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Preface

My goal in this book entitled Introduction to Theoretical and Computational Fluid Dynamics is to
provide a comprehensive and rigorous introduction to the fundamental concepts and basic equations
of fluid dynamics, and simultaneously illustrate the application of numerical methods for solving a
broad range of fundamental and practical problems involving incompressible Newtonian fluids. The
intended audience includes advanced undergraduate students, graduate students, and researchers in
most fields of science and engineering, applied mathematics, and scientific computing. Prerequisites
are a basic knowledge of classical mechanics, intermediate calculus, elementary numerical methods,
and some familiarity with computer programming. The chapters can be read sequentially, randomly,
or in parts, according to the reader’s experience, interest, and needs.

Scope

This book differs from a typical text on theoretical fluid dynamics in that the discourse is carried
into the realm of numerical methods and into the discipline of computational fluid dynamics (CFD).
Specific algorithms for computing incompressible flows under diverse conditions are developed, and
computer codes encapsulated in the public software library Fdlib are discussed in Appendix C.
This book also differs from a typical text on computational fluid dynamics in that a full discussion
of the theory with minimal external references is provided, and no experience in computational fluid
dynamics or knowledge of its terminology is assumed. Contemporary numerical methods and com-
putational schemes are developed and references for specialized and advanced topics are provided.

Content

The material covered in this text has been selected according to what constitutes essential knowledge
of theoretical and computational fluid dynamics. This intent explains the absence of certain special-
ized and advanced topics, such as turbulent motion and non-Newtonian flow. Although asymptotic
and perturbation methods are discussed in several places, emphasis is placed on analytical and
numerical computation. The discussion makes extensive usage of the powerful concept of Green’s
functions and integral representations.

Use as a text

This book is suitable as a text in an advanced undergraduate or introductory graduate course on fluid
mechanics, Stokes flow, hydrodynamic stability, computational fluid dynamics, vortex dynamics, or
a special topics course, as indicated in the Note to the Instructor. Each section is followed by a set of
problems that should be solved by hand and another set of problems that should be tackled with the
help of a computer. Both categories of problems are suitable for self-study, homework, and project
assignment. Some computer problems are coordinated so that a function or subroutine written for
one problem can be used as a module in a subsequent problem.
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Preface to the Second Edition

The Second Edition considerably extends the contents of the First Edition to include contemporary
topics and some new and original material. Clarifications, further explanations, detailed proofs, orig-
inal derivations, and solved problems have been added in numerous places. Chapter 1 on kinematics,
Chapter 8 on hydrodynamic stability, and Chapter 11 on vortex methods have been considerably
expanded. Numerous schematic depictions and graphs have been included as visual guides to il-
lustrate the results of theoretical derivations. Expanded appendices containing useful background
material have been added for easy reference. These additions underscore the intended purpose of
the Second Edition as a teaching, research, and reference resource.

FDLIB

The numerical methods presented in the text are implemented in computer codes contained in the
software library Fdlib, as discussed in Appendix C. The directories of Fdlib include a variety of
programs written in Fortran 77 (compatible with Fortran 90), Matlab, and C++. The codes
are suitable for self-study, classroom instruction, and fundamental or applied research. Appendix D
contains the User Guide of the eighth directory of Fdlib on hydrodynamic stability, complementing
Chapter 8.

Acknowledgments

I thankfully acknowledge the support of Todd Porteous and appreciate useful comments by Jeffrey
M. Davis and A. I. Hill on a draft of the Second Edition.

C. Pozrikidis
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Note to the Instructor

This book is suitable for teaching several general and special-topics courses in theoretical and com-
putational fluid dynamics, applied mathematics, and scientific computing.

Course on fluid mechanics

The first eight chapters combined with selected sections from subsequent chapters can be used in an
upper-level undergraduate or entry-level introductory graduate core course on fluid mechanics. The
course syllabus includes essential mathematics and numerical methods, flow kinematics, stresses, the
equation of motion and flow dynamics, hydrostatics, exact solutions, Stokes flow, irrotational flow,
and boundary-layer analysis. The following lecture plan is recommended:

Appendix A Essential mathematics Reading assignment
Appendix B Primer of numerical methods Reading assignment
Chapter 1 Kinematics
Chapter 2 Kinematic description Sections 2.2–2.8 and 2.10–2.13 are optional
Chapter 3 Equation of motion
Chapter 4 Hydrostatics
Chapter 5 Exact solutions
Chapter 6 Stokes flow Sections 6.8–6.18 are optional
Chapter 7 Irrotational flow

Some sections can be taught as a guided reading assignment at the instructor’s discretion.

Course on Stokes flow

Chapter 6 can be used in its entirety as a text in a course on theoretical and computational Stokes
flow. The course syllabus includes governing equations and fundamental properties of Stokes flow, lo-
cal solutions, particulate microhydrodynamics, singularity methods, boundary-integral formulations,
boundary-element methods, unsteady Stokes flow, and unsteady particle motion. The students are
assumed to have a basic undergraduate-level knowledge of fluid mechanics. Some topics from previ-
ous chapters can be reviewed at the beginning of the course.

Course on hydrodynamic stability

Chapter 9 combined with Appendix D can be used in a course on hydrodynamic stability. The
course syllabus includes formulation of the linear stability problem, normal-mode analysis, stability
of unidirectional flows, the Rayleigh equation, the Orr–Sommerfeld equation, stability of rotating
flows, and stability of inviscid and viscous interfacial flows. The students are assumed to have a
basic knowledge of the continuity equation, the Navier–Stokes equation, and the vorticity transport
equation. These topics can be reviewed from previous chapters at the beginning of the course.
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Course on computational fluid dynamics (CFD)

The following lecture plan is recommended in a course on numerical methods and computational
fluid dynamics, following a graduate course on fluid mechanics:

Appendix A Essential mathematics Reading assignment
Appendix B Primer of numerical methods Reading assignment
Chapter 2 Theory of potential flow Sections 2.1–2.5
Chapter 6 Boundary-integral methods for Stokes flow Sections 6.5–6.10
Chapter 10 Boundary-integral methods for potential flow
Chapter 11 Vortex motion Selected topics
Chapter 12 Finite-difference methods
Chapter 13 Finite-difference methods for incompressible flow

Short course on vortex dynamics

Chapter 11 is suitable as a text in a short course on vortex dynamics. The material can be preceded
or supplemented with selected sections from previous chapters to establish the necessary theoretical
framework.

Special topics in fluid mechanics

Selected material from Chapters 9–13 can be used in a special-topics course in fluid mechanics,
applied mathematics, computational fluids dynamics, and scientific computing. The choice of topics
will depend on the students’ interests and field of study.



Note to the Reader

For self-study, follow the roadmap outlined in the Note to the Instructor, choosing your preferred
area of concentration. In the absence of a preferred area, study the text from page one onward,
skipping sections that seem specialized, but keeping in mind the material contained in Appendices
A and B on essential mathematics and numerical methods. Before embarking on a course of study,
familiarize yourself with the entire contents of this book, including the appendices.

Notation

In the text, an italicized variable, such as a, is a scalar, and a bold-faced variable, such as a, is a
vector or matrix. Matrices are represented by upper case and bold faced symbols. Matrix–vector
and matrix–matrix multiplication is indicated explicitly with a centered dot, such as A·B. With this
convention, a vector, a, can be horizontal or vertical, as the need arises. It is perfectly acceptable to
formulate the product A · a as well as the product a ·A, where A is an appropriate square matrix.
Index notation and other conventions are defined in Appendix A.

The fluid velocity is denoted by u or U. The boundary velocity is denoted by v or V.
Exceptions are stated, as required. Dimensionless variables are denoted by a hat (caret). We
strongly advocate working with physical dimensional variables and nondimensionalizing at the end,
if necessary.

Polymorphism

Occasionally in the analysis, we run out of symbols. A bold faced variable may then be used to
represent a vector or a matrix with two or more indices. A mental note should be made that the
variable may have different meanings, depending on the current context. This practice is consistent
with the concept of polymorphism in object-oriented programming where a symbol or function may
represent different entities depending on the data type supplied in the input and requested in the
output. The language compiler is trained to pick up the appropriate structure.

Physical entities expressed by vectors and tensors

The velocity of an object, v, is a physical entity characterized by magnitude and direction. In
the analysis, the velocity is described by three scalar components referring to Cartesian, polar, or
other orthogonal or nonorthogonal coordinates. The Cartesian components, vx, vy, and vz, can be
conveniently collected into a Cartesian vector,

v = [vx, vy, vz].

Accordingly, v admits a dual interpretation as a physical entity that is independent of the chosen
coordinate system, and as a mathematical vector. In conceptual analysis, we refer to the physical
interpretation; in practical analysis and calculations, we invoke the mathematical interpretation.
To prevent confusion, the components of a vector in non-Cartesian coordinates should never be
collected into a vector. Similar restrictions apply to matrices representing physical entities that
qualify as Cartesian tensors.
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Units

In engineering, all physical variables have physical dimensions such as length, length over time, mass,
mass over length cubed. Units must be chosen consistently from a chosen system, such as the cgs
(cm, g, s) or the mks (m, kg, s) system. It is not appropriate to take the logarithm or exponential
of a length a, ln a or ea, because the units of the logarithm or exponential are not defined. Instead,
we must always write ln(a/b) or ea/b, where b is another length introduced so that the argument of
the logarithm or exponential is a dimensionless variable or number. The logarithm or exponential
are then dimensionless variables or numbers.

Computer languages

Basic computer programming skills are necessary for the thorough understanding of contemporary
applied sciences and engineering. Applications of computer programming in fluid mechanics range
from preparing graphs and producing animations, to computing fluid flows under a broad range of
conditions. Recommended general-purpose computer languages include Fortran, C, and C++.
Free compilers for these languages are available for many operating systems. Helpful tutorials can
be found on the Internet and a number of excellent texts are available for self-study.

Units in a computer code

In writing a computer code, always use physical variables and dimensional equations. To scale the
results, set the value of one chosen length to unity and, depending on the problem, one viscosity,
density, or surface tension equal to unity. For example, setting the length of a pipe, L, to 1.0, renders
all lengths dimensionless with respect to L.

Fluid, solid, and continuum mechanics

The union of fluid and solid mechanics comprises the field of continuum mechanics. The basic theory
of fluid mechanics derives from the theory of solid mechanics, and vice versa, by straightforward
substitutions:

fluid solid
velocity displacement
velocity gradient tensor deformation gradient tensor
rate of strain or rotation → strain or rotation
surface force traction
stress Cauchy stress

However, there are some important differences. The traction in a fluid refers to an infinitesimal
surface fixed in space, whereas the traction in a solid refers to a material surface before or after
deformation. Consequently, there are several alternative, albeit inter-related, definitions for the
stress tensor in a solid. Another important difference is that the velocity gradient tensor in fluid
mechanics is the transpose of the deformation gradient tensor in solid mechanics. This difference
is easy to identify in Cartesian coordinates, but is lurking, sometimes unnoticed, in curvilinear
coordinates. These important subtleties should be born in mind when referring to texts on continuum
mechanics.
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Kinematic structure of a flow 1
The study of fluid mechanics is divided broadly into two main themes, kinematics and dynamics.
Kinematics analyzes the motion of a fluid with reference to the structure of the velocity field, whereas
dynamics examines the forces developing in a fluid as the result of the motion. Fundamental concepts
of kinematics and dynamics are combined with the fundamental principle of mass conservation and
Newton’s second law of motion to derive a system of differential equations governing the structure
of a steady flow and the evolution of an unsteady flow.

1.1 Fluid velocity and motion of fluid parcels

Referring to a frame of reference that is fixed in space,
u

ε

The fluid velocity is defined as the outer
limit of the mean parcel velocity.

we observe the flow of a homogeneous fluid consisting of
a single chemical species. We consider, in particular, the
motion of a fluid parcel which, at a certain observation
time, t, has a spherical shape of radius ε centered at a
point, x. The velocity of translation of the parcel in a
particular direction is defined as the average value of the
instantaneous velocity of all molecules residing inside the
parcel in that direction.

It is clear that the average parcel velocity depends
on the parcel radius, ε. Taking the limit as ε tends to
zero, we find that the average velocity approaches a well-defined asymptotic limit, until ε becomes
comparable to the molecular size. At that stage, we observe strong oscillations that are manifes-
tations of random molecular motions. We define the velocity of the fluid, u, at position, x, and
time, t, as the apparent or outer limit of the velocity of the parcel as ε tends to zero, just before the
discrete nature of the fluid becomes apparent. This definition is the cornerstone of the continuum
approximation in fluid mechanics. Under normal conditions, the velocity, u(x, t), is an infinitely
differentiable function of position, x, and time, t. However, spatial discontinuities may arise under
extreme conditions in high-speed flows, or else emerge due to mathematical idealization. If a flow is
steady, u is independent of time, ∂u/∂t = 0, and the velocity at a certain position in space remains
constant in time.

The velocity of a two-dimensional flow in the xy plane is independent of the z coordinate,
∂u/∂z = 0. The velocity component along the z axis, uz, may have a constant value that is usually
made to vanish by an appropriate choice of the frame of reference.

1
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1.1.1 Subparcels and point particles

To analyze the motion of a fluid parcel, it is helpful to divide the parcel into a collection of subparcels
with smaller dimensions and observe that the rate of rotation and deformation of the parcel is
determined by the relative motion of the subparcels. For example, if all subparcels move with
the same velocity, the parental parcel translates as a rigid body, that is, the rate of rotation and
deformation of the parental parcel are both zero. It is conceivable that the velocity of the subparcels
may be coordinated so that the undivided parental parcel translates and rotates as a rigid body
without suffering deformation, that is, without change in shape.

If we continue to subdivide a parcel into subparcels with decreasingly small size, we will
eventually encounter subparcels with infinitesimal dimensions called point particles. Each point
particle occupies an infinitesimal volume in space, but an infinite collection of point particles that
belongs to a finite (noninfinitesimal) parcel occupies a finite volume in space. By definition, a point
particle located at the position x moves with the local and current fluid velocity, u(x, t).

1.1.2 Velocity gradient

To describe the motion of a fluid parcel in quantitative terms, we introduce Cartesian coordinates
and consider the spatial variation of the velocity, u, in the neighborhood of a chosen point, x0, which
is located somewhere inside the parcel. Expanding the jth component of u(x, t) in a Taylor series
with respect to x about x0 and retaining only the linear terms, we find that

uj(x, t) � uj(x0, t) + x̂i Lij(x0, t), (1.1.1)

where x̂ = x − x0 is the vector connecting the point x0 to the point x, and summation over the
repeated index i is implied on the right-hand side. We have introduced the velocity gradient or rate
of relative displacement matrix, L = ∇u, with components

Lij =
∂uj

∂xi
. (1.1.2)

Explicitly, the velocity gradient is given by

L ≡ ∇u =

⎡⎢⎢⎢⎢⎢⎣
∂ux

∂x

∂uy

∂x

∂uz

∂x
∂ux

∂y

∂uy

∂y

∂uz

∂y
∂ux

∂z

∂uy

∂z

∂uz

∂z

⎤⎥⎥⎥⎥⎥⎦ . (1.1.3)

In physical terms, the velocity gradient expresses the spatial variation of the velocity across a col-
lection of subparcels or point particles composing a parcel. In Section 1.1.8, we will show that L

satisfies a transformation rule that qualifies it as a second-order Cartesian tensor.

In formal mathematics, the velocity gradient is the tensor product of the gradient vector
operator, ∇, and the velocity vector field, u. To simplify the notation, we have set

∇u ≡ ∇⊗ u, (1.1.4)
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where ⊗ denotes the tensor product of two vectors defined in Section A.4, Appendix A. Similar sim-
plified notation will be used for other tensor products involving the gradient operator; for example,
∇∇ = ∇⊗∇ is the two-dimensional operator of the second derivatives.

In vector notation, equation (1.1.1) takes the form

u(x, t) � u(x0, t) + x̂ · L(x0, t). (1.1.5)

Note the left-to-right vector–matrix multiplication in the second term on the right-hand side.

Divergence of the velocity

The trace of the velocity gradient tensor, L, defined as the sum of the diagonal elements of L, is
equal to the divergence of the velocity,

α ≡ trace(L) =
∂uk

∂xk
= ∇ · u, (1.1.6)

where summation is implied over the repeated index, k. In Section 1.1.6, we will see that the
divergence of the velocity expresses the rate of expansion of the fluid.

1.1.3 Dyadic base

Let em be the unit vector along the mth Cartesian axis for m = 1, 2, 3. By definition, ei · ej = δij ,
where δij is Kronecker’s delta representing the identity matrix, as discussed in Section A.4, Appendix
A. The velocity can be expressed in terms of its Cartesian components, ui, as

u = ui ei, (1.1.7)

where summation is implied over the repeated index, i. The velocity gradient can be expressed in
the dyadic form

L = Lij ei ⊗ ej , (1.1.8)

where summation is implied over the repeated indices, i and j. The kl component of the matrix
ei ⊗ ej is

[ei ⊗ ej ]kl = [ei]k[ej ]l. (1.1.9)

Expression (1.1.8) is the algebraic counterpart of the matrix depiction shown in (1.1.3).

Projecting equation (1.1.8) from the right onto the unit vector eq, where q is a free index, and
using the orthogonality property of the unit vectors, we obtain

L · eq = Lij ei (ej · eq) = Lij ei δjq = Liq ei. (1.1.10)

Formulating the inner product of this equation with the unit vector ep, where p is another free index,
and working in a similar fashion, we extract the components of the velocity gradient,

Lpq = ep · L · eq = L : (ep ⊗ eq), (1.1.11)
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where the double dot product of two matrices with matching dimensions is defined in Section A.4,
Appendix A. This expression may also be regarded as a consequence of the orthogonality property

(ei ⊗ ej) : (ep ⊗ eq) = (ei · ep)(ej · eq) = δip δjq, (1.1.12)

where i, j, p, and q are found independent indices.

The identity matrix admits the dyadic decomposition

I = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3. (1.1.13)

In matrix notation underlying this dyadic expansion, all elements of I are zero, except for the three
diagonal elements that are equal to unity.

Without loss of generality, we may assume that the kth component of the unit vector ei is
equal to 1 if k = i or 0 if k �= i, that is, [ei]k = δik. The kl component of the matrix ei ⊗ ej is
[ei ⊗ ej ]kl = [ei]k[ej ]l = δikδjl. All elements of the matrix ei ⊗ ej are zero, except for the element
located at the intersection of the ith row and jth column that is equal to unity, [ei ⊗ ej ]ij = 1,
where summation is not implied over the indices i and j. For example,

e1 ⊗ e2 =

⎡⎣ 0 1 0
0 0 0
0 0 0

⎤⎦ . (1.1.14)

This expression illustrates that the dyadic base provides us with a natural framework for representing
a two-index matrix.

1.1.4 Fundamental decomposition of the velocity gradient

It is useful to decompose the velocity gradient, L, into an antisymmetric component, Ξ, a symmetric
component with vanishing trace, E, and an isotropic component with nonzero trace,

L = Ξ+E+
1

3
α I, (1.1.15)

where I is the identity matrix. We have introduced the vorticity tensor,

Ξ ≡ 1

2
(L− LT ), Ξij =

1

2

(∂uj

∂xi
− ∂ui

∂xj

)
, (1.1.16)

and the rate-of-deformation tensor, also called the rate-of-strain tensor,

E ≡ 1

2
(L+ LT )− 1

3
α I, Eij =

1

2

(∂uj

∂xi
+

∂ui

∂xj

)
− 1

3
α δij , (1.1.17)

where the superscript T denotes the matrix transpose. Explicitly, the components of Ξ and E are
given in Table 1.1.1. In Section 1.1.8, we will demonstrate that Ξ and E obey transformation rules
that qualify them as second-order Cartesian tensors.
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Ξ ≡ 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∂uy

∂x
− ∂ux

∂y

∂uz

∂x
− ∂ux

∂z

∂ux

∂y
− ∂uy

∂x
0

∂uz

∂y
− ∂uy

∂z

∂ux

∂z
− ∂uz

∂x

∂uy

∂z
− ∂uz

∂y
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

E ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ux

∂x
− 1

3
α

1

2
(
∂uy

∂x
+

∂ux

∂y
)

1

2
(
∂uz

∂x
+

∂ux

∂z
)

1

2
(
∂ux

∂y
+

∂uy

∂x
)

∂uy

∂y
− 1

3
α

1

2
(
∂uz
∂y

+
∂uy

∂z
)

1

2
(
∂ux

∂z
+

∂uz

∂x
)

1

2
(
∂uy

∂z
+

∂uz

∂y
)

∂uz

∂z
− 1

3
α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 1.1.1 Cartesian components of the vorticity tensor, Ξ, and rate-of-deformation tensor, E, where
α ≡ ∇ · u is the rate of expansion. The trace of the rate-of-deformation tensor, E, is zero by
construction.

1.1.5 Vorticity

Because the vorticity tensor is antisymmetric, it has only three independent components that can
be accommodated into a vector. To implement this simplification, we introduce the vorticity vector,
ω, and set

Ξij =
1

2
εijk ωk, (1.1.18)

where εijk is the alternating tensor defined in Section A.4, Appendix A, and summation is implied
over the repeated index k. Explicitly,

Ξ =
1

2

⎡⎣ 0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0

⎤⎦ . (1.1.19)

Conversely, the vorticity vector derives from the vorticity tensor as

ωk = εkij Ξij =
1

2
εkij

(∂uj

∂xi
− ∂ui

∂xj

)
= εkij

∂uj

∂xi
, (1.1.20)

where summation is implied over the repeated indices, i and j. The last expression shows that the
vorticity is the curl of the velocity,

ω = ∇× u. (1.1.21)
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Explicitly,

ω =
(∂uz

∂y
− ∂uy

∂z

)
ex +

(∂ux

∂z
− ∂uz

∂x

)
ey +

(∂uy

∂x
− ∂ux

∂y

)
ez, (1.1.22)

where ex, ey, and ez are unit vectors along the x, y, and z axes.

Observing that the vorticity of a two-dimensional flow in the xy plane is oriented along the z
axis, we write

ω(x, y, t) = ωz(x, y, t) ez, (1.1.23)

where ωz is the z vorticity component.

1.1.6 Fluid parcel motion

Substituting (1.1.18) into (1.1.15) and the resulting expression into (1.1.1), we derive an expression
for the spatial distribution of the velocity in the neighborhood of a point, x0, in terms of the vorticity
vector, ω, the rate-of-deformation tensor, E, and the divergence of the velocity field, α,

uj(x, t) � uj(x0, t) +
1

2
εjki ωk(x0, t) x̂i + x̂i Eij(x0, t) +

1

3
α x̂j , (1.1.24)

where x̂ = x − x0. Next, we proceed to analyze the motion of a fluid parcel based on this local
representation, recognizing that point particles execute sequential motions under the influence of
each term on the right-hand side.

Translation

The first term on the right-hand side of (1.1.24) expresses rigid-body translation. Under the influence
of this term, a fluid parcel translates with the fluid velocity evaluated at the designated particle
center, x0.

Vorticity and rotation

The second term on the right-hand side of (1.1.24) can be written as Ω(x0, t)× x̂, where

Ω =
1

2
ω. (1.1.25)

This expression shows that point particles rotate about the point x0 with angular velocity that
is equal to half the centerpoint vorticity. Conversely, the vorticity vector is parallel to the point-
particle angular velocity vector, and the magnitude of the vorticity vector is equal to twice that of
the point-particle angular velocity vector.

Rate of strain and rate of deformation

We return to (1.1.24) and examine the nature of the motion associated with the third term on the
right-hand side. Because the matrix E is real and symmetric, it has three real eigenvalues, λ1, λ2, and
λ3, and three mutually orthogonal eigenvectors. Under the action of this term, three infinitesimal
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fluid parcels resembling slender needles initially aligned with the eigenvectors elongate or compress
in their respective directions while remaining mutually orthogonal (Problem 1.1.2). An ellipsoidal
fluid parcel with three axes aligned with the eigenvectors deforms, increasing or decreasing its aspect
ratios, while maintaining its initial orientation. These observations suggest that the third term on
the right-hand side of (1.1.24) expresses deformation that preserves orientation.

To examine the change of volume of a parcel under the action of this term, we consider a
parcel in the shape of a rectangular parallelepiped whose edges are aligned with the eigenvectors
of E. Let the initial lengths of the edges be dx1, dx2, and dx3. After a small time interval dt has
elapsed, the lengths of the sides have become (1 + λ1 dt) dx1, (1 + λ2 dt) dx2, and (1 + λ3 dt) dx3.
Formulating the product of these lengths, we obtain the new volume,

(1 + λ1dt)(1 + λ2dt)(1 + λ3dt) dx1 dx2 dx3. (1.1.26)

Multiplying the three factors, we find that, to first order in dt, the volume of the parcel has been
modified by the factor 1 + (λ1 + λ2 + λ3)dt. However, because the sum of the eigenvalues of E is
equal to the trace of E, which is zero by construction, the volume of the parcel is preserved during
the deformation.

If the rate of strain is everywhere zero, the flow must necessarily express rigid-body motion,
including translation and rotation (Problem 1.1.3).

Expansion

The last term on the right-hand side of (1.1.24) represents isotropic expansion or contraction. Under
the action of this term, a small spherical parcel of radius a and volume δV = 4π

3 a3 centered at
the point x0 expands or contracts isotropically, undergoing neither translation, nor rotation, nor
deformation. To compute the rate of expansion, we note that, after a small time interval dt has
elapsed, the radius of the spherical parcel has become (1+ 1

3 α dt) a and the parcel volume has been
changed by the differential amount

d δV =
4π

3

(
1 +

1

3
α dt

)3
a3 − 4π

3
a3. (1.1.27)

Expanding the cubic power of the binomial, linearizing the resulting expression with respect to dt,
and rearranging, we find that

1

δV

d δV

dt
= α. (1.1.28)

This expression justifies calling the divergence of the velocity, α ≡ ∇ · u, the rate of expansion or
rate of dilatation of the fluid.

Summary

We have found that a small fluid parcel translates, rotates, expands, and deforms by rates that are
determined by the local velocity, vorticity, rate of expansion, and rate-of-strain tensor, as illustrated
in Figure 1.1.1. To first order in dt, the sequence by which these motions occur is inconsequential.
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Expansion Rotation Deformation

Figure 1.1.1 Illustration of the expansion, rotation, and deformation of a small spherical fluid parcel
during an infinitesimal period of time in a three-dimensional flow.

1.1.7 Irrotational and rotational flows

If the vorticity is everywhere zero in a flow, the flow and the velocity field are called irrotational. For
example, since the curl of the gradient of any continuous scalar function is identically zero, as shown
in identity (A.6.13), Appendix A, the velocity field u = ∇φ is irrotational for any differentiable
function, φ. The rate of rotation of slender fluid parcels resembling needles averaged all possible
orientations is zero in an irrotational flow (e.g., [370]). If the vorticity is nonzero at least in some part
of a flow, the flow and the velocity field are called rotational. Sometimes the qualifiers “rotational”
and “irrotational” are casually attributed to the fluid, and we speak of an irrotational fluid to
describe a fluid that executes irrotational motion. However, although this may be an acceptable
simplification, we should keep in mind that, strictly speaking, irrotationality is not a property of
the fluid but a kinematic attribute of the flow.

A number of common flows consist of adjacent regions of nearly rotational and nearly irrota-
tional flow. For example, high-speed flow past a streamlined body is irrotational everywhere except
inside a thin layer lining the surface of the body and inside a slender wake behind the body, as
discussed in Chapter 8. The flow between two parallel streams that merge at different velocities is
irrotational everywhere except inside a shear layer along the interface. Other examples of irrotational
flows will be presented in later chapters.

Vorticity and circulatory motion

It is important to bear in mind that the occurrence of global circulatory motion does not necessarily
mean that individual fluid parcels undergo rotation. For example, the circulatory flow generated by
the steady rotation of an infinite cylinder in an ambient fluid of infinite expanse is irrotational, which
means that small elongated fluid particles parallel to the principal axes of the rate-of-deformation
tensor retain their orientation during any infinitesimal time interval as they circulate around the
cylinder.

1.1.8 Cartesian tensors

Consider two Cartesian coordinate systems with common origin, (x1, x2, x3) and (x′
1, x

′
2, x

′
3), as

shown in Figure 1.1.2. The Cartesian unit vectors in the unprimed and primed systems are denoted,
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x

x

x

1

2

3

2

1

α

α

1

e

e

1

2

2

α3

e3

x’
x’

x’
3

Figure 1.1.2 Illustration of two coordinate systems with shared origin. The cosines of the angles, α1,
α2, and α3, are the direction cosines of the x′

1 axis, subject to the convention that 0 ≤ αi ≤ π.
The bold arrows are Cartesian unit vectors.

respectively, by (e1, e2, e3) and (e′1, e
′
2, e

′
3). The position of a point particle in physical space can be

expressed in the unprimed or primed coordinates and corresponding unit vectors as

X = xi ei = x′
i e

′
i, (1.1.29)

where summation is implied over the repeated index, i. The primed coordinates are related to the
unprimed coordinates, and vice versa, by an orthogonal transformation.

Orthogonal transformations

It is useful to introduce a transformation matrix, A, with elements

Aij = e′i · ej . (1.1.30)

Using the geometrical interpretation of the inner vector product, we find that the first row of A
contains the cosines of the angles subtended between each unit vector along the x1, x2, and x3 axes,
and the unit vector in the direction of the x′

1 axis,

A11 = cosα1, A12 = cosα2, A13 = cosα3, (1.1.31)

called the direction cosines of e′1, as shown in Figure 1.1.1. The second and third rows of A contain
the corresponding direction cosines for the unit vectors along the x′

2 and x′
3 axes, e′2 and e′3.

Projecting (1.1.29) on ep or e′p, where p is a free index, and using the orthogonality of the
primed and unprimed unit vectors, we find that the x′ = (x′

1, x
′
2, x

′
3) and x = (x1, x2, x3) coordinates

are related by the linear transformations

x′ = A · x x = AT · x′, (1.1.32)
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where the superscript T indicates the matrix transpose. In index notation, these equations read

x′
i = Aijxj , xi = x′

jAji. (1.1.33)

Similar transformation rules can be written for the components of a physical vector, such as the
velocity vector, the vorticity vector, and the angular velocity vector.

Relations (1.1.32) demonstrate that the transformation matrix, A, is orthogonal, meaning that
its inverse, indicated by the superscript −1, is equal to its transpose, A−1 = AT . The determinant of
A and the length of any vector represented by any column or row are equal to unity. The projection
of any column or row onto a different column or row is zero.

Rotation matrices

In practice, the primed axes can be generated from the unprimed axes by three sequential rotations
about the x1, x2, and x3 axes, by respective angles equal to ϕ1, ϕ2, and ϕ3. We may say that
the primed system is rotated with respect to the unprimed system, and vice versa. To develop the
pertinent transformations, we introduce the rotation matrices

R(1) =

⎡⎣ 1 0 0
0 cosϕ1 sinϕ1

0 − sinϕ1 cosϕ1

⎤⎦ , R(2) =

⎡⎣ cosϕ2 0 − sinϕ2

0 1 0
sinϕ2 0 cosϕ2

⎤⎦ ,

(1.1.34)

R(3) =

⎡⎣ cosϕ3 sinϕ3 0
− sinϕ3 cosϕ3 0

0 0 1

⎤⎦ .

Each rotation matrix is orthogonal, meaning that its transpose is equal to its inverse. The deter-
minant of each rotation matrix and the length of any vector represented by a column or row are
equal to unity. The mutual projection of any two different columns or rows is zero. The orthogonal
transformation matrix of interest is

A = R(3) ·R(2) ·R(1), (1.1.35)

where the order of multiplication is consequential.

Dyadic base expansion

Now we consider a two-dimensional (two-index) matrix, T, whose elements are the components of
a physical variable, τ , in a Cartesian dyadic base, ei ⊗ ej , so that

τ = Tij ei ⊗ ej , (1.1.36)

where summation is implied over the repeated indices, i and j. The elements of the matrix T depend
on position in space and possibly time. The same physical variable can be expanded in the rotated
dyadic base defined with respect to the primed unit vectors as

τ = T ′
ij e

′
i ⊗ e′j , (1.1.37)

where T ′
ij are the component of τ in the primed axes.
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Projecting (1.1.36) and (1.1.37) from the right onto a unit vector, em, noting that ej ·em = δjm,
where δjm is the Kronecker delta, and using (1.1.29), we find that

τ · em = Tim ei = T ′
ij Ajm e′i. (1.1.38)

Projecting this expression onto a unit vector, ep, and working in a similar fashion, we obtain

ep · τ · em = Tpm = T ′
ij Ajm Aip. (1.1.39)

Renaming the indices and working in a similar fashion, we derive the distinguishing properties of a
second-order Cartesian tensor,

Tij = T ′
klAkiAlj , T ′

ij = AikAjlTkl. (1.1.40)

In vector notation,

T = AT ·T′ ·A, T′ = A ·T ·AT . (1.1.41)

The transformations (1.1.40) and (1.1.41) are special cases of similarity transformations encountered
in matrix calculus (Problem 1.1.5). Because the matrixA is orthogonal, its transpose can be replaced
by its matrix inverse.

Invariants

The characteristic polynomial of a Cartesian tensor, P(λ) = det(T − λI), is independent of the
coordinate system where the tensor is evaluated. Consequently, the coefficients and hence the
roots of the characteristic polynomial defining the eigenvalues of T are invariant under a change
of coordinates. To demonstrate the invariance of the characteristic polynomial, we recall that the
transformation matrix A is orthogonal and write

Tij − λδij = T ′
klAkiAlj − λAkiAkj = T ′

klAkiAlj − λAkiδklAlj = Aki (T
′
kl − λ δkl)Alj . (1.1.42)

In vector notation, we obtain the statement

T− λ I = AT · (T′ − λI) ·A. (1.1.43)

Taking the determinant of both sides, expanding the determinant of the product, and noting that
det(AT ) = 1/det(A), we find that

det[T− λI] = det(AT ) det[T′ − λI] det(A) = det[T′ − λ I], (1.1.44)

which completes the proof.

3× 3 tensors

In the case of 3× 3 three tensors of central interest in fluid mechanics, we recast the characteristic
polynomial into the form

det(T− λI) = −λ3 + I3λ
2 − I2λ+ I1, (1.1.45)
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involving the three invariants

I1 = det(T) = λ1λ2λ3, I2 = λ1λ2 + λ2λ3 + λ3λ1 =
1

2
trace2(T)− trace(T2),

I3 = trace(T) = λ1 + λ2 + λ3, (1.1.46)

defined in terms of the roots of the characteristic polynomial, λ1, λ2, and λ3, which are the eigenval-
ues of T. In Chapter 3, we will see that the invariants (1.1.46) play an important role in developing
constitutive equations that provide us with expressions for the stresses developing inside a fluid as
the result of the motion.

Kinematic tensors

The Cartesian components of the velocity transform like the components of the position vector, as
shown in (1.1.32),

u′
i = Aijuj , ui = u′

jAji. (1.1.47)

Using the chain rule of differentiation, we transform the velocity gradient matrix L introduced in
(1.1.2) as

Lij =
∂uj

∂xi
=

∂x′
k

∂xi

∂uj

∂x′
k

= Aki
∂uj

∂x′
k

= Aki Alj
∂u′

l

∂x′
k

, (1.1.48)

which is tantamount to

Lij = L′
klAkiAlj . (1.1.49)

Comparing (1.1.49) with the first equation in (1.1.40), we conclude that L is a second-order Cartesian
tensor. We note that the third invariant I3 defined in (1.1.46) is equal to the rate of expansion,
α ≡ ∇ · u, and confirm that the rate of dilatation of a fluid parcel is independent of the coordinate
system where the flow is described.

The symmetric and antisymmetric parts of L also obey the transformation rules (1.1.40).
Thus, the rate-of-strain matrix, E, and vorticity matrix, Ξ, are both second-order Cartesian tensors.
It is a straightforward exercise to show that the sequence of matrices, L · L, L · L · L, . . ., E · E,
E ·E ·E, . . ., are all second-order Cartesian tensors.

Problems

1.1.1 Relative velocity near a point

(a) Confirm the validity of the decomposition (1.1.15).

(b) Show that (1.1.20) is consistent with (1.1.18).

1.1.2 Eigenvalues of a real and symmetric matrix

Prove that a real and symmetric matrix has real eigenvalues and an orthogonal set of eigenvectors
(e.g., [18, 317]).
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1.1.3 Rigid-body motion

Prove that, if the rate-of-deformation tensor, E, and rate of expansion, α, are zero everywhere in
the domain of a flow, the flow must necessarily express rigid-body motion, including translation and
rotation.

1.1.4 Momentum tensor

Show that the matrix ρ uiuj is a second-order tensor, called the momentum tensor, where ρ is the
fluid density defined in Section 1.3.

1.1.5 Similarity transformations

Consider a square matrix, A, select a nonsingular square matrix, P, whose dimensions match those of
A, and compute the new matrix B = P−1 ·A·P. This operation is called a similarity transformation,
and we say that the matrix B is similar to A. Show that the eigenvalues of the matrix B are identical
to those of A; thus, similarity transformations preserve the eigenvalues (e.g., [18, 317]).

1.1.6 Tensor properties

(a) Derive the first relation in (1.1.41).

(b) Show that a two-dimensional matrix, T, qualifies as a second-order tensor if u(x) = T(x) · x
transforms like a vector according to (1.1.32) and (1.1.47).

(c) Consider a function f(x) defined through its Taylor series expansion. Show that if T is a tensor,
then f(T) is also a tensor.

1.2 Curvilinear coordinates

The position vector, velocity field, vorticity field, or any other vector field of interest in fluid me-
chanics can be described by its components in orthogonal or nonorthogonal curvilinear coordinates,
as discussed in Sections A.8–A.17, Appendix A. The velocity gradient tensor, or any other Cartesian
tensor, can be represented by its components in a corresponding dyadic base.

1.2.1 Orthogonal curvilinear coordinates

In the case of orthogonal curvilinear coordinates, (α1, α2, α3), with corresponding unit vectors e1, e2,
and e3, the velocity is resolved into corresponding components, u1, u2, and u3, so that

u = u1 e1 + u2 e2 + u3 e3, (1.2.1)

as discussed in Section A.8. The gradient operator takes the form

∇ ≡ e1
1

h1

∂

∂α1
+ e2

1

h2

∂

∂α2
+ e3

1

h3

∂

∂α3
, (1.2.2)

where h1, h2, and h3 are metric coefficients. The velocity gradient admits the dyadic representation

L ≡ ∇u = Lij ei ⊗ ej , (1.2.3)
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y

e

0

x

e
σ

e
x

ϕ
ϕ ϕσ

x

z

Figure 1.2.1 Illustration of cylindrical polar coordinates, (x, σ, ϕ), defined with respect to companion
Cartesian coordinates, (x, y, z).

where summation is implied over the repeated indices, i and j. To prevent misinterpretation, the
curvilinear components of the velocity gradient tensor, Lij , should not be collected into a matrix.

The rate of expansion is the trace of the velocity gradient tensor. We note that the trace of
the matrix ei ⊗ ej is zero if i �= j or unity if i = j, and obtain the expression

∇ · u = L11 + L22 + L33. (1.2.4)

The components of the vorticity are given by

ω1 = L23 − L32, ω2 = L31 − L13, ω3 = L12 − L21. (1.2.5)

Other properties are discussed in Section A.8, Appendix A.

Cylindrical, spherical, and plane polar coordinates discussed in Sections A.9–A.11, Appendix
A, are used extensively in theoretical analysis and engineering applications. Expressions for the
velocity gradient in the corresponding dyadic base are derived in this section.

1.2.2 Cylindrical polar coordinates

Cylindrical polar coordinates, (x, σ, ϕ), are defined in Figure 1.2.1 (see also Section A.9, Appendix
A). Using elementary trigonometry, we derive relations between the polar cylindrical and associated
Cartesian coordinates,

y = σ cosϕ, z = σ sinϕ. (1.2.6)

The inverse relations providing us with the cylindrical polar coordinates in terms of Cartesian
coordinates are

σ =
√

y2 + z2, ϕ = arccos
y

σ
. (1.2.7)
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Velocity gradient

To derive the components of the velocity gradient tensor in cylindrical polar coordinates, we express
the gradient operator and velocity field as

∇ = ex
∂

∂x
+ eσ

∂

∂σ
+ eϕ

1

σ

∂

∂ϕ
, u = uxex + uσeσ + uϕeϕ, (1.2.8)

where ex, eσ, and eϕ are the unit vectors defined in Figure 1.2.1, and ux, uσ, and uϕ are the
corresponding velocity components. The cylindrical polar unit vectors are related to the Cartesian
unit vectors by

eσ = cosϕ ey + sinϕ ez, eϕ = − sinϕ ey + cosϕ ez. (1.2.9)

The inverse relations are

ey = cosϕ eσ − sinϕ eϕ, ez = sinϕ eσ + cosϕ eϕ. (1.2.10)

All derivatives ∂eα/∂β are zero, except for two derivatives,

∂eσ
∂ϕ

= eϕ,
deϕ
dϕ

= −eσ, (1.2.11)

where Greek variables stand for x, σ, or ϕ. Using the representations (1.2.8), we find that

L =
(
ex ⊗ ∂

∂x
+ eσ ⊗ ∂

∂σ
+

1

σ
eϕ ⊗ ∂

∂ϕ

)
(uxex + uσeσ + uϕeϕ). (1.2.12)

Carrying out the differentiation and using (1.2.11), we obtain

L ≡ ∇u = Lαβ eα ⊗ eβ , (1.2.13)

where summation is implied over the repeated indices, α and β. The cylindrical polar components
of the velocity gradient tensor, Lαβ , are given in Table 1.2.1(a).

To generate the matrix eσ ⊗ eϕ, we write eσ =
[
0, cosϕ, sinϕ

]
and eϕ =

[
0,− sinϕ, cosϕ

]
,

and formulate their tensor product,

eσ ⊗ eϕ =

⎡⎣ 0 0 0
0 − cosϕ sinϕ cos2 ϕ
0 − sin2 ϕ cosϕ sinϕ

⎤⎦ . (1.2.14)

The rest of the matrices, eα ⊗ eβ , are formulated in a similar fashion.

Rate of expansion and vorticity

The rate of expansion is the trace of the velocity gradient tensor. Making substitutions, we obtain

∇ · u = Lxx + Lσσ + Lϕϕ =
∂ux

∂x
+

1

σ

∂(σuσ)

∂σ
+

1

σ

∂uϕ

∂ϕ
. (1.2.15)



16 Introduction to Theoretical and Computational Fluid Dynamics

(a)
Lxx =

∂ux

∂x
Lxσ =

∂uσ

∂x
Lxϕ =

∂uϕ

∂x

Lσx =
∂ux

∂σ
Lσσ =

∂uσ

∂σ
Lσϕ =

∂uϕ

∂σ

Lϕx =
1

σ

∂ux

∂ϕ
Lϕσ =

1

σ

∂uσ

∂ϕ
− uϕ

σ
Lϕϕ =

1

σ

∂uϕ

∂ϕ
+

uσ

σ

(b)

Lrr =
∂ur

∂r
Lrθ =

∂uθ

∂r
Lrϕ =

∂uϕ

∂r

Lθr =
1

r

∂ur

∂θ
− uθ

r
Lθθ =

1

r

∂uθ

∂θ
+

ur

r
Lθϕ =

uθ

r

∂uϕ

∂θ

Lϕr =
1

r sin θ

∂ur

∂ϕ
− uϕ

r
Lϕθ =

1

r sin θ

∂uθ

∂ϕ
− cot θ

r
uϕ Lϕϕ =

1

r sin θ

∂uϕ

∂ϕ
+

ur + uθ cot θ

r

(c)

Lrr =
∂ur

∂r
Lrθ =

∂uθ

∂r

Lθr =
1

r

∂ur

∂θ
− uθ

r
Lθθ =

1

r

∂uθ

∂θ
+

ur

r

Table 1.2.1 Components of the velocity gradient tensor in (a) cylindrical, (b) spherical, and (c) plane
polar coordinates.

The cylindrical polar components of the vorticity are

ωx = Lσϕ − Lϕσ =
1

σ

( ∂(σuϕ)

∂σ
− 1

σ

∂uσ

∂ϕ

)
, ωσ = Lϕx − Lxϕ =

1

σ

∂ux

∂ϕ
− ∂uϕ

∂x
,

ωϕ = Lxσ − Lσx =
∂uσ

∂x
− ∂ux

∂σ
. (1.2.16)

If a fluid rotates as a rigid body around the x axis with angular velocity Ω, the velocity components
are ux = 0, uσ = 0, and uϕ = Ωσ, and the only surviving vorticity component is ωx = 2Ω.

1.2.3 Spherical polar coordinates

Spherical polar coordinates, (r, θ, ϕ), are defined in Figure 1.2.2 (see also Section A.10, Appendix A).
Using elementary trigonometry, we derive the following relations between the Cartesian, cylindrical,
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Figure 1.2.2 Illustration of spherical polar coordinates, (r, θ, ϕ), defined with respect to companion
Cartesian coordinates, (x, y, z).

and spherical polar coordinates,

x = r cos θ, σ = r sin θ, (1.2.17)

and

y = σ cosϕ = r sin θ cosϕ, z = σ sinϕ = r sin θ sinϕ. (1.2.18)

The inverse relations are

r =
√

x2 + y2 + z2 =
√
x2 + σ2, θ = arccos

x

r
, ϕ = arccos

y

σ
. (1.2.19)

Velocity gradient

To derive the components of the velocity gradient in spherical polar coordinates, we express the
gradient operator and velocity field as

∇ = ex
∂

∂r
+ ex

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
, u = urer + uθeθ + uϕeϕ, (1.2.20)

where er, eθ, and eϕ are unit vectors defined in Figure 1.2.2, and ur, uθ, and uϕ are the corresponding
velocity components. The Cartesian, spherical, and cylindrical polar unit vectors are related by

er = cos θ ex + sin θ cosϕ ey + sin θ sinϕ ez = cos θ ex + sin θ eσ,

eθ = − sin θ ex + cos θ cosϕ ey + cos θ sinϕ ez = − sin θ ex + cos θ eσ, (1.2.21)

eϕ = − sinϕ ey + cosϕ ez.

All derivatives ∂eα/∂β are zero, except for five derivatives,
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der
dθ

= eθ,
der
dϕ

= sin θ eϕ,
deθ
dθ

− er,
deθ
dϕ

= cos θ eϕ,

deϕ
dϕ

= − cos θ eθ − sin θ er, (1.2.22)

where Greek variables stand for r, θ, or ϕ. Using the representations (1.2.20), we derive the dyadic
expansion

L ≡ ∇u = Lαβ eα ⊗ eβ , (1.2.23)

where summation is implied over the repeated indices, α and β. The spherical components of the
velocity gradient tensor, Lαβ , are given in Table 1.2.1(b). The individual matrices, eα ⊗ eβ , can be
formulated using expressions (1.2.21).

Rate of expansion and vorticity

The rate of expansion is the trace of the velocity gradient tensor,

∇ · u = Lrr + Lθθ + Lϕϕ =
∂ur

∂r
+ 2

ur

r
+

1

r

∂uθ

∂θ
+

uθ

r
cot θ +

1

r sin θ

∂uϕ

∂ϕ
. (1.2.24)

The spherical polar components of the vorticity are

ωr = Lθϕ − Lϕθ =
1

r sin θ

(∂(sin θuϕ)

∂θ
− ∂uθ

∂ϕ

)
, ωθ = Lϕr − Lrϕ =

1

r

( 1

sin θ

∂ur

∂ϕ
− ∂(ruϕ)

∂r

)
,

ωϕ = Lrθ − Lθr =
1

r

(∂(ruθ)

∂r
− ∂ur

∂θ

)
. (1.2.25)

1.2.4 Plane polar coordinates

Plane polar coordinates, (r, θ), are defined in Figure 1.2.3 (see also Section A.11, Appendix A). Using
elementary trigonometry, we derive relations between the plane polar and corresponding Cartesian
coordinates,

x = r cos θ, y = r sin θ, (1.2.26)

and the inverse relations,

r =
√

x2 + y2, θ = arccos
y

r
. (1.2.27)

Velocity gradient

To derive the components of the velocity gradient in plane polar coordinates, we express the gradient
operator and velocity field as

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
, u = urer + uθeθ, (1.2.28)
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Figure 1.2.3 Illustration of plane polar coordinates, (r, θ), defined with respect to companion Carte-
sian coordinates, (x, y).

where er and eθ are unit vectors in the r and θ directions, and ur and uθ are the corresponding
velocity components.

The plane polar unit vectors are related to the Cartesian unit vectors by

er = cos θ ex + sin θ ey, eθ = − sin θ ex + cos θ ey. (1.2.29)

The inverse relations are

ex = cos θ er − sin θ eθ, ey = sin θ er + cos θ eθ. (1.2.30)

All derivatives ∂eα/∂β are zero, except for two derivatives,

∂er
∂θ

= eθ,
deθ
dθ

= −er, (1.2.31)

where Greek variables stand for r or θ. Using the representations (1.2.28), we derive the dyadic
expansion

L ≡ ∇u = Lαβ eα ⊗ eβ , (1.2.32)

where summation is implied over the repeated indices α and β. The plane polar components of the
velocity gradient tensor, Lαβ , are given in Table 1.2.1(c). The individual matrices, eα ⊗ eβ , can be
formulated using expressions (1.2.29).

Rate of expansion and vorticity

The rate of expansion is the trace of the velocity gradient tensor,

∇ · u = Lrr + Lθθ =
1

r

(∂(rur)

∂r
+

∂uθ

∂θ

)
. (1.2.33)

The nonzero component of the vorticity pointing along the z axis is

ωz = Lrθ − Lθr =
1

r

( ∂(ruθ)

∂r
− ∂ur

∂θ

)
. (1.2.34)

For a fluid that rotates as a rigid body around the origin of the xy plane with angular velocity Ω,
ur = 0, uθ = Ωr, and ωz = 2Ω.
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ξ
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ζ

Figure 1.2.4 Illustration of nonorthogonal curvilinear coordinates. The solid lines represent covariant
coordinates, (ξ, η, ζ), and the dashed lines represent the associated contravariant coordinates.

1.2.5 Axisymmetric flow

The velocity of an axisymmetric flow lies in an azimuthal plane of constant azimuthal angle, ϕ,
measured around the axis of revolution. An example is laminar streaming (uniform) flow past a
stationary sphere. Referring to cylindrical or spherical polar coordinates, we set uϕ = 0 and obtain

u = uxex + uσeσ = urer + uθeθ, (1.2.35)

where the velocity components (ux, uσ) and (ur, uθ) depend on (x, σ) in cylindrical polar coordinates
or (r, θ) in spherical polar coordinates, but are independent of the azimuthal angle, ϕ. The vorticity
of an axisymmetric flow points in the azimuthal direction,

ω = ωϕ eϕ. (1.2.36)

The azimuthal vorticity component, ωϕ, depends on (x, σ) or (r, θ), but is independent of ϕ.

1.2.6 Swirling flow

The velocity of a swirling flow points in the azimuthal direction,

u = uϕ eϕ. (1.2.37)

An example of a swirling flow is the laminar flow due to the slow rotation of a sphere in a fluid
of infinite expanse. The azimuthal velocity component, uϕ, depends on (x, σ) in cylindrical polar
coordinates or (r, θ) in spherical polar coordinates, but is independent of the azimuthal angle, ϕ. A
swirling flow can be superposed on an axisymmetric flow. The velocity of an axisymmetric flow in
the presence of swirling motion is independent of the azimuthal angle, ϕ. The vorticity is oriented
in any arbitrary direction.

1.2.7 Nonorthogonal curvilinear coordinates

A system of nonorthogonal curvilinear coordinates, (ξ, η, ζ), is illustrated in Figure 1.2.4. To describe
a flow, we introduce covariant and contravariant base vectors and corresponding coordinates and
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vector components, as discussed in Sections A.12–A.17, Appendix A. The gradient operator and
velocity vector can be expressed in contravariant or covariant component form. Correspondingly,
the velocity gradient tensor can be expressed in its pure contravariant, pure covariant, or mixed
component form, in four combinations.

The physical meaning of these representations stems from the geometrical interpretation of the
covariant and contravariant base vectors, combined with the definition of the directional derivative
of the velocity as the projection from the left of the velocity gradient tensor onto a unit vector
pointing in a desired direction.

Problems

1.2.1 Rigid-body rotation

Compute the velocity gradient tensor, rate-of-deformation tensor, and vorticity of a two-dimensional
flow expressing rigid-body rotation with angular velocity Ω. The plane polar velocity components
are ur = 0 and uθ = Ω r.

1.2.2 Two-dimensional tensor base in plane polar coordinates

Formulate the four dyadic matrices eα ⊗ eβ in plane polar coordinates, where α and β are r or θ.

1.2.3 Components of the velocity gradient tensor

Derive the components of the velocity gradient tensor shown in (a) Table 1.2.1(a), (b) Table 1.2.1(b),
and (c) Table 1.2.1(c).

1.3 Lagrangian labels of point particles

In Section 1.1, we introduced the fluid velocity, u, in terms of the average velocity of the molecules
constituting a fluid parcel, by taking the outer limit as the size of the parcel tends to zero. This
point of view led us to regarding u a field function of position, x, and time, t, writing u(x, t). Now
we compute the ratio between the mass and volume of a parcel and take the outer limit as the size
of the parcel becomes infinitesimal to obtain the fluid density, ρ, as a function of position, x, and
time, t, writing ρ(x, t).

Eulerian framework

We can repeat the process for any appropriate kinematic or intensive thermodynamic variable, f ,
such as a spatial or temporal derivative of the velocity, the kinetic energy, the thermal energy, the
enthalpy, or the entropy per unit mass of a fluid, and thus regard that variable as a function of x
and t, writing

f(x, t). (1.3.1)

This point of view establishes an Eulerian framework for describing the kinematic structure of a flow
and the physical or thermodynamic properties of a fluid.
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Point particles

It is physically appealing and often mathematically convenient to describe the state of a fluid and
structure of a flow in terms of the state and motion of the constituent point particles. As a first
step, we identify the point particles by assigning to each one of them an identification vector, α,
consisting of three dimensional or dimensionless scalar variables called Lagrangian labels that take
values in a subset of an appropriate set of real vectors. In practice, the triplet

α = (α1, α2, α3) (1.3.2)

can be identified with the Cartesian or some other curvilinear coordinates of the point particles at a
specified instant in time. At any instant, the lines of constant α1, α2, and α3 define a right-handed
system of curvilinear coordinates in physical space, as discussed in Sections A.8–A.17, Appendix A.

Lagrangian framework

The value of any kinematic, physical, or intensive thermodynamic variable at a particular location,
x, and at a certain time instant, t, can be regarded as a property of the point particle that happens
to be at that location at that particular instant. Thus, for any appropriate scalar, vector, or matrix
function f that can be attributed to a point particle in a meaningful fashion, we may write

f(x, t) = f [X(α, t), t] = β F(α, t), (1.3.3)

where X(α, t) is the position of the point particle labeled α at time instant t, β is a constant, and
F is an appropriate variable expressing a suitable property of the point particles. Equation (1.3.3)
suggests that, in order to obtain the value of the function f at a point x at time t, we may identify
the point particle located at x at time t, read its label α, measure the variable F , and multiply
the value of F thus obtained by the coefficient β to produce f . Often f and F represent the same
physical variable and their distinction is based solely upon the choice of independent variables used
to describe a flow.

Velocity, vorticity, and velocity gradient

Applying (1.3.3) for the velocity, we obtain

u(x, t) = u(X(α, t), t) = U(α, t). (1.3.4)

In this case, the variable f is the fluid velocity, u, the variable F is the velocity of the point particle
labeled α at time instant t, denoted by U(α, t), and the coefficient β is equal to unity. Equation
(1.3.4) suggests that, to obtain the fluid velocity u at a point x at time t, we may identify the point
particle that resides at x at time t, look up its label, α, and measure its velocity, U.

Applying (1.3.3) for the vorticity, we obtain

ω(x, t) = ω(X(α, t), t) = 2Ω(α, t). (1.3.5)

In this case, the variable f is the vorticity, ω, the variable F is the angular velocity of the point
particle labeled α at time instant t, denoted by Ω(a, t), and the coefficient β is equal to 2.
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Applying (1.3.3) for the velocity gradient tensor, we obtain

Lij(x, t) = Lij

(
X(α, t), t

)
=

∂Uj

∂Xi
(α, t). (1.3.6)

The expression between the two equal signs in (1.3.6) is the velocity gradient at the location of the
point particle labeled α at time t, computed in terms of the relative velocity of neighboring point
particles, where X is the point-particle position. In this case, the coefficient β is equal to unity.

1.3.1 The material derivative

Since the velocity of a point particle is equal to the rate of change of its position, X, we may express
the point-particle velocity as

U(α, t) =
(∂X
∂t

)
α
(α, t). (1.3.7)

The partial derivative with respect to time keeping α constant is known as the substantial, substan-
tive, or material derivative, and is denoted by D/Dt. Accordingly, equation (1.3.7) can be expressed
in the compact form

U(α, t) =
DX

Dt
(α, t). (1.3.8)

In classical mechanics, the material derivative, D/Dt, is identical to the time derivative of a body
or particle, d/dt, as discussed in Section 1.5.

Chain rule

We have at our disposal two sets of independent variables that can be used to describe a flow,
including the Eulerian set, (x, t), and the Lagrangian set, (α, t). A relationship between the partial
derivatives of a function f with respect to these two sets can be established by applying the chain
rule, obtaining

Df

Dt
=
(∂f(X(α, t), t)

∂t

)
α

=
(∂f
∂t

)
x
+
( ∂f

∂xi

)
t

DXi

Dt
. (1.3.9)

For simplicity, we drop the parentheses around the Eulerian partial derivatives on the right-hand
side and use (1.3.8) and (1.3.4) to obtain

Df

Dt
=

∂f

∂t
+ ui

∂f

∂xi
=

∂f

∂t
+ u · ∇f, (1.3.10)

which relates the material derivative to temporal and spatial derivatives with respect to Eulerian
variables. Summation is implied over the repeated index i in the central expression.

If all point particles retain their value of f as they move about the domain of a flow, the
material derivative vanishes, Df/Dt = 0, and we say that the field represented by f is convected by
the flow.
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Convective derivative

The term u · ∇f in (1.3.10) can be written as |u| ∂f/∂lu, where ∂f/∂lu is the rate of change of
f with respect to arc length measured in the direction of the velocity, lu. If the field f is steady,
∂f/∂t = 0, and if the point point particles retain their value of f as they move in the domain of
flow, Df/Dt = 0, then ∂f/∂lu must be zero. In that case, the value of f does not change in the
direction of the velocity and is therefore constant along paths traveled by point particles, identified
as streamlines. However, the value of f is generally different along different streamlines.

1.3.2 Point-particle acceleration

Applying (1.3.10) for the velocity, we derive an expression for the acceleration of a point particle in
the Eulerian form

aj ≡
Duj

Dt
=

∂uj

∂t
+ ui

∂uj

∂xi
, (1.3.11)

where summation is implied over the repeated index, i. In vector notation,

a ≡ Du

Dt
=

∂u

∂t
+ u · ∇u =

∂u

∂t
+ u · L, (1.3.12)

where L is the velocity gradient tensor. Explicitly, the components of the point-particle acceleration
are given in Table 1.3.1(a). If a point particle neither accelerates nor decelerates as it moves about
the domain of a flow, then Du/Dt = 0.

The velocity distribution in a fluid that rotates steadily as a rigid body around the origin with
angular velocity Ω is u = Ω×x, and the associated vorticity is ω = 2Ω. Setting ∂u/∂t = 0, noting
that the velocity gradient tensor is equal to the vorticity tensor, Ξ, and using (1.1.18), we obtain
the jth component of the acceleration,

aj = ui Ξij =
1

2
uiεijk ωk = εjkiΩkui, (1.3.13)

which shows that

a = Ω× u = Ω× (Ω× x). (1.3.14)

Invoking the geometrical interpretation of the cross product, we find that the acceleration points
toward the axis of rotation and its magnitude is proportional to the distance from the axis of rotation.

Cylindrical polar coordinates

To derive the components of the point-particle acceleration in cylindrical polar coordinates, we
express the velocity in these coordinates and the velocity gradient tensor in the dyadic form shown
in (1.2.13). Formulating the product u · L, we derive the expressions shown in Table 1.3.1(b).
Alternative forms in terms of the material derivative of the cylindrical polar velocity components
are

ax =
∂ux

∂t
+ u · ∇ux =

Dux

Dt
, aσ =

∂uσ

∂t
+ u · ∇uσ −

u2
ϕ

σ
=

Duσ

Dt
−

u2
ϕ

σ
,

aϕ =
∂uϕ

∂t
+ u · ∇uϕ +

uσuϕ

σ
=

Duϕ

Dt
+

uσuϕ

σ
. (1.3.15)
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(a)

ax ≡ Dux

Dt
=

∂ux

∂t
+ u · ∇ux =

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

ay ≡ Duy

Dt
=

∂uy

∂t
+ u · ∇uy =

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

az ≡ Duz

Dt
=

∂uz

∂t
+ u · ∇uz =

∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

(b)

ax =
∂ux

∂t
+ ux

∂ux

∂x
+ uσ

∂ux

∂σ
+

uϕ

σ

∂ux

∂ϕ

aσ =
∂uσ

∂t
+ ux

∂uσ

∂x
+ uσ

∂uσ

∂σ
+

uϕ

σ

∂uσ

∂ϕ
−

u2
ϕ

σ

aϕ =
∂uϕ

∂t
+ ux

∂uϕ

∂x
+ uσ

∂uϕ

∂σ
+

uϕ

σ

∂uϕ

∂ϕ
+

uσuϕ

σ

(c)

ar =
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+

uϕ

r sin θ

∂ur

∂ϕ
−

u2
θ + u2

ϕ

r

aθ =
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uϕ

r sin θ

∂uθ

∂ϕ
+

uruθ

r
− cot θ

r
u2
ϕ

aϕ =
∂uϕ

∂t
+ ur

∂uϕ

∂r
+

uθ

r

∂uϕ

∂θ
+

uϕ

r sin θ

∂uϕ

∂ϕ
+

uϕ

r

(
ur + uθ cot θ

)
(d)

ar =
∂ur

∂t
+ ur

∂ur

∂θ
+

uθ

r

∂ur

∂θ
− u2

θ

r

aθ =
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uruθ

r

Table 1.3.1 Components of the point-particle acceleration in (a) Cartesian, (b) cylindrical polar, (c)
spherical polar, and (d) plane polar coordinates.



26 Introduction to Theoretical and Computational Fluid Dynamics

These expressions illustrate that the cylindrical polar components of the acceleration are not simply
equal to the material derivative of the corresponding polar components of the velocity. In the case
of a fluid that rotates steadily as a rigid body around the x axis with angular velocity Ω, so that
ux = 0, uσ = 0, and uϕ = Ωσ, we find that ax = 0, aσ = −u2

ϕ/σ, and aϕ = 0. These expressions are
consistent with the corresponding Cartesian form (1.3.14).

Spherical polar coordinates

Working as in the case of cylindrical polar coordinates, we derive the spherical polar components of
the point-particle acceleration shown in Table 1.3.1(c). Alternative forms in terms of the material
derivative of the spherical polar velocity components are

ar =
Dur

Dt
−

u2
θ + u2

ϕ

r
, aθ =

Duθ

Dt
+

uruθ

r
− cot θ

r
u2
ϕ,

aϕ =
Duϕ

Dt
+

uϕ

r

(
ur + uθ cot θ

)
. (1.3.16)

We observe that the spherical polar components of the acceleration are not simply equal to the
material derivative of the corresponding polar components of the velocity.

Plane polar coordinates

Working as in the case of cylindrical polar coordinates, we derive the plane polar components of
the point-particle acceleration shown in Table 1.3.1(d). Alternative forms in terms of the material
derivative of the plane polar velocity components are

ar =
Dur

Dt
− u2

θ

r
, aθ =

Duθ

Dt
+

uruθ

r
. (1.3.17)

We observe once again that the plane polar components of the acceleration are not simply equal to
the material derivative of the corresponding polar components of the velocity.

1.3.3 Lagrangian mapping

We have regarded a fluid as a particulate medium consisting of an infinite collection of point particles
identified by a vector label, α. The instantaneous position of a point particle, X, is a function of α
and time, t. This functional dependence can be formalized in terms of a generally time-dependent
mapping of the Cartesian labeling space of α to the physical space, α → X, written in the symbolic
form

X(t) = Ct(α), (1.3.18)

as illustrated in Figure 1.3.1. The subscript t emphasizes that the mapping function Ct may change
in time. Some authors unfortunately call the mapping function Ct(α) a motion. We will assume
that Ct is a differentiable function of the three scalar components of α.

It is important to realize that Ct is time-dependent even when the velocity field is steady,
and is constant only if a point particle labeled α is stationary. If we identify the label α with the
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α

α

x

x

1

1

X

α3 x3

22

Figure 1.3.1 Lagrangian mapping of the parametric space, α, to the physical space, x. The position
of a point particle in physical space is denoted by X.

Cartesian coordinates of the point particles at the origin of time, t = 0, then α = X(t = 0) and
C0(α) = X(t = 0).

Lagrange Jacobian tensor

A differential vector in labeling space, dα, is related to a differential vector in physical space, dX,
by the equation

dX = dα ·J = J T · dα, (1.3.19)

where the superscript T denotes the matrix transpose. We have introduced the Jacobian matrix of
the mapping function, Ct, with elements

Jij =
∂Ctj
∂αi

. (1.3.20)

In index notation, equation (1.3.19) takes the from

dXi = αjJji = J T
ij dαj , (1.3.21)

where summation is implied over the repeated index, j. Explicitly,

J ≡ ∇̃X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂X1

∂α1

∂X2

∂α1

∂X3

∂α1

∂X1

∂α2

∂X2

∂α2

∂X3

∂α2

∂X1

∂α3

∂X2

∂α3

∂X3

∂α3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1.3.22)

where ∇̃ = (∂/∂α1, ∂/∂α2, ∂/∂α3) is the gradient in the labeling space. For convenience, we have
defined X1 ≡ X, X2 ≡ Y , and X3 ≡ Z. By definition, the components of the Lagrange Jacobian
tensor satisfy the relations

∂Jij

∂αk
=

∂Jkj

∂αi
(1.3.23)
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for any i, j, and k. When these conditions are fulfilled, the Lagrangian field X(α) can be constructed
up to an arbitrary constant by integrating the differential equations (1.3.20).

Lagrangian metric

The differential vector (dα1, 0, 0) in labeling space is mapped to the following differential vector in
physical space,

dX(1) =
∂Ct

∂α1
dα1. (1.3.24)

Similar equations can be written for dX(2) and dX(3),

dX(2) =
∂Ct

∂α2
dα2, dX(3) =

∂Ct

∂α3
dα3. (1.3.25)

The three vectors, dX(1), dX(2), and dX(3), are not necessarily orthogonal.

A differential volume in labeling space, dV (α), is mapped to a corresponding differential
volume in physical space, dV (X). To derive a relationship between the magnitudes of these two
volumes, we formulate the triple mixed product defining the volume,

( dX(1) × dX(2) ) · dX(3) =
(∂Ct

∂α1
× ∂Ct

∂α2

)
· ∂Ct

∂α3
( dα1 dα2 dα3). (1.3.26)

Now we assume that dX(i) are arranged according to the right-handed rule, identify the left-hand
side with dV (X), and set dα1 dα2 dα3 = dV (α) to obtain

dV (X) = J dV (α), (1.3.27)

where

J ≡ (
∂Ct

∂α1
× ∂Ct

∂α2
) · ∂Ct

∂α3
= det(J ) = det(J T ) (1.3.28)

is the Lagrange metric. Equation (1.3.27) identifies the determinant, J , with the ratio of two
corresponding infinitesimal volumes in physical and labeling space. For simplicity, we will denote
dV (X) as dV .

Dyadic expansion

Let ẽi be Cartesian unit vectors in the labeling space, α, and ei be Cartesian unit vectors in physical
space, x, for i = 1, 2, 3. The Lagrange Jacobian tensor admits the bichromatic dyadic expansion

J = Jij ẽi ⊗ ej , (1.3.29)

where summation is implied over the repeated indices, i and j. Working as in Section 1.2 for the
velocity gradient, we may expand the Lagrange Jacobian tensor in a different base comprised of
Cartesian or curvilinear base vectors denoted by Greek indices,

J = Jαβ ẽβ ⊗ eγ . (1.3.30)

For example, ẽβ can be cylindrical polar unit vectors in labeling space and eβ can be spherical polar
unit vectors in physical space.
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1.3.4 Deformation gradient

In the special case where the vector label α is identified with the Cartesian coordinates of a point
particle at a specified time, we set ẽi = ei and obtain the monochromatic dyadic expansion

J = Jij ei ⊗ ej = Jαβ eβ ⊗ eγ , (1.3.31)

where summation is implied over the repeated indices, i and j corresponding to Cartesian coordi-
nates, as well as over the repeated indices β and γ corresponding to general curvilinear coordinates.
In this case, the transpose of the Lagrange Jacobian tensor is called the deformation gradient. It
can be shown that the relative deformation gradient obeys transformation rules that render it a
second-order Cartesian tensor (e.g., [365]). A distinguishing feature of the deformation gradient is
that it is dimensionless.

Relative deformation gradient

Let us identify α with the Cartesian coordinates of a point particle at an early time, t, and denote
the corresponding coordinates of the point particles at the current time τ by ξ, so that ξ = Cτ (α).
Having made this choice, we recast equation (1.3.19) into the form

dξ = Ft(τ) · dα, (1.3.32)

where Ft(τ) is the relative deformation gradient, also simply called the deformation gradient and
denoted by F, with components

Fij =
∂ξi
∂αj

. (1.3.33)

Rearranging (1.3.32) for an invertible deformation gradient, we obtain

dα = F−1 · dξ. (1.3.34)

It is sometimes useful to introduce the displacement field, v ≡ ξ−α. Solving for ξ and substituting
the result into (1.3.33), we obtain

Fij = δij +Dij , (1.3.35)

where δij is Kronecker’s delta and

Dij ≡
∂vi
∂αj

(1.3.36)

is the displacement gradient tensor.

Notation in solid and continuum mechanics

In solid and continuum mechanics, equation (1.3.32) holds true, subject to two changes in notation:
ξ → x, and α → X. Thus, by convention, in the theory of deformable solids, X represents the
Cartesian coordinates of a particle in a reference state and x are the corresponding coordinates in
the current state. Different notation is employed in different texts.
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Polar decomposition

The polar decomposition theorem guarantees that the deformation gradient tensor can be resolved
into the product of an orthogonal tensor representing rotation, R, and a symmetric and positive-
definite tensor representing deformation, U or V, so that

F = R ·U = V ·R, (1.3.37)

where U is the right stretch tensor and V is the left stretch tensor. A small material vector dα
deforms under the action of U and then rotates under the action of R, or rotates under the action
of R and then deforms under the action of U. A practical way of carrying out the decomposition is
suggested by the forthcoming equations (1.3.39) and (1.3.48).

Right Green–Lagrange strain tensor

Using (1.3.32), we find that the square of the length of a material vector, dξ, corresponding to dα,
is given by

|dξ|2 = dξ · dξ = (F · dα) · (F · dα) = dα · (FT · F) · dα, (1.3.38)

where the superscript T denotes the matrix transpose. This expression motivates introducing the
right Cauchy–Green strain tensor, C, defined in terms of the deformation gradient as

C = FT · F = U2. (1.3.39)

By definition,

|dξ|2 = dα ·C · dα. (1.3.40)

In terms of the displacement gradient tensor,

C = I+D +DT +DT ·D. (1.3.41)

The last quadratic term can be neglected in the case of small (linear) deformation.

Because C is symmetric and positive definite, it has three real and positive eigenvalues and
three corresponding orthogonal eigenvectors (Problem 1.3.6). If dφj is the jth eigenvector of C with
corresponding eigenvalue s2j , then

|dξj | = sj |dφj |, (1.3.42)

where dξj is the image of the eigenvector and sj is the stretch ratio, for j = 1, 2, 3.

The right Green–Lagrange strain tensor is defined as

E ≡ 1

2
(C− I) = ε+

1

2
DT ·D, (1.3.43)

where

ε ≡ 1

2

(
D +DT

)
(1.3.44)
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is the infinitesimal strain tensor. Substituting into (1.3.40) the expression

C = I+ 2E (1.3.45)

and rearranging, we obtain

|dξ|2 − |dα|2 = 2dα · E · dα. (1.3.46)

We see that the right Green–Lagrange strain tensor determines the change in the squared length of
a material vector due to deformation.

Left Green–Lagrange strain tensor

Using (1.3.34) and working in a similar fashion, we obtain

|dα|2 = dα · dα = (F−1 · dξ) · (F−1 · dξ) = dξ · (F · FT )−1 · dξ. (1.3.47)

This expression motivates introducing the left Cauchy–Green strain tensor

B ≡ F · FT = V2. (1.3.48)

By definition,

|dα|2 = dξ ·B−1 · dξ. (1.3.49)

In terms of the displacement gradient tensor,

B = I+D +DT +D ·DT . (1.3.50)

The last quadratic term can be neglected in the case of small (linear) deformation.

Because B is symmetric and positive definite, it has three real and positive eigenvalues and
three corresponding orthogonal eigenvectors (Problem 1.3.6). The eigenvalues of B are the same as
those of C, but the corresponding eigenvectors are generally different. If dφj is the jth eigenvector
of C corresponding to the eigenvalue s2j , then

dψj = (FT )−1 · dφj (1.3.51)

is an eigenvector of B corresponding to the same eigenvalue. Applying equation (1.3.49), we obtain

|dαj| =
1

sj
|dψj| (1.3.52)

for j = 1, 2, 3, where sj is the stretch ratio.

Constitutive equations

The Cauchy–Green strain tensors find important applications in developing constitutive equations
that relate the stresses developing in a fluid to the deformation of fluid parcels, as discussed in
Section 3.3.
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Problems

1.3.1 Lagrangian labeling

Discuss whether it is possible to label all constituent point particles of a three-dimensional parcel
using a single scalar variable, or even two scalar variables.

1.3.2 Material derivative of the acceleration

Derive an expression for the material derivative of the point-particle acceleration, Da/Dt, in Carte-
sian coordinates in terms of derivatives of the velocity with respect to Eulerian variables.

1.3.3 Flow due to the motion of a rigid body

Consider the flow due to the steady motion of a rigid body translating with velocity V and rotating
about a point x0 with angular velocity Ω in an otherwise quiescent fluid of infinite expanse. In a
frame of reference moving with the body, the flow is steady. Explain why the velocity field must
satisfy the equation

∂u

∂t
= −

[
V +Ω× (x− x0)

]
· ∇u. (1.3.53)

Does this equation also apply for a semi-infinite domain of flow bounded by an infinite plane wall?

1.3.4 Temperature recording of a moving probe

A temperature probe is moving with velocity v(t) in a temperature field, T (x, t). Develop an
expression for the rate of the change of the temperature recorded by the probe in terms of T (x, t)
and v(t).

1.3.5 Relative deformation gradient

(a) Explain why F(t)(t) = I, where I is identity matrix.

(b) If a fluid is incompressible, the volume of all fluid parcels remains constant in time, as discussed
in Section 1.5.4. Show that, for an incompressible fluid, det(F(t)(τ)) = 1.

(c) A fluid is undergoing simple shear flow along the x with velocity ux = ξy, uy = 0, uz = 0, where
ξ is a constant shear rate with dimensionless of inverse time. Compute the relative deformation
gradient.

1.3.6 Cauchy–Green strain tensors

Show that the tensors B and C are symmetric and positive definite. A tensor, A, is positive definite
if x ·A · x > 0 for any vector with appropriate length, x.

1.4 Properties of fluid parcels and mass conservation

We have seen that a fluid parcel can be identified by labeling its constituent point particles using a
Lagrangian vector field, α, that takes values inside a subset of a three-dimensional labeling space,
A. Using (1.3.27), we find that the parcel volume is

Vp =

∫∫∫
Parcel

dV =

∫∫∫
A

J dV (α), (1.4.1)
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(a) (b)

Sd

dtnu

n

n

u

Figure 1.4.1 (a) Illustration of a convected fluid parcel or stationary control volume in a flow. Point
particles over an infinitesimal patch of a material surface, dS, move during a small period of time,
dt, spanning a cylindrical volume, dV = undt dS, where un is the normal velocity. The dashed
line outlines the new parcel shape. (b) The surface integral

∫∫
u · n dS is the rate of change of

the parcel volume. In contrast, the surface integral
∫∫

ρu · n dS is the rate of convective mass
transport outward from a control volume.

where dV (α) is an infinitesimal volume in labeling space. The second integral shows that J plays
the role of a volume density distribution function.

1.4.1 Rate of change of parcel volume and Euler’s theorem in kinematics

Differentiating (1.4.1) with respect to time and noting that the domain of integration in labeling
space is fixed, we find that the rate of change of volume of the parcel is given by

dVp

dt
=

d

dt

∫∫∫
Parcel

dV =

∫∫∫
A

DJ
Dt

dV (α). (1.4.2)

Note that a time derivative of an integral with respect to α over a fixed integration domain, A, is
transferred as a material derivative inside the integral.

Since point particles move with the fluid velocity and the parcel shape changes only because
of normal motion across the instantaneous parcel configuration, we may also write

dVp

dt
=

∫∫
Parcel

u · n dS, (1.4.3)

where n is the unit normal vector pointing outward from the parcel and dS is a differential surface
area, as illustrated in Figure 1.4.1. Both sides of (1.4.3) have units of length cubed divided by time.
The thin closed line in Figure 1.4.1(a) describes the boundary of a fluid parcel at a certain time, and
the bold closed line describes the boundary after time dt. The volume between the two boundaries
is the change in the parcel volume after time dt. Further justification for (1.4.3) will be given in
Section 1.10.

Using the divergence theorem to convert the surface to a volume integral, and introducing the
rate of expansion, α ≡ ∇ · u, we obtain from (1.4.3)

dVp

dt
=

∫∫∫
Parcel

α dV =

∫∫∫
A

αJ dV (α). (1.4.4)
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Comparing (1.4.2) with (1.4.4) and noting that the subset A is arbitrary to eliminate the integral
signs, we obtain Euler’s theorem of kinematics stating that

1

J
DJ
Dt

= α. (1.4.5)

We have found that the rate of change of the Jacobian, J , following a point particle is proportional
to the rate of expansion of the fluid.

A formal but more tedious method of deriving (1.4.5) involves taking the material derivative
of the determinant of the Jacobian matrix stated in (1.3.22), finding

DJ
Dt

=
D

Dt
det

(
⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂X1

∂α1

∂X2

∂α1

∂X3

∂α1

∂X1

∂α2

∂X2

∂α2

∂X3

∂α2

∂X1

∂α3

∂X2

∂α3

∂X3

∂α3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
)
= J1 + J2 + J3, (1.4.6)

where

J1 = det
(
⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂U1

∂α1

∂X2

∂α1

∂X3

∂α1

∂U1

∂α2

∂X2

∂α2

∂X3

∂α2

∂U1

∂α3

∂X2

∂α3

∂X3

∂α3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
)
= det

(
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂U1

∂Xj

∂Xj

∂α1

∂X2

∂α1

∂X3

∂α1

∂U1

∂Xj

∂Xj

∂α2

∂X2

∂α2

∂X3

∂α2

∂U1

∂Xj

∂Xj

∂α3

∂X2

∂α3

∂X3

∂α3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
)
=

∂U1

∂X1
J . (1.4.7)

The determinants J2 and J3 are computed in a similar fashion. The corresponding matrices arise
from J by replacing X2 with U2 in the second column or X3 with U3 in the third column. The
results are then added to produce (1.4.5).

Expressing the material derivative in (1.4.5) in terms of Eulerian derivatives, we find that

∂J
∂t

+∇ · (Ju) = 2αJ , (1.4.8)

which can be regarded as a transport equation for J .

1.4.2 Reynolds transport theorem

The rate of change of a general scalar, vector, or tensor property field, P, integrated over the volume
of a fluid parcel is

d

dt

∫∫∫
Parcel

P dV =
d

dt

∫∫∫
A

PJ dV (α) =

∫∫∫
A

D(PJ )

Dt
dV (α). (1.4.9)
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For example, P can be identified with the density or specific thermal energy of the fluid. To derive
the last expression in (1.4.9), we have observed once again that the volume of integration in labeling
space is independent of time.

Expanding the derivative inside the last integral and using (1.4.5), we find that

d

dt

∫∫∫
Parcel

P dV =

∫∫∫
Parcel

( DP
Dt

+ P ∇ · u
)
dV. (1.4.10)

Expressing the material derivative inside the integrand in terms of Eulerian derivatives and rear-
ranging, we obtain

d

dt

∫∫∫
Parcel

P dV =

∫∫∫
Parcel

[ ∂P
∂t

+∇ · (Pu)
]
dV. (1.4.11)

Finally, we apply the divergence theorem to the second term inside the last integral and derive the
mathematical statement of the Reynolds transport theorem,

d

dt

∫∫∫
Parcel

P dV =

∫∫∫
Parcel

∂P
∂t

dV +

∫∫
Parcel

P u · n dS, (1.4.12)

where n is the normal unit vector pointing outward from the parcel and the last integral is computed
over the parcel surface. Applying (1.4.12) with P set to a constant, we recover (1.4.3).

Balance of a transported field over a control volume

The volume integral on the right-hand side of (1.4.12) expresses the rate of accumulation of the
physical or mathematical entity represented by P inside a fixed control volume that coincides with
the instantaneous parcel shape. The surface integral on the right-hand side of (1.4.12),

∫∫
Pu ·ndS,

expresses the rate of convective transport of the entity P outward from the control volume. For
example, the integral

∫∫
ρu·ndS, represents the convective transport of mass outward from a control

volume, where ρ is the fluid density. It is interesting to contrast this interpretation with our earlier
discovery that the surface integral

∫∫
u ·ndS represents the rate of change of volume of a fluid whose

instantaneous boundary defines a control volume.

The left-hand side of (1.4.12) expresses the rate of accumulation of P inside the parcel due,
for example, to diffusion across the parcel surface. Introducing a corresponding physical law, such
as Fick’s law of diffusion or Newton’s second law of motion, transforms (1.4.12) into a transport
equation expressing a balance over a fixed control volume. This interpretation is the cornerstone of
transport phenomena (e.g., [36]).

1.4.3 Mass conservation and the continuity equation

In terms of the fluid density, ρ, the mass of a fluid parcel is given by

mp =

∫∫∫
Parcel

ρ(X, t) dV (X) =

∫∫∫
A

ρ(α, t)J dV (α), (1.4.13)

where X is the point-particle position, Applying (1.4.9) and (1.4.11) with P = ρ and requiring
that mass neither disappears nor is produced in the flow–which is tantamount to stipulating that



36 Introduction to Theoretical and Computational Fluid Dynamics

fluid parcels retain their mass as they move about the domain of flow–we set dmp/dt = 0 and
require that the integrands are identically zero. The result is the continuity equation expressing
mass conservation for a compressible or incompressible fluid,

D

Dt

(
ρdV (X)

)
= 0,

D

Dt

(
ρJ

)
= 0,

Dρ

Dt
+ ρ∇ · u = 0,

∂ρ

∂t
+∇ · (ρu) = 0. (1.4.14)

Mass conservation imposes a kinematic constraint, demanding that the structure of the velocity field
be such that fluid parcels do not tend to occupy the same volume in space, leaving behind empty
holes.

Integral mass balance

Now we apply the Reynolds transport theorem (1.4.12) with P = ρ and set the left-hand side to
zero to obtain an integral statement of the continuity equation in Eulerian integral form,∫∫∫

Vc

∂ρ

∂t
dV = −

∫∫
Bc

ρu · n dS, (1.4.15)

where Vc is a fixed control volume that coincides with the instantaneous volume of a fluid parcel, and
Bc is the boundary of the control volume. Equation (1.4.15) states that the rate of accumulation
of mass inside a stationary control volume is equal to the rate of mass transport into the control
volume through the boundaries.

Equation (1.4.15) can be produced by integrating the last equation in (1.4.14) over the control
volume and using the divergence theorem to obtain a surface integral. Working similarly with (1.4.8),
we obtain ∫∫∫

Vc

∂J
∂t

dV = −
∫∫

Bc

J u · n dS + 2

∫∫∫
Vc

αJ dV, (1.4.16)

which can be regarded as a transport equation for J in Eulerian integral form, where α ≡ ∇ · u is
the rate of expansion.

1.4.4 Incompressible fluids and solenoidal velocity fields

Since point particles of an incompressible fluid retain their initial density as they move in the domain
of flow, the material derivative of the density is zero,

Dρ

Dt
= 0. (1.4.17)

The continuity equation (1.4.14) simplifies into

∇ · u ≡ ∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0. (1.4.18)

A vector field with vanishing divergence, satisfying (1.4.18), is called solenoidal. According to our
discussion in Section 1.1, fluid parcels of an incompressible fluid translate, rotate, and deform while
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retaining their volume. The terms incompressible fluid, incompressible flow, and incompressible
velocity field are sometimes used interchangeably. However, strictly speaking, compressibility is
neither a kinematic property of the flow nor a structural property of the velocity field, but rather a
physical property of the fluid. Combining (1.4.18) with (1.4.5), we find that

DJ
Dt

= 0, (1.4.19)

which states that the Jacobian is convected with the flow. The mapping function Ct introduced
in (1.3.18) is then called isochoric, from the Greek word ισoς, which means “equal,” and the word
χωρoς, which means “space.”

Following are three examples of solenoidal velocity fields describing the motion of an incom-
pressible fluid:

1. Since the divergence of the curl of any continuous vector field is identically zero, a velocity field
that derives from a differentiable vector field, A, as u = ∇×A is solenoidal. The function A

is called the vector potential, as discussed in Section 2.6.

2. Consider a velocity field that derives from the cross product of two arbitrary vector fields, A
and B, as u = A×B. Straightforward differentiation shows that ∇·u = B ·∇×A−A ·∇×B.
We observe that, if A and B are both irrotational, u will be solenoidal. Since any irrotational
vector field can be expressed as the gradient of a scalar function, as discussed in Section 2.1,
the velocity field u = ∇ψ ×∇χ is solenoidal for any pair of differentiable functions, ψ and χ.

3. Consider a velocity field that derives from the gradient of a scalar function, φ, called the
potential function, u = ∇φ. This velocity field is solenoidal, provided that φ satisfies Laplace’s
equation, ∇2φ = 0. In that case, φ is called a harmonic potential.

Polar coordinates

In cylindrical polar coordinates, (x, σ, ϕ), the continuity equation for an incompressible fluid takes
the form

∇ · u =
∂ux

∂x
+

1

σ

∂(σuσ)

∂σ
+

1

σ

∂uϕ

∂ϕ
= 0. (1.4.20)

In spherical polar coordinates, (r, θ, ϕ), the continuity equation for an incompressible fluid takes the
form

∇ · u =
∂ur

∂r
+ 2

ur

r
+

1

r

∂uθ

∂θ
+

uθ

r
cot θ +

1

r sin θ

∂uϕ

∂ϕ
= 0. (1.4.21)

In plane polar coordinates, (r, θ), the continuity equation for an incompressible fluid takes the form

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
= 0. (1.4.22)

Expressions for the divergence of the velocity in more general orthogonal or nonorthogonal coordi-
nates are given in Sections A.8–A.17, Appendix A.
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Kinematic reciprocity of incompressible flows

Let u and u′ be two unrelated solenoidal velocity fields, ∇ · u = 0 and ∇ · u′ = 0. Assuming that
neither velocity field contains singular points and using (1.4.18), we derive the identity

∂

∂xj

(
u′
i

∂uj

∂xi
− ui

∂u′
j

∂xi

)
= 0. (1.4.23)

Integrating (1.4.23) over an arbitrary control volume that is bounded by a surface, D, and using the
divergence theorem, we obtain∫∫

D

(
u′
i

∂uj

∂xi
− ui

∂u′
j

∂xi

)
nj dS = 0, (1.4.24)

where n is the unit vector normal to D. Equation (1.4.24) places an integral constraint on the
mutual structure of any two incompressible flows over a common surface.

1.4.5 Rate of change of parcel properties

We turn to discussing the computation of the rate of change of an extensive kinematic, physical,
or thermodynamic variable of a generally compressible fluid parcel. By definition, an extensive
variable is proportional to the parcel’s volume. For each extensive variable, there is a corresponding
intensive variable so that when the latter is multiplied by the parcel volume and perhaps by a
physical constant, it produces the extensive variable.

Pairs of extensive–intensive variables include momentum and velocity, thermal energy and
temperature, kinetic energy and square of the magnitude of the velocity. In developing dynamical
laws governing the behavior of fluid parcels, it is useful to have expressions for the rate of change
of an extensive variable in terms of the rate of change of the corresponding intensive variable. Such
expressions can be derived using the continuity equation (1.4.14).

Momentum

An important extensive variable is the linear momentum of a fluid parcel, defined as

Mp ≡
∫∫∫

Parcel

ρ(X, t)U(X, t) dV (X) =

∫∫∫
A

ρ(α, t)U(α, t)J dV (α). (1.4.25)

Using the continuity equation (1.4.14), we express the rate of the change of the linear momentum
in terms of the acceleration of the point particles as

dMp

dt
=

∫∫∫
A

(DU

Dt
ρ(α, t)J +U(α, t)

D(ρJ)

Dt

)
dV (α), (1.4.26)

and obtain

dMp

dt
=

∫∫∫
Parcel

ρ
DU

Dt
dV (X). (1.4.27)

Equation (1.4.27) is true for incompressible as well as compressible fluids.
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Angular momentum

The angular momentum of a fluid parcel computed with respect to the origin is

Ap ≡
∫∫∫

Parcel

ρ(X, t)
[
X×U(X, t)

]
dV (X) =

∫∫∫
A

ρ(α, t)
[
X×U(α, t)

]
J dV (α). (1.4.28)

Working as in the case of the linear momentum and recalling that DX/Dt = U, we find that

dAp

dt
=

∫∫∫
Parcel

ρ
D(X×U)

Dt
dV (X), (1.4.29)

and then

dAp

dt
=

∫∫∫
Parcel

ρX× DU

Dt
dV (X), (1.4.30)

for compressible or incompressible fluids.

Generalization

For an arbitrary scalar, vector, or tensor intensive field, F , we find that

d

dt

∫∫∫
Parcel

Fρ dV =
d

dt

∫∫∫
A

FρJ dV (α), (1.4.31)

yielding

d

dt

∫∫∫
Parcel

Fρ dV =

∫∫∫
Parcel

ρ
DF
Dt

dV, (1.4.32)

for compressible or incompressible fluids. Equation (1.4.27) emerges by setting F = U.

Problems

1.4.1 Rate of change of an extensive variable

Derive the right-hand sides of (1.4.30) and (1.4.32).

1.4.2 Vector potential

Show that the vector potentials A and A + ∇f generate the same flow, where A and f are two
arbitrary functions. Is this an incompressible flow?

1.4.3 Reynolds transport theorem

Show that (1.4.30) is consistent with (1.4.12).

1.5 Point-particle motion

In classical mechanics, a traveling point particle is identified by its Cartesian coordinates,

x = X(t), y = Y (t), z = Z(t). (1.5.1)
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The position of the point particle is

X = X(t) ex + Y (t) ey + Z(t) ez, (1.5.2)

where ex, ey, and ez are Cartesian unit vectors.

Velocity

By definition, the velocity of a point particle, U, is equal to the rate of change of its position in
space. If the x coordinate of a point particle has changed by an infinitesimal displacement, dX, over
an infinitesimal time period, dt, then, by definition, Ux = dX/dt. Writing the counterparts of this
equation for the y and z coordinates, we obtain

Ux =
dX

dt
, Uy =

dY

dt
, Uz =

dZ

dt
. (1.5.3)

In vector notation,

U =
dX

dt
= Ux ex + Uy ey + Uz ez. (1.5.4)

In the present context of isolated point-particle motion, the total derivative, d/dt, is the same as
the material derivative, D/Dt.

