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Preface

My goal in this book entitled Introduction to Theoretical and Computational Fluid Dynamics is to
provide a comprehensive and rigorous introduction to the fundamental concepts and basic equations
of fluid dynamics, and simultaneously illustrate the application of numerical methods for solving a
broad range of fundamental and practical problems involving incompressible Newtonian fluids. The
intended audience includes advanced undergraduate students, graduate students, and researchers in
most fields of science and engineering, applied mathematics, and scientific computing. Prerequisites
are a basic knowledge of classical mechanics, intermediate calculus, elementary numerical methods,
and some familiarity with computer programming. The chapters can be read sequentially, randomly,
or in parts, according to the reader’s experience, interest, and needs.

Scope

This book differs from a typical text on theoretical fluid dynamics in that the discourse is carried
into the realm of numerical methods and into the discipline of computational fluid dynamics (CFD).
Specific algorithms for computing incompressible flows under diverse conditions are developed, and
computer codes encapsulated in the public software library FDLIB are discussed in Appendix C.
This book also differs from a typical text on computational fluid dynamics in that a full discussion
of the theory with minimal external references is provided, and no experience in computational fluid
dynamics or knowledge of its terminology is assumed. Contemporary numerical methods and com-
putational schemes are developed and references for specialized and advanced topics are provided.

Content

The material covered in this text has been selected according to what constitutes essential knowledge
of theoretical and computational fluid dynamics. This intent explains the absence of certain special-
ized and advanced topics, such as turbulent motion and non-Newtonian flow. Although asymptotic
and perturbation methods are discussed in several places, emphasis is placed on analytical and
numerical computation. The discussion makes extensive usage of the powerful concept of Green’s
functions and integral representations.

Use as a text

This book is suitable as a text in an advanced undergraduate or introductory graduate course on fluid
mechanics, Stokes flow, hydrodynamic stability, computational fluid dynamics, vortex dynamics, or
a special topics course, as indicated in the Note to the Instructor. Each section is followed by a set of
problems that should be solved by hand and another set of problems that should be tackled with the
help of a computer. Both categories of problems are suitable for self-study, homework, and project
assignment. Some computer problems are coordinated so that a function or subroutine written for
one problem can be used as a module in a subsequent problem.



Preface to the Second Edition

The Second Edition considerably extends the contents of the First Edition to include contemporary
topics and some new and original material. Clarifications, further explanations, detailed proofs, orig-
inal derivations, and solved problems have been added in numerous places. Chapter 1 on kinematics,
Chapter 8 on hydrodynamic stability, and Chapter 11 on vortex methods have been considerably
expanded. Numerous schematic depictions and graphs have been included as visual guides to il-
lustrate the results of theoretical derivations. Expanded appendices containing useful background
material have been added for easy reference. These additions underscore the intended purpose of
the Second Edition as a teaching, research, and reference resource.

FDLIB

The numerical methods presented in the text are implemented in computer codes contained in the
software library FDLIB, as discussed in Appendix C. The directories of FDLIB include a variety of
programs written in FORTRAN 77 (compatible with FORTRAN 90), Matlab, and C++. The codes
are suitable for self-study, classroom instruction, and fundamental or applied research. Appendix D
contains the User Guide of the eighth directory of FDLIB on hydrodynamic stability, complementing
Chapter 8.

Acknowledgments

I thankfully acknowledge the support of Todd Porteous and appreciate useful comments by Jeffrey
M. Davis and A. I. Hill on a draft of the Second Edition.

C. Pozrikidis
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Note to the Instructor

This book is suitable for teaching several general and special-topics courses in theoretical and com-
putational fluid dynamics, applied mathematics, and scientific computing.

Course on fluid mechanics

The first eight chapters combined with selected sections from subsequent chapters can be used in an
upper-level undergraduate or entry-level introductory graduate core course on fluid mechanics. The
course syllabus includes essential mathematics and numerical methods, flow kinematics, stresses, the
equation of motion and flow dynamics, hydrostatics, exact solutions, Stokes flow, irrotational flow,
and boundary-layer analysis. The following lecture plan is recommended:

Appendix A Essential mathematics Reading assignment

Appendix B Primer of numerical methods Reading assignment

Chapter 1 Kinematics

Chapter 2 Kinematic description Sections 2.2-2.8 and 2.10-2.13 are optional
Chapter 3 Equation of motion

Chapter 4 Hydrostatics

Chapter 5 Exact solutions

Chapter 6 Stokes flow Sections 6.8-6.18 are optional

Chapter 7 Irrotational flow

Some sections can be taught as a guided reading assignment at the instructor’s discretion.

Course on Stokes flow

Chapter 6 can be used in its entirety as a text in a course on theoretical and computational Stokes
flow. The course syllabus includes governing equations and fundamental properties of Stokes flow, lo-
cal solutions, particulate microhydrodynamics, singularity methods, boundary-integral formulations,
boundary-element methods, unsteady Stokes flow, and unsteady particle motion. The students are
assumed to have a basic undergraduate-level knowledge of fluid mechanics. Some topics from previ-
ous chapters can be reviewed at the beginning of the course.

Course on hydrodynamic stability

Chapter 9 combined with Appendix D can be used in a course on hydrodynamic stability. The
course syllabus includes formulation of the linear stability problem, normal-mode analysis, stability
of unidirectional flows, the Rayleigh equation, the Orr—Sommerfeld equation, stability of rotating
flows, and stability of inviscid and viscous interfacial flows. The students are assumed to have a
basic knowledge of the continuity equation, the Navier—Stokes equation, and the vorticity transport
equation. These topics can be reviewed from previous chapters at the beginning of the course.
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Course on computational fluid dynamics (CFD)

The following lecture plan is recommended in a course on numerical methods and computational
fluid dynamics, following a graduate course on fluid mechanics:

Appendix A Essential mathematics Reading assignment
Appendix B Primer of numerical methods Reading assignment
Chapter 2 Theory of potential flow Sections 2.1-2.5
Chapter 6 Boundary-integral methods for Stokes flow Sections 6.5-6.10
Chapter 10  Boundary-integral methods for potential flow

Chapter 11 Vortex motion Selected topics

Chapter 12 Finite-difference methods
Chapter 13 Finite-difference methods for incompressible flow

Short course on vortexr dynamics

Chapter 11 is suitable as a text in a short course on vortex dynamics. The material can be preceded
or supplemented with selected sections from previous chapters to establish the necessary theoretical
framework.

Special topics in fluid mechanics

Selected material from Chapters 9-13 can be used in a special-topics course in fluid mechanics,
applied mathematics, computational fluids dynamics, and scientific computing. The choice of topics
will depend on the students’ interests and field of study.



Note to the Reader

For self-study, follow the roadmap outlined in the Note to the Instructor, choosing your preferred
area of concentration. In the absence of a preferred area, study the text from page one onward,
skipping sections that seem specialized, but keeping in mind the material contained in Appendices
A and B on essential mathematics and numerical methods. Before embarking on a course of study,
familiarize yourself with the entire contents of this book, including the appendices.

Notation

In the text, an italicized variable, such as a, is a scalar, and a bold-faced variable, such as a, is a
vector or matrix. Matrices are represented by upper case and bold faced symbols. Matrix—vector
and matrix—matrix multiplication is indicated explicitly with a centered dot, such as A-B. With this
convention, a vector, a, can be horizontal or vertical, as the need arises. It is perfectly acceptable to
formulate the product A - a as well as the product a - A, where A is an appropriate square matrix.
Index notation and other conventions are defined in Appendix A.

The fluid velocity is denoted by u or U. The boundary velocity is denoted by v or V.
Exceptions are stated, as required. Dimensionless variables are denoted by a hat (caret). We
strongly advocate working with physical dimensional variables and nondimensionalizing at the end,
if necessary.

Polymorphism

Occasionally in the analysis, we run out of symbols. A bold faced variable may then be used to
represent a vector or a matrix with two or more indices. A mental note should be made that the
variable may have different meanings, depending on the current context. This practice is consistent
with the concept of polymorphism in object-oriented programming where a symbol or function may
represent different entities depending on the data type supplied in the input and requested in the
output. The language compiler is trained to pick up the appropriate structure.

Physical entities expressed by vectors and tensors

The velocity of an object, v, is a physical entity characterized by magnitude and direction. In
the analysis, the velocity is described by three scalar components referring to Cartesian, polar, or
other orthogonal or nonorthogonal coordinates. The Cartesian components, v,, vy, and v,, can be
conveniently collected into a Cartesian vector,

vV = [Ug, Uy, V]

Accordingly, v admits a dual interpretation as a physical entity that is independent of the chosen
coordinate system, and as a mathematical vector. In conceptual analysis, we refer to the physical
interpretation; in practical analysis and calculations, we invoke the mathematical interpretation.
To prevent confusion, the components of a vector in non-Cartesian coordinates should never be
collected into a vector. Similar restrictions apply to matrices representing physical entities that
qualify as Cartesian tensors.
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Units

In engineering, all physical variables have physical dimensions such as length, length over time, mass,
mass over length cubed. Units must be chosen consistently from a chosen system, such as the cgs
(cm, g, s) or the mks (m, kg, s) system. It is not appropriate to take the logarithm or exponential
of a length a, Ina or e, because the units of the logarithm or exponential are not defined. Instead,
we must always write In(a/b) or ¢/, where b is another length introduced so that the argument of
the logarithm or exponential is a dimensionless variable or number. The logarithm or exponential
are then dimensionless variables or numbers.

Computer languages

Basic computer programming skills are necessary for the thorough understanding of contemporary
applied sciences and engineering. Applications of computer programming in fluid mechanics range
from preparing graphs and producing animations, to computing fluid flows under a broad range of
conditions. Recommended general-purpose computer languages include FORTRAN, C, and C++.
Free compilers for these languages are available for many operating systems. Helpful tutorials can
be found on the Internet and a number of excellent texts are available for self-study.

Units in a computer code

In writing a computer code, always use physical variables and dimensional equations. To scale the
results, set the value of one chosen length to unity and, depending on the problem, one viscosity,
density, or surface tension equal to unity. For example, setting the length of a pipe, L, to 1.0, renders
all lengths dimensionless with respect to L.

Fluid, solid, and continuum mechanics

The union of fluid and solid mechanics comprises the field of continuum mechanics. The basic theory
of fluid mechanics derives from the theory of solid mechanics, and wvice versa, by straightforward
substitutions:

fluid solid

velocity displacement

velocity gradient tensor deformation gradient tensor
rate of strain or rotation —  strain or rotation

surface force traction

stress Cauchy stress

However, there are some important differences. The traction in a fluid refers to an infinitesimal
surface fixed in space, whereas the traction in a solid refers to a material surface before or after
deformation. Consequently, there are several alternative, albeit inter-related, definitions for the
stress tensor in a solid. Another important difference is that the velocity gradient tensor in fluid
mechanics is the transpose of the deformation gradient tensor in solid mechanics. This difference
is easy to identify in Cartesian coordinates, but is lurking, sometimes unnoticed, in curvilinear
coordinates. These important subtleties should be born in mind when referring to texts on continuum
mechanics.
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Kinematic structure of a flow

The study of fluid mechanics is divided broadly into two main themes, kinematics and dynamics.
Kinematics analyzes the motion of a fluid with reference to the structure of the velocity field, whereas
dynamics examines the forces developing in a fluid as the result of the motion. Fundamental concepts
of kinematics and dynamics are combined with the fundamental principle of mass conservation and
Newton’s second law of motion to derive a system of differential equations governing the structure
of a steady flow and the evolution of an unsteady flow.

1.1  Fluid velocity and motion of fluid parcels

Referring to a frame of reference that is fixed in space,
we observe the flow of a homogeneous fluid consisting of
a single chemical species. We consider, in particular, the
motion of a fluid parcel which, at a certain observation
time, ¢, has a spherical shape of radius € centered at a
point, x. The velocity of translation of the parcel in a
particular direction is defined as the average value of the
instantaneous velocity of all molecules residing inside the €
parcel in that direction.

The fluid velocity is defined as the outer

It is clear that the average parcel velocity depends o .
limit of the mean parcel velocity.

on the parcel radius, e. Taking the limit as e tends to
zero, we find that the average velocity approaches a well-defined asymptotic limit, until € becomes
comparable to the molecular size. At that stage, we observe strong oscillations that are manifes-
tations of random molecular motions. We define the velocity of the fluid, u, at position, x, and
time, t, as the apparent or outer limit of the velocity of the parcel as € tends to zero, just before the
discrete nature of the fluid becomes apparent. This definition is the cornerstone of the continuum
approximation in fluid mechanics. Under normal conditions, the velocity, u(x,t), is an infinitely
differentiable function of position, x, and time, ¢t. However, spatial discontinuities may arise under
extreme conditions in high-speed flows, or else emerge due to mathematical idealization. If a flow is
steady, u is independent of time, du/0t = 0, and the velocity at a certain position in space remains
constant in time.

The velocity of a two-dimensional flow in the zy plane is independent of the z coordinate,
Ou/0z = 0. The velocity component along the 2z axis, u,, may have a constant value that is usually
made to vanish by an appropriate choice of the frame of reference.



2 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

1.1.1 Subparcels and point particles

To analyze the motion of a fluid parcel, it is helpful to divide the parcel into a collection of subparcels
with smaller dimensions and observe that the rate of rotation and deformation of the parcel is
determined by the relative motion of the subparcels. For example, if all subparcels move with
the same velocity, the parental parcel translates as a rigid body, that is, the rate of rotation and
deformation of the parental parcel are both zero. It is conceivable that the velocity of the subparcels
may be coordinated so that the undivided parental parcel translates and rotates as a rigid body
without suffering deformation, that is, without change in shape.

If we continue to subdivide a parcel into subparcels with decreasingly small size, we will
eventually encounter subparcels with infinitesimal dimensions called point particles. Each point
particle occupies an infinitesimal volume in space, but an infinite collection of point particles that
belongs to a finite (noninfinitesimal) parcel occupies a finite volume in space. By definition, a point
particle located at the position x moves with the local and current fluid velocity, u(x, t).

1.1.2 Velocity gradient

To describe the motion of a fluid parcel in quantitative terms, we introduce Cartesian coordinates
and consider the spatial variation of the velocity, u, in the neighborhood of a chosen point, x¢, which
is located somewhere inside the parcel. Expanding the jth component of u(x,t) in a Taylor series
with respect to x about xg and retaining only the linear terms, we find that

uj(x,t) = uj(xo,t) + i Lij(xo, 1), (1.1.1)

where X = x — x is the vector connecting the point xq to the point x, and summation over the
repeated index ¢ is implied on the right-hand side. We have introduced the velocity gradient or rate
of relative displacement matrix, L = Vu, with components

ou;
Li; = 2, 1.1.2
Explicitly, the velocity gradient is given by
Ouy QEE ou,,
ox ox ox
ou ou ou
L= = 2 =4 2 . 1.1.3
VU=l oy oy (1.13)
Ouy QEE ou,,
0z 0z 0z

In physical terms, the velocity gradient expresses the spatial variation of the velocity across a col-
lection of subparcels or point particles composing a parcel. In Section 1.1.8, we will show that L
satisfies a transformation rule that qualifies it as a second-order Cartesian tensor.

In formal mathematics, the velocity gradient is the tensor product of the gradient vector
operator, V, and the velocity vector field, u. To simplify the notation, we have set

Vu=VQR®u, (1.1.4)
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where ® denotes the tensor product of two vectors defined in Section A.4, Appendix A. Similar sim-
plified notation will be used for other tensor products involving the gradient operator; for example,
VV =V ® V is the two-dimensional operator of the second derivatives.

In vector notation, equation (1.1.1) takes the form
u(x,t) ~ u(xp,t) + X - L(xo, t). (1.1.5)
Note the left-to-right vector-matrix multiplication in the second term on the right-hand side.

Divergence of the velocity

The trace of the velocity gradient tensor, L, defined as the sum of the diagonal elements of L, is
equal to the divergence of the velocity,

a = trace(L) = % =V u, (1.1.6)
s

where summation is implied over the repeated index, k. In Section 1.1.6, we will see that the
divergence of the velocity expresses the rate of expansion of the fluid.

1.1.3 Dyadic base

Let e,, be the unit vector along the mth Cartesian axis for m = 1,2, 3. By definition, e; - e; = d;;,
where d;; is Kronecker’s delta representing the identity matrix, as discussed in Section A.4, Appendix
A. The velocity can be expressed in terms of its Cartesian components, wu;, as

u = u;e;, (117)

where summation is implied over the repeated index, ¢. The velocity gradient can be expressed in
the dyadic form

L=1Lje ®ey, (1.1.8)

where summation is implied over the repeated indices, ¢ and j. The kl component of the matrix
e; ®e; is

[e,; ® ej]kl = [e,;]k[ej]l. (119)
Expression (1.1.8) is the algebraic counterpart of the matrix depiction shown in (1.1.3).

Projecting equation (1.1.8) from the right onto the unit vector e,, where ¢ is a free index, and
using the orthogonality property of the unit vectors, we obtain

L-e;=Ljje;(ej eq) = Lije;idjq = Lige;. (1.1.10)

Formulating the inner product of this equation with the unit vector e,, where p is another free index,
and working in a similar fashion, we extract the components of the velocity gradient,

Ly,=e,-L-e,=L: (e, ®ey), (1.1.11)
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where the double dot product of two matrices with matching dimensions is defined in Section A.4,
Appendix A. This expression may also be regarded as a consequence of the orthogonality property

(ei ®e;) : (ep ®eq) = (e - €p)(e; - €g) = bip Jjg, (1.1.12)
where i, j, p, and ¢ are found independent indices.
The identity matrix admits the dyadic decomposition
I=e1®e;+er®ey +e3® es. (1.1.13)

In matrix notation underlying this dyadic expansion, all elements of I are zero, except for the three
diagonal elements that are equal to unity.

Without loss of generality, we may assume that the kth component of the unit vector e; is
equal to 1 if kK = ¢ or 0 if k # 4, that is, [e;]y = ;5. The kl component of the matrix e; ® e; is
le; ® ejlw = [ei]k[e;]i = didji. All elements of the matrix e; ® e; are zero, except for the element
located at the intersection of the ith row and jth column that is equal to unity, [e; ® e;];; = 1,
where summation is not implied over the indices ¢ and j. For example,

e1Rey = (1.1.14)

o O O
O O
o O O

This expression illustrates that the dyadic base provides us with a natural framework for representing
a two-index matrix.

1.1.4 Fundamental decomposition of the velocity gradient

It is useful to decompose the velocity gradient, L, into an antisymmetric component, =, a symmetric

component with vanishing trace, E, and an isotropic component with nonzero trace,

1
L=E+E+;al (1.1.15)

where I is the identity matrix. We have introduced the vorticity tensor,

1 1 /0u; Ouy
E=-(L-L" Ei:f( 2 — ) 1.
5 ), =3\ 8m "9,/ (1.1.16)
and the rate-of-deformation tensor, also called the rate-of-strain tensor,
1 1 1 /0u;  Ouy 1
E=_(L+L") - -al, Ei':*( ! l)—* di5, 1.
2( +L%) 3@ 5 8:c,»+8xj 3 @i (1.1.17)

where the superscript 7' denotes the matrix transpose. Explicitly, the components of E and E are
given in Table 1.1.1. In Section 1.1.8, we will demonstrate that = and E obey transformation rules
that qualify them as second-order Cartesian tensors.
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i 0 % B Ouy Ou, B Ouy ]
Ox oy Oz 0z
= = 1 Oy _ % 0 du _ %
T2 oy Ox Oy 0z
Ouy, B ou,, % B Ou,, 0
0z ox 0z oy |
[ Ouy —la 1(% au,;) 1(6uz 8%) 1
or 3 2" Ox Jy 2" Ox 0z
1 Ou ou ou 1 1 Ou ou
E= | (%= O ouy 1 )
2(8y 3:5) oy 3 2(3y 82)
1(% 8“2) }(% 8“—2) Ius _la
L 2 0z Ox 2" 0z dy 0z 3

TABLE 1.1.1 Cartesian components of the vorticity tensor, 2, and rate-of-deformation tensor, E, where
a = V - u is the rate of expansion. The trace of the rate-of-deformation tensor, E, is zero by
construction.

1.1.5 Vorticity

Because the vorticity tensor is antisymmetric, it has only three independent components that can
be accommodated into a vector. To implement this simplification, we introduce the vorticity vector,
w, and set

1

2

where ¢, is the alternating tensor defined in Section A.4, Appendix A, and summation is implied
over the repeated index k. Explicitly,

Dy = (1.1.18)

€ijk Wk,

1 0 W, —Wy

E=- | —w, 0 Wy (1.1.19)
2
Wy —Wg 0
Conversely, the vorticity vector derives from the vorticity tensor as
1 auj aul an

Wk = €kij =ij = = €kij | = — = €kij = 1.1.20
k kij —ij 2 kij (axl 8$]) €kij 81'1 ( )

where summation is implied over the repeated indices, ¢ and j. The last expression shows that the
vorticity is the curl of the velocity,

w=Vxu. (1.1.21)
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Explicitly,

(s (B (e

where e, ey, and e, are unit vectors along the z, y, and z axes.

Observing that the vorticity of a two-dimensional flow in the xy plane is oriented along the z
axis, we write

w(r,y,t) = ws(7,y,t) e, (1.1.23)

where w, is the z vorticity component.

1.1.6 Fluid parcel motion

Substituting (1.1.18) into (1.1.15) and the resulting expression into (1.1.1), we derive an expression
for the spatial distribution of the velocity in the neighborhood of a point, xg, in terms of the vorticity
vector, w, the rate-of-deformation tensor, E, and the divergence of the velocity field, «,

1 P 1
Uj(X, t) = Uj(XQ,t) + 5 €jki wk(xo,t) x; +x; Eij(Xo,t) + g azry, (1~1-24)

where X = x — xg. Next, we proceed to analyze the motion of a fluid parcel based on this local
representation, recognizing that point particles execute sequential motions under the influence of
each term on the right-hand side.

Translation

The first term on the right-hand side of (1.1.24) expresses rigid-body translation. Under the influence
of this term, a fluid parcel translates with the fluid velocity evaluated at the designated particle
center, xg.

Vorticity and rotation
The second term on the right-hand side of (1.1.24) can be written as (xo,t) x X, where

-1, (1.1.25)
2
This expression shows that point particles rotate about the point xy with angular velocity that
is equal to half the centerpoint vorticity. Conversely, the vorticity vector is parallel to the point-
particle angular velocity vector, and the magnitude of the vorticity vector is equal to twice that of
the point-particle angular velocity vector.

Rate of strain and rate of deformation

We return to (1.1.24) and examine the nature of the motion associated with the third term on the
right-hand side. Because the matrix E is real and symmetric, it has three real eigenvalues, A1, A2, and
A3, and three mutually orthogonal eigenvectors. Under the action of this term, three infinitesimal



1.1 Fluid velocity and motion of fluid parcels 7

fluid parcels resembling slender needles initially aligned with the eigenvectors elongate or compress
in their respective directions while remaining mutually orthogonal (Problem 1.1.2). An ellipsoidal
fluid parcel with three axes aligned with the eigenvectors deforms, increasing or decreasing its aspect
ratios, while maintaining its initial orientation. These observations suggest that the third term on
the right-hand side of (1.1.24) expresses deformation that preserves orientation.

To examine the change of volume of a parcel under the action of this term, we consider a
parcel in the shape of a rectangular parallelepiped whose edges are aligned with the eigenvectors
of E. Let the initial lengths of the edges be dzi, dzs, and dxs. After a small time interval dt¢ has
elapsed, the lengths of the sides have become (1 + A\; dt)dzy, (1 + Ao dt) dze, and (1 + Az dt) das.
Formulating the product of these lengths, we obtain the new volume,

<1+)\1dt)(1+)\2dt)(1+)\3dt) dl‘l dxg dl‘3. (1.1.26)

Multiplying the three factors, we find that, to first order in dt¢, the volume of the parcel has been
modified by the factor 1+ (A1 + A2 + A3)dt. However, because the sum of the eigenvalues of E is
equal to the trace of E, which is zero by construction, the volume of the parcel is preserved during
the deformation.

If the rate of strain is everywhere zero, the flow must necessarily express rigid-body motion,
including translation and rotation (Problem 1.1.3).

Expansion

The last term on the right-hand side of (1.1.24) represents isotropic expansion or contraction. Under
the action of this term, a small spherical parcel of radius a and volume 6V = 4?”@3 centered at
the point xg expands or contracts isotropically, undergoing neither translation, nor rotation, nor
deformation. To compute the rate of expansion, we note that, after a small time interval d¢ has
elapsed, the radius of the spherical parcel has become (1 + % adt) a and the parcel volume has been
changed by the differential amount

1 1 4
doV = = (1+ zad)’a® — = d’. (1.1.27)

Expanding the cubic power of the binomial, linearizing the resulting expression with respect to dt,
and rearranging, we find that

1 déV
= @ 1.1.28
oV dt @ ( )

This expression justifies calling the divergence of the velocity, & = V - u, the rate of expansion or
rate of dilatation of the fluid.

Summary

We have found that a small fluid parcel translates, rotates, expands, and deforms by rates that are
determined by the local velocity, vorticity, rate of expansion, and rate-of-strain tensor, as illustrated
in Figure 1.1.1. To first order in dt, the sequence by which these motions occur is inconsequential.
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b6

Expansion Rotation Deformation

FIGURE 1.1.1 lllustration of the expansion, rotation, and deformation of a small spherical fluid parcel
during an infinitesimal period of time in a three-dimensional flow.

1.1.7 Irrotational and rotational flows

If the vorticity is everywhere zero in a flow, the flow and the velocity field are called irrotational. For
example, since the curl of the gradient of any continuous scalar function is identically zero, as shown
in identity (A.6.13), Appendix A, the velocity field u = V¢ is irrotational for any differentiable
function, ¢. The rate of rotation of slender fluid parcels resembling needles averaged all possible
orientations is zero in an irrotational flow (e.g., [370]). If the vorticity is nonzero at least in some part
of a flow, the flow and the velocity field are called rotational. Sometimes the qualifiers “rotational”
and “irrotational” are casually attributed to the fluid, and we speak of an irrotational fluid to
describe a fluid that executes irrotational motion. However, although this may be an acceptable
simplification, we should keep in mind that, strictly speaking, irrotationality is not a property of
the fluid but a kinematic attribute of the flow.

A number of common flows consist of adjacent regions of nearly rotational and nearly irrota-
tional flow. For example, high-speed flow past a streamlined body is irrotational everywhere except
inside a thin layer lining the surface of the body and inside a slender wake behind the body, as
discussed in Chapter 8. The flow between two parallel streams that merge at different velocities is
irrotational everywhere except inside a shear layer along the interface. Other examples of irrotational
flows will be presented in later chapters.

Vorticity and circulatory motion

It is important to bear in mind that the occurrence of global circulatory motion does not necessarily
mean that individual fluid parcels undergo rotation. For example, the circulatory flow generated by
the steady rotation of an infinite cylinder in an ambient fluid of infinite expanse is irrotational, which
means that small elongated fluid particles parallel to the principal axes of the rate-of-deformation
tensor retain their orientation during any infinitesimal time interval as they circulate around the
cylinder.

1.1.8 Cartesian tensors

Consider two Cartesian coordinate systems with common origin, (x1,z2,23) and (2,5, 25), as
shown in Figure 1.1.2. The Cartesian unit vectors in the unprimed and primed systems are denoted,
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FIGURE 1.1.2 lllustration of two coordinate systems with shared origin. The cosines of the angles, a;,
a9, and ag, are the direction cosines of the a) axis, subject to the convention that 0 < «a; < 7.
The bold arrows are Cartesian unit vectors.

respectively, by (er, ez, e3) and (e}, e}, e4). The position of a point particle in physical space can be
expressed in the unprimed or primed coordinates and corresponding unit vectors as

XZ.TZ' €e; :l‘; e;, (1129)

where summation is implied over the repeated index, i. The primed coordinates are related to the
unprimed coordinates, and vice versa, by an orthogonal transformation.

Orthogonal transformations

It is useful to introduce a transformation matrix, A, with elements
Aij :e'i-ej. (1130)

Using the geometrical interpretation of the inner vector product, we find that the first row of A
contains the cosines of the angles subtended between each unit vector along the x1, z2, and =3 axes,
and the unit vector in the direction of the z} axis,

A1 = cosaq, Aqs = cos as, Aq3 = cos as, (1.1.31)
called the direction cosines of e}, as shown in Figure 1.1.1. The second and third rows of A contain
the corresponding direction cosines for the unit vectors along the x5 and z% axes, e, and ej.
Projecting (1.1.29) on e, or e, where p is a free index, and using the orthogonality of the

primed and unprimed unit vectors, we find that the x' = (z, 4, z%) and x = (21, z3, x3) coordinates
are related by the linear transformations

x'=A-x x=AT . %, (1.1.32)
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where the superscript T' indicates the matrix transpose. In index notation, these equations read

Similar transformation rules can be written for the components of a physical vector, such as the
velocity vector, the vorticity vector, and the angular velocity vector.

Relations (1.1.32) demonstrate that the transformation matrix, A, is orthogonal, meaning that
its inverse, indicated by the superscript —1, is equal to its transpose, A~* = AT. The determinant of
A and the length of any vector represented by any column or row are equal to unity. The projection
of any column or row onto a different column or row is zero.

Rotation matrices

In practice, the primed axes can be generated from the unprimed axes by three sequential rotations
about the x1, x5, and x3 axes, by respective angles equal to 1, 2, and p3. We may say that
the primed system is rotated with respect to the unprimed system, and wvice versa. To develop the
pertinent transformations, we introduce the rotation matrices

1 0 0 cospy 0 —sineps
RY =1 0 cosp; sing; |, R = 0 1 0 ,
0 —sing; cosyg sings 0 COS P2
(1.1.34)
cospz singps 0
R® = | —sin w3 cosps 0O
0 0 1

Each rotation matrix is orthogonal, meaning that its transpose is equal to its inverse. The deter-
minant of each rotation matrix and the length of any vector represented by a column or row are
equal to unity. The mutual projection of any two different columns or rows is zero. The orthogonal
transformation matrix of interest is

A=RO®.R®.RD, (1.1.35)

where the order of multiplication is consequential.

Dyadic base expansion

Now we consider a two-dimensional (two-index) matrix, T, whose elements are the components of
a physical variable, T, in a Cartesian dyadic base, e; ® e;, so that

Tzﬂj ei®ej, (1136)

where summation is implied over the repeated indices, i and j. The elements of the matrix T depend
on position in space and possibly time. The same physical variable can be expanded in the rotated
dyadic base defined with respect to the primed unit vectors as

T =T € @€, (1.1.37)

where T}; are the component of 7 in the primed axes.
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Projecting (1.1.36) and (1.1.37) from the right onto a unit vector, e,,, noting that e;-e,, = &,
where 4, is the Kronecker delta, and using (1.1.29), we find that
T-emn = Time; = T]; Ajm €. (1.1.38)
Projecting this expression onto a unit vector, e,, and working in a similar fashion, we obtain
ey T-en=Tym =Tj; Ajm Aip. (1.1.39)

Renaming the indices and working in a similar fashion, we derive the distinguishing properties of a
second-order Cartesian tensor,

Tij = T];lA]“'Alj, Tilj = AikAlekl~ (1140)
In vector notation,
T=A".T A, T =A-T-AT. (1.1.41)

The transformations (1.1.40) and (1.1.41) are special cases of similarity transformations encountered
in matrix calculus (Problem 1.1.5). Because the matrix A is orthogonal, its transpose can be replaced
by its matrix inverse.

Invariants

The characteristic polynomial of a Cartesian tensor, P(\) = det(T — AI), is independent of the
coordinate system where the tensor is evaluated. Consequently, the coefficients and hence the
roots of the characteristic polynomial defining the eigenvalues of T are invariant under a change
of coordinates. To demonstrate the invariance of the characteristic polynomial, we recall that the
transformation matrix A is orthogonal and write

Tij — )‘5” = T];lA]“'Alj — AAkiAkj = T];lA]m'Alj — )\A]“'(SklAlj = A}m (Tlél — A 5kl) Alj. (1142)
In vector notation, we obtain the statement
T - A =AT. (T - \I)- A. (1.1.43)

Taking the determinant of both sides, expanding the determinant of the product, and noting that
det(AT) = 1/det(A), we find that

det[T — M| = det(AT) det[T' — AI] det(A) = det[T' — A 1], (1.1.44)
which completes the proof.

3 X 3 tensors

In the case of 3 x 3 three tensors of central interest in fluid mechanics, we recast the characteristic
polynomial into the form

det(T — AXI) = =A% + I302 — LA + 14, (1.1.45)
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involving the three invariants

1
I = det(T) = M A2 )3, Io = Mo+ Aod3 + A3\ = 5 trace®(T) — trace(T?),
I3 = trace(T) = A + Ao+ A3, (1.1.46)

defined in terms of the roots of the characteristic polynomial, A1, A2, and A3, which are the eigenval-
ues of T. In Chapter 3, we will see that the invariants (1.1.46) play an important role in developing
constitutive equations that provide us with expressions for the stresses developing inside a fluid as
the result of the motion.

Kinematic tensors

The Cartesian components of the velocity transform like the components of the position vector, as
shown in (1.1.32),

Using the chain rule of differentiation, we transform the velocity gradient matrix L introduced in
(1.1.2) as

Oou; Oz, Ou; ou; ou)
Lij=—2 =2k "9 — A, — = A, A); —L 1.1.48
17 Oz 0wy o, Mo, MUY oal ( )
which is tantamount to
Lij = L}y A Ay (1.1.49)

Comparing (1.1.49) with the first equation in (1.1.40), we conclude that L is a second-order Cartesian
tensor. We note that the third invariant I3 defined in (1.1.46) is equal to the rate of expansion,
a = V - u, and confirm that the rate of dilatation of a fluid parcel is independent of the coordinate
system where the flow is described.

The symmetric and antisymmetric parts of L also obey the transformation rules (1.1.40).
Thus, the rate-of-strain matrix, E, and vorticity matrix, 2, are both second-order Cartesian tensors.

It is a straightforward exercise to show that the sequence of matrices, L-L, L-L-L, ..., E-E,
E-E-E, ... are all second-order Cartesian tensors.
Problems

1.1.1 Relative velocity near a point
(a) Confirm the validity of the decomposition (1.1.15).
(b) Show that (1.1.20) is consistent with (1.1.18).

1.1.2 FEigenvalues of a real and symmetric matrix

Prove that a real and symmetric matrix has real eigenvalues and an orthogonal set of eigenvectors
(e.g., [18, 317]).
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1.1.3 Rigid-body motion

Prove that, if the rate-of-deformation tensor, E, and rate of expansion, «, are zero everywhere in
the domain of a flow, the flow must necessarily express rigid-body motion, including translation and
rotation.

1.1.4 Momentum tensor

Show that the matrix pu;u; is a second-order tensor, called the momentum tensor, where p is the
fluid density defined in Section 1.3.

1.1.5 Similarity transformations

Consider a square matrix, A, select a nonsingular square matrix, P, whose dimensions match those of
A, and compute the new matrix B = P~!- A.P. This operation is called a similarity transformation,
and we say that the matrix B is similar to A. Show that the eigenvalues of the matrix B are identical
to those of A; thus, similarity transformations preserve the eigenvalues (e.g., [18, 317]).

1.1.6 Tensor properties
(a) Derive the first relation in (1.1.41).

(b) Show that a two-dimensional matrix, T, qualifies as a second-order tensor if u(x) = T(x) - x
transforms like a vector according to (1.1.32) and (1.1.47).

(¢) Consider a function f(x) defined through its Taylor series expansion. Show that if T is a tensor,
then f(T) is also a tensor.

1.2 Curvilinear coordinates

The position vector, velocity field, vorticity field, or any other vector field of interest in fluid me-
chanics can be described by its components in orthogonal or nonorthogonal curvilinear coordinates,
as discussed in Sections A.8-A.17, Appendix A. The velocity gradient tensor, or any other Cartesian
tensor, can be represented by its components in a corresponding dyadic base.

1.2.1 Orthogonal curvilinear coordinates

In the case of orthogonal curvilinear coordinates, (a1, ag, a3), with corresponding unit vectors eq, e,
and ez, the velocity is resolved into corresponding components, w1, us, and ug, so that

u=1up 61+U2€2+U3637 (121)

as discussed in Section A.8. The gradient operator takes the form

Vzeli 0 1 0 1 0

_ - - 1.2.2
h,l 80&1 <2 hQ 80[2 =0 h3 (9013’ ( )

where h1, ho, and h3 are metric coefficients. The velocity gradient admits the dyadic representation

L EVu:Lij ei®ej, (123)
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FIGURE 1.2.1 lllustration of cylindrical polar coordinates, (z, o, ¢), defined with respect to companion
Cartesian coordinates, (z,y, z).

where summation is implied over the repeated indices, 7 and j. To prevent misinterpretation, the
curvilinear components of the velocity gradient tensor, L;;, should not be collected into a matrix.

The rate of expansion is the trace of the velocity gradient tensor. We note that the trace of
the matrix e; ® e; is zero if 7 # j or unity if ¢ = j, and obtain the expression

V-u= Ly + Loy + Lss. (1.2.4)
The components of the vorticity are given by
w1 = Log — L3o, wy = L3 — L3, w3 = Lo — Loy. (1.2.5)
Other properties are discussed in Section A.8, Appendix A.

Cylindrical, spherical, and plane polar coordinates discussed in Sections A.9-A.11, Appendix
A, are used extensively in theoretical analysis and engineering applications. Expressions for the
velocity gradient in the corresponding dyadic base are derived in this section.

1.2.2 Cylindrical polar coordinates

Cylindrical polar coordinates, (x,0, ), are defined in Figure 1.2.1 (see also Section A.9, Appendix
A). Using elementary trigonometry, we derive relations between the polar cylindrical and associated
Cartesian coordinates,

Y = 0 Cos P, z = osingp. (1.2.6)

The inverse relations providing us with the cylindrical polar coordinates in terms of Cartesian
coordinates are

o =Vy>+ 22 = arccos g. (1.2.7)
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Velocity gradient

To derive the components of the velocity gradient tensor in cylindrical polar coordinates, we express
the gradient operator and velocity field as

Vzengregnge L9

p B o %, U= ugey + Us€y + Upey, (1.2.8)

where e;, e,, and e, are the unit vectors defined in Figure 1.2.1, and u,, us, and u, are the
corresponding velocity components. The cylindrical polar unit vectors are related to the Cartesian
unit vectors by

e, =Ccospe, +sinpe,, e, = —sinpey, +cospe,. (1.2.9)
The inverse relations are
e, =cospe, —sinpe,, e. =sinpe, +cospe,. (1.2.10)

All derivatives Oe, /0 are zero, except for two derivatives,
—— =e,, — = —e,, (1.2.11)

where Greek variables stand for z, o, or ¢. Using the representations (1.2.8), we find that

0 0 1 0
L= (ex ® p +e,® e + p e, ® %)(uweéE + uses + upey). (1.2.12)

Carrying out the differentiation and using (1.2.11), we obtain
L=Vu=L,se,Reg, (1.2.13)

where summation is implied over the repeated indices, a and 8. The cylindrical polar components
of the velocity gradient tensor, L,g, are given in Table 1.2.1(a).

To generate the matrix e, ® ey, we write e, = [O,cos @,Sin(p} and e, = [O, — sin <p,cos<p],
and formulate their tensor product,

0 0 0
e, Qe,=| 0 —cospsing cos? . (1.2.14)
0 —sin? @ cos psin

The rest of the matrices, e, ® eg, are formulated in a similar fashion.

Rate of expansion and vorticity

The rate of expansion is the trace of the velocity gradient tensor. Making substitutions, we obtain

r o Oo o Op

Ouy 0 1 9(ouy) N l %

Vu= Ly + Loo + Loy = (1.2.15)
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Ouy ou ou
Lzm = : Lma = Lx ==
ox ox 2 ox
_ Ou, _ Ou, _ Ouy,
s Lo = o5 =
_ Lo, _ Lo u, _ Lou, | U
L) 7 5 Oy o C o Oy o
(b)
ou Oug ou
L z L= —2 L. = 2%
" or 0 or o or
1 0u, g 1 0ug  u, ug Ouy,
Ty == 2 18 Ty = — Ty = 2 2
T o0 o0 90 bo = 00
1 8u7~_ui7 1 %_cot&u I 1 % Uy + ug cot
YT rsin® Oy r 0 1 sing de r 7 PP rsinf Op r
(c)
8u,« aue
er - Lr = &5
or o or
1 Ou, ug 10ug
L = — — == L _ - 7
or = op T %= "9 T

TABLE 1.2.1 Components of the velocity gradient tensor in (a) cylindrical, (b) spherical, and (¢) plane
polar coordinates.

The cylindrical polar components of the vorticity are

1 /0(ouy,) 1 0u 1 Ou ou
= Lyy— Lyy = - (8%%e) 2 %o Ly — Lyy = — Mz Tle
Wa e i 0( oo o Oy )’ Yo ox o O Ox’
80' xr
Wy = Loy — Loy = a% - 881; . (1.2.16)

If a fluid rotates as a rigid body around the z axis with angular velocity €2, the velocity components
are u; = 0, u, = 0, and u, = o, and the only surviving vorticity component is w, = 2.

1.2.3 Spherical polar coordinates

Spherical polar coordinates, (r, 8, @), are defined in Figure 1.2.2 (see also Section A.10, Appendix A).
Using elementary trigonometry, we derive the following relations between the Cartesian, cylindrical,
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FIGURE 1.2.2 lllustration of spherical polar coordinates, (1,6, ), defined with respect to companion
Cartesian coordinates, (z,y, z).

and spherical polar coordinates,

x =71 cosb, o=rsind, (1.2.17)
and
Yy =0 cosy = rsinf cosy, z =0 sinp =rsinf siny. (1.2.18)
The inverse relations are
r=\a24+yt+22 = Va2 + o2, Qzarccosg, wzarccos%. (1.2.19)

Velocity gradient

To derive the components of the velocity gradient in spherical polar coordinates, we express the
gradient operator and velocity field as

Vool o 10 19

19 9 — e, , 1.2.20
or 'r89+e¢rsin0 Ao’ U= Urey o Upey + Ul ( )

where e, eg, and e, are unit vectors defined in Figure 1.2.2, and u,., ug, and u,, are the corresponding
velocity components. The Cartesian, spherical, and cylindrical polar unit vectors are related by

e, =cosfle, +sinflcospe, +sinfsinpe, = cosfe, +sinfe,,
ey = —sinfle, + cosfcospe, + cosfsinpe, = —sinf e, + cosb e,, (1.2.21)

€, = —slnhpey, +cosye,.

All derivatives Oe, /08 are zero, except for five derivatives,
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der—e der—sinee @—e @_COSQG

o " dp e o " dp #
de, .
—+ = —cosfey —sinfe,, (1.2.22)
de

where Greek variables stand for r, 8, or ¢. Using the representations (1.2.20), we derive the dyadic
expansion

L=Vu=L,se,Qeg, (1.2.23)

where summation is implied over the repeated indices, o and 3. The spherical components of the
velocity gradient tensor, Lqg, are given in Table 1.2.1(b). The individual matrices, e, ® eg, can be
formulated using expressions (1.2.21).

Rate of expansion and vorticity
The rate of expansion is the trace of the velocity gradient tensor,

ou, Uy 1 Oug 1 3U<p
T2ty e o0+ e g

v'u:LTT+L99+L¢¢:

The spherical polar components of the vorticity are

B 1 O(sinfu,)  Oug B 1,1 Ou,  O(ruy)
or=Loe Lo =g (T g ) s le e = (GE e~ T )
1 ,0(ru ou,
wo = Log — Lor = — (8r") -5 ) (1.2.25)

1.2.4 Plane polar coordinates

Plane polar coordinates, (r,0), are defined in Figure 1.2.3 (see also Section A.11, Appendix A). Using
elementary trigonometry, we derive relations between the plane polar and corresponding Cartesian
coordinates,

T =r cosf, y =1 sinb, (1.2.26)

and the inverse relations,
r=+/x%+y?, § = arccos 2. (1.2.27)
r

Velocity gradient

To derive the components of the velocity gradient in plane polar coordinates, we express the gradient
operator and velocity field as
0] 10

V= " + ey <50’ u = u,e, + ugey, (1.2.28)
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0

FIGURE 1.2.3 lllustration of plane polar coordinates, (r,6), defined with respect to companion Carte-
sian coordinates, (x,y).

where e, and ey are unit vectors in the r and 6 directions, and u, and ug are the corresponding
velocity components.

The plane polar unit vectors are related to the Cartesian unit vectors by
e, =cosfe, +sinfe,, ep = —sinfe, +cosbe,. (1.2.29)
The inverse relations are
e, = cosfe, —sinfey, e, =sinfe, + cosfeq. (1.2.30)

All derivatives Oe,/0f are zero, except for two derivatives,

de, deg

= e _—

a " 0

where Greek variables stand for r or 6. Using the representations (1.2.28), we derive the dyadic
expansion

— —e,, (1.2.31)

L=Vu=L,se, ®eg, (1.2.32)

where summation is implied over the repeated indices o and 5. The plane polar components of the
velocity gradient tensor, Log, are given in Table 1.2.1(¢). The individual matrices, e, ® eg, can be
formulated using expressions (1.2.29).

Rate of expansion and vorticity

The rate of expansion is the trace of the velocity gradient tensor,

1, 9(ru,)  Oug
=Ly, + Log = — %Y. 1.2.33
V-u + Lo - ( o + 20 ) ( )
The nonzero component of the vorticity pointing along the z axis is
1, 0(rug) Ou,
7. _5. 1 _ _ 1.2.34
Wy LTO Ler = ( or 90 ) ( )

For a fluid that rotates as a rigid body around the origin of the xy plane with angular velocity 2,
u, = 0, ug = Qr, and w, = 2Q.
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FIGURE 1.2.4 lllustration of nonorthogonal curvilinear coordinates. The solid lines represent covariant
coordinates, (£,7,(), and the dashed lines represent the associated contravariant coordinates.

1.2.5 Axisymmetric flow

The velocity of an axisymmetric flow lies in an azimuthal plane of constant azimuthal angle, ¢,
measured around the axis of revolution. An example is laminar streaming (uniform) flow past a
stationary sphere. Referring to cylindrical or spherical polar coordinates, we set u, = 0 and obtain

u=uze, + uU,e, = U,€, + ugey, (1.2.35)

where the velocity components (u;, u,) and (u,, ug) depend on (z, o) in cylindrical polar coordinates
or (r, ) in spherical polar coordinates, but are independent of the azimuthal angle, ¢. The vorticity
of an axisymmetric flow points in the azimuthal direction,

w :ng e@. (1236)

The azimuthal vorticity component, w,, depends on (z, o) or (r, #), but is independent of .

1.2.6 Swirling flow

The velocity of a swirling flow points in the azimuthal direction,
u = U, e,. (1.2.37)

An example of a swirling flow is the laminar flow due to the slow rotation of a sphere in a fluid
of infinite expanse. The azimuthal velocity component, u,, depends on (z, ¢) in cylindrical polar
coordinates or (r, 6) in spherical polar coordinates, but is independent of the azimuthal angle, ¢. A
swirling flow can be superposed on an axisymmetric flow. The velocity of an axisymmetric flow in
the presence of swirling motion is independent of the azimuthal angle, ¢. The vorticity is oriented
in any arbitrary direction.

1.2.7 Nonorthogonal curvilinear coordinates

A system of nonorthogonal curvilinear coordinates, (£, 7, (), is illustrated in Figure 1.2.4. To describe
a flow, we introduce covariant and contravariant base vectors and corresponding coordinates and
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vector components, as discussed in Sections A.12-A.17, Appendix A. The gradient operator and
velocity vector can be expressed in contravariant or covariant component form. Correspondingly,
the velocity gradient tensor can be expressed in its pure contravariant, pure covariant, or mixed
component form, in four combinations.

The physical meaning of these representations stems from the geometrical interpretation of the
covariant and contravariant base vectors, combined with the definition of the directional derivative
of the velocity as the projection from the left of the velocity gradient tensor onto a unit vector
pointing in a desired direction.

Problems

1.2.1 Rigid-body rotation

Compute the velocity gradient tensor, rate-of-deformation tensor, and vorticity of a two-dimensional
flow expressing rigid-body rotation with angular velocity 2. The plane polar velocity components
are u, = 0 and ug = Qr.

1.2.2 Two-dimensional tensor base in plane polar coordinates

Formulate the four dyadic matrices e, ® eg in plane polar coordinates, where ac and /3 are r or 6.

1.2.3 Components of the velocity gradient tensor

Derive the components of the velocity gradient tensor shown in (a) Table 1.2.1(a), (b) Table 1.2.1(b),
and (¢) Table 1.2.1(¢).

1.3 Lagrangian labels of point particles

In Section 1.1, we introduced the fluid velocity, u, in terms of the average velocity of the molecules
constituting a fluid parcel, by taking the outer limit as the size of the parcel tends to zero. This
point of view led us to regarding u a field function of position, x, and time, ¢, writing u(x, t). Now
we compute the ratio between the mass and volume of a parcel and take the outer limit as the size
of the parcel becomes infinitesimal to obtain the fluid density, p, as a function of position, x, and
time, ¢, writing p(x,t).

FEulerian framework

We can repeat the process for any appropriate kinematic or intensive thermodynamic variable, f,
such as a spatial or temporal derivative of the velocity, the kinetic energy, the thermal energy, the
enthalpy, or the entropy per unit mass of a fluid, and thus regard that variable as a function of x
and t, writing

F(x,1). (1.3.1)

This point of view establishes an Eulerian framework for describing the kinematic structure of a flow
and the physical or thermodynamic properties of a fluid.
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Point particles

It is physically appealing and often mathematically convenient to describe the state of a fluid and
structure of a flow in terms of the state and motion of the constituent point particles. As a first
step, we identify the point particles by assigning to each one of them an identification vector, «,
consisting of three dimensional or dimensionless scalar variables called Lagrangian labels that take
values in a subset of an appropriate set of real vectors. In practice, the triplet

a = (04170(2,063) (132)

can be identified with the Cartesian or some other curvilinear coordinates of the point particles at a
specified instant in time. At any instant, the lines of constant oy, s, and a3 define a right-handed
system of curvilinear coordinates in physical space, as discussed in Sections A.8-A.17, Appendix A.

Lagrangian framework

The value of any kinematic, physical, or intensive thermodynamic variable at a particular location,
X, and at a certain time instant, ¢, can be regarded as a property of the point particle that happens
to be at that location at that particular instant. Thus, for any appropriate scalar, vector, or matrix
function f that can be attributed to a point particle in a meaningful fashion, we may write

f(xv t) = f[X(OL,t),t] = 5‘7(0‘30’ (133)

where X(a, t) is the position of the point particle labeled ¢ at time instant ¢, 8 is a constant, and
F is an appropriate variable expressing a suitable property of the point particles. Equation (1.3.3)
suggests that, in order to obtain the value of the function f at a point x at time ¢, we may identify
the point particle located at x at time ¢, read its label a, measure the variable F, and multiply
the value of F thus obtained by the coefficient 8 to produce f. Often f and F represent the same
physical variable and their distinction is based solely upon the choice of independent variables used
to describe a flow.

Velocity, vorticity, and velocity gradient
Applying (1.3.3) for the velocity, we obtain
u(x,t) = u(X(a,t),t) = U, t). (1.3.4)

In this case, the variable f is the fluid velocity, u, the variable F is the velocity of the point particle
labeled av at time instant ¢, denoted by U(e,t), and the coefficient /3 is equal to unity. Equation
(1.3.4) suggests that, to obtain the fluid velocity u at a point x at time ¢, we may identify the point
particle that resides at x at time ¢, look up its label, o, and measure its velocity, U.

Applying (1.3.3) for the vorticity, we obtain
w(x,t) = w(X(a,t),t) = 2Q(a, t). (1.3.5)

In this case, the variable f is the vorticity, w, the variable F is the angular velocity of the point
particle labeled a at time instant ¢, denoted by €(a,t), and the coefficient /3 is equal to 2.
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Applying (1.3.3) for the velocity gradient tensor, we obtain

oU;
oX,

Lij(x, t) = Lij (X(a,t)ﬂf) = (a,t) (136)
The expression between the two equal signs in (1.3.6) is the velocity gradient at the location of the
point particle labeled ¢ at time t, computed in terms of the relative velocity of neighboring point
particles, where X is the point-particle position. In this case, the coefficient 3 is equal to unity.

1.3.1 The material derivative

Since the velocity of a point particle is equal to the rate of change of its position, X, we may express
the point-particle velocity as

Ula,t) = (%)a(a,t). (1.3.7)

The partial derivative with respect to time keeping ¢ constant is known as the substantial, substan-
tive, or material derivative, and is denoted by D/Dt. Accordingly, equation (1.3.7) can be expressed
in the compact form

DX
U t) = — t). 1.3.
(e, ) D (e, t) (1.3.8)
In classical mechanics, the material derivative, D/Dt, is identical to the time derivative of a body
or particle, d/dt, as discussed in Section 1.5.

Chain rule

We have at our disposal two sets of independent variables that can be used to describe a flow,
including the Eulerian set, (x,t), and the Lagrangian set, (a,t). A relationship between the partial
derivatives of a function f with respect to these two sets can be established by applying the chain
rule, obtaining

b (e (80 (20) 2

For simplicity, we drop the parentheses around the Eulerian partial derivatives on the right-hand
side and use (1.3.8) and (1.3.4) to obtain

i _ @i, OF _ 95
Dt ot @ ox, ot

+u-Vf, (1.3.10)

which relates the material derivative to temporal and spatial derivatives with respect to Eulerian
variables. Summation is implied over the repeated index ¢ in the central expression.

If all point particles retain their value of f as they move about the domain of a flow, the
material derivative vanishes, D f/Dt = 0, and we say that the field represented by f is convected by
the flow.
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Convective derivative

The term u - Vf in (1.3.10) can be written as |u|df/0l,, where 0f/0l, is the rate of change of
f with respect to arc length measured in the direction of the velocity, I,,. If the field f is steady,
Of /0t = 0, and if the point point particles retain their value of f as they move in the domain of
flow, Df/Dt = 0, then 0f/dl, must be zero. In that case, the value of f does not change in the
direction of the velocity and is therefore constant along paths traveled by point particles, identified
as streamlines. However, the value of f is generally different along different streamlines.

1.3.2 Point-particle acceleration

Applying (1.3.10) for the velocity, we derive an expression for the acceleration of a point particle in
the Eulerian form

Duj 5Uj 8uj
= 2 X 1.3.11
S s TE TR e (13.11)
where summation is implied over the repeated index, i. In vector notation,
Du Ou ou
=_— = . = L 1.3.12
VR T Vu o Tu ( )

where L is the velocity gradient tensor. Explicitly, the components of the point-particle acceleration
are given in Table 1.3.1(a). If a point particle neither accelerates nor decelerates as it moves about
the domain of a flow, then Du/Dt¢ = 0.

The velocity distribution in a fluid that rotates steadily as a rigid body around the origin with
angular velocity € is u = € x x, and the associated vorticity is w = 2Q. Setting du/dt = 0, noting

that the velocity gradient tensor is equal to the vorticity tensor, =, and using (1.1.18), we obtain
the jth component of the acceleration,

1
a; = u; Eij = 3 Ui€ijk Wk = €jki Qru;, (1.3.13)
which shows that
a=0xu=0x(Qxx). (1.3.14)

Invoking the geometrical interpretation of the cross product, we find that the acceleration points
toward the axis of rotation and its magnitude is proportional to the distance from the axis of rotation.

Cylindrical polar coordinates

To derive the components of the point-particle acceleration in cylindrical polar coordinates, we
express the velocity in these coordinates and the velocity gradient tensor in the dyadic form shown
in (1.2.13). Formulating the product u - L, we derive the expressions shown in Table 1.3.1(b).
Alternative forms in terms of the material derivative of the cylindrical polar velocity components
are

ou Du ou u? Du u?
G =Gy FU Vi = 4= e Vi = R = -
Ou, Uoly  Dugy  Usly

ap, = —F- +u-Vu, + -~ T . (1.3.15)
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a :Duz_aum+u Vu _ Ouy aum+u 8uz+u Oug
T Dt ot ot o) Y oy 7 0z
Du,  Ouy _ Ouy, Ouy Ouy Ouy
V=D e TN VT g Ty T, Ty
a Du, Ou, .V, — U, e ou, . ou, . ou,
*7 Dt ot N ot ) Y oy * 0z
()
u _% 8u$+u 0ux+ui,8uI
i ot ) 70 o Oy
a_%+u auo—_’_u% uﬁau”_ﬁ
7 ot 0 7 Oo o Oy o
_ Ouy, Ou, Ouy Uy OUuy  Ugly
i 8t+$8z+u030+a Op o
(o)
o = ou, L ou, ug ou, u.(p ou,. B ug + “?a
ot ar r 00  rsinf Oy r
_ Oug Oug  ug Oug U, Oug upug cotl ,
4= ot +UT87"+7" 89+rsin9 de r r e
_ Ouy, Ou,  ug Ouy, Uy Oy, Uy
Y= o L or + r 00  rsinf Oy + r (ur-i-ue cot9)
(d)
_ Ou, i ou, ug ou, B 13
o T"e0 T a9 v
_Oug ,  Ous e Ous  urtg
YW= T T a0 Ty

TABLE 1.3.1 Components of the point-particle acceleration in (a) Cartesian, (b) cylindrical polar, (¢)
spherical polar, and (d) plane polar coordinates.
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These expressions illustrate that the cylindrical polar components of the acceleration are not simply
equal to the material derivative of the corresponding polar components of the velocity. In the case
of a fluid that rotates steadily as a rigid body around the x axis with angular velocity €2, so that
Uy =0, us =0, and u, = Qo, we find that a, =0, a, = —ui/a, and a, = 0. These expressions are
consistent with the corresponding Cartesian form (1.3.14).

Spherical polar coordinates

Working as in the case of cylindrical polar coordinates, we derive the spherical polar components of
the point-particle acceleration shown in Table 1.3.1(¢). Alternative forms in terms of the material
derivative of the spherical polar velocity components are

Du, u% + ui Dug  wuyup cotld o
ay = — — ——- % ap = — us,
Dt r 0 Dt T r ¢
D
a, = ];Lf 4 “7*0 (ur + ug cot B). (1.3.16)

We observe that the spherical polar components of the acceleration are mot simply equal to the
material derivative of the corresponding polar components of the velocity.

Plane polar coordinates

Working as in the case of cylindrical polar coordinates, we derive the plane polar components of
the point-particle acceleration shown in Table 1.3.1(d). Alternative forms in terms of the material
derivative of the plane polar velocity components are

a Du, uz a Dug  u,up
= _ 9 = —
" Dt r’ Dt T

(1.3.17)

We observe once again that the plane polar components of the acceleration are not simply equal to
the material derivative of the corresponding polar components of the velocity.

1.3.3 Lagrangian mapping

We have regarded a fluid as a particulate medium consisting of an infinite collection of point particles
identified by a vector label, . The instantaneous position of a point particle, X, is a function of «
and time, ¢. This functional dependence can be formalized in terms of a generally time-dependent
mapping of the Cartesian labeling space of a to the physical space, a — X, written in the symbolic
form

X(t) = Ci(a), (1.3.18)

as illustrated in Figure 1.3.1. The subscript ¢ emphasizes that the mapping function C; may change
in time. Some authors unfortunately call the mapping function C;(c) a motion. We will assume
that C; is a differentiable function of the three scalar components of a.

It is important to realize that C; is time-dependent even when the velocity field is steady,
and is constant only if a point particle labeled « is stationary. If we identify the label o with the
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“ X

1

&)

o %

FI1GURE 1.3.1 Lagrangian mapping of the parametric space, «, to the physical space, x. The position
of a point particle in physical space is denoted by X.

Cartesian coordinates of the point particles at the origin of time, ¢ = 0, then @ = X (¢ = 0) and
Co(a) =X(t=0).

Lagrange Jacobian tensor

A differential vector in labeling space, dea, is related to a differential vector in physical space, dX,
by the equation

dX =da-J =J7 - de, (1.3.19)

where the superscript T denotes the matrix transpose. We have introduced the Jacobian matrix of
the mapping function, C;, with elements

OCy.
= —=. 1.3.20
jl] 3041' ( )
In index notation, equation (1.3.19) takes the from
dX; = a;Jj; = ji?daj’ (1.3.21)
where summation is implied over the repeated index, j. Explicitly,
r 00X, 00X an ]
8041 8a1 3011
= X X X
J=vx= | 2 09Xz 09X , (1.3.22)

3042 (90(2 8052
0X1 0Xy 0Xj3
L 80&3 8a3 8043 J

where V = (0/0ay,0/0az,0/0as) is the gradient in the labeling space. For convenience, we have
defined X; = X, Xo =Y, and X3 = Z. By definition, the components of the Lagrange Jacobian
tensor satisfy the relations

0Ti; 0Tk

T = B (1.3.23)
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for any ¢, j, and k. When these conditions are fulfilled, the Lagrangian field X (a) can be constructed
up to an arbitrary constant by integrating the differential equations (1.3.20).

Lagrangian metric

The differential vector (day,0,0) in labeling space is mapped to the following differential vector in
physical space,

oc;

dx® = 5 dou. (1.3.24)

(63}
Similar equations can be written for dX(? and dX®),

dX® = % day, dxX® = ? d

. 1.3.2
(0%} (0%} a3 ( 5)

The three vectors, dX(®), dX(®) and dX®), are not necessarily orthogonal.

A differential volume in labeling space, dV (a), is mapped to a corresponding differential

volume in physical space, dV(X). To derive a relationship between the magnitudes of these two
volumes, we formulate the triple mixed product defining the volume,
o, 0y 96,
(9041 8042 8@3
Now we assume that dX () are arranged according to the right-handed rule, identify the left-hand
side with dV/(X), and set day das dag = dV(a) to obtain

(dX® x dX®@ ). ax® = ( (da; das dag). (1.3.26)

dV(X) = JdV(a), (1.3.27)
where
_ (€t 0Ciy OC: _ _ T
= (8041 X 8042) Do det(J) =det(T ) (1.3.28)

is the Lagrange metric. Equation (1.3.27) identifies the determinant, J, with the ratio of two
corresponding infinitesimal volumes in physical and labeling space. For simplicity, we will denote
dV(X) as dV.

Dyadic expansion

Let €; be Cartesian unit vectors in the labeling space, a, and e; be Cartesian unit vectors in physical
space, X, for ¢ = 1,2,3. The Lagrange Jacobian tensor admits the bichromatic dyadic expansion

J =Jije;®ej, (1.3.29)

where summation is implied over the repeated indices, ¢ and j. Working as in Section 1.2 for the
velocity gradient, we may expand the Lagrange Jacobian tensor in a different base comprised of
Cartesian or curvilinear base vectors denoted by Greek indices,

J = Jaﬁ 65 ® e,. (1.3.30)

For example, € can be cylindrical polar unit vectors in labeling space and eg can be spherical polar
unit vectors in physical space.
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1.3.4 Deformation gradient

In the special case where the vector label « is identified with the Cartesian coordinates of a point
particle at a specified time, we set €; = e; and obtain the monochromatic dyadic expansion

T =Jijei®e; =Jysege,, (1.3.31)

where summation is implied over the repeated indices, ¢ and j corresponding to Cartesian coordi-
nates, as well as over the repeated indices § and = corresponding to general curvilinear coordinates.
In this case, the transpose of the Lagrange Jacobian tensor is called the deformation gradient. It
can be shown that the relative deformation gradient obeys transformation rules that render it a
second-order Cartesian tensor (e.g., [365]). A distinguishing feature of the deformation gradient is
that it is dimensionless.

Relative deformation gradient

Let us identify a with the Cartesian coordinates of a point particle at an early time, ¢, and denote
the corresponding coordinates of the point particles at the current time 7 by &, so that & = C, ().
Having made this choice, we recast equation (1.3.19) into the form

dé = Fy(r) - da, (1.3.32)

where F;(7) is the relative deformation gradient, also simply called the deformation gradient and
denoted by F, with components

9
F;; = . 1.3.
= e (1.3.33)
Rearranging (1.3.32) for an invertible deformation gradient, we obtain
da = F~1 . d¢. (1.3.34)

It is sometimes useful to introduce the displacement field, v = & — a.. Solving for £ and substituting
the result into (1.3.33), we obtain

Fij = 0;5 + Dsj, (1.3.35)
where d;; is Kronecker’s delta and
81}2‘
D= —- 1.3.36
J aaj ( )

is the displacement gradient tensor.

Notation in solid and continuum mechanics

In solid and continuum mechanics, equation (1.3.32) holds true, subject to two changes in notation:
£ = x, and o« — X. Thus, by convention, in the theory of deformable solids, X represents the
Cartesian coordinates of a particle in a reference state and x are the corresponding coordinates in
the current state. Different notation is employed in different texts.
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Polar decomposition

The polar decomposition theorem guarantees that the deformation gradient tensor can be resolved
into the product of an orthogonal tensor representing rotation, R, and a symmetric and positive-
definite tensor representing deformation, U or V, so that

F=R-U=V R, (1.3.37)

where U is the right stretch tensor and V is the left stretch tensor. A small material vector da
deforms under the action of U and then rotates under the action of R, or rotates under the action
of R and then deforms under the action of U. A practical way of carrying out the decomposition is
suggested by the forthcoming equations (1.3.39) and (1.3.48).

Right Green—Lagrange strain tensor

Using (1.3.32), we find that the square of the length of a material vector, d€, corresponding to de,
is given by

|d¢|> = d¢ - d¢ = (F -da) - (F - da) = da - (FT - F) - da, (1.3.38)

where the superscript T denotes the matrix transpose. This expression motivates introducing the
right Cauchy—Green strain tensor, C, defined in terms of the deformation gradient as

C=F".F=U2% (1.3.39)
By definition,
|d¢]? = da - C - dau. (1.3.40)
In terms of the displacement gradient tensor,
C=1+D+D" +D".D. (1.3.41)
The last quadratic term can be neglected in the case of small (linear) deformation.

Because C is symmetric and positive definite, it has three real and positive eigenvalues and
three corresponding orthogonal eigenvectors (Problem 1.3.6). If dg; is the jth eigenvector of C with

corresponding eigenvalue 5?, then

|dg;] = s51de,l, (1.3.42)
where d§; is the image of the eigenvector and s; is the stretch ratio, for j =1,2,3.
The right Green—Lagrange strain tensor is defined as
(C—-1) :e+%DT . D, (1.3.43)
where

(D+D") (1.3.44)
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is the infinitesimal strain tensor. Substituting into (1.3.40) the expression
C=1+2¢ (1.3.45)
and rearranging, we obtain
|dé]? — |da|? = 2da - € - da. (1.3.46)

We see that the right Green-Lagrange strain tensor determines the change in the squared length of
a material vector due to deformation.

Left Green—Lagrange strain tensor
Using (1.3.34) and working in a similar fashion, we obtain
lda|? = da-da = (F~!-dg) - (F~1-dg) =d¢- (F-FT)~1.d¢. (1.3.47)
This expression motivates introducing the left Cauchy—Green strain tensor
B=F - FT =Vv2 (1.3.48)
By definition,
|da)? = d¢-B~! - d¢. (1.3.49)
In terms of the displacement gradient tensor,
B=1+D+D"+D.-D". (1.3.50)
The last quadratic term can be neglected in the case of small (linear) deformation.

Because B is symmetric and positive definite, it has three real and positive eigenvalues and
three corresponding orthogonal eigenvectors (Problem 1.3.6). The eigenvalues of B are the same as

those of C, but the corresponding eigenvectors are generally different. If dep; is the jth eigenvector

of C corresponding to the eigenvalue sf, then

dep; = (F7)~' - do; (1.3.51)

is an eigenvector of B corresponding to the same eigenvalue. Applying equation (1.3.49), we obtain
1

|dog;| = . |dp | (1.3.52)
J

for j = 1,2,3, where s; is the stretch ratio.

Constitutive equations

The Cauchy—Green strain tensors find important applications in developing constitutive equations
that relate the stresses developing in a fluid to the deformation of fluid parcels, as discussed in
Section 3.3.
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Problems

1.3.1 Lagrangian labeling

Discuss whether it is possible to label all constituent point particles of a three-dimensional parcel
using a single scalar variable, or even two scalar variables.

1.3.2 Material derivative of the acceleration

Derive an expression for the material derivative of the point-particle acceleration, Da/Dt, in Carte-
sian coordinates in terms of derivatives of the velocity with respect to Eulerian variables.

1.3.3 Flow due to the motion of a rigid body

Consider the flow due to the steady motion of a rigid body translating with velocity V and rotating
about a point x¢ with angular velocity € in an otherwise quiescent fluid of infinite expanse. In a
frame of reference moving with the body, the flow is steady. Explain why the velocity field must
satisfy the equation

0
a—;‘ = [V4+Qx (x—x0)] - Vu. (1.3.53)
Does this equation also apply for a semi-infinite domain of flow bounded by an infinite plane wall?

1.3.4 Temperature recording of a moving probe

A temperature probe is moving with velocity v(t) in a temperature field, T'(x,t). Develop an
expression for the rate of the change of the temperature recorded by the probe in terms of T'(x,t)
and v(t).

1.3.5 Relative deformation gradient

(a) Explain why F (4 (t) = I, where I is identity matrix.

(b) If a fluid is incompressible, the volume of all fluid parcels remains constant in time, as discussed
in Section 1.5.4. Show that, for an incompressible fluid, det(F (7)) = 1.

(¢) A fluid is undergoing simple shear flow along the « with velocity u, = &y, uy =0, u, = 0, where
& is a constant shear rate with dimensionless of inverse time. Compute the relative deformation
gradient.

1.3.6 Cauchy—Green strain tensors

Show that the tensors B and C are symmetric and positive definite. A tensor, A, is positive definite
if x- A -x > 0 for any vector with appropriate length, x.

1.4 Properties of fluid parcels and mass conservation

We have seen that a fluid parcel can be identified by labeling its constituent point particles using a
Lagrangian vector field, a, that takes values inside a subset of a three-dimensional labeling space,
A. Using (1.3.27), we find that the parcel volume is

V,= [ dv = %JdV(a), (1.4.1)

Parcel
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(a) (6)

=

FIGURE 1.4.1 (a) lllustration of a convected fluid parcel or stationary control volume in a flow. Point
particles over an infinitesimal patch of a material surface, dS, move during a small period of time,
dt, spanning a cylindrical volume, dV = w,dt dS, where w,, is the normal velocity. The dashed
line outlines the new parcel shape. (b) The surface integral [[u-ndS is the rate of change of
the parcel volume. In contrast, the surface integral [[ pu-ndS is the rate of convective mass
transport outward from a control volume.

where dV (a) is an infinitesimal volume in labeling space. The second integral shows that J plays
the role of a volume density distribution function.

1.4.1 Rate of change of parcel volume and Euler’s theorem in kinematics

Differentiating (1.4.1) with respect to time and noting that the domain of integration in labeling
space is fixed, we find that the rate of change of volume of the parcel is given by

— 1.4.2
dt ﬁ}’areel ﬁ\ dV ( )

Note that a time derivative of an integral with respect to « over a fixed integration domain, A, is
transferred as a material derivative inside the integral.

Since point particles move with the fluid velocity and the parcel shape changes only because
of normal motion across the instantaneous parcel configuration, we may also write

dV,
— = . 1.4.
i” /Pu nds, (1.4.3)

arcel
where n is the unit normal vector pointing outward from the parcel and dS is a differential surface
area, as illustrated in Figure 1.4.1. Both sides of (1.4.3) have units of length cubed divided by time.
The thin closed line in Figure 1.4.1(a) describes the boundary of a fluid parcel at a certain time, and
the bold closed line describes the boundary after time d¢. The volume between the two boundaries
is the change in the parcel volume after time d¢. Further justification for (1.4.3) will be given in
Section 1.10.

Using the divergence theorem to convert the surface to a volume integral, and introducing the
rate of expansion, & = V - u, we obtain from (1.4.3)

dv,
=P _ ﬁ aJ dV(a (1.4.4)
dt Parcel
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Comparing (1.4.2) with (1.4.4) and noting that the subset A is arbitrary to eliminate the integral
signs, we obtain Euler’s theorem of kinematics stating that

1 DJ
o= (1.4.5)

We have found that the rate of change of the Jacobian, 7, following a point particle is proportional
to the rate of expansion of the fluid.

A formal but more tedious method of deriving (1.4.5) involves taking the material derivative
of the determinant of the Jacobian matrix stated in (1.3.22), finding

r 0X1 0Xo 0X3 T
80&1 3041 80&1
D7 D 0X: 09X, 0X3 |\ _
o = o det( e ) =T+ T+ Ts, (1.4.6)
00X, 0Xy 0Xs
L 8a3 3043 80&3 J
where
r oU; 0Xo an T [ oUy aX] 00Xy 0X3 7
day Oy Oy 0X; 0a; Oy Oay
. oUu; 0X, 0X;3 . oU; an 00Xy 0X3 _ oUy
jl o det( 30[2 8&2 80[2 ) o det( aXJ 3042 3042 80[2 ) o aXl j (147)
Uy 09Xy 0X3 oUy 0X; 00X, 0X;
L 8013 (9013 80é3 . L an (90&3 3043 60[3 ]

The determinants J5 and J3 are computed in a similar fashion. The corresponding matrices arise
from J by replacing X5 with Uy in the second column or X3 with Uz in the third column. The
results are then added to produce (1.4.5).

Expressing the material derivative in (1.4.5) in terms of Eulerian derivatives, we find that

aa—{—i—v-(ju):QaJ, (1.4.8)

which can be regarded as a transport equation for 7.

1.4.2 Reynolds transport theorem

The rate of change of a general scalar, vector, or tensor property field, P, integrated over the volume
of a fluid parcel is

d d _ [ b(PI)
all =g [l prve- [ 757 v )
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For example, P can be identified with the density or specific thermal energy of the fluid. To derive
the last expression in (1.4.9), we have observed once again that the volume of integration in labeling
space is independent of time.

Expanding the derivative inside the last integral and using (1.4.5), we find that

d DP
— PdV:ﬁ (= +PV-u)dv. (1.4.10)
dt Parcel Parcel Dt

Expressing the material derivative inside the integrand in terms of Eulerian derivatives and rear-
ranging, we obtain

d oP
— PdV = — + V- (P dv. 1.4.11
dt Parcel ﬁarcel [ ot * ( U)] ( )
Finally, we apply the divergence theorem to the second term inside the last integral and derive the
mathematical statement of the Reynolds transport theorem,

4 PdV:ﬂ 8—PdV—&- Pu-nds, (1.4.12)
P

dt Parcel arcel ot Parcel

where n is the normal unit vector pointing outward from the parcel and the last integral is computed
over the parcel surface. Applying (1.4.12) with P set to a constant, we recover (1.4.3).

Balance of a transported field over a control volume

The volume integral on the right-hand side of (1.4.12) expresses the rate of accumulation of the
physical or mathematical entity represented by P inside a fixed control volume that coincides with
the instantaneous parcel shape. The surface integral on the right-hand side of (1.4.12), [[ Pu-ndS,
expresses the rate of convective transport of the entity P outward from the control volume. For
example, the integral [[ pu-ndS, represents the convective transport of mass outward from a control
volume, where p is the fluid density. It is interesting to contrast this interpretation with our earlier
discovery that the surface integral [| u-ndS represents the rate of change of volume of a fluid whose
instantaneous boundary defines a control volume.

The left-hand side of (1.4.12) expresses the rate of accumulation of P inside the parcel due,
for example, to diffusion across the parcel surface. Introducing a corresponding physical law, such
as Fick’s law of diffusion or Newton’s second law of motion, transforms (1.4.12) into a transport
equation expressing a balance over a fixed control volume. This interpretation is the cornerstone of
transport phenomena (e.g., [36]).

1.4.3 Mass conservation and the continuity equation
In terms of the fluid density, p, the mass of a fluid parcel is given by
my, = ﬂ (X, ) AV (X) = ﬂ plet) T dV (), (1.4.13)
Parcel A

where X is the point-particle position, Applying (1.4.9) and (1.4.11) with P = p and requiring
that mass neither disappears nor is produced in the flow—which is tantamount to stipulating that
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fluid parcels retain their mass as they move about the domain of flow-we set dm,/dt = 0 and
require that the integrands are identically zero. The result is the continuity equation expressing
mass conservation for a compressible or incompressible fluid,

D D Dp dp

—(paV(X)) =0, —(pT)=0, TLH+pV-u=0, L+V:(pu)=0. (1414
Dt(p (X) Bt () Dt PV g TV (Pw) (14.14)
Mass conservation imposes a kinematic constraint, demanding that the structure of the velocity field
be such that fluid parcels do not tend to occupy the same volume in space, leaving behind empty
holes.

Integral mass balance

Now we apply the Reynolds transport theorem (1.4.12) with P = p and set the left-hand side to
zero to obtain an integral statement of the continuity equation in Eulerian integral form,

ﬁ @dV:—/ pu-nds, (1.4.15)
v, Ot B

c

where V is a fixed control volume that coincides with the instantaneous volume of a fluid parcel, and
B. is the boundary of the control volume. Equation (1.4.15) states that the rate of accumulation
of mass inside a stationary control volume is equal to the rate of mass transport into the control
volume through the boundaries.

Equation (1.4.15) can be produced by integrating the last equation in (1.4.14) over the control
volume and using the divergence theorem to obtain a surface integral. Working similarly with (1.4.8),
we obtain

%—jdV:—/ Ju-ndS—&-Qﬁ aJ dv, (1.4.16)
v, Ot B. v,

@

which can be regarded as a transport equation for J in Eulerian integral form, where o« = V - u is
the rate of expansion.

1.4.4 Incompressible fluids and solenoidal velocity fields

Since point particles of an incompressible fluid retain their initial density as they move in the domain

of flow, the material derivative of the density is zero,
Dp
= _o. 1.4.17
— ( )

The continuity equation (1.4.14) simplifies into

Oy, % N Oou,

Vous ox y 0z

=0. (1.4.18)

A vector field with vanishing divergence, satisfying (1.4.18), is called solenoidal. According to our
discussion in Section 1.1, fluid parcels of an incompressible fluid translate, rotate, and deform while
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retaining their volume. The terms incompressible fluid, incompressible flow, and incompressible
velocity field are sometimes used interchangeably. However, strictly speaking, compressibility is
neither a kinematic property of the flow nor a structural property of the velocity field, but rather a
physical property of the fluid. Combining (1.4.18) with (1.4.5), we find that

DJ
_ 1.4.19
Dt 0, ( )

which states that the Jacobian is convected with the flow. The mapping function C; introduced
in (1.3.18) is then called isochoric, from the Greek word toog, which means “equal,” and the word
xwpos, which means “space.”

Following are three examples of solenoidal velocity fields describing the motion of an incom-
pressible fluid:

1. Since the divergence of the curl of any continuous vector field is identically zero, a velocity field
that derives from a differentiable vector field, A, as u = V x A is solenoidal. The function A
is called the vector potential, as discussed in Section 2.6.

2. Consider a velocity field that derives from the cross product of two arbitrary vector fields, A
and B, as u = A x B. Straightforward differentiation shows that V-u=B-VxA—-A -V xB.
We observe that, if A and B are both irrotational, u will be solenoidal. Since any irrotational
vector field can be expressed as the gradient of a scalar function, as discussed in Section 2.1,
the velocity field u = Vi) x Vy is solenoidal for any pair of differentiable functions, ¥ and Y.

3. Consider a velocity field that derives from the gradient of a scalar function, ¢, called the
potential function, u = V¢. This velocity field is solenoidal, provided that ¢ satisfies Laplace’s
equation, V2¢ = 0. In that case, ¢ is called a harmonic potential.

Polar coordinates

In cylindrical polar coordinates, (z,0, ), the continuity equation for an incompressible fluid takes
the form

_ Oug
- Oz

ous) | 1 9uy
Oo o Jdy

V-u 1 =0. (1.4.20)
(o

In spherical polar coordinates, (r, 8, ), the continuity equation for an incompressible fluid takes the
form
_ Ou, u, 1 0ug g 1 Oug

2—+ - —+4+ — =0. 1.4.21
aor r +7‘ 00 + r C0t0+rsin6 dp 0 ( )

In plane polar coordinates, (r,8), the continuity equation for an incompressible fluid takes the form
1 0(ruy) 1 Oug
o Or r 00

Expressions for the divergence of the velocity in more general orthogonal or nonorthogonal coordi-
nates are given in Sections A.8—A.17, Appendix A.

V-u = 0. (1.4.22)
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Kinematic reciprocity of incompressible flows

Let u and u’ be two unrelated solenoidal velocity fields, V-u =0 and V - u’ = 0. Assuming that
neither velocity field contains singular points and using (1.4.18), we derive the identity

0 ,Buj au;
Ouj — 0. 1.4.2
oz, (“ ox; ax) 0 (1.4.23)

Integrating (1.4.23) over an arbitrary control volume that is bounded by a surface, D, and using the
divergence theorem, we obtain

ou; ou’;
w, —2 —u; —2L ) n; dS =0, 1.4.24

/D( 7 axi ? 81‘1) J ( )
where n is the unit vector normal to D. Equation (1.4.24) places an integral constraint on the
mutual structure of any two incompressible flows over a common surface.

1.4.5 Rate of change of parcel properties

We turn to discussing the computation of the rate of change of an extensive kinematic, physical,
or thermodynamic variable of a generally compressible fluid parcel. By definition, an extensive
variable is proportional to the parcel’s volume. For each extensive variable, there is a corresponding
intensive variable so that when the latter is multiplied by the parcel volume and perhaps by a
physical constant, it produces the extensive variable.

Pairs of extensive—intensive variables include momentum and velocity, thermal energy and
temperature, kinetic energy and square of the magnitude of the velocity. In developing dynamical
laws governing the behavior of fluid parcels, it is useful to have expressions for the rate of change
of an extensive variable in terms of the rate of change of the corresponding intensive variable. Such
expressions can be derived using the continuity equation (1.4.14).

