a square in F, say c = a2

then C(V ) is isomorphic to F[x]/(x2 − a2) which, in turn, is isomorphic to
F[x]/(x− a)⊕ F[x]/(x+ a). Finally, the latter algebra is isomorphic to F⊕F.
On the other hand, if c is not a square in F, then x2 − c is irreducible in F[x]
and C(V ) is isomorphic to the field F[x]/(x2 − c).
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Now assume that the characteristic of F is not two and (V, φ) is an orthogonal
space. Then there exists an orthogonal basis (v1, . . . ,vn) for V . By Corollary
(10.3), for i 6= j,vivj = −vjvi. Set v∅ = 1 and for α = {i1 < i2 < · · · < ik}, a
non-empty subset of [1, n] = {1, 2, . . . , n}, denote by vα the element vi1 . . .vik

of C(V ).

Lemma 10.17 Let α be a subset of [1, n] and j ∈ [1, n].

i) If j /∈ α then vαvj = ±vα∪{j}.

ii) If j ∈ α then vαvj = ±φ(vj)vα\{j}.

We leave this as an exercise.

Remark 10.4 Assume α is a subset of [1, n] with cardinality k and j ∈ [1, n].
If j /∈ α then vαvj = (−1)kvjvα. If j ∈ α then vαvj = (−1)k−1vjvα.

Lemma 10.18 Let k ∈ N and (i1, . . . , ik) be a sequence of natural numbers.
Then vi1 . . .vik is a multiple of vα for some α ∈ [1, n].

Proof The proof is by induction on k. If k = 1 there is nothing to prove.
Assume the result has been established for k ≥ 1 and that (i1, . . . , ik+1) is a
sequence of natural numbers. We must show that vi1 . . .vikvik+1

is multiple of
vα for some subset α of [1, n]. By induction, vi1 . . .vik = cvβ for some subset β
of [1, n] and scalar c. Then by Lemma (10.17) it follows that vi1 . . .vikvik+1

=
cvβvik+1

is a multiple of vα where α = β∪{ik+1} if ik+1 /∈ β or α = β\{ik+1}
if ik+1 ∈ β.

Lemma 10.19 Fix a basis B = (v1, . . . ,vn) of V . Let S be the set of all vα

such that α is a subset of [1, n]. Then S is a spanning set of C(V ).

Proof First note that Tk(V ) is spanned by all elements of the form u1 ⊗
· · · ⊗ uk where ui ∈ V and therefore C(V ) is spanned by 1 together with
all elements of the form u1 . . .uk where k ∈ N and u1, . . . ,uk ∈ V . As-
sume uj =

∑n
i=1 aijvi. Then u1 . . .uk is a sum of monomials of the form

ai1,1ai2,2 . . . aik,kvi1 . . .vik . Note that i1, . . . , ik are not necessarily distinct.
By Lemma (10.18), any product vi1 . . .vik is a multiple of vα for some subset
α of [1, n].

We will show below that S is linearly independent and therefore a basis for
C(V ). Toward that purpose, we introduce the concept of a Z2-grading and
how a Z-grading can be used to obtain a Z2-grading.
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Definition 10.17 An algebra A is said to be Z2-graded if there is a direct
sum decomposition A = A0⊕A1 such that AiAj ⊂ Ai+j where the addition is
taken modulo two.

When an algebra A has a Z-grading, A = ⊕k∈ZAk, a Z2-grading can be
obtained by setting A0 = ⊕k≡0 (2)Ak, A

1 = ⊕k≡1 (2)Ak. In particular, we can
obtain a Z2-grading of T (V ) in this way.

The notion of a homogenous ideal can be extended to algebras with a Z2-
grading:

Definition 10.18 Assume A = A0⊕A1 is a Z2-grading of the algebra A. An
ideal I is homogeneous (relative to this grading) if whenever x = x0 +x1 ∈ I
with xi ∈ Ai, then xi ∈ I.

When I is a homogenous ideal of the Z2-graded algebra A, then the quotient
A/I inherits the grading since A/I = (A0 + I)/I ⊕ (A1 + I)/I is isomorphic
to A0/(A0 ∩ I)⊕A1/(A1 ∩ I).
The next result gives a characterization of homogenous ideals in a Z2-graded
algebra. It is proved just like Lemma (10.7) and we leave its proof as an
exercise.

Lemma 10.20 Assume A = A0⊕A1 is a Z2-graded algebra and I is an ideal
of A. Then I is homogenous if and only if I is generated (as an ideal) by
homogenous elements.

We now apply the above to T (V ). Denote by T 0(V ) = ⊕k≡0 (2)Tk(V ) and
T 1(V ) = ⊕k≡1 (2)Tk(V ). Recall, the ideal Iφ is generated by all elements of
the form v ⊗ v − φ(v) where v ∈ V . All such elements belong to T 0(V ) and
are homogenous with respect to the Z2-grading. Consequently, T (V )/Iφ =
[T 0(V )+T 1(V )]/Iφ is isomorphic to T 0(V )/[T 0(V )∩Iφ]⊕T 1(V )/[T 1(V ∩Iφ].
Set

C0 = C0(V ) = π(T 0(V )) = [T 0(V ) + Iφ]/Iφ ∼= T 0(V )/[T 0(V ) ∩ Iφ]

C1 = C1(C) = π(T 1(V )) = [T 1(V ) + Iφ]/Iφ ∼= T 1(V )/[T 1(V ) ∩ Iφ].

Since C(V ) = C0(V ) ⊕ C1(V ) we have a Z2-grading on C(V ). We will mo-
mentarily use this to show that dim(C(V )) = 2n where dim(V ) = n. First we
introduce the notion of a Z2-graded (twisted) tensor product.
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Definition 10.19 Assume A = A0 ⊕ A1 and B = B0 ⊕ B1 are Z2-graded
algebras over the field F. The Z2-graded tensor product of A and B,A⊗̂B, has
as its underlying set the vector space

A⊗B = [A0 ⊕A1]⊗ [B0 ⊗B1]

= [(A0 ⊗B0)⊕ (A1 ⊗B1)]⊕ [(A0 ⊗B1)⊕ (A1 ⊗ B0)].

The multiplication in A⊗̂B is as follows: Assume a1,a2 ∈ A are homo-
geneous and b1, b2 ∈ B are homogeneous. Then (a1 ⊗ b1)(a2 ⊗ b2) =
(−1)(deg(a2)deg(b1)a1a2 ⊗ b1b2. The multiplication is extended to all of A⊗B
by bilinearity.

Set (A⊗̂B)0 = (A0 ⊗B0)⊕ (A1 ⊗B1) and (A⊗̂B)1 = (A0 ⊗B1)⊕ (A1 ⊗B0).

Theorem 10.24 If A = A0 ⊕A1 and B = B0 ⊕B1 are two Z2-graded (asso-
ciative) algebras then A⊗̂B is an associative Z2-graded (associative) algebra.

Proof That the multiplication is well-defined follows from the universal prop-
erties of the tensor product A ⊗ B. Since the multiplication, by definition, is
bilinear, associativity reduces to the case where xi = ai ⊗ bi, i = 1, 2, 3 where
ai ∈ A and bi ∈ B are homogenous. Set di = deg(ai), ei = deg(bi). Then

x1[x2x3] = (a1 ⊗ b1)[(a2 ⊗ b2)(a3 ⊗ b3)]

= (a1 ⊗ b1)[(−1)d3e2(a2a3)⊗ (b2b3)]

= (−1)(d2+d3)e1(−1)d3e2 [a1(a2a3)⊗ [b1(b2b3)]

[x1x2]x3 = [(a1 ⊗ b1)(a2 ⊗ b2)](a3 ⊗ b3)

= (−1)d2e1 [(a1a2)⊗ (b1b2)(a3 ⊗ b3)

= (−1)d2e1(−1)d3(e1+e2 [(a1a2)a3]⊗ [(b1b2)b3].

Since the multiplication in A is associative, and the multiplication in B is
associative, it follows that [(a1a2)a3] ⊗ [(b1b2)]b3 = [a1(a2a3)] ⊗ [b1(b2b3)].
Therefore, equality comes down to whether d3e2+(d2+d3)e1 and d2e1+d3(e1+
e2) have the same parity. However, in fact, they are identical.

Assume that A and B are Z2-graded algebras. The map which takes a ∈ A
to a ⊗ 1B is an injection (and an algebra homomorphism). We will identify
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a⊗ 1B with a and treat A as if it is a subalgebra of A⊗̂B. Similarly we treat
B as a sub algebra of A⊗̂B.

Let (V, φ) be an orthogonal space and assume that we have a decomposition
V = U ⊕W where 〈u,w〉 = 0 for u ∈ U,w ∈ W . We will prove that C(V ) is
isomorphic to C(U)⊗̂C(W ). This will allow us to now determine the dimension
of C(V ) from dim(V ).

Theorem 10.25 Assume (V, φ) is an orthogonal space and V = U⊕W where
〈u,w〉 = 0 for u ∈ U,w ∈W . Then C(V ) is isomorphic to C(U)⊗̂C(W ).

Proof Define f : V → C(U)⊗̂C(W ) as follows: If v ∈ V , write v = u +w

where u ∈ U,w ∈ W . Set f(v) = u⊗ 1C(W ) + 1C(U) ⊗w. Thus,

f(v)2 = [u⊗ 1C(W ) + 1C(U) ⊗w]2

= u2 ⊗ 1C(W ) − u⊗w + u⊗w + 1C(U) ⊗w2

= φ(u) + φ(w)

= φ(v).

We have therefore shown that C(U)⊗̂C(W ) is a realization of (V, φ). We will
show that if A is an algebra over F and ǫ : V → A is a realization of (V, φ),
then there is a unique algebra homomorphism E : C(U)⊗̂C(W ) → A such
that E ◦ f = ǫ which will establish that C(U)⊗̂C(W ) is isomorphic to C(V ).
Denote by jU the injection of U into C(U) and by jW the injection of W into
C(W ). Further, let ǫU be the restriction of ǫ to U and ǫW the restriction of
ǫ to W . Then (A, ǫU ) is a realization of (U, φ|U ) and (A, ǫW ) is a realization
of (W,φ|W ). By the universality of C(U) there is an algebra homomorphism
σU : C(U) → A such that σU ◦ jU = ǫU and, similarly, by the universality
of C(W ) there is an algebra homomorphism σW : C(W ) → A such that
σW ◦ jW = ǫW . Define σ : C(U) × C(W ) → A by σ(x,y) = σU (x)σW (y).
Since the multiplication in A is bilinear and each of σU , σW is linear, it follows
that σ is bilinear. By the universality of the tensor product, there is a linear
map E : C(U) ⊗ C(W ) → A such that E(u ⊗ v) = σU (u)σW (w) for u ∈ U
and w ∈W .

We next claim that E is an algebra homomorphism. Let (u1, . . . ,uk) be a basis
for U and (w1, . . . ,wl) be a basis for W . For a subset α = {i1 < · · · < is}
of [1, k] denote by uα the element ui1 . . .uis of C(U). Likewise for a subset
β = {j1 < · · · < jt} of [1, l], denote by wβ the element wj1 . . .wjt of C(W ).
Since E is linear and the multiplication in each of C(U), C(W ), and A is
bilinear, it suffices to show that for y1,y2 homogenous in C(U) and z1, z2
homogenous in C(W ) that E((y1 ⊗ z1)(y2 ⊗ z2)) = E(y1 ⊗ z1)E(y2 ⊗ z2)).
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Again, by the bilinearity of multiplication in C(U), C(W ), and A and the
linearity of E, we can assume that yi = uαi

, zi = zβi
for i = 1, 2.

E((uα1 ⊗wβ1)(uα2 ⊗wβ2) = (−1)|β1|·|α2|E(uα1uα2 ⊗wβ1wβ2)

= (−1)|β1|·|α2|σ(uα1uα2 ⊗wβ1wβ2))

= (−1)|β1|·|α2|σU (uα1uα2)σW (wβ1wβ2)

= (−1)|β1|·|α2|σU (uα1)σU (uα2)σW (wβ1)σW (wβ2)

On the other hand,

E(uα1 ⊗wβ1)E(uα2 ⊗wβ2) = σU (uα1)σW (wβ1)σU (uα2)σW (wβ2).

So we must show that

σW (wβ1)σU (uα2) = (−1)|β1|·|α2|σU (uα2)σ(wβ1).

Assume that α2 = {i1 < · · · < is} ⊆ [1, k] and β1 = {j1 < · · · < jt} ⊆ [1, l].
Then uα2 = ui1 . . .uis and wβ1 = wj1 . . .wjt . Thus,

σU (uα2) = σU (ui1 . . .uis)

= σU (ui1 . . .uis)

= σU (ui1) . . . σU (uis)

= ǫU (ui1) . . . ǫU (uis)

= ǫ(ui1) . . . ǫ(uis).

Similarly

σW (wβ1) = ǫ(wj1) . . . ǫ(wjt).

Since for each pair (i, j) we have ui ⊥ wj, it follows by Corollary (10.3) that
ǫ(wj)ǫ(ui) = −ǫ(ui)ǫ(wj). It then follows that

ǫ(wj1) . . . ǫ(wjt)ǫ(ui1) . . . ǫ(uis) = (−1)tsǫ(ui1) . . . ǫ(uisǫ(wj1) . . . ǫ(wjt).

which is what we needed to prove.

We next show that E ◦ f = ǫ. Assume that v = u+w where u ∈ U,w ∈ W ,
so that f(v) = f(u+w) = u⊗ 1C(W ) + 1C(U) ⊗w. Thus,
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E(f(v)) = E(u⊗ 1C(W ) + 1C(U) ⊗w)

= E(u⊗ 1C(W )) + E(1C(U) ⊗w)

= σ(u, 1C(W ))σ(1C(V ),w)

= σU (u)σW (1C(W )) + σU (1C(U))σW (w)

= ǫ(u) + ǫ(w)

= ǫ(u+w)

= ǫ(v).

Finally, since f(V ) includes all elements of the form u⊗1C(W ) and 1C(U)⊗w

and C(U)⊗̂C(W ) is generated as an algebra by these elements,l it follows that
E is unique.

We can now determine the dimension of C(V ) given the dimension of V .

Theorem 10.26 Assume (V, φ) is an orthogonal space of dimension n. Then
dim(C(V )) = 2n. Moreover, if B = (v1, . . . ,vn) is a basis for V , then S(B) =
{vα| α ⊂ [1, n]} is a basis for C(V ).

Proof The proof is by induction on n = dim(V ). If n = 1 then by Example
(10.5) the dimension of C(V ) = 2. Assume for orthogonal spaces (V, φ) of
dimension n − 1 that dim(C(V )) = 2n−1 and let us suppose that (V, φ) is
an orthogonal space of dimension n. Assume φ is non-trivial. Then choose
any vector w such that φ(w) 6= 0 and set W = Span(w), U = w⊥ so that
V = U⊕W where 〈u, aw〉 = 0 for all u ∈ U , and aw ∈ W . On the other hand,
if φ is trivial, choose any decomposition of V as U ⊕W where dim(U) = n−1
and the dimension of W is one. Since φ is trivial, we have 〈u,w〉 = 0 for
all u ∈ U,w ∈ W . By the base case, dim(C(W )) = 2 and by the inductive
hypothesis dim(C(U)) = 2n−1. By Theorem (10.25) it follows that C(V ) is
isomorphic to C(U)⊗̂C(W ). As a vector space over F, C(U)⊗̂C(W ) is equal
to C(U) ⊗ C(W ). Then dim(C(V )) = dim(C(U) ⊗ C(W )) = dim(C(U)) ·
dim(C(W )) = 2n−1 · 2 = 2n.

Finally, since S(B) is a spanning set with cardinality 2n, it follows by Theorem
(1.23) that S(B) is a basis of C(V ).

Exercises

1. Assume (V, φ) is a real orthogonal space of dimension one and for every
non-zero vector v assume that φ(v) < 0. Prove that C(V ) is isomorphic to
the complex numbers.
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2. Prove part a) of Lemma (10.17).

3. Prove part b) of Lemma (10.17).

4. Prove Lemma (10.20).

5. Assume (V, φ) is a real orthogonal space of dimension two and for all non-
zero vectors v assume that φ(v) < 0. Prove that C(V ) is isomorphic to the
division ring of quaternions.

6. Assume (V, φ) is a hyperbolic plane over the field F. Prove that C(V ) is
isomorphic to M22(F).
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In this chapter we study certain subgroups of the group of units GL(V ) in the
algebra L(V, V ) where V is an n-dimensional vector space over a field F. In
the first section we consider the normal group SL(V ) of GL(V ) consisting of
those operators of determinant 1. We show that except when (n,F) = (2,F2)
or (3,F3), this group is perfect, and then prove that the quotient group of
SL(V ) by its center is a simple group. In the second section we equip V with
a non-degenerate alternating bilinear form f and study the group I(V, f)
of isometries f . Section three is devoted to isometries of a non-degenerate
orthogonal space over a field F where the characteristic of F is not two. The
final section is concerned with groups of isometries of a finite-dimensional,
non-degenerate unitary space.

399



400 Advanced Linear Algebra

11.1 Linear Groups

In this section we define the subgroup SL(V ) of GL(V ) where V is an n-
dimensional vector space over the field F. We prove if either n ≥ 3 or n = 2
and |F| > 3 then SL(V ) is a perfect group. We also determine the center of
the groups GL(V ) and SL(V ). Finally, we prove that when SL(V ) is perfect
the quotient of SL(V ) by its center is a simple group.

What You Need to Know

To successfully navigate the material of this new section you should by now
have mastered the following concepts: vector space over a field F, basis of a
vector space, dimension of a vector space, linear operator on a vector space
V, matrix of a linear operator T : V → V with respect to a base B for V,
eigenvalue and eigenvector of an operator T , the algebra L(V, V ) of operators
on a finite-dimensional vector space V , an invertible operator on a vector space
V , and the group GL(V ) of invertible operators on a finite-dimensional vector
space V . You must also be familiar with the following concepts from group
theory: Abelian group, solvable group, normal subgroup of a group, quotient
group of a group by a normal subgroup, the commutator of two elements in
a group, the commutator subgroup of a group, a perfect group, the center of
a group, a simple group, action of a group G on a set X , transitive action
of a group G on a set X , primitive action of a group G on a set X , and a
doubly transitive action of a group G on a set X . The latter can be found in
Appendix B. We also recommend reviewing a textbook on abstract algebra
such as ([2]) or ([3]).

Let V be an n-dimensional vector space over the field F. Recall, by GL(V ) we
mean the group of units in L(V, V ). This is referred to as the general linear
group on V . We also denote by GLn(F) the group of invertible n×nmatrices,
which is the group of units in the algebra Mnn(F). The groups GL(V ) and
GLn(F) are isomorphic as follows: Choose and fix a basis B = (v1, . . . ,vn) for
V . Then T → MT (B,B) is a group isomorphism.

The map det : GL(V ) → F∗ = F \ {0} is a group homomorphism. We denote
by SL(V ) the kernel of this map and refer to this as the special linear
group on V . It consists of all the operators on V with determinant 1. This is
isomorphic to SLn(F) which is the group of n× n matrices with determinant
equal to one.

In our first lemma we determine the center of the groups GL(V ) and SL(V ).

Lemma 11.1 Let V be an n-dimensional vector space. Then the following
hold:

i) The center of GL(V ), Z(GL(V )) consists of all operators λIV , λ ∈ F∗.
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ii) The center of SL(V ), Z(SL(V )) consists of all operator λIV , λ ∈ F∗ such
that λn = 1.

Proof Assume S ∈ GL(V ) and ST = TS for every T ∈ SL(V ). We prove
that every non-zero vector of V is an eigenvector. Thus, let v 6= 0. Let B =
(v1, . . . ,vn) be a basis such that vn = v and let T be the operator of V
such that for k < n, T (vk) = vk + vk+1 and T (vn) = vn. Then T is an
indecomposable cyclic operator with minimal polynomial (x−1)n. Note that the
determinant of T is (−1)n(−1)n = 1 and therefore T ∈ SL(V ). If ST = TS
then S = f(T ) for some polynomial f(x) ∈ F[x] by Exercise 12 of Section
(4.2). In particular, if U is a T -invariant subspace then U is S-invariant. Note
that v = vn is an eigenvector for T with eigenvalue 1 and therefore Span(v)
is T -invariant, hence S-invariant, and v is an eigenvector for S. Thus, for
each vector v ∈ V there is a scalar λv such that S(v) = λvv. We claim that
for (v,w) linearly independent that λv = λw. This follows since , on the one
hand, S(v +w) = λv+w(v +w) = λv+wv + λv+ww and, on the other hand,
S(v+w) = S(v)+S(w) = λvv+λww. Therefore λv = λv+w = λw. If (v,w)
is linearly dependent then λv = λw. Now set λ = λv. Then S = λIV . When
S ∈ GL(V ) there are no conditions on λ (other than λ is not equal to zero).
When S ∈ SL(V ), det(S) = λn = 1.

Remark 11.1 If F = F2, then GL(V ) = SL(V ) and Z(SL(V )) = {IV }.

Definition 11.1 Let V be an n-dimensional vector space over the field F and
assume 1 ≤ k < n. We will denote by Lk(V ) the collection of all subspaces of
V of dimension k.

Define an action of the group GL(V ) on Lk(V ) by T ·X = T (X) := {T (x)|x ∈
X} which has dimension k since T is invertible. Recall for an action of a group
G on a set X the kernel of the action consists of all those elements g ∈ G such
that g · x = x for all x ∈ X . In the next lemma we prove that kernel of the
action just defined by GL(V ) on Lk(V ) is Z(GL(V )).

Lemma 11.2 Assume T ∈ GL(V ) and for every U ∈ Lk(V ) that T (U) = U .
Then T ∈ Z(GL(V )).

Proof If k = 1, this is true by the proof of Lemma (11.1). We leave the case
k > 1 as an exercise.
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Lemma 11.3 Assume V is n-dimensional with n ≥ 2. Then SL(V ) is doubly
transitive on L1(V ).

Proof Assume (X1, X2) and (Y1, Y2) two pairs of distinct one-dimensional
subspaces of V . Let xi ∈ Xi and yi ∈ Yi. By Exercise 14 of Section (1.6)
there is an (n − 2) dimensional subspace Z such that Span(x1,x2) ⊕ Z =
V = Span(y1,y2) ⊕ Z. Let z1, . . . , zn−2 be a basis of Z. Then B =
(x1,x2, z1, . . . , zn−2) and B′ = (y1,y2, z1, . . . , zn−2) are bases of V . Let T
be the operator on V such that T (xi) = yi, i = 1, 2; and T (zj) = zj , 1 ≤
j ≤ n − 2. Since the image of the basis B is the basis B′, T ∈ GL(V ). Set
a = det(T ). Then define S such that S(x1) =

1
ay1, S(x2) = y2 and S(zj) = zj

for 1 ≤ j ≤ n− 2. Then S ∈ SL(V ), S(Xi) = Yi for i = 1, 2.

Corollary 11.1 The action of SL(V ) on L1(V ) is primitive.

Definition 11.2 Let V be an n-dimensional vector space over a field F, H a
hyperplane of V (i.e. a subspace of dimension n−1) and P a one-dimensional
subspace of H. A non-identity operator τ of V is said to be a transvection
with axis H and center P if T (x) = x for x ∈ H and for arbitrary
v ∈ V, T (v)−v ∈ P . The collection of all transvections with axis H and center
P along with the identity operator IV , is denoted by χ(P,H). We denote by
Ω(V ) the subgroup of SL(V ) generated by all χ(P,H).

Remark 11.2 If T is a transvection then the minimal polynomial of T is
(x − 1)2 and the characteristic polynomial is (x − 1)n. Thus, det(T ) = 1 and
T ∈ SL(V ).

Lemma 11.4 Let u,v be non-zero vectors. Then there exists S ∈ Ω such that
S(u) = v.

Proof First assume that (x,y) is linearly independent. Choose a hyperplane
H of V such that z = y − x ∈ H,x /∈ H and set Z = Span(z). Let S be the
unique element of χ(Z,H) such that S(x) = x+ z = y. Clearly S ∈ Ω.

On the other hand, suppose y is a multiple of x. Chose u ∈ V \ Span(x). By
what we have shown, there are transvections T1 and T2 such that T (x) = u

and T2(u) = y. Set S = T2T1. Then S ∈ Ω and S(x) = y as required.
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Lemma 11.5 Assume dim(U) = n − 2 and X1, X2, X3 are distinct hy-
perplanes containing U . Let P1 be a one space contained in X1 such that
X1 = P1 ⊕ U . Then there exists S ∈ χ(P1, X1) such that σ(X2) = X3.

Proof Let x1 be a non-zero vector in P1 and choose any vector x2 ∈ X2 \
U . The intersection Span(x1,x2) ∩X3 is a one-dimensional subspace by the
Grassmannian formula (see Exercise 8 of Section (1.6)). Let x3 = ax1+bx2 be
a non-zero element of Span(x1,x2)∩X3. Let S be the operator on V such that
S restricted to X1 is the identity and S(x2) =

a
bx1 +x2. Then S ∈ χ(P1, X1)

and S(bx2) = b(abx1 + x2) = ax1 + bx2 = x3 and therefore S(X2) = X3.

Lemma 11.6 Assume n = 2. Then Ω = SL(V ).

Proof Let T ∈ SL(V ) and B = (u1,u2) a basis of V . Set U = Span(u1),
and wi = T (ui), i = 1, 2. Then also (w1,w2) is a basis of V . By Lemma
(11.4) there is an element S ∈ Ω such that S(u1) = w1. Set w

′
2 = S(u2). Then

(w1,w
′
2) is a basis of V . Suppose w′

2 = aw2. Then S
−1T (w1) has determinant

one since S, T ∈ SL(V ). However, S−1T (v1) = v1 and S−1T (v2) = 1
av2.

Therefore, S−1T has determinant 1
a . Consequently, a = 1 and S = T . Thus

we may assume that (w2,w
′
2) is linearly independent.

Write w2 as a linear combination of w1 and w′
2: w2 = cw1 + dw′

2. Then
S−1T (v1) = v1 and S−1T (v2) = S−1(w2) = S−1(cw1 + dw′

2) = cv1 + dv2.
Then det(S−1T ) = d. However, S−1T ∈ SL(V ) so d = 1. It now follows that
that S′ = S−1T is a transvection with center U , that is, S′ ∈ χ(U,U). Now
T = S′S is a product of transvections.

Theorem 11.1 If V is an n-dimensional vector space with n ≥ 2 then SL(V )
is generated by its transvections, that is, Ω(V ) = SL(V ).

Proof The proof is by induction n. We have already proved this for the base
case, n = 2, in Lemma (11.6). Assume the result is true for spaces of dimen-
sion n and that dim(V ) = n+ 1. We first prove if T ∈ SL(V ) and T has an
eigenvector with eigenvalue 1, then T ∈ Ω. So assume T (x) = x. Let Y be
a hyperplane of V such that x /∈ Y . Set Z = T (Y ). If Z = Y then T|Y has
determinant 1 and we can apply the inductive hypothesis.

So assume Z 6= Y and set U = Y ∩ Z which has dimension n − 1 and set
X = Span(x)⊕U . By Lemma (11.5) there is an element S ∈ χ(Span(x), X)
such that S(Y ) = Z. Set T ′ = S−1T . Then T ′(x) = x and T ′(Y ) = Y ; and
so we are done by the first part of the proof.
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Finally, we consider the general case. Let T ∈ SL(V ). Clearly we may assume
T 6= IV . Choose a vector x such that T (x) = y 6= x. By Lemma (11.4) there
is an element S ∈ Ω such that S(x) = y. Set T ′ = S−1T . Then T ′(x) = x;
so we are done by the first case.

Our next goal is to prove that with the exceptions (n,F) = (2,F2) and (2,F3)
the group SL(V ) is perfect. Recall this means that SL(V ) is equal to its
commutator subgroup: the subgroup, SL(V )′, generated by all elements of
the form [S, T ] = S−1T−1ST as S and T range over SL(V ). The commutator
subgroup is a characteristic subgroup, hence it is normal. We show directly be-
low that SL(V ) is transitive on pairs (P,H) where P ∈ L1(V ), H ∈ Ln−1(V ),
and P ⊂ H . This will imply that all the subgroups χ(P,H) are conjugate. We
will then prove that, apart from the exceptions, the commutator subgroup
contains one of the subgroups χ(P,H) and hence all of them. It will then
follow that the commutator subgroup of SL(V ), SL(V )′ is equal to SL(V ).

Lemma 11.7 Let Pi, i = 1, 2 be one-dimensional subspaces, Hi, i = 1, 2 be
hyperplanes, and assume Pi ⊂ Hi. Then there exists S ∈ SL(V ) such that
S(P1) = P2, S(H1) = H2.

Proof Let (x1i, . . . ,xn−1,i) be a basis for Hi, i = 1, 2 with x1i ∈ Pi, i = 1, 2.
Let xni ∈ V \Hi, i = 1, 2. Then (x1i, . . . ,xni) is a basis for V for i = 1, 2. Let
T be the operator such that T (xj1) = xj2. Then T (P1) = P2, T (H1) = H2. We
are done if det(T ) = 1. Suppose det(T ) = a 6= 1. Define S ∈ L(V, V ) such that
S restricted to H1is equal to T restricted to H1 and such that S(xn1) =

1
axn2.

Then S(P1) = P2, S(H1) = H2 and det(S) = 1.

Corollary 11.2 Let Pi, i = 1, 2 be one-dimensional subspaces, Hi, i = 1, 2 be
hyperplanes, and assume Pi ⊂ Hi. Then there exists S ∈ SL(V ) such that
Sχ(P1, H1)S

−1 = χ(P2, H2).

Proof This follows from the fact that Sχ(P,H)S−1 = χ(S(P ), S(H)), which
we leave as an exercise.

Theorem 11.2 Assume (n,F) 6= (2,F2), (2,F3). Then SL(V ) is perfect.
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Proof First assume that n ≥ 3. Let (v1, . . . ,vn) be a basis of V . Let a ∈ F
and let Sa be the operator defined on V such that Sa(vi) = vi if i 6= n and
Sa(vn) = avn−1+vn. This is a transvection with center Span(vn−1) and axis
Span(v1, . . . ,vn−1). Next let b ∈ F and Tb be the operator on V defined by
Tb(vi) = vi for i 6= n−1 and Tb(vn−1) = bv1+vn−1. Then Tb is a transvection
with center Span(v1) and axis Span(v1, . . . ,vn−2,vn). Set R = T−1

b S−1
a TbSa.

Then R is the transvection such that R(vi) = vi for i 6= n and R(vn) =
abv1+vn. Thus, if P = Span(v1) and H = Span(v1, . . . ,vn−1) then χ(P,H)
is contained in SL(V )′. Since SL(V )′ is normal in SL(V ) every conjugate,
Sχ(P,H)S−1 is contained in SL(V )′. By Corollary (11.2), SL(V )′ contains
every transvection subgroup χ(P ′, H ′). Now by Theorem (11.1) it follows that
SL(V )′ = SL(V ).

We may therefore assume that n = 2 and that F has at least four elements.
Choose a basis (v1,v2) for V and let b ∈ F, a 6= 0,. Denote by Tb the transvec-
tion such that Tb(v1) = v1 and Tb(v2) = bv1 + v2. Next let c ∈ F, c 6= 0,±1
and denote by Sc the operator such that Sc(v1) = cv1, Sc(v2) = 1

cv2.

Note that 1 − c2 6= 0. Set Rb,c = S−1
c T−1

b ScTb. Then Rb,c(v1) = v1 and
Rb,c(v2) = b(1− c2)v1 + v2. Thus, Rb,c is a transvection with center and axis
equal to Span(v1). Note that as b ranges over F so does b(1 − c2). Conse-
quently, every transvection with axis Span(v1) is contained in SL(V )′. Since
SL(V )′ is normal in SL(V ) and transitive on one-dimensional subspaces it
follows that SL(V )′ contains all transvections. Again by Theorem (11.1), it
follows that SL(V )′ = SL(V ).

Definition 11.3 The projective general linear group is the quotient
group GL(V )/Z(GL(V )) and is denoted by PGL(V ). The special linear
group, denoted by PSL(V ), is the quotient group SL(V )/Z(SL(V )).

Remark 11.3 Let T = Z(GL(V ))T be an element of PGL(V ) and let U be
a k-dimensional subspace of V . Define T · U = T · U = T (U). This is well
defined and gives a faithful action of PGL(V ) on Lk(V ) (prove this).

Lemma 11.8 Let P ∈ L1(V ), H1, H2 ∈ Ln−1(V ) with P ⊂ H1 ∩ H2. Then
χ(P,H1) and χ(P,H2) commute.

This is left as an exercise.

Definition 11.4 Fix P ∈ L1(V ). We denote the subgroup of SL(V ) generated
by all χ(P,H) where H ∈ Ln−1(V ), P ⊂ H by χ(P ) and refer to this as the
group of transvections with center P .
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Corollary 11.3 Let P ∈ L1(V ). Then χ(P ) is an Abelian group.

Proof This is immediate from Lemma (11.8).

Let P ∈ L1(V ). We denote by SL(V )P the set of all T ∈ SL(V ) such that
T (P ) = P .

Lemma 11.9 Let P ∈ L1(V ). Then χ(P ) is a normal subgroup of SL(V )P .

Proof Assume S ∈ χ(P,H)P and T ∈ SL(V ). Set H ′ = T (H). Then
H ′ ∈ Ln−1(V ) and P ⊂ H ′. It then follows that STS−1 ∈ χ(S(P ), S(H)) =
χ(P,H ′), a subgroup of χ(P ).

Theorem 11.3 Assume (n,F) neither (2,F2) nor (2,F3) and that N is a
normal subgroup of SL(V ) not contained in Z(SL(V )). Then N = SL(V ). In
particular, PSL(V ) is a simple group.

Proof SL(V ) acts primitively on L1(V ). For P ∈ L1(V ), χ(P ) is an Abelian
normal subgroup of SL(V )P and its conjugates generate SL(V ). Since SL(V )
is perfect, the conclusion follows from Iwasawa’s theorem.

Remark 11.4 The groups PSL2(F2) and PSL2(F3) are truly exceptions:
The order of PSL2(F2) is six and the group is isomorphic to the symmet-
ric group of degree three, and is solvable. The group PSL2(F3) has order 12,
is isomorphic to the alternating group of degree four, and is solvable.

Exercises

1. Let V be an n-dimensional vector space over Fq where q = pk for a prime
p. Determine the order of GL(V ) and SL(V ).

2. Assume that V is an n-dimensional vector space over a field F and k is a
natural number, 2 ≤ k ≤ n

2 . Assume U1, U2,W1,W2 ∈ Lk(V ) and dim(U1 ∩
U2) = dim(W1 ∩W2). Prove that there exists S ∈ SL(V ) such that S(Ui) =
Wi, i = 1, 2.

3. Let V be an n-dimensional vector space and k a natural number, 1 <
k < n. Assume T ∈ GL(V ) and T (U) = U for every U ∈ Lk(V ). Prove
T ∈ Z(GL(V )).

4. Assume dim(V ) = n, P ∈ L1(V ), H1 6= H2 ∈ Ln−1(V ) with P ⊂ H1 ∩H2.
Prove that χ(P,H1) and χ(P,H2) commute.
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5. Continue with the assumptions of Exercise 4. Set U = H1∩H2. Assume S ∈
χ(P,H1)χ(P,H2). Prove that there is an element H ∈ Ln−1(V ) containing U
such that T ∈ χ(P,H).

6. Assume dim(V ) = n, P1, P2 ∈ L1(V ), H ∈ Ln−1(V ) and P1 + P2 ⊂ H .
Prove that χ(P1, H) and χ(P2, H) commute.

7. Continue with the assumptions of Exercise 6. Let T ∈ χ(P1, H)χ(P2, H).
Prove there is a P ∈ L1(P1 + P2) such that T ∈ χ(P,H).

8. Assume P1 is not contained in H2 and P2 is not contained in H1. Prove
that 〈χ(P1, H1), χ(P2, H2)〉 is isomorphic to SL(W ) where dim(W ) = 2.

9. Assume dim(V ) = n, P1 6= P2 ∈ L1(V ), H1 6= H2 ∈ Ln−1(V ) with Pi ⊂
Hi, i = 1, 2. Prove that χ(P1, H1) commutes with χ(P2, H2) if and only if
P1 + P2 ⊂ H1 ∩H2.

10. Assume dim(V ) = n, P ∈ L1(V ), H ∈ Ln−1(V ) with P ⊂ H . Let S ∈
SL(V ). Prove that Sχ(P,H)S−1 = χ(S(P ), S(H)).
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11.2 Symplectic Groups

In this section we consider the symplectic group, Sp(V ), of isometries of a non-
degenerate 2m-dimensional symplectic space (V, f). We show the existence of
transvections in SP (V ) . We also prove, with just three exceptions, that the
quotient of the group Sp(V ) by its center is a simple group.

What You Need to Know

To successfully navigate the material of this new section you should by now
have mastered the following concepts: vector space over a field F, basis of a
vector space, dimension of a vector space, linear operator on a vector space V,
matrix of a linear operator T : V → V with respect to a base B for V, eigen-
value and eigenvector of an operator T , the algebra L(V, V ) of operators on a
finite-dimensional vector space V , an invertible operator on a vector space V ,
the group GL(V ) of invertible operators on a finite-dimensional vector space
V , bilinear form, reflexive bilinear form, alternating bilinear form, symplectic
space, non-degenerate symplectic space, hyperbolic pair in a symplectic space,
a hyperbolic basis in a symplectic space, an isometry of a symplectic space.
You must also be familiar with the following concepts from group theory:
Abelian group, solvable group, normal subgroup of a group, quotient group of
a group by a normal subgroup, the commutator of two elements in a group,
the commutator subgroup of a group, a perfect group, the center of a group,
a simple group, action of a group G on a set X , transitive action of a group
G on a set X , primitive action of a group G on a set X , and faithful action of
a group G on a set X . The material on groups can be found in Appendix B.

We recall some definitions:

Let V be a vector space over a field F. An alternating bilinear form is a map
f : V × V → F such that

1) for every vector v, the map fv : V → F defined by fv(u) = f(u,v) is
linear;

2) for every vector v, the map vf : V → F defined by vf(u) = f(v,u) is
linear; and

3) for every vector v, f(v,v) = 0.

It follows from 1)–3) that for any vectors v and u, f(u,v) = −f(v,u).
A symplectic space is a pair (V, f) of a vector space V and an alternating
bilinear form f : V × V → F.

The radical of (V, f) consists of all those vectors v such that fv = 0V→F. (V, f)
is non-degenerate if Rad(f) = {0}. If (V, f) is a non-degenerate symplectic
space then Theorem (8.7) implies that the dimension of V is even and the
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existence of a basis B = (u1, . . . ,un,v1, . . . ,vn) for V such that f(ui,uj) =
f(vi,vj) = f(ui,vj) = 0 if i 6= j and f(uj,vj) = 1. Such a basis is called a
hyperbolic basis.

An isometry of a symplectic space (V, f) is a linear operator T : V → V such
that f(T (u), T (v)) = f(u,v) for all vectors u,v. If (V, f) is non-degenerate
then an isometry must be invertible since a vector v ∈ Ker(T ) must lie in the
radical and, consequently, Ker(T ) = {0V }. When (V, f) is non-degenerate
the composition of isometries is an isometry and the inverse of an isometry is
an isometry. Therefore the collection of isometries is a subgroup of GL(V ).

Definition 11.5 Let (V, f) be a non-degenerate symplectic space. The collec-
tion of isometries of (V, f) is referred to as the symplectic group on V and
is denoted by Sp(V ).

Recall for a bilinear form f on a vector space V with a basis B = (v1, . . . ,vn),
the matrix of f with respect to B,Mf(B,B), is the matrix A whose (i, j)-entry
is aij = f(vi,vj). For vectors u,v ∈ V

f(u,v) = [u]trBA[v]B.

Lemma 11.10 Let (V, f) be a non-degenerate symplectic space with hyper-
bolic basis B = (u1, . . . ,un,v1, . . . ,vn) = (z1, . . . , z2n). Set A = Mf(B,B) =(

0n In
−In 0n

)
. Let σ ∈ GL(V ) and set Q = Mσ(B,B). Then the operator

σ ∈ Sp(V ) if and only if QtrAQ = A.

Proof Let the entries of QtrAQ be bij. Then σ ∈ Sp(V ) if and only if
f(u,v) = f(σ(u), σ(v)) for every pair of vectors (u,v) from B. It then follows
that

(Q[u]B)
trA(Q[v]B) = [u]trBQ

trAQ[v]B = [u]trBA[v]B.

Taking (u,v) = (zi, zj) we get that bij = aij for 1 ≤ i, j ≤ 2n and so
QtrAQ = A. Conversely, if QtrAQ = A then

f(σ(u), σ(v)) = (Q[u]B)
trA(Q[v]B)

= [u]trBQ
trAQ[v]B

= [u]trBA[v]B

= f(u,v).
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Definition 11.6 Let (V, f) be a non-degenerate symplectic space with hyper-
bolic basis B = (u1, . . . ,un,v1, . . . ,vn) = (z1, . . . , z2n). Set A = Mf (B,B).
The collection of matrices such that QtrAQ = A is denoted by Sp2n(F) and
referred to the symplectic group of degree 2n over F.

Theorem 11.4 Let (V, f) be a non-degenerate symplectic space of dimension
two. Then Sp(V ) is isomorphic to SL(V ).

Proof Let B = (u,v) be a hyperbolic basis for V and assume σ ∈ GL(V ).

Set Mσ(B,B) =
(
s11 s12
s21 s22

)
. Then by Lemma (11.10) σ ∈ Sp(V ) if and only

if

(
s11 s21
s12 s22

)(
0 1
−1 0

)(
s11 s12
s21 s22

)
=

(
s11 s12
s21 s22

)
.

This implies that

(
0 s11s22 − s12s21

s12s21 − s11s22 0

)
=

(
0 1
−1 0

)
.

Thus, σ ∈ Sp(V ) if and only if s11s22 − s12s21 = 1.

Let x be a non-zero vector in the non-degenerate symplectic space (V, f) and
let c ∈ F. Set X = Span(x). Define a map Tx,c on V as follows: for a vector
u ∈ V, Tx,c(u) = u− cf(u,x)x.

Lemma 11.11 Let x be a non-zero vector in the non-degenerate symplectic
space (V, f) and let c ∈ F. Then the following hold:

i) Tx,c is a transvection with center X = Span(x) and axis x⊥.

ii) Tx,c is an isometry of f .

Proof i. We leave this as an exercise.

ii) This is Exercise 7 of Section (8.2).

Definition 11.7 The map Tx,c is referred to as a symplectic transvection
centered at X. We denote by χ(X) the set of all Tx,c with c ∈ F along with
IV . When X = Span(x) we will often write χ(x) for χ(X).
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Lemma 11.12 Assume (V, f) is a non-degenerate symplectic space. Then the
following hold:

i) If x 6= 0, c, d ∈ F then Tx,cTx,d = Tx,c+d.

ii) If x 6= 0, b, c ∈ F then Tbx,c = Tx,b2c.

iii) If x,y are non-zero vectors, c, d ∈ F and f(x,y) = 0 then Tx,c and Ty,d
commute.

iv) If x,y are non-orthogonal vectors, then the group generated by χ(Span(x))
and χ(Span(y)) is isomorphic to SL2(F).

Proof We leave i)–iii) as exercises and prove iv). Set X = Span(x), Y =
Span(y). Since Y = Span(cy) for any non-zero c, we may assume that
f(x,y) = 1. Set U = Span(x,y), a non-degenerate subspace of V and set
W = U⊥. Let Σ be the group generated by χ(X) and χ(Y ). Both U and
W are Σ-invariant and Σ restricted to W is {IY }. Consequently, the map
T → T|X is an injection since the only transformation which fixes every vec-
tor in V is IV . Therefore, we may assume that V = U . Set B = (x,y). The

matrix of Tx,c with respect to B is

(
1 c
0 1

)
and the matrix of Ty,c is

(
1 0
c 1

)
.

We proved in Theorem (11.1) that these matrices generate SL2(F).

Lemma 11.13 Let X = Span(x) for a non-zero vector x and S ∈ Sp(V ).
Then Sχ(X)S−1 = χ(S(X)).

We leave this as an exercise.

Definition 11.8 Let X = Span(x) be a one-dimensional subspace of V . Let
Ψ(X) consist of all those operators T in Sp(V ) such that

1. T (x) = x;

2. T (u)− u ∈ X for u ∈ x⊥; and

3. T (w)−w ∈ x⊥ for w ∈ V \ x⊥.

In the next lemma we give criteria for a transformation to belong to Ψ(X).

Lemma 11.14 Let (x1, . . . ,xn,y1, . . . ,yn) be a hyperbolic basis of V such
that x1 = x and set X = Span(x). Assume the operator T satisfies the
following:

1. T (x1) = x1;

2. T (y1) = y1 +
∑n

k=2(akxk + bkyk) + γx1;
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3. T (xj) = xj + cjx1 for j ≥ 2; and

4. T (yj) = yj + djx1 for j ≥ 2.

Then T ∈ Sp(V ) if and only if cj = −bj and dj = aj for j ≥ 2.

Proof Assume T satisfies 1)–4) and T ∈ Sp(V ) and j ≥ 2. Then
f(T (xj), T (y1)) = f(xj,y1) = 0. However,

f(T (xj), T (y1)) = f(xj + cjx1,y1 +

n∑

k=2

(akxk + bkyk))

= bj + cj .

Thus, bj + cj = 0 and cj = −bj for j ≥ 2.

It is also the case that f(T (yj), T (y1)) = f(yj ,y1) = 0. However,

f(T (yj), T (y1)) = f(yj + djx1,y1 +
∑

k=2

(ajxk + bjyk))

= −aj + dj ,

and therefore dj = aj.

Conversely, assume that cj = −bj and dj = aj. By Theorem (8.8) we
need to prove that (T (x1), . . . , T (xn), T (y1), . . . , T (yn)) is a hyperbolic ba-
sis, and for this we need to show that f(T (xi), T (xj)) = f(T (yi), T (yj)) =
f(T (xi), T (yj)) = 0 for i 6= j and f(T (xi), T (yi)) = 1. The only non-trivial
cases are f(T (xi), T (y1)) = f(T (yj), T (y1)) = 0 and these follow from the
conditions cj = −bj and dj = aj.

Lemma 11.15 Let X = Span(x) ∈ L1(V ). Then the following hold:

i) If S ∈ Sp(V ) then SΨ(X)S−1 = Ψ(S(X)).

ii) The subgroup Ψ(X) is normal in Sp(V )X = {T ∈ Sp(V )| T (X) = X}.
iii) Ψ(X) is solvable.

We leave these as exercises.

It is our goal to prove that Sp(V ) is generated by its transvections. Toward
that goal, we let Ω(V ) be the subgroup of Sp(V ) generated by all χ(P ), P ∈
L1(V ). We prove in a series of lemmas that Ω(V ) = Sp(V ). Our first lemma
is a kind of extension result.
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Lemma 11.16 Assume W is a non-degenerate subspace of V , X ∈ L1(W )
and σ is an isometry of W which is a transvection with center X. Define S
on V as follows: if v ∈ V write v = w + u with w ∈ W,u ∈ W⊥. Then
S(v) = σ(w) + u. Then S is a transvection on V with center X.

Proof We know from Exercise 7 of Section (8.15) that S is an isometry
of V . Clearly S restricted to X⊥ = W⊥ ⊕ (W ∩ X⊥) is the identity and
Range(S − IV ) = Range(σ − IW ) = X, it follows that S is a transvection.

The following is an immediate consequence of Lemma (11.16):

Corollary 11.4 Let (V, f) be a non-degenerate symplectic space and W a
non-degenerate subspace of V . Assume S ∈ Sp(V ), S|W ∈ Ω(W ) and S|W⊥ =
IW⊥ . Then S ∈ Ω(V ).

Lemma 11.17 Let (V, f) be a non-degenerate symplectic space and u,v non-
zero vectors. Then there exists σ ∈ Ω(V ) such that σ(u) = v.

Proof Assume first that f(u,v) 6= 0. Then W = Span(u,w) is non-
degenerate. Let γ be defined by γ(u) = u + v, γ(v) = v and γ(x) = x for
x ∈ W⊥. Then γ is a transvection. Let δ be defined by δ(u) = u, δ(v) =
−u+v, and δ(x) = x for x ∈W⊥. Then δ is also a transvection. Set σ = δγ.
Then σ(u) = δγ(u) = δ(u+ v) = δ(u) + δ(v) = u+ (−u+ v) = v.

Assume now that f(u,v) = 0. Then there exists w such that f(u,w) 6= 0 6=
f(w,v). By the first part of the proof there exist elements σ1, σ2 ∈ Ω(V ) such
that σ1(u) = w, σ2(w) = v. Set σ = σ2σ1.

We next prove that Ω(V ) is transitive on hyperbolic pairs.

Lemma 11.18 Assume (xi,yi) are hyperbolic pairs for i = 1, 2. Then there
exists σ ∈ Ω(V ) such that σ(x1) = x2, σ(y1) = y2.

Proof We first treat the case where x1 = x2 = x. Suppose f(y1,y2) = a 6= 0.
Set z = y2 − y1. Note that f(x, z) = f(x,y2 −y1) = f(x,y2)− f(x,y1) = 0.
Set σ = Tz, 1

a
. Note that σ(x) = x since x ⊥ z. Moreover, σ(y1) = y1 +

1
af(y1, z)z = y1 +

1
af(y1,y2 − y1)(y2 − y1) = y1 + (y2 − y1) = y2.

