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Prof. Dr. Götz Trenkler



Preface

This Festschrift is dedicated to Götz Trenkler on the occasion of his 65th birthday.
As can be seen from the long list of contributions, Götz has had and still has

an enormous range of interests, and colleagues to share these interests with. He
is a leading expert in linear models with a particular focus on matrix algebra in
its relation to statistics. He has published in almost all major statistics and matrix
theory journals. His research activities also include other areas (like nonparametrics,
statistics and sports, combination of forecasts and magic squares, just to mention
a few).

Götz Trenkler was born in Dresden in 1943. After his school years in East Ger-
many and West-Berlin, he obtained a Diploma in Mathematics from Free University
of Berlin (1970), where he also discovered his interest in Mathematical Statistics.
In 1973, he completed his Ph.D. with a thesis titled: On a distance-generating func-
tion of probability measures. He then moved on to the University of Hannover to
become Lecturer and to write a habilitation-thesis (submitted 1979) on alternatives
to the Ordinary Least Squares estimator in the Linear Regression Model, a topic that
would become his predominant field of research in the years to come.

In 1983 Götz Trenkler was appointed Full Professor of Statistics and Economet-
rics at the Department of Statistics at the University of Dortmund, where he contin-
ues to teach and do research until today. He served as dean of the department from
1987 to 1990 and declined an offer from Dresden University of Technology in 1993.
He has been visiting Professor at the University of California at Berkeley, USA, and
the University of Tampere, Finland, and is a regular contributor to international con-
ferences on matrix methods in statistics. Currently, he is the Coordinating Editor of
Statistical Papers, Associate Editor of several other international journals and re-
cently the twice-in-a-row recipient of the best-teacher-award of the department.

Among Götz Trenkler’s extracurricular activities are tennis, chess and the com-
pilation of a unique collection of Aphorisms in Statistics, samples of which can be
found at the beginning of the chapters of this book. He certainly would do the sci-
entific community a great service by having them published at some time.

The editors are grateful to all contributors, many of whom are not only scientific
colleagues but also his personal friends.
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viii Preface

We express our appreciation for editorial and LATEX-assistance to Sabine Hege-
wald, and in particular to Matthias Deutscher, who managed to edit successfully
almost 30 manuscripts that were characterized by a great variety of individual pref-
erences in style and layout, and to Alice Blanck and Werner A. Müller from Springer
Publishing for their support.

Dresden and Dortmund Bernhard Schipp
July 2008 Walter Krämer
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Adaptive Tests for the c-Sample Location
Problem

Herbert Büning

Abstract This paper deals with the concept of adaptive tests and with an applica-
tion to the c-sample location problem. Parametric tests like the ANOVA F-tests are
based on the assumption of normality of the data which is often violated in practice.
In general, the practising statistician has no clear idea of the underlying distribu-
tion of his data. Thus, an adaptive test should be applied which takes into account
the given data set. We use the concept of Hogg [21], i.e. to classify, at first, the
unknown distribution function with respect to two measures, one for skewness and
one for tailweight, and then, at the second stage, to select an appropriate test for that
classified type of distribution. It will be shown that under certain conditions such a
two-staged adaptive test maintains the level. Meanwhile, there are a lot of proposals
for adaptive tests in the literature in various statistical hypotheses settings. It turns
out that all these adaptive tests are very efficient over a broad class of distributions,
symmetric and asymmetric ones.

1 Introduction

In the parametric case of testing hypotheses the efficiency of a test statistic strongly
depends on the assumption of the underlying distribution of the data, e.g. if we
assume normality then optimal tests are available for the one- two- and c-sample
location or scale problem such as t-tests, F-tests and Chi-square-tests. In the non-
parametric case the distribution of the test statistic is not based on a special distribu-
tion of the data like the normal, only the assumption of continuity of the distribution
is needed in general. It is well known, however, that the efficiency of nonparamet-
ric tests depends on the underlying distribution, too, e.g. the Kruskal–Wallis test in
the c-sample location problem has high power for symmetric and medium- up to
long-tailed distributions in comparison to its parametric and nonparametric com-
petitors whereas the Kruskal–Wallis test can be poor for asymmetric distributions.

Herbert Büning
Freie Universität Berlin, D-14195 Berlin, Germany
Herbert.Buening@fu-berlin.de
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4 H. Büning

But for the practising statistician it is more the rule rather than the exception
that he has no clear idea of the underlying distribution of his data. Consequently, he
should apply an adaptive test which takes into account the given data set.

At present, we register a lot of papers on adaptive tests in the literature, concern-
ing one-, two- and c-sample location or scale problems with two-sided and one-sided
ordered alternatives as well as umbrella alternatives.

Most of these adaptive tests are based on the concept of Hogg [21], that is, to
classify, at first, the type of the underlying distribution with respect to some mea-
sures like tailweight and skewness and then to select an appropriate rank test for
the classified type of distribution. It can be shown that this two-staged test proce-
dure is distribution-free, i.e. it maintains the level over the class of all continuous
distribution functions.

In our paper Hogg’s concept of adaptive tests is presented and demonstrated by a
real data set. Adaptive tests are generally not the best ones for a special distribution
but mostly second best whereas the parametric competitors are poor in many cases.
That is just the philosophy of an adaptive test to select the best one for a given
data set. It works in the sense of “safety first” principle. For clarity of exposition
we confine our attention to the c-sample location problem. A power comparison
by means of Monte Carlo simulation shows that the adaptive test is very efficient
over a broad class of distributions in contrary to its parametric and nonparametric
competitors.

2 Model, Hypotheses and Data Example

We consider the following c-sample location model:
Let Xi1, . . . ,Xini , i = 1, . . . ,c, be independent random variables with Xi j ∼ FX (x−

θi), j = 1, . . . ,ni, θi ∈ IR,
where the distribution function FX is assumed to be continuous. We wish to test

H0 : θ1 = · · ·= θc.

As alternative hypotheses we consider

the two-sided alternative H(1)
1 : θr �= θs for at least one pair (r,s), r �= s,

the ordered alternative H(2)
1 : θs ≤ ·· · ≤ θc with at least one strict inequality,

the umbrella alternative H(3)
1 : θ1 ≤ ·· · ≤ θl−1 ≤ θl ≥ θl+1 ≥ ·· · ≥ θc

with at least one strict inequality for peak l, 2≤ l≤ c−1.

Now, let us present a data example for H(1)
1 , the example is given by Chatfield

([13] p. 101).

Example 1. A study was carried out at a major London hospital to compare the
effects of different types of anaesthetic used in major operations. Eighty patients
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undergoing a variety of operations were randomly assigned to one of the four anaes-
thetics and a variety of observations were taken on each patient before and after the
operation. This exercise concentrates on just one of the response variables, namely
the time, in minutes, from the reversal of the anaesthetic until the patient opened his
or her eyes.

The data are shown in Table 1.
Figure 1 shows the boxplots of the data.
Obviously, we cannot assume normality for that kind of data, the underlying

distributions might be skewed to the right. Thus, what is an appropriate test for
testing H0? An answer will be given at the end of Sect. 3.3.

Data examples for testing H0 against the alternatives H(2)
1 and H(3)

1 can be found
in Hand et al. ([18], p. 212) and Simpson and Margolin [35], respectively.

Table 1 Time in minutes, from reversal of anaesthetic until the eyes open for each of 20 patients
treated by one of four anaesthetics A,B,C or D

A 3 2 1 4 3 2 10 12 12 3 19 1 4 5 1 1 7 5 1 12
B 6 4 1 1 6 2 1 10 1 1 1 2 10 2 2 2 2 1 3 7
C 3 5 2 4 2 1 6 13 1 1 1 4 1 1 1 8 1 2 4 0
D 4 8 2 3 2 3 6 2 3 4 8 5 10 2 0 10 2 3 9 1

−

Fig. 1 Boxplots of the data of Example 1



6 H. Büning

3 Tests for Two-sided Alternatives

3.1 Parametric F-test

Let Xi1, . . . ,Xini , i = 1, . . . ,c, be independent and normally distributed random vari-
ables, i.e.

Xi j ∼ N(μi,σ2
i ), j = 1, . . . ,ni with σ2

1 = · · ·= σ2
c = σ2.

We wish to test

H0 : μ1 = · · ·= μc versus H1 : μr �= μs for at least one pair (r,s), r �= s.

Then the likelihood ratio F-test is based on the statistic

F =
(N− c)

c
∑

i=1
ni(X̄i− X̄)2

(c−1)
c
∑

i=1

ni
∑
j=1

(Xi j− X̄i)2
, where N =

c

∑
i=1

ni, Xi =
1
ni

ni

∑
j=1

Xi j and X =
1
N

c

∑
i=1

niXi.

Under H0, the statistic F has an F-distribution with c−1 and N− c degrees of free-
dom. If we assume non-normal distributions with at least finite second moments it
can be shown that, under H0, F has asymptotically a chi-square distribution with
c−1 degrees of freedom, see, e.g. Tiku et al. [37].

3.2 Rank Tests

Let X(1), . . . ,X(N) be the combined ordered sample of X11, . . . ,X1n1 , . . . ,Xc1, . . . ,Xcnc ,
N = ∑c

i=1 ni.
We define indicator variables Vik by

Vik =

{
1 if X(k) belongs to the ith sample
0 otherwise.

Furthermore, we have real valued scores a(k), k=1, . . . ,N, with mean ā= 1
N

N
∑

k=1
a(k).

Now, we define for each sample a statistic Ai in the following way

Ai =
1
ni

N

∑
k=1

a(k)Vik, 1≤ i≤ c.

Ai is the average of the scores for the ith sample. Then the linear rank statistic LN is
given by
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LN =
(N−1)

c
∑

i=1
ni(Ai− ā)2

N
∑

k=1
(a(k)− ā)2

.

Under H0, LN is distribution-free and has asymptotically a chi-square distribution
with c−1 degrees of freedom, that means, H0 has to be rejected in favour of H(1)

1 if
LN ≥ χ2

1−α(c−1).
In the following, some examples of rank tests are given; for references, see, e.g.

Gastwirth [14], Randles and Wolfe [32], Büning [3, 5], Gibbons and Chakraborti
[15] as well as Büning and Trenkler [12]. In parenthesis that type of distribution is
indicated for which the test has high power.

Example 2 (Gastwirth test G (short tails)).

aG(k) =

⎧⎪⎨
⎪⎩

k− N+1
4 if k ≤ N+1

4

0 if N+1
4 < k < 3(N+1)

4

k− 3(N+1)
4 if k ≥ 3(N+1)

4 .

Example 3 (Kruskal–Wallis test KW (medium tails)).

aKW (k) = k.

As an efficient test for long tails Büning [5] proposed the so called LT -test
with scores chosen analogously to Huber‘s Ψ -function referring to M-estimates,
see Huber [25].

Example 4 (LT -test (long tails)).

aLT (k) =

⎧⎪⎪⎨
⎪⎪⎩
−
([N

4

]
+1

)
if k <

[N
4

]
+1

k− N+1
2 if

[N
4

]
+1≤ k ≤

[
3(N+1)

4

]
[N

4

]
+1 if k >

[
3(N+1)

4

]
.

[x] denotes the greatest integer less than or equal to x.

Example 5 (Hogg–Fisher–Randles test HFR (right-skewed)).

aHFR(k) =

{
k− N+1

2 if k ≤ N+1
2

0 if k > N+1
2 .

For left-skewed distributions interchange the terms k− (N +1)/2 and 0 in the
above definition.

All these four rank tests are included in our simulation study in Sect. 4. They are
“bricks” of the adaptive tests proposed in the next section.
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For the case of ordered alternatives H(2)
1 and umbrella alternatives H(3)

1 the most
familiar rank tests are the tests of Jonckheere [27] and Mack and Wolfe [28], re-
spectively. They are based on pairwise two-sample Wilcoxon statistics computed on
the ith sample vs. the combined data in the first i− 1 samples, 2 ≤ i ≤ c. It is well
known that both tests have high power for symmetric and medium-tailed distribu-
tions. Büning [6], Büning and Kössler [9] modifies these tests by using two-sample
statistics of Gastwirth and Hogg–Fisher–Randles rather than the Wilcoxon statistic.
These so called Jonckheere-type- and Mack–Wolfe-type tests are very efficient for
short-tailed and asymmetric distributions.

3.3 Adaptive Tests

Husková [26] and Hájek et al. [16] distinguishes between two different concepts of
adaptive procedures, nonrestrictive and restrictive ones. In the case of nonrestric-
tive procedures the optimal scores aopt(k) for the locally most powerful rank test,
which depend on the (unknown) underlying distribution function F and its density f,
are estimated directly from the data. This approach is applied, e.g. by Behnen and
Neuhaus [1] in many testing situations. We will apply the adaptive procedure of
Hogg [21] which belongs to the class of restrictive procedures, i.e. a “reasonable”
family of distributions and a corresponding class of “suitable” tests are chosen. The
adaptive test of Hogg is a two-staged one. At the first stage, the unknown distribution
function is classified with respect to some measures like tailweight and skewness.
At the second stage, an appropriate test for that classified type of distribution is
selected and then carried out. Hogg [22] states: “So adapting the test to the data
provides a new dimension to nonparametric tests which usually improves the power
of the overall test.”

This two-staged adaptive test maintains the level α for all continuous distribution
functions as shown by the following

Lemma 1. (1) Let F denote the class of distribution functions under consideration.
Suppose that each of m tests based on the statistics T1, . . . ,Tm is distribution-free
over the class F ; i.e. PH0(Th ∈Ch|F) = α for each F ∈F , h = 1, . . . ,m.

(2) Let S be some statistic that is independent of T1, . . . ,Tm under H0 for each
F ∈F . Suppose we use S to decide which test Th to conduct. (S is called a selec-
tor statistic.). Specially, let US denote the set of all values of S with the following
decomposition:

US = D1∪D2∪·· ·∪Dm, Dh∩Dk = ∅ for h �= k,

so that S ∈ Dh corresponds to the decision to use the test Th. The overall testing
procedure is then defined by:

If S ∈ Dh then reject H0 if Th ∈Ch.
This two-staged adaptive test is, under H0, distribution-free over the class F ,

i.e. it maintains the level α for each F ∈F .



Adaptive Tests for the c-Sample Location Problem 9

Proof. PH0(reject H0| F) = PH0

(
m⋃

h=1
(S ∈ Dh∧Th ∈Ch| F)

)

=
m
∑

h=1
PH0(S ∈ Dh∧Th ∈Ch|F)

=
m
∑

h=1
PH0(S ∈ Dh|F) ·PH0(Th ∈Ch|F)

= α ·
m
∑

h=1
PH0(S ∈ Dh|F) = α ·1 = α . 
�

Let us apply this Lemma on our special problem:
1. F is the class of all continuous distribution functions F and T1, . . . ,Tm are

linear rank statistics. Then Th is distribution-free over F , h = 1, . . . ,m.
2. S is a function of the order statistics of the combined sample. Under H0, the

order statistics are the complete sufficient statistics for the common, but unknown F ,
and therefore independent of every statistic whose distribution is free of F (theorem
of Basu, see, e.g. Roussas [33], p. 215). Thus, under H0, S is independent of the
linear rank statistics T1, . . . ,Tm.

As a selector statistic S we choose S = (M̂S,M̂T ), where M̂S and M̂T are measures
of skewness and tailweight, respectively, defined by

M̂S =
x̂0.975− x̂0.5

x̂0.5− x̂0.025
and

M̂T =
x̂0.975− x̂0.025

x̂0.875− x̂0.125
with the p-quantile x̂p given by

x̂p =

⎧⎪⎨
⎪⎩

X(1) if p≤ 0.5/N
(1−λ )X( j) +λX( j+1) if 0.5/N < p≤ 1−0.5/N
X(N) if p > 1−0.5/N

where X(1), . . . ,X(N) again are the order statistics of the combined c samples and
j = [np + 0.5], λ = np + 0.5− j. Obviously, M̂S < 1, if F is skewed to the left,
M̂S = 1, if F is symmetric and M̂S > 1, if F is skewed to the right. M̂T ≥ 1, the
longer the tails the greater M̂T . The measures M̂S and M̂T are location and scale
invariant.

In Table 2 values of the corresponding theoretical measures MS and MT are pre-
sented for some selected distributions where CN1, CN2 and CN3 are contaminated
normal distributions:

CN1 = 0.95N(0,1)+0.05N(0,32), CN2 = 0.9N(0,1)+0.1N(0,52), both sym-
metric, and CN3 = 0.5N(1,4)+0.5N(−1,1), a distribution skewed to the right.

We see, the exponential distribution is extremely right-skewed and the Cauchy
has very long tails. Now, two questions arise:

First, what is an appropriate number m of categories D1, . . . ,Dm?
Such a number m may be three, four or five, in most proposals four categories

are preferred, three for symmetric distributions (short, medium, long tails) and one
for distributions skewed to the right. A fifth category can be defined for left-skewed
distributions.
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Table 2 Theoretical values of MS and M6

Distributions MS MT
Uniform 1.000 1.267
Normal 1.000 1.704
CN1 1.000 1.814
Logistic 1.000 1.883
Double exp. 1.000 2.161
CN2 1.000 2.606
Cauchy 1.000 5.263
CN3 1.765 1.691
Exponential 4.486 1.883

Second, how do we fix the bounds of the categories?
The bounds depend on the theoretical values of MS and MT (see Table 2) in order

to consider different strength of skewness and tailweight. Simulations by trial and
error may improve the bounds in the adaptive scheme. To our experience, however,
the very special choice of the bounds is not the crucial point, it is much more impor-
tant to include efficient rank tests in the adaptive scheme, an efficient rank test not
only for the corresponding category but also in the neighbourhood of that category
because of possible misclassifications, see Table 3.

Now, for our special c-sample location problem we propose the following four
categories which are based on S:

D1 = {S|0≤ M̂S ≤ 2; 1≤ M̂T ≤ 1.5}
D2 = {S|0≤ M̂S ≤ 2; 1.5 < M̂T ≤ 2}
D3 = {S|M̂S ≥ 0; M̂T > 2}
D4 = {S|M̂S > 2; 1≤ M̂T ≤ 2}.

This means, the distribution is classified as symmetric with short- or medium
tails, if S falls in the category D1 or D2, respectively, as long-tailed if S belongs to
D3 and as skewed to the right with short- or medium tails if S falls in D4.

We now propose the following adaptive test A:

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G if S ∈ D1

KW if S ∈ D2

LT if S ∈ D3

HFR if S ∈ D4.

Figure 2 shows the adaptive scheme of test A.
The adaptive test above is based on the measures M̂S and M̂T calculated from

the combined ordered sample X(1), . . . ,X(N) in order to guarantee that the resulting
test is distribution-free in the sense of the Lemma. Another way is to calculate the
measures M̂S and M̂T from each of the c samples separately and then to consider the
weighted sum of these measures, that is
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M̂T

M̂S
0 1 2

1.5

2

D1 : G

D2 : KW

D3 : LT

D4 : HFR

Fig. 2 Adaptive scheme

M̄S =
n1M̂S1 + · · ·+ncM̂Sc

N
and M̄T =

n1M̂T 1 + · · ·+ncM̂T c

N
,

where M̂Si and M̂Ti are the measures for skewness and tailweight of the ith sample,
i = 1, . . . ,c.

The adaptive test based on the measures from the combined sample is denoted
by AC and that based on the measures from the single samples by AS. The adaptive
test AC is distribution-free, the measures M̂S and M̂T , however, are affected by the
amount of the shift under H1, whereas the adaptive test AS is not distribution-free,
but M̄S and M̄T are not affected by the shift.

Table 3 shows the classification performance of (M̂S,M̂T ) and (M̄S,M̄T ) for
the case of c = 4, n1 = n2 = n3 = n4 = 20. The data were generated by simulation
(10,000 replications) from the uniform (Uni), normal (Norm), logistic (Log), double
exponential (Dexp), Cauchy (Cau), the contaminated normal CN3 and the exponen-
tial (Exp) distribution.

The amount of shift is determined by the parameters θi = kiσF , i = 1, . . .,4,
where σF is the standard deviation of the underlying distribution function F . For
the Cauchy we choose σCau = F−1

Cau(0.8413) = 1.8373 because of Φ(1) = 0.8413
where Φ is the standard normal distribution function.

Let us consider, as an example, the AC-test with data from the uniform dis-
tribution and ki = 0, i = 1, . . . ,4. Then in 9,911 of 10,000 cases these data were
(correctly) classified as symmetric and short-tailed (D1), in 72 cases as symmetric
and medium-tailed (D2), in 0 cases as long-tailed (D3) and in 17 cases as skewed
to the right (D4). Under the null hypothesis the classification schemes based on
(M̂S,M̂T ) and (M̄S,M̄T ) are quite effective for all distributions considered.

In contrary to the AS-test the AC-test – based on the classification performance
of (M̂S,M̂T ) – is strongly affected by the amount of shift for the uniform, dou-
ble exponential and the two distributions skewed to the right, CN3 and Exp. As
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Table 3 Skewness and tailweight classification of the adaptive tests AC and AS, c = 4, n1 = n2 =
n3 = n4 = 20

k1,k2,k3,k4 Uni Norm Log Dexp Cau CN3 Exp
0,0,0,0

D1
AC 9,911 1,171 247 47 0 1041 5
AS 9,786 1,484 410 66 1 1083 4

D2
AC 72 8,131 6,538 3,082 13 5,711 4
AS 151 7,901 6,704 3,544 14 4,977 4

D3
AC 0 690 3,203 6,855 9,987 822 3,409
AS 0 577 2,816 6,313 9,983 901 3,319

D4
AC 17 8 12 16 0 2,426 6,582
AS 63 38 70 77 2 3,039 6,673
0,0.2,0.4,0.6

D1
AC 9,407 1,101 308 52 0 1,088 70
AS 9,799 1,416 423 83 0 1,092 13

D2
AC 588 8,154 6,807 3,571 9 6,393 166
AS 140 7,915 6,726 3,585 15 4,952 5

D3
AC 0 735 2,826 6,366 9,990 801 3,852
AS 0 634 2,797 6,268 9,984 900 3,350

D4
AC 5 10 17 11 1 1,718 5,912
AC 61 35 54 64 1 3,056 6,632
0,0.4,0.8,1.2

D1
AC 6,128 1,191 450 95 0 1,161 315
AS 9,765 1,442 376 60 0 1,072 9

D2
AC 3,868 8,171 7,285 4,830 20 7,366 2,123
AS 181 7,922 6,656 3,505 8 5,034 3

D3
AC 1 634 2,248 5,058 9,980 774 3,132
AS 0 598 2,898 6,371 9,989 949 3,322

D4
AC 3 4 17 17 0 699 4,430
AS 54 38 70 64 3 2,945 6,666

the differences of θ1, . . . ,θ4 increase, all these four distributions tend to be clas-
sified more as having medium tails. But for large differences of the location
parameters each of the tests in the adaptive scheme should reveal these differ-
ences. For the normal and the Cauchy distribution the classification performance of
(M̂S,M̂T ) is hardly affected by the shift. Similar results hold for c = 3 samples and
other sizes.
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Now, let us analyze the data Example 1 from Sect. 2. What is an appropriate test
for these data? First, we calculate the measures M̂S and M̂T of the combined ordered
sample X(1), . . . ,X(N) of the four samples in order to guarantee that the resulting
adaptive test AC maintains the level. For the data we get M̂S = 3.80 and M̂T = 1.41,
i.e. the distribution of the data is extremely skewed to the right, see Table 2. The
selector statistic S = (3.80,1.41) belongs to D4 and we have to apply the HFR-test.
Because of HFR = 5.636 < χ2

0.95(3) = 7.815, H0 is not rejected at level α = 5%.
It should be noted that the adaptive test AC is only asymptotically distribution-free
because an asymptotical critical value of HFR is used.

If we calculate the measures M̄S and M̄T from each of the four samples separately,
we get M̄S = 5.51 and M̄T = 1.79. Thus, we have to apply the HFR-test, too, and
we get the same test decision. But notice, the adaptive test AS based on the selector
statistic S = (5.51,1.79) is not distribution-free.

In the same sense as described above adaptive tests may be constructed for or-
dered alternatives H(2)

1 and umbrella alternatives H(3)
1 by including Jonckheere-type

or Mack–Wolfe-type tests in the adaptive scheme, see Büning [6] and Büning and
Kössler [9].

4 Power Study

We investigate via Monte Carlo methods (10,000 replications) the power of all the
tests from Sect. 3. The selected distributions are the same as in Table 2 where each of
them has mean or median (Cauchy) equal to zero. Here, we again consider only the
case of c = 4 samples with equal sizes ni = 20, i = 1, . . . ,4. The location parameters
θi are defined by θi = kiσF as in Sect. 3.3. The nominal level of the tests is α = 5%.
Table 4 presents the power values.

We can state:
The F-test maintains the level α quite well for all distributions considered with

the exception of the Cauchy for which finite moments do not exist. In this sense, the
approximation of the distribution of F by the chi-square distribution does not work,
see Sect. 3.1. Thus, for the Cauchy a power comparison of the F-test with the other
tests becomes meaningless.

For each of the distributions (with exception of the normal) there is a linear rank
test which has higher power than the F-test, e.g. the Gastwirth test for the uniform,
the Kruskal–Wallis test for CN1 and the logistic, the LT -test for the double expo-
nential and CN2 and the Hogg–Fisher–Randles test for both distributions skewed to
the right, CN3 and Exp.

The adaptive tests, AC and AS, are the best ones over this broad class of distribu-
tions. The AS-test has (slightly) higher power than the AC-test, but since in all cases
the actual level of the AS-test starts higher than the level of the AC-test, it is difficult
to assess the higher power values of the AS-test in comparison to the AC-test. Ex-
cept for the normal distribution the AC-test is more powerful than the F-test for all
symmetric and asymmetric distributions.
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Table 4 Power of some tests (in percent) under selected distributions α = 5%, c = 4,
(n1,n2,n3,n4) = (20,20,20,20)

Tests k1,k2,k3,k4 Uni Norm CN1 Log Dexp CN2 Cau CN3 Exp
F 0, 0, 0, 0 4.8 4.9 4.9 4.8 4.8 4.3 1.8 5.2 4.3

0, 0.2, 0.4, 0.6 3.5 33.7 36.4 35.4 34.7 40.3 34.7 36.9
0, 0.3, 0.6, 0.9 68.5 68.8 69.3 68.9 69.2 71.3 69.3 69.9

G 0, 0, 0, 0 4.5 4.6 4.9 4.6 4.9 4.8 5.1 4.7 4.2
0, 0.2, 0.4, 0.6 50.4 27.6 33.4 28.2 25.0 51.9 12.1 32.7 70.7
0, 0.3, 0.6, 0.9 85.1 59.5 65.2 57.2 52.6 84.1 21.0 65.6 90.7

KW 0, 0, 0, 0 4.6 4.7 4.7 4.4 4.9 5.0 5.0 4.8 4.3
0, 0.2, 0.4, 0.6 29.3 31.7 39.3 36.7 45.4 70.5 31.2 37.6 64.2
0, 0.3, 0.6, 0.9 61.5 65.8 75.2 71.4 81.0 96.7 60.8 72.3 92.1

LT 0, 0, 0, 0 4.6 4.9 4.9 4.8 4.7 5.1 5.3 4.8 4.5
0, 0.2, 0.4, 0.6 18.7 28.9 36.0 35.1 49.2 70.0 39.9 43.2 53.4
0, 0.3, 0.6, 0.9 40.8 60.2 71.4 69.2 84.2 97.0 72.7 66.8 87.7

HFR 0, 0, 0, 0 4.5 4.7 4.9 4.9 4.6 5.0 5.1 4.7 4.8
0, 0.2, 0.4, 0.6 23.3 24.8 31.3 29.6 36.5 59.0 26.8 43.5 86.1
0, 0.3, 0.6, 0.9 50.0 54.2 63.9 60.0 70.6 90.0 50.7 78.6 99.2

AC 0, 0, 0, 0 4.5 4.8 4.8 4.4 4.7 5.1 5.3 4.7 4.7
0, 0.2, 0.4, 0.6 49.1 30.8 37.9 35.9 47.6 70.5 39.9 37.6 72.9
0, 0.3, 0.6, 0.9 78.9 64.1 73.6 70.1 82.5 97.0 72.7 71.3 94.1

AS 0, 0, 0, 0 5.1 5.3 5.2 4.9 5.0 5.2 5.4 6.0 4.8
0, 0.2, 0.4, 0.6 50.5 32.5 38.7 37.1 48.7 70.4 39.9 41.8 75.8
0, 0.3, 0.6, 0.9 84.9 66.0 74.1 71.2 83.2 97.1 72.7 75.9 96.2

The adaptive test AC is not the best one for a special distribution but mostly
second or third best. That is just the philosophy of an adaptive test, to select the best
one for a given data set.

5 Outlook

In our paper we studied an adaptive c-sample location test which behaves well
over a broad class of distributions, symmetric ones with different tailweight and
right-skewed distributions with different strength of skewness. Further adaptive tests
for the two- and c-sample location problem can be found in Hogg et al. [23],
Ruberg [34], Hill et al. [20], Hothorn and Liese [24], Büning [4, 5, 6], Beier
and Büning [2], Sun [36], O’Gorman [30], Büning and Kössler [9], Büning and
Rietz [10] and Neuhäuser et al. [29]. For an adaptive two-sample scale test, see Hall
and Padmanabhan [17] and Büning [8] and for an adaptive two-sample location-
scale test of Lepage-type, see Büning and Thadewald [11]. An adaptive test for
the general two sample problem based on Kolmogorov–Smirnov- and Cramér- von
Mises-type tests has been proposed by Büning [7]. A very comprehensive survey of
adaptive procedures is given by O’Gorman [31].
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In our proposal for an adaptive test in Sect. 3.3 we restrict our attention to two
measures for skewness and tailweight, M̂S and M̂T . Other measures for skewness
and tailweight are discussed in the literature, see, e.g. the measures Q̂1 and Q̂2 of
Hogg [21]. Of course, we may add other types of measures in order to classify
the unknown distribution function possibly more correctly, e.g. we can include an
additional measure for peakedness, see Büning [3] and Hogg [21]. In this case we
have a three dimensional selector statistic S defining our adaptive scheme. To our
experience, there is, however, no remarkable gain in power of the adaptive test by
adding the peakedness measure, see Handl [19]. Thus, we propose to use only two
measures, one for skewness and one for tailweight.

As a result of all our studies on adaptive tests we can state without any doubt,
that adaptive testing is an important tool for any practising statistician and it would
be a profitable task to add adaptive procedures to statistical software packages.
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On Nonparametric Tests for Trend Detection
in Seasonal Time Series

Oliver Morell and Roland Fried

Abstract We investigate nonparametric tests for identifying monotone trends in
time series as they need weaker assumptions than parametric tests and are more
flexible concerning the structure of the trend function. As seasonal effects can falsify
the test results, modifications have been suggested which can handle also seasonal
data. Diersen and Trenkler [5] propose a test procedure based on records and Hirsch
et. al [8] develop a test based on Kendall’s test for correlation. The same ideas can be
applied to other nonparametric procedures for trend detection. All these procedures
assume the observations to be independent. This assumption is often not fulfilled
in time series analysis. We use the mentioned test procedures to analyse the time
series of the temperature and the rainfall observed in Potsdam (Germany) from 1893
to 2008. As opposed to the rainfall time series, the temperature data show positive
autocorrelation. Thus it is also of interest, how the several test procedures behave in
case of autocorrelated data.

1 Introduction

One interest in time series analysis is to detect monotonic trends in the data. Several
parametric and nonparametric procedures for trend detection based on significance
tests have been suggested. Parametric methods rely on strong assumptions for the
distribution of the data, which are difficult to check in practice and possibly not
fulfilled. Furthermore a parametric form of the trend has to be specified, where only
some unknown parameters need to be estimated. Nonparametric test procedures are
more flexible as they afford only rather general assumptions about the distribution.
Also the trend often only needs to be monotonic without further specifications.

Oliver Morell (�)
Fakultät Statistik, Technische Universität Dortmund, D-44221 Dortmund, Germany
morell@statistik.tu-dortmund.de
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First ideas for nonparametric test procedures based on signs (see e.g. [3] or [13]),
ranks (see e.g. [4] or [12]) and records [7] have been developed early. However, all
these approaches need the assumption of i.i.d. random variables under the null hy-
pothesis. For time series with seasonal behavior this assumption is not valid. One
way to handle this problem is to estimate and subtract the seasonality. Another ap-
proach is to use tests which are robust against seasonal effects. Hirsch et. al. [8]
develop a test procedure based on Kendall’s test of correlation [10]. Diersen and
Trenkler [5] propose several tests based on records. They show that splitting the
time series increases the power of the record tests, especially when seasonal effects
occur. The procedures of Hirsch et. al. and Diersen and Trenkler use the indepen-
dence of all observations to calculate a statistic separately for each period and sum
them to get a test statistic for a test against randomness. The same ideas can be used
for the above mentioned tests based on signs or ranks.

We apply the procedures to two climate time series from a gauging station in
Potsdam, Germany: mean temperature and total rainfall. Such climate time series of-
ten show seasonality with a period of one year. Section 2 introduces the test problem
of the hypothesis of randomness against a monotonic trend as well as test procedures
which can also be used for seasonal data, namely some tests based on records for
the splitted time series [5] and the seasonal Kendall–Test [8]. We also modify other
nonparametric test statistics to consider seasonality. The mentioned sign– and rank–
tests are transformed to new seasonal nonparametric tests. In Sect. 3 we compare the
power of the several test procedures against different types of monotone trends and
in the case of autocorrelation. In Sect. 4 the two climate time series are analysed.
In particular, the test procedures are used to check the hypothesis of randomness.
Section 5 summarizes the results.

2 Nonparametric Tests of the Hypothesis of Randomness

A common assumption of statistical analysis is the hypothesis of randomness. It
means that some observed values x1, . . . ,xn are a realisation of independent and
identically distributed (i.i.d.) continuous random variables (rv) X1, . . . ,Xn, all with
the same cumulative distribution function (cdf) F . There are several test procedures
which can be used to test the hypothesis of randomness H0 against the alternative H1
of a monotonic trend. However, in time series analysis the observed values x1, . . . ,xn
are a realisation of a stochastic process and can be autocorrelated, implying a lack
of independence of X1, . . . ,Xn. Additionally, many time series show seasonal effects
and so X1, . . . ,Xn are not identically distributed, even if there is no monotonic trend.
We modify the hypothesis of randomness for seasonal data to handle at least the
second problem:

Firstly, if there is a cycle of k periods, the random sample X = (X1, . . . ,Xn) is
splitted into k parts

X = (X1,X2, . . . ,Xk) with X j = (X1, j,X2, j, . . . ,Xn j , j) and Xi, j = Xk(i−1)+ j (1)
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for j = 1, . . . ,k and i = 1, . . . ,n j. X j thus includes all n j observations of season j.
Under the null hypothesis H0 of no trend the continuous rv X1, . . . ,Xn are still con-
sidered to be independent but only for each j the rv’s X1, j, . . . ,Xn j , j are identically
distributed with common cdf Fj. Under the alternative H1 of a monotonic trend
there are values 0 = a1, j ≤ a2, j ≤ . . . ≤ an j , j with ai, j < ai+1, j for at least one
i ∈ {1, . . . ,n j − 1} and j ∈ {1, . . . ,k} such that Fi, j(x) = Fj(x− ai, j) in case of an
increasing and Fi, j(x) = Fj(x + ai, j) in case of a decreasing trend. Under H0 the
hypothesis of randomness within each period is fulfilled. In the following we de-
note the test problem of the hypothesis of randomness for seasonal data against a
monotone trend alternative with HR and introduce test procedures for HR.

2.1 Tests Based on Record Statistics

Foster and Stuart [7] introduce a nonparametric test procedure for HR based on
the number of upper and lower records in the sequence X1, . . . ,Xn and the reversed
sequence Xn, . . . ,X1. A test procedure for HR based on this approach which is robust
against seasonality is introduced by Diersen and Trenkler [5]. A first application of
their procedure is given in [6].

Using (1) we define upper and lower record statistics Uo
i, j, Lo

i, j, Ur
i, j and Lr

i, j of the
original and the reversed sequence for all periods j = 1, . . . ,k at i = 2, . . . ,n j as

Uo
i, j =

{
1 , if Xi, j > max{X1, j,X2, j, . . . ,Xi−1, j}
0 otherwise (2)

Lo
i, j =

{
1 , if Xi, j < min{X1, j,X2, j, . . . ,Xi−1, j}
0 otherwise (3)

Ur
n j−i+1, j =

{
1 , if Xn j−i+1, j > max{Xn j−i+2, j,Xn j−i+3, j, . . . ,Xn j , j}
0 otherwise

(4)

Lr
n j−i+1, j =

{
1 , if Xn j−i+1, j < min{Xn j−i+2, j,Xn j−i+3, j, . . . ,Xn j , j}
0 otherwise

(5)

with
Uo

1, j = Lo
1, j = Ur

n j , j = Lr
n j , j = 1 (6)

as the first value of a sequence is always an upper and a lower record.
Under H0 for a larger i the probability of a record will get smaller. Therefore

Diersen and Trenkler [5] recommend to use linear weights wi = i− 1 for a record
at the i−th position of the original or reversed sequence. The sum of the weighted
records of the original sequence

Uo =
k

∑
j=1

n j

∑
i=1

wiUo
i, j and Lo =

k

∑
j=1

n j

∑
i=1

wiLo
i, j , (7)
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and the sum of the records of the reversed series

Ur =
k

∑
j=1

n j

∑
i=1

wiUr
n j−i+1, j and Lr =

k

∑
j=1

n j

∑
i=1

wiLr
n j−i+1, j (8)

can be used as test statistics for HR. They are sums of independent rv and all have
the same distribution under H0. The expectations and variances are given by

E(Uo) =
k

∑
j=1

n j

∑
i=1

wi

i
and Var(Uo) =

k

∑
j=1

n j

∑
i=1

w2
i

i−1
i2

(9)

and especially

E(Uo) = k
n1

∑
i=1

i−1
i

and Var(Uo) = k
n1

∑
i=1

(i−1)3

i2
(10)

if linear weights wi = i− 1 are used and all periods j have the same number of
observations n1.

If an upward trend exists, Uo and Lr become large while Lo and Ur become small.
The opposite is true, if a downward trend exists. These informations can be used to
combine the sums in (8) and (9) and to use the statistics

T1 = Uo−Lo, T2 = Uo−Ur, T3 = Uo +Lr, T4 = Uo−Ur +Lr−Lo (11)

for HR. Under H0 the distributions of T1, T2 and T3 will not change, if T̃1 = Lr−Ur,
T̃2 = Lr−Lo and T̃3 = Ur +Lo, respectively, are taken instead of the sums given in
(11). From these statistics, only

T1 = Uo−Lo =
k

∑
j=1

n j

∑
i=1

wi
(
Uo

i, j−Lo
i, j
)

(12)

can be expressed as a sum of independent rv, because here records from the same
sequence are combined. We have under H0

E(T1) = 0 and Var(T1) = 2
k

∑
j=1

n j

∑
i=1

w2
i

i
. (13)

In contrast to T1, in T2, T3 and T4 we use records from the original sequence as well
as from the reversed sequence. So the summands here are not independent. We get
the expectations

E(T2) = E(T4) = 0 and E(T3) = 2
k

∑
j=1

n j

∑
i=1

wi

i
. (14)

while the variances of T2, T3 and T4 become unwieldly expressions and are given in
[6] for the case n1 = . . . = nk.
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Diersen and Trenkler [6] recommend a splitting with large k and small n j, j =
1, . . . ,k. The first reason for this are the asymptotic properties of the statistics in
(11). With X1, . . . ,Xn assumed to be independent and n1 = . . . = nk, the statistics
T1, T2, T3 and T4 are the sum of k i.i.d. rv. So for k → ∞ all four test statistics
are asymptotically normal distributed. These asymptotics are not fulfilled, if the
statistics in (11) are only weighted but not splitted. Diersen and Trenkler [5] showed
for this case that the asymptotic distribution is not a normal one. The second reason
is that compared to the best parametric test in the normal linear regression model
and the (non seasonal) Kendall–Test the asymptotic relative efficiency vanishes for
fixed k and increasing n j. So it is also an interesting question if the efficiency of
other nonparametric tests can be increased, if the time series is splitted with a large
k and a small number n j of observations in each period j.

2.2 The Seasonal Kendall-test

Mann [12] introduced a test for HR based on Kendall’s test for independence of two
random variables in a bivariate distribution [10]. It was modified by Hirsch et al.
[8] to robustify the test statistic against seasonal effects. Taking the splitted series in
(1), they use the test statistic

S =
k

∑
j=1

S j with S j =
n j−1

∑
i=1

n j

∑
i′=i+1

sgn(Xi′, j−Xi, j) (15)

for HR. So in S j the number of pairs (Xi, j,Xi′, j) with Xi, j < Xi′, j is subtracted from
the number of pairs (Xi, j,Xi′, j) with Xi, j > Xi′, j, i < i′, for period j. If there is a
positive (negative) monotonic trend in period j, the statistic S j is expected to be
large (small) while it will probably realise a value near 0 if there is no monotonic
trend. If the same positive (negative) monotonic behavior can be observed for all
periods, the statistic S will also become large (small). S will also take a value close
to 0, if no monotonic trend exists.

The exact distribution of S under H0 is symmetric with

E(S) =
k

∑
j=1

E(S j) = 0 (16)

and if there are no identical values (ties) in the observations of any period j, the
variance is given by

Var(S) =
k

∑
j=1

Var(S j) =
k

∑
j=1

n j(n j−1)(2n j +5)
18

(17)

as S1, . . . ,Sk are independent. A pair of observations is called a tie of extend δ , if δ
observations of x1, . . . ,xn have the same value. If X1, . . . ,Xn are continuous rv, the
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probability of a tie is zero, but for rounded values, ties can be observed. Let nδ , j be
the number of ties within X j with extend δ . Then the variance of S becomes smaller:

Var(S) =
k

∑
j=1

(
n j(n j−1)(2n j +5)−

n j

∑
δ=1

nδ , jδ (δ −1)(2δ +5)
)

18
(18)

As every S j is asymptotically normally distributed for n j → ∞, the statistic S as
a finite sum of independent asymptotically normally distributed rv is asymptoti-
cally normal, too, if n j converges to infinity for each j. The exact distribution of S
under H0 (neglecting ties) can be determined by enumerating all permutations of
X1, j, . . . ,Xn j , j for each j and calculating the values of S j for every permutation of
each j. The individual values and their frequencies can be easily calculated with
Chap. 5 of [11]. According to the frequencies of the single values for each S j, the
distribution of S can be obtained by reconsidering every possible combination of the
values and multiplying the corresponding frequencies. However, for large n calcu-
lating the exact distribution of S is time consuming, so the normal approximation
should be used whenever possible. Hirsch et al. [8] state that already for k = 12 and
n j = 3 the normal approximation of S j works well. They also claim that their test
is robust against seasonality and departures from normality, but not robust against
dependence. Hirsch and Slack [9] develop a test for HR, which performs better
than S if the data are autocorrelated. This test uses estimates of the covariances be-
tween two seasons based on Spearman’s rank correlation coefficient. The estimated
covariances are used to correct the variance of S in the normal approximation.

2.3 Some Rank Statistics for HR

Aiyar et al. [1] compare the asymptotic relative efficiencies of many nonparamet-
ric tests for the hypothesis of randomness against trend alternatives. They consider
mostly linear and nonlinear rank statistics, which we will use in the following for
HR:

Taken the splitted series from (1) let R(X1, j), . . . ,R(Xn j , j) be the ranks of the
continuous rv X1, j, . . . ,Xn j , j, for j ∈ {1, . . . ,k}. Then two linear rank test statistics
based on Spearman’s rank correlation coefficient are given by

R1 =
k

∑
j=1

R̃1, j with R̃1, j =
n j

∑
i=1

(
i− n j +1

2

)(
R(Xi, j)−

n j +1
2

)
and (19)

R2 =
k

∑
j=1

R̃2, j with R̃2, j =
n j

∑
i=1

(
i− n j +1

2

)
sign

(
R(Xi, j)−

n j +1
2

)
.

Both statistics are symmetric and have an expected value of 0. Their variances are
given by
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Var(R1) =
k

∑
j=1

Var(R̃1, j) =
k

∑
j=1

n2
j(n j +1)2(n j−1)

144
and

Var(R2) =
k

∑
j=1

Var(R̃2, j) with Var(R̃2, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k

∑
j=1

n2
j(n j +1)

12
, n j even

k

∑
j=1

n j(n j−1)(n j +1)
12

, n j odd .

(20)

Instead of considering all rv like in (19), the (1−2γ) truncated sample can be taken
for all periods, with γ ∈ (0,0.5). Like [1] we define

ci, j =

⎧⎨
⎩
−1 , 0 < i ≤ �γn j�
0 , �γn j� < i ≤ n j− �γn j�
+1 , n j− �γn j� < i ≤ n j

(21)

so that the two statistics

R3 =
k

∑
j=1

R̃3, j with

R̃3, j =
n j

∑
i=1

ci, j

(
R(Xi, j)−

n j +1
2

)
=

k

∑
j=1

⎛
⎝ n j

∑
i=n j−�γn j�+1

R(Xi, j)−
�γn j�

∑
i=1

R(Xi, j)

⎞
⎠ and

R4 =
k

∑
j=1

R̃4, j with

R̃4, j =
n j

∑
i=1

ci, j sign
(

R(Xi, j)−
n j +1

2

)

=
n j

∑
i=n j−�γn j�+1

sign
(

R(Xi, j)−
n j +1

2

)
−
�γn j�

∑
i=1

sign
(

R(Xi, j)−
n j +1

2

)
(22)

compare the sum of the most recent �γn j� ranks (signs) with the sum of the first
�γn j� ranks (signs). Again the expectation of R3 and R4 is 0. Under the null hypoth-
esis, the variances are given by

Var(R3) =
k
∑
j=1

n j(n j+1)�γn j�
6 and

Var(R4) =
k
∑
j=1

Var(R̃4, j) with Var(R̃4, j) =

{
2 n j

n j−1�γn j� , n j even
2�γn j� , n j odd .

(23)

Again the above variances are only valid if all observations have different values.
If ties occur, one possibility, which leads to a loss of power but keeps the variances
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from (20) and (23) under the null hypothesis is to give random ranks to tied obser-
vations. Alternatives like average ranks, which reduce the loss of power compared
to random ranks, are not considered here.

In addition to this, [1] also consider nonlinear rank statistics. In analogy to them
we define for each period j

Ii,i′, j =
{

1 , if Xi, j < Xi′, j
0 , otherwise , (24)

i, i′ ∈ {1, . . . ,n}, i �= i′. Under the null hypothesis of randomness, we have

E(Ii,i′, j) =
1
2

and Var(Ii,i′, j) =
1
4

. (25)

Based on the sign difference test [13] we define for HR

N1 =
k

∑
j=1

Ñ1, j with Ñ1, j =
n j

∑
i=2

Ii−1,i, j (26)

which counts the number of pairs for each period j, where the consecutive obser-
vation has a larger value and then sums these pairs over all periods. For each j we
have n j−1 differences. Under H0 and from (25) we get

E(N1) =
k

∑
j=1

1
2
(n j−1) and Var(N1) =

k

∑
j=1

1
12

(n j +1) . (27)

For each j the distribution of
n j

∑
i=2

Ii−1,i, j converges to a normal distribution [13].

Therefore the distribution of N1 converges to a normal distribution, too.
Another test for HR based on Cox and Stuart [3] is given by

N2 =
k

∑
j=1

Ñ2, j with Ñ2, j =
�n j/2�

∑
i=1

(n j−2i+1)Ii,n j−i+1, j . (28)

Cox and Stuart [3] show that N2 leads to the best weighted sign test with respect
to the efficiency of a sign test of HR. The linear rank test statistics R1 and R2 and
the procedure S of Kendall compare all pairs of observations, while in (28) each
observation is taken only for one comparison. Using (25) we get under H0

E(N2) =
k
∑
j=1

E(Ñ2, j) with E(Ñ2, j) =

⎧⎨
⎩

n2
j

8 , n j even
n2

j−1
8 , n j odd

and Var(N2) =
k
∑
j=1

1
24 n j(n2

j −1) . (29)
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Cox and Stuart [3] also introduce a best unweighted sign test, which can be formu-
lated for HR as follows

N3 =
k

∑
j=1

Ñ3, j with Ñ3, j =
ν j

∑
i=1

Ii,n j−ν j+i, j . (30)

The value ν j ≤ 1
2 n j is taken to compare observations further apart. We get

E(N3) =
k

∑
j=1

ν j

2
and Var(N3) =

k

∑
j=1

ν j

4
(31)

under H0. Cox and Stuart [3] recommend ν j = 1
3 n j.

Again a splitting with small n1 = . . . = nk and large k leeds asymptotically to a
normal distribution for all introduced test statistics, as k i.i.d. rv are added.

3 Comparison of the Nonparametric Tests for HR

Now we compare the different tests presented in Sect. 2 for different sample sizes
and splitting factors and for various alternatives. We consider the time series model

Xi, j = ai, j +Ei, j j = 1, . . . ,k, i = 1, . . . ,n j, (32)

where E1,1, . . . ,Enk,k are Gaussian white noise with expected value 0 and constant
variance σ2

E = 1. Xi, j is the i−th observation for season j. For simplicity we fix
the number of seasons to k = 4 and assume that each season has the same sample
size n1. Furthermore, the slopes are given by a1, j ≤ . . . ≤ an1, j. We are interested
in particular in three different kinds of monotone trends, with the same trend struc-
ture in each season. This means that for each j we have the same slopes. With
ai, j = iθ we achieve a linear trend, where the parameter θ controls the slope of
the straight line. We also consider a concave case with ai, j = θ

√
n1i, and a convex

case with ai, j = θ i2/n1, so that all trends increase to θn1. We consider sample sizes
n ∈ {12,24,32,48,64,96,120} and splittings into k̃ ∈ {1,4,8,12,16,24,32} groups
whenever ñ1 = n/k̃ is an integer. We do not consider splittings with ñ1 = 2 as here
R3 and R4 for γ = 1

3 as well as N3 with ν1 = . . . = νk̃ = 1
3 are not defined. The

other test statistics are equivalent in this case, as they all consider an unweighted
ranking of two observations in each splitting. With k̃ = 1 the unsplitted case is also
taken into account. In case of seasonal effects the power of all tests will probably
be reduced if k̃ = 1 is chosen. We compare the power of the tests of Sect. 2 for
all reasonable combinations of k̃ and n from above and take 1000 random samples
from (32) for each combination. We use the asymptotic versions of the tests at a sig-
nificance level of α = 0.05. The percentage cases of rejections of H0 estimate the
power of the several test procedures. Here we only consider the case of an upward
trend, i.e. θ > 0. We consider the linear, the convex and the concave case from above
and calculate the power of all tests for θ ∈ {0.01,0.02, . . . ,0.49,0.50}. To achieve
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monotone power functions, we use the R–function isotone from the R–package
EbayesThresh for monotone least squares regression to smooth the simulated
power curves ([14, 15]).

Firstly we compare the weighted record statistics. For n≥ 64 all power functions
take values close to 1, independently of the splitting factor k̃, if a linear trend with
θ > 0.1 exists. In the concave case only Uo and T2 with k̃ = 1 perform worse for
n = 64. An explanation for this is the strength of the slope. A positive concave trend
increases less towards the end of the time series. Hence there will be fewer records
at the end of the time series and Uo will perform worse than Lr. As our version
of T2 also uses Uo we receive similar results for this test statistic. In the convex
case similar results can be obtained for Lr as a convex upward trend of the original
sequence means a concave downward trend of the negative reversed series. The
power functions of the record tests for k̃ = 1 and k̃ = 4 can be seen in Fig. 1 for
the linear, the concave and the convex case. Looking also at other sample sizes n in
the linear case (see Fig. 2), we find that T3 performs best among the record tests in
most of the cases. Generally, the power of the record tests gets larger in the above
situations, if a larger k̃ is chosen. Only T3 performs better for a medium value of k̃,
e.g. k̃ = 4 for n = 32 or k̃ = 12 for n = 96. The previous findings are confirmed in
the case of a convex or concave trend.

In Fig. 3 the power functions of the rank tests are shown, when different k̃ for a
fixed n = 64 are used. We show the concave case here, because the differences are
qualitatively the same, but slightly bigger than for the linear or the convex trend.
The seasonal Kendall–Test S and Spearman–Test R1 perform best, when a small
k̃ is used. Conclusions about an optimal splitting for the other rank tests are hard
to state. If k̃ is large compared to n, the power of the tests is reduced for most of
the situations. However, generally we observe for all these tests (except N1) good
results, if k̃ = 4 is chosen. N1 performs worse than the other tests in most situations
even though it is the only test statistic with an increasing power in case of a larger
splitting factor k̃. From the rank tests S and R1 achieve the largest power in most
situations. Comparing the best rank tests S and R1 with k̃ = 4 and the best record
tests T3 and T4 with a large splitting factor k̃ = 4, S and R1 have a larger power in
every situation.

Next we consider a situation with autocorrelated data. Here the hypothesis of
randomness is not fulfilled, but no monotone trend exists. It is interesting which
test procedures are sensitive to autocorrelation in the sense that they reject H0 even
though there is no monotone trend. We consider an autoregressive process of first
order (AR(1))

Et = ρEt−1 + εt , t = 1, . . . ,n , (33)

with autocorrelation coefficient ρ , i.e. we assume the sequence E1, . . . ,En to be au-
tocorrelated with correlation ρ and hence the autocorrelation within E1, j, . . . ,En1, j
with Ei, j = Ek(i−1)+ j is smaller than ρ . The innovations ε1, j, . . . ,εn1, j are i.i.d. nor-
mally distributed random variables with expectation 0 and variance σ2

ε , where

σ2
ε = (1−ρ2)σ2

E = (1−ρ2) (34)
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Fig. 1 Power functions of the record tests for n = 64, small θ and k̃ = 1 (left) and k̃ = 4 (right)
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Fig. 2 Power functions of the record tests for n = 12 (top) and n = 96 (bottom) for different k̃

as we want to keep σ2
E equal to 1 again. We vary ρ in {0.025,0.05, . . . ,0.875,0.9}.

The resulting detection rates of the record tests can be seen in Fig. 4 for n = 96
and different values of k̃. T3 is more sensitive to positive autocorrelation than T1,
T2 and T4 if a small k̃ is used, but this difference vanishes for a large k̃. The better
performance of T1, T2 and T4 for small k̃ can be explained by the fact that they sub-
tract statistics which become large in case of monotonically decreasing sequences
from statistics which become large in case of monotonically increasing sequences.
Positive autocorrelations cause both patterns to occur so that the effects cancel out.

For the rank tests we get the following findings: N2 becomes robust against
autocorrelations ρ ≤ 0.6 for larger sample sizes n ≥ 48, if we choose k̃ so that we
have three observations in each split. We observe for the pairs n = 48, k̃ = 16 and
n = 96, k̃ = 32 for most of the values of ρ a power of less than α = 0.05. If we
choose a splitting factor leading to n1 > 3 this robustness is lost (see Fig. 5). N1
behaves the most insensitive against autocorrelation for a large k̃, but N1 was also
the test with the smallest power if a trend exists. For the other tests we have for
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Fig. 3 Power functions of the rank tests for different k̃ with n = 64 and a concave trend
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Fig. 4 Detection rates of the record tests for n = 96 and different k̃ with autocorrelation

a fixed n a higher detection rate, when a smaller splitting factor k̃ is used. If we
compare the record tests with the rank tests, we find that T3 reacts less sensitive to
autocorrelation than the rank tests in most situations.

4 Analysis of the Climate Time Series from Potsdam

Now the methods from Sect. 2 are applied to some real time series data. The two
series analysed here consist of the monthly observations of the mean air temperature
and the total rainfall in Potsdam between January 1893 and April 2008. There are no
missing values. The secular station in Potsdam is the only meteorological station in
Germany for which daily data have been collected during a period of over 100 years
without missings. The measures are homogeneous, what is due to the facts that the
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Fig. 5 Detection rates of the rank tests with n1 = 4 (top) and n1 = 3 (bottom) observations in each
splitting with autocorrelation

station has never changed its position, the measuring field stayed identical and the
sort of methods, prescriptions and instruments, which are used for the measuring,
have been kept.
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Fig. 6 Original (top) and detrended and deseasonalized (bottom) total rainfall time series

Before the methods from Sect. 2 can be applied, we have to check if the assump-
tions are fulfilled. Independence of the observations can be checked with the auto-
correlation function (ACF) and the partial autocorrelation function (PACF). Before
this we detrend the time series by subtracting a linear trend. We also deseasonalize
the time series by estimating and subtracting a seasonal effect for each month. The
original and the detrended deseasonalized time series can be found in Fig. 6 for the
total rainfall and in Fig. 7 for the mean temperature. The autocorrelation functions
of the detrended and deseasonalized time series show positive autocorrelations at
small time lags in case of the temperature and no correlation in case of the rainfall
(see Fig. 8). In the former case, a first order autoregressive model with a moderately
large AR(1) coefficient gives a possible description of the correlations. We use the
test statistics from Sect. 2 to test the hypothesis of randomness against the alterna-
tive of an upward trend in both time series.
We consider all test statistics except Lo and Ur as these tests are only useful to detect
a downward trend. As we have in both time series monthly observations for more
than 115 years, we choose the splitting factor k̃ as multiples of 12, more precisely
k̃ ∈ {12,24,60,120,240,360}. This guarantees that even R3, R4 (with γ = 1

3 ) and
N3 (with ν j = 1

3 n j) can be computed for each split. For every test procedure we use
the asymptotic critical values, which seems to be reasonable for the above k̃. The
resulting p–values can be seen in Table 1 for the total rainfall time series and in
Table 2 for the mean temperature.
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Fig. 7 Original (top) and detrended and deseasonalized (bottom) mean temperature time series

Fig. 8 Autocorrelation (left) and partial autocorrelation function (right) of the detrended and de-
seasonalized rainfall (top) and temperature time series (bottom)
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Table 1 p–values for the total rainfall time series (in percent)

k̃ 12 24 60 120 240 360

Uo 6.4 40.9 11.7 18.3 11.1 6.1
Lr 9.3 21.3 32.4 26.8 38.7 7.9
T1 4.2 34.9 14.2 7.9 14.8 9.8
T2 4.3 31.8 3.3 11.9 12.8 7.4
T3 2.3 23.7 12.9 15.7 17.8 4.6
T4 1.9 22.5 6.0 7.8 17.6 7.5
S 17.2 12.8 28.1 25.6 24.1 9.1
R1 19.4 15.7 33.2 39.2 37.5 13.0
R2 26.7 19.2 36.3 42.2 33.1 26.5
R3 44.0 38.6 57.0 58.9 45.5 11.1
R4 48.7 44.8 63.4 61.8 41.2 20.5
N1 8.2 35.6 32.4 18.6 5.1 5.8
N2 4.6 5.1 58.4 61.7 49.1 20.0
N3 61.1 61.1 46.1 46.1 46.1 14.6

Table 2 p–values for the mean temperature time series (in percent)

k̃ 12 24 60 120 240 360

Uo 0.00 0.00 0.00 0.00 0.00 0.00
Lr 0.00 0.03 0.01 0.00 0.00 0.00
T1 0.00 0.00 0.00 0.00 0.00 0.00
T2 0.00 0.00 0.00 0.00 0.00 0.00
T3 0.00 0.00 0.00 0.00 0.00 0.00
T4 0.00 0.00 0.00 0.00 0.00 0.00
S 0.00 0.00 0.00 0.00 0.00 0.00
R1 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.00 0.00 0.00 0.00 0.00 0.00
R3 0.00 0.00 0.00 0.00 0.00 0.00
R4 0.00 0.00 0.00 0.00 0.00 0.00
N1 97.42 13.40 5.04 21.07 0.05 0.06
N2 0.00 0.00 0.00 0.00 0.00 0.00
N3 0.00 0.00 0.00 0.00 0.00 0.00

For the total rainfall time series the record tests T1, T2, T3 and T4 with k̃ = 12
detect a monotone trend at a significance level of α = 0.05. From the rank tests
only N2 finds a monotone trend at this α . Using a larger splitting factor we only find
a monotone trend with T2 for k̃ = 60. Of course we need to keep in mind that we
perform multiple testing and thus expect about four significant test statistics among
the more than 80 tests performed here even if there is no trend at all.

All tests except N1 detect a monotone trend in the temperature time series for all
splittings k̃. The statistic N1 only detects a monotone trend, if k̃ is large. But as all
tests need the assumption of independence, the results of Table 2 can not be inter-
preted as p–values of unbiased tests. This is why we deseasonalize the temperature
time series and fit an AR(1)–Model to the deseasonalized series by maximum likeli-
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hood. If the data generating mechanism is an AR(1) process with uncorrelated inno-
vations, then the residuals of the fitted AR(1) model are asymptotically uncorrelated.
The residuals are even asymptotically independent, if the innovations are i.i.d. The
residuals are asymptotically normal, if the innovations are normally distributed (see
Section 5.3 of [2]). Looking at the plot of the scaled residual time series in Fig. 9 and
its ACF in Fig. 10, we do not find significant autocorrelations between the residuals.
However, the residuals do not seem to be identically normally distributed, as we can
find some outliers in the residual plot. Table 3 shows the p–values of the record and
rank tests for the residuals. We find mostly larger p–values than in Table 2, but again
all tests except N1 detect a positive monotone trend at α = 0.05, what confirms the
previous findings.

Fig. 9 Residuals of the temperature time series obtained from fitting an AR(1) model to the desea-
sonalized temperature time series

Fig. 10 ACF (left) and PACF (right) of the AR(1) residuals of the deseasonalized temperature
series
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Table 3 p–values for the residual temperature time series (in percent)

k̃ 12 24 60 120 240 360

Uo 0.30 0.19 0.07 0.07 0.00 0.15
Lr 2.77 0.41 0.13 0.93 0.24 0.09
T1 0.01 0.01 0.00 0.00 0.00 0.01
T2 0.44 0.07 0.05 0.08 0.00 0.12
T3 0.05 0.01 0.00 0.01 0.00 0.03
T4 0.02 0.00 0.00 0.01 0.00 0.01
S 0.00 0.00 0.00 0.00 0.00 0.01
R1 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.00 0.00 0.00 0.00 0.00 0.02
R3 0.00 0.00 0.00 0.00 0.00 0.00
R4 0.00 0.00 0.00 0.00 0.00 0.01
N1 93.10 23.01 11.80 53.56 0.10 1.91
N2 0.00 0.00 0.00 0.00 0.01 0.01
N3 0.01 0.03 0.00 0.00 0.00 0.00

5 Conclusions

We have considered nonparametric tests for trend detection in time series. We have
not found large differences between the power of the different tests. All tests based
on records or ranks react sensitive to autocorrelations. Our results confirm findings
by Diersen and Trenkler that T3 can be recommended among the record tests because
of its good power and its simplicity. Robustness of T3 against autocorrelation can be
achieved for the price of a somewhat reduced power by choosing a large splitting
factor k̃. However, even higher power can be achieved by applying a nonparametric
rank test like the seasonal Kendall–Test S or the Spearman–Test R1 with a small k̃,
even though for the price of a higher sensitivity against positive autocorrelation. The
power of all rank tests except N1 gets smaller, if a larger splitting factor is used. For
N1 a larger splitting factor enlarges the power, but N1 is not recommended to use,
as even with a large splitting factor it is less powerful than the other tests. From the
rank tests the test N2 seems robust against autocorrelations below 0.6, if only a few
observations are taken in each block. Another possibility to reduce the sensitivity to
autocorrelation is to fit a low order AR model and consider the AR residuals. We
have found a significant trend in the time series of the monthly mean temperature
in Potsdam both when using the original data and the AR(1) residuals. Since in the
plot of the scaled residuals for this series we find some outliers, another interesting
question for further research is the robustness of the several tests against atypical
observations.
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Nonparametric Trend Tests for Right-Censored
Survival Times

Sandra Leissen, Uwe Ligges, Markus Neuhäuser, and Ludwig A. Hothorn

Abstract In clinical dose finding studies or preclinical carcinogenesis experiments
survival times may arise in groups associated with ordered doses. Here interest may
focus on detecting dose dependent trends in the underlying survival functions of the
groups. So if a test is to be applied we are faced with an ordered alternative in the
test problem, and therefore a trend test may be preferable. Several trend tests for
survival data have already been introduced in the literature, e.g., the logrank test for
trend, the one by Gehan [4] and Mantel [12], the one by Magel and Degges [11],
and the modified ordered logrank test by Liu et al. [10], where the latter is shown
to be a special case of the logrank test for trend. Due to their similarity to single
contrast tests it is suspected that these tests are more powerful for certain trends
than for others. The idea arises whether multiple contrast tests can lead to a better
overall power and a more symmetric power over the alternative space. So based on
the tests mentioned above two new multiple contrast tests are constructed. In order
to compare the conventional with the new tests a simulation study was carried out.
The study shows that the new tests preserve the nominal level satisfactory from a
certain sample size but fail to conform the expectations in the power improvements.

1 Introduction

In clinical dose-finding studies we might look at the observed survival times of pa-
tients allocated to k dose groups xi j, i = 1, . . . ,k, j = 1, . . . ,ni, where ni is the sample
size of the i-th group. A common starting point for every patient is the beginning
of the treatment with the k-th dose. The endpoint can be varying, eg., the release
of a symptom or death due to a certain disease or condition, so that literally a sur-
vival time is observed. We want to concentrate on the latter case which we might
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Fakultät Statistik, Technische Universität Dortmund, D-44221 Dortmund, Germany
leissen@statistik.tu-dortmund.de
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encounter in oncology or cardiology studies. The starting point is usually known
here for every patient. However, due to losses-to-follow-up’s or deaths for other
reasons, the exact time of the occurrence of the endpoint may not be available for
every patient. So we have to deal here (partly) with right-censored survival times.

In order to put this into a more formal framework, consider Ti j, i = 1, . . . ,k, j =
1, . . . ,ni, to be the independent random variables of the survival times to occur with
outcomes t11, . . . , tknk . Further let Ci j, i = 1, . . . ,k, j = 1, . . . ,ni, be independent ran-
dom variables with outcomes c11, . . . ,cknk , where Ci j reflects the censoring time cor-
responding to the survival time Ti j. For each of the k groups it is assumed that the
survival times Ti1, . . . ,Tink of the group populations and the corresponding censoring
times Ci1, . . . ,Cink follow the same distribution respectively. Further it is supposed
that the (Ti j,Ci j) are pairwise independent. It is not possible to observe both ti j and
ci j for a study object (i, j), but xi j, the outcome of Xi j = min(Ti j,Ci j). Additionally,
the status of every survival time is known. If ti j ≤ ci j the observation is uncensored.
If ti j > ci j the observation is right-censored and we mark the censored survival time
with x∗i j.

The main question in such a dose-finding study could be whether the survival
time increases with the dose. So we look at the survival functions of the k groups
given by

Si(t) := P(Ti j ≥ t) = 1−Fi(t), i = 1, . . . ,k,

where Fi(t) denotes the distribution function of the survival times of the patients in
group i. Now we expect the order of the doses to be transferred to the corresponding
survival functions of the groups. So if a test is to be used our test problem reads

H0 : S1 = . . . = Sk vs. H< : S1 ≤ . . .≤ Sk with S1 < Sk . (1)

Another example for such a situation arises in preclinical carcinogenesis experi-
ments. Here the starting point might be again the begin of a treatment with a certain
dose. The endpoint is often chosen to be the occurrence of the first tumour. The
question of interest here is whether the risk of a tumour increases with the dose. The
according test problem can be formulated as

H0 : S1 = . . . = Sk vs. H> : S1 ≥ . . .≥ Sk with S1 > Sk . (2)

Both test problems show a trend in the survival functions in the alternatives.
Therefore, the test to be applied should be sensible for such ordered alternatives.
Various so-called trend tests have already been proposed in the literature, eg., the
logrank test for trend (cf. Collett [3]), the one by Gehan [4] and Mantel [12], the
one by Magel and Degges [11], and the modified ordered logrank test by Liu et al.
[10].

The alternative space of the test problem (1) and (2) is big for k ≥ 3 and in-
creases with k. Therefore, it is further desirable that a trend test shows a symmetric
distribution of its power over the alternative space. It is suspected that the trend
tests mentioned above are not satisfying in this regard. This suspicion is due to the
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structural similarity of the tests to single contrast tests as they are known for the
classical k-sample problem with comparable ordered test problems to (1) and (2)
(cf. section 3). For the latter setting Mukerjee et al. [13] describe multiple contrast
tests. The idea arises to transfer this methodology to the setting of right-censored
survival times with the test problems (1) and (2). From this we expect to gain new
trend tests with a higher overall power and, more importantly, a more symmetric
power over the alternative space. So a new trend test based on the logrank test for
trend as well as a new one based on the trend test by Gehan [4] and Mantel [12]
are built using the construction principle of multiple contrast tests. The modified
logrank test is not further regarded since this test is a special case of the logrank test
for trend (which is shown in the next section). A comprehensive simulation study
including many different scenarios of, e.g., distributions, sample sizes, degrees of
censoring and ties, is carried out to compare the conventional with the new tests.

The conventional tests are introduced in the next section. In section 3 the setting
of single and multiple contrast tests is established and the two new trend tests are
introduced. The experimental design and the results of the simulation study are pre-
sented in section 4. Note that only test problem (1) is considered in the following.
For dealing with test problem (2) the order of the groups can be simply reversed, so
that test problem (1) results again. Besides, for every test presented here, a corre-
sponding version for test problem (2) as well as for the test problem

H0 : S1 = . . . = Sk vs. H<,> : H< or H> ,

if possible, is given in Leissen [9].

2 Conventional Trend Tests

2.1 The logrank test for trend

Consider k groups of survival data with distinct event times s j, j = 1, . . . ,m. For
each event time let n1 j, . . . ,nk j be the number of objects at risk and d1 j, . . . ,dk j be
the number of events respectively. Further let n. j :=∑k

i=1 ni j and d. j :=∑k
i=1 di j. For

fixed d. j,n1 j, . . . ,nk j the d1 j, . . . ,dk j build a random vector following under H0 a
multivariate hypergeometric distribution with density

f (d1 j, . . . ,dk j) =

(
n1 j

d1 j

)
· · · · ·

(
nk j

dk j

)
(

n. j

d. j

)

and expected values

E(di j) = ni j
d. j

n. j
=: ei j
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in the marginal distributions. For each group consider the sum of the observed and
expected number of events over the single event times

Li =
m

∑
j=1

(di j− ei j), i = 1, . . . ,k, (3)

and the weighted sum of the Li over the groups

LT(w) =
k

∑
i=1

wiLi =
k

∑
i=1

wi(di.− ei.) . (4)

If H0 is true, it holds that E(LT(w)) = 0 and that

Var(LT(w)) =
m

∑
j=1

d. j(n. j−d. j)
(n. j−1)

(
k

∑
i=1

w2
i

ni j

n. j
−
( k

∑
i=1

wi
ni j

n. j

)2
)

(5)

(cf. Leissen [9]), so that the statistic

LRT(w) = LT(w)

/√
Var(LT(w)) (6)

follows a standard normal distribution asymptotically. The weights wi can be cho-
sen arbitrarily (in particular they do not have to sum up to 1) although they should
be chosen sensibly. Collett [3] indicates that linear weights are often chosen to ex-
press a linear trend among the groups. A relatively high value of a Li indicates that
the survival function Si of group i is stochastically smaller than those of the other
groups since more events occur than expected under H0. So with weights (k, . . . ,
1) a sensible test with size α is constructed if H0 is rejected in favour of H< if
LRT(w) > u(1−α), where u(1−α) denotes the (1−α)-quantile of the standard normal
distribution. For a more detailed description see Collett [3] and Leissen [9].

2.2 The modified ordered logrank test

Liu et al. [10] propose the so-called modified ordered logrank test with the test
statistic

LIT =
∑k−1

r=1 L(r)√
Var

(
∑k−1

r=1 L(r)
) , (7)

where

L(r) =
m

∑
j=1

(d(1...r) j− e(1...r) j), r = 1, . . . ,k−1, (8)
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with d(1...r) j = d1 j + . . .+ dr j and e(1...r) j = e1 j + . . .+ er j, so that L(r) corresponds
to the logrank statistic Li according to (3) for the combined sample 1, . . . ,r. The
variance in the nominator of the test statistic is given by Liu et al. [10] for the
special case of no ties in the data. A general derivation can be found in Leissen [9].

It can be shown that the statistic LIT is a special case of the statistic LRT(w) given
in (6). For the proof it is needed that

e.. =
m

∑
j=1

k

∑
i=1

ei j =
m

∑
j=1

d. j

n. j

k

∑
i=1

ni j =
m

∑
j=1

d. j = d.. . (9)

Now consider that the numerator of LIT can be rewritten as

k−1

∑
r=1

L(r) =
m

∑
j=1

(d1 j− e1 j)+ . . .+
m

∑
j=1

(d(1...(k−1)) j− e(1...(k−1)) j)

= (d1.− e1.)+ . . .+
(
(d1.− e1.)+ . . .+(d(k−1).− e(k−1).)

)
= (k−1)(d1.− e1.)+ . . .+(d(k−1).− e(k−1).) . (10)

If weights w1, . . . ,wk of equal distance c ∈ R are chosen, so that w1−w2 = c,
w1−w3 = 2c, . . ., w1−wk = (k−1)c, then the numerator of LRT(w) can be writ-
ten as:

LT(w) = w1(d1.− e1.)+ . . .+wk(dk.− ek.)

= wk
(
(d1.− e1.)+ . . .+(dk.− ek.)

)
+

(w1−wk)(d1.− e1.)+ . . .+(w(k−1)−wk)(d(k−1).− e(k−1).)
= wk(d..− e..)+ . . .

(9)
= (w1−wk)(d1.− e1.)+ . . .+(w(k−1)−wk)(d(k−1).− e(k−1).)

= c
(
(k−1)(d1.− e1.)+ . . .+(d(k−1).− e(k−1).)

)
. (11)

In comparing (10) with (11) we see that for the given weights above the numerator
of the test statistic of the logrank test for trend is c times bigger than the numerator
of the test statistic of the modified ordered logrank test. If c = 1 the numerators
are identical and thus the whole test statistics are identical as well. But also for all
decreasing weights with equal distances (such as w1 = 4, w2 = 3, w3 = 2, w4 = 1
or w1 = 6, w2 = 2, w3 = −2, w4 =−6 for four groups, i.e. c is positive) equal test
statistics result. This is due to the normalisation in the denominator.

2.3 The trend test by Gehan and Mantel

In the U-statistic by Mann and Whitney (cf. Büning and Trenkler [2]) it is counted
how many observations of one sample (xi′1, . . . ,xi′ni′

) are greater than those of an-
other sample (xi1, . . . ,xini):
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U ′ii′ =
ni

∑
j=1

ni′

∑
j′=1

W ′j j′ with W ′j j′ =
{

1, xi j < xi′ j′

0, xi j > xi′ j′ .
(12)

In order to be able to apply this test to right-censored (and tied) survival times,
Gehan [4] proposes the following modification of the rank statistic W ′j j′ :

Wj j′ =

⎧⎨
⎩

1, xi j < xi′ j′ or xi j ≤ x∗i′ j′
0, xi j = xi′ j′ , (x∗i j,x

∗
i′ j′), x∗i j < xi′ j′ or xi j > x∗i′ j′

−1, xi j > xi′ j′ or x∗i j ≥ xi′ j′ .

(13)

Obviously Wj j′ allows for the comparison of the values of a censored and another
(un-)censored observation. The resulting

Uii′ =
ni

∑
j=1

ni′

∑
j′=1

Wj j′ (14)

is amongst others known as Gehan’s Generalized Wilcoxon-Statistic. Let n(ii′) :=
ni + ni′ . Mantel [12] determines the permutational distribution of Uii′ and derives
that under H0 : Si = Si′ it holds that

E(Uii′) = 0 , Var(Uii′) =
nini′∑

n(ii′)
j=1

(
∑

n(ii′)
j′=1 Wj j′

)2

n(ii′)(n(ii′)−1)
, (15)

and that Uii′ is asymptotically normally distributed.
Moreover, Terpstra [18] and Jonckheere [8] developed independently of each

other an extension of the Mann-Whitney-Test for ordered alternatives. It is espe-
cially designed to detect trends in the distribution functions of k (k ≥ 3) groups.
Their test statistic reads

JT =
k−1

∑
i=1

k

∑
i′=i+1

U ′ii′ .

In order to construct a trend test for the test problems (1) and (2), Gehan [4] uses his
“trick” again and replaces U ′ii′ by Uii′ in JT :

G =
k−1

∑
i=1

k

∑
i′=i+1

Uii′

= U12 + . . .+U1k +U23 . . .+U2k + . . .+Uk−1k

= U12 +U13 +U23 + . . .+U1k + . . .+Uk−1k

=
k

∑
i=2

U(1...i−1)i ,
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where U(1...i−1)i = U1i + . . .+Ui−1i denotes the U-statistic according to (14) for the
combined samples of groups 1, . . . , i− 1 and the sample of group i. Besides Terp-
stra [18] shows that U ′12, . . . ,U

′
(1...k−1)k are independent under the null hypothesis of

equality of the distribution functions of the k groups. It is expected that this also
holds for U12, . . . ,U(1...k−1)k. Hence a meaningful statistic for testing of trend in sur-
vival functions of k groups is constructed according to Gehan [4] and Mantel [12]
with

GMT =
G√

∑k
i=2 Var(U(1...i−1)i)

, (16)

where Var(U(1...i−1)i) is given through (15) with

Var(U(1...i−1)i) =
n(1...i−1)ni∑

n(1...i)
j=1

(
∑

n(1...i)
j′=1 Wj j′

)2

n(1...i)(n(1...i)−1)
, n(1...i) :=

i

∑
i′=1

ni′ . (17)

Gehan [4] assumes that GMT follows a standard normal distribution asymptotically.
Due to the results of the simulation study in section 4 it appears that this holds. As
relatively big/small values of GMT speak for a positive/negative trend in the survival
functions of the k groups, an appropriate test with level α for the test problem (1) is
constructed if H0 is rejected if GMT > u1−α . This test will be called Gehan-Mantel-
Test.

2.4 The trend test by Magel and Degges

Let Xi j i.i.d. with continuous cdf F(X−θi), i = 1, . . . ,k, j = 1, . . . ,ni. Hettmansperger
and Norton [5] look at the k-sample test problem with location shifts in the alterna-
tive

HHN
0 : θ1 = . . . = θk vs. HHN

1 : θi = θ0 +θci (θ > 0, θ0 ∈ R)

with arbitrary but fixed ci. Amongst others they propose the test statistic

HNT =
HN√

Var(HN)
with HN =

k−1

∑
i=1

k

∑
i′=i+1

(gi′ −gi)
nini′

U ′ii′ , (18)

where U ′ii′ is defined as in (12) and gi = λi(ci− c̄w) with λi = ni
n , n = ∑k

i=1 ni, and
c̄w = ∑k

i=1λici. If a trend is suspected in the data, but cannot be specified further,
the authors recommend the usage of linear constants ci, e.g., ci = 1, . . . ,ci = k in the
case of an increasing alternative. Although the test is introduced for a test problem
with location shifts in the alternative, it may also be applied for test problems with
general trends in the alternative, as in terms of (1) and (2).
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In order to make this test usable for right-censored survival times, Magel and
Degges [11] follow the idea of Gehan [4] and replace U ′ii′ by Uii′ in HNp, where the
latter is given by (14). This results in the test statistic

MDT(c) =
MD(c)√

Var(MD(c))
with MD(c) =

k−1

∑
i=1

k

∑
i′=i+1

(gi′ −gi)
nini′

Uii′ . (19)

Magel and Degges [11] show that MDT(c) is asymptotically standard normally dis-
tributed under H0. Further they derive the formula of Var(MD(c)) for a data situation
without ties. As this formula is very lengthy it is left out here. The simulation results
in section 4 will show that the test tends to be conservative when there are ties in
the data. This may be unsatisfactory in real applications, but here it entails that this
test does not have to be excluded from the power comparison of all trend tests in
scenarios with ties. In order to reach a sensible test for test problem (1) with asymp-
totic size α , increasing weights ci, e.g., (1, . . . , k), must be chosen in MD(c), and H0
must be rejected if MDT(c) > u1−α . We will call this test Magel-Degges-Test.

3 Multiple Contrast Tests

An ordered alternative as in (1) or (2) contains several partial alternatives, whereas
the number of these grows with the number of groups. If there are three groups the
alternative in (1) includes the partial alternatives:

(T.3.1) S1 = S2 < S3, (T.3.2) S1 < S2 = S3, (T.3.3) S1 < S2 < S3 .

In the case of four groups the number of partial alternatives increases to seven:

(T.4.1) S1 = S2 = S3 < S4,

(T.4.2) S1 = S2 < S3 = S4,

(T.4.3) S1 < S2 = S3 = S4,

(T.4.4) S1 = S2 < S3 < S4,

(T.4.5) S1 < S2 = S3 < S4,

(T.4.6) S1 < S2 < S3 = S4,

(T.4.7) S1 < S2 < S3 < S4 .

For every number of groups k ≥ 3 the number of partial alternatives νk for (1) and
(2) can be determined by νk = 2(k−1)− 1. As it is not known a-priori which of the
partial alternatives is on hand, it is desirable that a trend test shows a symmetric
power over the alternative space. It is suspected that the trend tests introduced in the
last section rather offer an asymmetric power over the alternative space.
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Therefor, consider that the k-sample problem introduced in section 1 and (1)
can be understood as a nonparametric counterpart, based on survival times, for the
classical parametric k-sample problem Xi j ∼ N(μi,σ2), i = 1, . . . ,k, j = 1, . . . ,ni,
with the ordered one-sided test problem

Hμ
0 : μ1 = . . . = μk vs. Hμ

1 : μ1 ≤ . . .≤ μk with μ1 < μk .

For testing such a problem, a single contrast test

EKT(a) = ∑k
i=1 aiX̄i√

V̂ar
(
∑k

i=1 aiX̄i
) with

k

∑
i=1

ai = 0 (20)

can be used, where X̄i = ∑ni
j=1 Xi j denotes the sample mean of group i and a =

(a1, . . . ,ak) is a contrast vector. Since this vector imposes an order and weighting of
the groups, it appears to be feasible that the choice of the contrast is crucial for the
distribution of the power of a test over the alternative space. In fact the power of a
single contrast test depends strongly on the pattern of the true means μ1, . . . ,μk. The
extent of this dependence is shown, e.g., by Hothorn et al. [7] and Neuhäuser and
Hothorn [15].

The idea arises whether more symmetry over the alternative space can be reached
by combining several contrast vectors in one test statistic, as it is done in multiple
contrast tests. These are described by Mukerjee et al. [13] for the situation specified
above. There the test statistic of a multiple contrast test is defined as

MKT(b) = max(EKT(b1), . . . ,EKT(bq)) . (21)

The contrasts for the q,q ≥ 2, statistics EKT(b1), . . . , EKT(bq) should be chosen in
such a way that they cover the alternative space as good as possible. Bretz and
Hothorn [1] present different tuple of contrast vectors and indicate that step con-
trasts

b̃h = (b̃h1, . . . , b̃hk), h = 1, . . . ,k−1 with

b̃hi =
{
−(k−h), i = 1, . . . ,h
h, i = h+1, . . . ,k (22)

have proven to be a good choice in similar problems in the literature. The multiple
contrast test with these (k−1) contrasts for k groups goes back to Hirotsu [6]. Their
justification for the choice of the step contrasts is that they display the “edges” of
the subspace restricted by Hμ

1 in the (k−1) dimensional space. From their usage it
follows that the first h groups and the last k− h groups are combined respectively
and that the combined groups are set in contrast.
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3.1 The logrank maximum test

If in LT(w), compare (4), weights are chosen which add up to 0, the logrank test
for trend also represents a single contrast test. Here the deviation of observed and
expected events of the groups are set into contrast. An analogous multiple contrast
test to (21) with step contrasts for test problem (1) can be constructed on the basis
of the statistic

LT M(b′) = max(LT(b′1), . . . ,LT(b′k−1)) , (23)

where b′h =−b̃h,h = 1, . . . ,k−1. These inversed step contrasts are used in order to
consider decreasing weights again, so that again relatively big values of LT(w) speak
against H0 (compare section 2.1).

The determination of the distribution of such a maximum statistic is very elabo-
rate and therefore not accomplished here. Actually, the distribution of a statistic does
not have to be known when a test is to carry out. It suffices that arbitrary quantiles
of the distribution are determinable under H0. Let mα be the α-quantile of the dis-
tribution of a maximum statistic of arbitrary statistics Ti, i = 1, . . . ,k,k ∈ Z

+. Since
it holds that

P
(

max(T1, . . . ,Tk) < mα
)

= P(T1 < mα , . . . ,Tk < mα) ,

the quantiles of the distribution of a maximum statistic correspond to the equico-
ordinate quantiles of the mutual distribution of the single elements of the maxi-
mum statistic. Thus it is possible to use appropriate equicoordinate quantiles of the
element-wise mutual distribution of a maximum statistic as critical values for the
test decision of the resulting maximum test.

The statistics LT(b′1), . . . ,LT(b′k−1) are all asymptotically standard normally dis-
tributed under H0 (compare section 2.1). From this the multivariate standard nor-
mal distribution does not follow to be the asymptotic mutual distribution. But we
shall assume so, since simulations (compare section 4.2) show that the test based
on LT M(b′) approaches the defined size α = 0.05 for increasing sample size when
the equicoordinate 0.95-quantile of the multivariate standard normal distribution is
used. In order to build a test statistic, the vector

LTV(b′) =
(

LT(b′1) · · · LT(b′k−1)

)t

has to be standardised. Under H0 the expectation vector is the null vector. The
variance of LT(b′h),h = 1, . . . ,k− 1, and the covariance of LT(b′h) and LT(b′

h′ )
with

h = 1, . . . ,k−2 and h′ = 2, . . . ,k−1,h �= h′ are derived in Leissen [9]. The variance
is given by (5), whereas LT(w) must be replaced by LT(b′h). The covariance reads

Cov(LT(b′h),LT(b′
h′ )

) =
m

∑
j=1

d. j(n. j−d. j)
n2

. j(n. j−1)

(
k

∑
i=1

(
b′hini j(b′h′in. j−

k

∑
i=1

b′h′ini j)
))

.
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Finally the test statistic for a multiple contrast test based on the statistics LT(w) with
step contrasts b′h is given by:

LRM(b′) = max(LTV t
(b′) ·Σ

− 1
2

LTV(b′)
) , (24)

where Σ−
1
2

LTV(b′)
is the inverse square root of the covariance matrix of LTV(b′). Let

z1−α be the equicoordinate (1− α)-quantile of the multivariate standard normal
distribution. A sensible test for the test problem (1) is given, if H0 is rejected for
LRM(b′) > z1−α .

3.2 The Gehan-Mantel maximum test

In fact the Gehan-Mantel-Test (compare section 2.3) does not represent a single
contrast test as introduced in (20). So a multiple contrast test as in (21) based on
the Gehan-Mantel-Test cannot be constructed. But consider that in the U-statistics
U(1...i−1)i, i = 2, . . . ,k, the groups 1, . . . , i− 1 are combined and set in contrast to
group i. Hence the sum G reflects the contrasts

b∗h = (b∗h1, . . . ,b
∗
hk), h = 1, . . . ,k−1 with

b∗hi =

⎧⎨
⎩
−1, i = 1, . . . ,h
h, i = h+1
0, i = h+2, . . . ,k .

As sum of different contrasts, G renders a certain contrast as well. Therefore, a max-
imum test with contrasts in the respective elements based on the Gehan-Mantel-Test
is constructed. The contrasts b∗h, h = 1, . . . ,k− 1, correspond to Helmert contrasts
of different dimensionalities. They are also given by Bretz and Hothorn [1] as a pos-
sible choice for building a multiple contrast test. So simply the maximum of the
single U(1...i−1)i, i = 2, . . . ,k, is taken to build a new maximum statistic. Under H0
each U(1...i−1)i follows a normal distribution with zero mean asymptotically. Further
the U(1...i−1)i are independent and their variance is given by (17). Altogether

GMM = max

⎛
⎝ U12√

Var(U12)
, · · · ,

U(1...k−1)k√
Var(U(1...k−1)k)

⎞
⎠ (25)

will be used as test statistic of another maximum test for the test problem (1). Due
to the same reasons as stated in the last section, the statistic GMM will be com-
pared with the equicoordinate (1−α)-quantile of the multivariate standard normal
distribution. Again the simulations results of section 4.2 will show that then the test
maintains the nominal level α = 0.05 asymptotically.
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A maximum test statistic for the test problem (1) based on the test statistic of
the Magel-Degges-Test which is constructed analogously to LRM and GMM is also
proposed in Leissen [9]. As the simulation results showed that this test does not
preserve the defined nominal level of α = 0.05, this test was discarded.

From now on we will also refer to all introduced tests by using the names of their
corresponding test statistics.

4 Simulation Study

4.1 Layout of the simulation study

A simulation study was carried out to investigate the power of the five presented
tests (namely the LRT , LRM, GMT , GMM, and MDT ) over the alternative space
and to compare the maximum tests with their sum based counterparts. Only data
with a positive trend in the survival functions, as imposed by the alternative in (1),
was simulated. In the LRT the recommended weights (k, . . . ,1) were used (in the
decreasing version, so that relatively big values of the statistic speak for a positive
trend). Analogously, the weights (1, . . . ,k) were chosen in the MDT . The test statis-
tics of all the other tests are already constructed in such a way that relatively big
values speak for the alternative in (1). Incidentally, due to symmetry properties of
the test statistics and the underlying asymptotic normality, the power estimations are
also valid for the test problem (2).

In real applications data sets with survival times vary regarding their degree of
censoring and ties. The distribution of the observations depends on the endpoint
of interest. The sample size of a study is determined depending on the research
problem and costs. Last but not least the difference between survival functions can
be of various kinds. It is plausible that the power of the tests varies for different
scenarios of the data, and more importantly, that the power ratio of the tests to each
other might change from one scenario to another. Therefore, the power of the tests
was simulated for many different scenarios by choosing the following factors and
settings:

1. Distribution
By nature survival times follow a continuous distribution on the positive axis
whereas further the distribution is often right-skewed by experience. For these
reasons the Weibull, the Exponential, the Gamma and the Lognormal distribution
are often used to model survival times. But situations have also encountered in
which the survival times are approximately normally distributed. Therefore, a
representative of each distribution mentioned was selected as setting: W(0.5, 1),
Exp(1), Ga(3, 1), N(3, 1), LogN(0, 1). The parameters were chosen so that the
distributions look as different as possible.

2. Number of groups (equivalently to number of partial alternatives)
As the number of partial alternatives increases rapidly with the number of groups
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(compare section 3), scenarios with three and four groups only were considered
for the sake of clearness.

3. Group sizes
In order to preserve the here defined nominal level of α = 0.05 satisfactory, it
was decided to choose 20 observations per group as the minimum sample size
(compare section 4.2). The group size of 50 observations each was also consid-
ered. Further an unbalanced design was also to be investigated. In order to reflect
the situation of many clinical studies in which the control group contains more
observations than the others, the designs (50, 20, 20) for three groups and (50,
20, 20, 20) for four groups were chosen.

4. Shifts of the survival functions
For generating the differences between the survival functions according to the
alternative in (1) the following location and scale shifts were used:

Sk
lo,li(t) = S(t−θ k

li) and Sk
sc,li(t) = S

(
t exp(−θ k

li)
)

with θ k
li = a

ψk
li√
n

.

The survival function S(t) corresponds to one of the initial distributions W(0.5,
1), Exp(1), Ga(3, 1), N(3, 1) or LogN(0, 1) given above. The sample size n of
the whole scenario serves as standardisation. The values ψk

li depend on the group
i = 1, . . . ,k, on the partial alternative l = 1, . . . ,νk (compare section 3), and on
the number of groups k = 3,4. They can be taken from the matrices

Ψ 3 = (ψ3
li) =

⎛
⎝0 0 1

0 1 1
0 1

2 1

⎞
⎠ and Ψ 4 = (ψ4

li) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 1 1
0 1 1 1
0 0 1

2 1

0 1
2

1
2 1

0 1
2 1 1

0 1
3

2
3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These matrices are sensible since each row expresses the course of a partial al-
ternative. Note that the survival function of the first group always corresponds to
one of the initial distributions. In every row of the two matrices a step between
the survival functions with a total value of 1 is expressed. With the constant a it
is possible to influence this total value of the steps, so that it reflects the intensity
of the shifts. In the simulations values of a = 1, . . . ,9,11,13,15 were considered.

5. Degree of censoring
The random variable which reflects the censoring time is assumed to follow a
uniform distribution on the interval [0,b] (cp. Magel and Degges [11]). If censor-
ing underlies a scenario, a censoring time is drawn for every simulated survival
time. If the censoring time is bigger than the survival time, nothing is changed,
if it is smaller, the survival time is reduced to this censoring time and is regarded
as a censored survival time. The right limit of the interval [0,b] is determined for
every scenario such that a desired percentage of censoring in the data is approxi-
mately achieved. As setting a weak (20%), a medium (30%), and a strong (50%)
degree of censoring was considered.
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Table 1 Combinations of the factors group sizes, degree of censoring, and degree of ties in the
simulation study

combination group sizes degree of censoring degree of ties
1 20 each null null
2 20 each medium null
3 20 each null medium
4 50 each null null
5 unbalanced null null
6 unbalanced medium medium

unbalanced = 1st group 50, thereafter 20

6. Degree of ties
Ties are generated in the data by rounding of the drawn random numbers. A
weak, medium, and strong degree of ties indicates the rounding to two, one, and
zero decimal places.

The execution of a full factorial design with all these factors and their settings would
have been too computationally intensive. Therefore, only the number of groups with
all partial alternatives, the distributions, and the kind of shifts with the given intensi-
ties were full factorially combined. All the resulting combinations were carried out
once in conjunction with the six fixed combinations which are displayed in Table 1.
For further explanations on the choice of the factors and settings as well as on the
generation of the survival times due to the given constraints of the scenarios, we
refer to Leissen [9].

Each scenario was simulated with 10000 runs. Then for each generated data
set the test statistics of the five trend test were computed and compared with the
(equicoordinate) 0.95-quantile of the (multivariate) standard normal distribution (as
described in sections 2 and 3). Finally the power of every test for every scenario was
estimated by dividing the resulting number of rejections by the number of runs.

Another part of the simulation study was to check if the trend tests (especially
the maximum tests as the asymptotic normality is not proved here) preserve the
defined level α = 0.05. Therefore, the type I error rates of the tests were simulated
for various scenarios.

All computations as well as the graphics in this paper were generated with R (R
Development Core Team [17]). Most parts of the code for the reproducible simu-
lation study (with detailed explanations) can be found in Leissen [9]. In the course
of the simulation study 7200 simulations were carried out. Due to space restrictions
only a fraction of the results can be presented. For a more comprehensive presenta-
tion we refer to Leissen [9].