Momentum
An important extensive variable is the linear momentum of a fluid parcel, defined as

M, = | X0 UX, ) dv(X) = ﬂ ploe ) Ula, 1) 7 AV (a). (1.4.25)
A

Parcel

Using the continuity equation (1.4.14), we express the rate of the change of the linear momentum
in terms of the acceleration of the point particles as

dM,, DU D(pJ)
- — 1.4.2
3= [ (5 a0+ v@n PR avie) (1.4:26)
and obtain
dM, DU
= _— X . . .
= B V) (1.4.27)

Equation (1.4.27) is true for incompressible as well as compressible fluids.
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Angular momentum

The angular momentum of a fluid parcel computed with respect to the origin is

ATEAK/%xﬂ[thxxﬁ]&dxrzﬂCmmw[thxmﬂ]jde) (1.4.28)

arcel

Working as in the case of the linear momentum and recalling that DX /Dt = U, we find that

dA DX xU
L= ﬁ pﬁ dV(X), (1.4.29)
dt Parcel Dt
and then
dA, DU
= X x —dV(X 1.4.

for compressible or incompressible fluids.

Generalization

For an arbitrary scalar, vector, or tensor intensive field, F, we find that

d d
— FpdV = — FpJ dV 1.4.31
dt PG/I"CS/Z) dt MJ\A pj (a)7 ( )
yielding
d DF
= dV = —dV, 1.4.32
il 7o =1, (1432

for compressible or incompressible fluids. Equation (1.4.27) emerges by setting 7 = U.

Problems

1.4.1 Rate of change of an extensive variable
Derive the right-hand sides of (1.4.30) and (1.4.32).

1.4.2 Vector potential

Show that the vector potentials A and A 4 Vf generate the same flow, where A and f are two
arbitrary functions. Is this an incompressible flow?

1.4.3 Reynolds transport theorem
Show that (1.4.30) is consistent with (1.4.12).
1.5 Point-particle motion

In classical mechanics, a traveling point particle is identified by its Cartesian coordinates,

z = X(t), y=Y(t), 2= Z(t). (1.5.1)
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The position of the point particle is
X=X(t)e, +Y(t)e, + Z(t)e., (1.5.2)

where e, e, and e, are Cartesian unit vectors.

Velocity

By definition, the velocity of a point particle, U, is equal to the rate of change of its position in
space. If the x coordinate of a point particle has changed by an infinitesimal displacement, d X, over
an infinitesimal time period, d¢, then, by definition, U, = dX/dt. Writing the counterparts of this
equation for the y and z coordinates, we obtain

dx dy Y

- U — — U, = —=. 1.5.3
dt’ vyoooae’ dt ( )

U =

In vector notation,

dX
U= a =Uye,+Uyey,+U.e,. (1.5.4)

In the present context of isolated point-particle motion, the total derivative, d/d¢, is the same as
the material derivative, D/Dt.

Acceleration

The acceleration vector, a, is defined as the rate of change of the velocity,

du  d’X
a:azem-l-ayey-l-azeZ:E:F. (155)
Accordingly, the Cartesian components of the point-particle acceleration are
d°X a4’y a4’z
a’I: =9 ay:77 azzi' (1.5.6)
de? de? de?

If the Cartesian coordinates of a point-particle are constant or change linearly in time, the acceler-
ation is zero.

1.5.1 Cylindrical polar coordinates
The cylindrical polar coordinates of a point particle are determined by the functions
x = X(t), o= X(t), © = ®(t). (1.5.7)
The position of a point particle is given by
X =X(t)e, +2(t) ey, (1.5.8)
where e, are cylindrical polar unit vectors for a = x,0, . The rates of change of the cylindrical

polar unit vectors following the motion of a point particle are given by the relations

de, de, do® del B 7d<I>

(1.5.9)

dat at odt e dt dat
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Note that the first unit vector, e,, is fixed, while the second and third unit vectors, e, and e,
change with position in space.

Velocity

Taking the time derivative of (1.5.8) and using relations (1.5.9), we derive an expression for the
point particle velocity,

dX d dX de, dX de,
=—=—(Xe,+Xe,)=—e,+ X —+ —e, + X —, 1.5.1
U= g e tre) = qreat X+ re+ X (15.10)
and then
dX dX d> do
U:it—ﬁem‘i—aeg“rZEe@. (1511)
The cylindrical polar components of the velocity are then
dX dx do
Uy = —, U, = —, U,=%—. 1.5.12
dt dt © dt ( )

Since @ is a dimensionless function, all three right-hand sides have units of length divided by time.

Acceleration

Differentiating expression (1.5.11) with respect to time and expanding the derivatives, we derive an
expression for the acceleration,

= —ng = g(d—Xe —|—d—2e —|—Zd—q)e )
I U AN R A dt ¢
RED'¢ d’ dX de, d¥ d® d’® d® de
= — — et — T Y — — —=F, 1.5.13
de? €z + a2 © + de dt + dt dt et de? et de dt ( )
Now we substitute relations (1.5.9) and find that
a*—dQX——dQXe —i—dg—ze +§d—¢e —&—Ed—q}e —|—Edg—q)e — @d—@e (1.5.14)
oAz A2 Tt A2 T e &t P At At ¢ de2 % dt d¢ 7 e

Finally, we consolidate the terms on the right-hand side and obtain the cylindrical polar components
of the acceleration,

de?

d2X 2y dd\ 2 d?® dxdd 1 d d®
= _x . =3 +277:77< 2
dt2 dt dt ~ T dt

X ) e 52 9%\ (1515
G2 = 342 @ at dt) ( )

Note that a change in the azimuthal angle, ®, is accompanied by radial acceleration, a,-.

1.5.2 Spherical polar coordinates

The spherical polar coordinates of a moving point particle are determined by the functions

r = R(t), 0= 0(t), o = B(t). (1.5.16)
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The position of a point particle is described as
X = Re,, (1.5.17)

where e, are spherical polar unit vectors for a« = 7,0, . The rates of change of the unit vectors
following the motion of a point particle are given by the relations

der—@sin@e —l—@e @—@cos@e —@e
- dt e Y ar  dt L TR
(1.5.18)
de,, do do
T cos@eg—amn@er

All three unit vectors change with position in space.

Velocity

Taking the time derivative of (1.5.17) and using relations (1.5.18), we derive an expression for the
point-particle velocity,
dX dR de, dR

dd | de
Ufg—aer—&—R " _Eer—’_RE Sln@ew—i—REeg. (1.5.19)

The spherical polar components of the velocity are

dR doe
U, =—, Up=R—, U,=R @
at Y p = Rein® 3
Since the functions © and ® are dimensionless, all three right-hand sides have units of length divided
by time.

(1.5.20)

Acceleration

Differentiating expression (1.5.19) with respect to time, we obtain the point-particle acceleration, a.
Expanding the derivatives, we find that

d’xX
a= > =A+B+C (1.5.21)
where the term
dR d2R dRde, d°R dR d® dR d©
e, =—e, — sin® — 1.5.22
=@ ( at ) et e et aa et e (192
corresponds to the first term on the right-hand side of (1.5.19), the term
d/_do dR d® d*® do d
BE&(R 7 sm@ew) = dlf 7 s1n®eq,+R sin9e¢+RE cos@—(;)e@ (1.5.23)
. _de, dRd® d*e d® de
+R— @dt“o— T q SnOe,+ R 5 sinOe, + R cosOe,

—R (%)2 sin®cosOey — R (%)2 sin’ e, (1.5.24)
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corresponds to the second term on the right-hand side of (1.5.19), and the term

d,/_de dR d© d’e do de
C= (R ge)=Gaotiget Ry &
dR dO d?e d® de de\ 2
—EEGQ“‘R@GQ‘FREECOSOQCP—R(E) (S7% (1525)

corresponds to the third term on the right-hand side of (1.5.19). Consolidating the various terms,
we derive the cylindrical polar components of the acceleration,

d*R d®\2 de\ 2
ar = —R(—dt) sin @—R(—dt) ,
d?e dR d© dd\2
_ _ : 1.5.26
a0 =R > +22 = —R(Z) sin® cos®, (1.5.26)
d?® dR d® doe dd
=R—— si 2 i 2R — — cos©.
ay Rdt2 sin © + T sin © + Rdt & cos ©

Note that a change in the meridional angle, ©, or azimuthal angle, ®, is accompanied by radial
acceleration.

1.5.3 Plane polar coordinates
The plane polar coordinates of a point particle are described by the functions

r = R(t), 0 =0(). (1.5.27)
The position of a point particle is described as

X = Re,, (1.5.28)

where e, are plane polar unit vectors for a« = r, 6. The rates of change of the unit vectors following
the motion of a particle are given by
de, dO© deg doe

a  dt

dey _d© 1.5.29
dt a < ( )

Note that both unit vectors change with position in space.

Velocity

To derive the velocity components, we work as previously with cylindrical and spherical polar coor-
dinates, and find that
dR de

== Uy=R— 1.5.30
dta 6 ( )

U, = .
" dt

Note that the right-hand sides have units of length divided by time.
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Acceleration
The plane polar components of the particle acceleration are

d’R de\ 2 0 _dRd® 1d/,,dO

TzifR(7> , —R— Qiisz(]{?i). 1.5.31

TS dt T A TR TR P TA G (1.5.81)

Note that a change in the polar angle, ©, is accompanied by radial acceleration. If a particle moves

along a circular path of constant radius R centered at the origin, dR/d¢t = 0, the acceleration
components are

de\z Uz d’e

w=R(F) =% w-Ram

A radial acceleration is necessary to follow the circular path.

(1.5.32)

1.5.4 Particle rotation around an axis

The new position of a point particle that has rotated around the z axis by angle ¢,, around the y
axis by angle ¢,, or around the z axis by angle ¢, is given by

x" = ’R,(m)(gow) - X, X" = ’T\’,(y)(goy) - X, X"V = R(Z)(goz) - X, (1.5.33)

where x is the old position and

1 0 0 cosp 0 sing
RO (p)=] 0 cosp —sing |, RW (p) = 0 1 0 ,
0 singp cos —singp 0 cosp
cosp —sing 0
RA(p)= | sing cosg 0 (1.5.34)
0 0 1

are orthogonal rotation matrices, meaning that their transpose is equal to their inverse.

Rotation around an arbitrary axis

To rotate a point by a specified angle ¢ about an axis x that passes through the origin, as shown in
Figure 1.5.1, it is convenient to introduce a rotated Cartesian coordinate system comprised of primed
axes, as discussed in Section 1.1.8. We then apply a forward transformation, x — x’, followed by a
rotation and then a backward transformation, x’ — x, to obtain the overall transformation

x" =P . x, (1.5.35)
where
P=AT R A (1.5.36)

is a projection matrix. The first row of the rotation matrix A contains the direction cosines of the
PR
x} axis,

a= A1 =cosaq, b= A1 = cosaa, c= A3 = cosas, (1.5.37)



1.5 Point-particle motion 45

FIGURE 1.5.1 Rotation of a point x around the x) axis by angle ¢. The new coordinates are found
using the projection matrix (1.5.36).

where a? 4+ b? + ¢ = 1. Carrying out the multiplications and simplifying, we derive the projection
matrix

a? ab ac 0 —c b
P=cospIl+(1—cosp)| ab b* bc | +sinep c 0 —a |, (1.5.38)
ac be —b a 0

where I is the identity matrix. The matrix in the second term on the right-hand side of (1.5.38)
is symmetric, whereas the matrix in the third term is skew-symmetric. This means that a rotation
vector, ¢, with the property that x"¢* = ¢ X x, cannot be found.

In practice, we may specify a point X on the 2} axis, and compute the direction cosines

X Y Z
0=, b= —, c= (1.5.39)
X X X

as shown in Figure 1.5.1. Note that P - X = X in agreement with physical intuition.

Problems

1.5.1 Particle paths

(@) A particle moves over a sphere of radius a in a path described by the equation ¢ = 26, where
6 = O(t) is a given function of time. Illustrate the particle trajectory and compute the spherical
polar components of the particle acceleration in terms of the function ©(t).

(b) A particle moves in the zy plane on a spiral path described in plane polar coordinates (r,6) by
the equation 7 = ae’, where a is a constant and § = O(t) is a given monotonic function of time.
Compute the plane polar components of the particle acceleration in terms of the function O ().
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N
60X

A

FIGURE 1.6.1 lllustration of a material vector with infinitesimal length and designated beginning, A,
and end, B. The unit vector N is normal to the material vector.

1.5.2 Rotation around an azis
(a) Derive the projection matrix (1.5.38) following the procedure described in the text.

(b) Derive the projection matrix (1.5.38) by integrating the differential equation dx/dt = Q x x,
where Q = Q(t)[a, b, ¢] is an angular velocity vector with constant orientation but possibly variable
strength.

1.6 Material vectors and material lines

To lay the foundation for developing dynamical laws governing the motion and physical properties
of fluid parcels, we study the evolution of material vectors, material lines, and material surfaces in
a specified flow. The theoretical framework will be employed to describe the motion of interfaces
between two immiscible fluids in a two-phase flow. In this section, we consider material vectors and
material lines consisting of a fixed collection of point particles with permanent identity. In Section
1.7, we generalize the discussion to material surfaces. Elements of differential geometry of lines and
surfaces will be introduced in the discourse, as required.

1.6.1 Material vectors

A material vector, §X, is a small material line with infinitesimal length and a designated beginning
and end, as shown Figure 1.6.1. Applying the definition of the point-particle velocity, DX /Dt =
U = u(X), at the position of the two end point particles labeled A and B, expressing the velocity at
the last point in a Taylor series about the first point, and keeping only the linear terms, we obtain

DX

ou
7 1B _ A: .
DI U U 0X

%
8l‘i

=X -L, (1.6.1)

where L is the velocity gradient tensor introduced in (1.1.2) evaluated at the position of the material
vector, and summation is implied over the repeated index 1.

Stretching

The rate of change of the length of the material vector, 6l = |6X], is given by

D4l D(6X-6X)V/2 1 D (0X-6X) X DoX (1.6.2)
Dt Dt C2(0X - 6X)1/2 Dt 8l Dt o
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Using (1.6.1), we find that

D&l 06X
5 = o (0X-L). (1.6.3)

Rearranging, we obtain the evolution equation

1 D4l
- —t. L. 1.6.4
5l Dt t-L-t, ( )

where t = 60X /6l is the unit vector in the direction of the material vector §X. The right-hand side
of (1.6.4) expresses the rate of extension of the fluid in the direction of the material vector.

Reorientation

To compute the rate of change of the unit vector, t, that is parallel to a material vector, X, at all
times, we write

DX D(t4l) Dt  Dél

and use (1.6.1) and (1.6.4) to obtain
Dt
—=(t-L)- I-txt 1.6.6
D 1) (- tov) (16:6)

where I is the identity matrix. The operator I —t ® t on the right-hand side removes the component
of a vector in the direction of the unit vector, t, leaving only the normal component. Accordingly,
the right-hand side of (1.6.6) involves derivatives of the velocity components in a plane that is normal
to the material vector with respect to arc length measured in the direction of the material vector.

For example, if a material vector is aligned with the = axis, t = e, = [1, 0, 0], we find that
Dt/Dt = [O, Ou, /0, 8uz/8x], which shows that t tends to acquire components along the y and z
axes.

Mutual reorientation

The cosine of the angle a subtended between two material unit vectors, t; and to, is given by an
inner product, cosa = t; - to. Taking the material derivative, we obtain

Dcosa Dty Dty
TR RS T (1.6.7)

Substituting (1.6.6) and rearranging, we find that

Dcosa
Dt

= (tl ®t2 +t2 ®t1) L — COS&(tl ®t1 +t2 ®t2) : L. (168)

Because the tensors t1 ® to +t2 ® t; and t; ® t1 +t2 ® to are symmetric, the velocity gradient L can
be replaced by its symmetric constituent expressed by the vorticity tensor on the right-hand side.
Accordingly, the first term on the right-hand side of (1.6.8) expresses the symmetric component of
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(a) (6)

i

—
3

FIGURE 1.6.2 (a) A closed or open (b) material line is parametrized by a Lagrangian label, £. Shown
are the tangent unit vector, t, the normal unit vector, n, and the binormal unit vector, b.

the velocity gradient tensor in a dyadic base defined by the unit vectors t; and to. If the two vectors
are initially perpendicular, cos & = 0 and the second term on the right-hand side of (1.6.8) is zero.

Normal vector

It is of interest to consider the evolution of a unit vector, N, that is and remains normal to a material
vector, as shown in Figure 1.6.1. Taking the material derivative of the constraint N - N = 1, we
find that N - DN/Dt = 0, which shows that the vector DN /Dt lacks a component in the direction
of N. Taking the material derivative of the constraint N - 6X = 0 and using (1.6.1), we find that
t-DN/Dt = —t - L - N, where t = §X/dl is the tangent unit vector. Combining these expressions,
we derive the evolution equation

DN
where () is an unspecified rate of rotation of N about t. In the case of two-dimensional or axisym-
metric flow where the vectors t and N are restricted to remain in the zy or an azimuthal plane,
Q=0.

1.6.2 Material lines

Next, we consider a material line consisting of a fixed collection of point particles forming an open
or closed loop, as shown in Figure 1.6.2. To identify the point particles, we introduce a scalar label,
£, taking values inside an appropriate set of real numbers, =, and regard the position of the point
particles, X, as a function of £ and time, ¢, writing X(&,¢). The unit vector

1 90X

t= 7 7 (1.6.10)

is tangential to the material line, where h = |0X/9¢|. Because t is a unit vector, t -t = 1, we have
t-0t/0¢ = $9(t - t)/0¢ = 0, which shows that the vector 9t/0¢ is normal to t.
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The arc length of an infinitesimal section of the material line is dl = hd¢ and the total arc
length of the material line is

L:Lhdg. (1.6.11)

This expression shows that h is a scalar metric coefficient for the arc length similar to the Jacobian
metric for the volume of a fluid parcel, J. If we identify the label £ with the instantaneous arc
length along the material line, [, then h = 1.

1.6.3 Frenet—Serret relations

It is useful to introduce a system of orthogonal curvilinear coordinates constructed with reference to
a material line. The principal unit vector normal to the material line, n, is defined by the relation

ot

— = = 1.6.12
= —nn, (1612

where [ is the arc length along the material line and « is the signed curvature of the material line.
The binormal unit vector is defined by the equation

b=txn. (1.6.13)

The three unit vectors, t, n, and b, define three mutually orthogonal directions that can be used to
construct a right-handed, orthogonal, curvilinear system of axes so that

t=nxb, n=>bxt, (1.6.14)

as shown in Figure 1.6.2. The plane containing the pair (t,n) is called the osculating plane, the
plane containing the pair (n, b) is called the normal plane, and the plane containing the pair (b, t),
is called the rectifying plane.

Differentiating (1.6.13) with respect to arc length, [, expanding the derivative on the right-
hand side, and using (1.6.12), we find that the vector db/dl is perpendicular to t. Since b is a unit
vector, d(b - b)/dl = 2b - (db/dl) = 0, which shows that db/dl is perpendicular to b. We conclude
that b must be parallel to n and write

D _ (1.6.15)

where 7 is the torsion of the material line.

Rewriting (1.6.13) as n = b x t, differentiating this expression with respect to [, and using
(1.6.12) and (1.6.15), we obtain

on
1.6.16
I Kkt + 7b, ( )

involving the curvature and the torsion of the line.
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Equations (1.6.12), (1.6.15), and (1.6.16) comprise the Frenet—Serret relations. In the litera-
ture, the curvature, torsion, or both, may appear with opposite signs as a matter of convention.

Matrix formulation

The Frenet—Serret relations can be collected into the matrix form

d t 0 —x O t
Tl =" 0O 7 |-|{n|, (1.6.17)
b 0 —7 0 b

involving a singular skew-symmetric matrix on the right-hand side. One eigenvalue of this matrix is
zero and the other two eigenvalues are complex conjugates, given by A = +i(x2 + T2)1/2,

Complex variable formulation

It is sometimes useful to introduce a complex surface vector field, ¢ = n+ib, where i is the imaginary
unit, i = —1. Combining the second with the third Frenet—Serret relations (1.6.15) and (1.6.16),
we obtain

%ll +irq = Kt. (1.6.18)

Multiplying both sides by the integrating factor

l
o(l) = exp (1/ () de) (1.6.19)
0
and rearranging, we obtain the compact form

Q
=t (1.6.20)

where we have defined

Q) = o(1) q(1), D) = —r(l) (1) (1.6.21)

Note that ®®* = |®]2 =1, Q- Q = 0, and Q - Q* = 2, where an asterisk denotes the complex
conjugate. The first Frenet—Serret relation (1.6.12) yields

dt 1
- = —Real(kq*) = —Real(k®®*q") = Real (v Q") = 3 Q" +¢"Q). (1.6.22)
Darboux rotation vector formulation

An alternative representation of the Frenet—Serret relations is

dt d db
a:XXta T?Zxxny — =XxXb, (1.6.23)

where x = 7t — kb is the Darboux rotation vector lying in the rectifying plane.
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1.6.4 Evolution equations for a material line

Having established the Frenet—Serret framework, we proceed to compute the rate of change of the
total length of a material line. Differentiating (1.6.11) with respect to time and noting that the limits
of integration are fixed, we transfer the time derivative inside the integral as a material derivative

and obtain
dL Dh 1 Dh
g —d¢ = — 41, 1.6.24
dt /EDtd£ thdl (1.6.24)

Line

The last integrand expresses the local rate of extension of the material line.

FEvolution of the metric

Taking the material derivative of the definition h = |0X/0¢| and working as in (1.6.2), we obtain

D 0
h_, 90U _9(t-U) 5 ot

. — _U-=. 1.6.25
Dt 193 0¢ 3 ( )
Using the Frenet—Serret relation (1.6.12) and setting the point-particle velocity equal to the fluid
velocity, U = u, we obtain

Dh  O(u-t) ol

i ~u-n. 1.6.2
Di o€ —|—/<a8£u n (1.6.26)

The two terms on the right-hand side express the change in length of an infinitesimal section of
the material line due to stretching along the line, and extension due to motion normal to the line.
These interpretations become more clear by considering the behavior of a circular material line that
exhibits tangential motion with vanishing normal velocity, or is expanding in the radial direction
while remaining in its plane (Problem 1.6.1).

Now substituting (1.6.26) into (1.6.24) and performing the integration, we obtain a revealing
expression for the rate of the change of the length of a material line,

dL

T (u~t)end —|—/ ku-ndl. (1.6.27)
L

start .
ine

If a material line forms a closed loop, the first term on the right-hand side vanishes and the tangential
motion does not contribute to the rate of change of the total arc length of the line.

Evolution of the tangent unit vector
The rate of change of the tangent unit vector, t, follows from (1.6.6), repeated for convenience,

Dt ou

=(t-L) - (I- =— . (I-— 1.6.28
. (t-L)- I-t®t) e I-t®t) ( )
or
Dt OJu OJu
o~ (ar nt (g PP (1:0:29)
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where I is the identity matrix. The dyadic decomposition I=t®t+n® n + b ® b was employed
to derive the two expressions in (1.6.28). The right-hand side of (1.6.28) involves derivatives of the
velocity components in the normal plane with respect to arc length along the material line. We see
that the vector Dt /Dt lacks a component in the direction of t.

FEvolution of the curvature

The first Frenet—Serret relation (1.6.12) can be recast into the form

ot 1 0t
__ot_ 1ot 1.6.
Kn 3l I 9 (1.6.30)
Taking the material derivative, we find that
Dn Dk 1 Dhot 1 0 /Dt k Dh 0 (Dt
— tn—=—-— — - (=) =—2Zn- (). 1.6.31
"D "Dt T2 Dros b ag(m) h Dt az(m) (1.6.31)

Next, we project this equation onto n, recall that n-n = 1 and thus n - Dn/Dt = 0, and rearrange
to obtain an evolution equation for the curvature,

Dk k Dh 0 /Dt Jdu 0 (Dt
= P p () =kt = —n— (= ). 1.6.32
Dt h Dt 8Z(Dt) o " 8Z(Dt) (16:32)
Taking the derivative of the rate of change Dt/Dt given in (1.6.28), we obtain
9 /Dt 0%*u Ou
— (=) == I-txt — - (t t). 1.6.
81<Dt) 92 ( ® )J”/”al ton+n®t) (1.6.33)
Substituting this expression into (1.6.32) and simplifying, we derive the final form
Dk ou 0%u
Ok _ g .08 g 1.6.34
Dt o tToE ™ (16.54)
In the case of an expanding circle of radius a(t) in the xy plane, we set u = U[ oS 9,sin9],

t= [ —sin 6, cos@]7 and n = [ cos b, SinG], where U is the velocity of expansion and 6 is the polar
angle. Substituting [ = af and k = 1/a, we obtain an expected equation, da/dt = U.

FEvolution of the normal vector

To obtain an evolution equation for the normal unit vector, we project (1.6.31) onto the binormal
vector and rearrange to find that

Dn 1 0 /Dt 1 0%u
b-—=—-—=b-—(—)=—-—=--—"b. 1.6.35
Dt kOl (Dt) Kk OI? ( )
Combining this expression with (1.6.9), we obtain
Dn ou 1 ,0%u
e (= n)lt—==(Z=—=.b)b. 1.6.36
Dt ( ol n) » (o *P) (16:50)

If a line is and remains in the osculating plane containing t and n, the second term on the right-hand
side does not appear. Expression (1.6.36) can also be derived by substituting (1.6.34) into (1.6.31).
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FEvolution of the binormal vector

An evolution equation of the binormal vector can be derived by combining the definition (1.6.13)
with the evolution equations (1.6.36) and (1.6.6), finding

Db Dt " Dn du b)t + 1 (62u

22— 2. -

Dt Dt Dt ol K O0l2
We see that Db/Dt is perpendicular to b, as required for the length of b to remain constant and
equal to unity at any time.

xt=—( -b) n. (1.6.37)

FEvolution of the torsion

An evolution equation for the torsion can be derived by taking the material derivative of (1.6.15),
finding

Dt Dn 1 Dh 0 /Db
— — = m-(=). 1.6.
D: "7 D T D" 8Z(Dt) (16:38)
Projecting this equation onto n, we obtain
Dt 7 Dh 0 /Db ou 0 (Db
—=———-n-—|—)=—7t-——n-—(—). 1.6.39
Dt hDt 8Z(Dt) ar " az(m) (16:39)
Substituting (1.6.37), using the Frenet—Serret relations, and simplifying, we obtain
D7t Ou 1 0%u 10k 1 0%u
= - (rt4+ kb)) —. 22 p) - = . 1.6.40
Dt~ o THERR LGt P L R (16.40)

The presence of a third derivative with respect to arc length is an interesting feature of this equation.

Spin vector

The evolution equations for the tangent, normal, and binormal unit vectors derived previously in
this section can be collected into the unified forms

n Db
_ _ b _ 1.6.41
D s X t, Dt s X n, Dt s X b, ( )
where
1 /0%u ou ou
— _ - (Z=. _(Z=. . 1.6.42
s n<3l2 b)t (az b)“+<az “)b (1.6.42)

is the spin vector. Formulas (1.6.41) complement the Darboux relations (1.6.23).

Consistency between (1.6.41) and (1.6.23) requires that
D(x xt) d(sxt) D(x xn) d(s xn) D(x xb) d(sxb)

= = = . 1.6.43
Dt a7’ Dt i’ Dt di ( )
Expanding the derivatives in the first equations, we obtain
D Dt D d dt d
—th+ ><—*—X><t+x><s><t:—s><t+s><—*—s><t+s><x><t, (1.6.44)

Dt XDt~ Dt al al - dl
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yielding

D
(D—f—g)xt:2sxxxt. (1.6.45)

Working similarly with the second and third equations in (1.6.43), we obtain the compatibility
condition

— —2s XX, (1.6.46)
which can be regarded as an evolution equation for the Darboux vector.

Point particle velocity and acceleration

The velocity of a point particle that belongs to a material line can be resolved into tangential,
normal, and binormal components,

U=wt+u,n+u,b. (1.6.47)
The point-particle acceleration is
DU Du; Du,, Duy Dt Dn Db
= =_" —° - — s 6.4
Dr - Dt T BTy Py Ty Ty (1.6:48)

where the time derivatives of the tangent, normal, and binormal vectors are computed using the
evolution equations derived previously in this section.

Generalized Frenet—Serret triad

It is sometimes convenient to replace the Frenet—Serret triad, (t, n, b), with a rotated triad, (t,d;, ds).
The orthonormal unit vectors d; and ds lie in a normal plane and are rotated with respect to n and
b about the tangent vector t by angle «, as shown in Figure 1.6.3, so that

d; =cosan+sinab. dy = —sinan + cosab. (1.6.49)

The rotated triad satisfies the modified Frenet—Serret relations

dt dd; dds
di X Xt di X X dy, di X X d2, ( )
where
X = xtt + Xa,d1 + xa,do2 (1.6.51)

is a Darboux rotation vector with components
Xt =T, Xd, = —Kksina, Xdy, = —K COS Q. (1.6.52)

The evolution equations for the rotated triad take the form

Dt Dd,; Dd,
— =8 Xxt, =
Dt

=8 X dQ, (1653)
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FIGURE 1.6.3 The orthonormal triad, (t,d;,ds2), arises from the Frenet-Seret triad, (t,n,b), by ro-
tating the normal and binormal vectors, n and b, about the tangent vector, t, by angle «.

where

s:stt—(%—lll-b)n—i—(%—l;-n)b (1.6.54)

is the spin vector with an unspecified tangential component, s;. Formulas (1.6.53) complement
the Darboux equations (1.6.23). Consistency between these formulas requires the compatibility
condition (1.6.46).

Problems

1.6.1 Expanding and stretching circle

Consider a circle of radius a, identify the label £ with the polar angle measured around the center,
0, and evaluate the right-hand side of (1.6.26) for u,, = U and ug = V cos 8, where U and V are two
constants.

1.6.2 Helical line

A helical line revolving around the z axis is described in the parametric form by the equations
x:b2£, Y = acos p, z = asiny, (1.6.55)
s

where a is the radius of the circumscribed cylinder, ¢ is the azimuthal angle, and b is the helical pitch.
Show that the curvature and torsion of the helical line are constant and equal to x = a/(a? + b?)
and 7 = b/(a® + b?).

1.6.3 Rigid-body motion

Derive an expression for the spin vector defined in (1.6.54) for a material line in rigid-body motion.
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FIGURE 1.7.1 lllustration of a system of two curvilinear axes, (£,7), in a three-dimensional material
surface. The unit vectors n, n¢, and n,, are normal to the surface, the £ axis, and the 7 axis.

1.7 Material surfaces

A material surface is an open or closed, infinite or finite surface consisting of a fixed collection of
point particles with permanent identity. Physically, a material surface can be identified with the
boundary of a fluid parcel or with the interface between two immiscible viscous fluids. To describe
the shape and motion of a material surface, we identify the point particles comprising the surface by
two scalar labels, £ and 7, called surface curvilinear coordinates, taking values in a specified region
of the (£,n) parametric plane. We will assume that the pair (£, 7n) forms a right-handed orthogonal
or nonorthogonal coordinate system, as illustrated in Figure 1.7.1.

Using the label £ and 7, we effectively establish a mapping of the curved material surface in
the three-dimensional physical space to a certain area in the parametric (£,n) plane. We may say
that (&,n) are convected coordinates, meaning that the constituent point particles retain the values
of (§,7) as they move in the domain of flow.

1.7.1 Tangential vectors and metric coefficients

To establish relations between the geometrical properties of a material surface and the position of
point particles in the material surface, X(&,,t), we introduce the tangential unit vectors

© " he 07 " hy On (L.7.1)
where
oX oX

are metrics associated with the curvilinear coordinates. The arc length of an infinitesimal section of
the £ or n axis is

dle = he d¢, dl, = hy dn. (1.7.3)

Any linear combination of the tangential vectors (1.7.1) is also a tangential vector. If t, is perpen-
dicular to t¢, the system of surface coordinates (§,7) is orthogonal, t¢ - t, = 0.
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Since the lengths of the vectors t¢ and t,, are equal to unity, t¢-t¢ = 1 and t,,-t,, = 1. Taking
the £ or n derivatives of these equations, we find that

Ote _ Ote _

. te - Oty _
o¢ £ o

" 5e =

ot
t 0, 0, 0, 1=, 1.7.4

It is evident from the definitions (1.7.1) that the unit tangent vectors satisfy the relation

A(hete)  O(hyty)  0°X

= = . 1.7.5
o o oo 7o)
Expanding the first two derivatives and projecting the resulting equation onto t¢ or t,,, we obtain
Ohe ot oh oh ot oh
TE = e+ et T = he =ty 4 =ty - te 1.7.6
877 n 6£ ¢t af £ bty 85 13 877 n T 877 /S ( )

Evolution of the coordinate metric coefficients

To compute the rate of change of the scaling factor he expressing the rate of extension of the &
lines, we take the material derivative of the first equation in (1.7.2). Noting that, by definition,
U = (0X/0t)¢,y, and working as in (1.6.26), we find that

Dhe _, 90U _ 0lte-U)

Ol
bt ae T o TUMemege S

where r¢ is the curvature of the £ line and n¢ is the principal unit vector normal to the ¢ line defined
by the equation dt¢/dle = —keng, as shown in Figure 1.7.1. The two terms on the right-hand side
of (1.7.7) express, respectively, changes in the length of an infinitesimal section of a £ line due to
stretching along the £ line, and expansion due to motion normal to the & line. The rate of change
of hy, is given by equation (1.7.7) with £ replaced by 7 in each place.

Orthogonal coordinates

In the case of orthogonal curvilinear coordinates, t¢ - t;, = 0, the second term on the right-hand
side of each equation in (1.7.6) does not appear. Since the vector dt,,/0¢ lacks a component in the
direction of t,, and the vector dt¢/0n lacks a component in the direction of t¢, we may write

at 1 0h at 1 Oh
= —Etg, kel i | n- (1.7.8)
0& hy On on  he 0¢
1.7.2 Normal vector and surface metric
The unit vector normal to a material surface at a point is
1 X 90X
= — — X — 1.7.9
n= % X o (1.7.9)
where
X X
hy = ‘8 9 (1.7.10)

o€ "o
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is the surface metric, as shown in Figure 1.7.1. Combining (1.7.1) with (1.7.9), we find that

h
n= Z—hth X t. (1.7.11)

Since any tangential vector is perpendicular to the normal vector, we can write

X X

n e =Y n Gy T

0. (1.7.12)
Differentiating the first equation with respect to 1 and the second equation with respect to &,
expanding the derivatives and combining the results to eliminate the common term n - 9*X/9£0n,
we obtain the useful relation

on on

Surface area

The area of a differential element of the material surface is dS = hgs d§ dn. The total area of the
material surface is

S = / hs d¢ dn, (1.7.14)
Q

where € is the range of variation of £ and 1 over the surface. Equation (1.7.14) confirms that hy is a
metric coefficient associated with the surface coordinates, analogous to the Jacobian, [J, associated
with the Lagrangian labels of three-dimensional fluid parcels. To compute the rate of change of the
surface area of a material surface, we differentiate (1.7.14) with respect to time and note that the
limits of integration are fixed to obtain

s Dh, 1 Dh,
_ /L 171
dt /Q pr =)l 5oy 45 (1.7.15)

where S denotes the surface. The last integrand, expressing the rate of expansion of an infinitesimal
material patch, is identified with the rate of dilatation of the surface, as discussed in Section 1.7.3.

Orthogonal coordinates

If the surface coordinates (£, n) are orthogonal, t¢ - t, = 0 and |t¢ X t,| = 1, the surface metric is
the product of the two surface coordinate metrics, hs = heh,. Projecting equations (1.7.8) onto n,
we find that

ot Ot
c—— =0 —=0 1.7.16
n o€ , n an , ( )
yielding
On On
t, — = te . — =0. 1.7.1
v 5g =0 ¢ gy =0 (L7.17)



1.7 Material surfaces 59

1.7.3 Evolution equations
It will be convenient to introduce the material normal vector,

N = h.n. (1.7.18)

Using the definition of the normal unit vector, n, stated in (1.7.9), and the dynamical law (1.6.1)
for the rate of change of a material vector, we compute

DN X X (“)X D /0X

= = ( % ) o ( o ) (1.7.19)
and then

DN 0X oX 09X 0X

ﬁ’(a?' )x—+8—§x(a—n-L). (1.7.20)
In index notation,

DN; 0X; 00X}, C0Xp 00X,

W €ijk /o aé_ Llj a +€’Lk}j 785 an Ll]7 (1721)

which can be rearranged into

2N Lei ( 77777 ) (1.7.22)

and then restated as

DN; _ 0Xm 0Xy
Dt = Lijj€ijk €plk €pmn —f, ag 877

(1.7.23)

Now using the rules of repeated multiplication of the alternating matrix discussed in Section A.4,
Appendix A, we obtain

DN; 0X,, 0X,
Dt = Llj ((Sipéjl 5,[5]1,) €Epmn {7 8{ 67] (1.7.24)
or
DN; 0X,, 0X, 0X,, 0X,
Dt ji € aé- 877 15 €j ag 877 ( )
Switching back to vector notation, we express the final result in the form
1 DN

where & = V - u is the rate of expansion [432]. Because the operator n x V involves tangential
derivatives, only the surface distribution of the velocity is required to evaluate the rate of change of
the material normal vector, in agreement with physical intuition. Consequently, the rate of change
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of the material normal vector can be expressed solely in terms of the known instantaneous geometry
and motion of the surface and is independent of the flow off the surface [433].

Metric coefficient

An evolution equation for the surface metric coefficient, hg, can be derived by expressing (1.7.10) in
the form

0X 00X 0X 00X

h=(Zx—) (5= x=—). 1.7.27
Taking the material derivative, we obtain
Dh, 0X 0X, D, o0X 09X
2hi—"=2(F x —) = (5 x — 1.7.28
Dt (agxan) Dt(agxan)’ (1.7.28)
which can be restated as
Dh DN
. 2N 1.7.2
Dt ' Dt (1.7.29)
Using expression (1.7.26), we obtain the evolution equation
1 Dhg
. Di =a-n-L-n, (1.7.30)

where a = V - u is the rate of expansion

Surface divergence

Since the scalar n - L - n represents the normal derivative of the normal component of the velocity,
the right-hand side of (1.7.30) represents the divergence of the velocity in the tangential plane,

Viru=a-n-L-n=(P-V) -u=trace(P-L-P), (1.7.31)

called the surface divergence of the velocity, where P = I —n ®n is a tangential projection operator
and I is the identity matrix. Equation (1.7.30) becomes
1 Dhy
hs Dt

=V, u (1.7.32)

If a material surface is inextensible, the surface divergence of the velocity is zero. For example, if
n= [1,0,0], we obtain V- u = du, /0y + Ou,/0z.

Taking the material derivative of (1.7.10) and carrying out straightforward differentiations,
we find that

ou ou

Dhs

Rearranging the triple scalar products, we obtain

Dhs _ (;, 00
Dt \"o¢

(t, x n) — hg%g (e x n)). (1.7.34)
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Comparing this equation with (1.7.32), we derive an alternative expression for the surface divergence
of the velocity,

Vs-u:%(aU

ou
t 2= (nxt ) 7.35
he \ar (nxn)—i—aln (n X te) (1.7.35)
If the surface coordinates are orthogonal, t,, x n = t; and n x t¢ = t,,.

Normal vector

Combining (1.7.26) with (1.7.30), we derive an evolution equation for the unit vector normal to the
surface,

Dn 1 /DN Dhs
Dt h. (D—t— Dt)zn(a—vs~u)7L~n. (1.7.36)
Rearranging the expression inside the last parentheses, we obtain
%:(n@n)-L-n—L~n:—P-L~n, (1.7.37)

where P =I—n®n is a tangential projection operator and I is the identity matrix (Problem 1.7.1).
We observe that n-Dn/D¢ = 0, as required. Expression (1.7.37) is consistent with the first term on
the right-hand side of (1.6.9). Rearranging the last expression in (1.7.37), we confirm that the rate
of change of the normal vector, Dn/Dt, has only a tangential component,

D
—n:—[nx(L~n)]xn:wxn, (1.7.38)
Dt
where w = —n x (L - n).

Density-weighted metric

Combining (1.7.26) and (1.7.30) with the continuity equation (1.2.6), we obtain the compact forms

1 D(pN) 1 D(phy)

=L ——*=-n-L-n. 1.7.39
oh, Dt - oh, Dt nohen (1.7.39)
These equations find useful applications in developing evolution equations for physical quantities
defined over a material surface.

Significance of tangential and normal motions

The role of tangential and normal fluid motions on the dilatation of a surface can be demonstrated
by resolving the velocity into tangential and normal components,

U = Ugte + Uyt + Upn. (1.7.40)

Substituting this expression into the right-hand side of (1.7.33), we obtain several terms, including
the term

hn(@(gggté) tn) o (aag(h Ugh ) ~ tn> .n
— (8(}2’5’3) te x tn) -n+h?7U5 L% (%) X t } - 1. (1.7.41)
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Simplifying and rearranging the last triple mixed product, we obtain

O(Uete) _ D OhUe) oo, O (te
hn( e t,7> R Ugafg(a) - (t, x n). (1.7.42)
Working in a similar fashion with another term, we find that
O(Uete) Ot Ote
hg(Tn X tg) ‘n = hg U§ (877] X tg) n= hg Ug a (tg X 1’1) (1743)

Combining these results, we obtain

hnn~(8([(]9?£)xtn>h5n-<a(g§;£)xt5)

_ hs a(hnUﬁ)

~ heh, O +Ue[ 1y 52 o (tg) (ty xm) - (%E (te xm)].  (1.7.44)

K3 3
Working in a similar fashion with the second tangential velocity, we obtain
o(Unty,) o(Uyt,,)
hym - (% xt,) ~hen- (# X te)

_ _hs 0(hely) 2 0 (ty oty
= e o + U, [ 8n<h5> (1 x ) - (6, x )] (17.45)

The term on the right-hand side of (1.7.33) involving the normal component of the velocity takes
the form

hyn - (6(g2n) " tﬁ) —hen- (8(((;;“) « t§> —Upn- (hn% Xty — hs%‘ x tg). (1.7.46)

Substituting (1.7.44), (1.7.45), and (1.7.46) into (1.7.33), we obtain four terms,

1 Dh, 1 (5(hnUs)+a(h£Un))

hs Dt heh, \ € o
1 0 te 8t§
+U5E[h%8§( ) (tnxn)—héaf - (te x )|
1,0ty ot
+Unh—s[h56—n<h—£)o(t§xn) hnag (ty x )]
h, On hg 8n

Un (7252 - (¢ texm)), (1747
with the understanding that the point-particle velocity is the fluid velocity, U = u.

Surface divergence of the surface velocity

The sum of the first three terms on the right-hand side of (1.7.47) involving the tangential velocities
is equal to the surface divergence of the surface velocity, us = u - P, defined as

V- u, = trace (P . Vus), (1.7.48)
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where P = I — n ® n is a tangential projection operator and I is the identity matrix. Physically,
the surface divergence of the surface velocity expresses dilatation due to expansion in the plane the
surface, which may occur even in the case of an incompressible fluid.

Dilatation due to expansion

The last term on the right-hand side of (1.7.47) expresses dilatation due to normal motion associated
with expansion or contraction. In Section 1.8, we will see that the expression enclosed by the last
large parentheses is equal to twice the mean curvature of the surface, k,,, as shown in (1.8.19),

26 =

hehy (On on
I (875 (ty xn) + a, (n x tg)). (1.7.49)

The expression on the right-hand side can be computed readily from a grid of surface marker points
by numerical differentiation.

Evolution of the surface metric

In summary, we have derived an expression that delineates the significance of tangential and normal
motions,

1 Dhy
hs Dt

=V, -us+ 2k, u-n. (1.7.50)

Only the first term on the right-hand side appears over a stationary surface where the normal velocity
is zero. The evolution equation (1.7.50) for a material surface is a generalization of the evolution
equation (1.6.26) for a material line.

Orthogonal surface curvilinear coordinates

The preceding interpretations become more evident by assuming that the surface coordinates are
orthogonal, t¢ - t,, = 0. The first term on the right-hand side of (1.7.47) is the standard expression
for the surface divergence of the velocity in orthogonal curvilinear coordinates,

L (Ole) , Oli)y

Vet =30\ o an

(1.7.51)

The term enclosed by the first square brackets on the right-hand side of (1.7.47) is zero. To show
this, we note that t¢ x n = —t,, and t,, X n = t¢, recall that t; - 0t;/0¢ = 0 because t¢ is a unit
vector, and find that the terms enclosed by the first pair of square brackets simplify into

h2 a( ) te +h58tf t, = h2 a( )Jrhgat5 t, —%Jrhga—t;.t

which is zero in light of (1.7.6). Working in a similar fashion, we find that the term enclosed by the
second square brackets on the right-hand side of (1.7.47) is also zero.
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1.7.4 Flow rate of a vector field through a material surface

The flow rate of a vector field, q, through a material surface, S, is defined as

Q:/Sq-ndS:/Qq~Nd§d77, (1.7.53)

where £ and 7 vary over the domain 2 in parametric space, and N = hgn is the material normal
vector. In various applications of fluid mechanics and transport phenomena, q can be identified
with the velocity, the vorticity, the temperature gradient, or the gradient of the concentration of a
chemical species. When q is the velocity, @ is the volumetric flow rate. When q is the vorticity, @
is the circulation around a loop bounding an open surface, as discussed in Section 1.12.2.

Taking the time derivative of (1.7.53), using (1.7.26), and introducing the rate of expansion,
a =V - u, we obtain

dQ Dq
Frie S(Dt-i-aq q-L)-ndsS. (1.7.54)

The second and third terms inside the integrand express the effect of surface dilatation. Expressing
the material derivative, Dq/Dt, in terms of Eulerian derivatives and using the vector identity (A.6.11)
in Appendix A, to write

Vx(gxu) =aq—u(V-q)+u-Vq—q-L, (1.7.55)
we recast (1.7.54) into the form

d 13}
d—?: S(@—?+Vx(qxu)+u(v-q)>-nd5. (1.7.56)

If the vector field q is solenoidal, V - q = 0, the third term inside the integral does not appear. The
Zorawski condition states that, for the flow rate ) to remain constant in time, the expression inside
the tall parentheses on the right-hand side of (1.7.56) must be zero.

Problems

1.7.1 Ewvolution of the unit vector normal to a material surface

Explain how expression (1.7.37) arises from (1.7.36).

1.7.2 Expanding and stretching sphere

Consider a spherical surface of radius a and identify £ with the meridional angle, 8, and n with
the azimuthal angle, ¢. Evaluate the right-hand side of (1.7.47) for w, = U, ug = V cos6, and
u, = Weos g, where U, V, and W are three constant velocities.

1.7.3 Change of volume of a parcel resting on a material surface

Consider a small flattened fluid parcel with a flat side of area dS resting on a material surface. The
volume of the parcel is dV = n - X dS, where X is a material vector across the thickness of the
fluid parcel. Using (1.6.1) and (1.7.30), confirm that D 6V/Dt = adV, where a = V - u is the rate
of expansion.
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1.8 Differential geometry of surfaces

Studying the differential geometry of surfaces is prerequisite for describing the shape and motion
of material surfaces and interfaces between two immiscible fluids in a specified flow. Necessary
concepts and useful relationships are discussed in this section. Further information can be found in
specialized monographs (e.g., [389]).

1.8.1 Metric tensor and the first fundamental form of a surface

Material point particles in a material surface can be identified by two surface curvilinear coordinates,
(&, 1), as discussed in Section 1.7. A material vector embedded in a material surface can be described
in parametric form as

0X 0X

dX = — dé+ — dn = hedfte + hy dnt,,. 1.8.1
€ £+ & 7 ¢d&te + hydnty, ( )
The square of the length of the vector is
0X 90X 0X 0X 0X 90X
dX -dX = — - — (dé)*+2 = - —dédn+ — - — (dp)*. 1.8.2
Introducing the surface metric tensor, g,, with components
0X 0X 9 0X 0X 0X 0X 9
==.2== =g = =222 1.8.3
gee 9c ¢ ) 9én = Gne o€ 8’)7 , 9nn 877 877 0> ( )
we recast (1.8.2) into the compact form
dX - dX = geg (d€)® + 2 gy A€ dn + gy (dn). (1.8.4)

In the nomenclature of differential geometry, equation (1.8.4) is called the first fundamental form of
the surface.

An alternative expression of the first fundamental form is
dX - dX = (gee + 2\ gen + A” gnp) (dE), (1.8.5)

where A = dn/d€. Since the binomial with respect to A on the right-hand side of (1.8.5) is real and
positive for any value of A, the roots of the binomial must be complex, the discriminant must be
negative, and the determinant of the metric tensor must be positive,

det(g) = gee gny — 92, > 0- (1.8.6)
Using the definition (1.7.10), we find that
h? = det(g), (1.8.7)

which is consistent with inequality (1.8.6).

Orthogonal coordinates

If the coordinates £ and n are orthogonal, the metric tensor is diagonal, ge, = gne = 0, h? = 9eeGnns
and hs = hehy,.
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1.8.2 Second fundamental form of a surface

The normal vector changes across the length of an infinitesimal material vector by the differential
amount

_ On on
dn =% d¢ 5 d (1.8.8)
Projecting (1.8.8) on (1.8.1), we obtain the second fundamental form of the surface,
—dX - dn = fee d€® + 2 fe, A6 dn + fy A1, (1.8.9)
where
0X on 0°X 0X on 9°X
= = . = = . 1.8.1
Jee =3¢ "5 ~ a2 ™ ="y on o ™ (1510
and
1,/0X On 0X 0On 9*°X 0X On 0X On
for==3 (3¢ o * oy 5e) “awmn "= 5w~ o oe O

Equations (1.7.13). were used to derive the last two expressions for f¢,. The rate of change of the
tensors g and f following a point particle in a surface can be computed from their definition using
the evolution equations discussed in Section 1.7 (Problem 1.8.1).

Orthogonal coordinates

Using equations (1.7.17), we find that, if the coordinates £ and 71 are orthogonal, the off-diagonal
components of fos vanish, fe = fre = 0.

1.8.3 Curvatures

The normal curvature of a surface at a point in the direction of the ¢ axis, denoted by K¢, is defined
as the curvature of the trace of the surface in a plane that contains the normal vector, n, and the
tangential unit vector, t¢, drawn with the heavy line in Figure 1.8.1. In practice, the trace of the
surface on the normal plane may not be available and the normal curvature must be extracted from
the curvature of another surface line that is tangential to t; at a point, denoted by k¢, such as the
dashed line in Figure 1.8.1. If I¢ is the arc length along such a line, then, by definition,

—_— = —Hgng, (1.8.12)

where n¢ is the unit vector normal to the dashed line in Figure 1.8.1.

Meusnier’s theorem

Meusnier’s theorem states the the normal curvature in the direction of the £ axis is given by

on Dte Jee Jee
Ke=— -t = ‘N=KeNg-N=—"2 =15 1.8.13
¢ AT gng - gee 2 ( )
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FIGURE 1.8.1 The normal curvature of a surface at a point in the direction of the £ axis, denoted
by K¢, is defined as the curvature of the trace of the surface in a plane that contains the normal
vector, n, and tangential vector, t¢.

A similar equation can be written for the n axis. To generalize these expressions, we consider a
tangent vector constructed as a linear combination of the two tangent vectors corresponding to the
surface coordinates, & and 7,

X 09X
=G A (1.8.14)

where ) is a free, positive or negative parameter. The normal curvature in the direction of 7 is
given by
Ot ~ On ¢ B fee + 2fenX + frnA?

Kx=k)yny n=—-——--n=—— = , 1.8.15
AT AT Al Ax T gee + 29enh + G A2 ( )

where t) = 7,/|7[ is a tangent unit vector and [ is the corresponding arc length. Equation (1.8.13)
arises for A = 0, and its counterpart for the n axis arises in the limit as A — +oc.

Mean curvature

Using (1.8.14), we find that two tangent vectors corresponding to A; and Ay are perpendicular if
they satisfy the relation

gee + (M1 + A2) geyp + A1 A2 gy = 0. (1.8.16)
Solving for Ag in terms of i, we obtain

Ay = _ 9ge + Mgen (1.8.17)

9en + /\197m.

Now using (1.8.15), we find that the mean value of the directional normal curvatures in any two
perpendicular planes is independent of the plane orientation. Motivated by this observation, we
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introduce the mean curvature of the surface at a point,

1 1 =2 +
fom = 3 (Kng + o) = — 368756 = 2enSen + GonTon, (1.8.18)
2 2 9ec9m — Yen
An alternative expression arising from (1.7.47) is
1 hfhn on on
m == — . (t — (& ) 8.
A =55 (azg (t, x 1) - (te x n) (1.8.19)

It can be shown by straightforward algebraic manipulations that (1.8.19) is equivalent to (1.8.18)
(Problem 1.8.2).

Principal curvatures

The maximum and minimum directional normal curvatures, K, over all possible values of A, are
called the principal curvatures. The corresponding values of A are found by setting 9K /OA = 0 and
using the last expression in (1.8.15) to obtain a quadratic equation,

(fun9en — gnnfen) N + (fangee — Gnnfee) A+ fengee — genfee = 0. (1.8.20)

The sum and the product of the two roots are given by

A+ A = _ Jn9ee — g fee Mg = M (1.8.21)
fnngﬁn - gvmf&n fnngfn - gnnfin

Direct substitution shows that these equations satisfy (1.8.16), and this demonstrates that, if /4.
is the maximum principal curvature corresponding to a particular orientation, then /C,,;, will be the
minimum principal curvature corresponding to the perpendicular orientation. The mean curvature
of the surface is

1

Rm = 5 (ICmam + ]szn) (1822)

FEuler’s theorem for the curvature

We may assume that without loss of generality, that the maximum principal curvature occurs
along the ¢ axis, corresponding to A = 0, and the minimum principal curvature occurs along its
orthogonal 7 axis, corresponding to A — oo. In that case, g¢;, = 0 and f¢, = 0, yielding

2
Koman = — L5 K = — 211 ko = —Jee T FmX (1.8.23)

geg Ynn gee + gy A .

Now let a be the angle subtended between the direction corresponding to A and the principal direc-
tion of the maximum curvature, varying in the range [0, %W] Using the geometrical interpretation
of the inner vector product, we find that

()

875:‘86%4-)\%“% cos (1.8.24)
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FIGURE 1.8.2 Five points are arranged along two curvilinear axes, (£,7) in a surface. If the axes are
orthogonal, knowledge of the position of these points is sufficient for computing the mean curvature
of the surface at the intersection.

and
X 0Xy\ 0X X 0X 10X
il i [Pt i i i 1.8.2
(ag * an) o ‘ag +AanHa sin @, (1.8.25)
yielding
gee = (gee + gm,)\Q) cos? a, )\2977,7 = (gee + gm,)\Q) sin? a. (1.8.26)

Combining these expressions with (1.8.23), we derive Euler’s theorem for the curvature, stating that
the normal curvature in an arbitrary direction is related to the principal curvatures by

K = cos® a Kpmaz + sin® a Kpin- (1.8.27)
When a =0 or %w, we obtain one or the other principal curvature.

Numerical methods

In numerical practice, the curvature of a surface can be computed by tracing two curvilinear axes
with a set of marker points whose position is described as X (&, ), and then constructing parametric
representations for the £ and 7 coordinate lines using methods of curve fitting and function interpo-
lation, as discussed in Section B.4, Appendix B. The partial derivatives of X with respect to £ and
1 can be computed by numerical differentiation, as discussed in Section B.5, Appendix B.

Assume that the positions of five points along the £ and 7 axes are given, X; for i = 04,
as shown in Figure 1.8.2. Using centered differences to approximate the tangential vectors at the
location of the central point, X, we obtain

X2 — X1 X4 - X3

e~ 2L t

, ~ 4TS 1.8.28
1Xa — X,y Xy — X ( )

The numerical accuracy is of first order with respect to A¢ and An. If the points are evenly spaced
with respect to £ and 7, the accuracy becomes of second order with respect to A and An.
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i

FIGURE 1.8.3 Explicit description of a surface as z = ¢g(z,y), showing the normal unit vector, n, and
the unit vector normal to the intersection of the surface with a plane that is normal to the y axis,
denoted by n(®).

Next, we compute an approximation to the normal vector at the central point,

t t
ne 6% (1.8.29)
[t X ty)]
and use finite differences to approximate
t 1 X, - X Xp—X
(%) ~ ( 2720 20T ) (1.8.30)
Ole /n | Xo—Xyq| VX —Xo| |Xo—X{]

The normal unit vector, ng, follows by dividing the right-hand side of (1.8.30) by its length, and the
directional curvature is extracted from the formula

Ote

(1.8.31)
Similar equations are used to compute n, and &,,. If the curvilinear axes are orthogonal, the results
can be substituted into (1.8.13) and then into (1.8.18) to obtain an approximation to the mean
curvature at the central point, Xy. In that case, but not more generally, knowledge of the position
of five points is sufficient for estimating the mean curvature.

Description as z = q(x,y)

Assume that a surface is described explicitly by the function z = ¢(z,y), as shown in Figure 1.8.3.
The unit vector normal to the intersection of the surface with a plane that is perpendicular to the
Y axis is

n® —

1
W (7qzex +ez)7 (1832)
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(a) (6)

FIGURE 1.8.4 (a) lllustration of a line in the zy plane showing the tangential and normal unit vectors,
t and n, and the sign of the curvature, k. (b) lllustration of plane polar coordinates, (r,8), in the
xy plane centered at a point, xg.

and the unit vector normal to the surface is

1
n= (EYEYOIE (—gz€r — qyey +e.), (1.8.33)
z Ty

where ¢, = 0q/0z, q, = 0q/0y, and e,, e,, and e, are unit vectors along the z, y, and z axes.
Applying Meusnier’ formula (1.8.13), we find that the corresponding normal curvature is

1+¢2 )1/2

Ke =k n(m)~n:n (7
a3 a3 @ 1+q%+q§

(1.8.34)

where k, is the curvature of the planar intersection. We observe that K, = k. only when ¢, = 0,
corresponding to a cylindrical surface.

A similar expression can be written for /C;,. The mean curvature of the surface is not necessarily
equal to the average of K, and ICy.

1.8.4 Curvature of a line in a plane

The curvature of a line in the xzy plane, k, can be computed from the first Frenet—Serret relation in
terms of the derivative of the unit tangent vector, t, with respect to the arc length, [,
dt
dl
By convention, t and the normal unit vector n form a right-handed system of axes, as shown in
Figure 1.8.4(a). Projecting both sides of (1.8.35) onto n, we obtain

—K . (1.8.35)

dt
. ) 1.8.
K= —n ] (1.8.36)
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Since t - n =0 and d(t - n)/dl = 0, we also have

dn
=t 1.8.37
" al (1.8:37)

If the line is tangential to the z axis at a point, t = [1, O] and k = dn,/dx.

Description in Cartesian coordinates as y = q(x)

Assume that a line in the zy plane does not turn upon itself but has a monotonic shape, as shown in
Figure 1.8.4(a). The shape of the line can be described by a single-valued function, y = ¢(x). Using
elementary geometry, we find that the normal unit vector, tangent unit vector, and rate of change
of the arc length with respect to x are given by

1 dl
t= — = /14 ¢2, (1.8.38)

1
/ /
Vg et tEgmgletta) g

where e, and e, are unit vectors for the = and y axes, and a prime denotes a derivative with respect
to x. The curvature of the line is

dt  de dt 1 , .
.a__an.a__m(—qex—|—ey)(ew+qey). (1.8.39)

n-—

K= -1

Carrying out the differentiation and simplifying, we find that

/!

. a :l< 1 )':f<7q ) (1.8.40)
(1_|_q/2)3/2 q/ W \/W . 0.

/

The slope angle, ¢, is defined by the equation tan { = ¢/, where —7w/2 < ¢ < /2, as shown in
Figure 1.8.4(a). We note that 1+ ¢’2 = 1/ cos? ¢, and obtain

1 dcos(
== . 1.8.41
A= (1.8.41)

Description in plane polar coordinates as r = R(0)

Consider a system of plane polar coordinates, (r,6), in the xy plane, centered at a point, xg, as
shown in Figure 1.8.4(b). The shape of a line can be described by a function r = R(#). Using
elementary geometry, we find that the normal unit vector, tangent unit vector, and rate of change
of arc length with respect to 6 are given by

—Re, +R'ey Re,+Rey di
= 00— ‘t = 0 - = R2 R/27 18.42
T VR R VR + R @~V (1.842)
where e, and ey are unit vectors in the radial and polar directions, and a prime denotes a derivative
with respect to 6. The curvature of the line is

dt do dt 1

—n- E = —a n- @ = —W(*Rer +R/eg) . (R/ €, +Ree)/. (1843)
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Recalling that de,./00 = ey and Oey/00 = —e,., carrying out the differentiation and simplifying, we
obtain
RR// o 2R/2 _ R2

A= TR (1.8.44)

In the case of a circular line of radius a, we set R(6) = a and obtain kK = —1/a. The negative sign
merely reflects our convention.

Parametric representation in Cartesian coordinates

A line in the xy plane can be described in parametric form in terms of a variable, £, that increases
monotonically in the direction of the tangent unit vector, t. Regarding the z and y coordinates of a
point along the line as functions of &, we write z = X (£) and y = Y (§). Substituting these functions
into the first expression for the curvature given in (1.8.40), writing

dy _ Ye %
r_ 2 _ 1¢ L——— 1.8.45
a4 dz Xf ’ 4 Xg ’ ( )
and carrying out the differentiations, we obtain the formula
Xee Ve = Yee X
p= a6 el (1.8.46)

(X€2 4 }/52)3/2 !

where a subscript £ denotes a derivative with respect to £. Formulas (1.8.40) arise by setting £ = x.
If £ increases in a direction that is opposite to that of t, a minus sign is introduced in front of the
fraction on the right-hand side of (1.8.46).

Often in practice, the functions X (§) and Y (£) are reconstructed numerically from data de-
scribing the location of marker points along the line using, for example, cubic spline interpolation,
as discussed in Appendix B. The derivatives of these functions are computed by numerical differ-
entiation, as discussed in Sections B.4 and B.5, Appendix B. In the simplest implementation, the
interpolating variable, &, is identified with the arc length of the polygonal line connecting successive
marker points.

Shape of a line in terms of the curvature

In the convenient case where the parameter £ is the arc length along the line, [, the denominator in
(1.8.46) is equal to unity, yielding

/Q:Xll}/l 7)/” Xl. (1847)
Differentiating the expression X 12 + Y12 = 1 with respect to [ and using the resulting equation to
simplify (1.8.47), we obtain

Xy Yy

== =-—=. 1.8.48
}/l Xl ( )

These expressions allow us to reconstruct a curve in terms of the curvature, (1), by integrating the
ordinary differential equations X;; = kY; and Y;; = —k X subject to suitable boundary conditions.
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Parametric description in plane polar coordinates

A line in the zy plane can be described in parametric form in plane polar coordinates, (r, ), centered
at a chosen point, xog = (z, yo), in terms of a variable £ that increases monotonically in the direction
of the tangent unit vector, t, as shown in Figure 1.8.4(b), so that r = R(§) and § = ©(&). Using the
transformation rules

z(§) = zo + R(&) cos O(§), y(&) = yo + R(§) sin O(E), (1.8.49)
and applying the chain rule, we find that the expression for the curvature (1.8.46) becomes
B (R? + R2®§)3/2 ’

(1.8.50)
where a subscript denotes a derivative with respect to £. Formula (1.8.44) arises be setting £ = 6.

1.8.5 Mean curvature of a surface as the divergence of the normal vector

The formulas derived in Sections 1.8.3 and 1.8.4 can be used to obtain useful expressions for the
mean curvature of a three-dimensional surface. Assume that the x axis is normal, and the yz plane
is tangential to a surface at a point. The mean curvature of the surface at that point is given by the
surface divergence of the normal vector,

on on
2km=Vy n=(P-V) - n=-2 z, 1.8.51
. n=(P-V)n= g (1.8.51)
where P = I — n ® n is the surface projection operator and V is the three-dimensional gradient.
Requiring that

ny 4+nl+n? =1, (1.8.52)
taking a derivative with respect to x, and noting that n, = 1, ny, = 0, and n, = 0 at the origin

of the chosen coordinates, we find that dn,/0x = 0, which shows that the normal derivative of the
normal component of the normal vector is zero.

This property allows us to write a general expression for the mean curvature with reference
to an arbitrary system of Cartesian coordinates whose axes are not necessarily tangential or normal
to the surface at a point,

Ong  On,  On,

ox + oy 0z

2km =V -n = . (1.8.53)

If a surface is described implicitly by the equation F(x,y,z) = 0, the unit vector normal to
the surface is given by
1

= ——VF 1.8.54
< VP (1.854)

n

and the mean curvature is given by

_ 1 _ L o

where VV I is the matrix of second derivatives.

- ropp VF (VVF) - VF, (1.8.55)
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Explicit representation as z = q(x,y)

Assume that a surface is described explicitly as z = ¢(z,y). The components of the normal unit
vector are

o qy 1
Ng=—-—®  p=—— = - 1.8.56
N (1+¢2+q2)'/? Y (1+¢2+¢2)'2 T (4242 ( )

where a subscript = or y denotes a derivative with respect to x or y. Applying (1.8.53), we obtain
0 " 0
Ui = _%(Mq;w) - @(ng]w)' (1.8.57)

Carrying out the differentiations, we obtain
(14 6)) Goo — 2000y Gay + (1 +43) ayy

(1+q2 +a3)*? '
This formula also arises from (1.8.55) by setting F(x,y,2) = z — f(x,y). For a nearly flat surface,
26m ~ —Qzz — Qyy-

(1.8.58)

Rm =

Cylindrical polar coordinates

If a surface is described explicitly in cylindrical polar coordinates, (z,0,¢), by the function x =
q(o, ), we set F' =2a — q(o, ) and compute
VF = €; — (s €5 — Qtp €y, (1859)
where Q, = ¢,/0 and a subscript o or ¢ attached to ¢ denotes a derivative with respect to o or ¢.
The mean curvature computed using (1.8.55) is
_ 1 2 Qtp — Qo 2 4o

where Qo = qpp/0? . In the case of an axisymmetric surface, z = q(¢), the ¢ derivatives in (1.8.60)
are set to zero. For a nearly flat surface,

2 = = ( G + Qg + 22 ). (1.8.61)

The union of the three terms inside the parentheses is the Laplacian of the function g¢(o, ¢).

Spherical polar coordinates

If a surface is described explicitly in spherical polar coordinates, (7,8, @), by the function r = ¢(6, ¢),
we set F'=1r —q(0, p) and compute
q6 qp
VE=e,— Ley— 12 e 1.8.62
er r 0 rsinf e ( )
where a subscript 6 or ¢ denotes a derivative with respect to 6 or ¢. The mean curvature is computed
using (1.8.55) (Problem 1.8.4). For a nearly spherical surface of radius a, we find that

2 cot 0 1 1
2 ~— — (—— — _ . 1.8.63
Fom = ( 2 v + 72 00 + r2sin?6 o ) ( )

The union of the three terms inside the parentheses is the Laplacian of the function ¢(, ¢).
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b t

FIGURE 1.8.5 (a) A contour integral of the binormal vector, b, can be used to define the mean
curvature. (b) The surface-average value of the mean curvature over an interfacial patch can be
computed from the position of four marker points.

1.8.6 Mean curvature as a contour integral

The domain of definition of the normal unit vector can be extended from a surface into the whole
three-dimensional space using expression (1.8.54). A version of Stokes’ theorem discussed in Section
A.7, Appendix A, states that

%Fxtdl:/ [nV-F—(VF)-n]dS (1.8.64)
C D

for any arbitrary differentiable vector function F, where C' is a closed contour bounding a surface,
D, n is the unit vector normal to D pointing toward a designated side, t is the unit vector tangential
to C, and b = t x n is the binormal vector, as shown in Figure 1.8.5(a). Applying this identity with
F = n, we obtain

%Cnxtdl:/D[nV~n—(Vn)-n]dS. (1.8.65)

Because n is a unit vector, (Vn)-n =} V(n-n) = 0, yielding

/ 26mndS :]4 n x tdl. (1.8.66)
D c

If the surface is small, we may assume that the mean curvature and normal vector are constant and
obtain an approximation for the mean curvature,

1

where AS is the surface area of D. The counterpart of this expression for a section of a two-

dimensional surface with arc length Al is

1
~—mn-A 1.8.
R 2 oo 1) t, (1.8.68)

where At is the difference in the unit tangent vectors between the last and first segment points.
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FIGURE 1.8.6 The second principal curvature of an axisymmetric surface, k2 = 1/Ra, is the curvature
of the dashed line representing the trace of the surface in a plane that is normal to the surface and
also normal to a plane of constant azimuthal angle, .

Numerical methods

To illustrate the practical application of the method, we consider a rectangular surface element
defined by four points, A-D, that lie at the intersections of a pair of ¢ lines and a pair of n lines
representing surface curvilinear coordinates, as shown in Figure 1.8.5(b). Applying the trapezoidal
rule to approximate the contour integral in (1.8.67), we obtain

ngﬁn.{[(nx%)A+nx%—)§)B](§B—§A)
+[(n>< %)B—HIX %)c] (nc —ns)

+[(n>< 87X)0+n>< %—?)D} (ép — &¢)

+[<nx%—)§)D+nx %)A](UA_UD)}- (1.8.69)

The normal and tangent unit vectors on the right-hand side can be computed from the position of
surface marker points using standard methods of numerical differentiation, as discussed in Section
B.5, Appendix B.

1.8.7 Curvature of an axisymmetric surface

The mean curvature of an axisymmetric surface, illustrated in Figure 1.8.6, is the average of the two
principal curvatures. The first principal curvature is the curvature of the trace of the surface in an
azimuthal ox plane, denoted by x1, and the second principal curvature is the curvature of the trace
of the surface in the orthogonal plane, denoted by k5. In the case of a sphere, the two principal
curvatures are equal.
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Description as 0 = w(x)

The shape of an axisymmetric surface in a meridional plane of constant azimuthal angle ¢ can be
described by the function o = w(x), as shown in Figure 1.8.6(a). The normal unit vector is
= ! ! 1.8.70
n—\/ﬁ(eg_wew), ( )
where a prime denotes a derivative with respect to . The mean curvature is given by the divergence
of the normal vector,

_Ong 1 0(ong) w' 1 0 o
2= e Y5 00 *’<m> +E%(W)' (18.71)

Carrying out the differentiations, we obtain

2 w11 (1.8.72)
[{/m = — — 5 .O.
(1 +w/2)3/2 w /1 +w/2
which can be rearranged into the expression
11 2 "
D,y = — W W (1.8.73)

w (1+uw?)3?

The first term on the right-hand side of (1.8.72) is the principal curvature in an azimuthal plane,

w//

The second term on the right-hand side of (1.8.72) is the second principal curvature,
1
Ky = —, Ro=oVitw?z=-2 -2 (1.8.75)
R sinf  n,
where Ry is the second principal radius of curvature and the angle 6 is defined in Figure 1.8.6(a).
We have found that the second principal radius of curvature, Rs, is the signed distance of the point

where the curvature is evaluated from the intersection of the extension of the normal vector with
the = axis. If n, is negative, Ry is also negative, and wice versa.

Description as x = q(0)

The shape of an axisymmetric surface in an azimuthal plane can be described by the function
x = (o), as shown in Figure 1.8.6(b). The normal unit vector is

1 /
——(ex — ¢ &),
— )

where a prime denotes a derivative with respect to 0. The mean curvature is the divergence of the
normal vector,

n—

(1.8.76)

on, 1 9(on,) 1 oq ’
= — = - | . 1- .
2hm = =+~ =5 - ( e q/2) (1.8.77)
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Carrying out the differentiations, we obtain

q// 1 q/
A+ @7 o Jird

which is consistent with the more general expression (1.8.60).

Qi = — (1.8.78)

The first term on the right-hand side of (1.8.78) is the principal curvature in an azimuthal
plane,

m‘f;(l)ﬁ (1.8.79)

(+a22 = ¢ \ T g2

The second term is the second principal curvature,
1 o o o
= — Ro=——V1+¢?=—=—, 1.8.80
2 Ry 2 q ta sinf ng ( )

where Rs is the signed second principal radius of curvature, and the angle 6 is defined in Figure
1.8.6(b).

Problems

1.8.1 Rate of change of the surface metric tensor

Express the material derivative of the surface metric tensor, g.g, in terms of the velocity field.

1.8.2 Mean curvature

(a) Show that (1.8.19) can be reduced to the last expression in (1.8.18). Hint: Begin by expressing
the normal vector in the cross products in terms of the tangent vectors using (1.7.11), and then
expand the triple cross products.

(b) Derive an expression for the rate of change of the mean curvature following a point particle in
terms of the velocity.

1.8.3 Curvature of a line in a plane

Derive the expression for the curvature shown in (1.8.50).

1.8.4 Mean curvature in spherical polar coordinates

Derive an expression for the mean curvature of a surface that is described explicitly in spherical
polar coordinates, (7,0, ), by the function r = ¢(6, ).

X
Computer Problems

1.8.5 Mean curvature of a spheroid

Consider a spheroidal surface with one semi-axis equal to a and two semi-axes equal to b. In terms
of the native orthogonal surface curvilinear coordinates, £ and 1 = ¢, the position of a point on the
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spheroid is specified in parametric form as X = acos&, Y = bsin€ cos ¢, and Z = bsin € sin ¢, where
0 < ¢ <7 is a dimensionless parameter and ¢ is the azimuthal angle.

(a) Derive an expression for the mean curvature. Prepare a graph of the scaled mean curvature
akmy, against ¢ for aspect ratios b/a = 0.1 (prolate spheroid), 1.0 (sphere), and 10 (oblate spheroid).
Verify that, when a = b, the mean curvature takes the uniform value 1/a = 1/b for a sphere.

(b) Repeat (a) using (1.8.28)—(1.8.31) with sufficiently small increments A¢ and An to approximate
the curvature.

1.8.6 Curvature of a line by parametric interpolation

The following set of points trace a smooth closed loop in the xy plane:

1.1 22 39 41 3.0 20 13
1.0 01 11 30 39 41 3.0

T
Y

Write a program that uses cubic spline interpolation with periodic end conditions to compute the
Cartesian coordinates and curvature of a point along the loop as a function of a suitably chosen
parameter ¢ that increases monotonically from 0 to 1 along the loop, from start to finish (Section
B.5, Appendix B). One plausible choice for £ is the polygonal arc length, defined as the length of
the polygonal line connecting successive nodes, divided by the value at the last node. The program
should return the coordinates (z,y) corresponding to a specified value of £ in the interval [0, 1], where
& =0 and 1 correspond to z = 1.1 and y = 1.0. Generate a table of 32 values of the quadruplet
(&, z,y, k) at 32 evenly spaced intervals of £ between 0 and 1.

1.9 Interfacial surfactant transport

An impure interface between two immiscible fluids is sometimes occupied by a molecular layer of a
surfactant. Dividing the number of surfactant molecules inside an infinitesimal patch centered at a
given point by the patch surface area, we obtain the surface concentration of the surfactant, I'. The
molecules of an insoluble surfactant are convected and diffuse over the interface, but do not enter
the bulk of the fluid. Our objective is to derive an evolution equation for the surface concentration
of an insoluble surfactant (e.g., [438]).

1.9.1 Two-dimensional interfaces

We begin by considering a chain of material point particles distributed along the inner or outer side
of a two-dimensional interface and label the point particles using a Lagrangian parameter, £&. The
point particle position can be described in parametric form as X(£), as shown in Figure 1.9.1. Let
[ be the arc length along the interface measured from an arbitrary point particle labeled &;. The
number of surfactant molecules residing inside a test section of the interface confined between &
and £ is

1(&:t) 13 ol
n(&,t) :/ T, 1) di(e) :/ (€ 1) = dg’, (1.9.1)
l(&Ovt) &o 35
where £’ is an integration variable. Let g be the flux of surfactant molecules along the interface
due to diffusion. Conservation of the total number of surfactant molecules inside the test section
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Fluid 1

/’ Fluid 2

FIGURE 1.9.1 Point particles along a two-dimensional interface are identified by a parameter, &.

requires that

o~ gt0)  ale) (192

where the time derivative is taken keeping ¢ fixed. Substituting the expression for n from the last

integral of (1.9.1) and transferring the derivative inside the integral as a material derivative, D/Dt,
we obtain

D ol
—(T(¢,t d¢’ = - . 1.9.
| (1€ ) @€ = atéo) — ) (193

Now we take the limit as £ tends to & and derive the differential equation

D ol dq

— (=) =—-——. 1.9.4

or (" 5¢) = ¢ (194
Expanding the material derivative on the left-hand side, we obtain

94

DI ol D /ol
Draet Dit(aig)’*ag' (1.9.5)
To compute the second material derivative on the left-hand side, we use the Pythagorean theorem
to write
ol 0X\2 Y \271/2
=) +(5e) | (1.96)
and then compute
D /ol 1 1 0X D /10X oY D s9Y
5 (3) = 3 3m70e 2 3 i (e ) 2 e il oe) - (1.9

Interchanging the order of the material and the £ derivative inside the square brackets on the right-
hand side and setting DX/Dt = u, and DY /Dt = u,, we find that

D(@l) 1 ([“)X@uw 6Y8uy)_ 1 00X Ou (1.9.8)

Di\ag) ~ aijoe \o¢ o T o¢ o ) T aijoc o oe



82 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

Rearranging, we obtain

D ol 99X du o, du
E(a?) t (1.9.9)

“ac ol ol et A
where t = 90X/l is the tangent unit vector shown in Figure 1.9.1. Substituting the final expression
into (1.9.5), we obtain

Dr ou dq
- i 1.9.10
pe Tt T A (1.9.10)

which is the targeted evolution equation for the surfactant concentration.

In certain applications, it is convenient to describe the surfactant surface concentration in
Eulerian form in terms of x and ¢, as shown in Figure 1.9.1. The material derivative is then

Dr _ (81“)57 or or

where the last expression involves Eulerian derivatives with respect to x and t. Similar expressions
can be written with reference to curvilinear axes.

Fick’s law
The diffusive flux of a surfactant along an interface can be described by Fick’s law,

or

== *Ds a7
1 al

(1.9.12)
where Dy is the surfactant surface diffusivity with unit of length squared divided by time. In practice,
the surfactant diffusivity is typically small. Substituting this expression into (1.9.10), we derive a
convection—diffusion equation,

br ou 0 ( 8F). (1.9.13)

Stretching and expansion

It is illuminating to decompose the interfacial velocity into a tangential component and a normal
component,

u=ut+u,n, (1.9.14)

where n is the normal unit vector, as shown in Figure 1.9.1. The tangential and normal velocities
are u; = u-t and v, = u-n. Noting that t-n =0,t-t =1, and n-n = 1, and using the Frenet-Serret
relations dt/dl = —kn and dn/dl = kt, we compute

ou  Ouy on  Ou

—_— = — _— = — =4
3l 3l + Uy 3l 3l + KUy, (1.9.15)
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where k is the interfacial curvature. Substituting this expression into (1.9.13), we obtain

Dr

o Ouy 0 ( 811)'

—&—F(*—!-K:un D, —

_9 1.9.16
ol ) =P 5 ( )

The first term inside the parentheses on the left-hand side expresses the effect of interfacial stretching,
and the second expresses the effect of interfacial expansion.

Stretching of a flat interface

As an application, we consider a flat interface along the x axis that is stretched uniformly under the
influence of a tangential velocity field, u,. Identifying the arc length [ with x and setting x = 0, we
find that the transport equation (1.9.16) reduces to

Dr Ouy 0 ( 8F).

The material derivative can be resolved into Eulerian derivatives with respect to x and ¢, yielding

ot or  Ox

or or - Ou, 8( 8F> o or | d(u,l) 3( Sai) (1.9.18)

o T T T \Peas Oz

This equation could have been derived directly by performing a surfactant molecular balance over a
stationary differential control volume along the x axis, taking into consideration the convective and
diffusive flux contributions.

In the case of a uniformly stretched interface, u, = ax, where « is a constant rate of extension.
If the surfactant concentration is uniform at the initial instant, it will remain uniform at any time,
governed by the linear equation

dr

— +al'=0. 1.9.19

% T ( )
The solution reveals that, when « is positive, the surfactant concentration decreases exponentially

due to dilution, I'(t) = I'(t = 0) exp(—at).

Ezxpansion of a circular interface

As a second application, we consider a cylindrical interface with circular cross-section of radius a(t)
centered at the origin, expanding under the influence of a uniform radial velocity in the absence
of circumferential motion. In corresponding plane polar coordinates, (r,#), the transport equation
(1.9.16) with k = 1/a and constant diffusivity becomes

Dr w. D, 0°T
— 4T — == —. 1.9.20
Dt * a a? 00?2 ( )
Resolving the material derivative into Eulerian derivatives with respect to r and ¢, we obtain

8£+FUT7&827F
ot a  a? 062’

(1.9.21)
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If the surfactant concentration is uniform at the initial instant, it will remain uniform at any time,
governed by the linear equation
dr Uy

— 4+ —=0. 1.9.22
dt+ a ( )

In the case of expansion, w, > 0, the surfactant concentration decreases due to dilution, dT'/dt <

0. In the case of contraction, u, < 0, the surfactant concentration increases due to compaction,
dr/dt¢ > o.

Interfacial markers

The material derivative expresses the rate of change of the surfactant concentration following the
motion of point particles residing inside an interface. In numerical practice, it may be expedient to
follow the motion of interfacial marker points that move with the normal component of the fluid
velocity and with an arbitrary tangential velocity, v;. If v, = 0, the marker points move normal to
the interface at any instant. The velocity of a marker point is

VvV =1u,n+uv;t. (1.9.23)
By definition,
Dr dr +( ) ar
Dt at "
where d/dt is the rate of change of the surfactant concentration following a marker point. Substi-
tuting this expression into the transport equation (1.9.16), we obtain

(1.9.24)

dr or Oouy 0 or
which can be restated as
dr’ = o(wI) or 0 or
il — O e = — il 1.9.26
@t gt = (0 gp)- (1.9.26)

The second term on the left-hand side represents the interfacial convective flux.

1.9.2 Axisymmetric interfaces

Next, we consider a chain of material point particles distributed along the inner or outer side of
the trace of an axisymmetric interface in an azimuthal plane, and label the point particles using a
parameter, &, so that their position in an azimuthal plane is described parametrically as X(&). Let {
be the arc length along the trace of the interface measured from an arbitrary point particle labeled
o, as illustrated in Figure 1.9.2.