Now assume that f(y1,y2) = 0. Note that (x,y1) and (x,y1+x) are hyperbolic
pairs and f(y1,y1 + x) = −1 6= 0 so by what we have shown there is a
transvection σ1 such that σ1(x) = x and σ1(y1) = y1 + x. Next note that
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f(y1 + x,y2) = f(x,y2) = 1 6= 0. Consequently, there is a transvection σ2
such that σ2(x) = x and σ2(y1 + x) = y2. Set σ = σ2σ1.

Finally, assume x1 6= x2. By Lemma (11.17) there is an element τ ∈ Ω(V )
such that τ(x1) = x2. Set y

′
2 = τ(y1). By the first case there exists γ ∈ Ω(V )

such that γ(x2) = x2 and γ(y′
2) = y2. Set σ = γτ .

We are now able to prove:

Theorem 11.5 Assume (V, f) is a non-degenerate symplectic space. Then
Sp(V ) is generated by transvections.

Proof The proof is by induction on n where dim(V ) = 2n. When n = 1 we
have already shown that Sp(V ) = SL(V ) and SL(V ) is generated by transvec-
tions. So assume the result has been proved for spaces of dimension 2n and
that dim(V ) = 2n+2. Let T ∈ Sp(V ) and let (x1,y1) be a hyperbolic pair and
set T (x1) = x2, T (y1) = y2. Then (x2,y2) is a hyperbolic pair. By Lemma
(11.18) there is a σ ∈ Ω(V ) such σ(x1) = x2, σ(y1) = y2. Set S = σ−1T .
Then S(x1) = x1, S(y1) = y1. Set W = Span(x1,y1) and U = W⊥. It fol-
lows that S restricted to W is the identity, IW , that U is S-invariant, and
S restricted to U is in the isometry group of (U, f|U×U ) which is isomorphic
to Sp(U). By the induction hypothesis S|U ∈ Ω(U) and by Corollary (11.4),
S ∈ Ω(V ). From σ−1T = S ∈ Ω(V ) we obtain T = σS ∈ Ω(V ).

It is our next goal to prove that with three exceptions the group Sp(V ) is
perfect. Since the commutator subgroup of a group is normal, since all the
transvection groups χ(X) are conjugate in Sp(V ), and since Sp(V ) is gener-
ated by transvections, Sp(V ) will be perfect precisely when the transvection
groups χ(X) are contained in Sp(V )′. We proceed to determine when this is
so.

Lemma 11.19 Assume |F| ≥ 4 and (V, f) is a non-degenerate symplectic
space. Then Sp(V ) is perfect.

Proof Let (x,y) be a hyperbolic pair and set X = Span(x),W = Span(x,y)
and U = W⊥. Let σ(x) = cx, σ(y) = 1

cy and σ(u) = u for u ∈ U . Let
τd(x) = x, τd(y) = dx + y, and τd(u) = u for u ∈ U . Let γ = τστ−1σ−1.
Then γ(u) = u for u ∈ U . Also, γ(x) = x and γ(y) = d(c2 − 1)x + y. We
can choose c 6= 0 such that c2 − 1 6= 0. Then d(c2 − 1) ranges over all of F as
d does. Therefore γ ranges over all of χ(X) and χ(Span(x)) is contained in
Sp(V )′ and Sp(V ) is perfect.
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Lemma 11.20 Assume F = F3 and (V, f) is a non-degenerate symplectic
space over F of dimension 2n with n ≥ 2. Then Sp(V ) is perfect.

Proof As noted above it suffices to prove that the commutator subgroup of
Sp(V ) contains a transvection group χ(X) for some X ∈ L1(V ). Since χ(X)
is cyclic of order 3, in fact, it suffices to prove that Sp(V ) contains at least one
transvection. Assume we have proved the result in the case that dim(V ) = 4.
Let W be a non-degenerate subspace of dimension four. Set S(W ) = {T ∈
Sp(V )| T (W ) = W,T|W⊥ = IW⊥}. By Witt’s theorem for symplectic spaces,
Theorem (8.10), S(W ) is isomorphic to Sp(W ). By our assumption there
exists a T ∈ S(W ) which induces a transvection on W . However, since T
restricted to W⊥ is the identity, T is a transvection on V . Consequently,
the commutator subgroup of Sp(V ) contains a transvection and is perfect.
Thus, it remains to show that the commutator subgroup of Sp(V ) contains a
transvection when dim(V ) = 4.

Let B = (u1,u2,v2,v1) be a basis for V such that

f(u1,u2) = f(u1,v2) = f(u2,v1) = f(v2,v1) = 0

f(u1,v1) = f(u2,v2) = 1.

We define operators σ, τa, γb and δc, ǫd such that

Mσ(B,B) =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




Mτa(B,B) =




1 a 0 0
0 1 0 0
0 0 1 −a
0 0 0 1




Mγb
(B,B) =




1 0 b 0
0 1 0 b
0 0 1 0
0 0 0 1




Mδc(B,B) =




1 0 0 c
0 1 0 0
0 0 1 0
0 0 0 1
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Mǫd(B,B) =




1 0 0 0
0 1 d 0
0 0 1 0
0 0 0 1


 .

Each of these operators is in Sp(V ) as can be checked by showing that each
takes B to a hyperbolic basis. Also, δc is a transvection.

The commutator [σ−1, γ−1
b ] has matrix




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1







1 0 b 0
0 1 0 b
0 0 1 0
0 0 0 1







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1







1 0 −b 0
0 1 0 −b
0 0 1 0
0 0 0 1


 =




1 0 b 0
0 1 0 b
0 0 1 0
0 0 0 1


 .

This proves that γb is in Sp(V )′.

The commutator [τ−1
a , ǫ−1

d ] has matrix




1 a 0 0
0 1 0 0
0 0 1 −a
0 0 0 1







1 0 0 0
0 1 d 0
0 0 1 0
0 0 0 1







1 −a 0 0
0 1 0 0
0 0 1 a
0 0 0 1







1 0 0 0
0 1 −d 0
0 0 1 0
0 0 0 1


 =




1 0 ad a2d
0 1 0 ad
0 0 1 0
0 0 0 1


 .

It therefore follows that γadδa2d is an element of Sp(V )′. Since γad is in Sp(V )′

it follows that δa2d ∈ Sp(V )′.

One case remains:

Lemma 11.21 Assume F = F2 and (V, f) is a non-degenerate symplectic
space. If dim(V ) = 2n ≥ 6, then Sp(V ) is perfect.
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Proof By arguing as we did in Lemma (11.20), it suffices to prove that
Sp(V ) is perfect when dim(V ) = 6. To prove that Sp(V ) is perfect when
dim(V ) = 6 and F = F2, it is enough to show that the commutator subgroup
Sp(V )′ contains a transvection.

We first note that the order of Sp(V ) is equal to the number of hyperbolic bases
which can be computed inductively in general for Sp2n(Fq). In the present case,
|Sp6(F2)| = 29(26− 1)(24− 1)(22− 1) = 29 · 34 · 7. It therefore suffices to show
that a 2-Sylow subgroup of Sp(V ) is contained in the commutator subgroup.

Let B = (u1,u2,u3,v1,v2,v3) be a hyperbolic basis satisfying

f(ui,uj) = f(vi,vj) = f(ui,vj) = 0 for all i 6= j and

f(u1,v1) = f(u2,v2) = f(u3,v3) = 1.

Then the matrix of f with respect to B is A =

(
03 I3
I3 03

)
. We note that if

T ∈ L(V, V ) with MT (B,B) = Q, then T ∈ Sp(V ) if and only if QtrAQ = A.

Set U = Span(u1,u2,u3), a maximal totally isotropic subspace of V . Let S(U)
be the subgroup of Sp(V ) of all operators such that T (U) = U . This contains
the subgroup Q(U) consisting of all those operators T such that U is contained
in Ker(T − IV ) and Range(T − IV ) is contained in U . An operator in GL(V )
satisfying these properties will have matrix

MT (B,B) =
(
I3 M
03 I3

)

with M a 3×3 matrix. From our comment above it follows that T is in Sp(V )
and therefore Q(U) if and only if M is symmetric.

Operators T such that MT (B,B) =
(
B 03
03 C

)
with B,C invertible 3× 3 ma-

trices are in GL(V ) and satisfy T (U) = U . However, to be in Sp(V ) it must
be the case that C = (Btr)−1. We denote the collection of such operators by
L(U). Note that L(U) is isomorphic to SL3(F2), a simple group, and conse-
quently, perfect. Assume now that S ∈ Q(U), T ∈ L(U) with

MS(B,B) =
(
I3 M
03 I3

)
and MT (B,B) =

(
B 03
03 (Btr)−1

)
.

Then the matrix of TST−1 is MTST−1(B,B) =
(
I3 BMBtr

03 I3

)
. Thus, L(U)

normalizes Q(U) and L(U)Q(U) is a subgroup of Sp(V ). Moreover, from the
above computation it follows that Q(U) is contained in S(U)′. Since L(U)
is simple, L(U) is contained in S(U)′. However, the order of L(U)Q(U) is
29 · 7 · 3 and so contains a 2-Sylow of Sp(V ) and therefore transvections. This
completes the proof.
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Let (V, f) be a non-degenerate symplectic space and X ∈ L1(V ). We will
denote by ∆(X) the set of all Y ∈ L1(V ) such that X ⊥ Y and by Γ(X)
those Y in L1(V ) such that X 6⊥ Y . In the following results we prove that
Sp(V )X = {T ∈ Sp(V )| T (X) = X} is transitive on both ∆(X) and Γ(X).

Theorem 11.6 Let (V, f) be a non-degenerate symplectic space and X ∈
L1(V ). Let Y1, Y2 ∈ ∆(X). Then there exists T ∈ Sp(V ) such that T (X) =
X,T (Y1) = Y2.

Proof Assume first that Y2 is contained in X + Y1. Let x ∈ X,yi ∈ Yi be
non-zero vectors. There are scalars a, b such that y2 = ax + by1. Replacing
y2 by 1

by2, if necessary, we may assume that b = 1. Set u1 = x,u2 = y1 and
extend to a hyperbolic basis (u1, . . . ,un,v1, . . . ,vn) of V . Define T ∈ L(V, V )
by T (ui) = ui for i 6= 2, T (vj) = vj for j 6= 1, T (u2) = au1 + u2, T (v1) =
−av2 + v1. By Lemma (11.14) T ∈ Ψ(X). Moreover, T (y1) = T (u2) =
au1 + u2 = ax1 + y1 = y2. Thus, T (Y1) = Y2 as required.

Now assume that X + Y1 6= X + Y2. Let w be a vector such that X 6⊥ w and
set W = Span(x,w). Also, set Y ′

i = (X + Yi) ∩ w⊥ ∈ L1(W
⊥). Sp(W⊥)

is transitive on L1(W
⊥) by Lemma (11.17). Consequently, there exists σ ∈

Sp(V ) such that σ|W = IW and σ(Y ′
1 ) = Y ′

2 . Then σ(X + Y1) = σ(X + Y ′
1) =

σ(X)+σ(Y ′
1) = X+Y ′

2 = X+Y2. Now by the first part there exists τ ∈ Ψ(X)
such that τ(Y ′

2) = Y2. Set T = τσ. This is the required operator.

Theorem 11.7 Let (V, f) be a non-degenerate symplectic space, x a non-zero
vector, and y, z vectors satisfying f(x,y) = f(x, z) = 1. Then there exists a
unique T ∈ Ψ(Span(x)) such that T (y) = z.

Proof Since f(x,y) = f(x, z) = 1 it follows that x ⊥ (z − y) so that
z−y ∈ x⊥. Set x1 = x and extend the hyperbolic pair (x1,y1) to a hyperbolic
basis, (x1, . . . ,xn,y1, . . . ,yn). Then x⊥ = Span(x1, . . . ,xn,y2, . . . ,yn). Let
z − y = cx1 +

∑n
j=2(ajxj + bjyj). Let T be the operator such that T (x1) =

x1, T (xj) = −bjx1 + xj for j ≥ 2, T (yj) = ajx1 + yj for j ≥ 2, and T (y1) =
z = cx1 +

∑n
j=2(ajxj + bjyj) + y1. Then T ∈ Ψ(Span(x)) and T (y) = z.

Moreover, by Lemma (11.14), T is the unique operator in Ψ(Span(x)) such
that T (y) = z.

As an immediate corollary of Theorem (11.7) we have:

Corollary 11.5 Let (V, f) be a non-degenerate symplectic space, X ∈ L1(V )
and Y1, Y2 ∈ Γ(X). Then there exists a unique T ∈ Ψ(X) such that T (Y1) =
Y2.
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We leave this as an exercise.

Theorem 11.8 Let (V, f) be a non-degenerate symplectic space. The action
of Sp(V ) on L1(V ) is primitive.

Proof Assume B ⊂ L1(V ) has at least two elements and for any T ∈
Sp(V ), T (B) = B or T (B)∩B = ∅. We show that B = L1(V ). Let X,Y ∈ B.
Assume first that Y ∈ ∆(X). Let T ∈ Sp(V )X . Then X ∈ B ∩ T (B) and
therefore T (B) = B. Thus, T (Y ) ∈ B. It follows from Theorem (11.6) that
∆(X) is contained in B. Suppose B 6= {X} ∩ ∆(X). If Z ∈ B but X 6⊥ Z,
then by Theorem (11.7), Γ(X) ⊂ B and B = L1(V ). Thus it must be the
case that B = {X} ∪∆(X). Reversing the roles of X and Y we also get that
B = {Y } ∪∆(Y ). However, if u1 = x,u2 = y then (x1,x2) can be extended
to a hyperbolic basis (u1, . . . ,un,v1, . . . ,vn) Then Span(v2) ∈ ∆(X) ∩ Γ(Y )
and we have a contradiction. We can argue similarly if Y ∈ Γ(X). Thus,
B = L1(V ).

As in the case of SL(V ) we have an action of Sp(V ) on L1(V ) given by T ·X =
T (X). The kernel of this action consists of the scalar operators cIV , c ∈ F∗

which are isometries. Since a hyperbolic pair must go to a hyperbolic pair,
it follows that c = ±1. Clearly this is contained in Z(Sp(V )) but we require
equality, the subject of the next lemma.

Lemma 11.22 If (V, f) is a non-degenerate symplectic space, then Z(Sp(V )) =
{IV ,−IV }.

Proof Let S ∈ Z(Sp(V )). We claim that S(U) = U for every maximal to-
tally isotropic subspace of V . Thus, let (u1, . . . ,un) be a basis for U . Extend
this to a hyperbolic basis of (u1, . . . ,un,v1, . . . ,vn) for V . Let T be the op-
erator defined by T (ui) = ui, T (vi) = ui + vi. Then U is the eigenspace
for the eigenvalue 1 of T . Since S ∈ Sp(V ) and commutes with T , we must
have S(U) = U . Now every one-dimensional space in V is the intersection of
n − 1 totally isotropic subspaces which contain it. Consequently, every one-
dimensional subspace of V is fixed by S. As shown in Section (11.1), this
implies that S is a scalar operator.

Definition 11.9 We will refer to the quotient of Sp(V ) by its center as the
projective symplectic group and denote this by PSp(V ). We will also
denote by PSp2n(F) the isomorphic matrix group.
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Theorem 11.9 Let (V, f) be a non-degenerate symplectic space of dimension
2n over the field F. Then Sp(V ) is simple if (n,F) is not one of (1,F2), (1,F3),
or (2,F2).

Proof The group PSp(V ) acts transitively and primitively on L1(V ).
Apart from the exceptions, PSp(V ) is perfect. For X ∈ L1(V ) the sta-
bilizer, PSp(V )X contains the solvable subgroup Ψ(X) which is normal in
PSp(V )X . Moreover, since Ψ(X) contains χ(X) the conjugates of Ψ(X) gen-
erate PSp(V ). We can therefore invoke Iwasawa’s theorem and conclude that
PSp(V ) is simple.

Remark 11.5 The exceptions are really exceptions: |PSp2(F2)| = 6 and
the group is isomorphic to S3. |PSp2(F3)| = 12 and is isomorphic to A4.
|PSp4(F2)| = 720 and is isomorphic to S6. This is more difficult to show. We
outline an approach to proving this in the exercises.

Exercises
1. Prove part i. of Lemma (11.11).

2. Prove part i. of Lemma (11.12).

3. Prove part ii. of Lemma (11.12).

4. Prove part iii. of Lemma (11.12).

5. Prove Lemma (11.13).

6. Prove part i. of Lemma (11.15).

7. Prove part ii. of Lemma (11.15).

8. Prove part iii. of Lemma (11.15).

9. Prove Corollary (11.5).

10. Let (V, f) be a non-degenerate symplectic space of dimension 2n and let
X ∈ L1(V ). Prove that X is the intersection of n maximal totally isotropic
subspaces of V .

11. Let (V, f) be a non-degenerate symplectic space over the finite field Fq.
Compute the number of hyperbolic bases and, therefore, the order of Sp(V ).

12. Let [1, 6] = {1, 2, 3, 4, 5, 6} and denote by [1, 6]{2} the collection of pairs of
[1, 6]. Let 0 be a symbol and set V = {0}∪ [1, 6]{2}. Then |V | = 16. Define an
addition on V as follows:

If v ∈ V then 0 + v = v + 0 = v.

If α ∈ [1, 6]{2} then α+ α = 0.
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If α, β ∈ [1, 6]{2} and α ∩ β = ∅ then α+ β = [1, 6] \ (α ∪ β).
If α ∩ β 6= ∅ then α+ β = (α ∪ β) \ (α ∩ β).
Prove that V is an Abelian group with identity 0 and every non-zero element
has order two. Note this means that V is a vector space of dimension four
over F2.

13. Let V be as defined in Exercise 12. Define f : V × V → F2 as follows:

f(v, 0) = f(0,v) = 0;

f(α, α) = 0 for α ∈ [1, 6]{2}; and

for α 6= β ∈ [1, 6]{2}, f(α, β) = 0 if and only if α ∩ β = ∅.
Prove that f is a non-degenerate alternating form on V .

14. Let S6, the group of permutations of [1, 6], act on V as follows:

For π ∈ S6, π(0) = 0, π({i, j}) = {π(i), π(j)}. Prove that S6 is a subgroup of
Sp(V, f), that is, each π is an isometry of (V, f). Use this to conclude that
Sp4(F2) is isomorphic to S6.
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11.3 Orthogonal Groups, char F 6= 2

This section follows the previously established pattern but with a slight devi-
ation: We will define the general orthogonal group as the group of isometries
of an orthogonal space and the special orthogonal group as the set of those
isometries with determinant one. In contrast with the symplectic and special
linear groups, the special orthogonal group is not generally perfect. However,
we will define a particular subgroup, generated by so-called Siegel transfor-
mations, and prove that this group is both the commutator subgroup of the
general (special) orthogonal group and perfect. We will prove the quotient of
this group by its center is simple except for some specified exceptions.

What You Need to Know

To successfully navigate the material of this new section, you should by now
have mastered the following concepts: vector space over a field F, basis of a
vector space, dimension of a vector space, linear operator on a vector space V,
matrix of a linear operator T : V → V with respect to a base B for V, eigen-
value and eigenvector of an operator T , the algebra L(V, V ) of operators on a
finite-dimensional vector space V , an invertible operator on a vector space V ,
the group GL(V ) of invertible operators on a finite-dimensional vector space
V , bilinear form, reflexive bilinear form, symmetric bilinear form, quadratic
form, orthogonal space, non-degenerate orthogonal space, singular vector in
an orthogonal space, totally singular subspace in an orthogonal space, hyper-
bolic pair in an orthogonal space, an isometry of an orthogonal space, and the
reflection defined by a non-singular vector. You must also be familiar with the
following concepts from group theory: Abelian group, solvable group, normal
subgroup of a group, quotient group of a group by a normal subgroup, the
commutator of two elements in a group, the commutator subgroup of a group,
a perfect group, the center of a group, a simple group, action of a group G
on a set X , transitive action of a group G on a set X , primitive action of a
group G on a set X , and a faithful action of a group G on a set X . This latter
material can be found in Appendix B

We begin by recalling some definitions.

Let V be a vector space over a field F. By a quadratic form on V we mean
a function φ : V → F which satisfies

1) for v ∈ V, a ∈ F, φ(av) = a2φ(v); and

2) if we define 〈 , 〉φ : V ×V → F by 〈v,w〉φ = φ(v+w)−φ(v)−φ)(w) then
〈 , 〉φ is a symmetric bilinear form, referred to as the form associated to φ.

An orthogonal space is a pair (V, φ) consisting of a vector space V and
a quadratic form φ : V → F. The space is non-degenerate if the associated
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bilinear form 〈 , 〉φ is non-degenerate, that is, for all v ∈ V there exists
w ∈ V such that 〈v,w〉φ 6= 0.

A non-zero vector v is singular if φ(v) = 0 and non-singular otherwise. The
orthogonal space (V, φ) is said to be singular if it contains singular vectors.
Two vectors v and w are orthogonal, and we write v ⊥ w, if 〈v,w〉φ = 0.
A subspace W of V is totally singular if φ(v) = 0 for all v ∈ W .

An isometry of an orthogonal space (V, φ) is an operator T : V → V such that
φ(T (v)) = φ(v) for all v ∈ V . An isometry is invertible and the composition
of isometries is an isometry. Consequently, the collection of all isometries is a
subgroup of GL(V ). We denote it by O(V, φ) or just O(V ). If T is an isometry
of (V, φ), then it also satisfies 〈T (v), T (w)〉φ = 〈v,w〉φ for all v,w ∈ V . If
the characteristic of F is not two then the converse holds as well since in this
situation φ(v) = 1

2 〈v,v〉φ. The special orthogonal group is the intersection
O(V, φ) ∩ SL(V ) and is denoted SO(V, φ) or just SO(V ).

Throughout this section we will assume that (V, φ) is a finite-dimensional
non-degenerate, singular orthogonal space over F and that the characteristic
of F is not two. We will denote by S1(V ) those X = Span(x) ∈ L1(V ) such
that x is singular. If X ∈ S1(V ) we set Γ(X) = {Y ∈ S1(V )|Y 6⊥ X}.
Further, if the Witt index of V is at least two, then for X ∈ S1(V ) we will set
∆(X) = S1(X

⊥). In our first result we determine the structure of O(V, φ) and
SO(V, φ) when dim(V ) = 2. Before doing so recall that if y is a non-singular

vector, the reflection through y, ρy is defined by ρy(x) = x − 2 〈x,y〉
〈y,y〉y. It

fixes every vector x ∈ y⊥ and takes y to −y.

Hereafter, throughout this section we will drop the subscript φ and write 〈 , 〉
instead of 〈 , 〉φ.

Theorem 11.10 Assume dim(V ) = 2. Then SO(V, φ) is isomorphic to the
multiplicative group of F. Every element of O(V, φ) \ SO(V, φ) is a reflection.

Proof Let (u,v) be a hyperbolic basis of V so that φ(u) = φ(v) = 0 and
〈u,v〉 = 1. Note that S1(V ) = {Span(u), Span(v)}. Let T ∈ O(V, φ) then
either (T (u), T (v)) = (au, bv) or (av, bu) for some non-zero scalars a, b.
Since 1 = 〈u,v〉 = 〈T (u), T (v)〉 = ab we must have b = a−1. In the first
case, det(T ) = 1 and T is in SO(V, φ). The map that takes a to Ta where
Ta(u) = au, Ta(v) = a−1v is an isomorphism of F∗ to SO(V, φ).

On the other hand, suppose a ∈ F∗ and T (u) = av, T (v) = a−1u. Set x =
u+ av and y = u− av. Then T (x) = x and T (y) = −y so that T = ρy, the
reflection through y.

We now prove an important result, the Cartan–Dieudonne theorem.
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Theorem 11.11 Assume dim(V ) = n and T ∈ O(V, φ), T 6= IV . Then T can
be expressed as a product of at most n reflections.

Proof The proof is by induction on n. If n = 1 then T = −IV is a reflection.
So assume the result is true for spaces of dimension less than n and that
dim(V ) = n. Let T ∈ O(V, φ), T 6= IV . Suppose first that there exists a
non-singular vector v such that T (v) = v. Since v is non-singular, v⊥ is
non-degenerate and T -invariant. Since T 6= IV , T|v⊥ 6= Iv⊥ and by induction,
T|v⊥ is a product of at most n− 1 reflections, thus T is the product of at most
n − 1 reflections. We may therefore assume that ker(T − IV ) = {0} or is
totally singular.

Suppose now that there exists z non-singular such that w = T (z)− z is non-
singular. Set u = T (z) + z, we claim that w ⊥ u. We compute

〈w,u〉 = 〈T (z)− z, T (z) + z〉
= 〈T (z), T (z)〉+ 〈T (z), z〉 − 〈z, T (z)〉 − 〈z, z〉
= 〈z, z〉 − 〈z, z〉
= 0.

Now z = 1
2 (u − w) and T (z) = 1

2 (u + w). Then ρw(z) = ρw(u−w
2 ) =

1
2 [ρw(u) − ρw(w)] = 1

2 [u + w] = T (z). It then follows that ρwT (z) = z.
Then by the above ρwT is a product of at most n− 1 reflections so that T is
a product of at most n reflections.

Consequently, we may assume there does not exist a non-singular vector z such
that T (z)−z is non-singular. We claim that this implies that Range(T − IV )
is totally singular. Assume to the contrary and let x be a singular vector such
that T (x)−x is non-singular. Then there exists a singular vector y such that
〈x,y〉 = 1. Assume now that F 6= F3 and let a ∈ F∗, a 6= ±1. Then x+y,x−y

and x+ ay are all non-singular vectors. Then t

T (x+ y)− (x+ y) = [T (x)− x] + [T (y)− y],

T (x− y) = [T (x)− x]− [T (y)− y],

, and
T (x+ ay)− (x+ ay) = [T (x)− x] + a[T (y)− y]

are all singular. This implies that T (x) − x and T (y) − y are singular, a
contradiction.

We may therefore assume that F = F3. Suppose n = 2. Then (T (x), T (y)) =
(−x,−y), (y,x), or (−y,−x). In the first case, T = ρx+yρx−y. In the second
case, T = ρx−y and in the third case T = ρx+y. We may therefore assume
that n ≥ 3.
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Set u = x+y,v = x−y and let w ∈ x⊥∩y⊥ = u⊥∩v⊥ with w non-singular.
Then φ(w) = ±1. Suppose φ(w) = 1. Set u′ = T (u)−u,v′ = T (v)−v,w′ =
T (w) − w and U ′ = Span(u′,v′,w′). Note that u + w is non-singular and
therefore T (u+w) 6= u+w so, in particular, u′ = T (u)−u 6= T (w)−w = w′.
It follows that Span(u′,w′) is a totally singular two-dimensional subspace.
Since T (x)−x ∈ U ′ is non-singular it follows that dim(U ′) = 3 and the radical
of U ′ is non-trivial and contained in Span(u′,w′). Note that this implies that
(u′,v′,w′) is linearly independent. If dim(Rad(U ′)) = 2 then every singular
vector of U ′ is contained in Span(u′,w′), in particular, v′ ∈ Span(u′,w′),
a contradiction. Therefore dim(Rad(U ′)) = 1. It then follows that there are
14 singular vectors in U ′. However, there are 18 non-singular vectors in U .
By the pigeonhole principle there must be non-singular vectors z, z′ ∈ U such
that (T −IV )(z) = (T −IV )(z′). However, this contradicts (u′,v′,w′) linearly
independent and we have a contradiction. Thus, Range(T − IV ) is totally
singular as claimed.

Since Range(T −IV ) is totally singular, Range(T −IV ) ⊆ Range(T −IV )⊥ =
ker(T − IV ). As shown above, ker(T − IV ) = {0} or ker(T − IV ) is totally
singular. Since T 6= IV , Range(T − IV ) 6= {0} so, in fact, ker(T − IV ) is
totally singular. Then ker(T − IV ) ⊆ ker(T − IV )

⊥ = Range(T − IV ). We
therefore have ker(T − IV ) = Range(T − IV ). If m = dim(ker(T − IV )) then
by the rank-nullity theorem, n = dim(V ) = 2m. We can also conclude that the
minimum polynomial of T is (x−1)2 from which it follows that det(T ) = 1 and
T ∈ SO(V, φ). Let u be any non-singular vector. Then det(ρuT ) = −1 and
therefore ρuT is the product of at most n reflections from which we conclude
that T is a product of at most n+1 reflections. However, if T were a product
of n + 1 = 2m + 1 reflections then det(T ) = −1, a contradiction. Thus, T is
a product of at most n reflections.

Corollary 11.6 Assume dim(V ) = n and T = ρx1 . . . ρxm
with m < n. Then

dim(Ker(T − IV )) ≥ n−m.

Proof Set X = Span(x1, . . . ,xm). Then the kernel of T − IV contains X⊥

and dim(X⊥) = n− dim(X) ≥ n−m.

Corollary 11.7 Assume T = ρx1 . . . ρxm
and ker(T − IV ) = {0}. Then m ≥

n.

We now revisit some isometries that were the subject of exercises in Section
(8.3).

Theorem 11.12 Let u be a singular vector and v ∈ u⊥. Then there exists a
unique isometry τ of V such that for x ∈ u⊥, τ(x) = x+ 〈x,v〉u.
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Proof For x ∈ u⊥ let T (x) = x + 〈x,v〉u. We first show that T is an
isometry of u⊥. Let x,y ∈ u⊥. Then

〈T (x), T (y)〉 = 〈x+ 〈x,v〉u,y + 〈y,v〉u〉
= 〈x,y〉+ 〈y,v〉〈x,u〉+ 〈x,v〉〈u,y〉+ 〈x,v〉〈y,v〉〈u,u〉
= 〈x,y〉.

By Witt’s theorem, Theorem (8.12), there exists an extension τ to all of V .
We show that τ is unique. We claim that there exists a singular vector w ∈
v⊥ such that 〈u,w〉 6= 0. If v is singular, this follows from Lemma (8.28).
If v is non-singular then v⊥ is non-degenerate and again the claim follows
from Lemma (8.24). By replacing w by 1

〈u,w〉w, if necessary, we can assume

〈u,w〉 = 1. Assume τ(w) = au + z + bw where a, b ∈ F and z ∈ u⊥ ∩ w⊥.
Now

1 = 〈u,w〉
= 〈τ(u), τ(w)〉
= 〈u, au+ z + bw〉
= b.

It therefore follows that b = 1. Next, let x ∈ u⊥ ∩w⊥. Then

0 = 〈x,w〉
= 〈τ(x), τ(w)〉
= 〈x+ 〈x,v〉u, au+ z +w〉
= 〈x, z〉 + 〈x,v〉〈u,w〉
= 〈x, z〉 + 〈x,v〉
= 〈x, z + v〉.

It follows that 〈x, z + v〉 = 0 for every x ∈ u⊥ ∩w⊥. However, u⊥ ∩w⊥ is
non-degenerate so that z + v = 0, hence z = −v.

Finally, 0 = φ(w) = φ(τ(w)) = φ(au − v + w) = φ(v) + a and therefore
a = −φ(v). This proves that τ is unique.

Definition 11.10 Let u be a singular vector, v ∈ u⊥. We will denote by τu,v

the unique isometry of V such that τu,v(x) = x + 〈x,v〉u for x ∈ u⊥. This
is referred to as a Siegel transformation.
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These isometries will play a role in orthogonal groups similar to that of
transvections in linear and symplectic groups. In the next couple of results
we uncover some of their properties. These results should be compared to
corresponding results for transvections.

Lemma 11.23 Let u be a singular vector and v ∈ u⊥. Then τu,v = IV if
and only if v ∈ Span(u).

We leave this as an exercise.

Lemma 11.24 Let u be a singular vector and v ∈ u⊥. Then τu,v ∈ SO(V, φ).

Proof If v ∈ Span(u), then τu,v = IV ∈ SO(V, φ) by Lemma (11.23).
Assume v /∈ Span(u). Let w be a singular vector, w /∈ u⊥. Now w⊥ ∩
Span(u,v) 6= {0}. Suppose au + v ⊥ w. Then τu,au+v = τu,v. Thus, by
replacing v with au + v, if necessary, we may assume that w ⊥ v. It then
follows that τu,v(w) = −φ(v)u+v+w so that (τu,v−IV )(w) = −φ(v)u+v ∈
Span(u,v).

By the definition of τu,v it then follows that (τu,v − IV )(v) ∈ Span(v) and
is the zero vector if and only if v is singular. It therefore follows that the
minimum polynomial of τu,v is (x − 1)2 if v is singular and (x − 1)3 if v is
non-singular. In either case, det(τu,v) = 1 and τu,v ∈ SO(V, φ).

Lemma 11.25 Let u be a singular vector, and v,w vectors in u⊥. Then
τu,vτu,w = τu,v+w.

Proof By Theorem (11.12) it suffices to prove for x ∈ u⊥ that
τu,vτu,w(x) = x+ 〈x,v +w〉u. We compute:

τu,vτu,w(x) = τu,v(x+ 〈x,w〉u)
= τu,v(x) + 〈x,w〉τu,v(u)

= x+ 〈x,v〉u+ 〈x,w〉u
= x+ 〈x,v +w〉u

as was to be shown.

Corollary 11.8 Let u be a singular vector and v ∈ u⊥. Then τ−1
u,v = τu,−v.
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Proof This follows immediately from Lemma (11.25).

Corollary 11.9 Let u be a singular vector and v ∈ u⊥. Then τu,u+v = τu,v.

We leave this as an exercise.

Notation Let u be a singular vector. Denote by Tu the set of all τu,v such
that v ∈ u⊥. Also, denote by Ω(V ) the subgroup of SO(V, φ) generated by
all Tu such that u is a singular vector. It follows from Lemma (11.25) and
Corollary (11.8) that Tu is an Abelian subgroup of O(V, φ).

Lemma 11.26 Let (u,w) be a hyperbolic pair and set X = u⊥ ∩w⊥. The
map that sends v ∈ X to τu,v is an isomorphism of Abelian groups.

Proof This follows immediately from Lemma (11.25) and Lemma (11.8).

Lemma 11.27 Let u be a singular vector, v ∈ u⊥ and σ ∈ O(V, φ). Then
στu,vσ

−1 = τσ(u),σ(v).

Proof It suffices to show for y ∈ σ(u)⊥ that στu,vσ
−1(y) = y +

〈y, σ(v)〉σ(u). Set x = σ−1(y) ∈ u⊥. We compute:

στu,vσ
−1(y) = στu,vσ

−1(σ(x))

= στu,v(x)

= σ(x+ 〈x,v〉u)
= σ(x) + 〈x,v〉σ(u)
= σ(x) + 〈σ(x), σ(v)〉σ(u)
= τσ(u),σ(v)(σ(x)

= τσ(u),σ(v)(y).

The following is an immediate consequence of Lemma (11.27):

Corollary 11.10 Let u be a singular vector and σ ∈ O(V, φ), Then
σTuσ

−1 = Tσ(u). In particular, if U = Span(u), then Tu is a normal subgroup
of O(V, φ)U = {S ∈ O(V, φ)|S(U) = U}.

Corollary 11.11 The subgroup Ω(V ) is normal in O(V, φ).
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In our next result we prove that for u a singular vector the subgroup Tu is
simply transitive on Γ(Span(u)).

Lemma 11.28 Let u be a singular vector and set U = Span(u). Assume w

and x are singular vectors satisfying 〈u,w〉 = 〈u,x〉 = 1. Then there exists a
unique τ ∈ Tu such that τ(w) = x.

Proof Since 〈u,w〉 = 〈u,x〉 = 1, it follows that 〈u,x − w〉 = 0, that is.
v = x −w ∈ u⊥. Suppose φ(v) = 0. Then 〈v,w〉 = 0 and from the proof of
Theorem (11.12) we can conclude that τu,−v(w) = w + v = x. Assume then
that 〈v,w〉 = 〈x−w,w〉 = a. Then v′ = v + au ∈ u⊥ ∩w⊥. Moreover,

φ(v′) = φ(v + au)

= φ(v) − a〈v,u〉+ a2〈u,u〉
= φ(v)

=
1

2
〈x−w,x−w〉

= −1

2
· 2〈x,w〉

= −a.
Again by the proof of Theorem (11.12) it follows that

τu,−v′(w) = w + v′ − φ(v′)u

= w + (x−w + au)− au

= x.

As for uniqueness, suppose v,y ∈ u⊥∩w⊥ and τu,v(w) = τu,y(w) = x. Then
τu,−vτu,y(w) = τu,y−v(w) = w. However, by the proof of Theorem (11.12)
τu,y−v(w) = w+(y−v)−φ(y−v)u. It follows that y−v = 0 so that y = v.

Corollary 11.12 Assume that dim(V ) ≥ 3 and that the Witt index of (V, φ)
is one. Then Ω(V ) is doubly transitive on S1(V ). In particular, Ω(V ) acts
primitively on S1(V ).

Proof Assume X,Y ∈ S1(V ). Since dim(V ) ≥ 3 there exists Z ∈ S1(V )
such that Z is equal to neither X nor Y . Let z ∈ Z and let x ∈ X,y ∈ Y
such that 〈z,x〉 = 〈z,y〉 = 1. By Lemma (11.28) there is a unique τ ∈ Tz
such that τ(x) = y and then τ(X) = Y . This proves that Ω(V ) is transitive
on S1(V ). Also, by Lemma (11.28) there exists a unique σ ∈ Tx such that
σ(y) = z. Note that σ(x) = x so that σ(X) = X. From σ(y) = z it follows
that σ(Y ) = Z. This proves that Ω(V ) is doubly transitive on S1(V ).
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Remark 11.6 It follows from Corollary (11.12), if n ≥ 3 and the Witt index
of (V, φ) is one, then for any pair of non-orthogonal singular vectors, (u,v),
Ω(V ) is generated by Tu ∪ Tv.

The next result will assist us in proving that Ω(V ) is transitive and primitive
on S1(V ).

Theorem 11.13 Assume the Witt index of (V, φ) is at least two. Then the
following hold:

i) If X,Y ∈ S1(V ) and X ⊥ Y , then there exists Z ∈ Γ(X) ∩ Γ(Y ).

ii) If X,Y ∈ S1(V ) and X ⊥ Y , then there exists Z ∈ ∆(X) ∩ Γ(Y ).

iii) If X,Y ∈ S1(V ) and X 6⊥ Y , then there exists Z ∈ Γ(X) ∩ Γ(Y ).

iv) If X ∈ S1(V ), Y 6⊥ X, then there exists Z ∈ ∆(X) ∩ Γ(Y ).

Proof i) Let x ∈ X,y ∈ Y be non-zero vectors. By the proof of Lemma (8.28)
there exists singular vectors x′,y′ such that 〈x,y′〉 = 〈y,x′〉 = 〈x′,y′〉 =
0, 〈x,x′〉 = 〈y,y′〉 = 1. Set Z = Span(x′ + y′). Then Z ∈ Γ(X) ∩ Γ(Y ), as
required.

ii) If x,x′y,y′ are as in part i) set Z = Span(x′) ∈ ∆(Y ) ∩ Γ(X).

iii) Let x ∈ X,y ∈ Y be non-zero vectors. Since the Witt index is at least two,
X⊥∩Y ⊥ is a non-degenerate, singular subspace. Let u be a singular vector in
X⊥∩Y ⊥. Set w = x+u. Then x ⊥ w 6⊥ y. By part ii) there exists a singular
vector v such that x 6⊥ v ⊥ w. Replacing v by a vector in Span(w,v) ∩ y⊥

we can assume that v ⊥ y. Set Z = Span(w + v). Then Z ∈ Γ(X) ∩ Γ(Y ).

iv) Let x ∈ X,y ∈ Y non-zero vectors. Let u be a singular vector in x⊥ ∩ y⊥

and set Z = Span(u+ y). Then Z ∈ ∆(Y ) ∩ Γ(X).

Lemma 11.29 Let (x,w) be a hyperbolic pair, y ∈ x⊥ ∩ w⊥, a singular
vector, and b ∈ F. Then there exists τ ∈ Tx such that τ(y) = bx+ y.

Proof Let u ∈ x⊥∩w⊥ such that 〈y,u〉 = 1. Then τx,bu(y) = y+〈y, bu〉x =
y + bx.

Lemma 11.30 Assume n ≥ 3. Then Ω(V ) is transitive on S1(V ).
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Proof Let X,Y ∈ S1(V ). Suppose X ⊥ Y . By part i) of Theorem (11.13)
there exists Z ∈ Γ(X) ∩ Γ(Y ). Let z ∈ Z. Choose x ∈ X,y ∈ Y such that
〈z,x〉 = 〈z,y〉 = 1. By Lemma (11.28) there exists τ ∈ Tz such that τ(x) = y.
It follows that τ(X) = Y . Now assume that X 6⊥ Y . By part 3) of Theorem
(11.13) there exists Z ∈ Γ(X) ∩ Γ(Y ) and the proof proceeds in exactly the
same as when X ⊥ Y . Thus, Ω(V ) is transitive on S1(V ).

Theorem 11.14 Assume the Witt index is at least two and that n =
dim(V ) > 4. Then Ω(V ) is primitive on S1(V ).

Proof We first show that if X ∈ S1(V ) and Y, Z ∈ ∆(X), then there is a
τ ∈ Ω(V ) such that τ(X) = X and τ(Y ) = Z. Choose x ∈ X and let w be a
singular vector such that 〈w,x〉 = 1. Let y′ ∈ (X+Y )∩w⊥, z′ ∈ (X+Z)∩w⊥,
and set Y ′ = Span(y′), Z ′ = Span(z′). Then Y ′, Z ′ ∈ S1(x

⊥∩w⊥). The space
x⊥ ∩ w⊥ is non-degenerate, singular, and dim(x⊥ ∩ w⊥) ≥ 3. By Lemma
(11.30) there is a σ ∈ Ω(x⊥ ∩ w⊥) such that σ(Y ′) = Z ′. Extend σ to an
isometry σ̂ of V so that σ̂ restricted to Span(x,w) is the identity. Then σ̂ ∈
Ω(V ), σ̂(X) = X and σ̂(Y ′) = Z ′. By Lemma (11.29) there exists δ and γ in
Tx such that δ(Y ) = Y ′ and γ(Z ′) = Z. Set τ = γσ̂δ. Then τ(X) = X and
τ(Y ) = γσ̂δ(Y ) = γσ̂(Y ′) = γ(Z ′) = Z.

Now assume that B is a subset of S1(V ) with at least two elements and for
any σ ∈ Ω(V ) either σ(B) = B or σ(B) ∩ B = ∅. We prove that V = S1(V )
from which it will follow that Ω(V ) is primitive on S1(V ). Let X,Y ∈ B.
Suppose Y ∈ ∆(X). We claim that ∆(X) is contained in B. Let Z ∈ ∆(X).
By what we have shown, there is a τ ∈ Ω(V ) such that τ(X) = X, τ(Y ) = Z.
Since X ∈ B ∩ τ(B) it must be the case that τ(B) = B. It then follows that
Z = τ(Y ) ∈ τ(B) = B and our claim is proved. In a similar way, if Y ∈ Γ(X)
then Γ(X) ⊂ B. We return to the assumption that Y ∈ ∆(X). By switching
the roles of X and Y we can also conclude that ∆(Y ) is contained in B. By
part ii) of Lemma (11.13) there is a Z ∈ ∆(Y ) ∩ Γ(X). But then, as argued
above, Γ(X) ⊂ B, so that B contains {X} ∪∆(X) ∪ Γ(X) = S1(V ).

So we may assume that Y ∈ Γ(X) and Γ(X) ⊂ B and Γ(Y ) ⊂ B. By part iv)
of Theorem (11.13) there is a Z ∈ ∆(X) ∩ Γ(Y ). Then Z ∈ B, whence ∆(X)
and we again have B = S1(V ).

Remark 11.7 The case when dim(V ) = 4 and the Witt index is two is really
an exception. Let (x1,x2,y1,y2) be a hyperbolic basis. Let L1 be the subgroup
generated by τx1,ay2 and τx2,by1 for a, b ranging over F. Then L1 is isomor-
phic to SL2(F). Let L2 be the subgroup generated by τy2,ay1 , τx1,bx2 where
a, b range over F. Then also L2 is isomorphic to SL2(F). L1 and L2 com-
mute and intersect in the center of O(V, φ). Moreover, Ω(V ) = L1L2. The set
B = S1(Span(x1,x2)) is a block of imprimitivity of S1(V ).
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In our next result we investigate the subgroup consisting of those isometries S
which commute with every element of Ω(V ). Subsequently we show that this
is the kernel of the action on S1(V ).

Theorem 11.15 Assume dim(V ) ≥ 3. If S ∈ O(V, φ) commutes with every
τ ∈ Ω(V ), then S = ±IV . In particular, Z(O(V, φ)) = {−IV , IV }.

Proof Let u be a singular vector and v a non-singular vector in u⊥. Since
S commutes with τu,v, S leaves invariant Range(τu,v − IV ) = Span(u,v).
Then S also leaves invariant Rad(Span(u,v)) = Span(u). Consequently, for
each singular vector u there is a scalar λu such that S(u) = λuu. We claim
that λu is independent of u.

Suppose u,v are singular, (u,v) is linearly independent, and u ⊥ v. Then
u + v is a singular vector and we have λu+v(u + v) = S(u + v) = S(u) +
S(v) = λuu+ λvv and we conclude that λu = λu+v = λv. We may therefore
assume that 〈u,v〉 6= 0. Since S is an isometry, λuλv〈u,v〉 = 〈λuu, λvv〉 =
〈S(u), S(v)〉 = 〈u,v〉. Therefore λv = 1

λu

. Assume now that U is a non-
degenerate subspace of V containing Span(u,v) with dim(U) = 3. Let w

be a singular vector of U such that (u,v,w) is linearly independent. Then
1
λu

= λw = 1
λv

so that λu = λv. Switching the roles of u and w we also get
1
λw

= λu = 1
λv

. It then follows that λu = λw = λv. Set λ = λu. Since λ = 1
λ

it follows that λ ∈ {−1, 1}.

As a corollary of the proof of Theorem (11.15) we have:

Corollary 11.13 The kernel of the action of O(V, φ) on S1(V ) is Z(O(V, φ)).

Theorem 11.16 Let n ≥ 3. Then the commutator subgroup of O(V, φ) is
equal to the commutator subgroup of SO(V, φ).

Proof As we have done previously, if G is a group, we will denote by G′

the commutator group of G, the subgroup of G generated by all commuta-
tors [g, h] = g−1h−1gh. Since SO(V, φ) is a subgroup of O(V, φ), it follows
that SO(V, φ)′ is contained in O(V, φ)′ so we must prove that O(V, φ)′ is a
subgroup of SO(V, φ). Since O(V, φ) is generated by all reflections ρx where
x is non-singular, it follows that O(V, φ)′ is generated by all commutators
[ρx, ρy] = ρ−1

x ρ−1
y ρxρy = ρxρyρxρy since reflections have order two. Suppose

first that n is odd. Then −IV /∈ SO(V, φ) but −ρx,−ρy ∈ SO(V, φ) and then
[−ρx,−ρy] = [ρx, ρy] ∈ SO(V, φ).

We may therefore assume that n is even and n ≥ 4. Suppose there exists a
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non-singular vector z ∈ x⊥∩y⊥. In this case, ρxρz and ρyρz are in SO(V, φ)
and [ρx, ρy] = [ρxρz, ρyρz] ∈ SO(V, φ)′. In the contrary case, n = 4 and
X = Span(x,y) is degenerate with a radical of dimension one. In particu-
lar, X contains singular vectors. Let U be a three-dimensional non-degenerate
subspace of V with X ⊂ U and set W = U⊥. Let τ be the isometry such that
τ restricted to U is −IU and restricted to W is IW . Then τ ∈ O(V, φ) and
τ /∈ SO(V, φ) and commutes with ρx and ρy. Both ρxτ and ρyτ ∈ SO(V, φ)
so that [ρx, ρy] = [ρxτ, ρyτ ] ∈ SO(V, φ)′ and we have the desired equality.

Let (u,v) be a hyperbolic pair and set U = Span(u,v) and W = U⊥. Denote
by O(U) the collection of those isometries T such that T (U) = U and T|W =
IW . We claim for any σ ∈ O(V, φ) there exists γ ∈ O(U) and τ ∈ Ω(V ) such
that σ = τγ. Note that since Ω(V ) is normal in O(V, φ) it suffices to prove
this for a generating set of O(V, φ), in particular, for reflections. Toward that
end let x be a non-singular vector and set a = φ(x). Let y = au + v so that
φ(y) = a = φ(x). By Witt’s theorem (8.12) there is an isometry δ such that
δ(y) = x. Set u′ = δ(u) and v′ = δ(v), so that (u′,v′) is a hyperbolic pair.
By Lemma (11.30) and Lemma (11.28) there is a β ∈ Ω(V ) such that β(u′) ∈
Span(u) and β(v′) ∈ Span(v). Then z = β(x) ∈ U . It then follows that
βρxβ

−1 = ρz so that ρx = β−1ρzβ. Then ρx = β−1ρzβρzρz = [β−1, ρz]ρz .
Set τ = [β−1, ρz]. Since Ω(V ) is normal in O(V, φ), τ ∈ Ω(V ). Thus, ρx = τρz
as desired. We have therefore proved most of following:

Lemma 11.31 Let (u,v) be a hyperbolic pair and set U = Span(u,v) and
W = U⊥. Denote by O(U) the collection of those isometries T such that
T (U) = U and T|W = IW . Then O(V, φ) = Ω(V )O(U) and SO(V, φ) =
Ω(V )[SO(V, φ) ∩O(U)].

Proof The only thing that requires any further explanation is the last state-
ment. Suppose T ∈ SO(V, φ). Then there are τ ∈ Ω(V ) and γ ∈ O(U) such
that T = τγ. By Lemma (11.24), τ ∈ SO(V, φ) from which it follows that
γ ∈ SO(V, φ).

