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To my wife,
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Preface

This textbook presents what Joseph-Louis Lagrange called Analytical Mechanics.
Historically this was a great advance beyond the methods of Euclidean geometry
employed by Isaac Newton in the Philosophiae Naturalis Principia Mathematica.
With the methods of Lagrange and Leonhard Euler, we could actually perform
calculations. Lagrange and Euler used the calculus and did not require the for-
midable expertise in the use of geometry that Newton possessed.

The step introduced by William Rowan Hamilton simplified the formulation.
Hamilton’s ideas also represent a great step forward in our understanding of the
meaning of Analytical Mechanics. This, coupled with the simplification added by
Carl Gustav Jacobi, provided us with a pathway to the more modern uses of
Analytical Mechanics including applications to astrophysics, complex systems, and
chaos.

Our approach will introduce a modern version of what was done in the 18th and
19th centuries. We will follow essentially the historical development because the
ideas unfold most logically if we do so. We will, however, pay more attention to the
development of Analytical Mechanics as a valuable tool than to a historical study.

Our final step will be the relativistic formulation of Analytical Mechanics. That
is an absolute necessity in any complete study of Analytical Mechanics.

Logically we begin this text with a chapter on the history of mechanics. Many
texts include brief historical comments or even added pages outlining individual
contributions. That is certainly an improvement on the anecdotes that our professors
often passed on to us without citation. Those anecdotes piqued our interest and
added flavor. But they lacked a continuity of thought and that all-important accu-
racy that we prize. Analytical Mechanics is the oldest of the sciences. And the
history stretches from the beginnings of philosophy in Miletus in 600 BCE to the
advances in scientific thought introduced in the Prussian Academy and in Great
Britain. I have sincerely endeavored to shorten this, as any serious student will
easily recognize. But I still worry about the length.
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Because my own understanding of science has been greatly enriched by studies
in history, I cannot recommend that a professor ignore the first chapter completely.
The student should understand something of the interesting and tortured individual
Newton was. And we cannot really comprehend the origins of the ideas that gave
birth to Analytical Mechanics without encountering the work of Pierre Maupertuis,
Johann Bernoulli,1 Euler, and Lagrange. The sections of Hamilton and Jacobi may
be held until after the students have gained an appreciation for the methods of
Analytical Mechanics. But those sections will be of interest to students as they
encounter the chapter on the Hamilton-Jacobi approach. They should see the
simplicity of what Jacobi brought and his great respect for the ideas of Hamilton.
Then to emphasize the importance these ideas, I include an outline of Erwin
Schrödinger’s original published derivation of his wave equation from the
Hamilton-Jacobi equation. With the caveat surrounding a second variation, the
quantum theory is buried in the theory of Hamilton and Jacobi.

In Chap. 1, I have not included the historical events leading to Albert Einstein’s
development of the Special Theory of Relativity in 1905. Some of this I have placed
in the final chapter. The historical importance of Einstein’s contributions is more
easily understood by a reader who has a general grasp of the classical theory of
fields, which is not our primary topic.

Beyond the history, the primary part of the text, in which I present the basis and
applications of Analytical Mechanics, begins with Chap. 2 on Lagrangian
Mechanics. There the issue is the Euler-Lagrange equation and the variational
problem, which is solved by the Euler-Lagrange equation. This I follow by a
chapter on Hamiltonian Mechanics, which, through the Legendre transformation, is
a logical next step from the approach of Euler and Lagrange. The canonical
equations were actually obtained by Hamilton in his papers of 1834 and 1835 with
another goal in mind. But the procedure was the Legendre transformation. With
these chapters, we have Analytical Mechanics essentially in place.

Then I introduce the Hamilton-Jacobi approach. I do not present a method to be
memorized and applied because doing so obscures the logic and the simplicity.
I follow in spirit, but not in precise detail, the ideas of Jacobi. The generator of a
canonical transformation will take center stage, as it did for him. The final method
does not follow a head-down approach, but one with finesse.

In all texts there are final chapters. And all courses are of finite duration.
Therefore, there will always be parts of the student’s experience that will become
lost in the fuzziness of the final days. In this text, those final chapters contain
studies of complex systems, chaos, and relativistic mechanics. Each of these
chapters deals with subjects of entire courses at many institutions. I have written the
chapters on complex systems and on chaos as introductions to these very interesting
topics. They may then be treated as windows opening onto studies that may occupy

1Johann was the original name given by his parents. Jean or John appears sometimes, depending
upon whether the author is French or English. Johann Bernoulli was born and died in Basel,
Switzerland.
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the students’ interests completely at a later time. They may even provide interest for
the last weeks of a semester. But the final chapter on special relativity is not of the
same character.

I elected deliberately to make the final chapter on the Special Theory of
Relativity an almost self-contained unit. The reader who is not completely familiar
with the theory of classical fields will be able to pass over a portion of the chapter in
which we develop the field strength tensor and electromagnetic force. However, the
approach to relativistic mechanics and finally to relativistic Analytical Mechanics
should be considered carefully by the serious reader. There I have followed some
of the classic sources, such as Wolfgang Pauli, Peter G. Bergmann, and Wolgang
Rindler. The principal product of this work is the Hamiltonian and the canonical
equations for relativistic motion in the electromagnetic field. We required the
nonrelativistic approximation to these results for our treatment of this motion in a
previous chapter.

I cannot expect that all students will be stirred, as some of mine have been, when
they see the connections among the ideas common to theoretical physics. But I hope
they are.

I am deeply indebted to generations of students who have gone through this
intellectual adventure with me during the past forty years. I am thankful that I have
been part of their intellectual pathways and for the questions with which they
continued to press me. They have seen me grow in understanding and love for the
ideas I try to express here.

I am also very thankful to my teachers who introduced me to the beauty and
power of Analytical Mechanics. Isaac Greber particularly stands out. He presented
us with remarkably inspired and almost impossibly difficult problems to which I
devoted all of my energies on many cold winter nights in Cleveland. Isaac has been
a friend and an inspiration.

Goshen, IN, USA Carl S. Helrich
May 2016
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Chapter 1
History

We must gather and group appearances until the scientific imagination discerns their hidden
laws, and unity arises from variety; and then from unity we must deduce variety, and force
the discovered law to utter its revelations about the future.

William Rowan Hamilton

1.1 Introduction

Analytical Mechanics is the theory on which we base our understanding of motion.
The histories of the development of some parts of classical physics span limited time
frames and can be neatly treated based on what we accept as the experimental and
mathematical philosophy of physical science that emerged after thework of Johannes
Kepler and Isaac Newton. But the history of classical mechanics cannot be confined
in this fashion. The philosophical steps taken byKepler and Newtonwere a landmark
on the path leading to the theory of mechanics. But the time frame for these steps
was short. We have always observed motion around us and in the cosmos above us.
And at some point we began to ask questions about the motion. The history of our
study of motion must go back to the original scientific thinkers. Those thinkers were
the ancient Greeks.

What we may identify as ancient Greek thought resulted in the ideas of Plato
and Aristotle and in the academy at Athens, which was closed by the Eastern Roman
emperor Justinian I in 529CE.Anumber of theAcademy’s thinkers found newhomes
among the Arabs and brought with them Greek manuscripts. Then the revelation to
Muhammad in 610 CE resulted in the beginning of Islam.1 This changed the basis on

1Islam is the monotheistic Abrahamic religion based on the Qur’an, which is considered to be the
exact word of God by adherents to Islam.
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2 1 History

which scientific and philosophical thought was developed among the Muslim Arabs.
Neither Muslim2 science nor the religion of Islam developed in isolation from one
another. The considerable contributions ofMuslim thinkers to astronomy, cosmology,
andmathematics and the educational system that included the first universities cannot
be considered independently of the development of Islam. It was this intellectual
culture that came to western Europe with the Muslim conquest of Spain and the
formation of Al Andalus (Muslim Spain).

The great interest among the Latin speaking intellectuals of western Europe in
Greek and Arabic science and mathematics, which was introduced into Al Andalus,
resulted in an extended period of translation of the Arabic texts into Latin. These
included the works of Greek thinkers that had been corrected by Muslim scientists
and mathematicians, as well as original Muslim texts. Coincidental with this transla-
tion universities were also founded across Europe. The entire intellectual landscape
changed in western Europe. We may be tempted to call this the first, or scientific,
renaissance in Europe.

With the fall of Al Andalus in 1492, and other economic and geopolitical changes,
Muslim intellectual dominance waned and scientific progress became centered in
westernEurope. In 1543 theworkofNicolausCopernicus on the heliocentric universe
was published. At the beginning of the 17th century Kepler changed astronomy into
astrophysics and in 1687 Isaac Newton published Philosophiae Naturalis Principia
Mathematica which contained his formulation of the laws of mechanics.

In the 18th century, at the hands of Pierre Louis Maupertuis, Leonhard Euler and
Joseph-Louis Lagrange, Newton’s laws became Analytical Mechanics, which we
could actually use in calculations. The final and most beautiful form of the Analyt-
ical Mechanics came from the work of William Rowan Hamilton (1835) and Carl
Gustav Jacobi (1837). The formulation of Jacobi leads to the modern applications of
AnalyticalMechanics to astrophysics and to chaos theory. Here we also find the basis
of the Schrödinger Equation and quantum mechanics. And, with Albert Einstein and
Hermann Minkowski, we began to understand space and time as a continuum and
Analytical Mechanics took on a form applicable to high energies.

In this chapter we will separate the periods outlined here into sections. We shall
attempt to provide sufficient detail for the reader to understand the development of
the ideas as they relate to the history of Analytical Mechanics. At the same time we
shall attempt to be as brief as feasible.

1.2 Ancient Greece

The roots of the ideas and concepts that we now accept as fundamental originated
with the Presocratic philosophers, or simply Presocratics, ofGreece. The Presocratics
were Greek thinkers of the 6th and 5th centuries BCE (Before the Common Era).

2A Muslim is an adherent to the religion of Islam.
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In the 19th century Hermann Diels introduced the term Presocratic to contrast these
philosophers, whose interests were primarily in cosmology and physical speculation,
from those after Socrates (ca. 47–399 BCE). Socrates’ primary interest was in moral
problems [14].

Identifying the Presocratics as philosophers rather than simply as thinkers is also
somewhat problematic [14]. We shall, however, identify them as philosophers in part
because of tradition, but also because they rejected explanations in terms of the gods
or of the supernatural [[69], p. 8]. This is not to imply anything about personal belief
of the Presocratics or of any other philosophers. It is rather an acceptance of the
fact that the scientist or philosopher must seek understanding that does not explicitly
invoke the supernatural.

Greek thought did not originate in isolation. The Babylonians were astronomers
andmathematicians, certainly surpassing the Egyptians. TheBabylonianswere inter-
ested in more than arithmetical calculations. They possessed as well an algebra
with the ability to handle quadratic equations. Observations by the Babylonians of
the appearances and disappearances of Venus date to ca. 1600 BCE. The Greek
astronomer Claudius Ptolemy had access to the complete Babylonian records of
eclipses and used the first year of the reign of Nabonassar (747 BCE) as his base line
[[69], pp. 6, 7].

Because they were a society based on agriculture and needed to know the plant-
ing seasons, the Egyptians developed what is considered to be the first intelligent
calendar in human history. This was far superior to the civil calendars of the individ-
ual Greek city states, and to the lunar calendar of Babylon. Greek astronomers, in
late antiquity used the Egyptian calendar in preference to the Greek and Babylonian
[[69], pp. 65, 6].

But we are interested in the science of mechanics and not in the development of
ancient science. We will then, unapologetically, base our discussion on the Greeks.

Some of the philosophers identified as Presocratic were contemporaries of
Socrates whose thought differs from that of Socrates. And what we know of the
Presocratic philosophers comes almost exclusively from the writings of Aristotle.
These nuances in interpretation become more important with the emergence of the
more coherent theologies of Judaism, Christianity, and Islam.

1.2.1 Milesians

Miletus is a city in modern day Turkey on the coast of the Mediterranean Sea. We
identify a trio of Greek thinkers, who lived in this region, as Milesians.

Thales (born early 6th century BCE) is considered to be the first of the Presocratic
thinkers. According to Aristotle, Thales proclaimed that “the world is alive and full
of gods” [[69], p. 9]. He did not mean that the Olympian gods controlled the world.
More probably he meant that divinity is present in all that is [[91], p. 7].
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For example, Thales considered that magnetic lodestone possessed a soul, which
he thought of as a unifying principle [14]. When he identified the first principle from
which all things come as water it seems that he meant water was the source of all
material and that all material in some way contained water. But this water was not
just H2O [14]. Rather he was speaking if of the possibility that all matter could be
based on a unifying principle. Aristotle interpreted this as related to the material
cause of things [[69], p. 18].

Tradition holds that Anaximander was Thales’ student [14]. At least he also lived
in Miletus around 560 BCE [[91], p. 8]. Anaximander had a more abstract, although
similar, concept for the unifying principle of the universe. He spoke of to apeiron,
the Boundless, which filled all of the cosmos. The Boundless is manifested as matter,
motion, energy, law and perhaps even purpose [[91], p. 9]. It is the beginning and
end of all there is. In the words of Aristotle this is the Divine.

Simplicius, a 6th century CE commentator on Aristotle’s Physics cites a rather
poetic claim by Anaximander that the Boundless is

The source from which existing things derive their existence is also that to which they return
at their destruction, for they pay penalty and retribution to each other for their injustice
according to the assessment of Time [[14], [91], p. 9].

It seems that here Anaximander is referring to a system that is ruled by the justice
of the ordering of Time. This contrasts to the capricious chaos of the disordered
world subject to the whims of Olympian gods [14].

Anaximenes also thought in terms of an underlying substance, which he identified
as air. Air can take on different colors, temperatures, tastes and smells. And he added
a basic theory of how air is transformed. Air condenses to form water and boils to
reform as a gas. And air also can become solid. These are based on observation and
not on qualitative concepts alone [[14], [69], p. 22].

In the Milesians we see the first steps toward a unifying idea or concept for the
cosmos.Andwe see the beginning of observation in order to decide on themechanism
underlying change. This is the beginning of the transition from being to becoming.

1.2.2 Beyond Miletus

If we go North of Miletus, but remain in modern Turkey, we come to the ancient
Greek city of Colophon. Until recently Xenophanes of Colophon was considered to
be only a minor poet [14]. We now realize that he was an important thinker who
explored human knowledge and limitations and influenced later philosophers as they
explored human thought and the possibility that human’s may have a god’s eye view.

Xenophanes pointed out that humans depict their god’s in a familiar (human)
form. But then he claimed that there is a single greatest god.
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One god greatest among gods and men,

Resembling mortals neither in body nor in thought.

… whole [he] sees, whole [he] thinks, and whole [he] hears,

but completely without toil he agitates all things by the

thought of his mind. [Xenophanes, quoted in [14]]

This greatest godwas indifferent to the affairs of humans. Xenophanes asserts that
we as humans are epistemologically autonomous and that we must rely on our own
capacity for inquiry.We are limited in our certainty beyond our direct experience [14].

Here we find the beginnings of what wemay even consider to bemodern scientific
thought.

Ephesus was in the same part of what is now Turkey as Colophon. Heraclitus
of Ephesus is as difficult to comprehend as we may wish. Socrates is said to have
remarked regarding Heraclitus, “What I understood is noble, and also, I think, what I
did not understand.” [[91], p. 11]. Plato accused himof being incoherent andAristotle
claimed that he denied the law of non-contradiction [14].

Heraclitus was interested in process and in logos rather than substance or matter.
It is not clear exactly what Heraclitus meant when he spoke of logos. He seemed
to mean a lawful, divine principle that governed the universe, the cosmos. He also
claimed it was possible, but not easy, for humans to understand logos [14].

This seems to be the Dharma of the Indians to the East, and the Wisdom of the
Hebrews to the South. In Proverbs 8 Wisdom says she was constantly with God in
the beginning [[91], p. 10].

FromHeraclitus, therefore, we have a cosmoswhich is changing, but in the change
is lawful order. Logos provides a unity of purpose [[91], p. 12].

Samos is just off of the coast of modern Turkey where ancient Miletus, Colophon
and Ephesus were located. Pythagoras was born there around 570 BCE. He was
not an isolated mathematician. At one point he and about 300 followers settled in
the Greek colony of Croton in southern Italy to escape the tyranny of Polycrates
in Samos [[91], p. 24]. These Pythagoreans formed a commune, which was of a
religious nature and accepted women as full members [[91], p. 12].

The Pythagoreans seem to have invented the concept of mathematical proof [[91],
p. 13]. Their primary interest, however, was in numbers. The Milesians held that the
primary things were material substances or abstract substances as the Boundless of
Anaximander. But the Pythagoreans found that the principle of all things was in
numbers [[69], p. 25]. The ratios of the musical harmonies provided one of their
favorite illustrations. This they passed on to astronomical concepts when they spoke
of the motion of the cosmos in terms of a music of the spheres [[69], p. 27].

The Pythagoreans also conducted experiments, such as their empirical investiga-
tions in acoustics. For example they observed the relationship between the amount
of water in a jar and the note produced when the jar is struck as well as the rela-
tionship between string lengths and the notes they produced. Plato refers to some of
these experiments in acoustics. Plato’s evidence is all the more convincing because
he strongly disapproved of these methods [[69], p. 31].
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The Pythagoreans sought to give knowledge an actualmathematical basis. But this
went beyond a mere description. The formal structure of observed phenomena was
expressible in terms of numbers. For many Pythagoreans things, concrete material
objects, were also numbers.

These ideas place the Pythagoreans far ahead in the use of mathematics and a
mathematically based structure for physics, even though we cannot accept many of
their concepts.

The Milesians dealt with the concept of change and Heraclitus had already raised
the difficulties. Then Parmenides, from the Greek colony Elea on the West coast of
Italy and South of Naples, denied that change can occur at all based on a skepticism
regarding human perception.

What we have of Parmenides (ca. 515−ca. 460 BCE), besides Plato’s remarks and
acknowledgement, is a single philosophical poem. But the poem is so important to
philosophical thought that it has been preserved bymany [[69], p. 21]. He divided the
poem into two parts: theWay of Truth and theWay of Seeming, which he claimed was
deceitful. He deals with being, which is and cannot not be, and not-being. Nothing
that is can come from not-being. Being may be existence itself, the totality of what
is or what can be spoken about [[69], p. 38].

If we are to accept Parmenides we must deny validity to human perception based
on human senses. This may not come as a difficult point to the modern physicist,
who has become accustomed to the fact that wemust rely on instruments that surpass
our senses. But it was a difficult point to the Greek philosophers of nature in the late
5th century BCE. The problem was to find a way for change to exist while accepting
Parmenides’ dictum that what exists cannot arise from that which does not exist
[[69], p. 39].

Empedocles (ca. 490−ca. 430 BCE) of Acragas, an ancient Greek city on Sicily,
accepted Parmenides’ admonition that we could not rely on the senses. But he did not
accept Parmenides’ insistence that reason alone was the way to truth. He conceded
the fact that the senses are poor instruments formeasurement. But so too is the human
mind. Parmenides was correct in asserting that being cannot arise from not-being.
But this does not mean that what exists is unique. The roots earth, air, fire and water
have existed eternally, but change is produced by their mixing. This mixing occurs
under the influence of the opposing forces of Love and Strife [[69], p. 39].

Here we have the origins of the concept we now know as element and even the
concept of proportion. This was a truly inspired guess. He only applied this idea in
a limited way. For example he claimed that bone was composed of fire, water and
earth in the ratio 4:2:2 [[69], pp. 40–42].

Anaxagoras (ca. 510−ca. 428 BCE) was born in the Ionian region of the northern
most Greek settlements in what is now western Turkey. But he lived most of his life
in Athens. There he was a friend and teacher of Pericles, the Athenian statesman and
general. And he was prosecuted on the charge of impiety, which seems to have been
motivated by a political faction seeking to discredit Pericles [[69], p. 43].

Anaxagoras dealt with the same problem of change imposed by Parmenides and
his solution reflected the ideas of Empedocles. Hismixtureswere, however, based not
only on the four roots, but included mixtures of what had previously been considered
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qualities rather than things, “…no thing comes to be or passes away, but is mixed
together and dissociated from the things that are.” [14]. Qualities included hot and
cold or wet and dry. No natural substance was more elemental or more fundamental
than any other [[69], p. 44–45].

Anaxagoras also attempted to come to grips with what we may call dynamics.
He attributed the motion of his ingredients to an external intelligent force. The same
force that governed the rotation of the heavens governs as well the events on earth,
including life and death. We are not able to determine the truth because of the
limitations of our senses, but appearances are a view into the unseen [14].

These ideas did not later satisfy Plato and Aristotle because of their lack of a
teleology [14]. Nevertheless, they hold a kernel of Newton’s claim that what holds
the moon in orbit causes the apple to fall.

1.2.3 Atomism

The idea of atomism was first suggested by Leucippus (5th century BCE) of Miletus
and then developed byDemocritus ofAbdera, which is on the Eastern tip of theGreek
peninsula and northern banks of the Aegean Sea. Democritus was born in about 460
BCE, which is shortly after Socrates was born in Athens. So Leucippus, Democritus,
along with Diogenes of Apollonia (active after 440 BCE) end the Presocratics. We
shall not indulge in the controversy over whether or not Leucippus was a real person.

The Greek atomic theory cannot be equated to modern atomic theory, nor is
modern atomic theory a natural extension ofGreek atomic theory. The basic postulate
that only atoms and the void are real is a familiar concept in modern theory, with the
caveat that a quantum vacuum is not necessarily a complete void.

But the Greek atom is strictly indivisible, which is what Atomonmeans. Aristotle
illustrated the modes of differences in atoms in terms of shape of individual atoms,
arrangement of atoms with one another, and positions of atoms. Greek atoms were in
continuous motion and underwent collisions with one another sometimes hooking or
becoming barbed together, or if their shapes correspond they may otherwise cohere.
This coherence produces compound bodies that may have different effects on the
senses. That is they may have different colors and tastes [[69], pp. 45–46]. We must
be prepared to be very flexible if we wish to build the atomic theory of John Dalton
upon this basis,

Democritus (460−370 BCE) was not a complete atomic realist, at least not in the
modern sense. He claimed that “There are two forms of knowing, one genuine and the
other bastard. To the bastard belong all these: sight, hearing, smell, taste, touch. The
other, the genuine, has been separated from this” [14]. Democritus was also identified
in antiquity as one who taught that life should be guided by a cheerful nature. His
thoughts were not confined to what we may identify as the basis of physical science.

Diogenes (ca. 412−323 BCE) brings us back to the cosmic concepts of the Mile-
sians. All things arise from one substance and are the same thing, and there is an
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intelligence that guides the cosmos. This single substance he identifies with air, as
Anaximenes did, and he claims that “which possesses intelligence is what human
beings call air.” For Diogenes air is soul and intelligence [14].

1.2.4 Plato

Cicero (107–143 BCE) wrote that “Socrates called down philosophy from the skies.”
Socrates turned froman interest in physics to one inmorals and ethics.Athens became
the intellectual center ofGreece. Plato andAristotle founded schools inAthens,which
attracted philosophers and scientists from all of Greece [[69], p. 66].

Plato was a student of Socrates and Aristotle was a student of Plato. As Socrates
marks a change in the direction of Greek philosophy so Plato and the Aristotle begin
a purpose for philosophy and a synthesis of developments before them. This was
primarily because of the importance of education in Greece. Plato’s primary goal
was to educate people to govern Athens [[69], p. 67], [[91], p. 40].

Plato wrote in dialogue form, a skillful use of literary art. It was not required
that the ideas be true. They are the thoughts and opinions of the speaker. Plato made
no pretense of presenting physical truths. In the Timaeus, Plato’s dialogue on the
cosmos and physics, what Timaeus (the speaker) expresses is to be taken as a likely
story. This is not the place to learn physics for the sake of the science.

In Plato’s writing we can find, however, indications of the science to come. Plato
has Timaeus describe how the Demiurge, the architect of the world, created the
universe out of chaos. Timaeus says that the Demiurge, the god, took everything
that was in chaotic motion and brought it into order, which the god judged to be in
every way better [[128], p. 3, cf. Genesis 1:2]. Plato also claimed that “God ever
geometrizes.” Here there is at least an indication of the importance of mathematical
order in the cosmos. Without that order there can be no science.

We find the reason for the study of science perhaps clearly expressed by Plato in
the Republic. In Book VII of the Republic Plato has Socrates describing the training
of the philosopher kings, who were to be the guardians of the ideal state. Socrates
claims that astronomy should be one of the basic subjects to be studied. In the dialogue
Glauconmisunderstands the reason for this. He assumes this is based on the practical
requirements of agriculture and navigation. Socrates finds this amusing and wonders
if Glaucon is afraid that people may consider that he is proposing useless subjects for
study. The dialogue eventually comes to the real issue. The purpose of the guardian’s
education is to lead the guardian away from the visible world to the intelligible, to
make their souls cultivate reason rather than sensation [[69], pp. 67–68].

For Plato reality was in the Forms or Ideas. The theory of Ideas is the central
concept in the dialogues. Justice, Love, Beauty and Good are examples of these
Forms. The Forms are the anchor in the life of a good person. They are the basis of
the laws of the just republic. These Forms are all there is to know [[91], p. 39].
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1.2.5 Aristotle

No thinker has had the effect on science as Aristotle (384−322 BCE). From the 4th

century BCE until the 17th century CE Aristotle’s ideas were dominant in western
science. Aristotle’s influence over such a vast period of time creates problems in
attempting to distinguish his ideas from the ideas of others who contributed to Aris-
totelianism. But our interest here is limited to what we can understand of Aristotle’s
contributions to the science of mechanics. So we shall be selective in our treatment.

It seemed to Aristotle natural that humans would philosophize because the natural
world presented wonders and puzzles. He did not consider it worthwhile to spend
effort being skeptical about existence before setting to work. The observable world
does not appear as systematically deceptive. We have sense organs, which provide
us with data that must be considered reliable. We must not, however, consider that
our observations are infallible. In this way Aristotle’s approach resembles that of the
modern day scientist [107].

Cause and effect were the basis of understanding. Aristotle begins with the phe-
nomena as they appear. And to this he adds what others have considered regarding
these phenomena. This is termed the endoxic method, which, in principle, resembles
our citation of previous work on a subject. These endoxa, as Aristotle termed them,
he calls reputable or credible opinions. He does not accept all endoxa without ques-
tioning their veracity, just as modern scientists may question the conclusions others
draw from the data [107].

Aristotle based his arguments on syllogism, which consists of two premises and
a conclusion. For example, all As are Bs and all Bs are Cs, therefore all As are Cs.
There may be three primary premises: axioms, definitions and hypotheses. Axioms
are unquestionably true, definitions provide the meanings of terms and hypotheses
refer to the assumptions that certain properties result from the definitions [[69], p. 99].

For Aristotle knowledge existed when we know the cause of a particular attribute
and that the attribute could not have been otherwise. There is then a universal con-
nection between the subject and the attribute. Aristotle, however, did not consider
that the work of the physicist was to be logical proof. The physicist should try to
discover the causes themselves. These form the middle term in the syllogism [[69],
p. 101]. For example ‘all vines are broad-leaved trees’ is the cause of the fact that
‘all vines are deciduous.’

We cannot, however, draw an unbroken line from Aristotle to what we may call
the science of mechanics. Although causality is central to Aristotle’s thought, he
considered there to be four causes, while the science of mechanics considers only
the cause of change in motion of a material body. In the Aristotelian picture this is
closest to the efficient cause, which initiates the change taking place. But the final
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cause is the reason the efficient cause exists. The final cause moves us closer to a
divine actuality [[91], p. 46]. That is, Aristotle’s causality contained a teleology.3

In addition to the efficient and final causes there were the formal and material
causes. And Aristotle spoke of change in a larger sense than we may speak of a
change in the motion of a material body. These engage the human in the process
of change. For example if someone forms a bowl of silver the formal cause is the
concept or design that the bowl will take. And the material cause is the silver itself
[[91], p. 46].

The concept of motion was not foreign to Aristotle. The stars, the sun, and the
moon move relative to anyone on the earth. Massive bodies move downward toward
the earth and fire and air move upward. Rivers flow downhill and animals move
of their own accord. These motions to Aristotle were natural. But there was also
another motion. If a body is not moved by itself, in a natural fashion, but is moved
by something else, the motion is violent [[91], p. 48].

Aristotle’s concept of causality applied also to violent motion, which would have
occurred in the making of the silver bowl. But the hopelessness of trying to reduce
causality to the consideration of efficient cause alone is evident.

Aristotle claimed that knowledge comes only from reason. It is logic that creates
scientific knowledge. While modern scientists may not agree entirely with this posi-
tion, it is not the syllogistic logic, nor is it necessarily the concept of four causes that
stand in the way of drawing a direct line from Aristotle to the science of mechanics.
The difficulty rather seems to lie in Aristotle’s axioms and his metaphysics. The logic
must begin at some point and there must be some basis for choosing that point.

An example is the shape of the heaven, which Aristotle claimedmust be spherical,
since that is the shape most appropriate to its substance as well as the shape which
is primary [[91], p. 51]. The natural motion of the heavens, as Aristotle knew, was
circular, which must be natural for the stars, planets, sun and moon. The natural
motion of terrestrial matter, earth, air, fire and water, is upwards or downwards.
Therefore the heaven must contain a fifth element with a natural motion which is
circular. This was the aether, which permeates the heaven. Beyond the fact that this
fifth element fits well with Greek religious beliefs in the divinity of the heavens,
Aristotle’s primary reason for proposing the aether was to solve the serious physical
problem of natural circular motion [[69], pp. 110, 111]. But Aristotle’s axiomatic
claim that the shape of the heaven is spherical leads logically to problems that must
be solved by unforeseen devices.

Before Aristotle there existed no part of natural philosophy that could have been
called dynamics. Aristotle at least began to consider motion of inanimate bodies.
In addition to his concept of natural motion for terrestrial matter he considered the
details of the motion of bodies. He suggested that the speed of a body in a medium
will be inversely proportional to the density of the medium. This suggestion led him

3Teleology implies that an occurence may be explained by referring to some purpose or final goal.
For example, rational human conduct is understood in terms of human desires and William Paley
(1802) proposed that biological organisms were designed by an Intelligent Being for a specific
function.



1.2 Ancient Greece 11

to deny the existence of the void, which was a part of the atomic picture. If the void
existed the speed of a body would be infinite, which is absurd. He claimed as well
that the speed of a body is directly proportional to the force applied to produce the
motion and inversely proportional to the weight of the body, although he recognized
that this rule did not always apply [[69], p. 113].

Here we have statements producing exact algebraic relations that we now know
are not correct. In general terms, however, these rules do describe the behavior of
moving bodies.Wemay then claim that the difficulty laymore in the fact thatAristotle
did not pursue the logic far enough. But therein lies also the strength of Aristotle’s
science. It was logical and clearly accounted for the world as we all knew it. The fact
that Aristotelian physics was flawed was revealed by a more mathematically based
picture and careful measurement.

1.2.6 Reflection on Greek Science

In our brief outline of ancient Greek thought we can see that the philosophers, or
scientists if we choose, encountered the same sorts of problems and proposed some
of the same solutions that are familiar to scientists in the 21st century. And we have
not yet solved some of the primary problems of perception and of measurement that
they encountered. In their search for fundamental underlying principles we may also
see our own search. We encounter, particularly in the quantum theory, the power
of mathematics as, perhaps, even more than simply a descriptive medium. This the
Pythagoreans understood rather well, even though we may deny the validity of some
of their spiritual ideas. The study of Analytical Mechanics, which lies before us,
will also bring us an appreciation for the Platonic idea of form, particularly as we
encounter the variational calculus and eventually themethods ofHamilton and Jacobi.

1.3 Islamic Science

Islamic scientific thought was of great importance for the scientific revolution in
western Europe. The history of Islamic science has also suffered unwarranted neglect
making Muslim contributions unfamiliar to many modern students of physics. We
have, therefore, elected to consider this part of our historical treatment in more detail
than some more familiar contributions of western Europe to the development of
mechanics.

We also primarily consider the Islamic contributions to astronomy, since this has
the greatest bearing on the development of analytical mechanics.
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1.3.1 The Rise of Islamic Science

As we pointed out the closing of the Academy in Athens (529 CE) resulted in
many Greek philosophers finding refuge in Arab courts and that the revelation to
Muhammad (610 CE) was almost coincidental with the closing of the Academy.
Both of these events influenced the development science in the Arab world. A date
for the origin of scientific thought inMuslim society cannot, however, be determined
with any certainty. It is clear that these origins preceded the period during which the
great Muslim scientist Abu Musa ibn Hayyan (Latin Geber) lived (ca. 721−ca. 815
CE). But we only have accurate records after the founding of Baghdad (726 CE)
[[84], p. 12]. The serious Islamic encounter with Greek, Persian and Indian scientific
thought seems to have been associated with the reforms initiated byAbd al-Malik ibn
Marwan (ca. 647–705 CE), who was the Umayyad Caliph4 from 685–705 [[6], vol
1, p. 20]. Al-Malik made Arabic the official language in the financial administration
of government, which had previously been conducted in Greek and Persian [[6], vol
4, p. 646]. This reform had a domino-like effect in the civil service.

The mathematical procedures used in accounting were not common knowledge.
A financial officer needed also to have knowledge of surveying to understand estate
properties, which in turn required an understanding of geometry and trigonometry
[[84], p. 10]. Complications were also imposed by the usage of both solar and lunar
calendars, the understanding of which required some rudiments of astronomy [[108],
p. 54].

Changing the official language of financial administration to Arabic meant that
fluency in Greek and Persian no longer provided access to governmental positions.
And the government was the greatest employer. The selection of persons to fill these
positions now became based on understanding of mathematics, science and medi-
cine. The result was what could be considered a healthy competition to be recog-
nized for technical competence. George Saliba argues forcefully and coherently that
the reforms of al-Malik were the seeds that resulted in the rise of Islamic science.
Specifically these reforms required that the known sources of this technical knowl-
edge, which were primarily Greek, but included Persian and Indian sources, had to
be translated into Arabic. And provisions needed to be made for mathematical and
scientific education in Arabic [[108], pp. 58–72].

1.3.2 Expansion and Contact

The 8th century also saw a geographical expansion of Islam, which afforded greater
contact with other cultures and intellectual resources. That these could be understood

4A Caliph is the head of an Islamic form of government, who is considered a political and religious
successor to the Prophet Muhammad.

The Sunni branch of Islam requires that the Caliph should be elected. The Shia branch requires
that the Caliph should be an Imam chosen by God. [Wikipedia].
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and accommodated implied that an Islamic scientific tradition was already present
[[84], p. 10].

Included in this expansion was the invasion of the Hispanic peninsula by Arab and
Berber forces fromNorth Africa beginning in 711. The region which comprised parts
of present day Spain, Portugal, Gibraltar, and France became Al-Andalus. We may,
almost arbitrarily, claim that Muslim rule in Spain ended on January 2, 1492, when
Abd Allah Muhammad XI surrendered the Emirate of Grenada to Queen Isabella I
of Castile. Historically, however, the Islamic and Christian peoples had become
irretrievably associated [[6], vol 20, pp. 1086, 1087, 1093], [[6], vol 3, p. 820]. So
this date is primarily of textbook importance.

1.3.3 Islam and Greek Astronomy

The translation of the Greek texts was also not a benign procedure. The moderniza-
tion of the mathematics resulted in new mathematical sources, such as the text on
algebra by Muhammad b. Musa al-Khwarizmi, and a complete set of trigonometric
functions. Critical translation of the Greek texts also revealed inconsistencies, which
were then corrected in the Arabic translations. Particularly there were striking devi-
ations between Ptolemy’s geometrical model of the universe that appeared in the
Almagest and his Aristotelian-based account of the celestial spheres that appeared
in the Planetary Hypotheses.

While the Almagest produced results that were in agreement with the observed
phenomena, these were obtained by geometrical constructs that violated the Aris-
totelian cosmological requirement that all heavenly motion must be spherical with
the center of heaviness, which is the earth, located at the fixed center of the universe.
According to Aristotle motion in the cosmos was the natural motion of the spheres
carrying the ethereal bodies: the planets and the stars [[108], p.79, pp. 54, 67, 79, 88,
90–91], [[91], p. 48].

These inconsistencies demanded, at the very least, a search for a consistent pic-
ture. This search, which began in earnest in the 9th century and continued into the
16th century, accepted the basic tenets of Aristotelian physics. The metaphysics of
Aristotle, however, provided difficulties for Islamic thought. For example Aristotle
held that God was a primary cause, but eternally absorbed in self-contemplation,
and the eternal and rational world did not involve God. These ideas were in direct
conflict with the corresponding concepts in the Qur’an. The difficulty, then, was not
only in the inconsistency between Ptolemy and Aristotle. There were other profound
difficulties that Islamic scientists and philosophers found in Aristotle as well [[84]
pp. 22, 32–33].

Islam simply cannot conceive of nature as something which is independent and
self-supporting. The order science finds in nature is a result of the fact that God’s
laws are orderly and the study of nature, then, leads to an understanding of God and
is a form of worship [[84], pp. 6, 8].
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In practical terms the search for an Islamic astronomy was the search for a mathe-
matically based structure describing the universe and based only on circular motion
about a central point. This required new mathematical theorems beyond those of the
Greeks and resulted finally in a complete overhaul of Ptolemaic astronomy [[84]
p. 50]. Here we find, as well, the sources of some of the mathematical constructs
required by Nicolaus Copernicus [see e.g. [108] pp. 217–219; [109] p. 236; [86],
vol 3, pp. 1108–9].

1.3.4 Islamic Astronomy

Theological considerations were central in all of Islamic thought. Therefore the
formulation of Islamic astronomy, which was based in part on Ptolemaic astronomy
and in part on Aristotelian cosmology, created a tension. The history of Islamic
astronomy and scientific thought in general is the story of how Islamic scientists
dealt with this tension [[84], p. 23].

The earliest Islamic cosmology was based on the Qur’an and the words of the
Prophet supplemented by scientific observations and models. This is known as the
Radiant Cosmology Drop = and is spiritual and physical. It was a counterweight
to Aristotelian cosmology, which allows us to see the influence of Islam on Muslim
philosophical cosmology in the 8th century [[84], pp. 81–84].

Al-Biruni (Abu al-Rayhan Muhammad Ibn Ahmad al-Biruni) (973–1048), a man
of powerful intellect, provided empirical evidence that the Qur’anic view of nature
affected the way nature was perceived and studied by Muslim scientists. Al-Biruni
rejected the Greek picture of an eternal universe and produced a cosmology which
included creation out of nothing, the equivalent of the Christian creatio ex nihilo.
And into this scheme he introduced the central doctrine of Hindu cosmology that the
rate at which time passes is not uniform. As a consequence the laws of nature are
variable. Al-Biruni also questioned some central claims of Aristotelian physics based
his own observations, such as the increase of the volume of water upon freezing [[6],
vol 3, p. 711], [[84], pp. 89–91].

There were philosophical conflicts in the 11th and 12th centuries. Specifically,
Abu Hamid al-Ghazali (1058–1111), who was a theologian and philosopher and
professor at Baghdad, attacked (Neoplatonic) Aristotelian philosophy in his book
The Incoherence of the Philosophers.

Al-Ghazali had a physical and psychological crisis after which he spent ten years
in seclusion cultivating mysticism. After mastering the logic of the neoplatonists he
used this against them, supposedly in defense of Islam. He wrote in opposition to
the neoplatonist philosophy of Ibn Sina (d. 1037) (Latin Avicenna) [[6], vol 10, p.
387]. The philosopher and theologian of Al Ansalus, Ibn Rushd (Latin Averroes)
(1126–1189), responded to al-Ghazali [[84], pp. 86–88]. Al-Ghazali held that nat-
ural phenomena resulted from God’s will, while Ibn Rushd claimed they were a
consequence of the natural laws God had established. The difference is subtle, but
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important. The philosophical conflicts among Ibn Sina, Ibn Rushd and al-Ghazali
were between Islam and Aristotelian philosophy and not between Islam and science.

Muslim scientistswere distressed by the liberties Ptolemy had takenwithAristotle
and were developing a new astronomy. But these liberties were of less concern to
Muslim theologians, who advocated a more relaxed understanding of Aristotle, such
as the approach Ptolemy had taken [[84], pp. 86–88], [[108], pp. 127, 234]. And
the fact that Islamic science continued to flourish after al-Ghazali’s death certainly
indicates that his work did not sound the death knell for Islamic science.

The Illumination school (Ishraqi) was founded by Shihab al-Din Suhrawardi (d.
1187). This school gave a prominent role to intuition. The philosophy was based on
an unveiling of truth [[84], p. 89].

The most advanced developments in astronomy were produced at Maragha in
Western Iran during what is known as the Golden Age of Islamic astronomy. This
extended from the middle of the 13th to the middle of the 14th centuries. The four
astronomers whose names stand out in this period are Mu’ayyad al-Din al-Urdi
(d. 1266), Nasir al-Din al-Tusi (d. 1274), Qutb al-Din al-Shirazi (d. 1311) and Ibn
al-Shatir (d. 1375) [[84], p. 50]. These people comprised what has been called the
Maragha School [101]. Serious attempts to correct the Ptolemaicmodeling, including
by the Maragha School, began in the 11th century [[108], p. 150].

The specific problem lay in the constructs that Ptolemy had chosen to describe
the motion of specific cosmic bodies around the (stationary) earth. The sun could not
move on a sphere around the earth and still produce the seasons. The solution could be
to place the sun on an eccentric sphere (center displaced from the earth) or to allow it
to move on an epicycle with center on a sphere concentric with the earth. The results
were identical in either case, and Ptolemy resorted to the epicyclical resolution. This,
of course, did violence to the requirements of Aristotelian astronomy, even though
it preserved the phenomena observed [[108], pp. 136–139]. The motion Ptolemy
proposed for the moon, to account for the observed sizes of the moon, involved
multiple spheres. Some of these did not move uniformly as required by Aristotelian
physics [[108], pp. 141–144]. And the epicycles and eccentric motion required to
describe the observations of the (then) five known planets resulted in an impossible
situation. One proposed motion destroyed the other. In realizing the magnitude of the
difficulties, Ptolemy pointed out that his hypotheses should not be harshly judged
because they were human constructs, and not the equivalent of the divine [[118],
p. 600].

The device Ptolemy had employed was to place the epicycle on a sphere, which
rolled on another moving sphere. Neither of these spheres was centered on the earth,
and the rolling sphere did not move uniformly about its own center. The motion was,
however, uniform about a point termed the equant. Owen Gingerich remarks that
in this Ptolemy was “devilishly clever”, although he did have to ignore Aristotle’s
restrictions on motion. The problem apparently was that Aristotle simply did not
have detailed observations [[33], p. 36].

If we focus our attention on those astronomers responsible for the development of
new mathematical theorems, which were important in the description of the motion
of the cosmic bodies, al-Urdi and al-Tusi stand out. With a geometrical construct
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using uniformly moving spheres, al-Urdi was able to obtain the same motion of the
planet. This is known as Urdi’s Lemma, which was subsequently used by numer-
ous astronomers, including al-Shirazi, al-Shatir, al-Qushji (d. 1474) and Copernicus
(d. 1543) [[108], pp. 141–154].

The nonuniform oscillatory motion that was solved by Ptolemy using the rolling
spheres described here was solved by al-Tusi using two uniformly moving rolling
spheres. The construct is known as the Tusi couple [[108], pp. 155–159]. This was
used by Copernicus for his own model of the orbit of Mercury and a double Tusi
couple was used by al-Shirazi in his solution for Mercury’s orbit [[113], pp. 488,
503], [[108], pp. 160–161].

1.3.5 Decline of Islamic Science

There was finally a decline in Islamic science and Muslim civilization. There is no
complete agreement on the cause or causes of the decline of either the civilization
or of the vigor of science within that civilization. They are certainly related. But no
serious historian will pretend that there was a single cause. Attempts to determine
a precise time at which the decline began can be countered by firm evidence of
creativity in scientific contributions by Muslim scientists after that date.

There were military and political upheavals that cannot be neglected. The Cru-
sades, which began in 1095 and continued for two hundred years, were possibly the
most important of these events. Although the result was the military triumph of Islam
in the Middle East, what emerged was a less tolerant Muslim culture. What had been
an enlightened and urbane culture, superior to that of western Europe in intellectual
depth and breadth, emerged as a culture that was becoming religiously intolerant,
less secular and less intellectually vigorous [[6], vol 6, pp. 833–34].

The Crusades also had a profound effect on the public attitude in Europe toward
Islam. For example Dante Alighieri (1265–1321) placed the Islamic philosophers
and scientists Ibn Sina and Ibn Rushd in limbo in the first circle of Hell with Caesar,
Aristotle, Plato and Cicero. And then he placed the Prophet among the “sowers of
scandal and schism.” [[84], p. 114].

Toward the end of the period of theCrusades, in 1258,Baghdad,which had been an
international intellectual center for five centuries, was unconditionally surrendered
to the Mongol warlord Helegu. This tragedy resulted in the indiscriminate killing of
over 800,000 inhabitants, destruction of all major public buildings and the uprooting
of intellectual life. But Islamic science found homes in other Muslim lands, such as
present day Turkey, Syria, Egypt and Iran. And the Mongols remaining converted to
Islam [[84], p. 131], [[6], vol 4, p. 653].

Vasco da Gama completed a voyage from Portugal to India in 1497–1498, thereby
demonstrating the possibility of opening trade between western Europe and India by
a sea route. The voyages of Christopher Columbus from Spain, beginning in 1492,
also opened European eyes to the possibilities of the New World as a source of raw
materials. The fact that da Gama encountered difficulties in attempts to establish
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contact points along the route to India because of the antagonism of Muslims toward
Christians probably made a direct trade route to the East more attractive [[6], vol 6, p.
1111]. At any rate the discovery of new resources and trade routes, and the coloniza-
tions that resulted, represent major international changes that we may consider as
the primary geopolitical sources affectingMuslim civilization and ultimately Islamic
science [cf. [108], pp. 351–3], [[84], p. 128].

1.3.6 Reflection on Islamic Science

We have only treated Islamic astronomy and, therefore cannot draw any general
conclusions but Islamic science. What we see, however, is an academic discipline
searching for a path trough the thickets of Greek philosophy and a new theology. The
stone on which the astronomers stumbled was Ptolemy’s resolution to the difficulties
Aristotle did not realize existed. The resolution the Muslim astronomers proposed
wasmathematical. And to carry this out they had amathematics advanced far beyond
the Euclidean geometry of the Greeks.

This is not different from the approach taken later inwesternEuropebyCopernicus
and by Kepler. Both the Muslim and the western European scientists labored under
the ideas of Aristotle. Although Aristotle was a careful observer, his thoughts were
rooted in Greek philosophy.

1.4 Europe Encounters Islamic Science

In the Introduction we mentioned that Al-Andalus was the primary gateway for the
passage of Islamic scientific thought into Europe. This passage had a dramatic effect
on the intellectual life of Europe that is difficult to exaggerate. We may identify
this as the transmission or translation period, which extended from the 10th to the
17th centuries. During this period the corpus of Islamic scientific and philosophical
thought was translated from Arabic into Latin making it available to the intellectuals
of Europe.

The translation period began when Gerbert of Aurillac, who would become Pope
Sylvester II in 999, encountered the mathematics of Islam and Arabic numerals in
Catalan,5 Spain, in 967. We know of Gerbert’s interest in Arabic mathematics texts
from letters requesting translations of them [[84], p. 104].

The second phase of the translation period extended from the 11th to the 14th cen-
turies. Toledowas reconquered from theMuslims in 1085making an excellent library
of Islamic works available to a wider community. Toledo already had a large popu-
lation of Arabic-speaking Christians (Mozarabs) and had been a center of learning
[[17], pp. 421–462].

5After 732 Catalan was no longer part of Muslim Spain.



18 1 History

The library attracted scholars such as Gerard of Cremona from Italy, who came to
Toledo in the 1140s in search of the Almagest. The abundance of manuscripts there
enticed Gerard to stay in Toledo, learn Arabic and translate over eight volumes. And
Gonzalo Garc ía Gudiel established his own scriptorium in Toledo around 1273. The
Alfonsine Tables, crucial for European astronomy until the late 16th century, were
drawn up in Toledo by order of Alfonso X, king of Castile and Léon [[84], p. 109].

Coincident with this second phase of translations was the founding of several of
the great universities of Europe. The university at Bologna was founded in 1150,
that at Paris in 1200, and at Oxford in 1220. Teachers were granted the right to teach
at one particular university and then could move to any location on the continent.
The language of instruction was Latin. There was a distinct parallel between this
emerging European university system and that in the Muslim world [[84], p. 109].

The second phase of translations also coincided with the Crusades and another
translation movement in Europe of Islam’s message and the life of the Prophet.
Although many involved in this lived close to Muslim communities and had access
to the Qur’an and the Hadith, some fantastic and very negative portrayals were
common. This combined with the Crusades produced an increasingly negative view
of Islam in Europe [[84], pp. 112, 113].

The third phase of translation, which took place between the 16th and 17th cen-
turies, differed from the first two phases in that it was increasingly becoming based
in the universities of Europe. The translations became more refined and critical than
those of the first two phases as the intellectual culture of the universities devel-
oped. This phase, which has been referred to as the Golden Age of Arabic Studies in
Europe also affected that university culture. Studies in Arabic became an integral part
of university curricula and any humanist of this period was expected to have learned
Arabic. This interest in Islamic science and culture continued into the 17th century.
For example, in 1619 the chairs established in geometry and astronomy at Oxford
required knowledge of the Islamic scientific tradition [27], [[84], pp. 112, 115].

1.5 Medieval Physics

The second phase of translations coincided with the late medieval period in western
Europe. This period saw a flowering of scientific creativity, which was certainly
related to the translations of the Arabic texts. We shall consider three people who
contributed significantly to this period. Each of these people worked in the shadow
of Aristotle. But each also pushed Aristotle’s ideas in the direction of more modern
mathematics and, arguably, experiment.

The mathematical approach that we accept as logical in physics was not part of
Aristotelian physics because it was insufficient. Truth in physical science was based
on logical proof that things could not be otherwise and that logic was based on
syllogism. Aristotle points out that one cannot establish, using Euclidean geometry,
whether a straight line is more beautiful than a curve. And the fact that rotary motion
is prior to rectilinear motion can not be proven mathematically. It is prior because it
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is more simple and complete [[91], p. 101]. Mathematics, for Aristotle, had nothing
to say about the issues in physics of beauty, simplicity and causality.

Robert Grosseteste (1174–1253)6 proposed that under some circumstances math-
ematics may provide a demonstration with as much authority and explanatory power
as the syllogism. In agreement with Augustine’s claim that God reasons and acts
mathematically, Grosseteste claimed also that mathematical structure is causally
responsible for motion. Mathematics in this case meant geometry. So this must be
considered a particularly radical claim. Grosseteste would only have known of the
physical laws of the reflection of light from a mirror, which was discovered by Hero
of Alexandria, and Archimedes law of the lever [[128], p.5], [[91], pp. 101–102].

Roger Bacon (c. 1214−c. 1292) was either Grosseteste’s greatest student, or a
brilliant philosopher and teacher whowas acquainted with Grosseteste [[91], p. 133].
Hard evidence for details is difficult to come by. And the claim that Bacon’s ideas
on scientific method and the use of mathematics and experiment in science placed
him far ahead of his contemporaries has been modified by more recent scholarship,
which indicates that he was more a product of his time. Jeremiah Hackett simply
writes that each generation must find its own Bacon [38].

Bacon was primarily interested in education, as a member of a faculty dedicated
to linguistic arts. He had a deep understanding of the ancient contributions to the
science of optics, where mathematics (geometry) was most readily applied. But
Bacon’s efforts in this should not be thought of as an exercise inmodernmathematical
optics. This effort was directed toward a philosophy of perception andmind. This was
inspired in part by Grosseteste’s ideas and those of Al-Kindi on the use of radiation
force. Al-Kindi proposed that a universal force radiates from everything and was
responsible for the effects observed. For Bacon this formed the basis of a universal
causality and the background for his philosophy of vision and perception. This was
the first attempt in the Latin world to separate the material from the spiritual. No
spiritual being resided in themedium. The universal causationwasmaterial, although
Bacon believed in the freedom of human will [38].

These ideas brought Bacon into conflictwith his superiors in the FranciscanOrder,
particularly Bonaventure.7 The issue was primarily Bacon’s interest in astrology and
alchemy. An order from Bonaventure compelled Bacon to cease lecturing at Oxford
and to place himself under the surveillance of the order at Paris [38].

Neither Grosseteste’s nor Bacon’s ideas on mathematics and experiments in sci-
ence set us on a clear path to the principles of mechanics. Jean Buridan8 was credited

6Robert Grosseteste (c. 1175–1253) was born in humble circumstances in England, but became a
statesman, scholastic philosopher, theologian, scientist and Bishop of Lincoln. He is often identified
as the first Chancellor of the University of Oxford as well, although that exact role is unclear. The
Franciscan Roger Bacon was one of his disciples.
7Saint Bonaventure, O.F.M. (1221–1274) born John of Fidanza was an Italian theologian and
philosopher declared a Doctor of the Church in 1588 by Pope Sixtus V.
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by the pioneering historians of science Pierre Duhem and Anneliese Maier as having
an important role in the demise of Aristotelian physics. But Buridan remained Aris-
totelian and tried to reshape the Aristotelian picture rather than overthrow it [130].

Buridan’s principal contribution was his concept of impetus. Impetus was an
impressed force carried by a body in motion. This was to replace the already dis-
credited Aristotelian idea of antiperistasis, according to which a thrown body con-
tinued to move because of the force exerted by the air moving around to the back of
the body. Buridan’s impetus in the body was permanent unless destroyed by resis-
tance. However, he also claimed that the impetus was a variable quantity whose force
was determined by the speed of the object and the quantity of matter it possessed.
This provided an understanding of the acceleration of a body in free fall. The body
gradually gained units of impetus as it fell [130].

A modern physicist would understand impetus in terms of momentum, at least
since the imparted impetus provided the ability for a thrownbody to continue tomove.
But motion represented a particularly difficult problem for the medieval scientist.

1.6 European Scientific Revolution

We may, somewhat arbitrarily, pick the publication date of Copernicus’ On the Rev-
olutions of the Heavenly Spheres (1543) [see [111], Chap. 8] as a beginning date for
the scientific revolution in Europe. Then, in the 17th century, the science of Christian
Europe began to surpass that of Islam. Kepler published his first two laws of plan-
etary motion in his Astronomia nova in 1609 and the third in Harmonices mundi in
1619 [119], [[91], pp. 150–153], [59]. With those observational laws the spheres of
Aristotle were forever broken. Then in 1687 Isaac Newton published Philosophiae
naturalis principia mathematica and the Aristotelian claim that there was a division
of motion between the cosmos and the earth was no longer tenable [[13], p. 30]. The
new ideas that would form classical physics were emerging from Europe.

Copernicus was Canon of the Cathedral in Frombork, Poland. This was a respon-
sible Church position, although he had time to pursue his work in astronomy. He
knew his ideas would find resistance in the Church. And he was vulnerable. He lived
with a mistress. So publication had to coaxed from him [111].

Kepler had trained for the ministry. But the seminary faculty gently moved him
out when the Protestant university of Graz in Austria came looking for a professor of
mathematics and astronomy. Kepler had minimal studies in both, but he was going
to make a terrible minister. Kepler’s sense of God’s direction never completely left
him as he moved from his belief that the key of the universe had been revealed to
him to his discovery of the orbit of Mars based on hard data taken by Tycho Brahe.
Kepler had moved astronomy from philosophy to astrophysics [59].

8Jean Buridan (c. 1300 – after 1358) was a French priest who proposed the concept of impetus as
a force present in a freely moving body. This is considered to be the first step toward the modern
concept of inertia.
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1.7 Newton

I offer this work as the mathematical principles of philosophy, for the whole burden of
philosophy seems to consist in this — from the phenomena of motions to investigate the
forces of nature, and then from these forces to demonstrate the other phenomena.

Isaac Newton

Preface to the Principia, first edition

1.7.1 Introduction

Wemust recognize Isaac Newton as a major figure in the development of the science
ofmechanics.Hewas also an unusual person. The effort expended on trying to discern
which parts of his life are definitely important and which are not would be far greater
than simply providing a somewhat detailed outline of his life. We, therefore, will
devote more space to his life and work than we have for others.

The understanding of motion and the concepts of mass and force that Newton
encountered were also not at all the fairly simple concepts familiar to us today. To
work his way through these and to arrive at the concepts he gave us was no mean
task. Even the terms he gave us were not yet the terms we presently use. His concepts
of space and time, although he stated them authoritatively and with conviction, were
not those we presently have. Newton will always remain a major figure in the history
of science. But we should not assume that history is a set of completed blocks neatly
fit together. We are still without complete understanding of mass and force.

We may be thankful for the difficult and forceful personality of Newton. But we
should try, in some way, to see him as he was.

1.7.2 The Person

Newton came from a complex and less than ideal background. Richard Westfall, a
biographer of Newton, wrote of him “… Newton was a tortured man, an extremely
neurotic personality who teetered always, at least through middle age, on the verge
of breakdown” [[121], p. 53].

Newton’s father Isaac Sr. was an illiterate farmer in Licolnshire, England, who
married Hannah Ayscough (Askew) in April of 1642 and died in October 1642.
Newton was born on Christmas day, 1642. According to Newton’s own account
he was very small and weak at birth and not expected to live [[121], pp. 44–45].
But Michael White, another biographer of Newton, cautions his reader regarding
Newton’s attempts to make his own life appear miraculous [[124], pp. 11–12]. At
least he survived and spent his first three yearswith hismother atWoolsthorpeManor,
where he was born. Then his mother married Barnabas Smith, the aging rector of
North Witham, leaving Isaac with her parents [[121], p. 49], [[124], p. 14].
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Smithwas of flexible religious convictions during the SecondEnglish CivilWar of
1647−49.His actionsmeant he saved his economic position, but provoked some lines
by John Milton [[121], p. 52], [[124], p.14]. And during his seven years of marriage
to Hannah, Smith left young Isaac with the grandparents rather than moving him
the mile and a half to the rectory. This was devastating to Newton, who had become
very close to his mother. Hannah occasionally reappeared at her parents’ home of an
afternoon, but then was gone. The experience probably did much to mold Newton’s
personality [[124], pp. 15–17].

After Smith died in 1653 Hannah returned with her three Smith children to
Woolsthorpe and two years later, probably at the insistence of the Ayscoughs, New-
ton went to grammar school at The King’s School in Grantham seven miles away,
where he boarded with an apothecary he remembered only as Mr. Clark [[13], p.
19]. The King’s School was a grammar school, which meant instruction in Latin and
Greek, but no mathematics or science. This, however, stood Newton very well. He
could read and write Latin as well as he could English giving him ready access to
mathematics and science texts [[121], p. 58]. And Mr. Clark’s shop provided him an
appreciation for the wonders of chemistry [[124], p. 23].

After the grammar school, Newton returned to Woolsthorpe. Hannah thought
he should become a farmer, for which grammar school was sufficient. However
Hannah’s brother, the Reverend William Ayscough, together with the schoolmaster
of Grantham, Mr. Stokes, recommended that Newton return to The King’s School to
prepare for university. The nine months at Woolsthorpe had been a nightmare and
Stokes was willing to waive the tuition of forty shillings. So in 1660 Newton returned
to Grantham to prepare for Cambridge [[121], p. 64], [[13], p. 19].

Newton entered Trinity College, Cambridge, in June of 1661 as a subsizar, which
meant he received tuition and fees formenial service.His introversion and intellectual
independence determined his course at Cambridge. The fact that Newton was a
Puritan and the college was Anglican isolated him inwardly [[124], p. 49]. After a
few weeks he began to approach studies at Cambridge much as he had at Grantham:
on his own. He studied philosophy and first encountered mathematics. Newton also,
independently, undertook experiments to test the published ideas of others, such as
Descartes’ ideas on optics. He bought a prism at the fair in 1663 and conducted
experiments on the separation of light. And he almost blinded himself by looking at
the sun through a lens [[124], pp. 58–61].

In the spring of 1665 Newton obtained a Bachelor of Arts (BA), second class. His
studies outside of the curriculum resulted in the second class ranking. Then in July
of 1665 the bubonic plague caused the closing of the university for about two years.
Newton returned to Woolsthorpe [[124], p. 64, 85].

InWoolsthorpe Newton had what are called hismiracle years of 1665−1666. Out
of these years supposedly came the calculus, or method of fluxions, and the great
synthesis of mechanics that was at last published in the Principia of 1687. But this is
a great simplification. It is more appropriate to consider that the miracle years were
the two decades from 1665−1687, and encompassed, as well, Newton’s passionate
pursuit of alchemy [[124], p. 86]. Newton had a fear that his ideaswould be stolen and
a profound belief that material should only be released after it had been thoroughly



1.7 Newton 23

developed. White proposes these as reasons for Newton’s withholding publication
of his ideas for so long [[124], p.100].

Newton began alchemical studies around 1667. His mentor in this was Robert
Boyle. Newton was aware of the need for secrecy, which was a common part of
alchemical studies at that time. The practitioners of alchemy hid behind pseudonyms.
Newton’s was Jeova Sanctus Unus (One Holy God). We do not have a thread to
unravel in his alchemical work. He kept meticulous notes. But he did not date them,
as he did his notes on physical science. We can deduce periods of time only by forms
of the handwriting [[124], pp.134–135, 140].

Our question as scientists and engineers of the 21st century may well be why this
supposed high priest of the Enlightenment would turn to alchemy. The reason seems
almost clear. Newton was aware of the primary difficulty facing mechanical and
atomic theory. No deterministic mechanical theory can account for the human being
as a person with free will [see [91], p. 197]. Newton’s claims for alchemy exceeded
those of base metals. He wrote

For Alchemy does not trade with metals as ignorant vulgars think, which error has made
them distress that noble science; but she has also material veins of whose nature God created
handmaidens to conceive & bring forth its creatures …

Newton did not take religion lightly. He was a devout Puritan, but also an Arian.
That is he did not accept the idea of the Trinity, considering it blasphemous. He had,
however, attested to the Thirty-Nine Articles of the Anglican Church when he took
his BA in 1665 and his Master of Arts (MA) in 1667. But he faced a major difficulty
in accepting the Lucasian Professorship. He would be required to take holy orders
and this he could not do. Remarkably Isaac Barrow, who had given up the Luasian
Professorship and recommended Newton, suggested that Newton apply directly to
Charles II for a special dispensation that would allow him to continue to hold the
professorship without the requirement of holy orders. Barrow was then the king’s
chaplain and had the king’s ear. The king granted the dispensation in perpetuity for
the Lucasian Professorship [[124], pp. 150–151].

Newton’sArianism9 ledhim to the belief that true religionpreceded the ideas of the
Greeks and the Romans. God was part of all nature and all knowledge and, therefore,
also history. Newton conceived of this as an alchemical history, the understanding of
which would reveal the purpose of existence, the wisdom of the ancients, and could
lead to a decoding of biblical prophesy [[124], p. 154].

Newton’s enthusiasm for his research was matched only by his lack of enthusiasm
as a teacher. A very tiny group of students came to his first lecture and none to any
after that. But he was obliged as Lucasian Professor to conduct lectures, which he
had reduced to one term per year. He lectured dutifully to an empty room. He also
fairly well ignored the requirement to provide written notes of ten lectures per year
to the university library. Finally he gave up the pretense of lecturing completely and
devoted himself entirely to his research [[124], Chap. 8].

9Arianism is a heresy that denies the divinity of Jesus. This originated with Alexandrian priest Arius
(ca. 250– ca. 336).
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1.7.3 Disputes

Newton became embroiled in disputes that are important to us because they reveal
methods of scientific and philosophical thought that Newton was developing. They
may also be interesting because they reveal something of a clash of personalities
not entirely unrelated to science. Newton’s principal antagonist was Robert Hooke.
Hooke was once Boyle’s assistant. In 1662 Boyle secured a position for Hooke as
curator of experiments for the emerging Royal Society [[124], p. 175].

In this role Hooke reviewed Newton’s paper of 1672 “Theory of Light and
Colours,” which appeared in the Philosophical Transactions for 19 February, 1672.
Hooke’s critique precipitated an acrid exchange, which exposed a difference in think-
ing between the twomen. Newtonwas developing an experimental andmathematical
philosophy, whileHooke’s approachwas quite different. Hooke referred to the results
of Newton’s experiments, which had demonstrated dispersion and reconstitution of
white light, as a hypothesis. Newton saw this as a theory,10 which had resulted from
experimental evidence [[124], pp. 176–188].

On 7 December, 1675, Newton sent two papers to Henry (Heinrich) Oldenburg,
who was first Secretary of the Royal Society. These were ‘An Hypothesis Explaining
the Properties of Light’ and ‘Discourse of Observations’. Here Newton was writing
as a natural philosopher, not as a hard scientist. He had been working on the natural
order of things for ten years [[124], pp. 102–103], [[124], pp. 184–185]. Both of
these papers later appeared as parts of Newton’sOpticks (1704). But Newton refused
permission to publish them in 1675 [[122], pp. 102, 253].

In the course of this discussion Newton had written to Hooke

What Descartes did was a good step. You have added much several ways, & especially in
taking on the colours of thin plates into philosophical consideration. If I have seen further it
is by standing on ye shoulders of giants.

That last sentence has been often quoted, missing the point completely. According
to White, Newton was being truly spiteful and vicious. Hooke was so physically
deformed that he had he appearance of a dwarf. The last sentence is then a double-
edged sword. It was neither complementary nor indication of Newton’s gratitude to
his forebears [[124], p. 187].

The transformation from hypothesis to demonstrable theory was carried out on 27
April, 1676, at theRoyal Society. Then the experimentsweremeticulously performed
to validate Newton’s ‘Theory of Light and Colours’ [[124], p. 188].

Another exchange with Hooke regarding the path of an object dropped from a
tower, beginning in 1679, was also unpleasant, but brought some clarification in
the greatest puzzle to Newton: universal gravitation. Hooke had wasted no time
on mathematical analysis and based his ideas on supposition and reading Galileo.

10In the sciences hypothesis is a proposal that may be falsified as a result of a subsequent exper-
iment. A theory is a substantial statement based on a set of experiments and composed in precise
(often mathematical) terms. A theory may be falsified based on experiments, but not as easily as a
hypothesis.
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But Newton also made some woeful mistakes. For example he had first claimed
that the path followed by the dropped object was a spiral. And Hooke made their
communication public before the Royal Society, making Newton’s errors evident
[[122], pp. 148–152], [[124], pp. 195–199].

An object dropped from a tower will have an angular velocity around the earth’s
axis of rotation and is attracted to the center of the earth. Some thirteen years earlier
Newton had obtained the mathematical description of circular motion in an inverse
square-law force. But Kepler had shown the planetary orbits were elliptical. And
Hooke had surmised this to be the path followed by the dropped object. Therefore
Newton applied his calculus to show that the orbit around an inverse square force is an
ellipse with the force center at the focus. Newtonwas silent about this work. He never
forgave Hooke, but in later life Newton did acknowledge that Hooke’s correcting the
spiral turned him to investigate the elliptical orbits [[124], pp. 195–201].

Then, fortuitously, early in November of 1680 a very bright comet appeared in the
skies over Europe and vanished into the sun at the end of the month. Two weeks later
another immense comet appeared moving away from the sun. The Royal astronomer,
John Flamsteed, believed these were one comet that had simply reversed its direction
as it neared the sun. Comets were considered to be foreign bodies not related to the
solar system and not governed by the laws of the solar system. The comet would
not then be attracted to the sun. So Newton did not subject the cometary orbit to the
analysis he had used on planets. Nor did he accept Flamsteed’s theory [[122], pp.
155–156], [[124], pp. 202–204].

Then in early autumn of 1682 yet another even brighter comet appeared. This
comet was moving away from the sun.

Newton had been thinking about comets since the winter of 1681. In his book
Observations on the Comet (1681) the Italian astronomer Giovanni Cassini proposed
that the comet of 1680− 81 had been the same as observed by Tycho Brahe in 1577.
This influenced Newton’s thoughts. But probably more influential was Hooke’s book
Cometa of 1678. There Hooke dealt with the great comet of 1577 and included a
statement of the Law of Inverse Squares as well as the effect of the sun on comet tails
[50]. Newton tried a number of trajectories deciding finally on an elliptical trajectory
with the sun as a focus and the inverse square gravitational attractive force as also
acting on the comet [[124], pp. 203–205].

But there remained a difficulty. What was the agent of the gravitational force?
Even though Newton had rejected much of Descartes’ mechanical concept of nature,
Descartes’ mechanical philosophy was still the prevalent basis of thought in the
1680s. Newton had been thinking in terms of ‘action at a distance’, which required
theaether as amedium for transmission.Then in the 1680sNewtonbegan to think less
in terms of aether and more in terms of the alchemical concept of ‘active principle’.
This was a radical change in thought. Newton’s mentor at Cambridge, Henry More,
had written of a ‘Spirit of Nature’, which acted in some way upon matter and may
create and sustain life. White believed this was the concept to which Newton was
turning [[124], pp. 206–207]. Max Jammer indicates the possible influence of the
17th century mystic Jacob Böhme on Newton’s thought, which would trace Newton’s
concept of gravitational force back to Neoplatonic andGnostic traditions. But he also
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says that there is no convincing evidence that Newton read a single work by Böhme
[[55], pp. 134, 143].

1.7.4 Principia

The writing of the Philosophiae Naturalis Principia Mathematica grew out of a
coffee house discussion in January of 1684 among Hooke, who by now would rate
as an enemy of Newton’s, Sir Christopher Wren, and Edmond Halley. Halley had
asked if the action that keeps the planets inmotion around the sun could decreasewith
the square of the distance. Hooke boasted that he had proven this some years before,
but had told no one. Wren was skeptical and said he would give Hooke or Halley
two month’s time to produce the proof. Halley admitted that he had been unable to
prove this and the proof was not forthcoming from Hooke in the time allotted. Then
in August Halley decided to approach Newton in Cambridge [[55], p. 11], [[124],
pp. 190–192], [[122], pp. 159].

Halley showed up unannounced at Newton’s door. According to Newton’s recol-
lection it was a rather long time into the conversation when Halley asked what he
thought the orbit of a planet would be supposing the force of attraction towards the
sun to be the reciprocal to the square of the distance from the sun. Newton replied
immediately that it would be an ellipse. Halley was amazed and asked how Newton
knew this. He had calculated it, Newton said. Halley then asked if he could see the
calculation at which point Newton looked through his papers but was unable to locate
it. He then said he would redo the calculation and send it [[122], pp. 160] [[124],
Chap. 9].

It seems that the search through the papers was something of a stalling tactic.
Newton had produced this proof as a result of his discussions with Hooke. And it
exists among Newton’s papers. But he had become very cautious about releasing his
work. Not giving the paper to Halley had also been wise. He found that he could not
so easily reproduce the proof and then discovered an error in the previous calculation.

In November Halley received a nine page document entitled De Motu Corporum
inGyrum (On theMotion of RevolvingBodies), hand delivered by themathematician
Edward Paget. The paper contained much more than was promised. Newton demon-
strated that an ellipse requires an inverse square force centered on one focus. He also
showed that an inverse square force results in an orbit which is a conic section, and an
ellipse for velocities below a certain limit. Then beginning from general postulates
he derived Kepler’s second and third laws and obtained the motion of a projectile in
a resistive medium.

Halley recognized that this was nothing short of a revolution and was back in
Cambridge without delay to confer with Newton. This began what would completely
absorb Newton fromAugust of 1684 until Spring of 1686. Westfall says that Newton
had been grasped and that Newton was powerless in the grip of this undertaking.
Halley had no need to coax anything from Newton [[122], pp. 160–162].
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When Newton began this work that would produce the Philosophiae Naturalis
Principia Mathematica, which is commonly known simply as the Principia, facing
him were widely accepted concepts regarding matter and motion. Most of these
were metaphysical. And Newton would finally move in a different direction, that
of an experimental and mathematical philosophy. We can distill these down to two
primary concepts, even while we confess that this is a simplification. These are the
understanding of mass and of force.

1.7.5 Newtonian Concepts

Newton’s concepts of mass, force, space and time as well as his belief in “Rules of
Reasoning in Philosophy” are important in any of our attempts to understand what
Newton actually did. These are seldom considered in studies at the beginning level in
university, and sometimes completely neglected in advanced courses. Newton’s laws
are often simply served up to students as accomplished facts into which the student
is asked to insert the modern understanding of all of these concepts. In the spirit of
honesty we provide brief discussions of these concepts and Newton’s development
of them.

Mass. Kepler’s work in astronomy was critical to Newton’s understanding of the
forces responsible for planetary motion. But behind this lay a fundamental concept
that was alsoKeplerian andwas instrumental in bringingNewton to an understanding
of mass. When Kepler discovered that planetary motion was elliptical the previous
belief that planetary motion was perpetual, because it was circular and hence natural,
was no longer tenable. Kepler considered forces to result from motory intelligences
or pure Form in a Neoplatonic sense. And his concept of mass was that of pure
matter, which was contrary then to force. Neoplatonic tradition held that matter was
an impediment to the realization of Form. Matter causes a body to remain in place
[[56], p. 53].

With the concept that matter resists motionKepler wasmoving frommetaphysical
speculation to physical reasoning. If celestial bodies had no inertia then no force
would be necessary for their motion. The smallest force would cause them to move
at infinite velocities. But the periods of motion of celestial bodies are different, which
Kepler claimed is clear indication that they have inertia. (55)

Inertia accounts for the inability of matter to transport itself. But inertia is also
the resistance of matter to motion by the action of a force. This resistance to motion
increases with the quantity of matter present in the volume of the body. (56)

Max Jammer considers that with these ideas Kepler conceptualized mass, which
is a first step in the development of the concept of mass. (59)

Descartes rejected this concept of inertia as resisting motion. He did, however,
accept the that inertial mass affectedmomentum. ForDescartes the quantity ofmatter
was volume. This concept of matter as extension made Descartes’ ideas contrary to



28 1 History

the Catholic claim of Transubstantiation of the bread and wine in the Eucharist and
led to the condemnation of his works in November of 1663. (61)

In his treatiseOn centrifugal force, Christiaan Huygens had demonstrated that for
bodies rotating in equal circles at equal velocities the ratio of the centrifugal forces
are equal to the ratio of the solid quantities of the bodies. In modern terms solid
quantity is inertial mass and Huygens’ result is easily derived. (63)

Force. Newton’s concept of force was not simple. His interest in force was primarily
in relation to gravitation where his work was related to the motion of celestial bodies.
De Motu (De Motu Corporum in Gyrum) was a treatment of the motion of celestial
bodies [[122], p. 116].

According toWestfall the crux of Newton’s dynamics was in the relation between
inherent force and impressed force. Inherent force was “the inherent, innate, and
essential force of a body.” And the impressed force was “the force brought to bear or
impressed upon a body.” Newton was trying to clarify the concepts of dynamics and
to understand the meaning of force [[55], p. 166]. At this time in history force was
not understood as it was even in the 18th century. Force was a cumulative property
of a moving body [[55], p. 131].