4.2 Investigation of the compliance with the nominal level

In Table 2 the simulated type I error rates of the five trend tests under investigation
are listed up for some different scenarios. When there are no censored and tied ob-
servations the LRT , GMT , GMM, and MDT approximate satisfactory the nominal
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Table 2 Simulated type I error rates for different scenarios with four groups

LRT LRM GMT GMM MDT LRT LRM GMT GMM MDT
no censoring, no ties no censoring, no ties
group sizes: each 20 group sizes: each 50

W(0.5, 1) .053 .057 .050 .044 .049 .057 .059 .055 .053 .055
Exp(1) .054 .068 .051 .052 .050 .050 .054 .045 .047 .045
Ga(3, 1) .053 .065 .053 .052 .053 .052 .055 .050 .044 .050
N(3, 1) .050 .060 .050 .049 .049 .050 .054 .047 .047 .047
LogN(0, 1) .051 .063 .047 .050 .048 .050 .060 .050 .050 .050

strong degree of censoring, no ties no censoring, no ties
group sizes: each 20 group sizes: 50/20/20/20

W(0.5, 1) .048 .053 .044 .042 .032 .045 .055 .046 .047 .047
Exp(1) .050 .056 .049 .042 .046 .048 .053 .051 .045 .050
Ga(3, 1) .052 .060 .045 .043 .044 .050 .056 .052 .053 .053
N(3, 1) .053 .062 .046 .040 .041 .048 .053 .050 .049 .050
LogN(0, 1) .055 .059 .050 .048 .046 .047 .052 .046 .048 .048

no censoring, strong degree of ties strong degree of censoring and ties
group sizes: each 20 group sizes: 50/20/20/20

W(0.5, 1) .055 .064 .054 .054 .038 .048 .047 .050 .049 .058
Exp(1) .052 .055 .054 .056 .038 .049 .051 .049 .049 .062
Ga(3, 1) .054 .056 .051 .050 .048 .047 .050 .044 .037 .044
N(3, 1) .053 .050 .052 .047 .047 .046 .050 .044 .041 .033
LogN(0, 1) .054 .057 .049 .051 .042 .049 .047 .050 .043 .059

level of α = 0.05 already for 20 observations in each group. Only the LRM still
shows up to be quite anticonservative in this situation. The anticonservatism de-
creases when 50 observations per group or the unbalanced design underlies a sce-
nario. The other tests are even conservative for some distributions and group sizes.
When the data contains censored observations the size of the tests decreases all in
all. So the LRM is less anticonservative for 20 observations in each group and even
preserves the nominal level in the unbalanced design. Overall the GMT , GMM, and
the MDT even appear quite conservative in these situations, although there are some
exceptions for the MDT . Tied observations seem also to lower the type I error rate of
the LRM and the MDT (compare section 2.4). For the other tests not much changes
in this situation. The results of the simulations for three groups are similar to these
of four groups (see Leissen [9]). The main difference is that the convergence is even
stronger in the 3-sample case, particulary for the LRM.

4.3 Comparison of power

Figures 1–4 show the course of the power of each of the five trend tests under com-
parison over the partial alternatives (T.4.1)− (T.4.7) in the 4-sample case for dif-
ferent scenarios. The lines that connect the points of the simulated power values are
only an optical aid. In every figure each of the six plots correspond to one of the
six constellations of group sizes, degree of censoring, and degree of ties given by
Table 1.
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The kind of shifts and distribution of the data varies over the four figures. The
intensity parameter a is chosen to be 8 in every plot. The displayed scenarios are
chosen exemplary. For a presentation of the results of the remaining scenarios we
refer to Leissen [9]. In the 3-sample case the ranking of the power estimations is
similar to that of the 4-sample case, but the extent of the differences between the
power of the tests is usually less pronounced in the case of three groups.

In Fig. 1 it can be seen that in the scenarios with location shifts in W(0.5, 1)-
distributed data, the power estimations of the GMT and MDT are almost always
approximately identical. These two tests are overall the best tests here. The GMM
shows a similar course of the power over the partial alternatives, but except for
(T.4.1) the estimations are always a bit lower than the corresponding estimations
for the GMT and MDT . Both the logrank tests take course a lot below the others,
whereas the conventional one shows up better than the multiple contrast test except
for (T.4.1) and (T.4.3) in the balanced designs.

In the scenarios with location shifts in N(3, 1)-distributed data (Fig. 2), the tests
show a similar but more distinct course over the partial alternatives. The main dif-
ference to Fig. 1 is that the logrank tests approach the GMT and the MDT while the
GMM departs from them. The two maximum tests are the worst prevalently. The
GMT and the MDT are still the best while they are beaten by the GMM in (T.4.1)
and by the LRM in (T.4.3) in the balanced designs only.

Looking at Figs. 3 and 4 for scale shifts in Exp(1)- and LogN(0,1)-distributed
data one can see that again the course of power of the tests over the partial alter-
natives is similar to those in Figs. 1 and 2, but that the “level” of the courses is
somehow shifted again. In Fig. 3 the LRT performs overall best, the GMM worst.
The power estimations for the LRM are comparably high for the first three partial
alternatives and the highest for (T.4.3). Figure 4 resembles Fig. 2 a lot.

5 Conclusions

Multiple contrast tests are useful in a variety of settings, as shown for normally
distributed data, non-normal data (Neuhäuser et al. [16]) and dichotomous data
(Neuhäuser and Hothorn [14]). However, for right-censored survival data this study
could not demonstrate a superior power of multiple contrast tests in general, but
only in specific situations. According to our simulations GMT and MDT , the trend
tests by Gehan and Mantel as well as by Magel and Degges, can be recommended.
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Penalty Specialists Among Goalkeepers:
A Nonparametric Bayesian Analysis of 44 Years
of German Bundesliga

Björn Bornkamp, Arno Fritsch, Oliver Kuss, and Katja Ickstadt

Abstract Penalty saving abilities are of major importance for a goalkeeper in
modern football. However, statistical investigations of the performance of individ-
ual goalkeepers in penalties, leading to a ranking or a clustering of the keepers,
are rare in the scientific literature. In this paper we will perform such an analysis
based on all penalties in the German Bundesliga from 1963 to 2007. A challenge
when analyzing such a data set is the fact that the counts of penalties for the dif-
ferent goalkeepers are highly imbalanced, leading to the question on how to com-
pare goalkeepers who were involved in a disparate number of penalties. We will
approach this issue by using Bayesian hierarchical random effects models. These
models shrink the individual goalkeepers estimates towards an overall estimate with
the degree of shrinkage depending on the amount of information that is available
for each goalkeeper. The underlying random effects distribution will be modelled
nonparametrically based on the Dirichlet process. Proceeding this way relaxes the
assumptions underlying parametric random effect models and additionally allows to
find clusters among the goalkeepers.

1 Introduction

In modern football, penalty shots are of vital importance. The world cup finals in
1990, 1994, and 2006, for example, were all decided by penalties. Nevertheless,
scientific investigations of penalty conversions or savings are rare. Shooting tech-
niques and tactics, ball speed, anticipation of the keeper, stress management of
the shooter, or empirical investigation of penalty myths have been the objects of
investigation ([8, 12, 16, 15, 13, 21, 9]). However, we are not aware of stud-
ies which try to find rankings or clusters of successful penalty scorers or savers.

Björn Bornkamp
Fakultät Statistik, Technische Universität Dortmund, D-44221 Dortmund, Germany
bornkamp@statistik.tu-dortmund.de
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This is astonishing as the perception of especially skilled goalkeepers seems to
be commonplace. For example, the English Wikipedia page for ‘Penalty kick’
(http://en.wikipedia.org/wiki/Penalty_kick, accessed 15/04/2008) shows a list of
goalkeepers (Carlo Cudicini, Peter Schmeichel, Pepe Reina, Oliver Kahn, Ricardo,
Francesco Toldo, Brad Friedel, Artur Boruc, Jens Lehmann, Edwin van der Sar and
Mark Schwarzer) who are ‘noted for their penalty-saving capabilities’, but there is
no quantitative evidence to support the claim of existence of a group of ‘penalty spe-
cialists’. The German Wikipedia page on the penalty (http://de.wikipedia.org/wiki/
Elfmeter, accessed 15/04/2008) asserts that there are some goalkeepers being able to
save more penalties than the average goalkeeper and gives a ranking of the German
goalkeepers with the largest number of saved penalties. It is interesting from a statis-
tical viewpoint that this ranking contains only the absolute number of saved penal-
ties, not accounting for the number of potentially savable penalties for the respective
goalkeeper.

In this paper we approach the problem of ranking and clustering goalkeepers
for their penalty-saving capabilities in a statistically more valid way. Our data set
includes all 3,768 penalties from August 1963 to May 2007 from the German
Bundesliga. Data were collected from three different sources. All penalties from Au-
gust 1963 to May 1993 were taken from [7]. Penalties from August 1993 to February
2005 were made available by IMP AG, München (www.impire.de), a German com-
pany that collects data for a commercial football data base. The remaining penalties
were found by a systematic internet search, their completeness was checked via the
aggregated data published by the “kicker” (the leading German football magazine)
in its annual review of the Bundesliga season. As we are focusing on the goal-
keeper’s ability to save penalties, we removed all penalties that missed the goal or
hit goal-post or crossbar. This resulted in 261 deletions with 3,507 penalties remain-
ing for final analysis. Out of these 3,507 penalties 714 were saved by the goalkeeper
corresponding to a rate of 20.4%. The following additional information was avail-
able for each penalty: goalkeeper, goalkeeper’s team, scorer, scorer’s team, experi-
ence of goalkeeper and scorer (in terms of penalties), home advantage, day and year
of season, and, of course, successful conversion or saving of the penalty. In total 273
goalkeepers were involved in the 3,507 penalties, many of them having been faced
only with a small number of penalties (94 were involved in three or less penalties,
see also Fig. 1 (i)). Figure 1 (ii) shows the relative frequencies of saved penalties
for all goalkeepers. The modes of the density at 0 and 1 are due to the goalkeepers
that were involved in very few penalties and saved none or all. It is intuitively clear
that a goalkeeper who was involved in only one single penalty during his career and
saved this, should not be considered the best penalty saver despite his 100% saving
rate. Consequently, the relative frequency of saved penalties is a bad estimator of the
“true” ability of the goalkeeper, motivating the use of more sophisticated statistical
procedures.

That is, we are faced with two main statistical challenges:

(i) How to derive a sound statistical model, which will produce more “reasonable”
estimates for the goalkeepers effect than simple relative frequencies?
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Fig. 1 (i) Counts of penalties per goalkeeper and (ii) histogram of relative frequencies of saved
penalties per goalkeeper

(ii) How to investigate whether the population of goalkeepers can be grouped into
clusters containing, for example, a group of ‘penalty specialists’ and a group of
‘penalty losers’?

In Section 2 we will introduce the statistical methods, which will allow us to
approach (i) and (ii), while Section 3 is devoted to the analysis of the data. Final
conclusions will be drawn in Section 4.

2 Statistical Methodology: Hierarchical Models
and Bayesian Nonparametrics

In the first two parts of this section we will describe the statistical methodology,
while the third part deals with the actual model and priors we will use for the ana-
lysis in Section 3. The material in this section is mainly based on [4], who pro-
vides a recent review of nonparametric modeling of random effects distributions
in Bayesian hierarchical models, and [14], who also illustrate how to implement a
related model in BUGS.

2.1 Hierarchical Models

An appropriate tool to approach problem (i) from a statistical perspective is the
hierarchical model. In its most simple form it can be described as follows: Suppose
we observe a normally distributed random variable Yi once for each of n subjects.
The model for the data would then be

Yi = μi + εi, i = 1, . . . ,n,
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where εi
iid∼N (0,σ2) and μi some unknown constant effect of the ith subject. In a

classical model, the maximum likelihood estimate for each of the subject effects μi
would equal yi. Typically, this will lead to highly variable estimates for the subject’s
effect as there are as many parameters as observations. However, if it is known (or at
least reasonable to assume) that the subjects belong to the same population, a differ-
ent approach is more appropriate. In this case one would model the subject effects
μi as realizations from an unknown population (i.e., random effects) distribution P,
rather than as unrelated constants. Consequently, in this model all realizations yi are
used in estimating the random effects distribution P, which in turn leads to estimates
of the individual effects μi. However, these would be shrunken towards each other.
That is, hierarchical models allow for sharing information across subjects, rather
than treating subjects as completely unrelated. A Bayesian analysis with an imple-
mentation via Gibbs and general Markov chain Monte Carlo (MCMC) sampling is
particularly suited for the analysis of more complex hierarchical models (while the
standard frequentist approaches become infeasible). Such a Bayesian approach is
taken in this article.

2.2 The Dirichlet Process

Reformulating question (ii) statistically we would like to investigate, whether the
random effects distribution P of the goalkeeper effects is multimodal. Figure 1 (ii)
suggests that this might be the case, even when ignoring the modes at 0 and 1. For
this reason we base the analysis in this article on Bayesian nonparametric method-
ologies, as they allow to model a multimodal random effects distribution. Specif-
ically, we will model the random effects distribution P as a (location) mixture of
normal distributions and assume a nonparametric prior for the mixing distribution.
The motivation for using mixtures of normal distributions stems from the fact that
any distribution on the real line can be approximated arbitrarily well by a mixture
of normals ([2]). We hence model the density of the random effects distribution P
as

∫
N(x|θ ,σ2)Q(dθ), where N(.|θ ,σ2) is a normal density with mean θ and vari-

ance σ2 and Q(dθ) is a discrete mixing distribution. The main issue in this kind
of Bayesian analysis is which prior to assume for the unknown discrete mixing dis-
tribution Q(dθ). A flexible and convenient solution is to use the Dirichlet process,
dating back to [5]. The Dirichlet process is a random discrete probability measure,
i.e., a stochastic process that realizes discrete probability measures. It is character-
ized by two parameters: A base probability measure F0 and a positive real number
α . A random probability measure Q follows a Dirichlet process prior if the distribu-
tion of (Q(S1), . . . ,Q(Sk))′ for a partition S1, . . . ,Sk of the underlying sample space
(in our case R) has a Dirichlet distribution with parameter (αF0(S1), . . . ,αF0(Sk))′.
Hence F0 is the underlying prior mean distribution (i.e., E(Q(Si)) = F0(Si)), while
α is a precision parameter (for α → ∞ the realizations will be more and more simi-
lar to F0). The main reason for the popularity of the Dirichlet process for Bayesian
nonparametric applications is the fact that it has an important conjugacy property,
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which allows for an efficient exact implementation in many cases (see [5] for de-
tails). Another reason for the popularity of Dirichlet process priors is the construc-
tive stick-breaking representation of the Dirichlet process given by [17]. Sethuraman
showed that Q has a Dirichlet process prior with parameters α and F0 iff

Q(dθ) =
∞

∑
h=1

πhδθh(dθ), with θh
iid∼ F0, (1)

where δθ denotes the probability measure degenerated at θ and πh = Vh∏l<h(1−
Vh) with Vh

iid∼ Beta(1,α). The terminology stick-breaking is used, because starting
with a probability stick of length one, V1 is the proportion of the stick broken off
and allocated to θ1, V2 is the proportion of the remaining 1−V1 stick length allo-
cated to θ2, and so on (see also [6] for details on the general class of stick-breaking
priors). From this stick-breaking representation it becomes obvious that the preci-
sion parameter α also determines the clustering properties of the Dirichlet process.
For small α , most probability mass will be distributed on the first realizations of F0
leading to a clustering of observations. On the other hand for α → ∞ there will be
many clusters and a specific realization of Q will be more similar to F0. For a review
of Bayesian clustering procedures, including those based on the Dirichlet process
see, for example, [10]. For a random sample of size n from a probability distribution
realized by a Dirichlet process [1] has shown that the prior density of the number of
distinct values (clusters/components) k in n realizations is

p(k|α,n) = cn(k)n!αk Γ (α)
Γ (α +n)

, (2)

where cn(k) = [n
k]

∑n
j=0 [n

j]
, and

[n
j

]
denotes a Stirling number of the first kind (to ap-

proximate Stirling numbers for large n methods introduced by [20] can be used).
The expected number of clusters k in n realizations is given by

E(k|α,n) =
n

∑
i=1

α
α + i−1

. (3)

Both formulas play an important role for the prior elicitation of the parameter α .
The stick-breaking representation of the Dirichlet process is also useful because

it directly leads to good finite dimensional approximations for the Dirichlet process
by truncation of the sum (1). A finite dimensional approximation to the Dirichlet
process is given by

Q(dθ) =
N

∑
h=1

πhδθh(dθ), with θh
iid∼ F0

where πh = Vh∏l<h(1−Vh), Vh
iid∼ Beta(1,α),h = 1, . . . ,N − 1, and πN = 1−

∑N−1
h=1 πh. N is a truncation parameter, which is chosen large enough to obtain a good
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approximation. For small values of α a relatively small N is sufficient to approxi-
mate the underlying Dirichlet process well. We refer to [14] for a detailed discussion
of this aspect. In the following we will abbreviate the truncated prior distribution in-
duced for the weights as SethN(α), i.e., πππ ∼ SethN(α).

2.3 Model and Prior Specification

We will model the jth observed penalty of the ith goalkeeper as a realization of a
Bernoulli random variable with probability ρi j that the goalkeeper saves the penalty.
This probability ρi j is hence modeled as a function of the ith goalkeeper and some
additional covariates xxxi j. That is, we assume the model

logit(ρi j) = γi +βββ ′xxxi j, i = 1, . . . ,273, j = 1, . . . ,ni,

where γi is the random effect of the ith goalkeeper, ni is the number of penalties the
ith goalkeeper was involved in, and βββ is the vector of regression coefficients for the
covariates.

The γi are modeled as iid realizations of a random effect distribution P, which in
turn is modeled as a location mixture of normal distributions∫

N(x|θ ,σ2)Q(dθ) =∑πhN(x|θh,σ2),

and the Dirichlet process will be used as a prior for Q(dθ). The parameter α of
the Dirichlet process will be chosen equal to 1/3. Using (3) it can be seen that
this leads to a prior mean of ≈2.91 clusters/components for a sample of size 273.
Calculation of (2) shows (see also Fig. 2), that the prior density for the number of
components has peaks at 2 and 3 and then decreases rapidly, leaving virtually no
probability mass for k > 8, which seems reasonable for our penalty data. As the
expected number of components is relatively small it is sufficient to select the trun-
cation parameter N equal to 20. As the base measure F0 of the Dirichlet process we
will use a normal distribution with parameters 0 and variance 3.289. F0 is chosen
such that it is approximately equal to a uniform distribution on the probability scale.
For the precision σ−2 of the normal densities in the mixture we will use an expo-
nential prior distribution with mean 16. The prior distribution for βββ , the coefficients
of the covariates, are chosen as vague uniform distributions. A concise summary of
the model and its different hierarchies is given in Table 1.

To assess the merit of a nonparametric model of the random effects distribution
via the proposed Dirichlet process model, we compare it to two less flexible models
via the deviance information criterion (DIC) [18]. The DIC is similar to AIC or BIC
but more suitable for hierarchical models. Defining ρρρ as the vector containing the
probabilities ρi j the deviance is in our case given by
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Table 1 Hierarchical model used for analysis

Level Parameters
I Yi j ∼ Bernoulli(ρi j), i = 1, . . . ,273 j = 1, . . . ,ni

II logit(ρi j) = γi +βββ ′xxxi j

III γi
iid∼ ∑20

h=1 πh f (x,θh,σ2), i = 1, . . . ,273
βββ ∼U([−10,10]p)

IV σ−2 ∼ Exp(1/16),πππ ∼ Seth20(α = 1/3)

θh
iid∼N (0,3.289), h = 1, . . . ,20

D(ρρρ|y) =−2
273

∑
i=1

ni

∑
j=1

yi j log(ρi j)+(1− yi j) log(1−ρi j).

The DIC is then defined as D(ρρρ|y)+ pD, where D(ρρρ|y) is the average deviance over
the MCMC draws measuring the model fit and pD = D(ρρρ|y)−D(ρ̄ρρ|y) is an estimate
of the “effective” number of parameters penalizing the model complexity (ρ̄ρρ is the
average of ρρρ over the MCMC iterations). For more details on the DIC we refer to
[18]. The first model that we will use for comparison, is a model that does not al-
low for individual goalkeeper effects at all, leading to logit(ρi j) = μ0 +βββ ′xxxi j, with
a fixed common intercept μ0. Hence, by comparing this model with the Dirichlet
process model in terms of the DIC we will be able to quantify the improvement of
modeling individual goalkeeper effects. The second model we use for a compari-
son is a parametric normal random effects model, which can be obtained by setting
γi

iid∼ N (μ0,σ2
0 ) in level III of Table 1, and using suitable vague hyper-priors for

μ0 and σ2
0 (here we use μ0 ∼N (0,3.289) and σ2

0 ∼U([0,3])). By comparing the
Dirichlet process model with this parametric model we will be able to quantify the
improvement of a nonparametric modeling of the random effects distribution. Sub-
sequently the two restricted models will be referred to as ‘Intercept’ and ‘Normal’,
our proposed model will be termed the ‘Dirichlet’ model.

2.4 Choice of Covariates

The main aim of this analysis is to model the goalkeepers effect on the probability of
saving a penalty kick, but the effect of the scorer should also be taken into account.
The logarithm of the number of taken penalties provides a good fit in an univariate
logistic regression and is chosen to represent the penalty takers effect. For better
interpretability the logarithm of base 2 is chosen. As home field advantage has an
effect in many sports, the home field advantage of the goalkeeper is included as a
binary covariate. To see whether there is a general time trend in the probability of
saving a penalty, year is included as a covariate. “Year” here refers to a football
season, which starts at the end of summer. A year effect could be due to improved
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techniques for saving or taking a penalty. In addition the day of the season is in-
cluded as a covariate to account for possible time trends within a season. For model
fitting all covariates are scaled to lie between 0 and 1.

2.5 Computation

The models described in Section 2.3 are fit to the data using the OpenBUGS soft-
ware version 2.10. Further analysis is done in R 2.6.2 using the interface provided
by the R2WinBUGS package [19].

For each model the MCMC sampler is run with two independent chains with a
burn-in of 50,000 iterations followed by 100,000 iterations of which every 20th is
kept. Trace plots of parameters did not indicate problems with convergence of the
chains and the results of the independent chains are similar. The results presented
are based on the pooled draws of the independent chains, leading to a total number
of 10,000 draws for each model.

3 Results

First the overall fit of the models is compared with the DIC criterion. Table 2 shows
the DIC and its components for the three models considered. Both the Normal and
the Dirichlet model improve on the model with only an intercept, indicating some
gain with the inclusion of a random effects distribution. The improvement is not
very large, indicating that the probability of saving a penalty does not vary too much
between goalkeepers. As it is more flexible, the Dirichlet model has a lower average
deviance than the Normal model but also a larger number of effective parameters
leading to a DIC that is only slightly lower.

To answer the question whether there are distinct clusters of goalkeepers with
differing abilities we compare the posterior distribution of the number of distinct
components p(k|y,α,n) to the prior computed via (2). Barplots of both distributions
are shown in Fig. 2 (i). One can see that the posterior puts less mass on a higher
number of components than the prior, with one single component having the highest
posterior probability. The posterior mean is 1.98 components compared to the prior
mean 2.91. Observing the posterior expectation of the random effects distributions

Table 2 Average deviance, effective number of parameters and DIC for the different models

Model D(ρ|y) pD DIC
Intercept 3,453.8 5.0 3,458.8
Normal 3,422.5 31.1 3,453.6
Dirichlet 3,414.8 36.8 3,451.6
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Fig. 2 (i) Distribution of the number of distinct components k for the Dirichlet model. (ii) Posterior
expected random effects distribution γ for the Normal and Dirichlet model

shown in Fig. 2 (ii), there is no sign of multimodality. Thus there is not much support
for different clusters in the data. In the Dirichlet model even for parameter draws
with several distinct components, the resulting distribution tended to be unimodal
(a mixture of normal distribution does not have to be multimodal). However, the
more flexible Dirichlet model leads to a distribution with heavier tails than the one
resulting from the Normal model.

Next we take a look at the estimates for the goalkeepers’ probabilities to save a
penalty that can be derived from the models. For this we consider

E
(

exp(γi +βββ ′xxxmed)
1+ exp(γi +βββ ′xxxmed)

∣∣∣y) , i = 1, . . . ,273, (4)

the posterior expectation of the goalkeepers’ probabilities to save a penalty kick
when the covariates take their respective median values xxxmed . The median values
stand for a scorer with 10 taken penalties, the season 1983/84 and the 17th day
of the season. The binary variable home field advantage is set to 0, representing
no home field advantage for the goalkeeper. Figure 3 shows the posterior mean
probabilities of the goalkeepers (from (4)) for all goalkeepers smoothed by a kernel
density estimate. Comparing Fig. 3 (i) to the distribution of the relative frequencies
in Fig. 1 (ii) it can be seen that the probabilities are considerably shrunken towards
each other. The range of estimates is only about 0.1. Figure 3 (ii) shows a close-up
look at the distribution in (i), and as for the random effects distribution it can be
seen that the estimates of the Normal and Dirichlet model differ mainly in the tails,
with the Dirichlet model leading to more pronounced tails.

Regarding the question of identifying the best and worst keepers, the tails of the
distribution are of importance. As the Dirichlet model is more flexible in the tails it
is used to determine a ranking of the keepers. In performing the ranking (see Table 3)
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Fig. 3 Posterior expected probabilities of saving a penalty for the Normal and Dirichlet model; (i)
on the range [0,1] and (ii) on the range [0.15, 0.26]

we rely on the recommendations of [11] who argue that ranking should be based on
the posterior expectation of the rank rather than the posterior expected effect. This
explains the fact that in some cases a goalkeeper with a higher rank nevertheless has
a higher posterior expected probability of saving a penalty.

Several interesting observations arise from the ranking in Table 3. Goalkeepers
estimated saving probabilities are not really different, with the best keeper having
25.5% and the worst keeper having 16.0%, yielding only a 10%-points difference.
Moreover, the credible intervals for the saving probabilities are seen to be pretty
large, credible intervals for the best and the worst keeper overlap considerably. As
such, saving capabilities are rather similar across goalkeepers, reflecting the fact that
no explicit clusters of goalkeepers could be found in our analysis. It is nevertheless
surprising, that the two German goalkeepers who are thought to be penalty special-
ists (Oliver Kahn and Jens Lehmann) rank relatively low, indicating that both of
them perform rather badly in penalty saving. This is probably due to the perception
of the German expertise in penalty shoot-outs in recent tournaments, with Kahn and
Lehmann playing prominent roles on these occasions. The degree of shrinking from
the Dirichlet model is quite impressive. To demonstrate this, we consider Michael
Melka and Gerhard Teupel as two representatives of the goalkeepers who were faced
with only one single penalty during their career in the German Bundesliga. Michael
Melka who saved this single penalty (thus having an observed 100% saving rate),
has an estimated saving probability of only 20.2%. Gerhard Teupel, not saving this
single penalty (resulting in an observed 0% saving rate) estimated saving probability
is 18.6%, not very different from Melka’s probability. Another peculiarity might be
the fact that 3 goalkeepers of Bayern München (Manfred Müller, Walter Junghans,
and Sepp Maier, having played 588 games or more that 17 seasons for the team
altogether) are among the worst 5 penalty savers. This is in strict contrast to the fact
that Bayern München is the most successful team in the German Bundesliga. It is
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Table 3 Ranking of goalkeepers based on the average rank

Goalkeeper Rank P(Saving|y) with 95% CI % Saved # Saved # Penalties
Kargus, Rudolf 1 0.255 [0.183, 0.354] 0.329 23 70
Enke, Robert 2 0.248 [0.162, 0.418] 0.500 9 18

Pfaff, Jean–Marie 3 0.247 [0.155, 0.483] 0.545 6 11
Köpke, Andreas 4 0.228 [0.159, 0.324] 0.317 13 41

Radenkovic, Petar 5 0.229 [0.158, 0.331] 0.353 12 34
...

...
...

...
...

...
Melka, Michael 54 0.202 [0.121, 0.317] 1.000 1 1

...
...

...
...

...
...

Teupel, Gerhard 154 0.186 [0.107, 0.285] 0.000 0 1
...

...
...

...
...

...
Kahn, Oliver 224 0.178 [0.120, 0.245] 0.172 10 58

...
...

...
...

...
...

Lehmann, Jens 228 0.178 [0.115, 0.248] 0.176 6 34
...

...
...

...
...

...
Schmadtke, Jörg 269 0.162 [0.098, 0.227] 0.098 4 41
Müller, Manfred 270 0.160 [0.082, 0.232] 0.042 1 24
Junghans, Walter 271 0.158 [0.083, 0.230] 0.042 1 24

Rynio, Jürgen 272 0.159 [0.088, 0.226] 0.074 2 27
Maier, Sepp 273 0.160 [0.104, 0.218] 0.130 9 69

Table 4 Estimated odds ratios with 95% credible intervals in the Dirichlet model. For the penalty
taker odds ratio is for a scorer with twice the number of penalties. The odds ratio for year compares
the last to the first year, which is also the case for day of the season

Covariate OR with 95% CI
Scorer 0.754 [0.711, 0.798]

Home Field Advantage 0.956 [0.789, 1.145]
Year 0.894 [0.637, 1.222]

Day of Season 0.894 [0.674, 1.166]

also astonishing that Sepp Maier ranks the worst. After all, he was the goalkeeper
of the German team winning the 1974 world cup, and is still the German goalkeeper
with the most international matches (N = 95) up to now.

Finally, we consider the effects of the covariates. Since a logistic regression
model is fitted, exp(βk) can be interpreted as the change in the odds of the event,
if the kth covariate is risen by 1. Table 4 shows the estimated odds ratios for the
Dirichlet model. As the credible interval for the odds ratio of the scorer effect does
not contain 1 there is strong evidence that a scorer that has taken more penalties
reduces the goalkeeper’s probability of saving the penalty. This is a reasonable re-
sult, since players that are known to be good penalty takers are probably chosen
more often to take a penalty kick. As the scorer effect is given on the log2 scale,
we can interpret the odds ratio as follows: Faced with a scorer that scored twice as
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many penalties, the goalkeeper’s odds of saving is multiplied by 0.754. For all the
other covariates, 1 is clearly inside the credible interval. This implies that there is
no evidence for a home field advantage for the goalkeeper. Additionally, evidence
can neither be found for an overall time trend or a time trend within seasons. These
conclusions are also obtained for the other two models.

4 Final Remarks and Outlook

In this article we analyzed the penalty saving abilities of goalkeepers in the first
44 years of the German Bundesliga. As is typical for such a data set, many goal-
keepers were involved only in a few penalties. This poses the question on how to
derive reasonable estimates for those keepers and how to compare keepers with a
highly disparate number of penalties. We approached this issue by using Bayesian
hierarchical models, i.e., the goalkeepers are modeled as realizations from a com-
mon random effects distribution P. This naturally allows for borrowing strength and
hence shrinkage between the goalkeepers individual effect estimates. A major im-
petus for studying the data was to investigate whether there are certain groups of
goalkeepers, such as ‘penalty specialists’ and ‘penalty losers’. This motivated the
use of Bayesian nonparametric approaches to model the random effects, as these
techniques allow for modelling multimodal random effects distributions.

In the analyses we conducted in Section 3 we did not find any hint for multi-
modality. On the contrary, a-posteriori there was evidence that the number of com-
ponents/clusters in the normal mixture model is even smaller than assumed a-priori
(see Fig. 2 (i)). We also produced a ranking of the goalkeepers based on the average
rank encountered during the MCMC runs. One observation is central: there is no
strong evidence in the data that the different goalkeepers are highly different, for
example, the credibility intervals for the goalkeeper ranking first (Rudolf Kargus)
and last (Sepp Maier) overlap considerably.

From an application viewpoint it is somewhat surprising to see well-known goal-
keepers like Sepp Maier ranking so low. This is a direct consequence of the shrink-
age effect of the random effects model: As can be seen in Table 3, only goalkeepers
who were involved in many penalties can rank at the top or the bottom of the list,
while the goalkeepers with fewer penalties are all in the middle of the ranking. This
is reasonable from a statistical point of view, as we can only make statistically ac-
curate estimates for keepers with many penalties, while those with few penalties are
shrunken towards the overall mean. This shrinkage effect should be kept in mind,
when interpreting the ranking of goalkeepers from an application viewpoint. As can
be seen in the tails of the random effects distribution and the estimated individual
effects (Figs. 2 (ii) and 3 (ii)) the Dirichlet model already allows for a more realistic
and flexible type of shrinkage than the normal model. There are however oppor-
tunities to model the random effects distribution even more flexible. The Dirichlet
process may be replaced by another stochastic process, e.g., a (normalized) α-stable
process or the used normal kernel may be replaced by a t-density. Both approaches
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would lead to even heavier tails of the random effects distribution and thus to a
model representing less shrinkage.

In our analysis only the covariate we used as a substitute for the scorer effect
seems to have an important effect. This motivates a further study, where the penalty
scorer effect is also modeled by a random effects distribution instead of a simple
fixed covariate. This might lead to a more realistic model and would allow for a
ranking of the scorers as well. For the Dirichlet model a complication arises, how-
ever, if a second random effect is to be included. Then it is necessary to center the
random effects distributions to have mean zero. Simply setting the mean of the base
probability measure F0 to zero is not sufficient to achieve zero mean of the random
effects distribution, and more sophisticated procedures need to be applied such as
the centered Dirichlet process [3], which we plan to do in future research.
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Permutation Tests for Validating Computer
Experiments

Thomas Mühlenstädt and Ursula Gather

Abstract Deterministic computer experiments are of increasing importance in
many scientific and engineering fields. In this paper we focus on assessing the ade-
quacy of computer experiments, i.e. we test if a computer experiment is predicting
a corresponding real world phenomenon. A permutation test is presented which can
be adapted to different situations in order to achieve good power.

1 Introduction

Computer experiments are of great relevance especially in engineering. A broad
variety of methods for analyzing, designing and predicting data from computer ex-
periments has been proposed in the literature, see for example [1] for an overview.
The advantages of computer experiments are obvious, they are often much faster,
cheaper and generally easier to work with compared to the respective real world
experiments on certain phenomena. However, validating a computer experiment re-
mains an important problem. Here, permutation tests are a valuable tool as they are
distribution free. Additionally, they can achieve the same asymptotic power as some
corresponding uniformly best unbiased test, see [5] Chap. 15.2. Hence, we suggest
a permutation test for the null hypothesis that a computer experiment is a correct
predictor for a corresponding real world experiment.

Our article is organized as follows: In Sect. 2 we briefly give the theoretical back-
ground for permutation tests. In Sect. 3 permutation tests for validating computer
experiments are proposed and in Sect. 4 an example illustrates the behavior of the
suggested tests. A summary concludes our paper.
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2 Permutation Tests

In this section we review some properties of permutation tests. Throughout this
paper we use the notation of [5]. Let T (Y ) be a real valued statistic for testing a
hypothesis H0 and Y be a real valued random vector with observation y ∈ Y, where
Y is the sample space of Y . Let G be a finite group of transformations mapping Y
onto Y with cardinality M, i.e. #G = M. For an observation y of Y , let

T (1)(y)≤ T (2)(y)≤ ·· · ≤ T (M)(y)

be the ordered values T (gy) of the test statistic for all g in G. We write

q := M−�Mα�, α ∈ (0,1),

with �.� being the floor function. Now, let M+(y) := #{T ( j)(y)| j = 1 . . .M, T ( j)(y) >
T (q)(y)} and M0(y) := #{T ( j)(y)| j = 1 . . .M,T ( j)(y) = T (q)(y)}. Define the ran-
domization constant a(y) as

a(y) :=
Mα−M+(y)

M0(y)
.

A test Φ(y) is then defined as

Φ(y) =

⎧⎪⎨
⎪⎩

1, if T (y) > T (q)(y)
a(y), if T (y) = T (q)(y)
0, if T (y) < T (q)(y).

(1)

By construction every y ∈Y fulfills:

∑
g∈G

Φ(gy) = M+(y)+a(y)M0(y) = Mα.

This test is a level α test due to the following theorem, which is an extension of
Theorem 15.2.1 in [5].

Theorem 1. Let Y have distribution P ∈P . Consider the null hypothesis P0 ⊂P
and let G be a finite group of transformations mapping Y onto Y. If for every P∈P0
the test statistic T is invariant under transformations g ∈ G, i.e. T (Y ) and T (gY )
have the same distribution for all g ∈ G, then

EP[Φ(T (Y ))] = α, for all P ∈P0

with Φ(T (Y )) being the permutation test described above.

Proof. By construction we have

∑
g∈G

Φ(T (gy)) = M+(y)+a(y)M0(y) = Mα for all y ∈ Y.
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Hence
Mα = EP[∑

g
Φ(T (gY ))] =∑

g
EP[Φ(T (gY ))].

Under the null hypothesis we have EP[Φ(T (gY ))] = EP[Φ(T (Y ))], such that

Mα =∑
g

EP[Φ(T (Y ))] = MEP[Φ(T (Y ))]⇔ α = EP[Φ(T (Y ))].

Lehmann and Romano [5] require the assumption that the distribution of Y is invari-
ant under the null hypothesis. However, Φ(Y ) is also a level α test if just the test
statistic T is invariant under transformations g ∈G. In the next section we omit the
randomization constant a(y) and reject the null hypothesis if T (y) > T (q)(y). It is
easy to check that Φ(Y ) then remains a level α test.

3 Permutation Tests for Computer Experiments

In the following we use an idea of Good [2] to propose local permutation tests for
computer experiments as the test described in [2] is inconsistent for some alterna-
tives. Here we interpret a computer experiment as an unknown function f depending
on x ∈ R

d . Let further Y1 := Y (x1), . . . ,Yn := Y (xn) be random variables for which
a regression model is assumed: E(Y (xi)) = g(xi). We test H0 : g(x) = f (x) against
H1 : ∃ x ∈ R

d : f (x) �= g(x).
Now assume that Y1, . . . ,Yn are mutually independent and that Y (x) possesses

a continuous and symmetric distribution for each fixed x ∈ R
d . Define a random

variable

Z(x) :=
{

0, if Y (x)− f (x) > 0;
1, elsewhere.

Good [2], p. 126 uses T (x1, . . . ,xn) := ∑n
i=1 Z(xi) as test statistic and all possible

combinations of sign changes of Y (xi)− f (xi), i = 1, . . . ,n as transformation group
for testing the above hypothesis. Under the above null hypothesis we have P(Y (xi)−
f (xi) > 0) = P(Y (xi)− f (xi) < 0) = 0.5 for all i = 1, . . . ,n. Although the original
differences are not necessarily identically distributed, the auxiliary variables Z(xi)
are identically distributed under the null hypothesis. Hence, any test statistic based
on these variables yields a level α test. Good’s test statistic is binomially distributed
B(n,0.5) under the null hypothesis. However, this test is inconsistent for certain
alternatives. As an example consider f (x) = βx and g(x) = γx with β �= γ ∈ R and
x ∈ [−1,1]. For data points x1, . . . ,xn equally distributed on [−1,1], we have for
half of the data points f (xi) ≤ g(xi) and for the other half f (xi) ≥ g(xi). Although
the alternative is true, the test statistic will presumably attain only medium sized
values.

To avoid this inconsistency, we suggest to apply Good’s test locally. This means
we define a subset si for every data point (xi,yi) containing k + 1 points ((xi,yi)
and k additional points) and calculate the test statistic T k

i := T (si) for this subset
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of the data. Under H0, the T k
i are identically distributed with E(T k

i ) = k+1
2 and

var(T k
i ) = (k+1)

4 . Now, with Dk
i :=

(
T k

i − k+1
2

)2
, we get the test statistic

T k :=
n

∑
i=1

Dk
i ,

which is small under the null hypothesis. This yields a level α test due to the theorem
in Sect. 2 if again all possible combinations of sign changes of Y (xi)− f (xi), i =
1, . . . ,n are used as transformation group.

Now, an important question is how to define the subsets si. In the following we
discuss two possibilities: Firstly, the points can be grouped according to their k near-
est neighbors (knn) w.r.t. the input values xi. knn-rules are widely used in classifica-
tion, see for example [3]. The k nearest neighbors of a point xi are defined to be the
k points x(1)

i , . . . ,x(k)
i which have the k smallest Euclidean distances from xi among

all n points x1, . . . ,xn. If the null hypothesis is rejected, the knn subsets with highest
values of Dk

i provide information on the local fit of the computer experiment. Note
that the k nearest neighbors are calculated from the standardized input variables.
Otherwise, the k nearest neighbors are defined by input variables with large ranges.
We refer to this test as x− knn test.

Often computer experiments come with high dimensional input space combined
with the restriction that only a limited number of runs are possible. Then it is still
possible to define k nearest neighbors. But, due to the curse of dimensionality, this
is not necessarily a good choice, see [3] Chap. 2.5. Therefore, we will group the ob-
servations according to their y values. If the unknown function shows some kind of
monotonic behavior, similar predictor values will likely have some common char-
acteristics. Hence, grouping them might result in a high power for the permutation
test. This version of the test is called y− knn test. Again, if the null hypothesis is
rejected, those Dk

i with high values suggest that the fit of the computer experiment
for y values near to yi is poor.

Generally, the subsets si can be defined in many different ways. The power of
the test against certain kinds of alternatives can be controlled by the way subsets
are chosen. If there is some a-priori knowledge about the function g(x) it can be
incorporated when defining appropriate subsets.

4 A Simulation Study

We consider a 4-dimensional example taken from [4] which is used to illustrate a
sequential design algorithm for finding a robust control parameter configuration dur-
ing simulations. The function given below is chosen to demonstrate this sequential
algorithm:

g(x) := g(x1,x2,x3,x4) :=
1
30

ψ(x1,x2)ψ(x3,x4)+(x1−π)2
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with ψ(x1,x2) =
(

x2−
5.1
4π2 x2

1 +
5
π

x1−6
)2

+10
(

1− 1
8π

)
cos(x1)+10.

The function ψ(x1,x2) is defined on [−5,10]× [0,15]. The following regression
model is assumed:

Y (x1,x2,x3,x4) = g(x1,x2,x3,x4)+ ε(x2)

with ε(x2)∼N(0,(3x2 +10)2). Different predictors are used, once the true function
and twice perturbed predictors:

f1(x) = g(x) null hypothesis H0

f2(x) = g(x)(1+0.007x3x1/8
4 ) alternative H1

f3(x) = g(x)(1+0.007(x2−6)3) alternative H2

Here, two settings of the computer experiment are considered to check if the
power of the tests depends on the design. In particular we are interested in exper-
iments with a simplex based latin hypercube design [6] and experiments with ran-
dom latin hypercubes [7]. For both settings all three functions f1, f2, f3 are applied
to simulate data resulting in six different combinations, see Table 1. For each com-
bination, 1,000 data sets with sample size n = 40 are simulated and all three tests
(Good’s, x−knn, y−knn) are performed. For the tests x−knn and y−knn, a random
sample of 1,000 permutations is chosen as the complete group of transformations is
too large (here #G = 240). For both tests, x−knn and y−knn, we have chosen k = 8.

The simulation results are summarized in Table 1. For α = 0.1,0.05,0.01, the
table shows the percentage of the tests rejected at the corresponding levels of

Table 1 Simulation results
α Good x− knn y− knn

H0

Simplex
0.1 0.079 0.109 0.078
0.05 0.030 0.045 0.038
0.01 0.002 0.008 0.004

LHD
0.1 0.082 0.093 0.099
0.05 0.040 0.046 0.044
0.01 0.002 0.006 0.008

H1

Simplex
0.1 0.523 0.716 0.379
0.05 0.374 0.598 0.247
0.01 0.090 0.297 0.074

LHD
0.1 0.426 0.633 0.284
0.05 0.275 0.478 0.186
0.01 0.065 0.184 0.066

H2

Simplex
0.1 0.274 0.682 0.682
0.05 0.270 0.708 0.679
0.01 0.113 0.397 0.332

LHD
0.1 0.197 0.760 0.418
0.05 0.068 0.530 0.257
0.01 0.004 0.137 0.061
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significance. The percentage of rejections under the null hypothesis is close to the
corresponding level of significance for all considered tests. For both alternatives,
H1 and H2, all three tests deliver comparable results for random latin hypercubes
and for simplex based latin hypercubes. Thus, the power of the tests does not seem
to depend on the design. For alternative H1, the x− knn test possesses the highest
power in the simulation while Good’s test performs slightly better than the y− knn
test. Again, for alternative H2, the x− knn test shows highest power. But here the
test y− knn delivers better results than Good’s test. Hence, alternative H2 is an al-
ternative for which Good’s test is almost inconsistent.

5 Summary

The presented permutation tests are an attractive tool for validating computer exper-
iments as they are not difficult to apply and do not depend on strong assumptions.
They provide a considerable improvement over the test described in [2]. Depending
on the context, different ways of forming subsets can be used in order to incorporate
prior knowledge about the behavior of the simulation and the real experiments. For
the simulated example the x− knn version has shown to be very efficient.

Acknowledgement Financial support of the DFG (research training group “Statistical Mod-
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Exact and Generalized Confidence Intervals
in the Common Mean Problem

Joachim Hartung and Guido Knapp

Abstract Several exact confidence intervals for the common mean of independent
normal populations have been proposed in the literature. Not all of these intervals
always produce genuine intervals. In this paper, we consider three types of always
genuine exact confidence intervals and compare these intervals with two known
generalized confidence intervals for the common mean and a newly proposed one.
Besides simulation results, two real data examples are presented illustrating the per-
formance of the various procedures.

1 Introduction

Inference on the common mean problem has a long history in statistics. Graybill
and Deal [4] pioneered the research on common mean estimation and since then,
a lot of further research has been done on this problem, especially from a decision
theoretic point of view, see Chap. 5 in [8] for a comprehensive presentation of these
results.

The focus of this paper is on confidence intervals for the common mean. Large
sample confidence intervals can be easily constructed around the Graybill-Deal es-
timator with estimated standard errors proposed by Meier [13] or Sinha [14].

Fairweather [3] was the first who proposed an exact confidence interval on the
common mean which is based on a linear combination of t-test statistics. Also using
t-test statistics, Cohen and Sackrowitz [1] developed two further exact confidence
intervals on the common mean. Jordan and Krishnamoorthy [10] suggested using a
linear combination of F-test statistics for constructing an exact confidence interval.
Yu et al. [17], derived exact confidence intervals using P-values of F-test statis-
tics. Using well-known methods of combining P-values, see [9], they constructed
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the exact confidence intervals by inverting the acceptance region of a family of
level-α-tests. Recently, Hartung and Knapp [6] used P-values of t-test statistics and
introduced two broad classes of exact confidence intervals for the common mean
using weighted inverse normal and generalized inverse χ2-methods for combin-
ing P-values. Beside Fairweather’s interval, the intervals proposed by Hartung and
Knapp always yield genuine intervals. All the other exact confidence intervals do
not necessarily provide genuine intervals.

Based on the concept of generalized confidence intervals introduced by
Weerahandi [16], Krishnamoorthy and Lu [11] as well as Lin and Lee [12] pro-
posed generalized pivotal quantities that can be used for calculating generalized
confidence intervals on the common mean. In this paper, we will introduce a further
generalized pivotal quantity.

The outline of this paper is as follows: In Sect. 2, we introduce the common mean
problem. Section 3 contains the description of the exact confidence intervals where
we restrict the presentation on the three types of intervals mentioned above which
always yield genuine intervals. In Sect. 4, we describe the concept of generalized
confidence intervals and present three generalized pivotal quantities for the common
mean. In the common mean problem, experiments are designed to provide duplicate
information about a parameter. In Sect. 5, we use two real data examples of such
experiments and apply the intervals on both the data sets. In a simulation study,
whose results are displayed in Sect. 6, we investigate the intervals with respect to
their actual confidence levels, especially the generalized confidence intervals, and
with respect to their expected lengths. At the end, some final remarks are given,
especially with respect to the fields of applications.

2 Common Mean Problem

Let us consider k independent normal populations where the ith population follows
a normal distribution with mean μ ∈ IR and variance σ2

i > 0, i = 1, . . . ,k. Let Ȳi
denote the sample mean in the ith population, S2

i the sample variance, and ni the
sample size, i = 1, . . . ,k. Then, we have

Ȳi ∼ N
(
μ ,

σ2
i

ni

)
and

(ni−1) S2
i

σ2
i

∼ χ2
ni−1, i = 1, . . . ,k, (1)

and the statistics are all mutually independent. Note that (Ȳi,S2
i , i = 1, . . . ,k) is mini-

mal sufficient for (μ ,σ2
1 , . . . ,σ2

k ) even though it is not complete.
If the population variances σ2

1 , . . . ,σ2
k are completely known, the maximum like-

lihood estimator of μ is given by

μ̂ =

k
∑

i=1
ni Ȳi/σ2

i

k
∑
j=1

n j/σ2
j

. (2)
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The above estimator is also the minimum variance unbiased estimator under normal-
ity as well as the best linear unbiased estimator without normality for estimating μ .
The variance of μ̂ is given by

Var(μ̂) =

(
k

∑
i=1

ni/σ2
i

)−1

. (3)

An estimator of the common mean given in a closed form can be obtained by
replacing σ2

i by S2
i in (2). This yields the well-known Graybill-Deal [4] estimator

given as

μ̂GD =

k
∑

i=1
ni Ȳi/S2

i

k
∑
j=1

n j/S2
j

. (4)

Clearly, μ̂GD is an unbiased estimator of the common mean μ .
For calculating the variance of μ̂GD, a standard conditional argument first yields

Var(μ̂GD) = E [Var(μ̂GD|S1, . . . ,Sk)]+Var [E(μ̂GD|S1, . . . ,Sk)]

= E

⎡
⎣
(

k

∑
i=1

ni σ2
i

S4
i

)/(
k

∑
i=1

ni

S2
i

)2
⎤
⎦ . (5)

Meier [13] derived a first order approximation of the variance of μ̂GD as

Var(μ̂GD) =
1

k
∑

i=1
ni/σ2

i

[
1+2

k

∑
i=1

1
ni−1

ci (1− ci)+O

(
k

∑
i=1

1
(ni−1)2

)]
(6)

with

ci =
ni / σ2

i

∑k
j=1 n j / σ2

j
, i = 1, . . . ,k.

For further statistical inference on the common mean, an estimator of the vari-
ance of μ̂GD should be available. Sinha [14] derived an unbiased estimator of the
variance of μ̂GD that is a convergent series. A first order approximation of this esti-
mator is

V̂ar(1) (μ̂GD) = (7)

1

∑k
i=1 ni/S2

i

⎡
⎢⎣ 1+

k

∑
i=1

4
ni +1

⎛
⎜⎝ ni / S2

i

∑k
j=1 n j / S2

j
− n2

i / S4
i(

∑k
j=1 n j / S2

j

)2

⎞
⎟⎠
⎤
⎥⎦ .
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This estimator is comparable to the approximate estimator

V̂ar(2) (μ̂GD) = (8)

1

∑k
i=1 ni/S2

i

⎡
⎢⎣ 1+

k

∑
i=1

4
ni−1

⎛
⎜⎝ ni / S2

i

∑k
j=1 n j / S2

j
− n2

i / S4
i(

∑k
j=1 n j / S2

j

)2

⎞
⎟⎠
⎤
⎥⎦ .

due to Meier [13].
Using the Graybill–Deal estimator (4) for the common mean and an appropriate

variance estimator of it, for instance (7) or (8), large sample 100(1−α)% confidence
intervals for μ can be constructed as

μ̂GD±
√

V̂ar(μ̂GD) z1−α/2

with z1−α/2 the (1−α/2)-quantile of the standard normal distribution.

3 Exact Confidence Intervals

Since

ti =
√

ni (Ȳi−μ)
Si

∼ tni−1 (9)

are test statistics for testing hypotheses about μ based on the ith sample, suitable
linear combinations of these test statistics or other functions thereof can be used as
a pivotal quantity to construct exact confidence intervals for μ .

Fairweather [3] suggested using a weighted linear combination of the ti’s, namely

Wt =
k

∑
i=1

ui ti, ui =
[Var(ti)]

−1

∑k
j=1 [Var(t j)]

−1 , i = 1, . . . ,k. (10)

Let b1−α/2 denote the quantile of the distribution of Wt satisfying the equation

1−α = P
(
|Wt | ≤ b1−α/2

)
,

then the exact 100(1−α)% confidence interval for μ is given by

k
∑

i=1

√
ni ui Ȳi / Si

k
∑

i=1

√
ni ui / Si

±
b1−α/2

k
∑

i=1

√
ni ui / Si

. (11)

Let tν denote a t-distributed random variable with ν degrees of freedom, then it
holds Var(tν) = ν/(ν−2), ν > 2, so that the distribution of Wt essentially depends
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on the degrees of freedom of the t-test statistics. Fairweather [3] provided an approx-
imation of the distribution of Wt that can also be used to approximate the required
quantile b1−α/2. Since Wt is a linear combination of t-distributed random variables,
the distribution of Wt should resemble a scaled t-distribution, that is, we approximate
the distribution of Wt by a c tν -distribution so that the second and fourth moment
of both distributions coincide. The solution is given by ν = 4+1/∑k

i=1[u
2
i /(ni−5)]

and c =
√

(ν−2) / (ν A) with A = ∑k
i=1(ni− 3)/(ni− 1), see [3]. Note that Fair-

weather’s interval is always a genuine interval for 0 < α < 0.5.
Hartung and Knapp [6] used the t-test statistics ti from (9) and suggested two

broad classes of exact 100(1−α)% confidence intervals for μ . Let Ftni−1 be the cu-
mulative distribution function of the t-distribution with (ni−1) degrees of freedom.
Then it holds

Ftni−1(ti)∼U(0,1) and Φ−1[Ftni−1(ti)]∼ N(0,1),

where U(0,1) stands for the uniform distribution on the unit interval and Φ−1 is the
inverse of the cumulative distribution function Φ of the standard normal distribution.

Let us consider the weighted inverse normal combination statistic

Z(μ) =
k

∑
i=1

√
γi

∑k
j=1 γ j

Φ−1
(

Ftni−1(ti)
)

(12)

with some positive weights γi, i = 1, . . . ,k. Clearly, Z(μ) is a standard normal ran-
dom variable. One possible choice of positive weights is γi = 1, i = 1, . . . ,k. This
means that the precision of each result is only represented through the cumulative
distribution function Ftni−1 . Since the results of larger experiments are usually more
precise, a natural choice of the weights γi may be the sample size ni or the degrees
of freedom ni−1.

The functions Ftni−1(·) and Φ−1(·) are monotone increasing functions in their
arguments (·), so that Z(μ) from (12) is a monotone decreasing function in μ . Con-
sequently, an exact 100(1−α)% confidence interval for μ is given by

[μL,Z ; μU,Z ] (13)

where the bounds μL,Z and μU,Z are the unique solutions of the equations

Z(μL,Z) = Φ−1(1−α/2) and Z(μU,Z) = Φ−1(α/2) .

A second class of exact confidence intervals for μ suggested by Hartung and
Knapp [6] relies on the inverse χ2-method. Let G−1

γi
denote the inverse of the cumu-

lative distribution function Gγi of a χ2-distribution with γi degrees of freedom. The
general inverse χ2-combination statistic is then given by

S(μ) =
k

∑
i=1

G−1
γi

(
Ftni−1(ti)

)
. (14)
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Clearly, S(μ) is a χ2-distributed random variable with γΣ = ∑k
i=1 γi degrees of free-

dom. Since Ftni−1(·) and G−1
γi

(·) are monotone increasing functions in their argu-
ments (·), S(μ) is monotone decreasing in μ . Consequently, an exact 100(1−α)%
confidence interval for μ is given by

[ μL,S ; μU,S ] , (15)

where the bounds μL,S and μU,S are the unique solutions of the equations

S(μL,S) = χ2
γΣ ;1−α/2 and S(μU,S) = χ2

γΣ ;α/2

with χ2
ν ;α the α-quantile of a χ2-distribution with ν degrees of freedom.

4 Generalized Confidence Intervals

The concept of generalized P-values was first introduced by Tsui and Weerahandi
[15] to deal with the statistical testing problem in which nuisance parameters are
present and it is difficult or impossible to obtain a non-trivial test with a fixed level of
significance. Weerahandi [16] then introduced the concept of generalized confidence
interval in this setting. Although a lot of exact confidence intervals for the common
mean μ exist, the generalized confidence interval approach may be an alternative
in the common mean problem since some of the exact confidence intervals do not
always yield genuine intervals, see Sect. 1.

The general setup for constructing a generalized confidence interval is as follows:
Let X be a random quantity having a density function f (X|ζ ), where ζ = (θ ,η) is
a vector of unknown parameters, θ is the parameter of interest, and η is a vector of
nuisance parameters. Suppose we are interested in a confidence interval for θ . Let
x denote the observed value of X and consider the generalized variable T (X;x,ζ ),
which depends on the observed value x and the parameter vector ζ , and satisfies the
following requirements:

(a) The distribution of T (X;x,θ ,η) does not depend on any unknown parameters.
(b) The observed value of T (X;x,θ ,η) is free of the nuisance parameters.

Then, we say T (X;x,θ ,η) is generalized pivotal quantity.
If t1 and t2 are such that

P(t1 ≤ T (X;x,θ ,η)≤ t2) = 1−α, (16)

then, {θ : t1 ≤ T (X;x,θ ,η)≤ t2} is a 100(1−α)% generalized confidence interval
for θ . For example, if the value of T (X;x,θ ,η) at X = x is θ , then

[T (x;α/2) , T (x;1−α/2)]

is a 100(1−α)% confidence interval for θ , where T (x;κ) stands for the κth quantile
of T (X;x,θ ,η).
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Recall that we have independent samples from k normal populations with com-
mon mean μ and possibly unequal variances σ2

i , i = 1, . . . ,k. The sample sizes ni,
i = 1, . . . ,k, may differ from sample to sample. Let Ȳi and S2

i be the sample mean
and sample variance in the ith population. It is noted that Ȳi and S2

i are stochastically
independent with

Ȳi ∼ N
(
μ ,

σ2
i

ni

)
, Ui =

(ni−1) S2
i

σ2
i

=
Vi

σ2
i
∼ χ2

ni−1, i = 1, . . . ,k. (17)

Let ȳi and s2
i denote the observed values of Ȳi and S2

i , and vi stands for the observed
value of Vi.

Krishnamoorthy and Lu [11] considered a weighted linear combination of sample
generalized pivotal quantities. Within each sample, a generalized pivotal quantity for
μ is given as

Ti = ȳi−
(

Ȳi−μ
σi/
√

ni

)√
σ2

i vi

ni Vi

= ȳi−
Zi√
Ui

√
vi√
ni

, Zi ∼ N(0,1)

= ȳi− ti
si√
ni

, i = 1, . . . ,k, (18)

with ti =
√

ni−1 Zi/
√

Ui ∼ tni−1. A general pivotal quantity for σ2
i is given as

Ri =
σ2

i
Vi

vi =
vi

Qi
, Qi =

Vi

σ2
i
∼ χ2

ni−1, i = 1, . . . ,k. (19)

Define Ȳ = (Ȳ1, . . . ,Ȳk)′ and V = (V1, . . . ,Vk)′ and let ȳ and v be the corresponding
observed values. Then, the generalized pivotal quantity for the common mean μ is
given as

TKL
(
Ȳ,V; ȳ,v

)
=

k
∑

i=1
Wi Ti

k
∑
j=1

Wj

(20)

with
Wi = ni Qi/vi = ni R−1

i .

The generalized pivotal quantity TKL fulfills the two conditions (A) and (B) above
and the observed value of TKL is μ . Consequently, GCI1(μ) :

(
TKL;α/2,TKL;1−α/2

)
is

a generalized confidence interval for μ . Note that Krishnamoorthy and Lu [11] used
two different χ2-random variables Ui and Qi in the definitions of Ti and Ri even
though they are related to the same sample sum of squares. As Krishnamoorthy
and Lu [11] pointed out, the use of the same χ2-random variable in the generalized
pivotal quantity produced confidence limits that are too liberal.
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The algorithm for calculating GCI1(μ) is as follows:
For given data (ȳi,s2

i ,ni), i = 1, . . .k:
For j = 1, . . . ,m:

Generate tn1−1, . . . , tnk−1.

Generate Qi ∼ χ2
ni−1, i = 1, . . . ,k.

Compute W1, . . . ,Wk.

Compute TKL, j = ∑k
i=1 Wi

(
ȳi− tni−1 si/

√
ni
)/

∑k
j=1 Wj .

(end j loop)
Compute the α/2- and (1−α/2)-quantile of TKL,1, . . . ,TKL,m.

Then, (TKL;α/2,TKL;1−α/2) is a 100(1− α)% generalized confidence interval
on μ .

Lin and Lee [12] first considered the best linear unbiased estimator for μ as-
suming that the variances σ2

i , i = 1, . . . ,k, are known. This estimator is given as,
cf. (2),

μ̂ =

k
∑

i=1
ni Ȳi/σ2

i

k
∑
j=1

n j/σ2
j

(21)

with
μ̂ ∼ N

(
μ ,

[
∑k

i=1(ni/σ2
i )
]−1

)
.

Consequently, √
∑k

i=1(ni/σ2
i ) (μ̂−μ) = Z ∼ N(0,1).

The generalized pivotal quantity for μ is then given as

TLL
(
Ȳ,V; ȳ,v

)
=

k
∑

i=1

ni
σ2

i
ȳi

Vi
vi

k
∑
j=1

n j

σ2
j

Vj
v j

−

√
k
∑

i=1
ni/σ2

i (μ̂−μ)

√
k
∑
j=1

n j

σ2
j

Vj
v j

=

k
∑

i=1

ni Ui
vi

ȳi

k
∑
j=1

n j Uj
v j

− Z√
k
∑
j=1

n j Uj
v j

=

k
∑

i=1
Wi ȳi

k
∑
j=1

Wj

− Z√
k
∑

i=1
Wi

(22)

with
Wi = ni Ui/vi, i = 1, . . . ,k.

The generalized pivotal quantity TLL fulfills the two conditions (A) and (B) and
the observed value of TLL is μ . Consequently, GCI2(μ) :

(
TLL;α/2,TLL;1−α/2

)
is a

generalized confidence interval for μ .



Exact and Generalized Confidence Intervals 93

The algorithm for calculating GCI2(μ) is as follows:
For given data (ȳi,s2

i ,ni), i = 1, . . .k:
For j = 1, . . . ,m:

Generate Z ∼ N (0,1).

Generate Ui ∼ χ2
ni−1, i = 1, . . . ,k.

Compute W1, . . . ,Wk.

Compute TLL, j = ∑k
i=1 Wi ȳi

/
∑k

j=1 Wj−Z
/√

∑k
i=1 Wi .

(end j loop)
Compute the α/2- and (1−α/2)-quantile of TLL,1, . . . ,TLL,m.

Then, (TLL;α/2,TLL;1−α/2) is a 100(1−α)% generalized confidence interval on μ .
A new third approach also starts with the best linear unbiased estimator μ̂ from

(21). Moreover, the statistic

V̂ar(μ̂) =
1

k−1

(
k

∑
i=1

ni

σ2
i

)−1 k

∑
i=1

ni

σ2
i

(
Ȳi−

∑k
j=1 n j Ȳj/σ2

j

∑k
�=1 n�/σ2

�

)2

(23)

is an unbiased estimator of the variance of μ̂ and stochastically independent of μ̂ ,
see [5]. Hartung [5] also shows that

(k−1)
k

∑
i=1

(ni/σ2
i ) V̂ar(μ̂) (24)

is a χ2-distributed random variable with k−1 degrees of freedom.

Consequently, (μ̂ − μ)/
√

V̂ar(μ̂) is a t-distributed random variable with k− 1
degrees of freedom.

A new generalized pivotal quantity is then given by

Tnew
(
Ȳ,V; ȳ,v

)

=

k
∑

i=1

ni Ui
vi

ȳi

k
∑
j=1

n j Uj
v j

− tk−1

√√√√ 1
k−1

(
k

∑
i=1

ni Ui

vi

)−1 k

∑
i=1

ni Ui

vi

(
ȳi−

∑k
j=1(n j Uj/v j) ȳ j

∑k
�=1(n� U�/v�)

)2

=

k
∑

i=1
Wi ȳi

k
∑
j=1

Wj

− tk−1

√√√√ 1
k−1

(
k

∑
i=1

Wi

)−1 k

∑
i=1

Wi

(
ȳi−

∑k
j=1 Wj ȳ j

∑k
�=1 W�

)2

(25)

with
Wi = ni Ui/vi, i = 1, . . . ,k.
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Again, the two conditions (A) and (B) above are fulfilled and the observed value
of Tnew is μ . Consequently, GCI3(μ) :

(
Tnew;α/2,Tnew;1−α/2

)
is a generalized confi-

dence interval for μ .
The algorithm for calculating GCI3(μ) is as follows:
For given data (ȳi,s2

i ,ni), i = 1, . . .k:
For j = 1, . . . ,m:

Generate tk−1.

Generate Ui ∼ χ2
ni−1, i = 1 . . . ,k.

Compute W1, . . . ,Wk.

Compute Tnew, j = ∑k
i=1 Wi ȳi

/
∑k

j=1 Wj

− tk−1

[
1/(k−1)

(
∑k

i=1 Wi
)−1

∑k
i=1 Wi

(
ȳi−∑k

j=1 Wj ȳ j
/
∑k

�=1 W�

)2
]1/2

.

(end j loop)
Compute the α/2- and (1−α/2)-quantile of Tnew,1, . . . ,Tnew,m.

Then, (Tnew;α/2,Tnew;1−α/2) is a 100(1− α)% generalized confidence interval
on μ .

5 Real Data Examples

To illustrate the above presented exact and generalized confidence intervals, we use
two small examples considered in Krishnamoorthy and Lu [11]. For calculating the
intervals (13) and (15), we use two different sets of weights each. In the weighted
inverse normal statistic (12), we consider γi = 1 ∀i, that is, each sample gets the
same weight, and γi = ni ∀i, that is, the larger the experiment the larger the weight.
In the general inverse χ2-combination statistic (14), we set γi = 2 ∀i, that is, the
combination method is then the well-known Fisher method, and again γi = ni ∀i.

We use the following abbreviations for the confidence intervals:

CI1 — Fairweather’s confidence interval from (11)
CI2 — Inverse normal confidence interval from (13) with γi = 1 ∀i
CI3 — Inverse normal confidence interval from (13) with γi = ni ∀i
CI4 — Inverse χ2-confidence interval from (15) with γi = 2 ∀i
CI5 — Inverse χ2-confidence interval from (15) with γi = ni ∀i
GCI1 — Generalized confidence interval using pivotal quantity (18)
GCI2 — Generalized confidence interval using pivotal quantity (22)
GCI3 — Generalized confidence interval using pivotal quantity (25)

The first example is originally from Meier [13]. In this example, four experiments
are used to estimate the mean percentage of albumin in the plasma protein of normal
human subjects. The observed means ȳi, the observed variances s2

i , and the sample
sizes ni of the four experiments are given in Table 1, so that the observed variance
of ȳi is s2

i /ni.
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Table 1 Percentage of albumin in plasma protein

Experiment ni ȳi s2
i

A 12 62.3 12.986
B 15 60.3 7.840
C 7 59.5 33.433
D 16 61.5 18.513

Table 2 Results in the albumin example

Method Interval Length

CI1 (59.90,62.19) 2.29
CI2 (59.87,62.18) 2.31
CI3 (59.94,62.17) 2.23
CI4 (59.79,62.31) 2.52
CI5 (59.91,62.19) 2.28
GCI1 (59.82,62.22) 2.39
GCI2 (59.92,62.07) 2.15
GCI3 (59.42,62.66) 3.24

Table 3 Selenium in nonfat milk powder

Methods ni ȳi s2
i

Atomic absorption spectrometry 8 105.0 85.711
Neutron activation:
1. Instrumental 12 109.75 20.748
2. Radiochemical 14 109.5 2.729
Isotope dilution mass spectrometry 8 113.25 33.640

The resulting confidence intervals together with their lengths in the albumin ex-
ample are displayed in Table 2. The exact confidence intervals are nearly identi-
cal. The shortest interval is the interval based on the inverse normal method with
weights equal to the sample sizes (CI3) followed by the interval based on the inverse
χ2-method with sample sizes as weights (CI5) and Fairweather’s interval (CI1). Only
the interval calculated with the inverse χ2-method and equal weights (CI4) is clearly
wider than the other four exact confidence intervals.

The generalized confidence interval of Lin and Lee (GCI2) is the shortest of all
the intervals, the newly proposed generalized confidence interval (GCI3) the widest
one. The generalized confidence interval of Krishnamoorthy and Lu (GCI1) is wider
than all the exact confidence intervals except the widest exact interval.

The second example is quoted from [2] and deals with the problem of estimation
of mean selenium in nonfat milk powder by combining the results of four methods.
The observed means ȳi, the observed variances s2

i , and the sample sizes ni of four
different methods are given in Table 3, so that the observed variance of ȳi is s2

i /ni.
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Table 4 Results in the milk powder example

Method Interval Length

CI1 (108.53,110.77) 2.24
CI2 (108.49,110.86) 2.37
CI3 (108.57,110.73) 2.16
CI4 (108.60,112.47) 3.87
CI5 (108.63,110.98) 2.35
GCI1 (108.65,110.54) 1.89
GCI2 (108.73,110.53) 1.80
GCI3 (107.84,111.54) 3.71

The results of the second example, confidence intervals plus lengths of the in-
tervals, are displayed in Table 4. Again, the interval based on the inverse normal
method with sample sizes as weights (CI3) is the shortest of the exact confidence
intervals, now followed by Fairweather’s interval (CI1) and then the interval based
on the inverse χ2-method with sample sizes as weights (GCI5).

The generalized confidence interval of Lin and Lee (GCI2) is again the short-
est of all the intervals, closely followed now by the generalized confidence interval
of Krishnamoorthy and Lu (GCI1). The newly proposed generalized confidence in-
terval (GCI3) is again rather wide compared to the other generalized confidence
intervals but still shorter than the widest exact confidence interval (CI4).

Based on the results of the two examples, the exact confidence intervals based on
inverse normal and inverse χ2-method, both with samples sizes as weights (CI3 and
CI5) , as well as Fairweather’s interval (CI1) may be recommended for practical use.
The generalized confidence interval of Lin and Lee (GCI2) may be recommended
when this interval really keeps the nominal level. In the next section, some simula-
tion results will be reported which provide further insight into the properties of the
intervals.

6 Results of Simulation Study

In a simulation study, we investigated the eight confidence intervals used in the
previous section with respect to their actual confidence levels and their expected
lengths.

The setting of the simulation study is as follows: We considered k = 3,6, and
9 populations with different sample sizes and error variances. For each number of
population, we simulated ten different scenarios. The plans for k = 3 populations are
displayed in Table 5. The first plan has small equal sample sizes and homogeneous
error variances, whereas the second one has heterogeneous error variances instead.
In the next two plans, we double the sample sizes of the first two plans. The other
six plans are unbalanced. Plan 5 has small sample sizes and homogeneous error
variances; plan 6 and 7, with the same sample sizes as plan 5, have heterogeneous
error variances. In plan 6, the largest sample size is associated with the largest error
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Table 5 Simulation plans for k = 3 populations

Plan (n1,n2,n3) (σ2
1 ,σ2

2 ,σ2
3 )

1 (10,10,10) (4,4,4)
2 (10,10,10) (1,3,5)
3 (20,20,20) (4,4,4)
4 (20,20,20) (1,3,5)
5 (5,10,15) (4,4,4)
6 (5,10,15) (1,3,5)
7 (5,10,15) (5,3,1)
8 (10,20,30) (4,4,4)
9 (10,20,30) (1,3,5)
10 (10,20,30) (5,3,1)

Table 6 Estimated confidence coefficients and expected lengths of eight intervals on the common
mean of k = 3 populations

Estimated confidence coefficients

Plan CI1 CI2 CI3 CI4 CI5 GCI1 GCI2 GCI3

1 94.8 94.7 94.7 94.6 94.7 95.9 93.0 94.0
2 94.8 94.9 94.9 95.0 95.0 95.9 93.6 94.7
3 95.0 95.0 95.0 95.1 94.9 95.4 94.3 94.7
4 95.1 95.2 95.2 95.3 95.3 95.7 94.6 95.0
5 94.9 94.9 95.1 95.1 95.0 96.1 92.9 94.3
6 94.9 95.1 94.8 95.3 94.8 96.3 92.9 93.3
7 94.8 95.0 94.9 94.9 94.9 95.5 93.5 94.1
8 95.0 95.0 95.0 94.9 95.0 95.5 94.0 94.6
9 94.8 94.7 94.7 95.0 94.9 95.6 93.8 94.8
10 94.8 94.7 95.0 95.0 95.0 95.3 94.2 94.6

Estimated expected lengths

Plan CI1 CI2 CI3 CI4 CI5 GCI1 GCI2 GCI3

1 1.532 1.505 1.505 1.600 1.524 1.678 1.468 2.580
2 1.138 1.136 1.136 1.250 1.160 1.181 1.051 1.890
3 1.041 1.038 1.038 1.110 1.046 1.097 1.027 1.915
4 0.772 0.776 0.776 0.862 0.785 0.765 0.725 1.364
5 1.548 1.551 1.509 1.684 1.530 1.733 1.480 2.637
6 1.309 1.264 1.320 1.347 1.346 1.464 1.217 2.083
7 1.030 1.089 0.992 1.300 1.013 1.050 0.943 1.808
8 1.063 1.065 1.039 1.160 1.046 1.106 1.029 1.928
9 0.867 0.859 0.900 0.921 0.911 0.917 0.842 1.538
10 0.726 0.743 0.680 0.900 0.687 0.674 0.646 1.259

variance and the smallest sample size with the smallest error variance. In plan 7, it is
just the other way round. In plan 8, 9, and 10, we double the sample size of the three
previous plans. For k = 6 populations, we replicated the plans for k = 3 populations
once, and for k = 9 populations twice.

In Tables 6, 7, and 8, the estimated confidence coefficients (in %) and the esti-
mated expected lengths of the eight intervals are displayed. We report the estimated
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Table 7 Estimated confidence coefficients and expected lengths of eight intervals on the common
mean of k = 6 populations

Estimated confidence coefficients

Plan CI1 CI2 CI3 CI4 CI5 GCI1 GCI2 GCI3

1 95.4 95.3 95.3 95.3 95.3 96.4 92.8 94.0
2 94.5 94.5 94.5 94.5 94.4 95.9 92.5 93.7
3 95.0 95.0 95.0 95.1 94.9 95.7 94.0 94.7
4 95.2 95.1 95.1 95.2 95.4 95.9 94.0 95.0
5 94.9 94.8 95.0 95.1 95.0 95.8 91.9 93.6
6 95.0 94.9 95.0 95.2 95.0 96.3 91.8 93.1
7 94.9 95.1 95.1 95.1 95.2 95.9 92.9 95.0
8 95.0 95.0 95.1 94.9 95.0 95.8 94.0 94.7
9 94.4 94.5 94.4 94.7 94.5 95.2 93.1 94.3
10 95.1 95.1 95.2 95.3 95.2 95.7 94.3 95.3

Estimated expected lengths

Plan CI1 CI2 CI3 CI4 CI5 GCI1 GCI2 GCI3

1 1.069 1.054 1.054 1.152 1.074 1.211 1.033 1.273
2 0.792 0.786 0.786 0.880 0.805 0.844 0.727 0.902
3 0.731 0.729 0.729 0.796 0.736 0.782 0.721 0.897
4 0.542 0.543 0.543 0.609 0.549 0.546 0.507 0.631
5 1.080 1.080 1.052 1.192 1.071 1.261 1.045 1.301
6 0.913 0.876 0.915 0.956 0.937 1.064 0.845 1.018
7 0.721 0.753 0.689 0.896 0.703 0.757 0.661 0.866
8 0.746 0.748 0.729 0.825 0.736 0.790 0.724 0.906
9 0.607 0.601 0.629 0.658 0.637 0.658 0.589 0.725
10 0.510 0.519 0.476 0.615 0.481 0.480 0.452 0.578

confidence coefficients of the exact confidence intervals to demonstrate the accuracy
of our simulation study. Each estimated confidence coefficient is based on 10,000
simulation runs, so that, using the central limit theorem, 95% confidence intervals
around estimates between 94.6 and 95.4% cover the nominal confidence coefficient
of 100(1−α)% = 95%.

The estimated confidence coefficients of the generalized confidence intervals are
always in the same order given the number of populations and given a sampling
plan. The generalized confidence interval of Krishnamoorthy and Lu (GCI1) always
produce actual confidence coefficients above the nominal confidence coefficient and
is almost always significantly conservative, that is, the estimated confidence are
larger than 95.4%.

The generalized confidence interval of Lin and Lee (GCI2) always produce actual
confidence coefficients below the nominal confidence coefficient and is (almost) al-
ways significantly liberal, that is, the estimated confidence coefficients are less than
94.6%. Consequently, this generalized confidence interval is not a suitable com-
petitor to the exact confidence intervals in the scenarios covered by our simulation
study.
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Table 8 Estimated confidence coefficients and expected lengths of eight intervals on the common
mean of k = 9 populations

Estimated confidence coefficients

Plan CI1 CI2 CI3 CI4 CI5 GCI1 GCI2 GCI3

1 95.5 95.5 95.5 95.6 95.4 96.5 92.9 94.1
2 94.7 94.7 94.7 94.7 94.7 95.9 92.0 93.7
3 95.0 95.0 95.0 95.2 95.0 95.7 93.8 94.6
4 94.8 94.8 94.8 95.2 95.0 95.5 93.6 94.5
5 95.0 95.2 95.3 95.0 95.0 96.2 92.2 94.1
6 95.0 94.8 95.0 94.7 94.8 96.3 91.1 92.9
7 94.4 94.5 94.5 94.8 94.7 95.3 92.3 95.1
8 95.3 95.0 95.1 95.4 95.2 95.8 93.9 94.4
9 94.9 94.8 95.1 94.8 94.9 95.8 93.2 93.9
10 95.1 95.1 95.1 95.0 94.9 95.8 94.3 95.1

Estimated expected lengths

Plan CI1 CI2 CI3 CI4 CI5 GCI1 GCI2 GCI3

1 0.865 0.854 0.854 0.940 0.871 0.993 0.841 0.975
2 0.644 0.639 0.639 0.715 0.653 0.695 0.593 0.693
3 0.596 0.595 0.595 0.654 0.601 0.642 0.589 0.681
4 0.441 0.441 0.441 0.495 0.447 0.447 0.412 0.478
5 0.880 0.881 0.857 0.978 0.875 1.048 0.863 1.024
6 0.740 0.710 0.742 0.783 0.761 0.883 0.693 0.799
7 0.586 0.610 0.558 0.715 0.570 0.624 0.540 0.666
8 0.607 0.609 0.594 0.675 0.600 0.648 0.591 0.689
9 0.494 0.490 0.512 0.539 0.519 0.541 0.481 0.551
10 0.415 0.422 0.388 0.495 0.392 0.394 0.368 0.438

The estimated confidence coefficients of the newly proposed generalized confi-
dence interval (GCI3) always lie between the confidence coefficients of the other
two generalized confidence intervals given a sampling plan. For small sample sizes,
the interval (GCI3) tends to be liberal, whereas for larger sample sizes, the interval
seems to attain the nominal confidence coefficient, though nearly all the estimated
confidence coefficients are less than 95%.

The generalized confidence interval of Lin and Lee (GCI2) consistently produce
the shortest average lengths. But since this interval does not attain the nominal level,
we cannot recommend the use of this interval for the scenarios covered in our sim-
ulation study as already mentioned above.

Generally, the average lengths of all the intervals decrease when the number of
populations or the sample sizes increase. Further note that the intervals CI2 and
CI3 based on the inverse normal method are identical when the sample sizes are
balanced. However, this is not true for the intervals CI4 and CI5 based on the inverse
χ2-method when the sample sizes are balanced.

Of the exact confidence intervals, the interval CI4 based on the inverse χ2-method
with γi = 2 ∀i, generally, produces the largest average lengths. Since we have four
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other exact confidence intervals with shorter average lengths, we cannot recommend
interval CI4 for practical use within the settings of our simulation study.

The picture of the other four exact confidence intervals with respect to expected
length is not so clear. Though never producing the shortest average length, the in-
terval based on the χ2-method with sample sizes as weights (CI5) produces in some
scenarios the second best result. The interval based on the inverse normal method
with sample sizes as weights (CI3) in most cases provides the shortest average
length, but when larger error variances are associated with larger sample sizes, the
interval based on the inverse normal methods with identical weights is better. The
average lengths of Fairweather’s interval CI1 is in most cases close to the average
lengths of the interval based on the inverse normal method with sample sizes as
weights.

For k = 6 and k = 9 populations, the newly proposed generalized confidence in-
terval GCI3 has comparable average lengths like the generalized confidence interval
GCI1. The average lengths of GCI1 are in most cases in the magnitude of the average
lengths of the exact confidence intervals.

7 Final Remarks

In this paper, we have considered five exact and three generalized confidence in-
tervals on the common mean of several independent normal populations. All the
intervals have in common that they always produce genuine intervals. That is nec-
essarily not the case for other exact intervals mentioned in the introduction. In a
simulation study, we have investigated the performance of the intervals especially
with respect to the expected length for a small or moderate number of populations
with small sample sizes and homogeneous as well as heterogeneous error variances.
Summarizing our findings quite generally, we can state that all the intervals con-
sidered in this paper can be recommended for practical use except the generalized
confidence interval proposed by Lin and Lee (GCI2) that turned out to be too liberal.

Note that the newly proposed generalized confidence interval GCI3 is more ro-
bust than all the other intervals with respect to deviations from the model assump-
tions, for instance the occurrence of treatment-by-sample interactions, see [6], since
the sample variances are only used for building the weights.

Typical common mean problems arise in interlaboratory trials. Identical parts
of the same material of interest are sent to several laboratories for analyzing. The
common mean of the several analyses is of interest. Since the laboratories do not
work with the same precision, different population variances have to be taken into
consideration.

More generally, common mean problems arise in meta-analysis when estimates
from different experiments or studies have to be combined. If the meta-analysis is
carried out retrospectively, all the intervals discussed in this paper can be applied.
However, if the meta-analysis is carried out prospectively so that results of previ-
ous studies determine the sample sizes as well as the number of following studies,
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then only the exact confidence intervals based on the inverse normal or inverse χ2-
combination methods are applicable. For example, a clear preference is given for
a prospective meta-analysis when a new drug shall be approved for the market via
meta-analysis, see [6].

A further field of applications lies in the adaptive extension of classical group se-
quential trials. Here a trial is performed consecutively on several independent stages
and the results of previous stages determine the sample size of the next stage. Our
exact confidence intervals based on the methods which combine P-values are appli-
cable correctly, also in this adaptive sequential situation, see [7].
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Locally Optimal Tests of Independence
for Archimedean Copula Families

Jörg Rahnenführer

Abstract A multivariate distribution can be decoupled into its marginal distribu-
tions and a copula function, a distribution function with uniform marginals. Copu-
las are well suited for modelling the dependence between multivariate random vari-
ables independent of their marginal distributions. Applications range from survival
analysis over extreme value theory to econometrics. In recent years, copulas have
attracted increased attention in financial statistics, in particular regarding modelling
issues for high-dimensional problems like value-at-risk or portfolio credit risk. The
well studied subclass of Archimedean copulas can be expressed as a function of
a one-dimensional generating function φ . This class has become popular due to
its richness in various distributional attributes providing flexibility in modelling.
Here, we present locally optimal tests of independence for Archimedean copula
families that are parameterized by a dependence parameter ϑ , where ϑ = 0 de-
notes independence of the marginal distributions. Under the general assumption
of L2-differentiability at ϑ = 0 we calculate tangents of the underlying paramet-
ric families. For selected examples the optimal tests are calculated and connections
to well-known correlation functionals are presented.

1 Introduction

Copula functions are multivariate distribution functions with uniformly distributed
marginals. They are a powerful tool for modelling multivariate dependencies when
marginal distributions are predetermined [5]. In financial statistics, copulas have
recently become popular for modelling high-dimensional data sets related to pric-
ing, risk management and credit risk analysis, see for example [3] for a recent
book on these topics. In this context, Copula functions are used for implementing
Monte Carlo analyses and for specifying non-linear dependencies between random
variables that can not be captured by linear correlations.

Jörg Rahnenführer
Fakultät Statistik, Technische Universität Dortmund, D-44221 Dortmund, Germany
rahnenfuehrer@statistik.tu-dortmund.de
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For example, individual risk models where dependence between contracts arises
through mixtures are presented in [7]. Some of these models are generated by Archi-
medean copulas, a special subclass of copula families with convenient distributional
properties. Archimedean copulas are also used to model portfolio allocations by ex-
ploiting separability properties of this subclass [11] and to construct models for data
that may suffer from selectivity bias [20]. Especially for the class of Archimedean
copulas, the resulting expressions for log-likelihood and score facilitate maximum
likelihood estimation.

For all these models, besides estimating the multivariate distribution function,
often a test for independence of the marginal distributions is of interest. Here, we
present a formula for explicitly calculating locally optimal tests for arbitrary param-
eterized Archimedean copula families. We restrict the calculations to the bivariate
case, an extension to higher dimensions is straightforward.

Similar results were first presented in two doctoral theses by Garralda-Guillem
[4] and by Rahnenführer [19]. Later, Francois Verret and Christian Genest [9] pre-
sented a general theorem for constructing locally most powerful rank tests of inde-
pendence for copula models. In this paper also additional interesting examples are
discussed. However, the explicit formula for parameterized Archimedean copulas is
not contained in any previous journal publication.

In the following, we first introduce bivariate copula functions and some basic
properties. A detailed introduction to copulas can be found for example in [17].
Then we provide the construction of locally optimal tests for Archimedean copulas
and the calculation of score functions. Finally, examples are presented for demon-
strating the usefulness of this approach and for highlighting connections between
dependence measures and corresponding optimal local tests.

2 Copula Families

We first introduce the notion of a copula function and state some well known
convenient properties of copula families. In the following, let F(x1,x2) be a two-
dimensional right continuous distribution function on R

2 with marginal distributions
F1(x1) := F(x1,∞) and F2(x2) := F(∞,x2).

Definition 1. C : [0,1]2 → [0,1] is called copula (copula function), if C is a two-
dimensional distribution function with marginal distributions that are uniformly dis-
tributed on the interval [0,1]:

C(x1,0) = C(0,x2) = 0 ∀ 0≤ x1,x2 ≤ 1,

C(x1,1) = x1, C(1,x2) = x2 ∀ 0≤ x1,x2 ≤ 1,

C(y1,y2)−C(y1,x2)−C(x1,y2)+C(x1,x2) ≥ 0 ∀ 0≤ x1 ≤ y1 ≤ 1
∀ 0≤ x2 ≤ y2 ≤ 1.
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Any two-dimensional distribution function can be split into a copula function and
its marginal distributions. For continuous distribution functions this separation is
uniquely determined.

Proposition 1. Let F be a two-dimensional distribution function on R
2 with

marginal distributions F1 and F2. Then a copula CF(·, ·) exists with

F(x1,x2) = CF(F1(x1),F2(x2)) ∀ x1,x2 ∈ R.

If F is continuous, then CF is uniquely defined by

CF(x1,x2) = F(F−1
1 (x1),F−1

2 (x2)) ∀ x1,x2 ∈ [0,1].

Proposition 2. Any copula C fulfills the Lipschitz condition

|C(y1,y2)−C(x1,x2)| ≤ |y1− y2|+ |x1− x2| ∀ (x1,x2),(y1,y2) ∈ [0,1]2.

This property guarantees a certain amount of smoothness of copula functions. For
proofs of Proposition 2 and 3 see for example [23], 7.51 and 7.52.

Copulas are especially useful for the interpretation of several well known corre-
lation functionals that depend only on the copula function and not on the marginal
distributions, see [23], Example 7.66.

Definition 2. For a fixed two-dimensional distribution function F let the random
variables (X1,X2) and (X ′1,X

′
2) be distributed according to F .

ρS(F) := 12
1∫

0

1∫
0

(CF(u1,u2)−u1 u2)du2 du1

= 12
1∫

0

1∫
0

(
u1−

1
2

) (
u2−

1
2

)
dCF(u1,u2)

= Corr (F1(X1),F2(X2))

is called Spearman-functional. Corr denotes the Spearman correlation coefficient.

ρF(F) := 4
1∫

0

1∫
0

CF(u1,u2)dCF(u1,u2)−1

= P
(
(X1−X ′1)(X2−X ′2) > 0

)
−P

(
(X1−X ′1)(X2−X ′2) < 0

)
is called Fechner-Kendall-functional.

ρS is the correlation between F1(X1) and F2(X2), and ρF is the difference between
the probabilities of drawing concordant and discordant pairs, respectively, when
drawing twice from the distribution function F .
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The subclass of Archimedean copulas was first defined in [7] and includes several
well known copula families.

Definition 3. A copula function C(x1,x2) is called Archimedean copula, if a convex
decreasing continuous function φ : [0,1]→ [0,∞], φ(1) = 0, exists with

C(x1,x2) = φ−1 (φ(x1)+φ(x2)). (1)

In this case φ is called generator.

For example, any function φ ∈C2[0,1] with φ(1) = 0, φ ′(x) < 0 and φ ′′(x) > 0
∀ t ∈ (0,1) is a generator of an Archimedean copula.

Archimedean copula functions can be written as a mixture of powers of two
distributions ([15], 4.2 or [7]):

C(x1,x2) =
∞∫

0

G1(x1)α G2(x2)α dM(α),

where Gi(xi) = exp(−φ−1(xi)), i = 1,2 and M is a distribution function on [0,∞)
with M(0) = 0. The construction of locally most powerful rank tests of indepen-
dence for related models given by mixtures of one-parametric families of marginal
distributions is presented in [12], §4 and §8. Further results on Archimedean copu-
las and related multivariate parametric families can be found in [8, 14] and [16]. A
new Archimedean copula model for bivariate survival data is presented in [18].

3 Construction of Locally Optimal Tests of Independence

In this section we present an explicit representation of locally optimal tests for
Archimedean copulas. We consider parametric families of copulas Cϑ (x1,x2) with
ϑ ∈R. The parameter ϑ could be, for example, a monotonous transformation of the
correlation coefficient ρ of the one-dimensional marginal distributions. The value
ϑ = 0 represents independence, thus C0(x1,x2) = x1 x2.

In this situation, testing for (one-sided) independence of two distributions that
are coupled through the copula Cϑ can be expressed as

H = {ϑ ≤ 0} versus K = {ϑ > 0}

or by respective expressions with reversed orientation.
The notion of locally optimal tests for this testing problem is based on the fol-

lowing smoothness condition for the underlying parametric family, see for example
[2] or [21] for more details.

Definition 4. (L2-differentiability): Let E = (Ω ,A ,{Pϑ :ϑ ∈Θ}) be an experiment

with a σ -finite dominating measure μ , ϑ0 ∈
◦
Θ ⊂ R and let || || denote the L2(μ)-

norm. E is called L2-differentiable in ϑ0, if there exists a function g ∈ L2(Pϑ0) with
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∣∣∣∣∣2
(

dPϑ0+s

dμ

)1/2

−2
(

dPϑ0

dμ

)1/2

− sg
(

dPϑ0

dμ

)1/2
∣∣∣∣∣
∣∣∣∣∣ = o(s), s→ 0.

The function g is called tangent or score-function of the experiment. Under regular-
ity conditions, if ϑ �→ fϑ := dPϑ

dPμ
is differentiable with respect to ϑ in ϑ = ϑ0, the

tangent can be calculated as g(x) = d
dϑ ln fϑ (x)|ϑ=ϑ0 .

Now assume the case where ϑ0 = 0 denotes independence. If a tangent in the
sense of the preceding definition exists, the test statistic of the locally optimal test
of independence based on n independent pairs of observations is given by

Tn =
1
n

n

∑
i=1

g(x1i,x2i). (2)

If densities fϑ (with respect to the uniform distribution on [0,1]2) exist in a neigh-
borhood of ϑ = 0, the derivative can be calculated as

g(x) =
d

dϑ
ln fϑ (x)

∣∣∣∣
ϑ=0

=
d

dϑ
fϑ (x)

∣∣∣∣
ϑ=0

.

Apparently f0 ≡ 1 denotes the independence copula.
We now calculate the score function of a parametric Archimedean copula fam-

ily Cϑ (x1,x2) under appropriate differentiability conditions. In the following theo-
rem, for better readability we replace (x1,x2) with (u,v). Let “ ′ ” denote the partial
derivative of φϑ (u) with respect to the argument u, and let “ ˙ ” denote the partial
derivative with respect to the parameter ϑ .

Theorem 1. Let Cϑ (u,v) be a family of Archimedean copulas with stochastic
independence at ϑ = 0. Assume that in ϑ0 the generator φ(ϑ ,u) := φϑ (u) is
twice differentiable with respect to the argument u and once with respect to
the parameter ϑ , i.e. φ̇ ′′0 (u) := φ̇ ′′(ϑ ,u)|ϑ=0 exists. Then the score function is
given by

g(u,v) = (uv)2 φ̇ ′′0 (uv)+3uv φ̇ ′0(uv)−u φ̇ ′0(u)− v φ̇ ′0(v)
+φ̇0(uv)− φ̇0(u)− φ̇0(v). (3)

Proof. According to (1) the family of copula functions can be written as

Cϑ (u,v) = φ−1(ϑ ,φ(ϑ ,u)+φ(ϑ ,v)).

The independence assumption at ϑ = 0 translates into φ0(u)+φ0(v) = φ0(uv). An
immediate consequence of this formula and Definition 3 is φ0(u) = a ln(u) with
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a∈R, a < 0. We can set a =−1, since multiplying a generator φ of an Archimedean
copula family with a positive constant yields exactly the same Copula family. It
follows

φ0(u) =− ln(u), φ ′0(u) =−1/u, φ−1
0 (u) = exp(−u), (φ−1)′0(u) =−exp(−u).

Applying a chain rule to the distribution function yields

d
dϑ

C(u,v) = ˙(φ−1)
(
ϑ ,φ(ϑ ,u)+φ(ϑ ,v)

)
+ (φ−1)′

(
ϑ ,φ(ϑ ,u)+φ(ϑ ,v)

)
· d

dϑ

(
φ(ϑ ,u)+φ(ϑ ,v)

)
. (4)

This requires the calculation of the term ˙(φ−1)(ϑ ,u):

φ(ϑ ,φ−1(ϑ ,u)) = u

=⇒ φ̇(ϑ ,φ−1(ϑ ,u))+φ ′(ϑ ,φ−1(ϑ ,u)) · ˙(φ−1)(ϑ ,u) = 0

=⇒ ˙(φ−1)(ϑ ,u) =−φ̇(ϑ ,φ−1(ϑ ,u))
/
φ ′(ϑ ,φ−1(ϑ ,u))

=⇒ ˙(φ−1)(ϑ ,u)
∣∣∣
ϑ=0

=−φ̇0(φ−1
0 (u))

/
φ ′0(φ−1

0 (u)). (5)

Combing equations (4) and (5) leads to

d
dϑ

C(u,v)
∣∣∣
ϑ=0

(4)
= ˙(φ−1)0

(
φ0(u)+φ0(v)

)
+(φ−1)′0

(
φ0(u)+φ0(v)

)
·
(
φ̇0(u)+ φ̇0(v)

)
(5)
= −φ̇0(φ−1

0 (φ0(u)+φ0(v)))
/
φ ′0(φ−1

0 (φ0(u)+φ0(v)))

−φ−1
0

(
φ0(u)+φ0(v)

)
·
(
φ̇0(u)+ φ̇0(v)

)
= −φ̇0(uv)

/
(−1/(uv))−uv

(
φ̇0(u)+ φ̇0(v)

)
= uv

(
φ̇0(uv)− φ̇0(u)− φ̇0(v)

)
. (6)

From independence at ϑ = 0 we get c0(u,v)≡ 1. Differentiation of the copula func-
tion with respect to u and v finally yields

g(u,v) =
d

dϑ
c(u,v)

∣∣∣
ϑ=0

=
d

du
d
dv

d
dϑ

C(u,v)
∣∣∣
ϑ=0

(6)
=

d
du

d
dv

(
uv

(
φ̇0(uv)− φ̇0(u)− φ̇0(v)

))
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=
d

du

(
u(φ̇0(uv)− φ̇0(u)− φ̇0(v))+u2 v φ̇ ′0(uv)−uv φ̇ ′0(v)

)
= φ̇0(uv)− φ̇0(u)− φ̇0(v)+u(φ̇ ′0(uv)v− φ̇ ′0(u))+2uv φ̇ ′0(uv)

+u2 v φ̇ ′′0 (uv)v− v φ̇ ′0(v)
= (uv)2 φ̇ ′′0 (uv)+3uv φ̇ ′0(uv)−u φ̇ ′0(u)− v φ̇ ′0(v)

+φ̇0(uv)− φ̇0(u)− φ̇0(v). 
�

4 Examples of Score Functions and Locally Optimal Tests

We now explicitly calculate score functions for Archimedean copulas and describe
the construction of locally optimal tests.