With this result we can now state precisely what the commutator subgroup
of O(V, φ) is:

Theorem 11.17 Assume n ≥ 3. Then the commutator subgroup of O(V, φ)
is equal to Ω(V ).

Proof We first prove that Ω(V ) ⊆ O(V, φ)′. It suffices to prove that
for each pair (u,v) where u is a singular vector and v ∈ u⊥ is non-
singular, that τ = τu,v ∈ O(V, φ)′, equivalently, that τ [O′(V, φ)] =
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O(V, φ)′, the identity element of the quotient group O(V, φ)/O(V, φ)′. Let
γ = τu, 12v

so that γ2 = τu,v. By the Cartan-Dieudonne theorem we can

express γ as a product of reflections: γ = ρx1 . . . ρxt
. Now τ [O(V, φ)′] =

γ2[O(V, φ)′] = (ρx1 . . . ρxt
)(ρx1 . . . ρxt

)[O(V, φ)′]. However, the quotient group
O(V, φ)/O(V, φ)′ is Abelian. Therefore

(ρx1 . . . ρxt
)(ρx1 . . . ρxt

)[O(V, φ)′] = ρ2x1
. . . ρ2xt

[O(V, φ)′] = O(V, φ)′.

It remains to show that O(V, φ)′ ⊆ Ω(V ). Let (u,v) be a hyperbolic pair, and
set

U = Span(u,v),W = U⊥, and O(U) = {T ∈ O(V, φ)| T (U) = U, T|W = IW }.
By Lemma (11.31), SO(V, φ) = Ω(V )[O(U)∩SO(V, φ)]. Then SO(V, φ)/Ω(V )
is isomorphic to [O(U) ∩ SO(V, φ)]/[O(U) ∩ Ω(V )]. However, O(U) ∩
SO(V, φ) is isomorphic to SO(U) which is an Abelian group (isomorphic
to the multiplicative group of F) and therefore the quotient group [O(U) ∩
SO(V, φ)]/[O(U) ∩ Ω(V )] is Abelian. Thus, SO(V, φ)/Ω(V ) is Abelian which
implies that O(V, φ)′ = SO(V, φ)′ ⊆ Ω(V ) and we have equality.

In our next result we assume (V, φ) is a non-degenerate singular orthogonal
space of dimension three over the field F (characteristic not two) and determine
Ω(V ).

Theorem 11.18 Assume (V, φ) is a non-degenerate singular orthogonal space
of dimension three over the field F and that the characteristic of F is not two.
Then Ω(V ) is isomorphic to PSL2(F).

Proof Let (u,v) be a hyperbolic pair and let z ∈ u⊥ ∩ v⊥. Set φ(z) = c. If
we set φ′ = 1

cφ then O(V, φ′) = O(V, φ) so we can, without loss of generality
assume that φ(z) = 1. Note that Ω(V ) is generated by τu,az, τv,bz where a, b ∈
F. Because we will need it below we compute the matrix of τu,az and τv,bz with
respect to the basis (u, z,v). Clearly, τu,az(u) = u. We use the formula for
computing τu,az(z):

τu,az(z) = z + 〈z, az〉u = z + 2au.

It then follows from the proof of Theorem (11.12) that τu,az(v) = v−az−a2u.

Thus, the matrix of τu,az with respect to (u, z,v) is



1 2a −a2
0 1 −a
0 0 1


. Simi-

larly, the matrix of τv,bz with respect to the basis (u, z,v) is




1 0 0
2b 1 0
−b2 −b 1


.



Linear Groups and Groups of Isometries 435

Now let X be a two-dimensional vector space over F with basis (x,y) and
set Y = Sym2(X), the second symmetric power of X, which has basis
(x2,xy,y2). Define q : Y → F by q(ax2 + bxy + cy2) = b2 − 4ac. Set
u′ = 1

2x
2, z′ = xy, and v′ = − 1

2y
2. Then (u′,v′) is a hyperbolic pair,

z′ ∈ (x′)⊥ ∩ (y′)⊥, and q(z′) = 1. Consequently, the linear transformation
that sends (u′, z′,v′) to (u, z,v) is an isometry.

For every operator σ : X → X there is an induced operator, S2(σ) :
Sym2(X) → Sym2(X). Moreover, the map S2 is multiplicative: For σ, δ ∈
L(X,X), S2(σδ) = S2(σ)S2(δ). Furthermore, if σ is invertible then so is
S2(σ). Therefore S2 restricted to GL(X) is a group homomorphism to
GL(Sym2(X)) = GL(Y ).

We describe the map more explicitly: Suppose σ(x) = ax + by and σ(y) =
cx+ dy. Then

S2(σ)(x
2) = a2x2 + 2abxy + b2y2

S2(σ)(xy) = acx2 + (ad+ bc)xy + bdy2

S2(σ)(y
2) = c2x2 + 2cdxy + d2y2.

Let τx,a be the operator on X such that τx,a = x and τx,a(y) = ax + y.
Set σa = S2(τx,a). Then σa(x

2) = x2, σa(xy) = ax2 + xy, and σa(y
2) =

a2x2 + 2axy + y2. We determine the matrix of σa with respect to the basis
(u′, z′,v′).

σa(u
′) = σa(

1

2
x2) =

1

2
x2 = u′

σa(z
′) = σa(xy) = ax2 + xy = 2au′ + z′

σa(v
′) = σa(−

1

2
y2) = −1

2
(a2x2 + 2axy + y2) =

−1

2
a2x2 − axy − 1

2
y2 = −a2u′ − az′ + v′

Consequently, the matrix of σa with respect to (u′, z′,v′) is



1 2a −a2
0 1 −a
0 0 1


.

Note that this is the same as the matrix of τu,z with respect to (u, z,v). There-
fore, σa is an isometry and, in fact, σa = τu′,az′ . A similar calculation shows
that if τy,b is the operator of X such the τy,b(x) = x + by and τy,b(y) = y,
then σb = S2(τy,b) = τv′,bz. This shows that Ω(V ) is isomorphic to the image
of SL2(F) under the homomorphism S2 : SL(X) → SL(Y ) = SL(Sym2(X)).
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Note that the kernel of this map is {IX ,−IX} = Z(SL(X)) and so the image
is PSL(X) which is isomorphic to PSL2(F).

As a consequence of Theorem (11.18), we have the following result:

Theorem 11.19 Assume (V, φ) is a non-degenerate, singular orthogonal
space of dimension three over the field F, the characteristic of F is not two,
and F 6= F3. Then Ω(V ) is a non-Abelian simple group.

We make use of Theorem (11.18) in proving the following result:

Theorem 11.20 Assume (V, φ) is a non-degenerate orthogonal space of di-
mension n ≥ 3 over the field F and that the Witt index of (V, φ) is positive.
If F 6= F3 then Ω(V ) is perfect.

Proof Let u be a singular vector and z a non-singular vector in u⊥. We
will show that τu,z ∈ Ω(V )′, the commutator subgroup of Ω(V ). Since any
singular vector in u⊥ can be expressed as the sum of two non-singular vectors
in u⊥, it will follow that Tu is contained in Ω(V )′. Since u is arbitrary, we
can conclude that Tu is contained in Ω(V )′ for every singular vector u and
consequently Ω(V ) ⊆ Ω(V )′.

Let v be a singular vector in z⊥ such that 〈u,v〉 = 1 and set U =
Span(u, z,v), a non-degenerate subspace of V of dimension three and Witt
index one. Let Ω(U) be the subgroup of Ω generated by Tx such that Span(x) ∈
S1(U). By Theorem (11.19), Ω(U) is isomorphic to PSL2(F) and is simple.
In particular, τu,z is in Ω(U)′ ⊆ Ω(V )′.

We now turn our attention to orthogonal spaces over the field F3. We remark
that since F3 is a finite field, if (V, φ) has dimension n then the Witt index is
at least ⌊n−1

2 ⌋. In particular, if n ≥ 5, then the Witt index is at least two.

Lemma 11.32 Assume (V, φ) is a non-degenerate orthogonal space over F3

of dimension four with Witt index 1. Then Ω(V ) is isomorphic to PSL2(F9).
In particular, Ω(V ) is simple and, therefore, perfect.

Proof Let M be the subset of M22(F9) consisting of those matrices m such
that mtr = m. Here, by m we mean the matrix obtained from m by applying
the automorphism of F9 given by a = a = a3 to each entry of the matrix. Such

a matrix has the form

(
a α
α b

)
where a, b ∈ F3 and α ∈ F9. As a vector space

over F3 it has dimension four.
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For m ∈ M set q(m) = det(m) = ab − αα ∈ F3. Then q is a non-degenerate
quadratic form with Witt index one. We define an action of SL2(F9) as fol-

lows: For A ∈ SL2(F9) and m ∈M set A ·m = A
tr
mA. Then

A ·mtr
= A

tr
mA

tr

= AtrmA)tr

= A
tr
mtrA

= A
tr
mA

= A ·m.

Thus, A · m ∈ M . This is clearly a linear action and (AB) · m = A · (B ·
m). Thus we have a group homomorphism from SL2(F9) into GL(M). We
claim the image of A ∈ SL2(F9) acts as an isometry of (M, q). This follows

since det(A) = det(A
tr
) = 1. So, in fact, we have a group homomorphism

from SL2(F9) to O(M, q). Clearly the center of SL2(F9), {−I2, I2}, is in the
kernel, and must be the kernel of the action since PSL2(F9) is a simple group).
Because the image, isomorphic to PSL2(F9), is perfect it follows that the
image is actually a subgroup of SO(M, q).

Set u =

(
1 0
0 0

)
and v =

(
0 0
0 1

)
so that (u,v) is a hyperbolic pair. Note that

if mi =

(
ai αi

αi bi

)
for i = 1, 2, then 〈m1,m2〉q = a1b2 + a2b1 − α1α2 − α2α1.

It then follows that u⊥ ∩ v⊥ consists of those matrices of the form

(
0 α
α 0

)

where α ∈ F9. For α ∈ F9, denote by z(α) the matrix

(
0 α
α 0

)
.

We know from Remark (11.6) that Ω(M, q) is generated by Tu and Tv. Let

α ∈ F9 and let s(α) be the transvection

(
1 α
0 1

)
in SL2(F9) and by t(α) the

transvection

(
1 0
α 1

)
. We leave it as an exercise to show that the action on

M induced by s(α) is the same as τu,z(α) and the action induced by t(α) is the
same as τv,z(α). It follows from this that Ω(M, q) is isomorphic to PSL2(F9).

We can now turn to the general case over the field F3.

Theorem 11.21 Assume (V, φ) is a non-degenerate orthogonal space over F3

of dimension n ≥ 5. Then Ω(V ) is perfect.
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Proof Let u be a singular vector and z a non-singular vector in u⊥. We will
prove that τu,z ∈ Ω(V )′. Since every singular vector in u⊥ can be expressed
as the sum of two non-singular vectors from u⊥ it will then follow that Tu is
contained in Ω(V )′. Since u is arbitrary, we can then conclude that Ω(V ) is
contained in Ω(V )′, hence we have equality.

Let v be a singular vector in z⊥ such that (u,v) is a hyperbolic pair. Set
U = Span(u, z,v), a non-degenerate subspace of dimension three. Then
dim(U⊥) ≥ 2 and U⊥ is non-degenerate. Choose w ∈ U⊥ such that
φ(w) = φ(z). Then W = U + Span(w) is non-degenerate, dimension four,
and has Witt index one. Denote by Ω(W ) the subgroup of Ω(V ) generated
by all τu,x and τv,x where x is a vector in Span(z,w). By Lemma (11.32),
Ω(W ) is simple and isomorphic to PSL2(F9). In particular, τu,z is contained
in Ω(W )′ ⊆ Ω(V )′.

We can now prove our main theorem:

Theorem 11.22 Let (V,F) be a non-degenerate orthogonal space of dimen-
sion n ≥ 3 over the field F with Witt index m > 0. If n = 3, assume that
F 6= F3 and if m = 2, assume n ≥ 5. Let PΩ(V ) be the quotient of Ω(V ) by
Z(Ω(V )). Then PΩ(V ) is a simple group.

Proof PΩ(V ) acts faithfully and primitively on S1(V ). PΩ(V ) is perfect. For
U = Span(u) ∈ S1(V ) the subgroup Tu is Abelian and normal in PΩ(V )U ,
the stabilizer of U in PΩ(V ). Finally, PΩ(V ) is generated by the conjugates
of Tu. It follows by Iwasawa’s theorem that PΩ(V ) is a simple group.

Exercises
1. Let u be a singular vector and y a non-singular vector in u⊥. Set z =
〈y,y〉φ

2 u+ y. Prove that ρzρy = τu,y.

2. Let u be a singular vector, v,w ∈ u⊥. Prove that τu,v = τu,w if and only
if w − v ∈ Span(u). Conclude that τu,z = IV if and only if z ∈ Span(u).

3. Let u be a singular vector. Prove that Tu is generated by all τu,z where
z ∈ u⊥ is non-singular.

4. Assume the Witt index of (V, φ) is one and that (u,v) is a hyperbolic pair.
Prove that Ω(V ) is generated by Tu ∪ Tv.
In Exercises 5–8 assume (V, φ) has dimension four and Witt index two.
If l = Span(u,v) is a totally singular two-dimensional space, let χ(l) =
{τu′,v′ |Span(u′,v′) = Span(u,v)}. Let (x1,x2,y1,y2) be a basis of singu-
lar vectors such that 〈xi,xj〉 = 〈yi,yj〉 = 〈xi,yj〉 = 0 for {i, j} = {1, 2}
and 〈x1,y1〉 = 〈x2,y2〉 = 1. Let l1 = Span(x1,x2), l2 = Span(x2,y1), l3 =
Span(y1,y2), l4 = Span(y2,x1).
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5. Prove that Ω(V ) is generated by χ(l1) ∪ χ(l2) ∪ χ(l3) ∪ χ(l4).
6. Let L1 be the subgroup of Ω(V ) generated by χ(l4) ∪ χ(l2) and L2 the
subgroup generated by χ(l1) ∪ χ(l3). Prove that L1 and L2 are isomorphic to
SL2(F).

7. Prove that L1 and L2 commute.

8. Prove that the set B = S1(Span(x1,x2)) is a block of imprimitivity of
Ω(V ).

In Exercises 9–13 assume (V, φ) is a non-degenerate orthogonal space of di-
mension four and Witt index one over the field F. Let (u,v) be a hyperbolic
pair and set U = Span(u,v) and W = U⊥. Let (x,y) be an orthogonal basis
of W and assume that φ(x) = 1 and φ(y) = d.

9. Prove that the quadratic polynomial X2 + d is irreducible in F[X ].

10. Set K = F[X ]/(X2 + d), the quotient ring of F[X ] by the maximal ideal
(X2 + d) generated by X2 + d. Set ω = X + (X2 + d) so that K = F(ω) =
{a+ bω| , b ∈ F}. For α = a + bω ∈ K denote by α its conjugate a − bω. Set

M = {
(
a α
α b

)
|a, b ∈ F, α ∈ K}. Note that m ∈ M22(K) is in M if and only

if mtr = m.

Define q : M → F by q(m) = −det(m). Prove that (M, q) is isometric to
(V, φ).

11. If A ∈ SL2(K) and m ∈M set A ·m = A
tr
mA. Prove that A ·m ∈M .

12. For A ∈ SL2(K), let TA : M → M given by TA(m) = A ·m. Prove that
TA is a linear operator on M and an isometry of (M, q).

13. Prove that Range(T ) is isomorphic to PSL2(K) and equal to Ω(M, q)
(which is isomorphic to Ω(V, φ)).
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11.4 Unitary Groups

In this section we continue to study the unitary group and demonstrate that,
with a small number of counterexamples, a projective special unitary group
is simple.

What You Need to Know

To successfully navigate the material of this new section you should by now
have mastered the following concepts: vector space over a field F, basis of a
vector space, dimension of a vector space, linear operator on a vector space
V, matrix of a linear operator T : V → V with respect to a base B for V,
eigenvalue and eigenvector of an operator T , the algebra L(V, V ) of operators
on a finite-dimensional vector space V , an invertible operator on a vector space
V , the group GL(V ) of invertible operators on a finite-dimensional vector
space V , sesquilinear form on a vector space, unitary space, non-degenerate
unitary space, isotropic vector in a unitary space, hyperbolic pair in a unitary
space, and an isometry of a unitary space. You must also be familiar with the
following concepts from group theory: Abelian group, solvable group, normal
subgroup of a group, quotient group of a group by a normal subgroup, the
commutator of two elements in a group, the commutator subgroup of a group,
a perfect group, the center of a group, a simple group, action of a group G
on a set X , transitive action of a group G on a set X , primitive action of a
group G on a set X , and a faithful action of a group G on a set X . This latter
material can be found in Appendix B.

We begin by recalling some definitions:

Let V be a vector space over a field F, σ a non-trivial automorphism of F
with σ2 = IF. Set E = Fσ = {a ∈ F| σ(a) = a}. The norm from F to E is the
function N : F → E such that N(a) = aσ(a). The trace from F to E is the
function Tr : F → E given by Tr(a) = a+σ(a). We denote by Φ the kernel of
Tr,Φ = {a ∈ F|a+ σ(a) = 0}. We also denote by Λ the kernel of N restricted
to F∗,Λ = {a ∈ F∗|aσ(a) = 1}. We will often times denote σ(a) by a.

A σ-Hermitian form (hereafter referred to as a Hermitian form) is a map
f : V × V → F such that

1) for v1,v2,w ∈ V, c1, c2 ∈ F, f(c1v1 + c2v2,w) = c1f(v1,w) + c2f(v2,w);
and

2) for v,w ∈ V , f(w,v) = σ(f(v,w)).

A unitary space is a pair (V, f) consisting of a vector space V and a Hermitian
form f : V × V → F. The radical of (V, f), Rad(f), consists of all those
vectors v such that f(w,v) = 0 for all w ∈ V . The unitary space (V, f) is
non-degenerate if Rad(f) = {0}.
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An isometry of a unitary space (V, f) is a linear operator T : V → V such
that f(T (u), T (v)) = f(u,v) for all vectors u,v. If (V, f) is non-degenerate,
then an isometry must be invertible since a vector v ∈ Ker(T ) must lie in
the radical. When (V, f) is non-degenerate, the composition of isometries is an
isometry and the inverse of an isometry is an isometry; therefore the collection
of isometries is a subgroup of GL(V ) which we denote by U(V, f) or simply
U(V ) when the form f is understood.

A vector v in a unitary space (V, f) is isotropic if f(v,v) = 0 and
anisotropic otherwise. The unitary space is said to be isotropic if there
exist non-zero isotropic vectors and anisotropic otherwise. A pair (u,v) of
isotropic vectors such that f(u,v) = 1 is said to be a hyperbolic pair. A
subspace spanned by a hyperbolic pair is a hyperbolic plane.

Notation. Assume (V, f) is an isotropic unitary space. We will denote by
I1(V ) the set of all X = Span(x) such that x is isotropic. We will refer to
such X as isotropic points. For X ∈ I1(V ) we will denote by ∆(X) those
Y 6= X in I1(V ) such that Y ⊥ X and by Γ(X) the set of Y ∈ I1(V ) such
that Y 6⊥ X .

Throughout this section we will generally use the bar notation to indicate

images under σ. For example, we will write a for σ(a). When v =



a1
...
an


 ∈ Fn

we will denote by v the vector obtained from v by applying σ to each entry of
v and similarly for a matrix A,A = σ(A), is the matrix obtained by applying
σ to the entries of A.

Recall if B = (v1, . . . ,vn) is a basis for V then the matrix of f with respect to
B, denoted by Mf (B,B), is the matrix A whose (i, j)-entry is aij = f(vi,vj).
For vectors u,v ∈ V

f(u,v) = [u]trBA[v]B.

The matrix A is a Hermitian matrix, that is, it satisfies Atr = A.

Theorem 11.23 Let (V, f) be a finite-dimensional, non-degenerate unitary
space and let T ∈ U(V, f). Then N(det(T )) = 1. Moreover, if a ∈ F∗ and
N(a) = 1, then there exists T ∈ U(V ) with det(T ) = a.

Proof Let B = (v1, . . . ,vn) be a basis for V , and set A = Mf(B,B) and
Q = MT (B,B). It follows from the assumption that T is an isometry that
QtrAQ = A. Taking determinants and using the identity det(Qtr) = det(Q)
we obtain that det(Q) det(Q)det(A) = det(A). Since f is non-degenerate, A
is invertible and det(A) 6= 0 Consequently, N(det(Q)) = det(Q)det(Q) =
det(Q)det(Q) = 1.
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For the second part, assume N(a) = 1. Let (v1, . . . ,vn) be an orthogonal basis
of V . This exists by Exercise 11 of Section (11.4). The map T ∈ L(V, F ) such
that T (vi) = vi for 2 ≤ i ≤ n and T (v1) = av1 is an isometry and det(T ) = a.

Definition 11.11 Let (V, f) be a finite-dimensional, non-degenerate unitary
space. The special unitary group consists of those isometries T such that
det(T ) = 1. It is denoted by SU(V, f) or simply SU(V ) when the form f is
understood. Note that SU(V ) is the kernel of the map det : U(V, f) → F∗ and
therefore SU(V ) is a normal subgroup of U(V ).

In the next theorem we classify isometries T of (V, f) such that the kernel of
T − IV contains a hyperplane.

Theorem 11.24 Let T ∈ U(V ) and assume ker(T −IV ) = H is a hyperplane
of V . Then one of the following holds:

1) X = Range(T − IV ) is anisotropic, H = X⊥, and there is a scalar c ∈ F
with N(c) = 1 such that T (x) = cx.

2) X = Range(T − IV ) is isotropic and H = X⊥, T is a transvection with
center X and axis X⊥ = H . Moreover, if X = Span(x). then there is a c ∈ F
with Tr(c) = 0 such that T (y) = y + cf(y,x)x for all y ∈ V .

Proof Assume first that X * H. Then V = X⊕H. Let x be a non-zero vec-
tor from X. Since x /∈ H, (T−IV )(x) 6= 0 and (T−IV )(x) ∈ X. Consequently,
T (x) = cx for some c ∈ F∗. Since T 6= IV , c 6= 1. We now prove that x is
anisotropic. Suppose to the contrary that f(x,x) = 0. Since H is a hyperplane
and x /∈ H, it follows that H 6= x⊥. In particular, there exists y ∈ H such
that f(x,y) 6= 0. However, f(x,y) = f(T (x), T (y)) = f(cx,y) = cf(x,y)
from which we conclude that c = 1, a contradiction. So, x is anisotropic,
as claimed. It remains to show that H = x⊥ and N(c) = 1. Suppose to
the contrary that H 6= x⊥ and let y ∈ H with f(x,y) 6= 0. Multiply-
ing y by 1

σ(f(x,y)) , if necessary, we may assume that f(x,y) = 1. Then

1 6= c = f(cx,y) = f(T (x), T (y)) = f(x,y) = 1, a contradiction. Thus,
H = X⊥. Finally, f(x,x) = f(T (x), T (x)) = f(cx, cx) = ccf(x,x) and
therefore N(c) = 1. Thus, in this case 1) holds. Note that if S is the oper-

ator defined by S(y) = y + (c − 1) f(y,x)f(x,x)x, then S = T . This follows since

S(y) = y = T (y) for y ∈ x⊥ = H and S(x) = cx = T (x).

We may therefore assume that X ⊂ H. Now let g : V → F be defined by
(T − IV )(y) = g(y)x. Then g is in L(V,F). Since f is non-degenerate, there
exists v ∈ V such that g(y) = f(y,v) so that T (y) = y + f(y,v)x. Note
that H = v⊥, and since x ∈ H we also have x ⊥ v. We will first show that
f(x,x) = f(v,v) = 0. We have T (v) = v+ f(v,v)x. Since T is an isometry,
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f(v,v) = f(T (v), T (v))

= f(v + f(v,v)x,v + f(v,v)x)

= f(v,v) + f(v,v)f(v,v)f(x,x)

= f(v,v) + f(v,v)2f(x,x).

Consequently, f(v,v)2f(x,x) = 0. So, either f(v,v) = 0 or f(x,x) = 0.

Suppose f(v,v) = 0, f(x,x) 6= 0. Then Span(v) 6= Span(x) and v⊥ 6= x⊥.
Let y ∈ x⊥ \v⊥. Without loss of generality, we may assume that f(y,v) = 1.
We then have

f(y,y) = f(T (y), T (y))

= f(y + x,y + x)

= f(y,y) + f(x,x),

But then f(x,x) = 0, a contradiction. Suppose then that f(v,v) 6= 0 =
f(x,x). Then T (v) = v + f(v,v)x. As above, v⊥ 6= x⊥. Now choose
y ∈ v⊥,y /∈ x⊥. We then have

0 = f(y,v)

= f(T (y), T (v))

= f(y,v + f(v,v)x)

= f(y,v) + f(v,v)f(y,x)

= f(v,v)f(y,x).

However, f(v,v) 6= 0 6= f(y,v), and we have again arrived at a contradiction.
Thus, f(v,v) = f(x,x) = 0. We next show that Span(v) = Span(x), equiv-
alently, that v⊥ = x⊥. Suppose to the contrary. Then we can choose u ∈ v⊥

such that f(u,x) = 1; and then w ∈ Span(u,x)⊥ such that f(w,v) = 1. We
now have

0 = f(u,w) = f(T (u), T (w)) = f(u,w + x) = f(u,w) + f(u,x) = 1,

a contradiction.

Thus, Span(v) = Span(x). Let v = bx and set c = b. Then T (y) = y +
f(y, bx)x = y+ bf(y,x)x = y + cf(y,x)x for all y ∈ V . It remains to show
that Tr(c) = c + c = 0. Toward that end, let y ∈ V such that f(y,x) = 1 so
that T (y) = y + cx. We then have
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f(y,y) = f(T (y), T (y))

= f(y + cx,y + cx)

= f(y,y) + cf(x,y) + cf(y,x) + ccf(x,x)

= f(y,y) + c+ c.

Thus, c+ c = 0 as claimed.

Definition 11.12 Let (V, f) be a non-degenerate unitary space over the field
F,u an isotropic vector, and c ∈ Λ = Ker(N). Denote bu τu,c the operator of
V given by

τu,c(x) = x+ cf(x,u)u.

The operator τu,c is a transvection centered at u. For any vector x such that
f(x,u) = 1 it takes x to x+ cu.

Notation If (V, f) is an isotropic unitary space we will denote by Ω(V ) the
subgroup of SU(V ) generated by all transvections.

Lemma 11.33 Assume (V, f) is a non-degenerate isotropic unitary space and
that W is a non-degenerate isotropic subspace. Assume T is an isometry of
V , that T restricted to W⊥ is the identity on W⊥, and that T restricted to W
is in Ω(W ). Then T ∈ Ω(V ).

We leave this as an exercise.

Definition 11.13 Let v be an anisotropic vector, c ∈ Φ, c 6= 1. We denote by
ρv,c the operator given by

ρv,c(x) = x+ (c− 1)
f(x,v)

f(v,v)
v.

This is a unitary pseudoreflection.

Lemma 11.34 Let (V, f) be a hyperbolic two-dimensional unitary space. Let
x be an isotropic vector. Then T = {τx,a| a ∈ Φ} is transitive on the isotropic
vectors y such that f(x,y) = 1.
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Proof Assume y, z are isotropic vectors with f(x,y) = f(x, z) = 1. If z =
ax+ by we must have b = 1. Since f(z, z) = a+ a = 0, it follows that a ∈ Φ.
Then τx,a(y) = z.

Corollary 11.14 Let (V, f) be a hyperbolic two-dimensional unitary space.
Then Ω(V ) is doubly transitive on I1(V ).

Proof Let X = Span(x), Y = Span(y) be distinct elements of I1(V ). By
Lemma (11.34) TX = {τx,a| a ∈ Φ} is transitive on I1(V ) \ {X} and TY =
{τy,b|b ∈ Φ} is transitive on Ik1V ) \ {Y }. The result follows from this.

Corollary 11.15 Let (V, f) be a non-degenerate, isotropic unitary space.
Then Ω(V ) is transitive I1(V ).

Proof Let X = Span(x), Y = Span(y) be isotropic points. If f(x,y) 6= 0
then the group generated by τx,a, τy,b where a, b ∈ Φ, is doubly transitive on
I1(X + Y ), in particular, there is a γ ∈ Ω(V ) such that γ(X) = Y . On the
other hand, if f(x,y) = 0 then there exists Z ∈ I1(V ) such that X 6⊥ Z 6⊥ Y .
By what we have just proved there are γi ∈ Ω(V ), i = 1, 2 such that γ1(X) =
Z, γ2(Z) = Y . Set γ = γ2γ1. Then γ ∈ Ω(V ) and γ(X) = Y .

We next determine the group SU(V ) when dim(V ) = 2. Since we are assuming
that f is isotropic it follows from Lemma (9.14) that V has a basis (u,v) of
isotropic vectors such that f(u,v) = 1. We show in this case that SU(V ) is
isomorphic to SL2(E), where E = Fσ.

Theorem 11.25 Assume (V, f) is a non-degenerate, isotropic two-dimensional
unitary space. Then SU(V ) is isomorphic to SL2(E).

Proof Let B = (u,v) be a basis of isotropic vectors such that f(u,v) = 1.

Then Mf (B,B) =

(
0 1
1 0

)
= J . Assume T ∈ GL(V ) and let MT (B,B) =

(
a b
c d

)
= Q. Then T ∈ SU(V ) if and only if QtrJQ = J . This implies

that ac + ac = bd + bd = 0, ad + bd = 1. Furthermore, if T ∈ SU(V ), then
det(T ) = ad− bc = 1. As we shall see this implies that a, b ∈ E and c, d ∈ Φ.
Consider (a − a)(d − d) − (b + b)(c+ c). A straightforward calculation shows
that this is equal to (ad− bc) + (ad− bc)− (ad+ bc)− (ad+ bc) = 0.

Assume that (a − a)(b + b)(c + c)(d − d) 6= 0. Then, in particular, abcd 6= 0.
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Set c = αa and b = βd. From ac+ac = 0 it follows that α = −α and similarly

β = −β. Set φ = c+c
a−a and δ = b+b

d−d
. Then it is easy to check that φ = α, β =

δ = 1
α . However, it then follows that det

(
a b
c d

)
= det

(
a 1

αd
αd d

)
= 0, a

contradiction. Thus, at least one of a− a, d− d, b+ b, c+ c is zero. Note that
a − a = 0 if and only if c+ c = 0 and d − d = 0 if and only if b + b = 0. So
assume that a− a = 0, that is, a ∈ E and c+ c = 0 so that c ∈ Φ. We need to
show that b ∈ Φ, d ∈ E.

Note that (Q−1)trJQ−1 = J so we can apply what we have shown to the

matrix Q−1 =

(
d −b
−c a

)
. Since a ∈ E it follows that b ∈ Φ and hence d ∈ E

as required.

Thus we have shown that SU(V ) is isomorphic to the subgroup of GL2(F)

consisting of all matrices

(
a b
c d

)
such that a, d ∈ E, b, c ∈ Φ and ad− bc = 1.

We shall denote this subgroup of SL2(F) by SU2(F). We now demonstrate
that SU2(F) is isomorphic to SL2(E). Fix a non-zero element u ∈ Φ. Then
an element g ∈ F is in Φ if and only if ug ∈ E. Moreover, u−1 ∈ Φ. For Q =(
a b
c d

)
∈ SU2(F) let S(Q) =

(
a ub

u−1c d

)
. Then det(S(Q)) = ad− bc = 1 so

that S(Q) ∈ SL2(E). It is a straightforward calculation, which we leave as an
exercise, to see that S(Q1Q2) = S(Q1)S(Q2), so that S is a homomorphism
of groups. Clearly, the map is injective and there is an obvious inverse, so that
it is an isomorphism.

Remark 11.8 Let (V, f) be a non-degenerate, isotropic two-dimensional uni-
tary space with a basis B = (u,v), a hyperbolic pair. Under the isomorphism
from SU(V ) to SL2(E) given by σ(T ) = S(MT (B,B)), the transvections of
SU(V ) correspond to the transvections of SL2(E). Because of the conjugacy
of the transvection groups in U(V ) and SL2(E) it suffices to show this for
one transvection subgroup of SU(V ), for example, {τu,c| c ∈ Λ}. The matrix

of τu,c with respect to B is

(
1 c
0 1

)
maps to the matrix

(
1 uc
0 1

)
, which is a

transvection in SL2(E)

Lemma 11.35 Assume (V, f) is a hyperbolic plane, x,y ∈ V with f(x,x) =
f(y,y) 6= 0. Then there exists T ∈ SU(V ) such that T (x) = y.

Proof Let B = (u,v) be a hyperbolic basis for V . Assume x = au + bv
and y = cu + dv. Set x′ = −au + bv,y′ = −cu + dv. Then x ⊥ x′ and
y ⊥ y′. Note that since f(x,x) 6= 0 6= f(y,y), it follows that x′ 6= x and
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y′ 6= y so that (x,x′) and (y,y′) are (orthogonal) bases of V . We also note
that f(x′,x′) = −(ab+ ab) = −f(x,x) = −f(y,y) = −(cd+ dc) = f(y′,y′).
Let T be the operator on V such that T (x) = y, T (x′) = y′. It follows that T
is an isometry of f . We show that T has determinant one. Let A = MT (B,B).
Then A

(
a −a
b b

)
=

(
c −c
d d

)
. Since det

(
a −a
b b

)
= ab + ab = cd + cd =

det

(
c −c
d d

)
, it follows that det(A) = 1 and, therefore, det(T ) = 1. Thus,

T ∈ SU(V ).

We will eventually prove that, with a single exception, the group SU(V ) is
generated by its transvections. We will then show that, with three exceptions,
SU(V ) is perfect, whence that PSU(V ) = SU(V )/Z(SU(V )) is simple when
SU(V ) is perfect. In order to prove tis we will need to prove that SU(V ) is
transitive on hyperbolic planes, which is our immediate goal. In the theorem
that follows we have made extensive use of computations contained in ([8]).

Theorem 11.26 Let (V, f) be a non-degenerate, isotropic unitary space over
the field F 6= F4. Then SU(V ) is transitive on its hyperbolic planes.

Proof Assume Xi = Span(xi) and Yi = Span(yi) ∈ I1(V ) for i = 1, 2, with
f(x1,y1) = f(x2,y2) = 1. Set Hi = Xi + Yi, i = 1, 2. We desire an operator
S ∈ SU(V ) such that S(H1) = H2. Since SU(V ) is transitive on I1(V ),
without loss of generality, we can assume that X1 = X2 so that dim(H1 +
H2) = 3. Let a = f(y2,y1) and assume that a 6= 0. Set w = ax1 + y1 − y2.
Then f(w,x1) = f(ax1 + y1 − y2,x1) = f(y1,x1) − f(y2,x1) = 1 − 1 =
0. Thus, w ⊥ x1. Also, f(w,y2) = f(ax1 + y1 − y2,y1) = af(x1,y1) −
f(y2,y1) = a− a = 0. So, w ⊥ y1. Moreover,

f(w,w) = f(ax1 + y1 − y2,w)

= f(−y2,w)

= −f(y2, ax1 + y1 − y2)

= −a− a

= −(a+ a.

Let γ(z) = z+ f(z,x1)ax1+ f(z,x1)w− f(z,w)x1. Note that since w ⊥ x1

and x1 is isotropic, γ(x1) = x1. We next compute γ(y2);

γ(y2) = y2 + f(y2,x1)ax1 + f(y2,x1)w − f(y2,w)x1

= y2 + ax1 + (ax1 + y1 − y2)− (a+ a)x1

= y1.
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Consequently, γ(H2) = H1.

We next claim that γ ∈ U(V ), that is, γ is an isometry.

Let u,v ∈ V . Then f(γ(u), γ(v)) =

f(u+f(u,x1)ax1+f(u,x1)w−f(u,w)x1,v+f(v,x1)ax1+f(v,x1)w−f(v,w)x1) =

f(u,v) + af(x1,v)f(u,x1) + f(x1,v)f(u,w)− f(w, v)f(u,x1)+

af(u,x1)f(x1,v) + f(u,x1)f(w,v)− (a+ a)f(u,x1)f(x1,v)− f(u,w)f(x1,v) =

f(u,w).

Suppose a + a = 0, from which we conclude that w is isotropic. In this case
we claim that γ is the product of the transvections τw,− 1

a
and τ−ax1+w, 1

a
. We

compute:

τw,− 1
a
(z) = z − 1

a
f(z,w)w

= τ−ax1+w, 1
a
(z − 1

a
f(z,w)w)

= z − 1

a
f(z,w)w +

1

a
[f(z − 1

a
f(z,w)w,−ax1 +w)(−ax1 +w)

= z − 1

a
f(z,w)w +

1

a
[af(z,x1) + f(z,w)](−ax1 +w)

= z − 1

a
f(z,w)w + [f(z,x1) +

1

a
f(z,w)](−ax1 +w)

= z − 1

a
f(z,w)w − af(z,x1)x1 + f(z,x1)w − f(z,w)x1

+
1

a
f(z,w)w

= z − af(z,x1)x1 + f(z,x1)w − f(z,w)x1

= z + af(z,x1)x1 + f(z,x1)w − f(z,w)x1

= γ(z).

Since γ is a product of transvections, γ ∈ Ω(V ).

It remains to consider the case that a+a 6= 0. In this case γ = ρ2ρ1 where ρ1 =
ρw,aa−1 and ρ2 = ρax1+w,−aa−1 . As in the above case this can be established
by computing the image of an arbitrary z under ρ2ρ1.

Since F 6= F4, there exists an element b ∈ E, b 6= 0, 1. Set c = (1−b)a
b(a+a . Since

cc(a + a) ∈ E, there exists d ∈ F such that d + d = cc(a + a). Set w′ =
dx1 + y1 + cw. We claim that w′ is isotropic and that f(x1,w

′) = 1 from
which it follows that Span(x1,w

′) is a hyperbolic plane.
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f(w′,w′) = f(dx1 + y1 +w, dx1 + y1 +w)

= df(x1,y1) + df(y1,x1) + ccf(w,w)

= d+ d− cc(a+ a)

= 0.

f(x1,w
′) = f(x1, dx1 + y1 + cw)

= f(x1,y1)

= 1.

Now define Ψ by

Ψ(z) = z − f(z,x1)bw
′ − f(z,w′)(

b

b − 1
)x1.

Since Ψ is the identity on Span(x1,w
′)⊥, to show that Ψ is in U(V ) it suffices

to prove that the restriction of Ψ to Span(x1,w
′) is an isometry. We compute

Ψ(x1) and Ψ(w′):

Ψ(x1) = x1 − f(x1,x1)bw
′ − f(x1,w

′)(
b

b− 1
)x1

=
1

1− b
x1

Ψ(w′) = w′ − f(w′,x1)bw
′ − f(w′,w′)(

b

b − 1
)x1

= w′ − bw′

= (1− b)w′.

We have therefore shown that Ψ takes the hyperbolic pair (x1,w
′) to the hy-

perbolic pair ( 1
1−bx1, (1 − b)w′). Therefore, Ψ is not only in U(V ), but in

SU(V ). Since Span(x1,w
′) is a hyperbolic plane, Ψ ∈ Ω(V ). By a straight-

forward computation we have Ψ(w) = ax1 + w. Consequently, Ψρ−1
1 Ψ−1 =

Ψρw,−aa−1Ψ−1 = ρax1+w,−aa−1 = ρ2. Therefore ρ2ρ1 = Ψρ−1
1 Ψ−1ρ1. Since

Ω(V ) is normal in SU(V ) and Ψ ∈ Ω(V ), we conclude that ρ2ρ1 ∈ Ω(V ).

Corollary 11.16 Let (V, f) be a finite-dimensional, non-degenerate, isotropic
unitary space over the field F 6= F4. Assume x,y ∈ V with f(x,x) = f(y,y) 6=
0. Then there exists γ ∈ Ω(V ) such that γ(x) = y.
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Proof Set f(x,x) = c and choose b ∈ F such that b + b = c. Let (u,v) be
a hyperbolic pair. Then f(au + v, au + v) = b + b = c. By Theorem (8.12)
there is an isometry T of V such that T (x) = au + v. Then x ∈ H1 =
Span(T−1(u), T−1(v)). In a similar fashion there is a hyperbolic plane H2

such that y ∈ H. By Theorem (11.26) there is a τ1 ∈ Ω(V ) such that τ1(H1) =
H2. By Lemma (11.35), there is a τ2 such that τ2 restricted to H⊥

2 is the
identity, τ2 restricted to H2 is in SU(H2), and τ2(τ1(x)) = y. However, by
Theorem (11.25) and Remark (11.8), τ2 restricted to H2 is in Ω(H2), whence
τ2 ∈ Ω(V ). Then τ = τ2τ1 is the required isometry.

We can now prove the following generation result:

Theorem 11.27 Assume (V, f) is a finite-dimensional, non-degenerate,
isotropic unitary space over the field F 6= F4. Then SU(V ) = Ω(V ).

Proof The proof is by induction on n = dim(V ) for n ≥ 2. The base case,
n = 2, holds by Theorem (11.25) and Remark (11.8). Assume n ≥ 3 and
the result holds for spaces of dimension n − 1. Let T ∈ SU(V ) and let x be
a anisotropic vector. Set y = T (x). Then f(y,y) = f(x,x). By Corollary
(11.16) there exists τ ∈ Ω(V ) such that τ(x) = y. Set S = τ−1T . Then
T ∈ SU(V ) and S(x) = x. Then S leaves x⊥ invariant and the restriction,

ŝ, of S to x⊥ is in SU(x⊥). By the induction hypothesis, Ŝ ∈ Ω(x⊥). By
Lemma(11.33) it follows that S ∈ Ω(V ), whence T = τS ∈ Ω(V ).

We now deal with the case that (V, f) is a non-degenerate, finite-dimensional
unitary space over F4. We will denote the elements of F4 by 0, 1, ω, and ω2 =
ω + 1 (so that ω3 = 1).

Remark 11.9 By Exercise 8 of Section (9.2) if (V, f) is a non-degenerate
unitary space of dimension n over a finite field, then the Witt index of (V, f)
is ⌊n

2 ⌋.

Definition 11.14 If (V, f) is a non-degenerate unitary space of dimension 2n
and Witt index n, then a basis (x1, . . . ,xn,y1, . . . ,yn) such that f(xi,xj) =
f(xi,yj) = f(yi,yj) = 0 for i 6= j and f(xi,yi) = 1 for all i is a hyperbolic
basis.

We will need the following simple result later when we have to prove that
Ω(V ) is transitive on anisotropic vectors. We leave it as an exercise.

Lemma 11.36 Let (V, f) be a hyperbolic plane over F4. Then SU(V ) = Ω(V )
is transitive on the six anisotropic vectors of V .
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Lemma 11.37 Let (V, f) be a non-degenerate three-dimensional unitary
space over F4. Then Ω(V ) is transitive on the set of isotropic vectors.

Proof By Corollary (11.15), Ω(V ) is transitive on the set I1(V ) of one-
dimensional subspaces spanned by an isotropic vector. It therefore suffices to
show for v isotropic that there is τ ∈ Ω(V ) such that τ(v) = ωv. Let B =
(x1,x2,x3) be a basis for V such that (x1,x3) is a hyperbolic pair and x1 ⊥ x2

and x2 ⊥ x3. Note that for any anisotropic vector x, f(x,x) = 1.

In addition to x1 and x3, the following vectors are isotropic: y1 = x1 + x2 +
ωx3 and y2 = ωx1+x2+x3 (there are five others but we do not require them).
Let τ1 = τx1,1, τ2 = τx3,1, τ3 = τy1,1 and τ4 = τy2,1. A simple calculation gives
the following:

Mτ1(B,B) =



1 0 1
0 1 0
0 0 1


 ,Mτ2(B,B) =



1 0 0
0 1 0
1 0 1


 ,

Mτ3(B,B) =



ω2 1 1
ω 0 1
1 ω2 ω


 ,Mτ4(B,B) =



ω2 ω 1
1 0 ω2

1 1 ω.




Set ζ = τ1τ2τ3τ4. Then Mζ(B,B) =



ω 0 0
0 ω 0
0 0 ω


. Thus, ζ ∈ Ω(V ) and

ζ(v) = ωv for every vector v ∈ V .

Corollary 11.17 Let (V, f) be a non-degenerate unitary space over F4 of
dimension n ≥ 3. Let (u,v) be a hyperbolic pair. Then there exists an operator
τ in Ω(V ) such that τ(u) = ωu, τ(v) = ωv.

We leave this as an exercise.

Corollary 11.18 Let (V, f) be a non-degenerate unitary space over F4 of
dimension n ≥ 3. Let u,v be isotropic vectors. Then there exists τ ∈ Ω(V )
such that τ(u) = v.

This is left as an exercise.

Lemma 11.38 Let (V, f) be a non-degenerate four-dimensional unitary space
over F4. Then the following hold:

i) The cardinality of I1(V ) is 45.



452 Advanced Linear Algebra

ii) Each element of I1(V ) is contained in exactly three elements of I2(V ).

iii) Each element of I2(V ) contains five elements of I1(V ).

iv) For X ∈ I1(V ), the cardinality of ∆(X) is 12 and the cardinality of Γ(X)
is 32.

These are fairly routine computations which we leave as exercises.

Lemma 11.39 Let (V, f) be a non-degenerate four-dimensional unitary space
over F4. Let B = (x1,x2,y2,y1) be a basis of V such that f(x1,x2) =
f(x1,y2) = f(x2,y1) = f(y1,y2) = 0; f(x1,y1) = f(x2,y2) = 1. Then a
vector ax1 + bx2 + cy2 + y1 is isotropic if and only if Tr(a) + Tr(bc) = 0.

This is a straightforward computation and left as an exercise.

Lemma 11.40 Assume the hypotheses of Lemma (11.39). Let v,w ∈ F2
4 and

c ∈ F4. Assume the operator T has matrix A =




1 a b c
0 1 0 d
0 0 1 e
0 0 0 1


 with respect

to B. Then T ∈ SU(V ) if and only if e = a, d = b, and Tr(c) + ab+ ab = 0.

Proof Let J be the matrix of f with respect to the basis B, so that J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


. Then T ∈ SU(V ) if and only if AtrJA = J . The conditions

follow from this.

Let a, b, c ∈ F4 satisfy ab + ab + c + c = 0. Denote by M(a, b, c) the matrix


1 a b c

0 1 0 b
0 0 1 a
0 0 0 1


 and by T (a, b, c) the operator on (V, f), which has matrix

M(a, b, c) with respect to B. By Lemma (11.40), T (a, b, c) ∈ SU(V ). Also
denote by A(x1) the collection of all such operators. This is a subgroup of
SU(V ) and every T ∈ A(x1) fixes x1.

Remark 11.10 The order of A(x1) is 32, a and b can be chosen arbitrarily
from F4 and once such a choice has been made there are two possibilities for
c.
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Lemma 11.41 Continue with the hypotheses of Lemma (11.39). Assume y

is an isotropic vector and f(x1,y) = 1. Then there is a unique operator T ∈
A(x1) such that T (y1) = y.

Proof Let y = v + dy1 where v ∈ x⊥
1 . Since f(x1,y) = 1 it follows that

d = 1. Write v = ax1+ bx2+ cy2. Since y is isotropic it follows from Lemma
(11.39) that ab+ab+c+c = 0. Then T (a, b, c) is the unique operator T ∈ A(x1)
such that T (y1) = y.

Theorem 11.28 Let (V, f) be a non-degenerate four-dimensional unitary
space over F4. Let (u1,v1) and (u2,v2) be hyperbolic pairs. Then there ex-
ists τ ∈ Ω(V ) such that τ(u1) = u2 and τ(v1) = v2.

Proof Since Ω(V ) is transitive on isotropic vectors we can assume that
u1 = u2 = x1. It then suffices to show that there exists τ in Ω(V ) such
that τ(x1) = x1 and τ(v1) = v2. By Lemma (11.41) it suffices to show that
A(x1) is contained in Ω(V ). We exhibit below five explicit generators of A(x1)
which are transparently in Ω(V ) (each will be a transvection or a product of
two transvections).

Let T1 = τy2τx1+y2 . The matrix of T1 with respect to B is




1 1 0 1
0 1 0 0
0 0 1 1
0 0 0 1


.

Let T2 = τx2+y2τx1+x2−y2 . The matrix of T2 is




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


.

Let T3 = τx2+y2τωx1+x2+y2 . The matrix of T3 is




1 ω ω 1
0 1 0 ω2

0 0 1 ω2

0 0 0 1


.

Let T4 = τx2τωx1−x2 . The matrix of T4 is




1 0 ω 1
0 1 0 ω2

0 0 1 0
0 0 0 1


.

Let T5 = τx1 . The matrix of T5 is




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


.
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We are almost ready to prove: if (V, f) is a non-degenerate unitary space of
dimension n ≥ 4 over F4, then Ω(V ) = SU(V ). Before doing so we require
one more result.

Lemma 11.42 Let (V, f) be a non-degenerate unitary space of dimension
n ≥ 4 over F4. Then Ω(V ) is transitive on the set of anisotropic vectors.

Proof Assume x,y are anisotropic vectors. If f(x,y) = 0, then X =
Span(x,y) is a hyperbolic plane. By Lemma (11.36), there is a τ such that
τ|X⊥ = IX⊥ , τ|X ∈ SU(X) such that τ(x) = y. By Theorem (11.28), it follows
that τ|X ∈ Ω(X). Then by Lemma (11.33), we have τ ∈ Ω(V ). Thus, we may
assume that f(x,y) 6= 0.

Note that x⊥ is a non-degenerate three-dimensional space and so has Witt
index one. Therefore, x⊥ ∩ y⊥ is not totally isotropic. Choose an anisotropic
vector z ∈ x⊥∩y⊥. By the first paragraph there exists τ1, τ2 ∈ Ω(V ) such that
τ1(x) = z, τ2(z) = y. Set τ = τ2τ1. Then τ ∈ Ω(V ) and τ(x) = y.