Acceleration

The acceleration vector, a, is defined as the rate of change of the velocity,

a = ax ex + ay ey + az ez =
dU

dt
=

d2X

dt2
. (1.5.5)

Accordingly, the Cartesian components of the point-particle acceleration are

ax =
d2X

dt2
, ay =

d2Y

dt2
, az =

d2Z

dt2
. (1.5.6)

If the Cartesian coordinates of a point-particle are constant or change linearly in time, the acceler-
ation is zero.

1.5.1 Cylindrical polar coordinates

The cylindrical polar coordinates of a point particle are determined by the functions

x = X(t), σ = Σ(t), ϕ = Φ(t). (1.5.7)

The position of a point particle is given by

X = X(t) ex +Σ(t) eσ, (1.5.8)

where eα are cylindrical polar unit vectors for α = x, σ, ϕ. The rates of change of the cylindrical
polar unit vectors following the motion of a point particle are given by the relations

dex
dt

= 0,
deσ
dt

=
dΦ

dt
eϕ,

deϕ
dt

= −dΦ

dt
eσ. (1.5.9)
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Note that the first unit vector, ex, is fixed, while the second and third unit vectors, eσ and eϕ,
change with position in space.

Velocity

Taking the time derivative of (1.5.8) and using relations (1.5.9), we derive an expression for the
point particle velocity,

U ≡ dX

dt
=

d

dt
(X ex +Σ eσ) =

dX

dt
ex +X

dex
dt

+
dΣ

dt
eσ +Σ

deσ
dt

, (1.5.10)

and then

U ≡ dX

dt
=

dX

dt
ex +

dΣ

dt
eσ +Σ

dΦ

dt
eϕ. (1.5.11)

The cylindrical polar components of the velocity are then

Ux =
dX

dt
, Uσ =

dΣ

dt
, Uϕ = Σ

dΦ

dt
. (1.5.12)

Since Φ is a dimensionless function, all three right-hand sides have units of length divided by time.

Acceleration

Differentiating expression (1.5.11) with respect to time and expanding the derivatives, we derive an
expression for the acceleration,

a =
d2X

dt2
=

d

dt

(dX
dt

ex +
dΣ

dt
eσ +Σ

dΦ

dt
eϕ

)
=

d2X

dt2
ex +

d2Σ

dt2
eσ +

dΣ

dt

deσ
dt

+
dΣ

dt

dΦ

dt
eϕ +Σ

d2Φ

dt2
eϕ +Σ

dΦ

dt

deϕ
dt

. (1.5.13)

Now we substitute relations (1.5.9) and find that

a =
d2X

dt2
=

d2X

dt2
ex +

d2Σ

dt2
eσ +

dΣ

dt

dΦ

dt
eϕ +

dΣ

dt

dΦ

dt
eϕ +Σ

d2Φ

dt2
eϕ − Σ

dΦ

dt

dΦ

dt
eσ. (1.5.14)

Finally, we consolidate the terms on the right-hand side and obtain the cylindrical polar components
of the acceleration,

ax =
d2X

dt2
, aσ =

d2Σ

dt2
− Σ

(
dΦ

dt

)2

, aϕ = Σ
d2Φ

dt2
+ 2

dΣ

dt

dΦ

dt
=

1

Σ

d

dt

(
Σ2 dΦ

dt

)
. (1.5.15)

Note that a change in the azimuthal angle, Φ, is accompanied by radial acceleration, aσ.

1.5.2 Spherical polar coordinates

The spherical polar coordinates of a moving point particle are determined by the functions

r = R(t), θ = Θ(t), ϕ = Φ(t). (1.5.16)
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The position of a point particle is described as

X = R er, (1.5.17)

where eα are spherical polar unit vectors for α = r, θ, ϕ. The rates of change of the unit vectors
following the motion of a point particle are given by the relations

der
dt

=
dΦ

dt
sinΘ eϕ +

dΘ

dt
eθ,

deθ
dt

=
dΦ

dt
cosΘ eϕ − dΘ

dt
er,

deϕ
dt

= −dΦ

dt
cosΘ eθ −

dΦ

dt
sinΘ er.

(1.5.18)

All three unit vectors change with position in space.

Velocity

Taking the time derivative of (1.5.17) and using relations (1.5.18), we derive an expression for the
point-particle velocity,

U =
dX

dt
=

dR

dt
er +R

der
dt

=
dR

dt
er +R

dΦ

dt
sinΘ eϕ +R

dΘ

dt
eθ. (1.5.19)

The spherical polar components of the velocity are

Ur =
dR

dt
, Uθ = R

dΘ

dt
, Uϕ = R sinΘ

dΦ

dt
. (1.5.20)

Since the functions Θ and Φ are dimensionless, all three right-hand sides have units of length divided
by time.

Acceleration

Differentiating expression (1.5.19) with respect to time, we obtain the point-particle acceleration, a.
Expanding the derivatives, we find that

a ≡ d2X

dt2
= A+B+C, (1.5.21)

where the term

A ≡ d

dt

(dR
dt

er

)
=

d2R

dt2
er +

dR

dt

der
dt

=
d2R

dt2
er +

dR

dt

dΦ

dt
sinΘ eϕ +

dR

dt

dΘ

dt
eθ (1.5.22)

corresponds to the first term on the right-hand side of (1.5.19), the term

B ≡ d

dt

(
R

dΦ

dt
sinΘ eϕ

)
=

dR

dt

dΦ

dt
sinΘ eϕ +R

d2Φ

dt2
sinΘ eϕ +R

dΦ

dt
cosΘ

dΘ

dt
eϕ (1.5.23)

+R
dΦ

dt
sinΘ

deϕ
dt

=
dR

dt

dΦ

dt
sinΘ eϕ +R

d2Φ

dt2
sinΘ eϕ +R

dΦ

dt

dΘ

dt
cosΘ eϕ

−R
(dΦ
dt

)2

sinΘ cosΘ eθ −R
(dΦ
dt

)2

sin2 Θ er (1.5.24)
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corresponds to the second term on the right-hand side of (1.5.19), and the term

C ≡ d

dt

(
R

dΘ

dt
eθ

)
=

dR

dt

dΘ

dt
eθ +R

d2Θ

dt2
eθ +R

dΘ

dt

deθ
dt

=
dR

dt

dΘ

dt
eθ +R

d2Θ

dt2
eθ +R

dΦ

dt

dΘ

dt
cosΘ eϕ −R

(dΘ
dt

)2

er (1.5.25)

corresponds to the third term on the right-hand side of (1.5.19). Consolidating the various terms,
we derive the cylindrical polar components of the acceleration,

ar =
d2R

dt2
−R

(dΦ
dt

)2

sin2 Θ−R
(dΘ
dt

)2

,

aθ = R
d2Θ

dt2
+ 2

dR

dt

dΘ

dt
−R

(dΦ
dt

)2

sinΘ cosΘ,

aϕ = R
d2Φ

dt2
sinΘ + 2

dR

dt

dΦ

dt
sinΘ + 2R

dΘ

dt

dΦ

dt
cosΘ.

(1.5.26)

Note that a change in the meridional angle, Θ, or azimuthal angle, Φ, is accompanied by radial
acceleration.

1.5.3 Plane polar coordinates

The plane polar coordinates of a point particle are described by the functions

r = R(t), θ = Θ(t). (1.5.27)

The position of a point particle is described as

X = R er, (1.5.28)

where eα are plane polar unit vectors for α = r, θ. The rates of change of the unit vectors following
the motion of a particle are given by

der
dt

=
dΘ

dt
eθ,

deθ
dt

= −dΘ

dt
er. (1.5.29)

Note that both unit vectors change with position in space.

Velocity

To derive the velocity components, we work as previously with cylindrical and spherical polar coor-
dinates, and find that

Ur =
dR

dt
, Uθ = R

dΘ

dt
. (1.5.30)

Note that the right-hand sides have units of length divided by time.
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Acceleration

The plane polar components of the particle acceleration are

ar =
d2R

dt2
−R

(dΘ
dt

)2

, aθ = R
d2Θ

dt2
+ 2

dR

dt

dΘ

dt
=

1

R

d

dt

(
R2 dΘ

dt

)
. (1.5.31)

Note that a change in the polar angle, Θ, is accompanied by radial acceleration. If a particle moves
along a circular path of constant radius R centered at the origin, dR/dt = 0, the acceleration
components are

ar = R
(dΘ
dt

)2

=
U2
θ

R
, aθ = R

d2Θ

dt2
. (1.5.32)

A radial acceleration is necessary to follow the circular path.

1.5.4 Particle rotation around an axis

The new position of a point particle that has rotated around the x axis by angle ϕx, around the y
axis by angle ϕy, or around the z axis by angle ϕz, is given by

xnew = R(x)(ϕx) · x, xnew = R(y)(ϕy) · x, xnew = R(z)(ϕz) · x, (1.5.33)

where x is the old position and

R(x)(ϕ) =

⎡⎣ 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

⎤⎦ , R(y)(ϕ) =

⎡⎣ cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

⎤⎦ ,

R(z)(ϕ) =

⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦ (1.5.34)

are orthogonal rotation matrices, meaning that their transpose is equal to their inverse.

Rotation around an arbitrary axis

To rotate a point by a specified angle ϕ about an axis x′
1 that passes through the origin, as shown in

Figure 1.5.1, it is convenient to introduce a rotated Cartesian coordinate system comprised of primed
axes, as discussed in Section 1.1.8. We then apply a forward transformation, x → x′, followed by a
rotation and then a backward transformation, x′ → x, to obtain the overall transformation

xnew = P · x, (1.5.35)

where

P = AT ·R(x)(ϕ) ·A (1.5.36)

is a projection matrix. The first row of the rotation matrix A contains the direction cosines of the
x′
1 axis,

a ≡ A11 = cosα1, b ≡ A12 = cosα2, c ≡ A13 = cosα3, (1.5.37)
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Figure 1.5.1 Rotation of a point x around the x′
1 axis by angle ϕ. The new coordinates are found

using the projection matrix (1.5.36).

where a2 + b2 + c2 = 1. Carrying out the multiplications and simplifying, we derive the projection
matrix

P = cosϕ I+ (1− cosϕ)

⎡⎣ a2 ab ac
ab b2 bc
ac bc c2

⎤⎦+ sinϕ

⎡⎣ 0 −c b
c 0 −a

−b a 0

⎤⎦ , (1.5.38)

where I is the identity matrix. The matrix in the second term on the right-hand side of (1.5.38)
is symmetric, whereas the matrix in the third term is skew-symmetric. This means that a rotation
vector, c, with the property that xnew = c× x, cannot be found.

In practice, we may specify a point X on the x′
1 axis, and compute the direction cosines

a =
X

|X| , b =
Y

|X| , c =
Z

|X| , (1.5.39)

as shown in Figure 1.5.1. Note that P ·X = X, in agreement with physical intuition.

Problems

1.5.1 Particle paths

(a) A particle moves over a sphere of radius a in a path described by the equation ϕ = 2θ, where
θ = Θ(t) is a given function of time. Illustrate the particle trajectory and compute the spherical
polar components of the particle acceleration in terms of the function Θ(t).

(b) A particle moves in the xy plane on a spiral path described in plane polar coordinates (r, θ) by
the equation r = aeθ, where a is a constant and θ = Θ(t) is a given monotonic function of time.
Compute the plane polar components of the particle acceleration in terms of the function Θ(t).
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N

A

B
Xδ

t

Figure 1.6.1 Illustration of a material vector with infinitesimal length and designated beginning, A,
and end, B. The unit vector N is normal to the material vector.

1.5.2 Rotation around an axis

(a) Derive the projection matrix (1.5.38) following the procedure described in the text.

(b) Derive the projection matrix (1.5.38) by integrating the differential equation dx/dt = Ω × x,
where Ω = Ω(t)[a, b, c] is an angular velocity vector with constant orientation but possibly variable
strength.

1.6 Material vectors and material lines

To lay the foundation for developing dynamical laws governing the motion and physical properties
of fluid parcels, we study the evolution of material vectors, material lines, and material surfaces in
a specified flow. The theoretical framework will be employed to describe the motion of interfaces
between two immiscible fluids in a two-phase flow. In this section, we consider material vectors and
material lines consisting of a fixed collection of point particles with permanent identity. In Section
1.7, we generalize the discussion to material surfaces. Elements of differential geometry of lines and
surfaces will be introduced in the discourse, as required.

1.6.1 Material vectors

A material vector, δX, is a small material line with infinitesimal length and a designated beginning
and end, as shown Figure 1.6.1. Applying the definition of the point-particle velocity, DX/Dt =
U = u(X), at the position of the two end point particles labeled A and B, expressing the velocity at
the last point in a Taylor series about the first point, and keeping only the linear terms, we obtain

D δX

Dt
= UB −UA = δXi

∂u

∂xi
= δX · L, (1.6.1)

where L is the velocity gradient tensor introduced in (1.1.2) evaluated at the position of the material
vector, and summation is implied over the repeated index i.

Stretching

The rate of change of the length of the material vector, δl ≡ |δX|, is given by

D δl

Dt
=

D(δX · δX)1/2

Dt
=

1

2 (δX · δX)1/2
D (δX · δX)

Dt
=

δX

δl
· D δX

Dt
. (1.6.2)
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Using (1.6.1), we find that

D δl

Dt
=

δX

δl
· (δX · L). (1.6.3)

Rearranging, we obtain the evolution equation

1

δl

D δl

Dt
= t · L · t, (1.6.4)

where t = δX/δl is the unit vector in the direction of the material vector δX. The right-hand side
of (1.6.4) expresses the rate of extension of the fluid in the direction of the material vector.

Reorientation

To compute the rate of change of the unit vector, t, that is parallel to a material vector, δX, at all
times, we write

D δX

Dt
=

D(t δl)

Dt
= δl

Dt

Dt
+ t

D δl

Dt
, (1.6.5)

and use (1.6.1) and (1.6.4) to obtain

Dt

Dt
= (t · L) · (I− t⊗ t), (1.6.6)

where I is the identity matrix. The operator I− t⊗ t on the right-hand side removes the component
of a vector in the direction of the unit vector, t, leaving only the normal component. Accordingly,
the right-hand side of (1.6.6) involves derivatives of the velocity components in a plane that is normal
to the material vector with respect to arc length measured in the direction of the material vector.

For example, if a material vector is aligned with the x axis, t = ex =
[
1, 0, 0

]
, we find that

Dt/Dt =
[
0, ∂uy/∂x, ∂uz/∂x

]
, which shows that t tends to acquire components along the y and z

axes.

Mutual reorientation

The cosine of the angle α subtended between two material unit vectors, t1 and t2, is given by an
inner product, cosα = t1 · t2. Taking the material derivative, we obtain

D cosα

Dt
=

Dt1

Dt
· t2 +

Dt2

Dt
· t1. (1.6.7)

Substituting (1.6.6) and rearranging, we find that

D cosα

Dt
= (t1 ⊗ t2 + t2 ⊗ t1) : L− cosα (t1 ⊗ t1 + t2 ⊗ t2) : L. (1.6.8)

Because the tensors t1⊗ t2+ t2⊗ t1 and t1⊗ t1+ t2⊗ t2 are symmetric, the velocity gradient L can
be replaced by its symmetric constituent expressed by the vorticity tensor on the right-hand side.
Accordingly, the first term on the right-hand side of (1.6.8) expresses the symmetric component of
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Figure 1.6.2 (a) A closed or open (b) material line is parametrized by a Lagrangian label, ξ. Shown
are the tangent unit vector, t, the normal unit vector, n, and the binormal unit vector, b.

the velocity gradient tensor in a dyadic base defined by the unit vectors t1 and t2. If the two vectors
are initially perpendicular, cosα = 0 and the second term on the right-hand side of (1.6.8) is zero.

Normal vector

It is of interest to consider the evolution of a unit vector, N, that is and remains normal to a material
vector, as shown in Figure 1.6.1. Taking the material derivative of the constraint N · N = 1, we
find that N · DN/Dt = 0, which shows that the vector DN/Dt lacks a component in the direction
of N. Taking the material derivative of the constraint N · δX = 0 and using (1.6.1), we find that
t · DN/Dt = −t · L ·N, where t = δX/δl is the tangent unit vector. Combining these expressions,
we derive the evolution equation

DN

Dt
= −(t⊗ t) · L ·N+Ω t×N, (1.6.9)

where Ω is an unspecified rate of rotation of N about t. In the case of two-dimensional or axisym-
metric flow where the vectors t and N are restricted to remain in the xy or an azimuthal plane,
Ω = 0.

1.6.2 Material lines

Next, we consider a material line consisting of a fixed collection of point particles forming an open
or closed loop, as shown in Figure 1.6.2. To identify the point particles, we introduce a scalar label,
ξ, taking values inside an appropriate set of real numbers, Ξ, and regard the position of the point
particles, X, as a function of ξ and time, t, writing X(ξ, t). The unit vector

t =
1

h

∂X

∂ξ
(1.6.10)

is tangential to the material line, where h = |∂X/∂ξ|. Because t is a unit vector, t · t = 1, we have
t · ∂t/∂ξ = 1

2 ∂(t · t)/∂ξ = 0, which shows that the vector ∂t/∂ξ is normal to t.
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The arc length of an infinitesimal section of the material line is dl = h dξ and the total arc
length of the material line is

L =

∫
Ξ

h dξ. (1.6.11)

This expression shows that h is a scalar metric coefficient for the arc length similar to the Jacobian
metric for the volume of a fluid parcel, J . If we identify the label ξ with the instantaneous arc
length along the material line, l, then h = 1.

1.6.3 Frenet–Serret relations

It is useful to introduce a system of orthogonal curvilinear coordinates constructed with reference to
a material line. The principal unit vector normal to the material line, n, is defined by the relation

∂t

∂l
= −κn, (1.6.12)

where l is the arc length along the material line and κ is the signed curvature of the material line.
The binormal unit vector is defined by the equation

b = t× n. (1.6.13)

The three unit vectors, t, n, and b, define three mutually orthogonal directions that can be used to
construct a right-handed, orthogonal, curvilinear system of axes so that

t = n× b, n = b× t, (1.6.14)

as shown in Figure 1.6.2. The plane containing the pair (t,n) is called the osculating plane, the
plane containing the pair (n,b) is called the normal plane, and the plane containing the pair (b, t),
is called the rectifying plane.

Differentiating (1.6.13) with respect to arc length, l, expanding the derivative on the right-
hand side, and using (1.6.12), we find that the vector db/dl is perpendicular to t. Since b is a unit
vector, d(b · b)/dl = 2b · (db/dl) = 0, which shows that db/dl is perpendicular to b. We conclude
that b must be parallel to n and write

∂b

∂l
= −τn, (1.6.15)

where τ is the torsion of the material line.

Rewriting (1.6.13) as n = b × t, differentiating this expression with respect to l, and using
(1.6.12) and (1.6.15), we obtain

∂n

∂l
= κt+ τb, (1.6.16)

involving the curvature and the torsion of the line.
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Equations (1.6.12), (1.6.15), and (1.6.16) comprise the Frenet–Serret relations. In the litera-
ture, the curvature, torsion, or both, may appear with opposite signs as a matter of convention.

Matrix formulation

The Frenet–Serret relations can be collected into the matrix form

d

dl

⎡⎣ t

n

b

⎤⎦ =

⎡⎣ 0 −κ 0
κ 0 τ
0 −τ 0

⎤⎦ ·

⎡⎣ t

n

b

⎤⎦ , (1.6.17)

involving a singular skew-symmetric matrix on the right-hand side. One eigenvalue of this matrix is
zero and the other two eigenvalues are complex conjugates, given by λ = ±i(κ2 + τ 2)1/2.

Complex variable formulation

It is sometimes useful to introduce a complex surface vector field, q ≡ n+ib, where i is the imaginary
unit, i2 = −1. Combining the second with the third Frenet–Serret relations (1.6.15) and (1.6.16),
we obtain

dq

dl
+ i τq = κt. (1.6.18)

Multiplying both sides by the integrating factor

Φ(l) ≡ exp
(
i

∫ l

0

τ(�) d�
)

(1.6.19)

and rearranging, we obtain the compact form

dQ

dl
= −ψ t, (1.6.20)

where we have defined

Q(l) ≡ Φ(l)q(l), ψ(l) ≡ −κ(l) Φ(l). (1.6.21)

Note that ΦΦ∗ = |Φ|2 = 1, Q · Q = 0, and Q · Q∗ = 2, where an asterisk denotes the complex
conjugate. The first Frenet–Serret relation (1.6.12) yields

dt

dl
= −κn = −Real(κq∗) = −Real(κΦΦ∗q∗) = Real(ψQ∗) =

1

2
(ψQ∗ + ψ∗Q). (1.6.22)

Darboux rotation vector formulation

An alternative representation of the Frenet–Serret relations is

dt

dl
= χ× t,

dn

dl
= χ× n,

db

dl
= χ× b, (1.6.23)

where χ = τt− κb is the Darboux rotation vector lying in the rectifying plane.



1.6 Material vectors and material lines 51

1.6.4 Evolution equations for a material line

Having established the Frenet–Serret framework, we proceed to compute the rate of change of the
total length of a material line. Differentiating (1.6.11) with respect to time and noting that the limits
of integration are fixed, we transfer the time derivative inside the integral as a material derivative
and obtain

dL

dt
=

∫
Ξ

Dh

Dt
dξ =

∫
Line

1

h

Dh

Dt
dl. (1.6.24)

The last integrand expresses the local rate of extension of the material line.

Evolution of the metric

Taking the material derivative of the definition h = |∂X/∂ξ| and working as in (1.6.2), we obtain

Dh

Dt
= t · ∂U

∂ξ
=

∂(t ·U)

∂ξ
−U · ∂t

∂ξ
. (1.6.25)

Using the Frenet–Serret relation (1.6.12) and setting the point-particle velocity equal to the fluid
velocity, U = u, we obtain

Dh

Dt
=

∂(u · t)
∂ξ

+ κ
∂l

∂ξ
u · n. (1.6.26)

The two terms on the right-hand side express the change in length of an infinitesimal section of
the material line due to stretching along the line, and extension due to motion normal to the line.
These interpretations become more clear by considering the behavior of a circular material line that
exhibits tangential motion with vanishing normal velocity, or is expanding in the radial direction
while remaining in its plane (Problem 1.6.1).

Now substituting (1.6.26) into (1.6.24) and performing the integration, we obtain a revealing
expression for the rate of the change of the length of a material line,

dL

dt
=
(
u · t

)end
start

+

∫
Line

κu · n dl. (1.6.27)

If a material line forms a closed loop, the first term on the right-hand side vanishes and the tangential
motion does not contribute to the rate of change of the total arc length of the line.

Evolution of the tangent unit vector

The rate of change of the tangent unit vector, t, follows from (1.6.6), repeated for convenience,

Dt

Dt
= (t · L) · (I− t⊗ t) =

∂u

∂l
· (I− t⊗ t) (1.6.28)

or

Dt

Dt
=
(∂u
∂l

· n
)
n+

(∂u
∂l

· b
)
b, (1.6.29)
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where I is the identity matrix. The dyadic decomposition I = t⊗ t+ n⊗ n+ b⊗ b was employed
to derive the two expressions in (1.6.28). The right-hand side of (1.6.28) involves derivatives of the
velocity components in the normal plane with respect to arc length along the material line. We see
that the vector Dt/Dt lacks a component in the direction of t.

Evolution of the curvature

The first Frenet–Serret relation (1.6.12) can be recast into the form

κn = −∂t

∂l
= − 1

h

∂t

∂ξ
. (1.6.30)

Taking the material derivative, we find that

κ
Dn

Dt
+ n

Dκ

Dt
=

1

h2

Dh

Dt

∂t

∂ξ
− 1

h

∂

∂ξ

(Dt

Dt

)
= −κ

h

Dh

Dt
n− ∂

∂l

(Dt

Dt

)
. (1.6.31)

Next, we project this equation onto n, recall that n · n = 1 and thus n ·Dn/Dt = 0, and rearrange
to obtain an evolution equation for the curvature,

Dκ

Dt
= −κ

h

Dh

Dt
− n · ∂

∂l

(Dt

Dt

)
= −κ t · ∂u

∂l
− n · ∂

∂l

(Dt

Dt

)
. (1.6.32)

Taking the derivative of the rate of change Dt/Dt given in (1.6.28), we obtain

∂

∂l

(Dt

Dt

)
=

∂2u

∂l2
· (I− t⊗ t) + κ

∂u

∂l
· (t⊗ n+ n⊗ t). (1.6.33)

Substituting this expression into (1.6.32) and simplifying, we derive the final form

Dκ

Dt
= −2κ

∂u

∂l
· t− ∂2u

∂l2
· n. (1.6.34)

In the case of an expanding circle of radius a(t) in the xy plane, we set u = U
[
cos θ, sin θ

]
,

t =
[
− sin θ, cos θ

]
, and n =

[
cos θ, sin θ

]
, where U is the velocity of expansion and θ is the polar

angle. Substituting l = aθ and κ = 1/a, we obtain an expected equation, da/dt = U .

Evolution of the normal vector

To obtain an evolution equation for the normal unit vector, we project (1.6.31) onto the binormal
vector and rearrange to find that

b · Dn

Dt
= − 1

κ
b · ∂

∂l

(Dt

Dt

)
= − 1

κ

∂2u

∂l2
· b. (1.6.35)

Combining this expression with (1.6.9), we obtain

Dn

Dt
= −

(∂u
∂l

· n
)
t− 1

κ

( ∂2u

∂l2
· b

)
b. (1.6.36)

If a line is and remains in the osculating plane containing t and n, the second term on the right-hand
side does not appear. Expression (1.6.36) can also be derived by substituting (1.6.34) into (1.6.31).
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Evolution of the binormal vector

An evolution equation of the binormal vector can be derived by combining the definition (1.6.13)
with the evolution equations (1.6.36) and (1.6.6), finding

Db

Dt
=

Dt

Dt
× n− Dn

Dt
× t = −

(∂u
∂l

· b
)
t+

1

κ

(∂2u

∂l2
· b
)
n. (1.6.37)

We see that Db/Dt is perpendicular to b, as required for the length of b to remain constant and
equal to unity at any time.

Evolution of the torsion

An evolution equation for the torsion can be derived by taking the material derivative of (1.6.15),
finding

Dτ

Dt
n+ τ

Dn

Dt
= − 1

h

Dh

Dt
τn− ∂

∂l

(Db

Dt

)
. (1.6.38)

Projecting this equation onto n, we obtain

Dτ

Dt
= − τ

h

Dh

Dt
− n · ∂

∂l

(Db

Dt

)
= −τ t · ∂u

∂l
− n · ∂

∂l

(Db

Dt

)
. (1.6.39)

Substituting (1.6.37), using the Frenet–Serret relations, and simplifying, we obtain

Dτ

Dt
= −∂u

∂l
· (τt+ κb) +

1

κ

∂2u

∂l2
· (τn+

1

κ

∂κ

∂l
b)− 1

κ

∂3u

∂l3
· b. (1.6.40)

The presence of a third derivative with respect to arc length is an interesting feature of this equation.

Spin vector

The evolution equations for the tangent, normal, and binormal unit vectors derived previously in
this section can be collected into the unified forms

Dt

Dt
= s× t,

Dn

Dt
= s× n,

Db

Dt
= s× b, (1.6.41)

where

s = − 1

κ

(∂2u

∂l2
· b
)
t−

(∂u
∂l

· b
)
n+

(∂u
∂l

· n
)
b (1.6.42)

is the spin vector. Formulas (1.6.41) complement the Darboux relations (1.6.23).

Consistency between (1.6.41) and (1.6.23) requires that

D(χ× t)

Dt
=

d(s× t)

dl
,

D(χ× n)

Dt
=

d(s× n)

dl
,

D(χ× b)

Dt
=

d(s× b)

dl
. (1.6.43)

Expanding the derivatives in the first equations, we obtain

Dχ

Dt
× t+ χ× Dt

Dt
=

Dχ

Dt
× t+ χ× s× t =

ds

dl
× t+ s× dt

dl
=

ds

dl
× t+ s× χ× t, (1.6.44)
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yielding ( Dχ

Dt
− ds

dl

)
× t = 2 s× χ× t. (1.6.45)

Working similarly with the second and third equations in (1.6.43), we obtain the compatibility
condition

Dχ

Dt
=

ds

dl
− 2 s× χ, (1.6.46)

which can be regarded as an evolution equation for the Darboux vector.

Point particle velocity and acceleration

The velocity of a point particle that belongs to a material line can be resolved into tangential,
normal, and binormal components,

U = ut t+ un n+ ub b. (1.6.47)

The point-particle acceleration is

a ≡ DU

Dt
=

Dut

Dt
t+

Dun

Dt
n+

Dub

Dt
b+ ut

Dt

Dt
+ un

Dn

Dt
+ ub

Db

Dt
, (1.6.48)

where the time derivatives of the tangent, normal, and binormal vectors are computed using the
evolution equations derived previously in this section.

Generalized Frenet–Serret triad

It is sometimes convenient to replace the Frenet–Serret triad, (t,n,b), with a rotated triad, (t,d1,d2).
The orthonormal unit vectors d1 and d2 lie in a normal plane and are rotated with respect to n and
b about the tangent vector t by angle α, as shown in Figure 1.6.3, so that

d1 = cosαn+ sinαb. d2 = − sinαn+ cosαb. (1.6.49)

The rotated triad satisfies the modified Frenet–Serret relations

dt

dl
= χ× t,

dd1

dl
= χ× d1,

dd2

dl
= χ× d2, (1.6.50)

where

χ = χtt+ χd1
d1 + χd2

d2 (1.6.51)

is a Darboux rotation vector with components

χt = τ, χd1
= −κ sinα, χd2

= −κ cosα. (1.6.52)

The evolution equations for the rotated triad take the form

Dt

Dt
= s× t,

Dd1

Dt
= s× d1,

Dd2

Dt
= s× d2, (1.6.53)
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Figure 1.6.3 The orthonormal triad, (t,d1,d2), arises from the Frenet–Seret triad, (t,n,b), by ro-
tating the normal and binormal vectors, n and b, about the tangent vector, t, by angle α.

where

s = st t−
(∂u
∂l

· b
)
n+

(∂u
∂l

· n
)
b (1.6.54)

is the spin vector with an unspecified tangential component, st. Formulas (1.6.53) complement
the Darboux equations (1.6.23). Consistency between these formulas requires the compatibility
condition (1.6.46).

Problems

1.6.1 Expanding and stretching circle

Consider a circle of radius a, identify the label ξ with the polar angle measured around the center,
θ, and evaluate the right-hand side of (1.6.26) for ur = U and uθ = V cos θ, where U and V are two
constants.

1.6.2 Helical line

A helical line revolving around the x axis is described in the parametric form by the equations

x = b
ϕ

2π
, y = a cosϕ, z = a sinϕ, (1.6.55)

where a is the radius of the circumscribed cylinder, ϕ is the azimuthal angle, and b is the helical pitch.
Show that the curvature and torsion of the helical line are constant and equal to κ = a/(a2 + b2)
and τ = b/(a2 + b2).

1.6.3 Rigid-body motion

Derive an expression for the spin vector defined in (1.6.54) for a material line in rigid-body motion.
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Figure 1.7.1 Illustration of a system of two curvilinear axes, (ξ, η), in a three-dimensional material
surface. The unit vectors n, nξ, and nη are normal to the surface, the ξ axis, and the η axis.

1.7 Material surfaces

A material surface is an open or closed, infinite or finite surface consisting of a fixed collection of
point particles with permanent identity. Physically, a material surface can be identified with the
boundary of a fluid parcel or with the interface between two immiscible viscous fluids. To describe
the shape and motion of a material surface, we identify the point particles comprising the surface by
two scalar labels, ξ and η, called surface curvilinear coordinates, taking values in a specified region
of the (ξ, η) parametric plane. We will assume that the pair (ξ, η) forms a right-handed orthogonal
or nonorthogonal coordinate system, as illustrated in Figure 1.7.1.

Using the label ξ and η, we effectively establish a mapping of the curved material surface in
the three-dimensional physical space to a certain area in the parametric (ξ, η) plane. We may say
that (ξ, η) are convected coordinates, meaning that the constituent point particles retain the values
of (ξ, η) as they move in the domain of flow.

1.7.1 Tangential vectors and metric coefficients

To establish relations between the geometrical properties of a material surface and the position of
point particles in the material surface, X(ξ, η, t), we introduce the tangential unit vectors

tξ =
1

hξ

∂X

∂ξ
, tη =

1

hη

∂X

∂η
, (1.7.1)

where

hξ =
∣∣∣∂X
∂ξ

∣∣∣, hη =
∣∣∣∂X
∂η

∣∣∣ (1.7.2)

are metrics associated with the curvilinear coordinates. The arc length of an infinitesimal section of
the ξ or η axis is

dlξ = hξ dξ, dlη = hη dη. (1.7.3)

Any linear combination of the tangential vectors (1.7.1) is also a tangential vector. If tη is perpen-
dicular to tξ, the system of surface coordinates (ξ, η) is orthogonal, tξ · tη = 0.
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Since the lengths of the vectors tξ and tη are equal to unity, tξ · tξ = 1 and tη · tη = 1. Taking
the ξ or η derivatives of these equations, we find that

tξ ·
∂tξ
∂ξ

= 0, tξ ·
∂tξ
∂η

= 0, tη · ∂tη
∂ξ

= 0, tη · ∂tη
∂η

= 0. (1.7.4)

It is evident from the definitions (1.7.1) that the unit tangent vectors satisfy the relation

∂(hξtξ)

∂η
=

∂(hηtη)

∂ξ
=

∂2X

∂ξ∂η
. (1.7.5)

Expanding the first two derivatives and projecting the resulting equation onto tξ or tη, we obtain

∂hξ

∂η
= hη

∂tη
∂ξ

· tξ +
∂hη

∂ξ
tξ · tη,

∂hη

∂ξ
= hξ

∂tξ
∂η

· tη +
∂hξ

∂η
tη · tξ. (1.7.6)

Evolution of the coordinate metric coefficients

To compute the rate of change of the scaling factor hξ expressing the rate of extension of the ξ
lines, we take the material derivative of the first equation in (1.7.2). Noting that, by definition,
U = (∂X/∂t)ξ,η, and working as in (1.6.26), we find that

Dhξ

Dt
= tξ ·

∂U

∂ξ
=

∂(tξ ·U)

∂ξ
+U · nξκξ

∂lξ
∂ξ

, (1.7.7)

where κξ is the curvature of the ξ line and nξ is the principal unit vector normal to the ξ line defined
by the equation ∂tξ/∂lξ = −κξnξ, as shown in Figure 1.7.1. The two terms on the right-hand side
of (1.7.7) express, respectively, changes in the length of an infinitesimal section of a ξ line due to
stretching along the ξ line, and expansion due to motion normal to the ξ line. The rate of change
of hη is given by equation (1.7.7) with ξ replaced by η in each place.

Orthogonal coordinates

In the case of orthogonal curvilinear coordinates, tξ · tη = 0, the second term on the right-hand
side of each equation in (1.7.6) does not appear. Since the vector ∂tη/∂ξ lacks a component in the
direction of tη and the vector ∂tξ/∂η lacks a component in the direction of tξ, we may write

∂tη
∂ξ

=
1

hη

∂hξ

∂η
tξ,

∂tξ
∂η

=
1

hξ

∂hη

∂ξ
tη. (1.7.8)

1.7.2 Normal vector and surface metric

The unit vector normal to a material surface at a point is

n =
1

hs

∂X

∂ξ
× ∂X

∂η
, (1.7.9)

where

hs ≡
∣∣∣∂X
∂ξ

× ∂X

∂η

∣∣∣ (1.7.10)
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is the surface metric, as shown in Figure 1.7.1. Combining (1.7.1) with (1.7.9), we find that

n =
hξhη

hs
tξ × tη. (1.7.11)

Since any tangential vector is perpendicular to the normal vector, we can write

n · ∂X
∂ξ

= 0, n · ∂X
∂η

= 0. (1.7.12)

Differentiating the first equation with respect to η and the second equation with respect to ξ,
expanding the derivatives and combining the results to eliminate the common term n · ∂2X/∂ξ∂η,
we obtain the useful relation

∂n

∂lξ
· tη =

∂n

∂lη
· tξ. (1.7.13)

Surface area

The area of a differential element of the material surface is dS = hs dξ dη. The total area of the
material surface is

S =

∫∫
Ω

hs dξ dη, (1.7.14)

where Ω is the range of variation of ξ and η over the surface. Equation (1.7.14) confirms that hs is a
metric coefficient associated with the surface coordinates, analogous to the Jacobian, J , associated
with the Lagrangian labels of three-dimensional fluid parcels. To compute the rate of change of the
surface area of a material surface, we differentiate (1.7.14) with respect to time and note that the
limits of integration are fixed to obtain

dS

dt
=

∫∫
Ω

Dhs

Dt
dξ dη =

∫∫
S

1

hs

Dhs

Dt
dS, (1.7.15)

where S denotes the surface. The last integrand, expressing the rate of expansion of an infinitesimal
material patch, is identified with the rate of dilatation of the surface, as discussed in Section 1.7.3.

Orthogonal coordinates

If the surface coordinates (ξ, η) are orthogonal, tξ · tη = 0 and |tξ × tη| = 1, the surface metric is
the product of the two surface coordinate metrics, hs = hξhη. Projecting equations (1.7.8) onto n,
we find that

n · ∂tη
∂ξ

= 0, n · ∂tξ
∂η

= 0, (1.7.16)

yielding

tη · ∂n
∂ξ

= 0, tξ ·
∂n

∂η
= 0. (1.7.17)
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1.7.3 Evolution equations

It will be convenient to introduce the material normal vector,

N ≡ hsn. (1.7.18)

Using the definition of the normal unit vector, n, stated in (1.7.9), and the dynamical law (1.6.1)
for the rate of change of a material vector, we compute

DN

Dt
=

D

Dt

(∂X
∂ξ

)
× ∂X

∂η
+

∂X

∂ξ
× D

Dt

(∂X
∂η

)
(1.7.19)

and then

DN

Dt
=
(∂X
∂ξ

· L
)
× ∂X

∂η
+

∂X

∂ξ
×
(∂X
∂η

· L
)
. (1.7.20)

In index notation,

DNi

Dt
= εijk

∂Xl

∂ξ
Llj

∂Xk

∂η
+ εikj

∂Xk

∂ξ

∂Xl

∂η
Llj , (1.7.21)

which can be rearranged into

DNi

Dt
= Lljεijk

(∂Xl

∂ξ

∂Xk

∂η
− ∂Xk

∂ξ

∂Xl

∂η

)
, (1.7.22)

and then restated as

DNi

Dt
= Lljεijk εplk εpmn

∂Xm

∂ξ

∂Xn

∂η
. (1.7.23)

Now using the rules of repeated multiplication of the alternating matrix discussed in Section A.4,
Appendix A, we obtain

DNi

Dt
= Llj(δipδjl − δilδjp) εpmn

∂Xm

∂ξ

∂Xn

∂η
(1.7.24)

or

DNi

Dt
= Ljj εimn

∂Xm

∂ξ

∂Xn

∂η
− Llj εjmn

∂Xm

∂ξ

∂Xn

∂η
. (1.7.25)

Switching back to vector notation, we express the final result in the form

1

hs

DN

Dt
= (α I− L ) · n = −(n×∇)× u, (1.7.26)

where α = ∇ · u is the rate of expansion [432]. Because the operator n × ∇ involves tangential
derivatives, only the surface distribution of the velocity is required to evaluate the rate of change of
the material normal vector, in agreement with physical intuition. Consequently, the rate of change
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of the material normal vector can be expressed solely in terms of the known instantaneous geometry
and motion of the surface and is independent of the flow off the surface [433].

Metric coefficient

An evolution equation for the surface metric coefficient, hs, can be derived by expressing (1.7.10) in
the form

h2
s =

(∂X
∂ξ

× ∂X

∂η

)
·
(∂X
∂ξ

× ∂X

∂η

)
. (1.7.27)

Taking the material derivative, we obtain

2hs
Dhs

Dt
= 2

(∂X
∂ξ

× ∂X

∂η

)
· D

Dt

(∂X
∂ξ

× ∂X

∂η

)
, (1.7.28)

which can be restated as

Dhs

Dt
= n · DN

Dt
. (1.7.29)

Using expression (1.7.26), we obtain the evolution equation

1

hs

Dhs

Dt
= α− n · L · n, (1.7.30)

where α = ∇ · u is the rate of expansion

Surface divergence

Since the scalar n · L · n represents the normal derivative of the normal component of the velocity,
the right-hand side of (1.7.30) represents the divergence of the velocity in the tangential plane,

∇s · u ≡ α− n · L · n = (P · ∇) · u = trace
(
P · L ·P

)
, (1.7.31)

called the surface divergence of the velocity, where P = I−n⊗n is a tangential projection operator
and I is the identity matrix. Equation (1.7.30) becomes

1

hs

Dhs

Dt
= ∇s · u. (1.7.32)

If a material surface is inextensible, the surface divergence of the velocity is zero. For example, if
n =

[
1, 0, 0

]
, we obtain ∇s · u = ∂uy/∂y + ∂uz/∂z.

Taking the material derivative of (1.7.10) and carrying out straightforward differentiations,
we find that

Dhs

Dt
=
(
hη

∂U

∂ξ
× tη − hξ

∂U

∂η
× tξ

)
· n. (1.7.33)

Rearranging the triple scalar products, we obtain

Dhs

Dt
=
(
hη

∂U

∂ξ
· (tη × n)− hξ

∂U

∂η
· (tξ × n)

)
. (1.7.34)
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Comparing this equation with (1.7.32), we derive an alternative expression for the surface divergence
of the velocity,

∇s · u =
hξhη

hs

(∂U
∂lξ

· (tη × n) +
∂U

∂lη
· (n× tξ)

)
. (1.7.35)

If the surface coordinates are orthogonal, tη × n = tξ and n× tξ = tη.

Normal vector

Combining (1.7.26) with (1.7.30), we derive an evolution equation for the unit vector normal to the
surface,

Dn

Dt
=

1

hs

(DN

Dt
− n

Dhs

Dt

)
= n (α−∇s · u)− L · n. (1.7.36)

Rearranging the expression inside the last parentheses, we obtain

Dn

Dt
= (n⊗ n) · L · n− L · n = −P · L · n, (1.7.37)

where P = I−n⊗n is a tangential projection operator and I is the identity matrix (Problem 1.7.1).
We observe that n ·Dn/Dt = 0, as required. Expression (1.7.37) is consistent with the first term on
the right-hand side of (1.6.9). Rearranging the last expression in (1.7.37), we confirm that the rate
of change of the normal vector, Dn/Dt, has only a tangential component,

Dn

Dt
= −

[
n× (L · n)

]
× n = w × n, (1.7.38)

where w ≡ −n× (L · n).

Density-weighted metric

Combining (1.7.26) and (1.7.30) with the continuity equation (1.2.6), we obtain the compact forms

1

ρhs

D(ρN)

Dt
= −L · n, 1

ρhs

D(ρhs)

Dt
= −n · L · n. (1.7.39)

These equations find useful applications in developing evolution equations for physical quantities
defined over a material surface.

Significance of tangential and normal motions

The role of tangential and normal fluid motions on the dilatation of a surface can be demonstrated
by resolving the velocity into tangential and normal components,

U = Uξtξ + Uηtη + Unn. (1.7.40)

Substituting this expression into the right-hand side of (1.7.33), we obtain several terms, including
the term

hη

(∂(Uξtξ)

∂ξ
× tη

)
· n = hη

( ∂

∂ξ

(
hη Uξ

tξ

hη

)
× tη

)
· n

=
(∂(hηUξ)

∂ξ
tξ × tη

)
· n+ h2

ηUξ

[ ∂

∂ξ

( tξ

hη

)
× tη

]
· n. (1.7.41)



62 Introduction to Theoretical and Computational Fluid Dynamics

Simplifying and rearranging the last triple mixed product, we obtain

hη

(∂(Uξtξ)

∂ξ
× tη

)
· n =

hs

hξhη

∂(hηUξ)

∂ξ
+ h2

η Uξ
∂

∂ξ

( tξ

hη

)
· (tη × n). (1.7.42)

Working in a similar fashion with another term, we find that

hξ

(∂(Uξtξ)

∂η
× tξ

)
· n = hξ Uξ

(∂tξ
∂η

× tξ

)
· n = hξ Uξ

∂tξ
∂η

· (tξ × n). (1.7.43)

Combining these results, we obtain

hη n ·
(∂(Uξtξ)

∂ξ
× tη

)
− hξ n ·

(∂(Uξtξ)

∂η
× tξ

)
=

hs

hξhη

∂(hηUξ)

∂ξ
+ Uξ

[
h2
η

∂

∂ξ

( tξ

hη

)
· (tη × n)− hξ

∂tξ
∂η

· (tξ × n)
]
. (1.7.44)

Working in a similar fashion with the second tangential velocity, we obtain

hη n ·
(∂(Uηtη)

∂ξ
× tη

)
− hξ n ·

(∂(Uηtη)

∂η
× tξ

)
=

hs

hξhη

∂(hξUη)

∂η
+ Uη

[
h2
ξ

∂

∂η

( tη
hξ

)
· (tξ × n)− hη

∂tη
∂ξ

· (tη × n)
]
. (1.7.45)

The term on the right-hand side of (1.7.33) involving the normal component of the velocity takes
the form

hηn ·
(∂(Unn)

∂ξ
× tη

)
− hξn ·

(∂(Unn)

∂η
× tξ

)
= Unn ·

(
hη

∂n

∂ξ
× tη − hξ

∂n

∂η
× tξ

)
. (1.7.46)

Substituting (1.7.44), (1.7.45), and (1.7.46) into (1.7.33), we obtain four terms,

1

hs

Dhs

Dt
=

1

hξhη

(∂(hηUξ)

∂ξ
+

∂(hξUη)

∂η

)
+Uξ

1

hs

[
h2
η

∂

∂ξ

( tξ

hη

)
· (tη × n)− hξ

∂tξ
∂η

· (tξ × n)
]

+Uη
1

hs

[
h2
ξ

∂

∂η

( tη
hξ

)
· (tξ × n)− hη

∂tη
∂ξ

· (tη × n)
]

+Un

(hη

hs

∂n

∂ξ
· (tη × n)− hξ

hs

∂n

∂η
· (tξ × n)

)
, (1.7.47)

with the understanding that the point-particle velocity is the fluid velocity, U = u.

Surface divergence of the surface velocity

The sum of the first three terms on the right-hand side of (1.7.47) involving the tangential velocities
is equal to the surface divergence of the surface velocity, us = u ·P, defined as

∇s · us ≡ trace
(
P · ∇us

)
, (1.7.48)
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where P = I − n ⊗ n is a tangential projection operator and I is the identity matrix. Physically,
the surface divergence of the surface velocity expresses dilatation due to expansion in the plane the
surface, which may occur even in the case of an incompressible fluid.

Dilatation due to expansion

The last term on the right-hand side of (1.7.47) expresses dilatation due to normal motion associated
with expansion or contraction. In Section 1.8, we will see that the expression enclosed by the last
large parentheses is equal to twice the mean curvature of the surface, κm, as shown in (1.8.19),

2κm =
hξhη

hs

( ∂n
∂lξ

· (tη × n) +
∂n

∂lη
· (n× tξ)

)
. (1.7.49)

The expression on the right-hand side can be computed readily from a grid of surface marker points
by numerical differentiation.

Evolution of the surface metric

In summary, we have derived an expression that delineates the significance of tangential and normal
motions,

1

hs

Dhs

Dt
= ∇s · us + 2κm u · n. (1.7.50)

Only the first term on the right-hand side appears over a stationary surface where the normal velocity
is zero. The evolution equation (1.7.50) for a material surface is a generalization of the evolution
equation (1.6.26) for a material line.

Orthogonal surface curvilinear coordinates

The preceding interpretations become more evident by assuming that the surface coordinates are
orthogonal, tξ · tη = 0. The first term on the right-hand side of (1.7.47) is the standard expression
for the surface divergence of the velocity in orthogonal curvilinear coordinates,

∇s · us =
1

hξhη

(∂(hηUξ)

∂ξ
+

∂(hξUη)

∂η

)
. (1.7.51)

The term enclosed by the first square brackets on the right-hand side of (1.7.47) is zero. To show
this, we note that tξ × n = −tη and tη × n = tξ, recall that tξ · ∂tξ/∂ξ = 0 because tξ is a unit
vector, and find that the terms enclosed by the first pair of square brackets simplify into

h2
η

∂

∂ξ

( tξ

hη

)
· tξ + hξ

∂tξ
∂η

· tη = h2
η

∂

∂ξ

( 1

hη

)
+ hξ

∂tξ
∂η

· tη = −∂hη

∂ξ
+ hξ

∂tξ
∂η

· tη, (1.7.52)

which is zero in light of (1.7.6). Working in a similar fashion, we find that the term enclosed by the
second square brackets on the right-hand side of (1.7.47) is also zero.
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1.7.4 Flow rate of a vector field through a material surface

The flow rate of a vector field, q, through a material surface, S, is defined as

Q =

∫∫
S

q · n dS =

∫∫
Ω

q ·N dξ dη, (1.7.53)

where ξ and η vary over the domain Ω in parametric space, and N ≡ hsn is the material normal
vector. In various applications of fluid mechanics and transport phenomena, q can be identified
with the velocity, the vorticity, the temperature gradient, or the gradient of the concentration of a
chemical species. When q is the velocity, Q is the volumetric flow rate. When q is the vorticity, Q
is the circulation around a loop bounding an open surface, as discussed in Section 1.12.2.

Taking the time derivative of (1.7.53), using (1.7.26), and introducing the rate of expansion,
α = ∇ · u, we obtain

dQ

dt
=

∫∫
S

( Dq

Dt
+ αq− q · L

)
· n dS. (1.7.54)

The second and third terms inside the integrand express the effect of surface dilatation. Expressing
the material derivative, Dq/Dt, in terms of Eulerian derivatives and using the vector identity (A.6.11)
in Appendix A, to write

∇× (q× u) = αq− u (∇ · q) + u · ∇q− q · L, (1.7.55)

we recast (1.7.54) into the form

dQ

dt
=

∫∫
S

( ∂q

∂t
+∇× (q× u) + u (∇ · q)

)
· n dS. (1.7.56)

If the vector field q is solenoidal, ∇ · q = 0, the third term inside the integral does not appear. The
Zorawski condition states that, for the flow rate Q to remain constant in time, the expression inside
the tall parentheses on the right-hand side of (1.7.56) must be zero.

Problems

1.7.1 Evolution of the unit vector normal to a material surface

Explain how expression (1.7.37) arises from (1.7.36).

1.7.2 Expanding and stretching sphere

Consider a spherical surface of radius a and identify ξ with the meridional angle, θ, and η with
the azimuthal angle, ϕ. Evaluate the right-hand side of (1.7.47) for ur = U , uθ = V cos θ, and
uϕ = W cosϕ, where U , V , and W are three constant velocities.

1.7.3 Change of volume of a parcel resting on a material surface

Consider a small flattened fluid parcel with a flat side of area dS resting on a material surface. The
volume of the parcel is dV = n · δXdS, where δX is a material vector across the thickness of the
fluid parcel. Using (1.6.1) and (1.7.30), confirm that D δV/Dt = α δV , where α = ∇ · u is the rate
of expansion.
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1.8 Differential geometry of surfaces

Studying the differential geometry of surfaces is prerequisite for describing the shape and motion
of material surfaces and interfaces between two immiscible fluids in a specified flow. Necessary
concepts and useful relationships are discussed in this section. Further information can be found in
specialized monographs (e.g., [389]).

1.8.1 Metric tensor and the first fundamental form of a surface

Material point particles in a material surface can be identified by two surface curvilinear coordinates,
(ξ, η), as discussed in Section 1.7. A material vector embedded in a material surface can be described
in parametric form as

dX =
∂X

∂ξ
dξ +

∂X

∂η
dη = hξ dξ tξ + hη dη tη. (1.8.1)

The square of the length of the vector is

dX · dX =
∂X

∂ξ
· ∂X
∂ξ

(dξ)2 + 2
∂X

∂ξ
· ∂X
∂η

dξ dη +
∂X

∂η
· ∂X
∂η

(dη)2. (1.8.2)

Introducing the surface metric tensor, gαβ , with components

gξξ ≡ ∂X

∂ξ
· ∂X
∂ξ

= h2
ξ , gξη = gηξ =

∂X

∂ξ
· ∂X
∂η

, gηη ≡ ∂X

∂η
· ∂X
∂η

= h2
η, (1.8.3)

we recast (1.8.2) into the compact form

dX · dX ≡ gξξ (dξ)
2 + 2 gξη dξ dη + gηη (dη)

2. (1.8.4)

In the nomenclature of differential geometry, equation (1.8.4) is called the first fundamental form of
the surface.

An alternative expression of the first fundamental form is

dX · dX = (gξξ + 2λ gξη + λ2 gηη) (dξ)
2, (1.8.5)

where λ ≡ dη/dξ. Since the binomial with respect to λ on the right-hand side of (1.8.5) is real and
positive for any value of λ, the roots of the binomial must be complex, the discriminant must be
negative, and the determinant of the metric tensor must be positive,

det(g) = gξξ gηη − g2ξη > 0. (1.8.6)

Using the definition (1.7.10), we find that

h2
s = det(g), (1.8.7)

which is consistent with inequality (1.8.6).

Orthogonal coordinates

If the coordinates ξ and η are orthogonal, the metric tensor is diagonal, gξη = gηξ = 0, h2
s = gξξgηη,

and hs = hξhη.
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1.8.2 Second fundamental form of a surface

The normal vector changes across the length of an infinitesimal material vector by the differential
amount

dn =
∂n

∂ξ
dξ +

∂n

∂η
dη. (1.8.8)

Projecting (1.8.8) on (1.8.1), we obtain the second fundamental form of the surface,

−dX · dn ≡ fξξ dξ
2 + 2 fξη dξ dη + fηη dη

2, (1.8.9)

where

fξξ = −∂X

∂ξ
· ∂n
∂ξ

=
∂2X

∂ξ2
· n, fηη = −∂X

∂η
· ∂n
∂η

=
∂2X

∂η2
· n, (1.8.10)

and

fξη = −1

2

(∂X
∂ξ

· ∂n
∂η

+
∂X

∂η
· ∂n
∂ξ

)
=

∂2X

∂ξ∂η
· n = −∂X

∂ξ
· ∂n
∂η

= −∂X

∂η
· ∂n
∂ξ

. (1.8.11)

Equations (1.7.13). were used to derive the last two expressions for fξη. The rate of change of the
tensors g and f following a point particle in a surface can be computed from their definition using
the evolution equations discussed in Section 1.7 (Problem 1.8.1).

Orthogonal coordinates

Using equations (1.7.17), we find that, if the coordinates ξ and η are orthogonal, the off-diagonal
components of fαβ vanish, fξη = fηξ = 0.

1.8.3 Curvatures

The normal curvature of a surface at a point in the direction of the ξ axis, denoted by Kξ, is defined
as the curvature of the trace of the surface in a plane that contains the normal vector, n, and the
tangential unit vector, tξ, drawn with the heavy line in Figure 1.8.1. In practice, the trace of the
surface on the normal plane may not be available and the normal curvature must be extracted from
the curvature of another surface line that is tangential to tξ at a point, denoted by κξ, such as the
dashed line in Figure 1.8.1. If lξ is the arc length along such a line, then, by definition,

∂tξ
∂lξ

≡ −κξnξ, (1.8.12)

where nξ is the unit vector normal to the dashed line in Figure 1.8.1.

Meusnier’s theorem

Meusnier’s theorem states the the normal curvature in the direction of the ξ axis is given by

Kξ ≡ ∂n

∂lξ
· tξ = −∂tξ

∂lξ
· n = κξ nξ · n = −fξξ

gξξ
= −fξξ

h2
ξ

. (1.8.13)
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Figure 1.8.1 The normal curvature of a surface at a point in the direction of the ξ axis, denoted
by Kξ, is defined as the curvature of the trace of the surface in a plane that contains the normal
vector, n, and tangential vector, tξ.

A similar equation can be written for the η axis. To generalize these expressions, we consider a
tangent vector constructed as a linear combination of the two tangent vectors corresponding to the
surface coordinates, ξ and η,

τ λ =
∂X

∂ξ
+ λ

∂X

∂η
, (1.8.14)

where λ is a free, positive or negative parameter. The normal curvature in the direction of τλ is
given by

Kλ = κλ nλ · n = −∂tλ
∂lλ

· n =
∂n

∂lλ
· tλ = −fξξ + 2fξηλ+ fηηλ

2

gξξ + 2gξηλ+ gηηλ2
, (1.8.15)

where tλ = τλ/|τλ| is a tangent unit vector and lλ is the corresponding arc length. Equation (1.8.13)
arises for λ = 0, and its counterpart for the η axis arises in the limit as λ → ±∞.

Mean curvature

Using (1.8.14), we find that two tangent vectors corresponding to λ1 and λ2 are perpendicular if
they satisfy the relation

gξξ + (λ1 + λ2) gξη + λ1λ2 gηη = 0. (1.8.16)

Solving for λ2 in terms of λ1, we obtain

λ2 = − gξξ + λ1gξη
gξη + λ1gηη

. (1.8.17)

Now using (1.8.15), we find that the mean value of the directional normal curvatures in any two
perpendicular planes is independent of the plane orientation. Motivated by this observation, we
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introduce the mean curvature of the surface at a point,

κm ≡ 1

2
(Kλ1

+Kλ2
) = −1

2

gξξfξξ − 2gξηfξη + gηηfηη
gξξgηη − g2ξη

. (1.8.18)

An alternative expression arising from (1.7.47) is

κm =
1

2

hξhη

hs

( ∂n
∂lξ

· (tη × n)− ∂n

∂lη
· (tξ × n)

)
. (1.8.19)

It can be shown by straightforward algebraic manipulations that (1.8.19) is equivalent to (1.8.18)
(Problem 1.8.2).

Principal curvatures

The maximum and minimum directional normal curvatures, Kλ, over all possible values of λ, are
called the principal curvatures. The corresponding values of λ are found by setting ∂Kλ/∂λ = 0 and
using the last expression in (1.8.15) to obtain a quadratic equation,

(fηηgξη − gηηfξη)λ
2 + (fηηgξξ − gηηfξξ)λ+ fξηgξξ − gξηfξξ = 0. (1.8.20)

The sum and the product of the two roots are given by

λ1 + λ2 = − fηηgξξ − gηηfξξ
fηηgξη − gηηfξη

, λ1λ2 =
fξηgξξ − gξηfξξ
fηηgξη − gηηfξη

. (1.8.21)

Direct substitution shows that these equations satisfy (1.8.16), and this demonstrates that, if Kmax

is the maximum principal curvature corresponding to a particular orientation, then Kmin will be the
minimum principal curvature corresponding to the perpendicular orientation. The mean curvature
of the surface is

κm =
1

2
(Kmax +Kmin). (1.8.22)

Euler’s theorem for the curvature

We may assume that without loss of generality, that the maximum principal curvature occurs
along the ξ axis, corresponding to λ = 0, and the minimum principal curvature occurs along its
orthogonal η axis, corresponding to λ → ∞. In that case, gξη = 0 and fξη = 0, yielding

Kmax = −fξξ
gξξ

, Kmin = −fηη
gηη

, Kλ = −fξξ + fηηλ
2

gξξ + gηηλ2
. (1.8.23)

Now let α be the angle subtended between the direction corresponding to λ and the principal direc-
tion of the maximum curvature, varying in the range [0, 1

2π]. Using the geometrical interpretation
of the inner vector product, we find that(∂X

∂ξ
+ λ

∂X

∂η

)
· ∂X
∂ξ

=
∣∣∣∂X
∂ξ

+ λ
∂X

∂η

∣∣∣∣∣∣∂X
∂ξ

∣∣∣ cosα (1.8.24)
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Figure 1.8.2 Five points are arranged along two curvilinear axes, (ξ, η) in a surface. If the axes are
orthogonal, knowledge of the position of these points is sufficient for computing the mean curvature
of the surface at the intersection.

and (∂X
∂ξ

+ λ
∂X

∂η

)
· ∂X
∂η

=
∣∣∣∂X
∂ξ

+ λ
∂X

∂η

∣∣∣∣∣∣∂X
∂η

∣∣∣ sinα, (1.8.25)

yielding

gξξ = (gξξ + gηηλ
2) cos2 α, λ2gηη = (gξξ + gηηλ

2) sin2 α. (1.8.26)

Combining these expressions with (1.8.23), we derive Euler’s theorem for the curvature, stating that
the normal curvature in an arbitrary direction is related to the principal curvatures by

Kλ = cos2 αKmax + sin2 αKmin. (1.8.27)

When α = 0 or 1
2π, we obtain one or the other principal curvature.

Numerical methods

In numerical practice, the curvature of a surface can be computed by tracing two curvilinear axes
with a set of marker points whose position is described as X(ξ, η), and then constructing parametric
representations for the ξ and η coordinate lines using methods of curve fitting and function interpo-
lation, as discussed in Section B.4, Appendix B. The partial derivatives of X with respect to ξ and
η can be computed by numerical differentiation, as discussed in Section B.5, Appendix B.

Assume that the positions of five points along the ξ and η axes are given, Xi for i = 0–4,
as shown in Figure 1.8.2. Using centered differences to approximate the tangential vectors at the
location of the central point, X0, we obtain

tξ � X2 −X1

|X2 −X1|
, tη � X4 −X3

|X4 −X3|
. (1.8.28)

The numerical accuracy is of first order with respect to Δξ and Δη. If the points are evenly spaced
with respect to ξ and η, the accuracy becomes of second order with respect to Δξ and Δη.
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z
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Figure 1.8.3 Explicit description of a surface as z = q(x, y), showing the normal unit vector, n, and
the unit vector normal to the intersection of the surface with a plane that is normal to the y axis,
denoted by n(x).

Next, we compute an approximation to the normal vector at the central point,

n � tξ × tη

|tξ × tη|
, (1.8.29)

and use finite differences to approximate(∂tξ
∂lξ

)
η
� 1

|X2 −X1|
( X2 −X0

|X2 −X0|
− X0 −X1

|X0 −X1|
)
. (1.8.30)

The normal unit vector, nξ, follows by dividing the right-hand side of (1.8.30) by its length, and the
directional curvature is extracted from the formula

κξ = −nξ ·
∂tξ
∂lξ

. (1.8.31)

Similar equations are used to compute nη and κη. If the curvilinear axes are orthogonal, the results
can be substituted into (1.8.13) and then into (1.8.18) to obtain an approximation to the mean
curvature at the central point, X0. In that case, but not more generally, knowledge of the position
of five points is sufficient for estimating the mean curvature.

Description as z = q(x, y)

Assume that a surface is described explicitly by the function z = q(x, y), as shown in Figure 1.8.3.
The unit vector normal to the intersection of the surface with a plane that is perpendicular to the
y axis is

n(x) =
1

(1 + q2x)
1/2

(−qxex + ez), (1.8.32)
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Figure 1.8.4 (a) Illustration of a line in the xy plane showing the tangential and normal unit vectors,
t and n, and the sign of the curvature, κ. (b) Illustration of plane polar coordinates, (r, θ), in the
xy plane centered at a point, x0.

and the unit vector normal to the surface is

n =
1

(1 + q2x + q2y)
1/2

(−qxex − qyey + ez), (1.8.33)

where qx = ∂q/∂x, qy = ∂q/∂y, and ex, ey, and ez are unit vectors along the x, y, and z axes.
Applying Meusnier’ formula (1.8.13), we find that the corresponding normal curvature is

Kx = κx n
(x) · n = κx

( 1 + q2x
1 + q2x + q2y

)1/2

, (1.8.34)

where κx is the curvature of the planar intersection. We observe that Kx = κx only when qy = 0,
corresponding to a cylindrical surface.

A similar expression can be written forKy. The mean curvature of the surface is not necessarily
equal to the average of Kx and Ky.

1.8.4 Curvature of a line in a plane

The curvature of a line in the xy plane, κ, can be computed from the first Frenet–Serret relation in
terms of the derivative of the unit tangent vector, t, with respect to the arc length, l,

dt

dl
= −κn. (1.8.35)

By convention, t and the normal unit vector n form a right-handed system of axes, as shown in
Figure 1.8.4(a). Projecting both sides of (1.8.35) onto n, we obtain

κ = −n · dt
dl

. (1.8.36)
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Since t · n = 0 and d(t · n)/dl = 0, we also have

κ = t · dn
dl

. (1.8.37)

If the line is tangential to the x axis at a point, t =
[
1, 0

]
and κ = dnx/dx.

Description in Cartesian coordinates as y = q(x)

Assume that a line in the xy plane does not turn upon itself but has a monotonic shape, as shown in
Figure 1.8.4(a). The shape of the line can be described by a single-valued function, y = q(x). Using
elementary geometry, we find that the normal unit vector, tangent unit vector, and rate of change
of the arc length with respect to x are given by

n =
1√

1 + q′2
(−q′ ex + ey ), t =

1√
1 + q′2

(ex + q′ ey),
dl

dx
=
√
1 + q′2, (1.8.38)

where ex and ey are unit vectors for the x and y axes, and a prime denotes a derivative with respect
to x. The curvature of the line is

κ = −n · dt
dl

= −dx

dl
n · dt

dx
= − 1

(1 + q′2)3/2
(−q′ ex + ey ) (ex + q′ ey)

′. (1.8.39)

Carrying out the differentiation and simplifying, we find that

κ = − q′′

(1 + q′2)3/2
=

1

q′

( 1√
1 + q′2

)′
= −

( q′√
1 + q′2

)′
. (1.8.40)

The slope angle, ζ, is defined by the equation tan ζ = q′, where −π/2 < ζ < π/2, as shown in
Figure 1.8.4(a). We note that 1 + q′2 = 1/ cos2 ζ, and obtain

κ =
1

q′
d cos ζ

dx
. (1.8.41)

Description in plane polar coordinates as r = R(θ)

Consider a system of plane polar coordinates, (r, θ), in the xy plane, centered at a point, x0, as
shown in Figure 1.8.4(b). The shape of a line can be described by a function r = R(θ). Using
elementary geometry, we find that the normal unit vector, tangent unit vector, and rate of change
of arc length with respect to θ are given by

n =
−R er +R′ eθ√

R2 +R′2
t =

R′ er +R eθ√
R2 +R′2

dl

dθ
=
√

R2 +R′2, (1.8.42)

where er and eθ are unit vectors in the radial and polar directions, and a prime denotes a derivative
with respect to θ. The curvature of the line is

κ = −n · dt
dl

= −dθ

dl
n · dt

dθ
= − 1

(R2 +R′2)3/2
(−R er +R′ eθ ) · (R′ er +R eθ)

′. (1.8.43)
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Recalling that ∂er/∂θ = eθ and ∂eθ/∂θ = −er, carrying out the differentiation and simplifying, we
obtain

κ =
RR′′ − 2R′2 −R2

(R2 +R′2)3/2
. (1.8.44)

In the case of a circular line of radius a, we set R(θ) = a and obtain κ = −1/a. The negative sign
merely reflects our convention.

Parametric representation in Cartesian coordinates

A line in the xy plane can be described in parametric form in terms of a variable, ξ, that increases
monotonically in the direction of the tangent unit vector, t. Regarding the x and y coordinates of a
point along the line as functions of ξ, we write x = X(ξ) and y = Y (ξ). Substituting these functions
into the first expression for the curvature given in (1.8.40), writing

q′ =
dy

dx
=

Yξ

Xξ
, q′′ =

q′ξ
Xξ

, (1.8.45)

and carrying out the differentiations, we obtain the formula

κ =
Xξξ Yξ − Yξξ Xξ

(X2
ξ + Y 2

ξ )
3/2

, (1.8.46)

where a subscript ξ denotes a derivative with respect to ξ. Formulas (1.8.40) arise by setting ξ = x.
If ξ increases in a direction that is opposite to that of t, a minus sign is introduced in front of the
fraction on the right-hand side of (1.8.46).

Often in practice, the functions X(ξ) and Y (ξ) are reconstructed numerically from data de-
scribing the location of marker points along the line using, for example, cubic spline interpolation,
as discussed in Appendix B. The derivatives of these functions are computed by numerical differ-
entiation, as discussed in Sections B.4 and B.5, Appendix B. In the simplest implementation, the
interpolating variable, ξ, is identified with the arc length of the polygonal line connecting successive
marker points.

Shape of a line in terms of the curvature

In the convenient case where the parameter ξ is the arc length along the line, l, the denominator in
(1.8.46) is equal to unity, yielding

κ = Xll Yl − Yll Xl. (1.8.47)

Differentiating the expression X2
l + Y 2

l = 1 with respect to l and using the resulting equation to
simplify (1.8.47), we obtain

κ =
Xll

Yl
= −Yll

Xl
. (1.8.48)

These expressions allow us to reconstruct a curve in terms of the curvature, κ(l), by integrating the
ordinary differential equations Xll = κYl and Yll = −κXl subject to suitable boundary conditions.
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Parametric description in plane polar coordinates

A line in the xy plane can be described in parametric form in plane polar coordinates, (r, θ), centered
at a chosen point, x0 = (x0, y0), in terms of a variable ξ that increases monotonically in the direction
of the tangent unit vector, t, as shown in Figure 1.8.4(b), so that r = R(ξ) and θ = Θ(ξ). Using the
transformation rules

x(ξ) = x0 +R(ξ) cosΘ(ξ), y(ξ) = y0 +R(ξ) sinΘ(ξ), (1.8.49)

and applying the chain rule, we find that the expression for the curvature (1.8.46) becomes

κ =
RRξξΘξ − 2R2

ξΘξ −RRξΘξξ −R2Θ3
ξ

(R2
ξ +R2Θ2

ξ)
3/2

, (1.8.50)

where a subscript denotes a derivative with respect to ξ. Formula (1.8.44) arises be setting ξ = θ.

1.8.5 Mean curvature of a surface as the divergence of the normal vector

The formulas derived in Sections 1.8.3 and 1.8.4 can be used to obtain useful expressions for the
mean curvature of a three-dimensional surface. Assume that the x axis is normal, and the yz plane
is tangential to a surface at a point. The mean curvature of the surface at that point is given by the
surface divergence of the normal vector,

2κm = ∇s · n ≡ (P · ∇ ) · n =
∂ny

∂y
+

∂nz

∂z
, (1.8.51)

where P = I − n ⊗ n is the surface projection operator and ∇ is the three-dimensional gradient.
Requiring that

n2
x + n2

y + n2
z = 1, (1.8.52)

taking a derivative with respect to x, and noting that nx = 1, ny = 0, and nz = 0 at the origin
of the chosen coordinates, we find that ∂nx/∂x = 0, which shows that the normal derivative of the
normal component of the normal vector is zero.

This property allows us to write a general expression for the mean curvature with reference
to an arbitrary system of Cartesian coordinates whose axes are not necessarily tangential or normal
to the surface at a point,

2κm ≡ ∇ · n =
∂nx

∂x
+

∂ny

∂y
+

∂nz

∂z
. (1.8.53)

If a surface is described implicitly by the equation F (x, y, z) = 0, the unit vector normal to
the surface is given by

n =
1

|∇F | ∇F, (1.8.54)

and the mean curvature is given by

2κm = ∇ ·
( 1

|∇F | ∇F
)
=

1

|∇F | ∇
2F − 1

|∇F |3 ∇F · (∇∇F ) · ∇F, (1.8.55)

where ∇∇F is the matrix of second derivatives.
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Explicit representation as z = q(x, y)

Assume that a surface is described explicitly as z = q(x, y). The components of the normal unit
vector are

nx = − qx
(1 + q2x + q2y)

1/2
, ny = − qy

(1 + q2x + q2y)
1/2

, nz =
1

(1 + q2x + q2y)
1/2

, (1.8.56)

where a subscript x or y denotes a derivative with respect to x or y. Applying (1.8.53), we obtain

2κm = − ∂

∂x

( qx
(1 + q2x + q2y)

1/2

)
− ∂

∂y

( qy
(1 + q2x + q2y)

1/2

)
. (1.8.57)

Carrying out the differentiations, we obtain

2κm = −
(1 + q2y) qxx − 2qxqyqxy + (1 + q2x) qyy

(1 + q2x + q2y)
3/2

. (1.8.58)

This formula also arises from (1.8.55) by setting F (x, y, z) = z − f(x, y). For a nearly flat surface,
2κm � −qxx − qyy.

Cylindrical polar coordinates

If a surface is described explicitly in cylindrical polar coordinates, (x, σ, ϕ), by the function x =
q(σ, ϕ), we set F = x− q(σ, ϕ) and compute

∇F = ex − qσ eσ −Qϕ eϕ, (1.8.59)

where Qϕ = qϕ/σ and a subscript σ or ϕ attached to q denotes a derivative with respect to σ or ϕ.
The mean curvature computed using (1.8.55) is

2κm = − 1

(1 + q2σ +Q2
ϕ)

3/2

[
(1 +Q2

ϕ) qσσ + 2qσQϕ
Qϕ − qσϕ

σ
+ (1 + q2σ) (Qϕϕ +

qσ
σ
)
]
, (1.8.60)

where Qϕϕ = qϕϕ/σ
2 . In the case of an axisymmetric surface, x = q(ϕ), the ϕ derivatives in (1.8.60)

are set to zero. For a nearly flat surface,

2κm � −
(
qσσ +Qϕϕ +

qσ
σ

)
. (1.8.61)

The union of the three terms inside the parentheses is the Laplacian of the function q(σ, ϕ).

Spherical polar coordinates

If a surface is described explicitly in spherical polar coordinates, (r, θ, ϕ), by the function r = q(θ, ϕ),
we set F = r − q(θ, ϕ) and compute

∇F = er −
qθ
r
eθ −

qϕ
r sin θ

eϕ, (1.8.62)

where a subscript θ or ϕ denotes a derivative with respect to θ or ϕ. The mean curvature is computed
using (1.8.55) (Problem 1.8.4). For a nearly spherical surface of radius a, we find that

2κm � 2

a
−
( cot θ

r2
qθ +

1

r2
qθθ +

1

r2 sin2 θ
qϕϕ

)
. (1.8.63)

The union of the three terms inside the parentheses is the Laplacian of the function q(θ, ϕ).
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Figure 1.8.5 (a) A contour integral of the binormal vector, b, can be used to define the mean
curvature. (b) The surface-average value of the mean curvature over an interfacial patch can be
computed from the position of four marker points.

1.8.6 Mean curvature as a contour integral

The domain of definition of the normal unit vector can be extended from a surface into the whole
three-dimensional space using expression (1.8.54). A version of Stokes’ theorem discussed in Section
A.7, Appendix A, states that∮

C

F× t dl =

∫∫
D

[
n∇ · F− (∇F) · n

]
dS (1.8.64)

for any arbitrary differentiable vector function F, where C is a closed contour bounding a surface,
D, n is the unit vector normal to D pointing toward a designated side, t is the unit vector tangential
to C, and b ≡ t×n is the binormal vector, as shown in Figure 1.8.5(a). Applying this identity with
F = n, we obtain ∮

C

n× t dl =

∫∫
D

[
n∇ · n− (∇n) · n

]
dS. (1.8.65)

Because n is a unit vector, (∇n) · n = 1
2 ∇(n · n) = 0, yielding∫∫

D

2κm n dS =

∮
C

n× t dl. (1.8.66)

If the surface is small, we may assume that the mean curvature and normal vector are constant and
obtain an approximation for the mean curvature,

κm � 1

2ΔS
n ·

∮
C

n× t dl, (1.8.67)

where ΔS is the surface area of D. The counterpart of this expression for a section of a two-
dimensional surface with arc length Δl is

κm � 1

2Δl
n ·Δt, (1.8.68)

where Δt is the difference in the unit tangent vectors between the last and first segment points.
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Figure 1.8.6 The second principal curvature of an axisymmetric surface, κ2 = 1/R2, is the curvature
of the dashed line representing the trace of the surface in a plane that is normal to the surface and
also normal to a plane of constant azimuthal angle, ϕ.

Numerical methods

To illustrate the practical application of the method, we consider a rectangular surface element
defined by four points, A–D, that lie at the intersections of a pair of ξ lines and a pair of η lines
representing surface curvilinear coordinates, as shown in Figure 1.8.5(b). Applying the trapezoidal
rule to approximate the contour integral in (1.8.67), we obtain

κm � 1

4ΔS
n ·

{ [(
n× ∂X

∂ξ

)
A
+ n× ∂X

∂ξ

)
B

]
(ξB − ξA)

+
[(

n× ∂X

∂η

)
B
+ n× ∂X

∂η

)
C

]
(ηC − ηB)

+
[(

n× ∂X

∂ξ

)
C
+ n× ∂X

∂ξ

)
D

]
(ξD − ξC)

+
[(

n× ∂X

∂η

)
D
+ n× ∂X

∂η

)
A

]
(ηA − ηD)

}
. (1.8.69)

The normal and tangent unit vectors on the right-hand side can be computed from the position of
surface marker points using standard methods of numerical differentiation, as discussed in Section
B.5, Appendix B.

1.8.7 Curvature of an axisymmetric surface

The mean curvature of an axisymmetric surface, illustrated in Figure 1.8.6, is the average of the two
principal curvatures. The first principal curvature is the curvature of the trace of the surface in an
azimuthal σx plane, denoted by κ1, and the second principal curvature is the curvature of the trace
of the surface in the orthogonal plane, denoted by κ2. In the case of a sphere, the two principal
curvatures are equal.
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Description as σ = w(x)

The shape of an axisymmetric surface in a meridional plane of constant azimuthal angle ϕ can be
described by the function σ = w(x), as shown in Figure 1.8.6(a). The normal unit vector is

n =
1√

1 + w′2
(eσ − w′ ex), (1.8.70)

where a prime denotes a derivative with respect to x. The mean curvature is given by the divergence
of the normal vector,

2κm =
∂nx

∂x
+

1

σ

∂(σnσ)

∂σ
= −

( w′

√
1 + w′2

)′

+
1

σ

∂

∂σ

( σ√
1 + w′2

)
. (1.8.71)

Carrying out the differentiations, we obtain

2κm = − w′′

(1 + w′2)3/2
+

1

w

1√
1 + w′2

, (1.8.72)

which can be rearranged into the expression

2κm =
1

w

1 + w′2 − ww′′

(1 + w′2)3/2
. (1.8.73)

The first term on the right-hand side of (1.8.72) is the principal curvature in an azimuthal plane,

κ1 = − w′′

(1 + w′2)3/2
. (1.8.74)

The second term on the right-hand side of (1.8.72) is the second principal curvature,

κ2 =
1

R2
, R2 = σ

√
1 + w′2 =

σ

sin θ
=

σ

nσ
, (1.8.75)

where R2 is the second principal radius of curvature and the angle θ is defined in Figure 1.8.6(a).
We have found that the second principal radius of curvature, R2, is the signed distance of the point
where the curvature is evaluated from the intersection of the extension of the normal vector with
the x axis. If nσ is negative, R2 is also negative, and vice versa.

Description as x = q(σ)

The shape of an axisymmetric surface in an azimuthal plane can be described by the function
x = q(σ), as shown in Figure 1.8.6(b). The normal unit vector is

n =
1√

1 + q′2
(ex − q′ eσ), (1.8.76)

where a prime denotes a derivative with respect to σ. The mean curvature is the divergence of the
normal vector,

2κm =
∂nx

∂x
+

1

σ

∂(σnσ)

∂σ
= − 1

σ

( σq′√
1 + q′2

)′
. (1.8.77)
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Carrying out the differentiations, we obtain

2κm = − q′′

(1 + q′2)3/2
− 1

σ

q′√
1 + q′2

, (1.8.78)

which is consistent with the more general expression (1.8.60).

The first term on the right-hand side of (1.8.78) is the principal curvature in an azimuthal
plane,

κ1 = − q′′

(1 + q′2)3/2
=

1

q′

( 1√
1 + q′2

)′

. (1.8.79)

The second term is the second principal curvature,

κ2 =
1

R2
, R2 = − σ

q′

√
1 + q′2 =

σ

sin θ
=

σ

nσ
, (1.8.80)

where R2 is the signed second principal radius of curvature, and the angle θ is defined in Figure
1.8.6(b).

Problems

1.8.1 Rate of change of the surface metric tensor

Express the material derivative of the surface metric tensor, gαβ , in terms of the velocity field.

1.8.2 Mean curvature

(a) Show that (1.8.19) can be reduced to the last expression in (1.8.18). Hint: Begin by expressing
the normal vector in the cross products in terms of the tangent vectors using (1.7.11), and then
expand the triple cross products.

(b) Derive an expression for the rate of change of the mean curvature following a point particle in
terms of the velocity.

1.8.3 Curvature of a line in a plane

Derive the expression for the curvature shown in (1.8.50).

1.8.4 Mean curvature in spherical polar coordinates

Derive an expression for the mean curvature of a surface that is described explicitly in spherical
polar coordinates, (r, θ, ϕ), by the function r = q(θ, ϕ).

Computer Problems

1.8.5 Mean curvature of a spheroid

Consider a spheroidal surface with one semi-axis equal to a and two semi-axes equal to b. In terms
of the native orthogonal surface curvilinear coordinates, ξ and η = ϕ, the position of a point on the
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spheroid is specified in parametric form as X = a cos ξ, Y = b sin ξ cosϕ, and Z = b sin ξ sinϕ, where
0 ≤ ξ ≤ π is a dimensionless parameter and ϕ is the azimuthal angle.

(a) Derive an expression for the mean curvature. Prepare a graph of the scaled mean curvature
aκm against ϕ for aspect ratios b/a = 0.1 (prolate spheroid), 1.0 (sphere), and 10 (oblate spheroid).
Verify that, when a = b, the mean curvature takes the uniform value 1/a = 1/b for a sphere.

(b) Repeat (a) using (1.8.28)–(1.8.31) with sufficiently small increments Δξ and Δη to approximate
the curvature.

1.8.6 Curvature of a line by parametric interpolation

The following set of points trace a smooth closed loop in the xy plane:

x 1.1 2.2 3.9 4.1 3.0 2.0 1.3
y 1.0 0.1 1.1 3.0 3.9 4.1 3.0

Write a program that uses cubic spline interpolation with periodic end conditions to compute the
Cartesian coordinates and curvature of a point along the loop as a function of a suitably chosen
parameter ξ that increases monotonically from 0 to 1 along the loop, from start to finish (Section
B.5, Appendix B). One plausible choice for ξ is the polygonal arc length, defined as the length of
the polygonal line connecting successive nodes, divided by the value at the last node. The program
should return the coordinates (x, y) corresponding to a specified value of ξ in the interval [0, 1], where
ξ = 0 and 1 correspond to x = 1.1 and y = 1.0. Generate a table of 32 values of the quadruplet
(ξ, x, y, κ) at 32 evenly spaced intervals of ξ between 0 and 1.

1.9 Interfacial surfactant transport

An impure interface between two immiscible fluids is sometimes occupied by a molecular layer of a
surfactant. Dividing the number of surfactant molecules inside an infinitesimal patch centered at a
given point by the patch surface area, we obtain the surface concentration of the surfactant, Γ. The
molecules of an insoluble surfactant are convected and diffuse over the interface, but do not enter
the bulk of the fluid. Our objective is to derive an evolution equation for the surface concentration
of an insoluble surfactant (e.g., [438]).

1.9.1 Two-dimensional interfaces

We begin by considering a chain of material point particles distributed along the inner or outer side
of a two-dimensional interface and label the point particles using a Lagrangian parameter, ξ. The
point particle position can be described in parametric form as X(ξ), as shown in Figure 1.9.1. Let
l be the arc length along the interface measured from an arbitrary point particle labeled ξ0. The
number of surfactant molecules residing inside a test section of the interface confined between ξ0
and ξ is

n(ξ, t) =

∫ l(ξ,t)

l(ξ0,t)

Γ(ξ′, t) dl(ξ′) =

∫ ξ

ξ0

Γ(ξ′, t)
∂l

∂ξ′
dξ′, (1.9.1)

where ξ′ is an integration variable. Let q be the flux of surfactant molecules along the interface
due to diffusion. Conservation of the total number of surfactant molecules inside the test section
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Figure 1.9.1 Point particles along a two-dimensional interface are identified by a parameter, ξ.

requires that

∂n

∂t
= q(ξ0)− q(ξ), (1.9.2)

where the time derivative is taken keeping ξ fixed. Substituting the expression for n from the last
integral of (1.9.1) and transferring the derivative inside the integral as a material derivative, D/Dt,
we obtain ∫ ξ

ξ0

D

Dt

(
Γ(ξ′, t)

∂l

∂ξ′

)
dξ′ = q(ξ0)− q(ξ). (1.9.3)

Now we take the limit as ξ tends to ξ0 and derive the differential equation

D

Dt

(
Γ
∂l

∂ξ

)
= −∂q

∂ξ
. (1.9.4)

Expanding the material derivative on the left-hand side, we obtain

DΓ

Dt

∂l

∂ξ
+ Γ

D

Dt

( ∂l

∂ξ

)
= −∂q

∂ξ
. (1.9.5)

To compute the second material derivative on the left-hand side, we use the Pythagorean theorem
to write

∂l

∂ξ
=
[(∂X

∂ξ

)2

+
(∂Y
∂ξ

)2]1/2
, (1.9.6)

and then compute

D

Dt

( ∂l

∂ξ

)
=

1

2

1

∂l/∂ξ

[
2
∂X

∂ξ

D

Dt

(∂X
∂ξ

)
+ 2

∂Y

∂ξ

D

Dt

(∂Y
∂ξ

) ]
. (1.9.7)

Interchanging the order of the material and the ξ derivative inside the square brackets on the right-
hand side and setting DX/Dt = ux and DY/Dt = uy, we find that

D

Dt

( ∂l

∂ξ

)
=

1

∂l/∂ξ

(∂X
∂ξ

∂ux

∂ξ
+

∂Y

∂ξ

∂uy

∂ξ

)
=

1

∂l/∂ξ

∂X

∂ξ
· ∂u
∂ξ

. (1.9.8)
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Rearranging, we obtain

D

Dt

( ∂l

∂ξ

)
=

∂l

∂ξ

∂X

∂l
· ∂u
∂l

=
∂l

∂ξ
t · ∂u

∂l
, (1.9.9)

where t = ∂X/∂l is the tangent unit vector shown in Figure 1.9.1. Substituting the final expression
into (1.9.5), we obtain

DΓ

Dt
+ Γ t · ∂u

∂l
= −∂q

∂l
, (1.9.10)

which is the targeted evolution equation for the surfactant concentration.

In certain applications, it is convenient to describe the surfactant surface concentration in
Eulerian form in terms of x and t, as shown in Figure 1.9.1. The material derivative is then

DΓ

Dt
≡
(∂Γ
∂t

)
ξ
=

∂Γ

∂t
+ ux

∂Γ

∂x
, (1.9.11)

where the last expression involves Eulerian derivatives with respect to x and t. Similar expressions
can be written with reference to curvilinear axes.

Fick’s law

The diffusive flux of a surfactant along an interface can be described by Fick’s law,

q = −Ds
∂Γ

∂l
, (1.9.12)

whereDs is the surfactant surface diffusivity with unit of length squared divided by time. In practice,
the surfactant diffusivity is typically small. Substituting this expression into (1.9.10), we derive a
convection–diffusion equation,

DΓ

Dt
+ Γ t · ∂u

∂l
=

∂

∂l

(
Ds

∂Γ

∂l

)
. (1.9.13)

Stretching and expansion

It is illuminating to decompose the interfacial velocity into a tangential component and a normal
component,

u = ut t+ un n, (1.9.14)

where n is the normal unit vector, as shown in Figure 1.9.1. The tangential and normal velocities
are ut = u ·t and un = u ·n. Noting that t ·n = 0, t ·t = 1, and n ·n = 1, and using the Frenet-Serret
relations dt/dl = −κn and dn/dl = κ t, we compute

t · ∂u
∂l

=
∂ut

∂l
+ un t · ∂n

∂l
=

∂ut

∂l
+ κun, (1.9.15)
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where κ is the interfacial curvature. Substituting this expression into (1.9.13), we obtain

DΓ

Dt
+ Γ

( ∂ut

∂l
+ κun

)
=

∂

∂l

(
Ds

∂Γ

∂l

)
. (1.9.16)

The first term inside the parentheses on the left-hand side expresses the effect of interfacial stretching,
and the second expresses the effect of interfacial expansion.

Stretching of a flat interface

As an application, we consider a flat interface along the x axis that is stretched uniformly under the
influence of a tangential velocity field, ux. Identifying the arc length l with x and setting κ = 0, we
find that the transport equation (1.9.16) reduces to

DΓ

Dt
+ Γ

∂ux

∂x
=

∂

∂x

(
Ds

∂Γ

∂x

)
. (1.9.17)

The material derivative can be resolved into Eulerian derivatives with respect to x and t, yielding

∂Γ

∂t
+ ux

∂Γ

∂x
+ Γ

∂ux

∂x
=

∂

∂x

(
Ds

∂Γ

∂x

)
or

∂Γ

∂t
+

∂(uxΓ)

∂x
=

∂

∂x

(
Ds

∂Γ

∂x

)
. (1.9.18)

This equation could have been derived directly by performing a surfactant molecular balance over a
stationary differential control volume along the x axis, taking into consideration the convective and
diffusive flux contributions.

In the case of a uniformly stretched interface, ux = αx, where α is a constant rate of extension.
If the surfactant concentration is uniform at the initial instant, it will remain uniform at any time,
governed by the linear equation

dΓ

dt
+ αΓ = 0. (1.9.19)

The solution reveals that, when α is positive, the surfactant concentration decreases exponentially
due to dilution, Γ(t) = Γ(t = 0) exp(−αt).

Expansion of a circular interface

As a second application, we consider a cylindrical interface with circular cross-section of radius a(t)
centered at the origin, expanding under the influence of a uniform radial velocity in the absence
of circumferential motion. In corresponding plane polar coordinates, (r, θ), the transport equation
(1.9.16) with κ = 1/a and constant diffusivity becomes

DΓ

Dt
+ Γ

ur

a
=

Ds

a2
∂2Γ

∂θ2
. (1.9.20)

Resolving the material derivative into Eulerian derivatives with respect to r and t, we obtain

∂Γ

∂t
+ Γ

ur

a
=

Ds

a2
∂2Γ

∂θ2
. (1.9.21)
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If the surfactant concentration is uniform at the initial instant, it will remain uniform at any time,
governed by the linear equation

dΓ

dt
+ Γ

ur

a
= 0. (1.9.22)

In the case of expansion, ur > 0, the surfactant concentration decreases due to dilution, dΓ/dt <
0. In the case of contraction, ur < 0, the surfactant concentration increases due to compaction,
dΓ/dt > 0.

Interfacial markers

The material derivative expresses the rate of change of the surfactant concentration following the
motion of point particles residing inside an interface. In numerical practice, it may be expedient to
follow the motion of interfacial marker points that move with the normal component of the fluid
velocity and with an arbitrary tangential velocity, vt. If vt = 0, the marker points move normal to
the interface at any instant. The velocity of a marker point is

v = un n+ vt t. (1.9.23)

By definition,

DΓ

Dt
=

dΓ

dt
+ (ut − vt)

∂Γ

∂l
, (1.9.24)

where d/dt is the rate of change of the surfactant concentration following a marker point. Substi-
tuting this expression into the transport equation (1.9.16), we obtain

dΓ

dt
+ (ut − vt)

∂Γ

∂l
+ Γ (

∂ut

∂l
+ κun ) =

∂

∂l

(
Ds

∂Γ

∂l

)
, (1.9.25)

which can be restated as

dΓ

dt
+

∂(utΓ)

∂l
− vt

∂Γ

∂l
+ Γκun =

∂

∂l

(
Ds

∂Γ

∂l

)
. (1.9.26)

The second term on the left-hand side represents the interfacial convective flux.

1.9.2 Axisymmetric interfaces

Next, we consider a chain of material point particles distributed along the inner or outer side of
the trace of an axisymmetric interface in an azimuthal plane, and label the point particles using a
parameter, ξ, so that their position in an azimuthal plane is described parametrically as X(ξ). Let l
be the arc length along the trace of the interface measured from an arbitrary point particle labeled
ξ0, as illustrated in Figure 1.9.2.