To derive an evolution equation for the surface surfactant concentration, we introduce cylin-
drical polar coordinates, (x, 0, ¢), and express the number of surfactant molecules inside a ring-like
material section of the interface confined between &, and £ as

1(&:1) 3 ol
n(é,t) = 2m /l(5 D€ Do) e =2r / T 1) o= o(¢') de'. (1.9.27)
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Fluid 1

Fluid 2

FIGURE 1.9.2 Point particles along the trace of an axisymmetric interface in an azimuthal plane are
identified by a parameter £&. The angle x is subtended between the x axis and the straight line
defined by the extension of the normal vector.

Conservation of the total number of surfactant molecules inside the test section requires that

on

or = 2m004(§) — 2moq(8), (1.9.28)

where ¢ is the flux of surfactant molecules along the interface by diffusion, and the time derivative
is taken keeping ¢ fixed. The counterpart of the balance equation (1.9.4) is

D ol 0(oq)
pi (TN (61 5) =~ =55 (1.9.29)
and the counterpart of equation (1.9.10) is
br ou gy 10(0q)
D +I(t a ) = T (1.9.30)

In deriving this equation, we have set DX /Dt = u,, where ¥ is the distance of a point particle from
the axis of revolution.

Stretching and expansion

In terms of the normal and tangential fluid velocities, w, and w;, the transport equation (1.9.30)
takes the form
DI’ 8ut

Uo
—— 4T (=t nt —)=-—-= , 1.9.31
Dt+(al+’w+a) (1.9.31)
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where k is the curvature of the interface in an azimuthal plane. Next, we introduce the angle x
subtended between the z axis and the normal vector to the interface at a point, as shown in Figure
1.9.2. Substituting u, = u, sin Y — u; cos x, we obtain

DI d
_|_1"< Ys _ CO8X (1.9.32)

sin x ) 1 9(0q)
— — - —=u K Uy | = —— .
Dt ol o e o ) tn o 0l
The sum of the two terms inside the innermost parentheses on the left-hand side is twice the mean
curvature of the interface, 2k,,. The first two terms inside the large parentheses can be consolidated

to yield the final form

(1.9.33)

br I (1 d(ouy) 1 9(0q)
Dt ol o ol

The first term inside the large parentheses on the left-hand side expresses the effect of axisymmetric
interfacial stretching, and the second expresses the effect of interfacial expansion.

+2/<amun) =

Marker points

An evolution equation for the rate of change of the surface surfactant concentration following in-
terfacial marker points that are not necessarily point particles can be derived working as in Section
1.9.1 for two-dimensional flow. The result is

dr or 1 O(ouy) 1 0(oq)
(=) F( = +2nmun) =--=2E, (1.9.34)
which can be restated as
dl' 1 9(owT) ar 1 9(0q)
- .= b — = e 1.9.35
wt e e e TH2mUn =0T (1.9:35)

When v; = 0, the marker points move normal to the interface and the third term on the right-hand
side does not appear.

1.9.3 Three-dimensional interfaces

To derive an evolution equation for the surface surfactant concentration over a three-dimensional
interface, we introduce convected surface curvilinear coordinates, (£,7), embedded in the interface,
as discussed in Section 1.7. The total number of surfactant molecules residing inside a material
interfacial patch consisting of a fixed collection of point particles is

n= / rds = / I hg d€ dn, (1.9.36)
Patch =

where hg is the surface metric and = is the fixed support of the patch in the (£,7) plane. A mass
balance requires that

dn
- = 74 b-qdl 1.9.37

where C' is the edge of the patch, b =t x n is the binormal vector, t is the unit tangent vector, n
is the unit vector normal to the patch, and q is the tangential diffusive surface flux. Substituting
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the last integral in (1.9.36) in place of n into the left-hand side of (1.9.37), and transferring the time
derivative inside the integral as a material derivative, we obtain

/E D(ll;?s) dédn = — ]{b -qdS. (1.9.38)

Next, we expand the material derivative inside the integral, use (1.7.32) to evaluate the rate of
change of the surface metric, and apply the divergence theorem to convert the line integral on the
right-hand side into a surface integral, obtaining

/ (E—Ffvs-u)dS:— V- qdS, (1.9.39)
Patch Dt Patch

where Vg = (I—n®n)-V is the surface gradient and V- u is the surface divergence of the velocity.
Because the size of the material patch is arbitrary, the integrands must balance to zero, yielding the
transport equation

DI’

Stretching and expansion

Physical insights can be obtained by resolving the surface velocity
into its tangential and normal constituents, u = us + u, n, where
u, = u-n is the normal velocity and u, is the tangential (surface)
velocity. Substituting this expression into the surface divergence of
the velocity on the left-hand side of (1.9.40), we obtain

c
Dr
ﬁJrr(vs-us+n-vsun+unvs-n) =-V,-q. (1.9.41) N ¢
The inner product, n- Vgu,, is identically zero due to the orthogo- Illustration of an interfacial

nality of the surface gradient and normal vector. Setting the surface patch occupied by surfactant.
divergence V- n equal to twice the mean curvature of the interface,
2K, we obtain the transport equation

DI
= (Vs us+2kmu, ) = -V, -q. (1.9.42)

The first term inside the parentheses on the left-hand side expresses the effect of interfacial stretching,
and the second expresses the effect of interfacial expansion. In the case of a stationary interface,
u, = 0, only the tangential velocity field affects the surfactant concentration.

Fick’s law

The tangential diffusive flux vector can be described by Fick’s law,

q=-D,V.T, (1.9.43)
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where Dy is the surfactant surface diffusivity. Substituting this expression into (1.9.40), we derive a
convection—diffusion equation,

Dr

When the diffusivity is constant, the diffusion term becomes stgf, where Vg = Vs - Vg is the
surface Laplacian operator, sometimes also called the Laplace—Beltrami operator. Expression for this
operator in orthogonal and nonorthogonal curvilinear coordinates can be derived using the formula
presented in Appendix A.

Interfacial markers

In numerical practice, it may be expedient to follow the motion of interfacial marker points moving
with the normal component of the fluid velocity, u,n, and with an arbitrary tangential velocity, vs.
The marker-point velocity is

V=u,n+vV,. (1.9.45)

When v, = 0, a marker point moves with the fluid velocity normal to the interface alone. Conse-
quently, if the interface is stationary, the marker point is also stationary. When v, = u — u, n, the
marker points are material point particles moving with the fluid velocity. The rate of change of the
surfactant concentration following the marker points is related to the material derivative by

dIr DI
T Dr (us — v) - VT (1.9.46)

Combining this expression with (1.9.42), we obtain

dr
T + (us —vs) VI + (Vs - ug + 26u,) = =V, - q. (1.9.47)

Rearranging, we derive the alternative form

dr
5 T Ve (Tu) = Ve VL 4 T 26ty =~V - q. (1.9.48)

If the point particles move normal to the interface, the third term on the left-hand side expressing
a convective contribution does not appear.

Problems

1.9.1 Two-dimensional and axisymmetric transport

Show that, in the case of two-dimensional flow depicted in Figure 1.9.1 or axisymmetric flow depicted
in Figure 1.9.2, equation (1.9.48) reduces, respectively, to (1.9.26) or (1.9.35), by setting vy = vt.

1.9.2 Transport in a spherical surface

Derive the specific form of (1.9.48) over a spherical surface of radius @ in terms of the meridional
angle, 6, and azimuthal angle, ¢.
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FIGURE 1.10.1 The shape of a material surface can be described in Eulerian form in global Cartesian
coordinates as z = f(x,y).

1.10 Eulerian description of material lines and surfaces

It is sometimes convenient, or even necessary, to describe a material line or surface in Eulerian
parametric form using Cartesian or other global curvilinear coordinates instead of surface curvilinear
coordinates discussed earlier in this chapter. The Eulerian description is particularly useful in studies
of interfacial flow where a material line or surface is typically identified with an interface between
two immiscible fluids or with a free surface separating a gas from a liquid.

A function that describes the shape of a material line or surface in Eulerian form satisfies an
evolution equation that emerges by requiring that the motion of point particles on either side of the
line or surface is consistent with the stationary or evolving shape of the line or surface described by
the Eulerian form. This evolution equation can be regarded as a kinematic compatibility condition,
analogous to a kinematic boundary condition specifying the normal or tangential component of the
velocity on a rigid or deformable boundary.

1.10.1 Kinematic compatibility

With reference to Figure 1.10.1, we describe the shape of a material surface in Cartesian coordinates
by the function z = f(z,y,t). If the material surface is evolving, the function f changes in time,
as indicated by the third of its arguments. To derive an evolution equation for f, we consider
the position of a point particle in the material surface at times ¢ and ¢t + At, where At is a small
time interval, recall that the point particle moves with the fluid velocity, and exercise geometrical
reasoning to write

flx +uz Aty + uy At t + At) = f(x,y,t) + uAt. (1.10.1)
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Expanding the left-hand side of (1.10.1) in a Taylor series with respect to the first two of its arguments
about the triplet (z,y,t), we find that
of

of At + = uy At = f(z,y) + u At (1.10.2)

Now dividing each term by At, taking the limit as At becomes infinitesimal, and rearranging, we
derive the targeted evolution equation

of of of _
5t + Uy D + Uy By uy =0, (1.10.3)

expressing kinematic compatibility. If the shape of the material surface is stationary, df/dt = 0,
the remaining three terms on the left-hand side of (1.10.3) must balance to zero.

Level-set formulation
A material surface can be described implicitly by the equation
F(z,y,z2,t) = f(z,y,t) —z = 0. (1.10.4)

The function F'(z,y, z,t) is negative above the material surface, positive below the material surface,
and zero over the material surface. Equation (1.10.3) can be restated in terms of the material
derivative of F' as

DF  OF
—_— = -VF =0. 1.10.5
Dt ot +u-V ( )
Introducing the upward normal unit vector, n = —VF/|VF|, we obtain
1 oF (1.10.6)
- — un, . .
|VF| ot

where u,, = u - n is the normal velocity component. This form shows that u, must be continuous
across a material surface. The tangential velocity component may undergo a discontinuity that is
inconsequential in the context of kinematics.

The implicit function theorem allows us to generalize these results and state that, if a material
surface is described in a certain parametric form as

F(x,t) =c, (1.10.7)

where ¢ is a constant, then the evolution of the level-set function F(x,t) is governed by equation
(1.10.5) or (1.10.6). This is another way of saying that the scalar field represented by the function
F(x,t) is convected by the flow. Stated differently, a material surface is a convected level-set of the
function F'(x,t) determined by the constant c.

As an example, we describe a material line in a two-dimensional flow in plane polar coordinates,
(r,0), as 7 = f(0,t), and introduce the level-set function

F(r,0,t) = f(0,t) — . (1.10.8)
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Kinematic compatibility requires that

Df _0f  udf  _
ot ot T oag =0 (1.10.9)

where the velocity is evaluated on either side of the material line, subject to the condition that the
normal velocity is continuous across the material line.
1.10.2 Generalized compatibility condition

Since the gradient of the level-set function, VF, is perpendicular to a material surface, an arbitrary
tangential component, v;, can be added to the interfacial fluid velocity u in (1.10.5), yielding

oF
S T (umntve) VF=0. (1.10.10)
For example, we may set
vi=f(I-n®n)-u=pfnxuxn, (1.10.11)

where [ is an arbitrary time-dependent coefficient allowed to vary over the material surface. The
projection operator I — n ® n extracts the tangential component of a vector that it multiplies.
Equation (1.10.10) reveals that it is kinematically consistent to allow imaginary interfacial particles
to move with their own velocity,

v=u,n+pI-n®n)-u, (1.10.12)

that can be different than the fluid velocity. When 8 # 1, the interfacial particles represent marker
points devoid of physical interpretation.

1.10.3 Line curvilinear coordinates

An evolving material line in the zy plane can be described parametrically by the equation

x(&,1) = x"(€) + ¢(& 1) n"(©), (1.10.13)

where x7(¢) describes a steady reference line, ¢ is a parameter increasing in a specified direction
along the reference line, n¥(¢) is the unit vector normal to the reference line, and ((¢,t) is the normal
displacement, as illustrated in Figure 1.10.2. This representation is acceptable when the material
line is sufficiently close to the reference line so that ((&,t) is a single-valued and continuous shape
function. In practice, the material line can be the trace of a cylindrical surface whose generators are
parallel to the z axis.

It will be necessary to introduce the arc length along the material line, l¢, increasing in the
direction of the parameter £. A point particle in an evolving material line moves tangentially and
normal to the reference line. If at time ¢ the point particle is at a position corresponding to l¢, then
at time ¢ + At the same point particle will be at a position corresponding to ¢ + Alg, where

Alg = UEAt, (11014)

R S
R+¢ 7 7 1+kBC
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FIGURE 1.10.2 An evolving material line can be described in Eulerian form with respect to a stationary
reference line in terms of the normal displacement, (. The radius of curvature of the reference line
is denoted by R.

ug is the velocity component tangential to the reference line evaluated at the position of the material
line, R is the signed radius of curvature of the reference line, and x% = 1/R is the curvature of the
reference line. For the configuration illustrated in Figure 1.10.2, R and ' are positive. Expression
(1.10.14) arises by approximating the line locally with a circular arc. Using the second Frenet—Serret
relation, On? /0l = k7%, we find that

_yr ™) oxT 0(CnT)
- g 0Olg Ol '

KR¢ (1.10.15)

where t is the unit vector tangent to the reference line. Now exercising geometrical reasoning, we
find that

Cle + Alg,t + At) = ((lg, t) +ul At, (1.10.16)

where uf is the velocity component normal to the reference line evaluated at the position of the
material line, as illustrated in Figure 1.10.2. Expanding the left-hand side in a Taylor series and
linearizing with respect to At, we derive the compatibility condition

6( Ug 8{ R

—+ ———u, =0. 1.10.17

ot 14 kB¢ Olg " ( )
In the case of a rectilinear reference line, k® = 0, we recover the compatibility condition derived
earlier in this section.

Differentiating expression (1.10.13) with respect to [ and using the second Frenet—Serret
relation, we obtain a vector that is tangential to the material line,

ox ¢
— = (1+ &7t + = n". 1.10.18
5 = (1Rt + 2o (11018)
This expression shows that an arbitrary tangential velocity with components
0
ve = B (1 + &7(), vl = 8—2 (1.10.19)

can be included on the left-hand side of (1.10.17), where £() is an arbitrary coefficient.
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1.10.4 Surface curvilinear coordinates

An evolving material surface can be described parametrically by the equation

x(&,m,t) =x"(&,n) + ¢(&n, t)n" (&, m), (1.10.20)

where the function x%(&,7) describes a steady reference surface, & and 7 comprise a system of
two surface curvilinear coordinates in the reference surface, n(&,7) is the unit vector normal to
the reference surface, and ((&,n,t) is the normal displacement from the reference surface. This
representation is appropriate when the material surface is sufficiently close to the reference surface
so that ((&,n,t) is a single-valued and continuous shape function.

Working as in Section 1.10.3 for a material line, we find that, in the case of orthogonal surface
curvilinear coordinates, (£,7), the shape function evolves according to the equation

o, e 0w
ot 14+Ke€0le 1+K,¢ 0l "

=0, (1.10.21)

where [¢ and [, is the arc length in the reference surface along the two surface curvilinear coordinates,
K¢ and IC,) are the corresponding principal curvatures, u¢ and u,, are velocity components tangential
to the reference surface evaluated at the material surface, and uff is the velocity component normal
to the reference surface. If the reference surface is a sphere of radius a, we may identify £ with the
meridional angle, 8, n with the azimuthal angle, ¢, and set ly = af, I, = (asinf) ¢, ke = 1/a, and
kn = 1/a.

Equation (1.10.21) can be expressed in coordinate-free vector notation in terms of the surface
gradient of the reference surface, VZ = PF .V, and corresponding surface velocity, u? = P .u, as

7—|—uR-VRf—uR :O’ (11022)

where PE =1 — n” ® nf is the tangential projection operator and I is the identity matrix. The
surface function, F(l, a), satisfies the differential equation

or _ 1 9
ol 1+KCal’

(1.10.23)

where [ is the arc length along the intersection of the material surface with a normal plane, corre-
sponding to the tangent unit vector t, I is the corresponding principal curvature, and « is the angle
subtended between the intersection and a specified tangential direction. For example, @ = 0 may
correspond to the direction of maximum principal curvature. The pair (I, ) constitutes a system of
plane polar coordinates tangential to the material surface at a point of interest. By analogy with
(1.10.15), we write

. 0¢nf) oxf 9(¢n™)
K=t == —a

(1.10.24)

which demonstrates that the right-hand side of (1.10.23) is independent of .
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Problems

1.10.1 Ezpanding sphere

Consider a radially expanding sphere of radius a(t) described in spherical polar coordinates by the
equation F(r,t) =r—a(t) = 0. Use (1.10.5) to compute the radial velocity at the surface of a sphere
in terms of F.

1.10.2 Boundary condition at a propagating wavy material line

Consider a material line in the zy plane described by the function y = asin[k(z — ct)], where k is
the wave number and c is the phase velocity. Use (1.10.5) to derive a boundary condition for the
velocity.

1.10.3 Line and surface curvilinear coordinates

(a) Develop a compatibility condition when the normal vector on the right-hand side of (1.10.13) is
replaced with an arbitrary unit vector that has a normal component.

(b) Repeat (a) for (1.10.20).

1.11 Streamlines, stream tubes, path lines, and streak lines

An instantaneous streamline in a flow is a line whose tangential vector at every point is parallel to
the current velocity vector. A closed streamline forms a simple or twisted loop, whereas an open
streamline crosses the boundaries of a flow or else extends to infinity. A streamline can meet another
streamline or a multitude of other streamlines at a stagnation point. Stagnation points may occur in
the interior of a flow or at the boundaries. Since the velocity is a single-valued function of position,
the velocity at a stagnation point must necessarily vanish.

Autonomous differential equations

To describe a streamline, we introduce a variable 7 that increases monotonically along the streamline
in the direction of the velocity vector. One acceptable choice for 7 is the time it takes for a point
particle to move along the streamline from a specified initial position as it is convected by the
frozen instantaneous velocity field. If the flow is steady, 7 is the real time, t. The streamline is
then described by an autonomous system of differential equations, with no time dependence on the
right-hand side,

dx
E :u(x’t:to)’ (1111)

where t is a specified time. Recasting (1.11.1) into the form

dr_dy _d

Uy Uy Uy

=dr (1.11.2)

)

confirms that an infinitesimal vector that is tangential to a streamline is parallel to the velocity.
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1.11.1 Computation of streamlines

To compute a streamline passing through a specified point, xq, we integrate the differential equations
(1.11.1) forward or backward with respect to 7, subject to the initial condition, x(7 = 0) = xq, using
a standard numerical method, such as a Runge-Kutta method discussed in Section B.8, Appendix B.
The integration terminates when the magnitude of the velocity becomes exceedingly small, signaling
approach to a stagnation point.

Setting the time step

If the integration step, At, is kept constant during the integration, the travel distance along a
streamline will be proportional to the magnitude of the local velocity at each step. A large number
of steps will be required in regions of slow flow with a simple streamline pattern. To circumvent this
difficulty, we may set the time step inversely proportional to the local magnitude of the velocity,
thereby ensuring a nearly constant travel distance in each step. This method has the practical disad-
vantage that the computed streamline may artificially cross stagnation points where it is supposed
to end. A remedy is to set the travel distance equal to, or less than, the finest length scale in the
flow.

Ideally, the time step should be adjusted according to both the magnitude of the velocity
and local curvature of the computed streamline, so that sharply turning streamlines are described
with sufficient accuracy and the computation does not stall at regions of slow flow with simple
structure. However, implementing these conditions increases the complexity of the computer code.
Unless a high level of spatial resolution is required, the method of constant travel distance should
be employed.

1.11.2 Stream surfaces and stream tubes

The collection of all streamlines passing through an open line in a flow forms a stream surface, and
the collection of all streamlines passing through a closed loop forms a stream tube. Consider two
closed loops wrapping once around a stream tube, and draw two surfaces, D; and D, that are
bounded by each loop, as shown in Figure 1.11.1. The volumetric flow rate across each surface is

Q¢=/ u-ndS (1.11.3)
D;

for ¢ = 1,2, where n is the unit vector normal to D; or Ds. Using the divergence theorem, we
compute

ngQl—/ u-ndS+ V-udV, (1.11.4)
St Vi

where S; is the surface of the stream tube extending between the two loops, and V; is the volume
enclosed by the surfaces Dy, Do, and S;. Since the velocity is tangential to the stream tube and
therefore perpendicular to the normal vector on S, the surface integral over S; is zero and (1.11.4)
simplifies into

Q=01+ V.-udV. (1.11.5)
Vi
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FIGURE 1.11.1 |lllustration of a stream tube and two closed loops wrapping around the stream tube.

This equation suggests that the volumetric flow rate may increase or decrease along a stream tube
according to whether the fluid inside the stream tube undergoes expansion or contraction.

Incompressible fluids

If the fluid is incompressible, V - u = 0, the flow rate across any cross-section of a stream tube
is constant, Q; = Q2. Consequently, in the absence of singularities, a stream tube that carries a
finite amount of fluid may not collapse into a nonsingular point where the fluid velocity is nonzero.
If this occurred, the flow rate at the point of collapse would have to vanish, which contradicts the
assumption that the stream tube carries a finite amount of fluid. A similar argument can be made to
show that a streamline, approximated as a stream tube with infinitesimal cross-section, may not end
suddenly in a flow, but must meet another streamline or multiple streamlines at a stagnation point,
form a closed loop, extend to infinity, or cross the boundaries of the flow. A third consequence of
(1.11.5) is that the distance between two adjacent streamlines in a two-dimensional incompressible
flow is inversely proportional to the local magnitude of the fluid velocity. The faster the velocity,
the closer the streamlines.

1.11.3 Streamline coordinates

Useful insights can be obtained by considering the motion of point particles with reference to the
instantaneous structure of the velocity field near a streamline. The point particles translate tan-
gentially to the streamlines and rotate around the local vorticity vector, which may point in an
arbitrary direction with respect to the streamlines. (We note parenthetically that a flow where the
vorticity vector is tangential to the velocity vector at every point, u-w = 0, is called a Beltrami
flow.) Our main goal is to establish a relation between the direction and magnitude of the vorticity
vector and the structure of the streamline pattern in two- and three-dimensional flow.

Frenet—Serret framework

As a preliminary, we introduce a system of orthogonal curvilinear coordinates constructed with
reference to a streamline. We begin by labeling point particles along the streamline by the arc
length, I, and observe that the unit vector t = dx/dl is tangential to the streamline and therefore
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(a)

FIGURE 1.11.2 lllustration of a streamline and associated curvilinear axes constructed with reference
to the streamline in (@) three-dimensional, and (b) two-dimensional flow.

parallel to the velocity, as shown in Figure 1.11.2(a). The principal unit vector normal to the
streamline, n, is defined by the first Frenet—Serret relation

10t

n=-——— 1.11.6

T ( )

where « is the signed curvature of the streamline, as discussed in Section 1.6.3. The curvature of

the streamline shown in Figure 1.11.2(a) is positive, £ > 0. Next, we introduce the binormal unit

vector defined by the equation b = t X n. The three unit vectors, t, n, and b, define three mutually

orthogonal directions that can be used to construct a right-handed, orthogonal, curvilinear system

of axes, so that t = n x b and n = b x t, as discussed in Section 1.6.2. The second and third
Frenet—Serret relations are

on ob

— =kt+7hb = =
Kkt + TDb, al

o —7n, (1.11.7)

where 7 is the torsion of the streamline.

Local Cartesian coordinates

In the next step, we introduce a system of Cartesian coordinates with origin at a particular point
on a chosen streamline. The x, y, and z axes point in the directions of t, n, and b, as shown in
Figure 1.11.2(a). Since the velocity is tangential to the streamline, u, = 0 and u, = 0 at the origin
by definition at any instant. Moreover,

Ouy _ Ou d(u-n) On OJu, Ou d(u-b) 0b

Because the velocity is tangential to the streamline and thus perpendicular to the normal and
binormal vectors along the entire streamline, u-n = 0, u-b = 0, and the first term after the second
equal sign of each equation in (1.11.8) is identically zero. Using the Frenet—Serret formulas (1.11.7)
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to simplify the second term, we obtain

Ouy ou,
B = e

-0 1.11.9
5z =0 ( )

In Section 1.11.4, these expressions will be used to relate the vorticity to the structure of the velocity
field around a streamline.

Vorticity in two-dimensional flow

Consider a two-dimensional flow in the zy plane, as illustrated in Figure 1.11.2(b). Using relations
(1.11.9), we find that the z vorticity component at the origin of the local Cartesian axes is given by

_ Ouy  Oug

Yz = Bz T By

= —kuy —n- (Vu) - t. (1.11.10)

Introducing plane polar coordinates with origin at the center of curvature of a streamline at a point,
as shown in Figure 1.11.2(b), and noting that u, = —up along the y axis pointing in the radial
direction, we obtain

Ug GUQ
w :7+( ) 7 1.11.11

i R or /r=R ( )
where R = 1/k is the radius of curvature of the streamline. This expression reveals that point
particles spin about the z axis due to the global motion of the fluid associated with the curvature
of the streamline, but also due to velocity variations in the normal direction.

Vorticity in streamline coordinates

The vorticity vector can be resolved into three components corresponding to the tangent, normal,
and binormal directions at a point along a streamline. The corresponding vorticity components can
be expressed in terms of the structure of the velocity field around a streamline. We will demonstrate
that the streamline decomposition takes the form
ou ou
w=(n-L-b—b-L-n)t+——'n— (5~ +ru)b, (1.11.12)
ly ly,
where L = Vu is the velocity gradient tensor, u; is the tangential velocity component, [,, is the arc
length in the normal direction, [ is the arc length in the binormal direction, and & is the curvature
of the streamline. Expression (1.11.12) reveals the following:

e Point particles spin about the tangential vector due to the twisting of the streamline pattern,
which is possible only in a genuine three-dimensional flow.

e Point particles spin about the normal vector due to velocity variations in the binormal direction,
which is also possible only in a genuine three-dimensional flow.

e Point particles spin about the binormal vector due to velocity variations in the normal direction
and also due to the global fluid motion of the fluid associated with the curvature of the
streamline.
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To derive the tangential vorticity component, we refer to Figure 1.11.2(a) and project the definition
of the vorticity, w = V X u, onto the unit tangent vector, t. Rearranging the resulting expression
and introducing the normal and binormal vectors, we obtain

w=t-w=t-(Vxu=mnxb)-(Vxu=n-(Vu)-b—b-(Vu)- n. (1.11.13)
By definition, wy; = 0 in two-dimensional or axisymmetric flow.

To derive the normal vorticity component, we write u = w;t and invoke once again the
definition of the vorticity, w = V x u, to obtain

w=V X (ut) =V x t + Vg x t. (1.11.14)
Projecting (1.11.14) onto the normal vector, n, and rearranging, we find that
wp=w-n=u(Vxt) n+(Vu xt) n=u;(Vxt) (bxt)+(txn) Vu, (1.11.15)

and then

8ut

Wp=ub-(txVxt)+b -Vu; =ub- [(Vt)-t—t-Vt]—!—a—lb.

(1.11.16)
Because the length of the tangent unit vector t is constant, (Vt)-t = 2 V(t-t) = 0. Using (1.11.6),

we find that b- (t - Vt) = —xb - n = 0, and conclude that w,, = du;/dl,. By definition, w, = 0 in
two-dimensional or axisymmetric flow.

To derive the binormal vorticity component, we project (1.11.14) onto the binormal vector,
b, and work in a similar fashion to obtain the binormal vorticity components,

wp=w-b=u (Vxt)- b+ (Vu xt) - b=w;(Vxt) (t xn)+(t xb) Vu, (1.11.17)
yielding

ot 0 9,
wb:—utn~(t><vxt)—n-Vut:utn-——ﬁ:—fwt—aTut.

5 a0 (1.11.18)

In the case of two-dimensional flow, the vorticity vector points in the binormal direction and (1.11.18)
reduces to (1.11.10).

1.11.4 Path lines and streaklines

A path line represents the trajectory of a point particle that has been released from a certain position,
Xy, at some time instant, ty. If the flow is steady, the path line coincides with the streamline passing
through the point Xy. The shape of a path line is described by the generally nonautonomous ordinary
differential equation

dX
o = ulX@.1, (1.11.19)
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where X is the position of the point particle along its path. Formal integration yields the position
of the point particle at time %,

t—to

X(t;to) :Xo(to)Jr/ u(X(7;t0),7) dT:Xo(to)Jr/ u(X(to + &5to), to + &) d€,  (1.11.20)

to 0

which can be regarded as a parametric representation of the path line in time. To compute a path
line, we select an ejection location and time and integrate equation (1.11.19) in time using a standard
numerical method, such as a Runge-Kutta method discussed in Section B.8, Appendix B.

Streaklines

A streakline is the instantaneous chain of point particles that have been released from the same or
different locations at the same or different prior times in a flow. Streaklines can be produced in
the laboratory by ejecting a dye from a stationary or moving needle. Regarding the injection time,
to as a Lagrangian marker variable, we describe the shape of a streakline at a particular time ¢ by
(1.11.20). When the point particles are injected at the same location, the term X (o) after each
equal sign is constant.

Problems

1.11.1 Beltrami and complex lamellar flows

Explain why a two-dimensional or axisymmetric flow cannot be a Beltrami flow where the vorticity is
parallel to the velocity, but is necessarily a complex lamellar flow where the velocity is perpendicular
to its curl.

1.11.2 Fluid in rigid-body rotation

Use (1.11.12) to compute the vorticity of a fluid in rigid-body rotation. Show that the result is
consistent with the definition of the vorticity, w =V x u.

1.11.3 Linear flows

Sketch and discuss the streamline pattern of the following linear flows: (a) purely rotational two-

dimensional flow with u, = —&y, u, = &z, and u, = 0, (b) two-dimensional extensional flow with
Uy = &x, uy = —&y, and u, = 0, (¢) axisymmetric extensional flow with v, = £z, u, = f% &y, and
Uy = —% &z. What are the cylindrical polar velocity components in the third flow? In all cases, £ is

a constant rate of extension with dimensions of inverse time.

X
Computer Problems

1.11.4 Drawing a streamline

Write a computer program that computes the streamline passing through a specified point in a
given two-dimensional flow. The integration should be carried out using the modified Euler method
discussed in Section B.8, Appendix B. The size of the step, At, should be selected so that the
integration proceeds by a preset distance at every step.
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1.11.5 Drawing streamlines in a box

Write a computer program that returns the velocity at a point inside a rectangular domain of flow
in the zy plane confined between a, < x < b, and a, < y < by, where ay, by, ay, and b, are specified
constants. The input should include the two components of a two-dimensional velocity field at the
nodes of an N, x N,, Cartesian grid with nodes located at z; = a;+(i—1)Az and y; = a,+(j —1)Ay
fori=1,...,N;+1land j=1,...,N,+ 1, where Az = (b, — a;)/N, and Ay = (b, — a,)/M are
the grid spacings. The velocity between grid points should be computed by bilinear interpolation,
as discussed in Section B.4, Appendix B.

1.11.6 Drawing the streamline pattern in a box

(a) Combine the programs of Problem 1.11.4 and 1.11.5 into a program that draws streamlines in a
rectangular domain.

(b) Run the program to draw the streamline pattern in the box 0 < z < 1 and 0 < y < 2, with
N, =16 and N, = 32 divisions. The = and y velocity components at the grid points are

u;j = exp(mwx;) — wx; cos(my;), v = sin(my;) — my; exp(mz;). (1.11.21)

Is this velocity field solenoidal?

1.12 Vortex lines, vortex tubes, and circulation around loops

In Section 1.1, we saw that the vorticity vector at a point in a flow is parallel to the instantaneous
angular velocity vector of a point particle that happens to be at that location. The magnitude of
the vorticity vector is twice the magnitude of the angular velocity of the point particle. Using the
definition w = V X u, and recalling that the divergence of the curl of any continuous vector field is
identically zero, we find that the vorticity field is solenoidal,

V-w=0. (1.12.1)

This property imposes restrictions on the structure of the vorticity field, similar to those imposed
on the structure of the velocity field for an incompressible fluid.

1.12.1 Vortex lines and tubes

An instantaneous vortex line is parallel to the vorticity vector and therefore to the point-particle
angular velocity vector at each point. The collection of all vortex lines passing through a closed
loop generates a surface called a vortex tube, as illustrated in Figure 1.12.1. Remembering that the
vorticity field is solenoidal and repeating the arguments following equation (1.11.5), we find that a
vortex line may not end in the interior of a flow. Instead, it must form a closed loop, meet other
vortex lines at a stagnation point of the vorticity field, extend to infinity, or cross and exit the
boundaries of the flow.

The vortex tubes of a two-dimensional flow are cylindrical surfaces perpendicular to the plane
of the flow. The vortex lines of an axisymmetric flow with no swirling motion are concentric circles
and the vortex tubes form concentric axisymmetric surfaces. The vortex lines of an axisymmetric
flow with swirling motion are spiral lines.
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FIGURE 1.12.1 lllustration of a vortex tube. The circulation around a loop that wraps around the tube
once is equal to the flow rate of the vorticity across a surface, D, bounded by the loop.

1.12.2 Circulation

The circulation around a closed loop residing in the domain of a flow, L, is defined as

C’:%u-dX:%u-tdl, (1.12.2)
I L

where X is the position of point particles along the loop, [ is the arc length along the loop, and
the tangent unit vector, t = dX/dl, is oriented in a specified direction. Using Stokes’ theorem, we
derive an alternative expression for the circulation,

C:/(qu)~nd5’:/ w-nds, (1.12.3)
D D

where D is an arbitrary surface bounded by the loop, as illustrated in Figure 1.12.1. The direction
of the normal unit vector, n, is chosen so that t and n constitute a right-handed system of axes.
Equation (1.12.3) states that the circulation around a loop is equal to the flow rate of the vorticity
across any surface that is bounded by the loop.

Invariance of the circulation around a vortex tube

Consider two material loops, L1 and Lo, wrapping once around a vortex tube, as shown in Figure
1.12.1. Using (1.12.3), we find that the difference in circulation around these loops is given by

CQ_C]_:/ w-ndS — w-nds, (1.12.4)
Dy Dy

where D is an arbitrary surface bounded by L; and D> is an arbitrary surface bounded by L.
Since the vorticity is tangential to the vortex tube, we may add to the right-hand side of (1.12.4) a
corresponding integral over the surface of the tube extending between the loops L; and Ls. Using
the divergence theorem to convert the surface integrals into a volume integral, we obtain

02 —Cl == deV, (1.12.5)
Vi
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FIGURE 1.12.2 lllustration of the surface of an arbitrary body, Dg, a loop in the flow, L, and two
surfaces bounded by the loop.

where the integration domain, V;, is the volume of the vortex tube enclosed by Dy, Ds, and the
surface of the vortex tube. Since the vorticity field is solenoidal, V - w = 0, the right-hand side of
(1.12.5) is identically zero. We conclude that the circulation around any loop that wraps a vortex
tube once, denoted by x and called the cyclic constant or strength of the vortex tube, is independent
of the location and shape of the loop around the vortex tube at any instant.

Similar arguments can be made to show that the circulation around a loop that lies on a
vortex tube but does not wrap around the vortex tube, such as the loop L3 shown in Figure 1.12.1,
is zero (Problem 1.12.1). The circulation around a closed loop that wraps m times around a vortex
tube is equal to mk, where k is the strength of the vortex tube.

Flow of vorticity across a body

As an application, we consider an infinite flow that is bounded internally by a closed surface, Dp,
which can be regarded as the surface of a body, and argue that the flow of vorticity across Dp must
be identically zero. This becomes evident by introducing two surfaces, D; and D, that join at
an arbitrary closed loop, L, subject to the condition that the union of the two surfaces completely
encloses the body, as shown in Figure 1.12.2. Integrating (1.12.1) over the volume enclosed by Dy,
Dy, and Dpg, applying the divergence theorem to convert the volume integral to a surface integral,
and recalling once again that the vorticity field is solenoidal, we obtain

/ w-ndS — w-ndS = w-nds, (1.12.6)
D; D, Dp

where n is the normal unit vector oriented as shown in Figure 1.12.2. Because each integral on the
left-hand side of (1.12.6) is equal to the circulation around L, the integral on the right-hand side,
and therefore the flow of vorticity across Dp, must necessarily vanish,

/ w-ndS =0. (1.12.7)
Dp
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1.12.3 Rate of change of circulation around a material loop

Differentiating the definition of the circulation (1.12.2) with respect to time and expanding the
derivative, we obtain the evolution equation

ac  d D ax
dX = X + . 1.12.
dt T dt f{ ?{ (1.12.8)

Concentrating on the last integral, we use (1.6.1) to write

D 1
7{ u- ax _ (dX-L)-u j{ dX-V(u-u) =0, (1.12.9)
A 2/

and find that (1.12.8) takes the simplified form

dC Du
o _f{ o X, (1.12.10)

where L = Vu is the velocity gradient tensor. Equation (1.12.10) identifies the rate of change of
circulation around a material loop with the circulation of the acceleration field, Du/D¢, around the
loop. If the acceleration field is irrotational, Du/Dt can be expressed as the gradient of a potential
function, as discussed in Section 2.1, and the closed line integral is zero. The rate of change of
circulation then vanishes and the circulation around the loop is preserved during the motion.

An alternative evolution equation for the circulation can be derived in Eulerian form by
applying the general evolution equation (1.7.56) for @ = w. Recalling that the vorticity field is
solenoidal, V - w = 0, we find that

dC Ow
= <§+Vx(wxu))-nd5, (1.12.11)

where D is an arbitrary surface bounded by the loop.

Problems

1.12.1 A loop on a vortex tube

Show that the circulation around the loop Lg illustrated in Figure 1.12.1 is zero.

1.12.2 Flow inside a cylindrical container due to a rotating lid

Sketch the vortex line pattern of a flow inside a cylindrical container that is closed at the bottom,
driven by the rotation of the top lid.

1.12.3 Solenoidality of the vorticity

Show that w = Vx x V1, is an acceptable vorticity field and u = xV is an acceptable associated
velocity field, where x and 1 are two arbitrary functions. Explain why this velocity field is complex
lamellar, that is, the velocity is perpendicular to the vorticity at every point.
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1.13 Line vortices and vortex sheets

The velocity field in a certain class of flows exhibits sharp variations across thin columns or layers
of fluid. Examples include flows containing shear layers forming between two streams that merge
at different velocities and around the edges of jets, turbulent flows, and flows due to tornadoes and
whirls. A salient feature of these flows is that the support of the vorticity is compact, which means
that the magnitude of the vorticity takes significant values only inside well-defined regions, concisely
called vortices, while the flow outside the vortices is precisely or nearly irrotational.

1.13.1 Line vortex

Consider a flow where the vorticity vanishes everywhere except near

a vortex tube with small cross-sectional area centered at a line,

L. Taking the limit as the cross-sectional area of the vortex tube @
tends to zero while the circulation around the tube, k, remains

constant, we obtain a tubular vortex structure with infinitesimal

cross-sectional area, infinite vorticity, and finite circulation, called K

a line vortex.

Since, by definition, the vorticity is tangential to a vortex line,
the vorticity field associated with a line vortex can be described by llustration of a line vortex.
the generalized distribution

wx) =k /Lt(x') d3(x — x') di(x"), (1.13.1)

where d3 is the three-dimensional delta function, t is the unit vector tangent to the line vortex, and
[ is the arc length along the line vortex. The velocity field induced by a line vortex will be discussed
in Section 2.11.

1.13.2 Vortex sheet

Next, we consider a flow where the vorticity is zero everywhere, except inside a thin sheet centered
at a surface, . Taking the limit as thickness of the sheet tends to zero while the circulation around
any loop that pierces the sheet through any two fixed points remains constant, we obtain a vortex
sheet with infinitesimal cross-sectional area, infinite vorticity, and finite circulation, as shown in
Figure 1.13.1(a).

Vorticity and circulation

The vorticity field associated with a vortex sheet, sometimes also called a sheet vortex, is described
by the generalized distribution

w(x) = /E ¢(x') d5(x — x') dS(x'), (1.13.2)

where ¢ is a tangential vector field, called the strength of the vortex sheet. Since the vorticity field
is solenoidal, V - w = 0, the surface divergence of ¢ must vanish,

I-N@N)-V-¢=0, (1.13.3)
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(a) (b)

Vortex sheet

Vortex sheet

FIGURE 1.13.1 (a) lllustration of a three-dimensional vortex sheet. The loop L pierces the vortex sheet
at the points P and Q. (b) Closeup of the intersection between a surface, D, and a vortex sheet;
T is the intersection of D and F, and the unit vector n is normal to D.

where I is the identity matrix and N is the unit vector normal to the vortex sheet. To satisfy this
constraint, a vortex sheet must be a closed surface, terminate at the boundaries of the flow, or
extend to infinity.

Using Stokes’ theorem, we find that the circulation around a loop L that pierces a vortex
sheet at two points, P and @, as shown in Figure 1.13.1(a), is given by

C’:?{umdl:/ w-nds, (1.13.4)
L D

where D is an arbitrary surface bounded by L and n is the unit vector normal to D. Substituting
into the last integral the vorticity distribution (1.13.2), we obtain

CZ/D(/EC(X’) S3(x — x') dS(x’)) -n(x) dS(x). (1.13.5)

Switching the order of integration on the right-hand side, we obtain

C= / ¢(x) - / (53(x —x') - n(x) dS(x)) dS(x'). (1.13.6)
E D
The inner integral is over the arbitrary surface, D, and the outer integral is over the vortex sheet.

Velocity jump and strength of a vortex sheet

Next, we identify the intersection of the surface D with the vortex sheet, E, denoted by T,
define the unit vector tangent to 1, denoted by t, and introduce a unit vector, e¢, that lies in the
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vortex sheet, F, and is perpendicular to t, as shown in Figure 1.13.1(b). If [ is the arc length along
t and [ is the arc length along e¢, then

dS(x") = di(x") dle(x") (1.13.7)

is a differential surface element over the vortex sheet, E. The differential arc length dl,, in the
direction of the normal unit vector n corresponding to a given dl¢ is

dln =n-e dlg (1138)

Substituting (1.13.7) and (1.13.8) into (1.13.6), we obtain

C= /C eg(x,) . (/‘1 [/D (63(x—x’).n(x) dS(x) ] dln(x)> di(x’), (1.13.9)

where § is a small length. Using the properties of the three-dimensional delta function to simplify
the term inside the large parentheses, we find that

C= / dl( . (1.13.10)

The strength of the vortex sheet, ¢, lies in the plane containing t and eg, which is perpendicular to
the plane containing e; and n. Thus,

[(nxe) xe-¢=0, (1.13.11)
which is equivalent to
(n-eg)(eg-¢)=n-¢ (1.13.12)

(Problem 1.13.2). Equation (1.13.9) simplifies into

C:/Te,g(dl. (1.13.13)

Taking the limit as the loop, L, collapses onto the vortex sheet on both sides, while the point @
tends to the point P, we find that

(ut —u7) - t=-e ¢, (1.13.14)

where t is the unit vector tangent to 7. The superscripts plus and minus designate, respectively,
the velocity just above and below the vortex sheet.

Equation (1.13.14) reveals that the tangential component of the velocity undergoes a discon-
tinuity across a vortex sheet. Mass conservation requires that the normal component of the velocity
is continuous across the vortex sheet. Equation (1.13.14) then allows us to write

ut —u =(¢xN, (1.13.15)
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where N is the unit vector normal to the vortex sheet, as shown in Figure 1.13.1(a). We conclude
that ¢, N, and the difference u™ — u~ define three mutually perpendicular directions, so that

¢=Nx(uf —u”). (1.13.16)

We have found that a vortex sheet represents a singular surface across which the tangential compo-
nent of the velocity changes from one value above to another value below. The difference between
these two values is given by the right-hand side of (1.13.15) in terms of the strength of the vortex
sheet.

Principal velocity

The mean value of the velocity above and below a vortex sheet is called the principal velocity of the
vortex sheet, or more precisely, the principal value of the velocity of the vortex sheet, denoted by

u”V=_(ut +u). (1.13.17)

[NCRI

Combining (1.13.17) with (1.13.15), we obtain an expression for the velocity on either side of the
vortex sheet in terms of the strength of the vortex sheet and the principal velocity,

ui:u”4+%ng. (1.13.18)

Given the strength of the vortex sheet, the principal velocity is much easier to evaluate than the
physical fluid velocity on either side of the vortex sheet.
1.13.3 Two-dimensional flow

Next, we describe the structure of line vortices and vortex sheets in two-dimensional flow in the xy
plane. The vorticity is perpendicular to the xy plane, w = w,e,, and the vortex lines are infinite
straight lines parallel to the z axis.

Point vortex

A rectilinear line vortex is called a point vortex. The location of a point vortex is identified by
its trace in the zy plane, xg = (xg,y0). The vorticity in the zy plane is described by the singular
distribution

w,(x) = Kda(x — X0), (1.13.19)

where 5 is the two-dimensional delta function and & is the strength of the point vortex. More will
be said about point vortices in Chapter 11.

Vortex sheet

A two-dimensional vortex sheet is a cylindrical vortex sheet whose generators and strength, ¢, are
oriented along the z axis, as illustrated in Figure 1.13.2 (a). We can set

(=ne,, (1.13.20)
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(a) (6)

& X

Z

FIGURE 1.13.2 lllustration of (a) a two-dimensional vortex sheet with positive strength, ~, in the xy
plane and (b) an axisymmetric vortex sheet.

where 7 is the strength of the vortex sheet and e, is the unit vector along the z axis. The vorticity
field in the xy plane is represented by the singular distribution

w,(x) = /T'y(x’) Sa(x — x') di(x'), (1.13.21)

where 05 is the two-dimensional Dirac delta function and T is the trace of the vortex sheet in the
2y plane. Using (1.13.15), we find that the discontinuity in the velocity across a two-dimensional
vortex sheet is given by

ut —u =~t, (1.13.22)

where t is a unit vector tangent to 7', as shown in Figure 1.13.2. In terms of the principal velocity
of the vortex sheet, u”’V, the velocity at the upper and lower surface of the vortex sheet is given by

1 1
u+:uPV+§'yt, u~ :uPV—iyt. (1.13.23)

When + is positive, we obtain the local velocity profile shown in Figure 1.13.2(a).

The circulation around a loop that lies in the xy plane and pierces the vortex sheet at the
points A and B is given by

C= /Dwz(x) dA(x) = /D {/T’y(x')ég(x—x') dl(x/)} dA(x) :/ ~y(x')dI(x"), (1.13.24)

TaB

where D is the area in the zy plane enclosed by the loop and T4 is the section of T between the
points A and B, as illustrated in Figure 1.13.2(a). Fixing the point A and regarding the circulation,
C, as a function of location of the point B along T, denoted by I', we obtain

ar

N 1.13.25
T ( )
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This definition allows us to express the vorticity distribution (1.13.21) in terms of T" as
w,(x) = / do(x — x') dI'(x). (1.13.26)
ap

Comparing (1.13.26) with (1.13.19) allows us to regard a cylindrical vortex sheet as a continuous
distribution of point vortices. More will be said about vortex sheets and their self-induced motion
in Chapter 11.

1.13.4 Axisymmetric flow

The vorticity vector in an axisymmetric flow without swirling motion points in the azimuthal direc-
tion and the vortex lines are concentric circles, as shown in Figure 1.13.2(b).

Line vortex ring

The position of an axisymmetric line vortex, also called a line vortex ring, is described by its trace
in an azimuthal plane of constant azimuthal angle, o, usually identified with the union of the first
and second quadrants of the xy plane corresponding to ¢ = 0. The azimuthal component of the
vorticity is given by the counterpart of equation (1.13.19),

wy(x) = K2 (x — x0), (1.13.27)

where J5 is the two-dimensional delta function in an azimuthal plane. More will be said about line
vortex rings and their self-induced motion in Chapter 11.

Vortex sheet

An axisymmetric vortex sheet can be identified by its trace in an azimuthal plane of constant
azimuthal angle, ¢. The strength of the vortex sheet, ¢, is oriented in the azimuthal direction, as
shown in Figure 1.13.2(b). The vorticity distribution in an azimuthal plane is given by (1.13.21),
where 05 is the two-dimensional delta function.

Problems

1.13.1 A line vortex extending between two bodies

Consider an infinite flow that contains two bodies and a single line vortex that begins on the surface
of the first body and ends at the surface of the second body. Discuss whether this is an acceptable
and experimentally realizable flow.

1.13.2 Three-dimensional vortex sheet

With reference to the discussion of the three-dimensional vortex sheet, show that the equation
[(n x e) x €] - ¢ =0 1is equivalent to (n-e¢)(es-¢) =n-(.



Kinematic analysis of a flow

In Chapter 1, we examined the behavior of fluid parcels, material vectors, material lines, and material
surfaces in a specified flow field. The velocity field was assumed to be known as a function of
Eulerian variables, including space and time, or Lagrangian variables, including point-particle labels
and time. In this chapter, we discuss alternative methods of describing a flow in terms of auxiliary
scalar or vector fields. By definition, the velocity field is related to an auxiliary field through a
differential or integral relationship. Examples of auxiliary fields include the vorticity and the rate
of expansion introduced in Chapter 1. Additional fields introduced in this chapter are the velocity
potential for irrotational flow, the vector potential for incompressible fluids, the stream function
for two-dimensional flow, the Stokes stream function for axisymmetric flow, and a pair of stream
functions for a general three-dimensional incompressible flow. Some auxiliary fields, such as the rate
of expansion, the vorticity, and the stream functions, have a clear physical interpretation. Other
fields are mathematical devices motivated by analytical simplification.

Describing a flow in terms of an auxiliary field is motivated by two reasons. First, the number
of scalar ancillary fields necessary to describe the flow of an incompressible fluid is less than the
dimensionality of the flow by one unit, and this allows for analytical and computational simplifi-
cations. For example, we will see that a two-dimensional incompressible flow can be described in
terms of a single scalar flow, called the stream function. A three-dimensional incompressible flow
can be described in terms of a pair of scalar stream functions. The reduction in the number of scalar
functions with respect to the number of nonvanishing velocity components is explained by observing
that the latter may not be assigned independently, but must be coordinated so as to satisfy the con-
tinuity equation for incompressible fluids, V-u = 0. Imposing additional constraints reduces further
the number of required scalar functions. Thus, a three-dimensional incompressible and irrotational
flow can be expressed in terms of a single scalar function, called the potential function.

In some cases, expressing the velocity field in terms of an auxiliary field allows us to gain
physical insights into how the fluid parcel motion affects the global structure or evolution of a flow.
For example, representing the velocity field in terms of the vorticity and rate of expansion illustrates
the effect of spinning and expansion or contraction of small fluid parcels on the overall fluid motion.

The auxiliary fields discussed in this chapter are introduced with reference to the kinematic
structure of a flow discussed in Chapter 1. Another class of auxiliary fields are defined with reference
to the dynamics of a flow and, in particular, with respect to the stresses developing in the fluid as
a result of the motion. Examples of these dynamical fields will be discussed in Chapter 6.

111



112 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

2.1 Irrotational flows and the velocity potential

If the vorticity vanishes at every point in a flow, w = V x u = 0, the flow is called irrotational. In
Chapter 3, we will examine the mechanisms by which vorticity enters, is produced, and evolves in
a flow. The analysis will show that, in real life, hardly any flow can be truly irrotational, except
during an infinitesimal initial period of time where a fluid starts moving from the state of rest. It
appears then that the concept of irrotational flow is merely a mathematical idealization.

However, a number of flows encountered in practical applications are nearly irrotational or
consist of adjacent regions of nearly irrotational and nearly rotational flow. For example, high-speed
streaming flow past an airfoil is irrotational everywhere except inside a thin boundary layer lining
the airfoil and inside a slender wake. The flow produced by the propagation of waves at the surface
of the ocean is irrotational everywhere except inside a thin boundary layer along the free surface. In
most cases, the conditions under which a flow will be nearly or partially irrotational are not known
a priori, but must be assessed by carrying out a detailed experimental or theoretical investigation.

Potential and irrotational flows

Since the curl of the gradient of any differentiable function is identically zero, any potential flow
whose velocity derives as

u="Ve (2.1.1)

is irrotational, where ¢ is a scalar function called the potential function or the scalar velocity
potential. We conclude that a potential flow is also an irrotational flow. Families of irrotational
flows can be produced by making different selections for ¢. Next, we inquire whether the inverse
is also true, that is, whether an irrotational flow can be expressed as the gradient of a potential
function, as shown in (2.1.1).

Simply and multiply connected domains

It is necessary to consider separately the cases of simply and multiply connected domains of flow.
To make this distinction, we draw a closed loop inside the domain of a flow of interest. If the loop
can be shrunk to a point that lies inside the domain of flow without crossing any boundaries, the
loop is reducible. If the loop must cross one or more boundaries in order to shrink to a point that
lies inside the domain of flow, the loop is irreducible. If any loop that can possibly be drawn inside
a particular domain of flow is reducible, the domain is simply connected. If an irreducible loop
can be found, the domain is multiply connected. Because a loop that wraps around a toroidal or
cylindrical boundary of infinite extent, possibly with wavy corrugations, is irreducible, the domain
in the exterior of the boundary is doubly connected. A domain containing two distinct toroidal or
cylindrical boundaries of infinite extent is triply connected.

2.1.1 Simply connected domains

Using Stokes’ theorem, we find that the circulation around a reducible loop, L, is given by

j{u-tdl:/awndS:O, (2.1.2)
L D
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Boundary

FIGURE 2.1.1 |lllustration of a reducible loop, L, in a three-dimensional singly connected domain of
flow, showing the decomposition of the circulation integral into two paths. The surface D is
bounded by the loop.

where D is an arbitrary surface bounded by L, t is the unit vector tangential to L, and n is the
unit vector normal to D oriented according to the counterclockwise convention with respect to t, as
illustrated in Figure 2.1.1. One consequence of equation (2.1.2) is that the circulation around any
reducible loop that lies inside an irrotational flow is zero.

Next, we choose two points x; and X2 on a reducible loop and decompose the line integral in
(2.1.2) into two parts,

/ u-tAdl:/ u-thl. (213)

1 1

The integral on the left-hand side is taken along path A with corresponding tangent vector t4 = t,
while the integral on the right-hand side is taken along path B with corresponding tangent vector
tp = —t, as shown in Figure 2.1.1. Equation (2.1.3) states that the circulation around any path
connecting two ordered points x; and xs on a reducible loop is the same. Consequently, a single-
valued scalar function of position can be introduced, ¢, such that

/xzu-tdl = 6(x2) — B(x1). (2.1.4)

Taking the limit as the second point, X2, tends to the first point, x;, and using a linearized Taylor
series expansion, we find that

u-t=t-Ve. (2.1.5)

Since the integration path, and thus the tangent unit vector t, is arbitrary, we conclude that u = V¢,
as shown in (2.1.1).

We have demonstrated that an irrotational flow in a singly connected domain can be described
by a single-valued potential function, ¢. Stated differently, an irrotational flow in a singly connected
domain is also a potential flow described in terms of a differentiable velocity potential.
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FIGURE 2.1.2 lllustration of two irreducible loops in a doubly connected domain of flow with number
of turns m = 1 and 2. The flow can be resolved into the flow due to a line vortex with circulation &
inside the boundaries and a complementary irrotational flow described in terms by a single-valued
potential.

2.1.2 Multiply connected domains

A conceptual difficulty arises in the case of flow in a multiply connected domain. The reason is that
the circulation around an irreducible loop is not necessarily zero, but may depend on the number of
turns that the loop performs around a boundary, m. Two loops with m = 1 and 2 are illustrated in
Figure 2.1.2. The circulation around a loop that performs multiple turns is

j{ u-tdl =mes, (2.1.6)
L

where k is the lowest value of the circulation corresponding to a loop that performs a single turn,
called the cyclic constant of the flow around the boundary.

In the case of an irreducible loop, a surface D bounded by L must cross the boundaries of
the flow. Since D does not lie entirely inside the fluid, Stokes’ theorem (2.1.2) cannot be applied.
Progress can be made by breaking up the circulation integral around the loop into two parts and
working as in (2.1.3) and (2.1.4), to find that

Aps — App = mk, (2.1.7)

where A¢ 4 and A¢p denote the change in the potential function from the beginning to the end of
the paths A and B illustrated in Figure 2.1.2.

Regularization of a multi-valued potential

Equation (2.1.7) suggests that the potential function in a multiply connected domain can be a multi-
valued function of position. To avoid analytical and computational complications, we decompose
the velocity field of a flow of interest into two components,

u=v+Vg, (2.1.8)
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where v represents a known irrotational flow whose cyclic constants around the boundaries are the
same as those of the flow of interest. For example, v could be identified with the flow due to a line
vortex lying outside the domain of flow in the interior of a toroidal boundary. The strength of the
line vortex is equal to the cyclic constant of the flow around the boundary, as illustrated in Figure
2.1.2. Because the velocity potential ¢ defined in (2.1.8) is a single-valued function of position, it
can be computed by standard analytical and numerical methods without any added considerations.

Applications of the decomposition (2.1.8) will be discussed in Chapter 7 with reference to flow
past a two-dimensional airfoil.

2.1.3 Jump in the potential across a vortex sheet

Consider a two-dimensional vortex sheet separating two regions of
irrotational flow. The velocity on either side of the vortex sheet
can be expressed in terms of two velocity potentials, ¢ and ¢~.
Substituting (2.1.1) into the equation defining the strength of the

-

vortex sheet, u™ — u™ = 7t, and introducing the circulation along +
the vortex sheet, I, defined by the equation dI'/dl = ~, we find
that
dr
Vot —Vo~ =~t = at, (2.1.9)

[llustration of a
where 7 is the strength of the vortex sheet and [ is the arc length  two-dimensional vortex sheet.
along the vortex sheet measured in the direction of the tangent unit

vector, t.

Projecting (2.1.9) onto t and integrating with respect to arc length, I, we find that the jump
in the velocity potential across the vortex sheet is given by

¢pT —¢~ =T. (2.1.10)

We have assumed that ¢ and ¢~ have the same value at the designated origin of arc length along
the vortex sheet, [ = 0. Equation (2.1.10) finds useful applications in computing the self-induced
motion of two-dimensional vortex sheets discussed in Section 11.5.

Three-dimenstonal vortex sheets

Next, we consider two points on a three-dimensional vortex sheet, A and B. Expressing the velocity
on either side of the vortex sheet as the gradient of the corresponding potentials and integrating the
equation u™ — u~ = ¢ x n along a tangential path connecting the two points, we obtain

B
(6" — ¢ )m = (6" — ¢ )a+ / (¢ xn)-tdl, (2.1.11)
A

where ( is the strength of the vortex sheet and t is the tangent unit vector along the path. If t is
tangential to ¢ at every point, the integration path coincides with a vortex line and the integrand
in (2.1.11) is identically zero. We conclude that the jump of the velocity potential across a vortex
sheet is constant along vortex lines.
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2.1.4 The potential in terms of the rate of expansion

The velocity field of a potential flow is not necessarily solenoidal and the associated flow is not
necessarily incompressible. Taking the divergence of (2.1.1), we find that

V-u= V3, (2.1.12)
which can be regarded as a Poisson equation for ¢, forced by the rate of expansion, V - u.

Using the Poisson inversion formula derived in Section 2.2, we obtain an expression for the
potential of a three-dimensional flow in terms of the rate of expansion,

B(x) = 1% L) dvx) + H(x), (2.1.13)

4 low T

where r = |x—x/|, a(x’) = V’-u(x’) is the rate of expansion, the gradient V' involves derivatives with
respect to x’, and H(x) is a harmonic function determined by the boundary conditions, V2H = 0.
If the domain of flow extends to infinity, to ensure that the volume integral in (2.1.13) is finite, we
require that the rate of expansion decays at a rate that is faster than 1/d?, where d is the distance
from the origin.

Two-dimensional flow

The counterpart of (2.1.13) for two-dimensional flow in the zy plane is

r

(%) ! /Fl In (=) a(x’) dA(X') + H(x), (2.1.14)

T or a

where dA = dz dy is an elementary area, a is a specified constant length, and H is a harmonic
function in the xy plane determined by the boundary conditions.

Velocity field

To obtain an expression for the velocity in terms of the rate of expansion, we take the gradient of
both sides of (2.1.13) and (2.1.14). Interchanging the gradient with the integral, we find that

u(x) = Vo(x) = ! WF 53 a(x')dV(x') + VH(x) (2.1.15)

4m low T

for three-dimensional flow, and

u(x) = Vo (x) ! /F % a(x') dA(X") + VH (x) (2.1.16)

27 low T

for two-dimensional flow, where X = x — x’. Later in this section, we will see that the integrals on
the right-hand sides of the last two equations can be interpreted as volume or areal distributions of
point sources. The densities of the distributions are equal to the local volumetric or areal rate of
expansion.
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2.1.5 Incompressible fluids and the harmonic potential

If the fluid is incompressible, the rate of expansion on the left-hand side of (2.1.12) vanishes and the
potential ¢ satisfies Laplace’s equation,

V2 = 0. (2.1.17)
In this case, ¢ is a harmonic function called a harmonic potential.

Curvilinear coordinates

In cylindrical polar coordinates, (x, o, ¢), Laplace’s equation reads

¢ 1 8( 8‘/)) L 92 (2.1.18)

2 — _— R (R —
v ¢_8z2+060 790 o2 p?’

In spherical polar coordinates, (7,6, ¢), Laplace’s equation reads

1 0/ ,00 1 9/, 06 1 9%
2, 1 0,0 9 99 - O 2.1.19
Vie=13 m(r 8r)+7“25in9 89(Sln089)+r2sin9 9,2 (2.1.19)

In plane polar coordinates, (r,6), Laplace’s equation reads
10/ 0¢ 1 0%
v? :77< 7) 29 2.1.20
¢ r or\ or +r2 002 ( )
Expressions in more general orthogonal or nonorthogonal curvilinear coordinates are provided in
Sections A.8-A.17, Appendix A.

Kinetic energy of the fluid and significance of normal boundary motion

The kinetic energy of an incompressible fluid with uniform density in a singly connected domain can
be expressed as a boundary integral involving the boundary distribution of the potential. To derive
this expression, we apply the rules of product differentiation to write

1 1 1
ICE§pﬁu-udV:ipﬂu-V(de:5pﬁ(V~(¢u)—¢V-u)dV, (2.1.21)

where the integrals are computed over the volume of flow. Because the velocity field is solenoidal,
V-u = 0, the second term inside the integral on the right-hand side is zero. Applying the divergence
theorem to convert the volume integral into a surface integral over the boundaries of the flow, B,
we find that

1
K= ffp/ pu-ndS, (2.1.22)
2" Us

where n is the unit vector normal to the boundaries pointing into the flow.

Equation (2.1.22) shows that, if the normal velocity component is zero over all boundaries,
the kinetic energy and therefore the velocity must be zero and the fluid must be quiescent. In turn,
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n
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FIGURE 2.1.3 A doubly connected domain of flow containing a toroidal boundary is rendered singly
connected by introducing a fictitious boundary surface ending at the boundary.

the velocity potential must be constant throughout the domain of flow. When the velocity potential
has the same constant value over all boundaries, mass conservation requires that the right-hand side
of (2.1.22) is identically zero. Consequently, the fluid must be quiescent and the potential must be
constant and equal to its boundary value throughout the domain of flow.

Moultiply connected domains

We can derive corresponding results for flow in a multiply connected domain where the velocity
potential can be a multi-valued function of position. As an example, we consider a domain containing
a toroidal boundary, as shown in Figure 2.1.3, and draw an arbitrary surface, D, that ends at
the boundary, B. Regarding D as a fictitious boundary, we obtain a simply connected domain.
Repeating the preceding analysis, we find that the kinetic energy of the fluid is

1 1
k=50 [[ ounas—5o [ (0" =o7)u-nas, (2.1.23)

where ¢ is the potential on either side of D. The circulation around the loop L shown in Figure
2.1.3 is equal to the cyclic constant of the flow around the toroidal boundary,

_ tdl= bt _J9 4
m—ﬁutdlfjit ngdlf?ialdlqu ¢ . (2.1.24)

Consequently, the kinetic energy of the fluid is given by the expression

1 1
K:—fp/ ou-ndS—=-prQ, (2.1.25)
2" s 2
where @) is the flow rate across the artificial boundary, D.

Expression (2.1.25) shows that the kinetic energy is zero and the fluid is quiescent under two
sets of conditions: (a) either the potential is constant or the normal component of the velocity is
zero at the boundaries, and (b) either the cyclic constant, s, or the flow rate, @, is zero.
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Uniqueness of solution in a singly connected domain

One important consequence of the integral representation of the kinetic energy is that, given bound-
ary conditions for the normal component of the velocity, an incompressible irrotational flow in a
singly connected domain is unique and the corresponding harmonic potential is determined uniquely
up to an arbitrary constant.

To prove uniqueness of solution, we consider two harmonic potentials representing two distinct
flows and note that their difference is also an acceptable harmonic potential, that is, the difference
potential describes an acceptable incompressible irrotational flow. If the two flows satisfy the same
boundary conditions for the normal component of the velocity, the difference flow must vanish
and the corresponding harmonic potential must be constant. As a consequence, the two chosen
flows must be identical and the corresponding harmonic potentials may differ at most by a scalar
constant. Similar reasoning allows us to conclude that the boundary distribution of the potential
uniquely defines an irrotational flow in a singly connected domain.

Uniqueness of solution in a multiply connected domain

In the case of flow in a doubly connected domain, we use (2.1.25) and find that specifying (a)
boundary conditions either for the normal component of the velocity or for the potential, and (b)
either the value of the cyclic constant x, or the flow rate across a surface ending at a toroidal
boundary @), uniquely determines an irrotational flow. Similar conclusions can be drawn for a
multiply connected domain.

Kelvin’s minimum dissipation theorem

Kelvin demonstrated that, of all solenoidal velocity fields that satisfy prescribed boundary conditions
for the normal component of the velocity, the velocity field corresponding to an irrotational flow has
the least amount of kinetic energy. Stated differently, vorticity increases the kinetic energy of a fluid.

To prove Kelvin’s theorem, we assume that u is an irrotational velocity field described by a
velocity potential, ¢, and v is another arbitrary solenoidal rotational velocity field. Moreover, we
stipulate that the normal velocity component is the same over the boundaries, u-n = v - n. The
difference in the kinetic energies of the two flows, AKX = K(v) — K(u), is

AIC:%pﬂ(v~vaou)dV:%pﬁ(vfu)(vfu)dvqtp”(vfu)~udV. (2.1.26)

Manipulating the last integral on the right-hand side and using the divergence theorem, we obtain

ﬂ(vfu)quSdV:/Bqﬁ(v—u)-ndS, (2.1.27)

which is zero in light of the equality of the normal component of the boundary velocity. We conclude
that the right-hand side of (2.1.26) is positive and thereby demonstrate that the kinetic energy of
a rotational flow with velocity v is greater than the kinetic energy of the corresponding irrotational
flow with velocity u.
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2.1.6 Singularities of incompressible and irrotational flow

Singular solutions of Laplace’s equation for the harmonic potential constitute a fundamental set of
flows used as building blocks for constructing and representing arbitrary irrotational flows.

Point source

Consider the solution of (2.1.17) in an infinite three- or two-dimensional domain in the absence
interior boundaries, subject to a singular forcing term on the right-hand side,

VP = mbs(x—x0), V26 = mby(x — x0), (2.1.28)

where 3 is the three-dimensional (3D) delta function, J3 is the two-dimensional (2D) delta function,

m is a constant, and Xy is an arbitrary point in the domain of flow. Using the method of Fourier

transforms, or else by employing a trial solution in the form of a power or logarithm of the distance

from the singular point, r = |x — xg| , we find that
m 1

#P = -2, e = (2.1.29)

where a is an arbitrary length.

Since the potential ¢ satisfies Laplace’s equation everywhere except at the point x, it describes
an acceptable incompressible and irrotational flow with velocity

m X — Xp
4T 3

respectively, for three- or two-dimensional flow. The corresponding streamlines are straight radial
lines emanating from the singular point, xq. It is a straightforward exercise to verify that the flow rate
across a spherical surface or circular contour centered at the point xq is equal to m. Consequently,
the function ¢3P or ¢?P can be identified with the potential due to a point source with strength m
in an infinite domain of flow. In Section 2.2.3, we will discuss the flow due to a point source in a
bounded domain of flow.

m X — Xpo

u3D — V¢3D — ; u2D — v¢2D —

(2.1.30)

)

2 2

In light of (2.1.30), the integrals on the right-hand sides of (2.1.15) and (2.1.16) can be
interpreted as volume or areal distributions of point sources of mass forced by the rate of expansion.
In Section 2.2.2, we will see that the potential due to a point sink provides us with the free-space
Green’s function of Laplace’s equation

Point-source dipole

Now we consider two point sources with strengths of equal magnitude and opposite sign located
at the points xp and x;. Exploiting the linearity of Laplace’s equation (2.1.17), we construct the
associated potential by linear superposition,

m 1 m 1
pP=-
dm |x —xg| 47w |x — x4
(2.1.31)
¢2D: EIH‘X7XO|7EIH|X7X1|’

2T a 2 a
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respectively, for three- and two-dimensional flow. Placing the point x; near xg, expanding the
potential of the second point source in a Taylor series with respect to x; about the location of the
first point source, xq, and retaining only the linear terms, we find that

sD_ M Vg1
¢ — AT (Xl XO) VO|X—X0|7
(2.1.32)
¢2D _ e (x1 — %o) - Vo IHM,
2 a

where the derivatives of the gradient V( are taken with respect to xg.

Now we take the limit as the distance |x¢o — x1| tends to zero

while the product d = m (x¢ — x1) is held constant, and carry out the (\ m
X

differentiations to derive the velocity potential associated with a three-

or two-dimensional point-source dipole, @/D 0
— — -m XI\J
P _LXTX0 g g0 L XTX0 g (9133
47 73 2 r?

A point source with
strength m and a point
sink with strength —m

1 1 X®% i inole.
(—=I+3=—=)-d, merge into a dipole
r r

where r = |x — x| is the distance of the field point, x, from the singular
point, xg. The corresponding velocity fields are given by

w3P = vg3D —

47
(2.1.34)
1 1 X ®X
2D _ 2D _ _ = .
u” =Vo _277( r21+2 = )-d,

where I is the identity matrix and X = x —x(. The flow rate across a spherical surface, and therefore
across any closed surface, enclosing a three-dimensional point-source dipole is zero. Similarly, the
flow rate across any closed loop enclosing a two-dimensional point-source dipole is zero.

The streamline pattern in a meridional plane associated with a three-dimensional dipole
is illustrated in Figure 2.1.4(a). The streamline pattern in the zy plane associated with a two-
dimensional dipole is illustrated in Figure 2.1.4(b). In both cases, the dipole is oriented along the x
axis, d = de,, where d > 0 and e, is the unit vector along the = axis.

Problems

2.1.1 A harmonic velocity field

Consider a velocity field, u, with the property that each Cartesian velocity component is a harmonic
function, V2u; = 0, for i = x,y,2. Show that, if the rate of expansion is zero or constant, the
corresponding vorticity field is irrotational, V x w = 0.

2.1.2 Flow between two surfaces

Consider an incompressible potential flow in a domain that is bounded by two closed surfaces, as
shown in Figure 2.1.1(a). The normal component of the velocity is zero over one surface, and the
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FIGURE 2.1.4 Streamline pattern due to (a) a three-dimensional and (b) a two-dimensional potential
dipole pointing in the positive direction of the z axis.

tangential component of the velocity is zero over the other surface. Does this imply that the velocity
field must vanish throughout the whole domain of flow?

2.1.3 Infinite flow

Consider a three-dimensional incompressible and irrotational flow in an infinite domain where the
velocity vanishes at infinity. In Section 2.3, we will show that the velocity potential must tend to
a constant value at infinity, as shown in equation (2.3.18). Based on this observation, show that, if
the flow has no interior boundaries and no singular points, the velocity field must necessarily vanish
throughout the whole domain of flow.

2.1.4 Irrotational vorticity field

(@) Show that an irrotational vorticity field, V x w = 0, can be expressed as the gradient of a
harmonic function.

(b) Consider an irrotational vorticity field of an infinite flow with no interior boundaries, where
the vorticity vanishes at infinity. Use the results of Problem 2.1.3 to show that the vorticity must
necessarily vanish throughout the whole domain.

2.1.5 Point source

Show that the flow rate across any surface that encloses a three-dimensional or two-dimensional
point source is equal to strength of the point source, m, but the flow rate across any surface that
does not enclose the point source is zero.
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2.2 The reciprocal theorem and Green’s functions of Laplace’s equation

In Section 2.3, we will develop an integral representation for the velocity potential of an irrotational
flow in terms of the rate of expansion of the fluid, the boundary values of the velocity potential, and
the boundary distribution of the normal derivative of the potential, which is equal to the normal
component of the velocity. To prepare the ground for these developments, in this section we introduce
a reciprocal theorem for harmonic functions and discuss the Green’s functions of Laplace’s equation.

2.2.1 Green’s identities and the reciprocal theorem

Green’s first identity states that any two twice differentiable functions, f and g, satisfy the relation
fV?9=V-(fVg)-Vf-Vg, (2.2.1)

which can be proven by straightforward differentiation working in index notation. Interchanging the
roles of f and g, we obtain

gV f=V-(gVf)—Vg-V/. (2.2.2)
Subtracting (2.2.2) from (2.2.1), we derive Green’s second identity,

fV?g—gV?f =V (fVg—gVf). (2.2.3)

If both functions f and g satisfy Laplace’s equation, the left-hand side of (2.2.3) is zero, yielding a
reciprocal relation for harmonic functions,

V- (fVg—gVf)=0. (2.2.4)

Integrating (2.2.4) over a control volume that is bounded by a singly or multiply connected surface,
D, and using the divergence theorem to convert the volume integral into a surface integral, we obtain
the integral form of the reciprocal theorem,

/ (fVg—gVf) ndS=0, (2.2.5)
D

where n it the unit vector normal to D pointing either into the control volume or outward from
the control volume. Equation (2.2.5) imposes an integral constraint on the boundary values and
boundary distribution of the normal derivatives of any pair of nonsingular harmonic functions.

2.2.2 Green'’s functions in three dimensions

It is useful to introduce a special class of harmonic functions that are singular at a chosen point, xg.
A three-dimensional Green’s function satisfies the singularly forced Laplace’s equation

V2G(x,%¢) + d3(x — %) = 0, (2.2.6)

where d3 is the three-dimensional delta function, x is a field point, and xq is the location of the
Green’s function, also called the singular point or the pole. When the domain of flow extends to
infinity, the Green’s function decays at least as fast as the inverse of the distance from the pole,
1/]x — xo-
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Green’s functions of the first kind and Neumann functions

In addition to satisfying (2.2.6), a Green’s function of the first kind is required to be zero over a
specified surface, Sp, representing the boundary of a flow,

G(x,x0) =0 (2.2.7)

when x lies on Sp. Unless qualified, a Green’s function of the first kind is simply called a Green’s
function.

The normal derivative of a Green’s function of the second kind, also called a Neumann function,
is zero over a specified surface, Sp,

n(x) - Vg(x,xg) =0 (2.2.8)
when the point x lies on Sp, where n is the unit vector normal to Sp.

Physical interpretation

Comparing (2.2.6) with (2.1.28), we find that, physically, a Green’s function represents the steady
temperature field due to a point source of heat with unit strength located at the point xg, in the
presence of an isothermal or insulated boundary, Sg. A Green’s function of the first kind represents
the temperature field due to a point source of heat subject to the condition of zero boundary
temperature. A Green’s function of the second kind represents the temperature field due to a point
source of heat subject to the condition of zero boundary flux.

In an alternative interpretation, a Green’s function is the harmonic potential due to a point
sink of mass with unit strength located at the point xg in a bounded or infinite domain of flow. A
Green’s function of the second kind represents the harmonic potential due to a point sink of mass,
subject to the condition of zero boundary velocity implementing impermeability. This interpretation
explains why a Green’s function of the second kind cannot be found in a domain that is completely
enclosed by a surface, Sg.

Free-space Green’s function

The free-space Green’s function corresponds to an infinite domain of flow in the absence of interior
boundaries. Solving (2.2.6) by the method of Fourier transforms or simply by applying the first
equation in (2.1.29) with m = —1, we obtain

1

I 2.2.9
Ay’ ( )

G(x,x0) =

where r = |x — xg| is the distance of the field point from the pole.

2.2.3 Green’s functions in bounded domains

A Green’s function consists of a singular part given by the free-space Green’s function (2.2.9), and a
complementary part that is nonsingular throughout and over the boundaries of the solution domain,
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represented by the function H(x,xg), so that

G(x,xq) = L + H(x,x0). (2.2.10)
4dmr

The decomposition (2.2.10) shows that, as the observation point, x, approaches the singular point,
Xg, all Green’s functions exhibit a common singular behavior. The precise form of H depends on the
geometry of the boundary associated with the Green’s function, Sg. In the absence of a boundary,
‘H is identically zero. For a limited class of simple boundary geometries, the complementary part,
‘H, can be found by the method of images. The construction involves introducing Green’s functions
and their derivatives at strategically selected locations outside the domain of flow.

Semi-infinite domain bounded by a plane wall

The Green’s function for a semi-infinite domain bounded by a plane wall located at = w is

1 1
= —4 2.2.11
9, %0) Arr T Amri, ( )
where r = |[x — Xql|, 7im = |x — x{™|, and
xi™ = (2w — 0, Y0, 20) (2.2.12)

is the image of the pole, xg, with respect to the wall. The minus and plus signs apply, respectively,
for the Green’s function of the first or second kind.

Interior and exterior of a sphere

The Green’s functions of the first kind for a domain bounded internally or externally by a spherical
surface of radius a centered at the point x. is given by

G(x,x0) = . (2.2.13)

dtr 47 |xg — Xe| Tiny
where 7 = |x — Xol, Tinp = |x — x|, and x{"¥ is the inverse of the singular point x, with respect
to the sphere located at

a2

inv
Xg =Xc+

S — X¢). 2.2.14
o 0% 2244

By construction, r,,/r = a/|xo — X¢|, which demonstrates that the Green’s function is zero when
the point x lies on the sphere.

The corresponding Green’s function of the second kind representing the flow due to a point sink
of mass in the presence of an interior impermeable sphere will be derived in Section 7.5.5. A Green’s
function of the second kind representing the flow inside a sphere cannot be found. The physical
reason is that fluid cannot escape through the impermeable boundaries of an interior, completely
enclosed domain.



126 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

(a) (6)

FIGURE 2.2.1 lllustration of (a) a finite control volume in a flow bounded by an interior and an exterior
closed surface and (b) an infinite control volume bounded by an interior closed surface.

2.2.4 Integral properties of Green’s functions

Consider a singly or multiply connected control volume, V., bounded by one surface or a collection of
surfaces denoted by D, as illustrated in Figure 2.2.1(a). The boundary associated with the Green’s
function, Spg, is one of these surfaces. Integrating (2.2.6) over V. and using the divergence theorem
and the properties of the delta function, we find that G satisfies the integral constraint

when xg is outside V.,
when x¢ is on D, (2.2.15)
when xq is inside V,

/ n(x) - VG(x,xp) dS(x) =
D

— = O

where the normal unit vector, n, points into the control volume, V.. When the point x( is located
precisely on the boundary, D, the improper but convergent integral on the left-hand side of (2.2.15)
is called a principal value integral (PV'). Using relations (2.2.15), we derive the identity
PV 1
D

D

where plus or minus sign on the left-hand side applies, respectively, when the point xg lies inside or
outside the control volume.

2.2.5 Symmetry of Green’s functions

We return to Green’s second identity (2.2.3) and identify the functions f and g with a Green’s
function, G, whose singular point is located, respectively, at the points x; and x2, so that f = G(x, x1)
and g = G(x,x3). Using the definition (2.2.6), we obtain

—G(x,x1) 6(x — x2) + G(x,%2) 6(x —x1) = V- [G(x,%1) VG (x,%x2) — G(x,%x2) VG(x,%x1) |. (2.2.17)

Next, we integrate (2.2.17) over a control volume, V., that is bounded by a surface associated with
the Green’s function, Sg. In the case of infinite flow, V. is also bounded by an outer surface with
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large dimensions, So,. Using the divergence theorem, we convert the volume integral on the right-
hand side to a surface integral, invoke the distinguishing properties of the delta function to write,
for example,

ﬁ G, %1) 63(x — %) AV (x) = G(x2,%1), (2.2.18)
Ve
and find that

G(x2,%x1) — G(x1,%2) = / [G(x,x1) VG(x,%2) — G(%,%x2) VG(x,%x1)] - n(x) dS(x). (2.2.19)

SB,Sco

Since either the Green’s function itself or its normal derivative is zero over Sg, the integral over Sp
on the right-hand side disappears. In the case of infinite flow, we let the large surface S, expand to
infinity and find that, because the integrand decays at a rate that is faster than inverse quadratic,
the corresponding integrals make vanishing contributions. We conclude that a Green’s function of
the first or second kind (Neumann function) satisfy the symmetry property

g(XQaXI) - g(X17X2)7 (2220)
which allows us to switch the observation point and the pole.

Physical interpretation

In physical terms, equation (2.2.20) states that the temperature or velocity potential at a point,
X3, due to a point source of heat or point sink of mass located at another point, x;, is equal to
the temperature or velocity potential at the point x; due to a corresponding singularity located at
x5. In Chapter 10, we will see that Green’s functions appear as kernels in integral equations for
the boundary distribution of the harmonic potential or its normal derivatives, and the symmetry
property (2.2.20) has important implications on the properties of the solution.

One noteworthy consequence of (2.2.20) is that, when the pole of a Green’s function of the
first kind is placed at the boundary Sp where the Green’s function is required to vanish, the Green’s
function is identically zero, that is, G(x,x0) = 0 when x¢ is on Sp for any x. This behavior can
be understood in physical terms by identifying the Green’s function with the temperature field
established when a point source of heat is placed on an isothermal body. Because the heat of the
point source is immediately absorbed by the body, a temperature field is not established.