Example 1 (Clayton-Copula (1978)).

φϑ (x) =
1
ϑ

(x−ϑ −1), ϑ > 0,

Cϑ (x1,x2) = (x−ϑ1 + x−ϑ2 −1)−1/ϑ .

Straightforward calculations yield

φ̇0(x) =
1
2

ln(x)2, φ̇ ′0(x) =
ln(x)

x
, φ̇ ′′0 (x) =

1− ln(x)
x2 .

From Theorem 1 we obtain

g(x1,x2) = (x1x2)2 1− ln(x1x2)
(x1x2)2 +3x1x2

ln(x1x2)
x1x2

− x1
ln(x1)

x1
− x2

ln(x2)
x2

+
1
2

ln(x1x2)2− 1
2

ln(x1)2− 1
2

ln(x2)2

= 1−
(

ln(x1)+ ln(x2)
)

+3
(

ln(x1)+ ln(x2)
)
− ln(x1)− ln(x2)

+
1
2

(ln(x1)+ ln(x2))2− 1
2

ln(x1)2− 1
2

ln(x2)2

= 1+ ln(x1)+ ln(x2)+
1
2

2 ln(x1) ln(x2)

=
(

1+ ln(x1)
)(

1+ ln(x2)
)
.

Example 2. Let φϑ (x) =− ln(x)−ϑ (1− x) with ϑ ∈ R, ϑ < 1 be the generator of
an Archimedean copula family. Then the score function is given by

g(x1,x2) = (1−2x1)(1−2x2).
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For ϑ < 1 the generator is a strictly decreasing and convex function. We can calcu-
late φ̇0(x) =−(1− x), φ̇ ′0(x) = 1 and φ̇ ′′0 (x) = 0. Then Theorem 1 yields

g(x1,x2) = 3x1 x2− x1− x2− (1− x1 x2)+(1− x1)+(1− x2)
= (1−2x1)(1−2x2).

The popular (non-Archimedean) Farlie-Gumbel-Morgenstern-Copula is given by

Cϑ (x1,x2) = x1x2

(
1+ϑ (1− x1)(1− x2)

)
, |ϑ |< 1,

fϑ (x1,x2) = 1+ϑ (1−2x1)(1−2x2).

With f0 ≡ 1, differentiation of the density function with respect to ϑ at ϑ = 0 yields
the score function g(x1,x2) = (1− 2x1)(1− 2x2). Therefore this widely used
Copula family has the same score function and thus is locally at ϑ = 0 equivalent
to the Archimedean copula from Example 2.

Finally, for completeness reasons, we describe the straightforward general con-
struction of locally optimal tests, based on the preceding example.

In a first step, let the marginal distribution functions F1 and F2 of the random
variables X1 and X2 be fixed. The test statistic of the locally optimal test then is
given by

Tn =
1
n

n

∑
i=1

(1−2F1(x1i))(1−2F2(x2i)),

compare with (2). Since F1(X1) and F2(X2) are both uniformly distributed on [0,1],
the distribution of Tn is independent of F1 and F2. Hence, for ϑ = 0 the critical
value cα of the test can be evaluated. For large n, one may substitute cα by a normal
critical value. Then the sequence

ϕn =

⎧⎨
⎩

1, >√
nTn/σ u1−α

0, ≤

with Φ(u1−α) = 1−α and σ =
∫ 1

o (1−2u)2 du = 1/3 is of asymptotic level α . Re-
call from [21] that locally optimal tests are asymptotically efficient for local alter-
natives given by L2-differentiable families. Obviously, for this example the statistic
Tn is just an empirical version of the Spearman-functional.

In a second step, let the marginal distribution functions F1 and F2 be unknown but
fixed nuisance parameters. From Fϑ (x1,x2) = Cϑ (F1(x1),F2(x2)) we can conclude
that the score function of the family Fϑ is given by g(F1(x1),F2(x2)). Replacing F1
and F2 with their non-parametric estimators, the empirical distribution functions F̂1
and F̂2, naturally leads to rank tests. The resulting test statistic converges under suit-
able regularity conditions in distribution to the original test statistic. It follows that
the tests are asymptotically equivalent. For a proof see [10], for further literature on
these type of rank tests for independence see [1, 13, 22]. A more detailed discussion
in the context of Archimedean copulas is presented in [9].
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Optimal Designs for Treatment-Control
Comparisons in Microarray Experiments

Joachim Kunert, R.J. Martin, and Sabine Rothe

Abstract Two-colour microarray experiments form an important tool in modern
molecular biology. But they are very expensive and so careful planning of exper-
iments is necessary. In this paper we determine optimal approximate designs for
microarray experiments when only treatment-control comparisons are of interest.
Based on these results we construct near optimal finite designs and compare their
efficiencies with those of the corresponding star designs, which are often used in
microarray experiments.

1 Introduction

Two-colour microarray experiments enable simultaneous analysis of thousands of
genes. Therefore they form an important tool in modern molecular biology. But mi-
croarray experiments are very expensive and so careful planning of experiments is
necessary. A usual two-colour microarray experiment for comparison of t experi-
mental conditions, often called tissues or treatments uses b arrays. An array is a
small slide, spotted with thousands of genes. A mix of two tissues is hybridized to
each array. The tissues are labelled with two fluorophores, usually red (Cy5) and
green (Cy3) dye. After the hybridization process, the array is scanned to visualize
the fluorescence intensities. Following the work of Bailey [1] we neglect the possi-
bility of different dye effects and therefore the underlying model for this experiment
can be seen as a block model for blocks of size 2, where every array can be senn
as one block. Yang and Speed [8] argued that many important design issues have to
be carefully considered during the whole experiment in order to achieve high preci-
sion. The probably most important point here is to determine which tissues should
be allocated onto the same array.

Joachim Kunert
Fakultät Statistik, Technische Universität Dortmund, D-44221 Dortmund, Germany
kunert@statistik.tu-dortmund.de
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Fig. 1 Reference design (a) and loop design (b) for t = 4 treatments and b = 4 arrays. Each line
connecting two treatments indicates an array receiving these two treatments. The dye labelling is
not illustrated. In the reference design, half of the available resources are used on the reference,
which is not of interest. The loop design uses the same number of arrays, but no reference and
therefore is more efficient

Some work has been done recently on the optimal design problem for microar-
ray experiments. Kerr and Churchill [3] considered designs in common use and
demonstrated the low efficiency of the ordinary reference design compared to a
loop design. These two kinds of designs are illustrated in Fig. 1. If the underlying
optimality criterion is the A– or D-criterion, it is well known that an optimal design
for such experiments is the balanced incomplete block design (BIBD), see e.g. Shah
and Sinha [7], Chap. 2. A BIBD for t = 4 treatments and b = 6 arrays is illustrated
in Fig. 2 (a). But this design uses at least t(t−1)/2 arrays, which is a relatively large
number and often not available. So Bailey [1] calculated optimal designs under the
A- and D-criterion for small numbers of blocks.

Only relatively few papers deal with the problem of optimal designs for
treatment-control comparisons. Here, merely the effects of some treatment con-
trasts, compared to a control are of interest. One could suppose that then a reference
design which uses the control as the central treatment instead of a reference will
perform better compared to the usual case where all treatment contrasts are of equal
importance. Such a design is called a star design. An obvious optimality criterion
for this situation is the A-criterion for treatment-control comparisons, see Bechhofer
and Tamhane [2]. However, it is easily verified that under this criterion, a multiple
star-design, as the one in Fig. 2 (b) is only as good as a BIBD for the same number
of treatments and blocks. Since the BIBD remains optimal if all treatment contrasts
are of equal interest, we would always recommend using the BIBD if the num-
ber of available arrays suffices. As we will see below, even for treatment-control
comparisons, the star design is not the best design available.
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Fig. 2 BIBD (a) and double star design (b) for t = 3 treatments, 1 control and b = 6 blocks. The
labelling of treatments with fluorophores is not illustrated. The double star design and the BIBD
have the same efficiencies under the A-criterium for treatment-control comparisons, but the BIBD
is A-optimal if all treatment contrast are of equal interest

In this paper we determine optimal approximate designs for microarray
experiments when only the treatment-control comparisons are of interest. Based
on these results we construct appropriate finite designs and compare their efficien-
cies with those of the corresponding multiple star designs. In Sect. 2 we introduce
the statistical model we use, following Bailey [1]. Optimal approximate designs for
this model can be calculated with the approach proposed by Kunert et al [5] and
will be described in Sect. 3. Resulting finite designs and their efficiencies, as well
as a comparison with the efficiencies attained by the multiple star designs, follow in
Sect. 4. We will end with a short summary and discussion in Sect. 5.

2 Statistical Model

Suppose there are t ≥ 2 different treatments which we want to compare with a con-
trol 0. Like Bailey [1], we assume that after a normalisation process the 2b observa-
tions y11, . . . ,y2b, where b denotes the number of arrays available, can be described
by a simple linear model

y = Tτ +Bβ + e,

where τ = (τ0, . . .τt)T and β = (β1, . . .βb)T are the vectors of treatment and array
effects. Further, we make the usual assumption, that

E(e) = 0 and Var(e) = I2bσ2.
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We are looking for A-optimal designs for such experiments, when only the
treatment-control contrasts τi−τ0, 1≤ i≤ t are of interest. A design d ∈Ωt+1,b,2 is
a mapping

d : {1, . . . ,b}×{1,2}→ {0, . . . , t}
and Ωt+1,b,2 denotes the set of all designs for an experiment with t + 1 treatments,
b blocks and 2 plots per block. The information matrix for estimating the treatment
effects is then given by

Cd = T Tω⊥(B)T,

where ω⊥(B) = I2b−B(BT B)−BT .

3 Determination of Optimal Approximate Designs
and Application to Microarray Experiments

Kunert et al [5] constructed optimal and near optimal designs for treatment-control
comparisons when the observations are dependent. In the special instance that k = 2,
their approach can be used for finding good designs for treatment-control compar-
isons in microarray experiments. We therefore follow the approach of Kunert et al
[5] and partition the information matrix in the form

Cd =
(

cd,ss cT
d,ns

cd,ns Dd

)
,

where cd,ss ∈R is a scalar, cd,ns ∈R
t is a t-vector and Dd ∈R

t×t is the t by t principle
minor of Cd formed by deleting the row and column corresponding to the control. A
design d has supplemented balance, if Dd is completely symmetric, Dd = a0It−a1Jt ,
with a0 = ta1 + t−1cd,ss. Then cd,ns =−Dd1t =−t−1cd,ss1t is a constant vector and
cd,ss = 1T

t Dd1t .
Commonly used criteria for design optimality are mostly defined over functions

of the information matrix Cd . We are here looking for a design minimizing the av-
erage pairwise variance of all treatment-control contrasts. This average variance
is proportional to tr(D−1

d ), the Atc-value, say, of a design d, see Bechhofer and
Tamhane [2]. For any design d ∈ Ωt+1,b,2 a simple lower bound for its Atc-value is
given by

ld =
t−1
md1

+
1

md2
,

where
md2 = cd,ss/t and md1 = (tr(Dd)−md2)/(t−1).

This bound is attained if Dd is completely symmetric and hence the design has
supplemented balance. The Atc-efficiency of a design d ∈Ωt+1,b,2 can be defined by
comparing its Atc-value to the minimum Atc-value of all competing designs, or the
minimum lower bound
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l∗ = min
d∈Ωt+1,b,2

ld

for it. A design d∗ having supplemented balance and md∗1 and md∗2 such that

ld∗ =
t−1
md∗1

+
1

md∗2
= l∗

is thus Atc-optimal. In many cases the overall lower bound l∗ cannot be attained, so
the optimal design might have a higher Atc-value.

Instead of minimizing the lower bound ld over all competing designs, Kunert
et al [5] equivalently maximized

qd =
t−1

ld
= md1−

m2
d1

(t−1)md2 +md1
.

They then utilized the method of Kushner [6] for finding optimal designs (see also
Kunert and Martin [4]). Hence, we consider the function

qd(x) = (1+ x)2md1 + x2(t−1)md2,

which attains its minimum at

x∗ =
−md1

(t−1)md2 +md1

with minqd(x) = qd .
A design d ∈Ωt+1,b,2 consists of b sequences s1d , . . . ,sbd of treatments and

md1 =
b

∑
i=1

m1(sid) and md2 =
b

∑
i=1

m2(sid),

where m j(s), j = 1,2, are the m f j-values of a design f ∈ Ωt+1,1,k, that consists of
only one block, occupied with sequence s. Two sequences s und v are equivalent,
if m1(s) = m1(v) and m2(s) = m2(v). This, however, holds if and only if s can be
transformed into v by relabelling the test-treatments or by reversing the order of
treatments. Thus, the set of all sequences can be devided into K equivalence classes.
In microarray experiments we have merely K = 3 different equivalence classes of
sequences with values m1(si) and m2(si), i = 1,2,3. Class 1 contains sequences
with direct treatment-control comparisons. Class 2 contains comparisons between
two different treatments and all sequences in which one treatment is compared with
itself are gathered in class 3.

The value of qd only depends on the equivalence classes used and their propor-
tions πdi, i = 1,2,3 in the design d. For each class i of sequences we define the
function

hi(x) = (1+ x)2m1(si)+ x2(t−1)m2(si),
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where si is an arbitrary sequence from class i. It then holds that

qd(x) = b
3

∑
i=1

πdihi(x).

We want to maximize qd = minqd(x). Define y∗ = minx maxi hi(x) and x∗ as the
corresponding x-value. Then y∗b = q∗, say, is the maximal possible value of qd over
all designs d ∈Ωt+1,b,2. At the point x∗, either one of the hi wille have its minimum,
or at least two of the hi will intersect. The corresponding classes are then to be used
in a design with a maximum q∗. Define h′i(x) = ∂

∂x hi(x). Then the proportions of the
hi in such a design are the values πdi, such that

b
3

∑
i=1

πdih′i(x
∗) = 0.

The values of m1(s) and m2(s) for the three equivalence classes, represented by
s1 = (0,1) and s2 = (1,2) and s3 = (1,1) are

m1(s1) =
1
2t

, m1(s2) =
1

t−1
, m1(s3) = 0, and

m2(s1) =
1
2t

, m2(s2) = 0, m2(s3) = 0.

This leads to the following polynomials for the sequence classes

h1(x) = (1+ x)2 1
2t

+ x2(t−1)
1
2t

,

h2(x) = (1+ x)2 1
t−1

and h3(x) = 0.

The functions h1 and h2 intersect at

x∗ =−
√

t +1
t−1+

√
t +1

.

Note that y∗ = h1(x∗) = h2(x∗)≥ 0 = h3(x∗) and, therefore, y∗ = maxi hi(x∗). Since
(1 + x∗) > 0, h′2(x

∗) = (1 + x∗) 2
t−1 > 0, and h′1(x

∗) = (1 + x∗) 1−
√

t+1
t < 0, so

h′1(x
∗)h′2(x

∗) < 0 and h′1 and h′2 have opposite signs at x∗. In all,

y∗ = min
x

max
i

hi(x).

A design d with a maximum qd therefore consists of sequences from classes 1 and
2 with appropriate proportions

π∗d1 =
2t

1+ t +(t−1)
√

t +1
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for equivalence class 1 (treatment-control) and

π∗d2 = 1−π∗d1

for equivalence class 2 (treatment-treatment). The implied value for the global lower
bound of a design d ∈Ωt,b,2 is then

l∗ =

(
t−1+

√
t +1

)2

b
.

Note that this bound is attained if a design d∗ consists of exactly bπ∗d1 sequences
from equivalence class 1 and of bπ∗d2 sequences from equivalence class 2 and addi-
tionally has supplemented balance.

4 Results

With the approach proposed in Sect. 3 we can now determine optimal approximate
designs for given numbers of new treatments t and blocks b. Thereby, an optimal
design uses exactly b∗1 = bπ∗d1 sequences from equivalence class 1 and b∗2 = bπ∗d2
sequences from equivalence class 2. Additionally, those sequences must be such
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Fig. 3 Rounded numbers of blocks that should be applied with sequences from equivalence class 1
for t = 3,4,5,10 treatments and t ≤ b≤ 20 blocks. The black line indicates the minimum number
of sequences needed from class 1 to compare every treatment at least once directly with the control
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that the resulting design has supplemented balance. Often, the calculated values of
π∗d1 and π∗d2 for a design with a maximum overall lower bound l∗ are not rational.
For every b, the optimal numbers of sequences used from the two classes are thus
not integer numbers and the proposed designs do not exist. For the construction of
efficient designs we therefore use proportions πd1 ≈ π∗d1 and πd2 ≈ π∗d2 such that
bi = bπdi ∈ N, i = 1,2. Further, for given numbers b1 and b2, we can generally not
construct a design that has supplemented balance. Instead, we choose a design that
is as balanced as possible for given values of b1 and b2. With those two restrictions
we are often not able to construct the proposed optimal designs. Nevertheless, we
get designs with high Atc-efficiencies.

For some combinations of t and b, Fig. 3 shows the calculated numbers of se-
quences from equivalence class 1 that we use in our efficient designs. For rela-
tively small numbers of blocks, those do not suffice for a complete star design. For
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Fig. 4 Designs for t = 3 treatments and b = 5 (a) and b = 12 (b) blocks and for t = 6 treatments
and b = 9 (c) and b = 15 (d) blocks. The construction of the designs is based on the results of
our approach. The first design has an Atc-value of 3.67 with an overall lower bound l∗ = 3.2 and
therefore attains an Atc-efficiency of 87%. The Atc-value of the second design is equal to the overall
bound l∗ = 1.33 and the design is thus Atc-optimal. The two designs for t = 6 new treatments attain
Atc-efficiencies of 81% and 90%, with Atc-values equal to 8 and 4.32 and lower bounds l∗ = 6.50
and l∗ = 3.90
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increasing numbers of treatments, the minimum number of blocks for which the
calculated number b1 allows the construction of a complete star design (with some
further connections between two different treatments) also increases. Following our
approach, efficient designs therefore do not compare every treatment directly with
the control, if we only use small numbers of blocks. It is not until the total number
of blocks reaches a specific bound that we construct a complete star design with
additional comparisons between two different treatments.

Fig. 4 shows some efficient designs for different combinations of treatments and
blocks, calculated with our approach. The Atc-efficiencies of those four designs vary
from 81% to 100%. Similar efficiencies are attained for many other designs based
on our approach. But there are still rare cases in which the obtained results are not
acceptable.

Our main goal in this paper is to compare the efficiencies of the designs attained
with our approach with those of the corresponding multiple star designs. In Fig. 5
the relative efficiencies of the two types of designs are illustrated. Obviously, if
we have the same number of treatments as blocks, the star designs perform better
than the designs calculated with out approach. But for few treatments or increasing
numbers of blocks, the efficiencies of the new designs increase, where the star de-
signs improve only slightly. Hence, in most cases, our designs perform better than
the multiple star designs. However, for larger numbers of treatments the number
of blocks needed to get better than the star design increases. For t = 10 treatments
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Fig. 5 Efficiencies of the designs calculated with our approach and the corresponding multiple star
designs for t = 3,4,5,10 new treatments and different numbers of blocks. The new designs are a
balance between having b1 blocks ’close’ to bπd1 and Cd ’close’ to supplemented balance
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it takes 14 blocks until our design is more efficient than the star design. Thus, the
more treatments we have, the better it is to use a star design, as long as the number
of blocks is small. With sufficiently many blocks, our designs are always preferable.

5 Summary and Discussion

In this paper, we have proposed an approach to determine optimal approximate de-
signs for treatment-control comparisons in microarray experiments. Since, in gen-
eral, these approximate designs cannot be constructed with a given number of ar-
rays, we specified designs that are likely to attain high efficiencies. In contrast to the
commonly used star design, most of the calculated designs use a certain proportion
of direct treatment-treatment comparisons instead of simply comparing every treat-
ment exclusively with the control. Those designs attain high efficiencies, mostly
between 80% and 100%. In particular, they mostly perform better than the corre-
sponding multiple star design.
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Improving Henderson’s Method 3 Approach
when Estimating Variance Components
in a Two-way Mixed Linear Model

Razaw al Sarraj and Dietrich von Rosen

Abstract A two-way linear mixed model, consisting of three variance components,
σ2

1 , σ2
2 and σ2

e is considered. The variance component estimators are estimated us-
ing a well known non-iterative estimation procedure, Henderson’s method 3. For σ2

1
we propose two modified estimators. The modification is carried out by perturbing
the standard estimator, such that the obtained estimator is expected to perform better
in terms of its mean square error.

1 Introduction

In an analysis of variance context, the most commonly used method for estimat-
ing the variance components has been through equating the observed and expected
mean squares, and solving a set of linear equations. As long as the data are bal-
anced the ANOVA estimators are known to have good statistical properties, i.e.,
the obtained estimators are unbiased and have minimum variance among all un-
biased estimators which are quadratic functions of the observations, see Graybill
and Hultquist [1]. However, since real world data often are always unbalanced, this
method is no longer appealing. For instance, the uniformly minimum variance prop-
erty is lost. Furthermore, whether data are balanced or unbalanced, there is nothing
in the ANOVA methodology that would prevent negative estimates of the variance
components to occur, LaMotte [4]. In a seminal paper Henderson [2] considered
variance component estimation with unbalanced data. He presented three methods
of estimation which later on, came to be known as Henderson’s method 1, 2 and 3.
The obtained estimators are unbiased and translation invariant.

However, since all three methods are variations of the general ANOVA method,
they suffer from the weaknesses of it. In particular, the lack of uniqueness.
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In this paper we were motivated by Kelly and Mathew’s [3] work, where they im-
proved the ANOVA estimators in a one-way variance component model. The model
consists of two variance components, one is the random effect of interest, and the
second is the error component. They modified the variance component estimator
corresponding to the random effect such that the resulting estimator performed bet-
ter than the unmodified ANOVA estimator in terms of the mean square error (MSE)
criteria. If more components were to be included into the model, they were excluded
by orthogonal projections. Hence, the model could always be dealt with as if it had
two variance components.

Our aim is to modify the variance component estimators obtained by Hender-
son’s method 3, in a two-way linear mixed model, i.e. a model with three variance
components of which two components corresponding to the two random effects in-
cluded in the model, and the third corresponds to the error component. Here, we
want to emphasize that we are primarily interested in one of the variance compo-
nents. We intend to modify this component and calculate its MSE. Thereafter, we
compare it with the MSE of the unmodified one. This modified variance component
estimator is expected to perform better in terms of the MSE criteria.

1.1 Quadratic Forms

Estimation of variance components for balanced and unbalanced data are based on
quadratic forms Y ′AY where A is a symmetric matrix, and

Y ∼ N(μ ,V ).

In particular the mean and the variance of Y ′AY are needed.

1. The mean of Y ′AY , is equal to

E(Y ′AY ) = tr(AV )+μ ′Aμ , (1)

which is true even if Y is not normally distributed.
2. The variance of Y ′AY is

D[Y ′AY ] = 2tr(AVAV )+4(μ ′AVAμ). (2)

3. If AV is idempotent, the distribution of Y ′AY is given by

Y ′AY ∼ χ2(rA,
1
2
μ ′Aμ),

where χ2(rA, 1
2μ
′Aμ) is non-central chi-square distribution, with degrees of free-

dom equal to rA, i.e., the rank of A, and the non-centrality parameter 1
2μ
′Aμ .
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1.2 Important Criteria for Deriving Estimators

Consider the following mixed linear model

Y = Xβ +Zu+ e, (3)

where Y is the N× 1 vector of observations, X is a known N×m matrix, β is an
m×1 vector of unknown fixed effect parameters, and e is an N×1 vector of random
error with mean 0 and dispersion matrix σ2

e IN . The term Zu given in model (3) is a
random term that can be partitioned conformably as

Zu =
[

Z1 Z2 . . . Zr
]
⎡
⎢⎢⎢⎣

u1
u2
...

ur

⎤
⎥⎥⎥⎦ =

r

∑
i=1

Ziui.

Thus, model (3) can be rewritten as

Y = Xβ +
r

∑
i=1

Ziui + e, (4)

where Zi is N×ni incidence matrix of known elements, ui is ni×1 vector of random
effects, with zero mean value and dispersion matrix σ2

i Ini , i = 1, · · · ,r. Further it is
assumed that the ui and e are uncorrelated random variables. Then from (4), E(Y ) =
Xβ and the dispersion matrix V = D[Y ] = Σ r

i=1ZiZ′iσ2
i +σ2

e IN . The parameters σ2
i

and σ2
e are unknown. Since Zu and e are random effects, they can be combined into

one random term. Thus (4) can be rewritten as Y = Xβ +Σ r
i=0Ziui and the dispersion

matrix V= Σ r
i=0ZiZ′iσ2

i , where u0 = e, σ2
0 = σ2

e and Z0 = IN .
To generalize the idea of estimating a single variance component, we consider

estimating a linear function of the variance components, p0σ2
0 + p1σ2

2 + · · ·+ prσ2
r ,

where pi are known, by a quadratic function Y ′AY of the random variable Y in (4).
The matrix A should be chosen according to some suitable criteria.

1. Unbiasedness: If Y ′AY is unbiased for ∑r
i=0 piσ2

i for all σ2
i , then under the re-

striction X ′AX = 0,

E(Y ′AY ) = tr(AV ) =
r

∑
i=0

tr(AZiZ′i)σ2
i =

r

∑
i=0

piσ2
i . (5)

i.e., an unbiased estimator is obtained if pi = tr(AZiZ′i).
2. Translation Invariance: Y ′AY is translation invariant if it’s value is not affected

by any change in the fixed effect parameter for the model. If instead of β we
consider γ = β −β0 as the unknown parameter, where β0 is fixed. Then Y ′AY is
translation invariant if Y ′AY = (Y −Xγ)′A(Y −Xγ) for all γ . Thus AX = 0. Since
AX = 0 always implies X ′AX = 0, we also have the unbiasedness condition satis-
fied. However, the reverse is not true i.e., unbiasedness does not imply invariance
except when A is n.n.d.
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3. Minimum Variance: The variance of Y ′AY under a normality assumption equals

D[Y ′AY ] = 2tr[AVAV ]+4β ′X ′AVAXβ . (6)

Under unbiasedness i.e., AX = 0, the variance reduces to

D[Y ′AY ] = 2tr[AVAV ].

The mean squared error, of Y ′AY equals

MSE[Y ′AY ] = D[Y ′AY ]+ [Bias(Y ′AY )]2. (7)

Using the condition for translation invariance AX = 0 and unbiasedness tr[AZiZ′i ] =
pi, (7) reduces to

MSE[Y ′AY ] = D[Y ′AY ] = 2tr[AVAV ].

Both (6) and (7), under unbiasedness and invariance reduce to 2tr(AVAV ).

1.3 ANOVA-based Methods of Estimation

This method is derived by equating the sums of squares in an analysis of variance
table to their expected values. Let σ2 be the vector of variance components to be
estimated in some model, and let s be a vector of sums of squares. Then taking the
expected value

E(s) = Cσ2, (8)

where C is a non-singular matrix, the ANOVA estimator of σ̂2 is based on (8) and
is the solution to s = Cσ̂2, which equals

σ̂2 = C−1s. (9)

The expression in (8) can be extended to include not only sums of squares but also
any set of quadratic forms. Let q = (q1,q2, · · · ,qm)′ be the m×1 vector of quadratic
forms such that

E(q) = Aσ2, (10)

where σ2 = (σ2
1 ,σ2

2 , . . . ,σ2
k )′ is the vector of k×1 variance components and A being

an m×k matrix of known coefficients. Then, if m = k and A is non-singular, (10) will
give σ̂2 = A−1q as an unbiased estimator of σ2, as in (9). In cases when there are
more quadratic forms than there are variance components to estimate, the following
formula gives an unbiased estimator: σ̂2 = (A′A)−1A′q, (see Searle et al. [9])
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2 Henderson’s Three Methods

Henderson [2] presented in his paper three methods of estimation of variance com-
ponents, currently known as Henderson’s method 1, 2 and 3. This paper is consid-
ered to be the landmark work of dealing with the problem of estimation of variance
components for unbalanced data. For balanced data, variances are usually estimated
using the minimum variance estimators based on the sums of squares, appearing in
the analysis of variance table. For unbalanced data the situation is different; it is not
always clear which mean squares should be used (see [7]) Henderson’s methods are
sometimes described as being three different ways of using the general ANOVA-
method (see Searle [8]). They differ only in the different quadratics (not always
sums of squares), used for a vector of any linearly independent quadratic forms of
observations. All three methods involve calculations of mean squares, taking their
expected values, equating them to the observed ones, and then solving the resulting
equations in order to obtain the variance component estimators. Some of the merits
of the methods is that they are easy to compute, they require no strong distribu-
tional assumptions, and by construction these methods yield unbiased estimators.
However, the estimators can fall outside the parameter space, i.e., they can become
negative. Moreover, the estimators are not unique, because when there are several
random effects, the sums of squares for them can be computed in several ways, i.e,
corrected for several combinations of other effects. When data are balanced, all three
methods reduce to the usual ANOVA-method. (For a review of all three methods,
see [6]). In our work, we will be concentrating on Henderson’s method 3.

2.1 Method 3

This method can be used on mixed models with or without interactions. Instead of
the sums of squares that method 1 and 2 use, method 3 uses reductions in sums
of squares due to fitting sub-models of the full model, and then equating the re-
duced sums of squares to their respective expected values. The outcome will be a
set of linear estimation equations, which have to be solved in order to obtain the
variance component estimators. The drawback with this method is that sometimes
more reduction sum of squares are available than necessary to estimate the variance
component estimators (see [8]). In other words, occasionally more than one set of
estimating equations for the variance components can be computed for one model.
From each set we get different estimators of the variance components. Which set
of estimators to prefer is not clear, i.e., the variance component estimators are not
unique. We will consider the following two-way mixed model with no interaction,

Y = Xβ +Z1u1 +Z2u2 + e, (full model) (11)
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where β is the fixed parameter vector and u1, u2 are random effect parameters.
For this model there are three variance components to estimate, i.e., the variance
of the two random effects denoted by σ2

1 and σ2
2 respectively, and the third is the

error variance component denoted by σ2
e . We may obtain several sets of estimation

equations. The sub-models which may give estimation equations are,

Y = Xβ + e, (12)

Y = Xβ +Z1u1 + e, (13)

Y = Xβ +Z2u2 + e. (14)

Now we present some special notation for reduction sum of squares which was
used by Searle [7, 8]. Let R(.) denote the reduction sum of squares. The sum of
squares used for estimation corresponding to the sub-models (12), (13) and (14)
can according to this notation be expressed as, R(β ), R(β ,u1) and R(β ,u2), re-
spectively. Another notation which will be needed before we write the possible set
of equations is R(./.) which is the reduction sum of squares due to fitting the full
model (11) minus that of the sub-model. For (11) two sets of estimation equations
may be considered

⎧⎨
⎩

R(u1/β )
R(u2/β ,u1)

SSE
or

⎧⎨
⎩

R(u2/β )
R(u1/u2,β )

SSE

where SSE denotes the residual sum of squares. For the first set of estimation equa-
tions we define the following partitioned matrices: [X ] , [X ,Z1] and [X ,Z1,Z2]. Each
reduction R(./.) can be expressed in the form Y ′AY for some symmetric matrix A.
Define the projection matrix Pw = w(w′w)−w′. Thus Pw is an idempotent matrix,
for more properties see Schott [5]. Assuming normality all the reduction sum of
squares follow a non-central χ2 distribution and all these reduction sum of squares
are independent of each other and of SSE, see [8]. We shall be using the first set of
estimation equation in the first part of the work. In the second part, i.e., in Sect. 4,
different reductions in sums of squares will be compared. For the first set of equa-
tions we need to define the following projection matrices,

Px = X(X ′X)−X ′, (15)

Px1 = (X ,Z1)((X ,Z1)′(X ,Z1))−(X ,Z1)′, (16)

Px12 = (X ,Z1,Z2)((X ,Z1,Z2)′(X ,Z1,Z2))−(X ,Z1,Z2)′. (17)

The reduction sums of squares R(./.) can now be obtained as.

R(u1/β ) = R(u1,β )−R(β )
= Y ′(Px1 −Px)Y,
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R(u2/β ,u1) = R(β ,u1,u2)−R(β ,u1)
= Y ′(Px12 −Px1)Y,

and

SSE = Y ′(I−Px12)Y.

To apply the procedure, the expected values of the reduction sums of squares
are computed. Thereafter the expected values are to be equated to their observed
values and by solving the obtained equations the variance components are obtained.
The expression for the expected value given in (1), can be used since the dispersion
matrix, denoted by V is V = σ2

1 V1+σ2
2 V2+σ2

e I, where V1 = Z1Z′1 and V2 = Z2Z′2. The
following is obtained

E[R(u1/β )] = tr(Px1 −Px)[σ2
1V1 +σ2

2V2 +σ2
e I],

ER(u2/β ,u1) = tr(Px12 −Px1)[σ
2
1V1 +σ2

2V2 +σ2
e I],

and

E[SSE] = tr(I−Px12)[σ
2
1V1 +σ2

2V2 +σ2
e I].

The set of calculated reduction sum of squares may be arranged in a vector.
Thereafter by equating these expected values to the observed ones we get

⎡
⎣ Y ′(Px1 −Px)Y

Y ′(Px12 −Px1)Y
Y ′(I−Px12)Y

⎤
⎦ = J

⎡
⎣σ2

1
σ2

2
σ2

e

⎤
⎦ ,

where

J =

⎡
⎣ tr(Px1 −Px)V1 tr(Px1 −Px)V2 tr(Px1 −Px)I

tr(Px12 −Px1)V1 tr(Px12 −Px1)V2 tr(Px12 −Px1)I
tr(I−Px12)V1 tr(I−Px12)V2 tr(I−Px12)I

⎤
⎦ .

Thus, the estimators of the variance components are⎡
⎣ σ̂2

1
σ̂2

2
σ̂2

e

⎤
⎦ = J−1

⎡
⎣ Y ′(Px1 −Px)Y

Y ′(Px12 −Px1)Y
Y ′(I−Px12)Y

⎤
⎦ .

However, since Px1V1 = V1, Px12V2 = V2 and Px12V1 = V1, the J matrix reduces to

J =

⎡
⎣ tr(Px1 −Px)V1 tr(Px1 −Px)V2 tr(Px1 −Px)

0 tr(Px12 −Px1)V2 tr(Px12 −Px1)
0 0 tr(I−Px12)

⎤
⎦ .
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Let

A = (Px1 −Px), B = (Px12 −Px1), C = (I−Px12),
a = tr(Px1 −Px)V1, b = tr(Px12 −Px1)V2, c = tr(I−Px12),
d = tr(Px1 −Px)V2, e = tr(Px12 −Px1), f = tr(Px1 −Px)), (18)

we note that A, B and C are idempotent matrices. Using these notations the estima-
tion equations can be written as⎡

⎣ σ̂2
1

σ̂2
2

σ̂2
e

⎤
⎦ = J−1

⎡
⎣Y ′AY

Y ′BY
Y ′CY

⎤
⎦ , (19)

The variance component estimator of σ2
1 , denoted by σ̂2

u1 is:

σ̂2
u1 =

tr((Px12 −Px1)V2)tr(I−Px12)Y
′(Px1 −Px)Y

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px12)

− tr((Px1 −Px)V2)tr(I−Px12)Y
′(Px12 −Px1)Y

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px12)

+
kY ′(I−Px12)Y

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px12)
, (20)

wherek = tr((Px1−Px)V2)tr(Px12−Px1)− tr(Px1−Px)tr((Px12−Px1)V2).Equation (20)
simplifies to

σ̂2
u1 =

Y ′(Px1 −Px)Y
tr((Px1 −Px)V1)

− tr((Px1 −Px)V2)Y ′(Px12 −Px1)Y
tr((Px1 −Px)V1)tr((Px12 −Px1)V2)

+
kY ′(I−Px12)Y

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px12)
. (21)

Using the previous notations we can write σ̂2
u1 as

σ̂2
u1 =

Y ′AY
a
− d(Y ′BY )

ab
+

k(Y ′CY )
abc

, (22)

where A, B, C, b, c and e are defined as in (18). Despite the fact that in our study we
will focus on one of the variance components we also give the estimators of the two
other components which may be calculated from (19);

σ̂2
u2

=
tr(I−Px12)Y

′(Px12 −Px1)Y
tr((Px12 −Px1)V2)tr(I−Px12)

− tr(Px12 −Px1)Y
′(I−Px12)Y

tr((Px12 −Px1)V2)tr(I−Px12)
,

σ̂2
e =

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)Y ′(I−Px12)Y
tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px2)

=
Y ′(I−Px12)Y

tr(I−Px12)
.
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2.1.1 Mean Square Error of σ̂σσ2
u1

The mean square of σ̂2
u1 equals its variance since σ̂2

u1 is an unbiased estimator,

MSE(σ̂2
u1) = D[σ̂2

u1] = D
[

Y ′AY
a
− d(Y ′BY )

ab
+

k(Y ′CY )
abc

]

=
1
a2 D[Y ′AY ]+

d2

a2b2 D[Y ′BY ]+
k2

a2b2c2 D[Y ′CY ]

=
2
a

tr[AV ]2 +
2d2

a2b2 tr[BV ]2 +
2k2

a2b2c2 tr[CV ]2, (23)

Moreover since all the involved quadratic forms are uncorrelated, V = σ2
1 V1 +

σ2
2 V2 +σ2

e I and the MSE equals

D[σ̂2
u1

] = A1 +A2 +A3, (24)

where

A1 =
2
a2 [tr(AV1AV1)σ4

1 +2tr(AV1AV2)σ2
1σ2

2 + tr(AV2AV2)σ4
2 +2tr(AV1A)σ2

1σ2
e

+2tr(AV2A)σ2
2σ2

e + tr(A2)σ4
e ],

A2 =
2d2

a2b2 [tr(BV1BV1)σ4
1 +2tr(BV1BV2)σ2

1σ2
2 + tr(BV2BV2)σ4

2 +2tr(BV1B)σ2
1σ2

e

+2tr(BV2B)σ2
2σ2

e + tr(B2)σ4
e ],

A3 =
2k2

a2b2c2 [tr(CV1CV1)σ4
1 +2tr(CV1CV2)σ2

1σ2
2 + tr(CV2CV2)σ4

2

+2tr(CV1C)σ2
1σ2

e +2tr(CV2C)σ2
2σ2

e + tr(C2)σ4
e ].

Thus, the following MSE is obtained:

MSE(σ̂2
u1) =

[
2
a2 tr(AV1AV1)+

2d2

a2b2 tr(BV1BV1)+
2k2

a2b2c2 tr(CV1CV1)
]
σ4

1

+
[

2
a2 tr(AV2AV2)+

2d2

a2b2 tr(BV2BV2)+
2k2

a2b2c2 tr(CV2CV2)
]
σ4

2

+
[

4
a2 tr(AV1AV2)+

4d2

a2b2 tr(BV1BV2)+
4k2

a2b2c2 tr(CV1CV2)
]
σ2

1σ2
2

+
[

4
a2 tr(A2V1)+

4d2

a2b2 tr(B2V1)+
4k2

a2b2c2 tr(C2V1)
]
σ2

1σ2
e

+
[

4
a2 tr(A2V2)+

4d2

a2b2 tr(B2V2)+
4k2

a2b2c2 tr(C2V2)
]
σ2

2σ2
e

+
[

2
a2 tr(A2)+

2d2

a2b2 tr(B2)+
2k2

a2b2c2 tr(C2)
]
σ4

e ,
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since tr(CV1) = 0, tr(CV2) = 0 and tr(BV1) = 0 . The above can be simplified to

MSE(σ̂2
u1) =

[
2
a2 tr(AV1AV1)

]
σ4

1 +
[

2
a2 tr(AV2AV2)+

2d2

a2b2 tr(BV2BV2)
]
σ4

2

+
[

4
a2 tr(AV1AV2)

]
σ2

1σ2
2 +

[
4
a2 tr(A2V1)

]
σ2

1σ2
e

+
[

4
a2 tr(AV2A)+

4d2

a2b2 tr(BV2B)
]
σ2

2σ2
e

+
[

2
a2 tr(A2)+

2d2

a2b2 tr(B2)+
2k2

a2b2c2 tr(C2)
]
σ4

e . (25)

3 Perturbing Henderson’s Equation

In this section, we modify the variance component estimators obtained by Hen-
derson’s method 3. This modification is carried out by perturbing the Henderson’s
estimation equation. Thus, the obtained variance component estimators are biased.
Thereafter, by using some suitable criterion, for instance, the MSE, we evaluate
the performance of the estimator by comparing it with the MSE of the unmodified
estimator. For the estimation (19), we define a new class of estimators⎡

⎣ c1Y ′AY
c1d1Y ′BY
c1d2Y ′CY

⎤
⎦ = J

⎡
⎣σ2

1
σ2

2
σ2

e

⎤
⎦ (26)

where J is defined in Sect. (2.1), and c1≥ 0, d1 and d2 are constants to be determined
such that it would minimize the leading terms in the MSE of the estimator. The
resulting estimator will perform better in terms of MSE since c1 = d1 = d2 = 1 gives
the same MSE. Thus, the modified variance component estimator of σ2

1 , denoted by
σ̂2

11 is

σ̂2
11 =

c1

a

(
Y ′AY − d

b
d1Y ′BY +

k
bc

d2Y ′CY
)

, (27)

where A, B, C, a, b, c and d are all defined in (18). The MSE of this modified
variance component is

MSE[σ̂2
11] = D[σ̂2

11]+ [E(σ̂2
11)−σ2

1 ]2. (28)

Since now (19) is perturbed, the estimator is not unbiased, The variance in (27)
equals

D[σ̂2
11] =

c2
1

a2 D[Y ′AY ]+
d2c2

1d2
1

a2b2 D[Y ′BY ]+
k2c2

1d2
2

a2b2c2 D[Y ′CY ],
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since D[σ̂2
11] has the same structure as (25). Hence the variance of the modified

estimator σ̂2
11 can be written

D[σ̂2
11] =

[
2c2

1
a2 tr(AV1AV1)

]
σ4

1 +
[

2c2
1

a2 tr(AV2AV2)+
2d2c2

1d2
1

a2b2 tr(BV2BV2)
]
σ4

2

+
[

4c2
1

a2 tr(AV1AV2)
]
σ2

1σ2
2 +

[
4c2

1
a2 tr(A2V1)

]
σ2

1σ2
e

+
[

4c2
1

a2 tr(AV2A)+
4d2c2

1d2
1

a2b2 tr(BV2B)
]
σ2

2σ2
e

+
[

2c2
1

a2 tr(A2)+
2d2c2

1d2
1

a2b2 tr(B2)+
2k2c2

1d2
2

a2b2c2 tr(C2)
]
σ4

e . (29)

Now we will calculate the bias part of (27), and thus the expectation of σ̂2
11 is

needed:

E[σ̂2
11] =

c1

a
E(Y ′AY )− dc1

ab
d1E(Y ′BY )+

c1kd2

abc
E(Y ′CY )

=
c1

a
tr[A(σ2

1 V1 +σ2
2V2 +σ2

e I)]

−dc1d1

ab
tr[B(σ2

1V1 +σ2
2V2 +σ2

e I)]

+
c1kd2

abc
tr[C(σ2

1 V1 +σ2
2V2 +σ2

e I)],

which can be simplified to

E[σ̂2
11] =

[
c1

a
tr(AV1)−

dc1d1

ab
tr(BV1)+

c1kd2

abc
tr(CV1)

]
σ2

1

+
[

c1

a
tr(AV2)−

dc1d1

ab
tr(BV2)+

c1kd2

abc
tr(CV2)

]
σ2

2

+
[

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

abc
tr(C)

]
σ2

e . (30)

Thus, the squared bias can be written

(E[σ̂2
11]−σ2

1 )2 =
[(c1

a
tr(AV1)−1

)
σ2

1 +
(

c1

a
tr(AV2)−

dc1d1

ab
tr(BV2)

)
σ2

2

+
(

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

abc
tr(C)

)
σ2

e

]2

. (31)
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If we substitute the variance and biased part back into (28), we get the following:

MSE(σ̂2
11) =

[
2c2

1
a2 tr(AV1AV1)

]
σ4

1 +
[

4c2
1

a2 tr(AV1AV2)
]
σ2

1σ2
2

+
[

2c2
1

a2 tr(AV2AV2)+
2d2c2

1d2
1

a2b2 tr(BV2BV2)
]
σ4

2

+
[

4c2
1

a2 tr(A2V1)
]
σ2

1σ2
e

+
[

4c2
1

a2 tr(A2V2)+
4d2c2

1d2
1

a2b2 tr(B2V2)
]
σ2

2σ2
e

+
[

2c2
1

a2 tr(A2)+
2d2c2

1d2
1

a2b2 tr(B2)+
2k2c2

1d2
2

a2b2c2 tr(C2)
]
σ4

e

+
[(c1

a
tr(AV1)−1

)
σ2

u1 +
(

c1

a
tr(AV2)−

dc1d1

ab
tr(BV2)

)]
σ2

2

+
[

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

abc
tr(C)σ2

e

]2

. (32)

We write the latter expression as below. First let

r =
c1

a
tr(AV2)−

dc1d1

ab
tr(BV2).

Rewriting it gives the following:

r =
c1d
a
− dc1d1

a
,

where from (18) we have tr(AV2) = d and tr(BV2) = b. Moreover, let

t =
c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

ab
. (33)

Hence, the following mean square error is obtained for the modified estimator σ̂2
u11:

MSE(σ̂2
11) =

[
2c2

1
a2 tr(AV1AV1)+(c1−1)2

]
σ4

1

+
[

4c2
1

a2 tr(AV1AV2)+2(c1−1)r
]
σ2

1σ2
2

+
[

2c2
1

a2 tr(AV2AV2)+
2d2c2

1d2
1

a2b2 tr(BV2BV2)+ r2
]
σ4

2

+
[

4c2
1

a2 tr(A2V1)+2(c1−1)t
]
σ2

1σ2
e
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+
[

4c2
1

a2 tr(A2V2)+
4d2c2

1d2
1

a2b2 tr(B2V2)+2rt
]
σ2

2σ2
e

+
[

2c2
1

a2 tr(A2)+
2d2c2

1d2
1

a2b2 tr(B2)+
2k2c2

1d2
2

a2b2c2 tr(C2)+ t2
]
σ4

e . (34)

3.1 Mean Square Error Comparison

In this section we compare the mean square errors of the modified σ̂2
11 and the

unmodified estimator σ̂2
u1, given by (34) and (25), respectively. We will investigate

if MSE(σ̂2
11) ≤MSE(σ̂2

u1). To do so we compare all coefficients of σ4
1 , σ4

2 and σ4
e

and all their cross combinations which appeared in (34) and (25). We will investigate
a number of inequalities. If they hold, then the coefficients of the modified estimator
σ̂2

11 are less than the coefficients of the unmodified one σ̂2
u1.

From the terms corresponding to σ4
1 in (34) and (25) it follows that we have to

investigate if
2c2

1
a2 tr(AV1AV1)+(c1−1)2 ≤ 2

a2 tr(AV1AV1). (35)

From the terms corresponding to σ4
2 we obtain that

2c2
1

a2 tr(AV2AV2)+
2d2c2

1d2
1

a2b2 tr(BV2BV2)+ r2

≤ 2
a2 tr(AV2AV2)+

2d2

a2b2 tr(BV2BV2), (36)

should be studied, where r = ( c1d
a −

dc1d1
a ) and by assumption c1 > 0. Corresponding

to σ4
e we will study the inequality

2c2
1

a2 tr(A2)+
2d2c2

1d2
1

a2b2 tr(B2)+
2k2c2

1d2
2

a2b2c
+ t2

≤ 2
a2 tr(A2)+

2d2

a2b2 tr(B2)+
2k2

a2b2c
(37)

where k = dtr(B)−btr(A) and t is defined in (33).
Now the cross combination coefficients of (25) and (34) will be compared. We

have first the coefficients of σ2
1σ2

2 .

4c2
1

a2 tr(AV1AV2)+2(c1−1)r ≤ 4
a2 tr(AV1AV2), (38)

where

(c1−1)r = (c1−1)(
c1d
a
− dc1d1

a
) =

d
a
(1−d1)(c2

1− c1).
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Corresponding to σ2
1σ2

e we investigate

4c2
1

a2 tr(A2V1)+2(c1−1)t ≤ 4
a2 tr(A2V1), (39)

where

(c1−1)t = (c1−1)
(

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

ab

)
,

and A, defined in (18), is an idempotent matrix. Finally we also study the coefficients
corresponding to σ2

2σ2
e ,

4c2
1

a2 tr(AV2)+
4d2c2

1d2
1

a2b2 tr(B2V2)+2rt ≤ 4
a2 tr(A2V2)+

4d2

a2b2 tr(B2V2), (40)

where

2rt = 2
(

c1d
a
− dc1d1

a

)(
c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

ab

)

=
2c2

1d
a2 (1−d1)

(
tr(A)− dd1

b
tr(B)+

k
b

d2

)
.

In order to find appropriate values of c1, d1 and d2 we have chosen to minimize
the leading terms in (34), i.e., the terms that involve the coefficients of σ4

1 , σ4
2 and

σ4
e , respectively. When minimizing the coefficient of σ4

1 in (34) the following equa-
tion is obtained,

∂
∂c1

[
2c2

1
a2 tr(AV1AV1)+(c1−1)2

]
= 0,

with a solution given by

c1 =
1

2
a2 tr(AV1AV1)+1

. (41)

Moreover, minimizing the coefficient of σ4
2 gives

∂
∂d1

[
2c2

1
a2 tr(AV2AV2)+

2d2c2
1d2

1
a2b2 tr(BV2BV2)+

(
c1d
a
− dc1d1

a

)2
]

= 0,

which implies

d1 =
1

2
b2 tr(BV2BV2)+1

. (42)
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Finally, when minimizing the coefficient of the error variance component σ4
e we

have to solve

∂
∂d2

[
c2

1
a2 tr(A2)+

2d2c2
1d2

1
a2b2 tr(B2)+

2k2c2
1d2

2
a2b2c

+
c2

1
a2 (tr(A))2− 2dc2

1d1

a2b
tr(A)tr(B)+

2c2
1kd2

a2b
tr(A)

−2dc2
1kd1d2

a2b2 tr(B)+
c2

1k2d2
2

a2b2 +
d2c2

1d2
1

a2b2 (tr(B))2
]

= 0.

The minimum is obtained when

d2 =
d
b d1tr(B)− tr(A)

( k
b )( 2

c +1)
. (43)

It has been verified that if c1, d1 and d2 satisfy the minimum of the coefficients σ4
1 ,

σ4
2 and σ4

e , respectively, in (34). It follows that (35) and (36) hold for the given
values in (41) and (42), respectively. Concerning (37), omitting a2 and simplifying,
the left hand side can be written as

c2
1tr(A)+

d2c2
1d2

1
b2 tr(B)+

k2c2
1d2

2
b2c

+
1
2

c2
1

(
tr(A)− d

b
d1tr(B)+

kd2

b

)2

. (44)

However, since c1 and d1 given by (41) and (42) respectively, are less than 1 it is
enough to study when

k2c2
1d2

2
b2c

+
1
2

c2
1

(
tr(A)− d

b
d1tr(B)+

kd2

b

)2

≤ k2

b2c
(45)

The following is obtained after substituting d2 defined in (43) into the left hand side
of (45)

k2c2
1

b2c
( d

b d1tr(B)− tr(A))2

( k
b )2( 2

c +1)2
+

c2
1

2

(
tr(A)− d

b
d1tr(B)+

k
b

d
b d1tr(B)− tr(A)

( k
b )( 2

c +1)

)2

(46)

which can be simplified to,

c2
1

(
d
b

d1tr(B)− tr(A)
)2 [ c

(2+ c)2 −
2

(2+ c)2

]
. (47)

Hence, for (37) to hold the following must be satisfied

(
d
b

d1tr(B)− tr(A)
)2

≤
(

d
b

tr(B)− tr(A)
)2

. (48)
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Therefore we have two cases to consider, either

tr(A)≤ d
b

d1tr(B), (49)

or

tr(A) >
d
b

d1tr(B), (50)

which have to be treated separately. If (49) holds, then (48) is always satisfied. If
instead (50) is true we will return one step and suppose d1 = 1. Then, obviously
(36) and (48) will hold. Observe that d1 = 1 means that we should not perturb (26)
with respect to d1.

Moreover, (38) is always satisfied since,

(c1−1)r =
d
a
(1−d1)(c2

1− c1)≤ 0. (51)

Concerning (39), we study the second term in the left hand side,

(c1−1)t = (c1−1)
(

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

ab

)
.

Substituting d2, defined in (43), yields

(c1−1)

(
c1

a
tr(A)− dc1d1

ab
tr(B)+

c1k
ab

d
b d1tr(B)− tr(A)

( k
b )( 2

c +1)

)
,

giving

1
a
(c2

1− c1)

(
tr(A)− dc1

b
d1tr(B)+

d
b d1tr(B)− tr(A)

2
c +1

)
.

Thus, for (39), we have from (18) that tr(AV1) = a which implies that (39) can be
written as

2c2
1

a
+

1
a
(c2

1− c1)

(
tr(A)− dc1

b
d1tr(B)+

d
b d1tr(B)− tr(A)

2
c +1

)
≤ 2

a
.

Hence, if (49) is true (39) will hold if

2c2
1 +(c2

1− c1)
(

tr(A)− d
b

d1tr(B)
)(

2
2+ c

)
≤ 2, (52)

and we obtain the additional condition

tr(A)≥ d
b

d1tr(B)− (2+ c)(1+ c1)
c1

. (53)
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If (50) holds, then it’s obvious that (53) will be true. Finally, we check the inequality
(40). Since from (18) we have tr(AV2) = d and tr(BV2) = b we rewrite (40) as

4c2
1d

a2 +
4d2c2

1d2
1

a2b2 +
2c2

1d
a2 (1−d1)

(
tr(A)− dd1

b
tr(B)+

k
b

d2

)

≤ 4d
a2 +

4d2

a2b
.

It is enough to investigate the third term in the left hand side:

c2
1d
a2 (1−d1)

(
tr(A)− dd1

b
tr(B)+

k
b

d2

)
.

As previously, after substituting d2 and omitting identical terms from both sides,
(40) can be written as,

2c2
1 +

2dc2
1d2

1
b

+ c2
1(1−d1)

(
tr(A)− d

b
d1tr(B)

)(
2

2+ c

)
≤ 2+

2d
b

. (54)

Thus, (40) is satisfied under (49). Moreover, if d1 = 1 as assumed if (50) holds, then
(40) is also valid. The above results can be summarized in the following proposition

Proposition 1. Let the variance component estimator corresponding to the first ran-
dom effect σ̂2

u1 in the model defined in (11) be modified as in (27), where c1, d1 and
d2 are chosen as in (41), (42) and (43), respectively. Then (35)– (40) are sufficient
conditions for MSE(σ̂2

11)≤MSE(σ̂2
u1).

Moreover, for the two cases that emerged from (48) we have the following
theorem

Theorem 1. Given the model defined in (11), let MSE(σ̂2
u1) be the mean square error

of the unmodified estimator given in (25) and let MSE(σ̂2
11) be the mean square error

of the modified estimator given in (34).

(i) If (49) and (53) hold, MSE(σ̂2
11)≤MSE(σ̂2

u1).
(ii)If (50) and d1 = 1, MSE(σ̂2

11)≤MSE(σ̂2
u1).

4 Conclusion

The problem of modifying the variance component estimator obtained by using
Henderson’s method 3, has been the focus of our work.

För a two-way linear mixed model, consisting of three variance components, σ2
1 ,

σ2
2 , and σ2

e , we have perturbed the Henderson’s estimation equations. The main
aim, was to modify the standard unbiased estimator, corresponding to one of the
random effects, by multiplying the estimator with some coefficients that are chosen
to minimize the leading terms σ2

1 , σ2
2 , and σ2

e in the mean square error equation.
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Two modified variance component estimators are proposed; each appropriate un-
der certain given conditions. Our proposed estimators are easy to compute and have
smaller MSE than the unmodified one. Moreover, the conditions under which each
of the proposed estimators are valid, are easy to investigate. For instance, in practi-
cal application if the unbiasedness condition is not of major concern, our proposed
estimators should be considered.

Acknowledgement We wish to thank professor Thomas Mathew for many helpful discussions.
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Implications of Dimensionality on Measurement
Reliability

Kimmo Vehkalahti, Simo Puntanen, and Lauri Tarkkonen

Abstract We study some topics of the reliability of measurement, especially cer-
tain implications of multidimensionality and unidimensionality. We consider these
aspects within a measurement framework focusing on one hand on the dimension-
ality of the measurement model and on the other hand on the dimensionality of the
measurement scale. Working through theorems and examples we compare two relia-
bility estimators, namely Cronbach’s alpha and Tarkkonen’s rho. It seems that there
is not much use for Cronbach’s alpha. It is based on unidimensional models and
scales, while the models and scales used in practice are multidimensional. Tarkko-
nen’s rho seems to work well in multidimensional studies, giving support to the real
purpose of reliability estimation which seems to have been lost for a quite long time.

1 Introduction

Measurement brings uncertainty in all statistical research. Assessing its quality
requires two concepts: validity and reliability. The problems of validity can seldom
be solved statistically, whereas the reliability is clearly a statistical question, being
closely related to the variance of the measurement. Therefore a measurement model
is needed to assess the reliability, since the variance of the measurement error must
be estimated. The models to be used should be multidimensional with flexible as-
sumptions in order to be applicable in practical applications. In social sciences and
behavioral sciences, where the measurements are usually far from stable, the ap-
plied research has traditionally concentrated on unidimensional models. Recently,
that tradition has been questioned, and the need of multidimensionality recognized
(Lucke [11], ten Berge and Soĉan [18]).

In this paper we study some topics of reliability, especially certain implications of
the multidimensionality and unidimensionality. Section 2 presents a framework for

Simo Puntanen
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the study, Sect. 3 introduces the concept of reliability, Sect. 4 reveals implications
through theorems and examples, and Sect. 5 closes with a short discussion.

2 Framework for multidimensional measurement

In order to assess the validity and reliability of multivariate measurements one must
have means for setting up the relations between the latent constructs and the mea-
sured variables. Several approaches have been suggested in the literature, such as
the factor analysis and the structural equations model (Bollen [3]).

Tarkkonen and Vehkalahti [17] have introduced a measurement framework which
consists of four multidimensional parts: 1) the measurement model, 2) the measure-
ment scale, 3) the second-order scale, and 4) the external validity criteria (Tarkkonen
and Vehkalahti [17], Vehkalahti et al [20], Vehkalahti [19], Tarkkonen [16]). Here,
we focus on the parts 1) and 2) of that framework. The questions of validity are
often connected to the substantial theory. However, within the framework we will
briefly touch the issues of structural validity and predictive validity.

2.1 Measurement model

In Fig. 1, the frame on the left illustrates the measurement model. Three types of
concepts exist in that frame: true scores, measurement errors, and observed variables

‰

‰

‰

‰

‰

‰

‰
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‰

‰

‰

‰

‰

‰

‰
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Measurement model

τ1
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τk
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x3
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ε2

ε3

εp

u1

u2

um

Fig. 1 Main frames of measurement framework: measurement model and measurement scale
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(or items). Except for the items x1, . . . ,xp, we use dash lines, because the concepts
are hypothetical. Here, we are asking questions, such as: How many dimensions are
there? How to measure them as well as possible?

We define the model as follows. Let xxx = (x1, . . . ,xp)′ measure k (< p) unob-
servable true scores τττ = (τ1, . . . ,τk)′ with unobservable measurement errors εεε =
(ε1, . . . ,εp)′. It is essential that k is less than p, since we are willing to solve the
problem of measurement in a reduced true score space. The measurement model is

xxx = μμμ +BBBτττ +εεε,

where μμμ is the expectation of xxx and BBB ∈ R
p×k specifies the relationship between

xxx and τττ , illustrated in Fig. 1 as arrows from true scores to items. We assume that
E(εεε) = 000 and cov(τττ,εεε) = 000. Denoting cov(τττ) =ΦΦΦ and cov(εεε) =ΨΨΨ we have

cov(xxx) =ΣΣΣ = cov(BBBτττ)+ cov(εεε) = BBBΦΦΦBBB′+ΨΨΨ , (1)

where we assume that ΣΣΣ and ΦΦΦ are positive definite and BBB has full column rank.
We may use the triplet M = {xxx, BBBτττ, BBBΦΦΦBBB′+ΨΨΨ} to denote the measurement model
shortly. The model M is rather general, but it is not identifiable. The parameters of
the model are the pk + k(k + 1)/2 + p(p + 1)/2 (unique) elements of the matrices
BBB, ΦΦΦ , and ΨΨΨ , respectively. In general, there are too many parameters, since ΣΣΣ has
only p(p + 1)/2 (unique) elements. The identifiability of the model is obtained by
imposing suitable assumptions on the true scores and the measurement errors.

At least in a basic exploratory setting it is typical to assume that cov(εεε) =ΨΨΨ d =
diag(ψ2

1 , . . . ,ψ2
p). (We note that throughout this paper notation KKKd indicates either

that KKK is a diagonal matrix or that KKKd is a diagonal matrix comprising the diag-
onal elements of KKK.) Then, the more restricted model Md = {xxx, BBBτττ, BBBΦΦΦBBB′+ΨΨΨ d}
conforms with the factor analysis model, where the common factors are directly as-
sociated with the true scores and the rest is interpreted as measurement errors. This
is a more straight-forward approach compared to the usual considerations, see, e.g.,
Alwin [1, ch. 4]. Assuming multinormality the parameters can be estimated using
the maximum likelihood method.

2.1.1 Structural validity

Structural validity is a property of the measurement model. It is important, because
the model forms the core of the framework and hence affects the quality of all scales
created. Similarly with other questions of validity, knowledge of the theory and
practice of the application is necessary. However, some statistical considerations
may be useful as well.

The lack of the structural validity can be revealed by testing hypotheses on the
dimension of τττ and on the (estimated) effects of τττ on xxx (the matrix BBB). The latter may
be called true score images (or factor images), since they reflect the unobservable
true scores (or factors). Of course, the factors can not have reliability, but we can
think of the factor images as a special measurement scale (see Sect. 2.2). Then,



146 K. Vehkalahti et al.

the reliabilities of the factor images may be used to assess the structural validity of
the model. An appropriate factor rotation is essential to fine-tune the factor images.
For a skilled researcher, graphical rotation, implemented in SURVO MM software
(Mustonen [13]), is an ideal choice.

In an exploratory setting, we may use the residuals of the model to tune the
dimensionality, i.e., the number of the factors. As soon as we decide it, the reliabil-
ities of the observed items will be identified. This may sound like a confirmatory
factor analysis. To some extent, most studies are both exploratory and confirmatory
(Jöreskog [8]). Indeed, our approach could be called semi-confirmatory: perhaps
exploratory but based on a measurement model, creating a sound base for working
with the scales.

2.2 Measurement scale

In further analyses, the items are best used by creating multivariate measurement
scales uuu = (u1, . . . ,um)′ as linear combinations uuu = AAA′xxx, where AAA ∈ R

p×m is a
weight matrix. Tarkkonen and Vehkalahti [17] give various criteria for choosing
the weights, but generally it is assumed that AAA has full column rank and BBB′aaai �= 000, i =
1, . . . ,m, where aaai is the ith column vector of AAA. It is possible to create any number
of scales regardless of the dimension of the model, so m does not have to be equal
to k. It can be as well equal to one, for example.

In Fig. 1, the measurement scale is illustrated by the frame on the right. As
we see, the items belong to both frames: they are the only observable part of the
model, and they are used to construct the scales, such as factor scores, psycholog-
ical test scales, plain sums, indexes or any other linear combinations of the items.
The weights may be predetermined values according to a theory. A special case
mentioned in Sect. 2.1.1 is the true score (or factor) images, defined as AAA = BBB, that
is, the weights are the coefficients of the measurement model. This scale may be
useful in assessing the structural validity of the model.

Using (1) we obtain the covariances of the scale in the form

cov(uuu) = AAA′ΣΣΣAAA = AAA′BBBΦΦΦBBB′AAA+AAA′ΨΨΨAAA, (2)

separately for the effects of the true scores and the measurement errors. We are most
interested in the variances, which are needed to estimate the reliability. We will get
back to this in Sect. 3.1.

2.2.1 Predictive validity

Predictive validity is assessed by the correlations of the scale and an external cri-
terion yyy. It is typical to further condense the data by creating second-order scales
zzz = WWW ′uuu = WWW ′AAA′xxx, where WWW is a weight matrix. These scales are often results of
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regression analysis, discriminant analysis, or other multivariate statistical methods.
In a quite general case, the predictive validity would then be assessed by the canon-
ical correlations between zzz and yyy.

Consider the linear regression model y = β0 +βββ ′uuu +θ , where y is the response
variable, β0 is the intercept, βββ = (β1, . . . ,βm)′ is the vector of the regression coeffi-
cients, uuu is the vector of the predictors, a scale such as the factor scores, and θ is a
model error. Now, the criterion y is a scalar, the second-order scale is given by the
prediction scale z = β̂̂β̂β ′uuu, and the predictive validity is the multiple correlation.

3 Reliability

Reliability is a property of the measurement scale. It is a well-established con-
cept defined in the test theory of psychometrics (Lord and Novick [10]), where
the measurements are assumed to consist of unobserved true scores and mea-
surement errors as x = τ + ε , where E(ε) = 0 and cov(τ,ε) = 0. It follows that
var(x) = σ2

x = σ2
τ +σ2

ε . The reliability of x is defined as the ratio σ2
τ /σ2

x , but since

cov(x,τ) = cov(τ + ε,τ) = cov(τ,τ) = var(τ) = σ2
τ ,

it can also be seen as the squared correlation between x and τ:

ρ2
xτ =

[cov(x,τ)]2

var(x)var(τ)
=

(σ2
τ )2

σ2
x σ2

τ
=

σ2
τ

σ2
x
.

The notation ρ2
xτ is used in the literature, because the true score is often taken as a

scalar in psychometrics. The point in the definition is the ratio of the variances, but
either σ2

τ or σ2
ε must be estimated to obtain a reliability estimate. In general, this

depends on the assumptions both on the model and the scale.

3.1 Multidimensional case

The measurement framework of Sect. 2 will now be completed with an estimator of
reliability, which we have suggested to be called Tarkkonen’s rho, since the idea was
originally proposed by Tarkkonen [16]. According to the definition of reliability,
the estimator is obtained as a ratio of the variances, that is, the diagonal elements
of the matrices in (2). In the general form Tarkkonen’s rho is a reliability matrix
(Vehkalahti et al [20], Tarkkonen and Vehkalahti [17], Vehkalahti [19])

ρρρuuu = diag
(

aaa′1BBBΦΦΦBBB′aaa1

aaa′1ΣΣΣaaa1
, . . . ,

aaa′mBBBΦΦΦBBB′aaam

aaa′mΣΣΣaaam

)
= (AAA′BBBΦΦΦBBB′AAA)d× [(AAA′ΣΣΣAAA)d ]−1. (3)
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For making more detailed assumptions on the measurement errors, we can write (3)
withΨΨΨ explicitly present in the form

ρρρuuu = diag

([
1+

aaa′1ΨΨΨaaa1

aaa′1BBBΦΦΦBBB′aaa1

]−1

, . . . ,

[
1+

aaa′mΨΨΨaaam

aaa′mBBBΦΦΦBBB′aaam

]−1
)

= {IIIm +(AAA′ΨΨΨAAA)d× [(AAA′BBBΦΦΦBBB′AAA)d ]−1}−1, (4)

where IIIm is an identity matrix of order m. The reliabilities of various measurement
scales are obtained by (3) or (4) by substituting the matrix AAA with the actual weight
matrix of the scale. For example, the factor scores have AAA =ΣΣΣ−1BBB.

3.2 Unidimensional case

Although alternative reliability estimators based on factor analysis have been sug-
gested (Werts et al [22], Heise and Bohrnstedt [6], McDonald [12]), the reliability
studies have been predominantly unidimensional. This is mostly due to historical
reasons. For over fifty years, the most common (if not only) estimator that has been
applied in practice is called Cronbach’s alpha (Cronbach [5]). In the following we
briefly summarize its historical roots since it helps to understand the implications of
the original assumptions. For more comprehensive reviews, see, e.g., Blinkhorn [2]
or Weiss and Davison [21].

3.2.1 Kuder–Richardson formula 20

Cronbach’s alpha is essentially based on its predecessor, Kuder–Richardson formula
20, or KR-20, where “20” refers to the number of the formula in the original paper
by Kuder and Richardson [9]. The formula can be derived as follows.

Let xxx and yyy be p-dimensional random vectors with a (2p×2p) covariance matrix

cov
(

xxx
yyy

)
:=

(
ΣΣΣ xx ΣΣΣ xy
ΣΣΣ yx ΣΣΣ yy

)
,

where ΣΣΣ xx =ΣΣΣ yy and ΣΣΣ xy =ΣΣΣ yx. Then, denoting symbolically,

ΣΣΣ xx =

⎛
⎜⎝

σ2
1 · · · ρi jσiσ j
...

. . .
...

ρi jσiσ j · · · σ2
p

⎞
⎟⎠ and ΣΣΣ xy =

⎛
⎜⎝

ρ11σ2
1 · · · ρi jσiσ j

...
. . .

...
ρi jσiσ j · · · ρppσ2

p

⎞
⎟⎠ ,

where σ2
i = var(xi), ρi j = cor(xi,y j), and ρii is the reliability of xi. Note that ΣΣΣ xy =

ΣΣΣ xx− (IIIp−ρρρd)ΣΣΣ d , where ρρρd = diag(ρ11, . . . ,ρpp), and ΣΣΣ d = diag(σ2
1 , . . . ,σ2

p). It
is assumed that ρi j = ρxx and σi = σ j = σx for all i, j, which implies that also
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ρii = ρxx for all i. This means that xi and y j are parallel measurements, that is, xxx
and yyy have an intraclass correlation structure with a covariance matrix

cov
(

xxx
yyy

)
= σ2

x

(
ΣΣΣ ρxx111111′

ρxx111111′ ΣΣΣ

)
:=

(
ΣΣΣ xx ΣΣΣ xy
ΣΣΣ yx ΣΣΣ yy

)
,

where ΣΣΣ = (1−ρxx)III p +ρxx111111′ and 111 is the vector of ones.
The parallel model has xi = τi + εi and y j = τ j + ε j with cov(εi,ε j) = 0 and

cov(τi,εi) = cov(τ j,ε j) = 0. It is assumed that var(εi) = var(ε j) and cov(τi,τ j) =
cov(τi,τi) = var(τi). Denoting var(x) = var(xi) and var(τ) = var(τi) we obtain

ρxx =
cov(τi + εi,τ j + ε j)

var(x)
=

var(τ)
var(x)

=
σ2
τ

σ2
x

= ρ2
xτ ,

that is, the item reliabilities, the common correlations of the intraclass correlation
structure, are in accordance with the definition of the reliability. We note that the
strict assumptions of equal variances of the measurement errors (and thus equal
variances of the items) are not required in the definition of the reliability, they are
merely properties of the parallel model.

Consider two measurement scales, u = 111′xxx and v = 111′yyy. The variance of u is

σ2
u = var(111′xxx) = 111′ΣΣΣ111 = p(p−1)σ2

x ρxx + pσ2
x , (5)

and the correlation between u and v can be written, using (5), as

ρuv = cor(111′xxx,111′yyy) =
111′ΣΣΣ xy111
var(111′xxx)

=
σ2

x p2ρxx

σ2
x p [1+(p−1)ρxx]

=
pρxx

1+(p−1)ρxx
, (6)

which is known as the Spearman–Brown formula. Solving ρxx from (5) and substi-
tuting it in (6) leads to KR-20 in the form

ρuv =
p

p−1

(
1− pσ2

x

σ2
u

)
. (7)

With the earlier methods of reliability estimation the item reliabilities ρxx had
been a nuisance. In the derivation of KR-20 they were hidden by algebraic manip-
ulations, as the aim was to provide quick methods for practical needs. However, it
was clear that the figures obtained would be underestimates if the strict assumptions
were not met (Kuder and Richardson [9, p. 159]).

3.2.2 Cronbach’s alpha

The principal advantages claimed for KR-20 were ease of calculation and
conservatism. The method was also criticized, because the magnitude of the un-
derestimate was unknown, and even negative values could be obtained. One of the
critics was Lee J. Cronbach, who stated that “while conservatism has advantages
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in research, in this case it leads to difficulties” (Cronbach [4, p. 487]) and that
“the Kuder–Richardson formula is not desirable as an all-purpose substitute for the
usual techniques” (Cronbach [4, p. 488]). In 1951, he presented “the more general
formula” (Cronbach [5, p. 299])

α =
p

p−1

(
1− ∑p

i=1σ
2
xi

σ2
u

)
, (8)

and adviced that we should take it “as given, and make no assumptions regarding it”
(Cronbach [5, p. 299]). It is easy to see that Cronbach’s alpha (8) resembles KR-20
(7), as only the term pσ2

x is replaced by ∑p
i=1σ

2
xi

. This loosens the strict assumption
of the equal variances made in the derivation of KR-20, but the problem inherited
from the KR-20 remains: as there is no trace of the true scores or measurement
errors in the formula, any assumptions of them are easy to forget.

4 Implications of dimensionality

In the following we focus on two particular estimators of reliability, namely
Tarkkonen’s rho and Cronbach’s alpha. The former is interesting because of its
generality, while the latter is interesting because of its popularity. We show that un-
der certain models and conditions Cronbach’s alpha is a special case of Tarkkonen’s
rho, and that the multidimensionality, which is the starting point for Tarkkonen’s
rho, is beyond the scope of Cronbach’s alpha.

We will investigate the properties of the estimators through theoretical compar-
isons and numerical examples. The examples are based on using the matrix inter-
preter of SURVO MM (Mustonen [13]).

4.1 Dimensionality of the model

We will support the theoretical comparisons with numerical examples based on four
simple measurement models (see Table 1). Without losing generality, we assume
that the items x1,x2, . . . ,x7 are standardized, that is, E(xxx) = 000 and cov(xxx) = cor(xxx) =
ΣΣΣ in each case. Then it is obvious that ΣΣΣ is known as soon as BBB is known. Hence we
can specify a measurement model by choosing the elements of the matrix BBB so that
BBB has full column rank and ΣΣΣ is positive definite.

We will refer to the models by indexing BBB, ΣΣΣ , and other related matrices by num-
bers from 1 to 4. All these models can be considered as population models, as we
do not consider any sampling variation. However, it would be possible to study the
sampling properties of the reliability estimators by conducting Monte Carlo simula-
tions based on these specifications, see Vehkalahti et al [20].
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Table 1 The specifications of the measurement models used in the examples

B1B1B1 B2B2B2 B3B3B3 B4B4B4

τ τ τ1 τ2 τ1 τ2
x1 .9 .9 .9 0 .9 0
x2 .9 .9 .9 0 .9 0
x3 .9 .8 .9 0 .8 -.5
x4 .9 .8 .9 0 .8 -.5
x5 .9 .5 0 .9 -.5 .8
x6 .9 .5 0 .9 0 .9
x7 .9 .5 0 .9 0 .9

Models B1B1B1 and B2B2B2 are unidimensional. Using the notation established in Sect. 3
we can summarize three variants of the unidimensional model that has dominated
the test theory of psychometrics:

M1 = {xxx, 111τ, σ2
τ 111111′+σ2

ε III p},
M2 = {xxx, 111τ, σ2

τ 111111′+ΨΨΨ d}, and

M3 = {xxx, bbbτ, σ2
τ bbbbbb′+ΨΨΨ d}, where bbb ∈ R

p.

M1 is the parallel model, M2 is the τ-equivalent model (Novick and Lewis [14]),
and M3 is the congeneric model (Jöreskog [7]). Obviously, all these are special
cases of the general model M = {xxx, BBBτττ, BBBΦΦΦBBB′+ΨΨΨ}.

Clearly, B1B1B1 represents M1 or M2, and B2B2B2 represents M3. The two-dimensional
models B3B3B3 and B4B4B4 represent the simplest examples of multidimensional models. For
further simplicity in these models we assume that the true scores are uncorrelated.

4.2 Dimensionality of the scale

The general, multidimensional measurement scale given in Sect. 2.2 is important as
such, because it connects the measurement framework with multivariate statistical
models, such as regression or discriminant analysis. The special cases of the scale
are the weighted sum u = aaa′xxx, where aaa ∈ R

p and the unweighted sum u = 111′xxx. The
latter is a traditional scale in psychometrics. We will consider these together with
different measurement models. As the multidimensional scale is definitely beyond
the scope of Cronbach’s alpha, the theoretical comparisons between Tarkkonen’s
rho and Cronbach’s alpha are conducted only with the unidimensional scales. How-
ever, the examples will also show how the dimensionality of the scale works with
Tarkkonen’s rho.

We begin from the unweighted sum, and then proceed to the weighted sum.
We find it instructive to go through the unweighted sum first, although the results
will follow immediately as special cases of the weighted sum. In each case, we
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present theorems and examples, revealing implications of the dimensionality behind
Tarkkonen’s rho and Cronbach’s alpha, which we here denote respectively by

ρuu(111) =
111′BBBΦΦΦBBB′111

111′ΣΣΣ111
and α(111) =

p
p−1

(
1− tr(ΣΣΣ)

111′ΣΣΣ111

)
,

where tr(·) is the trace. In the case of the weighted sum we will denote them by

ρuu(aaa) =
aaa′BBBΦΦΦBBB′aaa

aaa′ΣΣΣaaa
and α(aaa) =

p
p−1

(
1− aaa′ΣΣΣ daaa

aaa′ΣΣΣaaa

)
.

We note that ρuu(111) and ρuu(aaa) follow as special cases from (3) for unidimensional
scales. We also note that although Cronbach’s alpha has been generalized for the
weighted scale, it is obvious that replacing the unit weights by arbitrary weights
violates the original assumptions and may lead to doubtful results.

4.3 Case of the unweighted sum

When the scale is the unweighted sum u = 111′xxx and the measurement model is M2,
Tarkkonen’s rho and Cronbach’s alpha are algebraically identical. Under these cir-
cumstances we have ΣΣΣ = σ2

τ 111111′+ΨΨΨ d , and therefore

σ2
u = 111′ΣΣΣ111 = σ2

τ 111′111111′111+111′ΨΨΨ d111 = p2σ2
τ + tr(ΨΨΨ d).

In this simple case it is easy to show that

ρuu(111)=
111′BBBΦΦΦBBB′111

111′ΣΣΣ111
=

p2σ2
τ

111′ΣΣΣ111
=

p
p−1

(
p2σ2

τ − pσ2
τ

111′ΣΣΣ111

)
=

p
p−1

(
1− tr(ΣΣΣ)

111′ΣΣΣ111

)
=α(111).

To investigate the conditions for the equality, we begin with a theorem.

Theorem 1. Let VVV be a symmetric nonnegative definite p× p matrix. Then

111′VVV111≥ p
p−1

[111′VVV111− tr(VVV )], (9)

i.e. (assuming 111′VVV111 �= 0),

1≥ p
p−1

(
1− tr(VVV )

111′VVV111

)
.

The equality in (9) is obtained if and only if VVV = δ 2111111′ for some δ ∈ R.

Proof. Let us rewrite (9) as (p−1)111′VVV111≥ p111′VVV111− p tr(VVV ), that is,

111′VVV111
111′111
≤ tr(VVV ) = λ1 +λ2 + · · ·+λp, (10)
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where λ1 ≥ λ2 ≥ ·· · ≥ λp ≥ 0 are the eigenvalues of VVV ; we will denote λi = chi(VVV ).
Since

max
zzz �=000

zzz′VVVzzz
zzz′zzz

= λ1 = ch1(VVV ),

the inequality (10) indeed holds. The equality in (10) means that

λ1 ≥
111′VVV111
111′111

= λ1 +λ2 + · · ·+λp,

which holds if and only if λ2 = · · · = λp = 0 and vector 111 is the eigenvector of VVV
with respect to λ1, i.e., VVV is of the form VVV = λ1111111′. 
�

Puntanen and Styan [15, pp. 137–138] have proved Theorem 1 using orthogonal
projectors. Another proof appears in Vehkalahti [19, Lemma 4.1].

Corollary 1. Theorem 1 implies immediately that

1≥ α(111) =
p

p−1

(
1− tr(ΣΣΣ)

111′ΣΣΣ111

)
(11)

for any p× p nonnegative definite matrix ΣΣΣ (for which 111′ΣΣΣ111 �= 0), and that the
equality is obtained in (11) if and only if ΣΣΣ = δ 2111111′ for some δ ∈ R.

In the following we use Theorem 1 to prove that the equality of ρuu(111) and α(111)
requires the model to be unidimensional, either M2 or M1. In other cases ρuu(111) is
shown to be greater than α(111).

Theorem 2. Consider the measurement model Md = {xxx, BBBτττ, BBBΦΦΦBBB′+ΨΨΨ d}. Then

ρuu(111)≥ α(111),

where the equality is obtained if and only if BBBΦΦΦBBB′ = δ 2111111′ for some δ ∈ R, i.e.,
ΣΣΣ = δ 2111111′+ΨΨΨ d, whereΨΨΨ d = diag(ψ2

1 , . . . ,ψ2
p).

Proof. To prove that ρuu(111)≥ α(111), we have to show that

111′BBBΦΦΦBBB′111
111′ΣΣΣ111

≥ p
p−1

(
111′ΣΣΣ111− tr(ΣΣΣ)

111′ΣΣΣ111

)
. (12)

SinceΨΨΨ d is a diagonal matrix, we have

111′ΣΣΣ111− tr(ΣΣΣ) = 111′(BBBΦΦΦBBB′+ΨΨΨ d)111− tr(BBBΦΦΦBBB′+ΨΨΨ d) = 111′BBBΦΦΦBBB′111− tr(BBBΦΦΦBBB′),

and hence (12) is equivalent to

111′BBBΦΦΦBBB′111≥ p
p−1

[111′BBBΦΦΦBBB′111− tr(BBBΦΦΦBBB′)]. (13)

In view of Theorem 1, (13) holds for every BBB (and every nonnegative definite ΦΦΦ)
and the equality is obtained if and only if BBBΦΦΦBBB′ = δ 2111111′ for some δ ∈ R. 
�
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The equality of ρuu(111) and α(111) indeed requires the model to be unidimensional.
Since the condition for the equality depends only on BBBΦΦΦBBB′, the true score part of the
covariance matrix, it applies similarly to the models M2 and M1. This well-known
condition is called τ-equivalence (Novick and Lewis [14]).

The following example shows how the reliability estimates for the unweighted
sum are obtained under the model B1B1B1 by using the matrix interpreter of SURVO MM
(Mustonen [13]). The matrix commands begin with MAT and the rest is mostly com-
ments written freely around them. The results are saved in matrices, which are given
names after the word MAT. Their numerical values extracted from the matrices (by
means of the editorial computing) display the equality of ρuu(111) and α(111):

Computing rhouu_1=MAT_Rhouu(1,1) and alpha_1=MAT_Alpha(1,1)
MAT One=CON(p,1) / vector of ones, dimension p=7
MAT Ip=IDN(p,p) / identity matrix of order p
MAT S1=B1*B1’+Ip-DIAG(B1*B1’) / SIGMA constructed
MAT Rhouu=(One’*B1*B1’*One)*INV(One’*S1*One)
MAT Alpha=(p/(p-1))*(1-(TRACE(S1)*INV(One’*S1*One)))
The numerical results are:

rhouu_1=0.96757679180887
alpha_1=0.96757679180887

Similarly we obtain the results for the model B2B2B2. According to Theorem 2 the
estimates are different, because the elements of B2B2B2 are not equal. They are also
lower than before, because the elements are not as high as in B1B1B1.

MAT S2=B2*B2’+Ip-DIAG(B2*B2’) / SIGMA constructed
MAT Rhouu=(One’*B2*B2’*One)*INV(One’*S2*One)
MAT Alpha=(p/(p-1))*(1-(TRACE(S2)*INV(One’*S2*One)))
The numerical results are:

rhouu_1=0.87755847953216
alpha_1=0.86817738791423

4.4 Case of the weighted sum

It is instructive to study a slightly more general case, that is, the case of the weighted
sum u = aaa′xxx. We will show that Cronbach’s alpha is equal to Tarkkonen’s rho only
in a rare special case. Before proceeding onwards, we prove the following theorem:

Theorem 3. Let VVV be a symmetric nonnegative definite p× p matrix with VVV d =
diag(VVV ) being positive definite. Then

max
aaa �=000

aaa′VVVaaa
aaa′VVV daaa

= ch1(VVV
−1/2
d VVVVVV−1/2

d ) = ch1(RRRV ),

where RRRV =VVV−1/2
d VVVVVV−1/2

d , i.e., RRRV can be considered as a correlation matrix. More-
over,

aaa′VVVaaa
aaa′VVV daaa

≤ p for all aaa ∈ R
p, (14)
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where the equality is obtained if and only if VVV = δ 2qqqqqq′ for some δ ∈ R and some
qqq = (q1, . . . ,qp)′, and aaa is a multiple of ã̃ãa = (1/q1, . . . ,1/qp)′.

Proof. We first note that

max
aaa �=000

aaa′VVVaaa
aaa′VVV daaa

= max
aaa�=000

aaa′VVV 1/2
d VVV−1/2

d VVVVVV−1/2
d VVV 1/2

d aaa

aaa′VVV 1/2
d VVV 1/2

d aaa

= max
zzz �=000

zzz′VVV−1/2
d VVVVVV−1/2

d zzz
zzz′zzz

= ch1(VVV
−1/2
d VVVVVV−1/2

d )

= ch1(RRRV ) := μ1.

It is obvious that the largest eigenvalue μ1 of a p× p correlation matrix RRRV is ≤ p
and clearly μ1 = p if and only if RRRV = 111111′, i.e., VVV must be of the form VVV = δ 2qqqqqq′

for some δ ∈ R and qqq = (q1, . . . ,qp)′ ∈ R
p. It is easy to conclude that if VVV = δ 2qqqqqq′,

then the equality in (14) is obtained if and only if aaa is a multiple of ã̃ãa = VVV−1/2
d 111 =

1
δ (1/q1, . . . ,1/qp)′. 
�

Corollary 2. Using the notation above,

α(aaa) =
p

p−1

(
1− aaa′ΣΣΣ daaa

aaa′ΣΣΣaaa

)
≤ p

p−1

(
1− 1

ch1(RRRΣ )

)
for all aaa ∈ R

p.

Moreover,
α(aaa)≤ 1 for all aaa ∈ R

p. (15)

The equality in (15) is obtained if and only if ΣΣΣ = δ 2qqqqqq′ for some δ ∈ R and some
qqq = (q1, . . . ,qp)′, and aaa is a multiple of ã̃ãa = (1/q1, . . . ,1/qp)′.

Proof. The proof comes at once from Theorem 3. 
�

Finally we use Theorem 3 to prove that the equality of ρuu(aaa) and α(aaa) requires
the model to be unidimensional, either M2 or M1. This is a straight-forward gener-
alization of Theorem 1. In a rather peculiar special case, however, the model may be
M3, but then the scale weights will depend completely on the model weights. This
result can be seen only with the weighted scale. Similarly as before, ρuu(aaa) exceeds
α(aaa) in all other circumstances.

Theorem 4. Consider the measurement model Md = {xxx, BBBτττ, BBBΦΦΦBBB′+ΨΨΨ d}. Then,

α(aaa)≤ ρuu(aaa) for all aaa ∈ R
p,

and the equality is obtained if and only if BBBΦΦΦBBB′ = δ 2qqqqqq′ for some δ ∈ R and some
qqq = (q1, . . . ,qp)′, i.e., ΣΣΣ = δ 2qqqqqq′+ΨΨΨ d, and aaa is a multiple of ã̃ãa = (1/q1, . . . ,1/qp)′.
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Proof. Our claim is

p
p−1

(
1− aaa′ΣΣΣ daaa

aaa′ΣΣΣaaa

)
≤ aaa′BBBΦΦΦBBB′aaa

aaa′ΣΣΣaaa
,

i.e.,
p

p−1
(aaa′ΣΣΣaaa−aaa′ΣΣΣ daaa)≤ aaa′BBBΦΦΦBBB′aaa. (16)

Substituting ΣΣΣ = BBBΦΦΦBBB′+ΨΨΨ d , (16) becomes

p[aaa′BBBΦΦΦBBB′aaa+aaa′ΨΨΨ daaa−aaa′(BBBΦΦΦBBB′)daaa−aaa′ΨΨΨ daaa]≤ (p−1)aaa′BBBΦΦΦBBB′aaa,

which simplifies into the form

aaa′BBBΦΦΦBBB′aaa
aaa′(BBBΦΦΦBBB′)daaa

≤ p.

The proof is now completed using Theorem 3. 
�
The equality of ρuu(aaa) and α(aaa) indeed requires the model to be unidimensional.

Since the condition for the equality again depends only on the true score part of
the covariance matrix, it applies similarly to the models M2 and M1. The weighted
scale reveals that the equality holds also in the case of the model M3, the congeneric
model (Jöreskog [7]), but only in a rare special case where the scale weights are in-
verses of the model weights. Again ρuu(aaa) exceeds α(aaa) in all other circumstances.

In the following examples the weighted sum is represented by the factor scores
(by regression method).

Computing rhouu_a=MAT_Rhouu(1,1) and alpha_a=MAT_Alpha(1,1)
MAT A2=INV(S2)*B2 / factor score coefficients
MAT Ip=IDN(p,p) / identity matrix of order p=7
MAT S2=B2*B2’+Ip-DIAG(B2*B2’) / SIGMA constructed
MAT Rhouu=(A2’*B2*B2’*A2)*INV(A2’*S2*A2)
MAT Alpha=(p/(p-1))*(1-(A2’*DIAG(S2)*A2)*INV(A2’*S2*A2))
The numerical results are: to be compared with these:

rhouu_a=0.92898671096345 rhouu_1=0.87755847953216
alpha_a=0.81147318009654 alpha_1=0.86817738791423

With the model B1B1B1 the weighted scale does not have any effect on the estimates,
since the factor score coefficients are constant for each xi. With B2B2B2 the discrepancy
between them becomes quite clear when compared to the results of the unweighted
sum: Tarkkonen’s rho increases but Cronbach’s alpha decreases. This is a clear sign
of the well-known underestimation problem of Cronbach’s alpha.

4.5 Multidimensional models

Let us take a look at the reliability estimation under the multidimensional models
B3B3B3 and B4B4B4. First, we compute the reliability matrix ρρρuuu in the case of the model B3B3B3
using Eq. (4) given in Sect. 3.1.
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MAT RLABELS x TO B3 / sets names x1 etc. for rows
MAT CLABELS t TO B3 / sets names t1,t2 for columns
MAT Ip=IDN(p,p) / identity matrix of order p=7
MAT Ik=IDN(k,k) / identity matrix of order k=2
MAT S3=B3*B3’+Ip-DIAG(B3*B3’) / SIGMA constructed
MAT Psi_d=DIAG(S3-B3*B3’) / cov.matrix of meas.errors
MAT A3=INV(S3)*B3 / factor score coefficients
MAT Rho_u=INV(Ik+DIAG(A3’*Psi_d*A3)*INV(DIAG(A3’*B3*B3’*A3)))
MAT LOAD Rho_u 1.23456789012345 CUR+2

MATRIX Rho_u
/// t1 t2
t1 0.94460641399417 0.00000000000000
t2 0.00000000000000 0.92748091603053

Since B3B3B3 is truely a multidimensional model, although very simple, it is beyond
the scope of Cronbach’s alpha. Of course it is possible to compute the reliability of
the unweighted sum, but the dimensionality will make Cronbach’s alpha quite low:

MAT One=CON(p,1) / p=7 for computing alpha_1=MAT_Alpha(1,1)
MAT Alpha=(p/(p-1))*(1-(One’*DIAG(S3)*One)*INV(One’*S3*One))
and we have alpha_1=0.78822984244671

In practice, it is typical to compute Cronbach’s alpha by selecting only the “best”
items for the sum. Here, the items x1 to x4 would obviously represent the first di-
mension while x5 to x7 would be the choice for the second dimension. The following
example shows how this would be done for the first dimension. The other one would
follow similarly:

MAT One=CON(p,1) / p=4 for computing alpha_1=MAT_Alpha(1,1)
MAT S=S3(x1:x4,x1:x4) / pick a sub-matrix of S3
MAT Alpha=(p/(p-1))*(1-(One’*DIAG(S)*One)*INV(One’*S*One))
and we have alpha_1=0.94460641399417

The result is equal to the first element of the reliability matrix ρρρuuu. This is, how-
ever, due to the very simple structure of the model B3B3B3. The selection of the items
becomes arbitrary as soon as the structure gets more complicated.

A bit more realistic variant of B3B3B3 is provided by model B4B4B4, where the items
x3,x4, and x5 are related with both dimensions (see Table 1). It does not cause any
difficulties for Tarkkonen’s rho, since repeating the previous computations for B4B4B4
we obtain the reliability matrix ρρρuuu again. The figures are quite similar, because B3B3B3
and B4B4B4 do not differ remarkably:

MATRIX Rho_u
/// t1 t2
t1 0.94374792204044 0.00000000000000
t2 0.00000000000000 0.93354550709381

However, these tiny changes in the model cause additional problems with Cron-
bach’s alpha, as the selection of the items becomes more difficult. In addition, some
of the elements are negative, and will distort the estimates dramatically:
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.......... Select positive elements only:
MAT One=CON(p,1) / p=4 for computing alpha_1=MAT_Alpha(1,1)
MAT S=S4(x1:x4,x1:x4) / pick a sub-matrix of S4
MAT Alpha=(p/(p-1))*(1-(One’*DIAG(S)*One)*INV(One’*S*One))
and we have alpha_1=0.92806484295846
.......... Select also x5:
MAT One=CON(p,1) / p=5 for computing alpha_1=MAT_Alpha(1,1)
MAT S=S4(x1:x5,x1:x5) / pick a sub-matrix of S4
MAT Alpha=(p/(p-1))*(1-(One’*DIAG(S)*One)*INV(One’*S*One))
and we have alpha_1=0.56768558951965

Negative elements that arise naturally in multidimensional models cause severe
problems with Cronbach’s alpha. On the contrary, Tarkkonen’s rho works well with
positive and negative elements, and there is no need to select items in order to in-
crease the reliability. All items that have been measured can also be used.