To derive an evolution equation for the surface surfactant concentration, we introduce cylin-
drical polar coordinates, (x, σ, ϕ), and express the number of surfactant molecules inside a ring-like
material section of the interface confined between ξ0 and ξ as

n(ξ, t) = 2π

∫ l(ξ,t)

l(ξ0,t)

Γ(ξ′, t)σ(ξ′) dl(ξ′) = 2π

∫ ξ

ξ0

Γ(ξ′, t)
∂l

∂ξ′
σ(ξ′) dξ′. (1.9.27)
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Figure 1.9.2 Point particles along the trace of an axisymmetric interface in an azimuthal plane are
identified by a parameter ξ. The angle χ is subtended between the x axis and the straight line
defined by the extension of the normal vector.

Conservation of the total number of surfactant molecules inside the test section requires that

∂n

∂t
= 2πσ0 q(ξ0)− 2πσq(ξ), (1.9.28)

where q is the flux of surfactant molecules along the interface by diffusion, and the time derivative
is taken keeping ξ fixed. The counterpart of the balance equation (1.9.4) is

D

Dt

(
Γ(ξ, t)σ(ξ, t)

∂l

∂ξ

)
= −∂(σq)

∂ξ
, (1.9.29)

and the counterpart of equation (1.9.10) is

DΓ

Dt
+ Γ ( t · ∂u

∂l
+

uσ

σ
) = − 1

σ

∂(σq)

∂l
. (1.9.30)

In deriving this equation, we have set DΣ/Dt = uσ, where Σ is the distance of a point particle from
the axis of revolution.

Stretching and expansion

In terms of the normal and tangential fluid velocities, un and ut, the transport equation (1.9.30)
takes the form

DΓ

Dt
+ Γ (

∂ut

∂l
+ κun +

uσ

σ
) = − 1

σ

∂(σq)

∂l
, (1.9.31)
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where κ is the curvature of the interface in an azimuthal plane. Next, we introduce the angle χ
subtended between the x axis and the normal vector to the interface at a point, as shown in Figure
1.9.2. Substituting uσ = un sinχ− ut cosχ, we obtain

DΓ

Dt
+ Γ

( ∂ut

∂l
− cosχ

σ
ut + (κ+

sinχ

σ
)un

)
= − 1

σ

∂(σq)

∂l
. (1.9.32)

The sum of the two terms inside the innermost parentheses on the left-hand side is twice the mean
curvature of the interface, 2κm. The first two terms inside the large parentheses can be consolidated
to yield the final form

DΓ

Dt
+ Γ

( 1

σ

∂(σut)

∂l
+ 2κmun

)
= − 1

σ

∂(σq)

∂l
. (1.9.33)

The first term inside the large parentheses on the left-hand side expresses the effect of axisymmetric
interfacial stretching, and the second expresses the effect of interfacial expansion.

Marker points

An evolution equation for the rate of change of the surface surfactant concentration following in-
terfacial marker points that are not necessarily point particles can be derived working as in Section
1.9.1 for two-dimensional flow. The result is

dΓ

dt
+ (ut − vt)

∂Γ

dl
+ Γ

( 1

σ

∂(σut)

∂l
+ 2κmun

)
= − 1

σ

∂(σq)

∂l
, (1.9.34)

which can be restated as

dΓ

dt
+

1

σ

∂(σutΓ)

∂l
− vt

∂Γ

∂l
+ Γ2κmun = − 1

σ

∂(σq)

∂l
. (1.9.35)

When vt = 0, the marker points move normal to the interface and the third term on the right-hand
side does not appear.

1.9.3 Three-dimensional interfaces

To derive an evolution equation for the surface surfactant concentration over a three-dimensional
interface, we introduce convected surface curvilinear coordinates, (ξ, η), embedded in the interface,
as discussed in Section 1.7. The total number of surfactant molecules residing inside a material
interfacial patch consisting of a fixed collection of point particles is

n =

∫∫
Patch

Γ dS =

∫∫
Ξ

Γhs dξ dη, (1.9.36)

where hs is the surface metric and Ξ is the fixed support of the patch in the (ξ, η) plane. A mass
balance requires that

dn

dt
= −

∮
C

b · q dl, (1.9.37)

where C is the edge of the patch, b = t × n is the binormal vector, t is the unit tangent vector, n
is the unit vector normal to the patch, and q is the tangential diffusive surface flux. Substituting
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the last integral in (1.9.36) in place of n into the left-hand side of (1.9.37), and transferring the time
derivative inside the integral as a material derivative, we obtain∫∫

Ξ

D(Γhs)

Dt
dξ dη = −

∮
b · q dS. (1.9.38)

Next, we expand the material derivative inside the integral, use (1.7.32) to evaluate the rate of
change of the surface metric, and apply the divergence theorem to convert the line integral on the
right-hand side into a surface integral, obtaining∫∫

Patch

( DΓ

Dt
+ Γ∇s · u

)
dS = −

∫∫
Patch

∇s · q dS, (1.9.39)

where ∇s ≡ (I−n⊗n) ·∇ is the surface gradient and ∇s ·u is the surface divergence of the velocity.
Because the size of the material patch is arbitrary, the integrands must balance to zero, yielding the
transport equation

DΓ

Dt
+ Γ∇s · u = −∇s · q. (1.9.40)

Stretching and expansion
n

t

n

b

C

Patch

Illustration of an interfacial
patch occupied by surfactant.

Physical insights can be obtained by resolving the surface velocity
into its tangential and normal constituents, u = us + un n, where
un = u · n is the normal velocity and us is the tangential (surface)
velocity. Substituting this expression into the surface divergence of
the velocity on the left-hand side of (1.9.40), we obtain

DΓ

Dt
+ Γ

(
∇s · us + n · ∇sun + un∇s · n

)
= −∇s · q. (1.9.41)

The inner product, n · ∇sun, is identically zero due to the orthogo-
nality of the surface gradient and normal vector. Setting the surface
divergence ∇s ·n equal to twice the mean curvature of the interface,
2κm, we obtain the transport equation

DΓ

Dt
+ Γ

(
∇s · us + 2κmun

)
= −∇s · q. (1.9.42)

The first term inside the parentheses on the left-hand side expresses the effect of interfacial stretching,
and the second expresses the effect of interfacial expansion. In the case of a stationary interface,
un = 0, only the tangential velocity field affects the surfactant concentration.

Fick’s law

The tangential diffusive flux vector can be described by Fick’s law,

q = −Ds ∇sΓ, (1.9.43)
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where Ds is the surfactant surface diffusivity. Substituting this expression into (1.9.40), we derive a
convection–diffusion equation,

DΓ

Dt
+ Γ∇s · u = ∇s · (Ds ∇sΓ). (1.9.44)

When the diffusivity is constant, the diffusion term becomes Ds∇2
sΓ, where ∇2

s ≡ ∇s · ∇s is the
surface Laplacian operator, sometimes also called the Laplace–Beltrami operator. Expression for this
operator in orthogonal and nonorthogonal curvilinear coordinates can be derived using the formula
presented in Appendix A.

Interfacial markers

In numerical practice, it may be expedient to follow the motion of interfacial marker points moving
with the normal component of the fluid velocity, unn, and with an arbitrary tangential velocity, vs.
The marker-point velocity is

v = un n+ vs. (1.9.45)

When vs = 0, a marker point moves with the fluid velocity normal to the interface alone. Conse-
quently, if the interface is stationary, the marker point is also stationary. When vs = u− un n, the
marker points are material point particles moving with the fluid velocity. The rate of change of the
surfactant concentration following the marker points is related to the material derivative by

dΓ

dt
=

DΓ

Dt
− (us − vs) · ∇Γ. (1.9.46)

Combining this expression with (1.9.42), we obtain

dΓ

dt
+ (us − vs) · ∇Γ + Γ (∇s · us + 2κmun) = −∇s · q. (1.9.47)

Rearranging, we derive the alternative form

dΓ

dt
+∇s · (Γus)− vs · ∇sΓ + Γ2κmun = −∇s · q. (1.9.48)

If the point particles move normal to the interface, the third term on the left-hand side expressing
a convective contribution does not appear.

Problems

1.9.1 Two-dimensional and axisymmetric transport

Show that, in the case of two-dimensional flow depicted in Figure 1.9.1 or axisymmetric flow depicted
in Figure 1.9.2, equation (1.9.48) reduces, respectively, to (1.9.26) or (1.9.35), by setting vs = vtt.

1.9.2 Transport in a spherical surface

Derive the specific form of (1.9.48) over a spherical surface of radius a in terms of the meridional
angle, θ, and azimuthal angle, ϕ.
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Figure 1.10.1 The shape of a material surface can be described in Eulerian form in global Cartesian
coordinates as z = f(x, y).

1.10 Eulerian description of material lines and surfaces

It is sometimes convenient, or even necessary, to describe a material line or surface in Eulerian
parametric form using Cartesian or other global curvilinear coordinates instead of surface curvilinear
coordinates discussed earlier in this chapter. The Eulerian description is particularly useful in studies
of interfacial flow where a material line or surface is typically identified with an interface between
two immiscible fluids or with a free surface separating a gas from a liquid.

A function that describes the shape of a material line or surface in Eulerian form satisfies an
evolution equation that emerges by requiring that the motion of point particles on either side of the
line or surface is consistent with the stationary or evolving shape of the line or surface described by
the Eulerian form. This evolution equation can be regarded as a kinematic compatibility condition,
analogous to a kinematic boundary condition specifying the normal or tangential component of the
velocity on a rigid or deformable boundary.

1.10.1 Kinematic compatibility

With reference to Figure 1.10.1, we describe the shape of a material surface in Cartesian coordinates
by the function z = f(x, y, t). If the material surface is evolving, the function f changes in time,
as indicated by the third of its arguments. To derive an evolution equation for f , we consider
the position of a point particle in the material surface at times t and t + Δt, where Δt is a small
time interval, recall that the point particle moves with the fluid velocity, and exercise geometrical
reasoning to write

f(x+ uxΔt, y + uyΔt, t+Δt) = f(x, y, t) + uzΔt. (1.10.1)
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Expanding the left-hand side of (1.10.1) in a Taylor series with respect to the first two of its arguments
about the triplet (x, y, t), we find that

f(x, y, t+Δt) +
∂f

∂x
uxΔt+

∂f

∂y
uyΔt = f(x, y) + uzΔt. (1.10.2)

Now dividing each term by Δt, taking the limit as Δt becomes infinitesimal, and rearranging, we
derive the targeted evolution equation

∂f

∂t
+ ux

∂f

∂x
+ uy

∂f

∂y
− uz = 0, (1.10.3)

expressing kinematic compatibility. If the shape of the material surface is stationary, ∂f/∂t = 0,
the remaining three terms on the left-hand side of (1.10.3) must balance to zero.

Level-set formulation

A material surface can be described implicitly by the equation

F (x, y, z, t) ≡ f(x, y, t)− z = 0. (1.10.4)

The function F (x, y, z, t) is negative above the material surface, positive below the material surface,
and zero over the material surface. Equation (1.10.3) can be restated in terms of the material
derivative of F as

DF

Dt
≡ ∂F

∂t
+ u · ∇F = 0. (1.10.5)

Introducing the upward normal unit vector, n = −∇F/|∇F |, we obtain

1

|∇F |
∂F

∂t
= un, (1.10.6)

where un ≡ u · n is the normal velocity component. This form shows that un must be continuous
across a material surface. The tangential velocity component may undergo a discontinuity that is
inconsequential in the context of kinematics.

The implicit function theorem allows us to generalize these results and state that, if a material
surface is described in a certain parametric form as

F (x, t) = c, (1.10.7)

where c is a constant, then the evolution of the level-set function F (x, t) is governed by equation
(1.10.5) or (1.10.6). This is another way of saying that the scalar field represented by the function
F (x, t) is convected by the flow. Stated differently, a material surface is a convected level-set of the
function F (x, t) determined by the constant c.

As an example, we describe a material line in a two-dimensional flow in plane polar coordinates,
(r, θ), as r = f(θ, t), and introduce the level-set function

F (r, θ, t) ≡ f(θ, t)− r. (1.10.8)
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Kinematic compatibility requires that

Df

Dt
=

∂f

∂t
+

uθ

r

∂f

∂θ
− ur = 0, (1.10.9)

where the velocity is evaluated on either side of the material line, subject to the condition that the
normal velocity is continuous across the material line.

1.10.2 Generalized compatibility condition

Since the gradient of the level-set function, ∇F , is perpendicular to a material surface, an arbitrary
tangential component, vt, can be added to the interfacial fluid velocity u in (1.10.5), yielding

∂F

∂t
+ (un n+ vt ) · ∇F = 0. (1.10.10)

For example, we may set

vt = β (I− n⊗ n) · u = β n× u× n, (1.10.11)

where β is an arbitrary time-dependent coefficient allowed to vary over the material surface. The
projection operator I − n ⊗ n extracts the tangential component of a vector that it multiplies.
Equation (1.10.10) reveals that it is kinematically consistent to allow imaginary interfacial particles
to move with their own velocity,

v = un n+ β(I− n⊗ n) · u, (1.10.12)

that can be different than the fluid velocity. When β �= 1, the interfacial particles represent marker
points devoid of physical interpretation.

1.10.3 Line curvilinear coordinates

An evolving material line in the xy plane can be described parametrically by the equation

x(ξ, t) = xR(ξ) + ζ(ξ, t)nR(ξ), (1.10.13)

where xR(ξ) describes a steady reference line, ξ is a parameter increasing in a specified direction
along the reference line, nR(ξ) is the unit vector normal to the reference line, and ζ(ξ, t) is the normal
displacement, as illustrated in Figure 1.10.2. This representation is acceptable when the material
line is sufficiently close to the reference line so that ζ(ξ, t) is a single-valued and continuous shape
function. In practice, the material line can be the trace of a cylindrical surface whose generators are
parallel to the z axis.

It will be necessary to introduce the arc length along the material line, lξ, increasing in the
direction of the parameter ξ. A point particle in an evolving material line moves tangentially and
normal to the reference line. If at time t the point particle is at a position corresponding to lξ, then
at time t+Δt the same point particle will be at a position corresponding to lξ +Δlξ, where

Δlξ =
R

R+ ζ
uξΔt =

1

1 + κRζ
uξΔt, (1.10.14)
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Figure 1.10.2 An evolving material line can be described in Eulerian form with respect to a stationary
reference line in terms of the normal displacement, ζ. The radius of curvature of the reference line
is denoted by R.

uξ is the velocity component tangential to the reference line evaluated at the position of the material
line, R is the signed radius of curvature of the reference line, and κR = 1/R is the curvature of the
reference line. For the configuration illustrated in Figure 1.10.2, R and κR are positive. Expression
(1.10.14) arises by approximating the line locally with a circular arc. Using the second Frenet–Serret
relation, ∂nR/∂lξ = κRtR, we find that

κRζ = tR · ∂(ζn
R)

∂lξ
=

∂xR

∂lξ
· ∂(ζn

R)

∂lξ
, (1.10.15)

where tR is the unit vector tangent to the reference line. Now exercising geometrical reasoning, we
find that

ζ(lξ +Δlξ, t+Δt) = ζ(lξ, t) + uR
n Δt, (1.10.16)

where uR
n is the velocity component normal to the reference line evaluated at the position of the

material line, as illustrated in Figure 1.10.2. Expanding the left-hand side in a Taylor series and
linearizing with respect to Δt, we derive the compatibility condition

∂ζ

∂t
+

uξ

1 + κRζ

∂ζ

∂lξ
− uR

n = 0. (1.10.17)

In the case of a rectilinear reference line, κR = 0, we recover the compatibility condition derived
earlier in this section.

Differentiating expression (1.10.13) with respect to lξ and using the second Frenet–Serret
relation, we obtain a vector that is tangential to the material line,

∂x

∂ξ
= (1 + κRζ) tR +

∂ζ

∂ξ
nR. (1.10.18)

This expression shows that an arbitrary tangential velocity with components

vξ = β (1 + κRζ), vRn = β
∂ζ

∂ξ
(1.10.19)

can be included on the left-hand side of (1.10.17), where β(ξ) is an arbitrary coefficient.
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1.10.4 Surface curvilinear coordinates

An evolving material surface can be described parametrically by the equation

x(ξ, η, t) = xR(ξ, η) + ζ(ξ, η, t)nR(ξ, η), (1.10.20)

where the function xR(ξ, η) describes a steady reference surface, ξ and η comprise a system of
two surface curvilinear coordinates in the reference surface, nR(ξ, η) is the unit vector normal to
the reference surface, and ζ(ξ, η, t) is the normal displacement from the reference surface. This
representation is appropriate when the material surface is sufficiently close to the reference surface
so that ζ(ξ, η, t) is a single-valued and continuous shape function.

Working as in Section 1.10.3 for a material line, we find that, in the case of orthogonal surface
curvilinear coordinates, (ξ, η), the shape function evolves according to the equation

∂ζ

∂t
+

uξ

1 +Kξζ

∂ζ

∂lξ
+

uη

1 +Kηζ

∂ζ

∂lη
− uR

n = 0, (1.10.21)

where lξ and lη is the arc length in the reference surface along the two surface curvilinear coordinates,
Kξ and Kη are the corresponding principal curvatures, uξ and uη are velocity components tangential
to the reference surface evaluated at the material surface, and uRn is the velocity component normal
to the reference surface. If the reference surface is a sphere of radius a, we may identify ξ with the
meridional angle, θ, η with the azimuthal angle, ϕ, and set lθ = aθ, lϕ = (a sin θ)ϕ, κξ = 1/a, and
κη = 1/a.

Equation (1.10.21) can be expressed in coordinate-free vector notation in terms of the surface
gradient of the reference surface, ∇R

s = PR ·∇, and corresponding surface velocity, uR
s = PR ·u, as

∂ζ

∂t
+ uR

s · ∇R
s F − uR

n = 0, (1.10.22)

where PR = I − nR ⊗ nR is the tangential projection operator and I is the identity matrix. The
surface function, F(l, α), satisfies the differential equation

∂F
∂l

=
1

1 +Kζ

∂ζ

∂l
, (1.10.23)

where l is the arc length along the intersection of the material surface with a normal plane, corre-
sponding to the tangent unit vector t, K is the corresponding principal curvature, and α is the angle
subtended between the intersection and a specified tangential direction. For example, α = 0 may
correspond to the direction of maximum principal curvature. The pair (l, α) constitutes a system of
plane polar coordinates tangential to the material surface at a point of interest. By analogy with
(1.10.15), we write

Kζ = t · ∂(ζn
R)

∂l
=

∂xR

∂l
· ∂(ζn

R)

∂l
, (1.10.24)

which demonstrates that the right-hand side of (1.10.23) is independent of α.
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Problems

1.10.1 Expanding sphere

Consider a radially expanding sphere of radius a(t) described in spherical polar coordinates by the
equation F (r, t) = r−a(t) = 0. Use (1.10.5) to compute the radial velocity at the surface of a sphere
in terms of F .

1.10.2 Boundary condition at a propagating wavy material line

Consider a material line in the xy plane described by the function y = a sin[k(x − ct)], where k is
the wave number and c is the phase velocity. Use (1.10.5) to derive a boundary condition for the
velocity.

1.10.3 Line and surface curvilinear coordinates

(a) Develop a compatibility condition when the normal vector on the right-hand side of (1.10.13) is
replaced with an arbitrary unit vector that has a normal component.

(b) Repeat (a) for (1.10.20).

1.11 Streamlines, stream tubes, path lines, and streak lines

An instantaneous streamline in a flow is a line whose tangential vector at every point is parallel to
the current velocity vector. A closed streamline forms a simple or twisted loop, whereas an open
streamline crosses the boundaries of a flow or else extends to infinity. A streamline can meet another
streamline or a multitude of other streamlines at a stagnation point. Stagnation points may occur in
the interior of a flow or at the boundaries. Since the velocity is a single-valued function of position,
the velocity at a stagnation point must necessarily vanish.

Autonomous differential equations

To describe a streamline, we introduce a variable τ that increases monotonically along the streamline
in the direction of the velocity vector. One acceptable choice for τ is the time it takes for a point
particle to move along the streamline from a specified initial position as it is convected by the
frozen instantaneous velocity field. If the flow is steady, τ is the real time, t. The streamline is
then described by an autonomous system of differential equations, with no time dependence on the
right-hand side,

dx

dτ
= u(x, t = t0), (1.11.1)

where t0 is a specified time. Recasting (1.11.1) into the form

dx

ux
=

dy

uy
=

dz

uz
= dτ, (1.11.2)

confirms that an infinitesimal vector that is tangential to a streamline is parallel to the velocity.
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1.11.1 Computation of streamlines

To compute a streamline passing through a specified point, x0, we integrate the differential equations
(1.11.1) forward or backward with respect to τ , subject to the initial condition, x(τ = 0) = x0, using
a standard numerical method, such as a Runge–Kutta method discussed in Section B.8, Appendix B.
The integration terminates when the magnitude of the velocity becomes exceedingly small, signaling
approach to a stagnation point.

Setting the time step

If the integration step, Δt, is kept constant during the integration, the travel distance along a
streamline will be proportional to the magnitude of the local velocity at each step. A large number
of steps will be required in regions of slow flow with a simple streamline pattern. To circumvent this
difficulty, we may set the time step inversely proportional to the local magnitude of the velocity,
thereby ensuring a nearly constant travel distance in each step. This method has the practical disad-
vantage that the computed streamline may artificially cross stagnation points where it is supposed
to end. A remedy is to set the travel distance equal to, or less than, the finest length scale in the
flow.

Ideally, the time step should be adjusted according to both the magnitude of the velocity
and local curvature of the computed streamline, so that sharply turning streamlines are described
with sufficient accuracy and the computation does not stall at regions of slow flow with simple
structure. However, implementing these conditions increases the complexity of the computer code.
Unless a high level of spatial resolution is required, the method of constant travel distance should
be employed.

1.11.2 Stream surfaces and stream tubes

The collection of all streamlines passing through an open line in a flow forms a stream surface, and
the collection of all streamlines passing through a closed loop forms a stream tube. Consider two
closed loops wrapping once around a stream tube, and draw two surfaces, D1 and D2, that are
bounded by each loop, as shown in Figure 1.11.1. The volumetric flow rate across each surface is

Qi =

∫∫
Di

u · n dS (1.11.3)

for i = 1, 2, where n is the unit vector normal to D1 or D2. Using the divergence theorem, we
compute

Q2 = Q1 −
∫∫

St

u · n dS +

∫∫∫
Vt

∇ · u dV, (1.11.4)

where St is the surface of the stream tube extending between the two loops, and Vt is the volume
enclosed by the surfaces D1, D2, and St. Since the velocity is tangential to the stream tube and
therefore perpendicular to the normal vector on St, the surface integral over St is zero and (1.11.4)
simplifies into

Q2 = Q1 +

∫∫∫
Vt

∇ · u dV. (1.11.5)
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Figure 1.11.1 Illustration of a stream tube and two closed loops wrapping around the stream tube.

This equation suggests that the volumetric flow rate may increase or decrease along a stream tube
according to whether the fluid inside the stream tube undergoes expansion or contraction.

Incompressible fluids

If the fluid is incompressible, ∇ · u = 0, the flow rate across any cross-section of a stream tube
is constant, Q1 = Q2. Consequently, in the absence of singularities, a stream tube that carries a
finite amount of fluid may not collapse into a nonsingular point where the fluid velocity is nonzero.
If this occurred, the flow rate at the point of collapse would have to vanish, which contradicts the
assumption that the stream tube carries a finite amount of fluid. A similar argument can be made to
show that a streamline, approximated as a stream tube with infinitesimal cross-section, may not end
suddenly in a flow, but must meet another streamline or multiple streamlines at a stagnation point,
form a closed loop, extend to infinity, or cross the boundaries of the flow. A third consequence of
(1.11.5) is that the distance between two adjacent streamlines in a two-dimensional incompressible
flow is inversely proportional to the local magnitude of the fluid velocity. The faster the velocity,
the closer the streamlines.

1.11.3 Streamline coordinates

Useful insights can be obtained by considering the motion of point particles with reference to the
instantaneous structure of the velocity field near a streamline. The point particles translate tan-
gentially to the streamlines and rotate around the local vorticity vector, which may point in an
arbitrary direction with respect to the streamlines. (We note parenthetically that a flow where the
vorticity vector is tangential to the velocity vector at every point, u · ω = 0, is called a Beltrami
flow.) Our main goal is to establish a relation between the direction and magnitude of the vorticity
vector and the structure of the streamline pattern in two- and three-dimensional flow.

Frenet–Serret framework

As a preliminary, we introduce a system of orthogonal curvilinear coordinates constructed with
reference to a streamline. We begin by labeling point particles along the streamline by the arc
length, l, and observe that the unit vector t = dx/dl is tangential to the streamline and therefore
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Figure 1.11.2 Illustration of a streamline and associated curvilinear axes constructed with reference
to the streamline in (a) three-dimensional, and (b) two-dimensional flow.

parallel to the velocity, as shown in Figure 1.11.2(a). The principal unit vector normal to the
streamline, n, is defined by the first Frenet–Serret relation

n = − 1

κ

∂t

∂l
, (1.11.6)

where κ is the signed curvature of the streamline, as discussed in Section 1.6.3. The curvature of
the streamline shown in Figure 1.11.2(a) is positive, κ > 0. Next, we introduce the binormal unit
vector defined by the equation b = t×n. The three unit vectors, t, n, and b, define three mutually
orthogonal directions that can be used to construct a right-handed, orthogonal, curvilinear system
of axes, so that t = n × b and n = b × t, as discussed in Section 1.6.2. The second and third
Frenet–Serret relations are

∂n

∂l
= κ t+ τ b,

∂b

∂l
= −τ n, (1.11.7)

where τ is the torsion of the streamline.

Local Cartesian coordinates

In the next step, we introduce a system of Cartesian coordinates with origin at a particular point
on a chosen streamline. The x, y, and z axes point in the directions of t, n, and b, as shown in
Figure 1.11.2(a). Since the velocity is tangential to the streamline, uy = 0 and uz = 0 at the origin
by definition at any instant. Moreover,

∂uy

∂x
=

∂u

∂l
· n =

∂(u · n)
∂l

− ∂n

∂l
· u, ∂uz

∂x
=

∂u

∂l
· b =

∂(u · b)
∂l

− ∂b

∂l
· u. (1.11.8)

Because the velocity is tangential to the streamline and thus perpendicular to the normal and
binormal vectors along the entire streamline, u ·n = 0, u ·b = 0, and the first term after the second
equal sign of each equation in (1.11.8) is identically zero. Using the Frenet–Serret formulas (1.11.7)
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to simplify the second term, we obtain

∂uy

∂x
= −κux,

∂uz

∂x
= 0. (1.11.9)

In Section 1.11.4, these expressions will be used to relate the vorticity to the structure of the velocity
field around a streamline.

Vorticity in two-dimensional flow

Consider a two-dimensional flow in the xy plane, as illustrated in Figure 1.11.2(b). Using relations
(1.11.9), we find that the z vorticity component at the origin of the local Cartesian axes is given by

ωz =
∂uy

∂x
− ∂ux

∂y
= −κux − n · (∇u) · t. (1.11.10)

Introducing plane polar coordinates with origin at the center of curvature of a streamline at a point,
as shown in Figure 1.11.2(b), and noting that ux = −uθ along the y axis pointing in the radial
direction, we obtain

ωz =
uθ

R
+
(∂uθ

∂r

)
r=R

, (1.11.11)

where R = 1/κ is the radius of curvature of the streamline. This expression reveals that point
particles spin about the z axis due to the global motion of the fluid associated with the curvature
of the streamline, but also due to velocity variations in the normal direction.

Vorticity in streamline coordinates

The vorticity vector can be resolved into three components corresponding to the tangent, normal,
and binormal directions at a point along a streamline. The corresponding vorticity components can
be expressed in terms of the structure of the velocity field around a streamline. We will demonstrate
that the streamline decomposition takes the form

ω =
(
n · L · b− b · L · n

)
t+

∂ut

∂lb
n− (

∂ut

∂ln
+ κut)b, (1.11.12)

where L = ∇u is the velocity gradient tensor, ut is the tangential velocity component, ln is the arc
length in the normal direction, lb is the arc length in the binormal direction, and κ is the curvature
of the streamline. Expression (1.11.12) reveals the following:

• Point particles spin about the tangential vector due to the twisting of the streamline pattern,
which is possible only in a genuine three-dimensional flow.

• Point particles spin about the normal vector due to velocity variations in the binormal direction,
which is also possible only in a genuine three-dimensional flow.

• Point particles spin about the binormal vector due to velocity variations in the normal direction
and also due to the global fluid motion of the fluid associated with the curvature of the
streamline.
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To derive the tangential vorticity component, we refer to Figure 1.11.2(a) and project the definition
of the vorticity, ω = ∇ × u, onto the unit tangent vector, t. Rearranging the resulting expression
and introducing the normal and binormal vectors, we obtain

ωt ≡ t · ω = t · (∇× u) = (n× b) · (∇× u) = n · (∇u) · b− b · (∇u) · n. (1.11.13)

By definition, ωt = 0 in two-dimensional or axisymmetric flow.

To derive the normal vorticity component, we write u = utt and invoke once again the
definition of the vorticity, ω = ∇× u, to obtain

ω = ∇× (utt) = ut∇× t+∇ut × t. (1.11.14)

Projecting (1.11.14) onto the normal vector, n, and rearranging, we find that

ωn ≡ ω · n = ut (∇× t) · n+ (∇ut × t) · n = ut (∇× t) · (b× t) + (t× n) · ∇ut, (1.11.15)

and then

ωn = ut b · (t×∇× t) + b · ∇ut = ut b ·
[
(∇t) · t− t · ∇t

]
+

∂ut

∂lb
. (1.11.16)

Because the length of the tangent unit vector t is constant, (∇t) · t = 1
2
∇(t · t) = 0. Using (1.11.6),

we find that b · (t · ∇t) = −κb · n = 0, and conclude that ωn = ∂ut/∂lb. By definition, ωn = 0 in
two-dimensional or axisymmetric flow.

To derive the binormal vorticity component, we project (1.11.14) onto the binormal vector,
b, and work in a similar fashion to obtain the binormal vorticity components,

ωb ≡ ω · b = ut (∇× t) · b+ (∇ut × t) · b = ut (∇× t) · (t× n) + (t× b) · ∇ut, (1.11.17)

yielding

ωb = −ut n · (t×∇× t)− n · ∇ut = ut n · ∂t
∂l

− ∂ut

∂ln
= −κut −

∂ut

∂ln
. (1.11.18)

In the case of two-dimensional flow, the vorticity vector points in the binormal direction and (1.11.18)
reduces to (1.11.10).

1.11.4 Path lines and streaklines

A path line represents the trajectory of a point particle that has been released from a certain position,
X0, at some time instant, t0. If the flow is steady, the path line coincides with the streamline passing
through the pointX0. The shape of a path line is described by the generally nonautonomous ordinary
differential equation

dX

dt
= u

[
X(t), t

]
, (1.11.19)
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where X is the position of the point particle along its path. Formal integration yields the position
of the point particle at time t,

X(t; t0) = X0(t0) +

∫ t

t0

u(X(τ ; t0), τ) dτ = X0(t0) +

∫ t−t0

0

u(X(t0 + ξ; t0), t0 + ξ) dξ, (1.11.20)

which can be regarded as a parametric representation of the path line in time. To compute a path
line, we select an ejection location and time and integrate equation (1.11.19) in time using a standard
numerical method, such as a Runge–Kutta method discussed in Section B.8, Appendix B.

Streaklines

A streakline is the instantaneous chain of point particles that have been released from the same or
different locations at the same or different prior times in a flow. Streaklines can be produced in
the laboratory by ejecting a dye from a stationary or moving needle. Regarding the injection time,
t0 as a Lagrangian marker variable, we describe the shape of a streakline at a particular time t by
(1.11.20). When the point particles are injected at the same location, the term X0(t0) after each
equal sign is constant.

Problems

1.11.1 Beltrami and complex lamellar flows

Explain why a two-dimensional or axisymmetric flow cannot be a Beltrami flow where the vorticity is
parallel to the velocity, but is necessarily a complex lamellar flow where the velocity is perpendicular
to its curl.

1.11.2 Fluid in rigid-body rotation

Use (1.11.12) to compute the vorticity of a fluid in rigid-body rotation. Show that the result is
consistent with the definition of the vorticity, ω = ∇× u.

1.11.3 Linear flows

Sketch and discuss the streamline pattern of the following linear flows: (a) purely rotational two-
dimensional flow with ux = −ξy, uy = ξx, and uz = 0, (b) two-dimensional extensional flow with
ux = ξx, uy = −ξy, and uz = 0, (c) axisymmetric extensional flow with ux = ξx, uy = − 1

2 ξy, and
uz = − 1

2 ξz. What are the cylindrical polar velocity components in the third flow? In all cases, ξ is
a constant rate of extension with dimensions of inverse time.

Computer Problems

1.11.4 Drawing a streamline

Write a computer program that computes the streamline passing through a specified point in a
given two-dimensional flow. The integration should be carried out using the modified Euler method
discussed in Section B.8, Appendix B. The size of the step, Δt, should be selected so that the
integration proceeds by a preset distance at every step.
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1.11.5 Drawing streamlines in a box

Write a computer program that returns the velocity at a point inside a rectangular domain of flow
in the xy plane confined between ax ≤ x ≤ bx and ay ≤ y ≤ by, where ax, bx, ay, and by are specified
constants. The input should include the two components of a two-dimensional velocity field at the
nodes of an Nx×Ny Cartesian grid with nodes located at xi = ax+(i−1)Δx and yj = ay+(j−1)Δy
for i = 1, . . . , Nx + 1 and j = 1, . . . , Ny + 1, where Δx = (bx − ax)/Nx and Δy = (by − ay)/M are
the grid spacings. The velocity between grid points should be computed by bilinear interpolation,
as discussed in Section B.4, Appendix B.

1.11.6 Drawing the streamline pattern in a box

(a) Combine the programs of Problem 1.11.4 and 1.11.5 into a program that draws streamlines in a
rectangular domain.

(b) Run the program to draw the streamline pattern in the box 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, with
Nx = 16 and Ny = 32 divisions. The x and y velocity components at the grid points are

uij = exp(πxi)− πxi cos(πyj), vij = sin(πyj)− πyj exp(πxi). (1.11.21)

Is this velocity field solenoidal?

1.12 Vortex lines, vortex tubes, and circulation around loops

In Section 1.1, we saw that the vorticity vector at a point in a flow is parallel to the instantaneous
angular velocity vector of a point particle that happens to be at that location. The magnitude of
the vorticity vector is twice the magnitude of the angular velocity of the point particle. Using the
definition ω = ∇× u, and recalling that the divergence of the curl of any continuous vector field is
identically zero, we find that the vorticity field is solenoidal,

∇ · ω = 0. (1.12.1)

This property imposes restrictions on the structure of the vorticity field, similar to those imposed
on the structure of the velocity field for an incompressible fluid.

1.12.1 Vortex lines and tubes

An instantaneous vortex line is parallel to the vorticity vector and therefore to the point-particle
angular velocity vector at each point. The collection of all vortex lines passing through a closed
loop generates a surface called a vortex tube, as illustrated in Figure 1.12.1. Remembering that the
vorticity field is solenoidal and repeating the arguments following equation (1.11.5), we find that a
vortex line may not end in the interior of a flow. Instead, it must form a closed loop, meet other
vortex lines at a stagnation point of the vorticity field, extend to infinity, or cross and exit the
boundaries of the flow.

The vortex tubes of a two-dimensional flow are cylindrical surfaces perpendicular to the plane
of the flow. The vortex lines of an axisymmetric flow with no swirling motion are concentric circles
and the vortex tubes form concentric axisymmetric surfaces. The vortex lines of an axisymmetric
flow with swirling motion are spiral lines.
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Figure 1.12.1 Illustration of a vortex tube. The circulation around a loop that wraps around the tube
once is equal to the flow rate of the vorticity across a surface, D, bounded by the loop.

1.12.2 Circulation

The circulation around a closed loop residing in the domain of a flow, L, is defined as

C =

∮
L

u · dX =

∮
L

u · t dl, (1.12.2)

where X is the position of point particles along the loop, l is the arc length along the loop, and
the tangent unit vector, t = dX/dl, is oriented in a specified direction. Using Stokes’ theorem, we
derive an alternative expression for the circulation,

C =

∫∫
D

(∇× u) · n dS =

∫∫
D

ω · n dS, (1.12.3)

where D is an arbitrary surface bounded by the loop, as illustrated in Figure 1.12.1. The direction
of the normal unit vector, n, is chosen so that t and n constitute a right-handed system of axes.
Equation (1.12.3) states that the circulation around a loop is equal to the flow rate of the vorticity
across any surface that is bounded by the loop.

Invariance of the circulation around a vortex tube

Consider two material loops, L1 and L2, wrapping once around a vortex tube, as shown in Figure
1.12.1. Using (1.12.3), we find that the difference in circulation around these loops is given by

C2 − C1 =

∫∫
D1

ω · n dS −
∫∫

D2

ω · n dS, (1.12.4)

where D1 is an arbitrary surface bounded by L1 and D2 is an arbitrary surface bounded by L2.
Since the vorticity is tangential to the vortex tube, we may add to the right-hand side of (1.12.4) a
corresponding integral over the surface of the tube extending between the loops L1 and L2. Using
the divergence theorem to convert the surface integrals into a volume integral, we obtain

C2 − C1 =

∫∫∫
Vt

∇ · ω dV, (1.12.5)
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Figure 1.12.2 Illustration of the surface of an arbitrary body, DB, a loop in the flow, L, and two
surfaces bounded by the loop.

where the integration domain, Vt, is the volume of the vortex tube enclosed by D1, D2, and the
surface of the vortex tube. Since the vorticity field is solenoidal, ∇ · ω = 0, the right-hand side of
(1.12.5) is identically zero. We conclude that the circulation around any loop that wraps a vortex
tube once, denoted by κ and called the cyclic constant or strength of the vortex tube, is independent
of the location and shape of the loop around the vortex tube at any instant.

Similar arguments can be made to show that the circulation around a loop that lies on a
vortex tube but does not wrap around the vortex tube, such as the loop L3 shown in Figure 1.12.1,
is zero (Problem 1.12.1). The circulation around a closed loop that wraps m times around a vortex
tube is equal to mκ, where κ is the strength of the vortex tube.

Flow of vorticity across a body

As an application, we consider an infinite flow that is bounded internally by a closed surface, DB,
which can be regarded as the surface of a body, and argue that the flow of vorticity across DB must
be identically zero. This becomes evident by introducing two surfaces, D1 and D2, that join at
an arbitrary closed loop, L, subject to the condition that the union of the two surfaces completely
encloses the body, as shown in Figure 1.12.2. Integrating (1.12.1) over the volume enclosed by D1,
D2, and DB , applying the divergence theorem to convert the volume integral to a surface integral,
and recalling once again that the vorticity field is solenoidal, we obtain∫∫

D1

ω · n dS −
∫∫

D2

ω · n dS =

∫∫
DB

ω · n dS, (1.12.6)

where n is the normal unit vector oriented as shown in Figure 1.12.2. Because each integral on the
left-hand side of (1.12.6) is equal to the circulation around L, the integral on the right-hand side,
and therefore the flow of vorticity across DB , must necessarily vanish,∫∫

DB

ω · n dS = 0. (1.12.7)
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1.12.3 Rate of change of circulation around a material loop

Differentiating the definition of the circulation (1.12.2) with respect to time and expanding the
derivative, we obtain the evolution equation

dC

dt
=

d

dt

∮
L

u · dX =

∮
L

Du

Dt
· dX+

∮
L

u · D dX

Dt
. (1.12.8)

Concentrating on the last integral, we use (1.6.1) to write

∮
L

u · D dX

Dt
=

∮
L

(dX · L) · u =
1

2

∮
L

dX · ∇(u · u) = 0, (1.12.9)

and find that (1.12.8) takes the simplified form

dC

dt
=

∮
L

Du

Dt
· dX, (1.12.10)

where L = ∇u is the velocity gradient tensor. Equation (1.12.10) identifies the rate of change of
circulation around a material loop with the circulation of the acceleration field, Du/Dt, around the
loop. If the acceleration field is irrotational, Du/Dt can be expressed as the gradient of a potential
function, as discussed in Section 2.1, and the closed line integral is zero. The rate of change of
circulation then vanishes and the circulation around the loop is preserved during the motion.

An alternative evolution equation for the circulation can be derived in Eulerian form by
applying the general evolution equation (1.7.56) for q = ω. Recalling that the vorticity field is
solenoidal, ∇ · ω = 0, we find that

dC

dt
=

∫∫
D

( ∂ω

∂t
+∇× (ω × u)

)
· n dS, (1.12.11)

where D is an arbitrary surface bounded by the loop.

Problems

1.12.1 A loop on a vortex tube

Show that the circulation around the loop L3 illustrated in Figure 1.12.1 is zero.

1.12.2 Flow inside a cylindrical container due to a rotating lid

Sketch the vortex line pattern of a flow inside a cylindrical container that is closed at the bottom,
driven by the rotation of the top lid.

1.12.3 Solenoidality of the vorticity

Show that ω = ∇χ×∇ψ, is an acceptable vorticity field and u = χ∇ψ is an acceptable associated
velocity field, where χ and ψ are two arbitrary functions. Explain why this velocity field is complex
lamellar, that is, the velocity is perpendicular to the vorticity at every point.
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1.13 Line vortices and vortex sheets

The velocity field in a certain class of flows exhibits sharp variations across thin columns or layers
of fluid. Examples include flows containing shear layers forming between two streams that merge
at different velocities and around the edges of jets, turbulent flows, and flows due to tornadoes and
whirls. A salient feature of these flows is that the support of the vorticity is compact, which means
that the magnitude of the vorticity takes significant values only inside well-defined regions, concisely
called vortices, while the flow outside the vortices is precisely or nearly irrotational.

1.13.1 Line vortex

Consider a flow where the vorticity vanishes everywhere except near

ω

L

κ

Illustration of a line vortex.

a vortex tube with small cross-sectional area centered at a line,
L. Taking the limit as the cross-sectional area of the vortex tube
tends to zero while the circulation around the tube, κ, remains
constant, we obtain a tubular vortex structure with infinitesimal
cross-sectional area, infinite vorticity, and finite circulation, called
a line vortex.

Since, by definition, the vorticity is tangential to a vortex line,
the vorticity field associated with a line vortex can be described by
the generalized distribution

ω(x) = κ

∫
L

t(x′) δ3(x− x′) dl(x′), (1.13.1)

where δ3 is the three-dimensional delta function, t is the unit vector tangent to the line vortex, and
l is the arc length along the line vortex. The velocity field induced by a line vortex will be discussed
in Section 2.11.

1.13.2 Vortex sheet

Next, we consider a flow where the vorticity is zero everywhere, except inside a thin sheet centered
at a surface, E. Taking the limit as thickness of the sheet tends to zero while the circulation around
any loop that pierces the sheet through any two fixed points remains constant, we obtain a vortex
sheet with infinitesimal cross-sectional area, infinite vorticity, and finite circulation, as shown in
Figure 1.13.1(a).

Vorticity and circulation

The vorticity field associated with a vortex sheet, sometimes also called a sheet vortex, is described
by the generalized distribution

ω(x) =

∫∫
E

ζ(x′) δ3(x− x′) dS(x′), (1.13.2)

where ζ is a tangential vector field, called the strength of the vortex sheet. Since the vorticity field
is solenoidal, ∇ · ω = 0, the surface divergence of ζ must vanish,

(I−N⊗N) · ∇ · ζ = 0, (1.13.3)
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Figure 1.13.1 (a) Illustration of a three-dimensional vortex sheet. The loop L pierces the vortex sheet
at the points P and Q. (b) Closeup of the intersection between a surface, D, and a vortex sheet;
T is the intersection of D and E, and the unit vector n is normal to D.

where I is the identity matrix and N is the unit vector normal to the vortex sheet. To satisfy this
constraint, a vortex sheet must be a closed surface, terminate at the boundaries of the flow, or
extend to infinity.

Using Stokes’ theorem, we find that the circulation around a loop L that pierces a vortex
sheet at two points, P and Q, as shown in Figure 1.13.1(a), is given by

C =

∮
L

u · t dl =
∫∫

D

ω · n dS, (1.13.4)

where D is an arbitrary surface bounded by L and n is the unit vector normal to D. Substituting
into the last integral the vorticity distribution (1.13.2), we obtain

C =

∫∫
D

(∫∫
E

ζ(x′) δ3(x− x′) dS(x′)
)
· n(x) dS(x). (1.13.5)

Switching the order of integration on the right-hand side, we obtain

C =

∫∫
E

ζ(x′) ·
∫∫

D

(
δ3(x− x′) · n(x) dS(x)

)
dS(x′). (1.13.6)

The inner integral is over the arbitrary surface, D, and the outer integral is over the vortex sheet.

Velocity jump and strength of a vortex sheet

Next, we identify the intersection of the surface D with the vortex sheet, E, denoted by T ,
define the unit vector tangent to T , denoted by t, and introduce a unit vector, eξ, that lies in the
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vortex sheet, E, and is perpendicular to t, as shown in Figure 1.13.1(b). If l is the arc length along
t and lξ is the arc length along eξ, then

dS(x′) = dl(x′) dlξ(x
′) (1.13.7)

is a differential surface element over the vortex sheet, E. The differential arc length dln in the
direction of the normal unit vector n corresponding to a given dlξ is

dln = n · eξ dlξ. (1.13.8)

Substituting (1.13.7) and (1.13.8) into (1.13.6), we obtain

C =

∫
T

ζ(x′)
1

n(x′) · eξ(x′)
·
(∫ δ

−δ

[ ∫∫
D

(
δ3(x− x′) · n(x) dS(x)

]
dln(x)

)
dl(x′), (1.13.9)

where δ is a small length. Using the properties of the three-dimensional delta function to simplify
the term inside the large parentheses, we find that

C =

∫
T

n(x′) · ζ(x′)

n(x′) · eξ(x′)
dl(x′). (1.13.10)

The strength of the vortex sheet, ζ, lies in the plane containing t and eξ, which is perpendicular to
the plane containing eξ and n. Thus,

[(n× eξ)× eξ] · ζ = 0, (1.13.11)

which is equivalent to

(n · eξ)(eξ · ζ) = n · ζ (1.13.12)

(Problem 1.13.2). Equation (1.13.9) simplifies into

C =

∫
T

eξ · ζ dl. (1.13.13)

Taking the limit as the loop, L, collapses onto the vortex sheet on both sides, while the point Q
tends to the point P , we find that

(u+ − u−) · t = eξ · ζ, (1.13.14)

where t is the unit vector tangent to T . The superscripts plus and minus designate, respectively,
the velocity just above and below the vortex sheet.

Equation (1.13.14) reveals that the tangential component of the velocity undergoes a discon-
tinuity across a vortex sheet. Mass conservation requires that the normal component of the velocity
is continuous across the vortex sheet. Equation (1.13.14) then allows us to write

u+ − u− = ζ ×N, (1.13.15)
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where N is the unit vector normal to the vortex sheet, as shown in Figure 1.13.1(a). We conclude
that ζ, N, and the difference u+ − u− define three mutually perpendicular directions, so that

ζ = N× (u+ − u−). (1.13.16)

We have found that a vortex sheet represents a singular surface across which the tangential compo-
nent of the velocity changes from one value above to another value below. The difference between
these two values is given by the right-hand side of (1.13.15) in terms of the strength of the vortex
sheet.

Principal velocity

The mean value of the velocity above and below a vortex sheet is called the principal velocity of the
vortex sheet, or more precisely, the principal value of the velocity of the vortex sheet, denoted by

uPV ≡ 1

2
(u+ + u−). (1.13.17)

Combining (1.13.17) with (1.13.15), we obtain an expression for the velocity on either side of the
vortex sheet in terms of the strength of the vortex sheet and the principal velocity,

u± = uPV +
1

2
ζ ×N. (1.13.18)

Given the strength of the vortex sheet, the principal velocity is much easier to evaluate than the
physical fluid velocity on either side of the vortex sheet.

1.13.3 Two-dimensional flow

Next, we describe the structure of line vortices and vortex sheets in two-dimensional flow in the xy
plane. The vorticity is perpendicular to the xy plane, ω = ωzez, and the vortex lines are infinite
straight lines parallel to the z axis.

Point vortex

A rectilinear line vortex is called a point vortex. The location of a point vortex is identified by
its trace in the xy plane, x0 = (x0, y0). The vorticity in the xy plane is described by the singular
distribution

ωz(x) = κδ2(x− x0), (1.13.19)

where δ2 is the two-dimensional delta function and κ is the strength of the point vortex. More will
be said about point vortices in Chapter 11.

Vortex sheet

A two-dimensional vortex sheet is a cylindrical vortex sheet whose generators and strength, ζ, are
oriented along the z axis, as illustrated in Figure 1.13.2 (a). We can set

ζ = γ ez, (1.13.20)



1.13 Line vortices and vortex sheets 109

(a) (b)

T

t B

A

+

_

y

x

ζ

ϕ

+

−

z

y

x

Figure 1.13.2 Illustration of (a) a two-dimensional vortex sheet with positive strength, γ, in the xy
plane and (b) an axisymmetric vortex sheet.

where γ is the strength of the vortex sheet and ez is the unit vector along the z axis. The vorticity
field in the xy plane is represented by the singular distribution

ωz(x) =

∫
T

γ(x′) δ2(x− x′) dl(x′), (1.13.21)

where δ2 is the two-dimensional Dirac delta function and T is the trace of the vortex sheet in the
xy plane. Using (1.13.15), we find that the discontinuity in the velocity across a two-dimensional
vortex sheet is given by

u+ − u− = γ t, (1.13.22)

where t is a unit vector tangent to T , as shown in Figure 1.13.2. In terms of the principal velocity
of the vortex sheet, uPV , the velocity at the upper and lower surface of the vortex sheet is given by

u+ = uPV +
1

2
γ t, u− = uPV − 1

2
γ t. (1.13.23)

When γ is positive, we obtain the local velocity profile shown in Figure 1.13.2(a).

The circulation around a loop that lies in the xy plane and pierces the vortex sheet at the
points A and B is given by

C =

∫∫
D

ωz(x) dA(x) =

∫∫
D

[ ∫
T

γ(x′)δ2(x− x′) dl(x′)
]
dA(x) =

∫
TAB

γ(x′) dl(x′), (1.13.24)

where D is the area in the xy plane enclosed by the loop and TAB is the section of T between the
points A and B, as illustrated in Figure 1.13.2(a). Fixing the point A and regarding the circulation,
C, as a function of location of the point B along T , denoted by Γ, we obtain

dΓ

dl
= γ. (1.13.25)
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This definition allows us to express the vorticity distribution (1.13.21) in terms of Γ as

ωz(x) =

∫
T

δ2(x− x′) dΓ(x′). (1.13.26)

Comparing (1.13.26) with (1.13.19) allows us to regard a cylindrical vortex sheet as a continuous
distribution of point vortices. More will be said about vortex sheets and their self-induced motion
in Chapter 11.

1.13.4 Axisymmetric flow

The vorticity vector in an axisymmetric flow without swirling motion points in the azimuthal direc-
tion and the vortex lines are concentric circles, as shown in Figure 1.13.2(b).

Line vortex ring

The position of an axisymmetric line vortex, also called a line vortex ring, is described by its trace
in an azimuthal plane of constant azimuthal angle, ϕ, usually identified with the union of the first
and second quadrants of the xy plane corresponding to ϕ = 0. The azimuthal component of the
vorticity is given by the counterpart of equation (1.13.19),

ωϕ(x) = κ δ2(x− x0), (1.13.27)

where δ2 is the two-dimensional delta function in an azimuthal plane. More will be said about line
vortex rings and their self-induced motion in Chapter 11.

Vortex sheet

An axisymmetric vortex sheet can be identified by its trace in an azimuthal plane of constant
azimuthal angle, ϕ. The strength of the vortex sheet, ζ, is oriented in the azimuthal direction, as
shown in Figure 1.13.2(b). The vorticity distribution in an azimuthal plane is given by (1.13.21),
where δ2 is the two-dimensional delta function.

Problems

1.13.1 A line vortex extending between two bodies

Consider an infinite flow that contains two bodies and a single line vortex that begins on the surface
of the first body and ends at the surface of the second body. Discuss whether this is an acceptable
and experimentally realizable flow.

1.13.2 Three-dimensional vortex sheet

With reference to the discussion of the three-dimensional vortex sheet, show that the equation
[(n× eξ)× eξ] · ζ = 0 is equivalent to (n · eξ)(eξ · ζ) = n · ζ.



Kinematic analysis of a flow 2
In Chapter 1, we examined the behavior of fluid parcels, material vectors, material lines, and material
surfaces in a specified flow field. The velocity field was assumed to be known as a function of
Eulerian variables, including space and time, or Lagrangian variables, including point-particle labels
and time. In this chapter, we discuss alternative methods of describing a flow in terms of auxiliary
scalar or vector fields. By definition, the velocity field is related to an auxiliary field through a
differential or integral relationship. Examples of auxiliary fields include the vorticity and the rate
of expansion introduced in Chapter 1. Additional fields introduced in this chapter are the velocity
potential for irrotational flow, the vector potential for incompressible fluids, the stream function
for two-dimensional flow, the Stokes stream function for axisymmetric flow, and a pair of stream
functions for a general three-dimensional incompressible flow. Some auxiliary fields, such as the rate
of expansion, the vorticity, and the stream functions, have a clear physical interpretation. Other
fields are mathematical devices motivated by analytical simplification.

Describing a flow in terms of an auxiliary field is motivated by two reasons. First, the number
of scalar ancillary fields necessary to describe the flow of an incompressible fluid is less than the
dimensionality of the flow by one unit, and this allows for analytical and computational simplifi-
cations. For example, we will see that a two-dimensional incompressible flow can be described in
terms of a single scalar flow, called the stream function. A three-dimensional incompressible flow
can be described in terms of a pair of scalar stream functions. The reduction in the number of scalar
functions with respect to the number of nonvanishing velocity components is explained by observing
that the latter may not be assigned independently, but must be coordinated so as to satisfy the con-
tinuity equation for incompressible fluids, ∇·u = 0. Imposing additional constraints reduces further
the number of required scalar functions. Thus, a three-dimensional incompressible and irrotational
flow can be expressed in terms of a single scalar function, called the potential function.

In some cases, expressing the velocity field in terms of an auxiliary field allows us to gain
physical insights into how the fluid parcel motion affects the global structure or evolution of a flow.
For example, representing the velocity field in terms of the vorticity and rate of expansion illustrates
the effect of spinning and expansion or contraction of small fluid parcels on the overall fluid motion.

The auxiliary fields discussed in this chapter are introduced with reference to the kinematic
structure of a flow discussed in Chapter 1. Another class of auxiliary fields are defined with reference
to the dynamics of a flow and, in particular, with respect to the stresses developing in the fluid as
a result of the motion. Examples of these dynamical fields will be discussed in Chapter 6.
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2.1 Irrotational flows and the velocity potential

If the vorticity vanishes at every point in a flow, ω = ∇× u = 0, the flow is called irrotational. In
Chapter 3, we will examine the mechanisms by which vorticity enters, is produced, and evolves in
a flow. The analysis will show that, in real life, hardly any flow can be truly irrotational, except
during an infinitesimal initial period of time where a fluid starts moving from the state of rest. It
appears then that the concept of irrotational flow is merely a mathematical idealization.

However, a number of flows encountered in practical applications are nearly irrotational or
consist of adjacent regions of nearly irrotational and nearly rotational flow. For example, high-speed
streaming flow past an airfoil is irrotational everywhere except inside a thin boundary layer lining
the airfoil and inside a slender wake. The flow produced by the propagation of waves at the surface
of the ocean is irrotational everywhere except inside a thin boundary layer along the free surface. In
most cases, the conditions under which a flow will be nearly or partially irrotational are not known
a priori, but must be assessed by carrying out a detailed experimental or theoretical investigation.

Potential and irrotational flows

Since the curl of the gradient of any differentiable function is identically zero, any potential flow
whose velocity derives as

u = ∇φ (2.1.1)

is irrotational, where φ is a scalar function called the potential function or the scalar velocity
potential. We conclude that a potential flow is also an irrotational flow. Families of irrotational
flows can be produced by making different selections for φ. Next, we inquire whether the inverse
is also true, that is, whether an irrotational flow can be expressed as the gradient of a potential
function, as shown in (2.1.1).

Simply and multiply connected domains

It is necessary to consider separately the cases of simply and multiply connected domains of flow.
To make this distinction, we draw a closed loop inside the domain of a flow of interest. If the loop
can be shrunk to a point that lies inside the domain of flow without crossing any boundaries, the
loop is reducible. If the loop must cross one or more boundaries in order to shrink to a point that
lies inside the domain of flow, the loop is irreducible. If any loop that can possibly be drawn inside
a particular domain of flow is reducible, the domain is simply connected. If an irreducible loop
can be found, the domain is multiply connected. Because a loop that wraps around a toroidal or
cylindrical boundary of infinite extent, possibly with wavy corrugations, is irreducible, the domain
in the exterior of the boundary is doubly connected. A domain containing two distinct toroidal or
cylindrical boundaries of infinite extent is triply connected.

2.1.1 Simply connected domains

Using Stokes’ theorem, we find that the circulation around a reducible loop, L, is given by∮
L

u · t dl =
∫∫

D

ω · n dS = 0, (2.1.2)
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Figure 2.1.1 Illustration of a reducible loop, L, in a three-dimensional singly connected domain of
flow, showing the decomposition of the circulation integral into two paths. The surface D is
bounded by the loop.

where D is an arbitrary surface bounded by L, t is the unit vector tangential to L, and n is the
unit vector normal to D oriented according to the counterclockwise convention with respect to t, as
illustrated in Figure 2.1.1. One consequence of equation (2.1.2) is that the circulation around any
reducible loop that lies inside an irrotational flow is zero.

Next, we choose two points x1 and x2 on a reducible loop and decompose the line integral in
(2.1.2) into two parts, ∫ x2

x1

u · tA dl =

∫ x2

x1

u · tB dl. (2.1.3)

The integral on the left-hand side is taken along path A with corresponding tangent vector tA = t,
while the integral on the right-hand side is taken along path B with corresponding tangent vector
tB = −t, as shown in Figure 2.1.1. Equation (2.1.3) states that the circulation around any path
connecting two ordered points x1 and x2 on a reducible loop is the same. Consequently, a single-
valued scalar function of position can be introduced, φ, such that∫ x2

x1

u · t dl = φ(x2)− φ(x1). (2.1.4)

Taking the limit as the second point, x2, tends to the first point, x1, and using a linearized Taylor
series expansion, we find that

u · t = t · ∇φ. (2.1.5)

Since the integration path, and thus the tangent unit vector t, is arbitrary, we conclude that u = ∇φ,
as shown in (2.1.1).

We have demonstrated that an irrotational flow in a singly connected domain can be described
by a single-valued potential function, φ. Stated differently, an irrotational flow in a singly connected
domain is also a potential flow described in terms of a differentiable velocity potential.
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Figure 2.1.2 Illustration of two irreducible loops in a doubly connected domain of flow with number
of turns m = 1 and 2. The flow can be resolved into the flow due to a line vortex with circulation κ
inside the boundaries and a complementary irrotational flow described in terms by a single-valued
potential.

2.1.2 Multiply connected domains

A conceptual difficulty arises in the case of flow in a multiply connected domain. The reason is that
the circulation around an irreducible loop is not necessarily zero, but may depend on the number of
turns that the loop performs around a boundary, m. Two loops with m = 1 and 2 are illustrated in
Figure 2.1.2. The circulation around a loop that performs multiple turns is∮

L

u · t dl = mκ, (2.1.6)

where κ is the lowest value of the circulation corresponding to a loop that performs a single turn,
called the cyclic constant of the flow around the boundary.

In the case of an irreducible loop, a surface D bounded by L must cross the boundaries of
the flow. Since D does not lie entirely inside the fluid, Stokes’ theorem (2.1.2) cannot be applied.
Progress can be made by breaking up the circulation integral around the loop into two parts and
working as in (2.1.3) and (2.1.4), to find that

ΔφA −ΔφB = mκ, (2.1.7)

where ΔφA and ΔφB denote the change in the potential function from the beginning to the end of
the paths A and B illustrated in Figure 2.1.2.

Regularization of a multi-valued potential

Equation (2.1.7) suggests that the potential function in a multiply connected domain can be a multi-
valued function of position. To avoid analytical and computational complications, we decompose
the velocity field of a flow of interest into two components,

u = v +∇φ, (2.1.8)
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where v represents a known irrotational flow whose cyclic constants around the boundaries are the
same as those of the flow of interest. For example, v could be identified with the flow due to a line
vortex lying outside the domain of flow in the interior of a toroidal boundary. The strength of the
line vortex is equal to the cyclic constant of the flow around the boundary, as illustrated in Figure
2.1.2. Because the velocity potential φ defined in (2.1.8) is a single-valued function of position, it
can be computed by standard analytical and numerical methods without any added considerations.

Applications of the decomposition (2.1.8) will be discussed in Chapter 7 with reference to flow
past a two-dimensional airfoil.

2.1.3 Jump in the potential across a vortex sheet

Consider a two-dimensional vortex sheet separating two regions of

−

t

l

+

Illustration of a
two-dimensional vortex sheet.

irrotational flow. The velocity on either side of the vortex sheet
can be expressed in terms of two velocity potentials, φ+ and φ−.
Substituting (2.1.1) into the equation defining the strength of the
vortex sheet, u+ − u− = γ t, and introducing the circulation along
the vortex sheet, Γ, defined by the equation dΓ/dl = γ, we find
that

∇φ+ −∇φ− = γ t =
dΓ

dl
t, (2.1.9)

where γ is the strength of the vortex sheet and l is the arc length
along the vortex sheet measured in the direction of the tangent unit
vector, t.

Projecting (2.1.9) onto t and integrating with respect to arc length, l, we find that the jump
in the velocity potential across the vortex sheet is given by

φ+ − φ− = Γ. (2.1.10)

We have assumed that φ+ and φ− have the same value at the designated origin of arc length along
the vortex sheet, l = 0. Equation (2.1.10) finds useful applications in computing the self-induced
motion of two-dimensional vortex sheets discussed in Section 11.5.

Three-dimensional vortex sheets

Next, we consider two points on a three-dimensional vortex sheet, A and B. Expressing the velocity
on either side of the vortex sheet as the gradient of the corresponding potentials and integrating the
equation u+ − u− = ζ × n along a tangential path connecting the two points, we obtain

(φ+ − φ−)B = (φ+ − φ−)A +

∫ B

A

(ζ × n) · t dl, (2.1.11)

where ζ is the strength of the vortex sheet and t is the tangent unit vector along the path. If t is
tangential to ζ at every point, the integration path coincides with a vortex line and the integrand
in (2.1.11) is identically zero. We conclude that the jump of the velocity potential across a vortex
sheet is constant along vortex lines.
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2.1.4 The potential in terms of the rate of expansion

The velocity field of a potential flow is not necessarily solenoidal and the associated flow is not
necessarily incompressible. Taking the divergence of (2.1.1), we find that

∇ · u = ∇2φ, (2.1.12)

which can be regarded as a Poisson equation for φ, forced by the rate of expansion, ∇ · u.

Using the Poisson inversion formula derived in Section 2.2, we obtain an expression for the
potential of a three-dimensional flow in terms of the rate of expansion,

φ(x) = − 1

4π

∫∫∫
Flow

1

r
α(x′) dV (x′) +H(x), (2.1.13)

where r = |x−x′|, α(x′) ≡ ∇′·u(x′) is the rate of expansion, the gradient∇′ involves derivatives with
respect to x′, and H(x) is a harmonic function determined by the boundary conditions, ∇2H = 0.
If the domain of flow extends to infinity, to ensure that the volume integral in (2.1.13) is finite, we
require that the rate of expansion decays at a rate that is faster than 1/d2, where d is the distance
from the origin.

Two-dimensional flow

The counterpart of (2.1.13) for two-dimensional flow in the xy plane is

φ(x) =
1

2π

∫∫
Flow

ln
( r
a

)
α(x′) dA(x′) +H(x), (2.1.14)

where dA = dx dy is an elementary area, a is a specified constant length, and H is a harmonic
function in the xy plane determined by the boundary conditions.

Velocity field

To obtain an expression for the velocity in terms of the rate of expansion, we take the gradient of
both sides of (2.1.13) and (2.1.14). Interchanging the gradient with the integral, we find that

u(x) = ∇φ(x) =
1

4π

∫∫∫
Flow

x̂

r3
α(x′) dV (x′) +∇H(x) (2.1.15)

for three-dimensional flow, and

u(x) = ∇φ(x) =
1

2π

∫∫
Flow

x̂

r2
α(x′) dA(x′) +∇H(x) (2.1.16)

for two-dimensional flow, where x̂ = x − x′. Later in this section, we will see that the integrals on
the right-hand sides of the last two equations can be interpreted as volume or areal distributions of
point sources. The densities of the distributions are equal to the local volumetric or areal rate of
expansion.
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2.1.5 Incompressible fluids and the harmonic potential

If the fluid is incompressible, the rate of expansion on the left-hand side of (2.1.12) vanishes and the
potential φ satisfies Laplace’s equation,

∇2φ = 0. (2.1.17)

In this case, φ is a harmonic function called a harmonic potential.

Curvilinear coordinates

In cylindrical polar coordinates, (x, σ, ϕ), Laplace’s equation reads

∇2φ =
∂2φ

∂x2
+

1

σ

∂

∂σ

(
σ
∂φ

∂σ

)
+

1

σ2

∂2φ

∂ϕ2
. (2.1.18)

In spherical polar coordinates, (r, θ, ϕ), Laplace’s equation reads

∇2φ =
1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin θ

∂2φ

∂ϕ2
. (2.1.19)

In plane polar coordinates, (r, θ), Laplace’s equation reads

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
. (2.1.20)

Expressions in more general orthogonal or nonorthogonal curvilinear coordinates are provided in
Sections A.8–A.17, Appendix A.

Kinetic energy of the fluid and significance of normal boundary motion

The kinetic energy of an incompressible fluid with uniform density in a singly connected domain can
be expressed as a boundary integral involving the boundary distribution of the potential. To derive
this expression, we apply the rules of product differentiation to write

K ≡ 1

2
ρ

∫∫∫
u · u dV =

1

2
ρ

∫∫∫
u · ∇φ dV =

1

2
ρ

∫∫∫ (
∇ · (φu)− φ∇ · u

)
dV, (2.1.21)

where the integrals are computed over the volume of flow. Because the velocity field is solenoidal,
∇·u = 0, the second term inside the integral on the right-hand side is zero. Applying the divergence
theorem to convert the volume integral into a surface integral over the boundaries of the flow, B,
we find that

K = −1

2
ρ

∫∫
B

φu · n dS, (2.1.22)

where n is the unit vector normal to the boundaries pointing into the flow.

Equation (2.1.22) shows that, if the normal velocity component is zero over all boundaries,
the kinetic energy and therefore the velocity must be zero and the fluid must be quiescent. In turn,
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Figure 2.1.3 A doubly connected domain of flow containing a toroidal boundary is rendered singly
connected by introducing a fictitious boundary surface ending at the boundary.

the velocity potential must be constant throughout the domain of flow. When the velocity potential
has the same constant value over all boundaries, mass conservation requires that the right-hand side
of (2.1.22) is identically zero. Consequently, the fluid must be quiescent and the potential must be
constant and equal to its boundary value throughout the domain of flow.

Multiply connected domains

We can derive corresponding results for flow in a multiply connected domain where the velocity
potential can be a multi-valued function of position. As an example, we consider a domain containing
a toroidal boundary, as shown in Figure 2.1.3, and draw an arbitrary surface, D, that ends at
the boundary, B. Regarding D as a fictitious boundary, we obtain a simply connected domain.
Repeating the preceding analysis, we find that the kinetic energy of the fluid is

K = −1

2
ρ

∫∫
B

φu · n dS − 1

2
ρ

∫∫
D

(φ+ − φ−)u · n dS, (2.1.23)

where φ± is the potential on either side of D. The circulation around the loop L shown in Figure
2.1.3 is equal to the cyclic constant of the flow around the toroidal boundary,

κ =

∮
L

u · t dl =
∮
L

t · ∇φ dl =

∮
L

∂φ

∂l
dl = φ+ − φ−. (2.1.24)

Consequently, the kinetic energy of the fluid is given by the expression

K = −1

2
ρ

∫∫
B

φu · n dS − 1

2
ρ κQ, (2.1.25)

where Q is the flow rate across the artificial boundary, D.

Expression (2.1.25) shows that the kinetic energy is zero and the fluid is quiescent under two
sets of conditions: (a) either the potential is constant or the normal component of the velocity is
zero at the boundaries, and (b) either the cyclic constant, κ, or the flow rate, Q, is zero.
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Uniqueness of solution in a singly connected domain

One important consequence of the integral representation of the kinetic energy is that, given bound-
ary conditions for the normal component of the velocity, an incompressible irrotational flow in a
singly connected domain is unique and the corresponding harmonic potential is determined uniquely
up to an arbitrary constant.

To prove uniqueness of solution, we consider two harmonic potentials representing two distinct
flows and note that their difference is also an acceptable harmonic potential, that is, the difference
potential describes an acceptable incompressible irrotational flow. If the two flows satisfy the same
boundary conditions for the normal component of the velocity, the difference flow must vanish
and the corresponding harmonic potential must be constant. As a consequence, the two chosen
flows must be identical and the corresponding harmonic potentials may differ at most by a scalar
constant. Similar reasoning allows us to conclude that the boundary distribution of the potential
uniquely defines an irrotational flow in a singly connected domain.

Uniqueness of solution in a multiply connected domain

In the case of flow in a doubly connected domain, we use (2.1.25) and find that specifying (a)
boundary conditions either for the normal component of the velocity or for the potential, and (b)
either the value of the cyclic constant κ, or the flow rate across a surface ending at a toroidal
boundary Q, uniquely determines an irrotational flow. Similar conclusions can be drawn for a
multiply connected domain.

Kelvin’s minimum dissipation theorem

Kelvin demonstrated that, of all solenoidal velocity fields that satisfy prescribed boundary conditions
for the normal component of the velocity, the velocity field corresponding to an irrotational flow has
the least amount of kinetic energy. Stated differently, vorticity increases the kinetic energy of a fluid.

To prove Kelvin’s theorem, we assume that u is an irrotational velocity field described by a
velocity potential, φ, and v is another arbitrary solenoidal rotational velocity field. Moreover, we
stipulate that the normal velocity component is the same over the boundaries, u · n = v · n. The
difference in the kinetic energies of the two flows, ΔK ≡ K(v)−K(u), is

ΔK =
1

2
ρ

∫∫∫
(v · v − u · u) dV =

1

2
ρ

∫∫∫
(v − u) · (v − u) dV + ρ

∫∫∫
(v − u) · u dV. (2.1.26)

Manipulating the last integral on the right-hand side and using the divergence theorem, we obtain∫∫∫
(v − u) · ∇φ dV =

∫∫
B

φ (v − u) · n dS, (2.1.27)

which is zero in light of the equality of the normal component of the boundary velocity. We conclude
that the right-hand side of (2.1.26) is positive and thereby demonstrate that the kinetic energy of
a rotational flow with velocity v is greater than the kinetic energy of the corresponding irrotational
flow with velocity u.
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2.1.6 Singularities of incompressible and irrotational flow

Singular solutions of Laplace’s equation for the harmonic potential constitute a fundamental set of
flows used as building blocks for constructing and representing arbitrary irrotational flows.

Point source

Consider the solution of (2.1.17) in an infinite three- or two-dimensional domain in the absence
interior boundaries, subject to a singular forcing term on the right-hand side,

∇2φ3D = mδ3(x− x0), ∇2φ2D = mδ2(x− x0), (2.1.28)

where δ3 is the three-dimensional (3D) delta function, δ2 is the two-dimensional (2D) delta function,
m is a constant, and x0 is an arbitrary point in the domain of flow. Using the method of Fourier
transforms, or else by employing a trial solution in the form of a power or logarithm of the distance
from the singular point, r = |x− x0| , we find that

φ3D = −m

4π

1

r
, φ2D =

m

2π
ln

r

a
, (2.1.29)

where a is an arbitrary length.

Since the potential φ satisfies Laplace’s equation everywhere except at the point x0, it describes
an acceptable incompressible and irrotational flow with velocity

u3D = ∇φ3D =
m

4π

x− x0

r3
, u2D = ∇φ2D =

m

2π

x− x0

r2
, (2.1.30)

respectively, for three- or two-dimensional flow. The corresponding streamlines are straight radial
lines emanating from the singular point, x0. It is a straightforward exercise to verify that the flow rate
across a spherical surface or circular contour centered at the point x0 is equal to m. Consequently,
the function φ3D or φ2D can be identified with the potential due to a point source with strength m
in an infinite domain of flow. In Section 2.2.3, we will discuss the flow due to a point source in a
bounded domain of flow.

In light of (2.1.30), the integrals on the right-hand sides of (2.1.15) and (2.1.16) can be
interpreted as volume or areal distributions of point sources of mass forced by the rate of expansion.
In Section 2.2.2, we will see that the potential due to a point sink provides us with the free-space
Green’s function of Laplace’s equation

Point-source dipole

Now we consider two point sources with strengths of equal magnitude and opposite sign located
at the points x0 and x1. Exploiting the linearity of Laplace’s equation (2.1.17), we construct the
associated potential by linear superposition,

φ3D = −m

4π

1

|x− x0|
+

m

4π

1

|x− x1|
,

φ2D =
m

2π
ln

|x− x0|
a

− m

2π
ln

|x− x1|
a

,

(2.1.31)
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respectively, for three- and two-dimensional flow. Placing the point x1 near x0, expanding the
potential of the second point source in a Taylor series with respect to x1 about the location of the
first point source, x0, and retaining only the linear terms, we find that

φ3D =
m

4π
(x1 − x0) · ∇0

1

|x− x0|
,

φ2D = −m

2π
(x1 − x0) · ∇0 ln

|x− x0|
a

,

(2.1.32)

where the derivatives of the gradient ∇0 are taken with respect to x0.

Now we take the limit as the distance |x0 − x1| tends to zero

x

x

0

1−m

m

A point source with
strength m and a point
sink with strength −m
merge into a dipole.

while the product d ≡ m (x0 − x1) is held constant, and carry out the
differentiations to derive the velocity potential associated with a three-
or two-dimensional point-source dipole,

φ3D = − 1

4π

x− x0

r3
· d, φ2D = − 1

2π

x− x0

r2
· d, (2.1.33)

where r = |x−x0| is the distance of the field point, x, from the singular
point, x0. The corresponding velocity fields are given by

u3D = ∇φ3D =
1

4π
(− 1

r3
I+ 3

x̂⊗ x̂

r5
) · d,

u2D = ∇φ2D =
1

2π
(− 1

r2
I+ 2

x̂⊗ x̂

r4
) · d,

(2.1.34)

where I is the identity matrix and x̂ = x−x0. The flow rate across a spherical surface, and therefore
across any closed surface, enclosing a three-dimensional point-source dipole is zero. Similarly, the
flow rate across any closed loop enclosing a two-dimensional point-source dipole is zero.

The streamline pattern in a meridional plane associated with a three-dimensional dipole
is illustrated in Figure 2.1.4(a). The streamline pattern in the xy plane associated with a two-
dimensional dipole is illustrated in Figure 2.1.4(b). In both cases, the dipole is oriented along the x
axis, d = d ex, where d > 0 and ex is the unit vector along the x axis.

Problems

2.1.1 A harmonic velocity field

Consider a velocity field, u, with the property that each Cartesian velocity component is a harmonic
function, ∇2ui = 0, for i = x, y, z. Show that, if the rate of expansion is zero or constant, the
corresponding vorticity field is irrotational, ∇× ω = 0.

2.1.2 Flow between two surfaces

Consider an incompressible potential flow in a domain that is bounded by two closed surfaces, as
shown in Figure 2.1.1(a). The normal component of the velocity is zero over one surface, and the
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Figure 2.1.4 Streamline pattern due to (a) a three-dimensional and (b) a two-dimensional potential

dipole pointing in the positive direction of the x axis.

tangential component of the velocity is zero over the other surface. Does this imply that the velocity
field must vanish throughout the whole domain of flow?

2.1.3 Infinite flow

Consider a three-dimensional incompressible and irrotational flow in an infinite domain where the
velocity vanishes at infinity. In Section 2.3, we will show that the velocity potential must tend to
a constant value at infinity, as shown in equation (2.3.18). Based on this observation, show that, if
the flow has no interior boundaries and no singular points, the velocity field must necessarily vanish
throughout the whole domain of flow.

2.1.4 Irrotational vorticity field

(a) Show that an irrotational vorticity field, ∇ × ω = 0, can be expressed as the gradient of a
harmonic function.

(b) Consider an irrotational vorticity field of an infinite flow with no interior boundaries, where
the vorticity vanishes at infinity. Use the results of Problem 2.1.3 to show that the vorticity must
necessarily vanish throughout the whole domain.

2.1.5 Point source

Show that the flow rate across any surface that encloses a three-dimensional or two-dimensional
point source is equal to strength of the point source, m, but the flow rate across any surface that
does not enclose the point source is zero.
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2.2 The reciprocal theorem and Green’s functions of Laplace’s equation

In Section 2.3, we will develop an integral representation for the velocity potential of an irrotational
flow in terms of the rate of expansion of the fluid, the boundary values of the velocity potential, and
the boundary distribution of the normal derivative of the potential, which is equal to the normal
component of the velocity. To prepare the ground for these developments, in this section we introduce
a reciprocal theorem for harmonic functions and discuss the Green’s functions of Laplace’s equation.

2.2.1 Green’s identities and the reciprocal theorem

Green’s first identity states that any two twice differentiable functions, f and g, satisfy the relation

f ∇2g = ∇ · (f∇g)−∇f · ∇g, (2.2.1)

which can be proven by straightforward differentiation working in index notation. Interchanging the
roles of f and g, we obtain

g∇2f = ∇ · (g∇f)−∇g · ∇f. (2.2.2)

Subtracting (2.2.2) from (2.2.1), we derive Green’s second identity,

f ∇2g − g∇2f = ∇ · (f∇g − g∇f). (2.2.3)

If both functions f and g satisfy Laplace’s equation, the left-hand side of (2.2.3) is zero, yielding a
reciprocal relation for harmonic functions,

∇ · (f∇g − g∇f) = 0. (2.2.4)

Integrating (2.2.4) over a control volume that is bounded by a singly or multiply connected surface,
D, and using the divergence theorem to convert the volume integral into a surface integral, we obtain
the integral form of the reciprocal theorem,∫∫

D

(f ∇g − g∇f) · n dS = 0, (2.2.5)

where n it the unit vector normal to D pointing either into the control volume or outward from
the control volume. Equation (2.2.5) imposes an integral constraint on the boundary values and
boundary distribution of the normal derivatives of any pair of nonsingular harmonic functions.

2.2.2 Green’s functions in three dimensions

It is useful to introduce a special class of harmonic functions that are singular at a chosen point, x0.
A three-dimensional Green’s function satisfies the singularly forced Laplace’s equation

∇2G(x,x0) + δ3(x− x0) = 0, (2.2.6)

where δ3 is the three-dimensional delta function, x is a field point, and x0 is the location of the
Green’s function, also called the singular point or the pole. When the domain of flow extends to
infinity, the Green’s function decays at least as fast as the inverse of the distance from the pole,
1/|x− x0|.
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Green’s functions of the first kind and Neumann functions

In addition to satisfying (2.2.6), a Green’s function of the first kind is required to be zero over a
specified surface, SB, representing the boundary of a flow,

G(x,x0) = 0 (2.2.7)

when x lies on SB. Unless qualified, a Green’s function of the first kind is simply called a Green’s
function.

The normal derivative of a Green’s function of the second kind, also called a Neumann function,
is zero over a specified surface, SB,

n(x) · ∇G(x,x0) = 0 (2.2.8)

when the point x lies on SB, where n is the unit vector normal to SB.

Physical interpretation

Comparing (2.2.6) with (2.1.28), we find that, physically, a Green’s function represents the steady
temperature field due to a point source of heat with unit strength located at the point x0, in the
presence of an isothermal or insulated boundary, SB. A Green’s function of the first kind represents
the temperature field due to a point source of heat subject to the condition of zero boundary
temperature. A Green’s function of the second kind represents the temperature field due to a point
source of heat subject to the condition of zero boundary flux.

In an alternative interpretation, a Green’s function is the harmonic potential due to a point
sink of mass with unit strength located at the point x0 in a bounded or infinite domain of flow. A
Green’s function of the second kind represents the harmonic potential due to a point sink of mass,
subject to the condition of zero boundary velocity implementing impermeability. This interpretation
explains why a Green’s function of the second kind cannot be found in a domain that is completely
enclosed by a surface, SB.

Free-space Green’s function

The free-space Green’s function corresponds to an infinite domain of flow in the absence of interior
boundaries. Solving (2.2.6) by the method of Fourier transforms or simply by applying the first
equation in (2.1.29) with m = −1, we obtain

G(x,x0) =
1

4πr
, (2.2.9)

where r = |x− x0| is the distance of the field point from the pole.

2.2.3 Green’s functions in bounded domains

A Green’s function consists of a singular part given by the free-space Green’s function (2.2.9), and a
complementary part that is nonsingular throughout and over the boundaries of the solution domain,
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represented by the function H(x,x0), so that

G(x,x0) =
1

4πr
+H(x,x0). (2.2.10)

The decomposition (2.2.10) shows that, as the observation point, x, approaches the singular point,
x0, all Green’s functions exhibit a common singular behavior. The precise form of H depends on the
geometry of the boundary associated with the Green’s function, SB. In the absence of a boundary,
H is identically zero. For a limited class of simple boundary geometries, the complementary part,
H, can be found by the method of images. The construction involves introducing Green’s functions
and their derivatives at strategically selected locations outside the domain of flow.

Semi-infinite domain bounded by a plane wall

The Green’s function for a semi-infinite domain bounded by a plane wall located at x = w is

G(x,x0) =
1

4πr
± 1

4πrim
, (2.2.11)

where r = |x− x0|, rim = |x− xim
0 |, and

xim
0 = (2w − x0, y0, z0) (2.2.12)

is the image of the pole, x0, with respect to the wall. The minus and plus signs apply, respectively,
for the Green’s function of the first or second kind.

Interior and exterior of a sphere

The Green’s functions of the first kind for a domain bounded internally or externally by a spherical
surface of radius a centered at the point xc is given by

G(x,x0) =
1

4πr
− 1

4π

a

|x0 − xc|
1

rinv
, (2.2.13)

where r = |x − x0|, rinv = |x − xinv
0 |, and xinv

0 is the inverse of the singular point x0 with respect
to the sphere located at

xinv
0 = xc +

a2

|x0 − xc|2
(x0 − xc). (2.2.14)

By construction, rinv/r = a/|x0 − xc|, which demonstrates that the Green’s function is zero when
the point x lies on the sphere.

The corresponding Green’s function of the second kind representing the flow due to a point sink
of mass in the presence of an interior impermeable sphere will be derived in Section 7.5.5. A Green’s
function of the second kind representing the flow inside a sphere cannot be found. The physical
reason is that fluid cannot escape through the impermeable boundaries of an interior, completely
enclosed domain.
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Figure 2.2.1 Illustration of (a) a finite control volume in a flow bounded by an interior and an exterior
closed surface and (b) an infinite control volume bounded by an interior closed surface.

2.2.4 Integral properties of Green’s functions

Consider a singly or multiply connected control volume, Vc, bounded by one surface or a collection of
surfaces denoted by D, as illustrated in Figure 2.2.1(a). The boundary associated with the Green’s
function, SB , is one of these surfaces. Integrating (2.2.6) over Vc and using the divergence theorem
and the properties of the delta function, we find that G satisfies the integral constraint

∫∫
D

n(x) · ∇G(x,x0) dS(x) =

⎧⎨⎩ 0 when x0 is outside Vc,
1
2 when x0 is on D,
1 when x0 is inside Vc,

(2.2.15)

where the normal unit vector, n, points into the control volume, Vc. When the point x0 is located
precisely on the boundary, D, the improper but convergent integral on the left-hand side of (2.2.15)
is called a principal value integral (PV ). Using relations (2.2.15), we derive the identity∫∫

D

n(x) · ∇G(x,x0) dS(x) =

∫∫ PV

D

n(x) · ∇G(x,x0) dS(x)±
1

2
, (2.2.16)

where plus or minus sign on the left-hand side applies, respectively, when the point x0 lies inside or
outside the control volume.

2.2.5 Symmetry of Green’s functions

We return to Green’s second identity (2.2.3) and identify the functions f and g with a Green’s
function, G, whose singular point is located, respectively, at the points x1 and x2, so that f = G(x,x1)
and g = G(x,x2). Using the definition (2.2.6), we obtain

−G(x,x1) δ(x− x2) + G(x,x2) δ(x− x1) = ∇ ·
[
G(x,x1)∇G(x,x2)− G(x,x2)∇G(x,x1)

]
. (2.2.17)

Next, we integrate (2.2.17) over a control volume, Vc, that is bounded by a surface associated with
the Green’s function, SB. In the case of infinite flow, Vc is also bounded by an outer surface with
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large dimensions, S∞. Using the divergence theorem, we convert the volume integral on the right-
hand side to a surface integral, invoke the distinguishing properties of the delta function to write,
for example, ∫∫∫

Vc

G(x,x1) δ3(x− x2) dV (x) = G(x2,x1), (2.2.18)

and find that

G(x2,x1)− G(x1,x2) =

∫∫
SB ,S∞

[G(x,x1)∇G(x,x2)− G(x,x2)∇G(x,x1)] · n(x) dS(x). (2.2.19)

Since either the Green’s function itself or its normal derivative is zero over SB, the integral over SB

on the right-hand side disappears. In the case of infinite flow, we let the large surface S∞ expand to
infinity and find that, because the integrand decays at a rate that is faster than inverse quadratic,
the corresponding integrals make vanishing contributions. We conclude that a Green’s function of
the first or second kind (Neumann function) satisfy the symmetry property

G(x2,x1) = G(x1,x2), (2.2.20)

which allows us to switch the observation point and the pole.

Physical interpretation

In physical terms, equation (2.2.20) states that the temperature or velocity potential at a point,
x2, due to a point source of heat or point sink of mass located at another point, x1, is equal to
the temperature or velocity potential at the point x1 due to a corresponding singularity located at
x2. In Chapter 10, we will see that Green’s functions appear as kernels in integral equations for
the boundary distribution of the harmonic potential or its normal derivatives, and the symmetry
property (2.2.20) has important implications on the properties of the solution.

One noteworthy consequence of (2.2.20) is that, when the pole of a Green’s function of the
first kind is placed at the boundary SB where the Green’s function is required to vanish, the Green’s
function is identically zero, that is, G(x,x0) = 0 when x0 is on SB for any x. This behavior can
be understood in physical terms by identifying the Green’s function with the temperature field
established when a point source of heat is placed on an isothermal body. Because the heat of the
point source is immediately absorbed by the body, a temperature field is not established.

2.2.6 Green’s functions with multiple poles

Adding N Green’s functions with distinct poles, xi for i = 1, . . . , N , we obtain a Green’s function
with a multitude of poles,

G(x,x1, . . . ,xN ) =
N∑
i=1

G(x,xi). (2.2.21)

Physically, this Green’s function can be identified with the temperature field due to a collection of
point sources of heat or with the velocity potential due to a collection of point sinks of mass.
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A periodic Green’s function represents the temperature field or harmonic potential due to a
simply, doubly, or triply periodic array of point sources of heat or point sinks of mass. In certain
cases, a periodic Green’s function cannot be computed simply by adding an infinite number of
Green’s functions with single poles, as the superposition produces divergent sums. Instead, the
solution must be found by solving the defining equation

∇2G(x,x0) +
∑
i

δ3(x− xi) = 0, (2.2.22)

where the sum is computed over the periodic array. The solution can be found using Fourier series
expansions.

2.2.7 Multipoles of Green’s functions

Differentiating a Green’s function with respect to the position of the pole, x0, we obtain a vectorial
singular solution called the Green’s function dipole,

G′(x,x0) ≡ ∇0G(x,x0), (2.2.23)

where the zero subscript of the gradient indicates differentiation with respect to x0. Higher deriva-
tives with respect to the singular point yield high-order singularities that are multipoles of the
Green’s function. The next three singularities are the quadruple,

G′′(x,x0) = ∇0∇0G(x,x0), (2.2.24)

the sextuple,

G′′′(x,x0) = ∇0∇0∇0G(x,x0), (2.2.25)

and the octuple,

G′′′′(x,x0) = ∇0∇0∇0∇0G(x,x0). (2.2.26)

Four indices are afforded by the octuple.

The free-space Green’s function dipole and quadruple are given by

G′(x,x0) =
1

4π

x̂

r3
, G′′(x,x0) =

1

4π

(
− 1

r3
I+ 3

x̂⊗ x̂

r5
)
, (2.2.27)

where x̂ = x−x0, r = |x̂|, and I is the identity matrix. Comparing (2.2.27) with the first expressions
in (2.1.33) and (2.1.34), we find that the velocity potential and velocity field due to a point-source
dipole with strength d are given by

φ = G′ · d, u = G′′ · d, (2.2.28)

where the constant d expresses the direction and strength of the dipole. Working in a similar fashion,
we find that the velocity potential and velocity field due to a point-source quadruple are given by

φ = G′′ : q, u = G′′′ : q, (2.2.29)

where q is a constant two-index matrix expressing the strength and spatial structure of the quadruple.
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2.2.8 Green’s functions in two dimensions

Green’s identities, the reciprocal theorem, and the apparatus of Green’s functions can be extended
in a straightforward manner to two-dimensional flow. The Green’s functions satisfy the counterpart
of equation (2.2.6) in the plane,

∇2G(x,x0) + δ2(x− x0) = 0, (2.2.30)

where ∇2 is the two-dimensional Laplacian and δ2 is the two-dimensional delta function.

Free-space Green’s function

The free-space Green’s function is given by

G(x,x0) = − 1

2π
ln

r

a
, (2.2.31)

where a is a specified constant length. It is important to note that the free-space Green’s function
increases at a logarithmic rate with respect to distance from the singular point, r. In contrast, its
three-dimensional counterpart decays like 1/r. The two-dimensional Green’s function is dimension-
less, whereas its three-dimensional counterpart has units of inverse length.

Semi-infinite domain bounded by a plane

Using the method of images, we find that the Green’s function for a semi-infinite domain bounded
by a plane wall located at y = w is given by

G(x,x0) = − 1

2π

(
ln

r

a
± ln

rim
a

)
, (2.2.32)

where r = |x− x0|, rim = |x− xim
0 |, and xim

0 = (x0, 2w− y0) is the image of the singular point, x0,
with respect to the wall. The minus or plus sign apply, respectively, for the Green’s function of the
first or second kind (Neumann function).

Interior and exterior of a circle

The Green’s function of the first kind in a domain that is bounded internally or externally by a
circle of radius a centered at the point xc is given by

G(x,x0) = − 1

2π

[
ln

r

a
+ ln

( a

|x0 − xc|
a

rinv

) ]
, (2.2.33)

where r = |x − x0|, rinv = |x − xinv
0 |, and xinv

0 is the inverse of the singular point x0 with respect
to the circle located at

xinv
0 = xc +

a2

|x0 − xc|2
(x0 − xc). (2.2.34)

By construction, rinv/r = a/|x0 − xc|, which shows that the Green’s function is zero when the field
point x lies on the circle.
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The Green’s function of the second kind representing the flow due to a point sink of mass in
the presence of an interior circular boundary will be derived in Section 7.8. The Green’s function of
the second kind for flow in the interior of a circular boundary cannot be found.

Further properties of Green’s functions

The reciprocal relation and identities (2.2.15) and (2.2.16) are also valid in two dimensions, provided
that the control volume, Vc, is replaced by a control area, Ac, and the boundary, D, is replaced by
a contour, C, enclosing Ac. The two-dimensional Green’s functions satisfy the symmetry property
(2.2.20). The proof is carried out working as in the case of three-dimensional flow.