Theorem 11.29 Let (V, f) be a non-degenerate unitary space of dimension
n ≥ 4 over F4, then Ω(V ) = SU(V ).

Proof The proof is by induction on n ≥ 4. Suppose n = 4. Let T ∈ SU(V )
and (u,v) be a hyperbolic pair. Then (T (u), T (v)) is a hyperbolic pair. By
Theorem (11.28), there is a τ ∈ Ω(V ) such that τ(u) = T (u), τ(v) = T (v).
Set U = Span(u,v) and S = τ−1T . Then S restricted to U is IU , S leaves
U⊥ invariant, and S|U⊥ ∈ SU(U⊥). By Theorem (11.25) and Remark (11.8),

S ∈ Ω(U⊥) and then by Lemma (11.33), S ∈ Ω(V ). Consequently, T = τS ∈
Ω(V ).

Now assume n ≥ 4 and we have shown that Ω(U) = SU(U) for a non-
degenerate unitary space (U, g) of dimension n over F4 and that (V, f) is a
non-degenerate unitary space of dimension n+1 over F4. Let T ∈ SU(V ) and
let x be an anisotropic vector. Then, of course, f(T (x), T (x)) = f(x,x). By
Lemma (11.42), there is a τ ∈ Ω(V ) such that τ(x) = T (x). Set S = τ−1T .
Then S(x) = x. Consequently, S leaves x⊥ invariant and S|x⊥ ∈ SU(x⊥).
By the inductive hypothesis, S ∈ Ω(x⊥). By Lemma (11.33), S ∈ Ω(V ). Con-
sequently, T = τS ∈ Ω(V ).

We can now determine when SU(V ) is a perfect group:

Theorem 11.30 Assume (n,F) is not one of (2,F4), (2,F9), (3,F4) and (V, f)
is a non-degenerate isotropic unitary space of dimension n over F. Then
SU(V ) is perfect.
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Proof Assume (n,F) is not one of (2,F4), (2,F9), (3,F4). Suppose we can
show that there is an isotropic vector x such that commutator subgroup of
SU(V ) contains Tx = {τx,c|c ∈ Λ}. Since SU(V )′ is normal in SU(V ) and
since SU(V ) is transitive on the subgroups {calTu,u isotropic, it will then
follow that SU(V )′ contains Ω(V ) = SU(V ).

Suppose first that F has greater than 9 elements. Let X = Span(x,y) be a
hyperbolic plane with (x,y) a hyperbolic pair. Let S(X) consist of those T such
that the restriction to X⊥ is the identity on X⊥. Then S(X) is isomorphic
to SU(X), whence isomorphic to SL2(E) by Theorem (11.25). This group is
perfect and contains Tx. By Lemma (11.33), it follows that SU(V )′ contains
full transvections groups and is therefore perfect.

We will next show if dim(V ) = 3, then the commutator subgroup of SU(V )
contains full transvection subgroups. Let (x,y) be a hyperbolic pair and let z ∈
x⊥∩y⊥. Multiplying f by 1

f(z,z) , if necessary, we can assume that f(z, z) = 1.

Then B = (x, z,y) is a basis for V . The matrix of f with respect to B is

J =



0 0 1
0 1 0
1 0 0


. Assume a, b ∈ F satisfy b+b+aa = 0. Then let T (a, b) be the

operator on V such that MT (a,b)(B,B) =



1 a b
0 1 −a
0 0 1


 = M(a, b). An easy

matrix computation confirms that M(a, b)trJM(a, b) = M(a, b)trJM(a, b) =
J so that T (a, b) ∈ SU(V ). Suppose also that c, d ∈ F and that d + d + cc =
0. Then T (a, b)T (c, d) = T (a + c, b + d − ac). We can then conclude that
T (a, b)−1 = T (−a, b) and, finally, that

T (a, b)−1T (c, d)−1T (a, b)T (c, d) = T (0, ac− ac) = τx,ac−ac.

Assume now that the characteristic of F is not equal to 2. Let a = 1 and let
c range over F. Then ac − ac varies over all of Φ. So in this case SU(V )⊥

contains Tx and therefore is perfect.

On the other hand, if the characteristic of F is 2, let a = 1. Then as c varies
over F, c + c varies over all of E = Φ. This proves that SU(V )′ contains
T|xx and we can conclude that SU(V )′ ⊂ Ω(V ). By an induction argument on
n = dim(V ), for n ≥ 3, we conclude that Ω(V ) ⊂ SU(V )′.

Suppose F = F9. By Theorem (11.27), SU(V ) = Ω(V ). Thus, Ω(V ) ⊂
SU(V )′ ⊂ SU(V ) = Ω(V ). We can therefore conclude that SU(V )′ = SU(V )
and SU(V ) is perfect.

Finally, assume n ≥ 4 and F = F4. By Theorem (11.29) we have SU(V ) =
Ω(V ) ⊂ SU(V )′ ⊂ SU(V ) and we can again conclude that SU(V ) is perfect.
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Remark 11.11 The three excluded cases really are truly exceptions: The
group SU2(F4) is isomorphic to SL2(F2), which is isomorphic to the sym-
metric group S3. The group SU2(F9) is isomorphic to SL2(F3), has order 24,
and is solvable. The group SU3(F4) has order 216 = 2333 and is solvable.

We now determine the structure of the center of SU(V ).

Theorem 11.31 Let (V, f) be an n-dimensional, non-degenerate, isotropic
unitary space. Then Z(U(V )) = {cIV |c ∈ Λ} and Z(SU(V )) = {λIV |c ∈ Λ
and λn = 1}.

Proof Let v be an isotropic vector and c ∈ Φ. Since Sτv,c = τv,cS, it follows
that S leaves Ker(τv,c − IV ) = v⊥ invariant. Consequently, S(v) ∈ Span(v),
that is, v is an eigenvector for S. Since v is arbitrary, for each isotropic
vector v there is a scalar λv such that S(v) = λvv. Now suppose w is also
an isotropic vector. If w is a multiple of v then λw = λv; so assume (v,w)
is linearly independent. If v ⊥ w then v +w is also isotropic. We then have
λvv + λww = S(v) + S(w) = S(v + w) = λv+w(v + w) from which we
conclude that λv = λv+w = λw. On the other hand, suppose f(v,w) 6= 0.
Since λw = λcw for any scalar, without loss of generality we may assume
that f(v,w) = 1. Let c ∈ Φ. Then cv + w is isotropic. Now λv(cv) + λww

= S(cv)+S(w) = S(cv+w) = λcv+w(cv+w) from which we again conclude
that λw = λv. Thus, there is an element λ ∈ F such that S(v) = λv for
every isotropic vector. Since every anisotropic vector is contained in some
hyperbolic plane, it follows that S(x) = λx for every vector x and S = λIV .
If x is anisotropic, then λλ = f(S(x), S(x)) = f(x,x). Since f(x,x) 6= 0 we
get λλ = 1.

We next prove that if X ∈ I1(V ) then SU(V )X = {T ∈ SU(V )|S(X) = X}
is transitive on Γ(X) and ∆(X) (the latter when the Witt index is at least
two).

Lemma 11.43 Assume (V, f) is an n-dimensional, non-degenerate isotropic
unitary space over the field F with n ≥ 3 and n ≥ 4 if F = F4. Then the
following hold:

i) If X,Y, Z ∈ I1(V ) and X 6⊥ Y,X 6⊥ Z, then there exists S ∈ SU(V ) such
that S(X) = X and S(Y ) = Z.

ii) Assume the Witt index of (V, f) is at least two. If X,Y, Z ∈ I1(V ), X ⊥ Y ,
and X ⊥ Z, then there exists S ∈ SU(V ) such that S(X) = X and S(Y ) = Z.
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Proof i) If F 6= F4 this was proved in Theorem (11.26). Suppose F = F4 so
that n ≥ 4. Now either X+Y +Z is non-degenerate or the radical of X+Y +Z
has dimension one, since X + Y is non-degenerate. In either case there exists
a non-degenerate subspace U of V containing X+Y +Z. Now the result holds
by Theorem (11.28).

ii. Since the Witt index is at least two, it follows that n ≥ 4. Let X = Span(x)
and let w be an isotropic vector such that f(x,w) = 1. SetW = Span(x,w)⊥.
Let Y ′ = (X + Y ) ∩w⊥ and Z ′ = (X + Z) ∩w⊥. Then Y ′, Z ′ ∈ I1(W ). By
Lemma (11.15), Ω(W ) = SU(W ) and there is an γ ∈ SU(W ) such that
γ(Y ′) = Z ′. Extend γ to an element of SU(V ) by defining γ|W⊥ = IW⊥ . We
may therefore assume that Y ⊂ X + Z = X + Z ′. Let Z ′ = Span(z) where
f(z,w) = 1. Then there are scalars a, b ∈ F such that Y = Span(ax+z), Z =
Span(bx + z). We show that there are operators γa, γb ∈ SU(V ) such that
γa(x) = x and γa(z) = ax+ z, γb(z) = bx+ z and then γbγ

−1
a is the desired

S. Since W is non-degenerate, there exists an isotropic vector u ∈ W such
that f(z,u) = 1. Let c ∈ F and choose any δ ∈ Φ. Set γc = τu,−δτ c

δ
x+u,δ.

Then

γc(z) = τu,−δτ c
δ
x+u,δ(z)

= τu,−δ(z + δf(z,
c

δ
x+ u)(

c

δ
x+ u)

= τu,−δ(z + δ(
c

δ + u
))

= τu,−δ(z + cx+ δu)

= z + cx+ δu− δf(z + cx+ δu,u)u

= z + cx+ δu− δu

= z + cx.

As an immediate consequence of part i) of Lemma (11.43) we have:

Corollary 11.19 Let (V, f) is an n-dimensional, non-degenerate unitary
space over the field F with Witt index one. Then SU(V ) is doubly transitive
on I1(V ). In particular, if the Witt index is one, then the action of SU(V ) on
I1(V ) is primitive.

Lemma 11.44 Assume (V, f) is an n-dimensional, non-degenerate unitary
space over the field F with Witt index of at least two. Then the following hold:

i) If X ∈ I1(V ) and Y ∈ ∆(X), then there exists W ∈ ∆(Y ) ∩ Γ(X).

ii) If X ∈ I1(V ) and Y ∈ Γ(X), then there exists W ∈ Γ(Y ) ∩∆(X).
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Proof i) Let U ∈ Γ(X) so that X + U is a hyperbolic plane. Since the Witt
index of (V, f) is at least two, X⊥ ∩ U⊥ is non-degenerate and isotropic. Let
Z ∈ I1(X

⊥∩U⊥). By part ii) of Lemma (11.43), there exists S ∈ SU(V ) such
that S(X) = X and S(Z) = Y . Set W = S(U). Then X 6⊥W and Y 6 perpW .

ii) Let X = Span(x) and Y = Span(y). Since X 6⊥ Y, U = X + Y is a
hyperbolic plane. Since the Witt index of (V, f) is at least two, U⊥ is isotropic.
Let Z = Span(z) be in U⊥. Then z+y is isotropic and f(x, z+y) = f(x,y) 6=
0. Thus, W = Span(z + y) ∈ Γ(X) ∩∆(Y ).

We can use part ii) of Lemma (11.43) and Lemma (11.44) to show that, in
general, the action of SU(V ) on I1(V ) is primitive.

Theorem 11.32 Assume (V, f) is an n-dimensional, non-degenerate unitary
space over the field F with Witt index at least two. Then SU(V ) is primitive
in its action on I1(V ).

Proof Let X,Y ∈ I1(V ) and let B be a subset of I1(V ) which contains X
and Y . Assume for any σ ∈ SU(V ) that σ(B) = B or σ(B) ∩ B = ∅. We
prove that B = I1(V ). Assume first that Y ∈ ∆(X) and let Z be in ∆(X). By
part ii) of Lemma (11.43) there is an S ∈ SU(V ) such that S(X) = X and
S(Y ) = Z. Then X ∈ S(B) so that S(B) = B. Then Z = S(Y ) ∈ S(B) = B.
Thus, ∆(X) is contained in B. Similarly, ∆(Y ) is contained in B. By part i)
Lemma (11.44), there is a W ∈ ∆(Y )∩Γ(X). But then by arguments similar
to the above, Γ(X) ⊂ B, and then B = I1(V ). If Y ∈ Γ(X), then a similar
argument yields B = I1(V ).

We can now prove our main theorem.

Theorem 11.33 Let (V, f) be an n-dimensional, non-degenerate isotropic
unitary space over the field F and assume that (n,F) is not one of
(2,F4), (2,F9) or (3,F4). Then PSU(V ) = SU(V )/Z(SU(V )) is a simple
group.

Proof It follows from Theorem (11.31) that the kernel of the action of
SU(V ) on I1(V ) is Z(SU(V )). We can then conclude that the action of
PSU(V ) = SU(V )/Z(SU(V )) on I1(V ) is faithful. By Theorem (11.19) and
Theorem (11.32), the action of PSU(V ) on I1(V ) is primitive. By Theorem
(11.30), SU(V ), consequently, PSU(V ) is a perfect group. Denote the image

of an element S of SU(V ) in PSU(V ) by Ŝ. For X = Span(x) ∈ I1(V )

let T̂x = {τ̂x,c|c ∈ Φ}. Then T̂x) is a normal Abelian subgroup of PSU(V )X

and the conjugates of T̂x generate PSU(V ). Therefore, by Iwasawa’s theorem
PSU(V ) is simple.
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Exercises

1. Let (V, f) be a non-degenerate isotropic unitary space and W a non-
degenerate isotropic subspace. Assume T is an operator of V , which leaves
both W and W⊥ invariant. Further, assume T restricted to W⊥ is the iden-
tity on W⊥ and W restricted to W is in Ω(W ). Then T ∈ Ω(V ).

2. Let (V, f) be a hyperbolic plane over F4. Then SU(V ) = Ω(V ) is transitive
on the six anisotropic vectors of V .

3. Let (V, f) be a non-degenerate unitary space over F4 of dimension n ≥ 3.
Let (u,v) be a hyperbolic pair. Then there exists a τ ∈ Ω(V ) such that
τ(u) = ωu and τ(v) = ωv.

4. Let (V, f) be a non-degenerate unitary space over F4 of dimension n ≥ 3.
Let u,v be isotropic vectors. Then there exists τ ∈ Ω(V ) such that τ(u) = v.

In Exercises 5–8 let (V, f) be a non-degenerate four-dimensional unitary space
over F4.

5. Prove that the cardinality of I1(V ) is 45.

6. Prove that each element of I1(V ) is contained in exactly three elements of
I2(V ).

7. Prove that each element of I2(V ) contains five elements of I1(V ).

8. Prove if X ∈ I1(V ), then the cardinality of ∆(X) is 12 and the cardinality
of Γ(X) is 32.

9. Let (V, f) be a non-degenerate four-dimensional unitary space over F4.
Let B = (x1,x2,y2,y1) be a basis of V such that f(x1,x2) = f(x1,y2) =
f(x2,y1) = f(y1,y2) = 0; f(x1,y1) = f(x2,y2) = 1. Prove that a vector
ax1 + bx2 + cy2 + dy1 is isotropic if and only if Tr(ad) + Tr(bc) = 0.

Let (V, f) be a non-degenerate unitary space of dimension four over F4. Set
P = L1(V ) \ I1(V ), that is, the anisotropic one-dimensional subspaces.

10. For X ∈ P show that there are 12 elements in L1(X
⊥) ∩ P .

11 If X,Y ∈ P and X ⊥ Y prove that |L1(X
⊥ ∩ Y ⊥) ∩ P| = 2 and if Z,W

are anisotropic one spaces in X⊥ ∩ Y ⊥, then Z ⊥W .

12. If X,Y ∈ P and X ⊥ Y let l(X,Y ) = {X,Y, Z,W} where Z and W are
the anisotropic one spaces in X⊥ ∩ Y ⊥. Show that there are 40 such sets.

13. Let l = {X1, X2, X3, X4} ⊂ P such that Xi ⊥ Xj for i 6= j (which
implies that Xi are distinct). Let Y ∈ P , Y /∈ l. Prove that there is a unique
i ∈ {1, 2, 3, 4} such that Xi ⊥ Y .
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This chapter is devoted to several additional topics in linear algebra and, more
specifically, the theory of matrices. In the first section we introduce the notion
of a matrix norm and show how such norms can be induced from norms on the
spaces Rn and Cn. The second section deals with the Moore–Penrose inverse
of a matrix (also called the pseudoinverse). Section three takes up the theory
of (real) non-negative matrices, that is, matrices all of whose entries are non-
negative, which has multiple applications. Section four, where we prove the
Gers̆gorin disc theorem, deals with the location of eigenvalues of a complex
matrix. Finally, in section five we give meaning to the notion of exponentiating
a real or complex matrix.
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12.1 Matrix Norms

In this section we define the notion of a matrix norm and give several examples.
We show how to induce a norm onMmn(F),F ∈ {R,C} from a pair of normed
spaces (Fm, ‖ · ‖) and (Fn, ‖ · ‖′).
What You Need to Know

Understanding the new material in this section depends on mastery of the
following concepts: real and complex inner product space, norm of a vector in
an inner product space, unit vector in an inner product space, the space Rn,
the space Cn, abstract norm on a real or complex vector space, linear transfor-
mation from a vector space V to a vector space W , the vector space L(V,W )
of linear transformations from V to W , the space Mmn(F) of m× n matrices
over a field F, operator on a vector space V , composition of transformations,
product of matrices, the algebra L(V, V ) of linear operators on V , the algebra
Mnn(F) of n× n matrices with entries in F, and the eigenvalues of a matrix.

We begin with the definition of a matrix norm.

Definition 12.1 Let F ∈ {R,C}. A vector norm ‖ · ‖ that is defined on all
the spaces Mmn(F) for any choice of m and n is a matrix norm if for any
pair of matrices A,B which can be multiplied we have

‖ AB ‖≤‖ A ‖ · ‖ B ‖ .

Definition 12.2 Let A be an m× n matrix. The Frobenius norm on A is
defined to be ‖ A ‖F= Trace(AtrA)

1
2 . If the entries of A are aij then

‖ A ‖F=




m∑

i=1

n∑

j=1

|aij |2



1
2

.

Remark 12.1 If we identify Mmn(F) with Fmn then the Frobenius norm on
Mnn(F) is the l2-norm.

Theorem 12.1 The Frobenius norm is a matrix norm.
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Proof For any pair of natural numbers we denote by ‖ · ‖F the Frobenius
norm on Mmn(F). We also denote by ‖ · ‖ the Euclidean norm on Fn. Let A
be an m× n matrix and B an n× p matrix. Let the rows of A be a1, . . . ,am

and the columns of B be b1, . . . , bp. Then the (i, j)-entry of AB is aibj and
by the definition we have

‖ AB ‖F=




m∑

i=1

p∑

j=1

|aibj |2



1
2

.

Assume that F = R. By the Cauchy–Schwartz inequality, Theorem (5.4), for
Rn with the Euclidean inner product we have |aibj |2 ≤‖ ai ‖2 · ‖ bj ‖2 .
Consequently,




n∑

i=1

n∑

j=1

|aibj |2



1
2

≤




n∑

i=1

n∑

j=1

‖ ai ‖2 · ‖ bj ‖2



1
2

=



(

n∑

i=1

‖ ai ‖2
)

·




n∑

j=1

‖ bj ‖2





1
2

.

The latter expression is less than or equal to
(
‖ A ‖2F · ‖ B ‖2F

) 1
2 which, in

turn, is equal to ‖ A ‖F · ‖ B ‖F .

On the other hand, suppose F = C. Then aibj = 〈ai, bj〉 where 〈v,w〉 is the
Euclidean inner product for Cn. By the Cauchy–Schwartz inequality, Theorem
(5.4),

|〈ai, bj〉|2 ≤‖ ai ‖2 · ‖ bj ‖2=‖ ai ‖2 · ‖ bj ‖2 .

Now we can complete the proof exactly as in the case that F = R.

Lemma 12.1 Let F ∈ {R,C}, V = Fn,W = Fm with norms ‖ ‖V and
‖ ‖W , respectively, and let A be an m × n matrix with entries in F. Then
there exists a non-negative real number M such that ‖ Ax ‖W≤M ‖ x ‖.

Proof Let B = (e1, . . . , en) be the standard basis of V . Set

m = max{‖ Aei ‖ |1 ≤ i ≤ n}.

Now let x =



x1
...
xn


 be an arbitrary vector in V . Note that the l1-norm on V
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and the norm ‖ · ‖ are equivalent by Theorem (5.29) and therefore there is a
constant C such that

n∑

i=1

|xi| ≤ C ‖ x ‖V .

Set M = mC. We claim that ‖ Ax ‖W≤ M ‖ x ‖V for every vector x ∈ X.
Thus,

‖ Ax ‖W = ‖
n∑

i=1

xiAei ‖W ≤
n∑

i=1

|xi|· ‖ Aei ‖W

by the triangle inequality. Since each ‖ Aei ‖W≤ m, we have

n∑

i=1

|xi|· ‖ Aei ‖W ≤ m

n∑

i=1

|xi| ≤ mC ‖ x ‖V =M ‖ x ‖V .

Remark 12.2 It is straightforward to extend Lemma (12.1) to the case where
(V, ‖ ‖V ) and (W, ‖ ‖W ) are finite dimensional normed spaces over the reals
or complexes and T : V →W is a linear transformation.

Corollary 12.1 Let F ∈ {R,C}, V = Fn, W = Fm and ‖ · ‖V , ‖ · ‖W be
norms on V and W , respectively. Let A ∈Mmn(F) and assume TA : V → W
is defined by TA(x) = Ax. Then TA is continuous.

Proof We leave this as an exercise.

Let F ∈ {R,C}, V = Fn, and W = Fm with norms ‖ · ‖V and ‖ · ‖W ,
respectively. We use Lemma (12.1) to define a norm on Mmn(F).

Definition 12.3 Let F ∈ {R,C}, V = Fn, and W = Fm with norms ‖ · ‖V
and ‖ · ‖W , respectively. Let A be an m × n matrix. The matrix norm
induced by ‖ ‖V and ‖ ‖W , denoted by ‖ · ‖V,W is given by

‖ A ‖V,W= sup
x 6=0V

‖ Ax ‖W
‖ x ‖V

.
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The expression “sup” in the definition is an abbreviation for supremum which,
for a set of reals is the least upper bound of the set. By Lemma (12.1) the set

{ ‖Ax‖W

‖x‖V
|x ∈ V,x 6= 0} is bounded above and, consequently, has a least upper

bound. Note that if x 6= 0V then

‖ Ax ‖W
‖ x ‖V

=‖ 1

‖ x ‖V
Ax ‖W=‖ A( x

‖ x ‖V
) ‖W .

Moreover, x
‖x‖ is a unit vector in V . Therefore we have the following alternative

expression for the operator norm:

Theorem 12.2 Let (V, ‖ · ‖V ), (W, ‖ · ‖W ) be as in Definition (12.3), respec-
tively, and let A be an m× n matrix. Then

‖ A ‖V,W= sup
‖v‖=1

‖ Av ‖W .

We have referred to ‖ ‖V,W as a norm, and we now demonstrate that this is
so.

Theorem 12.3 Let F ∈ {R,C}, V = Fn, and W = Fm with norms ‖ · ‖V
and ‖ · ‖W , respectively. Then ‖ · ‖V,W is a norm on Mmn(F).

Proof Let A be an m×n matrix. Clearly, ‖ A ‖V,W≥ 0. Suppose ‖ A ‖V,W=
0. Then Ax = 0W for every x and A = 0mn. This establishes the first prop-
erty.

Assume A ∈Mmn(R) and c ∈ F. Then

‖ cA ‖V,W = sup
‖v‖V =1

‖ (cA)(v) ‖W

= sup
‖v‖V =1

‖ c(Av) ‖W

= sup
‖v‖V =1

|c| ‖ Av ‖W

= |c| sup
‖v‖V =1

‖ Av ‖W

= |c| ‖ A ‖V,W .

Now assume that A,B ∈Mmn(F). Then
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‖ A+B ‖V,W = sup
‖v‖V =1

‖ (A+B)(v) ‖W

= sup
‖v‖V =1

‖ Av +Bv ‖W

≤ sup
‖v‖V =1

(‖ Av ‖W + ‖ Bv ‖W )

= sup
‖v‖V =1

‖ Av ‖W + sup
‖v‖V =1

‖ Bv ‖W

= ‖ A ‖V,W + ‖ B ‖V,W .

We next prove that operator norms are matrix norms.

Theorem 12.4 Let F ∈ {R,C}, U = Fn, V = Fm, and W = Fl with norms
‖ · ‖U , ‖ · ‖V , and ‖ · ‖W , respectively. Let A ∈ Mmn(F) and B ∈ Mlm(F).
Then

‖ BA ‖U,W≤‖ B ‖V,W ‖ A ‖U,V .

Proof Let u ∈ U = Fn,u 6= 0U . If Au = 0m then BAu = B0m = 0l. In
this case we have

0 =
‖ BAu ‖W
‖ u ‖U

≤‖ B ‖V,W · ‖ A ‖U,V .

Suppose Au 6= 0m. Then ‖ B(Au) ‖W≤‖ B ‖V,W‖ Au ‖V by the definition of
‖ B ‖V,W . By the definition of ‖ A ‖U,V we have

‖ Au ‖V ≤‖ A ‖U,V ‖ u ‖V .

Consequently,

‖ (BA)u ‖W≤‖ B ‖V,W · ‖ A ‖U,V · ‖ u ‖U

from which we conclude that ‖(BA)u‖W

‖u‖U
≤‖ B ‖V,W · ‖ A ‖U,W .

Since for every u 6= 0U ,
‖(BA)u‖W

‖u‖U
≤‖ B ‖V,W · ‖ A ‖U,W we can conclude

that ‖ BA ‖U,W ≤ ‖ B ‖V,W · ‖ A ‖U,V .

It is often the case when V = Fn,W = Fm to use the same norm in both when
inducing a matrix norm. When we equip both V andW with the lp-norm with
1 ≤ p ≤ ∞ we will denote the induced operator norm on Mmn(F) by ‖ ‖p,p.
The next result gives the values of a matrix in terms of its entries with respect
to the most common induced operator norms. But first we make a definition:
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Definition 12.4 Let A be a square complex matrix. The spectral radius of
A is the maximum of |λ| taken over all eigenvalues λ of A. This denoted by
ρ(A).

Theorem 12.5 Let A ∈Mmn(F) with entries aij . Then

i) ‖ A ‖1,1= max1≤i≤m{∑n
j=1 |aij |}.

ii) ‖ A ‖∞,∞= max1≤j≤n{
∑m

i=1 |aij |}.
iii) ‖ A ‖2,2= ρ(AtrA)

1
2 .

Proof i) First note that

Ax =




∑n
j=1 a1jxj

...∑n
j=1 amjxj




and therefore

‖ Ax ‖1 =

m∑

i=1

∣∣∣∣∣∣

n∑

j=1

aijxj

∣∣∣∣∣∣
≤

n∑

j=1

(
m∑

i=1

|aij |
)
|xj |. (12.1)

Consequently,

‖ Ax ‖1≤ max
1≤j≤n

{
m∑

i=1

|aij |
}

‖ x ‖1 . (12.2)

Thus,

‖ A ‖1,1 ≤ max
1≤i≤m

{
n∑

j=1

|aij |}.

To get the desired equality it suffices to demonstrate the existence of a unit
vector x with respect to the l1-norm such that we have equality in Equation
(12.1).

Let us suppose that the maximum of {∑n
i=1 |aij ||1 ≤ j ≤ n} occurs for j = 1.

For an arbitrary non-zero vector x =



x1
...
xn


 we have

‖ A ‖1,1≥
‖ Ax ‖1
‖ x ‖1

=

m∑

i=1

∣∣∣∣∣∣

n∑

j=1

aijxj .

∣∣∣∣∣∣
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Now take x = e1. Then we get

‖ A ‖1,1 ≥
m∑

i=1

|ai1| = max
1≤j≤n

{
m∑

i=1

|aij |
}
.

which gives us the desired equality. The proof is exactly the same if the maxi-
mum in Equation (12.2) occurs when j = k.

ii) Let x ∈ Fn be a non-zero vector and note that

∣∣∣∣∣∣

n∑

j=1

aijxj

∣∣∣∣∣∣
≤

n∑

j=1

|aij | · |xj | ≤
n∑

j=1

|aij · ‖ x ‖∞ .

Consequently, we can conclude that

‖ Ax ‖∞ =
m

max
i=1





∣∣∣∣∣∣

n∑

j=1

aijxj

∣∣∣∣∣∣



 ≤ m

max
i=1





n∑

j=1

|aij |



 ‖ x ‖∞ .

It therefore follows that

‖ A ‖∞,∞≤ m
max
i=1





n∑

j=1

|aij |



 .

To get equality we need only show that there exists a unit vector x with respect

to the l∞-norm such that ‖ Ax ‖∞= maxmi=1

{∑n
j=1 |aij |

}
‖ x ‖∞.

By way of illustration, assume maxmi=1

{∑n
j=1 |aij |

}
=
∑n

j=1 |a1j | (and is

positive). Set xj =
a1j

|a1j | if a1j 6= 0 and is 0 otherwise and set x =



x1
...
xn


.

Then ‖ x ‖∞= 1 and

‖ A ‖∞,∞ ≥‖ Ax ‖∞≥

∣∣∣∣∣∣

n∑

j=1

a1jxj

∣∣∣∣∣∣
=

n∑

j=1

|aij |2
|aij |

=
n∑

j=1

|aij | = max





n∑

j=1

|aij ||1 ≤ i ≤ n



 .

iii) Suppose first that A is a complex matrix. Let α1 > · · · > αt be the non-zero
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eigenvalues of A
tr
A (note the matrix A

tr
A is semi-positive and therefore its

eigenvalues are all non-negative real numbers). Set si =
√
αi for 1 ≤ i ≤ t

and si = 0 for t < i ≤ n. By the matrix version of the singular value theorem,
Corollary (6.5), there are unitary matrices Q and P such that A = QSP . Now
‖ A ‖2,2= sup‖x‖2=1 ‖ QSPx ‖2. Since Q is unitary, ‖ QSPx ‖2=‖ SPx ‖2.
On the other hand, ‖ Px ‖2=‖ x ‖2 and as x ranges over all vectors of norm
one so does Px. Therefore,

‖ A ‖2,2 = sup{‖ SPx| ‖ x ‖2= 1}
= sup{‖ y ‖2 | ‖ y ‖2= 1}.

Suppose now that x =



x1
...
xn


. Then Sx =




s1x1
...

stxt
0
...
0




and

‖ Sx ‖22 =

t∑

i=1

(sixi)
2

≤∑t
i=1(s1x1)

2 = s21
∑t

i=1 x
2
i

≤ s21
∑n

i=1 x
2
i = s21.

Thus, ‖ A ‖2,2≤
√
s21 = s1 = ρ(A

tr
A)

1
2 . On the other hand if x =




1
0
...
0


 then

‖ Sx ‖2= s1. Thus, ‖ A ‖2,2= s1 = ρ(A
tr
A)

1
2 .

We will conclude this section with a couple of significant results that illustrate
the power of these ideas and the utility of matrix and operator norms. First
a definition.

Definition 12.5 A norm ‖ ‖ on the space Mnn(C) is multiplicative if for
any two matrices A,B ∈Mn×n(C) we have ‖ AB ‖ ≤‖ A ‖ · ‖ B ‖ .

The following is elementary and we leave it as an exercise.

Lemma 12.2 Assume ‖ · ‖ is a multiplicative norm on Mnn(C). Then
‖ In ‖≥ 1.
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The next result is known as Banach’s lemma.

Theorem 12.6 Assume ‖ · ‖ is a multiplicative norm on Mnn(C). If A ∈
Mnn(C) and ‖ A ‖ < 1 then the following hold:

i) In −A is invertible;

ii) the sum
∑∞

j=0 A
j converges and is equal to (In −A)−1; and

iii) ‖ (In −A)−1 ‖ ≤ 1
1−‖A‖ .

Proof Let ǫ > 0. Set Sk =
∑k

j=0 A
j. Assume l > k. Then

‖ Sl − Sk ‖ =

∣∣∣∣∣∣

∣∣∣∣∣∣

l∑

j=k+1

Aj

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

l∑

j=k+1

‖ Aj ‖

l∑

j=k+1

‖ A ‖j≤
∞∑

j=k+1

‖ A ‖j=‖ A ‖k+1 (1− ‖ A ‖)−1.

Since ‖ A ‖< 1 we can find a natural number M such that if m > M then
‖ A ‖m (1− ‖ A ‖)−1 < ǫ. It follows that {Sk}∞k=1 is a Cauchy sequence in
Mnn(C). Since Mnn(C) is complete (every Cauchy sequence has a limit) there
is a matrix B such that limk→∞ Sk = B. Next, note that

(In −A)B − In = (In −A)(B − Sk) + (In −A)Sk − In.

Also note that (In −A)Sk − In = −Ak+1.
If we take norms, by the triangle inequality we have

‖ (In −A)B − In ‖ ≤ ‖ (In −A)(B − Sk) ‖ + ‖ (In −A)Sk − In ‖
≤ ‖ In −A ‖ · ‖ B − Sk ‖ + ‖ −Ak+1 ‖
≤ ‖ In −A ‖ · ‖ B − Sk ‖ + ‖ A ‖k+1 .

However, limk→∞ ‖ B − Sk ‖= 0 and limk→∞ ‖ A ‖k+1= 0 and therefore
(In −A)B = In and B = (In −A)−1.

Finally,
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‖ Sk ‖ = ‖ In +A+ · · ·+Ak ‖
≤ ‖ In ‖ + ‖ A ‖ + · · ·+ ‖ Ak ‖
≤ ‖ In ‖ + ‖ A ‖ + . . . ‖ A ‖k

≤
∞∑

j=0

‖ A ‖j

=
1

1− ‖ A ‖ .

Taking limits we get

‖ B ‖ = ‖ lim
k→∞

Sk ‖ = lim
k→∞

‖ Sk ‖ ≤ 1

1− ‖ A ‖ .

For more on this topic a good source is [12]).

Exercises

1. Let F ∈ {R,C}. Assume ‖ · ‖′ is a matrix norm induced on Mnn(F) by a
norm on Fn. Prove that ‖ In ‖′= 1.

2. Let ‖ ‖F be the Frobenius norm on Mnn(F). Prove that ‖ In ‖F=
√
n and

conclude that the Frobenius norm is not induced by any norm on Fn.

In Exercises 3 and 4 compute ‖ A ‖F , ‖ A ‖1,1, ‖ A ‖∞,∞, and ‖ A ‖2,2 for the
given matrix A.

3. A =

(
12 2
7 0

)

4. A =



3 1 1
1 3 1
1 1 3




5. Prove Corollary (12.1).

6. Let F ∈ {R,C} and assume ‖ · ‖ is a matrix norm on Mnn(F) so that
‖ AB ‖ ≤ ‖ A ‖ · ‖ B ‖. Prove that ‖ In ‖≥ 1.
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12.2 The Moore–Penrose Inverse of a Matrix

This section is devoted to the introduction and development of the
Moore–Penrose inverse, also referred to as the pseudoinverse of a matrix. We
will show that every matrix has a unique pseudoinverse and give a method
for computing it. We will also obtain a criterion for a linear system to have a
solution in terms of the pseudoinverse of the coefficient matrix of the system.

What You Need to Know

Understanding the new material in this section depends on mastery of the
following concepts: Column space of a matrix, rank of a matrix, null space of
a matrix, eigenvalue of a matrix, eigenvector of a matrix, linearly independent
sequence of vectors, basis of a vector space, coordinate vector of a vector with
respect to a basis, dimension of a vector space, consistent linear system of
equations, and the coefficient matrix of a linear system.

We begin with a definition.

Definition 12.6 Let A be an m×n matrix with rank r. A full rank factor-
ization of A is an expression A = BC where B is an m× r matrix of rank r
and C is an r × n matrix of rank r.

In our first result we prove that every matrix has a full rank factorization.

Theorem 12.7 Let A be an m × n matrix with entries in the field F and
assume the rank of A is r. Then there exists an m × r matrix B with rank r
and an r × n matrix C with rank r such that A = BC.

Proof Denote by a1, . . . ,an the columns of A and set V = col(A). Let B =
(v1, . . . ,vr) be any basis of the column space of A and let B be the matrix
whose columns are the vectors of B. Then B is an m × r matrix and the
columns of B are linearly independent. Therefore the rank of B is r. Now let
1 ≤ j ≤ n and denote by cj the coordinate vector of aj with respect to B and
let C be the matrix whose columns are the vectors c1, . . . , cn. Then C is an
r × n matrix also of rank r. We claim that BC = A. Toward that objective,

let cj =



c1j
...
crj


. By the definition of matrix multiplication we have

BC = B(c1 . . . cn) = (Bc1 . . . Bcn).

However,
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Bcj = (v1 . . .vr)



c1j
...
crj


 = c1jv1 + · · ·+ crjvr = aj.

In our next result we show that though a full rank factorization of a matrix is
not unique, for a fixed left factor B there is a unique matrix C which completes
it, that is, such that A = BC is a full rank factorization.

Lemma 12.3 Let A be an m × n matrix with rank r with entries in a field
F. Assume B is an m× r matrix with rank r and that A = BC = BC′. Then
C = C′.

Proof Note that for any two matrices X and Y compatible for multiplication,
that every column of XY is a linear combination of the columns of X and
therefore col(XY ) is contained in col(X). Therefore in the present situation
we have that col(A) is contained in col(B). However, since rank(A) = r =
rank(B), we have equality and, furthermore, the columns of B are a basis of
col(A). Let the sequence of columns of B be B = (b1, . . . , br) and the sequence

of columns of A be (a1, . . . ,an). Let cj =



c1j
...
crj


 be the jth column of C.

Then

c1jb1 + · · ·+ crjbr = aj.

It follows that cj is the coordinate vector of aj with respect to B, which implies
that C is unique.

We can now show how any two full factorizations of a matrix are related:

Theorem 12.8 Let A be an m× n matrix with rank r and entries in a field
F. Let A = BC be a full rank factorization of A. Assume D is an m×r matrix
with rank r and E is an r × n matrix with rank r. Then A = DE if and only
if there is an invertible r × r matrix Q such that D = BQ,E = Q−1C.

Proof If D = BQ and E = Q−1C for some invertible r×r matrix Q then D
and E have rank r and DE = (BQ)(Q−1C) = B(QQ−1)C = BIrC = BC =
A. It remains to prove the converse.

We noted at the beginning of the proof of Lemma (12.3) that col(A) is con-
tained in col(B) and col(D). Since rank(A) = r = rank(B) = rank(D),
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it follows that we have the equality col(A) = col(B) = col(D). Moreover, if
B = (b1, . . . , br) is the sequence of columns of B and D = (d1, . . . ,dr) is the
sequence of columns of D then B and D are both bases of col(A). Let T de-
note the identity operator on col(A) and set Q = MT (D,B) (that is, the jth

column of Q is the coordinate vector of dj with respect to B. We then have
BQ = D. Consequently, A = BC = DE = (BQ)E = B(QE). By Lemma
(12.3), C = QE from which we conclude that E = Q−1C as required.

Remark 12.3 If A is an m×n matrix of rank r over a finite field Fq then the
number of full rank factorization is equal to the number of bases in Fr

q which

is |GLr(Fq)| = q(
r
2)(qr − 1) . . . (q − 1). If F is an infinite field then there are

infinitely many full rank factorizations.

We now define the pseudoinverse of a complex matrix A.

Definition 12.7 Let A be an m× n matrix with entries in C. A pseudoin-
verse, also referred to as a Moore–Penrose inverse of A, is an n × m
matrix X which satisfies the following four matrix equations:

(PI1) AXA = A
(PI2) XAX = X
(PI3) (AX)∗ = AX
(PI4) (XA)∗ = XA.

The four equations in the definition are called the Moore–Penrose equa-
tions.

We remark that for a complex matrix B,B is the matrix obtained from B by
taking the complex conjugate of each entry and B∗ = Btr is the adjoint of B.

In our next result we prove that if a matrix A has a pseudoinverse, then it is
unique.

Theorem 12.9 Let A be an m×n matrix with complex coefficients. If A has
a pseudoinverse then it is unique.

Proof Assume X,Y ∈ Mn×m(C) are both pseudoinverses of A so that
(PI1)–(PI4) hold for both X and Y . We then have

X = X(AX) = X(AX)∗ = XX∗A∗ = XX∗(AY A)∗ =

XX∗A∗(AY )∗ = X(AX)∗(Y A)∗ = X(AX)(AY ) =

XAY = X(AY A)Y = (XA)∗(Y A)∗Y = A∗X∗A∗Y ∗Y =

(AXA)∗Y ∗Y = A∗Y ∗Y = (Y A)∗Y = Y AY = Y.



Additional Topics in Linear Algebra 475

Let A be an m× n complex matrix. If A has a pseudoinverse we will denote
it by A† . The following are a few examples of pseudoinverses. The proofs are
left to the exercises.

Example 12.1 Assume A is an invertible n× n matrix. Then A† = A−1.

Example 12.2 Let U be a subspace of Cn and let P be the matrix of the
orthogonal projection onto U (with respect to the standard orthonormal basis).
Then P is self-adjoint and satisfies P 2 = P . In this case, P † = P .

Example 12.3 Let D = diag{d1, . . . , dr, 0, . . . , 0} be an n× n complex diag-
onal matrix with di 6= 0 for 1 ≤ i ≤ r. Then D† = diag{ 1

d1
, . . . , 1

dr
, 0 . . . , 0}.

Example 12.4 Let v =



a1
...
an


 be a non-zero vector in Cn (so that v is an

n× 1 matrix). Then

v† =
1

‖ v ‖2 (a1 . . . an).

In our next result we show the existence of the pseudoinverse in two special
cases, which will lead to existence in general.

Theorem 12.10 i) Assume B is an m× r complex matrix with rank r. Then
B† = (B∗B)−1B∗.

ii) Assume C is an r×n complex matrix with rank r. Then C† = C∗(CC∗)−1.

Remark 12.4 Multiplication of vectors in Cr by B gives an injective trans-
formation from the inner product space Cr to Cm. It then follows that the
operator B∗B : Cr → Cr is injective (and positive) and hence invertible.
Similarly, CC∗ is invertible.

Proof i) We prove each of the Moore–Penrose equations is satisfied:

(PI1) B[(B∗B)−1B∗]B = B(B ∗B)−1(B∗B) = BIr = B.

(PI2) [(B∗B)−1B∗]B[(B∗B)−1B∗] = [(B∗B)−1(B∗B)][(B∗B)−1B∗] =
Ir[(B

∗B)−1B∗] = (B∗B)−1B∗.
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(PI3) Note that B∗B is self-adjoint and therefore (B∗B)−1 is self-adjoint. We
therefore have

{B[(B∗B)−1B∗]}∗ = (B∗)∗(B∗B)−1B∗ = B(B∗B)−1B∗

as required.

(PI4) Finally, [(B∗B)−1B∗]B = (B∗B)−1(B∗B) = Ir. Consequently,
{[(B∗B)−1B∗]B}∗ = I∗r = Ir = [(B∗B)−1B∗]B.

ii) This is left as an exercise.

Theorem 12.11 Let A be an m × n complex matrix of rank r. As-
sume A = BC is a full rank factorization of A. Set A♯ = C†B† =
[C∗(CC∗)−1][(B∗B)−1)B∗]. Then A♯ = A† . Moreover, AA† = BB† and
A†A = C†C for any full rank factorization A = BC.

Proof We prove that the four Moore–Penrose equations are satisfied: Note
that B†B = Ir = CC† .

(PI1) AA♯A = AC†B†A = AC†B†BC = AC†C = BCCC = BC = A.

(PI2) A♯AA♯ = (C†B†)(BC)(C†B†) = C†(B†B)(CC†)B† = C†IrIrB† =
C†B† = A♯.

(PI3) AA♯ = BC(C†B†) = B(CC†)B† = BB† and (BB†)∗ = BB†.

(PI4) A♯A = (C†B†)(BC) = C†(B†B)C = C†C and (C†C)∗ = C†C.

Remark 12.5 Let A be an m×n complex matrix with rank r. It follows from
the Moore–Penrose equations and the uniqueness of the pseudoinverse that
(A†)† = A.

Let A be anm×nmatrix with rank r. In the next result we show that when we
view AA† as an operator on the space Cm equipped with the standard inner
product via matrix multiplication, then AA† is the (orthogonal) projection
onto the column space of A.

Theorem 12.12 Let A be an m×n complex matrix with rank r. View A as a
linear transformation from Cn to Cm via matrix multiplication on the left. Let
〈 , 〉n be the inner product defined on Cn by 〈v,w〉n = vtrw for v,w ∈ Cn

with 〈 , 〉m defined similarly. Set U = col(A), the column space of A, and
P = AA† , an operator on Cm. Then the following hold:

i) P is Hermitian matrix.
ii) For u ∈ U, Pu = u.
iii) If w ∈ U⊥ then Pw = 0m.

Consequently, P is the orthogonal projection onto U .
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Proof i) This follows from (PI3).

ii) Let a1, . . . ,an be the columns of A. Then PA = P (a1 . . .an) =
(Pa1 . . . Pan). By (PI1) we have PA = A and therefore for each j, Paj = aj.
Consequently, if u is a linear combination of (a1, . . . ,an), then Pu = u.

iii) Since P = AA†, it follows that rank(P ) ≤ rank(A) = r. However, as
shown in ii) the column space of P contains the column space of A and there-
fore rank(P ) = r and we have the equality col(P ) = col(A). Since P is self-
adjoint, we have ker(P ) = range(P )⊥ = U⊥.

Remark 12.6 Let A be an m × n matrix with rank r. Note that in light of
Remark (12.5) it follows that A†A is the orthogonal projection of Cn onto
col(A† ).

The following can be deduced from Theorem (12.12) and Remark (12.6).

Corollary 12.2 Let A be an m×n complex matrix. Set P = AA† ∈Mmm(C)
and Q = A†A ∈Mnn(C). Then the following hold:

i) P 2 = P = P ∗.
ii) (Im − P )2 = Im − P = (Im − P )∗.
iii) (Im − P )P = 0m×m.
iv) Q2 = Q = Q∗.
v)(In −Q)2 = In −Q = (In −Q)∗.
vi) (In −Q)Q = 0n×n.

Proof The first three all follow from Theorem (12.12). The subsequent three
follow from the fact that (A†)† = A, Theorem (12.12), and the first three
applied to A†.

The next result indicates how the pseudoinverse of a matrix interacts with its
adjoint.

Theorem 12.13 Let A be an m×n complex matrix. Then the following hold:

i) (A∗)† = (A† )∗.
ii) (A∗A)† = A† (A∗)† .
iii) A∗ = A∗(AA† ) = (A† A)A∗.
iv) A† = (A∗A)† A∗ = A∗(AA∗)† .

Proof These are left as exercises.
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In our next result we make use of the pseudoinverse of a matrix to determine
its null space.

Theorem 12.14 Let A be anm×n complex matrix with rank r. Set Q = A†A.
Then the null space of A is the column space of In −Q.

Proof First note that A(In −Q) = A−AQ = A−AA† A = A−A = 0m×n.
Consequently, the column space of In − Q is contained in the null space of
A. On the other hand, it follows from Remark (12.6) that Q is an orthogonal
projection on Cn and rank(Q) = r. Then rank(In −Q) = n− r. By Theorem
(2.9) it follows that the nullity of A is n − r. Since col(In − Q) ⊂ null(A)
and dim(col(In −Q)) = n− r = dim(null(A)) we get the equality null(A) =
col(In −Q).

In our last result we get a criterion for a vector to be in the column space of
a matrix in terms of the pseudoinverse and use this to describe the solutions
to a consistent linear system.

Theorem 12.15 Let A be an m× n complex matrix and b ∈ Cm. Then b ∈
col(A) if and only if AA†b = b. Moreover, if b ∈ col(A) and x ∈ Cn satisfies
Ax = b, then there exists a vector y ∈ Cn such that x = A†b+ (In −A†A)y.

Proof Assume AA†b = b. Setting x = A†b we get Ax = b and b ∈ col(A).
On the other hand, suppose b ∈ col(A). Then there is an x ∈ Cn such
that Ax = b. Then AA†b = (AA†)(Ax) = (AA†A)x. By the first of the
Moore–Penrose equations, AA†A = A and therefore AA†b = Ax = b.

Now suppose Ax = b. Then x − A†b ∈ null(A). By Theorem (12.14),
null(A) = col(In − A†A) and there is a vector y ∈ Cn such that x − A†b =
(In −A†A)y.

We will make use of the pseudoinverse of a matrix when we develop the method
of least squares.

For more on the topics introduced in this section as well as extensions to other
generalizations of the inverse of a matrix, see ([4]) and ([16]).

Exercises

1. Assume P is a Hermitian matrix and µP (x) = x2 − x. Prove that P † = P .

2. Assume D = diag{d1, . . . , dr, 0, . . . , 0} is a diagonal matrix of
rank r with non-zero diagonal entries d1, . . . , dr. Prove that D† =
diag{ 1

d1
, . . . , 1

dr
, 0, . . . , 0}.
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3. Assume v =



a1
...
an


 is a non-zero vector in Cn. Prove that v† =

1
‖v‖2 (a1, . . . , an).

4. Assume A is an invertible n× n matrix. Prove that A† = A−1.

5. Prove part ii) of Theorem (12.10).

In 6 and 7 below let A be an m× n complex matrix. Set P = AA† .

6. Prove algebraically, that P 2 = P = P ∗.

7. Prove algebraically that (Im − P )2 = Im − P = (Im − P )∗.

In Exercises 8–11 assume that A is an m× n complex matrix.