Along with Newton’s struggle came the meaning of space and absolute motion.
Descartes had claimed the velocity was relative. Descartes’ moving body had no
definite velocity or definite line of motion, which Newton thought was absurd. New-
ton was beginning to think of inherent force as the distinguishing characteristic of
motion. This was leading him toward a concept of absolute space. These ideas he
was developing in revisions of De Motu [[122], p. 166].

Newton eventually removed inherent force from his First Law, where it had been
the ‘power by which it (a body) preserves its state of resting or of moving in a right
line’ and introduced force of inertia (vis inertiae). Inherent force was no longer the
cause of motion. And impressed force became action only, no longer remaining in
the body when the action has ended. And he had adopted the Keplerian concept of
inertia [[122], p. 167].

A consistent statement of the Second Law and a definition of quantity of matter
(mass) followed. The impressed force did not result simply in a change in motion,
but a change in the quantity of motion we now call momentum. This quantity of
motion is proportional to the quantity of matter, which is proportional to its weight.
This defined the mass of a body as a quantity calculable from density and the space
occupied by the body, i.e. the volume. ‘A body twice as dense in double the space is
quadruple in quantity (mass)’. Without this definition of mass the Second Law could
not have been consistently formulated [[122], p. 168].

Previously Newton had linked inherent and impressed force by a parallelogram
law referring only to a single body [[122], p. 130]. This was no longer tenable. The
final statement must involve only the impressed force. And the link must combine
the body considered to be acted upon by the force and the body considered to be the
cause of the force. This is Newton’s Third Law. It is not a trivial addition, but is the
line of genius connecting previously obscure concepts [[122], p. 168].
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Newton credited his First Law

Law I: Every body continues in its state of rest, or of uniform motion in a right line, unless
it is compelled to change that state by force impressed upon it.

and his Second Law

Law II: The rate of change of momentum is proportional to the motive force impressed; and
is made in the direction of the right line in which that force is impressed.

to Galileo and Huygens [[55], p. 123]. These two laws may be interpreted as a
qualitative and a quantitative definition of force. But for Newton the Second Law is
not a definition, nor is it simply a method for measuring force. Newton considered
force to be an á priori, although, as we have just seen, not a simple concept. The
Second Law summarizes a property of force. (124) Jammer contends that the Second
Law is a free creation of the human mind. (127)

Ernst Mach claims that the Third Law is Newton’s “most important achievement
with respect to the principles” of mechanics [[71], p. 243]. This was, however, a
principle understood by Kepler, although he never formulated this as such [[55],
p. 127].

Law III: To every action there is always opposed an equal reaction; or, the mutual actions of
two bodies upon each other are always equal and directed to contrary parts.

The first two laws deal with the response of a single body to a force and the third
law defines the force of interaction between bodies. These form the basis of the new
approach to mechanics that Newton introduced.

Space and Time. Newton had considered both space and time and defined his under-
standing of each rather clearly. According to Newton [[91], pp. 228, 231].

Absolute space, in its own nature, without relation to anything external, remains always
similar and immovable. Relative space is some movable dimension or measure of absolute
spaces…

and, similarly

Absolute true, and mathematical time, of itself, and from its own nature, flows equably with-
out relation to anything external, and by another name is called duration: relative, apparent,
and common time, is some sensible and external …measure of duration by the means of
motion …

Newton also assumed space to be Euclidean, i.e. completely describable in terms
of the geometry of Euclid. For Newton’s laws of mechanics to be universally true it
was, or at least it seemed to be, necessary that space was absolute and immovable.
Newton also chose themethods of Euclidean geometry for themathematical proofs in
thePrincipia. This is curious, makes reading tedious, and proved, according to David
Park, disastrous to English physics in the postNewtonian period. ThePrincipia, since
the publication of the first edition in July of 1687, has remained the most important
document in the history of science. But when the second edition was published in
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1713 the methods of Euclidian geometry were already obsolete, being supplanted by
the development of the calculus on the European continent [[91], p. 210].

Newton’s introduction of absolute space was unfortunate. As we pointed out,
this seemed necessary for the First Law. But the fact that uniform motion cannot
be detected was known to Nicole Oresme (ca. 1320–1382 and Nicolaus Cusanus
(1401–1464) and had been used by Copernicus, although Copernicus cited Virgil
[[91], pp. 92, 93, 145]. Cusanus had also argued that an infinite universe can have
no center. Newton’s concept of absolute space was then flawed from the beginning.

The Newtonian concept of absolute time was finally dismantled in 1905 by Albert
Einstein [[24], pp. 37–65]. And space and time will become a continuum at the hands
ofHermannMinkowski (75–91). Formost ofwhat wewill do in our study of classical
mechanics, however, we may simply ignore Newton’s belief regarding time.

Philosophy. In Book III of the Principia, subtitled De mundi systemate (On the
system of the world), in the second (1713) and in the third editions (1726) Newton
included a section entitled “Rules of Reasoning in Philosophy.” In the second edition
these are [[91], pp. 214–215]

Rule I: We are to admit no more causes of natural things than such as are both true and
sufficient to explain their appearances.
Rule II: Therefore to the same natural effects we must, as far as possible, assign the same
causes.
Rule III: The qualities of bodies,which admit neither intensification nor remission of degrees,
and which are found to belong to all bodies within the reach of our experiments, are to be
esteemed the universal qualities of all bodies whatsoever.
Rule IV: In experimental philosophy we are to look upon propositions inferred by general
induction from phenomena as accurately or very nearly true, notwithstanding any contrary
hypothesis that may be imagined till such time as other phenomena occur, by which they
may either be made more accurate, or liable to exceptions.

These are not fool proof rules that will guarantee success in Philosophical thought.
Newton was a strikingly original thinker who certainly would not have followed a
set of rules as he developed his ideas. We saw this above as we tried to follow
his deciphering of the inherent and impressed forces. Rather we can consider these
as reflections on his thought process. And we can see places in which these were
exhibited.

Rule I indicates a faith in the simplicity of nature. And Rule II is almost a rephras-
ing of Rule I. We should curb our own natural tendency to generate explanations
and hypotheses. Appearances indicates observation. We should not pretend to know
more than observation yields. Here Newton is distinguishing his method from that
of people who invent new explanations for whatever appears to be a new effect. Rule
III pertains to universal gravitation. Newton realized that the cometary orbit was
elliptical with the sun at the focus, and that, therefore, the gravitational attraction
to the sun included comets as well as planets. Rule III extends that to all bodies.
Rule IV is like the banner of experimental physics. The laws are induced from and
describe the observed phenomena. Hypotheses that may be formed have no bearing
on the laws. The laws are only made more accurate by other observations.
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1.8 Eighteenth Century

Newton’s geometrical methods were used until the 1740s, at which time the methods
of Pierre Louis Maupertuis, Johann (Jean, John) Bernoulli,11 Euler and Lagrange
began to be employed. These new methods used the analytical language of the dif-
ferential calculus and introduced variational concepts.

1.8.1 Maupertuis

In 1740 Maupertuis proposed a new principle which he called the “law of rest”. This
was to provide the conditions for equilibrium of a collection of n bodies with masses
M1, M2, . . . , Mn under the action of a number of central forces, i.e. forces magnitude
varies as a power of the distance from the center of the force. He considered that
each of the forces acting on a particular body had a separate center and chose the
forces to be all of the same character such that if the i th body is located at distances
pi, qi, . . . , wi from the respective centers of the forces then the magnitude of each
central force acting on the i th particle is proportional to pmi , qm

i , . . . , wm
i where m

is integer. He designated the components of the forces (per unit mass) acting on the
i th particle along the directions of pi, qi, . . . , wi as Pi, Qi, . . . ,Wi, and the constants
of proportionality for the forces as Pi,Qi, . . .Wi. Then the forces (per unit mass)
acting on the i th particle are related to the distances from the force centers as

Pi = Pi p
m
i

Qi = Qiq
m
i

...

Wi = Wiw
m
i . (1.1)

Maupertuis’ law of rest claimed that the quantity

n∑

i=1

Mi
(Pi p

m+1
i + Qiq

m+1
i + · · · + Wiw

m+1
i

)
(1.2)

is an extremum. That is

n∑

i=1

Mi (Pidpi + Qidqi + · · · + Widwi) = 0. (1.3)

11Johannwas the original namegivenbyhis parents. Jeanor John appear sometimes, dependingupon
whether the author is French or English. Johann Bernoulli was born and died in Basel, Switzerland.
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We recognize each term Mi
(Pi pm+1

i + · · · ) in (1.2) as the (negative) potential
energy of the mass Mi.Therefore, (1.2) is the total (negative) potential energy of the
system of particles. Maupertuis’ claim is then that the law of rest requires that the
total potential energy is an extremum for the system of masses.

From (1.1) in (1.2) we see that Maupertuis’ law of rest requires that

n∑

i=1

Mi

(∫
Pidpi +

∫
Qi dqi + · · · +

∫
Widwi

)
= min /max (1.4)

for a system in equilibrium. For the central forces specified in (1.1) this is a general
formulation of the law of rest.

Maupertuis does not mention, and he may not have been aware, that Johann
Bernoulli had already obtained the formula (1.3). Bernoulli called (1.3) the principle
of virtual velocities and termed the variations dpi, dqi, . . . , dwi the virtual velocities.

Bernoulli’s point was that if the system is at rest there can only be fictitious or
virtual motion of the masses consistent with the applied forces. This virtual motion
is in the differential displacements of the masses dpi, dqi, . . . , dwi. If we think of
this virtual motion as taking place in the differential time interval dt then the virtual
velocities associated with this virtual motion are dpi/dt , · · · , dwi/dt . Bernoulli’s
virtual velocities differ from these by only an arbitrary constant factor dt .

In formulating his law of rest in terms of an extremum, Maupertuis introduced
something new into the science of mechanics. This new principle proved to be very
fruitful and remains the basis for much of our modern understanding of physics.
However, Maupertuis was more interested in connecting the equilibrium of systems
with the concept that nature acts in as economical a fashion as possible. In a sub-
sequent memoir of 1744, which dealt with the refraction of light, Maupertuis was
able to show that Fermat’s law for diffraction follows from minimizing the product
of the distances traveled sk by light in various media k with the speeds of light in
those media vk. That is ∑

k

skvk (1.5)

is a minimum for light traveling on a path passing through a set of refractive media.
The quantity in (1.5) Maupertuis called the quantity of action. This success, which
may be considered asminor, gaveMaupertuis the temerity to propose a rather general
principle. He wrote that “Nature, in making its effects, always acts by the simplest
means possible12” [90] [cf. [22], pp. 267–269].

12Maupertuis’ metaphysical enthusiasmwas based on a limited principle and seems to have blinded
him to difficulties. Voltaire turned his terrible vindictive wit on Maupertuis in a parody that nearly
destroyed his reputation [[91], p. 252]. And Herbert Goldstein deals with Maupertuis in less than
generous terms [[34], footnote p. 368].
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1.8.2 Euler

Euler approached the problem of identifying an extremum somewhat differently.
In the appendices to his Methodus inveniendi (1744) Euler sought an integral the
extremum of which provided the correct law of motion. He began with a proposition
that the trajectory followed by a body of mass M is that which minimizes the integral

∫
Mvds (1.6)

where ds is the differential along the path followed by the body and v is the velocity
of the body [90], [[128], pp. 24–25, [22], pp. 273–274].

In hisMechanica (1736) [cited in [90]] Euler had studied motion in a plane (x, y)
with ds = √

dx2 + dy2 and had shown that the force on a body can be decomposed
into two orthogonal components showing that the results were the same as those
obtained from Newton’s methods. But the application was only to a single body.
This was, therefore, not a general principle.

His results were, however, analogous to those of Maupertuis, as he pointed out in
a letter toMaupertuis (1745). Euler believed there weremathematical difficulties that
must yet be resolved.Maupertuis, however, thought that Euler’sworkwas verification
of the general philosophical principle he had proposed in 1744. He now proposed
that this was the principle of the least quantity of action [90].

Based on philosophical and theological conviction, Maupertuis believed that a
general truth, beyond what the science itself revealed, was emerging.

But Euler worried about the details. His concerns led him to a major investi-
gation between 1748 and 1751 of a more general formulation of the action as an
integral. In this investigation Euler worked in the context of the extremum principle
of Maupertuis. He asked if

∫
Mvds = min /max (1.7)

is a particular case of a more general condition.
In a study of a hanging string acted upon by a central (gravitational) force and

of fluids, which he considered to be collections of particles, Euler identified a term
he considered an analytical invariant. We presently identify this term, as we did
above, as the (negative) potential energy of the system of masses or elements of the
string. As Marco Panza notes, the mathematical importance of this term preceded
the physical notion of potential energy [90] [96], [cf. [128], p. 46]. He had not yet,
however, been able to formulate a general variational principle from which all of
mechanics could be obtained.

If, with Euler, we consider the central forces acting on the mass particle j to be
λj and the virtual displacements to be dλj then Maupertuis’ principle claims that∑

j

∫
λjdλj is an extremum. This must be true for all elements ds of the hanging

string. Then the integral of this term over the length of the hanging string must be
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an extremum. If, from Newton’s Second Law, we write
∑

j λjdλj = Fds = Mvdv,

where F is the net total force on the body along ds, then the integral of
∑

j

∫
λjdλj

along the length of the string is Ω = (1/2) Mv2 + K ′, where K ′ is a constant. And
then the integral of Ωdt is

∫
Ωdt = 1

2

∫
Mvds + K ′t (1.8)

and the variational principles
∫

Ωdt = min /max and
∫
Mvds = min /max are

equivalent. This Euler termed the conservation of vis viva, which is the 18th century
term for (twice) the kinetic energy. With our identification of Ω as the negative of
the potential energy, we would identify this as simply conservation of energy [90].

We may then ask if there was a possible difference in the positions of Euler and
of Maupertuis.

Euler was concerned about formulating a general mathematical principle, which
would provide a method by which we could identify the actual dynamical path
followed by a system if the initial and final conditions of the system were known.
To locate this path Euler considered the problem of finding the form of the function
y (x) that would produce an extreme value of the general integral

∫ b

a
F

(
y, y′, x

)
dx (1.9)

with y′ = dy/dx . The values of y at the end points y (a) and y (b) were fixed.
To solve the problem using the methods of ordinary calculus Euler wrote the

integral (1.9) as a sum over differences in the variable x . He could then set the partial
derivatives of the resultant sum with respect to y equal to zero. The result was a
general equation for the function y (x). This strategy provided a general differential
equation for y (x)

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 (1.10)

for x on the closed interval [a, b].
The steps bringing Euler to this result required careful treatment of the infinitesi-

mal intervals in x and the corresponding values of y (x). Cornelius Lanczos treats this
in detail [[65], pp. 51–53]. There are difficulties at the fixed end points resulting from
the requirement that the values of y (x) are fixed there. And we cannot completely
sweep our logical difficulties away in the limit.

The actual path of the system was that for which Newton’s Laws held. And Euler
had shown that Newton’s Laws were recovered from the condition that the first
order variation in a specifiic integral vanishes. But if only the first order variation
vanishes we have no way of deciding whether the integral has attained a minimum or
a maximum value at the extremum. Euler, however, published the principle of least
action as an exact dynamical theorem in 1744 [[128], p. 24].
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Euler’s objective was to establish a mathematical principle. Maupertuis was also
bound by the mathematics. But his thoughts went beyond the mathematics to the
metaphysics. Euler’s did as well when he claimed that the action was least. Except
for Mauprtuis’ exuberance, the difference seems to be very slight, if there at all.

At this time Joseph-Louis Lagrange was teaching himself mathematics.

1.8.3 Lagrange

The Person. Lagrange was one of 11 children, only two of whom survived to adult-
hood. He was born in Turin, the capital of the kingdom of Sardinia-Piedmont (now
Italy) since 1720, and baptized as Giuseppe Lodovico Lagrangia. Lagrange had
French ancestry on his father’s side. His paternal great grandfather had been a French
cavalry captain and Lagrange was attracted to the French background in his family.
As a youth, he signed his name as LaGrange or Lagrange rather than Lagrangia [96].

In 1754, at the age of eighteen, Lagrange had the temerity to send Euler a letter
containing results he would later publish in Italian [90]. These results were not at all
remarkable and after publication of the paper Lagrange found them already present
in a communication between Johann Bernoulli andGottfried Leibniz. The possibility
that he would be considered a plagiarist disturbed him greatly and he increased his
efforts to produce good mathematics.

Lagrange then undertook a study of the tautochrone or isochrone curve. A mass
released from rest at any point on the tautochrone, and sliding without friction under
the force of gravity, will take the same time to reach the lowest point on the curve. The
curve had been found using geometrical methods by Christiaan Huygens in 1659. By
the end of 1754 Lagrange had some reasonable results related to what Euler would
later call the calculus of variations. With well-founded confidence Lagrange again
wrote to Euler in the summer of 1755. Euler quickly wrote back indicating that he
was impressed with the results [96].

In the Autumn of 1755, at nineteen, Lagrange was appointed professor of math-
ematics at the Royal Artillery School in Turin [90].

Then in 1756Lagrange sent Euler somework that generalized the results Euler had
obtained earlier. Euler spoke about this to Maupertuis, who was then the president
of the Berlin Academy (Preußische Akademie der Wissenschaften), and together
they agreed that Lagrange should be offered a position in Berlin. Lagrange’s strong
interest in the principle of least action certainly influenced this. But Lagrangewas not
interested in prestige. He simply wanted to pursue mathematics. So he politely, and
shyly, refused the position. Lagrange was, however, elected to the Berlin Academy
in September of 1756, on Euler’s recommendation.

In 1757 Lagrange was a founding member of a scientific society in Turin, which
included a group of young scientists living there. The primary objective of the society
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was the publication of the journal Mélanges de Turin.13 And Lagrange contributed
to the first three volumes of the journal.

Jean-Baptiste d’Alembert, who was familiar with Lagrange’s work and friendly
with Friedrich II of Prussia, arranged for Lagrange to be again offered a position at the
Berlin Academy in 1765. Lagrange again refused, but this timewith the qualification,
“It seems tome that Berlinwould not be at all suitable formewhileM. Euler is there.”

With the knowledge that Euler would be leaving the Berlin Academy in 1766 for
St. Petersburg, d’Alembert wrote to Lagrange urging him to take the Berlin position.
This time Lagrange accepted and succeeded Euler as Director of Mathematics at the
Berlin Academy in 1766. He was thirty years old.

Lagrange remained in Berlin until 1787 when he left to become a member of the
Académie des Sciences in Paris.

During his last years in Berlin, Lagrange wrote the masterpieceMécanique ana-
lytique, which was published in Paris in 1788. This was really a summary of what
had been done in the science of mechanics since Newton’s synthesis in 1687. The
methods Lagrange presented were radically different from those of Newton and in
the preface he wrote

One will not find figures in this work. The methods that I expound require neither construc-
tions, nor geometrical or mechanical arguments, but only algebraic operations, subject to a
regular and uniform course.

Lagrange died in Paris on 10 April, 1813. He had survived the French Revolution,
while many had not [96].

The Contributions. Lagrange entered the discussion in 1761 with two memoirs,
both of which were published in volume 2 of the journal Mélanges de Turin.

In the first of these he provided a formulation of the Euler principle in terms
of a new δ−formalism [62]. In this new formalism Lagrange considered virtual
variations in the function y (x) appearing in (1.9). If the integral has an extreme
value for a specific function y (x) = η (x), then Lagrange could consider the values
of the integral when y (x) takes on the form y (x) = η (x) + δy (x) as powers
in the variation δy (x) leaving the terms δy (x) inside the integral. This approach
avoided the end point problems inherent in Euler’s method. If the integral has an
extremum at y (x) = η (x) then the result of Lagrange’s approach required that the
first order variation in the integral vanished. Lagrange’s approach now forms the
basis of modern variational calculus [cf. [31], [65], [11], [104], [36], [67], [70]].

In the second memoir he proposed that “all of the problems of dynamics” (toutes
les questions de dynamique) can be treated by a variational principle, which was a
generalization of the Euler principle (1.7) over a collection of particles.

The mathematical approach of Lagrange required reduction to a collection
of independent coordinates, now termed generalized coordinates, which required
Lagrange’s method of undetermined multipliers to incorporate the constraints.

13Mélanges de Philosophie et de Mathématiques de la Soc. Roy. de Turin.
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These two memoirs, we must recognize, are among the most important in theo-
retical physics. They carry us from the geometrical methods of Newton to the true
Analytical Mechanics of Euler and Lagrange [90] [[128], pp. 30–31].

Lagrange produced a more complete formulation in 1788. This was the
Méchanique analytique. Here he relied on the ideas of Bernoulli and of d’Alembert.
In his Traité de dynamique d’Alembert used the virtual velocity concept of Bernoulli
to reduce dynamical situations to equivalent problems in statics. Lagrange simplified
this. He wrote finally

δW =
n∑

i=1

Mi
[
Fx,iδxi + Fy,iδyi + Fz,iδzi

−d2xi
dt2

δxi − d2yi
dt2

δyi −d2zi
dt2

δzi

]

= 0, (1.11)

where Fx,i, Fy,i, and Fz,i are the (x, y, z) components of the applied forces (per unit
mass) acting on the i th body of mass Mi. This is the modern form of d’Alembert’s
principle [cf. [36], p. 22; [21], p. 90].

Lagrange identified the generalized coordinates asϕj and, using his δ−formalism,
Lagrange obtained

d

dt

δT

δ
(
dϕj/dt

) − δT

δϕj
− δU

δϕi
= 0 (1.12)

from (1.11). In (1.12) T was Lagrange’s notation for half the vis viva. In modern
terminology this is the kinetic energy, which we still designate as T . And U is the
18th century force function

Fx,i = δU

δxi
, (1.13)

which was introduced by Lagrange [see [40]]. This is the negative of the modern
potential energy. The equations (1.12), which, since they are based on (1.11), are
equivalent to Newton’s Laws, are Lagrange’s equations for the motion of a mechan-
ical system [90]. We will eventually call these the Euler–Lagrange Equations. In
1788, then, Lagrange showed that Newtonian (rational) mechanics results from a
variational principle. Crucial in this development is Lagrange’s method of unde-
termined multipliers. This is a method by which the constraints are introduced into
the variational integral, which removes any algebraic difficulties and, in integral
form, incorporates even constraints that can only be written in differential form
[[22], pp. 342–344]. Lagrange, however, made no metaphysical claims. His work
was purely mathematical.
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1.9 Hamilton and Jacobi

1.9.1 Hamilton’s Goal

WilliamRowanHamilton14 beganwith a study of optics. Hewished to bring to optics
the same beauty, power, and harmony that Lagrange had brought to mechanics [[22],
p. 390].

Geometrical optics could be based on either the wave or corpuscular picture of
light.15 Hamilton thought of the wave and corpuscular pictures to be explanatory
devices for a single science he called mathematical optics. In this vein Hamilton
considered the concept, or law, of least action to rank among the greatest theorems
in physics. He was, however, skeptical regarding its pretensions to cosmological
necessity based on economy. For Hamilton it was possible to speak of the extremum
property of the action. But it was not possible to extend this to a claim that the divine
design of the universe is based on economy [[22], p. 391].

Hamilton’s work in optics resulted in the definition of an action he termed V ,
in which the refractive index vi for a medium i was inversely proportional to the
speed of light in the medium ui with the proportionality factor f (x) a function of
the frequency of the light x . Specifically vi f (x) = 1/ui. The extremum condition
δV = 0 resulted in equations similar to those of Lagrange [[22], p. 393].

Hamilton’s work in mechanics began in 1833. Amanuscript entitled The Problem
of Three Bodies by my Characteristic Function is contained in his Notebook 29.
Hamilton’s characteristic function in this manuscript is

∫ t
0 2T dt , which he identifies

as the accumulated living force (vis-viva - twice the kinetic energy) in the system
between the times 0 and t . This manuscript contained the basis for what is now called
the Hamilton–Jacobi method.

This method, which we can claim is the most general and elegant expression of
Analytical Mechanics, formulates the science in terms of a single function. Rather
than concentratinghis attentionon the consequences of a variational principle,Hamil-
ton set for himself the goal of seeking that function which has an extreme value in
Analytical Mechanics. This is consistent with his words at the beginning of this
chapter.

Hamilton’s ideas are set down in two papers, or essays as Hamilton calls them,
published in the Philosophical Transactions of the Royal Society (London) in 1834
and 1835 [39], [40]. In the first of these papers he refers to Lagrange’s work as a
“kind of scientific poem”.

14Sir William Rowan Hamilton (1805–1865) was an Irish mathematician and physicist.
15An experimental comparison of the speed of light in water and in air, which is considered to
have ended the classical (Newtonian) corpuscular theory of light, was conducted by Léon Foucault
in 1850 and Hippolyte Fizeau in 1851. Hamilton’s principal work in mechanics predated these
experiments [[126], p. 136].
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1.9.2 The First Essay

In the first Essay [39] Hamilton considered a collection of point particles withmasses
m i located at the points (xi, yi, zi) and moving in accordance with Newton’s Laws.
He used Lagrange’s notation from theMéchanique analytique. The forces came from
a force functionU (see (1.13)). And Hamilton designated half the vis-viva as T . For
particles moving according to Newton’s Laws, then, dT = dU , which integrates to

T = U + H, (1.14)

where H is a constant. At the initial condition

T0 = U0 + H. (1.15)

If the initial conditions are slightly perturbed there will be perturbations in all three
quantities, including the constant termH.

Hamilton then defined the “accumulated of living force” as

V =
∫ t

0
2T dt, (1.16)

which is a function of the initial coordinates (ai, b i, ci, . . .) and the final coordinates
(xi, yi, zi, . . .) at the time t for each particle i . From the variation of this V he obtained
the partial derivatives of V as

δV

δx1
= m1x

′
1 · · · δV

δzn
= mnz

′
n, (1.17)

δV

δa1
= m1a

′
1 · · · δV

δcn
= mnc

′
n, (1.18)

and
δV

δH = t. (1.19)

Here we use the 18th century notation for the partial derivative.
The importance of the function V was then apparent. If V could be found as a

function of coordinates and the constant H, then any problem in dynamics would
have been solved. The initial momenta and those at a later time could then be found
as solutions to algebraic equations, which were obtained by partial differentiation of
V . Hamilton therefore called V theCharacteristic Function of motion of the system.
He called the variation of V the law of varying action.
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To obtain a method for finding V Hamilton returned to (1.14) and (1.15) and used
(1.17) and (1.18). He obtained two partial differential equations

∑ 1

2m i

[(
δV

δxi

)2

+
(

δV

δyi

)2

+
(

δV

δzi

)2
]

= U + H (1.20)

and
∑ 1

2m i

[(
δV

δai

)2

+
(

δV

δbi

)2

+
(

δV

δci

)2
]

= U0 + H. (1.21)

Both of these partial differential equationsmust be satisfied by the characteristic func-
tion. According to Hamilton these equations are the principal means of discovering
the form of V , and are of essential importance in the theory.

In the final two sections of this essay Hamilton produced a transformation from
the characteristic function V to a function of the coordinates, the initial values of the
coordinates, and the time. The transformation, which was a Legendre transforma-
tion,16 resulted in the function

S = V − tH, (1.22)

since δV/δH = t . With (1.16), (1.14), and (1.21) and recalling thatH is a constant,
the function S is then

S =
∫ t

0
(T +U ) dt. (1.23)

From the variation of S Hamilton obtained

δS

δt
= −H,

δS

δxi
= m ix

′
i , . . . , and

δS

δai
= −m ia

′
i, . . . (1.24)

Finally Hamilton produced two partial differential equations for S.

δS

δt
+

∑ 1

2m i

[(
δS

δxi

)2

+
(

δS

δyi

)2

+
(

δS

δzi

)2
]

= U (1.25)

and
δS

δt
+

∑ 1

2m i

[(
δS

δai

)2

+
(

δS

δbi

)2

+
(

δS

δci

)2
]

= U0. (1.26)

16The Legendre transformation, which replaces a variable with the derivative with respect to that
variable preserving the information content, was published by A.M. Legendre in 1787 [29], [74],
[66].
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This is the final elegant formulation that was Hamilton’s goal. He had found a sin-
gle function containing the description of the mechanical motion of a system of
interacting particles with constraints.

1.9.3 The Second Essay

In the second essay [40] Hamilton fixed his attention on the function S obtained in the
Legendre transformation (1.22), which he called the Principal Function. He began
the essay, however, with a derivation of the second order partial differential equations
of Lagrange directly from Newton’s Second Law without the use of a least action
principle, on which Lagrange had based his derivation. He presented the equations in
terms of generalized coordinates ηj and velocities η′

j . He defined a new generalized
coordinate

ω̄i = δT

δη
′
i

(1.27)

and Legendre transformed his function H from a function of the generalized coor-
dinates and velocities to one dependent on generalized coordinates ηi and ω̄i.

H = F (ω̄1 . . . , η1 . . .) −U (η1 . . .) . (1.28)

From his form of the Lagrange Equations (Euler–Lagrange Equations)

d

dt

δT

δη
′
i

= δ (T +U )

δηj
, (1.29)

he obtained
d

dt
ηi = δH

δω̄i
and

dω̄i

dt
= −δH

δηj
. (1.30)

In modern terminology the Eq. (1.30) are the canonical equations.
At this point Hamilton returned to the formulation in terms of his Principal Func-

tion S and showed that the variation in S was

δS =
∑

(ω̄iδηi − piδei) , (1.31)

in which ω̄i and ηi are the values of the momenta and coordinates at the time t and
pi and ei are their values at the time t = 0. From (1.31) he then identified

ω̄i = δS

δηi
and pi = − δS

δei
. (1.32)
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And the partial differential equations for the Principal Function are those in (1.25)
and (1.26) then became

δS

δt
+ H

(
δS

δη1
, . . . , η1, . . .

)
= 0 (1.33)

and
δS

δt
+ H

(
δS

δe1
, . . . , e1, . . .

)
= 0, (1.34)

and once S is known as a function of coordinates and time the canonical momenta
can be found from algebraic equations.

The remainder of the essay was then devoted to applications of his theory.

1.10 Jacobi

Carl Gustav Jacobi (1804–1851) was a mathematician, a great teacher, and a prolific
writer. “Such were Jacobi’s forceful personality and sweeping enthusiasm that none
of his gifted students could escape his spell: they were drawn into his sphere of
thought, and soon represented a ‘school”’ [[110], cited in [95]].

Jacobi was born into a Jewish family. He, however, converted to Christianity
around 1825, presumably motivated, at least in part, by the requirements for a uni-
versity teaching position in Prussia.

Jacobi’s interest in theoretical mechanics was as a mathematician rather than as
a physicist. This is particularly evident in the titles of the two important papers
we will consider here. These papers were published in the Crelle Journal für die
reine und angewandte Mathematik.17 The first paper was entitled Zur Theorie der
Variations-Rechnungen und der Differential-Gleichungen18 [52] and the second was
Über die Reduction der Integration partiellen Differentialgleichungen erster Ord-
nung zwischen irgend einer Zahl Variabeln auf die Integration eines einzigen Systems
ge-wöhnlicher Differentialgleichungen19 [53]. Because of the date of publication we
will designate these as Jacobi 1837 a, b. Both of these papers, however, dealt explic-
itly with Hamilton’s theory. At the time they were written (received 29 November
and 9December 1836) Jacobi, it seems, was convinced of the validity of an axiomatic
approach to theoretical physics, which had been the position of Lagrange. Jacobi’s

17Crelle Journal for the pure and applied Mathematics. The present title is the Journal für die reine
und angewandte Mathematik (Journal for the pure and applied Mathematics), but it is commonly
called Crelle’s Journal or simply Crelle. The journal has been in continuous publication since 1826.
18On the Theory of Variational Calculus and Differential Equations.
19On the Reduction of the Integration of Partial Differential Equations of Frst Order in an Arbitrary
Number of Variables to the Integration of a single System of Ordinary Differential Equations.
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position changed, however. In his lectures on Analytical Mechanics in Berlin (1847–
1848) hewas critical of Lagrange’s philosophical position. This was apparentlymoti-
vated by a changing evaluation of the role of mathematics in the empirical sciences
at that time20 [95].

1.10.1 Jacobi 1837a

Jacobi began the first paper (Jacobi 1837a) indicating that it had fallen on him to fill
a rather large and important hole in the variational calculus. The vanishing of the first
variation only guarantees an extremum. It says nothing of whether that extremum is a
minimum or a maximum, which must be decided on the sign of the second variation.
The first part of the paper deals with this question for variational problems dependent
on either the first or the second derivative of the function sought. Then Jacobi began
an analysis of Hamilton’s theory.

Jacobi pointed out that for his theory Hamilton required the principle of vis viva,
which follows if the force function is time independent. This limitation, Jacobi
showed, is easily removed, resulting in a formulation for which the principle of
vis viva no longer holds, but the principle of stationary (least) action remains valid.

And Jacobi marveled at the fact that Hamilton required the solution of two partial
differential equations for the Principal Function S, i.e. (1.25) and (1.26) or, equiva-
lently, (1.33) and (1.34). It is easy to show, he claimed, that it is sufficient to solve
only one of these equations.

Jacobi’s most extensive criticism, however, which takes much of the remainder of
the paper, was his contention that “Little seems to be gained through this reduction to
a partial differential equation of first order …” Solving the single partial differential
equation to which the dynamical problem has been reduced is much more difficult,
he pointed out, than solving the usual system of ordinary differential equations. It is
also, he continued, a rather important discovery in the theory of partial differential
equations that a partial differential equation can often be reduced to a single system
of ordinary differential equations, which do not contain the original function itself.
This is certainly the case in Analytical Mechanics, where the ordinary differential
equations had already been obtained by Lagrange.

It is difficult to escape the impression that these two papers of Jacobi are a pair with
the first serving as in introduction to the second, in which Jacobi presented the details
that had been outlined in the first. The two papers also appear in the same volume of
Crelle’s Journal, almost sequentially. But Jacobi did not claim this connection.

20This may be compared to David Hilbert’s belief that the proper way to develop any scientific
subject rigorously required an axiomatic approach, which he specifically called for in his address
to the International Congress of Mathematicians in 1900 [cf. [129]].
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1.10.2 Jacobi 1837b

In the second paper (Jacobi 1837b) Jacobi primarily developed and considered a
theorem. The theorem deals with a system of n unconstrained point particles (with
masses m i) which obey the equations of motion

m i
d2xi
dt2

= ∂U

∂xi
; m i

d2yi
dt2

= ∂U

∂yi
; and m i

d2zi
dt2

= ∂U

∂zi
(1.35)

for each i ,where the force functionU is a functionof the3n coordinates x1, y1, z1, . . .,
xn, yn, zn and the time t . The corresponding Principal Function S, which is a complete
solution to the equation

U = ∂S

∂t
+ 1

2

∑ 1

m i

[(
∂S

∂xi

)2

+
(

∂S

∂yi

)2

+
(

∂S

∂zi

)2
]

, (1.36)

and, apart from an arbitrary additive constant, contains 3n arbitrary constants

a1, a2, . . . , a3n, (1.37)

which are linked to another 3n arbitrary constants as

∂S

∂a1
= β1,

∂S

∂a2
= β2, . . . ,

∂S

∂a3n
= β3n. (1.38)

Jacobi’s theorem, as presented here reproduces the basic results of Hamilton’s
theory, with some modification. There is no reference to the principle of living
force, which had formed a cornerstone of much of the preceding work in Analytical
Mechanics, because this principle no longer holds if the force function depends also
on the time. And the Principal Function S, in Jacobi’s theorem, must only satisfy
a single partial differential equation. There is also a somewhat deeper issue that
seems to have been ignored by Jacobi. There is no reference to the principle of least
action. The principle of least action results in Newton’s Second Law, or equivalently
Lagrange’s Equations (1.35). But the path through the variational calculus to the laws
of motion is not a necessity. As Hamilton had shown, the Euler–Lagrange Equations
could be obtained without the principle of least action.

In his development of the theorem, Jacobi’s discussion was based on differential
calculus. In his preceding paper Jacobi had considered the mathematical question of
min /maxwhen the first variation of an integral vanishes, and rather clearly indicated
why we should base our discussions on ordinary differential equations, rather than
partial differential equations.

We may then consider that Jacobi’s theorem expands and formalizes Hamilton’s
theory. Because of Jacobi’s theorem we must also associate Jacobi’s name with the
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idea of presenting mechanics in terms of a single function. This is now, and will
remain, the Hamilton–Jacobi Theory.

Jacobi’s path to his theorem is insightful. He began by casting the equations of
motion in the form

m i
d2xi
dt2

= ∂U

∂xi
+ λ

∂F

∂xi
+ λ1

∂F1

∂x i
+ · · · , (1.39)

which are Lagrange’s equations with the constraints F = 0, F1 = 0, . . . Using
insightful differential relations he showed that Hamilton’s definition of the Principal
Function [see (1.23)]

S =
∫ t

0

{
U + 1

2

∑
m i

[(
x

′
i

)2 +
(
y

′
i

)2 +
(
z

′
i

)2
]}

dt (1.40)

results in

∂S

∂xi
= m ix

′
i

∂S

∂ai
= −m ia

′
i

∂S

∂yi
= m iy

′
i

∂S

∂bi
= m ib

′
i

∂S

∂zi
= m iz

′
i

∂S

∂ci
= m ic

′
i, (1.41)

where m ia
′
i , m ib

′
i, and m ic

′
i are the initial values of the momenta, which are the

constants designated as −β in (1.38). Then, considering S to be a (general) function
of (t, x, y, z, a, b, c) and using (1.41), Jacobi obtained (1.36).

Jacobi followed the introduction of his theorem with a fairly pointed critique
of Hamilton’s presentation of his (beautiful) theory. He confessed that he did not
know why Hamilton required the construction of a function S, which is a function
of the 6n + 1 variables (x, y, z, a, b, c, t), that must simultaneously satisfy the two
partial differential equations (1.25) and (1.26), since he (Jacobi) had shown that it is
completely sufficient that the function S satisfies only the partial differential equation
(1.36) and contains 3n arbitrary constants, to be found from initial conditions. He
then pointed out that this resulted in Hamilton’s placing his beautiful discovery in a
“false light”.

Jacobi’s concern was not to attack Hamilton’s ideas, even though he demonstrated
that the approach thorough ordinary differential equations is preferable. Rather he
wanted Hamilton’s theory to stand on its own, without requiring the separate under-
standing of the proof Hamilton presented. Hamilton’s neglect of the general rules
that Lagrange presented in his lectures on function theory for the integration of non-
linear partial differential equations of fist order, Jacobi supposed, meant that certain
important results in Analytical Mechanics escaped Hamilton. He also considered
that Hamilton’s limitation to force functions that are time independent was too great
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a limitation, particularly since this limitation is easily removed. Yourgrau and Man-
delstam have a literal translation of a portion of this critique [[128], p. 58].

Jacobi moved these ideas rather quickly into his teaching. His published Lectures
on Dynamics, presented at the University of Königsberg in the winter semester of
1842−43 [52], containHamilton’s ideas (Lecture 8) and consequences of adding time
dependence to the force function (Lecture 9). Lecture 9 is particularly interesting in
that there he considered explicitly the dependence of the function H = T − U on
generalized coordinates and momenta, which he designated as qi and pi. There he
wrote as the canonical equations, which Hamilton first wrote as (1.30), in the modern
form

dqi
dt

= ∂H
∂ pi

and
dpi
dt

= −∂H
∂qi

, (1.42)

and he considered the case for which a force function cannot be written. Then, in
place of ∂U/∂qi, we have

Qi =
∑

j

(
X j

∂xj
∂qi

+ Yj
∂yj
∂qi

+ Z j
∂zj
∂qi

)
,

where (X,Y, Z) are the components of the nonconservative force. The canonical
equations are then

dqi
dt

= ∂T

∂ pi
and

dpi
dt

= −∂T

∂qi
+ Qi, (1.43)

At that time Jacobi gave these lectures he was in failing health [95].

1.11 Summary

In this chapter we have presented a brief history of Analytical Mechanics tracing the
development of human thought regarding the motion we see around us. We naturally
began with the Presocratic thinkers, who did not accept the simple explanation of
occurrences based on the whims of the gods. Still, however, explanations were based
on the personal convictions or even prejudices of individuals. These were remarkable
and even resembled aspects of modern scientific thought.

And we saw that political and religious history affected intellectual history. This
came as no surprise. It led us, however, to an appreciation of Muslim thought and
an understanding of the influence of the development of Islam on the simultaneous
development of science in the Muslim world. The separation of the western and
eastern Roman Empires and the supposedly insignificant closing of the academy in
Athens by Justinian I had dramatic consequences on the form inwhichGreek thought
appeared as it entered western Europe through Muslim Spain.

The Roman Catholic Church, first with Augustine, anticipated that science would
provide supporting evidence for theology. This has not always proven easy, but
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scientific and mathematical thinkers of the medieval period, such as Robert Gros-
seteste and Jean Buridan, were churchmen.

The university system that camewith the intellectual revolution inwestern thought
changed the structure politically in western Europe. Even in the 9th century Charle-
magne recognized the importance of education and coaxed Alcuin of York to his
empire to design an educational system. Nicolaus Copernicus of Poland in the King-
dom of Prussia was educated at the universities at Krakow and at Bologna in Italy.
And Johannes Kepler benefitted from the belief held by the Dukes of Württemberg
in the importance of education. Science attracts thinkers and the university system
that western Europe was developing provided centers for scientific thought and dis-
cussion.

We saw a dramatic change in scientific thought with both Copernicus and Kepler.
Copernicus abandoned the philosophical position that placed the earth at the center
of the cosmos and Kepler made astrophysics of astronomy, smashing the Platonic
spheres. The importance of the steps taken by both Copernicus and Kepler cannot
be overstated. Although all corners of western civilization were not changed by their
discoveries, western intellectual history turned at this point to a reliance on hard data.
The next step (Newton) would synthesize the ideas of Kepler, among others, into a
theory.

We did not deal directly with the political upheavals of the Thirty Years’ War
and the English Civil War. But these were important in the subsequent founding of
scientific societies in which discussions could be resolved by logic and experiment,
rather armed conflict. In our detailed study of Newton we saw conflict, of course.
But the conflict between Newton and Robert Hooke remained intellectual.

The publication of Newton’s Principia changed the scientific landscape. Newton
remained, however, a deeply religious Puritan. And he thought seriously of himself
as a theologian [see [124] Chap.14]. His use of Euclidian geometry as the basis of
his proofs, or demonstrations, placed physics at a disadvantage until Maupertuis,
Euler, and Lagrange made calculus the language of Analytical Mechanics. The use
of calculus was not without controversy [cf. [5]], and we may speculate that Newton
rejected the use of his fluxions in the Principia because of the questions surrounding
the new theory that did not plague Euclid’s geometry. Euclidian geometry was pure
and absolute.

The Analytical Mechanics of Maupertuis, Euler, and Lagrange radically changed
our understanding of physical science. It had become, in fact, the experimental and
mathematical science that Newton envisioned. With Analytical Mechanics we could
actually solve interesting physical problems many which of were of interest to engi-
neers.

The final step in the development of Analytical Mechanics came with the con-
tributions of Hamilton and Jacobi. Hamilton showed that the solution to the motion
of any system of interacting particles was contained in a single Principal Function
that satisfied a pair of partial differential equations. The Principal Function itself had
no physical meaning. But the physical quantities of interest could be found from
algebraic equations obtained from the Principal Function. Jacobi’s contribution was
to greatly simplify Hamilton’s theory, while retaining the central idea. It is never
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easy to solve any interesting problem in physics. But the Hamilton–Jacobi approach
comes very close and has provided the path to the study of complex and chaotic
systems.

The reader familiar with the basis of the quantum theory will recognize the Prin-
ciple Function as a possible analogue for the wave function. The wave Function also
has no physical meaning. But from it all quantities can be obtained. In Sect. 5.9.2
we reproduce Schrödinger’s development of his wave equation from the Hamilton–
Jacobi Equation.

In this outline of the history ofAnalyticalMechanicswehave apparently neglected
to mention the great step provided by Albert Einstein and Hermann Minkowski. We
reserve this our final chapter because any appropriate study of special relativity is
tied to a deeper understanding of Analytical Mechanics, which we will then have.

1.12 Questions

1.1. We claimed that we must begin the history of our subject in ancient Greece.
Particularly we went back to the Presocratics. These people we claimed were
physicists because they were more interested in how the world functioned than
in how it should function. In a brief essay speak to the concepts of modern and
classical physics that find roots in these Presocratics.

1.2. Cicero wrote that Socrates called down philosophy from the skies. With
Socrates the truths that the philosophers, the physicists before him, had sought
found their importance with people and with human structures on earth. Phi-
losophy became also the study of ethics and of morals. But Socrates wrote
nothing. What we know of Socrates comes to us from Plato, his student. What
characterized Plato’s thought?

1.3. Aristotle Has had a greater influence on philosophical and scientific thought
than any other individual. He was Plato’s student. But he disagreed with his
master about the structure of reality. How would you characterize Aristotle’s
approach to understanding the world?

1.4. Greekwas the language of the Eastern Roman Empire, which did not so quickly
suffer the same deterioration that eventually destroyed the Western Roman
Empire in 476 CE (Common Era). The academy in Athens was closed by the
Eastern Roman emperor Justinian I in 529 CE. But this alone did not stifle
communication between the intellectuals of the East and those of the West. It
did, however, move the intellectual center farther East. Reflect on the growth
of Muslim (Islamic) science that resulted.

1.5. We concentrated on Muslim developments in mathematics and in astronomy
because these were the areas of most interest to us. There we found distinct
theological as well as philosophical and scientific interactions that determined
the directions of the development ofMuslim science. Outline these interactions

http://dx.doi.org/10.1007/978-3-319-44491-8_5
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and the influence they had on the form of Aristotle and Ptolemy that eventually
appeared in western Europe.

1.6. In 711 CE the Muslims took Spain creating al Andalus (Muslim Spain), which
lasted until 1492. This was not a continuous period of stable borders separat-
ing al Andalus from Christian Europe. The invasion of forces from the Holy
Roman Empire pushed the border of al Andalus progressively southward. But
the people of al Andalus became inseparably mixed during the 700 years of
Muslim rule. TheMuslims brought with them a culture, an educational system,
andmanuscripts that had a great effect onwestern Europe.What was the impact
of this on Europe?

1.7. As physicists and Engineers we tend to write off medieval physics as of little
interest in part because of the influence of the Catholic Church. But there were
serious scientists even among those taking Holy Orders. What were the issues
that were considered during the late medieval period?

1.8. The modern scientist will quickly point to the idea of Nicolaus Copernicus
and his work as the beginning of what we now call classical physics. This was
followed by the revolutionary steps taken by Johannes Kepler. With Kepler,
as well as the ideas of others, Newton was able to synthesize the basis of
mechanics. Place these ideas in context.

1.9. The 18th century saw a great advance in the methods of mechanics beyond what
Newton had done. A real Analytical Mechanics emerged at the hands of Pierre
Louis Maupertuis, Leonhard Euler and Joseph-Louis Lagrange. Provide a brief
explanation of what these people did.

1.10. William Rowan Hamilton and Carl Gustav Jacobi put together the (almost) last
parts of the Analytical Mechanics. We have provided an outline of their papers
in the chapter. Very briefly describe what they did.



Chapter 2
Lagrangian Mechanics

The reader will find no figures in this work. The methods which I set forth do not require
either constructions or geometrical or mechanical reasonings, but only algebraic operations,
subject to a regular and uniform rule of procedure.

Joseph-Louis Lagrange in the preface to Mécanique Analytique.

2.1 Introduction

In the preceding chapter we outlined the concept of least action and introduced
the basis of Lagrangian mechanics. We shall now drop the terminology of the 18th

century and develop this concept in a form which can easily be applied in the 21st

century.
Our approach will be to first base our development on Newton’s Laws and

d’Alembert’s principle as Lagrange originally did. This will produce the Euler–
LagrangeEquations for any system that obeysNewton’s Laws.Wewill follow closely
the development of Edmund T. Whittaker1 in A Treatise on the Analytical Dynamics
of Particles and Rigid Bodies [[125], Chap. II]. We will then show that the Euler–
Lagrange Equations result from a variational principle. In this we will introduce,
as Lagrange did, the method of Lagrange undetermined multipliers. This will also
provide for us a simple method for handling general constraints that otherwise may
present insurmountable algebraic difficulties.

The resultwill be the regular and uniform rule of procedure promised byLagrange.

1EdmundTaylorWhittaker (1873–1956)was professor ofmathematics at theUniversity ofEdinurgh
from 1911 to the end of his career.
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52 2 Lagrangian Mechanics

2.2 Kinematics

We consider the motion of a system consisting of a collection of point particles
with masses m i. Because we are treating classical mechanics, these particles will
not be molecules, atoms, or subatomic particles. They are classical point particles,
which are small enough, compared to the dimensions of the system, to be considered
mathematically as geometrical points. Their description is then completely provided
by the position vectors r i locating the points i and the velocities vi of the moving
points. Classical point particles have no rotational energy.

Kinematics is the description of the motion of these classical point particles,
which is the mathematical representation of the position and velocity vectors of the
point particles. If we were attempting to formulate our problem as a direct translation
of Newton’s Second Law into vector form we would also require the acceleration.
However, as we found in the preceding chapter, the Analytical Mechanics of Euler
and Lagrange only requires the positions and velocities of the particles.

We first choose any one of the standard coordinate systems of analytical geometry,
which is convenient for the system at hand. For general descriptions we normally
simply choose a rectangular Cartesian system. For problems with particular sym-
metries we naturally choose a system that reflects those symmetries, such as polar
or spherical systems. The position and velocity vectors for a point in the system we
have chosen is then the kinematic description of each particle.

Each of the coordinate systems of analytical geometry has three orthonormal basis
vectors. In the rectangular Cartesian system these basis vectors

(
êx, êy, êz

)
are fixed

in space and oriented along the axes (x, y, z). In the cylindrical system the basis
vectors are

(
êr, êϑ, êz

)
. Only the basis vector êz is fixed in space while the orientation

of the vectors êr and êϑ change with themotion of the particle. In the spherical system
the basis vectors are

(
êρ, êϑ, êφ

)
none of which is fixed in space as the particle moves.

In the remainder of this section we will formulate the position vector locating the
classical point particle and obtain the velocity in each of the coordinate systems. We
shall use the standard (Newtonian) dot notation for the time derivative of a function
ḟ =d f/dt.

2.2.1 Rectangular Cartesian

We have illustrated the rectangular Cartesian system in Fig. 2.1. The vector r is
represented in the basis

(
êx, êy, êz

)
. And the triad is right handed, i.e.

êx × êy = êz. (2.1)
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Fig. 2.1 Rectangular
Cartesian coordinates

We have drawn the basis vector triad
(
êx, êy, êz

)
at the tip of the position vector

r for illustrative purposes. The orientation of each of the basis vectors
(
êx, êy, êz

)
is

fixed in space.
The vector r is

r = xêx + yêy + zêz. (2.2)

Because only the components (x, y, z) are time dependent the velocity vector v is

v = ẋ êx + ẏêy + żêz. (2.3)

2.2.2 Cylindrical

We have illustrated the cylindrical coordinate system in Fig. 2.2. The vector r is
represented in the basis

(
êr, êϑ, êz

)
. And the triad

(
êr, êϑ, êz

)
is right handed so that

êr × êϑ = êz. (2.4)

Fig. 2.2 Cylindrical
coordinates
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We have drawn the vector triad
(
êr, êϑ, êz

)
at the tip of the position vector r . The

basis vector êz remains oriented along the vertical axis and is independent of time.
The basis vector êr is in the plane of r and êz and oriented perpendicularly to êz. The
basis vector êϑ is perpendicular to êr and êz. The basis vectors êr and êϑ then rotate
around an axis parallel to êz as the tip of the position vector r moves.

The position vector r is
r = r êr + zêz. (2.5)

The differential rotation dϑ of the dyad
(
êr, êϑ

)
around êz results in a differential

change dêr = dϑêϑ in the basis vector êr. The velocity vector v is then

v = ṙ êr + r ϑ̇êϑ + żêz. (2.6)

2.2.3 Spherical

We have illustrated the spherical coordinate system in Fig. 2.3. The vector r is rep-
resented in the basis

(
êρ, êϑ, êφ

)
. And the triad

(
êρ, êϑ, êφ

)
is right handed so that

êρ × êφ = êϑ. (2.7)

The length (magnitude) of the position vector r is ρ.
We have drawn the basis vector triad

(
êρ, êϑ, êφ

)
at the tip of the position vector r .

The basis vector êρ is oriented along the direction of the position vector r and changes
in orientation with the position vector. The basis vector êρ is then independent of
the length ρ of the position vector r and depends on the azimuthal2 angle ϑ and the
polar angle φ. An infinitesimal rotation dφ of the polar angle produces a differential

Fig. 2.3 Spherical
coordinates

2Azimuth comes from the Arabic word as-simt, which means direction, referring to the direction a
person faces. In Fig. 2.3 the azimuthal angle ϑ locates the projection of the vestor r on the (x, y)

plane with respect to the x−axis.
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change dêρ = dφêφ in the basis vector êρ, which is analogous to the change dêr
in the cylindrical basis vector we found above. In the same fashion we deduce the
differential change in êρ resulting from a differential change dϑ in the azimuthal
angle as dêρ = sin φdϑêϑ. The Pfaffian3 for the basis vector êρ is then

dêρ =
(

∂êρ

∂φ

)
dφ +

(
∂êρ

∂ϑ

)
dϑ

= dφêφ + sin φdϑêϑ. (2.8)

The position vector r is
r = ρêρ. (2.9)

With (2.8) the velocity vector v is

v = ρ̇êρ + ρϑ̇ sin φêϑ + ρφ̇êφ. (2.10)

2.3 From Newton’s Laws

2.3.1 General Formulation

The total force acting on the i th (point) particle we designate as Fi and consider that
this force consists of both forces whose origin is external to the system Fext

i and
forces arising from interactions among the particles, which we term internal forces
Fint

i . That is
Fi = Fext

i + F int
i .

External forces arise from fields, such as gravitational or electromagnetic, and pos-
sible contact forces from external bodies constraining the motion.4 The system of
particles we are considering is, therefore, themost general possible in classical terms.

Applying Newton’s Second Law to each particle i we obtain

m i
d2

dt2
r i = Fext

i + Fint
i . (2.11)

Written in (rectangular) Cartesian coordinates (x, y, z) (2.11) is a set of three equa-
tions,

3Johann Friedrich Pfaff (1765–1825) was one of Germany’s most eminent mathematicians during
the 19th century. He is noted for his work on partial differential equations of the first order, which
became part of the theory of differential forms. He was also Carl Friedrich Gauss’s formal research
supervisor.
4We realize, of course, that what are considered as contact forces are the result of electromagnetic
forces between the atoms making up the particles and those making up the constraining surfaces.
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m i ẍi = Fext
xi + F int

xi , (2.12)

m i ÿi = Fext
yi + F int

yi , (2.13)

and
m i z̈i = Fext

zi + F int
zi . (2.14)

We may sum (2.12)–(2.14) over all particles i to obtain the general form of the
application of Newton’s Laws to our system. In the summation we use Newton’s
Third Law , which applies to the internal forces of interaction between all pairs of
particles. The summation over all of the internal forces is then zero regardless of
whether the forces are from interactions between the particles, making up what we
see as a single material body, or include interactions between the particles making
up separate bodies. Equations (2.12)–(2.14) then become

∑

i

m i ẍi =
∑

i

Fxi, (2.15)

∑

i

m i ÿi =
∑

i

Fyi, (2.16)

and ∑

i

m i z̈i =
∑

i

Fzi, (2.17)

where we drop the superscript ext as superfluous. The set of second order differential
equations (2.15)–(2.17) constitute a general description of the mechanical behavior
of a group of material bodies, provided we require that the particles obey Newton’s
Laws.

2.3.2 Generalized Coordinates

In most applications we do not need the full set of Cartesian coordinates because of
the constraints on the system we are studying. As an example in Fig. 2.4 we consider

Fig. 2.4 Simple Pendulum
with generalized coordinates
� and ϑ
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a simple pendulum consisting of a mass suspended by a light rod. The motion of the
mass is constrained to remain on a circle of radius �. The Cartesian coordinates for
this system may be written as

x = � sin ϑ (2.18)

and
y = � (1 − cosϑ) . (2.19)

We then have a complete description of the motion in terms of a single variable ϑ.
We refer to this single variable, which is completely adequate for the description of
the system originally formulated in the two rectangular Cartesian coordinates (x, y),
as a generalized coordinate. The reduction in coordinates resulted from the single
constraint � = √

x2 + y2.
Physical constraints on systems generally impose geometric constraints on our

representations of those systems. A curve in a plane imposes a relationship between
two Cartesian coordinates, which are then no longer independent. We may then
reduce the original pair of planar coordinates to a single coordinate. In our example
the single independent coordinatewas an angleϑ expressing the relationship between
x and y. The situations we encounter in applications will, however, seldom be so
simple. For the general case we will require the method of undetermined multipliers
introduced by Lagrange.

Wemay, however, claim that constraints will always impose geometrical relation-
ships between the rectangular coordinates for the particles in our system (xi, yi, zi)
and the generalized coordinates qi of the form

xi = xi (q, t) , (2.20)

yi = yi (q, t) , (2.21)

and
zi = zi (q, t) , (2.22)

where we have introduced the shorthand q = {qi} for the set of generalized coordi-
nates. We must only accept that we may not be capable of writing these relationships
in closed form.
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From (2.20)–(2.22), Pfaff’s5 differential forms, or Pfaffians,6 for the rectangular
Cartesian coordinates (xi, yizi) are

dxi =
∑

k

∂xi
∂qk

dqk + ∂xi
∂t

dt

dyi =
∑

k

∂yi
∂qk

dqk + ∂yi
∂t

dt

dzi =
∑

k

∂zi
∂qk

dqk + ∂zi
∂t

dt. (2.23)

2.3.3 Virtual Displacement

We introduced the concept of virtual displacement of the i th particle δr i in the
preceding chapter. This virtual displacement is consistent with the constraints acting
on the system and could be an infinitesimal element of the actual path followed by
the system. But we hold the time constant, i.e. dt = 0. The displacement δr i is then
virtual in that it does not actually take place. The actual variation would require
dt �= 0. From the Pfaffians (2.23), with dt = 0, we have

δr i =
∑

k

[
(∂xi/∂qk) êx + (∂yi/∂qk) êy + (∂zi/∂qk) êz

]
δqk (2.24)

for the virtual displacement.

2.3.4 D’Alembert’s Principle

Because (2.11) must hold for every particle at each step along the path followed by
the system,

m i
d2

dt2
r i − Fi = 0

5Johann Friedrich Pfaff (1765–1825) was one of Germany’s most eminent mathematicians during
the 19th century. He is noted for his work on partial differential equations of the first order, which
became part of the theory of differential forms. He was also Carl Friedrich Gauss’s formal research
supervisor.
6Pfaff’s differential form for the function Ψ (ξ1, . . . , ξn) is defined as

dΨ =
n∑

j

(
∂Ψ

∂ξ j

)
dξ j .
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at each point and during the next infinitesimal part of the path followed by the
particle i . The virtual displacement δr i is a possible next infinitesimal part of the
path, consistentwith the constraints on the system. If δr i were the actual path followed
we would have

∑

i

[
m i

d2

dt2
r i −

→
F i

]
· δr i = 0. (2.25)

However, if δr i is a virtual displacement the product in (2.25) may not be identically
zero at all points along δr i. But the difference between the product in (2.25) and zero
would only result in higher order terms in δ’s. Therefore, to first order in δ’s (2.25),
which is d’Alembert’s Principle, is valid for the virtual displacement δr i. [see [65],
pp. 88–110]

We note that d’Alembert’s Principle is expressed as a scalar equation involving

what is termed virtual work
→
F i · δr i, which is the work that would be done on the

mass m i in the virtual displacement δr i. This virtual work is equal to a corresponding
virtual change in the kinetic energy of the mass m i, which is m id2r i/dt2 · δr i. This
formulation includes, in principle, work by dissipative forces7 as well. Work and
energy then replace forces in a formulation of mechanics based on d’Alembert’s
Principle.

2.3.5 Euler–Lagrange Equations

In this section we provide the details of the derivation of the Euler–Lagrange Equa-
tions from d’Alembert’s Principle. We will introduce generalized coordinates q into
the virtual displacements, which we wrote above in terms of Cartesian coordinates.
Beyond the transition from Cartesian coordinates to the generalized coordinates, this
section is primarily a mathematical discussion involving some creative use of partial
derivative relations. The passage from Newton’s Laws to the Euler–Lagrange Equa-
tions without a variational principle is, however, a necessary part of the development.

Using (2.24) d’Alembert’s Principle, Eq. (2.25), becomes

0 =
∑

i,k

[
m i

(
ẍi

∂xi
∂qk

+ ÿi
∂yi
∂qk

+ z̈i
∂zi
∂qk

)

−
(

Fxi
∂xi
∂q k

+ Fyi
∂yi
∂qk

+ Fzi
∂zi
∂qk

)]
δqk. (2.26)

7Dissipative forces are frictional forces. These ultimately result from contact forces betweenmoving
bodies and surfaces or moving bodies and moving fluids, all of which are molecular and electro-
magnetic in nature. If we claim such detailed knowledge these forces are conservative. We may
later insert these in modeled form, if they arise.
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Equation (2.26) is of the form

0 =
∑

k

αkδqk. (2.27)

Since the generalized coordinates qk are independent of one another, the δqk are
arbitrary. Therefore (2.27) can only be valid if each αk is independently zero. That is

∑

i

m i

(
ẍi

∂xi
∂qk

+ ÿi
∂y i

∂qk
+ z̈i

∂zi
∂qk

)

=
∑

i

(
Fxi

∂xi
∂qk

+ Fyi
∂yi
∂qk

+ Fzi
∂zi
∂qk

)
(2.28)

for each component k. Equation (2.28) must then be valid if the system obeys New-
ton’s Laws.

Because the Cartesian coordinates are functions of the generalized coordinates
and the time (see (2.20)–(2.22)) the time derivative of the coordinate xi is

ẋi = dxi
dt

=
∑

k

∂xi
∂qk

q̇k + ∂xi
∂t

. (2.29)

If we now take the partial derivative of (2.29) with respect to q̇k we obtain

∂ ẋi
∂q̇k

= ∂xi
∂qk

(2.30)

Equation (2.30) is often called cancellation of the dots because it appears as
though we have simply cancelled the dots (time derivatives) in ∂ ẋi/∂q̇k to obtain
∂x i/∂qk. Mathematically (2.30) is a consequence of the fact that the Cartesian coor-
dinate xi depends only on q and the time t and is independent of the velocities q̇ .

With (2.30) we can write the terms appearing on the left hand side of (2.28) as

ẍi
∂xi
∂qk

= ẍi
∂ ẋi
∂q̇k

. (2.31)

Now

ẍi
∂ ẋi
∂q̇k

= d

dt

(
ẋi

∂ ẋi
∂q̇k

)
− ẋi

d

dt

(
∂xi
∂qk

)
, (2.32)

using (2.30) in the last term on the right hand side of (2.32). Since ∂xi/∂qk depends
on (q, t) as does xi, the time derivative of ∂xi/∂qk has the same form as (2.29). That
is

d

dt

(
∂xi
∂qk

)
=

∑

j

∂2xi
∂qj∂qk

q̇j + ∂2xi
∂t∂qk

. (2.33)
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Also from (2.29) we have

∂ ẋi
∂qk

=
∑

j

∂2xi
∂qj∂qk

q̇j + ∂2xi
∂t∂qk

, (2.34)

since the order of partial differentiation is immaterial.
Therefore from (2.33) and (2.34) we see that

d

dt

(
∂xi
∂qk

)
= ∂ ẋi

∂qk
. (2.35)

With (2.35) Eq. (2.32) becomes

ẍi
∂xi
∂qk

= d

dt

(
ẋi

∂ ẋi
∂q̇k

)
− ẋi

∂ ẋi
∂qk

=
[
d

dt

∂

∂q̇ k
− ∂

∂qk

] (
1

2
ẋ2
i

)
. (2.36)

Then using (2.36) the left hand side of (2.28) becomes

∑

i

m i

(
ẍi

∂xi
∂qk

+ ÿi
∂yi
∂qk

+ z̈i
∂zi
∂qk

)

=
[
d

dt

∂

∂q̇ k
− ∂

∂qk

]∑

i

1

2
m i

(
ẋ2
i + ẏ2i + ż2i

)
(2.37)

We recognize the term
∑
i

(1/2) m i
(
ẋ2
i + ẏ2i + ż2i

)
as the kinetic energy , which,

in keeping with the notation of Lagrange and Hamilton,8 we shall designate as

T =
∑

i

1

2
m i

(
ẋ2
i + ẏ2i + ż2i

)
. (2.38)

Then (2.28), which is the requirement that the system obeys Newton’s Laws, is

[
d

dt

∂

∂q̇k
− ∂

∂qk

]
T =

∑

i

(
Fxi

∂xi
∂qk

+ Fyi
∂yi
∂qk

+ Fzi
∂zi
∂qk

)
. (2.39)

We now recall that the forces remaining are those arising from external fields. In
18th century notation these forces equal to the positive gradient of the force function
U . In modern notation these forces are equal to the negative gradient of a scalar

8Denoting kinetic energy as T is standard modern notation. The fact that T is also used for thermo-
dynamic temperature, and that the kinetic energy of an ideal gas is proportional to thermodynamic
temperature, is incidental.
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potential V , which is a function only of spatial coordinates. That is

Fxi = −∂V

∂xi
, Fyi = −∂V

∂xi
, Fzi = −∂V

∂zi
.

Therefore, the right hand side of (2.39) is

∑

i

(
∂V

∂xi

∂xi
∂qk

+ ∂V

∂yi

∂yi
∂qk

+ ∂V

∂zi

∂zi
∂qk

)
= ∂V

∂qk
, (2.40)

using the chain rule. With (2.40) Eq. (2.39) becomes

[
d

dt

∂

∂q̇k
− ∂

∂qk

]
T = − ∂V

∂qk
. (2.41)

Since the potential V depends only on the coordinates and not on the velocities (2.41)
may be written as [

∂

∂qk
− d

dt

∂

∂q̇k

]
(T − V ) = 0. (2.42)

There is an equation of the form (2.42) for each of the generalized coordinates qk.
The Eqs. (2.42) are the Euler–Lagrange Equations. The combination T − V is

called the Lagrangian
L = T − V . (2.43)

The Lagrangian is a scalar function of the generalized coordinates q, the time
derivatives of the generalized coordinates q̇ , and possibly the time t . To obtain the
Lagrangian we only need the kinetic energies of the interacting bodies and the poten-
tial energies of the external fields.

With (2.43) Eq. (2.42) becomes

∂L/∂qk−d(∂L/∂q̇k) /dt = 0. (2.44)

The set of Eq. (2.44) is the final form of the Euler–Lagrange Equations.9

2.4 Variational Calculus

Our derivation of the Euler–Lagrange Equations in the preceding section was based
strictly on the differential calculus and an understanding of the elements of linear
algebra (see (2.27)). We had no need of any variational principle, even though we

9Some authors prefer to write the Euler–Lagrange equations as d(∂L/∂q̇k) /dt −∂L/∂qk = 0. Our
choice is based on the fact that this is the natural order resulting from the variational principle.
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know from the history of Analytical Mechanics that the principle of least action
was central to the thinking, particularly at the Berlin Academy (see Sects. (1.8.1)–
(1.8.3)). The formulation of the science in terms of a variational principle, and an
introduction of the rudiments of variational calculus, are, therefore, vitally important
to our understanding ofAnalyticalMechanics. Beyond the philosophical importance,
a formulation in terms of a variational principle is also absolutely necessary for the
incorporation of general constraints into mechanical problems.

In this section we will introduce the basis of variational calculus and show that
the Euler–Lagrange equations result from a variational principle.

2.4.1 Functionals

A functional defines an operation on a class of functions {y (x)} that returns a real
number for each function y (x) [cf. [31]]. For example such a functional may be the
definite integral of a quantity F

[
x, y (x) , y′ (x)

]
dependent on the function y (x),

its derivative y′ (x) and the independent variable x over the interval [a, b]. In this
case the functional J [y] is the number

J [y] =
∫ b

a
dx F

[
x, y (x) , y′ (x)

]
, (2.45)

which is dependent on the function y (x) chosen from the class {y (x)} and the values
a and b chosen as the limits of integration.

Example 2.4.1 As a specific example we consider the area of the surface of rotation
AS [y] for a class of functions {y (x)}. We choose our class of functions to be single-
valued, have continuous first derivatives, and pass through the two points (x0, y0)
and (x1, y1). The differential area of the surface formed by the rotation of the curve
y (x) about the x−axis is shown in Fig. 2.5. The differential area of the surface of
revolution dAS

[
x, y (x) , y′ (x)

]
between the points x and x + dx on the x−axis is

equal to the product of the circumference of the circular cross section of the surface
2πy (x) and the distance along the curve ds resulting from the differential distance
x → x + dx along the x−axis. above. That is

dAS
[
x, y (x) , y′ (x)

] = 2πy (x)
√
dx2 + dy 2

= dx [2πy (x)]
√
1 + (y′ (x))2

The total area of revolution is then

AS [y] =
∫ x1

x2

dx

[
2πy (x)

√
1 + (y′ (x))2

]
. (2.46)

http://dx.doi.org/10.1007/978-3-319-44491-8_1
http://dx.doi.org/10.1007/978-3-319-44491-8_1
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Fig. 2.5 Differential area of
the surface of revolution
formed by the curve
y = y (x)

In this example the function F
[
x, y (x) , y′ (x)

]
is

F
[
x, y (x) , y′ (x)

] = 2πy (x)

√
1 + (y′ (x))2

We may now ask for the function y (x) that results in a maximum or a minimum
of the area of rotation in (2.46).

2.4.2 Extrema of Functionals

For a function F
(
x, y, y′) there may be a specific function y (x) = η (x) in the

class {y (x)} that results in an extreme value of the functional J [y] in (2.45). We
then consider all possible functions in the class {y (x)} that differ only very slightly
(infinitesimally) from η (x). That is we write the function y (x), which differs only
slightly from η (x), as

y (x) = η (x) + h (x) , (2.47)

where h (x) is an infinitesimal function of the variable x contained within the class
of functions {y (x)}. We then define ΔJ [h] as the functional

ΔJ [h] = J [y] − J [η] . (2.48)

This functional is an infinitesimal real number for each infinitesimal function h (x)

in {y (x)}. The extremum J [η] is a minimum if each h (x) increases the value of
J [y] and

ΔJ [h] = J [y] − J [η] ≥ 0, (2.49)
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and is a maximum if each h (x) decreases the value of J [y] and

ΔJ [h] = J [y] − J [η] ≤ 0. (2.50)

Because h (x) is infinitesimal at every point on the interval in x being considered,
the function F

(
x, y, y′) in (2.45) may be written as a generalized Taylor series of

the form

F
(
x, y, y′) = F

(
x, η, η′) + h

∂F

∂y

∣∣∣∣
y=η

+ h′ ∂F

∂y′

∣∣∣∣
y=η

+ · · · , (2.51)

at each point x on the interval of interest (i.e. x ∈ [a, b]). In (2.51) ∂F/∂y|y=η and
∂F/∂y′∣∣

y=η
are the partial derivatives ∂F/∂y and ∂F/∂y′, which are functions of y

and y′, evaluated in the limit h (x) → 0 and h′ (x) → 0. The general functions y (x)

and y′ (x) are then replaced by the functions η (x) and η′ (x) in the partial derivatives
∂F/∂y and ∂F/∂y′. Using (2.51) in ΔJ [h],

ΔJ [h] = J [y] − J [η]

=
∫ b

a
dx F

(
x, η + h, η′ + h′) −

∫ b

a
dx F

(
x, η, η′)

=
∫ b

a
dx

[
h (x)

∂F

∂y

∣∣∣∣y=η + h′ (x)
∂F

∂y′

∣∣∣∣
y=η

+ · · ·
]

. (2.52)

With the definition

Definition 2.4.1 That contribution to ΔJ [h] which is of order n in h (x) , h′ (x) ,

or products of h (x) and h′ (x) is defined as δ (n) J [h].

Equation (2.52) may be written as

ΔJ [h] = δJ [h] + δ(2) J [h] + · · · . (2.53)

The necessary condition for an extremum of the functional is that the first order
variation vanishes. That is

δJ [h] = 0 at an extremum (2.54)

This condition alone is called theweak extremum because it does not specify whether
the extremum is a maximum or a minimum.Whether the extremum is a maximum or
a minimum must be determined by investigating the algebraic sign of the variation
δ(2) J [h].

This is the δ−method developed by Lagrange (see Sect. 1.8.3), provided we also
require the the values of the class of functions {y (x)} are fixed at the end points. We

http://dx.doi.org/10.1007/978-3-319-44491-8_1
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must then require that the infinitesimal functions h (x) vanish at the end points. This
restriction was included by Lagrange.

2.4.3 Euler Problem

The Euler problem is to obtain the conditions on y (x) such that the functional (2.45)
has a weak extremum, i.e. that δJ [y] = 0. [[31], pp. 14, 15] We shall solve this
problem using the δ−method of Lagrange, however, since we realize that there are
mathematical difficulties at the end points in Euler’s method (see Sect. 1.8.2).

We require that the function F
(
x, y, y′) has continuous first and second (partial)

derivatives with respect to all its arguments. And we require that the function y (x)

belongs to a class of functions that have continuous first derivatives for a ≤ x ≤ b
(i.e. for x ∈ [a, b]), which satisfies the (fixed) boundary conditions

y (a) = A, y (b) = B.

The functions y (x) and η (x) in (2.47) are then equal at the end points and, therefore,
the function h (x) must vanish at the end points.

From (2.52) a weak extremum requires that

δJ [h] = 0 =
∫ b

a
dx

[
h (x) Fy

∣∣
y=η

+h′ (x) Fy′
∣∣
y=η

]
, (2.55)

where we have introduced the notation Fy = ∂F/∂y and Fy′ = ∂F/∂y′. Once the
form of the function y (x) is specified, F

[
x, y (x) , y′ (x)

]
and its derivatives become

functions of x alone. For the extremum specified by (2.55) we have y (x) = η (x).
Since (d/dx) h (x) Fy′ (x) = h′ (x) Fy′ (x) + h (x)dFy′ (x) /dx the integral of the
second term in (2.55) is

∫ b

a
dxh′ (x) Fy′ (x)

= h (x) Fy′ (x)
∣∣x=b
x=a −

∫ b

a
dxh (x)

d

dx
Fy′ (x) (2.56)

Because h (x) vanishes at the end points x = a, b, (2.56) becomes

∫ b

a
dxh′ (x) Fy′ (x) = −

∫ b

a
dxh (x)

d

dx
Fy′ (x) (2.57)

and (2.55) is

0 =
∫ b

a
dx

[
Fy − d

dx
Fy′

]
h (x) (2.58)

http://dx.doi.org/10.1007/978-3-319-44491-8_1
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for any arbitrary function h (x) in the class of functions {y (x)}, which satisfies the
boundary conditions h (a) = h (b) = 0.