4.6 Conclusions

It seems clear that Tarkkonen’s rho works well with multidimensional models and
scales. However, any kind of multidimensionality seems to be a problem for Cron-
bach’s alpha. This discrepancy is easy to show with simple examples. To make fair
comparisons, one has to stick with unidimensional models and scales. Some con-
clusions can be drawn, and none of them seems to be in favor of Cronbach’s alpha.

First, with the unweighted sum we can conclude that

α(111)≤ ρuu(111)≤ 1,

where the assumptions of Tarkkonen’s rho ensure that ρuu(111) > 0. However, α(111)
may tend negative because the strict assumptions made in the derivation of KR-20
(7), and mostly inherited in α(111), are easily violated. Negative estimates do not
make sense, of course, as reliability is by definition a ratio of variances.

In a bit more general setting we can also conclude that

α(aaa)≤ ρuu(aaa)≤ 1 for all aaa ∈ R
p.

Again the assumptions ensure that ρuu(aaa) > 0, but α(aaa) may tend negative. An
additional reason for this is that the original formula (KR-20) was derived only for
an unweighted sum, not for arbitrary weighted sums.

5 Discussion

For a long time, research has focused on examining the properties of Cronbach’s
alpha without questioning its original assumptions. This is supported by an excellent
review by Weiss and Davison [21, pp. 630–635], or more recent studies basically in
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about any journals of psychometrics. The motivation of estimating the reliability and
using the estimates for assessing the quality of measurements has been obscured,
because the estimates have been so poor. As Weiss and Davison [21, p. 633] put it:
“Somewhere during the three-quarter century history of classical test theory the real
purpose of reliability estimation seems to have been lost”.

What is then the “real purpose of reliability estimation”? First of all, it is impor-
tant for a measurement scale to have a high reliability, because the further analyses
could then be based mainly on the true variation instead of random measurement
errors. One topic that has been nearly forgotten because of the poor reliability es-
timates, is the correction for attenuation, which is badly needed, for example, in
survey research (Alwin [1], ch. 4).

Of course, the questions of validity should usually have the highest priority.
Unfortunately, the strict assumptions behind Cronbach’s alpha have lead in the
opposite direction: maximizing the reliability of the scale by discarding any “unsuit-
able” items. The applied criterion, the internal consistency, requires all items to be
equally good indicators of the trait under study. Some statistical program packages
even support this procedure by reporting Cronbach’s alpha if item deleted statistics.
Combined with the underestimation problems of Cronbach’s alpha, it is clear that
this approach has unfavourable consequences.

Most empirical problems are multidimensional, and it is difficult to develop items
that measure only one dimension. Indeed, the most striking problem of Cronbach’s
alpha is its built-in assumption of unidimensionality. On the contrary, Tarkkonen’s
rho seems to be well-suited for multidimensional reliability studies.
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Robust Moment Based Estimation
and Inference: The Generalized
Cressie–Read Estimator

Ron C. Mittelhammer and George G. Judge

Abstract In this paper a range of information theoretic distance measures, based
on Cressie-Read divergence, are combined with mean-zero estimating equations to
provide an efficient basis for semi parametric estimation and testing. Asymptotic
properties of the resulting semi parametric estimators are demonstrated and issues
of implementation are considered.

1 Introduction

For a range of statistical models when the functional form of the likelihood is
known, the likelihood concept is appealing for estimation and inference purposes
from both a sampling theory and Bayesian perspective. If insufficient information
about the underlying data sampling process is available for specifying the functional
form of the likelihood function, parametric maximum likelihood (ML) methods are
inapplicable. In econometrics, because information about the underlying data sam-
pling process is usually partial and incomplete, much estimation and inference over
the last two decades has proceeded under formulations that are semi parametric in
the sense that the joint probability distribution of the data is unspecified apart from
a finite set of moment conditions or conditional moments restrictions.

A way of avoiding an explicit functional specification of the likelihood is to use
an estimation method that is still likelihood based, but that does not assume a spe-
cific parametric family of probability distributions for the underlying data sampling
process. One such possibility is the general “empirical likelihood” concept where,
given observations {y1,y2, . . . ,yn}, a possible sample distribution function is cho-
sen from the multinomial family that assigns probability weight wi to observation yi.
Under the empirical likelihood concept, empirical likelihood weights, w, supported
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on the sample of observed data outcomes are used to reduce the infinite dimen-
sional problem of nonparametric likelihood estimation to a finite dimensional one.
This represents a generalization of the Empirical Distribution Function in which
wi = n−1,∀i.

Regarding extremum metrics from which to derive empirical likelihood weights,
the general [6] family of power divergence statistics represents a flexible family of
pseudo-distance measures leading to associated estimators. The Cressie–Read (CR)
statistic contains a parameter λ that indexes a set of empirical goodness-of-fit (em-
pirical divergence) measures and estimation criteria. As λ varies the resulting empir-
ical likelihood estimators exhibit qualitatively different sampling behavior ([1]; [2];
[17] [16]; [27]). Within this context the purpose of this paper is to investigate the sta-
tistical implications of generalizing the empirical likelihood principle to encompass
the entire range of distance measures contained in the Cressie–Read family. Using
empirical moments as constraints, an empirical likelihood solution basis is demon-
strated based on the CR-optimized (λ ,w) combination-estimator for any particular
data sampling process, and corresponding statistical implications of basing param-
eter estimation on the generalized CR (λ ,w) are assessed. The resulting CR(λ ,w)
formulations can be used to help avoid the use of tenuous model assumptions, and
to provide optimal estimation and testing methods for semiparametric models based
on mean zero estimating equations.

In line with the objectives noted above, in 2 a basic statistical model is specified
and specific estimators within the Cressie–Read family of estimators are identified
and developed. In 3 the generally user-specific parameter in the Cressie–Read statis-
tic is considered free to vary outside of the limiting cases usually considered and
the estimation and inference theory underlying this generalization is developed. In
the last section econometric implications of this generalization are considered and
conclusions are drawn regarding the use of the generalized Cressie–Read distance
measure (CRDM) in empirical practice.

2 Preliminaries-statistical Models, Estimators,
and Inference Procedures

Consider a structural equation that is contained within a system of structural equa-
tions and that exhibits the semiparametric linear statistical model form Y = Xβ+ ε .
Assume a vector of sample outcomes y = (y1,y2, · · · ,yn)

′ associated with this linear
model is observed, where X is a (n×k) matrix of stochastic explanatory variables,
ε is an unobservable random noise vector with mean vector 0 and covariance ma-
trix σ2In, and β ∈ B is a (k×1) vector of unknown parameters. If one or more of
the right hand side X. j’s is correlated with the equation noise, then E

[
n−1X′ε

]
�= 0

or plim
[
n−1X′ε

]
�= 0 and traditional Gauss–Markov based procedures such as the

least squares (LS) estimator, or equivalently the method of moments (MOM) esti-
mator defined by β̂mom = argβ∈B

[
n−1X′ (Y−Xβ) = 0

]
, are biased and inconsistent,
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with unconditional expectation and probability limit given by E
[
β̂
]
�= β and plim[

β̂
]
�= β. Given a sampling process characterized by nonorthogonality of X and ε ,

in order to avoid the use of strong distributional assumptions it is conventional to
introduce additional information in the form of a (n×m) , m≥ k, random matrix
Z of instrumental variables whose elements are correlated with X but uncorrelated
with ε . This information is introduced into the statistical model by specifying the
sample analog moment condition

h(Y,X,Z;β) = n−1 [Z′ (Y−Xβ)
] p→ 0, (1)

relating to the underlying population moment condition derived from the orthogo-
nality of instruments, Z, and model noise defined by

E
[
Z′ (Y−Xβ)

]
= 0. (2)

When the usual moment regularity conditions are fulfilled, this IV estimator is
consistent, asymptotically normal distributed, and is an optimal estimating function
(OptEF) estimator ([8]; [13]; [26]).

If the vector of moment conditions overdetermines the model parameters, other
estimation procedures are available. For example, one possibility is the estimator
formed by following [8]; [10]; [14], and applying the optimal estimating function

(OptEF) transformation
(

X′Z(Z′Z)−1 Z′X
)−1

X′Z(Z′Z)−1 to the moment condi-
tions in (2). The GMM estimator ([12]; and [15]) that minimizes a quadratic form
in the sample moment information is another popular estimator that makes use of
the information in (2).

2.1 Empirical Likelihood (EL) Type Estimators

In contrast to traditional instrument-moment based estimators, the empirical like-
lihood (EL) approach ([21],[22],[23]; [25]; [11]; [4]; [24]; [26]; and [18]) allows
the investigator to employ likelihood methods for model estimation and inference
without having to choose a specific parametric family of probability densities on
which to base the likelihood function. As noted in 1, one possibility for an extremum
metric-estimation criterion is the general CR [6] and [29], power divergence family
of statistics

I (w,q,λ ) =
1

λ (λ +1)

n

∑
i=1

wi

[(
wi

qi

)λ
−1

]
, (3)

where λ is a parameter that indexes members of the CR family, and the qi’s are
interpreted as reference probabilities that satisfy qi ∈ (0,1) ,∀i and ∑n

i=1 qi = 1. In
a linear structural model estimation context based on instrumental variables, if we
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use (3) as the goodness-of-fit criterion and (1) as the moment-estimating function
information, the CRDM estimation problem can be formulated as the following
extremum-type estimator for β for any given choice of the λ parameter:

β̂(λ ) = argmax
β∈B

[
�E (β;λ ) = max

w

{
−I(w,q,λ ) |

n
Σ

i=1
wiz′i. (yi−xi.β) = 0,

n
Σ

i=1
wi = 1,wi ≥ 0 ∀i

}]
(4)

where �E (β;λ ) can be interpreted as an empirical likelihood function parameterized
by the parameter λ . It is important to note that the family of power divergence statis-
tics is symmetric in the choice of which set of probabilities are considered as the
first and second arguments of the function (3). In particular, regardless of whether
the statistic is designated as I(w,q,λ ) or I(q,w,λ ) precisely the same family of di-
vergence measures is defined across the range of possible values λ ∈ (−∞,∞). This
point, which is discussed by Österreicher (2002) and Österreicher and Vajda (2003),
is demonstrated in the Appendix as Proposition 1.

2.2 Three Main Variants of I(w,q,λ )

Three main variants of I(w,q,λ ), and the associated empirical likelihood functions
�E (β;λ ), have emerged and received explicit attention in the econometrics liter-
ature. All are based on the reference distribution specification q = n−11n, where
1n denotes an n× 1 vector of unit values, and we adopt this reference distribu-
tion specification for the remainder of the paper. Note this choice of the reference
distribution is tantamount to choosing the classical empirical distribution function
(EDF) as the target empirical likelihood function. We utilize the abbreviated nota-
tion CR(λ )≡ I(w,q,λ ), where the arguments w and q are tacitly understood to be
evaluated at relevant vector values. In the two special cases where λ = 0 or − 1,
the notations CR(0) and CR(−1) are to be interpreted as the continuous limits
limλ→0 CR(λ ) and limλ→−1 CR(λ ), respectively.

The specification CR(-1) leads to the traditional empirical log-likelihood (EL)
objective function, n−1∑n

i=1 ln(wi), and the maximum empirical likelihood estimate
of β, while the specification CR(0) leads to the empirical exponential likelihood ob-
jective function, −∑n

i=1wi ln(wi), and the Maximum Empirical Exponential Like-
lihood estimate of β (see Proposition 2 of the appendix for derivations of these
two results). Finally, CR(1) defines the log Euclidean or least squares likelihood
function n

2

(
−∑n

i=1
(
wi

2− 1
n

))
∝

(
w−n−11n

)′ (w−n−11n
)

leading to the Maxi-
mum Log Euclidean Likelihood or least squares empirical likelihood estimate of β.
This estimator is related to an updating variant of the GMM estimator, where the
unknown covariance matrix is handled internally ([3]).
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2.2.1 Estimation

If the traditional EL criterion CR(-1) is used, the estimation objective involves
finding the feasible weights ŵ that maximizes the joint empirical log likelihood
assigned to the observed set of sample observations, conditional on the moment
constraints. In the sense of objective function analogies, the EL approach is the
closest to the classical maximum likelihood approach. The CR(0) criterion of max-
imizing −∑n

i=1 wi ln(wi) is equivalent to defining an estimator by minimizing the
Kullback-Leibler (KL) information criterion ∑n

i=1 wi ln
(
wi/n−1

)
and using the max-

imum entropy principle of Jaynes (1957). Interpreted in the KL context, this esti-
mation objective finds the feasible weights ŵ that define the minimum value of all
possible expected log-likelihood ratios consistent with the structural moment con-
straints ([7]; and [26]). The expectations are based on the ŵ distribution and the
log-likelihood ratio has the restricted (by moment constraints) likelihood in the nu-
merator and the unrestricted (i.e., uniform distribution) likelihood in the denom-
inator. The CR(1) solution seeks feasible weights ŵ that minimize the Euclidean
distance of w from the uniform probability distribution, the square of this Euclidean
distance being

(
w−n−11n

)′ (w−n−11n
)
. The optimum weights, subject to moment

and adding up constraints, are necessarily nonnegative valued by the functional char-
acteristics of the estimation objective represented by the CR(0) and CR(-1) cases,
but negative weights are not ruled out by the CR(1) specification in the absence of
explicitly imposed nonnegativity constraints.

Under the usual regularity conditions assumed when establishing the asymptotics
of traditional structural equation estimators, all of the preceding EL-like estima-
tors of β obtained by optimizing the wi’s , for fixed choices of λ , are consistent,
asymptotically normally distributed, and asymptotically efficient relative to the op-
timal estimating function (OptEF) estimator ([1]). The solution to the constrained
optimization problem (4) yields an optimal estimate, ŵ(λ ) and β̂(λ ), that cannot,
in general, be expressed in closed form and thus must be obtained using numer-
ical methods. Note further that for the typical application in which the reference
distribution qi = n−1∀i, any of the estimation objective functions contained in the
Cressie–Read family achieve unconstrained (by moment equations) optima when
the empirical probability distribution is given by w = n−11n.

2.2.2 Inference

EL-type inference methods, including hypothesis testing and confidence region es-
timation, bear a strong analogy to inference methods used in traditional ML and
GMM approaches. [21],[22] showed that an analog of Wilks’ Theorem for likeli-
hood ratios, specifically -2ln(LR)

a∼χ2
j under Ho, hold for the empirical likelihood

CR(-1) approach, where j denotes the number of functionally independent restric-
tions on the parameter space. Baggerly [1] demonstrated that this calibration re-
mains applicable when the likelihood is replaced with any properly scaled member
of the Cressie–Read family of power divergence statistics (3). In this context, the



168 R.C. Mittelhammer and G.G. Judge

empirical likelihood ratio (LR) for testing the linear combinations hypothesis cβ = r
when rank(c) = j, is given for the CR(-1) case by

LRCR(−1) (y) =
maxβ [�E (β,λ →−1)s.t. cβ = r]

maxβ �E (β,λ →−1)
(5)

and

−2ln
(
LRCR(−1) (y)

) a∼χ2
j (6)

under Ho when m≥ k. An analogous pseudo-LR approach can be applied, mutatis
mutandis, to other members of the Cressie–Read family.

To place this approach to estimation and inference in a more general context, it is
important to relate the CR(λ ) approach to the score test proposed by [28]. Although
his quadratic inference function form of test statistic was in a parametric context, its
recent impact has been within semiparametric inference based on estimating equa-
tions. In econometric type problems where there are more estimating equations than
unknowns, the quadratic inference function expressed as a function of the parame-
ters provides an optimal basis for estimation and testing. As noted by [15], the Rao
quadratic inference formulation is also closely related to the empirical likelihood-
CR(λ ) methods where an empirical likelihood objective function is used to create a
multinomial-type likelihood. In the following sections we demonstrate some of the
statistical implications of extending the quadratic inference methodology to the [6]
family of distance-divergence measures.

3 Global Minimum Discrepancy (GMD) Approach
to Estimation and Inference

The definition of the estimator implied by the optimization problem in (4) is condi-
tional on a choice of the arbitrary parameter λ in the CR family of divergence statis-
tics. This parameter indexes functional forms for divergence measures in a family of
divergence measures, and indexing empirical likelihood functions defined in (4) is
analogous to the way parameters index functional forms for likelihood measures in
a parametric family of likelihood functions. This suggests that one might consider,
in the context of (4), optimizing with respect to the choice of the λ parameter when
defining the estimator for the data-probability weights and the parameter vector β
of a data sampling model (see for example [5]). We consider such an idea in this
section.

3.1 The GMD Measure

The use of the CR(λ ) statistic in defining an empirical likelihood-type function,
conditional on λ , was discussed in 2.2. We now define an empirical likelihood func-
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tion based on the CR statistic that is not conditional on the choice of the arbitrary λ
parameter value:

�E (β) = max
λ

[�E (β;λ )] = max
ω,λ

{
−I

(
w,n−11n,λ

)
|

n
Σ

i=1
wiz′i. (yi−xi.β) = 0,

n
Σ

i=1
wi = 1,wi ≥ 0 ∀i

}
(7)

Moving in the direction of defining a global minimum discrepancy (GMD) mea-
sure, it is apparent that the optimization problem is segmentable in the λ parameter,
so that (7) can be optimized with respect to λ at the outset, for a given w, as

I∗
(
w,n−11n

)
= min

λ
I
(
w,n−11n,λ

)
= min

λ

[
1

λ (λ +1)

n

∑
i=1

wi

[
(nwi)

λ −1
]]

. (8)

The first order conditions for the optimization are given by

∂CR(λ )
∂λ

=

[
n
∑

i=1
(nwi)

λ wi [(λ (λ +1) ln(nwi)− (2λ +1))]
]

+2λ +1

[λ (λ +1)]2
= 0. (9)

Consequently, the first order conditions will be met iff the numerator of the deriva-
tive expression is zero.

The solution for λ in (9) is not available in closed form, but can be straight-
forwardly solved numerically on a computer, and characterizes a global optimal
solution, because:

1. CR(λ ) is strictly convex in λ , for all feasible w, except on a set of measure zero
that amounts to only a singleton exception, and

2. There will always exist a finite choice of λ that will satisfy the first order condi-
tion (9).

The strict convexity of (9) in λ result follows because it can be shown1 that the
second order derivative defined by

∂ 2CR(λ )
∂λ 2 =

[
n

∑
i=1

(nwi)
λ wi

[
(ln(nwi))

2

λ (λ +1)
− 2(2λ +1) ln(nwi)

(λ (λ +1))2 +
6λ (λ +1)+2

(λ (λ +1))3

]]

−6λ (λ +1)+2

(λ (λ +1))3 (10)

is such that ∂ 2CR(λ )
∂λ 2 > 0 ∀λ when wi �= n−1 for some i, while ∂ 2CR(λ )

∂λ 2 = 0 ∀λ
when w = n−11n. Thus the CR measure is convex in the λ parameter, and strictly

1 For any choice of n, these results can be directly numerically verified by solving for the unique
global minimum of

(
∂ 2CR(λ )

)
/
(
∂λ 2

)
with respect to the choice of w,λ , leading to w = n−11n

and λ arbitrary.
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convex when w �= n−11n, ensuring that any solution to the first order condition in
(9) defines a well-defined minimum with respect to the choice of λ .2 The existence
result follows from the convexity result, along with the fact that CR is continu-
ous in λ and that for any w �= n−11n, limλ→−∞ CR(λ ) = limλ→ ∞ CR(λ ) = +∞.
Therefore, for any finite value η > minλ CR(λ ), there exists finite λ1 andλ2 such
that η = CR(λ1) = CR(λ2), and by Rolle’s Theorem, ∂CR(λ )

∂λ = 0 for some finite
λ ∈ [λ1,λ2].

Given the conditional-on-w optimal solution for λ defined above, the global op-
timal solution to (7) can be obtained by choosing w optimally. The existence of such
a global optimal w is assured by Weierstrass’s theorem because the feasible space of
choices for w is closed and bounded (and also convex), and the objective function
is continuous (as well as differentiable).

3.2 Rationale

The objective underlying the definition of the GMD measure can be interpreted as
choosing the discrepancy measure, among all of the discrepancy measures available
in the CR family, that results in the assignment of the least discrepancy value to
any given subject probability distribution, w, and reference probability distribution,
q. The discrepancy measure chosen via the GMD principle thus attempts to ratio-
nalize any specification of w, conditional on q, by judging the subject distribution
w to be closer to the reference distribution q (in terms of discrepancy value) than
would be the case for any other choice of discrepancy measure in the CR family. As
such, I∗ (w,q) minimizes the influence of the choice of discrepancy measure on the
actual choice of subject distribution to be paired with the reference distribution in
the estimation of the probability weights and parameter values in the data sampling
model. It follows that I∗ (w,q) can be thought of as being the least influential, or
most neutral discrepancy measure to be applied to any pair of subject and reference
distributions in the CR family. In the absence of any informative prior information
suggesting that some discrepancy measures are relatively more appropriate than oth-
ers, this would appear to be a defensible way to proceed in attempting to reconcile
data weights with a reference distribution, together with any estimating equation or
moment information that the data observations were required to satisfy.

Explicit extremum metrics used in estimation and inference are often chosen in
an ad-hoc manner. We proceed by specifying a general family of extremum metrics
that all measure divergence between subject and reference probability distributions
and then solve, based on the data, for the subject distribution w and particular metric
that results in w being overall closest to the reference distribution q. When q is based
on the EDF of the data, as has most often been the case in the literature, this principle
leads to adopting an empirical likelihood function that is as close to EDF weights

2 Note that the exception w = n−11n is generally relegated to infeasibility whenever the moment
conditions or estimating equations overidentify the parameters of a model being estimated, making
even this singleton exception moot in applications.
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as the moment constraints will allow. Choosing an integer value for λ in (4), as is
traditional, would appear to use information one usually does not posses, and our
approach avoids the need for making an arbitrary choice.

3.3 GMD Estimation and Inference

The GMD estimator of β will be defined by solving the maximum empirical
likelihood-type problem of the form

β̂ = argmax
β∈B

[
�E (β) = max

w

{
−I∗ (w,q) |

n
Σ

i=1
wiz′i. (yi−xi.β) = 0,

n
Σ

i=1
wi = 1,wi ≥ 0; ∀i

}]
(11)

It can be anticipated that the typical first order asymptotic results continue to hold.
In particular, given that the estimating equations are valid, then wi→ n−1 ∀i and
the estimator of β will have the same first order asymptotics as the GMM estimator

based on the moments n−1 n
Σ

i=1
z′i . (yi−xi.β) = 0, which applies as well to all of the

specific members of the CRMD family of estimators.
Baggerly [1] has shown that the same asymptotic chi-square calibration holds

for every choice of the parameter λ . Thus inference can proceed by an appropri-
ate application of the empirical likelihood ratio statistic defined in (5). Given that
the probability distribution of the unconditional empirical likelihood statistic is a
mixture, over the distribution of λ̂ , of the associated appropriately scaled likelihood
ratio statistics, the asymptotic chi-square calibration is maintained for the statistic
based on the GMD approach.

4 Econometric Implications

Given a structural equation statistical model and a corresponding sample of data, we
cast the estimation problem as one of how to best estimate the response coefficients
when one’s prior knowledge consists only of the expected values of moment func-
tions of the sample information. Rather than choosing the estimation criterion in an
ad hoc manner, we ask the basic question of how to make best use of the sample
information in an information theoretic context and use the Cressie–Read family of
divergence statistics as a basis for identifying a family of potential distance mea-
sures. Thus the measure of goodness-distance measure chosen, between a reference
probability distribution q and the probability distribution p being approximated, is
thus a data based decision. The CR measure of divergence includes within its family
of estimators the empirical likelihood (EL), the Kullback–Leibler (KL)-maximum
entropy, and the log Euclidean likelihood estimation alternatives.

Some of the attractive characteristics of the CR divergence measures are that first
and second derivatives of the CR function with respect to λ exist and the deriva-
tives are smoothly differentiable and permit a definition of the Hessian of the CR
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Statistic (see the Appendix, Definition 1). The CR as a function of λ is strictly con-
vex and has a well-defined minimum for a given w vector. A global minimum value
also exists relative to closed and bounded choices of both w and λ , and if λ is
confined to a fixed interval, the entire set of w and λ values is in fact closed and
bounded. If there are no data-moment constraints on the choices of the w and λ
arguments, the global optimum is not unique and a resulting ridge of λ values are
all optimal. Implicit differentiation can be used to define the appropriate derivatives
of the probabilities with respect to the explanatory variables. The derivatives are
flexible in the sense that they are functions of the sample data and not dependent on
parameters other than data-determined Lagrange multipliers. The optimal member
of the class of CR-based estimators avoids tuning parameter choices or estimation
of nuisance parameters such as unknown covariance components in the case of the
traditional GMM estimator. Finally, from an asymptotic standpoint the range of es-
timators from the CR(λ ) family under the usual regularity conditions are consistent
and asymptotically normal and efficient.

Econometric and statistical ventures are by necessity conditional in nature. In
this research we have, in the spirit of Occam’s Razor, attempted to reduce the con-
ditions required for obtaining a superior performing solution for this estimation and
inference problem.

Finally, we note that [9], building on the work of [30], [31], and [32], have es-
tablished a close relationship between the maximum entropy principle CR(0) and
the problem of minimizing worst case expected loss. Using a game theoretic inter-
pretation, they demonstrate that the P∗ distribution that maximizes entropy over a
class of Γ distributions also minimizes the worst case expected logarithmic score
(log loss). In decision theory terminology this means P∗ is a robust Bayes or Γ min-
imax rule when the loss is measured by a log score. In the important case where
Γ is described by mean value constraints, the challenge is to extend their results to
our CR(λ ) context of p and q distributions and the distance measures of relative
entropy, discrepancy and divergence.

Acknowledgements We gratefully acknowledge the helpful comments and insights provided by
Keith Baggerly, Marian Grendar, and Guido Imbens.

5 Appendix: Propositions, Proofs, and Definitions

Proposition 1. Subject-Reference Distribution Symmetry in the CR Family of Power
Divergence Statistics

Let w and q denote two n-element probability distributions, such that w� 0,
q� 0, and 1′nw = 1′nq = 1. Define the family of CR divergence statistics, indexed
by the parameter λ , alternatively as

I(w,q,λ ) =
1

λ (λ +1)

n

∑
i=1

wi

[(
wi

qi

)λ
−1

]
(12)
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or

I(q,w,λ ) =
1

λ (λ +1)

n

∑
i=1

qi

[(
qi

wi

)λ
−1

]
. (13)

Then
a) I(w,q,α) = I(q,w,−(1+α))∀α �= 0 or −1,

and
b) lim

α→0 or−1
I(w,q,α) = lim

α→0 or−1
I(q,w,−(1+α)).

Proof. Part (a): Evaluating the two discrepancy measures at α and −(1+α), re-
spectively, when α �= 0 or −1 yields

I(w,q,α) =
1

α(α+1)

n

∑
i=1

wi

[(
wi

qi

)α
−1

]
=

1
α(α+1)

([
n

∑
i=1

wα+1
i q−αi

]
−1

)

(14)

I(q,w,−(1+α)) =
1

−(1+α)(1− (1+α))

n

∑
i=1

qi

[(
qi

wi

)−(1+α)

−1

]

=
1

α(α+1)

([
n

∑
i=1

wi
α+1qi

−α
]
−1

)
(15)

which demonstrates the validity of part a).
Part (b): First examine the case where α→ 0. Applying L’Hopital’s rule to eval-

uate the limits yields

lim
α→0

I(w,q,α) = lim
α→0

n
∑

i=1
wi

[(
wi
qi

)α
−1

]
α(α+1)

= lim
α→0

⎡
⎢⎢⎣

n
∑

i=1
wi

(
wi
qi

)α
ln
(

wi
qi

)
2α+1

⎤
⎥⎥⎦ =

n

∑
i=1

wi ln
(

wi

qi

)
(16)

and

lim
α→0

I(q,w,−(1+α)) = lim
γ→−1

I (q,w,γ)

= lim
γ→0

n
∑

i=1
qi

[(
qi
wi

)γ
−1

]
γ(γ+1)

= lim
γ→−1

⎡
⎢⎢⎣

n
∑

i=1
qi

(
qi
wi

)γ
ln
(

qi
wi

)
2γ+1

⎤
⎥⎥⎦ =

nwi

∑
i=1

ln
(

wi

qi

)
(17)

which demonstrates the result when α→ 0.
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Now examine the case where α→−1. Again applying L’Hopital’s rule to eval-
uate the limits yields

lim
α→−1

I(w,q,α) = lim
α→−1

n
∑

i=1
wi

[(
wi
qi

)α
−1

]
α(α+1)

= lim
α→−1

⎡
⎢⎢⎣

n
∑

i=1
wi

(
wi
qi

)α
ln
(

wi
qi

)
2α+1

⎤
⎥⎥⎦ =

n

∑
i=1

qi ln
(

qi

wi

)
(18)

and

lim
α→−1

I(q,w,−(1+α)) = lim
γ→0

I(q,w,γ)

= lim
γ→0

n
∑

i=1
qi

[(
qi
wi

)γ
−1

]
γ(γ+1)

= lim
α→0

⎡
⎢⎢⎣

n
∑

i=1
qi

(
qi
wi

)γ
ln
(

qi
wi

)
2γ+1

⎤
⎥⎥⎦ =

n

∑
i=1

qi ln
(

qi

wi

)
(19)

which demonstrates the result when α→−1.
For a discussion of the symmetry issue in a somewhat different context see [19].

Proposition 2.

lim
γ→0

I
(
w,n−11n,γ

)
= lim

γ→0

⎡
⎢⎢⎣

n
∑

i=1
wi

[(
wi

n−1

)γ
−1

]
γ(γ+1)

⎤
⎥⎥⎦ =

n

∑
i=1

wi ln(wi)+ ln(n) (20)

Proof. Applying L’Hopital’s rule to the ratio of terms yields

lim
γ→0

⎡
⎢⎢⎣

n
∑

i=1
wi (nwi)

γ ln(nwi)

2γ +1

⎤
⎥⎥⎦ =

n

∑
i=1

wi ln(wi)+ ln(n) (21)

because
n
∑

i=1
wi = 1.
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Proposition 3.

lim
γ→−1

I
(
w,n−11n,γ

)
= lim

γ→−1

⎡
⎢⎢⎣

n
∑

i=1
wi

[(
wi

n−1

)γ
−1

]
γ(γ+1)

⎤
⎥⎥⎦ =−

n

∑
i=1

n−1 ln(wi)− ln(n)

(22)

Proof. Applying L’Hopital’s rule to the ratio of terms yields

lim
γ→−1

⎡
⎢⎢⎣

n
∑

i=1
wi (nwi)

γ ln(nwi)

2γ +1

⎤
⎥⎥⎦ =−

n

∑
i=1

n−1 ln(wi)− ln(n) (23)

because
n
∑

i=1
wi = 1.

Definition 1. Hessian of I
(
w,n−11n,λ

)
Let ξ ≡

[
w
λ

]
. Then

∂ 2I
(
w,n−11n,λ

)
∂ξ∂ξ ′ =

⎡
⎣ ∂ 2I(w,n−11n,λ)

∂w∂w′
∂ 2I(w,n−11n,λ)

∂w∂λ
∂ 2I(w,n−11n,λ)

∂λ∂w′
∂ 2I(w,n−11n,λ)

∂λ 2

⎤
⎦ (24)

where

∂ 2I
(
w,n−11n,λ

)
∂w ∂w′

= nλ

⎡
⎢⎢⎢⎣

wλ−1
1 0 · · · 0
0 wλ−1

2 · · · 0

0 0
. . .

...
0 0 · · · wλ−1

2

⎤
⎥⎥⎥⎦ = nλ

(
In�wλ−1

)
(25)

∂ 2I
(
w,n−11n,λ

)
∂λ 2 =

n
∑

i=1
nλwi

λ+1

[
(ln(nwi))

2

λ (λ +1)
− 2(2λ +1) ln(nwi)

(λ (λ +1))2 +
6λ (λ +1)+2

(λ (λ +1))3

]

−6λ (λ +1)+2

(λ (λ +1))3 , (26)

and
∂ 2I

(
w,n−11n,λ

)
∂w∂λ

=

(
nλ

λ 2

)[
wλ � (λ ln(nw)−1n)

]
(27)
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More on the F-test under Nonspherical
Disturbances

Walter Krämer and Christoph Hanck

Abstract We show that the F-test can be both liberal and conservative in the context
of a particular type of nonspherical behaviour induced by spatial autocorrelation,
and that the conservative variant is more likely to occur for extreme values of the
spatial autocorrelation parameter. In particular, it will wipe out the progressive one
as the sample size increases.

1 Introduction and Summary

The robustness of the F-test to nonspherical disturbances has concerned applied
statisticians for many decades. The present paper considers the F-test in the context
of the linear regression model

y = Xβ +u = X (1)β (1) +X (2)β (2) +u, (1)

where y and u are T × 1, X is T ×K and nonstochastic of rank K < T , β is K× 1,
and the disturbance vector u is multivariate normal with mean zero and (possibly)
nonscalar covariance matrix V . The design matrix is partioned into X (1)(T ×q) and
X (2)(T × (K−q)) and the null hypothesis to be tested is H0 : β (1) = b(1).

The standard F-test assumes that V = σ2I and rejects for large values of

F =
(ũ′ũ− û′û)/q
û′û/(T −K)

, (2)

where û = y− X β̂ , β̂ = (X ′X)−1X ′y, ũ = y− X (1)b(1) − X (2)β̃ (2), β̃ (2) = (X (2)′

X (2))−1X (2)′(y−X (1)b(1)). Its null distribution is central F with q and T −K degrees

Christoph Hanck
Department Quantitative Economics, Universiteit Maastricht, NL-6211 LM Maastricht,
Netherlands
c.hanck@ke.unimaas.nl
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of freedom and the problem to be studied here is the robustness of this null distribu-
tion to deviations from V = σ2I.

Vinod [8] and Kiviet [4] address this problem for a given disturbance covariance
matrix V , and derive bounds for the size of the test when the design matrix X varies
across all T ×K matrices of rank K, while Banerjee and Magnus [2] and Hillier and
King [3] consider the test statistics themselves. Below we follow Krämer [5, 6] and
Krämer et al. [7] by fixing X and letting V vary across certain subsets of possible
disturbance covariance matrices which are likely to occur in practice. This seems
the more natural approach, as X is always known in applications, whereas V is an
unknown T ×T parameter matrix.

The subset of disturbance covariance matrices under study here is implicitly de-
fined by the spatial autoregressive scheme

u = ρWu+ ε, (3)

where ε is a T × 1 normal random vector with mean zero and scalar covariance
matrix σ2

ε I, and W is some known T × T -matrix of nonnegative spatial weights
with wii = 0 (i = 1, . . . ,T ). Although there are many other patterns of spatial depen-
dence which have been suggested in the literature (see Anselin and Florax [1] for an
overview), the one defined by (3) is by far the most popular, so it seems worthwhile
to investigate the behaviour of parameter estimates and tests when the regression
disturbances “misbehaves” according to this particular scheme.

Below we build on Krämer [6], who shows that the size of the test can tend
to both one and zero as the parameter ρ varies across its allowable range. While
Krämer [6] is silent on the respective empirical relevance of the two extreme cases,
we show here that the conservative variant is far more likely to occur in practice,
and will wipe out the liberal one as sample size increases.

2 The Null Distribution under Spatial Autocorrelation

The coefficient ρ in (3) measures the degree of correlation, which can be both posi-
tive and negative. There is no disturbance autocorrelation where ρ = 0. Below we fo-
cus on the empirically more relevant case of positive disturbance correlation, where

0≤ ρ <
1

λmax

and where λmax is the Frobenius-root of W (i.e. the unique positive real eigenvalue
such that λmax ≥ |λi| for arbitrary eigenvalues λi). The disturbances are then given
by

u = (I−ρW )−1ε, (4)

so V := Cov(u) = σ2
ε [(I−ρW )(I−ρW )′]−1 and V = σ2

ε I whenever ρ = 0.
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The behaviour of the test statistic (2) when disturbances are given by (3) is best
seen by first rewriting it as

F =
u′(M(2)−M)u/q
u′Mu/(T −K)

, (5)

where M = I−X(X ′X)−1X ′ and M(2) = I−X (2)(X (2)′X (2))−1X (2)′. Let Fα
q,T−K be

the (1−α) quantile of the central F-distribution with q and T −K degrees of free-
dom, respectively, where α is the nominal size of the test. Then

P(F ≥ Fα
q,T−K) = P(u′(M(2)−M)u− q

T −K
Fα

q,T−Ku′Mu≥ 0)

= P(u′(M(2)−dM)u≥ 0)

(where d = 1+
q

T −K
Fα

q,T−K)

= P(η ′(I−ρW )′(M(2)−dM)(I−ρW )η ≥ 0)

(where η =
1
σε

ε ∼ N(0, I))

= P(
T

∑
i=1

λiξ 2
i ≥ 0)

= P((1−ρλmax)2
T

∑
i=1

λiξ 2
i ≥ 0), (6)

where the ξ 2
i are iid χ2

(1) and the λi are the eigenvalues of (I−ρW )′(M(2) −
dM)(I−ρW ), and therefore also of V (M(2)−dM).

The limiting rejection probability as ρ → 1/λmax depends upon the limiting be-
haviour of (1−ρλmax)2V . We confine ourselves to the case where W is symmetric,
which appears to be the more important one in practice. This will for instance occur
if spatial dependence follows the j-ahead-and- j-behind or the equal-weight criteria
(see section 3 below). Then W admits a spectral decomposition

W =
T

∑
i=1

λiωiω ′i , (7)

where we have without loss of generality arranged the eigenvalues λi in increasing
order, and

V =
T

∑
i=1

σ2
ε

(1−ρλi)2ωiω ′i (8)

is the resulting spectral decomposition of V , which always exists as V is symmetric.
The point of our argument now is that

lim
ρ→1/λmax

(1−ρλmax)2V = σ2
ε ωTω ′T , (9)
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a matrix of rank 1. Therefore, all limiting eigenvalues of

(1−ρλmax)2V (M(2)−dM) (10)

are zero except one, which is given by

cT = tr(ωTω ′T (M(2)−dM)) = ω ′T (M(2)−dM)ωT . (11)

This constant cT is crucial for our analysis. It determines whether the F-test will
eventually be conservative or liberal. If cT is positive, the rejection probability of the
F-test will tend to 1 as ρ approaches 1/λmax. The test is then liberal in the extreme,
at least for values of ρ close to the edge of the parameter space.

If cT is negative, the rejection probability will tend to zero, and the test will
eventually be extremely conservative. And if cT = 0, the limiting behaviour of
the test cannot be determined from the limiting behaviour of the eigenvalues of
(1−ρλmax)2V (M(2)−dM) (which are all zero). Section 3 now sheds some light on
which of these cases is more likely to occur in empirical applications.

3 Exact Rejection Probabilities in Finite Samples

The first important point to make is that the crucial constant cT depends only on X
and W and the nominal size of the test, all of which are known. Therefore, cT is
known as well and can guide the user in interpreting a test: If cT < 0, one has to
beware of a loss in power, and if cT > 0, one has to beware of spurious rejections.

The following argument shows that the first problem is far more likely to occur
in practice: Rewrite the critical constant as

cT = ω ′T M(2)ωT −ω ′T
T −K +q

T −K
Fα

q,T−KMωT . (12)

Then it is easily seen that in general cT < 0 (i.e. except in very contrived cases).
This follows from the fact that

T −K +q
T −K

Fα
q,T−K → χ2,α

q /q (13)

as T →∞, which is larger than 2 for moderate values of α and q. (It takes the values
3.84, 2.99 and 2.60 for α = 0.05 and q =1, 2 und 3, respectively). This will in
general be more than enough to counterbalance the fact that ω ′T M(2)ωT > ω ′T MωT .

Of course one can always construct a weighting matrix and regressor matrices
W , X and X (2) such that ω ′T M(2)ωT = 1 and ω ′T MωT = 0 and therefore cT > 0. For
instance, let ι = (1, . . . ,1)′ be a (T ×1)-vector and choose X (2) orthogonal to ι . E.g.,
for T even, pick X (2) = (1,−1,1,−1, . . . ,1,−1)′. Let

X =
[
ι

... X (2)] (14)
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(that is, test H0 : β (1) = 0) and let

W = W EW = (wEW
i j ) =

{
1 for i �= j
0 for i = j

, (15)

the equal weight matrix. This and similar cases will however rarely happen in the
natural course of events, and will become ever more unlikely as sample size in-
creases.

Figure 1 gives an example where W is derived from the queen-criterion (see
Figure 2 for an illustration of the criterion with N = 9):

There is a square of cells, and all cells around a given cell obtain a weight of 1.
The sample size is then a square number. We choose X to have K = 2 and T = 16
or 25 such that, for T = 16, the second column is the (normalized) eigenvector

Fig. 1 Rejection probabilities for the queen matrix

W=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 0 0 0 0
1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 0 0
1 1 0 0 1 0 1 1 0
1 1 1 1 0 1 1 1 1
0 1 1 0 1 0 0 1 1
0 0 0 1 1 0 0 1 0
0 0 0 1 1 1 1 0 1
0 0 0 0 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2 An example of the queen matrix



184 W. Krämer and C. Hanck

corresponding to the largest eigenvalue of W (which happens to be λmax = 5.85),
and the first column is any (16×1)-vector orthogonal to ω16. For t > 16, xt1 = 1
and xt2 = t−16. Then we have c16 = 0.316 and c25 =−0.850, and so our theoretical
result predicts that the rejection probabilities will tend to one as ρ → 1/λmax for
T = 16 and will tend to zero as ρ → 1/λmax for T = 25. Figure 1 shows that this is
indeed the case.

The case cT = 0, where our analysis does not apply, will occur for instance
whenever ωT is in the column space of X (2). The most important special case is
when W is row-normalized and therefore ωT = 1√

T
(1, . . . ,1)′ and where in addition

X (2) contains an intercept. However, row-normalization will often destroy the sym-
metry of W , so this case is not covered by our discussion above.

Acknowledgement Research supported by Deutsche Forschungsgemeinschaft (DFG) under SFB
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Optimal Estimation in a Linear Regression
Model using Incomplete Prior Information

Helge Toutenburg, Shalabh, and Christian Heumann

Abstract For the estimation of regression coefficients in a linear model when in-
complete prior information is available, the optimal estimators in the classes of
linear heterogeneous and linear homogeneous estimators are considered. As they
involve some unknowns, they are operationalized by substituting unbiased estima-
tors for the unknown quantities. The properties of resulting feasible estimators are
analyzed and the effect of operationalization is studied. A comparison of the hetero-
geneous and homogeneous estimation techniques is also presented.

1 Introduction

Postulating the prior information in the form of a set of stochastic linear restric-
tions binding the coefficients in a linear regression model, Theil and Goldberger
[3] have developed an interesting framework of the mixed regression estimation
for the model parameters; see e.g., Srivastava [2] for an annotated bibliography of
earlier developments and Rao et al. [1] for some recent advances. Such a frame-
work assumes that the variance covariance matrix in the given prior information
is known. This specification may not be accomplished in many practical situations
where the variance covariance may not be available for one reason or the other.
Even if available, its accuracy may be doubtful and consequently its credibility may
be sufficiently low. One may then prefer to discard it and treat it as unknown. Ap-
preciating such circumstances, Toutenburg et al. [4] have introduced the method of
weakly unbiased estimation for the regression coefficients and have derived the opti-
mal estimators in the classes of linear homogeneous as well as linear heterogeneous
estimators through the minimization of risk function under a general quadratic loss
structure. Unfortunately, the thus obtained optimal estimators are not functions of
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observations alone. They involve the coefficient vector itself, which is being es-
timated, besides the scaling factor of the disturbance variance covariance matrix.
Consequently, as acknowledged by Toutenburg et al. [4], such estimators have no
practical utility.

In this paper, we apply a simple operationalization technique for obtaining the
feasible versions of the optimal estimators. The technique essentially involves re-
placement of unknown quantities by their unbiased and/or consistent estimators.
Such a substitution generally destroys the optimality and superiority properties.
A study of the damage done to the optimal properties is the subject matter of our
investigations. It is found that the process of operationalization may often alter the
conclusions that are drawn from the performance of optimal estimators that are not
friendly with users due to involvement of unknown parameters.

The plan of presentation is as follows. In Sect. 2, we describe the model and
present the estimators for the vector of regression coefficients. Their properties are
discussed in Sect. 3. Some numerical results about the behaviour of estimators in
finite samples are reported in Sect. 4. Some summarizing remarks are then presented
in Sect. 5. In the last, the Appendix gives the derivation of main results.

2 Estimators for Regression Coefficients

Consider the following linear regression model:

y = Xβ + ε , (1)

where y is a n×1 vector of n observations on the study variable, X is a n× p matrix
of n observations on the p explanatory variables, β is a p× 1 vector of regression
coefficients and ε is a n×1 vector of disturbances.

In addition to the observations, let us be given some incomplete prior informa-
tion in the form of a set of stochastic linear restrictions binding the regression coef-
ficients:

r = Rβ +φ , (2)

where r is a m×1 vector, R is a full row rank matrix of order m× p and φ is a m×1
vector of disturbances.

It is assumed that ε and φ are stochastically independent. Further, ε has mean
vector 0 and variance covariance matrix σ2W in which the scalar σ is unknown
but the matrix W is known. Similarly, φ has mean vector 0 and variance covariance
matrix σ2V .

When V is available, the mixed regression estimator of β proposed by Theil and
Goldberger [3] is given by

bMR = (S +R′V−1R)−1(X ′W−1y+R′V−1r)
= b+S−1R′(RS−1R′+V )−1(r−Rb) , (3)
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where S denotes the matrix X ′W−1X and b = S−1X ′W−1y is the generalized least
squares estimator of β .

In practice, V may not be known all the time and then the mixed regression
estimator cannot be used. Often, V may be given but its accuracy and credibility
may be questionable. Consequently, one may be willing to assume V as unknown
rather than known. In such circumstances, the mixed regression estimator (3) cannot
be used.

For handling the case of unknown V , Toutenburg et al. [4] have pioneered the
concept of weakly unbiasedness and utilized it for the estimation of β . Accordingly,
an estimator β̂ is said to be weakly–(R,r)–unbiased with respect to the stochastic
linear restrictions (2) when the conditional expectation of Rβ̂ given r is equal to r
itself, i.e.,

E(Rβ̂ | r) = r (4)

whence it follows that the unconditional expectation of Rβ̂ is Rβ .
It may be observed that the unbiasedness of β̂ for β implies weakly–(R,r)–

unbiasedness of β̂ but its converse may not be necessarily always true.
Taking the performance criterion as

RA(β̂ ,β ) = E(β̂ −β )′A(β̂ −β ) , (5)

that is, the risk associated with an estimator β̂ of β under a general quadratic loss
function with a positive definite loss matrix A, Toutenburg et al. [4] have discussed
the minimum risk estimator of β ; see also Rao et al. [1] for an expository account.

The optimal estimator in the class of linear and weakly unbiased heterogeneous
estimators for β is given by

β̂1 = β +A−1R′(RA−1R′)−1(r−Rβ ) (6)

while the optimal estimator in the class of linear and weakly unbiased homogeneous
estimators is

β̂2 =
β ′X ′W−1y
σ2 +β ′Sβ

[
β +A−1R′(RA−1R′)−1

(
σ2β ′Sβ
β ′Sβ

r−Rβ
)]

. (7)

Clearly, β̂1 and β̂2 are not estimators in true sense owing to involvement of β
itself besides σ2 which is also unknown. As a consequence, they have no practical
utility.

A simple solution to operationalize β̂1 and β̂2 is to replace the unknown quanti-
ties by their estimators. Such a process of operationalization generally destroys the
optimality of estimators.

If we replace β by its generalized least squares estimator b and σ2 by its unbiased
estimator

s2 =
(

1
n− p

)
(y−Xb)′W−1(y−Xb), (8)
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we obtain the following feasible versions of β̂1 and β̂2:

β̃1 = b+A−1R′(RA−1R′)−1(r−Rb) (9)

β̃2 =
b′Sb

s2 +b′Sb

[
b+A−1R′(RA−1R′)−1

(
s2 +b′Sb

b′Sb
r−Rb

)]
. (10)

It may be remarked that Toutenburg, Toutenburg et al. ([4], Sect. 4) have derived a
feasible and unbiased version of the estimator β̂1 such that it is optimal in the class of
linear homogeneous estimators. This estimator is same as β̃1. It is thus interesting to
note that when the optimal estimator in the class of linear heterogeneous estimators
is operationalized, it turns out to have optimal performance in the class of linear
homogeneous estimators.

3 Comparison of Estimators

It may be observed that a comparison of the estimator β̃1 with β̂1 and β̃2 with β̂2
will furnish us an idea about the changes in the properties due to the process of
operationalization. Similarly, if we compare β̂1 and β̂2 with β̃1 and β̃2, it will reveal
the changes in the properties of the optimal estimator and its feasible version in the
classes of linear heterogeneous and linear homogeneous estimators.

3.1 Linearity

First of all, we may observe that both the estimators β̂1 and β̃1 are linear and thus
the process of operationalization does not alter the linearity of estimator. This is not
true when we consider the optimal estimator β̂2 in the class of linear homogeneous
estimators and its feasible version β̃2. Further, from (9) and (10), we notice that

β̃2 =
1

s2 +b′Sb
[b′Sbβ̃1 + s2A−1R′(RA−1R′)−1r] (11)

so that β̃2 is a weighted average of β̃1 and A−1R′(RA−1R′)−1r while such a result
does not hold in case of β̂2.

3.2 Unbiasedness

From (9) and (10), we observe that

Rβ̃1 = Rβ̃2 = r (12)
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whence it is obvious that both the estimators β̃1 and β̃2 are weakly–(R,r)–unbiased
like β̂1 and β̂2. Thus the operationalization does not disturb the property of weakly
unbiasedness.

Next, let us consider the traditional unbiasedness property. It is easy to see that
the optimal estimator β̂1 and its feasible version β̃1 in the class of linear hetero-
geneous estimators are unbiased while the optimal estimators β̂2 and its feasible
version β̃2 in the class of homogeneous estimators are generally not unbiased. This
may serve as an interesting example to demonstrate that weakly unbiasedness does
not necessarily imply unbiasedness. Thus, with respect to the criterion of unbiased-
ness, no change arises due to operationalization.

3.3 Bias Vector

Let us examine the bias vectors of the estimators β̂2 and β̃2.
It is easy to see that the bias vector of β̂2 is given by

B(β̂2) = E(β̂2−β )

= − σ2

σ2 +β ′Sβ
A−1Mβ , (13)

where

M = A−R′(RA−1R′)−1R. (14)

The exact expression for the bias vector of β̃2 is impossible to derive without as-
suming any specific distribution for the elements of disturbance vector ε . It may be
further observed that even under the specification of distribution like normality, the
exact expression will be sufficiently intricate and any clear inference will be hard
to deduce. We therefore consider its approximate expression using the large sample
asymptotic theory. For this purpose, it is assumed that explanatory variables in the
model are at least asymptotically cooperative, i.e., the limiting form of the matrix
n−1X ′W−1X as n tends to infinity is a finite and nonsingular matrix. We also assume
that ε follows a multivariate normal distribution.

Theorem I: If we write Q = n−1S, the bias vector of β̃2 to order O(n−1) is given by

B(β̃2) = E(β̃2−β )

= − σ2

nβ ′Qβ
A−1Mβ +

σ2

n2β ′Qβ

[
p+(p−1)

σ2

β ′Qβ

]
A−1Mβ (15)

which is derived in the Appendix.
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A similar expression for the optimal estimator to order O(n−2) can be straight-
forwardly obtained from (13) as follows:

B(β̂2) = − σ2

nβ ′Qβ

(
1+

σ2

nβ ′Qβ

)−1

A−1Mβ

= − σ2

nβ ′Qβ
A−1Mβ +

σ4

n2(β ′Qβ )2 A−1Mβ . (16)

If we compare the optimal estimators β̂2 and its feasible version β̃2 with respect
to the criterion of bias to order O(n−1) only, it follows from (15) and (16) that both
the estimators are equally good. This implies that operationalization does not alter
the asymptotic bias to order O(n−1).

When we retain the term of order O(n−2) also in the bias vector, the two esti-
mators are found to have different bias vectors and the effect of operationalization
precipitates.

Let us now compare the estimators β̂2 and β̃2 according to the length of their
bias vectors. If we consider terms upto order O(n−3) only, we observe from (15)
and (16) that

[B(β̂2)]′[B(β̂2)]− [B(β̃2)]′[B(β̃2)] =
2σ2

n3β ′Qβ

[
p+(p−2)

σ2

β ′Qβ

]
β ′MA−2Mβ .

It is thus surprising that the feasible estimator β̃2 is preferable to the optimal
estimator with respect to the criterion of the bias vector length to the given order
of approximation in the case of two or more explanatory variables in the model.
If p = 1, this result continues to hold true provided that β ′Qβ is greater than σ2.
Thus it is interesting to note that operationalization of optimal estimator improves
the performance with respect to the bias vector length criterion.

3.4 Conditional Risk Function

From Toutenburg et al. ([4], p. 530), the conditional risk function of β̂1, given r is

RA(β̂1,β | r) = E[(β̂1−β )′A(β̂1−β ) | r]
= (r−Rβ )′(RA−1R′)−1(r−Rβ ). (17)

Similarly, the conditional risk function of β̂2 given r can be easily obtained:

RA(β̂2,β | r) = E[(β̂2−β )′A(β̂2−β ) | r]
= (r−Rβ )′(RA−1R′)−1(r−Rβ )

+
σ2

σ2 +nβ ′Qβ

[
β ′Mβ +

(
1+

σ2

nβ ′Qβ

)
r′(RA−1R′)−1r

]
.

(18)



Optimal Estimation in a Linear Regression Model 191

Using the result

σ2

σ2 +nβ ′Qβ
=

σ2

nβ ′Qβ

(
1+

σ2

nβ ′Qβ

)−1

=
σ2

nβ ′Qβ
− σ4

n2(β ′Qβ )2 +O(n−3), (19)

we can express

RA(β̂2,β | r) = (r−Rβ )′(RA−1R′)−1(r−Rβ )

+
σ2

nβ ′Qβ
[β ′Mβ + r′(RA−1R′)−1r]− σ4β ′Mβ

n2(β ′Qβ )2 +O(n−3).

(20)

For the feasible estimator β̃1 , it can be easily seen that the conditional risk func-
tion of β̃1 given r is given by

RA(β̃1,β | r) = E[(β̃1−β )′A(β̃1−β ) | r]

= (r−Rβ )′(RA−1R′)−1(r−Rβ )+
σ2

n
trMQ−1. (21)

As the exact expression for the conditional risk of the estimator β̃2 is too complex
to permit the deduction of any clear inference regarding the performance relative to
other estimators, we consider its asymptotic approximation under the normality of
disturbances. This is derived in Appendix.

Theorem II: The conditional risk function of the estimator β̃2 given r to order
O(n−2) is given by

RA(β̃2,β | r) = E[(β̃2−β )′A(β̃2−β ) | r]

= (r−Rβ )′(RA−1R′)−1(r−Rβ )+
σ2

n
trMQ−1

− σ4

n2β ′Qβ

[
2trMQ−1−5

(
β ′Mβ
β ′Qβ

)]
. (22)

It is obvious from (17) and (21) that the operationalization process leads to an
increase in the conditional risk. Similarly, comparing β̂2 and β̃2 with respect to the
criterion of the conditional risk given r to order O(n−1), we observe from (20) and
(22) that the operationalization process results in an increase in the conditional risk
when

trMQ−1 >
β ′Mβ
β ′Qβ

+
r′(RA−1R′)r

β ′Qβ
. (23)
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The opposite is true, i.e., operationalization reduces the conditional risk when the
inequality (23) holds true with a reversed sign.

If we compare the exact expressions (17) and (18) for the conditional risk func-
tion given r, it is seen that the estimator β̂1 is uniformly superior to β̂2. This result
remains true, as is evident from (21) and (22), for their feasible versions also when
the criterion is the conditional risk given r to order O(n−2) and

trMQ−1 < 2.5
(
β ′Mβ
β ′Qβ

)
(24)

while the opposite is true, i.e., β̃2 has smaller risk than β̃1 when

trMQ−1 > 2.5
(
β ′Mβ
β ′Qβ

)
. (25)

The conditions (24) and (25) have little usefulness in actual practice because
they cannot be verified due to involvement of β . However, we can deduce sufficient
conditions that are simple and easy to check.

Let λmin and λmax be the minimum and maximum eigen values of the matrix M
in the metric of Q, and T be the total of all the eigenvalues. Now, it is seen that the
condition (24) is satisfied so long as

T < 2.5λmin (26)

which is a sufficient condition for the superiority of β̃1 over β̃2 .
Similarly, for the superiority of β̃2 over β̃1 , the following sufficient condition can

be deduced from (25):

T > 2.5λmax . (27)

We thus observe that the optimal estimator β̂1 is uniformly superior to β̂2 with
respect to both the criteria of conditional and unconditional risks. The property of
uniform superiority is lost when they are operationalized for obtaining feasible esti-
mators. So much so that the superiority result may take an opposite turn at times.

Further, we notice that the reduction in the conditional risk of β̂1 over β̂2 is gen-
erally different in comparison to the corresponding reduction in the conditional risk
when their feasible versions are considered. The change in the conditional risk per-
formance of the optimal estimators starts appearing in the term of order O(n−1).
When their feasible versions are compared, the leading term of the change in risk is
of order O(n−2). This can be attributed to the process of operationalization.

3.5 Unconditional Risk Function

Now let us compare the estimators under the criterion of the unconditional risk
function.
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It can be easily seen from (17), (18), (20), (21) and (22) that the unconditional
risk functions of the four estimators are given by

RA(β̂1,β ) = E(β̂1−β )′A(β̂1−β )
= σ2trV (RA−1R′)−1 (28)

RA(β̂2,β ) = E(β̂2−β )′A(β̂2−β )
= σ2trV (RA−1R′)−1

+
σ2

nβ ′Qβ

[
β ′Aβ +σ2trV (RA−1R′)−1− σ2

σ2 +nβ ′Qβ
β ′Mβ

]

= σ2trV (RA−1R′)−1 +
σ2

nβ ′Qβ
[
β ′Aβ +σ2trV (RA−1R′)−1]

− σ4β ′Mβ
n2(β ′Qβ )2 +O(n−3) (29)

RA(β̃1,β ) = E(β̃1−β )′A(β̃1−β )

= σ2trV (RA−1R′)−1 +
σ2

n
trMQ−1 (30)

RA(β̃2,β ) = E(β̃2−β )′A(β̃2−β )

= σ2trV (RA−1R′)−1 +
σ2

n
trMQ−1

− σ4

n2β ′Qβ

[
2trMQ−1−5

(
β ′Mβ
β ′Qβ

)]
+O(n−3). (31)

Looking at the above expressions, it is interesting to note that the relative perfor-
mance of one estimator over the other is same as observed under the criterion of the
conditional risk given r.

4 Simulation Study

We conducted a simulation experiment to study the performance of the estimators
β̃1 and β̃2 with respect to the ordinary least squares estimator b. The sample size was
fixed at n = 30. The design matrix X contained an intercept term and six covariates
which were generated from multivariate normal distribution with variance 1 and
equal correlation of 0.4. The mean vector of the covariates was (−2,−2,−2,2,2,2).
The true response vector (without the error term ε) was then calculated as ỹ = Xβ
with the 7×1 true parameter vector β = (10,10,10,10,−1,−1,−1). The restriction
matrix R was generated as a 3× 7 matrix containing uniform random numbers.
The true restriction vector (without the error term φ ) was calculated as r̃ = Rβ .
Then in a loop with 5,000 replications, in every replication, new error terms ε and
φ were added in ỹ and r̃ to get y and r respectively. The errors were generated
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independently from normal random variables with variances σ2 = 40 for εi, i =
1, . . . ,n and σ2/c for φ j, j = 1,2,3. The factor c controls the accuracy of the prior
information compared to the noise in the data. If c is high, the prior information
is more accurate than the case when c is low. Note that c < 1 means that the prior
information is more noisy than the data which indicates that it is probably useless
in practice. In fact we only expect the proposed estimators to be better than b if c
is considerably larger than 1. For comparison of the estimators, we calculated the
measure

MRMSE =
1

5000

5000

∑
k=1

√
1
7
(β̂ −β )′(β̂ −β ) ,

(mean of root mean squared errors) where β̂ stands for one of the estimators
b, β̃1 or β̃2. Figure 1 shows the distribution of the root mean squared errors√

1
7 (β̂ −β )′(β̂ −β ) for each estimator based on 5,000 replications with c = 100.

This means that the prior information was not perfect but very reliable (σ2/c =
40/100 = 0.4). A considerable gain can be observed by using one of the new pro-
posed estimators while there is no noticeable difference between β̃1 and β̃2. The
MRMSEs in that run were 2.64 for b and 1.85 for β̃1 and β̃2. The picture changes
when we decrease c. For example when c = 4 (which means that the standard er-
ror of φ j is half of the standard error of the noise in the data), then the MRMSE
were 3.09 for b and 2.65 for β̃1 and β̃2. Figure 2 shows the corresponding boxplots.
But a general conclusion is not possible since the results clearly also depend on the
matrices X , R and vector β itself.
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Fig. 1 Boxplot of root mean squared errors of the three estimators with c = 100
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Fig. 2 Boxplot of root mean squared errors of the three estimators with c = 4

5 Some Summarizing Remarks

We have considered the minimum risk approach for the estimation of coefficients in
a linear regression model when incomplete prior information specifying a set of lin-
ear stochastic restrictions with unknown variance covariance matrix is available. In
the linear and weakly unbiased heterogeneous and homogeneous classes of estima-
tors, the optimal estimators obtained by Toutenburg et al. [4] as well as their feasible
versions are presented. Properties of these four estimators are then discussed.

Analyzing the effect of operationalizing the optimal estimators, we have ob-
served that the property of linearity is retained only in case of heterogeneous es-
timation. So far as the property of weakly unbiasedness is concerned, the process of
operationalization has no influence. But when the traditional unbiasedness is consid-
ered, it is seen that the optimal heterogeneous estimator remains unbiased while the
optimal homogeneous estimator is generally biased. This remains true when their
feasible versions are considered. In other words, the process of operationalizations
does not bring any change in the performance of estimators.

Looking at the direction and magnitude of bias, we have found that the optimal
estimator and its feasible version in the case of homogeneous estimation have iden-
tical bias vectors to order O(n−1) implying that the operationalization process has
no effect on the bias vector in large samples. But when the sample size is not large
enough and the term of order O(n−2) is no more negligible, the effect of opera-
tionalization appears. If we compare the optimal estimator and its feasible version
with respect to the criterion of the length of the bias vector to order O(n−3), it is
seen that the operationalization improves the performance provided that there are
two or more explanatory variables in the model. This result remains true in the case
of one explanatory variable also under a certain condition.

Examining the risk functions, it is observed that the relative performance of one
estimator over the other remains unaltered whether the criterion is conditional risk
given r or the unconditional risk.
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When we compare the risk functions of the optimal heterogeneous estimator and
its feasible version, it is found that the process of operationalization invariably in-
creases the risk. Such is not the case when we compare the optimal homogeneous
estimator and its feasible version. Here the operationalization may lead to a reduc-
tion in risk at times; see the condition (23).

Next, it is observed that the optimal heterogeneous estimator has always smaller
risk in comparison to the optimal homogeneous estimator. When they are opera-
tionalized in a bid to obtain feasible estimators, the property of uniform superiority
is lost. We have therefore obtained sufficient conditions for the superiority of one
feasible estimator over the other. An important aspect of these conditions is that they
are simple and easy to check in practice.

Further, we have observed the magnitude of change in the risk of one optimal
estimator over the other optimal estimator is generally different when their feasible
versions are considered. In case of optimal estimators, the change occurs at the level
of order O(n−1) but when the feasible estimators are compared, this level is of order
O(n−2). This brings out the impact of operationalization process.

Finally, it may be remarked that if we consider the asymptotic distribution of the
estimation error, i.e., the difference between the estimator and the coefficient vector,
both the optimal estimators as well as their feasible versions have same asymptotic
distribution. Thus the process of operationalization does not show any impact on
the asymptotic properties of estimators. It may alter the performance of estimators
when the number of observations is not sufficiently large. The difference in the
performance of estimators is clear in finite samples through simulation experiment.

Appendix

If we define

z =
1

n1/2 X ′W−1ε ,

u =
1

σ2n1/2 ε
′W−1ε−n1/2 ,

v =
1
σ2 ε

′W−1XS−1X ′W−1ε ,

we can write

b′Sb = β ′Sβ +2β ′X ′W−1ε + ε ′W−1XS−1X ′W−1ε
= nβ ′Qβ +2n1/2β ′z+σ2v (32)

s2 =
1

(n− p)
(y−Xb)′W−1(y−Xb)

= σ2
[
1+

u
n1/2 −

v
n

]
+Op(n−3/2). (33)
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Using these, we can express

s2

s2 +b′Sb
=

σ2

nβ ′Qβ

[
1+

u
n1/2 −

v
n

+Op(n−3/2)
]

∗
[

1+
2β ′z

n1/2β ′Qβ
+

σ2(1+ v)
nβ ′Qβ

+Op(n−3/2)
]−1

=
σ2

nβ ′Qβ

[
1+

u
n1/2 −

v
n

+Op(n−3/2)
]

∗
[

1− 2β ′z
n1/2β ′Qβ

−σ2
(

1+ v− 4β ′zz′β
σ2β ′Qβ

)
+Op(n−3/2)

]

=
σ2

nβ ′Qβ
+

σ2

n3/2β ′Qβ

(
u− 2β ′z

β ′Qβ

)

− σ2

n2β ′Qβ

(
v+

2uβ ′z+σ2 +σ2v
β ′Qβ

− 4β ′zz′β
(β ′Qβ )2

)
+Op(n−5/2).

(34)

Utilizing these results, we can express

(β̃2−β ) = (β̃1−β )− s2

s2 +b′Sb
A−1Mb

= ξ0 +
1

n1/2 ξ1/2 +
1
n
ξ1 +

1
n3/2 ξ3/2 +

1
n2 ξ2 +Op(n−5/2) , (35)

where

ξ0 = A−1R′(R′A−1R′)−1(r−Rβ )
ξ1/2 = A−1MQ−1z

ξ1 = − σ2

β ′Qβ
A−1Mβ

ξ3/2 = − σ2

β ′Qβ

[(
u− 2β ′z

β ′Qβ

)
A−1Mβ +A−1MQ−1z

]

ξ2 =
σ2

β ′Qβ

[(
v+

2uβ ′z+σ2 +σ2v
β ′Qβ

− 4β ′zz′β
(β ′Qβ )2

)
A−1Mβ

−
(

u− 2β ′z
β ′Qβ

)
A−1MQ−1z

]
.

By virtue of normality of ε , it is easy to see that

E(ξ0 | r) = ξ0 , E(ξ0) = 0 ,

E(ξ1/2 | r) = E(ξ1/2) = 0 ,

E(ξ1 | r) = E(ξ1) = ξ1 ,
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E(ξ3/2 | r) = E(ξ3/2) = 0 ,

E(ξ2 | r) = E(ξ2) =
σ2

β ′Qβ

[
p+(p−1)

σ2

β ′Qβ

]
A−1Mβ .

Using these results, we obtain from (35) the expression (15) of Theorem I.
Next, we observe from (35) that the conditional risk function of β̃2 to order

O(n−2) is given by

RA(β̃2,β | r) = E[(β̃2−β )′A(β̃2−β ) | r]

= ξ ′0Aξ0 +
2

n1/2 E(ξ ′0Aξ1/2)

+
1
n

E(ξ ′1/2Aξ1/2 +2ξ ′0Aξ1)+
2

n3/2 E[ξ ′0Aξ3/2 +ξ ′1/2Aξ1]

+
1
n2 E(ξ ′1Aξ1 +2ξ ′0Aξ2 +2ξ ′1/2Aξ3/2)+Op(n−5/2). (36)

Now it can be easily seen that

E(ξ ′0Aξ1/2 | r) = 0 ,

E(ξ ′1/2Aξ1/2 | r) = σ2trMQ−1 ,

E(ξ ′0Aξ1 | r) = 0 ,

E(ξ ′0Aξ3/2 | r) = 0 ,

E(ξ ′1/2Aξ1 | r) = 0 ,

E(ξ ′1Aξ1 | r) =
σ4

(β ′Qβ )2 β
′Mβ ,

E(ξ ′0Aξ2 | r) = 0 ,

E(ξ ′1/2Aξ3/2 | r) =
σ4

β ′Qβ

[
−trMQ−1 +2

(
β ′Mβ
β ′Qβ

)]
,

where repeated use has been made of the results RA−1M = 0 and MA−1M = M.
Substituting these results in (36), we obtain the result stated in Theorem II.
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Minimum Description Length Model Selection
in Gaussian Regression under Data Constraints

Erkki P. Liski and Antti Liski

Abstract The normalized maximum likelihood (NML) formulation of the stochas-
tic complexity Rissanen ([10]) contains two components: the maximized log likeli-
hood and a component that may be interpreted as the parametric complexity of the
model. The stochastic complexity for the data, relative to a suggested model, serves
as a criterion for model selection. The calculation of the stochastic complexity can
be considered as an implementation of the minimum description length principle
(MDL) (cf. Rissanen [12]). To obtain an NML based model selection criterion for
the Gaussian linear regression, Rissanen [11] constrains the data space appropri-
ately. In this paper we demonstrate the effect of the data constraints on the selection
criterion. In fact, we obtain various forms of the criterion by reformulating the shape
of the data constraints. A special emphasis is placed on the performance of the cri-
terion when collinearity is present in data.

1 Introduction

The variable selection problem is most familiar in the Gaussian regression con-
text. Suppose that the response variable yyy and the potential explanatory variables
xxx1, . . . ,xxxK are vectors of n observations. The problem of variable selection arises
when one wants to decide which variables to include into the model. If we let γ in-
dex the subsets of xxx1, . . . ,xxxK and let kγ be the size of the γth subset, then the problem
is to select and fit a model of the form

yyy = Xγβββγ +εεε, (1)

where Xγ is an n× kγ regression matrix corresponding to the γth subset, βββγ is the
kγ ×1 vector of unknown regression coefficients and εεε ∼ Nn(000,σ2III).

Erkki P. Liski
University of Tampere, Tampere, Finland
Erkki.Liski@uta.fi
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Let θ̂θθ γ = (β̂ββ γ , σ̂2
γ ) denote the ML estimates

β̂ββ γ = (X′γXγ)−1XXX ′γyyy and σ̂2
γ = RSSγ/n (2)

of βββγ and σ2 from the model (1), where RSSγ = ‖yyy− ŷyyγ‖2 is the residual sum of
squares and ŷyyγ = XXX γβ̂ββ γ is the vector of fitted values. Here we assume that XXX γ is of
full column rank.

The two most well-known methods for model selection are the Akaike infor-
mation criterion or AIC (Akaike [1], Burnham [3]) and the Bayesian information
criterion or BIC (Schwarz [13]). The Akaike information criterion is defined by

AIC(γ) =−2log f (yyy;θ̂θθ γ)+2kγ ,

where f (yyy;θθθγ) is the density function of yyy. The corresponding BIC criterion is

BIC(γ) =−2log f (yyy;θ̂θθ γ)+ kγ logn.

The MDL principle for statistical model selection is based on the idea to capture
regular features in data by constructing a model in a certain class which permits
the shortest description of the data and the model itself. Rissanen’s [10, 11] MDL
approach to modeling utilizes ideas of coding theory. The expression

− log f̂ (yyy;γ) =− log f (yyy;θ̂θθ γ)+ logC(γ) (3)

defines the “shortest code length” for the data yyy that can be obtained with the model
γ and it is called the stochastic complexity of yyy, given γ .

Under certain conditions logC(γ) has the estimate ([10])

logC(γ) = log
n

2π
+ log

∫
|J(θθθγ)|1/2 dθθθγ +o(1), (4)

where |J(θθθγ)| is the determinant of the Fisher’s information matrix. Since the last
term o(1) in (4) goes to zero as n→ ∞ and the second term is constant, asymptot-
ically logC(γ) behaves like the first term. Thus we see the asymptotic connection
with the BIC. For some important models logC(γ) can be calculated exactly, for
example by using the NML technique. In statistical literature the MDL principle
is often confused with a particular implementation of it as the selection criterion
BIC (For discussion see [6], p. 552). In fact, the stochastic complexity (3) has the
adaptation property that it behaves more like AIC when the number of parameters is
getting large compared with the number of observations.

2 Selection by Stochastic Complexity

Assume that yyy follows the Gaussian linear model (1) with θθθγ = (βββγ ,σ2). Here we
consider the family of models

Mγ = { f (yyy;θθθγ) : γ ∈ Γ } (5)
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defined by the normal densities f (yyy;θθθγ), where Γ denotes a set of subsets of
xxx1, . . . ,xxxK , i.e. the set of models we wish to consider.

After observing yyy we may determine the maximum likelihood (ML) estimate
θ̂θθ γ = θ̂θθ γ(yyy) of θθθγ such that f (yyy;θ̂θθ γ) = maxθθθγ f (yyy;θθθγ). Rissanen [10] introduced the
NML function

f̂ (yyy;γ) =
f (yyy;θ̂θθ γ(yyy))

C(γ)
with C(γ) =

∫
f (yyy;θ̂θθ γ(yyy))dyyy, (6)

where f̂ (yyy;γ) is a density function, provided that C(γ) is bounded. The NML den-
sity function provides a general technique to apply the MDL (minimum description
length) principle. Therefore the derivation of the NML density is a crucial step in
the practical implementation of the MDL principle.

For each model γ ∈ Γ we have an NML density (6) which depends on γ . In
the sequel, f̂ (yyy;γ) refers to the NML density of the model γ , and C(γ) denotes
the corresponding normalizing constant. Now the stochastic complexity (3) can be
calculated by using the NML density:

− log f̂ (yyy;γ) =− log f (yyy;θ̂θθ γ(yyy))+ logC(γ).

The last term in the (3) is called the parametric complexity of the model. According
to the MDL principle we seek to find the index value γ = γ̂ that minimizes the
stochastic complexity (3). The basics of the MDL theory are presented in the recent
books by Grünwald [6] and Rissanen [12].

Since the following development will be for a fixed γ , we may drop the subindex
γ for a while without loss of clarity. It turns out that the NML function (6) for the
normal distribution is undefined, since the normalizing constant C is not bounded.
Hence Rissanen [11] suggested the constrained data space

Y (s,R) = {yyy : β̂ββ
′
X′Xβ̂ββ ≤ nR, σ̂2 ≥ s}, (7)

where s > 0 and R > 0 are given positive constants. Then the NML density under
the constraints (7) will be

f̂ (yyy;s,R) = f (yyy;θ̂θθ(yyy))/C(s,R), (8)

where now the normalizing constant C(s,R) depends on two hyperparameters s
and R.

To get rid of these hyperparameters Rissanen [11] applied another level of nor-
malization. Maximizing the function (8) with respect of R and s yields the ML esti-
mates R̂ = ‖ŷyy‖2/n and ŝ = σ̂2. The maximized NML function mNML is obtained by
substituting these estimates into (8) in place of s and R. Then the function mNML
is normalized. In this second stage normalization the data space is constrained such
that

Y = {yyy : nR1 ≤ ‖ŷyy‖2 ≤ nR2, s1 ≤ σ̂2 ≤ s2}, (9)
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where 0 < R1 < R2 and 0 < s1 < s2 are given positive constants. By normalizing the
function f̂ (yyy; ŝ, R̂) we obtain the normalized mNML function f̂ (yyy), say. Finally the
stochastic complexity (3) takes the form

− log f̂ (yyy) =
n− k

2
log σ̂2 +

k
2

log R̂− logΓ (
n− k

2
)− logΓ (

k
2
)+ c, (10)

where Γ (·) denotes the gamma function and c = n
2 log(nπ) + log[log s2

s1
log R2

R1
] is

the same for all models, and hence it can be ignored. More details can be found in
Rissanen [11, 12].

3 The Effect of Data Constraints

For the Gaussian density f (yyy;θθθ) the numerator in (8) takes a simple form

f (yyy;θ̂θθ) = (2πσ̂2e)−
n
2 ,

but the normalizing constant C(s,R) will essentially depend on two hyperparameters
s and R. The estimator θ̂θθ = (β̂ββ , σ̂2) is a sufficient statistic for θθθ = (βββ ,σ2) under the
model (1). By sufficiency the density f (yyy;θθθ) belonging to the family (5) can be
written as

f (yyy;θθθ) = f (yyy|θ̂θθ)g(θ̂θθ ;θθθ), (11)

where the conditional density f (yyy|θ̂θθ) does not depend on the unknown parameter
vector θθθ . The ML estimators β̂ββ and σ̂2, given in (2), are independent. Therefore

g(β̂ββ , σ̂2;βββ ,σ2) = g1(β̂ββ ;βββ ,σ2)g2(σ̂2;σ2), (12)

where g1(β̂ββ ;βββ ,σ2) and g2(σ̂2;σ2) are the densities of the ML estimators β̂ββ and σ̂2,
respectively. Substituting β̂ββ and σ̂2 into (12) in place of βββ and σ2, respectively,
yields (cf. [11], [12], p. 115)

g1(β̂ββ ;β̂ββ , σ̂2)g2(σ̂2; σ̂2) = An,k(σ̂2)−
k
2−1, (13)

where

An,k =
|X′X|1/2( n

2e )
n/2

(2π)k/2Γ ( n−k
2 )

.

Utilizing the factorization (11) and the result (13) we get the normalizing con-
stant C(s,R) under the constraint (7) corresponding to (8) as follows:
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C(s,R) =
∫

T (s,R)

[ ∫
Y (θ̂)

f (yyy|θ̂θθ)dyyy
]
g̃(σ̂2)dθ̂̂θ̂θ

= Aν ,k

∞∫
s

(σ̂2)−
k
2−1 dσ̂2

∫
B(R)

dβ̂̂β̂β

= Aν ,kVk
2
k

(R
s

)k/2
, (14)

where T (s,R) = {θ̂θθ : σ̂2 ≥ s, β̂ββ
′
Qβ̂ββ ≤ nR} and Q is a k×k positive definite matrix.

Integrating the inner integral in the first line of (14) over Y (θ̂θθ) = {yyy : θ̂θθ = θ̂θθ(yyy)}
for a fixed value of θ̂θθ gives unity. In the last line of (14)

VkRk/2 =
πk/2nRk/2

k
2Γ ( k

2 )|Q|1/2

is the volume of an ellipsoid

B(Q,R) = {β̂ββ : β̂ββ
′
Qβ̂ββ ≤ nR} (15)

(cf. [4], p. 120).
The form of the stochastic complexity under the ellipsoidal constraint (15) takes

the form

− log f̂ (yyy) =
n− k

2
log σ̂2 +

k
2

log R̂− logΓ (
n− k

2
)− logΓ (

k
2
)+

1
2

log
|X′X|
|Q| , (16)

where R̂ = β̂ββ
′
Qβ̂ββ/n. The constant c, given in (10), is not essential in model compar-

ison, and hence it is omitted. If we choose the constraint B(X′X,R) in (15), then
log |X

′X|
|Q| = 0 and the stochastic complexity (16) takes the form (10). This is the con-

straint Rissanen [11, 12] uses. It is now clear that the matrix Q in the ellipsoidal
constraint (15) has an essential effect on the stochastic complexity.

4 Effects of Collinearity

If we apply Stirling’s approximation

Γ (x+1)≈ (2π)1/2(x+1)x+1/2e−x−1

to Γ -functions in (16), omit the terms that do not depend on γ or kγ and multiply
(16) by 2, just for convenience, we have the NML criterion function of the form

MDL(γ,Q) = n logS2
γ + kγ logF(Q)γ + log[kγ(n− kγ)]+ log

|X′γXγ |
|Q| , (17)
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where

S2
γ =

RSSγ
n− kγ

and F(Q)γ =
β̂ββ
′
γQβ̂ββ γ

kγS2
γ

.

In the special case Q = X′X the criterion (17) takes the form

MDL(γ,X′X) = n logS2
γ + kγ logFγ + log[kγ(n− kγ)], (18)

where

Fγ =
yyy′yyy−RSSγ

kS2
γ

is the usual F-statistic. The formulation (18) was presented in Liski [8], and also
Hansen and Yu [7] considered it in the context of a slightly different criterion.

Consider the set of models Mk, where k = kγ and RSS = RSSγ for all γ ∈Mk.
Then clearly the criterion (18) does not discriminate the models in Mk. Assume
that we have a satisfactory set of explanatory variables {x1, . . . ,xk−1} and we
try to add new variables xk and xk+1. Consider a situation when both the model
{x1, . . . ,xk−1,xk}, say γ1, and {x1, . . . ,xk−1,xk+1}, say γ2, yield the same, or a very
close, residual sum of squares RSS, i.e. the models lie in Mk. Hence, in terms of the
MDL criterion (18), the two models are indistinguishable.

Assume that due to the collinearity between x1, . . . ,xk−1,xk, for example, the
model yields large standard errors and low t-statistics for the estimates of the
regression coefficients. On the other hand, the model with explanatory variables
x1, . . . ,xk−1,xk+1 may still have satisfactory t-statistics. Clearly, this second model
would be better, if our interest is also in regression coefficients, not only in predic-
tion. However, the MDL criterion (18) fails to identify it. Note that AIC and BIC
criteria have this same property.

For a collinear model γ the determinant |X′γXγ | ≈ 0 and the ML estimates of the
regression coefficients become unstable, which may lead to a large value of ‖β̂ββ γ‖2

(cf. Belsley [2], for example). Let us further consider the set of models Mk and take
Q = I in (17). Then in the criterion MDL(γ,I)

F(I)γ =
‖β̂ββ γ‖2

kS2
γ

and the last term in (17) is log |X′γXγ |. Due to collinearity, log |X′γ1
Xγ1 | <

log |X′γ2
Xγ2 |, but on the other hand ‖β̂ββ γ1

‖2 tends to be larger than ‖β̂ββ γ2
‖2. Thus

the criterion (17) with Q = I responds to the collinearity, but the message is
not quite clear, since the two terms have opposite effects. If we use the criterion
MDL(γ,(X′X)2), then

F((X′γXγ)2) =
‖X′γyyy‖2

kS2
γ

and the last term in (17) is − log |X′γXγ |. Now clearly the last term penalises the
collinearity.
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Table 1 Five best-fitting subsets of two and three variables, and two models of four variables for
the STEAM data

Variables RSSγ MDL(γ,X′X) MDL(γ,I) MDL(γ,(X′X)2)
1, 7 8.93 4.251 −0.818 10.618
5, 7 9.63 5.904 0.611 12.318
2, 7 9.78 6.258 1.226 12.631
4, 7 15.60 16.511 11.342 22.893
7, 9 15.99 17.051 11.680 23.486
4, 5, 7 7.34 7.744 −0.278 17.357
1, 5, 7 7.68 8.696 −0.066 18.977
1, 7, 9 8.61 11.087 2.847 21.221
1, 4, 7 8.69 11.283 3.276 21.011
5, 7, 8 8.71 11.321 3.121 21.291
2, 4, 5, 7 7.162 14.671 −18.112 −15.699
1, 2, 5, 7 7.156 14.656 −3.367 −0.954

An Example: STEAM Data

As an example we consider the STEAM data set ([5], p. 616, [9], p. 69) which
contains 25 observations on 10 variables. The response y is pounds of steam used
monthly (the variable 1 in Draper and Smith), and the other nine variables consti-
tute the set of potential explanatory variables. We center and scale the explanatory
variables which does not affect the fitted model but X′γXγ is the correlation ma-
trix. Here the MDL(γ,X′X) increases monotonously as the function of RSSγ when
kγ = k is fixed. However, MDL(γ,I) and MDL(γ,(X′X)2) respond to collinearity.
The two and three variable sets of explanatory variables given in Table 1 are not
collinear. Therefore also MDL(γ,I) and MDL(γ,(X′X)2) put the models almost in
same order as MDL(γ,X′X). However, the four variable models {x2,x4,x5,x7} and
{x1,x2,x5,x7} have practically the same value of MDL(γ,X′X), but both MDL(γ,I)
and MDL(γ,(X′X)2) strongly prefer {x2,x4,x5,x7} to {x1,x2,x5,x7}. This is be-
cause the variables x1,x2,x5,x7 are much more collinear (the determinant of the
correlation matrix |R| = 0.033) than the variables x2,x4,x5,x7 (|R| = 0.299). The
length ‖β̂ββ‖ has larger value for the model {x1,x2,x5,x7} than for {x2,x4,x5,x7}
which has an effect on the criterion MDL(γ,I). Especially the size of the coefficient
β̂2 and the intercept increase dramatically whereas the coefficients β̂5 and β̂7 remain
practically same.
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Self-exciting Extreme Value Models for Stock
Market Crashes

Rodrigo Herrera and Bernhard Schipp

Abstract We demonstrate the usefulness of Extreme value Theory (EVT) to eval-
uate magnitudes of stock market crashes and provide some extensions. A common
practice in EVT is to compute either unconditional quantiles of the loss distribution
or conditional methods linking GARCH models to EVT. Our approach combines
self-exciting models for exceedances over a given threshold with a marked depen-
dent process for estimating the tail of loss distributions. The corresponding models
allow to adopt ex-ante estimation of two risk measures in different quantiles to as-
sess the expected frequency of different crashes of important stock market indices.
The paper concludes with a backtesting estimation of the magnitude of major stock
market crashes in financial history from one day before an important crash until one
year later. The results show that this approach provides better estimates of risk mea-
sures than the classical methods and is moreover able to use available data in a more
efficient way.

1 Introduction

The characterization of stock market changes and especially extreme negative events
are of a profound importance to risk management. In financial markets, these ex-
treme price movements correspond to market corrections and also to stock market
crashes. On October 19, 1987, known as Black Monday, the S&P500 index fell by
20,5% of its value in a single session. The market simply gapped down at the open-
ing and it did not stop falling until more than US$ 25,1 trillion in equity value had
been erased.

Every market crash induces significant losses to the economy as a whole and
its impact should be minimized as much as possible. This paper is motivated by
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Fakultät Wirtschaftswissenschaften, Technische Universiät Dresden, D-01062 Dresden, Germany
Bernhard.Schipp@tu-dresden.de

209



210 R. Herrera and B. Schipp

the following question: can we forecast the magnitude of a crash? This particular
question was raised in [14]. He asked what is the worst scenario that the daily sample
period from 1 January 1960 to 16 October 1987 would allow us to predict?.

Assuming that yearly maximum values are i.i.d random variables [14] has es-
timated the Value at Risk VaR0.01% of the S&P500 index at a level of 7.4% level
with a 95% confidence interval ranging from 4.9 to 24%. Matthys and Beirlant [12]
have estimated the VaR0.01% of the S&P500 index with 5.28 and an 95% confidence
interval ranging from 4.24 to 8%). Novak [17] have evaluated the VaR0.01% and the
Expected Shortfall ES0.01% for the same data at 18.08 and 24.18% respectively.

Obviously the results differ by large. A possible explanation is that [14] used
yearly data and the blocks method approach, which is less accurate than other ex-
treme value approaches as the Peaks Over Threshold (POT) method. An important
difference between the work of [17] and [14] is that the first author has used a non-
parametric approach.

The main question now is whether it is possible to develop (in an objective and
non arbitrary manner) good approaches to risk measurement such as Value at Risk
(VaR) or Expect Shortfall (ES), especially in times of extreme market movements.

Several authors as [6, 11, 12, 14, 16, 17] have argued that EVT allows us to take
explicitly into account rare events contained in the tails. This approach offers three
main advantages over classical methods such as conditional models of the volatility
(GARCH, EWMA or SV processes), historical simulations or normal distribution
approach.

First, as it is a parametric method, high probability values can be estimated from,
for example, out-of-sample VaR computations. Second, extreme value methods fo-
cus on modelling the tail behaviour of a loss distribution using only extreme value
rather than the whole data set. Third, as we only assume a particular model for re-
turns exceeding a high threshold, we allow the data to speak for themselves to fit the
distribution tails, which are not influenced by the center of the returns distribution.

The standard Peaks over threshold (POT) model in EVT, which describes the ap-
pearance of extremes in i.i.d data, subsumes elegantly the models for maximum
values and the Generalized Pareto distribution (GPD) models for excess losses.
However, the characteristics of financial return series such as clustered extremes
and serial dependence typically violate the assumptions of POT model. These prob-
lems are often addressed by the application of a declustering method, and then the
standard model is fitted to cluster maximum values only.

In this paper we use a self-exciting version of POT model introduced prelimi-
narily in [16, 15, 2] where the data will be fitted in a single step and will not in-
volve a prefiltering of data. The main aims of the models are based on marked point
processes combined with self-exciting processes where the intensity of arrival of
extreme events depend on the marks, which allows more realistic models.

Point processes of this kind have proven to be an efficient tool to model earth-
quake occurrences. Corresponding models (Hawkes or ETAS, Epidemic Type Af-
tershock Sequence) are considered to be standard branching models. For our study
we examine the behaviour of different daily stock indices from many years before
a crash up to one day before a crash, as has previously been made in [14, 17]. We
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estimate how the value of the returns of an index would change under the worst sce-
nario. This definition of worst scenario corresponds to a worst possible movement
in approximately 40 years as in the above studies.

In particular we consider the Crash of October 1987, the Hong Kong Crashes of
1997, and the NASDAQ Crash of April 2000.

This paper is organized as follows. In Sect. 2 we outline relevant aspects of the
classical POT model, and then in Sect. 3 we describe the Self-exciting POT model.
Section 4 presents a preliminary analysis of the data used for the applied illustrations
in the paper. Results of the modelling of some important historical crashes and a
Backtesting simulation for each return are given in the Sects. 5 and 6 respectively.
Conclusions and discussions are resumed in Sect. 7.

2 The Classical Peaks over Threshold Method

In this section we summarize the results from the POT method which serve as a
basis for our approach to modelling. Relevant references on the subject of extreme
value theory include [6, 16, 7].

The POT method is based on the limit law for excess distributions (see for ex-
ample [6]). The predominant aim is to fit a generalized Pareto distribution (GPD) to
excesses over a high threshold of a random variable, under the condition that suffi-
cient data are available above the chosen threshold. As a convention in this paper, a
negative value is treated as a positive number and extreme events take place when
losses are part of the right tail of the distribution.

Suppose that X1, . . . ,Xn are i.i.d with distribution function F ∈ MDA(Hξ ) for
some ξ ∈R, where Hξ is a non-degenerate limiting distribution and limn→∞ F(cnx+
dn) =− lnHξ (x) holds for normalizing sequences cn and dn. The excess distribution
function of X is given by

Fu(x) = P(X−u≤ x | X > u) , x≥ 0.

This relation can be rewritten as

F̄ (u+ x) = F̄(u)F̄u(x).

Now by definition a GPD Gξ ,β with parameters ξ ∈R and β > 0 has distribution
tail

Ḡξ ,β (x) =

{(
1+ξ x

β

)
i f ξ �= 0,

exp(−x/β ) i f ξ = 0,
(1)

and x ∈ D(ξ ,β )

D(ξ ,β ) =
{

[0,∞) i f ξ ≥ 0,
[0,−β/ξ ] i f ξ < 0.
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Equation (1) provides a log likelihood for estimation of β and ξ equals

l ((ξ ,β ) ,X) =−n lnβ −
(
ξ−1 +1

) n

∑
i=1

ln(1+ξxi/β ) , (2)

where the arguments of the above function have to satisfy the domain restriction
xi ∈ D(ξ ,β ).

As F ∈MDA(Hξ ) then for an appropriate positive function β

lim
u↑xF

sup
0<x<xF−u

∣∣F̄u(x)− Ḡξ ,β (x)
∣∣ = 0,

where xF is the right endpoint.
Thus, for high threshold u one expects that the excess distribution Fu can be well

approximated by a GPD
F̄u(x)≈ Ḡξ ,β (x)

Based on this result, tail of F can be estimated with

F̄(x) = F̄n(u)Ḡξ̂ ,β̂ (x)≈ Nu

n

(
1+ ξ̂

x

β̂

)
, (3)

where F̄n(u) is the empirical distribution function in u, Nu is the number of ex-
ceedances about u and ξ̂ = ξ̂Nu , β̂ = β̂Nu .

By inverting (3) an estimator of the quantile xp results immediately:

x̂p = u+
β̂
ξ̂

((
n

Nu
(1− p)

)−ξ̂
−1

)
.

This method of analyzing the extreme values has the advantage of being straight-
forward to implement, but there is a number of disadvantages when considering
broader features of this distribution, such as non stationary effects, trends and sea-
sonality in the model.

A stronger approach to model specification is via a point process representation
of the exceedances introduced by [19]. The idea is to view all events exceeding
a given level x as a bidimensional point process. The intensity of this process is
defined for all Borel sets of the form A = (t1, t2)× (y,∞) where t1 and t2 are time
coordinates and x ≥ u is a given high threshold of the process. If the process is
stationary and satisfies a condition that there are asymptotically no clusters among
extremes, then its limiting form is a non-homogeneous Poisson process and the
intensity at a point (t,x) is given by

λ (t,x) =
1
σ

(
1+ξ

x−μ
σ

)−1/ξ−1

+
, (4)
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where y+ = max(x,0) and μ ,σ ,ξ represent respectively a location parameter, scale
parameter and shape parameter. Therefore, the intensity measure of the set A for any
x ≥ u may be expressed in the form of an one-dimensional homogeneous Poisson
process with rate τ(x) =− lnHξ ,μ,β .

Λ(A) =
∫ t2

t1

∫ ∞

x
λ (t,y)dydt =−(t2− t1) lnHξ ,μ,σ .

Now the tail of the excess over the threshold u, denoted F̄u(x), can be calculated as
the ratio of the rates of exceeding the levels u+ x and u as follows

F̄u(x) =
τ(u+ x)
τ(u)

=
(

1+
ξx

σ +ξ (u−μ)

)−1/ξ
= Ḡξ ,β (x),

where β = σ + ξ (u− μ) is simply a scaling parameter. Note that this is the same
model described informally at the beginning of this section.

A useful reparametrization of (4) for the next section can be rewritten in terms of
τ(u) =− lnHξ ,μ,β (u) and β = σ +ξ (u−μ).

λ (t,x) =
τ
β

(
1+ξ

x−u
β

)−1/ξ−1

, (5)

where ξ ∈ R and τ,β > 0.
The aim of presenting the two dimensional point process derivation of the POT

method is for introducing easily the new methods, which have as basis the point
process representation.

In the following section we describe some of the best-known and more successful
attempts.

3 Self-exciting Peaks over Threshold (SEPOT) Method

The problem with the theory outlined in the previous section is that it assumes that
the underlying series is independent, which is unrealistic in most applications.