8. Prove that (A∗)† = (A† )∗.

9. (A∗A)† = A† (A∗)† .

10. A∗ = A∗(AA† ) = (A† A)A∗.

11. A† = (A∗A)† A∗ = A∗(AA∗)† .

12. Assume A is a normal matrix (AA∗ = A∗A). Prove AA† = A†A.

13. Assume A is a normal matrix and n is a natural number. Prove that
(An)† = (A†)n.

14. Let A be an m × n complex matrix and λ 6= 0 a complex number. Prove
that (λA)† = 1

λA
†.

15. Let A be a complex m × n matrix. Prove that A† = A∗ if an only if
(A∗A)2 = A∗A.
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12.3 Nonnegative Matrices

In this section we study the properties of real matrices, all of whose entries
are non-negative. These matrices play an important role in many applications
such as Markov chains, text retrieval, and search engine optimization.

What You Need to Know

Understanding the new material in this section depends on a mastery of the
following concepts: product of a matrix and a vector, product of two matrices,
eigenvalue of a square matrix, eigenvector of a square matrix, characteristic
polynomial of a square matrix, division algorithm of polynomials, the Eu-
clidean inner product on Rn, the l1 norm on Rn, range of a function, continu-
ity of a function between normed spaces, convexity of a subset of Rn, a subset
of Rn is compact, and the Brouwer fixed point theorem. The latter material
can be found in Appendix A.

We begin with several definitions.

Definition 12.8 A matrix A ∈Mmn(R) is nonnegative if every entry of A
is nonnegative and we write A ≥ 0. The matrix A is said to be positive, and
we write A > 0, if every entry is positive. Note that this applies to the case
where n = 1 so we can talk about nonnegative and positive vectors in Rn.

Definition 12.9 Let A =



a11 . . . a1n
... . . .

...
am1 . . . amn


 be a complex matrix. We will

denote by |A| the nonnegative matrix whose (i, j) term is |aij |. Note that this
applies to the case that n = 1, that is, to vectors in Cn.

Definition 12.10 A nonnegative square matrix A is irreducible if for ev-
ery pair (i, j) there is a natural number k such that the (i, j)-entry of Ak is
positive. A nonnegative square matrix which is not irreducible is said to be
reducible.

Let ei denote the ith standard basis vector of Rn, that is, the vector all of
whose entries are zero except the ith, which is one. Further, let 〈 , 〉 be the
Euclidean inner product on Rn so that 〈ei, ej〉 is zero unless i = j, in which
case it is 1. The following gives a characterization of irreducibility in terms of
the inner product 〈 , 〉.



Additional Topics in Linear Algebra 481

Lemma 12.4 Let A be an n×n nonnegative matrix. Then A is irreducible if
for every pair natural numbers i, j such that 1 ≤ i, j ≤ n there exists a natural
number k such that 〈Akej , ei〉 > 0.

Proof This follows immediately since the (i, j)-entry of Ak is 〈Akej , ei〉.

Example 12.5 Clearly, if A is a nonnegative square matrix and for some
natural number k,Ak is positive then A is irreducible. On the other hand, if

A =

(
0 1
1 0

)
then A is irreducible but Ak is never positive.

Example 12.6 The matrix A =

(
1 1
0 1

)
is reducible.

Because of their importance we give a name to nonnegative matrices A such
that Ak > 0 for some natural number k.

Definition 12.11 Let A be an n × n nonnegative matrix. A is said to be
primitive if Ak is positive for some natural number k.

The next result follows from the triangle inequality.

Lemma 12.5 Let A ∈Mlm(C), B ∈Mmn(C). Then |AB| ≤ |A||B|.

Proof We first prove the result for n = 1, that is, where B = x ∈ Cm.

Let x =



x1
...
xm


 and A =



a11 . . . a1m
... . . .

...
al1 . . . alm


. Then the ith entry of Ax is

∑m
j=1 xjaij so that the ith entry of |Ax| is |∑m

j=1 xjaij | which by the triangle

inequality is less than or equal to
∑m

j=1 |xjaij | =
∑m

j=1 |xj ||aij |, which is the

ith entry of |A||x|.
Now suppose B has columns b1, . . . , bn. Then the jth column of AB is Abj.
Whence the jth column of |AB| is |Abj |. By what we have shown, |Abj | ≤
|A||bj |, which is the jth column of |A||B|.

The following characterizes nonnegative and positive matrices:
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Theorem 12.16 Let A ∈Mmn(R). Then A ≥ 0 if and only if Ax ≥ 0 for all
x ≥ 0 in Rn. Also, A > 0 if and only if Ax > 0 for all x ≥ 0,x 6= 0n.

Proof Clearly, if A ≥ 0 and x ≥ 0 then Ax ≥ 0. Assume conversely that
Ax ≥ 0 for every x ≥ 0. Then, in particular, Aej ≥ 0. However, Aej is the
jth column of A. Consequently, all the entries in A are nonnegative.

Now assume A > 0 and x ≥ 0,x 6= 0n. Then there exists i such that xi 6= 0.
Then the 1st entry of Ax is greater than or equal to xia1i > 0.

The following is a fundamental result:

Theorem 12.17 Assume A ∈ Mnn(R) is nonnegative and irreducible. Then
(In +A)n−1 > 0.

Proof Suppose to the contrary that there exists i, j such that the (i, j)-entry
of (In +A)n−1 is zero. Since In and A commute, we have

(In +A)n−1 =

n−1∑

k=0

(
n− 1

k

)
Ak.

The (i, j)-entry of (In +A)n−1 is

〈
n−1∑

k=0

Akej , ei

〉
=

n−1∑

k=0

(
n− 1

k

)
〈Akej , ei〉 = 0.

Since 〈Akej , ei〉 ≥ 0 it follows for 0 ≤ k ≤ n − 1 that 〈Akej , ei〉 = 0.
This implies for every polynomial f(x) of degree less than or equal n − 1
that 〈f(A)ej , ei〉 = 0. Now let g(x) be an arbitrary polynomial. We claim that
〈g(A)ej , ei〉 = 0. Let χA(x) be the characteristic polynomial of A. Using the di-
vision algorithm write g(x) = q(x)χA(x)+r(x) where r(x) = 0 or deg(r(x)) ≤
n−1. Then g(A) = r(A). If r(x) = 0 then clearly 〈r(A)ej , ei〉 = 0. So assume
r(x) 6= 0 so that deg(r(x)) < n. Then 〈g(A)ej , ei〉 = 〈r(A)ej , ei〉 = 0 by
what we have shown. In particular, for every natural number k, 〈Akej , ei〉 = 0
which contradicts the assumption that A is irreducible.

We now turn our attention to results about eigenvalues of a square nonnegative
matrix. The following result, a corollary of Theorem (12.17), will be used in
the proof of the strong version of the Perron–Frobenius theorem.

Corollary 12.3 Assume A is an irreducible nonnegative matrix and x ≥ 0
is an eigenvector of A. Then x > 0.
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Proof Assume x ≥ 0 and Ax = γx. Since A is irreducible and nonnegative,
Ax 6= 0n and therefore γ > 0. Then x is an eigenvector of In + A with
eigenvalue 1 + γ and an eigenvector of (In + A)n−1 with eigenvalue (1 +
γ)n−1. Thus, x is an eigenvector of 1

(1+γ)n−1 (In + A)n−1 with eigenvalue 1.

By Theorem (12.17), the matrix (In+A)
n−1 is a positive matrix. Since x ≥ 0

and x 6= 0n, it follows that (In + A)n−1x is a positive vector, hence x is a
positive vector.

We now prove the weak version of the Perron–Frobenius theorem. It requires
some knowledge of analysis, in particular, the notion of continuity, convexity,
compactness, as well as Brouwer’s fixed point theorem. We refer the reader
not familiar with these concepts and results to Appendix A.

Theorem 12.18 Let A ∈ Mnn(R) be a nonnegative matrix. Then ρ(A), the
spectral radius of A, is an eigenvalue of A and has a nonnegative eigenvector.

Proof Let λ be an eigenvalue with |λ| = ρ(A) and let v =



v1
...
vn


 be an

eigenvector with eigenvalue λ such that ‖ v ‖1=
∑n

i=1 |vi| = 1. We then have
ρ(A)|v| = |λv| = |Av| ≤ A|v|.

Let C consist of all those x =



x1
...
xn


 ∈ Rn such that x ≥ 0,

∑n
i=1 xi = 1, and

Ax ≥ ρ(A)x. Since v ∈ C, in particular, C is non-empty. It is also closed and
convex, that is, for any x,y ∈ C and real number t, 0 ≤ t ≤ 1, tx+(1−t)y ∈ C.

Moreover, C is bounded since for x =



x1
...
xn


 ∈ C, 0 ≤ xi ≤ 1. Thus, C is a

compact subset of Rn.

Suppose first that x ∈ C ∩ null(A). Then Ax = 0n. Since Ax ≥ ρ(A)x it
follows that ρ(A)x ≤ 0 from which we conclude that ρ(A) = 0 and A is the
zero matrix. We may therefore assume for x ∈ C that Ax 6= 0n. Define a map
f : C → Rn by

f(x) =
1

‖ Ax ‖1
Ax.

We claim that Range(f) ⊂ C. First of all, since ‖ Ax ‖1> 0, A is nonnegative,
and x is nonnegative, it follows that f(x) ≥ 0. Also, ‖ f(x) ‖1= 1. Moreover,



484 Advanced Linear Algebra

Af(x) =
1

‖ Ax ‖1
A(Ax) ≥ 1

‖ Ax ‖1
A[ρ(A)x] = ρ(A)f(x).

Thus, f(C) ⊂ C as claimed. Note that f is a continuous function. Since C
is convex, closed, and bounded, we can apply Brouwer’s fixed point theorem,
Theorem (A.5), to obtain a vector x ∈ C such that f(x) = x. Since x ∈ C,x
is a nonnegative vector. By the definition of f we have Ax =‖ Ax ‖1 x so
that x is an eigenvector of A with eigenvalue γ =‖ Ax ‖1. Since x ∈ C we
have γx = Ax ≥ ρ(A)x. Consequently, γ ≥ ρ(A). Since ρ(A) ≥ |γ| = γ we
get the equality ρ(A) = γ, which completes the proof.

Our next result is the strong version of the Perron–Frobenius theorem. With
the additional hypothesis that A is irreducible we can prove that the algebraic
multiplicity of ρ(A) is one, among other conclusions.

Theorem 12.19 Let A ∈Mnn(R) be nonnegative and irreducible. Then ρ(A)
is a simple eigenvalue for A and among its eigenvectors (all multiples of one
another) there is a positive vector.

Proof For a nonnegative real number r, let Cr consist of those vectors x =

x1
...
xn


 in Rn such that x ≥ 0, ‖ x ‖1=

∑n
i=1 |xi| = 1, and Ax ≥ rx.

Each Cr is a convex, closed, and bounded (hence compact) subset of Rn. Sup-
pose γ is an eigenvalue of A with associated eigenvector x such that ‖ x ‖1= 1.
Then A|x| ≥ |Ax| = |γx| = |γ||x|. We can therefore conclude that |x| ∈ C|γ|.
It follows from Theorem (12.18) that Cρ(A) is nonempty. On the other hand,
suppose r is a positive real number and x ∈ Cr. Then

r = r ‖ x ‖1 ≤ ‖ Ax ‖1 ≤ ‖ A ‖1‖ x ‖1 = ‖ A ‖1 .

Consequently, r ≤ ‖ A ‖1. Clearly, for s < r, Cr ⊂ Cs. Moreover, if 0 < r ≤
‖ A ‖1 then

Cr =
⋂

0≤s<r

Cs.

Let Λ be the least upper bound of {r|Cr 6= ∅}. Since Cρ(A) 6= ∅, ρ(A) ≤ Λ and
therefore ρ(A) ≤ Λ ≤‖ A ‖1. We remark that since CΛ is an intersection of
a totally ordered family of nonempty compact sets, CΛ is nonempty. It is our
immediate goal to prove that Λ 6= 0 and if x ∈ CΛ then x is an eigenvector
with eigenvalue Λ.
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Suppose to the contrary that Λ = 0. Let x ∈ CΛ. Since A is irreducible and
nonnegative and x ≥ 0 it follows that Ax 6= 0n. Set y = (In +A)n−1x. Since
x ≥ 0,x 6= 0n, and (In + A)n−1 is positive by Theorem (12.17) it follows
that y > 0. Also, Ay = A(In + A)n−1x = (In + A)n−1Ax is positive. Write

y =



y1
...
yn


 and Ay =



y′1
...
y′n


. Let s be the minimum of

y′
i

yi
. Clearly s > 0.

We have Ay ≥ sy and therefore 1
‖y‖1

y ∈ Cs which contradicts the assumption

that Λ = 0.

Now suppose Λ > 0,x ∈ CΛ but Ax 6= Λx. Since x ∈ CΛ, Ax ≥ Λx. Since
Ax 6= Λx, Ax−Λx ≥ 0 and Ax−Λx 6= 0n. Set y = (In+A)

n−1x. As we have
seen, y > 0. Similarly, Ay−Λy = (In +A)

n−1(Ax−Λx) is a positive vector.

Write y =



y1
...
yn


 and Ay =



y′1
...
y′n


. Let s be the minimum of

y′
i

yi
. Clearly

s > 0. We have Ay ≥ sy and therefore 1
‖y‖1

y ∈ Cs. However, Ay − sy ≥ 0

but is not positive and therefore s > Λ, which contradicts the assumption that
Λ = sup{r|Cr 6= ∅}. This proves that Ax = Λx.

As stated above, since CΛ 6= ∅ we have ρ(A) ≤ Λ. On the other hand, Λ =
|Λ| ≤ ρ(A) so we may conclude that Λ = ρ(A). Thus, ρ(A) is an eigenvalue
of A associated to the vector x. By Corollary (12.3), x is a positive vector. It
remains to show that the algebraic multiplicity of ρ(A) is one.

We first prove that the geometric multiplicity of ρ(A) is one. Suppose to the
contrary that y is an eigenvector for ρ(A) and y is not a multiple of x. Suppose
y ≥ 0. Then by Corollary (12.3), we must have y > 0. We will get a contradic-

tion. Let x =



x1
...
xn


 and y =



y1
...
yn


. Let s be the minimum of { yi

xi
|1 ≤ i ≤ n}

and assume s =
yj

xj
. Then the jth component of −sx+ y is zero and all other

components are nonnegative. Moreover, since y 6= sx,−sx + y 6= 0n. Thus,
−sx + y is nonnegative, but not positive and an eigenvector for ρ(A) which
contradicts Corollary (12.3). Consequently, we can assume that some compo-
nent of y is negative. Let t be the minimum of { yi

xi
|1 ≤ i ≤ n} and assume

t =
yj

xj
. Then the jth component of −tx + y is zero and every other compo-

nent is nonnegative and we again have a contradiction. Thus, the geometric
multiplicity of ρ(A) is one.

Suppose there exists a nonnegative vector y such that Ay > ρ(A)y. Let Ay =

z1
...
zn


, s be the minimum of yi

zi
, and let j be an index such that s = zi

yi
. It
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then follows that s > ρ(A) and Ay ≥ sy. Normalizing y we get a vector y′ in
Cs which contradicts the assumption that ρ(A) = Λ is the sup of {r | Cr 6= ∅}.
Suppose now that the algebraic multiplicity of ρ(A) is greater than one. Then
there exists a vector y such that µy(x) = (x − ρ(A))2. Since (A − ρ(A)In)y
is a eigenvector, we can assume that Ay − ρ(A)y = x. As shown above, it

cannot be the case that y ≥ 0. Let y =



y1
...
yn


. Then some yi < 0. Let m be

the minimum of { yi

xi
|1 ≤ i ≤ n} and assume that m =

yj

xj
. Set y′ = −mx+y.

Then y′ ≥ 0 and (A− ρ(A)In)y
′ = x and we have a final contradiction.

Remark 12.7 If A is an n× n nonnegative and irreducible matrix then Atr

is a nonnegative and irreducible matrix.

Definition 12.12 Let A be an n× n nonnegative and irreducible matrix and
set ρ = ρ(A). A positive vector x with ‖ x ‖1= 1 such that Ax = ρx is a
right Perron vector. A positive vector y with such that Atry = ρy and
〈y,x〉 = ytrx = 1 is a left Perron vector.

Let A be an irreducible nonnegative matrix with spectral radius ρ = ρ(A).
It is a natural question to ask whether there can be other eigenvalues γ of
A such that |γ| = ρ. The answer is certainly yes as illustrated by the matrix(
0 1
1 0

)
, which has eigenvalues±1. What is perhaps surprising is the existence

of other such eigenvalues dictates that A is similar by a permutation matrix
to a matrix with a very special form. We state this result but omit its proof.
The interested reader can find a proof in ([19])

Theorem 12.20 Assume A is an irreducible nonnegative matrix with spectral
radius ρ = ρ(A). Let Sρ(A) = {γ ∈ Spec(A)||γ| = ρ}. Assume that the

cardinality of Sρ(A) is p. Then Sρ(A) = {e 2πk
p |0 ≤ k < p}. Each eigenvalue

γ ∈ Sρ(A) is simple. Spec(A) is invariant under multiplication by {e 2πK
p |0 ≤

k < p}. Moreover, A is similar by a permutation matrix to a block diagonal
matrix with the following cyclic form




0 A1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0
. . . Ap−1

Ap 0 . . . . . . 0



.
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We will make use of the following result when we discuss Markov chains.

Theorem 12.21 Let A be an n × n nonnegative and primitive matrix with
spectral radius ρ. Assume x,y are the right and left Perron vectors, respec-
tively. Then

lim
k→∞

[
1

ρ
A]k = xytr.

Note that xytr is a rank one matrix.

Proof Let S be the standard basis for V = Rn and let T : V → V be the
operator such that T (v) = Av. Since ytrx = 1 by Exercise 14 of Section (5.6)
there is an invertible operator R : V → V such that R(e1) = x, R∗(y) = e1.
Set B = (R(e1), . . . , R(en)) = (x, R(e2), . . . , R(en)). Let Q = MR(S,S) =
MIV (B,S). Then Qtr = MR∗(S,S). The first column of Q is x and the first
row of Q−1 is ytr. Set B = Q−1AQ = MT (B,B) which has the form

(
ρ 0tr

n−1

0n−1 C

)
.

Then A = QBQ−1. Let Q =
(
x Q1

)
and Q−1 =

(
ytr

Rtr
1

)
. Then

[
1

ρ
A]m = Q

(
1 0tr

n−1

0n−1 ( 1ρC)
m

)
Q−1.

Since eigenvalues of C are eigenvalues of A, ρ(C) < ρ(A) and consequently,
every eigenvalue of 1

ρC is less than one. Therefore the limit of ( 1ρC)
m is

0(n−1)×(n−1). It then follows that

lim
k→∞

[
1

ρ
A]k = Q

(
1 0tr

n−1

0n−1 0(n−1)×(n−1)

)
Q−1 =

(
x Q1

)( 1 0tr
n−1

0n−1 0(n−1)×(n−1)

)(
ytr

Rtr
1

)
= xytr.

Stochastic Matrices and Markov Chains

Nonnegative matrices have many applications, for example, to modeling pop-
ulation growth and to the creation of page rank algorithms. The latter makes
use of stochastic matrices and the notion of a Markov process. We introduce
these now.
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Definition 12.13 A nonnegative vector p =



p1
...
pn


 is a probability vector

if p1 + · · ·+ pn = 1.

An n× n real matrix A is said to be a column stochastic matrix if every
column of A is a probability vector. An n × n real matrix A is said to be a
row stochastic matrix if Atr is column stochastic matrix. A is said to be
doubly stochastic or bistochastic if A and Atr are both stochastic.

The following results about probability vectors and stochastic matrices are
fundamental (but easy). We leave them as exercises.

Lemma 12.6 Let jn denote the real n-vector with all entries equal to one and
let p be a nonnegative n-vector. Then p is a probability vector if and only if
〈p, jn〉 = ptrjn = 1.

Lemma 12.7 Let p1, . . .pt be probability vectors in Rn and (s1, . . . , st) a
nonnegative sequence of real numbers such that s1+ · · ·+ st = 1. Then s1p1+
· · ·+ stpt is a probability vector.

Corollary 12.4 Let A be a stochastic matrix and p a probability vector. Then
Ap is a probability vector.

Corollary 12.5 Let A and B be stochastic matrices. Then AB is a stochastic
matrix. In particular, for every natural number k, Ak is a stochastic matrix.

In the theory of Markov chains with finite many states, central to the analysis
is the existence of a stationary vector.

Definition 12.14 Let A be a stochastic matrix. A probability vector p is a
stationary vector if Ap = p, that is, if p is an eigenvector of A with eigen-
value one.

Remark 12.8 Let jn be the vector in Rn all of whose components are one
and let p be a probability vector. Then 〈p, jn〉 = ptrjn = 1. It follows if A
is a column stochastic matrix then Atrjn = jn so that jn is an eigenvector
of Atr with eigenvalue one. Consequently, one is an eigenvalue of A as well.
However, this does not prove the existence of a stationary vector since it is not
immediately clear that an eigenvector of A for one is nonnegative. We make
use of the Perron–Frobenius heorems to obtain a stationary vector.
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Theorem 12.22 Let A be a stochastic matrix. Then ρ(A) = 1. Consequently,
A has a stationary vector. If A is also irreducible then a stationary vector is
unique.

Proof Set r = ρ(A). By the weak form of the Perron–Frobenius theorem,
Theorem (12.18), there is a probability vector p which is an eigenvector of A
with eigenvalue r. Then Ap = rp. Since A is stochastic, Ap is a probability
vector and ‖ Ap ‖1= 1. On the other hand, ‖ Ap ‖1=‖ rp ‖1= r ‖ p ‖1=
r. This proves that r = 1. The rest follows from the strong version of the
Perron–Frobenius theorem.

Definition 12.15 A Markov chain consists of a sequence (x0,x1,x2, . . . )
of state vectors and a stochastic matrix A, called the transition matrix,
such that for every k,xk+1 = Axk.

Think of a Markov chain as modeling some process that changes over time
with the state of the process recorded at discrete intervals of equal duration.
We will need the following result later when we discuss how webpages are
ranked by a search engine.

Theorem 12.23 Let A be a primitive stochastic matrix with stationary vector
x. Let z be a probability vector. Then

lim
k→∞

Akz = x.

Proof We first point out that ρ(A) = 1 has algebraic multiplicity one. The

stationary vector x is the right Perron vector for A. The vector jn =



1
...
1


 is

the left Perron vector. Note that since x is a probability vector, jtrn x = 1 and
xjtrn is the rank one matrix all of whose columns are x. By Theorem (12.21)

lim
k→∞

Ak = xjtrn .

If z =



z1
...
zn


 is a probability vector then z1 + · · ·+ zn = 1 and

lim
k→∞

Akz =
(
x x . . .x

)


z1
...
zn


 =

z1x+ · · ·+ znx = (z1 + · · ·+ zn)x = x.
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Doubly Stochastic Matrices

We now turn our attention to doubly stochastic matrices. We will denote by
∆n the collection of all doubly stochastic matrices in Rn. We begin with a
lemma.

Lemma 12.8 Let A1, . . . , At be n × n doubly stochastic matrices and
(s1, . . . , st) nonnegative real numbers such that s1 + · · · + st = 1. Then
s1A1 + · · ·+ stAt is doubly stochastic.

Proof Let pjk denote the jth column of Ak. By Lemma (12.7) it follows that
s1pj1+· · ·+stpjt is a probability vector. Thus, every column of s1A1+· · ·+stAt

is a probability vector so s1A1 + · · · + stAt is stochastic. Applying the same
argument to (s1A1+ · · ·+stAt)

tr = s1A
tr
1 + · · ·+stAtr

t when the Ai are doubly
stochastic yields the result.

Another way to phrase Lemma (12.8) is that ∆n is convex. Also note that

∆n is contained in the set {



a11 . . . a1n
... . . .

...
an1 . . . ann


 |0 ≤ aij ≤ 1 for all i, j} and

therefore ∆n is bounded. It is also a closed subset of Mnn(R) and hence
compact.

Let (e1, . . . , en) be the standard basis of Rn, that is, the sequence of columns
of the identity matrix In. Let σ be a permutation of {1, 2, . . . , n}. Denote by
Pσ the matrix with columns the sequence (eσ(1), . . . , eσ(n)). Note that each of
these is doubly stochastic. By Lemma (12.8) every matrix in the convex hull of
{Pσ|σ ∈ Sn} is also doubly stochastic. This is the easy half of the Birkoff–von
Neumann theorem, to which we now turn.

Theorem 12.24 A real n×n matrix A is doubly stochastic if and only if there
are permutation matrices Pσ1 , . . . , Pσt

and nonnegative real numbers s1, . . . , st
with s1 + · · ·+ st = 1 such that A = s1Pσ1 + . . . stPσt

.

Proof As mentioned, we only have to prove if A is doubly stochastic then
there are permutation matrices Pσ1 , . . . , Pσt

and nonnegative real numbers
s1, . . . , st with s1 + · · ·+ st = 1 such that A = s1Pσ1 + . . . stPσt

. Since ∆n is
convex and compact, by the Krein-Milman theorem, Theorem (A.4), ∆n is the
convex hull of its extreme points. Here a point p is extreme in a convex subset
C of Rm if, whenever x,y ∈ C and 0 ≤ s ≤ 1 satisfies p = sx + (1 − s)y,
then p = x = y. Clearly, the permutation matrices are extreme points of ∆n

so we need to prove that no other matrix in ∆n is extreme.
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Assume A ∈ ∆n and A is not a permutation matrix. Then there exists an
entry ai1,j1 such that 0 < ai1,j1 < 1. Since A is stochastic, there must be
a j2 6= j1 such that 0 < ai1,j2 < 1. Since Atr is stochastic, there must be
an i2 6= i1 such that 0 < ai2,j2 < 1. We can continue this way to obtain
a sequence (j1, i1, j2, i2, . . . ) such that 0 < ait−1,jt < 1 and 0 < ait,jt < 1.
Since n is finite, by the pigeonhole principle some row or column index must
repeat. Suppose we obtain the sequence (j1, i1, . . . , js, is, js+1 = j1). Let B be
the matrix with entries bij so that bit,jt = 1, bit,bt+1 = −1 and all other entries
are zero. By construction, Bjn = 0n = Btrjn. Now for any real number
γ, (A + γB)jn = (A − γB)jn = (A + γB)trjn = (A − γB)trjn = jn. For
small γ both A + γB and A − γB will be nonnegative. By Lemma (12.6)
each column and row of A + γB and every column and row of A − γB is a
probability vector. Thus, both A + γB and A − γB are stochastic matrices.
Since A = 1

2 (A+ γB) + 1
2 (A− γB) it follows that A is not an extreme point

of ∆n which completes the proof.

Among others, some good references for the material of this section are ([4]),
([12]) and ([19]).

Exercises

In Exercises 1–3 let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a real nonnegative matrix. For

natural numbers i, j, k with 1 ≤ i, j ≤ n, denote by akij the (i, j)-entry of Ak.

1. Define a directed graph on {1, . . . , n} as follows: (i, j) ∈ ∆ if there is a
natural number k such that akij 6= 0. Prove if (i, j), (j, l) ∈ ∆ then (i, l) ∈ ∆.

2. We continue with the notation of Exercise 1. For i ∈ {1, . . . , n} denote by
∆(i) the collection of all j such that (i, j) ∈ ∆. Suppose j ∈ ∆(i). Prove that
∆(j) ⊂ ∆(i).

3. Assume A is reducible. Then for some i,∆(i) 6= {1, . . . , n}. Choose such an
i with ∆(i) maximal and set I = ∆(i). Prove that Span(ej |j ∈ I) is an A-
invariant subspace of Rn. Conclude that a nonnegative matrix A is reducible
if and only if there is a proper subset I of {1, . . . , n} such that Span(ej |j ∈ I)
is A-invariant.

4. Let A be an n×n nonnegative matrix and D a diagonal matrix with positive
diagonal entries. Prove that A is irreducible if and only if AD is irreducible if
and only if DA is irreducible.

5. Let A be an n × n nonnegative matrix and assume that (In + A)n−1 > 0.
Prove A is irreducible.

6. Let A be a positive m× n matrix and x,y real n-vectors such that x ≥ y.
Prove that Ax ≥ Ay with equality if and only if x = y.
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7. Assume A is a nonnegative matrix and Ak > 0 for some natural number k.
Prove that ρ(A) > 0.

8. Assume A is a nonnegative n × n matrix and A is not the zero matrix.
Prove if A has a positive eigenvector then ρ(A) > 0.

9. Assume A is a nonnegative n × n matrix and d =



d1
...
dn


 is a positive

eigenvector. Set D = diag{d1, . . . , dn}. Prove that D−1AD has constant row
sums equal to ρ(A).

10. Let A be a nonnegative irreducible matrix with spectral radius ρ. Assume
if λ ∈ Spec(A), λ 6= ρ then |λ| < ρ. Prove that there exists a natural number
k such that Ak is a positive matrix.

11. Let z1, . . . , zn ∈ C∗. Prove that |z1 + · · · + zn| = |z1| + · · · + |zn| if and
only if there is a θ ∈ [0, 2π) such that for all i, eiθzi = |zi|.
12. Let A be a nonnegative irreducible matrix. Assume λ ∈ Spec(A) \ {ρ}.
Then |λ| < ρ.

13. Prove Lemma (12.6).

14. Prove Lemma (12.7).

15. Prove Corollary (12.4).

16. Prove Corollary (12.5).

17. Assume A and B are (doubly) stochastic matrices. Prove that AB is a
(doubly) stochastic matrix.

18. Assume A is an invertible n×n doubly stochastic matrix and that A−1 is
doubly stochastic. Prove A is a permutation matrix.

19. Assume A is an n×n doubly stochastic matrix. Prove that A cannot have
exactly n+ 1 nonzero entries.

20. Prove that a 2 × 2 doubly stochastic matrix is symmetric with equal
diagonal entries.

21. Assume A is a reducible doubly stochastic n× n matrix. Prove that A is

permutation similar to a block matrix

(
A1 0st
0ts A2

)
where s + t = n,A1 is an

s× s doubly stochastic matrix and A2 is a doubly stochastic t× t matrix.
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12.4 The Location of Eigenvalues

In applications of linear algebra it is often important to determine the eigen-
values of an operator or, equivalently, a matrix, for example when solving a
linear system of differential equations. Of course, determining the eigenvalues
of a diagonal or triangular matrix is easy. However, the problem is intractable
for an arbitrary matrix, even one which is similar to a diagonal matrix. It is,
of course, straightforward to determine the minimal and characteristic poly-
nomials of a square matrix A, in fact, all the invariant factors. So, determining
the eigenvalues reduces to factoring these polynomials. However, for any real
or complex polynomial f(x) of degree n there is an n× n matrix whose char-
acteristic polynomial, χA(x), is equal to f(x), namely, the companion matrix,
C(f(x)), of the polynomial f(x). We know that there is no algorithm for de-
termining the roots of a polynomial of degree n ≥ 5 by results of Abel and
Galois. Therefore, one must be satisfied with approximating the eigenvalues.
This section deals with the location of the eigenvalues of real and complex ma-
trices (and therefore operators). Among other results we prove the Gers̆gorin
Disc theorem which places the eigenvalues of a matrix in a union of discs
in the complex plane determined in a simple manner from the entries of the
matrix.

What You Need to Know

To make sense of the new material of this section is it essential that you
have mastery of the following concepts: norm on a vector space, matrix norm,
induced matrix norm, eigenvalue of a matrix or operator, an eigenvector of a
matrix or operator.

We begin with a result which gives a bound for the spectral radius of a complex
matrix A.

Theorem 12.25 Let A



a11 . . . a1n
... . . .

...
an1 . . . ann


 be an n × n complex matrix and

assume λ1, . . . , λn are the roots of χA(x). Then

n∑

i=1

|λi|2 ≤
n∑

i=1

n∑

j=1

|aij |2.

Proof Note that
∑n

i=1

∑n
j=1 |aij |2 = Trace(A∗A) is ‖ A ‖2F , the Frobenius

norm of A. By Lemma (6.8) there is a unitary matrix Q such that A = QTQ∗,
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where T =




t11 t12 . . . t1n
0 t21 . . . t2n
...

... . . .
...

0 0 . . . tnn


 is an upper triangular matrix. Since A and

T are similar (x− t11) . . . (x− tnn) = χT (x) = χA(x) = (x− λ1) . . . (x− λn).
Consequently,

n∑

i=1

|λi|2 =

n∑

i=1

|tii|2 ≤
n∑

i=1

n∑

j=1

|tij |2 = Trace(T ∗T ).

Since A∗A = (QT ∗Q∗)(QTQ∗) = Q(T ∗T )Q∗, it follows that T ∗T and A∗A
are similar. Therefore

n∑

i=1

n∑

j=1

|tij |2 = Trace(A∗A) =
n∑

i=1

n∑

j=1

|aij |2.

The following is an immediate consequence.

Corollary 12.6 Let A be an n × n complex matrix. Then ρ(A) ≤
Trace(A∗A) =‖ A ‖ where ‖ · ‖ is the Frobenius norm.

The next result is due to S. Gers̆gorin and was proved in 1931. It locates the
eigenvalues of a complex matrix in discs centered at the diagonal entries of
the matrix. We begin with the definition of the Gers̆gorin discs of a matrix.

Definition 12.16 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix. For 1 ≤

i ≤ n, the ith deleted row sum is R′
i(A) =

∑
j 6=i aij. The i

th Gers̆gorin (row)
disc is

Γi(A) = {z ∈ C||z − aii| ≤ R′
i(A)}.

The (row) Gers̆gorin set of A is

Γ(A) = ∪n
i=1Γi(A).

Theorem 12.26 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


. Then Spec(A) ⊂ Γ(A). More-

over, assume there is a partition {I1, I2} of {1, . . . , n} with |Ik| = nk, k = 1, 2
such that [∪i∈I1Γi(A)] ∩ [∪i∈I2Γi(A)] = ∅. Then ∪i∈IkΓi(A) contains exactly
nk eigenvalues of A for k = 1, 2.



Additional Topics in Linear Algebra 495

Proof Assume λ ∈ Spec(A) and x =



x1
...
xn


 ∈ Cn is an eigenvector with

eigenvalue λ. Let s be an index such that ‖ x ‖∞= |xs|. Since x 6= 0, xs 6= 0.
Then |xi| ≤ |xs| for 1 ≤ i ≤ n. Since x is an eigenvector of A with eigenvalue
λ, we have

n∑

j=1

asjxj = λxs.

Consequently,
∑

j 6=s asjxj = (λ − ass)xs. We then have

|λ− ass||xs| =

∣∣∣∣∣∣
∑

j 6=s

asjxj

∣∣∣∣∣∣

≤
∑

j 6=s

|asjxj |

=
∑

j 6=s

|asj ||xj |

≤ |xs|
∑

j 6=s

|asj |

= |xs|R′
s(A).

Since xs 6= 0, it follows that |λ− ass| ≤ R′
s(A), equivalently, λ ∈ Γs(A). Since

λ is arbitrary in Spec(A), it follows that Spec(A) ⊂ Γ(A).

We sketch the second part and refer the reader to ([21]) for a complete proof.
Assume now that {1, . . . , n} = I1 ∪ I2, I1 ∩ I2 = ∅, so that G1 ∩G2 = ∅ where
Gk = ∪i∈IkΓi(A), k = 1, 2. Set nk = |Ik|, k = 1, 2. Replacing A with P−1AP
for a permutation matrix P , if necessary, we can assume that I1 = {1, . . . , n1}
and I2 = {n1 + 1, . . . , n}.
Set D = diag{a11, . . . , ann} set B = A−D. Set A(γ) = D+γB with 0 ≤ γ ≤ 1.
Note that A(0) = D and A(1) = A. Also note that R′

i(A(γ)) = R′
i(γB) =

γR′
i(A). Thus, the j

th Gers̆gorin disc of A(γ) is given by

Γj(A(γ)) = {z ∈ C||z − aii| ≤ γR′
i(A)}.

It therefore follows that Γj(A(γ)) ⊂ Γj(A). Consequently, ∪n1

j=1Γj(A(γ))
is contained in ∪n1

j=1Γj(A) and is disjoint from ∪n
j=n1+1Γj(A). Set G1 =

∪n
i=1Γi(A) and G2 = Γ(A)\G1. Let C be a smooth closed curve which contains

G1 and does not intersect G1. Let χγ(x) denote the characteristic polynomial
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of A(γ), so χγ(x) = det(xIn − A(γ)) = det(xIn − D − γB). This is a poly-
nomial in γ. The number of zeros of χγ(x) inside C (equal to the number of
roots of χγ(x) = 0 in C), is given by

1

2πi

∮

C

χ′
γ(x)

χγ(x)
dx.

This is an integer valued function on the interval [0,1] and therefore constant.
Now χ0(x) = (x−a11) . . . (x−ann) has exactly n1 zeros inside C and therefore
so does χ1(x) = χA(x). Since these zeros must also belong to Γ(A), in fact
they lie in Γ1 = ∪n1

i=1Γi(A).

As a corollary to Theorem (12.26) we get an improved bound for the spectral
radius of a complex matrix.

Corollary 12.7 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


. Then

ρ(A) ≤ max





n∑

j=1

|aij |1 ≤ i ≤ n



 .

Proof Assume λ ∈ Spec(A). By Theorem (12.26) there is a k such that
|λ− akk| ≤ R′

k(A). Then |λ| − |akk| ≤ |λ− akk| ≤ R′
k(A). Therefore

λ ≤ |akk|+R′
k(A) =

n∑

j=1

|akj | ≤ max





n∑

j=1

|akj ||1 ≤ k ≤ n



 .

In particular, the inequality holds for λ = ρ(A).

Remark 12.9 We point out that

max





n∑

j=1

|akj ||1 ≤ k ≤ n



 =‖ A ‖1 .

Since A and Atr have the same invariant factors and characteristic polynomial,
we can also locate the eigenvalues in discs arising from deleted column sums.
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Definition 12.17 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix. If 1 ≤

j ≤ n then the jth deleted column sum of A is

C′
j(A) =

∑

i6=j

|aij | = R′
j(A

tr).

The jth (column) Gers̆gorin disc is

∆j(A) = {z ∈ C||z − ajj | ≤ C′
j(A)} = Γj(A

tr).

The (column) Gers̆gorin set is ∆(A) = ∪n
j=1∆j(A) = Γ(Atr).

Since Spec(Atr) = Spec(A), the proof of Theorem (12.26) applies to Atr, from
which we can conclude the following:

Theorem 12.27 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix. Then

Spec(A) ⊂ ∆(A).

Theorem (12.27) also gives a bound on the spectral radius.

Theorem 12.28 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix. Then

ρ(A) ≤ max

{
n∑

i=1

|aij ||1 ≤ j ≤ n

}
=‖ A ‖∞ .

Putting Theorem (12.7) and Theorem (12.28) together we get:

Theorem 12.29 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix. Then

ρ(A) ≤ min{‖ A ‖1, ‖ A ‖∞}.

Of course, since Spec(A) is contained in Γ(A) and ∆(A), it must be contained
in Γ(A) ∩∆(A). We state this as a theorem.
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Theorem 12.30 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix.

Then Spec(A) ⊂ Γ(A) ∩∆(A).

Other inclusion theorems can be obtained by applying Theorem (12.26) to
matrices which are similar to A. The following is an example.

Theorem 12.31 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix and



d1
...
dn




be a positive real n-vector. Set Di =
∑

j 6=i
dj

di
|aij |. If λ ∈ Spec(A) then there

exists i such that λ is in the disc

{z ∈ C||z − aii| ≤ Di}.

Proof Set D = diag{d1, . . . , dn} and B = D−1AD. Then Spec(B) =
Spec(A). Apply Theorem (12.26) to B.

Theorem (12.26) can be used to obtain a criterion for a matrix to be invertible
by comparing diagonal elements to the deleted row sum for the row in which
it occurs. Toward that end, we introduce a definition.

Definition 12.18 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix. A is

strictly diagonally dominant if for every i, 1 ≤ i ≤ n, we have

|aii| > R′
i(A).

Theorem 12.32 Assume the complex matrix A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 is

strictly diagonally dominant. Then A is invertible.

Proof Suppose to the contrary that A is not invertible. Then 0 is an eigen-
value. By Theorem (12.26) there exists a k such that |0−akk| = |akk| ≤ R′

k(A),
a contradiction.
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Theorem (12.32) also implies Theorem (12.26). Suppose λ is an eigenvalue of
A and |λ − akk| > R′

k(A) for all k. Let x 6= 0n be an eigenvector of A with
eigenvaue λ. Then (λIn−A)x = 0n so that B = λIn−A is not invertible. Let
bij denote the (i, j)-entry of B. Note that R′

k(A) = R′
k(B). Then for every k

we have |bkk| = |λ − akk| > R′
k(A) = R′

k(B) from which we conclude that B
is invertible, a contradiction.

We complete this section with a theorem due to Ky Fan.

Theorem 12.33 Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 be a complex matrix and B =



b11 . . . b1n
... . . .

...
bn1 . . . bnn


 a nonnegative real matrix. Assume bij ≥ |aij | for all i 6= j.

Then for every eigenvalue λ of A there is an i such that λ is contained in the
disc

{z ∈ C||z − aii| ≤ ρ(B)− bii}.

Morover, if |aii| > ρ(B)− bii for all i then A is invertible.

Proof First assume that B is a positive matrix. By the strong form of the

Perron–theorem, Theorem (12.19), there is a positive vector x =



x1
...
xn


 such

that Bx = ρ(B)x. Then for each i, 1 ≤ i ≤ n we have

∑

j 6=i

|aij |xj ≤
∑

j 6=i

bijxj = ρ(B)x− biixi.

Dividing both sides of the inequality by 1
xi

we obtain for each i, 1 ≤ i ≤ n, that

1

xi

∑

j 6=i

|aij |xj ≤ ρ(B)− bii.

The result now follows from Theorem (12.31) with



d1
...
dn


 = x.

We now treat the general case. Suppose some entry of B is zero. Let J be the
n× n matrix all of whose entries are one. Set Bγ = A+ γJ . The (i, j)-entry
of Bγ is bij + γ > bij ≥ |aij | for i 6= j. Clearly, Bγ is a real positive matrix.
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By what we have shown above, if λ is an eigenvalue of A then there is an i
such that λ is in the disc

{z ∈ C||z − aii| ≤ ρ(Bγ)− (bii + γ)}.

Now as γ approaches zero, ρ(Bγ)− (bii + γ) has the limit ρ(B)− bii.

If |aii| > ρ(B) − bii for every i then zero is not in the union of the discs and
the last part of the theorem follows.

An excellent reference for the material of this section as well as a source of
generalizations is ([21]).

Exercises

1. Assume A is a stochastic matrix and set δ = min{aii|1 ≤ i ≤ n}. Prove
that Spec(A) is contained in the disc

{z ∈ C||z − δ| ≤ 1− δ}.

2. Assume A is a stochastic matrix with diagonal entries all greater than 1
2 .

Prove that A is invertible.

3. Let A be a complex n × n matrix and assume for all i 6= j that Γi(A) ∩
Γj(A) = ∅. Prove that A is diagonalizable.

4. Assume A is a real n × n matrix and for i 6= j that Γi(A) ∩ Γj(A) = ∅.
Prove that Spec(A) ⊂ R.

5. Let A be an n × n complex matrix. Prove that Spec(A) =
∩Q∈GLn(C)Γ(Q

−1AQ).

6. Let A be a complex n×nmatrix. Assume the following: a) the characteristic
polynomial of A,χA(x), is a real polynomial; b) the diagonal entries of A are
real; and c) for i 6= j,Γi(A) ∩ Γj(A) = ∅. Prove that Spec(A) ⊂ R.

7. Let A =



a11 . . . a1n
... . . .

...
an1 . . . ann


. Set I = {i||aii > R′

i(A)} and assume |I| = k.

Prove that rank(A) ≥ k.

8. Assume the n×n complex matrix A is strictly diagonally dominant. Prove
for at least one j that |ajj | > C′

j(A).

9. Assume A is a real strictly diagonally dominant n×n matrix with diagonal
entries a11, . . . , ann. Prove that

det(A)

n∏

i=1

aii > 0.

An excellent source for this material is ([21]).
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12.5 Functions of Matrices

In this section we consider how we might give meaning to p(A) where p(z) is
a power series in a complex variable z and A is a square complex matrix. This
has applications to the solution of homogeneous linear systems of differential
equations as well as to the study of Lie groups. We will also consider possible
generalizations over arbitrary fields.

What You Need to Know

Understanding the new material in this section depends on a mastery of the
following concepts: normed linear space, matrix norm, Cauchy sequence of
matrices, and evaluation of a polynomial at an operator or matrix.

Let A be a n × n matrix with entries in a field F. Recall if f(x) = adx
d +

· · ·+a1x+a0 is a polynomial with coefficient in F then we defined f(A) to be
adA

d+ · · ·+a1A+a0In. It is our intention to extend this definition to a power
series in a single variable. We begin, however, with some lemmas concerning
polynomial functions of matrices.

Lemma 12.9 Let Q ∈ GLn(F). Then the following hold:

i. If B ∈Mnn(F) and k is a natural number then (Q−1BQ)k = Q−1BkQ.

ii. If B1, B2 ∈Mnn(F), then Q−1(B1 +B2)Q = Q−1B1Q+Q−1B2Q.

Proof We leave these as exercises.

As a consequence of Lemma (12.9) we have the following:

Corollary 12.8 Let Q ∈ GLn(F), B ∈ Mnn(F) and f(x) ∈ F[x]. Then
f(Q−1BQ) = Q−1f(B)Q.

Now suppose A ∈ Mnn(F) is diagonalizable and A = Q−1BQ where B =
diag{λ1, . . . , λn}. Then f(B) = diag{f(λ1), . . . , f(λn)}, a diagonal matrix.
Thus, f(A) = Q−1f(B)Q and so f(A) is diagonalizable.

We will now restrict ourselves to matrices with entries in C. In this case an
arbitrary matrix A is similar to a matrix J in Jordan canonical form,

J = Jn1(λ1)⊕ · · · ⊕ Jns
(λs) =



Jn1(λ1) 0 . . .

. . .

0 Jns
(λs)


 .
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Here Jd(λ) is the d×d matrix with diagonal equal to λId, ones directly below
the main diagonal and all other entries zero. Thus,

Jd(λ) =




λ 0 . . . 0
1 λ . . . 0
...

... . . .
...

0 0 . . . λ


 .

If A = Q−1JQ and f(x) ∈ F[x] then f(A) =

f(Jn1(λ1))⊕ · · · ⊕ f(Jns
(λs)) =



f(Jn1(λ1))

. . .

f(Jns
(λs))


 .

We now compute f(Jd(λ)) for an arbitrary polynomial f(x) ∈ C[x]. Write
Jd(λ) as the sum λId + Nd where Nd = Jd(0). Note that N is a nilpotent
matrix and, in fact, Nd = 0d×d. For convenience we drop the subscript d on
Id and Nd. Since I and N commute, the binomial expansion applies to powers
of Jd(λ). Thus for a natural number k we have

Js(λ)
k = (λI +N)k =

min{k,d−1}∑

i=0

(
k

i

)
λk−iN i.

Assume now that f(x) = amx
m + · · ·+ a1x+ a0. Then

f(Js(λ)) =
m∑

j=0

ajJs(λ)
j =

m∑

j=0

aj

j∑

i=0

(
j

i

)
λj−1N i

=

m∑

i=0





m∑

j=i

(
j

i

)
ajλ

j−i



N i =

m∑

i=0

1

i!





m∑

j=i

j!

(j − i)!
ajλ

j−i



N i.

Note that the expression
∑m

j=i
j!

(j−i)ajλ
j−i is just the ith derivative of f(x),

which we denote by f (i)(x). Thus,

f(Jd(λ)) =

m∑

i=0

1

i!
f (i)(λ)N i

=

min{m,d−1}∑

i=0

1

i!
f (i)(λ)N i.
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For example, if we apply a polynomial f(x) to a 4× 4 Jordan block centered
at λ then we get

f(J4(λ)) =




f(λ) 0 0 0
f ′(λ) f(λ) 0 0
1
2f

′′(λ) f ′(λ) f(λ) 0
1
6f

(3)(λ) 1
2f

′′(λ) f ′(λ) f(λ)


 .

We now turn our attention to power series. Suppose then that p(z) =∑∞
k=1 akz

k is a power series in the complex variable z with radius of con-
vergence R. Let A be a complex matrix with ‖ A ‖< R for some matrix norm
‖ · ‖ on Mnn(C). Denote by Sn(z) the n

th partial sum of p(z),

Sn(z) =

n∑

k=0

akz
k.

Since Sn(z) is a polynomial the meaning of Sn(A) is unambiguous. Suppose
now that m ≤ n are natural numbers. Then

Sn(A)− Sm(A) =

n∑

k=m+1

akA
k = anA

n + · · ·+ am+1A
m+1.

By the triangle inequality we have

‖ Sn(A)− Sm(A) ‖≤
n∑

k=m+1

‖ akAk ‖=
n∑

k=m+1

|ak| ‖ Ak ‖ .

Since the norm is a matrix norm, we have

n∑

k=m+1

|ak| ‖ Ak ‖≤
n∑

k=m+1

|ak| ‖ A ‖k .

Since we are assuming that ‖ A ‖< R, it follows that the power series

∞∑

k=0

|ak| ‖ A ‖k

converges so that the sequence {Sn(A)}∞n=0 is a Cauchy sequence of complex
matrices. SinceMnn(C) is complete, it follows that this sequence has a unique
limit which we denote by p(A).