Because h (x) is arbitrary, (2.58) holds if and only if

Fy − d

dx
Fy′ = 0.

We then have the condition for the weak extremum, which we can state as a theorem.
[[31], p. 15]

Theorem 2.4.1 Let J [y] be a functional of the form

J [y] =
∫ b

a
dx F

(
x, y, y′) ,

defined on the set of functions y (x), which have continuous first derivatives in [a, b]
and satisfy the boundary conditions y (a) = A and y (b) = B. Then a necessary
condition for J [y] to have an extremum for a given function y (x) is that y (x)

satisfies Euler’s Equation

Fy − d

dx
Fy′ = 0. (2.59)

Proof The proof is given in the preceding development.

We define the δ−variation as Lagrange did.

Definition 2.4.2 Let J [y] be a functional of the form

J [y] =
∫ b

a
dx F

(
x, y, y′) ,

defined on the set of functions y (x), which have continuous first derivatives in [a, b]
and satisfy the boundary conditions y (a) = A, y (b) = B. Then the δ−variation
of the functional J [y], indicated by δJ [y], is that for which the variations h (x) in
the function y (x) vanish at the end points a and b.

Example 2.4.2 As an example we consider the function

F
(
x, y, y′) = 1

2

(
y′) 2 + 4xy, (2.60)

and we choose the x− interval to be [a, b] = [0, 1] with the boundary conditions
y (0) = 0 and y (1) = 1. Then (2.59) becomes
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Fy − d

dx
Fy′ = 4x − d2

dx2
y = 0. (2.61)

The solution to (2.61) is

y (x) = 2

3
x3 + 1

3
x . (2.62)

And the value of the functional at the weak extremum is

J [y]

=
∫ 1

0
dx

[
1

2

(
y′)2 + 4xy

]

=
∫ 1

0
dx

[
1

2

(
2x2 + 1

3

)2

+ 4x

(
2

3
x3 + 1

3
x

)]

= 1. 655 6 . . . (2.63)

Since we have only the condition for a weak extremum, we do not know whether
(2.62) results in a maximum or a minimum of the functional.

This Theorem 2.4.1 can easily be generalized to a functional defined on a set of
m functions. We define

J [y1 · · · ym] =
∫ b

a
dx F

(
x, y1 · · · ym, y′

1 · · · y′
m

)

with
yk (a) = Ak, yk (b) = Bk,

fixed for each k = 1, . . . , m. Following the same steps as before, we have for the
first variation

δJ =
∫ b

a
dx

m∑

k=1

[
hk (x) Fyk

∣∣
yk=ηk

+hk (x) Fy′
k

∣∣
yk=ηk

]

=
∫ b

a
dx

m∑

k=1

hk

[
Fyk − d

dx
Fy′

k

]
.

Because each of the functions hk (x) is arbitrary and independent of the others, δJ
vanishes if and only if each bracketed term [ ] vanishes independently. That is

∂

∂yk
F − d

dx

∂

∂y′
k

F = 0 (2.64)

for each k.
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2.4.4 Hamilton’s Principle

If we choose the time t as the independent variable, the generalized coordinates qk (t)
as the functions of interest, and F as the Lagrangian L = T − V , we recognize the
set of equations (2.64) as the Euler–Lagrange Equations of Analytical Mechanics
(2.44). Specificallywehave arrived at a set of equations that are completely equivalent
to Newton’s Second Law from a variational principle. Therefore, if we define the
functional

S [q] =
∫ t2

t1

dt L (q, q̇, t) , (2.65)

the condition for a weak extremum, using Lagrange’s δ (see the Definition2.4.2),

δS = δ

∫ t2

t1

dt L (q, q̇, t) = 0, (2.66)

is that [
∂

∂q
− d

dt

∂

∂q̇

]
L (q, q̇, t) = 0 (2.67)

for a single generalized coordinate q (t).
If we consider a set of generalized coordinates q = {qk} the condition that first

order variation of the functional

S [q] = S [{qk}] =
∫ t2

t1

dt L ({qk} , {q̇k} , t) , (2.68)

vanishes, i.e. that the functional S [{qk}] has an extremum, is that the set of equations

[
∂

∂qk
− d

dt

∂

∂q̇k

]
L ({qk} , {q̇k} , t) = 0 (2.69)

is satisfied.
We then have a general theorem of Analytical Mechanics, which is Hamilton’s

Principle.

Theorem 2.4.2 Let S [q] be the functional

S [q] =
∫ t2

t1

dt L (q, q̇, t) ,

where
L (q, q̇, t) = T − V
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is the Lagrangian function defined on the set of generalized coordinates q = {qk},
which have continuous first time derivatives q̇ = {q̇k} on the interval [t1, t2], and
fixed values at the end points t1 and t2. Then a necessary condition for S [q] to
have an extremum for a given set of generalized coordinates q = {qk} is that each
generalized coordinate qk (t) satisfies the Euler–Lagrange Equation

∂

∂qk
L − d

dt

∂

∂q̇k
L = 0. (2.70)

The system then satisfies Newton’s Laws.

We note that here the variation h (t) vanishes at the end points and that this is,
therefore, the variation δS [q] (see the Definition2.4.2).

Example 2.4.3 As an example we choose the simple pendulum, which we have
drawn in Fig. 2.6. In terms of the generalized coordinate ϑ the kinetic energy is

T = 1

2
m�2ϑ̇2

and the potential energy is

V = mg� (1 − cosϑ) ,

where the reference is V = 0 when ϑ = 0. Then the Lagrangian is

L = T − V = 1

2
m�2ϑ̇2 + mg� (cosϑ − 1)

and

S [q] =
∫ t2

t1

dt

[
1

2
m�2ϑ̇2 + mg� (cosϑ − 1)

]
.

The Euler–Lagrange equation is

d

dt

(
m�2ϑ̇

) + mg� sin ϑ = 0

Fig. 2.6 Simple Pendulum
with generalized coordinates
� and ϑ
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or
ϑ̈ = −

(g

�

)
sin ϑ.

This is a nonlinear equation for ϑ (t). We may linearize it to obtain the (familiar)
equation for the simple pendulum with angular frequency ω = √

g/�.

2.5 Constraints

The reduction to generalized coordinates depends on the form of the constraints and
may not be simple. Indeed in the general case it may be algebraically impossible to
obtain a closed form Lagrangian in terms of generalized coordinates.

In this section we shall develop a systematic method for incorporating constraints
of any kind into Hamilton’s Principle. This will also provide the forces of constraint
automatically in the course of the solution of the problem at hand.

We begin our discussion of constraints with a situation for which the constraint
can only be formulated in differential terms: the rolling constraint.

2.5.1 Rolling

If a disk of radius R rolls upright and without slipping along a coordinate x the
differential angle of rotation of the disk dϑ, produces a displacement along the plane,
dx , given by

dx = Rdϑ

or
0 = dx − Rdϑ. (2.71)

This differential relationship is all the description of rolling gives us. If the rolling
is along a straight line we can integrate (2.71) to obtain

groll (x,ϑ) = 0 = x − Rϑ + constant.

Then (2.71) implies the existence of a functional relationship between x and ϑ of the
form groll (x,ϑ) = 0. And (2.71) is the Pfaffian differential of groll (x,ϑ), i.e.

dgroll = 0 =
(

∂groll

∂x

)
dx +

(
∂groll

∂ϑ

)
dϑ. (2.72)
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Comparing (2.72) with (2.71) we have

(
∂groll

∂x

)
= 1 and

(
∂groll

∂ϑ

)
= −R. (2.73)

But the integration cannot be performed for the general case of rolling on a surface
because the path along which the object is rolling must be obtained from a solution
of the equations of motion. And that solution involves the rolling condition as a
constraint.Wemust, therefore, accept that the general rolling condition, or constraint,
can only be formulated in differential form.

There is, however, a specific functional relationship between the path followed
by the body on a surface and the angle through which the body has rotated, provided
there is no slipping. This functional relationship

groll = groll (q) ,

where q is the set of generalized coordinates, only becomes known through solution
of the set of dynamical (Euler–Lagrange) equations. Therefore, even though we are
only able to write the rolling constraint initially in differential form, we realize that
in general this differential form is an exact differential of a function, which we have
designated here as groll.

In complete generality we may then write the rolling constraint as a Pfaffian in
N generalized coordinates as

dgroll = 0 =
N∑

i

(
∂groll

∂qi

)
dqi . (2.74)

And we will always be able to obtain an algebraic formulation of the terms
(∂groll/∂qi), even though we cannot write an expression for groll.

A Pfaffian is the exact differential of a function. That is the Pfaffian of the function
groll defines the function groll by specifying the rule for constructing it from infini-
tesimals. The fact that we cannot write groll in closed algebraic form is because the
interaction among the coordinates in the dynamical system is generally complicated.
But this fact in no way denies the existence of the function.10

10This situation is common in thermodynamics. There we have a Pfaffian for each of the potentials.
But we cannot write down a potential for any but the simplest ideal substance because of the
complexity of the interdependence of the thermodynamic properties for real substances.
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2.5.2 Holonomic and Nonholonomic Constraints

What we have said here regarding the rolling constraint holds for any constraint
for which we can only write a differential expression. Such constraints are called
Nonholonomic.

Constraints for which we can write a general algebraic expression of the form

gk (q) = 0 (2.75)

are called holonomic. For N generalized coordinates the differential of a holonomic
constraint results in the Pfaffian

dgk = 0 =
N∑

i

(
∂gk

∂qi

)
dqi (2.76)

The Eqs. (2.74) and (2.76) are both Pfaffians and identical in form. If we can show
that only the differential of the constraint is of interest to us in our formulation then
we can ignore the difference between holonomic and nonholonomic constraints.

In formulating any problem we always choose the coordinates that are the most
logical. This results in a set of coordinates wemay consider initially to be generalized
coordinates. Each additional algebraic equation of constraint, whether holonomic or
nonholonomic, reduces the number of necessary coordinates by one. This is true
whether or not we can incorporate the constraint algebraically into the Lagrangian.

Some authors have placed various emphases on the distinction between holonomic
and nonholonomic constraints. Whittaker’s discussion is quite detailed. His example
is, however, for the motion of a sphere on a horizontal surface. He points out that for
the slipping motion of a sphere on the surface the constraint is holonomic, while for
the non-slipping motion on the surface the rolling constraint is nonholonomic [[125],
p. 34]. Louis Hand and Janet Finch also have a detailed description of constraints,
subdividing the definitions depending on whether or not time is a variable. Their
example of a nonholonomic constraint is based on the rolling of a disk on a rough
surface [[41], p. 12, 36]. Cornelius Lanczos, who also uses rolling as an example of a
nonholonomic constraint points out that the original definition comes from Heinrich
Hertz [[65], p. 25].

The distinction between holonomic and nonholonomic constraints is real and
interesting. However, in our formulation in terms of Lagrange Undetermined Multi-
pliers here the difference has no immediate practical consequences.
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2.5.3 Lagrange Undetermined Multipliers

We consider that there are n constraints. In principle there are then n algebraic
functions gk (q) = 0, as we pointed out at the end of Sect. 2.5.1, although we can
actually write these only for the holonomic constraints.

For arbitrary functions of the time λk (t) (k = 1, . . . , n) we, therefore, also have
n equations

λk (t) gk (q) = 0. (2.77)

The integrals of the products (2.77) over any arbitrary time interval must also vanish.
Then ∫ t2

t1

dtλk (t) gk (q) = 0. (2.78)

Adding these integrals to the functional S [q] in (2.65) does not change the value of
S [q]. So Hamilton’s Principle requires that the δ−variation (see Definition2.4.2 in
Sect. 2.4.3 of)

S [q] =
∫ t2

t1

dt

[
L +

n∑

k=1

λk (t) gk (q)

]
(2.79)

must vanish. In performing the variation we must consider also variations in the
(arbitrary) functions λk (t). The result is

δS = 0 =
∫ t2

t1

dt

⎧
⎨

⎩

N∑

j

δqj

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)

+
n∑

k=1

λk (t)

(
∂gk

∂qj

)]
+

n∑

k=1

δλkgk (q)

}
. (2.80)

The integral in (2.80), over any arbitrary time interval, vanishes if and only if the
integrand vanishes. That is

0 =
N∑

j

δqj

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)

+
n∑

k=1

λk (t)

(
∂gk

∂qj

)]
+

n∑

k=1

δλkgk (q) . (2.81)
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Using (2.75) the last term in (2.81) vanishes regardless of variations in the λk (t).
Therefore

0 =
N∑

j

δqj

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)
+

n∑

k=1

λk (t)

(
∂gk

∂qj

)]
(2.82)

is the condition resulting from Hamilton’s Principle .
If all of the coordinates in the set q = {

qj
}N
j=1 were independent the variations

δqj would be independent and (2.82) would require that each of the square brackets

[· · · ] must be zero. But the set of coordinates q = {
qj

}N
j=1 must also satisfy the n

constraints (2.75). There are then only N − n independent coordinates. So we must
take another approach.

The other approach is to first judiciously choose all of the n arbitrary functions
λk (t) so that for the first n expressions in the brackets [· · · ] in (2.82) vanish. That is
we choose the arbitrary functions λk (t) such that

∂L

∂qj
− d

dt

(
∂L

∂q̇j

)
+

n∑

k=1

λk (t)

(
∂gk

∂qj

)
≡ 0 for j = 1 . . . N . (2.83)

Solving for the λk (t) with (k = 1, . . . , n) is, in principle, a straightforward problem
in linear algebra. Because the Lagrangian L = L (q, q̇, t) is specified, the first
term involving L in (2.83) is a known function of (q, q̇, t) for each j , which we
shall call Φj. We also know the partial derivatives

(
∂gk/∂qj

)
for all, including the

nonholonomic, constraints as functions of q = {
qj

}N
j=1. The Eq. (2.83) are then the n

linear algebraic equations for functions λk (t) for (k = 1, . . . , n),

Φj +
n∑

k=1

λk (t)

(
∂gk

∂qj

)
= 0,

which are soluble in a straightforward fashion.11 The first n equations (2.83) are then
satisfied and the n multipliers λk (t) are known. There are then N − n equations
remaining in the set (2.83). And the set of Eq. (2.82) is reduced to

0 =
N∑

j=n+1

δqj

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)
+

n∑

k=1

λk (t)

(
∂gk

∂qj

)]
, (2.84)

in which the N − n remaining coordinates qj for j = n + 1, n + 2, . . . , N and their
variations δqj are independent. Therefore (2.84) requires that

11The solution to this set of equations produces λk (q, q̇, t), with t appearing in the event that the
Hamiltonian involves t explicitly. The final solution, which produces qj = qj (t), results in λk (t).
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∂L

∂qj
− d

dt

(
∂L

∂q̇j

)
+

n∑

k=1

λk (t)

(
∂gk

∂qj

)
= 0 for j = n + 1 . . . N . (2.85)

We now note that the Eqs. (2.83) and (2.85) are identical. Therefore,

∂L/∂qj-d
(
∂L/∂q̇j

)
/dt +

n∑
k=1

λk (t)
(
∂gk/∂qj

) = 0 ∀ j. (2.86)

And we need pay no attention to the order of solution. This is what we shall always
do in practice. Indeed we may often consider the λk (t) to be of no interest and never
obtain them explicitly.

This is the method of Lagrange Undetermined Multipliers. We may use this
method to incorporate any and all constraints on our system, whether those con-
straints are holonomic or nonholonomic, and regardless of the algebraic complexity
of the constraints.

Example 2.5.1 We again consider the pendulum and incorporate the constraint that
the length is constant using Lagrange Undetermined Multipliers. That is we first
write the Lagrangian for the mass m moving freely in space then add the constraint
that the radial distance r from the pivot point is fixed and equal to �. We have drawn
the situation in Fig. 2.7. The kinetic energy in cylindrical coordinates is

T = 1

2
m

(
ṙ2 + r2ϑ̇2

)
.

The potential energy, referenced to the pivot point, is

V = −mgr cos ϑ.

Then

L = T − V = 1

2
m

(
ṙ2 + r2ϑ̇2

) + mgr cos ϑ.

The constraint is
g = r − � = 0.

Fig. 2.7 A single
generalized coordinate for
the simple pendulum is ϑ.
Including r and a Lagrange
multiplier will allow the
calculation of the force in the
suspending rod
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Then
dg = dr = 0.

and (
∂g

∂r

)
= 1

We have the Euler–Lagrange equations (with multiplier λ) for the two coordinates r
and ϑ as

d

dt
(mṙ) − mr ϑ̇2 − mg cos ϑ + λ = 0

d

dt

(
mr2ϑ̇

) + mgr sin ϑ = 0.

Using the constraint � = r we have

λ = m�ϑ̇2 + mg cos ϑ.

The second equation is, with� = r ,

m�2ϑ̈ + mg� sin ϑ = 0,

or
ϑ̈ = −g

�
sin ϑ.

Theuse ofLagrangeundeterminedmultipliers has resulted, then, in the sameequation
we obtained previously.

2.5.4 Forces of Constraint

We define the canonical momentum pj conjugate to the generalized coordinate qj as

pj ≡ ∂L

∂q̇j
. (2.87)

Newton’s Second Law equates dpj/dt to the force Fj applied in the j th direction.
With (2.87) we may then write the Eq. (2.86) as
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d

dt
pj = −∂V

∂qj
+

n∑

k=1

λk (t)

(
∂gk

∂qj

)

= − ∂

∂qj

[
V −

n∑

k=1

λk (t) gk

]
. (2.88)

That is

Veff = V −
n∑

k

λk (t) gk (2.89)

acts as an effective potential in which the system moves. The second part of this
effective potential produces the reactive forces on the system due to the constraints.
The reactive force in the j th direction arising from the constraints is then

F react
j =

n∑

k=1

λk (t)
(
∂gk/∂qj

)
(2.90)

and the force from the k th constraint alone in the j th direction is

F react
kj = λk (t)

(
∂gk

∂qj

)
. (2.91)

In order to find this reactive force we need to find the undetermined multiplier
λk (t) . In practice this usually constitutes an additional step in the solution, which
is often unnecessary if we only seek the trajectory of the system. The engineer may,
however, be very interested in knowing the forces of constraint on a system. These
determine the strength of the structure which confines the system. The Lagrangian
formulation provides these constraints in a systematic form.

2.6 Cyclic Coordinates

Let us assume that we have been able to obtain a Lagrangian into which all the
constraints have been incorporated algebraically. For such a situation the Euler–
Lagrange equations are (2.44). The structure of these equations allows us to make
some general statements about the behavior of the system.

If the Lagrangian does not depend explicitly on a certain coordinate it is termed
cyclic in that coordinate. The conjugatemomentum corresponding to that coordinate
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is then a constant of the motion, since from (2.87) and (2.44) we have

d

dt

(
∂L

∂q̇r

)
= d

dt
pr = ∂L

∂qr
= 0. (2.92)

This was first observed by the mathematician Amalie (Emmy) Nöther.12

The lack of dependence of the Lagrangian on a particular coordinate indicates a
symmetry of the system with respect to that coordinate. For example if there is no
dependence in the Lagrangian on the coordinate x the Lagrangian is unchanged by a
translation in the x−direction and there can, therefore, be no force in the x direction.
The canonical momentum px is then conserved. A symmetry about a particular axis
means the angular momentum about that axis is constant. Later we shall see that a
symmetry in the time means energy is conserved. The first two of these are intuitive.
But the energy-time relationship is usually a surprise.

2.7 Summary

In this chapter we have laid the foundations of Analytical Mechanics. The end result
was the Euler–Lagrange Equations.

We began by showing that Newton’s Laws result in the Euler–Lagrange equations
using d’Alembert’s Principle, which is a virtual work principle basedmathematically
on a scalar equation. So our formulation was based on scalar energy terms, which
promises a simplicity not present in a standard vector formulation.

We then turned to themore elegant formulation in terms of the variational calculus
and a variational principle we identified as Hamilton’s Principle. This formulation
also provided us with the only truly general method to incorporate complicated
constraints into mechanical problems: the method of Lagrange Undetermined Mul-
tipliers.

The only possible disadvantage in our formulation lies in the fact that the equations
we have are second order differential equations in the time. Our approach would be
simplified if we could find equivalent first order equations. This will be the subject
of our next chapter.

12Amale (Emmy) Nöther (1882–1935) was a German mathematician whose specialty was alge-
bra and ring structures. She was Extraordinary Professor at Göttingen from 1922–1933, then she
accepted a professorship at Bryn Mawr College, which she held until her death in 1935.
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2.8 Exercises

2.1. Cylindrical coordinates are {r,ϑ, z}. The position vector from the origin is r =
r êr + zêz. Show that the velocity vector is

d

dt
r = ṙ êr + r ϑ̇êϑ + żêz.

2.2. Spherical coordinates are {ρ,ϑ,φ}. The position vector is −→r = ρêρ. Show that
the velocity vector is

d

dt
r = ρ̇êρ + ρϑ̇ sin φêϑ + ρφ̇êφ.

Remark 2.8.1 These exercises should serve to provide a familiarity with the coordi-
nates that we will use extensively. The solution may require some hand drawing and
the consideration of small variations.

2.3. In this chapter we introduced Lagrange Undetermined Multipliers to add con-
straints to a variational principle. The reasoning should work just as well if we wish
to find the extremum of an algebraic expression subject to a constraint. For example,
if we wish to find the minimum distance from the origin to the straight line

y = 3x + 2

we seek the minimum distance from the origin to a point (x, y) in the plane and then
introduce the constraint that the point lies on the line. The calculation will be easier
if we minimize the square of the distance from the origin to the point (x, y), which
by Pythagoras’ Theorem is

f (x, y) = x2 + y2.

Carry out the calculation to find the point on the line.
Show that the shortest line between the origin and the straight line y = 3x + 2 is

perpendicular to the line y = 3x + 2.

2.4. Show that D’Alembert’s Principle results in conservation of mechanical energy
d(T + V ) = 0 for impressed forces derivable from a scalar potential as F =
−gradV .

2.5. Consider the parabola
y1 = −2x2

1 − 4

and the straight line
y2 = 2x2 + 1

First show that the graphs of these two functions never intersect. Having convinced
yourself of this, then go on to find theminimumdistance between these two functions.
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Show also that the minimum distance is a line perpendicular to the given straight
line.

2.6. In statistical mechanics we find that the Gibbs expression for the entropy is

S = −kB
∑

r

Pr ln Pr

where kB is the Boltzmann constant and Pr is the coefficient of probability for the
r th state, which is a measure of the density of states in the system phase space.13

Thermodynamics teaches us that under conditions of constant energy and volume
the entropy of a system will be a maximum. That is, we have the constraint that

E =
∑

r

PrEr,

which is that the average energy of the system in the ensemble is a constant. We also
realize that there is another constraint in the definition of probability. That is

1 =
∑

r

Pr

Show that the probability that a system of atoms will be in a particular state of
total energy Er is given by

Pr = exp [−1 − α − βEr]

where α and β are constants. Do this by maximizing the Gibbs entropy subject to
the constraints. The α and β are the Lagrange Undetermined Multipliers.

2.7. Study the following functional

J [y] =
∫ 1

0
dx

(
y′) .

Determine whether or not it has an extremum. If it does, find that extremum.

2.8. Consider the functional

J [y] =
∫ 1

0
dx

(
yy′) .

Determine whether or not this functional has an extremum. If so, find that extremum.

13The systemphase space has an axis for every canonical coordinate and every canonicalmomentum
of every particle (atom/molecule) in the system. This space is called Γ −space.
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2.9. Study the functional

J [y] =
∫ 1

0
dx

(
xyy′) .

Determine whether or not this functional has an extremum. If it does, find that
extremum.

2.10. Find differential equation for the extremum of the functional

J [y] =
∫ 1

0
dx

[
y2 + (

y′)2 − 2y sin (x)
]

[answer: y′′ − y = − sin (x)]

2.11. Show that the functional of two functions:

S [x, y] =
∫ t2

t1

dtΨ [t, x, y, ẋ, ẏ]

has an extremum when Euler–Lagrange equations for each of the functions are sat-
isfied.. That is, show that this functional has an extremum when

∂

∂x
Ψ − d

dt

∂

∂ ẋ
Ψ = 0

and
∂

∂y
Ψ − d

dt

∂

∂ ẏ
Ψ = 0

provided the variations vanish at the end points.
This requires the details of what we indicated in the text.

2.12. Consider that in the functional

S [y] =
∫ t2

t1

dt F (y, ẏ)

the function F does not depend explicitly on the time t . Show that as a consequence

F − ẏ
∂F

∂ ẏ
= constant.

2.13. Using the results of the preceding exercise, i.e.

F − ẏ
∂F

∂ ẏ
= constant,
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show that for F as the Lagrangian F = T − V for a single particle of mass m that
the total mechanical energy is constant and that

d

dt

(
F − ẏ

∂F

∂ ẏ

)
= − d

dt
(T + V ) .

2.14. Among all curves joining the points (x0, y0) and (x1, y1) find that which gen-
erates the minimum surface area when rotated around the x−axis. Begin with
the Pythagorean Theorem that the differential length between two points in the
(x, y) −plane is

ds =
√
dx2 + dy2 = dx

√
1 + (y′)2.

At the point x the distance to the curve y = y (x) is equal to the value of y. So the
differential area of the surface of rotation defined by the points x and x + dx on the
x−axis is

dx

(
2πy

√
1 + (y′)2

)
.

The area of the surface of revolution between x0 and x1is

AS = 2π
∫ x1

x0-

dx

(
y
√
1 + (y′)2

)
.

[Answer: y = K cosh [(x + C) /K ], where K and C are (integration) constants]

2.15. A particle is released from rest at a point (x0, y0) and slides (without friction)
down a curve in the (x, y) plane. Since the differential distance down the plane is

ds =
√
dx2 + dy2 = dx

√
1 + (y′)2,

The speed at which the particle slides is

v = ds

dt
=

√
1 + (y′)2

dx

dt
.

The speed, from energy conservation (no friction) is

v = √
2gy.

Then

dt = dx

√
1 + (y′)2√

2gy
.

What must the curve be, down which the particle slides, so that it reaches the vertical
line at x = b (> x0) in the shortest time? We then wish to find the extremum of the
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functional for the total time

T [y] =
∫ x=b

x=x0

dx

√
1 + (y′)2√

2gy

This is the brachistochrone problem, which was first posed by Johann Bernoulli in
1696.

[Answer: A cycloid]

2.16. A particle of mass m moves under no forces in the direction x .
Find the Lagrangian and the canonical momentum. Show that the canonical

momentum is conserved. Find the energy and show that its total time derivative
is zero so that the energy is a constant.

Do this using the Euler–Lagrange equations.

2.17. Consider a particle of mass m in free fall under the influence of gravity. Find
the Lagrangian, the canonical momentum, the Euler–Lagrange equation. Show that
the energy is constant and integrate the Euler–Lagrange equation.

2.18. Consider a particle of mass m sliding without friction down an inclined plane.
We show this in the figure below.

Find the Lagrangian, the Euler–Lagrange equations, and the energy. Show that
the energy is constant and solve the Euler–Lagrange equations. Find the reaction
force with the incline using the Lagrange multipliers.

2.19. Consider a mass, m, sliding without friction on the hilly terrain described by
the function

y = −4x3 + 5x2 − x .

We have shown the hilly terrain in the figure below.
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Obtain the equations of motion for the particle using Lagrange multipliers.

2.20. In the figure here we have two masses connected by identical springs to one
another and to two vertical walls.

We neglect gravitational influences.
Study the motion of the system. Find the natural (eigen) frequencies and the

corresponding eigenvectors.

2.21. Consider a mass sliding without friction inside a sphere. We have drawn the
picture here.

Study the motion by incorporating all constraints directly into the Lagrangian.
Find the equilibrium orbit. Study small perturbations around this orbit
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2.22. Consider the block, spring and pendulum system shown here.

Obtain the Euler–Lagrange equations for this system. Then simplify for equal
masses (M = m). Consider small vibrations (small x and ϑ). Make the Ansatz that
the time dependence is exp (iωt) and find the normal modes of motion.

2.23. In the figure below we have drawn a stationary wire loop with a bead of mass
m. The bead is free to move with no friction on the wire.

Find the Euler–Lagrange equations. Do not attempt a solution.

2.24.Consider now that the loop in the preceding exercise rotates at a constant angular
velocity about the vertical axis. That is ϑ̇ = Ω = constant and ρ = R = constant.

Find the Euler–Lagrange equations. What is the equilibrium location of the bead?
Show that the equilibrium is stable, that is small deviations form equilibrium result
in sinusoidal oscillations around equilibrium, provided

1 + g

RΩ2
− 2

( g

RΩ2

)2
> 0.

2.25. A physical pendulum is a uniform rod suspended on an axis constrained to
move in one plane about a point other than the center of the rod. In the figure below
we have shown a physical pendulum.
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Write the Lagrangian for this physical pendulum. Begin bywriting the Lagrangian
for a differential mass located at a distance x from the axis and then integrate over
the rod.

Find the Euler–Lagrange equation for this physical pendulum.

2.26. Consider a uniform rod with linear mass density λ, which is fastened to the
floor by a hinge. We have a drawing of the falling rod here.

We release the rod from the vertical with a slight nudge so that the angularmomen-
tum is initially zero. Obtain the time of fall as an integral. Do not attempt the inte-
gration.

[Hint: ϑ̈ = (1/2) dϑ̇2/dϑ]

2.27. Now consider the falling rod as in the preceding exercise, except that instead of
being hinged the end of the rod is free and the floor is frictionless. We again release
the rod at ϑ = π/2 with a slight nudge. We have drawn the rod in the figure below.

Find the Euler–Lagrange equations for the falling rod.
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2.28. We have drawn a double pendulum in the figure here.

Both pendulum lengths are � and the masses of the pendulum bobs are both m.
We consider the masses rods connecting the bobs to be zero.

Obtain the Euler–Lagrange equations, linearize these for small angles and find
the normal modes of oscillation.

[Answers: for the Euler–Lagrange equations

−2m�2ϑ̈1 − m�2ϑ̈2 (cosϑ1 cosϑ 2 + sin ϑ1 sin ϑ2)

−m�2ϑ̇2
2 (− cosϑ1 sin ϑ2 + sin ϑ1 cosϑ2)

−2mg� sin ϑ1

= 0

and

−m�21ϑ̈ (cosϑ 1 cosϑ2 + sin ϑ1 sin ϑ2) − m�22ϑ̈

−m�2ϑ̇2
1 (− sin ϑ1 cosϑ2 + cosϑ1 sin ϑ2)

−mg� sin ϑ2

= 0.

For the linearized equations

2ϑ̈1 + 2ω2
0ϑ 1 + ϑ̈2 = 0

ϑ̈1 + ϑ̈2 + ω2
0ϑ2 = 0,

where ω0 = √
g/�. For the normal modes

ω = ±ω0

√
2 + √

2

ω = ±ω0

√
2 − √

2



2.8 Exercises 89

the eigenvectors are

For ω = ω0

√(
2 + √

2
)
:

[
Θ1

Θ2

]
= 2√

6

[− 1
2

√
2

1

]

and

For ω = ω0

√(
2 − √

2
)
:

[
Θ1

Θ2

]
= 2√

6

[
1
2

√
2

1

]
.

2.29. In the figure below we have a bead moving without friction on a wire. The wire
makes an angle α with the vertical and is free to rotate about the vertical axis, also
without friction.

We neglect the mass of the wire.
Show that motion can be described as that of a particle moving in an (effective)

potential well

Veff = −1

2

�2

mr2
+ mg

r

tanα

where � is the angular momentum of the bead.
Is there a position of stable equilibrium? This requires consideration of both the

radial velocity ṙ and the radial acceleration r̈ .
Show that the Lagrange Undetermined multiplier is

λ = − �2

mr3
(
1 + tan2 α

) − mg tanα

1 + tan2 α

and that the forces of the wire on the bead are then

fr = − �2

mr3
(
1 + tan2 α

) − mg tanα

1 + tan2 α

and

fz = �2 tanα

mr3
(
1 + tan2 α

) + mg tan2 α

1 + tan2 α
.
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Comment on the time dependence of the λ.

2.30. In the preceding exercise the wire was free to rotate about the vertical axis,
while the angle remained constant. We now choose to drive the wire at a constant
angular velocity Ω about the vertical axis. The angle with the axis will still remain
constant at α.

Incorporate the angular constraint and the constant angular velocity using
Lagrange undetermined multipliers.

2.31. Consider the situation above with the wire mounted at the origin in a fashion
that allows frictionless motion around the vertical and about the pivot point so that
the angle to the vertical α varies. Let there be a vertical post erected from the origin.
A spring retains the wire so that the pivot angle relative to this vertical post is limited.
The spring is mounted at a distance h above the ground on the vertical post by a collar
that permits rotation around the post. Consider small vibrations so that the spring
remains parallel to the floor. The situation is shown below

Assume that the spring is massless.
Study the motion. Is there an equilibrium orbit for the bead?

2.32. In the figure below we have drawn a cylinder of radius R lying on a laboratory
table. Assume that the surface of the cylinder is frictionless. Its axis is parallel to the
table top and the ground. The cylinder remains fixed. We then place a small mass m
on the uppermost part of the cylinder. If we release the mass and nudge it slightly it
will slide without friction on the cylinder.
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At some point the small mass will fall off the cylinder. Find this point.

2.33. Consider two balls connected by a string of length b. One is suspended through
a hole in a table and the other moves on the (frictionless) top of the table. We have
drawn the situation in the figure here.

Investigate the motion. Use Lagrange multipliers. Find an equilibrium point, if
there is one. Study the general form of the motion. If you find a point of dynamic
equilibrium, consider small oscillations about that point. Determine if the orbit is
open or closed.

2.34. In a rocket engine the thermal energyof the burning fuel andoxidant is converted
in the nozzle into kinetic energy. This high energy gas is expelled. The momentum
carried away by this expelled gas results in an increase in momentum of the rocket.
Consider a rocket for which

mr = mass of the rocket excluding fuel

mf = mass of the fuel at any instant

me = mass of exhaust gases in the nozzle at any time

ṁ = rate at which fuel is burned.

Let
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v = velocity of the rocket

u = velocity of exhaust gases in space

v̇ = acceleration of the rocket.

If we consider that the rocket is in a region of space in which all forces may be
neglected, obtain the Euler–Lagrange equation for the rocket. This will be the stan-
dard propulsion equation

d

dt
p = M v̇ − ṁU = 0,

where
M = mr + mf + me.

and U is the velocity of the exhaust gas relative to the rocket. Note that the kinetic
energy of the rocket, including unburned fuel and the exhaust gases in the nozzle is

T = 1

2
mrv

2 + 1

2
mfv

2 + 1

2
me (v − u)2 .

The exhaust gases are considered part of the rocket until they exit the nozzle.



Chapter 3
Hamiltonian Mechanics

The point is to simplify and to order knowledge. The profession I’m part of has as its whole
function the rendering of the physical world understandable and beautiful.

Robert J. Oppenheimer

3.1 Introduction

The Hamiltonian formulation of Analytical Mechanics is completely equivalent to
the Lagrangian formulation. It is a transition from a formulation based on a single
second order Euler–Lagrange equation for each generalized coordinate to one based
on two first order equations, one for each generalized coordinate and one for each
conjugatemomentum. TheHamiltonian equations are called the canonical equations.
As the name suggests, these are the fundamental equations of Analytical Mechanics.

The new perspective considers the generalized coordinates and the conjugate
momenta to be equivalent and fundamental. This differs from the Newtonian, and
even from the Lagrangian approaches in which the generalized coordinates were
considered to be the basis of the description and the momentum was a derived quan-
tity. Because the Hamiltonian formulation provides a logical correspondence with
the more fundamental quantum theory, we may accept that the Hamiltonian picture
is more natural than that of Lagrange. Nature speaks to us more clearly through the
Hamiltonian formulation.

© Springer International Publishing Switzerland 2017
C.S. Helrich, Analytical Mechanics, Undergraduate Lecture
Notes in Physics, DOI 10.1007/978-3-319-44491-8_3
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The absolute equivalence of the twoLagrangian and theHamiltonian formulations
is a result of the fact that theHamiltonian formulation is obtained from theLagrangian
by a Legendre1 transformation. This transformation preserves completely the infor-
mation content.Wemay recall that this step was used also byHamilton in his original
development.

3.2 Legendre Transformation

InSect. 1.9.2we indicated thatHamilton transformed theLagrangian into his function
H using a Legendre Transformation [see e.g. [44], pp. 47–51]. In this section we
shall discuss the important properties of the Legendre Transformation that make
it indispensable, and show how to perform a Legendre transformation. Because the
visual aspects of the transformation are crucial we base our discussion on an example.

We begin with the Lagrangian for a linear harmonic oscillator with the mass of
the oscillator located by the coordinate x . The velocity of the mass is then ẋ and
the Lagrangian is a function of x and ẋ , which is a surface above the plane (x, ẋ).
We have plotted this surface in Fig. 3.1. All of the information we have about the
oscillator is completely contained in this surface. We now ask for a transformation
of this surface which will preserve this information and only this information. Such
a transformation will produce a surface that is logically equivalent to the surface in
Fig. 3.1, but will introduce a new variable in the place of one of the two variables
(x, ẋ). This can be done if the new variable is obtained directly from the surface and
can be shown to reproduce the surface exactly.

We select ẋ as the variable to be transformed. We must then replace ẋ with a new
variable that can be obtained simply from the surface in Fig. 3.1 and can be used to
completely construct the surface in Fig. 3.1.

In Fig. 3.1 we constructed the surface L (x, ẋ) from the value of L at each point
in the plane (x, ẋ). In Fig. 3.2 we have picked a point

(
xj, ẋj

)
on the surface L (x, ẋ)

and constructed the plane passing through the point
(
xj, ẋj

)
which is perpendicular

to the axis of x and parallel to the axis of ẋ . We have also drawn the intersection
of this plane with the surface L (x, ẋ), which is a curve in the plane located by the
point xj. The slope of this curve is (∂L (x, ẋ) /∂ ẋ) holding x constant at the value
xj. With this slope we can reconstruct the surface L (x, ẋ) just as well as we were
able using the point values.

To illustrate this we have drawn the curve of Fig. 3.2 with 9 tangent lines in
Fig. 3.3. In the left panel of Fig. 3.3 we have drawn the point representation of the
curve with small open circles. In the right panel of Fig. 3.3 we have drawn only the 9
tangent lines. The fact that the analytic form of the tangent lines p = (∂L (x, ẋ) /∂ ẋ)
provides an infinite number of these lines results in a complete reproduction of the
surface in Fig. 3.1 using what is termed line geometry. We have then succeeded

1Adrien-Marie Legendre (1752–1833) was a French mathematician who made important contribu-
tions to statistics, number theory, abstract algebra and mathematical analysis.

http://dx.doi.org/10.1007/978-3-319-44491-8_1
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Fig. 3.1 The Lagrangian for
a simple harmonic oscillator

Fig. 3.2 Lagrangian for
harmonic oscillator with
plane parallel to the ẋ axis

in finding a transformation that preserves the information content of the original
surface in Fig. 3.1 by representing the surface in the new variables (x, p). This is the
Legendre transformation .

The transformed function is the Hamiltonian H (p, x), which we have plotted in
Fig. 3.4. We note that the plot of the Hamiltonian in Fig. 3.4 has a distinctly different
form from that of the Lagrangian in Fig. 3.1. As we have shown, however, these two
functions, and hence the two surfaces, are identical in information content.

Fig. 3.3 Tangents to Lagrangian for harmonic oscillator L (x, ẋ). In left panel L (x, ẋ) is plotted
with dots
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Fig. 3.4 Hamiltonian for the
harmonic oscillator obtained
from a Legendre
Transformation of the
Lagrangian L (x, ẋ) plotted
in Fig. 3.1

Fromwhat we have shown in terms of an example we can now develop in general.
We consider a function of two variables, Ψ (ξ, η). We choose to transform out the
variable η in favor of the new variable

ζ =
(

∂Ψ

∂η

)
, (3.1)

We begin by noting that the dependence of Ψ on (ξ, η) is defined by the Pfaffian
differential2

dΨ =
(

∂Ψ

∂ξ

)
dξ +

(
∂Ψ

∂η

)
dη. (3.2)

In the Legendre Transform to eliminate η in favor of ζ we define3

Φ = ηζ − Ψ. (3.3)

To determine the variables on which this new function depends we obtain the
differential

dΦ = ηdζ + ζdη − dΨ. (3.4)

Using (3.3) and (3.2) Eq. (3.4) becomes

dΦ = ηdζ + ζdη −
(

∂Ψ

∂ξ

)
dξ − ζdη

= ηdζ −
(

∂Ψ

∂ξ

)
dξ.

2As we indicated in our discussion of rolling, the Pfaffian defines the function by providing a rule
for its construction in infinitesimals. We may now interpret that in terms of an infinitesimal line
geometry.
3The Legendre Transform is normally defined as the negative of (3.3). The form used here will
produce a positive Hamiltonian.
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That is the function Φ depends on ξ and ζ rather than on ξ and η. We have then
succeeded in obtaining the transformation we sought. However, the variable η still
appears as a multiplier of dζ. We realize that ∂ψ/∂ξ generally contains η as well. So
we must also obtain η algebraically in terms of ζ (and possibly ξ). This step, which
is an important part of the Legendre transformation, we must carry out algebraically
using (3.1).

3.3 The Hamiltonian

In (2.87) in Sect. 2.5.4 we defined the canonical momentum pj conjugate to the
generalized coordinate qj as

pj = ∂L

∂q̇j
. (3.5)

If we transform out the dependence of the Lagrangian L (q, q̇, t) on q̇ = {
q̇j
}
in

favor of a dependence on p = {pj
}
using the Legendre Transform we obtain

H (p, q, t) =
∑

j

pjq̇j − L (q, q̇, t) . (3.6)

The function H in (3.6) is the Hamiltonian.
Historically the actual point in his development, at which Hamiltonian intro-

duced the Legendre transformation, was to produce his Principle Function S from
his Characteristic Function V (see Sect. 1.9.2). In the present approach we transform
the functions appearing in the functionals S and V rather than the functionals them-
selves. This reflects the importance of the Hamiltonian function in the modern form
of Analytical Mechanics. We will return to the vision of Hamilton and Jacobi in a
later discussion (Chap. 5).

The differential of the Hamiltonian is

dH =
∑

j

(
pjdq̇j + q̇jdpj

)− dL (q, q̇, t)

=
∑

j

(
pjdq̇j + q̇jdpj

)−
∑

j

[
pjdq̇j +

(
∂L

∂qj

)
dqj

]
− ∂L

∂t
dt

=
∑

j

[
−
(

∂L

∂qj

)
dqj + q̇jdpj

]
− ∂L

∂t
dt. (3.7)

The Hamiltonian is, therefore, a function of (q, p, t). We also recall that pj is (nor-
mally) simply proportional to q̇j. Then to eliminate q̇j in favor of pj in theHamiltonian
is rather simple in many cases.

http://dx.doi.org/10.1007/978-3-319-44491-8_2
http://dx.doi.org/10.1007/978-3-319-44491-8_1
http://dx.doi.org/10.1007/978-3-319-44491-8_5
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Remark 3.3.1 This elimination of the q̇j from theHamiltonianmust always be carried
out. It is imperative that theHamiltonian dependonly on pj,qj and possibly the time, t .

3.4 The Canonical Equations

Ifwewrite theEuler–LagrangeEquations (2.69) in the form∂L/∂qj =d
(
∂L/∂q̇j

)
/dt

and use (3.5), we have
∂L

∂qj
= d

dt
pj = ṗj.

The Pfaffian for the Hamiltonian (3.7) then becomes

dH =
∑

j

[− ṗjdqj + q̇jdpj
]− ∂L

∂t
dt (3.8)

The general form of the Pfaffian ofH (q, p, t) is

dH =
∑

j

[(
∂H
∂qj

)
dqj +

(
∂H
∂ pj

)
dpj

]
+ ∂H

∂t
dt. (3.9)

We may then equate the corresponding terms in (3.8) and (3.9) to obtain

ṗj = −∂H/∂qj, (3.10)

and
q̇j = ∂H/∂ pj. (3.11)

But the partial derivative ∂H/∂t in (3.9) was taken holding the variables q and p
constant while the partial derivative −∂L/∂t in (3.8) was taken holding q and q̇
constant. Therefore these partial derivatives cannot be equated. We can, however,
evaluate −∂L/∂t from (3.8) as

− ∂L

∂t
= dH

dt
+
∑

j

[
ṗj
dqj
dt

− q̇j
dpj
dt

]
= dH

dt
, (3.12)

since dqj/dt = q̇j and dpj/dt = ṗj. The Hamiltonian is then a constant of the
system motion provided the Lagrangian does not depend explicitly on the time t .
This is another of Emmy Nöther’s observations. As in Sect. 2.6 we require here that
the Lagrangian completely represents the system with all constraints incorporated
algebraically.

http://dx.doi.org/10.1007/978-3-319-44491-8_2
http://dx.doi.org/10.1007/978-3-319-44491-8_2
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The Eqs. (3.10) and (3.11) are the canonical equations of Hamilton, which we first
saw in Sect. 1.9.3 as (1.30). These equations are, as their title implies, the fundamental
equations of Analytical Mechanics.4

The evident advantage of the canonical equations in the solution of a dynamical
problem comes from the fact that they are first order differential equations, rather than
the second order equations of Euler and Lagrange and of Newton. Specifically the
Runge–Kutta5 method of solution of differential equations, which forms the basis of
much numerical work, is applicable to first order equations. We must only recognize
that the foundational structure of Analytical Mechanics is based on the Hamiltonian
from which the position and the momentum emerge as basic.

If we choose we may obtain the canonical equations directly from Hamilton’s
Principle based on the Hamiltonian. Hamilton’s Principal Function, written in terms
of the Hamiltonian, is

S =
∫ t2

t1

dt

⎡

⎣
∑

j

pjq̇j − H
⎤

⎦ dt.

A δ-variation (see Definition2.4.2 in Sect. 2.4.3) of this expression leads directly to
the canonical equations (see exercises).

3.5 Constraints

We introduce the constraints into the Hamiltonian formulation in the same way
we introduced them into the Lagrange formulation. The only difference is that we
have 2N independent variables in the Hamiltonian formulation: the N generalized
coordinates and N conjugate momenta. We consider that there are also n constraint
equations of the form gk (q) = 0 (see (2.75) in Sect. 2.5.2), which are functions of
the generalized coordinates. There are then 2N − n variables which may be varied
independently.

We again have integrals (2.78) over the products of λk (t) and the constraint func-
tions gk (q), which vanish identically. Hamilton’s Principal Functionwith constraints
incorporated is then

S =
∫ t2

t1

dt

⎧
⎨

⎩

⎡

⎣
N∑

j

pjq̇j − H
⎤

⎦+
n∑

k

λk (t) gk (q)

⎫
⎬

⎭ . (3.13)

4Canonical is an adjective derived from canon. It essentiallymeans “standard”, “generally accepted”
or “part of the backstory”.

For over a century mathematicians have used the word canonical to refer to concepts that have
a kind of uniqueness or naturalness, and are (up to trivial aspects) “independent of coordinates”.
5The Runge–Kutta method is a numerical method for solving differential equations published in
1901 as the joint work of the Germanmathematicians Carl Runge (1856–1927) andMartinWilhelm
Kutta (1867–1944).

http://dx.doi.org/10.1007/978-3-319-44491-8_1
http://dx.doi.org/10.1007/978-3-319-44491-8_2
http://dx.doi.org/10.1007/978-3-319-44491-8_2
http://dx.doi.org/10.1007/978-3-319-44491-8_2
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In the δ-variation δqj and δ pj vanish at the end points t1 and t2. The δ-variation of
(3.13) is then

δS =
∫ t2

t1
dt

⎧
⎨

⎩

N∑

j

[
q̇j − ∂H

∂ pj

]
δ pj −

N∑

j

[
ṗj + ∂H

∂qj
−

n∑

k

λk (t)
∂gk
∂qj

(q)

]
δqj

⎫
⎬

⎭ = 0.

(3.14)

As in the Lagrange formulation, we choose the n functions λ k (t) so that the first n
sets of equations

q̇j − ∂H
∂ pj

= 0 (3.15)

and

ṗj + ∂H
∂qj

−
n∑

k

λk (t)
∂gk

∂qj
(q) = 0 (3.16)

for j = 1 . . . n are satisfied. As in the Lagrangian formulation these are linear
algebraic equations for the λk (t) and may be, in principle, be solved for the n
functions λk (t).6 We are then left with

δS =
∫ t2

t1
dt

⎧
⎨

⎩

N∑

j=n+1

[
q̇j − ∂H

∂ pj

]
δ pj −

N∑

j=n+1

[
ṗj + ∂H

∂qj
−

n∑

k

λk (t)
∂gk
∂qj

(q)

]
δqj

⎫
⎬

⎭ = 0.

(3.17)

In (3.17) all of the N − n variations δ pi and δqj are independent. Therefore we have
N − n sets of equations

q̇j − ∂H/∂ pj = 0 (3.18)

and
ṗj+∂H/∂qj −∑n

k
λk (t) ∂gk (q) /∂qj = 0 (3.19)

together with the n sets of equations (3.16), which are identical to the N−n equations
(3.19). Therefore we finally have N equations (3.18) and N equations (3.19). We
also have n constraint equations of the form gk (q) = 0, which are functions of the
generalized coordinates. As in the case of the Euler–Lagrange equations we then

6As in the Euler–Lagrange case, λk (q, p, t) is the result of the linear algebra solution.
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have a method by which we can obtain the required equations for a compete solution
of the system. The mechanism by which the solution is obtained does not differ in
each case.

Just as we did in Sect. 2.5.4, and for the same reason, we may identify here the
force of the k th constraint affecting the momentum pj as

Freactkj =λk (t) ∂gk/∂qj (3.20)

As an example for the application of the canonical equations we consider the
Kepler Problem. The Kepler Problem is of considerable historical importance. This
was the problem posed by Edmond Halley in the coffee house. It was then the
problem that Newton considered and on which he sent Halley a detailed 9 page
account. It is, of course, also the problem on which Kepler spent 8years of his life.
In Newton’s case, however, the solution was geometrical, and in Kepler’s case it
was deduced from Tycho Brahe’s data and some ingenuity [see [33]]. We shall use
the Analytical Mechanics of Euler, Lagrange, and Hamilton. And we will simply
study the motion of a particle of mass m in a spherical potential V (ρ), where ρ is
the spherical radial coordinate. We can only imagine the delight that Kepler and,
perhaps, even Newton would have found in this.7

Example 3.5.1 The Kepler Problem The kinetic energy of a particle of mass m in
spherical coordinates is

T = 1

2
m
[
ρ̇2 + ρ2ϑ̇2 sin2 φ + ρ2φ̇2

]
.

We choose a general form for the potential

V (ρ) = −Kρ−n .

The force in the radial direction may be either attractive or repulsive depending on
the algebraic sign of K .

K =
{

> 0 for attraction
< 0 for repulsion

. (3.21)

The Lagrangian is then

L = 1

2
m
[
ρ̇2 + ρ2ϑ̇2 sin2 φ + ρ2φ̇2

]+ Kρ−n. (3.22)

7Newton’s personality must be considered.

http://dx.doi.org/10.1007/978-3-319-44491-8_2
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Because L is cyclic in the time t the Hamiltonian will be a constant of the motion.
The Lagrangian is also cyclic in the coordinate ϑ. Therefore

pϑ = ∂L

∂ϑ̇

= mρ2ϑ̇ sin2 φ = � = constant, (3.23)

which is the (canonical) angular momentum about the vertical axis. The canonical
momenta pφ and pρ are

pφ = ∂L

∂φ̇

= mρ2φ̇ (3.24)

and

pρ = ∂L

∂ρ̇

= mρ̇. (3.25)

We then have algebraic expressions for ϑ̇, φ̇ and ρ̇ in terms of the canonical momenta,
which we must use to obtain the Hamiltonian as a function of coordinates and
momenta.

ϑ̇ = �

mρ2 sin2 φ
, (3.26)

φ̇ = pφ

mρ2
, (3.27)

and
ρ̇ = pρ

m
. (3.28)

Written in terms of the velocities the Hamiltonian is

H = 1

2
m
[
ρ̇2 + ρ2ϑ̇2 sin2 φ + ρ2φ̇ 2

]− Kρ−n. (3.29)

We note the constant Hamiltonian H is equal to the total energy E of the particle,
which we have shown is constant. With (3.26)–(3.28) the Hamiltonian becomes a
function of generalized coordinates and momenta.

H = p2ρ
2m

+ �2

2mρ2 sin2 φ
+ p2φ

2mρ2
− Kρ−n. (3.30)
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The canonical equations for the momenta pρ and pφ are

ṗρ = − ∂

∂ρ

(
p2ρ
2m

+ �2

2mρ2 sin2 φ
+ p2φ

2mρ2
− Kρ−n

)

= �2

mρ3 sin2 φ
+ p2φ

mρ3
− nKρ(n−1) (3.31)

and

ṗφ = − ∂

∂φ

(
p2ρ
2m

+ �2

2mρ2 sin2 φ
+ p2φ

2mρ2
− Kρ−n

)

= �2

mρ2 sin3 φ
cosφ. (3.32)

Of course we realize that motion is in the equatorial plane and we normally argue
for this from the spherical symmetry of the potential and the constancy of the angular
momentum pϑ. But this is not in the spirit of Hamiltonian mechanics, which requires
that limitation to equatorial motion must be based on a simple mathematical result.
From (3.32) we see that ṗφ = 0 in the equatorial plane (φ = π/2). That is in the
equatorial plane pφ = pφ (π/2) is a constant.

Using the chain rule we may write (3.32) as

ṗφ = pφ

mρ2
dpφ

dφ
= �2

mρ2 sin3 φ
cosφ. (3.33)

casting the ṗφ equation in this form provides us an equation that we may integrate
to obtain pφ as a function of φ. Carrying out the integration of (3.33) between the
equatorial plane (φ = π/2) and an arbitrary value of φ we have

1

2

(
p2φ − p2φ (π/2)

) =
∫ φ

π/2

�2

sin3 φ
cosφdφ

= −�2

2

(
cos2 φ

sin2 φ

)
,

Which is

p2φ = p2φ (π/2) − �2
(
cos2 φ

sin2 φ

)
. (3.34)

If we insert (3.34) into the Hamiltonian (3.30) we obtain

H = p2ρ
2m

+
(
p2φ (π/2) + �2

)

2mρ2
− Kρ−n = E,
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which is independent of φ. Therefore ṗφ = 0, the canonical equation for ṗφ vanishes
identically, and pφ is constant for all values of φ. From (3.32) we then have cosφ = 0
for all time and motion is in the equatorial plane φ = π/2. Then pφ (π/2) = 0.8

We are then left with the Hamiltonian

H = p2ρ
2m

+ �2

2mρ2
− Kρ−n (3.35)

and with the canonical equations (3.28) and (3.31), which we may now write as

ṗρ = �2

mρ3
− nK

ρn+1
. (3.36)

A trajectory of the mass, which is the orbit, is obtained from ρ (ϑ). We obtain a
differential equation for ρ (ϑ) from (3.28) and (3.26) using the chain rule (and setting
φ = π/2). That is

dρ

dϑ
= pρ

�
ρ 2. (3.37)

Wemay obtain a differential equation for pρ (ϑ) in a similar fashion. Using the chain
rule and combining (3.36) and (3.26) we have

dpρ

dϑ
= �

ρ
− mnK

�ρn−1
. (3.38)

The set of Eqs. (3.37) and (3.38) are coupled differential equations in ϑ. So the
solution will give us the orbit ρ (ϑ) and the momentum pρ (ϑ) if we want that. The
Eqs. (3.37) and (3.38) are awkward. They may, however, be brought into a nice form
by introducing the variable u = 1/ρ instead of ρ. Then

du

dϑ
= − pρ

�
(3.39)

and
d2u

dϑ2
= mnK

�2
un-1 − u. (3.40)

For the special case of the gravitational (or electrical) field n = 1 and (3.40) becomes

d2u

dϑ2
= −u + mK

�2
. (3.41)

8In our later discussion of the action and angle variables we will argue from a slightly different
mathematical perspective that the momentum pφ must be identically zero in the Kepler Problem.
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The solutions to (3.41) are sinusoids. If we choose our coordinates so that ρ attains
a minimum (u attains a maximum) value when ϑ = 0 the solution is

1

ρ
= A cosϑ + mK

�2
(3.42)

If we return to the constant value of the Hamiltonian we can find A. With (3.42) and
(3.39), the Hamiltonian (3.35) becomes

H = A2�2

2m
− K 2m

2�2
. (3.43)

Then

A =
√
2mH
�2

+ m2K 2

�4

and the orbit (3.42) becomes

1

ρ
= mK

�2

(√
2H �2

mK 2
+ 1 cosϑ + 1

)
. (3.44)

Equation (3.44), written as

1

ρ̄
= ± (ε cosϑ + 1) , (3.45)

with ρ̄ = ρ/
(
�2/mK

)
and

ε =
√(

2H�2/mK 2
)+ 1, (3.46)

is the general polar form for the conic sections. The x-axis is the conic axis and the±
accounts for the algebraic sign of the potential constant K , which enters in the original
factormK/�2 in (3.44). We have drawn the three possible orbits in Figs. 3.5, 3.6, and
3.7. In each figure the center of the potential is indicated by a small closed circle.

Fig. 3.5 The Kepler (attractive K > 0) elliptic orbit. This is the most familiar of the possible
Kepler orbits because it is the form of the planetary orbits, although the eccentricity of the planetary
orbits is much closer to the circular ε = 0 (see (3.45)) than the ε = 0.7 chosen here
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Fig. 3.6 The Kepler
(attractive K > 0) parabolic
orbit. For this orbit the
eccentricity is ε = 1.0

Fig. 3.7 The Kepler
(repulsive K < 0) hyperbolic
orbit. This is the orbit for
scattering of charged
projectiles by charged
targets, such as Rutherford
Scattering of α-particles by
metallic nuclei. For this
figure we chose ε = 1.5

We have come quite a distance beyond the point at which Kepler found himself
when, in 1605, he finally realized that the orbit of Mars was an ellipse with the sun
at a focus [see [119], p. 67]. Kepler had removed astronomy from a philosophical
subject to a subject for what would become astrophysics. But he lacked the tools we
have used with ease here. He realized that a force from the sun was responsible for
the elliptical orbit. But he was limited by the weight of 2,000 years of Aristotelian
physics [see [91], pp. 176–78].What is so clear to us nowwas a source of astonishing
mystery to Kepler.

3.6 Rutherford Scattering

HansGeiger, the JohnHarlingFellow, and an undergraduate student, ErnestMarsden,
a Hatfield Scholar, conducted a set of experiments in Ernest Rutherford’s laboratory
at the University of Manchester in England between 1908 and 1910 [30]. The orig-
inal experiment was to verify Joseph John (J.J.) Thomson’s model of the atom, in
which there was considerable confidence. The experiment in 1910 permitted a rather
precise measurement of the scattering angle for α-particles from various metal foils
from which some statements regarding probable scattering angles could be given as
functions of atomic masses and film thicknesses. The comment of Rutherford that
this was like firing a twelve-inch shell at tissue paper and having it come back and hit
you, is legendary in the history of physics. And the analysis leading to the scattering
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probabilities that Rutherford produced in 1911 is standard fare in any Analytical
Mechanics or modern physics course [103] [cf. [117], pp.131–39].

The experimental results of Geiger and Marsden, and particularly those of Geiger
in 1910, had convinced Rutherford of the existence of a point-like positive charge
in the atom. Geiger had specifically measured the most probable scattering angle
for a number of metallic films. The Geiger results, Rutherford first showed, were
not consistent with multiple scattering collisions with atoms in which there was a
uniform or a saturnian-like charge distribution. Had they been the model of Sir J.J.
Thomson, which was consistent with β-particle scattering, would also work for α-
particle scattering [116].He then showed that the experimental resultswere consistent
with what was obtained from single collisions with point-like positive charges [103].

Rutherford’s paper did not include any of the analysis of the Kepler Problem,
which was also standard fare for any student of physics at the end of the 19th century.
He included a figure, which was one half of the orbit in Fig. 3.7, for the evaluation
of the collisional cross section. Our Fig. 3.8 is a slight amplification of Rutherford’s
figure [see [103], Fig. 1] The angle indicated as ϑ in Fig. 3.8 provides the range of
the angle ϑ in (3.45). We can find the extreme values of ϑ appearing in Fig. 3.8 by
setting ρ → ∞ in (3.44). At these extreme values the limiting magnitude of cosϑ is
1/ε. We have shown the scattering angle as Φ in Fig. 3.8.

The scattering angle Φ is dependent on what is known as the impact parameter b,
using the notation of James C.Maxwell . The impact parameter would be the distance
of closest approach between the projectile and target if there were no interaction
force. In Fig. 3.9 we have presented the results of a calculation of the hyperbolic
orbit for increasing values of the impact parameter. A similar figure first appeared in
Maxwell’s paper on the dynamical theory of gases in 1866 [75].

In Fig. 3.10 we have drawn the orbit of Fig. 3.8 oriented such that the projectile
approaches the target from the negative polar axial direction. And we have added the
sphere of influence around the target atom, which encompasses the region in which
the interactive force has a noticeable effect on the projectile. Corresponding to what
we have in Fig. 3.9, we can see that the collision is symmetrical around the polar
axis and that an impact parameter in the range b → b+ db will result in a scattering
angle in the range Φ → Φ + dΦ. We have introduced a capital Φ for the scattering

Fig. 3.8 Rutherford’s figure
for evaluation of the collision
cross section. The
asymptotic orbit (ρ → ∞) is
slightly offset from the target
resulting in angular
momentum � �= 0
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Fig. 3.9 The scattering angle as a function of impact parameter b

Fig. 3.10 Rutherford Scattering. The axes have been oriented such that the projectile enters the
collision along the polar axis. The impact parameter lies within the limits b → b+ db and the
projectile is scattered through the polar (scattering angle)Φ → Φ + dΦ. The target atom is located
at the filled circle

angle to avoid confusion with the angles used in the calculation of the orbits above.
The differential area of the sphere centered on the origin of the potential (the nucleus
of the target atom) is

dS = R2 sinΦdΘdΦ

and the shaded area shown on the interaction sphere in Fig. 3.10 is the integral of this
over the azimuthal angle Θ , which locates the orbit around the axis, i.e.

∫ 2π

Θ=0
dΘR2 sinΦdΦ = 2πR2 sinΦdΦ,

The number of projectiles entering the area 2πbdb is related to the differential
scattering cross section σ (Φ) by

2π I bdb = −2π Iσ (Φ) sinΦdΦ, (3.47)
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where the negative sign accounts for the fact that dΦ/db < 0. Using (3.44) the
cosines of the angles ϑ±∞ at the asymptotes in Fig. 3.8 are cosϑ±∞ = 1/ε. And
from Fig. 3.8 we see that π = Φ + 2ϑ±∞. Then

sin
Φ

2
= 1

ε
. (3.48)

From (3.48) and (3.46) we have

ε2 − 1 =
(
cos Φ

2

sin Φ
2

)2

=
(
2Hb

K

)2

. (3.49)

From (3.49)

b = ± K

2H
cos Φ

2

sin Φ
2

(3.50)

and
db

dΦ
= + K

4H
1

sin 2 Φ
2

. (3.51)

We chose the plus sign in (3.51) since K and db/dΦ < 0. Combining (3.47) and
(3.51) we have

σ (Φ) = −bK

4H
1

sin2 Φ
2

1

sinΦ
. (3.52)

With sinΦ = 2 sin (Φ/2) cos (Φ/2) (3.52) becomes

σ (Φ) = −bK

8H
1

sin3 Φ
2

1

cos Φ
2

. (3.53)

and with (3.50) Eq. (3.53) is

σ (Φ) = 1

4

(
K

2H
)2 1

sin4 Φ
2

. (3.54)

Our Eq. (3.54) is essentially equation numbered (5) in Rutherford’s paper. He then
wrote

The angular distribution of the α particles scattered from a thin metal sheet affords one of
the simplest methods of testing the general correctness of this theory of single scattering.
This has been done recently for α rays by Dr. Geiger, who found that the distribution for
particles deflected between 30◦ and 150◦ from a thin gold-foil was in substantial agreement
with the theory.
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With those words we may consider that Rutherford established the existence of
the nucleus in an atom. At least the work in Rutherford’s laboratory was fundamental
to the atomic theory that was developing with the dawn of the 20th century. But we
must also recognize that the theory of x-ray diffraction being developed in Max von
Laue’s laboratory was also crucial in formulating a model of the atom. Von Laue’s
results showed that the number of electrons in an atom was of the order of the atomic
number and not the thousands required for the electromagnetic radiation balance in
the Thomson atom.

3.7 Summary

In the introduction to this chapter we said that nature speaks to us more clearly
through the canonical equations of Hamiltonian than through the equations of Euler
and Lagrange. As we may recall from the chapter on history (see Sects. 1.9.2 and
1.9.3) Hamilton was himself not interested in the canonical equations per se. He was
interested in the general formulation of Analytical Mechanics in terms of the Prin-
cipal Function, a functional which he called S. He had obtained S from a Legendre
transformation of the vis-viva or living force (twice the kinetic energy). And for him
the canonical equations, which he obtained in the second essay (Sect. 1.9.3), were
incidental to the argument. So, although we have followed a procedure that is very
logical in modern terms, seeking a simpler set of differential equations than those of
Euler and Lagrange, this was not the path followed by Hamilton.

This path would have been more logical to Jacobi, who pointed out that the
approach through the differential equations was easier, although he did not wish
to detract from Hamilton’s ideas (see Sect. 1.10.2). At this point in our study we
may then accept the point Jacobi was making, stay with the differential equations,
acknowledge the greater simplicity of first order equations, and recognize that we
can achieve that by a Legendre transformation of the Lagrangian to produce the
Hamiltonian. The canonical equations then result from a δ-variation of the Principal
Function S.

The application of Lagrange Undetermined Multipliers followed as nicely in
the Hamiltonian formulation as in the formulation of Euler and Lagrange. And the
identity of the undetermined multipliers in terms of forces of constraint followed in
the same way as in the Euler–Lagrange formulation.

We may then consider that the step from the Euler–Lagrange to the canonical
equations is a convenient alternative. The general approach of Hamilton and Jacobi
that lies behind what we are doing will, however, become clearer in subsequent
sections as we move to more complex modern applications, including the origins of
the quantum theory.

http://dx.doi.org/10.1007/978-3-319-44491-8_1
http://dx.doi.org/10.1007/978-3-319-44491-8_1
http://dx.doi.org/10.1007/978-3-319-44491-8_1
http://dx.doi.org/10.1007/978-3-319-44491-8_1
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3.8 Exercises

Beginning with Exercise 3.10 we will consider electrodynamics. The correct treat-
ment of electrodynamics is in the context of Special Relativity. In these exercises we
shall then use the Hamiltonian, which we develop in the chapter on Relativity.

3.1. Written in terms of the Hamiltonian, Hamilton’s Principal Function is

S =
∫ t2

t1

dt

⎡

⎣
∑

j

pjq̇j − H
⎤

⎦ dt.

Hamilton’s Principle requires that the δ-variation (a first order variation with fixed
end points) must vanish. Show that a δ-variation of this form of S results in the
canonical equations of Hamilton.

3.2. In the text we worked out the Kepler Problem as an example. There we trans-
formed the differential equation for ρ into one for u = 1/ρ. The solution to this
equation was obviously sinusoidal. And in general it would have consisted of both a
sine and a cosine. That is

u = 1

ρ
= A cosϑ + B sin ϑ + mK

�2
.

But we claimed that we could orient the axes such that u attained a maximum, i.e.
ρ attained a minimum (closest approach) at ϑ = 0 and that then we needed only the
cosine term. That is we chose to consider our orbits as symmetrical about the x-axis.
This is an arbitrary choice.

Show that this choice does result in dropping the sine term in the above function.

3.3. We consider again the two masses on springs as shown in the figure here.

Study this system using the canonical equations of Hamilton. Obtain the normal
frequencies as eigenvalues of the canonical equations and obtain the eigenvectors
corresponding to those eigenvalues.
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3.4. In the figure below we have drawn a pendulum of length � and with bob of mass
m located at the point x0, which is driven horizontally as

x0 (t) = A + a cosωt,

where A and a are constants.

Study the motion of this pendulum. Consider particularly small angles with cor-
responding small excursions of the mount. Use the canonical equations of Hamilton.

Explain why you cannot incorporate the constraint using a Lagrange multiplier.
[Answers: ϑ = −aω2 cosωt/

(
�ω2 − g

)
and pϑ = maω�g sinωt/

(
�ω2 − g

)
]

3.5. Consider the picture below of a bead on a circular, frictionless wire driven at a
constant angular velocity ω about the vertical axis as we have shown here.

In this exercise it is advisable to use spherical coordinates. It is also convenient
to take the horizontal plane through the center as the zero of potential.

Investigate the problem. There are certain things to look for. You will want to see
if there are any constants of the motion, i.e. first integrals. You will also want to look
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for any equilibrium points and you will want to consider motion about those points
to see if it is stable or not. You may want to investigate the forces of constraint as
well.

Investigate the systemusing both the Euler–Lagrange and the canonical equations.

3.6. Consider again the two identical balls of mass m connected by a string of length
b with one ball suspended through a hole in a table while the other moves on the
(frictionless) top of the table. We have drawn the situation here.

Investigate the motion. Now use canonical equations and Lagrange multipliers.
Find an equilibrium point, if there is one. Study the general form of the motion.
Consider small oscillations about equilibrium. Determine if the orbit is open or
closed.

If you have access to appropriate software, plot the effective potential, the orbit
of the ball on the table for less than a complete rotation and for a long time, and the
phase plot of the ball on the table (pr versus r ).

3.7. In the drawing here we have a mass m sliding without friction on the surface of
a sphere. We release the mass an infinitesimal distance from the top of the sphere.

At some point (some value of φ) the mass will leave the surface of the sphere.
What is this value of φ? Use canonical equations.

3.8. Consider (again) the block, spring and pendulum we have drawn here.
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Consider the motion now in terms of the canonical equations. Linearize these for
small displacements and find the natural frequencies. Choose the masses of the block
and the pendulum bob to be equal.

3.9. In the figure here we have a schematic picture of the double pendulum.

Both pendulum lengths are � and both masses are m. Study the motion using the
canonical equations. Obtain the modes of natural oscillation for small angles.

3.10. In the static case the magnetic field induction vector B is obtained from the
vector potential as

B = curlA,

provided A satisfies the Coulomb gauge

divA = 0.

Show that the magnetic component of the Lorentz electromagnetic force (per unit
charge) may be written in terms of the magnetic vector potential A as

(v × B)μ = ∂Aν

∂qμ
q̇ν − ∂Aμ

∂qν
q̇ν
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where the velocity of the point charge is v = q̇ν êν . We use the Einstein sum conven-
tion in which the repeated Greek indices are summed from 1 to 3 over the indices
for the three Cartesian coordinates.

This will require some steps in vector algebra, which are always easier if we use
subscript notation for cross products. We use the Levi-Civita density εμνσ defined by

εμνσ =
⎧
⎨

⎩

+1 if μνσ is an even permutation of 1, 2, 3
−1 if μνσ is an odd permutation of 1, 2, 3
0 if any 2 of the indices μ, ν,σ are alike

Then the μth component of v × B is

(v × B)μ = εμνγ q̇νBγ

and the γth component of B = curlA is

Bγ = εγαβ
∂Aβ

∂qα
.

Put these together to obtain (v × B)μ.

3.11. Show that the canonical equations for a charged particle with charge Q

q̇μ = ∂H
∂ pμ

= 1

m

(
pμ − QAμ

)
,

and

ṗμ = − ∂H
∂qμ

= Q

m
(pν − QAν)

∂Aν

∂qμ
− Q

∂φ

∂qμ

result in the standard form of Newton’s Second Law

mq̈μ = Q (v × B)μ − QEμ.

3.12. In the text we show that the low energy (nonrelativistic) form the relativistic
Hamiltonian for a classical charged point particle with mass m and charge Q is

H = 1

2m

∑

μ

(
pμ − QAμ

)2 + Qϕ,
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where ϕ is that scalar potential from which we find the electric field, in the static
case, as E = −gradϕ. We have used Q to designate the charge because q is the
designation for generalized coordinate. The vector potential A has components Aμ

(μ = 1, 2, 3). The magnetic field induction B is obtained from the curl of A as

B = curlA,

and A is limited by the requirement that

divA = 0,

which is the Coulomb gauge for time independent fields.
Consider the motion of a charge Q in a region containing only a magnetic field

with induction B = êzB. Show that this induction results from

A = B

2

(−yêx + xêy
)
,

= −Byêx,

= Bxêy,

or

A = 1

2
Brêϑ

in cylindrical coordinates.
Let the charge be released with non-vanishing velocities in the x and y directions.

Show that the orbit of the charge is a circle.

(a) Using A = −Byêx
(b) Using A = − B

2 yêx + B
2 xê y.

Because we already know that a positive charge moves clockwise in a field with
induction êzB, we choose initial conditions (t = 0) as x (0) = −R, ẋ (0) = 0,
y (0) = 0, and ẏ (0) = v.

3.13. Consider the motion of a charge Q in a region containing only a magnetic
field. Let the charge be released with non-vanishing velocities in the x, y, and z
directions. Show that the charge will “spiral” along the magnetic field lines. Assume
that the magnetic field changes slowly in space so that it may always be considered
approximately constant. This phenomenon is important in plasma physics and forms
the core of some of the ideas proposed for “trapping” charges in a fusion reactor.
The radiation from such charge motion also forms the “northern lights”.

3.14. Consider the motion of a charged particle in a region of space in which there
is a uniform magnetic field with induction B = êzB, with the vector potential

A = −êx
B

2
y + êy

B

2
x
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and a uniform electric field E = êyE . Show that the motion is cycloidal as we have
shown here.

3.15. Ifwe treat themotion of a charged point particle ofmassm and charge Qmoving
in a constant magnetic field of induction B = êzB using cylindrical coordinates the
vector potential is

A = 1

2
Brêϑ.

We note that

divA = 1

r

∂

∂ϑ

(
1

2
Br

)
= 0

and with

curlF = êr

[
1

r

∂Fz

∂ϑ
− ∂Fϑ

∂z

]
+ êϑ

[
∂Fr

∂z
− ∂Fz

∂r

]

+ êz
1

r

[
∂

∂r
(r Fϑ) − ∂Fr

∂ϑ

]

that

curlA = êz
1

r

∂

∂r

(
1

2
Br2
)

= êz (B) .

So the vector potential above satisfies the Coulomb gauge and produces the mag-
netic field induction we desire. Obtain the canonical equations and the (constant)
Hamiltonian for this situation.

In the cylindrical case it will be easiest to simply begin with the low energy
(nonrelativistic) approximation to the electromagnetic Lagrangian we developed in
our chapter on special relativity. The Lagrangian is the function appearing in the
Hamilton’s Principal Function. So we return to the Lagrangian for anything other
than rectangular Cartesian coordinates. This is
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L = 1

2
mq̇μq̇μ − Qϕ + QAμq̇μ

where the summation is over the three spatial components.