Serial dependence and volatility cluster play an important role in most applica-
tions on returns of financial series, and so exceedances of a high threshold for daily
financial return series do not necessarily occur according to a homogeneous Poisson
process. Therefore, the application direct of the POT method is nonviable.

However, under weak conditions the POT representation may be applied to the
maximum value of each cluster. The problem here is the identification of indepen-
dent clusters of exceedances over a high threshold. This is because of the fact that
the choice of declustering scheme often has a significant impact on estimates of
cluster characteristics.

Possible algorithms are given by the run method, the block method or the interval
method (see [1]). In particular, the interval estimator introduced by [8] proposes
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an automatic declustering scheme that is justified by an asymptotic result for the
arrival times between threshold exceedances. The scheme relies on the estimation
of extremal index prior to declustering, which can be interpreted as the reciprocal
of the mean cluster size. However, this method consists of a two step procedure and
the cluster behaviour of the extremes is lost.

The methodology introduced in this section takes advantage of the structure of
the model, thus allowing the existing (dependent) data to be used more efficiently.

In the early 1970s, [9] introduced a family of what he called “self-exciting” or
“mutually exciting” models, which became both pioneering examples of the condi-
tional intensity methodology. The models have been greatly improved and extended
by [18], whose ETAS model has been successfully used to elucidate the detailed
structure of aftershock sequences.

In these models a recent spate of threshold exceedances causes the instantaneous
risk of a threshold exceedances at a particular time to be higher. As [16] suggest
the structure of these processes, which has traditionally been used in the modelling
of earthquakes, would also seem appropriate for modelling market shocks and the
tremors that follow these.

Basically, the Hawkes process is a model for clustering. Consider a simple, tem-
poral point process N on [0,∞) adapted to a filtration Ht , which denote the entire
history of the process up to time t denoted as Ht = {ti : ti < t}. Assuming it ex-
ists, the conditional intensity λHt (t) is defined as the unique non decreasing, H -
predictable process such that N([0, t))−

∫
λHt (t)dt is a martingale.

Since the finite-dimensional distributions of such a point process are uniquely
determined by its conditional intensity (see [5]), one way to model a point process
is via its conditional intensity.

In self-exciting point processes, the conditional intensity is given by

λHt (t) = μ + ∑
i:ti<t

g(t− ti.) (6)

where μ > 0 is a short term clustering component, g(ν)≥ 0 represents the contribu-
tion to the conditional intensity satisfying

∫ y
0 g(ν)dν < 1, and the sum is taken over

all events {ti} occurring before the current time t. The process has both epidemic
and branching process interpretations. In practice, g(ν) is usually given a simple
parametric form, such as a finite sum of Laguerre polynomials, or the Pareto-type
form used in Ogata’s ETAS model, by analogy with Omori’s law.

Given a sequence X1, . . . ,Xn consider an stationary process(Tk,Zk) with state
space χ = (0,n]× (u,∞) for k = 1, . . . ,Nu, where Tk are the times of occurrence
of the process, Zk are the marks of the excess,i.e, Zk = (Xn−u) > 0 and Nu are the
number of exceedances. Let Ht denote the entire history of the process up to time t
as has be above defined.

We define a point process of exceedances N(·) = ∑n
i=1 I{(Ti,Xi)∈·} with a self-

exiting structure given by a conditional intensity as (6) but with marks of the ex-
ceedances among the threshold u.
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λHt (t) = μ +φ ∑
k:Tk<t

g(t−Tk;Zk),

where τ > 0, φ ≥ 0 and g(t,z) is a self-excitement function and monotonic de-
creasing that contributes an amount to the intensity originating from a previous ex-
ceedance. For our study we use two definitions, in the first model we consider a
simple Hawkes model of the form

g(t,z) = (1+δ z)exp(−γt), δ ,γ > 0, (7)

(see [9]), which is a generalized Poisson cluster process associating to cluster cen-
tres of a branching process of descendants.

The second is an ETAS model introduced by [10],

g(t,z) = (1+ tγ−1)−(ρ+1)(1+δ z), δ ,γ,ρ > 0, (8)

which can be viewed as a generalization of the modified Omori law, which takes into
account the secondary aftershock sequences triggered by all events. In this model,
all extreme events are simultaneously mainshocks, aftershocks and possible fore-
shocks. An observed aftershock sequence in the ETAS model is the result of the
activity of all events triggering events triggering themselves other events, and so on,
taken together. In particular, it could be considered as an extension of the Hawkes
model.

The above specifications can be extended to other more complicated models such
as generalized Hawkes processes or a marked self-exciting Stress Release Process
(see [5], Chap. 6.). However, this would increase a lot the complexity of the model.
For this reason, we opted for keeping the models as simple as possible.

Following the approach outlined in Sect. 2 we modify (5) by incorporating a
model for dependence of the frequencies and sizes of the events over a high thresh-
old u.

We begin replacing τ and β in (5) by τ(t) = τ + φw(t) and β (t) = β +ηw(t),
where w(t) = ∑k:Tk<t g(t−Tk;Zk) and η models the hypothesis that the marks are
predictable when η > 0. Note that the only thing that we are doing is to make τ and
β depend on historical exceedances according to a common self-exciting function.

It implicates that the exceedances of the threshold u occur according to a one di-
mensional self-exciting process with conditional intensity described by the equation

λHt (t,x) =
(τ +φw(t))
(β +ηw(t))

(
1+ξ

x−u
β +ηw(t)

)−1/ξ
.

Thus the conditional rate of crossing the threshold u at time t is defined as follows

τHt (t,x) =
∫ ∞

x
λ (t,y)dy = (τ +φw(t))

(
1+ξ

x−u
β +ηw(t)

)−1/ξ
,
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Therefore, the implied distribution of the excess losses when exceedances take
place is generalized Pareto

P(Xk > u+ x | Tk = t,Ht) =
τHt (t,x+u)
τHt (t,x)

= Ḡξ ,β+ηw(t)(x).

For such a model, it is straightforward to write down a likelihood function, and
hence, to find maximum likelihood estimators. The maximum likelihood inference
involves maximization of

L(θ ;{(T1,Z1) , . . . ,(TNu,ZNu )}) =

[
Nu

∏
i=1

λHt (Ti)

][
Nu

∏
i=1

f (Zi | Ti)

]
exp

(
−

∫ n

0
λg (u)du

)
,

where θ is the vector of parameters to be estimated, λHt (Ti) is the conditional in-
tensity, f (Zi | Ti) is the density of the marks and λg (u) is the intensity of the ground
process associated to the time of the exceedances. For a rigorous and detailed expo-
sition on the maximum likelihood estimation of marked self-exciting process trough
conditional intensities, we refer to [5] page 246.

Note that the model with unpredictable marks can be obtained if η = 0. By com-
paring a model with η = 0 and a model with η > 0 we can formally test the hypoth-
esis that the marks are unpredictable using a likelihood ratio test.

In particular, for our quantitative analysis we fitted eight different sub models
derived from the (8) and (7). Model a is a Hawkes model without predictable marks
(η = 0) and without influence of the marks on the estimation of the self-exciting
function (δ = 0). Model b is a Hawkes model without predictable marks and δ > 0.
Model c is an ETAS model without predictable marks and without influence of the
marks. Model d is an ETAS without predictable marks. Model e is a Hawkes model
without influence of the marks δ = 0 and predictable marks η > 0. Model f is a
Hawkes model with δ ,η > 0. Model g is an ETAS model with predictable marks
and δ = 0. Model h is the general formulation for an ETAS model with δ ,η > 0.

3.1 Measures of Extreme Risk

The measurement of market risk to which financial institutions are exposed has be-
come an important instrument for market regulators, portfolio managers and for in-
ternal risk control. In this paper we will concentrate on two measures which attempt
to describe the tail of a loss distribution, VaR and expected shortfall.

Value-at-risk (VaR) has become a standard measure used in financial risk
management due to its conceptual simplicity, computational facility, and ready
applicability.

In this paper, Value at Risk (VaR) is defined as the qth quantile of a distribu-
tion F ,VaRq = F−1(q). Thus, as in the classical POT model we can obtain a VaR
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estimator at level α by solving the equation τ(t f ,x) = 1−α , where t f denotes the
conditional exceedances intensity at a time point just after t for which the level
is 1−α .

For our model this is only possible if τ +φw(t f ) > 1−α and the resulting VaR
estimator is

VaRt
α = u+

β +ηw(t f )
ξ

((
1−α

τ +φw(t f )

)−ξ
−1

)
. (9)

Many authors claim that VaR has several conceptual problems as its coherence as
a risk measure. To alleviate the problems inherent in VaR, some practitioners have
been turning their attention towards expected shortfall and away from VaR.

In the case of expected shortfall (ES), it is defined as the average of all losses
which are greater or equal than VaR, i.e. the average loss in the worst (1− q)%
cases ESq = E [X | X > VaRq].

Exploiting the fact that the excess distribution above the higher threshold is
also GPD with the same shape but different scale parameter, the VaRt

α can also
be rewritten as

FVaRq(y) = Gξ ,β+ηw(t f )+ξ (VaRt
α−u)(y) (10)

As a consequence of (10) and provided that ξ < 1, the mean of FVaRq(y) is(
β +ηw(t f )+ξ (VaRt

α −u)
)
/(1−ξ ), the expected shortfall is then

ESq =
VaRt

α
1−ξ

+
β +ηw(t f )−ξu

1−ξ
. (11)

Thus, the ESq and VaRt
α are estimated by substituting the data based estimate for

everything which is unknown in the last two expressions to obtain the approaches.
We shall remember the convention in this paper, where a loss is a positive number

and a profit is a negative number

4 Preliminary Data Analysis

Our data set consists of daily returns defined by rt = − ln(pt/pt−1), where pt de-
notes the value of the index at day t, from the S&P 500 index over a sample period
from 4 January to 16 October 1987, one day before the crash of 1987. The Hang
Seng Index over a sample period from 2 January 1986 to 17 October 1997 and the
NASDAQ Composite Index over a sample period between 1 January 1980 and 13
March 2000.

We use these sample periods for backtesting the estimation of the different risk
measures in each index until one year after. We update new information on a daily
basis that becomes available for the parameter estimates previously obtained. Thus
we dynamically adjust quantiles, that allow us to improve as accurately as possible
the estimation of the risk measures.
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The crashes that we are going to study are the crash in October, 1987 (in partic-
ular on Monday 19), The Hong Kong crash of 1997 and The Dot com Crash 2000.

In Table 1 of the Appendix, we find some descriptive statistics of the daily returns
on the above series. The mean return is close to zero for all of the four series. How-
ever, they differ considerably in terms of standard deviation, skewness and kurtosis.
In particular, the returns of the Hang Seng index exhibit a high kurtosis compared
with the other two series.

The assumption of normally distributed returns is strongly rejected by all series
through the Jarque-Bera test. Other assumptions such as the null hypothesis that the
returns series are iid random variables as well that the returns have a unit root are
strongly rejected.

Figure 1 shows on the top the evolution of the indices for the sample period plus
a year more to observe the crashes that we want to quantify, on the middle QQ
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Fig. 1 On the top the evolution of the indices S&P 500, NASDAQ and Hang Seng for the sample
period. In the low panel, quantiles of the respective return distribution against those of normal
distribution. In the middle panel the exceedances or losses over a defined threshold u
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plots for the empirical return distributions relative to the normal distribution, which
provides evidence for the fat-tailed property of the returns. An important point is
the choice of the threshold, which implies a balance between bias and variance. On
the one hand, if a too high threshold is selected the bias decreases. On the other
hand, by taking a lower threshold, the variance decreases but the approximation
becomes poorer. Cotter and Dowd [4] suggest that the points where the QQ plots
change shape provide us with natural estimates of the tail threshold u. These leads
us to select thresholds for S&P 500 equal to 3.3% of the sample and for the NAS-
DAQ and Hang Seng indices a 3% of the sample is a fair approximation for the
threshold u.

5 Quantitative Analysis of Stock Market Crashes

Subsequently, we calculate the VaR and ES for these three famous stock market
crashes one day before a crash will take place. For this we estimate the eight mod-
els proposed in Sect. 3. Next, through likelihood ratio tests we formally test which
model is more appropriate for each time series. The confidence intervals for the risk
measures were obtained using a semi-parametric bootstrap proposed by [4] based on
the maximum likelihood estimates of the SEPOT models. The obvious alternative
is to bootstrap from the distribution of sample returns and re-estimate the SEPOT
parameters for each resample. However, some of these resample estimates could be
degenerate. This semi-parametric method used here tries to avoid this problem in a
simple way.

We first take 10,000 bootstrap resamples, each of which consists of 20,000 uni-
form random variables. For each sample of the uniform random variable, we cal-
culate the empirical quantile in question. Then we use this empirical quantile to
calculate the cumulative probability α̂ of the uniform random variable of the sam-
ple. With this estimate and the parameter obtained in each model fitted we calculate
10,000 resamples estimates of the risk measures. For a 95% confidence interval we
take the 20000×0.025 = 500th and 20000×0.975 = 19500th largest resample es-
timates of the risk measures.

Moreover, we test the null hypothesis of estimating correctly the Risk mea-
sures at time ti against the alternative that the method systematically underestimates
the returns rti+1 . Thus, the indicator for a violation at time ti is Bernoulli It :=
1{rti+1>{VaRα,ti ,ESα,ti}} ∼ Be(1−α). How it is described by [13], It and Is are in-
dependent for t,s ∈ T , then

∑
ti∈T
∼ B(n,1−α). (12)

Expression 12 is a two-tailed test that is asymptotically distributed as binomial.
We perform the null hypothesis that it is a method that correctly estimates the risk
measures against the alternative that the method has a systematic estimation error
and gives too few or too many violations.
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5.1 Stock Market Crash 1987

The first stock market crash that we want to analyze is the crash on October 19,
1987, a date that is also known as Black Monday. The S&P 500 dropped by 20.4%,
falling from 282.7 to 225.06. That is almost double as the 12% loss experienced
by investors in 1929 on Black Tuesday. Thus, this crash was the greatest single-day
loss that Wall Street had ever suffered in continuous trading up to that point.

On October 16, 1987, the S&P 500 index failed by 5.25%, the second largest
fall since 1960, only in this week the index downed by 9.21%. However, this was
nothing compared to the subsequent Monday.

In this first ex-ante estimation of the risk measures defined in (9) and (11) we
investigate a “worst case scenario” as in [14]. This worst case scenario is defined as
a 40-year return level, i.e., a level which, on average, should only be exceeded in
one year every forty years.

These results for the S&P 500 index are summarized in the Table 4. With the
help of a likelihood ratio test, we compare the different models and choose the best
model for this index. The best fitted model is the model h, which provides the higher
VaR and ES level in comparison to the studies of [14] and [12]. In particular, the
model gives evidence for the predictable marks (η) and influence of the marks in
the self-exciting process.

The VaR estimates for the Monday 19, 1987 is 12.31% with confidence interval
(8.42, 16.48%) and an ES from 15.46% with confidence interval (10.74, 20.51%).
Notwithstanding we have made a more realistic estimation for the VaR and ES in
comparison with the studies of [14] and [12] we did not manage to reach the magni-
tude of crash on Monday 19 for a return level of 40 years. The negative log-return on
October 19 clearly stands out in the upper right of the upper left plot (1). The weak-
ness can occur because we used a semi-parametric bootstrap for the construction of
the confidence interval.

According to our model the magnitude of the crash on Monday 19 corresponds
to an event in 130 years VaR0.003% = 15.9% (12.3%,20.4%). Anyway the event on
October 19, 1897, is according to our theory of extreme values and therefore, far
from impossible at all.

An ex-ante forecast of the Risk measures VaR and ES at the 0.9999th-quantile
for the choose model is presented in Fig. 2. Although the daily quantile forecast is
quite volatile, the model h provides rather stable quantile forecasts across volatile
return periods. Note that following the method given in [13], it is possible to develop
a binomial test of the success of self-exciting marked point process estimation based
on the number of violation.

Table 2 presents backtesting results based on population quantiles 0.99th,
0.999th, and 0.9999th, i.e., an event in 100 days, an event in 4 years and an
event in 40 years respectively. In all cases the model h estimates correctly estimates
the conditional VaR for all the quantiles, the null hypothesis is rejected whenever
the p-value of the binomial test is less than 5%.

For the backtest in the next section we will use one year sample period from 16
October 1987 to 16 October 1988. In this period we find three important movements
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Fig. 2 Ex-ante estimation of the risk measures VaR and ES for the 0.9999th quantile for the S&P
500 returns with the best model fitted (model h), NASDAQ returns with a VaR and ES for the
0.9999th quantile (model h), and the Hang Seng returns with a VaR and ES for the 0.999th quantile
(model a). The light-grey line is the returns of the sample period, the dark grey line is the VaR
estimations, and the black line is the ES

on October 19, 1987 the black Monday with 22.89 %, 26 October 1987 with a loss
of 8.64% and 1 August 1988 with a 7%. Moreover, we found circa 24 exceedances
in this period over the threshold u = 0.0153.

5.2 The NASDAQ Crash 2000

Our second investigation concerns the NASDAQ crash in March and April, 2000.
This index dropped precipitously between March 14 and April 14 with a cumulative
loss of approx. Fifty percent counted from its all-time high of 5,133 reached on
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March 10, 2000. The drop was mostly driven by the so-called “New Economy”
stocks which have risen nearly four-fold over 1998 and 1999 compared to a gain of
only 50% for the S&P 500 index.

We try to estimate the worst case scenario for this index at the beginning on
March 14, 2000. The heaviest drops were on April 3 and April 12, 2000, with
7.94 and 7.32% respectively. The results for the sample period are displayed in the
Table 5.

The best model fitted is a model with predictable marks, i.e., the model h with
a log-likelihood −66.53. In Fig. 2 we show the ex-ante estimation at the 0.9999
quantile for the VaR as well as the ES for the model h for the sample of study. On
March 14, 2000 the NASDAQ dropped by a 4,2% , our estimation for the worst case
covers without problems this movement.

Detailed results of the estimation for the period of crisis between March 14,
2000, and March 14, 2001, is presented in Sect. 6. In a preliminary analysis for this
year and particularly between March 14 and April 14, 2000 we find three important
movements. On 14 April, the log-return was 10.1%, one day before the drop was
7.94% and a week later on April 25 the log-return index lost 7.32%. Moreover, 67
extremes of the total data are found in the backtest sample period, which are defined
over the threshold u = 2.33.

The violations corresponding to the model fitted are resumed in Table 2. Our
model correctly estimates the conditional VaR for all the quantiles, the null hypoth-
esis is rejected whenever the p-value of the binomial test is less than 5 percent. In all
quantiles our model is closer to the expected number of violations and in all cases it
performs very well.

5.3 The Hong Kong Crash 1997

The third analysis is the Hong Kong crash of 1997. The Hong Kong market has the
second largest stock market in Asia and the 7th largest in the world. However, in
the last twenty years we can identify three major crashes. The first crash was syn-
chronous to the worldwide October 1987 crash. The second crash began on February
4, 1994 and ended on March 3, 1994, with a cumulative loss of 19.4%. The third
crash was on October 23, 1997, when the Hang Seng index lost more than 10% of
its value in the biggest one-day fall in its history.

For our analysis we use the sample period from 2 January 1986 to 17 October
1997 and for the backtest we use one year sample period, from 18 October 1997 to
18 October 1998.

A great difference between this series and the others is that it has resisted about
three crashes during one decade. The number of extreme movements is much more
ample in relation to the other series, which would affect considerably the estimation
of high quantiles. To gain some feeling for the problem, let us focus on the sam-
ple period from 2 January 1986 to 17 October 1997, where we found an extreme
log-return over 40% on November 5,1987, an extreme log-return over 24% on June



Self-exciting Extreme Value Models for Stock Market Crashes 223

5, 1981, and four extreme log-returns over 10%, 14.7% on October 28, 1997, 11.7%
on November 4,1987, 11.4% on Mai 22, 1989 and 10.9% on October 23,1997.

Note that we will calculate the conditional risk measures for two of these last
values in the backtest sample period. The results for a high threshold u for the SE-
POT models are summarized in Table 6. Our results show that the best fitted model
is a Hawkes model without predictable marks and without influence of the marks,
for the exceedances of the sample. The fitting exercise for example for different
thresholds u leads to estimations of parameters and risk measures that do not vary
too much for the sample period.

The binomial test for the period before the backtest is displayed in Table 2. The
results confirm that the model predicts the quantiles of interest well at a p-value
level of 0.05.

The results of the best models for each one of the series at the worst case level
are displayed in Fig. 2.

Goodness of Fit for the Models

We provide also some goodness of fit for the best models of each index. In particular,
we use the W-statistics to assess our success in modelling the temporal behaviour of
the exceedances of the threshold u. The W-statistics are defined to be

W = ξ−1 ln
(

1+ξ
x−u

β +ηw(t)

)
.

This statistic states that if the GPD parameter model is correct, then the residuals
are approximately independent unit exponential variables. The corresponding QQ-
plots, displayed in Fig. 4 in the Appendix, do not show a substantial deviation from
an exponential distribution.

Furthermore, to check that there is no further time series structure the autocorre-
lation function (ACF) for the residuals (left panel) and for their squares (right panel)
are also included. Both autocorrelations are negligible at nearly all lags.

6 Backtesting

In order to assess the accuracy of our models to compute VaR and ES, we backtested
the methods on the three return series described earlier by the following procedure.
Let T = {t1, . . .tn} be the time interval for the back test sample. On each day in the
back test, we fitted the best self-exciting model that we selected before. Then we
re-estimated the risk measures for each returns series according to expressions (9)
and (11).
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The risk measures estimate in ti VaRα,ti are compared in each case with rti , the
log-negative return for q = {0.99,0.999,0.9999}. A violation is said to take place
whenever rti+1 > VaRα,ti . The results are shown in the Fig. 3. It shows clearly the
very satisfying overall performance of the methodology proposed in this paper for
all the backtesting quantiles experiments. A more detailed analysis is realized to test
the null hypothesis, that the models estimated well the conditionals risk measures.

Following, we construct a formal test in similar lines to the binomial test of quan-
tile violation as in the Sect. 5 to verify the potential of the models fitted to estimate
the conditionals VaR and ES for different levels of quantiles is conducted in this
section and they are displayed in Table 3. The results of our backtesting procedure,
which dynamically adjusts quantiles incorporating the new information daily allows
us to conclude statistically that the models estimated compute well the different risk
measures.
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Fig. 3 Backtest estimation of the risk measures VaR and ES for the {0.99,0.999,0.9999}-th quan-
tile for the S&P 500 returns with the best model fitted (model h), NASDAQ returns with a VaR and
ES for the {0.99,0.999,0.9999}-th quantile (model h), and the Hang Seng returns with a VaR and
ES for the{0.99,0.999,0.9999}-th quantile (model a). The grey line is the returns of the sample
period, the light-grey line is the VaR estimations, and the black line is the ES
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7 Conclusions

It is by now well known that returns from financial assets exhibit heavy tails and
clusters at the extremes. As a consequence the normal distribution is regarded as
an inappropriate model to characterize the return distribution. Especially, extreme
market conditions tend to happen more frequently than expected on the basis of a
normal distribution.

In this paper we concentrate on the estimation of the tail of the distribution of
financial return time series, and some popular risk measures such as VaR and ES.
We propose an extension of the classical POT to model cluster behaviour through
self-exciting processes for the exceedance times and a marked point process for the
exceedances themselves.

The idea of a Peaks over threshold model with self-exciting structures is rela-
tively new and was recently explored in [16, 2].

We fitted eight different models to return data from three important crashes in the
history, the crash of 1987, the NASDAQ crash 2000, and the Hong Kong crash in
1997. Maximum likelihood methods are used to calculate the parameters, where the
self-exciting approach can follow a Hawkes model or an ETAS model for the point
process. At the same time the exceedances over a defined threshold were modelled
with a generalized Pareto approximation suggested by extreme value theory.

In contrast to the classical model approaches such as proposed in [14, 17, 12], we
apply a direct treatment to the effects of temporal dependence especially in periods
of high volatility, which may cause large losses to cluster over time. The models
proposed in this paper are a refinement designed to account for such stylized factors
and provide a strong alternative to the models applied until now.

Two directions for future research emerge from the results. An extension to non
stationary series could be made as in [3], and other flexible forms for the self-
exciting function could be used incorporating other characteristics of the series such
as trend of increasingly exceedances or different regimes as after shocks.
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Appendix

Table 1 Summary statistics for the stock index returns. Asymptotic p-values are shown in the
brackets. *,**,*** denote statistical significance at the 1, 5 and 10 level respectively

S&P 500 NASDAQ Hang Seng
N° obs. 6985 5105 2681
Std. dev 0.0081 0.0101 0.0179
Minimum –0.0691 –0.1204 –0.4054
1st Qu –0.0040 –0.0037 –0.0057
Mean 0.0002 0.0012 0.0008
Median 0.0003 0.0006 0.0005
3rd Qu. 0.0045 0.0058 0.0083
Maximum 0.0490 0.0709 0.1725
Kurtosis 3.5340 12.0282 116.7251
Skewness 0.0035 –1.0883 –5.5619
Jarque-Bera test 3638.847* 31812.79* 1538169*
Augmented Dickey–Fuller Test –17.6038* –15.2872* –13.0182*
Phillips-Perron Unit Root Test –5585.806* –4454.225* –2715.409*

Table 2 p-values for a two-sided binomial test of the hypothesis that the model estimated well
the extremes of the log-returns at different quantiles against the alternative that this model over or
underestimates these quantiles

models S&P 500 NASDAQ Hang Seng
VaR 6985 5104 2673
0.99 Quantile 73 (0.67) 52 (0.88) 27 (0.92)
0.999 Quantile 10 (0.25) 4 (0.82) 5 (0.20)
0.9999 Quantile 1 (0.50) 1 (0.39) 1 (0.23)

Table 3 Backtesting Results: p-values for the theoretically expected number of violations against
the violations obtained using the best models fitted for each return. S&P 500 Model h, NASDAQ
Model h, Hang Seng Model a

models S&P 500 NASDAQ Hang Seng
VaR 253 253 248
0.99 Quantile 3 (0.74) 1 (0.53) 4 (0.53)
0.999 Quantile 1 (0.22) 0(1) 0 (1)
0.9999 Quantile 1(0.02) 0(1) 0 (1)
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Fig. 4 qq-plots of the residuals (left), autocorrelation function of the residuals (middle), autocorre-
lation function of the square of residuals (right), for the returns of the S&P 500 index (top panel),
the NASDAQ index (middle panel) and the Hang Seng index (bottom panel)
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Consumption and Income: A Spectral Analysis

D.S.G. Pollock

Abstract The relationship between aggregate income and consumption in the
United Kingdom is analysed anew. This entails a close examination of the struc-
ture of the data, using a variety of spectral methods that depend on the concepts
of Fourier analysis. It is found that fluctuations in the rate of growth of consump-
tion tend to precede similar fluctuations in income, which contradicts a common
supposition. The difficulty is emphasised of uncovering from the aggregate data a
structural equation representing the behaviour of consumers.

1 Introduction: The Evolution of the Consumption Function

Over many years, the aggregate consumption function has provided a context in
which problems of econometric modelling have been debated and from which sig-
nificant innovations in methodology have emerged. Whereas such innovations have
advanced the subject of econometrics, none of them has been wholly appropriate to
the aggregate consumption function itself. This may be one of the reasons why the
consumption function has remained a focus of attention.

The vestiges of our misconceptions tend to linger in our minds long after we have
consciously amended our beliefs. Our view of the consumption function is partic-
ularly prone to the effects of ideas that have not been properly discarded despite
their inapplicability. Therefore, in setting a context for our discussion, it is helpful
to recount some of the history of the consumption function.

The first difficulties that were encountered in modelling the aggregate consump-
tion function arose from a conflict between Keynesian theory and the empirical
findings of Kuznets [12] and others. Whereas the theory of Keynes [11] postulated
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average and marginal propensities to consume that declined with income, it was
discovered that income and consumption had maintained a rough proportionality
over many years.

At the same time, the econometricians were conscious that there is a double
relationship between income and consumption, which follows from the fact that
consumption expenditures are a major factor in determining the level of aggregate
income. The failure to take account of the second relationship might lead to biases
in the estimated coefficients of the consumption function.

Using a static analysis, Haavelmo [7] demonstrated that the estimated marginal
propensity to consume was subject to an upward basis that was directly related to
the variance of the innovations in consumption and inversely related to the variance
of the innovations in income. The latter were attributed to autonomous changes in
the rate of investment.

However, Haavelmo also envisaged, in common with other analysts, “that the
active dynamic factor in the business cycle is investment, with consumption assum-
ing a passive lagging role.” (These are the words of Alvin Hansen [9], as quoted by
Haavelmo.) This notion was used by others in reconciling the Keynesian formula-
tion with the empirical findings. The manner in which they did so greatly stimulated
the development of dynamic econometric modelling.

Models in which consumption displayed a laggardly response to income were
provided by Duesenberry [2], who propounded the relative income hypothesis, by
Modigliani and Brumberg [14], who propounded the life-cycle hypothesis—see
Modigliani [13], also—and by Friedman [3], who propounded the permanent in-
come hypotheses. According to these models, rapid increases in income will give
rise, in the short run, to less-than-proportional increases in consumption, which is in
accordance with the Keynesian view. Over longer periods, consumption will gradu-
ally regain the long-run relationship with income that was revealed in the empirical
findings.

The idea that consumption reacts in a passive and laggardly fashion to the forces
impacting upon it also suggested that it might be reasonable to ignore the problem
of simultaneous equation bias, to which Haavelmo had drawn attention. The biases
would be small if the innovations or disturbances in consumption behaviour were
relatively small and if consumers were reacting preponderantly to events of the past.

The two suppositions, upon which the interpretations of the dynamic models
largely depended, which were the inertial nature of consumer’s behaviour and the
relative insignificance of the consumption innovations, have become established
preconceptions, despite the lack of evidence to support them. In fact, the evidence
that we shall uncover strongly suggests that, in the U.K., the business cycle has been
driven by the fluctuations in consumers’ expenditure.

For almost two decades, beginning in the mid fifties, successes in modelling the
consumption function were seen as grounds for congratulating the econometricians.
However, the observations of Granger and Newbold [6] and others on the spurious
nature of regression relationships between trended economic variables led many
to suspect that the success might be illusory. Whereas such regressions account
remarkably well for the level of consumption, they often perform poorly in the far
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more stringent task of predicting changes in the level of consumption from one
period to another. Moreover, as Granger and Newbold [6] emphasised, the standard
inferential procedures of linear regression analysis are valid only in application to
data that have finite-valued asymptotic moment matrices. The moment matrices of
trended variables, such as income and consumption, are unbounded.

An apparent resolution of these difficulties came in the late 1970’s with the ad-
vent of the error-correction formulation of the consumption function. It was under-
stood that a dynamic regression model in the levels of income and consumption can
be expressed, via a linear reparametrisation, as a model that comprises the differ-
ences of the variables together with a stationary error term expressing the current
disproportion between income and consumption. Such a model, in which all of the
variables appear to be from stationary sequences, is amenable to the standard infer-
ential procedures.

The paper of Davidson et al. [1], which adopted an error-correction formulation,
succeeded in re-establishing the traditional consumption function within a viable
econometric framework. For a model in which the dependent variable was a differ-
enced sequence, it achieved a remarkably high value for the coefficient of determi-
nation. It also heralded the incipient notion of a cointegrating relationship between
trended variables, which has subsequently proved to be of major importance.

Some doubts have remained concerning the error-correction formulation of the
dynamic consumption function. For a start, it is questionable whether the equation
is a structural equation that truly represents the behaviour of consumers in the ag-
gregate, as it purports to do. There may be insufficient grounds for ignoring the
problems of simultaneous equation bias. There have also been doubts about the sta-
tistical significance of the error-correction term, which is included in the equation.
We shall raise these doubts anew.

Enough time has elapsed since the publication of the article of Davidson et al. [1]
for the data series to have more than doubled in length. In spite of the various eco-
nomic vicissitudes that are reflected in the extended data set, their model continues
to fit remarkably well, with newly estimated coefficients that are not vastly different
from the original ones. One of the purposes of the present paper is to examine the
basis for this apparent success. The principal purpose is to determine whether the
time-honoured presuppositions about the nature of the income-consumption rela-
tionship, which were inherited by the consumption function of Davidson et al. [1],
have any empirical support.

2 The Data and the Four-Period Difference Filter

In evaluating any model, we should begin by inspecting the data. The data series
of income and consumption—which is the expenditure on nondurable goods—have
two prominent characteristics. The first characteristic is their non-stationarity. Over
the extended data, the logarithms of the data, which are plotted in Fig. 1, show
upward trends that are essentially linear. The second characteristic of the data series
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Fig. 1 The quarterly series of the logarithms of income (upper) and consumption (lower) in the
U.K., for the years 1955 to 1994, together with their interpolated trends

is that they both show evident patterns of seasonal variation, which play on the backs
of the rising trends.

The seasonal pattern is more evident in the consumption series than it is in the
income series. Therefore, we incline to the view that, rather than being transferred
from the income stream, the seasonal fluctuations in consumption have their origin
in an independent influence that impinges on both income and consumption. This
motivates us to look at ways of deseasonalising the data that will remove the effect.

Models like that of Davidson et al. [1] seek to explain an annual growth rate
in consumption that is derived from quarterly data. The dependent variable of the
model is obtained by passing the logarithms of the consumption series, which we
shall denote by y(t), through a four-period difference filter of the form ∇4 = 1−
L4 = (1− L)(1 + L + L2 + L3). Here, L is the lag operator, which has the effect
that Ly(t) = y(t−1), where y(t) = {yt ; t = 0±1,±2, . . .} is a series of observations
taken at three-monthly intervals. The filter removes from y(t) both the trend and the
seasonal fluctuations; and it removes much else besides.

The squared gain of the filter is depicted in Fig. 2. The operator nullifies the com-
ponent at zero frequency and it diminishes the power of the elements of the trend
whose frequencies are in the neighbourhood of zero. This is the effect of ∇ = 1−L,
which is a factor of ∇4. The filter also removes the elements at the seasonal fre-
quency of π/2 and at its harmonic frequency of π , and it attenuates the elements in
the neighbourhoods of these frequencies. This is the effect of the four-point summa-
tion operator S4 = 1+L+L2 +L3, which is the other factor of ∇4. It is also apparent
that the filter amplifies the cyclical components of the data that have frequencies in
the vicinities of π/4 and 3π/4; and, as we shall discover later, this is a distortion
that can have a marked effect upon some of the estimates that are derived from the
filtered data.
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Fig. 2 The squared gain of the four-period difference filter ∇4 = 1−L4 (continuous line and left
scale) and the frequency selection of the deseasonalised detrended data (broken line and right scale)
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Fig. 3 The periodogram of the logarithms of consumption in the U.K., for the years 1955 to 1994

The effect of the filter upon the logarithmic consumption series can be see by
comparing the periodograms of Figs. 3 and 4. The periodogram of the sample
comprised by the vector y = [y0,y1, . . . ,yT−1]′ is the sequence of the coefficients
ρ2

j = α2
j +β 2

j , scaled by T/2, that come from the Fourier expression

yt =
[T/2]

∑
j=0

ρ j cos(ω jt−θ j) (1)

=
[T/2]

∑
j=0

{
α j cos(ω jt)+β j sin(ω jt)

}
,
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Fig. 4 The periodogram of the filtered series ∇4y(t) representing the annual growth rate of con-
sumption

where T is the sample size and [T/2] is the integral part of T/2. Here, ω j = 2π j/T is
the frequency of a sinusoid that takes j periods to complete a cycle. Its amplitude is
ρ j, whilst ρ2

j /2 is its power which is, in other words, its contribution to the variance
of the sample.

In the second expression, the parameters are α j = ρ j cosθ j and β j = ρ j sinθ j,
with β0 = 0 and β[T/2] = 0 if T is an even number. We shall describe ρ j cos(ω jt−θ j)
as the jth sinusoidal element in the Fourier decomposition of the sample. (For a
detailed exposition, see Pollock [17]).

The most striking effect of the filtering is the diminution of the power at the fre-
quencies in the vicinity of zero, which is where the elements of the trend component
are to be found, and in the vicinities of π/2 and π , where the seasonal elements and
their harmonics are to be found. The degree of the amplification of the elements in
the vicinities of π/4 and 3π/4, which is evident in Fig. 4, can be judged in compar-
ison with a periodogram of the detrended data, presented in Fig. 5, which has been
obtained by fitting a linear trend.

The methods for detrending and deseasonalising the data that we shall propose
are designed to remove the minimum amount of information from the processed
series. They avoid the distortions that are induced by the differencing operator.

3 The Error-Correction Model and its Implications

The consumption function of Davidson et al. [1] was calculated originally on a
data set from the U.K. running from 1958 to 1970, which was a period of relative
economic quiescence. When the function is estimated for an extended data period,
running from 1956 to 1994, it yields the following results:
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∇4y(t) = 0.70∇4x(t)−0.156∇∇4x(t)+0.068{x(t−4)− y(t−4)}+ e(t)
(0.40) (0.60) (0.15) (2)

R2 = 0.77 D–W = 0.920.

Here y(t) and x(t) represent, respectively, the logarithms of the consumption
sequence and the income sequence, without seasonal adjustment. The numbers
in parentheses below the estimated coefficients are standard errors. The operators
∇ = 1−L and ∇4 = 1−L4 are, respectively, the one-period and the four-period dif-
ference operator. Therefore, ∇4y(t) and ∇4x(t) represent the annual growth rates of
consumption and income, whilst ∇1∇4x(t) represents the acceleration or decelera-
tion in the growth of income.

This specification reflects an awareness of the difficulty of drawing meaningful
inferences from a regression equation that incorporates nonstationary variables. The
difference operators are effective in reducing the sequences x(t) and y(t) to station-
arity. The synthetic sequence x(t− 4)− y(t− 4) is also presumed to be stationary
by virtue of the cointegration of x(t) and y(t); and its role within the equation is to
provide an error-correction mechanism, which tends to eliminate any disproportion
that might arise between consumption and income.

The specification also bears the impress of some of the earlier experiences in
modelling the consumption function that we have described in the introduction. The
variable ∇1∇4x(t) with its associated negative-valued coefficient allows the growth
of consumption to lag behind the growth of income when the latter is accelerating.
This is the sort of response that the analysts of the late 1940’s and 1950’s, who were
intent on reconciling the Keynesian formulations with the empirical findings, were
at pains to model.

We can evaluate the roles played by the terms of the RHS of equation (2) by mod-
ifying the specification and by observing how the coefficients of the fitted regression
are affected and how the goodness of fit is affected.

The first modification is to replace x(t−4)−y(t−4) by a constant dummy vari-
able. The result is a slight change in the estimates of the remaining parameters of
the model and a negligible loss in the goodness of fit. This suggests that we can
dispense with the error-correction term at little cost:

∇4y(t) = 0.006+0.682∇4x(t)−0.160∇∇4x(t)+ e(t) (3)
(0.001) (0.53) (0.66)

R2 = 0.76 D–W = 0.93.

In this connection, we should note that several analysts, including Hylleberg et al.
[10], have found that the logarithmic series of consumption and income in the U.K.
fail a test for cointegration. This seems to fly is the face of the evident relatedness of
the two quantities. However, the finding may be taken as an indication that the rela-
tionship is not readily amenable to the linear dynamics of a simple error-correction
mechanism.
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We should also mention that, in a recent paper, Fenandez-Corugedo et al. [5]
have found evidence for an error-correction mechanism within a vector autoregres-
sive system of four equations. Their system has non-durable consumption, labour
or non-assets income, the stock of assets and the relative price of durables to non-
durables as its variables. However, the factor loadings on the single cointegrating
vector indicate that the correction mechanism is present only in the equation of the
assets. It is not present in the consumption equation.

The second modification is to eliminate both the error-correction term and the
acceleration term ∇1∇4x(t) and to observe how well the annual growth in consump-
tion is explained by the annual growth of income. In this case, we observe that the
coefficient of determination of the fitted regression is 0.72, compared with 0.77 for
the fully specified model, while the error sum of squares increases to 0.053 from
0.044. We conclude from this that the acceleration term does have some effect:

∇4y(t) = 0.769∇4x(t)+ e(t) (4)
R2 = 0.72 D–W = 1.15.

The fact that the acceleration term enters the consumption function with a nega-
tive coefficient seem to suggest that the response of consumption to rapid changes
in income is laggardly more often that not. This would fit well with the various
hypotheses regarding consumer behaviour that have been mentioned in the intro-
duction. However, the significance of the estimated coefficient is not very great and
it is considerably reduced when the coefficient is estimated using only the first third
of the data. We shall reconsider the acceleration term at the end of the paper, where
we shall discover that its effect is reversed when we analyse the relationship between
the trends depicted in Fig. 1.

4 A Fourier Method for Detrending the Data

We have seen how the difference operator 1−L and the four-point summation op-
erator S4 = 1+L+L2 +L3 are liable to remove a substantial part of the information
that is contained in the data of the consumption series. In this section and the next,
we shall propose alternative devices for detrending and for deseasonalising the data
that leave much of the information intact. Our basic objective is to remove from the
data only those Fourier elements that contribute to the trend or to the seasonality,
and to leave the other components of the data unaffected.

A normal requirement for the use of the standard methods of statistical Fourier
analysis is that the data in question should be generated by stationary processes, and
this requirement is a hardly ever satisfied in econometric analysis. To understand
the problems that can arise in applying Fourier methods to trended data, one must
recognise that, in analysing a finite data sequence, one is making the implicit as-
sumption that it represents a single cycle of a periodic function that is defined over
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the entire set of positive and negative integers. This function may be described as
the periodic extension of the data sequence.

In the case of a trended sequence, there are bound to be radical disjunctions in the
periodic function where one replication of the data sequence ends and another be-
gins. Thus, for example, if the data follow a linear trend, then the function that is the
subject of the Fourier analysis will have the appearance of the serrated edge of a saw
blade. The saw tooth function has a spectrum that extends across the entire range
of frequencies, with ordinates whose absolute values are inversely proportional to
the corresponding frequencies—see for example, Hamming [8]. These effects of the
trend are liable to be confounded with the spectral effects of the other motions that
are present in the data.

The problem is resolved by using an approach that is familiar from the forecast-
ing of ARIMA processes. We begin by differencing the data sequence as many times
d as may be necessary to reduce it to a state of stationarity. The income and con-
sumption data need to be differenced twice, giving d = 2. We proceed to eliminate
the low-frequency sinusoidal elements from the differenced data. Then, by cumu-
lating or ‘integrating’ the resulting sequence as many times as the original data has
been differenced, we will obtain the detrended version of the data. The trend of the
data can be obtained, likewise, by cumulating the sum of the low-frequency ele-
ments that have been extracted from the differenced data.

To represent these processes, we need to employ the matrix versions of the dif-
ference operator and of the summation or cumulation operator, which is its inverse.
Let the identity matrix of order T be denoted by

IT = [e0,e1, . . . ,eT−1], (5)

where e j represents a column vector that contains a single unit preceded by j zeros
and followed by T − j−1 zeros. Then, the finite-sample lag operator is the matrix

LT = [e1, . . . ,eT−1,0], (6)

which has units on the first subdiagonal and zeros elsewhere. The matrix that takes
the d-th difference of a vector of order T is given by Δ = (I−LT )d .

Taking differences within a vector entails a loss of information. Therefore, if
Δ = [Q∗,Q]′, where Q′∗ has d rows, then the d-th differences of a vector y =
[y0, . . . ,yT−1]′ are the elements of the vector g = [gd , . . . ,gT−1]′ that is found in
the equation [

g∗
g

]
=

[
Q′∗
Q′

]
y. (7)

The vector g∗= Q′∗y in this equation, which is a transform of the vector [y0, . . . ,yd−1]
of the leading elements of y, is liable to be discarded.

The inverse of the difference matrix is the matrix Δ−1 = Σ = [S∗,S]. This has the
effect that

S∗g∗+Sg = y. (8)
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The vector y can be recovered from the differenced vector g only if the vector g∗ of
initial conditions is provided.

The elements of the vector g = [gd , . . . ,gT−1]′ of the differenced data have the
following Fourier expression:

gt =
[T/2]

∑
j=d

{
γ j cos(ω jt)+δ j sin(ω jt)

}
. (9)

Let ωC be the cut-off frequency that separates the Fourier elements of the trend
component from the remainder. Then, by setting γ j,δ j = 0 when ω j > ωC, we
generate the elements of z = [zd , . . . ,zT−1]′, which is the differenced trend com-
ponent, whereas, by setting γ j,δ j = 0 when ω j ≤ ωc, we generate the elements of
k = [kd , . . . ,kT−1]′, which is the remainder.

The vector z requires to be cumulated to form x = S∗z∗+Sz, which is the estimate
of the tend. The initial conditions in z∗ should be chosen so as to ensure that the trend
is aligned with the data as closely as possible. The criterion is

Minimise (y−S∗z∗ −Sz)′(y−S∗z∗ −Sz) with respect to z∗. (10)

The solution for the starting values is

z∗ = (S′∗S∗)
−1S′∗(y−Sz). (11)

The cut-off point ωC marks the highest frequency amongst the Fourier elements
that constitute the trend. The decision of where to place this point should be guided
by an appraisal of the spectral structure of the data. Fig. 5 shows the periodogram
of the residual sequence obtained by fitting a linear trend through the logarithms of
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Fig. 5 The periodogram of the residuals obtained by fitting a linear trend through the logarithmic
consumption data of Fig. 1
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Fig. 6 The detrended consumption series

the consumption series by least-squares regression. The regression residuals contain
exactly the same information as does the twice differenced data sequence; and their
periodogram serves to reveal the low-frequency spectral structure of the data. Within
the peridogram of the twice-differenced data, this structure is so severely attenuated
as to be virtually invisible.

We choose to place the cut-off point at ωC = π/8 radians, which is in a dead
space of the periodogram where there are no ordinates of any significant size. Given
that the observations are at quarterly intervals, this implies that the trend includes
all cycles of four years duration of more. The detrended consumption series is show
in Fig. 6. A similar analysis of the income data suggests that the same cut-off point
is appropriate. The trends in the consumption and income series that have been
calculated on this basis are depicted in Fig. 1.

5 A Fourier Method for Deseasonalising the Data

As well as removing the trend from the data, we also wish to remove the seasonal
fluctuations. This can be done in much the same way. At its simplest, we can define
the differenced seasonal component to consist only of those sinusoidal elements,
extracted from the differenced data {gd , . . . ,gT−1}, that are at the seasonal frequency
and at the harmonically related frequencies. Let N = T − d, where d is the degree
of differencing. Then, in the case of quarterly data, and on the supposition that N is
an even number, the component would be described by the equation

ut = αN/4 cos
(πt

2

)
+βN/4 sin

(πt
2

)
+αN/2(−1)t , (12)
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wherein

αN/4 =
2
N ∑

t
gt cos

(πt
2

)
, (13)

βN/4 =
2
N ∑

t
gt sin

(πt
2

)
,

αN/2 =
1
N ∑

t
gt(−1)t .

In fact, this scheme is equivalent to one that uses seasonal dummy variables with
the constraint that their associated coefficients must sum to zero. It will generate a
pattern of seasonal variation that is the same for every year.

A more complex pattern of seasonality, which will vary gradually over the years,
could be obtained by adopting a linear stochastic model with unit roots at the sea-
sonal frequencies or by combining such a model with a “deterministic” trigono-
metrical or dummy-variable model in the manner suggested by Osborn et al. [16].
However, the desired effect can also be achieved by comprising within the Fourier
sum a set of sinusoidal elements whose frequencies are adjacent to the seasonal
frequency and to its harmonics.

The combined effect of two elements at adjacent frequencies depends upon
whether their sinusoids are in phase, in which case they reinforce each other, or
out of phase, in which case they tend to interfere with each other destructively. Two
sinusoids whose frequencies are separated by θ radians will take a total of τ = 2π/θ
periods to move from constructive interference to destructive interference and back
again. By this device, a pattern can be generated that evolves over the length of the
sample.

It remains to describe how the seasonal elements that have been extracted from
the differenced data are to be cumulated to provide an estimate of the seasonal com-
ponent. It seems reasonable to chose the starting values so as to minimise the sum
of squares of the seasonal fluctuations. Let w = S∗u∗+ Su be the cumulated sea-
sonal component, where u∗ is a vector of d starting values and u is the vector of
the seasonal component that has been extracted from the differenced data. Then the
criterion is

Minimise (S∗u∗+Su)′(S∗u∗+Su) with respect to u∗. (14)

The solution for the starting values is

u∗ =−(S′∗S∗)
−1S′∗Su. (15)

Figure 7 shows the estimated seasonal component of the consumption series.
The seasonal series is synthesised from the trigonometric functions at the seasonal
frequency of π/2 and at its harmonic frequency of π , together with a handful of
elements at the adjacent non-seasonal frequencies. It comprises two elements below
π/2 and one above, and it also comprises one element below π . These choices have
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Fig. 7 The estimated seasonal component of the consumption series

resulted from an analysis of the periodogram of Fig. 5. Figure 2 indicates, via the
dotted lines, the frequencies that are present in the detrended and deseasonalised
data.

The seasonal component of consumption accounts for the 93 percent of the vari-
ation of the detrended consumption series. When the seasonal component is esti-
mated for the income series using the same set of frequencies, it accounts for only
46 percent of the variance of the corresponding detrended series.

6 A Re-appraisal of the Income–Consumption Relationship

In the previous section, we have described some new techniques for detrending the
data and for extracting the seasonal component. We have discovered that the sea-
sonal fluctuations in consumption are of a greater amplitude than those of the in-
come series. They also appear to be more regular. It is also the case that Hylleberg
et al. [10] failed to find cointegration between the two logarithmic series at the sea-
sonal frequencies. These circumstances persuade us to reject the notion that the
fluctuations have been transferred from income to consumption. It seems more rea-
sonable to treat the seasonal fluctuations in both series as if they derive from external
influences. Therefore, in seeking to establish a relationship between the detrended
series, it is best to work with the deseasonalised versions.

When we turn to the deseasonalised and detrended consumption series, we find
that its variance amounts to only 7 percent of the variance of the detrended series.
It is hardly worthwhile to attempt to model this series. Indeed, the periodogram
of Fig. 5 also makes it clear that there is very little information in the data of the
consumption sequence that is not attributable either to the trend or to the seasonal
component.
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If it is accepted that the seasonal component needs no further explanation, then
attention may be confined to the trend. The use of ordinary linear statistical methods
dictates that any explanation of the consumption trend is bound to be in terms of data
elements whose frequencies are bounded by zero and by the cut-off point of π/8
radians. That is to say, the trend in consumption can only be explained by similar
trends in other variables.

Therefore, we turn to the essential parts of the income and the consumption se-
ries, which are their trends. We take the annual differences of the logarithmic trends
by applying the operator ∇4 = I− L4; and the results are a pair of smooth series
that represent the annual growth rates of income and consumption. By combining
the two series in one graph, which is Fig. 8, we are able to see that, in the main, the
fluctuations in the growth in consumption precede similar fluctuations in the growth
of income.

It may be recalled the income-acceleration term ∇∇4x(t) enters the consumption
functions of equations (1) and (2) with a negative coefficient. This is in spite of
the clear indication of Fig. 8 that the consumption-growth series leads the income-
growth series. However, when the smoothed growth series ∇4ŷ(t) and ∇4x̂(t) of
Fig. 8 are used in these equations in place of ∇4x(t) and ∇4y(t), the sign on the
coefficient of the acceleration term is reversed:

∇4ŷ(t) = 0.006+0.689∇4x̂(t)+1.055∇∇4x̂(t)+ e(t) (16)
(0.001) (0.44) (0.170)

R2 = 0.87.

The explanation of this anomaly must lie in the nature of the gain of the four-
period difference filter ∇4 = I− L4, which is represented in Fig. 2. The effect of

0

0.02

0.04

0.06

0.08

−0.02

1960 1970 1980 1990

Fig. 8 The annual differences of the trend of the logarithmic consumption series (solid line) and
of the trend of the logarithmic income series (broken line)
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the filter is to amplify some of the minor components of the data that lie in the
dead spaces of the periodogram of Fig. 5 on either side of the frequencies π/4
and 3π/4. Thus it can be concluded that, notwithstanding its specious justification,
the negative acceleration term is an artefact of the differencing filter. This finding
conflicts with the belief that consumption responds in a laggardly fashion to rapid
changes in income.

The perception that the series of the annual growth rate in consumption is lead-
ing the corresponding series in income can be reaffirmed within the context of a bi-
variate vector autoregressive model. The model must be applied to the unsmoothed
growth rates obtained by taking the four-period differences of the logarithms of the
two series. It cannot be applied directly to the smoothed growth-rate series of Fig. 8,
which have band-limited spectra. The reason is that an autoregressive model presup-
poses a spectral density function that is nonzero everywhere in the frequency range
except on a set of measure zero.

The bivariate vector autoregressive model takes the form of

∇4y(t) = cy +
p

∑
i=1

φi∇4y(t− i)+
p

∑
i=1

βi∇4x(t− i)+ ε(t), (17)

∇4x(t) = cx +
p

∑
i=1

ψi∇4x(t− i)+
p

∑
i=1

δi∇4y(t− i)+η(t). (18)

The terms cx and cy stand for small constants, which are eliminated from the model
when the differenced series are replaced by deviations about their mean values.
The deviations may be denoted by ỹ(t) = ∇4y(t)−E{∇4y(t)} and x̃(t) = ∇4x(t)−
E{∇4x(t)}. The expected values can be represented by the corresponding sample
means.

In the case of p = 2, the estimated equations are

ỹ(t) = 0.51ỹ(t−1)+0.34ỹ(t−2)+0.27x̃(t−1)−0.38x̃(t−2)+ e(t),
(0.86) (0.87) (0.73) (0.72) (19)

x̃(t) = 0.52x̃(t−1)−0.10x̃(t−2)+0.16ỹ(t−1)+0.25ỹ(t−2)+h(t).
(0.93) (0.92) (0.11) (0.11) (20)

To facilitate the analysis of the model, it is helpful to write the equations (17)
and (18) in a more summary notation that uses polynomials in the lag operator to
represent the various sums. Thus

φ(L)ỹ(t)−β (L)x̃(t) = ε(t), (21)

−δ (L)ỹ(t)+ψ(L)x̃(t) = η(t), (22)

where φ(L) = 1− φ1L− ·· ·− φpLp, β (L) = β1L + · · ·+βpLp, ψ(L) = 1−ψ1L−
·· ·−ψpLp and δ (L) = δ1L+ · · ·+δpLp.
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The notion that the sequence ỹ(t) is driving the sequence x̃(t) would be
substantiated if the influence of the innovations sequence ε(t) upon ỹ(t) were
found to be stronger than the influence of η(t) upon the corresponding sequence
x̃(t). The matter can be investigated via the moving-average forms of the equations,
which express x̃(t) and ỹ(t) as functions only of the innovations sequences ε(t) and
η(t). The moving-average equations, which are obtained by inverting equations
(21) and (22) jointly, are

ỹ(t) =
ψ(L)
π(L)

ε(t)+
β (L)
π(L)

η(t), (23)

x̃(t) =
δ (L)
π(L)

ε(t)+
φ(L)
π(L)

η(t), (24)

where π(L) = φ(L)ψ(L)−β (L)δ (L).
Since there is liable to be a degree of contemporaneous correlation between in-

novations sequences, the variance of the observable sequences ỹ(t) and x̃(t) will not
equal the sum of the variances of the components in ε(t) and η(t) on the RHS. The
problem can be overcome by reparametrising the two equations so that each is ex-
pressed in terms of a pair of uncorrelated innovations. Such a procedure has been
adopted by Geweke [4], for example.

Consider the innovation sequence η(t) within the context of equation (23), which
is for ỹ(t). We may decompose η(t) into a component that lies in the space spanned
by ε(t) and a component ζ (t) that is in the orthogonal complement of the space.
Thus

η(t) =
σηε

σ2
ε
ε(t)+

{
η(t)− σηε

σ2
ε
ε(t)

}
(25)

=
σηε

σ2
ε
ε(t)+ζ (t),

where σ2
ε = V{ε(t)} is the variance of the consumption innovations and σ2

εη =
C{ε(t),η(t)} is the covariance of the consumption and income innovations. Substi-
tuting (25) in equation (23) and combining the terms in ε(t) gives

ỹ(t) =
α(L)
π(L)

ε(t)+
β (L)
π(L)

ζ (t), (26)

where
α(L) = ψ(L)+

σηε

σ2
ε
β (L). (27)

We may describe the sequence ε(t) as the auto-innovations of ỹ(t) and ζ (t) as the
allo-innovations.

By a similar reparametrisation, the equation (24) in x̃(t) becomes

x̃(t) =
γ(L)
π(L)

η(t)+
δ (L)
π(L)

ξ (t), (28)
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Fig. 9 The spectrum of the consumption growth sequence ∇4y(t) (the outer envelope) and that of
its auto-innovation component {α(L)/π(L)}ε(t) (the inner envelope)

where

γ(L) = φ(L)+
σηε

σ2
η
δ (L), (29)

ξ (t) = ε(t)− σηε

σ2
η
η(t),

and where η(t) and ξ (t) are mutually uncorrelated. These are, respectively, the
auto-innovations and the allo-innovations of x̃(t).

The relative influences of ε(t) on ỹ(t) and of η(t) on x̃(t) can now be assessed by
an analysis of the corresponding spectral density functions. Figure 9 shows the spec-
trum of ỹ(t) together with that of its auto-innovation component {α(L)/π(L)}ε(t),
which is the lower envelope. Figure 10 shows the spectrum of x̃(t) together with that
of its auto-innovation component {γ(L)/π(L)}η(t).

From a comparison of the figures, it is clear that the innovation sequence ε(t)
accounts for a much larger proportion of ỹ(t) than η(t) does of x̃(t). Thus, the con-
sumption growth series appears to be driven largely by its auto innovations. These
innovations also enter the income growth series to the extent that the latter is not ac-
counted for by its auto innovations. Figure 10 shows that the extent is considerable.

The fact the consumption innovations play a large part in driving the bivari-
ate system implies that the consumption function of Davidson et al. [1], which is
equation (2), cannot be properly construed as a structural econometric relationship.
For it implies that the estimates are bound to suffer from a simultaneous-equations
bias. Nevertheless, in so far as the mechanisms generating the data remain un-
changed, the above-mentioned function will retain its status as an excellent predictor
of the growth rate of consumption that is based on a parsimonious information set.
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Fig. 10 The spectrum of the income growth sequence ∇4x(t) (the outer envelope) and that of its
auto-innovation component {γ(L)/π(L)}η(t) (the inner envelope)

7 Conclusions

The traditional macroeconomic consumption function depicts a delayed response
of consumption spending to changes in income; and many analysts would expect
this relationship to be readily discernible in the macroeconomic data. Instead, the
data seem to reflect a delayed response of aggregate income to autonomous changes
in consumption. Although the two responses can easily coexist, it is the dominant
response that is liable to be discerned in the data at first sight.

A crucial question is whether both responses can be successfully disentangled
from the macroeconomics data. The construction of a bivariate autoregressive model
is the first step in the process of their disentanglement. However, given the paucity
of the information contained in the data, one is inclined to doubt whether the process
can be carried much further. Indeed, the efforts that have been devoted to the microe-
conomic analysis of consumer behaviour in the last twenty years can be construed
as a reaction to limited prospects facing macroeconomic investigations.

Much has already been accomplished in the microeconomic analysis of con-
sumer behaviour; and an excellent account of some of the numerous influ-
ences that affect consumer behaviour directly has been provided recently by
Muellbauer and Latimore [15]. However, what is lacking is a methodology that
would enable the consumption behaviour of identifiable social and economic groups
to be aggregated into a macroeconomic consumption function.

We have found that, within a bivariate autoregressive system designed to ex-
plain the growth rates on income and consumption, the innovations sequence of the
consumption equation dominates the corresponding innovations sequence of the in-
come equation. Thus the fluctuations in the growth rate of consumption have been
depicted mainly as the result of autonomous influences.
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Although the innovations sequences are an artefact of the statistical analysis, they
are not entirely devoid of worldly connotations. By a detailed study of the historical
circumstances, we should be able to relate the consumption innovations to the fiscal
policies of the central governments, the state of the financial markets, the rate of
inflation, the political and social climate, and to much else besides. Although some
of these influences have been included in macroeconomic consumption functions,
it seems that, in the main, there has been a remarkable oversight of the circumstan-
tial details in most attempts at explaining the aggregate level of consumption. The
present analysis is, regrettably, no exception.
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Improved Estimation Strategy in Multi-Factor
Vasicek Model

S. Ejaz Ahmed, Sévérien Nkurunziza, and Shuangzhe Liu

Abstract We consider simultaneous estimation of the drift parameters of multivari-
ate Ornstein-Uhlebeck process. In this paper, we develop an improved estimation
methodology for the drift parameters when homogeneity of several such parame-
ters may hold. However, it is possible that the information regarding the equality
of these parameters may not be accurate. In this context, we consider Stein-rule (or
shrinkage) estimators to improve upon the performance of the classical maximum
likelihood estimator (MLE). The relative dominance picture of the proposed esti-
mators are explored and assessed under an asymptotic distributional quadratic risk
criterion. For practical arguments, a simulation study is conducted which illustrates
the behavior of the suggested method for small and moderate length of time ob-
servation period. More importantly, both analytical and simulation results indicate
that estimators based on shrinkage principle not only give an excellent estimation
accuracy but outperform the likelihood estimation uniformly.

1 Introduction

The Ornstein-Uhlenbeck process has been extensively and successfully used in
modelling of different phenomenon such as in biology (Engen and Sæther [8]), in
ecology (Engen et al. [9], Froda and Nkurunziza [11]), in finance (Schöbel and Zhu
[22]). Particulary in field of finance, the Ornstein-Uhlenbeck process is successfully
implemented in modelling the term structure of the interest rates. For this reason it
is mostly known as Vasicek [27] process in the related literarure. The Vasicek model
describes the interaction between equilibrium value of what the interest rate should
be and a stochastic movements into the interest rate that results of the unpredictable
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economic environment (see for e.g. Vasicek [27], Abu-Mostafa [1]). More realisti-
cally, the term structure of the interest rates is embedded in a large macroeconomic
system (Langetieg [17]). To this end, Langetieg [17] developed a multivariate model
of the term structure of interest rate, so-called “multi-factors Vasicek model”. Thus,
as in Langetieg [17], we consider p instantaneous interest rates, r1(t),r2(t), . . . ,rp(t)
which are governed by the stochastic differential equation (SDE) system

drk(t) = θk (αk− rk(t))dt +σkdWk(t), k = 1,2, . . . , p, (1)

where for each k = 1,2, . . . , p, αk > 0 denotes a steady-state interest rate (or the
long-term mean), θk > 0 termed as a speed of converging to the steady-state, σk > 0
is a volatility or “randomness level” and {Wk(t), t � 0} is a Wiener process. Con-
sequently, for each k, θk (αk− rk(t)) represents the drift term and thus, αk and θk
are so-called the drift parameters. On the other hand, σkdWk(t) is the diffusion
term of the process with σk as the diffusion parameter. In this paper, {Wk, t � 0},
k = 1,2, . . . , p are Wiener processes with possible correlation.

Interestingly, the interest rate Vasicek model has been extensively used in related
literature. For example, this model was used to analyze the maturity structure of the
public debt both at the Bank of Canada and at the Department of Finance, and in
Danish National Bank, see Georges [12]. Abu-Mostafa [1] calibrates the correlated
multi-factors Vasicek model of interest rates, and then applied it to Japanese Yen
swaps market and U.S. Dollar yield market.

From a statistical perspective, Liptser and Shiryayev [20], Basawa and Prakasa
Rao [6] and Kutoyants [16] considered the estimation of drift parameters of the uni-
variate version of model (1) and derived the maximum likelihood estimator (MLE).
In this communication, we are interested to form an alternative estimation strategy
which performs better than the existing likelihood estimation method of the drift
parameters of multivariate Vasicek (or Ornstein-Uhlenbeck) process.

Here the parameter of interest is the speed of converging to the steady-state,
i.e., θk. Further, we assume that steady-state interest rate α is known. In this case,
Xk(t) = rk(t)−αk. Then, from the multi-factors Vasicek model (1), we get

dXk(t) =−θkXk(t)dt +σkdWk(t), (2)

where θk > 0, σk > 0. Without loss of generality, we assume that {Wk(t), t � 0,
k = 1,2 . . . , p} is a p-dimensional Wiener process. Indeed, from p-Wiener pro-
cesses pairwise jointly Gaussian with a non-zero correlation coefficient, one can
obtain p independent Wiener process. In practice, the observations are collected
at discrete times 0 = t0 < t1 < t2 < · · · < tn = T and thus, the continuous time
modelling is derived through some approximations. Indeed, our statistical proce-
dure is applied by replacing each stochastic integral by its corresponding discrete
Riemann-Îto sum. Theoretically, it is well known that the resulting new estimator is
asymptotically equivalent to the original estimator obtained under continuous time
sampling (see e.g. Le Breton [18]). Of course, as discussed in Dacunha-Castelle
and Florens-Zmirou [7] or Florens-Zmirou [10] there is a loss of information due to
discretization.
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In this paper, we consider the simultaneous estimation problem of the drift pa-
rameter vector θθθ where θθθ = (θ1,θ2, . . . ,θp)

′. Further, it is suspected that

θ1 = θ2 = · · ·= θp

or nearly equal. Thus, we consider the situations when all the parameters may be
equal. This kind of situation may arise in a short time horizon (high-speed factors).
Alternatively, the data was collected from various sources under similar conditions.
Hence, under these situations it is reasonable to suspect the homogeneity of the sev-
eral drift parameters. Thus, the main focus of this work is to suggest some estimators
of θθθ with high estimation accuracy when homogeneity of several drift parameters
may hold. In passing, an asymptotic test for the equality of parameters is also sug-
gested. Consequently, we extend the single factor inference problem into a more
general form of the Vasicek model, the multi-factors model. In addition, an alterna-
tive estimator of variance parameters is also suggested.

The rest of this paper is organized as follows. Section 2 is devoted to testing
problem of the equality of several drift parameters. In section 3, we present the
shrinkage estimation strategy and outline its supremacy over the MLE. A simulation
study is carried out in Section 4. Finally, section 5 offers some concluding remarks.
The technical results are presented in the Appendix for a smooth reading of the
paper.

2 Testing the Homogeneity of the Drift Parameters

Let {X1(t),0 � t � T}, {X2(t),0 � t � T},. . . ,
{

Xp(t),0 � t � T
}

be Ornstein-
Uhlenbeck processes (Kutoyants [16], p. 51, Steele [24], p. 140) whose diffusion
equations are given by

dXk(t) =−θkXk(t)dt +σkdWk(t) Xk(0) fixed , (3)

where θk > 0, σk > 0, and {Wk(t),0 � t � T} are p-independent Wiener processes.
Further, let θθθ be a p-column vector given by θθθ = (θ1,θ2, . . . ,θp)

′ , and let Σ be
diagonal matrix whose diagonal entrees are σ2

1 ,σ2
2 , . . . ,σ2

p , i.e.,
ΣΣΣ = diag

(
σ2

1 ,σ2
2 , . . . ,σ2

p
)
. Also, let XXX(t) and WWW (t) be column vectors given by

XXX(t) = (X1(t),X2(t), . . . ,Xp(t))
′ , WWW (t) = (W1(t),W2(t), . . . ,Wp(t))

′

and let VVV (t) = diag(X1(t),X2(t), . . . ,Xp(t)) ,

for 0 � t � T . From relation (3), we get

dXXX(t) =−VVV (t)θθθdt +Σ
1
2 dWWW (t), 0 � t � T . (4)
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We consider the following testing problem

H0 : θ1 = θ2 = · · ·= θp versus H1 : θ j �= θk for some 1 � j < k � p. (5)

Noting that the MLE established here corresponds to that given in Lipter and
Shiryayev ([20], chapter 17, p. 206-207) or in Kutoyants ([16], p. 63), for the uni-
variate case. Hence, we extend the univariate estimation problem to a multivariate
situation. Let

UUUT =
(∫ T

0
X1(t)dX1(t),

∫ T

0
X2(t)dX2(t), . . . ,

∫ T

0
Xp(t)dXp(t)

)′
,

DDDT =
∫ T

0
VVV 2(t)dt, θ̂θθ

∗
=−DDD−1

T UUUT =
(
θ̂ ∗1 , θ̂ ∗2 , . . . , θ̂ ∗p

)′
. (6)

Also, let z+ = max(z,0). Conditionally to XXX0, let θ̂θθ be maximum likelihood estima-
tor of θθθ satisfying the model (4) and θ̃θθ be the restricted MLE (RMLE) of θθθ under
H0.

Proposition 1. Let eeep be a p-column vector whose all entrees are equal to 1. We
have

θ̂θθ =
(
θ̂ ∗+1 , θ̂ ∗+2 , . . . , θ̂ ∗+p

)′
and θ̃θθ =

(
eee′pΣ−1DDDT eeep

)−1
eeepeee′pΣ−1DDDT θ̂θθ . (7)

The proof follows from Proposition 4 which is given in the Appendix.
It is established that θ̂θθ and θ̃θθ are strongly consistent for θθθ (see Appendix, Propo-

sition 5). Moreover, these estimators are asymptotically normal as T tends to infinity
(see, Appendix, Proposition 6). Thus, we suggest the following test for the testing
problem (5), when Σ is known,

Ψ =

⎧⎨
⎩

1 if T
(
θ̂θθ − θ̃θθ

)′
Σ−1

(
θ̂θθ − θ̃θθ

)
> χ2

p−1;α

0 if T
(
θ̂θθ − θ̃θθ

)′
Σ−1

(
θ̂θθ − θ̃θθ

)
< χ2

p−1;α ,
(8)

where α is fixed and 0 < α < 1. Also, we denote by χ2
p−1, the chi-square random

variable with p−1 degrees of freedom and

Pr
{
χ2

p−1 > χ2
p−1;α

}
= α.

When Σ is unknown, the test (8) can be modified by replacing Σ by a its strongly
consistent estimator. Later, we prove that the test Ψ is asymptotically α-level. Fur-
ther, the test obtained for the unknown Σ case has asymptotically the same level α ,
and it is as powerful as the testΨ .

Corollary 1. Under the model (4), the testΨ in (8) is asymptotically α-level test for
the testing problem (5).
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Proof By Corollary 4 in the Appendix, we have

ξξξ ′TΣ
−1ξξξ T

L−−−→
T→∞

χ2
p−1,

and the rest of proof follows directly.
Furthermore, while for the diffusion process (2), Σ is known (equals to the

quadratic variation), for the corresponding incomplete sample paths, the covariance
matrix Σ becomes unknown. Thus, Σ needs to be estimated in order to compute θ̂θθ
and the test statistic given in (8). We replace Σ by its corresponding strongly con-
sistent estimator Σ̂ . Then by Slutsky theorem, the corresponding new estimators are
strongly consistent and asymptotically normal.

Now, we suggest an alternative estimator for (σ1,σ2, . . . ,σp)
′, that is discrete

Riemann-Îto sums corresponding to

(σ̂1, σ̂2, . . . , σ̂p)
′ where σ̂2

i =
X2

i (T )
T
− 2

T

∫ T

0
Xi(t)dXi(t).

Further, if σ1 = σ2 = · · ·= σp = σ , then the common value σ2 is estimated by

σ̂2 =
1
p

p

∑
i=1

(
X2

i (T )
T
− 2

T

∫ T

0
Xi(t)dXi(t)

)
.

Hence

Σ̂ = diag
(
σ̂2

1 , σ̂2
2 , . . . , σ̂2

p
)

or Σ̃ = σ̂2Ip. (9)

Proposition 2. Assume that the model (4) holds. Then,

(i) Σ̂ a.s.−−−→
T→∞

Σ and for any 0 < ν < 1, T ν
(
Σ̂ −Σ

)
a.s.−−−→

T→∞
0;

(ii) if E
{
‖XXX(0)‖2

}
< ∞ then lim

T→∞
E
{∥∥∥Σ̂ −Σ

∥∥∥2
}

= 0.

The proof of Proposition 2 follows from standard stochastic calculus techniques.
Also, see for example Nkurunziza and Ahmed [21]. Also, from Proposition 2, we
note that the suggested estimator Σ̂ converges faster than the classical estimator
based on quadratic variation. Since the strongly consistency and normality proper-
ties of θ̂θθ and θ̃θθ do not change when Σ is replaced by Σ̂ , for the brevity sake, we treat
Σ as known in the remaining discussions. In the following section, we showcase the
main contribution of the paper.

3 James-Stein type Shrinkage Estimation

In this section, following Ahmed [4], we consider two James-Stein (J-S) type shrink-

age estimators of the drift parameters. The J-S type shrinkage estimator (SE) θ̂
S

of
θ is defined as

θ̂
S
= θ̃ +{1− cψ−1}(θ̂ − θ̃), c ∈ [0,2(p−2)), p ∈ [3,∞), (10)
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and

ψ = T
(
θ̂θθ − θ̃θθ

)′
Σ−1

(
θ̂θθ − θ̃θθ

)
,

Note that ψ ≥ 0, and hence, for ψ < c⇐⇒ 1− cψ−1 < 0, that causes a possible
inversion of sign or over-shrinkage. The positive-rule shrinkage estimators (PSE)

control this drawback satisfactorily. The PSE
(
θ̂

S+)
is defined as

θ̂
S+

= θ̃ +{1− cψ−1}+
(
θ̂ − θ̃

)
, (11)

where z+ = max(0,z). Ahmed [4] recommended that the shrinkage estimator should
be used as a tool for developing the PSE and should not be used as an estimator in
its own right. In parametric setups, the SE, PSE, and other related estimators have
been extensively studied (Judge and Bock [13] and the references therein). Also, for
small sample, Trenkler and Trenkler [26], study some comparison criteria concern-
ing some biased estimators. Large sample properties of these estimators were stud-
ied by Sen [23], Ahmed [5] and others. Stigler [25] and Kubokawa [15] provide ex-
cellent reviews of (parametric) shrinkage estimators. Jurec̆ková and Sen [14] have an
extensive treatise of the asymptotic and interrelationships of robust estimators of lo-
cation, scale and regression parameters with due emphasis on Stein-rule estimators.

Having all these estimators defined, we need to stress on the regularity conditions
under which they have good performance characteristics. Unlike maximum likeli-
hood estimators θ̂ and θ̃ , these shrinkage estimators are not linear. Hence, even if
the distribution was a standard normal, the finite sample distribution theory of these
shrinkage estimators is not simple to obtain, for even normal ones. This difficulty
has been largely overcome by asymptotic methods (Ahmed and Saleh [3], Jurec̆ková
and Sen [14], and others). These asymptotic methods relate primarily to convergence
in distribution which may not generally guarantee convergence in quadratic risk.
This technicality has been taken care of by the introduction of asymptotic distribu-
tional risk (ADR) (Sen [23]), which, in turn, is based on the concept of a shrinking
neighborhood of the pivot for which the ADR serves a useful and interpretable role
in asymptotic risk analysis.

Finally, an interesting feature of this paper is that we consider the shrinkage
estimation of drift parameters in the multifactors model, a more general form of the
Vasicek model. Based on the reviewed literature, this kind of study is not available
for practitioner.

3.1 Asymptotic Properties

Let us consider the following local alternative for the testing problem (5)

KT : θθθ = θ̄eeep +
δδδ√
T

(12)
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where δδδ is a p-column vector with different direction than eeep. Also, we assume that
‖δ‖< ∞. Further, let

ϒ =
(
eee′pΣ−1eeep

)−1
eeepeee′p, δδδ ∗ = δδδ −ϒΣ−1δδδ , and let Σ ∗ = Σ −ϒ .

Let

ρρρT =
√

T
(
θ̂θθ − θ̄eeep

)
, ξξξ T =

√
T

(
θ̂θθ − θ̃θθ

)
, ζζζ T =

√
T

(
θ̃θθ − θ̄eeep

)
.

Proposition 3. Assume that the model (4) holds. Under the local alternative (12),

ρρρT
L−−−→

T→∞
Np (δδδ , Σ) and

(
ζζζ T
ξξξ T

)
L−−−→

T→∞
N2p

((
δδδ −δδδ ∗

δδδ ∗
)

,

(
ϒ 000
000 Σ ∗

))
.

The proof is given in the Appendix.

Corollary 2. Let Ξ = Σ−1−Σ−1
(
eee′pΣ−1eeep

)−1 eeepeee′pΣ−1. If (12) holds, then

ξξξ ′TΣ
−1ξξξ T

L−−−→
T→∞

χ2
p−1

(
δδδ ∗
′
Ξδδδ ∗

)
.

The proof follows from Proposition 3.
Finally, we establish Corollary 3 which gives the asymptotic power for the test

Ψ . To this end, let ΠΨ denote the power function of the testΨ .

Corollary 3. Under the conditions of Corollary 2, we have

lim
T→∞

ΠΨ

(
θθθ +

δδδ√
T

)
= Pr

{
χ2

p−1

(
δδδ ∗
′
Ξδδδ ∗

)
> χ2

p−1;α

(
δδδ ∗
′
Ξδδδ ∗

)}
.

The proof is obtained using Corollary 2.

Remark: The effective domain of risk dominance of PSE or SE over MLE is a
small neighborhood of the chosen pivot (viz., θ = θe′p); and as we make the obser-
vation period T larger and larger, this domain becomes narrower. The corollary 2
shows that for any fixed θ �= θeee′p,

ψ L−−−→
T→∞

χ2
p−1

(
δδδ ∗
′
Ξδδδ ∗

)
and T−1ψ L−−−→

T→∞
0 (13)

as such, the shrinkage factor cψ−1 = Op
(
T−1

)
, as T → ∞, so that asymptotically

there is no shrinkage effect. This justifies the choice of the usual Pitman type of
alternatives given in (12).

For an estimator θ̂
�

of θ , we confine ourselves to a quadratic loss function of the
form

L
(
θ̂

�
,θ ;W

)
=

[√
T
(
θ̂

�−θ
)]′

W
[√

T
(
θ̂

�−θ
)]

, (14)

where W is positive semi-definite (p.s.d). Using the distribution of
√

T
(
θ̂

�−θ
)

and taking the expected value both sides of (14), we get the expected loss that would
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be called the quadratic risk Ro
T

(
θ̂

�
,θ ;W

)
= trace

(
WΣ̂T

)
, where Σ̂T is the dis-

persion matrix of
√

T
(
θ̂

�−θ
)

. Whenever

lim
T→∞

Σ̂T = Σ

exists, Ro
T

(
θ̂

�
,θ ;W

)
→ Ro

(
θ̂

�
,θ ;W

)
= trace(WΣ), which is termed the asymp-

totic risk. In our setup, we denote the distribution of
√

T
(
θ̂

�−θ
)

by G̃T (u),

u ∈R
p. Suppose that G̃T → G̃ (at all points of continuity), as T → ∞, and let Σ G̃ be

the dispersion matrix of G̃. Then the ADR of θ̂
�

is defined as

Ro
(
θ̂

�
,θ ;W

)
= trace(WΣ G̃) . (15)

The asymptotic bias is defined as

B0
T

(
θ̂

�
,θ

)
= E

[√
T
(
θ̂

�−θ
)]

, (16)

Similarly, the asymptotic distributional bias (ADB) is

B0
T

(
θ̂

�
,θ

)
=

∫
. . .

∫
xdG̃T (x) −−−→

T→∞

(
B
(
θ̂

�
,θ

)
=

∫
. . .

∫
xdG̃(x)

)
. (17)

We present (without derivation) the results on SE and PSE. The proofs are similar
to that given in Ahmed [2]. Let Δ = δδδ ∗

′
Ξδδδ ∗ and let Hν(x ;Δ) = P{χ2

ν (Δ) ≤ x},
x ∈ R

+.

Theorem 1. Assume that Proposition 3 holds. Then, the ADB functions of the esti-
mators are given as follows:

B
(
θ̂ ,θ

)
= 0, B

(
θ̃ ,θ

)
=−δ , B

(
θ̂

S
,θ

)
=−δ (p−3)E

{
χ−2

p+1(Δ)
}

B
(
θ̂

S+
,β1

)
= −δ

[
Hp+1(p−3;Δ)+E{χ−2

p+1(Δ)I
(
χ2

p+1(Δ) > (p−3)
)]

.

(18)

Since for the ADB of θ̃ , θ̂
S

and θ̂
S+

, the component δ is common and they differ
only by scalar factors, it suffices to compare the scalar factors Δ only. The bias of

the θ̃ is an unbounded function of Δ . However, the bias function of both θ̂
S

and
θ̂

S+
are bounded in Δ . the ADB of θ̂

S
and θ̂

S+
starts from the origin at Δ = 0,

increases to a maximum, and then decreases towards 0. However, the bias curve of
θ̂

S+
remains below the curve of SE for all values of Δ .

Theorem 2. Assume that Proposition 3 holds. Then, the ADR functions of the esti-
mators are given as follows:
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R
(
θ̂ ,θ ;W

)
= trace(WΣ),

R
(
θ̃ ,θ ;W

)
= trace(WΣ)− trace(WΣ∗)+δ ∗′Wδ ∗,

R
(
θ̂

S
,θ ;W

)
= ADR(θ̂)+δ ∗′Wδ ∗(p2−3)E(χ−4

p+3(Δ))

−(p−3)trace(WΣ−){2E(χ−2
p+1(Δ))− (p−3)E(χ−4

p+1(Δ))},

(19)

R
(
θ̂

S+
,θ ;W

)
= ADR(θ̂

S
)+(p−3)trace(WΣ∗)

×
[
2E

{
χ−2

p+1(Δ)I(χ2
p+1(Δ)≤ p−3)

}
−(p−3)E

{
χ−4

p+1(Δ)I(χ2
p+1(Δ)≤ p−3)

}]
− trace(WΣ)Hp+1(p−2;Δ)
+δ ∗′Wδ ∗

{
2Hp+1(p−3;Δ)−Hp+3(p−3;Δ)

}
−(p−3)δ ∗′Wδ ∗

[
2E{χ−2

p+1(Δ))I(χ2
p+1(Δ)≤ p−3)}

−2E{χ−2
p+3(Δ)I(χ2

p+3(Δ)≤ p−3)}
+(p−2)E {χ−4

p+3(Δ)I(χ2
p+3(Δ)≤ p−2)}

]
.

(20)

The proof is similar to that given in Ahmed [2]. For a suitable choice of the matrix
W, risk dominance of the estimators are similar to those under normal theory and
can be summarized as follows:

(a) Indeed,
R(θ̂

S
,θ ;W) < trace(WΣ) for all Δ ∈ [0,∞),

hence providing greater estimation accuracy than MLE, beating the gold stan-
dard. The ADR function of SE is monotone in Δ , the smallest value of the risk is
achieved at Δ = 0 and the largest is trace(WΣ). Hence, θ̂

S
outshines the MLE,

hence is an admissible estimator with respect to MLE.

(b) θ̂
S+

is superior to θ̂
S

in the entire parameter space induced by Δ . Hence, it is

also superior to θ̂ . Most importantly, θ̂
S+

it prevents over-shrinking problem.

4 Simulation Study

An extensive Monte Carlo simulation study is conducted to assess the relative risk
performance of the all estimators to MLE. In this section, we only report detailed
results for p = 3 and p = 5 in an effort to save the space. We consider the null
hypothesis H0 : θ = θeee′p and the length of the time period of observation T = 30,
T = 50. The relative efficiency of the estimators with respect to θ̂ is defined by

RMSE =
risk

(
θ̂
)

risk(proposed estimator)
.
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(a) T = 30 and p = 3
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(b) T = 50 and p = 3
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(c) T = 30 and p = 5
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(d) T = 30 and p = 5

Fig. 1 Relative efficiency vs Δ

The results are graphically reported in Fig. 1(a)-1(b) for p = 3 and in Fig. 1(c)-1(d)
for p = 5. Graphically, Fig. 1 indicates that a reduction of 50% or more in the risk
seems quite realistic depending on the values of Δ and p.

We draw following conclusions:

(a) The behavior of the J-S type shrinkage estimator is robust and have risk-domi-
nance over the MLE.

(b) Comparing the above Figure 1(a)-1(b) to the following Figure 1(c)-1(d), it is
observed that for larger vales of p the risk reduction is substantial for shrinkage
estimators.

(c) The efficiency of θ̃ converges to 0 as Δ → ∞.
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5 Concluding Remarks and Outlook for the Future

The Ornstein-Uhlenbeck has paramount application in finance, specifically in mod-
elling the term structure of interest rates in a macro-economic context. We consider
the estimation problem for the drift parameter vector of a multivariate Ornstein-
Uhlenbeck process. In this context, we suggest shrinkage estimation strategy along
with the maximum likelihood estimator. Our suggested shrinkage estimators dom-
inate the MLE. Our simulation studies have provided strong evidence that corrob-
orates with the developed asymptotic theory in this paper. The simulation study
indicates that a reduction of 50% or more in the risk seem quite realistic depending
on the values of Δ and p (see Figure 1).

Finally, we stress here that like the statistical models underlying the statistical in-
ferences to be made, the homogeneity of the drift parameters will be susceptible to
uncertainty and the practitioners may be reluctant to impose the additional informa-
tion regarding parameters in the estimation process. However, suggested shrinkage
methodology is robust in the sense that it still works better than MLE when such
constraint may not hold. Research on statistical implications of these and other esti-
mators for a range of statistical models is ongoing.
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from Natural Sciences and Engineering Research Council of Canada. Further, the authors would
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Appendix

Let μWWW be the measure induced by the Wiener process {WWW (t), t ≥ 0}. Also, let us
denote by μU the probability measure induced by process {U(t), t ≥ 0}.

μU (B) = P{ω : Ut(ω) ∈ B}, where B is a Borel set.

The following result plays a central role in establishing the MLE of θθθ .

Proposition 4. Conditionally to XXX0, the Radon-Nicodym derivative of μXXX with re-
spect to μWWW is given by

dμXXX

dμWWW
(XXX) = exp

{
−θθθ ′Σ−1UUUT −

1
2
θθθ ′Σ−1DDDTθθθ

}
. (21)

The proof is obtained by applying Theorem (7.7) in Liptser and Shiryayev [19]. It
should be noted that, the relation (21) has the same form as the equation 17.24 of
Liptser and Shiryayev [19] for the univariate case with the non-random initial value.

In univariate case, Lipter and Shiryayev ([20], Theorem 17.3, Lemma 17.3 and
Theorem 17.4) and Kutoyants [16] give some asymptotic results for the maximum
likelihood estimator of the drift parameter of an Ornstein-Uhlenbeck process. The
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ideas of proof are the same as given in these references. Now, we outline the proof
of the strong consistency.

Proposition 5. (Strong consistency) Assume that the model (4) holds.

(i) Then,
Pr

{
lim

T→∞
θ̂θθ = θθθ

}
= 1.

(ii)If θ1 = θ2 = · · ·= θp, then

Pr
{

lim
T→∞

θ̃θθ = θ̄eeep

}
= 1.

where θ̄ as the common drift parameter.

Proof For any matrix A, we denote by

‖A‖2 = trace(AA′).

(i) Let

M(T ) =
(∫ T

0
X1(t)dW1(t),

∫ T

0
X2(t)dW2(t), . . . ,

∫ T

0
Xp(t)dWp(t)

)′
.

By some computations, we have

UUUT =−DDDTθθθ −M(T )Σ
1
2 .

Therefore,

θ̂θθ
∗ −θθθ = DDD−1

T M(T )Σ
1
2 . (22)

Obviously, M(T ) is a martingale whose quadratic variation is DDDT . Moreover, one
can verify that

Pr
{

lim
T→∞
‖DDDT‖= ∞

}
= 1,

and, for any column vector aaa, the process aaa′DDDT aaa is nondecreasing in T . Hence,
by strong law of large number for martingale, we get

θ̂θθ
∗ −θθθ a.s.−−−→

T→∞
000,

that implies that θ̂θθ is strongly consistent for θθθ and this completes the proof of (i).
(ii)In the similar way, we prove that θ̃θθ −θθθ a.s.−−−→

T→∞
000, which completes the proof.

�

Proposition 6. (Asymptotic normality) Assume that the model (4) holds and sup-
pose that XXX0 has the same moment as the invariant distribution.
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(i) Then,

√
T
(
θ̂θθ −θθθ

)
L−−−→

T→∞
Np (000, Σ) , and T

(
θ̂θθ −θθθ

)′
Σ−1

(
θ̂θθ −θθθ

)
L−−−→

T→∞
χ2

p.

(ii)If θ1 = θ2 = · · ·= θp, then

√
T
(
θ̃θθ − θ̄eeep

)
L−−−→

T→∞
Np

(
000, eeepeee′p

(
eee′pΣ−1eeep

)−1
)

.

The proof follows by applying Proposition 1.34 or Theorem 2.8 of Kutoyants ([16],
p. 61 and p. 121). Let

ρρρT =
√

T
(
θ̂θθ − θ̄eeep

)
, ξξξ T =

√
T

(
θ̂θθ − θ̃θθ

)
, ζT =

√
T

(
θ̃θθ − θ̄eeep

)
,

ϒ =
(
eee′pΣ−1eeep

)−1
eeepeee′p and Σ ∗ = Σ −ϒ .

Proposition 7. Assume that Proposition 6 holds. Under H0 given in (5), we have

ρρρT
L−−−→

T→∞
Np (000, Σ) and

(
ζζζ T
ξξξ T

)
L−−−→

T→∞
N2p

((
000
000

)
,

(
ϒ 000
000 Σ ∗

))
.

Proof Under the null hypothesis ρρρT =
√

T
(
θ̂θθ −θθθ

)
and then, by combining Propo-

sition 3, we get the first statement of Proposition. Further, by some computations,
we get under the null hypothesis,

(
ζζζ T
ξξξ T

)
=

( (
eee′pΣ−1DDDT eeep

)−1 eeepeee′pΣ−1DDDT

Ip−
(
eee′pΣ−1DDDT eeep

)−1 eeepeee′pΣ−1DDDT

)
√

T
(
θ̂θθ −θθθ

)
.

Again, by combining Proposition 3 and the Slutsky theorem we get the second state-
ment of Proposition, which completes the proof. �

Corollary 4. Under the conditions of Proposition 7 and under H0,

ξξξ ′TΣ
−1ξξξ T

L−−−→
T→∞

χ2
p−1.

Proof The proof is similar to that given in Nkurunziza and Ahmed [21]. For
completeness, we outline the proof.

ξξξ ′TΣ
−1ξξξ T = ρρρ ′T

(
Σ−1−Σ−1 (eee′pΣ−1eeep

)−1
eeepeee′pΣ−1

)
ρρρT +ρρρ ′T (ΞT −Ξ)ρρρT ,(23)

where

ΞT =
(

Ip−DDDTΣ−1eeep
(
eee′pΣ−1DDDT eeep

)−1
)
Σ−1

(
Ip−

(
eee′pΣ−1DDDT eeep

)−1
eee′pΣ−1DDDT

)
,
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and

Ξ = Σ−1−Σ−1 (eee′pΣ−1eeep
)−1

eeepeee′pΣ−1.

Combining Proposition 7 and the Slutsky theorem, we deduce that,

ρρρ ′T [ΞT −Ξ ]ρρρT
L−−−→

T→∞
000 and ρρρT

L−−−→
T→∞

ZZZ ∼Np (000, Σ) .

Moreover,
Σ
(
Σ−1−Σ−1 (eee′pΣ−1eeep

)−1
eeepeee′pΣ−1

)
= ΣΞ

is an idempotent matrix, we get

ρρρ ′T
(
Σ−1−Σ−1 (eee′pΣ−1eeep

)−1
eeepeee′pΣ−1

)
ρρρT

L−−−→
T→∞

ZZZ′
(
Σ−1−Σ−1 (eee′pΣ−1eeep

)−1
eeepeee′pΣ−1

)
ZZZ

= ZZZ′ΞZZZ ∼ χ2
r ,

where

r = rank(Ξ) = trace
(
Σ
(
Σ−1−Σ−1 (eee′pΣ−1eeep

)−1
eeepeee′pΣ−1

))
= p−1.

�

Proof of Proposition 3 Obviously, ρρρT =
√

T
(
θ̂θθ −θθθ

)
+δδδ , and then, by combining

Proposition 6, we get the first statement of Proposition. Further, one can verify that

(
ζζζ T
ξξξ T

)
=

( (
eee′pΣ−1DDDT eeep

)−1 eeepeee′pΣ−1DDDT

Ip−
(
eee′pΣ−1DDDT eeep

)−1 eeepeee′pΣ−1DDDT

)
√

T
(
θ̂θθ −θθθ

)

+

( (
eee′pΣ−1DDDT eeep

)−1 eeepeee′pΣ−1DDDT

Ip−
(
eee′pΣ−1DDDT eeep

)−1 eeepeee′pΣ−1DDDT

)
δδδ .

Then, by combining Proposition 6 and the Slutsky theorem we get the second state-
ment of Proposition and that completes the proof. �
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Bounds on Expected Coupling Times
in a Markov Chain

Jeffrey J. Hunter

Abstract In the author’s paper “Coupling and Mixing Times in Markov Chains”
(Res. Lett. Inf. Math. Sci, 11, 1–22, 2007) it was shown that it is very difficult
to find explicit expressions for the expected time to coupling in a general Markov
chain. In this paper simple upper and lower bounds are given for the expected time
to coupling in a discrete time finite Markov chain. Extensions to the bounds under
additional restrictive conditions are also given with detailed comparisons provided
for two and three state chains.

1 Introduction

In [5] the derivation of the expected time to coupling in a Markov chain and its
relation to the expected time to mixing (as introduced in [4], see also [1], [6]) was
explored and the two-state cases and three-state cases were examined in detail.

Considerable difficulty was experienced in attempting to obtain closed form ex-
pressions for the expected coupling times. The main thrust of this paper is to explore
the derivation of easily computable upper and lower bounds on these expectations.

In Section 2 we summarise the main results on coupling. In Section 3 we derive
some new bounds and in Section 4 we compare these bounds with special cases
considered in [5].

2 Coupling times

Let P = [pi j] be the transition matrix of a finite irreducible, discrete time Markov
chain {Xn}, (n≥ 0), with state space S = {1,2, . . .,m}. Such Markov chains have a
unique stationary distribution {π j}, (1≤ j≤m), that, in the case of a regular (finite,

Jeffrey J. Hunter
Institute of Information & Mathematical Sciences, Massey University, Private Bag 102-904, North
Shore Mail Centre, Auckland 0745, New Zealand,
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irreducible and aperiodic) chain, is also the limiting distribution of the Markov chain
([3], Theorem 7.1.2). Let πππT = (π1,π2, . . . ,πm) be the stationary probability vector
of the Markov chain.

Coupling of Markov chains can be described as follows. Start a Markov chain
{Yn}, with the same transition matrix P and state space S as for {Xn}, operating
under stationary conditions, so that the initial probability distribution for Y0 is the
stationary distribution {π j}. Start the Markov chain {Xn} in an initial state i and
allow each Markov chain to evolve, independently, until time T = n when both
chains {Xn} and {Yn} reach the same state for the first time at this n-th trial. We
call this the “coupling time” since after time T each chain is coupled and evolves
identically as the {Yn}Markov, with each chain having the same distribution at each
subsequent trial, the stationary distribution {π j}.