This can be applied to any function defined as a power series with a positive
radius of convergence, in particular to such functions as sin z, cos z, and
exp(z). The latter is especially important because of its applications to Lie
groups as well as the solution of homogeneous linear systems of differential
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equations. Thus, for an n×n complex matrix A we will denote by exp(A) the
matrix

∞∑

k=0

1

k!
Ak

and develop its properties.

Theorem 12.34 Let A and B be commuting n × n complex matrices. Then
exp(A+B) = (exp(A))(exp(B)).

Proof Since the series that defines the exponential of a matrix is uni-
formly convergent in any closed and bounded set, we can compute the product
(exp(A))(exp(B)) by multiplying the terms of exp(A) by the terms of exp(B).
Thus,

exp(A)exp(B) =

∞∑

i,j=0

1

i!j!
AjBk.

Set Ck =
∑

i+j=k
k!
i!j!A

iBj .

Since AB = BA, the binomial theorem applies to (A + B)k from which we
conclude that Ck = (A+B)k. We then have

exp(A)exp(B) =

∞∑

k=0

1

k!
Ck =

∞∑

k=0

1

k!
(A+ B)k = exp(A+B).

Since A and −A commute for any square complex matrix A and exp(0nn) =
In, we have the following:

Corollary 12.9 Let A be an n×n complex matrix. Then exp(A) is invertible
and exp(A)−1 = exp(−A).

Below we make explicit how the exponential of two similar matrices are related
but first we need to prove a lemma.

Lemma 12.10 Let ‖ · ‖ be a matrix norm on Mnn(C). Assume {Dn}∞n=1 is a
sequence of matrices which converges to D,Q ∈ GLn(C), Cn = Q−1DnQ,C =
Q−1DQ. Then {Cn}∞n=1 converges to C.
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Proof Set δ = max{‖ Q−1 ‖ · ‖ Q ‖, 1} and let ǫ > 0. We need to show
there is a natural number N(ǫ) such that if n ≥ N(ǫ) then ‖ Cn − C ‖< ǫ.
Now since {Dn}∞n=1 converges to D, given γ > 0 there is an N(γ) such that
if n ≥ N(ǫ) then ‖ Dn −D ‖< γ. Set γ = ǫ

δ and N = N(γ). Suppose n ≥ N .
We then have

‖ Cn − C ‖ = ‖ Q−1DnQ−Q−1DQ ‖
= ‖ Q−1(Dn −D)Q ‖
≤ ‖ Q−1 ‖ · ‖ Dn −D ‖ · ‖ Q ‖
= ‖ Bn −B ‖ ·(‖ Q−1 ‖ · ‖ Q ‖)
< γ (‖ Q−1 ‖ · ‖ Q ‖)
=

ǫ

δ
(‖ Q−1 ‖ · ‖ Q ‖)

≤ ǫ.

We can now prove:

Theorem 12.35 Assume A,B ∈ Mnn(C) and A = Q−1BQ where Q ∈
GLn(C). Then exp(A) = Q−1exp(B)Q.

Proof Set D = exp(B), Dn =
∑n

i=0
1
i!B

i, C = exp(A), Cn =
∑n

i=0
1
i!A

i.
Here we are using the convention for any n×n matrix X that X0 = In. Then
{Dn}∞n=1 converges to D = exp(B) and {Cn}∞n=1 converges to exp(A). By
Corollary (12.8) Cn = Q−1DnQ. By Lemma (12.10) it follows that exp(A) =
C = Q−1DQ = Q−1exp(B)Q.

Suppose A is diagonalizable. If the eigenvalues of A are λ1, . . . , λn, then there
is an invertible matrix Q such that

A = Q−1




λ1 0 . . . 0
0 λ2 . . . 0
...

... . . .
...

0 0 . . . λn


Q.

Then exp(A) =

Q−1




eλ1 0 . . . 0
0 eλ2 . . . 0
...

... . . .
...

0 0 . . . eλn


Q.

More generally, we can express A as Q−1BQ where B is a Jordan canonical
form of A. This can be used to prove the following:
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Theorem 12.36 Let A ∈Mnn(C). Assume χA(x) =
(x− λ1) . . . (x− λn). Then χexp(A)(x) = (x − eλ1) . . . (x− eλn).

Proof We leave this as an exercise.

A consequence of Theorem (12.36) is:

Corollary 12.10 Let A ∈Mnn(C). Then det(exp(A)) = exp(Trace(A)).

Recall that an n× n matrix A is nilpotent when µA(x) = xk for some k ≤ n.
In this case, computing the exponential does not involve limits and is a finite
sum:

exp(A) =
k−1∑

i=1

1

i!
Ai.

This even applies to matrices with entries in a field with prime characteristic p
when the minimal polynomial is xk for some k ≤ p. In particular, if A2 = 0nn.
Such elements exist in abundance: Any matrix A such that col(A) ⊂ null(A)
satisfies A2 = 0n×n and consequently, by the rank-nullity theorem, the rank
of such a matrix is at most ⌊n

2 ⌋. For purposes of illustration, and because of
the important role they play, we will look at the exponential of those matrices
A of rank one such that A2 = 0n×n. We characterize such matrices in the
next result. Before doing so recall that for 1 ≤ i, j ≤ n, Eij is the matrix with
(i, j)-entry one and all other entries are zero.

Remark 12.10 Assume i 6= j and k 6= l. Then Eij and Ekl are similar by a
permutation matrix.

Theorem 12.37 Let A ∈ Mn×n(F) have rank one and assume A2 = 0n×n.
Then there is a Q ∈ GLn(F) such that A = Q−1E21Q.

Proof Define TA : Fn → Fn by TA(v) = Av. Let y 6= 0n be an element
of Range(TA) = col(A) and let x ∈ Fn such that Ax = y. Since col(A) ⊂
null(A), in particular, y ∈ null(A). Extend y to a basis (y = y1, . . . ,yn−1) of
null(A). Since x /∈ null(A), Span(x) ∩ Span(y1, . . . ,yn−1) = {0n} and con-
sequently, B = (x,y1, . . . ,yn−1) is linearly independent and therefore a basis
of Fn. Now MTA

(B,B) = E21. On the other hand, if Q = MI(S,B) where
S is the standard basis of Fn then A = MTA

(S,S) = Q−1MTA
(B,B)Q =

Q−1E21Q.
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Now consider exp(tEij) where t ∈ F. This is equal to In + tE21, a matrix
with ones on the diagonal and one nonzero entry off the diagonal equal to t.
This is a transvection. Suppose, more generally, that A = Q−1E21Q where
Q ∈ GLn(F). Then exp(tA) = exp(Q−1(tE21)Q) = Q−1exp(tE21)Q which is
a transvection. Consequently, if rank(A) = 1, A2 = 0n×n then exp(tA) is a
transvection. In this way we obtain all the transvections. We therefore have
the following result.

Theorem 12.38 Let G denote the subgroup of GLn(F) generated by exp(tA)
where t ∈ F, rank(A) = 1, and A2 = 0n×n. Then G = SLn(F).

For the reader interested in additional results on this topic see ([11]) and
([19]).

Exercises

1. Prove Lemma (12.9).

2. Prove Corollary (12.8).

3. Prove Theorem (12.36).

4. Prove Corollary (12.10).

For a complex matrix A =



a11 . . . a1n
... . . .

...
an1 . . . ann


 let A be whose (i, j)-

entry is aij and let A∗ = A
tr
.

5. Prove for a complex matrix A that exp(A)∗ = exp(A∗).

6. Assume the complex matrix A is Hermitian. Prove exp(A) is Hermitian.

7. Assume the complex matrix A is normal (AA∗ = A∗A). Prove exp(A) is
normal.
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This concluding chapter deals with several common and important applica-
tions of linear algebra both to other areas of mathematics as well as to science
and technology. In the first section we briefly develop the theory and method
of linear least squares which can be used to estimate the parameters of a model
to a set of observed data points. In the second section we introduce coding
theory which is ubiquitous and embedded in all the digital devices we now
take for granted. In our final section we discuss how linear algebra is used to
define a page rank algorithm that might be applied in a web search engine.
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13.1 Least Squares

In this section we define what is meant by the general linear least squares
problem which involves an overdetermined linear system. We derive the nor-
mal equations and demonstrate how to use them to find a solution. We then
illustrate the method with several examples.

What You Need to Know

Most of the following concepts, which you will need to have mastered in order
to make sense of the new material in this section, are introduced in a course
in elementary linear algebra: a linear system of equations, inconsistent system
of linear equations, null space of a matrix, invertible matrix, transpose of a
matrix, column space of a matrix, rank of a matrix. triangular matrix, QR
factorization of a matrix, linearly independent sequence of vectors, linearly
dependent sequence of vectors, inner product space, orthogonal vectors in an
inner product space, orthogonal complement to a subspace of a inner product
space, norm of a vector induced by an inner product, orthonormal sequence
of vectors, and an orthonormal basis of a subspace of an inner product space.

The General Least Squares Problem

It is trivial to write down a linear system of equations, equivalently, a matrix
equation Ax = b, which is inconsistent. Though inconsistent, one may seek a
“best” approximation to a solution. As we will see, this arises in the practice
of experimental science when attempting to fit a model to collected data.
Finding the best approximate solution to an inconsistent linear system is the
basis of a “least squares solution.”

Definition 13.1 Let A be an m × n complex matrix and b ∈ Cm such that
b /∈ col(A). A vector x ∈ Cn is said to be a least squares solution if
‖ Ax− b ‖≤‖ Ay − b ‖ for all y ∈ Cn.

For any vector x ∈ Cn, the vector Ax is in the column space of A. The first
step in the solution to this problem is to identify the vector Ax. Immediately
relevant to this is Theorem (5.16), which we proved in Section (5.4). Here is
the statement:

Theorem (5.16) LetW be a subspace of Cn and u a complex n−vector. Then
for any vector w ∈W,w 6= ProjW (u), ‖ u− ProjW (u) ‖<‖ u−w ‖.
Finding the General Least Squares Solutions

Given an m × n complex matrix A and b ∈ Cm, set W = col(A) and b′ =
ProjW (b). Assume that x is a vector such that Ax = b′.

Recall that the vector b− b′ = b−Ax is in W⊥, the orthogonal complement
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to W = col(A). This means that the vector b− b′ = b− Ax is orthogonal to
every column of the matrix A and therefore is in the null space of the adjoint
of A,A∗ = Atr. This means that

A∗(b− b′) = A∗(b−Ax) = 0n. (13.1)

An immediate consequence of (13.1) is that a vector x for which Ax = b′ =
ProjW (b) satisfies the equation

A∗Ax = A∗b. (13.2)

The equations of the linear system equivalent to the matrix equation shown
in (13.2) are referred to as the normal equations of Ax = b.

We have thus shown that every least squares solution satisfies the normal
equations. The converse is also true:

Theorem 13.1 Assume that x satisfies the A∗Ax = A∗b. Then x is a least
squares solution to Ax = b.

Proof Assume that x satisfies A∗Ax = A∗b. Then

A∗Ax−A∗b = A∗(Ax− b) = 0n. (13.3)

A consequence of (13.3) is that the vector Ax − b is in the null space of A∗

and therefore orthogonal to every row of Atr, equivalently, every column of A.
Since Ax− b is orthogonal to every column of A, it follows that Ax− b is in
the orthogonal complement of the column space of A.

On the other hand, assume Ax is in the column space of A and b = Ax+(b−
Ax), the sum of a vector in col(A) and a vector in col(A)⊥. From Theorem
(5.12) there are unique vectors w ∈ col(A) and z ∈ col(A)⊥ such that b =
w + z. Moreover, the vector w = Projcol(A)(b). Thus, Ax = Projcol(A)(b)
and is therefore a least squares solution to Ax = b.

We now determine when a unique solution exists. Of course, this occurs pre-
cisely when the matrix A∗A is invertible.

Theorem 13.2 Let A be an m × n complex matrix and b ∈ Cm, b /∈ col(A)
so that the matrix equation Ax = b has no solutions. Then a least squares
solution for the system Ax = b is unique if and only if the sequence of columns
of the matrix A is linearly independent. In this case the unique solution is given
by x = (A∗A)−1A∗b.
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Proof First assume that there is a unique solution. Then A∗A is an invert-
ible matrix, which implies that the rank of A∗A is n. However, rank(A∗) =
rank(A) and rank(A∗A) ≤ min{rank(A), rank(A∗)}. It must therefore be the
case that rank(A) = n and since A has n columns, the sequence of columns
of A must be linearly independent.

Conversely, assume that the sequence of columns of A is linearly independent.
This implies that the null space of A consists of only the zero vector, null(A) =
{0n}. We will show that null(A∗A) = {0n} from which it will follow that A∗A
is an invertible matrix.

Assume x ∈ null(A∗A). Then A∗Ax = 0n. Then 0 = xtr(A∗Ax) =
xtrAtr(Ax) = 〈Ax, Ax〉, so that by positive definiteness we have Ax = 0m.
Since the sequence of columns of A are linearly independent, null(A) = {0n}
so that x = 0n.

Remark 13.1 Note that when A is a complex m × n matrix of rank n and
Ax = b is inconsistent, the unique least square solution is equal to A†b, where
A† is the pseduoinverse of A. This will make an appearance again when we
consider the situation where rank(A) < n and we characterize all the least
square solutions.

In the next definition we introduce a weak notion of pseudoinverse of a matrix.

Definition 13.2 Let A be an m× n complex matrix. An n×m matrix X is
a {1, 3}-inverse of A if the following hold:

(PI1) AXA = A; and

(PI3) (AX)∗ = AX.

In the next lemma we establish some properties of a {1, 3}-inverse of a matrix.

Lemma 13.1 Let A be an m × n complex matrix and X a {1, 3}-inverse of
A. Then the following hold:

i) AX = AA†.

ii) Im −AX is the projection map onto col(A)⊥.

Proof i) Since AA†A = A we have
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AX = AA†AX

= (AA†)∗(AX)∗

= (A†)∗(A∗X∗A∗)

= (A†)∗(AXA)∗

= (A†)∗A∗

= (AA†)∗ = AA†.

ii) This follows from Theorem (12.12).

We leave the following corollary as an exercise.

Corollary 13.1 Let A be an m × n complex matrix. Then X is a {1, 3}-
inverse of A if and only if AX = AA†.

Assume A is a complexm×n matrix, b ∈ Cm, and b /∈ col(A). The next result
obtains least square solutions to an inconsistent system Ax = b in terms of a
{1, 3}-inverse of A.

Theorem 13.3 Assume X is a {1, 3}-inverse of A. Then Xb is a least square
solution to Ax = b.

Proof Set z = Xb. We need to show that for an arbitrary y ∈ Cn that
‖ Ay − b ‖2≥‖ Az − b ‖2. Now

‖ Ay − b ‖2 = ‖ (Ay −Az) + (Az − b) ‖2
= ‖ (Ay −AXb) + (AXb− b) ‖2
= ‖ (Ay −AA†b) + (AA†b− b) ‖2
= ‖ A(y −A†b) + (AA†b− b) ‖2 .

By part ii) of Theorem (13.1), Im − AA† is the projection onto col(A)⊥ so,
in particular, AA†b − b = (AA† − Im)b is in col(A)⊥. On the other hand,
A(y −A†b) ∈ col(A) so we can conclude that

〈A(y −A†b), (AA† − Im)b〉 = 0.

Consequently, by the Pythagorean theorem, Theorem (5.3),
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‖ A(y −A†b) + (AA†b− b) ‖2 = ‖ A(y −A†b) ‖2 + ‖ AA†b− b ‖2
≥ ‖ AA†b− b ‖2
= ‖ AXb− b ‖2 .

Note that we get equality if and only if ‖ A(y − A†b) ‖2= 0, if and only if
y − A†b is in the null space of A.

The next two results characterize the least squares solution to Ax = b in
terms of a given {1, 3}-inverse to A.

Theorem 13.4 Let A be an m × n matrix, b ∈ Cn, b /∈ col(A). Assume X
is a {1, 3}-inverse to A. Set z = Xb. Then y is a least square solution to
Ax = b if and only if ‖ Ay − b ‖=‖ Az − b ‖ .

Proof We leave this as an exercise.

Theorem 13.5 Let A be an m× n matrix, b ∈ Cn, and b /∈ col(A). Assume
X is a {1, 3}-inverse to A and y ∈ Cn. Then y is a least squares solution to
Ax = b if and only if Ay = AXb = (AA†)b.

Proof Set z = AXb = (AA†)b. We first show that the matrix equation
Av = z has a solution. Since AX = AA† is the orthogonal projection onto
col(A), it follows that (AX)2 = AX. Therefore (AX)z = (AX)(AXb) =
(AX)2b = AXb = z. Thus, A[XAXb] = z as required.

Assume now that y is a least squares solution to Ax = b. Then ‖ Ay − b ‖=
‖ AXb− b ‖ by Theorem (13.4). However,

‖ Ay − b ‖2 = ‖ (Ay −AA†b) + (AA†b− b ‖2
= ‖ Ay −AA†b ‖2 + ‖ AA†b− b ‖2 .

It follows that ‖ Ay −AXb ‖2= 0, so by positive definiteness, Ay = AXb.

Conversely, assume Ay = AXb. Then Ay − AXb = 0m, from which we
conclude that ‖ Ay − b ‖2=‖ AXb − b ‖. By Theorem (13.4), y is a least
squares solution to Ax = b.

Finally, we can describe all least square solutions to Ax = b.
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Theorem 13.6 Assume X is a {1, 3}-inverse of A. Set v = Xb. Then the
set of least square solutions to Ax = b is v + col(In −XA).

Proof Let z ∈ Cn and set u = (In −XA)z and y = v + u. Then

Ay = A(v + u)

= Av +Au

= AXb+A(In −XA)z

= AXb+ (A−AXA)z

= AXb,

since X is {1, 3}-inverse of A, whence AXA = A. By Theorem (13.5) it
follows that y is a least squares solution to Ax = b.

Conversely, assume y is a least squares solution to Ax = b. Set u = y−Xb.
Then Au = A(y − Xb) = Ay − AXb = 0m by Theorem (13.5). Now (I −
XA)u = u−XAu = u− 0m = u so that u ∈ col(In −XA) and we are done.

In our final result, before we turn to some examples, we consider the situation
where rank(A) < n and determine among all least squares solutions to Ax =
b one of minimal norm. As we will see the pseudoinverse of A makes an
appearance.

Theorem 13.7 Set z = A†b and assume y is a least squares solution to
Ax = b. Then ‖ z ‖≤‖ y ‖.

Proof By Theorem (13.6) there exists u = col(In−A†A) so that y = z+u.
Note that (In −A†A)∗ = (In −A†A) and therefore

(In −A†A)∗A† = (In −A†A)A† =

A† −A†AA† = A† −A† = 0n×m.

It follows that every vector in col(In − A†A) is orthogonal to A†b. Then by
Theorem (5.3)

‖ y ‖2=‖ z + u ‖2=‖ z ‖2 + ‖ u ‖2≥‖ z ‖2 .

We now do several examples to illustrate how least squares are practically
used. In all cases the matrix A will be real so that A∗ = Atr.
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Example 13.1 Find all the least square solutions for the inconsistent linear
system Ax = b where

A =




1 0
0 1
1 1
1 2


 , b =




14
22
6
7




AtrA =

(
1 0 1 1
0 1 1 2

)



1 0
0 1
1 1
1 2


 =

(
3 3
3 6

)

Atrb =

(
1 0 1 1
0 1 1 2

)



14
22
6
7


 =

(
27
42

)
.

The matrix AtrA is invertible so there is a unique solution

1

9

(
6 −3
−3 3

)(
27
42

)
=

(
4
5

)
.

Using Least Squares to Fit a Function to Data

It is a common feature of nearly all scientific domains to collect data among
variables and then to find a functional relationship amongst the variables that
best fits the data. In the simplest case one uses a linear function. Geometri-
cally, this amounts to finding the line which best fits the data points when
graphed in a coordinate plane.

More specifically, suppose we want to fit the experimentally obtained n data
points (x1, y1), (x2, y2), . . . , (xn, yn) by a linear function y = f(x) = a+ bx.

If the points were all collinear and on the graph of this linear function then
all equations

y1 = a+ bx1

y2 = a+ bx2

...

yn = a+ bxn

would be satisfied. This can be written as a matrix equation
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1 x1
1 x2
...

...
1 xn




(
a
b

)
=




y1
y2
...
yn.


 (13.4)

If we let A =




1 x1
1 x2
...

...
1 xn


 ,y =




y1
y2
...
yn


 and m =

(
a
b

)
then (13.4) can be written

as

y = A

(
a
b

)
. (13.5)

If the data points are not collinear then there will be no a and b satisfying
these equations and the system represented by (13.5) is inconsistent. In this
situation, approximating yi by y

′
i = a+ bxi results in an error ei = yi − y′i.

Now set e =




e1
e2
...
en


 =




y1 − y′1
y2 − y′2

...
yn − y′n


 . Now the equations become

y = A

(
a
b

)
+ e,y −A

(
a
b

)
= e. (13.6)

The least squares solution determines the a and b such that ‖ e ‖ is minimized
and is given by

(
a
b

)
= (AtrA)−1(Atry).

The line given by the least squares solution is called the line of best fit or
the regression line of the data. The norm of the error vector e is the least

squares error.

Example 13.2 A significant sample was taken of the heights of boys, ages
11–17. The average heights by age group are given in the following table:
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Age (years) Height (inches)
11 55.1
12 57.6
13 60.8
14 63.3
15 66.2
16 68.1
17 69.1

We will find the regression line of this data.

Let A =




1 11
1 12
1 13
1 14
1 15
1 16
1 17




and y =




55.1
57.6
60.8
63.3
66.2
68.1
69.1




. Then AtrA =

(
7 98
98 1400

)
and

Atry =

(
440.2
6231.2.

)

The reduced echelon form of

(
7 98 | 440.2
98 1400 | 6231.2

)
is

(
1 0 | 28.74
0 1 | 2.44.

)

Therefore the regression line has equation y = 28.74+ 2.44x. The least square
error is 1.6.

Fitting Data to a Polynomial

Suppose you hypothesize that a set of data (x1, y1), (x2, y2), . . . , (xn, yn) is
best modeled by a k-degree polynomial y = f(x) = a0 + a1x+ · · ·+ akx

k. We
know there is a unique polynomial of degree n − 1 whose graph contains all
the points so we may assume that k < n − 1. If the data points were all on
the graph of this polynomial then for each i the equation

yi = f(xi) = a0 + a1xi + a2x
2
i + · · ·+ akx

k
i (13.7)

would be satisfied.

Set A =




1 x1 x21 . . . xk1
1 x2 x22 . . . xk2
...

...
... . . .

...
1 xn x2n . . . xkn


 ,y =




y1
y2
...
yn


 ,m =




a0
a1
...
ak
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The equations (13.7) can be represented by the single matrix equation

y = Am. (13.8)

If the points do not all lie on some polynomial of degree at most k then the
system will have no solution. In this case, we find a best fit using the least
squares method.

Note that the matrix obtained by taking the first k + 1 rows of A,




1 x1 x21 . . . xk1
1 x2 x22 . . . xk2
...

...
... . . .

...
1 xk+1 x2k+1 . . . xkk+1


 ,

is a Vandermonde matrix. This matrix has determinant
∏

i<j(xj − xi) 6= 0.
Therefore, the rank of A is k+ 1 and the least squares solution is unique and
equal to

(AtrA)−1(Atry). (13.9)

We illustrate with some examples.

Example 13.3 Find the quadratic polynomial which is the best fit to the five
points (1, -2), (2,0.2), (3,3.9), (4,10), (5, 17.9).

Set A =




1 1 1
1 2 4
1 3 9
1 4 16
1 5 25



,y =




−2
0.2
3.9
10
17.9




Then f(x) = a0 + a1x+ a2x
2 where



a0
a1
a2


 = (AtrA)−1(Atry).

AtrA =




5 15 55
15 55 225
55 225 979


 , Atry =




30
139.6
641.4


 .

The reduced echelon form of the matrix




5 15 55 | 30
15 55 225 | 139.6
55 225 979 | 641.4


 is



520 Advanced Linear Algebra


1 0 0 | −1.98
0 1 0 | −0.95
0 0 1 | 0.99


 .

Therefore the quadratic polynomial which best fits these five points is

f(x) = −1.98− 0.95x+ 0.99x2

Using this quadratic we compute the vector y′ =




f(1)
f(2)
f(3)
f(4)
f(5)




=




−1.95
0.05
4.03
9.97
17.89



. The

error vector is e = y − y′ =




−0.05
0.15
−0.13
0.03
0.01



. The least square error

is ‖ e ‖= 0.04.

Example 13.4 Find the cubic polynomial which is the best fit to the five
points (−2,−5), (−1, 1), (0,−1), (1,−1), (2, 6).

Set A =




1 −2 4 −8
1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8



,y =




−5
1
−1
−1
6



.

If f(x) = a0 + a1x + a2x
2 + a3x

3 is the cubic polynomial of best fit then

m =




a0
a1
a2
a3


 is the solution to (AtrA)m = (Atry).

Direct computation gives AtrA =




5 0 10 0
0 10 0 34
10 0 34 0
0 34 0 130


 , Atry =




0
20
4
87


 .

The reduced echelon form of




5 0 10 0 | 0
0 10 0 34 | 20
10 0 34 0 | 4
0 34 0 130 | 87


 is the matrix
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1 0 0 0 | −0.57
0 1 0 0 | −2.25
0 0 1 0 | 0.29
0 0 0 1 | 1.25


 .

Therefore the cubic polynomial which is the best fit to this data is

g(x) = −0.57− 2.25x+ 0.29x2 + 1.25x2.

Using this cubic we compute the vector y′ =




g(−2)
g(−1)
g(0)
g(1)
g(2)




=




−4.93
0.71
−0.57
−1.29
6.07



. The

error vector is e = y− y′ =




−0.07
0.29
−0.43
0.29
−0.07



. The least square error is ‖ e ‖= 0.60.

Fitting Data to an Exponential Function

Sometimes the graph of some data or the context in which it is collected
suggests that the most appropriate approximation for the data is by an expo-
nential function; for example, growth of the national income or the amount of
a radioactive material present at given time intervals.

Thus, given some points (x1, y1), (x2, y2), . . . , (xn, yn) we wish to approximate
this data by a function y = Cekt for some constants C and k.

Note that for such a function, ln y = ln C + kt is a linear function of t. We
can therefore use the least squares method for finding ln C and k from the
data (x1, ln y1), (x2, ln y2), . . . , (xn, ln yn).

Example 13.5 Find the exponential function y = Cekt which best approxi-
mates the following 6 data points:

(−2, .14), (−1, .32), (0, .55), (1, 1.24), (2, 2.44), (3, 4.75).

Taking the natural logs of the y-values we get the data points:

(−2,−1.97), (−1,−1.14), (0,−.60), (1, .22), (2, .89), (3, 1.56).
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We now need to find the least squares solution to Ax = b where A =




1 −2
1 −1
1 0
1 1
1 2
1 3




and b =




−1.97
−1.14
−.60
.22
.89
1.56



. The matrix form of the normal equations for this least

squares problem is as follows:

AtrAx′ = Atrb,

(
6 3
3 19

)
x′ =

(
1.04
11.76.

)

The solution to this is x′ =

(
−.524
.702

)
. Then C = e−.524 = .59, k = .702. Since

e.702 ∼ 2.02, the data is approximated by the function h(x) = .59(2.02)t. We
compute

the vector y′ =




h(−2)
h(−1)
h(0)
h(1)
h(2)
h(3)




=




0.14
0.29
0.59
1.19
2.41
4.86



. The error vector is e = y − y′ =




0
0.03
−0.04
0.05
0.03
−0.11



. The least square error is ‖ e ‖= 0.13.

The QR Computation of Least Squares Solutions

Let A be a realm×n matrix, b ∈ Rn, b /∈ col(A). It is sometimes the case that
the entries in A are highly sensitive to small changes, that is, small errors in the
calculation of the entries in AtrA can cause significant errors in the solution
of x′. When the matrix AtrA is invertible, it is therefore sometimes better to
calculate the least squares solution using the QR factorization of the matrix
A.

We recall that if A is an m× n real matrix then there is an m× n matrix Q
whose columns form an orthonormal sequence (and a basis for col(A)) and an
invertible n× n upper triangular matrix R such that A = QR.
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In this case the matrix form of the normal equations, (AtrA)x′ = Atrb, be-
comes

[(QR)tr(QR)]x′ = (QR)trb. (13.10)

Using the fact that (BC)tr = CtrBtr, (13.10) becomes

[Rtr(QtrQ)R]x′ = RtrQtrb (13.11)

Here we have made use of the fact that Q is an orthogonal matrix to conclude
that QtrQ = In. Also, since R is invertible, so is Rtr, and therefore it can
be canceled from both sides. Making use of these two conditions (13.11) now
becomes

Rx′ = Qtrb,x′ = R−1(Qtrb). (13.12)

Example 13.6 Find the least squares solution to the inconsistent system

Ax = b where A =




1 3 4
1 3 2
1 −1 2
1 −1 0


 and b =




2
8
4
6


 .

The Gram–Schmidt process yields the following orthonormal basis for col(A) :

{




1
2
1
2
1
2
1
2


 ,




1
2
1
2

− 1
2

− 1
2


 ,




1
2

− 1
2

1
2

− 1
2


}.

Set Q =




1
2

1
2

1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2 − 1

2 − 1
2


. Q is an orthonormal matrix and col(Q) =

col(A). If we set R = QtrA =



2 2 4
0 4 2
0 0 2


 then A = QR. R−1 =




1
2 − 1

4 − 3
4

0 1
4 − 1

4
0 0 1

2


 , Qtrb =




10
0
−4


 and x′ = R−1(Qtrb) =




8
1
−2


 .

An excellent source for real-world applications of least squares is ([10]).

Exercises
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1. Prove Corollary (13.1).

2. Prove Theorem (13.4).

3. Assume A is a complexm×nmatrix and A = BC is a full rank factorization
of A. Let b ∈ Cm. Prove that the matrix version, A∗Ax = A∗b, of the normal
equations is equivalent to the matrix equation B∗Ax = B∗b.

In Exercises 4–7 show that the given vector b is not in the column space of
the given matrix A. Verify that the columns of A are linearly independent.
Write down the normal equations least squares solution to the linear system
Ax = b and find the unique least square solution x′.

4. A =




1 1
1 −3
−2 2


 , b =




9
3
−6




5. A =



1 2
1 1
1 3


 , b =




1
−2
7




6. A =




1 1
1 1
1 1
1 −1


 , b =




2
1
3
18




7. A =




1 1 1
1 1 1
1 1 −1
1 −1 1


 , b =




1
2
0
0




In Exercises 8 and 9, show that the given vector b is not in the column space
of the given matrix A. Verify that the columns of A are linearly dependent.
Write down the normal equations for the least squares solution to the linear
system Ax = b and find the general least square solution x′.

8. A =




1 0 2
0 1 −1
1 2 0
2 1 3


 .b =




1
−1
−1
0


.

9. A =




1 1 1 0
1 2 −1 2
1 3 1 2
−1 −2 −1 −1
−2 −4 0 −3



, b =




1
−1
1
0
0



.

In Exercises 10 and 11, verify that the given orthonormal sequence is a basis for
the column space of the given matrix A. Use this to obtain a QR factorization
for A and apply this to find the least square solution to the inconsistent linear
system Ax = b for the given vector b.
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10. A =




1 1
2 8
−2 −5


 ,O = {




1
3
2
3

− 2
3


 ,



− 2

3
2
3
1
3


}, b =



2
7
5


.

11. A =




1 2 3
1 2 2
1 −3 −1
1 −3 −2


 ,O = {




1
2
1
2
1
2
1
2


 ,




1
2
1
2

− 1
2

− 1
2


 ,




1
2

− 1
2

1
2

− 1
2


}, b =




−1
1
2
4


 .

In Exercises 12 and 13, find the regression line and the least squares error for
the given data.

12. (−2,−3.8), (−1,−1.1), (0, 1.9), (1, 5.2), (2, 8.1)

13. (−1, 3.3), (0, 1.6), (1,−.8), (2,−2.5), (3,−4.4)

In Exercises 14 and 15, find the quadratic polynomial which best approximates
the given data.

14. (−1, 4.1), (0, 2.3), (1, 2.6), (2, 4.2), (3, 8.2)

15. (−1, 1.0), (0, .7), (1, 1.2), (2, 2.5), (3, 5.0), (4, 8.7)

In Exercises 16 and 17, find the exponential function y = Cekt which best
approximates the given data.

16. (−1, .2), (0, .7), (1, 1.5), (2, 8.5), (3, 36.4)

17. (−2, 3.1), (−1, 2.8), (1, 2.3), (2, 2.0), (4, 1.6)
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13.2 Error Correcting Codes

In this section we demonstrate how finite dimensional vector spaces over a
finite field can be used to construct error correcting codes.

What You Need to Know

To be successful in understanding the material of this section you should
already have gained mastery of the following concepts: a field, vector space
over a field, span of a sequence of vectors, spanning sequence of a vector
space, a sequence of vectors is linearly independent, basis of a vector space,
dimension of a vector space, and a finite field.

Error correcting codes are used whenever a message is transmitted in a digital
format over a “noisy” communication channel. This could be a phone call
over a land line or wireless, email between two computers, a picture sent from
outer space, an MP3 player interpreting digital music in a file, a computer
memory system, and many others. The “noise” could be as a result of human
error, lightning, solar flares, imperfections in equipment, deterioration of a
computer’s memory, and so on, which might introduce errors by exchanging
some of the digits of the message for other, incorrect digits.

The basic idea is to introduce redundancy into the message. This is a delicate
task since one needs to insure that there is enough redundancy so that there
is a high probability that errors can be detected and corrected, but not so
much redundancy that one has to send messages which are long relative to
what we wish to transmit, consequently reducing the “information rate” and
making the transmission too costly.

There are six elements to a digital communication system. It begins with
a message, which is a string of symbols. This is input to an encoder which
adds redundancy (for example it could repeat the message) and creates a
codeword. The codeword is sent over the noisy communication channel, which
randomly introduces errors (but with low probability for each symbol). Out
the other end comes a received string of symbols. This is input to a decoder
which detects whether any errors have occurred. In a simple system which
only detects errors, if an error has occurred the sender is informed of this
and asked to resend the message. In a more complicated scheme, the decoder
corrects errors as well as detects them and then sends the message on to the
intended recipient. This is pictured schematically in Figure (13.1).

Definition 13.3 By a message we will mean a string of symbols in some
finite alphabet. The message is binary if the alphabet has only two symbols.
It is said to be q-ary, with q some natural number, if the alphabet has q
elements. Typically, the alphabet is a finite field, Fq, and consequently q is
usually a prime power.
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FIGURE 13.1
Sending a Mmessage over a noisy channel.

We ordinarily assume the channel satisfies the following properties:

1) the probability that a symbol α from the alphabet is transmitted and α is
received is independent of α; and

2) the probability that a symbol α is sent and β 6= α is received is independent
of α and β.

Suppose the alphabet has q symbols and the probability that α is sent and
received is p. Then the probability that α is sent but α is not received is 1−p.
Since there are q− 1 possibilities for the received symbols and each is equally
likely, by assumption 2) it follows that the probability that α is sent and a
fixed β 6= α is received is 1−p

q−1 .

It is also assumed that the channel, though noisy, is pretty good, meaning
that p is close to one and, therefore, 1− p is small.

Example 13.7 We want to send a message about how to color pixels (in
some given order). At any location one can color it “nothing” or white, red,
blue, or yellow. In binary, these can be encoded in the following way where we
treat 0 and 1 as the elements of the finite field F2:

white = (0, 0), red = (1, 0), blue = (0, 1), yellow = (1, 1). (13.13)

These are the message digits that we wish to send but in the present form it is
not particularly useful since if an error occurs, we cannot tell since it simply
transforms one valid message into another valid message.

We can improve this by adding redundancy in the form of a check digit
–adding a third digit to each message so that the number of ones is even, or
the same thing, the sum of the digits is zero (remember our digits are elements
of the field F2). With the introduction of this redundancy, the expressions we
use to communicate the colors become
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white = (0, 0, 0), red = (1, 0, 1), blue = (0, 1, 1), yellow = (1, 1, 0). (13.14)

Now if one error occurs it can be detected. This information could be com-
municated and a request made for resending the message, which is, of course,
costly and time consuming; if we want to detect and correct errors then more
redundancy is needed.

We can systematically add greater redundancy in the following way: If w is
one of the four pairs of (13.13), follow w with a check digit and then with w

again. Thus,

(0, 0) → (0, 0, 0, 0, 0), (1, 0)→ (1, 0, 1, 1, 0)

(0, 1) → (0, 1, 1, 0, 1), (1, 1)→ (1, 1, 0, 1, 1). (13.15)

Now if a single error occurs we can not only detect it but we can correct it
by decoding the received vector as the one among the four vectors of (13.15)
which is “closest” to it, in the sense that they differ in the minimum number
of digits.

For example, if a received vector has a single one and four zeros then it differs
from (0,0,0,0,0) in only one place but from all the others in two or more
places. Therefore we would decode it as (0,0,0,0,0) = white.

To make the ideas of Example (13.7) more precise requires that we introduce
some definitions.

Definition 13.4 Let Fq be a finite field. By a q-ary word of length n we
will mean an element of the vector space Fn

q written as a row.

Definition 13.5 Let x = (a1 a2 . . . an) be a q-ary word of length n. Then
the weight of x, denoted by wt(x), is the number of i such that ai 6= 0.

The following property of the weight function is fundamental. We leave it as
an exercise.

Theorem 13.8 Let x,y ∈ Fn
q . Then wt(x+ y) ≤ wt(x) + wt(y).

Making use of the weight function we can introduce a concept of distance be-
tween words first formulated by the coding theory pioneer Richard Hamming.
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Definition 13.6 Let x = (a1 a2 . . . an) and y = (b1 b2 . . . bn) be two q-ary
words of length n. Then the Hamming distance between x and y, denoted
by d(x,y), is the number of i such that ai 6= bi.

Note that if x = (a1 . . . an),y = (b1 . . . bn) are q-ary words then ai 6= bi if
and only if the ith component of x−y is non-zero. Consequently, we have the
following:

Theorem 13.9 Let x,y be words from Fn
q . Then d(x,y) = wt(x − y). In

particular, d(x,0n) = wt(x).

In our next result we collect some properties of the Hamming distance func-
tion.

Theorem 13.10 i) For any vectors x,y ∈ Fn
q , d(x,y) ≥ 0 with equality if

and only if x = y.

ii) For vectors x and y in Fq, d(x,y) = d(y,x).

iii) The “triangle inequality holds”: For vectors x,y, z ∈ Fq d(x, z) ≤
d(x,y) + d(y, z).

The first and second should be clear. The third is left as an exercise.

An important concept, for both conceptual and theoretic purposes, is the
notion of a ball of radius r about a vector w.

Definition 13.7 Let w be a word in Fn
q and r a natural number. The ball of

radius r with center w, denoted by Br(w), consists of all the q-ary words
of length n whose Hamming distance from w is less than or equal to r :

Br(w) = {x ∈ Fn
q : d(w,x) ≤ r}.

Example 13.8 The ball of radius one with center at (0,0,0,0,0) in F2 consists
of (0,0,0,0,0) and all the words of weight one. For w = (1, 0, 1, 1, 0),

B1(w) =








1
0
1
1
0




tr

,




0
0
1
1
0




tr

,




1
1
1
1
0




tr

,




1
0
0
1
0




tr

,




1
0
1
0
0




tr

,




1
0
1
1
1







.

The balls of radius one centered at the four words shown in (13.15) do not
intersect.
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One can easily count the number of vectors in a ball of radius r. We state the
result and leave it as a exercise.

Theorem 13.11 Let w ∈ Fn
q .

i) Let t be a nonnegative integer. Then the number of x ∈ Fn
q such that

d(w,x) = t is
(
n
t

)
(q − 1)t.

ii) Let r be a nonnegative integer. Then the number of vectors in Br(w) is

1 + n(q − 1) +

(
n

2

)
(q − 1)2 + · · ·+

(
n

r

)
(q − 1)r.

We are now ready to define what we mean by a code with alphabet Fq, where
q is a power of a prime.

Definition 13.8 A code is a subset C of some finite vector space Fn
q . The

length of the code is n. If the number of elements in C is K then we say that
C is an (n,K)-code over Fq.

A code C of length n is said to be a linear code over Fq, if C is a subspace
of Fn

q . If the dimension of C is k, then we say that C is an (n,k)-linear code
over Fq.

Example 13.9 The collection of four vectors in (13.15) is a (5,2)-linear code
over F2.

In Example (13.7) we added sufficient redundancy so that the Hamming dis-
tance between any pairs of code words is always large enough so that we could
detect and correct single errors. Making this rigorous requires some further
definitions.

Definition 13.9 Let C be a code of length n over Fq. The minimum dis-
tance of C is

d(C) = min{d(x,y) : x,y ∈ C,x 6= y}.

In other words, it is the minimum distance obtained between any two distinct
codewords from C.

The importance of the minimum distance of a code is indicated by the follow-
ing result:
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Theorem 13.12 Let C be an (n,K)-code over Fq and assume that d(C) = d.
Then the following hold:

i) C can detect up to e errors as long as d ≥ e+ 1.

ii) C can correct up to c errors as long as d ≥ 2c+ 1.

Conceptually, i) holds because the ball of radius d− 1 centered at a codeword
does not contain any other codewords. Also, ii) holds because two balls with
radius c such that 2c+ 1 ≤ d and centered at distinct codewords are disjoint.

Proof i) Suppose that a codeword w is transmitted, the word x is received,
and there are e errors with e < d. The number of errors is simply d(w,x).
Since d(w,x) = e < d it cannot be that x is another codeword and, conse-
quently, we can detect that an error occurred.

ii) Suppose w is transmitted and x is received with c errors, where 2c+1 ≤ d.
We claim that for any codeword w′ 6= w that d(x,w′) > c and therefore
amongst C,w is the unique nearest neighbor to x. To see this claim, assume
to the contrary that d(x,w′) ≤ c for some codeword w′ 6= w. Then

d ≤ d(w,w′) ≤ d(w,x) + d(x,w′) ≤ c+ c = 2c < d (13.16)

by the triangle inequality and the definition of d. We therefore have a contra-
diction.

There are many advantages to working with linear codes as contrasted with
more general codes. One is that they can be constructed using matrix mul-
tiplication. Another is that the computation of the minimum distance of the
code is simplified and does not require computing the distances between every
pair of vectors in the code. Before showing this we require another definition.

Definition 13.10 Let C be an (n,k)-linear code over Fq. The minimum
weight of C, denoted by m(C), is

min{wt(w) : w ∈ C,w 6= 0n}.

This next theorem indicates the relationship between d(C) and m(C) for a
linear code.

Theorem 13.13 Let C be an (n,k)-linear code over Fq. Then d(C) = m(C).
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Proof By the definition of minimal distance, d(C) = min{d(x,y) : x,y ∈
C,x 6= y}. Since d(x,y) = wt(x − y), it therefore follows that d(C) =
min{wt(x − y) : x,y ∈ C,x 6= y}. Since C is a linear code, as (x,y) runs
over all pairs from C with x 6= y, x − y runs over all nonzero vectors in C.
Thus, min{wt(x− y) : x,y ∈ C,x 6= y} = m(C) as claimed.

As we shall see, linear codes can be constructed with a designed minimum
weight and in this way no computation will be required to determine the
minimum distance and, therefore, the error detecting and error correcting
capacity of the code. In the next example we show how the code of (13.15)
can be constructed from the original message by matrix multiplication.

Example 13.10 Let G =

(
1 0 1 1 0
0 1 1 0 1

)
. Then

(0, 0)G = (0, 0, 0, 0, 0), (1, 0)G = (1, 0, 1, 1, 0)

(0, 1)G = (0, 1, 1, 0, 1), (1, 1)G = (1, 1, 0, 1, 1).

Notice that the sequence of rows of the matrix G of Example (13.10) is a basis
for this linear code. This is an example of a generator matrix for a code.

Definition 13.11 Let C be an (n,k)-linear code over Fq. Any k×n matrix G
whose rows consists of a basis for C is a generator matrix of C. The matrix
G is said to be systematic if G has the form (IkB) where B is a k× (n− k)
matrix.

Note that since the rows of G are a basis, the rank of G is equal to k.

We can use a generator matrix to encode a message of length k by matrix
multiplication: Given a message m = (a1, a1, . . . , ak), encode this as mG. If
G is systemic then the first k digits of the codeword mG will be the message
m.

In addition to encoding messages on the transmission end, we need a decoder
on the receiving end to detect whether errors have occurred, correct them, if
possible, and deliver the original message to the user. The parity check matrix
will fulfill this purpose. First, some more definitions.

Definition 13.12 Let x = (a1 a2 . . . an) and y = (b1 b2 . . . bn) be two
vectors in Fn

q . Then the dot product of x and y, denoted by x � y, is map
from Fn

q × Fn
q to F given by

a1b1 + a2b2 + . . . anbn.
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The following summarizes the fact that the dot product is a symmetric bilinear
form on Fn

q .

Theorem 13.14 Let x,y, z be vectors in Fn
q and c ∈ Fq. Then the following

hold:

i) x � y = y � x.

ii) x � [y + z] = x � y + x � z.

iii) c[x � y] = (cx) � y = x � (cy).

Proof i) This holds since the multiplication in Fq is commutative: If x =
(x1 . . . xn),y = (y1 . . . yn) then for each i, xiyi = yixi.

ii) This holds since the distributive property holds in Fq: If also z = (z1 . . . zn)
then for each i we have

xi(yi + zi) = xiyi + xizi.

iii) This holds because the multiplication in Fq is associative and commutative:
For each i

c(xiyi) = (cxi)yi = (xic)yi = xi(cyi).

We will say that q-ary words x and y are orthogonal if x · y = 0.

Definition 13.13 Let C be a subspace (linear code) of Fn
q . The orthogonal

complement to C, denoted by C⊥, is {y ∈ Fn
q |x ·y = 0 for all y ∈ C}. When

C is considered a linear code we refer to C⊥ as the dual code.

Theorem 13.15 Assume C is an (n,k)-linear code over Fq. Then the dual
code C⊥ is an (n,n-k) linear code.

Proof Since the dot product is a symmetric bilinear form, it follows that C⊥

is a subspace of Fn
q , so it remains to prove that dim(C⊥) = n− k.

Let A be the matrix whose ith row is xi. It then follows that y ∈ C⊥ if and
only if ytr is in the null space of A. By the rank-nullity theorem for matrices,
it follows that dim(C) + dim(C⊥) = n, so that dim(C⊥) = n− k.
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Example 13.11 For the code C = Span ((1, 0, 1, 1, 0), (0, 1, 1, 0, 1)) the dual
code is Span ((1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 1, 1, 0, 0))which consists of the eight
vectors

(0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 1, 1, 0, 0)

(1, 1, 0, 1, 1), (0, 1, 1, 1, 0), (1, 0, 1, 0, 1), (0, 0, 1, 1, 1).

We can now define what is meant by a parity check matrix for an linear code
C over Fq.

Definition 13.14 Let C be an (n, k)-linear code over Fq. Any generator ma-
trix H for the dual code C⊥ of C is a parity check matrix for C.

Example 13.12 From Example (13.11) the matrix

H =



1 0 0 1 0
0 1 0 0 1
0 0 1 1 1


 ,

is a parity check matrix for the binary code

C = {(0, 0, 0, 0, 0), (1, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 1, 1)}.

In part, the importance of the parity check matrix is indicated by the following:

Theorem 13.16 Let C be an (n, k)-linear code over Fq and H a parity check
matrix. Then w ∈ Fn

q is a codeword if and only if Hwtr = 0n−k.

Proof Suppose w ∈ C. Then w is perpendicular to every row of H by the
definition of H. In particular, the product of w with each row of Htr is zero
and therefore Hwtr = 0n−k.

Conversely, the rank of H is n − k since its rows are linearly independent.
Therefore the null space of H has dimension n − (n − k) = k. However,
null(H) contains {wtr : w ∈ C}, which has dimension k and therefore this is
all of null(H).

It is especially easy to obtain a parity check matrix for a linear code C from
a systematic generator matrix G = (IkB) for C. This is made explicit in the
next result.
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Theorem 13.17 Assume that G = (IkB) is a systematic generator matrix
for an (n, k)-linear code C over Fq. Then H = (−BtrIn−k) is a partity check
matrix for C.

Proof H is an (n− k)×n matrix and the last n− k columns are a basis for
Fn−k
q . Therefore, H has rank n − k. By Theorem (13.16) we will be done if

we can show that HGtr = 0(n−k)×k. We compute this product:

HGtr = (−BtrIn−k)

(
Ik
Btr

)
= −BtrIk + In−kB

tr = −Btr +Btr = 0(n−k)×k.

Example 13.13 The matrix G =

(
1 0 1 1 0
0 1 1 0 1

)
is a systematic genera-

tor matrix for the code C = Span ((1, 0, 1, 1, 0), (0, 1, 1, 0, 1)). The parity check

matrix we obtain from this is H ′ =



1 1 1 0 0
1 0 0 1 0
0 1 0 0 1


 .

In our next result we indicate how a parity check matrix H for a linear code
C can be used to determine the minimum weight of C.

Theorem 13.18 Let H be a parity check matrix for an (n,k)-code C over Fq.
Assume that every sequence of d− 1 columns of H is linearly independent but
some sequence of d columns is linearly dependent. Then m(C) = d.

Proof Denote by cj , 1 ≤ j ≤ n, the columns of H. Suppose for the sake of
the proof that the sequence of the first d columns, S = (c1, . . . , cd) of H, is
linearly dependent. Let

a1c1 + a2c2 + · · ·+ adcd = 0n

be a non-trivial dependence relation of S. Then the vector x =




a1
a2
...
ad
0
...
0




satisfies
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Hx = 0n−k and therefore w = xtr ∈ C by Theorem (13.16). Since wt(w) = d,
we conclude that m(C) ≤ d.