3.16. In the early work on magnetic confinement of fusion plasmas we considered
magnetic bottles to trap the electric charges.Magnetic fields of (almost) any geometry
can be produced by arrangements of external electric currents. Magnetic bottles are
based on the universal principle that charged particles move on circles with radii that
decrease with increasing magnetic induction.

The vector potential

A = −êxy
B

2
exp (az) + ê yx

B

2
exp (az) ,

for example, produces the magnetic induction

Bx = −x

(
a
B

2

)
exp (az)

By = −y

(
a
B

2

)
exp (az)

Bz = B exp (az) ,

which, with z-axis vertical, has the form shown here.

Charged particles in this region follow the lines of induction in a corkscrew motion
of decreasing radius.

We obtained the particle trajectory from a numerical integration of the canonical
equations using a Runge-Kutta algorithm.9 In the numerical solution we released the
charged particle on the x-axis at x = 1 with a momentum in the y- and z-directions.
The result was the trajectory shown here.

9These very important numerical techniques for the solution of first order differential equations
were developed around 1900 by the German mathematicians C. Runge and M.W. Kutta.
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In this figure we have plotted results for both positive and for negative charges. The
charges spiral along the magnetic field lines moving in the positive z-direction until
they are deflected and then they spiral out with growing radius along the negative
z-direction. The top images are for a small initial momentum and the bottom for a
larger initial momentum. The larger momentum makes the spiral of the charge more
evident.

The results from a region containing oppositely converging magnetic fields
demonstrates the magnetic bottle effect. We show this in the figure.

Show that the vector potential actually results in themagnetic field induction above
and that the Coulomb gauge divA = 0 is satisfied by A. Then obtain the Hamiltonian
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and the canonical equations for motion of a charge in this field. Consider planes of
constant z to show the decrease in radius with increasing z.

3.17. In the text we discussed the problem of Rutherford scattering. In his analysis
Rutherford assumed that only the Coulomb force acted on the α-particle scattered
by the nucleus. The potential was then

ϕ = QNQ

4πε0

1

ρ

We may, depending on the nucleus, also have a nuclear magnetic moment. This will
have an affect as well on the moving α-particle. The vector potential at a distance r
(using spherical coordinates |r| = ρ) from a nucleus with magnetic moment M is
[see, e.g. [45], pp. 138–141].

A (r) = μ0

4πρ2
M × r,

which, carrying out the cross product, becomes

A (r) = μ0M

4π

1

ρ3
sin φêϑ.

We shall simplify our problem by confining motion to the horizontal plane. In spher-
ical coordinates the polar angle is then φ = π/2.

Find the Hamiltonian for Rutherford scattering when the nucleus has a magnetic
moment. Linearize this for small values of M . Comment on the effect of the nuclear
magnetic moment.



Chapter 4
Solid Bodies

The growth of the use of transformation theory ... is the essence of the new method in
theoretical physics. ...[This] symbolic method, however, seems to go more deeply into the
nature of things. It enables one to express the physical laws in a neat and concise way, and
will probably be increasingly used in the future ...

Paul A.M. Dirac [May, 1930]

4.1 Introduction

For the purpose of describing the motion of a solid body, and later for an analysis
of the dynamics of the body, we will consider that the body can be divided into
a very large collection of classical point particles. Each of these particles is made
up of a (large) number of atoms, but is infinitesimal in size and mass compared to
the dimensions and mass of the body. We will make no attempt to consider atomic
bonds in our (imagined) construction of the rigid body from these particles. We
simply accept that Newton’s Third Law must hold between all pairs of classical
point particles and that, therefore, all internal forces among them cancel.

Bodies may be rigid, elastic or plastic. In a rigid body the distances between the
classical point particles is fixed and not subject to change. In an elastic body these
distances change under external forces of compression or tension and return to their
previous values if those forces are removed. In a plastic body the distances will not
return to their previous values on removal of external forces. In this chapter we will
treat only rigid bodies.

The general motion of a solid body will consist of a translation of the body as a
whole and a rotation about some axis in the body. We can describe the motion of
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the body as a whole in terms of a vector locating the center of mass (CM) of the
body relatively to an external (fixed) coordinate system. We then require a second
coordinate system, fixed in the body and with origin at the CM, to describe the
motion of the particles relative to the CM. In a rigid body each particle is located
at a fixed point in the body coordinate system. The motion of each point particle is
then determined by the rotation of the body coordinate system. This rotation may be
specified by rotations about each of the three axes of the body coordinate system.
There are, therefore, six coordinates required for the description of the motion of
each classical point particle.

Our choice of the CM for location of the origin of the rigid body coordinate
system is more judicious than it may seem. This choice will result in a separation of
the canonical equations into two independent sets. One of these will determine the
motion of the CM and the second will determine the rotation of the rigid body about
the CM.

For our mathematical work with the rotating body coordinate system we will
use the vectors and a transformation theory developed by Paul A.M. Dirac for
the quantum theory. There is an elegant simplicity resulting from the use of Dirac’s
transformation theory. For the reader unfamiliar with Dirac’s vectors we develop
what is needed in the first section of this chapter. The benefit will far outweigh the
effort required to learn this approach.

4.2 The Vector Space

4.2.1 Dirac Vectors

For much of what we will do we may consider that Dirac has simply introduced
a different notation for vectors. We will, for example, identify the position vector
of the i th classical point particle by what Dirac called a ket vector |ri〉 instead of
r i. The brace |...〉 indicates a vector just as the arrow above a term, or the bold
representation of a term, serves in the standard vector notation. Inside the brace we
will place the identifier of the vector as in the case of |ri〉. This is particularly helpful
in quantum mechanics where the vector will (often) be an eigenvector common to a
group of operators. The set of quantum numbers of the operators appear then in the
brace.

The Dirac vectors |a〉 , |b〉, … are elements of a vector space V (|a〉 , |b〉 ,…∈ V)
if they satisfy the postulates of a vector space. These are
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1. closure under addition: for each |a〉 and |b〉 which are elements of V there is a
unique sum |a〉 + |b〉 that is a vector in the space. That is1

For |a〉 ∈ V and |b〉 ∈ V ∃ |a〉 + |b〉 = |c〉 ∈ V.

2. addition is associative:

(|a〉 + |b〉) + |c〉 = |a〉 + (|b〉 + |c〉) .

3. addition is commutative:

|a〉 + |b〉 = |b〉 + |a〉 .

4. there exists a zero vector |0〉 in the space V defined by the requirement that the
addition of this zero vector to any vector in the space results in the original vector.
That is2

∃ |0〉 � |a〉 + |0〉 = |a〉 ∀ |a〉 ∈ V .

5. for each vector |a〉 in the space V there exists a negative vector, − |a〉 defined by
the requirement that the sum of − |a〉 and |a〉 produces the zero vector. That is

∀ |a〉 ∈ V ∃ − |a〉 � |a〉 + (− |a〉) = |0〉 .

6. closure under multiplication by a scalar: For every number from the field of
complex numbers C (a real number is a complex number with an imaginary part
equal to zero) and every vector |a〉 in the space V there is a unique vector C |a〉
contained in the space V . Multiplication by a scalar satisfies

C (|a〉 + |b〉) = C |a〉 + C |b〉 .

(C + D) |a〉 = C |a〉 + D |a〉 .

(CD) |a〉 = C (D |a〉) .

1 |a〉 = |a〉 .

In the last expression 1 is the number one, known as unity.

1The symbol ∈ means “is an element of” and ∃ means “there exists.” These symbols are commonly
used as shorthand in physics just as in mathematics.
2The symbol � is “such that” and ∀ is “for all”.



124 4 Solid Bodies

4.2.2 Scalar Product

A scalar product is a product between two vectors which results in a complex number.
For the vectors |a〉 and |b〉 the scalar product is written as 〈a |b〉. The postulates of
the scalar product are:

1.
〈a |b〉 = 〈b |a〉∗

2.
〈c| (|a〉 + |b〉) = 〈c |a〉 + 〈c |b〉

3.
〈a |a〉 ≥ 0

4.
〈a |a〉 = 0 if and only if |a〉 ≡ |0〉 .

5.
(〈a|C) |b〉 = C∗ 〈a |b〉

and
〈a| (C |b〉) = C 〈a |b〉

The asterisk in postulates 1 and 5 indicates complex conjugate. In this chapter we
will only use real vectors. So we may ignore the complex conjugate.

The fact that the scalar product takes on the form of a bracket 〈a |b〉 is the reason
for the names Dirac gave to the vectors |a〉 and vector in the dual space 〈b|. He called
〈b| a bra vector and |a〉 a ket vector. The combination is then a bra-ket or bracket.

4.2.3 Representation

General vectors such as |a〉 and |b〉 are abstract vectors. We can speak of them in
general abstract terms and even write abstract equations for them, such as Newton’s
Second Law |F〉 = m |a〉. But we cannot conduct concrete mathematical operations
on them until we have represented them in terms of a basis. Then we are able to
deal with the components of the vector, which are numbers, algebraic expressions,
or expressions involving derivatives.

We represent vectors in terms of a set of linearly independent vectors, which we
construct independently of the physical situation we are modeling. The number of
such vectors we require is the dimension of the vector space.
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Linear Independence. A set of N vectors, {|qn〉}Nn=1 in a space V , is linearly inde-
pendent if

N∑

n=1

Cn |qn〉 = 0

is satisfied only when each of the coefficients, Cn, is identically zero.
If any vector, |v〉 ∈ V can be written as a sum

|v〉 =
N∑

n=1

vn |qn〉 (4.1)

then the set {|qn〉}Nn=1 spans the space. A basis is any set of linearly independent
vectors that spans the space. The smallest number of linearly independent vectors
that span the space is the dimension of the space. In (4.1) the vector |v〉 is represented
in the basis {|qn〉}Nn=1.

We may always construct an orthonormal basis such that 〈qn| qm〉 = δnm where

δnm =
{
1 if n = m
0 if n �= m

(4.2)

is theKronecker delta. Sowewill always assume that any basisweuse is orthonormal.

Vectors and Matrices. The postulates of addition and scalar multiplication for the
vector space are the same as the laws of addition and scalar multiplication for matri-
ces. We may then write vectors in the form of matrices.

In a three-dimensional space, for example, the basis vectors can be written as

|1〉 =
⎡

⎣
1
0
0

⎤

⎦ ; |2〉 =
⎡

⎣
0
1
0

⎤

⎦ ; and |3〉 =
⎡

⎣
0
0
1

⎤

⎦ . (4.3)

Then the general vector |a〉 becomes

|a〉 =
⎡

⎣
a1
a2
a3

⎤

⎦

= a1

⎡

⎣
1
0
0

⎤

⎦ + a2

⎡

⎣
0
1
0

⎤

⎦ + a3

⎡

⎣
0
0
1

⎤

⎦

= a1 |1〉 + a2 |2〉 + a3 |3〉 . (4.4)
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In (4.4) we have represented the vector |a〉 in the basis {|1〉 , |2〉 , |3〉}, which we
have chosen then to write in matrix form. We could have chosen the standard vector
representation with the unit vectors

(
êx, êy, êz

)
instead, which obey a corresponding

set of laws.
The matrix form will be simpler for our purposes in treating rigid body dynamics

than the standard vector form.

Scalar Product of Matrices. For vectors |a〉 and |b〉 represented in the basis
{|1〉 , |2〉 , |3〉} and written as column matrices

|a〉 =
⎡

⎣
a1
a2
a3

⎤

⎦ and |b〉 =
⎡

⎣
b1
b2
b3

⎤

⎦

the scalar product in matrix form is

〈a |b〉 = [
a∗
1 a∗

2 a∗
3

]
⎡

⎣
b1
b2
b3

⎤

⎦

= a∗
1b1 + a∗

2b2 + a∗
3b3. (4.5)

Consistent with this definition, the dual of the column vector |a〉 is

〈a| = [
a∗
1 a∗

2 a∗
3

]
. (4.6)

That is, the dual of a vector is formed by taking the Hermitian conjugate of the
column matrix form of the vector.

Projector. The representation of a vector in an arbitrary basis is accomplished by
projecting the vector onto the basis using a projection operator, or simply projector.
For an N−dimensional basis {|λ〉}Nλ=1 the projector is defined by

P ≡
∑N

λ
|λ〉 〈λ| . (4.7)

The operation of P on a general vector |a〉 in the space spanned by the basis
{|λ〉}Nλ=1 results in

P |a〉 =
N∑

λ

|λ〉 〈λ| a〉. (4.8)

The quantity 〈λ| a〉 is the λth component of the vector |a〉, which we may write as
〈λ| a〉 = aλ. Then (4.8) becomes

P |a〉 =
N∑

λ

aλ |λ〉 . (4.9)
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When we deal with general vector spaces the question of completeness becomes
important [see e.g. [21], pp. 36–37; [42], pp. 130–132]. In broad terms completeness
is required by any representation of an abstract vector. A vector space is complete
provided there is no loss of information when the vector is represented in the basis
of the space. This is true if the representation in (4.9) is exact. Simply stated, com-
pleteness means P |a〉 = |a〉, which is true if, and only if, mathematically

P =
∑N

λ
|λ〉 〈λ| = 1, (4.10)

the identity operator. This is true for the case of the three dimensional spaces that
concern us in this chapter, as our example here shows.

Example 4.2.1 We consider the basis (4.3). The components of the projector in this
basis, written in matrix form, are

|1〉 〈1| = [
1 0 0

]
⎡

⎣
1
0
0

⎤

⎦ =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦

|2〉 〈2| = [
0 1 0

]
⎡

⎣
0
1
0

⎤

⎦ =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦

|3〉 〈3| = [
0 0 1

]
⎡

⎣
0
0
1

⎤

⎦ =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ .

The projector is then

|1〉 〈1| + |2〉 〈2| + |3〉 〈3| =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

which is the identity matrix 1.

If the operator P is an identity then PP = 1. That is

PP =
∑

λ,ν

|λ〉 〈λ| ν〉 〈ν|

=
∑

λ

|λ〉 〈λ| .

This will be true if 〈λ| ν〉 = δλν , which, as we pointed out above, we may always
choose.
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Unless we specify otherwise we shall implicitly use the standard basis, which
we introduced in matrix form in (4.3). In standard vector notation these are the unit
Cartesian vectors

(
ê1, ê2, ê3

)
or more commonly

(
êx, êy, êz

)
. Mathematically they

are simply three orthonormal vectors.

Operators. In general the action of an operator on a vector produces another vector
in the same vector space, which we assume to be complete. IfQ is a general operator
and if | f 〉 is a vector in the vector space, then

Q | f 〉 = |g〉 , (4.11)

where |g〉 is a vector in the same space as | f 〉. If the basis vectors in this space
are {|μ〉}Nμ=1 we may represent the vector equation in (4.11) using the operator P =∑N

μ |μ〉 〈μ|. To obtain the representation of (4.11) we must represent both of the
vectors in the basis. Because the projector is an identity operator we may include
projectors at any point within the vector equation (4.11). The result is

N∑

μ,ν

|μ〉 〈μ| Q |ν〉 〈ν| f 〉 =
N∑

μ

|μ〉 〈μ| g〉 . (4.12)

In (4.12) we have both sides of the vector equation (4.11) and both of the vectors
individually represented in the basis. We also have the operatorQ represented in the
basis as 〈μ|Q |ν〉. The operator, therefore, has two indices when projected onto our
basis. If we were to write the vectors in matrix form the operator would be a square
matrix.

4.3 Einstein Sum Convention

In his 1916 paper on the foundations of the general theory of relativity, published
in Annalen der Physik, Einstein noted that the summation symbol

∑
appeared “...

with respect to the indices which occur twice under a sign of summation, and only
with respect to indices which appear twice.” He, therefore, concluded that it was
possible, without loss of clarity, to omit the summation sign [[24], p. 122]. With this
he introduced his convention: If an index occurs twice in a term it will always be
summed unless the contrary is expressly stated.

In the paper Einstein was using Greek indices. Therefore, it has become common
practice in the physics community to use the Einstein summation convention for
Greek indices, and not (necessarily) for Latin. Particularly here, as we introduce
products of projectors in our development, theEinstein summation conventionwill be
helpful. Therefore, unless we state explicitly that the Einstein summation convention
is not used, Greek indices which appear twice in a term will always be summed.
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The indices will normally be on basis vectors and components of vectors repre-
sented in a basis. In the present picture, there are three spatial dimensions. Therefore,
the implied summations will be over the indices 1, 2, 3 unless we note otherwise.

4.4 Kinematics

Kinematics is the description of motion. In our presentation here we will consider
the description of motion of a classical point particle referred to a translating and
rotating frame. We will then specialize this result to a rigid body constructed of such
classical point particles.

4.4.1 Reference Frames

There are two general types of motion of the rigid body. The first is motion of
the center of mass (CM) of the rigid body with respect to a stationary set of basis
vectors

{∣∣Xμ

〉}
. We may locate the origin of this set of stationary basis vectors at

any fixed point external to the body. The second type of motion is the rotation of
the rigid body about the CM. To describe this rotation we define a second set of
basis vectors

{∣∣xμ (t)
〉}

that is fixed in the rigid body and rotates with the body. We
choose the origin of this second set of basis vectors to be the CM of the body. In our
development we will show that the motion of the CM and the rotation about the CM
are then dynamically separable.

We begin our description by considering a vector |ri (t)〉 which locates one of
the moving classical point particles (designated by the subscript i) that make up the
body. We choose the vector |R (t)〉, represented in the stationary basis

{∣∣Xμ

〉}
, to

locate the CM of the body and the vector
∣∣r ′

i (t)
〉
, represented in the basis

{∣∣xμ (t)
〉}
,

to locate the particle relative to the CM. We then write the vector |ri (t)〉 as

|ri (t)〉 = |R (t)〉 + ∣∣r ′
i (t)

〉
. (4.13)

In Fig. 4.1 we have drawn a picture of the situation

Fig. 4.1 Fixed and rotating
coordinate frames. The fixed
frame has the basis

{∣∣Xμ

〉}

and the rotating frame has
the basis

{∣∣xμ (t)
〉}
. The

vector |ri (t)〉 has been
decomposed into vectors in
the fixed and rotating
systems
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Although we have chosen these coordinate systems and bases to provide a con-
venient description of the motion of a rigid body, until we actually fix our classical
point particle located by

∣∣r ′
i (t)

〉
in a rigid body, our two bases could be used as well

for the description of the motion of a classical point particle in any translating and
rotating frame. We could, for example, choose |R (t)〉 to locate a point on the surface
of the rotating earth or a turntable. The basis

{∣∣xμ (t)
〉}

would then be fixed on the
earth’s surface or in the turntable and the vector

∣∣r ′
i (t)

〉
would describe the motion of

a point particle as referred to the earth’s surface or the rotating turntable. Locating
the particle in a rigid body will require that the vector

∣∣r ′
i (t)

〉
is constant in length

and orientation in the basis
{∣∣xμ (t)

〉}
. We can relax this limitation for part of our

discussion.
Using the Einstein summation convention, the projection operators for these bases

are
PX = ∣∣Xμ

〉 〈
Xμ

∣∣ = 1 and Px = ∣∣xμ (t)
〉 〈
xμ (t)

∣∣ = 1. (4.14)

Here we have introduced capital and lower case subscripts to distinguish the projec-
tion operators PX and Px, which are both identities. Our representation of the vector
|ri (t)〉 then becomes

|ri (t)〉 = PX |R (t)〉 + Px

∣∣r ′
i (t)

〉

= ∣∣Xμ

〉 〈
Xμ

∣∣ R (t)〉 + ∣∣xμ (t)
〉 〈
xμ (t)

∣∣ r ′
i (t)

〉
, (4.15)

To obtain (4.15) we only applied the projectors to the right hand side of (4.13) leaving
the left hand side as an abstract vector. We can do this because the projectors are
both identity operators.

The components of the vectors

〈
Xμ

∣∣ R (t)〉 (4.16)

and 〈
xμ (t)

∣∣ r ′
i (t)

〉
(4.17)

are functions of the time. When we limit our description to the rigid body, which
we shall soon do, (4.17) will depend on time only through the rotation of the basis
vectors.

We obtain the instantaneous velocity of the point located by |ri (t)〉 by differen-
tiating (4.15) with respect to time. This requires differentiation of the components
(4.16), the components (4.17), and of the basis vectors

{∣∣xμ (t)
〉}
. That is
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d

dt
|ri (t)〉 = ∣∣Xμ

〉 ( d

dt

〈
Xμ

∣∣ R (t)〉
)

+ ∣∣xμ (t)
〉 ( d

dt

〈
xμ (t)

∣∣ r ′
i

〉)

+ ∣∣xμ (t)
〉 (〈

xμ (t)
∣∣ d

dt

]

basis

|xν (t)〉
)

〈xν (t)| r ′
i

〉
. (4.18)

We have included the projector
∣∣xμ (t)

〉 〈
xμ (t)

∣∣ or |xν (t)〉 〈xν (t)| operating on all
vector terms on the right hand side of (4.18) to obtain the components of each vector.
We can only actually perform the derivative operation on the vector components,
which are functions of the time t . In the third term on the right hand side of (4.18) we
have included a second projector

∣∣xμ (t)
〉 〈
xμ (t)

∣∣ to guarantee that the final result is
projected onto the basis

{∣∣xμ (t)
〉}
. The term

(〈
xμ (t)

∣∣ d/dt]basis |xν (t)〉), as we shall
see, is an operator.

On the left hand side of (4.18) we have the abstract form of the rate of change
of the position vector |ri (t)〉. The first two terms on the right hand side of (4.18)
are representations of vectors with components d

〈
Xμ

∣∣ R (t)〉 /dt and d
〈
xμ (t)

∣∣ r ′
i

〉
/dt

in the bases
{∣∣Xμ

〉}
and

{∣∣xμ (t)
〉}
. Differentiating the components

〈
Xμ

∣∣ R (t)〉 and〈
xμ (t)

∣∣ r ′
i

〉
presents uswith nomathematical difficulty, since they are simply algebraic

functions of the time t . And d
〈
Xμ

∣∣ R (t)〉 /dt and d
〈
xμ (t)

∣∣ r ′
i

〉
/dt are scalar algebraic

quantities, which are components of velocities represented in the two bases. The
product of each of these terms with the ket vectors

∣∣Xμ

〉
and

∣∣xμ (t)
〉
(together with

the implied summation) means that each of these terms is an instantaneous vector
velocity represented in each specific basis.

The first term in (4.18) is the velocity of the CM of the rigid body d|R〉 /dt
represented in the stationary basis

{∣∣Xμ

〉}
. We shall designate this as |V 〉 and the

components Vμ as (V1, V2, V3). In matrix form |V 〉 is

d

dt
|R〉 = |V 〉 =

⎡

⎣
V1

V2

V3

⎤

⎦ . (4.19)

The second term in (4.18) is similar to the first. It is the velocity of the point
∣∣r ′

i (t)
〉

represented in the basis of the moving system
{∣∣xμ (t)

〉}
. This term is the velocity of

the point particle as observed by a person who is at rest in the moving system. We
shall designate this as

∣∣v′
i

〉
and the components v′

μ as
(
v′
i1, v

′
i2, v

′
i3,

)
. In matrix form∣∣v′

i

〉
is

d

dt

∣∣r ′
i

〉 =
⎡

⎣
ṙ ′
i1
ṙ ′
i2
ṙ ′
i3

⎤

⎦ = ∣∣v′
i

〉 =
⎡

⎣
v′
i1

v′
i2

v′
i3

⎤

⎦ (4.20)

The third term in (4.18) represents something different from the previous two.
This term is that part of the velocity vector d

∣∣r ′
i (t)

〉
/dt resulting from a rotation

of the basis
{∣∣xμ (t)

〉}
about an arbitrary axis, while the vector

∣∣r ′
i

〉
remains fixed in



132 4 Solid Bodies

that basis. We have indicated this in part by writing the time derivative operator for
this term as d/dt]basis. Now we must develop a mathematical formulation that will
produce this operator.

4.4.2 Rotation of the Basis

We can produce a rotation of the basis
{∣∣xμ (t)

〉}
about an arbitrary axis from a

sequence of rotations about the individual basis vectors. If the angles of rotation about
the basis vectors are finite the result will depend on the order in which the rotations
are performed. We can convince ourselves of this by rotating a book through two
finite angles about two perpendicular axes defined by the edges of the book. The final
orientation of the book depends on the order inwhich the two rotations are performed.
If the angles of rotation about the basis vectors are infinitesimal, however, the final
orientation of the body is independent of the order of rotation.

The first step in our problem is then to find a mathematical operation that will
describe the change of a position vector locating a classical point particle

∣∣r ′
i

〉
as the

basis rotates through an angle about one of the basis vectors. This will be a rotation
of the basis alone. The locations of all of the point particles, i.e. all

∣∣r ′
i

〉
, remain

unchanged in this operation. We may, therefore, dispense with any reference to a
classical point particle and replace the position vector

∣∣r ′
i

〉
of the point particle in

question by a (dummy) constant vector |a〉. We may then designate this vector as
∣∣a′〉

after rotation, which will simplify our picture of the rotation.
We begin with a rotation ϑ′

3 of the basis vectors
{∣∣xμ (t)

〉}
about the basis vec-

tor |x3 (t)〉. We retain the prime notation for the rotation angles to indicate the
basis

{∣∣xμ (t)
〉}
. In Fig. 4.2 we have illustrated the rotation. We consider that the

rotation takes place between the time t = t1 and t = t2. In Fig. 4.2 we des-
ignate the bases before and after rotation as

{∣∣xμ (t1)
〉} = {|x1〉 , |x2〉 , |x3〉} and

Fig. 4.2 Rotation of a basis.
The basis vectors

{∣∣xμ (t)
〉}

rotate around |x3〉 which is
fixed
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{∣∣xμ (t2)
〉} = {∣∣x ′

1

〉
,
∣∣x ′

2

〉
,
∣∣x ′

3

〉}
. If we consider the rotation angle ϑ′

3 to have a vector
orientation along the axis |x3〉 in accordance with the right hand rule we will have a
positive direction of the angular velocity component ω′

3 =dϑ′
3/dt .

We are seeking an expression for the rates of change of the components
〈
xμ (t)

∣∣ a〉
of the vector |a〉 resulting from the rotation of the basis alone. We want then to
reference the vector |a〉 to the basis

{∣∣xμ (t)
〉}

before and after the rotation of the
basis without allowing the vector |a〉 to change in orientation or magnitude. Because
our only reference during this process is to the basis

{∣∣xμ (t)
〉}
, we shall accomplish

what wewant by first holding |a〉 fixed in the basis {∣∣xμ (t)
〉}
while we rotate the basis

and then projecting |a〉 back onto the original basis (as it was before rotation). We
will then have components of the vector |a〉 that would be measured in the original
basis as the basis itself changes. If we thenmake the rotation angle and the time taken
infinitesimal we can obtain the rate of change of the vector resulting solely from the
change in orientation of the basis.

Before the rotation we represent the vector |a〉 in the basis {|x1〉 , |x 2〉 , |x3〉} as

|a〉 = a1 |x1〉 + a2 |x2〉 + a3 |x3〉 . (4.21)

and after the rotation we represent the vector
∣∣a′〉 in the basis

{∣∣x ′
1

〉
,
∣∣x ′

2

〉
,
∣∣x ′

3

〉}
as

∣∣a′〉 = a1
∣∣x ′

1

〉 + a2
∣∣x ′

2

〉 + a3
∣∣x ′

3

〉
. (4.22)

The magnitudes of the components do not change.
Now we project the vector

∣∣a′〉 back onto the basis {|x1〉 , |x 2〉 , |x3〉} by applying
the projector

Px = |x1〉 〈x1| + |x2〉 〈x2| + |x3〉 〈x3| (4.23)

to the vector
∣∣a′〉 in (4.22). Carrying out the projection in detail, we have

Px

∣∣a′〉 = (|x1〉 〈x1| + |x2〉 〈x2| + |x3〉 〈x3|) · · ·
· · · (a1

∣∣x ′
1

〉 + a2
∣∣x ′

2

〉 + a3
∣∣x ′

3

〉)

= (
a1 〈x1

∣∣x ′
1

〉 + a2 〈x1
∣∣x ′

2

〉 + a3 〈x1
∣∣x ′

3

〉) |x1〉
+ (

a1 〈x2
∣∣x ′

1

〉 + a2 〈x2
∣∣x ′

2

〉 + a3 〈x2
∣∣x ′

3

〉) |x2〉
+ (

a1 〈x3
∣∣x ′

1

〉 + a2 〈x3
∣∣x ′

2

〉 + a3 〈x3
∣∣x ′

3

〉) |x3〉 . (4.24)

The brackets
〈
xμ

∣∣x ′
ν

〉
are the scalar products between the basis vectors

∣∣xμ

〉
and

∣∣x ′
ν

〉

which are the cosines of the angles between these basis vectors. By inspection of
Fig. 4.2 these are

〈x1
∣∣x ′

1

〉 = cosϑ′
3

〈x1
∣∣x ′

2

〉 = − sin ϑ′
3

〈x1
∣∣x ′

3

〉 = 0

〈x2
∣∣x ′

1

〉 = sin ϑ′
3
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〈x2
∣∣x ′

2

〉 = cosϑ′
3

〈x2
∣∣x ′

3

〉 = 0

〈x3
∣∣x ′

1

〉 = 0

〈x3
∣∣x ′

2

〉 = 0

〈x3
∣∣x ′

3

〉 = 1. (4.25)

Then (4.24) is

Px

∣∣a′〉 = (
a1 cosϑ′

3 − a2 sin ϑ′
3 + 0

) |x1〉
+ (

a1 sin ϑ′
3 + a2 cosϑ′

3 + 0
) |x2〉

+ (0 + 0 + a3) |x3〉 . (4.26)

Written in matrix form (4.26) is

Px

∣∣a′〉 =
⎡

⎣
cosϑ′

3 − sin ϑ′
3 0

sin ϑ′
3 cosϑ′

3 0
0 0 1

⎤

⎦

⎡

⎣
a1
a2
a3

⎤

⎦ . (4.27)

In (4.27) we have attained our mathematical goal. The square matrix in (4.27) is
the matrix form of the operator d/dt]basis that carries out the rotation and projection.
We shall now designate this rotation and projection operator about the axis |x3〉
in abstract form as R3

(
ϑ′
3

)
. To obtain a representation of R3

(
ϑ′
3

)
we must use

projectors on both sides (see Sect. 4.2.3). The squarematrix in (4.27) is, then, actually
PxR3

(
ϑ′
3

)
Px = |μ〉 〈μ|R3

(
ϑ′
3

) |ν〉 〈ν|. But we can avoid constantly writing the
projectors if we agree that using an arrow instead of an equal sign indicates equality
that would result if we were to include the projectors. That is

R3
(
ϑ′
3

) =⇒
⎡

⎣
cosϑ′

3 − sin ϑ′
3 0

sin ϑ′
3 cosϑ′

3 0
0 0 1

⎤

⎦ . (4.28)

Our present interest is in the rate of change of the vector |a〉. We, therefore, need
only an infinitesimal angle of rotation δϑ′

3 in (4.27). Holding only first order terms
in the expansion of the sine and cosine the square matrix in (4.28) becomes

R3
(
δϑ′

3

) =⇒
⎡

⎣
1 −δϑ′

3 0
δϑ′

3 1 0
0 0 1

⎤

⎦ . (4.29)

Performing the same rotation and projection about the basis vectors |x1〉 and |x2〉 we
find similar operators.
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R1
(
δϑ′

1

) =⇒
⎡

⎣
1 0 0
0 1 −δϑ′

1
0 δϑ′

1 1

⎤

⎦ , (4.30)

and

R2
(
δϑ′

2

) =⇒
⎡

⎣
1 0 δϑ′

2
0 1 0

−δϑ′
2 0 1

⎤

⎦ . (4.31)

Generally matrices do not commute. However, the matrices (4.29)–(4.31) with
unity on the diagonal, and off diagonal terms that are small enough thatwe can neglect
all terms above first order in δϑ′

μ, do commute.Wemay then obtain a general rotation
operator R

(
δϑ′) for the arbitrary infinitesimal rotation δϑ′ = (

δϑ′
1, δϑ

′
2, δϑ

′
3

)
in the

basis {|x1〉 , |x2〉 , |x3〉} by multiplying matrix forms of the infinitesimal operators
(4.29)–(4.31) in any order. The rotation operator for a general infinitesimal rotation
is then, to first order in δ−quantities,

R
(
δϑ′) =⇒

⎡

⎣
1 −δϑ′

3 δϑ′
2

δϑ′
3 1 −δϑ′

1−δϑ′
2 δϑ′

1 1

⎤

⎦ . (4.32)

The operator (4.32) is the sum of the identity and an operator that we shall call
δR

(
δϑ′). That is

R
(
δϑ′) =⇒

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ +
⎡

⎣
0 −δϑ′

3 δϑ′
2

δϑ′
3 0 −δϑ′

1−δϑ′
2 δϑ′

1 0

⎤

⎦

= 1 + δR
(
δϑ′) (4.33)

with

δR
(
δϑ′) =⇒

⎡

⎣
0 −δϑ′

3 δϑ′
2

δϑ′
3 0 −δϑ′

1−δϑ′
2 δϑ′

1 0

⎤

⎦ . (4.34)

Using (4.33) and (4.34) in (4.27) we find that a vector |a〉 of constant length becomes

∣∣a′〉 = (
1 + δR

(
δϑ′)) |a〉 , (4.35)

after a general infinitesimal rotation δϑ′ = (
δϑ′

1, δϑ
′
2, δϑ

′
3

)
in the basis

{|x1〉 , |x2〉 , |x3〉}. From (4.35) we can then define the infinitesimal change in a vector
of constant length resulting from an infinitesimal angular rotation δϑ′ as

δ |a〉 = ∣∣a′〉 − |a〉 = δR
(
δϑ′) |a〉 . (4.36)
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By dividing δ |a〉 in (4.36) by the infinitesimal time δt during which the infinitesimal
rotation takes place, and taking the limit δt → 0, we obtain the third term in (4.18).
That is

lim
δt→0

δ |a〉
δt

=
(
lim
δt→0

δR
(
δϑ′)

δt

)
|a〉 = dR

(
ϑ′)

dt
|a〉

=⇒ ∣∣xμ (t)
〉 (〈

xμ (t)
∣∣ d

dt

]

basis

|xν (t)〉
)

〈xν (t)| a〉 (4.37)

where we have re-introduced the original form of the operator from (4.18). Equa-
tion (4.37) tells us that

d

dt

]

basis

= dR
(
ϑ′)

dt
. (4.38)

From (4.34) we have dR
(
ϑ′) /dt in matrix form as

dR
(
ϑ′)

dt
=⇒ lim

δt→0

⎡

⎣
0 −δϑ′

3/δt δϑ′
2/δt

δϑ′
3/δt 0 −δϑ′

1/δt−δϑ′
2/δt δϑ′

1 /δt 0

⎤

⎦

=
⎡

⎣
0 −ω′

3 ω′
2

ω′
3 0 −ω′

1−ω′
2 ω′

1 0

⎤

⎦ , (4.39)

where

ω′
μ = lim

δt→0

δϑ′
μ

δt
. (4.40)

Combining (4.39) with (4.37) and (4.38) we have the final matrix form of the term
we sought.

∣∣xμ (t)
〉 (〈

xμ (t)
∣∣ d

dt

]

basis

|xν (t)〉
)

〈xν (t)| a〉

= ∣∣xμ (t)
〉
(

〈
xμ (t)

∣∣ dR
(
ϑ′)

dt
|xν (t)〉

)
〈xν (t)| r ′

i

〉

=
⎡

⎣
0 −ω′

3 ω′
2

ω′
3 0 −ω′

1−ω′
2 ω′

1 0

⎤

⎦

⎡

⎣
r ′
i1
r ′
i2
r ′
i3

⎤

⎦ . (4.41)

And if we multiply the matrices appearing in (4.41) we have

|xν (t)〉
(

〈
xμ (t)

∣∣ dR
(
ϑ′)

dt
|xν (t)〉

)
〈
xμ (t)

∣∣ r ′
i

〉 =
⎡

⎣
−ω′

3r
′
i2 + ω′

2r
′
i3

ω′
3r

′
i1 − ω′

1r
′
i3−ω′

2r
′
i1 + ω′

1r
′
i2

⎤

⎦ (4.42)



4.4 Kinematics 137

In standard vector notation the elements of the matrix in (4.42) are the components
of the vector cross product ω′ × r ′

i. That is

|xν (t)〉
(

〈
xμ (t)

∣∣ dR
(
ϑ′)

dt
|xν (t)〉

)
〈
xμ (t)

∣∣ r ′
i

〉 = ω′ × r ′
i. (4.43)

This standard vector form in (4.43) has advantages in some circumstances. We
will use this when dealing with rolling constraints.

4.4.3 Combined Velocities

Combining (4.41) and (4.20) we have

d

dt

∣∣r ′
i (t)

〉 =⇒
⎡

⎣
ṙ ′
i1
ṙ ′
i2
ṙ ′
i3

⎤

⎦ +
⎡

⎣
0 −ω′

3 ω′
2

ω′
3 0 −ω′

1−ω′
2 ω′

1 0

⎤

⎦

⎡

⎣
r ′
i1
r ′
i2
r ′
i3

⎤

⎦ (4.44)

for the (total) time derivative of the vector
∣∣r ′

i (t)
〉
represented in the rotating system

with the basis
{∣∣xμ (t)

〉}
.

There was nothing specific about the identity of the vector
∣∣r ′

i (t)
〉
that was used

in the derivation of Eq. (4.44). The classical point particle to which the vector
∣∣r ′

i (t)
〉

pointedwas an arbitrary point represented in the basis
{∣∣xμ (t)

〉}
. Therefore Eq. (4.44)

is the general formula for the time derivative of any vector quantity represented in the
basis

{∣∣xμ (t)
〉}
, which is rotating with the arbitrary instantaneous angular velocity∣∣ω′〉 with components

(
ω′
1,ω

′
2,ω

′
3

)
.

With no motion of the classical point particles in the rigid body ṙ ′
iμ = 0. For a

rigid body (4.44) is then

d

dt

∣∣r ′
i (t)

〉 =⇒
⎡

⎣
0 −ω′

3 ω′
2

ω′
3 0 −ω′

1−ω′
2 ω′

1 0

⎤

⎦

⎡

⎣
r ′
i1
r ′
i2
r ′
i3

⎤

⎦ . (4.45)

Combining (4.19) with (4.45) we have the total time derivative of |ri (t)〉 for the rigid
body as

d

dt
|ri (t)〉 = d

dt
|R (t)〉 + d

dt

∣∣r ′
i (t)

〉

=⇒
⎡

⎣
V1

V2

V3

⎤

⎦ +
⎡

⎣
0 −ω′

3 ω′
2

ω′
3 0 −ω′

1−ω′
2 ω′

1 0

⎤

⎦

⎡

⎣
r ′
i1
r ′
i2
r ′
i3

⎤

⎦ , (4.46)
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where the primes indicate quantities represented in the rotating basis
{∣∣xμ (t)

〉}
.

We may also write (4.46) in standard vector form as

d

dt
r i = d

dt
R + ω′ × r ′

i (4.47)

for the rigid body. If we consider the motion of a single classical particle referred to
the moving basis, we have

d

dt
r i = d

dt
R + v′

i + ω′ × r ′
i, (4.48)

which is the form frequently used in considering motion on the earth’s surface or
on turntables primarily because of the visual aid gained from our understanding of
standard vectors [cf. e.g. [1], pp. 204–206].

4.4.4 General Rolling Constraint

In Sect. 2.5.1 we considered the rolling constraint as an example of a nonholonomic
constraint. But therewe only treated a rolling disk. Herewemust consider the general
motion of a solid (rigid) body moving on a general surface. Our previous treatment
was insufficient to handle this.

When a rigid body is rolling on a surface the point on the body which contacts
the surface does not move relatively to the surface. If we choose the point of contact
to be located by the vector r ′

i appearing in (4.47) then the velocity of that point is
the velocity of the point on the surface, i.e. dr i/dt = V surface, which is represented
in the basis

{∣∣Xμ

〉}
. And the velocity of the center of mass (CM) of the rigid body

dR/dt = VCM is also represented in the fixed basis
{∣∣Xμ

〉}
. Then, using (4.47), the

rolling constraint for a rigid body becomes

V surface = VCM + ω′ × r ′
i. (4.49)

The only difficulty here is the cross product term, which is represented in the basis{∣∣xμ (t)
〉}
. For convenience we wish to represent all vectors in (4.49) in the fixed

basis
{∣∣Xμ

〉}
.

The transformation of the term ω′ × r ′ can be accomplished in a straightforward
fashion if we return to the general form (4.43), which is

ω′ × r ′
i = ∣∣xμ (t)

〉 〈
xμ (t)

∣∣ dR
(
ϑ′)

dt
|xν (t)〉 〈xν (t)| r ′〉 . (4.50)

We can transform this to the fixed basis
{∣∣Xμ

〉}
using the projectorPX = ∣∣Xμ

〉 〈
Xμ

∣∣ =
1, which we may insert at any points we wish in the expression on the right hand

http://dx.doi.org/10.1007/978-3-319-44491-8_2
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side of (4.50). The result is

ω′ × r ′
i = |Xα〉 〈Xα| xμ (t)

〉 〈
xμ (t)

∣∣ Xβ

〉 〈
Xβ

∣∣ · · ·
· · · dR (ϑ)

dt

∣∣Xγ

〉 〈
Xγ

∣∣ xν (t)〉 〈xν (t)| Xλ〉 〈Xλ| r ′〉 . (4.51)

In (4.51) we have dropped the prime on ϑ in dR (ϑ) /dt because the representation
of the operator is now in the basis

{∣∣Xμ

〉}
. We may also eliminate the projector

Px = ∣∣xμ (t)
〉 〈
xμ (t)

∣∣ = 1 from the two places it appears in the expression on the
right hand side in (4.51). And, since the basis vectors

{∣∣Xμ

〉}
are orthonormal, we

have 〈Xα| Xβ

〉 = δαβ and
〈
Xγ

∣∣ Xλ〉 = δγλ, which further compresses the expression
on the right hand side of (4.51). Then (4.51) becomes

ω′ × r ′
i = |Xα〉 〈Xα| dR (ϑ)

dt
|Xλ〉 〈Xλ| r ′〉 . (4.52)

That is two expressions (4.52) and (4.50) are of exactly the same form, although
represented in different bases. We may then write the rolling constraint in the form
(4.49) without the primes, which we had used to designate representation in the
rotating basis

{∣∣xμ (t)
〉}
. In order to avoid any possible confusion with a particle

position vector we will use d as the vector from the CM to the contact point with the
surface on which the body rolls. That is

V surface = VCM + ω × d (4.53)

where both ω and d are now represented in the fixed basis
{∣∣Xμ

〉}
, although they are

still the angular velocity of the rigid body and a location vector from the CM of the
rigid body. The expression (4.53) is now a completely general rolling constraint.

Example 4.4.1 As an example of the application of (4.53) we return to the disk
rolling on a stationary plane. The situation is shown below.
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In this example we will use standard vector notation and write the fixed basis
vectors as

(
êx, êy, êz

)
.

Since the floor is stationary in the fixed basis V surface = 0. The rolling constraint
(4.53) is then

0 = VCM + ω × d,

with

VCM = dR
dt

= Ẋ êx + Ẏ êy.

The vector d from the CM to the surface and the angular momentum ω are

d = −a êz

and
ω = −ϑ̇ êx.

With
ω × d = −aϑ̇ êy

the rolling constraint is
0 = (

Ẋ
)
êx + (

Ẏ − aϑ̇
)
êy,

or
Ẋ = 0, Ẏ − aϑ̇ = 0.

This is the rolling constraint we would have intuitively written. Our general formu-
lation makes the procedure automatic. This will be imperative in complex situations.

4.5 Rigid Body Dynamics

In this section we will use the results of our discussion on kinematics to obtain the
kinetic and potential energies of a rigid body and the canonical equations for the
motion of the body. The final form of the canonical equations for the components
of the angular momentum will be what are known as the Euler Equations for the
motion of the rigid body.

4.5.1 General Kinetic Energy

As in Sect. 4.4.1 we consider the solid (rigid) body to be made up of classical point
particles of masses m i located relative to the CM of the rigid body at

∣∣r ′
i (t)

〉
in the
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basis
{∣∣xμ (t)

〉}
, which we write using our arrow notation of Sect. 4.4.2 as

∣∣r ′
i (t)

〉 =⇒
⎡

⎣
r ′
i1
r ′
i2
r ′
i3

⎤

⎦ (4.54)

in the standard basis. Because we have chosen the origin of this basis to be the CM,
∑

i

m ir
′
i1 = 0

∑

i

m ir
′
i2 = 0

∑

i

m ir
′
i3 = 0. (4.55)

In Sect. 4.4.2 we obtained a general expression for the velocity of a particle mak-
ing up a rigid body (see Sect. 4.4.3, Eq. (4.45)). If we carry out the matrix product
indicated in (4.45) and write d

∣∣r ′
i (t)

〉
/dt = ∣∣ṙ ′

i (t)
〉
we have

∣∣ṙ ′
i (t)

〉 =⇒
⎡

⎣
V1 − ω′

3r
′
i2 + ω′

2r
′
i3

V2 + ω′
3r

′
i1 − ω′

1r
′
i3

V3 − ω′
2r

′
i1 + ω′

1r
′
i2

⎤

⎦ (4.56)

From (4.56) the square of the velocity of the i th particle is

〈
ṙ ′
i (t)

∣∣ ṙ ′
i (t)

〉 = (
V1 − ω′

3r
′
i2 + ω′

2r
′
i3

)2

+ (
V2 + ω′

3r
′
i1 − ω′

1r
′
i3

)2

+ (
V3 − ω′

2r
′
i1 + ω′

1r
′
i2

)2
. (4.57)

With (4.55) the kinetic energy of the rigid body is

T =
∑

μ

1

2
mμ

〈
ṙ ′
μ (t)

∣∣ṙ ′
μ (t)

〉

= 1

2
M

[
V 2
1 + V 2

2 + V 2
3

]

+
∑

i

1

2
m i

[(−ω′
3r

′
i2 + ω′

2r
′
i3

)2 + (
ω′
3r

′
i1 − ω′

1r
′
i3

)2

+ (−ω′
2r

′
i1 + ω′

1r
′
i2

)2]
. (4.58)
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The first term in (4.58) is the kinetic energy of translation of the CM.

TCM = 1

2
M

[
V 2
X + V 2

Y + V 2
Z

]
. (4.59)

And the second term in (4.58) is the kinetic energy of rotation of the rigid body about
its CM.

T ′
rot = 1

2

∑

i

m i
{[

ω′
1

(
r ′2
i2 + r ′2

i3

) − ω′
2r

′
i2r

′
i1 − ω′

3r
′
i3r

′
i1

]
ω′
1

+ [
ω′
2

(
r ′2
i1 + r ′2

i3

) − ω′
1r

′
i1r

′
i2 − ω′

3r
′
i3r

′
i2

]
ω′
2

+ [
ω′
3

(
r ′2
i1 + r ′2

i2

) − ω′
1r

′
i1r

′
i3 − ω′

2r
′
i2r

′
i3

]
ω′
3

}
. (4.60)

In (4.60) we have used the prime on T ′
rot to indicate that this kinetic energy is repre-

sented in the body basis
{∣∣xμ (t)

〉}
.

The kinetic energy of the rigid body is then separated as

T = TCM + T ′
rot, (4.61)

Provided we choose the origin of the body basis
{∣∣xμ (t)

〉}
at the CM.

4.5.2 Inertia Tensor

The kinetic energy of rotation of the rigid body about the CM (4.60) has a particular
symmetry. If we identify the elements of a matrix Iαβ as

Iαβ =
∑

i

m i
[(
r ′2
i1 + r ′2

i2 + r ′2
i3

)
δαβ − r ′

iαr
′
iβ

]
(4.62)

we can write T ′
rot in (4.60) as

T ′
rot = 1

2

[(
ω′
1 I11 + ω′

2 I21 + ω′
3 I31

)
ω′
1

+ (
ω′
2 I22 + ω′

1 I12 + ω′
3 I32

)
ω′
2

+ (
I33ω

′
3 + ω′

1 I13 + ω′
2 I23

)
ω′
3

]
. (4.63)

The matrix Iαβ is a property of the rigid body known as the inertia tensor.
With (4.62) we may write the kinetic energy of rotation about the CM as

T ′
rot = 1

2
ω′

α Iαβω′
β, (4.64)



4.5 Rigid Body Dynamics 143

using the summation convention. Written in matrix form in the basis
{∣∣xμ (t)

〉}
the

inertia tensor is

I =
⎡

⎣
I11 I12 I13
I21 I22 I23
I31 I32 I33

⎤

⎦

=
⎡

⎣

∑
i m i

(
r ′2
i2 + r ′2

i3

) −∑
i m ir ′

i1r
′
i2 −∑

i m ir ′
i1r

′
i3

−∑
i m ir ′

i2r
′
i1

∑
i m i

(
r ′2
i1 + r ′2

i3

) −∑
i m imμr ′

i2r
′
i3

−∑
i m ir ′

i3r
′
i1 −∑

i m imμr ′
i3r

′
i2

∑
i m imμ

(
r ′2
i1 + r ′2

i2

)

⎤

⎦ , (4.65)

which has the symmetry Iαβ = Iβα. We can always diagonalize a symmetric matrix
[see e.g. [21], p. 54]. For most bodies of interest there is no need to carry out the
diagonalization separately because the axes in which the inertia tensor is diagonal
are the axes of symmetry, which are usually obvious. We shall, therefore, simply
write the general inertia tensor for a rigid body as

I =
⎡

⎣
I1 0 0
0 I2 0
0 0 I3

⎤

⎦ , (4.66)

designating the elements with single indices. If any two of these elements are equal
we have a body of revolution. If all three are equal we have a sphere.

The kinetic energy of rotation of a rigid body is then

T ′
rot = 1

2

3∑

α

ω′
α Iαω′

α. (4.67)

4.5.3 Rotational Potential Energy

We shall assume that the potential energy is a scalar function of spatial coordinates
alone. Because we are considering our rigid body to be made up of classical point
particles i , with arbitrary masses, it is convenient to consider the potential energy
per unit mass as the basis for our discussion. In the case of an electric field we would
consider, equivalently, the potential energy per unit charge.

The potential energy of a classical point particle located at the point designated by
the vector

∣∣r ′
i (t)

〉
in Fig. 4.1 may always be separated into a value at the location of

the CM and an added value resulting from the location of the classical point particle
relatively to the CM. If we designate the value of the potential energy (per unit mass)
at the CM, i.e. at the point |R (t)〉 = (R1, R2, R3), as ϕ CM and the potential energy
(per unit mass) of the i th classical point particle at the point

∣∣r ′
i (t)

〉 = (
r ′
i1, r

′
i2, r

′
i3

)
,

referenced to the value at the CM, as ϕ′
i then the potential energy of the rigid body is

MϕCM (R1, R2, R3) + ∑
i m iϕ

′
i

(
r ′
i1, r

′
i2, r

′
i3

)
. The potential energy is then separated
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into a portion dependent on theCMcoordinates (R1, R2, R3 ) and a portion dependent
on the body coordinates

(
r ′
i1, r

′
i2, r

′
i3

)
, expressed in the basis

{∣∣xμ (t)
〉}
, which is

stationary in the body.
We now define

ΦCM ≡ MϕCM (R1, R2, R3) (4.68)

and
Φ ′

rot ≡
∑

i

m iϕ
′
i

(
r ′
i1, r

′
i2, r

′
i3

)
, (4.69)

where we use the prime to indicate that Φ ′
rot is represented in the body basis.

With (4.61), (4.68), and (4.69) the Lagrangian for a rigid body is

L = (TCM − ΦCM) + (
T ′
rot − Φ ′

rot

)
. (4.70)

The Lagrangian for a rigid body then separates into a part involving the motion of
the CM,

LCM = TCM − ΦCM, (4.71)

which depends only on (R1, R2, R3, V1, V2, V3), and a part involving rotation about
the CM

L ′
rot = T ′

rot − Φ ′
rot, (4.72)

which depends only on the body coordinates and angular velocities
(
r ′
i1, r ′

i2, r
′
i3, ω′

1,

ω′
2, ω′

3

)
. The CM of a rigid body moves as a point of mass M under the influence of

the potential ΦCM (R1, R2, R3). And the motion of the rigid body about the CM is
determined by the potential Φ ′

rot

(
r ′
i1, r

′
i2, r

′
i3

)
.

There remains, however, one problem. The kinetic energy of the rotating body is
a function of angular velocities ω′

μ = dϑ′
μ/dt , while the potential energy is a function

of positions r ′
iμ. But the Lagrangianmust be a function of coordinates q and their time

derivatives q̇ . We cannot have a Lagrangian with a mixed dependence on positions
r ′
iμ and angular velocities ω′

μ = dϑ′
μ/dt . We must, therefore, convert the functional

dependence of the potential energy Φ ′
rot from positions to angles of rotation. We can

resolve this difficulty in a natural manner if we carefully consider themotion of the i th

classical point particle as the basis
{∣∣xμ (t)

〉}
rotates. Then the rotational equivalence

of a force, which is known as a torque,3 will also emerge from the derivatives with
respect to the angles.

As in our derivation of T ′
rot, we again consider first only rotations about a single

axis |x3 (t)〉 of the basis
{∣∣xμ (t)

〉}
. Here, however, it will be more convenient to

actually consider the components of the position vector
∣∣r ′

i (t)
〉
locating the i th point

particle directly, rather than introducing a separate vector |a〉.

3The torque is a product of force and distance, which results in a change in angular momentum.
The torque is also sometimes called a moment.
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Fig. 4.3
{∣∣xμ (t)

〉}
rotate

around |x3〉 which is fixed

In Fig. 4.3 we have shown the rotation of the position vector
∣∣r ′

i (t)
〉
as the basis

rotates through an angle ϑ′
3 about |x3 (t)〉.

In Fig. 4.3 the |x1〉 and |x2〉components of the vector
∣∣r ′

i (t)
〉
are

r ′
i1 = (

r ′
i sinα′

i

)
cosϑ′

3

r ′
i2 = (

r ′
i sinα′

i

)
sin ϑ′

3, (4.73)

where r ′
i is the magnitude of the position vector to the i th particle. During an infinites-

imal change dϑ′
3 in the angleϑ′

3 the components r ′
i1 and r

′
i2 change by the infinitesimal

amounts

dr ′
i1 = − (

r ′
i sinα′

i

)
sin ϑ′

3dϑ
′
3 = −r ′

i2dϑ
′
3

dr ′
i2 = (

r ′
i sinα′

i

)
cosϑ′

3dϑ
′
3 = r ′

i1dϑ
′
3. (4.74)

We then identify the partial derivatives of ri2 and ri3 with respect to ϑ′
3 as

∂r ′
i1

∂ϑ′
3

= −r ′
i2

∂r ′
i2

∂ϑ′
3

= r ′
i1. (4.75)

The partial derivative of the potential per unitmassϕ′
i at the location of the i

th particle,
with respect to the angle ϑ′

3, is then

∂ϕ′
i

∂ϑ′
3

= ∂ϕ′
i

∂r ′
i1

∂r ′
i1

∂ϑ′
3

+ ∂ϕ′
i

∂r ′
i2

∂r ′
i2

∂ϑ′
3

= ri2
∂ϕ′

i

∂r ′
i3

− ri3
∂ϕ′

i

∂r ′
i2

. (4.76)
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We shall now designate the gradient of ϕ′
i evaluated at the location of the i

th particle
as grad′

i ϕ
′
i. In column matrix form

grad′
i ϕ

′
i =⇒

⎡

⎣
∂ϕ′

i/∂r
′
i1

∂ϕ′
i/∂r

′
i2

∂ϕ′
i/∂r

′
i3

⎤

⎦ . (4.77)

With (4.77) we recognize that (4.76) is the |x3〉–component of the cross product of
the vector

∣∣r ′
i (t)

〉
with grad′

i ϕ
′
i evaluated at the location of the i th particle. That is

∂ϕ′
i

∂ϑ′
3

= [
r ′
i × grad′

i ϕ
′
i

]
3 . (4.78)

The other partial derivatives with respect to the angles produce similar terms. Specif-
ically

∂ϕ′
i

∂ϑ′
1

= [
r ′
i × grad′

i ϕ
′
i

]
1 . (4.79)

and
∂ϕ′

i

∂ϑ′
2

= [
r ′
i × grad′

i ϕ
′
i

]
2 (4.80)

The product m i
(−grad′

iϕ
′
i

)
is the (external) force acting on the i th particle. And

the cross product of the position vector r ′
i of the i th particle with this force is the

torque, about the CM, due to this force. We shall designate this torque as −→γ i. Then

−→γ i = −r ′
i × grad′

i

(
m iϕ

′
i

)
. (4.81)

If we sum over all parts making up the rigid body we have the total torque, from
external conservative forces, acting on the rigid body as

−→γ =
∑

i

−→γ i = −
∑

i

r ′
i × grad′

i

(
m iϕ

′
i

)
. (4.82)

With (4.78)–(4.80) and (4.69), Eq. (4.82) becomes

−→γ = −
[
|x1〉 ∂

∂ϑ′
3

+ |x2〉 ∂

∂ϑ′
2

+ |x3〉 ∂

∂ϑ′
3

]
Φ ′

rot. (4.83)

Then the components of −→γ are

γλ = −∂Φ ′
rot

∂ϑλ
for λ = 1, 2, 3. (4.84)
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We have, therefore succeeded in our task. In the Eq. (4.73) and the |x3〉 −
component r ′

i3 = r ′
i cosα′

i we have the transformation of the potential ϕ′
i from

position to angular coordinates. And from (4.84) we have the components of the
torque, which is the equivalent of the force for rotational motion. We now have the
Lagrangian L ′

rot

(
ϑ, ϑ̇

)
and can proceed to obtain the Hamiltonian and the canonical

equations.

4.5.4 Rotational Canonical Equations

From (4.67) and (4.72) the Lagrangian for rotation of a rigid body about the CM is

L ′
rot = 1

2
Iμϑ̇

′2
μ − Φ ′

rot (ϑ) , (4.85)

and the components of the canonical (angular) momenta P ′
ϑμ

are

P ′
ϑμ

= ∂L ′
rot

∂ϑ̇′
μ

= Iμϑ̇
′
μ = Iμω

′
μ (4.86)

with no sum on μ. In (4.86) we have used the definition of ω′
μ from (4.40). The

Hamiltonian H′
rot, in the body system, is then

H′
rot = 1

2

∑

μ

P ′2
ϑμ

Iμ
+ Φ ′

rot (ϑ) , (4.87)

where we have included the summation sign because the index μ appears three times
in the sum.

From (4.87) the canonical equations are

∂

∂P ′
ϑμ

H′
rot = P ′

ϑμ

Iμ
= d

dt
ϑ′

μ, (4.88)

with no sum on μ, and
∂

∂ϑ′
μ

H′
rot = − d

dt
P ′

ϑμ
. (4.89)

Then (4.88) is
d

dt
ϑ′

μ = P ′
ϑμ

Iμ
, (4.90)

or
P ′

ϑμ
= Iμω

′
μ, (4.91)
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which is simply the definition of components of the canonical angular momenta in
terms of the angular velocities. Because the Iμ are generally distinct for each μ, the
angular momentum is generally not parallel to the angular velocity dϑ′

μ/dt .
Using (4.44) the time derivative in Eq. (4.89) is

d

dt
P ′

ϑμ
=

⎡

⎣
Ṗ ′

ϑ1
Ṗ ′

ϑ2
Ṗ ′

ϑ3

⎤

⎦ +
⎡

⎣
−ω′

3 I2ω
′
2 + ω′

2 I3ω
′
3

ω′
3 I1ω

′
1 − ω′

1 I3ω
′
3−ω′

2 I1ω
′
1 + ω′

1 I2ω
′
2

⎤

⎦

=
⎡

⎣
Ṗ ′

ϑ1 − ω′
3 I2 ω′

2 + ω′
2 I3ω

′
3

Ṗ ′
ϑ2 + ω′

3 I1 ω′
1 − ω′

1 I3ω
′
3

Ṗ ′
ϑ3 − ω′

2 I1 ω′
1 + ω′

1 I2ω
′
2

⎤

⎦ . (4.92)

And with (4.84) we have the left hand side of (4.89) as

∂

∂ϑ′
μ

H′
rot = ∂

∂ϑ′
μ

Φ ′
rot = −γ′

μ.

The canonical equation (4.92) is then

d

dt
P ′

ϑμ
=

⎡

⎣
Ṗ ′

ϑ1 − ω′
3 I2 ω′

2 + ω′
2 I3ω

′
3

Ṗ ′
ϑ2 + ω′

3 I1 ω′
1 − ω′

1 I3ω
′
3

Ṗ ′
ϑ3 − ω′

2 I1 ω′
1 + ω′

1 I2ω
′
2

⎤

⎦ =
⎡

⎣
γ′
1

γ′
2

γ′
3

⎤

⎦ . (4.93)

If we now introduce (4.91) into (4.93) we have

⎡

⎣
γ′
1 − I1ω̇′

1 + ω′
3 I2ω

′
2 − ω′

2 I3ω
′
3

γ′
2 − I2ω̇′

2 − ω′
3 I1ω

′
1 + ω′

1 I3ω
′
3

γ′
3 − I3ω̇′

3 + ω′
2 I1ω

′
1 − ω′

1 I2ω
′
2

⎤

⎦=

⎡

⎣
0
0
0

⎤

⎦ . (4.94)

The set of Eq. (4.94) is traditionally referred to simply as the Euler Equations for
rotational motion.

Our use of the indices 1, 2, 3 for the basis vectors has been for our use of the
Dirac transformation methods. Wemay always revert to the more common Cartesian
coordinates using X,Y, Z and x, y, z if we choose.

The sets of Eqs. (4.90) and (4.93) are the canonical equations for the angles and
the angular momenta. The Euler Equations (4.94) are a combination of these canoni-
cal equations. These are all written without constraints. We realize that the canonical
equations come from Hamilton’s variational principle and that the constraints may,
therefore, be easily introduced into these equations through use of Lagrange multi-
pliers, which may be functions of the time.

We must be careful in treating any problem involving rotational motion. Because
of the nonlinear coupling among the angular velocities revealed in the Euler Equa-
tions, we cannot expect our intuition to be reliable regarding the motion of rotating
bodies. And in the Euler Equations the angular velocities are referenced to the basis
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fixed in the rotating body, rather than to the external system fixed in space. We must
be aware of this in any direct application of the Euler Equations. Our measurements
are seldom made directly on these angular velocities (see exercises).

Inmany applications to simple geometrical shapes, such as diskswith fixed axes or
spheres, it may be simplest to begin with the Hamiltonian referred to a fixed external
basis and obtain the canonical equations aswe have in the preceding chapter.Wemust
only keep our wits about us. Thinking in terms of equations is a form of intuition.

Example 4.5.1 (Ball rolling on a rotating Turntable) A ball of radius a and mass
m rolls on a turntable, which has a constant angular velocity

−→
Ω about the vertical

axis of the fixed system. We have illustrated the situation in Fig. 4.4. What is the
trajectory of the ball as seen in the stationary system? That is, if we look vertically
downward on the table and ignore the fact that the turntable is rotating, what is the
geometric figure that we see? It is easiest to consider that the turntable is made of
some dark material making it possible to ignore the motion. The ball may then be a
white (super) ball that rolls without slipping on this turntable.

This problemwould be notoriously difficult if it were not for somemajor simplifi-
cations. The torque on the ball comes from the reaction to the rolling constraint. We,
therefore, do not require a separate evaluation of this torque. The rolling constraint
may also, of course, be written in the fixed basis. The external gravitational force is
only in the vertical direction, so the external potential is a constant and may be taken
to be zero. And, finally, for the spherical ball, we may write the kinetic energy in the
fixed basis (see below).

We choose the origin of our fixed basis (coordinate system) to be the center of the
turntable. If we designate the point on the turntable which is in contact with the ball
as rp the rolling constraint is

d

dt
−→r p = d

dt
−→
R + −→ω × −→

d ,

Fig. 4.4 Basic vectors describing a ball rolling without slipping on a rotating turntable
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in which the term −→ω × −→
d is represented in the fixed system (see (4.53)). The point−→r p is not fixed in space, but is a point on the turntable and has the velocity of the

point on the turntable. Noting that the point

−→r p = −→
R + −→

d

is, simultaneously, a point on the rigid body and a point on the turntable, the velocity
of −→r p is

−→
Ω × −→r p. That is

d

dt
−→r p = −→

Ω ×
(−→
R + −→

d
)

= −→
Ω × −→

R ,

since
−→
d is parallel to the turntable angular velocity

−→
Ω . The rolling constraint is then

−→
Ω × −→

R = d

dt
−→
R + −→ω × −→

d

represented in the fixed system.
The abstract form of the kinetic energy of rotation is

Trot = 1

2
〈ω| I |ω〉 .

For a sphere the elements of the inertia tensor are I0δαβ . For the sphere then

Trot = 1

2
I0

〈
ω

∣∣xμ

〉 〈
xμ

∣∣ ω
〉
,

which we can show is

Trot = 1

2
I0 〈ω |Xλ〉 〈Xλ| ω〉

in the fixed basis (see exercises). We then have the complete representation of the
dynamics in the fixed system.

Written in the stationary system the terms of interest are the inertia tensor

I =
⎡

⎣
I0 0 0
0 I0 0
0 0 I0

⎤

⎦ ,

the angular velocity of the turntable

−→
Ω =

⎡

⎣
0
0
Ω

⎤

⎦ ,
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the angular velocity of the ball

−→ω =
⎡

⎣
ω1

ω2

ω3

⎤

⎦ ,

the point of contact between the ball and the turntable

−→
d =

⎡

⎣
0
0
−a

⎤

⎦ ,

and the vector to the CM

−→
R =

⎡

⎣
X
Y
Z

⎤

⎦ .

The rolling constraint is then

⎡

⎣
−ΩY
ΩX
0

⎤

⎦ =
⎡

⎣
Ẋ − aω2

Ẏ + aω1

0

⎤

⎦ , (4.95)

which is two constraint equations

− ΩY = Ẋ − aω2 (4.96)

ΩX = Ẏ + aω1.

These may be written as time derivatives of functions g1 = g 2 = 0. Then

dg1
dt

= 0 = ΩY + Ẋ − aω 2

dg2
dt

= 0 = −ΩX + Ẏ + aω1. (4.97)

Calling the rotation angle of the turntable Θ3,

Ω = Θ̇3 = dΘ3

dt
,

and writing

ωμ = dϑμ

dt
,
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the Eq. (4.97) become

dg1 = 0 = dX + YdΘ3 − adϑ2

dg2 = 0 = dY − XdΘ3 + adϑ1. (4.98)

We now associate the Lagrange multipliers λ1 and λ2 with the constraints g1 = 0
and g2 = 0 respectively. We can pick off the partial derivatives of g1 and g2 with
respect to the coordinates from (4.98). When introduced into the canonical equations
the Lagrange multipliers λ1 and λ2 will appear as variable (time dependent) forces
resulting in torques acting on the ball.

Since there is no potential energy, we can begin by immediatelywriting theHamil-
tonian as

H = T

= TCM + TRot + TTurntable

= 1

2m

(
P2
1 + P2

2

) + 1

2I0

(
P2

ϑ1
+ P2

ϑ2
+ P2

ϑ3

) + 1

2IT
P2

Θ, (4.99)

where TTurntable is the kinetic energy of the turntable. The components of the linear
momenta of the CM of the ball are P1 and P2. Pϑμ

is the angular momentum of the
ball for rotation about the axis

∣∣Xμ

〉
, since we have expressed the kinetic energy of

the ball in the fixed basis. And PΘ is the angular momentum of the rotating turntable.
IT is the moment of inertia of the turntable.

Because the angular velocity of the turntable is constant the kinetic energy of the
turntable is constant.

The canonical equations with constraints are then

Ṗ1 = λ1,

Ṗ2 = λ2,

Ṗϑ1 = aλ2,

Ṗϑ2 = −aλ1,

Ṗϑ3 = 0,

ṖΘ = λ1Y − λ2X, (4.100)

and

Ẋ = 1

m
P1,

Ẏ = 1

m
P2,

ϑ̇1 = 1

I0
Pϑ1 ,
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ϑ̇2 = 1

I0
Pϑ2 ,

ϑ̇3 = 1

I0
Pϑ3 ,

Θ̇3 = 1

IT
PΘ, (4.101)

and the constraint Ω = constant is

Θ̇3 = Ω. (4.102)

We note that the equations Ṗϑ1 = aλ 2 and Ṗϑ2 = −aλ1 are, in fact, the first
and second of the Euler Equations (4.94). All components of the inertia tensor are
identical for the sphere. so the coupling terms in (4.94) vanish and the torques are
aλ2 and −aλ1.

We can eliminate the λs among the first four equations of (4.100) resulting in

Ṗ1 + 1

a
Ṗϑ2 = 0

Ṗ2 − 1

a
Ṗϑ1 = 0. (4.103)

Multiplying the original rolling constraint equations by I0 we get

Pϑ2 = I0ω2 = I0
a

ΩY + I0
a
Ẋ

Pϑ1 = I0ω1 = I0
a

ΩX − I0
a
Ẏ (4.104)

The Eqs. (4.103) and (4.104) are of a form which makes them soluble in the complex
plane. The procedure we follow here is somewhat standard.

We begin by defining the complex valued quantities

Z = X + iY

PZ = P1 + i P2
LZ = Pϑ1 + i Pϑ2 (4.105)

We then introduce the imaginary quantity i = √−1 into the Eq. (4.103) to obtain.

Ṗ1 − i
1

a
i Ṗϑ2 = 0

i Ṗ2 − i
1

a
Ṗϑ1 = 0. (4.106)
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And we then add the Eq. (4.106) to get

ṖZ − i
1

a
L̇Z = 0. (4.107)

In a similar fashion we introduce the imaginary quantity i into Eq. (4.104) to obtain

i Pϑ2 = I0
a

ΩiY + i
I0
a
Ẋ

Pϑ1 = I0
a

ΩX + i
I0
a
iẎ , (4.108)

which we add to get

LZ = I0
a

ΩZ + i
I0
a
Ż . (4.109)

We then have the differential equations (4.103), (4.107) and (4.109) along with the
definitions (4.105) as the equations we must solve.

We may integrate (4.107) immediately to give

PZ − i
1

a
LZ = constant. (4.110)

With the first two equations of (4.101) and of (4.105), the Eq. (4.110) becomes

Ż = i
1

ma
LZ + K , (4.111)

where K is a complex valued constant. With (4.109) Eq. (4.111) becomes

Ż = i

(
I0Ω

ma2 + I0

)
Z +

(
ma2

ma2 + I0

)
K

= iΩ0Z +
(
ma2Ω0

Ω I0

)
K , (4.112)

where

Ω0 = I0Ω

ma2 + I0
(4.113)

The solution to (4.112) is
Z = Z̃ exp (iΩ0t) + C, (4.114)

where Z̃ and C are complex constants. Inserting (4.114) into (4.112) we find

C = i
ma2

I0Ω
K .
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Then

Z = Z̃ exp (iΩ0t) + i
ma2

I0Ω
K . (4.115)

The coordinates X and Y are the real and imaginary parts of Z (see (4.105)). Identi-
fying the real and imaginary parts of (4.115) we have

X = Z̃r cosΩ0t − Z̃ i sinΩ0t − Ki
ma2

I0Ω
(4.116)

Y = Z̃r sinΩ0t + Z̃ i cosΩ0t + Kr
ma2

I0Ω
. (4.117)

We now have four arbitrary constants to evaluate.We find these from the initial values
of position and velocity of the ball. The velocities are

Ẋ = −Z̃rΩ0 sinΩ0t − Z̃ iΩ0 cosΩ0t (4.118)

Ẏ = Z̃rΩ0 cosΩ0t − Z̃ iΩ0 sinΩ0t (4.119)

Let us choose to release the ball from the point Y = Y0 and X = 0 with the velocities
Ẋ = V0 and Ẏ = 0 in the fixed basis. Then we have the equations

0 = Z̃r − Ki
ma2

I0Ω
and Y0 = Z̃ i + Kr

ma2

I0Ω

and
V0 = −Z̃ iΩ0 and 0 = Z̃rΩ0

to solve. The solution to these four equations is

Zr = 0, Z i = − V0

Ω0
= Ω

Ω0
Y0, Kr = I0Ω

ma2

(
Y0 + Ω

Ω0
Y0

)
and Ki = 0.

Then

X = V0

Ω0
sinΩ0t (4.120)

and

Y = − V0

Ω0
cosΩ0t +

(
Y0 + Ω

Ω0
Y0

)
. (4.121)

Since the ball never slips, wemust release the ball at rest with respect to the turntable.
Then V0 = ΩY0, which is the (tangential) velocity of the point on the turntable at
which we release the ball. Then (4.120) and (4.121) become
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X = Ω

Ω0
Y0 sinΩ0t (4.122)

and

Y = − Ω

Ω0
Y0 cosΩ0t +

(
Y0 + Ω

Ω0
Y0

)
. (4.123)

From (4.122) and (4.123) here we find that

X2 +
(
Y − Y0 − Ω

Ω0
Y0

)2

=
(

Ω

Ω0
Y0

)2

. (4.124)

Using the moment of inertia of a sphere I0 = 2ma2/ 5 we have Ω/Ω0 = 7/2 and
the trajectory (4.124) becomes

X2 +
(
Y − Y0 − 7Y0

2

)2

=
(
7Y0
2

)2

, (4.125)

which is a circle with radius 7Y0/2 centered at the point with coordinates X = 0 and
Y = Y0 + 7Y0/2. The velocities are

Ẋ = ΩY0 cosΩ0t (4.126)

Ẏ = ΩY0 sinΩ0t. (4.127)

The speed of the ball on the circle is then a constant equal to ΩY0. And at time t = 0
the velocity in the Y−direction is zero while the velocity in the X−direction isΩY0.

To observe this motion wemust choose values ofΩ and Y0 such that Y0 plus twice
the radius of the trajectory or 8Y0 is less than the radius of the turntable. We require
then a reasonable turntable angular velocity Ω and a low enough value of Y0 that a
full trajectory of the ball will remain on the turntable.

In Fig. 4.5 we have plotted the trajectory of the ball in the fixed basis. The initial
conditions are those we chose above. We have also shown the directions of motion
of the turntable and of the ball.

As we pointed out in this example, although it seems as though we did not
require use of the full Euler Equations in (4.94), they are present in terms based
on our understanding of the torques in terms of undetermined multipliers. In this
example these torques are functions of the time, varying as the ball moves on the
turntable. As we may also have noted, the Hamiltonian in (4.99) separates into a CM
contribution (1/2m)

(
P2
1 + P2

2

)
and a contribution from the motion about the CM

(1/2I0)
(
P2

ϑ1
+ P2

ϑ2
+ P2

ϑ3

)
.4

4This example particularly reveals the power of the Hamiltonian formulation. Application of New-
ton’s Laws directly in vector form place the unknown force between ball and table as central.
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Fig. 4.5 Trajectory of a ball
rolling without slipping on a
rotating turntable

4.6 Summary

In this chapter we developed the principles necessary for us to treat real physical
problems that are more complex than those involving classical point particles, rods
or pendula. Any treatment of Analytical Mechanics would be incomplete without
this study. And for the engineer this is a particularly important step.