2.2.6 Green’s functions with multiple poles

Adding N Green’s functions with distinct poles, x; for i = 1,..., N, we obtain a Green’s function
with a multitude of poles,

N

G(x,X1,...,XN) :Zg(x,xi). (2.2.21)

i=1

Physically, this Green’s function can be identified with the temperature field due to a collection of
point sources of heat or with the velocity potential due to a collection of point sinks of mass.
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A periodic Green’s function represents the temperature field or harmonic potential due to a
simply, doubly, or triply periodic array of point sources of heat or point sinks of mass. In certain
cases, a periodic Green’s function cannot be computed simply by adding an infinite number of
Green’s functions with single poles, as the superposition produces divergent sums. Instead, the
solution must be found by solving the defining equation

V2G(x,%0) + Y _ 03(x — x;) =0, (2.2.22)

where the sum is computed over the periodic array. The solution can be found using Fourier series
expansions.

2.2.7 Multipoles of Green’s functions

Differentiating a Green’s function with respect to the position of the pole, xo, we obtain a vectorial
singular solution called the Green’s function dipole,

g'(x,%0) = VoG (x,%o), (2.2.23)

where the zero subscript of the gradient indicates differentiation with respect to xg. Higher deriva-
tives with respect to the singular point yield high-order singularities that are multipoles of the
Green’s function. The next three singularities are the quadruple,

G"(x,%0) = Vo VoG (x, Xo), (2.2.24)
the sextuple,
G" (x,%0) = VoVoVoG(x, o), (2.2.25)
and the octuple,
G"" (x,%0) = VoVoVoVoG(x,%o). (2.2.26)

Four indices are afforded by the octuple.

The free-space Green’s function dipole and quadruple are given by

1 % B 1 1 X ® %

- X)) = — (= =143 7 2.2.27
4 r3 G~ (x; %0) 47 ( ad * rd ) ( )
where X = x—Xxg, r = |X|, and I is the identity matrix. Comparing (2.2.27) with the first expressions
in (2.1.33) and (2.1.34), we find that the velocity potential and velocity field due to a point-source

dipole with strength d are given by
¢=g"-d, u=¢g"-d, (2.2.28)

gl(xv XO) =

where the constant d expresses the direction and strength of the dipole. Working in a similar fashion,
we find that the velocity potential and velocity field due to a point-source quadruple are given by

¢=G":q, u=¢":q, (2.2.29)

where q is a constant two-index matrix expressing the strength and spatial structure of the quadruple.
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2.2.8 Green'’s functions in two dimensions

Green'’s identities, the reciprocal theorem, and the apparatus of Green’s functions can be extended
in a straightforward manner to two-dimensional flow. The Green’s functions satisfy the counterpart
of equation (2.2.6) in the plane,

V2G(x,%q) + da(x — %) = 0, (2.2.30)
where V2 is the two-dimensional Laplacian and &5 is the two-dimensional delta function.

Free-space Green’s function
The free-space Green’s function is given by

G(x,%0) = ——— In ., (2.2.31)
2  a
where a is a specified constant length. It is important to note that the free-space Green’s function
increases at a logarithmic rate with respect to distance from the singular point, r. In contrast, its
three-dimensional counterpart decays like 1/r. The two-dimensional Green’s function is dimension-
less, whereas its three-dimensional counterpart has units of inverse length.

Semi-infinite domain bounded by a plane

Using the method of images, we find that the Green’s function for a semi-infinite domain bounded
by a plane wall located at y = w is given by

1 T Tim
g(x7x0)=—%(lngiln - ), (2.2.32)

where r = |x — Xq|, 7im = |[x — x{™|, and xi™ = (g, 2w — yo) is the image of the singular point, xo,
with respect to the wall. The minus or plus sign apply, respectively, for the Green’s function of the
first or second kind (Neumann function).

Interior and exterior of a circle

The Green’s function of the first kind in a domain that is bounded internally or externally by a
circle of radius a centered at the point x. is given by

Aowst) = ——— [ In- +1n (L a ) } (2.2.33)

2w a |X0 - Xc| Tinv
where r = |x — Xo|, Tine = |X — x5, and x{™ is the inverse of the singular point xo with respect
to the circle located at
(x0 — X¢)- (2.2.34)

Xinv:X =+
’ © 0 Ixo — xc[?

By construction, rin,/r = a/|xo — X¢|, which shows that the Green’s function is zero when the field
point x lies on the circle.
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The Green’s function of the second kind representing the flow due to a point sink of mass in
the presence of an interior circular boundary will be derived in Section 7.8. The Green’s function of
the second kind for flow in the interior of a circular boundary cannot be found.

Further properties of Green’s functions

The reciprocal relation and identities (2.2.15) and (2.2.16) are also valid in two dimensions, provided
that the control volume, V,, is replaced by a control area, A., and the boundary, D, is replaced by
a contour, C, enclosing A.. The two-dimensional Green’s functions satisfy the symmetry property
(2.2.20). The proof is carried out working as in the case of three-dimensional flow.

Infinite flow

An apparent complication is encountered in the case of infinite two-dimensional flow. In the limit
as the contour C, expands to infinity, the Green’s function may increase at a logarithmic rate, and
the integrals of the two terms in (2.2.19) over the large contour, C,, which is the counterpart of the
large surface S, in the three-dimensional flow, may not vanish. However, expanding the Green’s
functions inside the integrand of (2.2.19) in a Taylor series with respect to xg about the origin, we
find that the sum of the two integrals makes a vanishing contribution and the combined integral
over Cy, cancels out.

Problems

2.2.1 Free-space Green’s function

(@) Working in index notation, confirm that the free-space Green’s function satisfies Laplace’s equa-
tion everywhere except at the pole.

(b) Identify D with a spherical surface centered at the pole, xg, and show that the free-space Green’s
function satisfies the integral constraint (2.2.15).
2.2.2 Solution of Poisson’s equation

Use the distinguishing properties of the delta function to show that the general solution of the
Poisson’s equation (2.1.12) is

P(x) = — . G(x,x )V -ux')dV(x') + H(x), (2.2.35)

where G is a Green’s function and H is a nonsingular harmonic function.

2.2.3 Symmetry of Green’s functions

(@) Verify that the Green’s functions given in (2.2.11) and (2.2.13) satisfy the symmetry property
(2.2.20).

(b) Discuss whether (2.2.20) implies that
VG(x,x0) = VG(x0,x) or VG(x,x0) = VoG(x,%0). (2.2.36)

The gradient, Vy, involves derivatives with respect to xq.
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FIGURE 2.3.1 lllustration of a control volume used to derive a boundary-integral representation of the
potential of an irrotational flow at a point, xg.

2.2.4 Green’s function sextuple

(a) Derive the three-dimensional free-space Green’s function sextuple and discuss its physical inter-
pretation in terms of merged point sources and point sinks.

(b) Repeat (a) for the two-dimensional sextuple.

2.3 Integral representation of three-dimensional potential flow

Having introduced the reciprocal theorem and the Green’s functions of Laplace’s equation, we pro-
ceed to develop integral representations for the velocity potential of an irrotational, incompressible
or compressible flow. We begin by considering a three-dimensional flow of an incompressible fluid in
a simply connected domain. Applying the reciprocal relation (2.2.4) with a nonsingular single-valued
harmonic potential ¢ in place of f and a Green’s function of Laplace’s equation, G(x,Xg), in place
of g, we obtain

V- [o(x) VG(x,x0) — G(x,%0) Vo(x)] = 0. (2.3.1)

Next, we select a control volume, V., that is bounded by a collection of surfaces, D, as illustrated
in Figure 2.3.1 and consider two cases.

FEvaluation outside a control volume

When the singular point of the Green’s function, xg, is located outside V., the left-hand side of
(2.3.1) is nonsingular throughout V.. Repeating the procedure that led us from (2.2.17) to (2.2.19),
we obtain

/ o(x)n(x) - VG(x,x0) dS(x) = / G(x,x0)n(x) - Vo(x) dS(x). (2.3.2)
D D

By convention, the normal unit vector, n, points into the control volume.
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FEvaluation inside a control volume

When the singular point, xg, resides inside V., the left-hand side of (2.3.1) becomes infinite at the
point xg. To apply the divergence theorem, we exclude from the control volume a small spherical
volume of radius € centered at xq, denoted by S¢, as shown in Figure 2.3.1. The result is an equation
that is identical to (2.3.2) except that the boundaries of the control volume include the spherical
surface S,

o(x)n(x) - VG(x,x0) dS(x) = G(x,x0)n(x) - Vo(x) dS(x). (2.3.3)
D.,S. D,S.

By convention, the normal unit vector, n, points into the control volume. Considering the integrals
over S., we write dS = €2dS2, where  is the solid angle defined as the area of a sphere of unit radius
centered at xg. Using (2.2.8), we obtain

1
e n(x) + VH(x,xo), (2.3.4)
where n = 1 (x — xq) is the normal unit vector pointing into the control volume, as shown in
Figure 2.3.1. Taking the limit as e tends to zero, using (2.2.8) and (2.3.4) and recalling that the
complementary component H is nonsingular throughout the domain of flow, we find that

/ G(x,x0) n(x) - Vo(x) dS(x) = % / n(x) - Vo (x) e dQ(x) — 0 (2.3.5)
Se e Ms.

VG(x,%x9) = —

and

/ (x) n(x) - VG(x, x0) dS(x )%qu(xo)@%/ € dO(x) = —a(xo). (2.3.6)

€

Substituting (2.3.5) and (2.3.6) into (2.3.3), we obtain the final result

/ G(%,%o) / () n(x) - VO(x,x0)dS(x),  (23.7)

which provides us with a boundary-integral representation of a harmonic function in terms of the
boundary values and the boundary distribution of its normal derivative, which is equal to the normal
component of the velocity. To compute the value of ¢ at a chosen point, xg, inside a selected control
volume, we simply compute the two boundary integrals on the right-hand side of (2.3.7) by analytical
or numerical methods.

The integral representation (2.3.7) can be derived directly using the properties of the delta
function, following the procedure that led us from (2.2.17) to (2.2.19). However, the present deriva-
tion based on the exclusion of a small sphere centered at the evaluation point bypasses the use of
generalized functions.

Physical interpretation

The symmetry property (2.2.20) allows us to switch the order of the arguments of the Green’s
function in the integral representation (2.3.7), obtaining

—/Dg(xmx)n(x)- / d(x ) - VG(x0,x) dS(x). (2.3.8)
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The two integrals on the right-hand side represent boundary distributions of Green’s functions and
Green’s function dipoles oriented normal to the boundaries of the control volume, amounting to
boundary distributions of point sources and point-source dipoles. Making an analogy with corre-
sponding results in the theory of electrostatics concerning the surface distribution of electric charges
and charge dipoles, we call the first integral in (2.3.8) the single-layer harmonic potential and the sec-
ond integral the double-layer harmonic potential. The distribution densities of these potentials are
equal, respectively, to the normal derivative and to the boundary values of the harmonic potential.

Boundary-integral representation for the velocity

Taking the gradient of (2.3.8) with respect to the evaluation point, xg, we derive a boundary-integral
representation of the velocity,

—/Dvog(xo,x) n(x) - Vo(x / o(x - [VVG(x0,%x)] dS(x). (2.3.9)

The integrals on the right-hand side represent the velocity due to boundary distributions of Green’s
functions and Green’s function dipoles.

Green’s third identity

Applying the boundary-integral representation (2.3.8) with the free-space Green’s function given in
(2.2.7), we derive Green’s third identity

(o) = —— / L) - Vo) dse) + — [ 29 nx) - (o —x)dS(),  (2.3.10)

47 DT 47 D 7"3

where 7 = |x — xg| is the distance of the evaluation point, x¢, from the integration point, x.

2.3.1 Unbounded flow decaying at infinity

Next, we consider a flow in an infinite domain enclosed by one interior boundary or a collection of
closed interior boundaries, B, called a periphractic domain from the Greek words mept which means
“about” and gpakTns which means “fence,” subject to the assumption that the velocity decays at
infinity. We will show that the velocity potential tends to a constant value at infinity. We begin by
selecting a point x¢ inside the domain of flow and define a control volume that is enclosed by the
interior boundaries, B, and a spherical surface of large radius R centered at the point xg, denoted
by Ss. Applying Green’s third identity (2.3.10), we obtain

B(xo) = % + doo (R, x0) — ﬁ /B % n(x) - Vo (x) dS(x)

—|—$ : % n(x) - (xg — x) dS(x), (2.3.11)

where () is the flow rate across S, or any other closed surface enclosed by S, defined as

Q= [ 569 Vorase) = | nix)- Vo) ase. (23.12)

oo
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and ¢ is the average value of ¢ over S,

= 1

iRm0 = 75 900 dS(x). (2.3.13)
The normal unit vector, n, points inward over S,,. Concentrating on the flow rate, we write

Q= /Sw (%)T:R dS(x) = /Sm <%>r:3 R2dAQ(x) = 32% /Sw $dQ(x),  (2.3.14)

where () is the solid angle defined as the surface area of a sphere of unit radius centered at the point
Xg. Substituting the definition of ¢, we obtain

Q _ 9o
= a5 2.3.15
4TR® ~ OR (2.3.15)
Integrating this equation with respect to R treating () as a constant, we obtain
Poo (R, x0) = —i + ¢(x0), (2.3.16)
4R

where ¢ is independent of R. Taking derivatives of the last equation with respect to xg keeping R
fixed, we find that

Voc = Vopoo = Vo / B(x) dQ(x) = / Vo(x) dQ(x) = 0. (2.3.17)
Soo Soo
The value of zero emerges by letting R in the last integral tend to infinity and invoking the original
assumption that the velocity decays at infinity. We have thus shown that ¢ is an absolute constant.
Substituting (2.3.15) into (2.3.11), we derive a simplified boundary integral representation lacking
the integral over the large surface,
1 1 1 d(x)

¢(XO):C_E B;n(x)'VqS(x)dS(x)JrM =

n(x) - (xg — x) dS(x). (2.3.18)

This equation finds useful applications in computing an exterior flow.

Letting the point x¢ in (2.3.18) tend to infinity and recalling that r is the distance of the
evaluation point, xg, from the integration point, x, over the interior boundary B, we deduce the
asymptotic behavior

Q

_ g ..

P(x0) = c ° (2.3.19)

where the dots represent decaying terms. This expression demonstrates that the potential of an
infinite three-dimensional flow that decays at infinity tends to a constant value far from the interior
boundaries.

Based on (2.3.19), we find that the expression for the kinetic energy (2.1.22) becomes

1 1
K:—fp/ ou-ndS+ =pcQ, (2.3.20)
27, 2
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where B is an interior boundary. Following the arguments of Section 2.1, we deduce that, given
the boundary distribution of the normal component of the velocity, a potential flow that decays
at infinity is unique and the corresponding harmonic potential is determined uniquely up to an
arbitrary constant.

2.3.2 Simplified boundary-integral representations

The boundary-integral representation (2.3.8) can be simplified by judiciously reducing the domain
of integration of the hydrodynamic potentials. This is accomplished by employing Green’s functions
that are designed to observe the geometry, symmetry, or periodicity of a flow. For example, if
the Green’s function or its normal derivative vanishes over a particular boundary, the corresponding
single- or double-layer potential is identically zero. If the velocity and harmonic potential are periodic
in one, two, or three directions, it is beneficial to use a Green’s function that observes the periodicity
of the flow so that the integrals over the periodic boundaries enclosing one period cancel each other
and do not appear in the final boundary-integral representation.

2.3.3 Poisson integral for a spherical boundary

The Green’s function of the first kind for flow inside or outside a sphere of radius a centered at the
origin arises from (2.2.13) by setting x. = 0, finding

G(x,x0) = - (1 o« 1 ) (2.3.21)

T dn \r [%o| Tinw

where 7 = |x — Xol, Tino = |x — x{™|, and x{™¥ is the inverse of the point x¢ with respect to the

sphere, located at xi"V = x a?/|xg|?. The gradient of the Green’s function is
1 /x—x9 a x—xiw
VG(x, Xo :,7<7,77) 2.3.22
( ) dm 3 |X0‘ rgnv ( )

Evaluating this expression at a point x on the sphere and projecting the result onto the inward

normal unit vector, n = fé X, we obtain

1 /1 a 1 .
n(x) - VG(x,x0) = 7— (73 (a® —xg-x) — T (a® - x! -x)). (2.3.23)
Recalling that 7,/ = a/|x0| for a point on the sphere and simplifying, we find that
1 2 %ol o, a® a® — |xo|?
n(x) - Vg(x,x0) = T~ [(a —x0+%) = S 0 — g o x)] =0 (2324)

Substituting this expression into the first integral on the right-hand side of (2.5.1) and noting that
the second integral vanishes because the Green’s function is zero on the spherical boundary, we find
that the potential at a point x( located in the interior or exterior of a sphere of radius a centered
at the origin is given by the Poisson integral

2 _ 2
B(x0) = £ 47r|:L<o| / qufc)ol?’ dS(x), (2.3.25)

where o denotes the sphere. The plus or minus sign applies when the evaluation point, xq, is located
inside or outside the sphere (e.g., [204], p. 240). Applying this equation for constant interior ¢
provides us with an interesting identity.
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2.3.4 Compressible fluids

To derive an integral representation for compressible flow, we apply Green’s second identity (2.2.4)
with a general potential ¢ in place of f and a Green’s function G in place of g, finding

—G(x,%0) V29(x) = V - [$(x) VG(x, X0) — G(x, X0) Vo(x) . (2.3.26)

Following the procedure discussed earlier in this section for incompressible flow, we derive the integral
representation

/ G(x, xp) n(x) - Vo(x) dS(x)
/ d(x)n(x) - VG(x,%0) dS(x W G(x0,x) V2(x) dV(x), (2.3.27)

which is identical to (2.3.8) except that the right-hand side includes a volume integral over the
control volume V. enclosed by the boundary D, called the volume potential. Physically, the volume
potential represents a volume distribution of point sources.

Adopting the free-space Green’s function, we obtain the counterpart of Green’s third identity
for compressible flow,

1 1
d(x0) = - /D - rll(X) : Zf(_XLdS(X) . ) (2.3.28)
+E : = . l’l(X) ¢(X) dS(X) = E ; V2¢(X) dS(X)

The normal unit vector, n, points into the control volume, V..

Problem

2.3.1 Boundary-integral equation for a uniform potential
Apply (2.3.2) and (2.3.7) with ¢ set to a constant to derive the first and third equations in (2.2.15).

2.4 Mean-value theorems in three dimensions

An important property of functions that satisfy Laplace’s equation emerges by selecting a spherical
control volume with radius a residing entirely in their domain of definition and centered at a chosen
point, xg. Identifying the surface D in (2.3.10) with the spherical boundary and substituting r = a
and n = 1 (xg — x), we obtain

d(x0) = — n(x) - Vo(x) dS(x) +

- x) dS(x), (2.4.1)

where o denotes the sphere. Next, we use the divergence theorem and recall that V2¢ = 0 to find
that the first integral on the right-hand side is zero. The result is a mean-value theorem expressed
by the equation

x) dS(x), (2.4.2)
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stating that the mean value of a function that satisfies Laplace’s equation over the surface of a
sphere is equal to value of the function at the center of the sphere. One interesting consequence
of the mean-value theorem is that, if the harmonic potential of an infinite flow with no interior
boundaries decays at infinity, it must vanish throughout the whole space.

Using (2.4.2), we find that the mean value of a harmonic function over the volume of a sphere
of radius a is equal to value of the function at the center of the sphere,

Vio ﬁ P(x)dV (x) = Vi /Oa[ /S ¢(x)d5(x)} dr:Vio /Oamﬂ b(x0) dr = ¢(x0),  (2.4.3)

where V, = 4{(13 is the volume of the sphere and S, denotes a sphere of radius r. Rearranging, we
obtain

1
wm:?&ﬁﬂwww, (2.4.4)

stating that the mean value of a function that satisfies Laplace’s equation over the volume of a
sphere is equal to value of the function at the center of the sphere.

Extrema of harmonic functions

The mean-value theorem can be used to show that the minimum or maximum of a nonsingular
harmonic function occurs only at the boundaries. To see this, we temporarily assume that an
extremum occurs at a point inside the domain of a flow, xg, and apply the mean-value theorem to
find that there must be at least one point on the surface of a sphere centered at the alleged point of
extremum where the value of ¢ is higher or lower than ¢(x¢), so that the mean value of ¢ over the
sphere is equal to ¢(xq). However, this contradicts the original assumption.

Constant boundary potential

Now we consider a domain that is completely enclosed by a surface over which a harmonic potential
¢ is constant. According to the mean-value theorem, the constant value must be both a minimum
and a maximum. Consequently, ¢ must have the same value at every point. This conclusion does
not apply for an infinite domain bounded by interior surfaces.

Mazimum of the magnitude of the velocity

Another consequence of the mean-value theorem is that, in the absence of singularities, the magni-
tude of the velocity, u = V¢, reaches a maximum at the boundaries. To see this, we temporarily
assume that the maximum occurs at a point inside the domain of a flow, xg, and introduce the unit
vector in the direction of the local velocity, eg = u(xg)/|u(xp)|. The square of the magnitude of the
velocity at a point, x, inside the domain of flow is

u(x) - u(x) = [u(x) - eof2 + (I - e @ eq) - u(x)*. (2.4.5)
Accordingly,

u(x) - u(x) > ju(x) - egl?, (2.4.6)
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with the equality holding when x = xo. However, since the positive scalar function |u(x)-eg| satisfies
Laplace’s equation, a point x can be found such that

[u(x) - el > [u(xo) - €o]* = u(xo) - u(xo). (2.4.7)
Combining the last two inequalities, we find that
u(x) - u(x) > u(xg) - u(xo), (2.4.8)

which contradicts the original assumption. One corollary of this result is that, if the velocity of an
infinite irrotational flow with no interior boundaries vanishes at infinity, it must vanish throughout
the whole space.

Mean-value theorem for singular functions

The mean-value theorem applies for a harmonic function that is free of singularities inside and
over the surface of a sphere of radius a centered at a chosen point, x3. Consider the potential
#(x) = G(x,x1), where G is a Green’s function of Laplace’s equation and the singular point x; lies
inside a sphere. The counterpart of equation (2.4.1) stemming from the reciprocal theorem is

G(x0,%1) — —— / n(x) - VG (x, x1) dS(x) + —

47r|x1 — Xo| = dra J, 4mra?

/g(x, x1)dS(x), (2.4.9)

where the normal unit vector, n, points outward from the sphere. The first integral on the right-hand
side is equal to —1. Rearranging, we obtain

1 1 1
4ra2 /Og(x,xl) dS(x) = G(xo0,%x1) — m + Ina’ (2.4.10)
If G is the free-space Green’s function,
L/g(x )dS(x)*—1 (2.4.11)
4dma? ||, X1 T 4ra 4.

for any point x; inside the sphere.

Biharmonic functions

Next, we derive a mean-value theorem for a function, ®, that satisfies the biharmonic equation,
V4® = 0. Working as in the case of harmonic functions, we consider a spherical control volume of
radius a centered at a chosen point, xg. Identifying D with the spherical boundary of the control
volume and substituting in (2.3.28) r = a, n = %(xo —x), and f = ®, we obtain

1 1

D(x0) = — n(x) - V&(x) dS(x) + Toa?

/@(x) dS(x) — ﬁﬂv%(x) dS(x). (2.4.12)

dra [/,

Applying the divergence theorem, we find that the first surface integral on the right-hand side is
equal to the negative of the integral of the Laplacian V2® over the volume of the sphere. We note
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that the function V2® satisfies Laplace’s equation and use the mean-value theorem expressed by
(2.4.4) to replace its volume integral over the sphere with 4a3V2®(xo), obtaining

Do) = —5 A*VHB(x0) + 1 / B(x) dS(x) — 1 ﬁ V20 (x) dS(x). (2.4.13)

Finally, we use the mean-value theorem expressed by (2.4.4) for the harmonic function V2@ to
simplify the last integral, and rearrange to derive the mean-value theorem expressed by

1

4ma?

/ d(x) dS(x) = ®(x0) + %a2v2<1>(x0), (2.4.14)

o

where o denotes a sphere. This equation relates the mean value of a biharmonic function over the
surface of a sphere to the value of the function and its Laplacian at the center of the sphere.

Working as in (2.4.4), we find that the mean value of a biharmonic function over the volume
of a sphere is given by

L 1 22
T3 [ 269476 = 000 + g 29 000). (2.4.15

If ® happens to satisfy Laplace’s equation, V2® = 0, which is inclusive of a biharmonic
equation, equations (2.4.14) and (2.4.15) reduce to (2.4.2) and (2.4.4).
Problem

2.4.1 Mean-value theorem for a singular biharmonic function

A Green’s function of the biharmonic equation in three dimensions satisfies the equation

V4G + 65(x — x¢) = 0, (2.4.16)
where d3 is the three-dimensional delta function. Confirm that the free-space Green’s function is
G = r/8m, where r = |x — xg|. Derive the counterpart of (2.4.10).

2.5 Two-dimensional potential flow

A boundary-integral representation and further properties of the single-valued harmonic potential
of a two-dimensional flow can be derived working as in Section 2.3 for three-dimensional flow.
2.5.1 Boundary-integral representation

Equations (2.3.7) and (2.3.8) are also valid for two-dimensional flow, provided that the control
volume is replaced by a control area, and the boundary, D, is replaced by a closed contour, C,
enclosing the control area. The integral representation (2.3.7) takes the form

B(x0) = — 740 G(x, x0) n(x) - Vo (x) di(x) + fc 6(x) n(x) - VG(x, x0) di(x), (2.5.1)
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where the normal unit vector, n, points into the control area enclosed by C. Green’s third identity
for a single-valued potential takes the form

o00) = 5 1 (D)) Vo 6 + 5 4 X000 (ro-w i), (252)

a 2 Jo 1?2
where r = |x — x¢| and a is a chosen constant length.

Flow in an infinite domain

In the case of flow in an infinite domain, we stipulate that the velocity decays at infinity and derive
the counterpart of (2.3.18) with a straightforward change in notation. Letting the point xo tend to
infinity, we find that the velocity potential behaves like
X
(Z)(Xo):anM—FC—f—--', (2.5.3)
27 a

where ¢ is a constant, |xg| is the distance from the origin assumed to be in the vicinity of the
boundary C, a is a constant length, and

Q= fc n- Vo d (2.5.4)

is the flow rate across C' (Problem 2.5.3). Now we consider the kinetic energy of the flow expressed
by the potential

oo @bl

2.5.5
2T a ( )

Repeating the procedure of Section 2.3 for three-dimensional flow, and find that a two-dimensional
flow in an infinite domain described by a single-valued harmonic potential is determined uniquely
by specifying the normal component of the velocity along the interior boundaries.

Compressible flow

The integral representation of the potential of a compressible flow stated in (2.3.27) is also valid
for two-dimensional flow, provided that the control volume is replaced by a control area, and the
boundary, D, is replaced by a closed contour, C, enclosing the control area.

2.5.2 Mean-value theorems

The mean value of a harmonic potential, ¢, along the perimeter a circle and over the area of a circular
disk of radius a centered at a point, xq, is equal to the value of the potential at the centerpoint,

2m]{¢ di(x /qs dA(x) = é(xo). (2.5.6)

where o denotes the circle or the disk inside the circle, [ is the arc length around the circle, and
dA = dz dy is the differential area inside the circle.
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Working as in the case of three-dimensional flow, we derive mean-value theorems for functions
that satisfy the biharmonic equation, V4® = 0, stating that

1 1
mma ®(x) di(x) = ®(x0) + 1 a’V2d(xo) (2.5.7)
where o denotes the circle, and
1 1
= . O (x)dA(x) = P(x¢) + 3 a*V2®d(xy), (2.5.8)

where o denotes the disk inside the circle (Problem 2.5.2). If @ is a harmonic function, the last term
on the right-hand side of (2.5.7) or (2.5.8) does not appear.
2.5.3 Poisson integral for a circular boundary

The Green’s function of two-dimensional flow inside or outside a circle of radius a centered at the
origin arises from (2.2.33) by setting x. = 0,

g(x,xo):fi {lni—ﬁ—ln( a g )}7 (2.5.9)

27 a |x0| Tinw
where r = |x — Xq|, Tiny = |x — x|, and x5 is the inverse point of the point xo with respect to
the circle located at x5 = xg a?/|x¢|?. The gradient of the Green’s function is

1 (x—xo x—xé"”)
2m '

VG(x,x0) = (2.5.10)

2 2

T T

inv
Evaluating this expression at a point x on the circle and projecting the resulting equation onto the
inward normal unit vector, n = —x/a, we obtain
2 1 2 mnv =
(a® —x¢ - x) — 5 (a” — x{ x)] (2.5.11)

nv

n(x) - VG(x, x0) = — [1

2ma L 12
Recalling that for a point on the circle r;,, /7 = a/|xo| and simplifying, we find that

2

1 %02 a 1
n(x) - Vg(x,xg) = D y— [(a2 — X0 X) — 2 (a® — on x)} Rl v (a® — |xo|?). (2.5.12)

Substituting this expression into the first integral on the right-hand side of (2.5.1) and noting that
the second integral disappears because the Green’s function is zero on the circular boundary, we find
that the potential at a point xq located in the interior or exterior of a circle of radius a centered at
the origin is given by the Poisson integral

_ @ —xof? P(x)
9(x0) = £ }{ o A0 (2.5.13)

where o denotes the circle. The plus or minus sign corresponds, respectively, to interior or exterior
flow (e.g., [106], p. 242). Applying this equation for constant interior ¢ provides us with an
interesting identity.
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Problems

2.5.1 Two-dimensional infinite flow

Derive the asymptotic expression (2.5.3).

2.5.2 Mean-value theorems for biharmonic functions in two dimensions

Prove the mean-value theorems expressed by (2.5.7) and (2.5.8).

2.5.3 Singular harmonic functions

Derive the counterpart of (2.4.10) in two dimensions.

2.6 The vector potential for incompressible fluids

In Section 1.5.4, we saw that a velocity field, u, that arises as the curl of an arbitrary continuous
vector field, A, is solenoidal, V - u = 0. Now we will demonstrate that the inverse is also true, that
is, given a solenoidal velocity field, V - u = 0, it is always possible to find a vector potential, A, so
that

u=VxA. (2.6.1)

The three scalar components of this equation are

gl M PA A oA DA 04 2.62)
te 8332 61’37 27 8.%‘3 81‘17 57 81‘1 83?2. o

We begin by stipulating that the first component of A, denoted by A, is a function of z;
alone, and set

Ay = fi(xr), (2.6.3)

where f; is an arbitrary function. Integrating the second and third equations in (2.6.2) with respect
to x1 from an arbitrary position, 1 = a, we find that

Az (x) = /“ us(x') da + fa(z2,23), As(x) = — /g61 up(x') Az’ + fa(wa, x3),  (2.6.4)

where fo, f3 are two arbitrary somewhat related functions of zo and z3. Substituting expressions
(2.6.4) into the first equation in (2.6.2), we obtain

o 1 8u2 8’LL3 / ’ 8f3 6f2
ui(x) = —/a (372 + a—%)(x )da| + (872 - a—%)(xz,xg). (2.6.5)
Since the velocity field u is solenoidal, we may simplify the integrand in (2.6.5) to obtain
1 Ouy dfs  0f2
ul(x) = 8—171()(/) dx/l + (87132 — 37933) (!,EQ,!E:;). (266)
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Performing the integration using the fundamental theorem of calculus, we find that

Ofs  9f2

—_— = == = . 2.6.7

9z, Dis ui(a, z2, 3) (2.6.7)
Equation (2.6.7) imposes a differential constraint on the otherwise arbitrary functions fo and fs.
The stipulation (2.6.3) and the restriction (2.6.7) can be used to derive the vector form

V x f =ui(a,z2,x3) €1, (2.6.8)
where e; is the unit vector along the first Cartesian axis.

In summary, we have constructed the components of a vector potential A explicitly in terms
of the components of the solenoidal velocity field u, as shown in (2.6.3) and (2.6.4), thereby demon-
strating the existence of A.

Solenotidal velocity potential

The vector potential corresponding to a particular incompressible flow is not unique. For example,
since the curl of the gradient of any differentiable vector field is zero, the gradient of an arbitrary
nonsingular scalar function can be added to a vector potential without altering the velocity field.
This observation allows us to assert that it is always possible to find a solenoidal vector potential,
B, such that V- B = 0. If A is a certain non-solenoidal potential, then A = B — VF will be a
solenoidal potential, provided that the function F satisfies Poisson’s equation, V2F = V - B.

Stream functions

In Section 2.9, we will show that the vector potential of a two-dimensional or axisymmetric flow
can be described in terms of one scalar function, called, respectively, the Helmholtz two-dimensional
stream function or the Stokes axisymmetric stream function. Both are defined uniquely up to an
arbitrary scalar constant. The vector potential of a three-dimensional flow can be described in terms
of two scalar functions, called the stream functions. For example, the vector potential of a three-
dimensional flow can be expressed in the form A = ¥V, where ¢ and x are two scalar stream
functions. It is interesting to note that V x A = V4 x Vx, which shows that A - (V x A) = 0,
that is, the field A is perpendicular to its curl. A vector field that possesses this property is called
a complex lamellar field ([14], p. 63). In contrast, a vector field that is parallel to its own curl,
A x (V x A) =0, is called a Beltrami field.

Problems

2.6.1 Ezxplicit form of a vector potential

Show that A = xV¢ and A = —YVx are two acceptable vector potentials for the velocity field
u = Vyx x V¢, where x and ¢ are two arbitrary functions.

2.6.2 Deriving a vector potential

Repeat the derivation of the vector potential discussed in the text, but this time assume that
Ay = fi(x2) in place of (2.6.3).
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2.6.3 A property of the vector potential

Show that the velocity and associated vector potential satisfy the symmetry property
u-VA=(VA) u (2.6.9)

Hint: Begin by writing u x u=(V x A) xu=0.

2.7 Representation of an incompressible flow in terms of the vorticity

Continuing the study of incompressible flow, we turn to examining the relationship between the
vorticity distribution, w(x), and the structure of the velocity field, u(x). Specifically, we seek to
develop a representation for the velocity field in terms of the associated vorticity distribution by
inverting the equation defining the vorticity,

w=Vxu. (2.7.1)
To carry out this inversion, we may use (2.6.1), (2.6.3), and (2.6.4), where u and A are replaced,
respectively, by w and u. However, it is expedient to work in an alternative fashion by expressing

the velocity in terms of a vector potential, as shown in (2.6.1).

Primary and complementary potentials

Let us assume that A is the most general vector potential capable of reproducing a velocity field of
interest, u. Taking the curl of both sides of the definition u = V x A and manipulating the repeated
curl on the right-hand side, we derive a differential equation for A,
w=VxVxA=V(V-A)-V?A. (2.7.2)
It is useful to resolve A into two additive components,
A=B+C, (2.7.3)
where the primary part B is a particular solution of Poisson’s equation
V?B = —w, (2.7.4)
and the complementary part C is the general solution of the equation
VxVxC=-V(V-B). (2.7.5)
With these definitions, we can be sure that

VxVx(B+C)=uw, (2.7.6)

as required. The computation and significance of the primary and complementary parts will be
discussed later in this section.
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FIGURE 2.7.1 A rotating fluid particle induces a rotary flow expressed by the Biot—Savart integral.

2.7.1 Biot—Savart integral

Consider an interior or exterior flow in a three-dimensional domain. If the domain extends to infinity,
we require that the velocity decays at least as fast as 1/d so that the corresponding vorticity decays
at least as fast as 1/d?, where d is the distance from the origin. If the velocity does not decay
at infinity, we subtract out the nondecaying far-field component and consider the vector potential
associated with the remaining decaying component.

Under these stipulations, we obtain a particular solution of (2.7.4) using the Poisson inversion
formula with the free-space Green’s function,

1 w(x')
B(x)=— dv (x’ 2.7.7
-z [ v (277)
where r = |x — x/|. Substituting (2.7.7) into the right-hand side of (2.7.3), taking the curl of the
resulting expression, and switching the curl with the integral operator on the right-hand side, we
derive an expression for the velocity,

ui(x)zeijk[;r ﬂF 0 () wk(x’)dV(x’)—i—gi:]. (2.7.8)

low axj r

Carrying out the differentiations under the integral sign and switching back to vector notation, we
derive an integral representation for the velocity,

u(x) ! ﬂF 1 [w(x') xx]dV(x')+V x C, (2.7.9)

 4r low T3

where X = x — x’. The first two terms on the right-hand side express the primary flow, and the last
term represents the complementary flow.

The volume integral on the right-hand side of (2.7.9) is similar to the Biot-Savart integral
in electromagnetics expressing the magnetic field due to an electrical current. By analogy, the
integral in (2.7.9) expresses the velocity field induced by the rotation of point particles distributed
along the vortex lines, as shown in Figure 2.7.1. In formal mathematics, the Biot—Savart integral
represents a volume distribution of singular fundamental solutions, called rotlets or vortons, with
vector distribution density equal to the vorticity.
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FIGURE 2.7.2 lllustration of a flow domain enclosed by a collection of interior and exterior boundaries,
collectively denoted as B.

Representation in terms of the curl of the vorticity

Working in a slightly different manner, we define the primary velocity field v = V x B, take the curl
of (2.7.7), interchange the curl with the integral sign on the right-hand side, and switch the variable
of differentiation from x to x’ while simultaneously introducing a minus sign to obtain

vi(%) = —esj — WF 0 (3) () AV (x). (2.7.10)

/
4dr low 0T \T

Manipulating the derivative inside the integral, we find that

vi(X) = €4k % ﬂ%w [— 8(3:" (wk(rxl)) + %&‘g‘”ﬁ(/) ] dV(x). (2.7.11)

Finally, we apply Stokes’ theorem to obtain

1 1 1 1 Jwy (x')

v;i(X) = €k o /B - wi(x") nj(x") AV (X)) + €k o ﬁmow T@T} dV(x'), (2.7.12)

where B represents the boundaries of the flows and the normal unit vector n points into the flow,
as shown in Figure 2.7.2.

Now switching to vector notation and using the decomposition (2.7.3), we obtain the integral
representation

u(x) = L ﬁ 1 [V xw(x)]dV(x') + L / E [n(x') x w(x')] dS(x") + V x C. (2.7.13)

am Flow T dm BT
The second term on the right-hand side involving the boundary integral disappears when the vortex
lines cross the boundaries at a right angle. The volume integral disappears when the curl of the
vorticity field is irrotational, in which case all Cartesian components of the velocity satisfy Laplace’s
equation, V2u = 0. The curl of the vorticity of a two-dimensional or axisymmetric flow lies in the
plane of the flow or in an azimuthal plane and the volume integral produces respective motion in
these planes.
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Infinite decaying flow

In the case of flow in an infinite domain with no interior boundaries decaying far from the origin,
the representation (2.7.13) simplifies into

_ 1 1 ’ n 1 1 2 ’ /
u(x) = i ﬁﬂow " V xw(x)dV(x') = i ﬂﬂow " Vau(x') dV (x'). (2.7.14)
To derive the last expression, we have noted that V2u = —V x w for any solenoidal velocity field,

V-u=0.

2.7.2 The complementary potential

Before attempting to solve (2.7.5) for the complementary vector potential, C, we must compute the
divergence V - B on the right-hand side. Taking the divergence of (2.7.7) and interchanging the
order of differentiation and integration on the right-hand side, we find that

V- B(x) = — WF 0 (l)wi(x')dV(x'). (2.7.15)

T n low OTi \T
Next, we change the variable of differentiation from x to x’ while simultaneously introducing a minus

sign, writing

V. B(x) = —— WF 0 <1>wi(x')dV(x’), (2.7.16)

- "
47 low OT; \T

and then

V. B(x) = — ﬁmow[ 0 (”i(xl))+lawi(xl)}dV(x’). (2.7.17)

4w oz’ r r  Ox!
K3 3

Because the vorticity field is solenoidal, the second term inside the integral is zero. Using the
divergence theorem, we find that

V. -B(x) = L / ! [w(x') - n(x')] dS'), (2.7.18)
T JIlg T
where the normal unit vector, n, points into the domain of flow, as shown in Figure 2.7.2. The
boundary integral vanishes when the vorticity vector is perpendicular to the normal vector or,
equivalently, the vortex lines are tangential to the boundaries of the flow. This is always true in
the case of two-dimensional or axisymmetric flow, but not necessarily true in the case of three-
dimensional flow (Problem 2.7.1). In the case of an unconfined or partially unbounded flow, the
boundaries of the flow include the whole or part of a spherical surface of large radius R that lies
inside the fluid. As the radius of the large surface tends to infinity, the corresponding integral
vanishes provided that the vorticity decays faster than 1/d, where d is the distance from the origin.

Complementary velocity

When the boundary integral on the right-hand side of (2.7.18) vanishes, V-B = 0 and (2.7.5) shows
that the complementary velocity field, w = V x C, is irrotational. In that case, w can be expressed
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as the gradient of a potential function, ¢, so that w = V¢. To ensure that the velocity field u is
solenoidal, we require that ¢ satisfies Laplace’s equation, V2¢ = 0. In the more general case where
the boundary integral on the right-hand side of (2.7.18) does not vanish, we write

W =W+ Vo, (2.7.19)

where w* is a particular solenoidal solution of the equation V x w = —V(V - B) and the function ¢

satisfies Laplace’s equation, V2¢ = 0. If a particular solution is available, w’, a solenoidal solution
can be constructed by setting w = w + VF, where the function F satisfies the Poisson equation
V2F = —V-w". In the case of infinite flow with no interior boundaries, W, V¢, and w are all zero.

Interpretation of the complementary flow in terms of the extended vorticity

We will show that the rotational component of the complementary velocity field, w, can be identified
with the flow associated with the extension of the vortex lines outward from the boundaries of the
flow in the sense of the Biot—Savart integral. We begin by considering an external flow that is
bounded by a closed interior boundary, B, and introduce a nonsingular solenoidal vector field, (,
inside the volume Vg enclosed by B, subject to the constraint

(‘n=w-n (2.7.20)

over B, where n is the unit vector normal to B pointing into the flow. A nonsingular solenoidal
field ¢ that satisfies (2.7.20) exists only if the flow rate of ¢ across the boundary B is zero, which
is always true: using (2.7.20) and recalling that the vorticity field is solenoidal, V - w = 0, we find
that

/C-ndS:/cwndS:— V-wdV =0. (2.7.21)
B B

Flow

Having established the existence of ¢, we recast (2.7.5) into the form
ViC=V(V-B+V:Q). (2.7.22)

A particular solution comprised of three scalar functions satisfying Laplace’s equation, V2C = 0,
and V-C=-V B, is

1 1
C(x)=— —¢(x)dV(x’ 2.7.23
=g [ S erave, (27.23)
where r = |x — x'| (Problem 2.7.4). Expression (2.7.23) relates the complementary vector potential,
C, to the extended field, ¢, through a Biot—Savart integral. We may then identify ¢ with the
extension of the vorticity field outward from the domain of flow into the boundary. The extension
can be implemented arbitrarily, subject to the constraint imposed by (2.7.20).

Taking the curl of (2.7.23) and repeating the manipulations that led us from (2.7.10) to
(2.7.13), we derive two equivalent expressions for the complementary velocity field,

T ar

w(x) ! ﬂv %[C(x’)xfc]dV(x’) (2.7.24)
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and

1 1 ! /! !/ 1 1 !/ /! /
w(x) = g ﬂv}; . [V x¢(x)] dV (X)) = /B . [n(x') x ¢(x') ] dS(x), (2.7.25)
where the normal unit vector, n, points into the flow. If the extended vorticity ¢ is irrotational, the
volume integral on the right-hand side of (2.7.25) vanishes, leaving an expression for the complemen-
tary flow in terms of a surface integral over the boundary, B, involving the tangential component of
¢ alone. One way to ensure that ¢ is irrotational is to set { = VH, where the function H satisfies
Laplace’s equation, VZH = 0, and then compute H by solving Laplace’s equation inside Vg subject
to the Neumann boundary condition (2.7.20).

The complementary flow in terms of the boundary velocity

Switching to a different point of view, we apply Green’s third identity (2.3.28) with u in place of f,
x in place of xg, and x’ in place of x, finding

u(x) = ! / E [n(x') - Vu(x') ] dS(x') (2.7.26)

_E DT
1

1 1 1
+to /D 3 (% n(x)]ux)dSx) - w v V2u(x') dS(x'),
where V, is a control volume, D is the boundary of the control volume, X = bx — x’, and r =
|x — x/|. Using the vector identity V?u = —V x w, applicable for a solenoidal velocity field, u, and
manipulating the integrand of the second integral, we obtain

u(x) = —— / I n) - vux)] dse) (2.7.27)

_E BT
1 1

T B[n(xl)'V/(*>]U(X’)d5(x’)+ L ﬁVC1V’><w(x’)dS(x’),

r 4 r

Now comparing (2.7.27) with (2.7.13), we derive a boundary-integral representation for the comple-
mentary velocity field in terms of the boundary velocity and tangential component of the boundary
vorticity,

1 1 1
w(x) = fﬂ/ [; {n(x) - Vux) +n(x) x w(x')} - [n(x) - v'(;)]u(x’)} dS(x). (2.7.28)
B
Departing from the definition w = V x u and working in index notation, we find that the expression
enclosed by the curly brackets inside the integrand is equal to [V'u(x’)] - n(x’), where the gradient
V' involves derivatives with respect to x’. Making this substitution, we obtain an expression for the
complementary flow in terms of the boundary velocity and velocity gradient tensor,

w(x) = -~ /B [% V'u(x') — u(x') v(%)] -n(x) dS(x'). (2.7.29)
In index notation,

) = —— /B [18“52")—%@') 0 (3)]m ) asa). (2.7.30)

47 r 833; r

We recall that the normal unit vector, n, points into the flow.
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The complementary flow in terms of a boundary vortexr sheet

A more appealing representation of the complementary flow emerges by using the divergence theorem
to convert the surface integral of the first term inside the integral in (2.7.30) into a volume integral,
obtaining

wi(x):%ﬂw a(1au5i?1))dV(x')+;/Bui(x')ai):;(l)nj(x’) ds(x). (2.7.31)

low 0T \T 71' r

Next, we recast the last integrand into the form

0 (lauj(x/)) 02 (Uj(xl)) 0 {uj(x,) 0 (1)] (2732

7 7 = I - 7 7\
8acj r  Ox 53910% r &Ej oz} \r

and use the continuity equation to simplify the first integral on the right-hand side, obtaining

ai; (iauga(:?l)) - ai; [“j(xl)ai; ()] - ai; [“j(xl)aax;(i)] (27.33)

Substituting this expression into the volume integral of (2.7.31) and using the divergence theorem
to convert it to a surface integral, we obtain

[ w0 g () mato a4 [ o) 5 () mto) s

The first and third integrands can be combined to form a double cross product, resulting in an
expression for the complementary flow in terms of the tangential and normal components of the
boundary velocity,

w; (x) :’% /B uj(x')aig(l) ni(x') dS(x') (2.7.34)

w(x) = % /B [n(x) x u(x’)] x v'(%) dS(x) + % /B [u(x) - n(x')] v’(%) dS(x). (2.7.35)

The first boundary integral on the right-hand side of (2.7.35) expresses the velocity field due to a
vortex sheet with strength u x n wrapping around the boundaries of the flow. Since the strength of
the vortex sheet is equal to the tangential component of the velocity, the purpose of the vortex sheet
is to annihilate the tangential component of the boundary velocity. The second integral expresses a
boundary distribution of point sources whose strength is equal to the normal velocity .

2.7.3 Two-dimensional flow

The counterpart of expression (2.7.7) for two-dimensional flow in the zy plane is

B(x) = — - /Fm(f)wz(x’)esz(x’), (2.7.36)

2 low @
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where « is a constant length and e, is the unit vector along the z axis. Note that both the vorticity,
w, and vector potential, B, are oriented along the z axis. Since the vortex lines do not cross the
boundaries of the flow, the divergence of B is zero and the velocity field is given by

u(x) = % ‘/Flow% [w(x') x x] dA(X') + VH(x), (2.7.37)

where X = x — x’ and H is a two-dimensional harmonic function, V2H = 0. An alternative integral
representation for the velocity is

u®@) = —— [ (D) [n) x wx)] dix)

2
we o (2.7.38)

r / /
“or I In (g) V x w(x')dAX") + VH(x),

where C is the boundary of the flow. In the case of infinite flow with no interior boundaries, both
the boundary integral and the gradient VH on the right-hand side of (2.7.38) vanish.

Problems

2.7.1 Vortex lines at boundaries

Explain why the vortex lines may not cross a rigid boundary that is either stationary or translates
in a viscous fluid, but must necessarily cross a boundary that rotates as a rigid body. The velocity
of the fluid at the boundary is assumed to be equal to the velocity of the boundary, which means
that the no-slip and no-penetration conditions apply.

2.7.2 A vortex line that starts and ends on a body

Consider an infinite incompressible flow containing a single line vortex that starts and ends at the
surface of a body. There are many ways to extend the line vortex into the body subject to the
constraint (2.7.20). Show that the flows induced by any two extended line vortices have identical
rotational components; equivalently, the difference between these two flows expresses irrotational
motion.

Hint: Consider the closed loop formed by the two extended vortex lines and use the Biot—Savart
integral to show that the flow induced by this loop is irrotational everywhere except on the loop.

2.7.3 Complementary flow
(a) Confirm that (2.7.23) is a particular solution of (2.7.22).
(b) Derive (2.7.29) from (2.7.28).

2.7.4 Reduction of the Biot-Savart integral from three to two dimensions

Consider an infinite two-dimensional flow in the zy plane that decays at infinity. Substituting
(1.1.23) into (2.7.9), setting dV = dzdA, where dA = dx dy, and performing the integration with
respect to z, derive the integral representation (2.7.37). Hint: reference to standard tables of definite
integrals (e.g., [150], p. 86) shows that

o dz 2
= . 2.7.39
[m (22 +y2 +22)3/2 22+ 42 ( )
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2.7.5 Complementary flow for an impenetrable boundary

Milne-Thomson ([268], p. 570) derives a simplified version of (2.7.35) for an incompressible flow that
satisfies the no-penetration condition, u-n = 0, over all boundaries of the flow, B. We begin by
introducing a solenoidal velocity vector potential, A, where V - A = 0, according to our discussion
in Section 2.6. Next, we set A = V x B, where B is a vector potential for A, and obtain

u=VxVxB=V(V:-B)-V’B. (2.7.40)

Assuming that V - B = 0, we find a particular solution in terms of the Poisson integral

B(x) L MF }u(x') dv (x'), (2.7.41)

47 low T

which is analogous to (2.7.7). Differentiating, we find that

A(x) =V x B(x) = ﬁ V x ”F L) dvix) = % WF u(x') v'(%) AV (x). (2.7.42)

low T low

Manipulating the last integral, we obtain

u(x')

Alx) = i me % V' x u(x) dV(x) — % ﬂmwv' x (M) avie), (2.7.43)

Finally, we invoke the definition of the vorticity and use the divergence theorem to find

A(x) ! ﬁF 1(.«.v(x') dv(x') + ! / ! [n(x') x u(x’) ] dS(x), (2.7.44)

 A4n low T dm JIg T

where the normal unit vector, n, points into the flow. Based on (2.7.44), we obtain a general
expression for the velocity field,

u(x) = - ﬁp L lwx) x %] dV(x) + i/E () x u(x)] x 75 dS(). (2.7.45)

low T

Note that the second integral on the right-hand side is a simplified version of the right-hand side of
(2.7.35). Show that

V- B(x) ! / E [u(x') - n(x')] dS(x') =0, (2.7.46)

47 BT

so that the condition for the derivation (2.7.44) is fulfilled.

2.8 Representation of a flow in terms of the rate of expansion and vorticity

Previously in this chapter, we have shown that an irrotational velocity field can be expressed as the
gradient of a potential function, whereas a solenoidal velocity field can be expressed as the curl of a
vector potential. A velocity field that is both irrotational and solenoidal can be expressed in terms
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of either a potential function or a vector potential. In this section, we consider a flow that is neither
incompressible nor irrotational.

Hodge—Helmholtz decomposition

If the domain of flow is infinite, we require that the velocity, u, decays at a rate that is faster than
1/d, where d is the distance from the origin. This constraint ensures that the rate of expansion
and vorticity decay at a rate that is faster than 1/d?. If the velocity does not decay at infinity, we
subtract out the nondecaying far-field component and consider the remaining decaying flow. Under
these assumptions, the velocity field is subject to the fundamental theorem of vector analysis, also
known as the Hodge or Helmholtz decomposition theorem, stating that u can be resolved into two
constituents,

u=Vo+w, (2.8.1)

where V¢ is an irrotational field expressed in terms of a velocity potential, ¢, and w is a solenoidal
vector field,

V-w=0. (2.8.2)

This last constraint allows us to express w in terms of a vector potential, A, and therefore recast
(2.8.1) into the form

u=Ve+VxA. (2.8.3)

To demonstrate the feasibility of the Hodge—Helmholtz decomposition, we take the curl of
(2.8.1) and derive an expression for the vorticity,

w=Vxu=Vxw. (2.8.4)

Since the difference field u — w is irrotational, it can be expressed as a gradient, V¢, as discussed
in Section 2.1, and this completes the proof. Taking the divergence of (2.8.1), we find that

V-u=V?p, (2.8.5)

which, along with (2.8.4), shows that the rate of expansion of the flow with velocity V¢ and the
vorticity of the flow with velocity w are identical to those of the flow u.

Integral representation

Combining (2.8.1) with (2.1.15), (2.7.9), and (2.7.19), we derive a representation for the velocity in
terms of the rate of expansion, the vorticity, and an unspecified irrotational and solenoidal velocity
field described by a harmonic potential, H,

u(x) ! ﬁF X a(x)dV(x') + ! WF 1 [w(x') x %] AV (x) + v(x) + VH(x), (2.8.6)

= — 3 _—
47 low T 47 low T

where a(x’) = V' - u(x’) is the rate of expansion. The complementary rotational field, v, can be
computed by extending the vortex lines outward from the domain of flow across the boundaries, as
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discussed in Section 2.7. In the case of unbounded flow that decays at infinity, the last two terms
on the right-hand side of (2.8.6) do not appear.

Specifying the distribution of the rate of expansion, V - u, and vorticity, w, throughout the
domain of flow defines the first three terms on the right-hand side of (2.8.6). Consequently, the
gradient, VH, and thus the velocity, u, are defined uniquely by prescribing the boundary distribution
of the normal velocity component, u - n. An important consequence is that it is not generally
permissible to arbitrarily specify the distribution of both the rate of expansion and vorticity in a
flow while requiring more than one scalar condition at the boundaries.

To illustrate the last point, we consider an incompressible flow due to a line vortex in an
infinite domain containing a stationary body and compute VH by enforcing the no-penetration
condition requiring that the velocity component normal to the body is zero. To satisfy an additional
boundary condition, such as the no-slip condition requiring that the tangential component of the
boundary velocity is zero, we complement the vorticity field with a vortex sheet situated over the
surface of the body. The velocity induced by the vortex sheet annihilates the tangential velocity
induced by the line vortex. The vorticity distribution associated with the vortex sheet must be taken
into account when computing the second integral on the right-hand side of (2.8.6).

Problems

2.8.1 Integral representation

Discuss whether it is consistent to introduce a velocity field that satisfies the stipulated boundary
conditions, compute the associated rate of expansion and vorticity, and then use (2.8.6) to deduce
the complementary velocity field, v, and harmonic potential, H.

2.8.2 Poincaré decomposition

Derive an expression for the velocity in terms of the vorticity by applying equations (2.6.1), (2.6.3),
and (2.6.4) with w in place of u and u in place of A.

2.9 Stream functions for incompressible fluids

Previously in this chapter, we developed integral representations for a velocity field in terms of the
the rate of expansion, the vorticity, and the boundary velocity, and differential representations in
terms of the potential function and the vector potential. The integral representations allowed us
to obtain insights into the effect of the local fluid motion on the global structure of a flow. The
differential representations allowed us to describe a flow using a reduced number of scalar functions.
For example, in the case of irrotational flow, we describe the flow simply in terms of the potential
function. In this section, we address the issue of the minimum number of scalar functions necessary
to describe an arbitrary incompressible rotational flow.

2.9.1 Two-dimensional flow

Examining the streamline pattern of a two-dimensional incompressible flow, we find that the flow
rate across an arbitrary line, L, that begins at a point, A, on a particular streamline and ends
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(a) (6)

FIGURE 2.9.1 lllustration of two streamlines in (a) a two-dimensional or (b) axisymmetric flow, used
to introduce the stream function.

at another point, B, on another streamline is constant, independent of the precise location of the
points A and B along the two streamlines, as illustrated in Figure 2.9.1(a). Consequently, we may
assign to every streamline a numerical value of a function, v, so that the difference in the values
of 1 corresponding to two different streamlines is equal to the instantaneous flow rate across any
line that begins at a point A on the first streamline and ends at another point B on the second
streamline. Accordingly, we write

B
wg —’(/)1 = /A u-ndl, (2.9.1)

where the integral is computed along the line L depicted in Figure 2.9.1(a). The right-hand side of
(2.9.1) expresses the flow rate across L. Since the streamlines fill up the entire domain of a flow, we
may regard 1 a field function of position, x and y, and time ¢, called the stream function.

Next, we consider two adjacent streamlines and apply the trapezoidal rule to approximate the
integral in (2.9.1), obtaining the differential relation

dyp = u, dy — uy da. (2.9.2)
Since the right-hand side of (2.9.2) is a complete differential, we may write
oY oY
Uy = aiy’ Uy = —%, (293)
which can be recast into the compact vector form
u=Vx(¢e,), (2.9.4)

where e, is the unit vector along the z axis. Equation (2.9.4) suggests that a vector potential of a
two-dimensional flow is

A = te,. (2.9.5)
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It is evident from the definitions (2.9.3) that V - u = 0, which shows that the gradient Vi is
perpendicular to the streamlines. Accordingly, the stream function is constant along the streamlines
of a steady or unsteady flow.

In summary, we have succeeded to express the velocity field and vector potential of a two-
dimensional flow in terms of a single scalar function, the stream function, ¥. Using the definitions
(2.9.3), we find that the stream function of a certain flow is determined uniquely up to an arbitrary
constant.

Point source

The stream function associated with a two-dimensional point source of strength m located at a
point, Xq, introduced in (2.1.29), is given by

P(x) = —86, (2.9.6)
27
where 6 is the polar angle subtended between the vector x —xy and the z axis. This example makes
it clear that, when the domain of flow contains point sources or point sinks or is multiply connected
and the flow rate across a surface that encloses a boundary is nonzero, the stream function is a multi-
valued function of position. An example is the flow due to the radial expansion of a two-dimensional
bubble.

Poisson equation

Taking the curl of (2.9.4), we confirm that the vorticity is parallel to the z axis, w = w,e,. The
nonzero component of the vorticity is the negative of the Laplacian of the stream function,

w, = —V. (2.9.7)

Using the Poisson formula to invert (2.9.7), we derive an expression for the stream function in terms
of the vorticity,

Vo) = 5 /plow In (©) w. (x') dARK) + H(x), (2.9.8)

a

where r = |x —X/|, a is a specified length, and H is a harmonic function in the zy plane. In the case
of infinite flow with no interior boundaries, H is a constant usually set to zero. It is worth observing
that (2.9.5) and (2.9.8) are consistent with the more general form (2.7.36).

Plane polar coordinates

Returning to (2.9.4) and (2.9.7), we express the radial and angular components of the velocity and
the nonzero component of the vorticity in plane polar coordinates, obtaining

1 9y O 18, 09\ 1 8%
ur:;%, Ug = — 45— wz:_*i( ) (299)

r or

T(?r

r2 062"

Substituting expression (2.9.6), we confirm the radial direction of the velocity due to a point source.
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2.9.2 Axisymmetric flow

To describe an axisymmetric flow without swirling motion, we introduce cylindrical coordinates,
(z,0,¢), as illustrated in Figure 2.9.1(b). Working as in the case of two-dimensional flow, we
assign to every streamline a numerical value of a scalar function, ¥ (x, 0,t), called the Stokes stream
function, so that the difference in the values v between any two streamlines is proportional to the
instantaneous flow rate across an axisymmetric surface whose trace in a meridional plane begins at
a point A on one streamline and ends at another point B on the second streamline. By definition,

B
¢2—¢f=[;u~nod. (2.9.10)

Multiplying the integral on the right-hand side by 27 produces the flow rate through an axisymmetric
surface whose trace in an azimuthal plane is the line L shown in Figure 2.9.1(b).

Next, we consider two streamlines that lie in the same azimuthal plane and are separated by
a small distance, and apply the trapezoidal rule to express (2.9.10) in the differential form

d¢ = u, 0do — u, o dz, (2.9.11)

which suggests the differential relations

1 8y 1 8y
- - = - _—_ 2.9.12
o L o Oz ( )

Combining these equations, we derive the vector form
u:Vx(%%) (2.9.13)
where e, is the azimuthal unit vector. Thus,
A= %eSa (2.9.14)

is the vector potential of an axisymmetric flow in the absence of swirling motion. Equations (2.9.12)
show that, u- Vi = 0, which demonstrates that the gradient of the stream function, V), is perpen-
dicular to the streamlines of the flow. Accordingly, the Stokes stream function, v, is constant along
the streamlines of an axisymmetric flow.

In summary, we have managed to express the velocity field and vector potential of an axisym-
metric flow in terms of a single scalar function, the Stokes stream function, . It is clear from the
definitions (2.9.12) that v is determined uniquely up to an arbitrary scalar constant. If the domain
of flow is multiply connected, ¢ can be a multi-valued function of position. An example is provided
by the flow due to the expansion of a toroidal bubble.

It is worth noting that the stream function of two-dimensional flow has units of velocity
multiplied by length, whereas the Stokes stream function of axisymmetric flow has units of velocity
multiplied by length squared.
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Point source

As an example, the Stokes stream function associated with a three-dimensional point source with
strength m located at the point xg, introduced in (2.1.29), is given by

m x— Xy

P(x) = —% cosf = (2.9.15)

T dr |x — x|
where 6 is the polar angle subtended between the vector x — x¢ and the x axis.
Vorticity

Taking the curl of (2.9.13), we find that the vorticity is oriented in the azimuthal direction, w = wge,,
where e, is the corresponding unit vector. The azimuthal component of the vorticity is given by

0%y 0% 10y
_ 77 2.9.16
0z2 u Oc2 o Jo )’ ( )

1 1
wp= =g B =2

where E? is a second-order linear differential operator defined as

0? 0? 10

— = - - (2.9.17)
0x?  0c2 o 0c

The inverse relation, providing us with the stream function in terms of the vorticity, is discussed in
Section 2.12.

E? =

Spherical polar coordinates

In spherical polar coordinates, the radial and meridional velocity components of an axisymmetric
flow are given by

1 o 1 oY
_ 9 _ . 2.9.18
Yr = 2sing 09’ L rsin@ Or ( )

The azimuthal component of the vorticity is given by

(2.9.19)

1 1 (6271#4_ 1 0% coth 61&)
or?2  r2 992 r2 00/’

= E%)=—
Yo o sin 0
where the second-order differential operator E? was defined in (2.9.17). In spherical polar coordi-
nates,

2 : 1 2 1 2
0 sinf 0 ( 0 ) _ 0 0 cotf O (2.9.20)

F2=___4 27" (_- = = 4= _ 77
or? + r2 90 \sin 0 90 or? + r2 062 r2 06’
involving derivatives with respect to the radial distance, r, and meridional angle, 6.

2.9.3 Three-dimensional flow

Finally, we consider the most general case of a genuine three-dimensional flow. Inspecting the
streamline pattern, we identify two distinct families of stream surfaces, where each family fills the
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V¥,

FIGURE 2.9.2 lllustration of two pairs of stream surfaces in a three-dimensional flow used to define the
stream functions.

entire domain of flow, as illustrated in Figure 2.9.2. A stream surface consists of all streamlines
passing through a specified line.

Focusing on a stream tube that is confined between two pairs of stream surfaces, one pair in
each family, we note that the flow rate, (), across any open surface that is bounded by the stream
tube, D, is constant. We then assign to the four stream surfaces the labels ¥, ¥, x1, and xo, as
shown in Figure 2.9.2, so that

Q:/Du~nd5: (Y2 — Y1) (x2 — x1)- (2.9.21)

In this light, ¢ and x emerge as field functions of space and time, called the stream functions. Now
using Stokes’ theorem, we write

/ [V x (1/JVX)] ‘ndS = j{ Yt-Vxdl = (Y2 —9¥1)(x2 — x1) = Q, (2.9.22)
D c

where C is the contour enclosing D and t is the unit vector tangent to C' pointing in the counter-
clockwise direction with respect to n. Comparing (2.9.22) with (2.9.21) and remembering that the
surface D is arbitrary, we write

u=V x (¥Vx) =V x Vx = =V x (xVv). (2.9.23)

Since the gradients Vi and Vyx are normal to the corresponding stream tubes, the expression
u = Vi x Vx underscores that the intersection between two stream tubes is a streamline. Our
analysis has revealed that

A = Vy, A= —\V, (2.9.24)

are two acceptable vector potentials of an incompressible flow.
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In summary, we have succeeded to express a three-dimensional solenoidal velocity field in terms
of two scalar functions, the stream functions 1 and x. The spatial distribution of the stream functions
depends on the choice of the families of stream surfaces chosen to derive (2.9.21). However, having
made a choice, the stream functions are determined uniquely up to an arbitrary scalar constant.
The stream function for two-dimensional flow in the xy plane and the Stokes stream function for
axisymmetric flow derive from (2.9.23) by setting, respectively, x = z and x = ¢, where ¢ is the
azimuthal angle (Problem 2.9.1).

Taking the curl of (2.9.23), we derive an expression for the vorticity,
w=L(¥) - Vx —L(x) V¢, (2.9.25)

where L = —IV? + VV and I is the identity matrix. Because each term on the right-hand side of
(2.9.25) represents a solenoidal vector field, the vorticity field is solenoidal for any choice of ¢ and
X (Problem 2.9.2).

Problems

2.9.1 Stream functions

Show that the two-dimensional and Stokes stream functions derive from (2.9.23) by setting, respec-
tively, x = z and x = ¢.

2.9.2 A linear velocity field

Derive the stream function and sketch the streamlines of a two-dimensional flow with velocity com-
ponents u, = &(z +y), uy = £(x — y), where £ is a constant shear rate. Discuss the physical
interpretation of this flow.

2.9.3 Point-source dipoles

Derive the stream functions of a two- or three-dimensional point-source dipole pointing along the z
axis.

2.9.4 Vorticity and stream functions

(a) Derive expression (2.9.25).

(b) Show that u = K(f) - a is a solenoidal velocity field, where f is an arbitrary function, a is an
arbitrary constant, and K = —I1V? 4 VV is a second-order operator.

2.9.5 Stokes stream function

Derive the Stokes stream function and sketch the streamlines of an axisymmetric flow with radial
and meridional velocity components given by

ur:—Ucosﬁ(l—z—), ue:%UCOSH(2+i—), (2.9.26)

where U and a are two constants. Verify that the velocity field is solenoidal, compute the vorticity,
and discuss the physical interpretation of this flow.
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X
Computer Problem

2.9.6 Streamlines
Draw the streamlines of the flows described in (a) Problem 2.9.2 and (b) Problem 2.9.5.

2.10 Flow induced by vorticity

We return to discussing the structure and properties of an incompressible flow associated with a
specified distribution of vorticity with compact support. For simplicity, we assume that the flow
takes place in an infinite domain in the absence of interior boundaries, and the velocity field decays
far from the region where the magnitude of the vorticity is significant. The presence of interior or
exterior boundaries can be taken into account by introducing an appropriate complementary flow,
as discussed in Section 2.7.

2.10.1 Biot—Savart integral

Our point of departure is the Biot—Savart law expressed by equations (2.7.3), (2.7.7), (2.7.9), and
(2.7.13). In the case of infinite flow without interior boundaries, we obtain a simplified expression
for the vector potential,

Ax) = 2 WF L ), (2.10.1)

4m low T

where X = x — x’ and r = |x — x/|. The velocity field is given by the integral representation

) = = ﬁm 1 [w) x %] V() (2.10.2)

~ 4r r3
or
1) = — ﬂ 19 x wx) dv(x) (2.10.3)
4 Flow T ’ . .

where the derivatives of the gradient V' operate with respect to x’.

Structure of the far flow

Let us assume that the vorticity is concentrated inside a compact region in the neighborhood of a
point, xg, and vanishes far from the vortex region. To study the structure of the far flow, we select
a point x far from the vortex, expand the integral in (2.10.2) in a Taylor series with respect to the
integration point x” about the point xg, and retain only the constant and linear terms to obtain

u(x) ! ﬁp w(x')dV(x') x X7 X0

B E low ‘X_XO‘?)

x—x

w(x') x [(x" —xq) - V’(

— dV(x)+---. 2.10.4
= e T), Javed) (2.10.4)

Next, we examine the physical interpretation of the two leading terms on the right-hand side.
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Rotlet or vorton

The first term on the right-hand side of (2.10.4) represents the flow due to a singularity called a
rotlet or vorton, located at the point xg. The strength of this singularity is equal to the integral of
the vorticity over the domain of flow. Recalling that the vorticity field is solenoidal, we write

ﬂde: V~(w®x)dV:/x(w-n)dS, (2.10.5)
Flow Flow Soo

where S, is a closed surface with large size enclosing the vortex region. Assuming that the vorticity
decays fast enough for the last integral in (2.10.5) tends to zero as S expands to infinity, we find
that the leading term on the right-hand side of (2.10.4) makes a zero contribution.

Point-source dipole

Concentrating on the second term on the right-hand side of (2.10.4), we change the variable of
differentiation in the gradient inside the integrand from x’ to x, while simultaneously introducing a
minus sign, and obtain

u(x) = ;ﬁ[&'-v(&)] x w(x') AV (x'), (2.10.6)

low

where X = x — xp and X’ = x’ — x¢. In index notation,

o 1 82 ]- ~/ / !
ui(x)——ﬂeﬂkm( )ﬂxiwl(x)dV(x). (2.10.7)

|)A(| low

To simplify the right-hand side of (2.10.7), we introduce the identity

ﬁ (fciwl—l—iiwl)dV:ﬁ MdV:/:@mwknkd& (2.10.8)
F F Soo

low low a‘rk

where n is the normal unit vector over the boundaries pointing outward from the flow. Assuming
that the vorticity over the large surface Sy, decays sufficiently fast so that the last integral in (2.10.8)
vanishes, we find that the integral on the right-hand side of (2.10.7) is antisymmetric with respect
to the indices ¢ and [, and write

1
ﬁ X)) dV(x) = 3 Emil€mnk ﬁ 2w (x') dV (X). (2.10.9)
Flow Flow

Substituting the left-hand side of (2.10.9) for the integral on the right-hand side of (2.10.7), con-
tracting the repeated multiplications of the alternating matrix, noting that the function 1/|x — x¢|
satisfies Laplace’s equation at every point except xg, and switching to vector notation, we finally
obtain

1

u(x) g

d. vv(#), (2.10.10)

|x — %o

where

1
d=— ﬂ X X w(x)dV(x). (2.10.11)
2 Flow
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Expression (2.10.10) shows that, far from the vortex, the flow is similar to that due to a point-source
dipole located at the point xy whose strength is proportional to the moment of the vorticity. Cursory
inspection of the volume and surface integrals in the preceding expressions reveals that (2.10.10) is
valid, provided that the vorticity decays at least as fast as 1/|x — xq|* ([24], p. 520).

2.10.2 Kinetic energy

An expression for the kinetic energy of the fluid, K, can be derived in terms of the vorticity distri-
bution, w = V x u. Assuming that the density of the fluid is uniform throughout the domain of
flow, we introduce the vector potential, A, and write

1 1
K:fpﬁ u~udV:fpﬁ u-VxAdV. (2.10.12)
2 Flow 2 Flow

Manipulating the integrand, we find that

K:%p% [A-w-V-(uxA)]av. (2.10.13)

low

Next, we use the divergence theorem to convert the volume integral of the second term inside the
integral on the right-hand side into an integral over a large surface, S». Assuming that the velocity
decays sufficiently fast for the integral to vanish, we obtain

1
K= 3P A wdV. (2.10.14)
Flow
The vector potential, A, can be expressed in terms of the vorticity distribution using (2.10.1).

In the case of axisymmetric flow, we express the vector potential, A, in terms of the Stokes
stream function, ¥, and write dV = 2rodx do to obtain

K =mp P(x,0) we(z,0) dz do, (2.10.15)
Flow

where w,, is the azimuthal component of the vorticity. An analogous expression for two-dimensional
flow is discussed in Section 11.1.

A useful representation of the kinetic energy in terms of the velocity and vorticity emerges by
using the identity

V-[u(u-x)—%(u~u)x]+%uou:u-(xxw) (2.10.16)

([24], p- 520). Solving for the last term on the left-hand side, substituting the result into the first
integral of (2.10.12), and using the divergence theorem to simplify the integral, we find that

K:pﬂF u-(x xw)dV. (2.10.17)

low

The velocity can be expressed in terms of the vorticity distribution using (2.10.2) or (2.10.3).
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2.10.3 Flow due to a vortex sheet

To compute the velocity field due to a three-dimensional vortex sheet, we substitute the vorticity
distribution (1.13.2) into the first integral of (2.10.2), finding

u(x) L /:9 L [¢(x') x x] dS(x'). (2.10.18)

4 heet 73

This expression provides us with the velocity field in terms of an integral over the the vortex sheet
representing a surface distribution of rotlets or vortons. The coefficient of the dipole can be computed
from (2.10.11) and is found to be

1 .
d=- /s X % ¢(x) dS(x), (2.10.19)

2 heet

where X = x’ — xg and x¢ is an arbitrary point.
The irrotational flow induced by the vortex sheet can be described in terms of a velocity
potential, ¢. In Section 10.6, we will see that ¢ can be represented in terms of a distribution of

point-source dipoles oriented normal to the vortex sheet. Combining equations (10.6.1) written for
the free-space Green’s function and equation (10.6.8), we obtain

609 =~ /s L [xn() ] (07 - 67)() A8 (), (2.10.20)

where n is the unit vector normal to the vortex sheet pointing into the upper side corresponding to
the plus sign. Taking the gradient of (2.10.20), integrating by parts, and using the definition of ¢,
we recover (2.10.18).

Problems

2.10.1 Impulse

The impulse required to generate the motion of a fluid with uniform density is expressed by the
momentum integral P = p [[[ udV. Show that two flows with different vorticity distributions but
identical dipole strengths, d, require the same impulse.

2.10.2 Far flow

Derive the second-order term in the asymptotic expansion (2.10.5) and discuss its physical interpre-
tation. Comment on the asymptotic behavior of the flow when the coefficient of the dipole vanishes.
2.10.3 Identities

Prove identities (2.10.8) and (2.10.16).

2.11 Flow due to a line vortex

The flow due to a line vortex provides us with useful insights into the structure and dynamics of flows
with concentrated vorticity, such as turbulent flows and flows due to tornadoes and whirls. Consider
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(a)

FIGURE 2.11.1 (a) lllustration of a closed line vortex, L, and a surface bounded by the line vortex,
D. (b) The velocity potential at a point, x, is proportional to the solid angle subtended by the line
vortex, 2.

the flow induced by a line vortex, L, with strength &, illustrated in Figure 2.11.1(a). To compute the
vector potential, A, and associated velocity field, u, we substitute the vorticity distribution (1.13.1)
into the Biot—Savart integrals (2.10.1) and (2.10.2), and find that

A(x) =+ /th(X')dl(X’% u(x) = — /Lr%[t(x’)x&]dl(x’), (2.11.1)

Tar o T ar
where X = x — X/, r = |%X[, and t is the unit tangential vector along the line vortex.

Using (2.10.11) and applying Stokes’ theorem, we find that the associated coefficient of the
dipole prevailing in the far field is given by

d= g /(x — xo) x t(x)di(x) = & / n(x) dS(x), (2.11.2)
L D

where x( is an arbitrary point, D is an arbitrary closed surface bounded by the line vortex, and n

is the unit vector normal to D, as shown in Figure 2.11.1(a).

2.11.1 Velocity potential

The irrotational flow induced by a line vortex can be expressed in terms of a harmonic potential,
¢. At the outset, we acknowledge that, because the circulation around a loop that encloses the line
vortex once is nonzero and equal to the cyclic constant of the flow around the line vortex, x, the
potential is a multi-valued function of position.

To derive an expression for the potential, we consider the closed line vortex depicted in Figure
2.11.1(a), express the velocity given in the second equation of (2.11.1) in index notation, and apply
Stokes’ theorem to convert the line integral along the line vortex into a surface integral over an
arbitrary surface D that is bounded by the line vortex, obtaining

K K 0

n T
ui(x)zﬂ/Leijntj(xl)r—gdl(x')zﬂ /JJkajaT(eijnﬁ)nk(x’) dS(x),  (2.11.3)
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which can be rearranged into

K 0? 1 , ,
ui(x)—47r/DekmjemjWl<r)nk(x)d5(x). (2.11.4)

Expanding the product of the alternating tensors and recalling that 1/r satisfies Laplace’s equation
in three dimensions, everywhere except at the point x’, we obtain

ui(x) = —i 8‘;(/}3 ai;c(i)nk(x/) dS(x')). (2.11.5)

The right-hand side of (2.11.5) expresses the velocity as the gradient of the velocity potential

/

¢(x):_ﬁ/]3n(x’)-v(%) dS(x’)z_ili_" ‘n(x') dS(x), (2.11.6)

3

which is consistent with the far-field expansion (2.10.10) for a more general flow.

Solid angle

A geometrical interpretation of the potential, ¢, emerges by introducing a conical surface that
contains all rays emanating from a specified field point, x, and passing through the line vortex,
as illustrated in Figure 2.11.1(b). We define a control volume that is bounded by the surface D,
a section of a sphere with radius R centered at the point x and confined by the conical surface,
denoted by Sph, and the section of the conical surface contained between the spherical surface and
the line vortex, denoted by Side. Departing from the integral representation (2.11.6) and using the
divergence theorem, we find that

K x—x , ,
o = g [ 450 2117

Because the normal vector is perpendicular to the vector x — x’, the integral over the conical side
surface Side is identically zero. The normal vector over the spherical surface Sph is given by

nz%(x’—x), (2.11.8)
where o = 1 if the spherical surface is on the right or left side of D, and e = —1 otherwise. For the

configuration depicted in Figure 2.11.1(b), we select « = 1. Equation (2.11.7) then yields

K x—x x' —x K «
- o — - - d N - — dS(x’ 2.11.
o =ap [ 2SR ase) =g | aseo) (2119)
or
B(x) = — = Q(x) 2.11.10
T A4rx ’ (211.10)

where Q(x) is the solid angle subtended by the line vortex at the point x. For the configuration
depicted in Figure 2.11.1(b), the solid angle is positive.
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FiGURE 2.11.2 Closeup of a line vortex illustrating a local coordinate system with the x, y, and z axes
parallel to the tangential, normal, and binormal vectors. For the configuration shown, the curvature
of the line is positive by convention.

The solid angle, 2, and therefore the scalar potential ¢, is a multi-valued function of position.
In the case of flow due to line vortex ring, €2 changes from —27 to 27 as the point x crosses the
plane of the ring through the interior. This means that ¢ undergoes a corresponding discontinuity
equal to k, in agreement with our discussion in Section 2.1 regarding the behavior of the potential
in multiply connected domains.

2.11.2 Self-induced velocity

If we attempt to compute the velocity at a point x located at a line vortex using the second integral
representation in (2.11.1), we will encounter an essential difficulty due to the strong singularity of
the integrand. To resolve the local structure of the flow, we introduce local Cartesian coordinates
with origin at a chosen point on the line vortex, where the z, y, and z axes are parallel to the unit
tangent, normal, and binormal vectors, t, n, and b, respectively, as shown in Figure 2.11.2.

Next, we consider the velocity at a point x that lies in the normal plane containing n and b,
at the position x = oe, where e is a unit vector that lies in the normal plane and o is the distance
from the = axis. Using the integral representation for the velocity (2.11.1), we obtain

ulx) = - /Lt(x’) « e =X ), (2.11.11)

T Arx 73

which can be rearranged into

u(x) = 4i [ — e x /L ) gyx) +/L:f3 x t(x') di(x') |. (2.11.12)



168 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

To desingularize the last two integrals, we expand the position vector, x’, and tangential vector
along the line vortex, t(x’), in a Laurent series with respect to arc length, I, measured from the
origin in the direction of t, and retain two leading terms to obtain

-GG e s e en

Using the Frenet-Serret relation

dt

- (2.11.14)

where ¢ is the curvature of the line vortex, we find that
1
X/:tolfiq)nolzﬁ*"', t(X/):t()*COnglﬁ*"', (21115)

where cq is the curvature of the line vortex at the origin. For the configuration depicted in Figure
2.11.2, the curvature is positive, cg > 0.

Considering the first integral in (2.11.12), we truncate the integration domain at { = +a and
use the expansion for the tangent vector shown in (2.11.15) to obtain

I(X)Eex/ bx') dl(x’):exto/ risdl(x’)—coexno/ %dl(x’)+..., (2.11.16)

3
—a T —a —a

where r = |x — x'| and a is a specified length. Next, we set 72 ~ 0% + [?, and obtain

exty [ dn exno/“/” ndn
I(x)= — ———t 2.11.17
(x) o2 /a/g (1 +172)3/2 Co e a/o (1 +772)3/2 + ) ( )

where n = [/o. Evaluating the integrals in the limit as o tends to zero and correspondingly a/c
tends to infinity, we find that

exto

I(x) =220+,

(2.11.18)

where the three dots denote terms that increase slower that 1/02 as o — 0.