On the other hand, suppose y is a vector with weight less than d and Hytr =
0n−k. Suppose y is nonzero and let the nonzero entries in y be bi1 , bi2 , . . . , bit
where t < d. Since Hytr = 0n−k, we conclude that

bi1ci1 + bi2ci2 + · · ·+ bitcit = 0n−k.

This implies that the sequence of columns (ci1 , ci2 , . . . , cit) is linearly depen-
dent. Since t < d, this contradicts our hypothesis. Thus, no nonzero vector in
C has weight less than d and the minimum weight of C is exactly d.

If the columns of a parity check matrix H of a linear code C are all distinct
then from Theorem (13.18) we can conclude that the minimum weight is at
least two and we can detect a single error. If no two columns ofH are multiples
of one another, that is, every pair of columns of H is linearly independent then
the minimum weight of the code is greater than equal to three and we can
correct single errors. Note that for binary codes, a pair of nonzero vectors is
linearly independent if and only if they are distinct.

Example 13.14 Let H be the matrix whose columns are all the nonzero
vectors in F3

2. We use H as the parity check matrix of a code. We will
treat the vectors in F3

2 as a binary expression for a natural number where

1
0
0


 = 1,



0
1
0


 = 2,



0
0
1


 = 4. This will be of use in our decoding scheme.

We order the columns from 1 to 7. Thus, H =



1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


 .

Since the sequence of standard basis vectors of F3
2 is a subsequence of the

columns of H, it follows that H has rank three. Let H(3, 2) denote the code
that is dual to the row space of H. In this notation the (3,2) indicates that the
columns of the parity check matrix H are the 3-vectors over F2. This resulting
code is referred to as a binary Hamming code. It is a linear (7,4)-code over
F2.

Since the columns of H are all distinct and this is a binary matrix, the min-
imum weight of H(3, 2) is at least 3. On the other hand, the sum of the first
three columns of H is the zero vector and therefore the minimum weight is
exactly 3. Thus, H(3, 2) is a 1-error correcting code.

Notice that a ball of radius one centered at a word contains 1 + 7 = 8 words.
If we consider the balls of radius one around the 16 codewords then these are
disjoint and so the number of words they jointly cover is 16 × 8 = 128 = 27.
That, is, each word is contained in exactly one of these balls.
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Let ei, i = 1, 2, . . . , 7 denote the standard basis of F7
2. Now suppose some

codeword w is sent, x is received, and one error occurred, say in the ith

position. Then by the definition of ei,x = w+ei. We can deduce that an error
has occurred since Hxtr 6= 03. But we get more information. The nonzero
vector Hxtr is called the syndrome of x, and is denoted by S(x). In this
example, it will tell us precisely where the error occurred.

Since x = w + ei, S(x) = Hxtr = H(wtr + etri ) = Hwtr + Hetri = Hetri
because w is in the code and therefore Hwtr = 03.

Since ei is the ith standard basis vector of F7
2, Hetri is the ith column of H.

This gives us a decoding scheme:

Take the received word x and compute its syndrome S(x) = Hxtr. If S(x) =
03 then x is codeword and the intended message can be obtained from the

received word x (though how depends on the encoder used). If S(x) =



a1
a2
a3


 6=

03 then let i be the natural number with binary expansion a3a2a1. Set w =
x+ ei. This will be a codeword (the unique one at distance one from x) and
we decode as w.

As a concrete example, suppose the word x = (0111110) is received. Then the
syndrome of this vector is

S(x) =



1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1







0
1
1
1
1
1
0




=



0
1
0


+



1
1
0


+



0
0
1


+



1
0
1


+



0
1
1


 =



0
1
1


 .

The vector



0
1
1


 is binary for 6. Thus, if one error occurred it was in the sixth

position. Therefore the codeword sent was (0111100).

The code of Example (13.14) is one in a family of 1-error correcting codes
where the balls of radius one centered at the codewords cover all the words.
Such codes are said to be perfect 1-error correcting codes. We define these
below.
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Definition 13.15 Assume C is a subspace of Fn
q is a d-error correcting codes.

If {Bd(w)|w ∈ C} is a partition of Fn
q then C is said to be a perfect d-error

correcting code.

Hamming Codes

Definition 13.16 Let q be a prime power and n ≥ 2 a natural number. The
number of one-dimensional subspaces of Fn

q is t = qn−1
q−1 . For each one dimen-

sional subspace W of Fn
q , choose the vector w such that Span(w) = W and

such that the first nonzero entry in w is one. Put these vectors into lexico-
graphical order and label them as w1, . . . ,wt. Let H(n, q) be the matrix whose
columns are the vectors w1, . . . ,wt. Let H(n, q) be the linear code with parity
check matrix H(n, q). This is referred to as the Hamming (n, q)-code.

In the next result we state some of the properties of the Hamming codes and
leave the proofs as an exercise.

Theorem 13.19 The code H(n.q) has length t = qn−1
q−1 and dimension t− n.

It has minimum distance 3. It is a perfect one-error correcting code.

Clearly, one needs to do better than be able to correct one error and it is
not difficult to define such codes using Theorem (13.18). We show how to
construct linear codes with a designed minimum weight.

BCH-codes

Let α1, α2, . . . , αq−1 be the nonzero elements of the finite field Fq and let t be
a natural number, t ≤ q − 1.

Let H be the following matrix




1 1 . . . 1
α1 α2 . . . αq−1

α2
1 α2

2 . . . α2
q−1

...
... . . .

...
αt−1
1 αt−1

2 . . . αt−1
q−1



.

We will show that any t columns from H are linearly independent. Suppose
β1, β2, . . . , βt is a subset of {α1, α2, . . . , αq−1}. Consider the square matrix

made from the columns




1
βi
β2
i
...

βt−1
i



. This matrix is




1 1 . . . 1
β1 β2 . . . βt
β2
1 β2

2 . . . β2
t

...
... . . .

...
βt−1
1 βt−1

2 . . . βt−1
t



.
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This is a Vandermonde matrix which is invertible with determinant
Π1≤i<j≤t(βj − βi). Consequently, any sequence of t columns is linearly in-
dependent. Since there are only t rows, the rank of H is exactly t and a
sequence of any t+ 1 columns is linearly dependent.

From what we have shown, if C is the code with parity check matrix H then C
is a (q-1, q-t-1) linear code with minimum weight t+1. Therefore, if 2e+1 ≤ t
this code can be used to correct e errors.

To be useful, that is, actually implemented, requires the existence of an algo-
rithm to do the encoding and decoding. Any generator matrix can be used for
the encoding. An algorithm for decoding exists for these codes, based on ideas
from number theory developed by the Indian mathematician Ramanujan. The
codes are known as BCH codes. They were invented in 1959 by Hocquenghem
and independently by Bose and Ray-Chaudhuri and they have been used fairly
extensively.

Example 13.15 Denote the elements of F11 by {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X}.
Let H be the matrix




1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 X
1 4 9 5 3 3 5 9 4 1
1 3 5 9 4 7 2 8 3 X


 .

This is the parity check matrix for the BCH code BCH(11, 4) of length 10
with designed minimum weight 5 over the field F11 Since there are 10 columns
and the rank is four, the nullity is six and therefore the code BCH(11, 4) has
dimension six and is therefore a (10,6)-linear code over F11 with minimum
weight 5. It is a double error correcting code.

A very accessible treatment of error correcting codes is ([18]).

Exercises

1. Let x,y ∈ Fn
q . Prove that wt(x+ y) ≤ wt(x) + wt(y).

2. Prove part iii. of Theorem (13.10).

3. Prove Theorem (13.11).

A linear code C is called self-dual if it is contained in its dual code C⊥,
equivalently, if every pair of codewords in C is orthogonal.

4. Assume that C is a self-dual (2n,k)-code over the field Fq. Prove that k ≤ n.

5. a) Show that in the binary Hamming code H(3, 2) there are equally many
codewords of weight w and 7− w.

b) Without writing out all the codewords, prove that there are 7 codewords
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of weight 3, and 7 of weight 4 in the binary Hamming code H(3, 2). (Hint:
Make use of a) and the fact that the minimum weight of H(3, 2) is 3.)

6. Let H(3, 2) be the extended binary Hamming code, that is, the code
obtained from H(3, 2) by adding an overall parity check. Prove that this code
contains the zero vector, the all-one vector, and 14 vectors of weight 4. (Hint:
Make use of 2b)).

7. Let x be a word in Fn
2 . Prove that x · x = 0 if and only if the weight of x

is even.

For a vector x = (x1 x2 . . . xn) in Fn
2 let the support of x, spt(x), be the

subset of {1, 2, . . . , n} such that xi 6= 0. For example, the support of (1001011)
is {1, 4, 6, 7}.
8. Let x,y be words in Fn

2 . Prove that x · y = 0 if and only if there are an
even number of elements in the intersection of spt(x) ∩ spt(y).
9. Prove that the extended binary Hamming code H(3, 2) is a self-dual code.
(Hint: Use Exercises 6, 7, and 8).

10. Suppose C is a (23, 12) binary linear code and the minimum weight is
seven. Prove that the balls of radius 3 centered at the codewords are disjoint
and cover all the vectors in F23

2 . (This means that this is a perfect 3-error
correcting code. Such a code exists and is unique. It is known as the binary

Golay code).

11. Prove Theorem (13.19).
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13.3 Ranking Webpages for Search Engines

In this section we show how linear algebra is applied to develop query inde-
pendent rankings of webpages that might be used by a search engine.

What You Need to Know

In order to understand the new material of this section you should have
mastered the following concepts: eigenvalue and eigenvector of a square ma-
trix, nonnegative matrix, positive vector, positive matrix, irreducible matrix,
primitive matrix, probability vector, stochastic matrix, stationary vector of a
stochastic matrix, and the Perron vector of a positive matrix.

Search engines are essential utilities for using the world wide web and have
been since its origins. Their task is to find, among billions of webpages, those
that best answer a query submitted by a user. The query may be a question
(Which team was the last of the major league ball clubs to sign an African
America player?) or a collection of words or phrases. The search engine will
first determine, among all indexed webpages, which ones exceed some measure
of relevance to the query. This will usually return thousands, perhaps even
millions of candidates. This is not of practical use since the time to examine
all of them is prohibitive. Therefore it is necessary for the search engine to
rank order the relevant pages. PageRank, developed by Larry Page and Sergei
Brin who founded the company Google, is such a method and the basis of
the rankings used by the search engine they invented. We will describe how
PageRank computes its ratings by computing eigenvectors for a large square
matrix called the Google matrix. This matrix is constructed from a sparse
matrix (one with mostly zero entries) which captures the link structure of the
world wide web and is designed to have spectral radius one and such that
the eigenvalue one has algebraic multiplicity one. We will also say something
about how a search engine decides if a page is relevant to a query since this,
too, involves linear algebra. Before we turn to these two objectives we first
describe the elements of a search engine to see how determining the relevance
of a web page to a query and ranking web pages fit into the entire process of
a search.

The main elements of a search engine are a crawler module, a page repository,
an indexing module, the indexes, the query module, and the ranking module,
the last two are the ones relevant to this section.

The crawler module is responsible for collecting and characterizing the doc-
uments on the web. Its software creates “spiders,” which are virtual robots
that search the web for new webpages and returns with copies to be placed in
a page repository. The pages accumulated by the spiders are temporarily
stored there until sent to the indexing module where its essential informa-
tion (important descriptors and terms, as well as the links to and from the
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page) is extracted, compressed and then stored in several indexes. One such
index is the content index where keywords, title, and anchor text are stored.
Information about the links to and from the page are stored in the structure
index. In addition there are other, special-purpose indexes.

The query module translates the search engine user’s query from natural
language into a format that can be understood by the search engine and
compared with the content of indexed pages to determine which ones include
the query terms. The pages that are returned are the relevant pages.

Finally, the ranking module rank orders the pages returned by the query
module with the intent that the pages at the top of the ordering are those
sought by the user. The ranking module is the most important component of
the search engine since the query module will almost always return far too
many relevant pages (from thousands to millions) to be of value to the user.
Typically, the ranking consists of two components, a content score and a
popularity score.

To understand the basic idea underlying how this is determined, imagine that
a web surfer starts at an arbitrary web page and then proceeds to the next
page via one of the outlinks from that page, where each outlink is equally
probable of being selected. The ranking of a particular page is determined
by the probability of ending at that page over the long run (made precise
by the notion of limit). This will only work if the probabilities obtained are
independent of the starting page, which is definitely not the case for the real
web: Imagine four web pages, P1, P2, P3, P4, where P1 is linked to P2 and P2

to P1 and similarly, P3 to P4 and P4 to P3 and there are no other outlinks
from P1, . . . , P4. If one starts at P1 then the probability of ending at P3 or
P4 is zero while the probability of ending at P1 is 1

2 , as is the probability of
ending at P2. On the other hand if we start at P3 then the probability of
ending at P1 or P2 is zero and the probability of ending at P3 is 1

2 , as is the
probability of ending at P4. One needs to make alterations to the actual link
structure so that the probabilities are independent of the starting page. How
this is done is explained below.

We begin by describing how a nonnegative integer vector is associated to each
web page and to a query.

Definition 13.17 By a text document we mean either a webp age or a
query which contains words and phrases, some of which are common and
therefore do not differentiate one document from another, for example, “the,”
“and,” “or,” “but.” Others are key words which will be found in a fraction
of the documents. All possible key words are ordered in some way, say lexi-
cographically, and given a number consistent with this ordering from 1 to N ,
where N is the number of all possible key words. For a particular document D,
we make a real N -vector, called the text vector t(D), by setting ti(D) = 0
if the ith key word is not contained in the document and ti(D) = 1 if it is.
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Assume that there are n web pages, P1, . . . , Pn and set tj = t(Pj). Now that
we have associated a text vector with each web page, Pj , and each query, Q,
we can compare them for common content. A good measure of commonality is
the cosine of the angle between tj and t(Q), the smaller the angle, hence the
closer the cosine to one, the greater the common content. By choosing some
value tol, the tolerance of the query, we can say that a web page tj is relevant
to the query Q if

cos(tj , t(Q)) =
tj · t(Q)

‖ tj ‖ ‖ t(Q) ‖ > tol.

When tol is decreased, more pages are defined as relevant, and when tol is
increased, fewer are relevant. There are two important measures of search
performance: precision and recall.

Definition 13.18 The precision of a search is the quotient P = Dr(Q)
Dtot(Q)

where Dr(Q) is the number of genuinely relevant documents that are retrieved
and Dtot(Q) is the total number of documents retrieved. The recall of the

search is the quotient R = Dr(Q)
Nr(Q) where Nr is the total number of relevant

documents in the database.

Remark 13.2 When tol is large, one would expect precision to be high but
recall lower, whereas when it tol is smaller, one might expect precision to be low
and recall high. To actually determine this, for a particular database, requires
human reading of documents and when this has been determined the precision
and recall of the search engine can be tested against the pre-determined values.

In addition to indicating that web page tj is relevant to the query Q, the
actual value of the cosine can be used to give tj a content score which may be
combined with a query independent popularity score to determine its overall
score and ranking within all the relevant pages. We now turn to the question
of how a popularity score can be assigned to a page.

Definition 13.19 By a ranking vector for the web we will mean any non-
negative real n-vector r such that ‖ r ‖1= 1 (here, n is the number of indexed
webpages). Thus, r is a probability vector.

Of course, one could sit in a closet and make up a ranking vector arbitrar-
ily but this does not incorporate any information about how important or
popular the web pages are relative to one another. A first pass at defining
a ranking vector which takes into account importance and popularity begins
with the assumption that a page with lots of links to it is probably more im-
portant/popular than a page with fewer links. This, however, is inadequate for
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at least two reasons: First, it is possible to exploit such a definition by creating
lots of nonsense web pages (without meaningful content) which all link to a
given page. Second, such a definition does not take into account whether the
web pages linked to it are themselves important and popular. Before we get
to how this is done, we introduce some additional definitions and terminology.

Definition 13.20 For a web page Pj let Oj consist of all the web pages Pi

such that there is a link from Pj to Pi. This is the set of outlinks from Pj.
We also let Ij consist of all the webpages Pi such that there is a link from Pi

to Pj. These are the inlinks to Pj. We set nj = |Oj |, that is, the number of
outlinks from Pj.

In our next definition we show how to associate a vector with each webpage
that captures information about links from the page.

Definition 13.21 Assume Pj is a web page and Oj is empty, that is, there
are no outlinks from Pj. Then set sj = 0n. Otherwise, if Oj is not empty, let

sj =



s1j
...
snj


 where sij = 1

nj
if Pi ∈ Oj and sij = 0 otherwise. This is the

link vector of the web page Pj.

With all these columns it is natural to consider making a matrix from them
and we do.

Definition 13.22 The link matrix of the web is the n × n matrix whose
columns are s1, . . . , sn.We denote this matrix by L.

Remark 13.3 The link matrix L is sparse, that is, most of its elements are
zero.

The link structure of the web can also be usefully represented by a directed
graph, a concept we introduce now.

Definition 13.23 A directed graph is a pair Γ = (V,∆) where V is a set,
whose elements are called vertices and ∆ is a subset of the Cartesian product
V 2 = V × V whose elements are called edges. One can think of a directed
graph as a set of points together with arrows pointing from some vertices to
other vertices.
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FIGURE 13.2
Directed graph on seven vertices.

Example 13.16 An example of a directed graph on seven vertices with 11
edges is given in the Figure (13.2). Note between nodes 1 and 2, between 1
and 4, and between 5 and 6, there are arrows in both directions.

Definition 13.24 The link graph of the web is the graph whose vertex set
is S = {P1, . . . , Pn} where (Pj , Pi) is an edge if there is a link from Pj to Pi.
This is denoted by Λ.

Now a natural way to define the ranking rj of a webpage Pj is as a weighted
sum of the all the inlinks to Pj . Thus, assume Pk has ranking rk and is linked
to Pj . We then distribute the ranking rk equally among all the nk outlinks
from Pk. Thus, the link from Pk to Pj contributes

1
nk
rk = sjkrk. We therefore

get the following recursive definition of rj

rj =
∑

k∈Ij

1

nk
rk =

∑

k∈Ij

sjkrk. (13.17)

If we set r =



r1
...
rn


 then Equation (13.17) can be represented by the single

matrix equation:

r = Lr. (13.18)

You should recognize from Equation (13.18) that r, if it exists, is an eigenvec-
tor of L with eigenvalue one. It is natural to ask if r necessarily exists and,
if it does, whether it is unique. If L did not have any zero columns it would
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be a column-stochastic matrix. We could then definitely conclude that it has
a non-negative eigenvector with eigenvalue one by the weak form of the Per-
ron–Frobenius theorem, Theorem (12.18), but not necessarily a unique one.
We will therefore make some modifications to L that will guarantee the exis-
tence of a unique positive stationary vector r with ‖ r ‖1= 1. Before doing
so we return to our web surfer whose journey through the web is nearly a
Markov chain with transition matrix L.

As mentioned, the existence of zero columns means that L is not a stochastic
matrix (which means that the surfer may get stranded at some web page
depending on the initial page). In order to insure that this doesn’t happen,
we modify L by replacing each zero column with a column that assumes an
equal probability of going to any of the n webpages. To be explicit, define

δj = 0 if nj 6= 0 and δj = 1 if nj = 0 and set d =



d1
...
dn


 . Also let j = jn be

the all-one n-vector. We define the matrix L̂ as follows:

L̂ = L+
1

n
jdtr.

The matrix L̂ is a column-stochastic matrix, that is, every column c of L̂ is
a probability vector: c ≥ 0 and ‖ c ‖1= 1. The matrix L̂ can be interpreted
as follows: If Pj is a page with nj > 0 outlinks, then the probability of going
from Pj to Pi, with Pi ∈ Oj , is

1
nj
. On the other hand, if the surfer should

land at Pj with nj = 0 then the surfer goes to a random page with probability
1
n .

It now follows that L̂trj = j so that one is a eigenvalue of L̂tr and therefore
of L̂. This proves the existence of a ranking vector, however it may not be
unique. This might occur if the matrix L̂ is reducible which we previously
defined in Section (12.3). Recall, an n× n matrix A is reducible if there is a
permutation matrix P such that

PAP tr = PAP−1 =

(
B C

Ok,n−k D

)

where B is a k × k matrix, D is (n − k) × (n − k), and C is a k × (n − k)
matrix. A matrix which is not reducible is irreducible.

Example 13.17 The following matrix is reducible
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0 1
2 0 1 0 0 0

1
3 0 0 0 0 0 0
1
3

1
2 0 0 0 0 0

1
3 0 1 0 0 0 0
0 0 0 0 0 1

2 1
0 0 0 0 1 0 0
0 0 0 0 0 1

2 0




.

Note that the vectors




3
8
1
8
3
16
5
16
0
0
0




and




0
0
0
0
2
5
2
5
1
5




are eigenvectors with eigenvalue one.

This matrix represents the linked graph shown in Figure (??). Note that a
surfer who lands on one of the webpages P1, P2, P3, P4 will just cycle among
them and likewise for P5, P6, P7.

It is almost certainly the case that L̂ is reducible and therefore to insure
irreducibility, we will modify L̂ to obtain a positive stochastic matrix (which
is necessarily irreducible). This is referred to as the primitivity adjustment.
The resulting matrix, known as a Google matrix will have a unique ranking
vector: By Theorem (12.22), the spectral radius of a stochastic matrix is one,
and by Theorem (12.19), if A is nonnegative and irreducible then ρ(A) is a
simple eigenvalue (in fact has algebraic multiplicity one) and there exists a
positive eigenvector for this eigenvalue.

Let J = jjtr be the all-one matrix and set K = 1
nJ which is a rank-one

doubly stochastic matrix all of whose entries are 1
n . Choose α with 0 < α < 1

and set Gα = αL̂+ (1− α)K. Clearly, this is a positive matrix (consequently

irreducible) since it is the sum of the nonnegative matrix αL̂ and the positive
matrix (1− α)K. We show in the next result that Gα is column stochastic.

Theorem 13.20 If α is a real number and 0 < α < 1 then Gα is a stochastic
matrix.

Proof Since Gα > 0, we need only show that Gtr
α j = j. Since L̂ and K are

column-stochastic, we have

L̂trj = j = Ktrj.

It then follows that
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Gtr
α j = [αL̂ + (1− α)K]trj

= [αL̂tr + (1− α)Ktr]j

= αL̂trj + (1− α)Ktrj

= αj + (1− α)j = j.

In terms of the web surfer, the primitivity adjustment can be interpreted as
follows: The surfer follows the links of the web with probability α but acts
randomly with probability 1 − α (jumping to an arbitrary page with equal
probability). This is referred to by Brin and Page as “teleporting.”

Each Gα is a Google matrix, though a particular value of α is used in practice,
apparently α is about 0.85. The ranking vector is the probability vector r for
which Gr = r. This vector is not calculated directly, that is, by finding the one
dimensional null space of the matrix G− In using Gaussian elimination. This
computation is too large. Rather r is approximated by choosing a probability
vector r0 and then computing rk = Gkr0. A priori there is no certainty that
this would converge. However, since Gα is a positive matrix we are guaranteed
convergence by Theorem (12.21) from which we can conclude that

lim
k→∞

rk = r.

This method of computing r is known as the power method, which is just
one of many methods available for finding an eigenvector for the dominant
eigenvalue of a matrix. This method is slow, perhaps the slowest for finding
an eigenvector for the dominant eigenvalue. However, there are good reasons
why it was chosen by Brin and Page. Among these are: it is simple, the
multiplications of Gα can be reduced to multiplications on the sparse matrix
L, and it uses a minimum of storage as contrasted with other methods. Finally,
with α = 0.85, rk converges to r with between 50 and 100 iterations.

A good source for further investigation of this topic is ([14]).

Exercises

1. Write down the matrix L associated with the directed graph shown in
Figure (13.3).

2. Explain why L is not a stochastic matrix.

3. Write down the matrix L̂ in order to obtain a stochastic matrix.

4. Explain why L̂ is reducible.

5. Determine the 1-eigenspace of L̂.

6. Write down the Google matrix, G, obtained from L̂ with α = 3
4 .
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FIGURE 13.3
Directed graph on nine vertices.
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Appendix A

Concepts from Topology and Analysis

In this appendix we give a brief introduction to concepts from analysis. Specif-
ically we define the following: Metric space, topology and topological space,
limit of a sequence in a topological space, Cauchy sequence in a metric space,
compact subset of a topological space, continuous function between topologi-
cal spaces, convex subset of Rn. We also state two theorems which we use in
Chapter 12: The Krein–Milman theorem and the Brouwer fixed point theorem.
A proof of the former can be found in ([5]) and the latter in ([15]).

Definition A.1 A metric space is a pair (X, d) consisting of a set X and
a function d : X ×X → R≥0, called a metric if the following are satisfied:

(M1) For x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
(M2) d(x, y) = d(y, x).
(M3) For x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). This is referred to as the
triangle inequality.

Definition A.2 Let (X, d) be a metric space, x ∈ X and r a positive real
number. The open ball of radius r centered at x is

Br(x) := {y ∈ X |d(x, y) < r}.

Metric spaces give rise to topological spaces, a concept we now define.

Definition A.3 Let X be a set and T a collection of subsets of X. Then T
is said to be a topology on X, and (X, T ) is a topological space, if the
following are satisfied:

1. The empty set and X are in T .
2. The union of an arbitrary subset of T is contained in T .
3. The intersection of a finite subset of T is contained in T .

The elements of T are referred to as open subsets of X. A subset C of X
is said to be closed if X \ C is open.

551



552 Advanced Linear Algebra

Definition A.4 Let (X, d) be a metric space. We will say a subset U of X
is open if for every u ∈ U there exists a positive real number r such that
Br(u) ⊂ U . Note that, vacuously, the empty set is an open subset of X.

In the following theorem we show that the set of such subsets ofX is a topology
on X .

Theorem A.1 Let (X, d) be a metric space and set T equal to the collection
of all open subsets of X. The T is a topology.

Proof Clearly ∅, X ∈ T as is the fact that the union of an arbitrary subset of
T is contained in T , so it only remains to show that the intersection of finitely
many open subsets is open. Let U1, . . . , Um be open sets. If ∩m

i=1Ui = ∅ there
is nothing to prove, so assume u ∈ ∩m

i=1Ui. Since each Ui is open there exists
a positive real number ri such that Bri(u) ⊂ Ui. Set r = min{r1, . . . , rm}.
Then Br(u) ⊂ Bri(u) ⊂ Ui. Consequently, Br(u) ⊂ ∩m

i=1Ui.

Definition A.5 Let (X, T ) be a topological space and {xk}∞k=1 a sequence of
elements from X and x ∈ X. We say that x is the limit of the sequence
and write

lim
k→∞

xk = x

if whenever U is an open subset containing x, then there exists a natural
number N (which may depend on U), such that xk ∈ U for all k ≥ N .

When the topological space (X, T ) comes from a metric d on X the notion of
limit can be formulated as follows: limk→∞ xk = x if for every positive real
number r there is a natural number N such that d(xk, x) < r if k ≥ N .

In would not be desirable if a sequence had two or more limits. This can
happen in arbitrary topological spaces but not those that arise from a metric
as we now show.

Theorem A.2 Let (X, d) be a metric space and {xk}∞k=1. If limk→∞ xk exists
then it is unique.

Proof Assume limk→∞ xk = x and y ∈ X, y 6= x. Let s = d(x, y) > 0 and
set r = s

3 . By assumption there is a natural number N such that if k ≥ N
then d(x, xk) < r. We then have by the triangle inequality

3r = s = d(x, y) ≤ d(x, xk) + d(xk, y) > r + d(xk, y).

It follows that d(xk, y) > 2r and therefore limk→∞xk 6= y. As y is arbitrary
we can conclude that x is unique.
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Definition A.6 A sequence {xk}∞k=1 in a metric space (X, d) is a Cauchy
sequence if for every positive real number r there is a natural number N
(depending on r), such that if k, l ≥ N then d(xk, xl) < r.

Definition A.7 Assume (X, T ) is a topological space and C is a subset of
X. An open cover of C is a subset S of T such that C ⊂ ∪S∈SS. A subset
C of X is said to be compact if every open cover S of C contains a finite
subcover.

Definition A.8 Assume (X1, d1) and (X2, d2) are metric spaces and f :
X1 → X2 is a function. We say that f is continuous at x ∈ X1 if for
each positive real number ǫ there exists a positive real number δ (depending
on ǫ) such that if d1(x, y) < δ then d2(f(x), f(y)) < ǫ. We say that f is
continuous if it is continuous at x for every x ∈ X1.

The following is fairly easy to prove:

Theorem A.3 Assume (X1, d1) and (X2, d2) are metric spaces and f : X1 →
X2 is a continuous function. If C ⊂ X is compact then f(C) is compact.

We next introduce some concepts which we will need for our treatment of
doubly stochastic matrices in Section (12.3).

Definition A.9 Let C be a subset of Rn. C is said to be convex if whenever
u,v ∈ C and t ∈ R satisfies 0 ≤ t ≤ 1 then tu+ (1− t)v ∈ C.

To clarify the meaning of this definition: the set {tu + (1 − t)v|0 ≤ t ≤ 1}
is the line segment with endpoints u and v. Thus, C is convex if whenever
it contains points u and v then it contains the line segment with endpoints
u and v. We denote this by [u,v]. The interior of the line segment [u,v],
denoted by (u,v), is {tu+ (1− t)v|0 < t < 1}.
It is an easy consequence of the definition that the intersection of convex
subsets is convex. This motivates the following definition.

Definition A.10 Let X be a subset of Rn. The convex hull of X is the
intersection of all convex subsets of Rn which contain X. It is the unique
minimal (with respect to inclusion) convex subset of Rn which contains X.
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Definition A.11 Let C be a convex subset of Rn. An extreme point of C
is a point x ∈ C such that whenever u,v ∈ C and t ∈ R, 0 < t < 1 satisfy
x = tu+ (1− t)v then u = v. Thus, x is an extreme point if it is not on the
interior of any line segment contained in C.

We will cite the following result known as the Krein–Milman theorem:

Theorem A.4 Let C be a compact convex subset of Rn. Let E(C) denote
the extreme points of C. Then E(C) is nonempty and F is the convex hull of
E(C).

Finally, we will also need to cite the Brouwer fixed point theorem:

Theorem A.5 Let C be a convex and compact subset of Rn (with respect to
the metric defined by some norm on Rn) and f : C → C be a continuous
function. Then f has a fixed point, that is, there exists x ∈ C such that
f(x) = x.
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Concepts from Group Theory

In this appendix we give a brief introduction to concepts from group theory.
Specifically, we define the following: group, subgroup of a group, center of
a group, normal subgroup of a group, simple group, commutator subgroup
of a group, derived series of a group, solvable group, quotient group, homo-
morphism, kernel of a homomorphism, group action, transitive group action,
primitive group action, doubly transitive group action, kernel of a group ac-
tion, and a faithful group action. We also prove Iwasawa’s theorem which is
used extensively in Chapter 11.

Definition B.1 A group consists of a nonempty set G together with a binary
operation (function) µ : G × G → G, denoted by µ(x, y) = x · y or simply as
xy, and an element e ∈ G such that the following hold:

1) The binary operation µ is associative, that is, for all x, y, z ∈ G, (xy)z =
x(yz).

2) For every x ∈ G, ex = xe = x.

3) For every x ∈ G there is an element y ∈ G such that xy = yx = e.

A group G is said to be Abelian if it also satisfies

4) For all elements x, y ∈ G, xy = yx.

Remark B.1 The element e of a group G is unique, that is to say if f ∈ G
and xf = fx = x for every x ∈ G then f = e. This element is called the
identity of G. Also, if x ∈ G the element y ∈ G such that xy = yx = e is
unique. We will denote it by x−1 and refer to it as the inverse of x.

Definition B.2 Let X be a set. Denote by S(X) the set of all bijective func-
tions σ : X → X. For σ, τ ∈ S(X) let στ be the composition σ ◦ τ . Then
S(X) is a group. The identity element is the identity map IX : X → X which
is defined by IX(x) = x for all x ∈ X. The group S(X) is referred to as the
symmetric group on X. We refer to elements of S(X) as permutations on
X. When X = {1, 2, . . . , n} we denote S(X) by Sn.
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Definition B.3 Let (G,µ, e) be a group. A subgroup of G is a nonempty
subset H of G such that

1) if x, y ∈ H then xy ∈ H, and

2) if x ∈ H then x−1 ∈ H.

Remark B.2 If H is a subgroup of a group G, then e ∈ H where e is the
identity of G. Also, setting µH = µ restricted to H × H, it is then the case
that H is a group.

The following is easy to prove:

Theorem B.1 Let G be a group and assume {Ha|a ∈ A} is a family of
subgroups of G. Then ∩a∈AHa is a subgroup of G.

Definition B.4 Let G be a group and X a subset of G. The subgroup of
G generated by X, denoted by 〈X〉, is the intersection of all subgroups of
G which contain X.

Definition B.5 Let G be a group, H a subgroup of G, and g ∈ G. The subset
gH := {gh|h ∈ H} is a left coset of H in G.

Remark B.3 The set of left cosets of H in G are the equivalence classes of
the relation ≡H given by x ≡H y if and only if x−1y ∈ H. We denote the set
of left cosets of H in G by G/H and refer to it as the quotient set of G
modulo H.

Definition B.6 Let X and Y be subsets of a group G. The product XY
consists of all elements xy such that x ∈ X and y ∈ Y .

Definition B.7 Let G be a group. Elements x and y in G are said to com-
mute if xy = yx. Suppose H a subgroup. The centralizer of H in G, denoted
by CG(H), is the subset of G consisting of all those elements which commute
with every element of H, that is, CG(H) = {g ∈ G|gh = hg∀h ∈ G}.

Remark B.4 Let G be a group, H a subgroup of G. Then CG(H) is a sub-
group of G.
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Definition B.8 Let G be a group. The center of G, denoted by Z(G) is
given by

Z(G) := {z ∈ G|zx = xz ∀x ∈ G} = CG(G).

Definition B.9 Let G be a group, H a subgroup of G, and g ∈ G. The g-
conjugate of H is g−1Hg = {g−1hg|h ∈ H}. Note that g−1Hg is a subgroup
of G. Any such subgroup obtained this way is said to be a conjugate of H.

Definition B.10 Let G be a group and H a subgroup of G. The normalizer
of H in G , denoted by NG(H) is given by

NG(H) := {g ∈ G|g−1Hg = H}.

Remark B.5 Let G be a group and H a subgroup of G. Then NG(H) is a
subgroup of G which contains H.

Definition B.11 Let G be a group. A subgroup N of G is normal if
NG(N) = G. Equivalently, for every g ∈ G, g−1Ng = N , that is, the only
conjugate of N is N . When N is normal in G we write N ⊳G.

The following are fairly straightforward to prove and are covered in a first
course in abstract algebra.

Theorem B.2 Assume N is a normal subgroup of a group G and H is a
subgroup of G. Then NH is a subgroup of G.

Theorem B.3 Assume N is a normal subgroup of a group G and H is a
subgroup of G. Then N ∩H is a normal subgroup of H.

Theorem B.4 Let G be a group and N a normal subgroup. For xN, yN left
cosets of H define (xN) · (yN) = (xy)N . This is well defined (independent of
the representatives x and y) and G/N with this multiplication is a group.

Definition B.12 Let G be a group and N a normal subgroup. The quotient
set G/N together with the multiplication given by (xN) · (yN) = (xy)N is the
quotient group of G modulo N .
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Definition B.13 A group G is simple if G has more than one element and
the only normal subgroups of G are {e} and G.

Definition B.14 Let G be a group and g, h ∈ G. The element [g, h] :=
g−1h−1gh is the commutator of g and h. The commutator subgroup
of G is the subgroup of G generated by the set of all commutators. The com-
mutator subgroup of G is denoted by either G′ or D(G). A group G is perfect
if G = D(G).

The following is proved in a first course in abstract algebra:

Theorem B.5 Let G be a group. The commutator subgroup, D(G), of G is
a normal subgroup. The quotient group G/D(G) is an Abelian group. If H is
a subgroup of G and D(G) ⊂ H then H is normal in G. Finally, if H is a
normal subgroup of G then the quotient group G/H is Abelian if and only if
D(G) ⊂ H.

Definition B.15 Let G be a group. Set G(0) = G and assume that G(k) has
been defined for k ∈ Z≥0. Then G(k+1) = D(G(k)), the commutator subgroup
of G(k). This is the derived series of G. The group G is said to be solvable
if for some natural number n,G(n) = {e}.

Remark B.6 For every n ∈ N, G(n) is normal in G. Moreover, each of the
quotient groups G(n)/G(n+1) is Abelian.

Definition B.16 Assume G and H are groups. A function f : G → H is a
homomorphism if f(xy) = f(x)f(y) for every x, y ∈ G.

Definition B.17 Let G and H be groups and f : G → H a homomorphism.
Then f is said to be an isomorphism of groups if f is bijective. When there
exists an isomorphism from a group G to a group H, we say that G and H
are isomorphic.

Just as there are isomorphism theorems for vector spaces, there are for groups
as well. The following is used in the proof of Iwasawa’s theorem.

Theorem B.6 Assume N is a normal subgroup of the group G, H is a sub-
group of G, and G = NH. Then G/N is isomorphic to H/(N ∩H).
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Definition B.18 Let f : G→ H be a homomorphism of groups. The kernel
of f is Ker(f) := {x ∈ G|f(x) = eH}.

The following is straightforward to prove:

Theorem B.7 Let f : G → H be a homomorphism of groups. Then Ker(f)
is an normal subgroup of G.

Definition B.19 Let G be a group and X a set. By a left-action of G on X
we mean a map ν : G×X → X which we will denote by ν(g, x) = g · x which
satisfies the following:

1) If e is the identity of G then e · x = x for all x ∈ X.

2) For g, h ∈ G and x ∈ X, g · (h · x) = (gh) · x.

Remark B.7 Assume ν : G ×X → X defines a left action of G on X. For
g ∈ G let νg : X → X be the function given by νg(x) = ν(g, x) = g · x.
The map νg : X → X is bijective and so a permutation of X. Also it follows
from the second property that νgh = νg ◦ νh so that ν : G → S(X) is a
homomorphism of groups. Conversely, given a homomorphism f : G→ S(X),
define ν : G×X → X by ν(g, x) = f(g)(x). This defines a left action of G on
X.

Definition B.20 Assume the group G acts on the set X and x ∈ X. The
stabilizer of x in G, denoted by Gx, consists of all those g ∈ G such that
g · x = x.

Definition B.21 Assume ν : G ×X → X defines a left action of G on X.
The kernel of the group action consists of the set of g ∈ G such that
g · x = x for all x ∈ X. Equivalently, the kernel of the action is the kernel of
the homomorphism g → νg from G to S(X). The action is said to be faithful
if the kernel is trivial, that is, it is equal to {e}.

Definition B.22 Assume ν : G ×X → X defines a left action of G on X.
Define a relation ∼ on X as follows: x ∼ y if there exists g ∈ G such that
g · x = y. This is an equivalence relation. The equivalence class containing x
is G · x = {g · x|g ∈ G} and is referred to as the orbit of G acting on X or
simply the G-orbit containing x.
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Remark B.8 Since the orbits of G acting on X are equivalence classes of
an equivalence relation on X they are a partition of X. Thus, every x ∈ X
belongs to one and only one orbit.

Definition B.23 Assume the group G acts on the set X. The action is tran-
sitive if there is a single orbit. Equivalently, for any x, y ∈ G there exists a
g ∈ G such that g · x = y.

Definition B.24 Assume the group G acts on the set X. A block of im-
primitivity is a proper subset B of X that satisfies

1) 1 < |B| and
2) if g ∈ G, then either g · B = B or (g ·B) ∩B = ∅.
An action of G on X is said to be primitive if no block of imprimitivity exists
and imprimitive otherwise.

Definition B.25 An action of a group G on a set X is said to be doubly
transitive if for any pairs (x1, x2) and (y1, y2) from X with x1 6= x2 and
y1 6= y2 there exists g ∈ G such that g · x1 = y1, g · x2 = y2.

The following is an important result:

Theorem B.8 Assume an action of the group G on the set X is doubly tran-
sitive. Then the action is primitive.

We will need the following result on primitive group actions for the proof of
Iwasawa’s theorem.

Theorem B.9 Assume G acts primitively and faithfully on the set X. If
N 6= {e} is a normal subgroup then N is transitive on X.

Proof Since N 6= {e} and the action is faithful there exists x ∈ X and g ∈ N
such that g · x 6= x. Set B = N · x := {h · x|h ∈ N}, that is, the N -orbit which
contains x. We have just shown that |B| > 1. We will prove for any σ ∈ G
that either σ · B = B or (σ ·B) ∩B = ∅.
Let y ∈ B and σ ∈ G and set z = σ · y. Since y ∈ B, there is an h ∈ N such
that y = h · x. Then z = σ · (h · x) = (σh) · x. Note that σh = σhσ−1σ. If we
set h′ = σhσ−1 then h′ is in N since N is normal in G. Thus, z = (h′σ) ·x =
h′ · (σ · x) = h′ · y. Thus, z is in N · y. However, y ∈ B = N · x so that
N · y = N · x = B. We can therefore conclude that z ∈ N · x = B as required.
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We can now prove Iwasawa’s theorem.

Theorem B.10 Assume the group G acts faithfully and primitively on the
set X, and that G is perfect. Let x ∈ X and assume Gx contains a solvable
normal subgroup Ax such that G is generated by the conjugates of Ax, G =
〈gAxg

−1|g ∈ G〉 = 〈Ag·x|g ∈ G〉. Then G is a simple group.

Proof Let N 6= {e} be a normal subgroup of G. We need to prove that
N = G. Since the action is faithful and N ⊳ G and N 6= {e}, it follows
that N is transitive on X. This implies for any x ∈ X that G = NGx. We
next show that G = NAx. Since G is generated by gAxg

−1 as g ranges over
G, it suffices to prove that gAxg

−1 ⊂ NAx. Let a ∈ Ax be arbitrary. Since
G = NGx, there are elements n ∈ N, h ∈ Gx such that g = nh. Then gag−1 =
(nh)a(nh)−1 = n[hah−1]n−1. Since Ax ⊳ Gx and h ∈ Gx, b = hah−1 ∈ Ax.
Now nbn−1 = nbn−1b−1b. The element nbn−1b−1 ∈ N(bnb−1) = N since N
is normal in G. Thus, gag−1 = nbn−1 ∈ NAx as required. Suppose to the
contrary that N 6= G. Then G/N is a nontrivial group. However, G/N =
NAx/N is isomorphic to Ax/(N ∩Ax), a quotient of a solvable group, which
is solvable. However, this contradicts the assumption that G is a perfect group.
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Appendix C

Answers to Selected Exercises

Section (1.1)

7. x = 4

8. x = 2 + i.

Section (1.2)

1.




2i
−2 + 2i
4− 2i




2.




2
6
−4




3.



−6i
2i
8i




4.




1 + 3i
2

−1 + i




5.



−3 + 2i
−2− i

1




6.



1 + 2i
3 + i
5




7.



0
0
0




8.



4
1
1




9.



1
4
2




10.



3
1
2




11. v =

(
3− i
3 + i

)

12. v =

(
4
2

)

Section (1.6)

10. a) 48 bases
10. b) 480 bases
10. c) (p2 − 1)(p2 − p) bases

Section (1.8)

1. b) [1]F =



−2
2
1


 ,

[x]F =




3
−2
−1


 ,

[x2]F =




2
−1
−1


 .

Section (2.2)

1. nullity(T ) = 3 = rank(T ).

2. Ker(T ) = Span((x − a)(x −

563
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b), x(x − a)(x − b)). rank(T ) = 2 =
nullity(T ).

3.Range(T ) = Span(




1
1
1
1


 ,




2
3
1
2


 ,




2
1
1
2


).

Ker(T ) = Span(−2 + x − x2).
rank(T ) = 3, nullity(T ) = 1.

Section (2.4)

3.

(
0 1
0 0

)
is an example of such a ma-

trix. The operator T (

(
x
y

)
) =

(
y
0

)
is

an example of such an operator.

4. Lots of example, (A,B) =((
1 −1
1 −1

)
,

(
1 0
1 0

))
is one.

5. MT (S,S) =



2 2 1
1 1 0
1 0 0




9.




4 −2 −1
−5 3 2
0 0 0
2 −1 −1


 is an example.

10.




2 −1 −2 0
−1 0 1 0
0 −1 1 0


 is an exam-

ple.

Section (2.6)

1.




4 5 2
2 3 1
−1 −1 −1




5. 168.

6. 253313.

Section (3.1)

1. x2 + 1.

Section (3.2)

13. MIF(n−1)[x]
(S,B) =




1 α1 α2
1 . . . αn−1

1

1 α2 α2
2 . . . αn−1

2
...

...
... . . .

...
1 αn α2

n . . . αn−1
n


 .

Section (4.1)

1. T (



x1
x2
x3


 =




x1
x2

x1 + x2


 .

3. x3 − 2x2 − x+ 2.

4. x3 − 2x2 − x+ 2.

8. There are four T -invariant

subspaces: {0},R3, Span(



1
1
1


),

Span(




1
0
−1


 ,




0
1
−1


)

9. The T -invariant subspaces are

{0}, Span(



1
0
0


), Span(



1
0
0


 ,



0
1
0


),

and R3.

Section (4.2)

1. a) µT,z(x) = x3 − 2x2 + x − 2.
Since deg(µT,z(x) = 3 it follows that
〈T, z〉 = R3.
b) µT,u(x) = x− 2.

2. µT,z(x) = x4 + 5x2 + 4 =
(x2+1)(x2+4). Since deg(µT,z)(x) =
4 it follows that 〈T, z〉 = R4.

4. Lots of operators work. One exam-

ple is T (




x1
x2
x3
x4


) =




x1
2x2
3x3
4x4


 .

6. Let T have matrix



1 1 0
0 1 1
0 0 1




with respect to the standard basis.
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7. Let T have matrix



2 0 0
0 1 1
0 0 1




with respect to the standard basis.

9. Let T have matrix




0 1 0 0
−1 0 0 0
0 1 0 1
0 0 −1 0




with respect to the standard basis.

10. Let T have matrix




1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 3




with respect to the standard basis.

11. Let T have matrix




1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4




with respect to the standard basis.

Section (4.3)

1. a) µT,e1(x) = x2 + 2x+ 2,
µT,e2(x) = x3 − 2x− 4,
µT,e3(x) = x3 − 2x− 4.
b) µT (x) = x3 − 2x− 4.
c) e2, e3 are maximal vectors.

2. µT (x) = x2+2x+2 = x2−3x−3 =
(x − 1)(x − 2). Each of e1, e2, e3 is a
maximal vector.

3. µT (x) = x4 − x3 − x2 − x− 2 =

(x− 2)(x3 + x2 + x+ 1) =

(x− 2)(x+ 1)(x2 + 1).

e1 is a maximal vector.

Section (4.4)

1. This operator has minimal poly-
nomial (x + 1)2 and so is not cyclic.
Therefore it is decomposable.

2. This operator has minimal polyno-
mial (x + 1)3 and is indecomposable.

3. This operator has minimal polyno-
mial (x− 2)3 and is indecomposable.

Section (4.5)

1. (d1, . . . , d5) = (12, 22, 28, 34, 38).

2. The invariant factors, di(x) ordered
so di(x) | di+1(x) are
d1(x) = (x2 − x+ 1)2(x2 + 1),
d2(x) = (x2 −x+1)2(x2 +1)2(x+2),
d3(x) = (x2−x+1)3(x2+1)2(x+2)2,
d4(x) = (x2−x+1)4(x2+1)3∗x+2)2.
dim(V ) = 44.

3. The elementary divisors are x2 + 1
and x2 + 1. These are also the invari-
ant factors.

4. There is a single elementary divisor
(invariant factor), which is (x2 + 1)2.

5. The elementary divisors are
x2+1, x+1 and x−1. There is a single
invariant factor, x4 − 1.

6. The elementary divisors are
x, x, x−1, x−1. The invariant factors
are x2 − x, x2 − x.

Section (4.6)

2.

(
0 −4
1 4

)

3.



0 0 −1
1 0 −2
0 1 −2




4.




3 0 0 0
1 3 0 0
0 0 −2 0
0 0 1 −2




5.




2 0 0 0
1 2 0 0
0 0 2 0
0 0 1 2




6.




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


 ,




1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1
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1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1


 ,




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1




8. 044,




0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


 ,




0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0







0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0


 ,




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




12.




0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 1




Section (4.7)

3. The minimal polynomial if µT (x) =
(x − 1)(x3 − 1). The characteristic
polynomial is (x − 1)(x3 − 1)2.

The invariant factors are

(x− 1)(x3 − 1) and x3 − 1.

The elementary divisors are

x− 1, (x− 1)2, x2 + x+ 1, x2 + x+ 1.

4.




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 −1




5. Set ω = − 1
2 + i

√
3
2 and ω2 = 1

ω =

− 1
2 − i

√
3
2 . Then the Jordan canonical

form of T over the complex numbers
is




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 ω 0 0 0
0 0 0 0 ω 0 0
0 0 0 0 0 ω2 0
0 0 0 0 0 0 ω2




.

7. There are eight possibilities. They
are
J2(0)⊕J3(−2i)⊕J1(0)⊕J1(0)⊕J1(0)
J2(0)⊕ J3(−2i)⊕ J1(0)⊕ J2(0))

J2(0)⊕ J3(−2i)⊕ J1(0)⊕
J1(0)⊕ J1(−2i)

J2(0)⊕ J3(−2i)⊕ J2(0)⊕ J1(−2i)

J2(0)⊕ J3(−2i)⊕ J1(0)⊕ J2(−2i)

J2(0)⊕ J3(−2i)⊕ J1(−2i)⊕
J1(−2i)⊕ J1(−2i)

J2(0)⊕ J3(−2i)⊕ J1(−2i)⊕ J2(−2i)

J2(0)⊕ J3(−2i)⊕ J3(−2i)

9.