To simplify the treatment of the rotating coordinate system in the solid body and
the development of the final form of the canonical equations for the solid body, as
well as to transform some critical terms to the fixed basis, we introduced the vector
notation and the transformation theory of Dirac. Many readers may have already
encountered this vector formulation in studies of the quantum theory and some will
encounter it later. This is, at a minimum, a very important part of the mathematics of
physics. And the use of projectors in the transformation of coordinates, as we have
done here, introduces a simplicity that is invaluable in the treatment of solid bodies.

We presented as brief a development of the Dirac vectors and transformation
theory as possible,while still providingwhatwas needed for ourwork. This appears to
differ from the original introduction by Dirac [see [18], Sects. 6 and 16], in which the
development was directed toward state vectors in quantum theory. But the difference
is only in the application. The wave function of quantum mechanics is a space and
time representation of the (abstract) state vector of the quantum system.

Our derivation of the equations of motion for the rigid solid body was entirely
in the context of the canonical equations of Hamilton and, therefore, based on a
variational principle. In the final analysiswe presented the canonical equations for the
coordinates and the momenta, which we then combined to give the Euler Equations
for rotationalmotion. There is nothing new in the physics here. But there is a naturally
occurring nonlinear coupling among the angular velocities, which is the source of
counterintuitive results. The practitioner should always seek understanding based on
the mathematical laws, rather than intuition based on linear motion.

We have avoided many of the standard related topics in rigid body motion. For
examplewe have neglected the Euler angles, which are helpful, although unnecessary
in applications. And we have chosen not to discuss the motion of the top, which is
interesting as an application. We have also avoided any explicit discussion of the
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observational consequences of the termω′ × r ′
i which appears in (4.48) and in matrix

form in (4.44). This term results in a kinetic reaction contribution to the acceleration,
which is termed the Coriolis force. We have simply decided to concentrate on a
presentation of the kinematics and Analytical Mechanics of solid and rigid bodies.

4.7 Exercises

4.1. In the text we obtained the matrices (operators) for infinitesimal rotations about
three basis vectors as operators.

R1
(
δϑ′

1

) =⇒
⎡

⎣
1 0 0
0 1 −δϑ′

1
0 δϑ′

1 1

⎤

⎦ ,

R2
(
δϑ′

2

) =⇒
⎡

⎣
1 0 δϑ′

2
0 1 0

−δϑ′
2 0 1

⎤

⎦ ,

and

R3
(
δϑ′

3

) =⇒
⎡

⎣
1 −δϑ′

3 0
δϑ′

3 1 0
0 0 1

⎤

⎦ .

Sow that these commute by carrying out the calculation. Pick any two matrices you
wish for this demonstration.

4.2. The kinetic energy of rotation of a rigid body has the abstract form

Trot = 1

2
〈ω| I |ω〉

If we project this onto the basis fixed in the body using

Px = ∣∣xμ

〉 〈
xμ

∣∣ = 1

we have

Trot = 1

2
〈ω ∣∣xμ

〉 〈
xμ

∣∣ I |xν〉 〈xν | ω〉 .

Show that if the rigid body is a sphere this kinetic energy has the same form repre-
sented in the fixed system with basis

{∣∣Xμ

〉}
.

4.3. A spinning disk of radius a is lowered onto a table. The disk is rotating about the
axis parallel to the table at an initial angular velocity ω0. The disk begins slipping and
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eventually starts to roll. Study the motion and determine the point at which rolling
begins.

Recall that the horizontal kinetic frictional force has a magnitude

ffriction = μkmg.

This is the horizontal force while the disk is slipping. In the Hamiltonian formulation
this appears as a Lagrange multiplier. That is

ṗ� = −∂H
∂q�

+
n∑

k=1

λk (t)
∂gk

∂q�

.

4.4. Consider the disk of mass M and radius a rolling down a hill, as shown below.

Obtain the description of themotion by solving the canonical equations for r = x (t).

4.5. Consider a small ball of mass m is rolling inside of a cone with axis along the
z−axis of cylindrical coordinates and defined by the angle α from the central axis.
The situation is shown here
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Obtain the canonical equations for the motion of the ball. The fact that the ball moves
on the inner surface of the cone introduces a constraint. And therewill be three rolling
constraints corresponding to the three cylindrical coordinates.

4.6. In the figure below we have drawn a small right circular cylinder of radius a
and length � rolling without slipping on a larger right circular cylinder with radius
A > a and length ≥ �. The larger cylinder is fastened to the laboratory bench and
does not move.

The fixed coordinate system is (X,Y, Z). The unit vector êZ is, according to the
right hand system, along the axis of the larger (fixed) cylinder and oriented out of
the figure. The system (x, y, z) is fixed in the smaller cylinder with the unit vector
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êz along the axis of the small cylinder and out of the figure. The unit vectors êΘ and
êϑ are then parallel and positive in the direction of increasing Θ and ϑ.

We carefully balance the smaller cylinder along the top of the larger cylinder at
X = 0 and then set it in motion with a very small nudge. At what point (value of Θ)
does the smaller cylinder lose contact with the larger?

4.7. In the figure below we have drawn a small solid sphere of radius a rolling
without slipping on a larger sphere of radius A > a. The larger sphere is fastened to
the laboratory bench and is stationary.

We carefully balance the smaller sphere at the top of the larger sphere and then
set it in motion with a very small nudge. The smaller sphere then rolls down a great
circle of the larger sphere, which is in the plane of the figure. We choose spherical
coordinate systems for both spheres. The angles Θ and ϑ are the azimuthal angles.
The polar angle φ = π/2, which is the plane of motion. The unit vectors êΘ and êϑ

are then parallel and positive in the direction of increasing Θ and ϑ.
At what point (value of Θ) does the smaller sphere lose contact with the larger?

4.8. Here we shall seek an understanding of the rather mysterious motion of the
toy gyroscope. This toy is not really a gyroscope. A real gyroscope pivots about a
fixed point at the CM of the gyroscope. The toy gyroscope is actually a top, because
it pivots about a point which is not the CM. In seeking an understanding we shall
approach the problem by inserting the motion we have observed and asking whether
or not this is consistent with Euler’s Equations for rotational motion.

We have drawn a toy gyroscope in the figure below. The mass of the gyroscope
flywheel ism. The torque about the pivot point is γ and is equal to the product ofmg
and the moment arm from the center of mass of the flywheel to the the pivot point.
The flywheel of the toy gyroscope rotates around the z axis with an angular velocity
ω0 and the precession velocity is ωp. The fixed coordinates are (X,Y, Z). The body
coordinates are (x, y, z). Initially the axes Z and z are aligned.
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The two angular velocities: ω0 and ωp in this figure are measurable. The angular
velocity of the flywheel has components ωx, ωy, and ωz, which we have identified as
ω0. The angular velocityω0 may bemeasured stroboscopically before the experiment.
The angular velocity of precession ωp is the projection of ωx and ωy on the fixed axis
Y as we have shown in the drawing here.

In the experiment we observe that the toy gyroscope precesses around the vertical
axis Y . This is counter-intuitive. It seems to float as it precesses rather than falling
over as we may expect.

Obtain the relationship between the angular velocity of precession ωp and the
angular velocity of the flywheel about the Z−axis ω0.

4.9. The rolling ball pendulum is a pendulum in which a bowling ball (of mass M
and radius a) may be either suspended by a wire of length � and allowed to swing
through an arc, or removed from the suspending wire and allowed to roll on a circular
track of radius R = � constructed to follow the same path as that of the swinging
pendulum. We have drawn the rolling ball pendulum in the figure here.
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Experimentally we can measure the period in each case and compare them. The
fact of the matter is that we find two periods. The rolling period is slightly longer than
that of the simple pendulum. Almost all students initially claim that the difference
is the result of friction. But this is not the case if the ball rolls on the track, because
rolling on a smooth surface is frictionless.

Analyze the two situations and find the difference in the two periods. show that
there is no friction from rolling.

4.10. In the figure below we have a disk, which is free to rotate without friction about
the central axis, and has a rigid-rod pendulum affixed to the rim of the disk.

Obtain the angular velocities in terms of the canonical momenta. Then turn to
the Euler–Lagrange Equations for the study of small vibrations. In the final analysis
simplify to the case in which a = b.

4.11. We have devised a sort of toy we designate as a spring pendulum, which we
have drawn in the figure here.
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In the spring pendulum we have a rigid rod of negligible mass and of length R
mounted on a bearing about which it rotates without friction. A metal ball of mass
m with a hole drilled through it slides also without friction on the rod. To the ball we
have affixed a spring, which is solidly mounted to the end of the rod.

Study the motion of this toy. Obtain the canonical and the Euler–Lagrange equa-
tions. Seek a numerical solution if software is available.

In the figures below we have plotted results from the numerical solution of the
nonlinear canonical equations describing the spring pendulum.
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4.12. In American football the forward pass is a critical part of the game. And many
children, playing touch football in the backyard or on school playgrounds, dream of
learning how to throw that ideal spiral pass, in which the football does not tumble
awkwardly but seems to move like a bullet in slow motion to the receiver. Here we
shall analyze the motion of the passed football. This is an interesting problem not
only for those who have tried to throw that splendid spiral pass. It is also interesting
for the spectator in the stands, who believes a certain motion was observed, which
is not physically possible.

Below is a picture of an American football and the body coordinates.

The moments of inertia are chosen as

Ix = Iy = I ′

Iz = I

Study themotion of the spiral pass, and the possiblewobble that destroys the beautiful
spiral.



Chapter 5
Hamilton–Jacobi Approach

One of the principal objects of theoretical research in any department of knowledge is to
find the point of view from which the subject appears in its greatest simplicity.1

Josiah Willard Gibbs

5.1 Introduction

In our first chapter on the history of Analytical Mechanics we discussed the two
essays by Hamilton in which he introduced the Principal Function and showed that
Analytical Mechanics can be expressed in terms of a pair of partial differential
equations and a subsequent set of algebraic equations. This was unquestionably a
mathematical tour de force. This is an elegant and simply beautiful mathematical
formulation of Analytical Mechanics.

Jacobiwas critical ofHamilton’s treatment, but not of the basic idea, which he held
in high esteem. He generalized Hamilton’s approach to include dissipative systems.
He reduced Hamilton’s two partial differential equations to a single equation. And he
pointed to the simplicity of ordinary differential equations, which could usually be
formulated from a partial differential equation. He found simplicity without losing
the generality.

In this chapter wewill followwhat was essentially Jacobi’s path to a simplification
of Hamilton’s idea. Our approach will be more modern than Jacobi’s original and,
we hope, more easily understood.

1We introduce this chapterwith the quote fromGibbs regarding simplicity, because that is the subject
of this chapter. Lanczos begins his chapter with a quote from Exodus 3:5, which is appropriate, but
intimidating. Exodus 3:5 begins with “Do not come near”.
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We will not reduce the Hamilton–Jacobi approach to formulae that can be memo-
rized. Rather we will keep Jacobi’s generator before us in each application and work
carefully with the separation of the Hamiltonian in applications.

We begin with a review of Hamilton’s idea in modern notation.

5.2 Hamilton’s Idea

In the first of his two essays, that we outlined in our historical discussion, Hamilton
introduced the Principal Function S

S =
∫ t

0
L (q, p) dt

=
∫ t

0

[
n∑

i

piq̇i − H (q, p)

]
dt, (5.1)

using modern notation qj for the generalized coordinates at an arbitrary time. This
is also known as the canonical integral [see [65], pp. 168–169]. In the second essay
he obtained the two partial differential equations

∂S

∂t
+ H

(
∂S

∂q1
, . . . , q1, . . .

)
= 0 (5.2)

and
∂S

∂t
+ H

(
∂S

∂e1
, . . . , e1, . . .

)
= 0, (5.3)

from a variation of (5.1). Here ei are the values of the generalized coordinates qi at
the initial time.2 The Function H, which we now call the Hamiltonian, appeared in
the second essay as the result of a Legendre transformation of the Lagrangian.

The solution for S (q1, . . . , e1, . . . , t) could then be used to obtain algebraic equa-
tions for the canonical momenta as

pi = ∂S

∂qi
(5.4)

and the Hamiltonian as

H = −∂S

∂t
. (5.5)

2These equations actually appeared in the first essay in a slightly different form.



5.2 Hamilton’s Idea 169

With this approach Hamilton had shown that the Analytical Mechanics of Lagrange
could be reduced to obtaining the solution of a pair of partial differential equations
for the Principal Function S and a subsequent set of algebraic equations.

In his derivation, however, Hamilton required that H = constant (see (1.14) and
(1.15)). So his formulation applied only to conservative systems.

5.3 Jacobi’s Contribution

Jacobi had no intention of detracting from Hamilton’s beautiful theory. But he was
rather critical of Hamilton’s failure to include nonconservative systems, for whichH
is not constant, from the outset. And he found it curious that Hamilton had claimed
that thePrincipal Function Smust satisfy two, essentially identical, partial differential
equations, since it was easy to show that only one was sufficient. He also pointed out
that little was gained through reduction to a single partial differential equation, since
the theory of partial differential equations showed that a partial differential equation
for a function such as S can often be reduced to a system of ordinary differential
equations, which do not contain the original function S itself. This set of ordinary
differential equations is easier to solve than the original partial differential equation.

Wemust, however, be careful in our evaluation of any shortcomings in Hamilton’s
essays. Michiyo Nakane and Craig Fraser point out that Jacobi may not have read the
entirety of Hamilton’s essays, concentrating on the theory and not the applications
[85]. Nevertheless, buried in Jacobi’s analysis and critique of Hamilton’s theory lies
a way around the difficulties in application of the theory and a deeper appreciation
of the philosophical basis of the science of mechanics.

In Jacobi’s first paper of 1837 dealing with Hamilton’s theory he showed that the
first of Hamilton’s equations (5.2) follows from a variation of the Principal Function
even for nonconservative systems [52]. In the second paper of 1837 he showed that
only a single partial differential equation for the Principal Function is required [53].
The argument, which we outline in Sect. 1.10.2, Jacobi presents as a theorem, known
now as Jacobi’s Theorem. It is this theorem that frequently appears alone in textbooks
as the Hamilton–Jacobi method.

Jacobi traditionally introduced the new methods into his lectures as soon as prac-
ticable. Jacobi’s treatment of the second partial differential equation for S (5.3) we
find in his lectures on dynamics given in the winter semester of 1842−43 at the
University of Königsberg [[54], Lecture 19, pp. 153–157]. This is carried out with
clarity and Jacobi’s traditional rigor. The proof that we can drop the second Eq. (5.3)
appears here and is actually not difficult. The final solution for S then depends on
the initial conditions through the required arbitrary constants.

After showing that Hamilton’s theory was not limited to forms of the potential
(then knownas the force function) thatwere independent of the time, and that only one
partial differential equation (5.25) sufficed, Jacobi wrote (retaining the 19th century
spelling) [53]

http://dx.doi.org/10.1007/978-3-319-44491-8_1
http://dx.doi.org/10.1007/978-3-319-44491-8_1
http://dx.doi.org/10.1007/978-3-319-44491-8_1
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Hamilton scheintmir dadurch seine schöneEntdeckung in ein falsches Licht gesetzt zu haben,
ausserdem dass sie dadurch zu gleicher Zeit unnöthig complicirt und beschränkt wird. (It
seems to me that, through these limitations, Hamilton has presented his beautiful theory in
a false light, which has also simultaneously made the theory unnecessarily complicated and
limited.)

5.4 Time Dependence

Here we will show that the form of the Principal Function (canonical integral), when
the Lagrangian depends explicitly on the time, results also in Hamilton’s theory. The
theory is then not limited to a constant Hamiltonian.

If we have a systemwith n generalized coordinates and a Lagrangian that depends
explicitly on the time t we may, for mathematical convenience, choose to treat the
time simply as another generalized coordinate [see [65], pp. 185–189].3 That is
we consider that the time t is the (n + 1)st generalized coordinate qn+1. And in
the place of t we introduce a variable of integration t ′. That is dt = (

dt/dt ′
)
dt ′ and

q̇m = (
dqm/dt ′

)
/
(
dt/dt ′

) = q ′
m/q ′

n+1, where the prime indicates differentiationwith
respect to t ′. The Principal Function (5.1) is then

S =
∫ t′

0
L

(
q1, . . . , q n+1,

q ′
1

q ′
n+1

, . . . ,
q ′
n

q ′
n+1

)
q ′
n+1dt

′. (5.6)

If we define a new Lagrangian as

Ln+1 = L

(
q1, . . . , qn+1,

q ′
1

q ′
n+1

, . . . ,
q ′
n

q ′
n+1

)
q ′
n+1, (5.7)

then (5.6) becomes

Sn+1 =
∫ t′

0
Ln+1

(
q1, . . . , qn+1, q

′
1, . . . , q

′
n+1

)
dt ′, (5.8)

where the designation Sn+1 indicates dependence of the Lagrangian on qn+1 and
integration with respect to t ′. The corresponding Hamiltonian, which we call Hn+1,
has then n + 1 generalized coordinates. Since Ln+1 does not depend explicitly on t ′,
we have dH/dt ′ = 0.

Because Sn+1 in (5.8) has the samemathematical form as (5.1), a variation of (5.8)
will produce the same results as a variation of (5.1) except that now the time variable
is t ′ and there are additional canonical variables qn+1 and pn+1.

3Time is another coordinate in a more fundamental sense relativistically. Here we are considering
only a mathematical identification.
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The canonical momentum pn+1 is defined as

pn+1 = ∂Ln+1

∂q ′
n+1

From (5.7) this canonical momentum is

pn+1 = L

(
q1, . . . , qn+1,

q ′
1

q ′
n+1

, . . . ,
q ′
n

q ′
n+1

)
+ q ′

n+1

n+1∑ ∂L

∂q̇i

∂

∂q ′
n+1

(
q ′
i

q ′
n+1

)

= L (q1, . . . , qn, q̇1, . . . , q̇n, t) −
n∑

piq̇i, (5.9)

where we have used qn+1 = t in the Lagrangian. Then

pn+1 = −H (q, p, t) , (5.10)

the original Hamiltonian of n variables and the time.
Wemay obtain the Hamiltonian written for n + 1 coordinates and momenta using

a Legendre transformation. The result is

Hn+1 =
n+1∑

i

(
∂Ln+1

∂q ′
i

)
q ′
i − L n+1

=
n+1∑

i

piq
′
i − L n+1 (5.11)

Since the basic form of the Lagrangian is the difference of kinetic and potential
energies, we are able to also obtain a general expression for Ln+1. The kinetic energy
is quadratic in the velocities q̇m. Therefore the Lagrangian Ln+1 involves products
of the form

(
q ′
m/q ′

n+1

)2
q ′
n+1 = q ′

m

(
q ′
m/q ′

n+1

) = q ′
m q̇m for m ≤ n and products of the

potential function V (q), which is independent of the velocities, and q ′
n+1. That is

Ln+1 is of the form

Ln+1 =
n∑

i

aiq̇iq
′
i − V (q) q ′

n+1, (5.12)

where the coefficients ai are possibly functions of the coordinates qi. From (5.12)
we see that

n+1∑

i

(
∂Ln+1

∂q ′
i

)
q ′
i =

n∑

i

aiq̇iq
′
i − V (q) q ′

n+1

= Ln+1, (5.13)
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which is also a result of Euler’s theorem for homogeneous functions. Since pi =
∂Ln+1/∂q ′

i for all i , (5.13) is
n+1∑

i

piq
′
i = Ln+1. (5.14)

With (5.14) Eq. (5.11) becomes
Hn+1 = 0. (5.15)

Our transformation of the time t to the coordinate qn+1 then results in a Hamiltonian
equal to zero and a canonical integral

Sn+1 =
∫ t′

0

n+1∑

i

piq
′
i dt

′. (5.16)

If (5.15) stood alone all coordinates and momenta qi and pi for 1 ≤ i ≤ n + 1 would
be constants, which is not generally possible. But (5.15) is constrained by (5.10). If
we write this constraint as

K = pn+1 + H (q, p, t) = 0 (5.17)

with ∫ t′

0
Kdt ′ = 0, (5.18)

our canonical integral (5.16) becomes

Sn+1 =
∫ t′

0

(
n+1∑

i

piq
′
i − K

)
dt ′. (5.19)

This is the same reasoning as used in the introduction of Lagrange undetermined
multipliers, except that we have no need for a multiplier here. The form we have
obtained for the canonical integral (5.19) is the same as the original canonical integral
(5.1) with K = pn+1 +H (q, p, t) taking the role of the Hamiltonian.

The variable t ′ is a dummy of integration. If we change t ′ to τ , retain the prime
to indicate now differentiation with respect to τ , and drop the subscript on S, (5.19)
becomes

S =
∫ τ

0

(
n+1∑

i

piq
′
i − K

)
dτ . (5.20)



5.4 Time Dependence 173

This form of the canonical integral is termed an extended form of the canonical
integral and is considered to be the most advanced form of the canonical integral.
The variation of (5.20) results in the standard canonical equations

dqi/dτ = ∂K/∂ pi
dpi/dτ = −∂K/∂qi

}
for 1 ≤ i ≤ n + 1 (5.21)

But there are now2n + 2 canonical variables.With the constraint (5.17) the canonical
equations (5.21) are

dqi/dτ = ∂H/∂ pi
dpi/dτ = −∂H/∂qi

}
for 1 ≤ i ≤ n (5.22)

and if we normalize the time τ such that dt/dτ = 1,

dqn+1/dτ = 1
dpn+1/dτ = −∂H/∂qn+1

}
. (5.23)

Our treatment of the time as an independent canonical coordinate has then pro-
duced a canonical integral in which the Hamiltonian K does not contain the time τ .
The treatment in terms of the 2n + 2 coordinates of this extended formulation is the
same as that of a conservative system. This results in Hamilton’s beautiful theory as
well, which was Jacobi’s point.

5.5 Hamilton–Jacobi Equation

In the Appendix we provide a detailed derivation of (5.2) including the possibility
of time dependence in the Hamiltonian and, therefore, in the Principal Function S.
Our approach there is to first find the total differential of the Principal Function dS.
In this we consider variations in the values of the coordinates and the velocities δq
and δq̇ at the time end points t1 and t2 as well as in the Lagrangian. We also consider
variations in the end point times, which we designate as Δt . The result is

dS =
[
∑

i

(piΔqi) − HΔt

]t2

t1

, (5.24)

with
Δqi = δqi + q̇iΔt

at each of the times t1 and t2. Because dS is a Pfaffian the terms Δqi and Δt are
differentials,
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dqi1 = Δqi (t1)

dqi2 = Δqi (t2)

and

dt1 = Δt (t1)

dt2 = Δt (t2) .

From here the equation for the Principal Function S follows as

∂S/∂t + H (∂S/∂q, q, t) = 0, (5.25)

with the initial values of the coordinates identified as constants α

qi1 = αi

in S and the initial momenta as

pi1 = −∂S/∂αi.

The nonlinear partial differential equation (5.25) is known as the Hamilton–Jacobi
Equation.

As we indicated above, we accept Jacobi’s proof that only a single partial differ-
ential equation is necessary. This emerges logically in our derivation, although we
make no pretense at Jacobi’s rigor.

We then have a complete formulation of Analytical Mechanics based on a sin-
gle partial differential equation, which is valid for time dependent Lagrangians and,
therefore, for time dependent Hamiltonians. These were Jacobi’s first points regard-
ing Hamilton’s development.

5.6 Canonical Transformation

To arrive at Jacobi’s point, that the partial differential equation (5.25) can be reduced
to a simpler set of ordinary differential equations, will take us down a longer path.

The first step on this path is to consider that the dynamical evolution of the system
may be considered as a transformation of the coordinates andmomenta.We call this a
canonical transformation because it is defined by the requirement that the canonical
equations are valid for each step. This will lead us to the concept of a generating
function, or generator, for the transformation, which satisfies a partial differential
equation. And our attention will become focused on obtaining the generator. For
many problems of interest in physics the equation for the generator is separable and
we obtain the set of ordinary differential equations we are seeking.
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In our development we use Edmund T. Whittaker’s notation [[125], p. 305] iden-
tifying the final coordinates and momenta with capital letters Q and P .

5.6.1 The Generating Function

The sets of coordinates and momenta before and after a canonical transformation,
(q, p) and (Q, P) respectively, will satisfy the canonical equations provided vari-
ations of the canonical integrals written for the initial and final coordinates and
momenta vanish. That is provided

δ

∫ t

0

[
∑

i

piq̇i − H (q, p, t)

]
dt = 0 (5.26)

and

δ

∫ t

0

[
∑

i

Pi Q̇i − H (Q, P, t)

]
dt = 0. (5.27)

In the second canonical integralH (Q, P, t) is the final Hamiltonian. The integrands
in (5.26) and (5.27) are not equal. The variations will still vanish, however, if the
integrands differ by the time derivative of an arbitrary function, which we shall call
F1 [cf. [80], pp. 233–236]. That is

∑

i

piq̇i − H (q, p, t) =
∑

i

Pi Q̇i − H (Q, P, t) + dF1

dt
, (5.28)

or
dF1 =

∑

i

pidqi −
∑

i

PidQi + [H (Q, P, t) − H (q, p, t)] dt (5.29)

The function F1 is the generating function or generator of the canonical transfor-
mation. From the form of the differential of F1 in (5.29) we see that F1 depends on
(q, Q, t). The Pfaffian of F1 is

dF1 =
∑

i

∂F1

∂qi
dqi +

∑

i

∂F1

∂Qi
dQi + ∂F1

∂t
dt. (5.30)

The generator F1 (q, Q, t) then links the initial configuration of the system, iden-
tified by the coordinates q, to the configuration at a later time identified by the
coordinates Q, with the requirement that the coordinates q and Q and their cor-
responding canonical momenta p and P satisfy the canonical equations. And we
obtain equations for canonical momenta pi, Pi, and for ∂F1/∂t by identifying the
coefficients of the differentials in (5.29) and (5.30). These equations are
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∂F1

∂qi
= pi (5.31)

∂F1

∂Qi
= −Pi (5.32)

∂F1

∂t
= H (Q, P, t) − H (q, p, t) . (5.33)

The fact that the canonical equations

Q̇i = ∂H (Q, P, t)

∂Pi
and Ṗi = −∂H (Q, P, t)

∂Qi
(5.34)

are valid is a requirement of the canonical transformation and follows from (5.27).
We may use the Legendre transformation [see [44], pp. 47–51] to obtain gener-

ating functions of the form F2 (q, P, t), F3 (p, Q, t), and F4 (p, P, t).4 For exam-
ple, we obtain F2 (q, P, t) by transforming out Q from F1 (q, Q, t) in favor of
Pi = −∂F1/∂Qi (see (5.32)). That is

F2 (q, P, t) = F1 (q, Q, t) −
∑

i

Qi
∂F1

∂Qi
(5.35)

= F1 +
∑

i

Qi (q, P) Pi,

where the dependence on P in Q is obtained from (5.32). Then

dF2 =
∑

i

pidqi +
∑

i

QidPi + ∂F1

∂t
dt (5.36)

with
∂F2

∂qi
= pi,

∂F2

∂Pi
= Qi, and

∂F2

∂t
= ∂F1

∂t
. (5.37)

We leave the remaining two transformations as exercises.
Because the time t does not enter the Legendre transformations among F1, F2, F3,

and F4, the forms of the partial derivatives with respect to time remain unchanged
and are all equal to the difference between final and initial Hamiltonians (see (5.33)).
From (5.33) and (5.31) we have a partial differential equation for F1 (q, Q, t), which
is

∂F1 (q, Q, t)

∂t
= H

[
Q,

∂F1 (q, Q, t)

∂Q
, t

]
− H

[
q,

∂F1 (q, Q, t)

∂q
, t

]
. (5.38)

4We have chosen this subscript notation to coincide with that of Goldstein.
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Similarly with (5.37), we have for F 2 (q, P, t)

∂F2 (q, P, t)

∂t
= H

[
∂F2 (q, P, t)

∂P
, P, t

]
− H

[
q,

∂F2 (q, P, t)

∂q
, t

]
. (5.39)

Once we have the generator F1 (q, Q, t) we may obtain the momenta pj from
(5.31) and the momenta Pj from (5.32), which are algebraic equations. Similarly,
once we have F2 (q, P, t) we may obtain the momenta pj and the momenta Pj from
(5.37), which are also algebraic equations. We are then faced with solving a single
partial differential equation and then algebraic equations. And, as Jacobi pointed out,
we may often be able to reduce the partial differential equation to a set of ordinary
differential equations. In any case we realize that if we have found the generator we
have a solution for the mechanical problem. The generator has taken center stage
from the canonical equations and even from the Hamilton–Jacobi Equation itself.

From (5.31), (5.32) and (5.37) we see that we only require partial derivatives of the
generator to obtain equations for the canonical momenta from F1 or the coordinates
from F2. Therefore we may drop any additive integration constants that may appear
in a solution for the generator as unimportant.

5.6.2 Conservative Systems

For conservative systemswe drop the time dependence in the HamiltonianH and the
value of the final Hamiltonian H (Q, P) will be the same as that of H (q, p). Both
will be equal to the total mechanical energy E . The partial differential equation for
the generator is then obtained from

H (q, p) = E . (5.40)

If we choose the generator to be F1,2 the canonical momenta in (5.40) are replaced
by ∂F1,2/∂qi and if we choose F3,4 the coordinates are replaced by −∂F3,4/∂ pi.
Specifically for the choice F1,2, the partial differential equation for the generator is

H
(
q,

∂F1,2

∂q

)
= E . (5.41)

and for the choice F3,4 the equation for the generator is

H
(

∂F3,4

∂ p
, p

)
= E . (5.42)

We are completely free to choose any of these forms of the generator, although the
most common choice for the initial dependence is the coordinate q. Sowewill choose
the form of the generator here to be F1,2.
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The partial differential equations (5.41) or (5.42) are first order in the n coordinates
q. So the solution will require n constants, one of which is the energy E . We choose,
in keeping with tradition, to designate these constants as the set α = (α1, . . . ,αn).
Andwe shall designateα1 = E . Our generator F1 or F2 may then bewritten generally
as F1,2 (q, a, t). Whether we identify the set of constants α as (E, Q), for F1 , or as
(E, P), for F2, is actually of no consequence. As we shall see in our examples the
units on Q and P are not normally the units we may expect for coordinates and
momenta. The only mathematical requirement is that Q and P satisfy the canonical
equations, which is guaranteed by (5.27) and results in (5.32) and (5.37).

Let us consider that we have chosen F1 (q, Q, t) to be the form of our generator.
Then we identify the set α to be the final coordinates Q with one of these Qs as
the energy E . Which of the final coordinates Q (or momenta in the case of α = P)
we choose to be equal to the energy E is arbitrary, since the numbering of the final
coordinates is arbitrary. To simplify bookkeeping we shall (arbitrarily) choose Q1 =
E = H (Q, P) [cf. [65], p. 231]. Then, from the canonical equations for (Q, P),

Ṗ1 = −∂H (Q, P)

∂Q1
= −1 for i = 1 (5.43)

and
P1 = τ − t, (5.44)

where τ is a reference time. That is the finalmomentum P1 is the time.5 The remaining
final momenta P2, . . . , Pn satisfy the canonical equations

Ṗi = −∂H (Q, P)

∂Qi
= ∂Q1/∂Qi = 0 for i > 1, (5.45)

which means that
Pi = constant for i > 1. (5.46)

Thefinal dynamical state of our system, represented in the phase space (Q1, . . . , Qn,

P1, . . . , Pn), is a point moving along the P1 axis at a rate Ṗ1 = −∂H (Q, P) /∂Q1 =
−1. Hadwe chosen P1 to be the energy E wewould only have reversed the roles of Q1

and P1 but the physics would not have been affected. The only simpler representation
of our system would be obtained if we could reduce the momentum P1 to a constant.

We now choose the one dimensional harmonic oscillator to demonstrate the appli-
cation of this approach.

Example 5.6.1 The Hamiltonian for a one dimensional harmonic oscillator written
in terms of the initial coordinates and momenta is

5This is not a trivial observation. We recall that identification of qn+1 as the time above resulted in
pn+1 as (negative of) the Hamiltonian (see (5.10)).
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H (q, p) = 1

2m
p2 + 1

2
kq2 = E . (5.47)

We choose q as our initial variable. Then from (5.31) the partial differential equation
for the generator F1,2 (q, E) is

1

2m

(
∂F1,2

∂q

) 2

+ 1

2
kq2 = E . (5.48)

We can integrate this first order equation immediately to give

F1,2 (q, E) = ±
∫ √

2mE − mkq2dq, (5.49)

where we have dropped the additive integration constant as unimportant.
It is not necessary, and often not desirable, to actually perform the integration in

(5.49) to obtain the generator. Occasionally the expression obtained by differentiating
the generator in integral form is easier to integrate than the original. However, in the
case of (5.49) the integral is not difficult. The result is

F1,2 (q, E) = ±1

2

√
mk

[
q
√

(2E/k) − q2 + 2E
k

sin-1
q√
2E/k

]
. (5.50)

According to our preceding discussion, we may now choose E to be either the final
coordinate Q or the final momentum P . We shall choose Q = E . From the canonical
equation the final canonical momentum is then

Ṗ = − ∂

∂Q
H (Q, P) = − ∂

∂E E = −1. (5.51)

And, as above, we introduce the constant τ to specify an initial time so that

P = τ − t. (5.52)

The generator then is F1. From (5.32) we can obtain the relation between the final
canonical momentum P and the initial and final coordinates q and Q = E as

P = − ∂

∂E F1 (q, E) = ∓
√
m

k
sin-1

q√
2E/k

. (5.53)

And from either the Hamiltonian (5.47) or (5.31) we can obtain the relationship
between the initial canonical momentum and the initial and final coordinates as

p = ∂

∂q
F1 (q, E) = ±√

mk
√

(2E/k) − q2. (5.54)
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Fig. 5.1 Phase space
representations of the
harmonic oscillator. The
initial (q, p) representation
is in panel (a) and the final
(Q, P) representation is in
panel (b)

(a) (b)

This completes our solution in terms of the Hamilton–Jacobi approach. Indeed the
difficult aspect of the solution was completed once we had the generator (5.50), since
only differentiation and algebra remained. To make our solution appear familiar we
need only use (5.52) for the final momentum. If we do so the initial coordinate and
momentum become

q = ±√
2E/k sin

√
k

m
(t − τ ) (5.55)

and

p = ±√
2mE cos

√
k

m
(t − τ ) . (5.56)

In (q, p) and (Q, P) we have two phase space representations of the harmonic
oscillator. From the constant value of the Hamiltonian (5.47) we know that the tra-
jectory of the representative point for the oscillator in the initial phase space (q, p)
is an ellipse. This we plot in Fig. 5.1 panel (a). The final generalized coordinate Q
is equal to the constant system energy E . Therefore the motion of the representative
point in the final phase space (Q, P) is along a straight line parallel to the P axis.
And the final momentum P is τ − t , which decreases from a value of zero when
t = τ . The final phase plot we have shown in Fig. 5.1 panel (b). The points 1, 2, 3,
and 4 correspond in each panel.

5.6.3 Time Dependent Hamiltonian

Asystem forwhich theHamiltonian is timedependent is not conservative. InSect. 5.4
we considered these systems. There we chose to treat the time t as the (n + 1)st

canonical variable and arrived at an extended canonical integral (5.20) with the
constraint (5.17). We shall now consider this extended theory in the context of the
canonical transformation. For continuity we repeat the extended canonical integral
(5.20) and the constraint (5.17) from Sect. 5.4 here.

S =
∫ τ

0

(
n+1∑

i

piq
′
i − K

)
dτ (5.57)
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and
K = pn+1 + H (q, p, t) = 0. (5.58)

For the sake of easy comparison with what we have done in the preceding section
we shall again chose the generator to be F1 (q, Q, t). From (5.31) with qn+1 = t we
have pn+1 = ∂F1/∂t and the constraint equation (5.58) becomes

∂F1

∂t
+ H

(
q,

∂F1

∂q
, t

)
= 0, (5.59)

which is the partial differential equation for the generator F1 in the time dependent
case.

In the final form, (5.57), with the constraint K = 0 included explicitly, is

S =
∫ τ

0

n+1∑

i

PiQ
′
idτ , (5.60)

which is the canonical integral for a system with a Hamiltonian equal to zero. For
such a system the canonical equations require that the coordinates Qi and momenta
Pi are constants. Therefore our use of the extended canonical integral as the basis of
our analysis permits us to define the final phase of the system to be a single point.
The time now appears in the partial differential equation for the generator (5.59).

The partial differential equation for F1 (5.59) contains n + 1 first order partial
derivatives. There are then n + 1 arbitrary constants required for the solution of
(5.59). There are also n + 1 arbitrary constant coordinates Qi resulting from the
variation of (5.60). And the n + 1 momenta Pi are obtained from the algebraic equa-
tions (5.32). As we pointed out in Sect. 5.6.1 we may ignore any additive constants
of integration that may appear in F1.

Designating the constant final coordinates as Qi = αi, the differential equation
for the generating function (5.59) may be written as

∂F1 (q,α, t)

∂t
+ H

[
q,

∂F1 (q,α, t)

∂q
, t

]
= 0, (5.61)

which has the form of the Hamilton–Jacobi Equation (5.25). The difference between
Eq. (5.61) and the Hamilton–Jacobi Equation is that the generator F1 (q,α, t) links
the initial system configuration (q, p) to a final configuration (Q, P) in which Q
and P are constants, while the Principal Function S (q, p, t) does not require this
limitation on the final generalized coordinates or canonical momenta. The generator
F1 (q,α, t) is then a subset of the solutions to theHamilton–JacobiEquation.Because
they are linked by the Legendre transformation, the same may be said of the other
forms of the generator as well.
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This extended method includes the time independent Hamiltonian as a special
case. This is also the method treated by numerous authors as simply the Hamilton–
Jacobi method [cf. [34], pp. 445–449].

Example 5.6.2 Wewill now consider the one dimensional harmonic oscillator using
the extended approach we have just introduced. We will consider only the genera-
tor F1 (q, Q, t). The partial differential equation for the generator is (5.61), which
becomes

∂F1

∂t
+ 1

2m

(
∂F1

∂q

)2

+ 1

2
kq2 = 0 (5.62)

for the one dimensional harmonic oscillator.
Equation (5.62) is separable. That is if we try the solution

F1 (q, t) = Ft (t) + Fq (q) , (5.63)

Equation (5.62) becomes

1

2m

(
dFq

dq

)2

+ 1

2
kq2 = −dFt

dt
. (5.64)

Because the left hand side of (5.64) is a function only of the independent variable q
and is equal to a function only of the independent variable t on the right hand side,
both sides of (5.64) must be equal to a constant, which we choose to call α1. This is
what we term a separation constant. We then have two separate ordinary differential
equations

1

2m

(
dFq

dq

)2

+ 1

2
kq2 = α1, (5.65)

dFt

dt
= −α1. (5.66)

Integrating (5.65) we have (see (5.50))

Fq (q,α1) = ±1

2

√
mk

[
q
√

(2α1/k) − q2 + 2α1

k
sin-1

q√
2α1/k

]
, (5.67)

and integrating (5.66),
Ft (t,α1) = −α1t. (5.68)

Then the generator is

F1 (q,α1, t) = ±1

2

√
mk

[
q
√

(2α1/k) − q2 + 2α1

k
sin-1

q√
2α1/k

]
(5.69)

−α1t,

where we have dropped the additive integration constants.
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In the extended method the final Q is a constant, which we choose to be the
separation constant α1. From (5.32) The final canonical momentum is then

P = −∂F1/∂α1

= ∓
√
m

k
sin-1

q√
2α1/k

+ t, (5.70)

which we choose to be the constant β1. Then

β1 = ∓
√
m

k
sin-1

q√
2α1/k

+ t (5.71)

And from (5.31) the initial canonical momentum is

p = ∂

∂q

1

2

√
mk

(
q
√

(2α1/k) − q2 + 2α1

k
sin-1

q√
2α1/k

)

=
√
m

(
2α1 − kq2

)
. (5.72)

From (5.71) the initial coordinate is

q = ±√
2α1/k sin

√
k

m
(t − β1) . (5.73)

Then, from (5.72), we have

p = ±√
2mα1 cos

√
k

m
(t − β1) (5.74)

With the constants E and τ identified as α1 and β1 Eqs. (5.73) and (5.74) are identical
to (5.55) and (5.56). Our results from the extended method are then identical to those
obtained for a standard treatment of the linear harmonic oscillator.

In our Example5.6.2 here the initial phase plot is identical to that in Fig. 5.1 panel
(a). But the final phase plot is a single stationary point. The time has been carried by
the generator and appears in the solutions for the initial coordinate and momentum
in (5.73) and (5.74).

5.6.4 Separation of Variables

In this section we consider only the extended method, which includes both time
dependent and time independent Hamiltonians. The equation for the generator
F1 (q,α, t) or F2 (q,α, t) then takes the form
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∂F1,2 (q,α, t)

∂t
+ H

[
q,

∂F1,2 (q,α, t)

∂q
, t

]
= 0. (5.75)

If the Hamiltonian is either independent of time or if the time dependence of the
Hamiltonian is entirely contained in an additive function f (t) so that

H (q, p, t) = H (q, p) + f (t) , (5.76)

then we can always separate the generator into the sum of a part dependent only on
the time and a part dependent only on spatial variable(s) as

F1,2 (q,α, t) = Ft (α, t) + Fq (q,α) , (5.77)

as we did in Example5.6.2. That is if H (q, p, t) has the form (5.76) then, using
(5.77), Eq. (5.75) becomes

dFt

dt
+ f (t) = −H

(
q,

∂Fq (q,α)

∂q

)
. (5.78)

Because the left and right hand sides of (5.78) depend on distinct independent vari-
ables, and are always equal to one another, they must be equal to a constant. Then

H
(
q,

∂F1,2

∂q

)
= α1 (5.79)

and
dFt (t,α)

dt
+ f (t) = −α1. (5.80)

The separation of the Hamiltonian H (q, p) itself is, however, not required for this
step. If f (t) = 0 we have the situation we treated in Example5.6.2.

If the spatial portion of the generator can also be separated into a sum of functions
dependent separately on each of the n coordinates qi, that is if

Fq (q,α) = Fq1 (q1 ,α) + · · · + Fqn (qn,α) , (5.81)

then the Hamiltonian H (q, p) is separable and the generator becomes

F1,2 (q,α, t) = Ft (t,α) + Fq1 (q1,α) + · · · + F qn (qn,α) . (5.82)

If the Hamiltonian is separable and the generator has the form (5.82) then the initial
canonical momenta are

pj = ∂F1,2 (q,α, t)

∂qj
= dFqj

(
qj ,α

)

dqj
(5.83)
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(see (5.31) and (5.37)). Therefore we are able to obtain a separated solution of the
form (5.81) for the spatial contribution to the generator provided (5.79) results in
separate equations of the form (5.83).

The great Italian mathematician Tullio Levi-Civita developed a general method
to test the separability of a Hamiltonian [referenced in [65], p. 240]. In practice,
however, it is easier to assume that the spatial dependence of the generator has the
form (5.81) and see if a separation results. In Example5.6.3 we show this for a
spherically symmetric potential centered on the origin.

Example 5.6.3 We consider the motion of a mass m in a spherically symmetric
potential −K/rn and choose the spherical coordinate system as the basis of our
description.

We assume a separation of variables by writing the generator as

F1,2 (q,α, t) = Ft (α, t) + Fr (r,α) + Fϑ (ϑ,α) + Fφ (φ,α) . (5.84)

Then Eq. (5.78) for this problem is

dFt

dt
= − 1

2m

[(
dFr

dr

)2

+ 1

r2 sin2 φ

(
dFϑ

dϑ

)2

+ 1

r2

(
dFφ

dφ

)2
]

+ K

rn
. (5.85)

Wemust, of course, avoid the pointsφ = 0,π atwhich sin φ = 0. The time separation
produces the constant α1 as

dFt

dt
= −α1 (5.86)

1

2m

[(
dFr

dr

)2

+ 1

r2 sin2 φ

(
dFϑ

dϑ

)2

+ 1

r2

(
dFφ

dφ

)2
]

− K

rn
= α1. (5.87)

From the form of the Hamiltonian in (5.87) we have

(
dFϑ

dϑ

)2

= 2mα1r
2 sin2 φ + 2mK

r n-2
sin2 φ

−r2 sin2 φ

(
dFr

dr

)2

− sin2 φ

(
dFφ

dφ

)2

. (5.88)

Because the independent coordinate ϑ appears only on the left hand side of (5.88)
the left and right hand sides of (5.88) are equal to a constant. That is

dFϑ

dϑ
= α2
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and the Hamiltonian (5.87) becomes

1

2m

[(
dFr

dr

)2

+ α2
2

r2 sin2 φ
+ 1

r2

(
dFφ

dφ

)2
]

− K

rn
= α1. (5.89)

From the form of the Hamiltonian in (5.89) we have

α2
2

sin2 φ
+

(
dFφ

dφ

)2

= 2mα1r
2 + 2mK

rn-2
− r2

(
dFr

dr

)2

. (5.90)

Because the independent coordinate φ appears only on the left hand side of (5.90)
the left and right hand sides of (5.90) are equal to a constant. That is

α2
2

sin2 φ
+

(
dFφ

dφ

)2

= α2
3 (5.91)

or
dFφ

dφ
= ±

√
α2
3 − α2

2/ sin
2 φ, (5.92)

provided α2
3 > α2

2/ sin
2 φ. Then the Hamiltonian in (5.90) becomes

dFr

dr
= ±

√
2mα1 + 2mK/rn − α2

3/r
2. (5.93)

And we have separated the partial differential equation for the generator into the set
of four ordinary differential equations

dFt

dt
= −α1 (5.94)

dFϑ

dϑ
= α2, (5.95)

dFφ

dφ
= ±

√
α2
3 − α2

2/ sin
2 φ, (5.96)

dFr

dr
= ±

√
2mα1 + 2mK/rn − α2

3/r
2. (5.97)

The generator (5.84) is then

F1,2 (r,ϑ,φ, t,α) = −α1 t + α2ϑ ±
∫

dφ
√

α2
3 − α2

2/ sin
2 φ

±
∫

dr
√
2mα1 + 2mK/rn − α2

3/r
2, (5.98)

dropping all additive constants of integration as unimportant.
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The constants α1, . . . ,α3 are separation constants that we obtained in the sepa-
ration process. We can evaluate these from the initial conditions. For example, we
see in (5.79) that α1 is the value of the Hamiltonian, which is the system energy E ,
and α2 is the value of the constant azimuthal momentum. And, if we choose to work
with the generator as F1, the αi are the final coordinates Q. From (5.32) the final
momenta are Pi = −∂F1/∂Qi, which are also constants. The final phase is then a
point in the space (Q, P).

If we identify the constants α1,2,3 as E , Θ , and Φ the generator (5.98) is

F1 (r,ϑ,φ, t, E,Θ,Φ) = −E t + Θϑ ±
∫

dφ
√

Φ2 − Θ2/ sin2 φ

±
∫

dr
√
2mE + 2mK/rn − Φ2/r2. (5.99)

Using (5.32) the final (constant) canonical momenta obtained from (5.99) are

PE (r, t, R, Φ) = −∂F1

∂E
= t ∓ m

∫
dr

1√
2mE + 2mK/rn − Φ2/r2

(5.100)

PΘ (ϑ,φ, t,Θ,Φ) = −∂F1

∂Θ

= −ϑ ± Θ

∫
dφ

1√
Φ2 − Θ2/ sin2 φ

(5.101)

PΦ (r,φ, t, R,Θ,Φ) = −∂F 1

∂Φ
= ∓1

2

∫
dφ

1√
Φ2 − Θ2/ sin2 φ

±
∫

dr

r2
1√

2mR + 2mK/rn − Φ2/r2
, (5.102)

which are algebraic equations. In (5.100) we have used the subscript E to indicate
that this momentum is conjugate to the energy E and note that PE ∝ t . Using (5.31)
the initial canonical momenta obtained from (5.99) are

pr (r, t, R, Φ) = ∂F1

∂r
= ±

√
2mR + 2mK/rn − Φ2/r2 (5.103)

pϑ (Θ) = ∂F1

∂ϑ
= Θ (5.104)

pφ (φ, t,Θ,Φ) = ∂F1

∂φ
= ±

√
Φ2 − Θ2/ sin2 φ, (5.105)

which are also algebraic equations.
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Our present solution requires, however, that we avoid the polar angles φ = 0,π
as we pointed out when we first wrote the Hamiltonian above. We must now require
thatΦ2 > Θ2/ sin2 φ as well. Otherwise the final momenta PΘ and PΦ are no longer
real. The mathematical solution would be to accept a limited range of φ. But such
a limitation would require a confining force and would destroy the symmetry of the
potential that permitted the separation of the Hamiltonian. We are left then with the
only alternative that φ = constant, which symmetry requires to be φ = π/2. The
angular momentum pφ = dFφ/dφ is then zero and motion takes place in a plane.
From (5.91) α2

3 = α2
2 orΦ = Θ2. This is a well-known result for motion in spherical

potentials and is normally introduced initially in more elementary texts.
We have then only the time and ϑ separations. Our set of ordinary differential

equations is then

dFt

dt
= −α1 (5.106)

dFϑ

dϑ
= α2, (5.107)

dFr

dr
= ±

√
2mα1 + 2mK/rn − α2

2/r
2. (5.108)

and the generator (5.84) is

F1 (r,ϑ, t, E,Θ) = −E t + Θϑ

±
∫

dr
√
2mE + 2mK/rn − Θ2/r2, (5.109)

dropping additive constants.
Using (5.32) the final (constant) canonical momenta obtained from (5.109) are

PE (r, t, E,Θ) = −∂F1

∂E
= t ∓ m

∫
dr

1√
2mE + 2mK/rn − Θ2/r2

(5.110)

PΘ (ϑ) = −∂F1

∂Θ

= −ϑ ± Θ

∫
dr

r2
1√

2mE + 2mK/rn − Θ2/r2
(5.111)

which are algebraic equations. Using (5.31) the initial canonical momenta obtained
from (5.99) are

pr (r, t, R, Φ) = ∂F1

∂r

= ±
√
2mE + 2mK/rn − Θ2/r2 (5.112)
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pϑ (Θ) = ∂F1

∂ϑ
= Θ (5.113)

Our example here of motion in the symmetrical central potential has been general
enough to includemost of the aspects of theHamilton–Jacobi approach to the solution
of mechanical systems.We have based our solution on the extendedmethod, which is
applicable to either conservative systems or thosewith time dependent Hamiltonians.
We have chosen an example for which the Hamiltonian is separable in order to obtain
the ordinary differential equations to which Jacobi pointed. And our solution has
resulted in final coordinates and momenta that are constants so that the final phase
representation (Q, P) is a point.

We have left three integrals unevaluated. These are in the generator (5.109) and
the final canonical momenta PE and PΘ in (5.110) and (5.111). These are tabulated
[35]. If we choose to evaluate the integral in (5.109) we will have a closed algebraic
expression for the generator from which we can obtain the final canonical momenta
PE and PΘ . We may also choose to leave the generator in the form (5.109) and
evaluate the two integrals in (5.110) and (5.111). This option we may prefer in the
event that the partial derivatives of the integrated form of the generator become
unduly complicated. The choice is ours to make.

5.7 Action and Angle Variables

The analysis of a complex dynamical system is considerably simplified if some of
the coordinates are periodic. In the general situation, however, a coordinate qi and the
corresponding conjugate momentum p i are coupled nonlinearly to other coordinates
andmomenta. Evenwhen the orbit in the phase space (qi, pi) is closed, the coordinate
qi is not generally a periodic function of time. That is the velocity q̇i at which the
representative point begins a subsequent passage on the orbit may not be the same as
that for the preceding passage. But it may be multiply periodic and representable in
a Fourier series with multiple frequencies [cf. [65], p. 247; [34], p. 466]. Therefore
a primary goal in the study of complex systems is to discover the basic periodicities
of the motion even when these may be obscured.

The French astronomer Charles–Eugène Delaunay (1816−1872) recognized that
the periodicities of a separable system could be discovered in a combination of
the Hamiltonian and the generator for the canonical transformation. His work on
lunar motion in 1846 brought the power of Hamiltonian methods to the attention of
physicists for application to astrophysical problems [[94]; [65], pp. 245–254; [34], pp.
528–530]. There Delaunay wrote the Hamiltonian as the sum of an unperturbed term
and a perturbation, which he developed in a Fourier series [[76], p. 503]. Delauney’s
work inspired what became the approach based on the action and angle variables.

The action variables are constants that take the place of the final coordinates or
momenta (Q or P) in the Hamilton–Jacobi approach. They are a more natural choice
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for the set of constants α than are values determined from combinations of the initial
values of coordinates, since they are based on the phase space orbits of the separable
coordinates. The angle variables carry the time.

To introduce the action and angle variables we begin with the extended approach
and assume that the Hamiltonian is separable. Then we can write the generator in the
form (5.82). The separation produces canonicalmomenta pi = pi (qi,α) (= dF/dqi)
as functions of the corresponding conjugate coordinate qi and separation constants
α. There is generally a range of values that can be taken on by the coordinates qi,
which produce ranges of the canonical momenta pi (see, e.g., Fig. 5.1 panel (a)). If we
integrate each of the canonical momenta pi over a cycle of the conjugate coordinate
qi we obtain quantities that are functions only of the constants α. These quantities
are the action variables Ji defined as

Ji (α) ≡
∮

pidqi

=
∮

dFi (qi,α)

dqi
dqi, (5.114)

where we have used (5.83).
We consider, for example, the spherically symmetric problem (Example5.6.3)

with motion in the equatorial plane, φ = constant= π/2. The separable Hamiltonian
in that situation is

H (q, p) = 1

2m

(
p2r + p2ϑ

r2

)
− K

rn
= α1.

Noting that α1 = E , we have the action variables

Jr (E, Φ) =
∮

dF r (r, E, Φ)

dr
dr

= ±
∮

dr
√
2mE + 2mK/rn − Θ2/r2, (5.115)

and

Jϑ (Θ) =
∮

dϑ
dFϑ (ϑ,Θ)

dϑ
= 2πΘ. (5.116)

We have plotted the phase space orbit

pr (r, E,Θ) = ±
√
2mE + 2m

K

r
− Θ2

r2
(5.117)

for the for the mass m moving under a central force with n = 1 in Fig. 5.2 using
data for an electron moving under the Coulomb force from a nucleus without the
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Fig. 5.2 Phase space orbit
pr as a function of r for the
motion of a charged particle
under a central Coulomb
force

Bohr restriction to a circular orbit and relaxing the quantum requirement on angular
momentum. The two parameters (E,Θ) specify the orbit. The integration in (5.115)
is from rmin back to rmin around the phase space orbit. We integrate first from rmin →
rmax with dr > 0 and then from rmax → rmin with dr < 0. In (5.116) the integral is
simply from ϑ = 0 → 2π.

In principle these Ji (α) can be inverted algebraically to obtain the constants αi

as functions of J . That is

αi = αi (J ) , which includes E = E (J ) . (5.118)

For the separable Hamiltonian the generator of the canonical transformation (5.82)
then becomes

F1,2 (q, J ) =
n∑

j

Fj
(
qj, J

)
(5.119)

which is a function of the initial coordinates q and the (constant) action variables J .
Our choice of q as the initial coordinate specifies the generator as either F1

or F2. The second (constant) coordinate may then be either Q or P . That is, if
we wish to do so, we may identify the action variables J as either coordinates or
canonical momenta. For example, Lanczos identifies the action variables as Q [[65],
p. 248] while Goldstein prefers to identify them as (angular) momenta based on
their dimensions [pq] [[34], p. 461]. But neither identification of J as P or Q is
necessarily compelling or intuitive. At this point the action variables are simply
constant (canonical) variables associated with the final state of the system. And their
dimension [pq] is now called simply action.6

From (5.32) and (5.37) we have the relations between the canonical variables at
the initial and final points for our system as

Pi = −∂F1 (q, Q)

∂Qi
and Qi = ∂F2 (q, P)

∂Pi
(5.120)

6For example the units of Planck’s quantum of action h = 6.6260755 × 10−34(kgms−1)m are
normally expressed as the product of energy and time Js = (kg m2s−2)s.
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In this sense we may then define new final point canonical variables conjugate to the
action variables as

ωi (q, J ) ≡ ∂F (q, J )

∂ Ji
. (5.121)

These new canonical variables are not constants of the motion, since they carry
the relation between the initial coordinates q and the action variables. In defining
ωi (q, J ) as a positive partial derivative of the generator F (q, J )we have chosen the
action variables J to be the analogs of the final canonical momenta P and the new
variables ω to be the analogs of the final coordinates Q.

The ωi were first called angle variables in 1916 by the German astronomer Karl
Schwarzschild [106]. ThiswasSchwarzschild’s last publication.He had been director
of the Astrophysical Observatory at Potsdam, but volunteered for service in the
German Army in 1914 and died in May of 1916 of a disease he contracted in Russia.
He was 42 and a lieutenant of artillery [[6], vol 20, p. 3; [112]].

Since the variables (ω, J ) are conjugate canonical variables, they must satisfy
canonical equations obtained from the Hamiltonian H (J ). From (5.118) we real-
ize that the final Hamiltonian H (J ) = E (J ) is functionally dependent only on the
action variables J and independent of the angle variables ω. Therefore the canonical
equations for the action variables are

J̇i = −∂H (J )

∂ωi
= 0, (5.122)

and the canonical equations for the angle variables are

ω̇i = ∂H (J )

∂ Ji
= νi (J ) , (5.123)

where νi is a constant dependent on only the action variables. The signs in the
Eqs. (5.122) and (5.123) are consistent with the sign choice in the definition of
ωi (q, J ) in (5.121). Since we already know that the action variables are constants of
the motion, (5.122) contains no additional information. Integrating (5.123) we have

ωi = νi (J ) t + δi, (5.124)

where the δi is an integration constant.
In the action and angle variables we have a complete solution to the dynamical

problem for a system with a separable Hamiltonian. But our objective was not to
simply obtain a solution. Our objective was to obtain an analysis of the periodicities
in the motion of a complex system. Since the angle variables are the analogs of the
coordinates, wemay attain our goal by considering the changes in the angle variables
during the natural motion of the system. From (5.121) the differential change of the
angle variable ωi with differential changes in the generalized coordinates qj is
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dωi =
∑

j

∂2F (q, J )

∂qj∂ Ji
dqj = ∂

∂ Ji

∑

j

∂F (q, J )

∂qj
dqj, (5.125)

since the order of partial differentiation is makes no difference. Using (5.83) we have

dωi = ∂

∂ Ji

∑

j

pjdqj. (5.126)

If we integrate (5.126) over all phase space orbits
(
qj, pj

)
, we have the change in

the angle variable ωi resulting from a passage of the system through a time encom-
passing all of the characteristic motions defined in terms of the original generalized
coordinates qj.

Δωi = ∂

∂ Ji

∑

j

∮
pjdqj = ∂

∂ Ji

∑

j

Jj =
∑

j

δij = 1. (5.127)

The angle variable ωi then changes by a value of unity as the generalized coordinate
qi undergoes a cycle in its motion. And the change Δωi is unaffected by cycles in
the other generalized coordinates qj �=i.

From (5.124) we see that if τi is the characteristic time taken for the phase space
orbit (qi, pi) then the change Δωi = 1 in a system cycle is

Δωi = 1 = νiτi = ∂H (J )

∂ Ji
τi, (5.128)

using (5.123). Wemay then obtain the characteristic periods of motion for a complex
system once we have the Hamiltonian as a function of the action variables.

This result, expressed in (5.128), is the basis for the analysis of the systemperiodic-
ities that we sought.We have here awindow that allows us to pick out the periodicities
of the individual generalized coordinates independently of the complexities resulting
from the relations among the generalized coordinates and momenta without solving
for the dependence of each coordinate on the time. Mathematically all we require is
a solution in terms of the action variables Ji (α), which are integrals involving only
the separation constants pi (qi,α) =dF1,2/dqi. None of this is, however, necessarily
easy for the general problem, sincewe require an algebraic solution for the separation
constants α in terms of the action variables J (see (5.118)). So our windows on the
motion may be difficult to open.

Although the action variablesmay twist our intuition, the simplicity of the contour
integrals, as opposed to the indefinite integrals required to obtain the components of
the generator, make this approach attractive for complicated problems.

As our first example for which we shall obtain an action-angle variable solution,
we turn again to the one dimensional harmonic oscillator.
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Example 5.7.1 The Hamiltonian for the one-dimensional oscillator of mass m is
(5.47), which we rewrite here with the natural frequency ω0 = √

k/m

H (q, p) = p2

2m
+ 1

2
mω2

0q
2 = E . (5.129)

This is the algebraic equation for the phase space orbit, which we have shown in

Fig. 5.1 panel (a). The limits of the coordinate qmax/min = ±
√
2E/mω2

0 occur when

the momentum vanishes and the limits of the momentum pmax/min = ±√
2mE occur

when the coordinate vanishes. The action variable is

Jq (E) =
∮

pdq (5.130)

=
∮

dq
√
2mE − m2ω2

0 q
2.

The integral over a cycle of the coordinate q is from qmin to qmax with dq > 0 and
returning from qmax to q min with dq < 0. Then

Jq (E) = 2mω0

∫ √
2E/mω2

0

−
√

2E/mω2
0

dq
√
2E/mω2

0 − q2. (5.131)

Integrating (5.131) we have

Jq (E) = 2mω0

[
q

2

√
2E/mω2

0 − q2

+ E
mω2

0

sin-1

⎛

⎝ q√
2E/mω2

0

⎞

⎠

⎤

⎦

√
2E /mω2

0

−
√

2E /mω2
0

= 2πE
ω0

. (5.132)

In terms of the action Jq the Hamiltonian is

H (
Jq

) = E = ω0

2π
Jq. (5.133)

We find the rate of change of the angle variable from (5.133) as

ω̇q = ∂H (
Jq

)

∂ Jq
= νq = ω0

2π
, (5.134)
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and the angle variable is

ωq = ω0

2π
t + δq. (5.135)

Using (5.128) the period of motion is

τq = 1/
[
∂H (

Jq
)
/∂ Jq

] = 2π

ω0
. (5.136)

We have then the action and angle variables for the one dimensional harmonic oscil-
lator. There is a single constant of integration δq in the result for the angle variable.
If we identify δq as −ω0τq/2π, then

2πωq = ω0
(
t − τq

)
, (5.137)

and the action and angle solution has revealed the periodicity of the motion.

Fromour solution here in terms of the action variable Jq = 2πE/ω0, the angle vari-
able ωq = ω0 (t − τ ) /2π, and the separation constant α1 = E =p2/2m + mω2

0q
2/2

we have a complete description of the motion of the harmonic oscillator in terms of
the periodicity of the coordinate and the phase space orbit. If we wish we may con-
vert this to the standard elementary solution for q in terms of t . But the information
contained in that solution is less than that contained in the action and angle variables
and the phase space plot.

As a slightly more complicated example we return to the spherical potential,
written again in three dimensions. We shall now choose n = 1, which is appropriate
for the gravitational force or the electrical (Coulomb) force. The orbit resulting from
the gravitational force is the planetary orbit studied by Johannes Kepler and this
problem is normally referred to as the Kepler problem.

Example 5.7.2 The Hamiltonian for the Kepler potential −K/r is

H (q, p) = 1

2m

(
p2r + p2ϑ

r2 sin2 φ
+ p2φ

r2

)
− K

r
(5.138)

Using the extendedmethod with the time as a coordinate in the generator, and assum-
ing a separation of the generator as

F1,2 (q,α, t) = Ft (α, t) + Fr (r,α) + Fϑ (ϑ,α) + Fφ (φ,α) ,

the equation for the generator (5.75) for the Kepler problem is

0 = dFt

dt
+ 1

2m

[(
dFr

dr

)2
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+ 1

r2 sin2 φ

(
dFϑ

dϑ

)2

+ 1

r2

(
dFφ

dφ

)2
]

− K

r
.

The first separation results in dFt/dt = −α1 and

α1 = 1

2m

[(
dFr

dr

)2

+ 1

r2 sin2 φ

(
dFϑ

dϑ

)2

+ 1

r2

(
dFφ

dφ

)2
]

− K

r
. (5.139)

The first separation constant α1, in this conservative case, is equal to the mechanical
energy E < 0.

Our second separation results in α2, which is the angular momentum

dFϑ

dϑ
= constant = α2. (5.140)

We separate the φ dependence in (5.139) as

α2
2

sin2 φ
+

(
dFφ

dφ

)2

= 2mEr2 + 2mKr −
(
dFr

dr

)2

r2. (5.141)

From (5.141) we identify the third separation constant as α2
3 with

(
dFφ

dφ

)2

+ α2
2

sin2 φ
= constant = α2

3. (5.142)

We are then left with (
dFr

dr

)2

= 2mE+2mK

r
− α2

3

r2
. (5.143)

From our previous study of the spherically symmetrical potential we recall that there
is actually no φ dependence and that Fφ = 0. We shall here, however, hold Fφ as
unequal to zero for as long as we can. We will gain some insight by doing so.

The total angular momentum Lp of the particle moving in the spherical potential
is

Lp = mr × d

dt
r = mrêr × [

ṙ êr + (r sin φ) ϑ̇êϑ + r φ̇êφ

]

= − pϑ

sin φ
êφ + pφêϑ. (5.144)
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Fig. 5.3 Components of the
angular momentum Lp. The
position vector r locates the
point particle

In Fig. 5.3 we have drawn the components of the total angular momentum Lp and
its components in the directions êϑ and êφ. From (5.144) the square of the angular
momentum Lp is

L2
p = p2φ + p2ϑ

sin2 φ

= p2φ + α2
2

sin2 φ
= α2

3. (5.145)

The magnitude of the total angular momentum is then equal to the constant α3.
From the separated Eqs. (5.140), (5.142), and (5.143) we have the set of action

variables

Jϑ (α) =
∮

pϑdϑ =
∮

α2dϑ (5.146)

Jφ (α) =
∮

pφdφ =
∮

dφ

√

α2
3 − α2

2

sin2 φ
(5.147)

Jr (α) =
∮

prdr =
∮

dr
1

r

√
2mEr2 + 2mKr − α2

3. (5.148)

To evaluate these integrals we must specify the ranges of integration of each of
the coordinates (r, θ,φ) for a complete orbit of the point particle. We can find these
ranges from the algebraic equations (5.140), (5.142), and (5.143) as the values of the
coordinates for which the corresponding momenta vanish.

There are no limits on the azimuthal angle ϑ because from (5.140) the momentum
pϑ is a constant of the motion. In the integral (5.146) the angle ϑ then takes on all
values in the range 0 → 2π.
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From (5.142) we find the limits on the polar angle φ of the orbit as the values of
φ, for which the canonical momentum pφ vanishes. With pφ = 0 (5.142) becomes

sin2 φ = α2
2/α

2
3. (5.149)

Therefore, if the canonical momentum pφ �= 0, the angle φ must have the values
φ = ± sin-1 α2/α3 at the limiting points and, with pφ �= 0, Eq. (5.145) requires that
|α3| > |α2|. If we designateφ0 = sin-1 (α2/α3), the limiting values of the polar angle
may be ±φ0 or may be separated by π, since sin (φ0 + π) = − sin φ0. But the polar
angle is only defined in the range 0 ≤ φ ≤ π. There is, therefore, no angle −φ0, nor
is there an angle φ0 = φ0 + π, accessible to the particle. The canonical momentum
pφ must then be zero and the motion of the point particle is in a plane. It is simplest
to choose this plane to be that for which φ = π/2. Then α3 = α2 and we have
Jφ (α) = 0 for the general Kepler problem.

Since E < 0 for bound motion of the particle, setting the canonical momentum
pr =dFr/dr = 0 in (5.143) we have

m |E | r2 − mKr + 1

2
α2
2 = 0.

The maximum and minimum distances of the orbit from the origin are then

rmax/min = 1

2m |E |
(
mK ±

√
m2K 2 − 2m |E | α2

2

)
(5.150)

For real values of these radial distances we require that the discriminant m2K 2 −
2m |E | α2

2 > 0. In a complete orbit then the radial distance varies from rmin → rmax

and then returns from rmax → rmin. In Fig. 5.4 we have plotted the effective potential

Veff = α2
3

r2
− K

r
(5.151)

as a function of the radial distance r and labeled the distances r max and rmin.
With φ = π/2, the action variable Jr becomes

Jr (α) =
∮

dr

r

√
2mEr2 + 2mKr − α2

2 (5.152)

In the part of the cycle from rmin to rmax the differential dr > 0 and from rmax to rmin

the differential dr < 0. The integral in (5.152) is then

Jr (α) = 2
∫ rmax

rmin

dr

r

√
2mEr2 + 2mKr − α2

2 (5.153)
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Fig. 5.4 Effective potential
for the Kepler problem. The
long range attractive
potential is from the central
force. The repulsive
contribution is from the
angular velocity

We can perform the indefinite integration in (5.153), which is

Fr (r,α) =
∫

dr

r

√
2mEr2+2mKr − α2

2, (5.154)

without difficulty, since the integrals required for final evaluation are tabulated [[35],
GR 2.267, 2.266 and 2.261]. The result is the radial contribution to the generator

Fr (r,α) =
√
2mEr2 + 2mKr − α2

2

− mK√−2mE sin-1
4mEr + 2mK√

(2mK )2 + 8α2
2mE

−a2 sin
-1 2mKr − 2α2

2

r
√

(2mK )2 + 8α2
2mE

, (5.155)

where E < 0. From (5.153) and (5.155) the action Jr (α) is then

Jr (α) = 2 Fr (r,α)]rmax
rmin

. (5.156)

From (5.150) we see that the first term in (5.155) vanishes at r = rmax/min. The
argument of the first sin-1 in (5.155) at the limits r = rmax/min is

−4m |E | rmax/min + 2mK√
(2mK )2 − 8α2

2m |E |
= ∓1,

and the argument of the second sin-1 in (5.155) at the limits r = rmax/min is

2mKrmax/min − 2α2
2

rmax/min

√
(2mK )2 − 8α2

2m |E |
= ±1.
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Since sin-1 (±1) = ±π/2, the action Jr (α) in (5.156) is

Jr (α) = πK

√
2m

−E − 2πα2. (5.157)

The generator Fϑ (ϑ,α) is

Fϑ (ϑ,α) =
∫

α2 dϑ = α2ϑ. (5.158)

The integration to obtain the action Jϑ (α) in (5.146) yields

Jϑ (α) = 2πα2. (5.159)

Using (5.159) the action Jr (α) in (5.157) becomes

Jr (α) = πK

√
2m

−E − Jϑ (α) . (5.160)

Then the final Hamiltonian as a function of the action variables is

H (J ) = E (J ) = −π2K 2 2m

(Jr + Jϑ)
2 . (5.161)

From (5.123) we have

ω̇r = ∂H (J )

∂ Jr
= 2π2K 2 2m

(J r + Jϑ)
3

= −2
E (J )

(Jr + Jϑ)
(5.162)

and

ω̇ϑ = ∂H (J )

∂ Jϑ
= 2π2K 2 2m

(Jr + Jϑ)
3

= −2
E (J )

(Jr + Jϑ)
(5.163)

We then have a solution to the Kepler problem in action-angle variables. That the
frequencies of the angle variables νr = ω̇r and νϑ = ω̇ϑ are identical tells us that the
orbit is a closed figure. The solution in action-angle variables, however, does not give
us the geometrical picture of the orbit. That requires the relationship between pr and
ϑ. To obtain the orbit we must turn to the generator.

Until this point in our treatmentwehave not required identification of the generator
as either F1 or F2. The choice depends on whether we identify the set of constants α
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as final coordinates Q or final canonical momenta P . For the sake of variety, since
the choice is completely arbitrary, we now choose the generator to be F2 and the
constants α to be the final canonical momenta P . Specifically the energy E becomes
a final canonical momentum, which we shall designate as PE . And the constant α2

is the final canonical momentum Pϑ. We then have Fr (r, PE , Pϑ) in Eq. (5.155) and
Fϑ (ϑ, PE , Pϑ) in (5.158).

Differentiating (5.155) involves extensive algebra. But if we hold the integration
in the component of the generator Fr then, with (5.154) and (5.158), we have

F2 (q, P) = Ft (PE , t) + Fr (r, PE , Pϑ) + Fϑ (ϑ, Pϑ)

= −PE t ±
∫

dr

r

√
2mPEr2 + 2mKr − P2

ϑ + Pϑϑ. (5.164)

From the generator F2 (q, P) the final coordinates are Qi = ∂F2 (q, P) /∂Pi (see
(5.120)). Our expressions for the final coordinates, which we shall designate as QE
and Qϑ, we then avoid extensive algebra. For QE

QE = ∂F2 (q, P)

∂PE
= −t ±

∫
dr

mr√
2mPEr2 + 2mKr − P2

ϑ

(5.165)

The integral in (5.165) is tabulated [[35], GR 2.261 and 2.264]. The result is

QE = −t ± 1

2 |E |
√
2mKr − 2m |E | r2 − P2

ϑ

∓
√

mK 2

8 |E |3 sin-1

⎛

⎝ 2mK − 4m |E | r√
(2mK )2 + 8m |E | (P2

ϑ

)

⎞

⎠ . (5.166)

We may then identify QE ∝ − (t − τ ), provided we choose the positive sign on the
square root in (5.164).

We can find the orbit from Qϑ, which, using the positive sign on the square root
in (5.164), is

Qϑ = ∂F2 (q, P)

∂Pϑ

= −Pϑ

∫
dr

r

1√
2mP1r2 + 2mKr − P2

ϑ

+ ϑ. (5.167)

The final coordinate Qϑ is a constant of the motion, which we shall designate as ϑ0

for simplicity. Then (5.167) becomes [[35], GR 2.266]
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Fig. 5.5 The elliptical orbit
for a mass moving in a plane
under a central potential
V (r) = −K/r

ϑ − ϑ0 = Pϑ

∫
dr

r

1√
2mP1r2 + 2mKr − P2

ϑ

= sin-1

⎛

⎝ 2mKr − 2P2
ϑ

r
√

(2mK )2 − 8m |E | P2
ϑ

⎞

⎠ . (5.168)

Solving (5.168) for r we have

r = B

A − sin (ϑ − ϑ0)
, (5.169)

where

A = 2mK/

√
(2mK )2 − 8m |E | P2

ϑ ,

and

B = 2P2
ϑ/

√
(2mK )2 − 8m |E | P2

ϑ .

Equation (5.169) is the polar form of an ellipse centered on one of the foci. The angle
ϑ0 determines the orientation of the axes. In Fig. 5.5 we have plotted the orbit with
ϑ0 = −π/2, A = 2, and B = 1.5. This is an ellipse with an eccentricity of 0.5.