Working in a similar fashion with the second integral in (2.11.12), we find that

J(x) = / ;(—3 x t(x") dl(x') = / :—3 X to di(x) — co/ X« noldi(x')+--- (2.11.19)

3
—a —a —a T

“tol—3 12 “tol— 3 12
:/ thodl(){/)_%/ folzgoml i)+

3 3
—a T —a r

yielding

a j2
j(X) Z—%Cobo/ %dl(x/)—k, (21120)

—a
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where by = tg x ng. Setting 72 = 02 + [ and defining n = [ /o, we obtain

1 a/a n2dn
_ 1.y 2.11.21
J(x) 5 €0 bo /a/a L+ )32 + ( )

Evaluating the integrals in the limit as o/a tends to zero, we find that
a
T(x) = —cobo In (=) +--, (2.11.22)
o
where the three dots indicate terms whose magnitude increases slower than |lno| as o — 0.

Finally, we substitute (2.11.18) and (2.11.22) into (2.11.12) and obtain an expression for the
velocity near the line vortex, first derived by Luigi Sante Da Rios in 1906 (see [339]),

u(x):ﬁtoxe—%coboln(g)—&-n-. (2.11.23)
The first term on the right-hand side of (2.11.23) describes the expected swirling motion around
the line vortex, which is similar to that around a point vortex in two-dimensional flow discussed in
Section 2.13.1. In the limit as o/a tends to zero, the second term diverges, showing that the self-
induced velocity of a curved line vortex (¢o # 0 is infinite. This singular behavior reflects the severe
approximation involved in the mathematical fabrication of singular vortex structures. In Section
11.10.1, we will discuss the regularization of (2.11.16) accounting for the finite size of the vortex
core.

2.11.3 Local induction approximation (LIA)

The local induction approximation (LIA) amounts to computing the self-induced velocity of a line
vortex by retaining only the second term on the right-hand side of (2.11.23), obtaining

DX K 1
X)= = — _ " o«X)b(X)In = 2.11.24
u(X) = 5= =~ () b(X)In -, (211.24)
where X is the position of a point particle along the centerline of the line vortex, € is a small
dimensionless parameter expressing the size of the vortex core, and D/Dt is the material derivative.

If the product of the curvature and the binormal vector, cb, is constant along the line vortex,
the line vortex translates as a rigid body. Examples include a circular vortex ring, an advancing
helical vortex advancing rotating about its axis, and a planar nearly rectilinear line vortex with
small amplitude sinusoidal undulations rotating as a rigid body about the centerline (Problems
2.11.2; 2.11.3). Numerical methods for computing the motion of line vortices based on the LIA are
discussed in Section 11.10.1.

Da Rios Equations

Da Rios (1906, see [339]) used the LIA to derive a coupled nonlinear system of ordinary differential
equations governing the evolution of the curvature and torsion of a line vortex. To simplify the
notation, we introduce a scaled time, t = —txIne/(47), and recast (2.11.24) into the form

V=X =—cb, (2.11.25)
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where a dot denotes a derivative with respect to . The Frenet-Serret relations derived in Section
1.6.2 state that

t' = —cn, b’ = —7n, n =ct+7b, (2.11.26)

where 7 is the torsion of the line vortex and a prime denotes a derivative with respect to arc length
along the line vortex, [.

Equations (1.6.34) and (1.6.40) provide us with evolution equations for the curvature and
torsion. In the present notation, these equations take the form

¢=—-2cV' -t—-V".n,

/

1 1
F= V' (rt+cb)+ - V" (rn+ %b) —-V"b. (2.11.27)
Differentiating (2.11.25) and using the Frenet-Serret relations, we find that
V' =—b+ern, V'=c1t+ 27+’ )n+ b,

V" b =127 +cr’) + ¢, (2.11.28)
where we have defined
p=cr®—c". (2.11.29)
Substituting these expressions into (2.11.27) and simplifying, we obtain the Da Rios equations
¢= -2 —cr’ (2.11.30)
and
%zcc’—k%d)—%qﬁ’:(%cz—%)/. (2.11.31)

Equation (2.11.30) can expressed in the form
Dc?
Dt
Integrating with respect to arc length along a closed line vortex provides us with a geometrical
conservation law [33].

=-2(c*7). (2.11.32)

Schrodinger equation

Hasimoto [171] discovered that the local induction approximation can be reformulated as a nonlinear
Schrédinger equation for a properly defined complex scalar function. To demonstrate this reduction,
we recall the evolution equations for the tangent, normal, and binormal unit vectors stated in
(1.6.28), (1.6.36), and (1.6.37). In the present notation, these equations read

F— V= (V)L h=—(V -n)t— (V" -b)b,
C

b=—(V'-b)t+ % (V" -Db)n. (2.11.33)
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Substituting the velocity from (2.11.28), we find that

t=—c¢b+ecrn, n= —crt — xb, b=cdt+ xn, (2.11.34)
where
/!
x=l=r_¢ (2.11.35)
c c
Next, we introduce the complex vector field q = n+ib, where i is the imaginary unit, i = —1,

as discussed in Section 1.6.3. The second and third equations in (2.11.34) can be unified into the
complex form

g=i[(/+ier)t+x4q], (2.11.36)

and then rearranged into an evolution equation for the function Q defined in (1.6.21),

Q=i(—v't+xQ). (2.11.37)
Combining this expression with (1.6.20), we derive the evolution equation
g;?l = 78((;/);) =i(—vt+xQ). (2.11.38)
Expanding the time and arc length derivatives, we obtain
Pt+vt =i t+¢'t' — X Q—xQ'). (2.11.39)
Separating the tangential from the normal components, we obtain
b =i +¥x), Pt=i(W't' —x' Q). (2.11.40)
Making substitutions in the second equation, we obtain
Y (—=c'b+ crn) :i(—cz//—i—x’%)n—x’%b, (2.11.41)
which requires that
Y =cd = % (*) = % (W), ix' ¢ =T +i). (2.11.42)
Integrating the first equation, we find that
X = % (vy* + A(t)), (2.11.43)

where A(t) is a specified function of time, Substituting this expression into the first equation of
(2.11.40) we derive a nonlinear Schrodinger equation,

10 0? 1
: a% _ 87‘2” 5 (WP + A1) v, (2.11.44)

which is known to admit solutions in the form of nonlinear traveling waves called solitons.
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Problems

2.11.1 A rectilinear line vortex

Use the expression for the vector potential given in (2.11.1) to compute the velocity field due to a
rectilinear line vortex. Compare the results with the velocity field due to a point vortex discussed
in Section 2.13.1.

2.11.2 A helical line vortex

A helical line vortex revolving around the x axis is described in the parametric form by the equations
T = bp, y = acosy, z = asing, where a is the radius of the circumscribed cylinder, ¢ is the
azimuthal angle, and 27b is the helical pitch. Show that the velocity induced by a helical line vortex
with strength  is given by [167]

K 8[2 813 K 8]1 8[2 K 6[1 6[3
o= —(a=2 +a=2), = 2 (b — 022, L= —— (b= +a=2), (2114
e 47r(a8y +a82) Yy 47r(baz “ax) “ 47r(b3y+a8x) ( 5)
where
? —/OO colsﬂ d0 (2.11.46)
2T Sy | a0+ v acos0) + (= —asmdp[ 72 A

2.11.3 A sinusoidal line vortex

Show that a planar, nearly rectilinear line vortex with small amplitude sinusoidal undulations rotates
about its axis as a rigid body.

2.12 Axisymmetric flow induced by vorticity

In the case of axisymmetric flow without swirling motion, we take advantage of the known orienta-
tion of the vorticity vector to simplify the Biot—Savart integral by performing the integration in the
azimuthal direction by analytical or accurate numerical methods. To begin, we introduce cylindri-
cal polar coordinates, (x,0,¢), and substitute w(x,0) = wy(x,0) e, into the Biot-Savart integral
(2.10.2). Expressing the differential volume as dV = ody dA, where dA = dz do, we obtain

];( / \/2Tr X X fp / / / / !/

3
where 7 = |x — x/|. Next, we substitute
=0 cosp— o cosy, 2=o0sing — o siny’, (2.12.2)
set e, = (0, —sin ', cos¢’), and compute the outer vector product, finding

A /

1 2 —0Cosp + o

u(x) = o / (/ 3 & cos ¢’ d(p’) wy (2, o) o’ dA(X'), (2.12.3)
Flow 0 2sin 80/
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where & = x — 2’ and @ = ¢ — ¢’. The radial and azimuthal velocity components are
Uy = COSP Uy + sinpu,, Uy = —sinpuy, + cos P u,. (2.12.4)
Making substitutions, we obtain
Uy 1 2r 4 —ocosp+ o’
uy | (%) /F o ( /0 & cos ! d<p’) wo(a' o) o' dAKX).  (2.12.5)

4 r3 NP
Uy, —Zsin @

Finally, we substitute

r? =3% 402+ 0% = 200" cosp = i? + (0 + ') — 400’ cos? (= @), (2.12.6)

N =

and integrate to find that u, = 0, as expected, and

1 _ @ ’ / A ’
[“’](x,a) / { o I3y (#,0,0) + 0" Ioo(&,0,0%) | |t 510! dA(K), (2.12.7)
Flow

Uy :E i[gl(ﬁ?,d,gl)

where

L (&, 0,0") = 7 dg. (2.12.8)

2 cos
)= 52 2 2(15)1"/?
0 [#24 (04 0")2 — 400’ cos?(50) ]

Working in a similar fashion with the vector potential given in (2.10.1) in terms of the vorticity
distribution, and recalling the A = (¢/0)e,, we derive a corresponding representation for the
Stokes stream function,

_
T Adr

P(z,0) /Fl 11(2,0,0" ) wy (2!, 0") o’ dA(X'), (2.12.9)

where & =z — 2.

Computation of the integrals I,,,,

To compute the integrals I, defined in (2.12.8), we write

4 k ©
Inm({%,d, O’I) = Jnm(k) =4 Jnm(k)v 2.12.10
[9&2+(0+U’)2}n/2 <V400/) ( :
where
™2 (2cos2n —1)™

(k) = dn, 2.12.11
T (K) /0 (1 — k2 cos? n)n/2 g ( )

n=¢/2, and

4oo0

i e
22+ (o +0')?

(2.12.12)
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FIGURE 2.12.1 (a) Graphs of the complete elliptic integral of the first kind, F'(k) (solid line) and
second kind, E(k) (broken line), computed by an efficient iterative method. (b) Streamline pattern
in a plane passing through the axis of revolution of a line vortex ring with positive circulation;
lengths have been scaled by the ring radius.

is a dimensionless group varying the range 0 < k2 < 1. As # — 2’ and ¢ — o', the composite
variable k? tends to unity.

The integrals J,,, can be expressed in terms of the complete elliptic integrals of the first and
second kind, F' and F, defined as

1 /2
dr du

F(k) = = _— 2.12.13

*) /ou—ﬂ)l/?(l—k%?)l/? / e ( )

and
/2
E(k) = / V1 — k2sin? u du, (2.12.14)
0

where 7 and u are dummy integration variables. Graphs of these integrals are shown in Figure
2.12.1(a). As k tends to unity, F'(k) diverges as F'(k) ~ In(4/v1 — k?), whereas E(k) tends to unity.

Resorting to tables of indefinite integrals, we derive the expressions

Ttk = F®), k) = 2 Pk - 2 B,
’ ' . (2.12.15)
Jaolk) = 2O s (k) = = (k) + o B(R)

-2’ R =Ty
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(e.g., [150], p. 590). Substituting the expression for Ji; (k) into (2.12.10) and then into (2.12.9), we
obtain the Stokes stream function

o k k

Computation of the complete elliptic integrals

) = — /Fl (2‘]“ F(k)—EE(k))\/ﬁ%(x/,a’)dA(x'). (2.12.16)

To evaluate the complete elliptic integrals of the first and second kind, we may compute the sequence

1—(1— Kf,,l)l/2

Ko=k = 2.12.17
0 9 p 1+(1_K12771)1/2 ( )

for p=1,2,..., and then set

1
F(k) :g(1+K1)(1+K2)(1+K3).-., E(k) = F(k) (1 - 5 k*P), (2.12.18)
where
1 1

P=1+3K(1+5K()). (2.12.19)

Alternative polynomial approximations are available (e.g., [2], Chapter 17). In Matlab, complete
elliptic integrals can be computed using the native function ellipke.

2.12.1 Line vortex rings

The azimuthal vorticity component associated with a circular line vortex ring of radius ¥ located
at the axial position X is wy,(x) = K d2(x — X), where J, is the two-dimensional delta function in
an azimuthal plane, and x, = Xe, + e, is the trace of the ring in that plane. Substituting this
expression into (2.12.7) and performing the integration using the distinctive properties of the delta
function, we obtain the axial and radial velocity components

Uy _i —0'131(£70',2)+ZI30(JA3,0',E)
[ ] (x,0) = e by, [ & Iy(3, 0, 3) , (2.12.20)

where & = 2 — X. The corresponding Stokes stream function is found from (2.12.9),
W(z,0) = 4302111(@,0,2). (2.12.21)
s
The streamline pattern in a plane passing through the axis of revolution is shown in Figure 2.12.1(b).

Velocity potential

The velocity potential due to a line vortex ring can be deduced from expressions (2.11.6) and (2.11.9)
for line vortices. Identifying the surface D in (2.11.6) with a circular disk of radius ¥ bounded by
the vortex ring, we obtain

¢(I, U) = 7% Qring(x)a (21222)
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where )54 is the angle subtended by the ring from the point x, given by

2m 2 o' do’ ,
Qx)=2z de'. 2.12.23
() /0 /0 [#2 + (0 — 0’ cos ¢')2 + 072 sin? ¢’ ]3/2 7 ( )

Integrating with respect to the azimuthal angle, we obtain

J30(k)

/ /
7 (0 + 0 2 o' do’, (2.12.24)

b)) OR
Qz,0,8) =12 / I30(%,0,0") 0’ do’ = 4% /
0 0

where the functions I3 and Jsq are defined in (2.12.8), (2.12.10), and (2.12.11), and k? is defined
in (2.12.12). Finally, we obtain

>
E(k) o ,
d 2.12.25
o 1-k2 [82+ (0 +0)2pP2 7" (2:12.25)

Q(#,0,%) = 44

where E(k) is the complete elliptic integral of the second kind. An alternative method of computing
) is available [302].

2.12.2 Axisymmetric vortices with linear vorticity distribution

Consider a flow containing an axisymmetric vortex embedded in an otherwise irrotational fluid.
Inside the vortex, the azimuthal vorticity component varies linearly with distance from the axis of
revolution, w, = Qo, where  is a constant. Using (2.12.9) or (2.12.16), we find that the Stokes
stream function of the induced flow is

P(z,0) = 420/ I1(%,0,0") 0 dA(X'), (2.12.26)
A

2 v

or

W(z,0) = % /AV (2 _kk F(k) - %E(k)) Voo o' dA(X), (2.12.27)

where Ay is the area occupied by the vortex in an azimuthal plane, dA = dz do is a corresponding
differential area, # = x — 2, and the integrals I, are defined in (2.12.8).

Radial velocity

The radial velocity component is found by differentiating the stream function, finding

Uy (x,0) = 1w @ / i(hl(i,a, O'/)> o? dA(X)), (2.12.28)
A

o dr Arx L, o0z’

where & = x — x’. Using the divergence theorem, we derive a simplified expression in terms of an
integral along the trace of the vortex contour in an azimuthal plane, C|

Q
Uy (x,0) = 4—/0111(:13,0, o) ng(x') 0" di(x), (2.12.29)

™

where n is the normal unit vector pointing outward from the vortex contour.
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Awxial velocity

To develop a corresponding expression for the axial velocity component, we introduce the velocity
potential function

oz, 0) = _e / Qring(#,0,0") 0’ dA(X'), (2.12.30)
47 Ay

and work as in (2.12.28) to obtain

S L /A %(ng(@,a, 0')) o' dA(X). (2.12.31)

o 0r  Ar
Now using the divergence theorem, we find that

Q

ul.($,0') - E

[ uins(0,07) 0" o) ). (212.32)
C

To compute the right-hand side of (2.12.32), we introduce a branch cut so that the solid angle
becomes single-valued [302].

To circumvent introducing a branch cut, we resort to the integral representation of the Stokes
stream function and write
Loy  Q 1 0

=— = — - = i ") e dA(X). 2.12.
ug(z,0) e /AVUBU(JIH(JC,U,U))U dA(x") ( 33)

If we were able to find two functions, F(Z,0,0’) and G(&,0,0’), such that

0 oF 0G
22 (ohi(ioo)) =o(5- - 57) 2.12.34
7 ao(” (@0, ) =055 = 5o7): (2:12.34)
then we could write the contour integral representation
Q
ug(z,0) = —7 [F(2,0,0")ng(a',0") + G(&,0,0") no(2',0") ] di(a’, 0”). (2.12.35)
@

Shariff, Leonard & Fertziger [368] considered the right-hand side of (2.12.1) and expressed the curl
of the vorticity in terms of generalized functions. Their analysis implies that

F(%,0,0") =10 Lo(%,0,0"), G(#,0,0") =00’ I1(2,0,0"), (2.12.36)
yielding the computationally convenient expression

Q
ug(z,0) = —E/C [2 Lo(#,0,0")ng(z',0") + 0 1(&,0,0") ne(2',0")] o’ di(z’,0"). (2.12.37)

Taken together, equations (2.12.32) and (2.12.37) provide us with a basis for the contour dynamics
formulation of axisymmetric vortex flow with linear vorticity distribution discussed in Section 11.9.3.
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(a) (6)

FIGURE 2.12.2 Streamline pattern associated with Hill's spherical vortex (a) in a stationary frame of
reference and (b) in a frame of reference traveling with the vortex.

H:ll’s vortex

Hill’s spherical vortex provides us with an important example of an axisymmetric vortex with linear
vorticity distribution, w, = Qo. To describe the flow, we introduce cylindrical polar coordinates
with origin at the center of the vortex, (z, 0, ¢), and associated spherical polar coordinates, (r, 6, ).
In a frame of reference moving with the vortex, the Stokes stream function inside Hill’s vortex is
given by

Q 2

Ving = 150° (0% = 7%), (2.12.38)

where a is the vortex radius. Outside the vortex, the stream function is

Q a’
Ve = =g @’0” (1= —3), (2.12.39)

where 7 is the distance from the origin, r? = 22 4+ ¢2, x = rcosf, and 0 = rsind. We may readily

verify that ¥, = Yeer = 0 and (OWint/0r)g = (Oert/Or)g at v = a, ensuring that the velocity
is continuous across the vortex contour. In fact, the exterior flow is potential flow past a sphere
discussed in Section 7.5.2. Cursory inspection of the exterior flow reveals that the spherical vortex
translates steadily along the x axis with velocity

V= 135 Qa2, (2.12.40)

while maintaining its spherical shape.

The streamline pattern in a stationary frame of reference and in a frame of reference translating
with the vortex is shown in Figure 2.12.2. Comparing the pattern shown in Figure 2.12.2(a) with
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that shown in Figure 2.12.1(b) for a line vortex ring, we note a similarity in the structure of the
exterior flow and conclude that the particular way in which the vorticity is distributed inside a
vortex plays a secondary role in determining the structure of the flow far from the vortex.

Vortex rings finite core

Hill’s vortex constitutes a limiting member of a family of steadily translating vortex rings parametrized
by the cross-sectional area. The opposite extreme member in the family is a line vortex ring with
infinitesimal cross-sectional area. The structure and stability of the rings have been studied by
analytical and numerical methods, as discussed in Section 11.9 [282, 302].

Problem

2.12.1 Hill’s spherical vortex

Departing from (2.12.38) and (2.12.39), confirm that (a) the azimuthal component of the vorticity is
w, = o inside Hill’s vortex and vanishes in the exterior of the vortex; (b) the velocity is continuous
across the vortex boundary; (¢) the velocity of translation of the vortex is given by (2.12.40).

X
Computer Problems

2.12.2 Complete elliptic integrals

Write a computer program that computes the complete elliptic integrals of the first and second kind,
F and FE, according to (2.12.18). Confirm that your results are consistent with tabulated values.

2.12.3 A line vortex ring

(@) Write a program that computes the velocity field induced by a line vortex ring and reproduce
the streamline pattern shown in Figure 2.12.2.

(b) Write a program that computes the velocity potential associated with a line vortex ring.

2.12.4 Streamlines of Hill’s spherical vortex

Reproduce the streamlines pattern shown in Figure 2.12.3(a). The velocity could be computed by
numerical differentiation setting, for example, 9v¢/0c ~ [)(c+€) — (o —€)]/(2¢€), where € is a small
increment.

2.13 Two-dimensional flow induced by vorticity

Integral representations for the velocity of a two-dimensional flow in the xy plane in terms of the
vorticity can be derived using the general formulas presented in Section 2.8 for three-dimensional
flow. In this case, we stipulate that the vortex lines are rectilinear, parallel to the z axis. However,
it is expedient to begin afresh from the integral representation (2.7.37) providing us with expressions
for the z and y velocity components,

Uz (X) = L /sz(x’) dA(X), uy(x) = ! /L w,(x')dA(X"), (2.13.1)

o 22+ 42 o 22+ 92
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where x’ = x — x’ and the integration is performed over the domain of flow. Using (2.7.36), we find
that the associated stream function is

Y(x) = —ﬁ /ln(j ;y ) w. (x) dA(x'), (2.13.2)

where a is a constant length. An alternative representation for the velocity originating from the
integral representation (2.7.38) is

u(x) = . /ln(g@2 ﬂ)z)v’ x [w.(x') e, ] dA(X), (2.13.3)

47 a?

where e, is the unit vector along the z axis.

2.13.1 Point vortices

To derive the velocity field and stream function due to a point vortex located at a point, xq, we
substitute the singular distribution w,(x) = k J2(x — Xp) into (2.13.1) and (2.13.2), obtaining

K0
Uy (x) = T Uy (X) (2.13.4)

K z K 22 492
Z%W; ¢(X):_*ln( )a

4 a?

where 05 is the two-dimensional delta function, k is the strength of the point vortex, and X = x — xg.
The polar velocity component is

up(x) = -— -, (2.13.5)

where r = |x — xg|. The streamlines are concentric circles centered at xg, the velocity decays like
1/r, and the cyclic constant of the motion around the point vortex is equal to x. The velocity field
is irrotational everywhere except at the singular point, xg. The associated multi-valued velocity
potential is

6(x) = 50, (2.13.6)

where 6 is the polar angle subtended between the vector x — xg and the x axis. We observe that the
harmonic potential increases by x each time a complete turn is performed around the point vortex.

Complex-variable formulation

It is sometimes useful to introduce the complex variable z = x 4+ iy, and the complex velocity
v = uy + iu,, where i is the imaginary unit, i = —1. The first two equations in (2.13.4) can be
collected into the complex form

K 1

(2.13.7)

v*(z):ux—iuy:%z_zo,

where an asterisk denotes the complex conjugate.
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2yla

FIGURE 2.13.1 Mesmerizing streamline pattern due to an array of evenly spaced point vortices with
positive (counterclockwise) circulation separated by distance a.

2.13.2 An infinite array of evenly spaced point vortices

Next, we consider the flow due to an infinite row of point vortices with uniform strength separated
by distance a, as illustrated in Figure 2.13.1. The mth point vortex is located at x,, = x¢ +ma and
Ym = Yo, where (x,yo) is the position of one arbitrary point vortex labeled 0, and m is an integer. If
we attempt to compute the velocity induced by the array by summing the individual contributions,
we will encounter unphysical divergent sums.

To overcome this difficulty, we express the stream function corresponding to the velocity field
induced by the individual point vortices as

Po(z,y) = —%m(%), U (z,y) = —%m(l;ﬁ) (2.13.8)

for m = £1,+£2,..., where
rm = [(@ = 2m)? + (y — ym) ]2 (2.13.9)

is the distance of the field point, x = (x,y), from the location of the mth point vortex. The
denominators of the fractions in the arguments of the logarithms on the right-hand sides of (2.13.8)
have been chosen judiciously to facilitate forthcoming algebraic manipulations.

It is important to observe that, as m tends to oo, the fraction on the right-hand side of the
second equation in (2.13.8) tends to unity and its logarithm tends to vanish, thereby ensuring that
remote point vortices make decreasingly small contributions. If the denominators were not included,
remote point vortices would have made contributions that are proportional to the logarithm of the
distance between a point vortex from the point (x,y) where the stream function is evaluated.
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Next, we express the stream function due to the infinite array as the sum of a judiciously
selected constant expressed by the term after the first equal sign in (2.13.10), and the individual
stream functions stated in (2.13.8), obtaining

P(a,y) = ——1n (V2r) + Z U (@, 7). (2.13.10)

m=—0o0

Substituting the expressions for the individual Green’s functions, we find that

\/57”’0)_% Yo (), (2.13.11)

'L[)(QL',y):*%ln( a |m|a

which can be restated as

V2 I = } (2.13.12)

a |m|a

1/1(9571/) = _% In [

m==41,£2,...

where IT denotes the product. An identity allows us to compute the infinite product on the right-hand
side of (2.13.12) in closed form, obtaining

V2o
a

11 |T’;L’Ta = {cosh[k(y — yo)] — coslk(z — z0)]}/2 (2.13.13)
m==+1,+2,...

(e.g., [4], p. 197). Substituting the right-hand side of (2.13.13) into (2.13.12), we derive the desired
expression for the stream function

W(z,y) = 7% In (cosh[k(y — yo)] — coslk(z — z0)]), (2.13.14)

where k = 27 /a is the wave number. Differentiating the right-hand side of (2.13.14) with respect to
x or y, we obtain the corresponding velocity components,

waeg) = K sinh[k(y — yo)]
a\ L 2a cosh[k(y — yo)] — cos[k(z — zp)]’ (2.13.15)
vy (2.9) = s sinfk(z — x¢)]

2a cosh[k(y — yo)] — cos[k(x — xq)]

As the wave number k tends to zero, expressions (2.13.14) and (2.13.15) reproduce the stream
function and velocity field associated with a single point vortex. The streamline pattern due to the
periodic array exhibits a cat’s eye pattern, as illustrated in Figure 2.13.1.

Because of symmetry, the velocity at the location of one point vortex induced by all other
point vortices is zero and the array is stationary. Far above or below the array, the x component of
the velocity tends to the value —k/a or k/a, while the y component decays at an exponential rate.
This behavior renders the infinite array a useful model of the flow generated by the instability of a
shear layer separating two parallel streams that merge at different velocities. The Kelvin—-Helmholtz
instability causes the shear layer to roll up into compact vortices represented by the point vortices
of the periodic array.
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2.13.3 Point-vortex dipole

Consider the flow due to two point vortices with strengths of equal magnitude and opposite sign
located at the points xo and x;. Taking advantage of the linearity of (2.13.1), we construct the
associated stream function by superposing the stream functions due to the individual point vortices.
Placing the second point, x1, near the first point, xo, and taking the limit as the distance |xg — x1|
tends to zero while the product x(xg — x1) remains constant and equal to A, we derive the stream
function due to a point-vortex dipole,

1 x—x9

1 r
P(x) = —%)\ -Voln (g) =53 A, (2.13.16)

where r = |x — x¢| and the derivatives in V| operate with respect to xg. The associated velocity
field follows readily by differentiation as

1 /A Y—y
w) = 5o (3250 w02,
(2.13.17)
1 /s Tr—z
uy(x) = Tor (7’72_ 4 - (X_XO)'/\)~

The streamline pattern of the flow due to a point-vortex dipole oriented along the y axis, with
A= Xe, and A > 0 is identical to that due to a potential dipole oriented along the x axis shown in
Figure 2.1.3(b). An alternative method of deriving the flow due to a point-vortex dipole employes
the properties of generalized delta functions. We set

w(x) =A-Vi(x —xp), (2.13.18)

and then use (2.13.1) and (2.13.2) to derive (2.13.16) and (2.13.17).

2.13.4 Vortex sheets

To derive the flow due to a two-dimensional vortex sheet, we substitute (1.13.26) into (2.13.1) and
obtain
g 5

1 y 1 T
o(x) = —— dr(x’ —— [ % _arw 13.1
ww =5 [ FE ), w-g [ Srmae), (@39

where x’ = x —x’, dI" = ~dl is the differential of the circulation along the vortex sheet, and C is the
trace of the vortex sheet in the zy plane. Comparing (2.13.19) with (2.13.2), we interpret a vortex
sheet as a continuous distribution of point vortices.

It is sometimes useful to introduce the complex variable z = x + iy and define the complex
velocity v = uy + iuy, where i is the imaginary unit, i = —1. Equations (2.13.19) may then be
stated in the complex form

v*(2) = l/cdr(zl) (2.13.20)

2mi Ay

where an asterisk denotes the complex conjugate.
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Periodic vortex sheet

Using identity (2.13.13), we find that the velocity due a periodic vortex sheet that is repeated along
the x axis with period a is

o 1 sinh[k(y — y')] x'
+(7,9) 2a Jp cosh[k(y —y')] — cos[k(z — a')] dl'(x'), (2.15.21)
o 1 bln[k;(m Zo)] x’ B
y(2,Y) 2a Jp coshlk(y — y')] — cos[k(z — z)] e

where k = 27/a is the wave number and T is the trace of the vortex sheet in the zy plane inside
one period. As the scaled wave number ka tends to zero, (2.13.21) reduces to (2.13.19).

2.13.5 Vortex patches

Consider a two-dimensional flow induced by a region of constant vorticity, w, = €, called a vortex
patch, immersed in an otherwise stationary fluid. Introducing the two-dimensional vector potential
expressed in terms of the stream function as A = (0,0,¢), and using the integral representation
(2.13.2), we find that the induced velocity is

Q ~2 ~2
u(x) = V x [ln 1Y
47T Patch a2

e. | dA(X'), (2.13.22)

where e, is the unit vector along the z axis and the gradient V’ involves derivatives with respect
to the integration point, x’. Using Stokes’ theorem, we convert the area integral into a line integral
along the closed contour of the patch, C', obtaining

0 &+ ¢

u(x) = ~ i Cln 2 t(x') di(x'), (2.13.23)

where t is the tangent unit vector pointing in the counterclockwise direction around C. An alterna-
tive way of deriving (2.13.23) departs from the identity

VXw= Q?{Jég(x —x")t(x') di(x"), (2.13.24)

where J7 is the two-dimensional delta function in the zy plane. Substituting (2.13.24) into (2.13.3)
and using the properties of the delta function, we recover (2.13.23). If a flow contains a number of
disconnected vortex patches with different vorticity, the integral in (2.13.23) is computed along each
vortex contour and then multiplied by the corresponding values of the constant vorticity, (2.

Periodic vortex patches and vortex layers

Using identity (2.13.13), we find that the velocity due to a periodic array of vortex patches with
constant vorticity (2 arranged along the x axis with period a is given by
Q

u(x) = b In[ cos(kg) — cos(kz)] t(x") dI(x), (2.13.25)
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FIGURE 2.13.2 lllustration of (a) a periodic vortex layer with constant vorticity and (b) a periodic
compound vortex layer consisting of two adjacent vortex layers with constant vorticity €2 and .

where k = 27/a is the wave number, C' is the contour of one arbitrary patch in the array, and t is
the tangent unit vector pointing in the counterclockwise direction.

As an application, we consider the velocity due to the periodic vortex layer illustrated in
Figure 2.13.2(a). We select one period of the vortex layer and identify C with the union of the
upper contour, Cy, lower contour, Cg, left contour, C, and right contour, Cr. The contributions
from the contours C, and Cg to the integral in (2.13.25) cancel because the corresponding tangent
vectors point in opposite directions and the logarithmic function is periodic inside the integral.
Consequently, the contour C' reduces to the union of Cyy and Cg.

Problems

2.13.1 An array of point vortices

Verify that, as the period a tends to infinity, (2.13.14) and (2.13.15) yield the velocity and stream
function due to a single point vortex.

2.13.2 Compound vortex layer

Consider a periodic compound vortex layer consisting of two adjacent layers with constant vorticity
Oy and o, as illustrated in Figure 2.13.2(b). Derive an expression for the velocity in terms of
contour integrals along C7, Cs, and Cj.



Stresses, the equation of motion,
and vorticity transport

In the first two chapters, we examined the kinematic structure of a flow and investigated possible
ways of describing the velocity field in terms of secondary variables, such as the velocity potential,
the vector potential, and the stream functions. However, in our discussion, we made no reference
to the physical processes that are responsible for establishing a flow or to the conditions that are
necessary for sustaining the motion of the fluid. To investigate these and related issues, in this
chapter we introduce the fundamental ideas and physical variables needed to describe and compute
the forces developing in a fluid at rest as the result of the motion. The theoretical framework will
culminate in an equation of motion governing the structure of a steady flow and the evolution of
an unsteady flow from a specified initial state. The point of departure for deriving the equation of
motion is Newton’s second law of motion for a material fluid parcel, stating that the rate of change
of momentum of the parcel be equal to the sum of all forces exerted on the volume of the fluid
occupying the parcel as well as on the parcel boundaries.

We will discuss constitutive equations relating the stresses developing on the surface of a
material fluid parcel to the parcel deformation. In the discourse, we will concentrate on a special
but common class of incompressible fluids, called Newtonian fluids, whose response is described by
a linear constitutive equation. The equation of motion for an incompressible Newtonian fluid takes
the form of a second-order partial differential equation in space for the velocity, called the Navier—
Stokes equation. Supplementing the Navier—Stokes equation with the continuity equation to ensure
mass conservation, and then introducing appropriate boundary and initial conditions, we obtain a
complete set of governing equations. Analytical, asymptotic, and numerical methods for solving
these equations under a broad range of conditions will be discussed in subsequent chapters.

The equation of motion can be regarded as a dynamical law for the evolution of the velocity
field, providing us with an expression for the Eulerian time derivative, du/0t, or material derivative,
Du/Dt. To derive a corresponding law for the evolution of the vorticity field expressing the rate
of rotation of fluid parcels, w = V X u, we take the curl of the Navier—Stokes equation and derive
the vorticity transport equation. Inspecting the various terms in the vorticity transport equation
allows us to develop insights into the dynamics of rotational flows. Vortex dynamics provides us
with a natural framework for analyzing and computing flows dominated by the presence or motion
of compact vortex structures, including line vortices, vortex patches, and vortex sheets.

186
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(a) (6)

@)
n

2 (2)
f

FIGURE 3.1.1 (a) lllustration of the traction vector exerted on a small surface on the boundary of a
fluid parcel or control volume, f, and normal unit vector, n. The traction vector has a normal com-
ponent and a tangential component; the normal component is the normal stress, and the tangential
component is the shear stress. (b) lllustration of three small triangular surfaces perpendicular to
the three Cartesian axes forming a tetrahedral control volume; n is the unit vector normal to the
slanted face of the control volume, and f is the corresponding traction.

3.1 Forces acting in a fluid, traction, and the stress tensor

Consider a fluid parcel consisting of the same material, as shown in Figure 3.1.1(a). The adjacent
material imparts to molecules distributed over the surface of the parcel a local force due to a short-
range intermolecular force field, and thereby generate a normal and a tangential frictional force.
Now consider a stationary control volume that is occupied entirely by a moving fluid. As the
fluid flows, molecules enter and leave the control volume from all sides carrying momentum and
thereby imparting to the control volume at a particular instant in time a normal force. Short-range
intermolecular forces cause attraction between molecules on either side of the boundary of the control
volume, and thereby generate an effective tangential frictional force.

Traction and surface force

The force exerted on an infinitesimal surface element located at the boundary of a fluid parcel or at
the boundary of a control volume, dF', divided by the element surface area, d.S, is called the traction
and is denoted by

dF

f@'

(3.1.1)

The traction depends on the location, orientation, and designated side of the infinitesimal surface
element. The location is determined by the position vector, x, and the orientation and side are
determined by the normal unit vector, n. The traction has units of force divided by squared length.
In terms of the traction, the surface force exerted on a fluid parcel is

F= [ fds. (3.1.2)

Parcel
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The same expression provides us with the surface force exerted on a control volume occupied by
fluid.

Normal and tangential components

It is useful to decompose the traction into a normal component, fV, pointing the direction of the
normal unit vector, n, and a complementary tangential or shear component, f7, given by

fN = (f-n)n, fl=nx(fxn)=f - (I-n®n), (3.1.3)

where I is the identity matrix. The projection matrix I — n ® n extracts the tangential component
of a vector that it multiplies.

Body force

A long-range ambient force field acting on the molecules of a fluid parcel imparts to the parcel a
body force given by

FB:ﬁ kb dV, (3.1.4)
P

arcel

where b is the strength of the body force field and & is a companion physical constant that may
depend on time as well on position in the domain of flow. Examples include the gravitational or
an electromagnetic force field. In the case of the gravitational force field, b is the acceleration of
gravity, g, and & is the fluid density, p. In the remainder of this book we will assume that the body
force field is due to gravity alone.

3.1.1 Stress tensor

Next, we introduce a system of Cartesian coordinates and consider a small tetrahedral control volume
with three sides perpendicular to the z, y, and z axes, as illustrated in Figure 3.1.1(d). The traction
exerted on each of the three planar sides is denoted, respectively, by £(#), £ and £(*). Stacking
these tractions above one another in three rows, we formulate the matrix of stresses

oy = 7. (3.1.5)

The first row of o contains the components of £(*), the second row contains the components of f(*),
and the third row contains the components of f(*), so that

Ozx Ozy Oxz ffgw) f?sw) fgw)
o= | Oyg Oyy Oy | = féy) féy) fz(y) . (3.1.6)
Ose Ozy Oz fa(:Z) fy(Z) fZ(Z)

The diagonal elements of o are the normal stresses exerted on the three mutually orthogonal sides
of the control volume that are normal to the z, y, and z axes. The off-diagonal elements are the
tangential or shear stresses. Later in this section, we will show that o satisfies a transformation rule
that qualifies it as a second-order Cartesian tensor.
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Traction in terms of stress

We will demonstrate that the traction exerted on the slanted side of the infinitesimal tetrahedron
illustrated in Figure 3.1.1(b) can be computed from knowledge of its orientation and the value of
the stress tensor at the origin. Knowledge of the body force is not required.

Our point of departure is Newton’s second law of motion for the fluid parcel enclosed by the
tetrahedron, stating that the rate of change of momentum of the parcel is equal to the sum of the
surface and body forces exerted on the parcel. Using (3.1.2) and (3.1.4), we obtain

d
*ﬂ pudV:/ fds+ﬁ ol (3.1.7)
dt Parcel Parcel Parcel

Because the size of the tetrahedron is infinitesimal, the traction exerted on each side is approximately
constant. Neglecting variations in the momentum and body force over the parcel volume, we recast
equation (3.1.7) into the algebraic form

D(puAV)

o = fOAS, + fWAS, + fEAS, + fAS + pg AV, (3.1.8)

where D/Dt is the material derivative, AV is the volume of the tetrahedron, AS®) AS® AS(Z),
and AS are the surface areas of the four sides of the tetrahedron, and f is the traction exerted on
the slanted side. Dividing each term in (3.1.8) by AS and rearranging, we obtain

AS Dt AS AS

In the limit as the size of the parcel tends to zero, the ratio AV/AS vanishes and the left-hand side
disappears.

f +f. (3.1.9)

AS@)

Now we introduce the unit vector normal to the slanted side pointing outward from the
tetrahedron, n, and use the geometrical relations

AS ) AS®) AS(Z)

MTTAST ™S TAsc T As (3:.10)

Substituting these expressions along with the definition of the stress matrix tensor (3.1.5) into (3.1.9)
and rearranging, we find that

f=n.o. (3.1.11)
In index notation, the jth component of the traction is
fi = mniogj, (3.1.12)

where summation is implied over the repeated index, i. Equation (3.1.11) states that the traction,
f, is a linear function of the normal unit vector, n, with a matrix of proportionality that is equal to
the stress tensor, o.
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Force on a fluid parcel in terms of the stress

Combining (3.1.2) with (3.1.11) and using the divergence theorem, we find that the surface force
exerted on a fluid parcel is given by

F:/ n-odS= V.-odV. (3.1.13)
P

arcel Parcel

In index notation, the jth component of the surface force is

903,
Fj:/ i o dszﬁ i gy (3.1.14)
Parcel Parcel axl

Newton’s third law requires that the parcel exerts on the ambient fluid a force of equal magnitude
in the opposite direction.

The total force exerted on the parcel is the sum of the surface force given in (3.1.13) and the
body force given in (3.1.4),

Fiotal — ﬂp (V-o+pg)dV. (3.1.15)

arcel

If the divergence of the stress tensor balances the body force, the total force exerted on the parcel is
zero. Later in this chapter, we will see that this is true when the effect of fluid inertia is negligibly
small.

Force acting on a fluid sheet

Consider a fluid parcel in the shape of an flattened sheet. Letting the thickness of the sheet tend
to zero, we find that the surface force exerted on one side of the sheet is equal and opposite to that
exerted on the other side of the sheet, so that the sum of the two forces balances to zero.

Force exerted on a boundary

To compute the force exerted on a boundary, we consider a flattened fluid parcel having the shape
of a thin sheet attached to the boundary. As the thickness of the sheet tends to zero, the mass of
the parcel becomes infinitesimal and the sum of the hydrodynamic forces exerted on either side of
the parcel must balance to zero (Problem 3.1.1). Newton’s third law requires that the force exerted
on the side of the parcel adjacent to the boundary is equal in magnitude and opposite in direction to
that exerted by the fluid on the boundary. Thus, the hydrodynamic force exerted on the boundary
is given by

F:/ n-ods, (3.1.16)
B

oundary
where n is the unit vector normal to the boundary pointing into the fluid.
o is a tensor

We will show that the matrix of stresses, o, is a Cartesian tensor, called the Cauchy stress tensor or
simply the stress tensor. Following the standard procedure outlined in Section 1.1.7, we introduce
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two Cartesian systems of axes, z; and 7, related by the linear transformation z} = A;;z;, where A
is an orthogonal matrix, meaning that its inverse is equal to its transpose. The stresses in the a7
system are denoted by o’ and those in the z; system are denoted by o. The traction exerted on a
small surface in the &} system is denoted by f’, and the same traction exerted on the same surface
in the z; system is denoted by f. Next, we introduce the vector transformation

fi=Auf, (3.1.17)
and use (3.1.13) to obtain
ngagj = Ajlnk OLkl- (3].].8)
Substituting ny = n; A, we find that
n; iy = AjAiwn; o, (3.1.19)

which demonstrates that o satisfies the distinguishing property of second-order Cartesian tensors
shown in (1.1.40) with o in place of T.

One important consequence of tensorial nature of o is the existence of three scalar stress
invariants. In particular, both the trace and the determinant of o are independent of the choice of
the working Cartesian axes.

3.1.2 Torque

The torque, T, exerted on a fluid parcel, computed with respect to a chosen point, xg, consists of
the torque due to the surface force, the torque due to the body force, and the torque due to an
external torque field with intensity c¢. Adding these contributions, we obtain the total torque

o= [ sxcmeopass [ sxpeav+ [[ reav (3.1.20)
Parcel Parcel Parcel

where X = x — x¢ and A is an appropriate physical constant associated with the torque field, c.
For example, a torque field arises in a suspension of magnetized or bipolar particles by applying an
electrical field.

Using the divergence theorem, we convert the surface integral on the right-hand side of (3.1.20)
into a volume integral, obtaining in index notation

ota A 6Ulk ~
Tit tal = ﬂ;} l (Q’jka'jk + €ijkTj 87.%‘[ + PEijkTjgk + )\Ci> dV, (3121)

where summation is implied over the repeated indices, j, k, and [.

In the absence of an external torque field, ¢ = 0, the torque exerted on a parcel with respect
to a point x;, denoted by T**%(x,), is related to the torque with respect to another point, xg, by

T (x1) = T (x0) + (x1 — Xo) x Fror. (3.1.22)
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When the rate of change of linear momentum of a fluid parcel is negligible, the total force exerted
on the parcel vanishes and the torque is independent of the point with respect to which it is defined.

Torque exerted on a boundary

The torque exerted on a boundary with respect to a chosen point, xq, is given by the simplified
version of (3.1.20),

T= X% (n-o0)dS, (3.1.23)
Boundary

where X = x — x¢ and n is the unit vector normal to the boundary pointing into the fluid. When
the surface force exerted on the boundary is zero, the torque is independent of the location of the
center of torque, xq.

3.1.3 Stresses in curvilinear coordinates

We have defined the components of the stress tensor in terms of the traction exerted on three
mutually perpendicular infinitesimal planar surfaces that are normal to the x, y, and z axes, denoted
by £ f®) and f(*). These definitions can be extended to general orthogonal or nonorthogonal
curvilinear coordinates discussed in Sections A.8-A.17, Appendix A.

Orthogonal curvilinear coordinates

Working as in the case of Cartesian coordinates, we define the components of the stress tensor
in general orthogonal curvilinear coordinates, (£,7,(), as shown in Figure 3.1.2(a). Examples are
cylindrical, spherical, and plane polar coordinates shown in Figure 3.1.2(b-d).

Let f(® be the traction exerted on an infinitesimal surface that is perpendicular to the o
coordinate line at a point, where a Greek index stands for &, 7, or (. The nine components of the
stress tensor, o,g, are defined by the equation

£ = 5,5ep, (3.1.24)

where eg is the unit vector in the direction of the 3 coordinate line, and summation over the index
[ is implied on the right-hand side. The stress tensor itself is given by the dyadic decomposition

o =0u8€q R eg, (3.1.25)

where the matrices e, ® eg provide us with a base of the three-dimensional tensor space, as discussed
in Section 1.1.

Conversely, the components of the stress tensor can be extracted from the stress tensor by
double-dot projection,

Oap =0 : (€4 @ €p). (3.1.26)

The double dot product of two matrices is defined in Section A.4, Appendix A.
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FIGURE 3.1.2 (a) Definition of the nine components of the stress tensor in orthogonal curvilinear
coordinates. Components of the stress tensor in (b) cylindrical, (¢) spherical, and (d) plane polar

coordinates.

Cylindrical, spherical, and plane polar coordinates

The components of the stress tensor in cylindrical, spherical, and plane polar coordinates are defined
in Figure 3.1.2(b-d). Plane polar coordinates arise from spherical polar coordinates by setting ¢ = 0,
or from cylindrical polar coordinates by setting = 0 and relabeling o as r and ¢ as 6.

Nonorthogonal curvilinear coordinates

A system of nonorthogonal curvilinear coordinates, (§,, (), is illustrated in Figure 3.1.3. Following
standard practice, we introduce covariant and contravariant base vectors and corresponding coordi-
nates, as discussed in Section A.12, Appendix A. The traction exerted on an arbitrary surface can be
expressed in contravariant or covariant component form. We may consider the traction exerted on a
small surface that is perpendicular to the contravariant or covariant coordinate lines. Accordingly,
the stress tensor can be expressed in terms of its pure contravariant, pure covariant, or mixed com-
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R N

7

FIGURE 3.1.3 Definition of the nine components of the stress tensor in nonorthogonal curvilinear coor-
dinates. The solid lines represent covariant coordinates and the dashed lines represent the associated
contravariant coordinates.

ponents, in four combinations. The physical meaning of the pure and mixed representations stems
from the geometrical interpretation of the covariant and contravariant base vectors, combined with
the definition of the traction as the projection from the left of the stress tensor onto a unit vector
pointing in a specified direction.

Problems

3.1.1 Normal component of the traction

Verify that, in terms of the stress tensor, the normal component of the traction is given by
f¥ = [o: (n®n)|n. (3.1.27)
The double dot product of two matrices is defined in Section A.4, Appendix A.

3.1.2 Hydrodynamic torque exerted on a boundary

Show that, if the force exerted on a boundary is zero, the torque is independent of the location of
the point with respect to which the torque is evaluated.

3.1.3 Mean value of the stress tensor over a parcel

The mean value of the stress tensor over the volume of a fluid parcel is defined as

1
o dv, (3.1.28)

o=—
Vp Parcel

where V), is the parcel volume. Show that

1 001
Oij = =7~ i ; dS AV ), 3.1.29
71 VP (/1:—’ IR * ﬁl;'arcel 8xk K ) ( )

arcel

where n is the normal unit vector pointing into the parcel.
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3.1.4 Computing the traction

Assume that the stress tensor is given by
o=|zy y =z (3.1.30)

in dyn/cm?, where lengths are measured in cm. Evaluate the normal and shear component of the
traction (a) over the surface of a sphere centered at the origin, and (b) over the surface of a cylinder
that is coaxial with the z axis.

3.2 Cauchy equation of motion

To derive the counterpart of Newton’s second law of motion for a fluid, we combine (3.1.7) with
(3.1.15) and use expression (1.4.27) for the rate of change of momentum of a fluid parcel defined in
(1.4.25). Noting that the shape and size of the parcel are arbitrarily chosen to discard the integral
sign, we derive Cauchy’s equation of motion

Du

bu o, 3.2.1
Por =V otre (3.2.1)

which is applicable for compressible or incompressible fluids. The effect of the fluid inertia is repre-
sented by the term on the left-hand side.

Hydrodynamic volume force

The divergence of the stress tensor is the hydrodynamic volume force,
¥=V-.o. (3.2.2)

The equation of motion (3.2.1) then takes the compact form

u
which illustrates that the hydrodynamic volume force complements the body force.

FEulerian form

Expressing the material derivative, D/Dt, in terms of Eulerian derivatives, we obtain the Eulerian
form of the equation of motion,

0
p(£+u~Vu):E+pg. (3.2.4)

The second term on the left-hand side can be regarded as a fictitious nonlinear inertial force. Using
the continuity equation,
p

o TV (pw) =0, (3.2.5)
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we derive the alternative form

9(pu)

5 +V - (pu@u)=X+ypg. (3.2.6)

Stress—momentum tensor
It is useful to introduce the stress-momentum tensor,

T=0—puu, (3.2.7)
and recast (3.2.6) into the compact form

d(pu)
ot

If the flow is steady, the left-hand side of (3.2.8) is zero and the divergence of the stress—-momentum
tensor balances the body force.

=V-1T4+pg. (3.2.8)

3.2.1 Integral momentum balance

Integrating (3.2.8) over a fixed control volume V, that lies entirely inside the fluid, and using the
divergence theorem to convert the volume integral of the divergence of the stress-momentum tensor
into a surface integral over the boundary D of V., we obtain an integral or macroscopic momentum

balance,
ﬁ opw) dV:—/ T~nd5+ﬂ pgdV, (3.2.9)
v, Ot D 1%

c

where n is the normal unit vector pointing into the control volume. Decomposing the stress—
momentum tensor into its constituents and rearranging, we obtain

ﬂvc 6(5:) dv+/D(pu)(u.n)dS:_/Da.nd“ﬁvpng (32.10)

c

Equation (3.2.10) states that the rate of change of momentum of the fluid occupying a fixed control
volume is balanced by the flow rate of momentum normal to the boundaries, the force exerted on
the boundaries, and the body force exerted on the fluid residing inside the control volume. The
integral momentum balance allows us to develop approximate relations between global properties
of a steady or unsteady flow. In engineering analysis, we typically derive expressions for boundary
forces in terms of boundary velocities, subject to rational simplifications for inlet and outlet velocity
profiles. The formulation can be generalized to describe other transported fields, such as heat or the
concentration of a chemical species (e.g., [36]).

3.2.2 Energy balance

A differential energy balance can be obtained by projecting the equation of motion onto the velocity
vector at a chosen point. Projecting the Eulerian form (3.2.4) and rearranging, we obtain

1 ( Olul?
27\ "ot

+u-Vju’) == u+pg-u (3.2.11)
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Combining this equation with the continuity equation (3.2.5) and rearranging the right-hand side,
we obtain
0

1 1
&(ip\u\2)+v-(§p|u|2u):V-(o--u)—o-:Vu—l—pg-u. (3.2.12)

The double dot product of two matrices is defined in Section A.4, Appendix A.

Integral energy balance

An integral or macroscopic balance arises by integrating the differential energy balance over a fixed
control volume, V., bounded by a surface, D. Integrating (3.2.12) and using the divergence theorem,

we obtain
01 9 B 1 9
ﬁvﬁt(QPM )dv_ﬁf:)(iplul Ju-nds

—/ u-de—ﬁ a:VudV—i—ﬂ pg-udV, (3.2.13)
D Ve Ve

c

where f = n - o is the traction and n is the normal unit vector pointing into the control volume.
The four terms on the right-hand side of (3.2.13) represent, respectively, the rate of supply of kinetic
energy into the control volume by convection, the rate of working of the traction at the boundary of
the control volume, the rate of energy dissipation, and the rate of working against the body force.
We have found that the rate of dissipation of internal energy per unit volume of fluid is given by the
double dot product of the stress tensor and velocity gradient tensor, o : Vu.

Rate of working against the body force

When the fluid is incompressible and the density is uniform throughout the domain of flow, the last
volume integral in (3.2.13) expressing the rate of working against the body force can be transformed
into a surface integral over the boundary, D, by writing

WB;ﬁvpg.udV:pﬂv V- [(g-x)u]dV = — /D(g~x)(u~n)d5, (3.2.14)

where n is the normal unit vector pointing into the control volume. If the normal component of the
velocity obeys the no-penetration boundary condition for a translating body, u-n =V -n, we may
apply the divergence theorem to find that Wg = pV,,g - V, where V., is the volume of the control
volume and V is a constant velocity. The last term in (3.2.13) may then be identified with the rate
of working necessary to elevate the fluid inside the control volume with velocity V.

3.2.3 Energy dissipation inside a fluid parcel

The total energy of the fluid residing inside a parcel is comprised of the kinetic energy due to
the motion of the fluid, the potential energy due to an external body force field, and the internal
thermodynamic energy. The instantaneous kinetic and potential energies are given by

1
K:fﬁ pu-udV, P:—ﬂ pX-gdV, (3.2.15)
2 Parcel Parcel
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where X is the position of the point particles occupying the parcel. Taking the material derivative
of the kinetic energy integral, and recalling that, because of mass conservation, D(pdV)/Dt = 0, we
express the rate of change of the kinetic energy in terms of the point-particle acceleration,

€ 1 D(u-u) Du
—_— == —=dV = -—dV. 2.1
dt 2 ﬂa’rﬁel Dt v ha Dt v (3 6)

Parcel

Now we use the equation of motion to express the acceleration in terms of the stress tensor and

body force, obtaining
dr ﬂ u-(V-o) dV—|—ﬂ pu-gdV. (3.2.17)
P P

dt arcel arcel

Further manipulation yields

dK
— = V-(u-a’)dV—ﬂ a:VudV—&—ﬁ pu-gdV. (3.2.18)
dt Parcel Parcel Parcel

The last integral is equal to —dP,/dT. Using the divergence theorem to convert the first integral on
the right-hand side into a surface integral and rearranging, we derive an energy balance expressed
by the equation

W:—/ u-fds - o:VudV, (3.2.19)
P

arcel Parcel

where f = n - o is the traction and n is the normal unit vector pointing into the parcel.

The first integral on the right-hand side of (3.2.19) is the rate of working of the traction on
the parcel surface. It then follows from the first thermodynamic principle that the second integral
expresses the rate of change of internal energy, which is equal to the rate energy dissipation inside
the parcel, Z, expended for increasing the temperature of the fluid,

dI_

- = o :VudV, (3.2.20)

Parcel

which is consistent with the third term on the right-hand side of (3.2.13).

3.2.4 Symmetry of the stress tensor in the absence of a torque field

The angular momentum balance for a fluid parcel requires that the rate of change of the angular
momentum of the fluid occupying the parcel computed with respect to a specified point, xg, be equal
to the total torque exerted on the parcel given in (3.1.20) or (3.1.21),

d
all. pf? x udV = Ttetal, (3.2.21)

where X = x — x. Transferring the derivative inside the integral as a material derivative and using
the continuity equation, we obtain

Dx Du
p— xudV + ﬁ px x — dV = Tt (3.2.22)
ﬂarcel Dt Parcel Dt
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The first integrand is equal to pu x u, which is identically zero. Switching to index notation,
replacing the total torque with the right-hand side of (3.1.21) and rearranging, we obtain

Duk aa'jk )
ik (P = SO = pgi) = € ou — Aeg | AV = 0. 3.2.23
ﬂpamd [6 e (P Dt oz, PIk | — €k O — Ac ( )
Since the volume of the parcel is arbitrary, we may discard the integral sign and use the equation of
motion (3.2.1) to simplify the integrand, finding

€O + e = 0. (3.2.24)
Multiplying (3.2.24) by €;m» and manipulating the product of the alternating tensors, we find that
Omn — Onm = — €mni Ci, (3.2.25)

which shows that, in the absence of an external torque field, c, the stress tensor must be symmetric,
045 = 0j; O O = o7, where the superscript 7' designates the matrix transpose. In that case, only
three of the six nondiagonal components of the stress tensor are independent, and the remaining
three nondiagonal components are equal to their transpose counterparts. The traction may then be
computed as

f=n-oc=0"n. (3.2.26)

In the remainder of this book, we will tacitly assume that the conditions for the stress tensor to be
symmetric are satisfied.

Principal directions

The symmetry of the stress tensor in the absence of a torque field guarantees the existence of three
real eigenvalues and corresponding orthogonal eigenvectors. The traction exerted on an infinitesimal
planar surface that is perpendicular to an eigenvector points in the normal direction, that is, it lacks
a shearing component. Setting the Cartesian axes parallel to the eigenvectors renders the stress
tensor diagonal. In the case of an isotropic fluid, defined as a fluid that has no favorable direction,
the eigenvectors of the stress tensor must coincide with those of the rate-of-deformation tensor, as
will be discussed in Section 3.3.

Orthogonal curvilinear coordinates

In the absence of a torque field, the components of the stress tensor in orthogonal curvilinear
coordinates, (£,n,(), are symmetric, that is, oo = 034, where Greek indices stand for &, n, or (.
For example, in cylindrical polar coordinates, oz, = 04y

3.2.5 Hydrodynamic volume force in curvilinear coordinates

The three scalar components of the equation of motion (3.2.3) can be expressed in orthogonal or
nonorthogonal curvilinear coordinates by straightforward yet tedious manipulations. The procedure
will be illustrated for plane polar coordinates, and expressions will be given in cylindrical and
spherical polar coordinates. Corresponding expressions for the point-particle acceleration on the left-
hand side of the equation of motion, Du/Dt, are given in Table 1.5.1. Substituting these expressions
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into the equation of motion provides us with three scalar component equations corresponding to the
chosen coordinates.

Plane polar coordinates

To derive the plane polar components of the hydrodynamic volume force, ¥ = V - o, we express the
gradient and stress tensor in the corresponding forms

0 10

V=l g el g

g=0rr€ Qe +orgerey+ 0pr€9 Qe+ 0gpeg D ey, (3227)

and compute

Jdo 1 Jdo
X=V.o= T'E 7e9~%. (3228)
Expanding the derivatives, we obtain
aarr aar& 600T 8000
Y=—
ar " or ( 59+ 55-%0)
Olea®eg) 1 O0(eq ® €p)
+0as (er SR 4 ey T), (3.2.29)

where summation is implied over the repeated indices, « and [, standing for r or §. Expanding the
derivatives of the products and grouping similar terms, we obtain

5 <8UTT . 1 aagr) o <3JT9 L1 1 8099)

ar r 00 or r 00
8ea 89@ 1 6ea 1 Oe eg
L gl - - 2.
+0us (eT 5 egte e, 5 + . ep - 20 eg+ 69 €q——r 50 ) (3.2.30)
Now we recall that all derivatives de, /08 are zero, except for two derivatives,

6e7~ deg

= — = —e, .2.31

90 €y, a0 €r, (3 3 )

and find that

»_ (50’,.7. 41 1 8097) (80',,.9 L1 1 Oopg

1 Oe, 1 aeg
or r 00 or r 0 ) 9+0rﬂ;ee 90 eg+ o0 957%’ (3.2.32)

where summation is implied over the repeated index, 5. Simplifying, we derive the expressions given
in Table 3.2.1(c).

Cylindrical and spherical polar coordinates

Expressions for the components of the hydrodynamic volume force ¥ in cylindrical and spherical
polar coordinates are collected in Table 3.2.1(a, b).
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(a) o 00 12 N l@(aa(m) 19004y
T oz o 0Jo o Op
s 0040 la(aa[m) l(‘?a@g _ Opp
7 Oz o OJo o Op o
5, = 0044 n ia(UQUsoo) N laaw,

ox o2 Oo o Op

1 9(r2o.r) N 1 O(orpsind) N 1 Oogr 000 + 0pp

%, = =
r2  Or 7 sin 0 00 rsinf Jy r
5o 1 A(r?o.e) 1 9(oppsind) 1 0Oope  0rg— 0pypcotl
"R o rsin 6 09 rsinf OJy r
1 9(r? orp) 1 00g, 1 00y, = Orp+209,cotd
7 or r 00 rsinf Jp r
(c)
5, = 19(royr) N 1dog; 90, 5, = 1 9(r?cr9)  100gg

r Or r 00 r r2  Or r 00

TABLE 3.2.1 (b) The z, o, and ¢ components of the hydrodynamic volume force in cylindrical polar
coordinates. (b) The r, 6§, and ¢ components of the hydrodynamic volume force in spherical
polar coordinates. (¢) The r and # components of the hydrodynamic volume force in plane polar
coordinates.

3.2.6 Noninertial frames

Cauchy’s equation of motion was derived under the assumption that the frame of reference is inertial,
which means that the Cartesian axes are either stationary or translate in space with constant velocity,
but neither accelerate nor rotate. It is sometimes convenient to work in a noninertial frame whose
origin translates with respect to an inertial frame with time-dependent velocity, U(¢), while its axes
rotate about the instantaneous position of the origin with a time-dependent angular velocity, ().
Since Newton’s law only applies in an inertial frame, modifications are necessary in order to account
for the linear and angular acceleration.

Velocity

Our first task is to compute the velocity of a point particle in an inertial frame in terms of its
coordinates in a noninertial frame. We begin by introducing three unit vectors, ei, ez, and es,
associated with the noninertial coordinates, y;, y2, and y3, and describe the position of a point
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particle in the inertial frame as
X=x0+Y, (3.2.33)

where Xq is the instantaneous position of the origin of the noninertial frame, Y =Y e; is the point-
particle position in the noninertial system, and Y; are the corresponding coordinates; summation is
implied over the repeated index, i. By definition, xy and e; evolve in time according to the linear
equations

dXO _ U, dei

dt dt
Taking the material derivative of (3.2.33), we obtain an expression for the velocity in the inertial
system,

=Qxe;. (3.2.34)

DX dxo DY; de;
=—=— i +Y, —. 3.2.35
S TH TR R ( )
Using (3.2.34), we find that
DY;
u=U+ Dt & +QxY. (3.2.36)
The second term on the right-hand side is the velocity of a point particle in the noninertial system,
_ D% (3.2.37)
V=5 e 2.
The velocity components in the noninertial system are v; = DY;/Dt.
Acceleration
The acceleration of a point particle in the inertial system is
Du D?X
X)=— = —=. 3.2.
aX) =57 = e (32.38)
Taking the material derivative of (3.2.36), we obtain
dU D%, DY; de; DY; de de;
= — +—le L QX (—=te) + — Q x (V; =—=2). 2.
a(X) AT TR ST T X(Dtel)+thY+ X(ldt) (3.2.39)

The second term on the right-hand side represents the acceleration of the point particles in the
noninertial frame,

D?Y;
Dt2

Using the second relation in (3.2.34) to simplify the third and last terms on the right-hand side of
(3.2.39), we find that

a(Y) = e;. (3.2.40)

a(X):%+a(Y)+2va+%><Y+Q><(Q><Y). (3.2.41)

The right-hand side involves position, velocity, and acceleration in the noninertial system alone.
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FIGURE 3.2.1 lllustration of the Coriolis and centrifugal forces on the globe due to the rotation of the
earth.

Equation of motion

Substituting the right-hand side of (3.2.41) for the point-particle acceleration into the equation of
motion (3.2.3), and rearranging, we derive a generalized equation of motion in the noninertial frame,

Dv

pD—t:2+pg+fI, (3.2.42)
where v is the velocity field in the noninertial frame,
dU dQ2
flzfp(E—FQva—l—Qx(Qxy)—f—gxy) (3.2.43)

is a fictitious inertial force per unit volume of fluid, and y is the position in the noninertial frame.
The fictitious inertial force consists of (a) the linear acceleration force, —pdU/d¢; (b) the Coriolis
force, —2 pQ x v; (c) the centrifugal force, —p Q x (Q x y); and (d) the angular-acceleration force,
—p(dQ/dt) x y.

Centrifugal and Coriolis forces

The Coriolis and centrifugal forces on the globe are illustrated in Figure 3.2.1. A Coriolis force
develops at the equator when a fluid moves along or normal to the equator with respect to the rotating
surface of the earth. A centrifugal force develops everywhere except at the poles, independent of the
fluid velocity. The negative of the last term on the right-hand side of the ¢ component of the point
particle acceleration in cylindrical polar coordinates shown in Table 1.3.1, multiplied by the fluid
density, —p ufa /o, is also called the centrifugal force. The negative of the last term on the right-hand
side of the ¢ component of the point particle acceleration in cylindrical polar coordinates shown in
Table 1.3.1, multiplied by the fluid density, —pusu, /o, is also called the Coriolis force. However,
this terminology is not entirely consistent, for the centrifugal and the Coriolis forces are attributed
to a noninertial system. Similar terms appear in the r and 6 components of the point-particle
acceleration in plane polar coordinates.
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To understand the physical motivation for this nomenclature, we consider a fluid in rigid-body
rotation. Describing the motion in a stationary frame of reference, we identify the term pui /o with
the centripetal point-particle acceleration force, which must be balanced by an opposing radial force.
Describing the motion in a noninertial frame of reference that rotates with the fluid, we find that
the Coriolis force is zero, and the centrifugal force is —p ui /o. The temptation to interpret the
centripetal acceleration force, in the inertial system as the centrifugal force is then apparent.

Problems

3.2.1 Angular momentum balance with respect to an arbitrary point in space

Write the counterpart of the balance (3.1.20) when the angular momentum and torque are computed
with respect to an arbitrary point, xo. Then proceed as in the text to derive (3.2.24).

3.2.2 Hydrodynamic volume force in polar coordinates

Derive the components of the hydrodynamic volume force, ¥ = V - o, in (a) cylindrical polar and
(b) spherical polar coordinates.

3.3 Constitutive equations for the stress tensor

Molecular motions in a fluid that has been in a macroscopic state of rest for a sufficiently long period
of time reach dynamical equilibrium whereupon the stress field assumes the isotropic form

o=—punl, (3.3.1)

where I is the identity matrix. The thermodynamic pressure, pyp, is a function of the density and
temperature, and depends on the chemical composition of the fluid in a manner that is determined
by an appropriate equation of state.

Ideal-gas law

In the case of an ideal gas, the thermodynamic pressure, py,, is related to the density, p, by Clapey-
ron’s ideal gas law,

RT

Pth =
where R = 8.314 x 10® kg m?/(s? kmole K) is the ideal gas constant, T is Kelvin’s absolute tempera-
ture, which is equal to the Celsius centigrade temperature reduced by 273 units, M is the molar mass,
defined as the mass of one mole comprised of a collection of N4 molecules, and N4 = 6.022 x 1026 is
the Avogadro number. The molar mass of an element is equal to the atomic weight of the element
listed in the periodic table expressed in grams.

Effect of fluid motion

Physical intuition suggests that the instantaneous structure of the stress field inside a fluid that has
been in a state of motion for some time depends not only on the current thermodynamic conditions,
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but also on the history of the motion of all point particles comprising the fluid, from inception of
the motion, up to the present time. Leaving aside physiochemical interactions that are independent
of the fluid motion, we argue that the stress field depends on the structure of the velocity field at all
prior times. This reasoning leads us to introduce a constitutive equation for the stress tensor that
relates the stress at a point at a particular instant ¢ = 7 to the structure of the velocity field at all
prior times,

o(t=7)=¢Gu(t<7). (3.3.3)

The nonlinear functional operator G may involve derivatives or integrals of the velocity with the
respect to space and time. Coefficients appearing in the specific functional form of G are regarded
as rheological properties of the fluid.

Reaction pressure and deviatoric stress tensor

It is useful to recast equation (3.3.3) into the alternative form
oc=-pl+g, (3.3.4)

where p is the reaction pressure defined by the equation
1
p=-3 trace(o), (3.3.5)

and & is the deviatoric part of the stress tensor. Since o is a tensor, its trace and therefore the
reaction pressure are invariant under changes of the axes of the Cartesian coordinates. Physically,
the negative of the reaction pressure can be identified with the mean value of the normal component
of the traction exerted on a small surface located at a certain point, averaged over all possible
orientations. In a different interpretation, the reaction pressure is identified with the mean value of
the normal component of the traction exerted on the surface of a small spherical parcel (Problem
3.3.1). In the remainder of this book, the reaction pressure will be called simply the pressure.

Coordinate invariance, objectivity, and fading memory

To be admissible, a constitutive equation must satisfy a number of conditions (e.g., [365, 396]). The
condition of coordinate invariance requires that the constitutive equation should be valid indepen-
dent of the coordinate system where the position vector, velocity, and stress are described. Thus,
the functional form (3.3.3) must hold true independently of whether the stress and the velocity
are expressed in Cartesian, cylindrical polar, spherical polar, or any other type of curvilinear co-
ordinates. The condition of material objectivity requires that the instantaneous stress field should
be independent of the motion of the observer. The condition of fading memory requires that the
instantaneous structure of the stress field must depend on the recent motion of the fluid stronger
than it does on the ancient history.

Significance of parcel deformation

Next, we argue that the history of deformation of a small fluid parcel rather than the fluid velocity
itself is significant as far as determining deviatoric stresses on the parcel surface. This argument
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is supported by the observation that rigid-body motion does not generate a deviatoric stress field.
Replacing the velocity in the arguments of the operator in (3.3.3) with the deformation gradient F
introduced in (1.3.31), we obtain

ot=71)=G[F(t<T7). (3.3.6)

If the deformation gradient is zero throughout the domain of flow, the fluid executes rigid-body
motion.

3.3.1 Simple fluids

The stress tensor in a simple fluid at the position of a point particle labeled a is a function of the
history of the deformation gradient, F', evaluated at all prior positions of the point particle over all
past times up to the present time [408]. The constitutive equation for a simple fluid thus takes the
form

o(a,t=7)=G[F(a,t <T)]. (3.3.7)

It can be shown that a simple fluid is necessarily isotropic, that is, it has no favorable or unfavorable
directions in space ([365], p. 67).

3.3.2 Purely viscous fluids

A purely viscous fluid is a simple fluid with the added property that the stress at the location of a
point particle at a particular time instant is a function of the deformation gradient evaluated at the
position of the point particle at that particular instant (e.g., [365], p. 134). Thus, the constitutive
equation for a purely viscous fluid takes the simplified form

ola,t =7)=G[F(a,t =7)]. (3.3.8)

A purely viscous fluid lacks memory, that is, it is inelastic. Enforcing the principle of material
objectivity, we find that the functional form of the operator G in (3.3.8) must be such that the
antisymmetric part of F' drops out and the stress tensor must be a function of the rate-of-deformation
tensor, E = %(L +LT) - %aI. We thus obtain a constitutive relation first proposed by Stokes in
1845,

o(a,t=1) = GE(a,t =71)]. (3.3.9)

Because o as well as E, E2, E2, ..., are all second-order tensors transforming in a similar fashion,
as discussed in Section 1.1.7, the most general form of (3.3.9) is

o(a,t=T) = fo(l1,Io,I3) I+ fi(I1, 15, I3) E + fo(I1, I, I3) E® + - - -, (3.3.10)

where f; are functions of the three invariants of the rate-of-deformation tensor introduced in (1.1.46).
Built in equation (3.3.10) is the assumption that the principal directions of the stress tensor are
identical to those of the rate-of-deformation tensor, as required by the stipulation that the fluid is
isotropic.
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3.3.3 Reiner—Rivlin and generalized Newtonian fluids

Using the Caley—Hamilton theorem [317], we can express the power E™ for n > 3 as a linear
combination of I, E, and E2?, with coefficients that are functions of the three invariants. This
manipulation allows us to retain only the three leading terms shown on the right-hand side of (3.3.10).
The resulting constitutive equation describes a Reiner—Rivlin fluid. A generalized Newtonian fluid
arises by eliminating the quadratic term, setting fo = 0. Examples of generalized Newtonian fluids
are the power-law and the Bingham plastic fluids.

As an example, we consider unidirectional shear flow along the z axis with velocity varying
along the y axis, u = [uy(y),0,0]. The shear stress is determined from the constitutive equation

7 duy,
dy ’

dug
dy

where po and n are two physical constants. This scalar constitutive equation corresponds to a
generalized Newtonian fluid, called the power-law fluid. Setting n = 0 we obtain a Newtonian fluid.

3.3.4 Newtonian fluids

A Newtonian fluid is a Reiner—Rivlin fluid whose stress depends linearly on the rate of deformation
tensor. All functions f,, with n > 1 in (3.3.10) are zero, f; is constant, and fj is a linear function of
the third invariant, I3 = V - u, which is equal to the rate of expansion, a. We thus set

fo=-p, fi=2p, (3.3.12)

where p is the reaction pressure, allowed to be a linear function of the rate of expansion, and the
coefficient p is a physical constant with dimensions of mass per time per length called the dynamic
viscosity or simply the viscosity of the fluid. The viscosity is often measured in units of poise, which
is equal to 1 gr/(cm sec). In general, the viscosity of a gas increases, whereas the viscosity of a liquid
decreases as the temperature is raised. The viscosity of water and air at three temperatures is listed
in the first column of Table 3.3.1. The constitutive equation for a Newtonian fluid thus takes the
linear form

o=-pl+2uE. (3.3.13)

Because the trace of the rate-of-deformation tensor E is zero, the trace of o is equal to —3p, as
required.

Dilatational viscosity

The reaction pressure in a fluid that has been left alone in a macroscopic state of rest for a long
time period of time reduces to the thermodynamic pressure, p:;, determined by the local density
of the fluid and temperature according to an assumed equation of state. Under flow conditions, we
note the assumed linearity of the stress tensor on the rate-of-deformation tensor and recall that the
fluid is isotropic to write

P = P — KQ, (3.3.14)
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Temperature Water Air Water Air
7(°C) p(cp)  wlep) v (em?/s) v (cm?/s)
20 1.002 0.0181 1.004 x 102 15.05 x 102
40 0.653 0.0191 0.658 x 1072 18.86 x 1072
80 0.355 0.0209 0.365 x 1072 20.88 x 1072

TABLE 3.3.1 The dynamic viscosity (1) and kinematic viscosity (v) of water and air at three temper-
atures; cp stands for centipoise, which is one hundredth of the viscosity unit poise: 1 cp = 0.01

g/(cm sec).

where oo = V - u is the rate of expansion and « is a physical constant with dimensions of mass per
time and length, called the dilatational or expansion viscosity [351]. The Newtonian constitutive
equation then takes the form

o=—-—pnl+ral+2uE. (3.3.15)
The trace of the stress tensor is
trace(o) = —3 pi, + 3K (3.3.16)

The coefficient 3« is sometimes called the bulk viscosity. The constitutive equation (3.3.15) is known
to describe with high accuracy the stress distribution in a broad range of fluids whose molecules
are small compared to the macroscopic dimensions of the flow and whose spatial configuration
is sufficiently simple. Substituting into (3.3.15) the definition of the rate-of-deformation tensor,
E =3 (L+L") - fal, we obtain

o=—pmI+ral+pL+L7"), (3.3.17)

where L is the velocity gradient tensor, the superscript T denotes the matrix transpose, and

2
A=kK— s (3.3.18)

is the second coefficient of viscosity.

Internal energy

Substituting the Newtonian constitutive equation (3.3.15) into (3.2.20), we find that the rate of
production of internal energy inside a fluid parcel is

dZ,
Jz—ﬂ pthadV—i-ﬁ IianV-i-Qﬁ pE:EdV. (3.3.19)
dt Parcel Parcel Parcel

The first term on the right-hand side expresses reversible production of energy in the usual sense of
thermodynamics. The second term expresses irreversible dissipation of energy due to the expansion
or compression of the fluid, which further justifies calling s the expansion viscosity. The third term
expresses irreversible dissipation of energy due to pure deformation.
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Incompressible Newtonian fluids

The rate of expansion vanishes in the case of an incompressible Newtonian fluid, a = 0. Expressing
the rate of deformation tensor in terms of the velocity gradient tensor, we recast the Newtonian
constitutive equation (3.3.13) into the form

o=pIl+u[Vu+ (Vu)']. (3.3.20)

Explicitly, the nine components of the stress tensor are given by the matrix equation

R Ouy (auy 8um) (8uz n 8um) 7
PT2h5e Hlo dy A 0z
Oez  Ooy Ozz Ou,  Ouy Ouy Ou, = Ouy
v .| = vy - ] ] 3.21
Zy Zyy Zy H(ay 8:5) P+ u(f?y 'UJ([“)y+ Bz) (3.3.21)
2T 2y zz
Ouy  Ou, Ouy  Ou, ou,
] —p+2
|1 ) rlr t ) TR

It is important to recognize that, by requiring incompressibility, which is tantamount to as-
suming that fluid parcels maintain their original volume and density, we essentially discard the
functional dependence of the hydrodynamic to the thermodynamic pressure, and (3.3.14) may no
longer be applied.

Polar coordinates

Explicit expressions for the components of the stress tensor in terms of the velocity and pressure
in cylindrical, spherical, and plane polar coordinates are given in Table 3.3.2. Note that the stress
components remain symmetric in orthogonal curvilinear coordinates. In the case of two-dimensional
flow expressing rigid-body rotation with angular velocity 2 around the origin in the xy plane, we
substitute v, = 0 and ug = Qr and find that o,. = —p, 0.9 = 0, 09, = 0, 099 = —p, where p is the
pressure.

3.3.5 Inviscid fluids

Inviscid fluids, also called ideal fluids, are Newtonian fluids with vanishing viscosity. The constitutive
equation for an incompressible inviscid fluid derives from (3.3.20) by setting 1 = 0, yielding

oc=—-pL (3.3.22)

In real life, no fluid can be truly inviscid and equation (3.3.22) must be regarded as a mathematical
idealization arising in the limit as the rate-of-deformation tensor, E, tends to become vanishingly
small. Under certain conditions, superfluid helium behaves like an inviscid fluid and may thus be
used in the laboratory to visualize ideal flows.

It is instructive to note the similarity in functional form between (3.3.22) and (3.3.1). However,
it is important to acknowledge that the pressure in (3.3.22) is a flow variable, whereas the pressure
in (3.3.1) is a thermodynamic variable determined by an appropriate equation of state.
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o (2 (O 2
oot (2 22)
) B ou, B B 0 /up 1 Ou,
mw=pt2ugt ow=on=ura () + 5]
inf 0 0
JW:UW:M[ST %(sﬁf@) Tsiln(?@iapo}
UW,:prruTSine(%+ursin6+u0c059)
) B ou, B B 0 [up 1 Ou,
Trr = P+ 2075 ”T“""T*“{TE(T)+239}
-

TABLE 3.3.2 Constitutive relations for the components of the stress tensor for an incompressible New-
tonian fluid in (a) cylindrical, () spherical, and (¢) plane polar coordinates. Note that the stress
components remain symmetric in orthogonal curvilinear coordinates.

Problems

3.3.1 Molar mass of steam

What is the molar mass of steam?

3.3.2 Hydrodynamic pressure

Demonstrate that —p is the average value of the normal component of the traction exerted on the
surface of a spherical fluid parcel with infinitesimal dimensions.
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3.4 Force and energy dissipation in incompressible Newtonian fluids

In the remainder of this book, we concentrate on the motion of incompressible Newtonian fluids. In
the present section, we use the constitutive equation (3.3.20) to derive specific expressions for the
traction, force, and torque exerted on a fluid parcel and on the boundaries of the flow in terms of the
velocity and the pressure, assess the rate of change of the internal energy due to viscous dissipation,
and derive the specific form of the integral energy balance.

3.4.1 Traction and surface force

Substituting (3.3.20) into (3.1.11), we find that, the traction exerted on a fluid parcel is given by
the following expressions in terms of the instantaneous pressure and velocity fields,

f=-—pn+2uE-n=-pn+u[(Vu) - n+n-Vu], (3.4.1)

where E = § (L 4+ L7) is the rate-of-deformation tensor for an incompressible fluid and L = Vu is
the velocity gradient tensor. In index notation,

fi=-pni+p(=2Ln;+n; —).
(axl J Jaxj)

(3.4.2)
The third term on the right-hand side expresses the spatial derivative of the ith velocity component
in the direction of the normal vector. When the fluid is inviscid, we obtain a simplified form involving
the pressure alone, f = —pn.

In terms of the vorticity tensor, E = % (L — L), we obtain
f=-pn+2u(n-Vu+n-8). (3.4.3)
Expressing the vorticity tensor in terms of the vorticity vector, we find that
f=-pn+2un-Vu+punxw. (3.4.4)

The union of the second and third terms on the right-hand side expresses the traction due to the
deviatoric component of the stress tensor. If the velocity field is irrotational, the last term on the
right-hand side vanishes and the part of the traction corresponding to the deviatoric component
of the stress tensor is proportional to the derivative of the velocity in the direction of the normal
vector, n - Vu.

Normal and tangential components

It is useful to decompose the traction into a normal component, £V, and a tangential or shear
component, f7, so that f = f¥ 4+ f7. In general, both the normal and tangential components are
nonzero. At a surface that cannot withstand a shear stress, defined as a free surface, the tangential
component is zero. Projecting (3.4.4) onto the normal unit vector, we obtain the normal component
of the traction,

£y = [—p+2un-(Vu) n|n. (3.4.5)



212 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

Introducing a local Cartesian coordinate system with two axes perpendicular to the normal unit
vector, n, we find that the second term on the right-hand side of (3.4.5) expresses the viscous stress
associated with the normal derivative of the normal velocity component. Multiplying (3.4.1) with
the projection matrix I — n ® n, we obtain the tangential component of the traction,

f'=2un-E-I-n®n)=2unx (n-E) x n. (3.4.6)

The structure of the flow must be such that the right-hand side of (3.4.6) is identically zero at a free
surface.