ZZZn = (Xn,Yn),(n≥0), is a (two-dimensional) Markov chain with state space
S × S. The chain is an absorbing chain with absorbing (coupling) states C =
{(i, i),1≤i≤m} and transient states T = {(i, j), i �= j,1≤i≤m,1≤ j≤m}. The tran-
sition probabilities, prior to coupling, are given by P{ZZZn+1 = (k, l)|ZZZn = (i, j)} =
pik p jl , (see [5]). Once coupling occurs at time T = n,Xn+k = Yn+k for all k≥0.

If ZZZ0 ∈C, coupling of the two Markov chains is instantaneous and the coupling
time T = 0. Define Ti j,kl to be the first passage time from state (i, j) to state (k, l).
The time to coupling in state k, starting in state (i, j), (i �= j), is the first passage time
Ti j,kk to the absorbing state (k,k). Let Ti j,C be the first passage time from (i, j), (i �= j)
to the absorbing (coupling) states C. Define Tii,C = 0, (1≤i≤m), consistent with the
coupling occurring instantaneously if X0 = Y0 (in state i).

Under the assumption that the embedded Markov chains, Xn and Yn, are irre-
ducible and aperiodic (i.e regular) the transition matrix for the two dimensional
Markov chain can be represented in the canonical form for an absorbing Markov
chain, as

P̃ =
[

I 0
R Q

]
,

where I is an m×m identity matrix, Q is an m(m−1)×m(m−1) matrix governing
the transition probabilities within the transient states T , and R is an m(m− 1)×m
matrix governing the transition probabilities from the transient states T to the ab-
sorbing (coupling) states C.

Note that if the Markov chains, Xn and Yn are periodic (period m) then coupling
either occurs initially or never occurs! We restrict attention to embedded regular
chains.

In [5] it was shown that, with probability one, starting in state (i, j) coupling will
occur in finite time. Let κ(C)

i j = E[Ti j,C] be the expected time to coupling starting

in state X0 = i,Y0 = j, and let κκκ(C) ≡ (κ(C)
i j ) be the column vector (of dimension

m(m− 1)×1) of the expected times to coupling. Then all the expected values are
finite and, [5],

κκκ(C) = (I−Q)−1eee. (1)
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Since the states of the Markov chain {Yn} have at each trial the stationary distri-
bution, and since coupling occurs initially if i = j with Tii,C = 0, the expected time
to coupling with X0 starting in state i,(1≤i≤m) is

τC,i =
m

∑
j=1

π jE[Ti j,C] = ∑
j �=i

π jκ
(C)
i j . (2)

Let κκκT
1 = (κ(C)

12 , . . . ,κ(C)
1 j , . . . ,κC

1m), . . . ,

κκκT
i = (κ(C)

i1 , . . . ,κ(C)
i,i−1,κ

(C)
i,i+1,, . . . ,κ

(C)
im ), . . . , κκκT

m = (κ(C)
m1 , . . . ,κ(C)

m,m−1),
and re-express κκκ as κκκT = (κκκT

1 , . . . ,κκκT
i , . . . ,κκκT

m).
Define ρρρT

i = πππT [eee1,eee2, . . . ,eeei−1,eeei+1, . . . ,eeem] = (π1, . . . ,πi−1,πi+1, . . . ,πm), a
modification of πππT to yield a vector of dimension 1×(m− 1) (with πi removed at
the i− th position from πππT ). For 1≤i≤m,

τC,i = ρρρT
i κκκ i.

From (1) observe that κκκ can be obtained by solving the set of linear equations

(I−Q)κκκ(C) = eee. (3)

The Q-matrix is of dimension m(m− 1)×m(m− 1) and governs the transitions
within the m(m−1) transient states. This matrix contains some symmetry. The sub-
matrix of one-step transition probabilities governing transitions between the states
(i, j) and ( j, i) (i �= j) has the structure

(i, j) ( j, i)
(i, j)
( j, i)

[
pii p j j pi j p ji
p ji pi j p j j pii

]
.

The transition probabilities from (i, j) to the other transient states have some
symmetrical reciprocity, i.e. for i �= j and r �=s,

P[(Xn+1,Yn+1) = (r,s)|(Xn,Yn) = (i, j)] = pir p js = P[(Xn+1,Yn+1) = (s,r)|(Xn,Yn) = ( j, i)].

The one step transition to any coupling state (k,k) has the same probability from
either (i, j) or ( j, i) i.e.

P[(Xn+1,Yn+1) = (k,k)|(Xn,Yn) = (i, j)] = pik p jk = P[(Xn+1,Yn+1) = (k,k)|(Xn,Yn) = ( j, i)].

Thus by labelling the states in successive symmetrical pairs, each even numbered
row of Q has the same probabilities, but interchanged in pairs, as the previous odd
numbered row. Furthermore these pairs of rows have identical probabilities in the
same place in the R matrix.

The net effect is that instead of solving the m(m− 1) linear equations present
in (3), we need only solve a reduced number of m(m− 1)/2 linear equations. This
is effected by observing that κ(C)

i j = κ(C)
ji so that only these m(m− 1)/2 quantities

(with i < j, say) actually need to be solved. We elaborate further on this later.
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We introduce some notation.

Let μi j =
m

∑
r=1

pir p jr =
m

∑
r=1

P{(Xn+1,Yn+1) = (r,r)|(Xn,Yn) = (i, j)}

= P{(Xn+1,Yn+1) ∈C|(Xn,Yn) = (i, j)}
= P{Coupling occurs at the next trial | The 2-dim MC is in state(i, j)}.

Observe that μi j = ppp(r)T
i ppp(r)

j = μ ji where ppp(r)T
i = (pi1, pi2, . . . , pim), the i-th row

of the transition matrix P.

3 Bounds

In a general Markov chain setting, elemental expressions of the key equations,
Eqn. (3), lead, for all i �= j, to

κ(C)
i j −1 =∑∑

r �=s
pir p jsκ

(C)
rs . (4)

We deduce upper and lower bounds for κ(C)
i j from Eqns. (4).

Theorem 1. If μi j > 0 for all i �= j, then, for all i �= j,

κmin ≤ κ(C)
i j ≤ κmax, (5)

where κmin =
1

maxi �= j μi j
and κmax =

1
mini �= j μi j

.

Proof. Assume that for all
r �=s,κ(C)

rs ≤ κmax. (6)

Observe that

1 =

(
m

∑
r=1

pir

)(
m

∑
s=1

p js

)
= ∑

r=s
pir p js +∑∑

r �=s
pir p js = μi j +∑∑

r �=s
pir p js. (7)

From Eqn. (4) and Eqn. (7) it follows that

κ(C)
i j ≤ 1+

(
∑∑

r �=s
pir p js

)
κmax = 1+(1−μi j)κmax. (8)

Assumption (6) implies, using inequality (8), that it is sufficient to take
1 + (1− μi j)κmax ≤ κmax and hence that μi jκmax ≥ 1, i.e. κmax ≥ 1

μi j
for all i �= j.

This is satisfied by taking κmax = max
i �= j

1
μi j

=
1

mini �= j μi j
=

1
μmin

.
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Similarly let us assume that for all

r �=s,κmin ≤ κ(C)
rs . (9)

From Eqn. (4) and Eqn. (7) we have that

κ(C)
i j ≥ 1+

(
∑∑

r �=s
pir p js

)
κmin = 1+(1−μi j)κmin. (10)

Similar to the argument used above, using assumption (9) and inequality (10),

we require 1 +(1− μi j)κmin ≥ κmin and hence that μi jκmin ≤ 1. Thus, κmin ≤
1
μi j

for all i �= j, which is satisfied by taking κmin = min
i �= j

1
μi j

=
1

maxi �= j μi j
=

1
μmax

. 
�

Corollary 1. Provided μi j > 0 for all i �= j,

(1−πi)
μmax

= (1−πi)κmin ≤ τC,i ≤ (1−πi)κmax =
(1−πi)
μmin

. (11)

Proof. Inequalities (11) follow directly from Eqn. (2) and Eqn.( 5). 
�

If the stationary distribution {πi} of the underlying Markov chain is unknown
then a simpler, but slightly larger, upper bound for τC,i valid for all i follows
from (11):

τC,i < κmax =
1

mini �= j μi j
=

1
μmin

=
1

mini �= j ∑m
r=1 pir p jr

. (12)

Corollary 2. If the underlying Markov chain consists of independent trials, i.e. the
transition probabilities pi j = p j, then for all i, j,

κ(C)
i j =

1
∑m

r=1 p2
r
. (13)

Proof. Observe that μi j = ∑m
r=1 p2

r ≡ μ . Thus mini �= j μi j = maxi �= j μi j = μ and

from (5) we deduce
1
μ

= κmin ≤ κ(C)
i j ≤ κmax =

1
μ

leading to Eqn. (13).

Expression (13) can also be derived directly in this special case by solving Equa-
tions (4) (see also Eqn. (5.7) of [5]). 
�

In [5] it was shown that, under the condition of independent trials,

τC,i =
∑ j �=i p j

∑m
k=1 p2

k
=

1− pi

∑m
k=1 p2

k
.

Since 1−2∑r<s pr ps = 1−
[
(∑m

k=1 pk)
2−

(
∑m

k=1 p2
k

)]
= ∑m

k=1 p2
k ,



276 J.J. Hunter

τC,i =
1− pi

∑m
k=1 p2

k
=

1−πi

1−2∑r<s pr ps
.

Thus the bounds given by Corollary 1 are tight under independence assumptions.
The interval (κmin,κmax), or its width κmax− κmin, could be used as a measure of
the departure of the underlying MC from independence.

If expression (12) is used when the conditions of Corollary 1 are violated, the
upper bound grossly overestimates the maximum value of τC,i. In those chains, if
at least one μi j = 0, the upper bound will be ∞. This will occur in those examples
where pi j = 1 for some pair (i, j), with i �= j, and pr j = 0 for some r �=i .

Since there are instances when some of the μi j could be zero, it is necessary
to explore these cases in more detail. We consider the reduced number of linear
equations alluded to in Section 2 above.

Define, for all i �= j and r �=s,

α(r,s)
i, j = P{(Xn+1,Yn+1 = (r,s)|(Xn,Yn) ∈ {(i, j),( j, i)}}

= P{One step transition to state (r,s) from either (i, j) or ( j, i)}
= pir p js + p jr pis.

Observe that α(r,s)
i, j = α(r,s)

j,i = α(s,r)
i, j = α(s,r)

j,i . In each of these situations we shall

write the expression in the form α(r,s)
i, j with i < j and r < s.

Further since for i �= j, κ(C)
i j = κ(C)

ji we write the common value as simply κi j
with i < j.

Thus from (4) above,

κ(C)
i j = ∑∑

r �=s
pir p jsκ

(C)
rs =∑∑

r<s
pir p jsκ

(C)
rs +∑∑

r>s
pir p jsκ

(C)
rs

= ∑∑
r<s

pir p jsκ
(C)
rs +∑∑

s<r
p js pimκ

(C)
sr =∑∑

r<s
(pir p js + p jr pis)κrs

= ∑∑
r<s

α(r,s)
i, j κrs.

Thus for all i < j,
κi j−1 =∑∑

r<s
α(r,s)

i, j κrs. (14)

Equation (14) is the reduced variant of the linear equations (4).
Note that, using Equation (7), the parameters α(r,s)

i, j have the property that for all
i < j,

∑
r<s

α(r,s)
i, j = ∑

r<s
(pir p js + p jr pis) = ∑

r<s
pir p js +∑

s>r
pis p jr

= ∑
r<s

pir p js +∑
r>s

pir p js = ∑
r �=s

pir p js = 1−∑
r

pir p jr (15)

= 1−μi j.
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Theorem 2. Without loss of generality, assume a < b and i < j. If μab = 0 and
μi j > 0 for all (i, j)�=(a,b) , then for all (i, j)�=(a,b)

κmin ≤ κi j ≤ κmax, (16)

with
1

1−α(a,b)
a,b

+κmin ≤ κab ≤
1

1−α(a,b)
a,b

+κmax, (17)

where

κmin = min
i< j,(i, j) �=(a,b)

⎡
⎣λ (a,b)

i, j

μi j

⎤
⎦ and κmax = max

i< j,(i, j) �=(a,b)

⎡
⎣λ (a,b)

i, j

μi j

⎤
⎦ , (18)

with

λ (a,b)
i, j = 1+

α(a,b)
i, j

1−α(a,b)
a,b

. (19)

Proof. From the reduced equations (14), with a < b and i < j,
κab−1 = α(a,b)

a,b κab +∑∑r<s,(r,s) �=(a,b)α
(r,s)
a,b κrs

implying κab(1−α(a,b)
a,b ) = 1+∑∑r<s,(r,s) �=(a,b)α

(r,s)
a,b κrs.

From (15) ∑r<sα
(r,s)
a,b = 1−μab = 1, so that ∑r<s,(r,s) �=(a,b)α

(r,s)
a,b = 1−α(a,b)

a,b .
Assuming (16), i.e. κmin ≤ κi j ≤ κmax,
1+{1−α(a,b)

a,b }κmin ≤ 1+∑∑r<s,(r,s) �=(a,b)α
(r,s)
a,b κrs = κab(1−α(a,b)

a,b ≤
1+{1−α(a,b)

a,b }κmax and result (17) follows.
The Theorem will follow once we establish the values for the bounds (18).

For i < j, from equations (14),

κi j−1−α(a,b)
i, j κab =∑ ∑

r<s,(r,s) �=(a,b)
α(r,s)

i, j κrs. (20)

Now from (15), ∑∑r<s,(r,s) �=(a,b)α
(r,s)
i, j = 1−μi j−α(a,b)

i, j , so that from Eqn. (20),

(1−μi j−α(a,b)
i, j )κmin ≤ κi j−1−α(a,b)

i, j κab ≤
(

1−μi j−α(a,b)
i, j

)
κmax,

or that
(1−μi j−α(a,b)

i, j )κmin +1+α(a,b)
i, j κab ≤ κi j ≤

(1−μi j−α(a,b)
i, j )κmax +1+α(a,b)

i, j κab.

Using (17), the above expression is bounded above and below as
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(1−μi j−α(a,b)
i, j )κmin +1+α(a,b)

i, j

⎧⎨
⎩ 1

1−α(a,b)
a,b

+κmin

⎫⎬
⎭≤ κi j ≤

(1−μi j−α(a,b)
i, j )κmax +1+α(a,b)

i, j

⎧⎨
⎩ 1

1−α(a,b)
a,b

+κmax

⎫⎬
⎭

which simplifies, using Eqn. (19), to (1−μi j)κmin +λ (a,b)
i, j ≤ κi j ≤ (1−μi j)κmax +

λ (a,b)
i, j .

Since we require the lower and upper quantities of the above expression to be
bounded below by κmin and above by κmax, respectively, we further require, for
all i < j, κmin ≤ (1− μi j)κmin +λ (a,b)

i, j and (1− μi j)κmax +λ (a,b)
i, j ≤ κmax implying

μi jκmin ≤ λ (a,b)
i, j and λ (a,b)

i, j ≤ μi jκmax leading to expressions (18). 
�

Theorem 2 requires μab =∑m
a=1 par pbr = 0. This implies that par pbr = 0 for all r.

In particular paa pba = 0 and pab pbb = 0. Thus there are four possible cases:
(i) paa = 0 and pbb = 0, (ii) paa = 0 and pab = 0, (iii) pba = 0 and pbb = 0.
(iv) pba = 0 and pab = 0.
These conditions will place restrictions, in particular, on α(a,b)

a,b = paa pbb + pba pab.

For the respective cases: (i) α(a,b)
a,b = pba pab, (ii) α(a,b)

a,b = 0, (iii) α(a,b)
a,b = 0,

(iv) α(a,b)
a,b = paa pbb.

A simplification of Eqn. (18) and (19) for each of these special cases can now be
displayed.

Let us extend Theorem 2 to the situation where we have two distinct pairs of
states (a,b) and (c,d), where μab = 0 and μcd = 0.

Theorem 3. Without loss of generality, assume a < b, c < d (with (a,b)�=(c,d))
and i < j. If μab = 0,μcd = 0 and μi j > 0 for all (i, j)�=(a,b) and (c,d), then for all
(i, j)�=(a,b),(c,d)

κmin ≤ κi j ≤ κmax, (21)

with
1+α(c,d)

a,b −α(c,d)
c,d

τ2
+κmin ≤ κab ≤

1+α(c,d)
a,b −α(c,d)

c,d

τ2
+κmax, (22)

1+α(a,b)
c,d −α(a,b)

a,b

τ2
+κmin ≤ κcd ≤

1+α(a,b)
c,d −α(a,b)

a,b

τ2
+κmax, (23)

where

κmin = min
i< j,(i, j) �=(a,b),(c,d)

⎡
⎣λ (a,b;c,d)

i, j

μi j

⎤
⎦ , and κmax = max

i< j,(i, j) �=(a,b),(c,d)

⎡
⎣λ (a,b;c,d)

i, j

μi j

⎤
⎦ ,

(24)
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with

λ (a,b;c,d)
i, j = 1+

α(a,b)
i, j (1+α(c,d)

a,b −α(c,d)
c,d )+α(c,d)

i, j (1+α(a,b)
c,d −α(a,b)

a,b )

τ2
, (25)

where
τ2 = (1−α(a,b)

a,b )(1−α(c,d)
c,d )−α(c,d)

a,b α(a,b)
c,d . (26)

Proof. From the reduced equations (14), for distinct pairs (a,b), (c,d) and (i, j)
with a < b, c < d and i < j,

κab = 1+α(a,b)
a,b κab +α(c,d)

a,b κcd +Δab, (27)

κcd = 1+α(a,b)
c,d κab +α(c,d)

c,d κcd +Δcd , (28)

κi j = 1+α(a,b)
i, j κab +α(c,d)

i, j κcd +Δi j, (29)

where for all (i, j), Δi j = ∑∑r<s,(r,s) �=(a,b),(c,d)α
(r,s)
i, j κrs.

From Eqns. (27) and (28),

B
[
κab
κcd

]
≡

[
1−α(a,b)

a,b −α(c,d)
a,b

−α(a,b)
c,d 1−α(c,d)

c,d

][
κab
κcd

]
=

[
1+Δab
1+Δcd

]
.

Since det(B) = τ2, as given by (26), taking the inverse of B yields

[
κab
κcd

]
= B−1

[
1+Δab
1+Δcd

]
=

1
τ2

[
1−α(c,d)

c,d α(c,d)
a,b

α(a,b)
c,d 1−α(a,b)

a,b

][
1+Δab
1+Δcd

]
,

so that
[
κab
κcd

]
=

1
τ2

[
1+α(c,d)

a,b −α(c,d)
c,d +(1−α(c,d)

c,d )Δab +α(c,d)
a,b Δcd

1+α(a,b)
c,d −α(a,b)

a,b +α(a,b)
c,d Δab +(1−α(a,b)

a,b )Δcd

]
. (30)

Since, for all (i, j),

∑∑r<s,(r,s) �=(a,b),(c,d)α
(r,s)
i, j = 1−α(a,b)

i, j −α(c,d)
i, j −μi j, (31)

∑∑r<s,(r,s) �=(a,b),(c,d)α
(r,s)
a,b = 1 − α(a,b)

a,b − α(c,d)
a,b , and ∑∑r<s,(r,s) �=(a,b),(c,d)α

(r,s)
c,d

= 1−α(a,b)
c,d −α(c,d)

c,d .

Assuming (21) i.e. for (i, j)�=(a,b),(c,d), κmin≤ κ(C)
i j ≤ κmax, from the definition

of Δi j,
(1−α(a,b)

a,b −α(c,d)
a,b )κmin ≤ Δab ≤ (1−α(a,b)

a,b −α(c,d)
a,b )κmax

and
(1−α(a,b)

c,d −α(c,d)
c,d )κmin ≤ Δcd ≤ (1−α(a,b)

c,d −α(c,d)
c,d )κmax.



280 J.J. Hunter

From these above two bounds, the bounds given by Eqns. (22) and (23) now
follow upon simplification from Eqns. (30).

Now, from Eqn. (29), using the upper and lower bounds given by Eqns. (22)
and (23) together with (31), it is easily shown, using definition (25), that

λ (a,b;c,d)
i, j +(1−μi j)κmin ≤ κi j ≤ λ (a,b;c,d)

i, j +(1−μi j)κmax.

Since the left hand side and the right hand side of the above equation must be
bounded below by κmin and bounded above by κmax respectively, the expressions
given by (24) now follow. 
�

Theorem 3 can be extended further to incorporate the situation of multiple pairs
of states each with zero probability of a one step to coupling. Note that there must be
at least one pair of states where a single step takes the chain to a coupling state, since
coupling occurs with probability one. (Otherwise, the chain is either an absorbing
chain or consists of periodic states.)

Theorem 4. Suppose μai,bi = 0,(ai < bi) for i = 1,2, . . . ,n and μi j > 0 otherwise
(with n < m(m−1)/2). Then, for (i, j)�∈{(a1,b1), . . .,(an,bn)},

κmin ≤ κi j ≤ κmax, (32)

with, for i = 1,2, . . .,n,

n

∑
j=1

Ai j +κmin ≤ κaibi ≤
n

∑
j=1

Ai j +κmax, (33)

where

κmin = min
i< j,(i, j) �=(a1,b1),...,(an,bn)

[
λi j

μi j

]
andκmax = max

i< j,(i, j) �=(a1,b1),...,(an,bn)

[
λi j

μi j

]
, (34)

with

λi j = 1+
n

∑
r=1

n

∑
s=1

Arsα
(ar ,br)
i, j , (35)

and [Ars] = (I−A)−1 and A is the n×n matrix A = [ars] =
[
α(as,bs)

ar ,br

]
.

Proof. From the reduced equations (14), for distinct pairs (ai,bi), (i = 1,2, . . .,n)
with ai < bi,

κaibi = 1+
n

∑
k=1

α(ak,bk)
ai,bi

κakbk +Δaibi , (36)

and for i < j, with (i, j)�=(ai,bi),

κi j = 1+
n

∑
k=1

α(ak,bk)
i, j κakbk +Δi j, (37)
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where, for all (i, j), Δi j = ∑∑r<s,(r,s) �=(a1,b1),...,(an,bn)α
(r,s)
i, j κrs.

Let κκκT = (κa1b1 ,κa2b2 , . . . ,κanbn) and ΔΔΔT = (Δa1b1,Δa2b2 , . . . ,Δanbn). From
Eqn. (36) κκκ = eee+Aκκκ +ΔΔΔ , i.e. (I−A)κκκ = eee+ΔΔΔ implying κκκ = (I−A)−1(eee+ΔΔΔ).

Now for i = 1,2, . . .,n, using Eqn. (32),

(
∑ ∑

r<s,(r,s) �=(a1b1),...,(anbn)
α(r,s)

ai,bi

)
κmin ≤ Δaibi ≤

(
∑ ∑

r<s,(r,s) �=(a1b1),...,(anbn)
α(r,s)

ai,bi

)
κmax.

Since, from (15), ∑∑r<sα
(r,s)
i, j = 1−μi j, it follows, under the conditions of the the-

orem for i = 1,2, ..,n, that

(
1−

n

∑
k=1

α(ak,bk)
ai,bi

)
κmin ≤ Δaibi ≤

(
1−

n

∑
k=1

αak,bk
ai,bi

)
κmax,

i.e. (
1−

n

∑
k=1

aik

)
κmin ≤ Δaibi ≤

(
1−

n

∑
k=1

aik

)
κmax.

Expressing these element-wise inequalities in matrix form yields,

κmin(eee−Aeee)≤ΔΔΔ ≤ (eee−Aeee)κmax,

or
κmin(I−A)eee≤ (I−A)κκκ−eee≤ (I−A)eeeκmax.

Now if xxx is a non-negative vector (xxx ≥ 000) and B is a nonnegative matrix then
Bxxx ≥ 000. Note that A is a sub-stochastic matrix (since there is at least one pair of
states (c,d) /∈ {(a1,b1), . . .,(an,bn)} with α(c,d)

ai,bi
> 0 for at least one i, so that there

is at least one row of A with a row-sum less than 1). Consequently A has a maximal
eigenvalue less than 1. This implies that ∑∞

k=0 Ak = (I−A)−1 with (I−A)−1 non-
singular. Consequently (I−A)−1 ≥ 0, (see [2], Theorem 4.6.6), leading to

(I−A)−1eee+κmineee≤ κκκ ≤ (I−A)−1eee+κmaxeee,

which leads in element form to Eqn. (33).
Now ∑∑r<s,(r,s) �=(a1,b1),...,(an,bn)α

(r,s)
i, j = 1−∑n

r=1α
(ar ,br)
i, j −μi j so that for (i, j) /∈

{(a1,b1), . . .,(an,bn)}(
1−

n

∑
r=1

α(ar ,br)
i, j −μi j

)
κmin ≤ Δi j ≤

(
1−

n

∑
r=1

α(ar ,br)
i, j −μi j

)
κmax.



282 J.J. Hunter

From Eqn. (37), for (i, j) /∈ {(a1,b1), . . .,(an,bn)},

1+
n

∑
r=1

α(ar ,br)
i, j κarbr +

(
1−

n

∑
r=1

α(ar ,br)
i, j −μi j

)
κmin ≤ κi j ≤

1+
n

∑
r=1

α(ar ,br)
i, j κarbr +

(
1−

n

∑
r=1

α(ar ,br)
i, j −μi j

)
κmax.

Now, from Eqn. (33),

1+
n

∑
r=1

α(ar ,br)
i, j

(
n

∑
s=1

Ars +κmin

)
+

(
1−

n

∑
r=1

α(ar ,br)
i, j −μi j

)
κmin ≤ κi j,

and

κi j ≤ 1+
n

∑
r=1

α(ar ,br)
i, j

(
n

∑
s=1

Ars +κmax

)
+

(
1−

n

∑
r=1

α(ar ,br)
i, j −μi j

)
κmax.

From Eqn. (32) we require, for the lower bound,

κmin ≤ 1+

(
n

∑
r=1

α(ar ,br)
i, j

)(
n

∑
s=1

Ars +κmin

)
+

(
1−

n

∑
r=1

α(ar ,br)
i, j −μi j

)
κmin,

implying, for all (i, j) /∈ {(a1,b1), . . .,(an,bn)}, that μi jκmin ≤ 1 + ∑n
r=1

∑n
s=1 Arsα

(ar ,br)
i, j ≡ λi j, leading to the first bound in (34) and expression (25).

Similarly for the upper bound we require, for all (i, j)/∈{(a1,b1), . . .,(an,bn)},
λi j = 1+∑n

r=1∑
n
s=1 Arsα

(ar ,br)
i, j ≤ μi jκmax leading to the second bound in (34). 
�

Note that Theorem 2 follows from Theorem 4 when n = 1 with (a1,b1) = (a,b)
where A = [a11] =

[
α(a1,b1)

a1,b1

]
=

[
α(a,b)

a,b

]
, [A11] = (I−A)−1 = (1−α(a,b)

a,b )−1.

Similarly, Theorem 3 follows from Theorem 4 when n = 2 with (a1,b1) = (a,b),

(a2,b2) = (c,d) where A =

[
α(a1,b1)

a1,b1
α(a2,b2)

a1,b1

α(a1,b1)
a2,b2

α(a2,b2)
a2,b2

]
=

[
α(a,b)

a,b α(c,d)
a,b

α(a,b)
c,d α(c,d)

c,d

]
and [Ars] =

(I − A)−1 =
[

A11 A12

A21 A22

]
=

1
τ2

[
1−α(c,d)

c,d α(c,d)
a,b

α(a,b)
c,d 1−α(a,b)

a,b

]
with τ2 = det(I − A) =

(1−α(a,b)
a,b )(1−α(c,d)

c,d )−α(c,d)
a,b α(a,b)

c,d .
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4 Special cases

Example 1 (Two-state Markov chains).

Let P =
[

p11 p12
p21 p22

]
=

[
1−a a

b 1−b

]
,(0 < a ≤ 1,0 < b ≤ 1), be the transition

matrix of a two-state Markov chain with state space S = {1,2}. Let d = 1−a−b.
If −1 < d < 1, the Markov chain is regular with a unique stationary distribution

given by

π1 =
b

a+b
,π2 =

a
a+b

Note that μ12 = μ21 = p11 p21 + p12 p22 = (1−a)b+a(1−b) = a+b−2ab≡ μ .
Note that μ �=0, since if μ = 0 then a(1− b) + b(1− a) = 0, i.e. a(1− b) = 0

and (1− a)b = 0. Thus either (i) a = 0 and b = 0 or (ii) a = 1 and b = 1. Case (i)
is impossible since this implies both states are absorbing, while case 2 implies the
chain is periodic period 2. In both cases coupling never occurs.

In this special case, expressions for the expected number of trials to coupling can
be found explicitly since the solution of equations (3) for, (III−QQQ)κκκ(C) = eee is easily
effected with

κ(C)
12 = κ(C)

21 =
1

(a+b−2ab)
=

1
μ

= κmin = κmax.

Further it was shown in [5] that
τC,1 =

a
(a+b)(a+b−2ab)

, implying τC,1 =
π2

μ
= (1−π1)κmin = (1−π1)κmax

and τC,2 =
b

(a+b)(a+b−2ab)
=

π1

μ
= (1−π2)κmin = (1−π2)κmax.

Thus the inequalities (5) and (11) are in fact equalities, with
(1−πi)κmin = τC,i = (1−πi)κmax.

Example 2 (Three-state Markov chains (Explicit solutions of the κi j)). .

Let P =

⎡
⎣p11 p12 p13

p21 p22 p23
p31 p32 p33

⎤
⎦ =

⎡
⎣1−b− c b c

d 1−d− f f
g h 1−g−h

⎤
⎦ be the transition ma-

trix of a Markov chain with state space S = {1,2,3}.
Note that 0 < b+ c≤ 1, 0 < d + f ≤ 1 and 0 < g+h≤ 1. Let

Δ1 = p23 p31 + p21 p32 + p21 p31 = f g+dh+dg,

Δ2 = p31 p12 + p32 p13 + p32 p12 = gb+hc+hb,

Δ3 = p12 p23 + p13 p21 + p13 p23 = b f + cd + c f ,

Δ = Δ1 +Δ2 +Δ3 = f g+dh+dg+gb+hc+hb+b f + cd + c f .

The Markov chain, with the above transition matrix, is irreducible (and hence a
stationary distribution exists) if and only if Δ1 > 0, Δ2 > 0, Δ3 > 0, with stationary
probability vector
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(π1,π2,π3) =
1
Δ

(Δ1,Δ2,Δ3). (38)

Observe that

μ12 = μ21 = p11 p21 + p12 p22 + p13 p23 = (1−b− c)d +b(1−d− f )+ c f

= b+d−2bd− cd−b f + c f ,

μ23 = μ32 = p21 p31 + p22 p32 + p23 p33 = dg+(1−d− f )h+ f (1−g−h)
= h+ f −2 f h−dh− f g+dg,

μ13 = μ31 = p31 p11 + p32 p12 + p33 p13 = g(1−b− c)+hb+(1−g−h)c
= c+g−2cg−bg− ch+bh.

Using the reduced equations (14) with just three parameters κ12,κ13 and κ23 yields

κ12 = 1+α(1,2)
1,2 κ12 +α(1,3)

1,2 κ13 +α(2,3)
1,2 κ23

κ13 = 1+α(1,2)
1,3 κ12 +α(1,3)

1,3 κ13 +α(2,3)
1,3 κ23

κ23 = 1+α(1,2)
2,3 κ12 +α(1,3)

2,3 κ13 +α(2,3)
2,3 κ23

where α(r,s)
a, j = pir p js + p jr pis. In matrix form,

⎡
⎢⎣

1−α(1,2)
1,2 −α(1,3)

1,2 −α(2,3)
1,2

−α(1,2)
1,3 1−α(1,3)

1,3 −α(2,3)
1,3

−α(1,2)
2,3 −α(1,3)

2,3 1−α(2,3)
2,3

⎤
⎥⎦
⎡
⎣κ12
κ13
κ23

⎤
⎦ = Bκκκ = eee. (39)

In [5] we were unable to find compact expressions for the solutions of (39) in
all cases and special cases were considered. However, the structure exhibited by
Eqn. (39) now permits a simple solution:
First note that

κκκ = B−1eee =
1
τ3

⎡
⎣τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

⎤
⎦eee =

1
τ3

⎡
⎣τ11 + τ12 + τ13
τ21 + τ22 + τ23
τ31 + τ32 + τ33

⎤
⎦ (40)

where
τ11 = (1−α(1,3)

1,3 )(1−α(2,3)
2,3 )−α(2,3)

1,3 α(1,3)
2,3 ,τ12 = α(1,3)

1,2 (1−α(2,3)
2,3 )+α(2,3)

1,2 α(1,3)
2,3 ,

τ13 = α(1,3)
1,2 α(2,3)

1,3 +α(2,3)
1,2 (1−α(1,3)

1,3 ),τ21 = α(1,2)
1,3 (1−α(2,3)

2,3 )+α(2,3)
1,3 α(1,2)

2,3 ,

τ22 = (1−α(1,2)
1,2 )(1−α(2,3)

2,3 )−α(1,2)
2,3 α(2,3)

1,2 ,τ23 = (1−α(1,2)
1,2 )α(2,3)

1,3 +α(2,3)
1,2 α(1,2)

1,3 ,

τ31 = α(1,2)
1,3 α(1,3)

2,3 +(1−α(1,3)
1,3 )α(1,2)

2,3 ,τ32 = (1−α(1,2)
1,2 )α(1,3)

2,3 +α(1,3)
1,2 α(1,2)

2,3 ,

τ33 = (1−α(1,2)
1,2 )(1−α(1,3)

1,3 )−α(1,3)
1,2 α(1,2)

1,3 ,

and det(B) = τ3 with the following equivalent forms:
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τ3 = (1−α(1,2)
1,2 )τ11−α(1,3)

1,2 τ21−α(2,3)
1,2 τ31

= −α(1,2)
1,3 τ12 +(1−α(1,3)

1,3 )τ22−α(2,3)
1,3 τ32

= −α(1,2)
2,3 τ13−α(1,3)

2,3 τ23 +(1−α(2,3)
2,3 )τ33.

Using the observations, from Eqns. (15), that

α(1,2)
1,2 +α(1,3)

1,2 +α(2,3)
1,2 +μ12 = 1,

α(1,2)
1,3 +α(1,3)

1,3 +α(2,3)
1,3 +μ13 = 1, (41)

α(1,2)
2,3 +α(1,3)

2,3 +α(2,3)
2,3 +μ23 = 1,

it can be shown that τ3 can be re-expressed as one of the following equivalent forms

τ3 = μ12τ11 +μ13τ12 +μ23τ13 = μ12τ21 +μ13τ22 +μ23τ23

= μ12τ31 +μ13τ32 +μ23τ33.

Thus from Eqn. (40),

κ12 =
τ11 + τ12 + τ13

τ3
,κ13 =

τ21 + τ22 + τ23

τ3
,κ23 =

τ31 + τ32 + τ33

τ3
. (42)

Further τC,1 = π2κ12 +π3κ13, τC,2 = π1κ12 +π3κ23, τC,3 = π1κ13 +π2κ23 so that

τC,1 =
Δ2κ12 +Δ3κ13

Δ
,τC,2 =

Δ1κ12 +Δ3κ23

Δ
,τC,3 =

Δ1κ13 +Δ2κ23

Δ

implying

τC,1 =
Δ2(τ11 + τ12 + τ13)+Δ3(τ21 + τ22 + τ23)

Δτ3
,

τC,2 =
Δ1(τ11 + τ12 + τ13)+Δ3(τ31 + τ32 + τ33)

Δτ3
,

τC,3 =
Δ1(τ21 + τ22 + τ23)+Δ2(τ31 + τ32 + τ33)

Δτ3
. 
�

We now explore the derivation of simple bounds for κi j utilising Theorems 1, 2
and 3 for the special cases considered in [5] where coupling occurred. We initially
restrict attention to the cases where all the μi j are positive (Example 3). Other
cases when μ12 = 0,μ13 > 0,μ23 > 0 (Example 4) and μ12 = 0,μ13 = 0,μ23 > 0,
(Example 5) follow after Example 3.

Example 3 (Three-state Markov chains (with all μi j positive.)).
First observe that in Example 2, Case 1 (when p12 = p23 = p31 = 1) and Case 2

(when p12 = p32 = 1, p21 + p23 = 1) each involve a periodic Markov chain (pe-
riod 3 for Case 1 and period 2 for Case 2). In Case 1 coupling either occurs initially
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or never occurs. In Case 2 coupling either occurs initially, after one step, or never
occurs. For coupling to occur with probability one we need to restrict attention to
regular (irreducible, aperiodic, finite) Markov chains. Thus we omit further consid-
eration of these two cases.

Case 3: “Constant movement” with p11 = p22 = p33 = 0

The transition matrix P =

⎡
⎣ 0 b 1−b

1− f 0 f
g 1−g 0

⎤
⎦=

⎡
⎣ 0 p12 p13

p21 0 p23
p31 p32 0

⎤
⎦, with 0 < b < 1,

0 < f < 1, 0 < g < 1. It is easily seen that μ12 = p13 p23 = (1−b) f ,
μ23 = p21 p31 = (1− f )g and μ13 = p32 p12 = b(1−g). Under the stated conditions,
all of these parameters are positive so that the conditions of Theorem 1 are satisfied.

With μmin = min{(1−b) f ,(1− f )g,b(1−g)},
and μmax = max{(1−b) f ,(1− f )g,b(1−g)}, Theorem 1 leads to

κmin =
1

μmax
≤ κi j ≤ κmax =

1
μmin

.

Since

Δ1 ≡ p23 p31 + p21 p32 + p21 p31 = f g+1− f = 1− f (1−g),
Δ2 ≡ p31 p12 + p32 p13 + p32 p12 = gb+1−g = 1−g(1−b),
Δ3 ≡ p12 p23 + p13 p21 + p13 p23 = b f +1−b = 1−b(1− f ),
Δ ≡ Δ1 +Δ2 +Δ3 = 3− f (1−g)−g(1−b)−b(1− f ).

Using (38), the stationary probabilities can be derived. Bounds on the expected
coupling times follow from application of Eqn. (11) yielding

2−g(1−b)−b(1− f )
[3− f (1−g)−g(1−b)−b(1− f )]μmax

≤ τC,1 ≤
2−g(1−b)−b(1− f )

[3− f (1−g)−g(1−b)−b(1− f )]μmin
,

2− f (1−g)−b(1− f )
[3− f (1−g)−g(1−b)−b(1− f )]μmax

≤ τC,2 ≤
2− f (1−g)−b(1− f )

[3− f (1−g)−g(1−b)−b(1− f )]μmin
,

2− f (1−g)−g(1−b)
[3− f (1−g)−g(1−b)−b(1− f )]μmax

≤ τC,3 ≤
2− f (1−g)−g(1−b)

[3− f (1−g)−g(1−b)−b(1− f )]μmin
.

Computation of τC,i, for all values of the parameters in [5] showed that

2.6667≤ min
1≤i≤3

τC,i < ∞.

For all combinations of b = f = g, the ratios rL,i =
lower bound of τC,i

τC,i
and

rU,i =
upper bound of τC,i

τC,i
are both equal to 1, leading to the result that

lower bound of τC,i = τC,i = upper bound of τC,i. This is not equivalent to the inde-
pendence condition implied under Corollary 2 but arises due to the symmetry of the
transition matrix in each situation, with the stationary probabilities all equal to 1/3.

Taking all combinations of b, f , and g in steps of 0.1 between 0.1 and 0.9 we
achieve considerable variability between the ratios.
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In particular, 0.097≤ rL,i ≤ 1 with the minimal ratio being achieved at (b,c, f ) =
(0.1,0.1,0.9) and (0.9,0.1,0.9) for rL,1, at (0.9,0.1,0.1) and (0.9,0.9,0.1) for rL,2,
and at (0.1,0.9,0.1) and (0.1,0.9,0.9) for rL,3.

Further, 1 ≤ rU,i ≤ 14.063 with the maximal ratio being achieved at (b,c, f ) =
(0.5,0.9,0.1) for rU,1, at (0.1,0.5,0.9) for rU,2, and at (0.9,0.1,0.5) for rU,3.

Case 4: “Independent trials”

For this case P =

⎡
⎣p1 p2 p3

p1 p2 p3
p1 p2 p3

⎤
⎦, so that pi j = p j for all i, j implying that the

Markov chain is equivalent to independent trials on the state space S = {1, 2, 3}.
For all i �= j,μi j = p2

1 + p2
2 + p2

3 = 1−2p1 p2−2p2 p3−2p3 p1.
Now Δ1 = p1, Δ2 = p2, Δ3 = p3, Δ = p1 + p2 + p3 = 1, implying π1 = p1, π2 = p2,
π3 = p3.

For all i, it was shown in [5] that τC,i =
1− pi

1−2p1 p2−2p1 p3−2p2 p3
=

1−πi

μmin
=

1−πi

μmax
. Thus each inequality in (11) is in fact an equality, with the upper and lower

bounds coinciding, as observed in Corollary 2.

Case 5: “Cyclic drift “ p13 = p21 = p32 = 0 with

P =

⎡
⎣p11 p12 0

0 p22 p23
p31 0 p33

⎤
⎦ =

⎡
⎣1−b b 0

0 1− f f
g 0 1−g

⎤
⎦ .

For this case μ12 = p12 p22 = b(1− f ),μ23 = p23 p33 = f (1− g),μ13 = p31 p11 =
g(1−b), with μmin = min{b(1− f ), f (1−g),g(−b)} and
μmax = max{b(1− f ), f (1−g),g(1−b)}.
Thus for 0 < b < 1,0 < f < 1,0 < g < 1, all the μi j parameters are positive and the
results of Theorem 1 can be applied.

Further Δ1 = f g, Δ2 = gb, Δ3 = b f , Δ = f g + gb + b f so that expressions for
the stationary probabilities follow from Eqn. (38). Using Eqn. (11) this leads to the
following bounds on the expected times to coupling:

b(g+ f )
[ f g+gb+b f ]μmax

≤ τC,1 ≤
b(g+ f )

[ f g+gb+b f ]μmin
,

f (g+b)
[ f g+gb+b f ]μmax

≤ τC,2 ≤
f (g+b)

[ f g+gb+b f ]μmin
,

g( f +b)
[ f g+gb+b f ]μmax

≤ τC,3 ≤
g( f +b)

[ f g+gb+b f ]μmin
.

As for Case 3, we explore the ratios rL,i =
lower bound of τC,i

τC,i

and rU,i =
upper bound of τC,i

τC,i
.
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When b = f = g, both ratios are equal to 1, leading to the lower bound of τC,i =
τC,i = upper bound of τC,i. As for Case 3, this is not equivalent to the independence
condition implied under Corollary 2 but arises due to the symmetry of the transition
matrix in each situation with the stationary probabilities all equal to 1/3.

Taking all combinations of b, f , and g in steps of 0.1 between 0.1 and 0.9 we
achieve less variability between the lower ratios rL,i, but much more variability be-
tween the upper ratios rU,i than was present in Case 3.

In particular, 0.185≤ rL,i ≤ 1 with the minimal ratio being achieved at (b, f ,g) =
(0.1,0.9,0.1) for rL,1, at (0.1,0.1,0.9) for rL,2, and (0.9,0.1,0.1) for rL,3.

Further 1 ≤ rU,i ≤ 67.69 with the maximal ratio being achieved at (b, f ,g) =
(0.9,0.1,0.9) for rU,1, at (0.9,0.9,0.1) for rU,2, and (0.1,0.9,0.9) for rU,3.
From Eqn. (12) simple upper bounds, valid for all i, can be given as

τC,i <
1

μmin
=

1
min(p12 p22, p11 p31, p23 p33)

=
1

min(b(1− f ), f (1−g),g(1−b))
.

Case 6: “Constant probability state selection”

In this case, with P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1−a
a
2

a
2

b
2

1−b
b
2

c
2

c
2

1− c

⎤
⎥⎥⎥⎥⎥⎥⎦

, (0 < a≤ 1, 0 < b≤ 1, 0 < c≤ 1).

Observe that

μ12 =
2(a+b)−3ab

4
, μ13 =

2(a+ c)−3ac
4

, μ23 =
2(b+ c)−3bc

4

with

μmin = min
(

2(a+b)−3ab,2(b+ c)−3bc,2(a+ c)−3ac
4

)
,

μmax = max
(

2(a+b)−3ab,2(b+ c)−3bc,2(a+ c)−3ac
4

)
.

Further Δ1 =
3bc
4

, Δ2 =
3ac
4

, Δ3 =
3ab
4

and thus Δ =
3(bc+ac+ab)

4
. This leads

to expressions for the stationary probabilities and hence to the following bounds for
the τC,i:

a(b+ c)
[bc+ac+ab]μmax

≤ τC,1 ≤
a(b+ c)

[bc+ac+ab]μmin
,

b(a+ c)
[bc+ac+ab]μmax

≤ τC,2 ≤
b(a+ c)

[bc+ac+ab]μmin
,

c(a+b)
[bc+ac+ab]μmax

≤ τC,3 ≤
c(a+b)

[bc+ac+ab]μmin
.
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Paralleling the procedures of cases 3 and 5 we obtain the following observations
for the ratios rL,i and rU,i. Firstly both rL,i = rU,i = 1, implying equality of the lower
and upper bounds of τC,i, and equal to τC,i occur at all cases when a = b = c, with
the stationary probabilities all the same. In this case there is much less variability
between the actual values of the expected times to coupling and the associated lower
and upper bounds.

In particular it can be shown that for all values of (a,b,c) in the ranges
0.1(0.1)1.0, 0.277 ≤ rL,i ≤ 1 and 1 ≤ rU,i ≤ 2.17. The lower ratio rL,i = 0.277
occurs at the following sets of values of (a,b,c): (0.1,0.1,1) and (0.1,1,0.1) for
rL,1, (0.1,0.1,1) and (1,0.1,0.1) for rL,2, and (0.1,1,0.1) and (1,0.1,0.1) for rL,3.
The upper ratio rU,i = 2.17 occurs at (a,b,c) = (1,0.1,0.1) for rU,1, (0.1,1,0.1) for
rU,2, and (0.1,0.1,1) for rU,3.

These bounds, especially the upper bounds, are much tighter than those exhibited
in Cases 3 and 5, highlighting the efficacy of the procedure of Theorem 1 when the
transition matrix is a positive matrix.

Example 4 (Three-state Markov chains (μ12 = 0,μ13 > 0,μ23 > 0)).

Let P =

⎡
⎣p11 p12 p13

p21 p22 p23
p31 p32 p33

⎤
⎦ =

⎡
⎣1−b− c b c

d 1−d− f f
g h 1−g−h

⎤
⎦ be the transition ma-

trix of a Markov chain with state space S = {1,2,3}.
Note that 0 < b+ c≤1,0 < d + f≤1 and 0 < g+h≤1.
Observe that μ12 = p11 p21 + p12 p22 + p13 p23 = 0 implies p11 p21 = 0, p12 p22 = 0
and p13 p23 = 0.
Thus eight cases need to be considered:

(i) p11 = 0, p12 = 0, and p13 = 0, (ii) p11 = 0, p12 = 0, and p23 = 0,
(iii) p11 = 0, p22 = 0, and p13 = 0, (iv) p11 = 0, p22 = 0, and p23 = 0,
(v) p21 = 0, p12 = 0, and p13 = 0, (vi) p21 = 0, p12 = 0, and p23 = 0,
(vii) p21 = 0, p22 = 0, and p13 = 0, (viii) p21 = 0, p22 = 0, and p23 = 0.

Of these cases (i) and (viii) are impossible since p11 + p12 + p13 and p21 + p22 + p23
must be 1. Also cases (v) and (vi) are impossible (since the above restrictions would
imply, respectively, that p11 = 1 and p22 = 1 and hence, respectively, that states 1
and 2, are absorbing.)
This leads to four remaining possibilities (with (ii), (iii), (iv), (vii) relabelled as (a),
(b), (c) (d))
(a)p11 = 0, p12 = 0, and p23 = 0, with p13 = 1,
(b)p11 = 0, p22 = 0, and p13 = 0, with p12 = 1,
(c)p11 = 0, p22 = 0, and p23 = 0, with p21 = 1,
(d)p21 = 0, p22 = 0, and p13 = 0, with p23 = 1.

For case (a): Pa =

⎡
⎣0 0 1

d 1−d 0
g h 1−g−h

⎤
⎦, with μ13 = 1−g−h > 0, μ23 = dg+(1−

d)h > 0; α(1,2)
1,2 = 0, α(1,2)

1,3 = 0, α(1,2)
2,3 = dh + (1− d)g, and 0 < d ≤ 1, 0 ≤ g <

1, 0 < h < 1, 0 < g+h < 1.
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For case (b): Pb =

⎡
⎣0 1 0

d 0 1−d
g h 1−g−h

⎤
⎦, with μ13 = h > 0, μ23 = dg +(1− d)(1−

g− h) > 0; α(1,2)
1,2 = d, α(1,2)

1,3 = g, α(1,2)
2,3 = dh, and 0 ≤ d < 1,0≤g < 1, 0 < h <

1, 0 < g+h≤ 1.

For case (c): Pc =

⎡
⎣0 b 1−b

1 0 0
g h 1−g−h

⎤
⎦, with μ13 = bh+(1−b)(1−g−h) > 0, μ23 =

g > 0; α(1,2)
1,2 = b, α(1,2)

1,3 = bg, α(1,2)
2,3 = h, and 0≤ b < 1, 0 < g < 1, 0≤ h < 1, 0 <

g+h≤ 1.

For case (d): Pd =

⎡
⎣1−b b 0

0 0 1
g h 1−g−h

⎤
⎦, with μ13 = (1− b)g + bh > 0, μ23 =

1− g− h > 0; α(1,2)
1,2 = 0, α(1,2)

1,3 = (1− b)h, α(1,2)
2,3 = 0, and 0 < b ≤ 1, 0 < g <

1, 0≤ h < 1, 0 < g+h < 1.

Note that there is some symmetry between cases (a) and (d), and between cases
(b) and (c).
Case (d) converts to Case (a) by relabelling the states {1,2,3} as {2,1,3} and
changing the parameters (b,g,h) to (d,h,g). This same procedure will also convert
Case (c) to Case (b).

From Theorem 2,
1

1−α(1,2)
1,2

+ κmin ≤ κ12 ≤
1

1−α(1,2)
1,2

,κmin ≤ κ13 ≤ κmax,

κmin ≤ κ23 ≤ κmax. κmin = min

⎡
⎣ 1
μ13

⎧⎨
⎩1+

α(1,2)
1,3

1−α(1,2)
1,2

⎫⎬
⎭ ,

1
μ23

⎧⎨
⎩1+

α(1,2)
2,3

1−α(1,2)
1,2

⎫⎬
⎭
⎤
⎦ ,

κmax = max

⎡
⎣ 1
μ13

⎧⎨
⎩1+

α(1,2)
1,3

1−α(1,2)
1,2

⎫⎬
⎭ ,

1
μ23

⎧⎨
⎩1+

α(1,2)
2,3

1−α(1,2)
1,2

⎫⎬
⎭
⎤
⎦. These expressions,

with substitution as above for the special cases, together with explicit calculations
for κi j provided by equations (42) lead to the following observations.

For each of the following parameter selections: case (a) with
(d,g,h) = (1,0.3,0.5), case (b) with (d,g,h) = (0,0.5,0.3), (0.6,0.4,0.4), case (c)
with (b,g,h) = (0,0.3,0.5), (0.6,0.4,0.4), and case (d) with (b,g,h) = (1,0.5,0.3)
the lower bound for each κi j = upper bound for κi j = exact value of κi j, provid-
ing an effective way of evaluating κi j. Further, at each of the above parameter
selections, for i = 1,2,3, the lower bound for each τC,i = upper bound for τC,i =
exact value of τC,i.

For each (i, j) with i < j, let sL,i j =
lower bound of κi j

κi j
and

sU,i j =
upper bound of κi j

κi j
, and for i = 1,2,3, let rL,i =

lower bound of τC,i

τC,i
and

rU,i =
upper bound of τC,i

τC,i
.
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In every case sL,i j ≤ 1,rL,i ≤ 1,sU,i j ≥ 1 and rU,i ≥ 1.
Minimal extreme values, with the parameters taking increments of 0.1 in the

restricted ranges for each case, occur at the following parameter selections:

Case (a): sL,12 = 0.305, sL,23 = 0.173, rL,2 = rL,3 = 0.186,
at (d,g,h) = (0.1,0,0.1), sL,13 = 0.223 and rL,1 = 0.234 at (d,g,h) = (1,0.8,0.1).

Case (b): sL,12 = sL,13 = rL,1 = rL,2 = 0.100, sL,23 = rL,3 = 0.011 at (d,g,h) =
(0.9,0,0.9).

Case (c): sL,12 = sL,23 = rL,1 = rL,3 = 0.100, sL,13 = rL,2 = 0.011 at (b,g,h) =
(0.9,0.9,0).

Case (d): sL,12 = 0.305, sL,13 = 0.173, rL,1 = rL,3 = 0.186
at (b,g,h) = (0.1,0.1,0), sL,23 = 0.223 and rL,2 = 0.234 at (b,g,h) = (1,0.1,0.8).

Maximal extreme values, with the parameters taking increments of 0.1 in the
restricted ranges for each case, occur at the following parameter selections:

Case (a): sU,12 = 46.54, sU,13 = 87.62, sU,23 = 44.67, rU,1 = 80.46,
rU,2 = 44.84, rU,3 = 58.18, at (d,g,h) = (0.9,0,0.1).

Case (b): sU,12 = rU,1 = 82.90, sU,13 = rU,2 = 81.99, at (d,g,h) = (0.9,0,0.9),
sU,23 = rU,3 = 29.25 at (d,g,h) = (0.9,0.9,0.1).

Case (c): sU,12 = rU,1 = 82.90, sU,23 = rU,3 = 81.99, at (b,g,h) = (0.9,0.9,0),
sU,13 = rU,2 = 29.25 at (b,g,h) = (0.9,0.1,0.9).

Case (d): sU,12 = 46.54, sU,13 = 44.67, sU,23 = 87.62, rU,1 = 44.84,
rU,2 = 80.46, rU,3 = 58.18, at (b,g,h) = (0.9,0.1,0).

These extremal ratios for the lower bound, (resp. the upper bound) are in many
instances smaller (resp. larger) that those experienced when the μi j are all positive.

Example 5 (Three-state Markov chains (μ12 = 0,μ13 = 0,μ23 > 0)).

Let P =

⎡
⎣p11 p12 p13

p21 p22 p23
p31 p32 p33

⎤
⎦ =

⎡
⎣1−b− c b c

d 1−d− f f
g h 1−g−h

⎤
⎦ be the transition ma-

trix of a Markov chain with state space S = {1,2,3}.
Note that 0 < b+ c≤ 1,0 < d + f ≤ 1 and 0 < g+h≤ 1.
Consider the four possibilities from μ12 = 0 cases:
(a) p11 = 0, p12 = 0, and p23 = 0, with p13 = 1,
(b) p11 = 0, p22 = 0, and p13 = 0, with p12 = 1,
(c) p11 = 0, p22 = 0, and p23 = 0, with p21 = 1,
(d) p21 = 0, p22 = 0, and p13 = 0, with p23 = 1.

For case (a): μ13 = 1−g−h = 0⇒ h = 1−g, μ23 = dg+(1−d)(1−g) > 0,

Pa =

⎡
⎣0 0 1

d 1−d 0
g 1−g 0

⎤
⎦ with 0 < d ≤ 1,0≤ g < 1,0 < h = 1−g≤ 1.
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For case (b): with μ13 = 0⇒ h = 0, μ23 = dg+(1−d)(1−g) > 0,

Pb =

⎡
⎣0 1 0

d 0 1−d
g 0 1−g

⎤
⎦ with 0≤ d < 1,0 < g≤ 1,h = 0.

For case (c): μ13 = bh+(1−b)(1−g−h) = 0, μ23 = g > 0, implies bh = 0 and
(1−b)(1−g−h) = 0. This leads to four possibilities: b = 0 and b = 1 (impossible);
b = 0 and g + h = 1; h = 0 and b = 1 (which is impossible since state 3 is then
transient); h = 0 and g = 1 (which doesn’t lead to coupling since the chain is then
periodic with period 2). Thus there is only one possibility:

Pc =

⎡
⎣0 0 1

1 0 0
g 1−g 0

⎤
⎦ with 0 < g < 1,0 < h = 1−g < 1, (which is a special case of (a)

with d = 1).

For case (d): μ13 = (1−b)g+bh = 0, μ23 = 1−g−h > 0 implies (1−b)g and
bh = 0. There are four possibilities: b = 1 and g = 0 (impossible since state 1 is
then transient); b = 1 and h = 0; g = 0 and b = 0 (impossible since state 1 is then
absorbing); g = 0 and h = 1 (which is impossible since state 1 is then transient).
Thus there is only one possibility:

Pd =

⎡
⎣0 1 0

0 0 1
g 0 1−g

⎤
⎦ with b = 1,0 < g < 1,h = 0, (which is a special case of (b) with

d = 0).
Thus effectively there are only two non trivial cases to consider – case (a) with

0 ≤ d ≤ 1, 0 < g ≤ 1 and case (b), with 0 ≤ d ≤ 1, 0 < g ≤ 1. (The symmetry, as
present in Example 4, effectively reduces this to one case.)

In computing the bounds for the special cases above, for κ12, κ13 and κ23, using

the procedure of Theorem 3, first observe that κmin =
λ (1,2;1,3)

2,3
μ23

= κmax, leading to

κ23 =
λ (1,2;1,3)

2,3

μ23
, κ12 =

1+α(1,3)
1,2 −α(1,3)

1,3

τ2
+

λ (1,2;1,3)
2,3

μ23
,

κ13 =
1+α(1,2)

1,3 −α(1,2)
1,2

τ2
+

λ (1,2;1,3)
2,3

μ23
,

where

λ (1,2;1,3)
2,3 = 1+

α(1,2)
2,3 (1+α(1,3)

1,2 −α(1,3)
1,3 )+α(1,3)

2,3 (1+α(1,2)
1,3 −α(1,2)

1,2 )

τ2

with
τ2 = (1−α(1,2)

1,2 )(1−α(1,3)
1,3 )−α(1,3)

1,2 α(1,2)
1,3 .
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Simplification using the observations from Eqn. (41), that since μ12 = 0 and
μ13 = 0, α(1,2)

1,2 +α(1,3)
1,2 +α(2,3)

1,2 = 1, α(1,2)
1,3 +α(1,3)

1,3 +α(2,3)
1,3 = 1,α(1,2)

2,3 +α(1,3)
2,3 +

α(2,3)
2,3 +μ23 = 1.

Further, in cases (a) and (c):
α(1,2)

1,2 = 0, α(1,3)
1,2 +α(2,3)

1,2 = 1, α(1,2)
1,3 = 0,α(1,3)

1,3 +α(2,3)
1,3 = 1, α(1,3)

2,3 = 0,

α(2,3)
2,3 = 0, τ2 = α(2,3)

1,3 , λ (1,2;1,3)
23 =

α(2,3)
1,3 +α(1,2)

2,3

(
1+α(1,3)

1,2 −α(1,3)
1,3

)
α(2,3)

1,3

,

while in cases (b) and (d):
α(1,3)

12 = 0, α(1,2)
12 +α(2,3)

12 = 1, α(1,3)
13 = 0, α(1,2)

13 +α(2,3)
13 = 1, α(1,2)

23 = 0,

α(2,3)
23 = 0, τ2 = α(2,3)

1,2 , λ (1,2;1,3)
2,3 =

α(2,3)
1,2 +α(1,2)

2,3 +α(1,3)
2,3

(
1+α(1,2)

1,3 −α(1,2)
1,2

)
α(2,3)

1,2

.

Thus in this example, all the bounds are exact, with agreement to the explicit
solutions of equations (38) being obtained as in Example 3, i.e. κi j(exact) =
κi j(bound) leading to the ratios

rL,i =
lower bound of τC,i

τC,i
=

upper bound of τC,i

τC,i
= rU,i = 1, in each case.

The computation procedure of Theorem 3 is thus an alternative procedure for
evaluating the κi j in the case of a three-state chain when any two of the parameters
μab and μcd are both zero.
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Multiple Self-decomposable Laws on Vector
Spaces and on Groups: The Existence
of Background Driving Processes

Wilfried Hazod

Abstract Following K. Urbanik, we define for simply connected nilpotent Lie
groups G multiple self-decomposable laws as follows: For a fixed continuous
one-parameter group (Tt) of automorphisms put L(0) := M1(G) and L(m+1) :={
μ ∈M1(G) : ∀t > 0 ∃ ν(t) ∈ L(m) : μ = Tt(μ)∗ν(t)

}
for m≥ 0.

Under suitable commutativity assumptions it is shown that also for m > 0 there
exists a background driving Lévy process with corresponding continuous convolu-
tion semigroup (νs)s≥0 determining μ and vice versa. Precisely, μ and νs are related
by iterated Lie Trotter formulae.

1 Introduction

Self-decomposable laws or class L−laws were introduced by P. Lévy within the
frame of limit distributions of normalized sums of independent (not necessarily
identically distributed) random variables. In the past various types of distributions
which are well-known in statistical applications turned out to be self-decomposable.
See e.g. Z. Jurek [14], K. Sato [20] for a survey. Recently the self-decomposability
property and the related additive processes – one- and multidimensional – turned
out to be important for model building in Mathematical Finance. See e.g., [3] for a
survey and for references.

K. Urbanik [25] extended the concept of self-decomposability to finite dimen-
sional vector spaces V with operator normalization. See also [21] or the monograph
[12], and the literature mentioned there.

Closely related to self-decomposability are generalized Ornstein–Uhlenbeck pro-
cesses and Mehler semigroups of transition operators and, on the other hand, stable

Wilfried Hazod
Fakultät für Mathematik, Technische Universität Dortmund, D-44221 Dortmund, Germany
wilfried.hazod@mathematik.tu-dortmund.de
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hemigroups and M-semigroups of probabilities. (For details and hints to the litera-
ture see e.g., [12, 5, 7, 8, 9, 22, 1, 19].) Let (Xt)t≥0 be a stochastically continuous
additive process taking values in V then the distributions ν(s, t) of the increments
X−1

s Xt , s≤ t, form a continuous convolution hemigroup, i.e. (s, t) �→ ν(s, t) is con-
tinuous and

ν(s, t)�ν(t,r) = ν(s,r) for s≤ t ≤ r. (1)

A hemigroup (ν(s, t))s≤t is called stable w.r.t. a continuous one-parameter group of
vector space automorphisms T = (Tt)t∈R

⊆ GL(V) if for all r, for all s≤ t

Tr(ν(s, t)) = ν(s+ r, t + r), ν(s, t) = Ts (ν(0, t− s)) . (2)

Put ν(s) := ν(0,s), s≥ 0. Then, as easily verified,

ν(s+ t) = ν(s)� Ts(ν(t)), 0≤ s≤ t. (3)

Continuous families (ν(s))s≥0 of probabilities satisfying (3) are called M-semi-
groups or skew semigroups. (The corresponding transition operators are generalized
Mehler semigroups.)

μ ∈M1(V) is called (operator) self-decomposable w.r.t. T if ∀t ≥ 0

μ = Tt(μ)�ν(t) for some ν(t) ∈M1(V) (4)

ν(t) is called cofactor. Stable hemigroups and M-semigroups are interesting objects
of investigation in their own right. Furthermore, we have: If μ is self-decomposable
(w.r.t. T) then the cofactors (ν(t))t≥0 form a M-semigroup and (Ts(ν(t− s)))s≤t
is a stable hemigroup. Hence in view of the above mentioned connections, self-
decomposable laws with contracting T are limits of (generalized) Ornstein–Uhlen-
beck processes (resp. of the corresponding M-semigroups). (Cf. [22], see also [9]).

K. Urbanik [26] introduced multiple self-decomposability defining nested classes
of self-decomposable laws L(m)(T) inductively: L(0)(T) := M1(V), L(1)(T) the set
of self-decomposable laws,

L(m+1)(T)

:=
{
μ : μ = Tt(μ)�ν(t) with ν(t) ∈ L(m)(T), t > 0

}
. (5)

See also e.g., [4, 16, 12, 21, 23]. The concepts of self-decomposability, M-
semigroups, stable hemigroups generalize to contractible (hence simply connected
nilpotent) Lie groups G, where T⊆ Aut(G) denotes a subgroup of automorphisms.
The afore mentioned defining equations (1),(2),(4) are used verbatim in this
more general situation. See e.g., [5, 7, 9, 10, 19]. For self-decomposable laws on
groups in connection with limit theorems see e.g. [24]. In particular, also multiply
self-decomposability and the classes L(m)(T) (5) make sense in the group case.

For vector spaces V, self-decomposable laws μ and their cofactors ν(t) are in-
finitely divisible. Hence for any fixed s ≥ 0 there exists a Lévy process

(
Z(s)

t

)
t≥0
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such that Z(s)
1 is distributed according to ν(s). But the interesting objects are ad-

ditive processes (Xt)t≥0 with – in general non-stationary – increments
(
X−1

s Xt
)

s≤t
distributed according to ν(s, t) with (1) and (2). There exist hidden Lévy processes
(Yt)t≥0 (uniquely determined up to equivalence) driving (Xt)t≥0, i.e., we have a ran-
dom integral representation

Xt =
∫ t

0
TudYu , t ≥ 0. (6)

(Yt)t≥0 is called background driving Lévy process. See e.g. [14, 12, 13, 15, 20, 2].
For group-valued processes only weak versions of (6) are known: Let (ν(s, t))s≤t

be a stable hemigroup (with corresponding M-semigroup ν(t) := ν(0, t) : t ≥ 0) then
there exists a uniquely determined continuous convolution semigroup (νt)t≥0 related
to the M-semigroup (ν(t))t≥0 by Lie-Trotter formulas

ν(t) = lim
n

[nt]−1

�
k=0

Tk/n(ν1/n), ν(s, t) = lim
n

[nt]−1

�
k=[ns]

Tk/n(ν1/n) (7)

and
νt = lim

n
ν(1/n)[nt] = lim

n
ν(t/n)n. (8)

By (slight) abuse of language we call in the sequel the continuous convolution semi-
group (νt)t≥0 the background driving Lévy process of the M-semigroup (ν(t))t≥0
resp. of the stable hemigroup (ν(s, t))s≤t .

Let T be contracting. Then lim
t→∞

ν(t) =: μ exists (and is self-decomposable then)

iff ν(t) possesses finite logarithmic moments for some – hence all – t > 0. The
M-semigroup of cofactors (ν(t))t≥0 possesses finite logarithmic moments (t > 0)
iff the background driving process (νt)t≥0 shares this property (t > 0). (For vector
spaces see e.g., [12], for groups see e.g., [5, 10]).

The aim of this paper is to prove the existence of background driving processes
for multiple self-decomposable laws μ ∈ L(m)(T) and to investigate the correspon-
dences between multiple-cofactors and background driving processes in this case.
In particular, to obtain analogues of the Lie Trotter formulas (7) and (8) for the
multiple self-decomposable case.

The main results are new even for vector spaces. They are formulated and proved
for the group case (under a commutativity assumption). But the proofs are written
in such a way that they can easily extended to other convolution structures, e.g., to
matrix cone hypergroups, structures closely related to Wishart distributions. (See
[6] and the literature mentioned there.) Wishart distributions are not infinitely di-
visible w.r.t the usual convolution on the vector space of Hermitean matrices, but
w.r.t. the new convolution structures they are even stable, hence completely self-
decomposable. So, even when the investigations here are motivated by purely math-
ematical questions, there might be statistical applications in the future.
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2 Multiple Self-decomposability

Let G be a contractible (hence simply connected nilpotent) Lie group, let T =
(Tt)t∈R

be a continuous one-parameter group in Aut(G), Tt+s = TtTs, t,s ∈ R. We
defined in the introduction the classes L(m)(T) (cf. (5)).

Proposition 1. Let μ ∈ L(m)(T) for some m. Then for all t1, . . . , tm ∈ R+ and 1 ≤
k ≤ m there exist ν(k)(t1, . . . , tk) ∈ L(m−k+1)(T)⊆M1(G) such that

μ = Tt1(μ)�Tt2

(
ν(1)(t1)

)
� · · ·

� Ttm

(
ν(m−1)(t1, . . . , tm−1)

)
�ν(m)(t1, . . . , tm). (9)

The measures ν(k)(t1, . . . , tk) are called k−cofactors.[[
μ = Tt1(μ) � ν(1)(t1) = Tt1(μ) � Tt2

(
ν(1)(t1)

)
� ν(2)(t1, t2), since ν(1)(t1) is Tt2 -

decompsable. Per iteration we obtain finally

μ = Tt1(μ)� (Tt2

(
ν(1)(t1)

)
)�Tt3

(
ν(2)(t1, t2)

)
� · · ·

· · · � Ttm

(
ν(m−1)(t1, . . . , tm−1)

)
�ν(m)(t1, . . . , tm).

]]
For the main result, the subsequent Theorem 1, we assume additional conditions:

The convolution factors in (9), i.e., the probabilities{
Tt(μ), . . .Ttk(ν

(k−1)(t1, . . . , tk)), ν(m)(t1, . . . , tm)
}

1≤ k ≤ m, ti ∈ R+ (10)

commute.
For all ν ∈ L(1)(T) the convolution operator is injective, i.e.,

ν �ρ = ν �ρ ′ ⇒ ρ = ρ ′ (11)

(hence in particular, the cofactors are uniquely determined)
and T = (Tt) is contracting, i.e.,

∀x ∈ X ∈G lim
t→∞

Tt(x) = e. (12)

Note that (10) and (11) are obviously true for vector spaces: In this case, the
convolution semigroup is commutative, therefore (10) is trivial, and ν is infinitely
divisible, hence the Fourier transform has no zeros. Whence (11) follows. For in-
jectivity in the group case see e.g., the discussion in [18].

Theorem 1. Let μ ∈ L(m)(T). Assume (10), (11) and (12). Then there exists a

uniquely determined continuous convolution semigroup
(
ν(m)

t

)
t≥0

, the mth-back-

ground driving Lévy process, such that the k-cofactors, 1 ≤ k ≤ m, and μ are
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uniquely determined by
(
ν(m)

t

)
t≥0

. Furthermore, ν(m)
t possesses finite logm

+(·)–
moments for all t > 0.

Hence – under (10), (11) and (12) – there exists a bijective mapping between Lévy
processes with finite logm

+(·)–moments and m-self-decomposable laws. (To simplify

notations we write νt := ν(m)
t .)

For m = 2 the result can be formulated in the following way: For a continuous
convolution semigroup

(
νt = ν(2)

t

)
t≥0

with finite log2
+(·)–moments there exists a

uniquely determined 2-self-decomposable law μ with cofactors ν(1)(s), ν(2)(s, t),s,
t ≥ 0, such that

ν(2)(s, t) = lim
N

lim
M

[Nt]−1

�
j=0

[Ms]−1

�
k=0

T k
M + j

N

(
ν 1

N ·
1
M

)

and
ν(s) = ν(1)(s) = lim

t→∞
ν(2) (s, t) , μ = lim

s→∞
ν(s).

Conversely, let μ be 2-self-decomposable, let
(
ν(2)(s, t)

)
s,t∈R+

be corresponding

2-cofactors, then there exists a continuous convolution semigroup
(
νr = ν(2)

r

)
r≥0

,

uniquely determined by μ , such that for r = s · t, r,s, t ≥ 0

νr = ν(2)
r = ν(2)

s·t = lim
N

lim
M

(
ν(2) (s/M, t/N)

)N·M
.

The proof will be carried out only for m = 2, the general case follows along
the same lines by induction. It relies on a space-time enlargement Γ = G � R,
a semidirect extension of G by the real line via the automorphism group T. The
construction provides the means to investigate multi-parameter-analogues of M-
semigroups

(
ν(m)(t1, . . . , tm)

)
ti≥0

, the m-cofactors of μ ∈ L(m)(T). Multi-parameter

M-semigroups are – via space-time continuous convolution semigroups and Lie-
Trotter formulas – related to multi-parameter continuous convolution semigroups,
the mth-background driving Lévy processes.

3 The Toolbox

We consider as afore mentioned the space-time group Γ = G � R, a semidi-
rect product with group operation (x,s)(y, t) = (xTs(y),s+ t) , x,y ∈ G,s, t ∈ R.
Let M1

∗(Γ ) :=
{
ρ⊗ εr : ρ ∈M1(G),r ∈ R

}
, a closed subsemigroup of M1(Γ ). For

probabilities in M1
∗(Γ ), convolution has a considerably simple form:

(ρ⊗ εs)∗
(
ρ ′ ⊗ εs′

)
=

(
ρ �Ts(ρ ′)

)
⊗ εs+s′ ,

where ∗ denotes convolution on Γ and � denotes convolution on G.
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If (μ(t))t≥0 is a M-semigroup on G then (λt := μ(t)⊗ εt)t≥0 is a continuous
convolution semigroup, the space-time semigroup, and conversely, for a continu-
ous convolution semigroup (λt := μ(t)⊗ εt)t≥0 of probabilities on Γ the space-
component (μ(t))t≥0 is a M-semigroup. A continuous convolution semigroup
(λt)t≥0 is characterized by the generating functional A := d+

dt λt |t=0 which has for
(λt)t≥0 ⊆M1

∗(Γ ) a pleasant form:

A = B⊕ ε0 + εe⊕P, (13)

where B := d+

dt μ(t)|t=0 and P is a differential operator of 1st order. In particular,
B := d+

dt μ(t)|t=0 exists for any M-semigroup, and B is the generating functional of
a continuous convolution semigroup, (μt)t≥0 say. This semigroup is called back-
ground driving Lévy process, as afore mentioned. Applying the Lie-Trotter formula
for generating functionals to the decomposition (13) we obtain as announced

μ(t)= lim
n→∞

n−1

�
k=0

Tt
n k

(
μ t

n

)
= lim

n→∞

[nt]−1

�
k=0

Tk
n

(
μ 1

n

)
(7)

and conversely,

μt = lim
n→∞

μ (t/n)n = lim
n→∞

μ (1/n)[nt] . (8)

Convergence is uniform on compact subsets of R+.
For the background of probabilities on groups the reader is referred to, e.g., [11,

5], for details concerning the decomposition (13), see e.g. [5, 9].
Putting things together we obtain

Proposition 2. (a) Let (μ(t))t≥0 ⊆ M1(G) be a continuous M-semigroup. Then
(8) defines a (uniquely determined) continuous convolution semigroup (μt)t≥0 ⊆
M1(G).

(b) Conversely, let (μt)t≥0 be a continuous convolution semigroup. Then (7)
defines a (uniquely determined) continuous M-semigroup (μ(t))t≥0.

In the sequel we shall tacitly make use of the following well-known result. (We
formulate a version which is adapted to our situation):

Lemma 1. (a) Let G be a second countable locally compact group and let R+ $
t �→ α(n)

t ∈M1(G) be a sequence of functions which are assumed (i) to be weakly
continuous, (ii) ∀t ≥ 0 there exists lim

n→∞
α(n)

t =: αt ∈ M1(G), where (iii) (αt)t≥0

satisfies the semigroup condition αs+t = αs �αt , s, t ≥ 0.
Then (αt)t≥0 is a continuous convolution semigroup.
(b) As a corollary we obtain: Let G be a contractible Lie group, let T = (Tt) ⊆

Aut(G) be contracting as before. Let (1) t �→ α(n)(t) ∈ M1(G) be continuous and
(2) assume lim

n→∞
α(n)(t) =: α(t) ∈ M1(G) to exist. Assume further (3) (α(t))t≥0 to

satisfy the M-semigroup condition α(s+ t) = α(s)�Ts (α(t)) , s, t ≥ 0.
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Then (α(t))t≥0 is a continuous M-semigroup.[[
To prove a) consider the convolution operators acting on Cc(G)⊆C0(G)∩L2(G):

Rμ f (x) :=
∫

f (xy)dμ(y),Lμ f (x) :=
∫

f (yx)dμ(y). Let f ,g ∈Cc(G). Then

〈Rμ f ,g〉 =
∫

Rμ f (x)g(x)dωG(x) =
∫ ∫

f (xy)dμ(y)g(x)dωG(x)

=
∫ ∫

f (xy)g(x)dωG(x)dμ(y) =: 〈Lν f ,μ〉,

where ωG denotes a Haar measure and ν := g ·ωG denotes the measure with den-
sity g. Applying this formula to μ = α(n)

t and to αt , we obtain that t �→ 〈Rαt f ,g〉
is measurable for all f ,g ∈ Cc(G). A density argument shows that (Rαt )t≥0 is a
C0 contraction semigroup on L2(G), measurable w.r.t. the weak operator topology.
Since L2(G) is separable by assumption, continuity (in the strong operator topol-
ogy) follows. Then, as well known and easily verified, weak continuity of t �→ αt
follows.

To prove (b) we notice that (βt := α(t)⊗ εt)t≥0 ⊆ M1(Γ ) satisfies the as-
sumptions of a). Hence continuity of t �→ βt follows, and therefore t �→ α(t) is
continuous.

]]

Definition 1. (a) A family (ν(s, t))s,t≥0 ⊆ M1(G) is called 2-M-semigroup if for
fixed s ≥ 0 resp. t ≥ 0, t �→ ν(s, t) resp. s �→ ν(s, t) are continuous M-semigroups.
(Analogously, m-M-semigroups are defined for m≥ 2.).

(b) A family (νs,t)s,t≥0 ⊆ M1(G) is called continuous 2-semigroup if for fixed
s≥ 0 resp. t ≥ 0, t �→ νs,t resp. s �→ νs,t are continuous convolution semigroups.

In the following we assume throughout (in view of (10)) that

{Tr (ν(s, t)) , r,s, t ≥ 0} (14)

commute.
Applying Proposition 2 for fixed s resp. for fixed t we obtain

Proposition 3. Let (ν(s, t))s,t≥0 be a 2-M-semigroup. Then for fixed s≥ 0 resp. t ≥
0, there exist continuous convolution semigroups

(
ρ(s)

t

)
t≥0

resp.
(
σ (t)

s

)
s≥0

such

that for fixed t ≥ 0 resp. s≥ 0 s �→ ρ(s)
t and t �→ σ (t)

s are continuous M-semigroups.
The correspondence is given by the Lie-Trotter formulas (7) and (8):

ρ(s)
t = lim

n
ν(s, t/n)n, σ (t)

s = lim
m

ν(s/m, t)m

and conversely (15)

ν(s, t) = lim
n

[nt]−1

�
k=0

Tk/n

(
ρ(s)

1/n

)
= lim

m

[ms]−1

�
j=0

Tj/m

(
σ (t)

1/m

)
.
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Continuity follows since convergence in (7) and (8) is uniform on compact sub-

sets. Alternatively, this follows by Lemma 1. To prove the M-semigroup property of
e.g.,

(
ρ(s)

t

)
s≥0

, note that for t ≥ 0,s1,s2 ≥ 0 we have

ρ(s1+s2)
t = lim

n
ν(s1 + s2, t/n)n = lim

n
(ν(s1, t/n)�Ts1 (ν(s2, t/n)))n

(14)
= lim

n
ν(s1, t/n)n �Ts1

(
lim

n
ν(s2, t/n)n

)
= ρ(s1)

t �Ts1

(
ρ(s2)

t

)
.

The other assertions are proved analogously.
]]

Proposition 4. Let, as in Proposition 3, (ν(s, t))s,t≥0 be a 2-M-semigroup. Define
for s, t ≥ 0:

νs,t := lim
n

(
σ (t/n)

s

)n
= lim

n
lim

m
(ν (s/m, t/n))m·n

and (16)

νs,t := lim
n

(
ρ(t/n)

s

)n
= lim

m
lim

n
(ν (s/m, t/n))n·m .

Then we have:
(s, t) �→ νs,t and (s, t) �→ νs,t are continuous 2-semigroups (cf. Definition 1).[[
Continuity follows by Lemma 1. We have to show the 2-semigroup property:

s �→ σ (u)
s is a continuous convolution semigroup for all u, therefore also s �→ νs,t is

a continuous convolution semigroup for all fixed t. (Recall that we assumed that all
convolution factors commute (14)).

For fixed s ≥ 0, t �→ σ (t)
s is a M-semigroup. Hence by (7) and (8), t �→ νs,t is a

continuous convolution semigroup. The other assertions are proved analogously.
]]

Conversely, we obtain with a similar proof:

Proposition 5. Let (νs,t)s,t≥0 be a continuous 2-semigroup. Define

ν(s, t) := lim
n

lim
m

[nt]−1

�
k=0

[ms]−1

�
j=0

Tk
n + j

m

(
ν1/m,1/n

)

= lim
n

lim
m

n−1

�
k=0

m−1

�
j=0

Tt
n k+ s

m j
(
νs/m, t/n

)

for s, t ≥ 0. Then (νs,t)s,t≥0 is a continuous 2-M-semigroup.[[
Continuity follows by Lemma 1. Furthermore, for fixed s ≥ 0, t �→ σ (t)

s =

lim
m

[ms]−1

�
j=0

Tj/m
(
ν1/m, t

)
is a M-semigroup, and for fixed t ≥ 0, s �→ σ (t)

s is a
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continuous convolution semigroup. Moreover,

⎛
⎝ν(s, t) = lim

n

[nt]−1

�
k=0

Tk/n

(
σ (1/n)

s

)⎞⎠
s,t≥0

is a 2-M-semigroup.
]]

Finally, for continuous 2-semigroups we obtain the following representation:

Proposition 6. Let (μs,t)s,t≥0 be a continuous 2-semigroup. Then there exists a
uniquely determined continuous convolution semigroup (αr)r≥0 ⊆M1(G) such that
μs,t = αs·t , s, t ≥ 0. In fact, αr = μr,1 = μ1,r, r ≥ 0.

Conversely, to any continuous convolution semigroup (αr)r≥0 the mapping
(s, t) �→ μs,t := αs·t defines a continuous 2-semigroup.[[

For fixed t ≥ 0, s �→ μs,t is a continuous convolution semigroup. Let B(t) :=
d+

ds μs,t |s=0 denote the generating functional. Hence for all test functions f ∈D(G),
R+ $ t �→ 〈B(t), f 〉 is measurable. Furthermore, the semigroup property μs,t1+t2 =
μs,t1 � μs,t2 yields 〈B(t1 + t2), f 〉 = 〈B(t1), f 〉+ 〈B(t2), f 〉. Whence 〈B(t), f 〉 = t ·
〈B(1), f 〉 follows. This holds for any f , whence, with B := B(1) we obtain: B(t) =
t ·B.

Put β (t)
s := μs,t and αs := β (1)

s = μs,1. The continuous convolution semigroup(
β (t)

s

)
s≥0

is generated by B(t) = t ·B. Whence β (t)
s = β (1)

s·t = αs·t follows. Hence,

μs,t = αs·t as asserted.

The converse is obvious.
]]

4 Proof of Theorem 1

As afore announced, to simplify notations we shall prove Theorem 1 for m = 2 only.
Let T be a contracting group of automorphisms, let μ ∈ L(2)(T). For s, t ≥ 0 we have
μ = Tt (μ)�ν(1)(t) = Ts

(
Tt (μ)�ν(1)(t)

)
�ν(s) = Tt+s (μ)�Ts

(
ν(1)(t)

)
�ν(1)(s).

On the other hand, μ = Tt+s (μ)�ν(1)(s+ t). By the injectivity assumption (11) and
commutativity (10), we obtain ν(1)(s + t) = ν(s) � Ts(ν(1)(t)), i.e., the 1-cofactors
form a M-semigroup. (Note that independently from the injectivity assumption, 1-
cofactors

(
ν(1)(s)

)
s≥0

may be chosen in such a way. Cf. [7]).

Applying these considerations to the 1-cofactors ν(1)(s) instead of μ we obtain
for fixed s: ν(1)(s) = Tt(ν(1)(s))�ν(2)(s, t),∀t ≥ 0, and t �→ ν(2)(s, t) is a continuous
M-semigroup.

Claim: For fixed t ≥ 0, s �→ ν(2)(s, t) is a M-semigroup. Hence the 2-cofactors(
ν(2)(s, t)

)
s,t≥0

form a 2-M-semigroup (cf. Definition 1).[[
Let s1,s2,r ≥ 0. The injectivity assumption (11) yields uniqueness of the cofac-

tors, hence
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ν(1)(s1 + s2) = Tr

(
ν(1)(s1 + s2)

)
�ν(2)(s1 + s2,r)

(14)
= ν(2)(s1 + s2,r)�Tr

(
ν(1)(s1 + s2)

)
.

On the other hand, 1-cofactors being M-semigroups,

ν(1)(s1 + s2) = ν(1)(s1)�Ts1

(
ν(1)(s2)

)
= (by self-decomposability of 1-cofactors)
∀r≥0= Tr

(
ν(1)(s1)

)
�ν(2)(s1,r)�Ts1

(
Tr

(
ν(1)(s2)

)
�ν(2)(s2,r)

)
(14)
=

(
ν(2)(s1,r)�Ts1

(
ν(2)(s2,r)

))
�Tr

(
ν(1)(s1)�Ts1

(
ν(1)(s2)

))
= ν(2)(s1,r)�Ts1

(
ν(2)(s2,r)

)
�Tr

(
ν(1)(s1 + s2)

)
.

Again by the injectivity assumption (11) we may identify the cofactors to obtain
ν(2)(s1 + s2,r) = ν(2)(s1,r)�Ts1

(
ν(2)(s2,r)

)
, r,s1,s2 ≥ 0.

The claim is proved.
]]

Applying the tools in Sect. 3 (Propositions 4 – 6) we obtain :
There exists a uniquely determined continuous convolution semigroup (νr)r≥0

.=(
ν(2)

r

)
r≥0

such that for all r,s, t ≥ 0, r = s · t

νr = νs·t = lim
N

lim
M

(
ν(2) (s/M, t/N)

)N·M

and conversely (cf. Proposition 5 )

ν(2)(s, t) = lim
N

lim
M

[Nt]−1

�
k=0

[Ms]−1

�
j=0

T k
N + j

M

(
ν 1

N ·
1
M

)
.

By assumption, T is contracting. Hence ν(2)(s, t) t→∞−→ ν(1)(s), ∀s≥ 0, furthermore,
ν(1)(s) s→∞−→ μ and thus lim

s→∞
lim
t→∞

ν(2)(s, t) = μ .
Note that in view of the 2-M-semigroup property this yields

ν(2)(M · s,N · t) =
[Nt]−1

�
k=0

[Ms]−1

�
j=0

Tkt+ js

(
ν(2)(s, t)

)
M,N→∞−→ μ .

These convolution products converge iff ν(2)(s, t) has finite log2
+(·)–moments, i.e.,

iff
∫
G

(
log+(||x||)

)2 dν(2)(s, t)(x) < ∞. (For vector spaces see e.g., [4, 12, 21], for
groups see [17]).
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Claim:
∫
G

(
log+(||x||)

)2 dν(2)(s, t)(x) is finite iff the 2nd-background driving Lévy

process shares this property, i.e., iff
∫
G

(
log+(||x||)

)2 dν(2)
r (x) is finite for r > 0.

We sketch a proof in complete analogy to [5, 10] (for the case m = 1):[[
Let ϕ : G → R+ be a continuous sub-multiplicative function equivalent with

log2
+(|| · ||) and let ψ : Γ → R+ be an analogous function on the space-time group.

For fixed t > 0 let
(
λ (t)

s := ν(2)(s, t)⊗ εs

)
s≥0

be the space-time continuous con-

volution semigroup. Since λ (t)
s ∈M1

∗(Γ ),
∫
G
ϕdν(s, t) < ∞ iff

∫
Γ ψdλ (t)

s < ∞. This

is the case iff the Lévy measure γ(t) of
(
λ (t)

s

)
s≥0

fulfills
∫
�U ψdγ(t) < ∞ for all

neighbourhoods U of the unit in Γ .
Since λ (s)

t ∈ M1
∗(Γ ) it follows easily that this is again equivalent with∫

�V ϕdη(t) < ∞ for all neighbourhoods V of the unit in G, where η(t) denotes
the Lévy measure of B(t) := ∂+

∂ s ν
(2)(s, t) |s=0 .

But B(t) is the generating functional of the continuous convolution semigroup(
σ (t)

s

)
s≥0

. Hence the above integrals are finite iff
∫
G
ϕdσ (t)

s < ∞, s > 0, hence iff∫
G

(
log+(||x||)

)2 dσ (t)
s < ∞ for all t > 0.

Repeating these arguments and replacing t �→ ν(s, t) by t �→ σ (t)
s we obtain

finally:∫ (
log+(||x||)

)2 dν(2)(s, t) < ∞ iff
∫ (

log+(||x||)
)2 dν(2)

s·t < ∞ (∀s, t > 0), as

asserted.
]]

Theorem 1 is proved. �

4.1 Concluding Remark

At a first glance the foregoing construction appears asymmetric: The Lie Trotter
formula is applied first to s then to t, consequently the 2nd background pro-
cess was constructed via the family of continuous convolution semigroups
σ (t)

s . Switching to the space-time semigroups we obtained differentiability of(
ν(2)(s, t)

)
s,t∈R+

(evaluated at test functions). In particular, for fixed t ≥ 0 and for

s = 0, B(t) := ∂+

∂ s ν
(2)(s, t) |s=0 , t ≥ 0, is the generating functional of the continuous

convolution semigroup
(
σ (t)

s

)
s≥0

, i.e., ∂+

∂ s σ
(t)
s |s=0 = B(t) . Adopting the notation(

σ (t)
s =: Exp(s ·B(t))

)
s≥0

, for t ≥ 0, this yields ∂+

∂ t σ
(t)
s |t=0 = ∂+

∂ t Exp(sB(t))|t=0 =:

s ·C where C is the generating functional of the background driving process (νr)r≥0,
i.e., νr = Exp(r ·C). In other words, – explaining the afore mentioned asymmetry –
we obtain

C =
∂+

∂ t
Exp

(
∂+

∂ s
ν(2)(s, t)

∣∣
s=0

)∣∣
t=0.
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Interchanging the role of s and t,
(
σ (t)

s

)
s,t≥0

and
(
ρ(s)

t

)
t,s≥0

and M and N, we

obtain analogously ∂+

∂ s ρ
(s)
t |s=0 = t ·C, the generating functional of a Lévy process

(νr)r≥0, and moreover

ν(2)(s, t) = lim
M

lim
N

[Ms]−1

�
j=0

[Nt]−1

�
k=0

T k
N + j

M

(
ν 1

N ·
1
M

)
.
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Further Results on Samuelson’s Inequality

Richard William Farebrother

Abstract In this paper we show that Samuelson’s [11] inequality is essentially due
to Gauss [6] whilst a more general result of the same type is due to Aitken [1, 2].
We also show that the adding-up constraint on the deviations from sample means
implicit in Trenkler and Puntanen’s [14] multivariate generalisation of Samuelson’s
Inequality can be regarded as a special case of a more general formulation involving
a set of linear constraints on the deviations.

1 Gauss’s Variant of Samuelson’s Inequality

Given n observations y1,y2, ...,yn on a single variable Y , we define their sample
mean ȳ = 1

n ∑
n
i=1 yi and sample variance s2 = 1

n ∑
n
i=1 d2

i (assumed positive) where
di = yi− ȳ for i = 1,2, ...,n.

In this context, a result that is variously attributed to Samuelson [11], Thomp-
son [13] and Laguerre [8] asserts that d2

j ≤ (n− 1)s2 for all j = 1,2, ...,n, see
Olkin [10], Jensen [7] or Trenkler and Puntanen [14].

This basic result may readily be established by applying Lagrange’s method to
the optimisation problem:

Maximise d2
j /s2

subject to
n

∑
i=1

di = 0

n

∑
i=1

d2
i = ns2

or to:
Maximise d2

j /s2 = (∑
i �= j

di/s)2

Richard William Farebrother
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subject to
∑
i �= j

(di/s)2 +[∑
i �= j

di/s]2 = n

However, we prefer to offer an alternative approach and to apply it in a more
general context:

Maximise d2
j /s2

subject to

X′d =
n

∑
i=1

xidi = 0

n

∑
i=1

d2
i = ns2

where X is a given n×q matrix of rank q.
Assuming that the optimal value of d2

j /s2 is nonzero, we define ai =−di/d j and
reformulate this problem as:

Minimise ns2/d2
j = 1+a′[ j]a[ j]

subject to
X′[ j]a[ j] = x j

where X[ j] represents the n× q matrix X with its jth row x′j deleted and a[ j] repre-
sents the n×1 matrix a with its jth element a j deleted.

Now, this reformulation of the problem is familiar to statisticians as one defining
the best (minimum variance) linear unbiased estimators of the q slope parameters
of the standard linear statistical model. Further, the so-called Gauss–Markov The-
orem asserts that the optimal (BLUE) solution to this problem is given by setting
a[ j] = X[ j](X′[ j]X[ j])−1x j whence ns2/d2

j = 1 + x′j(X′[ j]X[ j])−1x j and thus the maxi-
mal value of d2

j /s2 = n/[1 + x′j(X′[ j]X[ j])−1x j], so that αs2− d2
j is nonnegative for

all α ≥ n/[1+x′j(X′[ j]X[ j])−1x j] = n[1−x′j(X′X)−1x j].
In particular, when X is an n×1 column of ones, then we have to set ai = 1/(n−

1) for all i �= j whence ns2/d2
j = 1 +∑i �= j a2

i = n/(n− 1) and thus the maximal
value of d2

j /s2 = n− 1, so that αs2− d2
j is nonnegative for all α ≥ n− 1. And we

deduce that Samuelson’s Inequality is essentially a corollary of the Gauss–Markov
Theorem first stated by Gauss in 1823, see [3, 4].

2 First Multivariate Result

The univariate problem outlined in Sect. 1 may readily be generalised to the case of
a n× p matrix D of rank p satisfying the conditions X′D = 0 for some n×q matrix
X of rank Q≤ p.
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Let P = [J K] be an n× n permutation matrix partitioned by its first q columns
and the remaining n−q columns, then the expression X′D = X′JJ′D+X′KK′D = 0
implies that the q× p matrix J′D satisfies the condition J′D =−Z′K′D where Z =
K′X(J′X)−1.

In particular, if p = q then we may be interested in solving the following gener-
alisation of the problem outlined in Sect. 1:

Maximise [det(J′D)]2/det(nS)

subject to
X′JJ′D+X′KK′D = 0

D′JJ′D+D′KK′D = nS

where the p× p positive definite matrix S = 1
n D′D.

Assuming that the optimal solution to this problem is strictly positive, so that J′D
is nonsingular, then we may define A =−K′D(J′D)−1 and rewrite this problem as:

Minimise det[n(D′J)−1S(J′D)−1] = det[Iq +A′A]

subject to Z′A = Iq

Now, Aitken [1, 1] has shown that det(A′A+B′B) is minimised subject to Z′A =
Iq and B = Iq by setting A = Z(Z′Z)−1, so that det[n(D′J)−1S(J′D)−1]≥ det[Iq +
(Z′Z)−1] whence [det(J′D)]2 ≤ det(nS)/det[Iq +(Z′Z)−1].

In particular, if p = q = 1, the n×1 matrix J is the jth column of In and S = s2,
then, as in Sect. 1, we have d2

j ≤ ns2/[1+ x2
j/∑i �= j x2

i ].