Infinite flow

An apparent complication is encountered in the case of infinite two-dimensional flow. In the limit
as the contour C∞ expands to infinity, the Green’s function may increase at a logarithmic rate, and
the integrals of the two terms in (2.2.19) over the large contour, C∞, which is the counterpart of the
large surface S∞ in the three-dimensional flow, may not vanish. However, expanding the Green’s
functions inside the integrand of (2.2.19) in a Taylor series with respect to x0 about the origin, we
find that the sum of the two integrals makes a vanishing contribution and the combined integral
over C∞ cancels out.

Problems

2.2.1 Free-space Green’s function

(a) Working in index notation, confirm that the free-space Green’s function satisfies Laplace’s equa-
tion everywhere except at the pole.

(b) Identify D with a spherical surface centered at the pole, x0, and show that the free-space Green’s
function satisfies the integral constraint (2.2.15).

2.2.2 Solution of Poisson’s equation

Use the distinguishing properties of the delta function to show that the general solution of the
Poisson’s equation (2.1.12) is

φ(x) = −
∫∫∫

Flow

G(x,x′)∇′ · u(x′) dV (x′) +H(x), (2.2.35)

where G is a Green’s function and H is a nonsingular harmonic function.

2.2.3 Symmetry of Green’s functions

(a) Verify that the Green’s functions given in (2.2.11) and (2.2.13) satisfy the symmetry property
(2.2.20).

(b) Discuss whether (2.2.20) implies that

∇G(x,x0) = ∇G(x0,x) or ∇G(x,x0) = ∇0G(x,x0). (2.2.36)

The gradient, ∇0, involves derivatives with respect to x0.



2.3 Integral representation of three-dimensional potential flow 131
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Figure 2.3.1 Illustration of a control volume used to derive a boundary-integral representation of the
potential of an irrotational flow at a point, x0.

2.2.4 Green’s function sextuple

(a) Derive the three-dimensional free-space Green’s function sextuple and discuss its physical inter-
pretation in terms of merged point sources and point sinks.

(b) Repeat (a) for the two-dimensional sextuple.

2.3 Integral representation of three-dimensional potential flow

Having introduced the reciprocal theorem and the Green’s functions of Laplace’s equation, we pro-
ceed to develop integral representations for the velocity potential of an irrotational, incompressible
or compressible flow. We begin by considering a three-dimensional flow of an incompressible fluid in
a simply connected domain. Applying the reciprocal relation (2.2.4) with a nonsingular single-valued
harmonic potential φ in place of f and a Green’s function of Laplace’s equation, G(x,x0), in place
of g, we obtain

∇ · [φ(x)∇G(x,x0)− G(x,x0)∇φ(x) ] = 0. (2.3.1)

Next, we select a control volume, Vc, that is bounded by a collection of surfaces, D, as illustrated
in Figure 2.3.1 and consider two cases.

Evaluation outside a control volume

When the singular point of the Green’s function, x0, is located outside Vc, the left-hand side of
(2.3.1) is nonsingular throughout Vc. Repeating the procedure that led us from (2.2.17) to (2.2.19),
we obtain ∫∫

D

φ(x)n(x) · ∇G(x,x0) dS(x) =

∫∫
D

G(x,x0)n(x) · ∇φ(x) dS(x). (2.3.2)

By convention, the normal unit vector, n, points into the control volume.
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Evaluation inside a control volume

When the singular point, x0, resides inside Vc, the left-hand side of (2.3.1) becomes infinite at the
point x0. To apply the divergence theorem, we exclude from the control volume a small spherical
volume of radius ε centered at x0, denoted by Sε, as shown in Figure 2.3.1. The result is an equation
that is identical to (2.3.2) except that the boundaries of the control volume include the spherical
surface Sε, ∫∫

D,Sε

φ(x)n(x) · ∇G(x,x0) dS(x) =

∫∫
D,Sε

G(x,x0)n(x) · ∇φ(x) dS(x). (2.3.3)

By convention, the normal unit vector, n, points into the control volume. Considering the integrals
over Sε, we write dS = ε2dΩ, where Ω is the solid angle defined as the area of a sphere of unit radius
centered at x0. Using (2.2.8), we obtain

∇G(x,x0) = − 1

4πε2
n(x) +∇H(x,x0), (2.3.4)

where n = 1
ε (x − x0) is the normal unit vector pointing into the control volume, as shown in

Figure 2.3.1. Taking the limit as ε tends to zero, using (2.2.8) and (2.3.4) and recalling that the
complementary component H is nonsingular throughout the domain of flow, we find that∫∫

Sε

G(x,x0)n(x) · ∇φ(x) dS(x) =
1

4πε

∫∫
Sε

n(x) · ∇φ(x) ε2 dΩ(x) → 0 (2.3.5)

and ∫∫
Sε

φ(x)n(x) · ∇G(x,x0) dS(x) → −φ(x0)
1

4πε2

∫∫
Sε

ε2 dΩ(x) = −φ(x0). (2.3.6)

Substituting (2.3.5) and (2.3.6) into (2.3.3), we obtain the final result

φ(x0) = −
∫∫

D

G(x,x0)n(x) · ∇φ(x) dS(x) +

∫∫
D

φ(x)n(x) · ∇G(x,x0) dS(x), (2.3.7)

which provides us with a boundary-integral representation of a harmonic function in terms of the
boundary values and the boundary distribution of its normal derivative, which is equal to the normal
component of the velocity. To compute the value of φ at a chosen point, x0, inside a selected control
volume, we simply compute the two boundary integrals on the right-hand side of (2.3.7) by analytical
or numerical methods.

The integral representation (2.3.7) can be derived directly using the properties of the delta
function, following the procedure that led us from (2.2.17) to (2.2.19). However, the present deriva-
tion based on the exclusion of a small sphere centered at the evaluation point bypasses the use of
generalized functions.

Physical interpretation

The symmetry property (2.2.20) allows us to switch the order of the arguments of the Green’s
function in the integral representation (2.3.7), obtaining

φ(x0) = −
∫∫

D

G(x0,x)n(x) · ∇φ(x) dS(x) +

∫∫
D

φ(x)n(x) · ∇G(x0,x) dS(x). (2.3.8)
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The two integrals on the right-hand side represent boundary distributions of Green’s functions and
Green’s function dipoles oriented normal to the boundaries of the control volume, amounting to
boundary distributions of point sources and point-source dipoles. Making an analogy with corre-
sponding results in the theory of electrostatics concerning the surface distribution of electric charges
and charge dipoles, we call the first integral in (2.3.8) the single-layer harmonic potential and the sec-
ond integral the double-layer harmonic potential. The distribution densities of these potentials are
equal, respectively, to the normal derivative and to the boundary values of the harmonic potential.

Boundary-integral representation for the velocity

Taking the gradient of (2.3.8) with respect to the evaluation point, x0, we derive a boundary-integral
representation of the velocity,

u(x0) = −
∫∫

D

∇0G(x0,x)n(x) · ∇φ(x) dS(x) +

∫∫
D

φ(x)n(x) · [∇∇0G(x0,x)] dS(x). (2.3.9)

The integrals on the right-hand side represent the velocity due to boundary distributions of Green’s
functions and Green’s function dipoles.

Green’s third identity

Applying the boundary-integral representation (2.3.8) with the free-space Green’s function given in
(2.2.7), we derive Green’s third identity

φ(x0) = − 1

4π

∫∫
D

1

r
n(x) · ∇φ(x) dS(x) +

1

4π

∫∫
D

φ(x)

r3
n(x) · (x0 − x) dS(x), (2.3.10)

where r = |x− x0| is the distance of the evaluation point, x0, from the integration point, x.

2.3.1 Unbounded flow decaying at infinity

Next, we consider a flow in an infinite domain enclosed by one interior boundary or a collection of
closed interior boundaries, B, called a periphractic domain from the Greek words περι which means
“about” and ϕρακτης which means “fence,” subject to the assumption that the velocity decays at
infinity. We will show that the velocity potential tends to a constant value at infinity. We begin by
selecting a point x0 inside the domain of flow and define a control volume that is enclosed by the
interior boundaries, B, and a spherical surface of large radius R centered at the point x0, denoted
by S∞. Applying Green’s third identity (2.3.10), we obtain

φ(x0) =
Q

4πR
+ φ̄∞(R,x0)−

1

4π

∫∫
B

1

r
n(x) · ∇φ(x) dS(x)

+
1

4π

∫∫
B

φ(x)

r3
n(x) · (x0 − x) dS(x), (2.3.11)

where Q is the flow rate across S∞ or any other closed surface enclosed by S∞, defined as

Q = −
∫∫

S∞

n(x) · ∇φ(x) dS(x) =

∫∫
B

n(x) · ∇φ(x) dS(x), (2.3.12)
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and φ̄∞ is the average value of φ over S∞,

φ̄∞(R,x0) ≡
1

4πR2

∫∫
S∞

φ(x) dS(x). (2.3.13)

The normal unit vector, n, points inward over S∞. Concentrating on the flow rate, we write

Q =

∫∫
S∞

(∂φ
∂r

)
r=R

dS(x) =

∫∫
S∞

(∂φ
∂r

)
r=R

R2 dΩ(x) = R2 d

dR

∫∫
S∞

φ dΩ(x), (2.3.14)

where Ω is the solid angle defined as the surface area of a sphere of unit radius centered at the point
x0. Substituting the definition of φ̄∞, we obtain

Q

4πR2
=

∂φ̄∞

∂R
. (2.3.15)

Integrating this equation with respect to R treating Q as a constant, we obtain

φ̄∞(R,x0) = − Q

4πR
+ c(x0), (2.3.16)

where c is independent of R. Taking derivatives of the last equation with respect to x0 keeping R
fixed, we find that

∇0c = ∇0φ̄∞ = ∇0

∫∫
S∞

φ(x) dΩ(x) =

∫∫
S∞

∇φ(x) dΩ(x) = 0. (2.3.17)

The value of zero emerges by letting R in the last integral tend to infinity and invoking the original
assumption that the velocity decays at infinity. We have thus shown that c is an absolute constant.
Substituting (2.3.15) into (2.3.11), we derive a simplified boundary integral representation lacking
the integral over the large surface,

φ(x0) = c− 1

4π

∫∫
B

1

r
n(x) · ∇φ(x) dS(x) +

1

4π

∫∫
B

φ(x)

r3
n(x) · (x0 − x) dS(x). (2.3.18)

This equation finds useful applications in computing an exterior flow.

Letting the point x0 in (2.3.18) tend to infinity and recalling that r is the distance of the
evaluation point, x0, from the integration point, x, over the interior boundary B, we deduce the
asymptotic behavior

φ(x0) = c− Q

4π|x0|
+ · · · , (2.3.19)

where the dots represent decaying terms. This expression demonstrates that the potential of an
infinite three-dimensional flow that decays at infinity tends to a constant value far from the interior
boundaries.

Based on (2.3.19), we find that the expression for the kinetic energy (2.1.22) becomes

K = −1

2
ρ

∫∫
B

φu · n dS +
1

2
ρ cQ, (2.3.20)
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where B is an interior boundary. Following the arguments of Section 2.1, we deduce that, given
the boundary distribution of the normal component of the velocity, a potential flow that decays
at infinity is unique and the corresponding harmonic potential is determined uniquely up to an
arbitrary constant.

2.3.2 Simplified boundary-integral representations

The boundary-integral representation (2.3.8) can be simplified by judiciously reducing the domain
of integration of the hydrodynamic potentials. This is accomplished by employing Green’s functions
that are designed to observe the geometry, symmetry, or periodicity of a flow. For example, if
the Green’s function or its normal derivative vanishes over a particular boundary, the corresponding
single- or double-layer potential is identically zero. If the velocity and harmonic potential are periodic
in one, two, or three directions, it is beneficial to use a Green’s function that observes the periodicity
of the flow so that the integrals over the periodic boundaries enclosing one period cancel each other
and do not appear in the final boundary-integral representation.

2.3.3 Poisson integral for a spherical boundary

The Green’s function of the first kind for flow inside or outside a sphere of radius a centered at the
origin arises from (2.2.13) by setting xc = 0, finding

G(x,x0) =
1

4π

(1
r
− a

|x0|
1

rinv

)
, (2.3.21)

where r = |x − x0|, rinv = |x − xinv
0 |, and xinv

0 is the inverse of the point x0 with respect to the
sphere, located at xinv

0 = x0 a
2/|x0|2. The gradient of the Green’s function is

∇G(x,x0) = − 1

4π

( x− x0

r3
− a

|x0|
x− xinv

0

r3inv

)
. (2.3.22)

Evaluating this expression at a point x on the sphere and projecting the result onto the inward
normal unit vector, n = − 1

a x, we obtain

n(x) · ∇G(x,x0) =
1

4πa

( 1

r3
(a2 − x0 · x)−

a

|x0|
1

r3inv
(a2 − xinv

0 · x)
)
. (2.3.23)

Recalling that rinv/r = a/|x0| for a point on the sphere and simplifying, we find that

n(x) · ∇G(x,x0) =
1

4πar3

[
(a2 − x0 · x)−

|x0|2
a2

(a2 − a2

|x0|2
x0 · x)

]
=

a2 − |x0|2
4πar3

. (2.3.24)

Substituting this expression into the first integral on the right-hand side of (2.5.1) and noting that
the second integral vanishes because the Green’s function is zero on the spherical boundary, we find
that the potential at a point x0 located in the interior or exterior of a sphere of radius a centered
at the origin is given by the Poisson integral

φ(x0) = ±a2 − |x0|2
4πa

∫∫
◦

φ(x)

|x− x0|3
dS(x), (2.3.25)

where ◦ denotes the sphere. The plus or minus sign applies when the evaluation point, x0, is located
inside or outside the sphere (e.g., [204], p. 240). Applying this equation for constant interior φ
provides us with an interesting identity.
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2.3.4 Compressible fluids

To derive an integral representation for compressible flow, we apply Green’s second identity (2.2.4)
with a general potential φ in place of f and a Green’s function G in place of g, finding

−G(x,x0)∇2φ(x) = ∇ · [φ(x)∇G(x,x0)− G(x,x0)∇φ(x) ]. (2.3.26)

Following the procedure discussed earlier in this section for incompressible flow, we derive the integral
representation

φ(x0) = −
∫∫

D

G(x,x0)n(x) · ∇φ(x) dS(x)

+

∫∫
D

φ(x)n(x) · ∇G(x,x0) dS(x)−
∫∫∫

Vc

G(x0,x)∇2φ(x) dV (x), (2.3.27)

which is identical to (2.3.8) except that the right-hand side includes a volume integral over the
control volume Vc enclosed by the boundary D, called the volume potential. Physically, the volume
potential represents a volume distribution of point sources.

Adopting the free-space Green’s function, we obtain the counterpart of Green’s third identity
for compressible flow,

φ(x0) = − 1

4π

∫∫
D

1

r
n(x) · ∇φ(x) dS(x)

+
1

4π

∫∫
D

x0 − x

r3
· n(x)φ(x) dS(x)− 1

4π

∫∫∫
Vc

1

r
∇2φ(x) dS(x).

(2.3.28)

The normal unit vector, n, points into the control volume, Vc.

Problem

2.3.1 Boundary-integral equation for a uniform potential

Apply (2.3.2) and (2.3.7) with φ set to a constant to derive the first and third equations in (2.2.15).

2.4 Mean-value theorems in three dimensions

An important property of functions that satisfy Laplace’s equation emerges by selecting a spherical
control volume with radius a residing entirely in their domain of definition and centered at a chosen
point, x0. Identifying the surface D in (2.3.10) with the spherical boundary and substituting r = a
and n = 1

a (x0 − x), we obtain

φ(x0) = − 1

4πa

∫∫
◦

n(x) · ∇φ(x) dS(x) +
1

4πa2

∫∫
◦

φ(x) dS(x), (2.4.1)

where ◦ denotes the sphere. Next, we use the divergence theorem and recall that ∇2φ = 0 to find
that the first integral on the right-hand side is zero. The result is a mean-value theorem expressed
by the equation

φ(x0) =
1

4πa2

∫∫
◦

φ(x) dS(x), (2.4.2)
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stating that the mean value of a function that satisfies Laplace’s equation over the surface of a
sphere is equal to value of the function at the center of the sphere. One interesting consequence
of the mean-value theorem is that, if the harmonic potential of an infinite flow with no interior
boundaries decays at infinity, it must vanish throughout the whole space.

Using (2.4.2), we find that the mean value of a harmonic function over the volume of a sphere
of radius a is equal to value of the function at the center of the sphere,

1

V◦

∫∫∫
◦

φ(x) dV (x) =
1

V◦

∫ a

0

[ ∫∫
Sr

φ(x) dS(x)
]
dr =

1

V◦

∫ a

0

4πr2 φ(x0) dr = φ(x0), (2.4.3)

where V◦ = 4π
3 a3 is the volume of the sphere and Sr denotes a sphere of radius r. Rearranging, we

obtain

φ(x0) =
1

4π
3 a3

∫∫∫
◦

φ(x) dV (x), (2.4.4)

stating that the mean value of a function that satisfies Laplace’s equation over the volume of a
sphere is equal to value of the function at the center of the sphere.

Extrema of harmonic functions

The mean-value theorem can be used to show that the minimum or maximum of a nonsingular
harmonic function occurs only at the boundaries. To see this, we temporarily assume that an
extremum occurs at a point inside the domain of a flow, x0, and apply the mean-value theorem to
find that there must be at least one point on the surface of a sphere centered at the alleged point of
extremum where the value of φ is higher or lower than φ(x0), so that the mean value of φ over the
sphere is equal to φ(x0). However, this contradicts the original assumption.

Constant boundary potential

Now we consider a domain that is completely enclosed by a surface over which a harmonic potential
φ is constant. According to the mean-value theorem, the constant value must be both a minimum
and a maximum. Consequently, φ must have the same value at every point. This conclusion does
not apply for an infinite domain bounded by interior surfaces.

Maximum of the magnitude of the velocity

Another consequence of the mean-value theorem is that, in the absence of singularities, the magni-
tude of the velocity, u = ∇φ, reaches a maximum at the boundaries. To see this, we temporarily
assume that the maximum occurs at a point inside the domain of a flow, x0, and introduce the unit
vector in the direction of the local velocity, e0 ≡ u(x0)/|u(x0)|. The square of the magnitude of the
velocity at a point, x, inside the domain of flow is

u(x) · u(x) = |u(x) · e0|2 + |(I− e0 ⊗ e0) · u(x)|2. (2.4.5)

Accordingly,

u(x) · u(x) ≥ |u(x) · e0|2, (2.4.6)
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with the equality holding when x = x0. However, since the positive scalar function |u(x)·e0| satisfies
Laplace’s equation, a point x can be found such that

|u(x) · e0|2 > |u(x0) · e0|2 = u(x0) · u(x0). (2.4.7)

Combining the last two inequalities, we find that

u(x) · u(x) > u(x0) · u(x0), (2.4.8)

which contradicts the original assumption. One corollary of this result is that, if the velocity of an
infinite irrotational flow with no interior boundaries vanishes at infinity, it must vanish throughout
the whole space.

Mean-value theorem for singular functions

The mean-value theorem applies for a harmonic function that is free of singularities inside and
over the surface of a sphere of radius a centered at a chosen point, x0. Consider the potential
φ(x) = G(x,x1), where G is a Green’s function of Laplace’s equation and the singular point x1 lies
inside a sphere. The counterpart of equation (2.4.1) stemming from the reciprocal theorem is

G(x0,x1)−
1

4π|x1 − x0|
= − 1

4πa

∫∫
◦

n(x) · ∇G(x,x1) dS(x) +
1

4πa2

∫∫
◦

G(x,x1) dS(x), (2.4.9)

where the normal unit vector, n, points outward from the sphere. The first integral on the right-hand
side is equal to −1. Rearranging, we obtain

1

4πa2

∫∫
◦

G(x,x1) dS(x) = G(x0,x1)−
1

4π|x1 − x0|
+

1

4πa
. (2.4.10)

If G is the free-space Green’s function,

1

4πa2

∫∫
◦

G(x,x1) dS(x) =
1

4πa
(2.4.11)

for any point x1 inside the sphere.

Biharmonic functions

Next, we derive a mean-value theorem for a function, Φ, that satisfies the biharmonic equation,
∇4Φ = 0. Working as in the case of harmonic functions, we consider a spherical control volume of
radius a centered at a chosen point, x0. Identifying D with the spherical boundary of the control
volume and substituting in (2.3.28) r = a, n = 1

a (x0 − x), and f = Φ, we obtain

Φ(x0) = − 1

4πa

∫∫
◦

n(x) · ∇Φ(x) dS(x) +
1

4πa2

∫∫
◦

Φ(x) dS(x)− 1

4πa

∫∫∫
◦

∇2Φ(x) dS(x). (2.4.12)

Applying the divergence theorem, we find that the first surface integral on the right-hand side is
equal to the negative of the integral of the Laplacian ∇2Φ over the volume of the sphere. We note
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that the function ∇2Φ satisfies Laplace’s equation and use the mean-value theorem expressed by
(2.4.4) to replace its volume integral over the sphere with 4π

3 a3∇2Φ(x0), obtaining

Φ(x0) = −1

3
a2∇2Φ(x0) +

1

4πa2

∫∫
◦

Φ(x) dS(x)− 1

4πa

∫∫∫
◦

∇2Φ(x) dS(x). (2.4.13)

Finally, we use the mean-value theorem expressed by (2.4.4) for the harmonic function ∇2Φ to
simplify the last integral, and rearrange to derive the mean-value theorem expressed by

1

4πa2

∫∫
◦

Φ(x) dS(x) = Φ(x0) +
1

6
a2∇2Φ(x0), (2.4.14)

where ◦ denotes a sphere. This equation relates the mean value of a biharmonic function over the
surface of a sphere to the value of the function and its Laplacian at the center of the sphere.

Working as in (2.4.4), we find that the mean value of a biharmonic function over the volume
of a sphere is given by

1
4π
3 a3

∫∫∫
◦

Φ(x) dV (x) = Φ(x0) +
1

10
a2∇2Φ(x0). (2.4.15)

If Φ happens to satisfy Laplace’s equation, ∇2Φ = 0, which is inclusive of a biharmonic
equation, equations (2.4.14) and (2.4.15) reduce to (2.4.2) and (2.4.4).

Problem

2.4.1 Mean-value theorem for a singular biharmonic function

A Green’s function of the biharmonic equation in three dimensions satisfies the equation

∇4G + δ3(x− x0) = 0, (2.4.16)

where δ3 is the three-dimensional delta function. Confirm that the free-space Green’s function is
G = r/8π, where r = |x− x0|. Derive the counterpart of (2.4.10).

2.5 Two-dimensional potential flow

A boundary-integral representation and further properties of the single-valued harmonic potential
of a two-dimensional flow can be derived working as in Section 2.3 for three-dimensional flow.

2.5.1 Boundary-integral representation

Equations (2.3.7) and (2.3.8) are also valid for two-dimensional flow, provided that the control
volume is replaced by a control area, and the boundary, D, is replaced by a closed contour, C,
enclosing the control area. The integral representation (2.3.7) takes the form

φ(x0) = −
∮
C

G(x,x0)n(x) · ∇φ(x) dl(x) +

∮
C

φ(x)n(x) · ∇G(x,x0) dl(x), (2.5.1)



140 Introduction to Theoretical and Computational Fluid Dynamics

where the normal unit vector, n, points into the control area enclosed by C. Green’s third identity
for a single-valued potential takes the form

φ(x0) =
1

2π

∮
C

ln
( r
a

)
n(x) · ∇φ(x) dl(x) +

1

2π

∮
C

φ(x)

r2
n(x) · (x0 − x) dl(x), (2.5.2)

where r = |x− x0| and a is a chosen constant length.

Flow in an infinite domain

In the case of flow in an infinite domain, we stipulate that the velocity decays at infinity and derive
the counterpart of (2.3.18) with a straightforward change in notation. Letting the point x0 tend to
infinity, we find that the velocity potential behaves like

φ(x0) =
Q

2π
ln

|x0|
a

+ c+ · · · , (2.5.3)

where c is a constant, |x0| is the distance from the origin assumed to be in the vicinity of the
boundary C, a is a constant length, and

Q =

∮
C

n · ∇φ dl (2.5.4)

is the flow rate across C (Problem 2.5.3). Now we consider the kinetic energy of the flow expressed
by the potential

φ− Q

2π
ln

|x0|
a

. (2.5.5)

Repeating the procedure of Section 2.3 for three-dimensional flow, and find that a two-dimensional
flow in an infinite domain described by a single-valued harmonic potential is determined uniquely
by specifying the normal component of the velocity along the interior boundaries.

Compressible flow

The integral representation of the potential of a compressible flow stated in (2.3.27) is also valid
for two-dimensional flow, provided that the control volume is replaced by a control area, and the
boundary, D, is replaced by a closed contour, C, enclosing the control area.

2.5.2 Mean-value theorems

The mean value of a harmonic potential, φ, along the perimeter a circle and over the area of a circular
disk of radius a centered at a point, x0, is equal to the value of the potential at the centerpoint,

1

2πa

∮
◦

φ(x) dl(x) =
1

πa2

∫∫
◦

φ(x) dA(x) = φ(x0). (2.5.6)

where ◦ denotes the circle or the disk inside the circle, l is the arc length around the circle, and
dA = dx dy is the differential area inside the circle.
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Working as in the case of three-dimensional flow, we derive mean-value theorems for functions
that satisfy the biharmonic equation, ∇4Φ = 0, stating that

1

2πa

∮
◦

Φ(x) dl(x) = Φ(x0) +
1

4
a2∇2Φ(x0) (2.5.7)

where ◦ denotes the circle, and

1

πa2

∫∫
◦

Φ(x) dA(x) = Φ(x0) +
1

8
a2∇2Φ(x0), (2.5.8)

where ◦ denotes the disk inside the circle (Problem 2.5.2). If Φ is a harmonic function, the last term
on the right-hand side of (2.5.7) or (2.5.8) does not appear.

2.5.3 Poisson integral for a circular boundary

The Green’s function of two-dimensional flow inside or outside a circle of radius a centered at the
origin arises from (2.2.33) by setting xc = 0,

G(x,x0) = − 1

2π

[
ln

r

a
+ ln

( a

|x0|
a

rinv

) ]
, (2.5.9)

where r = |x − x0|, rinv = |x − xinv
0 |, and xinv

0 is the inverse point of the point x0 with respect to
the circle located at xinv

0 = x0 a
2/|x0|2. The gradient of the Green’s function is

∇G(x,x0) = − 1

2π

( x− x0

r2
− x− xinv

0

r2inv

)
. (2.5.10)

Evaluating this expression at a point x on the circle and projecting the resulting equation onto the
inward normal unit vector, n = −x/a, we obtain

n(x) · ∇G(x,x0) =
1

2πa

[ 1

r2
(a2 − x0 · x)−

1

r2inv
(a2 − xinv

0 · x)
]
. (2.5.11)

Recalling that for a point on the circle rinv/r = a/|x0| and simplifying, we find that

n(x) · ∇G(x,x0) =
1

2πar2

[
(a2 − x0 · x)−

|x0|2
a2

(a2 − a2

|x0|2
x0 · x)

]
=

1

2πar2
(a2 − |x0|2). (2.5.12)

Substituting this expression into the first integral on the right-hand side of (2.5.1) and noting that
the second integral disappears because the Green’s function is zero on the circular boundary, we find
that the potential at a point x0 located in the interior or exterior of a circle of radius a centered at
the origin is given by the Poisson integral

φ(x0) = ±a2 − |x0|2
2πa

∮
◦

φ(x)

|x− x0|2
dl(x), (2.5.13)

where ◦ denotes the circle. The plus or minus sign corresponds, respectively, to interior or exterior
flow (e.g., [106], p. 242). Applying this equation for constant interior φ provides us with an
interesting identity.
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Problems

2.5.1 Two-dimensional infinite flow

Derive the asymptotic expression (2.5.3).

2.5.2 Mean-value theorems for biharmonic functions in two dimensions

Prove the mean-value theorems expressed by (2.5.7) and (2.5.8).

2.5.3 Singular harmonic functions

Derive the counterpart of (2.4.10) in two dimensions.

2.6 The vector potential for incompressible fluids

In Section 1.5.4, we saw that a velocity field, u, that arises as the curl of an arbitrary continuous
vector field, A, is solenoidal, ∇ · u = 0. Now we will demonstrate that the inverse is also true, that
is, given a solenoidal velocity field, ∇ · u = 0, it is always possible to find a vector potential, A, so
that

u = ∇×A. (2.6.1)

The three scalar components of this equation are

u1 =
∂A3

∂x2
− ∂A2

∂x3
, u2 =

∂A1

∂x3
− ∂A3

∂x1
, u3 =

∂A2

∂x1
− ∂A1

∂x2
. (2.6.2)

We begin by stipulating that the first component of A, denoted by A1, is a function of x1

alone, and set

A1 = f1(x1), (2.6.3)

where f1 is an arbitrary function. Integrating the second and third equations in (2.6.2) with respect
to x1 from an arbitrary position, x1 = a, we find that

A2(x) =

∫ x1

a

u3(x
′) dx′

1 + f2(x2, x3), A3(x) = −
∫ x1

a

u2(x
′) dx′

1 + f3(x2, x3), (2.6.4)

where f2, f3 are two arbitrary somewhat related functions of x2 and x3. Substituting expressions
(2.6.4) into the first equation in (2.6.2), we obtain

u1(x) = −
∫ x1

a

(∂u2

∂x2
+

∂u3

∂x3

)
(x′) dx′

1 +
( ∂f3
∂x2

− ∂f2
∂x3

)
(x2, x3). (2.6.5)

Since the velocity field u is solenoidal, we may simplify the integrand in (2.6.5) to obtain

u1(x) =

∫ x1

a

∂u1

∂x1
(x′) dx′

1 +
( ∂f3
∂x2

− ∂f2
∂x3

)
(x2, x3). (2.6.6)
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Performing the integration using the fundamental theorem of calculus, we find that

∂f3
∂x2

− ∂f2
∂x3

= u1(a, x2, x3). (2.6.7)

Equation (2.6.7) imposes a differential constraint on the otherwise arbitrary functions f2 and f3.
The stipulation (2.6.3) and the restriction (2.6.7) can be used to derive the vector form

∇× f = u1(a, x2, x3) e1, (2.6.8)

where e1 is the unit vector along the first Cartesian axis.

In summary, we have constructed the components of a vector potential A explicitly in terms
of the components of the solenoidal velocity field u, as shown in (2.6.3) and (2.6.4), thereby demon-
strating the existence of A.

Solenoidal velocity potential

The vector potential corresponding to a particular incompressible flow is not unique. For example,
since the curl of the gradient of any differentiable vector field is zero, the gradient of an arbitrary
nonsingular scalar function can be added to a vector potential without altering the velocity field.
This observation allows us to assert that it is always possible to find a solenoidal vector potential,
B, such that ∇ · B = 0. If A is a certain non-solenoidal potential, then A = B − ∇F will be a
solenoidal potential, provided that the function F satisfies Poisson’s equation, ∇2F = ∇ ·B.

Stream functions

In Section 2.9, we will show that the vector potential of a two-dimensional or axisymmetric flow
can be described in terms of one scalar function, called, respectively, the Helmholtz two-dimensional
stream function or the Stokes axisymmetric stream function. Both are defined uniquely up to an
arbitrary scalar constant. The vector potential of a three-dimensional flow can be described in terms
of two scalar functions, called the stream functions. For example, the vector potential of a three-
dimensional flow can be expressed in the form A = ψ∇χ, where ψ and χ are two scalar stream
functions. It is interesting to note that ∇ × A = ∇ψ × ∇χ, which shows that A · (∇ × A) = 0,
that is, the field A is perpendicular to its curl. A vector field that possesses this property is called
a complex lamellar field ([14], p. 63). In contrast, a vector field that is parallel to its own curl,
A× (∇×A) = 0, is called a Beltrami field.

Problems

2.6.1 Explicit form of a vector potential

Show that A = χ∇ψ and A = −ψ∇χ are two acceptable vector potentials for the velocity field
u = ∇χ×∇ψ, where χ and ψ are two arbitrary functions.

2.6.2 Deriving a vector potential

Repeat the derivation of the vector potential discussed in the text, but this time assume that
A1 = f1(x2) in place of (2.6.3).
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2.6.3 A property of the vector potential

Show that the velocity and associated vector potential satisfy the symmetry property

u · ∇A = (∇A) · u. (2.6.9)

Hint: Begin by writing u× u = (∇×A)× u = 0.

2.7 Representation of an incompressible flow in terms of the vorticity

Continuing the study of incompressible flow, we turn to examining the relationship between the
vorticity distribution, ω(x), and the structure of the velocity field, u(x). Specifically, we seek to
develop a representation for the velocity field in terms of the associated vorticity distribution by
inverting the equation defining the vorticity,

ω = ∇× u. (2.7.1)

To carry out this inversion, we may use (2.6.1), (2.6.3), and (2.6.4), where u and A are replaced,
respectively, by ω and u. However, it is expedient to work in an alternative fashion by expressing
the velocity in terms of a vector potential, as shown in (2.6.1).

Primary and complementary potentials

Let us assume that A is the most general vector potential capable of reproducing a velocity field of
interest, u. Taking the curl of both sides of the definition u = ∇×A and manipulating the repeated
curl on the right-hand side, we derive a differential equation for A,

ω = ∇×∇×A = ∇(∇ ·A)−∇2A. (2.7.2)

It is useful to resolve A into two additive components,

A = B+C, (2.7.3)

where the primary part B is a particular solution of Poisson’s equation

∇2B = −ω, (2.7.4)

and the complementary part C is the general solution of the equation

∇×∇×C = −∇(∇ ·B). (2.7.5)

With these definitions, we can be sure that

∇×∇× (B+C) = ω, (2.7.6)

as required. The computation and significance of the primary and complementary parts will be
discussed later in this section.
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Figure 2.7.1 A rotating fluid particle induces a rotary flow expressed by the Biot–Savart integral.

2.7.1 Biot–Savart integral

Consider an interior or exterior flow in a three-dimensional domain. If the domain extends to infinity,
we require that the velocity decays at least as fast as 1/d so that the corresponding vorticity decays
at least as fast as 1/d2, where d is the distance from the origin. If the velocity does not decay
at infinity, we subtract out the nondecaying far-field component and consider the vector potential
associated with the remaining decaying component.

Under these stipulations, we obtain a particular solution of (2.7.4) using the Poisson inversion
formula with the free-space Green’s function,

B(x) =
1

4π

∫∫∫
Flow

ω(x′)

r
dV (x′), (2.7.7)

where r = |x − x′|. Substituting (2.7.7) into the right-hand side of (2.7.3), taking the curl of the
resulting expression, and switching the curl with the integral operator on the right-hand side, we
derive an expression for the velocity,

ui(x) = εijk
[ 1

4π

∫∫∫
Flow

∂

∂xj

(1
r

)
ωk(x

′) dV (x′) +
∂Ck

∂xj

]
. (2.7.8)

Carrying out the differentiations under the integral sign and switching back to vector notation, we
derive an integral representation for the velocity,

u(x) =
1

4π

∫∫∫
Flow

1

r3
[
ω(x′)× x̂

]
dV (x′) +∇×C, (2.7.9)

where x̂ = x− x′. The first two terms on the right-hand side express the primary flow, and the last
term represents the complementary flow.

The volume integral on the right-hand side of (2.7.9) is similar to the Biot–Savart integral
in electromagnetics expressing the magnetic field due to an electrical current. By analogy, the
integral in (2.7.9) expresses the velocity field induced by the rotation of point particles distributed
along the vortex lines, as shown in Figure 2.7.1. In formal mathematics, the Biot–Savart integral
represents a volume distribution of singular fundamental solutions, called rotlets or vortons, with
vector distribution density equal to the vorticity.
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Figure 2.7.2 Illustration of a flow domain enclosed by a collection of interior and exterior boundaries,
collectively denoted as B.

Representation in terms of the curl of the vorticity

Working in a slightly different manner, we define the primary velocity field v = ∇×B, take the curl
of (2.7.7), interchange the curl with the integral sign on the right-hand side, and switch the variable
of differentiation from x to x′ while simultaneously introducing a minus sign to obtain

vi(x) = −εijk
1

4π

∫∫∫
Flow

∂

∂x′
j

(1
r

)
ωk(x

′) dV (x′). (2.7.10)

Manipulating the derivative inside the integral, we find that

vi(x) = εijk
1

4π

∫∫∫
Flow

[
− ∂

∂x′
j

(ωk(x
′)

r

)
+

1

r

∂ωk(x
′)

∂x′
j

]
dV (x′). (2.7.11)

Finally, we apply Stokes’ theorem to obtain

vi(x) = εijk
1

4π

∫∫
B

1

r
ωk(x

′)nj(x
′) dV (x′) + εijk

1

4π

∫∫∫
Flow

1

r

∂ωk(x
′)

∂x′
j

dV (x′), (2.7.12)

where B represents the boundaries of the flows and the normal unit vector n points into the flow,
as shown in Figure 2.7.2.

Now switching to vector notation and using the decomposition (2.7.3), we obtain the integral
representation

u(x) =
1

4π

∫∫∫
Flow

1

r

[
∇× ω(x′)

]
dV (x′) +

1

4π

∫∫
B

1

r

[
n(x′)× ω(x′)

]
dS(x′) +∇×C. (2.7.13)

The second term on the right-hand side involving the boundary integral disappears when the vortex
lines cross the boundaries at a right angle. The volume integral disappears when the curl of the
vorticity field is irrotational, in which case all Cartesian components of the velocity satisfy Laplace’s
equation, ∇2u = 0. The curl of the vorticity of a two-dimensional or axisymmetric flow lies in the
plane of the flow or in an azimuthal plane and the volume integral produces respective motion in
these planes.
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Infinite decaying flow

In the case of flow in an infinite domain with no interior boundaries decaying far from the origin,
the representation (2.7.13) simplifies into

u(x) =
1

4π

∫∫∫
Flow

1

r
∇× ω(x′) dV (x′) = − 1

4π

∫∫∫
Flow

1

r
∇2u(x′) dV (x′). (2.7.14)

To derive the last expression, we have noted that ∇2u = −∇ × ω for any solenoidal velocity field,
∇ · u = 0.

2.7.2 The complementary potential

Before attempting to solve (2.7.5) for the complementary vector potential, C, we must compute the
divergence ∇ · B on the right-hand side. Taking the divergence of (2.7.7) and interchanging the
order of differentiation and integration on the right-hand side, we find that

∇ ·B(x) =
1

4π

∫∫∫
Flow

∂

∂xi

(1
r

)
ωi(x

′) dV (x′). (2.7.15)

Next, we change the variable of differentiation from x to x′ while simultaneously introducing a minus
sign, writing

∇ ·B(x) = − 1

4π

∫∫∫
Flow

∂

∂x′
i

(1
r

)
ωi(x

′) dV (x′), (2.7.16)

and then

∇ ·B(x) =
1

4π

∫∫∫
Flow

[
− ∂

∂x′
i

(ωi(x
′)

r

)
+

1

r

∂ωi(x
′)

∂x′
i

]
dV (x′). (2.7.17)

Because the vorticity field is solenoidal, the second term inside the integral is zero. Using the
divergence theorem, we find that

∇ ·B(x) =
1

4π

∫∫
B

1

r

[
ω(x′) · n(x′)

]
dS(x′), (2.7.18)

where the normal unit vector, n, points into the domain of flow, as shown in Figure 2.7.2. The
boundary integral vanishes when the vorticity vector is perpendicular to the normal vector or,
equivalently, the vortex lines are tangential to the boundaries of the flow. This is always true in
the case of two-dimensional or axisymmetric flow, but not necessarily true in the case of three-
dimensional flow (Problem 2.7.1). In the case of an unconfined or partially unbounded flow, the
boundaries of the flow include the whole or part of a spherical surface of large radius R that lies
inside the fluid. As the radius of the large surface tends to infinity, the corresponding integral
vanishes provided that the vorticity decays faster than 1/d, where d is the distance from the origin.

Complementary velocity

When the boundary integral on the right-hand side of (2.7.18) vanishes, ∇·B = 0 and (2.7.5) shows
that the complementary velocity field, w ≡ ∇×C, is irrotational. In that case, w can be expressed
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as the gradient of a potential function, φ, so that w = ∇φ. To ensure that the velocity field u is
solenoidal, we require that φ satisfies Laplace’s equation, ∇2φ = 0. In the more general case where
the boundary integral on the right-hand side of (2.7.18) does not vanish, we write

w = w̃ +∇φ, (2.7.19)

where w̃S is a particular solenoidal solution of the equation ∇×w = −∇(∇ ·B) and the function φ
satisfies Laplace’s equation, ∇2φ = 0. If a particular solution is available, wP , a solenoidal solution
can be constructed by setting w̃ = wP +∇F , where the function F satisfies the Poisson equation
∇2F = −∇·wP . In the case of infinite flow with no interior boundaries, w̃, ∇φ, and w are all zero.

Interpretation of the complementary flow in terms of the extended vorticity

We will show that the rotational component of the complementary velocity field, w, can be identified
with the flow associated with the extension of the vortex lines outward from the boundaries of the
flow in the sense of the Biot–Savart integral. We begin by considering an external flow that is
bounded by a closed interior boundary, B, and introduce a nonsingular solenoidal vector field, ζ,
inside the volume VB enclosed by B, subject to the constraint

ζ · n = ω · n (2.7.20)

over B, where n is the unit vector normal to B pointing into the flow. A nonsingular solenoidal
field ζ that satisfies (2.7.20) exists only if the flow rate of ζ across the boundary B is zero, which
is always true: using (2.7.20) and recalling that the vorticity field is solenoidal, ∇ · ω = 0, we find
that ∫∫

B

ζ · n dS =

∫∫
B

ω · n dS = −
∫∫

Flow

∇ · ω dV = 0. (2.7.21)

Having established the existence of ζ, we recast (2.7.5) into the form

∇2C = ∇(∇ ·B+∇ ·C). (2.7.22)

A particular solution comprised of three scalar functions satisfying Laplace’s equation, ∇2C = 0,
and ∇ ·C = −∇ ·B, is

C(x) =
1

4π

∫∫∫
VB

1

r
ζ(x′) dV (x′), (2.7.23)

where r = |x−x′| (Problem 2.7.4). Expression (2.7.23) relates the complementary vector potential,
C, to the extended field, ζ, through a Biot–Savart integral. We may then identify ζ with the
extension of the vorticity field outward from the domain of flow into the boundary. The extension
can be implemented arbitrarily, subject to the constraint imposed by (2.7.20).

Taking the curl of (2.7.23) and repeating the manipulations that led us from (2.7.10) to
(2.7.13), we derive two equivalent expressions for the complementary velocity field,

w(x) =
1

4π

∫∫∫
VB

1

r3
[
ζ(x′)× x̂

]
dV (x′) (2.7.24)
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and

w(x) =
1

4π

∫∫∫
VB

1

r

[
∇′ × ζ(x′)

]
dV (x′)− 1

4π

∫∫
B

1

r

[
n(x′)× ζ(x′)

]
dS(x′), (2.7.25)

where the normal unit vector, n, points into the flow. If the extended vorticity ζ is irrotational, the
volume integral on the right-hand side of (2.7.25) vanishes, leaving an expression for the complemen-
tary flow in terms of a surface integral over the boundary, B, involving the tangential component of
ζ alone. One way to ensure that ζ is irrotational is to set ζ = ∇H, where the function H satisfies
Laplace’s equation, ∇2H = 0, and then compute H by solving Laplace’s equation inside VB subject
to the Neumann boundary condition (2.7.20).

The complementary flow in terms of the boundary velocity

Switching to a different point of view, we apply Green’s third identity (2.3.28) with u in place of f ,
x in place of x0, and x′ in place of x, finding

u(x) = − 1

4π

∫∫
D

1

r

[
n(x′) · ∇u(x′)

]
dS(x′) (2.7.26)

+
1

4π

∫∫
D

1

r3
[
x̂ · n(x′)

]
u(x′) dS(x′)− 1

4π

∫∫∫
Vc

1

r
∇2u(x′) dS(x′),

where Vc is a control volume, D is the boundary of the control volume, x̂ = bx − x′, and r =
|x− x′|. Using the vector identity ∇2u = −∇× ω, applicable for a solenoidal velocity field, u, and
manipulating the integrand of the second integral, we obtain

u(x) = − 1

4π

∫∫
B

1

r

[
n(x′) · ∇u(x′)

]
dS(x′) (2.7.27)

+
1

4π

∫∫
B

[
n(x′) · ∇′

(1
r

) ]
u(x′) dS(x′) +

1

4π

∫∫∫
Vc

1

r
∇′ × ω(x′) dS(x′).

Now comparing (2.7.27) with (2.7.13), we derive a boundary-integral representation for the comple-
mentary velocity field in terms of the boundary velocity and tangential component of the boundary
vorticity,

w(x) = − 1

4π

∫∫
B

[ 1
r

{
n(x′) · ∇u(x′) + n(x′)× ω(x′)

}
− [n(x′) · ∇′

(1
r

)
]u(x′)

]
dS(x′). (2.7.28)

Departing from the definition ω = ∇×u and working in index notation, we find that the expression
enclosed by the curly brackets inside the integrand is equal to [∇′u(x′)] · n(x′), where the gradient
∇′ involves derivatives with respect to x′. Making this substitution, we obtain an expression for the
complementary flow in terms of the boundary velocity and velocity gradient tensor,

w(x) = − 1

4π

∫∫
B

[ 1
r
∇′u(x′)− u(x′)∇′

(1
r

) ]
· n(x′) dS(x′). (2.7.29)

In index notation,

wi(x) = − 1

4π

∫∫
B

[ 1
r

∂uj(x
′)

∂x′
i

− ui(x
′)

∂

∂x′
j

(1
r

) ]
nj(x

′) dS(x′). (2.7.30)

We recall that the normal unit vector, n, points into the flow.
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The complementary flow in terms of a boundary vortex sheet

A more appealing representation of the complementary flow emerges by using the divergence theorem
to convert the surface integral of the first term inside the integral in (2.7.30) into a volume integral,
obtaining

wi(x) =
1

4π

∫∫∫
Flow

∂

∂x′
j

(1
r

∂uj(x
′)

∂x′
i

)
dV (x′) +

1

4π

∫∫
B

ui(x
′)

∂

∂x′
j

(1
r

)
nj(x

′) dS(x′). (2.7.31)

Next, we recast the last integrand into the form

∂

∂x′
j

(1
r

∂uj(x
′)

∂x′
i

)
=

∂2

∂x′
i∂x

′
j

(uj(x
′)

r

)
− ∂

∂x′
j

[
uj(x

′)
∂

∂x′
i

(1
r

)]
(2.7.32)

and use the continuity equation to simplify the first integral on the right-hand side, obtaining

∂

∂x′
j

(1
r

∂uj(x
′)

∂x′
i

)
=

∂

∂x′
i

[
uj(x

′)
∂

∂x′
j

(1
r

)]
− ∂

∂x′
j

[
uj(x

′)
∂

∂x′
i

(1
r

)]
. (2.7.33)

Substituting this expression into the volume integral of (2.7.31) and using the divergence theorem
to convert it to a surface integral, we obtain

wi(x) = − 1

4π

∫∫
B

uj(x
′)

∂

∂x′
j

(1
r

)
ni(x

′) dS(x′) (2.7.34)

+

∫∫
B

uj(x
′)

∂

∂x′
i

(1
r

)
nj(x

′) dS(x′) +
1

4π

∫∫
B

ui(x
′)

∂

∂x′
j

(1
r

)
nj(x

′) dS(x′).

The first and third integrands can be combined to form a double cross product, resulting in an
expression for the complementary flow in terms of the tangential and normal components of the
boundary velocity,

w(x) =
1

4π

∫∫
B

[
n(x′)× u(x′)

]
×∇′

(1
r

)
dS(x′) +

1

4π

∫∫
B

[
u(x′) · n(x′)

]
∇′
(1
r

)
dS(x′). (2.7.35)

The first boundary integral on the right-hand side of (2.7.35) expresses the velocity field due to a
vortex sheet with strength u×n wrapping around the boundaries of the flow. Since the strength of
the vortex sheet is equal to the tangential component of the velocity, the purpose of the vortex sheet
is to annihilate the tangential component of the boundary velocity. The second integral expresses a
boundary distribution of point sources whose strength is equal to the normal velocity .

2.7.3 Two-dimensional flow

The counterpart of expression (2.7.7) for two-dimensional flow in the xy plane is

B(x) = − 1

2π

∫∫
Flow

ln
( r
a

)
ωz(x

′) ez dA(x′), (2.7.36)
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where a is a constant length and ez is the unit vector along the z axis. Note that both the vorticity,
ω, and vector potential, B, are oriented along the z axis. Since the vortex lines do not cross the
boundaries of the flow, the divergence of B is zero and the velocity field is given by

u(x) =
1

2π

∫∫
Flow

1

r2
[
ω(x′)× x̂

]
dA(x′) +∇H(x), (2.7.37)

where x̂ = x− x′ and H is a two-dimensional harmonic function, ∇2H = 0. An alternative integral
representation for the velocity is

u(x) = − 1

2π

∫
C

ln
( r
a

) [
n(x′)× ω(x′)

]
dl(x′)

− 1

2π

∫∫
Flow

ln
( r
a

)
∇× ω(x′) dA(x′) +∇H(x),

(2.7.38)

where C is the boundary of the flow. In the case of infinite flow with no interior boundaries, both
the boundary integral and the gradient ∇H on the right-hand side of (2.7.38) vanish.

Problems

2.7.1 Vortex lines at boundaries

Explain why the vortex lines may not cross a rigid boundary that is either stationary or translates
in a viscous fluid, but must necessarily cross a boundary that rotates as a rigid body. The velocity
of the fluid at the boundary is assumed to be equal to the velocity of the boundary, which means
that the no-slip and no-penetration conditions apply.

2.7.2 A vortex line that starts and ends on a body

Consider an infinite incompressible flow containing a single line vortex that starts and ends at the
surface of a body. There are many ways to extend the line vortex into the body subject to the
constraint (2.7.20). Show that the flows induced by any two extended line vortices have identical
rotational components; equivalently, the difference between these two flows expresses irrotational
motion.

Hint: Consider the closed loop formed by the two extended vortex lines and use the Biot–Savart
integral to show that the flow induced by this loop is irrotational everywhere except on the loop.

2.7.3 Complementary flow

(a) Confirm that (2.7.23) is a particular solution of (2.7.22).

(b) Derive (2.7.29) from (2.7.28).

2.7.4 Reduction of the Biot–Savart integral from three to two dimensions

Consider an infinite two-dimensional flow in the xy plane that decays at infinity. Substituting
(1.1.23) into (2.7.9), setting dV = dz dA, where dA = dx dy, and performing the integration with
respect to z, derive the integral representation (2.7.37). Hint: reference to standard tables of definite
integrals (e.g., [150], p. 86) shows that∫ ∞

−∞

dz

(x2 + y2 + z2)3/2
=

2

x2 + y2
. (2.7.39)
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2.7.5 Complementary flow for an impenetrable boundary

Milne-Thomson ([268], p. 570) derives a simplified version of (2.7.35) for an incompressible flow that
satisfies the no-penetration condition, u · n = 0, over all boundaries of the flow, B. We begin by
introducing a solenoidal velocity vector potential, A, where ∇ ·A = 0, according to our discussion
in Section 2.6. Next, we set A = ∇×B, where B is a vector potential for A, and obtain

u = ∇×∇×B = ∇(∇ ·B)−∇2B. (2.7.40)

Assuming that ∇ ·B = 0, we find a particular solution in terms of the Poisson integral

B(x) =
1

4π

∫∫∫
Flow

1

r
u(x′) dV (x′), (2.7.41)

which is analogous to (2.7.7). Differentiating, we find that

A(x) = ∇×B(x) =
1

4π
∇×

∫∫∫
Flow

1

r
u(x′) dV (x′) =

1

4π

∫∫∫
Flow

u(x′)×∇′
(1
r

)
dV (x′). (2.7.42)

Manipulating the last integral, we obtain

A(x) =
1

4π

∫∫∫
Flow

1

r
∇′ × u(x′) dV (x′)− 1

4π

∫∫∫
Flow

∇′ ×
(u(x′)

r

)
dV (x′). (2.7.43)

Finally, we invoke the definition of the vorticity and use the divergence theorem to find

A(x) =
1

4π

∫∫∫
Flow

1

r
ω(x′) dV (x′) +

1

4π

∫∫
B

1

r

[
n(x′)× u(x′)

]
dS(x′), (2.7.44)

where the normal unit vector, n, points into the flow. Based on (2.7.44), we obtain a general
expression for the velocity field,

u(x) =
1

4π

∫∫∫
Flow

1

r3
[
ω(x′)× x̂

]
dV (x′) +

1

4π

∫∫
B

[
n(x′)× u(x′)

]
× x̂

r3
dS(x′). (2.7.45)

Note that the second integral on the right-hand side is a simplified version of the right-hand side of
(2.7.35). Show that

∇ ·B(x) =
1

4π

∫∫
B

1

r

[
u(x′) · n(x′)

]
dS(x′) = 0, (2.7.46)

so that the condition for the derivation (2.7.44) is fulfilled.

2.8 Representation of a flow in terms of the rate of expansion and vorticity

Previously in this chapter, we have shown that an irrotational velocity field can be expressed as the
gradient of a potential function, whereas a solenoidal velocity field can be expressed as the curl of a
vector potential. A velocity field that is both irrotational and solenoidal can be expressed in terms
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of either a potential function or a vector potential. In this section, we consider a flow that is neither
incompressible nor irrotational.

Hodge–Helmholtz decomposition

If the domain of flow is infinite, we require that the velocity, u, decays at a rate that is faster than
1/d, where d is the distance from the origin. This constraint ensures that the rate of expansion
and vorticity decay at a rate that is faster than 1/d2. If the velocity does not decay at infinity, we
subtract out the nondecaying far-field component and consider the remaining decaying flow. Under
these assumptions, the velocity field is subject to the fundamental theorem of vector analysis, also
known as the Hodge or Helmholtz decomposition theorem, stating that u can be resolved into two
constituents,

u = ∇φ+w, (2.8.1)

where ∇φ is an irrotational field expressed in terms of a velocity potential, φ, and w is a solenoidal
vector field,

∇ ·w = 0. (2.8.2)

This last constraint allows us to express w in terms of a vector potential, A, and therefore recast
(2.8.1) into the form

u = ∇φ+∇×A. (2.8.3)

To demonstrate the feasibility of the Hodge–Helmholtz decomposition, we take the curl of
(2.8.1) and derive an expression for the vorticity,

ω = ∇× u = ∇×w. (2.8.4)

Since the difference field u −w is irrotational, it can be expressed as a gradient, ∇φ, as discussed
in Section 2.1, and this completes the proof. Taking the divergence of (2.8.1), we find that

∇ · u = ∇2φ, (2.8.5)

which, along with (2.8.4), shows that the rate of expansion of the flow with velocity ∇φ and the
vorticity of the flow with velocity w are identical to those of the flow u.

Integral representation

Combining (2.8.1) with (2.1.15), (2.7.9), and (2.7.19), we derive a representation for the velocity in
terms of the rate of expansion, the vorticity, and an unspecified irrotational and solenoidal velocity
field described by a harmonic potential, H,

u(x) =
1

4π

∫∫∫
Flow

x̂

r3
α(x′) dV (x′) +

1

4π

∫∫∫
Flow

1

r3
[
ω(x′)× x̂

]
dV (x′) + v(x) +∇H(x), (2.8.6)

where α(x′) = ∇′ · u(x′) is the rate of expansion. The complementary rotational field, v, can be
computed by extending the vortex lines outward from the domain of flow across the boundaries, as
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discussed in Section 2.7. In the case of unbounded flow that decays at infinity, the last two terms
on the right-hand side of (2.8.6) do not appear.

Specifying the distribution of the rate of expansion, ∇ · u, and vorticity, ω, throughout the
domain of flow defines the first three terms on the right-hand side of (2.8.6). Consequently, the
gradient, ∇H, and thus the velocity, u, are defined uniquely by prescribing the boundary distribution
of the normal velocity component, u · n. An important consequence is that it is not generally
permissible to arbitrarily specify the distribution of both the rate of expansion and vorticity in a
flow while requiring more than one scalar condition at the boundaries.

To illustrate the last point, we consider an incompressible flow due to a line vortex in an
infinite domain containing a stationary body and compute ∇H by enforcing the no-penetration
condition requiring that the velocity component normal to the body is zero. To satisfy an additional
boundary condition, such as the no-slip condition requiring that the tangential component of the
boundary velocity is zero, we complement the vorticity field with a vortex sheet situated over the
surface of the body. The velocity induced by the vortex sheet annihilates the tangential velocity
induced by the line vortex. The vorticity distribution associated with the vortex sheet must be taken
into account when computing the second integral on the right-hand side of (2.8.6).

Problems

2.8.1 Integral representation

Discuss whether it is consistent to introduce a velocity field that satisfies the stipulated boundary
conditions, compute the associated rate of expansion and vorticity, and then use (2.8.6) to deduce
the complementary velocity field, v, and harmonic potential, H.

2.8.2 Poincaré decomposition

Derive an expression for the velocity in terms of the vorticity by applying equations (2.6.1), (2.6.3),
and (2.6.4) with ω in place of u and u in place of A.

2.9 Stream functions for incompressible fluids

Previously in this chapter, we developed integral representations for a velocity field in terms of the
the rate of expansion, the vorticity, and the boundary velocity, and differential representations in
terms of the potential function and the vector potential. The integral representations allowed us
to obtain insights into the effect of the local fluid motion on the global structure of a flow. The
differential representations allowed us to describe a flow using a reduced number of scalar functions.
For example, in the case of irrotational flow, we describe the flow simply in terms of the potential
function. In this section, we address the issue of the minimum number of scalar functions necessary
to describe an arbitrary incompressible rotational flow.

2.9.1 Two-dimensional flow

Examining the streamline pattern of a two-dimensional incompressible flow, we find that the flow
rate across an arbitrary line, L, that begins at a point, A, on a particular streamline and ends
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Figure 2.9.1 Illustration of two streamlines in (a) a two-dimensional or (b) axisymmetric flow, used
to introduce the stream function.

at another point, B, on another streamline is constant, independent of the precise location of the
points A and B along the two streamlines, as illustrated in Figure 2.9.1(a). Consequently, we may
assign to every streamline a numerical value of a function, ψ, so that the difference in the values
of ψ corresponding to two different streamlines is equal to the instantaneous flow rate across any
line that begins at a point A on the first streamline and ends at another point B on the second
streamline. Accordingly, we write

ψ2 − ψ1 =

∫ B

A

u · n dl, (2.9.1)

where the integral is computed along the line L depicted in Figure 2.9.1(a). The right-hand side of
(2.9.1) expresses the flow rate across L. Since the streamlines fill up the entire domain of a flow, we
may regard ψ a field function of position, x and y, and time t, called the stream function.

Next, we consider two adjacent streamlines and apply the trapezoidal rule to approximate the
integral in (2.9.1), obtaining the differential relation

dψ = ux dy − uy dx. (2.9.2)

Since the right-hand side of (2.9.2) is a complete differential, we may write

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
, (2.9.3)

which can be recast into the compact vector form

u = ∇× (ψ ez), (2.9.4)

where ez is the unit vector along the z axis. Equation (2.9.4) suggests that a vector potential of a
two-dimensional flow is

A = ψez. (2.9.5)
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It is evident from the definitions (2.9.3) that ∇ · u = 0, which shows that the gradient ∇ψ is
perpendicular to the streamlines. Accordingly, the stream function is constant along the streamlines
of a steady or unsteady flow.

In summary, we have succeeded to express the velocity field and vector potential of a two-
dimensional flow in terms of a single scalar function, the stream function, ψ. Using the definitions
(2.9.3), we find that the stream function of a certain flow is determined uniquely up to an arbitrary
constant.

Point source

The stream function associated with a two-dimensional point source of strength m located at a
point, x0, introduced in (2.1.29), is given by

ψ(x) =
m

2π
θ, (2.9.6)

where θ is the polar angle subtended between the vector x−x0 and the x axis. This example makes
it clear that, when the domain of flow contains point sources or point sinks or is multiply connected
and the flow rate across a surface that encloses a boundary is nonzero, the stream function is a multi-
valued function of position. An example is the flow due to the radial expansion of a two-dimensional
bubble.

Poisson equation

Taking the curl of (2.9.4), we confirm that the vorticity is parallel to the z axis, ω = ωzez. The
nonzero component of the vorticity is the negative of the Laplacian of the stream function,

ωz = −∇2ψ. (2.9.7)

Using the Poisson formula to invert (2.9.7), we derive an expression for the stream function in terms
of the vorticity,

ψ(x) = − 1

2π

∫∫
Flow

ln
( r
a

)
ωz(x

′) dA(x′) +H(x), (2.9.8)

where r = |x−x′|, a is a specified length, and H is a harmonic function in the xy plane. In the case
of infinite flow with no interior boundaries, H is a constant usually set to zero. It is worth observing
that (2.9.5) and (2.9.8) are consistent with the more general form (2.7.36).

Plane polar coordinates

Returning to (2.9.4) and (2.9.7), we express the radial and angular components of the velocity and
the nonzero component of the vorticity in plane polar coordinates, obtaining

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
, ωz = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

r2
∂2ψ

∂θ2
. (2.9.9)

Substituting expression (2.9.6), we confirm the radial direction of the velocity due to a point source.
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2.9.2 Axisymmetric flow

To describe an axisymmetric flow without swirling motion, we introduce cylindrical coordinates,
(x, σ, ϕ), as illustrated in Figure 2.9.1(b). Working as in the case of two-dimensional flow, we
assign to every streamline a numerical value of a scalar function, ψ(x, σ, t), called the Stokes stream
function, so that the difference in the values ψ between any two streamlines is proportional to the
instantaneous flow rate across an axisymmetric surface whose trace in a meridional plane begins at
a point A on one streamline and ends at another point B on the second streamline. By definition,

ψ2 − ψ1 =

∫ B

A

u · nσ dl. (2.9.10)

Multiplying the integral on the right-hand side by 2π produces the flow rate through an axisymmetric
surface whose trace in an azimuthal plane is the line L shown in Figure 2.9.1(b).

Next, we consider two streamlines that lie in the same azimuthal plane and are separated by
a small distance, and apply the trapezoidal rule to express (2.9.10) in the differential form

dψ = ux σ dσ − uσ σ dx, (2.9.11)

which suggests the differential relations

ux =
1

σ

∂ψ

∂σ
, uσ = − 1

σ

∂ψ

∂x
. (2.9.12)

Combining these equations, we derive the vector form

u = ∇×
(ψ
σ
eϕ

)
, (2.9.13)

where eϕ is the azimuthal unit vector. Thus,

A =
ψ

σ
eϕ (2.9.14)

is the vector potential of an axisymmetric flow in the absence of swirling motion. Equations (2.9.12)
show that, u ·∇ψ = 0, which demonstrates that the gradient of the stream function, ∇ψ, is perpen-
dicular to the streamlines of the flow. Accordingly, the Stokes stream function, ψ, is constant along
the streamlines of an axisymmetric flow.

In summary, we have managed to express the velocity field and vector potential of an axisym-
metric flow in terms of a single scalar function, the Stokes stream function, ψ. It is clear from the
definitions (2.9.12) that ψ is determined uniquely up to an arbitrary scalar constant. If the domain
of flow is multiply connected, ψ can be a multi-valued function of position. An example is provided
by the flow due to the expansion of a toroidal bubble.

It is worth noting that the stream function of two-dimensional flow has units of velocity
multiplied by length, whereas the Stokes stream function of axisymmetric flow has units of velocity
multiplied by length squared.
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Point source

As an example, the Stokes stream function associated with a three-dimensional point source with
strength m located at the point x0, introduced in (2.1.29), is given by

ψ(x) = −m

4π
cos θ = −m

4π

x− x0

|x− x0|
, (2.9.15)

where θ is the polar angle subtended between the vector x− x0 and the x axis.

Vorticity

Taking the curl of (2.9.13), we find that the vorticity is oriented in the azimuthal direction, ω = ωϕeϕ,
where eϕ is the corresponding unit vector. The azimuthal component of the vorticity is given by

ωϕ = − 1

σ
E2ψ = − 1

σ

( ∂2ψ

∂x2
+

∂2ψ

∂σ2
− 1

σ

∂ψ

∂σ

)
, (2.9.16)

where E2 is a second-order linear differential operator defined as

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
. (2.9.17)

The inverse relation, providing us with the stream function in terms of the vorticity, is discussed in
Section 2.12.

Spherical polar coordinates

In spherical polar coordinates, the radial and meridional velocity components of an axisymmetric
flow are given by

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
. (2.9.18)

The azimuthal component of the vorticity is given by

ωϕ = − 1

σ
E2ψ = − 1

sin θ

(∂2ψ

∂r2
+

1

r2
∂2ψ

∂θ2
− cot θ

r2
∂ψ

∂θ

)
, (2.9.19)

where the second-order differential operator E2 was defined in (2.9.17). In spherical polar coordi-
nates,

E2 ≡ ∂2

∂r2
+

sin θ

r2
∂

∂θ

( 1

sin θ

∂

∂θ

)
=

∂2

∂r2
+

1

r2
∂2

∂θ2
− cot θ

r2
∂

∂θ
, (2.9.20)

involving derivatives with respect to the radial distance, r, and meridional angle, θ.

2.9.3 Three-dimensional flow

Finally, we consider the most general case of a genuine three-dimensional flow. Inspecting the
streamline pattern, we identify two distinct families of stream surfaces, where each family fills the
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Figure 2.9.2 Illustration of two pairs of stream surfaces in a three-dimensional flow used to define the
stream functions.

entire domain of flow, as illustrated in Figure 2.9.2. A stream surface consists of all streamlines
passing through a specified line.

Focusing on a stream tube that is confined between two pairs of stream surfaces, one pair in
each family, we note that the flow rate, Q, across any open surface that is bounded by the stream
tube, D, is constant. We then assign to the four stream surfaces the labels ψ1, ψ2, χ1, and χ2, as
shown in Figure 2.9.2, so that

Q =

∫∫
D

u · n dS = (ψ2 − ψ1)(χ2 − χ1). (2.9.21)

In this light, ψ and χ emerge as field functions of space and time, called the stream functions. Now
using Stokes’ theorem, we write∫∫

D

[
∇× (ψ∇χ)

]
· n dS =

∮
C

ψ t · ∇χ dl = (ψ2 − ψ1)(χ2 − χ1) = Q, (2.9.22)

where C is the contour enclosing D and t is the unit vector tangent to C pointing in the counter-
clockwise direction with respect to n. Comparing (2.9.22) with (2.9.21) and remembering that the
surface D is arbitrary, we write

u = ∇× (ψ∇χ) = ∇ψ ×∇χ = −∇× (χ∇ψ). (2.9.23)

Since the gradients ∇ψ and ∇χ are normal to the corresponding stream tubes, the expression
u = ∇ψ × ∇χ underscores that the intersection between two stream tubes is a streamline. Our
analysis has revealed that

A = ψ∇χ, A = −χ∇ψ, (2.9.24)

are two acceptable vector potentials of an incompressible flow.
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In summary, we have succeeded to express a three-dimensional solenoidal velocity field in terms
of two scalar functions, the stream functions ψ and χ. The spatial distribution of the stream functions
depends on the choice of the families of stream surfaces chosen to derive (2.9.21). However, having
made a choice, the stream functions are determined uniquely up to an arbitrary scalar constant.
The stream function for two-dimensional flow in the xy plane and the Stokes stream function for
axisymmetric flow derive from (2.9.23) by setting, respectively, χ = z and χ = ϕ, where ϕ is the
azimuthal angle (Problem 2.9.1).

Taking the curl of (2.9.23), we derive an expression for the vorticity,

ω = L(ψ) · ∇χ− L(χ) · ∇ψ, (2.9.25)

where L = −I∇2 +∇∇ and I is the identity matrix. Because each term on the right-hand side of
(2.9.25) represents a solenoidal vector field, the vorticity field is solenoidal for any choice of ψ and
χ (Problem 2.9.2).

Problems

2.9.1 Stream functions

Show that the two-dimensional and Stokes stream functions derive from (2.9.23) by setting, respec-
tively, χ = z and χ = ϕ.

2.9.2 A linear velocity field

Derive the stream function and sketch the streamlines of a two-dimensional flow with velocity com-
ponents ux = ξ(x + y), uy = ξ(x − y), where ξ is a constant shear rate. Discuss the physical
interpretation of this flow.

2.9.3 Point-source dipoles

Derive the stream functions of a two- or three-dimensional point-source dipole pointing along the x
axis.

2.9.4 Vorticity and stream functions

(a) Derive expression (2.9.25).

(b) Show that u = K(f) · a is a solenoidal velocity field, where f is an arbitrary function, a is an
arbitrary constant, and K = −I∇2 +∇∇ is a second-order operator.

2.9.5 Stokes stream function

Derive the Stokes stream function and sketch the streamlines of an axisymmetric flow with radial
and meridional velocity components given by

ur = −U cos θ
(
1− a3

r3
)
, uθ =

1

2
U cos θ

(
2 +

a3

r3
)
, (2.9.26)

where U and a are two constants. Verify that the velocity field is solenoidal, compute the vorticity,
and discuss the physical interpretation of this flow.
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Computer Problem

2.9.6 Streamlines

Draw the streamlines of the flows described in (a) Problem 2.9.2 and (b) Problem 2.9.5.

2.10 Flow induced by vorticity

We return to discussing the structure and properties of an incompressible flow associated with a
specified distribution of vorticity with compact support. For simplicity, we assume that the flow
takes place in an infinite domain in the absence of interior boundaries, and the velocity field decays
far from the region where the magnitude of the vorticity is significant. The presence of interior or
exterior boundaries can be taken into account by introducing an appropriate complementary flow,
as discussed in Section 2.7.

2.10.1 Biot–Savart integral

Our point of departure is the Biot–Savart law expressed by equations (2.7.3), (2.7.7), (2.7.9), and
(2.7.13). In the case of infinite flow without interior boundaries, we obtain a simplified expression
for the vector potential,

A(x) =
1

4π

∫∫∫
Flow

1

r
ω(x′) dV (x′), (2.10.1)

where x̂ = x− x′ and r = |x− x′|. The velocity field is given by the integral representation

u(x) =
1

4π

∫∫∫
Flow

1

r3
[
ω(x′)× x̂

]
dV (x′) (2.10.2)

or

u(x) =
1

4π

∫∫∫
Flow

1

r
∇′ × ω(x′) dV (x′), (2.10.3)

where the derivatives of the gradient ∇′ operate with respect to x′.

Structure of the far flow

Let us assume that the vorticity is concentrated inside a compact region in the neighborhood of a
point, x0, and vanishes far from the vortex region. To study the structure of the far flow, we select
a point x far from the vortex, expand the integral in (2.10.2) in a Taylor series with respect to the
integration point x′ about the point x0, and retain only the constant and linear terms to obtain

u(x) =
1

4π

∫∫∫
Flow

ω(x′) dV (x′)× x− x0

|x− x0|3

+
1

4π

∫∫∫
Flow

ω(x′)×
[
(x′ − x0) · ∇′

(x− x′

r3

)
x′=x0

]
dV (x′) + · · · . (2.10.4)

Next, we examine the physical interpretation of the two leading terms on the right-hand side.
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Rotlet or vorton

The first term on the right-hand side of (2.10.4) represents the flow due to a singularity called a
rotlet or vorton, located at the point x0. The strength of this singularity is equal to the integral of
the vorticity over the domain of flow. Recalling that the vorticity field is solenoidal, we write∫∫∫

Flow

ω dV =

∫∫∫
Flow

∇ · (ω ⊗ x) dV =

∫∫
S∞

x (ω · n) dS, (2.10.5)

where S∞ is a closed surface with large size enclosing the vortex region. Assuming that the vorticity
decays fast enough for the last integral in (2.10.5) tends to zero as S∞ expands to infinity, we find
that the leading term on the right-hand side of (2.10.4) makes a zero contribution.

Point-source dipole

Concentrating on the second term on the right-hand side of (2.10.4), we change the variable of
differentiation in the gradient inside the integrand from x′ to x, while simultaneously introducing a
minus sign, and obtain

u(x) =
1

4π

∫∫∫
Flow

[ x̂′ · ∇
( x̂

|x̂|3
)
]× ω(x′) dV (x′), (2.10.6)

where x̂ = x− x0 and x̂′ = x′ − x0. In index notation,

ui(x) = − 1

4π
εjlk

∂2

∂xi∂xj

( 1

|x̂|
)∫∫∫

Flow

x̂′
i ωl(x

′) dV (x′). (2.10.7)

To simplify the right-hand side of (2.10.7), we introduce the identity∫∫∫
Flow

(x̂iωl + x̂iωl) dV =

∫∫∫
Flow

∂(x̂ix̂lωk)

∂xk
dV =

∫∫
S∞

x̂i x̂l ωknk dS, (2.10.8)

where n is the normal unit vector over the boundaries pointing outward from the flow. Assuming
that the vorticity over the large surface S∞ decays sufficiently fast so that the last integral in (2.10.8)
vanishes, we find that the integral on the right-hand side of (2.10.7) is antisymmetric with respect
to the indices i and l, and write∫∫∫

Flow

x̂′
i ωl(x

′) dV (x′) =
1

2
εmilεmnk

∫∫∫
Flow

x̂′
n ωk(x

′) dV (x′). (2.10.9)

Substituting the left-hand side of (2.10.9) for the integral on the right-hand side of (2.10.7), con-
tracting the repeated multiplications of the alternating matrix, noting that the function 1/|x− x0|
satisfies Laplace’s equation at every point except x0, and switching to vector notation, we finally
obtain

u(x) =
1

4π
d · ∇∇

( 1

|x− x0|
)
, (2.10.10)

where

d =
1

2

∫∫∫
Flow

x̂′ × ω(x′) dV (x′). (2.10.11)
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Expression (2.10.10) shows that, far from the vortex, the flow is similar to that due to a point-source
dipole located at the point x0 whose strength is proportional to the moment of the vorticity. Cursory
inspection of the volume and surface integrals in the preceding expressions reveals that (2.10.10) is
valid, provided that the vorticity decays at least as fast as 1/|x− x0|4 ([24], p. 520).

2.10.2 Kinetic energy

An expression for the kinetic energy of the fluid, K, can be derived in terms of the vorticity distri-
bution, ω = ∇ × u. Assuming that the density of the fluid is uniform throughout the domain of
flow, we introduce the vector potential, A, and write

K =
1

2
ρ

∫∫∫
Flow

u · u dV =
1

2
ρ

∫∫∫
Flow

u · ∇ ×A dV. (2.10.12)

Manipulating the integrand, we find that

K =
1

2
ρ

∫∫∫
Flow

[
A · ω −∇ · (u×A)

]
dV. (2.10.13)

Next, we use the divergence theorem to convert the volume integral of the second term inside the
integral on the right-hand side into an integral over a large surface, S∞. Assuming that the velocity
decays sufficiently fast for the integral to vanish, we obtain

K =
1

2
ρ

∫∫∫
Flow

A · ω dV. (2.10.14)

The vector potential, A, can be expressed in terms of the vorticity distribution using (2.10.1).

In the case of axisymmetric flow, we express the vector potential, A, in terms of the Stokes
stream function, ψ, and write dV = 2πσdx dσ to obtain

K = πρ

∫∫
Flow

ψ(x, σ) ωϕ(x, σ) dx dσ, (2.10.15)

where ωϕ is the azimuthal component of the vorticity. An analogous expression for two-dimensional
flow is discussed in Section 11.1.

A useful representation of the kinetic energy in terms of the velocity and vorticity emerges by
using the identity

∇ · [u (u · x)− 1

2
(u · u)x ] +

1

2
u · u = u · (x× ω) (2.10.16)

([24], p. 520). Solving for the last term on the left-hand side, substituting the result into the first
integral of (2.10.12), and using the divergence theorem to simplify the integral, we find that

K = ρ

∫∫∫
Flow

u · (x× ω) dV. (2.10.17)

The velocity can be expressed in terms of the vorticity distribution using (2.10.2) or (2.10.3).
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2.10.3 Flow due to a vortex sheet

To compute the velocity field due to a three-dimensional vortex sheet, we substitute the vorticity
distribution (1.13.2) into the first integral of (2.10.2), finding

u(x) =
1

4π

∫∫
Sheet

1

r3
[
ζ(x′)× x̂

]
dS(x′). (2.10.18)

This expression provides us with the velocity field in terms of an integral over the the vortex sheet
representing a surface distribution of rotlets or vortons. The coefficient of the dipole can be computed
from (2.10.11) and is found to be

d =
1

2

∫∫
Sheet

x̂× ζ(x) dS(x), (2.10.19)

where x̂ = x′ − x0 and x0 is an arbitrary point.

The irrotational flow induced by the vortex sheet can be described in terms of a velocity
potential, φ. In Section 10.6, we will see that φ can be represented in terms of a distribution of
point-source dipoles oriented normal to the vortex sheet. Combining equations (10.6.1) written for
the free-space Green’s function and equation (10.6.8), we obtain

φ(x) = − 1

4π

∫∫
Sheet

1

r3
[
x̂ · n(x′)

]
(φ+ − φ−)(x′) dS(x′), (2.10.20)

where n is the unit vector normal to the vortex sheet pointing into the upper side corresponding to
the plus sign. Taking the gradient of (2.10.20), integrating by parts, and using the definition of ζ,
we recover (2.10.18).

Problems

2.10.1 Impulse

The impulse required to generate the motion of a fluid with uniform density is expressed by the
momentum integral P = ρ

∫∫∫
u dV . Show that two flows with different vorticity distributions but

identical dipole strengths, d, require the same impulse.

2.10.2 Far flow

Derive the second-order term in the asymptotic expansion (2.10.5) and discuss its physical interpre-
tation. Comment on the asymptotic behavior of the flow when the coefficient of the dipole vanishes.

2.10.3 Identities

Prove identities (2.10.8) and (2.10.16).

2.11 Flow due to a line vortex

The flow due to a line vortex provides us with useful insights into the structure and dynamics of flows
with concentrated vorticity, such as turbulent flows and flows due to tornadoes and whirls. Consider
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Figure 2.11.1 (a) Illustration of a closed line vortex, L, and a surface bounded by the line vortex,
D. (b) The velocity potential at a point, x, is proportional to the solid angle subtended by the line
vortex, Ω.

the flow induced by a line vortex, L, with strength κ, illustrated in Figure 2.11.1(a). To compute the
vector potential, A, and associated velocity field, u, we substitute the vorticity distribution (1.13.1)
into the Biot–Savart integrals (2.10.1) and (2.10.2), and find that

A(x) =
κ

4π

∫
L

1

r
t(x′) dl(x′), u(x) =

κ

4π

∫
L

1

r3
[
t(x′)× x̂

]
dl(x′), (2.11.1)

where x̂ = x− x′, r = |x̂|, and t is the unit tangential vector along the line vortex.

Using (2.10.11) and applying Stokes’ theorem, we find that the associated coefficient of the
dipole prevailing in the far field is given by

d =
κ

2

∫
L

(x− x0)× t(x) dl(x) = κ

∫∫
D

n(x) dS(x), (2.11.2)

where x0 is an arbitrary point, D is an arbitrary closed surface bounded by the line vortex, and n

is the unit vector normal to D, as shown in Figure 2.11.1(a).

2.11.1 Velocity potential

The irrotational flow induced by a line vortex can be expressed in terms of a harmonic potential,
φ. At the outset, we acknowledge that, because the circulation around a loop that encloses the line
vortex once is nonzero and equal to the cyclic constant of the flow around the line vortex, κ, the
potential is a multi-valued function of position.

To derive an expression for the potential, we consider the closed line vortex depicted in Figure
2.11.1(a), express the velocity given in the second equation of (2.11.1) in index notation, and apply
Stokes’ theorem to convert the line integral along the line vortex into a surface integral over an
arbitrary surface D that is bounded by the line vortex, obtaining

ui(x) =
κ

4π

∫
L

εijn tj(x
′)
x̂n

r3
dl(x′) =

κ

4π

∫∫
D

εkmj
∂

∂x′
m

(
εijn

x̂n

r3

)
nk(x

′) dS(x′), (2.11.3)
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which can be rearranged into

ui(x) =
κ

4π

∫∫
D

εkmj εinj
∂2

∂x′
m∂xn

( 1

r

)
nk(x

′) dS(x′). (2.11.4)

Expanding the product of the alternating tensors and recalling that 1/r satisfies Laplace’s equation
in three dimensions, everywhere except at the point x′, we obtain

ui(x) = − κ

4π

∂

∂xi

(∫∫
D

∂

∂x′
k

( 1

r

)
nk(x

′) dS(x′)
)
. (2.11.5)

The right-hand side of (2.11.5) expresses the velocity as the gradient of the velocity potential

φ(x) = − κ

4π

∫∫
D

n(x′) · ∇′
(1
r

)
dS(x′) = − κ

4π

∫∫
D

x− x′

r3
· n(x′) dS(x′), (2.11.6)

which is consistent with the far-field expansion (2.10.10) for a more general flow.

Solid angle

A geometrical interpretation of the potential, φ, emerges by introducing a conical surface that
contains all rays emanating from a specified field point, x, and passing through the line vortex,
as illustrated in Figure 2.11.1(b). We define a control volume that is bounded by the surface D,
a section of a sphere with radius R centered at the point x and confined by the conical surface,
denoted by Sph, and the section of the conical surface contained between the spherical surface and
the line vortex, denoted by Side. Departing from the integral representation (2.11.6) and using the
divergence theorem, we find that

φ(x) =
κ

4π

∫∫
Sph,Side

x− x′

r3
· n(x′) dS(x′). (2.11.7)

Because the normal vector is perpendicular to the vector x − x′, the integral over the conical side
surface Side is identically zero. The normal vector over the spherical surface Sph is given by

n =
α

R
(x′ − x), (2.11.8)

where α = 1 if the spherical surface is on the right or left side of D, and α = −1 otherwise. For the
configuration depicted in Figure 2.11.1(b), we select α = 1. Equation (2.11.7) then yields

φ(x) = α
κ

4π

∫∫
Sph

x− x′

r3
· x

′ − x

R
dS(x′) = − κ

4π

α

R2

∫∫
Sph

dS(x′) (2.11.9)

or

φ(x) = − κ

4π
Ω(x), (2.11.10)

where Ω(x) is the solid angle subtended by the line vortex at the point x. For the configuration
depicted in Figure 2.11.1(b), the solid angle is positive.
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Figure 2.11.2 Closeup of a line vortex illustrating a local coordinate system with the x, y, and z axes
parallel to the tangential, normal, and binormal vectors. For the configuration shown, the curvature
of the line is positive by convention.

The solid angle, Ω, and therefore the scalar potential φ, is a multi-valued function of position.
In the case of flow due to line vortex ring, Ω changes from −2π to 2π as the point x crosses the
plane of the ring through the interior. This means that φ undergoes a corresponding discontinuity
equal to κ, in agreement with our discussion in Section 2.1 regarding the behavior of the potential
in multiply connected domains.

2.11.2 Self-induced velocity

If we attempt to compute the velocity at a point x located at a line vortex using the second integral
representation in (2.11.1), we will encounter an essential difficulty due to the strong singularity of
the integrand. To resolve the local structure of the flow, we introduce local Cartesian coordinates
with origin at a chosen point on the line vortex, where the x, y, and z axes are parallel to the unit
tangent, normal, and binormal vectors, t, n, and b, respectively, as shown in Figure 2.11.2.

Next, we consider the velocity at a point x that lies in the normal plane containing n and b,
at the position x = σe, where e is a unit vector that lies in the normal plane and σ is the distance
from the x axis. Using the integral representation for the velocity (2.11.1), we obtain

u(x) =
κ

4π

∫
L

t(x′)× σe− x′

r3
dl(x′), (2.11.11)

which can be rearranged into

u(x) =
κ

4π

[
− σe×

∫
L

t(x′)

r3
dl(x′) +

∫
L

x′

r3
× t(x′) dl(x′)

]
. (2.11.12)
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To desingularize the last two integrals, we expand the position vector, x′, and tangential vector
along the line vortex, t(x′), in a Laurent series with respect to arc length, l, measured from the
origin in the direction of t, and retain two leading terms to obtain

x′ =
(∂x′

∂l

)
0
l +

1

2

(∂2x′

∂l2

)
0
l2 + · · · , t(x′) = t0 +

(∂t
∂l

)
0
l + · · · . (2.11.13)

Using the Frenet-Serret relation

dt

dl
= −cn, (2.11.14)

where c is the curvature of the line vortex, we find that

x′ = t0 l −
1

2
c0 n0 l

2 + · · · , t(x′) = t0 − c0 n0 l + · · · , (2.11.15)

where c0 is the curvature of the line vortex at the origin. For the configuration depicted in Figure
2.11.2, the curvature is positive, c0 > 0.

Considering the first integral in (2.11.12), we truncate the integration domain at l = ±a and
use the expansion for the tangent vector shown in (2.11.15) to obtain

I(x) ≡ e×
∫ a

−a

t(x′)

r3
dl(x′) = e× t0

∫ a

−a

1

r3
dl(x′)− c0 e× n0

∫ a

−a

l

r3
dl(x′) + · · · , (2.11.16)

where r = |x− x′| and a is a specified length. Next, we set r2 � σ2 + l2, and obtain

I(x) =
e× t0

σ2

∫ a/σ

−a/σ

dη

(1 + η2)3/2
− c0

e× n0

σ

∫ a/σ

−a/σ

η dη

(1 + η2)3/2
+ · · · , (2.11.17)

where η ≡ l/σ. Evaluating the integrals in the limit as σ tends to zero and correspondingly a/σ
tends to infinity, we find that

I(x) = 2
e× t0

σ2
+ · · · , (2.11.18)

where the three dots denote terms that increase slower that 1/σ2 as σ → 0.

Working in a similar fashion with the second integral in (2.11.12), we find that

J (x) ≡
∫ a

−a

x′

r3
× t(x′) dl(x′) =

∫ a

−a

x′

r3
× t0 dl(x

′)− c0

∫ a

−a

x′

r3
× n0 l dl(x

′) + · · · (2.11.19)

=

∫ a

−a

t0 l − 1
2 c0 n0 l

2

r3
× t0 dl(x

′)− c0

∫ a

−a

t0 l − 1
2 c0 n0 l

2

r3
× n0 l dl(x

′) + · · · ,

yielding

J (x) = −1

2
c0 b0

∫ a

−a

l2

r3
dl(x′) + · · · , (2.11.20)
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where b0 = t0 × n0. Setting r2 = σ2 + l2 and defining η ≡ l/σ, we obtain

J (x) = −1

2
c0 b0

∫ a/σ

−a/σ

η2dη

(1 + η2)3/2
+ · · · . (2.11.21)

Evaluating the integrals in the limit as σ/a tends to zero, we find that

J (x) = −c0 b0 ln
( a
σ

)
+ · · · , (2.11.22)

where the three dots indicate terms whose magnitude increases slower than | lnσ| as σ → 0.

Finally, we substitute (2.11.18) and (2.11.22) into (2.11.12) and obtain an expression for the
velocity near the line vortex, first derived by Luigi Sante Da Rios in 1906 (see [339]),

u(x) =
κ

4πσ
t0 × e− κ

4π
c0 b0 ln

( a
σ

)
+ · · · . (2.11.23)

The first term on the right-hand side of (2.11.23) describes the expected swirling motion around
the line vortex, which is similar to that around a point vortex in two-dimensional flow discussed in
Section 2.13.1. In the limit as σ/a tends to zero, the second term diverges, showing that the self-
induced velocity of a curved line vortex (c0 �= 0 is infinite. This singular behavior reflects the severe
approximation involved in the mathematical fabrication of singular vortex structures. In Section
11.10.1, we will discuss the regularization of (2.11.16) accounting for the finite size of the vortex
core.

2.11.3 Local induction approximation (LIA)

The local induction approximation (LIA) amounts to computing the self-induced velocity of a line
vortex by retaining only the second term on the right-hand side of (2.11.23), obtaining

u(X) =
DX

Dt
= − κ

4π
c(X)b(X) ln

1

ε
, (2.11.24)

where X is the position of a point particle along the centerline of the line vortex, ε is a small
dimensionless parameter expressing the size of the vortex core, and D/Dt is the material derivative.

If the product of the curvature and the binormal vector, cb, is constant along the line vortex,
the line vortex translates as a rigid body. Examples include a circular vortex ring, an advancing
helical vortex advancing rotating about its axis, and a planar nearly rectilinear line vortex with
small amplitude sinusoidal undulations rotating as a rigid body about the centerline (Problems
2.11.2, 2.11.3). Numerical methods for computing the motion of line vortices based on the LIA are
discussed in Section 11.10.1.

Da Rios Equations

Da Rios (1906, see [339]) used the LIA to derive a coupled nonlinear system of ordinary differential
equations governing the evolution of the curvature and torsion of a line vortex. To simplify the
notation, we introduce a scaled time, t̃ ≡ −tκ ln ε/(4π), and recast (2.11.24) into the form

V ≡ Ẋ = −cb, (2.11.25)
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where a dot denotes a derivative with respect to t̃. The Frenet–Serret relations derived in Section
1.6.2 state that

t′ = −cn, b′ = −τ n, n′ = c t+ τ b, (2.11.26)

where τ is the torsion of the line vortex and a prime denotes a derivative with respect to arc length
along the line vortex, l.

Equations (1.6.34) and (1.6.40) provide us with evolution equations for the curvature and
torsion. In the present notation, these equations take the form

ċ = −2cV′ · t−V′′ · n,

τ̇ = −V′ · (τt+ cb) +
1

c
V′′ · (τn+

c′

c
b)− 1

c
V′′′ · b. (2.11.27)

Differentiating (2.11.25) and using the Frenet-Serret relations, we find that

V′ = −c′b+ cτ n, V′′ = c2τt+ (2c′τ + cτ ′)n+ φb,

V′′′ · b = τ(2c′τ + cτ ′) + φ′, (2.11.28)

where we have defined

φ ≡ cτ 2 − c′′. (2.11.29)

Substituting these expressions into (2.11.27) and simplifying, we obtain the Da Rios equations

ċ = −2c′τ − cτ ′ (2.11.30)

and

τ̇ = c c′ +
c′

c2
φ− 1

c
φ′ =

( 1
2
c2 − φ

c

)′
. (2.11.31)

Equation (2.11.30) can expressed in the form

Dc2

Dt̃
= −2 (c2τ)′. (2.11.32)

Integrating with respect to arc length along a closed line vortex provides us with a geometrical
conservation law [33].

Schrödinger equation

Hasimoto [171] discovered that the local induction approximation can be reformulated as a nonlinear
Schrödinger equation for a properly defined complex scalar function. To demonstrate this reduction,
we recall the evolution equations for the tangent, normal, and binormal unit vectors stated in
(1.6.28), (1.6.36), and (1.6.37). In the present notation, these equations read

ṫ = V′ − (V′ · t) t, ṅ = −(V′ · n) t− 1

c
(V′′ · b )b,

ḃ = −(V′ · b
)
t+

1

c
(V′′ · b)n. (2.11.33)
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Substituting the velocity from (2.11.28), we find that

ṫ = −c′b+ cτ n, ṅ = −cτt− χb, ḃ = c′t+ χn, (2.11.34)

where

χ ≡ φ

c
= τ2 − c′′

c
. (2.11.35)

Next, we introduce the complex vector field q ≡ n+ib, where i is the imaginary unit, i2 = −1,
as discussed in Section 1.6.3. The second and third equations in (2.11.34) can be unified into the
complex form

q̇ = i
[
(c′ + i cτ) t+ χq

]
, (2.11.36)

and then rearranged into an evolution equation for the function Q defined in (1.6.21),

Q̇ = i (−ψ′ t+ χQ ). (2.11.37)

Combining this expression with (1.6.20), we derive the evolution equation

∂2Q

∂t̃ ∂l
= −∂(ψ t)

∂t̃
= i (−ψ t+ χQ )′. (2.11.38)

Expanding the time and arc length derivatives, we obtain

ψ̇ t+ ψ ṫ = i (ψ′′ t+ ψ′ t′ − χ′ Q− χQ′ ). (2.11.39)

Separating the tangential from the normal components, we obtain

ψ̇ = i (ψ′′ + ψ χ ), ψ ṫ = i (ψ′ t′ − χ′ Q ). (2.11.40)

Making substitutions in the second equation, we obtain

ψ (−c′b+ cτn) = i (−cψ′ + χ′ ψ

c
)n− χ′ ψ

c
b, (2.11.41)

which requires that

χ′ = c c′ =
1

2
(c2)′ =

1

2
(ψψ∗)′, iχ′ ψ = c2(ψτ + iψ′). (2.11.42)

Integrating the first equation, we find that

χ =
1

2

(
ψψ∗ +A(t)

)
, (2.11.43)

where A(t) is a specified function of time, Substituting this expression into the first equation of
(2.11.40) we derive a nonlinear Schrödinger equation,

1

i

∂ψ

∂t̃
=

∂2ψ

∂l2
+

1

2

(
|ψ|2 +A(t)

)
ψ, (2.11.44)

which is known to admit solutions in the form of nonlinear traveling waves called solitons.
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Problems

2.11.1 A rectilinear line vortex

Use the expression for the vector potential given in (2.11.1) to compute the velocity field due to a
rectilinear line vortex. Compare the results with the velocity field due to a point vortex discussed
in Section 2.13.1.