Our result in Fig. 5.5 is the familiar orbit for the Kepler problem, which is an
ellipse with one focus on the center of force. Our path to this result through the
action and angle variables has been considerably less involved than the standard path
through the canonical equations. It is simply a more elegant procedure. We have
also found a straightforward argument for elimination of the action Jφ based on the
extent of the range taken on by the polar coordinate φ. Our previous argument that
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φ =constant= π/2 was based on symmetry of the force potential. The symmetry
argument is no less acceptable. But there is a geometric finality to our treatment
here.

5.8 Poisson Brackets

Some quantities are conserved during canonical transformation. In this section we
will develop a general method to identify these conserved quantities working in
terms of the extended method as the most general approach. We will also use Greek
subscripts and the Einstein summation convention in order to keep our equations as
simple as possible. We always sum on repeated Greek indices.

The time rate of change of a general function of the generalized coordinates,
canonical momenta, and the time f (q, p, t) is

d f

dt
= ∂ f

∂qμ

dqμ

dt
+ ∂ f

∂ pv

dpv

dt
+ ∂ f

∂t

= ∂ f

∂qμ

∂H
∂ pμ

− ∂ f

∂ pv

∂H
∂qv

+ ∂ f

∂t
. (5.170)

If we define the Poisson Bracket7 (PB) of two general functions f (q, p, t) and
g (q, p, t) as [[83], pp. 290–291, [125] Whittaker, pp. 299-301, [34], pp. 391–425]8

( f, g) = (
∂ f/∂qμ

) (
∂g/∂ pμ

) − (
∂ f/∂ pμ

) (
∂g/∂qμ

)
(5.171)

Equation (5.170) can be written as

d f

dt
= ( f,H) + ∂ f

∂t
. (5.172)

The PB then provides a convenient form for the time rate of change of a dynamically
varying function. As we shall now see, because the PB is preserved in canonical
transformation, (5.172) is more than just a convenient formulation.

In the extended method the canonical integrals at the beginning and end of the
transformation are (see (5.57), (5.58) and (5.60))

7Siméon-Denis Poisson (1781–1840), was a French mathematician, geometer and physicist. He
was anti-aristocratic based on experiences of his father, and brought up in the stern era of the First
Republic. When he was made a baron after the restoration of the Empire, never used the title nor
accepted the diploma.
8The notation for the PB is not uniform. Goldstein and Dirac use a square bracket [ f, g]. Whittaker
and Morse and Feshbach use the round bracket ( f, g) as we have and Morse and Feshbach change
the order of the partial derivatives. The bracket { f, g} is also sometimes used to designate PB.
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S =
∫ t

0
pν q̇νdt (5.173)

and

S =
∫ t

0
Pσ Q̇σdt. (5.174)

As we realize, the integrands in (5.173) and (5.174) may differ by the differential of
a function without affecting the variation, which produces the canonical equations.
That is

dF = pνdqν − PσdQσ. (5.175)

Because dF is an exact differential pν = ∂F/∂qν and Pσ = ∂F/∂Qσ , and because
the order of partial differentiation is immaterial,

∂ pν

∂Qσ
= −∂Pσ

∂qν
(5.176)

Written separately in terms of initial and final canonical variables, the PBs of two
functions f and g are

( f, g)q,p = ∂ f

∂qμ

∂g

∂ pμ
− ∂ f

∂ pμ

∂g

∂qμ

and

( f, g)Q,P = ∂ f

∂Qμ

∂g

∂Pμ
− ∂ f

∂Pμ

∂g

∂Qμ
.

We now wish to show that provided (q, p) and (Q, P) are linked by a canonical
transformation these two PBs are identical. That is

( f, g)q,p = ( f, g)Q,P . (5.177)

We shall carry out the demonstration in a straightforward manner. The partial deriv-
atives of f (Q, P) with respect to q and p are

∂ f

∂qμ
= ∂ f

∂Qν

∂Qν

∂qμ
+ ∂ f

∂Pν

∂Pν

∂qμ
, (5.178)

and
∂ f

∂ pμ
= ∂ f

∂Pσ

∂Pσ

∂ pμ
+ ∂ f

∂Qσ

∂Qσ

∂ pμ
. (5.179)

Equivalent equations result for g (Q, P). With (5.178), (5.179), and the equivalent
for g (Q, P), the PB ( f, g) q,p becomes
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( f, g)q,p =
(

∂ f

∂Qν

∂g

∂Pσ
− ∂ f

∂Pσ

∂g

∂Qν

)
∂Pσ

∂ pμ

∂Qν

∂qμ
+

(
∂ f

∂Qν

∂g

∂Qσ
− ∂ f

∂Qσ

∂g

∂Qν

)
∂Qν

∂qμ

∂Qσ

∂ pμ

+
(

∂ f

∂Pν

∂g

∂Pσ
− ∂ f

∂Pσ

∂g

∂Pν

)
∂Pν

∂qμ

∂Pσ

∂ pμ
+

(
∂ f

∂Pν

∂g

∂Qσ
− ∂ f

∂Qσ

∂g

∂Pν

)
∂Pν

∂qμ

∂Qσ

∂ pμ

(5.180)

From (5.175) we see that the function F depends on the sets of independent variables
qν and Qσ . Then ∂Qσ/∂qν = 0. And from dF we have the equivalence of the cross
partial derivatives

∂ pν

∂Qσ
= −∂Pσ

∂qν

Then
∂Pν

∂qμ

∂Pσ

∂ pμ
= − ∂ pμ

∂Qν

∂Pσ

∂ pμ
= − ∂Pσ

∂Qν
= 0

And
∂Pσ

∂qμ

∂Qν

∂ pμ
= − ∂ pμ

∂Qσ

∂Qν

∂ pμ
= −δσν

Then (5.180) becomes

( f, g)q,p = ∂ f

∂Qν

∂g

∂Pν
− ∂ f

∂Pν

∂g

∂Qν

= ( f, g)Q,P . (5.181)

Therefore, from (5.172) we see that for any conservative system a function f (q, p)
for which

d f (q, p)

dt
= ( f,H) = 0

initially will remain constant during the motion, since that motion is describable in
terms of a canonical transformation. We call these constants integrals of the motion
Ij. They are functions of generalized coordinates and momenta that are constants for
which (

Ij,H
) = 0. (5.182)

We then say that the integral of the motion Ij Poisson commutes, or is in involution,
with the Hamiltonian.

We may also write the canonical equations of Hamilton in terms of PBs as

q̇μ = (
qμ,H

)
and ṗμ = (

pμ,H
)
, (5.183)

which is a form that will be unchanged during the system motion, which is the basis
of the canonical transformation.
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5.9 And the Quantum Theory

5.9.1 Heisenberg Indeterminacy

If we construct the PB of a coordinate and the corresponding canonical momentum
we find that

(
qα, pβ

) = ∂qα

∂qμ

∂ pβ

∂ pμ
− ∂qα

∂ pv

∂ pβ

∂qv

= δαμδβμ = δαβ, (5.184)

Paul A.M. Dirac identified something that resembled this in a paper on the emerging
quantum theory by Werner Heisenberg, that Dirac had been asked to read by his
advisorRalphFowler [[26], pp. 83–87].Dirac later used this relationship as the bridge
between quantummechanics and classicalmechanics. SpecificallyDirac showed that
the Poisson Bracket in classical mechanics has a quantum analog in the commutator
[[18], p. 87]. That is

(A, B) ⇒ (1/ i�) (AB − BA) , (5.185)

where � is Planck’s constant of action divided by 2π. On the left hand side of the
arrow =⇒ in (5.185) is the PB of the classical dynamical quantities A and B and
on the right hand side is the commutator (AB − BA) of the quantum mechanical
operators representing these quantities.

In the quantum theory we define the average of the measured value of a quantity
represented by the operator A as 〈A〉 and the square of the indeterminacy9 in the
value as

(ΔA)2 = 〈
(A − 〈A〉)2〉 . (5.186)

We can then show that if
AB − BA = iC,

then

ΔAΔB ≥ 1

2
|〈C〉| . (5.187)

[see e.g. [78], pp. 218–219] The quantum mechanical analog (5.185) of (5.184) is

qp − pq = i�1. (5.188)

9This is sometimes called the error or uncertainty. But that suggests that there is a particular value
of A before the measurement is made.
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Then (5.187) results in

ΔqΔp ≥ 1

2
�, (5.189)

which is the Heisenberg Indeterminacy Principle.10

From (5.172) the rate of change of a quantum mechanical operator, which does
not depend explicitly on the time is

i�
d

dt
G = (HG − GH) . (5.190)

This is the general form taken by the equations of quantummechanics in theHeisen-
berg picture inwhich the time dependence is carried by the basis vectors. The Poisson
Brackets then reveal a structure of mechanics which persists in an analogous form
in the quantum theory.

5.9.2 The Schrödinger Equation

The relationship of the quantum theory to the Hamilton–Jacobi approach is deeper
than the analog of the PB and the quantum mechanical commutator. To see this we
shall look briefly at the development by Erwin Schrödinger of his celebrated wave
equation.

The equations of the quantum theory may be expressed in two equivalent forms.
These are termed the Heisenberg and the Schrödinger pictures. They are completely
equivalent, as Schrödinger showed. Whether one or the other picture is more conve-
nient depends upon the problem we are considering. If we choose the basis vectors
to be time independent we are treating the problem in the Heisenberg picture. Then
the time dependence is carried by the operators and our equation of motion for the
system is (5.190). This is particularly convenient in condensed matter (solid state)
physics. If we choose the basis vectors to be time dependent the operators are time
independent and the equation of motion becomes what is called the Schrödinger
Equation. In the Schrödinger picture the basis vectors are called the wave functions
for the system.

Schrödinger developed what we now know as the Schrödinger Equation during a
two and a half week vacation over Christmas, 1925, at a villa in Arosa in the Swiss
Alps. For the details surrounding this vacation we refer the reader to Walter Moore’s
book [82].

For us it is important to note that he only brought along Louis de Broglie’s thesis
as his source for the physics. Schrödinger, however, left no record of his thoughts as
he worked on the wave theory. So we can only speculate based on any inspiration
he may have received from de Broglie’s thesis and what we can deduce from his

10This is often termed the Heisenberg Uncertainty Principle. Indeterminacy is closer to the original
German meaning.
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first publication on the wave equation, which appeared a few weeks after the alpine
vacation (in January of 1926) [105].

De Broglie’s thesis is a veritable survey of aspects of physics that point in some
way to awave andparticle descriptionofmotion.The aspects of physics he considered
important for his hypothesis that a wave that could be associated with a moving
particle include Einstein’s special theory of relativity and concept of the photon,
Maupertuis’ principle, Hamilton’s principle of least action, and the Hamilton–Jacobi
approach [19]. Although we may speculate that Schrödinger simply accepted the de
Broglie hypothesis and put together his wave equation in the same simple manner
we see in courses, there is little reason to believe this was indeed the case. We must
assume that he actually read de Broglie’s thesis. And if he did he saw the importance
of the Hamilton–Jacobi approach to de Broglie.

Schrödinger begins his first paper onQuantisierung als Eigenwertproblem (Quan-
tization as an Eigenvalue Problem) with the Hamilton partial differential equation
(Schrödinger’s designation)

H
(
q,

∂S

∂q

)
= E (5.191)

and then seeks a solution that is of the form of a sum of functions each dependent
only on a specific independent variable q. To accomplish this he requires that the
principal function S be of the form

S = K lnψ (5.192)

where K has the dimensions of action andψ is a product of functions of the individual
variables. With (5.192) Eq. (5.191) becomes

H
(
q,

K

ψ

∂ψ

∂q

)
= E . (5.193)

Schrödinger chooses to write this for the Kepler problem, which, in rectangular
coordinates, is

(
∂ψ

∂x

)2

+
(

∂ψ

∂x

)2

+
(

∂ψ

∂x

)2

− 2m

K 2

(
E+k

r

)
ψ2 = 0. (5.194)

He then asks for finite-valued functions ψ, which are twice differentiable and result
in an extremum of the integral of the left hand side of (5.194) over all space. This
results immediately in the requirement that ψ must satisfy

(
∂2ψ

∂x2

)
+

(
∂2ψ

∂x2

)
+

(
∂2ψ

∂x2

)
+ 2m

K 2

(
E+k

r

)
ψ = 0, (5.195)
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which is what we now know as Schrödinger’s Equation for the Kepler problem.With
an appropriate choice of k (5.195) is the equation for the wave function ψ of an
electron moving about a proton.

Schrödinger chose spherical coordinates in which to represent his problem and
wrote ψ, as he indicated that he would, as a product of functions for each of the
coordinates (ϑ,φ, r). With this choice of ψ Eq. (5.195) separates into three equa-
tions as our solution for the generator separated. The angular solutions were already
well known to Schrödinger (the spherical harmonics). The radial equation presents
some difficulty and in a footnote he thanks his friend and colleague Hermann Weyl
for an introduction to the handling of this equation. The eigenvalues for the energy
E emerged from the solution of the radial equation, which already contained the
eigenvalues from the azimuthal (ϑ) equation. He obtained an infinite set of eigen-
values for the energy E when E > 0 and a finite set when E < 0. The latter agreed
precisely with those of the Bohr atomic model provided K = h/2π. Schrödinger’s
result contained, as well, the polar (φ) and azimuthal quantum numbers. In terms of
theoretical physics, this was a triumph. He had obtained the principal equation of
what could now be called the quantum theory.

We note that, although we may recognize the quantum theory as more fundamen-
tal than the classical theory of Analytical Mechanics, Schrödinger had coaxed the
principal equation of the new quantum theory from the principal equation of classical
Analytical Mechanics.

Although de Broglie was certainly not referring to Schrödinger’s Equation, it
seems appropriate to close this section with a quote from de Broglie’s thesis.

This whole beautiful structure can be extracted from a single principle, that of Maupertuis,
and later in another form as Hamilton’s Principle of least action, of which the mathematical
elegance is simply imposing.

5.10 Summary

In this chapter we discussed the reduction of Hamilton’s two partial differential
equations for the Principal Function to a set of ordinary differential equations. Our
approach essentially followed Jacobi’s critique of Hamilton’s method. In this we
have not attempted to present a method for applying Jacobi’s Theorem. Instead we
have based our presentation on the central role of the canonical transformation as the
link between the initial and final states of the system and the role of the generating
function or generator in that transformation. The fact that the generating function
satisfies a partial differential equation of the same form as the Hamilton–Jacobi
equation is a mathematical result. But the generating function is not Hamilton’s
Principal Function. It is a subset of the functions that satisfy the Hamilton–Jacobi
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equation. Therein lies the basis for a great simplification, since we are then free to
choose the final coordinates and canonical momenta to be constants.

The approach, as we have shown, remains straightforward provided the Hamil-
tonian is separable. And this is the case for many applications. If the Hamiltonian is
separable we are left with a small number of integrals over single variables. In many
interesting cases these are tabulated.

We found a further simplification, particularly for complex multivariable systems
through the introduction of action and angle variables. The mathematical simplifi-
cation was through the introduction of closed path (definite) integrals in place of the
indefinite integrals required for the computation of the generator. Use of the action
and angle variables, as we found, is particularly advantageous if we are interested in
the periodic behavior of certain aspects of the system motion that may not be easily
identified otherwise.

We ended the chapter with a discussion of the connection between the Hamilton–
Jacobi approach and the quantum theory. Dirac discovered the analog between the
Poisson Brackets and the quantum mechanical commutators. This analog led to the
Heisenberg Indeterminacy Principle and theHeisenberg rate equation for an operator.
We then followed Schrödinger’s development of his celebrated equation from the
Hamilton–Jacobi Equation.

In summary we have presented the Hamilton–Jacobi approach as a simplification.
It is also the most elegant formulation of Analytical Mechanics. The remainder of
this text will grow out of this elegant formulation.

Some authors present the results of our development in this chapter as a method
that can be followed [cf. [34], pp. 447-449]. We have elected not to do that, since it
obscures the elegance of the Hamilton–Jacobi approach to mechanical problems. To
appreciate that elegance the readermust understand thatwe have replaced the original
partial differential equation of Hamilton for the Principal Function with an equation
for the generator of a canonical transformation. And that we have then chosen a
method, which is applicable whether or not the Hamiltonian depends on time, and
which results in a canonical transformation to a single final phase point. Provided
the Hamiltonian is separable, the actual mathematical solution is not difficult.

5.11 Exercises

5.1. Apply the Legendre transformation to obtain generating functions of F2 (p, P, t)
and F3 (p, Q, t).

5.2. Consider a conservative system and suppose that you have solved the partial
differential equation

H
(
q,

∂F

∂q

)
= E
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for the function F (q, a, E). Now suppose that you choose to form the link to the
final configuration of the system through the final canonical momenta P . That is, you
choose P1 = E . Follow the procedure we used in the chapter for Q1 = E to discuss
the steps toward the final solution for the generator.

5.3. In the chapter we considered the simple harmonic oscillator as an example for
which we could find a generator and a final solution. There we found equations
relating the initial coordinates and momenta (q, p) to the final coordinates (Q = E)
and momenta P based on a generator constructed based on a simple choice of the
final coordinate. These equations we found to be

q = ∓√
2E/k sin

√
k

m
P

and

p = ±√
2mE cos

√
k

m
P.

The physics requires that the final momentum is related to the final coordinate by the
canonical equations. Use these to obtain the final momentum as a function of time
and, then, the initial coordinate and momentum as functions of the time.

5.4. From the action-angle solution we obtained for the harmonic oscillator in the
text

Jq (E) = 2πE
ω0

and
ωq = ω0

2π
t + δq,

or
2πωq = ω0 (t − τ ) ,

obtain the standard (q, p) description of the motion of the harmonic oscillator.

5.5. Show that the Poisson Bracket is unchanged by canonical transformation. That
is, show that

( f, g)q,p = ∂ f

∂qμ

∂g

∂ pμ
− ∂ f

∂ pμ

∂g

∂qμ

= ( f, g)Q,P = ∂ f

∂Qμ

∂g

∂Pμ
− ∂ f

∂Pμ

∂g

∂Qμ
.

Choose the generator of the canonical transformation to be dependent on (q, Q), as
in the text.

5.6. Consider the situation we considered for the time dependent Hamiltonian in
which we defined new coordinates
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qn+1 = t

pn+1 = −H (q, p, t) .

Show that classically
(t,H) = 1.

Note that it then follows that quantum mechanically

(Ht − tH) = −i�1

and that, therefore, there is an indeterminacy relation

ΔEΔt ≥ 1

2
�.

Quantummechanically energy levels in an atom are measured by the light emitted by
the atom in transitions between states. The Planck–Einstein relation E = hν, where
ν is the frequency of the light quantum (photon), relates the characteristic spectrum
of an element to the energies of the atom. We may consider that the indeterminacy
of the time of transition from the state is the lifetime of the state. That is the atom
may decay from a state at any time up to approximately the lifetime. What is then
ΔE?
5.7. Consider a mass m moving without friction on a wire. The wire makes an angle
β with the vertical and is free to rotate about the vertical axis, also without friction.
The situation is shown here.

Consider that at the initial time the mass is located at a distance z0 above the
reference plane and has an angular momentum of � = mr20 ϑ̇0 where r0 and ϑ̇0 are
the initial radial distance from the axis and the initial angular velocity. There is no
initial radial velocity.
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Formulate and study the problem in the Hamilton–Jacobi formulation. Obtain the
phase plot p (r) versus r for the motion.

5.8. Consider a marble in a fishbowl. We shall assume that the marble slides without
friction so we can neglect rotation. We have illustrated the situation in the figure
below. We shall use cylindrical coordinates because then it is easiest to specify the
surface of the fishbowl.

Pursue the problem employing the Hamilton–Jacobi approach. Find the phase
plot(s).

5.9. Consider the two masses connected as shown here.

Obtain the Lagrangian for unequal masses and then simplify for equal masses and
a = b.

Show that the motion cannot be easily studied using the Hamilton–Jacobi
approach. So you should turn to the canonical equations.

Linearize the canonical equations for small vibrations and find the (eigen) fre-
quencies of vibration.

[Answers:

ω = 1

a
√
m

√
K1 +

√
K 2

2 ,
1

a
√
m

√
K1 −

√
K 2

2
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with
K1 = k ′ + a2k

and
K 2

2 = a4k2 + k ′2 −a2kk ′] .

5.10. Consider a charged point particle ofmassm and charge Qmoving in amagnetic
field of induction B = êzB. Assume a motion in the direction of êz as well as in the
(x, y) −plane. In the text we have shown that theHamiltonian for the charged particle
in the electromagnetic field is generally

H = (1/2m)
(
pμ − QAμ

)2 + Qϕ,

summing onGreek indices. In our situation there is no electric field. Thereforeϕ = 0.
Show that the vector potential A = −êxyB produces the required magnetic field

induction. Obtain the trajectory of the charged particle using the Hamilton–Jacobi
approach.

5.11. As an example in the text we considered the motion of a charged point particle
of mass m and charge Q moving in a constant magnetic field of induction B = êzB
using cylindrical coordinates. The vector potential is then

A = 1

2
Brêϑ.

Treat this problem using the Hamilton–Jacobi approach.
[Note that a positive charge has a negative angular momentum, i.e. rotates clock-

wise.]

5.12. Consider the motion of a charged particle in a region of space in which there
is a uniform magnetic field with induction B = êzB and a uniform electric field
E = êyE .

For a static magnetic field with induction B = êzB the vector potential is A =
−êxyB. And for an electric field E = êyE the electrostatic potential is

ϕ = −Ey.

Find the orbit of the charged particle using the Hamilton–Jacobi approach.



Chapter 6
Complex Systems

A more complete study of the movements of the world will oblige us, little by little, to turn
it upside down; in other words, to discover that if things hold and hold together, it is only by
reason of complexity, from above.

Pierre Teilhard de Chardin

6.1 Introduction

Historically the development of classicalmechanics is related to our interest in astron-
omy and astrophysics. Newton was concerned that the planets and the stars, if left to
themselves, would be unstable. He, therefore, was convinced that God intervened to
make adjustments [[91], pp. 216–217]. We do not harbor the fears Newton had. But
our interest in interacting n body systems is based, at least initially, on our interest
in the solar system. McCuskey, for example, devotes a chapter of his book Intro-
duction to Celestial Mechanics to a detailed treatment of particularly the three body
problem, but with generalization to the n body problem. As McCuskey points out,
neither the three, nor the general n body problem can be solved in closed form [[81],
pp. 92–127].

We have, however, been able to approximate the system of two planets and the
sun by considering that the interaction of each planet with the sun is much greater
than the interaction between the two planets. We may then first solve the problem
of the motion of the two noninteracting planets around the sun and then add the
interaction between the two planets as a perturbation. This perturbation approach to
the integrable system of the noninteracting planets was studied extensively in the
19th century. However, no one was able to prove that these perturbations converged,
even though a substantial prize was offered by King Oscar II of Sweden and Norway
for the proof [[120], [41], p. 423].

© Springer International Publishing Switzerland 2017
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In this chapter we have used the two dimensional oscillator, the Kepler problem,
and the Hénon–Heiles system as examples for the approaches normally used in the
study of complex systems. Of these only the Hénon–Heiles system is truly complex.
The other systems were chosen to provide examples of the general approaches.
Because complex systems do not yield to analytical solutions we have no exercises at
the end of this chapter. If the students have access to appropriate software an instructor
may choose to use the Hénon–Heiles system as a basis for student exercises.

We shall begin our study of complex systems by first introducing the concept of
an integrable system.

6.2 Integrable Systems

The concept of a complete integrable system originated in the 19th century following
thework ofHamilton and Jacobi. A systemwith aHamiltonian of 2n dimensions, that
is with n generalized coordinates and n conjugate momenta, is said to be integrable
if there are n integrals of the motion. These integrals must all be independent and
Poisson commute (see Sect. 5.8) with the Hamiltonian as in (5.182). There are then as
many constants of the motion as there are degrees of freedom in an integrable system
[[102], [48]]. Robert Hilborn points out that this definition is, perhaps, unfortunate,
since it leads us to think that integrable systems are those that can be solved in the
sense that the canonical equations can be integrated [[48], p. 281]. That is not the
case. However the Liouville–Arnold theorem ensures that for an integrable system
there exists a canonical transformation to the action angle variables. This canonical
transformation also results in a Hamiltonian and all of the integrals (also termed
‘Hamiltonians’ in these systems) which are functions only of the action variables.

The original system, for which we are seeking a solution, will normally have
highly nonlinear canonical equations. In practical terms the numerical integration
of these equations may not be impossible with the computers available in the 21st

century. But nonlinearities limit the time step sizes and the total time intervals that can
be treated.1 Our numerical solution does not, therefore, answer questions regarding
the long term stability of these nonlinear systems. And numerical solutions alone
do not improve our understanding of the structure of classical mechanics. We shall,
therefore, return to the solution of integrable systems in terms of action and angle
variables, the existence of which is assured by the Liouville–Arnold theorem. We
have already carried out a solution to the Kepler problem in terms of action and angle
variables, which we may use as an example.

In our treatment of the Kepler problem (Example 5.7.2) there are two tori (Jϑ,ωϑ)
and (Jr,ωr) in which the action variables Jϑ and Jr are constants and the angle
variables are linear functions of the time. The intersection of the two tori (Jϑ,ωϑ)
and (Jr,ωr) is a two dimensional curve, which is the trajectory of theKepler system in
the action angle variables. We can then, at least mentally, project this trajectory onto

1This is a well known problem in molecular dynamics.

http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
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the basis of the canonical variables (r, pr). We presented the result of this projection
in Fig. 5.2, although we obtained this plot in a simpler fashion.

The Kepler problem can, of course, be treated rather simply in the original canon-
ical coordinates (r,ϑ, pr, pϑ) with the Hamiltonian and the angular momentum as
integrals of the motion. Figure5.2 is then a plot of (5.143). And we understand
Fig. 5.2 in terms of a (distorted) harmonic motion of a planet around the equilibrium
distance from the sun. The frequencies ωr and ωϑ are also identical (see (5.162) and
(5.163)) so that the orbit is closed. Our projection onto the the basis (r, pr) in Fig. 5.2
is also a closed curve.

If we modify the dependence of the potential on r so that the actions Jr and Jϑ are
no longer linearly related as in (5.160) the angle frequencies will no longer be equal
(see (5.162) and (5.163)) and the orbit in (r, pr) coordinates will become open. For
more complex systems we may expect open orbits to be common.

For a general integrable system with n generalized coordinates our description
of the motion will be in terms of n action and n angle variables. Each combination
of an action and a corresponding angle (Ji,ωi) is a torus in the higher dimensional
space consisting of the 2n variables (J1, J2, · · · , Jn,ω1,ω2, · · · ,ωn). Such general
statements, however, seldom provide an intuitive picture of the motion that can be
more readily understood in terms of the details that we may want to investigate.
Henri Poincaré suggested that we can obtain a more detailed picture of the motion
of complex integrable systems if we consider a surface of one dimension less than
that of the space required to describe the state of the system. The trajectory will then
cross this surface at a set of points. If the system trajectory lies on a torus the points
at which the trajectory intersects the surface will form an image of the torus on the
surface. This is called a Poincaré section.

To obtain the surface for the Poincaré section we normally begin with a numer-
ical solution of the canonical equations for the system. We then select one of the
phase variables to have a particular constant value for the Poincaré section. From the
numerical solution we then obtain the values of the other canonical variables when
the selected variable takes on that constant value to within limits we select. We then
have the values attained by all of the remaining canonical variables as the trajec-
tory crosses the Poincaré plane. If, during the time we selected for the numerical
solution, the system trajectory crosses the Poincaré plane NP times there will be NP

points for our representation of the Poincaré section. We may then project this NP

point representation of the Poincaré section onto a subspace of two of the remaining
canonical variables to obtain a representation of the Poincaré section that provides
the insight into the motion that we desire. Because the choice of the variable that is
to be held constant in the Poincaré section and the value of that constant are arbitrary
the number of possible Poincaré sections we may construct for a system is infinite
[[25], p. 64].

The Poincaré section does not provide a simpler picture of the system motion. It
provides insight into the character of the motion. For example, if the Poincaré section
is, indeed, a single curve then we know that the original system is integrable. The
Liouville–Arnold theorem guarantees that the integrable system will produce such

http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
http://dx.doi.org/10.1007/978-3-319-44491-8_5
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a curve resulting from the intersection of two of the tori in the space of action and
angle variables.

The Poincaré section also provides insight into the stability of the motion of the
complex system. If the Poincaré section breaks up under certain conditions we know
that the system has transitioned from integrability to chaos.

The two dimensional oscillator is an integrable system that is simple enough to
be solved analytically and yet, with four canonical variables, can still serve as an
example for construction of a Poincaré section.

Example 6.2.1 The Hamiltonian for the two dimensional harmonic oscillator is

H = 1

2

(
1

m
p2x + kxx

2

)
+ 1

2

(
1

m
p2y + kyy

2

)
,

which is separable. If we identify the constants Ex and Ey as

2Ex = 1

m
p2x + kxx

2 and 2Ey = 1

m
p2y + kyy

2

the Hamiltonian becomes H = Ex + Ey. The momenta are

px = ±
√
2mEx − mkxx2 and py = ±

√
2mEy − mkyy2

And the limits of motion x = ±√
2Ex/kx and y = ±√

2Ey/ky are found by setting
px,y = 0. The actions are then

Jx =
∫ √

2|Ex|/kx

−√
2|Ex|/kx

√
2mEx − mkxxdx

= π

ω0,x
Ex,

and
Jy = π

ω0,y
Ey

where ω0,i = √
ki/m for i = x, y. From the Hamiltonian

H = 1

π

(
ω0,x Jx + ω0,y Jy

)
.

we have the angle frequencies as (see (5.121))

νi = ∂H
∂ Ji

= ω0,i

π
.

http://dx.doi.org/10.1007/978-3-319-44491-8_5
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The ratio of the frequencies for this two dimensional oscillator is

νx

νy
= ω0,x

ω0,y
=

√
kx
ky
,

which may be integer, rational, or irrational. The angle variables are

ωx = ω0,x

π
t

and
ωy = ω0,y

π
t,

neglecting the additive constants.
There are four variables for the double oscillator. These are

(
x, y, px py

)
or(

Jx, Jy,ωx,ωy
)
. The phase space is then four dimensional and phase plots cannot be

drawn. We may, however, simply plot two or three variables by projecting the phase
plot onto two or three dimensions. We show the two dimensional projection of the
double oscillator with ky = 2.5kx onto the space of (x, y) in Fig. 6.1. We obtained
this plot from a numerical solution of the canonical equations using Maple for the
solution and graphics.

And in Fig. 6.2 we show the three dimensional projection of this double oscillator
onto the space of (x, y, px). In this plot we can see the two dimensional phase space
(x, p x) projection of the motion without difficulty.

We can investigate the affect of changing the frequency ratios ωx and ωy from
rational to irrational values by choosing values for the spring constants kx and ky.
If we select values of the constants kx and ky such that the square root of their ratio
is very close to an integer value we get a projected phase plot that is very close to
a single trajectory for the same time interval as we used in Figs. 6.1 and 6.2. In the
case for which ky = 4.01kx, i.e. the case for which the ratio of the frequencies is
very close to 1/2, we have the projection of the double oscillator onto the space of
(x, y, px) in Fig. 6.3.

Ifwe increase the ratio to ky = 4.1kx wehave the projection of the double oscillator
onto the space of (x, y, px) in Fig. 6.4.

We may also obtain a Poincaré section by calculating, for example, the values of
y, px, and py when x = 0 and then projecting this result onto the space

(
y, py

)
. The

result for ky = 2.5kx we show in Fig. 6.5.

If we had chosen the spring constants to be in a ratio of precisely 4 the plot
in Fig. 6.3 would have been a single line. Our choice to make it appear as a ribbon
provides some sense of the form of the trajectory. In Fig. 6.4 we increased the ratio of
the spring constants to ky = 4.1kx which changed the frequencies sufficiently tomake
the trajectory differences visible. But we have still not reduced the representation to
a point at which we can easily recognize a single oscillator. This requires us to obtain
a plot of px versus x or py versus y. It is almost obvious that the rotation of Fig. 6.4
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Fig. 6.1 Projection of the
phase plot for a double
oscillator with ky = 2.5kx
onto the space (x, y)

Fig. 6.2 Projection of the
phase plot of the double
oscillator with ky = 2.5kx
onto the space (x, y, px)

Fig. 6.3 Projection of the
phase plot of the double
oscillator with ky = 4.01kx
onto the space (x, y, px)

Fig. 6.4 Projection of the
phase plot of the double
oscillator with ky = 4.1kx
onto the space (x, y, px)

will reveal a plot of px versus x that is an ellipse (a circle in stretched coordinates).
So in Fig. 6.5 we have done this by first obtaining a three dimensional representation
of the trajectory in terms of y, px, and py and then finding the points for which the
value of x lies between small limits centered on x = 0. This produces the Poincaré
section in Fig. 6.5.
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Fig. 6.5 Poincaré section of
the double oscillator with
ky = 2.5kx. This results from
a determination of the
variables

(
y, px, py

)
when

x = 0 and then projecting the
result onto the plane

(
y, py

)

Our use of projections and finally a Poincaré section has shown us the relatively
simple structure that we realizedwas present in the double oscillator. Of course in our
usual application of these techniques we may not be aware of the detailed structure
of the system we are studying and the Poincaré section might reveal a structure that
may not be at all obvious.

6.3 The Hénon–Heiles System

6.3.1 Integrals of the Motion

As an example of an interesting and somewhat complicated system we have chosen
to consider the system designed by Michel Hénon and Carl Heiles [43]. For the year
during which this work was conducted Hénon was a visiting professor and Heiles a
graduate student at Princeton University.

Ostensibly this system models the motion of a star inside a galaxy. The primary
interest of Hénon and Heiles was, however, to investigate the existence of a third
integral of galactic motion.

A conservative and axially symmetric system has constant energy and angular
momentum about the axis of symmetry. These are the first and second integrals
of the motion. The constant energy integral is denoted as I1 and constant angular
momentum is I2. The third integral is then I3.

Hénon and Heiles began with a time independent gravitational potential within
the galaxy and chose cylindrical coordinates for the description (r,ϑ, z). The phase
space then has six dimensions (r,ϑ, z, pr, pϑ, pz). Because they did not consider the
mass of the star being studied, Hénon andHeiles used velocities rather thanmomenta
as phase coordinates. We shall consider unit mass in our numerical work to bring
our results into line with those of Hénon and Heiles.

The trajectory in phase space, which is a one-dimensional line, must result
from five independent integrals of the motion Ij (r,ϑ, z, pr, pϑ, pz) = Cj, where
j = 1 . . . 5 and Cj are constants. Two of these constant integrals we have already
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identified. They are isolating integrals, as contrasted to nonisolating integrals. From
a physical point of view nonisolating integrals have no significance. Prior to 1958 the
third integral had been considered to be nonisolating. Then George Contopoulos and
Alexander Ollongren published the results of numerical computations on galactic
orbits, which indicated that there may be 3 isolating integrals, rather than just 2 [[7],
[8], [9], [10], [97]].

Hénon andHeiles again approached the problem numerically. But, as they pointed
out, in order to have more freedom of experimentation they neglected the astronom-
ical origin of the problem. Instead they considered the more general question of
whether an axisymmetric potential admits a third isolating integral of the motion.
Therefore the potential they constructed did not necessarily represent an actual galac-
tic potential. Their analysis of the question was based on studies of the orbits in phase
space as the system energy was varied.

Hénon and Heiles were not able to conclude that there always existed or that there
was no isolating third integral. They could conclude, however, that a third isolating
integral always exists for low energies. And at energies above a critical value there
are an infinite number of separate regions in phase space in which a third isolating
integral seems to exist. Between these regions is the ergodic region2 in which the
third integral is nonisolating. And as the energy is further increased the ergodic region
rapidly fills the entire phase space.

Our intention is to first explore the phase space structure of the Hénon–Heiles
system, as a system that is interesting in its own right, without reference to the
question Hénon and Heiles pursued. We will then consider the Poincaré section on
which Hénon and Heiles based their analysis of the third integral of the motion. Our
approach will be direct integration of the canonical equations using a Runge–Kutta
algorithm. We carried out all computations on Maple.

6.3.2 Equations of Motion

Hénon and Heiles began with a gravitational potential Vg which was independent of
azimuthal angle ϑ. The first two integrals of the motion were (with m = 1)

I1 = Vg (r, z) + 1

2

(
ṙ2 + r2ϑ̇2 + ż2

)

and
I2 = r2ϑ̇.

Introducing

V (r, z) = Vg (r, z) + C 2
2

r2
,

2The trajectory fills the whole of the ergodic regions and is not confined to a single surface.
The ergodic hypothesis arises in statistical mechanics [[44], p170].
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Fig. 6.6 Hénon–Heiles
Potential. This is a
two-dimensional potential
with a very shallow basin at
the origin

where C2
2 = I 22 /2, the problem was then completely equivalent to the motion of a

particle in a plane. So Hénon and Heiles adopted a new formulation by substituting
x and y for r and z. They then (after a number of trials) simplified the effective
potential to

V (x, y) = 1

2

(
x2 + y2

) + x2y − 1

3
y3. (6.1)

Their bases for this simplification were

1. this potential is analytically simple
2. it is sufficiently complicated to yield trajectories that are far from simple.

They believed that nothing would be fundamentally changed by adding higher
order terms [cf. [60]].

The Hamiltonian for the Hénon–Heiles system is (with m = 1)

H (
x, y, px, py

) = 1

2

(
p2x + p2y

)
+ 1

2

(
x2 + y2

) + x2y − 1

3
y3. (6.2)

The canonical equations are then

px = ẋ, py = ẏ, (6.3)

ṗx = −x − 2xy (6.4)

and
py = −y − x2 + y2. (6.5)

All trajectories we discuss below were obtained from a simultaneous numerical
integration of these canonical equations.

In Fig. 6.6we have plotted the potential (6.1). This potential has a slight depression
around the origin. As long as the energy is kept low we may expect bound motion
in this potential energy depression. The coordinate x takes on positive and negative
values. The original coordinate for the star was r , which could take on only positive
values. So we cannot easily interpret our results in terms of the motion of a star.
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Fig. 6.7 Hénon–Heiles
phase plot. Initial conditions
were (x = 0, y = −0.1475,
px = 0.3101, py = 0). The
presence of a torus is evident
from the pattern of the
trajectory

6.3.3 Trajectories

If we initially locate the (unit) mass slightly up the potential hill in the negative
y−direction with x = 0 and impart a small momentum in the x−direction (y (0) =
−0.1475 and px (0) = 0.3101 with energy = 0.06003) the mass executes the bound
motion we have plotted in Fig. 6.7. This corresponds to the motion of the double
oscillator represented in Figs. 6.2 and 6.4. In Fig. 6.7 we chose to plot the momentum
py against x and y with an orientation that shows that the trajectory lies on a surface.
The complete phase plot has four dimensions

(
x, y, px, py

)
. So we have here a

projection of the complete phase plot.
If we project the trajectories in Fig. 6.7 onto the (x, y)−plane we have the plot

in Fig. 6.8, which corresponds to the plot of the double oscillator motion in Fig. 6.1.
If we change the initial conditions slightly, the projection of the trajectory onto the
(x, y)−plane takes on a different appearance.We have shown an example in Fig. 6.9.

Although very beautiful in its symmetry, the length of time over which we plotted
the trajectories in Figs. 6.7 and 6.8 obscures the details. In Fig. 6.10 we allowed
the motion to first settle and then plotted the trajectory over a relatively short time
interval. In Fig. 6.10 the beginning point is indicated by a closed circle and the final
point by an arrow. We picked the length of time to include a clear indication that the
orbit is not closed. The open character of the trajectory was noticed, as well, in the
original publication [43]. The trajectories then are densely packed as we can see in
the figures above.

In Fig. 6.11 we have plotted a trajectory with energy above the critical energy for
the mass to escape from the slight energy depression near the origin of the potential.
The initial point for the trajectory is indicated by a filled circle and the direction of
motion at the instant before the mass escapes the depression is indicated by an arrow.
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Fig. 6.8 Hénon–Heiles
trajectory in (x, y)−plane

Fig. 6.9 Hénon–Heiles
trajectory in (x, y)−plane

Fig. 6.10 Hénon–Heiles
phase space trajectory in(
y, py

) −plane. The plot
time begins at the filled
circle after the system has
settled and continues briefly
to the arrow point. The orbit
in phase space is not closed
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Fig. 6.11 Hénon–Heiles
trajectory for an energy
above the critical energy.
The energy for this plot is
E = 0.17406

6.3.4 Poincaré Sections

The Hénon–Heiles system is a conservative Hamiltonian system. There is then a first
integral of the motion

I1 = H (
x, y, px, py

)
(6.6)

and the phase space is reduced to three dimensions. For the potential (6.1) there is,
however, no axial symmetry and, therefore, no second integral I2. If a third integral
exists there will be a reduction of the phase space to two dimensions. A Poincaré
section will reduce this phase space to a single dimension, which is a line. Therefore
the question of whether or not a third integral exists can be answered by considering
the Poincaré section. If the Poincaré section is a line the third integral exists. But if
the third integral does not exist the Poincaré section will be a scatter of points that
eventually fill the space.

We may obtain a Poincaré section by limiting the coordinate x to values close to
zero and recording the corresponding values of y and py as we did in Fig. 6.5 for
the double oscillator. We show the resulting Poincaré section for the Hénon–Heiles
system in Fig. 6.12.Herewe see the lines from the projections of two toroidal surfaces
that indicate the presence of a third integral I3. The system energy in Fig. 6.12 was
E = 0.119.

If we increase the energy to E = 0.145we obtain the Poincaré section in Fig. 6.13.
Here we notice the beginning of a breakup in the projection of the torus to the right.
A further increase in energy results in the randomization of the points at which the
trajectory crosses the plane indicating that the trajectory is no longer isolated to
the tori observed in Figs. 6.12 and 6.13. We show this breakup of the trajectories in
Fig. 6.14. The trajectories plotted in Fig. 6.14 are still deterministic in the sense that
they result from the canonical equations. Compared to the plots in Figs. 6.12 and
6.13, however, the Poincaré plot has a random or chaotic appearance. The region has
become ergodic and the third integral I3 is no longer isolating.
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Fig. 6.12 Poincaré section
for the Hénon–Heiles
system. The presence of two
tori on which the motion is
confined are evident. The
energy for this plot is
E = 0.119

Fig. 6.13 Poincaré section
for the Hénon–Heiles
system. The image of the
torus on the right hand side
of this plot is on the verge of
breaking up. The energy for
this plot is E = 0.145

Fig. 6.14 Poincaré section
for the Hénon–Heiles
system. Both of the tori in
the preceding Figs. 6.12 and
6.13 have broken up and the
region has become ergodic.
The energy for this plot is
E = 0.17406

6.4 Summary

Our intention in this chapter was to introduce the analysis of integrable complex
systems. This analysis will always involve numerical solutions. And our analysis
of the dynamical behavior of the system will be based on our comprehension of
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the manner in which the numerical results are presented. We can obtain insight
into the character and the frequencies of the motion by turning to the action and
angle variables. If we seek a more detailed picture of the motion we may turn to a
numerical integration of the canonical equations and phase space representations.
Then we can identify the surfaces on which the trajectories of the system lie using
Poincaré sections.

We considered two systems of dramatically different levels of complexity. The
first of these, the double oscillator, we could actually solve in terms of eigenvectors
if we chose. And the solution in terms of action and angle variables was simple,
providing an algebraic form for the ratio of frequencies. The final Poincaré section
provided nothing thatwe could not have discovered algebraically.But the relationship
between the projections of the phase plots and the Poincaré section is instructive.

The Hénon–Heiles system is very familiar in any study of complex systems. And
we chose this system for the same reasonsmost authors have. It is a system that can be
treated numerically without great difficulty and is a logical step in our understanding
of the analysis of complex systems. We have, however, based our discussion on the
problem posed initially by Hénon and Heiles, which was to study the possibility of a
third integral of the motion. They began with a star in a galaxy. But the system they
finally studied was no longer appropriate for a star. It was, however, appropriate for
the question of interest to them.

In the first part of our study of the Hénon–Heiles system we simply presented
the results of numerical studies of the bound motion and the escape of the system
from the shallow potential well. Although the beautiful symmetries of the bound
motion reveal that the motion is confined to tori for certain energy limits, they do
not provide insight into the breakup of that symmetric motion and the transition to a
more complicated motion as the energy increases. This was the original objective of
the study and was ours here. For this study we turned, as did Hénon and Heiles, to
a Poincaré section. We found that even for motion confined to the shallow potential
well there was a transition from motion confined to tori to a motion in which the tori
break up and the motion, although still deterministic, becomes chaotic.



Chapter 7
Chaos in Dynamical Systems

The phenomenon of chaos could have been discovered long, long ago. It wasn’t, in part
because this huge body of work on the dynamics of regular motion didn’t lead in that
direction. But if you just look, there it is.

Norman Packard

7.1 Introduction

At the end of our study of the Hénon–Heiles system we increased the energy to a
value for which the system trajectory filled the entire phase space and was no longer
confined to the tori we initially identified. This motion was still determined by the
canonical equations. But the phase space had become ergodic and the motion of the
system became very sensitive to the conditions at any instant. The motion of such
systems is termed chaotic.

When we first became interested in chaotic dynamical systems, as a result pri-
marily of the ability to integrate complex sets of differential equations on desktop
computers, we found it relatively easy to identify the universal characteristics of
a chaotic system. And we defined the concept of dynamical chaos based on those
characteristics. That is no longer possible. Our understanding of chaos has shown the
limitations of our previous ideas. One characteristic remains as a universal property
of chaotic systems. There is a sensitive dependence on initial conditions (SDIC). This
is, however, not limited to dynamical chaos. We must, finally, realize that there is
no set of defining characteristics for dynamical chaos agreed upon among physicists
and mathematicians [4].

Here we will investigate dynamical chaos by considering a single system as an
example. We chose the Rössler (Otto Rössler) system as this example.

© Springer International Publishing Switzerland 2017
C.S. Helrich, Analytical Mechanics, Undergraduate Lecture
Notes in Physics, DOI 10.1007/978-3-319-44491-8_7
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We again have essentially no exercises for this chapter for the same reasons in the
previous chapter. The examples we suggest are rather simple. If students have access
to appropriate software the Rössler system is simple and fruitful.

7.2 The Rössler System

The Rössler system is a mathematical system of three equations, which is not obtain-
able from any set of canonical equations. It is, however, a system that represents,
fairly simply, the salient properties of chaotic systems. As we study this system we
must only realize that we cannot base the appreciation wemay have for the numerical
results on any mental picture of particle dynamics.

In using the Rössler system as a fruitful and mathematically beautiful system
we will avoid any speculation regarding Rössler’s thoughts or concerns beyond the
development of this system.

7.2.1 Rössler Equations

The Rössler system is completely described by the set of first order differential
equations

dx

dt
= −y − z, (7.1)

dy

dt
= x + ay, (7.2)

and
dz

dt
= bx − cz + xz. (7.3)

The quadratic term in (7.3) creates the interest in an otherwise linear system. Even
though the system does not represent particle motion of any sort, we will refer to
the solution of the Eqs. (7.1)–(7.3) as trajectories for the system in the phase space
(x, y, z).

The equilibrium points for the system are obtained when dx/dt = dy/dt =
dz/dt = 0. At these equilibrium points the system of equations (7.1)–(7.3) becomes

0 = −y − z (7.4)

0 = x + ay (7.5)

0 = bx − cz + xz. (7.6)
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The solutions to the set of Eqs. (7.4)–(7.6) are at the origin of coordinates x = y =
z = 0 and the point

x = c − ab

y = b − c

a

z = c

a
− b. (7.7)

(see exercises). We will use points very near these equilibrium points as initial con-
ditions for our numerical studies of the Rössler system.

7.2.2 Numerical Solution

We solved the system of equations (7.1)–(7.3) using a Runge–Kutta algorithm. For
our numerical calculationswe chose the parameters of the system to be a = 0.32, b =
0.3, and c = 4.5, except where otherwise indicated. We conducted all calculations
on Maple.

If we release the system from a point very close to the origin we obtain the time
evolution of the coordinate x (t) shown in Fig. 7.1 and the time evolution of the
coordinate z (t) shown in Fig. 7.2. Aside from noting the aperiodic character of the

Fig. 7.1 Plot of x (t) versus t for the Rössler system. The initial point was x = 0.00001,
y = 0.00001, z = 0.00001

Fig. 7.2 Plot of z (t) versus t for the Rössler system. The initial point was x = 0.00001,
y = 0.00001, z = 0.00001
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motion, which was once considered characteristic of dynamical chaos, and that the
trajectory is confined we learn very little from these plots.

7.2.3 Rössler Attractor I

If we plot the three phase space coordinates (x, y, z) we obtain the plot in Fig. 7.3
that corresponds to that in Fig. 6.7 for the Hénon–Heiles system, except there is no
momentum in the Rössler system.

The darkened origin in Fig. 7.3 results from the initial part of the trajectory, which
we can see at the left of Figs. 7.1 and 7.2. The trajectory never returns to the neigh-
borhood of this point, and remains on a surface that is becoming evident in Fig. 7.3.

If we release the system from a point very near the second equilibrium point
(7.7) we obtain the plot in Fig. 7.4. In Fig. 7.4 we see that the trajectory remains on
the same surface as that which we identified in Fig. 7.3. Although the system has

Fig. 7.3 Plot of (x, y, z) for
the Rössler system released
from the initial point
x = 0.00001, y = 0.00001,
z = 0.00001

Fig. 7.4 Plot of (x, y, z) for
the Rössler system released
from the initial point
x = c − ab + 0.00001,
y = b − c/a + 0.00001,
z = c/a − b + 0.00001

http://dx.doi.org/10.1007/978-3-319-44491-8_6
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SDIC the trajectory is confined to a surface. The neighborhood of the initial point is
excluded from the surface.

If we increase the length of time for the solution in Fig. 7.3 we obtain a more
complete picture of the surface on which the trajectory of the Rössler system lies.
We show this surface in Fig. 7.5. In Fig. 7.5 we have plotted only the final portion
(950 out of 1000 points) of the data gathered from the numerical solution of the
Rössler system. The surface we have found in Figs. 7.3, 7.4, and 7.5 is known as an
attractor for the motion. The trajectory is attracted to and remains on the attractor.

If we vary the parameter c in the Rössler system we obtain some understanding of
what is termed bifurcation in a chaotic system. A chaotic system may have multiple
periodicities of the motion, whichmay appear as certain parameters of the system are
altered.We studied this phenomenon in the Rössler system by holding the parameters
a and b fixed and varying the parameter c. In Fig. 7.6 we have plotted the attractor in
(x, y, z) coordinates for a = 0.32, b = 0.3, and (a) c = 1.0, (b) c = 3.0, (c) c = 3.5,
(d) c = 3.6, (e) c = 3.9, and (f) c = 8.0. In each case we have plotted only the final
portion of the trajectory so that the attractor alone is visible. The values of c chosen
for the plots are characteristic for the ranges in which the patterns exist. In Fig. 7.6
we can see the development of the attractor characterized by a general increase in
the number of bands in the trajectory. In panels (a), (b), and (c) the bands are 1, 2
and 4 respectively. There are separate bands in (d) and (f). In panel (e), however, the
bands have begun to dissolve and we have a chaotic pattern emerging, although the
trajectory remains on the attractor.

If we study the attractor in Fig. 7.4 or in Fig. 7.6f we note that where the trajectory
appears to leave that part of the attractor approximately in the (x, y) −plane there
is an apparent branching of the trajectory. But this is not the branching of a single
trajectory. Rather it is a folding of surfaces onto, but not into, one another. This is
indicative of an unfamiliar topology [see [25], pp. 94–97].

At the very least we see that there are striking differences between the tori we
found supporting the trajectories of the Hénon–Heiles system (at lower energies)
and the attractor we identified for the trajectories of the R össler system. We may,

Fig. 7.5 Rössler attractor
with longer integration time
than in Figs. 7.3 and 7.4
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Fig. 7.6 Bifurcation in the
Rössler system. Separate
bands appear in the
trajectory as the parameter c
is varied, while a and b are
held constant
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(d) (e) (f)
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therefore, expect a fundamental difference in the systems. The difference lies in the
fact that the Hénon–Heiles system is a Hamiltonian system and the Rössler system
is not. The Rössler system is what is termed a dissipative system.

7.3 Dissipation and Attractors

All systems do not have attractors. The systems to which we have devoted most of
our study, for example, have been conservative systems for which the Hamiltonian
is a constant. For these systems the trajectory lies on the surface H = constant for
all time. The trajectories of integrable systems, such as the Hénon–Heiles system for
low energies, lie on tori. These can be detected, as we did, and as Hénon and Heiles
originally did, through Poincaré sections. Such systems, however, are not attracted
to these surfaces. The trajectories simply lie on families of these surfaces. The initial
conditions determine which of the families of surfaces are occupied by the system
trajectory.

The fundamental difference between this behavior and that of a system such as
the Rössler system is the fact that initial phase point does not necessarily lie on
the surface eventually containing the trajectories. We saw this in Figs. 7.3 and 7.4.
Systems such as the Rössler system have a distinct time directionality that is lacking
in Hamiltonian systems.

7.3.1 Hamiltonian Systems

Weconsider aHamiltonian systemwith N coordinates and N momenta (q1, . . . , qN,

p1, . . . , pN). Any of the points in this phase space may, at any time, be the state
point of the system. We designate the density of the state points as τ and consider an
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infinitesimal volume in the phase space for which the ranges of the i th generalized
coordinate and momentum are qi → qi + dqi and pi → pi + dpi. These ranges
define an infinitesimal volume in the 2N dimensional phase space

dΩ = dq1 · · · dqNdp1 · · · dpN
=

N∏

j

dqjdpj. (7.8)

If we fix the volume dΩ we can compute the number of state points (trajectories)
entering dΩ across the differential area

dSq,i = dq1 · · · dqi-1dqi+1 · · · dqNdp1 · · · dpN (7.9)

normal to the generalized coordinate qi as

τ q̇idSq,i

and those leaving diagonally across dΩ as

τ q̇idSq,i + ∂

∂qi
(τ q̇i) dqidSq,i

The net rate of increase of state points in dΩ from motion of state points along qi is
then

− ∂

∂qi
(τ q̇i) dqidSq,i = − ∂

∂qi
(τ q̇i) dΩ,

since dqidSq,i =dΩ . Summing this result over all faces of the volume dΩ we have
the total rate of increase of state points in dΩ as

−
∑

i

[
∂

∂qi
(τ q̇i) + ∂

∂ pi
(τ ṗi)

]
dΩ. (7.10)

The summation includes, of course, the canonical momenta on the same basis as the
generalized coordinates. In the case of the canonical momentum pi the facial area is
dSp,i and dpidSq,i =dΩ .

The result in Eq. (7.10) is equal to (∂τ/∂t)dΩ . Therefore

∂τ

∂t
+

∑

i

[
q̇i

∂τ

∂qi
+ ṗi

∂τ

∂ pi

]
= τ

∑

i

[
∂

∂qi
(q̇i) + ∂

∂ pi
( ṗi)

]

= τ
∑

i

[
∂

∂qi

(
∂H
∂ pi

)
+ ∂

∂ pi

(
−∂H

∂qi

)]
. (7.11)
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Because the order of partial differentiation is immaterial, (7.11) becomes

∂τ/∂t +
∑

i

[q̇i (∂τ/∂qi) + ṗi (∂τ/∂ pi)] = 0, (7.12)

Equation (7.12) is the mathematical expression of the Liouville theorem, which is
fundamental in statistical mechanics [see [28], p. 13; [32], pp. 7–18].

We may also consider the rate of change of a volume in phase space

Ω =
∫

Ω

dΩ =
∫

Ω

dq1 · · · dqNdp1 · · · dpN, (7.13)

which is called the extension in phase [[32], p. 18]. The size of the volume will
change as a result of the changes in the coordinates and momenta on the surface of
the volume, which satisfy Hamilton’s canonical equations. The change in the volume
Ω in (7.13) is then

d

dt

∫

Ω

dΩ =
∮

SΩ

N∑

i

(
q̇idSq,i + ṗidSp,i

)
. (7.14)

The integral on the right hand side of (7.14) is over the entire bounding surface of
the volume SΩ . Applying Gauss’ theorem to (7.14) we obtain

d

dt

∫

Ω

dΩ =
∫

Ω

N∑

i

(
∂

∂qi
q̇i + ∂

∂ pi
ṗi

)
dΩ

=
∫

Ω

N∑

i

(
∂

∂qi

∂H
∂ pi

− ∂

∂ pi

∂H
∂qi

)
dΩ

= 0. (7.15)

The volume containing the system trajectory then does not change in time provided
the system is a Hamiltonian system. This is the constancy of the extension in phase
in statistical mechanics [see [28], pp. 11–13, [48], pp. 208-213, [32], pp. 7–11].

We have then a fundamental picture of the behavior in phase space of the trajectory
of a Hamiltonian system. The volume containing the trajectory remains constant. But
the volumemay change shape. The content of this theorem is that the density of states
τ for a Hamiltonian system behaves like an incompressible fluid in the phase space.
There can be then no compression of the representative points (the trajectories) of a
Hamiltonian system. Therefore there is no attractor for a Hamiltonian system.
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7.3.2 Dissipative Systems

A physical dissipative system loses energy to the surroundings and is kept in motion
by a driving force. A common example of such a system is the damped and driven
pendulum. Defining q = ϑ, p =dϑ/dt , and the driving force as T sin (ωt), the
equations of motion are

d

dt
p = −ν p − sin (q) + T sin (ωt)

d

dt
q = p.

For this system the first line of (7.15) is

d

dt

∫

Ω

dΩ = d

dt
Ω (t) = −νΩ (t) . (7.16)

Then
Ω (t) = exp (−νt)

and the volume of the system in phase space decreases exponentially in time. Dissi-
pative systems will contract to attractors in phase space [cf. [98], p. 9].

For the Rössler system the rate of change of the volume in phase space is

d

dt
Ω = (a − c) Ω + FΩ (x, y, z) , (7.17)

where

FΩ (x, y, z) =
∫

Ω

xdΩ. (7.18)

and FΩ (x, y, z) is generally sensitive to the motion of the system in phase space
(see exercises). The rate of change of the phase space volume is negative and the
trajectory has an attractor only when (a − c) Ω + FΩ (x, y, z) < 0. If at some time
(a − c) Ω + FΩ (x, y, z) > 0 then in the next instant there will be a growth in the
volume of phase space (extension in phase) available to the Rössler system and the
next phase point may result in a further increase in the value of Ω . The trajectory
may then deviate completely from the confines of the attractor.

AHamiltonian system is what is generally called a conservative system for which
the total mechanical energy is constant. But in many systems, particularly in model
systems, theremay not be an identifiable energy. If the volume in phase space remains
constant we still, however, refer to the system as conservative. Similarly we refer
to a system whose volume is not constant as dissipative. This definition includes
decreasing volumes, as in the case of the damped and driven oscillator, and systems
for which the volume may decrease or increase, as the Rössler system. In the context
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of this general definition only dissipative systems may have attractors. But there is
no claim that a dissipative system necessarily loses energy.

7.4 Rössler Attractor II

7.4.1 Dissipation

To understand the separation of the dissipative Rössler system into regions for which
dΩ/dt is either positive or negative we choose a = 0.32, b = 0.3 and investigate
the time dependence of the coordinates x and z that results from variation in the
parameter c. In Fig. 7.7 we plot the time development of the coordinates x and z for
c = 0.737 (panels (a) and (b)) and c = 0.736 (panels (c) and (d)). We carried out the
calculations using a Runge–Kutta algorithmwith discrete time steps and limited time
durations. For the case in which c = 0.737 the volume occupied by the trajectory
is confined for the time duration considered. With c = 0.736, however, we see the
development of a rapid growth in x and a corresponding very rapid growth in z. This
numerical experiment has at least indicated that for certain ranges of the parameters
of the system there may be no attractor.

We have plotted the phase space trajectory of the system when c = 0.737 in
Fig. 7.8. For this value of the parameter c the trajectory converges on the single band
attractor that we discovered in Fig. 7.6a.

If we plot the phase space trajectory for the system with c = 0.736, as we have
done in Fig. 7.9, we find the unbounded behavior indicated in Fig. 7.7 panels (c) and
(d). The arrow indicates the direction of the trajectory for increasing time. Here there
is no attractor.

In both of the cases we considered a − c < 0. So the determining factor is
FΩ (x, y, z) defined in (7.18). We can also see that FΩ (x, y, z) determines the tran-
sition in dΩ/dt from negative to positive in Fig. 7.7 panels (c) and (d). There the
sudden comparatively large change in x just before t = 500 drives the very large
change in z. Once a threshold has been surpassed the system begins a rapid diver-
gence.

Fig. 7.7 Attraction and
divergence of the Rössler
system

(a) (c)

(b) (d)
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Fig. 7.8 The Rössler
attractor for a = 0.32,
b = 0.3 and c = 0.737. The
initial point was
x = 0.00001, y = 0.00001,
z = 0.00001

Fig. 7.9 The Rössler system
for a = 0.32, b = 0.3 and
c = 0.736. for this choice of
parameters there is no
attractor. The initial point
was x = 0.00001,
y = 0.00001, z = 0.00001

7.4.2 Poincaré Sections

In Fig. 7.10 we have plotted two Poincaré sections of the Rössler system using para-
meter values for which there is definitely an attractor. These Poincaré sections cor-
respond to the attractor in Figs. 7.4 and 7.5. The sections differ only in the choice of
which variable (x or y) is to be set to zero. Although these Poincaré sections may
initially appear to be representations of a planar surface, if we consider closely the
portion of the plot in panel (a) between the arrowswe see evidence of the two surfaces
we previously indicated were present in the attractor. The parts of the trajectory on
these two surfaces become almost intermingled into a single surface, although the
trajectory never crosses itself.

A Poincaré section of the attractor in Fig. 7.6 panel (f) with a = 0.32, b = 0.3,
and c = 8.0 opens the two surfaces we identified in Fig. 7.10 panel (a). We show this
Poincaré section in Fig. 7.11. In Fig. 7.11 we have indicated the point at which the



240 7 Chaos in Dynamical Systems

Fig. 7.10 Poincare plots for
the Rössler system. a z
versus y with x = 0, b z
versus x with y = 0.
Parameters in each plot are
a = 0.32, b = 0.3, and
c = 4.5

(a) (b)

Fig. 7.11 Poincaré section
of Rössler attractor with
parameters a = 0.32,
b = 0.3, and c = 8.0. The
arrow indicates the point at
which the two surfaces join

two surfaces almost join by an arrow. This folding of surfaces into almost a single
surface is a characteristic of fractal geometry [cf. [25], pp. 94–97].

Another characteristic of fractal geometry is self similarity at different scales
[cf. [61], pp. 4–5, [73]]. For the Rö ssler system we can see this if we read the data
of our numerical solution of the equations on different time scales. In the top panel
of Fig. 7.12 we have plotted the values of the coordinate z for each point of the
numerical solution and in the bottom panel we have plotted the values for every fifth
point of the numerical solution. We notice that, although a more detailed structure is
revealed in the top panel in Fig. 7.12, the time self similarity is evident.

Fig. 7.12 Self similarity on
different time scales in the
Rössler system
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The attractor for the Rössler system is not a two dimensional surface. The dimen-
sion of the attractor is not an integer but a fraction. Such a surface is termed a fractal
and an attractor with a fractal dimension is traditionally called a “strange attractor”.

7.5 Attractor Dimension

7.5.1 Definition of Dimension

We consider the problem of covering an arbitrary surface that we have drawn on a
sheet of paper by dividing the surface into a number of small squares. If the side of
the square has a length ε and if the surface has an area A, we can cover the surface
approximately with

Nε = A

ε2
(7.19)

of these small squares. In the limit as ε → 0 the squares become infinitesimal and
we cover the surface completely. So we must consider the concept of covering in
terms of this limit.

From (7.19) we have

ln (Nε) = 2 ln

(
1

ε

)
+ ln (A) . (7.20)

Or

2 = ln (Nε)

ln
(
1
ε

) − ln (A)

ln
(
1
ε

) . (7.21)

Taking the limit of infinitesimal squares, limε→0 ln (A) / ln (1/ε) = 0, therefore the
dimension of our arbitrary surface is

2 = lim
ε→0

ln (Nε)

ln
(
1
ε

) . (7.22)

In the same fashion we may cover a line by using segments of length ε and a volume
by using cubes with sides of length ε. And for general phase spaces we may speak in
terms of volumes of higher dimension, which wemay choose to call hypercubes. The
concept of dimension, however, remains the same. A volume Vn in an n-dimensional
(hyper) space is covered by Nε infinitesimal hypercubes of volume εn and

n = lim
ε→0

ln (Nε)

ln
(
1
ε

) . (7.23)
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If we consider a general surface, in a phase space, for example, we can define the
dimension d of the surface as

d = lim
ε→0

ln (Nε)

ln
(
1
ε

) . (7.24)

In particular we are interested in attractors on which trajectories of complex
systems reside. Our investigations of these surfaces have been, and will always be,
based on the numerical integration of the nonlinear system equations. Therefore our
information about the attractor will be in the form of discrete points lying on the
surface. The procedure we have outlined here for determining the dimension of a
surface is known as box counting. We may apply this procedure readily to find the
dimension of an attractor for which we have data in the form of discrete points. We
require only an algorithm which defines the box size in terms of ε and determines,
at each level ε the number of boxes that contain contain points at that level Nε. This
approach was first used byAndrey N. Kolmogorov in the study of dynamical systems
in 1958 [[48], p. 343]. This is not the most efficient approach. But it is the approach
we shall use here for the sake of transparency.

7.5.2 Fractal Dimension

The term fractal to designate a surface with noninteger dimension was introduced by
Benoit Mandelbrot [73], but the concept of noninteger dimension had been recog-
nized by mathematicians much earlier. We shall introduce the concept here using the
Cantor set introduced by the German mathematician Georg Cantor (1845–1919).

The Cantor set is constructed beginning with a line of unit length. The first step
divides this line into three equal lengths and removes the central section. What
remains is two lines of length 1/3. In step 2 each of these lines is divided into three
equal lengths and the central section of each line removed. What remains is four
lengths of (1/3)2. At the N th step there are 2N line segments each of length (1/3)N.
We have presented a diagram of the Cantor set in Fig. 7.13. At the N th step we then
have a set consisting of 2N elements, which we cover with segments (boxes) of length
ε = (1/3)N. From (7.24) the Cantor set has dimension

dCantor = ln
(
2N

)

ln
(
3 N

) = ln (2)

ln (3)
= 0.630 93 . . . (7.25)

We have then a set which, in the limit N → ∞, approaches a collection of points
(which still remain line segments) with noninteger dimension. The total length of
the Cantor set can be found by subtracting the removed lengths from unity
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Fig. 7.13 The Cantor set. In
each step the central one
third of each line segment is
removed. The Cantor set is
the limit of this process for
an infinite number of steps

�Cantor = 1 − 1

3
− 1

3

(
2

3

)
− 1

3

(
2

3

)2

− · · ·

= 1 − 1

3

∞∑

k=0

(
2

3

) k

. (7.26)

The geometrical series sum here evaluates to [see [12], p8]

1

3

∞∑

k=0

(
2

3

)k

= 1

3

(
1 − 2

3

)-1

= 1,

and �Cantor = 0. The measure, or total length, of the Cantor set is zero. In the limit,
then, the Cantor set resembles a collection of points, with zero total length. But the
dimension of the Cantor set is not zero.

7.6 Rössler Box Counting

To obtain the dimension of the Rössler attractor we followed the box counting pro-
cedure outlined in Sect. 7.5.1. We chose the limits on the variables (x, y, z) from the
extent of the attractor in Fig. 7.5 and began with a 5000 step numerical solution to
the Rössler system with a = 0.32, b = 0.3, and c = 4.5. Each step in the solution
was a point on the trajectory. Except for the initial points, as the trajectory settled
on the attractor, each of these points was then a point on the attractor. At each step
k in the algorithm we defined ε ∝ 1/k, which divided the region of (x, y, z) space
into a grid of three dimensional cubes. For each of these cubes we stepped through
the trajectory points determining which of the cubes was occupied. For a particular
k the number of occupied cubes was Nε.

In Fig. 7.14 we have plotted ln (Nε) versus ln (1/ε) for sixty steps in k, i.e. sixty
values of the parameter ε. We carried out two separate calculations. In the first we
included all 5000 points from the numerical solution. In the second we included only
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Fig. 7.14 Box Counting of
Rössler system. Parameters
were a = 0.32, b = 0.3, and
c = 4.5. Numerical solution
with 5000 pts. Top plot
included full 5000 pts
(fractal dim 0.86). Bottom
plot included last 1000 pts
(fractal dim 0.81)

the last 1000 points to eliminate any effects of the initial relaxation. In each case we
fitted the last 15 points in the graph (k = 45..60) to the Eq. (7.24). This is the straight
line in each plot. We then took these fits as approximations to the limit in (7.24). The
slope of each line is then an approximation to the fractal dimension and the intercept
is the value of ln (A) (see (7.20)). The fits are

ln (Nε) ≈ 0.86 ln

(
1

ε

)
+ 1.62, (7.27)

for the full 5000 points, and

ln (Nε) ≈ 0.81 ln

(
1

ε

)
+ 1.22, (7.28)

for the last 1000 points. From these results we see that, for the parameters consid-
ered, the Rössler attractor has a fractal dimension between 0.81 and 0.86. We then
understand the Rössler system as a dissipative system whose attractor is a surface
with fractal dimension. Such an attractor is called a strange attractor.

7.7 Summary

In this chapter we have considered the elements of dynamical chaos in the context
of a single example: the Rössler system. Although our present understanding of
the dynamics of complex systems allows for no set of defining characteristics for
dynamical chaos, we were able to identify certain properties of the Rössler system
that differed fromwhat we had found for the Hénon–Heiles system. These properties
are common to dynamical chaos, although they are not defining characteristics.
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For our initial choice of parameters we found that the Rössler system contracted
onto a surface that we identified as an attractor. By varying the third parameter c and
holding the others constant we found a bifurcation in the motion, which we identified
in the bands of the trajectory. For certain choices of c these bands were no longer
distinguishable and the motion became what we termed chaotic.

We concentrated on the attractor for the Rössler system noting that this attractor
had properties that distinguished it from the tori that held the trajectories of the
Hénon–Heiles system. The fundamental reason for the difference in the behavior of
the two systems lay in the fact that the Hé non–Heiles system is a Hamiltonian system
while the Rössler system is a dissipative system. The phase space volume occupied
by the Hénon–Heiles system was then a constant, while the phase space volume of
the Rössler system was not. The fact that the Hénon–Heiles system is integrable for
certain energies resulted also in the fact that the trajectory resides on tori for those
limited energies. We found that the rate of change of the phase space volume of the
Rössler system could be positive or negative depending on the choice of parameters.
We showed that the regions of expansion and contraction were determined by the
values of c for fixed a and b and that this agreed with our basic predictions.

We were able to find a folding of the portions of the attractor into one another
that indicated a unique geometry that was further revealed in the Poincaré sections
of the attractor. This, and the apparent self-similarity of the dynamics on different
time scales, led us to consider the dimension of the attractor surface. The folding
particularly indicated that the surface may have a noninteger dimension. We then
introduced the mathematical concept of dimension and, by means of the Cantor
set, showed that this can be noninteger. Using the box counting concept we then
established that the dimension of the Rössler attractor is fractal. From our work
on the dissipative properties of the Rössler system we know that this dimension is
dependent on the values of the parameters.

In this chapter our intention was to provide some understanding of dynamical
chaos by investigating someof the properties that are often associatedwith this type of
motion. The systemwe chose made it possible to investigate these properties through
numerical studies that were fairly transparent. We, however, made no pretense at
anything resembling an exhaustive treatment.

7.8 Exercises

7.1 The equations for the Rössler system are

dx

dt
= −y − z,

dy

dt
= x + ay,
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and
dz

dt
= bx − cz + xz.

Following the argument in the chapter show that the rate of change of the Rössler
system volume in phase space may be either positive or negative and that

d

dt
Ω = (a − c) Ω + FΩ (x, y, z) ,

where

FΩ (x, y, z) =
∫

Ω

xdΩ.

7.2 We consider a simplified model of the water molecule with the oxygen atom at
the coordinate x2 and the two hydrogen atom at coordinates x1 and x3 along the same
axis. We consider that the vibration of the hydrogen atoms is small enough that the
potential energy of the bound hydrogen atoms can be approximated by a quadratic
with a spring constant k. The mass of the hydrogen atom is m and the mass of the
oxygen is μm. (a) Obtain the Hamiltonian of this model water molecule. (b) Is the
Hamiltonian separable? (c)What are the frequencies of vibration of this model water
molecule and the corresponding eigenvectors?

7.3 In the text we encountered the algebraic system of equations

0 = −y − z

0 = x + ay

0 = bx − cz + xz.

for the condition that the velocity components for the Rössler system vanished, i.e.
dx/dt = dy/dt = dz/dt = 0. Obtain the two solutions to this set of equations.



Chapter 8
Special Relativity

Invention is not the product of logical thought, even though the final product is tied to a
logical structure.

Albert Einstein

8.1 Introduction

Much of our presentation herewill be an abbreviation of the treatment provided in the
text The Classical Theory of Fields [[45], pp. 273–306]. Because of the importance
that must be attached to an understanding of the basis of special relativity, which
Einstein called der Schritt (the step) [[89], p. 163], we have elected not to simply
summarize the results.

Until this point we have accepted the validity of Euclidean geometry and the
Newtonian concept of absolute space and time, which were separate and placed in
the universe prior to the existence of anything else [[87], p. 6]. And we have allowed
ourselves to imagine that we can observe all frames of reference from some separate
at rest position in the universe. Einstein’s realization that the Newtonian concept of
time was seriously flawed led to a new understanding of time, space, and motion that
was formalized as a geometry of four dimensions by Hermann Minkowski [[24], pp.
75–91].

In this chapter we will consider the modification of Analytical Mechanics that is
required by the special theory of relativity, which was published by Albert Einstein
in 1905 [[24], pp. 37–65]. Although the mathematical theory, accompanied by some
descriptive notes, can be presented rather briefly, we choose amore careful approach.
Physics faced a crisis at the end of the 19th century, which some of the greatest minds
tried to resolve by adjusting the laws of mechanics and electrodynamics. Einstein
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identified the problem in our misconception of the meaning of time. Because of the
importance of this step wewill outline the original development of the special theory.

Our mathematical development will be based on Minkowski’s formalism and
his realization that we must speak now of space-time rather than space and time.
Our vectors must now be four dimensional and we must accept that space-time is
not Euclidean. Tensor algebra is natural for our treatment. So we present a brief
introduction to tensor algebra providing what is needed for our treatment of Analyt-
ical Mechanics and our understanding of the covariance of the Lagrange–Hamilton
approach under Lorentz transformation.