3 Second Multivariate Result

Aitken’s [1, 1] generalisation of his analysis to the trace and other spurs of lower
order than the determinant are of little interest in the present context. We therefore
consider a different multivariate generalisation of the problem of Sect. 1 that seeks
to determine the smallest value of α for which the p× p matrix αS−d jd′j is non-
negative definite when the n× p matrix D satisfies the conditions X′D = 0 where X
is an n×q matrix of rank q,d j represents the jth row of D, and S = 1

n D′D.
Again supposing that J′X is nonsingular, we find that the q× p matrix J′D sat-

isfies J′D = −Z′K′D where Z = K′X(J′X)−1. In this context, our problem is to
determine the smallest value of α = nγ for which the p× p matrix

T(γ) = nγS−D′JJ′D

= γD′KK′D− (1− γ)D′JJ′D

= D′K[γIn−q− (1− γ)ZZ′]K′D
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is nonnegative definite. Now, this condition is clearly satisfied if (but not only if) γ ≥
(1−γ)λ∗ or α/n = γ ≥ μ∗ where λ∗ is the largest eigenvalue of the (n−q)×(n−q)
matrix ZZ′, v∗ is the corresponding (n−q)×1 eigenvector and μ∗ = λ∗/(1+λ∗) is
the largest eigenvalue of the q×q matrix [Iq +(Z′Z)−1]−1 = J′X(X′X)−1X ′J.

Conversely, if T(γ) is nonnegative definite for all choices of D including those
for which the first column of K′D is a multiple of v∗, then the upper left element of
T(γ) must be nonnegative and α must satisfy α/n≥ μ∗.

4 Main Results

Summarising the results established in Sect. 3, we have:

Theorem 1. Let X be an n× q matrix of rank q, and let Y be an n× p ma-
trix such that D = MY have rank p and S = 1

n D′D is positive definite, where
M = In−X(X′X)−1X′. Further, let P = [j K] be an n×n permutation matrix par-
titioned by its first q columns and the remaining n− q columns in such a way that
J′X is nonsingular, then the p× p matrix αS−D′JJ′D is nonnegative definite for all
choices of Y if and only if α/n≥ 1−1/(1+λ∗) where λ∗ is the largest eigenvalue
of the (n−q)× (n−q) matrix ZZ′ = K′X(X′JJ′X)−1X′K. Moreover, this condition
holds as an equality if the eigenvector of ZZ′ corresponding to its largest eigenvalue
λ∗ may be expressed as a linear combination of the columns of K′D.

Further, on specialising this general result to the case q = 1, we have:

Theorem 2. Let x be an n×1 nonzero matrix, and let Y be an n× p matrix such that
D = MY have rank p and S = 1

n D′D is positive definite, where M = In−x(x′x)−1x′.
Further, suppose that the jth element of x is nonzero and that D has jth row d′j ,
then the p× p matrix αS−d jd′j is nonnegative definite for all choices of Y if and
only if α/n≥ 1− x2

j/(∑n
i=1 x2

i ). Moreover, this condition holds as an equality if the
elements of x other than the jth may be expressed as a linear combination of the
columns of D.

Remark 1. Suppose that x j �= 0 and there is a p× 1 matrix c such that y′ic = xi for
all i �= j and y′jc �= x j (or D will have less than full column rank), then d′ic = gxi

for all i �= j where g = x j(x j− y′jc)/(∑n
h=1 x2

h) �= 0 as required by the final part of
Theorem 2.

Remark 2. Trenkler and Puntanen’s [14] result may be obtained from our Theorem 2
by setting x equal to an n× 1 column of ones. That due to Samuelson [11] then
follows by setting p = 1.
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Remark 3. If the n× p matrix D satisfies X′d = 0 where X is an n×q nonzero matrix,
but we only require a bound on the value of α such that αS−d jd′j is nonnegative
definite for all Y, then we should apply Theorem 2 for all linear combinations x =
Xc of the columns of the n×q matrix X satisfying x′jc = 1.

In this way we obtain αS−d jd′j is nonnegative definite for all Y if and only if
α/n≥ 1−1/(maxx′jc=1c′X′Xc).

5 Historical Remark

Let x, y and w be n× 1 nonzero matrices and let X∗ = [x w] then we may define
M = In−x(x′x)−1x′ and M∗ = In−X∗(X′∗X∗)−1X′∗ and deduce that:

y′M∗y = y′My−y′Mw(w′Mw)−1w′My.

Using a variant of Gauss’s notation, Farebrother ([4], pp.101 and 195–196) has
shown that this fundamental result appears in Gauss [5] as:

[ll,2] = [ll,1]− [lb,1]2/[bb,1]

and in Laplace [9] as:

[p(2)p(2)] = [p(1)p(1)]− [p(1)b(1)]2/[b(1)b(1)]

and again in Laplace [9] as:

[p(2)p(2)] =
[pp][qq][rr]− [pp][qr]2− [qq][pr]2− [rr][pq]2 +2[pq][pr][qr]

[qq][rr]− [qr]2
.

The result now known as Samuelson’s Inequality follows immediately from these
expressions by setting a = r = x equal to an n×1 column of ones, b = q = w equal
to the jth column of In and l = p = y before noting that [ll,2] = [p(2)p(2)] is non-
negative. But this hypothetical connection with the work of Gauss and Laplace falls
to the ground as neither author seems to have contemplated setting b = q equal to
the jth column of In.

On the other hand, augmenting x by the jth column of In has exactly the same
effect on the sum of squared deviations function as deleting the jth row from [x y].
So that Gauss [6] would have come close to a variant of Samuelson’s Inequality if
he had also explicitly stated the relation between the adjusted and unadjusted sum
of squared deviations when a single row is deleted from the data set in parallel with
his earlier statement of the corresponding relationship when a single row is added,
see Farebrother ([4], pp. 146–147).
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Revisitation of Generalized
and Hypergeneralized Projectors

Oskar Maria Baksalary

Abstract The notions of generalized and hypergeneralized projectors, introduced
by Groß and Trenkler [Generalized and hypergeneralized projectors, Linear Alge-
bra Appl. 264 (1997) 463–474], attracted recently considerable attention. The list
of publications devoted to them comprises now over ten positions, and the present
paper briefly discusses some of the results available in the literature. Furthermore,
several new characteristics of generalized and hypergeneralized projectors are estab-
lished with the use of Corollary 6 in Hartwig and Spindelböck [Matrices for which
A∗ and A† commute. Linear Multilinear Algebra 14 (1984) 241–256].

1 Introduction

Let Cm,n be the set of m×n complex matrices. The symbols A∗, R(A), and rk(A)
will denote the conjugate transpose, range (column space), and rank, respectively,
of A ∈ Cm,n. Additionally, In will mean the identity matrix of order n.

Two matrix generalized inverses will be of interest in the present paper. Namely,
A† ∈Cn,m will stand for the Moore–Penrose inverse of A∈Cm,n, i.e., for the unique
matrix satisfying the equations

AA†A = A, A†AA† = A†, AA† = (AA†)∗, A†A = (A†A)∗,

and A# ∈Cn,n will be the group inverse of A∈Cn,n, i.e., the unique matrix satisfying
the equations

AA#A = A, A#AA# = A#, AA# = A#A.

Oskar Maria Baksalary
Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, PL
61-614 Poznań, Poland
baxx@amu.edu.pl
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Recall that the existence of the group inverse is restricted to the matrices of index
one, i.e., satisfying rk(A2) = rk(A). Henceforth, whenever the group inverse occurs,
it is assumed to exist.

Several known classes of matrices will be recalled in what follows. The symbols
C

PI
m,n and C

CA
m,n will denote the subsets of Cm,n comprising partial isometries and

contractions, i.e.,

C
PI
m,n = {A ∈ Cm,n : AA∗A = A}= {A ∈ Cm,n : A† = A∗}, (1)

C
CA
m,n = {A ∈ Cm,n : ‖Ax‖� ‖x‖ for all x ∈ Cn,1}, (2)

where ‖.‖ is a vector norm. Moreover, C
P
n , C

OP
n , C

QP
n , C

N
n , C

SD
n , C

EP
n , and C

WEP
n

will stand for the sets consisting of oblique projectors (idempotent matrices), orthog-
onal projectors (Hermitian idempotent matrices), and quadripotent, normal, star-
dagger, EP (range-Hermitian), and weak-EP matrices, respectively, i.e.,

C
P
n = {A ∈ Cn,n : A2 = A}, (3)

C
OP
n = {A ∈ Cn,n : A2 = A = A∗}= {A ∈ Cn,n : A2 = A = A†}, (4)

C
QP
n = {A ∈ Cn,n : A4 = A}, (5)

C
N
n = {A ∈ Cn,n : AA∗ = A∗A}, (6)

C
SD
n = {A ∈ Cn,n : A∗A† = A†A∗}, (7)

C
EP
n = {A ∈ Cn,n : AA† = A†A}= {A ∈ Cn,n : R(A) = R(A∗)}, (8)

C
WEP
n = {A ∈ Cn,n : AA†A†A = A†AAA†}. (9)

The concepts of generalized and hypergeneralized projectors were introduced by
Groß and Trenkler [13, pp. 465, 466]. They may be viewed as weakened versions
of the two characterizations of orthogonal projectors in (4), obtained by deleting in
each of them the idempotency requirement. Their explicit specifications are restated
in the following.

Definition. A matrix A ∈ Cn,n is called:

(a) Generalized projector whenever A2 = A∗,
(b) Hypergeneralized projector whenever A2 = A†.

The two sets of matrices specified in Definition will henceforth be denoted by
C

GP
n and C

HGP
n , respectively.

According to our knowledge, 12 papers (including two in print) and one prob-
lem (i.e., [8]) were devoted so far to generalized and/or hypergeneralized projectors
(additionally, problem [9] was submitted for publication). In the cornerstone paper
[13], Groß and Trenkler established several characterizations of the sets C

GP
n and

C
HGP
n , observing, for instance, that



Revisitation of Generalized and Hypergeneralized Projectors 319

C
GP
n = C

QP
n ∩C

N
n ∩C

PI
n,n = C

QP
n ∩C

N
n = C

HGP
n ∩C

PI
n,n (10)

and
C

HGP
n = C

QP
n ∩C

EP
n ; (11)

see Theorems 1, 2, and Corollary in [13]. Characterization (10) was later supple-
mented, on the one hand, by

C
GP
n = C

QP
n ∩C

PI
n,n = C

QP
n ∩C

EP
n ∩C

PI
n,n,

with the first part given in [5, Theorem] and the second in [3, p. 301], and, on the
other hand, by

C
GP
n = C

SD
n ∩C

QP
n ∩C

WEP
n = C

CA
n,n ∩C

QP
n ∩C

WEP
n ,

provided in [4, Theorems 3 and 4]. Similarly, characterization (11) was in
[3, Theorem 3] supplemented by

C
HGP
n = C

QP
n ∩C

WEP
n .

Further relevant observations pointed out in [13, Theorems 1 and 2] were that the
nonzero eigenvalues of any generalized and hypergeneralized projector are cubic
roots of unity, the fact being a consequence of the quadripotency property. This
result was later explored by Stewart [17], who characterized classes C

GP
n and C

HGP
n

by their spectral decompositions. Similar considerations to the ones in [17] were,
with respect to generalized projectors, carried out by Du and Li [11] in the more
general settings of the infinite dimensional Hilbert space.

Other inspiring considerations, involving pairs of either generalized or hyper-
generalized projectors, were given in Sects. 3 and 4 in [13]. In particular, the obser-
vations originating from Theorems 5 and 6 therein, respectively, that for G1,G2 ∈
C

GP
n ,

G1G2 = 0 = G2G1 ⇔ G1 +G2 ∈ C
GP
n ,

G1G2 = G∗2 = G2G1 ⇔ G1−G2 ∈ C
GP
n ,

were followed by the complete solution to the problem of when a linear combina-
tion of two generalized projectors is also a generalized projector established in [1].
Furthermore, Remarks on pp. 271, 272 in [13], respectively, according to which for
H1,H2 ∈ C

HGP
n ,

H1H2 = 0 = H2H1 ⇒ H1 +H2 ∈ C
HGP
n ,

H∗2H2 = H∗2H1, H2H∗2 = H1H∗2 ⇒ H1−H2 ∈ C
HGP
n ,

inspired considerations in [2] and [6] leading to a still partial answer to the question
of when a linear combination of two hypergeneralized projectors also belongs to the
set C

HGP
n .
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An interesting direction of research – clearly inspired by [13] – was proposed by
Benítez and Thome [10], who considered the set of so called k-generalized projec-
tors composed of matrices K∈Cn,n satisfying Kk = K∗ for given integer k > 1. Sev-
eral characterizations of the set were established in [10], including the ones which
refer to the question of when a linear combination of two commuting k-generalized
projectors is also a k-generalized projector. The notion of a k-generalized projec-
tor was later considered in [12] and [15] in the settings of the infinite dimensional
Hilbert spaces.

In the recent paper [4], several results dealing with generalized and hypergeneral-
ized projectors were derived by utilizing a useful representation of square matrices
established by Hartwig and Spindelböck in Corollary 6 in [14]. This result is re-
called below.

Lemma 1. Let A ∈ Cn,n be of rank r. Then there exists unitary U ∈ Cn,n such that

A = U
(
ΣΣΣK ΣΣΣL
0 0

)
U∗, (12)

where ΣΣΣ= diag(σ1Ir1 , ...,σtIrt ) is the diagonal matrix of singular values of A, σ1 >
σ2 > ... > σt > 0, r1 + r2 + ...+ rt = r, and K ∈ Cr,r, L ∈ Cr,n−r satisfy

KK∗+LL∗ = Ir. (13)

From (12) it follows that

A† = U
(

K∗ΣΣΣ−1 0
L∗ΣΣΣ−1 0

)
U∗, (14)

and, provided that A is of index one,

A# = U
(

K−1ΣΣΣ−1 K−1ΣΣΣ−1K−1L
0 0

)
U∗. (15)

The lemma below, which will be useful in the subsequent considerations, is ob-
tained straightforwardly by combining representations (12) and (14) with specifi-
cations given in (1), (3)–(6), (8), and Definition. It is recalled here (in the reduced
form) after [4, Lemma 1].

Lemma 2. Let A ∈ Cn,n be of rank r and have representation (12). Then:

(i) A ∈ C
PI
n,n if and only if ΣΣΣ = Ir,

(ii) A ∈ C
P
n if and only if ΣΣΣK = Ir,

(iii) A ∈ C
OP
n if and only if L = 0, ΣΣΣ = Ir, K = Ir,

(iv) A ∈ C
QP
n if and only if (ΣΣΣK)3 = Ir,

(v) A ∈ C
N
n if and only if L = 0, KΣΣΣ = ΣΣΣK,
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(vi) A ∈ C
EP
n if and only if L = 0,

(vii) A ∈ C
GP
n if and only if L = 0, ΣΣΣ = Ir, K3 = Ir,

(viii) A ∈ C
HGP
n if and only if L = 0, (ΣΣΣK)3 = Ir.

The usefulness of the representation provided in Lemma 1 to explore various
classes of matrices, such as EP, normal, and Hermitian, as well as oblique and or-
thogonal projectors, was demonstrated in [7] and [18], respectively, whereas its ap-
plicability to deal with generalized and hypergeneralized projectors was shown in
[4]. In the next section, the considerations in [4] are extended and further character-
izations of the sets C

GP
n and C

HGP
n with the use of Lemma 1 are obtained.

2 Results

We begin with proving the theorem below, which is quoted here after Baksalary and
Liu [5], where it constitutes the main result. As already mentioned, equivalences
(a)⇔ (b)⇔ (c) given therein were originally obtained by Groß and Trenkler [13,
Theorem 1], so the crucial part established in [5] concerns the equivalence (a) ⇔
(d). The proof of this result in [5] is relatively extensive and involved, which is not
the case in the proof given below based on Lemma 1.

Theorem 1. For any A ∈ Cn,n, the statements (a)–(d) below are mutually equiva-
lent:

(a) A ∈ C
GP
n ,

(b) A ∈ C
QP
n ∩C

N
n ∩C

PI
n,n,

(c) A ∈ C
QP
n ∩C

N
n ,

(d) A ∈ C
QP
n ∩C

PI
n,n.

Proof. First observe that the validity of the implication (a) ⇒ (b) is clearly seen
from Lemma 2, whereas the implication (b)⇒ (c) is satisfied trivially.

To show part (c)⇒ (d) notice that from points (iv) and (v) of Lemma 2 it follows
that A∈C

QP
n ∩C

N
n is equivalent to L = 0, KΣΣΣ= ΣΣΣK, (ΣΣΣK)3 = Ir. From the last two

relationships we get ΣΣΣ3K3 = Ir. Hence, taking into account that combining L = 0
with (13) implies K∗ = K−1, we obtain ΣΣΣ3 = (K−1)3 = (K∗)3 = K3. Thus, it is seen
that K3 = Ir, and, in consequence, ΣΣΣ = Ir, what completes the present step of the
proof.

It remains to show that (d)⇒ (a), what will be accomplished by demonstrating
that K3 = Ir implies L = 0. First notice that K3 = Ir entails K ∈ C

QP
r , i.e., in view

of the nonsingularity of K, the eigenvalues of K are cubic roots of unity. Secondly,
in the light of the Schur’s triangularization theorem [16, p. 508], there exists unitary
W ∈Cr,r and upper-triangular matrix T ∈Cr,r such that K = WTW∗. Thus, KK∗ =
WTT∗W∗, and taking traces on both sides of (13) gives
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trace(TT∗)+ trace(LL∗) = r. (16)

Direct calculations show that trace(TT∗) is equal to the sum of squared moduli of
the (nonzero) entries of T. Since T has on its diagonal r eigenvalues whose moduli
equal one, we obtain

trace(TT∗) = r +
r

∑
i=1

r

∑
j=1
i< j

|ti j|2, (17)

where ti j, i, j = 1, ...,r, are entries of T. Combining (16) with (17) and the fact that
trace(LL∗) � 0, leads to the conclusion that (16) is satisfied merely when T is a
diagonal matrix and L = 0. The proof is thus complete. 
�

The next theorem proves characterizations of the set C
GP
n .

Theorem 2. Let A ∈ Cn,n. Then the following conditions are equivalent:

(i) A ∈ C
GP
n , (ii) A = A∗A†,

(iii) A = A†A∗, (iv) A = A∗A#,

(v) A = A#A∗, (vi) A = A∗A∗.

Proof. We establish part (i) ⇔ (ii) only, for the remaining equivalences can be
shown similarly. From (12) and (14) it follows that

A∗A† = U
(

K∗ΣΣΣK∗ΣΣΣ−1 0
L∗ΣΣΣK∗ΣΣΣ−1 0

)
U∗.

Thus, condition (ii) of the theorem is satisfied if and only if L = 0, ΣΣΣK =
K∗ΣΣΣK∗ΣΣΣ−1, or, in view of the nonsingularity of ΣΣΣ, equivalently,

L = 0, ΣΣΣKΣΣΣ = K∗ΣΣΣK∗. (18)

Taking the conjugate transposes on both sides of the latter condition in (18) gives
ΣΣΣK∗ΣΣΣ = KΣΣΣK. In view of K∗ = K−1, by postmultiplying ΣΣΣK∗ΣΣΣ = KΣΣΣK by K∗
we obtain ΣΣΣK∗ΣΣΣK∗ = KΣΣΣ. Hence, by using the latter condition in (18), we arrive
at ΣΣΣ2 = Ir, or, in other words, ΣΣΣ = Ir. Substituting this relationship into the latter
condition in (18) shows that K3 = Ir. Thus, referring to point (vii) of Lemma 2 leads
to the conclusion that equivalence (i)⇔ (ii) indeed holds. 
�

Equivalence (i)⇔ (vi) of Theorem 2 expresses the known fact that A ∈ C
GP
n ⇔

A∗ ∈C
GP
n , being a part of characterization (2.18) in [3]. Further observations of this

kind are that A ∈C
GP
n can be equivalently expressed as (A†)2 = (A†)∗, obtained on

account of Theorem 5 in [3], or as (A#)2 = (A#)∗, following form Theorem 2 in [4].
The theorem below lists necessary and sufficient conditions for A ∈ C

HGP
n .

Theorem 3. Let A ∈ Cn,n. Then the following conditions are equivalent:

(i) A ∈ C
HGP
n , (ii) A = A†A#,

(iii) A = A#A†, (iv) A = A†A†.
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Proof. Also this time the proof will be limited to part (i)⇔ (ii) only. From (14) and
(15) it follows that

A†A# = U
(

K∗ΣΣΣ−1K−1ΣΣΣ−1 K∗ΣΣΣ−1K−1ΣΣΣ−1K−1L
L∗ΣΣΣ−1K−1ΣΣΣ−1 L∗ΣΣΣ−1K−1ΣΣΣ−1K−1L

)
U∗.

Hence, condition (ii) of the theorem is equivalent to the conjunction L = 0, ΣΣΣK =
K∗ΣΣΣ−1K−1ΣΣΣ−1. In view of L = 0⇒ K∗ = K−1, the conjunction can be expressed
as L = 0, (ΣΣΣK)3 = Ir, being necessary and sufficient conditions for A∈C

HGP
n given

in point (viii) of Lemma 2. 
�

Equivalence (i)⇔ (iv) of Theorem 3 expresses the known fact that A ∈C
HGP
n ⇔

A† ∈ C
HGP
n established in [3, Theorem 5]. Additional observations are that A ∈

C
HGP
n if and only if either (A∗)2 = (A∗)†, derived from (2.18) in [3], or (A#)2 =

(A#)†, being consequence of Theorem 2 in [4].
As was pointed out in [10, p. 152], if A is a k-generalized projector, i.e., satisfies

Ak = A∗ for given integer k > 1, then Ak = A†. Extending this implication to the
equivalence leads to what follows.

Theorem 4. Let A ∈ Cn,n and k ∈ N, k � 1. Then Ak = A† if and only if A ∈ C
EP
n

and Ak+2 = A.

Proof. It is seen from (12) that for integer k � 1

Ak = U
(

(ΣΣΣK)k (ΣΣΣK)k−1ΣΣΣL
0 0

)
U∗,

with (ΣΣΣK)0 = Ir. Hence, Ak = A† is equivalent to L = 0, (ΣΣΣK)k+1 = Ir, whereas
Ak+2 = A is satisfied if and only if

(ΣΣΣK)k+2 = ΣΣΣK, (ΣΣΣK)k+1ΣΣΣL = ΣΣΣL. (19)

In view of (13), combining the former condition in (19) postmultiplied by K∗ with
the latter condition in (19) postmultiplied by L∗ shows that (19) is equivalent to
(ΣΣΣK)k+1 = Ir. Hence, that assertion follows. 
�
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On Singular Periodic Matrices

Jürgen Groß

Abstract In this note we recall the concept of a singular periodic square matrix,
admitting a positive integer power greater than one which is identical to the ma-
trix itself. Characterizations involving the group inverse of a matrix are given and
relationships with normal and EP matrices are investigated.

1 Introduction

Let Cm,n denote the set of complex m× n matrices. The symbols A∗, R(A), and
rk(A) will stand for the conjugate transpose, the range, and the rank of a given
matrix A ∈ Cm,n.

For the following definitions we refer to [3]. A generalized inverse A− of A ∈
Cm,n is any solution to the matrix equation AXA = A with respect to X . The unique
solution X to the four equations

AXA = A, XAX = X , AX = (AX)∗, XA = (XA)∗

is called the Moore–Penrose inverse of A denoted by A†. A matrix A ∈ Cn,n is said
to be normal if AA∗ = A∗A. A matrix A ∈ Cn,n is called EP (or range-Hermitian) if
R(A) = R(A∗), or equivalently AA† = A†A. A matrix A ∈ Cn,n is a group matrix if
there is a solution to the three equations

AXA = A, XAX = X , AX = XA .

with respect to X . The unique solution X is called the group inverse of A and is de-
noted by A#. It is well known that A# exists if and only if rk(A) = rk(A2). Moreover,
A ∈ Cn,n is EP if and only if A† = A#.

Jürgen Groß
Carl von Ossietzky Universität Oldenburg, Fakultät V, Institut für Mathematik,
D-26111 Oldenburg, Germany
j.gross@uni-oldenburg.de
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Mirsky [7, p. 298] calls a matrix A ∈ Cn,n periodic if Ak = In for some integer
k ≥ 1, where In denotes the n× n identity matrix. A periodic matrix is this sense
is necessarily nonsingular. A slight modification extends the definition to singular
matrices.

Definition 1. A matrix A ∈ Cn,n is called (k + 1)-potent if Ak+1 = A. A matrix A ∈
Cn,n is called periodic if it is (k +1)-potent for some integer k ≥ 1.

Sometimes a matrix A ∈ Cn,n is called (k + 1)-potent if k is the smallest integer
k≥ 1 such that Ak+1 = A, thereby making the number k unique. However, the above
notion appears to be suitable for the following derivations.

In the following section we collect some observations concerning periodic ma-
trices and connect them to recent results in the literature.

2 Results

Two well known examples of periodic matrices are the cases k = 1 (idempotent ma-
trices) and k = 2 (tripotent matrices) in Definition 1. Groß [4] investigate quadripo-
tent matrices (k = 3 in Definition 1) being in addition normal or EP. They call the
corresponding two classes of matrices (quadripotent normal and quadripotent EP)
the sets of generalized and hypergeneralized projectors, respectively. Referring to
such projectors and pointing out the possibility of generalizations, quite recently
[10] has demonstrated that quadripotent EP matrices are necessarily diagonalizable.
It can be shown, however, that quadripotency alone makes a matrix diagonalizable.

Theorem 1. A matrix from Cn,n is periodic if and only if it is similar to a diagonal
matrix and has all its nonzero roots equal to roots of unity.

Proof. The proof follows along the same lines as the proof of Theorem 10.2.6 in [7],
being identical to the assertion except for the omission of term ‘nonzero’ in order to
characterize nonsingular periodic matrices.

Consider the polynomial p(t) = tk+1− t for some integer k≥ 1. It is well known
that it has k +1 distinct roots, namely 0 and the k distinct kth roots of unity. Hence,
p(t) can be written as the product of k +1 distinct linear factors.

Now, if A is periodic, i.e. Ak+1 = A for some integer k ≥ 1, then p(t) annihilates
A, i.e. p(A) = 0. Since p(t) can be written as the product of distinct linear factors,
this shows that A is diagonalizable, where clearly the nonzero eigenvalues of A are
necessarily kth roots of unity.

Conversely, if A is similar to a diagonal matrix and has all its nonzero roots equal
to roots of unity, then A can be written as A = SΛS−1 for some nonsingular matrix
S and some diagonal matrix Λ containing only zeros and roots of unity on its main
diagonal. But then, there exists k ≥ 1 such that Λ k is identical to Λ but with each
root of unity replaced by 1. Hence Λ k+1 =Λ and therefore Ak+1 = A, showing that
A is periodic. 
�
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Similar to Theorem 1 the following refers to matrices satisfying the identity
Ak+1 = A for some fixed integer k ≥ 1.

Theorem 2. A matrix A ∈ Cn,n is (k + 1)-potent for some integer k ≥ 1 if and only
if A is similar to a diagonal matrix and has all its nonzero roots equal to kth roots
of unity.

The proof of Theorem 2 is almost identical to the proof of Theorem 1 with an ob-
vious alteration in the ‘if’ part. Note that Theorem 2 has already been acknowledged
in the literature, see, e.g. [9, p. 60].

It is easily seen that any diagonalizable matrix satisfies rk(A) = rk(A2) and is
therefore a group matrix. Moreover, the following is obvious.

Theorem 3. A matrix A ∈ Cn,n is (k + 1)-potent for some integer k ≥ 2 if and only
if A# = Ak−1.

It might be of interest to recall that for an arbitrary group matrix A ∈ Cn,n, its
group inverse is necessarily a polynomial of finite degree in A, and although being
necessarily unique, it can be written as A# = A(A3)−A, where (A3)− is an arbitrary
generalized inverse of A3, cf. the results in [9, Chapt. 4] and [3, Sect. 4.4].

Note that when k = 1, then A is (k + 1)-potent if and only if Ak−1 = In is a
generalized inverse of A, but in that case In is not the group inverse of A, the latter
being A itself. If A is (k +1)-potent, k ≥ 1, then for A− = Ak−1 we have

rk(A) = rk(AA−) = tr(AA−) = tr(Ak),

where tr(·) denotes the trace of a square matrix.
A further obvious observations is that if A† = Ak−1 for some k ≥ 1, then AA† =

A†A, showing that necessarily A† = A#. Hence we may state the following.

Theorem 4. For a matrix A ∈ Cn,n and an integer k ≥ 2, the following statements
are equivalent:

1. A† = Ak−1;
2. A# = Ak−1 and A# = A†;
3. A is (k +1)-potent and EP.

When investigating relationships between several classes of matrices, [6] define
a matrix A to be bi-EP, bi-normal, or bi-dagger if AA†A†A = A†AAA†, AA∗A∗A =
A∗AAA∗, or (A†)2 = (A2)†, respectively. Among other results, the authors show the
following, see also the scheme in [6, p. 247].

Lemma 1. For a matrix A ∈ Cn,n the following statements are equivalent

1. A is EP (and thus a group matrix);
2. A is a group matrix and bi-EP;
3. A is a group matrix and bi-normal;
4. A is a group matrix and bi-dagger;
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Since a (k + 1)-potent matrix is necessarily a group matrix, it is therefore clear
that the term ‘EP’ in statement (3) of Theorem 4 may also be replaced by one of
the terms ‘bi-EP’, ‘bi-normal’, or ‘bi-dagger’, thus yielding three further equivalent
statements in Theorem 4.

Obviously unaware of the results by [6], recently [2] redefine the concepts of bi-
EP and bi-normal matrices, calling them weak-EP and weak-normal, respectively,
and give some results in connection with quadripotent matrices. Their Lemma 3,
however, is a rederivation of the equivalence between statements (1) and (2) in
Lemma 1, and their Theorem 3 is then a special case of Theorem 4. Moreover,
in view of Theorem 4 and the equivalence between (1) and (3) in Lemma 1, the
implication in their Theorem 4 can be strengthened to an equivalence statement.

Hartwig [6, p. 246] also show that the class of EP matrices is contained in the
class of bi-normal matrices, the class of bi-normal matrices is contained in the class
of bi-dagger matrices, and the class of bi-dagger matrices is contained in the class
of bi-EP matrices. As noted above, considering (k + 1)-potent matrices within the
class of bi-EP matrices, being the widest among the aforementioned ones, does not
yield a different characterization. On the other hand, one may also consider (k+1)-
potent matrices within narrower classes than the class of EP matrices, an obvious
one being the class of normal matrices. Before characterizing (k+1)-potent normal
matrices we state the following Lemma.

Lemma 2. Let z ∈ C be nonzero, and let n �= 2 be a positive integer. Then zn = zz if
and only if zn = 1.

Proof. The case n = 1 is trivial, so that we assume n≥ 3 in the following. If zn = 1,
then |z|= 1 and hence |z|2 = zz = 1, showing that zn = zz. Conversely suppose zn =
zz = |z|2 and write z in its polar decomposition as z = |z|eiθ . Then |z|n einθ = |z|2,
showing that |z|n = |z|2 and nθ = 2πk for some integer k. Hence, |z| = n−2√1 and
thus z = ei2πk/n. But there are exactly n different numbers ei2πk/n, corresponding to
the choices k = 0, . . . ,n−1, being well-known as the n roots of zn = 1. 
�

Just as our Theorem 4 generalizes Theorem 2 in [4], see also the correction in
[2, Lemma 2], the following result generalizes Theorem 1 from [4].

Theorem 5. For a matrix A ∈ Cn,n and an integer k ≥ 3, the following statements
are equivalent:

1. A∗ = Ak−1;
2. A# = Ak−1 and A# = A∗;
3. A# = Ak−1 and A† = A∗;
4. A is (k +1)-potent and normal.

Proof. It is clear that (2) implies (1). If (1) is satisfied, then obviously AA∗ = A∗A.
Hence, A is normal and can therefore be written in the form A = UΛU∗ for some
unitary matrix U and some diagonal matrix Λ . Then the identity A∗ = Ak−1 is satis-
fied if and only if Λ ∗ =Λ k−1. This means that every diagonal element λ of Λ must
satisfy λ = λ k−1. If λ is nonzero, this is equivalent to λλ = λ k, implying λ k = 1
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from Lemma 2. This shows that A is diagonalizable and has all its nonzero roots
equal to kth roots of unity. Then, from Theorems 2 and 3 it follows A# = Ak−1 and
hence (2).

For the equivalence between (2) and (3) note that

A# = A∗ ⇔ A# = A† and A† = A∗ ,

where A† = A∗ means that A is a partial isometry. Hence, it is clear that (2) implies
(3). If (3) is satisfied, then from Corollary 6 in [6] it is easily deduced that A can be
decomposed as

A = U
(

K L
0 0

)
U∗ ,

where U is unitary, Kk = Ia, a = rk(A), and KK∗ + LL∗ = Ia. Then K is a con-
traction (Ia−KK∗ is Hermitian nonnegative definite), K is a group matrix, and the
eigenvalues of K have absolute values 1. These properties show that K is necessarily
unitary, see, e.g. Theorem 2.8 and the subsequent remarks in [5], and compare also
[3, Ex. 6.4.50, p. 225]. Hence, KK∗ = Ia and thus LL∗ = 0, i.e. L = 0. But then A is
obviously EP, showing A† = A# and hence A# = A∗.

For the equivalence between (2) and (4) it is clear that (2) implies (4). If (4) is
satisfied, then A# = Ak−1 and A = UΛU∗ for some unitary matrix U and some diag-
onal matrix Λ . Each nonzero diagonal element of Λ is a kth root of unity, showing
that ΛΛ ∗ has only 0 and 1 entries on its main diagonal and is thus idempotent. Then
necessarily AA∗ is idempotent, being equivalent to AA∗A = A. But then, A∗ = A#,
showing (2). 
�

Remark 1. The equivalence between statements (2), (3), and (4) in Theorem 5 also
holds for k = 2.

The equivalence between (3) and (4) in Theorem 5 shows that for k ≥ 2 a square
matrix is (k + 1)-potent and normal if and only if it is (k + 1)-potent and a partial
isometry, an equivalence statement which is also seen to be true for k = 1. For the
case k = 3, this result has originally been established by [1]. Our proof is consider-
ably shorter though, since it depends on the cited references.

If A,B ∈Cn,n are both idempotent, then AB = BA is sufficient for AB to be idem-
potent. Moreover, AB = 0 = BA is necessary and sufficient for A+B to be idempo-
tent, and AB = A = BA is necessary and sufficient for B−A to be idempotent, see
[9, Sect. 5.1]. In general, for (k +1)-potent matrices we may state the following.

Theorem 6. Let A,B∈Cn,n be two (k+1)-potent matrices for an integer k≥ 1 such
that AB = BA, and let H = AB. Then:

1. H is (k +1)-potent;
2. If H = 0, then A+B is (k +1)-potent;
3. If H = A2, then B−A is (k +1)-potent.

Proof. We consider k ≥ 2. Since A and B are diagonalizable and commute, we
can write A = SΛ1S−1 and B = SΛ2S−1 for a nonsingular matrix S and diagonal
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matrices Λ1 and Λ2, containing the eigenvalues of A and B on their main diagonal,
respectively.

Let λ denote any fixed (the ith, say) diagonal element of Λ1 and let μ denote the
corresponding (ith) diagonal element of Λ2.

Then (λμ)k = 1 if λ and μ are both nonzero and λμ = 0 otherwise, thus con-
firming statement (1). For statement (2) note that H = 0 implies λμ = 0, so that
clearly (λ + μ)k = 1 or λ + μ = 0. For statement (3) note that when A is a group
matrix, the identities AB = BA = A2 are equivalent to A#B = BA# = AA#. In view of
A# = Ak−1, the latter means that λ k−1μ = 0 if λ = 0 and λ k−1μ = 1 if λ �= 0. Then
μ−λ = μ if λ = 0 and μ−λ = 0 if λ �= 0. Thus (μ−λ )k = 1 or μ−λ = 0. 
�

In general, statements (2) and (3) of Theorem 6 cannot be reversed. Indeed, when
A and B are two commuting (k+1)-potent matrices, then A+B can be (k+1)-potent
but AB �= 0. Consider, e.g. the two 1×1 matrices

A = (1) and B = (−1
2

+ i

√
3

2
) ,

being both 7-potent. Then A + B = 1
2 + i

√
3

2 is also 7-potent, but AB �= 0. Similarly,
when A and B are two commuting (k+1)-potent matrices, then B−A can be (k+1)-
potent but AB �= A2. Consider, e.g. the two 1×1 matrices

A = (−1) and B = (−1
2

+ i

√
3

2
) ,

both of which are 7-potent. Then B−A = 1
2 + i

√
3

2 is also 7-potent, but AB �= A2.
In the proof of Theorem 6 we have noted that AB = BA = A2 is equivalent to

A#B = BA# = AA# when A is a group matrix, see also Lemma 2.2 in [8]. When A
and B are both group matrices, the binary relation defined by

A
#
�B :⇔ A#B = BA# = AA#

specifies a partial order, the so-called sharp partial order introduced by [8]. The
following result states that (k + 1)-potency is inherited downwards by the sharp
partial order.

Theorem 7. Let A,B ∈Cn,n be two group matrices. If B is (k+1)-potent and A
#
�B,

then A is (k +1)-potent.

Proof. If B is (k + 1)-potent and A
#
� B, then BA# = Bk+1A# = AA#. Then also

Bk+1A# = BkAA# = Bk−1AAA#, the last identity holding in view of BA = AA. Since
AAA# = A it follows that Bk−1A = AA#. But since Bk−1A = Ak−1A in view of
BA = AA, it follows Ak = AA#, implying Ak+1 = A. 
�

As noted by [8, p. 21], if A and B are group matrices and A is below B with
respect to the sharp partial order, then B−A is a group matrix and B−A is below
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B with respect to the sharp partial order. Hence, if A and B are (k +1)-potent and A
is below B with respect to the sharp partial order, then B−A is necessarily (k +1)-
potent from Theorem 7, showing an alternative derivation of statement (3) from
Theorem 6.

Another binary relation, the so-called minus partial order, is defined in the set
Cm,n by

A
−
�B :⇔ A−1 A = A−1 B and AA−2 = BA−2 for some A−1 ,A−2 ∈ A{1} ,

where A{1} stands for the set of all generalized inverses of A. It is well known that

A
−
�B if and only if

rk(B−A) = rk(B)− rk(A) ,

explaining why the minus partial order is also called the rank-subtractivity partial
order.

Clearly, if A
#
� B for group matrices A and B, then also A

−
� B. However, the

inheritance property from Theorem 7 does not hold in general when the sharp partial
order is replaced by the minus partial order. To see this, consider the 2×2 matrices

A =

(
1
2 λ
1
2 λ

)
and B =

(
1 λ
0 λ

)
,

where λ =− 1
2 + i

√
3

2 , so that λ 3 = 1. Then A
−
�B, B is 4-potent, and A is diagonal-

izable but not periodic.
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Testing Numerical Methods Solving the Linear
Least Squares Problem

Claus Weihs

Abstract The paper derives a general method for testing algorithms solving the
Least-Squares-Problem (LS-Problem) of a linear equation system. This test method
includes the generation of singular test matrices with arbitrary condition, full col-
umn rank and exactly representable generalized inverses, as well as a method for
choosing general right hand sides. The method is applied to three LS-Problem
solvers in order to assess under what conditions the error in the least squares so-
lution is only linearly dependent on the condition number.

1 The Linear Model: Testing of Algorithms

The linear model is probably the most used model in statistics. For its popularity
alone it should be of particular importance to analyze the numerical problems in
the estimation of unknown coefficients. However, for this purpose some systematic
approach is necessary, i.e. some sort of an experimental design of testing. Testing
sporadic examples can possibly show a completely distorted image. In particular, the
well favored practice to test new algorithms based on standard problems from liter-
ature does not assess the superiority of the algorithms in the general case. Instead,
it is necessary to cover the entire space of possible inputs, namely of the coeffi-
cients matrices and the right hand side vectors, with as little examples as possible.
Additionally it would be helpful to construct representative test matrices for which
the accuracy of the estimates of their generalized inverse can be calculated easily,
e.g. for which, in the ideal case, the generalized inverse can be exactly computed.
In Weihs [6] singular test matrices with full column rank that satisfy such a prop-
erty were successfully constructed. Moreover, representative right hand side vectors
were suggested. In this paper the most important principles of testing computer
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algorithms from this diploma thesis and their application to important LS-Problem
solvers are discussed. After motivating the usage of condition numbers (in Sect. 2),
the numerical methods used for solving the least squares problem are introduced
(in Sect. 3). The construction of numerically favorable representative test matrices
and representative right hand sides follows in Sects. 4 and 5.1. Here, the focus is
on the exact determination of the least-squares solution and on the full coverage of
the diversity of possible problems, avoiding too specific test examples. Finally, the
testing method is explained (Sect. 5.2) and test results (Sect. 5.3) for the introduced
numerical methods are discussed.

2 Condition of the Least-Squares Problem

Definition 1 (Least-Squares Problem). Let A ∈ L(m,n), b ∈ R
m.

Then, x0 ∈ R
n with ‖b − Ax0‖2 = minx∈Rn‖b − Ax‖2 is called Least-Squares-

Solution (LS-Solution) of the linear equation system Ax = b.

Practically, the coefficients matrix A ∈ L(m,n), i.e. the real-valued matrix A with
m rows and n columns, and the right hand side b ∈ R

m of the LS-Problem, are not
exactly known in the general case (e.g. as the accuracy of measuring and represen-
tation is finite). So it becomes desirable to find a measure for the sensitivity of an
LS-Problem to “disturbances” in the data A, b.

Definition 2 (Condition numbers for the LS-Problem). If the data A, b contain
relative errors of size δ , then let the relative error in the LS-Solution x0 be con-
strained by f (κ)δ , where f (κ) is a function of κ . Such measures κ are called con-
dition numbers for the LS-Problem.

The spectral condition number K(A) := s1(A)/sr(A) is such a condition number,
as motivated below. Here s j(A) :=

√
λ j(AAT ), j = 1, . . . ,r, r := rank(A), are the sin-

gular values of A, where λ1(AAT )≥ λ2(AAT )≥ . . .≥ λr(AAT )> λr+1(AAT )= . . .=
λm(AAT ) = 0 are the eigenvalues of AAT . One can show that K(A) = ‖A‖2‖A+‖2,
where ‖A‖2 := max‖x‖2=1 ‖Ax‖2 = max{

√
λi|λi eigenvalue of AAT , 1 ≤ i ≤ m}.

Note that the positive eigenvalues of AAT and AT A are the same.
The so-called F-condition number KF(A) := ‖A‖F‖A+‖F , which corresponds to

the so-called Frobenius norm ‖A‖F :=
(
∑m

i=1∑
n
j=1 |ai j|2

)0.5
of A ∈ L(m,n), is an-

other condition number of the LS-Problem, as K(A)≤ KF(A)≤min(m,n)K(A).
Notice that the LS-Problem can generally have more than one solution. A unique

LS-Solution exists, if and only if A has full column rank, since only then AT A can
be inverted, and the normal equations AT Ax = AT b can be uniquely solved.

From now on all results presented apply solely to LS-Problems with coefficient
matrices with full column rank. Thus, let in the following:

A ∈ L(m,n), m≥ n, rank(A) = n.
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Condition bounds: v.d. Sluis [5] introduced an upper as well as a lower bound for
errors in the LS-Solution of a disturbed linear equation system that can occur in the
worst-case (without specific information about the coefficients matrix, the selected
method, etc. the worst-case has to be assumed realistic!).

Theorem 1 (v.d. Sluis [5], p. 245/6, Theorem 4.3). Let A,dA ∈ L(m,n), m ≥ n,
rank(A) = n and b,db ∈ R

m, as well as

‖dA‖2 ≤ δ‖A‖2, ‖db‖2 ≤ δ‖b‖2 and μ := δ
s1(A)
sn(A)

< 1.

Furthermore let x0 be the LS-Solution of the system Ax = b, let r0 := b−Ax0 be the
corresponding residual and dx0 chosen so that (x0 + dx0) is the LS-Solution of the
disturbed system (A+dA)(x0 +dx) = b+db. Then:

1. For every pair (A,b) and any kind of “disturbance” (dA,db) it is valid that

‖dx0‖2 ≤
δ

sn(A)

[
s1(A)‖r0‖2

sn(A)(1−μ2)
+

s1(A)‖x0‖2

1−μ
+
‖b‖2

1−μ

]
.

2. For every pair (A,b) there is a “disturbance” (dA,db) so that

‖dx0‖2 ≥
δ

sn(A)

[
s1(A)‖r0‖2

sn(A)(1−μ2)
+
‖b‖2

1−μ2

]
.

3. For every pair (A,b) there is a “disturbance” (dA,db) so that

‖dx0‖2 ≥
δ

sn(A)
[s1(A)‖x0‖2 +‖b‖2] .

Proof. see v.d. Sluis [5], pp. 246–248 
�

Hence, an upper bound for the relative error is:

‖dx0‖2

‖x0‖2
≤ δ

sn(A)

[
s1(A)‖r0‖2

sn(A)‖x0‖2(1−μ2)
+

s1(A)
1−μ

+
‖b‖2

‖x0‖2(1−μ)

]
.

With respect to v.d. Sluis (1.), (2.) it appears to be realistic to add an “amplifying

factor” δK2(A) = δ s2
1(A)

s2
n(A) for ‖r‖2 in the case of 1 = ‖A‖2 = s1(A). However, for

‖A‖2 �= 1 this amplifying factor would be δ s1(A)
s2
n(A) = δ K(A)

sn(A) .
Thus, at least in the case of coefficient matrices A with full column rank, K(A)

is a condition number for the LS-Problem. Unfortunately, the lower bounds reveal
the importance of the terms of the upper bound. Nevertheless v.d. Sluis does not
indicate how realistic the upper bounds are in practice. The intension of the cited
diploma thesis was to analyze by means of long test series, how realistic it is to
assume a dependence of the error in the LS-Solution on K2(A) for different types of
matrices and LS-Problem solvers.
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3 Calculation of the Least-Squares-Solution

The most common method to calculate the Least-Squares-Solution is by the normal
equations:

AT Ax = AT b.

It is known, however, that this method is numerically problematic already for not
very badly conditioned LS-Problems, because the condition number of AT A is equal
to the square of the condition number of A. This resulted in the development of many
alternative methods trying to avoid this problem.

In the following only two of these methods are introduced: at first the Gram–
Schmidt process, an orthogonalization process, secondly the method of Greville
that turns out to be particularly useful in the construction of test matrices. There are
certainly far more methods to construct the LS-Solution, cp. Lawson and Hanson
[2], which are not discussed here.

3.1 Gram–Schmidt Method

The Gram–Schmidt (GS-) orthogonalization process produces a so called full-rank
decomposition (frd)

A = BC with B ∈ L(m,k),C ∈ L(k,n),rank(B) = rank(C) = k (1)

of a matrix A, that substantially simplifies the calculation of the generalized inverse
A+ of A; since:

Theorem 2. If A = BC is an frd of A, then:

A+ = CT (CCT )−1(BT B)−1BT (2)

In fact, the Gram–Schmidt orthogonalization process produces a special frd of a
matrix A, namely a so-called triangular decomposition since the matrix C is upper
triangular:

GS-triangular decomposition (cp. Peters and Wilkinson [3], p. 313): The fol-
lowing algorithm for triangular decomposition of a matrix A ∈ L(m,n) consists
of n := rank(A) “central steps”, where Q1 := A is successively transformed into
Q2, . . . ,Qn+1, where, if (q1 q2 . . . qs−1 a(s)

s a(s)
s+1 . . . a(s)

n ) is a column representation
of Qs and (q1, . . . ,qs−1) forms an orthogonal system with qT

i qi = di, 1 ≤ i ≤ s−1,
the s-th central step looks as follows:

• Pivot strategy: Let ‖a(s)
i0
‖2 be the maximum of ‖a(s)

i ||2, i = s, . . . ,n. (If more than
one column with maximum norm exists, e.g. choose the one with the smallest
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index.) Then interchange the columns s and i0 in Qs. (Even after interchanging,
the i-th column of Qs is still denoted as a(s)

i , i = s, . . . ,n.)
• Conduct the s-th step of the MGS (Modified GS) algorithm and save the values

usi := rsi for i = s+1, . . . ,k := n and ds := qT
s qs:

MGS algorithm:
1. Set qs := a(s)

s , ds := qT
s qs.

2. For i = s+1, . . . ,k calculate rsi := (a(s)
i )T qs

ds
and a(s+1)

i := a(s)
i − rsiqs.

In the Gram–Schmidt orthogonalization process linearly independent column
vectors of A are orthogonalized. Here we use the MGS variant of the GS process
which is much more stable numerically than the classical GS process (cp. Rice [4]).

Apparently Qn+1 has the form: Q = Qn+1 = (q1 q2 . . . qn), and hence: Ã = QU ,
where Ã is the matrix A possibly after some column interchanges, and U ∈ L(n,n)
is an upper triangular matrix, defined by usi, 1≤ s≤ n, s + 1 ≤ i ≤ n, and uss := 1,
1≤ s≤ n. So an frd of Ã is found, for which the generalized inverse can be generated
according to Theorem 2. Some row interchanges in the generalized inverse may be
necessary to generate A+ because of pivoting.

3.2 Method of Greville

Now we proceed with the method of Greville [1] for the calculation of the general-
ized inverse that, thus, implicitly generates the LS-Solution. With this method the
calculation of the generalized inverse A+ of A∈ L(m,n) can be carried out in n resp.
m steps. In the j-th step the generalized inverse of A j (resp. A( j)) := (first j columns
(resp. rows) of A) is calculated.

Theorem 3. • Let A = [a1 . . . an] be a column representation of A ∈ L(m,n) with
full column rank, and

A1 := [a1], A j := [A j−1 a j], j = 2, . . . ,n, as well as

d j := A+
j−1a j, c j := a j−A j−1d j and bT

j := c+
j = (cT

j c j)−1cT
j .

Then:

A+
j = [A j−1 a j]+ =

[
A+

j−1−d jbT
j

bT
j

]
. (3)

• Let A =

⎡
⎢⎣

aT
1
...

aT
m

⎤
⎥⎦ be a row representation of A ∈ L(m,n) with full row rank, and

A(1) := [aT
1 ], A( j) :=

[
A( j−1)

aT
j

]
, j = 2, . . . ,m, as well as

dT
j := aT

j A+
( j−1), cT

j := aT
j −dT

j A( j−1) and b j := cT+
j = (cT

j c j)−1c j.
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Then:

A+
( j) =

[
A( j−1)

aT
j

]+

=
[

A+
j−1−b jdT

j b j
]

(4)

Theorem 3 apparently provides two construction rules for the calculation of
A+, recursively by A+

j resp. A+
( j). Obviously, one important condition is c j �= 0⇔

a j is not linear combination of the columns of A j−1. Analogously, this is true for
the row version. As we either want to assume maximum column rank or maximum
row rank, c j resp. cT

j can never be zero. The variant of Greville’s theorem dealing
with the case c j = 0 is not relevant here.

4 Test Matrices

An exact investigation of the accuracy of the methods for the calculation of LS-
Solutions introduced in Sect. 3 is only possible, if the LS-Solutions that should be
calculated by the methods are known exactly. For this reason some types of test
matrices are described in the following, the generalized inverses of which are not
only known, but can also be computed without any roundoff errors.

4.1 Non-singular Test Matrices

Zielke [7] specified different types of non-singular test matrices, the elements of
which can be chosen in such a way that not only the test matrix itself, but also its
generalized inverse is integer and of relatively simple structure. In the following we
restrict ourselves to one special type of these test matrices that only contains one
freely selectable parameter matrix Z:

AZ(Z,n, p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z + Ip Z +2Ip . . . Z +(m−1)Ip Z
Z + Ip Z +2Ip . . . Z +(m−2)Ip Z

...
...

...
...

Z + Ip Z +2Ip . . . Z +(m−2)Ip Z
Z + Ip Z + Ip . . . Z +(m−2)Ip Z

Z Z + Ip . . . Z +(m−2)Ip Z− Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

AZ(Z,n, p)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Z− (m−2)Ip Ip . . . Ip 2Ip Z
Ip −Ip

(0) . .
. −Ip

Ip . .
. (0)

Ip −Ip
Z +(m−2)Ip −Ip . . . −Ip −Ip −Z− Ip

⎤
⎥⎥⎥⎥⎥⎥⎦
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with n = overall number of columns, Ip = identity matrix with p columns, Z ∈
L(p, p), m := n/p≥ 3.

Example 1. Let Z = 998. Then:

AZ(998,3,1) =

⎡
⎣999 1000 998

999 999 998
998 999 997

⎤
⎦ , AZ(998,3,1)−1 =

⎡
⎣−999 2 998

1 −1 0
999 −1 −999

⎤
⎦ .

The inverse can be constructed as follows: Select the first and the last “row”.
Then continue selecting “rows” from below, until m “rows” are obtained. In the
last but one row set all entries to zero except for the “first” entry, set to Ip, and the
“second”, set to −Ip. Continue for the last but two rows setting all entries to zero
except for the “second” entry, set to Ip, and the “third”, set to −Ip, etc.

‘Unless they are not only used to expose gross failures in the algorithm, test
matrices should have the worst possible condition, i.e. a high condition number.
Then it is possible to test the quality of a method with respect to error propagation
avoiding enormous computational costs’ (see Zielke [7], p. 34).

This raises the question how test matrices with high condition can be constructed.
This is generally neither possible nor sensible using random numbers for all entries!
In contrast, we can control the condition of AZ(Z,n, p) by means of free parameters.
It can be shown (see Zielke [7], p. 47) that

KF(AZ(Z,n,1))∼= 2nZ2,

if Z is integer. So the F-condition number increases with the square of the free
parameter and linearly with the rank n. Thus even for small ranks n one gets test
matrices with very high condition numbers without having to set the free parameters
to high values. So for instance: KF(AZ(103,3,1)) ∼= 6 · 106, KF(AZ(103,5,1)) ∼=
10 ·106 ∼= 107 and KF(AZ(105,5,1))∼= 1011.

4.2 Singular Test Matrices

Zielke [8] gave an overview of singular test matrices. He proofed (in Theorem 4)
that the generalized inverse of a singular integer matrix A has to be non-integer if A
does not result from a non-singular matrix by adding or inserting zero rows and/or
columns and A is not the zero matrix. Therefore, if one is interested in exact least-
squares solutions then, obviously, the best one could reach are generalized inverses
only containing non-integers exactly representable on the computer with a rather
short mantissa. This has been realized in Weihs [6] in a very general manner.

By means of row canceling in matrices with full row rank and by using the
method of Greville to build the generalized inverse based on Zielke’s nonsingu-
lar matrices singular test matrices can be successfully constructed with properties
similarly good as for Zielke’s matrices. Then test matrices with full column rank
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can be created by transposing. Unfortunately, directly dealing with columns leads
to identical rows and hence to identical observations.

For the derivation of such singular test matrices from Zielke matrices a ’converse’
of the row version of Greville’s Theorem (see Theorem 3) is needed. Thereto let
A( j1,..., jp;i1,...,iq) be the matrix that was created by successively canceling the columns
j1 �= . . . �= jp and the rows i1 �= . . . �= iq of A.

Theorem 4 (Converse of the row version of Greville’s Theorem). Let A j ∈ L( j,n)
be of maximum row rank, aT

j ∈ L(1,n), and

A1 := [aT
1 ], A j :=

[
A j−1
aT

j

]
, b j := (j-th column of A+

j ∈ L(n, j)). Then:

A+
j−1 =

(
In−

b jbT
j

bT
j b j

)
A+

j ( j)
, (5)

where In is the identity matrix with n columns.

Proof. see Weihs [6] 
�

Corollary 1. Let A j ∈ L( j,n) be of maximum row rank, A j−1 := A j(;i1,...,ik),

1 ≤ i1, . . . , ik ≤ j, 1 ≤ k < j, and b(k)
i := (i-th column of A+

j after k cancelations),

1≤ i≤ j−1, 0≤ k < j. So b(0)
i is just the i-th column of A+

j itself. Then:

A+
j−1 =

⎛
⎝In−

b(k−1)
ik

b(k−1)T

ik

b(k−1)T

ik
b(k−1)

ik

−·· ·−
b(0)

i1
b(0)T

i1

b(0)T

i1
b(0)

i1

⎞
⎠ A+

j (i1,...,ik)
. (6)

Then from Corollary 1 it follows:

Corollary 2. Let An := AZ(Z,n,1) and An−1 := An(;i), 1 < i < n−1. Then:

A+
n−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.75 0 . . . 0 −0.25 0.25 0 . . . 0 0.25
1

(0)
. . . (0)

1
−0.25 0 . . . 0 0.75 0.25 0 . . . 0 0.25
0.25 0 . . . 0 0.25 0.75 0 . . . 0 −0.25

1

(0)
. . . (0)

1
0.25 0 . . . 0 0.25 −0.25 0 . . . 0 0.75

↑

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A+
n (i)

(n-i+1)-th column
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Obviously, A+
n−1 is exactly representable if A+

n is. Unfortunately this result cannot
easily be generalized for the case of several cancelations, because cancelations of
successive rows of AZ(Z,n,1) lead to generalized inverses not exactly representable.
So at most �(n−2)/2� rows of AZ(Z,n,1) can be canceled. In the case of canceling
non-successive rows of AZ(Z,n,1) one can show:

Corollary 3. Let An := AZ(Z,n,1), An−1 := An(;i1,i2,...,ik), 1 < i1 < .. . < ik < n−1,
|ip− iq|> 1 for p �= q. Then:

A+
n−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− m̃ 0 . . . 0 −1/m 1/m . . . −1/m 1/m 0 . . . 0 m̃
1

(0)
. . . (0)

1
−1/m 0 . . . 0 1− m̃ m̃ . . . 1/m −1/m 0 . . . 0 1/m
1/m 0 . . . 0 m̃ 1− m̃ . . . −1/m 1/m 0 . . . 0 −1/m

. . . . . . . . . . . . . . .
−1/m 0 . . . 0 1/m −1/m . . . 1− m̃ m̃ 0 . . . 0 1/m
1/m 0 . . . 0 −1/m 1/m . . . m̃ 1− m̃ 0 . . . 0 −1/m

1

(0)
. . . (0)

1
m̃ 0 . . . 0 1/m −1/m . . . 1/m −1/m 0 . . . 0 1− m̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A+
n (i1, . . . , ik)

↑
(n− ik +1)-th

↑
(n− i1 +1)-th column

with m := 2(k + 1), m̃ := k
m . (Notice that there are k double columns with

(−1/m 1/m) in the first row.)
Obviously, it is important here that 1

m = 1
(2k+2) can be computed exactly. But this

is true only for k = 2i−1, i ∈ N, since then m = 2i+1. From this another restriction
follows for the canceling of rows of AZ(Z,n,1):

If n = 3 no row must be canceled as 1 < i < n−1 = 2 would be required. If n = 4
only the second row is possible to cancel. And also for n = 5 only one row can
be canceled, namely row 2 or 3. One should keep in mind that from the condition
k = 2i− 1, i ∈ N, only k = 1,3,7,15, resp. not successive rows may be canceled.
For these matrices of the type AZ(Z,n,1) with n = 4,8,16,32, resp. rows are needed.

For n = 4 consider the following example: Let Z = 998:

AZ(998,4,1) =

⎡
⎢⎢⎣

999 1000 1001 998
999 1000 1000 998
999 999 1000 998
998 999 1000 997

⎤
⎥⎥⎦ ,

AZ(998,4,1)−1 =

⎡
⎢⎢⎣
−1000 1 2 998

0 1 −1 0
1 −1 0 0

1000 −1 −1 −999

⎤
⎥⎥⎦ ,
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and

AZ(998,4,1)(;2) =

⎡
⎣999 1000 1001 998

999 999 1000 998
998 999 1000 997

⎤
⎦ ,

AZ(998,4,1)+(;2) =

⎡
⎢⎢⎣

0.75 −0.25 0.25 0.25
−0.25 0.75 0.25 0.25

0.25 0.25 0.75 −0.25
0.25 0.25 −0.25 0.75

⎤
⎥⎥⎦
⎡
⎢⎢⎣
−1000 2 998

0 −1 0
1 0 0

1000 −1 −999

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
−499.75 1.5 498.75

500.25 −1.5 −499.25
−499.25 0.5 499.25

499.75 −0.5 −499.75

⎤
⎥⎥⎦

Up to this point only the case p = 1 was covered. For p > 1 there are further possi-
bilities for canceling rows leading to exactly representable generalized inverses (see
Weihs [6], pp. 98). Note that transposing results in test matrices with full column
rank with 1, 3, 7, 15 degrees of freedom and n = 4,8,16,32 observations, respec-
tively. So with the above instructions sensible degrees of freedom for applications
in statistics are automatically attained. Even adding linearly dependent rows to the
former created test matrices with full column rank could be realized in such a way
that the corresponding generalized inverses are exactly representable (see Weihs [6],
pp. 101).

Overall, we have succeeded in constructing (at least with respect to condition)
general exactly representable test matrices with exactly representable generalized
inverses. With these matrices it appears possible to search the space L(m,n) of co-
efficients matrices in a way adequate for the LS-Problem, namely by choosing ma-
trices with condition numbers covering a whole range.

5 Test Method

In addition to test matrices, the test algorithm also requires the right hand sides for
which the methods for solving the LS-Problem are to be tested. The next subsection
introduces one possible generation method. Then the test algorithm is explained and
test results are discussed.

5.1 Selection of the Right Hand Sides

Right hand sides should be preferably constructed to be general and as exactly rep-
resentable as possible. Let us assume that the generalized inverse A+ of a test matrix
is known exactly, then the LS-Solution x0 := A+b0 of the system Ax = b0 with an
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arbitrary vector b0 can be determined and with it y0 := Ax0 as well as r0 := b0− y0.
Then r0 is orthogonal to y0(r0 ⊥ y0) as rT

0 y0 = 0.
So we have obtained an orthogonal decomposition b0 = y0 + r0 with y0 ∈ im(A)

and y0 ⊥ r0. y0 is the projection of b0 on im(A) (image of A) and r0 is the corre-
sponding residual. Now let r0 �= 0. By compressing or stretching r0 we can construct
right hand sides b for arbitrary design matrices with the LS-Solution x0 and a projec-
tion y0 which intersects im(A) at an arbitrary angle. For that purpose let b := y0 + r
with r ⊥ y0. Then for the angle φ(b) between b and y0 it is true :

cosφ(b) :=
yT

0 b
‖y0‖2‖b‖2

=
yT

0 (y0 + r)
‖y0‖2‖b‖2

r⊥y0=
‖y0‖2

2
‖y0‖2‖b‖2

=
‖y0‖2

‖b‖2
, (7)

and we can show:

tanφ(b) =
sinφ(b)
cosφ(b)

=
‖r‖2

‖y0‖2
and φ(b) = tan−1

(
‖r‖2

‖y0‖2

)
. (8)

For the evaluation of the accuracy of the calculated LS-Solution in dependence
of the angle between right hand side b and im(A) we now use a method that gener-
ally allows constructing right hand sides intersecting im(A) at “very small” angles
as well as at “very large” and “medium sized” angles (around 45◦): Let
tanφ j := 2−21,2−19,2−3,2−1,2,23,219,221, j = 1, . . . ,8. Then:
φ j ∼= 5 ·10−7,2 ·10−6,0.12,0.46,1.1,1.45,1.570794,1.570796, resp.
φ j
∧= (3 ·10−5)◦,(10−4)◦,1.8◦,26.6◦,63.4◦,82.9◦,89.99989◦,89.99997◦.

ALG.RS: The following algorithm selects right hand sides bk, k = 1, . . . ,4, for
given y0, r0 of “not too different 2-norm”, so that: φ(bk) ∈ [φ2k−l ,φ2k):

• Determine the biggest i ∈ {19,17, . . . ,1,−1, . . . ,−19} so that ‖r0‖2 ≥ 2i‖y0‖2.
If such an i does not exist, set i :=−21.

• Set bk := y0 + ckr0 =: y0 + rk with ck := 2−21−i,2−3−i,21−i,219−i, k = 1, . . . ,4.
If y0 and r0 are of not too different 2-norm, then:
ck2i ≤ ck

‖r0‖2
‖y0‖2 = tanφ(bk) < ck2i+2, i.e. φ(bk) ∈ [φ2k−l ,φ2k).

Now let P be the number of right hand sides to be constructed for LS-Problems
with a coefficients matrix A as in Sects. 4.1, 4.2 (the generalized inverse A+ of
which, thus, is exactly available in general). Then the following steps are run
through P times:

• Choose an arbitrary vector b0 ∈ R
m, e.g. at random.

• Determine the LS-Solution x0 := A+b0 of the system Ax = b0 by using the exact
generalized inverse A+, the projection y0 := Ax0 and the residual r0 := b0− y0.

• If r0 = 0, then choose y0 = b0 as right hand side, else choose y0, b1, . . . ,b4 as
right hand sides, where b1, . . . ,b4 are constructed by means of ALG.RS.

Notice that one should restrict the size of b0, e.g. by ‖b0‖∞ ≤ 1000. As x0, y0,
r0, b1, . . . ,b4 should be determined as exactly as possible, one should always work
with the maximum potential accuracy in the calculation of the right hand sides.
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5.2 Test Algorithm

Based on Sect. 4 and on the creation of right hand sides in Sect. 5.1 the following
test method was identified to assess the LS-Problem solvers in Sect. 3.

1. Specify invertible test matrices of the type AZ(Z,n,1) with n = 4,8,16,32,64,
where the integer number Z can be chosen freely. Use test matrices with specified
size orders for the condition numbers, if the machine accuracy is 2.2×10−16:
class 1 (K1): 104 < KF < 106 : critical for simple accuracy,
class 2 (K2): 1010 < KF < 1012 : still uncritical for double accuracy,
class 3 (K3): 1014 < KF < 1016 : critical for double accuracy,
class 4 (K4): 1018 < KF : more than critical for double accuracy.

2. Cancel k = 1,3,7,15,31 rows from these test matrices and use the exactly rep-
resentable inverses of AZ(Z,n,1) to construct exact generalized inverses of the
matrices. Transpose these matrices, in order to obtain matrices with full column
rank and their exact generalized inverses.

3. Generate different right hand sides (b1–b4) for the chosen test matrices by means
of the algorithm ALG.RS. Calculate the exact LS-Solutions by multiplying the
exact generalized inverses by their exact right hand sides.

4. Apply the MGS algorithm for Gram–Schmidt orthogonalization, the column ver-
sion of the Greville-method and the normal equations method to the generated
test problems. Record the accuracy of the results.

5. Repeat the entire procedure at least 100 times.
6. Compare the results. Which ranking of the methods does arise? What changes

happen for different angles of the right hand sides?

The accuracy of the results can be characterized, e.g. by the mean value and the
standard deviation of the relative errors ‖dx0‖/‖x0‖ of the LS-Solutions over the
repetitions.

To assess the obtained accuracy let us consider the theoretical error bounds. Let
xb be the LS-Solution of the system Ax = b, let rb := b−Axb be the corresponding
residual and dxb be chosen in such a way that (xb + dxb) is the LS-Solution of the
disturbed system (A + dA)(x + dx) = b + db. If only small disturbances in A and b
are allowed, one can generally set μ = 0 in Theorem 1, so one gets:

‖dxb‖2
‖xb‖2 ≤ δK(A)

[
‖A+‖ ‖rb‖

‖xb‖ +1
]
+δ‖A+‖ ‖b‖‖xb‖

≤ δK(A)
[
K(A) ‖rb‖

‖y0‖ +1+ ‖b‖
‖y0‖

]
,

as ‖y0‖ := ‖Axb‖ ≤ ‖A‖‖xb‖
= δK(A) [K(A) tanφ(b)+1+1/cosφ(b)] .

From this bound it has to be suspected (as mentioned before) that δK(A)2 appears
as an amplification factor of ‖rb‖/‖y0‖ (= tanφ(b)) in the relative error in the LS-
Solution. However, alternatives to the normal equations were mainly developed to
avoid such a dependence. Thus, for the comparison of the results of the different
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LS-Problem solvers we will compare the percentages of the results in the so-called
solution class L (meaning linear) defined by

‖dxb‖
‖xb‖

≤min(δKF(A) [1+ tanφ(b)+1/cosφ(b)] ,10−2). (9)

Note that this requires an accuracy of at least 2 decimal places. We set δ = 10−16 =
machine accuracy. The percentage of the LS-Solutions in solution class L provides
information about the probability that the reviewed methods for LS-Solution depend
only linearly on K(A).

5.3 Test Results

The simulation results are summarized in Figs. 1–3. The x-axis shows the tupel
(Z, n), the y-axis the percentage in solution class L. The illustrations point out that
with increasing condition of the test matrices (classes K1-K4) a linear dependence
on K(A) becomes more and more unrealistic. A general statement about the depen-
dence of the size of the angle between b and y0 cannot be made.

The MGS-process performs best. For not too badly conditioned matrices (classes
K1-K2) a linear dependence on K(A) can be assumed, except for almost right angles
between b and y0 (b4). Besides, it appears also to be realistic to assume a linear
dependence on K(A) in the case of small angles (b1,b2) in combination with K3-
matrices. When increasing the size of the angle, the linear dependence on K(A)
tends to become more unrealistic.
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Fig. 1 Class-L-percentages for MGS-process
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Fig. 2 Class-L-percentages for Greville’s method
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Fig. 3 Class-L-percentages for normal equations

For the method of Greville and the normal equations there is no identifiable linear
dependence of K(A), except when the test matrix has a good condition (class K1)
and the angle between b and y0 is big (b4). For such a large angle (near 90 degrees)
and a small condition number the term with 1/cos is dominant in the upper bound,
because cos is next to 1, tan is next to 0 and K(A) is small enough. As seen from the
examples here even K(A) = 105 is too large already.
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6 Conclusion

The paper derived a general test method for testing LS-Problem solvers. This test
method includes the generation of singular test matrices with arbitrary condition,
full column rank and exactly representable generalized inverses, and a method for
choosing general right hand sides. Applying the test method shows that for the
MGS-orthogonalization process the dependence of the error in the least squares
solution is in general not dependent on the square of the condition number if the
condition is not too bad and the angle between the right hand side and the pro-
jection is not too large. For Greville’s method and the normal equations squared
dependence on K(A) has to be expected.
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On the Computation of the Moore–Penrose
Inverse of Matrices with Symbolic Elements

Karsten Schmidt

Abstract In this paper potential difficulties in using Greville’s method for the com-
putation of the Moore–Penrose inverse of a matrix that also contains symbolic el-
ements are discussed. For the actual computation of the Moore–Penrose inverse of
matrices whose elements are not numeric only, a Computer Algebra System has to
be used. Initially, the computation of the Moore–Penrose inverse of a vector is con-
sidered which is a simple task if it only has numeric elements. If it contains sym-
bolic elements, it might also be straightforward, but might turn out to be difficult.
As Greville’s method – an iterative algorithm that needs n steps for the computa-
tion of the Moore–Penrose inverse of an m by n matrix – requires the computation
of the Moore–Penrose inverse of a vector in each step, the difficulty just mentioned
might prevent the actual computation of the Moore–Penrose inverse of a matrix with
symbolic elements.

1 Introduction

For any matrix AAA ∈ R
m×n a unique matrix AAA+ ∈ R

n×m exists, which satisfies the
following four conditions

AAAAAA+AAA = AAA (1)
AAA+AAAAAA+ = AAA+ (2)
(AAA+AAA)′ = AAA+AAA (3)
(AAAAAA+)′ = AAAAAA+ (4)

AAA+ is the Moore–Penrose inverse (or pseudoinverse) of AAA. The concepts of the
Moore–Penrose inverse and, more generally, the so-called generalized inverses (any
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matrix AAA− ∈ R
n×m satisfying the condition AAAAAA−AAA = AAA) go back to Moore [4]

and Penrose [5]. Some standard references related to generalized inverses and to
the Moore–Penrose inverse are Greville [3], Rao [6], Rao/Mitra [7], and Ben-
Israel/Greville [1]. Note that AAA− is not unique in general.

If AAA is square and nonsingular, its inverse AAA−1 exists. Obviously, in this case the
above conditions (1) to (4) are satisfied when AAA−1 is substituted for AAA+. Hence,
if AAA is a nonsingular matrix, we have AAA+ = AAA−1 (and AAA−1 is the only generalized
inverse).

In this paper we will discuss problems that might occur if we use a computer to
find the Moore–Penrose inverse of a matrix that also contains symbolic elements.
For the actual computation of the Moore–Penrose inverse of matrices whose ele-
ments are not numeric only, we have to use a Computer Algebra System. We will
be using Derive, a very popular Computer Algebra System, which nevertheless was
discontinued by Texas Instruments in 2007.

In the next section we will consider the special case of a matrix AAA having only
one column, i.e. we will consider the computation of the Moore–Penrose inverse
of a vector in Derive. We will see that this is a straightforward task if the vector
has only numeric elements. Computation of the Moore–Penrose inverse of a vector
which contains symbolic elements might also be uncomplicated, but might turn out
to be a problem.

We will then proceed to the computation of the Moore–Penrose inverse of a ma-
trix in Derive. We will apply Greville’s method which is an iterative algorithm that
needs n steps for the computation of the Moore–Penrose inverse of an m by n matrix.
We will start again with matrices containing only numeric elements, and then con-
sider the case of symbolic elements. As Greville’s method requires the computation
of the Moore–Penrose inverse of a vector in each step, the potential problem de-
scribed in Sect. 2 might avoid the actual computation of the Moore–Penrose inverse
of a matrix with symbolic elements.

In the last section we will consider a way out of the potential problem described
in Sect. 2.

2 Computation of the Moore–Penrose Inverse of a Vector

The Moore–Penrose inverse of a (column) vector aaa ∈ R
n is given by

aaa+ =

{
1

aaa′aaaaaa′ if aaa �= ooo
ooo′ if aaa = ooo

(5)

where ooo denotes the (n by 1) zero vector. Apparently, aaa+ is a row vector.
Since a vector is nothing else but a matrix with only one column, it should be

declared in Derive as such. The Derive function MPIV for the computation of the
Moore–Penrose inverse of a vector aaa given below works as follows (cf. Schmidt [8]):
the function first checks if the actual parameter which has been passed on is indeed



On the Computation of the Moore–Penrose Inverse of Matrices 351

a (column) vector. If not, an error message appears on the screen. If the parameter
turns out to be a vector, the function tests if aaa is a zero vector by computing aaa′aaa and
checking if this is equal to 0. If so, the Moore–Penrose inverse of aaa = ooo is simply
aaa+ = ooo′. If aaa′aaa is greater than 0, aaa+ equals the transpose of aaa (a row vector) divided
by the scalar aaa′aaa.

MPIV( a )  :=
If  DIM(a ’ ) = 1

If  (a ’ .a)
0.a’
a’ /(a’.a)

1 1 = 0

1 1
#1:

“This is not a column vector !”

If a vector has symbolic elements, the MPIV function might not be able to com-
pute its Moore–Penrose inverse. To exemplify this, consider the following set of
vectors:

aaa =
(

0
2

)
; bbb =

(
x
2

)
; ccc =

(
0
x

)
We define these vectors in Derive as matrices with one column:

#2:      a :=

#4:      c :=

#3:      b :=

2

0

2

x

x

0

Clearly, as aaa′aaa = 4 �= 0, according to (5) we have

aaa+ =
1

aaa′aaa
aaa′ =

1
4
(0 2) = (0

1
2
)

Moving on to bbb we find that bbb′bbb = x2 +4 which means that bbb′bbb > 0 for any x ∈R.
Hence we get

bbb+ =
1

bbb′bbb
bbb′ =

1
x2 +4

(x 2) =
(

x
x2 +4

2
x2 +4

)

Considering now ccc, it turns out that ccc′ccc = x2, i.e. we have ccc′ccc = 0 for x = 0, and
ccc′ccc > 0 otherwise. Therefore

ccc+ =

{
1

ccc′cccccc′ = 1
x2 (0 x) =

(
0 1

x

)
if x �= 0

ooo′ if x = 0
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Let us now see how the MPIV function copes with these vectors:

#5: MPIV( a ) =

MPIV( b ) =

x = 0, 0.MPIV( c ) =

#6:

#7:

0,
1

2

2

0

x
IF

0

x

0

x

−1

1,1

0

x

2

2

+ 4

x

x + 4x

,` ` `. .

,

The MPIV function has no problem computing the Moore–Penrose inverse of any
vector which contains numbers only, and therefore computes aaa+ without difficulty.
Note that as we define a column vector as a matrix with one column, its Moore–
Penrose inverse (a row vector) is a matrix with one row. Derive reminds us of this
detail by using double brackets.

The function also computes the Moore–Penrose inverse of vector bbb although it
contains the symbol x, since for any value of x we have bbb �= ooo. Vector ccc, on the
other hand, would be a zero vector if the second element, x, equalled 0. Therefore,
the MPIV function would not be able to actually compute ccc+ and thus shows the
two possible results in the form IF(I,II,III) where I is a condition, II the
formula if the condition is true ( ooo′ from (5)), and III the formula if the condition
is false ( 1

ccc′cccccc′ from (5)).

3 Computation of the Moore–Penrose Inverse of a Matrix

For the computation of the Moore–Penrose inverse of a matrix we apply Greville’s
method (Ben-Israel/Greville [1], p. 263; cf. Büning/Naeve/Trenkler/Waldmann [2],
pp. 194–196, for an alternative method), which finds the Moore–Penrose inverse in
a finite number of steps (the following description of the algorithm is taken from
Schmidt/Trenkler [9], pp. 131–132).

We first consider the column notation of the m by n matrix AAA

AAA = [aaa1 aaa2 · · · aaan]

and denote the m by k submatrix, which comprises the first k columns of AAA, by

AAAk = [aaa1 aaa2 · · · aaak]

Hence,
AAAk = [AAAk−1 aaak]
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Furthermore, we define the following vectors for j ≥ 2:

ddd′j = aaa′jAAA
+′
j−1AAA+

j−1

ccc j =
(

III−AAA j−1AAA+
j−1

)
aaa j

bbb′j = ccc+
j +

1−ccc+
j ccc j

1+ddd′jaaa j
ddd′j

Note that ddd′j is a row vector, ccc j a column vector (and hence ccc+
j a row vector) and

bbb′j a row vector. Then we have

AAA+
j =

[
AAA j−1 aaa j

]+ =
[
AAA+

j−1−AAA+
j−1aaa jbbb′j

bbb′j

]
(6)

Since AAA1 =aaa1 is a matrix having only one column, its Moore–Penrose inverse can
be computed by (5). Using (6) we can then iteratively calculate AAA+

2 ,AAA+
3 , . . . ,AAA+

n =
AAA+.

The MPI function given below works as follows (cf. Schmidt [8]): initially, the
MPIV function is called with the first column of AAA as a parameter. The result returned
is the first row of AAA+ (which is only an intermediate result). The MPI function then
proceeds to the second column of AAA and computes the second intermediate AAA+ by
transforming the previous result and appending another row. This is repeated for all
columns of AAA. After as many steps as the number of columns of AAA, AAA+ is computed
by the MPI function.

MPI(A,  APLUS,  aj,  dt,  c,  bt,  J) :=
Prog

APLUS :=  MPIV(A COL [1])
J := 2
Loop

If J >  DIM(A’)
RETURN  APLUS

aj := A  COL  [J] 
dt := aj` . APLUS` . APLUS
c  := (IDENTITY_MATRIX(DIM(A)) − A  COL [1,  ...,  J −1].APLUS).aj
bt := MPIV(c) + (1 − MPIV(c).c)/(1 + dt.aj).dt
APLUS := APPEND(APLUS − APLUS.aj.bt,  bt)
J :+ 1

#2:

Note that in each step the MPIV function is called. Hence, in the case of sym-
bolic elements the MPI function might be unable to compute AAA+. To exemplify this,
consider the matrices

AAA =
(

1 0
2 0

)
; BBB =

(
x 0
2 0

)
; CCC =

(
1 0
2 x

)
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which we define in Derive:

#3:    A :=

#5:    C :=

#4:    B :=

0

0

2

1

0

0

2

x

x

0

2

1

Clearly, as AAA has only numeric elements the MPI function easily computes its
Moore–Penrose inverse. The MPI function is also able to compute BBB+ since the first
column of BBB is not a zero vector whatever the value of x is, and the second column
of BBB is a zero vector anyway.

#6:

#7:

MPI(A) =

MPI(B) =

MPI(C) = APPEND
#8:

1 2

5 5

0 0

2

2.x

2

2

+   4

x

x

0

2.x

5

x

5 5

x

0

+   4x

5
IF x = 0, 0.−

−
2.x

5
−

,. ` ,`

However, trying to compute CCC+ with the MPI function is not successful since the
second column of CCC turns into a zero vector if x = 0. #8 in the above screenshot is
not the entire output generated by the MPI function which is several lines long and
contains 4 unsolved IF expressions.

4 A Way Out

The problem the MPI function might have in computing the Moore–Penrose inverse
of a matrix with symbolic elements is entirely due to the MPIV function which is
called in two statements within the MPI function. Therefore, in order to find a way
out we have to look for a remedy to overcome the problem the MPIV function might
have in computing the Moore–Penrose inverse of a vector with symbolic elements.
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Let us reconsider the vectors

aaa =
(

0
2

)
; bbb =

(
x
2

)
; ccc =

(
0
x

)

from Sect. 2 and determine their rank. Clearly, r(aaa) = 1, and r(bbb) = 1 for any x ∈R.
Since the value of x is crucial as to whether ccc is a zero vector or not, we have

r(ccc) =

{
1 if x �= 0
0 if x = 0

But if we compute the rank of the three vectors in Derive

#5: RANK(a)  = 1

RANK(b)  = 1 #6:

RANK(c)  = 1#7:

we get r(ccc) = 1, i.e. Derive does not make a case differentiation. Apparently, the
single x value which turns ccc into a zero vector, is neglected.

Why not use this viewpoint for an alternative MPIV function which does not
consider the particular case in which a vector becomes a zero vector for a certain
value of a symbolic element of this vector, but only the infinite number of cases
where this vector is not a zero vector? The respective MPIV0 function is given
below:

#1:
“This is not a column vector !”

MPIV0(a) :=
If DIM  (a’) = 1

a ‘ /(a’ .a) 1 1

Unsurprisingly, this Derive function is not capable of computing the Moore–
Penrose inverse of a zero vector, which is not a real problem as long as we are
interested in the computation of the Moore–Penrose inverse of vectors only (and not
vectors as columns of matrices). Using the MPIV0 function for the computation of
the Moore–Penrose inverse of the three vectors, we get not only the same aaa+ and
bbb+ as in Sect. 2, but now also ccc+.
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MPIV0(a) =

MPIV0(b) =

MPIV0(c) =

#9:

#8:

#10:

1

2
0,

x

x + +

2

2

1
0,

x

4x
2

4

,

Clearly, what is computed in Derive is the Moore–Penrose inverse of ccc in case
x �= 0. The special case x = 0 is ignored.

We now reconsider the matrices

AAA =
(

1 0
2 0

)
; BBB =

(
x 0
2 0

)
; CCC =

(
1 0
2 x

)

from Sect. 3 and determine their rank. Clearly, r(AAA) = 1, and r(BBB) = 1 for any x∈R.
Since the value of x is crucial as to whether the second column of CCC is a zero vector
or not, we have

r(CCC) =

{
2 if x �= 0
1 if x = 0

Computing the rank of the three matrices in Derive

#11:

#12:

#13:

RANK(A) = 1

RANK(B) = 1

RANK(C) = 2

we get r(CCC) = 2, i.e. Derive again does not make a case differentiation. Apparently,
the single x value which turns the second column ofCCC into a zero vector is neglected.

Finally we compute the Moore–Penrose inverse of the three matrices in Derive
with the MPI0 function, which is identical to the MPI function in Sect. 3 except that
it calls the MPIV0 function instead of the MPIV function in lines 3 and 11.
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#14:

#15:

#16:

MPI0(A) =

MPI0(B) =

MPI0(C) =

?

? ?

? ?

??

−

1 0

2 1

xx

?

As we get CCC+ this time (more precisely the Moore–Penrose inverse of CCC if x �= 0,
i.e. the special case x = 0 is ignored), it turns out that the MPI0 function is unable to
compute the Moore–Penrose inverse of AAA and BBB. Note that CCC is a nonsingular matrix
for x �= 0 such that CCC+ =CCC−1. Computing the inverse of CCC in Derive generates the
same matrix as the MPI0 function, i.e. Derive is consistent in terms of disregarding
the special case x = 0.

#17: C =
−1

1 0

2 1

x x
−

The obvious reason for the inability of the MPI0 function to compute the Moore–
Penrose inverse of AAA and BBB is that it cannot handle the case where a column of the
input matrix is a zero vector (like the second column of AAA or BBB), or, more precisely,
if the MPIV0 function is called with a zero vector as a parameter. Note that if you
divide 0 by 0 in Derive, “?” is displayed.

Considering the two alternatives for the computation of the Moore–Penrose in-
verse with Derive described in this paper, namely the MPI function (using the MPIV
function) and the MPI0 function (using the MPIV0 function), we find that neither
is always superior.

The MPI function works if the input matrix does not have any symbolic elements
(even if there are zero vectors), but might fail if it cannot decide if a certain vector is
a zero vector. On the other hand, the MPI0 function can handle symbolic elements,
but fails however, should a zero vector become the input of the MPIV0 function
during the computation of the Moore–Penrose inverse using Greville’s method.
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On Permutations of Matrix Products

Hans Joachim Werner and Ingram Olkin

Abstract It is well-known that trace(AB)≥ 0 for real-symmetric nonnegative def-
inite matrices A and B. However, trace(ABC) can be positive, zero or negative, even
when C is real-symmetric nonnegative definite. The genesis of the present investi-
gation is consideration of a product of square matrices A = A1A2 · · ·An. Permuting
the factors of A leads to a different matrix product. We are interested in conditions
under which the spectrum remains invariant. The main results are for square ma-
trices over an arbitrary algebraically closed commutative field. The special case of
real-symmetric, possibly nonnegative definite, matrices is also considered.

1 Introduction

For a given product of not necessarily distinct factors it is natural to call two factors
direct (or next-door) neighbors (with respect to this product) if in this product these
two factors stand next to each other. For convenience, the first and the last factor
in a product are also called direct neighbors of each other. The length of a product
is defined as the number of its (not necessarily distinct) factors. So, in a product of
length ≥ 3, each of its factors has at least two (not necessarily distinct) neighbors.
If all factors are distinct, each factor has exactly two direct neighbors. Moreover,
if the product has length 3, then each factor is obviously a direct neighbor of the
remaining two (not necessarily distinct) factors.

Now, let p be a product of length n, and let q be obtained from p by a permutation
of its n (not necessarily distinct) factors. These two products are said to be DN-
related to each other if each of the n factors has in both products exactly the same
direct neighbors. In which case, we write p∼DN q.
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Bonn, Germany
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In this note, we consider products of finite length n of square matrices over an
algebraically closed commutative field F. Let Ai (i = 1,2, · · · ,n) be n matrix sym-
bols for m×m matrices over F, and let A := A1A2 · · ·An be the naturally ordered
matrix product of these n symbols Ai. As usual, let Sn denote the symmetric group
on the natural numbers 1,2, · · · ,n, i.e., let Sn be the set of all the permutations of
these symbols 1,2, · · · ,n. For each π := (π1,π2, · · · ,πn) ∈Sn, let Aπ := ∏n

i=1 Aπi ,
and let SA := {Aπ | π ∈Sn}, i.e., let SA be the set of all products obtained from A
by permuting its factors. By varying π ∈Sn we clearly obtain all possible n! matrix
products of length n of A1,A2, · · · ,An. In other words, SA can be considered as the
group of all permutations on the n matrix symbols Ai (i = 1,2, · · · ,n). Because the
relation∼DN is reflexive, symmetric and transitive, it is an equivalence relation, and
so it is clear that any two equivalence classes are either equal or disjoint. Hence
the collection of equivalence classes DN(B) := {Aπ |Aπ ∼DN B}, B ∈ SA, forms
a partition of SA. It is not difficult to see that there are exactly (n− 1)!/2 disjoint
equivalence classes for n≥ 3. For observe that the equivalence class DN(Aπ) of

Aπ = Aπ1 Aπ2 · · ·Aπn (1)

contains exactly all those products of the matrix symbols Ai (i = 1,2, · · · ,n) that
are obtained from (1) by cyclical and/or reverse re-orderings. Because there are
n cyclical and n reverse re-orderings of the factors in Aπ , each equivalence class
therefore consists of 2n factor permutations of the n matrix symbols, and so it is
clear that we have, as claimed, (n−1)!/2 disjoint equivalence classes for n≥ 3.

In Sect. 3, we study some functions which are defined on SA, mainly the trace(·)
and the spectrum(·). There, we particularly show that if Ai (i = 1,2, · · · ,n) are all
symmetric m×m matrices over F, then these functions are constant on each equiva-
lence class. Section 4 deals with the set of all symmetric nonnegative definite m×m
matrices over the field R of real numbers. Section 2 contains some known results,
from which our findings in the subsequent two chapters easily follow.

2 Prerequisite Results

For real or complex matrices the following results are well-known; cf. [3] or [5].
Because for matrices over an arbitrary algebraically closed commutative field F the
according results can be established on identical lines the proofs are omitted.

Fact 2.1. [See, e.g., pp. 53–55 in [3].] Let A be a square matrix of order m over the
field F. The characteristic polynomial of A, being defined as cA(λ ) := det(λ Im−A),
is a monic polynomial of degree m with exactly m (not necessarily distinct) roots
λ1, λ2, · · · , λm ∈ F, called the eigenvalues of A. When writing the characteristic
polynomial of A as

cA(λ ) = λm− c1λm−1 + c2λm−2 + · · ·+(−1)mcm,
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the following relationships hold between the coefficients cr (r = 1,2, · · · ,m), the
eigenvalues of A, the r-th compound A(r) and the principal minors of A:

cr = trace(A(r)) =∑ (all r× r principal minors) = ∑
1≤i1<i2<···ir≤m

λi1λi2 · · ·λir .

Hence, in particular,

c1 = trace(A) =
m

∑
i=1

λi and cm = det(A) =
n

∏
i=1

λi.

For more details concerning compounds we refer, for instance, to the books by
Aitken [1], Gröbner [2] or Marshall & Olkin [4].

Fact 2.2. [See, e.g., Exercise 6 on p. 56 in [3].] Let A be a square matrix over F.
Then

cA(λ ) = cAt (λ ),

where At denotes the transpose of A. In other words, A and its transpose At possess
the same characteristic polynomial, and so these matrices have the same set of
eigenvalues with corresponding algebraic multiplicities.

Fact 2.3. [See, e.g., Exercise 7.1.19 on p. 503 in [5].] Let A and B be square matrices
of order m over the field F. Then the matrices AB and BA have the same set of
eigenvalues with corresponding algebraic multiplicities. Hence, in particular,

spectrum(AB) = spectrum(BA).

For the sake of completeness as well as for easier reference, we also cite some
well-known results for Hermitian matrices (over the field C of complex numbers).

Fact 2.4. [See, e.g., pp. 75–78 in [3].] Let A be an Hermitian m×m matrix. Then all
eigenvalues of A are real. Moreover, A is unitarily similar to the diagonal matrix D =
diag(λ1,λ2, · · · ,λm) of its eigenvalues, i.e., there exists an m×m (unitary) matrix
U = (u1,u2, · · · ,um) such that

UU∗ = Im and A = UDU∗

or, equivalently,
m

∑
i=1

uiu∗i = Im and A =
m

∑
i=1

λiuiu∗i ,

with (·)∗ indicating as usual the conjugate transpose of (·). The pairs (λi,ui), i =
1,2, · · · ,m, are eigenpairs for A, i.e., λi and ui, satisfying Aui = λiui, are eigenvalues
and eigenvectors of A, respectively.
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For real-symmetric matrices the previous result allows the following version.

Fact 2.5. [See, e.g., pp. 75–78 in [3].] Let A be a real-symmetric m×m matrix.
Then all eigenvalues of A are real. Moreover, A is orthogonally similar to the diag-
onal matrix D = diag(λ1,λ2, · · · ,λm) of its eigenvalues, i.e., there exists an m×m
(orthogonal) real matrix P = (p1, p2, · · · , pm) such that

PPt = I and A = PDPt ,

or equivalently
m

∑
i=1

pi pt
i = Im and A =

m

∑
i=1

λi pi pt
i.

The pairs (λi, pi), i = 1,2, · · · ,m, are eigenpairs for A, i.e., λi and pi, satisfying
Api = λi pi, are eigenvalues and eigenvectors of A, respectively.

Below we will also make use of the following two results.

Fact 2.6. [See, e.g., p. 559 in [5].] Let A be a real-symmetric nonnegative definite
matrix. Then all its eigenvalues are nonnegative. If all its eigenvalues are positive,
then A is a positive definite matrix.

Fact 2.7. [See, e.g., Exercise 7.2.16 in [5].] Let A and B be diagonalizable matrices
of the same order, say m×m. Then A and B commute, i.e., AB = BA, if and only if A
and B can be simultaneously diagonalized, i.e., if and only if

A = XDAX−1 and B = XDBX−1

for some regular matrix X = (x1,x2, · · · ,xm) and some diagonal matrices DA =
diag(λ1,λ2, · · · ,λm) and DB = diag(μ1,μ2, · · · ,μm). For i = 1,2, · · · ,m, the pairs
(λi,xi) and (μi,xi) are eigenpairs of A and B, respectively.

3 Main Results

In virtue of the Facts 2.1, 2.2, and 2.3 we now obtain the following.

Theorem 3.1. For symmetric m×m matrices A1, A2, · · · ,An over the field F, let
A := ∏n

i=1 Ai. Then we have
cA(λ ) = cAπ (λ ),

irrespective of Aπ ∈ DN(A). Consequently,

trace(A(r)) = ∑ (all r× r principal minors of A)

= ∑ (all r× r principal minors of Aπ )

= trace(A(r)
π ),
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irrespective of Aπ ∈ DN(A), and so, in particular,

trace(A) = trace(Aπ)

for all Aπ with Aπ ∼DN A.

Proof. Recall from Sect. 1 that DN(A) consists exactly of all those 2n matrix prod-
ucts that are obtainable from A = A1A2 · · ·An by cyclical and/or reverse re-orderings
of the n matrix factors in A. In virtue of Fact 2.1 and Fact 2.2, the claimed re-
sults now follow easily by means of Fact 2.3 and the fact that, for instance,
(A1A2 · · ·An)t = AnAn−1 · · ·A1. Details are left to the reader. 
�

The previous theorem deserves some further emphasizing. For, it may be sur-
prising that trace(A) = trace(Aπ), irrespective of Aπ ∈ DN(A). Of course, det(A) =
det(Aπ) does always hold and, needless to say, this is not surprising. But that the
sum of the eigenvalues taken r at a time are equal may again be surprising. Observe
that trace is the sum of the eigenvalues taken 1 at a time, and that determinant is
the sum of the eigenvalues taken m at a time. Our previous theorem tells us that
even the sum of all eigenvalues taken in between at a time are also equal, that is,
trace(A(r)) = trace(A(r)

π ).

Because for any matrix product A of length 3, DN(A) = SA, the following is an
immediate consequence of the previous theorem observing that (BC)(r) = B(r)C(r).