2.11.2 A helical line vortex

A helical line vortex revolving around the x axis is described in the parametric form by the equations
x = bϕ, y = a cosϕ, z = a sinϕ, where a is the radius of the circumscribed cylinder, ϕ is the
azimuthal angle, and 2πb is the helical pitch. Show that the velocity induced by a helical line vortex
with strength κ is given by [167]

ux =
κ

4π

(
a
∂I2
∂y

+ a
∂I3
∂z

)
, uy =

κ

4π

(
b
∂I1
∂z

− a
∂I2
∂x

)
, uz = − κ

4π

(
b
∂I1
∂y

+ a
∂I3
∂x

)
, (2.11.45)

where ⎡⎣ I1
I2
I3

⎤⎦ =

∫ ∞

−∞

⎡⎣ 1
cos θ
sin θ

⎤⎦ dθ

[ (x− bθ)2 + (y − a cos θ)2 + (z − a sin θ)2]1/2
. (2.11.46)

2.11.3 A sinusoidal line vortex

Show that a planar, nearly rectilinear line vortex with small amplitude sinusoidal undulations rotates
about its axis as a rigid body.

2.12 Axisymmetric flow induced by vorticity

In the case of axisymmetric flow without swirling motion, we take advantage of the known orienta-
tion of the vorticity vector to simplify the Biot–Savart integral by performing the integration in the
azimuthal direction by analytical or accurate numerical methods. To begin, we introduce cylindri-
cal polar coordinates, (x, σ, ϕ), and substitute ω(x, σ) = ωϕ(x, σ) eϕ into the Biot–Savart integral
(2.10.2). Expressing the differential volume as dV = σdϕ dA, where dA = dx dσ, we obtain

u(x) = − 1

4π

∫∫
Flow

(∫ 2π

0

x̂× e′ϕ

r3
dϕ′

)
ωϕ(x

′, σ′)σ′ dA(x′), (2.12.1)

where r = |x− x′|. Next, we substitute

ŷ = σ cosϕ− σ′ cosϕ′, ẑ = σ sinϕ− σ′ sinϕ′, (2.12.2)

set e′ϕ = (0,− sinϕ′, cosϕ′), and compute the outer vector product, finding

u(x) =
1

4π

∫∫
Flow

(∫ 2π

0

1

r3

⎡⎣ −σ cos ϕ̂+ σ′

x̂ cosϕ′

x̂ sinϕ′

⎤⎦ dϕ′
)
ωϕ(x

′, σ′)σ′ dA(x′), (2.12.3)
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where x̂ = x− x′ and ϕ̂ = ϕ− ϕ′. The radial and azimuthal velocity components are

uσ = cosϕuy + sinϕuz, uϕ = − sinϕuy + cosϕuz. (2.12.4)

Making substitutions, we obtain⎡⎣ ux

uσ

uϕ

⎤⎦ (x) =
1

4π

∫∫
Flow

(∫ 2π

0

1

r3

⎡⎣ −σ cos ϕ̂+ σ′

x̂ cosϕ′

−x̂ sinϕ′

⎤⎦ dϕ′
)
ωϕ(x

′, σ′)σ′ dA(x′). (2.12.5)

Finally, we substitute

r2 = x̂2 + σ2 + σ′2 − 2σσ′ cos ϕ̂ = x̂2 + (σ + σ′)2 − 4σσ′ cos2(
1

2
ϕ̂), (2.12.6)

and integrate to find that uϕ = 0, as expected, and[
ux

uσ

]
(x, σ) =

1

4π

∫∫
Flow

[
−σ I31(x̂, σ, σ

′) + σ′ I30(x̂, σ, σ
′)

x̂ I31(x̂, σ, σ
′)

]
ωϕ(x

′, σ′)σ′ dA(x′), (2.12.7)

where

Inm(x̂, σ, σ′) =

∫ 2π

0

cosm ϕ̂[
x̂2 + (σ + σ′)2 − 4σσ′ cos2( 1

2
ϕ̂)

]n/2 dϕ̂. (2.12.8)

Working in a similar fashion with the vector potential given in (2.10.1) in terms of the vorticity
distribution, and recalling the A = (ψ/σ) eϕ, we derive a corresponding representation for the
Stokes stream function,

ψ(x, σ) =
σ

4π

∫∫
Flow

I11(x̂, σ, σ
′)ωϕ(x

′, σ′)σ′ dA(x′), (2.12.9)

where x̂ = x− x′.

Computation of the integrals Inm

To compute the integrals Inm defined in (2.12.8), we write

Inm(x̂, σ, σ′) =
4[

x̂2 + (σ + σ′)2
]n/2 Jnm(k) = 4

( k√
4σσ′

)n

Jnm(k), (2.12.10)

where

Jnm(k) ≡
∫ π/2

0

(2 cos2 η − 1)m

(1− k2 cos2 η)n/2
dη, (2.12.11)

η = ϕ̂/2, and

k2 ≡ 4σσ′

x̂2 + (σ + σ′)2
(2.12.12)
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Figure 2.12.1 (a) Graphs of the complete elliptic integral of the first kind, F (k) (solid line) and
second kind, E(k) (broken line), computed by an efficient iterative method. (b) Streamline pattern
in a plane passing through the axis of revolution of a line vortex ring with positive circulation;
lengths have been scaled by the ring radius.

is a dimensionless group varying the range 0 ≤ k2 ≤ 1. As x → x′ and σ → σ′, the composite
variable k2 tends to unity.

The integrals Jnm can be expressed in terms of the complete elliptic integrals of the first and
second kind, F and E, defined as

F (k) ≡
∫ 1

0

dτ

(1− τ2)1/2(1− k2τ2)1/2
=

∫ π/2

0

du√
1− k2 sin2 u

(2.12.13)

and

E(k) ≡
∫ π/2

0

√
1− k2 sin2 u du, (2.12.14)

where τ and u are dummy integration variables. Graphs of these integrals are shown in Figure
2.12.1(a). As k tends to unity, F (k) diverges as F (k) � ln(4/

√
1− k2), whereas E(k) tends to unity.

Resorting to tables of indefinite integrals, we derive the expressions

J10(k) = F (k), J11(k) =
2− k2

k2
F (k)− 2

k2
E(k),

J30(k) =
E(k)

1− k2
, J31(k) = − 2

k2
F (k) +

2− k2

k2(1− k2)
E(k)

(2.12.15)
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(e.g., [150], p. 590). Substituting the expression for J11(k) into (2.12.10) and then into (2.12.9), we
obtain the Stokes stream function

ψ(x, σ) =
1

2π

∫∫
Flow

( 2− k2

k
F (k)− 2

k
E(k)

)√
σσ′ ωϕ(x

′, σ′) dA(x′). (2.12.16)

Computation of the complete elliptic integrals

To evaluate the complete elliptic integrals of the first and second kind, we may compute the sequence

K0 = k, Kp =
1− (1−K2

p−1)
1/2

1 + (1−K2
p−1)

1/2
(2.12.17)

for p = 1, 2, . . . , and then set

F (k) =
π

2
(1 +K1)(1 +K2)(1 +K3) · · · , E(k) = F (k)

(
1− 1

2
k2P

)
, (2.12.18)

where

P = 1 +
1

2
K1

(
1 +

1

2
K2

(
· · ·

) )
. (2.12.19)

Alternative polynomial approximations are available (e.g., [2], Chapter 17). In Matlab, complete
elliptic integrals can be computed using the native function ellipke.

2.12.1 Line vortex rings

The azimuthal vorticity component associated with a circular line vortex ring of radius Σ located
at the axial position X is ωϕ(x) = κ δ2(x − X), where δ2 is the two-dimensional delta function in
an azimuthal plane, and xr = Xex + Σeσ is the trace of the ring in that plane. Substituting this
expression into (2.12.7) and performing the integration using the distinctive properties of the delta
function, we obtain the axial and radial velocity components[

ux

uσ

]
(x, σ) =

κ

4π
Σ

[
−σ I31(x̂, σ,Σ) + Σ I30(x̂, σ,Σ)

x̂ I31(x̂, σ,Σ)

]
, (2.12.20)

where x̂ = x−X. The corresponding Stokes stream function is found from (2.12.9),

ψ(x, σ) =
κ

4π
σΣ I11(x̂, σ,Σ). (2.12.21)

The streamline pattern in a plane passing through the axis of revolution is shown in Figure 2.12.1(b).

Velocity potential

The velocity potential due to a line vortex ring can be deduced from expressions (2.11.6) and (2.11.9)
for line vortices. Identifying the surface D in (2.11.6) with a circular disk of radius Σ bounded by
the vortex ring, we obtain

φ(x, σ) = − κ

4π
Ωring(x), (2.12.22)
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where Ωring is the angle subtended by the ring from the point x, given by

Ω(x) = x̂

∫ 2π

0

∫ Σ

0

σ′ dσ′

[ x̂2 + (σ − σ′ cosϕ′)2 + σ′2 sin2 ϕ′ ]3/2
dϕ′. (2.12.23)

Integrating with respect to the azimuthal angle, we obtain

Ω(x̂, σ,Σ) = x̂

∫ Σ

0

I30(x̂, σ, σ
′)σ′ dσ′ = 4x̂

∫ σR

0

J30(k)

[ x̂2 + (σ + σ′)2 ]3/2
σ′ dσ′, (2.12.24)

where the functions I30 and J30 are defined in (2.12.8), (2.12.10), and (2.12.11), and k2 is defined
in (2.12.12). Finally, we obtain

Ω(x̂, σ,Σ) = 4x̂

∫ Σ

0

E(k)

1− k2
σ′

[ x̂2 + (σ + σ′)2 ]3/2
dσ′, (2.12.25)

where E(k) is the complete elliptic integral of the second kind. An alternative method of computing
Ω is available [302].

2.12.2 Axisymmetric vortices with linear vorticity distribution

Consider a flow containing an axisymmetric vortex embedded in an otherwise irrotational fluid.
Inside the vortex, the azimuthal vorticity component varies linearly with distance from the axis of
revolution, ωϕ = Ωσ, where Ω is a constant. Using (2.12.9) or (2.12.16), we find that the Stokes
stream function of the induced flow is

ψ(x, σ) =
Ω

4π
σ

∫∫
AV

I11(x̂, σ, σ
′)σ′2 dA(x′), (2.12.26)

or

ψ(x, σ) =
Ω

2π

∫∫
AV

( 2− k2

k
F (k)− 2

k
E(k)

)√
σσ′ σ′ dA(x′), (2.12.27)

where AV is the area occupied by the vortex in an azimuthal plane, dA = dx dσ is a corresponding
differential area, x̂ = x− x′, and the integrals Inm are defined in (2.12.8).

Radial velocity

The radial velocity component is found by differentiating the stream function, finding

uσ(x, σ) = − 1

σ

∂ψ

∂x
=

Ω

4π

∫∫
AV

∂

∂x′

(
I11(x̂, σ, σ

′)
)
σ′2 dA(x′), (2.12.28)

where x̂ = x − x′. Using the divergence theorem, we derive a simplified expression in terms of an
integral along the trace of the vortex contour in an azimuthal plane, C,

uσ(x, σ) =
Ω

4π

∫
C

I11(x̂, σ, σ
′)nx(x

′)σ′2 dl(x′), (2.12.29)

where n is the normal unit vector pointing outward from the vortex contour.
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Axial velocity

To develop a corresponding expression for the axial velocity component, we introduce the velocity
potential function

φ(x, σ) = − Ω

4π

∫∫
AV

Ωring(x̂, σ, σ
′)σ′ dA(x′), (2.12.30)

and work as in (2.12.28) to obtain

ux(x, σ) =
1

σ

∂φ

∂x
=

Ω

4π

∫∫
AV

∂

∂x′

(
Ωring(x̂, σ, σ

′)
)
σ′ dA(x′). (2.12.31)

Now using the divergence theorem, we find that

ux(x, σ) =
Ω

4π

∫
C

Ωring(x̂, σ, σ
′)σ′ nx(x

′) dl(x′). (2.12.32)

To compute the right-hand side of (2.12.32), we introduce a branch cut so that the solid angle
becomes single-valued [302].

To circumvent introducing a branch cut, we resort to the integral representation of the Stokes
stream function and write

ux(x, σ) =
1

σ

∂ψ

∂σ
=

Ω

4π

∫∫
AV

1

σ

∂

∂σ

(
σ I11(x̂, σ, σ

′)
)
σ′2 dA(x′). (2.12.33)

If we were able to find two functions, F (x̂, σ, σ′) and G(x̂, σ, σ′), such that

σ′2 ∂

∂σ

(
σ I11(x̂, σ, σ

′)
)
= σ

(∂F
∂x̂

− ∂G

∂σ′

)
, (2.12.34)

then we could write the contour integral representation

ux(x, σ) = − Ω

4π

∫
C

[
F (x̂, σ, σ′)nx(x

′, σ′) +G(x̂, σ, σ′)nσ(x
′, σ′)

]
dl(x′, σ′). (2.12.35)

Shariff, Leonard & Fertziger [368] considered the right-hand side of (2.12.1) and expressed the curl
of the vorticity in terms of generalized functions. Their analysis implies that

F (x̂, σ, σ′) = x̂ σ′I10(x̂, σ, σ
′), G(x̂, σ, σ′) = σ σ′I11(x̂, σ, σ

′), (2.12.36)

yielding the computationally convenient expression

ux(x, σ) = − Ω

4π

∫
C

[
x̂ I10(x̂, σ, σ

′)nx(x
′, σ′) + σ I11(x̂, σ, σ

′) nσ(x
′, σ′)

]
σ′ dl(x′, σ′). (2.12.37)

Taken together, equations (2.12.32) and (2.12.37) provide us with a basis for the contour dynamics
formulation of axisymmetric vortex flow with linear vorticity distribution discussed in Section 11.9.3.
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Figure 2.12.2 Streamline pattern associated with Hill’s spherical vortex (a) in a stationary frame of
reference and (b) in a frame of reference traveling with the vortex.

Hill’s vortex

Hill’s spherical vortex provides us with an important example of an axisymmetric vortex with linear
vorticity distribution, ωϕ = Ωσ. To describe the flow, we introduce cylindrical polar coordinates
with origin at the center of the vortex, (x, σ, ϕ), and associated spherical polar coordinates, (r, θ, ϕ).
In a frame of reference moving with the vortex, the Stokes stream function inside Hill’s vortex is
given by

ψint =
Ω

10
σ2(a2 − r2), (2.12.38)

where a is the vortex radius. Outside the vortex, the stream function is

ψext = − Ω

15
a2σ2

(
1− a3

r3
)
, (2.12.39)

where r is the distance from the origin, r2 = x2 + σ2, x = r cos θ, and σ = r sin θ. We may readily
verify that ψint = ψext = 0 and (∂ψint/∂r)θ = (∂ψext/∂r)θ at r = a, ensuring that the velocity
is continuous across the vortex contour. In fact, the exterior flow is potential flow past a sphere
discussed in Section 7.5.2. Cursory inspection of the exterior flow reveals that the spherical vortex
translates steadily along the x axis with velocity

V =
2

15
Ωa2, (2.12.40)

while maintaining its spherical shape.

The streamline pattern in a stationary frame of reference and in a frame of reference translating
with the vortex is shown in Figure 2.12.2. Comparing the pattern shown in Figure 2.12.2(a) with
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that shown in Figure 2.12.1(b) for a line vortex ring, we note a similarity in the structure of the
exterior flow and conclude that the particular way in which the vorticity is distributed inside a
vortex plays a secondary role in determining the structure of the flow far from the vortex.

Vortex rings finite core

Hill’s vortex constitutes a limiting member of a family of steadily translating vortex rings parametrized
by the cross-sectional area. The opposite extreme member in the family is a line vortex ring with
infinitesimal cross-sectional area. The structure and stability of the rings have been studied by
analytical and numerical methods, as discussed in Section 11.9 [282, 302].

Problem

2.12.1 Hill’s spherical vortex

Departing from (2.12.38) and (2.12.39), confirm that (a) the azimuthal component of the vorticity is
ωϕ = Ωσ inside Hill’s vortex and vanishes in the exterior of the vortex; (b) the velocity is continuous
across the vortex boundary; (c) the velocity of translation of the vortex is given by (2.12.40).

Computer Problems

2.12.2 Complete elliptic integrals

Write a computer program that computes the complete elliptic integrals of the first and second kind,
F and E, according to (2.12.18). Confirm that your results are consistent with tabulated values.

2.12.3 A line vortex ring

(a) Write a program that computes the velocity field induced by a line vortex ring and reproduce
the streamline pattern shown in Figure 2.12.2.

(b) Write a program that computes the velocity potential associated with a line vortex ring.

2.12.4 Streamlines of Hill’s spherical vortex

Reproduce the streamlines pattern shown in Figure 2.12.3(a). The velocity could be computed by
numerical differentiation setting, for example, ∂ψ/∂σ � [ψ(σ+ ε)−ψ(σ− ε)]/(2ε), where ε is a small
increment.

2.13 Two-dimensional flow induced by vorticity

Integral representations for the velocity of a two-dimensional flow in the xy plane in terms of the
vorticity can be derived using the general formulas presented in Section 2.8 for three-dimensional
flow. In this case, we stipulate that the vortex lines are rectilinear, parallel to the z axis. However,
it is expedient to begin afresh from the integral representation (2.7.37) providing us with expressions
for the x and y velocity components,

ux(x) = − 1

2π

∫∫
ŷ

x̂2 + ŷ2
ωz(x

′) dA(x′), uy(x) =
1

2π

∫∫
x̂

x̂2 + ŷ2
ωz(x

′) dA(x′), (2.13.1)
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where x′ = x− x′ and the integration is performed over the domain of flow. Using (2.7.36), we find
that the associated stream function is

ψ(x) = − 1

4π

∫∫
ln
( x̂2 + ŷ2

a2
)
ωz(x

′) dA(x′), (2.13.2)

where a is a constant length. An alternative representation for the velocity originating from the
integral representation (2.7.38) is

u(x) = − 1

4π

∫∫
ln
( x̂2 + ŷ2

a2
)
∇′ ×

[
ωz(x

′) ez
]
dA(x′), (2.13.3)

where ez is the unit vector along the z axis.

2.13.1 Point vortices

To derive the velocity field and stream function due to a point vortex located at a point, x0, we
substitute the singular distribution ωz(x) = κ δ2(x− x0) into (2.13.1) and (2.13.2), obtaining

ux(x) = − κ

2π

ŷ

x̂2 + ŷ2
, uy(x) =

κ

2π

x̂

x̂2 + ŷ2
, ψ(x) = − κ

4π
ln
( x̂2 + ŷ2

a2
)
, (2.13.4)

where δ2 is the two-dimensional delta function, κ is the strength of the point vortex, and x̂ = x−x0.
The polar velocity component is

uθ(x) =
κ

2π

1

r
, (2.13.5)

where r = |x − x0|. The streamlines are concentric circles centered at x0, the velocity decays like
1/r, and the cyclic constant of the motion around the point vortex is equal to κ. The velocity field
is irrotational everywhere except at the singular point, x0. The associated multi-valued velocity
potential is

φ(x) =
κ

2π
θ, (2.13.6)

where θ is the polar angle subtended between the vector x−x0 and the x axis. We observe that the
harmonic potential increases by κ each time a complete turn is performed around the point vortex.

Complex-variable formulation

It is sometimes useful to introduce the complex variable z = x + iy, and the complex velocity
v = ux + iuy, where i is the imaginary unit, i2 = −1. The first two equations in (2.13.4) can be
collected into the complex form

v∗(z) = ux − iuy =
κ

2πi

1

z − z0
, (2.13.7)

where an asterisk denotes the complex conjugate.
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Figure 2.13.1 Mesmerizing streamline pattern due to an array of evenly spaced point vortices with
positive (counterclockwise) circulation separated by distance a.

2.13.2 An infinite array of evenly spaced point vortices

Next, we consider the flow due to an infinite row of point vortices with uniform strength separated
by distance a, as illustrated in Figure 2.13.1. The mth point vortex is located at xm = x0 +ma and
ym = y0, where (x0, y0) is the position of one arbitrary point vortex labeled 0, and m is an integer. If
we attempt to compute the velocity induced by the array by summing the individual contributions,
we will encounter unphysical divergent sums.

To overcome this difficulty, we express the stream function corresponding to the velocity field
induced by the individual point vortices as

ψ0(x, y) = − κ

2π
ln
(r0
a

)
, ψm(x, y) = − κ

2π
ln
( rm
|m| a

)
(2.13.8)

for m = ±1,±2, . . ., where

rm ≡ [ (x− xm)2 + (y − ym)2 ]1/2 (2.13.9)

is the distance of the field point, x = (x, y), from the location of the mth point vortex. The
denominators of the fractions in the arguments of the logarithms on the right-hand sides of (2.13.8)
have been chosen judiciously to facilitate forthcoming algebraic manipulations.

It is important to observe that, as m tends to ±∞, the fraction on the right-hand side of the
second equation in (2.13.8) tends to unity and its logarithm tends to vanish, thereby ensuring that
remote point vortices make decreasingly small contributions. If the denominators were not included,
remote point vortices would have made contributions that are proportional to the logarithm of the
distance between a point vortex from the point (x, y) where the stream function is evaluated.
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Next, we express the stream function due to the infinite array as the sum of a judiciously
selected constant expressed by the term after the first equal sign in (2.13.10), and the individual
stream functions stated in (2.13.8), obtaining

ψ(x, y) = − κ

2π
ln(

√
2π) +

∞∑
m=−∞

ψm(x, y). (2.13.10)

Substituting the expressions for the individual Green’s functions, we find that

ψ(x, y) = − κ

2π
ln
(√2π r0

a

)
− κ

2π

∑
m=±1,±2,...

ln
( rm
|m| a

)
, (2.13.11)

which can be restated as

ψ(x, y) = − κ

2π
ln
[ √2π r0

a

∏
m=±1,±2,...

rm
|m| a

]
, (2.13.12)

where Π denotes the product. An identity allows us to compute the infinite product on the right-hand
side of (2.13.12) in closed form, obtaining

√
2π r0
a

∏
m=±1,±2,...

rm
|m| a = {cosh[k(y − y0)]− cos[k(x− x0)]}1/2 (2.13.13)

(e.g., [4], p. 197). Substituting the right-hand side of (2.13.13) into (2.13.12), we derive the desired
expression for the stream function

ψ(x, y) = − κ

4π
ln
(
cosh[k(y − y0)]− cos[k(x− x0)]

)
, (2.13.14)

where k = 2π/a is the wave number. Differentiating the right-hand side of (2.13.14) with respect to
x or y, we obtain the corresponding velocity components,

ux(x, y) = − κ

2a

sinh[k(y − y0)]

cosh[k(y − y0)]− cos[k(x− x0)]
,

uy(x, y) =
κ

2a

sin[k(x− x0)]

cosh[k(y − y0)]− cos[k(x− x0)]
.

(2.13.15)

As the wave number k tends to zero, expressions (2.13.14) and (2.13.15) reproduce the stream
function and velocity field associated with a single point vortex. The streamline pattern due to the
periodic array exhibits a cat’s eye pattern, as illustrated in Figure 2.13.1.

Because of symmetry, the velocity at the location of one point vortex induced by all other
point vortices is zero and the array is stationary. Far above or below the array, the x component of
the velocity tends to the value −κ/a or κ/a, while the y component decays at an exponential rate.
This behavior renders the infinite array a useful model of the flow generated by the instability of a
shear layer separating two parallel streams that merge at different velocities. The Kelvin–Helmholtz
instability causes the shear layer to roll up into compact vortices represented by the point vortices
of the periodic array.
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2.13.3 Point-vortex dipole

Consider the flow due to two point vortices with strengths of equal magnitude and opposite sign
located at the points x0 and x1. Taking advantage of the linearity of (2.13.1), we construct the
associated stream function by superposing the stream functions due to the individual point vortices.
Placing the second point, x1, near the first point, x0, and taking the limit as the distance |x0 − x1|
tends to zero while the product κ(x0 − x1) remains constant and equal to λ, we derive the stream
function due to a point-vortex dipole,

ψ(x) = − 1

2π
λ · ∇0 ln

( r
a

)
=

1

2π

x− x0

r3
· λ, (2.13.16)

where r = |x − x0| and the derivatives in ∇0 operate with respect to x0. The associated velocity
field follows readily by differentiation as

ux(x) =
1

2π

(λy

r2
− 2

y − y0
r4

(x− x0) · λ
)
,

uy(x) = − 1

2π

(λx

r2
− 2

x− x0

r4
(x− x0) · λ

)
.

(2.13.17)

The streamline pattern of the flow due to a point-vortex dipole oriented along the y axis, with
λ = λ ey and λ > 0 is identical to that due to a potential dipole oriented along the x axis shown in
Figure 2.1.3(b). An alternative method of deriving the flow due to a point-vortex dipole employes
the properties of generalized delta functions. We set

ω(x) = λ · ∇δ(x− x0), (2.13.18)

and then use (2.13.1) and (2.13.2) to derive (2.13.16) and (2.13.17).

2.13.4 Vortex sheets

To derive the flow due to a two-dimensional vortex sheet, we substitute (1.13.26) into (2.13.1) and
obtain

ux(x) = − 1

2π

∫
C

ŷ

x̂2 + ŷ2
dΓ(x′), uy(x) =

1

2π

∫
C

x̂

x̂2 + ŷ2
dΓ(x′), (2.13.19)

where x′ = x−x′, dΓ = γdl is the differential of the circulation along the vortex sheet, and C is the
trace of the vortex sheet in the xy plane. Comparing (2.13.19) with (2.13.2), we interpret a vortex
sheet as a continuous distribution of point vortices.

It is sometimes useful to introduce the complex variable z = x + iy and define the complex
velocity v = ux + iuy, where i is the imaginary unit, i2 = −1. Equations (2.13.19) may then be
stated in the complex form

v∗(z) =
1

2πi

∫
C

dΓ(z′)

z − z′
, (2.13.20)

where an asterisk denotes the complex conjugate.
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Periodic vortex sheet

Using identity (2.13.13), we find that the velocity due a periodic vortex sheet that is repeated along
the x axis with period a is

ux(x, y) = − 1

2a

∫
T

sinh[k(y − y′)]

cosh[k(y − y′)]− cos[k(x− x′)]
dΓ(x′),

uy(x, y) =
1

2a

∫
T

sin[k(x− x0)]

cosh[k(y − y′)]− cos[k(x− x′)]
dΓ(x′),

(2.13.21)

where k = 2π/a is the wave number and T is the trace of the vortex sheet in the xy plane inside
one period. As the scaled wave number ka tends to zero, (2.13.21) reduces to (2.13.19).

2.13.5 Vortex patches

Consider a two-dimensional flow induced by a region of constant vorticity, ωz = Ω, called a vortex
patch, immersed in an otherwise stationary fluid. Introducing the two-dimensional vector potential
expressed in terms of the stream function as A = (0, 0, ψ), and using the integral representation
(2.13.2), we find that the induced velocity is

u(x) =
Ω

4π

∫∫
Patch

∇′ × [ ln
x̂2 + ŷ2

a2
ez ] dA(x′), (2.13.22)

where ez is the unit vector along the z axis and the gradient ∇′ involves derivatives with respect
to the integration point, x′. Using Stokes’ theorem, we convert the area integral into a line integral
along the closed contour of the patch, C, obtaining

u(x) = − Ω

4π

∮
C

ln
x̂2 + ŷ2

a2
t(x′) dl(x′), (2.13.23)

where t is the tangent unit vector pointing in the counterclockwise direction around C. An alterna-
tive way of deriving (2.13.23) departs from the identity

∇× ω = Ω

∮
C

δ2(x− x′) t(x′) dl(x′), (2.13.24)

where δ2 is the two-dimensional delta function in the xy plane. Substituting (2.13.24) into (2.13.3)
and using the properties of the delta function, we recover (2.13.23). If a flow contains a number of
disconnected vortex patches with different vorticity, the integral in (2.13.23) is computed along each
vortex contour and then multiplied by the corresponding values of the constant vorticity, Ω.

Periodic vortex patches and vortex layers

Using identity (2.13.13), we find that the velocity due to a periodic array of vortex patches with
constant vorticity Ω arranged along the x axis with period a is given by

u(x) = − Ω

4π

∮
AV

ln[ cos(kŷ)− cos(kx̂) ] t(x′) dl(x′), (2.13.25)
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Figure 2.13.2 Illustration of (a) a periodic vortex layer with constant vorticity and (b) a periodic
compound vortex layer consisting of two adjacent vortex layers with constant vorticity Ω1 and Ω2.

where k = 2π/a is the wave number, C is the contour of one arbitrary patch in the array, and t is
the tangent unit vector pointing in the counterclockwise direction.

As an application, we consider the velocity due to the periodic vortex layer illustrated in
Figure 2.13.2(a). We select one period of the vortex layer and identify C with the union of the
upper contour, CU , lower contour, CB, left contour, CL, and right contour, CR. The contributions
from the contours CL and CR to the integral in (2.13.25) cancel because the corresponding tangent
vectors point in opposite directions and the logarithmic function is periodic inside the integral.
Consequently, the contour C reduces to the union of CU and CB .

Problems

2.13.1 An array of point vortices

Verify that, as the period a tends to infinity, (2.13.14) and (2.13.15) yield the velocity and stream
function due to a single point vortex.

2.13.2 Compound vortex layer

Consider a periodic compound vortex layer consisting of two adjacent layers with constant vorticity
Ω1 and Ω2, as illustrated in Figure 2.13.2(b). Derive an expression for the velocity in terms of
contour integrals along C1, C2, and C3.



Stresses, the equation of motion,
and vorticity transport

3

In the first two chapters, we examined the kinematic structure of a flow and investigated possible
ways of describing the velocity field in terms of secondary variables, such as the velocity potential,
the vector potential, and the stream functions. However, in our discussion, we made no reference
to the physical processes that are responsible for establishing a flow or to the conditions that are
necessary for sustaining the motion of the fluid. To investigate these and related issues, in this
chapter we introduce the fundamental ideas and physical variables needed to describe and compute
the forces developing in a fluid at rest as the result of the motion. The theoretical framework will
culminate in an equation of motion governing the structure of a steady flow and the evolution of
an unsteady flow from a specified initial state. The point of departure for deriving the equation of
motion is Newton’s second law of motion for a material fluid parcel, stating that the rate of change
of momentum of the parcel be equal to the sum of all forces exerted on the volume of the fluid
occupying the parcel as well as on the parcel boundaries.

We will discuss constitutive equations relating the stresses developing on the surface of a
material fluid parcel to the parcel deformation. In the discourse, we will concentrate on a special
but common class of incompressible fluids, called Newtonian fluids, whose response is described by
a linear constitutive equation. The equation of motion for an incompressible Newtonian fluid takes
the form of a second-order partial differential equation in space for the velocity, called the Navier–
Stokes equation. Supplementing the Navier–Stokes equation with the continuity equation to ensure
mass conservation, and then introducing appropriate boundary and initial conditions, we obtain a
complete set of governing equations. Analytical, asymptotic, and numerical methods for solving
these equations under a broad range of conditions will be discussed in subsequent chapters.

The equation of motion can be regarded as a dynamical law for the evolution of the velocity
field, providing us with an expression for the Eulerian time derivative, ∂u/∂t, or material derivative,
Du/Dt. To derive a corresponding law for the evolution of the vorticity field expressing the rate
of rotation of fluid parcels, ω = ∇ × u, we take the curl of the Navier–Stokes equation and derive
the vorticity transport equation. Inspecting the various terms in the vorticity transport equation
allows us to develop insights into the dynamics of rotational flows. Vortex dynamics provides us
with a natural framework for analyzing and computing flows dominated by the presence or motion
of compact vortex structures, including line vortices, vortex patches, and vortex sheets.

186



3.1 Forces acting in a fluid, traction, and the stress tensor 187

(a) (b)
n

f

n

n
f

f

x
(x)

(x)
(y)(y)

f
(z)

(z)

n

f

nz

y

Figure 3.1.1 (a) Illustration of the traction vector exerted on a small surface on the boundary of a
fluid parcel or control volume, f , and normal unit vector, n. The traction vector has a normal com-
ponent and a tangential component; the normal component is the normal stress, and the tangential
component is the shear stress. (b) Illustration of three small triangular surfaces perpendicular to
the three Cartesian axes forming a tetrahedral control volume; n is the unit vector normal to the
slanted face of the control volume, and f is the corresponding traction.

3.1 Forces acting in a fluid, traction, and the stress tensor

Consider a fluid parcel consisting of the same material, as shown in Figure 3.1.1(a). The adjacent
material imparts to molecules distributed over the surface of the parcel a local force due to a short-
range intermolecular force field, and thereby generate a normal and a tangential frictional force.
Now consider a stationary control volume that is occupied entirely by a moving fluid. As the
fluid flows, molecules enter and leave the control volume from all sides carrying momentum and
thereby imparting to the control volume at a particular instant in time a normal force. Short-range
intermolecular forces cause attraction between molecules on either side of the boundary of the control
volume, and thereby generate an effective tangential frictional force.

Traction and surface force

The force exerted on an infinitesimal surface element located at the boundary of a fluid parcel or at
the boundary of a control volume, dF, divided by the element surface area, dS, is called the traction
and is denoted by

f ≡ dF

dS
. (3.1.1)

The traction depends on the location, orientation, and designated side of the infinitesimal surface
element. The location is determined by the position vector, x, and the orientation and side are
determined by the normal unit vector, n. The traction has units of force divided by squared length.
In terms of the traction, the surface force exerted on a fluid parcel is

F =

∫∫
Parcel

f dS. (3.1.2)
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The same expression provides us with the surface force exerted on a control volume occupied by
fluid.

Normal and tangential components

It is useful to decompose the traction into a normal component, fN , pointing the direction of the
normal unit vector, n, and a complementary tangential or shear component, fT , given by

fN = (f · n)n, fT = n× (f × n) = f · (I− n⊗ n), (3.1.3)

where I is the identity matrix. The projection matrix I− n⊗ n extracts the tangential component
of a vector that it multiplies.

Body force

A long-range ambient force field acting on the molecules of a fluid parcel imparts to the parcel a
body force given by

FB =

∫∫∫
Parcel

κb dV, (3.1.4)

where b is the strength of the body force field and κ is a companion physical constant that may
depend on time as well on position in the domain of flow. Examples include the gravitational or
an electromagnetic force field. In the case of the gravitational force field, b is the acceleration of
gravity, g, and κ is the fluid density, ρ. In the remainder of this book we will assume that the body
force field is due to gravity alone.

3.1.1 Stress tensor

Next, we introduce a system of Cartesian coordinates and consider a small tetrahedral control volume
with three sides perpendicular to the x, y, and z axes, as illustrated in Figure 3.1.1(b). The traction
exerted on each of the three planar sides is denoted, respectively, by f (x), f (y), and f (z). Stacking
these tractions above one another in three rows, we formulate the matrix of stresses

σij = f
(i)
j . (3.1.5)

The first row of σ contains the components of f (x), the second row contains the components of f (y),
and the third row contains the components of f (z), so that

σ =

⎡⎣ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎦ ≡

⎡⎢⎣ f
(x)
x f

(x)
y f

(x)
z

f
(y)
x f

(y)
y f

(y)
z

f
(z)
x f

(z)
y f

(z)
z

⎤⎥⎦ . (3.1.6)

The diagonal elements of σ are the normal stresses exerted on the three mutually orthogonal sides
of the control volume that are normal to the x, y, and z axes. The off-diagonal elements are the
tangential or shear stresses. Later in this section, we will show that σ satisfies a transformation rule
that qualifies it as a second-order Cartesian tensor.
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Traction in terms of stress

We will demonstrate that the traction exerted on the slanted side of the infinitesimal tetrahedron
illustrated in Figure 3.1.1(b) can be computed from knowledge of its orientation and the value of
the stress tensor at the origin. Knowledge of the body force is not required.

Our point of departure is Newton’s second law of motion for the fluid parcel enclosed by the
tetrahedron, stating that the rate of change of momentum of the parcel is equal to the sum of the
surface and body forces exerted on the parcel. Using (3.1.2) and (3.1.4), we obtain

d

dt

∫∫∫
Parcel

ρu dV =

∫∫
Parcel

f dS +

∫∫∫
Parcel

ρg dV. (3.1.7)

Because the size of the tetrahedron is infinitesimal, the traction exerted on each side is approximately
constant. Neglecting variations in the momentum and body force over the parcel volume, we recast
equation (3.1.7) into the algebraic form

D(ρuΔV )

Dt
= f (x)ΔSx + f (y)ΔSy + f (z)ΔSz + fΔS + ρgΔV, (3.1.8)

where D/Dt is the material derivative, ΔV is the volume of the tetrahedron, ΔS(x), ΔS(y), ΔS(z),
and ΔS are the surface areas of the four sides of the tetrahedron, and f is the traction exerted on
the slanted side. Dividing each term in (3.1.8) by ΔS and rearranging, we obtain

1

ΔS

(D(ρuΔV )

Dt
− ρgΔV

)
= f (x)

ΔS(x)

ΔS
+ f (y)

ΔS(y)

ΔS
+ f (z)

ΔS(z)

ΔS
+ f . (3.1.9)

In the limit as the size of the parcel tends to zero, the ratio ΔV/ΔS vanishes and the left-hand side
disappears.

Now we introduce the unit vector normal to the slanted side pointing outward from the
tetrahedron, n, and use the geometrical relations

nx = −ΔS(x)

ΔS
, ny = −ΔS(y)

ΔS
, nz = −ΔS(z)

ΔS
. (3.1.10)

Substituting these expressions along with the definition of the stress matrix tensor (3.1.5) into (3.1.9)
and rearranging, we find that

f = n · σ. (3.1.11)

In index notation, the jth component of the traction is

fj = ni σij , (3.1.12)

where summation is implied over the repeated index, i. Equation (3.1.11) states that the traction,
f , is a linear function of the normal unit vector, n, with a matrix of proportionality that is equal to
the stress tensor, σ.
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Force on a fluid parcel in terms of the stress

Combining (3.1.2) with (3.1.11) and using the divergence theorem, we find that the surface force
exerted on a fluid parcel is given by

F =

∫∫
Parcel

n · σ dS =

∫∫∫
Parcel

∇ · σ dV. (3.1.13)

In index notation, the jth component of the surface force is

Fj =

∫∫
Parcel

ni σij dS =

∫∫∫
Parcel

∂σij

∂xi
dV. (3.1.14)

Newton’s third law requires that the parcel exerts on the ambient fluid a force of equal magnitude
in the opposite direction.

The total force exerted on the parcel is the sum of the surface force given in (3.1.13) and the
body force given in (3.1.4),

Ftotal =

∫∫∫
Parcel

(∇ · σ + ρg) dV. (3.1.15)

If the divergence of the stress tensor balances the body force, the total force exerted on the parcel is
zero. Later in this chapter, we will see that this is true when the effect of fluid inertia is negligibly
small.

Force acting on a fluid sheet

Consider a fluid parcel in the shape of an flattened sheet. Letting the thickness of the sheet tend
to zero, we find that the surface force exerted on one side of the sheet is equal and opposite to that
exerted on the other side of the sheet, so that the sum of the two forces balances to zero.

Force exerted on a boundary

To compute the force exerted on a boundary, we consider a flattened fluid parcel having the shape
of a thin sheet attached to the boundary. As the thickness of the sheet tends to zero, the mass of
the parcel becomes infinitesimal and the sum of the hydrodynamic forces exerted on either side of
the parcel must balance to zero (Problem 3.1.1). Newton’s third law requires that the force exerted
on the side of the parcel adjacent to the boundary is equal in magnitude and opposite in direction to
that exerted by the fluid on the boundary. Thus, the hydrodynamic force exerted on the boundary
is given by

F =

∫∫
Boundary

n · σ dS, (3.1.16)

where n is the unit vector normal to the boundary pointing into the fluid.

σ is a tensor

We will show that the matrix of stresses, σ, is a Cartesian tensor, called the Cauchy stress tensor or
simply the stress tensor. Following the standard procedure outlined in Section 1.1.7, we introduce
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two Cartesian systems of axes, xi and x′
i, related by the linear transformation x′

i = Aijxj , where A

is an orthogonal matrix, meaning that its inverse is equal to its transpose. The stresses in the x′
i

system are denoted by σ′ and those in the xi system are denoted by σ. The traction exerted on a
small surface in the x′i system is denoted by f ′, and the same traction exerted on the same surface
in the xi system is denoted by f . Next, we introduce the vector transformation

f ′
j = Ajlfl, (3.1.17)

and use (3.1.13) to obtain

n′
i σ

′
ij = Ajlnk σkl. (3.1.18)

Substituting nk = n′
i Aik, we find that

n′
i σ

′
ij = AjlAikn

′
i σkl, (3.1.19)

which demonstrates that σ satisfies the distinguishing property of second-order Cartesian tensors
shown in (1.1.40) with σ in place of T.

One important consequence of tensorial nature of σ is the existence of three scalar stress
invariants. In particular, both the trace and the determinant of σ are independent of the choice of
the working Cartesian axes.

3.1.2 Torque

The torque, T, exerted on a fluid parcel, computed with respect to a chosen point, x0, consists of
the torque due to the surface force, the torque due to the body force, and the torque due to an
external torque field with intensity c. Adding these contributions, we obtain the total torque

Ttotal =

∫∫
Parcel

x̂× (n · σ) dS +

∫∫∫
Parcel

x̂× (ρg) dV +

∫∫∫
Parcel

λ cdV, (3.1.20)

where x̂ = x − x0 and λ is an appropriate physical constant associated with the torque field, c.
For example, a torque field arises in a suspension of magnetized or bipolar particles by applying an
electrical field.

Using the divergence theorem, we convert the surface integral on the right-hand side of (3.1.20)
into a volume integral, obtaining in index notation

T total
i =

∫∫∫
Parcel

(
εijkσjk + εijkx̂j

∂σlk

∂xl
+ ρ εijkx̂jgk + λ ci

)
dV, (3.1.21)

where summation is implied over the repeated indices, j, k, and l.

In the absence of an external torque field, c = 0, the torque exerted on a parcel with respect
to a point x1, denoted by Ttotal(x1), is related to the torque with respect to another point, x0, by

Ttotal(x1) = Ttotal(x0) + (x1 − x0)× Ftotal. (3.1.22)
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When the rate of change of linear momentum of a fluid parcel is negligible, the total force exerted
on the parcel vanishes and the torque is independent of the point with respect to which it is defined.

Torque exerted on a boundary

The torque exerted on a boundary with respect to a chosen point, x0, is given by the simplified
version of (3.1.20),

T =

∫∫
Boundary

x̂× (n · σ) dS, (3.1.23)

where x̂ = x − x0 and n is the unit vector normal to the boundary pointing into the fluid. When
the surface force exerted on the boundary is zero, the torque is independent of the location of the
center of torque, x0.

3.1.3 Stresses in curvilinear coordinates

We have defined the components of the stress tensor in terms of the traction exerted on three
mutually perpendicular infinitesimal planar surfaces that are normal to the x, y, and z axes, denoted
by f (x), f (y), and f (z). These definitions can be extended to general orthogonal or nonorthogonal
curvilinear coordinates discussed in Sections A.8–A.17, Appendix A.

Orthogonal curvilinear coordinates

Working as in the case of Cartesian coordinates, we define the components of the stress tensor
in general orthogonal curvilinear coordinates, (ξ, η, ζ), as shown in Figure 3.1.2(a). Examples are
cylindrical, spherical, and plane polar coordinates shown in Figure 3.1.2(b–d).

Let f (α) be the traction exerted on an infinitesimal surface that is perpendicular to the α
coordinate line at a point, where a Greek index stands for ξ, η, or ζ. The nine components of the
stress tensor, σαβ , are defined by the equation

f (α) = σαβ eβ , (3.1.24)

where eβ is the unit vector in the direction of the β coordinate line, and summation over the index
β is implied on the right-hand side. The stress tensor itself is given by the dyadic decomposition

σ = σαβ eα ⊗ eβ , (3.1.25)

where the matrices eα⊗eβ provide us with a base of the three-dimensional tensor space, as discussed
in Section 1.1.

Conversely, the components of the stress tensor can be extracted from the stress tensor by
double-dot projection,

σαβ = σ : (eα ⊗ eβ). (3.1.26)

The double dot product of two matrices is defined in Section A.4, Appendix A.
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Figure 3.1.2 (a) Definition of the nine components of the stress tensor in orthogonal curvilinear
coordinates. Components of the stress tensor in (b) cylindrical, (c) spherical, and (d) plane polar
coordinates.

Cylindrical, spherical, and plane polar coordinates

The components of the stress tensor in cylindrical, spherical, and plane polar coordinates are defined
in Figure 3.1.2(b–d). Plane polar coordinates arise from spherical polar coordinates by setting ϕ = 0,
or from cylindrical polar coordinates by setting x = 0 and relabeling σ as r and ϕ as θ.

Nonorthogonal curvilinear coordinates

A system of nonorthogonal curvilinear coordinates, (ξ, η, ζ), is illustrated in Figure 3.1.3. Following
standard practice, we introduce covariant and contravariant base vectors and corresponding coordi-
nates, as discussed in Section A.12, Appendix A. The traction exerted on an arbitrary surface can be
expressed in contravariant or covariant component form. We may consider the traction exerted on a
small surface that is perpendicular to the contravariant or covariant coordinate lines. Accordingly,
the stress tensor can be expressed in terms of its pure contravariant, pure covariant, or mixed com-
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ξ

η

ζ

Figure 3.1.3 Definition of the nine components of the stress tensor in nonorthogonal curvilinear coor-
dinates. The solid lines represent covariant coordinates and the dashed lines represent the associated
contravariant coordinates.

ponents, in four combinations. The physical meaning of the pure and mixed representations stems
from the geometrical interpretation of the covariant and contravariant base vectors, combined with
the definition of the traction as the projection from the left of the stress tensor onto a unit vector
pointing in a specified direction.

Problems

3.1.1 Normal component of the traction

Verify that, in terms of the stress tensor, the normal component of the traction is given by

fN = [σ : (n⊗ n)]n. (3.1.27)

The double dot product of two matrices is defined in Section A.4, Appendix A.

3.1.2 Hydrodynamic torque exerted on a boundary

Show that, if the force exerted on a boundary is zero, the torque is independent of the location of
the point with respect to which the torque is evaluated.

3.1.3 Mean value of the stress tensor over a parcel

The mean value of the stress tensor over the volume of a fluid parcel is defined as

σ̄ ≡ 1

VP

∫∫∫
Parcel

σ dV, (3.1.28)

where Vp is the parcel volume. Show that

σ̄ij = − 1

VP

(∫∫
Parcel

σiknkxj dS +

∫∫∫
Parcel

∂σik

∂xk
xj dV

)
, (3.1.29)

where n is the normal unit vector pointing into the parcel.
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3.1.4 Computing the traction

Assume that the stress tensor is given by

σ =

⎡⎣ x xy xyz
xy y z
xyz z z

⎤⎦ (3.1.30)

in dyn/cm2, where lengths are measured in cm. Evaluate the normal and shear component of the
traction (a) over the surface of a sphere centered at the origin, and (b) over the surface of a cylinder
that is coaxial with the x axis.

3.2 Cauchy equation of motion

To derive the counterpart of Newton’s second law of motion for a fluid, we combine (3.1.7) with
(3.1.15) and use expression (1.4.27) for the rate of change of momentum of a fluid parcel defined in
(1.4.25). Noting that the shape and size of the parcel are arbitrarily chosen to discard the integral
sign, we derive Cauchy’s equation of motion

ρ
Du

Dt
= ∇ · σ + ρg, (3.2.1)

which is applicable for compressible or incompressible fluids. The effect of the fluid inertia is repre-
sented by the term on the left-hand side.

Hydrodynamic volume force

The divergence of the stress tensor is the hydrodynamic volume force,

Σ ≡ ∇ · σ. (3.2.2)

The equation of motion (3.2.1) then takes the compact form

ρ
Du

Dt
= Σ+ ρg, (3.2.3)

which illustrates that the hydrodynamic volume force complements the body force.

Eulerian form

Expressing the material derivative, D/Dt, in terms of Eulerian derivatives, we obtain the Eulerian
form of the equation of motion,

ρ
( ∂u
∂t

+ u · ∇u
)
= Σ+ ρg. (3.2.4)

The second term on the left-hand side can be regarded as a fictitious nonlinear inertial force. Using
the continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0, (3.2.5)
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we derive the alternative form

∂(ρu)

∂t
+∇ · (ρu⊗ u) = Σ+ ρg. (3.2.6)

Stress–momentum tensor

It is useful to introduce the stress–momentum tensor,

τ ≡ σ − ρu⊗ u, (3.2.7)

and recast (3.2.6) into the compact form

∂(ρu)

∂t
= ∇ · τ + ρg. (3.2.8)

If the flow is steady, the left-hand side of (3.2.8) is zero and the divergence of the stress–momentum
tensor balances the body force.

3.2.1 Integral momentum balance

Integrating (3.2.8) over a fixed control volume Vc that lies entirely inside the fluid, and using the
divergence theorem to convert the volume integral of the divergence of the stress–momentum tensor
into a surface integral over the boundary D of Vc, we obtain an integral or macroscopic momentum
balance, ∫∫∫

Vc

∂(ρu)

∂t
dV = −

∫∫
D

τ · n dS +

∫∫∫
Vc

ρg dV, (3.2.9)

where n is the normal unit vector pointing into the control volume. Decomposing the stress–
momentum tensor into its constituents and rearranging, we obtain∫∫∫

Vc

∂(ρu)

∂t
dV +

∫∫
D

(ρu) (u · n) dS = −
∫∫

D

σ · n dS +

∫∫∫
Vc

ρg dV. (3.2.10)

Equation (3.2.10) states that the rate of change of momentum of the fluid occupying a fixed control
volume is balanced by the flow rate of momentum normal to the boundaries, the force exerted on
the boundaries, and the body force exerted on the fluid residing inside the control volume. The
integral momentum balance allows us to develop approximate relations between global properties
of a steady or unsteady flow. In engineering analysis, we typically derive expressions for boundary
forces in terms of boundary velocities, subject to rational simplifications for inlet and outlet velocity
profiles. The formulation can be generalized to describe other transported fields, such as heat or the
concentration of a chemical species (e.g., [36]).

3.2.2 Energy balance

A differential energy balance can be obtained by projecting the equation of motion onto the velocity
vector at a chosen point. Projecting the Eulerian form (3.2.4) and rearranging, we obtain

1

2
ρ
( ∂|u|2

∂t
+ u · ∇|u|2

)
= Σ · u+ ρg · u. (3.2.11)
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Combining this equation with the continuity equation (3.2.5) and rearranging the right-hand side,
we obtain

∂

∂t

( 1
2
ρ |u|2

)
+∇ ·

( 1
2
ρ |u|2 u

)
= ∇ · (σ · u)− σ : ∇u+ ρg · u. (3.2.12)

The double dot product of two matrices is defined in Section A.4, Appendix A.

Integral energy balance

An integral or macroscopic balance arises by integrating the differential energy balance over a fixed
control volume, Vc, bounded by a surface, D. Integrating (3.2.12) and using the divergence theorem,
we obtain ∫∫∫

Vc

∂

∂t
(
1

2
ρ |u|2) dV =

∫∫∫
D

(
1

2
ρ |u|2)u · n dS

−
∫∫

D

u · f dS −
∫∫∫

Vc

σ : ∇u dV +

∫∫∫
Vc

ρg · u dV, (3.2.13)

where f = n · σ is the traction and n is the normal unit vector pointing into the control volume.
The four terms on the right-hand side of (3.2.13) represent, respectively, the rate of supply of kinetic
energy into the control volume by convection, the rate of working of the traction at the boundary of
the control volume, the rate of energy dissipation, and the rate of working against the body force.
We have found that the rate of dissipation of internal energy per unit volume of fluid is given by the
double dot product of the stress tensor and velocity gradient tensor, σ : ∇u.

Rate of working against the body force

When the fluid is incompressible and the density is uniform throughout the domain of flow, the last
volume integral in (3.2.13) expressing the rate of working against the body force can be transformed
into a surface integral over the boundary, D, by writing

WB ≡
∫∫∫

Vc

ρg · u dV = ρ

∫∫∫
Vc

∇ · [(g · x)u] dV = −ρ

∫∫
D

(g · x)(u · n) dS, (3.2.14)

where n is the normal unit vector pointing into the control volume. If the normal component of the
velocity obeys the no-penetration boundary condition for a translating body, u · n = V · n, we may
apply the divergence theorem to find that WB = ρVcvg ·V, where Vcv is the volume of the control
volume and V is a constant velocity. The last term in (3.2.13) may then be identified with the rate
of working necessary to elevate the fluid inside the control volume with velocity V.

3.2.3 Energy dissipation inside a fluid parcel

The total energy of the fluid residing inside a parcel is comprised of the kinetic energy due to
the motion of the fluid, the potential energy due to an external body force field, and the internal
thermodynamic energy. The instantaneous kinetic and potential energies are given by

K =
1

2

∫∫∫
Parcel

ρu · u dV, P = −
∫∫∫

Parcel

ρX · g dV, (3.2.15)
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where X is the position of the point particles occupying the parcel. Taking the material derivative
of the kinetic energy integral, and recalling that, because of mass conservation, D(ρdV )/Dt = 0, we
express the rate of change of the kinetic energy in terms of the point-particle acceleration,

dK
dt

=
1

2

∫∫∫
Parcel

ρ
D(u · u)

Dt
dV =

∫∫∫
Parcel

ρu · Du

Dt
dV. (3.2.16)

Now we use the equation of motion to express the acceleration in terms of the stress tensor and
body force, obtaining

dK
dt

=

∫∫∫
Parcel

u · (∇ · σ) dV +

∫∫∫
Parcel

ρu · g dV. (3.2.17)

Further manipulation yields

dK
dt

=

∫∫∫
Parcel

∇ · (u · σ) dV −
∫∫∫

Parcel

σ : ∇u dV +

∫∫∫
Parcel

ρu · g dV. (3.2.18)

The last integral is equal to −dPp/dT . Using the divergence theorem to convert the first integral on
the right-hand side into a surface integral and rearranging, we derive an energy balance expressed
by the equation

d(K + P)

dt
= −

∫∫
Parcel

u · f dS −
∫∫∫

Parcel

σ : ∇u dV, (3.2.19)

where f = n · σ is the traction and n is the normal unit vector pointing into the parcel.

The first integral on the right-hand side of (3.2.19) is the rate of working of the traction on
the parcel surface. It then follows from the first thermodynamic principle that the second integral
expresses the rate of change of internal energy, which is equal to the rate energy dissipation inside
the parcel, I, expended for increasing the temperature of the fluid,

dI
dt

=

∫∫∫
Parcel

σ : ∇u dV, (3.2.20)

which is consistent with the third term on the right-hand side of (3.2.13).

3.2.4 Symmetry of the stress tensor in the absence of a torque field

The angular momentum balance for a fluid parcel requires that the rate of change of the angular
momentum of the fluid occupying the parcel computed with respect to a specified point, x0, be equal
to the total torque exerted on the parcel given in (3.1.20) or (3.1.21),

d

dt

∫∫∫
Parcel

ρ x̂× u dV = Ttotal, (3.2.21)

where x̂ = x− x0. Transferring the derivative inside the integral as a material derivative and using
the continuity equation, we obtain∫∫∫

Parcel

ρ
Dx̂

Dt
× u dV +

∫∫∫
Parcel

ρx× Du

Dt
dV = Ttotal. (3.2.22)
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The first integrand is equal to ρu × u, which is identically zero. Switching to index notation,
replacing the total torque with the right-hand side of (3.1.21) and rearranging, we obtain∫∫∫

Parcel

[
εijkx̂j

(
ρ
Duk

Dt
− ∂σjk

∂xj
− ρgk

)
− εilk σlk − λci

]
dV = 0. (3.2.23)

Since the volume of the parcel is arbitrary, we may discard the integral sign and use the equation of
motion (3.2.1) to simplify the integrand, finding

εilkσlk + λ ci = 0. (3.2.24)

Multiplying (3.2.24) by εimn and manipulating the product of the alternating tensors, we find that

σmn − σnm = −λ εmni ci, (3.2.25)

which shows that, in the absence of an external torque field, c, the stress tensor must be symmetric,
σij = σji or σ = σT , where the superscript T designates the matrix transpose. In that case, only
three of the six nondiagonal components of the stress tensor are independent, and the remaining
three nondiagonal components are equal to their transpose counterparts. The traction may then be
computed as

f ≡ n · σ = σ · n. (3.2.26)

In the remainder of this book, we will tacitly assume that the conditions for the stress tensor to be
symmetric are satisfied.

Principal directions

The symmetry of the stress tensor in the absence of a torque field guarantees the existence of three
real eigenvalues and corresponding orthogonal eigenvectors. The traction exerted on an infinitesimal
planar surface that is perpendicular to an eigenvector points in the normal direction, that is, it lacks
a shearing component. Setting the Cartesian axes parallel to the eigenvectors renders the stress
tensor diagonal. In the case of an isotropic fluid, defined as a fluid that has no favorable direction,
the eigenvectors of the stress tensor must coincide with those of the rate-of-deformation tensor, as
will be discussed in Section 3.3.

Orthogonal curvilinear coordinates

In the absence of a torque field, the components of the stress tensor in orthogonal curvilinear
coordinates, (ξ, η, ζ), are symmetric, that is, σαβ = σβα, where Greek indices stand for ξ, η, or ζ.
For example, in cylindrical polar coordinates, σxϕ = σϕx.

3.2.5 Hydrodynamic volume force in curvilinear coordinates

The three scalar components of the equation of motion (3.2.3) can be expressed in orthogonal or
nonorthogonal curvilinear coordinates by straightforward yet tedious manipulations. The procedure
will be illustrated for plane polar coordinates, and expressions will be given in cylindrical and
spherical polar coordinates. Corresponding expressions for the point-particle acceleration on the left-
hand side of the equation of motion, Du/Dt, are given in Table 1.5.1. Substituting these expressions
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into the equation of motion provides us with three scalar component equations corresponding to the
chosen coordinates.

Plane polar coordinates

To derive the plane polar components of the hydrodynamic volume force, Σ = ∇·σ, we express the
gradient and stress tensor in the corresponding forms

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
, σ = σrr er ⊗ er + σrθ er ⊗ eθ + σθr eθ ⊗ er + σθθ eθ ⊗ eθ, (3.2.27)

and compute

Σ = ∇ · σ = er ·
∂σ

∂r
+

1

r
eθ ·

∂σ

∂θ
. (3.2.28)

Expanding the derivatives, we obtain

Σ =
∂σrr

∂r
er +

∂σrθ

∂r
eθ +

1

r

(∂σθr

∂θ
er +

∂σθθ

∂θ
eθ

)
+σαβ

(
er ·

∂(eα ⊗ eβ)

∂r
+

1

r
eθ ·

∂(eα ⊗ eβ)

∂θ

)
, (3.2.29)

where summation is implied over the repeated indices, α and β, standing for r or θ. Expanding the
derivatives of the products and grouping similar terms, we obtain

Σ =
(∂σrr

∂r
+

1

r

∂σθr

∂θ

)
er +

(∂σrθ

∂r
+

1

r

∂σθθ

∂θ

)
eθ

+σαβ

(
er ·

∂eα
∂r

eβ + er · eα
∂eβ
∂r

+
1

r
eθ ·

∂eα
∂θ

eβ +
1

r
eθ · eα

∂eβ
∂θ

)
. (3.2.30)

Now we recall that all derivatives ∂eα/∂β are zero, except for two derivatives,

∂er
∂θ

= eθ,
deθ
dθ

= −er, (3.2.31)

and find that

Σ =
(∂σrr

∂r
+

1

r

∂σθr

∂θ

)
er +

(∂σrθ

∂r
+

1

r

∂σθθ

∂θ

)
eθ + σrβ

1

r
eθ ·

∂er
∂θ

eβ + σθβ
1

r

∂eβ
∂θ

, (3.2.32)

where summation is implied over the repeated index, β. Simplifying, we derive the expressions given
in Table 3.2.1(c).

Cylindrical and spherical polar coordinates

Expressions for the components of the hydrodynamic volume force Σ in cylindrical and spherical
polar coordinates are collected in Table 3.2.1(a, b).
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(a)
Σx =

∂σxx

∂x
+

1

σ

∂(σσσx)

∂σ
+

1

σ

∂σϕx

∂ϕ

Σσ =
∂σxσ

∂x
+

1

σ

∂(σσσσ)

∂σ
+

1

σ

∂σϕσ

∂ϕ
− σϕϕ

σ

Σϕ =
∂σxϕ

∂x
+

1

σ2

∂(σ2σϕσ)

∂σ
+

1

σ

∂σϕϕ

∂ϕ

(b)

Σr =
1

r2
∂(r2σrr)

∂r
+

1

r sin θ

∂(σrθ sin θ)

∂θ
+

1

r sin θ

∂σϕr

∂ϕ
− σθθ + σϕϕ

r

Σθ =
1

r2
∂(r2 σrθ)

∂r
+

1

r sin θ

∂(σθθ sin θ)

∂θ
+

1

r sin θ

∂σϕθ

∂ϕ
+

σrθ − σϕϕ cot θ

r

Σϕ =
1

r2
∂(r2 σrϕ)

∂r
+

1

r

∂σθϕ

∂θ
+

1

r sin θ

∂σϕϕ

∂ϕ
+

σrϕ + 2σθϕ cot θ

r

(c)

Σr =
1

r

∂(rσrr)

∂r
+

1

r

∂σθr

∂θ
− σθθ

r
, Σθ =

1

r2
∂(r2σrθ)

∂r
+

1

r

∂σθθ

∂θ

Table 3.2.1 (b) The x, σ, and ϕ components of the hydrodynamic volume force in cylindrical polar
coordinates. (b) The r, θ, and ϕ components of the hydrodynamic volume force in spherical
polar coordinates. (c) The r and θ components of the hydrodynamic volume force in plane polar
coordinates.

3.2.6 Noninertial frames

Cauchy’s equation of motion was derived under the assumption that the frame of reference is inertial,
which means that the Cartesian axes are either stationary or translate in space with constant velocity,
but neither accelerate nor rotate. It is sometimes convenient to work in a noninertial frame whose
origin translates with respect to an inertial frame with time-dependent velocity, U(t), while its axes
rotate about the instantaneous position of the origin with a time-dependent angular velocity, Ω(t).
Since Newton’s law only applies in an inertial frame, modifications are necessary in order to account
for the linear and angular acceleration.

Velocity

Our first task is to compute the velocity of a point particle in an inertial frame in terms of its
coordinates in a noninertial frame. We begin by introducing three unit vectors, e1, e2, and e3,
associated with the noninertial coordinates, y1, y2, and y3, and describe the position of a point
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particle in the inertial frame as

X = x0 +Y, (3.2.33)

where x0 is the instantaneous position of the origin of the noninertial frame, Y = Yi ei is the point-
particle position in the noninertial system, and Yi are the corresponding coordinates; summation is
implied over the repeated index, i. By definition, x0 and ei evolve in time according to the linear
equations

dx0

dt
= U,

dei
dt

= Ω× ei. (3.2.34)

Taking the material derivative of (3.2.33), we obtain an expression for the velocity in the inertial
system,

u ≡ DX

Dt
=

dx0

dt
+

DYi

Dt
ei + Yi

dei
dt

. (3.2.35)

Using (3.2.34), we find that

u = U+
DYi

Dt
ei +Ω×Y. (3.2.36)

The second term on the right-hand side is the velocity of a point particle in the noninertial system,

v =
DYi

Dt
ei. (3.2.37)

The velocity components in the noninertial system are vi = DYi/Dt.

Acceleration

The acceleration of a point particle in the inertial system is

a(X) ≡ Du

Dt
=

D2X

Dt2
. (3.2.38)

Taking the material derivative of (3.2.36), we obtain

a(X) =
dU

dt
+

D2Yi

Dt2
ei +

DYi

Dt

dei
dt

+Ω× (
DYi

Dt
ei) +

dΩ

dt
×Y +Ω× (Yi

dei
dt

). (3.2.39)

The second term on the right-hand side represents the acceleration of the point particles in the
noninertial frame,

a(Y) =
D2Yi

Dt2
ei. (3.2.40)

Using the second relation in (3.2.34) to simplify the third and last terms on the right-hand side of
(3.2.39), we find that

a(X) =
dU

dt
+ a(Y) + 2Ω× v +

dΩ

dt
×Y +Ω× (Ω×Y). (3.2.41)

The right-hand side involves position, velocity, and acceleration in the noninertial system alone.
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Coriolis force

xΩ

v

Centrifugal forcey

Ω

y

Figure 3.2.1 Illustration of the Coriolis and centrifugal forces on the globe due to the rotation of the
earth.

Equation of motion

Substituting the right-hand side of (3.2.41) for the point-particle acceleration into the equation of
motion (3.2.3), and rearranging, we derive a generalized equation of motion in the noninertial frame,

ρ
Dv

Dt
= Σ+ ρg + fI , (3.2.42)

where v is the velocity field in the noninertial frame,

fI ≡ −ρ
(dU
dt

+ 2Ω× v +Ω× (Ω× y) +
dΩ

dt
× y

)
(3.2.43)

is a fictitious inertial force per unit volume of fluid, and y is the position in the noninertial frame.
The fictitious inertial force consists of (a) the linear acceleration force, −ρdU/dt; (b) the Coriolis
force, −2 ρΩ× v; (c) the centrifugal force, −ρΩ× (Ω× y); and (d) the angular-acceleration force,
−ρ (dΩ/dt)× y.

Centrifugal and Coriolis forces

The Coriolis and centrifugal forces on the globe are illustrated in Figure 3.2.1. A Coriolis force
develops at the equator when a fluid moves along or normal to the equator with respect to the rotating
surface of the earth. A centrifugal force develops everywhere except at the poles, independent of the
fluid velocity. The negative of the last term on the right-hand side of the σ component of the point
particle acceleration in cylindrical polar coordinates shown in Table 1.3.1, multiplied by the fluid
density, −ρ u2

ϕ/σ, is also called the centrifugal force. The negative of the last term on the right-hand
side of the ϕ component of the point particle acceleration in cylindrical polar coordinates shown in
Table 1.3.1, multiplied by the fluid density, −ρ uσuϕ/σ, is also called the Coriolis force. However,
this terminology is not entirely consistent, for the centrifugal and the Coriolis forces are attributed
to a noninertial system. Similar terms appear in the r and θ components of the point-particle
acceleration in plane polar coordinates.
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To understand the physical motivation for this nomenclature, we consider a fluid in rigid-body
rotation. Describing the motion in a stationary frame of reference, we identify the term ρu2

ϕ/σ with
the centripetal point-particle acceleration force, which must be balanced by an opposing radial force.
Describing the motion in a noninertial frame of reference that rotates with the fluid, we find that
the Coriolis force is zero, and the centrifugal force is −ρ u2

ϕ/σ. The temptation to interpret the
centripetal acceleration force, in the inertial system as the centrifugal force is then apparent.

Problems

3.2.1 Angular momentum balance with respect to an arbitrary point in space

Write the counterpart of the balance (3.1.20) when the angular momentum and torque are computed
with respect to an arbitrary point, x0. Then proceed as in the text to derive (3.2.24).

3.2.2 Hydrodynamic volume force in polar coordinates

Derive the components of the hydrodynamic volume force, Σ ≡ ∇ · σ, in (a) cylindrical polar and
(b) spherical polar coordinates.

3.3 Constitutive equations for the stress tensor

Molecular motions in a fluid that has been in a macroscopic state of rest for a sufficiently long period
of time reach dynamical equilibrium whereupon the stress field assumes the isotropic form

σ = −pth I, (3.3.1)

where I is the identity matrix. The thermodynamic pressure, pth, is a function of the density and
temperature, and depends on the chemical composition of the fluid in a manner that is determined
by an appropriate equation of state.

Ideal-gas law

In the case of an ideal gas, the thermodynamic pressure, pth, is related to the density, ρ, by Clapey-
ron’s ideal gas law,

pth =
RT

M
ρ, (3.3.2)

where R = 8.314×103 kg m2/(s2 kmole K) is the ideal gas constant, T is Kelvin’s absolute tempera-
ture, which is equal to the Celsius centigrade temperature reduced by 273 units, M is the molar mass,
defined as the mass of one mole comprised of a collection of NA molecules, and NA = 6.022×1026 is
the Avogadro number. The molar mass of an element is equal to the atomic weight of the element
listed in the periodic table expressed in grams.

Effect of fluid motion

Physical intuition suggests that the instantaneous structure of the stress field inside a fluid that has
been in a state of motion for some time depends not only on the current thermodynamic conditions,
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but also on the history of the motion of all point particles comprising the fluid, from inception of
the motion, up to the present time. Leaving aside physiochemical interactions that are independent
of the fluid motion, we argue that the stress field depends on the structure of the velocity field at all
prior times. This reasoning leads us to introduce a constitutive equation for the stress tensor that
relates the stress at a point at a particular instant t = τ to the structure of the velocity field at all
prior times,

σ(t = τ) = G[u(t ≤ τ)]. (3.3.3)

The nonlinear functional operator G may involve derivatives or integrals of the velocity with the
respect to space and time. Coefficients appearing in the specific functional form of G are regarded
as rheological properties of the fluid.

Reaction pressure and deviatoric stress tensor

It is useful to recast equation (3.3.3) into the alternative form

σ ≡ −p I+ σ̌, (3.3.4)

where p is the reaction pressure defined by the equation

p ≡ −1

3
trace(σ), (3.3.5)

and σ̌ is the deviatoric part of the stress tensor. Since σ is a tensor, its trace and therefore the
reaction pressure are invariant under changes of the axes of the Cartesian coordinates. Physically,
the negative of the reaction pressure can be identified with the mean value of the normal component
of the traction exerted on a small surface located at a certain point, averaged over all possible
orientations. In a different interpretation, the reaction pressure is identified with the mean value of
the normal component of the traction exerted on the surface of a small spherical parcel (Problem
3.3.1). In the remainder of this book, the reaction pressure will be called simply the pressure.

Coordinate invariance, objectivity, and fading memory

To be admissible, a constitutive equation must satisfy a number of conditions (e.g., [365, 396]). The
condition of coordinate invariance requires that the constitutive equation should be valid indepen-
dent of the coordinate system where the position vector, velocity, and stress are described. Thus,
the functional form (3.3.3) must hold true independently of whether the stress and the velocity
are expressed in Cartesian, cylindrical polar, spherical polar, or any other type of curvilinear co-
ordinates. The condition of material objectivity requires that the instantaneous stress field should
be independent of the motion of the observer. The condition of fading memory requires that the
instantaneous structure of the stress field must depend on the recent motion of the fluid stronger
than it does on the ancient history.

Significance of parcel deformation

Next, we argue that the history of deformation of a small fluid parcel rather than the fluid velocity
itself is significant as far as determining deviatoric stresses on the parcel surface. This argument
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is supported by the observation that rigid-body motion does not generate a deviatoric stress field.
Replacing the velocity in the arguments of the operator in (3.3.3) with the deformation gradient F
introduced in (1.3.31), we obtain

σ(t = τ) = G[F(t ≤ τ)]. (3.3.6)

If the deformation gradient is zero throughout the domain of flow, the fluid executes rigid-body
motion.

3.3.1 Simple fluids

The stress tensor in a simple fluid at the position of a point particle labeled α is a function of the
history of the deformation gradient, F, evaluated at all prior positions of the point particle over all
past times up to the present time [408]. The constitutive equation for a simple fluid thus takes the
form

σ(α, t = τ) = G[F(α, t ≤ τ)]. (3.3.7)

It can be shown that a simple fluid is necessarily isotropic, that is, it has no favorable or unfavorable
directions in space ([365], p. 67).

3.3.2 Purely viscous fluids

A purely viscous fluid is a simple fluid with the added property that the stress at the location of a
point particle at a particular time instant is a function of the deformation gradient evaluated at the
position of the point particle at that particular instant (e.g., [365], p. 134). Thus, the constitutive
equation for a purely viscous fluid takes the simplified form

σ(α, t = τ) = G[F(α, t = τ)]. (3.3.8)

A purely viscous fluid lacks memory, that is, it is inelastic. Enforcing the principle of material
objectivity, we find that the functional form of the operator G in (3.3.8) must be such that the
antisymmetric part of F drops out and the stress tensor must be a function of the rate-of-deformation
tensor, E ≡ 1

2 (L + LT ) − 1
3 αI. We thus obtain a constitutive relation first proposed by Stokes in

1845,

σ(α, t = τ) = G[E(α, t = τ)]. (3.3.9)

Because σ as well as E, E2, E3, . . . , are all second-order tensors transforming in a similar fashion,
as discussed in Section 1.1.7, the most general form of (3.3.9) is

σ(α, t = T ) = f0(I1, I2, I3) I+ f1(I1, I2, I3)E+ f2(I1, I2, I3)E
2 + · · · , (3.3.10)

where fi are functions of the three invariants of the rate-of-deformation tensor introduced in (1.1.46).
Built in equation (3.3.10) is the assumption that the principal directions of the stress tensor are
identical to those of the rate-of-deformation tensor, as required by the stipulation that the fluid is
isotropic.
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3.3.3 Reiner–Rivlin and generalized Newtonian fluids

Using the Caley–Hamilton theorem [317], we can express the power En for n ≥ 3 as a linear
combination of I, E, and E2, with coefficients that are functions of the three invariants. This
manipulation allows us to retain only the three leading terms shown on the right-hand side of (3.3.10).
The resulting constitutive equation describes a Reiner–Rivlin fluid. A generalized Newtonian fluid
arises by eliminating the quadratic term, setting f2 = 0. Examples of generalized Newtonian fluids
are the power-law and the Bingham plastic fluids.

As an example, we consider unidirectional shear flow along the x axis with velocity varying
along the y axis, u = [ux(y), 0, 0]. The shear stress is determined from the constitutive equation

σxy = μ0

∣∣∣dux

dy

∣∣∣n dux

dy
, (3.3.11)

where μ0 and n are two physical constants. This scalar constitutive equation corresponds to a
generalized Newtonian fluid, called the power-law fluid. Setting n = 0 we obtain a Newtonian fluid.

3.3.4 Newtonian fluids

A Newtonian fluid is a Reiner–Rivlin fluid whose stress depends linearly on the rate of deformation
tensor. All functions fn with n > 1 in (3.3.10) are zero, f1 is constant, and f0 is a linear function of
the third invariant, I3 = ∇ · u, which is equal to the rate of expansion, α. We thus set

f0 = −p, f1 = 2μ, (3.3.12)

where p is the reaction pressure, allowed to be a linear function of the rate of expansion, and the
coefficient μ is a physical constant with dimensions of mass per time per length called the dynamic
viscosity or simply the viscosity of the fluid. The viscosity is often measured in units of poise, which
is equal to 1 gr/(cm sec). In general, the viscosity of a gas increases, whereas the viscosity of a liquid
decreases as the temperature is raised. The viscosity of water and air at three temperatures is listed
in the first column of Table 3.3.1. The constitutive equation for a Newtonian fluid thus takes the
linear form

σ = −p I+ 2μE. (3.3.13)

Because the trace of the rate-of-deformation tensor E is zero, the trace of σ is equal to −3p, as
required.

Dilatational viscosity

The reaction pressure in a fluid that has been left alone in a macroscopic state of rest for a long
time period of time reduces to the thermodynamic pressure, pth, determined by the local density
of the fluid and temperature according to an assumed equation of state. Under flow conditions, we
note the assumed linearity of the stress tensor on the rate-of-deformation tensor and recall that the
fluid is isotropic to write

p = pth − κα, (3.3.14)
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Temperature Water Air Water Air
T (◦C) μ(cp) μ(cp) ν (cm2/s) ν (cm2/s)
20 1.002 0.0181 1.004× 10−2 15.05× 10−2

40 0.653 0.0191 0.658× 10−2 18.86× 10−2

80 0.355 0.0209 0.365× 10−2 20.88× 10−2

Table 3.3.1 The dynamic viscosity (μ) and kinematic viscosity (ν) of water and air at three temper-
atures; cp stands for centipoise, which is one hundredth of the viscosity unit poise: 1 cp = 0.01
g/(cm sec).

where α ≡ ∇ · u is the rate of expansion and κ is a physical constant with dimensions of mass per
time and length, called the dilatational or expansion viscosity [351]. The Newtonian constitutive
equation then takes the form

σ = −pth I+ κα I+ 2μE. (3.3.15)

The trace of the stress tensor is

trace(σ) = −3 pth + 3κα. (3.3.16)

The coefficient 3κ is sometimes called the bulk viscosity. The constitutive equation (3.3.15) is known
to describe with high accuracy the stress distribution in a broad range of fluids whose molecules
are small compared to the macroscopic dimensions of the flow and whose spatial configuration
is sufficiently simple. Substituting into (3.3.15) the definition of the rate-of-deformation tensor,
E ≡ 1

2 (L+ LT )− 1
3α I, we obtain

σ = −pth I+ λα I+ μ (L+ LT ), (3.3.17)

where L is the velocity gradient tensor, the superscript T denotes the matrix transpose, and

λ = κ− 2

3
μ (3.3.18)

is the second coefficient of viscosity.

Internal energy

Substituting the Newtonian constitutive equation (3.3.15) into (3.2.20), we find that the rate of
production of internal energy inside a fluid parcel is

dIp
dt

= −
∫∫∫

Parcel

pthα dV +

∫∫∫
Parcel

κα2 dV + 2

∫∫∫
Parcel

μE : E dV. (3.3.19)

The first term on the right-hand side expresses reversible production of energy in the usual sense of
thermodynamics. The second term expresses irreversible dissipation of energy due to the expansion
or compression of the fluid, which further justifies calling κ the expansion viscosity. The third term
expresses irreversible dissipation of energy due to pure deformation.
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Incompressible Newtonian fluids

The rate of expansion vanishes in the case of an incompressible Newtonian fluid, α = 0. Expressing
the rate of deformation tensor in terms of the velocity gradient tensor, we recast the Newtonian
constitutive equation (3.3.13) into the form

σ = p I+ μ [∇u+ (∇u)T ]. (3.3.20)

Explicitly, the nine components of the stress tensor are given by the matrix equation

⎡⎣ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−p+ 2μ
∂ux

∂x
μ (

∂uy

∂x
+

∂ux

∂y
) μ (

∂uz

∂x
+

∂ux

∂z
)

μ (
∂ux

∂y
+

∂uy

∂x
) −p+ 2μ

∂uy

∂y
μ (

∂uz

∂y
+

∂uy

∂z
)

μ (
∂ux

∂z
+

∂uz

∂x
) μ (

∂uy

∂z
+

∂uz

∂y
) −p+ 2μ

∂uz

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.3.21)

It is important to recognize that, by requiring incompressibility, which is tantamount to as-
suming that fluid parcels maintain their original volume and density, we essentially discard the
functional dependence of the hydrodynamic to the thermodynamic pressure, and (3.3.14) may no
longer be applied.

Polar coordinates

Explicit expressions for the components of the stress tensor in terms of the velocity and pressure
in cylindrical, spherical, and plane polar coordinates are given in Table 3.3.2. Note that the stress
components remain symmetric in orthogonal curvilinear coordinates. In the case of two-dimensional
flow expressing rigid-body rotation with angular velocity Ω around the origin in the xy plane, we
substitute ur = 0 and uθ = Ωr and find that σrr = −p, σrθ = 0, σθr = 0, σθθ = −p, where p is the
pressure.

3.3.5 Inviscid fluids

Inviscid fluids, also called ideal fluids, are Newtonian fluids with vanishing viscosity. The constitutive
equation for an incompressible inviscid fluid derives from (3.3.20) by setting μ = 0, yielding

σ = −p I. (3.3.22)

In real life, no fluid can be truly inviscid and equation (3.3.22) must be regarded as a mathematical
idealization arising in the limit as the rate-of-deformation tensor, E, tends to become vanishingly
small. Under certain conditions, superfluid helium behaves like an inviscid fluid and may thus be
used in the laboratory to visualize ideal flows.

It is instructive to note the similarity in functional form between (3.3.22) and (3.3.1). However,
it is important to acknowledge that the pressure in (3.3.22) is a flow variable, whereas the pressure
in (3.3.1) is a thermodynamic variable determined by an appropriate equation of state.
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(a)

σxx = −p+ 2μ
∂ux

∂x
, σxσ = σσx = μ

( ∂ux

∂σ
+

∂uσ

∂x

)
, σxϕ = σϕx = μ

( ∂uϕ

∂x
+

1

σ

∂ux

∂ϕ

)
σσσ = −p+ 2μ

∂uσ

∂σ
, σσϕ = σϕσ = μ

[
σ

∂

∂σ

(uϕ

σ

)
+

1

σ

∂uσ

∂ϕ

]
,

σϕϕ = −p+ 2μ
( 1

σ

∂uϕ

∂ϕ
+

uσ

σ

)

(b)

σrr = −p+ 2μ
∂ur

∂r
, σrθ = σθr = μ

[
r

∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ

]
σrϕ = σϕr = μ

[ 1

r sin θ

∂ur

∂ϕ
+ r

∂

∂r

(uϕ

r

) ]
, σθθ = −p+ 2μ

( 1

r

∂uθ

∂θ
+

ur

r

)
σθϕ = σϕθ = μ

[ sin θ
r

∂

∂θ

( uϕ

sin θ

)
+

1

r sin θ

∂uθ

∂ϕ

]
σϕϕ = −p+ μ

2

r sin θ
(
∂uϕ

∂ϕ
+ ur sin θ + uθ cos θ )

(c)

σrr = −p+ 2μ
∂ur

∂r
, σrθ = σθr = μ

[
r

∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ

]
σθθ = −p+ 2μ

( 1

r

∂uθ

∂θ
+

ur

r

)

Table 3.3.2 Constitutive relations for the components of the stress tensor for an incompressible New-
tonian fluid in (a) cylindrical, (b) spherical, and (c) plane polar coordinates. Note that the stress
components remain symmetric in orthogonal curvilinear coordinates.

Problems

3.3.1 Molar mass of steam

What is the molar mass of steam?

3.3.2 Hydrodynamic pressure

Demonstrate that −p is the average value of the normal component of the traction exerted on the
surface of a spherical fluid parcel with infinitesimal dimensions.
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3.4 Force and energy dissipation in incompressible Newtonian fluids

In the remainder of this book, we concentrate on the motion of incompressible Newtonian fluids. In
the present section, we use the constitutive equation (3.3.20) to derive specific expressions for the
traction, force, and torque exerted on a fluid parcel and on the boundaries of the flow in terms of the
velocity and the pressure, assess the rate of change of the internal energy due to viscous dissipation,
and derive the specific form of the integral energy balance.

3.4.1 Traction and surface force

Substituting (3.3.20) into (3.1.11), we find that, the traction exerted on a fluid parcel is given by
the following expressions in terms of the instantaneous pressure and velocity fields,

f = −pn+ 2μE · n = −pn+ μ
[
(∇u) · n+ n · ∇u

]
, (3.4.1)

where E = 1
2 (L + LT ) is the rate-of-deformation tensor for an incompressible fluid and L = ∇u is

the velocity gradient tensor. In index notation,

fi = −p ni + μ
( ∂uj

∂xi
nj + nj

∂ui

∂xj

)
. (3.4.2)

The third term on the right-hand side expresses the spatial derivative of the ith velocity component
in the direction of the normal vector. When the fluid is inviscid, we obtain a simplified form involving
the pressure alone, f = −pn.

In terms of the vorticity tensor, Ξ = 1
2 (L− LT ), we obtain

f = −pn+ 2μ (n · ∇u+ n ·Ξ ). (3.4.3)

Expressing the vorticity tensor in terms of the vorticity vector, we find that

f = −pn+ 2μn · ∇u+ μn× ω. (3.4.4)

The union of the second and third terms on the right-hand side expresses the traction due to the
deviatoric component of the stress tensor. If the velocity field is irrotational, the last term on the
right-hand side vanishes and the part of the traction corresponding to the deviatoric component
of the stress tensor is proportional to the derivative of the velocity in the direction of the normal
vector, n · ∇u.

Normal and tangential components

It is useful to decompose the traction into a normal component, fN , and a tangential or shear
component, fT , so that f = fN + fT . In general, both the normal and tangential components are
nonzero. At a surface that cannot withstand a shear stress, defined as a free surface, the tangential
component is zero. Projecting (3.4.4) onto the normal unit vector, we obtain the normal component
of the traction,

fN =
[
− p+ 2μn · (∇u) · n

]
n. (3.4.5)
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Introducing a local Cartesian coordinate system with two axes perpendicular to the normal unit
vector, n, we find that the second term on the right-hand side of (3.4.5) expresses the viscous stress
associated with the normal derivative of the normal velocity component. Multiplying (3.4.1) with
the projection matrix I− n⊗ n, we obtain the tangential component of the traction,

fT = 2μn ·E · (I− n⊗ n) = 2μn× (n ·E)× n. (3.4.6)

The structure of the flow must be such that the right-hand side of (3.4.6) is identically zero at a free
surface.

3.4.2 Force and torque exerted on a fluid parcel

Substituting (3.4.1) into (3.1.13) and adding the body force, we obtain the total force exerted on a
parcel of an incompressible Newtonian fluid,

Ftot = −
∫∫

Parcel

pn dS + 2

∫∫
Parcel

μE · n dS +

∫∫∫
Parcel

ρg dV, (3.4.7)

where n is the normal unit vector pointing outward from the parcel. Substituting (3.4.1) into
(3.1.20), we find that, in the absence of an external torque field, the torque with respect to a point,
x0, exerted on the parcel is given by

Ttot = −
∫∫

Parcel

p (x− x0)× n dS + 2

∫∫
Parcel

μ (x− x0)× (E · n) dS +

∫∫∫
Parcel

ρ (x− x0) dV × g, (3.4.8)

where n is the normal unit vector pointing outward from the parcel.

3.4.3 Hydrodynamic pressure and stress

When the density of the fluid and acceleration of gravity are uniform throughout the domain of flow,
it is beneficial to eliminate the body force from expressions (3.4.7) and (3.4.8) by introducing the
hydrodynamic pressure and corresponding hydrodynamic stress tensor, denoted by a tilde, defined
as

p̃ ≡ p− ρg · x, σ̃ ≡ −p̃ I+ 2μE = σ + ρ (g · x) I. (3.4.9)

In hydrodynamic variables, the total force and torque with respect to a point x0 exerted on a fluid
parcel are given by the surface integrals

Ftot = −
∫∫

Parcel

p̃n dS + 2

∫∫
Parcel

μE · n dS (3.4.10)

and

Ttot = −
∫∫

Parcel

p̃ (x− x0)× n dS + 2

∫∫
Parcel

μ (x− x0)× (E · n) dS. (3.4.11)
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3.4.4 Force and torque exerted on a boundary

To derive an expression for the hydrodynamic force exerted on a boundary, B, we substitute (3.4.1)
into (3.1.16) and obtain

F = −
∫∫

B

pn dS + 2

∫∫
B

μE · n dS, (3.4.12)

where n is the normal unit vector pointing into the fluid. The first term on the right-hand side
represents the form drag, and the second term represents the skin friction.

To obtain an expression for the torque with respect to a point, x0, we substitute (3.4.1) into
(3.1.23) and obtain

T = −
∫∫

B

p (x− x0)× n dS + 2

∫∫
B

μ (x− x0)× (E · n) dS. (3.4.13)

In hydrostatics, or when viscous stresses are insignificant, the force and torque can be com-
puted from knowledge of the pressure distribution over the boundary.

3.4.5 Energy dissipation inside a parcel

Substituting the Newtonian constitutive equation (3.3.20) into (3.2.20) and using the continuity
equation, ∇ · u = 0, we find that the rate of viscous dissipation inside a fluid parcel is given by

dIp
dt

=

∫∫∫
Parcel

Φ dV, (3.4.14)

where

Φ ≡ 2μE : E (3.4.15)

expresses the rate of viscous dissipation per unit volume of fluid. Equation (3.4.14) is a special
version of (3.3.19) applicable to compressible Newtonian fluids. Viscous forces dissipate energy,
converting it into thermal energy and thereby raising the temperature of the fluid. When the rate
of viscous dissipation is negligible, the sum of the kinetic and potential energies remains constant in
time.

3.4.6 Rate of working of the traction

Integrating both sides of the identity

u · (∇ · σ) = ∇ · (u · σ)− σ : ∇u (3.4.16)

over the volume of a fluid parcel, and using the divergence theorem, we obtain∫∫∫
Parcel

u · (∇ · σ) dV = −
∫∫

Parcel

u · f dS −
∫∫∫

Parcel

σ : ∇u dV, (3.4.17)
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where f = n · σ is the boundary traction and n is the normal unit vector pointing into the parcel.
Substituting the Newtonian constitutive equation (3.3.20), we obtain∫∫∫

Parcel

u · (∇ · σ) dV = −
∫∫

Parcel

u · f dS −
∫∫∫

Parcel

Φ dV. (3.4.18)

The two terms on the right-hand side of (3.4.18) represent, respectively, the rate of working of the
surface traction and the rate of viscous dissipation.

Working in a similar fashion with the deviatoric part of the stress tensor σ̌ defined in (3.3.4),
we obtain ∫∫∫

Parcel

u · (∇ · σ̌) dV = −
∫∫

Parcel

u · f̌ dS −
∫∫∫

Parcel

Φ dV, (3.4.19)

where f̌ = n · σ̌ is the deviatoric part of the traction.

In the case of a fluid with uniform viscosity, we use the Newtonian constitutive relation (3.3.20)
and the continuity equation to obtain

∇ · σ̌ = μ∇2u = −μ∇× ω. (3.4.20)

Using this relation, we find that, if the flow is irrotational or the vorticity is uniform throughout
the domain of flow, the rate of working of the deviatoric viscous traction is balanced by the rate of
viscous dissipation, ∫∫

Parcel

u · f̌ dS = −
∫∫∫

Parcel

Φ dV. (3.4.21)

3.4.7 Energy integral balance

Substituting the Newtonian constitutive equation (3.3.20) into (3.2.13), we derive the explicit form
of the integral energy balance over a fixed control volume, Vc, bounded by a surface, D,∫∫∫

Vc

∂

∂t
(
1

2
ρ |u|2) dV =

∫∫
D

(
1

2
ρ |u|2)u · n dS −

∫∫
D

u · f dS −
∫∫∫

Vc

Φ dV +

∫∫∫
Vc

ρg · u dV, (3.4.22)

where the normal unit vector, n, points into the control volume. The five integrals in (3.4.22)
represent, respectively, the rate of accumulation of kinetic energy inside the control volume, the rate
of convection of kinetic energy into the control volume, the rate of working of surface forces, the
rate of viscous dissipation, change of potential energy associated with the body force.