We will find that more than an algebraic modification is needed to establish the
laws of mechanics in relativistic form. The basic concepts of mass, momentum
and energy must be modified. Our first covariant law will be the conservation of
momentum. And this simple law alone will provide us an understanding of some
fundamental physics,whichwe can apply, beforewe attempt to understand forces.We
will thenbase our treatment of forces on electrodynamics, acceptingWolfgangPauli’s
argument that the properties of the Lorentz electrodynamic force are representative
of a large class of pure forces.

We will close the chapter with a complete discussion of the Euler–Lagrange and
Hamiltonian mechanics, which has been the basis of our study from the beginning.

Throughout this chapter we will use the Einstein sum convention for repeated
Greek indices [[24], p. 122] (see Sect. 4.3). We will note any exception that occurs.

In writing this chapter we have relied particularly on the treatments of this subject
by P.G. Bergmann [3], W. Pauli [92], A. Einstein [24], and H. Weyl [123].

8.2 The New Kinematics

Einstein begins his paper on the special theory of relativity (On the Electrodynamics
of Moving Bodies) pointing to the asymmetry in the understanding of Faraday’s Law
and the unsuccessful attempts to discover the motion of the earth relatively to the
aether, which was supposedly the medium for the transport of the transverse light
waves. The aether had been central in the thought of James Clerk Maxwell. The
experimental failure of Albert A. Michelson and Edward W. Morley to detect the
motion of the earth through the aether in 1887 [79] was a particularly disturbing
result.

The Irish physicist George Francis FitzGerald and the Dutch physicist Hen-
drik Antoon Lorentz suggested a hypothesis that could reconcile the results of the
Michelson–Morley experiment and preserve Newtonian space and time. There was
a shortening of the length of material bodies as they moved in the aether. In a 1904
paper Lorentz presentedwhat are nowknown as theLorentz transformation equations
based on shortening due to electromagnetic interactions in matter [[24], pp. 11–34].
The claim was that the problem lay in the formulation of Newtonian Mechanics, not
in Newtonian space and time.

http://dx.doi.org/10.1007/978-3-319-44491-8_4
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It is a point of some interest in the history of physics that technical expert third
class at the Swiss Patent Office in Bern, Albert Einstein, did not consider the
Michelson–Morley experiment, beyond his indication that attempts to measure the
motion of the earth relatively to the aether had been unsuccessful [see [89], p. 172].
However, beyond the historical fact that Einstein was not attempting an explanation
of the Michelson–Morley experiment, the fact that he approached the problem in a
different way is of considerable importance for our understanding of the physics.
Einstein recognized that any mathematical description of motion has no physical
meaning unless we understand time. And he pointed out that all judgements in which
time plays a part are judgements of simultaneous events. An event occurs at a certain
time te if the occurrence of that event and the event that the time te appears on our
clock or timepiece1 are simultaneous [[24], p. 39].

Tomake this concept universal Einstein needed to consider the synchronization of
timepieces in reference frames moving uniformly with respect to one another. These
are called inertial frames. This realization led Einstein to a new kinematics and a
subsequent proof that the equations of Maxwell were independent of transformation
between inertial frames. The transformation equations from one inertial frame to
another, which Einstein obtained, were those derived in 1904 by Lorentz. But the
basis was entirely different from that of Lorentz. And Einstein was unfamiliar with
any of Lorentz’ work after 1895 [[89], p. 121].

Einstein based his development on only two postulates [[24], pp. 37–38]

1. The same laws of electrodynamics and optics will be valid for all frames of
reference for which the equations of mechanics hold good.

2. Light is always propagated in empty space with a definite velocity c which is
independent of the of the state of motion of the emitting body.

The first postulate, Einstein called the “Principle of Relativity.”

8.2.1 Time

To expand the concept of the simultaneity of events from our immediate vicinity
to an entire inertial reference frame Einstein defined a synchronization process for
two timepieces at various points in the inertial frame. In Fig. 8.1 we have drawn a
picture of the synchronization process. By Einstein’s second postulate we know that
the time required for a light pulse to travel from A to B is always the same as the
time required for a pulse to travel from B to A.2 We consider a light pulse emitted
from A at time tA. This pulse is then reflected from point B at time tB, and arrives
back at point A at the time t ′

A. The timepieces are synchronized if

1The terminology Einstein used was clock. We have used timepiece because the clock with hands
is becoming less common.
2If this time of transit were not the same synchronization would not be possible and time would
lose its meaning for points that are not in our immediate neighborhood.
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Fig. 8.1 Synchronization of
stationary timepieces

tB − tA = t ′
A − tB (8.1)

In this fashion we may synchronize all timepieces in a single inertial frame in
which all points A and B are stationary with respect to one another. Because all
timepieces in the frame are synchronized, we can speak about simultaneity of events
in a particular inertial frame.

To connect the times measured in two inertial frames, Einstein devised a thought
experiment.3 He asked how a time synchronization experiment, conducted by a per-
son in a moving inertial frame, would appear if observed by a person4 in a stationary
inertial frame.

We designate the stationary frame as k and the moving frame as k ′. Frame k has
coordinates (x, y, z) and the time t and the moving frame k ′ has coordinates (ξ, η, ζ)

and the time τ . We choose the axes x and ξ to be aligned with one another and with
the velocity v.We have drawn the inertial frames and the synchronization experiment
in Fig. 8.2. The light source is located at the origin of frame k ′. A person in frame k
measures the distance between the light source and the reflector as

x ′ = x − vt. (8.2)

At time τ0, registered on a timepiece located at the origin of k ′, a light pulse is sent
from the light source down the ξ-axis. This pulse is reflected from a mirror at a point
on the ξ-axis. A timepiece at this point registers the time τ1. The pulse returns to the
origin arriving at time τ2. The synchronization equation (8.1) requires that

τ1 = 1

2
(τ0 + τ2) (8.3)

The person in frame k seeks a functional relationship between the time τ of the
moving frame k ′ in terms of measurements made in frame k. In general this will be

τ = τ
(
x ′, y, z, t

)
. (8.4)

3From the German Gedankenexperiment. In a thought experiment it must be possible to construct
the required apparatus and to perform all the measurements. A thought experiment is not fanciful.
4The standard term is “observer” for theGermanBeobachter. The use of person seems less awkward
here.

With modern timepieces a single person can gather the data.
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Fig. 8.2 Timepiece
synchronization experiment
conducted in the moving
inertial system k′ and
observed from the stationary
system k

Because of the situation being considered here, the x-coordinate is replaced by a
point x ′, which is at rest in frame k ′. Because space and time are homogeneous, this
relationship, Einstein claimed, will be linear.

For the experiment y = z = 0. The person in frame k records a time t for the
beginning of the experiment, and observes that the light pulse moves down the x-axis
at a velocity c − v relatively to the apparatus in k ′arriving at the reflector in k ′ at
time t + x ′/ (c − v). This person in k then observes that the returning pulse moves
at a velocity c + v relatively to the apparatus in k ′ arriving at the origin of k ′ at time
t + x ′/ (c − v)+ x ′/ (c + v). The experimental data recorded by the person in frame
k result in three values for the function τ . These are

τ0 = τ (0, 0, 0, t)

τ1 = τ

(
x ′, 0, 0, t + x ′

c − v

)
= τ0 + x ′ ∂τ

∂x ′ + x ′

c − v

∂τ

∂t

τ2 = τ

(
0, 0, 0, t + x ′

c − v
+ x ′

c + v

)
= τ0 +

(
x ′

c − v
+ x ′

c + v

)
∂τ

∂t
.

With Einstein, we now choose x ′ to be infinitesimal. Then (8.3) becomes

∂τ/∂x ′ + [
v/

(
c2 − v2

)]
∂τ/∂t = 0 (8.5)

This is a linear partial differential equation with constant coefficients. Since τ is a
linear function, for a specific v the solution of (8.5) is

τ = a

(
t − v

c2 − v2
x ′

)
, (8.6)

where a is a function of the velocity v. Equation (8.6) is the functional relationship
(8.4).

Using similar thought experiments, Einstein found the relationships among the
spatial coordinates (x, y, z) in frame k and (ξ, η, ζ) in k ′. We will not consider the
details of these thought experiments here.
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8.2.2 Lorentz Transformation

The complete transformation equations for the time and spatial coordinates between
the inertial frames k and k ′ are the Lorentz Transformation equations as Einstein
presented them. We shall now, however, replace (τ , ξ, η, ζ) with

(
t ′, x ′, y′, z′) to

obtain a more modern representation.

t ′ = γ (t − βx/c)
x ′ = γ (x − βct)

y′ = y
z′ = z,

(8.7)

where

γ = 1√
1 − β2

, (8.8)

and β = v/c. We shall usually consider the frame k to be the stationary reference
frame and the frame k ′ as translating along the axis x at a velocity v relatively to k. Of
course no frame is actually at rest, which is a concept meaningful only in Newtonian
space.

8.3 Minkowski Space

The space of four coordinates, in which time is treated on an equal footing with
spatial coordinates, is referred to asMinkowski Space because it was first proposed by
Hermann Minkowski5 (1864–1909). Minkowski’s paper Space and Time, delivered
to the 80th Assembly of German Natural Scientists and Physicians, at Cologne,
September, 1908, is printed in translated form in [[24], pp. 75–91]. ThereMinkowski
claimed that

Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve an independent reality.

Minkowski’s formalism is a great simplification to special relativity. Initially,
however, Einstein was unimpressed. He called this “superfluous learnedness” [[89],
p. 152]. But later, Einstein adopted the Minkowski formalism. And in 1916 he
acknowledged his debt to Minkowski. The formalism was instrumental in the transi-
tion from special to general relativity. The Minkowski formalism will also simplify
our study of relativistic mechanics.

5Hermann Minkowski was a German mathematician of Lithuanian Jewish descent. He was one of
Einstein’s professors at the Eidgenössische Polytechnikum in Zürich.
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In this section wewill placeMinkowski’s ideas into amathematical form intended
to simplify our work. Our tools will be standard matrix form and the non-Euclidean
nature of the space will not hinder our development.

8.3.1 Four Dimensions

We define the coordinates of Minkowski Space using a scheme which preserves x1,
x2, and x3 for the spatial coordinates and identifies x0 as the time coordinate, which
is ct . That is we designate the coordinates of a four-dimensional vector inMinkowski
Space as

x0 = ct

x1 = x

x2 = y

x3 = z. (8.9)

Specifically we then have the four dimensional position vectors

x =

⎡

⎢⎢⎣

ct
x
y
z

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

x0

x1

x2

x3

⎤

⎥⎥⎦ and x′ =

⎡

⎢⎢⎣

ct ′
x ′
y′
z′

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

x ′0
x ′1
x ′2
x ′3

⎤

⎥⎥⎦ (8.10)

for points in four dimensional inertial frames k and k ′. We will designate the
elements of these 4-vectors with superscripts, which is a notation introduced by
Gregorio Ricci-Curbastro (Ricci) and Tullio Levi-Civita [[24], p. 122]. This is the
standard notation presently used in physics.

Points in this four dimensional space are calledworld points. In three dimensional
terms aworld point joins or associates a spatial point (x, y, z)with a temporal point ct
registered on a timepiece. The world point is then an event in Einstein’s terminology
of Sect. 8.2. World points are connected by world lines. For example the first part of
a time synchronization experiment consists of the events (1) light pulse leaves point
A at time tA and (2) light pulse arrives at point B at time tB. The world line connects
these two events.

In the initial work using Minkowski Space time was introduced as the fourth
dimension.
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8.3.2 Four Vectors

The vectors x and x′ that we have introduced in (8.10) are called four vectors or
4-vectors.6 This designation is not simply to indicate that they have four dimensions.
It indicates that the components of the 4-vectors x and x′, referenced to the two
inertial frames k and k ′, are related to one another by the Lorentz Transformation
(8.7). Specifically we obtain the components of the 4-vector x′ from those of the
4-vector x as

x ′0 = γ
(
x0 − βx1

)

x ′1 = γ
(
x1 − βx0

)

x ′2 = x2

x ′3 = x3.

(8.11)

The inverse of the Lorentz Transformation may be found by simply replacing β
with −β and exchanging the k and k ′ coordinates, since a person in frame k ′ sees k
receding in the x ′1 direction at a velocity v. The result is

x0 = γ
(
x ′0 + βx ′1)

x1 = γ
(
x ′1 + βx ′0)

x2 = x ′2
x3 = x ′3.

(8.12)

To keep our development from becoming unwieldy, we shall formalize this trans-
formation. People in the inertial reference frames k and k ′ observe two events sepa-
rated as points on two world lines, one for each frame.We assume that the two events
are very close together in both frames, but not simultaneous in either frame. Then we
may designate the differential lengths of the two world lines as the 4-vectors dx (in
k) and dx′ (in k ′). Because there is a functional relationship between the components
of the two world lines, we may write

dx ′ν = ∂x ′ν

∂xμ
dxμ. (8.13)

Andwemay calculate the coefficients∂x ′ν/∂xμ from (8.11).Aswenoted in Sect. 8.1,
we use the Einstein sum convention. The repeated index μ on the right hand side of
Eq. (8.13) indicates a summation over the index μ = 0, 1, 2, 3.

There are 16 such coefficients, which form the elements of a transformationmatrix
we shall call A. That is

(A)αβ = ∂x ′α

∂xβ
. (8.14)

6The designation 4-vector is that used by Jackson. We choose it here as well.
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The inverse of this transformationmatrix we can obtain from (8.12). The elements
are (

A−1
)α

β
= ∂xα

∂x ′β . (8.15)

In this notation the Kronecker delta is

δα
β = ∂x ′α

∂xλ

∂xλ

∂x ′β = ∂xα

∂x ′λ
∂x ′λ

∂xβ
. (8.16)

For translation of frame k ′ along the axis x1 of frame k the matrices A and A−1

are

A =

⎡

⎢⎢⎣

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (8.17)

and

A−1 =

⎡

⎢⎢⎣

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ . (8.18)

The choice of the spatial axis along which we orient the relative velocity of the
inertial frames is arbitrary. In this chapter we will stay with Einstein’s original choice
of the x-axis.

8.3.3 The Minkowski Axiom

Not all differential 4-vectors are allowed in Minkowski space. To find the limitation
we begin by applying the Lorentz Transformation equations (8.11) to the differen-
tial lengths of a world line, observed from two inertial frames. By straightforward
calculation we find that

±
[(
dx0

)2 − (
dx1

)2 − (
dx2

)2 − (
dx3

)2]

= ±
[(
dx ′0)2 − (

dx ′1)2 − (
dx ′2)2 − (

dx ′3)2] (8.19)

(see exercises). The equality in (8.19) holds regardless of the sign we may attach to
the square bracket.Minkowski introduced a fundamental axiom, whichwe shall refer
to as the Minkowski Axiom, that requires the positive sign to be chosen. Minkowski
said
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The substance at any world point may always, with the appropriate determination of space
and time, be looked upon as at rest.

[[24], p. 80].

That is in some inertial frame k ′ we will have dx ′ = dy′ = dz′ = 0 for a sub-
stantive, material body. Then, since c2dt ′2 > 0, we realize that the square of the
differential world line in frame k ′ is ds′ 2 = c2dt ′2 > 0. But from (8.19) we know
that ds2 = ds′2. That is ds2 is an invariant scalar on Lorentz Transformation between
inertial frames, which we must take to be positive for a material body.

There is no frame in which a light beam stands still, as Einstein realized when he
was 16 [[89], pp. 130, 131]. For the world line of a light beam, then, we can never
have dx ′ = dy′ = dz′ = 0 in any frame whatsoever. The light beam in vacuum
always propagates at c. Therefore, for the world line of a light beam,

dx ′2 + dy′2 + dz′2 = c2dt ′2 (8.20)

and ds ′2 = 0. We may then write the mathematical form of the Minkowski Axiom
as

ds2 = (
dx0)2 − (

dx1)2 − (
dx2)2 − (

dx3)2 ≥ 0. (8.21)

Using (8.9), the inequality (8.21) requires that

c2 ≥
(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

.

for any material body. Therefore, according to the Minkowski Axiom, the velocity
c of light is a limiting velocity for material bodies.7 And the limiting case ds2 = 0
holds only for light.

This limit on velocity can be retrieved from results for the motion of material
bodies that we shall develop. And elementary texts normally use those results to
establish the limiting value of c for the velocity of a material body. The Minkowski
Axiom is, however, the foundational statement of this limitation.

8.3.4 Metric for Minkowski Space

The measure of the distance between two points in a space is specified by the metric
or measure of the space. If we consider that the vector ds connects two points an
infinitesimal distance from one another, we choose the scalar product ds· ds, which
is positive definite (ds· ds ≥ 0), as our measure of the square of the distance between
the points (ds2). Designating the components of ds as dxμ we write this measure
generally as

7Separate inertial frames must contain (material) measuring instruments, i.e. rods and timepieces.
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ds2 = dxαgαβdxβ, (8.22)

where the matrix with elements gαβ is called the metric of the space. In the Euclidean
space of Newton the terms gαβ are all unity, i.e. gαβ = δαβ with α,β = 1, 2, 3. And
the distance between points is specified by a generalization of Pythagoras’ theorem.

The surface of a sphere is an example of a space for which the elements of the
metric are not unity. If we define the polar and azimuthal angles as φ and ϑ the
distance on the surface of the sphere is ds = Rdφêφ + R sin φdϑêϑ and ds2 =
R2dφ2 + R2 sin2 φdϑ2. That is, for the spherical surface

gsphere =
[

R2 0
0 R2 sin2 φ

]
.

The metric for the spherical surface is, then, not constant. It is a function of the polar
angle φ.

We can identify the metric for Minkowski space in (8.21). Because this is the only
metric we shall deal with here, we designate this simply as g. That is

g =

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎥⎦ (8.23)

is the metric for the four dimensional Minkowski space.

8.3.5 The Light Cone

We cannot picture Minkowski four dimensional space. We can, however, picture
the Minkowski space representation of the motion of a material particle and a light
pulse in a two dimensional spatial plane. We choose the motion to be in the x1, x2

plane and construct the time axis x0 of our Minkowski space perpendicular to this
plane. Then the two-dimensional motion of our material particle is represented in a
three-dimensional Minkowski space. And we can visualize this quite well.

In two dimensional Cartesian space the wave front of a light pulse emitted from
the origin forms an expanding circle of radius ct . In our limitedMinkowski space the
wave front of the light pulse emitted from the origin 0 = (

x0, x1, x2
) = (0, 0, 0) is

represented by a circular conewith axis x0.We call this the light cone. TheMinkowski
Axiom requires that the world line of a material particle passing through the origin
must lie within the light cone. If we extend the light cone into the past

(
x0 < 0

)
the

earlier world line of the material particle must lie within this extension of the light
cone.8

8The geometrical definition of a cone includes both x0 > 0 and x0 < 0.
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Fig. 8.3 Minkowski space
with two spatial dimensions.
The third dimension is ct .
The world line for a material
particle is that from 1 to 2

In Fig. 8.3 we have drawn this limited, three dimensional, Minkowski space, and
have drawn a representative world line of a material particle within the light cone
passing from point 1 in the past, through the origin, to point 2 in the future.

Intervals on the light cone, for which ds2 = 0, are accessible only by light. We
call these lightlike intervals. If ds2 > 0 we call the interval a timelike interval.
Timelike intervals satisfy the Minkowski Axiom and lie inside the light cone in
Fig. 8.3. World points on a timelike interval are possible future world points for the
particle. All points within the extension of the light cone along the negative x0 axis
are possible past world points for a particle. If ds2 < 0we call the interval a spacelike
interval. Spacelike intervals violate the Minkowski Axiom and are not accessible to
material particles. We refer to these world points collectively as elsewhere [[51],
p. 519].

8.4 Time and Space Measurements

With our basic understanding of Minkowski space and the Lorentz Transformation
we are now in a position to discover the differences between specific world lines
observed in different inertial frames. In this section we will consider two specific
world lines that will provide an understanding of the measurements of time and
length in different inertial frames.

8.4.1 Time Dilation

We consider two inertial frames k and k ′ such as pictured in Fig. 8.2. The times t
and t ′ are measured by stationary timepieces in frames k and k ′. These times are
appropriate to either of those frames and may be called local times for those frames.
We canmost easily find the relationship between these local times from the invariance
of ds2.
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The people in frame k ′ observe an event occurring at, or in the immediate vicinity
of the origin of k ′ as having a duration dt ′ measured by the timepiece at the origin.
According to the people in k ′ the differential world line of the event is

ds′ =

⎡

⎢⎢⎣

cdt ′
0
0
0

⎤

⎥⎥⎦ . (8.24)

The people in k observe the same event. They measure the duration of this event
to be dt on their timepiece at the origin of k and determine that, during the event in
question, the origin of k ′ has moved a spatial distance êxdx + êy0 + êz 0. The event
at the origin of k ′ then has the differential world line

ds =

⎡

⎢⎢⎣

cdt
dx
0
0

⎤

⎥⎥⎦ (8.25)

for the people in k. The invariance of ds2 requires that

c2dt ′2 = c2dt2 − dx2. (8.26)

Then
dt ′ = dt

√
1 − β

2
, (8.27)

is the relationship between the differential local times measured in the two inertial
frames. This is the relationship obtained by Einstein [[24], p. 49]. Since Eq. (8.27)
requires that dt ′ <dt , we conclude that the time interval recorded by the timepiece
in k ′ is shorter than that recorded by the timepiece in k. This is referred to as time
dilation.

The term local timewas first used byLorentz [[24], p. 15].However, asMinkowski
points out, Einstein first recognized that the times t and t ′ are equivalent [[24],
p. 82]. Minkowski then defines

dτ = dt
√
1 − β2 (8.28)

as the proper time of the world point along the world line in Fig. 8.3. This is the time
indicated by a timepiece at rest with respect to the material particle on the world
line. The time interval dt is the corresponding time measured in an inertial frame
considered to be at rest.
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8.4.2 Space Contraction

To discover the effect of motion on the dimensions of a body we consider that in
frame k ′ there is a rod of length L0 lying along the x ′ axis (refer to Fig. 8.2). We
consider that the length of the rod is measured by someone in frame k ′ and also by
someone in frame k. For simplicity we assume that the measurements begin when
the origins of k and k ′ coincide.

To make the measurement the person in frame k ′ sends a pulse of light from the
origin of k ′ down the rod and records the time dt ′ taken for the pulse to reach the end
of the rod. In frame k ′ the rod length is L0 = cdt ′. A person in frame k observes that
light pulse as traversing a rod of length L = (c − v)dt in a time dt , since the person
in frame k observes the light pulse to move at a velocity c − v relatively to the rod.
The world line in both frames is lightlike with ds2 = ds ′2 = 0. The invariance of ds2

then tells us only what we already know.
We, therefore, turn directly to the Lorentz transform (8.11). In the frame k ′ the

time component of the differential world line is dx ′0 = cdt ′ = L0 and in k the
time component is dx0 = cdt = L/ (1 − β) and the first spatial component is
dx1 = vdt + L = L/ (1 − β). The Lorentz transform of the time component, which
is the first component of (8.11), is then

L0 = γ
L

1 − β
− γβ

L

1 − β
= γL . (8.29)

Therefore the relationship between the length of the rod as seen by people in frames
k and k ′ is

L = L0

√
1 − β2 (8.30)

The length of the rod, which is stationary in the frame k ′, appears shorter to the
person in frame k than it does to the person in k ′, who is moving with the rod. The
dimensions of the body in the directions perpendicular to the relative velocity are not
affected. So a moving sphere will appear as flattened along the direction of motion,
as Einstein pointed out [[24], p. 48]. This is referred to as length contraction.

Equation (8.30) is the FitzGerald–Lorentz contraction, which we discussed in
Sect. 8.2. Minkowski correctly considered this hypothesis ungrounded, claiming it
had been introduced “as a gift fromabove [[24], p. 81].” The resolution is inEinstein’s
idea regarding time.

8.5 Velocities

The velocity of a material body is defined in terms of the displacement of the body
from one spatial point to another and the times recorded when the body is at each
point. We then expect that the value of the velocity of a moving particle will depend
on the inertial frame in which the measurement is made.



8.5 Velocities 261

Let us consider that we are in the inertial frame k, which we may consider as
stationary. Someone in the inertial frame k ′ moving at the constant velocity v = vêx
with respect to us observes a material body moving with a velocity u′ with spatial

components
(

u′
x, u′

y, u′
z

)
. In a short time dt ′ that person observes the differential

world line ds′ of the body to be

ds′ =

⎡

⎢⎢⎣

dx0′
dx1′
dx2′
dx3′

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

c
u′
x

u′
y

u′
z

⎤

⎥⎥⎦ dt ′. (8.31)

In the frame k we observe the differential world line ds of this body to be

ds =

⎡

⎢⎢⎣

c
ux

uy

uz

⎤

⎥⎥⎦ dt, (8.32)

where
(
ux, uy, uz

)
are the components of the body’s velocity as we measure them in

frame k. The displacements (8.31) and (8.32) are related by the Lorentz Transfor-
mation

ds = A−1 · ds′. (8.33)

Carrying out the matrix multiplication we have

ds =

⎡

⎢⎢⎣

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

c
u′
x

u′
y

u′
z

⎤

⎥⎥⎦ dt ′ =

⎡

⎢⎢⎢⎣

γ
(
1 + ββ′

x

)
c

γ
(
β′
x + β

)
c

β′
yc

β′
zc

⎤

⎥⎥⎥⎦ dt ′, (8.34)

where we have introduced βj = uj/c for j = 1, 2, 3. Equating (8.32) and (8.34), we
have ⎡

⎢⎢⎣

c
βxc
βyc
βzc

⎤

⎥⎥⎦ dt =

⎡

⎢⎢⎢⎣

γ
(
1 + ββ′

x

)
c

γ
(
β′
x + β

)
c

β′
yc

β′
zc

⎤

⎥⎥⎥⎦ dt ′. (8.35)

By equating components in (8.35), using (8.27), and solving for the velocity
components in the inertial frame k we have

ux = u′
x + cβ

1 + βu′
x/c

, (8.36)
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uy = u′
y

γ
(
1 + βu′

x/c
) , (8.37)

and

uz = u′
z

γ
(
1 + βu′

x/c
) . (8.38)

The Eqs. (8.36)–(8.38) relate the velocity of a material body as measured by people
in two different inertial frames k and k ′.

The Minkowski Axiom requires that the velocities of material bodies are always
less than the speed of light (see exercises).

8.5.1 Four-Velocity

If we return to (8.31) and (8.32) we can define a 4-vector

ds
dt

=

⎡

⎢⎢⎣

c
ux

uy

uz

⎤

⎥⎥⎦ , (8.39)

which is the representation in Minkowski space of the velocity of a material body
along the world line. The 4-vector in (8.39) has meaning for someone in a particular
inertial frame, in this case k. But (8.39) is not a reasonable definition for a represen-
tation of velocity to be used in relativistic mechanics because the time t is recorded
on a timepiece at an arbitrary location relative to the moving body. If we use the
proper time (8.28) in place of dt in (8.32) we have

U ≡ dx/ dτ = γu

⎡

⎢⎢⎣

c
ux

uy

uz

⎤

⎥⎥⎦ , (8.40)

where γu =
[
1 −

(
u2
x + u2

y + u2
z

)
/c2

]−1/2
. This U is what we will define as the

4-velocity. Consistent with the fact that the elements dxμ/dτ of U have superscripts,
in spite of the subscripts on the uj, we designate the elements of U as Uμ.

Using the Minkowski Axiom (8.21) and (8.22), the square of the magnitude of
the 4-velocity is

U2 = UμgμνU ν = γ2
u

(
c2 − u2

x − u2
y − u2

z

)

= c2, (8.41)

which is a scalar invariant.
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8.6 Mass, Momentum and Energy

Mass, momentum and energy are mechanical, not simply kinematical, concepts. At
this point we must, then, ask about the laws of mechanics. Newton’s Laws are not
covariant with the Lorentz Transformation, which is what we require of the correct
laws of mechanics. So we must begin at a more fundamental point.

We should always begin with the simplest situation, which is the motion of a
free material body under no force. For this simplest situation we are guided by
Newton’s first law, which is the claim that the momentum of a free material body
must be constant. Extending this to a system of free particles presents no problem,
andwe have conservation of (4-vector)momentum.Collisions between particlesmay
present difficulties, thatwe can avoid ifwe consider the collisions to be instantaneous,
which is what we shall do at this point. So we claim conservation of 4-momentum
in collision to be a foundational covariant law of (relativistic) mechanics.

8.6.1 Mass

Einstein considered the velocity dependence of the mass of a material body in the
last section of his paper on special relativity. From the requirements of Newton’s
Second law and the transformation of the electric field he concluded that the mass
was dependent upon motion of the body (an electron) parallel or perpendicular to the
axis of translation of k ′. These he termed longitudinal and transverse masses. This
peculiarity he noted was a result of the “definition of force and acceleration” he had
chosen [[24], pp. 61–63].

Gilbert N. Lewis and Richard C. Tolman picked up the discussion of relativistic
mass in 1909 [[56], p. 161; [68]]. Lewis and Tolman based their discussion on
conservation of momentum and concluded that the mass must depend on magnitude
of the velocity v generally as

m (v) = m0γv = m0/

√
1 − β2

v . (8.42)

This is then the dependence ofmass on velocity consistentwith ourmost fundamental
law of mechanics. This has also been verified by innumerable experiments, including
those in undergraduate laboratories.

The mass m (v) is the relativistic inertial mass, or simply relativistic mass, and
m0 is the rest mass of the material body. The rest mass is the mass of a material body
measured by someone at rest with respect to the body.
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8.6.2 Momentum

With (8.42) the spatial components of what we may call the 4-momentum are

pμ = m0γudxμ/dt = m0U
μ, (8.43)

where μ = 1, 2, 3. With (8.40) we may then define the 4-momentum as

P = m0U, (8.44)

which, in matrix form, is

P =

⎡

⎢⎢⎣

P0

P1

P2

P3

⎤

⎥⎥⎦ = m0γu

⎡

⎢⎢⎣

c
ux

uy

uz

⎤

⎥⎥⎦ . (8.45)

Again we note the superscripts on the elements consistent with the definition (8.43)
and the traditional use of subscripts on the velocity components. Traditionally we
also often designate the spatial components of the momentum Pμ (ν = 1, 2, 3) as
pj = m0γuuj ( j = x, y, z).

The Lorentz scalar invariant, which is the square of the magnitude of the
4-momentum, is

P2 = Pμgμν Pν = m2
0U

μgμνU ν

= m2
0c

2. (8.46)

The rest mass m0 is then a scalar invariant.

8.6.3 Energy

Einstein introduced the relationship between mass and energy in September of 1905
with the publication entitledDoes the Inertia of a Body Depend on its Energy Content
[[24], pp. 69–71]. This appeared three months after the paper on special relativity,
which was published in June. In this three page paper he showed that if the energy
of a body changes through the emission of electromagnetic radiation there is a pro-
portional loss in the inertial mass of the body.

In the June paper Einstein found equations for shifts in frequency and energy
of a light wave as observed by a person in a moving frame. Then, in September,
he considered what would happen if electromagnetic waves were emitted from a
body stationary in the inertial frame k. He considered that two light waves, each
carrying an energy L/2, were emitted from the body in opposite directions. The total
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energy emitted by the body is then L . Because of the way in which he framed this
thought experiment, Einstein was able to calculate a change in the kinetic energy of
the material body without resorting to the use of the laws of mechanics. He required
only two inertial frames and the covariance of Maxwell’s Equations, which he had
established in the June paper. In the September paper he showed that the emission
of radiation from a material body resulted in a loss of inertial mass of the body
Δm = L/c2, and he concluded that

The mass of a body is a measure of its energy content; if the energy changes by an amount
L , the mass changes in the same sense by L/9 × 10 20, the energy being measured in ergs
and the mass in grammes.

[[24], p. 71]

In May of 1906 Einstein wrote
The Law of conservation of mass is a special case of the law of conservation of

energy.
[[89], p. 148]
And then in 1907 he claimed that

In regard to inertia, a mass m is equivalent to an energy content … mc2. This result is of
extraordinary importance since [it implies that] the inertial mass and the energy of a physical
system appear as equivalent things.

[[89], p. 148]

In his classic monograph Theory of Relativity, written when he was 21, Wolfgang
Pauli produced a crisp derivation of a relativistic formula for the kinetic energy of
particle with rest mass m0 acted on by a 4-vector force with spatial component f
[[92], pp. 116–117]. He began with the assumption that Newtonian Mechanics are
valid in a stationary system, which is the proposal that in the frame k the force law is

d

dt
(m0γuu) = F,

and the claim that the Lorentz transformation will allow us to deduce the equations of
motion unambiguously in another inertial frame k ′. For continuity of the discussion
we shall only say here that Pauli’s development brought him to the result that

d

dt

(
m0γuc2

) = f · u, (8.47)

where f is the spatial component of the 4-vector force F. Because f · u is the rate
of change of the kinetic energy, we see that the kinetic energy of the particle is then

Ekin = m0γuc2 + constant. (8.48)

To identify the constant we expand γu in powers of βu. Carrying the expansion to
second order in βu we have
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Ekin ≈ m0c
2 + 1

2
m 0u2 + constant. (8.49)

We then retrieve the known classical result for the kinetic energy if we choose the
constant to be −m0c2. Then (8.48) becomes

Ekin = m0γuc2 − m 0c2. (8.50)

With The Lewis–Tolman result we can write (8.50) as

Ekin = mc2 − m0c2. (8.51)

Pauli’s argument was ostensibly based on the Lorentz electromagnetic force
f L = Q (E + v × B). Here Q is the electric charge9 on the particle, E and B
are the electric field and the magnetic field induction, and v is the particle velocity.
This seems limiting. However, Pauli points out that “all kinds of forces transform
in the same way [as the Lorentz force].” This follows from the fact that two forces
which compensate for one another (are equal and opposite) in the inertial frame k
must also compensate for one another in all other frames k ′ [[92], p. 116]. Pauli’s
result then holds for all forces for which dm0/dt = 0. Such forces are called pure
forces.

Equation (8.50) had been obtained previously by Einstein and was the mathe-
matical basis for his claim, regarding inertia, a mass m is equivalent to an energy
content … mc2. If we accept that the energy is mc2 for a particle in motion and,
therefore, m0c2 for the same particle at rest, which we term the rest energy of the
particle, then (8.51) clearly claims that the difference is the kinetic energy. This is
the concept we have of kinetic energy from Newtonian mechanics. But with Ein-
stein’s formulation we understand mass now as measure of energy content and the
difference of mass m and rest mass m0 as a measure of the particle kinetic energy.
WolfgangRindler points out that Einstein’s identity of all [emphasis in original]mass
with energy required an act of “aesthetic faith” that was characteristic of Einstein
[[99], p74].

There is no question that Einstein brought a new flare to this aesthetic faith, as
Abraham Pais points out [89]. The aesthetic faith itself must be and has been a
critical ingredient in the approach of the theoretical physicist, as we have seen in
our studies here. We can point to that aesthetic faith from Plato to Jacobi and to the
mathematician Minkowski. A deep appreciation of this must embody our approach
to our present topic.

We shall then accept Einstein’s identity and his claim that mass and energy are
equivalent. We then write

E = m0γuc
2 = mc2 (8.52)

as a universal equation for the total energy E .

9Here, as in our discussion of electrodynamics, we use Q rather than the traditional q to designate
electrical charge. In this text q is reserved for the generalized coordinates.
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We are now able to identify the component P0 in the 4-momentum (8.45) as

P0 = m0γuc = E
c
. (8.53)

Then (8.45) becomes

P =

⎡

⎢⎢⎣

E/c
px

py

pz

⎤

⎥⎥⎦ , (8.54)

where we have used the traditional notation p = mu for the spatial components of
momentum. Conservation of 4-momentum then requires conservation of total energy
E as the zeroth component of the 4-momentum. And relativistic massm is conserved,
since E = mc2. Conservation of rest mass is, however, no longer a law of physics.

The condition of scalar invariance of Pμgμν Pν (8.46) then becomes

E2 = p2c2 + m 2
0 c4, (8.55)

which is a general relationship betweenmomentumand energy in relativisticmechan-
ics.

Because of the understanding of the time component, the 4-vector in (8.54) is
sometimes called the energy-momentum 4-vector [[37], p. 510; [56], p. 164, [3],
p. 93].

8.7 Tensors

Einstein called thematrix g in (8.23),whichwe introduced as themetric ormeasure of
Minkowski Space, the fundamental tensor in his 1916 paper on the general theory of
relativity. ThereEinstein showed thatgαβ describes the gravitational field.Gravitation
is, therefore, exceptional in that it defines the metrical properties of space and time
[[24], p. 120].

With this paper on general relativity Einstein brought tensors to the attention of
physicists. The concept of tensors as mathematical quantities, however, originated
with Carl FriedrichGauss andwas developed by themathematical community before
Einstein encountered them, with the help of his friend Marcel Grossmann [[89],
p. 216]. The 4-vectors we have encountered are tensors. Specifically dxα are the
differential elements of a tensor.

Although we shall continue to use the designation 4-vector, our consideration
of electromagnetic forces, which are of great importance in relativistic mechanics,
requires a familiarity with some basic properties of tensors. We provide that here,
following Einstein.
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8.7.1 The Fundamental Tensor

If we call
dxα = gαβdxβ (8.56)

we can write (8.22) our scalar product ds2 as

ds2 = dxαdxα. (8.57)

We then have identified the general scalar product as a product between different
forms of the 4-vectors. We designate these two forms by superscript and subscript
(see Sect. 8.3.2) [[24], p. 123]. From the matrix product of g with ds we see that the
mathematical operation in (8.56) places negative signs on the spatial components of
dxα, as required by the form of ds2 in the Minkowski Axiom (8.21). Inverting the
process in (8.56) we are led to

dxβ = gβαdxα. (8.58)

That is
dxβ = gβαgανdxν, (8.59)

which requires that
gβαgαν = δβ

ν , (8.60)

where δβ
ν is the Kronecker δ written with the super and subscripts of the tensor

notation. The space of the special theory is what is termed flat and is characterized
mathematically by the form of g in (8.23).

8.7.2 Scalar Product

We define a scalar product between two general 4-vectors C and D in the same way
we have defined the scalar product forming ds2. That is

C · D = Cα Dα. (8.61)

We have already seen that the square of the magnitudes of the 4-velocity and the
4-momentum, obtained from scalar products, are Lorentz invariants. We now ask for
the conditions that must be satisfied for the general scalar product to be an invariant
under Lorentz Transformation. That is, writing the 4-vector components in the frame
k without a prime and those in k ′ with a prime, we wish to know the transformation
properties of the 4-vectors that will result in the equality
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Cα Dα = C ′
ν D′ν . (8.62)

We first require that the 4-vector with the superscript Dα transforms in the same
way as the coordinates dxα (see (8.13)). That is

D′ν = ∂x ′ν

∂xα
Dα = (A)να Dα, (8.63)

using (8.14). The inverse of (8.63) is

Dα = ∂xα

∂x ′ν D′ν = (
A−1

)α

ν
D′ν, (8.64)

using (8.15). Then (8.62) becomes

Cα Dα = Cα
∂xα

∂x ′ν D′ν = Cα

(
A−1

)α

ν
D′ν . (8.65)

If Cα, the 4-vector with the subscript, transforms as

C ′
σ = ∂xα

∂x ′σ Cα = (
A−1

)α

σ
Cα, (8.66)

using (8.15), with inverse

Cα = ∂x ′σ

∂xα
C ′

σ = (A)σα C ′
σ, (8.67)

using (8.14), then Eq. (8.65) becomes

Cα Dα = (A)σα
(
A−1

)α

ν
C ′

σ D′ν

= δσ
ν C ′

σ D′ν = C ′
ν D′ν, (8.68)

wherewehave used (8.60).10 Therefore scalar invariance of the general scalar product
results if one 4-vector transforms as (8.63) and the other as (8.66).

A 4-vector that transforms as (8.63) is called contravariant and a 4-vector that
transforms as (8.66) is called covariant. The components of a contravariant 4-vector
are indicated by a superscript and those of a covariant 4-vector by a subscript [[24],
p. 123]. This is the convention of Ricci-Curbastro and Levi-Civita as we noted in
Sect. 8.3.1. The scalar product is then defined as the sum of the products of the
elements of a contravariant and a covariant 4-vector. And the scalar product of two
4-vectors is a Lorentz scalar invariant.

10The terms in (8.68) are all simply numbers and commute.
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From (8.56) and (8.58) we see that the fundamental tensor (metric) gαβ converts
a contravariant tensor to a covariant tensor and gαβ converts a covariant tensor to a
contravariant tensor. In more picturesque language, the fundamental tensor raises or
lowers indices on a tensor. That is

Cα = gαβCβ and Cα = gαβCβ . (8.69)

Similarly a tensor Vαβ with two indices can be converted from covariant to con-
travariant form using two fundamental tensors as

V μν = gμαVαβgβν = gμαgβν Vαβ (8.70)

and from contravariant to covariant form by

Vμν = gμαV αβgβν = gμαgβν V αβ . (8.71)

An invariant scalar is a tensor of rank zero. A contravariant or covariant 4-vector
is a tensor of rank one. The rank of the tensor is the number of indices required in its
definition. Accordingly we have contravariant and covariant tensors of rank two,
which transform as

C ′στ = ∂x ′σ

∂xμ
Cμν ∂x ′τ

∂xν
(8.72)

and

C ′
στ = ∂xμ

∂x ′σ Cμν
∂xν

∂x ′τ (8.73)

respectively.
Tensors may also be of higher rank and we may have mixed tensors, which trans-

form as, for example

C ′τ
σ = ∂x ′τ

∂xν
Cν

μ

∂xμ

∂x ′σ . (8.74)

With the exception of our treatment of electromagnetic forces wewill be primarily
concerned here with 4-vectors.

We note that we now write our scalar product for a general 4-vector Q as

Q · Q = Qμgμν Qν = Qμ Qμ

or
Q · Q = Qμg

μν Qν = Qν Qν .
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8.7.3 Four-Vector Shorthand

The form of the general 4-vectors V and W is

V =

⎡

⎢⎢⎣

v0

v1

v2

v3

⎤

⎥⎥⎦ ; W =

⎡

⎢⎢⎣

w0

w1

w2

w3

⎤

⎥⎥⎦ .

The scalar product of these two 4-vectors

V · W = V μgμνW ν

= (
v0w0

) − (
v1w1 + v2w2 + v3w3

)

invites the general representation of the contravariant and covariant forms of a general
4-vector C as

C = Cμ = (
c0, c

)
for the contravariant form,

and, using (8.69),

Cν = gνμCμ

= (
c0,−c

)
for the covariant form.

where
c = c1ê1 + c2ê2 + c3ê3

is the standard representation of a spatial vector in the Cartesian basis
(
ê1, ê2, ê3

)
.

Specifically we may write the 4-velocity as

U = γu (c, u) (8.75)

and the 4-momentum as

P = m0U

= (E/c, p) . (8.76)

This notationwillmakemost of our calculations in relativisticAnalyticalMechan-
ics much less unwieldy. We must only remember that the scalar product always
involves a contravariant and a covariant vector, i.e. involves the fundamental ten-
sor g.
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8.7.4 Differential Operators

The partial derivative with respect to the four contravariant components, i.e. ∂/∂xα

transforms as a covariant vector operator. We see this if we compare

∂Φ

∂x ′α = ∂xβ

∂x ′α
∂Φ

∂xβ
(8.77)

with (8.66), i.e. C ′
σ = (

∂xα/∂x ′σ)
Cα.

We then define the covariant differential operator, in our shorthand notation, as

∂α ≡ ∂

∂xα
=

(
∂

c∂t
, grad

)
. (8.78)

And for a scalar Φ the 4-vector ∂αΦ is covariant.
From (8.78) we obtain the contravariant vector operator, in our shorthand nota-

tion, as

∂α ≡ ∂

∂xα
= gαβ∂β =

(
∂

c∂t
,−grad

)
. (8.79)

We have written ∂α as ∂/ ∂xα, with subscripts on the coordinates, only to distinguish
∂α from ∂α, which we have written as ∂/∂xα, with the standard superscripts. Some
authors refer to the operation ∂α as differentiation with respect to covariant compo-
nents

(
x0,−x1,−x2,−x3

)
as distinguished from differentiation with respect to the

contravariant components
(
x0, x1, x2, x3

)
of the standard 4-vector (see Sect. 8.3.1)

[cf. [51], pp. 535–536]. This is helpful provided we remember that the derivatives
appearing in both ∂α and ∂α are actually with respect to ordinary time and spatial
variables and that the distinction is only the negative sign in (8.79).

Because ∂βΦ is a covariant 4-vector, then ∂αΦ = gαβ∂βΦ is a contravariant
4-vector.

These operators (8.78) and (8.79) will be important to us in our consideration of
the electromagnetic field (Lorentz) force [cf. [45], pp. 305–311].

8.7.5 Notation

In our shorthand notation there can be confusion about whether the elements dis-
played in he shorthand form of a 4-vector are the contravariant or covariant elements
of the 4-vector. For this reason we have been careful about the notation as we devel-
oped the 4-vector formalism. We shall follow the standard notation, which requires
that whenwe display the elements of a 4-vector we display its contravariant elements
[cf. [99], p. 56; [51], pp. 535–536]]. Specifically our shorthand for the 4-velocity U
and the 4-momentum P in (8.75) and (8.76) are contravariant 4-vectors.
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8.8 Electromagnetism

8.8.1 Current and Potential Vectors

Although we are intuitively inclined to think in terms of electric and magnetic fields,
it is mathematically more convenient to base our treatment of electrodynamics on
the scalar potential ϕ and the vector potential A. In terms of the potentials ϕ and
A the Maxwell Equations take on the form of two separate wave equations with
sources. The charge density ρ is the source term in the equation for ϕ and current
density J is the source term in the equation for A. If we are interested in Analytical
Mechanics our formulation still, however, requires knowledge of the fields, which
act on charged bodies. We obtain the electric field E and magnetic field induction
B from E = −gradϕ − ∂A/∂t and B = curlA, that is from application of the
differential tensor operators introduced in the preceding section [[45], pp. 255–257].

The potentials ϕ and A appear in the 4-potential vector

A = (ϕ/c, A) , (8.80)

and the sources of the potentials, the charge density ρ and the current density J ,
appear in the current (density) 4-vector

J = (cρ, J) . (8.81)

The Maxwell Equations, written in terms of scalar and vector potentials, then take
on a particularly elegant form

�A = μ0 J , (8.82)

where μ0is the permeability of free space and

� = ∂μ∂
μ = ∂2

∂x0∂x0
− ∇2 (8.83)

is the d’Alembertian (differential operator). When they are written in this form, it
is particularly easy to show that the Maxwell Equations are invariant under Lorentz
Transformation [[45], pp. 302–303].

8.8.2 Field Strength Tensor

In his 1916 paper on The Foundation of the General Theory of Relativity, Einstein
developed what he called the six-vector of the electromagnetic field in empty space
[[24], pp. 153–157]. We now call this the Field Strength tensor [[45], p. 305; [51],
p. 550]. It is an antisymmetric tensor of rank two.
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The representation of the electric andmagnetic fields in terms of an antisymmetric
tensor of rank two is natural. Vector calculus allows the existence of polar and axial
vectors. Axial vectors are those which change sign on coordinate reflection, i.e. upon
change from a right-handed to a left-handed coordinate system. Vectors formed by
vector or cross products are axial vectors, as are those formed by the curl operation.
Vectors which do not change direction on reflection are polar vectors. Polar vectors
may then be considered to be “normal” vectors.

The electric field, obtained from the gradient and time derivative of the com-
ponents of the 4-potential, is a polar vector. The magnetic field induction vector,
obtained from the curl of the spatial components of the 4-potential is an axial vector.
Faraday’s and Ampère’s Laws relate the time derivatives of B and E to curlE and
curlB. An axial vector may then be obtained from the curl of a polar vector and vice
versa. We can show that equations in which axial vectors appear can be written in a
covariant manner using antisymmetric tensors [[3], pp. 56–57].

In covariant form the antisymmetric Field Strength tensor of rank two Fαβ is
defined as

Fαβ = ∂αAβ − ∂βAα = −Fβα. (8.84)

The elements of this tensor are the electric andmagnetic fields. From E = −gradϕ−
∂A/∂t we anticipate that the elements of the electric field E will involve ∂0Aβ and
∂βA0 where β = 1, 2, 3. And from B = curlA we anticipate that the elements of
the magnetic induction B will involve neither ∂0 nor A0. Using (8.79) and (8.80),
we find, for example, that F10 = Ex/c and F12 = −Bz.

In matrix form the contravariant Field Strength tensor is

Fαβ =

⎡

⎢⎢⎣

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎤

⎥⎥⎦ (8.85)

and the covariant form is (see exercises)

Fαβ =

⎡

⎢⎢⎣

0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

⎤

⎥⎥⎦ . (8.86)

The contravariant Field Strength tensor (8.85) transforms from an inertial frame
k, which we consider to be at rest, to an inertial frame k ′ as (8.72), which in matrix
form is

F ′ = AFA. (8.87)

Carrying out the matrix multiplication indicated in (8.87) and using the Lorentz
transformation matrix (8.17),



8.8 Electromagnetism 275

F ′αβ =

⎡

⎢⎢⎢⎣

0 −Ex/c − (γ/c)
(
Ey − cβBz

) − (γ/c)
(
Ez + cβBy

)

1
c Ex 0 −γ

(
Bz − (β/c) Ey

)
γ

(
By + (β/c) Ez

)

(γ/c)
(
Ey − cβBz

)
γ

(
Bz − (β/c) Ey

)
0 −Bx

(γ/c)
(
Ez + cβBy

) −γ
(
By + (β/c) Ez

)
Bx 0

⎤

⎥⎥⎥⎦ .

(8.88)
This result gives us a picture of how the electric and magnetic fields measured by
people in the frame k and k ′ differ from one another.

Although the same laws of electrodynamics are valid for all inertial frames of
reference, the electric and magnetic fields a person measures depend on the relative
state of motion of the person. This we see in (8.88). For example, if in the stationary
inertial frame k we have only an electrical field E = Ezêz then in an inertial frame
k ′ moving with a velocity v = vêx a person will detect an electric field E′ = γEzêz
and a magnetic field induction B′ = (β/c) γEzêy. We may identify these fields by
comparing the form of F ′ that we have in final matrix in equation (8.88) with F in
(8.85).

Similarly if we have only a magnetic field with induction B = By êy in the
stationary frame k then in the moving frame k ′ a person will detect a magnetic field
with induction B′ = γByêy and an electric field E′ = cβByêz.

8.8.3 Electromagnetic Force

The electromagnetic (Lorentz) force on a particle with charge Q is Q (E + v × B).
We can extract this force from the Field Strength tensor if we take the scalar product
of F with the 4-velocity U . That is, with the contravariant and covariant forms of F
in (8.85) and (8.86) and the 4-velocity in (8.40) we have

FαβUβ = γu

⎡

⎢⎢⎣

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

c
−ux
−uy
−uz

⎤

⎥⎥⎦ = γu

⎡

⎢⎢⎣

Exux/c + Eyuy/c + Ezuz/c
Ex − Byuz + Bzuy
Ey + Bxuz − Bzux
Ez − Bxuy + Byux

⎤

⎥⎥⎦ .

(8.89)
and

FαβUβ = γu

⎡

⎢⎢⎣

0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

c
ux
uy
uz

⎤

⎥⎥⎦ = γu

⎡

⎢⎢⎣

Exux/c + Eyuy/c + Ezuz/c
Byuz − Ex − Bzuy
Bzux − Bxuz − Ey
Bxuy − Ez − Byux

⎤

⎥⎥⎦ (8.90)

We can identify the work done on a charged particle in the time component of
each of these 4-vectors. And in the spatial components of (8.89) we can identify
the positive and in (8.90) the negative electromagnetic force fields. Therefore the
contravariant and covariant 4-vector electromagnetic (Lorentz) force on a particle
with charge Q are
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Fα = Qγ−1
u FαβUβ and Fα = Qγ−1

u FαβUβ .

Using our shorthand notation and defining the Lorentz force on a body carrying a
charge Q as

f L = Q (E + v × B) ,

we may write the contravariant and covariant forms of the 4-vector electromagnetic
force as

Fα = γu

(
1

c
f L · u, f L

)
, (8.91)

and

Fα = γu

(
1

c
f L · u,− f L

)
. (8.92)

The components of the (relativistic) 4-vector Lorentz force then contain a factor
γu.Wemay, therefore, think of γu as providing an indication of the deviation between
Newtonian mechanics and what we shall find as a correct relativistic formulation. If
γ u ≈ 1 we may use ordinary Newtonian mechanics. However, in laboratory studies
of collisions between elementary particles γu may be 104 and γu is as high as 1011

for cosmic ray protons [[99], p. 70]. So we are not dealing with situations in which
Newtonian mechanics is slightly in error. Newtonian mechanics is simply wrong in
high energy regimes. We must, therefore, begin anew.

8.9 Relativistic Mechanics

8.9.1 The Laws of Mechanics

As we saw at the end of the preceding section, Newtonian mechanics cannot be
easily adjusted to accommodate situations in which velocities are close to that of
light. In a certain sense, our position at the beginning of the 20th century was similar
to Newton’s in the 17th century.We had some guideposts, but no general formulation.

With Minkowski Space we must deal with 4-vectors rather than simply spatial
vectors. We may be guided by what we have learned from our study of Newtonian
mechanics. But our new 4-vector laws must be invariant under Lorentz Transforma-
tion, i.e. Lorentz invariant.

8.9.2 Conservation of Momentum

In Sect. 8.6 we (tentatively) proposed conservation of momentum as a foundational
law of relativistic mechanics. At least the (Lewis and Tolman) concept of relativistic
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mass, which has been verified experimentally, is based on conservation of momen-
tum in a collision. We shall then begin with a 4-vector formulation of conservation
of momentum, which includes collisions. We avoid discussions of interactive forces
between collision partners with the implicit assumption that collisions are instanta-
neous. The identity of the particles may, however, change in a collision.

Specifically, if P j is the 4-momentum of the j th colliding particle, we make the
Ansatz that ∑

initial

P j =
∑

final

P j. (8.93)

That is the 4-vector sum of the momenta before the collision is equal to the 4-vector
sum of the momenta after the collision. This is the mathematical statement of our
first law of relativistic mechanics.

Each component of the 4-vector law (8.93) must be independently valid. For the
time component ∑

initial

Ej =
∑

final

Ej, (8.94)

since c is an invariant. Our law then includes conservation of total energy. And, for
each of the spatial components (μ = 1, 2, 3),

∑

initial

m0jU
μ
j =

∑

final

m0jU
μ
j . (8.95)

Introducing the relativistic masses

m j = m0jγj,

where γj = γ (u) for u = uj, we may write (8.95) as

∑

initial

m juj =
∑

final

m juj, (8.96)

which, with pj = m juj, is the Newtonian expression for conservation of momentum.
We then recover conservation of energy andmomentum inwhat appear to be standard
Newtonian forms from our proposed law of conservation of 4-momentum. We claim
that the Newtonian form is only apparent because the energy E = m0γuc2 = mc2 is
the relativistic energy and the mass m = m0γu is the relativistic mass.

We know that the scalar product of two 4-vectors is a Lorentz scalar invariant
(see (8.62)). And we have already shown that for a single material body (particle)
P2 = m2

0c
2 (see (8.46)). For two separate particles we can always define the frame

k to be the frame in which one of the two particles is at rest and consider that the
second particle is moving with a velocity u in k. The 4-momenta of the particles are
then P1 = m01 (c, 0) and P2 = m02γv (c, u) and the scalar product is



278 8 Special Relativity

P1 · P2 = m01m02γuc2 = m01m2c
2 = m02m1c

2

= m01E2 = m02E1. (8.97)

We can then obtain the form of

(
∑

initial

P j

)2

=
(

∑

final

P j

)2

(8.98)

in terms of rest masses and total energies.
Conservation of (total) energy (8.94) may be written as

∑

initial

m j =
∑

final

m j (8.99)

since c2 is a scalar invariant. Relativistic mass is, therefore, conserved in a collision.
Mass and energy are equivalent, as Einstein pointed out.

Example 8.9.1 (Elastic Collision) An example of the application of the law of con-
servation of 4-momentum is the elastic collision, which is one in which the rest
masses of the colliding particles do not vary. This is, perhaps, the simplest example
of a collision between two masses moving at velocities requiring the application
of relativistic mechanics. We consider the elastic collision between particles with
masses m01 and m02 and velocities u1 and u2. The initial 4-momenta are

P1 = m01γ1 (c, u 1)

P2 = m02γ2 (c, u 2) .

We have designated γ1 for the velocity u1 and γ2 for the velocity u2. The final
4-momenta are

P ′
1 = m01γ

′
1

(
c, u′

1

)

P ′
2 = m02γ

′
2

(
c, u′

2

)
.

And our law of mechanics is

P1 + P2 = P ′
1 + P ′

2.

Squaring both sides we have

P2
1 + P2

2 + 2P1 · P2 = P ′2
1 + P ′ 2

2 + 2P ′
1 · P ′

2.
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Because they are scalar invariants in an elastic collision

P2
1 = P ′2

1

P2
2 = P ′2

2 .

Then
P1 · P2 = P ′

1 · P ′
2

for any elastic collision between two material bodies.

8.10 Center of Momentum Frame

We simplify our calculations by defining a Center of Momentum frame (CM)11 in
which the spatial component of the momentum of the system of masses (particles)
interacting with one another vanishes.

We consider a system of particles in a particular inertial frame k, which we may
consider to be at rest. The total 4-momentum P̄ of the system is defined by the
4-vector sum

P̄ =
∑

P j (8.100)

over the 4-momenta of all of the particles. The components of the 4- momentum P̄
provide then the definitions of total relativistic mass

m̄ =
∑

j

m j =
∑

j

m0jγj (8.101)

and total spatial momentum
p̄ =

∑

j

pj (8.102)

for the system of particles. Then

P̄ =
∑

j

(
m jc, pj

) = (m̄c, p̄) (8.103)

= (Ē/c, p̄
)
, (8.104)

where Ē = m̄c2 is the total energy of the system of particles.
The CM frame kCM is that in which the spatial component p̄ of the total

4-momentum P̄ in (8.102) vanishes. The velocity of this frame uCM, measured in

11We note that CM designates center of mass in nonrelativistic (Newtonian) mechanics. The des-
ignation here as center of momentum is standard.
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the system k, is the spatial component of the 4-velocity of the system of particles
measured in the system k

uCM = p̄
m̄

. (8.105)

In kCM the spatial component of the sum of the 4-momenta of the particles is zero.
With (8.105) we may write (8.103) as

P̄ = m̄ (c, uCM) . (8.106)

The 4-velocity UCM of the frame kCM relatively to the frame k is

UCM = γ (uCM) (c, uCM) , (8.107)

where uCM is defined in (8.105) as a measurable spatial vector in the frame k and,
therefore, γ (uCM) is also well defined in k. We may then express the 4-momentum
P̄ in terms of well-defined spatial quantities as

P̄ = m̄γ−1 (uCM)UCM. (8.108)

The square of the 4-momentum P̄ is then

P̄2 = [
m̄γ−1 (uCM)

]2
c2, (8.109)

which is an invariant. Therefore m̄γ−1 (uCM) is an invariant.
Analogously to the single particle rest mass we may define the rest mass of the

system of particles as
m̄0 = m̄γ−1 (uCM) (8.110)

Then (8.109) becomes
P̄2 = m̄2

0c2 (8.111)

and P̄ = m̄0UCM. We then have CM quantities m̄, m̄0, and UCM, which are system
analogues of the single particle quantitiesm,m0, andU , andwell-definedmeasurable
quantities in the frame k.

If we identify the kinetic energy T̄ of the system of particles as the difference
between the total and the rest energy of the system then

T̄ = Ē − m̄0c2 = (m̄ − m̄0) c2

= [γ (uCM) − 1] m̄0c2.

And we have the general result that the mass of the system of moving particles
always exceeds the sum of the rest masses of the particles. We have included no
interactive forces in this development. So we cannot push this result toward any
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conclusions regarding atomic or nuclear systems.We are still dealing simply with the
4-momentumof a systemof separate, i.e. unbound particles.We realize, however, that
if particles collide with sufficient kinetic energy it is possible to produce additional
particles. That is a portion of the kinetic energy of the colliding particles may be
converted into the mass of an additional particle produced in the collision.

In the 21st century this process is common. It is the process by which elementary
particles are identified. Nevertheless we may ask what our theory has to say about
the minimal kinetic energy required to produce a specific particle from a collision.
We choose a collision between two protons, with rest masses 938.27MeV/c2, that
results in a pion π0 with a rest mass 135MeV/c2 [[117], pp. 435, 529]. Because the
proton is stable this interaction avoids any questions of particle transformation.

Example 8.10.1 (Threshold Energy) The reaction to produce a pion π0 from a col-
lision between two protons is

p + p → p + p + π0.

We shall formulate this example in a general fashion considering the two initial
particles to have rest masses M0 and the particle produced in the collision to have
rest mass m0. We consider that one of the initial particles is at rest and the other is
moving toward it with velocity v = −vêx. The at rest particle may be considered the
target and the moving particle the projectile, or bullet. After the collision we have
all the particles moving apart. We reference these to the CM frame kCM.

The 4-momenta of the initial states are

P1 = M0 (c, 0)

for the target and
P2 = M0γv

(
c,−vêx

)

for the projectile.After the collision the 4-momentumof the particles in theCMframe
kCM is P̄. This 4-momentum is a constant during the collision. We may, therefore,
calculate the value of P̄ from the conditions before the collision referenced to the
frame k. That is

P̄ = P1 + P2.

Squaring this we have
P̄2 = P2

1 + P2
2 + 2P1 · P2.

With
P1 · P2 = M2

0γv (c, 0) · (
c,−vêx

) = M2
0γvc2

and P2
1 = P2

2 = M2
0c2 we have

P̄2 = 2M2
0c2 + 2M2

0γvc2.
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From (8.111) we have P̄2 = m̄2
0c2. Then

2M2
0c2 + 2M2

0γv c2 = m̄2
0c2.

We do not know the velocities of the particles in kCM after the collision. Therefore
we do not know m̄0. We do, however, have a minimum value for m̄0, which is the
sum of the rest masses 2M0 + m0. Using this minimum value for m̄0 will provide
the minimum kinetic energy of the projectile required.

We then consider

2M2
0c2 + 2M2

0γv c2 = (2M0 + m0)
2 c2.

Solving for γv,

γv = 1 + m2
0

2M2
0

+ 2m0

M0
.

The kinetic energy of the projectile is then

Ekin = E − M0c2 = (γv − 1) M0c
2

=
(

m0

2M0
+ 2

)
m0c2.

This is the energy that goes into creating m0 in this limiting case. The actual energy
in the rest mass is m0c2. The efficiency of the reaction is the ratio of the energy that
actually goes into m0 divided by the incoming kinetic energy of the projectile, or

efficiency = m0c2

(m0/2M0 + 2) m0c2

= 2

4 + (m0/M0)
.

For the proton and the pion, m0/M0 = 0.143 88 and

efficiency = 2

4 + 0.143 88
≈ 0.48

and the minimum kinetic energy required is

Ekin =
(
0.143 88

2
+ 2

)
135 = 279.71MeV.
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8.11 Waves

Plane waves are periodic (sinusoidal) disturbances which propagate in a single direc-
tion. In mathematical terms the disturbance extends uniformly to infinity in the two
spatial coordinates perpendicular to the direction of propagation. The plane wave
must then be recognized as a mathematical idealization, which cannot be localized
in a finite spatial region, but which can be used as a basis for constructing general
wave disturbances [[45], pp. 249–254]. Here we will develop a Minkowski Space
description of plane waves as frequency 4-vectors [cf. [99], pp. 60–65]. Then we
will use the frequency 4-vector to represent the photon, which is the nonlocalizable
quantum of the electromagnetic field, and the basis for the de Broglie matter wave.

8.11.1 Frequency 4-Vector

In time dt a plane wave moving in the direction n̂ travels a distance n̂· dr where dr
is a spatial element (dx1,dx2,dx3). Then

n̂ · dr = wdt, (8.112)

in which w is the speed of the wave. Introducing the speed of light in vacuum c we
may write (8.112) as

νdx0 − νc

w
n̂ · dr = 0, (8.113)

where ν is the frequency of the wave and c/w = 1 for light.
We may contain this description in the frequency 4-vector for a plane wave N ,

which we define as
Nμ = ν

(
1,

c

w
n̂
)

. (8.114)

And the covariant frequency 4-vector is Nμ = ν
(
1,− c

w
n̂
)
. Then

N · dx = Nαgαβdxβ = ν
(
1,

c

w
n̂
)

· (cdt, dr)

= νcdt − νc

w
n̂ · dr. (8.115)

And using (8.113) we see that the plane wave is defined in terms of N by

Nμdxμ = 0. (8.116)

Equation (8.116) also shows that the frequency 4-vector N is orthogonal12 to the
differential 4-vector dx.

12In Newtonian, 3 dimensional space this would mean perpendicular.
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Dividing (8.116) by c we have

1

c
Nμdxμ = 1

τ
dt − 1

λ
n̂ · dr = 0,

where τ = 1/ν is the period of the wave and λ = w/ν is the wavelength. We now
choose X to be some function whose differential is

dX = ∂X

∂xμ
dxμ = 1

c
Nμdxμ. (8.117)

Since Nμ is independent of xμ, (8.117) can be easily integrated to obtain

X (ct, r) = 1

c
Nμxμ =

(
νt − n̂ · r

λ

)
. (8.118)

For constant t we see that X decreases by an integer as r advances by one wavelength
λ in the direction of n̂. X is then a counting index for the wave crests. The index
is such that the earlier waves produced by the source have lower indices than those
produced later, which is a logical convention. At a point in space the waves passing
us increase in index as time increases.

For a light wave w = c and the frequency 4-vector becomes

Nμ = ν
(
1, n̂

)
. (8.119)

And for a light wave,
NμNμ = 0. (8.120)

We emphasize that our treatment here is of plane waves (phase waves) of specific
frequency ν and wavelength λ.

8.11.2 The Photon

The idea that black body radiation can be considered as composed of quanta first
appeared in Einstein’s paper in March of 1905 On a Heuristic Viewpoint Concern-
ing the Production and Transformation of Light. [23] Einstein considered the same
physical situation Max Planck had considered. The radiation was contained in a cav-
ity (Hohlraum) enclosed by perfectly reflecting walls containing also a system of
oscillators. The Hohlraum was full of a gas (air) and radiation. The oscillators were
in equilibrium with the air molecules. He concluded that [[58], p. 26]

Monochromatic radiation of low density (within the limits of the Wien law) behaves with
respect to thermal phenomena as if it were composed of independent energy quanta of
magnitude hν.
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In the March, 1905, paper Einstein did not actually write the energy quantum
as hν, but as (Rβ/N ) ν in which R and N are the gas constant and Avogadro’s
Number and β = (h/kB). These are the same numerically, but not in spirit. Einstein
did not use Planck’s energy relationship in this paper. He cited Planck’s formula for
the spectrum, but used the Wien spectrum in his development, which was thermo-
dynamic. He derived the entropy of the radiation field and compared his result to
Ludwig Boltzmann’s result for the entropy of a collection of atoms [23]. His claim
above is based on a this comparison. In 1905, then, Planck’s quanta are states of the
oscillator, while Einstein’s are of the radiation field.

Einstein’s identification of the photon momentum as p = hν/c appeared first
in his work on the absorption and emission (spontaneous and induced) in 1916
[[89], pp. 405–407]. In 1939 Eugene Wigner identified the photon as a state of the
electromagnetic field [127].

It is very tempting to move quickly from Einstein’sMarch paper to a picture of the
photon as a massless particle, turn to our general relationship for material particles
(8.55), and find the consequences if we set m0 = 0. If we were to do so we would
find that

E = pc, (8.121)

from which the momentum of the photon would follow as p = hν/c. Although
this is a correct result, as we now realize, Einstein, in spite of his bold approach in
the March paper, did not take this step. The reasons are very logical, as we have
indicated, and should be appreciated.

From the Planck–Einstein energy relationship E = hν for the photon, and from
the momentum of the photon p = hν/c, we can write a 4-momentum for the photon
Pγ as (see (8.54))

Pγ = hν

c

(
1, n̂

)
, (8.122)

where n̂ is the direction of propagation of the wave. Comparing (8.122) with (8.114)
we see that for a light wave

cPγ = hN (8.123)

for the 4-vectors Pγ and N . Because the photon has zero rest mass,

P2
γ = m0c

2 = 0. (8.124)

Although the photon has zero rest mass we can introduce the concept of relativistic
photon mass from E = mc2. That is

m = hν

c2
. (8.125)

Example 8.11.1 (Compton Effect (1922)) Arthur Compton studied x-ray reflection
from a solid. He observed that the x-rays coming from the sample varied in fre-
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quency depending on scattering angle. He analyzed the experiment considering that
Einstein’s photon and the principles of relativistic mechanics were correct. Because
the energy of the x-ray photon was a thousand times that of the bound electron he
considered that the electron was a free particle at the time of collision. So initially
we have an electron at rest at the origin of k and a photon coming toward it. The
4-momentum of the electron is

Pe = m0 (c, 0)

and of the photon is

Pγ = hν

c

(
1, n̂

)
.

The electron receives energy and momentum from the x-ray photon and leaves the
collision site at an angle φ to the x-axis. The photon leaves with a frequency ν ′ and
at an angle ϑ to the x-axis. After the collision, then, the 4-momenta are

P ′
e = m0γv (c, v)

and of the photon’

P ′
γ = hν ′

c

(
1, n̂′) ,

where v is the velocity of the scattered electron, ν ′ is the frequency of the scattered
x-ray, and n̂′ is at an angle ϑ with respect to n̂. Our law of mechanics is then

Pe + Pγ = P ′
e + P ′

γ .

We know nothing about the scattered electron except that the value of the square of
its 4-momentum is m2

0c2. We then isolate the 4-momentum of the scattered electron
and square the resulting expression. That is

(
Pe + Pγ − P ′

γ

)2 = (
P ′

e

)2
,

or

P2
e + P2

γ + P ′2
γ + 2Pe · (

Pγ − P ′
γ

) − 2Pγ · P ′
γ = P ′2

e = m2
0c

2. (8.126)

Now, noting that the scalar product requires gαβ ,

Pe · (
Pγ − P ′

γ

) = Pα
e gαβ

(
Pβ

γ − P ′β
γ

)

= m0
h

c
(c, 0) · [

ν
(
1, n̂

) − ν ′ (1, n̂′)]

= m0h
(
ν − ν ′) ,
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and

Pγ · P ′
γ = Pα

γ gαβ Pβ
γ

=
(

h

c

)2

νν ′ (1, n̂
) · (

1, n̂′)

=
(

h

c

)2

νν ′ (1 − cosϑ) ,

since n̂ · n̂′ = cosϑ. For the photons before and after collision

P2
γ = P ′2

γ = 0,

and for the electron
P2
e = m2

0c
2.

Then (8.126) becomes

h

c2
νν ′ (1 − cosϑ) = m0

(
ν − ν ′) .

The theoretical analysis agreed with the experimental results making this a classic
result because of the use of the photon concept and relativity.

8.11.3 De Broglie Particle Waves

The idea of Louis Victor Pierre Raymond, prince de Broglie on particle waves was
an important step in the development of the quantum theory. Pais presents an outline
of the relationship between the ideas of de Broglie and those of Einstein at the time
of de Broglie’s doctoral defence [[89], pp. 435–438].

Louis was the younger brother of Louis César Victor Maurice, the 6th duc de
Broglie [[6], vol. 4, p. 262]. In spite of the family’s disdain for science, Maurice de
Broglie was able to establish a respected reputation in experimental physics, while
simultaneously engaging in a more respectable naval career. Louis de Broglie first
took a degree in ancient history at the University of Paris (1910) and then moved
toward science [[49], p. 447].

After 1913Maurice was involved in the study of x-rays. The British father and son
team,William and Lawrence Bragg, had come to recognize that neither the wave nor
particle picture of x-rays was adequate. Maurice shared the opinion of the Braggs.
And his brother wrote that Maurice considered x-rays to be a combination of wave
and particle. However, Louis also noted that Maurice was not a theoretician and had
no clear ideas on this matter.



288 8 Special Relativity

Louis de Broglie served in the French army during the First World War. And
in 1919, after the war, he joined the physics laboratory headed by Maurice [[89],
p. 435]. For a while the two brothers worked together on experiments studying the
behavior of electrons when x-rays were scattered from solids. Louis wrote that he
and his brother had long discussions about the interpretation of the experiments, and
Louis was “led to profoundmeditations on the need of always associating the aspects
of waves with that of particles” [[13], p. 276]. The ideas we consider here appeared
in Louis de Broglie’s dissertation in 1924 [[49], p. 447].

Our intention here is only to outline the development of Louis de Broglie’s ideas
in the language of the 4-momenta of particles and waves. De Broglie’s treatment of
matter waves was relativistic. And at our present stage we can carry out the basic
relativistic development. DeBroglie equated the product of the particle 4-momentum
with c, which makes the terms in the particle 4-momentum all energy terms, to the
product of the (phase wave) frequency 4-vector with Planck’s constant h, which,
from the Planck–Einstein formula, makes the terms in the frequency 4-vector all
energy terms. De Broglie’s Equation [[99], p. 82] is then

cP = hN (8.127)

or
(E, pc) =

(
hν, hν

c

w
n̂
)

. (8.128)

De Broglie’s Equation (8.128) is identical in form to (8.123) for the photon. In
(8.128), however, the 4-momentum is that for a material particle, while in (8.123)
the 4-momentum is that for a photon. The appearance of the phase wave frequency
4-vector in the de Broglie Equation means that the results of the derivation will be
for the particle phase wave associated with a particle having a definite momentum.

From the time (zeroth) element of (8.128) we have

E = mc2 = hν (8.129)

for material particles, which serves to identify a frequency ν to be associated with
the matter wave. And from the spatial elements of (8.128) we have

p = h
ν

w
n̂ = h

λ
n̂. (8.130)

With (8.129) and p = mu, (8.130) becomes

E
c2

= hν

wu
. (8.131)

And with (8.129), Eq. (8.131) becomes

w = c2

u
, (8.132)
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which relates the phase velocity of the particle wave w to the particle velocity u.
From theMinkowski Axiomwe know that for material particles u < c. Therefore

the phase velocity of a de Broglie wave associated with a material particle is > c.
Phase waves, however, are not the carriers of information. So this is not a violation of
the limit on the transmission of information. If de Broglie waves are associated with
a particle, the disturbance representing the moving particle must be constructed from
these phase waves and the velocity of the disturbance will be the group velocity, not
the phase velocity [cf. [45], pp. 330, 373, 385, 388].

8.12 Relativistic Forces

In addition to conservation of momentumwemust also formulate a law of mechanics
that can treat the motion of particles under the action of forces, such as those in the
plasma filling the cosmos or in high energy accelerators. The forces acting on these
particles are electromagnetic (field) forces, for which we developed the relativistic
theory in Sect. 8.8.3. So we must at least have an understanding of the relativistic
motion of charged particles under the influence of electromagnetic forces.