−2 0 0 0
1 −2 0 0
0 0 2 0
0 0 1 2




Section (5.2)

4. (x2 + x+ 1)⊥ =

Span(11047 x
2 − 1, 6547x− 1).

5. d(A,B) = 5
√
2.

8. d(x2, x) =
√
30
30 .

13. The angle is π
4 .

Section (5.3)

11. Applying Gram–Schmidt we get
the following orthogonal basis:

(
1 −1
0 0

)
,

(
1
2

1
2

−1 0

)
,
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(
1
3

1
3

1
3 −1

)
.

The first matrix has norm
√
3, the

second has norm
√

3
2 , and the last

has norm
√

4
3 . Dividing the respective

vectors by these numbers gives an or-
thonormal basis.

Section (5.4)

1. ProjW (u) =




2
3
2
3


 ,

P rojW⊥ (u) =




−1
−1
1
1


 .

2. ProjW (J2) =

(
0 1
1 0

)
,

P rojW⊥ (J2) =

(
1 0
0 1

)
.

3. ProjW (x3) = 3
2x

3 − 3
5x+ 1

20 .

4. 5
3 .

5. 2
√
15
5 .

6.
√
266
7 .

7. 1
35 (−244x2 + 1248x− 194).

Section (5.5)

1. Set

g1 = −5f1 + 3f2 + f4

g2 = −f1 + f2 − f3

g3 = −2f1 + f2 + f4

g4 = 5f1 − 3f2 + f3 − f4

Then (g1, g2, g3, g4) is the basis of
(R4)′ which is dual to B.

Section (5.6)

1.




2
3
−1




2. −420x2 + 396x− 60.

3.

(
1 0
0 −1

)

Section (5.7)

1.a) ‖




−4
2
−1
−2


 ‖1= 9,

‖




−4
2
−1
−2


 ‖2= 5,

‖




−4
2
−1
−2


 ‖∞= 4.

b) ‖




3
−6
0
2


 ‖1= 11,

‖




3
−6
0
2


 ‖2= 7,

‖




3
−6
0
2


 ‖∞= 6.

If x =




−4
2
−1
−2


 and



568 Advanced Linear Algebra

y =




3
−6
0
2


 then

d1(x,y) = 16, d2(x,y) =
√
114,

and d∞(x,y) = 8.

Section (6.2)

3.

(
4 −i
i 4

)tr

=

(
4 i
−i 4

)tr

=
(
4 −i
i 4

)
. Thus, T ∗ = T.

With respect to the orthonormal ba-

sis

((
1√
2
i√
2

)
,

(
1√
2

−i√
2

))
the matrix of T

is

(
5 0
0 3

)
.

4. ( 1√
3



1
1
1


 , 1√

2




1
−1
0


 , 1√

6




1
1
−2


).

Section (6.3)

1. Let S4 be the standard basis of R4.
Let T be the operator on R4 such that

MT (S4,S4) =




0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0


 .

2. Let T be the operator on R4 such
that

MT (S4,S4) =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 .

11. dim(C(T )) = 8.

Section (6.5)

14. Let S and T be defined on R2 be
defined as multiplication by the fol-
lowing matrices, respectively:

(
2 0
0 3

)
,

(
3 −1
−1 3

)
.

16. Since T is not invertible, S is not
unique. One solution is




1
3

−
√
3−1
3

−
√
3+1
3√

3−1
3

1
3

−
√
3−1
3√

3+1
3

√
3+1
3

1
3


 .

Section (7.2)

18. The minimum is n−1. There can’t
be fewer than n − 1, for otherwise
there will be at least two rows of all
1’s and then the determinant is zero.
On the other hand, the matrix




1 1 . . . 1
1 0 . . . 1
...

... . . .
...

1 1 . . . 0




has non-zero determinant as can be
seen by subtracting the first row from
all the other rows. The resulting ma-
trix is




1 1 1 . . . 1
0 −1 0 . . . 0
...

...
... . . .

...
0 0 0 . . . −1


 .

This matrix has determinant
(−1)n−1.

Section (8.1)

6. Let A =

(
0 1
0 0

)
. Set V =

F2 and define f : V × V →
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F by f(v,w) = vtrAw. Then

RadL(f) =

{(
0
a

)
|a ∈ F

}
and

RadR(f) =

{(
b
0

)
|b ∈ F

}
.

7. Let A =



1 1 0
0 1 0
0 0 0


 . Set V =

F3 and define f : V × V → F by
f(v,w) = vtrAw. Then RadR(f) =

RadL(f) = Span(



0
0
1


). However,

f(



1
0
0


 ,




1
−1
0


) = 0

f(




1
−1
0


 ,



1
0
0


) = 1.

8. Let A =

(
1 1
0 1

)
. Set V = F2 and

define f : V × V → F by f(v,w) =
vtrAw. Then

f(

(
1
0

)
,

(
1
−1

)
) = 0

f(

(
1
−1

)
,

(
1
0

)
) = 1.

Section (8.2)

9. The number of such pairs is
q2n−1(q2n − 1).

Section (8.5)

1. (π, σ) = (1, 0).

2. (π, σ) = (2, 1).

3. (



− 1

2
1
2
0





−1
−1
2


 ,




1
3
1
3
1
3


).

4. (




1
3
2
3
2
3


 ,



− 2

3
− 1

3
2
3


 ,




2
3

− 2
3

1
3


)

5. The number of congruence classes
is equal to the number of triples
(π, ν, ζ) ∈ N3 such that π+ ν+ ζ = n.
This is

(
n+1
2

)
.

Section (10.2)

7. For any cyclic diagonalizable oper-
ator S : V → V, the operator S ⊗ S :
V ⊗V → V ⊗V will not be cyclic. For
example, let S : R2 → R2 be given by

multiplication by A =

(
1 0
0 2

)
. Then

A⊗A =




1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4


 .

So, the eigenvalue 2 occurs with alge-
braic multiplicity 2 and the operator
is not cyclic.

Section (10.3)

5. The eigenvalues are 8, 27, 125 (with
multiplicity 1) 12, 20, 18, 50, 45, 75
(with multiplicity 3) and 30 (with
multiplicity 6).

6. Let S(v1) = 2v1, S(v2) = 3v2.
Then v1 ⊗ v2,v2 ⊗ v1 are both eigen-
vectors of T2(S) with eigenvalue 6.
Thus, T2(S) is not cyclic.

Section (10.4)

4. The eigenvalues are 1, 2, 8, 16 with
multiplicity 1 and 4 with multiplicity
2. This operator is not cyclic.

5. a23 − a2.

Section (10.5)
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9. Let S : R4 → R4 be the operator

with matrix




0 1 0 0
−1 0 0 0
0 0 3 4
0 0 −3 4


 .

Then the eigenvalues of S are ±i, 3±
4i. On the other hand, the eigenvalues
of ∧2(S) are 1, 25, −4+3i, 4+3i,−4−
3i, 4− 3i.

14. x6 + 14x4 + 96x3 − 128x− 32.

15. x3 + 6x2 − 9.

16. x6 − 3x4 − 27x3 − 9x2 + 27.

Section (11.1)

1.

|GL(V )| = q(
n
2)

n∏

i=1

(qi − 1)

|SL(V )| = q(
n

2)
n∏

i=2

(qi − 1).

Section (12.1)

3.

‖ A ‖F=
√
193

‖ A ‖1,1= 14

‖ A ‖∞,∞= 19

‖ A ‖2,2= 14.

4.

‖ A ‖F=
√
33

‖ A ‖1,1=‖ A ‖∞,∞= 5

‖ A ‖2,2= 5.

Section (13.1)

4.

(
31
4
15
4

)

5.

(
−7
9
2

)

6.

(
20
−16

)

7.




3
2

− 5
4

5
4




8. The general least square solution
consists of all vectors z + y where

z =



− 1

10
− 11

2
7
2


 and y ∈ Span(




2
−1
−1


.

9. The general least square solution
consists of all vectors z+y where z =


3
5
1
2
5
1
5


 and y ∈ Span(




1
1
2
0


 ,




1
−1
0
2


).

10.

(
− 13

3
5
3

)
.

11.




3
1
−2


.

12. y = 2.06 + 3.01x.

14. y = 2.92− 1.88x+ 1.20x2.

16. y = .35e1.55t.

Section (13.3)

1. The matrix is

(
A 05×4

04×5 B

)
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where A =




0 1
2 0 1

2 1
1
3 0 0 0 0
0 1

2 0 0 0
1
3 0 1 0 0
1
3 0 0 1

2 0




and

B =




0 1
3 0 0

1 0 1
2 0

0 1
3 0 0

0 1
3

1
2 0


.

2. The last column is a zero column
and therefore its entries do not add
up to 1.

3. L̂ =

(
A 05×3

1
9j5

04×5 B′ 1
9j4

)
. where

j5 is the all one 5-vector, j4 is the all

one 4-vector and B′ =




0 1
3 0

1 0 1
2

0 1
3 0

0 1
3

1
2


.

4. Since Span(e1, e2, e3, e4, e5) is in-
variant the matrix is reducible.

5. Span(




12
31
4
31
2
31
6
31
7
31
0
0
0
0




).

6.




1
36

29
72

1
36

10
36

28
36

1
36

1
36

1
36

1
9

10
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
9

1
36

29
72

1
36

29
72

1
36

1
36

1
36

1
36

1
9

10
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
9

10
36

1
36

1
36

29
72

1
36

1
36

1
36

1
36

1
9

1
36

1
36

1
36

1
36

1
36

1
36

10
36

1
36

1
9

1
36

1
36

1
36

1
36

1
36

7
9

1
36

29
72

1
9

1
36

1
36

1
36

1
36

1
36

1
36

10
36

1
36

1
9

1
36

1
36

1
36

1
36

1
36

1
36

10
36

29
72

1
9
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Appendix D

Hints to Selected Problems

Section (1.3)

1. Use the fact that 0 = 0+0 and the
distributive property.

2. Multiply by c−1 and use c−1(cu) =
(c−1c)u.

Section (1.4)

6. Choose u ∈ U \W and w ∈ W \U
and prove that u+w /∈ U ∪W.
Section (1.5)

11. Assume you have a non-trivial
dependence relation

∑k
i=1 aiui +∑l

j=1 bivi. Then show that∑k
i=1 aiui ∈ U ∩ W to get a con-

tradiction. Conversely, assume x ∈
U ∩ W,x 6= 0. Express is a lin-
ear combination of (u1, . . . ,uk) and
(v1, . . . ,vl). Set them equal and get a
non-trivial dependence relation.

Section (1.6)

3. To prove independent start with
a dependence relation c1u1 + c2u2 +
d1v1+d2v2+d3v3 = 0 and show if it is
not trivial then U∩W 6= {0}. contrary
to assumption. Alternatively, use Ex-
ercise 11 of Section (1.5).

6. Set dim(U) = m, dim(W ) =
n and dim(U ∩ W ) = l.
Start with a basis (v1, . . . ,vl)
of U ∩ W and extend to bases
(v1, . . . ,vl,u1, . . . ,um−l) of U and

(v1, . . . ,vl,w1, . . . ,wn−l) for W and
show that (v1, . . . ,vl,u1, . . . ,um−l,
w1, . . . ,wn−l) is a basis of U +W.

7. Use Exercise 6.

8. Use Exercise 6.

13. Suppose there exists a subspace U
of V such that X ∩ U = Y ∩ U =
{0} such that X ⊕ U = Y ⊕ U =
X + Y . Take a complement, W , to
X + Y in V and set Z = U + W .
To prove U exists let (v1, . . . ,vj) be
a basis of X ∩ Y . Let (x1, . . . ,xl)
be a sequence from X such that
(v1, . . . ,vj ,x1, . . . ,xl) is a basis of X
and a sequence (y1, . . . ,yl) from Y
such that (v1, . . . ,vj ,y1,y1, . . . ,yl) is
a basis of Y . Set ui = xi + yi and
U = Span(u1, . . . ,ul).

Section (1.7)

4. Let B be a basis of V and let X
be a subset of B with n elements. Set
U = Span(B \X).

Section (1.8)

3b. Set F (x) = g(x) − g(0)f1(x) −
g(1)f2(x) − g(2)f3(x) − g(3)f4(x) an
element of R3[x]. Prove that F is
zero at 0,1,2,3 and then conclude that
F (x) must be the zero polynomial.

5. Use Theorem (1.29).

6. Use Exercise 5 and Theorem (1.23).

573
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Section (2.1)

10. Let (v1, . . . ,vn) be a basis for
V . Apply the exchange theorem to
(T (v1), . . . , T (vn)).

12. Choose vj ∈ V such that T (vj) =
wj . Show that an arbitrary vector
in W is an image of a vector in
Span(v1, . . . ,vm).

13. If w = T (v) write v as a linear
combination of (v1, . . . ,vn) and then
show that w = T (v) is a linear com-
bination of (T (v1), . . . , T (vn)).

15. Let X consist of all pairs
(Span(A), φ) where A ⊂ B, φ is a lin-
ear transformation from Span(A) to
W, and φ restricted to A is equal to
f restricted to A. Order X as follows:
(A, φ) ≤ (A′, φ′) if and only if A ⊂ A′

and φ′ restricted to Span(A) is equal
to φ. Prove that every chain has an
upper bound. By Zorn’s lemma, there
are maximal elements. Prove that a
maximal element is a linear transfor-
mation from V to W which extends
f .

16. Start with a dependence relation
c1v1 + · · · + ckvk = 0V and apply T .
Use the properties of a linear transfor-
mation to get a dependence relation
on (w1, . . . ,wk) and use this to show
that c1 = · · · = ck = 0.

Section (2.2)

10. Let BV = (v1, . . . ,vn) be a basis
of V and set wj = T (vj). Prove that
(w1, . . . ,wn) is a basis for W . Let S
be the unique linear transformation
from W to V such that S(wj) = vj .
Prove that S = T−1.

11. Let BV = (v1, . . . ,vn) be a basis
for V and BW = (w1, . . . ,wm) be a
basis of W. Apply the Exchange The-
orem to (T (v1), . . . , T (vn)).

12. Use the Exchange Theorem.

13. Let BW = (w1, . . . ,wm) be a ba-
sis for W. Choose vj ∈ V such that
T (vj) = wj and let S : W → V
be the linear transformation such that
S(wj) = vj .

14. Let BV = (v1, . . . ,vn) be a basis
of V. Prove that (T (v1), . . . , T (vn))
can be extended to a basis
(w1, . . . ,wm) of W. Let S : W → V
be the linear transformation such that
S(wj) = vj if j ≤ n and S(wj) = 0V

if j > n.

16. First prove that Ker(T n) =
Ker(T n+1) and then use the Rank-
Nullity Theorem to conclude that
R(T n) = R(T n+1). Consider sepa-
rately the cases: i) There is an l < n
such that Ker(T l) = Ker(T l+1) and
ii) Ker(T l) ( Ker(T l+1) for l =
1, . . . , n − 1. Use a dimension argu-
ment to prove that T n is the zero op-
erator.

17. Use Exercise 16 to prove that
Ker(T n) ∩ R(T n) = 0 and then use
the Rank-Nullity Theorem.

18. Use the Rank-Nullity Theorem.

19.a) If TS = 0V→V then
Range(S) ⊂ ker(T ). b) Let
(v1, . . . ,vn−k be a basis of ker(T )
and extend to a basis (v1, . . . ,vn) of
V . Let S be the linear transformation
such that S(vj) = vj if 1 ≤ j ≤ n− k
and S(vj) = 0 if n− k < j.

Section (2.3)

6. Define T : U⊕V → (U/X)⊕(V/Y )
by T (u,v) = (u + X,v + Y ). Deter-
mine the kernel of T and apply the
First Isomorphism Theorem.

8. Apply the Third Isomorphism The-
orem to conclude that dim(U/(U ∩
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W )) ≤ n. Use the Second Iso-
morphism Theorem to conclude that
dim(V/(U ∩W ))/(U/U ∩ W )) = m.
Use this to obtain the result.

Section (2.4)

1. Use Exercises (2.1.13) and (1.8.5).

2. Use Theorem (2.11) and Theorem
(1.30).

6. Let Sn be the standard basis of Fn

and Sm be the standard basis of Fn.
Let A = MT (Sn,Sm).

7. Use Exercises (1.8.5), (2.2.13) and
Theorem (2.23).

8. Use Exercises (1.8.6), (2.2.14) and
Theorem (2.23).

Section (2.5)

1. Find 2 × 2 matrices A and B such
that AB 6= BA. For example, A =(
1 1
0 1

)
, B =

(
1 0
1 1

)
. Choose and

basis B of V . Let S and T be the oper-
ators on V such that MS(B,B) = A
and MT (B,B) = B. Use Theorem
(2.23).

2. Find non-zero 2×2 matrices A and

B such that AB =

(
0 0
0 0

)
. Choose

a basis B of V . Let S and T be the op-
erators on V such that MS(B,B) = A
and MT (B,B) = B. Use Theorem
(2.23).

7. Let Eij be the matrix with all zeros
except a 1 in position (i, j). Let Pij

the matrix obtained from the identity
matrix by exchanging the i and j rows
(equivalently, columns). Prove that
PkiEijPjl = Ekl. Use this to prove
that if an ideal J contains Eij then
J =Mnn(F). Then show if J contains
a matrix A whose (i, j)-entry, aij is
nonzero, then Eij ∈ J .

8. Assume T ∈ L(V, V ) is not a unit.
Then Ker(T ) 6= {0}. Let v be a non-
zero vector inKer(T ). Set v1 = v and
extend to a basis (v1, . . . ,vn). Let S
be the operator such that S(vj) = v

for all j. Prove TS is the zero opera-
tor.

Section (2.6)

12. Use Theorem (2.23).

13. If Q is a matrix such that
QMT1(B,B)Q−1 = MT2(B,B) let
S be the operator on V such that
MS(B,B) = Q. Use Theorem (2.23)
to prove that T2 = ST1S

−1.

14. Use Exercise 13.

Section (3.1)

4. Use the division algorithm.

5. If a(x), b(x) are polynomials such
that a(x)f(x) + b(x)g(x) = d(x),
prove that a(x)f ′(x) + b(x)g′(x) = 1.

9. Use Exercises 6 and 7.

10. Use the second principle of math-
ematical induction. Use the division
algorithm in F[x] to write f(x) =
g(x)h∗(x) + r(x) where r(x) = 0 or
deg(r) < deg(g). Use a degree argu-
ment to prove that the leading terms
of h(x) and h∗(x) are the same and
apply induction to prove that r(x) is
the zero polynomial so that h(x) =
h∗(x).

Section (3.2)

1. Use Lemma (3.8) to obtain a pair-
ing of complex, non-real roots.

5. Use Lemma (3.8) to conclude that
3−4i is also a root of f(x) and of g(x)
and that x2−6x+25 divides both f(x)
and g(x).

Section (4.1)
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5. Apply S to T (v) and use commu-
tativity.

6. Let T ′ be the restriction of T to U
so that by hypothesis, T ′ is an oper-
ator on U. Use the invertibility of T
to show that T ′ is injective and then
show that this implies T ′ is bijective.

14. If v is a eigenvector with eigen-
value λ, show that µT,v(x) = x − λ.
Then use the fact that for all vectors
v, µT,v(x) | µT (x).

15. Use Theorem (2.22).

16. Use Theorem (2.22).

21. Note for any polynomial f(x)
that Sf(TS) = f(ST )T. Use this to
prove that µST (x) divides xµTS(x)
and µTS(x) divides xµST (x).

Section (4.2)

3. Let v be any non-zero vector. Prove
that 〈T,v〉 = V.

5. Consider the different possibilities
for the minimum polynomial of T
(there are 4 cases to consider).

8. Consider the possibilities for the
minimum polynomial of T (there are
9 cases to consider).

12. Assume V = 〈T,v〉. Set v1 = v

and vj = T j−1(v) for 2 ≤ j ≤ n. If
S(v) = c1v1 + · · · + cnvn, set g(x) =∑n−1

j=0 cj+1x
j . Show that S = g(T ).

Section (4.3)

4. Prove that (v1, . . . ,vj) is linearly
independent by induction on j.

5. Use the fact that x2 + 1, x +
1 and x − 2 are pairwise rela-
tively prime polynomials to show that
µT,v1+v2(x) = (x2+1)(x−1) and then
that µT,v1+v2+v3(x) = (x2 + 1)(x −

1)(x−2). Then explain why T is cyclic
and µT (x) = (x2 + 1)(x− 1)(x− 2).

6. First mimic Exercise 5 to show that
µT,v1+v3+v4(x) = µT (x) = x4 − 1.
Then show that if u = c1v1 + c2v2 +
c3v3 + c4v4 then µT,u(x) = x4 − 1 if
and only if c3 6= 0, c4 6= 0 and at least
one of c1, c2 6= 0.

8. Note that x5 − x = x(x − 1)(x −
2)(x − 3)(x − 4) in F5[x]. Use this to
prove that there are vectors xi, 0 ≤
i ≤ 4 such that T (xi) = ixi and that
(x0, . . . ,x4) is a basis for F5

5. Then
show that a vector c0x0 + · · · + c4x4

is maximal if and only if all ci 6= 0.

Section (4.4)

4. Use Exercise 21 of Section (4.1).
If S = g(T ), use the irreducibility of
p(x) to show the existence of polyno-
mials a(x), b(x) such that a(x)g(x) +
b(x)p(x) = 1 and then prove that
a(T ) is an inverse to S.

5. Let µT,vi
(x) = p(x)ei . Choose i so

that ei is maximal and prove ei =
m. Use the fact that the LCM of
{µT,vi

(x)} is µT (x) = p(x)m.

6. Use Exercise 5.

7. Use the characterization of inde-
composable operators to show that
µT (x) is p(x)e for some real irre-
ducible polynomial p(x). Use the fact
that the dimension of the space is odd
to conclude that p(x) is a linear poly-
nomial.

8. Show that µT (x) is either of the
form (x − λ)2n or p(x)m where p(x)
is a real irreducible quadratic and use
Theorem (4.5).

9. Separate into cases as the mini-
mum polynomial of T is either of the
form (x−λ)4 or p(x)2 where p(x) is a
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quadratic polynomial irreducible over
Fp.

10. Assuming T is indecomposable,
use Theorem (4.5). For the converse
prove the contrapositive: If T is de-
composable then there exists more
than one maximal proper T -invariant
subspace.

Section (4.5)

9. Set Vi = {v ∈ V |pi(x)dim(V )(v) =
0} so that V = V1 ⊕ · · · ⊕ Vt.
Since the existence of infinitely many
T -invariant subspaces in V (pi) im-
plies infinitely many T -invariant sub-
spaces it is only necessary to prove
if for each i there are only finitely
many T -invariant subspaces in V (pi)
then there are only finitely many T -
invariant subspaces. Prove if U is a T
invariant subspace and Ui = U ∩ Vi
then U = U1 ⊕ · · · ⊕ Ut.

10. Continue with the notation of Ex-
ercise 9. The main thing one needs
to show is that if some Vi is not
cyclic then Vi has infinitely many T -
invariant subspaces. Show if Vi is not
cyclic then there are vectors u and w

such that µT,u(x) = µT,w(x) = pi(x)
and 〈T,u〉∩ 〈T,w〉 = {0}. Prove that
〈T,u + aw〉, a ∈ F are all distinct T -
invariant subspaces.

Section (4.7)

10. Choose a basis B so that M =
MT (B,B) is in Jordan canonical
form. Let A be the diagonal ofM and
B =M −A so that B is strictly lower
triangular and hence nilpotent. Now
use this to get the operators D and
N.

11. Show if p(x) is an irreducible
factor of µT (x) then p(x) is a real
quadratic. Use this to prove that any

elementary divisor of T restricted to a
T -invariant subspace U has even de-
gree and consequently U has even di-
mension.

Section (5.1)

8. If v = c1v1 + · · · + cnvn = 0 then
v · vj = 0. Use additivity and homo-
geneity in the first argument to then

show that



c1
...
cn


 in the null space of

the matrix A.

Section (5.2)

11. Set x =
∑n

i=1
xj

j and y =∑n
i=1 jyj . Use Cauchy-Schwartz.

16. Let α be the scalar such that
u = y − αx ⊥ x so that y = αx+ u.
Compute 〈y,x〉〈x,y〉 and 〈y,y〉.
Section (5.3)

4. Start with a basis (w1, . . . ,wk)
and extend to a basis (w1, . . . ,wn)
for V . Use Gram-Schmidt to get an
orthonormal basis (v1, . . . ,vn) such
that (v1, . . . ,vk) is an orthonormal
basis of W . Prove that W⊥ =
Span(wk+1, . . . ,wn).

5. Use Exercise 4 and the fact that
W ∩W⊥ = 0.

6. First prove that W ⊂ (W⊥)⊥ and
then use Exercise 4 to conclude that
dim(W ) = dim((W⊥)⊥).

10. Extend (v1, . . . ,vk) to an or-
thonormal basis (v1, . . . ,vn) of V and
write u =

∑n
i=1 civi.

12. Express x and y as linear combi-
nations of (v1, . . . ,vn).

Section (5.4)

8. Set Wi = Span(wi) and Pi =
Proj(Wi,W⊥

i ). Then P = P1 + · · · +
Pk. Prove for i 6= j that PiPj =
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0V→V and [wi]
tr
S [wj ]S = 0. Show

that MPi
(S,S) = [wi]S [wi]

tr
S /

12. Express u as w + x where w ∈
W,x ∈ W⊥. Use the Pythagorean
theorem.

13. Express u as w + x where w ∈
W,x ∈ W⊥. Use the Pythagorean
theorem.

Section (5.5)

5. Assume rank(T ) = k and
(w1, . . . ,wk) is a basis for R(T ). Ex-
tend to a basis BW = (w1, . . . ,wm)
for W . Let (g1, . . . , gm) be the basis
of W ′ dual to BW . Show R(T ′) =
Span(T ′(g1), . . . , T ′(gk)). Then prove
that (T ′(g1), . . . T ′(gk)) is linearly in-
dependent.

6. Use Exercise 5.

7. Prove that T is injective by proving

for all v 6= 0 that T (v) 6=




0
0
...
0


 .

8. Use Exercise 4.

9. Try an indirect proof by first es-
tablishing the existence of a natural
isomorphism between V and (V ′)′.

10. Start with a basis (u1, . . . ,uk)
for U and extend to a basis B =
(u1, . . . ,un). Let (g1, . . . , gn) be the
basis of V ′ dual to B. Prove that
U ′ = Span(gk+1, . . . , gn).

11. Get inclusions and use dimension
arguments.

15. Show if B = (v1, . . . ,vn) is a ba-
sis for V and B′ = (g1, . . . , gn) is
the basis of V ′ then MT ′(B′,B′) =
MT (B,B)tr.
16. Get inclusions and use dimension
arguments.

Section (5.6)

5. Prove that 〈(T ∗)∗(v),w〉W =
〈T (v),w〉W for all W and use this
to conclude from positive definiteness
that T = (T ∗)∗.

6. Use the fact that (S + T )∗ = S∗ +
T ∗ and (λT )∗ = λT ∗ to show that
(T − λIV )

∗ = T ∗ − λIV is not surjec-
tive, hence not injective, whence has
non-trivial kernel.

8. First prove T ∗T is injective and
then use the fact that V is finite di-
mensional to prove that T ∗T is invert-
ible.

9. Prove that T ∗ : W → V is injective
and use Exercise 8.

10. Use the definition of T ∗ to show if
u ∈ U,w ∈ U⊥ then 〈u, T ∗(w)〉 = 0.

11. Use the definition of T ∗ and posi-
tive definiteness.

13. Let BV be an orthonormal ba-
sis of V and BW an orthonormal
basis of W. Set A = MT (BV ,BV )
and A∗ = MT∗(BW ,BW ). Show
rank(T ) = rank(A) = rank(A∗) =
rank(T ∗).

14. Assume S exists. Use 1 =
〈v1,v1〉 = 〈v1, S

∗(y)〉 and the fun-
damental equation. Assume 〈x,y〉 =
1. To show the existence of S let
(x2, . . . ,xn) be a basis for y⊥ and
set x1 = x. Prove x1 /∈ y⊥ and
that (x1, . . . ,xn) is a basis for V . Let
S ∈ L(V, V ) such that S(vi) = xi.
Prove that this satisfies the conclu-
sions.

Section (5.7)

7. Let {xk}∞k=1 be a Cauchy sequence

in (Rn, ‖1) where xk =



x1k
...
xnk


. Prove
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for each i, 1 ≤ i ≤ n, that {xik}nk=1 is
a Cauchy sequence since |xi − xj | ≤‖
xi − xj ‖. So, each has a limit,

xi. Set x =



x1
...
xn


 and prove that

limk→∞xk = x in the l1-topology.

8. This is proved similar to Exercise
7.

Section (6.1)

8. Start with the definition of ‖
T (v) ‖, use the definition of T ∗ and
the assumption that TT ∗ = T ∗T.

9. Use Exercise 8.

10. Use Exercise 9 and Theorem
(5.21).

11. Start by proving Ker(T ) =
Ker(T ∗). Conclude from Theorem
(5.21) that Range(T ) = Range(T ∗).
Let S be the restriction of T to
Range(T ). Prove that S = S∗ and
from this that T = T ∗.

12. Do a proof by contradiction: set
U = Ker(T ) = Ker(T ∗) and as-
sume U 6= V . Since T is a nilpo-
tent operator, Ker(T ) ∩W 6= {0} for
any T -invariant subspace. But then
U ∩ U⊥ 6= {0}, a contradiction.

Section (6.2)

1. If α1, . . . , αs are the distinct eigen-
values, then the minimum polynomial
is (x − α1) . . . (x − αs). Set Fi(x) =
µT (x)
x−αi

and note that x− αi and Fi(x)
are relatively prime. Set Vi = {v ∈
V |T (v) = αiv}. Show that there
exists a polynomial gi(x) such that
gi(T ) restricted to V ⊥

i is the zero map
and gi(T ) restricted to Vi is αiIVi

.

7. The only implication you need to

prove is T normal with real eigen-
values implies T is self-adjoint. Show
that there is an orthonormal basis B
such that MT (B,B) = MT∗(B,B).
8. Do induction on dim(V ). Since
both S and T are self-adjoint they
are diagonalizable. Use the fact that
they commute to show that there ex-
ists a common eigenvector, v, which
you can assume has norm 1. Prove
that they both leave v⊥ invariant and
use the inductive hypothesis.

9. Note for any operator that
Ker(T ) ⊂ Ker(T 2) and
Range(T 2) ⊂ Range(T ) and by
the rank-nullity theorem Ker(T 2) =
ker(T ) if and only if Range(T 2) =
Range(T ). Use the spectral the-
orem to obtain an orthonormal
basis (v1, . . . ,vn) for T where
(vk+1, . . . ,vn) is a basis for Ker(T ).
Prove Range(T ) = Range(T 2) =
Span(v1, . . . ,vk).

10. Use the fact that there exists a ba-
sis B such that MT (B,B) is diagonal.
Then define an inner product in such
a way that B becomes an orthonor-
mal.

11. Use the Spectral Theorem applied
to T restricted to U and U⊥ to obtain
orthonomal bases of U and U⊥, re-
spectively, consisting of eigenvectors.

13. Note that U = Range(T ). If T is
self-adjoint then use Theorem (5.21)
to conclude that W = U⊥. On the
other hand, if W = U⊥ prove there
exists an orthonormal basis of V con-
sisting of eigenvectors of T and that
the eigenvalues are real (they are 0 or
1).

Section (6.3)

3. You can write down the matrix of T
explicitly and define the polynomial.
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4. Use Exercise 3.

5. Express the minimum polynomial
of T as a product of linear and irre-
ducible quadratics and decompose the
space consistent with these.

6. Use Exercise 5.

7. Use the fact that T is cyclic.

8. Prove that T is cyclic.

9. Use Exercise 8.

10. Use the fact T is a cyclic operator.

Section (6.4)

1. Use the definition to show
Ker(T ) = {0}.
3. Show directly that the norm of any
vector is preserved.

5. Let S be the operator such that
S(ui) = vi. Use Theorem (6.7) to
prove this is a unitary operator and
then apply Theorem (6.8).

11. Use the Spectral Theorem.

13. Prove that T restricted to U is bi-
jective. Then prove for arbitrary u ∈
U,w ∈ U⊥ that 〈T (w),u〉 = 0.

14. Use induction and the fact that a
unitary operator is normal and there-
fore completely reducible.

15. Let (ui1, . . . ,uik) be an orthonor-
mal basis of U⊥

i for i = 1, 2 and
let R′ : U⊥

1 → U⊥
2 be the trans-

formation such that R′(u1j) = u2j.
Then R′ is an isometry. “Paste” R
and R′ together to define an isometry
S : V → V .

16. Show that there is an eigenvector
v with eigenvalue in {−1, 1}.
19. Show that S is normal with re-
spect to the inner product defined by
the dot product but T is not.

Section (6.5)

2. Use the Spectral Theorem of nor-
mal operators on a complex inner
product space.

3. Use Lemma (6.5).

4. Use Exercise 3.

5. Use the fact that the sum of self-
adjoint operators is self-adjoint.

8. Use the Spectral Theorem.

11. Define [ , ] by [v,w] = 〈T (v),w〉
which is an inner product by Exer-
cise 9. Set S = RT. Use Exercise 10
to show that S is self-adjoint. Then
show that TR is similar to RT.

18. Use the fact that Ker(T ) =
Ker(T ∗T ) andKer(T ∗) = Ker(TT ∗)
to conclude that rank(T ∗T ) =
rank(TT ∗). Let S be the restriction
of T to Range(T ∗T ). Show that S
is an isomorphism of Range(T ∗T )
to Range(TT ∗). Then prove if v ∈
Range(T ∗T ) is an eigenvector of T ∗T
with eigenvalue α then S(v) is an
eigenvector of TT ∗ with eigenvalue α.

Section (7.1)

8. Show that A has 0 as its unique
eigenvalue using Exercise 7.

10. Prove the corresponding result for
matrices. Further, show if Ekl is the
matrix with all 0’s except a 1 in the
(k, l)- position prove and A has entries
aij then Trace(AEji) = aij .

11. Choose a basis B of V such that
MT (B,B) is lower triangular.
12. Choose a basis B for V such that
MT (B,B) is lower triangular.
13. Choose an orthonormal basis
for V use the relationship between
MT (B,B) and MT∗(B,B).
14. Choose an orthonormal basis
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for V use the relationship between
MT (B,B) and MT∗(B,B).
16. T ∗T is self-adjoint and semi-
positive.

17. If T is the zero operator, then
there is nothing to prove. Since the
characteristic is zero, T is not a scalar
operator. This implies that there is a
vector v such that (v, T (v)) is linearly
independent. Extend to a basis and
use induction.

18. Let C be a diagonal matrix with
distinct diagonal entries. Define an
operator ad(C) : Mnn(F) → Mnn(F)
by ad(C)(B) = BC − CB. Prove
that dim(Ker(ad(C))) = n so that
dim(Range(ad(C))) = n2 − n which
is the dimension of the space of n×n
matrices with zeros on the diagonal.

19. Use 17 and 18.

Section (7.2)

3. Choose an orthonormal basis B
for V use the relationship between
MT (B,B) and MT∗(B,B).
5. Use Exercise 4.

9. Use 1 = det(AA−1) =
det(A)det(A−1).

10. Use Exercise 8.

11. Use the Spectral Theorem.

12. T ∗T is self-adjoint and so has real
, non-negative eigenvalues.

13. T is normal. Use the result on nor-
mal operators on real inner product
spaces along with the characterization
of orthogonal operators.

14. T is normal. Use the Spectral The-
orem and the Characterization Theo-
rem.

17. Add or subtract the first row from

each subsequent row obtain a matrix
B such that all entries bi1 = 0 for
2 ≤ i ≤ n. Show that every entry bij
is divisible by 2 for 2 ≤ i ≤ n.

Section (7.3)

5. Let (u1, . . . ,um) be a sequence
of vectors from V . By the Exchange
Theorem it is linearly dependent. Use
Lemma (7.11).

Section (8.1)

5. For w ∈ W, denote by F the map
from V to F given by F (w)(v) =
f(v,w). This is a transformation from
W to V ′. Use the Rank-Nullity The-
orem.

13. Let BV = (v1, . . . ,vm) be a basis
of V and BW = (w1, . . . ,wn) be a ba-
sis of W and set aij = f(vi,wj) and
let A be the matrix with (i, j)-entry
equal to aij . Note that rank(A) =
n − nullity(A) = rank(Atr) = m −
nullity(Atr).

14. Use Exercise 13.

16. Show that the map F : W → V ′

given by F (w)(v) = f(v,w) is an iso-
morphism. Let g1, . . . , gn be a the ba-
sis of V ′ which is dual to v1, . . . ,vn

and then let wi ∈ W be the preimage
under F of gi.

Section (8.2)

3. Prove U ⊂ (U⊥)⊥ and use a dimen-
sion argument to get equality.

5. Use U ⊂ U⊥ and Lemma (8.12).

6. Choose a basis for U and extend
this to a hyperbolic basis.

Section (8.3)

6. Let U and W be totally singular
subspaces of dimensions k and l with
k ≤ l. Use Witt’s Theorem to obtain
an isometry S such that S(U) ⊂W.
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7. Do a proof by induction on n, the
dimension of the space V.

8. Use Exercise 7.

18. Use the fact that for every c ∈ Fq

there exists a and b ∈ Fq such that
a2 + b2 = c.

19. Use Exercise 18.

Section (8.4)

4. First, use the fact that if U is a
non-singular three dimensional sub-
space then it contains singular vectors
to prove. Then prove if dim(V ) = 4
then the index is one or two. Then do
an induction on m.

8. Prove that E2 ⊥ E2 has index two.

Section (8.5)

8. For y ∈ V show there exists a
unique vector T (y) ∈ V such that
f(x,y) = 〈x, T (y)〉. Prove that T is
linear and a symmetric operator.

Section (9.1)

6. Let gi be the σ-semilinear map such
that gi(vj) = 1 if j = i and gi(vj) =
0, otherwise. Use Lemma (9.5) to ob-
tain v′

i.

7. Prove if σ2 = IF then f is reflexive.
When σ2 6= IF and dim(V ) > 1, prove
that f is not reflexive.

Section (9.2)

7. Let x be an anisotropic vector.
Prove if y ⊥ x then y is also
anisotropic. Use the fact that N is
surjective to conclude that there are
x′ ∈ Span(x) and y′ ∈ Span(y) such
that f(x′,xprime) = 1 = −f(y′,y′).

8. Do induction on n = dim(V ) and
use Exercise 7.

9. Let I be the set of isotropic vec-
tors and set U = Span(I). Suffices to
prove that U = V . Let x ∈ I and
y an arbitrary non-isotropic vector.
Assume y 6⊥ x so that Span(x,y)
is non-degenerate. Prove there is an
isotropic vector y′ ∈ Span(x,y) \
Span(x) and then y ∈ Span(x,y) =
Span(x,y′) ⊂ U .

Assume y ⊥ x. Choose z ∈ I such
that f(x, z) = 1. Then Span(x,y, z)
is non-degenerate. Prove that there
is a y′ ∈ I ∩ [Span(x,y, z) \
Span(x, z)]. Then Span(x,y, z) =
Span(x,y′, z) ⊂ Span(I).

Section (10.1)

5. Let (z1, . . . , zs) be a basis for
W ′ = Span(w1, . . . ,wn). Express
each wj as a linear combination of
(z1, . . . , zs). Use the independence of
{xj ⊗ zi|1 ≤ j ≤ n,≤ i ≤ s}.
6. Show Z is a solution to the univer-
sal mapping property that defines the
tensor product of V and W .

9. To avoid confusion denote the ten-
sor product of X and Y by X ⊗′ Y .
Define a map θ : X × Y → V ⊗ W
by θ(x, y) = x × y. Use the universal
property of X⊗′Y to get a linear map
θ′ : X ⊗′ Y → V ⊗W and show that
it is injective and the range is Z.

Section (10.2)

1. Use the universal mapping prop-
erty.

3 Do induction on m ≥ 2.

4. Turn this into a problem of the
rank of operators R : Fl → Fk and
S : Fn → Fm and then into the di-
mension of the range of R ⊗ S from
Fl ⊗ Fn to Fk ⊗ Fm.

5. Prove the contrapositive: If S and
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T are not nilpotent then S ⊗ T is not
nilpotent.

6. Use a diagonalizing basis of V for
S and a diagonalizing basis of W for
T to obtain a diagonalizing basis of
V ⊗W for S ⊗ T.

12. Choose a basis Bi for Vi, i = 1, 2
and set Ai = MSi

(Bi,Bi) so that
MS1⊗S2(B1 ⊗ B2,B1 ⊗ B2) = A1 ⊗
A2. Use the definition of A1 ⊗ A2

to prove that Trace(A1 ⊗ A2) =
Trace(A1)Trace(A2).

14. Use Exercise 13.

Section (10.3)

2. Use Lemma (10.2) to argue that
each S ⊗ · · · ⊗ S : Tk(V ) → Tk(W )
is surjective, whence T (S) : T (V ) →
T (W ) is surjective.

3. Use Lemma (10.2) to argue that
each S ⊗ · · · ⊗ S : Tk(V ) → Tk(W )
is injective, whence T (S) : T (V ) →
T (W ) is injective.

4. Use part v) of Lemma (10.2).

10. Assume Sl = 0V→V . Prove that
Tk(S)kl−l+1 = 0Tk(V )→Tk(V ).

11. Make a conjecture based on the
case that the minimum polynomial of
S splits into linear factors in F[x] and
then in the general case prove this
conjecture by induction on dim(V ).

12. Make a conjecture based on the
case that the minimum polynomial of
S splits into linear factors in F[x] and
then in the general case prove this
conjecture by induction on dim(V ).

Section (10.4)

2. Use the identification of Sym(V )
with F[x1, . . . , xn] when dim(V ) = n.

3. Assume K is an extension field of

F such that χT (x) = (x − α1)(x −
α2)(x−α3)(x−α4). Express a0, . . . , a3
in terms of α1, . . . , α4. Then express
the eigenvalues of Sym2(T ) in terms
of α1, . . . , α4, whence in terms of
a0, . . . , a3.

Section (10.5)

8. Make a conjecture based on the
case that the minimum polynomial of
S splits into linear factors in F[x].
Then prove this holds for every ele-
mentary matrix and use this to prove
it in the general case.

14. Let f(x) = x4 − 8x3 +12− 2. You
may assume with respect to some ba-
sis B = (v1, . . . ,v4) that the matrix
of S is the companion matrix C(f).
You can use this to find the matrix
of ∧2(S) with respect to the basis
(v1 ∧ v2, . . . ,v3 ∧ v4) and then deter-
mine the characteristic polynomial of
this matrix.

15. Let f(x) = x3 − 6x+ 3. Let S be
the operator on a three-dimensional
vector space such that the matrix
of S with respect to a basis B =
(v1,v2,v3) is C(f). Use this to find
the matrix of ∧2(V ) with respect to
the basis (v1 ∧ v2,v1 ∧ v3,v2 ∧ v3)
and the determine the characteristic
polynomial of this matrix.

16. Let f(x) = x4 − 3x3 +3. Let S be
the operator on a three-dimensional
vector space such that the matrix
of S with respect to a basis B =
(v1,v2,v3,v4) is C(f). Use this to
find the matrix of ∧2(V ) with respect
to the basis (v1 ∧ v2, . . . ,v3 ∧ v4) and
the determine the characteristic poly-
nomial of this matrix.

Section (10.6)

1. Show that there is a vector v such
that φ(v) = −1. Show that the ideal
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Iφ is generated by v⊗ v+1 and that
T (V )/Iφ is isomorphic to C.

6. Let (x,y) be a hyperbolic basis of
V . Show that (x,y,xy,yx) is a basis
of C(V ). Denote the vector axy+by+

cx + dyx by

(
a b
c d

)
and show that

the vector space isomorphism from
C(V ) to M22(F) is a homomorphism
of algebras.

Section (11.1)

4. May assume H1 6= H2. Let
P = Span(x1). Extend to ba-
sis (x1, . . . ,xn−2) for H1 ∩ H2.
Let xn−1 be a vector in H1 \
H2 and xn a vector in H2 \ H1.
Then H1 = Span(x1, . . . ,xn−1) and
H2 = Span(x1, . . . ,xn−2,xn) and
(x1, . . . ,xn) is a basis for V . Note
that S restricted to H1 is the iden-
tity and there is a scalar a such that
S(xn) = xn + ax1. Likewise T re-
stricted toH2 is the identity and there
is a scalar b such that T (xn−1) =
xn−1+bx1. Can compute ST and TS
on the bases and show they are the
same.

5. Set x′
n−1 = bxn−1 − axn

and H = Span(x1, . . . ,xn−2,x
′
n−1).

Prove that ST ∈ χ(P,H).

6. This is like Exercise 4.

7. This is like Exercise 5

Section (11.2)

10. Let X = Span(x). Let U be a
complement to X in X⊥. Then U is
non-degenerate. Choose a hyperbolic
basis (u1, . . . ,un−1,v1, . . . ,vn−1)
where f(ui,uj) = f(vi,vj) =
f(ui,vj) = 0 for i 6= j and f(ui,vi) =
1. Set M0 = Span(x,u1, . . . ,un−1)
and for 1 ≤ j ≤ n − 1 set Mj =
Span(x,v1, . . . ,vj ,uj+1, . . . ,un−1).

Section (11.3)

1. Show that τu,y and ρzρy have the
same images on u⊥.

4. Let G be the group generated by
Tu ∪ Tv and prove that G is transi-
tive on singular one dimensional sub-
spaces. Then show if w is a singular
vector then Tw is contained in G.

10. Set u′ =

(
1 0
0 0

)
,v′ =

(
0 0
0 −1

)
.

Show that (u1,v
′) is a hyperbolic

pair of (M, q). Show that the orthog-
onal complement to Span(u′,v′) is

{
(
0 α
α 0

)
. Set x′ =

(
0 1
1 0

)
and

y′ =

(
0 ω
−ω 0

)
. Show that q(x′) = 1,

q(y′) = d, x′ ⊥q y′. Conclude that
(M, q) and (V, φ) are isometric.

11. Argue that it suffices to prove that

A · m ∈ M for A =

(
1 α
0 1

)
and

(
1 0
α 1

)
where α ∈ K.

Section (11.4)

1. For T ∈ Ω(W ) let T̂ : V → V de-
fined by T (w+u) = T (w) +u where
w ∈ W and u ∈ W⊥. First prove
if T ∈ χ(X,X⊥ ∩ W ), where X is
an isotropic one subspace of W (so T
is a unitary transvection with center
X and axis X⊥ then T̂ ∈ χ(X,X⊥).
Then use this to prove the result for
arbitrary T .

Section (12.2)

1. Prove that the four Penrose–Moore
equations are satisfied by P .

2. Prove that the four Pen-
rose–Moore equations are satisfied by
diag{ 1

d1
, . . . , 1

dr
, 0, . . . , 0}.

6. Use the Penrose–Moore equations.
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7. Use the Penrose–Moore equations.

11. Use Exercises 7, 8, and the Pen-
rose–Moore equations.

12. Use Exercises 8 and 11.

15. Use Exercises 6, 11, and the
Penrose-Moore equations.

Section (12.3)

1. Show if the (i, j)-entry of Al is non-
zero and the (j, k)-entry of Am is non-
zero then the (i, k)-entry of Al+m is
non-zero.

5. Expand (In+A)
n−1 using the bino-

mial theorem and use this to conclude
for all i 6= j there is an l < n such that
alij 6= 0. Then show there is anm such
that amii 6= 0.

8. Prove if v is a positive eigenvector
and Av = λv then λ ∈ R+.

11. Note that this is equivalent to the
following: If z1 ∈ R+, z2, . . . , zn ∈ C
and |z1+· · ·+zn| = z1+|z2|+· · ·+|zn|
then zi ∈ R+ for all i. Do an induction
on n ≥ 2.

16. Use Corollary (12.4).

17. Use Corollary (12.5).

Section (12.4)

1. Apply Theorem (12.26) to Atr.
Then note that C′

i(A) = 1− aii.

2. Use Theorem (12.32).

3. Use Theorem (12.26) to conclude
that each disc, Γi(A), contains one
eigenvalue, whence the eigenvalues of
A are distinct.

4. Use Theorem (12.32) to conclude
that each disc, Γi(A), contains exactly
one eigenvalue. Prove that under the
hypothesis no disc can contain a pair
of conjugate complex numbers.

6. This is proved like Exercise 4.

7. Set I = {i1 < · · · < ik} and let AI,I

be the k×k matrix whose (j,m)-entry
is aij ,im . Prove that AI,I is strictly di-
agonally dominant.

8. Use
∑n

i=1R
′
i(A) =

∑n
j=1 C

′
j(A).

9. First show that you can reduce to
the case that all aii > 0 and show
that det(A) > 0. Then do a proof by
induction on n.

Section (13.2)

5.a) Let z be the all one vector. The
map x → x+z is a bijection from the
collection of words of length t to the
words of length 7− t.

b) Since the minimal weight is 3 it fol-
lows that there are no words of length
5 or 6 (otherwise by a) there would be
words of weight 2 or 1). It then fol-
lows that, apart from the zero word
and the word of weight 7 there are 14
words of weight 3 or 4. Since there
are equally many of each, there are
7 words of weight 3 and 7 words of
weight 4.

6. The parity check takes a word of
weight 3 to a word of weight 4. A word
of length weight 4 remains 4.
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