When the flow is irrotational or the vorticity is uniform throughout the domain of flow, we
use (3.4.21) and obtain the simplified form∫∫∫

Vc

∂

∂t

(1
2
ρ |u|2

)
dV =

∫∫
D

(
1

2
ρ |u|2)u · n dS +

∫∫
D

pu · n dS +

∫∫∫
Vc

ρg · u dV. (3.4.23)

This energy balance is also valid when the flow is not irrotational or has uniform vorticity, but the
fluid can be considered to be inviscid.
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Problem

3.4.1 Energy dissipation

Compute the energy dissipation inside a parcel of an Newtonian fluid in simple shear flow with
velocity ux = ξy, uy = 0, uz = 0, where ξ is a constant shear rate.

3.5 The Navier–Stokes equation

Substituting the constitutive equation for an incompressible Newtonian fluid (3.3.20) into Cauchy’s
equation of motion (3.2.1), we obtain the Navier–Stokes equation

ρ
Du

Dt
= −∇p+ 2∇ · (μE) + ρg. (3.5.1)

The density, ρ, and viscosity, μ, are allowed to vary in time and space in the domain of flow.
Substituting into (3.5.1) the definition of the rate-of-deformation tensor for an incompressible fluid,
E = 1

2 [∇u+(∇u)T ], expanding the derivatives, using the continuity equation for an incompressible
fluid, ∇·u = 0, and expressing the material derivative of the velocity in terms of Eulerian derivatives,
we recast (3.5.1) into the explicit form

ρ
( ∂u
∂t

+ u · ∇u
)
= −∇p+ μ∇2u+ 2∇μ ·E+ ρg. (3.5.2)

The four terms on the right-hand side express, respectively, the pressure force, the viscous force, a
force due to viscosity variations, and the body force. The union of the first three terms comprises
the hydrodynamic volume force,

Σ = −∇p+ 2∇ · (μE) = −∇p+ μ∇2u+ 2∇μ ·E. (3.5.3)

The three Cartesian components of the Navier–Stokes equation for a fluid with uniform viscosity
are displayed in Table 3.5.1.

When the fluid density and acceleration of gravity are uniform throughout the domain of flow,
it is convenient to work with the hydrodynamic pressure, p̃ ≡ p−ρg·x, and associated hydrodynamic
stress tensor indicated by a tilde introduced in (3.4.9), obtaining the equation of motion

ρ
Du

Dt
= ∇ · σ̃ = −∇p̃+ 2∇ · (μE), (3.5.4)

which is distinguished by the absence of the body force. In solving the Navier–Stokes equation,
the distinction between the regular and modified pressure becomes relevant only when boundary
conditions for the pressure or traction are imposed.

Kinematic viscosity

Dividing both sides of (3.5.2) by the density, we obtain the new form

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+

2

ρ
∇μ ·E+ g, (3.5.5)
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ρ (
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
) = −∂p

∂x
+ μ (

∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2
) + ρgx

ρ (
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z
) = −∂p

∂y
+ μ (

∂2uy

∂x2
+

∂2uy

∂y2
+

∂2uy

∂z2
) + ρgy

ρ (
∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z
) = −∂p

∂z
+ μ (

∂2uz

∂x2
+

∂2uz

∂y2
+

∂2uz

∂z2
) + ρgz

Table 3.5.1 Eulerian form of the three Cartesian components of the Navier–Stokes equation for an
incompressible fluid with uniform viscosity.

where ν = μ/ρ is a new physical constant with dimensions of length squared over time analogous to
the molecular or thermal diffusivity, called the kinematic viscosity of the fluid. Sample values of the
kinematic viscosity for water and air are given in Table 3.3.1.

Cylindrical, spherical, and plane polar coordinates

The polar components of the hydrodynamic volume force arise by substituting the constitutive
equation for an incompressible Newtonian fluid in the general expressions for the hydrodynamic
volume force in terms of the stresses shown in Table 3.2.2. After a fair amount of algebra, we derive
the expressions shown in Table 3.5.2. The corresponding polar components of the Navier–Stokes
equation arise by substituting these expressions in the right-hand side of (3.2.3).

3.5.1 Vorticity and viscous force

The identity ∇2u = −∇ × ω, applicable for any solenoidal velocity field, ∇ · u = 0, allows us to
express the Laplacian of the velocity on the right-hand side of (3.5.2) in terms of the vorticity, and
thereby establish a relationship between the structure of the vorticity field and the intensity of the
viscous force. Assuming, for simplicity, that the fluid viscosity is uniform throughout the domain of
flow, we recast (3.5.2) into the form

ρ
Du

Dt
= −∇p− μ∇× ω + ρg, (3.5.6)

which shows that viscous forces are important only in regions where the curl of the vorticity is
significant.

The equation of motion (3.5.6) reveals that irrotational flows and flows whose vorticity field
is irrotational behave like inviscid flows. The dynamics of these flows is determined by a balance
between the inertial force due to the point-particle acceleration, the pressure force, and the body
force. Viscosity is important only insofar as to establish the vorticity distribution. Once this has
been achieved, viscosity plays no further role in the force balance. Flows with irrotational vorticity
fields include two-dimensional flows with constant vorticity and axisymmetric flows without swirling
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(a)
Σx = −∂p

∂x
+ μ∇2ux = −∂p

∂x
+ μ

( ∂2ux

∂x2
+

1

σ

∂

∂σ

(
σ
∂ux

∂σ

)
+

1

σ2

∂2ux

∂ϕ2

)
Σσ = − ∂p

∂σ
+ μ

(
∇2uσ − uσ

σ2
− 2

σ2

∂uϕ

∂ϕ

)
= − ∂p

∂σ
+ μ

( ∂2uσ

∂x2
+

∂

∂σ

( 1
σ

∂(σuσ)

∂σ

)
+

1

σ2

∂2uσ

∂ϕ2
− 2

σ2

∂uϕ

∂ϕ

)
Σϕ = − 1

σ

∂p

∂ϕ
+ μ

(
∇2uϕ − uϕ

σ2
+

2

σ2

∂uσ

∂ϕ

)
= − 1

σ

∂p

∂ϕ
+ μ

( ∂2uϕ

∂x2
+

∂

∂σ

( 1
σ

∂(σuϕ)

∂σ

)
+

1

σ2

∂2uϕ

∂ϕ2
+

2

σ2

∂uσ

∂ϕ

)
(b)

Σr = −∂p

∂r
+ μ

(
∇2ur − 2

ur

r2
− 2

r2
∂uθ

∂θ
− 2

r2
uθ cot θ − 2

r2 sin θ

∂uϕ

∂ϕ

)
Σθ = −1

r

∂p

∂θ
+ μ

(
∇2uθ +

2

r2
∂ur

∂θ
− uθ

r2 sin2 θ
− 2

r2
cot θ

sin θ

∂uϕ

∂ϕ

)
Σϕ = − 1

r sin θ

∂p

∂ϕ
+ μ

[
∇2uϕ +

1

r2 sin2 θ
(−uϕ + 2

∂ur

∂ϕ
+ 2 cos θ

∂uθ

∂ϕ
)
]

where: ∇2f =
1

r2
∂

∂r

(
r2

∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2

(c)

Σr = −∂p

∂r
+ μ (∇2ur −

ur

r2
− 2

r2
∂uθ

∂θ
) = −∂p

∂r
+ μ

[ ∂

∂r

(1
r

∂(rur)

∂r

)
+

1

r2
∂2ur

∂θ2
− 2

r2
∂uθ

∂θ

]
Σθ = −1

r

∂p

∂θ
+ μ (∇2uθ −

uθ

r2
+

2

r2
∂ur

∂θ
) = −1

r

∂p

∂θ
+ μ

[ ∂

∂r

(1
r

∂(ruθ)

∂r

)
+

1

r2
∂2uθ

∂θ2
+

2

r2
∂ur

∂θ

]
Table 3.5.2 Components of the hydrodynamic volume force for a Newtonian fluid in (a) cylindrical, (b)

spherical, and (c) plane polar coordinates. The Laplacian operator ∇2 in spherical polar coordinates
is given in the fourth entry of (b).

motion where the azimuthal vorticity component increases linearly with distance from the axis of
revolution, ωϕ = Ωσ, where Ω is a constant.
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3.5.2 Uniform-density and barotropic fluids

We now focus our attention on fluids with uniform density and on barotropic fluids whose pressure
is a function of the density alone, p(ρ). Although the second stipulation is not entirely consistent
with the assumptions underlying the derivation of the Navier–Stokes equation for an incompressible
fluid, it is sometimes a reasonable approximation. We may then write

1

ρ
∇p = ∇F , (3.5.7)

where F = p/ρ in the case of uniform-density fluids. In the case of barotropic fluids, the function F
is found by integrating the ordinary differential equation

dF
dρ

=
1

ρ

dp

dρ
. (3.5.8)

For simplicity, in our discussion we consider uniform-density fluids. Adaptations for barotropic fluids
can be made by straightforward modifications.

3.5.3 Bernoulli function

Expressing the material derivative in (3.5.6) in terms of Eulerian derivatives and using the identity

u · ∇u =
1

2
∇(u · u)− u× ω, (3.5.9)

we derive a new form of the Navier–Stokes equation,

∂u

∂t
+∇

( 1
2
u · u+

p

ρ
− g · x

)
= u× ω − ν∇× ω. (3.5.10)

Nonlinear terms appear in the second term on the left-hand side involving the square of the velocity
and in the first term on the right-hand side involving the velocity and the vorticity. The term inside
the parentheses on the left-hand side of (3.5.10) is the Bernoulli function,

B(x, t) ≡ 1

2
u · u+

p

ρ
− g · x. (3.5.11)

Physically, the Bernoulli function expresses the mass distribution density of the total energy con-
sisting of the kinetic energy, the internal energy due to the pressure, and the potential energy due
to the body force. In terms of the Bernoulli function, the Navier–Stokes equation takes the compact
form

ρ
( ∂u
∂t

+∇B
)
= ρu× ω − μ∇× ω. (3.5.12)

Later in this section, we will see that, under certain conditions, the Bernoulli function is
constant along streamlines or even throughout the domain of flow. When this occurs, B is called
the Bernoulli constant.
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Change of the Bernoulli function along a streamline in a steady flow

Now we project (3.5.12) at a point in a steady flow onto the unit vector that is tangent to the
streamline passing through that point, t = u/|u|. The projection of the first term on the right-hand
side vanishes identically, yielding

t · ∇B =
∂B
∂l

= −ν t · (∇× ω), (3.5.13)

where ν = μ/ρ is the kinematic viscosity and l is the arc length along the streamline measured in the
direction of t. Equation (3.5.13) states that the rate of change of the Bernoulli function with respect
to arc length along a streamline is proportional to the component of the viscous force tangential
to the streamline. When the viscous force opposes the motion of the fluid, B decreases along the
streamline, ∂B/∂l < 0.

Integrating (3.5.13) along a closed streamline and using the fundamental theorem of calculus
to set the integral of the left-hand side to zero, we obtain∮

t · (∇× ω) dl = 0, (3.5.14)

which shows that the circulation of the curl of the vorticity along a closed streamline is zero in a
steady flow.

3.5.4 Vortex force

The first term on the right-hand side of (3.5.12), ρu × ω, is called the vortex force. In a Beltrami
flow where, by definition, the velocity is parallel to the vorticity at every point, the vortex force is
identically zero and the nonlinear term u · ∇u is equal to the gradient of the kinetic energy per unit
mass of the fluid.

Two-dimensional and axisymmetric flow

In the case of a two-dimensional or axisymmetric flow, we introduce the two-dimensional stream
function or the axisymmetric Stokes stream function, ψ, and express the outer product of the
velocity and vorticity, respectively, as

u× ω = −ωz ∇ψ, u× ω = −ωϕ

σ
∇ψ. (3.5.15)

In the second equation for axisymmetric flow, σ is the distance from the axis of revolution, ωϕ is
the azimuthal component of the vorticity, and ∇ is the gradient in the xσ azimuthal plane.

Later in this chapter, we will discuss a class of steady two-dimensional flows where the vorticity
is constant along the streamlines and may thus be regarded as a function of the stream function,
ωz = f(ψ), and a class of axisymmetric flows where the ratio ωϕ/σ is constant along the streamlines
and may thus be regarded as a function of the Stokes stream function, ωϕ/σ = f(ψ). Under these
circumstances, the right-hand sides of equations (3.5.15) can be written as a gradient,

u× ω = −∇F (ψ), (3.5.16)
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where the function F is the indefinite integral of the function f ,

dF

dψ
= f(ψ). (3.5.17)

Equation (3.5.16) shows that, because the cross product u × ω constitutes an irrotational vector
field, the vortex force can be grouped with the gradient on the left-hand side of (3.5.13). In the case
of two-dimensional flow with constant vorticity, or axisymmetric flow where f(ψ) = Ω, with Ω being
constant, we find that F = Ωψ + c, where c is constant throughout the domain of flow.

3.5.5 Reciprocity of Newtonian flows

Consider the flow an incompressible Newtonian fluid with density ρ, viscosity μ, velocity u, and
corresponding stress field σ, and another unrelated flow of an incompressible Newtonian fluid with
density ρ′, viscosity μ′, velocity u′, and corresponding stress field σ′. Projecting the velocity of the
second flow onto the divergence of the stress tensor of the first flow at some point, we obtain

u′ · (∇ · σ) = u′
i

∂σij

∂xj
=

∂(u′
iσij)

∂xj
− σij

∂u′
i

∂xj
. (3.5.18)

Substituting the definition of the stress tensor, we obtain

u′ · (∇ · σ) = ∂(u′
iσij)

∂xj
+
(
p δij − μ

∂ui

∂xj
− μ

∂uj

∂xi

) ∂u′
i

∂xj
. (3.5.19)

Using the continuity equation to eliminate the term involving the pressure, we find that

u′ · (∇ · σ) = ∂(u′
iσij)

∂xj
− μ

( ∂ui

∂xj
+

∂uj

∂xi

) ∂u′
i

∂xj
. (3.5.20)

Setting μ′ = μ and u = u′, integrating over the volume of a fluid parcel, and using the divergence
theorem, we recover (3.4.18).

Now interchanging the roles of the two flows, we obtain

u · ∇ · σ′ =
∂(uiσ

′
ij)

∂xj
− μ′

( ∂u′
i

∂xj
+

∂u′
j

∂xi

) ∂ui

∂xj
. (3.5.21)

Multiplying (3.5.20) by μ′ and (3.5.21) by μ, and subtracting corresponding sides of the resulting
equations, we obtain the differential statement of the generalized Lorentz reciprocal identity

∂

∂xj

(
μ′u′

iσij − μuiσ
′
ij

)
= μ′u′ · ∇ · σ − μu · ∇ · σ′, (3.5.22)

which imposes a constraint on the mutual structure of the velocity and stress fields of two unre-
lated incompressible Newtonian flows. Equations (3.5.20), (3.5.21), and (3.5.22) also apply for the
hydrodynamic stress tensor defined in (3.4.9) (Problem 3.5.1).
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Expressing the divergence of the stress tensors on the right-hand side of (3.5.22) in terms of
the point-particle acceleration and the body force using the equation of motion, we obtain

∂

∂xj

(
μ′u′

iσij − μuiσ
′
ij

)
= ρμ′u′ · Du

Dt
− ρ′μu · Du′

Dt
− (ρμ′u′ − ρ′μu) · g. (3.5.23)

In terms of the hydrodynamic stress tensor indicated by a tilde, we obtain the simpler form

∂

∂xj

(
μ′u′

iσ̃ij − μuiσ̃ij

)
= ρμ′u′ · Du

Dt
− ρ′μu · Du′

Dt
. (3.5.24)

Integrating (3.5.24) over a chosen control volume, Vc, that is bounded by a surface, D, and using
the divergence theorem to convert the volume integral of the left-hand side into a surface integral
over D, we derive the corresponding integral form∫∫

D

(
μ′u′ · f̃ − μu · f̃ ′

)
dV = −

∫∫∫
Vc

(
ρμ′u′ · Du

Dt
− ρ′μu · Du′

Dt

)
dV, (3.5.25)

where the normal unit vector, n, points into the control volume. In Section 6.8, we will see that
the reciprocal identities (3.5.24) and (3.5.25) find extensive applications in the study of Stokes flow
where the effect of fluid inertia is negligibly small.

Problems

3.5.1 Flow past a body

Consider a steady streaming flow of a viscous fluid in the horizontal direction past a stationary body.
Discuss whether the Bernoulli function B increases or decreases in the streamwise direction.

3.5.2 Hydrostatics

Consider a body of fluid with uniform density that is either stationary or translates as a rigid body.
Show that the general solution of the equation of motion is p = ρg · x+ c(t) or p̃ = c(t), where c(t)
is an arbitrary function of time, and p̃ is the hydrodynamic pressure. Discuss the computation of
c(t) for a flow of your choice.

3.5.3 Oseen flow

(a) Consider a steady streaming (uniform) flow with velocity V past a stationary body. Far from
the body, the flow can be decomposed into the incident flow and a disturbance flow v due to the
body, u = V+v. Introduce a similar decomposition for the pressure, substitute the decompositions
into the Navier–Stokes equation, and neglect quadratic terms in v to derive a linear equation.

(b) Repeat (a) for uniform flow past a semi-infinite plate aligned with the flow. Specifically, derive
a linear equation for the disturbance stream function applicable far from the plate.

3.5.4 Reciprocal identity

(a) Show that equations (3.5.20), (3.5.21), and (3.5.22) are also applicable for the hydrodynamic
stress tensor defined in (3.4.9).

(b) Derive (3.5.25) from (3.5.23).
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3.6 Euler and Bernoulli equations

When the viscous force on the right-hand side of (3.5.6) is negligible, the Navier–Stokes equation
reduces to Euler’s equation,

ρ
Du

Dt
= −∇p+ ρg, (3.6.1)

which is strictly applicable for inviscid fluids. One important difference between the Euler equation
and the Navier–Stokes equation is that the former is a first-order partial differential equation whereas
the latter is a second-order partial differential equation in space with respect to the velocity. In
Section 3.7, we will see that this difference has important implications on the number of boundary
conditions required to compute a solution.

When the density of the fluid and acceleration of gravity are uniform throughout the domain
of a flow, it is convenient to introduce the hydrodynamic pressure incorporating the effect of the
body force, p̃ ≡ p− ρg · x, and recast Euler’s equation (3.6.1) into the form

ρ
Du

Dt
= −∇p̃. (3.6.2)

This expression reveals that the point-particle acceleration field, Du/Dt, is irrotational. As a conse-
quence, if a flow governed by the Euler equation is irrotational at the initial instant, it will remain
irrotational at all times. The permanence of irrotational flow for a fluid with uniform density and
negligible viscous forces will be discussed in the context of vorticity dynamics in Section 3.11.

In terms of the Bernoulli function,

B(x, t) ≡ 1

2
u · u+

p

ρ
− g · x, (3.6.3)

Euler’s equation reads

ρ
( ∂u
∂t

+∇B
)
= ρu× ω. (3.6.4)

Nonlinear terms appear in the definition of the Bernoulli function as well as in the cross product of
the velocity and the vorticity on the right-hand side.

3.6.1 Bernoulli function in steady rotational flow

In the case of steady rotational flow, Euler’s equation (3.6.4) takes the simple form

∇B = u× ω. (3.6.5)

In a Beltrami flow where the velocity is parallel to the vorticity at every point, the right-hand side
of (3.6.5) is zero and the Bernoulli function is constant throughout the domain of flow.

Considering the more general case of a flow where velocity and vorticity are not necessarily
aligned, we apply (3.6.5) at a certain point on a chosen streamline and project both sides onto the
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tangent unit vector. Note that the right-hand side of (3.6.5) is normal to the velocity and therefore
also to the streamline, and integrating the resulting expression with respect to arc length along the
streamline, we find that B is constant along the streamline. Symbolically, we write

B = F(streamline). (3.6.6)

The value of B at a particular streamline is usually computed by applying (3.6.5) at an entrance or
exit point and then requiring appropriate boundary conditions for the boundary velocity or traction.

Spatial distribution of the Bernoulli function

t

n

b

A local coordinate system
attached to a point on a

chosen streamline.

To investigate the variation of the Bernoulli function across stream-
lines, we introduce the unit vector tangent to a streamline, t = u/|u|,
the unit vector normal to the streamline, n, and the associated bi-
normal vector, b = t × n. The triplet (t,n,b) defines a system of
orthogonal right-handed coordinates. Projecting (3.6.5) onto the nor-
mal unit vector, n, and rearranging the triple scalar product on the
right-hand side, we find that

n · ∇B = (u× ω) · n = −(u× n) · ω = −u (t× n) · ω, (3.6.7)

which can be rearranging into

1

u

∂B
∂ln

= −ω · b, (3.6.8)

where u = |u| and ln is the arc length measured in the direction of n. Projecting (3.6.5) onto the
binormal unit vector, b, and working in a similar fashion, we find that

1

u

∂B
∂lb

= ω · n, (3.6.9)

where lb is the arc length measured in the direction of b. If the vorticity is locally parallel to the
velocity at the chosen point, the right-hand sides of (3.6.8) and (3.6.9) are zero and B reaches a local
extremum at that point.

Two-dimensional and axisymmetric flow

In the case of two-dimensional or axisymmetric flow that fulfills the prerequisites for (3.5.16),
we obtain the explicit expressions

B = −F (ψ) + c, (3.6.10)

where c is constant throughout the domain of flow. For example, in the case of two-dimensional flow
with uniform vorticity, ωz = Ω, or axisymmetric flow with azimuthal vorticity ωϕ = Ωσ, where Ω is a
constant, we find that B = −Ωψ+c. Since the curl of the vorticity and thus the magnitude of viscous
forces are identically zero, these flows represent exact solutions of the Navier–Stokes equation. The
velocity field can be computed working in the context of kinematics, and the pressure follows from
knowledge of the stream function using the derived expression for B. One example is the flow inside
Hill’s spherical vortex discussed in Section 2.12.2.
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3.6.2 Bernoulli equations

Bernoulli’s equations are integrated forms of simplified versions of the Navier–Stokes equation for
certain special classes of flows.

Irrotational flow

The right-hand side of (3.6.4) is zero in a steady or unsteady irrotational flow. Introducing the
velocity potential, φ, substituting u = ∇φ in the temporal derivative on the left-hand side of (3.6.4),
and integrating the resulting equation in space, we derive Bernoulli’s equation

∂φ

∂t
+ B = c(t), (3.6.11)

where c(t) is an unspecified time-dependent function. In practice, the value of c(t) is determined by
applying (3.6.11) at a point on a selected boundary of the flow and then introducing an appropriate
boundary condition for the velocity or pressure. Equation (3.6.11) can be interpreted as an evolution
equation for φ.

In applications involving unsteady flow with free surfaces, it is convenient to work with an
alternative form of (3.6.11) involving the material derivative of the velocity potential, Dφ/Dt =
∂φ/∂t + u · ∇φ, which is equal to the rate of change of the potential following a point particle.
Adding u · ∇φ and subtracting u · u from the left-hand side of (3.6.11), we obtain

Dφ

Dt
− 1

2
u · u+

p

ρ
− g · x = c(t). (3.6.12)

Working in a similar manner, we find that the rate of change of the potential as seen by an observer
who travels with arbitrary velocity v is given by

dφ

dt
+ (

1

2
u− v) · u+

p

ρ
− g · x = c(t). (3.6.13)

When V = u, we recover (3.6.12). Equations (3.6.12) and (3.6.13) find applications in the numerical
computation of free-surface flow using boundary-integral methods discussed in Chapter 10.

Steady irrotational flow

The Bernoulli equation for steady irrotational flow takes the simple form

B = c, (3.6.14)

where c is a constant. Since the velocity attains its maximum at the boundaries, the dynamic
pressure, p̃ ≡ p− ρg · x attains a minimum at the boundaries.

Two-dimensional flow with constant vorticity

A judicious decomposition of the velocity field of a generally unsteady two-dimensional flow whose
vorticity is and remains uniform and constant in time, equal to Ω, allows us to describe the flow in
terms of a velocity potential and also derive a Bernoulli’s equation for the pressure. In Section 3.13,
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we will see that the physical conditions for the vorticity to be uniform are that it is uniform at the
initial instant and the effect of viscosity is negligibly small. The key idea is to introduce the stream
function, ψ, and write

u(x, t) = ∇× (ψ ez) = v(x) +∇φ(x, t), (3.6.15)

where v is a steady two-dimensional flow with uniform vorticity, ωz = Ω. The term ∇φ represents
a complementary, generally unsteady irrotational flow, where φ is a suitable harmonic potential.
For example, v can be the velocity of simple shear flow along the x axis varying along the y axis,
v = (−Ωy, 0). Substituting (3.6.15) into (3.5.10), and noting that the viscous force is identically
zero, we obtain

∇
(∂φ
∂t

)
+∇B = [∇× (ψ ez)]× (Ω ez) = −Ω∇ψ. (3.6.16)

Integrating, we derive Bernoulli’s equation involving the stream function,

∂φ

∂t
+ B +Ωψ = c(t), (3.6.17)

where c(t) is a time-dependent function.

3.6.3 Bernoulli’s equation in a noninertial frame

The equation of motion in an accelerating and rotating frame of reference contains three types of
inertial forces that must be taken into account when integrating the Navier–Stokes equation to derive
Bernoulli’s equations, as discussed in Section 3.2.6. Euler’s equation in a noninertial frame reads

∂v

∂t
+∇B = v × − dU

dt
− 2Ω× v −Ω× (Ω× y)− dΩ

dt
× y, (3.6.18)

where  is the vorticity in the noninertial frame,

B(x, t) ≡ 1

2
v · v +

p

ρ
− g · y (3.6.19)

is the corresponding Bernoulli function, y is the position vector in the noninertial frame, and the
rest of the symbols are defined in Section 3.2.6.

Consider a noninertial frame that translates with linear velocityU(t) with respect to an inertial
frame, and assume that the velocity field in the noninertial frame, v, is irrotational. Expressing v

in terms of an unsteady velocity potential, Φ, defined so that v = ∇Φ, and taking into account the
acceleration-reaction body force, we obtain the modified Bernoulli’s equation(∂Φ

∂t

)
y
+

1

2
v · v +

p

ρ
+
(
g − dU

dt

)
· y = c(t), (3.6.20)

where c(t) is an unspecified function of time. When U is constant or zero, we recover the standard
Bernoulli equation for unsteady irrotational flow.
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In another application, we consider a noninertial frame whose axes rotate with constant an-
gular velocity Ω about the origin of an inertial frame. We will assume that the flow is irrotational
in the inertial frame and appears to be steady in the noninertial frame. Euler’s equation in the
noninertial frame (3.6.18) simplifies into

∇B = v × (+ 2Ω)−Ω× (Ω× y). (3.6.21)

Integrating in space, we derive a modified Bernoulli equation,

B − 1

2
|Ω× y|2 = F(streamline), (3.6.22)

which is inclusive of the Bernoulli equation (3.6.6) for an inertial frame. In the literature of geo-
physical fluid dynamics, the term ρ(g · y + 1

2 |Ω× y|2) is sometimes called the geopotential.

Problems

3.6.1 Fluid sloshing in a tank

A fluid is sloshing inside a tank executing rotational oscillations about the z axis with angular velocity
Ω(t). In a stationary frame of reference (x, y, z), the induced irrotational flow can be described in
terms of a velocity potential u = ∇φ. Derive an expression for the rate of change of the potential φ
in a frame of reference where the tanks appears to be stationary.

3.6.2 Bernoulli’s equations in a noninertial frame

Derive (3.6.20) and (3.6.22).

3.7 Equations and boundary conditions governing the motion
of an incompressible Newtonian fluid

The flow of an incompressible Newtonian fluid is governed by the Navier–Stokes equation (3.5.1)
expressing Newton’s second law for the motion of a small fluid parcel, and the continuity equation,
∇ · u = 0, expressing mass conservation. The union of these two equations provides us with four
scalar partial differential equations for four scalar functions, including the three components of the
velocity, u, and the pressure, p.

To complete the mathematical statement of a fluid flow problem, we must supply an appro-
priate number of boundary conditions for certain flow variables including the velocity, the pressure,
or the traction. In the case of unsteady flow, we must also supply a suitable initial condition for
the velocity. The initial pressure field can be found by requiring that the velocity is and remains
solenoidal at all times, as will be discussed in Sections 9.1 and 13.2. The initial and boundary condi-
tions arise from considerations that are independent of those that led us to the continuity equation
and equation of motion.

Counting the boundary conditions

Since the Navier–Stokes equation is a second-order partial differential equation for the velocity,
we must supply three scalar boundary conditions over each boundary of the flow. In practice, we
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specify either the three components of the velocity, or the three components of the traction, or a
combination of the velocity and the traction. If we specify the normal component of the velocity over
all boundaries of a domain whose volume remains constant in time, we must ensure that the total
volumetric flow rate into the domain of flow is zero, otherwise the continuity equation cannot be
satisfied. In certain computational procedures for solving the equations of incompressible Newtonian
flow, the boundary velocity is specified at discrete points and the total flow rate is not precisely zero
due to numerical error. This imperfection may provide an entry point for numerical instability.

Irrotational and inviscid flow

In the case of irrotational flow or flow of an inviscid fluid governed by the Euler equation, the order of
the Navier–Stokes equation is reduced from two to one by one count. Consequently, only one scalar
boundary condition over each boundary is required. It is then evident that, with some fortuitous
exceptions, the assumption of irrotational flow cannot be made at the outset.

3.7.1 The no-penetration condition over an impermeable boundary

Since the molecules of a fluid cannot penetrate an impermeable surface, the component of the fluid
velocity normal to an impermeable boundary, n · u, must be equal to the corresponding normal
component of the boundary velocity, n ·V. The no-penetration condition requires that

n · u = n ·V, (3.7.1)

where the boundary velocity V may be constant or vary over the boundary. An impermeable
boundary is not necessarily a rigid boundary, as it may represent, for instance, a fluid interface or
the surface of a flexible body.

Consider a steady or evolving impenetrable boundary whose position is described in Eulerian
form by the equation F (x, t) = c, where c is a constant. The no-penetration condition can be stated
as DF/Dt = 0, evaluated at the boundary, where D/Dt is the material derivative. The fluid velocity
in the material derivative can be amended with the addition of an arbitrary tangential component.

Rigid-body motion

If a boundary moves as a rigid body, translating with velocity U and rotating about a point x0 with
angular velocity Ω, the boundary velocity is V = U+Ω× (x−x0) and the no-penetration condition
requires that

n · u = n · [U+Ω× (x− x0) ] (3.7.2)

evaluated at the boundary.

Two-dimensional flow

In the case of two-dimensional flow in the xy plane past an impermeable boundary executing rigid-
body motion, translating while rotating about an axis that is parallel to the z axis and passes
through the point x0, equation (3.7.2) takes the form

V = U+Ωz ez × (x− x0), (3.7.3)
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where ez is the unit vector along the z axis and Ωz is the angular velocity of rotation around the z
axis. Next, we write n = (dy/dl,−dx/dl), where dx and dy are differential increments around the
boundary corresponding to the differential arc length dl measured in the counterclockwise direction.
Expressing the velocity in terms of the stream function, ψ, we obtain

u · n =
∂ψ

∂y

dy

dl
+

∂ψ

∂x

dx

dl
=

∂ψ

∂l
= U · n+Ωz [ez × (x− x0)] · n (3.7.4)

or

∂ψ

∂l
= Ux

dy

dl
− Uy

dx

dl
− Ωz

(
(x− x0)

dx

dl
+ (y − y0)

dy

dl

)
. (3.7.5)

Integrating with respect to arc length, we obtain the scalar boundary condition

ψ = Ux y − Uy x− 1

2
Ωz |x− x0|2 + c(t), (3.7.6)

where c(t) is a time-dependent constant.

Equation (3.7.6) reveals that the stream function is constant over a stationary impermeable
surface in a steady or unsteady flow. The value of the stream function is determined by the flow rate
between the surface and the rest of the boundaries. In general, the value of the stream function over
different disconnected stationary boundaries may not be specified a priori, but must be computed
as part of the solution.

Axisymmetric flow

In the case of axisymmetric flow past a body that translates along its axis of revolution with velocity
U = Uex, we introduce the Stokes stream function, ψ, and derive the scalar boundary condition

ψ =
1

2
Uσ2 + c(t), (3.7.7)

where σ is the distance from the axis of revolution and c(t) is a time-dependent constant. This ex-
pressions shows that the Stokes stream function takes a constant value over a stationary impermeable
axisymmetric surface.

3.7.2 No-slip at a fluid-fluid or fluid-solid interface

Experimental observations of a broad class of fluids under a wide range of conditions have shown
that the tangential component of the fluid velocity is continuous across a fluid-solid or fluid-fluid
interface, which means that the slip velocity is zero and the no-slip condition applies. It is important
to emphasize that the no-slip condition has been demonstrated independent of the mechanical or
chemical constitution of the boundaries and properties of the fluid. One exception arises in the
case of rarefied gas flow where the mean free path of the molecules is comparable to the size of
the boundaries and a description of the flow in the context of continuum mechanics is no longer
appropriate.

The no-slip boundary condition requires that the tangential component of the fluid velocity is
zero over a stationary solid boundary. Combining this condition with the no-penetration condition,
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we find that the fluid velocity over a stationary impermeable solid boundary is equal to the boundary
velocity. If a boundary executes rigid body motion, translating with linear velocity U and rotating
about a point x0 with angular velocity Ω, then u = U+Ω× (x− x0).

Physical origin

In the case of gases, the molecules of the fluid are adsorbed on the solid surface over a time period that
is long enough for thermal equilibrium to be established, yielding a macroscopic no-slip condition on
a solid surface. An analogous explanation is possible in the case of liquids based on the formation
of short-lived bonds between liquid and solid molecules due to weak intermolecular forces. However,
because these physical mechanisms depend on the properties of the solid and fluid molecules, the
no-slip condition may occasionally break down.

An alternative explanation is that the proper boundary condition on a solid surface is the
condition of vanishing tangential traction, and an apparent no-slip condition arises on a macroscopic
level due to inherent boundary irregularities. Detailed computations with model geometries lend
support to this explanation [340].

3.7.3 Slip at a fluid-solid interface

An alternative boundary condition used on occasion in place of the no-slip condition prescribes
that the tangential component of the fluid velocity, u, relative to the boundary velocity, V, is
proportional to the tangential component of the surface traction. According to the Navier–Maxwell–
Basset formula, the tangential slip velocity is given by

uslip ≡ (u−V) · (I− n⊗ n) =
1

β

a

μ
f · (I− n⊗ n) =

1

β

a

μ
n× f × n, (3.7.8)

where f ≡ n · σ is the traction, σ is the stress tensor, n is the unit normal vector pointing into
the fluid, I − n ⊗ n is the tangential projection operator, and a is a specified length scale. The
dimensionless Basset coefficient, β, ranges from zero in the case of perfect slip and vanishing shear
stress, to infinity in the case of no-slip and finite shear stress. The slip length is defined as

λ ≡ a

β
. (3.7.9)

In the case of perfect slip, β = 0, the drag force is due exclusively to the form drag due to the
pressure.

In rarefied gases, the slip coefficient, β, can be rigorously related to the mean free path, λf ,
defining the Knudsen number, Kn ≡ λf/a by the Maxwell relation

β =
1

Kn

σ

2− σ
, (3.7.10)

where σ is the tangential momentum accommodation coefficient (TMAC) expressing the fraction of
molecules that undergo diffusive rather than specular reflection (e.g., [72, 362]). In the limit σ → 2,
we obtain the no-slip boundary condition, β → ∞. In the limit σ → 0, we obtain the perfect-slip
boundary condition, β → 0.
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The slip boundary condition has been used with success to describe flow over the surface
of a porous medium where the slip velocity accounts for the presence of pores, and flow in the
neighborhood of a moving three-phase contact line where the slip velocity removes the singular
behavior of the traction in the immediate neighborhood of the contact line [114].

3.7.4 Derivative boundary conditions

We have discussed several types of boundary conditions with physical origin. Derivative boundary
conditions emerge by combining the physical boundary conditions with the equations governing the
motion of the fluid, including the continuity equation and the equation of motion. For example,
invoking the continuity equation, we find that the normal derivative of the normal component of
the velocity over an impermeable solid surface where the no-slip condition applies must be zero, as
discussed in Section 3.9.1. A derivative boundary condition for the pressure over a solid boundary
will be discussed in Chapter 13.

3.7.5 Conditions at infinity

Mathematical idealization of a flow in a domain with large dimensions produces flow in a totally or
partially infinite domain. Examples include infinite flow past a stationary object, and semi-infinite
shear flow over a plane wall with a cavity or a protrusions. To complete the definition of the
mathematical problem, we require a condition for the asymptotic behavior of the flow at infinity.

To implement the far-field condition, we decompose the velocity field into an unperturbed
component and a disturbance component, and require that the ratio of the magnitudes of the dis-
turbance velocity and the unperturbed velocity decays at infinity. This condition does not necessarily
imply that the disturbance velocity vanishes at infinity. For example, in the case of uniform flow
past a sphere, the disturbance velocity due to the sphere decays at infinity; whereas in the case of
parabolic flow past a sphere, the disturbance velocity grows at a rate that is less than quadratic. In
the case of simple shear flow over an infinite plane wall with periodic corrugations or protrusions,
we require that the disturbance flow due to the protrusions grows at a less-than-a-linear rate. The
solution reveals that the disturbance velocity tends to a constant value far from the wall, thereby
introducing an a priori unknown slip velocity.

3.7.6 Truncated domains of flow

In computing an external or infinite internal flow by numerical methods, it is a standard practice to
truncate the physical domain of flow at a certain level that allows for an affordable computational
cost. In the case of flow past a body in a wind tunnel, we introduce a computational domain confined
by an in-flow plane, an out-flow plane, and side-flow boundaries. Ideally, the boundary conditions
at the computational boundaries should be derived by performing a far-field asymptotic analysis.
Unfortunately, this is possible only for a limited number of flows [155]. The assumption of fully
developed flow for interior viscous flow is often used in practice. The choice of far-field boundary
condition must be exercised with a great deal of caution in order to ensure mass conservation and
prevent the violation of momentum and energy integral balances. The effect of domain truncation
must be assessed carefully before a numerical solution can be claimed to have any degree of physical
relevance.
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Figure 3.7.1 Illustration of (a) a stationary interface meeting a stationary solid surface at a static
contact line, (b) a stationary interface meeting a moving solid surface at a dynamic contact line, (c)
a contact line moving over a stationary solid surface due to a spreading liquid drop. The contact
angle, α, is measure on the side of the fluid labeled 2. (d) Contact line around the surface of a
floating particle. (e) Typical dependence of the dynamic contact angle, α, on the velocity of the
contact line on a stationary surface, Vcl.

3.7.7 Three-phase contact lines

In applications involving liquid films and small droplets and bubbles attached to solid surfaces, we
encounter stationary or moving interfaces between two fluids ending at stationary or moving solid
boundaries, as shown in Figure 3.7.1. The line where an interface meets a solid surface is called a
three-phase contact line or simply a contact line. A contact line can be stationary or move over a
surface spontaneously or in response to an imposed fluid flow. For example, a contact line is moving
down an inclined plane due to a developing film or rolling liquid drop.

The angle subtended between (a) the vector that is normal to the contact line and tangential
to an interface, and (b) the vector that is normal to the contact line and lies on the solid boundary
is called the contact angle, α. The contact angle is measured from the side of a designated fluid, as
shown in Figure 3.7.1. In the case of a liquid-gas interface, α is measured by convention from the
side of the liquid. With reference to Figure 3.7.1(d), the contact angle measured on the side of the
fluid labeled 2 is given by

cosα = ns · n, (3.7.11)

where ns is the unit vector normal to the surface and n is the unit vector normal to the interface
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pointing into the fluid labeled 1. The plane containing ns and n at a point is normal to the contact
line at that point.

Shape of a contact line

A contact line may have an arbitrary shape determined by the degree of surface roughness
and can have any desired shape. On a perfectly smooth surface, the shape of the contact line is
determined by the contact angle. This means that the contact line may not be assigned a priori but
must be found as part of the solution to satisfy a constraint on the contact angle.

Static and dynamic contact angle

A static contact angle is established at a stationary contact line that

α
γ

γ γ1 2

Three tensions balance at a
contact line according to

Young’s equation.

is pinned on a stationary solid surface. A dynamic contact angle
is established at a stationary contact line that lies on a moving
solid surface, or at a moving contact line that lies on a stationary
solid surface, as illustrated in Figure 3.7.1(b, c). The static contact
angle is a physical constant determined by the molecular properties
of the solid and fluids. The dynamic contact angle depends not only
on the constitution of the solid and fluids, but also on the relative
velocity of the surface and contact line [114].

A rational framework for predicting the static contact angle employs three interfacial tensions
applicable to each fluid-fluid or fluid-solid pair at the contact line, denoted by γ1, γ2, and γ. A
tangential force balance yields the Young equation,

γ2 = γ1 + γ cosα. (3.7.12)

Similar equations can be written for a contact line that lies at a corner or cusp where two tensions
are not necessarily aligned.

Dependence of the dynamic contact angle on the contact angle velocity

A typical graph of the dynamic contact angle plotted against the contact line velocity over a sta-
tionary surface, Vcl, is shown in Figure 3.7.1(e). With reference to Figure 3.7.1(c), positive velocity
Vcl corresponds to a spreading droplet. Measurements show that ∂α/∂Vcl > 0 is independent of
the fluids involved. The extrapolated values of α in the limit as Vsl tends to zero from positive
or negative values are called the advancing or receding contact angle, αA and αR. Contact angle
hysteresis is evidenced by the dependence of the estimated values of αA and αR on the laboratory
procedures. Further support is provided by the observation that, when Vcl = 0, the contact angle
may take any value between αA and αR.

Conversely, the velocity of a contact line can be regarded as a function of the difference,
α−αS , α−αA, or α−αR. From this viewpoint, contact angle motion is driven by deviations of the
contact angle from an appropriate threshold. In the case of a spreading drop illustrated in Figure
3.7.1(c), α > αA resulting in a positive (outward) contact line velocity. In the case of a heavy drop
moving down an inclined plane, the contact angle at the front of the drop is higher than αA, while
the contact angle at the back of the drop is less than αR, resulting in a forward bulging shape.
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Singularity at a moving contact angle

A local analysis of the equation of motion in the immediate neighborhood of a contact line moving
on a stationary solid surface reveals that the tangential component of the surface force becomes
singular at the contact line. More important, the singularity is nonintegrable, meaning that the drag
force exerted on the surface assumes an infinite value, as discussed in Section 6.2. This unphysical
behavior suggests that, either the equation of motion breaks down in the immediate vicinity of
the dynamic contact line, or else the no-slip boundary condition ceases to be valid. The second
explanation motivates replacing the no-slip boundary condition with the slip-condition shown in
(3.7.8). Computations have shown that this approximation does not have a profound effect on the
global structure of the flow [114]. A precursor liquid film of fluid 1 on the solid surface is sometimes
introduced to regularize the motion near a moving contact line.

Problems

3.7.1 No-penetration boundary condition

Discuss possible ways of implementing the no-penetration boundary condition in terms of the stream
functions for three-dimensional flow.

3.7.2 A drop sliding down an inclined plane

Sketch the shape of heavy three-dimensional drop sliding down an inclined plane and discuss the
shape of the contact line.

3.8 Interfacial conditions

The components of the stress tensor on either side of an interface between two immiscible fluids,
labeled 1 and 2, are not necessarily equal. Consequently, the traction may undergo a discontinuity
defined as

Δf ≡ f (1) − f (2) = (σ(1) − σ(2)) · n, (3.8.1)

where n is the normal unit vector pointing into fluid 1 by convention, and σ(1), σ(2) are the stress
tensors in the two fluids evaluated on either side of the interface, as shown in Figure 3.8.1(a). The
discontinuity in the interfacial traction, Δf , is determined by the physiochemical properties of the
fluids and molecular constitution of the interface, and is affected by the local temperature and local
concentration of surface-active substances, commonly called surfactants, populating the interface.
A laundry detergent or dishwashing liquid is a familiar household surfactant.

Jump in the hydrodynamic traction

When it is beneficial to work with the hydrodynamic pressure and stress defined in (3.4.9), indicated
by a tilde, we introduce the associated jump in the hydrodynamic interfacial traction, also denoted
by a tilde, defined as

Δf̃ ≡ f̃ (1) − f̃ (2) = (σ̃(1) − σ̃(2)) · n. (3.8.2)
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Figure 3.8.1 (a) Illustration of an interface between two immiscible fluids labeled 1 and 2, showing the
traction on either side of the interface. The normal unit vector, n, points into fluid 1 by convention.
(b) Surface tension pulls the edges of an interfacial patch of a three-dimensional interface in the
tangential plane.

The jump in the hydrodynamic traction is related to the jump in the physical traction by

Δf̃ = Δf + (ρ1 − ρ2) (g · x)n, (3.8.3)

where ρ1 and ρ2 are the fluid densities.

3.8.1 Isotropic surface tension

An uncontaminated interface between two immiscible fluids exhibiting isotropic surface tension, γ,
playing the role of surface pressure. In a macroscopic interpretation, the surface tension pulls the
edges of an interfacial patch in the tangential plane, as shown in Figure 3.8.1(b). The surface tension
of a clean interface between water and air at 20◦C is γ = 73 dyn/cm. The surface tension of a clean
interface between glycerin and air at the same temperature is γ = 63 dyn/cm.

Effect of temperature and surfactant

The surface tension generally decreases as the temperature is raised and becomes zero at a critical
threshold. If an interface is populated by a surfactant, the surface tension is determined by the local
surface surfactant concentration, Γ. The negative of the derivative of the surface tension, −dγ/dΓ, is
sometimes called the Gibbs surface elasticity. Typically, the surface tension decreases as Γ increases
and reaches a plateau at a saturation concentration where the interface is covered by a monolayer
of surfactant molecules, as discussed in Section 3.8.2.

Interfacial force balance

To derive an expression for the jump in the interfacial traction, Δf , we neglect the mass of the
interfacial stratum and write a force balance over a small interfacial patch, D, that is bounded by
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the contour C, ∫∫
D

Δf dS +

∮
C

γ t× n dl = 0, (3.8.4)

where n is the unit vector normal to D pointing into fluid 1, t is the unit vector tangent to C,
and b = t × n is the unit binormal vector, as shown in Figure 3.8.1(b). Next, we extend smoothly
the domain of definition of the surface tension and normal vector from the interface into the whole
three-dimensional space. The extension of the surface tension can be implemented without any
constraints. In practice, this can be done by solving a partial differential equation with the Dirichlet
boundary condition over the interface. The extension of the normal vector can be implemented by
setting n = ∇F/|∇F |, where the equation F (x, y, z, t) = 0 describes the location of the interface.

A variation of Stokes’ theorem expressed by equation (A.7.8), Appendix A, states that, for
any arbitrary vector function of position, q,∮

C

q× t dl =

∫∫
D

(
n∇ · q− (∇q) · n

)
dS. (3.8.5)

Applying this identity for the extended vector field, g = γn, and combining the resulting expression
with (3.8.4), we obtain ∫∫

D

Δf dS =

∫∫
D

(
n∇ · (γn)− [∇(γn)] · n

)
dS. (3.8.6)

Expanding the derivatives inside the integral and noting that (∇n) · n = 1
2 ∇(n · n) = 0, we obtain∫∫

D

Δf dS =

∫∫
D

(
n [ γ(∇ · n)− n∇γ ]−∇γ

)
dS. (3.8.7)

Now we take the limit as the surface patch shrinks to a point, rearrange the integrand on the right-
hand side, and discard the integral sign on account of the arbitrary integration domain to obtain
the desired expression

Δf = γ n∇ · n− (I− n⊗ n) · ∇γ, (3.8.8)

which can be restated as

Δf = γ n∇ · n− (n×∇γ)× n. (3.8.9)

The divergence of the normal vector on the right-hand side of (3.8.8) is equal to twice the
mean curvature of the interface, ∇ · n = 2κm. Thus,

Δf = γ 2κm n− (n×∇γ)× n. (3.8.10)

By definition, the mean curvature is positive when the interface has a spherical shape with fluid 2
residing in the interior and the normal vector pointing outward into the exterior fluid labeled 1. The
computation of the mean curvature is discussed in Section 1.8.
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Laplace pressure and Marangoni traction

The two terms on the right-hand side of (3.8.10) express, respectively, a discontinuity in the normal
direction and a discontinuity in the tangential plane. The normal discontinuity is called the Laplace
or capillary pressure, and the tangential discontinuity is called the Marangoni traction. The term
“capillary” derives from the Latin word “capilla” meaning hair, on the justification that the capillary
pressure is important inside small tubes whose size is comparable to that of a hair. When the surface
tension is constant, a tangential component does not appear and the jump in the interfacial traction
is oriented in the normal direction.

Capillary force and torque

Surface tension pulls the boundary of a flow around a three-phase contact line in a direction that is
tangential to the interface and lies in a plane that is normal to the contact line. With reference to
Figure 3.7.1(d), the resultant capillary force and torque with respect to an arbitrary point, x0, are
given by

Fcap =

∮
γ r× n dl, Tcap(x0) =

∮
γ (x− x0)× (r× n) dl, (3.8.11)

where n is the unit vector tangent to the interface, r = dx/dl is the unit vector tangent to the
contact line, the integration is performed around the contact line, and l is the arc length around the
contact line. Using a vector identity, we obtain an alternative expression for the capillary torque,

Tcap(x0) =

∮
γ
(
[(x− x0) · n] r− [ (x− x0) · r ] n

)
dl. (3.8.12)

The surface tension inside the integrals on the right-hand sides of (3.8.11) and (3.8.12) is allowed to
be a function of position.

Capillary torque on a spherical particle

As an application, we consider the capillary torque due to a contact line over a spherical particle of
radius a for constant surface tension, γ. The unit vector normal to the particle surface at a point, x,
is ns = 1

a (x− xc), where xc is the particle center. Consequently, cosα = 1
a (x− xc) · n, where α is

the contact angle computed from (3.7.11). Identifying the center of torque x0 with the the particle
center, xc, and noting that (x− xc) · r = 0, we obtain

Tcap(xc) = γa

∮
cosα r dl. (3.8.13)

We observe that, if the contact angle is constant along the contact line, the torque with respect to
the center of the spherical particle is identically zero irrespective of the shape of the contact line
[373]. This result underscores the importance of contact angle hysteresis in imparting a non-zero
capillary torque for any contact line shape.

3.8.2 Surfactant equation of state

We have mentioned that variations in the surface concentration of a surfactant, Γ, cause corre-
sponding variations in the surface tension, γ. The relation between Γ and γ is determined by an
appropriate surface equation of state.
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Linear surface equation of state

When the surfactant concentration is below the saturation threshold, a linear relationship can be
assumed between Γ and γ according to Gibbs’ surface equation of state,

γ = γc −RTΓ, (3.8.14)

where R is the ideal gas constant, T is the absolute temperature, and γc is the surface tension of
a clean interface that is devoid of surfactants (e.g., [3]). It is convenient to introduce a reference
surfactant concentration, Γ0, corresponding to surface tension γ0. Rearranging (3.8.14), we obtain

γ = γc
(
1− β

Γ

Γ0

)
, (3.8.15)

where

β ≡ RT

γc
Γ0 (3.8.16)

is a dimensionless parameter expressing the significance of the surfactant concentration. By defini-
tion, γ0 = γc (1 − β). The parameter β is related to the Gibbs surface elasticity employed in the
surfactant literature by

E ≡ −∂γ

∂Γ
= β

γc
Γ0

=
β

1− β

γ0
Γ0

. (3.8.17)

The dimensionless Marangoni number is defined as

Ma ≡ −∂γ

∂Γ

Γ0

γ0
= E

Γ0

γ0
=

β

1− β
. (3.8.18)

Using this definition, we find that β = Ma/(1 +Ma), γc = (1 +Ma) γ0, and

γ = γc −Ma
γ0
Γ0

Γ. (3.8.19)

Nonlinear surface equation of state

More generally, because the surface elasticity depends on the local surfactant concentration, the
relationship between the surface tension and the surface surfactant concentration is nonlinear. For
small variations in the surfactant concentration around a reference value, Γ0, we may use Henry’s
equation of state expressed by γ = γ0 − E (Γ− Γ0), where E ≡ −(∂γ/∂Γ)Γ0

.

For large variations in the surfactant surface concentration, we may use Langmuir’s equation
of state derived on the assumption of second-order adsorption/desorption kinetics,

γ = γc +RTΓ∞ ln
(
1− Γ

Γ∞

)
= γc

[
1 +

β

η
ln
(
1− η

Γ

Γ0

) ]
, (3.8.20)

where Γ∞ is the surfactant concentration at maximum packing and η = Γ0/Γ∞ is the surface
coverage at the reference state (e.g., [48]). Applying this equation for Γ = Γ0, we obtain

γc =
γ0

1 + β
η ln(1− η)

. (3.8.21)
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In deriving Langmuir’s equation of state, ideal behavior is assumed to neglect cohesive and repulsive
interactions between surfactant molecules in the interfacial monolayer.

3.8.3 Interfaces with involved mechanical properties

The jump in traction across an interface with a complex molecular structure can be described rigor-
ously or phenomenologically in terms of interfacial shear and dilatational surface viscosities, moduli
of elasticity, and flexural stiffness (e.g., [118, 315, 366]). For example, the membrane enclosing a
red blood cell is a viscoelastic sheet whose mechanical response is characterized by a high dilata-
tional modulus that ensures surface incompressibility, a moderate shear elastic modulus that allows
for significant deformation, and a substantial energy-dissipating surface viscosity. Mathematical
frameworks for describing direction dependent interfacial tensions can be developed working un-
der the auspices of shell theory for the molecular interfacial stratum or by employing models of
three-dimensional molecular networks.

3.8.4 Jump in pressure across an interface

The normal component of the traction, and therefore the pressure, undergoes a discontinuity across
an interface. To compute the jump in the pressure in terms of the velocity, we decompose the jump
in the traction, Δf , into its normal and tangential components, and identify the normal component
in each fluid with the term inside the square bracket on the right-hand side of (3.4.5), finding

ΔfN ≡ Δf · n = −p1 + p2 + 2n ·
(
μ1∇u(1) − μ2∇u(2)

)
n, (3.8.22)

where n is the normal unit vector pointing into fluid 1. Rearranging, we obtain an expression for
the jump in the interfacial pressure in terms of the normal component of Δf and the viscous normal
stress,

Δp ≡ p1 − p2 = −Δf · n+ 2n · (μ1∇u(1) − μ2∇u(2))n, (3.8.23)

where Δf is given by an appropriate interfacial constitutive equation. When the fluids are either
stationary or inviscid, only the first term on the right-hand side of (3.8.23) survives. When the
interface exhibits isotropic tension, we use (3.8.8) and derive Laplace’s law, Δp = −2κmγ.

3.8.5 Boundary condition for the velocity at an interface

Certain numerical methods for solving problems of interfacial flow require removing the pressure
from the dynamic boundary condition for the jump in the interfacial traction, Δf . The tangential
component of Δf involves derivatives of the velocity alone and does not require further manipulation.
To eliminate the pressure difference from the normal component of Δf , we apply the equation of
motion on either side of the interface, formulate the difference of the resulting expressions, and
project the difference onto a tangent unit vector, t, to obtain

t · ∇(p2 − p1) =
(
− ρ2

Du(2)

Dt
+ ρ1

Du(1)

Dt
+ μ2 ∇2u(2) − μ1 ∇2u(1) + (ρ2 − ρ1)g

)
· t. (3.8.24)

Substituting expression (3.8.23) for the pressure difference into the left-hand side of (3.8.24) provides
us with the desired boundary condition in terms of the velocity.
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If the fluids are inviscid, the velocity is allowed to be discontinuous across the interface,
yielding the simplified form

t · ∇ΔfN = t · ∇(p2 − p1) =
(
− ρ2

Du(2)

Dt
+ ρ1

Du(1)

Dt
+ (ρ2 − ρ1)g

)
· t, (3.8.25)

where ΔfN = Δf ·n is the normal component of the jump in the traction. Equation (3.8.25) imposes
a constraint on the tangential components of the point-particle acceleration on either side of the
interface between two immiscible fluids.

3.8.6 Generalized equation of motion for flow in the presence of an interface

To compute the flow of two adjacent immiscible fluids with different physical properties, we may sep-
arately solve the governing equations in each fluid subject to the interfacial kinematic and dynamic
matching conditions discussed earlier in this chapter. As an alternative, the interfacial boundary
conditions can be incorporated into a generalized equation of motion that applies inside as well as
at the interface between the two fluids. The generalized equation of motion arises by regarding an
interface as a singular surface of concentrated body force, obtaining

ρ
Du

Dt
= ∇ · σ + ρg + q, (3.8.26)

where q is a singular forcing function expressing an interfacial distribution of point forces,

q(x) = −
∫∫

I

δ3(x− x′)Δf(x′) dS(x′), (3.8.27)

I stands for the interface, δ3 is the three-dimensional delta function, and Δf is the jump in the
traction across the interface. The velocity is required to be continuous, but the physical properties
of the fluids and stress tensor are allowed to undergo discontinuities across the interface.

To demonstrate that (3.8.27) provides us with a consistent representation of the flow by
incorporating the precise form of the dynamic boundary condition (3.8.1), we compute the volume
integral over a thin layer of fluid of thickness ε centered at the interface, I. The upper side of the
interface corresponding to fluid 1 is denoted by I+, and the lower side corresponding to fluid 2 is
denoted by I−. Using the divergence theorem to manipulate the integral of the divergence of the
stress and the properties of the delta function to manipulate the integral of q, and then taking the
limit as the layer collapses onto the interface, we obtain∫∫∫

L

ρ
Du

Dt
dV =

∫∫
I+,I−

n · σ dS +

∫∫∫
L

ρg dV −
∫∫

I

Δf dS, (3.8.28)

where n is the normal unit vector pointing into fluid 1, and L denotes the layer. In the limit as ε
tends to zero, the volume integrals of the point-particle acceleration and gravitational force vanish.
The surface integrals can be rearranged to yield

0 =

∫∫
I

n+ · σ+ dS −
∫∫

I

n+ · σ− dS −
∫∫

I

Δf dS, (3.8.29)
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where n+ is the normal unit vector pointing into fluid 1, σ+ is the stress on the upper side of the
interface, and σ− is the stress on the lower side of the interface. It is now evident that (3.8.29), and
therefore (3.8.26), is consistent with the interfacial condition (3.8.1).

A formal way of deriving (3.8.26) involves replacing the step functions, inherent in the repre-
sentation of the physical properties of the fluids, and the delta functions, inherent in the distribution
of the interfacial force, with smooth functions that change gradually over a thin interfacial layer of
thickness ε. As long as ε is noninfinitesimal, the regular form of the equation of motion applies in
the bulk of the fluids as well as inside the interfacial layer. Taking the limit as ε tends to zero, we
derive (3.8.26).

Two-dimensional flow

In the case of two-dimensional flow, the interfacial distribution (3.8.27) takes the form of a line
integral,

q(x) = −
∫
I

Δf(x′) δ2(x− x′) dl(x′), (3.8.30)

where l is the arc length along the interface and δ2 is the two-dimensional delta function in the plane
of the flow.

Problems

3.8.1 Interfaces with isotropic tension

Derive the counterpart of equation (3.8.8) for two-dimensional flow and discuss its physical inter-
pretation.

3.8.2 Generalized equation of motion for two-dimensional flow

Write the counterparts of equations (3.8.28) and (3.8.29) for two-dimensional flow.

3.9 Traction, vorticity, and kinematics at boundaries and interfaces

The boundary conditions at impermeable rigid boundaries, free surfaces, and fluid interfaces dis-
cussed in Sections 3.7 and 3.8 allow us to simplify the expressions for the corresponding traction,
vorticity, force and torque, and thereby obtain useful insights in the kinematics and dynamics of a
viscous flow.

3.9.1 Rigid boundaries

Consider flow past an impermeable rigid boundary that is either stationary or executes rigid-body
motion, including translation and rotation. In the case of rigid-body motion, we describe the flow
in a frame of reference where the boundary appears to be stationary. Concentrating at a particular
point on the boundary, we introduce a local Cartesian system with origin at that point, two axes z
and x tangential to the boundary, and the y axis normal to the boundary pointing into the fluid.
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Expanding the velocity in a Taylor series with respect to x, y, and z, and enforcing the no-slip
and no-penetration boundary conditions, we find that all velocity components and their first partial
derivatives with respect to x and z at the origin are zero,

u(0) = 0,
(∂u
∂x

)
0
= 0,

(∂u
∂z

)
0
= 0. (3.9.1)

The continuity equation, ∇·u = 0, requires that the first partial derivative of the normal component
of the velocity with respect to y is also zero at the origin,(∂uy

∂y

)
0
= 0. (3.9.2)

The corresponding normal derivatives of the tangential velocity, ∂ux/∂y and ∂uz/∂y, are not nec-
essarily zero. With reference to arbitrary Cartesian coordinates that are not necessarily tangential
to the boundary, equations (3.9.1) and (3.9.2) take the form

u = 0, (I− n⊗ n) · ∇u = (n×∇u)× n = 0, n · (∇u) · n = 0, (3.9.3)

evaluated at the boundary.

Vorticity and traction

x
z

y

A local Cartesian system at a
point on a boundary.

Using conditions (3.9.3) to simplify expressions (3.4.3) and (3.4.5),
we find that the components of the traction at the origin of the
local coordinate system are given by

fx = μ
∂ux

∂y
, fy = −p, fz = μ

∂uz

∂y
. (3.9.4)

With reference to a general coordinate system, the traction is

f = −pn+ μn · (∇u) · (I− n⊗ n). (3.9.5)

The second term on the right-hand side involves derivatives of the tangential components of the
velocity in a direction normal to the boundary.

Using the definition of the vorticity in conjunction with the kinematic constraint expressed by
the second equation in (3.9.3), we find that the component of the vorticity normal to the boundary
is zero. At the origin of the local coordinate system, the tangential components of the vorticity are

ωx =
∂uz

∂y
=

1

μ
fz, ωz = −∂ux

∂y
= − 1

μ
fx, (3.9.6)

These expressions along with (3.9.3) suggest that, with reference to a general coordinate system,

n · ∇u = n · ∇u · (I− n⊗ n) = ω × n. (3.9.7)

The general expression for the traction given in (3.4.4), f = −pn + 2μn · ∇u + μn × ω, simplifies
into

f = −pn+ μω × n. (3.9.8)
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Substituting (3.9.5) and (3.9.8) into (3.4.11) and (3.4.12), we derive simplified expressions for the
hydrodynamic force and torque exerted on a rigid boundary in terms of the vorticity and normal
derivatives of the tangential components of the velocity.

Velocity gradient tensor

Combining the second equation in (3.9.3) with (3.9.7) we derive an expression for the velocity
gradient tensor in terms of the vorticity,

∇u = n⊗ (ω × n). (3.9.9)

The symmetric part of the velocity gradient tensor is the rate-of-deformation tensor and the anti-
symmetric part is the vorticity tensor. In the case of a compressible fluid, the term αn⊗n is added
to the left-hand side of (3.9.9), where α ≡ ∇ · u is the rate of expansion.

Skin-friction and surface vortex lines

Equation (3.9.7) shows that the vorticity vector is perpendicular to the skin-friction vector defined
as the tangential component of the traction vector,

f · (I− n⊗ n) = (n× f)× n = μω × n. (3.9.10)

Equation (3.9.7) shows that the vorticity vector is perpendicular to the skin-friction vector,

ω · [f · (I− n⊗ n)] = 0, ω · [n× f × n] = 0. (3.9.11)

A line over a boundary whose tangent vector is parallel to the skin friction vector at each point is a
skin-friction line. A line over the boundary whose tangent vector is parallel to the vorticity at each
point is a boundary or surface vortex line. Equations (3.9.11) show that the skin friction lines are
orthogonal to the surface vorticity lines. Equation (3.9.5) suggests that a skin-friction line can be
described in parametric form by an autonomous ordinary differential equation,

dx

dτ
= n · (∇u) · (I− n⊗ n) = ω × n, (3.9.12)

where τ is an arbitrary time-like parameter.

Topology of skin-friction lines

Singular points around which fluid particles move normal to the boundary faster than they move
along the boundary occur when the right-hand side of (3.9.12) vanishes and therefore the surface
vorticity becomes zero. Singular points are classified as nodal points of attachment or separation,
foci of attachment or separation, and saddle points. Examples of skin-friction and vorticity lines in
each case are shown,respectively, with dashed and solid lines in Figure 3.9.1 [238, 405].

A nodal point belongs to an infinite number of skin-friction lines all of which except for one,
the one labeled AA in Figure 3.9.1(a), are tangential to a single line labeled BB. A focal point
belongs to an infinite set of skin-friction lines that spiral away from or into the focal point, as shown
in Figure 3.9.1(b). A saddle point is the point of intersection of two skin-friction lines, as shown
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Figure 3.9.1 Illustration of singular points of the skin-friction pattern on a solid boundary [238]: (a)
nodal points, (b) a focus, and (c) a saddle point.

in Figure 3.9.1(c). Topological constraints require that the number of nodal points and foci on a
boundary exceed the number of saddle points by two. An in-depth discussion of the topography and
topology of skin-friction lines is presented by Lighthill [238] and Tobak & Peake [405].

Motion of point particles near boundaries

The relation between the skin-friction lines and the trajectories of point particles in the vicinity of
a boundary becomes evident by introducing a system of orthogonal surface curvilinear coordinates
over the boundary, (ξ, η). The point particles move with velocity that is nearly tangential to the
boundary, except when they find themselves in the neighborhood of a singular point where the
streamlines turn away from the boundary. Denoting the instantaneous distance of a point particle
away from the boundary by ζ, we expand the velocity in a Taylor series with respect to distance in
the normal direction and find that the rate of change of distance traveled by a point particle along
the curvilinear axes is
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dlξ
dt

= U(ξ, η, t) · tξ = ζ (n · ∇u) · tξ = ζ ω · tη,
dlη
dt

= U(ξ, η, t) · tη = ζ (n · ∇u) · tη = −ζ ω · tξ, (3.9.13)

where ω is the vorticity and the velocity gradient and vorticity are evaluated at the surface, ζ = 0.
Dividing these equations side by side, we derive an alternative expression of (3.9.12),

dlξ
n · (∇u) · tξ

=
dlη

n · (∇u) · tη
. (3.9.14)

3.9.2 Free surfaces

Equations (3.9.3) do not apply at a stationary, moving, or evolving free surface where the tangential
velocity component is not necessarily zero. However, because a free surface cannot support shear
stress, the tangential component of the traction must be zero,

f × n = (n · σ)× n = 0. (3.9.15)

Expressing the stress tensor in terms of the pressure and the rate-of-deformation tensor using the
Newtonian constitutive equation, σ = −pI+ μ∇u+ μ(∇u)T , we find that

f × n = μ
(
(n · ∇u)× n− n× [(∇u) · n]

)
= 0. (3.9.16)

Rearranging, we derive the condition of zero shear stress

(n · ∇u)× n = n× [(∇u) · n]. (3.9.17)

The tangential component of the vorticity at an arbitrary surface is

ω · (I− n⊗ n) = (n× ω)× n = [ (∇u) · n− n · ∇u ]× n. (3.9.18)

Implementing the condition of zero shear stress stated in (3.9.17), we obtain

ωfs · (I− n⊗ n) = −2 (n · ∇u)× n = 2 [(∇u) · n]× n (3.9.19)

or

ωfs · (I− n⊗ n) = 2
(
∇(u · n)− (∇n) · u]

)
× n. (3.9.20)

The first term on the right-hand side of (3.9.20) contains derivatives of the normal component of the
velocity tangential to the free surface. The derivatives of the normal vector in the second term are
related to the normal curvatures of the free surface in the normal plane that contains the velocity
and its conjugate plane, as discussed in the next section for steady flow.
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y

Figure 3.9.2 A local Cartesian system attached to a free surface with the x axis pointing in the
direction of the velocity vector.

Steady flow

The first term on the right-hand side of (3.9.19) vanishes over a stationary free surface where the
normal velocity is zero, u · n = 0. It is useful to introduce a local Cartesian system with origin at
a point on a free surface, the x axis pointing in the direction of the velocity vector, and the y axis
pointing normal to the free surface, as shown in Figure 3.9.2. Setting n =

[
0, 1, 0

]
, we find that the

tangential component of the vorticity is given by

ωt = 2
[
0, 1, 0

]
×
(
(∇n) · [ux, 0, 0]

)
= 2ux (

∂nx

∂z
ex − ∂nx

∂x
ez ), (3.9.21)

where ex is the unit vector along the x axis and ez is the unit vector along the z axis. The derivative,
κx = ∂nx/∂x, is the principal curvature of the free surface in the xy plane.

3.9.3 Two-dimensional flow

Simplified expressions for the boundary traction and vorticity can be derived in the case of two-
dimensional flow in the xy plane.

Rigid boundaries

First, we consider the structure of a flow near a stationary rigid boundary with reference to the local
coordinate system illustrated in Figure 3.9.3(a). Using (3.9.3), we find that the z component of the
vorticity and tangential component of the wall shear stress at the origin are given by

ωz = −∂ux

∂y
, σxy = −μωz = μ

∂ux

∂y
. (3.9.22)

Thus, σxy = −μωz, revealing an intimate connection between the wall vorticity and the shear stress
at a solid boundary.

Stagnation point at a solid boundary

Next, we concentrate on the structure of the flow in the vicinity of a stagnation point illustrated in
Figure 3.9.3(b). Near the wall, the fluid moves in opposite directions on either side of the stagnation
point. Because the wall shear stress and vorticity have opposite signs on either side of the stagnation
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Figure 3.9.3 Illustration of (a) a two-dimensional flow near a solid wall and (b) a stagnation point on
a solid wall.

point, both must be zero at the stagnation point. Conversely, the vanishing of the shear stress or
vorticity provides us with a criterion for the occurrence of a stagnation point.

To demonstrate further that the shear stress is zero at a stagnation point by considering a
point that lies on the dividing streamline near the stagnation point, at the position (dx,dy). Setting
the position vector, (dx, dy), parallel to the velocity at that point, and expressing the velocity in a
Taylor series about the stagnation point, we find that

tanα =
dy

dx
=

uy

ux
=

∂uy

∂x
dx+

∂uy

∂y
dy

∂ux

∂x
dx+

∂ux

∂y
dy

, (3.9.23)

where α is the angle that the dividing streamline forms with the x axis, and all partial derivatives
are evaluated at the stagnation point. Using the continuity equation to write ∂uy/∂y = −∂ux/∂x
and enforcing the no-slip boundary condition, we find that all partial derivatives ∂uy/∂y, ∂ux/∂x,
∂uy/∂x, at the origin are zero. Since the slope of the dividing streamline is finite, the partial
derivative ∂ux/∂y must also be zero, yielding the condition of vanishing vorticity and wall shear
stress at a stagnation point.

Now assuming that the wall is flat, we seek to predict the slope of the dividing streamline in
terms of the structure of the velocity. Since the first-order terms in the fraction in (3.9.23) vanish,
we must retain the second-order contributions, obtaining

tanα =
dy

dx
=

uy

ux
=

∂2uy

∂x2
(dx)2 + 2

∂2uy

∂x∂y
(dx) (dy) +

∂2uy

∂y2
(dy)2

∂2ux

∂x2
(dx)2 + 2

∂2ux

∂x∂y
(dx) (dy) +

∂2ux

∂y2
(dy)2

(3.9.24)
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Figure 3.9.4 (a) Illustration of a two-dimensional flow under a free surface. The origin of the plane
polar coordinates, (r, θ), is set at the center of curvature at a point on the surface. (b) Illustration
of a stagnation point at a stationary free surface; the dividing streamline crosses the free surface
at a right angle.

or

tanα =
dy

dx
=

uy

ux
=

∂2uy

∂x2
+ 2

∂2uy

∂x∂y
tanα+

∂2uy

∂y2
tan2 α

∂2ux

∂x2
+ 2

∂2ux

∂x∂y
tanα+

∂2ux

∂y2
tan2 α

. (3.9.25)

Enforcing the no-slip boundary condition and using the continuity equation, we find that

∂2uy

∂x2
= 0,

∂2uy

∂x∂y
= −∂2ux

∂x2
= 0. (3.9.26)

Writing ∂2uy/∂y
2 = −∂2ux/∂x∂y and rearranging (3.9.25), we obtain

tanα = −3
( ∂2ux

∂x∂y
)/
(∂2ux

∂y2

)
= −3

(∂fx
∂x

)
/
(∂p
∂x

)
, (3.9.27)

where fx is the boundary traction, p is the hydrodynamic pressure, and all variables are evaluated
at the stagnation point [289]. To derive the expression in the denominator on the right-hand side of
(3.9.27), we have applied the Navier–Stokes equation at the stagnation point and used the no-slip
boundary condition to set μ∂2ux/∂y

2 = ∂p/∂x, where p is the hydrodynamic pressure. Equation
(3.9.27) applies also at a stagnation point on curved wall, provided that the derivatives with respect
to x are replaced by derivatives with respect to arc length, l [248].

Vorticity at an evolving free surface

Next, we consider the flow below an evolving two-dimensional free surface and introduce Cartesian
coordinates where the x axis is tangential and the y axis is perpendicular to the free surface at a
point, as shown in Figure 3.9.4(a). The z vorticity component and shear stress at the free surface
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are

ωz =
∂uy

∂x
− ∂ux

∂y
, σxy = μ

(∂uy

∂x
+

∂ux

∂y

)
. (3.9.28)

Setting the shear stress to zero, as required by definition for a free surface, we obtain

ωz = 2
∂uy

∂x
= 2 t · (∇u) · n = 2 t · ∇(u · n)− 2 t · (∇n) · u, (3.9.29)

where t is the tangent unit vector. Using the Frenet–Serret relation t · ∇n = ∂n/∂l = κ t, we write

ωz = 2 t · ∇(u · n)− 2κu · t, (3.9.30)

where l is the arc length along the free surface and κ is the curvature of the free surface. In terms
of the stream function, ψ, we obtain

ωz = −2
∂2ψ

∂l2
− 2κ

∂ψ

∂ln
, (3.9.31)

where ln is the arc length in the direction of the normal unit vector, n.

Vorticity at a stationary free surface

Since the free surface of a steady flow is also a streamline, we may use (1.11.9) to simplify further
the right-hand side of the expression for the shear stress given in (3.9.28), obtaining

σxy = −μκu · t+ μ
∂ux

∂y
. (3.9.32)

Introducing plane polar coordinates with origin at the center of curvature of the free surface at an
arbitrary point, (r, θ), as shown in Figure 3.9.4(a), we find that

σxy = μ
uθ

R
− μ

∂uθ

∂r
= −μR

[ ∂

∂r

(uθ

r

)]
r=R

, (3.9.33)

where R = 1/κ is the radius of curvature and all expressions are evaluated at r = R. Setting the
shear stress to zero and combining (3.9.32) with (1.11.10), we derive a simple expression for the
vorticity over a stationary free surface in terms of the tangential velocity and curvature of the free
surface,

ωz = −2κu · t. (3.9.34)

This expression demonstrates that the vorticity is zero at a stagnation point along a free-surface
where the velocity is zero, at an inflection point on a free-surface where the curvature is zero, and
over a planar free surface.

It is reassuring to observe that (3.9.34) also arises from the general relation (3.9.20) for three-
dimensional flow by setting ∂nx/∂z = 0 to obtain ωT = −2uxκxez.
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Figure 3.9.5 Illustration of a stagnation point at a stationary fluid interface. When the shear stress
is continuous across the interface, the slopes of the dividing streamlines obey a refraction law.

Stagnation point at a stationary free surface

A stagnation-point flow at a free surface is illustrated in Figure 3.9.4(b). In terms of the local
coordinates x and y, the slope of the dividing streamline at the stagnation point is given by (3.9.23),
where all partial derivatives are evaluated at the stagnation point. Taking into account the first
equation in (1.11.9) and (3.9.32), we find that ∂ux/∂y and ∂uy/∂x are zero at the stagnation point.
The continuity equation requires that ∂ux/∂x = −∂uy/∂y, which shows that tanα must either be
zero, in which case we obtain a degenerate stagnation point, or negative infinity. We conclude that
the dividing streamline must meet a free surface at a right angle.

Stagnation point at a stationary interface

A stagnation point at the interface between two viscous fluids labeled 1 and 2 is illustrated in Figure
3.9.5. Applying (3.9.23) at a point at the dividing streamline in the upper fluid and using (1.11.9)
to set ∂uy/∂x = 0 and the continuity equation to write ∂uy/∂y = −∂ux/∂x, we obtain

tanα1 = −2
∂u

(1)
x /∂x

∂u
(1)
x /∂y

. (3.9.35)

Dividing corresponding sides of (3.9.35) with their counterparts for the second fluid and noting that,
because the velocity is continuous across the interface, the derivative ∂ux/∂x is shared by the two
fluids, we obtain

tanα1

tanα2
=

∂u
(2)
x /∂y

∂u
(1)
x /∂y

. (3.9.36)

Now using (3.9.32) and requiring that the velocity is continuous across the interface, we find
that the jump in the tangential component of the traction across the interface at the stagnation
point is given by

(f · t)(1) − (f · t)(2) = μ1
∂u

(1)
x

∂y
− μ2

∂u
(2)
x

∂y
. (3.9.37)
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Assuming that the shear stress is continuous across the interface, we set the left-hand side of (3.9.37)
to zero and combine the resulting equation with (3.9.36) to derive the remarkably simple formula

tanα1

tanα2
=

μ1

μ2
, (3.9.38)

which can be regarded as a refraction law for the dividing streamline [248]. When the viscosities of
the two fluids are matched, the dividing streamlines join smoothly at the stagnation point.

Problems

3.9.1 Force on a boundary

Draw a sequence of surfaces enclosing a stationary rigid body in a flow and uniformly tending to
the surface of the body. Denoting the typical separation between a surface and the body by ε, we
compute the force F(ε) exerted on the surface and plot the magnitude of F against ε. Do you expect
that the graph will show a sharp variation as ε tends to zero?

3.9.2 Force on a boundary

Derive (3.9.33) working in the plane polar coordinates illustrated in Figure 3.9.4(a).

3.9.3 Traction normal to a line in a two-dimensional flow

(a) Show that the component of the traction normal to an arbitrary line in a two-dimensional flow
is given by

f · n = −p+ 2μ
∂(u · t)

∂l
− 2μκu · n = −p− 2μ

∂2ψ

∂l∂ln
+ 2μκ

∂ψ

∂l
, (3.9.39)

where l is the arc length along the line, t is the tangent unit vector, κ is the curvature of the line,
ln is the arc length measured in the direction of the normal vector, n, and ψ is the stream function.

(b) Use equation (3.9.39) to derive a boundary condition for the pressure at a free surface in the
presence of surface tension.

(c) Use equation (3.9.39) to derive a boundary condition for the jump in pressure across a fluid
interface in the presence of surface tension.

3.10 Scaling of the Navier–Stokes equation and dynamic similitude

Evaluating the various terms of the Navier–Stokes equation at a point in a flow, we may find a
broad range of magnitudes. Depending on the structure of the flow and location in the flow, some
terms may make dominant contributions and should be retained, while other terms may make
minor contributions and could be neglected without compromising the integrity of the simplified
description. To identify this opportunity and benefit from concomitant simplifications, we inspect
the structure the a flow and find that the magnitude of the velocity typically changes by an amount
U over a distance L. This means that the magnitudes of the first or second spatial derivatives of the
velocity are comparable, respectively, to the magnitudes of the ratios U/L and U/L2. Furthermore,
we typically find that the magnitude of the velocity at a particular point in the flow changes by U
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over a time period T , which means that the magnitude of the first partial derivative of the velocity
with respect to time is comparable to the ratio U/T .

Characteristic scales

Typically, but not always, the characteristic length L is related to the size of the boundaries, the
characteristic velocity U is determined by the particular mechanism driving the flow, and the char-
acteristic time T is either imposed by external means or simply defined as T = L/U . In the case
of unidirectional flow through a channel or tube, U can be identified with the maximum velocity
across the channel or tube. In the case of uniform flow past a stationary body, U can be identified
with the velocity of the incident flow. In the case of forced oscillatory flow, T can be identified with
the period of oscillation.

Nondimensionalization

Next, we scale all terms in the Navier–Stokes equation using the aforementioned scales and compare
their relative magnitudes. To accomplish the first task, we introduce the dimensionless variables

û ≡ u

U
, x̂ ≡ x

L
, t̂ ≡ t

T
, p̂ ≡ pL

μU
. (3.10.1)

Expressing the dimensional variables in terms of corresponding dimensionless variables and substi-
tuting the result into the Navier–Stokes equation, we obtain the dimensionless form

β
∂û

∂t̂
+Re û · ∇̂û = −∇̂p̂+ ∇̂2û+

Re

Fr2
g

g
, (3.10.2)

where the gradient ∇̂ involves derivatives with respect to the dimensionless position vector, x̂, and
g = |g|. Since the magnitudes of the dimensionless variables and their derivatives in (3.10.2) are of
order unity, and since g/g is a unit vector expressing the direction of the body force, the relative
importance of the various terms is determined by the magnitude of their multiplicative factors, which
are the frequency parameter, β, the Reynolds number, Re, and the Froude number, Fr, defined as

β ≡ L2

νT
, Re ≡ UL

ν
, Fr ≡ U√

gL
, (3.10.3)

where ν is the kinematic viscosity of the fluid with dimensions of length squared divided by time.

The frequency parameter, β, expresses the relative magnitudes of the inertial acceleration
force and the viscous force, or equivalently, the ratio of the characteristic diffusion time, L2/ν, to
the time scale of the flow, T . The Reynolds number expresses the relative magnitudes of the inertia
convective force and the viscous force, or equivalently, the ratio of the characteristic diffusion time,
L2/ν, to the convective time, L/U . The Froude number expresses the relative magnitudes of the
inertial convective force and the body force. The group

Re

Fr
=

gL2

νU
(3.10.4)

expresses the relative magnitudes of the body force and the viscous force.



252 Introduction to Theoretical and Computational Fluid Dynamics

In the absence of external forcing, T , is identified with the convective time scale, L/U , β
reduces to Re, and the dimensionless Navier–Stokes equation (3.10.2) involves only two independent
parameters, Re and Fr.

3.10.1 Steady, quasi-steady, and unsteady Stokes flow

When Re � 1 and β � 1, both terms on the left-hand side of (3.10.2) are small compared to the
terms on the right-hand side and can be neglected. Reverting to dimensional variables, we find that
the rate of change of momentum of fluid parcels ρDu/Dt is negligible and the flow is governed by
the Stokes equation

−∇p+ μ∇2u+ ρg = 0, (3.10.5)

stating that pressure, viscous, and body forces balance at every instant. A flow that is governed by
the Stokes equation is called a Stokes or creeping flow.

The absence of a temporal derivative in the equation of motion does not necessarily mean
that that the flow is steady, but only implies that the forces exerted on fluid parcels are at equilib-
rium. Consequently, the instantaneous structure of the flow depends only on the present boundary
configuration and boundary conditions, which means that the flow is in a quasi-steady state. Stated
differently, the history of motion enters the physical description only insofar as to determine the
current boundary configuration.

Steady and quasi-steady Stokes flows are encountered in a variety of natural and engineering
applications. Examples include slurry transport, blood flow in capillary vessels, flow due to the mo-
tion of ciliated micro-organisms, flow past microscopic aerosol particles, flow due to the coalescence
of liquid drops, and flow in the mantle of the earth due to natural convection. In certain cases, the
Reynolds number is low due to small boundary dimensions as in the case of flow past a red blood
cell, which has an average diameter of 8μm. In other applications, the Reynolds number is low due
to the small magnitude of the velocity or high kinematic viscosity. An example is the flow due to
the motion of an air bubble in a very viscous liquid such as honey or glycerin.

The linearity of the Stokes equation allows us to conduct extensive theoretical studies, analyze
the properties of the flow, and generate desired solutions by linear superposition using a variety of
analytical and computational methods. An extensive discussion of the properties and methods of
computing Stokes flow will be presented in Chapter 6.

Unsteady Stokes flow

When Re � 1 but β ∼ 1, the nonlinear inertial convective term on the left-hand side of (3.10.2) is
negligible compared to the rest of the terms and can be discarded. Reverting to dimensional variables,
we find that the nonlinear component of the point-particle acceleration, u · ∇u, is insignificant, and
the rate of change of momentum of a point particle can be approximated with the Eulerian inertial
acceleration force, ρ ∂u/∂t. The motion of the fluid is governed by the unsteady Stokes equation,
also called the linearized Navier–Stokes equation,

ρ
∂u

∂t
= −∇p+ μ∇2u+ ρg. (3.10.6)
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Because of the presence of the acceleration term involving a time derivative on the left-hand side, the
instantaneous structure of the flow depends not only on the instantaneous boundary configuration
and boundary conditions, but also on the history of fluid motion.

Physically, the unsteady Stokes equation describes flows characterized by sudden acceleration
or deceleration. Three examples are the flow occurring in hydrodynamic braking, the flow occurring
during the impact of a particle on a solid surface, and the initial stages of the flow due to a particle
settling from rest in an ambient fluid. The linearity of the unsteady Stokes equation allows us to
compute solutions for oscillatory and general time-dependent motion using a variety of methods,
including Fourier and Laplace transforms in time and space, as well as construct solutions by linear
superposition. The properties and methods of computing unsteady Stokes flow are discussed in
Sections 6.15–6.18.

3.10.2 Flow at high Reynolds numbers

It may appear that, when Re � 1 and β � 1, both the pressure and viscous terms on the right-
hand side of the equation of motion (3.10.2) are negligible compared to the terms on the left-hand
side. While this may be true in certain cases, because of the subjective scaling of the pressure,
the magnitude of the dimensionless pressure gradient may not remain of order unity in the limit of
vanishing Re and β.

To allow for this possibility, we rescale the pressure by introducing a new dimensionless pres-
sure defined as

π̂ ≡ p

ρU2
=

1

Re
p̂. (3.10.7)

Working as previously, we obtain a new dimensionless form of the Navier–Stokes equation,

β
∂û

∂t̂
+Re û · ∇̂û = −Re ∇̂π̂ + ∇̂2û+

Re

Fr2
g

|g| . (3.10.8)

Now considering the limits Re � 1 and β � 1, we find that the viscous term becomes small compared
to the rest of the terms and can be neglected, yielding Euler’s equation,

β

Re

∂û

∂t̂
+ û · ∇̂û = −∇̂π̂ +

1

Fr2
g

|g| , (3.10.9)

where β/Re = L/(TU). We have found that, at high Reynolds numbers, a laminar flow behaves like
an inviscid flow in the absence of small-scale turbulent motion. By neglecting the viscous term, we
have lowered the order of the Navier–Stokes equation from two to one, by one unit. This reduction
has important implications on the number of required boundary conditions, spatial structure of the
flow, and properties of the solution.

3.10.3 Dynamic similitude

Let us consider a steady or unsteady flow in an domain of finite or infinite extent, specify suitable
boundary conditions, and introduce the dimensionless variables shown in (3.10.1) to obtain the di-
mensionless Navier–Stokes equation (3.10.2). In terms of the dimensionless variables, the continuity
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equation becomes

∇̂ · û = 0, (3.10.10)

and the boundary conditions can be expressed in the symbolic form

F(û, σ̂) = 0, (3.10.11)

where σ̂ is the nondimensional stress tensor. The function F may contain dimensionless constants
defined with respect to the physical properties of the fluid, the characteristic scales U , L, and T ,
the body force, and other physical constants that depend on the nature of the boundary conditions,
such as the surface tension, γ, and the slip coefficient. Three dimensionless numbers pertinent to an
interface between two immiscible fluids are the Bond number (Bo), the Weber number (We), and
the capillary number (Ca), defined as

Bo =
ρgL2

γ
, We =

ρLU2

γ
. Ca =

μU

γ
. (3.10.12)

The Bond number expresses the significance of the gravitational force relative to surface tension.
The Weber number expresses the significance of the inertial force relative to surface tension. The
capillary number expresses the significance of the viscous stresses relative to surface tension.

In the space of dimensionless variables, the flow is governed by the equation of motion (3.10.2)
and the continuity equation (3.10.10), and the solution satisfies the conditions stated in (3.10.11). It
is evident then that the structure of a steady flow and the evolution of an unsteady flow depend on
(a) the values of the dimensionless numbers β, Re, and Fr, (b) the functional form of the boundary
conditions stated in (3.10.11), and (c) the values of the dimensionless numbers involved in (3.10.11).
Two flows in two different physical domains will have a similar structure provided that, in the
space of corresponding dimensionless variables, the boundary geometry, initial state, and boundary
conditions are the same. Similarity of structure means that the velocity or pressure field of the
first flow can be deduced from those of the second flow, and vice versa, by multiplication with an
appropriate factor.

Dynamic similitude can be exploited to study the flow of a particular fluid in a certain domain
by studying the flow of another fluid in a similar, larger or smaller, domain. This is achieved by
adjusting the properties of the second fluid, flow domain, or both, to match the values of β, Re, Fr,
and any other dimensionless numbers entering the boundary conditions. Miniaturization or scale-up
of a domain of flow is important in the study of large-scale flows, such as flow past aircraft, and
small-scale flows, such as flow past microorganisms and small biological cells and flow over surfaces
with small-scale roughness and imperfections.

Problems

3.10.1 Scaling for a translating body in a moving fluid

A rigid body translates steadily with velocity V in an infinite fluid that moves with uniform velocity
U. Discuss the scaling of the various terms in the Navier–Stokes equation and derive the appropriate
Reynolds number.
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3.10.2 Dimensionless form of interfacial boundary conditions

(a) Express the interfacial boundary conditions (3.8.8) in dimensionless form and identify an appro-
priate dimensionless number.

(b) Develop a relation between the Weber number, the Reynolds number, and the capillary number.

3.10.3 Walking and running

Compute the Reynolds number of a walking or running adult person. Repeat for an ant and an
elephant.

3.10.4 Flow past a sphere

We want to study the structure of uniform (streaming) flow of water with velocity U = 40 km/hr
past a stationary sphere with diameter D = 0.5 cm. For this purpose, we propose to study uniform
flow of air past another sphere with larger diameter, D = 10 cm. What is the appropriate air speed?

3.11 Evolution of circulation around material loops
and dynamics of the vorticity field

Previously in this chapter, we discussed the structure and dynamics of an incompressible Newtonian
flow with reference to the equation of motion. Useful insights into the physical mechanisms governing
the motion of the fluid can be obtained by studying the evolution of the circulation around material
loops and the dynamics of the vorticity field. The latter illustrates the physical processes contributing
to the rate of change of the angular velocity of small fluid parcels. We will see that the rate of
change of the vorticity obeys a set of rules that are amenable to appealing and illuminating physical
interpretations.

3.11.1 Evolution of circulation around material loops

To compute the rate of change of the circulation around a closed reducible or irreducible material
loop of a Newtonian fluid, L, we combine (1.12.10) with the Navier–Stokes equation (3.5.5), assume
that the viscosity of the fluid and the acceleration of gravity are uniform throughout the domain of
flow, and obtain

dC

dt
=

∮
L

(
− 1

ρ
∇p+ ν∇2u+ g

)
· dX, (3.11.1)

where X is the position of a point particle along the loop. Since the integral of the derivative of a
function is equal to the function itself, the integral of the last term on the right-hand side of (3.11.1)
makes a vanishing contribution. A similar reasoning reveals that, when the density of the fluid is
uniform or the fluid is barotropic, the integral of the pressure term is also zero. Setting the Laplacian
of the velocity equal to the negative of the curl of the vorticity, we obtain the simplified form

dC

dt
= ν

∮
L

(∇2u) · dX = −ν

∮
L

(∇× ω) · dX. (3.11.2)

If the vorticity field is irrotational, ∇×ω = 0, the integral on the right-hand vanishes and the rate
of change of the circulation is zero.
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3.11.2 Kelvin circulation theorem

When viscous forces are insignificant, we obtain

dC

dt
=

d

dt

∫∫
D

ω · n dS = 0, (3.11.3)

where D is an arbitrary surface bounded by the loop and n is the unit vector normal to D. Equation
(3.11.3) expresses Kelvin’s circulation theorem, stating that the circulation around a closed material
loop in a flow with negligible viscous forces is preserved during the motion. As a consequence, the
circulation around a loop that wraps around a toroidal boundary, and thus the cyclic constant of
the motion around the boundary, remain constant in time.