Corollary 3.2. Let A := A1A2A3, with A1, A2 and A3 being symmetric matrices of
the same order m×m over the field F. Then

cA1A2A3(λ ) = cAπ1 Aπ2 Aπ3
(λ )

for each permutation π = (π1,π2,π3) ∈S3. Hence, in particular,

trace(A(r)
1 A(r)

2 A(r)
3 ) = trace(A(r)

π1 A(r)
π2 A(r)

π3 ),

irrespective of π = (π1,π2,π3)∈S3 and r ∈Nm, where Nm := {r ∈N : 1≤ r≤m}.

If two of the three (not necessarily symmetric) square matrices A1, A2 and A3 in
the matrix product A := A1A2A3 commute, then each matrix in SA can obviously be
obtained by a cyclical reordering of the factors of A and/or by the commutation of
the commuting factors, and so we obtain the following.

Corollary 3.3. Let A := A1A2A3, with A1, A2 and A3 being such that at least two of
the three m×m matrices commute. Then

cA1A2A3(λ ) = cAπ1 Aπ2 Aπ3
(λ )
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and so
trace(A(r)

1 A(r)
2 A(r)

3 ) = trace(A(r)
π1 A(r)

π2 A(r)
π3 ),

irrespective of π = (π1,π2,π3) ∈S3 and r ∈ Nm.

4 Special Case: Products of Length Three of Real-Symmetric
Nonnegative Definite Matrices

We conclude this note by considering the special case of matrix products of length
3, say A1A2A3, where all three factors are real-symmetric nonnegative definite ma-
trices. Corollary 3.2 of the preceding section tells us that the matrices A1A2A3 and
A2A1A3 have the same characteristic polynomial and so

trace((A1A2 +A2A1)A3) = 2trace(A1A2A3)

holds true. An interesting question is, whether for given such factors anything can
be said about the signum of trace((A1A2 +A2A1)A3).

So, let A1, A2 and A3 be symmetric nonnegative definite m×m matrices over the
field R of real numbers. Then, according to Fact 2.5, these matrices are orthogo-
nally similar to some diagonal matrices and hence, for i = 1,2,3, Ai can always be
written as

Ai =
m

∑
j=1

λi jxi jxt
i j,

where (λi j,xi j) ( j = 1,2, · · · ,m) are eigenpairs of Ai and {xi j | j = 1,2, · · · ,m}
constitutes an orthonormal basis for R

m. Then

trace(A1A2) =
m

∑
j=1

m

∑
k=1

λ1 jλ2k(xt
1 jx2k)2 ≥ 0, (2)

since, in view of Fact 2.6, all eigenvalues of a real-symmetric nonnegative definite
matrix are nonnegative. One might be tempted to believe that this result can be
extended to three factors. That this, however, is erroneous is illustrated by our next
example.

Example 4.1. Consider the real-symmetric positive definite matrices

A1 :=
(

4 −1.9
−1.9 1

)
, A2 :=

(
1 0.9

0.9 1

)
and A3 :=

(
1 −1.4
−1.4 2

)

Then

A1A2A3 =
(
−0.09 0.194
0.006 −0.02

)
and A2A1A3 =

(
3.69 −5.206

2.694 −3.8

)
,
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and so trace(A1A2A3) =−0.11 and trace(A2A1A3) =−0.11. The traces are negative
and coincide; the latter is in accordance with our findings in Section 2. The spectrum
of both matrices as well as all other matrices from SA1A2A3 is given by

spectrum(A1A2A3) = {(
√

61−55)/1000,(−
√

61−55)/1000}
= spectrum(A2A1A3).

We conclude with emphasizing that therefore, without any further restrictive as-
sumptions, nothing can be said about the signum of the trace of the product of three
real-symmetric nonnegative definite matrices. The trace can be positive, negative,
or even 0. If, however, the m×m matrices A1, A2, and A3 are all real-symmetric
nonnegative definite and, in addition, such that at least two of them commute, then,
in view of Fact 2.6 and Fact 2.5, it is clear that the product of the commuting pair
of matrices is itself a symmetric nonnegative definite matrix. Since in such a situ-
ation the product of A1A2A3 can hence be considered as the product of two real-
symmetric nonnegative definite matrices, it follows from the lines around (2) that
the trace of A1A2A3 is indeed also nonnegative. Needless to say, if A1, A2 and A3 are
real-symmetric positive definite and two of these matrices commute, then the trace
of A1A2A3 is necessarily positive.
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Some Comments on Fisher’s ααα Index
of Diversity and on the Kazwini Cosmography

Oskar Maria Baksalary, Ka Lok Chu, Simo Puntanen, and George P. H. Styan

Abstract Biodiversity, or biological diversity, is “the variety of life on our planet,
measurable as the variety within species, between species, and the variety of ecosys-
tems” [12, 41] and the most widely applied index of biodiversity is surely Fisher’s
α , defined implicitly by S = α loge{1+(n/α)}, where n is the number of individu-
als and S is the number of species. This index α was first proposed over 60 years ago
by R. A. Fisher in a three-part joint paper with A. Steven Corbet and C. B. Williams
[14]. We also present some comments on the diversity of the paintings by Johannes
Vermeer (1632–1675) depicted on postage stamps updating our findings in [3]. The
earliest study of biodiversity seems to be that reported in the Kazwini Cosmography
c. 1283; this study involved 72 different kinds of papillons that were collected in
what we believe was Baghdad in c. 900 AD. We also found some magic squares in
the Kazwini Cosmography. Our list of references is annotated and contains hyper-
links to open-access and restricted-access files on the internet.

1 Introduction and Mise-en-scène

What is now widely known as Fisher’s α Index1 was first proposed over 60 years
ago by R. A. Fisher in a three-part joint paper with A. S. Corbet & C. B. Williams
[14] in which Fisher applied a logarithmic-series model to Corbet’s data on Malayan

Oskar Maria Baksalary
Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, PL 61-614 Poznań, Poland
baxx@amu.edu.pl

1 Fisher’s α is also known as Fisher’s α log series (bio)diversity index or as Fisher’s α index of
(bio)diversity.
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butterflies and to Williams’s data on selected nocturnal Lepidoptera2 caught in a
light-trap at Rothamsted Experimental Station3.

Fisher’s α is defined implicitly by

S = α loge

(
1+

n
α

)
,

where n is the number of individuals and S is the number of species. Fisher’s α is
always positive, and the larger its value, the more diverse is the underlying popu-
lation. Moreover, α is common to all samples from a single population and so is a
property of the population [51, p. 148].

In this paper we survey some of the underlying theory and look at some appli-
cations of Fisher’s α to the study of the diversity within certain sets of butterflies,
moths, and trees. In addition, we present some comments on diversity in paintings
by Johannes Vermeer (1632–1675) depicted on postage stamps. We also comment
on an early study of biodiversity and some magic squares reported in the Kazwini
Cosmography4 first published in the thirteenth century.

Biodiversity, or biological diversity, is the variety of life on our planet, measur-
able as the variety within species, between species, and the variety of ecosystems
[12]. In her Measuring Biological Diversity [30, Cover 4], Anne Magurran points
out that: The diversity of life on earth inspires fundamental ecological questions
concerning the abundance of species and their distribution over space and time. The
rapid loss of this diversity, primarily due to the impact of humanity, makes the need
for effective ways of measuring biological diversity more important than ever. We
agree completely!

Fisher’s α was first proposed over 60 years ago in 1943 in a seminal paper [14]
by Ronald Aylmer Fisher, later Sir Ronald Fisher (1890–1962), Alexander Steven
Corbet (1896–1948), and Carrington Bonsor Williams (1889–1981). Fisher was a
very well-known statistician, evolutionary biologist, and geneticist, while Corbet
was a biochemist by training, who worked as a soil chemist and bacteriologist be-
fore becoming a lepidopterist5. Williams was “the first real quantitative empirical
ecologist: a naturalist who was numerate” (Wigglesworth [48]), and the author of
the wonderful book Patterns in the Balance of Nature and Related Problems in
Quantitative Ecology [51], where [51, Plate I, page facing page 32] Williams shows
a catch of n = 219 individual Lepidoptera of S = 42 different species captured in
a light-trap at Rothamsted on the night of 23 July 1946; he finds that Fisher’s α '
15.44.

2 Lepidoptera is a large order of insects, characterized by having 4 membranous wings covered
with scales; it comprises the butterflies and moths [36].
3 Rothamsted Experimental Station, located at Harpenden, Hertfordshire (just north of London),
is one of the oldest agricultural research institutions in the world. It is now known as Rothamsted
Research [49].
4 Book of the Marvels of Nature and the Singularities of Created Things, by Zakariyyā’ ibn
Muh. ammad ibn Mah. mūd Abū Yah.yā al-K. azwı̄nı̄ (c. 1203–1283).
5 The Butterflies of the Malay Peninsula [10] with Henry Maurice Pendlebury (1893–1945) may
well be Corbet’s most important contribution to entomology.
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In addition, Williams [51, Plate II, page facing page 33] shows n = 65 individual
hawk moths6 of S = 19 different species captured in a light-trap near Ibadan, Nigeria,
in the single night 22 April 1953, and so Fisher’s α ' 9.03. From this we may
conclude that certain 1946 Rothamsted Lepidoptera are quite a bit more diverse
than certain 1953 Nigerian hawk moths.

We may also consider a set of n = 75 trees from S = 30 species planted on a
certain property in northern Vermont7. We find Fisher’s α ' 15.15. These 75 trees
may be categorized into 3 groups as follows:

1. 27 deciduous trees from 15 species: Fisher’s α ' 13.99,
2. 24 fruit trees from 8 species: Fisher’s α ' 4.20,
3. 24 evergreen trees from 7 species: Fisher’s α ' 3.22.

We conclude that the deciduous trees are by far the most diverse, while the fruit
trees and evergreens have about the same diversity. It is interesting to see that the
overall Fisher’s α exceeds all three values of Fisher’s α for the three component
groups.

The paper by Fisher, Corbet & Williams [14] was entitled “The relation be-
tween the number of species and the number of individuals in a random sample
of an animal population”. In Part 3 entitled “A theoretical distribution for the ap-
parent abundance of different species”, Fisher introduces α index of diversity in
a logarithmic-series model for Williams’s data on Rothamsted Lepidoptera and
for Corbet’s data on Malayan butterflies, including Rajah Brooke’s birdwings8; Sir
James Brooke (1803–1868) was the first White Rajah of Sarawak9.

2 Some Properties of Fisher’s ααα Index of Diversity

In Fisher’s logarithmic-series model, the expected number of species Sk with k indi-
viduals is

E(Sk) =
αxk

k
, k = 1,2, . . . ,

with two positive constants α and x, and so the expected number of species with just
one individual is:

E(S1) = αx.

6 A hawk moth is a moth of the family Sphingidæ or Sphingina; a sphinx-moth; so called for their
manner of flight, which resembles the hovering and darting of a hawk.” (OED [36]).
7 Between the towns of Franklin and Highgate near the Canadian border.
8 Birdwings are large, tropical papilionid butterflies native to mainland and archipelagic Southeast
Asia and Australasia (with one Indian species) and are usually regarded as belonging to three
genera: Ornithoptera, Trogonoptera and Troides [49].
9 Sarawak is one of the two Malaysian states on the island of Borneo [49].
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By equating the total number of species S to the sum of the E(Sk), Fisher
showed that

S =
∞

∑
k=1

E(Sk) =
∞

∑
k=1

αxk

k
=−α loge(1− x).

Moreover,

n =
∞

∑
k=1

kSk =
∞

∑
k=1

k
αxk

k
=

∞

∑
k=1

αxk =
αx

1− x
.

Eliminating x yields

S = α loge

(
1+

n
α

)
,

which cannot readily be solved explicitly for α. Since α > 0 and

x =
n

n+α
=

1
1+ α

n
,

we see that x < 1 and that x monotonically approaches 1 as n increases with fixed
α > 0. And so

E(S1) = αx < α

and
E(S1)→ α as n→ ∞.

Almost always in practice x > 0.9 according to Magurran [30, p. 30], who
also says that when n/S > 20, then x > 0.99. For Williams’s Nigerian hawk
moths we find that n/S = 65/19 ' 3.42 and x = 0.878 and for his Lepidoptera
n/S = 219/42 ' 5.21 and x ' 0.93. With 14 decimal places, we find that for
n/S > 20.00000000000000, then x > 0.98904448770025.

Indeed

n
S

=− x
(1− x) loge(1− x)

(1)

has a unique positive root x for fixed n/S > 0 and this root x is monotonically in-
creasing in n/S.

Plotted here is x (vertical axis) vs. n/S (horizontal axis), where n is the num-
ber of individuals, S is the number of species, and x = E(S1)/α , where S1 is
the number of species with just 1 individual and α is Fisher’s α . Indeed Fisher
found the solution for α to be “troublesome and indirect” [to compute] but gave
a table [14, Table 9, p. 55] of log10 n/α in terms of log10 n/S = 0.40 [0.01]3.59.
Rice & Demarais [37, Table 1, pp. 149–154 (1996)], give values of α in terms of
n− S = 1 [1]10 [10]100 [100]1000 and S = 1 [1]50 [10]100 [100]500,1000. An ex-
plicit closed-form (but quite complicated) representation (involving 2 integrals) for
α has been obtained quite recently by Kheyfits & Kheyfits [26, (2005)].

To compute Fisher’s α , we wrote a simple program using Newton’s Method. Let
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Fig. 1 Plot of x (vertical axis) vs. n/S (horizontal axis) as defined by (1)

f (α) = α loge

(
1+

n
α

)
−S .

Then the first derivative

f ′(α) = loge

(
1+

n
α

)
− n

n+α
,

and the (i+1)th iterate, with i = 0,1, . . . ,

αi+1 = αi−
f (αi)
f ′(αi)

= αi−
αi loge

(
1+ n

αi

)
−S

loge
(
1+ n

αi

)
− n

n+αi

.

3 The Diversity of Vermeer Paintings Depicted on Postage
Stamps

As noted in [3], Jerzy Baksalary (1944–2005) introduced the Dutch painter Johannes
Vermeer10 (1632–1675) to the first author after a visit11 in 1986 to The Netherlands.
As Jerzy later recalled, he was exploring the Rijksmuseum in Amsterdam marvelling

10 Extensive information about Johannes Vermeer and his paintings is relatively given in the ex-
tremely competent and rich website [17].
11 Jerzy Baksalary was then visiting Wageningen under a joint research agreement between the
Department of Mathematics, Agricultural University at Wageningen (The Netherlands), and the
Department of Mathematical and Statistical Methods, Academy of Agriculture in Poznań (Poland).
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at the masterpieces there. At a certain moment he reached a corner where these four
paintings by Vermeer were hanging:

1. The little street [P7],
2. The milkmaid [P9],
3. Woman in blue reading a letter [P14],
4. The love letter [P29].

Numbers in square brackets prefixed with the letter P refer to the list of 36 rec-
ognized Vermeer paintings, as given in Table 1 below.

Images of these four paintings and details from two of them are depicted on a
sheetlet with six postage stamps issued by the Maldives12 in celebration of the 200th
anniversary of the Rijksmuseum (see Fig. 2 below).

These four paintings so delighted Jerzy that he spent the remaining time until
the museum closed just looking at them (see Fig. 3 below). Later on, Jerzy decided
that he would try to see all 36 “recognized” Vermeer paintings (see Table 1 below)
with his own eyes. Unfortunately, Jerzy did not manage to achieve this task, with
his untimely death in March 2005 at the age of 60 having seen only 20 of the 36
Vermeer paintings.

Table 1 List of 36 recognized paintings attributed to Vermeer, according to Bailey [2] (in chrono-
logical order with current locations). Images of paintings identified with an asterisk have appeared
(at least in part) on a postage stamp13 and with a dagger in the selvage (only)

[P1] Christ in the house of Martha and Mary (1654/1655), National Gallery of Scotland, Edinburgh
[P2] St Praxedis (1655), Barbara Piasecka Johnson Collection, Princeton
[P3] Diana and her companions (1655/1656), Mauritshuis, The Hague
[P4]* The procuress (1656), Gemäldegalerie Alte Meister, Dresden
[P5]* A girl asleep (1657), Metropolitan Museum of Art, New York
[P6]* Girl reading a letter at an open window (1657), Gemäldegalerie Alte Meister, Dresden
[P7]* The little street (1657/1658), Rijksmuseum, Amsterdam
[P8]† Officer and laughing girl (1658), Frick Collection, New York
[P9]* The milkmaid14 (1658/1660), Rijksmuseum, Amsterdam
[P10]* The glass of wine (1658/1660), Gemäldegalerie, Staatliche Museen zu Berlin
[P11] The girl with two men (1659/1660), Herzog Anton Ulrich-Museum, Braunschweig
[P12]* View of Delft (1660/1661), Mauritshuis, The Hague
[P13] Girl interrupted at her music (1660/1661), Frick Collection, New York
[P14]* Woman in blue reading a letter (1662/1664), Rijksmuseum, Amsterdam
[P15]* The music lesson (1662/1665), Royal Collection, London
[P16]* Woman holding a balance (1664), National Gallery of Art, Washington, DC

12 The Maldives (or Maldive Islands), officially the ‘Republic of Maldives’, is an island nation
consisting of a group of atolls in the Indian Ocean. The Maldives are located south of India’s
Lakshadweep islands, about 700 km south–west of Sri Lanka. [49].
13 For further information see Tables 2 & 3 below.
14 Boyer [5] has pointed out that in France the Vermeer painting The milkmaid [P9] is known as La
laitière, who is the subject of numerous advertisements by Nestlé, see, e.g., [11, 57]. For a stamp
depicting The milkmaid [P9], see Figure 2 below, bottom row center.
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[P17] Woman with a pearl necklace (1664), Gemäldegalerie, Staatliche Museen zu Berlin
[P18]* Woman with a lute (1664), Metropolitan Museum of Art, New York
[P19]* Young woman with a jug (1664/1665), Metropolitan Museum of Art, New York
[P20]* The girl with a pearl earring (1665), Mauritshuis, The Hague
[P21] A lady writing (1665), National Gallery of Art, Washington, DC
[P22] Girl with a red hat (1665), National Gallery of Art, Washington, DC
[P23]* The concert (1665/1666), Isabella Stewart Gardner Museum, Boston (stolen in March 1990)
[P24]* The art of painting (1666/1667), Kunsthistorisches Museum, Vienna
[P25]* Head of a young woman (1666/1667), Metropolitan Museum of Art, New York
[P26]]† Mistress and maid (1667/1668), Frick Collection, New York
[P27]* The astronomer (1668), Musée du Louvre, Paris
[P28] The geographer (1668/69), Städel Museum, Frankfurt am Main
[P29]* The love letter (1669/1670), Rijksmuseum, Amsterdam
[P30]* The lacemaker (1669/1670), Musée du Louvre, Paris
[P31] A young woman seated at the virginal (1670), Art Gallery of Wynn, Las Vegas
[P32]* Lady writing a letter with her maid (1670), National Gallery of Ireland, Dublin
[P33] Allegory of faith (1671/1674), Metropolitan Museum of Art, New York
[P34]* The guitar player (1672), Kenwood House (Iveagh Bequest), London
[P35] A lady standing at the virginal (1673/1675), National Gallery, London
[P36]* A lady seated at the virginal (1673), National Gallery, London.

Fig. 2 Vermeer paintings depicted on stamps from The Maldives
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Fig. 3 The girl with a pearl earring [P20] with Jerzy K. Baksalary at the Mauritshuis, The Hague,
25 September 2001 [Photo by Mirosława Baksalary]

Our list of 36 paintings in Table 1 differs from the list of 34 paintings given by
Bailey [2], and from the list of 34 paintings in the English-language Wikipedia [49]
article on Johannes Vermeer, and [5] from the list of 37 paintings in the French-
language Wikipédia [50] article. Bailey [2] and the English-language Wikipedia [49]
omit, as we do, Girl with a flute [National Gallery of Art, Washington, DC], but this
is included by the French-language Wikipédia; Brown [6] says that Girl with a flute
is by “circle of Vermeer”.

Bailey [2] and the English-language Wikipedia [49] omit A young woman seated
at the virginal [P31], which has been only relatively recently attributed to Vermeer.
The English-language Wikipedia [49] also omits St Praxedis [P2], which Brown [6]
says “is difficult to reconcile with the few known paintings by Vermeer”.

Quite recently, Vermeer became widely known to the general public through the
1999 novel Girl with a Pearl Earring [8] by Tracy Chevalier and the 2003 movie [16]
adapted by Olivia Hetreed from the novel. The movie starred Colin Firth as Vermeer
and received three Oscar nominations. Three stamps depicting The girl with a pearl
earring [P20] are shown in Fig. 4 below.

We have identified 83 postage stamps from 33 different “countries” that depict
(all or part of) 23 of the 36 recognized paintings by Johannes Vermeer. Details are
in Table 2 below. By “country” we mean a stamp-issuing region that issues or has
issued its own postage stamps. Our findings here update those given in [3] with the
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Table 2 Vermeer stamps by country
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Table 3 Fisher’s α for selected datasets

nn S

Vermeer stamps South Pacific 4 2 1.59

Fisher’s alpha

Vermont trees evergreen 24 7 3.32

Vermont trees fruit 24 8 4.20

Vermeer stamps Asia 6 4 5.24

Williams Nigerian hawk moths 65 19 9.03

Vermeer stamps Middle East 27 13 9.86

Vermeer stamps all countries 83 23 10.53

Vermont trees deciduous 27 15 13.90

Williams
Rothamsted
Lepidoptera

219 42 15.44

Vermeer stamps Africa 33 18 16.22

Vermont trees
evergreen, fruit & 

deciduous
75 30 18.53

Vermeer stamps Europe 8 7 26.80

Vermeer stamps America 5 5 infinity

recently-discovered sheetlet with six stamps from Benin15 (see Fig. 5 below) issued
in 2003 and two stamps from Guinea16 (see Figs. 7 and 8 below) issued in 2007.

Included in the six stamps from Benin are the first stamps we have found to de-
pict The procuress [P4] and The music lesson [P15], respectively, bottom right and
top left. Details from several Vermeer paintings appear in the selvage17. In particu-
lar, on the right (center) and bottom (left) selvage appear details from the painting
Officer and laughing girl [P8] (see Fig. 6 below), which we have not found depicted
philatelically elsewhere.

The two stamps from Guinea appear in two sheetlets (see Figs. 7 and 8), each
with one stamp. The stamp in the sheetlet shown in Fig. 7 depicts a detail from

15 Benin, officially the Republic of Benin, is a country in west Africa known as Dahomey until
1975 [49].
16 Guinea, officially Republic of Guinea (in French: République de Guinée), is a country in west
Africa, known as French Guinea until 1958 [49].
17 In philately the selvage is the margin of a pane of stamps that usually includes the plate number
and other markings such as copyright notices.
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Fig. 4 Three stamps depicting The girl with a pearl earring: (left) Ivory Coast, c. 2001; (center)
Kathiri State of Seiyun, c. 1967; (right) France 2008

the Vermeer painting Woman holding a balance [P16] and what is considered to be
the only self-portrait of Vermeer [43, p. 9] taken from the upper left corner of The
procuress [P4]18. Depicted in the selvage are an enlarged detail from The girl with
a pearl earring [P20] and the Vermeer painting Mistress and maid [P26], which we
have (also) not found depicted philatelically elsewhere.

The second sheetlet (see Fig. 8), which was issued in celebration of “Painters of
The Netherlands”, includes images of six stamps depicting three paintings, two of
each; the three paintings are by Van Gogh (1853–1890), Rembrandt (1606–1669),
and Vermeer. The Vermeer painting is Christ in the house of Martha and Mary
[P1], which we have not found depicted on any other postage stamp. This stamp
also shows the same self-portrait of Vermeer (as shown on the stamp in Fig. 7). In
the selvage upper right near the phrase “Vermeer (1632–1675)” is curiously not a
portrait of Vermeer but in fact a self-portrait of Carel Fabritius (1622–1654), who is
“generally supposed to be Vermeer’s teacher” [43, p. 13]. Fabritius was a pupil of
Rembrandt in the 1640s and then settled in Delft in 1650.

We compute Fisher’s α index (Table 3 above) to assess the diversity of Vermeer
paintings depicted on postage stamps. We find that the Vermeer paintings depicted
on stamps from Europe are the most diverse (n = 8,S = 5,α = 26.80), except for
stamps from America for which we have infinite diversity with 5 stamps each depict-
ing a different painting. The least diverse are the paintings depicted on stamps from
the South Pacific (n = 4,S = 2,α = 1.59) and Asia (n = 6,S = 4,α = 5.24). Interest-
ingly the paintings depicted on stamps from Africa (n = 33,S = 18,α = 16.22) are
just slightly more diverse than Williams’s Rothamsted Lepidoptera (n = 219,S = 42,
α = 15.44).

18 The detail from The procuress in the sheetlet from Benin cuts off this self-portrait and the portrait
of another person.
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Fig. 5 Sheetlet from Benin including six postage stamps, issued in 2003
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Fig. 6 Soldier and the laughing girl [P8]

Fig. 7 Sheetlet from Guinea including a single postage stamp, issued in 2007
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Fig. 8 Sheetlet from Guinea including six postage stamps, issued in 2007

4 A Biodiversity Study Reported in the Kazwini Cosmography

In his book, Williams [51, p. 17 (1974)] reports on what may have been the very
first study of biodiversity. He observes that in Chrestomathie arabe 19 [45, 2nd ed.,
vol. 3, pp. 422–423 (1827)] by the French linguist and orientalist Antoine Isaac,
baron Silvestre de Sacy (1758–1838), there is an extract (in French) from the thir-
teenth century Arabic cosmography20 Book of the Marvels of Nature and the Singu-
larities of Created Things, by Zakariyyā’ ibn Muh. ammad ibn Mah. mūd Abū Yah. yā
al-K. azwı̄nı̄ (c. 1203–1283). We will refer to this book as the Kazwini Cosmography
and to its author as Kazwini21.

Our translation of the extract (in French) into English is:

The Papillon22. It is that little insect that flits around the torches incessantly and
singes itself on their flames. Khafif of Samarkand, a friend of Motadhed, tells how
finding himself one night in the company of this caliph and seeing a large number
of papillons fluttering around the torches, the desire overtook him to gather them
all together: in so doing they gathered a full measure called macouc; then in sorting
them out, they counted 72 different kinds.
19 Chrestomathie = Chrestomathy = Anthology = collection of selected passages or stories of an
author. [33].
20 A “cosmography” maps the general features of the universe; describes both heaven and Earth,
but without encroaching on geography or astronomy. [49].
21 Wüstenfeld [55] uses el-Cazwini, while for her comprehensive PhD dissertation on illustrations
in this cosmography, Badiee [1] uses Qazwı̄nı̄; the National Library of Medicine [35] uses al-
Qazwı̄nı̄. See also [18, 19, 20, 21, 22, 23, 24].
22 In French papillon means butterfly and papillon de nuit is moth. Since not all moths are nocturnal
and not all butterflies are diurnal and since we do not know what kind of insects were collected we
will use papillon. Badiee [1, p. 219], citing Wüstenfeld [55, p. 443], mentions “moths and insects”.
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How diverse were these papillons? Clearly S = 72 but we need to know n in
order to compute Fisher’s α .

We pose the following questions:

(Q1) Who was Kazwini?

(Q2) Who was Khafif of Samarkand?

(Q3) Who was Motadhed?

(Q4) Where were these papillons collected?

(Q5) How big is a macouc?

(Q6) How many papillons in a litre?

We will suggest answers to the first 5 of these 6 questions.
In The Encyclopedia of Islam [13], Lewicki [28] says that: Kazwini was the great-

est of Arabic cosmographers. “He was at the same time astronomer, geographer,
geologist, mineralogist, botanist, zoologist and ethnographer. Like all his predeces-
sors, Kazwini was a good compiler who neither produced a new fact nor created any
new theory. Being, however, very learned and very cultivated at the same time, he
succeeded in synthesizing all the facts known in his time about the sciences he stud-
ied. His principal merit lies in his having accomplished the raising of cosmography
to a literary genre of an extremely high level.”

From the National Library of Medicine website [35] we find that: the Kazwini
Cosmography is the most well-known example of a genre of classical Islamic liter-
ature that was concerned with mirabilia: things which inspire wonder; miraculous
events; wonderful, marvelous, astonishing, extraordinary things23.

A cosmography was concerned with topics that challenged understanding. These
could include aspects of God’s creation that inspire awe, such as human anatomy
or the variety of plants. The treatise covered all the wonders of the world, and the
variety of the subject matter (humans and their anatomy, plants, animals, strange
creatures at the edges of the inhabited world, constellations of stars, zodiacal signs,
angels, and demons) provided great scope for the author.

We suggest that Motadhed’s friend Khafif of Samarkand refers to a man, probably
a vizier, whose name is “Khafif” and who comes from Samarkand. In his book,
Williams [51, p. 17] says “Khalif” rather than “Khafif”, but we believe in “Khalif”
there is a typo. In his French text in the Chrestomathie arabe, Silvestre de Sacy
[45, p. 422 (1827)] uses “khalife” for “caliph”: in contemporary French, “caliph” is
“calife”24.

This Khafif is, however, probably not the mystic and Sufi25 from Iran: Moham-
mad Ibn Khafif also known as Sheikh-i Kabir. Born in Shiraz in 882, he was just 20
when Motadhed died (in 902).

23 The genre was known as ’ajā’ib or ’jā’ib al-makhlūqāt literature, that is “wonders” or “wonders
of creation”.
24 Many thanks to Christian Boyer for drawing our attention to this.
25 One of a sect of Muslim ascetic mystics who in later times embraced pantheistic views. (OED
[36]).
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Samarkand26 is a large city in Uzbekistan southwest of Tashkent. Dating from
the 3rd or 4th millennium BC and destroyed by Genghis Khan27 c. 1220, Samarkand
was rebuilt as a centre of great splendour and opulence when it became (c. 1370)
the capital of Tamerlane’s empire. Tamerlane (1336–1405), or Emir Timur or Amir
Temur or Timur the Lame, was a fourteenth century Turco–Mongol conqueror of
much of western and central Asia, and founder of the Timurid Empire and Timurid
dynasty (1370–1405) in central Asia, which survived until 1857 as the Mughal dy-
nasty of India [49].

We believe that Motadhed refers to Abu’l-’Abbās Ah. mad ibn T. alh. a Bi’llāh Al-
Mu’tad. id (c. 860–902) who was the Abbasid28 caliph29 of Baghdad from 892–902,
and who in 898 was appointed the “governor of Transoxania”30. Born in the Persian
town of K. azwı̄n31 [28], Kazwini later moved to Baghdad. After Baghdad was taken
by the Mongols in 1258, Kazwini retired from public life to devote himself entirely
to scientific activities.

We suggest that our papillons were collected in Baghdad on a certain night some-
time between 898 and 902 AD. Baghdad was once the center of Muslim civiliza-
tion, and the home of many eminent scholars, artists, and poets. The period of its
utmost glory is reflected in the Thousand and One Nights32, in which many of the
tales are set in Baghdad. The Thousand and One Nights tells the story of Queen
Scheherazade, who must relate a series of stories to her malevolent husband, King
Shahryar, to delay her execution.

In Silvestre de Sacy’s Chrestomathie arabe [45, pp. 514–515], we find the fol-
lowing: Le macouc est la huitième partie du kafiz : c’est une mesure de capacité,
usitée dans l’Iraq. The makkūk is one eighth of a qafı̄z: it is a measure of volume
utilized in Iraq. We believe that macouc and kafiz are the French transliterations
and makkūk and qafı̄z both the English and German transliterations from the Arabic
of certain measures of capacity. In this paper, we will (now) use the (English and
German) forms makkūk and qafı̄z.

26 Samarcande in French, Samarqand in Uzbek, earlier Marakanda or Maracanda (in Greek).
27 Genghis Khan (1162–1227) was a Mongol political and military leader who founded the Mongol
Empire (1206–1368), the largest contiguous empire in world history. [49].
28 Abbasid is the dynastic name generally given to the caliph of Baghdad, the second of the two
great Muslim caliphates of the Arab Empire [25, 34, 49].
29 In The New American Cyclopædia [39, p. 264] “caliph” is defined as the title of the successors
of the prophet Mohammed (c. 571–632), also known as Muhammad, who established the religion
of Islam and the Muslim community [49].
30 In the Encyclopædia Britannica, it is noted that “Transoxania corresponds roughly to present-
day Uzbekistan and parts of Turkmenistan and Kazakhstan”.
31 K. azwı̄n (also written as Casbin, Kasvin, Kazvin, or Qazvin), which is now in north-west Iran,
was the location of a former capital of the Persian Empire. Destroyed by Genghis Khan in the
thirteenth century, it is also where the famous coup d’état was launched that led to the rise of the
first Pahlavi dynasty in 1921.
32 The Thousand and One Nights was also known as The Book of The Thousand Nights and One
Night [7], The Book of a Thousand Nights and a Night, 1001 Arabian Nights, The Nightly Enter-
tainments, or The Nights.
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In Islamische Masse und Gewichte by Walther Hinz [15, p. 48] in German and in
its English translation by Marcinkowski [31, p. 71], we find that in the course of the
10th century, two qafı̄z had emerged in Iraq. The larger qafı̄z measure in Baghdad
and in Kūfah33 contained 8 makkūk34 ... which we calculate to be 60 litres on the
average. The smaller qafı̄z measure, which had been current in Bas.rah35 and Wās.it.36

amounted to 4 makkūk ... and was thus calculated, on the average, at 30 litres. And
so we conclude that in the 10th century in Iraq a makkūk was equivalent to

60
8

=
30
4

= 7 1
2 litres

not only in Baghdad, and Kūfah but also in Bas.rah and Wās.it..
However, “the Syrian makkūk was of a completely different size. During the

12th century in Aleppo37 ... one makkūk ... amounted to about 19 litres [15, p. 44],
[31, p. 65]. Since we believe our papillons were collected in Baghdad, we conclude
that the volume of our makkūk was 7 1

2 litres38.
The question remains: How many papillons in a litre?

5 Magic squares in Kazwini’s Cosmography

We found online open-access digitized copies of 4 Persian translations of Kazwini’s
Cosmography in the National Library of Medicine [35]. Folio 310a of copy #MS P 3
has two magic squares depicted, one is 3×3, see Fig. 9 and Fig. 10 below, and the
other 5×5; the complete folio 310a is shown in Fig. 6 above. A third magic square,
which is 4×4, is partially visible, possibly from the verso of folio #310a. A magic
square of order n is an arrangement of n2 numbers, usually distinct integers, in a
square, such that the n numbers in all rows, all columns, and both diagonals sum to
the same number—the magic constant or magic sum.

The 3× 3 magic square in the upper left part of folio #310a and a translation39

are shown in Fig. 10.

33 Kūfah is a medieval city in Iraq, about 145 km south of Baghdad, that was a centre of Arab
culture and learning from the 8th to the 10th century.
34 1 qafı̄z = 8 makkūk or equivalently, as stated in endnote (107), 1 makkūk = 1/8 qafı̄z.
35 Bas.rah, also spelled Basra, is the second largest city of Iraq and is located about 55 km from the
Persian Gulf and 545 km from Baghdad.
36 Wās.it. is one of the governorates of Iraq in the east of the country. Its name comes from the
Arabic word meaning “middle”, as it lies along the Tigris about midway between Baghdad and the
Persian Gulf.
37 Aleppo, or Halab in Arabic, is a city and province in northern Syria. It is the second largest city
in Syria after Damascus. It is one of the oldest cities in the region, known in antiquity as Khalpe,
to the Greeks as Beroea, and to the Turks as Halep Wikipedia.
38 Williams [51, p. 17] mentions that a makkūk might contain between 1

2 and 1 litre (we think this
may be a bit low to find 72 species of papillons).
39 Many thanks to Aisha Iftekhar for providing us with this translation and to Amir Memartoluie
and Neda Zare Neyney for their help with other translations from Kazwini’s Arabic and Persian
texts.
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Fig. 9 Folio #310a in the Persian translation #MS P 3 [35] of the Kazwini Cosmography
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 6  1 8

7 5 3

2 9 4

Fig. 10 The 3×3 magic square in the upper left part of folio #310a [35]

al-Sizji AD 969

al-Biruni AD 1082

current

Fig. 11 Three sets of Hindu–Arabic numerals

The glyphs40 used here, which we will call Hindu–Arabic numerals41, and in
the other two magic squares in folio #310a, seem to be the same as those used
in a treatise by the well-known Persian mathematician Abu Arrayhan Muhammad
ibn Ahmad al-Biruni (973–1048) copied in 1082. al-Biruni was also a “physicist,
encyclopedist, philosopher, astronomer, astrologer, traveller, historian, pharmacist,
and teacher” [49].

The Hindu–Arabic numerals in the top row of the 3× 3 magic square seem to
come from a work of Abu Said Ahmad ibn Muhammad ibn Abd al-Jalil al-Sijzi (c.
945–1020), an Islamic astronomer and mathematician, who wrote on the geome-
try of spheres. The numerals changed their form somewhat 100 years later. In the
middle row in Fig. 11 are the numerals as they appear in a 1082 copy of one of the
astronomical texts of Abu Arrayhan Muhammad ibn Ahmad al-Biruni (973–1048).

Between 969 and 1082 the biggest change in the numerals was that the 2 and
the 3 have been rotated through 90o. This came about since scribes wrote on a scroll
which they wound from right to left across their bodies as they sat cross-legged. The
scribes therefore, instead of writing from right to left (as Arabic is written), wrote
in lines from top to bottom. The script was rotated when the scroll was read and the
characters were then in the correct orientation [29].

40 A glyph is the shape given in a particular typeface to a specific grapheme or symbol [49].
41 Hindu–Arabic numerals, also known as Arabic numerals, Indian numerals, and Hindu numerals,
form the basis of the European number systems which are now widely used [49].
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Abū Yah. yā. In The Encyclopaedia of Islam [13, vol. 4, pp. 865–867]
and online restricted access: Brill OnLine (http://www.encislam.brill.nl/
subscriber/uid = 1417/entry?entry = islam_SIM-4093).

[29] The MacTutor History of Mathematics Archive (2008). Online open-access:
web archive created by John J. O’Connor and Edmund F. Robertson, School
of Mathematics and Statistics, University of St Andrews, Scotland, UK
(http://www-groups.dcs.st-and.ac.uk/ history/BiogIndex.html).

[30] Anne E. Magurran (2004). Measuring Biological Diversity. Blackwell Sci-
ence, Oxford.

[31] M. Ismail Marcinkowski (2003). Measures and Weights in the Islamic World:
An English Translation of Walther Hinz’s Handbook “Islamische Maße und
Gewichte” (Foreword by Professor C. E. Bosworth, F.B.A.) International In-
stitute of Islamic Thought and Civilization (ISTAC), International Islamic
University Malaysia (IIUM), Kuala Lumpur xxii + 98 pp., ISBN 983-9379-
27-5. [Translation into English of the 1970 reprint of Hinz [15, (1955)].]

[32] Julie Scott Meisami & Paul Starkey, eds. (1998). Encyclopedia of Arabic Lit-
erature. Routledge, London, 1998, 2 vols., xvii + 857 pp., ISBN 0-415-06808-
8 (set).

[33] Merriam-Webster’s Collegiate Dictionary, 11th edition (2003). Merriam-
Webster, Springfield, Massachusetts. Available as paper copy, on CD-ROM,
and restricted-access online (https://member.collegiate.com/subscribe.php).

[34] Sir William Muir (2001). The Caliphate: Its Rise, Decline, and Fall. Adamant
Media Corporation, 626 pp., ISBN 1-40219327-0.



392 O.M. Baksalary et al.

[35] National Library of Medicine (2006). Islamic medical manuscripts. On-
line open-access: Catalogue: Natural History (http://www.nlm.nih.gov/hmd/
arabic/natural_hist2.html) and Glossary of terms: National Library of
Medicine, Bethesda (http://www.nlm.nih.gov/hmd/arabic/glossary.html).

[36] Oxford English Dictionary: The Definitive Record of the English Language
(2002), edited by John Simpson & Edmund Weiner. 20 volume set in
5 boxes, 22000 pp. & online restricted-access: Oxford University Press
(http://www.oed.com/).

[37] C.G. Rice & S. Demarais (1996). A table of values for Fisher’s α log
series diversity index. Texas Journal of Science, 48, 147–158. [See also
online open-access table: USACERL, Champaign, Illinois (http://nhsbig.
inhs.uiuc.edu/general_stats/alpha.lst).]

[38] L. Richter-Bernburg (1998). al-Qazwı̄nı̄, Zakariyya’ ibn Muh. ammad
(C.600-82/C.1203-83). In Encyclopedia of Arabic Literature [32, vol. 2,
pp. 637–638].

[39] George Ripley & Charles A. Dana, eds. (1858). The New American
Cyclopædia: A Popular Dictionary of General Knowledge, Volume IV:
Brownson–Chartres, D. Appleton, New York, 16 vols., 1858–1863. [vol.
IV pub. 1858. Revised as [40]. Online open-access: Google Books (http://
books.google.com/books?).

[40] George Ripley & Charles A. Dana, eds. (1881–1883). The American Cyclopæ-
dia: A Popular Dictionary of General Knowledge, D. Appleton, New York, 17
vols. [vol. 17 = Index by T.J. Conant. Revised version of [39] and apparently
not digitized. Earlier version [39] has “New” in title!].

[41] Michael L. Rosenzweig (1995). Species Diversity in Space and Time. Cam-
bridge University Press. [Reprinted (with corrections) 1996–2002.]

[42] Stuart Rossiter & John Flower (1986). The Stamp Atlas: A Unique Assembly of
Geography, Social and Political History, and Postal Information. W.H. Smith,
London.

[43] Norbert Schneider (2000). Vermeer 1632–1675: Veiled Emotions. Benedikt
Taschen Verlag GmbH, Köln.

[44] Dorothy M. Schullian & Francis E. Sommer (1950). A Catalogue of Incunab-
ula and Manuscripts in the Army Medical Library. Schuman, New York, xiii
+ 361 pp.

[45] Baron Silvestre de Sacy (1827). Chrestomathie arabe, ou Extraits de divers
écrivains arabes, tant en prose qu’en vers, avec une traduction française et
des notes, A l’usage des Élèves de l’École royale et spéciale des Langues
orientales vivantes, Tome III, seconde édition, corrigée et augmentée [by
http://en.wikipedia.org/wiki/Silvestre_de_SacyAntoine Isaac, baron Silvestre
de Sacy (1758–1838)], imprimé par autorisation du roi, á l’Imprimerie royale
[Paris]. [See “Extraits du livre des Merveilles de la nature et des singularités
des choses créés par Mohammed Kazwini, Fils de Mohammed” by A.-L. de
Chézy [9] on pp. 387–516.]



Fisher’s α Index of Diversity and the Kazwini Cosmography 393

[46] George P.H. Styan (2006). Some notes on an early Islamic study of biodiver-
sity and on some early Islamic magic squares. Unpublished manuscript, 33
pp.

[47] G.P.H. Styan & S. Puntanen (2006). Fisher’s alpha index of biodiversity:
1943–2005. Talk presented (by G. P. H. Styan) at the XXIIIrd International
Biometric Conference (IBC-2006): Montréal (Québec), Canada: 17 July 2006
[abstract #453.pdf in IBC2006-CD].

[48] SirVincentWigglesworth[SirVincentBrianWigglesworth(1899–1994)(http://
en.wikipedia.org/wiki/Sir_Vincent_Brian_Wigglesworth)] (1982). Carrington
Bonsor Williams: 7 October 1889–12 July 1981. Biographical Memoirs of
Fellows of the Royal Society, 28, 666–684. (1982). Full-text pdf on JSTOR
(http://www.jstor.org/stable/pdfplus/769914.pdf).

[49] Wikimedia Foundation (2008). Wikipedia, The Free Encyclopedia Open-
access web archive (in English) (http://en.wikipedia.org).

[50] Wikimedia Foundation (2008). Wikipédia, l’encyclopédie libre. Open-access
web archive (in French) (http://fr.wikipedia.org).

[51] C.B. Williams (1964). Patterns in the Balance of Nature and Related
Problems in Quantitative Ecology. Academic Press, London. [Biography
of Carrington Bonsor Williams (1889–1981) full-text pdf on JSTOR [48]
(http://www.jstor.org/stable/pdfplus/769914.pdf)].

[52] Kenneth A. Wood (1983/1985). Where in the World? An Atlas for Stamp Col-
lectors. Van Dahl Publications, Albany, Oregon. [1st printing © 1983, 2nd
printing 1985].

[53] Ferdinand Wüstenfeld (1848). Zakarija Ben Muhammed Ben Mahmud el-
Cazwini’s Kosmographie, Erster Theil: Die Wunder der Schöpfung. Aus den
Handschriften der Bibliotheken zu Berlin, Gotha, Dresden und Hamburg. In
German, edited translation of Part 1 of ’Ajā’ib al-makhlūqāt wa-gharāib al-
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Mah. mūd Abū Yah. yā al-K. azwı̄nı̄ (c. 1203–1283), Dr. Martin Sändig oHG,



394 O.M. Baksalary et al.

Wiesbaden. [“Genehmigter Neudruck der Ausgabe von 1848–1849 des Ver-
lages der Dieterichschen Bunchhandlung (Titel-Nummer 1941).” Reprint edi-
tion of [53, 54] published in 1848/1849, two volumes in one].

[56] Richard A. Young & Thomas J. Glover (1996). Measure for Measure. Sequoia
Publishing, Littleton, Colorado. [7th printing: May 2006].

[57] YouTube: Broadcast Yourself (2008). Groupies pour La Laitière. Online video
(http://fr.youtube.com/watch?v=rcyW3bHgQbE). [The audio for this video
is the song Twist and Shout (http://en.wikipedia.org/wiki/Twist_and_Shout)
written by Phil Medley and Bert Russell. It was originally recorded
by the Topnotes and then covered by The Isley Brothers and later by
The Beatles (http://en.wikipedia.org/wiki/The_Beatles), with John Lennon
(1940–1980) (http://en.wikipedia.org/wiki/John_Lennon) on the lead vo-
cals, and originally released on their first album Please Please Me
(http://en.wikipedia.org/wiki/Please_Please_Me).]



Ultimatum Games and Fuzzy Information

Philip Sander and Peter Stahlecker

Abstract We consider the proposer’s decision process in an ultimatum game where
his uncertainty with respect to the responder’s preferences and the associated accep-
tance threshold is modeled by a fuzzy set. Employing a three-step defuzzification
strategy we determine the proposer’s best possible claim which depends on his be-
liefs and his attitude towards risk. Furthermore, we derive an explicit solution for a
specific class of fuzzy sets. From a more abstract point of view we analyze a game in
which one player has a non-continuous objective function and where the uncertain
point of discontinuity is determined by the other player’s strategy.

1 Introduction

Classical game-theoretical predictions regarding the ultimatum game are inconsis-
tent with the results of numerous economic experiments.1 These empirical observa-
tions show that proposers usually claim between 50 and 60 per cent of the amount to
share and virtually never exceed 80 per cent, while responders are far from accepting
every positive offer.2

Based on these results and similar experiments with respect to comparable games
a couple of authors have developed models which take into account the possibility

Peter Stahlecker
Universität Hamburg, Institut für Statistik und Ökonometrie, Von-Melle-Park 5, D-20146
Hamburg, Germany
peter.stahlecker@uni-hamburg.de

1 See, e.g., [15] who were the first to consider the ultimatum game as well as Thaler [28], Camerer
and Thaler [7], Güth [14], Roth [24], Camerer [6] and Oosterbeek et al. [22] who summarize many
empirical results.
2 These and more ‘stylized facts’ can be found in Sobel [26], p. 398 or Falk and Fischbacher [10],
p. 303. Fehr and Schmidt [11], p. 827 outline the results of ten studies and detect, based on a total
of 875 observations, that actually 71% of the offers amount to a share of 40–50% of the total sum.

395



396 P. Sander and P. Stahlecker

of players having social preferences.3 According to those theories the responders’
rejections of proposals offering a positive amount to them show that they prefer to
forgo a certain amount of money by refusing a claim perceived as being ‘unfair’
or ‘unkind’. Furthermore, many experiments indicate that proposers seem to be in
a position to anticipate the responders’ acceptance thresholds and correspondingly
align their claims.

This paper focuses on the question how a proposer incorporates his uncertainty
regarding the responder’s acceptance threshold to derive his optimal decision. For
this purpose we do not apply a stochastic model framework, but simply assume that
the proposer has some vague beliefs about the responder’s acceptance threshold.
This vagueness is represented by a fuzzy set and its corresponding membership func-
tion which reflects the proposer’s subjective beliefs with respect to the responder’s
acceptance threshold. We apply an economically sensible defuzzification strategy
to capture the proposer’s degree of pessimism (or optimism respectively) and we
derive an explicit (crisp) solution to his utility maximization problem for a specific
case.

In the following Sect. 2 we present the model which depicts the proposer’s de-
cision problem under uncertainty. The related defuzzification strategy is presented
and the existence of an optimal solution is proved in Sect. 3. In Sect. 4 we explicitly
characterize the proposer’s optimal behavior for an example. Concluding remarks
and possibilities to generalize the model are presented in Sect. 5.

2 The Model

An ultimatum game describes a situation in which two players bargain about the
split of a fixed amount s ∈ R,s > 0, of money that is paid to them only if they
come to a settlement. The bargaining procedure specifies that at first the proposer
(player 1) announces a certain claim p ∈Ω , with Ω = [0,s] being his strategy set.4

In the second step the responder (player 2) accepts or refuses this claim depending
on his personal acceptance threshold a∈Ω . If p≤ a holds the claim does not exceed
the acceptance threshold and, therefore, is accepted by player 2. If the claim is higher
than his acceptance threshold (p > a) the responder rejects it and both players obtain
a payoff of 0.

In the following we analyze the proposer’s decision process in this setting. To
keep the exposition simple we assume that the proposer is acting as a pure income
maximizer.5 Then, his utility function can be represented by u : Ω ×Ω →Ω with

3 See Bolton [4], Rabin [23], Levine [21], Fehr and Schmidt [11], Bolton and Ockenfels [5],
Charness and Rabin [8], Dufwenberg and Kirchsteiger [9] and Falk und Fischbacher [10]. So-
bel [26] provides a comprehensive survey about models which allow for social or interdependent
preferences.
4 In general, Ω = [0,s] with s denoting the sum of money to divide can be considered. For Ω = [0,1]
we may also interpret p ∈Ω as the share of the total amount which is demanded by the proposer..
5 This assumption is backed by, e.g., Roth et al. [25] who assert that positive offers in an ultimatum
game mostly occur due to the proposer’s fear of rejection.
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u(p,a) =
{

p, if p≤ a,
0, if p > a (1)

and, thus, merely depends on his claim p and the responder’s acceptance threshold a.
After the proposer has made a claim, his utility may only amount to u = 0 (due to
rejection for p > a) or u = p (due to acceptance for p≤ a).

Whether the responder accepts or rejects a certain claim is determined by his
acceptance threshold a which the proposer does not know. In a stochastic set-
ting the proposer would regard a as a random variable with a perfectly known
probability distribution. In contrast to that we suppose in this paper that the pro-
poser only has some vague ideas about a which can be represented by a fuzzy set
B = {(a,m(a)) |a ∈Ω }, where m : Ω→ [0,1] denotes the membership function.6

Here, for every a ∈ Ω the value m(a) is the degree of membership to which a be-
longs to B, where m(a) = 0 reflects nonmembership (e.g. an acceptance threshold
considered as impossible) and m(a) = 1 refers to most plausible acceptance thresh-
olds.7 Observe that degrees of membership must not be treated like probabilities. In
particular, the membership values do not have to add up to one.8

Since the set of acceptance thresholds is fuzzy the proposer cannot directly derive
his utility maximizing decision. In order to obtain a crisp optimal claim p the multi-
valuedness in a has to be eliminated by suitable modifications of the objective func-
tion. To achieve this aim we present an appropriate defuzzification strategy which
incorporates the proposer’s attitude towards deviations of the acceptance threshold
from its most plausible values. In doing so we obtain a crisp objective function.

3 A Defuzzification Strategy

As an essential part of the chosen defuzzification strategy9 we firstly introduce the
so-called α-cuts of the fuzzy set B which are defined by

Bα = {a ∈Ω |m(a)≥ α } , (2)

for all α ∈ (0,1]. According to this definition, the crisp set Bα comprises all accep-
tance thresholds a having a degree of membership m(a)≥ α . For α = 0 we define

B0 := cl{a ∈Ω |m(a) > 0} (3)

as the support of the fuzzy set B where cl{·} denotes the closure of {·}. To further
characterize the α-cuts we assume that the membership function m : Ω→ [0,1] is

6 For a comprehensive introduction to the theory of fuzzy sets the reader is referred to [3] and [29].
7 A crisp set B ⊂ [0,1] is included as a special case when m is a mapping into the set {0,1}. Then
m would reduce to the usual characteristic function.
8 Klir and Wierman [20] extensively discuss the relationship between fuzzy set theory and stochas-
tic theory.
9 To this point see [27, 1, 16, 17, 2]
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continuous, quasi-concave, and onto. Hence, every α-cut is a closed interval in Ω ,
i.e., there exist functions b, b : [0,1]→ Ω with b ≤ b so that Bα = [b(α),b(α)]
holds for all α ∈ [0,1].10 Since Bα1 ⊆ Bα2 for all α1,α2 ∈ [0,1] with α1 > α2,
it follows that b(·) (b(·)) is monotonically increasing (decreasing). For the sake of
simplicity we assume that (at least) b is strictly monotone.11

We now present our three-step defuzzification strategy used to derive the pro-
poser’s optimal claim. In the first step of this procedure we assume that for a given
claim p and a given α-cut Bα the proposer usually will only be interested in those
acceptance thresholds which lead to his lowest and highest utility. Then for every
α ∈ [0,1] we obtain12

min
a∈Bα

u(p,a) =
{

p, if p≤ b(α),
0, if p > b(α), (4)

max
a∈Bα

u(p,a) =
{

p, if p≤ b(α),
0, if p > b(α).

(5)

In the second step of the defuzzification strategy we assume that the proposer’s
objective function represents a weighted average of a pessimistic and optimistic
attitude regarding the responder’s acceptance threshold, i.e., to some extent the pro-
poser keeps in mind the worst case as well as the best case scenario when deriving
his optimal decision. According to the well-known Hurwicz principle and based on
(4) and (5) we define a weighted average of the worst case and the best case for
every α-cut as uq : Ω × [0,1]→Ω with

uq(p,α) = q · min
a∈Bα

u(p,a)+(1−q) · max
a∈Bα

u(p,a)

=

⎧⎪⎨
⎪⎩

p, if p≤ b(α),

(1−q)p, if b(α) < p≤ b(α),

0 if b(α) < p,

(6)

for all (p,α) ∈ Ω × [0,1], where q ∈ [0,1] denotes a given weighting parameter
which represents the proposer’s degree of pessimism (increasing in q).

The weighted mean uq(p,α) of the worst case and the best case in equation (6)
still depends on the α-cut. Hence, the third step of the defuzzification strategy aims
at eliminating this dependency by aggregating over all α-cuts. In order to achieve
this goal we assume a given continuous function w : [0,1]→ R+ and define the
proposer’s new objective function Zq : Ω →Ω by

10 m is quasi-concave, iff for all α ∈ [0,1] Bα is a convex set. Therefore every α-cut is an interval
in Ω and, due to the continuity of the membership function, these intervals are closed. Observe
that b(0) and b(0) are the boundary points of the closed set B0.
11 b is strictly monotone, if the reasonable assumption m(0) = 0 holds.
12 Suppose p ≤ b(α). Then we have for all a ∈Bα = [b(α),b(α)] : p ≤ a, u(p,a) = p, and thus
trivially mina∈Bα u(p,a) = p. Assume p > b(α). Then there exists a∈Bα with p > a, u(p,a) = 0
and therefore mina∈Bα u(p,a) = 0. The proof of (5) can be given analogically.
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Zq(p) =
1∫

0

w(α) ·uq(p,α)dα (7)

for all p ∈Ω .
To see that (7) is well-defined and to obtain an explicit formula of the objective

function which corresponds to (6) we consider the sets

A1(p) = {α ∈ [0,1] |p≤ b(α)} , (8)
A2(p) =

{
α ∈ [0,1]

∣∣b(α) < p≤ b(α)
}

, (9)

A3(p) =
{
α ∈ [0,1]

∣∣b(α) < p
}

(10)

as well as the associated indicator functions

11Ai(p)(α) =
{

1, if α ∈Ai(p),
0, if α /∈Ai(p), (11)

for any given p ∈Ω and i = 1,2,3. Then using (6) we can restate Zq as

Zq(p) =
1∫

0

w(α) ·uq(p,α)dα

=
1∫

0

w(α)
(

p11A1(p)(α)+(1−q)p11A2(p)(α)+0 ·11A3(p)(α)
)

dα

= p
1∫

0

11A1(p)(α)w(α)dα +(1−q)p
1∫

0

11A2(p)(α)w(α)dα. (12)

Now observe that we have (m(p),1] ⊆ A1(p) ⊆ [m(p),1] for any p ∈ Ω with p ≤
b(1), A1 (p) = {} for any p ∈Ω with p > b(1), and [0,m(p))⊆A2(p)⊆ [0,m(p)]
for any p ∈Ω .13 Therefore, we obtain in case of p≤ b(1)

Zq(p) = p
1∫

m(p)

w(α)dα +(1−q)p

m(p)∫
0

w(α)dα (13)

and in case of p > b(1)

Zq(p) = (1−q)p

m(p)∫
0

w(α)dα. (14)

13 Here we use the assumption that b is strictly monotone.
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By combining (13) and (14) and defining

W (x) :=
x∫

0

w(α)dα (15)

we finally arrive at the proposer’s new objective function Zq(p) with

Zq(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p
1∫
0

w(α)dα−qp
m(p)∫

0
w(α)dα, if p≤ b(1),

(1−q)p
m(p)∫

0
w(α)dα, if p > b(1),

=
{

pW (1)−qpW (m(p)), if p≤ b(1),
(1−q)pW (m(p)), if p > b(1) (16)

for any p ∈Ω . Then we can state the following result:

Proposition 1. There exists at least one maximal point p∗ ∈Ω of Zq.

Proof. By assumption m : Ω→ [0,1] is continuous. Therefore, the function W ◦m :
Ω→ R with W ◦m(p) := W (m(p)) =

∫ m(p)
0 w(α)dα is also continuous. Hence, Zq

is continuous for all p∈Ω \{b(1)}. Since we have Zq(b(1)) = (1−q)b(1)W (1) =
limp↓b(1) Zq(p), Zq(p) is continuous for all p ∈ Ω . Because Ω is a nonempty and
compact set the existence of a maximal point p∗ ∈ Ω of Zq follows from a well-
known theorem of Weierstrass. 
�

Remark 1. Suppose we start from the unbounded strategy set Ω ⊆ R. Then it is
important that the support B0 of the fuzzy set B is closed and bounded, i.e. B0 =
[b(0) ,b(0)],b(0) ,b(0) ∈ R+ with b(0) < b(0). In that case we obtain from (16)

Zq (p)≤ b(0)W (1) = Zq (b(0))

for any p /∈B0 and therefore

max
p∈Ω

Zq (p) = max
p∈B0

Zq (p) .

Because we then may restrict our considerations to the nonempty and compact set
B0, proposition 1 obviously remains valid and allows for the modeling of situations
in which the size of the amount to share is not known with certainty.

In the following we will not discuss the general case in full detail but prefer to
derive the proposer’s optimal decision for an intuitive example.
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4 A Particular Model

We assume that the membership function m : Ω→ [0,1] is defined by

m(a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if a≤ a0,(
a−a0
a1−a0

)ρ
, if a0 < a≤ a1,

1, if a1 < a≤ a2,(
a3−a
a3−a2

)δ
, if a2 < a≤ a3,

0, if a3 < a,

(17)

where ai ∈Ω , i = 0, . . . ,3 with 0≤ a0 < a1≤ a2 < a3 and δ ,ρ ∈R with δ > 0,ρ > 0
are given parameters. The membership function (17) is continuous, quasi-concave
and onto. An example is depicted in Fig. 1 for Ω = [0,s] and parameter values of
a0 = 0, a1 = 0.7s, a2 = 0.8s, a3 = s, ρ = 3 and δ = 0.5.

Observe that we have
Bα =

[
b(α) ,b(α)

]
with

b(α) = a0 +(a1−a0)α1/ρ and b(α) = a3− (a3−a2)α1/δ

for any α ∈ [0,1]. Subsequently, the function w : [0,1]→R+ is supposed to be given
by

w(α) = (1+ γ)αγ (18)

with γ >−1 so that by (15)
W (x) = x1+γ (19)

for all x ∈ [0,1] and W (m(p)) = m(p)1+γ for all p ∈Ω .
By remark 1, we may restrict the search for the maximum of Zq to the support

B0 = [a0,a3] of the fuzzy set B.

a1 a2

m(a)

a0 a3 a

1

Fig. 1 A specific membership function
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Since we have m(p) = 1 for any p ∈ [a1,a2] and therefore

Zq(p) = (1−q)p≤ (1−q)a2 = Zq(a2),

we only have to analyze the left branch of m over B0, i.e., a0 ≤ p≤ a1, and the right
branch of m over B0, i.e., a2 ≤ p ≤ a3. Then by (17) the relevant part of W (m(p))
reduces to

W (m(p)) =

⎧⎪⎨
⎪⎩

(
p−a0

a1−a0

)ρ(1+γ)
, if a0 ≤ p≤ a1,(

a3−p
a3−a2

)δ (1+γ)
, if a2 ≤ p≤ a3.

(20)

To simplify the notation a bit we define for all λ ∈ [0,1]

pl(λ ) = λa1 +(1−λ )a0 = a0 +λΔl (21)

with
Δl = a1−a0 > 0 (22)

and
pr(λ ) = λa2 +(1−λ )a3 = a3−λΔr (23)

with
Δr = a3−a2 > 0, (24)

implying pl([0,1]) = [a0,a1] and pr([0,1]) = [a2,a3]. Furthermore, we set

ηl = ρ(1+ γ), (25)
ηr = δ (1+ γ), (26)

where ηl ,ηr > 0 holds due to ρ,δ > 0 and γ >−1. From (20) in combination with
(21), (23), (25), and (26) we obtain

W (m(p)) =
{
ληl , if p = pl(λ ),
ληr , if p = pr(λ ), (27)

and

Zq(p) =
{

(a0 +λΔl)(1−qληl ), if p = pl(λ ),
(1−q)(a3−λΔr)ληr , if p = pr(λ ). (28)

We now consider the problem of maximizing the proposer’s objective Zq (p) for the
case p = pl (λ ) and the case p = pr (λ ), respectively, with λ satisfying the constraint
0≤ λ ≤ 1. Comparing maxλ∈[0,1] Zq (pl (λ )) with maxλ∈[0,1] Zq (pr (λ )), we get the
complete solution of the proposer’s optimization problem.

We know from proposition 1 and remark 1 that a solution always exists. Unfor-
tunately, however, it is possible, that there is no explicit solution for the case a0 > 0.
To obtain an explicit solution we therefore suppose that a0 = 0. Then by (21) and
(22) it follows pl(λ ) = λa1, Δl = a1, and Δl/(Δl + a1ηl) = 1/(1 +ηl). For this
constellation we derive the proposer’s optimal claim p∗.
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Proposition 2. Suppose that a0 = 0 and q ∈ [0,1].
(i) There exists exactly one p∗l maximizing Zq on [0,a1]. It is given by

p∗l =

{
a1, if q < 1

1+ηl
,

λ ∗l a1, if q≥ 1
1+ηl

,

with

λ ∗l =
(

1
q(1+ηl)

) 1
ηl

. (29)

(ii) Let q = 1. Then any p ∈ [a2,a3] yields Zq(p) = 0 which is the maximum of
Zq(p) on [a2,a3].

Let q < 1. Then there exists exactly one p∗r maximizing Zq on [a2,a3]. It is
given by

p∗r =
{

a2, if a3 < a2(1+ηr),
a3−λ ∗r Δr = a3

1+ηr
, if a3 ≥ a2(1+ηr),

with
λ ∗r =

a3ηr

Δr(1+ηr)
. (30)

Proof. The proof of proposition 2 is given in the appendix.

Observe that p∗l depends on the pessimism parameter q, while p∗r does not. Using
the results of proposition 2 in connection with (28) we obtain

Zq(p∗l ) =

⎧⎨
⎩

(1−q)a1, if q < 1
1+ηl

,

a1ηl
1+ηl

(
1

q(1+ηl)

) 1
ηl , if q≥ 1

1+ηl

(31)

and

Zq(p∗r ) =

{
(1−q)a2, if a3 < a2(1+ηr),

(1−q)
(

a3
1+ηr

)(
a3ηr

Δr(1+ηr)

)ηr
, if a3 ≥ a2(1+ηr),

(32)

where we have set p∗l = pl(λ ∗l ) and p∗r = pr(λ ∗r ).
Because the global maximum of the objective function is given by

max
p∈Ω

Zq(p) = max[Zq(p∗l ),Zq(p∗r )].

we have to distinguish between four different cases. (Here we use Proposition 2 in
connection with (31) and (32).)14

Case 1: q≥ 1
1+ηl

and a3 ≥ a2(1+ηr):

14 In case 3 we have Zq
(

p∗l
)
≤ Zq (p∗r ) with equality if a3 = a2 (1+ηr) and a1 = a2.
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p∗ =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1

(
1

q(1+ηl)

) 1
ηl , if a1ηl

1+ηl

(
1

q(1+ηl)

) 1
ηl > (1−q)

(
a3

1+ηr

)(
a3ηr

Δr(1+ηr)

)ηr
,

a1

(
1

q(1+ηl)

) 1
ηl or a3

1+ηr
, if a1ηl

1+ηl

(
1

q(1+ηl)

) 1
ηl = (1−q)

(
a3

1+ηr

)(
a3ηr

Δr(1+ηr)

)ηr
,

a3
1+ηr

, else.
(33)

Case 2: q≥ 1
1+ηl

and a3 < a2(1+ηr):

p∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1

(
1

q(1+ηl)

) 1
ηl , if a1ηl

1+ηl

(
1

q(1+ηl)

) 1
ηl > (1−q)a2,

a1

(
1

q(1+ηl)

) 1
ηl or a2, if a1ηl

1+ηl

(
1

q(1+ηl)

) 1
ηl = (1−q)a2,

a2, else.

(34)

Case 3: q < 1
1+ηl

and a3 ≥ a2(1+ηr):

p∗ =
a3

1+ηr
. (35)

Case 4: q < 1
1+ηl

and a3 < a2(1+ηr):

p∗ = a2. (36)

To further explain our results we turn to a numerical example, which is based on
the parameter values underlying Fig. 1 (with s = 1).

Numerical example: Let the membership function be defined by a0 = 0, a1 =
0.7, a2 = 0.8, a3 = 1, ρ = 3 and δ = 0.5. Furthermore, let γ = 1 so that w(α) = 2α
and W (x) = x2 is chosen. This results in Δl = 0.7 and Δr = 0.2. From (25) and (26)
we obtain ηl = 6 and ηr = 1.

Firstly, due to
a3 = 1 < 1.6 = a2(1+ηr)

we find that only cases 2 and 4 have to be considered. Furthermore, based on cases
2 and 4 (and (34) and(36)) we obtain that for all values of the pessimism parameter
q ∈ [0,1] with q≥ 1

7 and
39.331q(1−q)6 < 1

the proposer’s optimal claim is given by

p∗(q) = 0.7
(

1
7q

) 1
6
.
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a2

q10 0.356

0.5

p*(q)

Fig. 2 Optimal claim p∗ (q)

All lower pessimism parameters lead to the optimal claim

p∗ = a2 = 0.8.

For our example the critical value of the pessimism parameter q where the regime
switches is given by

qc ∼= 0.356.

The relationship between the optimal claim p∗ and the pessimism parameter q is
illustrated in Fig. 2. Optimistic proposers with q ≤ 0.35 claim p∗ = a2 = 0.8. For
higher degrees of pessimism the regime switches leading to optimal claims between
p∗(0.36) = 0.60 and p∗(1) = 0.51.15 Hence, the optimal claim of a purely pes-
simistic proposer (q = 1) is quite close to half of the pie. If we furthermore assume
that the degree of pessimism is equally distributed in the population then according
to our example we obtain that about 1/3 of the people would claim 80% and about
2/3 of the people would claim between 50 and 60% of the pie. This outcome is
rather close to the results of the studies summarized by Fehr and Schmidt [11] (see
footnote 2).

5 Concluding Remarks

We have analyzed the proposer’s decision process in an ultimatum game, when he
does not know the responder’s acceptance threshold and, thus, is uncertain with re-
spect to his optimal claim. The responder’s possible rejection of positive offers may,
e.g., be caused by his aversion to unequal payoffs or by the fact that he perceives
certain offers as unkind.

15 Observe that p∗ (qc) consists of two optimal p∗-values, i.e. p∗ (q) is not a function for q = qc.
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The proposer’s uncertainty with respect to the responder’s acceptance threshold
is modeled by means of a fuzzy set. We derive the proposer’s optimal claim by
choosing an economically reasonable defuzzification strategy.

Proceeding in this way we show by means of a numerical example with plausible
parameter constellation that the most frequent behavior patterns observed in eco-
nomic experiments on ultimatum games can be explained by our decision model.

Furthermore, the presented model is accessible to empirical testing. In order to
conduct such a test one would have to elicit the parameters of the proposer’s mem-
bership function and his degree of pessimism before or after he discloses his actual
claim.16 In a subsequent step it could be tested whether the claim the model predicts
for the elicited parameter values adequately approximates the actual decision of the
respective proposer.

It may be seen as a disadvantage of our model that the proposer while aiming
at pure income maximization expects the responder to behave in a different way.
However, the results of numerous experiments on ultimatum games show that the
proposer, in contrast to the responder, is not interested in his counterpart’s behavior
and payoff. Hence, the proposer’s potentially positive offers may only be attributed
to his fear of rejection, i.e., we exclude generosity on part of the proposer. This can
be regarded as a restriction if one takes into account that the stylized facts (see the
introduction) are virtually exclusively based on experiments at western universities
and only partially prevail if behavior in other cultural environments is considered.17

Moreover, generosity of the first (moving) player is often observed in experiments
regarding the dictator game where the second player has to accept any distribution
chosen by the first player.18 The usual explanation of this phenomenon is that the
first player possesses an aversion to (excessive) advantageous inequality and, hence,
maximizes his utility by leaving a share of the amount to the second player. These
aspects, which would permit to differentiate which part of the proposer’s claim is
due to fear of rejection and which part is based on generosity, should be taken into
consideration for a generalization of our model.19

16 Fischbacher and Gächter [12] propose an approach to identify the players’ preferences and
beliefs in the context of experiments concerning the provision of a public good.
17 Henrich et al. [18] conduct economic experiments in fifteen small-scale societies in developing
countries. They on one hand observe for some societies that offers frequently exceed half of the
amount and that, on the other hand, many of these ‘hyperfair’ offers are rejected. Such kind of
behavior or preferences is neither captured by the five stylized facts nor by the underlying assump-
tions of this paper.
18 See, e.g., [28, 13, 19].
19 With respect to the dictator game the cited studies find that both aspects affect the first player’s
behavior. The average payoff of the second player in the dictator game is positive, but lower than
in the ultimatum game. To put it in the words of Sobel [26], p. 399: ‘Intuition suggests that at least
some of the behavior in the ultimatum game comes from generosity and not fear of rejection.’
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Appendix

Proof of proposition 2. (i) Suppose that p = pl(λ ). Then by (21), (22), (28) and
a0 = 0 we obtain pl (λ ) = a1λ ,

Zq(pl (λ )) = a1λ (1−qληl ) = a1λ −qa1ληl+1, (37)

and
Z′q (pl (λ )) = a1−qa1 (ηl +1)ληl .

First assume that q = 0. Then we have p∗l = a1.
Now suppose that q > 0. Then the function given by (37) is strictly concave on

[0,1].
Assume that

q <
1

1+ηl
.

Then we have for all λ ∈ [0,1]

Z′q(pl(λ ))≥ a1−a1q(1+ηl) > a1−a1 = 0,

i.e., Zq(pl(·)) is monotonically increasing on [0,1]. Thus, pl(1) = a1 is the maximal
point.

Now let
q≥ 1

1+ηl

be valid. Because Zq (pl (·)) is strictly concave on [0,1] and we have q(1+ηl)≥ 1
it follows from Z′q (pl (λ )) = 0, that the unique maximal point p∗l = p

(
λ ∗l

)
of Zq on

[0,a1] is given by the unique solution λ ∗l ∈ [0,1] of the equation

ληl − 1
q(1+ηl)

= 0.

(ii) Let now p = pr (λ ) = a3−λΔr so that by (28)

Zq (pr (λ )) = (1−q)(a3−λΔr)ληr ≥ 0 = Zq (pr (0))

for any λ ∈ [0,1].
For q = 1 we have Zq (pr (λ )) = 0 for any λ ∈ [0,1], i.e., for any p ∈ [a2,a3].
Suppose that q < 1. Moreover, let

θ :=
a3ηr

Δr(1+ηr)
> 0.

Then we get for any λ > 0

Z′q(pr(λ )) = (1−q)ληr−1[a3ηr−Δr(1+ηr)λ ],
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where

Z′q(pr(λ ))

⎧⎨
⎩

> 0, if 0 < λ < θ ,
= 0, if λ = θ ,
< 0, if λ > θ ,

(38)

i.e., Zq(pr(·)) is strictly increasing on (0,θ) (decreasing on (θ ,∞)).
Now observe that the condition a3 < a2(1 +ηr) (a3 ≥ a2(1 +ηr)) is equivalent

to θ > 1 (θ ≤ 1).
Suppose that θ > 1. Then by (38) Zq(pr(·)) is strictly increasing on (0,1]. There-

fore λ ∗r = 1 and p∗r (1) = a3 − 1 · Δr = a2 is the unique maximal point of Zq on
[a2,a3].

Assume that θ ≤ 1. Then by (38) λ ∗r = θ ∈ [0,1] and p∗r (λ ∗r ) = a3−λ ∗r Δr = a3
1+ηr

is the unique maximal point of Zq on [a2,a3]. 
�
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Are Bernstein’s Examples on Independent
Events Paradoxical?

Czesław Stępniak and Tomasz Owsiany

Abstract Bernstein gave two examples showing that a collection of pairwise in-
dependent random events need not to be jointly independent. These examples were
numbered by Stoyanov among the most fascinating counterexamples in probability.
Considering the minimal sample size for existing n independent and pairwise in-
dependent but jointly dependent random events we reveal the fact that the second
situation is more often. In consequence it is rather a rule than a paradox.

1 Introduction

In 1946 ([1], p. 47) Bernstein gave two examples showing that a collection of pair-
wise independent events need not to be jointly independent. In both examples, the
sample space has four outcomes, all equally likely. These examples were numbered
by Stoyanov ([4], Sect. 3.1) among the most fascinating counterexamples in prob-
ability. Some more refined versions of this phenomenon were studied by Wang,
Stoyanov and Shao ([5]).

General case of three pairwise independent events has been considered by
Derriennic and Kłopotowski [2] and Stępniak [3]. It was noted in [2] and proved
in [3], that the Bernstein’s examples are optimal in the sense that there is no smaller
examples of this type, or others of this size. This arises two questions concerning
the minimal sample size for existing k independent events and for existing k events,
each k−1 of them is independent.

It is shown here that the first answer is 2k, while the second one is 2k−1. It
means that the joint independence is more exceptional than (k− 1)-independence
of k events. In this context the Bernstein type examples are not paradoxical.

Czesław Stępniak
Institute of Mathematics, University of Rzeszów, Al. Rejtana 16 A, 35-959 Rzeszów, Poland
cees@univ.rzeszow.pl
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By the way a necessary and sufficient condition for independence of a finite
number of events is derived. This condition is the main tool in our consideration.

2 Independence of Events

Let us recall that k probability events A1,A2, ...,Ak in a probability space (Ω ,F , P)
are jointly independent, if

P(Ai1 ∩Ai2 ∩ ...∩Air) = P(Ai1)P(Ai2)...P(Air) (1)

for every subset {i1, i2, ..., ir} of {1,2, ...,k}. Obviously the joint independence im-
plies independence of any subset of the set A1,A2, ...,Ak. Without loss of generality
we may (and do) assume that none of our events is degenerate (i.e. its probability is
zero or one), since its presence does not affect the overall or a subset independence.
For any A ∈F we introduce the symbols A0 = A and A1 = Ω � A.

Lemma 1. If A1, ...,Ak are independent events then A j1
1 , ...,A jk

k are also independent
for any jiε{0,1}.

Proof. First note that the collection A j1
1 , ...,A jk

k may be obtained from A1, ...,Ak in a
finite number of steps, each replacing a single set Ai0 by its complement A1

i0 . Thus
we only need to show that any such replacement preserves independence.

If i0 /∈ {i1, ..., ir} then (1) remains unchanged. Otherwise, it takes the form

P(A1
i0 ∩ [

⋂
i �=i0

A ji ]) = P(A1
i0)∏

i �=i0

P(A ji)

To verify this condition, we note that the events A = Ai0 and B =
⋂

i �=i0
A ji are inde-

pendent. This takes the independence of A1 and B, and, in consequence, implies the
assertion of the Lemma.

It is clear that the condition P(
⋂k

i=1 Ai) = ∏k
i=1 P(Ai), similarly as pairwise in-

dependence, does not imply the independence of A1, ...,Ak. The following theorem
will be a key tool in the further consideration.

Theorem 1. Random events A1, ...,Ak are independent, if and only if,

P(
k⋂

i=1

A ji) =
k

∏
i=1

P(A ji
i ) (2)

for any j1, ..., jk ∈ {0,1}.

Proof. Implication (1) =⇒ (2) follows directly from Lemma 1. Now for
fixed but arbitrary Ai1 , ...,Air denote the remaining events by B1, ...,Bk−r and
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consider the intersections of type B j1,..., jk−r =
⋂k−r

i=1 B ji
i . We observe that the

sets B j1,..., jk−r and B j′1,..., j′k−r
are disjoint for ( j1, ..., jk−r) �= ( j′1, ..., j′k−r) and⋃

{( j1,.... jk−r): ji=0,1}
B j1,..., jk−r = Ω . Thus, by (2),

P(Ai1 ∩ ...∩Air) = P(Ai1 ∩ ...∩Air ∩ [
⋃

{( j1,.... jk−r): ji=0,1}
B j1,..., jk−r ])

= ∑
{( j1,.... jk−r): ji=0,1}

P(Ai1) · · ·P(Air)
k−r

∏
i=1

P(B ji
i )

= P(Ai1) · · ·P(Air) ∑
{( j1,.... jk−r): ji=0,1}

P(
k−r⋂
i=1

B ji
i )

= P(Ai1) · · ·P(Air)P(
⋃

{( j1,.... jk−r): ji=0,1}

k−r⋂
i=1

B ji
i )

= P(Ai1) · · ·P(Air)

completing the implication (2) =⇒ (1) and, in consequence, the proof of the theo-
rem.

Now we are ready to prove the main result in this note.

3 Joint Independence and Subset Independence

Theorem 2. Let A1...,Ak be nondegenerate independent events in a probability
space (Ω ,F ,P) with finite Ω = {ω1, ...,ωn}. Then n≥ 2k.

Proof. Consider the family A = {A j1 j2... jk = A j1
1 ∩ ...∩A jk

k : jiε{0,1}} of 2k random
events generated by A1, ...,Ak. It is clear that all these events are disjoint. On the
other hand, by Theorem 1, each of them is not empty. This implies the desired
result.

One can ask whether the condition n ≥ 2k is also sufficient for existing k inde-
pendent events. The answer is included in the following lemma.

Lemma 2. For any probability model (Ω ,F ,P) with equally likely sample space
Ω of size n = 2k there exist k nondegenerate independent events.

Proof. It will be convenient to write the sample space in the form Ω =
{ω 0, ...,ωn−1} and to identify each ωi with the binary representation (i1, ..., ik)
of the integer i. Defining A j = {(i1, ..., ik) : i j = 1} we satisfy the desired condition.

Now we shall prove the following lemma.
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Lemma 3. For any probability model (Ω ,F ,P) with equally likely sample space
Ω of size n = 2k there exist k +1 nondegenerate events such that each k of them are
independent.

Proof. As in the proof of Lemma 2, we define A j = {(i1, ..., ik) : i j = 1} for j =

1, ...,k and, moreover, Ak+1 = {(i1, ..., ik) :
k
∑
j+1

i j is even}. By Theorem 1, we only

need to verify that for any i = 1, ...,k, P(Ak+1∩ [
⋂
r �=i

A jr
r ]) = 1

2k . Really,

P(Ak+1∩ [
⋂
r �=i

A jr
r ]) = P(

⋂
r �=i

A jr
r )P(Ak+1/A jr

r ) =
1
2k ,

implying the desired result.

Let us end this note by the following conclusion.

Conclusion 3 Condition for existing k independent events is more restrictive than
one for existing k dependent events, each k−1 of them are independent. In thus, an
example with k independent events is more exceptional than an example of Bernstein
type.
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A Classroom Example to Demonstrate Statistical
Concepts

Dietrich Trenkler

Abstract A hands-on example to alleviate the transition process from probability
models to statistical inference is proposed which can be used in a statistics lecture.
It is very easy to grasp and has the benefit that many skills learned so far can be
applied. Concepts like parameter estimation, confidence intervals and testing are
addressed in this context. It can serve as reference when more abstract concepts
such as unbiasedness, mean square error, pivot quantities, confidence level or p-
values are treated later on in the course.

1 Introduction

Being involved in teaching statistics in an economics department, I have often
experienced that students have difficulties in the transition process from probabil-
ity models to statistical inference. Dealing with topics such as the binomial or nor-
mal distribution is mastered by and large, but things turn for the worse when it comes
to implementing them by, for example, estimat-
ing relevant parameters. So I always look for
hands-on examples to pave the way for a better
understanding. Furthermore, I was motivated by
some advice from Professor Herbert Büning, a
teacher of mine and one of Götz’ friends: A lec-
ture has failed if the students did not laugh once.
Gimmicks like Bortkiewicz’ famous horse-kick
data or anthropometric data from a football
championship or the Tour de France are very
welcome in this respect.

Dietrich Trenkler
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Another example is the well-known birthday problem, see e.g. [2, page 46] or [3,
page 67]. It forms the background of the following bet in the classroom: I claim that
there are at least two persons in the first row in this room having a common birthday.
Of course, I insure myself in advance by choosing at least 50 persons or so. Much
to the students’ surprise, I usually win in this way. And I show my gratitude to those
two persons who turn out to have a common birthday by handing them bags of
gorp equipped with a sticker which is aptly translated as Gauss’ feast – Osnabrück
student fodder”.

The birthday problem is somewhat similar to another well-known technique,
namely the capture-recapture method. Like the former, it is also very easy to grasp.
Furthermore, it turns out to be well-suited for illustrating topics related to point or
interval estimation and testing. These are dealt with in the next sections.

2 The Statistical Model

Suppose there are N persons in a (class) room and that N is too large to count
them all. The objective is to make inferences about N. Something like the capture-
recapture method comes to mind, but how are we to perform the capture stage?
The idea is to choose one or several criteria whose distribution is known or for
which some reasonable assumptions can be made. For instance, it seems appropri-
ate to assume that the probability of a person having a birthday this or last week
is 2/52=1/26. Another criterion is left-handedness. A small perusal on the internet
gives hints that the probability of a person being left-handed is about 0.1.

Let X be the number of persons in the room having an attribute whose fraction
p is approximately known. Then it is obvious that X follows a binomial distribution
and hence

E[X ] = N p and Var[X ] = N p(1− p) . (1)

In this way it turns out that the quantity of interest is part of a model the students are
already familiar with. The main difference is that now N is unknown, thus turning a
probability model into a statistical one.

3 Point Estimation

We first tackle the problem of finding surrogate values for N in the statistical model,
namely estimates. We would like to use an estimator N̂, i.e. a random variable which
is related to N in some way. To this end, we exploit an idea known from the capture-
recapture technique: Setting N̂ := X/p, it follows from (1)

E[N̂] = N and Var[N̂] = N
1− p

p
. (2)
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Fig. 1 Var[N̂] for N = 50, 100 and 200

Equation (2) may be used to illustrate the theoretical concepts of unbiasedness
and mean squared error. In fact, E[N̂] = N means that N̂ does not go astray. On
the other hand, there are differences in accuracy depending on how p is chosen,
as measured by the mean square error which coincides with Var[N̂] in this case,
see Fig. 1.

Very small values of p may lead to unsatisfactory estimates. For instance, choos-
ing p = 1/365 (probability of a person having a birthday on this very day) renders
P(N̂ = 0) = 0.9973N , which is 0.87, 0.76 and 0.58 for N = 50, 100 and 200. Fur-
thermore, the next largest value that N̂ can attain is 1/p = 365, which means that
values of N ≈ 180 can dramatically be under- or overestimated. On the other hand,
very large values of p may cause a large number of persons to be counted (take for
instance the number of people less than 50 years old: Then presumably X = N−1!).
So there is a trade-off between accuracy and effort, which is a typical feature of point
estimators.

In the following we consider the criteria B: Number XB of people having a birth-
day this or last week and L: Number XL of persons being left-handed. Setting

N̂B :=
XB

2/52
= 26XB and N̂L :=

XL

1/10
= 10XL ,

we have

Var[NB] = 25N and Var[NL] = 9N . (3)

Although both estimators are unbiased N̂L is the preferred one because it has a
smaller variance. Figure 2 illustrates this by means of theoretical quantile-boxplots
of N̂B and N̂L for various values of N, see D. Trenkler [4]. In a nutshell, a theoretical
quantile-boxplot displays the lower and upper quartiles and the median by a box
and the extreme quantiles (1%, 5%, 95%, 99%) by points. The 10%- and the 90%-



418 D. Trenkler

0
10

0
20

0
30

0
40

0

(B,50) (L,50) (B,100) (L,100) (B,200) (L,200)

N^ B 
, N

^ L

Fig. 2 Theoretical quantile-boxplots of N̂B and N̂L for N = 50, 100 and 200

quantiles comprise the whiskers of the plot. In this way, one can get a rough
impression of a distribution’s characteristics such as location, variability and
skewness. For the example at hand, the boxes are shifted upwards as N is in-
creasing due to the unbiasedness of the estimators and the boxplots of N̂L are more
compressed than those of N̂B, due to the smaller variances.

Having established the theoretical properties of both estimators, I finally asked
those students fulfilling one of these criteria to raise their hands. There were 3 B-
students (needless to say that all of them were given a bag of gorp . . . ) and 6 L-
students leading, to N̂B = 26×3 = 78 and N̂L = 10×6 = 60. A discussion followed
by asking: What do these results mean? Do you think they are contradictory?

The next step was to ask if we can do better than N̂B or N̂L by using some kind
of combination. For instance, it is straightforward to see that the arithmetic mean
N̂M := (N̂B + N̂L)/2 is also an unbiased estimator, and assuming independence, it
follows that

Var[NM] = 8.5N ,

which is only a minor improvement compared to (3).
To persue this approach more systematically, let us consider an estimator of the

form

N̂0 := αN̂B +β N̂L

and try to find α and β such that E[N̂0] = N and Var[N̂0] attains a minimum. The
first property reveals that N̂0 is of the form

N̂0 := αN̂B +(1−α)N̂L .

Minimizing
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Var[N̂0] = N
(
α2 1− pB

pB
+(1−α)2 1− pL

pL

)
with respect to α leads to

N̂0 =
pB(1− pL)XB + pL(1− pB)XL

pB(1− pL)+ pL(1− pB)

with

Var[N̂0] =
(1− pB)(1− pL)N

pB(1− pL)+ pL(1− pB)
.

Setting pB = 1/26 and pL = 1/10, one gets

N̂0 = 0.26N̂B +0.74N̂L = 0.26×78+0.74×60 = 64.68

with Var[N̂0] = 6.62. Compared to N̂M, this is an intuitive result saying that we
should pay more attention to that estimator with the smaller variance.

A fifth estimator is considered. We can assume that criterion B and criterion L
are independent. Thus, the probability for a person having property B or L is

pB∪L := pB + pL− pB× pL = 1/26+1/10−1/260 = 0.1346

leading to the estimator N̂B∪L := 7.43XB∪L with

Var[N̂B∪L] = 6.43N .

Comparing variances, there are only minor differences between N̂B∪L and N̂0.
Table 1 summarizes the results of this section so far.
Finally, by asking: Having observed 9 B- or L-persons, what does this tell

us about N?, one can touch on maximum likelihood estimation. Since N̂B∪L =
XB∪L/pB∪L and XB∪L follows a binomial distribution, we have

P
(

N̂B∪L =
x
p

)
= P(XB∪L = x) =

(
N
x

)
px

B∪L(1− pB∪L)N−x , x = 0,1, . . . ,N . (4)

This equation, together with (2), shows that the distribution of N̂B∪L heavily de-
pends on pB∪L and N, and that the magnitude of the unknown N will have an impact
on it. In fact, from (4) we can compute the probability that (N̂B∪L = 9) will happen,
namely

Table 1 Results for five estimators of N with X̂B = 3 and X̂L = 6
Estimator Variance Estimate
N̂B = 26XB 25N 26×3 = 78
N̂L = 10XL 9N 10×6 = 60
N̂M = 0.5N̂B +0.5N̂L 8.5N 0.5×78+0.5×60 = 69
N̂0 = 0.26N̂B +0.74N̂L 6.62N 0.26×78+0.74×60 = 64.68
N̂B∪L = 7.43XB∪L 6.43N 7.43×9 = 66.87
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Fig. 3 Likelihoodfunction for N

P(N̂B∪L = 9) =
(

N
9

)
0.13469(1−0.1346)N−9 .

But we have observed (N̂B∪L = 9), so we can preclude some values of N which are
not likely. Thus, it is suggested to have a look at the likelihood function as in Fig. 3.

The maximum of this function is located at N̂ML = 66 lying in the interval
[9/0.1346− 1,9/0.1346] = [65.86,66.86]. In general it can be shown that N̂ML is
located at the integer(s) in the interval [XB∪L/pB∪L−1,XB∪L/pB∪L], which is pretty
close to our ad hoc estimator N̂B∪L = XB∪L/pB∪L.

4 Confidence Intervals

To develop confidence intervals, I am very fond of the elegant concept of (approxi-
mate) pivotal quantities, see Mood et al. [1]. The example considered here is well-
suited to give a first insight since at this point students have gained knowledge about
the binomial distribution and the normal distribution. They also have heard about the
connection between these two. Thus, I can make use of the following:

• XL follows a binomial distribution,
• XL follows an approximate normal distribution,
• N̂L = XL/pL is a linear transformation of XL,
• The standardization of N̂L,

ZL :=
N̂L−N√

9N

follows an approximate standard normal distribution N (0,1).
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Fig. 4 Theoretical quantile-boxplots of N̂L for various values of N. Furthermore the theoretical
quantile-boxplot of a standard normal distribution is added to the left and to the right

The correspondence between the exact distribution of ZL and the standard nor-
mal distribution is illustrated by theoretical quantile-boxplots in Fig. 4.

As can be seen from the plots, the approximations improve with increasing N.
This also applies to the extreme quantiles, so that we can write:

P
(
−z≤ N̂L−N√

9N
≤+z

)
≈ 1−α

for sufficiently large N. Here, z = z1−α is the appropriate quantile of the standard
normal distribution. Similar considerations apply to N̂0, because it is a linear com-
bination of independent random variables following approximate normal distribu-
tions. Thus,

P
(
−z≤ N̂0−N√

6.62N
≤+z

)
≈ 1−α .

Especially for z = 2, we have P(ψ1(N)≤ 4)≈ 0.95 and P(ψ2(N)≤ 4)≈ 0.95 where

ψ1(N) :=
(N̂L−N)2

9N
and ψ2(N) :=

(N̂0−N)2

6.62N
.

Figure 5 shows the functions ψ1 and ψ2.
The set of all values N such that ψ j(N)≤ 4 is an approximate 95 percent confi-

dence interval for N. We can find explicit bounds by solving the quadratic equations
ψ j(N) = 4 for N yielding

CIL(N) = 18+ N̂L∓
√

324+36N̂L

for N̂L and
CI0(N) = 13.24+ N̂0∓

√
175.3+26.48N̂0
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Fig. 5 Obtaining approximate 95% confidence intervals for N. The values of N for which ψ j(N) =
4 define approximate 95%-confidence intervals of N

for N̂0. Inserting the values from Table 1 delivers CIL(N) = [28.16,127.84] and
CI0(N) = [34.43,121.41].

Which is the preferred interval? Of course, we use that interval with the shorter
length, which is CI0(N) here. But does this happen in general?

At this point one can mention that a confidence interval’s length plays a similar
role as the mean square error for estimators, but establishing optimal properties may
become a challenging problem. For instance, by solving a quadratic equation, the
confidence limits based on an estimator N̂ associated with p is given by

CIp(N) =
2N̂ p+(1− p)z2∓

√
(1− p)z2[4N̂ p+(1− p)z2]

2p

Its length is

L(p) =

√
(1− p)z2[4N̂ p+(1− p)z2]

p
,

which is a monotonically decreasing function in p, as is readily found by differ-
entiation. Hence, CIp1(N) will be broader than CIp2(N) for p1 < p2. Furthermore,
L(p)→ ∞ for p→ 0 and L(p)→ 0 for p→ 1, which corresponds to our reasoning
in the context of estimating N.

5 Tests

Someone claims that the number of persons in this room is larger than 150. Given
N̂0 = 64.68, how can we test this hypothesis? We have argued that N̂0 follows an
approximate normal distribution N (N,6.52N). Figure 6 shows theoretical quantile-
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Fig. 6 Theoretical quantile-boxplots of N (N,6.62N) distributions

boxplots of N (N,6.52N) distributions for various values of N. Furthermore, the
location of N̂0 = 64.68 is displayed by a dashed line.

This line divides the set of N values into two parts: Those which are in accor-
dance with the observed value of N̂0, and those which are not. For instance, it is
not very likely that N = 150 persons are present, because the corresponding boxplot
lies well below the line. Similarly, N = 20 is not likely. In fact, the transition from
acceptance to rejection is blurred and here is the point where the concepts of signif-
icance levels and p-values can be addressed. Furthermore, confidence intervals can
be explained as the set of all plausible values of N. The theoretical quantile boxplots
corresponding to N = 34 and N = 121 bracket the 95% confidence interval for N.

6 Conclusions

Students very much dislike abstract teaching. So explaining concepts using prob-
lems which are easy to grasp are quite welcome. Estimating the number of persons
in a room is one such possibility. It is a proposal to alleviate the transition from prob-
ability models to statistical inference. Topics like independence of events, binomial
distribution, normal distribution, expectation and variance are exploited to pave the
way for several goals such as estimation, construction of confidence intervals and
tests. At the same time, the derivations are relatively simple and should meet the
students’ capabilities acquired so far.
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Epilogue
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Götz Trenkler is also an enthusiastic teacher. This is well documented by his numer-
ous contributions to the Problems and Solutions Section of the following journals:

• American Mathematics Monthly
• Econometric Theory
• Elemente der Mathematik
• Image
• Mathematic Magazine
• Statistical Papers
• Statistica Neerlandica
• The College Mathematics Journal
• The Mathematical Gazette.
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