3.4.2 Force and torque exerted on a fluid parcel

Substituting (3.4.1) into (3.1.13) and adding the body force, we obtain the total force exerted on a
parcel of an incompressible Newtonian fluid,

FtOt:—/ pndS+2/ ,uE~ndS+ﬁ pgdV, (3.4.7)
Parcel Parcel Parcel

where n is the normal unit vector pointing outward from the parcel. Substituting (3.4.1) into
(3.1.20), we find that, in the absence of an external torque field, the torque with respect to a point,
Xg, exerted on the parcel is given by

T = —/ p(x —Xg) X ndS—i—Z/ 1 (x —x0) X (E-n) dS—&—ﬂ p(x—x0)dV xg, (3.4.8)
Parcel Parcel Parcel

where n is the normal unit vector pointing outward from the parcel.

3.4.3 Hydrodynamic pressure and stress

When the density of the fluid and acceleration of gravity are uniform throughout the domain of flow,
it is beneficial to eliminate the body force from expressions (3.4.7) and (3.4.8) by introducing the
hydrodynamic pressure and corresponding hydrodynamic stress tensor, denoted by a tilde, defined
as

P=p—pg-X, c6=-pl+2uE=0+p(g-x)L (3.4.9)

In hydrodynamic variables, the total force and torque with respect to a point x( exerted on a fluid
parcel are given by the surface integrals

Ffot:_/ p’ndS+2/ pE-ndS (3.4.10)
Parcel Parcel
and
Tiot — —/ P (x —xg) X ndS+2/ w(x—x0) x (E-n)dS. (3.4.11)
Parcel Parcel
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3.4.4 Force and torque exerted on a boundary

To derive an expression for the hydrodynamic force exerted on a boundary, B, we substitute (3.4.1)
into (3.1.16) and obtain

F:—/ pndS—FZ/ pwE-ndS, (3.4.12)
B B

where n is the normal unit vector pointing into the fluid. The first term on the right-hand side
represents the form drag, and the second term represents the skin friction.

To obtain an expression for the torque with respect to a point, xg, we substitute (3.4.1) into
(3.1.23) and obtain

T:—/Bp(x—xo)XndS—!—Q/B,u(x—xo)x(E-n)dS. (3.4.13)

In hydrostatics, or when viscous stresses are insignificant, the force and torque can be com-
puted from knowledge of the pressure distribution over the boundary.
3.4.5 Energy dissipation inside a parcel

Substituting the Newtonian constitutive equation (3.3.20) into (3.2.20) and using the continuity
equation, V - u = 0, we find that the rate of viscous dissipation inside a fluid parcel is given by

dZ.
—2 = ﬁ o dv, (3.4.14)
dt Parcel
where
P=2uE:E (3.4.15)

expresses the rate of viscous dissipation per unit volume of fluid. Equation (3.4.14) is a special
version of (3.3.19) applicable to compressible Newtonian fluids. Viscous forces dissipate energy,
converting it into thermal energy and thereby raising the temperature of the fluid. When the rate
of viscous dissipation is negligible, the sum of the kinetic and potential energies remains constant in
time.

3.4.6 Rate of working of the traction

Integrating both sides of the identity
u- (V-oe)=V:-(u-0)—0:Vu (3.4.16)

over the volume of a fluid parcel, and using the divergence theorem, we obtain

ﬁ u-(V-a)dV:—/ u-fds— o :VudV, (3.4.17)
P P

arcel arcel Parcel
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where f = n - o is the boundary traction and n is the normal unit vector pointing into the parcel.
Substituting the Newtonian constitutive equation (3.3.20), we obtain

ﬁ u-(V~a’)dV:—/ u-fas— [[| vav. (3.4.18)
Parcel Parcel Parcel
The two terms on the right-hand side of (3.4.18) represent, respectively, the rate of working of the

surface traction and the rate of viscous dissipation.

Working in a similar fashion with the deviatoric part of the stress tensor & defined in (3.3.4),
we obtain

ﬁ u-(V-&)dV:—/ u-fds - ddv, (3.4.19)
P P

arcel arcel Parcel

where f = n - & is the deviatoric part of the traction.

In the case of a fluid with uniform viscosity, we use the Newtonian constitutive relation (3.3.20)
and the continuity equation to obtain

V-&d=puViu=—pV x w. (3.4.20)

Using this relation, we find that, if the flow is irrotational or the vorticity is uniform throughout
the domain of flow, the rate of working of the deviatoric viscous traction is balanced by the rate of
viscous dissipation,

/ u-fds=— ﬁ o dV. (3.4.21)
Parcel Parcel

3.4.7 Energy integral balance

Substituting the Newtonian constitutive equation (3.3.20) into (3.2.13), we derive the explicit form
of the integral energy balance over a fixed control volume, V., bounded by a surface, D,

1 1
ﬁ(fp\u\Q)de/(fp\u\Q)u~ndS—/ u-de—ﬁ <I>dV+ﬁ pg-udV, (3.4.22)
VC at 2 D 2 D Vc Vc

where the normal unit vector, n, points into the control volume. The five integrals in (3.4.22)
represent, respectively, the rate of accumulation of kinetic energy inside the control volume, the rate
of convection of kinetic energy into the control volume, the rate of working of surface forces, the
rate of viscous dissipation, change of potential energy associated with the body force.

When the flow is irrotational or the vorticity is uniform throughout the domain of flow, we
use (3.4.21) and obtain the simplified form

a1 1
ﬂ &(§p|u|2) dV:/(Qp\u|2)u~ndS+/ pu~nd5+ﬁ pg-udV. (3.4.23)
V. D D Ve

This energy balance is also valid when the flow is not irrotational or has uniform vorticity, but the
fluid can be considered to be inviscid.
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Problem

3.4.1 Energy dissipation

Compute the energy dissipation inside a parcel of an Newtonian fluid in simple shear flow with
velocity u, = £y, uy = 0, u, = 0, where £ is a constant shear rate.

3.5 The Navier-Stokes equation

Substituting the constitutive equation for an incompressible Newtonian fluid (3.3.20) into Cauchy’s
equation of motion (3.2.1), we obtain the Navier—Stokes equation

p%z—Vp+2V~(uE)+pg. (3.5.1)
The density, p, and viscosity, u, are allowed to vary in time and space in the domain of flow.
Substituting into (3.5.1) the definition of the rate-of-deformation tensor for an incompressible fluid,
E= % [Vu + (Vu)7], expanding the derivatives, using the continuity equation for an incompressible
fluid, V-u = 0, and expressing the material derivative of the velocity in terms of Eulerian derivatives,
we recast (3.5.1) into the explicit form

Ju
p(a+u~Vu):—Vp+uv2u+2Vu~E+pg. (3.5.2)
The four terms on the right-hand side express, respectively, the pressure force, the viscous force, a
force due to viscosity variations, and the body force. The union of the first three terms comprises
the hydrodynamic volume force,

¥ =-Vp+2V-(uE)=-Vp+ uV3u+2Vyu-E. (3.5.3)

The three Cartesian components of the Navier—Stokes equation for a fluid with uniform viscosity
are displayed in Table 3.5.1.

When the fluid density and acceleration of gravity are uniform throughout the domain of flow,
it is convenient to work with the hydrodynamic pressure, p = p—p g-x, and associated hydrodynamic
stress tensor indicated by a tilde introduced in (3.4.9), obtaining the equation of motion

D
pD—‘;:v.&:—Vﬁwv.(uE), (3.5.4)

which is distinguished by the absence of the body force. In solving the Navier—Stokes equation,
the distinction between the regular and modified pressure becomes relevant only when boundary
conditions for the pressure or traction are imposed.

Kinematic viscosity
Dividing both sides of (3.5.2) by the density, we obtain the new form

0 1 2

ot
ot
S~—

ot
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% Ouy Ouy % dp 0uy  Puy  Puy
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PG tuegy Tiugy TG, =gy tH G T T 52 ) T
Ou, Ou, Ou, Ou, ap u, Pu, *u,

Oy + s 82):_8z+u(8x2 * Oy * 022 )+ pg
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TABLE 3.5.1 Eulerian form of the three Cartesian components of the Navier—Stokes equation for an
incompressible fluid with uniform viscosity.

where v = p/p is a new physical constant with dimensions of length squared over time analogous to
the molecular or thermal diffusivity, called the kinematic viscosity of the fluid. Sample values of the
kinematic viscosity for water and air are given in Table 3.3.1.

Cylindrical, spherical, and plane polar coordinates

The polar components of the hydrodynamic volume force arise by substituting the constitutive
equation for an incompressible Newtonian fluid in the general expressions for the hydrodynamic
volume force in terms of the stresses shown in Table 3.2.2. After a fair amount of algebra, we derive
the expressions shown in Table 3.5.2. The corresponding polar components of the Navier—Stokes
equation arise by substituting these expressions in the right-hand side of (3.2.3).

3.5.1 Vorticity and viscous force

The identity V2u = —V x w, applicable for any solenoidal velocity field, V - u = 0, allows us to
express the Laplacian of the velocity on the right-hand side of (3.5.2) in terms of the vorticity, and
thereby establish a relationship between the structure of the vorticity field and the intensity of the
viscous force. Assuming, for simplicity, that the fluid viscosity is uniform throughout the domain of
flow, we recast (3.5.2) into the form

Du

pD—t:—Vp—quuH—pg, (3.5.6)

which shows that viscous forces are important only in regions where the curl of the vorticity is
significant.

The equation of motion (3.5.6) reveals that irrotational flows and flows whose vorticity field
is irrotational behave like inviscid flows. The dynamics of these flows is determined by a balance
between the inertial force due to the point-particle acceleration, the pressure force, and the body
force. Viscosity is important only insofar as to establish the vorticity distribution. Once this has
been achieved, viscosity plays no further role in the force balance. Flows with irrotational vorticity
fields include two-dimensional flows with constant vorticity and axisymmetric flows without swirling
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TABLE 3.5.2 Components of the hydrodynamic volume force for a Newtonian fluid in (@) cylindrical, (b)
spherical, and (¢) plane polar coordinates. The Laplacian operator V2 in spherical polar coordinates
is given in the fourth entry of (b).

motion where the azimuthal vorticity component increases linearly with distance from the axis of
revolution, w, = {10, where 1 is a constant.
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3.5.2 Uniform-density and barotropic fluids

We now focus our attention on fluids with uniform density and on barotropic fluids whose pressure
is a function of the density alone, p(p). Although the second stipulation is not entirely consistent
with the assumptions underlying the derivation of the Navier—Stokes equation for an incompressible
fluid, it is sometimes a reasonable approximation. We may then write

1
-Vp=VF, (3.5.7)
p

where F = p/p in the case of uniform-density fluids. In the case of barotropic fluids, the function F

is found by integrating the ordinary differential equation

dF 1dp
- ==, 3.5.8
dp pdp (3.58)

For simplicity, in our discussion we consider uniform-density fluids. Adaptations for barotropic fluids
can be made by straightforward modifications.
3.5.3 Bernoulli function

Expressing the material derivative in (3.5.6) in terms of Eulerian derivatives and using the identity

=

u-Vu=_-V(u-u) —uxuw, (3.5.9)

DN | =

we derive a new form of the Navier—Stokes equation,

0 1

£+V(§u-u+§—g~x):uxw—nyw. (3.5.10)
Nonlinear terms appear in the second term on the left-hand side involving the square of the velocity
and in the first term on the right-hand side involving the velocity and the vorticity. The term inside
the parentheses on the left-hand side of (3.5.10) is the Bernoulli function,

u-u+=--—g-x. (3.5.11)

Physically, the Bernoulli function expresses the mass distribution density of the total energy con-
sisting of the kinetic energy, the internal energy due to the pressure, and the potential energy due
to the body force. In terms of the Bernoulli function, the Navier—Stokes equation takes the compact
form

ou

p(E—I—VB):puxw—quw. (3.5.12)

Later in this section, we will see that, under certain conditions, the Bernoulli function is
constant along streamlines or even throughout the domain of flow. When this occurs, B is called
the Bernoulli constant.
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Change of the Bernoulli function along a streamline in a steady flow

Now we project (3.5.12) at a point in a steady flow onto the unit vector that is tangent to the
streamline passing through that point, t = u/|u|. The projection of the first term on the right-hand
side vanishes identically, yielding

_ 98
)

where v = u/p is the kinematic viscosity and [ is the arc length along the streamline measured in the
direction of t. Equation (3.5.13) states that the rate of change of the Bernoulli function with respect
to arc length along a streamline is proportional to the component of the viscous force tangential
to the streamline. When the viscous force opposes the motion of the fluid, B decreases along the
streamline, 9B/9l < 0.

t-VB =—vt(Vxw), (3.5.13)

Integrating (3.5.13) along a closed streamline and using the fundamental theorem of calculus
to set the integral of the left-hand side to zero, we obtain

}[t AV xw)dl =0, (3.5.14)

which shows that the circulation of the curl of the vorticity along a closed streamline is zero in a
steady flow.

3.5.4 Vortex force

The first term on the right-hand side of (3.5.12), pu x w, is called the vortex force. In a Beltrami
flow where, by definition, the velocity is parallel to the vorticity at every point, the vortex force is
identically zero and the nonlinear term u - Vu is equal to the gradient of the kinetic energy per unit
mass of the fluid.

Two-dimensional and axisymmetric flow

In the case of a two-dimensional or axisymmetric flow, we introduce the two-dimensional stream
function or the axisymmetric Stokes stream function, v, and express the outer product of the
velocity and vorticity, respectively, as

uXxXw=—w, Vi, uxw= fu;—“p V. (3.5.15)

In the second equation for axisymmetric flow, o is the distance from the axis of revolution, w,, is
the azimuthal component of the vorticity, and V is the gradient in the xo azimuthal plane.

Later in this chapter, we will discuss a class of steady two-dimensional flows where the vorticity
is constant along the streamlines and may thus be regarded as a function of the stream function,
w, = f(v), and a class of axisymmetric flows where the ratio w,, /o is constant along the streamlines
and may thus be regarded as a function of the Stokes stream function, w, /o = f(1). Under these
circumstances, the right-hand sides of equations (3.5.15) can be written as a gradient,

uxw=—-VF(y), (3.5.16)
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where the function F' is the indefinite integral of the function f,

dr
dyp
Equation (3.5.16) shows that, because the cross product u X w constitutes an irrotational vector
field, the vortex force can be grouped with the gradient on the left-hand side of (3.5.13). In the case

of two-dimensional flow with constant vorticity, or axisymmetric flow where f(¢) = Q, with Q being
constant, we find that F' = Qi + ¢, where c¢ is constant throughout the domain of flow.

f@). (3.5.17)

3.5.5 Reciprocity of Newtonian flows

Consider the flow an incompressible Newtonian fluid with density p, viscosity u, velocity u, and
corresponding stress field o, and another unrelated flow of an incompressible Newtonian fluid with
density p’, viscosity u', velocity u’, and corresponding stress field o’. Projecting the velocity of the
second flow onto the divergence of the stress tensor of the first flow at some point, we obtain

Ooi;  O(uloij) ou,
/. . Y A R el S e 3 5.1
u-(V-o)=u; oz, oz, 0ij oz, (3.5.18)

Substituting the definition of the stress tensor, we obtain

A(uiois) ou; duj \ Ou
(Vo) = BT (o - gt - p D) S0 3.5.19
Using the continuity equation to eliminate the term involving the pressure, we find that
o(u}oij) Ou;  Ouj\ Ou
(Vo) = TR (0 1) U 3.5.20
u ( U) al‘j H 8xj + (9567, 8xj ( )

Setting 1/ = p and u = v/, integrating over the volume of a fluid parcel, and using the divergence
theorem, we recover (3.4.18).

Now interchanging the roles of the two flows, we obtain

u-V-o' = (3.5.21)

8(u10';]) B ,u/ <8u; n (911,; ) ou; .
632]' 632]' 833‘1' 632]'

Multiplying (3.5.20) by p’ and (3.5.21) by u, and subtracting corresponding sides of the resulting
equations, we obtain the differential statement of the generalized Lorentz reciprocal identity

0
— (//ugaij — /J/Uio-;j) =y'v -V-o—pu-V-o, (3.5.22)
(%cj

which imposes a constraint on the mutual structure of the velocity and stress fields of two unre-
lated incompressible Newtonian flows. Equations (3.5.20), (3.5.21), and (3.5.22) also apply for the
hydrodynamic stress tensor defined in (3.4.9) (Problem 3.5.1).



3.5 The Navier—Stokes equation 221

Expressing the divergence of the stress tensors on the right-hand side of (3.5.22) in terms of
the point-particle acceleration and the body force using the equation of motion, we obtain

i(u’u’-()’" _ MU‘O'{v) = pp/u’ - % — - Du’
D, \I i3 — i D D

— (pp'n’ = p'pu) - . (3.5.23)

In terms of the hydrodynamic stress tensor indicated by a tilde, we obtain the simpler form

9 ( ' - ) 2% g DY
. i0ij — HU045 ) = v ) .
Bz HuiOqj — (U0 PH Di P Dt

(3.5.24)

Integrating (3.5.24) over a chosen control volume, V., that is bounded by a surface, D, and using
the divergence theorem to convert the volume integral of the left-hand side into a surface integral
over D, we derive the corresponding integral form

/

= = Du Du
1.7 _ . /! — / /. — = A .
/ (uu f—pu-f )dV = ﬂ (p,uu Dr PPy ) dv, (3.5.25)

where the normal unit vector, n, points into the control volume. In Section 6.8, we will see that
the reciprocal identities (3.5.24) and (3.5.25) find extensive applications in the study of Stokes flow
where the effect of fluid inertia is negligibly small.

Problems

3.5.1 Flow past a body

Consider a steady streaming flow of a viscous fluid in the horizontal direction past a stationary body.
Discuss whether the Bernoulli function B increases or decreases in the streamwise direction.

3.5.2 Hydrostatics

Consider a body of fluid with uniform density that is either stationary or translates as a rigid body.
Show that the general solution of the equation of motion is p = pg - x + ¢(¢t) or p = ¢(t), where ¢(¢)
is an arbitrary function of time, and p is the hydrodynamic pressure. Discuss the computation of
¢(t) for a flow of your choice.

3.5.3 Oseen flow

(a) Consider a steady streaming (uniform) flow with velocity V past a stationary body. Far from
the body, the flow can be decomposed into the incident flow and a disturbance flow v due to the
body, u = V +v. Introduce a similar decomposition for the pressure, substitute the decompositions
into the Navier—Stokes equation, and neglect quadratic terms in v to derive a linear equation.

(b) Repeat (a) for uniform flow past a semi-infinite plate aligned with the flow. Specifically, derive
a linear equation for the disturbance stream function applicable far from the plate.

3.5.4 Reciprocal identity

(a) Show that equations (3.5.20), (3.5.21), and (3.5.22) are also applicable for the hydrodynamic
stress tensor defined in (3.4.9).

(b) Derive (3.5.25) from (3.5.23).
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3.6 Euler and Bernoulli equations

When the viscous force on the right-hand side of (3.5.6) is negligible, the Navier—Stokes equation
reduces to Euler’s equation,

,ODfl: =-Vp+pg, (3.6.1)
which is strictly applicable for inviscid fluids. One important difference between the Euler equation
and the Navier—Stokes equation is that the former is a first-order partial differential equation whereas
the latter is a second-order partial differential equation in space with respect to the velocity. In
Section 3.7, we will see that this difference has important implications on the number of boundary
conditions required to compute a solution.

When the density of the fluid and acceleration of gravity are uniform throughout the domain
of a flow, it is convenient to introduce the hydrodynamic pressure incorporating the effect of the
body force, p = p — pg - x, and recast Euler’s equation (3.6.1) into the form

Du
— = —Vp. 3.6.2
P D Z (3.6.2)
This expression reveals that the point-particle acceleration field, Du/D¢, is irrotational. As a conse-
quence, if a flow governed by the FEuler equation is irrotational at the initial instant, it will remain
irrotational at all times. The permanence of irrotational flow for a fluid with uniform density and
negligible viscous forces will be discussed in the context of vorticity dynamics in Section 3.11.

In terms of the Bernoulli function,

1
B(x,t)57u~u+2—g~x, (3.6.3)
2 p
Euler’s equation reads
p(@+VB):puxw. (3.6.4)
ot

Nonlinear terms appear in the definition of the Bernoulli function as well as in the cross product of
the velocity and the vorticity on the right-hand side.

3.6.1 Bernoulli function in steady rotational flow
In the case of steady rotational flow, Euler’s equation (3.6.4) takes the simple form

VB=uxuw. (3.6.5)

In a Beltrami flow where the velocity is parallel to the vorticity at every point, the right-hand side
of (3.6.5) is zero and the Bernoulli function is constant throughout the domain of flow.

Considering the more general case of a flow where velocity and vorticity are not necessarily
aligned, we apply (3.6.5) at a certain point on a chosen streamline and project both sides onto the
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tangent unit vector. Note that the right-hand side of (3.6.5) is normal to the velocity and therefore
also to the streamline, and integrating the resulting expression with respect to arc length along the
streamline, we find that B is constant along the streamline. Symbolically, we write

B = F(streamline). (3.6.6)

The value of B at a particular streamline is usually computed by applying (3.6.5) at an entrance or
exit point and then requiring appropriate boundary conditions for the boundary velocity or traction.

Spatial distribution of the Bernoulli function

To investigate the variation of the Bernoulli function across stream-

lines, we introduce the unit vector tangent to a streamline, t = u/|ul,

the unit vector normal to the streamline, n, and the associated bi-

normal vector, b = t x n. The triplet (t,n,b) defines a system of

orthogonal right-handed coordinates. Projecting (3.6.5) onto the nor- b

mal unit vector, n, and rearranging the triple scalar product on the t
right-hand side, we find that

A local coordinate system

n-VB=(uxw) n=—(uxn)-w=-u(txn) w, (3.6.7) attached to a point on a

which can be rearranging into chosen streamline.

108

wdl,
where u = |u| and [,, is the arc length measured in the direction of n. Projecting (3.6.5) onto the
binormal unit vector, b, and working in a similar fashion, we find that

198 _
U@lb_

~w b, (3.6.8)

w-n, (3.6.9)

where [}, is the arc length measured in the direction of b. If the vorticity is locally parallel to the
velocity at the chosen point, the right-hand sides of (3.6.8) and (3.6.9) are zero and B reaches a local
extremum at that point.

Two-dimensional and axisymmetric flow

In the case of two-dimensional or axisymmetric flow that fulfills the prerequisites for (3.5.16),
we obtain the explicit expressions

B=—F()+ec, (3.6.10)

where c is constant throughout the domain of flow. For example, in the case of two-dimensional flow
with uniform vorticity, w, = €, or axisymmetric flow with azimuthal vorticity w, = 2o, where €2 is a
constant, we find that B = —Q +c. Since the curl of the vorticity and thus the magnitude of viscous
forces are identically zero, these flows represent exact solutions of the Navier—Stokes equation. The
velocity field can be computed working in the context of kinematics, and the pressure follows from
knowledge of the stream function using the derived expression for B. One example is the flow inside
Hill’s spherical vortex discussed in Section 2.12.2.



224 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

3.6.2 Bernoulli equations

Bernoulli’s equations are integrated forms of simplified versions of the Navier—Stokes equation for
certain special classes of flows.

Irrotational flow

The right-hand side of (3.6.4) is zero in a steady or unsteady irrotational flow. Introducing the
velocity potential, ¢, substituting u = V¢ in the temporal derivative on the left-hand side of (3.6.4),
and integrating the resulting equation in space, we derive Bernoulli’s equation
99
— 4+ B=ct 3.6.11
= +B=clt) (3.6.11)
where ¢(t) is an unspecified time-dependent function. In practice, the value of ¢(t) is determined by
applying (3.6.11) at a point on a selected boundary of the flow and then introducing an appropriate
boundary condition for the velocity or pressure. Equation (3.6.11) can be interpreted as an evolution
equation for ¢.

In applications involving unsteady flow with free surfaces, it is convenient to work with an
alternative form of (3.6.11) involving the material derivative of the velocity potential, D¢/Dt =
0¢/0t + u - V¢, which is equal to the rate of change of the potential following a point particle.
Adding u - V¢ and subtracting u - u from the left-hand side of (3.6.11), we obtain

=2 Cuu+logox=c) (3.6.12)
p
Working in a similar manner, we find that the rate of change of the potential as seen by an observer

who travels with arbitrary velocity v is given by

do 1 p _

When V = u, we recover (3.6.12). Equations (3.6.12) and (3.6.13) find applications in the numerical
computation of free-surface flow using boundary-integral methods discussed in Chapter 10.

Steady irrotational flow

The Bernoulli equation for steady irrotational flow takes the simple form
B=c, (3.6.14)

where ¢ is a constant. Since the velocity attains its maximum at the boundaries, the dynamic
pressure, p = p — p g - X attains a minimum at the boundaries.

Two-dimensional flow with constant vorticity

A judicious decomposition of the velocity field of a generally unsteady two-dimensional flow whose
vorticity is and remains uniform and constant in time, equal to €2, allows us to describe the flow in
terms of a velocity potential and also derive a Bernoulli’s equation for the pressure. In Section 3.13,
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we will see that the physical conditions for the vorticity to be uniform are that it is uniform at the
initial instant and the effect of viscosity is negligibly small. The key idea is to introduce the stream
function, ¢, and write

u(x,t) =V x (vYe,) =v(x)+ Vo(x, t), (3.6.15)

where v is a steady two-dimensional flow with uniform vorticity, w, = . The term V¢ represents
a complementary, generally unsteady irrotational flow, where ¢ is a suitable harmonic potential.
For example, v can be the velocity of simple shear flow along the x axis varying along the y axis,
v = (—Qy,0). Substituting (3.6.15) into (3.5.10), and noting that the viscous force is identically
zero, we obtain

¢

V(E) +VB=[Vx(e.)] x (Qe,) = —-QVip. (3.6.16)

Integrating, we derive Bernoulli’s equation involving the stream function,

%0 1 Brav=c), (3.6.17)

where ¢(t) is a time-dependent function.

3.6.3 Bernoulli’s equation in a noninertial frame

The equation of motion in an accelerating and rotating frame of reference contains three types of
inertial forces that must be taken into account when integrating the Navier—Stokes equation to derive
Bernoulli’s equations, as discussed in Section 3.2.6. Euler’s equation in a noninertial frame reads

dU dQ2
%+VB=VXQ—¥—2QXV—QX(ﬂxy)—gXy, (3.6.18)
where g is the vorticity in the noninertial frame,
1 P
B(x,t)zgv-v+;—g~y (3.6.19)

is the corresponding Bernoulli function, y is the position vector in the noninertial frame, and the
rest of the symbols are defined in Section 3.2.6.

Consider a noninertial frame that translates with linear velocity U(t) with respect to an inertial
frame, and assume that the velocity field in the noninertial frame, v, is irrotational. Expressing v
in terms of an unsteady velocity potential, ®, defined so that v = V®, and taking into account the
acceleration-reaction body force, we obtain the modified Bernoulli’s equation

dU

oD 1 p -
(E)y+§v'v+;+(g_§)'.Y—C(t)7 (3.6.20)

where ¢(t) is an unspecified function of time. When U is constant or zero, we recover the standard
Bernoulli equation for unsteady irrotational flow.
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In another application, we consider a noninertial frame whose axes rotate with constant an-
gular velocity €2 about the origin of an inertial frame. We will assume that the flow is irrotational
in the inertial frame and appears to be steady in the noninertial frame. Euler’s equation in the
noninertial frame (3.6.18) simplifies into

VB=vXx(0+20Q)—Qx (2 xy). (3.6.21)

Integrating in space, we derive a modified Bernoulli equation,
1
B— B |2 x y|* = F(streamline), (3.6.22)

which is inclusive of the Bernoulli equation (3.6.6) for an inertial frame. In the literature of geo-
physical fluid dynamics, the term p(g -y + % | x y|?) is sometimes called the geopotential.

Problems

3.6.1 Fluid sloshing in a tank

A fluid is sloshing inside a tank executing rotational oscillations about the z axis with angular velocity
Q(t). In a stationary frame of reference (z,y, z), the induced irrotational flow can be described in
terms of a velocity potential u = V¢. Derive an expression for the rate of change of the potential ¢
in a frame of reference where the tanks appears to be stationary.

3.6.2 Bernoulli’s equations in a noninertial frame
Derive (3.6.20) and (3.6.22).

3.7 Equations and boundary conditions governing the motion
of an incompressible Newtonian fluid

The flow of an incompressible Newtonian fluid is governed by the Navier-Stokes equation (3.5.1)
expressing Newton’s second law for the motion of a small fluid parcel, and the continuity equation,
V -u = 0, expressing mass conservation. The union of these two equations provides us with four
scalar partial differential equations for four scalar functions, including the three components of the
velocity, u, and the pressure, p.

To complete the mathematical statement of a fluid flow problem, we must supply an appro-
priate number of boundary conditions for certain flow variables including the velocity, the pressure,
or the traction. In the case of unsteady flow, we must also supply a suitable initial condition for
the velocity. The initial pressure field can be found by requiring that the velocity is and remains
solenoidal at all times, as will be discussed in Sections 9.1 and 13.2. The initial and boundary condi-
tions arise from considerations that are independent of those that led us to the continuity equation
and equation of motion.

Counting the boundary conditions

Since the Navier—Stokes equation is a second-order partial differential equation for the velocity,
we must supply three scalar boundary conditions over each boundary of the flow. In practice, we
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specify either the three components of the velocity, or the three components of the traction, or a
combination of the velocity and the traction. If we specify the normal component of the velocity over
all boundaries of a domain whose volume remains constant in time, we must ensure that the total
volumetric flow rate into the domain of flow is zero, otherwise the continuity equation cannot be
satisfied. In certain computational procedures for solving the equations of incompressible Newtonian
flow, the boundary velocity is specified at discrete points and the total flow rate is not precisely zero
due to numerical error. This imperfection may provide an entry point for numerical instability.

Irrotational and inviscid flow

In the case of irrotational flow or flow of an inviscid fluid governed by the Euler equation, the order of
the Navier—Stokes equation is reduced from two to one by one count. Consequently, only one scalar
boundary condition over each boundary is required. It is then evident that, with some fortuitous
exceptions, the assumption of irrotational flow cannot be made at the outset.

3.7.1 The no-penetration condition over an impermeable boundary

Since the molecules of a fluid cannot penetrate an impermeable surface, the component of the fluid
velocity normal to an impermeable boundary, n - u, must be equal to the corresponding normal
component of the boundary velocity, n - V. The no-penetration condition requires that

n-u=n-V, (3.7.1)

where the boundary velocity V may be constant or vary over the boundary. An impermeable
boundary is not necessarily a rigid boundary, as it may represent, for instance, a fluid interface or
the surface of a flexible body.

Consider a steady or evolving impenetrable boundary whose position is described in Eulerian
form by the equation F'(x,t) = ¢, where c is a constant. The no-penetration condition can be stated
as DF/Dt = 0, evaluated at the boundary, where D /Dt is the material derivative. The fluid velocity
in the material derivative can be amended with the addition of an arbitrary tangential component.

Rigid-body motion

If a boundary moves as a rigid body, translating with velocity U and rotating about a point xg with
angular velocity €2, the boundary velocity is V. = U+ Q x (x — %) and the no-penetration condition
requires that

n-u=n-[U+Qx(x—xq)] (3.7.2)
evaluated at the boundary.

Two-dimensional flow

In the case of two-dimensional flow in the zy plane past an impermeable boundary executing rigid-
body motion, translating while rotating about an axis that is parallel to the z axis and passes
through the point xg, equation (3.7.2) takes the form

V=U+Q, e, x(x—xg), (3.7.3)
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where e, is the unit vector along the z axis and €2, is the angular velocity of rotation around the z
axis. Next, we write n = (dy/dl, —dz/dl), where dz and dy are differential increments around the
boundary corresponding to the differential arc length dl measured in the counterclockwise direction.
Expressing the velocity in terms of the stream function, v, we obtain

_Ovdy  Opde 0y

n—a—ydl %dl—ﬁ:U-n—&—Qz[ezx(x—xo)yn (3.7.4)
or

oY dy dx dx dy

—=U,—=-U, — -, — — — — ). 3.7.5

o = Ueqr ~ U qr — 0 (e —a0) G + =) ) (8.7:5)
Integrating with respect to arc length, we obtain the scalar boundary condition

1
Y=Upy—Uyz— 50 Ix — x0|% + c(t), (3.7.6)

where ¢(t) is a time-dependent constant.

Equation (3.7.6) reveals that the stream function is constant over a stationary impermeable
surface in a steady or unsteady flow. The value of the stream function is determined by the flow rate
between the surface and the rest of the boundaries. In general, the value of the stream function over
different disconnected stationary boundaries may not be specified a priori, but must be computed
as part of the solution.

Axisymmetric flow

In the case of axisymmetric flow past a body that translates along its axis of revolution with velocity
U = Ue,, we introduce the Stokes stream function, ¢, and derive the scalar boundary condition

¥ = % Uo® + c(t), (3.7.7)

where o is the distance from the axis of revolution and ¢(t) is a time-dependent constant. This ex-
pressions shows that the Stokes stream function takes a constant value over a stationary impermeable
axisymmetric surface.

3.7.2 No-slip at a fluid-fluid or fluid-solid interface

Experimental observations of a broad class of fluids under a wide range of conditions have shown
that the tangential component of the fluid velocity is continuous across a fluid-solid or fluid-fluid
interface, which means that the slip velocity is zero and the no-slip condition applies. It is important
to emphasize that the no-slip condition has been demonstrated independent of the mechanical or
chemical constitution of the boundaries and properties of the fluid. One exception arises in the
case of rarefied gas flow where the mean free path of the molecules is comparable to the size of
the boundaries and a description of the flow in the context of continuum mechanics is no longer
appropriate.

The no-slip boundary condition requires that the tangential component of the fluid velocity is
zero over a stationary solid boundary. Combining this condition with the no-penetration condition,
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we find that the fluid velocity over a stationary impermeable solid boundary is equal to the boundary
velocity. If a boundary executes rigid body motion, translating with linear velocity U and rotating
about a point xo with angular velocity €2, then u = U + Q x (x — xp).

Physical origin

In the case of gases, the molecules of the fluid are adsorbed on the solid surface over a time period that
is long enough for thermal equilibrium to be established, yielding a macroscopic no-slip condition on
a solid surface. An analogous explanation is possible in the case of liquids based on the formation
of short-lived bonds between liquid and solid molecules due to weak intermolecular forces. However,
because these physical mechanisms depend on the properties of the solid and fluid molecules, the
no-slip condition may occasionally break down.

An alternative explanation is that the proper boundary condition on a solid surface is the
condition of vanishing tangential traction, and an apparent no-slip condition arises on a macroscopic
level due to inherent boundary irregularities. Detailed computations with model geometries lend
support to this explanation [340].

3.7.3 Slip at a fluid-solid interface

An alternative boundary condition used on occasion in place of the no-slip condition prescribes
that the tangential component of the fluid velocity, u, relative to the boundary velocity, V, is
proportional to the tangential component of the surface traction. According to the Navier—-Maxwell—
Basset formula, the tangential slip velocity is given by

1la 1la

——f - I-n®n)=-—nxfxn, (3.7.8)
B u B

where f = n - o is the traction, o is the stress tensor, n is the unit normal vector pointing into
the fluid, I — n ® n is the tangential projection operator, and a is a specified length scale. The
dimensionless Basset coefficient, 3, ranges from zero in the case of perfect slip and vanishing shear
stress, to infinity in the case of no-slip and finite shear stress. The slip length is defined as

ugip=(u—-V)-I-n®n)=

A

a
—. 3.7.9
5 (3.7.9)
In the case of perfect slip, 8 = 0, the drag force is due exclusively to the form drag due to the
pressure.

In rarefied gases, the slip coefficient, 3, can be rigorously related to the mean free path, Ay,
defining the Knudsen number, Kn = Ay /a by the Maxwell relation

1 o

A

(3.7.10)

where o is the tangential momentum accommodation coefficient (TMAC) expressing the fraction of
molecules that undergo diffusive rather than specular reflection (e.g., [72, 362]). In the limit o — 2,
we obtain the no-slip boundary condition, 5 — oco. In the limit ¢ — 0, we obtain the perfect-slip
boundary condition, 5 — 0.
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The slip boundary condition has been used with success to describe flow over the surface
of a porous medium where the slip velocity accounts for the presence of pores, and flow in the
neighborhood of a moving three-phase contact line where the slip velocity removes the singular
behavior of the traction in the immediate neighborhood of the contact line [114].

3.7.4 Derivative boundary conditions

We have discussed several types of boundary conditions with physical origin. Derivative boundary
conditions emerge by combining the physical boundary conditions with the equations governing the
motion of the fluid, including the continuity equation and the equation of motion. For example,
invoking the continuity equation, we find that the normal derivative of the normal component of
the velocity over an impermeable solid surface where the no-slip condition applies must be zero, as
discussed in Section 3.9.1. A derivative boundary condition for the pressure over a solid boundary
will be discussed in Chapter 13.

3.7.5 Conditions at infinity

Mathematical idealization of a flow in a domain with large dimensions produces flow in a totally or
partially infinite domain. Examples include infinite flow past a stationary object, and semi-infinite
shear flow over a plane wall with a cavity or a protrusions. To complete the definition of the
mathematical problem, we require a condition for the asymptotic behavior of the flow at infinity.

To implement the far-field condition, we decompose the velocity field into an unperturbed
component and a disturbance component, and require that the ratio of the magnitudes of the dis-
turbance velocity and the unperturbed velocity decays at infinity. This condition does not necessarily
imply that the disturbance velocity vanishes at infinity. For example, in the case of uniform flow
past a sphere, the disturbance velocity due to the sphere decays at infinity; whereas in the case of
parabolic flow past a sphere, the disturbance velocity grows at a rate that is less than quadratic. In
the case of simple shear flow over an infinite plane wall with periodic corrugations or protrusions,
we require that the disturbance flow due to the protrusions grows at a less-than-a-linear rate. The
solution reveals that the disturbance velocity tends to a constant value far from the wall, thereby
introducing an a priori unknown slip velocity.

3.7.6 Truncated domains of flow

In computing an external or infinite internal flow by numerical methods, it is a standard practice to
truncate the physical domain of flow at a certain level that allows for an affordable computational
cost. In the case of flow past a body in a wind tunnel, we introduce a computational domain confined
by an in-flow plane, an out-flow plane, and side-flow boundaries. Ideally, the boundary conditions
at the computational boundaries should be derived by performing a far-field asymptotic analysis.
Unfortunately, this is possible only for a limited number of flows [155]. The assumption of fully
developed flow for interior viscous flow is often used in practice. The choice of far-field boundary
condition must be exercised with a great deal of caution in order to ensure mass conservation and
prevent the violation of momentum and energy integral balances. The effect of domain truncation
must be assessed carefully before a numerical solution can be claimed to have any degree of physical
relevance.
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FIGURE 3.7.1 lllustration of (a) a stationary interface meeting a stationary solid surface at a static
contact line, (b) a stationary interface meeting a moving solid surface at a dynamic contact line, (¢)
a contact line moving over a stationary solid surface due to a spreading liquid drop. The contact
angle, «, is measure on the side of the fluid labeled 2. (d) Contact line around the surface of a
floating particle. (e) Typical dependence of the dynamic contact angle, «, on the velocity of the
contact line on a stationary surface, V.

3.7.7 Three-phase contact lines

In applications involving liquid films and small droplets and bubbles attached to solid surfaces, we
encounter stationary or moving interfaces between two fluids ending at stationary or moving solid
boundaries, as shown in Figure 3.7.1. The line where an interface meets a solid surface is called a
three-phase contact line or simply a contact line. A contact line can be stationary or move over a
surface spontaneously or in response to an imposed fluid flow. For example, a contact line is moving
down an inclined plane due to a developing film or rolling liquid drop.

The angle subtended between (a) the vector that is normal to the contact line and tangential
to an interface, and (b) the vector that is normal to the contact line and lies on the solid boundary
is called the contact angle, a. The contact angle is measured from the side of a designated fluid, as
shown in Figure 3.7.1. In the case of a liquid-gas interface, o is measured by convention from the
side of the liquid. With reference to Figure 3.7.1(d), the contact angle measured on the side of the
fluid labeled 2 is given by

cosa =n’-n, (3.7.11)

where n® is the unit vector normal to the surface and n is the unit vector normal to the interface
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pointing into the fluid labeled 1. The plane containing n® and n at a point is normal to the contact
line at that point.

Shape of a contact line

A contact line may have an arbitrary shape determined by the degree of surface roughness
and can have any desired shape. On a perfectly smooth surface, the shape of the contact line is
determined by the contact angle. This means that the contact line may not be assigned a priori but
must be found as part of the solution to satisfy a constraint on the contact angle.

Static and dynamic contact angle

A static contact angle is established at a stationary contact line that

is pinned on a stationary solid surface. A dynamic contact angle

is established at a stationary contact line that lies on a moving (’ Y
solid surface, or at a moving contact line that lies on a stationary a
solid surface, as illustrated in Figure 3.7.1(b, ¢). The static contact
angle is a physical constant determined by the molecular properties
of the solid and fluids. The dynamic contact angle depends not only ~ Three tensions balance at a
on the constitution of the solid and fluids, but also on the relative contact line according to
velocity of the surface and contact line [114]. Young's equation.

RS )

A rational framework for predicting the static contact angle employs three interfacial tensions
applicable to each fluid-fluid or fluid-solid pair at the contact line, denoted by =1, v2, and 7. A
tangential force balance yields the Young equation,

Yo = y1 +ycosa. (3.7.12)

Similar equations can be written for a contact line that lies at a corner or cusp where two tensions
are not necessarily aligned.

Dependence of the dynamic contact angle on the contact angle velocity

A typical graph of the dynamic contact angle plotted against the contact line velocity over a sta-
tionary surface, Vg, is shown in Figure 3.7.1(e). With reference to Figure 3.7.1(¢), positive velocity
Vo corresponds to a spreading droplet. Measurements show that da/0V, > 0 is independent of
the fluids involved. The extrapolated values of « in the limit as Vj; tends to zero from positive
or negative values are called the advancing or receding contact angle, a4 and ar. Contact angle
hysteresis is evidenced by the dependence of the estimated values of a4 and ag on the laboratory
procedures. Further support is provided by the observation that, when V,; = 0, the contact angle
may take any value between a4 and ap.

Conversely, the velocity of a contact line can be regarded as a function of the difference,
a—ag, @ —ay, or @ —apg. From this viewpoint, contact angle motion is driven by deviations of the
contact angle from an appropriate threshold. In the case of a spreading drop illustrated in Figure
3.7.1(¢), @ > a4 resulting in a positive (outward) contact line velocity. In the case of a heavy drop
moving down an inclined plane, the contact angle at the front of the drop is higher than « 4, while
the contact angle at the back of the drop is less than ag, resulting in a forward bulging shape.
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Singularity at a moving contact angle

A local analysis of the equation of motion in the immediate neighborhood of a contact line moving
on a stationary solid surface reveals that the tangential component of the surface force becomes
singular at the contact line. More important, the singularity is nonintegrable, meaning that the drag
force exerted on the surface assumes an infinite value, as discussed in Section 6.2. This unphysical
behavior suggests that, either the equation of motion breaks down in the immediate vicinity of
the dynamic contact line, or else the no-slip boundary condition ceases to be valid. The second
explanation motivates replacing the no-slip boundary condition with the slip-condition shown in
(3.7.8). Computations have shown that this approximation does not have a profound effect on the
global structure of the flow [114]. A precursor liquid film of fluid 1 on the solid surface is sometimes
introduced to regularize the motion near a moving contact line.

Problems

3.7.1 No-penetration boundary condition

Discuss possible ways of implementing the no-penetration boundary condition in terms of the stream
functions for three-dimensional flow.

3.7.2 A drop sliding down an inclined plane

Sketch the shape of heavy three-dimensional drop sliding down an inclined plane and discuss the
shape of the contact line.

3.8 Interfacial conditions

The components of the stress tensor on either side of an interface between two immiscible fluids,
labeled 1 and 2, are not necessarily equal. Consequently, the traction may undergo a discontinuity
defined as

Af =D —£@ = (¢ — @) . n, (3.8.1)

where n is the normal unit vector pointing into fluid 1 by convention, and o), (®) are the stress
tensors in the two fluids evaluated on either side of the interface, as shown in Figure 3.8.1(a). The
discontinuity in the interfacial traction, Af, is determined by the physiochemical properties of the
fluids and molecular constitution of the interface, and is affected by the local temperature and local
concentration of surface-active substances, commonly called surfactants, populating the interface.
A laundry detergent or dishwashing liquid is a familiar household surfactant.

Jump in the hydrodynamic traction

When it is beneficial to work with the hydrodynamic pressure and stress defined in (3.4.9), indicated
by a tilde, we introduce the associated jump in the hydrodynamic interfacial traction, also denoted
by a tilde, defined as

Af =0 — @ = (1) 5@y . n, (3.8.2)
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FIGURE 3.8.1 (a) lllustration of an interface between two immiscible fluids labeled 1 and 2, showing the
traction on either side of the interface. The normal unit vector, n, points into fluid 1 by convention.
(b) Surface tension pulls the edges of an interfacial patch of a three-dimensional interface in the
tangential plane.

The jump in the hydrodynamic traction is related to the jump in the physical traction by
Af = Af + (p1 — p2) (8- %), (3.8.3)

where p; and po are the fluid densities.

3.8.1 Isotropic surface tension

An uncontaminated interface between two immiscible fluids exhibiting isotropic surface tension, =,
playing the role of surface pressure. In a macroscopic interpretation, the surface tension pulls the
edges of an interfacial patch in the tangential plane, as shown in Figure 3.8.1(b). The surface tension
of a clean interface between water and air at 20°C is v = 73 dyn/cm. The surface tension of a clean
interface between glycerin and air at the same temperature is v = 63 dyn/cm.

Effect of temperature and surfactant

The surface tension generally decreases as the temperature is raised and becomes zero at a critical
threshold. If an interface is populated by a surfactant, the surface tension is determined by the local
surface surfactant concentration, I'. The negative of the derivative of the surface tension, —dv/dT, is
sometimes called the Gibbs surface elasticity. Typically, the surface tension decreases as I' increases
and reaches a plateau at a saturation concentration where the interface is covered by a monolayer
of surfactant molecules, as discussed in Section 3.8.2.

Interfacial force balance

To derive an expression for the jump in the interfacial traction, Af, we neglect the mass of the
interfacial stratum and write a force balance over a small interfacial patch, D, that is bounded by
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the contour C,

/ AdeJr?{ vt xndl =0, (3.8.4)
D c

where n is the unit vector normal to D pointing into fluid 1, t is the unit vector tangent to C,
and b = t X n is the unit binormal vector, as shown in Figure 3.8.1(b). Next, we extend smoothly
the domain of definition of the surface tension and normal vector from the interface into the whole
three-dimensional space. The extension of the surface tension can be implemented without any
constraints. In practice, this can be done by solving a partial differential equation with the Dirichlet
boundary condition over the interface. The extension of the normal vector can be implemented by
setting n = VF/|VF|, where the equation F(z,y, z,t) = 0 describes the location of the interface.

A variation of Stokes’ theorem expressed by equation (A.7.8), Appendix A, states that, for
any arbitrary vector function of position, q,

j{qxtdl:/ (nV-q-(Vq)-n)dSs. (3.8.5)
c D

Applying this identity for the extended vector field, g = yn, and combining the resulting expression
with (3.8.4), we obtain

/ AfdS = / (nV-(yn) - [V(yn)]-n) dS. (3.8.6)
D D

Expanding the derivatives inside the integral and noting that (Vn) -n = 3 V(n-n) = 0, we obtain

/DAde - /D (n[’y(V~n) —nVry] fw) ds. (3.8.7)

Now we take the limit as the surface patch shrinks to a point, rearrange the integrand on the right-
hand side, and discard the integral sign on account of the arbitrary integration domain to obtain
the desired expression

Af=ynV-n—(I-n®n)-Vy, (3.8.8)
which can be restated as
Af =ynV . -n—(nx Vy) xn. (3.8.9)
The divergence of the normal vector on the right-hand side of (3.8.8) is equal to twice the
mean curvature of the interface, V-n = 2 k,,,. Thus,
Af =726, n— (n x Vy) x n. (3.8.10)

By definition, the mean curvature is positive when the interface has a spherical shape with fluid 2
residing in the interior and the normal vector pointing outward into the exterior fluid labeled 1. The
computation of the mean curvature is discussed in Section 1.8.
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Laplace pressure and Marangoni traction

The two terms on the right-hand side of (3.8.10) express, respectively, a discontinuity in the normal
direction and a discontinuity in the tangential plane. The normal discontinuity is called the Laplace
or capillary pressure, and the tangential discontinuity is called the Marangoni traction. The term
“capillary” derives from the Latin word “capilla” meaning hair, on the justification that the capillary
pressure is important inside small tubes whose size is comparable to that of a hair. When the surface
tension is constant, a tangential component does not appear and the jump in the interfacial traction
is oriented in the normal direction.

Capillary force and torque

Surface tension pulls the boundary of a flow around a three-phase contact line in a direction that is
tangential to the interface and lies in a plane that is normal to the contact line. With reference to
Figure 3.7.1(d), the resultant capillary force and torque with respect to an arbitrary point, xq, are
given by

FeoP = j{’yr x ndl, TP(xq) = %v(x —Xp) X (r x n)dl, (3.8.11)

where n is the unit vector tangent to the interface, r = dx/dl is the unit vector tangent to the
contact line, the integration is performed around the contact line, and [ is the arc length around the
contact line. Using a vector identity, we obtain an alternative expression for the capillary torque,

TP(xg) = 7{7 ( [(x—x0) n]r—[(x—x%0) r] n) dl. (3.8.12)

The surface tension inside the integrals on the right-hand sides of (3.8.11) and (3.8.12) is allowed to
be a function of position.

Capillary torque on a spherical particle

As an application, we consider the capillary torque due to a contact line over a spherical particle of
radius a for constant surface tension, «v. The unit vector normal to the particle surface at a point, x,
isn® = % (x — %), where x, is the particle center. Consequently, cosa = % (x — x¢) - n, where « is
the contact angle computed from (3.7.11). Identifying the center of torque xo with the the particle
center, X., and noting that (x — x.) - r = 0, we obtain

T?(x.) = va %cosa r dl. (3.8.13)

We observe that, if the contact angle is constant along the contact line, the torque with respect to
the center of the spherical particle is identically zero irrespective of the shape of the contact line
[373]. This result underscores the importance of contact angle hysteresis in imparting a non-zero
capillary torque for any contact line shape.

3.8.2 Surfactant equation of state

We have mentioned that variations in the surface concentration of a surfactant, I', cause corre-
sponding variations in the surface tension, v. The relation between I' and v is determined by an
appropriate surface equation of state.
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Linear surface equation of state

When the surfactant concentration is below the saturation threshold, a linear relationship can be
assumed between I' and « according to Gibbs’ surface equation of state,

v =7, — RTT, (3.8.14)

where R is the ideal gas constant, T is the absolute temperature, and -, is the surface tension of
a clean interface that is devoid of surfactants (e.g., [3]). It is convenient to introduce a reference
surfactant concentration, I'y, corresponding to surface tension vy. Rearranging (3.8.14), we obtain
r
=% (1-B) (3.8.15)
0

where
RT

C

p=—"TI0 (3.8.16)

is a dimensionless parameter expressing the significance of the surfactant concentration. By defini-
tion, v90 = 7. (1 — B). The parameter [ is related to the Gibbs surface elasticity employed in the
surfactant literature by

0 _gle_ B 2 (3.8.17)

=———= = 3.8.18
ar o Y 1= ( )
Using this definition, we find that 8 = Ma/(1 + Ma), v, = (1 + Ma) 7, and
o
—ye—Mallr
=7 —Mag (3.8.19)

Nonlinear surface equation of state

More generally, because the surface elasticity depends on the local surfactant concentration, the
relationship between the surface tension and the surface surfactant concentration is nonlinear. For
small variations in the surfactant concentration around a reference value, I'g, we may use Henry’s
equation of state expressed by v =9 — E(I' = T'g), where E = —(9/0I')r,.

For large variations in the surfactant surface concentration, we may use Langmuir’s equation
of state derived on the assumption of second-order adsorption/desorption kinetics,

7=%+RT1“001n(1—FL)=%[1+§ln(1—n%)], (3.8.20)

where T', is the surfactant concentration at maximum packing and n = TI'y/T is the surface
coverage at the reference state (e.g., [48]). Applying this equation for I' = T'y, we obtain

7o
Vo= —F (3.8.21)
1+ 2 In(1 —p)
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In deriving Langmuir’s equation of state, ideal behavior is assumed to neglect cohesive and repulsive
interactions between surfactant molecules in the interfacial monolayer.

3.8.3 Interfaces with involved mechanical properties

The jump in traction across an interface with a complex molecular structure can be described rigor-
ously or phenomenologically in terms of interfacial shear and dilatational surface viscosities, moduli
of elasticity, and flexural stiffness (e.g., [118, 315, 366]). For example, the membrane enclosing a
red blood cell is a viscoelastic sheet whose mechanical response is characterized by a high dilata-
tional modulus that ensures surface incompressibility, a moderate shear elastic modulus that allows
for significant deformation, and a substantial energy-dissipating surface viscosity. Mathematical
frameworks for describing direction dependent interfacial tensions can be developed working un-
der the auspices of shell theory for the molecular interfacial stratum or by employing models of
three-dimensional molecular networks.

3.8.4 Jump in pressure across an interface

The normal component of the traction, and therefore the pressure, undergoes a discontinuity across
an interface. To compute the jump in the pressure in terms of the velocity, we decompose the jump
in the traction, Af, into its normal and tangential components, and identify the normal component
in each fluid with the term inside the square bracket on the right-hand side of (3.4.5), finding

AfN =Af - n=—p +py+2n- (mVu(l) — paVu® ) n, (3.8.22)

where n is the normal unit vector pointing into fluid 1. Rearranging, we obtain an expression for
the jump in the interfacial pressure in terms of the normal component of Af and the viscous normal
stress,

Ap=p; —py = —Af -n+2n- (pVu® — 4, vu®)n, (3.8.23)

where Af is given by an appropriate interfacial constitutive equation. When the fluids are either
stationary or inviscid, only the first term on the right-hand side of (3.8.23) survives. When the
interface exhibits isotropic tension, we use (3.8.8) and derive Laplace’s law, Ap = —2k,,,7.

3.8.5 Boundary condition for the velocity at an interface

Certain numerical methods for solving problems of interfacial flow require removing the pressure
from the dynamic boundary condition for the jump in the interfacial traction, Af. The tangential
component of Af involves derivatives of the velocity alone and does not require further manipulation.
To eliminate the pressure difference from the normal component of Af, we apply the equation of
motion on either side of the interface, formulate the difference of the resulting expressions, and
project the difference onto a tangent unit vector, t, to obtain

Du® Du®
Dt T

t-V(pe—p1) = ( — P2 + 2 V2u® — 1y V2 4 (py — 1) g) -t (3.8.24)

Substituting expression (3.8.23) for the pressure difference into the left-hand side of (3.8.24) provides
us with the desired boundary condition in terms of the velocity.
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If the fluids are inviscid, the velocity is allowed to be discontinuous across the interface,
yielding the simplified form

Du® Du®
Dt P TDr

where AfYN = Af-n is the normal component of the jump in the traction. Equation (3.8.25) imposes
a constraint on the tangential components of the point-particle acceleration on either side of the
interface between two immiscible fluids.

3.8.6 Generalized equation of motion for flow in the presence of an interface

To compute the flow of two adjacent immiscible fluids with different physical properties, we may sep-
arately solve the governing equations in each fluid subject to the interfacial kinematic and dynamic
matching conditions discussed earlier in this chapter. As an alternative, the interfacial boundary
conditions can be incorporated into a generalized equation of motion that applies inside as well as
at the interface between the two fluids. The generalized equation of motion arises by regarding an
interface as a singular surface of concentrated body force, obtaining

Du

—— =V 3.8.26
? D o+pg+aq, ( )

where q is a singular forcing function expressing an interfacial distribution of point forces,

q(x) = — /Iég(x —x')Af(x') dS(x), (3.8.27)

I stands for the interface, d3 is the three-dimensional delta function, and Af is the jump in the
traction across the interface. The velocity is required to be continuous, but the physical properties
of the fluids and stress tensor are allowed to undergo discontinuities across the interface.

To demonstrate that (3.8.27) provides us with a consistent representation of the flow by
incorporating the precise form of the dynamic boundary condition (3.8.1), we compute the volume
integral over a thin layer of fluid of thickness e centered at the interface, I. The upper side of the
interface corresponding to fluid 1 is denoted by I, and the lower side corresponding to fluid 2 is
denoted by I_. Using the divergence theorem to manipulate the integral of the divergence of the
stress and the properties of the delta function to manipulate the integral of q, and then taking the
limit as the layer collapses onto the interface, we obtain

D
ﬂp—udV:/ n-adS—l—ﬂpng—/Ade, (3.8.28)
L Dt I I L I

where n is the normal unit vector pointing into fluid 1, and L denotes the layer. In the limit as €
tends to zero, the volume integrals of the point-particle acceleration and gravitational force vanish.
The surface integrals can be rearranged to yield

0:/n+-a+ dS—/n+-a_ dS—/Ade, (3.8.29)
I I I
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where n™ is the normal unit vector pointing into fluid 1, T is the stress on the upper side of the
interface, and o~ is the stress on the lower side of the interface. It is now evident that (3.8.29), and
therefore (3.8.26), is consistent with the interfacial condition (3.8.1).

A formal way of deriving (3.8.26) involves replacing the step functions, inherent in the repre-
sentation of the physical properties of the fluids, and the delta functions, inherent in the distribution
of the interfacial force, with smooth functions that change gradually over a thin interfacial layer of
thickness €. As long as € is noninfinitesimal, the regular form of the equation of motion applies in
the bulk of the fluids as well as inside the interfacial layer. Taking the limit as e tends to zero, we
derive (3.8.26).

Two-dimensional flow

In the case of two-dimensional flow, the interfacial distribution (3.8.27) takes the form of a line
integral,

q(x) = — /1 Af(x") §a(x — x') di(x'), (3.8.30)

where [ is the arc length along the interface and 5 is the two-dimensional delta function in the plane
of the flow.

Problems

3.8.1 Interfaces with isotropic tension

Derive the counterpart of equation (3.8.8) for two-dimensional flow and discuss its physical inter-
pretation.

3.8.2 Generalized equation of motion for two-dimensional flow

Write the counterparts of equations (3.8.28) and (3.8.29) for two-dimensional flow.

3.9 Traction, vorticity, and kinematics at boundaries and interfaces

The boundary conditions at impermeable rigid boundaries, free surfaces, and fluid interfaces dis-
cussed in Sections 3.7 and 3.8 allow us to simplify the expressions for the corresponding traction,
vorticity, force and torque, and thereby obtain useful insights in the kinematics and dynamics of a
viscous flow.

3.9.1 Rigid boundaries

Consider flow past an impermeable rigid boundary that is either stationary or executes rigid-body
motion, including translation and rotation. In the case of rigid-body motion, we describe the flow
in a frame of reference where the boundary appears to be stationary. Concentrating at a particular
point on the boundary, we introduce a local Cartesian system with origin at that point, two axes z
and x tangential to the boundary, and the y axis normal to the boundary pointing into the fluid.
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Expanding the velocity in a Taylor series with respect to x, y, and z, and enforcing the no-slip
and no-penetration boundary conditions, we find that all velocity components and their first partial
derivatives with respect to « and z at the origin are zero,

u(0) = 0, (%) =0, (g—‘;)o = 0. (3.9.1)

.
The continuity equation, V-u = 0, requires that the first partial derivative of the normal component
of the velocity with respect to y is also zero at the origin,

(%@/)0 —o. (3.9.2)

The corresponding normal derivatives of the tangential velocity, du,/dy and du,/9dy, are not nec-
essarily zero. With reference to arbitrary Cartesian coordinates that are not necessarily tangential
to the boundary, equations (3.9.1) and (3.9.2) take the form

u=0, I-n®n)-Vu=(nxVu)xn=0, n-(Vu)-n=0, (3.9.3)

evaluated at the boundary.

Vorticity and traction

y
Using conditions (3.9.3) to simplify expressions (3.4.3) and (3.4.5),
we find that the components of the traction at the origin of the
local coordinate system are given by
Guw 8”2
T = 5 = —D, L, = . 3.94
F=n fy=-p = (3.9.4) z N
With reference to a general coordinate system, the traction is A local Cartesian system at a
f= —pn+un-(Vu)-(I-n®n). (3.9.5) point on a boundary.

The second term on the right-hand side involves derivatives of the tangential components of the
velocity in a direction normal to the boundary.

Using the definition of the vorticity in conjunction with the kinematic constraint expressed by
the second equation in (3.9.3), we find that the component of the vorticity normal to the boundary
is zero. At the origin of the local coordinate system, the tangential components of the vorticity are

8uz aux 1

1
ww = — = — 2 wZ = = — x5 396
oy a9y s (3.9.6)

These expressions along with (3.9.3) suggest that, with reference to a general coordinate system,
n-Vu=n-Vu-I-n®n) =w xn. (3.9.7)

The general expression for the traction given in (3.4.4), f = —pn+ 2un - Vu + pn x w, simplifies
into

f=-pn+pwxn. (3.9.8)
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Substituting (3.9.5) and (3.9.8) into (3.4.11) and (3.4.12), we derive simplified expressions for the
hydrodynamic force and torque exerted on a rigid boundary in terms of the vorticity and normal
derivatives of the tangential components of the velocity.

Velocity gradient tensor

Combining the second equation in (3.9.3) with (3.9.7) we derive an expression for the velocity
gradient tensor in terms of the vorticity,

Vu=n® (w x n). (3.9.9)

The symmetric part of the velocity gradient tensor is the rate-of-deformation tensor and the anti-
symmetric part is the vorticity tensor. In the case of a compressible fluid, the term an ® n is added
to the left-hand side of (3.9.9), where aw = V - u is the rate of expansion.

Skin-friction and surface vortex lines

Equation (3.9.7) shows that the vorticity vector is perpendicular to the skin-friction vector defined
as the tangential component of the traction vector,

f- I-n®n)=nxf)xn=pwxn. (3.9.10)
Equation (3.9.7) shows that the vorticity vector is perpendicular to the skin-friction vector,
w-f-I-n®n)]=0, w-[nxfxn]=0. (3.9.11)

A line over a boundary whose tangent vector is parallel to the skin friction vector at each point is a
skin-friction line. A line over the boundary whose tangent vector is parallel to the vorticity at each
point is a boundary or surface vortex line. Equations (3.9.11) show that the skin friction lines are
orthogonal to the surface vorticity lines. Equation (3.9.5) suggests that a skin-friction line can be
described in parametric form by an autonomous ordinary differential equation,

3—X:n~(Vu)-(I—n®n):wxn, (3.9.12)
-

where 7 is an arbitrary time-like parameter.

Topology of skin-friction lines

Singular points around which fluid particles move normal to the boundary faster than they move
along the boundary occur when the right-hand side of (3.9.12) vanishes and therefore the surface
vorticity becomes zero. Singular points are classified as nodal points of attachment or separation,
foci of attachment or separation, and saddle points. Examples of skin-friction and vorticity lines in
each case are shown,respectively, with dashed and solid lines in Figure 3.9.1 [238, 405].

A nodal point belongs to an infinite number of skin-friction lines all of which except for one,
the one labeled AA in Figure 3.9.1(a), are tangential to a single line labeled BB. A focal point
belongs to an infinite set of skin-friction lines that spiral away from or into the focal point, as shown
in Figure 3.9.1(b). A saddle point is the point of intersection of two skin-friction lines, as shown
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N Skin—friction line

FIGURE 3.9.1 lllustration of singular points of the skin-friction pattern on a solid boundary [238]: (a)
nodal points, (b) a focus, and (¢) a saddle point.

in Figure 3.9.1(¢). Topological constraints require that the number of nodal points and foci on a
boundary exceed the number of saddle points by two. An in-depth discussion of the topography and
topology of skin-friction lines is presented by Lighthill [238] and Tobak & Peake [405].

Motion of point particles near boundaries

The relation between the skin-friction lines and the trajectories of point particles in the vicinity of
a boundary becomes evident by introducing a system of orthogonal surface curvilinear coordinates
over the boundary, (§,1). The point particles move with velocity that is nearly tangential to the
boundary, except when they find themselves in the neighborhood of a singular point where the
streamlines turn away from the boundary. Denoting the instantaneous distance of a point particle
away from the boundary by ¢, we expand the velocity in a Taylor series with respect to distance in
the normal direction and find that the rate of change of distance traveled by a point particle along
the curvilinear axes is



244 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

di
e UEm 1) te=Cn- V)t = Cw-ty,
% = U(§>nat) 'tn = C(nVu) 'f,n = —Cw .té’ (3913)

where w is the vorticity and the velocity gradient and vorticity are evaluated at the surface, { = 0.
Dividing these equations side by side, we derive an alternative expression of (3.9.12),
dle dil,,

n-(Vu)-tg n-(vu)-t, (3.9.14)

3.9.2 Free surfaces

Equations (3.9.3) do not apply at a stationary, moving, or evolving free surface where the tangential
velocity component is not necessarily zero. However, because a free surface cannot support shear
stress, the tangential component of the traction must be zero,

fxn=(n-0)xn=0. (3.9.15)

Expressing the stress tensor in terms of the pressure and the rate-of-deformation tensor using the
Newtonian constitutive equation, o = —pI + uVu + u(Vu)T, we find that

fxn:u((n-Vu)xn—nx[(Vu)~n]):0. (3.9.16)
Rearranging, we derive the condition of zero shear stress

(n-Vu) xn=mnx [(Vu) -n]. (3.9.17)

The tangential component of the vorticity at an arbitrary surface is
w-I-n®n)=(nxw)xn=[(Vu)-n—n-Vu| xn. (3.9.18)
Implementing the condition of zero shear stress stated in (3.9.17), we obtain
wis-(I-n@n)=-2n-Vu) xn=2[(Vu)-n|] xn (3.9.19)
or

ws-I-—n®@n)=2 (V(u ‘n) — (Vn) - u]) X 1. (3.9.20)

The first term on the right-hand side of (3.9.20) contains derivatives of the normal component of the
velocity tangential to the free surface. The derivatives of the normal vector in the second term are
related to the normal curvatures of the free surface in the normal plane that contains the velocity
and its conjugate plane, as discussed in the next section for steady flow.
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FIGURE 3.9.2 A local Cartesian system attached to a free surface with the = axis pointing in the
direction of the velocity vector.

Steady flow

The first term on the right-hand side of (3.9.19) vanishes over a stationary free surface where the
normal velocity is zero, u-n = 0. It is useful to introduce a local Cartesian system with origin at
a point on a free surface, the x axis pointing in the direction of the velocity vector, and the y axis
pointing normal to the free surface, as shown in Figure 3.9.2. Setting n = [O, 1, O}, we find that the
tangential component of the vorticity is given by

ong ong

w, =21[0,1,0] x ((vn) : [uz,070]) = 2u, (Gre, — 5re.),

(3.9.21)

where e, is the unit vector along the x axis and e, is the unit vector along the z axis. The derivative,
kg = Ong/Oz, is the principal curvature of the free surface in the xy plane.

3.9.3 Two-dimensional flow

Simplified expressions for the boundary traction and vorticity can be derived in the case of two-
dimensional flow in the xy plane.

Rigid boundaries

First, we consider the structure of a flow near a stationary rigid boundary with reference to the local
coordinate system illustrated in Figure 3.9.3(a). Using (3.9.3), we find that the 2z component of the
vorticity and tangential component of the wall shear stress at the origin are given by

ou ou
Wy, = — 8;’ Opy = —pW, =l 8;. (3.9.22)

Thus, 0,y = —pw;, revealing an intimate connection between the wall vorticity and the shear stress
at a solid boundary.

Stagnation point at a solid boundary

Next, we concentrate on the structure of the flow in the vicinity of a stagnation point illustrated in
Figure 3.9.3(b). Near the wall, the fluid moves in opposite directions on either side of the stagnation
point. Because the wall shear stress and vorticity have opposite signs on either side of the stagnation
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(6)

FIGURE 3.9.3 lllustration of (a) a two-dimensional flow near a solid wall and (b) a stagnation point on
a solid wall.

point, both must be zero at the stagnation point. Conversely, the vanishing of the shear stress or
vorticity provides us with a criterion for the occurrence of a stagnation point.

To demonstrate further that the shear stress is zero at a stagnation point by considering a
point that lies on the dividing streamline near the stagnation point, at the position (dz,dy). Setting
the position vector, (dz,dy), parallel to the velocity at that point, and expressing the velocity in a
Taylor series about the stagnation point, we find that

Oy 4y 4 Ow g

tana = W _ Uy _ Oz 9y __ (3.9.23)
dz  u, Oug do + Ouy d
Oz ay Y

where « is the angle that the dividing streamline forms with the x axis, and all partial derivatives
are evaluated at the stagnation point. Using the continuity equation to write Ju,/dy = —0u,/Ox
and enforcing the no-slip boundary condition, we find that all partial derivatives du, /0y, Oug/0z,
Ou, /0x, at the origin are zero. Since the slope of the dividing streamline is finite, the partial
derivative Qu, /Oy must also be zero, yielding the condition of vanishing vorticity and wall shear
stress at a stagnation point.

Now assuming that the wall is flat, we seek to predict the slope of the dividing streamline in
terms of the structure of the velocity. Since the first-order terms in the fraction in (3.9.23) vanish,
we must retain the second-order contributions, obtaining

?u, 9 02, 0?u, 9
tana = = w = P Pu Pu (3.9.24)
¢ F (dz)? +2 2= (de) (dy) + - (dy)®

Ox? Oxdy Oy?
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FIGURE 3.9.4 (a) lllustration of a two-dimensional flow under a free surface. The origin of the plane
polar coordinates, (r, ), is set at the center of curvature at a point on the surface. () lllustration
of a stagnation point at a stationary free surface; the dividing streamline crosses the free surface
at a right angle.

or
0%u, 0?uy Puy
dy Uy 922 D20y tan o + 12 tan® «
tana = — = — = — 5 5 (3.9.25)
dz  u, 8uz+28umt n uIt 9
an o an” a
ox? Oxdy oy?
Enforcing the no-slip boundary condition and using the continuity equation, we find that
?u, 0?u, 0?u,
-0 y — _Z 7T . 3.9.26
Ox2 ’ Oxdy Ox2 ( )

Writing 02u,,/0y? = —0%u, /dxdy and rearranging (3.9.25), we obtain

e =-3(Z2/(55) =5 (L) 2) paar)

where f, is the boundary traction, p is the hydrodynamic pressure, and all variables are evaluated
at the stagnation point [289]. To derive the expression in the denominator on the right-hand side of
(3.9.27), we have applied the Navier—Stokes equation at the stagnation point and used the no-slip
boundary condition to set u9%u,/0y? = dp/Ox, where p is the hydrodynamic pressure. Equation
(3.9.27) applies also at a stagnation point on curved wall, provided that the derivatives with respect
to x are replaced by derivatives with respect to arc length, I [248].

Vorticity at an evolving free surface

Next, we consider the flow below an evolving two-dimensional free surface and introduce Cartesian
coordinates where the x axis is tangential and the y axis is perpendicular to the free surface at a
point, as shown in Figure 3.9.4(a). The z vorticity component and shear stress at the free surface
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are
Ouy  Oug Ouy  Ouy
o= Ouy Ous = (D _ 3.9.28
@ Or Oy Tay = Or Oy ) ( )
Setting the shear stress to zero, as required by definition for a free surface, we obtain
Ouy
W, = 287 =2t-(Vu) - n=2t-V(u-n)—2t-(Vn) - u, (3.9.29)
x

where t is the tangent unit vector. Using the Frenet—Serret relation t- Vn = dn/dl = k t, we write
w, =2t-V(u-n)—2ku-t, (3.9.30)

where [ is the arc length along the free surface and & is the curvature of the free surface. In terms
of the stream function, ¢, we obtain

0% o

where [,, is the arc length in the direction of the normal unit vector, n.

Vorticity at a stationary free surface

Since the free surface of a steady flow is also a streamline, we may use (1.11.9) to simplify further
the right-hand side of the expression for the shear stress given in (3.9.28), obtaining

Ouy
oy’

Opy = —pKU-t+ (3.9.32)
Introducing plane polar coordinates with origin at the center of curvature of the free surface at an
arbitrary point, (r,6), as shown in Figure 3.9.4(a), we find that

0 0
umnton B (2], aaa

where R = 1/k is the radius of curvature and all expressions are evaluated at r = R. Setting the
shear stress to zero and combining (3.9.32) with (1.11.10), we derive a simple expression for the
vorticity over a stationary free surface in terms of the tangential velocity and curvature of the free
surface,

w, =—-2ku-t. (3.9.34)

This expression demonstrates that the vorticity is zero at a stagnation point along a free-surface
where the velocity is zero, at an inflection point on a free-surface where the curvature is zero, and
over a planar free surface.

It is reassuring to observe that (3.9.34) also arises from the general relation (3.9.20) for three-
dimensional flow by setting dn,/0z = 0 to obtain wy = —2u,K.€,.
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FIGURE 3.9.5 lllustration of a stagnation point at a stationary fluid interface. When the shear stress
is continuous across the interface, the slopes of the dividing streamlines obey a refraction law.

Stagnation point at a stationary free surface

A stagnation-point flow at a free surface is illustrated in Figure 3.9.4(b). In terms of the local
coordinates = and y, the slope of the dividing streamline at the stagnation point is given by (3.9.23),
where all partial derivatives are evaluated at the stagnation point. Taking into account the first
equation in (1.11.9) and (3.9.32), we find that du, /0y and Ou, /Oz are zero at the stagnation point.
The continuity equation requires that du,/0xr = —0u, /0y, which shows that tan o must either be
zero, in which case we obtain a degenerate stagnation point, or negative infinity. We conclude that
the dividing streamline must meet a free surface at a right angle.

Stagnation point at a stationary interface

A stagnation point at the interface between two viscous fluids labeled 1 and 2 is illustrated in Figure
3.9.5. Applying (3.9.23) at a point at the dividing streamline in the upper fluid and using (1.11.9)
to set Ou,/Oz = 0 and the continuity equation to write Ju, /0y = —0u,/Ox, we obtain

3ug(c1) /0x

. 3.9.35
oull oy ( )

tanag = —2

Dividing corresponding sides of (3.9.35) with their counterparts for the second fluid and noting that,
because the velocity is continuous across the interface, the derivative Ou, /0x is shared by the two
fluids, we obtain

tancoy 8u§52)/(9y (3.9.36)

tanag 3u;1)/8y.

Now using (3.9.32) and requiring that the velocity is continuous across the interface, we find
that the jump in the tangential component of the traction across the interface at the stagnation
point is given by

oul oul?
Ay T H2 oy

(f-6)D —(F-6)® = (3.9.37)
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Assuming that the shear stress is continuous across the interface, we set the left-hand side of (3.9.37)
to zero and combine the resulting equation with (3.9.36) to derive the remarkably simple formula

ey (3.9.38)
tanag g’ e

which can be regarded as a refraction law for the dividing streamline [248]. When the viscosities of
the two fluids are matched, the dividing streamlines join smoothly at the stagnation point.

Problems

3.9.1 Force on a boundary

Draw a sequence of surfaces enclosing a stationary rigid body in a flow and uniformly tending to
the surface of the body. Denoting the typical separation between a surface and the body by €, we
compute the force F(€) exerted on the surface and plot the magnitude of F against e. Do you expect
that the graph will show a sharp variation as € tends to zero?

3.9.2 Force on a boundary

Derive (3.9.33) working in the plane polar coordinates illustrated in Figure 3.9.4(a).

3.9.3 Traction normal to a line in a two-dimensional flow
(a) Show that the component of the traction normal to an arbitrary line in a two-dimensional flow
is given by

d(u-t) B 0%y oY
3l 2puku-n=—p z'uﬁlaanrQMHﬁ’ (3.9.39)

f-n=-—p+2pu

where [ is the arc length along the line, t is the tangent unit vector, x is the curvature of the line,
l, is the arc length measured in the direction of the normal vector, n, and v is the stream function.

(b) Use equation (3.9.39) to derive a boundary condition for the pressure at a free surface in the
presence of surface tension.

(¢) Use equation (3.9.39) to derive a boundary condition for the jump in pressure across a fluid
interface in the presence of surface tension.

3.10 Scaling of the Navier—Stokes equation and dynamic similitude

Evaluating the various terms of the Navier—Stokes equation at a point in a flow, we may find a
broad range of magnitudes. Depending on the structure of the flow and location in the flow, some
terms may make dominant contributions and should be retained, while other terms may make
minor contributions and could be neglected without compromising the integrity of the simplified
description. To identify this opportunity and benefit from concomitant simplifications, we inspect
the structure the a flow and find that the magnitude of the velocity typically changes by an amount
U over a distance L. This means that the magnitudes of the first or second spatial derivatives of the
velocity are comparable, respectively, to the magnitudes of the ratios U/L and U/L?. Furthermore,
we typically find that the magnitude of the velocity at a particular point in the flow changes by U
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over a time period 7', which means that the magnitude of the first partial derivative of the velocity
with respect to time is comparable to the ratio U/T.

Characteristic scales

Typically, but not always, the characteristic length L is related to the size of the boundaries, the
characteristic velocity U is determined by the particular mechanism driving the flow, and the char-
acteristic time T is either imposed by external means or simply defined as T = L/U. In the case
of unidirectional flow through a channel or tube, U can be identified with the maximum velocity
across the channel or tube. In the case of uniform flow past a stationary body, U can be identified
with the velocity of the incident flow. In the case of forced oscillatory flow, T can be identified with
the period of oscillation.

Nondimensionalization

Next, we scale all terms in the Navier—Stokes equation using the aforementioned scales and compare
their relative magnitudes. To accomplish the first task, we introduce the dimensionless variables
u t L

i k= i ) (3.10.1)
U’ L T b=

Expressing the dimensional variables in terms of corresponding dimensionless variables and substi-
tuting the result into the Navier—Stokes equation, we obtain the dimensionless form

ou = - - Re

— +Rett-Vi=-Vp+Via+ —

P ot P Fr?

g
) 3.10.2
’ ( )

where the gradient V involves derivatives with respect to the dimensionless position vector, X, and
g = |g|. Since the magnitudes of the dimensionless variables and their derivatives in (3.10.2) are of
order unity, and since g/g is a unit vector expressing the direction of the body force, the relative
importance of the various terms is determined by the magnitude of their multiplicative factors, which
are the frequency parameter, /3, the Reynolds number, Re, and the Froude number, Fr, defined as
L? UL U

== Fr=——
B=—, Re=—", =

where v is the kinematic viscosity of the fluid with dimensions of length squared divided by time.

(3.10.3)

The frequency parameter, [, expresses the relative magnitudes of the inertial acceleration
force and the viscous force, or equivalently, the ratio of the characteristic diffusion time, L?/v, to
the time scale of the flow, T. The Reynolds number expresses the relative magnitudes of the inertia
convective force and the viscous force, or equivalently, the ratio of the characteristic diffusion time,
L?/v, to the convective time, L/U. The Froude number expresses the relative magnitudes of the
inertial convective force and the body force. The group

2
Re _ gL (3.10.4)
Fr vU

expresses the relative magnitudes of the body force and the viscous force.
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In the absence of external forcing, T, is identified with the convective time scale, L/U,
reduces to Re, and the dimensionless Navier—Stokes equation (3.10.2) involves only two independent
parameters, Re and Fr.

3.10.1 Steady, quasi-steady, and unsteady Stokes flow

When Re <« 1 and 5 < 1, both terms on the left-hand side of (3.10.2) are small compared to the
terms on the right-hand side and can be neglected. Reverting to dimensional variables, we find that
the rate of change of momentum of fluid parcels pDu/Dt is negligible and the flow is governed by
the Stokes equation

—Vp+uViu+pg=0, (3.10.5)

stating that pressure, viscous, and body forces balance at every instant. A flow that is governed by
the Stokes equation is called a Stokes or creeping flow.

The absence of a temporal derivative in the equation of motion does not necessarily mean
that that the flow is steady, but only implies that the forces exerted on fluid parcels are at equilib-
rium. Consequently, the instantaneous structure of the flow depends only on the present boundary
configuration and boundary conditions, which means that the flow is in a quasi-steady state. Stated
differently, the history of motion enters the physical description only insofar as to determine the
current boundary configuration.

Steady and quasi-steady Stokes flows are encountered in a variety of natural and engineering
applications. Examples include slurry transport, blood flow in capillary vessels, flow due to the mo-
tion of ciliated micro-organisms, flow past microscopic aerosol particles, flow due to the coalescence
of liquid drops, and flow in the mantle of the earth due to natural convection. In certain cases, the
Reynolds number is low due to small boundary dimensions as in the case of flow past a red blood
cell, which has an average diameter of 8um. In other applications, the Reynolds number is low due
to the small magnitude of the velocity or high kinematic viscosity. An example is the flow due to
the motion of an air bubble in a very viscous liquid such as honey or glycerin.

The linearity of the Stokes equation allows us to conduct extensive theoretical studies, analyze
the properties of the flow, and generate desired solutions by linear superposition using a variety of
analytical and computational methods. An extensive discussion of the properties and methods of
computing Stokes flow will be presented in Chapter 6.

Unsteady Stokes flow

When Re < 1 but § ~ 1, the nonlinear inertial convective term on the left-hand side of (3.10.2) is
negligible compared to the rest of the terms and can be discarded. Reverting to dimensional variables,
we find that the nonlinear component of the point-particle acceleration, u- Vu, is insignificant, and
the rate of change of momentum of a point particle can be approximated with the Eulerian inertial
acceleration force, pOu/dt. The motion of the fluid is governed by the unsteady Stokes equation,
also called the linearized Navier—Stokes equation,

0
pa—ltl = _Vp+uViu+pg. (3.10.6)



3.10 Scaling of the Navier—Stokes equation and dynamic similitude 253

Because of the presence of the acceleration term involving a time derivative on the left-hand side, the
instantaneous structure of the flow depends not only on the instantaneous boundary configuration
and boundary conditions, but also on the history of fluid motion.