Now we consider a reducible loop, take the limit as the loop shrinks to a point, and find that,
when the conditions for Kelvin’s circulation theorem to apply are fulfilled, point particles maintain
their initial vorticity, which means that they keep spinning at a constant angular velocity as they
translate and deform in the domain of flow. Physically, the absence of a viscous torque exerted on
a fluid parcel guarantees that the angular momentum of the parcel is preserved during the motion.

3.11.3 Helmholtz theorems

One consequence of Kelvin’s circulation theorem is Helmholtz’ first theorem, stating that, if the
vorticity vanishes at the initial instant, it must vanish at all subsequent times. This behavior is
sometimes described as permanence of irrotational flow. Another consequence of Kelvin’s circula-
tion theorem is Helmholtz’ second theorem, stating that vortex tubes behave like material surfaces
maintaining their initial circulation. Thus, line vortices are material lines consisting of a permanent
collection of point particles.

3.11.4 Dynamics of the vorticity field

The Lagrangian form of the equation of motion provides us with the acceleration of point particles,
while the Eulerian form of the equation of motion provides us with the rate of change of the velocity
at a point in a flow in terms of the instantaneous velocity and pressure fields. To derive corresponding
expressions for the angular velocity of point particles and rate of change of the vorticity at a point
in a flow, we take the curl of the Navier–Stokes equation (3.5.5). Using the identity

∇× (u · ∇u) = u · ∇ω − ω · ∇u, (3.11.4)

and assuming that the acceleration of gravity is constant throughout the domain of flow, we derive
the vorticity transport equation,

Dω

Dt
≡ ∂ω

∂t
+ u · ∇ω = ω · ∇u+

1

ρ2
∇ρ×∇p+ ν∇2ω +∇ν ×∇2u+ 2∇×

(1
ρ
∇μ ·E

)
, (3.11.5)

where E is the rate-of-deformation tensor. Projecting both sides of (3.11.5) onto half the moment
of inertia of a small fluid parcel provides us with an angular momentum balance.
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Now restricting our attention to fluids whose viscosity is uniform throughout the domain of
flow, we obtain the simplified form

Dω

Dt
=

∂ω

∂t
+ u · ∇ω = ω · ∇u+

1

ρ2
∇ρ×∇p+ ν∇2ω. (3.11.6)

We could solve the Navier–Stokes for the pressure gradient and substitute the result into the right-
hand side of (3.11.6) to derive an expression in terms of the velocity and vorticity, but this is necessary
neither in theoretical analysis nor in numerical computation. The left-hand side of (3.11.6) expresses
the material derivative of the vorticity, which is equal to the rate of change of the vorticity following
a point particle, or half the rate of change of the angular velocity of the point particle.

Reorientation and vortex stretching

The first term on the right-hand side of (3.11.6), ω · ∇u, expresses generation of vorticity due to
the interaction between the vorticity field and the velocity gradient tensor, L = ∇u. Comparing
(3.11.6) with (1.6.1), we find that, under the action of this term, the vorticity vector evolves as a
material vector, rotating with the fluid while being stretched under the action of the flow. Thus,
generation of a Cartesian vorticity component in a particular direction is due to both reorientation
of the vortex lines under the action of the local flow, and compression or stretching of the vorticity
vector due to the straining component of the local flow. The second mechanism is known as vortex
stretching.

To illustrate further the nature of the nonlinear term, ω · ∇u, we begin with the statement
ω × ω = 0 and use a vector identity to write

ω × ω = (∇× u)× ω = ω · ∇u− ω · (∇u)T = 0, (3.11.7)

where the superscript T denotes the matrix transpose. Consequently,

ω · ∇u = ω · (∇u)T = (∇u) · ω. (3.11.8)

This identity allows us to write

ωj
∂ui

∂xj
= ωj

∂uj

∂xi
= ωj Eji = ωj

(
β
∂ui

∂xj
+ (1− β)

∂uj

∂xi

)
, (3.11.9)

where β is an arbitrary constant. If the vorticity vector happens to be an eigenvector of the rate-of-
deformation tensor, E, it will amplify or shrink in its direction, behaving like a material vector.

Baroclinic production

The second term on the right-hand side of (3.11.6), 1
ρ2 ∇ρ×∇p, expresses baroclinic generation of

vorticity due to the interaction between the pressure and density fields. To illustrate the physical
process underlying this coupling, we consider a vertically stratified fluid that is set in motion by
the application of a horizontal pressure gradient. The heavier point particles at the top accelerate
slower than the lighter fluid particles at the bottom. Consequently, a vertical fluid column buckles
in the counterclockwise direction, thus generating vorticity with positive sign. When the density of
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the fluid is uniform or the pressure is a function of the density alone, the baroclinic production term
vanishes. In the second case, the gradients of the pressure and density are parallel and their cross
product is identically zero.

Diffusion

The third term on the right-hand side of (3.11.6), ν∇2ω, expresses diffusion of vorticity with dif-
fusivity that is equal to the kinematic viscosity of the fluid, ν. Under the action of this term, the
Cartesian components of the vorticity vector diffuse like passive scalars.

Eulerian form

An alternative form of the vorticity transport equation (3.11.6) emerges by restating the nonlinear
term in the equation of motion in terms of the right-hand side of (3.5.9) before taking the curl. Noting
that the curl of the gradient of a continuous function is identically zero, we derive the Eulerian form
of the vorticity transport equation,

∂ω

∂t
+∇× (ω × u) =

1

ρ2
∇ρ×∇p+ ν∇2ω. (3.11.10)

The second term on the left-hand side incorporates the effects of convection, reorientation, and
vortex stretching.

3.11.5 Production of vorticity at an interface

In Section 3.8.6, we interpreted an interface between two immiscible fluids as a singular surface of
distributed force. Dividing (3.8.26) by the density and taking the curl of the resulting equation, we
find that the associated rate of production of vorticity is

∇×
(1
ρ
q
)
= − 1

ρ2
∇ρ× q+

1

ρ
∇× q, (3.11.11)

where q is the singular forcing function defined in (3.8.27). The first term of the right-hand side of
(3.11.11) can be combined with the baroclinic production term in the vorticity transport equation.
If the discontinuity in the surface force is normal to an interface, the vectors ∇ρ and q are aligned
and the interface does not make a contribution to the baroclinic production.

Concentrating on the second term on the right-hand side of (3.11.11), we define w = ∇ × q

and take the curl of (3.8.27) to find

wi = −εijk

∫∫
I

∂δ3(x− x′)

∂xj
Δfk(x

′) dS(x′), (3.11.12)

where I denotes the interface. In vector notation,

w = −
∫∫

I

∇δ3(x− x′) ×Δf(x′) dS(x′) =

∫∫
I

∇′δ3(x− x′) ×Δf(x′) dS(x′), (3.11.13)

where a prime over the gradient designates differentiation with respect to the integration point, x′.
The last expression shows that the second term on the right-hand side of (3.11.11) generates a sheet
of vortex dipoles causing a discontinuity in the velocity gradient across the interface.
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Two-dimensional flow

The nature of the last term on the right-hand side of (3.11.11) can be illustrated best by considering
a two-dimensional flow in the xy plane and computing

wz =

∫
I

∇′δ2(x− x′) · [Δf(x′)× ez] dl(x
′), (3.11.14)

where δ2 is the two-dimensional delta function in the plane of the flow, l is the arc length along the
interface, and ez is the unit vector along the z axis [261]. Decomposing the jump in the interfacial
traction into its normal and tangential components designated by the superscripts N and T , we
obtain

wz =

∫
I

∇′δ2(x− x′) · [−ΔfTn+ΔfNt](x′) dl(x′). (3.11.15)

We have assumed that the triplet (t,n, ez) forms a right-handed coordinates so that t × ez = −n

and n× ez = t.

The tangential component inside the integrand can be manipulated further by writing∫
I

ΔfN (x′) t(x′) · ∇′δ2(x− x′) dl(x′) =

∫
I

t(x′) · ∇′[ΔfN (x′) δ2(x− x′)] dl(x′)

−
∫
I

δ2(x− x′) t(x′) · ∇′[ΔfN (x′)] dl(x′). (3.11.16)

When the interface is closed or periodic, the first integral on the right-hand side vanishes and
(3.11.15) simplifies into

wz = −
∫
I

ΔfT (x′)n(x′) · ∇′δ2(x− x′) dl(x′) +

∫
I

δ2(x− x′) dΔfN (x′). (3.11.17)

The first term on the right-hand side expresses the generation of a sheet of vortex dipoles due to
the tangential component of the discontinuity in the interfacial traction. The second term expresses
the generation of a vortex sheet due to the normal component of the discontinuity in the interfacial
traction.

As an application, we consider an infinite flat interface parallel to the x axis and assume that
the normal component ΔfN is zero along the entire interface. Expression (3.11.17) becomes

wz = −ΔfT

∫
I

∂δ2(x− x′)

∂y′
dx′. (3.11.18)

Problem

3.11.1 Two-dimensional flow

Write the counterpart of equation (3.11.5) for the z vorticity component in two-dimensional flow in
the xy plane.
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3.12 Vorticity transport in a homogeneous or barotropic fluid

In the case of uniform-density fluids or barotropic fluids whose pressure is a function of the density
alone, the vorticity transport equation (3.11.6) simplifies into

Dω

Dt
≡ ∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω. (3.12.1)

The associated Eulerian form given in (3.11.10) becomes

∂ω

∂t
+∇× (ω × u) = ν∇2ω. (3.12.2)

Equation (3.12.1) shows that the vorticity at a particular point evolves due to convection, vortex
stretching, and viscous diffusion. The vorticity field, and thus the velocity field, is steady only
when the combined action balances to zero. Combining (3.12.2) with (1.12.11), we derive Kelvin’s
circulation theorem for a flow with negligible viscous forces.

Since the vorticity field is solenoidal, ∇ · ω = 0, we may write ∇2ω = −∇ × (∇ × ω) and
restate (3.12.2) as

∇×
(∂u
∂t

+ ω × u+ ν∇× ω
)
= 0, (3.12.3)

which ensures that the vector field inside the parentheses is and remains irrotational.

Generalized Beltrami flows

By definition, the nonlinear term on the left-hand side of (3.12.2) vanishes in a generalized Beltrami
flow,

∇× (ω × u) = 0. (3.12.4)

Equation (3.12.2) then reduces into the unsteady heat conduction equation for the Cartesian com-
ponents of the vorticity,

∂ω

∂t
= ν∇2ω. (3.12.5)

The class of generalized Beltrami flows includes, as a subset, Beltrami flows whose vorticity is aligned
with the velocity at every point, ω × u = 0.

If u and ω are the velocity and vorticity of a generalized Beltrami flow, their negative pair, −u

and −ω, also satisfies (3.12.2), and the reversed flow is also a generalized Beltrami flow (Problem
3.12.9). Since the direction of the velocity along the streamlines is reversed when we change the sign
of the velocity, a generalized Beltrami flow is sometimes called a two-way flow.

Flow with insignificant viscous forces

When viscous forces are insignificant, the vorticity transport equation (3.12.1) simplifies into

Dω

Dt
= ω · ∇u, (3.12.6)
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Figure 3.12.1 Illustration of the Burgers columnar vortex surviving in the presence of an axisymmetric
straining flow.

which is the foundation of Helmholtz’ theorems discussed in Section 3.11.3. Referring to (1.6.1), we
find that the vorticity vector behaves like a material vector in the following sense: if dl is a small
material vector aligned with the vorticity vector at an instant, then ω/|ω| = dl/|dl| at all times,
where ω is the vorticity at the location of the material vector.

Diffusion of vorticity through boundaries

According to equation (3.12.1), the rate of change of the vorticity vanishes throughout an irrotational
flow, and this seemingly suggests that the flow will remain irrotational at all times. However, this
erroneous deduction ignores the possibility that vorticity may enter the flow through the boundaries.
The responsible physical mechanism is analogous to that by which heat enters an initially isothermal
domain across the boundaries of a conductive medium due to a sudden change in the boundary
temperature.

The process by which vorticity enters a flow can be illustrated by considering the flow around
an impermeable boundary that is placed suddenly in an incident flow. To satisfy the no-penetration
boundary condition, we introduce an irrotational disturbance flow. However, we are still left with
a finite slip-velocity amounting to a boundary vortex sheet. Viscosity causes the singular vorticity
distribution associated with the vortex sheet to diffuse into the fluid, complementing the disturbance
irrotational flow, while the boundary vorticity is continuously adjusting in response to the developing
flow. If the fluid is inviscid, vorticity cannot diffuse into the flow, the vortex sheet adheres to the
boundary, and the flow remains irrotational.

3.12.1 Burgers columnar vortex

The Burgers columnar vortex provides us with an example of a steady flow where diffusion of vorticity
is counterbalanced by convection and stretching [62, 354]. The velocity field arises by superimposing
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a swirling flow describing a columnar vortex and an irrotational, axisymmetric, uniaxial extensional
flow, as shown in Figure 3.12.1. In cylindrical polar coordinates, (x, σ, ϕ), with the x axis pointing
in the direction of the vortex, the velocity components are

ux = ξx, uσ = −1

2
ξσ, uϕ = U(σ), (3.12.7)

where ξ is the rate of extension and U(σ) is the a priori unknown azimuthal velocity profile. The
radial and azimuthal vorticity components are identically zero, ωσ = 0 and ωϕ = 0, and the axial
vorticity component is given by

ωx(σ) =
1

σ

d(σU)

dσ
. (3.12.8)

Substituting the expressions for the velocity into the axial component of the vorticity transport
equation (3.12.2), setting the time derivative to zero to ensure steady state and rearranging, we
obtain a linear, homogeneous, second-order ordinary differential equation,

ξ
d(σ2ωx)

dσ
+ 2ν

d

dσ

(
σ
dωx

dσ

)
= 0. (3.12.9)

A nontrivial solution that is finite at the axis of revolution is

ωx = Aξ exp
(
− ξ

4ν
σ2
)
, (3.12.10)

where A is a dimensionless constant. Inspecting the argument of the exponential term, we find that
the diameter of the vortex is constant along the axis of revolution, and the size of the vortex is
comparable to the viscous length scale (4ν/ξ)1/2.

The azimuthal velocity profile is computed by integrating equation (3.12.8), finding the Gaus-
sian distribution

U(σ) = 2Aν
1

σ

[
1− exp

(
− ξ

4ν
σ2
) ]

. (3.12.11)

The azimuthal velocity is zero at the axis of revolution and decays like that due to a point vortex
far from the axis of revolution. Accordingly A = C/(4πν), where C is the circulation around a loop
with infinite radius. The rate of extension, ξ, determines the radius of the Burgers vortex; as ξ tends
to infinity, we obtain the flow due to a point vortex (see also Problem 3.12.1).

3.12.2 A vortex sheet diffusing in the presence of stretching

An example of a flow that continues to evolve until diffusion of vorticity is balanced by convection is
provided by a diffusing vortex sheet separating two uniform streams that merge along the x axis with
velocities ±U0, as illustrated in Figure 3.12.2. The vortex sheet is subjected to a two-dimensional
extensional velocity field in the yz plane stretching the vortex lines along the z axis. Stipulating
that the vortex lines are and remain oriented along the z axis, we express the three component of
the velocity and the z component of the vorticity as

uy = −ξy, uz = −ξz, ux = U(y, t) ωz = −dU

dy
, (3.12.12)
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Figure 3.12.2 A diffusing vortex sheet is subjected to a two-dimensional straining flow that stretches
the vortex lines and allows for steady state to be established. For the velocity profile shown, ωz < 0.

where U(y) is the velocity profile across the vortex layer and ξ is the rate of elongation of the
extensional flow.

Similarity solution

The absence of an intrinsic characteristic length scale suggests that the vortex layer may develop in
a self-similar fashion so that

ωz =
ξ

δ(t)
f(η), (3.12.13)

where δ(t) is the nominal thickness of the vortex layer to be computed as part of the solution,

η ≡ y

δ(t)
(3.12.14)

is a dimensionless similarity variable, and f is a function with dimensions of length. Substituting
expressions (3.12.12) and (3.12.13) into the z component of the vorticity transport equation and
rearranging, we obtain

δ
( dδ
dt

+ ξδ
)
= −ν

f ′′

f + ηf ′
, (3.12.15)

where a prime denotes a derivative with respect to η. We observe that the left-hand side of (3.12.15)
is a function of t alone, whereas the right-hand side is a function of both t and y. Each side
must be equal to the same constant, set for convenience equal to 2νA2, where A is a dimensionless
coefficient. Solving the resulting ordinary differential equations for δ and f subject to the initial
condition δ(0) = 0 and the stipulation that f is an even function of η, we obtain

δ2(t) = A2 2ν

ξ

(
1− e−2ξt

)
, f(η) = f(0) exp(−A2η2). (3.12.16)
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Substituting expressions (3.12.16) into (3.12.13), we derive the vorticity distribution

ωz = B
ξ

(1− e−2ξt)1/2
exp

[
− ξy2

2ν(1− e−2ξt)

]
, (3.12.17)

where

B =
1

A

( ξ

2ν

)1/2

f(0) (3.12.18)

is a new dimensionless constant. To compute the velocity profile, U(y), we substitute (3.12.17) into
the left-hand side of the last equation in (3.12.12). Integrating with respect to y, we obtain an
expression in terms of the error function,

erfw ≡ 2√
π

∫ w

0

e−υ2

dυ. (3.12.19)

The constant B then follows as

B = −U0

( 2

πξν

)1/2

(3.12.20)

(Problem 3.12.2). At the initial instant, the velocity profile U(y, 0) undergoes a discontinuity and
the thickness of the vortex layer is zero. As time progresses, the thickness of the vortex layer tends
to the asymptotic value δ∞ = A (2ν/ξ)1/2 where diffusion of vorticity away from the zx plane is
balanced by convection.

Burgers vortex layer

At steady steady, we obtain the Burgers vortex layer with vorticity and velocity profiles given by

ωz(y) = −U0

( 2ξ

πν

)1/2

exp
(
− ξy2

2ν

)
, U(y) = U0 erf

[( ξ

2ν

)1/2

y
]
. (3.12.21)

The pressure field can be computed using Bernoulli’s equation for the yz plane [62].

Unstretched layer

In the absence of straining flow, ξ = 0, the vortex layer diffuses to occupy the entire plane. To
describe the developing vorticity field, we linearize the exponential terms in (3.12.17) with respect
to their arguments and obtain

ωz(t) = −U0

( 1

πνt

)1/2

exp
(
− y2

4νt

)
. (3.12.22)

Integrating with respect to y, we derive the associated velocity profile

U(t) = U0 erfc
( y

2
√
νt

)
, (3.12.23)

where erfc = 1− erc is the complementary error function.
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3.12.3 Axisymmetric flow

In the case of axisymmetric flow without swirling motion, the axial and radial components of the
vorticity transport equation (3.12.2) are trivially satisfied. The azimuthal component of the vor-
ticity transport equation provides us with a scalar evolution equation for the azimuthal vorticity
component,

D

Dt

(ωϕ

σ

)
=

ν

σ2
E2(σ ωϕ), (3.12.24)

where E2 is a second-order operator defined in (2.9.17) and (2.9.20). The vortex stretching term
is inherent in the material derivative of ωϕ/σ on the right-hand side of the ratio (3.12.24). If the
azimuthal vorticity is proportional to the radial distance at the initial instant, ωϕ = Ωσ, where Ω is
a constant, the right-hand side of (3.12.24) vanishes and the vorticity remains proportional to the
radial distance at all times.

Flow with negligible viscous forces

Equation (3.12.24) shows that, if viscous effects are insignificant, point particles move in an azimuthal
plane while their vorticity is continuously adjusted so that the ratio ωϕ/σ remains constant in time,
equal to that at the initial instant,

D

Dt

(ωϕ

σ

)
= 0. (3.12.25)

Accordingly, the strength of a line vortex ring is proportional to its radius. The underlying physical
mechanism can be traced to preservation of circulation around vortex tubes.

3.12.4 Enstrophy and intensification of the vorticity field

The enstrophy of a flow is defined as the integral of the square of the magnitude of the vorticity
over the flow domain,

E ≡
∫∫∫

Flow

ω · ω dV. (3.12.26)

Projecting the vorticity transport equation onto the vorticity vector, we find that the enstrophy of
a flow with uniform physical properties evolves according to the equation

dE
dt

= 2

∫∫∫
Flow

(ω ⊗ ω) : E dV − 2ν

∫∫∫
Flow

∇ω : ∇ω dV + ν

∫∫
B

n · ∇(ω · ω) dS, (3.12.27)

where B stands for the boundaries of the flow. The three terms on the right-hand side represent, re-
spectively, intensification of vorticity due to vortex stretching, the counterpart of viscous dissipation
for the vorticity, and surface diffusion across the boundaries.

3.12.5 Vorticity transport equation in a noninertial frame

The equation of motion in an accelerating frame of reference that translates with time-dependent
velocity U(t) while rotating about the origin with angular velocity Ω(t) includes the inertial forces



266 Introduction to Theoretical and Computational Fluid Dynamics

shown in (3.2.43). Let be v the velocity in the noninertial frame defined in (3.2.36), and  be
the corresponding vorticity. Including the inertial forces in the inertial form of the Navier–Stokes
equation, taking the curl of the resulting equation, and rearranging, we find that the modified or
intrinsic vorticity, ω ≡ + 2Ω, satisfies the inertial form of the vorticity transport equation,

Dω

Dt
=

∂ω

∂t
+ v · ∇ω = ω · ∇v + ν∇2ω (3.12.28)

(Problem 3.12.6). The simple form of (3.12.28) is exploited for the efficient computation of an
incompressible Newtonian flow in terms of the velocity and intrinsic vorticity, as discussed in Section
13.2 (e.g., [383]).

Problems

3.12.1 Burgers columnar vortex

Evaluate the constant A in terms of the maximum value of the meridional velocity, U(σ).

3.12.2 Vortex layer

Derive the velocity profile associated with (3.12.17) and the value of the constant B shown in
(3.12.20).

3.12.3 Vorticity due to the motion of a body

Discuss the physical process by which vorticity enters the flow due to a body that is suddenly set in
motion in a viscous fluid.

3.12.4 Ertel’s theorem

Show that, for any scalar function of position and time, f(x, t),

D

Dt
(ω · ∇f) = ω · ∇

(Df

Dt

)
. (3.12.29)

Based on this equation, explain why, if the field represented by f is convected by the flow, Df/Dt = 0,
the scalar ω · ∇f will also be convected by the flow.

3.12.5 Generalized Beltrami flow

If we switch the sign of the velocity of a generalized Beltrami flow, should we also switch the sign
of the modified pressure gradient to satisfy the equation of motion?

3.12.6 Vorticity transport equation in a noninertial frame

Derive the vorticity transport equation (3.12.28).

3.13 Vorticity transport in two-dimensional flow

The vorticity transport equation for two-dimensional flow in the xy plane simplifies considerably
due to the absence of vortex stretching. We find that the x and y components of the general
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vorticity transport equation (3.12.2) are trivially satisfied, while the z component yields a scalar
convection–diffusion equation for the z vorticity component,

Dωz

Dt
≡ ∂ωz

∂t
+ u · ∇ωz = ν∇2ωz, (3.13.1)

where ∇2 is the two-dimensional Laplacian operator in the xy plane.

It is tempting to surmise that ωz behaves like a passive scalar. However, we must remember
that vorticity distribution has a direct influence on the development of the velocity field mediated
by the Biot–Savart integral.

Flow with negligible viscous forces

When the viscous force is insignificant, the right-hand side of (3.13.1) is zero, yielding the Lagrangian
conservation law

Dωz

Dt
= 0. (3.13.2)

Physically, point particles move while maintaining their initial vorticity, that is, they spin at a
constant angular velocity. Two consequences of this result are that point vortices maintain their
strength and patches of constant vorticity preserve their initial vorticity.

Prandtl–Batchelor theorem

In Section 3.11.1, we showed that the circulation of the curl of the vorticity along a closed streamline
is zero in a steady flow, ∮

t · (∇× ω) dl = 0. (3.13.3)

In the case of two-dimensional flow, this equation states that the contribution of the tangential
component of the viscous force to the total force exerted on the volume of a fluid enclosed by a
streamline is zero. Since the z vorticity component is constant along a streamline in the absence
of viscous forces, it can be regarded as a function of the stream function, ψ. The line integral in
(3.5.14) then becomes∮

t · (∇× ω) dl =

∮
t · (ex

∂ωz

∂y
− ey

∂ωz

∂x
) dl =

dωz

dψ

∮
t · (ex

∂ψ

∂y
− ey

∂ψ

∂x
) dl, (3.13.4)

where ex and ey are unit vectors along the x and y axis. Invoking the definition of the stream
function, we find that∮

t · (∇× ω) dl =
dωz

dψ

∮
t · (ex ux + ey uy ) dl =

dωz

dψ

∮
t · u dl. (3.13.5)

Setting the last expression to zero to satisfy (3.13.3), we find that either the circulation around the
streamline is zero or the vorticity is constant in regions of recirculating flow.
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Preservation of the total circulation in the absence of boundaries

The total circulation of a two-dimensional flow is defined as the integral of the vorticity over the
area of the flow,

Ω ≡
∫∫

Flow

ωz dA. (3.13.6)

Consider an infinite flow that decays at infinity in the absence of interior boundaries. Integrating
(3.13.1) over the whole domain of flow and using the continuity equation, we find that

dΩ

dt
=

∫∫
Flow

(−u · ∇ωz + ν∇2ωz) dA =

∫∫
Flow

∇ · (−ωzu+ ν∇ωz) dA. (3.13.7)

Using the divergence theorem, we convert the last areal integral into a line integral over a large loop
enclosing the flow. Since the velocity is assumed to vanish at infinity, the line integral is zero and
the total circulation of the flow remains constant in time. Physically, vorticity neither is produced
nor can escape in the absence of boundaries.

3.13.1 Diffusing point vortex

To illustrate the action of viscous diffusion, we consider the decay of a point vortex with strength κ
placed at the origin. The initial vorticity distribution can be expressed in terms of a two-dimensional
delta function in the xy plane, as ωz(x, t = 0) = κ δ2(x). Assuming that the flow remains axisym-
metric with respect to the z axis at all times, we introduce plane polar coordinates centered at the
point vortex, (r, θ), and simplify (3.13.1) into the scalar unsteady diffusion equation

∂ωz

∂t
=

ν

r

∂

∂r

(
r
∂ωz

∂r

)
. (3.13.8)

Since the nonlinear term vanishes, the flow due to a diffusing point vortex is a generalized Beltrami
flow.

The absence of an intrinsic length scale suggests that the solution is a function of the dimen-
sionless similarity variable η ≡ r/(νt)1/2, so that

ωz =
κ

νt
f(η), (3.13.9)

where f is an a priori unknown function. Substituting this functional form into (3.13.8), we derive
a second-order linear ordinary differential equation,

2 (ηf ′)′ + η2f ′ + 2fη = 0, (3.13.10)

where a prime denotes a derivative with respect to η. Requiring that the derivatives of f are finite
at the origin and the total circulation of the flow is equal to κ at any time, we obtain the solution

ωz =
κ

4πνt
exp

(
− r2

4νt

)
. (3.13.11)
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Figure 3.13.1 Profiles of (a) the dimensionless vorticity, Ωz ≡ ωza
2/κ, and (b) dimensionless velocity,

Uθ ≡ auθ/κ, around a diffusing point vortex at a sequence of dimensionless times, τ ≡ νt/a2 =
0.02, 0.04, . . ., where a is a reference length.

Integrating the definition ωz = (1/r)∂(ruθ)/∂r, we derive an expression for the polar velocity com-
ponent,

uθ =
κ

2πr

[
1− exp

(
− r2

4νt

) ]
, (3.13.12)

describing the flow due to a diffusing point vortex known as the Oseen vortex. Radial profiles of the
dimensionless vorticity, Ωz ≡ ωza

2/κ, and reduced velocity, Uθ ≡ auθ/κ, are shown in Figure 3.13.1
at a sequence of dimensionless times, τ ≡ νt/a2, where a is a reference length. As time progresses,
the vorticity diffuses away from the point vortex and tends to occupy the whole plane. Viscosity
smears the vorticity distribution and reduces the point vortex into a vortex blob.

3.13.2 Generalized Beltrami flows

The simple form of the vorticity transport equation for two-dimensional flow can be exploited to
derive exact solutions representing steady and unsteady, viscous and inviscid flows. When the
gradient of the vorticity is and remains perpendicular to the velocity vector, the nonlinear convective
term in the vorticity transport equation (3.13.1) is identically zero, yielding a generalized Beltrami
flow whose vorticity evolves according to the unsteady diffusion equation,

∂ωz

∂t
= ν∇2ωz. (3.13.13)

Since the gradient of the vorticity is perpendicular to the streamlines, and thus the vorticity is
constant along the streamlines, the vorticity can be regarded as a function of the stream function,

ωz = −∇2ψ = f(ψ). (3.13.14)
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Substituting (3.13.14) into (3.13.13) and rearranging, we obtain

∇2
(∂ψ
∂t

+ ν f(ψ)
)
= 0, (3.13.15)

which is fulfilled if the stream function evolves according to the equation

∂ψ

∂t
= −ν f(ψ) = ν∇2ψ. (3.13.16)

Specifying the function f and solving for ψ provides us with families of two-dimensional generalized
Beltrami flows. Setting f equal to zero or a constant value, we obtain irrotational flows and flows
with constant vorticity. Other families of steady and unsteady generalized Beltrami flows have been
discovered [419, 420].

Differentiating (3.13.16) with respect to x and y, we find that the Cartesian components of
the velocity satisfy the unsteady heat conduction equation,

∂u

∂t
= ν∇2u. (3.13.17)

To derive the associated pressure field, we substitute the first equation in (3.5.15) into the Navier–
Stokes equation (3.5.10), replace ∂u/∂t with the right-hand side of (3.13.17), and express the curl
of the vorticity on the right-hand as the negative of the Laplacian of the velocity. Simplifying and
integrating the resulting equation with respect to the spatial variables, we obtain

p = −1

2
ρu · u+ ρg · x− F (ψ) + c, (3.13.18)

where c is a constant and F (ψ) is the indefinite integral of the function f(ψ), as shown in (3.5.17).

Taylor cellular flow

An interesting unsteady generalized Beltrami flow arises by stipulating that the function f(ψ) in-
troduced in (3.13.14) is linear in ψ. Setting f(ψ) = α2ψ, where α is a constant with dimensions of
inverse length, and integrating in time the differential equation comprised of the first two terms in
(3.13.16), we obtain

ψ(x, y, t) = χ(x, y) exp(−α2νt). (3.13.19)

Equation (3.13.16) requires that the function χ satisfies Helmholtz’ equation

∇2χ = −α2 χ. (3.13.20)

The particular solution

χ = A cosh(βx) cos(γy) (3.13.21)

describes an exponentially decaying cellular periodic flow with wave numbers in the x and y directions
equal to β and γ, where β2 + γ2 = α2 and A is an arbitrary constant [397]. The corresponding
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Figure 3.13.2 Streamline pattern of the doubly periodic decaying Taylor cellular flow with square
cells.

pressure distribution is found from (3.13.18). The streamline pattern for β = γ in the plane of
dimensionless axes X = βx and Y = γy is shown in Figure 3.13.2.

Inviscid flow

When the effect of viscosity is insignificant, the terms multiplied by the kinematic viscosity in
(3.13.16) vanish. Accordingly, any time-independent solution of (3.13.14) represents an acceptable
steady inviscid flow. Examples include the flow due to a point vortex, the flow due to an infinite array
of point vortices, and any unidirectional shear flow with arbitrary velocity profile. The corresponding
pressure distributions are found from (3.13.18).

3.13.3 Extended Beltrami flows

Another opportunity for linearizing the vorticity transport equation arises by stipulating that the
vorticity distribution takes the particular form

ωz = −∇2ψ = −χ(x, y, t)− c ψ, (3.13.22)

where χ is a specified function and c is a specified constant with dimensions of inverse squared
length. The vorticity transport equation reduces to a linear partial differential equation for ψ,

∂∇2ψ

∂t
+

∂χ

∂x

∂ψ

∂y
− ∂χ

∂y

∂ψ

∂x
− νc2ψ = ν (∇2χ+ c χ), (3.13.23)

whose solution can be found for a number of cases in analytical form (e.g., [419, 420]).
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Kovasznay flow

As an example, consider a steady flow with χ = −cUy, where U is a constant [212]. Expression
(3.13.22) becomes

ωz = −∇2ψ = c (Uy − ψ). (3.13.24)

The steady version of the vorticity transport equation (3.13.23) simplifies into

U

νc

∂ψ

∂x
− ψ = −Uy. (3.13.25)

A solution is

ψ = U
[
y − α

2π

k
sin(ky) exp(βkx)

]
, (3.13.26)

where α is an arbitrary dimensionless constant, k is an arbitrary wave number in the y direction,
and β = cν/(kU) is a dimensionless number.

It remains to verify that (3.13.26) is consistent with the assumed functional form (3.13.24).
Substituting (3.13.26) into (3.13.24), we obtain a quadratic equation for β,

β2 − Re

2π
β − 1 = 0, (3.13.27)

where Re = 2πU/kν is a Reynolds number. Retaining the root with the negative value, we obtain

β = −1

2

[ (Re2
4π2

+ 4
)1/2

− Re

2π

]
. (3.13.28)

Streamline patterns in the plane of dimensionless axes X = x/a and Y = y/a, are illustrated
in Figure 3.13.3 for α = 1.0 and Re = 10 and 50, where a = 2π/k is the separation of two successive
cells along the y axis. In both cases, a stagnation point is present at the origin. The flow can be
envisioned as being established in the wake of an infinite array of cylinders arranged along the y
axis, subject to a uniform incident flow along the x axis. As the Reynolds number is raised, the
regions of recirculating flow become increasingly slender.

Problems

3.13.1 Prandtl–Batchelor theorem for axisymmetric flow

Derive the Prandtl–Batchelor theorem for axisymmetric flow with negligible viscous forces where
the ratio ωϕ/σ is constant along a streamline.

3.13.2 Flow over a porous plate with suction

Consider uniform flow with velocity U far above and parallel to a porous plate. Fluid is withdrawn
with a uniform velocity V through the plate. Show that the velocity field is given by

ux = U (1− e−yV/ν ), uy = V. (3.13.29)
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Figure 3.13.3 Streamline pattern of the Kovasznay flow for α = 1.0 and Reynolds number (a) Re =

10 or (b) 50.

Discuss the interpretation of the solution in terms of vorticity diffusion toward and convection away
from the plate.

3.13.3 Extended Beltrami flow

Show that the flow described by the stream function

ψ = −Uy (1− e−xU/ν ) (3.13.30)

can be derived as an extended Beltrami flow. Discuss the physical interpretation of this flow.



Hydrostatics 4
When a fluid is stationary or translates as a rigid body, the continuity equation is satisfied in a trivial
manner and the Navier–Stokes equation reduces into a first-order differential equation expressing a
balance between the pressure gradient and the body force. This simplified equation of hydrostatics
can be integrated by elementary methods, subject to appropriate boundary conditions, to yield the
pressure distribution inside the fluid. The integration produces a scalar constant that is determined
by specifying the level of the pressure at an appropriate point over a boundary. The product of
the normal unit vector and the pressure may then be integrated over the surface of an immersed
or submerged body to produce the buoyancy force. The torque with respect to a chosen point can
be computed in a similar way. Details of this procedure and applications will be discussed in this
chapter for fluids that are stationary or undergo steady or unsteady rigid-body motion.

In the case of two immiscible stationary fluids in contact, the interfacial boundary conditions
discussed in Section 3.8 require that the normal component of the traction undergoes a discontinuity
that is balanced by surface tension. In hydrostatics, the normal component of the traction is equal
to the negative of the pressure and the tangential component is identically zero. Accordingly, the
interface must assume a shape that is compatible with the pressure distribution on either side and
conforms with boundary conditions for the contact angle at a three-phase contact line. Conversely,
the pressure distribution in the two fluids cannot be computed independently, but must be found
simultaneously with the interfacial shape so that all boundary conditions are fulfilled. Depending on
the shape of the contact line, the magnitude of the contact angle, and the density difference between
the two fluids, a stationary interface may take a variety of interesting and sometimes unexpected
shapes (e.g., [52, 197]). For example, an interface inside a dihedral angle confined between two
planes may climb to infinity, as discussed in Section 4.2.1. The computation of interfacial shapes
presents us with a challenging mathematical problem involving highly nonlinear ordinary and partial
differential equations [126].

Our first task in this chapter is to derive the pressure distribution in stationary, translat-
ing, and rotating fluids. The equations governing interfacial hydrostatics are then discussed, and
numerical procedures for computing the shape of interfaces with two-dimensional (cylindrical) and
axisymmetric shapes are outlined. The computation of three-dimensional interfacial shapes and
available software are reviewed briefly at the conclusion of this chapter as specialized topics worthy
of further investigation.

274
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4.1 Pressure distribution in rigid-body motion

We begin by considering the pressure distribution in a stationary fluid. However, since any fluid
that moves as a rigid body appears to be stationary in a suitable frame of reference, we also include
fluids that execute steady or unsteady translation and rotation.

4.1.1 Stationary and translating fluids

The Navier–Stokes equation for a fluid that is either stationary or translates with uniform velocity
u = U(t) simplifies into a linear equation,

ρ
dU

dt
= −∇p+ ρg. (4.1.1)

Assuming that the density of the fluid is uniform and solving for the pressure, we obtain

p = ρ
(
g − dU

dt

)
· x+ P (t), (4.1.2)

where the function P (t) is found by enforcing an appropriate boundary condition reflecting the
physics of the problem under consideration.

Force on an immersed body

The force exerted on a body immersed in a stationary or translating fluid can be computed in terms
of the stress tensor using the general formula (3.1.16). Setting σ = −pI, we find that

F = −
∫∫

Body

pn dS, (4.1.3)

where n is the normal unit vector pointing into the fluid. Substituting expression (4.1.2) and using
the divergence theorem to convert the surface integral into a volume integral over the volume of the
body, we derive Archimedes’ buoyancy force,

F = −ρVB

(
g − dU

dt

)
, (4.1.4)

where VB is the volume occupied by the body.

Torque on an immersed body

The torque exerted on a body with respect to a chosen point, x0, is found working in a similar
manner using (3.1.23), finding

T = −ρVB (xc − x0)×
(
g − dU

dt

)
, (4.1.5)

where

xc ≡
1

VB

∫∫∫
Body

x dV (x) (4.1.6)
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Figure 4.1.1 (a) Depiction of a liquid layer resting between an underlying heavier liquid and overlying
air, illustrating the hydrostatic pressure profile. (b) A spherical particle floats at the flat surface of
a liquid at floating angle β; the dashed line represents the horizontal circular contact line.

is the volume centroid of the body. Placing the pivot point x0 at the volume centroid, xc, makes the
torque vanish. Using the divergence theorem, we derive a convenient representation for the volume
centroid in terms of a surface integral,

xc =
1

2VB

∫∫
Body

⎡⎣ x2 0 0
0 y2 0
0 0 z2

⎤⎦ · n dS(x), (4.1.7)

where n is the normal unit vector pointing into the fluid.

A floating liquid layer

As an application, we consider the pressure distribution in a stationary liquid layer labeled 1 with
thickness h, resting between air and a pool of a heavier liquid labeled 2, as shown in Figure 4.1.1(a).
Assuming that both the free surface and the liquid interface are perfectly flat, we introduce Cartesian
coordinates with origin at the free surface and the y axis pointing in the vertical direction upward
so that

gx = 0, gy = −g, (4.1.8)

where g = |g| is the magnitude of the acceleration of gravity. Applying the general equation (4.1.2)
with U = 0 for each fluid, we obtain the pressure distributions

p1 = −ρ1gy + P1, p2 = −ρ2gy + P2, (4.1.9)

where P1 and P2 are two constant pressures.

To compute the constant P1, we require that the pressure at the free surface of fluid 1 is
equal to the atmospheric pressure, patm, and find that P1 = patm. To compute the constant P2,
we apply both equations in (4.1.9) at the interface located at y = −h, and subtract the resulting
expressions to find that p2 − p1 = Δρgh+ P2 − patm, where Δρ = ρ2 − ρ1. Requiring continuity of
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the normal component of the traction or pressure across the interface, we obtain P2 = patm−Δρgh.
Substituting the values of P1 and P2 into (4.1.9), we obtain the explicit pressure distributions

p1 = −ρ1gy + patm, p2 = −ρ2gy + patm −Δρgh. (4.1.10)

The satisfaction of the dynamic condition p1(−h) = p2(−h) can be readily verified.

Pressure in a vibrating container

As a second application, we consider the pressure distribution in a liquid inside a container that
vibrates harmonically in the vertical direction with angular frequency Ω. Assuming that the free
surface remains flat, we introduce Cartesian axes with origin at the mean position of the free surface
and the y axis pointing against the direction of gravity, so that gy = −g. The position of the free
surface is described as y = a cos(Ωt), where a is the amplitude of the oscillation. The velocity of
the fluid is U(t) = −aΩsinΩ ey, where ey is the unit vector along the y axis. Using (4.1.2), we find
that the pressure distribution in the liquid is given by

p = −ρy
[
g − aΩ2 cos(Ωt)

]
+ P (t). (4.1.11)

The function P (t) is evaluated by requiring that the pressure at the free surface is equal to the
atmospheric pressure, patm, at any instant, obtaining

P (t) = patm + ρa cos(Ωt)
[
g − aΩ2 cos(Ωt)

]
. (4.1.12)

Substituting this expression into (4.1.11) and rearranging, we obtain

p = patm + ρ
[
y − a cos(Ωt)

] [
− g + aΩ2 cos(Ωt)

]
. (4.1.13)

The term inside the first square brackets on the right-hand side is the vertical component of the
position vector in a frame of reference moving with the free surface. The term inside the second
square brackets is the sum of the vertical components of the gravitational acceleration and inertial
acceleration −dU(t)/dt. It is then evident that expression (4.1.13) is consistent with the pressure
distribution that would have arisen if we worked in a frame of reference where the free surface
appears to be stationary, accounting for the fictitious inertial force due to the vertical vibration.

4.1.2 Rotating fluids

The velocity distribution in a fluid in steady rigid-body rotation around the origin with constant
angular velocity Ω is u = Ω × x, and the associated vorticity is ω = 2Ω. Remembering that the
Laplacian of the velocity is equal to the negative of the curl of the vorticity, we find that the viscous
force is identically zero. Evaluating the acceleration from (1.3.14), we obtain the simplified equation
of motion

ρΩ× (Ω× x) = −∇p+ ρg. (4.1.14)

In cylindrical polar coordinates, (x, σ, ϕ), with the x axis pointing in the direction of the angular
velocity vector, Ω, equation (4.1.14) takes the form

−ρΩ2σ eσ = −∇p+ ρg, (4.1.15)
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where Ω is the magnitude of Ω and eσ is the unit vector in the radial (σ) direction. Expressing the
gradient of the pressure in cylindrical coordinates and integrating with respect to σ, we find that

p = ρg · x+
1

2
ρΩ2σ2 + P (t), (4.1.16)

which can be restated as

p = ρg · x+
1

2
ρ |Ω× x|2 + P (t), (4.1.17)

where P (t) is an inconsequential function of time. The additional pressure expressed by the second
term on the right-hand side is necessary in order to balance the radial centrifugal force due to the
rotation.

Rotating container

As an application, we consider the pressure distribution inside a container that rotates steadily
around the horizontal x axis. Setting the y axis in the direction of gravity pointing upward so that
the component of the acceleration of gravity are gx = 0, gy = −g, and gz = 0, we find the pressure
distribution

p = −ρgy +
1

2
ρΩ2(y2 + z2) + P, (4.1.18)

which can be restated as

p =
1

2
ρΩ2

[ (
y − g

Ω2

)2

+ z2
]
− 1

2
ρ
g2

Ω2
+ P. (4.1.19)

The expression shows that surfaces of constant pressure are concentric horizontal cylinders with axis
passing through the point z = 0 and y = g/Ω2. The minimum pressure occurs at the common axis.

Free surface of a rotating fluid

In another application, we consider the shape of the free surface of a liquid inside a horizontal
cylindrical beaker that rotates about its axis of revolution with angular velocity Ω. Setting the
x axis in the direction of gravity pointing upward so that gx = −g, we find that the pressure
distribution in the fluid is given by

p = −ρgx+
1

2
ρΩ2σ2 + P, (4.1.20)

where σ is the distance from the x axis. Evaluating the pressure at the free surface, neglecting the
effect of surface tension, and requiring that the pressure at the free surface is equal to the ambient
atmospheric pressure, we obtain an algebraic equation for the shape of the free surface describing a
paraboloid.

Rotary oscillations

Now we assume that the fluid rotates around the origin as a rigid body with time-dependent angular
velocity Ω(t). Substituting the associated velocity field u = Ω(t)×x in the Navier–Stokes equation,
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we obtain the pressure distribution p = p1 + p2, where p1 is given by the right-hand side of (4.1.17)
and p2 satisfies the equation

ρ
dΩ

dt
× x = −∇p2. (4.1.21)

Taking the curl of both sides of (4.1.21) and noting the the curl of the gradient of any twice dif-
ferentiable function is identically zero, we arrive at the solvability condition dΩ/dt = 0, which
contradicts the original assumption of unsteady rotation. The physical implication is that rotary
oscillation requires a velocity field other than rigid-body motion. For example, subjecting a glass
of water to rotary oscillation does not mean that the fluid in the glass will engage in rigid-body
oscillatory rotation. In fact, at high frequencies, the motion of the fluid will be confined inside a
thin boundary layer around the glass surface, and the main body of the fluid outside the boundary
layer will be stationary.

4.1.3 Compressible fluids

The pressure distribution (4.1.2) was derived under the assumption that the density is uniform
throughout the fluid. When the fluid is compressible, p is the thermodynamic pressure related to
the fluid density, ρ, and to the Kelvin absolute temperature, T , by an appropriate equation of state.

Ideal gas

In the case of an ideal gas, the pressure is given by the ideal gas law, p = RTρ/M , as discussed
in Section 3.3. Solving for the density and substituting the resulting expression into (4.1.1) for a
stationary fluid, U = 0, we obtain a first-order differential equation,

1

p
∇p = ∇ ln

( p

p0

)
=

M

RT
g, (4.1.22)

where p0 is an unspecified reference pressure. When the temperature is constant, the solution is

ln
p

p0
=

M

RT
g · x. (4.1.23)

We have found that the pressure exhibits an exponential dependence on distance instead of the
linear dependence observed in an incompressible liquid.

As an application, we consider the pressure distribution in the atmosphere regarded as an
ideal gas with molar mass M = 28.97 kg/kmole, at temperature 25◦C, corresponding to absolute
temperature T = 298 K. In Cartesian coordinates with origin at sea level and the y axis pointing
upward, the components of the acceleration of gravity vector are given by gx = 0, gy = −g, and
gz = 0, where g = 9.80665 m/s2. Equation (4.1.23) provides us with an exponentially decaying
profile,

p = p0 exp(−Mg

RT
y), (4.1.24)

where p0 is the pressure at sea level. Substituting R = 8.314× 103 kg m2/(s2 kmole K) and taking
p0 = 1.0 atm = 1.0133 × 105 Pascal = 1.0133 × 105kgm−1 s−2, we find that the pressure at the
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elevation of y = 1 km = 1000 m is

p = 1.0 exp
(
− 28.97× 9.80665

8.314× 103 × 298
1000

)
atm = 0.892 atm. (4.1.25)

The corresponding density distribution is found by substituting the pressure distribution (4.1.24) in
the ideal gas law.

Problems

4.1.1 Two layers resting on a pool

A liquid layer labeled 2 with thickness h2 is resting at the surface of a pool of a heavier fluid labeled
3, underneath a layer of another liquid layer labeled 1 with thickness h1. The pressure above layer
1 is atmospheric. Compute the pressure distribution in the two layers and in the pool.

4.1.2 Rotating drop

Describe the shape of a suspended axisymmetric drop rotating as a rigid body about the vertical
axis in the absence of interfacial tension.

4.1.3 Pressure distribution in the atmosphere

Derive the pressure distribution in the atmosphere, approximated as an ideal gas, when the temper-
ature varies linearly with elevation, T = T0 − βy, where T0 is the temperature at sea level, β is a
constant called the lapse rate, and the y axis points against the direction of gravity.

4.1.4 Compressible gas in rigid-body motion

Generalize (4.1.23) to the case of an ideal gas translating as a rigid body with arbitrary time-
dependent velocity, while rotating with constant angular velocity.

4.1.5 A floating sphere

A spherical particle of radius a is floating at the surface of a liquid underneath a zero-density gas,
as shown in Figure 4.1.1(b). Assuming that the interface is flat, show that the floating angle, β,
satisfies the cubic equation

�3 − 3�+ 2 (2s− 1) = 0, (4.1.26)

where � ≡ cosβ, s ≡ Ws/(ρgVs) is a dimensionless constant, Ws is the weight of the sphere, and
Vs is the volume of the sphere (e.g., [318]). If the sphere is made of a homogeneous material with
density ρB , then s = ρB/ρ is the density ratio.

Computer Problem

4.1.6 A floating sphere

Solve equation (4.1.26) and prepare a graph of the floating angle β against s in the range [0, 1].
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Figure 4.2.1 A hydrostatic meniscus forming outside a vertical elliptical cylinder with aspect ratio 0.6,
for contact angle α = π/4 and scaled capillary length �/c = 4.5036, where c is the major semi-axis
of the ellipse. The computer code that generated this shape is included in Directory men ell inside
Directory 03 hydrostat of the software library Fdlib (Appendix C).

4.2 The Laplace–Young equation

An important class of problems in interfacial hydrodynamics concerns the shape of a curved interface
with uniform surface tension, γ, separating two stationary fluids labeled 1 and 2. An example
is shown in Figure 4.2.1 [321]. Substituting in the interfacial force balance (3.8.8) the pressure
distribution (4.1.2) with vanishing acceleration, we find that the jump in the interfacial traction
defined in (3.8.1) is given by

Δf = (σ(1) − σ(2)) · n = (p2 − p1)n = [Δρg · x+ (P2 − P1) ]n = γ 2κm n, (4.2.1)

where Δρ = ρ2−ρ1 is the density difference, P1 and P2 are two pressure functions of time attributed
to each fluid, n is the normal unit vector pointing into fluid 1 by convention, and κm is the mean
curvature of the interface. Rearranging, we obtain the Laplace–Young equation

2κm =
Δρ

γ
g · x+ λ, (4.2.2)

where λ ≡ (P2 − P1)/γ is a new function of time with dimensions of inverse length.

Capillary length and Bond number

The capillary length is a physical constant with dimensions of length defined as

� ≡
( γ

|Δρ|g
)1/2

, (4.2.3)

where g is the magnitude of the acceleration of gravity. For water at 20◦C, the capillary length is
approximately 2.5 mm. A dimensionless Bond number can be defined in the terms of the capillary
length as

Bo ≡ |Δρ|ga2
γ

=
(a
�

)2

, (4.2.4)
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Two-dimensional interface described as y = f(x)

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
= −

( f ′√
1 + f ′2

)′

A prime denotes a derivative with respect to x

Two-dimensional interface described in plane polar coordinates as r = R(θ)

κ =
RR′′ − 2R′2 −R2

(R2 +R′2)3/2

A prime denotes a derivative with respect to θ

Two-dimensional interface described parametrically as x = X(ξ) and y = Y (ξ)

κ =
Xξξ Yξ − Yξξ Xξ

(X2
ξ + Y 2

ξ )
3/2

A subscript ξ denotes a derivative with respect to ξ

Two-dimensional interface described parametrically as r = R(ξ) and θ = Θ(ξ)

κ =
RRξξΘξ − 2R2

ξΘξ −RRξΘξξ −R2Θ3
ξ

(R2
ξ +R2Θ2

ξ)
3/2

A subscript ξ denotes a derivative with respect to ξ

Table 4.2.1 Curvature of a two-dimensional interface in several parametric forms. Fluid 1 lies above
fluid 2.

where a is a properly chosen length. For example, a can be the radius of a circular tube surrounded
by an interface. In terms of the capillary length or Bond number, the Laplace–Young equation
(4.2.2) takes the form

2κm = ± 1

�2
eg · x+ λ or 2κm = ±Bo

a2
eg · x+ λ, (4.2.5)

where eg ≡ 1
gg is the unit vector pointing in the direction of gravity, the plus sign applies when

Δρ > 0, and the minus sign applies when Δρ < 0.

Mean curvature and differential equations

Expressing the mean curvature in an appropriate parametric form reduces (4.2.2) into a nonlinear
ordinary or partial differential equation describing the shape of the interface. Ordinary differential
equations arise for two-dimensional or axisymmetric shapes, and partial differential equations arise
for three-dimensional shapes. The computation of the mean curvature was discussed in Section 1.8.
Expressions for the directional and mean curvature of two-dimensional, axisymmetric, and three-
dimensional surfaces are summarized in Tables 4.2.1–4.2.3 in several direct or parametric forms. The
independent variables in the differential equations that arise from the Laplace-Young equation are
determined by the chosen parametrization.
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Axisymmetric interface described in cylindrical polar coordinates as x = f(σ)

κ1 = − f ′′

(1 + f ′2)3/2
, κ2 = − 1

σ

f ′√
1 + f ′2

, 2κm = κ1 + κ2 = − 1

σ

( σf ′√
1 + f ′2

)′

A prime denotes a derivative with respect to σ

Axisymmetric interface described in cylindrical polar coordinates as σ = w(x)

κ1 = − w′′

(1 + w′2)3/2
, κ2 =

1

w

1√
1 + w′2

, 2κm = κ1 + κ2 =
1

w

1 + w′2 − ww′′

(1 + w′2)3/2

A prime denotes a derivative with respect to x

Table 4.2.2 Principal and mean curvatures of an axisymmetric interface in several parametric forms
with fluid 1 lying in the outer space; κ1 is the principal curvature in an azimuthal plane, and κ2 is
the principal curvature in the conjugate plane.

Three-dimensional interface described as z = f(x, y)

2κm = −
(1 + f2

y ) fxx − 2fxfyfxy + (1 + f2
x) fyy

(1 + f2
x + f2

y )
3/2

� −fxx − fyy (nearly flat)

Three-dimensional interface described in cylindrical polar coordinates as x = q(σ, ϕ)

2κm = − 1

(1 + q2σ +Q2
ϕ)

3/2

[
(1 +Q2

ϕ) qσσ + 2qσQϕ
Qϕ − qσϕ

σ
+ (1 + q2σ) (Qϕϕ +

qσ
σ
)
]

Qϕ = qϕ/σ, Qϕϕ = qϕϕ/σ
2

Three-dimensional interface described in spherical polar coordinates as r = f(θ, ϕ)

n =
∇F

|∇F | , ∇F = er −
fθ
r
eθ −

fϕ
r sin θ

eϕ, 2κm = ∇ · n

2κm � 2

r
− cot θ

r2
fθ −

fθθ
r2

− fϕϕ

r2 sin2 θ
(nearly spherical)

Table 4.2.3 Mean curvature of a three-dimensional interface in several parametric forms with fluid 1
lying in the upper half-space. A subscript denotes a partial derivative.

Boundary conditions

The solution of the differential equations that arise from the Laplace–Young equation is subject
to a boundary condition that specifies either the contact angle at a three-phase contact line where
the interface meets a solid boundary or a third fluid, or the shape of the contact line. The first
Neumann-like boundary condition is employed when a solid boundary is perfectly smooth, whereas
the second Dirichlet-like boundary condition is employed when a solid surface exhibits appreciable
roughness (e.g., [115]). Problems where the shape of the contact line is specified are much easier to
solve than those where the contact angle is specified.
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Figure 4.2.2 (a) Illustration of a meniscus developing between two parallel vertical plates separated by

distance 2a for contact angle α < π/2. (b) When α is greater than π/2, the meniscus submerges
and the capillary rise h is negative. The meniscus shape depicted in (b) was produced by the
Fdlib code men 2d (Appendix C) [318].

Interfaces with constant mean curvature

Under certain conditions, the right-hand side of (4.2.2) is nearly constant and the interface takes a
shape with constant mean curvature. Constant mean-curvature shapes in three dimensions include
(a) a sphere or a section of a sphere, (b) a circular cylinder or a section of a circular cylinder, (c) an
unduloid defined as an axisymmetric surface whose trace in an azimuthal plane coincides with the
focus of an ellipse rolling over the axis of revolution, (d) a catenoid discussed in Problem 4.2.3, and
(e) a nodoid. Lines of constant curvature in two dimensions include a circle and a section of a circle.

Meniscus between two vertical plates

As an example, we consider the shape of a two-dimensional meniscus subtended between two vertical
flat plates separated by distance 2a, as illustrated in Figure 4.2.2. The height of the meniscus midway
between the plates is the capillary rise, h. Assuming that the meniscus takes the shape of a circular
arc of radius R, and using elementary trigonometry, we find that a = R cosα, where α is the contact
angle. The curvature of the interface is reckoned as negative when the interface is concave, as shown
in Figure 4.2.2(a), and positive when the interface is convex, as shown in Figure 4.2.2(b).

The pressure profiles in the upper or lower fluids are described by (4.1.9). Equating the
pressures on either side of the flat interface outside and far from the plates, located at y = −h, we
obtain

λ ≡ P2 − P1

γ
= −Δρgh

γ
, (4.2.6)
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where Δρ = ρ2− ρ1 > 0. Next, we substitute this expression for λ into the Laplace–Young equation
(4.2.2), compute the radius of curvature from the expression R = a/ cosα, introduce the approxi-
mation

2κm � − 1

R
= −cosα

a
, (4.2.7)

evaluate the resulting equation at the midplane, x = 0, and find that

h � γ

Δρga
cosα =

�2

a
cosα. (4.2.8)

The sign of the capillary rise in (4.2.8) is determined by the contact angle, α. When α < π/2, the
meniscus rises; when α > π/2, the meniscus submerges; when α = π/2 the meniscus remains flat
at the level of the free surface outside the plates. The maximum possible elevation or submersion
height is �2/a.

Equation (4.2.8) can be derived directly by performing a force balance on the liquid column
raised capillary action. Setting the weight of the column reduced by the buoyancy force, 2ahΔρg,
equal to the vertical component of the capillary force exerted at the two contact lines, 2γ cosα, and
rearranging, we obtain precisely (4.2.8). A formal justification for this calculation will be given in
Section 4.2.3. A numerical procedure for computing the meniscus shape without any approximations
will be discussed in Section 4.3.2.

We may now return to (4.2.2) and establish the conditions under which the assumption that
the right-hand side is nearly constant is valid. Requiring that the variation in the elevation of the
interface, |R| (1− sinα), is smaller than |h|, we find that(a

�

)2

� 1 + sinα, (4.2.9)

which shows that the plate separation must be sufficiently smaller than the capillary length, otherwise
gravitational effects are important along the length of the meniscus.

The predictions of equation (4.2.8) also apply when the plate separation, 2a, changes slowly
in the z direction normal to the xy plane. An example is provided by the meniscus forming between
two vertical plates with small-amplitude sinusoidal corrugations.

Axisymmetric meniscus inside a circular tube

In a related application, we consider the axisymmetric meniscus inside a circular capillary tube
of radius a, as shown in Figure 4.2.3. Assuming that the meniscus has constant mean curvature,
taking the shape of a sphere with signed radius R, and working as in the case of the two-dimensional
meniscus between two parallel plates, we find an approximate expression for the capillary rise,

h � 2
γ

Δρga
cosα = 2

�2

a
cosα (4.2.10)

which differs from (4.2.8) only by a fact of two on the right-hand side (Problem 4.2.1). The condition
for this prediction to be accurate is (a

�

)2

� 2 (1 + sinα). (4.2.11)
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Figure 4.2.3 Illustration of an axisymmetric meniscus developing inside a vertical circular tube of radius
a for (a) contact angle α < π/2 and (b) α > π/2. The signed length R2 is the second principal
radius of curvature.

Alternatively, expression (4.2.10) can be derived by setting the weight of the raised column reduced
by the buoyancy force, πa2hΔρg, equal to the vertical component of the capillary force exerted
around the contact line, 2πaγ cosα. A numerical procedure for computing the meniscus shape
without any approximations will be discussed in Section 4.4.1.

4.2.1 Meniscus inside a dihedral corner

Consider the shape of a meniscus between two vertical intersecting plates forming a dihedral corner
with semi-angle β, as shown in Figure 4.2.4. Deep inside the corner, the meniscus may rise all the
way up to infinity under the action of surface tension. Assuming that the curvature of the trace of
the interface in a vertical plane is much smaller than the curvature of the trace of the interface in a
horizontal plane, we approximate 2κm � −1/R, where R is the radius of curvature of the interface
in a horizontal plane defined in Figure 4.2.4.

Setting the x axis upward against the direction of gravity with origin at the level of the
undeformed interface far from the walls, we find that the Laplace–Young equation (4.2.2) reduces
into

1

R
� Δρ g

γ
x, (4.2.12)

where Δρ = ρ2 − ρ1. Using elementary trigonometry, we write the geometrical condition

c = (R+ d) sinβ = R cosα, (4.2.13)

where α is the contact angle, d is the meniscus thickness at the vertical bisecting plane, as shown in
Figure 4.2.4, and the length c is defined in Figure 4.2.4. Combining equations (4.2.12) and (4.2.13),
we obtain

d =
1− k

k
R =

1− k

k

γ

Δρg x
, (4.2.14)
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Figure 4.2.4 Illustration of a meniscus inside a dihedral corner confined between two vertical plates
intersecting at angle 2β.

where k ≡ sinβ/ cosα. The meniscus rises if d > 0, which is possible only when α+ β < 1
2
π. When

this condition is met, the meniscus takes a hyperbolic shape that diverges at the sharp corner. In
practice, the sharp corner has a nonzero curvature that causes the meniscus to rise up to a finite
capillary height. Expressions (4.2.13) and (4.2.14) validate a posteriori our assumption that the
curvature of the meniscus in a vertical plane is much smaller than the curvature of the interface in
a horizontal plane.

The area occupied by the liquid in a plane perpendicular to the x axis, denoted by A(x), scales
as A(x) ∼ d2. The volume of liquid residing inside the tapering liquid tongue, denoted by V , scales
as V ∼

∫∞

x0
d(x)2 dx, where x0 is a positive elevation marking the beginning of the local solution.

Since d ∼ 1/x, we find that V ∼ 1/x0 ∼ d0, where d0 is the meniscus thickness corresponding to x0.
We conclude that a finite amount of liquid resides inside the tapering liquid tongue.

The shape of the meniscus can be described in plane polar coordinates with origin at the
corner, (r, θ), by the function r = q(x, θ), as shown in Figure 4.2.4. Using the law of cosines, we find
that

R2 = (d+R)2 + q2 − 2(d+R) q cos θ. (4.2.15)

Solving this quadratic equation for q and eliminating R and d in favor of x using (4.2.12) and
(4.2.14), we find that the meniscus is described by the equation

x =
γ

Δρg

cos θ −
√

k2 − sin2 θ

kr
, (4.2.16)
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Figure 4.2.5 Illustration of a meniscus bounded by two closed contact angles drawn as heavy lines.

where −β ≤ θ ≤ β. The contact lines corresponding to θ = ±β are described by the equation

xcl =
γ

Δρg

cos(α+ β)

sinβ

1

r
. (4.2.17)

We have found that the meniscus climbs up to infinity when α+ β < π/2. For a right-angled
corner where β = π/4, such as that occurring inside a square tube, the contact line must be less
than π/4. When α+β > π/2, the meniscus does not rise to infinity but takes a bounded shape [93].
In the absence of gravity, a solution does not exist when α+ β > π/2. This discontinuous behavior
underscores the important effect of boundary geometry in capillary hydrostatics.

4.2.2 Capillary force

Consider a meniscus confined by one closed contact line or a multitude of contact lines with arbitrary
shape, as shown in Figure 4.2.5. Multiplying both sides of the Laplace–Young equation (4.2.2) by the
normal unit vector, n, and integrating the resulting equation over the entire surface of the meniscus,
M , we obtain ∫∫

M

2κm n dS =
Δρ

γ

∫∫
M

(g · x)n dS + λ

∫∫
M

n dS. (4.2.18)

Next, we identify a surface or a collection of surfaces, D, whose union with the meniscus, M , encloses
a finite control volume, Vc, as depicted in Figure 4.2.5. Using the divergence theorem to manipulate
the first integral on the right-hand side, we obtain∫∫

M

2κm n dS =
Δρ

γ

∫∫
D

(g · x)n dS + λ

∫∫
D

n dS +
Δρ

γ
Vc g, (4.2.19)

where the normal unit vector n over D points into the control volume, as shown in Figure 4.2.5.
Applying Stokes’ theorem expressed by equation (A.7.8), Appendix A, for G = n, and recalling that



4.2 The Laplace–Young equation 289

2κm = ∇ · n, we obtain ∫∫
M

2κm n dS =

∮
C

n× t dl, (4.2.20)

where the line integral is computed around each contact line, C, t is the tangent unit vector, and l is
the arc length along the contact line. Substituting this expression into (4.2.19) and setting e ≡ n×t,
we obtain the force balance

γ

∮
C

e dl =

∫∫
D

[
Δρ (g · x) + γ λ

]
n dS +ΔρVcg. (4.2.21)

The left-hand side expresses the capillary force exerted around the contact lines. The last term on
the right-hand side expresses the weight of the fluid residing inside the control volume, reduced by
the buoyancy force. The first term on the right-hand side expresses a surface pressure force.

As an example, we consider the meniscus subtended between two vertical circular cylinders
bounded by a horizontal flat bottom, and identify D with union of the surface of the cylinders below
the contact lines and the the flat bottom. If the contact lines are horizontal circles, the horizontal
component of the right-hand side of (4.2.21) is zero and the horizontal component of the capillary
force exerted on the outer cylinder is equal in magnitude and opposite in direction with that exerted
on the outer cylinder.

4.2.3 Small deformation

When the deformation of an interface from a known equilibrium shape with constant mean curvature
is small compared to its overall size, the Laplace–Young equation can be simplified by linearizing the
expression for the mean curvature about the known equilibrium position corresponding, for example,
to a flat or spherical shape.

As an example, we assume that a three-dimensional interface is described in Cartesian co-
ordinates as x = f(y, z), where the magnitude of f is small compared to the global dimensions of
the interface and f = 0 yields a flat equilibrium shape consistent with the boundary conditions.
Substituting into (4.2.2) the linearized expression for the mean curvature with respect to f shown
in Table 4.2.1, we obtain a Helmholtz equation for f ,

∂2f

∂y2
+

∂2f

∂z2
= −Δρ

γ
g · x− λ, (4.2.22)

where Δρ = ρ2 − ρ1. The solution must be found subject to an appropriate boundary condition at
the contact line.

Problems

4.2.1 Meniscus between a planar and a wavy plate

Consider the meniscus established between a flat vertical plate and another vertical plane with
small-amplitude vertical sinusoidal corrugations. Develop an expression for the capillary height
with respect to the horizontal coordinate, z.
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4.2.2 Meniscus inside a cylindrical capillary

Derive (4.2.10) and discuss the physical implications of (4.2.11).

4.2.3 Catenoid

(a) Verify that the equation σ = f(x) = c1 [1 + f ′(x)2]1/2, where c1 is a constant, describes an
axisymmetric interface with zero mean curvature. The surface is called a catenoid and its trace in
an azimuthal plane is called a catenary.

(b) Show that the catenoid is described by the equation σ = c1 cosh[(x− c2)/c2], where c2 is a new
constant.

Computer Problem

4.2.4 A film between two rings

A thin liquid film is subtended between two coaxial circular rings

a

b

a

A liquid film supported by two
coaxial rings.

of equal radius, a, separated by distance b. Assuming that gravita-
tional effects are insignificant and requiring that the pressures on
either side of the film are equal, we find that the film must take a
shape with zero mean curvature. Assuming that the film takes the
shape of a catenoid discussed in Problem 4.2.3, compute the con-
stants c1 and c2 by requiring that the catenoid passes through the
rings, and prepare graphs of the dimensionless ratios c1/a and c2/a
against the aspect ratio b/a. Plot the film profile in an azimuthal
plane for b/a = 0.20, 0.50, 1.00, and 1.33.

Note: When 0 < b/a < 1.33, two real solutions for c1/a arise.
The physically relevant solution is the one with the larger value.
For b/a > 1.33, the solution is complex, indicating that a catenoid cannot be established.

4.3 Two-dimensional interfaces

We proceed to discuss specific methods of computing the shape of two-dimensional interfaces with
uniform surface tension governed by the Laplace–Young equation (4.2.2). Our analysis will be carried
out in Cartesian coordinates where the y axis points against the acceleration of gravity vector, so
that g = (0,−g, 0). Using the first entry of Table 4.2.1, we find that the shape of an interface that
is described by the equation y = f(x) is governed by a second-order nonlinear ordinary differential
equation,

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1

(1 + f ′2)1/2

)′

= −
( f ′

(1 + f ′2)1/2

)′

= − f

�2
+ λ, (4.3.1)

where � = (g/Δρg)1/2 is the capillary length, Δρ = ρ2 − ρ1 is the difference in the densities of the
fluids on either side of the interface, and λ is a constant with dimensions of inverse length to be
determined as part of the solution; fluid 2 is assumed to lie underneath fluid 1. Integrating (4.3.1)
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Figure 4.3.1 Illustration of a semi-infinite interface attached to an inclined plate with (a) a monotonic
or (b) reentrant shape. Far from the plate, the interface becomes horizontal.

once with respect to x, we obtain a first-order equation,

1

(1 + f ′2)1/2
= −1

2

f2

�2
+ λf + δ, (4.3.2)

where δ is a new dimensionless constant. Expressing the slope of the interface in terms of the slope
angle θ subtended between the tangent to the interface and the x axis, defined such that f ′ = tan θ,
as shown in Figure 4.3.1, we recast (4.3.2) into the form

| cos θ| = −1

2

f2

�2
+ λf + δ. (4.3.3)

Rearranging (4.3.2), we derive a first-order ordinary differential equation,

df

dx
= ±

[( 2

2λf + 2δ − f2/�2

)2

− 1
]1/2

. (4.3.4)

The plus or minus sign must be selected according to the expected interfacial shape. Performing a
second integration subject to a stipulated boundary condition provides us with specific shapes.

4.3.1 A semi-infinite meniscus attached to an inclined plate

In the first application, we consider the shape of a semi-infinite meniscus attached to a flat plate
that is inclined at an angle β with respect to a horizontal plane, as shown in Figure 4.3.1. The origin
of the Cartesian axes has been set at the level of the undeformed interface underneath the contact
line. Far from the plate, as x tends to infinity, the interface tends to become flat. The contact angle
subtended between the inclined plate and the tangent to the interface at the contact point has a
prescribed value, α. The angle subtended between the tangent to the interface at the contact line
and the x axis is

θcl = α+ β, (4.3.5)
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as shown in Figure 4.3.1. Since both the inclination angle β and the contact angle α vary between
0 and π, the angle θcl ranges between 0 and 2π. When θcl = π, the meniscus is perfectly flat. This
observation provides us with a practical method of measuring the contact angle in the laboratory,
by varying the plate inclination angle, β, until the interface appears to be entirely flat; at that
point α = π − β. Requiring that the interface becomes flat as x tends to infinity, and therefore the
curvature and slope both tend to zero, and using expressions (4.3.1) and (4.3.3), we obtain

λ = 0, δ = 1. (4.3.6)

The constants P1 and P2 defined in (4.1.6) are equal to the pressure at the horizontal interface far
from the inclined plate.

Small deformation

If the slope of the interface is uniformly small along the entire meniscus, f ′ � 1 for 0 ≤ x < ∞,
equation (4.3.1) simplifies into a linear differential equation, f ′′ � f/�2. A solution that decays as
x tends to infinity is

f � h e−x/�, (4.3.7)

where h ≡ f(0) is the elevation of the interface at the contact line. Enforcing the contact angle
boundary condition f ′(0) = tan θcl, we obtain

h

�
= − tan θcl � π − α− β, (4.3.8)

which is valid when θcl � π.

Monotonic shapes

When the interface takes a monotonic shape, as illustrated in Figure 4.3.1(a), the slope angle θcl
lies in the second or third quadrant, 1

2π ≤ θcl ≤ 3
2π. Applying (4.3.3) at the contact line with λ = 0

and δ = 1, we find that the capillary rise h ≡ f(0) is given by

h2

�2
= 2

(
1− | cos θcl|

)
. (4.3.9)

Using standard trigonometric identities, we obtain

h

�
= 2 cos

θcl
2
, (4.3.10)

Since 1
2π ≤ θcl ≤ 3

2π, the maximum possible capillary height, occurring when θcl =
1
2π or 3

2π, is

|h|max =
√
2�. In the limit as θcl tends to π, we find that h/� → π − θcl, in agreement with the

asymptotic solution (4.3.8).

Having obtained the elevation of the interface at the plate, we proceed to compute the inter-
facial shape. Equation (4.3.4) with λ = 0 and δ = 1 becomes

df

dx
= ±

[( 2

2− f2/�2

)2

− 1
]1/2

, (4.3.11)

where the plus or minus sign is selected according to the expected interfacial shape.
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It is convenient to introduce the nondimensional variables F ≡ f/� and X ≡ x/�. Simplifying
(4.3.11), we obtain

dF

dX
= ±F

√
4− F 2

2− F 2
. (4.3.12)

Note that the denominator on the right-hand side becomes zero when F = ±
√
2. At that point, the

slope of the meniscus becomes infinite, signaling a transition to a reentrant shape. Equation (4.3.12)
is accompanied by the contact line boundary condition

F (0) =
h

�
≡ H = 2 cos

θcl
2
. (4.3.13)

Solving (4.3.12) using a standard numerical method, such as a Runge–Kutta method, provides us
with a family of shapes parametrized by the angle θcl.

In practice, it is preferable to regard X as a function of F and consider the inverse of the
differential equation (4.3.12),

dX

dF
= ± 2− F 2

F
√
4− F 2

. (4.3.14)

Integrating with respect to F , we obtain

X = ±
∫ H

F

2− ω2

ω
√
4− ω2

dω, (4.3.15)

where the maximum possible value of |H| is
√
2. Evaluating the integral with the help of mathe-

matical tables, we find that

X = ±[ Φ(F )− Φ(H) ], (4.3.16)

where

Φ(F ) = ln
2 +

√
4− F 2

|F | −
√

4− F 2 (4.3.17)

(e.g., [150], pp. 81–85). To obtain the shape of the meniscus, we plot X against F in the range
0 ≤ F ≤ H if H > 0, or in the range H ≤ F ≤ 0 if H < 0.

Reentrant shapes

The preceding analysis assumes that the interface has a monotonic shape, which is true if θcl lies
in the second and third quadrants, 1

2π ≤ θcl ≤ 3
2π. Outside this range, the interface turns upon

itself, as shown in Figure 4.3.1(b). Since fluid 2 lies above fluid 1 beyond the turning point where
the meniscus is vertical, the sign of the curvature must be switched. The capillary rise is given by
equation (4.3.9) with the minus sign replaced by the plus sign on the right-hand side,

h2

�2
= 2

(
1 + cos θcl

)
. (4.3.18)
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Figure 4.3.2 (a) The shape of the meniscus for any value of the contact angle, α, and arbitrary plate
inclination angle, β, can be deduced from the master curve drawn with the solid line, representing
the function Φ. The dashed and dotted lines represent approximate solutions for small interfacial
deformation. (b, c) Shape of a semi-infinite meniscus attached to an inclined plate produced by
the Fdlib code men 2d plate (Appendix C). The plate inclination angles are different, but the
contact angle is the same in both cases.

Using standard trigonometric identities, we recover (4.3.10), which shows that the maximum possible
capillary height, achieved for a horizontal plate, θcl = 0 or π, is |h|max = 2�. The solution (4.3.16)
is valid in the range 0 ≤ F ≤ H if H > 0, or in the range H ≤ F ≤ 0 if H < 0, with the maximum
value of the dimensionless capillary height |H| being 2.

Master curve

The shape of the interface in the complete range of θcl can be deduced from the master curve drawn
with the solid line in Figure 4.3.2(a), representing the function Φ(F ) defined in (4.3.17). To obtain
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the shape of the meniscus for a particular plate inclination angle, β, we identify the intersection of
the inclined plate with the master curve consistent with the specified contact angle, α. When the
capillary height is negative, we work with the mirror image of the master curve. The dashed line in
Figure 4.3.2(a) represents the leading-order approximation for small deformation,

Φ(F ) � − ln |F |+ 2 (ln 2− 1). (4.3.19)

Dividing the small-deformation solution (4.3.7) by � and taking the logarithm of the resulting ex-
pression, we find X � − ln |F |+ln |H| , which shows that Φ(F ) � − ln |F |, represented by the dotted
line in Figure 4.3.2(a).

Numerical methods

As a practical alternative, the shape of the interface can be constructed numerically according to
the following steps:

1. Compute the slope angle θcl from equation (4.3.5).

2. Compute the capillary rise h using the formulas

1√
2

h

�
=

⎧⎪⎪⎨⎪⎪⎩
(1 + | cos(θcl)|)1/2 if 0 < θcl <

1
2π,

(1− | cos(θcl)|)1/2 if 1
2π < θcl < π,

−(1− | cos(θcl)|)1/2 if π < θcl <
3
2π,

−(1 + | cos(θcl)|)1/2 if 3
2
π < θcl < 2π.

(4.3.20)

3. Integrate the differential equation (4.3.11) from f = h to 0 with initial condition x(f = h) = 0.
If h is negative, we use a negative spatial step.

The method is implemented in the Matlab code men 2d plate included in the software library
Fdlib discussed in Appendix C. The graphics generated by the code for two plate inclination angles
and fixed contact angle is shown in Figure 4.3.2(b, c).

4.3.2 Meniscus between two vertical plates

In another application, we consider the shape of the meniscus between two vertical flat plates
separated by distance 2a, as shown in Figure 4.2.2(a). We begin the analysis by requiring that the
pressure at the level of the undeformed interface outside the plates, located at y = −h, is equal to
a reference pressure P0, and use (4.1.9) to find that P1 = P0 − ρ1gh and P2 = P0 − ρ2gh. Based on
these values, we compute the constant

λ ≡ P2 − P1

g
= −Δρgh

g
= − h

�2
, (4.3.21)

where � = (g/Δρg)1/2 is the capillary length.

Because of symmetry, the slope of the interface is zero midway between the plates. Using
(4.3.1) and (4.3.2), obtain λ = −f ′′(0) and δ = 1. Combing the expression for λ with (4.3.21), we
find that

h

�2
= f ′′(0), (4.3.22)
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which provides us with an expression for the capillary rise in terms of the a priori unknown curvature
of the meniscus at the centerline. Substituting the derived values of λ and δ into (4.3.3), we obtain
a relation between the slope of the interface and the elevation of the meniscus,

f(f + 2h) = 2�2(1− | cos θ|), (4.3.23)

where the angle θ is defined such that f ′ = tan θ.

Differential equations

Equation (4.3.4) provides us with a first-order differential equation describing the shape of the
interface in terms of the a priori unknown capillary rise, h,

df

dx
= ±

[( 2�2

2�2 − f(f + 2h)

)2

− 1
]1/2

. (4.3.24)

The boundary conditions require that f(0) = 0 and f ′(a) = cotα, where α is the contact angle.

In practice, it is convenient to work with the second-order equation (4.3.1). Substituting
λ = −h/�2, we obtain

f ′′ =
1

�2
(f + h) (1 + f ′2)3/2. (4.3.25)

The boundary conditions require that f(0) = 0, f ′(0) = 0, and f ′(a) = cotα. If the pair (f, h) is a
solution for a specified contact angle, α, then the pair (−f,−h) is a solution for the reflected contact
angle, π − α. Near the midplane, f ′ � 1 and the differential equation simplifies into f̃ ′′ � f̃/�2,
where f̃ = f + h. The solution reveals a local exponential shape, f � h (1− e−x/�).

Bond number

To recast equation (4.3.25) in dimensionless form, we introduce the dimensionless variables F = f/a,
X = x/a, and H = h/a. Substituting these expressions into (4.3.25), we obtain

F ′′ = Bo (F +H) (1 + F ′2)3/2, (4.3.26)

where Bo ≡ (a/�)2 = Δρga2/γ is a Bond number and a prime denotes a derivative with respect to
X. The boundary conditions require that F (0) = 0, F ′(0) = 0, and F ′(1) = cotα. It is now evident
that the shape of the meniscus is determined by the Bond number and contact angle, α.

Numerical method

A standard procedure for solving equation (4.3.26) involves recasting it as a system of two first-order
nonlinear ordinary differential equations,

dF

dX
= G,

dG

dX
= Bo (F +H) (1 + F ′2)3/2, (4.3.27)

with boundary conditions F (0) = 0, G(0) = 0, and G(1) = cotα. Having specified values for Bo and
α, we compute the solution by iteration using a shooting method according to the following steps:
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Figure 4.3.3 Illustration of (a) the free surface of a liquid in a rectangular container and (b) a two-
dimensional liquid bridge supported by two horizontal plates.

1. Guess the capillary rise, H. A suitable guess provided by equation (4.2.8) is H = cosα/Bo.

2. Integrate (4.3.27) from X = 0 to 1 with initial conditions F (0) = 0 and G(0) = 0.

3. Check whether the numerical solution satisfies the third boundary condition, G(1) = cotα. If
not, repeat the computation with a new and improved value for H.

The improvement in the third step can be made using a method for solving nonlinear algebraic
equations discussed in Section B.3, Appendix B. A meniscus shape computed by this method is
shown in Figure 4.2.2(b).

4.3.3 Meniscus inside a closed container

A related problem addresses the shape of the interface of a fixed volume of liquid inside a rectangular
container that is closed at the bottom, as shown in Figure 4.3.3(a). Applying (4.3.1) and (4.3.2) at
the free surface midway between the vertical walls, we find that λ = −f ′′(0) and δ = 1. However,
we may no longer relate the constant λ to the central elevation, h.

Working as in the case of a meniscus between two parallel plates, we derive the counterpart
of equations (4.3.27),

dF

dX
= G,

dG

dX
= Bo (F + Λ) (1 + F ′2)3/2, (4.3.28)

where

Λ ≡ −�2

a
λ =

�2

a
f ′′(0) (4.3.29)

is an a priori unknown dimensionless constant. The boundary conditions require that F (0) = 0,
G(0) = 0, and G(1) = cotα. The solution can be found using the shooting method described in
Section 4.3.2, where guesses and corrections are made with respect to Λ. Assuming that the meniscus
has a circular shape provides us with an educated guess, Λ = cosα/Bo.
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Once the interfacial shape has been found, the dimensionless midplane elevation, H = h/a,
can be computed by requiring that the volume per unit width of the liquid has a specified value v,
yielding the integral constraint

H =
v

2a2
−
∫ 1

0

F (X) dX. (4.3.30)

If H turns out to be zero or negative, the meniscus will touch or cross the bottom of the container
and the solution will become devoid of physical relevance. In that case, the fluid will arrange itself
inside each corner of the container according to the specified value of the contact angle. The shape
of the meniscus must then be found using a different type of parametrization (Problem 4.3.1).

Problems

4.3.1 Meniscus inside a container

Assuming that the meniscus crosses the bottom of the container shown in Figure 4.3.3(a), develop an
alternative appropriate parametric representation, derive the governing differential equations, and
state the accompanying boundary conditions.

4.3.2 A liquid bridge between two horizontal plates

Derive a differential equation describing the shape of the free surface of a two-dimensional liquid
bridge subtended between two horizontal parallel plates shown in Figure 4.3.3(b) in a convenient
parametric form.

Computer Problems

4.3.3 Meniscus attached to a wall

Integrate equation (4.3.12) to generate profiles of the meniscus for a eight evenly spaced values of
α+ β between 0 and 2π, separated by π/4.

4.3.4 Meniscus between two plates

Write a program that computes the shape of a two-dimensional meniscus subtended between two
vertical plates for a specified Bond number and contact angle. The integration of the ordinary
differential equations should be carried out using a method of your choice. Run the program to
compute the profile of a meniscus of water between two plates separated by a distance 2b = 5 mm,
for contact angle α = π/4 and surface tension γ = 70 dyn/cm.

4.4 Axisymmetric interfaces

To compute the shape of axisymmetric interfaces, we work as in the case of two-dimensional interfaces
discussed in Section 4.3. The problem is reduced to solving a second-order ordinary differential
equation involving an unspecified constant which is typically evaluated by requiring an appropriate
boundary condition. Some minor complications arise when the differential equation is applied at the
axis of symmetry.
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4.4.1 Meniscus inside a capillary tube

As a first case study, we consider the shape of a meniscus inside an open vertical cylindrical tube
of radius a immersed in a quiescent pool, as shown in Figure 4.2.3 [92]. Describing the interface
as x = f(σ) and carrying out a preliminary analysis as in Section 4.3.2 for the two-dimensional
meniscus between two vertical plates, we derive the value of λ shown in (4.3.21), repeated here for
convenience, λ = −Δρgh/g = −h/�2.

Using the expression for the mean curvature shown in the second row of Table 4.2.2, we derive
a second-order nonlinear ordinary differential equation,

f ′′ =
1

�2
(f + h) (1 + f ′2)3/2 − 1

σ
f ′ (1 + f ′2). (4.4.1)

The boundary conditions require that f(0) = 0, f ′(0) = 0, and f ′(a) = cotα, where α is contact
line. Note that, if the pair (f, h) is a solution for a specified contact angle, α, then the pair (−f,−h)
is a solution for the reflected contact angle, π−α. Equation (4.4.1) differs from its two-dimensional
counterpart (4.3.25) by one term expressing the second principal curvature.

An apparent difficulty arises when we attempt to evaluate (4.4.1) at the tube centerline, σ = 0,
as the second term on the right-hand side becomes indeterminate. However, using the regularity
condition f ′(0) = 0, we find that the mean curvature of the interface at the centerline is equal to
−f ′′(0), which can be substituted into the Laplace–Young equation to give

f ′′(0) =
h

2�
. (4.4.2)

This expression can also be derived by applying the l’Hôpital rule to evaluate the right-hand side of
(4.4.1).

Near the center of the cylinder, the interfacial slope is small, f ′ � 1. Linearizing (4.4.1), we
obtain the zeroth-order modified Bessel equation

f ′′ =
1

�2
(f + h)− f ′

σ
. (4.4.3)

An acceptable solution that remains finite at the origin is

f(σ) � h [ I0(σ/�)− 1 ], (4.4.4)

where I0 is the zeroth-order modified Bessel function.

Parametric description

Following standard practice, we resolve (4.4.1) into a system of two first-order differential equa-
tions, which we then solve using a shooting method. To ensure good performance, we introduce
a parametric representation in terms of the slope angle θ defined by the equation tan θ = f ′,
where 0 ≤ θ ≤ −α + π/2. The contact angle boundary condition is automatically satisfied by
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this parametrization. To derive the equations governing the shape of the interface in parametric
form, we write

f ′′ =
df ′

dσ
=

df ′

dθ

dθ

dσ
=

d tan θ

dθ

dθ

dσ
=

1

cos2 θ

dθ

dσ
(4.4.5)

and

dx

dθ
=

dx

dσ

dσ

dθ
= tan θ

dσ

dθ
. (4.4.6)

Substituting (4.4.5) into the left-hand side of (4.4.1), replacing f ′ on the right-hand side by tan θ,
and simplifying, we obtain

dσ

dθ
=

cos θ

Q
, (4.4.7)

where

Q =
x+ h

�2
− sin θ

σ
. (4.4.8)

Substituting (4.4.7) into the right-hand side of (4.4.6), we find that

dx

dθ
=

sin θ

Q
. (4.4.9)

Equations (4.4.7) and (4.4.9) provide us with the desired system of ordinary differential equations
describing the shape of the meniscus in parametric form. To complete the definition of the problem,
we must supply three boundary conditions: two because we have a system of two first-order ordinary
differential equations, and one more because of the unspecified capillary height h. Fixing the origin
and the radial location of the contact line, we stipulate that

σ(0) = 0, x(0) = 0, σ(θcl) = a, (4.4.10)

where θcl =
1
2π − α.

The denominator Q defined in (4.4.8) becomes unspecified at the origin where σ = 0 and
θ = 0. Combining (4.4.2) with (4.4.5) and (4.4.6), we find that, at the origin,(dσ

dθ

)
0
= 2

�2

h
,

(dx
dθ

)
0
= 0, (4.4.11)

which is used to initialize the computation. The first equation in (4.4.11) can be derived by applying
the l’Hôpital rule to evaluate the right-hand side of the first equation in (4.4.7), and then solving
for dσ/dθ (Problem 4.4.1).

In terms of the dimensionless variables Σ = σ/a and X = x/a, equations (4.4.7)–(4.4.10)
become

dΣ

dθ
=

cos θ

W
,

dX

dθ
=

sin θ

W
, (4.4.12)
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where

W = Bo (X +H)− sin θ

Q
, (4.4.13)

H = h/a, and Bo = (a/�)2 = Δρga2/γ is the Bond number. The boundary conditions require that

Σ(0) = 0, X(0) = 0, Σ(θcl) = 1. (4.4.14)

At the origin, θ = 0, (dΣ
dθ

)
0
=

2

Bo

1

H
,

(dX
dθ

)
0
= 0. (4.4.15)

Numerical method

Having specified the Bond number, Bo, and contact angle, α, we compute the solution using a
shooting method as described in Section 4.3.2 for the analogous problem of a meniscus between two
plates according to the following steps:

1. Guess the reduced capillary height, H. An educated guess provided by equation (4.2.10) is
H = 2 cosα/Bo.

2. Integrate (4.4.12) from θ = 0 to θcl. To initialize the computation, we use (4.4.15).

3. Check whether the numerical solution satisfies the third boundary condition in (4.4.14). If
not, the computation is repeated with a new and improved value for H.

The improvement in the third step can be done using the secant method discussed in Section B.3,
Appendix B.

4.4.2 Meniscus outside a circular tube

In the second case study, we consider an infinite axisymmetric meniscus developing around a vertical
circular cylinder of radius a. The circular horizontal contact line is located at x = h. The shape
of the interface is described by a function, x = f(σ), where σ is the distance from the cylinder
centerline and the origin of the x axis is defined such that f(σ) decays to zero far from the cylinder,
σ → ∞, as shown in Figure 4.4.1(a). The Laplace–Young equation reduces into a second-order
ordinary differential equation,

f ′′ = (1 + f ′2)
(
− f ′

σ
+

f

�2

√
1 + f ′2

)
, (4.4.16)

where a prime denotes a derivative with respect to σ. Prescribing the contact angle provides us with
the boundary condition f ′ = − cotα at σ = a.

Far from the cylinder, the interfacial slope is small, f ′ � 1, and the Laplace–Young equation
(4.4.16) reduces to the zeroth-order Bessel equation,

f ′′ = −f ′

σ
+

f

�2
. (4.4.17)
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Figure 4.4.1 (a) Illustration of an axisymmetric meniscus developing around a vertical circular cylin-
der. (b) Dependence of the capillary rise, h, on the capillary length, �, for contact angle α/π = 0.02
(highest line), 0.125, 0.250, 0.375, and 0.480 (lowest line). The dotted lines show the capillary
height of a two-dimensional meniscus attached to a vertical flat plate. The dashed lines represent
the predictions of an approximate asymptotic solution for high capillary lengths.

An acceptable solution that decays at infinity is proportional to the modified Bessel function of zero
order, K0,

f(σ) � ξaK0(σ/�), (4.4.18)

where ξ is a dimensionless constant. It is beneficial to eliminate ξ by formulating the ratio between
the shape function f and its derivative, finding

f(σ) + �
K0(σ/�)

K1(σ/�)
f ′(σ) � 0, (4.4.19)

where K1 is the first-order modified Bessel function.

The boundary-value problem can be solved numerically using a standard shooting method
combined with secant updates, as discussed in Section B.3, Appendix B. In the numerical method, the
solution domain is truncated at a large radial distance, σmax, where the Robin boundary condition
(4.4.19) is applied [320]. The computer code is available in the software library Fdlib [318] (see
Appendix C).