The force laws we propose for mechanics must be Lorentz invariant. And we
know from the results of Einstein’s investigation in the paper on special relativity
that the standard form of Newton’s Second Law will not fulfill this requirement. We
know as well that Newton’s Third Law cannot be expected to hold for field forces
because simultaneity is no longer a universal concept. Any laws we may propose
must, however, reduce to Newtonian laws for spatial components in our (at rest)
inertial frame.

Relativistic forces may be divided into those which do not change the rest mass
of the body on which they act and those which will change the rest mass of a body
by their action. We will call those forces which do not result in a change in rest mass
pure forces. And those which result in a change in the rest mass we will call impure
forces. Not surprisingly, perhaps, we will see that nuclear forces result in a change in
the rest mass of nucleons. Electromagnetic forces, however, do not result in a change
of rest mass.

We may argue that devoting primary consideration to the electromagnetic force
is justified on the basis of practicality. Pauli, however, had a more logical argument
for considering only electromagnetic forces in detail. He pointed out that numerous
forces transform in the same way as do electromagnetic forces, since we may always
compensate for another force with an electromagnetic force. The compensation will
then be independent of inertial frame [[92], p. 116]. We will then claim that our
treatment of the electromagnetic force encompasses any and all pure forces.

We will find that a formulation in terms of Hamilton’s Principal Function is a
Lorentz invariant approach. And this will be the final approach we take.
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8.12.1 Pure Forces

A general 4-vector formulation of Newton’s Second Law is

F = d

dτ
P

= d

dτ
(mc, p) , (8.133)

where F is what we shall term a 4-vector force and τ is the proper time for the world
line of the body (see (8.28)). We know only that the spatial component of F, which
we shall identify as f , satisfies Newton’s Second Law in our at rest frame so that

f = d

dt
p, (8.134)

where p is the spatial component of the 4-momentum and t is the time for the
reference frame k, which we may choose to be at rest.

We showed in Sect. 8.7 that the scalar product of two 4-vectors is a Lorentz
invariant. If we take the scalar product of F with the 4-velocity U we have the
invariant U · F = Uα Fα, which with (8.133) is

U · F = U ·
(

c
d

dτ
m,

d

dτ
p
)

. (8.135)

Then, with (8.28), (8.75) and (8.134), Eq. (8.135) becomes

U · F = γ2
u

(
c2

d

dt
m − u · f

)
. (8.136)

In the frame in which the mass is at rest at a particular instant u = 0, γu = 1, and
m = m0. We choose this to be our rest frame k and study the subsequent differential
step of the body’s motion along its world line. In this frame (8.136) is

U · F = c2
dm0

dτ
. (8.137)

Because of the Lorentz invariance of the scalar product of 4-vectors, (8.136) and
(8.137) are equal. Then, with dτ = dt/γu

c2
(
dm

dt
− 1

γu

dm0

dt

)
= u · f . (8.138)

Equation (8.138) is a general expression relating the difference between the rates
of change of relativistic mass (total energy) and rest mass (rest energy) to the rate at



8.12 Relativistic Forces 291

which work is done on the mass by the spatial component of the 4-vector force F.
From (8.137) we see that whether or not the rest mass is conserved is determined by
whether or not U · F vanishes. A pure force, which conserves the rest mass, i.e. for
which dm0/dt = 0, is one for which U · F = 0. An impure force is one for which
dm0/dt �= 0 and U · F �= 0 [[99], p. 92].

From (8.138), with E = mc2, we see that for a pure force

dE
dt

= u · f , (8.139)

That is a pure force results in a change in the total energy (relativistic mass) of the
body.

8.12.2 Impure Forces

We may gain some insight into the character of an impure force if we assume that it
results from a general potential Ψ (ct, r) in such a manner that the (covariant) force
Fμ is (see (8.78))

Fμ = ∂μΨ (ct, r) = ∂

∂xμ
Ψ (ct, r) . (8.140)

Then U · F is

Uα Fα = gαν
dxν

dτ
gαμ ∂

∂xμ
Ψ (ct, r)

= δμ
ν

dxν

dτ

∂

∂xμ
Ψ (ct, r)

= dΨ (ct, r)
dτ

(8.141)

From (8.137) we then have the differential equation

dΨ (ct, r)
dτ

= c2
dm0

dτ
, (8.142)

which we may immediately integrate to obtain

m0c2 = Ψ (ct, r) + constant.

The space-time variation of the rest mass is then determined by the space-time vari-
ation contained in the scalar potential [cf. [99], p. 92].

An example of this sort of variation in rest mass is provided by the meson theory
of the strong nuclear force, first proposed by Hideki Yukawa in 1934. The nuclear
force is mediated by the exchange of π-mesons between nucleons. The π-mesons
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have charges ±e or 0. The exchange of π-mesons between nucleons (protons and
neutrons) may then result in the exchange of charge and, hence, rest mass, since the
masses of the proton and neutron differ. The short-range Yukawa potential has the
same form as the (Debye) screened Coulomb potential [[78], p. 297]

V (r) = V0
exp (−αr)

αr
. (8.143)

The importance of finite volume effects and the inelastic threshold are discussed,
e.g., by Bernard, et al. [2].

The first discovery of a change in the rest mass of a body resulted from the
beautiful radiochemistry experiments of Otto Hahn and Friedrich Strassmann in the
winter of 1938–1939 at the KaiserWilhelm Institute in Berlin. Hahn and Strassmann
discovered that after 238

92 U was bombarded by neutrons Barium (Ba) could be found
in the products. Hahn’s colleague Lise Meitner and her nephew Otto Frisch analyzed
these experiments (sitting on a log in a snowy woods at Kungälv, Sweden). Meitner
and Frisch were both then refugees from Nazi Germany. Meitner imagined that
the 238

92 U nucleus had split. She knew the difference in masses of 238
92 U and 137

56 Ba +
83
46Kr. And she knew Einstein’s mass-energy relationship E = Δmc2, where Δm,
is the (rest) mass lost. The result was (about) 200MeV. This matched the potential
energy of 137

56 Ba and 83
46 Kr nuclei located at twice the nuclear radius apart, which

would be the potential energy just after splitting. In keeping with the fact that the
Lorentz force could not be responsible for the loss of rest mass, we can claim that
the Hahn–Strassmann experiments and the Meitner–Frisch analysis, indicated that a
non-electromagnetic force, such as theYukawa force,must be present in the nucleus13

[[47], pp. 10–11; [100], pp. 257–264].

8.12.3 Lorentz Force

Using (8.75) and the contravariant form of the Lorentz force (8.91), we see that

U · F = Uα Fα = γ2
u (c,−u)

(
1

c
f L · u, f L

)
= 0. (8.144)

The Lorentz force is then a pure force and can have no effect on the rest mass of a
body.

With Pauli we may, however, take the Lorentz force

QFαβUβ = Q
(
∂αAβ − ∂βAα

)
Uβ (8.145)

13Of course this was already clear from the fact that a non-electromagnetic force must hold the
nucleus together.
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as a model for forces acting on charged bodies outside of the nucleus. Along the
world line of the charged body the force law, in Lorentz invariant form, will then be

m0gμαd2xα/dτ 2 = Qgμα

(
∂αAβ − ∂βAα

)
gβλg

λνUν

= Q
(
∂μAλ − ∂λAμ

)
Uλ. (8.146)

And we will use (8.146) as a guide in our search for a general covariant form of the
laws of mechanics valid in special relativity.

8.13 Relativistic Analytical Mechanics

8.13.1 Hamilton’s Principle

We begin our search for generally covariant laws of mechanics with Hamilton’s
Principle expressed by the variation of Hamilton’s Principal Function

S =
∫ t2

t1

dtΛ(t) (xμ, ẋμ) , (8.147)

which we write in bold font for the relativistic case. Here we have introduced the
notation Λ(t) for the relativistic Lagrangian based on the local time t of the frame k.
We have also introduced the contravariant vectors xμ in our Lagrangian and chosen
to consider conservative systems for which the Lagrangian is not explicitly a function
of the time t .

We know that Hamilton’s Principle produces the correct equations of motion in
an inertial frame when we use the local time as the basis for our formulation of
the Principal Function S. The proper time τ for the body is, however, the time we
actually want to consider in our formulation. So we convert (8.147) to an integral
over τ , which is related to the time measured by a stationary timepiece t in the
reference frame k as dt/dτ = γu, where u is the velocity of the body (see (8.28)).
We will keep the dot notation for the derivative with respect to t and use a prime to
denote derivatives with respect to τ , i.e. dxμ/dτ = xμ′. The change of variables then
results in

S =
∫ τ2

τ1

dτ
[
γuΛ

(t)
(
xμ, xμ′/γu

)]
. (8.148)

If we define the Lagrangian Λ(τ ) as

Λ(τ ) = γuΛ
(t) (xμ, xμ′/γu

)
, (8.149)
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Hamilton’s Principal Function then retains its original form

S =
∫ τ2

τ1

dτΛ(τ ) (xμ, xμ′/γu
)
, (8.150)

and Hamilton’s Principle δS = 0 can be required based on the proper time τ .

8.13.2 Euler–Lagrange Equations

From (8.147) and (8.150) the Euler–Lagrange Equations for the local and the proper
time are

∂Λ(t)

∂xμ
− d

dt

(
∂Λ(t)

∂ ẋμ

)
= 0, (8.151)

and
∂Λ(τ )

∂xμ
− d

dτ

(
∂Λ(τ )

∂xμ′

)
= 0, (8.152)

We know that the Euler–Lagrange Equations based on the local time t in (8.151) are
valid. We must now show that the Euler–Lagrange Equations based on the proper
time τ in (8.152) are equivalent to (8.151) before we can accept the change from
local to proper time. To do this we transform the dependence of all terms from
τ to t .

For the derivative of Λ(τ ) with respect to xμ, with μ = 1, 2, 3, we have

∂Λ(τ )

∂xμ
= ∂

∂xμ

[
γuΛ

(t)
] = γu

∂Λ(t)

∂xμ
. (8.153)

For the derivative of Λ(τ ) with respect to xμ′ we note that ∂ ẋν/∂xμ′ = (1/γu) δν
μ.

Then

∂Λ(τ )

∂xμ′ = γu
∂ ẋν

∂xμ′
∂

∂ ẋν
Λ(t)

= ∂Λ(t)

∂ ẋμ
. (8.154)

That is the partial derivatives ∂Λ(τ )/∂xμ′ are the canonical momenta for the frame
k.

Then, from dxμ/dτ = xμ′, (8.153), (8.154) and (8.152) we have

∂Λ(τ )

∂xμ
− d

dτ

(
∂Λ(τ )

∂xμ′

)
= γu

[
∂Λ(t)

∂xμ′ − d

dt

(
∂Λ(t)

∂ ẋμ

)]
= 0.
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The Euler–Lagrange Equations written for the proper time τ are then completely
equivalent to those written for the local time t .

8.13.3 Force-Free Lagrangian

To develop the relativistic Lagrangian we consider first the force-free situation. We
know that the relativistic spatial momenta for a free material body are the spatial
components of P = (mc, p). That is

pμ = ∂Λ(t)

∂ ẋμ
= m0 ẋμ

√
1 − ẋν ẋν/c2

, (8.155)

with ν and μ = 1, 2, 3. We may integrate (8.155) to obtain

Λ(t) = m0c
2
(

K −
√
1 − ẋν ẋν/c2

)
, (8.156)

where K is an integration constant.14 If we accept for the moment that (8.156) is the
correct relativistic Lagrangian for the free material body, and introduce

√
1 − ẋν ẋν/c2 = dτ

dt
, (8.157)

then Hamilton’s Principle Function becomes

S =
∫ t2

t1

dt

[
m0c2

(
K − dτ

dt

)]

= m0c
2 [K (t2 − t1) − τ (P2 − P1)] , (8.158)

where P1,2 indicate two points on the world line of the body. If K were zero (8.158)
would be Lorentz invariant because the proper time between two points on a body’s
world line is independent of inertial frame. But the term m0c2K (t2 − t1) presents a
problem. As a difference between local times it is not Lorentz invariant. However,
since in Hamilton’s Principle we hold the end points fixed, this term is merely an
additive constant with no effect on the mechanics. We, therefore, set K = 0 with no
consequences and propose the Lorentz invariant Principal Function as

S = −
∫ t2

t1

dt
(

m0c
2
√
1 − ẋν ẋν/c2

)
. (8.159)

14We can verify this result by partial differentiation.
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The relativistic Lagrangian is then

Λ(t) = −m0c
2
√
1 − ẋν ẋν/c2 (8.160)

To convert the relativistic Lagrangian Λ(t) to Λ(τ ) we use (8.149) and we note that in
the conversion from ẋν ẋν with ν = 1, 2, 3 to the 4-velocity (8.75), we have

1 − u2

c2
= 1 − ẋν ẋν/c2

= 1

c2γ2
u

gμνUμU ν .

Then, using the prime notation for derivatives with respect to τ , (8.160) results in
the proper time based, force-free relativistic Lagrangian

Λ(τ )
(
xμ, xμ′) = −m0c

√
gμν xμ′xν′. (8.161)

8.13.4 Lagrangian for Lorentz Force

We choose the potential energy for the Lorentz force to be −QAνdxν/dτ =
−QAU ν because of the form of the force in (8.145). We then write our relativistic
Lagrangian as

Λ(τ )
(
xμ, xμ′) = −m0c

√
gμν xμ′xν′ − QAμgμν xν′. (8.162)

for a charged material body moving under an electromagnetic (Lorentz) force. We
have already shown that the first term in the Lagrangian (8.162) is a Lorentz invariant.
The second term is the scalar product of two 4-vectors, which is also a Lorentz scalar
invariant. Therefore the integral of the Lagrangian (8.162) over the proper time τ is
Lorentz invariant. We may then propose the relativistic form of Hamilton’s Principal
Function to be

S =
∫ τ2

τ1

(
−m0c

√
gμν xμ′xν′ − QAμgμν xν′

)
dτ . (8.163)

From (8.163) the canonical 4-momenta are

P (τ )
C,α ≡ ∂Λ(τ )

∂xα′ = −1

2
m0c

1√
gμν xμ′xν′

(
∂

∂xα′ gαβxβ′xα′
)

− QAμgμα

= −Pα − QAα. (8.164)
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With (8.54) and (8.80) these canonical 4-momenta can be written as

P (τ )
C =

(
−mc − Q

ϕ

c
, p + QA

)
, (8.165)

recalling that we display the contravariant elements (see Sect. 8.7.3). Differentiating
(8.164) with respect to τ we have

d

dτ
P (τ )
C,α = −m0x ′′

α − Q
∂Aα

∂xβ
xβ′. (8.166)

The partial derivative of the Lagrangian with respect to the components of the
4-vector xα results in

∂Λ(τ )

∂xα
= −Q

∂Aβ

∂xα
xβ′ (8.167)

Combining (8.166) and (8.167) the Euler–Lagrange Equations are

m0x ′′
α = Q

(
∂Aβ

∂xα
− ∂Aα

∂xβ

)
xβ′ (8.168)

or
m0x ′′

α = Q
(
∂αAβ − ∂βAα

)
xβ′, (8.169)

which is the covariant form of our force law (8.146). We have then shown that the
Lagrangian (8.162) is an appropriate relativistic Lagrangian for the electromagnetic
(Lorentz) force when the time variable is the proper time τ .

8.13.5 Hamiltonian

Although τ is the most natural time, prior to our introduction of special relativity we
formulated Analytical Mechanics in the local time t . We must then convert Λ(τ ) to
this local time to obtain the relativistic Hamiltonian for the particle moving under
the electromagnetic (Lorentz) force.

To obtain a Lagrangian based on the time t we return to Hamilton’s Principal
Function (8.147), where the Lagrangian Λ(t) is now

Λ(t) = 1

γu
Λ(τ ) (xμ, γu ẋμ)

= −m0c
√

gμν ẋμ ẋν − QAμgμν ẋν, (8.170)
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and now the indices take on the values 0, 1, 2, 3 and the coordinates are elements of
4-vectors. Hamilton’s Principal Function is now

S =
∫ t2

t1

dt
(
−m0c

√
gμν ẋμ ẋν − QAμgμν ẋν

)
(8.171)

For Λ(t) in (8.170) the covariant canonical momenta are P (t)
C,α ≡ ∂Λ(t)/∂ ẋα, which

are equal to P (τ )
C,α (see (8.154)). That is, displaying the contravariant form,

P (t)
C =

(
−mc − Q

ϕ

c
, p + QA

)
. (8.172)

The spatial components of (8.172) p(t)
C,α for α = 1, 2, 3 are then (see Sect. 8.7.4,

and (8.78))

p(t)
C,α = ∂Λ(t)

∂uα
= m0uα

√
1 − u2/c2

+ Q Aα. (8.173)

Solving (8.173) for uα (= ẋα), we have

uα = 1

m0

(
p(t)
C,α − Q Aα

)
⎡

⎢⎣1 +
(

p(t)
C,β − Q Aβ

)2

m2
0c

2

⎤

⎥⎦

−1/2

(8.174)

Then
√
1 − u2

c2
=

⎡

⎢⎣1 +
(

p(t)
C,β − Q Aβ

)2

m2
0c

2

⎤

⎥⎦

−1/2

,

and

Q Aαuα = Q

m0
Aα

(
p(t)
C,α − Q Aα

)
⎡

⎢⎣1 +
(

p(t)
C,β − Q Aβ

)2

m2
0c

2

⎤

⎥⎦

−1/2

.

The relativistic Lagrangian Λ(t) in (8.170) is then

Λ(t) = −m0c2
√
1 − u2/c2 − Qϕ + Q Aαuα

=
⎡

⎢⎣1 +
(

p(t)C,β − Q Aβ

)2

m2
0c2

⎤

⎥⎦

−1/2
[
−m0c2 + Q

m0
Aα

(
p(t)C, α − Q Aα

)]
− Qϕ. (8.175)



8.13 Relativistic Analytical Mechanics 299

From (8.173) and (8.174) the relativistic Hamiltonian, written in terms of the inertial
frame time t is then

H(t) = p(t)
C,αuα − Λ (t)

= m0c
2

⎡

⎢⎣1 +
(

p (t)
C,α − Q Aα

)2

m2
0c

2

⎤

⎥⎦

1/2

+ Qϕ (8.176)

This Eq. (8.176), we note, is the starting point of Dirac’s relativistic electron theory
[[18], p. 118, p. 255]. We may easily rewrite (8.176) as

(H(t) − Qϕ

c

)2

−
(

p(t)
C,α − Q Aα

)2 = m2
0c

2. (8.177)

In Sect. 5.5 we obtained the Hamilton–Jacobi Equation for Hamilton’s Principal
Function S. With H(t) = −∂S/∂t and p(t)

C,α = ∂S/∂xα for α = 1, 2, 3 we have the
relativistic Hamilton–Jacobi Equation as

(
∂S/∂t + Qϕ

c

)2

−
(

∂S

∂xα
− Q Aα

)2

= m2
0c2. (8.178)

Finally, in the low energy (non-relativistic) limit the Hamiltonian (8.176) is

H(t) = m0c2 + 1

2m0

(
p(t)
C,α − Q Aα

)2 + Qϕ. (8.179)

We may, of course, neglect the invariant rest energy m0c2. This is the Hamiltonian
we used in our earlier (nonrelativistic) studies of the motion of charged particles.

8.14 Summary

This chapter we have presented a rather complete, but brief, outline of special relativ-
ity and the application of the basic tensor algebra of Minkowski Space to Analytical
Mechanics. We have been careful about Einstein’s basic idea concerning time and
followed this with Minkowski’s concept of the merging of space and time into a
non-Euclidean geometry. This led us in a natural manner into a study of the basic
tensor algebra required to handle the electrodynamics and Analytical Mechanics of
relativity.

Our treatment of mechanics required deliberate care because of the requirements
of Lorentz invariance imposed on all physical laws. Sowe beganwith conservation of
4-momentum and collisions. Conservation of momentum allowed us to study numer-

http://dx.doi.org/10.1007/978-3-319-44491-8_5
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ous situations including photons and de Broglie’s ideas on matter waves. We studied
forces separately, before attempting our final formulation of Analytical Mechanics,
primarily because of the fact that relativistic forces separate into pure and impure
forces. Our example of an impure force was the nuclear force and our example of a
pure force was the Lorentz force. We dealt only with the Lorentz force in our final
treatment, citing the claim of Pauli that the Lorentz force is representative of many
forces.

In our final steps toward the relativistic Lagrangian and Hamiltonian we also
undertook with care, beginning with force-free motion. The final analysis brought us
back to the starting point of our study. The treatments of Euler, Lagrange, Hamilton,
and Jacobi constitute the basis of any serious treatment of Analytical Mechanics.

8.15 Exercises

8.1. Using the Lorentz Transformation show that

±
[(
dx0

)2 − (
dx1

)2 − (
dx2

)2 − (
dx3

)2]

= ±
[(
dx ′0)2 − (

dx ′1)2 − (
dx ′2)2 − (

dx ′3)2]

8.2. Use the Lorentz Transformation matrix A to obtain time dilation. Consider that
frame k ′ moves at a velocity v in the direction of the x-axis of k. Then dy = dz = 0
and dx = vdt , which is the distance that the origin of k ′ moves in the time dt . The
differential world line in k is then

ds =

⎡

⎢⎢⎣

cdt
vdt
0
0

⎤

⎥⎥⎦ .

This differential world line is transformed into the differential world line ds′ in k ′ by

ds′ = A · ds.

Find the differential world line ds′ and from the result show that dt ′ = √
1 − β2dt .

8.3. The Minkowski Axiom requires that the velocities of material bodies are always
less than the speed of light. Using ux = (

u′
x + cβ

)
/
(
1 + βu′

x/c
)
show that if the

inertial frame k ′ has a velocity v < c and if the particle moving in k ′ also has a
velocity ux < c, as it must, the velocity of the particle as measured in k is also < c
regardless of how close v and ux are to c.

[Hint: Choose β′
x = 1 − κ and β = 1 − λ]
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8.4. Consider a collision between a high energy proton and a photon. The proton is
moving at a velocity u along the positive x-axis and the photon of frequency ν is
initially moving toward it in the direction of the negative x-axis. After the collision a
photon of frequency ν ′ leaves the site of collision moving along the positive x-axis.
Designate the 4-momentum of the proton before and after collision as P p and P ′

p
and that of the photons before and after collision as Pγ and P ′

γ . What is the energy
of the final photon?

8.5. Using the concept of relativistic mass of the photon, find the relativistic mass of
two photons moving in opposite directions with frequencies ν1 and ν2.

8.6. A photon with sufficient energy can produce an electron and a positron. The
positron is the antiparticle of an electron. It was first predicted by Paul Dirac and first
identified in a cloud chamber track by Carl Anderson. For the photon to produce an
electron and a positron there must only be another particle present for momentum
conservation. We consider a particle of mass m01 at rest at the origin of a frame
k. A photon with frequency ν approaches this particle. At the point of “collision”
the photon disappears and an electron e and a positron e+ appear. The electron and
the positron both have rest mass m0e. What is the minimum energy of the photon
required for pair production?

[After the collision refer all particles to a CM frame kCM.]

8.7. Using the fundamental tensor, show that the covariant form of the Field Strength
tensor is

Fαβ = ∂αAβ − ∂βAα,

which is, in matrix form is

Fαβ =

⎡

⎢⎢⎣

0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

⎤

⎥⎥⎦

8.8. Using the differential operators show that

∂σ∂τAσ = ∂τ

(
1

c2
∂

∂t
ϕ + divA

)
.

8.9. Show that the elements of the 4-vector

∂αFαβ = 0

are Gauss’s Law
divE = 0
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and Ampère’s Law

curlB = − 1

c2
∂

∂t
E.

of Maxwell’s equations for empty space.

8.10. Show that the even permutations of

∂ρFστ = 0

or
∂ρFστ = 0

yield Oersted’s result
divB = 0

and Faraday’s Law

curlE = − ∂

∂t
B

of Maxwell’s Equations in empty space.

8.11. Although we do have the spatial force law in the form of Newton’s Second Law

f = d

dt
p,

if we attempt to formulate this in terms of an acceleration, for the sake of our intuition,
we encounter difficulties. For example we may attempt consider only pure forces in
the 4-vector form of Newton’s Second Law

F = d

dτ
P

= d

dτ
(mc, p) ,

and use the relation
P = m0U,

we can write

F = m0
d

dτ
U .

If we then attempt to define a 4-acceleration as

A = d

dτ
U

and write F = m0A for the pure force we find difficulty. Find the difficulty.
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8.12. In our discussion of energy we followed Wolfgang Pauli to obtain the Einstein
mass-energy relation. This required a proposal for the equation ofmotion of amaterial
body, in addition to conservation of momentum. We chose this to be the relativistic
form of Newton’s Second Law written, using the spatial components of momenta,
as

d

dt
(m0γuu) = F.

And we later verified that this is the correct covariant form of the force law.
Begin by accepting this force law and obtain Pauli’s result that

Ekin = m0γuc2 + constant

≈ m0c
2 + 1

2
m0u2 + constant.

Then note that we retrieve the known classical result for the kinetic energy if we
choose the constant to be −m0c2. That is

Ekin = m0γuc2 − m 0c2.

We may then identify identify
E = m0γuc2

as the total energy and
Ekin = E − m0c2.

Youwill first need to evaluate d(m0γuu) /dt . Then you will need to use your result
to obtain an expression for the work done on a material body by the force F. This
will lead you to the result d(m0γuc2)/dt = F · u, which you integrate to obtain the
result above for the kinetic energy. The next steps require Einstein’s aesthetic insight.
They should now follow.

8.13. By direct differentiation show that

Pcan(t)α ≡ ∂Λ(t)

∂ ẋα

and

Pcan(τ )α ≡ ∂Λ

∂xα′

are identical, thus verifying
∂Λ(τ )

∂xμ′ = ∂Λ(t)

∂ ẋμ
.
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8.14. Show that the Canonical Equations from the relativistic Hamiltonian for the
Lorentz force

H(t) = m0c
2

[
1 +

((
p(t)
can

)
α

− Q Aα

)2

m2
0c

2

]1/2

+ Qϕ

are
d

dt

(
p(t)
can

)
μ

= Quβ
(
∂ Aβ/∂xμ

) − Q
∂ϕ

∂xμ

and

d

dt
xμ = uβ = 1

m0

[
1 +

((
p(t)
can

)
α

− Q Aα

)2

m2
0c2

] -1/2 ((
p(t)
can

)
μ

− Q Aμ

)

where
(

p(t)
can

)
μ
are the spatial components of the 4-momentum

Pcan(t) =
(
−mc − Q

ϕ

c
, p + QA

)
.



Appendix A
Differential of S

If we consider a general variation of Hamilton’s principal function

S =
∫ t2

t1

dtL (q, q̇, t)

we can obtain a differential equation for S rather than only differential equations for
the coordinates on which S depends. We shall choose the initial and final times to
be t1 and t2, rather than 0 and t. And we shall designate the general variation as ΔT

will include variations in the coordinates qi at t1 and t2 as well as variations in the
end points t1 and t2. The differential of Hamilton’s principle function, which is the
difference between the value of S before and after the variation will be the dS = ΔTS.
That is

ΔTS =
∫ t′2

t′1
dtL′ (q, .

q, t
)−
∫ t2

t1

dtL
(
q,

.
q, t
)
, (A.1)

where t′1 and t′2 indicate variations in the end point times andL′ (q, .
q, t
)
is the variation

in L
(
q,

.
q, t
)
resulting from variations in qi and q̇i.

We shall designate the variations in qi and q̇i as δqi and δq̇i. In the general variation
we are considering there are variations in these coordinates and velocities at the end
points of the integrals in (A.1). If we designate the actual values of the coordinates
and the velocities at the time end points as q′

i and q̇′
i then

q′
i = qi + δqi (A.2)

q̇′
i = q̇i + δq̇i. (A.3)

These variations are arbitrary, except that theymust be related by time differentiation.
Similarly we shall designate the times at the end points of the integration, t′1 and

t′2, which differ from t1 and t2 by the infinitesimal amounts Δt1 and Δt2
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t′1 = t1 + Δt1
t′2 = t2 + Δt2. (A.4)

The dependence of δqi and δq̇i on Δt1 and Δt2 will be of second order in infini-
tesimal quantities, which we neglect. However, q̇′

i is the time derivative of q′
i. That

is, from (A.2) we have

q̇′
i = q̇i + d

dt
δqi. (A.5)

Comparing (A.5) with (A.3) we see that

d

dt
δqi = δq̇i = δ

d

dt
qi, (A.6)

and the operators d/dt and δ commute.
To first order in infinitesimals the variation in the Lagrangian is

L′ (q, q̇, t) = L (q + δq, q̇ + δq̇, t)

= L (q, q̇, t)

+
∑

i

{
∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

}
. (A.7)

In (A.7) time is not a variable but a dummy in the integration. The variations δqi and
δq̇i are arbitrary variations in the coordinates and velocities at each point along the
path of the integration and are not, therefore, functions of time. They are, however,
related as indicated above.

The first integral on the right hand side of (A.1) is then

∫ t′2

t′1
dtL′ (q, q̇, t) =

{∫ t1

t′1
dt +

∫ t2

t1

dt +
∫ t′2

t2

dt

}
L′ (q, q̇, t)

=
∫ t2

t1

dtL′ (q, q̇, t)

−
∫ t1+Δt1

t1

dtL′ (q, q̇, t) +
∫ t2+Δt2

t2

dtL′ (q, q̇, t) , (A.8)

with L′ given by (A.7). Then

ΔTS =
∫ t2

t1

dt
[
L′ (q, q̇, t) − L (q, q̇, t)

]

−
∫ t1+Δt1

t1

dtL′ (q, q̇, t) +
∫ t2+Δt2

t2

dtL′ (q, q̇, t) . (A.9)
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We write this as

ΔTS = δT

∫ t2

t1

dtL (q, q̇, t)

−
∫ t1+Δt1

t1

dtL′ (q, q̇, t) +
∫ t2+Δt2

t2

dtL′ (q, q̇, t) . (A.10)

Here δT designates a variation that excludes variations in the end point times, but
includes variations in the q and q̇ at the endpoints. The variation δT then differs from
the previous δ variation of Hamilton’s Principle, but will contain the variation δ.

Since the terms Δt1 and Δt2 are infinitesimals, the integrands in the last two inte-
grals in (A.10) are constants over the respective integrations, provided theLagrangian
is a continuous function of its coordinates. Then

∫ t2+Δt2

t2

dtL′ (q, q̇, t) −
∫ t1+Δt1

t1

dtL′ (q, q̇, t) = L′ (t2 ) Δt2 − L′ (t1)Δt1

= L′ (t)Δt
]t2
t1

. (A.11)

Using (A.7) and dropping all terms that are greater than first order in infinitesimals
(A.11) becomes

∫ t2+Δt2

t2

dtL′ (q, q̇, t) −
∫ t1+Δt1

t1

dtL′ (q, q̇, t) = L (t) Δt]t2t1 , (A.12)

The total variation (A.10) is then

ΔTS = δT

∫ t2

t1

dtL (q, q̇, t) + L (t) Δt]t2t1 . (A.13)

We must now consider the δT variation in detail. Carrying terms to first order in
infinitesimals, we have

δT

∫ t2

t1

dtL (q, q̇, t) =
∫ t2

t1

dtL′ (q, q̇, t) −
∫ t2

t1

dtL (q, q̇, t)

=
∫ t2

t1

dt {L (q, q̇, t)

+
∑

i

[
∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

]
− L (q, q̇, t)

}

=
∫ t2

t1

dt
∑

i

[
∂L

∂qi
δqi + ∂L

∂
.
qi

δq̇i

]
, (A.14)

Integrating the second term by parts we have
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δT

∫ t2

t1

dtL (q, q̇, t) =
∑

i

∂L

∂q̇i
δqi

]t2

t1

+
∫ t2

t1

dt
∑

i

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi. (A.15)

The second integral on the right hand side of (A.15) is the variation with fixed end
points δS of Hamilton’s principle function. This must be zero if Newton’s Laws are
to hold. We are then left with

δT

∫ t2

t1

dtL (q, q̇, t) =
∑

i

∂L

∂q̇i
δqi

]t2

t1

. (A.16)

With (A.16), (A.13) becomes

ΔTS =
∑

i

∂L

∂q̇i
δqi + L (t) Δt

]t2

t1

(A.17)

In this result the separate variations δqi and Δt appear on the right hand side.
This is not a convenient final form for our total variation. A more convenient form
would be one in which the time variation Δt appears in both terms on the right hand
side of (A.17). The generalized coordinate qi is a function of the time t. But, as we
have discussed above, the variation δqi is not a function of the time. We may obtain
a general form for the variation in the coordinate qi that involves the time variation
Δt by writing the variation of qi as a linear approximation involving the variations
δqi and the variation in the time Δt. This is

Δqi = δqi + q̇iΔt. (A.18)

With (A.18) and pi = ∂L/∂q̇i, the combination in brackets on the right hand side of
(A.17) is

∑

i

∂L

∂q̇i
δq i + L (t)Δt =

∑

i

(piΔqi) +
[
L (t) −

∑

i

piq̇i

]
Δt.

=
∑

i

(piΔqi) − HΔt, (A.19)

using the definition of the Hamiltonian. The result of our general variation ΔTS is
then

ΔTS =
[
∑

i

(piΔq i) − HΔt

]t2

t1

. (A.20)
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This is the differential of Hamilton’s principal function which involves variations
in the end points. Those variations appear explicitly in Δqi and Δt in (A.20). And
dS = ΔTS is the differential we sought.



Appendix B
Hamilton–Jacobi Equation

With dS = ΔTS (A.20) is a Pfaffian and the terms Δqi and Δt become differentials.

dqi1 = Δqi (t1)

dqi2 = Δqi (t2) (B.1)

and

dt1 = Δt (t1)

dt2 = Δt (t2) . (B.2)

Equation (A.20) is then

dS =
n∑

i=1

pi2 dqi2 −
n∑

i=1

pi1dqi1 − H2dt2 + H1dt1. (B.3)

The Pfaffian for dS in (B.3) is

dS =
n∑

i=1

[(
∂S

∂qi1

)
dqi1 +

(
∂S

∂qi2

)
dqi2

]
+ ∂S

∂t1
dt1 + ∂S

∂t2
dt2, (B.4)

since S is a function of the variables (qi1, qi2, t1, t2). By comparing terms in (B.3)
with those in (B.4) we identify

∂S

∂qi2
= pi2; ∂S

∂qi1
= −pi1; ∂S

∂t2
= −H2; ∂S

∂t1
= H1. (B.5)

We are considering results at a time t2 resulting from configurations of a system
at some initial time t1. Then qi1 and pi1 are constants defined by the initial system
configuration. If we call
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312 Appendix B: Hamilton–Jacobi Equation

qi1 = αi (B.6)

then the second Equation in (B.5) is

pi1 = −∂S/∂αi. (B.7)

The final time t2 is arbitrary. So we drop the subscript 2 on the final configuration
and time quantities. We may then write Hamilton’s Principal function as

S = S (α, q, t) ,

where, for shorthand, we have used

α = {αi}ni=1
q = {qi}ni=1
t = {t1, t2} .

If S (α, q, t) is known, then (B.7) is a set of algebraic equations for the qis, since the
momenta pi1 and the coordinates qi1 = αi are known from the initial configuration.
The corresponding momenta pi, may be found from the first of the Eq. (B.5),

∂S

∂qi
= pi . (B.8)

Therefore, ifweknowS (α, q, t) in functional formour dynamical problem is reduced
to an algebraic problem.

We have used the first two equations in the set (B.5) and are left with only the
equation

∂S

∂t
= −H. (B.9)

written at the initial and final times. These are the two equations Hamilton cited. And
in the text we indicated that Jacobi showed that only the equation at the final time
was necessary. If we use (B.8) in (B.9) we have

∂S

∂t
+ H

(
q,

∂S

∂q
, t

)
= 0, (B.10)

which is the Hamilton–Jacobi Equation.



Appendix C
With Variables p, q, q̇

If we consider a general variation of Hamilton’s principal function

S =
∫ t2

t1

dtL (q, q̇, t)

=
∫ t2

t1

dt

[
∑

i

p iq̇i − H (q, p, t)

]

we can obtain a differential equation for S rather than only differential equations for
the coordinates on which S depends. We shall choose the initial and final times to
be t1 and t2, rather than 0 and t. And we shall designate the general variation ΔT

will include variations in the coordinates qi at t1 and t2 as well as variations in the
end points t1 and t2. The differential of Hamilton’s principle function, which is the
difference between the value of S before and after the variation will be the dS = ΔTS.
That is

ΔTS =
∫ t′2

t′1
dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]
−
∫ t2

t 1
dt

[
∑

i

piq̇ i − H (q, p, t)

]
, (C.1)

where t′1 and t′2 indicate variations in the end point times andL′ (q, q̇, t) is the variation
in L (q, q̇, t) resulting from variations in qi and q̇i.

We shall designate the variations in pi, qi and q̇i as δpi, δqi and δq̇i. If we designate
the actual values of the coordinates and the velocities at the end points as q′

μ and q̇′
μ

then

p′
i = pi + δpi (C.2)

q′
i = qi + δqi (C.3)

q̇′
i = q̇i + δq̇i. (C.4)
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314 Appendix C: With Variables p, q, q̇

These variations are arbitrary, except that theymust be related by time differentiation.
Similarly we shall designate the times at the end points of the integration, t′1 and

t′2, which differ from t1 and t2 by the infinitesimal amounts Δt1 and Δt2

t′1 = t1 + Δt1 (C.5)

t′2 = t2 + Δt2. (C.6)

The dependence of δqi and δq̇i on Δt1 and Δt2 will be of second order in infini-
tesimal quantities, which we neglect. However, q̇′

i is the time derivative of q′
i. That

is, from (C.1) we have

q̇′
i = q̇i + d

dt
δqi. (C.7)

Comparing (A.5) with (A.3) we see that

d

dt
δqi = δq̇i = δ

d

dt
qi, (C.8)

and the operators d/dt and δ commute.
To first order in infinitesimals the variation in the Lagrangian is

∑

i

p′
iq̇

′
i − H′ (q, p, t)

=
∑

i

piq̇i − H (q, p, t)

−
∑

i

{
∂H
∂qi

δqi − piδq̇i +
[
∂H
∂pi

− q̇i

]
δpi

}
(C.9)

Using the canonical equations the term in the bracket [· · · ] vanishes and (∂H/∂qi)
δqi − piδq̇i = −d(piδqi) /dt. Then

∑

i

p′
iq̇

′
i − H′ (q, p, t) =

∑

i

piq̇i − H (q, p, t) + d

dt

(
∑

i

piδqi

)
(C.10)

The first integral on the right hand side of (C.1) is then

∫ t′2

t′1
dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]

=
∫ t2

t1

dt

[
∑

i

p iq̇i − H (q, p, t) + d

d t

(
∑

i

piδqi

)]

−
∫ t1+Δt1

t1

dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]
+
∫ t2+Δt2

t2

dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]
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Then

ΔTS =
∫ t2

t1
dt
∑

i

d

dt
(piδqi)

−
∫ t1+Δt1

t1
dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]
+
∫ t2+Δt2

t2
dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]

We write this as

ΔTS = δT

∫ t2

t1
dt

[
∑

i

piq̇i − H (q, p, t)

]

−
∫ t1+Δt1

t1
dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]
+
∫ t2+Δt2

t2
dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]

(C.11)

with

δT

∫ t2

t1

dt

[
∑

i

piq̇i − H (q, p, t)

]
=
∫ t2

t1

dt
d

dt

(
∑

i

piδqi

)
(C.12)

Here δT designates a variation that excludes variations in the end point times, but
includes variations in p, q and q̇ at the endpoints. The variation δT then differs from
the previous δ variation of Hamilton’s Principle, but will contain the variation δ.

Since the terms Δt1 and Δt2 are infinitesimals, the integrands in the last two inte-
grals in (C.11) are constants over the respective integrations, provided the Lagrangian
is a continuous function of its coordinates. Then

∫ t2+Δt2

t2

dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]
−
∫ t1+Δt1

t1

dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]

=
[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]

t=t2

Δt2 −
[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]

t=t1

Δt1

= L′ (t)Δt

]t2

t1

(C.13)

where
L′ (t) =

∑

i

p′
iq̇

′
i − H′ (q, p, t) (C.14)

Using (C.14) and dropping all terms that are greater than first order in infinitesimals
(C.13) becomes
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∫ t2+Δt2

t2

dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]
−
∫ t1+Δt1

t1

dt

[
∑

i

p′
iq̇

′
i − H′ (q, p, t)

]

=
[
∑

i

piq̇i − H (q, p, t)

]
Δt

}t2

t1

(C.15)

The total variation (C.11) is then

ΔTS =
∫ t2

t1

dt
d

dt

(
∑

i

piδqi

)
+
[
∑

i

piq̇i − H (q, p, t)

]
Δt

}t2

t1

=
[
∑

i

piδqi

]
+
[
∑

i

piq̇i − H (q, p, t)

]
Δt

}t2

t1

or

ΔTS =
∑

i

piδqi +
(
∑

i

piq̇i − H
)

Δt

]t2

t1

In this result the separate variations δqi and Δt appear on the right hand side. If
the time end points are fixed, i.e. if Δt1,2 = 0, then ΔTS → δTS and

δTS =
∑

i

piδqi

]t2

t1

.



Appendix D
Zero-Component Lemma

If a specific component of a 4−vector vanishes in all inertial frames then the 4−vector
must be the zero 4−vector. This is known as the zero-component lemma. This is a
remarkable property of 4−vectors that will be of practical use to us.

To prove this lemma we assume the contrary. That is we take as our hypothesis
the fact that one of the components of a 4−vector vanishes in all inertial frames. We
then assume that the 4−vector is not a zero 4− vector and prove that this assumption
leads to a contradiction.

Suppose that one of the spatial components of the 4−vector vanishes in all inertial
frames, but at least one of the other spatial components is not zero in some frame.
Then we can rotate the coordinates making either other spatial component nonzero
in violation of the hypothesis.

Suppose then that one of the spatial components of the 4−vector vanishes in
all inertial frames, but that the time component is nonzero in at least one frame. A
Lorentz Transformation of a 4−vector for which all the spatial components are zero,
but the time component is nonzerowill produce a 4−vectorwith only a single nonzero
spatial component, as we see in the matrix form of the Lorentz Transformation here

⎡

⎢⎢⎣

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a
0
0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

aγ
−aβγ
0
0

⎤

⎥⎥⎦ . (D.1)

We can then, by coordinate rotation,make this any spatial component. Thus a nonzero
time componentwill also contradict the hypothesis that a particular spatial component
vanishes in all inertial frames.

Suppose that the time component of a 4−vector is zero in all inertial frames. If
there is some inertial frame in which one of the spatial components is nonzero then
a Lorentz Transformation of the 4−vector may be found that results in a 4−vector
with a nonzero time components we see here
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⎡

⎢⎢⎣

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
a
0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−aβγ
aγ
0
0

⎤

⎥⎥⎦ . (D.2)

This result then violates the hypothesis that the time component is zero in all inertial
frames. If the time component is not zero we can perform a Lorentz transformation
to make any of the spatial components nonzero in violation of the hypothesis.

Wemust, therefore, conclude that if any one of the components of a 4−vector van-
ishes in all inertial frames then the 4−vector is the zero 4−vector.
(cf. [99], p. 66).



Appendix E
Maxwell Equations from Field Strength Tensor

Maxwell’s Equations can be extracted from the Field Strength tensor. If we operate
on the Field Strength tensor Fστ with the covariant differential operator ∂σ in (8.78)
the result is

∂σFστ = ∂σ∂
σAτ − ∂σ∂τAσ. (E.1)

From (8.83) we know that
∂σ∂σAτ = �Aτ , (E.2)

and �A = 0 is the form of Maxwell’s Equations in empty space. We can also show
(see exercises) that

∂σ∂
τAσ = ∂τ

(
1

c2
∂

∂t
ϕ + divA

)
, (E.3)

and
1

c2
∂

∂t
ϕ + divA = 0 (E.4)

is the Lorentz Gauge, which must hold for Maxwell’s Equations to take the form
(8.82) ([45], p. 255). Then if we require

∂ρδ
ρ
σFστ = ∂σ∂σAτ − ∂σ∂τAσ = 0, (E.5)

we have the empty space form of Maxwell’s Equations, i.e. with J = 0, written in
terms of the potentials ϕ and A and requiring the Lorentz Gauge. This elegant result
we may consider characteristic of the sort of formulation we are led to expect at this
level in our study of theoretical physics.

From
∂αFαβ = 0, (E.6)

using the elements of Fαβ directly we obtain Gauss’s Law
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divE = 0 (E.7)

and Ampère’s Law (see exercises)

curlB = − 1

c2
∂

∂t
E. (E.8)

From the fact that the order of partial differentiation is immaterial Einstein pointed
out that (see exercises).

∂ρFστ + ∂τFρσ + ∂σFτρ = 0 (E.9)

∂ρFστ + ∂τFρσ + ∂σF τρ = 0. (E.10)

We note that the indices on the terms in (E.9) and (E.10) are the even permutations
of ρστ . For ρστ = 123, (E.9) or (E.10) yields Oersted’s result divB = 0 and for
ρστ = 023, 013, and 012 (E.9) or (E.10) produces the three components of Faraday’s
Law ∂ B/∂t + curlE = 0 (see exercise). Einstein indicates this explicitly ([24],
p. 154).



Appendix F
Differential Operators

Rectangular Coordinates

gradΦ = êx
∂Φ

∂x
+ êy

∂Φ

∂y
+ êz

∂Φ

∂z
(F.1)

divF = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
(F.2)

curlF = êx

(
∂Fz

∂y
− ∂Fy

∂z

)
+ êy

(
∂Fx

∂z
− ∂Fz

∂x

)

+êz

(
∂Fy

∂x
− ∂Fx

∂y

)
(F.3)

∇2Φ = ∂2Φ

∂x2
+ ∂2Φ

∂x2
+ ∂2Φ

∂x2
. (F.4)

Cylindrical Coordinates

gradΦ = êr
∂Φ

∂r
+ êϑ

1

r

∂Φ

∂ϑ
+ êz

∂Φ

∂z
(F.5)

divF = 1

r

∂

∂r
(rFr) + 1

r

∂Fϑ

∂ϑ
+ ∂Fz

∂z
(F.6)

curlF = êr

[
1

r

∂Fz

∂ϑ
− ∂Fϑ

∂z

]
+ êϑ

[
∂Fr

∂z
− ∂Fz

∂r

]

+êz
1

r

[
∂

∂r
(rFϑ) − ∂Fr

∂ϑ

]
(F.7)
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∇2Φ = 1

r

∂

∂r

(
r
∂Φ

∂r

)
+ 1

r2
∂2Φ

∂ϑ2
+ ∂2Φ

∂z2
. (F.8)

Spherical Coordinates

gradΦ = êr
∂Φ

∂r
+ êϑ

1

r sin φ

∂Φ

∂ϑ
+ êφ

1

r

∂Φ

∂φ
(F.9)

divF = 1

r2
∂

∂r

(
r2Fr
)+ 1

r sin φ

∂Fϑ

∂ϑ
+ 1

r sin φ

∂

∂φ

(
Fφ sin φ

)
(F.10)

curlF = êr
1

r sin φ

[
∂

∂φ
(Fϑ sin φ) − ∂Fφ

∂ϑ

]

+êϑ
1

r

[
∂

∂r

(
rFφ

)− ∂Fr

∂φ

]

+êφ
1

r

[
1

sin φ

∂Fr

∂ϑ
− ∂

∂r
(rFϑ)

]
(F.11)

∇2Φ = 1

r2
∂

∂r

(
r2

∂Φ

∂r

)
+ 1

r2 sin2 φ

∂2Φ

∂ϑ2

+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂Φ

∂φ

)
. (F.12)
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Answers to Selected Exercises

2.1 dr/dt = ṙêr + rϑ̇êϑ + żêz.

2.2 dr/dt = ρ̇êρ + ρϑ̇ sin φêϑ + ρφ̇êφ.

2.3 The point on the line is (−3/5, 1/5). The vectors along the line and to this
point are

(
2
3 , 2
)
and (−3/5, 1/5). The scalar product of these is zero.

2.4 mid2ri/dt2 · δ ri =d
(
1
2miv

2
i

)
; Fi·dri = − gradV ·dri = −dV .

2.5 The points on the two curves are (x1, y1) = (− 1
2 ,− 9

2

)
and (x2, y2) =(− 23

10 ,− 18
5

)
. The vector from the parabola to the straight line has the compo-

nents (x2 − x1, y2 − y1) = (− 18
5 , 9

10

)
. The vector direction along the straight

line is
(
1
2 , 1
)
. The scalar product of the vectors is then

(− 18
5 , 9

10

) · ( 12 , 1
) = 0.

The shortest line between the curves is then perpendicular to the straight line.

2.6 Find extremum of h (P) = −kB
∑

r P r lnPr + α
(∑

r Pr − 1
) + β(∑

r PrEr− E).

2.7 J
[
y
] = ∫ 10 dx

(
y′) = ∫ 10 dy = 1, which has no extremum.

2.8 J
[
y
] = ∫ 10 d

(
1
2y

2
) = 1

2 , which has no extremum.

2.9 The Euler–Lagrange Equation is then solved by the function y (x) = 0. There
is then a minimum for y = 0 and this minimum is 0.

2.10 y′′ − y = − sin (x).

2.11 δS
[
x, y
] = ∫ t 2

t1
dt
[(

∂Ψ/∂ξ − d∂Ψ/∂ξ̇/dt
)
hx + (∂Ψ/∂η − d∂Ψ/∂η̇/dt)

hy
] = 0 when each bracket (...) vanishes.

2.12 This is a demonstration.

2.13 This is a demonstration.

2.14 y = K cosh [(x + C) /K], where K and C are (integration) constants.

2.15 y = K sin2 φ = K
2 (1 − cos 2φ), which is a cycloid.

2.16 The time derivative of the Hamiltonian is dH/dt = px
m dpx/dt = 0, since

dpx/dt = 0 from the Euler–Lagrange equation.
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2.17 L = mẏ2/2 − mgy, py = mẏ, −mg−d(mẏ) /dt = 0, dH/dt = ẏ
(
dpy/dt+

mg) = 0, y (t) = y0 + ẏ0t − mgt2/2.

2.18 H =
(
p2x + p2y

)
/2m+mgy, Euler–Lagrange Equation −mgα−d

(
m
(
1 + α2

)

ẋ) /dt = 0, x = x0 + ẋ0t − (1/2)
[
gα/
(
1 + α2

)]
t2, reaction forces with the

incline are fx = −λα and fy = +λ with λ = mg/
(
1 + α2

)
.

2.19 −mẍ + λ
(
12x2 − 10x + 1

) = 0 and −mÿ + λ = 0.

2.20 The eigenvalues are ω2 = ω2
0, 3ω

2
0 .And the corresponding normalized eigen-

vectors are

1√
2

[
1
1

]
for the eigenvalue ω2

0

1√
2

[−1
1

]
for the eigenvalue 3ω2

0 .

2.21 Equilibrium orbit is with the polar angle sin φ0 + (
m2gR3/�2

)
(
1 − sin2 φ0

)2 = 0. The motion around the equilibrium point is then sinu-
soidal with a frequency

ω =
√√√√
(

g

R
sin φ0 +

(
�

mR2

)2 2 cos2 φ0 − 3

cos4 φ0

)
.

2.22 Euler–Lagrange Equations are −m�ẋϑ̇ sin ϑ − mg� sin ϑ − m
(
�2ϑ̈+

�ẍ cosϑ − �ẋϑ̇ sin ϑ
) = 0 and −kx − ((M + m) ẍ + m�ϑ̈ cosϑ − m�ϑ̇2

sin ϑ) = 0. The frequencies for small oscillations are

ω2 =
⎧
⎨

⎩
ω2
p + 1

2ω
2
s + 1

2

√
4ω4

p + ω4
s

ω2
p + 1

2ω
2
s − 1

2

√
4ω4

p + ω4
s

.

2.23 φ̈ = (g/R) sin φ.

2.24 cosφ0 = g/
(
RΩ2
)
. The frequency is

Ω

√
1 + g

RΩ2
− 2
( g

RΩ2

)2

2.25 L = m
{
1
6

[
�2 − 3�d + 3d2

]
ϑ̇2 + 1

2g [� − 2d] cosϑ
}
. The Euler–Lagrange

Equation is

ϑ̈ = −3

2

g [� − 2d][
�2 − 3�d + 3d2

] sin ϑ.

2.26 t = − ∫ dϑ√
3 g

�
(1−sin ϑ)

+ K2 where K2 is an integration constant.
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2.27 − 1
2mg� cosϑ − m

(
1
3�

2ϑ̈ − 1
2�ẍ sin ϑ

) = 0 and mẋ − m�ϑ̇ sin ϑ =constant.

2.28 The normal modes are

ω = ω0

√
2 + √

2

ω = ω0

√
2 − √

2.

2.29 Answers provided in text.

2.30 Our equations are the Euler–Lagrange Equations

mrϑ̇2 − mr̈ + λ1 = 0

−mg − mz̈ − λ1 tanα = 0,
d

dt

(
mr2ϑ̇

)+ λ2 = 0

and the constraint equations

r − (tanα) z = 0,

ϑ − Ω (t − t0) = 0.

2.31 There is no equilibrium orbit.

2.32 ϑ = cos−1 (2/3)

2.33 Equilibrium point is r0 = [�2/ (m2g
)]1/3

. The orbit is open.

2.34 Answers provided in text.

3.1 The variation produces

0 =
∑

j

∫ t2

t1

dt

{[
q̇j − ∂H

∂pj

]
δpj +

[
−ṗj − ∂H

∂qj

]
δqj

}
.

3.2 At the extrema of u (and ρ) we have 0 = −A cosϑ +B sin ϑ. If we choose this
to define ϑ = 0 then B ≡ 0.

3.3 For the eigenvalues iω = ±i
√
k/m the eigenvectors are

⎡

⎢⎢⎣

p̃1
p̃2
x̃1
x̃2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

−im2
√

k
m3

−im2
√

k
m3

1
1

⎤

⎥⎥⎥⎥⎦
and

⎡

⎢⎢⎢⎢⎣

im2
√

k
m3

im2
√

k
m3

1
1

⎤

⎥⎥⎥⎥⎦

respectively. And for the eigenvalues iω = ±i
√
3k/m the eigenvectors are
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⎡

⎢⎢⎣

p̃1
p̃2
x̃1
x̃2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

i
√
3m2
√

k
m3

−i
√
3m2
√

k
m3

−1
1

⎤

⎥⎥⎥⎥⎦
and

⎡

⎢⎢⎢⎢⎣

−i
√
3m2
√

k
m3

i
√
3m2
√

k
m3

−1
1

⎤

⎥⎥⎥⎥⎦
.

3.4 Answers for small angles are provided in text. Cannot use undetermined mul-
tipliers because the constraint is a function of time.

3.5 The Hamiltonian is conserved H = 1
2mR

2φ̇2 − 1
2mR

2ω2 sin2 φ + mgR cosφ,
but this is not the total energy. The system is not conservative. There is an
equilibrium point provided Rω2 >

√
3g.

3.6 The effective potential is Veff (r) = 1
2mr2 �

2+mg (r − b), which has aminimum.
There is then an equilibrium point. The orbit about the equilibrium point is,
however, not closed.

3.7 φ = cos−1 (2/3).

3.8 The frequencies for small oscillations about equilibrium are

ω = ±
√

ω2
p + 1

2ω
2
s ± 1

2

√
4ω4

p + ω4
s .

3.9 The natural frequencies are ω = ω0

√(
2 − √

2
)
,ω0

√(
2 + √

2
)
,where ω0 =

√
g
�
.

3.10 This is a proof.

3.11 This is a proof.

3.12 The first part is a demonstration that the proposed vector potentials are appro-
priate. The canonical equations are

ṗx = 1

2
Ωpy − 1

4
mΩ2x,

ṗy = −1

2
Ωpx − 1

4
mΩ2y,

and

ẋ = 1

m
px + 1

2
Ωy,

ẏ = 1

m
py − 1

2
Ωx.

Solution is carried out in the complex plane.

3.13 Solution is in the complex plane with Z = x + iy and PZ = px + ipy. The

canonical equations produce the equations ṖZ = −Q2B2

4m Z − QB
2m iPZ, and Ż =

PZ
m − i QB2m Z in the complex plane. The Ansatz PZ = P̃Z exp (iΩt) and Z =
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Z̃ exp (iΩt) results in Ω = −QB
m . The orbit is then easily obtained from the

Z (t). Talking real and imaginary parts,

x (t) = Re (Z (t)) = x0 cos (Ωt)

y (t) = Im (Z (t)) = −y0 sin (Ωt) .

This orbit is a circle. Looking downon the (x, y) −plane, the direction ofmotion
is clockwise.
We may now couple this motion with uniform motion along the (original) z−
axis. The result is a spiral motion along the z−axis. Small variations in the
magnetic field along the z−axis will not disturb this general spiral motion.
We may then consider the charges as “trapped” in the spiral paths along the
magnetic field lines.

3.14 Solution uses the same approach as in 3.13. The result is

x (t) = Re (Z) = R cos (Ωt) + E

B
t

y (t) = Im (Z) = −R sin (Ωt) ,

which is a cycloid.

3.15 With pϑ = � (constant) the canonical equations are

� = mr2
(

ϑ̇ + 1

2
Ω

)

and

ṗr = mr

(
�

mr2
+ Ω

2

)(
�

mr2
− Ω

2

)
.

With
�

mr2
= ϑ̇ + Ω

2

we have
ṗr = mr

(
ϑ̇ + Ω

) (
ϑ̇
)
.

and

ṙ = 1

m
pr.

These are nonlinear.Wecan show that a circle solves these, but cannot guarantee
it is the only solution.

3.16 With Ω = QB/m. The canonical equations are
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ẋ = ∂H
∂px

= 1

m
px + 1

2
Ωy exp (az)

ẏ = ∂H
∂py

= 1

m
py − 1

2
Ωx exp (az)

ż = ∂H
∂pz

= 1

m
pz

ṗx = −∂H
∂x

= 1

2
Ω

(
py − 1

2
mΩx exp (az)

)
exp (az)

ṗy = −∂H
∂y

= −1

2
Ω

(
px + 1

2
mΩy exp (az)

)
exp (az)

ṗz = −∂H
∂z

= −1

2
Ωa

[(
px + 1

2
mΩy exp (az)

)
y

−
(
py − 1

2
mΩx exp (az)

)
x

]
exp (az) .

We can show that the solution in planes of constant z is a circle. But the solution
shown in the statement of the exercise was obtained numerically. This solution
demonstrates the magnetic bottle.

3.17 The Hamiltonian is

H = 1

2m
p2ρ + 1

2mρ2

(
pϑ − Q

μ0M

4π

1

ρ2

)2
+ QNQ

4πε0

1

ρ

Because the Lagrangian is cyclic in ϑ we have pϑ = constant. If we expand
this Hamiltonian for small values of M we have

H = 1

2m
p2ρ + 1

2mρ2
p2ϑ − MQμ0

4πm

1

ρ4
pϑ + QNQ

4πε0

1

ρ
.

The effective potential is then decreased in the neighborhood of the nucleus
if the nucleus possessed a magnetic moment. The 1/ρ4 dependence of this
potential, however, makes it a weak potential at large distances.

4.1 The two products

R2
(
δϑ′

2

)
R3
(
δϑ′

3

)

=
⎡

⎣
1 −δϑ′

3 δϑ′
2

δϑ′
3 1 0

−δϑ′
2 δ2ϑ′

2ϑ
′
3 1

⎤

⎦

and R3
(
δϑ′

3

)
R2
(
δϑ′

2

)
are equal.

4.2 With the projector
PX = ∣∣Xμ

〉 〈
Xμ

∣∣ = 1,
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which we may introduce at any point in our expression for the kinetic energy,
we have

Trot = 1

2
I0 〈ω |Xλ〉 〈Xλ| xρ

〉 〈
xρ |Xσ〉 〈Xσ| ω〉

= 1

2
I0 〈ω |Xλ〉 δλσ 〈Xσ| ω〉

= 1

2
I0 〈ω |Xλ〉 〈Xλ| ω〉 ,

which is the same form as

Trot = 1

2
I0 〈ω ∣∣xρ

〉 〈
xρ

∣∣ ω〉 ,

except the representation is in a different basis.

4.3 Rolling begins at the time troll with

troll = Iω0/μkmag(
1 + I/ma2

) .

4.4 [
x
ϑ

]
=
[

gt2 sinα(
gt2/a

)
sinα

]
.

4.5 The canonical equations are ṗr −p2ϑ/
(
mr3
)+λ1 +λ2 = 0, ṗϑ +λ3r = 0, ṗz +

mg−λ1 tanα+λ4 = 0, ṗ1−λ2 (a sinα)+λ3a sinα = 0, ṗ2−λ4 (a cosα) = 0,
ṗ3 + λ3 (a cosα) = 0, and ṙ = pr/m, ϑ̇ = pϑ/

(
mr2
)
, ż = p/m ϑ̇1 = p1/I0 ,

ϑ̇2 = p2/I0, ϑ̇3 = p3/I0.The constraints add the equations 0 = pr
m − (tanα)

pz
m ,

0 = pr
m − p1

I0
a sinα, 0 = pϑ

mr + p1
I0
a sinα + p3

I0
a cosα, 0 = pz

m − p2
I0
a cosα.

There are then 16 equations for the 12 canonical variables (coordinates and
momenta) and the 4 λs. That is, the mathematical representation of the system
is complete.

4.6 � = cos-1 (4/7).

4.7 � = cos-1 (10/17).

4.8 This is an exercise in which we show that the motion of a toy gyroscope can
be understood in terms of Euler’s equations. We also calculate the precessional
frequency as ωp = mg [�/ (ω0I)].

4.9 The ratio of the periods is τrolling = √
3/2τ0 = 1. 2247τ0.

4.10 If we choose a = b and Ī = I/ma2,

[
ϑ̇

φ̇

]
= 1

ma2
[
1 − cos2 (φ − ϑ) + Ī

]
[
pϑ

(
Ī + 1

)− pφ cos (φ − ϑ)

pφ − pϑ cos (φ − ϑ)

]
.
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The eigenfrequencies for small vibrations are ω2 = (g/a)
(
5/2 ± √

17/2
)
.

And the ratios of displacement are for ω2 = (g/a)
(
5/2 + √

17/2
)

ϑ̃

φ̃
= −1. 2808

and for ω2 = (g/a)
(
5/2 − √

17/2
)

ϑ̃

φ̃
= −. 78078.

4.11 The canonical equations are

ṗr = p2ϑ
mr3

+ mg cosϑ − k (r − r0) ,

ṗϑ = −mgr sin ϑ,

ṙ = pr
m

,

ϑ̇ = pϑ

mr2
.

The Euler–Lagrange equations are

mrϑ̇2 + mg cosϑ − k (r − r0) − mr̈ = 0

and
−mgr sin ϑ − 2mrϑ̇ṙ − mr2ϑ̈ = 0.

The Lagrangian does not depend explicitly on the time, so

E = 1

2
m
(
ṙ2 + r2ϑ̇2

)− mgr cosϑ + 1

2
k (r − r0)

2 .

We elected not to linearize these equations, but to perform a numerical (Runge–
Kutta) integration. Graphs are presented in the text.

4.12 the cosine of the angle between the z−component of the angular velocity vector
and the angular momentum is

cosβz = ω0I√
I ′2A2 + I2ω2

0

.
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The spectator and the player cannot see the angular momentum vector. What
each of them sees is the axis of the football. If the z−axis is aligned with the
angular momentum vector the football will not appear to wobble because the
angular momentum vector has a fixed direction in space. This is the spiral
pass. If βz is not zero, then the angular velocity vector rotates about the angular
momentum vector and the pass appears wobbly.

5.1 The transform is

F2 (p,P, t) = F1 (q,P, t) −
∑

i

qi
∂F1

∂qi

= F1 −
∑

i

qipi.

And

dF2 (p,P, t) =
∑

i

QidPi − qidpi + ∂F

∂t
dt.

5.2 This is an outline of the approach using P as the link to the final configuration.

5.3 The final momentum is P = τ − t. Then, recalling that the natural frequency
of the harmonic oscillator is ω0 = √

k/m, we may also write our solution as
q = ∓√

2E/k sin [ω0 (τ − t)] and p = ±√
2mE cos [ω0 (τ − t)].

5.4

q =
√

Jq
mω0π

cosω0 (t − τ ) .

and

p =
√
mω0Jq

π
sinω0 (t − τ ) .

5.5 This is a demonstration.

5.6 The Dirac analog yields (qn+1pn+1 − p n+1qn+1) = (−tH + Ht) = i�1. Since
the magnitude of H is the energy E , we then have ΔEΔt ≥ 1

2�.

5.7 With

F1 = −E t + �ϑ ± 1

sin β

∫
dr

√

2mE − 1

r2
�2 − 2m2g

r

tan β

we have

P1 = ∂F1

∂E = −t ± m

sin β

∫
dr/

√

2mE − 1

r2
�2 − 2m2g

r

tan β
= β1
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and

P2 = ∂F1

∂�
= ϑ ∓ �

sin β

∫
dr/r2

√

2mE − 1

r2
�2 − 2m2g

r

tan β
= β2.

The canonical momentum pr =dFr (r,α) /dr is

pr = ± 1

sin β

√

2mE − 1

r2
�2 − 2m2g

r

tan β

with

E = �2

2mr20
+ mg

r0
tan β

and
� = m (z0 tan β)2 ϑ̇0.

5.8 With

F1 = −E t + �ϑ ±
∫

dr

√(
2mE − 2m2gηrn − 1

r2
�2
) (

n2η2r2n-2 + 1
)

we have

P1 = ∂F1

∂E = −t ± m
∫

dr

√ (
n2η2r2n-2 + 1

)
(
2mE − 2m2gηrn − 1

r2 �
2
) = β1

and

P2 = ∂F1

∂�
= ϑ ∓ �

∫
dr

r2

√ (
n2η2r2n-2 + 1

)
(
2mE − 2m2gηrn − 1

r2 �
2
) = β2.

The canonical momentum pr = dFr (r,α) /d r is

pr = ±
√(

2mE − 2m2gηrn − 1

r2
�2
) (

n2η2r2n-2 + 1
)
,
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and

pz = ±
(
nη

(
z

η

)1-1/n)
√√√√√√√

(
2m (E) − 2m2gη

(
z
η

)
−
(

z
η

)-2/n
(�)2
)

(
n2η2

(
z
η

)2-2/n + 1

) .

From these we get the phase plots.
5.9 The equation for the (assumed separable) generator is

dFt (α, t)

dt
= − 1(

2 − cos2 ϑ
)
[

1

2ma2

(
d

dϑ
Fϑ

)2
+ 1

m

(
d

dz
Fz

)2
+ 1

ma

(
d

dϑ
Fϑ

)(
d

dz
Fz

)
cosϑ

]

+mgz − 1

2
k
(
z2 − �2

)− 1

2
k′ϑ2.

The time function can be separated. But beyond that we cannot separate the
equation. That is the Hamiltonian is not, in fact, separable. We are then stuck
with a partial differential equation for the generator F = F1,2 (z,ϑ, t,α).

∂Ft (α, t)

∂t
= − 1(

2 − cos2 ϑ
)
[

1

2ma2

(
∂

∂ϑ
F

)2
+ 1

m

(
∂

∂z
F

)2
+ 1

ma

(
∂

∂ϑ
F

)(
∂

∂z
F

)
cosϑ

]

+mgz − 1

2
k
(
z2 − �2

)− 1

2
k′ϑ2.

The solution is then not practicable. If we define K1 = k′ + a2k and K2
2 =

a4k2 + k′2 − a2kk′, we find that

K2
1

K2
2

=
(
k′ + a2k

)2

a4k2 + k′2 − a2kk′ = a4k2 + k′2 + 2a2kk′

a4k2 + k′2 − a2kk′ > 0.

The (eigen) values of ω are the (then) real quantities

ω = 1

a
√
m

√
K1 +

√
K2
2 ,

1

a
√
m

√
K1 −

√
K2
2 .

There is then a high and a low frequency mode, as we expected.

5.10 The generator is

F1 (x, y, z, t,α1,α2, α3) = −α1t + α3x ±
∫

dy
√
2mα1 − α2

2 − (α3 + mΩy)2 + α2z

The separation constants α1, . . . α3 are the energy E the final constant coor-
dinates Q2, and Q3. The final constant momenta are designated as β1, ... β3.
These are found from βj = −∂F1/∂αj. Then



334 Appendix G: Answers to Selected Exercises

β1 = −∂F1

∂α1
= t ∓ m

1

mΩ
sin-1

α3 + mΩy√∣∣2mα1 − α2
2

∣∣
,

β2 = −∂F1

∂α2
= −z ± α2

1

mΩ
sin-1

α3 + mΩy√∣∣2mα1 − α2
2

∣∣
,

and

β3 = −∂F1

∂α3
= −x ∓ 1

mΩ

√
2mα1 − α2

2 − (α3 + mΩy)2.

Then

(x + β3)
2 +
(
y + α3

mΩ

)2 = 2mα1 − α2
2

m2Ω2
.

We have a complete description of the motion. The charge moves uniformly
along the z−axis at a rate dz/dt = α2/m. The momentum along the z−axis is
then α2. This is the constant we have for the final coordinate Q2. The motion
in the (x, y) −plane is a circle centered at (−β3,−α3/mΩ) with a radius

R =
√∣∣2mα1 − α2

2

∣∣/mΩ . And the (x, y) −motion in the circle is uniform
at a frequency Ω as we see from the sinusoidal solution for y.

5.11 The generator is

F1 (r,ϑ, z, t,α1, . . . ,α3)

= −α1t ±
∫

dr

√

2mα1 − α2
2 −
(
1

r
α3 − r

mΩ

2

)2
+ α3ϑ + α2z.

Theα1, . . . ,α3 are the constant final coordinates and the energy (α1). The final
momenta will be the constants β1, . . . ,β3. We could integrate what we have
here and obtain the generator directly. But the differentiation of the result looks
formidable. So we calculate first the β’s.

β1 = −∂F1

∂α1
= t ∓ m

∫
dr

1√
2mα1 − α2

2 − ( 1r α3 − r mΩ
2

)2 ,

β2 = −∂F1

∂α2
= −z ± α2

∫
dr

1√
2mα1 − α2

2 − ( 1r α3 − r mΩ
2

)2 ,

and

β3 = −∂F1

∂α3
= −ϑ ±

∫
dr

r

(
1
r α3 − r mΩ

2

)
√
2mα1 − α2

2 − ( 1r α3 − r mΩ
2

)2 .
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The integrals in these results require some care because of the form of the
expression (α3/r − rmΩ/2), which causes the difficulty.

β1 = t ± 1

Ω
cos-1

A − r2 mΩ
2

|B| ,

z + β2 = ±α2
1

mΩ
sin-1

A − r2 mΩ
2

|B| ,

R2 = r2 + r20 − 2rr0 cos (ϑ + β3) ,

which is the general form of the cosine law. The orbit is a circle of radius R
with center located by r0, and is distinct from the origin of coordinates, which
is designated by 0. The charge rotates in a clockwise fashion around the circle,
which results in a negative angular momentum along the z−axis, which is out
of the plot. The motion of the charge in the z−direction is uniform, and may
also be stationary.

5.12 The generator as

F1,2 (q, α, t) = −α1t + α 3x ±
∫

dy
√
2mα1 + 2mQEy − α2

2 − (α3 + mΩy)2 + α2z.

Again, because the partial derivatives become complicated, we shall proceed
first to the momenta βj = −∂F1 (q, t,α) /∂αj.

β1 = −∂F1

∂α1
= t ∓ m

∫
dy

1√
2mα1 + 2mQEy − α2

2 − (α3 + mΩy)2
,

β2 = −∂F1

∂α2
= −z ± α2

∫
dy

1√
2mα1 + 2mQEy − α2

2 − (α3 + mΩy)2
,

and

β3 = −∂F1

∂α3
= −x ±

∫
dy

(α3 + mΩy)√
2mα1 + 2mQEy − α2

2 − (α3 + mΩy)2
.

Integrating

y =
(

QE

mΩ2
− α3

mΩ

)
± A cosΩ (t − β1)

and

y =
(

QE

mΩ2
− α3

mΩ

)
± A cos

mΩ

α2
(z + β2 ) .
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The charged particle then moves along the z−axis according to

z = α2

m
t.

This may also be zero if α2 = 0. And performing the β3 integration

x + β3 = QE

mΩ2
Ω (t − β1) − A sinΩ (t − β1) .

Because of the substitutions none of these integrals is easy. With

y + α3

mΩ
=
(

QE

mΩ2

)
− A cosΩ (t − β1) ,

we have the general form of the equation for a cycloid. The constants β3 and
α3/mΩ locate the cycloid relatively to the origin in the (x, y) −plane. The form
of the cycloid is determined by the relative sizes of QE/mΩ2 and A. There are
three general forms of the cycloid depending upon whetherQE/mΩ2 is greater
than, less than, or equal to A.

7.1 This exercise is a demonstration.

7.2 (a)H = 1
2m

(
p21 + p23

)+ 1
2μmp

2
2 + 1

2k
(
(x1 − x2)

2 + (x2 − x3)
2
)
.

(b) Because of the product terms x1x2 and x2x3 this Hamiltonian is not separable.

(c) The eigenvalues (frequencies) are: ±iω0, 0, and ±iω0

√(
1 + 2

μ

)
.

7.3 x = c − ab, y = b − c/a, and z = c/a − b.

8.1 This is a demonstration.

8.2 The differential world line is

ds′ =

⎡

⎢⎢⎣

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

cdt
vdt
0
0

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

γcdt − γβvdt
γvdt − γβcdt

0
0

⎤

⎥⎥⎦ .

8.3 Choosingβ′
x = 1−κ andβ = 1−λ the equation ux = (u′

x + cβ
)
/
(
1 + βu′

x/c
)

results in

βx = β′
x + β

1 + ββ′
x

= 2 − κ − λ

2 − κ − λ + κλ
< 1.

This is the argument that Einstein presented.
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8.4 hν ′ = m0γu (hν) (1 + βu) /
[
2mγ + m0γu (1 − βu)

]
.

8.5 mc2 = 2
√E1E2

8.6 hν = 2 (1 + m0e/m01)m0ec2. If the mass m01 is a nucleon (proton or neutron)
then m0e/m01 ≈ 0 and hν ≈ 2m0ec2. That is, the absolute minimum energy of
the incoming photon is the sum of the rest energies of the electron and positron.

8.7 This exercise is a demonstration.

8.8 This exercise is a demonstration.

8.9 This exercise is a demonstration.

8.10 This exercise is a demonstration.

8.11 We find that we must require f ·u = 0, as well as f = m0γudu/dt. The latter of
these is not outside of our expectations, but the former is. This (also) violates
the expectation that a force, while it may not change the rest mass, in the case
of a pure force, it must not be limited in such a way that it cannot change the
total relativistic energy.

8.12 This exercise is a demonstration.

8.13 This exercise is a demonstration.

8.14 This exercise is a demonstration.
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