Physically, the unsteady Stokes equation describes flows characterized by sudden acceleration
or deceleration. Three examples are the flow occurring in hydrodynamic braking, the flow occurring
during the impact of a particle on a solid surface, and the initial stages of the flow due to a particle
settling from rest in an ambient fluid. The linearity of the unsteady Stokes equation allows us to
compute solutions for oscillatory and general time-dependent motion using a variety of methods,
including Fourier and Laplace transforms in time and space, as well as construct solutions by linear
superposition. The properties and methods of computing unsteady Stokes flow are discussed in
Sections 6.15-6.18.

3.10.2 Flow at high Reynolds numbers

It may appear that, when Re > 1 and 8 > 1, both the pressure and viscous terms on the right-
hand side of the equation of motion (3.10.2) are negligible compared to the terms on the left-hand
side. While this may be true in certain cases, because of the subjective scaling of the pressure,
the magnitude of the dimensionless pressure gradient may not remain of order unity in the limit of
vanishing Re and .

To allow for this possibility, we rescale the pressure by introducing a new dimensionless pres-
sure defined as

. P L
=—=—7. 3.10.7
T= 07T Rel ( )
Working as previously, we obtain a new dimensionless form of the Navier-Stokes equation,
ona A - - Re g
— 4+ Rea-Va=-ReVi+Via+_— —. 3.10.8
7 T 7 gl (3.10.8)

Now considering the limits Re > 1 and 5 > 1, we find that the viscous term becomes small compared
to the rest of the terms and can be neglected, yielding Euler’s equation,
8 ou
Re ot

I g
Fr? |g|’
where §/Re = L/(TU). We have found that, at high Reynolds numbers, a laminar flow behaves like
an inviscid flow in the absence of small-scale turbulent motion. By neglecting the viscous term, we
have lowered the order of the Navier-Stokes equation from two to one, by one unit. This reduction

has important implications on the number of required boundary conditions, spatial structure of the
flow, and properties of the solution.

=-V#+

<

+a-

(3.10.9)

3.10.3 Dynamic similitude

Let us consider a steady or unsteady flow in an domain of finite or infinite extent, specify suitable
boundary conditions, and introduce the dimensionless variables shown in (3.10.1) to obtain the di-
mensionless Navier—Stokes equation (3.10.2). In terms of the dimensionless variables, the continuity
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equation becomes

V.-a=0, (3.10.10)
and the boundary conditions can be expressed in the symbolic form
F(u,6)=0, (3.10.11)

where & is the nondimensional stress tensor. The function F may contain dimensionless constants
defined with respect to the physical properties of the fluid, the characteristic scales U, L, and T,
the body force, and other physical constants that depend on the nature of the boundary conditions,
such as the surface tension, v, and the slip coefficient. Three dimensionless numbers pertinent to an
interface between two immiscible fluids are the Bond number (Bo), the Weber number (We), and
the capillary number (Ca), defined as

L? LU? U
_ P9 , We = ? . Ca=H"

v 8 v

The Bond number expresses the significance of the gravitational force relative to surface tension.

The Weber number expresses the significance of the inertial force relative to surface tension. The
capillary number expresses the significance of the viscous stresses relative to surface tension.

Bo

(3.10.12)

In the space of dimensionless variables, the flow is governed by the equation of motion (3.10.2)
and the continuity equation (3.10.10), and the solution satisfies the conditions stated in (3.10.11). It
is evident then that the structure of a steady flow and the evolution of an unsteady flow depend on
(a) the values of the dimensionless numbers §, Re, and Fr, () the functional form of the boundary
conditions stated in (3.10.11), and (¢) the values of the dimensionless numbers involved in (3.10.11).
Two flows in two different physical domains will have a similar structure provided that, in the
space of corresponding dimensionless variables, the boundary geometry, initial state, and boundary
conditions are the same. Similarity of structure means that the velocity or pressure field of the
first flow can be deduced from those of the second flow, and wvice versa, by multiplication with an
appropriate factor.

Dynamic similitude can be exploited to study the flow of a particular fluid in a certain domain
by studying the flow of another fluid in a similar, larger or smaller, domain. This is achieved by
adjusting the properties of the second fluid, flow domain, or both, to match the values of 3, Re, Fr,
and any other dimensionless numbers entering the boundary conditions. Miniaturization or scale-up
of a domain of flow is important in the study of large-scale flows, such as flow past aircraft, and
small-scale flows, such as flow past microorganisms and small biological cells and flow over surfaces
with small-scale roughness and imperfections.

Problems

3.10.1 Scaling for a translating body in a moving fluid

A rigid body translates steadily with velocity V in an infinite fluid that moves with uniform velocity
U. Discuss the scaling of the various terms in the Navier—Stokes equation and derive the appropriate
Reynolds number.
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3.10.2 Dimensionless form of interfacial boundary conditions

(a) Express the interfacial boundary conditions (3.8.8) in dimensionless form and identify an appro-
priate dimensionless number.

(b) Develop a relation between the Weber number, the Reynolds number, and the capillary number.

3.10.3 Walking and running

Compute the Reynolds number of a walking or running adult person. Repeat for an ant and an
elephant.

3.10.4 Flow past a sphere

We want to study the structure of uniform (streaming) flow of water with velocity U = 40 km/hr
past a stationary sphere with diameter D = 0.5 cm. For this purpose, we propose to study uniform
flow of air past another sphere with larger diameter, D = 10 cm. What is the appropriate air speed?

3.11 Evolution of circulation around material loops
and dynamics of the vorticity field

Previously in this chapter, we discussed the structure and dynamics of an incompressible Newtonian
flow with reference to the equation of motion. Useful insights into the physical mechanisms governing
the motion of the fluid can be obtained by studying the evolution of the circulation around material
loops and the dynamics of the vorticity field. The latter illustrates the physical processes contributing
to the rate of change of the angular velocity of small fluid parcels. We will see that the rate of
change of the vorticity obeys a set of rules that are amenable to appealing and illuminating physical
interpretations.

3.11.1 Evolution of circulation around material loops

To compute the rate of change of the circulation around a closed reducible or irreducible material
loop of a Newtonian fluid, L, we combine (1.12.10) with the Navier—Stokes equation (3.5.5), assume
that the viscosity of the fluid and the acceleration of gravity are uniform throughout the domain of
flow, and obtain
e _ (—le+1/V2u+g) - dX, (3.11.1)
de L p
where X is the position of a point particle along the loop. Since the integral of the derivative of a
function is equal to the function itself, the integral of the last term on the right-hand side of (3.11.1)
makes a vanishing contribution. A similar reasoning reveals that, when the density of the fluid is
uniform or the fluid is barotropic, the integral of the pressure term is also zero. Setting the Laplacian
of the velocity equal to the negative of the curl of the vorticity, we obtain the simplified form

% = Vﬁ (V) -dX = fuﬁ (V X w) - dX. (3.11.2)

If the vorticity field is irrotational, V x w = 0, the integral on the right-hand vanishes and the rate
of change of the circulation is zero.
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3.11.2 Kelvin circulation theorem

When viscous forces are insignificant, we obtain

Ezg w-ndS =0, (3.11.3)
dt dt J/p

where D is an arbitrary surface bounded by the loop and n is the unit vector normal to D. Equation
(3.11.3) expresses Kelvin’s circulation theorem, stating that the circulation around a closed material
loop in a flow with negligible viscous forces is preserved during the motion. As a consequence, the
circulation around a loop that wraps around a toroidal boundary, and thus the cyclic constant of
the motion around the boundary, remain constant in time.

Now we consider a reducible loop, take the limit as the loop shrinks to a point, and find that,
when the conditions for Kelvin’s circulation theorem to apply are fulfilled, point particles maintain
their initial vorticity, which means that they keep spinning at a constant angular velocity as they
translate and deform in the domain of flow. Physically, the absence of a viscous torque exerted on
a fluid parcel guarantees that the angular momentum of the parcel is preserved during the motion.

3.11.3 Helmholtz theorems

One consequence of Kelvin’s circulation theorem is Helmholtz’ first theorem, stating that, if the
vorticity vanishes at the initial instant, it must vanish at all subsequent times. This behavior is
sometimes described as permanence of irrotational flow. Another consequence of Kelvin’s circula-
tion theorem is Helmholtz’ second theorem, stating that vortex tubes behave like material surfaces
maintaining their initial circulation. Thus, line vortices are material lines consisting of a permanent
collection of point particles.

3.11.4 Dynamics of the vorticity field

The Lagrangian form of the equation of motion provides us with the acceleration of point particles,
while the Eulerian form of the equation of motion provides us with the rate of change of the velocity
at a point in a flow in terms of the instantaneous velocity and pressure fields. To derive corresponding
expressions for the angular velocity of point particles and rate of change of the vorticity at a point
in a flow, we take the curl of the Navier—Stokes equation (3.5.5). Using the identity

Vx((u-Vu)=u:-Vw—w-Vu, (3.11.4)

and assuming that the acceleration of gravity is constant throughout the domain of flow, we derive
the vorticity transport equation,

D 0 1 1
22 = W Vw=w- Vu+ — Vpx Vp+ V2w + Vi x V2u + 2V x (fw.E), (3.11.5)
Dt ot P> P
where E is the rate-of-deformation tensor. Projecting both sides of (3.11.5) onto half the moment
of inertia of a small fluid parcel provides us with an angular momentum balance.
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Now restricting our attention to fluids whose viscosity is uniform throughout the domain of
flow, we obtain the simplified form

DD—"::%—L:+u~Vw:w~Vu+pl—2Vprp+VV2w. (3.11.6)
We could solve the Navier—Stokes for the pressure gradient and substitute the result into the right-
hand side of (3.11.6) to derive an expression in terms of the velocity and vorticity, but this is necessary
neither in theoretical analysis nor in numerical computation. The left-hand side of (3.11.6) expresses
the material derivative of the vorticity, which is equal to the rate of change of the vorticity following
a point particle, or half the rate of change of the angular velocity of the point particle.

Reorientation and vortex stretching

The first term on the right-hand side of (3.11.6), w - Vu, expresses generation of vorticity due to
the interaction between the vorticity field and the velocity gradient tensor, L = Vu. Comparing
(3.11.6) with (1.6.1), we find that, under the action of this term, the vorticity vector evolves as a
material vector, rotating with the fluid while being stretched under the action of the flow. Thus,
generation of a Cartesian vorticity component in a particular direction is due to both reorientation
of the vortex lines under the action of the local flow, and compression or stretching of the vorticity
vector due to the straining component of the local flow. The second mechanism is known as vortex
stretching.

To illustrate further the nature of the nonlinear term, w - Vu, we begin with the statement
w X w = 0 and use a vector identity to write

wxw=(Vxuxw=w-Vu-w- (Vo) =0, (3.11.7)
where the superscript 7' denotes the matrix transpose. Consequently,
w-Vu=w-(Vu)l = (Vu) - w. (3.11.8)
This identity allows us to write

8ui o auj 8u1 811,]'
wgail’j_wJ 8.%‘2 al‘j+(1_ﬂ) 8.%1)’

= wj Bji = w, (5 (3.11.9)
where (8 is an arbitrary constant. If the vorticity vector happens to be an eigenvector of the rate-of-
deformation tensor, E, it will amplify or shrink in its direction, behaving like a material vector.

Baroclinic production

The second term on the right-hand side of (3.11.6), - Vp x Vp, expresses baroclinic generation of
vorticity due to the interaction between the pressure and density fields. To illustrate the physical
process underlying this coupling, we consider a vertically stratified fluid that is set in motion by
the application of a horizontal pressure gradient. The heavier point particles at the top accelerate
slower than the lighter fluid particles at the bottom. Consequently, a vertical fluid column buckles
in the counterclockwise direction, thus generating vorticity with positive sign. When the density of
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the fluid is uniform or the pressure is a function of the density alone, the baroclinic production term
vanishes. In the second case, the gradients of the pressure and density are parallel and their cross
product is identically zero.

Diffusion

The third term on the right-hand side of (3.11.6), ¥V2w, expresses diffusion of vorticity with dif-
fusivity that is equal to the kinematic viscosity of the fluid, v. Under the action of this term, the
Cartesian components of the vorticity vector diffuse like passive scalars.

FEulerian form

An alternative form of the vorticity transport equation (3.11.6) emerges by restating the nonlinear
term in the equation of motion in terms of the right-hand side of (3.5.9) before taking the curl. Noting
that the curl of the gradient of a continuous function is identically zero, we derive the Eulerian form
of the vorticity transport equation,

Ow 1

57 TV X (wxu) = — Vp x Vp+1vViw. (3.11.10)

p

The second term on the left-hand side incorporates the effects of convection, reorientation, and
vortex stretching.

3.11.5 Production of vorticity at an interface

In Section 3.8.6, we interpreted an interface between two immiscible fluids as a singular surface of
distributed force. Dividing (3.8.26) by the density and taking the curl of the resulting equation, we
find that the associated rate of production of vorticity is

1 1 1
v x <,q):f72vpxq+vaq, (3.11.11)
p p p

where q is the singular forcing function defined in (3.8.27). The first term of the right-hand side of
(3.11.11) can be combined with the baroclinic production term in the vorticity transport equation.
If the discontinuity in the surface force is normal to an interface, the vectors Vp and q are aligned
and the interface does not make a contribution to the baroclinic production.

Concentrating on the second term on the right-hand side of (3.11.11), we define w = V x q
and take the curl of (3.8.27) to find

wi = —€ij, / w Afi(x') dS(x), (3.11.12)
I Lj

where I denotes the interface. In vector notation,
w = —/Vdg(x —x') x Af(x')dS(x) = /V’ég(x —x') x Af(x") dS(x'), (3.11.13)
I I

where a prime over the gradient designates differentiation with respect to the integration point, x’.
The last expression shows that the second term on the right-hand side of (3.11.11) generates a sheet
of vortex dipoles causing a discontinuity in the velocity gradient across the interface.
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Two-dimensional flow
The nature of the last term on the right-hand side of (3.11.11) can be illustrated best by considering
a two-dimensional flow in the zy plane and computing

w, = /V'&g(x —x') - [Af(X)) x e.]dI(xX), (3.11.14)
I

where J9 is the two-dimensional delta function in the plane of the flow, [ is the arc length along the
interface, and e, is the unit vector along the z axis [261]. Decomposing the jump in the interfacial
traction into its normal and tangential components designated by the superscripts N and T, we
obtain

w, = /V'&g(x —x') - [~AfTn+ AfNE](x) di(x). (3.11.15)
I
We have assumed that the triplet (t,n,e.) forms a right-handed coordinates so that t x e, = —n
and n X e, = t.

The tangential component inside the integrand can be manipulated further by writing

/IAfN(X')t(X’)-V’52(X—X’) di(x’) Z/t(X’)-V'[AfN(X’) d2(x — x)] di(x’)

1

—/I5g(x —x)t(x) - VAN (X)) di(x). (3.11.16)

When the interface is closed or periodic, the first integral on the right-hand side vanishes and
(3.11.15) simplifies into

w, = f/IAfT(x')n(x’)~V’(Sg(x—x')dl(x’)+/152(x7x')dAfN(x'). (3.11.17)

The first term on the right-hand side expresses the generation of a sheet of vortex dipoles due to
the tangential component of the discontinuity in the interfacial traction. The second term expresses
the generation of a vortex sheet due to the normal component of the discontinuity in the interfacial
traction.

As an application, we consider an infinite flat interface parallel to the = axis and assume that
the normal component A f is zero along the entire interface. Expression (3.11.17) becomes

o /
w, = —AfT /de’. (3.11.18)
I )

Problem

3.11.1 Two-dimensional flow

Write the counterpart of equation (3.11.5) for the z vorticity component in two-dimensional flow in
the zy plane.
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3.12 Vorticity transport in a homogeneous or barotropic fluid

In the case of uniform-density fluids or barotropic fluids whose pressure is a function of the density
alone, the vorticity transport equation (3.11.6) simplifies into

Dw Ow

29 D00 Y= Wl 2, 3.12.1
Dt 5 +u - Vw=w- -Vu+rV<w ( )

The associated Eulerian form given in (3.11.10) becomes
%‘;’ TV X (wx 1) = vV2w. (3.12.2)

Equation (3.12.1) shows that the vorticity at a particular point evolves due to convection, vortex
stretching, and viscous diffusion. The vorticity field, and thus the velocity field, is steady only
when the combined action balances to zero. Combining (3.12.2) with (1.12.11), we derive Kelvin’s
circulation theorem for a flow with negligible viscous forces.

Since the vorticity field is solenoidal, V - w = 0, we may write VZw = —V x (V x w) and
restate (3.12.2) as

Jdu
Vx(a—&—wxu—w/wa):O, (3.12.3)

which ensures that the vector field inside the parentheses is and remains irrotational.
Generalized Beltrami flows

By definition, the nonlinear term on the left-hand side of (3.12.2) vanishes in a generalized Beltrami
flow,

V X (wxu)=0. (3.12.4)

Equation (3.12.2) then reduces into the unsteady heat conduction equation for the Cartesian com-
ponents of the vorticity,

— =1Vw. (3.12.5)

The class of generalized Beltrami flows includes, as a subset, Beltrami flows whose vorticity is aligned
with the velocity at every point, w x u = 0.

If u and w are the velocity and vorticity of a generalized Beltrami flow, their negative pair, —u
and —w, also satisfies (3.12.2), and the reversed flow is also a generalized Beltrami flow (Problem
3.12.9). Since the direction of the velocity along the streamlines is reversed when we change the sign
of the velocity, a generalized Beltrami flow is sometimes called a two-way flow.

Flow with insignificant viscous forces

When viscous forces are insignificant, the vorticity transport equation (3.12.1) simplifies into

o =w- vy, (3.12.6)
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FIGURE 3.12.1 lllustration of the Burgers columnar vortex surviving in the presence of an axisymmetric
straining flow.

which is the foundation of Helmholtz’ theorems discussed in Section 3.11.3. Referring to (1.6.1), we
find that the vorticity vector behaves like a material vector in the following sense: if dl is a small
material vector aligned with the vorticity vector at an instant, then w/|w| = di/|dl| at all times,
where w is the vorticity at the location of the material vector.

Diffusion of vorticity through boundaries

According to equation (3.12.1), the rate of change of the vorticity vanishes throughout an irrotational
flow, and this seemingly suggests that the flow will remain irrotational at all times. However, this
erroneous deduction ignores the possibility that vorticity may enter the flow through the boundaries.
The responsible physical mechanism is analogous to that by which heat enters an initially isothermal
domain across the boundaries of a conductive medium due to a sudden change in the boundary
temperature.

The process by which vorticity enters a flow can be illustrated by considering the flow around
an impermeable boundary that is placed suddenly in an incident flow. To satisfy the no-penetration
boundary condition, we introduce an irrotational disturbance flow. However, we are still left with
a finite slip-velocity amounting to a boundary vortex sheet. Viscosity causes the singular vorticity
distribution associated with the vortex sheet to diffuse into the fluid, complementing the disturbance
irrotational flow, while the boundary vorticity is continuously adjusting in response to the developing
flow. If the fluid is inviscid, vorticity cannot diffuse into the flow, the vortex sheet adheres to the
boundary, and the flow remains irrotational.

3.12.1 Burgers columnar vortex

The Burgers columnar vortex provides us with an example of a steady flow where diffusion of vorticity
is counterbalanced by convection and stretching [62, 354]. The velocity field arises by superimposing



262 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

a swirling flow describing a columnar vortex and an irrotational, axisymmetric, uniaxial extensional
flow, as shown in Figure 3.12.1. In cylindrical polar coordinates, (z, o, ), with the = axis pointing
in the direction of the vortex, the velocity components are

Uy = ng U = — 3

3 &o, u, = U(o), (3.12.7)

where £ is the rate of extension and U(c) is the a priori unknown azimuthal velocity profile. The
radial and azimuthal vorticity components are identically zero, w, = 0 and w, = 0, and the axial
vorticity component is given by
1 d(cU
wy () = + V). (3.12.8)

o do

Substituting the expressions for the velocity into the axial component of the vorticity transport
equation (3.12.2), setting the time derivative to zero to ensure steady state and rearranging, we
obtain a linear, homogeneous, second-order ordinary differential equation,

d(o?w,) d / dw,
—— 4+ 2v — =0. 12,
T ¥ (" do ) 0 (3.12.9)

A nontrivial solution that is finite at the axis of revolution is

wy = A€ exp ( — 4% o?), (3.12.10)

where A is a dimensionless constant. Inspecting the argument of the exponential term, we find that
the diameter of the vortex is constant along the axis of revolution, and the size of the vortex is
comparable to the viscous length scale (4v/€)'/2.

The azimuthal velocity profile is computed by integrating equation (3.12.8), finding the Gaus-
sian distribution

1 £
U(o) =24 —{1— SR apR } 3.12.11
(o) v . exp ( = o ) ( )
The azimuthal velocity is zero at the axis of revolution and decays like that due to a point vortex
far from the axis of revolution. Accordingly A = C/(4nv), where C is the circulation around a loop
with infinite radius. The rate of extension, £, determines the radius of the Burgers vortex; as £ tends
to infinity, we obtain the flow due to a point vortex (see also Problem 3.12.1).

3.12.2 A vortex sheet diffusing in the presence of stretching

An example of a flow that continues to evolve until diffusion of vorticity is balanced by convection is
provided by a diffusing vortex sheet separating two uniform streams that merge along the x axis with
velocities +Uy, as illustrated in Figure 3.12.2. The vortex sheet is subjected to a two-dimensional
extensional velocity field in the yz plane stretching the vortex lines along the z axis. Stipulating
that the vortex lines are and remain oriented along the z axis, we express the three component of
the velocity and the z component of the vorticity as

dU

- 12,12
W (31212)

Uy = 7£y7 Uy = 7523 Uy = U(y?t) Wz =
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FIGURE 3.12.2 A diffusing vortex sheet is subjected to a two-dimensional straining flow that stretches
the vortex lines and allows for steady state to be established. For the velocity profile shown, w, < 0.

where U(y) is the velocity profile across the vortex layer and & is the rate of elongation of the
extensional flow.

Similarity solution

The absence of an intrinsic characteristic length scale suggests that the vortex layer may develop in
a self-similar fashion so that

£
y = —— , 3.12.13
= 5 100 (31213)
where §(t) is the nominal thickness of the vortex layer to be computed as part of the solution,
Y
— 3.12.14
"= 50 ( )

is a dimensionless similarity variable, and f is a function with dimensions of length. Substituting
expressions (3.12.12) and (3.12.13) into the z component of the vorticity transport equation and
rearranging, we obtain

d6 1
o

5( +60 =t

where a prime denotes a derivative with respect to . We observe that the left-hand side of (3.12.15)
is a function of ¢ alone, whereas the right-hand side is a function of both ¢ and y. Each side
must be equal to the same constant, set for convenience equal to 2vA%, where A is a dimensionless
coefficient. Solving the resulting ordinary differential equations for § and f subject to the initial
condition §(0) = 0 and the stipulation that f is an even function of 1, we obtain

(3.12.15)

52(t) = A? 2?” (1—e2¢), f(n) = £(0) exp(—A%n?). (3.12.16)
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Substituting expressions (3.12.16) into (3.12.13), we derive the vorticity distribution

3 &y
where
1 1/2
B= (%) £(0) (3.12.18)

is a new dimensionless constant. To compute the velocity profile, U(y), we substitute (3.12.17) into
the left-hand side of the last equation in (3.12.12). Integrating with respect to y, we obtain an
expression in terms of the error function,

2 /“’ )
erfw = — e Y dv. (3.12.19)
VT Jo
The constant B then follows as
2 \1/2
B=-— (— 12.2
Uo 7T§V> (3 0)

(Problem 3.12.2). At the initial instant, the velocity profile U(y, 0) undergoes a discontinuity and
the thickness of the vortex layer is zero. As time progresses, the thickness of the vortex layer tends
to the asymptotic value 0o, = A (2v/€)'/? where diffusion of vorticity away from the zz plane is
balanced by convection.

Burgers vortex layer

At steady steady, we obtain the Burgers vortex layer with vorticity and velocity profiles given by
26\ 1/2 &y? E\1/2
L) =-Up (= — Sy, = Ugerf[(>) " y]. 12.21
w(y) = U (=) " exp (= 3) Uy) = Uoert[(55) " v] (3.1221)

The pressure field can be computed using Bernoulli’s equation for the yz plane [62].

Unstretched layer

In the absence of straining flow, £ = 0, the vortex layer diffuses to occupy the entire plane. To
describe the developing vorticity field, we linearize the exponential terms in (3.12.17) with respect
to their arguments and obtain

2

1 \1/2
L(t) = — — - =). 12.22
w:(?) Uo (m/t) P ( vt ) ® )
Integrating with respect to y, we derive the associated velocity profile
Y
Ut) = U, erfc( ) 3.12.23
(1) = Uperte( ;= (312.23)

where erfc = 1 — erc is the complementary error function.
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3.12.3 Axisymmetric flow

In the case of axisymmetric flow without swirling motion, the axial and radial components of the
vorticity transport equation (3.12.2) are trivially satisfied. The azimuthal component of the vor-
ticity transport equation provides us with a scalar evolution equation for the azimuthal vorticity
component,

D /w v

E(f) = 2 B2 (ow,), (3.12.24)
where E? is a second-order operator defined in (2.9.17) and (2.9.20). The vortex stretching term
is inherent in the material derivative of w,/c on the right-hand side of the ratio (3.12.24). If the
azimuthal vorticity is proportional to the radial distance at the initial instant, w, = o, where Q) is
a constant, the right-hand side of (3.12.24) vanishes and the vorticity remains proportional to the
radial distance at all times.

Flow with negligible viscous forces

Equation (3.12.24) shows that, if viscous effects are insignificant, point particles move in an azimuthal
plane while their vorticity is continuously adjusted so that the ratio w, /o remains constant in time,
equal to that at the initial instant,

% (%) —0 (3.12.25)

Accordingly, the strength of a line vortex ring is proportional to its radius. The underlying physical
mechanism can be traced to preservation of circulation around vortex tubes.

3.12.4 Enstrophy and intensification of the vorticity field

The enstrophy of a flow is defined as the integral of the square of the magnitude of the vorticity
over the flow domain,

&= w-wdV. (3.12.26)
Flow
Projecting the vorticity transport equation onto the vorticity vector, we find that the enstrophy of
a flow with uniform physical properties evolves according to the equation

d&

—:2ﬁ(w®w):EdV—2y Vw:deV—&—V/n-V(wwu)dS, (3.12.27)
de Flow Flow B

where B stands for the boundaries of the flow. The three terms on the right-hand side represent, re-
spectively, intensification of vorticity due to vortex stretching, the counterpart of viscous dissipation
for the vorticity, and surface diffusion across the boundaries.

3.12.5 Vorticity transport equation in a noninertial frame

The equation of motion in an accelerating frame of reference that translates with time-dependent
velocity U(t) while rotating about the origin with angular velocity €(t) includes the inertial forces
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shown in (3.2.43). Let be v the velocity in the noninertial frame defined in (3.2.36), and e be
the corresponding vorticity. Including the inertial forces in the inertial form of the Navier—Stokes
equation, taking the curl of the resulting equation, and rearranging, we find that the modified or
intrinsic vorticity, w = g + 2€2, satisfies the inertial form of the vorticity transport equation,

Dw Ow 9
ﬁ_E—i—v-Vw—(.«J-Vv—i—VVw (3.12.28)

(Problem 3.12.6). The simple form of (3.12.28) is exploited for the efficient computation of an
incompressible Newtonian flow in terms of the velocity and intrinsic vorticity, as discussed in Section
13.2 (e.g., [383]).

Problems

3.12.1 Burygers columnar vortex

Evaluate the constant A in terms of the maximum value of the meridional velocity, U(o).

3.12.2 Vortex layer

Derive the velocity profile associated with (3.12.17) and the value of the constant B shown in
(3.12.20).

3.12.3 Vorticity due to the motion of a body

Discuss the physical process by which vorticity enters the flow due to a body that is suddenly set in
motion in a viscous fluid.

3.12.4 Ertel’s theorem

Show that, for any scalar function of position and time, f(z,t),

D%(“"Vf) :w-V<%{>. (3.12.29)

Based on this equation, explain why, if the field represented by f is convected by the flow, Df/Dt = 0,
the scalar w - V f will also be convected by the flow.

3.12.5 Generalized Beltrami flow

If we switch the sign of the velocity of a generalized Beltrami flow, should we also switch the sign
of the modified pressure gradient to satisfy the equation of motion?

3.12.6 Vorticity transport equation in a noninertial frame
Derive the vorticity transport equation (3.12.28).
3.13 Vorticity transport in two-dimensional flow

The vorticity transport equation for two-dimensional flow in the xy plane simplifies considerably
due to the absence of vortex stretching. We find that the z and y components of the general
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vorticity transport equation (3.12.2) are trivially satisfied, while the z component yields a scalar
convection—diffusion equation for the z vorticity component,

Dw, Ow,

Dt — Ot

+u-Vw, = VVQ(,QZ’ (3131)

where V2 is the two-dimensional Laplacian operator in the zy plane.

It is tempting to surmise that w, behaves like a passive scalar. However, we must remember
that vorticity distribution has a direct influence on the development of the velocity field mediated
by the Biot—Savart integral.

Flow with negligible viscous forces

When the viscous force is insignificant, the right-hand side of (3.13.1) is zero, yielding the Lagrangian
conservation law

Dw,

=0. 3.13.2
Dt 0 ( )

Physically, point particles move while maintaining their initial vorticity, that is, they spin at a
constant angular velocity. Two consequences of this result are that point vortices maintain their
strength and patches of constant vorticity preserve their initial vorticity.

Prandtl-Batchelor theorem

In Section 3.11.1, we showed that the circulation of the curl of the vorticity along a closed streamline
is zero in a steady flow,

j[t (V x w)dl = 0. (3.13.3)

In the case of two-dimensional flow, this equation states that the contribution of the tangential
component of the viscous force to the total force exerted on the volume of a fluid enclosed by a
streamline is zero. Since the z vorticity component is constant along a streamline in the absence
of viscous forces, it can be regarded as a function of the stream function, . The line integral in
(3.5.14) then becomes

_ Owz o Oz e [ 6, O 0¥
jgt (wa)dl—%t (ex 9y 5y )dl = a0 t-(eg a9y ey (9x)dl’ (3.13.4)

where e, and e, are unit vectors along the z and y axis. Invoking the definition of the stream
function, we find that

dwz dwz

" T W

Setting the last expression to zero to satisfy (3.13.3), we find that either the circulation around the
streamline is zero or the vorticity is constant in regions of recirculating flow.

t-(ezuy +eyuy)d

7{t- (Vxw)dl = t-udl (3.13.5)
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Preservation of the total circulation in the absence of boundaries

The total circulation of a two-dimensional flow is defined as the integral of the vorticity over the
area of the flow,

0= w, dA. (3.13.6)

Flow

Consider an infinite flow that decays at infinity in the absence of interior boundaries. Integrating
(3.13.1) over the whole domain of flow and using the continuity equation, we find that

Q
@ / (—u-Vw, +vViw,)dA = V- (~w.u+rvVw,)dA. (3.13.7)
dt Flow Flow

Using the divergence theorem, we convert the last areal integral into a line integral over a large loop
enclosing the flow. Since the velocity is assumed to vanish at infinity, the line integral is zero and
the total circulation of the flow remains constant in time. Physically, vorticity neither is produced
nor can escape in the absence of boundaries.

3.13.1 Diffusing point vortex

To illustrate the action of viscous diffusion, we consider the decay of a point vortex with strength x
placed at the origin. The initial vorticity distribution can be expressed in terms of a two-dimensional
delta function in the zy plane, as w,(x,t = 0) = kd2(x). Assuming that the flow remains axisym-
metric with respect to the z axis at all times, we introduce plane polar coordinates centered at the
point vortex, (r,6), and simplify (3.13.1) into the scalar unsteady diffusion equation

Ow, ug( 8wz)' (3.13.8)

ot ror\ or

Since the nonlinear term vanishes, the flow due to a diffusing point vortex is a generalized Beltrami
flow.

The absence of an intrinsic length scale suggests that the solution is a function of the dimen-
sionless similarity variable n = r/(vt)'/2, so that

w. = = (), (3.13.9)

where f is an a priori unknown function. Substituting this functional form into (3.13.8), we derive
a second-order linear ordinary differential equation,

2(nf'Y + 2 +2fn =0, (3.13.10)
where a prime denotes a derivative with respect to 1. Requiring that the derivatives of f are finite
at the origin and the total circulation of the flow is equal to x at any time, we obtain the solution

r2

747y1;)

exp ( (3.13.11)

Wy

4rvt
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FIGURE 3.13.1 Profiles of (a) the dimensionless vorticity, 2. = w.a?/x, and (b) dimensionless velocity,
Up = aug/k, around a diffusing point vortex at a sequence of dimensionless times, 7 = ut/a2 =
0.02,0.04, ..., where a is a reference length.

Integrating the definition w, = (1/r)9(rug)/0r, we derive an expression for the polar velocity com-
ponent,

2

N P U 3.13.12
v 27 [1 exp( 4ut)}’ ( )

describing the flow due to a diffusing point vortex known as the Oseen vortex. Radial profiles of the
dimensionless vorticity, Q. = w.a?/k, and reduced velocity, Uy = aug/k, are shown in Figure 3.13.1
at a sequence of dimensionless times, 7 = vt/a?, where a is a reference length. As time progresses,
the vorticity diffuses away from the point vortex and tends to occupy the whole plane. Viscosity
smears the vorticity distribution and reduces the point vortex into a vortex blob.

3.13.2 Generalized Beltrami flows

The simple form of the vorticity transport equation for two-dimensional flow can be exploited to
derive exact solutions representing steady and unsteady, viscous and inviscid flows. When the
gradient of the vorticity is and remains perpendicular to the velocity vector, the nonlinear convective
term in the vorticity transport equation (3.13.1) is identically zero, yielding a generalized Beltrami
flow whose vorticity evolves according to the unsteady diffusion equation,

ow,
ot

Since the gradient of the vorticity is perpendicular to the streamlines, and thus the vorticity is
constant along the streamlines, the vorticity can be regarded as a function of the stream function,

w, = -V = f(¢). (3.13.14)

=vViw,. (3.13.13)
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Substituting (3.13.14) into (3.13.13) and rearranging, we obtain

VQ(% + Vf(z/J)) —0, (3.13.15)

which is fulfilled if the stream function evolves according to the equation

%—f = —v f(y) =v V. (3.13.16)

Specifying the function f and solving for i provides us with families of two-dimensional generalized
Beltrami flows. Setting f equal to zero or a constant value, we obtain irrotational flows and flows
with constant vorticity. Other families of steady and unsteady generalized Beltrami flows have been
discovered [419, 420].

Differentiating (3.13.16) with respect to z and y, we find that the Cartesian components of
the velocity satisfy the unsteady heat conduction equation,

%‘; = vV (3.13.17)

To derive the associated pressure field, we substitute the first equation in (3.5.15) into the Navier—
Stokes equation (3.5.10), replace Ju/d¢ with the right-hand side of (3.13.17), and express the curl
of the vorticity on the right-hand as the negative of the Laplacian of the velocity. Simplifying and
integrating the resulting equation with respect to the spatial variables, we obtain

1
p:—ipu-u—kpg-x—F(i/))—kc, (3.13.18)
where ¢ is a constant and F'(¢) is the indefinite integral of the function f(%), as shown in (3.5.17).

Taylor cellular flow

An interesting unsteady generalized Beltrami flow arises by stipulating that the function f(¢) in-
troduced in (3.13.14) is linear in 1. Setting f(v) = a1, where « is a constant with dimensions of
inverse length, and integrating in time the differential equation comprised of the first two terms in
(3.13.16), we obtain

b(x,y,t) = x(z,y) exp(—a’vt). (3.13.19)
Equation (3.13.16) requires that the function y satisfies Helmholtz’ equation
Vix = —a?x. (3.13.20)
The particular solution
X = A cosh(Bx) cos(vyy) (3.13.21)

describes an exponentially decaying cellular periodic flow with wave numbers in the x and y directions
equal to 8 and «, where 32 + 42 = o? and A is an arbitrary constant [397]. The corresponding
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FIGURE 3.13.2 Streamline pattern of the doubly periodic decaying Taylor cellular flow with square
cells.

pressure distribution is found from (3.13.18). The streamline pattern for § = « in the plane of
dimensionless axes X = Sz and Y = ~y is shown in Figure 3.13.2.

Inviscid flow

When the effect of viscosity is insignificant, the terms multiplied by the kinematic viscosity in
(3.13.16) vanish. Accordingly, any time-independent solution of (3.13.14) represents an acceptable
steady inviscid flow. Examples include the flow due to a point vortex, the flow due to an infinite array
of point vortices, and any unidirectional shear flow with arbitrary velocity profile. The corresponding
pressure distributions are found from (3.13.18).

3.13.3 Extended Beltrami flows

Another opportunity for linearizing the vorticity transport equation arises by stipulating that the
vorticity distribution takes the particular form

Wy = —V27/1 = _X(xvyvt) - C'I/J, (31322)

where x is a specified function and c¢ is a specified constant with dimensions of inverse squared
length. The vorticity transport equation reduces to a linear partial differential equation for 1,

oV Ox Oy  Ox O

777777 Y =v(V? 13.2
ot Tovoy ogor OV TV(VxFex) (3.13.23)

whose solution can be found for a number of cases in analytical form (e.g., [419, 420]).
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Kovasznay flow

As an example, consider a steady flow with x = —cUy, where U is a constant [212]. Expression
(3.13.22) becomes

w, = =V = c(Uy — ). (3.13.24)

The steady version of the vorticity transport equation (3.13.23) simplifies into

U oy
e 13.2
ve Ox Uy (3.13.25)
A solution is
2
v=Uly—a % sin(ky) exp(Bkz) |, (3.13.26)

where « is an arbitrary dimensionless constant, k is an arbitrary wave number in the y direction,
and 8 = ev/(kU) is a dimensionless number.

It remains to verify that (3.13.26) is consistent with the assumed functional form (3.13.24).
Substituting (3.13.26) into (3.13.24), we obtain a quadratic equation for §,

Re
2
——pf8—-1= 13.2
- o f-1=0, (3.13.27)
where Re = 27U /kv is a Reynolds number. Retaining the root with the negative value, we obtain
11 /Re? /2 Re
__1 4) _ e } 13.2
=G+ -5 (31328

Streamline patterns in the plane of dimensionless axes X = xz/a and Y = y/a, are illustrated
in Figure 3.13.3 for « = 1.0 and Re = 10 and 50, where a = 27 /k is the separation of two successive
cells along the y axis. In both cases, a stagnation point is present at the origin. The flow can be
envisioned as being established in the wake of an infinite array of cylinders arranged along the y
axis, subject to a uniform incident flow along the z axis. As the Reynolds number is raised, the
regions of recirculating flow become increasingly slender.

Problems

3.13.1 Prandtl-Batchelor theorem for axisymmetric flow

Derive the Prandtl-Batchelor theorem for axisymmetric flow with negligible viscous forces where
the ratio w, /o is constant along a streamline.

3.13.2 Flow over a porous plate with suction

Consider uniform flow with velocity U far above and parallel to a porous plate. Fluid is withdrawn

with a uniform velocity V' through the plate. Show that the velocity field is given by
Uy =U (1 —e V), u, = V. (3.13.29)
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FIGURE 3.13.3 Streamline pattern of the Kovasznay flow for & = 1.0 and Reynolds number (a) Re =
10 or (b) 50.

Discuss the interpretation of the solution in terms of vorticity diffusion toward and convection away
from the plate.

3.13.3 Eaxtended Beltrami flow
Show that the flow described by the stream function

Y =—Uy(l—e V") (3.13.30)

can be derived as an extended Beltrami flow. Discuss the physical interpretation of this flow.



Hydrostatics

When a fluid is stationary or translates as a rigid body, the continuity equation is satisfied in a trivial
manner and the Navier—Stokes equation reduces into a first-order differential equation expressing a
balance between the pressure gradient and the body force. This simplified equation of hydrostatics
can be integrated by elementary methods, subject to appropriate boundary conditions, to yield the
pressure distribution inside the fluid. The integration produces a scalar constant that is determined
by specifying the level of the pressure at an appropriate point over a boundary. The product of
the normal unit vector and the pressure may then be integrated over the surface of an immersed
or submerged body to produce the buoyancy force. The torque with respect to a chosen point can
be computed in a similar way. Details of this procedure and applications will be discussed in this
chapter for fluids that are stationary or undergo steady or unsteady rigid-body motion.

In the case of two immiscible stationary fluids in contact, the interfacial boundary conditions
discussed in Section 3.8 require that the normal component of the traction undergoes a discontinuity
that is balanced by surface tension. In hydrostatics, the normal component of the traction is equal
to the negative of the pressure and the tangential component is identically zero. Accordingly, the
interface must assume a shape that is compatible with the pressure distribution on either side and
conforms with boundary conditions for the contact angle at a three-phase contact line. Conversely,
the pressure distribution in the two fluids cannot be computed independently, but must be found
simultaneously with the interfacial shape so that all boundary conditions are fulfilled. Depending on
the shape of the contact line, the magnitude of the contact angle, and the density difference between
the two fluids, a stationary interface may take a variety of interesting and sometimes unexpected
shapes (e.g., [52, 197]). For example, an interface inside a dihedral angle confined between two
planes may climb to infinity, as discussed in Section 4.2.1. The computation of interfacial shapes
presents us with a challenging mathematical problem involving highly nonlinear ordinary and partial
differential equations [126].

Our first task in this chapter is to derive the pressure distribution in stationary, translat-
ing, and rotating fluids. The equations governing interfacial hydrostatics are then discussed, and
numerical procedures for computing the shape of interfaces with two-dimensional (cylindrical) and
axisymmetric shapes are outlined. The computation of three-dimensional interfacial shapes and
available software are reviewed briefly at the conclusion of this chapter as specialized topics worthy
of further investigation.

274
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4.1 Pressure distribution in rigid-body motion

We begin by considering the pressure distribution in a stationary fluid. However, since any fluid
that moves as a rigid body appears to be stationary in a suitable frame of reference, we also include
fluids that execute steady or unsteady translation and rotation.

4.1.1 Stationary and translating fluids

The Navier—Stokes equation for a fluid that is either stationary or translates with uniform velocity
u = U(t) simplifies into a linear equation,

U

— =-V . 4.1.1
T p+r8g (4.1.1)
Assuming that the density of the fluid is uniform and solving for the pressure, we obtain

P:P(g*%)-xﬁ—P(t), (4.1.2)

where the function P(t) is found by enforcing an appropriate boundary condition reflecting the

physics of the problem under consideration.

Force on an immersed body

The force exerted on a body immersed in a stationary or translating fluid can be computed in terms
of the stress tensor using the general formula (3.1.16). Setting o = —pI, we find that

F= f/ pndS, (4.1.3)
B

ody

where n is the normal unit vector pointing into the fluid. Substituting expression (4.1.2) and using
the divergence theorem to convert the surface integral into a volume integral over the volume of the
body, we derive Archimedes’ buoyancy force,

du
F=—pVs(g- = ) (4.1.4)

where Vg is the volume occupied by the body.

Torque on an immersed body

The torque exerted on a body with respect to a chosen point, xg, is found working in a similar
manner using (3.1.23), finding

T = —pVp (xc—x0) x (g — %), (4.1.5)

where

1
Xe = — x dV (x) (4.1.6)
Vi Body
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FIGURE 4.1.1 (a) Depiction of a liquid layer resting between an underlying heavier liquid and overlying
air, illustrating the hydrostatic pressure profile. (b) A spherical particle floats at the flat surface of
a liquid at floating angle 3; the dashed line represents the horizontal circular contact line.

is the volume centroid of the body. Placing the pivot point xq at the volume centroid, x., makes the

torque vanish. Using the divergence theorem, we derive a convenient representation for the volume
centroid in terms of a surface integral,

1 22 0 0

. = 7/ 0 2 0 |-ndSx), (4.1.7)

2Vp Body 0 0 22

where n is the normal unit vector pointing into the fluid.

A floating liquid layer

As an application, we consider the pressure distribution in a stationary liquid layer labeled 1 with
thickness h, resting between air and a pool of a heavier liquid labeled 2, as shown in Figure 4.1.1(a).
Assuming that both the free surface and the liquid interface are perfectly flat, we introduce Cartesian
coordinates with origin at the free surface and the y axis pointing in the vertical direction upward
so that

gz =0, 9y = —9, (4.1.8)

where g = |g| is the magnitude of the acceleration of gravity. Applying the general equation (4.1.2)
with U = 0 for each fluid, we obtain the pressure distributions

p1=—p1gy + Pi, p2 = —p2gy + Pz, (4.1.9)
where P; and P, are two constant pressures.

To compute the constant P;, we require that the pressure at the free surface of fluid 1 is
equal to the atmospheric pressure, pyim, and find that Py = pgun. To compute the constant P,
we apply both equations in (4.1.9) at the interface located at y = —h, and subtract the resulting
expressions to find that ps — p1 = Apgh + Po — patm, where Ap = ps — p1. Requiring continuity of
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the normal component of the traction or pressure across the interface, we obtain Py = paym — Apgh.
Substituting the values of P; and P» into (4.1.9), we obtain the explicit pressure distributions

P1 = —p19Y + Patm; P2 = —p29Y + Patm — Apgh. (4.1.10)

The satisfaction of the dynamic condition p;(—h) = p2(—h) can be readily verified.

Pressure in a vibrating container

As a second application, we consider the pressure distribution in a liquid inside a container that
vibrates harmonically in the vertical direction with angular frequency 2. Assuming that the free
surface remains flat, we introduce Cartesian axes with origin at the mean position of the free surface
and the y axis pointing against the direction of gravity, so that g, = —g. The position of the free
surface is described as y = acos(2t), where a is the amplitude of the oscillation. The velocity of
the fluid is U(t) = —aQsinQ e, where e, is the unit vector along the y axis. Using (4.1.2), we find
that the pressure distribution in the liquid is given by

p=—py[g—aQ’cos(Q) ] + P(t). (4.1.11)

The function P(t) is evaluated by requiring that the pressure at the free surface is equal to the
atmospheric pressure, pq¢m, at any instant, obtaining

P(t) = patm + pacos(Qt) [ g — aQ? cos(Qt) ]. (4.1.12)
Substituting this expression into (4.1.11) and rearranging, we obtain
P =DPatm +p [y —acos(Q)] [ — g+ a® cos(Qt) ]. (4.1.13)

The term inside the first square brackets on the right-hand side is the vertical component of the
position vector in a frame of reference moving with the free surface. The term inside the second
square brackets is the sum of the vertical components of the gravitational acceleration and inertial
acceleration —dU(¢)/d¢. It is then evident that expression (4.1.13) is consistent with the pressure
distribution that would have arisen if we worked in a frame of reference where the free surface
appears to be stationary, accounting for the fictitious inertial force due to the vertical vibration.

4.1.2 Rotating fluids

The velocity distribution in a fluid in steady rigid-body rotation around the origin with constant
angular velocity € is u = € Xx x, and the associated vorticity is w = 2. Remembering that the
Laplacian of the velocity is equal to the negative of the curl of the vorticity, we find that the viscous
force is identically zero. Evaluating the acceleration from (1.3.14), we obtain the simplified equation
of motion

pAX (A xx)=-Vp+pg. (4.1.14)

In cylindrical polar coordinates, (z,c, ), with the z axis pointing in the direction of the angular
velocity vector, 2, equation (4.1.14) takes the form

—pQ%0e, =—-Vp+pg, (4.1.15)
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where () is the magnitude of € and e, is the unit vector in the radial (o) direction. Expressing the
gradient of the pressure in cylindrical coordinates and integrating with respect to o, we find that

png-x—%—%pQQUQJrP(t), (4.1.16)

which can be restated as
p:pg-x—&—%p\ﬂ><X|2—|—P(t)7 (4.1.17)
where P(t) is an inconsequential function of time. The additional pressure expressed by the second
term on the right-hand side is necessary in order to balance the radial centrifugal force due to the

rotation.

Rotating container

As an application, we consider the pressure distribution inside a container that rotates steadily
around the horizontal x axis. Setting the y axis in the direction of gravity pointing upward so that

the component of the acceleration of gravity are g, = 0, g, = —g, and g, = 0, we find the pressure
distribution
1
p=—pgy+ 5oy +2°) + P, (4.1.18)

which can be restated as

1 g\? 1 g
= p0? (-—) 2L 4 p 4.1.19
p=5rV[(y—z) +¥ -5+ (4.1.19)
The expression shows that surfaces of constant pressure are concentric horizontal cylinders with axis
passing through the point z = 0 and y = ¢g/Q?. The minimum pressure occurs at the common axis.

Free surface of a rotating fluid

In another application, we consider the shape of the free surface of a liquid inside a horizontal
cylindrical beaker that rotates about its axis of revolution with angular velocity 2. Setting the
2 axis in the direction of gravity pointing upward so that g, = —g, we find that the pressure
distribution in the fluid is given by

1
p = —pgr + inQO'Q + P, (4.1.20)

where o is the distance from the x axis. Evaluating the pressure at the free surface, neglecting the
effect of surface tension, and requiring that the pressure at the free surface is equal to the ambient
atmospheric pressure, we obtain an algebraic equation for the shape of the free surface describing a
paraboloid.

Rotary oscillations

Now we assume that the fluid rotates around the origin as a rigid body with time-dependent angular
velocity €2(t). Substituting the associated velocity field u = (t) x x in the Navier—Stokes equation,
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we obtain the pressure distribution p = p; + pa, where p; is given by the right-hand side of (4.1.17)
and p- satisfies the equation

P % X x = —Vps. (4.1.21)
Taking the curl of both sides of (4.1.21) and noting the the curl of the gradient of any twice dif-
ferentiable function is identically zero, we arrive at the solvability condition dQ2/d¢t = 0, which
contradicts the original assumption of unsteady rotation. The physical implication is that rotary
oscillation requires a velocity field other than rigid-body motion. For example, subjecting a glass
of water to rotary oscillation does not mean that the fluid in the glass will engage in rigid-body
oscillatory rotation. In fact, at high frequencies, the motion of the fluid will be confined inside a
thin boundary layer around the glass surface, and the main body of the fluid outside the boundary
layer will be stationary.

4.1.3 Compressible fluids

The pressure distribution (4.1.2) was derived under the assumption that the density is uniform
throughout the fluid. When the fluid is compressible, p is the thermodynamic pressure related to
the fluid density, p, and to the Kelvin absolute temperature, T', by an appropriate equation of state.

Ideal gas

In the case of an ideal gas, the pressure is given by the ideal gas law, p = RTp/M, as discussed
in Section 3.3. Solving for the density and substituting the resulting expression into (4.1.1) for a
stationary fluid, U = 0, we obtain a first-order differential equation,

%vp:vm(ﬂ) M

- 4.1.22
) = RT® ( )

where pg is an unspecified reference pressure. When the temperature is constant, the solution is

p M
In—=—g-x. 4.1.23
o~ RT® ( )
We have found that the pressure exhibits an exponential dependence on distance instead of the
linear dependence observed in an incompressible liquid.

As an application, we consider the pressure distribution in the atmosphere regarded as an
ideal gas with molar mass M = 28.97 kg/kmole, at temperature 25°C, corresponding to absolute
temperature 7' = 298 K. In Cartesian coordinates with origin at sea level and the y axis pointing
upward, the components of the acceleration of gravity vector are given by g, = 0, g, = —g, and
g. = 0, where g = 9.80665 m/s?. Equation (4.1.23) provides us with an exponentially decaying
profile,

M
p=Dpo eXp(—RT,‘(’,7 Y) (4.1.24)

where pg is the pressure at sea level. Substituting R = 8.314 x 10% kg m?/(s? kmole K) and taking
po = 1.0atm = 1.0133 x 10° Pascal = 1.0133 x 10°kgm ™' s=2, we find that the pressure at the
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elevation of y = 1 km = 1000 m is

28.97 x 9.80665
8.314 x 103 x 298

p=10exp(— 1000 ) atm = 0.892 atm. (4.1.25)

The corresponding density distribution is found by substituting the pressure distribution (4.1.24) in
the ideal gas law.

Problems

4.1.1 Two layers resting on a pool

A liquid layer labeled 2 with thickness hs is resting at the surface of a pool of a heavier fluid labeled
3, underneath a layer of another liquid layer labeled 1 with thickness h;. The pressure above layer
1 is atmospheric. Compute the pressure distribution in the two layers and in the pool.

4.1.2 Rotating drop

Describe the shape of a suspended axisymmetric drop rotating as a rigid body about the vertical
axis in the absence of interfacial tension.

4.1.3 Pressure distribution in the atmosphere

Derive the pressure distribution in the atmosphere, approximated as an ideal gas, when the temper-
ature varies linearly with elevation, T' = Ty — By, where T} is the temperature at sea level, § is a
constant called the lapse rate, and the y axis points against the direction of gravity.

4.1.4 Compressible gas in rigid-body motion

Generalize (4.1.23) to the case of an ideal gas translating as a rigid body with arbitrary time-
dependent velocity, while rotating with constant angular velocity.

4.1.5 A floating sphere

A spherical particle of radius a is floating at the surface of a liquid underneath a zero-density gas,
as shown in Figure 4.1.1(b). Assuming that the interface is flat, show that the floating angle, £,
satisfies the cubic equation

0> —30+2(2s—1)=0, (4.1.26)

where o = cos 8, s = W,/(pgVs) is a dimensionless constant, W is the weight of the sphere, and
Vs is the volume of the sphere (e.g., [318]). If the sphere is made of a homogeneous material with
density pp, then s = pp/p is the density ratio.

X
Computer Problem

4.1.6 A floating sphere
Solve equation (4.1.26) and prepare a graph of the floating angle 8 against s in the range [0, 1].
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FIGURE 4.2.1 A hydrostatic meniscus forming outside a vertical elliptical cylinder with aspect ratio 0.6,
for contact angle a = /4 and scaled capillary length ¢/c = 4.5036, where ¢ is the major semi-axis
of the ellipse. The computer code that generated this shape is included in Directory men_ell inside
Directory 03_hydrostat of the software library FDLIB (Appendix C).

4.2 The Laplace—Young equation

An important class of problems in interfacial hydrodynamics concerns the shape of a curved interface
with uniform surface tension, -, separating two stationary fluids labeled 1 and 2. An example
is shown in Figure 4.2.1 [321]. Substituting in the interfacial force balance (3.8.8) the pressure
distribution (4.1.2) with vanishing acceleration, we find that the jump in the interfacial traction
defined in (3.8.1) is given by

Af = (e —0@).n=(p,—p)n=[Apg -x+ (P, — P)|n=72knn, (4.2.1)

where Ap = po — p; is the density difference, P; and P, are two pressure functions of time attributed
to each fluid, n is the normal unit vector pointing into fluid 1 by convention, and &, is the mean
curvature of the interface. Rearranging, we obtain the Laplace—Young equation

A
Uim = L g x4\, (4.2.2)
2

where A = (P, — P1)/7v is a new function of time with dimensions of inverse length.

Capillary length and Bond number

The capillary length is a physical constant with dimensions of length defined as

= (|A7p|g)1/2, (4.2.3)

where ¢ is the magnitude of the acceleration of gravity. For water at 20°C, the capillary length is
approximately 2.5 mm. A dimensionless Bond number can be defined in the terms of the capillary
length as

_ Aplga® a2
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Two-dimensional interface described as y = f(x)

K:_fiﬁzl(é)’:_( f )’
S A AW ey ) A Wiy

A prime denotes a derivative with respect to x

Two-dimensional interface described in plane polar coordinates as r = R(0)
RR/I _ 2R/2 _ R2
k= (RZ + R2)3/2

A prime denotes a derivative with respect to 6

Two-dimensional interface described parametrically as x = X (&) and y = Y (§)
_ Xee Ve — Yee Xg
(Xg + Y€2)3/2

A subscript ¢ denotes a derivative with respect to &

Two-dimensional interface described parametrically as r = R(§) and 6 = O(¢)
" (RZ + R2Q%)/

A subscript & denotes a derivative with respect to &

TABLE 4.2.1 Curvature of a two-dimensional interface in several parametric forms. Fluid 1 lies above
fluid 2.

where a is a properly chosen length. For example, a can be the radius of a circular tube surrounded
by an interface. In terms of the capillary length or Bond number, the Laplace-Young equation
(4.2.2) takes the form

1 Bo
2K ::I:ﬁeg X+ A or 2Km ::I:&—2eg “X A+ A, (4.2.5)

where e, = Lo is the unit vector pointing in the direction of gravity, the plus sign applies when
Ap > 0, and the minus sign applies when Ap < 0.

Mean curvature and differential equations

Expressing the mean curvature in an appropriate parametric form reduces (4.2.2) into a nonlinear
ordinary or partial differential equation describing the shape of the interface. Ordinary differential
equations arise for two-dimensional or axisymmetric shapes, and partial differential equations arise
for three-dimensional shapes. The computation of the mean curvature was discussed in Section 1.8.
Expressions for the directional and mean curvature of two-dimensional, axisymmetric, and three-
dimensional surfaces are summarized in Tables 4.2.1-4.2.3 in several direct or parametric forms. The
independent variables in the differential equations that arise from the Laplace-Young equation are
determined by the chosen parametrization.
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Axisymmetric interface described in cylindrical polar coordinates as = = f(o)

f// 1 f/ . N 1 ( O'fl )/
= = == ——— K,m = K Ro = —— S——————
TR O ey ) TP e\t g

A prime denotes a derivative with respect to o

Axisymmetric interface described in cylindrical polar coordinates as 0 = w(z)
B w” 1 1 S — 11+ w?—ww”
T T @rwEe Ty Trer T MR T L U e

A prime denotes a derivative with respect to x

TABLE 4.2.2 Principal and mean curvatures of an axisymmetric interface in several parametric forms
with fluid 1 lying in the outer space; x1 is the principal curvature in an azimuthal plane, and ks is
the principal curvature in the conjugate plane.

Three-dimensional interface described as z = f(x,y)

(1 +f3) flL - szfyfwy + (1 + ff) fyy
26 = — ENEESIEE ~ —fux — fyy (nearly flat)

Three-dimensional interface described in cylindrical polar coordinates as = = ¢(o, )

1 Qy — 4 4o
2 m = — |: 1 2 - 2 - ® ® 1 2 Ho
R (1+q<27+Q920)3/2 (14 Q%) doo +245Q, P + (1 +q;) (Qopp + U)

Qp = q,/0, Qup = q«w/02

Three-dimensional interface described in spherical polar coordinates as r = (6, ¢)

VF f@ fgo
— _ F =€, — — _— s 2 m — V .
" |VF|’ v © r 07 rsing ¢ " "
2 cotd foo it '
Qi ™ ——— fo — o ﬁ (nearly spherical)

TABLE 4.2.3 Mean curvature of a three-dimensional interface in several parametric forms with fluid 1
lying in the upper half-space. A subscript denotes a partial derivative.

Boundary conditions

The solution of the differential equations that arise from the Laplace—Young equation is subject
to a boundary condition that specifies either the contact angle at a three-phase contact line where
the interface meets a solid boundary or a third fluid, or the shape of the contact line. The first
Neumann-like boundary condition is employed when a solid boundary is perfectly smooth, whereas
the second Dirichlet-like boundary condition is employed when a solid surface exhibits appreciable
roughness (e.g., [115]). Problems where the shape of the contact line is specified are much easier to
solve than those where the contact angle is specified.
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FIGURE 4.2.2 (a) lllustration of a meniscus developing between two parallel vertical plates separated by
distance 2a for contact angle o < w/2. (b) When « is greater than 7/2, the meniscus submerges
and the capillary rise h is negative. The meniscus shape depicted in (b) was produced by the
FDLIB code men_2d (Appendix C) [318].

Interfaces with constant mean curvature

Under certain conditions, the right-hand side of (4.2.2) is nearly constant and the interface takes a
shape with constant mean curvature. Constant mean-curvature shapes in three dimensions include
(a) a sphere or a section of a sphere, (b) a circular cylinder or a section of a circular cylinder, (¢) an
unduloid defined as an axisymmetric surface whose trace in an azimuthal plane coincides with the
focus of an ellipse rolling over the axis of revolution, (d) a catenoid discussed in Problem 4.2.3, and
(e) anodoid. Lines of constant curvature in two dimensions include a circle and a section of a circle.

Meniscus between two vertical plates

As an example, we consider the shape of a two-dimensional meniscus subtended between two vertical
flat plates separated by distance 2a, as illustrated in Figure 4.2.2. The height of the meniscus midway
between the plates is the capillary rise, h. Assuming that the meniscus takes the shape of a circular
arc of radius R, and using elementary trigonometry, we find that a = R cos «, where « is the contact
angle. The curvature of the interface is reckoned as negative when the interface is concave, as shown
in Figure 4.2.2(a), and positive when the interface is convex, as shown in Figure 4.2.2(b).

The pressure profiles in the upper or lower fluids are described by (4.1.9). Equating the
pressures on either side of the flat interface outside and far from the plates, located at y = —h, we
obtain
P2 — P1 - Apgh

- 9

v Y

A

(4.2.6)
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where Ap = ps — p1 > 0. Next, we substitute this expression for X into the Laplace—Young equation
(4.2.2), compute the radius of curvature from the expression R = a/ cos «, introduce the approxi-
mation

1 cos &
Uiy & —— = — , 4.2.7
K 7 " (4.2.7)
evaluate the resulting equation at the midplane, £ = 0, and find that
62
~ -7 cosa=— cosa. (4.2.8)
Apga a

The sign of the capillary rise in (4.2.8) is determined by the contact angle, a. When « < 7/2, the
meniscus rises; when a > 7/2, the meniscus submerges; when « = 7/2 the meniscus remains flat

at the level of the free surface outside the plates. The maximum possible elevation or submersion
height is £2/a.

Equation (4.2.8) can be derived directly by performing a force balance on the liquid column
raised capillary action. Setting the weight of the column reduced by the buoyancy force, 2ah Apg,
equal to the vertical component of the capillary force exerted at the two contact lines, 2y cos «, and
rearranging, we obtain precisely (4.2.8). A formal justification for this calculation will be given in
Section 4.2.3. A numerical procedure for computing the meniscus shape without any approximations
will be discussed in Section 4.3.2.

We may now return to (4.2.2) and establish the conditions under which the assumption that
the right-hand side is nearly constant is valid. Requiring that the variation in the elevation of the
interface, |R| (1 — sin ), is smaller than |h|, we find that

(%) ’ < 1+sina, (4.2.9)

which shows that the plate separation must be sufficiently smaller than the capillary length, otherwise
gravitational effects are important along the length of the meniscus.

The predictions of equation (4.2.8) also apply when the plate separation, 2a, changes slowly
in the z direction normal to the xy plane. An example is provided by the meniscus forming between
two vertical plates with small-amplitude sinusoidal corrugations.

Azisymmetric meniscus inside a circular tube

In a related application, we consider the axisymmetric meniscus inside a circular capillary tube
of radius a, as shown in Figure 4.2.3. Assuming that the meniscus has constant mean curvature,
taking the shape of a sphere with signed radius R, and working as in the case of the two-dimensional
meniscus between two parallel plates, we find an approximate expression for the capillary rise,

£2
cosa = 2 — cosa (4.2.10)

v
=R
Apga
which differs from (4.2.8) only by a fact of two on the right-hand side (Problem 4.2.1). The condition
for this prediction to be accurate is

(%)2 < 2(1 +sina). (4.2.11)
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FIGURE 4.2.3 lllustration of an axisymmetric meniscus developing inside a vertical circular tube of radius
a for (@) contact angle o < 7/2 and (b) a > /2. The signed length Ry is the second principal
radius of curvature.

Alternatively, expression (4.2.10) can be derived by setting the weight of the raised column reduced
by the buoyancy force, ma?hApg, equal to the vertical component of the capillary force exerted
around the contact line, 2waycosa. A numerical procedure for computing the meniscus shape
without any approximations will be discussed in Section 4.4.1.

4.2.1 Meniscus inside a dihedral corner

Consider the shape of a meniscus between two vertical intersecting plates forming a dihedral corner
with semi-angle 3, as shown in Figure 4.2.4. Deep inside the corner, the meniscus may rise all the
way up to infinity under the action of surface tension. Assuming that the curvature of the trace of
the interface in a vertical plane is much smaller than the curvature of the trace of the interface in a
horizontal plane, we approximate 2k, ~ —1/R, where R is the radius of curvature of the interface
in a horizontal plane defined in Figure 4.2.4.

Setting the z axis upward against the direction of gravity with origin at the level of the
undeformed interface far from the walls, we find that the Laplace—Young equation (4.2.2) reduces
into

1 Apg

— 4.2.12
R 'Y x’ ( )

where Ap = ps — p1. Using elementary trigonometry, we write the geometrical condition
¢c=(R+d)sinf = Rcosa, (4.2.13)

where « is the contact angle, d is the meniscus thickness at the vertical bisecting plane, as shown in
Figure 4.2.4, and the length c is defined in Figure 4.2.4. Combining equations (4.2.12) and (4.2.13),
we obtain
1-k 1-k ~
k k  Apgzx’

(4.2.14)
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Fluid 1

Fluid 2

FIGURE 4.2.4 lllustration of a meniscus inside a dihedral corner confined between two vertical plates
intersecting at angle 2.

where k = sin 8/ cos a. The meniscus rises if d > 0, which is possible only when o+ 3 < %77. When
this condition is met, the meniscus takes a hyperbolic shape that diverges at the sharp corner. In
practice, the sharp corner has a nonzero curvature that causes the meniscus to rise up to a finite
capillary height. Expressions (4.2.13) and (4.2.14) validate a posteriori our assumption that the
curvature of the meniscus in a vertical plane is much smaller than the curvature of the interface in
a horizontal plane.

The area occupied by the liquid in a plane perpendicular to the z axis, denoted by A(z), scales
as A(x) ~ d?. The volume of liquid residing inside the tapering liquid tongue, denoted by V, scales
as V ~ f;OO d(z)? dz, where ¢ is a positive elevation marking the beginning of the local solution.
Since d ~ 1/x, we find that V' ~ 1/xg ~ dp, where dj is the meniscus thickness corresponding to x.
We conclude that a finite amount of liquid resides inside the tapering liquid tongue.

The shape of the meniscus can be described in plane polar coordinates with origin at the
corner, (r,0), by the function r = ¢(z, 8), as shown in Figure 4.2.4. Using the law of cosines, we find
that

R?* = (d+ R)*+¢* —2(d+ R) q cosf. (4.2.15)

Solving this quadratic equation for ¢ and eliminating R and d in favor of z using (4.2.12) and
(4.2.14), we find that the meniscus is described by the equation

A/ng cos @ — ]:;2 = sin20’ (4.2.16)
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Fluid 1

FIGURE 4.2.5 lllustration of a meniscus bounded by two closed contact angles drawn as heavy lines.

where —(3 < 0 < 8. The contact lines corresponding to § = £ are described by the equation

(4.2.17)

el = Apg  sinf

v cos(a+ ) 1

e

We have found that the meniscus climbs up to infinity when o+ 8 < 7/2. For a right-angled

corner where § = 7/4, such as that occurring inside a square tube, the contact line must be less

than 7/4. When o+ 8 > 7/2, the meniscus does not rise to infinity but takes a bounded shape [93].

In the absence of gravity, a solution does not exist when a + 8 > /2. This discontinuous behavior
underscores the important effect of boundary geometry in capillary hydrostatics.

4.2.2 Capillary force

Consider a meniscus confined by one closed contact line or a multitude of contact lines with arbitrary
shape, as shown in Figure 4.2.5. Multiplying both sides of the Laplace—Young equation (4.2.2) by the
normal unit vector, n, and integrating the resulting equation over the entire surface of the meniscus,
M, we obtain

/ 2nmnd5:&/(g-x)nd5+/\// ndS. (4.2.18)
M Y M M

Next, we identify a surface or a collection of surfaces, D, whose union with the meniscus, M, encloses
a finite control volume, V,, as depicted in Figure 4.2.5. Using the divergence theorem to manipulate
the first integral on the right-hand side, we obtain

/ QHmndS:&/(gx)ndSJr)\/ ndS+&VCg, (4.2.19)
M v D D Y

where the normal unit vector n over D points into the control volume, as shown in Figure 4.2.5.
Applying Stokes’ theorem expressed by equation (A.7.8), Appendix A, for G = n, and recalling that
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2Kk, = V - n, we obtain

/ 2kmndS :% n x tdl, (4.2.20)
M c

where the line integral is computed around each contact line, C, t is the tangent unit vector, and [ is
the arc length along the contact line. Substituting this expression into (4.2.19) and setting e = nx t,
we obtain the force balance

7y 7{ edl = / [Ap(g-x)+yA|ndS + ApVeg. (4.2.21)
¢ D

The left-hand side expresses the capillary force exerted around the contact lines. The last term on
the right-hand side expresses the weight of the fluid residing inside the control volume, reduced by
the buoyancy force. The first term on the right-hand side expresses a surface pressure force.

As an example, we consider the meniscus subtended between two vertical circular cylinders
bounded by a horizontal flat bottom, and identify D with union of the surface of the cylinders below
the contact lines and the the flat bottom. If the contact lines are horizontal circles, the horizontal
component of the right-hand side of (4.2.21) is zero and the horizontal component of the capillary
force exerted on the outer cylinder is equal in magnitude and opposite in direction with that exerted
on the outer cylinder.

4.2.3 Small deformation

When the deformation of an interface from a known equilibrium shape with constant mean curvature
is small compared to its overall size, the Laplace—Young equation can be simplified by linearizing the
expression for the mean curvature about the known equilibrium position corresponding, for example,
to a flat or spherical shape.

As an example, we assume that a three-dimensional interface is described in Cartesian co-
ordinates as = f(y, z), where the magnitude of f is small compared to the global dimensions of
the interface and f = 0 yields a flat equilibrium shape consistent with the boundary conditions.
Substituting into (4.2.2) the linearized expression for the mean curvature with respect to f shown
in Table 4.2.1, we obtain a Helmholtz equation for f,

2 2
oF af*f&gocf)\, (4.2.22)

oy 022 vy

where Ap = ps — p1. The solution must be found subject to an appropriate boundary condition at
the contact line.

Problems

4.2.1 Meniscus between a planar and a wavy plate

Consider the meniscus established between a flat vertical plate and another vertical plane with
small-amplitude vertical sinusoidal corrugations. Develop an expression for the capillary height
with respect to the horizontal coordinate, z.
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4.2.2 Meniscus inside a cylindrical capillary

Derive (4.2.10) and discuss the physical implications of (4.2.11).

4.2.3 Catenoid

(a) Verify that the equation o = f(z) = ¢; [1 + f'(2)?]/?, where ¢; is a constant, describes an
axisymmetric interface with zero mean curvature. The surface is called a catenoid and its trace in
an azimuthal plane is called a catenary.

(b) Show that the catenoid is described by the equation o = ¢; cosh[(x — ¢3)/c2], where ¢z is a new
constant.

X
Computer Problem

4.2.4 A film between two rings

A thin liquid film is subtended between two coaxial circular rings
of equal radius, a, separated by distance b. Assuming that gravita-
tional effects are insignificant and requiring that the pressures on
either side of the film are equal, we find that the film must take a
shape with zero mean curvature. Assuming that the film takes the
shape of a catenoid discussed in Problem 4.2.3, compute the con-
stants ¢; and ¢ by requiring that the catenoid passes through the
rings, and prepare graphs of the dimensionless ratios ¢;/a and ¢o/a
against the aspect ratio b/a. Plot the film profile in an azimuthal
plane for b/a = 0.20, 0.50,1.00, and 1.33.

A liquid film supported by two

Note: When 0 < b/a < 1.33, two real solutions for ¢;/a arise. coaxial rings.
The physically relevant solution is the one with the larger value.
For b/a > 1.33, the solution is complex, indicating that a catenoid cannot be established.

4.3 Two-dimensional interfaces

We proceed to discuss specific methods of computing the shape of two-dimensional interfaces with
uniform surface tension governed by the Laplace—Young equation (4.2.2). Our analysis will be carried
out in Cartesian coordinates where the y axis points against the acceleration of gravity vector, so
that g = (0, —g,0). Using the first entry of Table 4.2.1, we find that the shape of an interface that
is described by the equation y = f(x) is governed by a second-order nonlinear ordinary differential
equation,

f// 1 1 / f/ / f
= ~tr e = plarre) = (aemm) =-a vy 68y

where ¢ = (g/Apg)*/? is the capillary length, Ap = py — p; is the difference in the densities of the
fluids on either side of the interface, and X is a constant with dimensions of inverse length to be
determined as part of the solution; fluid 2 is assumed to lie underneath fluid 1. Integrating (4.3.1)
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FIGURE 4.3.1 lllustration of a semi-infinite interface attached to an inclined plate with (a) a monotonic
or (b) reentrant shape. Far from the plate, the interface becomes horizontal.

once with respect to x, we obtain a first-order equation,

! = 1f2+>\f+(5 (4.3.2)

(1+f'2)1/2 9 g2 2 o
where § is a new dimensionless constant. Expressing the slope of the interface in terms of the slope
angle 6 subtended between the tangent to the interface and the z axis, defined such that f’ = tan#,

as shown in Figure 4.3.1, we recast (4.3.2) into the form
1 2
202

|cos @] = +Af+4. (4.3.3)

Rearranging (4.3.2), we derive a first-order ordinary differential equation,

/
g:i[(sz(?f?/ﬂ)z_lr?' (4.3.4)

The plus or minus sign must be selected according to the expected interfacial shape. Performing a
second integration subject to a stipulated boundary condition provides us with specific shapes.

4.3.1 A semi-infinite meniscus attached to an inclined plate

In the first application, we consider the shape of a semi-infinite meniscus attached to a flat plate
that is inclined at an angle 8 with respect to a horizontal plane, as shown in Figure 4.3.1. The origin
of the Cartesian axes has been set at the level of the undeformed interface underneath the contact
line. Far from the plate, as x tends to infinity, the interface tends to become flat. The contact angle
subtended between the inclined plate and the tangent to the interface at the contact point has a
prescribed value, . The angle subtended between the tangent to the interface at the contact line
and the x axis is

O =a+p, (4.3.5)
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as shown in Figure 4.3.1. Since both the inclination angle 8 and the contact angle o vary between
0 and , the angle 6. ranges between 0 and 27. When 6. = m, the meniscus is perfectly flat. This
observation provides us with a practical method of measuring the contact angle in the laboratory,
by varying the plate inclination angle, 8, until the interface appears to be entirely flat; at that
point a = 7w — 8. Requiring that the interface becomes flat as x tends to infinity, and therefore the
curvature and slope both tend to zero, and using expressions (4.3.1) and (4.3.3), we obtain

A=0, §=1. (4.3.6)

The constants P, and P, defined in (4.1.6) are equal to the pressure at the horizontal interface far
from the inclined plate.

Small deformation

If the slope of the interface is uniformly small along the entire meniscus, f’ < 1 for 0 < z < oo,
equation (4.3.1) simplifies into a linear differential equation, f” ~ f/¢%. A solution that decays as
x tends to infinity is

f~he /! (4.3.7)

where h = f(0) is the elevation of the interface at the contact line. Enforcing the contact angle
boundary condition f’(0) = tanf.;, we obtain

% =—tanf, ~ 7 —a—f, (4.3.8)

which is valid when 68, ~ 7.

Monotonic shapes

When the interface takes a monotonic shape, as illustrated in Figure 4.3.1(a), the slope angle 6
lies in the second or third quadrant, %77 <O, < %77. Applying (4.3.3) at the contact line with A =0
and § = 1, we find that the capillary rise h = f(0) is given by

h2
72:2(1—|cos9d\). (4.3.9)
Using standard trigonometric identities, we obtain
h 0.1
L — 9c0os 2 4.3.10
7 = 2cos o, ( )

Since %71’ <0y < %77, the maximum possible capillary height, occurring when 6, = %71’ or %7?7 is
|| maz = V/2¢. In the limit as 6. tends to 7, we find that h/t — m — 0., in agreement with the
asymptotic solution (4.3.8).

Having obtained the elevation of the interface at the plate, we proceed to compute the inter-
facial shape. Equation (4.3.4) with A = 0 and § = 1 becomes

% ==+ [(ﬁ)z - 1]1/27 (4.3.11)

where the plus or minus sign is selected according to the expected interfacial shape.



4.3 Two-dimensional interfaces 293

It is convenient to introduce the nondimensional variables F' = f/¢ and X = x/¢. Simplifying
(4.3.11), we obtain

dF 4— F?

Note that the denominator on the right-hand side becomes zero when F' = ++/2. At that point, the
slope of the meniscus becomes infinite, signaling a transition to a reentrant shape. Equation (4.3.12)
is accompanied by the contact line boundary condition
h 0
F(0) == =H = 2cos 2. (4.3.13)
L 2
Solving (4.3.12) using a standard numerical method, such as a Runge-Kutta method, provides us
with a family of shapes parametrized by the angle ;.

In practice, it is preferable to regard X as a function of F' and consider the inverse of the
differential equation (4.3.12),

dX 2 — F?
==

— =t —. 4.3.14
iF PR (4.3.14)
Integrating with respect to F', we obtain
H 2
9 _
X =+ d (4.3.15)

— dw,
F owvV4d—w?

where the maximum possible value of |H| is V2. Evaluating the integral with the help of mathe-
matical tables, we find that

X = £[®(F) — ®(H)], (4.3.16)

where

$(F) = In 2T VI LT V;f_FQ — /4 F? (4.3.17)

(e.g., [150], pp. 81-85). To obtain the shape of the meniscus, we plot X against F' in the range
0<F<HIiIfH>0,orin therange H < F <0if H <0.

Reentrant shapes

The preceding analysis assumes that the interface has a monotonic shape, which is true if 6. lies
in the second and third quadrants, %71' <04 < %7‘(. Outside this range, the interface turns upon
itself, as shown in Figure 4.3.1(b). Since fluid 2 lies above fluid 1 beyond the turning point where
the meniscus is vertical, the sign of the curvature must be switched. The capillary rise is given by

equation (4.3.9) with the minus sign replaced by the plus sign on the right-hand side,

h2

i 2(1+cosby ). (4.3.18)
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FIGURE 4.3.2 (a) The shape of the meniscus for any value of the contact angle, «, and arbitrary plate
inclination angle, 8, can be deduced from the master curve drawn with the solid line, representing
the function ®. The dashed and dotted lines represent approximate solutions for small interfacial
deformation. (b, ¢) Shape of a semi-infinite meniscus attached to an inclined plate produced by
the FDLIB code men_2d_plate (Appendix C). The plate inclination angles are different, but the
contact angle is the same in both cases.

Using standard trigonometric identities, we recover (4.3.10), which shows that the maximum possible
capillary height, achieved for a horizontal plate, 8., = 0 or =, is |h|maz = 2¢. The solution (4.3.16)
is valid in the range 0 < F' < H if H > 0, or in the range H < F < 0 if H < 0, with the maximum
value of the dimensionless capillary height |H| being 2.

Master curve

The shape of the interface in the complete range of 8.; can be deduced from the master curve drawn
with the solid line in Figure 4.3.2(a), representing the function ®(F') defined in (4.3.17). To obtain
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the shape of the meniscus for a particular plate inclination angle, 3, we identify the intersection of
the inclined plate with the master curve consistent with the specified contact angle, . When the
capillary height is negative, we work with the mirror image of the master curve. The dashed line in
Figure 4.3.2(a) represents the leading-order approximation for small deformation,

®(F) ~ —In|F|+2(In2—1). (4.3.19)

Dividing the small-deformation solution (4.3.7) by ¢ and taking the logarithm of the resulting ex-
pression, we find X ~ —In |F|+In|H| , which shows that ®(F) ~ —In |F|, represented by the dotted
line in Figure 4.3.2(a).

Numerical methods

As a practical alternative, the shape of the interface can be constructed numerically according to
the following steps:

1. Compute the slope angle 6., from equation (4.3.5).

2. Compute the capillary rise h using the formulas

(1+|cos(@))Y2 i 0< 0y < 3m,
(L—|cos(Ba))¥? if Lir<by<m,
—(1—cos(@a))/? if  m<Oy< 3,
—( )

p (4.3.20)
1+ |cos(0))'/? if %ﬂ' <0, < 2.

O
V2 L

3. Integrate the differential equation (4.3.11) from f = h to 0 with initial condition z(f = h) = 0.
If h is negative, we use a negative spatial step.

The method is implemented in the Matlab code men_2d_plate included in the software library
FDLIB discussed in Appendix C. The graphics generated by the code for two plate inclination angles
and fixed contact angle is shown in Figure 4.3.2(b, ¢).

4.3.2 Meniscus between two vertical plates

In another application, we consider the shape of the meniscus between two vertical flat plates
separated by distance 2a, as shown in Figure 4.2.2(a). We begin the analysis by requiring that the
pressure at the level of the undeformed interface outside the plates, located at y = —h, is equal to
a reference pressure Py, and use (4.1.9) to find that P, = Py — p1gh and P» = Py — p2gh. Based on
these values, we compute the constant

PQ - P1 - Apgh - h

_h (4.3.21)

A
g g 02’

where £ = (g/Apg)'/? is the capillary length.

Because of symmetry, the slope of the interface is zero midway between the plates. Using
(4.3.1) and (4.3.2), obtain A = —f”(0) and § = 1. Combing the expression for A with (4.3.21), we
find that

h

7= 1"(0), (4.3.22)
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which provides us with an expression for the capillary rise in terms of the a priori unknown curvature
of the meniscus at the centerline. Substituting the derived values of A and § into (4.3.3), we obtain
a relation between the slope of the interface and the elevation of the meniscus,

F(f +2h) =20%(1 — | cos¥)), (4.3.23)
where the angle 6 is defined such that f’ = tan6.

Differential equations

Equation (4.3.4) provides us with a first-order differential equation describing the shape of the
interface in terms of the a priori unknown capillary rise, h,

g /
fé:i{(MM)Q_IT g (4.3.24)

The boundary conditions require that f(0) =0 and f’(a) = cot «, where « is the contact angle.

In practice, it is convenient to work with the second-order equation (4.3.1). Substituting
A = —h/% we obtain

J'= g U+ A+ 2 (4.3.25)

The boundary conditions require that f(0) =0, f/(0) =0, and f'(a) = cot . If the pair (f,h) is a
solution for a specified contact angle, «, then the pair (—f, —h) is a solution for the reflected contact
angle, m — a. Near the midplane, f’ < 1 and the differential equation simplifies into f/ ~ f/ﬁz,
where f = f + h. The solution reveals a local exponential shape, f ~ h (1 — e/,

Bond number

To recast equation (4.3.25) in dimensionless form, we introduce the dimensionless variables F' = f/a,
X =x/a, and H = h/a. Substituting these expressions into (4.3.25), we obtain

F" =Bo(F+ H)(1+ F?)3%2 (4.3.26)

where Bo = (a/f)? = Apga® /v is a Bond number and a prime denotes a derivative with respect to
X. The boundary conditions require that F(0) = 0, F'(0) =0, and F'(1) = cot . It is now evident
that the shape of the meniscus is determined by the Bond number and contact angle, «.

Numerical method

A standard procedure for solving equation (4.3.26) involves recasting it as a system of two first-order
nonlinear ordinary differential equations,

dF dG

— =G — =Bo (F + H) (14 F'?)3/? 4.3.27

=G Te=Bo(F+H)(1+F, (13.27)
with boundary conditions F(0) = 0, G(0) = 0, and G(1) = cot a. Having specified values for Bo and
«, we compute the solution by iteration using a shooting method according to the following steps:
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FIGURE 4.3.3 lllustration of (a) the free surface of a liquid in a rectangular container and () a two-
dimensional liquid bridge supported by two horizontal plates.

1. Guess the capillary rise, H. A suitable guess provided by equation (4.2.8) is H = cos a/Bo.
2. Integrate (4.3.27) from X = 0 to 1 with initial conditions F'(0) = 0 and G(0) = 0.

3. Check whether the numerical solution satisfies the third boundary condition, G(1) = cot a.. If
not, repeat the computation with a new and improved value for H.

The improvement in the third step can be made using a method for solving nonlinear algebraic
equations discussed in Section B.3, Appendix B. A meniscus shape computed by this method is
shown in Figure 4.2.2(b).

4.3.3 Meniscus inside a closed container

A related problem addresses the shape of the interface of a fixed volume of liquid inside a rectangular
container that is closed at the bottom, as shown in Figure 4.3.3(a). Applying (4.3.1) and (4.3.2) at
the free surface midway between the vertical walls, we find that A = —f”(0) and § = 1. However,
we may no longer relate the constant A to the central elevation, h.

Working as in the case of a meniscus between two parallel plates, we derive the counterpart
of equations (4.3.27),

dF dG

_—= _— = 2 3/2 4328
X G, X Bo(F + A) (14 F'#)°/=, ( )
where
— £2 £2 1
=-— A= ” £7(0) (4.3.29)

is an @ priori unknown dimensionless constant. The boundary conditions require that F'(0) = 0,
G(0) = 0, and G(1) = cota. The solution can be found using the shooting method described in
Section 4.3.2, where guesses and corrections are made with respect to A. Assuming that the meniscus
has a circular shape provides us with an educated guess, A = cos «/Bo.
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Once the interfacial shape has been found, the dimensionless midplane elevation, H = h/a,
can be computed by requiring that the volume per unit width of the liquid has a specified value v,
yielding the integral constraint

H=_— —/0 F(X)dX. (4.3.30)

If H turns out to be zero or negative, the meniscus will touch or cross the bottom of the container
and the solution will become devoid of physical relevance. In that case, the fluid will arrange itself
inside each corner of the container according to the specified value of the contact angle. The shape
of the meniscus must then be found using a different type of parametrization (Problem 4.3.1).

Problems

4.3.1 Meniscus inside a container

Assuming that the meniscus crosses the bottom of the container shown in Figure 4.3.3(a), develop an
alternative appropriate parametric representation, derive the governing differential equations, and
state the accompanying boundary conditions.

4.3.2 A liquid bridge between two horizontal plates

Derive a differential equation describing the shape of the free surface of a two-dimensional liquid
bridge subtended between two horizontal parallel plates shown in Figure 4.3.3(d) in a convenient
parametric form.

X
Computer Problems

4.3.3 Meniscus attached to a wall

Integrate equation (4.3.12) to generate profiles of the meniscus for a eight evenly spaced values of
a + (3 between 0 and 27, separated by m/4.

4.3.4 Meniscus between two plates

Write a program that computes the shape of a two-dimensional meniscus subtended between two
vertical plates for a specified Bond number and contact angle. The integration of the ordinary
differential equations should be carried out using a method of your choice. Run the program to
compute the profile of a meniscus of water between two plates separated by a distance 2b = 5 mm,
for contact angle o = 7/4 and surface tension v = 70 dyn/cm.

4.4 Axisymmetric interfaces

To compute the shape of axisymmetric interfaces, we work as in the case of two-dimensional interfaces
discussed in Section 4.3. The problem is reduced to solving a second-order ordinary differential
equation involving an unspecified constant which is typically evaluated by requiring an appropriate
boundary condition. Some minor complications arise when the differential equation is applied at the
axis of symmetry.
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4.4.1 Meniscus inside a capillary tube

As a first case study, we consider the shape of a meniscus inside an open vertical cylindrical tube
of radius a immersed in a quiescent pool, as shown in Figure 4.2.3 [92]. Describing the interface
as ¢ = f(o) and carrying out a preliminary analysis as in Section 4.3.2 for the two-dimensional
meniscus between two vertical plates, we derive the value of A shown in (4.3.21), repeated here for
convenience, A = —Apgh/g = —h/(>.

Using the expression for the mean curvature shown in the second row of Table 4.2.2, we derive
a second-order nonlinear ordinary differential equation,

f = (R A+ 22 = 2 (14 7). (44.1)

The boundary conditions require that f(0) = 0, f/(0) = 0, and f’(a) = cot o, where « is contact
line. Note that, if the pair (f, h) is a solution for a specified contact angle, «, then the pair (—f, —h)
is a solution for the reflected contact angle, m — a. Equation (4.4.1) differs from its two-dimensional
counterpart (4.3.25) by one term expressing the second principal curvature.

An apparent difficulty arises when we attempt to evaluate (4.4.1) at the tube centerline, o = 0,
as the second term on the right-hand side becomes indeterminate. However, using the regularity
condition f/(0) = 0, we find that the mean curvature of the interface at the centerline is equal to
—f"(0), which can be substituted into the Laplace-Young equation to give

f7(0) = BYA (4.4.2)

This expression can also be derived by applying the I'Hopital rule to evaluate the right-hand side of
(4.4.1).

Near the center of the cylinder, the interfacial slope is small, f’ < 1. Linearizing (4.4.1), we
obtain the zeroth-order modified Bessel equation

.

1
"= h) — 4.4.3
=g (am =L (143)
An acceptable solution that remains finite at the origin is
flo) ~h[Ip(o/l) — 1], (4.4.4)

where Ij is the zeroth-order modified Bessel function.

Parametric description

Following standard practice, we resolve (4.4.1) into a system of two first-order differential equa-
tions, which we then solve using a shooting method. To ensure good performance, we introduce
a parametric representation in terms of the slope angle 6 defined by the equation tanf = f’,
where 0 < § < —a + 7/2. The contact angle boundary condition is automatically satisfied by
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this parametrization. To derive the equations governing the shape of the interface in parametric
form, we write

_dff _dffdd _dtanf df 1 df

1" A _ av
1= do ~ df do dd do cos?26 do (4.4.5)
and
dx dx do do

Substituting (4.4.5) into the left-hand side of (4.4.1), replacing f’ on the right-hand side by tan,
and simplifying, we obtain

do  cos@

— = 4.4.
e (147)
where

Q- z+h s1n6’. (4.4.8)
2 o]

Substituting (4.4.7) into the right-hand side of (4.4.6), we find that

dx  sind

=— = = 4.4.

Equations (4.4.7) and (4.4.9) provide us with the desired system of ordinary differential equations
describing the shape of the meniscus in parametric form. To complete the definition of the problem,
we must supply three boundary conditions: two because we have a system of two first-order ordinary
differential equations, and one more because of the unspecified capillary height . Fixing the origin
and the radial location of the contact line, we stipulate that

a(0) =0, z(0) =0, o(0a) = a, (4.4.10)
where 0, = 37 — a.

The denominator @ defined in (4.4.8) becomes unspecified at the origin where o = 0 and
6 = 0. Combining (4.4.2) with (4.4.5) and (4.4.6), we find that, at the origin,

(-2 ) o

which is used to initialize the computation. The first equation in (4.4.11) can be derived by applying
the 'Hopital rule to evaluate the right-hand side of the first equation in (4.4.7), and then solving
for do/d# (Problem 4.4.1).

In terms of the dimensionless variables ¥ = o/a and X = x/a, equations (4.4.7)—(4.4.10)
become

dx B cos dX B sin 6 (4.4.12)

a9~ W a9 - W
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where -
W =Bo (X + H) — —Slg : (4.4.13)
H = h/a, and Bo = (a/l)?> = Apga?/~ is the Bond number. The boundary conditions require that
At the origin, 0 = 0,
dx 2 1 dX
. = 5. — ) =0 4.4.15
(d@)o Bo H’ (d9)0 ( )

Numerical method

Having specified the Bond number, Bo, and contact angle, «, we compute the solution using a
shooting method as described in Section 4.3.2 for the analogous problem of a meniscus between two
plates according to the following steps:

1. Guess the reduced capillary height, H. An educated guess provided by equation (4.2.10) is
H = 2cos a/Bo.

2. Integrate (4.4.12) from 6 = 0 to 0. To initialize the computation, we use (4.4.15).

3. Check whether the numerical solution satisfies the third boundary condition in (4.4.14). If
not, the computation is repeated with a new and improved value for H.

The improvement in the third step can be done using the secant method discussed in Section B.3,
Appendix B.

4.4.2 Meniscus outside a circular tube

In the second case study, we consider an infinite axisymmetric meniscus developing around a vertical
circular cylinder of radius a. The circular horizontal contact line is located at = h. The shape
of the interface is described by a function, z = f(o), where o is the distance from the cylinder
centerline and the origin of the x axis is defined such that f(o) decays to zero far from the cylinder,
o — o0, as shown in Figure 4.4.1(a). The Laplace—Young equation reduces into a second-order
ordinary differential equation,

!
=+ ( —f;+£m), (4.4.16)
where a prime denotes a derivative with respect to o. Prescribing the contact angle provides us with
the boundary condition [’ = —cota at o = a.

Far from the cylinder, the interfacial slope is small, f’ < 1, and the Laplace—Young equation
(4.4.16) reduces to the zeroth-order Bessel equation,
oo

m— L 4L 4.4.1
f > (4.4.17)
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FIGURE 4.4.1 (a) lllustration of an axisymmetric meniscus developing around a vertical circular cylin-
der. (b) Dependence of the capillary rise, h, on the capillary length, ¢, for contact angle a/7 = 0.02
(highest line), 0.125, 0.250, 0.375, and 0.480 (lowest line). The dotted lines show the capillary
height of a two-dimensional meniscus attached to a vertical flat plate. The dashed lines represent
the predictions of an approximate asymptotic solution for high capillary lengths.

An acceptable solution that decays at infinity is proportional to the modified Bessel function of zero
order, Ko,

f(o) = &aKo(o/l), (4.4.18)

where ¢ is a dimensionless constant. It is beneficial to eliminate £ by formulating the ratio between
the shape function f and its derivative, finding

Ko(a/0) o
flo)+¢ m f/(0) ~0, (4.4.19)

where K is the first-order modified Bessel function.

The boundary-value problem can be solved numerically using a standard shooting method
combined with secant updates, as discussed in Section B.3, Appendix B. In the numerical method, the
solution domain is truncated at a large radial distance, 0,4, where the Robin boundary condition
(4.4.19) is applied [320]. The computer code is available in the software library FDLIB [318] (see
Appendix C).

Graphs of the capillary rise around the contact line are shown in Figure 4.4.1(b) together with
the predictions of an asymptotic analysis discussed later in this section, represented by the dashed
lines. As ¢/a becomes smaller, the curvature of the cylinder becomes decreasingly important and
the results reduce to those for a two-dimensional meniscus attached to a vertical flat plate. Families
of interfacial shapes are presented in Figure 4.4.2 for two contact angles.
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FIGURE 4.4.2 Interfacial shapes of an axisymmetric meniscus outside a circular cylinder parametrized
by the capillary length for contact angle (a) o = w/4 and (b) 7/50. The higher the capillary length,
the higher the interfacial profile.

Asymptotics

When the interfacial elevation is sufficiently smaller than the capillary length, f/¢ < 1, while the
slope f’ is not necessarily small, equation (4.4.16) takes the gravity-free form

f/

fr=—a+ L, (4.4.20)
o
describing a zero-mean-curvature interface. A solution of this nonlinear equation that satisfies the
prescribed contact angle boundary condition at the cylinder surface, f'(c = a) = —cot a, is
)

f(o) ~acosaIn (4.4.21)

54+ V62 —cos2a’
where & = o/a and § is a dimensionless constant. As /¢ tends to zero, the outer asymptotic
solution (4.4.18) yields

f(o) ~ —ga(m% +E), (4.4.22)
where E = 0.577215665 . .. is Euler’s constant. Matching this expression with the functional form
of (4.4.21) in the limit as ¢ tends to infinity, we recover the coefficient of the outer field, A, the
dimensionless coefficient §, and then an expression for the capillary rise, h = f(o = a),

4¢/a

& =cosa, —zcosa(lni,
1+sina

— E) (4.4.23)
(Derjaguin (1946) Dokl. Akad. Nauk USSR 51, 517). The predictions of this equation, represented
by the dashed lines in Figure 4.4.1(b), are in excellent agreement with the numerical solution. A
formal asymptotic expansion with respect to the small parameter a/¢ is available [242].



304 INTRODUCTION TO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS

(a) (b)

X
i g N N
c —d o
YV | Fuid2 Fluid 2
Fluid 1 Fluid 1 v
o) |—d l c
N N g

X

FIGURE 4.4.3 lllustration of (@) an axisymmetric sessile liquid drop resting on a horizontal plane, and
(b) an axisymmetric pendant liquid drop hanging under a horizontal plate.

4.4.3 A sessile drop resting on a flat plate

In the third case study, we consider the shape of an axisymmetric bubble or drop with a specified
volume resting on a horizontal plane wall, as shown in Figure 4.4.3(a). Because z may not be a
single-valued function of o, the functional form x = F(o) is no longer appropriate and we work with
the alternative representation o = f(z). Substituting the expression for the mean curvature from
the third row of Table 4.2.1 into the Laplace—Young equation (4.3.1), we obtain the second-order
ordinary differential equation

F = (£ _ )\) (1 Jrf/2)3/2 +

1 + f/2
£2 ’

f

Evaluating (4.4.24) at the origin, we find that A = — f”/(0), which shows that the constant A is equal
to twice the mean curvature at the centerline.

(4.4.24)

Parametric description

To formulate the numerical problem, we introduce the slope angle v defined by the equation cot ¢ =
—f’, ranging from zero at the centerline to the contact angle « at the contact line, and regard = and
o along the interface as functions of ¥, as shown in Figure 4.4.3(a). The contact angle boundary
condition is satisfied automatically by this parametrization. Following the procedure that led us from
equation (4.4.1) to equations (4.4.7) and (4.4.9), we resolve (4.4.24) into a system of two first-order
equations,

dz sin 0 do cos 0
- , — = — , 4.4.25
dy Q dy Q ( )
where
sin a3
Q= SmY ., Z-x (4.4.26)

The boundary conditions require that ¢(0) = 0 and z(0) = 0. One more condition emerges by
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requiring that the drop volume drop has a specified value, V,

0
T / o?dx =1V, (4.4.27)
—d

where d is the height of the drop defined in Figure 4.4.3(a).

The denominator, @), becomes indeterminate at the centerline, v» = 0. Using the "'Hopital
rule to evaluate the right-hand side of the second equation in (4.4.25), we find that

(j—;)o - _<dw)1_x (4.4.28)
a/o

Rearranging we find that, at the origin,
dz do 2
Y —o, —) =z, 4.4.29
(dw)o (dw 0 A ( )

In terms of the non-dimensional variables X = z/¢ and ¥ = ¢ /¢, equations (4.4.25) become

dX  sin@ dX cos

= _ S 4.4.30
with boundary conditions 3(0) = 0 and X (0) = 0, where
W= SH;” FX -, (4.4.31)
and n = M. The volume constraint (4.4.27) becomes
0 A~
T / ¥2dX =V, (4.4.32)
-D
where D = d/¢ and V= V/£3. Equations (4.4.29) state that, at the origin,
dX dx 2
—) =0 — =-. 4.4.33
( dy )o ’ (dw ) o 7 ( )

The shape of the drop depends on the reduced volume, 17, and contact angle, a. Given the
values of V' and «, the drop shape can be found using a shooting method according to the following
steps:

1. Guess the value of the constant 1. A good estimate can be obtained by assuming that the
drop has a spherical shape with radius a = [3V/(47)]'/2. Since the constant \ is equal to the
mean curvature at the centerline, we may set A = 1/a and compute n = ¢/a.

2. Solve an initial-value problem from by integrating (4.4.30) from 1) = 0 to «. To initialize the
computation, we use (4.4.33).
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FIGURE 4.4.4 (Left) Shapes of a sessile drop for dimensionless volume V = V/¢3 = 47 /3 and contact
angle a/m = 0.1,0.2,...,0.9, and (right) corresponding shapes for a smaller volume, V = 47 /3%,
The axes are scaled by the equivalent drop radius, a = (3V/4r)/3.

3. Check whether (4.4.32) is fulfilled. If not, repeat the computation with a new and improved
value for 7.

Drop profiles for volume V = 47/3 and 4m/3* and contact angle o/ = 0.1,0.2,...,0.9 are shown in
Figure 4.4.4. When the reduced volume V is small, the drops take the shape of sections of sphere.
As the drop volume increases, the interface tends to flatten at the top due to the action of gravity.

Problems

4.4.1 A sessile drop

Derive the first equation in (4.4.11) by applying the 'Hopital rule evaluate the right-hand side of
the first equation in (4.4.7) and then solving for do/d.

4.4.2 A pendant drop

Derive in dimensionless form the differential equations and boundary conditions governing the shape
of an axisymmetric drop pending underneath a horizontal flat plate, as shown in Figure 4.4.2(b).
4.4.3 A rotating drop

Derive in dimensionless form the differential equations and boundary conditions governing the shape
of an axisymmetric drop resting on, or pending underneath a horizontal flat plate that rotates steadily
about the axis of the drop with angular velocity (2.

X
Computer Problems

4.4.4 Meniscus inside a capillary tube

Compute the meniscus of water inside a capillary tube of radius a = 2.5 mm, for contact angle
a = 7/4 and surface tension v = 70 dyn/cm. Hint: the solution yields A = 0.359 mm.
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Fluid 1

Fluid 2

FIGURE 4.4.5 lllustration of a spherical particle straddling the interface between two immiscible fluids.

4.4.5 A sessile drop

Compute the shape of a sessile water drop with volume V' = 2 ml, for contact angle a = 37/4 and
surface tension v = 70 dyn/cm.

4.4.6 A straddling particle

A spherical particle of radius a is floating at the interface between two fluids, as shown in Figure
4.4.5. Develop a numerical procedure for computing the particle center position, z., and floating
angle, 5, in terms of the contact angle, «, the densities of the two fluids, and the density of the
sphere [317, 318].

4.5 Three-dimensional interfaces

A standard method of computing the shape of a three-dimensional interface involves describing
the interface in parametric form in terms of two surface variables, £ and 7, and then computing
the position of a collection of marker points located at intersections of grid lines. The successful
parametrization is determined by the nature of the expected interfacial shape. The position of the
marker points is computed by solving the Laplace—Young equation, which in this case reduces to a
second-order nonlinear partial differential equation with respect to £ and 7, using finite-difference,
finite-element, spectral or variational methods. The accurate computation of the mean curvature is
a major concern. Only a few numerical methods are able to produce satisfactory accuracy due to
the geometrical nonlinearity of corresponding expressions.

Numerical implementations and variational formulations are discussed by Brown [58], Mili-
nazzo & Shinbrot [266], Hornung & Mittelmann [191], and Li & Pozrikidis [237]. Finite-difference
calculations of liquid bridges connecting three equal spheres are presented by Rynhart et al. [356].
Finite-element calculations of wetting modes of superhydrophobic surfaces are presented by Zheng,
Yu & Zhao [441]. Finite-difference methods combined with conformal mapping have been imple-
mented in recent work [320, 319, 321].
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FIGURE 4.6.1 A meniscus forming between two vertical circular cylinders whose centers are separated
by distance equal to the cylinder diameter, for contact angle o = /4, and capillary length ¢/a =
4.5036, where a is the cylinder radius.

4.6 Software

Directory 03_hydrostat of the fluid mechanics library FDLIB contains a collection of programs that
compute two-dimensional, axisymmetric, and three-dimensional hydrostatic shapes, as discussed in
Appendix C.

Meniscus around an elliptical cylinder

The meniscus forming around a vertical elliptical cylinder is shown in Figure 4.2.1 for contact angle
a = 7/4. The interfacial shape was computed by solving the Young-Laplace equation using a
finite-difference method implemented in boundary-fitted elliptic coordinates generated by conformal
mapping [320]. The computer code resides in Directory men_ell inside Directory 03_hydrostat of
FpLiB. For clarity, the height of the cylinder shown in Figure 4.2.1 reflects the elevation of the
contact line. We observe that the elliptical cross-section causes significant oscillations in the capillary
elevation around the value corresponding to a circle. High elevation occurs on the broad side of the
cylinder, and low elevation occurs at the tip of the cylinder.

We conclude that high boundary curvature causes a local decline in the capillary height below
the value corresponding to a flat plate. In the case of a meniscus attached to a wavy wall, the contact
line elevation is higher in the troughs than in the crests of the corrugations [179]. This behavior is
consistent with our analysis in Section 4.2.1 on the shape of a meniscus inside a dihedral corner.

Meniscus between two vertical cylinders

The meniscus developing between two vertical circular cylinders with the same radius is shown in
Figure 4.6.1. The interfacial shape was generated using the computer code men_cc in Directory
03-hydrostat of FDLIB. The Young-Laplace equation is solved by a finite-difference method in
boundary-fitted bipolar coordinates. In the configuration shown in Figure 4.6.1, the cylinder centers
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are separated by distance equal to the common cylinder diameters. The contact angle has a specified
value, @« = m/4, around both contact lines. We observe that the rise of the meniscus is most
pronounced inside the gap between the cylinders.

Surface evolver

The surface evolver program is able to describe triangulated surfaces whose shape is determined
by surface tension and other types of surface energy, subject to various constraints. Further infor-
mation is given in the Internet site: http://www.susqu.edu/brakke/evolver/evolver.html.

X
Computer Problem

4.6.1 Meniscus outside an elliptical cylinder

Use the FDLIB code men_ell to compute the meniscus around a vertical elliptical cylinder with
constant perimeter and aspect ratio 1.0 (circle), 0.5, 0.25, and 0.125. Discuss the effect of the aspect
ratio on the minimum and maximum interface elevation around the contact line.



Exact solutions

Having established the equations governing the motion of an incompressible Newtonian fluid and
associated boundary conditions, we proceed to derive specific solutions. Not surprisingly, we find
that computing analytical solutions is hindered by the presence of the nonlinear convection in the
equation of motion due to the point-particle acceleration, u- Vu, rendering the system of governing
equations quadratic with respect to the velocity. Consequently, analytical solutions can be found
only for a limited class of flows where the nonlinear term either happens to vanish or is assumed
to make an insignificant contribution. Under more general circumstances, solutions must be found
by approximate, asymptotic, and numerical methods for solving ordinary and partial differential
equations. Fortunately, the availability of an extensive arsenal of classical and modern methods
allows us to successfully tackle a broad range of problems under a wide range of physical conditions.

In this chapter, we discuss a family of flows whose solution can be found either analytically or
numerically by solving ordinary and elementary one-dimensional partial differential equations. We
begin by considering unidirectional flows in channels and tubes where the nonlinear convection term
in the equation of motion is identically zero. The reason is that fluid particles travel along straight
paths with constant velocity and vanishing acceleration. Swirling flows inside or outside a circular
tube and between concentric cylinders provides us with a family of flows with circular streamlines
where the nonlinear term due to the particle acceleration assumes a simple tractable form. Solutions
for unsteady flows will be derived by separation of variables and similarity solutions, when possible.

Following the discussion of unidirectional flows, we address a rare class of flows in entirely or
partially infinite domains that can be computed by solving ordinary differential equations without
any approximations. Reviews and discussion of further exact solutions can be found in articles by
Berker [31], Whitham [428], Lagestrom [218], Rott [355], and Wang [419, 420, 421]. These exact
solutions are complemented by approximate, asymptotic, and numerical solutions for low- or high-
Reynolds number flows discussed later in this book.

In Chapter 6, we discuss the properties and computation of low-Reynolds-number flows where
the nonlinear convection term, u - Vu, makes a negligible contribution to the equation of motion.
These flows are governed by the continuity equation and the linearized Navier—Stokes equation
describing steady, quasi-steady, or unsteady Stokes flow. A quasi-steady flow is an unsteady flow
forced parametrically through time-dependent boundary conditions. Linearization allows us to build
an extensive theoretical framework and derive exact solutions for a broad range of problems by
analytical and efficient numerical methods.

310
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In Chapters 7, 8, and 10, we discuss precisely and nearly irrotational flows where the vorticity
is confined inside slender wakes and boundary layers. The velocity field in the bulk of the flow is
obtained by solving Laplace’s equation for a harmonic velocity potential. Once the outer irrotational
flow is available, the flow inside boundary layers and wakes is computed by solving simplified versions
of the equation of motion originating from the boundary-layer approximation. In Chapter 11, we dis-
cuss numerical methods for computing inviscid or nearly inviscid flows containing regions or islands
of concentrated vorticity, including point vortices, vortex rings, vortex filaments, vortex patches, and
vortex sheets. In the final Chapters 12 and 13, we discuss finite-difference methods for solving the
complete system of governing equations for Navier—Stokes flow without any approximations apart
from those involved in the implementation of the numerical method.

5.1 Steady unidirectional flows

A distinguishing feature of unidirectional flow is that all but one velocity components are identically
zero in a properly defined Cartesian or cylindrical polar system of coordinates, and the non-vanishing
velocity component is constant in the streamwise direction. These features allow us to considerably
simplify the equation of motion and derive analytical solutions in readily computable form. The
study of unidirectional flows can be traced to the pioneering works of Rayleigh, Navier, Stokes,
Couette, Poiseuille, and Nusselt, for channel, tube, and film flow.

5.1.1 Rectilinear flows

One important class of unidirectional flows includes steady rectilinear flows of a fluid with uniform
physical properties through a straight channel or tube due to an externally imposed pressure gradient,
gravity, or longitudinal boundary motion. The streamlines are straight lines, the fluid particles travel
with constant velocity and vanishing acceleration along straight paths, and the pressure gradient is
uniform throughout the flow. Neglecting entrance effects and assuming that the flow occurs along
the x axis, we set the negative of the streamwise pressure gradient equal to a constant Y,

dp

-+ -, 5.1.1

3 = X (5.1.1)
When the pressure at the entrance of a channel or tube is equal to that at the exit, dp/9x = 0 and
x = 0.

Setting in the Navier-Stokes equation du,/0t = 0 for steady flow, du,/0x = 0 for fully
developed flow, and u, = u, = 0 for unidirectional flow, we obtain three linear scalar equations
corresponding to the x, y, and z directions,

u,  0%uy Op dp
+ = — x ), _— = 5 _— = z. 5-1.2

When the x axis is horizontal, g, = 0. Nonlinear inertial terms are absent because the magnitude
of the velocity is constant along the streamlines.

The pressure distribution is recovered by integrating (5.1.1) and the last two equations in
(5.1.2), yielding

p=—xz+p(9yy + 9=2) + po, (5.1.3)
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where pg is a reference constant pressure found by enforcing an appropriate boundary condition.
When x = —pg,, the pressure assumes the hydrostatic profile, p = —pg - x + po.

Poisson equation

The x component of the equation of motion (5.1.2) provides us with a Poisson equation for the
streamwise velocity component with a constant forcing term on the right-hand side,

2 2
Oty Oy X+ P9s (5.1.4)

Oy? 022 1

The boundary conditions specify the distribution of w, along a channel or tube wall or the shear
stress un - Vu, along a free surface, where V is the two-dimensional gradient operating in the yz
plane and n is the unit vector normal to the free surface. In the case of multilayer flow, the shear
stress, un - Vu,, is required to be continuous across the layer interface. Accordingly, the normal
derivative of the velocity n - Vu, undergoes a jump determined by the viscosities of the two fluids.

Pressure-, gravity-, and boundary-driven flow

Three important cases can be recognized corresponding to pressure-, gravity-, and boundary-driven
flow:

e When a channel or tube is horizontal and the walls are stationary, we obtain pressure-driven
flow due to an externally imposed pressure gradient, Op/dx = —x.

o When the walls are stationary and the pressure does not change in the direction of the flow,
x = 0, we obtain gravity-driven flow.

e When y = —pg,, the pressure assumes the hydrostatic distribution and the flow is driven by
the longitudinal translation of the whole wall or a section of a wall.

In the third case, the Poisson equation (5.1.4) reduces to Laplace’s equation, VZu, = 0, whose
solution is independent of the viscosity, 4. Mixed cases of pressure-, gravity-, and boundary-driven
flow can be constructed by linear superposition.

5.1.2 Flow through a channel with parallel walls

In the first application, we consider two-dimensional flow in a channel confined between two parallel
walls separated by distance h, as shown in Figure 5.1.1. The bottom and top walls translate parallel
to themselves with constant velocities Vi and V5. In the framework of steady unidirectional flow,
the streamwise velocity, u,, depends on y alone. The Poisson equation (5.1.4) simplifies into a
second-order ordinary differential equation,

2
dus _ _ Xx+09s (5.1.5)

dy? I

Setting the origin of the Cartesian axes at the lower wall, integrating twice with respect to y, and
enforcing the no-slip boundary conditions v = V; at y = 0 and w = V5 at y = h, we find that the
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FI1GURE 5.1.1 Velocity profiles of flow through a two-dimensional channel with parallel walls separated
by distance h. The linear profile (dashed line) corresponds to Couette flow, the parabolic profile
(dotted line) corresponds to plane Hagen—Poiseuille flow, and the intermediate profile (dot-dashed
line) corresponds to flow with vanishing flow rate.

velocity profile takes the parabolic distribution

X + P9z

Uz (y) =V1+(V2—V1)%+ o

y(h—1y). (5.1.6)

The first two terms on the right-hand side represent a boundary-driven flow. The third term rep-
resents pressure- and gravity-driven flow. When xy = —pg,, we obtain Couette flow with a linear
velocity profile, also called simple shear flow [94]. When V3 = 0 and Vo = 0, we obtain plane
Hagen—Poiseuille pressure- or gravity-driven flow (e.g., [392]). Velocity profiles corresponding to the
extreme cases of Couette flow, Hagen—Poiseuille flow, and a flow with vanishing flow rate are shown
in Figure 5.1.1.

The flow rate per unit width of the channel is found be integrating the velocity profile,

h
1 1 .
Q:/ t dy = £ (Vi + Vi) b+ — X P9z 3. (5.1.7)
; 2 12 4

Note the dependence on h or h3, respectively, in the first or second term on the right-hand side.
The mean fluid velocity is

1 1 @
(Vi Va) + 15 X

= — -1-
2 12 (5:18)

u;nean = Q
h
In the case of pressure- or gravity-driven flow, the maximum velocity occurring at the midplane,

u*® = u,(y = Lh) is related to the mean velocity by u7e? = 2ymean
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5.1.3 Nearly unidirectional flows

The exact solutions for steady unidirectional flow can be used to construct approximate solutions for
problems involving nearly unidirectional flow. Two examples based on unidirectional channel flow
are presented in this section. The methodology will be illustrated further and formalized in Section
6.4 under the auspices of low-Reynolds-number flow.

Flow tn a closed channel

Consider flow inside an elongated, closed, horizontal channel

confined between two parallel belts that translate parallel to "

themselves with arbitrary velocities Vi and V5. Since fluid ‘ “ ‘
cannot escape through side walls, the flow rate through any — x
cross-section of the channel must be zero, () = 0, and the fluid v

must recirculate inside the channel. Near the side walls, we Flow in a long horizontal channel
obtain a reversing flow. Far from the side walls, we obtain that is closed at both ends.

nearly unidirectional flow. Equation (5.1.7) reveals the spontaneous onset of a pressure field with
pressure gradient

dp p
=—=65(W+W 5.1.9
X ax h2 ( 1 + 2)7 ( )
inducing a back flow that counteracts the primary flow due to the belt motion. The velocity profile
is illustrated by the dot-dashed line in Figure 5.1.1.

Settling of a slab down a channel with parallel walls

In the second application, we consider the gravitational set-
tling of a rectangular slab with width 2b and length L along
the midplane of a two-dimensional container confined between

two vertical plates separated by distance 2a. The container is —
closed at the bottom and open to the atmosphere at the top.
Our objective is to estimate the settling velocity, V', and the L Y
pressure difference established between the bottom and top ‘
due to the motion of the slab. l
VX

To simplify the analysis, we observe that the flow be- 1
tween each side of the slab and the adjacent wall is nearly
unidirectional flow with an a priori unknown negative pres-
sure gradient, x. Thus, the velocity profile across the right A rectangular slab settling down the
gap is given by (5.1.6) with V; = V, V5 = 0, channel width centerline of a container.
h=a—b, and g, = g. If pyop is the pressure at the top of the slab, then pyor = prop — XL is the
pressure at the bottom. The negative of the pressure gradient, y, and velocity of settling, V', must
be computed by enforcing two scalar constraints.

One constraint arises by stipulating that the rate of displacement of the liquid by the slab is
equal to the upward flow rate through the gaps,

Q= —Vb, (5.1.10)
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where @ is given in (5.1.7) with g, = ¢g. Simplifying, we obtain

(a —0)°

— =0. 5.1.11
a+b 0 (5 )

1
wV + = O+ pg)
Note that @ is negative, as required for the fluid to escape upward. A second constraint arises by
balancing the x components of the surface and body forces exerted on the slab. Requiring that the
pressure force at the top and bottom counterbalances the weight of the slab and the force due to
the shear stress along the sides, we find that

duyg,

dy

(ptop _pbot)b+psng+M ( >y:LO =0 (5.1.12)

or

(X+P9)b+(Ps—P)gb+(—u%+ h) =0, (5.1.13)

where p; is the density of the slab material. After simplification, we obtain

WV — 3 (x4 p9) (07— 1) = Apghla D), (5.1.14)

where Ap = ps — p. Solving (5.1.11) and (5.1.15) for V and x + pg, we obtain

1 Apga® 5(1-9)° 3 d(1+9)

Vv —_2A
1 1ii X + pg

S 5.1.15
3 BP9 T s ( )

where 6 = b/a, independent of the slab length, L. We observe that the settling velocity, V', vanishes
when § = 0 because the weight of the slab is infinitesimal, and also when § = 1 because the sides
of the slab stick to the side plates. The maximum settling velocity occurs at the intermediate value
0 ~ 0.204. In the case of a neutrally buoyant slab, Ap = 0, the fluid is quiescent and the pressure
assumes the hydrostatic distribution, y = —pg.

5.1.4 Flow of a liquid film down an inclined plane

Gravity-driven flow of a liquid film down an inclined surface is encountered in a variety of engineering
applications including the manufacturing of household items and magnetic recording media. Under
certain conditions discussed in Section 9.12 in the context of hydrodynamic stability, the free surface
is flat and the liquid film has uniform thickness, h, as shown in Figure 5.1.2.

In the inclined Cartesian coordinates depicted in Figure 5.1.2, the x velocity component, u,,
depends on the distance from the inclined plane alone, y. The components of the acceleration of the
gravity vector are g = g (sin 8, — cos 8, 0), where S is the plane inclination angle with respect to the
horizontal, defined such that § = 0 corresponds to a horizontal plane and § = %W corresponds to a
vertical plane. Since the pressure outside and therefore inside the film is independent of x, we set

x = 0. The pressure distribution across the film is

p = pgcos B (h —y) + Patm, (5.1.16)
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X

FIGURE 5.1.2 lllustration of a flat liquid film with thickness h flowing down an inclined plane due to
gravity.

where putr, is the ambient atmospheric pressure. Integrating the differential equation (5.1.5) twice
subject to the no-slip boundary condition at the wall, u, = 0 at y = 0, and the condition of vanishing
shear stress at the free surface, Ou, /Oy = 0 at y = h, we derive a semi-parabolic velocity profile first
deduced independently by Hopf in 1910 and Nusselt in 1916,

Uy = 2% sin By (2h — y), (5.1.17)

where v = p1/p is the kinematic viscosity of the fluid (e.g., [139]). The velocity at the free surface
and flow rate per unit width of the film are

h
Ul = ghzsinﬁ, Q:/ U, dy = ihgsinﬁf. (5.1.18)
2v 0 3v
The mean velocity of the liquid is
2
u;nean = % — ;% h2 sinﬂ — gu;naf. (5119)

In Section 6.4.4, these equations will be used to describe unsteady, nearly unidirectional film flow
down an inclined plane with a mildly sloped free surface profile.

Problem

5.1.1 Two-layer flow

(a) Consider the flow of two superposed layers of two different fluids in a channel with parallel walls
separated by distance h. Derive the velocity profile across the two fluids in terms of the physical
properties of the fluids and flow rates for the mixed case of boundary- and pressure-driven flow.

(b) Repeat (a) for gravity driven flow of two layers flowing down an inclined plate.

5.2 Steady tube flows

We proceed to derive analytical solutions for unidirectional pressure-, gravity-, and boundary-driven
flows along straight tubes with various cross-sectional shapes. Unlike in channel flow, the velocity



5.2 Steady tube flows 317

(a) (6)

FIGURE 5.2.1 lllustration of (a) pressure- and gravity-driven flows and (b) boundary-driven flow through
a tube with circular cross-section of radius a.

profile in tube flow depends on two spatial coordinates determining the position over the tube
cross-section in the yz plane.

5.2.1 Circular tube

Pressure-driven flow through a circular tube, illustrated in Figure 5.2.1(a), was first considered by
Hagen and Poiseuille in his treatise of blood flow (e.g., [392]).

Pressure- and gravity-driven flows

To derive the solution for axisymmetric pressure- and gravity-driven flows, we express (5.1.4) in
cylindrical polar coordinates, (x, o, ), and derive a second-order ordinary differential equation,

1 d( dum> X + P9z
o = -

== 5.2.1
ocdo\" do W ( )

accompanied by a regularity condition at the centerline, du,/do = 0 at ¢ = 0, and the no-slip
boundary condition at the tube wall, u, = 0 at o = a. Two straightforward integrations of (5.2.1)
subject to these conditions yield the parabolic velocity profile

L= X ‘Zlfgz (a® — 02). (5.2.2)
The maximum velocity occurs at the tube centerline, o = 0, and is given by
+ PGz
ulr = X Pz 2. (5.2.3)

Ap

The flow rate through a tube cross-section is found by integrating the velocity,

Q= |l updydz = 27r/0 u, o do = %}f% mat. (5.2.4)
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The mean fluid velocity is

_Q _X+pge o 1
u;nean = @ — SNJ a® = 5 u;nam. (525)
Conversely, the centerline velocity is twice the mean velocity,
maxr __ mean __ Q
utt =2l =¥ (5.2.6)

ma2’

The dependence of the flow rate on the fourth power of the tube radius shown in (5.2.4) is some-
times called Poiseuille’s law. This functional relationship was first inferred by Poiseuille based on
experimental observations at a time when neither the no-slip boundary condition nor the parabolic
velocity profile had been established.

Integral momentum balance

It is instructive to rederive the parabolic velocity profile (5.2.2) by performing an integral momentum
balance over a cylindrical control volume of length L and radius o, as shown in Figure 5.2.1(a).
Requiring that the sum of the x component of the surface force exerted on the control volume
balances the body force along the x axis, we obtain

/ [ (Uzz)x:L — (J“)xzo] ds + (JM> 2ro L + pgemo’L = 0. (5.2.7)
bottom,top a

Expressing the stresses in terms of the velocity and pressure, we obtain

duy

[ 10), @) as+u (G2

ottom,top

) 2n0 L + pg,mo*L = 0. (5.2.8)

Treating the pressure difference inside the first integral as a constant, integrating over the cross-
section, and solving for the first derivative of the velocity, we obtain

duy, X+ pga
-0

do 20

, (5.2.9)

where X = —((p)z=1 — (p)2=0)/L is the negative of the pressure gradient. Equation (5.2.9) is the
first integral of (5.2.1). Integrating (5.2.9) once subject to the no-slip boundary condition u, = 0 at
o = a, we recover the parabolic profile (5.2.2).

Reynolds number and stability

The Reynolds number of the flow through a circular tube based on the tube diameter, 2a, and the

maximum velocity, u2'**, is

max

_ 2000 40Q _ X+ 09 3

Re
L TG 22

(5.2.10)

Note the dependence on the third power of the tube radius. In practice, the rectilinear flow described
by (5.2.2) is established when the Reynolds number is below a critical threshold that depends on
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(a) | (6) (c)

AL N L T,
0

FIGURE 5.2.2 lllustration of pressure- and gravity-driven flows through a tube with (@) elliptical, (b)
equilateral triangular, and (¢) rectangular cross-section.

the wall roughness, as discussed in Section 9.8.6 in the context of hydrodynamic stability. As the
Reynolds number increases above this threshold, the streamlines becomes wavy, random motion
appears, and a turbulent flow is ultimately established.

Boundary-driven flow

Next, we consider flow in a horizontal circular tube driven by the translation of a sector of the tube
wall with aperture angle 2 confined between the azimuthal planes —a < ¢ < « in the absence of
a pressure drop, as shown in Figure 5.2.1(b). To compute the velocity profile, we solve Laplace’s
equation, V2u, = 0, subject to the no-slip boundary condition u, = 0 at ¢ = a, except that u, =V
at 0 = a and —a < ¢ < a, where V is the boundary velocity. The solution can be found using the
Poisson integral formula (2.5.13), and is given by

a’>—o? [° dp
L(x0) =V . 5.2.11
(o) 27 /a a? + 02 — 2a0 cos(po — @) ( )

Performing the integration, we obtain

o —

to a+‘p)]. (5.2.12)

v
ug (o, 0) = — [ arctan (a to tan tp) + arctan (a tan
s a—o a—ao 2
In the limit a« — 7 the fluid translates as a rigid body with the wall velocity V in a plug-flow mode.
The flow rate must be found by integrating the velocity profile using numerical methods [317].

5.2.2 Elliptical tube

Now we consider flow through a tube an elliptical cross-section, as shown in Figure 5.2.2(a), where a
and b are the tube semi-axes along the y and z axes. The velocity profiles for pressure- and gravity-
driven flows follows from the observation that the equation of the ellipse, F(y,z) = 0, involves a
quadratic shape function of the cross-sectional coordinates y and z satisfying Poisson’s equation
with a constant forcing term on the right-hand side,

2 2
Y z
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The velocity profile is found by inspection,

X+ pgs b
ug(y, 2) = 2 1D F(y, 2). (5.2.14)

The maximum velocity occurs at the center of the elliptical cross-section. The flow rate is found by
integrating the velocity over the elliptical cross-section [311], yielding

X+ pgz  ab?
4 a? + b2

When a = b, we recover our results in Section 5.2.1 for a circular tube.

Q=m

(5.2.15)

5.2.3 Triangular tube

Next, we consider flow through a tube whose cross-section is an equilateral triangle with side length
a, as shown in Figure 5.2.2(b). The three vertices of the triangular contour are located at the (y, 2)
doublets

1 1 1 1 1

Vi :af(—l,—ﬁ), Vo :af(l,—ﬁ), V3:a(0,ﬁ), (5.2.16)

2 2

where the origin has been set at the centroid of the triangle. The tube contour is described by the
cubic equation F(y, z) = 0, where

.F(y,z):%(2\/§z+a)(\/§z+3yfa)(\/ng?)yfa) (5.2.17)

is a dimensionless shape function. The term inside the first parentheses is zero on the lower side, the
term inside the second parentheses is zero on the left side, and the term inside the third parentheses
is zero on the right side. Carrying out the multiplications, we obtain

Fly,2) =1-97*+2%) - 6vV3(323° — 2%), (5.2.18)
where ¥ = y/a and Z = z/a. We note that
36

V2F(y,z) = —=, (5.2.19)
a

and conclude that the velocity profile in pressure- and gravity-driven flows is a cubic polynomial in
y and z, given by

Xt P9z o
z\Y, - F 5 2.
us(y2) = 52 2R () (5.2.20)
(Clairborne 1952, see [382]). Integrating the velocity over the tube cross-section, we derive an

expression for the flow rate,
0= V3 X+ P9s 0 (5.2.21)
320 p
The dependence of the flow rate on the fourth power of a linear tube dimension, in this case the side

length, a, is typical of pressure-driven tube flow.

Sparrow [382] derives the velocity profile in a isosceles triangular tube in terms of an infinite
series. Other triangular profiles will be discussed in Section 5.2.9.
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5.2.4 Rectangular tube

In the fourth configuration, we consider flow through a tube with rectangular cross-section whose
sides along the y and z axes are equal to 2a and 2b, as shown in Figure 5.2.2(¢). Setting the origin at
the centerpoint, expressing the velocity as the sum of a parabolic component with respect to z that
satisfies the Poisson equation (5.1.4) and a homogeneous component that satisfies Laplace’s equation,
and then using Fourier expansions in the y direction to compute the homogeneous component subject
to appropriate boundary conditions, we obtain the velocity profile

X + PGz
g (y,2) = 2p V*Fly, 2), (5.2.22)
I
where
22 1)" cosh(ay, ¥) z
]: 1—— 4 "b ny R
(y,2) = T Z a3 cosh(an ) cos(a b) (5.2.23)
is a dimensionless function and «, = (n — %) w. Integrating the velocity profile over the tube
cross-section, we derive the flow rate
4 + PG a
Q=3 * - o(3), (5.2.24)
where
=1-—- Z tanh (anf). (5.2.25)

As ¢ tends to infinity, the dimensionless function ¢(§) tends to unity. As & tends to zero, ¢(&)
behaves like £€2. Both cases correspond to flow through a two-dimensional channel with parallel
walls described by equation (5.1.6).

5.2.5 Annular tube

Next, we consider unidirectional flow through the annular space confined between two concentric
circular cylinders with radii R; and Ry > R, as shown in Figure 5.2.3. The cylinders are allowed
to translate with respective velocities equal to V3 and V5 along their length, in the presence of an
independent axial pressure gradient. Expressing the Poisson equation (5.1.4) in cylindrical polar
coordinates, integrating twice with respect to the distance from the centerline, o, and enforcing the
boundary conditions u, = V; at ¢ = Ry and u, = V5 at ¢ = Ry, we derive the velocity profile

_ In(Ra/o) X+ pga 2 2 2 2\ In(R2/0)
ua(9) = Va o+ (Vi = V) = 055 4 2t (RQ—U—(RQ—Rl)T), (5.2.26)

where § = Ro/R; > 1 is the tube radius ratio. The wall shear stress on each cylinder arises by
straightforward differentiation. The flow rate tube is found by straightforward integration, yielding

R 2 2
: 1 R?-R
Q=27 [ ua(o)odo=n [VorE - ViRt - S0n ) A
X + P9 R% — R?
L e (RS = RY) (B3 + R — =2 ——). (5.2.27)
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FIGURE 5.2.3 lllustration of flow in the annular space confined two inclined infinite concentric cylinders.

If the tube is closed at both ends, the pressure drop is such that the flow rate is zero. When the
clearance of the annular channel is small compared to the inner cylinder radius, h = Ry — Ry < Ry,
the curvature of the walls becomes insignificant and expressions (5.2.26) and (5.2.27) reduce to
(5.1.6) and (5.1.7) with y = 0 — Ry describing flow in a channel confined between two parallel walls
(Problem 5.2.8).

A cylindrical object moving inside a circular tube

As an application, we consider flow past or due to the motion of a cylindrical object with length 2b
and radius c inside a cylindrical tube of radius a, as shown in Figure 5.2.4. If the length of the object,
2b, is large compared to the annular gap, a — ¢, the flow inside the annular gap is approximately
unidirectional. The velocity profile inside the gap arises by applying (5.2.26) with Ry = ¢, Ry = q,
Vi =V, Vy=0, and g, = 0, yielding

_ ,1n(a/o) X 2 2 5 o In(a/o)
uy(o) =V 0o +4,u (a —0°—(a* —¢) s ), (5.2.28)
where § = a/c > 1. The corresponding flow rate is
la®—¢ 2 X2  2v/.2 s a?-¢
= — — e — — . 2.2
Qgap 7TV(2 Y c)—|—7r8M(a ) (a®+c¢ 3 ) (5.2.29)

The axial force exerted on the object can be computed by summing the pressure force normal to
the two discoidal sides and the shear force exerted on the cylindrical side with surface area 4mwbc,
yielding

Fy =16 ((0)aes — (P)ams) + 47mbc(86u;>azc, (5.2.30)

where

8ux cC V
(80’>o’:c:m[_072+ﬁ(—21n5+6271)] (5231)
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FIGURE 5.2.4 Flow past or due to the motion of a tightly fitting cylinder of radius c inside a cylindrical
tube of radius a > c.

Setting (p)z=—p — (p)z=b = 2bx and simplifying, we obtain

g T 4pV 52 —1
Fp=ba® (= —5 +x—5—)-

(5.2.32)

Two modular cases are of interest. In the first case, the cylinder moves with velocity V'
inside a tube that is closed at both ends. Mass conservation requires that the flow rate through
the narrow annular gap balances the rate of displacement of the fluid on either side of the cylinder,
Qgap = —Vmc?. Evaluating the flow rate using (5.2.27) with Ry = ¢, Ry = a, V4 =V, Vo =0, and
g = 0, and rearranging, we obtain the negative of the pressure gradient,

4uV 52

= — . .2.
AV a2 —62+ 1+ (62+1)Iné (5-2.33)

The second fraction on the right-hand side is identified with a positive dimensionless pressure gra-
dient coefficient, cz‘f. The velocity profile arises by setting in (5.2.28) x = xy. Substituting (5.2.33)
into (5.2.32), we obtain the drag force

F, = —4rbuV il (5.2.34)
T Y e I (07 + D Ine -
The associated drag coefficient is
E, 2 52 +1
= - == 5.2.35
v 6mpcV 3¢ —6241+ (624 1)Ind’ ( )

where € = b/c is the object aspect ratio.

In the second modular case, the cylinder is stationary and the fluid is forced to move at a
constant flow rate, Qgap = %UcwaQ, where U, is the centerline velocity of an equivalent Poiseuille
flow. Evaluating the flow rate using (5.2.27) with Ry = ¢, Ry = a, V1 =0, Vo =0, and g, = 0, and
rearranging, we obtain the negative of the pressure gradient,

_ ApU. 5
= s 1 (92— 1)2/Ind

(5.2.36)
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FIGURE 5.2.5 lllustration of a circular tube of radius a indented with a circular sector of radius b.

The second fraction on the right-hand side can be identified with a positive dimensionless pressure

gradient coefficient, cg . The velocity profile arises by setting in (5.2.28) V' = 0 and x = xu.

Substituting (5.2.36) into (5.2.32), we obtain the drag force

52
F,=4rubU, . 5.2.37
s —02+1+4+(62+1)Ino ( )
The associated drag coefficient is
F, 2 52
= = - . 5.2.38
U= brucU,  3° 02 +1+(62+1)Ino (52.38)

The negative of the pressure drop and drag force coefficient in the general case arise by
superposition,

4
X=xv+xu= —ai; (Ve —U.),  Fo=FY +FV = —6mpc (Ve —Uuc).  (5.2.39)

In the case of a freely suspended particle, we set F,, = 0 and find that V/U. = cy/cv.

5.2.6 Further shapes

Berker [31] discusses solutions for pressure- and gravity-driven flows through tubes with a variety of
cross-sectional shapes, including the half moon, the circular sector, the limacon, and the eccentric
annulus. The velocity distribution and flow rate are typically expressed in terms of an infinite series
similar to those shown in (5.2.22) and (5.2.25).

Indented circular tube

As an example, we consider pressure- and gravity-driven flows through a circular tube of radius a
indented with a circular sector of radius b, as shown in Figure 5.2.5. The origin of the Cartesian
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axes has been placed at the leftmost point of the unperturbed circular contour. The axial velocity,
u,, satisfies the Poisson equation

(5.2.40)

vy, = 1 D (D) L O Xt g
r dr\ Or r2 002 1
where r is the distance from the origin and 6 is the corresponding polar angle. Using the law of
cosines, we find that

a® — 02 = 2arcos — r?, (5.2.41)

where o is the distance from the center of the outer circle. The boundary conditions specify that
uy = 0 at 0 = a and r = 2acosf (outer circle), and u, = 0 at = b (inner circle). The velocity
profile can be constructed by modifying the parabolic profile of the Poiseuille flow, obtaining

_ X+ PGz 2 2 _X+PGz ,0Q 2 2

When b = 0, we recover Poiseuille flow through a circular tube.

€T

5.2.7 General solution in complex variables

It is possible to derive the general solution for the velocity field in pressure-, gravity-, and boundary-
driven flow through a straight tube with arbitrary cross-section based on a formulation in complex
variables. In the case of pressure- or gravity-driven flows, we decompose the velocity field into a
particular component and a homogeneous component,

ua(y,2) = X*% [0(y,2) + F(y,2) ], (5.2.43)

where v is a particular solution satisfying the Poisson equation V2v + 1 = 0, and the function f
satisfies the Laplace equation, V2f = 0. A convenient choice for v is the quadratic function

1
o(ey)=a® — 5 [aly —yr)* + (1 - ) (=~ 2n)*], (5.2.44)
where a is a chosen length, « is an arbitrary dimensionless parameter, and (yg, zg) are the coordi-
nates of an arbitrary reference point in the yz plane. Straightforward differentiation confirms that
the function v satisfies Poisson’s equation Vv + 1 = 0 for any value of «, as required.

The no-slip boundary condition requires that f = —v around the tube contour. The problem
has been reduced to computing the harmonic function f subject to the Dirichlet boundary condition.
The theory of functions of a complex variable guarantees that f can be regarded as the real part of
an analytic function, G(w), where w = y + iz is the complex variable in the yz plane and i is the
imaginary unit, f = Real{G(w)}. To compute the solution, we introduce a function w = F(¢) that
maps a disk of radius p centered at the origin of the ¢ complex plane to the cross-section of the tube
in the physical w plane, as discussed in Section 7.11. The tube contour is described parametrically
by the functions

ye(0) = Real{]—'(geia)}, ze(0) = Imag{]—'(geie)}7 (5.2.45)
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where 6 is the polar angle in the ¢ plane, 0 < # < 27. Writing ¢ = oe'¥ and using the Poisson
integral (2.5.13), we obtain

_ =0 [T u[we(0), z(9)] /
fy,2) = 27 /0 0% + 02 — 2p0 cos(0 — 0') dv (5.2.46)
where
y(o,0) = Real{}"(aeie)}, z(0,0) = Imag{}'(aeie)}, (5.2.47)

and 0 < 0 < p. In general, the integral in (5.2.46) must be evaluated by numerical methods. The
computation of the required mapping function F(¢) is discussed in Section 7.11.

5.2.8 Boundary-integral formulation

The axial velocity profile satisfying the Poisson equation can be computed by solving an integral
equation for a properly defined homogeneous component based on the decomposition (5.2.43). Perti-
nent computer codes and a discussion of the numerical method can be found in the boundary-element
library BEMLIB [313] (Appendix C).

5.2.9 Triangles and polygons with rounded edges

Motivated by the solution for flow through an elliptic tube given in (5.2.14), we consider the velocity
profile

ua(y, z) = X ;59”” agib; F(y,2), (5.2.48)
where a and b are two specified lengths,
g2 22
Fly,z)=1= "5 — 15— H(y,2), (5.2.49)

is a suitable function, and H(y, ) is a harmonic function in the yz plane satisfying

O*H  O*H
oy? 022

= 0. (5.2.50)

The tube contour where u, = 0 is described implicitly by the equation F(y,z) = 0. When H = 0,
we obtain an elliptical tube with semiaxes a and b. More generally, the tube shape must be found
by numerical methods.

To obtain tubes with polygonal profiles, we define the complex variable w = y + iz and
introduce the function

H(y, z) = aImag{ ew(%)m }, (5.2.51)

where « is a dimensionless coefficient, i is the imaginary unit, i2 = —1, ¢ is a specified length, m is
a specified integer determining the polygonal shape, and ¢ is a specified phase angle.
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FIGURE 5.2.6 (a, b) Tube contours resembling triangles with rounded corners ranging between a circle
and a triangle. (¢, d) Tube contours resembling squares or rectangles with rounded corners.

Rounded triangles

Fora:b:c:%é,m:i’), and ¢ = 0, we obtain
Fly,z) =1—9(5* + 2%) — 27a (329% — %), (5.2.52)

where § = y/d, 2 = z/4, and 0 is a specified length [422]. When « = 0, the tube contour is a circle
of radius 3§ centered at the origin. Comparison with (5.2.18) reveals that, when o = 2/3%/2 the
tube contour is an equilateral triangle with side length equal to . Figure 5.2.6(a) shows contours
describing equilateral triangles with rounded corners for intermediate values of «.

For a = %5, b= %5, c= %5, m = 3, and ¢ = 0, we obtain a family of isosceles triangles with
rounded corners parametrized by «, as shown in Figure 5.2.6(b).
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Rounded squares and rectangles

A variety of other shapes resembling m-sided polygons with rounded corners can be produced working
in a similar fashion. For a = b= ¢ =6, m =4, and ¢ = 0, we obtain

Fly,2) =1—9°4+ 2% —a(§* — 69222 + 24). (5.2.53)

When « = 0, the tube contour is a circle of radius §. As « increases, squares with rounded corners
appear, as shown in Figure 5.2.6(c).

Fora=46,b= %5, c=9,m =4, and ¢ = 0, we obtain a family of rectangles with rounded
corners parametrized by «, as shown in Figure 5.2.6(d).

Problems

5.2.1 Flow through a triangular tube with partitions

Consider pressure-driven flow through a channel whose cross-section in the yz plane is parametrized
by an index n as follows: n = 1 corresponds to a channel whose cross-section is an equilateral
triangle with side length equal to a; n = 2 corresponds to a partitioned channel that derives from
the channel for n = 1 by introducing three straight segments connecting the midpoints of the sides
of the original triangle; each time n is increased by one unit, each triangle is partitioned into four
smaller triangles by connecting midpoints of its sides. The number of triangles at the nth level is
equal to 4"~ !, Show that the flow rate through the nth member of the family is given by

L V3 Xx+pg 4

= 5.2.54
@= $=13% [ ( )

Discuss the behavior of the flow rate in the limit as n tends to infinity.

5.2.2 A two-dimensional paint brush

Taylor developed a simple model for estimating the amount of paint deposited onto a plane wall
during brushing [400]. The brush is modeled as an infinite array of semi-infinite parallel plates
separated by distance 2a, sliding at a right angle with velocity V over a flat painted surface. The
space between the plates is filled with a liquid.

(a) Show that the velocity distribution inside a brush channel is

ug(y,2) =V [1+2 Z (;l)n exp(—ang) cos(an%) I, (5.2.55)
n=1 n

where o, = (n — 1) 7 (e.g., [318]). The origin has been set on the painted surface midway between
two plates; the z axis is perpendicular to the painted surface.

(b) The amount of liquid deposited on the surface per channel is

Q- /OOO/Z[V—ux(y,z)]dy dz. (5.2.56)
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Show that

Q=-2V Z > / / exp( an ) cos(ay, ) dy dz = 4Va? Z (5.2.57)

n=1 nl

yielding Q ~ 1.085Va?. The dependence of the flow rate on the second power of a linear boundary
dimension, in this case, a, is typical of boundary-driven flow. Explain why the thickness of the film
left behind the brush is h = Q/(2Va).

(¢) Repeat (a) and (b) assuming that the brush planes are inclined at an angle o with respect to
the painted surface. Discuss the relation between @ and a.

5.2.3 Flow through a tapered tube

Consider a conical tube with a slowly varying radius, a(z). Derive an expression for the pressure
drop necessary to drive a flow with a given flow rate.

5.2.4 Free-surface flow in a square duct

Consider unidirectional gravity-driven flow along a tilted square duct with side length 2a, inclined
at angle 8 with respect to the horizontal. The top of the duct is open to the atmosphere and the
free surface is assumed to be flat. The fluid velocity at the bottom, left, and right walls, and the
shear stress at the top free surface are required to be zero. It is convenient to introduce Cartesian
coordinates where the left and right walls are located at y = +a and the bottom wall is located at
z = —a. Show that the velocity field and flow rate are given by

g . 9 )™ coshl[a, (1 + z/a)] Y
Us = oo sin B |a? — y* + 4a nzl a3 cosh(2ar) cos(ang)] (5.2.58)
and
9 . 4 > tanh(2a,)
Q=47 singa (1—2104%), (5.2.59)
where a, = 5 (2n — 1) and v is the kinematic viscosity of the fluid.

5.2.5 Coating a rod

A cylindrical rod of radius a is pulled upward with velocity V' from a liquid pool after it has been
coated with a liquid film of thickness h. The coated liquid is draining downward due to the action
of gravity. Show that, in cylindrical polar coordinates where the z axis is coaxial with the rod and
points upward against the acceleration of gravity, the velocity profile across the film is

Ug =V + % (02 —a*—-2(a+h)*) In g). (5.2.60)
What is the value of V for the film thickness film to remain constant in time?

5.2.6 Flow through a rectangular channel

Prepare a plot the function ¢(¢) defined in (5.2.25). Discuss the behavior as £ tends to zero or
infinity.
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5.2.7 Settling of a cylindrical slab inside a vertical tube

Consider a solid cylindrical slab with radius b and density p, settling with velocity V under the
action of gravity along the centerline of a vertical circular tube with radius a > b, where a ~ b. The
tube is closed at the bottom and exposed to the atmosphere at the top. Derive an expression for the
scaled settling velocity, uV/(ps — p)ga?, in terms of the radii ratio, § = b/a, where p is the density
of the fluid inside the cylinder.

5.2.8 Flow between two concentric cylinders

Show that as the channel width A = Ry — R; becomes decreasingly small compared to the inner
radius, Ry, expressions (5.2.26) and (5.2.27) reduce to (5.1.6) and (5.1.7) with y = 0 — Ry [318].

X
Computer Problem

5.2.9 Flow through a flexible hose

A gardener delivers water through a circular hose made of a flexible material. By pinching the end
of the hose, she is able to obtain elliptical cross-sectional shapes with variable aspect ratio, while
the perimeter of the hose remains constant. Compute the delivered flow rate as a function of the
aspect ratio of the cross-section for a given pressure gradient.

5.3 Steadily rotating flows

Previously in this chapter, we discussed rectilinear unidirectional flow where the nonvanishing veloc-
ity component is directed along the = axis. Now we turn our attention to swirling flow with circular
streamlines generated by boundary rotation.

5.3.1 Circular Couette flow

In the first application, we consider swirling flow in the annular space between two concentric
cylinders with radii R; and R rotating about their common axis with angular velocities €21 and 5.
Assuming that the axial and radial velocity components are zero and the azimuthal component is
independent of the axial and azimuthal position, we set u, = u(0), u; =0, and u, = 0. The axial
component of the equation of motion is satisfied by the pressure distribution, p = pg - x + p(0),
where p(0) = p — pg - x is the hydrodynamic pressure excluding hydrostatic variations. The radial
and azimuthal components of the equation of motion yield the ordinary differential equations

A d (1d(oug)y _ 5.3.1
P da(a do )70' ( )

The first equation states that the centrifugal force is balanced by a spontaneously developing radial
pressure gradient. Integrating the second equation subject to the boundary conditions u, = ;R
at 0 = Ry and u, = 2Ry at 0 = Ry, we obtain the velocity profile

QQ-O{Ql _QQ—Qlﬁ
l1-a l-a o

uy(0) = (5.3.2)

)
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where o = (R1 / R2)2 < 1 is a geometrical dimensionless parameter. When Qo = Q2 = ), the fluid
rotates like a rigid body with azimuthal velocity u,(c) = Qo. When Qy = €, we obtain the
flow due to a point vortex with strength x = 27Q; R? = 2w, R3 located at the axis, generating
irrotational flow. As the clearance of the channel becomes decreasingly small compared to the radii
of the cylinders, « — 1, the flow in the gap resembles plane Couette flow in a channel with parallel
walls (Problem 5.3.1).

The pressure distribution is found by substituting the velocity profile (5.3.2) into the first
equation of (5.3.1). When the fluid rotates as a rigid body, Qs = Q; = Q, we obtain

1
p= §p§2202+pg-x+p0, (5.3.3)
where pg is a constant. The first term on the right-hand side is the pressure field established in
response to the centrifugal force. When the flow resembles that due to a point vortex, we obtain
1 R?
p=-5pUf 5 +pg x+p, (5.3.4)
where U1 = QlRl.

The circular Couette flow device provides us with a simple method for computing the viscosity
of a fluid in terms of the torque exerted on the inner or outer cylinder, given by

Qo — Oy
1_ .

Note that the shear stress, 0,,, and thus the torque is zero in the case of rigid-body rotation.

= —210° 05, = AT R} (5.3.5)

The stability of the circular Couette flow will be discussed in Section 9.9. Linear stability
analysis shows that the laminar flow discussed in this section is established only when the pair
(Q1, ) falls inside a certain range. Wavy motion leading to cellular flow is established outside this
range.

5.3.2 Ekman flow

Consider a semi-infinite body of fluid residing in the lower half-space from z = 0 to —oo and rotating
around the z axis with constant angular velocity 2. We refer to a noninertial frame of reference
that rotates with the fluid with angular velocity, 2 = Qe,, and assume that the vertical velocity
component, u, is zero while the horizontal velocity components, u, and u,, depend only on z and
are independent of x and y. Simplifying the equation of motion in the rotating noninertial frame by
setting the left-hand side of (3.2.43) to zero, we obtain

0=-Vp+uViu+pg+p[20xu—Qx(Qxx)]. (5.3.6)

The first term inside the square brackets on the right-hand side is the Coriolis force, and the second
term is the centrifugal force. The x, y, and z components of (5.3.6) are

Op d?u,
_Op dzuy _ Op
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The solution is
1
p:pg.x+§p§22(x2+y2)+po, (5.3.8)

where py is a constant reference pressure, and the velocity components u, and u,, satisfy the coupled
ordinary differential equations

d?u, d?u,
gz = —2p Quy, dz; = 2pQuy. (5.3.9)

It is convenient to collect these equations into the compact complex form

d®(ug +iu,) . Q .
where i is the imaginary unit, i = —1, and v = u/p is the kinematic viscosity of the fluid. Stipulating

that u, = U, and uy, = U, at z = 0, and that u, and u, decay as z tends to negative infinity, we
obtain

um—i—luy:(Um—i—lUy)exp[—(l—ﬁ—l)%}, (5.3.11)
where § = (2v/Q)'/2 is the Ekman layer thickness. We observe that the velocity components in a
plane that is normal to the axis of rotation decay exponentially with downward distance from the

surface of the liquid.

Problem

5.3.1 Flow between concentric cylinders

Show that, as the cylinder radii R; and Rs tend to become equal, the velocity profile in the gap be-
tween the two cylinders resembles the linear profile of plane-Couette flow in a channel with clearance
h =Ry — Ry [318].

5.4 Unsteady unidirectional flows

Unsteady unidirectional flows share many of the simplifying features of steady unidirectional flows
discussed earlier in this chapter. An unsteady flow can be driven by an imposed time-dependent
pressure gradient or by time-dependent boundary motion. In the case of rectilinear flow along the
x axis, the y and z components of the equation of motion are satisfied by the pressure distribution

p=—x(t)x+ p(gyy + g:2) + o, (5.4.1)

where x(t) = —0p/0x is the negative of the streamwise pressure gradient. The x component of
the equation of motion provides us with an unsteady conduction equation in the presence of a
time-dependent source term for the streamwise velocity component, u,,,
Ouy 0%uy o 0%uy
P o 2 | 922
The linearity of this equation allows us to derive exact solutions for two-dimensional, axisymmetric,
and more general boundary configurations.

= x(t) +p ( ) + Pga- (5.4.2)
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5.4.1 Flow due to the in-plane vibrations of a plate

In 1845, Stokes studied the flow due to the in-plane vibrations of a horizontal flat plate along the z
axis in an otherwise quiescent semi-infinite fluid located above the plate, y > 0. Assuming that u,
is a function of time, ¢, and distance from the plate, y, and setting Op/dx = pg,, which is equivalent
to x = —pg., we find that the pressure distribution assumes the hydrostatic profile and the velocity
satisfies a simplified version of the general governing equation (5.4.2),

Ouy 02Uy

at = oy’

(5.4.3)

known as the one-dimensional unsteady heat conduction equation, where v = u/p is the kinematic
viscosity of the fluid.

The velocity is required to decay far from the plate, as y — co. The no-slip boundary condition
at the plate requires that

ug(y = 0,t) = V cos(2), (5.4.4)

where (2 is the angular frequency of the oscillations and V' is the amplitude of the vibrations. It is
convenient to express this boundary condition in the form

uy(y = 0,t) = V Real{ e M }, (5.4.5)
where i is the imaginary unit, i2 = —1. Motivated by the linearity of (5.4.3), we also set
Uy (y,t) = V Real{ f(y)e '}, (5.4.6)

where f(y) is a dimensionless complex function satisfying the boundary condition f(0) =1 and the
far-field condition f(oo) = 0. Substituting (5.4.6) into (5.4.3), we derive a linear ordinary differential
equation

—iQf =vf’, (5.4.7)
where a prime denotes a derivative with respect to y. The solution is readily found to be

fly) = exp[-(1 =1) 7], (5.4.8)

5= \/% (5.4.9)

is the Stokes boundary-layer thickness. Substituting (5.4.8) into (5.4.6), we obtain

where § = y/d and

ug(y,t) = V Real{ exp[—iQt — (1 —1)¢] }, (5.4.10)
yielding the velocity profile

Uz (y,t) = Vcos(Qt — ) e? (5.4.11)
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FIGURE 5.4.1 Velocity profiles (a) due to the in-plane oscillation of a plate in a semi-infinite viscous
fluid and (b) in oscillatory flow over a stationary plate. Profiles are shown at phase angles Qt/m = 0
(dashed line), 0.25 (dash-dotted line), 0.50 (dotted line), 0.75, 1.0,1.25, 1.50,1.75, and 2.0. The
y coordinate is scaled by the Stokes boundary layer thickness ¢ defined in (5.4.9).

for g > 0. We have found that the velocity profile is an exponentially damped wave with wave
number 1/§ and associated wavelength 27d, propagating in the y direction with phase velocity
cp =0 = (209)'/2. Since the amplitude of the velocity decays exponentially with distance from
the plate, the motion of the fluid is negligible outside a wall layer of thickness 6. Velocity profiles at
a sequence of time instants over one period of the oscillations are shown in Figure 5.4.1(a).

Wall shear stress

Differentiating (5.4.10) with respect to y and evaluating the derivative at the plate, y = 0, we obtain
an expression for the shear stress over the plate,

_ o (2=y 1/2 3y _mV 3
e M( oy )y:O = V(up)'/? cos(U — =5 ) = “= V2 cos(Qt — 1) (54.12)

It is interesting to note that the phase shift between the wall shear stress and the velocity of the
plate is 37 /4, independent of the angular frequency, Q. This is a unique feature of oscillatory flow
driven by the motion by a flat surface in the absence of other boundaries. We will see later in this
section that, for other geometries, the phase shift depends on the frequency of oscillation.

5.4.2 Flow due to an oscillatory pressure gradient above a plate

Next, we study the complementary problem of unidirectional flow above a stationary plate due to
an oscillatory pressure gradient, setting

X = 72—2 = —pg, + (sin(Q), (5.4.13)
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where ( is a constant amplitude. The velocity profile is governed by the following simplified version
of the general equation (5.4.2),

Ouy, . 0%u,
P = Csin(Q) + p R (5.4.14)
The solution is
ug(y,t) = v(y,t) — p% cos(Qt), (5.4.15)

where the complementary velocity v is given by the right-hand side of (5.4.11) with V' = {/(pf2),
yielding

Uy (y,t) = p% [ cos(Qt —g)e ¥ — cos(Qt) ]. (5.4.16)

The velocity is zero over the plate located at y = 0, and describes uniform oscillatory flow with
velocity uy(00,t) = —U cos(Qt) far from the plate, where U = (/(p€2). Physically, the flow consists
of an outer potential core and a Stokes boundary layer with thickness § = (2v/ 0)'/? adhering to the
plate. Velocity profiles at a sequence of time instants over one period are shown in Figure 5.4.1(b).

5.4.3 Flow due to the sudden translation of a plate

Consider a semi-infinite flow above a flat plate that is suddenly set in motion parallel to itself with
constant velocity, V', underneath an otherwise quiescent fluid. The evolving velocity profile is found
by solving (5.4.3) subject to the initial condition u,(y,t = 0) = 0 and the boundary and far-field
conditions

ug(y=0,t>0) =V, Ug(y — 00,t) = 0. (5.4.17)

Because of the linearity of the governing equation and boundary conditions, we expect that the fluid
velocity will be proportional to the plate velocity, V', and set

ug = Vf(y,t,v), (5.4.18)

where f is a dimensionless function. The arguments of f(y,¢,v) must combine into dimensionless
groups. In the absence of external length and time scales, we formulate a combination in terms of
the similarity variable

0= % (5.4.19)

so that f(y,t,v) = F(n), where F(n), is an unknown dimensionless function. This means that the
velocity as seen by an observer who finds herself at the position y = /2, and is thus traveling along
the y axis with velocity v = dy/dt = y/v/4t, remains constant in time. The boundary and far-field
conditions require that F(0) = 1 and F(co) = 0. Substituting into (5.4.3) the self-similar velocity
profile u, = VF(n), we obtain

dF on 0 (dF @)‘ (5.4.20)

g ot~ oy \dn oy
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FIGURE 5.4.2 (a) Graphs of the error function (solid line) and complementary error function (dashed
line) computed using algebraic approximations. (b) Velocity profiles of the flow due to the sudden
motion of a plate in a semi-infinite fluid at dimensionless times vt/a? = 0.001, 0.005,0.02,0.05,
0.1,0.2,0.5, and 1.0, where a is an arbitrary length scale,

Carrying out the differentiations, we derive a second-order nonlinear ordinary differential equation

1 dF d&*F
—— N = ——. 5.4.21

2 d T ( )
Integrating twice subject to the aforementioned boundary and far-field conditions, we obtain the
velocity profile

Uy

vV o F(n) = erfc(%) =1- erf(%) =1- % /Oné2£2 dé€. (5.4.22)

The complementary error function, erfc(w), and the error function, erf(w), can be computed by
accurate polynomial approximations. Graphs are presented in Figure 5.4.2(a). As w tends to
infinity, erf(w) tends to unity and correspondingly erfc(w) tends to zero. The converse is true as w
tends to zero.

A sequence of evolving velocity profiles plotted with respect to y/a are shown in Figure 5.4.2(b)
at a sequence of dimensionless times vt/a?, where a is an arbitrary length. At the initial instant, the
velocity profile is proportional to the discontinuous Heaviside function, reflecting the sudden onset
of a vortex sheet attached to the plate,

ug(y,t =0) = VH(y). (5.4.23)

The dimensionless Heaviside function, #H(t), is defined such that H(¢) = 0 for ¢ < 0 and H(¢) = 1 for
t > 0. As time progresses, the vortex sheet diffuses into the fluid, transforming into a vortex layer
of growing thickness.
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Wall shear stress

The wall shear stress is given by

ea=n () () LB =y aan

A singularity appears at the initial instant, ¢ = 0, when the plate starts moving. Physically, the
plate cannot be pushed impulsively with constant velocity, but must be accelerated gradually from
the initial to the final value over a finite period of time. Setting the shear stress equal to —uV/d,
where 0 is the effective thickness of the vorticity layer, we find that ¢ increases in time like the square
root of time, § ~ v/vt.

Diffusing vortex sheet

The velocity field given in (5.4.22) describes the flow due to the sudden introduction of an infinite
plane parallel to a uniform stream flowing along the x axis, as well as the flow associated with a
diffusing vortex sheet separating two uniform streams flowing with velocities V and —V above and
below the x axis, as discussed in Section 3.12; see equation (3.12.23).

5.4.4 Flow due to the arbitrary translation of a plate

Consider the flow due to the sudden translation of a plate discussed in Section 5.4.3. Since the plate
velocity is a step function in time, we may set u,(0,t) = V H(t), where H(t) is the dimensionless
Heaviside function defined such that H(t) = 0 for t < 0 and H(¢) = 1 for ¢t > 0. A discontinuity occurs
at the origin of time, t = 0. Since the derivative of the Heaviside function is the one-dimensional
Dirac delta function, d;(¢), we may write

Ouy B OF B .
(% )y:o =V (E)yzo“) =Va), (5.4.25)
which reveals that
oFr
(or )(Qo 01(t)- (5.4.26)

In the case of arbitrary plate translation with arbitrary time-dependent velocity V (¢) and V(0) =
we obtain

t+dot t+6t
uI(O,t):V(t):/O V() (t —7) dT:/O Vir )(%f)(tff) dr, (5.4.27)

where 6t is an infinitesimal time interval. This expression allows us to construct the flow due to the
translation of the plate by generalization to arbitrary y. Assuming that the fluid is quiescent for
t < 0, we obtain

o (y, t) :/Ot Vir )(%f)(y,t—T) dr. (5.4.28)
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Substituting expression (5.4.22) and taking the time derivative, we find that

_ oy [t V(D) y? -
ug(y,t) = 2\/73/0 TEEE exp [ — m] dr. (5.4.29)

This solution also describes the temperature distribution in a semi-infinite conductive medium due
to an arbitrary boundary temperature (e.g., ([66]). The right-hand side of (5.4.29) expresses a
distribution of Green’s functions of the unsteady diffusion equation (6.17.4) given in (6.17.5).

5.4.5 Flow in a channel with parallel walls

Continuing the investigation of unsteady unidirectional flow, we consider time-dependent boundary-
driven (Couette) or pressure-driven (Poiseuille) flow in a channel confined between two parallel walls
located at y = 0 and h. The Couette flow is governed by equation (5.4.3) and the Poiseuille flow is
governed by equation (5.4.14).

Oscillatory Couette flow

Assume that the upper wall is stationary while the lower wall oscillates in its plane along the = axis
with angular frequency Q. The lower wall velocity is u, (y = 0,t) = V cos(t), where V is a constant
amplitude. Working as in Section 5.4.1 for flow in a semi-infinite fluid due to an oscillating plate,
we derive the velocity profile

uz(y,t) =V Real{ f(y) e i }, (5.4.30)
where

exp[—(1 — )j] — exp[—(1 — 1) (2h — §)]
1 — exp[—(1 — i) 2h)

fly) = : (5.4.31)

g=1y/d, h= h/6, and 6 = (2v/Q)1/? is the Stokes boundary-layer thickness. The structure of the
flow can be regarded as a function of the dimensionless Womersley number defined with respect to
half the channel width,

h [Q 1 h 1 .

Wo = Ne =B 4 h. (5.4.32)
When the Womersley number is small, the flow evolves in quasi-steady fashion and the velocity profile
is nearly linear with respect to y at any time. As the Womersley number tends to infinity, we recover
the results of Section 5.4.1 for flow due to an oscillating plate in a semi-infinite fluid. Comparing the
present flow with that due to the oscillating plate, we find that the phase shift between the velocity
and shear stress at the lower wall depends on the angular frequency, 2. This difference underscores
the hydrodynamic importance of the second plate or another nearby boundary.

Transient Couette flow

Next, we assume that the upper wall is stationary while the lower wall is suddenly set in motion
parallel to itself along the x axis with constant velocity V. Initially, the flow resembles that due to
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the motion of a flat plate immersed in a semi-infinite fluid. As time progresses, we obtain Couette
flow with a linear velocity profile. To expedite the solution, we decompose the flow into the steady
Couette flow and a transient flow that decays at long times. Applying the method of separation of
variables in y and ¢, we find that the velocity is given by a Fourier series [318],

2.2

2 1 nemwey . nmT
wly )=V (1-£-2 Z; (—5— 1) sin 22 ). (5.4.33)
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Steady state is established approximately when ¢t ~ h?/v.

Working in an alternative fashion, we apply the Laplace transform method and obtain

Uy (y,t) = V{erfc<2j;t) ferfc( N ) + erfe ( 2\/@)

7erfc(42h7\/;f;y> + erfc(42h\/%y) i ] (5.4.34)

which is more appropriate for computing the flow at short times.

Oscillatory plane Poiseuille flow

In the next configuration, we consider flow due to an oscillatory streamwise pressure gradient de-
scribed by
0 .
X = . —pgs + (sin(Qt), (5.4.35)
ox
where ( is a constant amplitude and 2 is the angular frequency of the oscillations. Straightforward
computation shows that the velocity profile is given by

< it
us(y:1) = -5 Real{ f(y)e @}, (5.4.36)
where
_cosh[(=1+0)@—5h)] i
T cosh [(—1+1) L 4] 1 (5.4.37)

is a complex function, § = y/0, h= h/8, and § = (2v/Q)'/? is the Stokes boundary-layer thickness
(e.g., [318]). Tt is sometimes useful to regard the structure of the flow as a function of the dimen-
sionless Womersley number defined in (5.4.32). When the Womersley number is small, we obtain
quasi-steady plane Hagen—Poiseuille flow with parabolic velocity profile.

Considering the limit of high frequencies, we replace the hyperbolic cosine in the denominator
on the right-hand side of (5.4.37) with half the exponential of its argument, resolve the hyperbolic
cosine in the numerator into its two exponential constituents, and derive the velocity profile

¢

way 1) = s Real{ [e= 007 4 o= (=D (h=d) _ 1] exp(—iQdt) } (5.4.38)
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Comparing (5.4.38) with (5.4.16), we find that the flow consists of an irrotational core executing
rigid-body motion with velocity u, = —p% cos(2t), and two Stokes boundary layers, one attached
to each wall. Inspecting the precise form of the velocity profile at high freq