Graphs of the capillary rise around the contact line are shown in Figure 4.4.1(b) together with
the predictions of an asymptotic analysis discussed later in this section, represented by the dashed
lines. As �/a becomes smaller, the curvature of the cylinder becomes decreasingly important and
the results reduce to those for a two-dimensional meniscus attached to a vertical flat plate. Families
of interfacial shapes are presented in Figure 4.4.2 for two contact angles.
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Figure 4.4.2 Interfacial shapes of an axisymmetric meniscus outside a circular cylinder parametrized
by the capillary length for contact angle (a) α = π/4 and (b) π/50. The higher the capillary length,
the higher the interfacial profile.

Asymptotics

When the interfacial elevation is sufficiently smaller than the capillary length, f/� � 1, while the
slope f ′ is not necessarily small, equation (4.4.16) takes the gravity-free form

f ′′ = −(1 + f ′2)
f ′

σ
, (4.4.20)

describing a zero-mean-curvature interface. A solution of this nonlinear equation that satisfies the
prescribed contact angle boundary condition at the cylinder surface, f ′(σ = a) = − cotα, is

f(σ) ∼ a cosα ln
δ

σ̂ +
√
σ̂2 − cos2 α

, (4.4.21)

where σ̂ ≡ σ/a and δ is a dimensionless constant. As σ/� tends to zero, the outer asymptotic
solution (4.4.18) yields

f(σ) � −ξa ( ln
σ

�
+ E), (4.4.22)

where E = 0.577215665 . . . is Euler’s constant. Matching this expression with the functional form
of (4.4.21) in the limit as σ̂ tends to infinity, we recover the coefficient of the outer field, λ, the
dimensionless coefficient δ, and then an expression for the capillary rise, h ≡ f(σ = a),

ξ = cosα,
h

�
� cosα

(
ln

4�/a

1 + sinα
− E

)
(4.4.23)

(Derjaguin (1946) Dokl. Akad. Nauk USSR 51, 517). The predictions of this equation, represented
by the dashed lines in Figure 4.4.1(b), are in excellent agreement with the numerical solution. A
formal asymptotic expansion with respect to the small parameter a/� is available [242].



304 Introduction to Theoretical and Computational Fluid Dynamics

(a) (b)

x

−d

g

ψ

σ

α
g

ψ

α

x

−d

σ

Fluid 2

Fluid 1

Fluid 2

Fluid 1

Figure 4.4.3 Illustration of (a) an axisymmetric sessile liquid drop resting on a horizontal plane, and
(b) an axisymmetric pendant liquid drop hanging under a horizontal plate.

4.4.3 A sessile drop resting on a flat plate

In the third case study, we consider the shape of an axisymmetric bubble or drop with a specified
volume resting on a horizontal plane wall, as shown in Figure 4.4.3(a). Because x may not be a
single-valued function of σ, the functional form x = F(σ) is no longer appropriate and we work with
the alternative representation σ = f(x). Substituting the expression for the mean curvature from
the third row of Table 4.2.1 into the Laplace–Young equation (4.3.1), we obtain the second-order
ordinary differential equation

f ′′ =
( x
�2

− λ
)
(1 + f ′2)3/2 +

1 + f ′2

f
. (4.4.24)

Evaluating (4.4.24) at the origin, we find that λ = −f ′′(0), which shows that the constant λ is equal
to twice the mean curvature at the centerline.

Parametric description

To formulate the numerical problem, we introduce the slope angle ψ defined by the equation cotψ =
−f ′, ranging from zero at the centerline to the contact angle α at the contact line, and regard x and
σ along the interface as functions of ψ, as shown in Figure 4.4.3(a). The contact angle boundary
condition is satisfied automatically by this parametrization. Following the procedure that led us from
equation (4.4.1) to equations (4.4.7) and (4.4.9), we resolve (4.4.24) into a system of two first-order
equations,

dx

dψ
=

sin θ

Q
,

dσ

dψ
= −cos θ

Q
, (4.4.25)

where

Q =
sinψ

σ
+

x

�2
− λ. (4.4.26)

The boundary conditions require that σ(0) = 0 and x(0) = 0. One more condition emerges by
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requiring that the drop volume drop has a specified value, V ,

π

∫ 0

−d

σ2 dx = V, (4.4.27)

where d is the height of the drop defined in Figure 4.4.3(a).

The denominator, Q, becomes indeterminate at the centerline, ψ = 0. Using the l’Hôpital
rule to evaluate the right-hand side of the second equation in (4.4.25), we find that(dσ

dψ

)
0
= − 1(

dψ
dσ

)
0
− λ

. (4.4.28)

Rearranging we find that, at the origin,( dx

dψ

)
0
= 0,

(dσ
dψ

)
0
=

2

λ
. (4.4.29)

In terms of the non-dimensional variables X = x/� and Σ = σ/�, equations (4.4.25) become

dX

dψ
=

sin θ

W
,

dΣ

dψ
= −cos θ

W
, (4.4.30)

with boundary conditions Σ(0) = 0 and X(0) = 0, where

W =
sinψ

Σ
+X − η, (4.4.31)

and η ≡ λ�. The volume constraint (4.4.27) becomes

π

∫ 0

−D

Σ2 dX = V̂ , (4.4.32)

where D = d/� and V̂ = V/�3. Equations (4.4.29) state that, at the origin,(dX
dψ

)
0
= 0,

(dΣ
dψ

)
0
=

2

η
. (4.4.33)

The shape of the drop depends on the reduced volume, V̂ , and contact angle, α. Given the
values of V̂ and α, the drop shape can be found using a shooting method according to the following
steps:

1. Guess the value of the constant η. A good estimate can be obtained by assuming that the
drop has a spherical shape with radius a = [3V/(4π)]1/3. Since the constant λ is equal to the
mean curvature at the centerline, we may set λ = 1/a and compute η = �/a.

2. Solve an initial-value problem from by integrating (4.4.30) from ψ = 0 to α. To initialize the
computation, we use (4.4.33).
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Figure 4.4.4 (Left) Shapes of a sessile drop for dimensionless volume V̂ ≡ V/�3 = 4π/3 and contact

angle α/π = 0.1, 0.2, . . . , 0.9, and (right) corresponding shapes for a smaller volume, V̂ = 4π/34.
The axes are scaled by the equivalent drop radius, a = (3V/4π)1/3.

3. Check whether (4.4.32) is fulfilled. If not, repeat the computation with a new and improved
value for η.

Drop profiles for volume V̂ = 4π/3 and 4π/34 and contact angle α/π = 0.1, 0.2, . . . , 0.9 are shown in
Figure 4.4.4. When the reduced volume V̂ is small, the drops take the shape of sections of sphere.
As the drop volume increases, the interface tends to flatten at the top due to the action of gravity.

Problems

4.4.1 A sessile drop

Derive the first equation in (4.4.11) by applying the l’Hôpital rule evaluate the right-hand side of
the first equation in (4.4.7) and then solving for dσ/dψ.

4.4.2 A pendant drop

Derive in dimensionless form the differential equations and boundary conditions governing the shape
of an axisymmetric drop pending underneath a horizontal flat plate, as shown in Figure 4.4.2(b).

4.4.3 A rotating drop

Derive in dimensionless form the differential equations and boundary conditions governing the shape
of an axisymmetric drop resting on, or pending underneath a horizontal flat plate that rotates steadily
about the axis of the drop with angular velocity Ω.

Computer Problems

4.4.4 Meniscus inside a capillary tube

Compute the meniscus of water inside a capillary tube of radius a = 2.5 mm, for contact angle
α = π/4 and surface tension γ = 70 dyn/cm. Hint: the solution yields h = 0.359 mm.



4.5 Three-dimensional interfaces 307

x

σ

xc

Fluid 1

Fluid 2

β

θ

ϕ

αa
g

Figure 4.4.5 Illustration of a spherical particle straddling the interface between two immiscible fluids.

4.4.5 A sessile drop

Compute the shape of a sessile water drop with volume V = 2 ml, for contact angle α = 3π/4 and
surface tension γ = 70 dyn/cm.

4.4.6 A straddling particle

A spherical particle of radius a is floating at the interface between two fluids, as shown in Figure
4.4.5. Develop a numerical procedure for computing the particle center position, xc, and floating
angle, β, in terms of the contact angle, α, the densities of the two fluids, and the density of the
sphere [317, 318].

4.5 Three-dimensional interfaces

A standard method of computing the shape of a three-dimensional interface involves describing
the interface in parametric form in terms of two surface variables, ξ and η, and then computing
the position of a collection of marker points located at intersections of grid lines. The successful
parametrization is determined by the nature of the expected interfacial shape. The position of the
marker points is computed by solving the Laplace–Young equation, which in this case reduces to a
second-order nonlinear partial differential equation with respect to ξ and η, using finite-difference,
finite-element, spectral or variational methods. The accurate computation of the mean curvature is
a major concern. Only a few numerical methods are able to produce satisfactory accuracy due to
the geometrical nonlinearity of corresponding expressions.

Numerical implementations and variational formulations are discussed by Brown [58], Mili-
nazzo & Shinbrot [266], Hornung & Mittelmann [191], and Li & Pozrikidis [237]. Finite-difference
calculations of liquid bridges connecting three equal spheres are presented by Rynhart et al. [356].
Finite-element calculations of wetting modes of superhydrophobic surfaces are presented by Zheng,
Yu & Zhao [441]. Finite-difference methods combined with conformal mapping have been imple-
mented in recent work [320, 319, 321].
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Figure 4.6.1 A meniscus forming between two vertical circular cylinders whose centers are separated
by distance equal to the cylinder diameter, for contact angle α = π/4, and capillary length �/a =
4.5036, where a is the cylinder radius.

4.6 Software

Directory 03 hydrostat of the fluid mechanics library Fdlib contains a collection of programs that
compute two-dimensional, axisymmetric, and three-dimensional hydrostatic shapes, as discussed in
Appendix C.

Meniscus around an elliptical cylinder

The meniscus forming around a vertical elliptical cylinder is shown in Figure 4.2.1 for contact angle
α = π/4. The interfacial shape was computed by solving the Young–Laplace equation using a
finite-difference method implemented in boundary-fitted elliptic coordinates generated by conformal
mapping [320]. The computer code resides in Directory men ell inside Directory 03 hydrostat of
Fdlib. For clarity, the height of the cylinder shown in Figure 4.2.1 reflects the elevation of the
contact line. We observe that the elliptical cross-section causes significant oscillations in the capillary
elevation around the value corresponding to a circle. High elevation occurs on the broad side of the
cylinder, and low elevation occurs at the tip of the cylinder.

We conclude that high boundary curvature causes a local decline in the capillary height below
the value corresponding to a flat plate. In the case of a meniscus attached to a wavy wall, the contact
line elevation is higher in the troughs than in the crests of the corrugations [179]. This behavior is
consistent with our analysis in Section 4.2.1 on the shape of a meniscus inside a dihedral corner.

Meniscus between two vertical cylinders

The meniscus developing between two vertical circular cylinders with the same radius is shown in
Figure 4.6.1. The interfacial shape was generated using the computer code men cc in Directory
03 hydrostat of Fdlib. The Young–Laplace equation is solved by a finite-difference method in
boundary-fitted bipolar coordinates. In the configuration shown in Figure 4.6.1, the cylinder centers
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are separated by distance equal to the common cylinder diameters. The contact angle has a specified
value, α = π/4, around both contact lines. We observe that the rise of the meniscus is most
pronounced inside the gap between the cylinders.

Surface evolver

The surface evolver program is able to describe triangulated surfaces whose shape is determined
by surface tension and other types of surface energy, subject to various constraints. Further infor-
mation is given in the Internet site: http://www.susqu.edu/brakke/evolver/evolver.html.

Computer Problem

4.6.1 Meniscus outside an elliptical cylinder

Use the Fdlib code men ell to compute the meniscus around a vertical elliptical cylinder with
constant perimeter and aspect ratio 1.0 (circle), 0.5, 0.25, and 0.125. Discuss the effect of the aspect
ratio on the minimum and maximum interface elevation around the contact line.



Exact solutions 5
Having established the equations governing the motion of an incompressible Newtonian fluid and
associated boundary conditions, we proceed to derive specific solutions. Not surprisingly, we find
that computing analytical solutions is hindered by the presence of the nonlinear convection in the
equation of motion due to the point-particle acceleration, u · ∇u, rendering the system of governing
equations quadratic with respect to the velocity. Consequently, analytical solutions can be found
only for a limited class of flows where the nonlinear term either happens to vanish or is assumed
to make an insignificant contribution. Under more general circumstances, solutions must be found
by approximate, asymptotic, and numerical methods for solving ordinary and partial differential
equations. Fortunately, the availability of an extensive arsenal of classical and modern methods
allows us to successfully tackle a broad range of problems under a wide range of physical conditions.

In this chapter, we discuss a family of flows whose solution can be found either analytically or
numerically by solving ordinary and elementary one-dimensional partial differential equations. We
begin by considering unidirectional flows in channels and tubes where the nonlinear convection term
in the equation of motion is identically zero. The reason is that fluid particles travel along straight
paths with constant velocity and vanishing acceleration. Swirling flows inside or outside a circular
tube and between concentric cylinders provides us with a family of flows with circular streamlines
where the nonlinear term due to the particle acceleration assumes a simple tractable form. Solutions
for unsteady flows will be derived by separation of variables and similarity solutions, when possible.

Following the discussion of unidirectional flows, we address a rare class of flows in entirely or
partially infinite domains that can be computed by solving ordinary differential equations without
any approximations. Reviews and discussion of further exact solutions can be found in articles by
Berker [31], Whitham [428], Lagestrom [218], Rott [355], and Wang [419, 420, 421]. These exact
solutions are complemented by approximate, asymptotic, and numerical solutions for low- or high-
Reynolds number flows discussed later in this book.

In Chapter 6, we discuss the properties and computation of low-Reynolds-number flows where
the nonlinear convection term, u · ∇u, makes a negligible contribution to the equation of motion.
These flows are governed by the continuity equation and the linearized Navier–Stokes equation
describing steady, quasi-steady, or unsteady Stokes flow. A quasi-steady flow is an unsteady flow
forced parametrically through time-dependent boundary conditions. Linearization allows us to build
an extensive theoretical framework and derive exact solutions for a broad range of problems by
analytical and efficient numerical methods.

310
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In Chapters 7, 8, and 10, we discuss precisely and nearly irrotational flows where the vorticity
is confined inside slender wakes and boundary layers. The velocity field in the bulk of the flow is
obtained by solving Laplace’s equation for a harmonic velocity potential. Once the outer irrotational
flow is available, the flow inside boundary layers and wakes is computed by solving simplified versions
of the equation of motion originating from the boundary-layer approximation. In Chapter 11, we dis-
cuss numerical methods for computing inviscid or nearly inviscid flows containing regions or islands
of concentrated vorticity, including point vortices, vortex rings, vortex filaments, vortex patches, and
vortex sheets. In the final Chapters 12 and 13, we discuss finite-difference methods for solving the
complete system of governing equations for Navier–Stokes flow without any approximations apart
from those involved in the implementation of the numerical method.

5.1 Steady unidirectional flows

A distinguishing feature of unidirectional flow is that all but one velocity components are identically
zero in a properly defined Cartesian or cylindrical polar system of coordinates, and the non-vanishing
velocity component is constant in the streamwise direction. These features allow us to considerably
simplify the equation of motion and derive analytical solutions in readily computable form. The
study of unidirectional flows can be traced to the pioneering works of Rayleigh, Navier, Stokes,
Couette, Poiseuille, and Nusselt, for channel, tube, and film flow.

5.1.1 Rectilinear flows

One important class of unidirectional flows includes steady rectilinear flows of a fluid with uniform
physical properties through a straight channel or tube due to an externally imposed pressure gradient,
gravity, or longitudinal boundary motion. The streamlines are straight lines, the fluid particles travel
with constant velocity and vanishing acceleration along straight paths, and the pressure gradient is
uniform throughout the flow. Neglecting entrance effects and assuming that the flow occurs along
the x axis, we set the negative of the streamwise pressure gradient equal to a constant χ,

∂p

∂x
≡ −χ. (5.1.1)

When the pressure at the entrance of a channel or tube is equal to that at the exit, ∂p/∂x = 0 and
χ = 0.

Setting in the Navier–Stokes equation ∂ux/∂t = 0 for steady flow, ∂ux/∂x = 0 for fully
developed flow, and uy = uz = 0 for unidirectional flow, we obtain three linear scalar equations
corresponding to the x, y, and z directions,

μ (
∂2ux

∂y2
+

∂2ux

∂z2
) = −(χ+ ρgx),

∂p

∂y
= ρgy,

∂p

∂z
= ρgz. (5.1.2)

When the x axis is horizontal, gx = 0. Nonlinear inertial terms are absent because the magnitude
of the velocity is constant along the streamlines.

The pressure distribution is recovered by integrating (5.1.1) and the last two equations in
(5.1.2), yielding

p = −χx+ ρ (gyy + gzz) + p0, (5.1.3)
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where p0 is a reference constant pressure found by enforcing an appropriate boundary condition.
When χ = −ρgx, the pressure assumes the hydrostatic profile, p = −ρg · x+ p0.

Poisson equation

The x component of the equation of motion (5.1.2) provides us with a Poisson equation for the
streamwise velocity component with a constant forcing term on the right-hand side,

∂2ux

∂y2
+

∂2ux

∂z2
= −χ+ ρgx

μ
. (5.1.4)

The boundary conditions specify the distribution of ux along a channel or tube wall or the shear
stress μn · ∇ux along a free surface, where ∇ is the two-dimensional gradient operating in the yz
plane and n is the unit vector normal to the free surface. In the case of multilayer flow, the shear
stress, μn · ∇ux, is required to be continuous across the layer interface. Accordingly, the normal
derivative of the velocity n · ∇ux undergoes a jump determined by the viscosities of the two fluids.

Pressure-, gravity-, and boundary-driven flow

Three important cases can be recognized corresponding to pressure-, gravity-, and boundary-driven
flow:

• When a channel or tube is horizontal and the walls are stationary, we obtain pressure-driven
flow due to an externally imposed pressure gradient, ∂p/∂x = −χ.

• When the walls are stationary and the pressure does not change in the direction of the flow,
χ = 0, we obtain gravity-driven flow.

• When χ = −ρgx, the pressure assumes the hydrostatic distribution and the flow is driven by
the longitudinal translation of the whole wall or a section of a wall.

In the third case, the Poisson equation (5.1.4) reduces to Laplace’s equation, ∇2ux = 0, whose
solution is independent of the viscosity, μ. Mixed cases of pressure-, gravity-, and boundary-driven
flow can be constructed by linear superposition.

5.1.2 Flow through a channel with parallel walls

In the first application, we consider two-dimensional flow in a channel confined between two parallel
walls separated by distance h, as shown in Figure 5.1.1. The bottom and top walls translate parallel
to themselves with constant velocities V1 and V2. In the framework of steady unidirectional flow,
the streamwise velocity, ux, depends on y alone. The Poisson equation (5.1.4) simplifies into a
second-order ordinary differential equation,

d2ux

dy2
= −χ+ ρgx

μ
. (5.1.5)

Setting the origin of the Cartesian axes at the lower wall, integrating twice with respect to y, and
enforcing the no-slip boundary conditions u = V1 at y = 0 and u = V2 at y = h, we find that the
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Figure 5.1.1 Velocity profiles of flow through a two-dimensional channel with parallel walls separated
by distance h. The linear profile (dashed line) corresponds to Couette flow, the parabolic profile
(dotted line) corresponds to plane Hagen–Poiseuille flow, and the intermediate profile (dot-dashed
line) corresponds to flow with vanishing flow rate.

velocity profile takes the parabolic distribution

ux(y) = V1 + (V2 − V1)
y

h
+

χ+ ρgx
2μ

y (h− y). (5.1.6)

The first two terms on the right-hand side represent a boundary-driven flow. The third term rep-
resents pressure- and gravity-driven flow. When χ = −ρgx, we obtain Couette flow with a linear
velocity profile, also called simple shear flow [94]. When V1 = 0 and V2 = 0, we obtain plane
Hagen–Poiseuille pressure- or gravity-driven flow (e.g., [392]). Velocity profiles corresponding to the
extreme cases of Couette flow, Hagen–Poiseuille flow, and a flow with vanishing flow rate are shown
in Figure 5.1.1.

The flow rate per unit width of the channel is found be integrating the velocity profile,

Q =

∫ h

0

ux dy =
1

2
(V1 + V2)h+

1

12

χ+ ρgx
μ

h3. (5.1.7)

Note the dependence on h or h3, respectively, in the first or second term on the right-hand side.
The mean fluid velocity is

umean
x ≡ Q

h
=

1

2
(V1 + V2) +

1

12

χ+ ρgx
μ

h2. (5.1.8)

In the case of pressure- or gravity-driven flow, the maximum velocity occurring at the midplane,
umax
x = ux(y = 1

2h) is related to the mean velocity by umax
x = 3

2u
mean
x .
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5.1.3 Nearly unidirectional flows

The exact solutions for steady unidirectional flow can be used to construct approximate solutions for
problems involving nearly unidirectional flow. Two examples based on unidirectional channel flow
are presented in this section. The methodology will be illustrated further and formalized in Section
6.4 under the auspices of low-Reynolds-number flow.

Flow in a closed channel

Consider flow inside an elongated, closed, horizontal channel
2

x
Fluid

V

V1

Flow in a long horizontal channel
that is closed at both ends.

confined between two parallel belts that translate parallel to
themselves with arbitrary velocities V1 and V2. Since fluid
cannot escape through side walls, the flow rate through any
cross-section of the channel must be zero, Q = 0, and the fluid
must recirculate inside the channel. Near the side walls, we
obtain a reversing flow. Far from the side walls, we obtain
nearly unidirectional flow. Equation (5.1.7) reveals the spontaneous onset of a pressure field with
pressure gradient

−χ ≡ ∂p

∂x
= 6

μ

h2
(V1 + V2), (5.1.9)

inducing a back flow that counteracts the primary flow due to the belt motion. The velocity profile
is illustrated by the dot-dashed line in Figure 5.1.1.

Settling of a slab down a channel with parallel walls

In the second application, we consider the gravitational set-

x

b

L

g

V

y

a

A rectangular slab settling down the
centerline of a container.

tling of a rectangular slab with width 2b and length L along
the midplane of a two-dimensional container confined between
two vertical plates separated by distance 2a. The container is
closed at the bottom and open to the atmosphere at the top.
Our objective is to estimate the settling velocity, V , and the
pressure difference established between the bottom and top
due to the motion of the slab.

To simplify the analysis, we observe that the flow be-
tween each side of the slab and the adjacent wall is nearly
unidirectional flow with an a priori unknown negative pres-
sure gradient, χ. Thus, the velocity profile across the right
gap is given by (5.1.6) with V1 = V , V2 = 0, channel width
h = a − b, and gx = g. If ptop is the pressure at the top of the slab, then pbot = ptop − χL is the
pressure at the bottom. The negative of the pressure gradient, χ, and velocity of settling, V , must
be computed by enforcing two scalar constraints.

One constraint arises by stipulating that the rate of displacement of the liquid by the slab is
equal to the upward flow rate through the gaps,

Q = −V b, (5.1.10)
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where Q is given in (5.1.7) with gx = g. Simplifying, we obtain

μV +
1

6
(χ+ ρg)

(a− b)3

a+ b
= 0. (5.1.11)

Note that Q is negative, as required for the fluid to escape upward. A second constraint arises by
balancing the x components of the surface and body forces exerted on the slab. Requiring that the
pressure force at the top and bottom counterbalances the weight of the slab and the force due to
the shear stress along the sides, we find that

(ptop − pbot) b+ ρsgLb+ μ
(dux

dy

)
y=0
L = 0 (5.1.12)

or

(χ+ ρg) b+ (ρs − ρ) gb+
(
− μ

V

h
+

χ+ ρg

2
h
)
= 0, (5.1.13)

where ρs is the density of the slab material. After simplification, we obtain

μV − 1

2
(χ+ ρg) (a2 − b2) = Δρgb(a− b), (5.1.14)

where Δρ = ρs − ρ. Solving (5.1.11) and (5.1.15) for V and χ+ ρg, we obtain

V =
1

4

Δρ ga2

μ

δ (1− δ)3

1 + δ + δ2
, χ+ ρg = −3

2
Δρ g

δ (1 + δ)

1 + δ + δ2
, (5.1.15)

where δ = b/a, independent of the slab length, L. We observe that the settling velocity, V , vanishes
when δ = 0 because the weight of the slab is infinitesimal, and also when δ = 1 because the sides
of the slab stick to the side plates. The maximum settling velocity occurs at the intermediate value
δ � 0.204. In the case of a neutrally buoyant slab, Δρ = 0, the fluid is quiescent and the pressure
assumes the hydrostatic distribution, χ = −ρg.

5.1.4 Flow of a liquid film down an inclined plane

Gravity-driven flow of a liquid film down an inclined surface is encountered in a variety of engineering
applications including the manufacturing of household items and magnetic recording media. Under
certain conditions discussed in Section 9.12 in the context of hydrodynamic stability, the free surface
is flat and the liquid film has uniform thickness, h, as shown in Figure 5.1.2.

In the inclined Cartesian coordinates depicted in Figure 5.1.2, the x velocity component, ux,
depends on the distance from the inclined plane alone, y. The components of the acceleration of the
gravity vector are g = g (sinβ,− cos β, 0), where β is the plane inclination angle with respect to the
horizontal, defined such that β = 0 corresponds to a horizontal plane and β = 1

2
π corresponds to a

vertical plane. Since the pressure outside and therefore inside the film is independent of x, we set
χ = 0. The pressure distribution across the film is

p = ρg cosβ (h− y) + patm, (5.1.16)
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Figure 5.1.2 Illustration of a flat liquid film with thickness h flowing down an inclined plane due to
gravity.

where patm is the ambient atmospheric pressure. Integrating the differential equation (5.1.5) twice
subject to the no-slip boundary condition at the wall, ux = 0 at y = 0, and the condition of vanishing
shear stress at the free surface, ∂ux/∂y = 0 at y = h, we derive a semi-parabolic velocity profile first
deduced independently by Hopf in 1910 and Nusselt in 1916,

ux =
g

2ν
sinβ y (2h− y), (5.1.17)

where ν = μ/ρ is the kinematic viscosity of the fluid (e.g., [139]). The velocity at the free surface
and flow rate per unit width of the film are

umax
x =

g

2ν
h2 sinβ, Q =

∫ h

0

ux dy =
g

3ν
h3 sinβ. (5.1.18)

The mean velocity of the liquid is

umean
x ≡ Q

h
=

g

3ν
h2 sinβ =

2

3
umax
x . (5.1.19)

In Section 6.4.4, these equations will be used to describe unsteady, nearly unidirectional film flow
down an inclined plane with a mildly sloped free surface profile.

Problem

5.1.1 Two-layer flow

(a) Consider the flow of two superposed layers of two different fluids in a channel with parallel walls
separated by distance h. Derive the velocity profile across the two fluids in terms of the physical
properties of the fluids and flow rates for the mixed case of boundary- and pressure-driven flow.

(b) Repeat (a) for gravity driven flow of two layers flowing down an inclined plate.

5.2 Steady tube flows

We proceed to derive analytical solutions for unidirectional pressure-, gravity-, and boundary-driven
flows along straight tubes with various cross-sectional shapes. Unlike in channel flow, the velocity
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Figure 5.2.1 Illustration of (a) pressure- and gravity-driven flows and (b) boundary-driven flow through
a tube with circular cross-section of radius a.

profile in tube flow depends on two spatial coordinates determining the position over the tube
cross-section in the yz plane.

5.2.1 Circular tube

Pressure-driven flow through a circular tube, illustrated in Figure 5.2.1(a), was first considered by
Hagen and Poiseuille in his treatise of blood flow (e.g., [392]).

Pressure- and gravity-driven flows

To derive the solution for axisymmetric pressure- and gravity-driven flows, we express (5.1.4) in
cylindrical polar coordinates, (x, σ, ϕ), and derive a second-order ordinary differential equation,

1

σ

d

dσ

(
σ
dux

dσ

)
= −χ+ ρgx

μ
, (5.2.1)

accompanied by a regularity condition at the centerline, dux/dσ = 0 at σ = 0, and the no-slip
boundary condition at the tube wall, ux = 0 at σ = a. Two straightforward integrations of (5.2.1)
subject to these conditions yield the parabolic velocity profile

ux =
χ+ ρgx

4μ
(a2 − σ2). (5.2.2)

The maximum velocity occurs at the tube centerline, σ = 0, and is given by

umax
x =

χ+ ρgx
4μ

a2. (5.2.3)

The flow rate through a tube cross-section is found by integrating the velocity,

Q ≡
∫∫

uxdy dz = 2π

∫ a

0

ux σ dσ =
χ+ ρgx

8μ
πa4. (5.2.4)
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The mean fluid velocity is

umean
x ≡ Q

πa2
=

χ+ ρgx
8μ

a2 =
1

2
umax
x . (5.2.5)

Conversely, the centerline velocity is twice the mean velocity,

umax
x = 2umean

x = 2
Q

πa2
. (5.2.6)

The dependence of the flow rate on the fourth power of the tube radius shown in (5.2.4) is some-
times called Poiseuille’s law. This functional relationship was first inferred by Poiseuille based on
experimental observations at a time when neither the no-slip boundary condition nor the parabolic
velocity profile had been established.

Integral momentum balance

It is instructive to rederive the parabolic velocity profile (5.2.2) by performing an integral momentum
balance over a cylindrical control volume of length L and radius σ, as shown in Figure 5.2.1(a).
Requiring that the sum of the x component of the surface force exerted on the control volume
balances the body force along the x axis, we obtain∫∫

bottom,top

[ (
σxx

)
x=L

−
(
σxx

)
x=0

]
dS +

(
σxσ

)
σ
2πσL+ ρgxπσ

2L = 0. (5.2.7)

Expressing the stresses in terms of the velocity and pressure, we obtain

−
∫∫

bottom,top

[ (
p
)
x=L

−
(
p
)
x=0

]
dS + μ

(dux

dσ

)
σ
2πσL+ ρgxπσ

2L = 0. (5.2.8)

Treating the pressure difference inside the first integral as a constant, integrating over the cross-
section, and solving for the first derivative of the velocity, we obtain

dux

dσ
= −χ+ ρgx

2μ
σ, (5.2.9)

where χ = −
(
(p)x=L − (p)x=0

)
/L is the negative of the pressure gradient. Equation (5.2.9) is the

first integral of (5.2.1). Integrating (5.2.9) once subject to the no-slip boundary condition ux = 0 at
σ = a, we recover the parabolic profile (5.2.2).

Reynolds number and stability

The Reynolds number of the flow through a circular tube based on the tube diameter, 2a, and the
maximum velocity, umax

x , is

Re =
2aρumax

x

μ
=

4ρQ

πμa
=

χ+ ρgx
2μ2

a3. (5.2.10)

Note the dependence on the third power of the tube radius. In practice, the rectilinear flow described
by (5.2.2) is established when the Reynolds number is below a critical threshold that depends on



5.2 Steady tube flows 319

(a) (b) (c)

y y y

z z z

a

1 2

3

a

a

a

b b

a

Figure 5.2.2 Illustration of pressure- and gravity-driven flows through a tube with (a) elliptical, (b)
equilateral triangular, and (c) rectangular cross-section.

the wall roughness, as discussed in Section 9.8.6 in the context of hydrodynamic stability. As the
Reynolds number increases above this threshold, the streamlines becomes wavy, random motion
appears, and a turbulent flow is ultimately established.

Boundary-driven flow

Next, we consider flow in a horizontal circular tube driven by the translation of a sector of the tube
wall with aperture angle 2α confined between the azimuthal planes −α < ϕ < α in the absence of
a pressure drop, as shown in Figure 5.2.1(b). To compute the velocity profile, we solve Laplace’s
equation, ∇2ux = 0, subject to the no-slip boundary condition ux = 0 at σ = a, except that ux = V
at σ = a and −α < ϕ < α, where V is the boundary velocity. The solution can be found using the
Poisson integral formula (2.5.13), and is given by

ux(x0) = V
a2 − σ2

2π

∫ α

−α

dϕ

a2 + σ2 − 2aσ cos(ϕ0 − ϕ)
. (5.2.11)

Performing the integration, we obtain

ux(σ, ϕ) =
V

π

[
arctan

(a+ σ

a− σ
tan

α− ϕ

2

)
+ arctan

(a+ σ

a− σ
tan

α+ ϕ

2

) ]
. (5.2.12)

In the limit α → π the fluid translates as a rigid body with the wall velocity V in a plug-flow mode.
The flow rate must be found by integrating the velocity profile using numerical methods [317].

5.2.2 Elliptical tube

Now we consider flow through a tube an elliptical cross-section, as shown in Figure 5.2.2(a), where a
and b are the tube semi-axes along the y and z axes. The velocity profiles for pressure- and gravity-
driven flows follows from the observation that the equation of the ellipse, F(y, z) = 0, involves a
quadratic shape function of the cross-sectional coordinates y and z satisfying Poisson’s equation
with a constant forcing term on the right-hand side,

F(y, z) = 1− y2

a2
− z2

b2
. (5.2.13)
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The velocity profile is found by inspection,

ux(y, z) =
χ+ ρgx

2μ

a2b2

a2 + b2
F(y, z). (5.2.14)

The maximum velocity occurs at the center of the elliptical cross-section. The flow rate is found by
integrating the velocity over the elliptical cross-section [311], yielding

Q = π
χ+ ρgx

4μ

a3b3

a2 + b2
. (5.2.15)

When a = b, we recover our results in Section 5.2.1 for a circular tube.

5.2.3 Triangular tube

Next, we consider flow through a tube whose cross-section is an equilateral triangle with side length
a, as shown in Figure 5.2.2(b). The three vertices of the triangular contour are located at the (y, z)
doublets

v1 = a
1

2
(−1,− 1√

3
), v2 = a

1

2
(1,− 1√

3
), v3 = a (0,

1√
3
), (5.2.16)

where the origin has been set at the centroid of the triangle. The tube contour is described by the
cubic equation F(y, z) = 0, where

F(y, z) =
1

a3
(2
√
3 z + a)(

√
3 z + 3y − a)(

√
3 z − 3y − a) (5.2.17)

is a dimensionless shape function. The term inside the first parentheses is zero on the lower side, the
term inside the second parentheses is zero on the left side, and the term inside the third parentheses
is zero on the right side. Carrying out the multiplications, we obtain

F(y, z) = 1− 9 (ŷ2 + ẑ2)− 6
√
3 (3 ẑŷ2 − ẑ3), (5.2.18)

where ŷ = y/a and ẑ = z/a. We note that

∇2F(y, z) = −36

a2
, (5.2.19)

and conclude that the velocity profile in pressure- and gravity-driven flows is a cubic polynomial in
y and z, given by

ux(y, z) =
χ+ ρgx
36μ

a2F(y, z) (5.2.20)

(Clairborne 1952, see [382]). Integrating the velocity over the tube cross-section, we derive an
expression for the flow rate,

Q =

√
3

320

χ+ ρgx
μ

a4. (5.2.21)

The dependence of the flow rate on the fourth power of a linear tube dimension, in this case the side
length, a, is typical of pressure-driven tube flow.

Sparrow [382] derives the velocity profile in a isosceles triangular tube in terms of an infinite
series. Other triangular profiles will be discussed in Section 5.2.9.
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5.2.4 Rectangular tube

In the fourth configuration, we consider flow through a tube with rectangular cross-section whose
sides along the y and z axes are equal to 2a and 2b, as shown in Figure 5.2.2(c). Setting the origin at
the centerpoint, expressing the velocity as the sum of a parabolic component with respect to z that
satisfies the Poisson equation (5.1.4) and a homogeneous component that satisfies Laplace’s equation,
and then using Fourier expansions in the y direction to compute the homogeneous component subject
to appropriate boundary conditions, we obtain the velocity profile

ux(y, z) =
χ+ ρgx

2μ
b2F(y, z), (5.2.22)

where

F(y, z) = 1− z2

b2
+ 4

∞∑
n=1

(−1)n

α3
n

cosh(αn
y
b )

cosh(αn
a
b
)
cos(αn

z

b
) (5.2.23)

is a dimensionless function and αn = (n − 1
2)π. Integrating the velocity profile over the tube

cross-section, we derive the flow rate

Q =
4

3

χ+ ρgx
μ

ab3 φ(
a

b
), (5.2.24)

where

φ(ξ) = 1− 6

ξ

∞∑
n=1

1

α5
n

tanh(αnξ). (5.2.25)

As ξ tends to infinity, the dimensionless function φ(ξ) tends to unity. As ξ tends to zero, φ(ξ)
behaves like ξ2. Both cases correspond to flow through a two-dimensional channel with parallel
walls described by equation (5.1.6).

5.2.5 Annular tube

Next, we consider unidirectional flow through the annular space confined between two concentric
circular cylinders with radii R1 and R2 > R1, as shown in Figure 5.2.3. The cylinders are allowed
to translate with respective velocities equal to V1 and V2 along their length, in the presence of an
independent axial pressure gradient. Expressing the Poisson equation (5.1.4) in cylindrical polar
coordinates, integrating twice with respect to the distance from the centerline, σ, and enforcing the
boundary conditions ux = V1 at σ = R1 and ux = V2 at σ = R2, we derive the velocity profile

ux(σ) = V2 + (V1 − V2)
ln(R2/σ)

ln δ
+

χ+ ρgx
4μ

(
R2

2 − σ2 − (R2
2 −R2

1)
ln(R2/σ)

ln δ

)
, (5.2.26)

where δ = R2/R1 > 1 is the tube radius ratio. The wall shear stress on each cylinder arises by
straightforward differentiation. The flow rate tube is found by straightforward integration, yielding

Q ≡ 2π

∫ R2

R1

ux(σ)σ dσ = π
[
V2R

2
2 − V1R

2
1 −

1

2
(V2 − V1)

R2
2 −R2

1

ln δ

]
+π

χ+ ρgx
8μ

(R2
2 −R2

1)
(
R2

2 +R2
1 −

R2
2 −R2

1

ln δ

)
. (5.2.27)
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Figure 5.2.3 Illustration of flow in the annular space confined two inclined infinite concentric cylinders.

If the tube is closed at both ends, the pressure drop is such that the flow rate is zero. When the
clearance of the annular channel is small compared to the inner cylinder radius, h ≡ R2 −R1 � R1,
the curvature of the walls becomes insignificant and expressions (5.2.26) and (5.2.27) reduce to
(5.1.6) and (5.1.7) with y = σ−R1 describing flow in a channel confined between two parallel walls
(Problem 5.2.8).

A cylindrical object moving inside a circular tube

As an application, we consider flow past or due to the motion of a cylindrical object with length 2b
and radius c inside a cylindrical tube of radius a, as shown in Figure 5.2.4. If the length of the object,
2b, is large compared to the annular gap, a − c, the flow inside the annular gap is approximately
unidirectional. The velocity profile inside the gap arises by applying (5.2.26) with R1 = c, R2 = a,
V1 = V , V2 = 0, and gx = 0, yielding

ux(σ) = V
ln(a/σ)

ln δ
+

χ

4μ

(
a2 − σ2 − (a2 − c2)

ln(a/σ)

ln δ

)
, (5.2.28)

where δ = a/c > 1. The corresponding flow rate is

Qgap = πV
( 1
2

a2 − c2

ln δ
− c2

)
+ π

χ

8μ
(a2 − c2) (a2 + c2 − a2 − c2

ln δ
). (5.2.29)

The axial force exerted on the object can be computed by summing the pressure force normal to
the two discoidal sides and the shear force exerted on the cylindrical side with surface area 4πbc,
yielding

Fx = πc2
(
(p)x=−b − (p)x=b

)
+ 4πμbc

(∂ux

∂σ

)
σ=c

, (5.2.30)

where (∂ux

∂σ

)
σ=c

=
c

ln δ

[
− V

c2
+

χ

4μ

(
− 2 ln δ + δ2 − 1 )

]
. (5.2.31)
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Figure 5.2.4 Flow past or due to the motion of a tightly fitting cylinder of radius c inside a cylindrical
tube of radius a > c.

Setting (p)x=−b − (p)x=b = 2bχ and simplifying, we obtain

Fx = ba2
π

ln δ

(
− 4μV

a2
+ χ

δ2 − 1

δ2
)
. (5.2.32)

Two modular cases are of interest. In the first case, the cylinder moves with velocity V
inside a tube that is closed at both ends. Mass conservation requires that the flow rate through
the narrow annular gap balances the rate of displacement of the fluid on either side of the cylinder,
Qgap = −V πc2. Evaluating the flow rate using (5.2.27) with R1 = c, R2 = a, V1 = V , V2 = 0, and
gx = 0, and rearranging, we obtain the negative of the pressure gradient,

χV = −4μV

a2
δ2

−δ2 + 1 + (δ2 + 1) ln δ
. (5.2.33)

The second fraction on the right-hand side is identified with a positive dimensionless pressure gra-
dient coefficient, cVp . The velocity profile arises by setting in (5.2.28) χ = χV . Substituting (5.2.33)
into (5.2.32), we obtain the drag force

Fx = −4πbμV
δ2 + 1

−δ2 + 1 + (δ2 + 1) ln δ
. (5.2.34)

The associated drag coefficient is

cV ≡ − Fx

6πμcV
=

2

3
ε

δ2 + 1

−δ2 + 1 + (δ2 + 1) ln δ
, (5.2.35)

where ε ≡ b/c is the object aspect ratio.

In the second modular case, the cylinder is stationary and the fluid is forced to move at a
constant flow rate, Qgap = 1

2 Ucπa
2, where Uc is the centerline velocity of an equivalent Poiseuille

flow. Evaluating the flow rate using (5.2.27) with R1 = c, R2 = a, V1 = 0, V2 = 0, and gx = 0, and
rearranging, we obtain the negative of the pressure gradient,

χU =
4μUc

a2
δ4

δ4 − 1− (δ2 − 1)2/ ln δ
. (5.2.36)
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Figure 5.2.5 Illustration of a circular tube of radius a indented with a circular sector of radius b.

The second fraction on the right-hand side can be identified with a positive dimensionless pressure
gradient coefficient, cUp . The velocity profile arises by setting in (5.2.28) V = 0 and χ = χU .
Substituting (5.2.36) into (5.2.32), we obtain the drag force

Fx = 4πμbUc
δ2

−δ2 + 1 + (δ2 + 1) ln δ
. (5.2.37)

The associated drag coefficient is

cU ≡ Fx

6πμcUc
=

2

3
ε

δ2

−δ2 + 1 + (δ2 + 1) ln δ
. (5.2.38)

The negative of the pressure drop and drag force coefficient in the general case arise by
superposition,

χ = χV + χU = −4μ

a2
(V cVp − Ucc

U
p ), Fx = F V

x + FU
x = −6πμc (V cVD − Ucc

U
D). (5.2.39)

In the case of a freely suspended particle, we set Fx = 0 and find that V/Uc = cU/cV .

5.2.6 Further shapes

Berker [31] discusses solutions for pressure- and gravity-driven flows through tubes with a variety of
cross-sectional shapes, including the half moon, the circular sector, the limaçon, and the eccentric
annulus. The velocity distribution and flow rate are typically expressed in terms of an infinite series
similar to those shown in (5.2.22) and (5.2.25).

Indented circular tube

As an example, we consider pressure- and gravity-driven flows through a circular tube of radius a
indented with a circular sector of radius b, as shown in Figure 5.2.5. The origin of the Cartesian
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axes has been placed at the leftmost point of the unperturbed circular contour. The axial velocity,
ux, satisfies the Poisson equation

∇2ux =
1

r

∂

∂r

(
r
∂ux

∂r

)
+

1

r2
∂2ux

∂θ2
= −χ+ ρgx

μ
, (5.2.40)

where r is the distance from the origin and θ is the corresponding polar angle. Using the law of
cosines, we find that

a2 − σ2 = 2ar cos θ − r2, (5.2.41)

where σ is the distance from the center of the outer circle. The boundary conditions specify that
ux = 0 at σ = a and r = 2a cos θ (outer circle), and ux = 0 at r = b (inner circle). The velocity
profile can be constructed by modifying the parabolic profile of the Poiseuille flow, obtaining

ux =
χ+ ρgx

4μ
(a2 − σ2)(1− b2

r2
) =

χ+ ρgx
4μ

(2
a

r
cos θ − 1)(r2 − b2). (5.2.42)

When b = 0, we recover Poiseuille flow through a circular tube.

5.2.7 General solution in complex variables

It is possible to derive the general solution for the velocity field in pressure-, gravity-, and boundary-
driven flow through a straight tube with arbitrary cross-section based on a formulation in complex
variables. In the case of pressure- or gravity-driven flows, we decompose the velocity field into a
particular component and a homogeneous component,

ux(y, z) =
χ+ ρgx

μ

[
v(y, z) + f(y, z)

]
, (5.2.43)

where v is a particular solution satisfying the Poisson equation ∇2v + 1 = 0, and the function f
satisfies the Laplace equation, ∇2f = 0. A convenient choice for v is the quadratic function

v(x, y) = a2 − 1

2

[
α (y − yR)

2 + (1− α) (z − zR)
2
]
, (5.2.44)

where a is a chosen length, α is an arbitrary dimensionless parameter, and (yR, zR) are the coordi-
nates of an arbitrary reference point in the yz plane. Straightforward differentiation confirms that
the function v satisfies Poisson’s equation ∇2v + 1 = 0 for any value of α, as required.

The no-slip boundary condition requires that f = −v around the tube contour. The problem
has been reduced to computing the harmonic function f subject to the Dirichlet boundary condition.
The theory of functions of a complex variable guarantees that f can be regarded as the real part of
an analytic function, G(w), where w = y + iz is the complex variable in the yz plane and i is the
imaginary unit, f = Real{G(w)}. To compute the solution, we introduce a function w = F(ζ) that
maps a disk of radius � centered at the origin of the ζ complex plane to the cross-section of the tube
in the physical w plane, as discussed in Section 7.11. The tube contour is described parametrically
by the functions

yc(θ) = Real
{
F(�eiθ)

}
, zc(θ) = Imag

{
F(�eiθ)

}
, (5.2.45)
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where θ is the polar angle in the ζ plane, 0 ≤ θ < 2π. Writing ζ = σeiϕ and using the Poisson
integral (2.5.13), we obtain

f(y, z) =
�2 − σ2

2π

∫ 2π

0

v[ yc(θ
′), zc(θ

′) ]

�2 + σ2 − 2�σ cos(θ − θ′)
dθ′, (5.2.46)

where

y(σ, θ) = Real
{
F(σeiθ)

}
, z(σ, θ) = Imag

{
F(σeiθ)

}
, (5.2.47)

and 0 ≤ σ ≤ �. In general, the integral in (5.2.46) must be evaluated by numerical methods. The
computation of the required mapping function F(ζ) is discussed in Section 7.11.

5.2.8 Boundary-integral formulation

The axial velocity profile satisfying the Poisson equation can be computed by solving an integral
equation for a properly defined homogeneous component based on the decomposition (5.2.43). Perti-
nent computer codes and a discussion of the numerical method can be found in the boundary-element
library Bemlib [313] (Appendix C).

5.2.9 Triangles and polygons with rounded edges

Motivated by the solution for flow through an elliptic tube given in (5.2.14), we consider the velocity
profile

ux(y, z) =
χ+ ρgx

2μ

a2b2

a2 + b2
F(y, z), (5.2.48)

where a and b are two specified lengths,

F(y, z) = 1− y2

a2
− z2

b2
−H(y, z), (5.2.49)

is a suitable function, and H(y, z) is a harmonic function in the yz plane satisfying

∂2H
∂y2

+
∂2H
∂z2

= 0. (5.2.50)

The tube contour where ux = 0 is described implicitly by the equation F(y, z) = 0. When H = 0,
we obtain an elliptical tube with semiaxes a and b. More generally, the tube shape must be found
by numerical methods.

To obtain tubes with polygonal profiles, we define the complex variable w = y + iz and
introduce the function

H(y, z) = α Imag
{
eiφ

(w
c

)m }
, (5.2.51)

where α is a dimensionless coefficient, i is the imaginary unit, i2 = −1, c is a specified length, m is
a specified integer determining the polygonal shape, and φ is a specified phase angle.



5.2 Steady tube flows 327

(a) (b)

y/δ

z/
δ

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

y/δ

z/
δ

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

(c) (d)

y/δ

z/
δ

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

y/δ

z/
δ

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 5.2.6 (a, b) Tube contours resembling triangles with rounded corners ranging between a circle
and a triangle. (c, d) Tube contours resembling squares or rectangles with rounded corners.

Rounded triangles

For a = b = c = 1
3 δ, m = 3, and φ = 0, we obtain

F(y, z) = 1− 9 (ŷ2 + ẑ2)− 27α (3ẑŷ2 − ẑ3), (5.2.52)

where ŷ = y/δ, ẑ = z/δ, and δ is a specified length [422]. When α = 0, the tube contour is a circle
of radius 1

3 δ centered at the origin. Comparison with (5.2.18) reveals that, when α = 2/33/2, the
tube contour is an equilateral triangle with side length equal to δ. Figure 5.2.6(a) shows contours
describing equilateral triangles with rounded corners for intermediate values of α.

For a = 1
3 δ, b =

1
4 δ, c =

1
3 δ, m = 3, and φ = 0, we obtain a family of isosceles triangles with

rounded corners parametrized by α, as shown in Figure 5.2.6(b).
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Rounded squares and rectangles

A variety of other shapes resemblingm-sided polygons with rounded corners can be produced working
in a similar fashion. For a = b = c = δ, m = 4, and φ = 0, we obtain

F(y, z) = 1− ŷ2 + ẑ2 − α (ŷ4 − 6 ŷ2ẑ2 + ẑ4). (5.2.53)

When α = 0, the tube contour is a circle of radius δ. As α increases, squares with rounded corners
appear, as shown in Figure 5.2.6(c).

For a = δ, b = 1
2 δ, c = δ, m = 4, and φ = 0, we obtain a family of rectangles with rounded

corners parametrized by α, as shown in Figure 5.2.6(d).

Problems

5.2.1 Flow through a triangular tube with partitions

Consider pressure-driven flow through a channel whose cross-section in the yz plane is parametrized
by an index n as follows: n = 1 corresponds to a channel whose cross-section is an equilateral
triangle with side length equal to a; n = 2 corresponds to a partitioned channel that derives from
the channel for n = 1 by introducing three straight segments connecting the midpoints of the sides
of the original triangle; each time n is increased by one unit, each triangle is partitioned into four
smaller triangles by connecting midpoints of its sides. The number of triangles at the nth level is
equal to 4n−1. Show that the flow rate through the nth member of the family is given by

Q =
1

8n−1

√
3

320

χ+ ρgx
μ

a4. (5.2.54)

Discuss the behavior of the flow rate in the limit as n tends to infinity.

5.2.2 A two-dimensional paint brush

Taylor developed a simple model for estimating the amount of paint deposited onto a plane wall
during brushing [400]. The brush is modeled as an infinite array of semi-infinite parallel plates
separated by distance 2a, sliding at a right angle with velocity V over a flat painted surface. The
space between the plates is filled with a liquid.

(a) Show that the velocity distribution inside a brush channel is

ux(y, z) = V
[
1 + 2

∞∑
n=1

(−1)n

αn
exp(−αn

z

a
) cos(αn

y

a
)
]
, (5.2.55)

where αn = (n− 1
2 )π (e.g., [318]). The origin has been set on the painted surface midway between

two plates; the z axis is perpendicular to the painted surface.

(b) The amount of liquid deposited on the surface per channel is

Q =

∫ ∞

0

∫ a

−a

[V − ux(y, z) ] dy dz. (5.2.56)
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Show that

Q = −2V

∞∑
n=1

(−1)n

αn

∫ ∞

0

∫ a

−a

exp(−αn
z

a
) cos(αn

y

a
) dy dz = 4V a2

∞∑
n=1

1

α3
n

, (5.2.57)

yielding Q � 1.085V a2. The dependence of the flow rate on the second power of a linear boundary
dimension, in this case, a, is typical of boundary-driven flow. Explain why the thickness of the film
left behind the brush is h = Q/(2V a).

(c) Repeat (a) and (b) assuming that the brush planes are inclined at an angle α with respect to
the painted surface. Discuss the relation between Q and α.

5.2.3 Flow through a tapered tube

Consider a conical tube with a slowly varying radius, a(x). Derive an expression for the pressure
drop necessary to drive a flow with a given flow rate.

5.2.4 Free-surface flow in a square duct

Consider unidirectional gravity-driven flow along a tilted square duct with side length 2a, inclined
at angle β with respect to the horizontal. The top of the duct is open to the atmosphere and the
free surface is assumed to be flat. The fluid velocity at the bottom, left, and right walls, and the
shear stress at the top free surface are required to be zero. It is convenient to introduce Cartesian
coordinates where the left and right walls are located at y = ±a and the bottom wall is located at
z = −a. Show that the velocity field and flow rate are given by

ux =
g

2ν
sinβ

[
a2 − y2 + 4a2

∞∑
n=1

(−1)n

α3
n

cosh[αn(1 + z/a)]

cosh(2αn)
cos(αn

y

a
)
]

(5.2.58)

and

Q = 4
g

ν
sinβ a4

(
1−

∞∑
n=1

tanh(2αn)

α5
n

)
, (5.2.59)

where αn = π
2 (2n− 1) and ν is the kinematic viscosity of the fluid.

5.2.5 Coating a rod

A cylindrical rod of radius a is pulled upward with velocity V from a liquid pool after it has been
coated with a liquid film of thickness h. The coated liquid is draining downward due to the action
of gravity. Show that, in cylindrical polar coordinates where the x axis is coaxial with the rod and
points upward against the acceleration of gravity, the velocity profile across the film is

ux = V +
g

4ν

(
σ2 − a2 − 2(a+ h)2) ln

σ

a

)
. (5.2.60)

What is the value of V for the film thickness film to remain constant in time?

5.2.6 Flow through a rectangular channel

Prepare a plot the function φ(ξ) defined in (5.2.25). Discuss the behavior as ξ tends to zero or
infinity.
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5.2.7 Settling of a cylindrical slab inside a vertical tube

Consider a solid cylindrical slab with radius b and density ρs settling with velocity V under the
action of gravity along the centerline of a vertical circular tube with radius a > b, where a � b. The
tube is closed at the bottom and exposed to the atmosphere at the top. Derive an expression for the
scaled settling velocity, μV/(ρs − ρ)ga2, in terms of the radii ratio, δ ≡ b/a, where ρ is the density
of the fluid inside the cylinder.

5.2.8 Flow between two concentric cylinders

Show that as the channel width h = R2 − R1 becomes decreasingly small compared to the inner
radius, R1, expressions (5.2.26) and (5.2.27) reduce to (5.1.6) and (5.1.7) with y = σ −R1 [318].

Computer Problem

5.2.9 Flow through a flexible hose

A gardener delivers water through a circular hose made of a flexible material. By pinching the end
of the hose, she is able to obtain elliptical cross-sectional shapes with variable aspect ratio, while
the perimeter of the hose remains constant. Compute the delivered flow rate as a function of the
aspect ratio of the cross-section for a given pressure gradient.

5.3 Steadily rotating flows

Previously in this chapter, we discussed rectilinear unidirectional flow where the nonvanishing veloc-
ity component is directed along the x axis. Now we turn our attention to swirling flow with circular
streamlines generated by boundary rotation.

5.3.1 Circular Couette flow

In the first application, we consider swirling flow in the annular space between two concentric
cylinders with radii R1 and R2 rotating about their common axis with angular velocities Ω1 and Ω2.
Assuming that the axial and radial velocity components are zero and the azimuthal component is
independent of the axial and azimuthal position, we set uϕ = u(σ), ux = 0, and uσ = 0. The axial
component of the equation of motion is satisfied by the pressure distribution, p = ρg · x + p̃(σ),
where p̃(σ) = p− ρg · x is the hydrodynamic pressure excluding hydrostatic variations. The radial
and azimuthal components of the equation of motion yield the ordinary differential equations

dp̃

dσ
= ρ

u2
ϕ

σ
,

d

dσ

( 1

σ

d (σuϕ)

dσ

)
= 0. (5.3.1)

The first equation states that the centrifugal force is balanced by a spontaneously developing radial
pressure gradient. Integrating the second equation subject to the boundary conditions uϕ = Ω1R1

at σ = R1 and uϕ = Ω2R2 at σ = R2, we obtain the velocity profile

uϕ(σ) =
Ω2 − αΩ1

1− α
σ − Ω2 − Ω1

1− α

R2
1

σ
, (5.3.2)
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where α ≡
(
R1/R2

)2
< 1 is a geometrical dimensionless parameter. When Ω2 = Ω1 ≡ Ω, the fluid

rotates like a rigid body with azimuthal velocity uϕ(σ) = Ωσ. When Ω2 = αΩ1, we obtain the
flow due to a point vortex with strength κ = 2πΩ1R

2
1 = 2πΩ2R

2
2 located at the axis, generating

irrotational flow. As the clearance of the channel becomes decreasingly small compared to the radii
of the cylinders, α → 1, the flow in the gap resembles plane Couette flow in a channel with parallel
walls (Problem 5.3.1).

The pressure distribution is found by substituting the velocity profile (5.3.2) into the first
equation of (5.3.1). When the fluid rotates as a rigid body, Ω2 = Ω1 ≡ Ω, we obtain

p =
1

2
ρΩ2σ2 + ρg · x+ p0, (5.3.3)

where p0 is a constant. The first term on the right-hand side is the pressure field established in
response to the centrifugal force. When the flow resembles that due to a point vortex, we obtain

p = −1

2
ρU2

1

R2
1

σ2
+ ρg · x+ p0, (5.3.4)

where U1 = Ω1R1.

The circular Couette flow device provides us with a simple method for computing the viscosity
of a fluid in terms of the torque exerted on the inner or outer cylinder, given by

T ≡ −2πσ2 σσϕ = 4πμR2
1

Ω2 − Ω1

1− α
. (5.3.5)

Note that the shear stress, σσϕ, and thus the torque is zero in the case of rigid-body rotation.

The stability of the circular Couette flow will be discussed in Section 9.9. Linear stability
analysis shows that the laminar flow discussed in this section is established only when the pair
(Ω1,Ω2) falls inside a certain range. Wavy motion leading to cellular flow is established outside this
range.

5.3.2 Ekman flow

Consider a semi-infinite body of fluid residing in the lower half-space from z = 0 to −∞ and rotating
around the z axis with constant angular velocity Ω. We refer to a noninertial frame of reference
that rotates with the fluid with angular velocity, Ω = Ω ez, and assume that the vertical velocity
component, uz, is zero while the horizontal velocity components, ux and uy, depend only on z and
are independent of x and y. Simplifying the equation of motion in the rotating noninertial frame by
setting the left-hand side of (3.2.43) to zero, we obtain

0 = −∇p+ μ∇2u+ ρg + ρ [−2Ω× u−Ω× (Ω× x) ]. (5.3.6)

The first term inside the square brackets on the right-hand side is the Coriolis force, and the second
term is the centrifugal force. The x, y, and z components of (5.3.6) are

0 = −∂p

∂x
+ μ

d2ux

dz2
+ ρgx + ρΩ(2uy − Ωx),

0 = −∂p

∂y
+ μ

d2uy

dz2
+ ρgy + ρΩ(−2ux − Ωy), 0 = −∂p

∂z
+ ρgz. (5.3.7)
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The solution is

p = ρg · x+
1

2
ρΩ2(x2 + y2) + p0, (5.3.8)

where p0 is a constant reference pressure, and the velocity components ux and uy satisfy the coupled
ordinary differential equations

μ
d2ux

dz2
= −2ρΩuy, μ

d2uy

dz2
= 2ρΩux. (5.3.9)

It is convenient to collect these equations into the compact complex form

d2(ux + iuy)

dz2
= 2 i

Ω

ν
(ux + iuy), (5.3.10)

where i is the imaginary unit, i2 = −1, and ν = μ/ρ is the kinematic viscosity of the fluid. Stipulating
that ux = Ux and uy = Uy at z = 0, and that ux and uy decay as z tends to negative infinity, we
obtain

ux + iuy = (Ux + iUy) exp
[
− (1 + i)

|z|
δ

]
, (5.3.11)

where δ ≡ (2ν/Ω)1/2 is the Ekman layer thickness. We observe that the velocity components in a
plane that is normal to the axis of rotation decay exponentially with downward distance from the
surface of the liquid.

Problem

5.3.1 Flow between concentric cylinders

Show that, as the cylinder radii R1 and R2 tend to become equal, the velocity profile in the gap be-
tween the two cylinders resembles the linear profile of plane-Couette flow in a channel with clearance
h = R2 −R1 [318].

5.4 Unsteady unidirectional flows

Unsteady unidirectional flows share many of the simplifying features of steady unidirectional flows
discussed earlier in this chapter. An unsteady flow can be driven by an imposed time-dependent
pressure gradient or by time-dependent boundary motion. In the case of rectilinear flow along the
x axis, the y and z components of the equation of motion are satisfied by the pressure distribution

p = −χ(t)x+ ρ (gyy + gzz) + p0, (5.4.1)

where χ(t) ≡ −∂p/∂x is the negative of the streamwise pressure gradient. The x component of
the equation of motion provides us with an unsteady conduction equation in the presence of a
time-dependent source term for the streamwise velocity component, ux,

ρ
∂ux

∂t
= χ(t) + μ

( ∂2ux

∂y2
+

∂2ux

∂z2
)
+ ρgx. (5.4.2)

The linearity of this equation allows us to derive exact solutions for two-dimensional, axisymmetric,
and more general boundary configurations.
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5.4.1 Flow due to the in-plane vibrations of a plate

In 1845, Stokes studied the flow due to the in-plane vibrations of a horizontal flat plate along the x
axis in an otherwise quiescent semi-infinite fluid located above the plate, y > 0. Assuming that ux

is a function of time, t, and distance from the plate, y, and setting ∂p/∂x = ρgx, which is equivalent
to χ = −ρgx, we find that the pressure distribution assumes the hydrostatic profile and the velocity
satisfies a simplified version of the general governing equation (5.4.2),

∂ux

∂t
= ν

∂2ux

∂y2
, (5.4.3)

known as the one-dimensional unsteady heat conduction equation, where ν = μ/ρ is the kinematic
viscosity of the fluid.

The velocity is required to decay far from the plate, as y → ∞. The no-slip boundary condition
at the plate requires that

ux(y = 0, t) = V cos(Ωt), (5.4.4)

where Ω is the angular frequency of the oscillations and V is the amplitude of the vibrations. It is
convenient to express this boundary condition in the form

ux(y = 0, t) = V Real
{
e−iΩt

}
, (5.4.5)

where i is the imaginary unit, i2 = −1. Motivated by the linearity of (5.4.3), we also set

ux(y, t) = V Real
{
f(y) e−iΩt

}
, (5.4.6)

where f(y) is a dimensionless complex function satisfying the boundary condition f(0) = 1 and the
far-field condition f(∞) = 0. Substituting (5.4.6) into (5.4.3), we derive a linear ordinary differential
equation

−iΩf = νf ′′, (5.4.7)

where a prime denotes a derivative with respect to y. The solution is readily found to be

f(y) = exp[−(1− i) ŷ ], (5.4.8)

where ŷ ≡ y/δ and

δ =

√
2ν

Ω
(5.4.9)

is the Stokes boundary-layer thickness. Substituting (5.4.8) into (5.4.6), we obtain

ux(y, t) = V Real
{
exp[−iΩt− (1− i) ŷ ]

}
, (5.4.10)

yielding the velocity profile

ux(y, t) = V cos(Ωt− ŷ) e−ŷ (5.4.11)
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Figure 5.4.1 Velocity profiles (a) due to the in-plane oscillation of a plate in a semi-infinite viscous
fluid and (b) in oscillatory flow over a stationary plate. Profiles are shown at phase angles Ωt/π = 0
(dashed line), 0.25 (dash-dotted line), 0.50 (dotted line), 0.75, 1.0, 1.25, 1.50, 1.75, and 2.0. The
y coordinate is scaled by the Stokes boundary layer thickness δ defined in (5.4.9).

for ŷ ≥ 0. We have found that the velocity profile is an exponentially damped wave with wave
number 1/δ and associated wavelength 2πδ, propagating in the y direction with phase velocity
cp = Ωδ = (2νΩ)1/2. Since the amplitude of the velocity decays exponentially with distance from
the plate, the motion of the fluid is negligible outside a wall layer of thickness δ. Velocity profiles at
a sequence of time instants over one period of the oscillations are shown in Figure 5.4.1(a).

Wall shear stress

Differentiating (5.4.10) with respect to y and evaluating the derivative at the plate, y = 0, we obtain
an expression for the shear stress over the plate,

(
σxy

)
y=0

= μ
(∂ux

∂y

)
y=0

= V (μρΩ)1/2 cos(Ωt− 3π

4
) =

μV

δ

√
2 cos(Ω t− 3π

4
). (5.4.12)

It is interesting to note that the phase shift between the wall shear stress and the velocity of the
plate is 3π/4, independent of the angular frequency, Ω. This is a unique feature of oscillatory flow
driven by the motion by a flat surface in the absence of other boundaries. We will see later in this
section that, for other geometries, the phase shift depends on the frequency of oscillation.

5.4.2 Flow due to an oscillatory pressure gradient above a plate

Next, we study the complementary problem of unidirectional flow above a stationary plate due to
an oscillatory pressure gradient, setting

χ ≡ −∂p

∂x
= −ρgx + ζ sin(Ωt), (5.4.13)
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where ζ is a constant amplitude. The velocity profile is governed by the following simplified version
of the general equation (5.4.2),

ρ
∂ux

∂t
= ζ sin(Ωt) + μ

∂2ux

∂y2
. (5.4.14)

The solution is

ux(y, t) = v(y, t)− ζ

ρΩ
cos(Ωt), (5.4.15)

where the complementary velocity v is given by the right-hand side of (5.4.11) with V = ζ/(ρΩ),
yielding

ux(y, t) =
ζ

ρΩ

[
cos(Ωt− ŷ) e−ŷ − cos(Ωt)

]
. (5.4.16)

The velocity is zero over the plate located at y = 0, and describes uniform oscillatory flow with
velocity ux(∞, t) = −U cos(Ωt) far from the plate, where U = ζ/(ρΩ). Physically, the flow consists
of an outer potential core and a Stokes boundary layer with thickness δ = (2ν/Ω)1/2 adhering to the
plate. Velocity profiles at a sequence of time instants over one period are shown in Figure 5.4.1(b).

5.4.3 Flow due to the sudden translation of a plate

Consider a semi-infinite flow above a flat plate that is suddenly set in motion parallel to itself with
constant velocity, V , underneath an otherwise quiescent fluid. The evolving velocity profile is found
by solving (5.4.3) subject to the initial condition ux(y, t = 0) = 0 and the boundary and far-field
conditions

ux(y = 0, t > 0) = V, ux(y → ∞, t) = 0. (5.4.17)

Because of the linearity of the governing equation and boundary conditions, we expect that the fluid
velocity will be proportional to the plate velocity, V , and set

ux = V f(y, t, ν), (5.4.18)

where f is a dimensionless function. The arguments of f(y, t, ν) must combine into dimensionless
groups. In the absence of external length and time scales, we formulate a combination in terms of
the similarity variable

η =
y√
νt

, (5.4.19)

so that f(y, t, ν) = F (η), where F (η), is an unknown dimensionless function. This means that the
velocity as seen by an observer who finds herself at the position y =

√
νt, and is thus traveling along

the y axis with velocity v = dy/dt =
√

ν/4t, remains constant in time. The boundary and far-field
conditions require that F (0) = 1 and F (∞) = 0. Substituting into (5.4.3) the self-similar velocity
profile ux = V F (η), we obtain

dF

dη

∂η

∂t
= ν

∂

∂y

(dF
dη

∂η

∂y

)
. (5.4.20)
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Figure 5.4.2 (a) Graphs of the error function (solid line) and complementary error function (dashed
line) computed using algebraic approximations. (b) Velocity profiles of the flow due to the sudden
motion of a plate in a semi-infinite fluid at dimensionless times νt/a2 = 0.001, 0.005, 0.02, 0.05,
0.1, 0.2, 0.5, and 1.0, where a is an arbitrary length scale,

Carrying out the differentiations, we derive a second-order nonlinear ordinary differential equation

−1

2
η
dF

dη
=

d2F

dη2
. (5.4.21)

Integrating twice subject to the aforementioned boundary and far-field conditions, we obtain the
velocity profile

ux

V
= F (η) = erfc

(η
2

)
≡ 1− erf

(η
2

)
≡ 1− 2√

π

∫ η/2

0

e−ξ2 dξ. (5.4.22)

The complementary error function, erfc(w), and the error function, erf(w), can be computed by
accurate polynomial approximations. Graphs are presented in Figure 5.4.2(a). As w tends to
infinity, erf(w) tends to unity and correspondingly erfc(w) tends to zero. The converse is true as w
tends to zero.

A sequence of evolving velocity profiles plotted with respect to y/a are shown in Figure 5.4.2(b)
at a sequence of dimensionless times νt/a2, where a is an arbitrary length. At the initial instant, the
velocity profile is proportional to the discontinuous Heaviside function, reflecting the sudden onset
of a vortex sheet attached to the plate,

ux(y, t = 0) = VH(y). (5.4.23)

The dimensionless Heaviside function, H(t), is defined such that H(t) = 0 for t < 0 and H(t) = 1 for
t > 0. As time progresses, the vortex sheet diffuses into the fluid, transforming into a vortex layer
of growing thickness.
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Wall shear stress

The wall shear stress is given by

(
σxy

)
y=0

= μ
(∂ux

∂y

)
y=0

= μV
(dF
dη

)
η=0

(∂η
∂y

)
y=0

= −μ
V√
πνt

. (5.4.24)

A singularity appears at the initial instant, t = 0, when the plate starts moving. Physically, the
plate cannot be pushed impulsively with constant velocity, but must be accelerated gradually from
the initial to the final value over a finite period of time. Setting the shear stress equal to −μV/δ,
where δ is the effective thickness of the vorticity layer, we find that δ increases in time like the square
root of time, δ ∼

√
νt.

Diffusing vortex sheet

The velocity field given in (5.4.22) describes the flow due to the sudden introduction of an infinite
plane parallel to a uniform stream flowing along the x axis, as well as the flow associated with a
diffusing vortex sheet separating two uniform streams flowing with velocities V and −V above and
below the x axis, as discussed in Section 3.12; see equation (3.12.23).

5.4.4 Flow due to the arbitrary translation of a plate

Consider the flow due to the sudden translation of a plate discussed in Section 5.4.3. Since the plate
velocity is a step function in time, we may set ux(0, t) = V H(t), where H(t) is the dimensionless
Heaviside function defined such thatH(t) = 0 for t < 0 andH(t) = 1 for t > 0. A discontinuity occurs
at the origin of time, t = 0. Since the derivative of the Heaviside function is the one-dimensional
Dirac delta function, δ1(t), we may write(∂ux

∂t

)
y=0

= V
(∂F
∂t

)
y=0

(t) = V δ1(t), (5.4.25)

which reveals that (∂F
∂t

)
y=0
(t) = δ1(t). (5.4.26)

In the case of arbitrary plate translation with arbitrary time-dependent velocity V (t) and V (0) = 0,
we obtain

ux(0, t) = V (t) =

∫ t+δt

0

V (τ) δ1(t− τ) dτ =

∫ t+δt

0

V (τ)
(∂F
∂t

)
y=0
(t− τ) dτ, (5.4.27)

where δt is an infinitesimal time interval. This expression allows us to construct the flow due to the
translation of the plate by generalization to arbitrary y. Assuming that the fluid is quiescent for
t < 0, we obtain

ux(y, t) =

∫ t

0

V (τ)
(∂F
∂t

)
(y, t− τ) dτ. (5.4.28)
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Substituting expression (5.4.22) and taking the time derivative, we find that

ux(y, t) =
y

2
√
πν

∫ t

0

V (τ)

(t− τ)3/2
exp

[
− y2

4ν(t− τ)

]
dτ. (5.4.29)

This solution also describes the temperature distribution in a semi-infinite conductive medium due
to an arbitrary boundary temperature (e.g., ([66]). The right-hand side of (5.4.29) expresses a
distribution of Green’s functions of the unsteady diffusion equation (6.17.4) given in (6.17.5).

5.4.5 Flow in a channel with parallel walls

Continuing the investigation of unsteady unidirectional flow, we consider time-dependent boundary-
driven (Couette) or pressure-driven (Poiseuille) flow in a channel confined between two parallel walls
located at y = 0 and h. The Couette flow is governed by equation (5.4.3) and the Poiseuille flow is
governed by equation (5.4.14).

Oscillatory Couette flow

Assume that the upper wall is stationary while the lower wall oscillates in its plane along the x axis
with angular frequency Ω. The lower wall velocity is ux(y = 0, t) = V cos(Ωt), where V is a constant
amplitude. Working as in Section 5.4.1 for flow in a semi-infinite fluid due to an oscillating plate,
we derive the velocity profile

ux(y, t) = V Real
{
f(y) e−iΩt

}
, (5.4.30)

where

f(y) =
exp[−(1− i)ŷ]− exp[−(1− i)(2ĥ− ŷ)]

1− exp[−(1− i) 2ĥ]
, (5.4.31)

ŷ ≡ y/δ, ĥ ≡ h/δ, and δ ≡ (2ν/Ω)1/2 is the Stokes boundary-layer thickness. The structure of the
flow can be regarded as a function of the dimensionless Womersley number defined with respect to
half the channel width,

Wo ≡ h

2

√
Ω

ν
=

1√
2

h

δ
=

1√
2
ĥ. (5.4.32)

When the Womersley number is small, the flow evolves in quasi-steady fashion and the velocity profile
is nearly linear with respect to y at any time. As the Womersley number tends to infinity, we recover
the results of Section 5.4.1 for flow due to an oscillating plate in a semi-infinite fluid. Comparing the
present flow with that due to the oscillating plate, we find that the phase shift between the velocity
and shear stress at the lower wall depends on the angular frequency, Ω. This difference underscores
the hydrodynamic importance of the second plate or another nearby boundary.

Transient Couette flow

Next, we assume that the upper wall is stationary while the lower wall is suddenly set in motion
parallel to itself along the x axis with constant velocity V . Initially, the flow resembles that due to
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the motion of a flat plate immersed in a semi-infinite fluid. As time progresses, we obtain Couette
flow with a linear velocity profile. To expedite the solution, we decompose the flow into the steady
Couette flow and a transient flow that decays at long times. Applying the method of separation of
variables in y and t, we find that the velocity is given by a Fourier series [318],

ux(y, t) = V
(
1− y

h
− 2

π

∞∑
n=1

1

n
exp(−n2π2ν

h2
t) sin

nπy

h

)
. (5.4.33)

Steady state is established approximately when t � h2/ν.

Working in an alternative fashion, we apply the Laplace transform method and obtain

ux(y, t) = V
[
erfc

( y

2
√
νt

)
− erfc

(2h− y

2
√
νt

)
+ erfc

(2h+ y

2
√
νt

)
−erfc

(4h− y

2
√
νt

)
+ erfc

(4h+ y

2
√
νt

)
+ · · ·

]
, (5.4.34)

which is more appropriate for computing the flow at short times.

Oscillatory plane Poiseuille flow

In the next configuration, we consider flow due to an oscillatory streamwise pressure gradient de-
scribed by

χ ≡ −∂p

∂x
= −ρgx + ζ sin(Ωt), (5.4.35)

where ζ is a constant amplitude and Ω is the angular frequency of the oscillations. Straightforward
computation shows that the velocity profile is given by

ux(y, t) =
ζ

ρΩ
Real

{
f(y) e−iΩt

}
, (5.4.36)

where

f(y) =
cosh

[
(−1 + i)(ŷ − 1

2 ĥ)
]

cosh
[
(−1 + i) 1

2 ĥ
] − 1, (5.4.37)

is a complex function, ŷ ≡ y/δ, ĥ ≡ h/δ, and δ ≡ (2ν/Ω)1/2 is the Stokes boundary-layer thickness
(e.g., [318]). It is sometimes useful to regard the structure of the flow as a function of the dimen-
sionless Womersley number defined in (5.4.32). When the Womersley number is small, we obtain
quasi-steady plane Hagen–Poiseuille flow with parabolic velocity profile.

Considering the limit of high frequencies, we replace the hyperbolic cosine in the denominator
on the right-hand side of (5.4.37) with half the exponential of its argument, resolve the hyperbolic
cosine in the numerator into its two exponential constituents, and derive the velocity profile

ux(y, t) �
ζ

ρΩ
Real

{ [
e−(1−i) ŷ + e−(1−i) (ĥ−ŷ) − 1

]
exp(−iΩt)

}
. (5.4.38)
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Comparing (5.4.38) with (5.4.16), we find that the flow consists of an irrotational core executing
rigid-body motion with velocity ux = − ζ

ρΩ cos(Ωt), and two Stokes boundary layers, one attached
to each wall. Inspecting the precise form of the velocity profile at high frequencies, we find that the
amplitude of the velocity may significantly exceed that of the plug flow in the central core.

Transient plane Poiseuille flow

In the last application, we consider unidirectional flow due to sudden tilting or application of a
constant pressure gradient ∂p/∂x = −χ. Applying the method of separation of variables and using
Fourier expansions, we obtain the velocity profile

ux(y, t) =
χ+ ρgx

2μ

[
y (h− y)− 8

π3
h2

∞∑
n=1,3,...

1

n3
exp(−n2π2ν

h2
t) sin

nπy

h

]
. (5.4.39)

The velocity vanishes at the initial instant, t = 0. At long times, we recover the Hagen–Poiseuille
parabolic profile.

5.4.6 Finite-difference methods

The analytical solutions derived in this section can be approximated with numerical solutions ob-
tained by standard methods for solving parabolic partial differential equations, as discussed in Chap-
ter 12. To illustrate the methodology, we consider transient flow in a channel with clearance h due
to the application of a constant pressure gradient, ∂p/∂x = −χ. It is convenient to introduce the
dimensionless variables

f =
μux

χh2
, τ =

νt

h2
, ξ =

y

h
, (5.4.40)

where τ ≥ 0 and 0 ≤ ξ ≤ 1. The governing equation takes the dimensionless form

∂f

∂τ
= 1 +

∂2f

∂ξ2
. (5.4.41)

The boundary conditions require that f = 0 at ξ = 0 and 1 at any time, τ . The initial condition
requires that f = 0 at η = 0 for 0 ≤ ξ ≤ 1.

Discretization and difference equations

Following standard practice, we divide the solution domain in ξ into N evenly spaced intervals
with uniform size Δξ defined by N + 1 grid points, ξi = (i − 1)/N , where i = 1, . . . , N + 1. Our
objective is to compute the values of the function f at the grid points at a sequence of dimensionless
times separated by the time interval Δτ . Applying equation (5.4.41) at the ith grid point and
approximating the time derivative using a backward difference and the spatial derivatives using a
central difference, we obtain the backward-time/centered-space (BTCS) finite-difference equation

fn+1
i − fn

i

Δτ
= 1 +

fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δξ2
, (5.4.42)
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for i = 2, . . . , N , where fn
i denotes the value of f at the ith grid point at time τ = nΔτ (Chapter

12 and Section B.4, Appendix B). Rearranging, we obtain the linear equation

−αfn+1
i−1 + (1 + 2α)fn+1

i − αfn+1
i+1 = fn

i +Δτ (5.4.43)

for i = 2, . . . , N , where α ≡ Δτ/Δξ2. The no-slip boundary condition at the lower and upper
walls requires that f1 = 0 and fN+1 = 0. Collecting the nodal values fn

i , into a vector, fn, for
i = 2, . . . , N , we derive a system of linear algebraic equations,

A · fn+1 = fn +Δτ e, (5.4.44)

where A is a tridiagonal matrix originating from (5.4.43) and all entries of the vector e are equal
to unity. The algorithm involves solving the system (5.4.44) at successive time instants using the
Thomas algorithm discussed in Section B.1.4, Appendix B.

Problem

5.4.1 Flow due to the application of a constant shear stress on a planar surface

Show that the velocity field due to the sudden application of a constant shear stress τ along the
planar boundary of a semi-infinite fluid residing in the upper half-plane, y ≥ 0, is

ux(y, t) =
τ

μ

√
νt
[ 2√

π
exp(−1

4
η2)− η erfc

η

2

]
, (5.4.45)

where η = y/(νt)1/2 is a similarity variable. Discuss the asymptotic behavior at long times.

Computer Problems

5.4.2 Flow in a two-dimensional channel due to an oscillatory pressure gradient

Plot the profile of the amplitude of the velocity at a sequence of Womersley numbers. Identify and
discuss the occurrence of overshooting at high frequencies.

5.4.3 Transient Couette flow in a channel with parallel walls

Consider transient Couette flow in a two-dimensional channel confined between two parallel walls
located at y = 0 and d, as discussed in Section 5.4.5. To isolate the singular behavior at short times,
we write

ux

V
= F (η) +G(y, t), (5.4.46)

where the function F (η) is given in (5.4.22). The nonsingular dimensionless function G(y, t) satisfies
the one-dimensional unsteady diffusion equation (5.4.3) with boundary conditions G(0, t) = 0 and
G(d, t) = −F [d/(νt)1/2], and initial condition G(y, 0) = 0. Write a program that advances the
function G in time using a finite-difference method with the BTCS discretization discussed in the
text. Plot and discuss velocity profiles at a sequence of dimensionless times, ξ = tν/d2.
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5.5 Unsteady flows inside tubes and outside cylinders

Continuing our study of unsteady flow, we address a family of unidirectional and swirling flows
inside or outside a circular tube of radius a that is either filled with a viscous fluid or is immersed in
an infinite ambient fluid. It is natural to express the governing equation (5.4.2) in cylindrical polar
coordinates, (x, σ, ϕ), where the x axis coincides with the tube centerline.

Rectilinear flow

In the case of rectilinear unidirectional flow along the tube axis, the axial velocity component satisfies
the linear equation

ρ
∂ux

∂t
= −∂p

∂x
+ μ

1

σ

∂

∂σ

(
σ
∂ux

∂σ

)
+ ρgx. (5.5.1)

Expanding the derivative on the right-hand side, we obtain

ρ
∂ux

∂t
= −∂p

∂x
+ μ

(∂2ux

∂σ2
+

1

σ

∂ux

∂σ

)
+ ρgx. (5.5.2)

If the flow is due to the cylinder translation along its length, we obtain the counterpart of Couette
flow (Problem 5.5.1).

Swirling flow

In the case of swirling flow with circular streamlines, the pressure assumes the hydrostatic distribu-
tion and the azimuthal velocity component satisfies the linear equation

ρ
∂uϕ

∂t
= μ

∂

∂σ

( 1

σ

∂(σuϕ)

∂σ

)
(5.5.3)

or

ρ
∂uϕ

∂t
= μ

(∂2uϕ

∂σ2
+

1

σ

∂uϕ

∂σ
− uϕ

σ2

)
. (5.5.4)

The last term inside the parentheses on the right-hand side distinguishes this equation from its
counterpart for rectilinear flow.

5.5.1 Oscillatory Poiseuille flow

Pulsating flow inside a tube due to an oscillatory pressure gradient is a useful model of the flow
through large blood vessels (e.g., [140]). Setting

χ ≡ −∂p

∂x
= −ρgx + ζ sin(Ωt), (5.5.5)

where ζ is the amplitude of the pressure gradient and Ω is the angular frequency of the oscillations,
we derive the solution

ux(σ, t) =
ζ

ρΩ
Real

{(J∗0[−(1− i) σ̂]

J∗0[−(1− i) â]
− 1

)
exp(−iΩt)

}
, (5.5.6)
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where J0 is the zeroth-order Bessel function, σ̂ = σ/δ, â = a/δ, a is the tube radius, δ = (2ν/Ω)1/2

is the Stokes boundary-layer thickness, and an asterisk denotes the complex conjugate (e.g., [178],
p. 226; [318]). The zeroth-order Bessel function of complex argument can be evaluated using the
definition

J0(� e
3πi/4) ≡ ber0(�) + i ker0(�), (5.5.7)

where � is a real positive number. The Kelvin functions of zeroth order, ber0(�) and ker0(�), can
be computed by polynomial approximations (e.g., [2], pp. 379, 384).

The structure of the flow can be regarded as a function of the dimensionless Womersley number
defined with respect to the tube radius,

Wo ≡ a

√
Ω

ν
=

√
2
a

δ
=

√
2 â. (5.5.8)

When the Womersley number is small, we obtain quasi-steady Poiseuille flow with a nearly parabolic
velocity profile. As the Womersley number tends to infinity, we obtain a compound flow consisting
of a plug-flow core and an axisymmetric boundary layer wrapping around the tube wall. At high
frequencies, the amplitude of the velocity may exhibit an overshooting, sometimes mysteriously
called the annular effect, similar to that discussed in Section 5.4.5 for oscillatory plane Poiseuille
flow.

5.5.2 Transient Poiseuille flow

Next, we consider the transient flow inside a circular tube of radius a generated by the sudden
application of a constant pressure gradient along the tube axis, ∂p/∂x = −χ. The solution satisfies
the boundary condition ux = 0 at σ = a at any time, and the initial condition ux = 0 at t = 0 for
0 ≤ σ ≤ a. To expedite the analysis, we resolve the flow into the steady parabolic Poiseuille flow
prevailing at long times with velocity

uP
x (σ) =

1

4μ
(χ+ ρgx)(a

2 − σ2), (5.5.9)

and a transient flow with velocity vx(σ, t), so that ux = uP
x +vx. The transient flow satisfies equation

(5.5.2) with χ+ ρgx = 0, observes the boundary condition vx = 0 at σ = a at any time, satisfies the
initial condition vx = −uP

x at t = 0 for 0 ≤ σ ≤ a, and decays to zero at long times.

Applying the method of separation of variables with respect to radial distance and time for
the transient flow, we derive the velocity profile

ux(σ, t) =
χ+ ρgx

4μ

[
a2 − σ2 − 8 a2

∞∑
n=1

1

α3
n

J0(αn σ/a)

J1(αn)
exp

(
− α2

n

νt

a2
) ]

, (5.5.10)

where J0 and J1 are the Bessel functions of zeroth and first order, and αn are the real positive zeros
of J0 (e.g., [318]). The first five zeros of J0 are

2.40482, 5.52007, 8.65372, 11.79153, 14.93091, (5.5.11)
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Figure 5.5.1 Transient flow in a circular tube of radius a due to the sudden application of a constant
pressure gradient or sudden tilting. Velocity profiles are shown at dimensionless times νt/a2 =
0.001, 0.005, 0.010, 0.020, 0.030, . . . . The dashed parabolic line corresponds to the Poiseuille flow
with centerline velocity U established at long times.

accurate to the fifth decimal place (e.g., [2]). Velocity profiles at a sequence of dimensionless times
tν/a2 are shown in Figure 5.5.1. Note the presence of boundary layers near the wall and the
occurrence of plug flow at the core at short times. The steady parabolic velocity profile is established
when t � a2/ν.

Finite-difference methods

To compute a numerical solution, it is convenient to introduce the dimensionless variables

f =
μux

(χ+ ρgx)a2
, τ =

νt

a2
, ξ =

σ

a
, (5.5.12)

where τ ≥ 0 and 0 ≤ ξ ≤ 1. The governing equation takes the dimensionless form

∂f

∂τ
= 1 +

∂2f

∂ξ2
+

1

ξ

∂f

∂ξ
. (5.5.13)

The initial condition requires that f = 0 at η = 0 for 0 ≤ ξ ≤ 1 and the no-slip boundary condition
requires that f = 0 at ξ = 1 at any time.

Working as in Section 5.4.6, we derive the backward-time centered-space (BTCS) finite-
difference equation

fn+1
i − fn

i

Δτ
= 1 +

fn+1
i+1 − 2fn

i + fn
i−1

Δξ2
+

1

ξi

fn+1
i+1 − fn

i−1

2Δξ
, (5.5.14)
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for i = 2, . . . , N , where fn
i denotes the value of f at the ith grid point at dimensionless time τ = nΔτ

(Chapter 12 and Section B.5, Appendix B). Rearranging, we obtain a linear equation,

(βi − α) fn+1
i−1 + (1 + 2α) fn+1

i − (βi + α) fn+1
i+1 = fn

i +Δξ (5.5.15)

for i = 2, . . . , N , where α ≡ Δτ/Δξ2 and βi ≡ Δτ/(2ξiΔξ). The no-slip boundary condition at the
tube wall requires that fN+1 = 0.

One more equation is needed to formulate a system of N equations for the N unknowns, fn
i

for i = 1, . . . , N . This last equation arises by applying the governing differential equation (5.5.13)
at the tube centerline. Since the third term on the right-hand side becomes indeterminate as ξ → 0,
we use l’Hôpital’s rule and find that, at ξ = 0,

∂f

∂τ
= 1 + 2

∂2f

∂ξ2
. (5.5.16)

Applying the finite-difference approximation provides us with the desired difference equation

(1 + 4α)fn+1
1 − 4αfn+1

2 = fn
1 +Δξ. (5.5.17)

Now collecting the nodal values fn
i into a vector, fn, for i = 1, . . . , N , and appending to (5.5.17)

equations (5.4.43), we obtain a linear system of algebraic equations,

A · fn+1 = fn +Δτ e, (5.5.18)

where A is a tridiagonal matrix and the vector e is filled with ones. The algorithm involves solving
system (5.5.18) at successive time instants using the Thomas algorithm discussed in Section B.1.4,
Appendix B.

5.5.3 Transient Poiseuille flow subject to constant flow rate

Transient flow in a pipe subject to a constant flow rate, Q, is complementary to the starting flow
due to the sudden application of a constant pressure gradient studied in Section 5.5.2. At the
initial instant, the velocity profile is flat, ux(t = 0) = Q/(πa2), and the pressure gradient takes
an unphysical infinite value. As time progresses, the velocity profile tends to the become parabolic
while the pressure gradient tends to the value corresponding to the Poiseuille law. The transient
velocity profile and axial pressure gradient can be found by the method of separation of variables in
the form of a Fourier–Bessel series,

ux = 2
Q

πa2

[
1− σ2

a2
+ 2

∞∑
n=1

1

β2
n

(J0(βnσ/a)

J0(βn)

)
exp(−β2

n

νt

a2
)
]
, (5.5.19)

and

χ ≡ −∂p

∂x
= 8μ

Q

πa4

[
1 +

1

2

∞∑
n=1

exp
(
− β2

n

νt

a2

) ]
, (5.5.20)
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where βn, for n = 1, 2, . . ., are the positive zeros of the second-order Bessel function, J2. The first
five zeros of J2 are

5.13562, 8.41724, 11.61984, 14.79595, 17.95982, (5.5.21)

accurate to the fifth decimal place (e.g., [2]). The singular behavior of the pressure gradient at t = 0
is evident by the divergence of the sum in (5.5.20).

5.5.4 Transient swirling flow inside a hollow cylinder

A hollow circular cylinder of radius a is filled with a quiescent viscous fluid. Suddenly, the cylinder
starts rotating around its axis with constant angular velocity, Ω, generating a swirling flow. After
a sufficiently long time has elapsed, the fluid executes rigid-body rotation with angular velocity Ω.
Solving the governing equation (5.5.4) by separation of variables, we derive the transient azimuthal
velocity profile

uϕ(σt) = Ω
[
σ + 2 a

∞∑
n=1

1

αn

J1(αnσ̂)

J0(αn)
exp

(
− α2

n

νt

a2
) ]

, (5.5.22)

where σ̂ = σ/a and αn are the positive zeros of the Bessel function of the first kind, J1. The first
five zeros of J1 are

3.83171, 7.01559, 10.17347, 13.32369, 16.47062, (5.5.23)

accurate to the fifth decimal place (e.g., [2]). At short times, the circumferential flow near the
cylinder surface resembles that due to the impulsive translation of a flat plate.

5.5.5 Transient swirling flow outside a cylinder

A solid circular cylinder of radius a is immersed in a quiescent infinite fluid. Suddenly, the cylinder
starts rotating around its axis with constant angular velocity, Ω, generating a swirling flow. After
a sufficiently long time has elapsed, the flow resembles that due to a rectilinear line vortex with
strength κ = 2πΩa2 situated at the centerline. An expression for the transient velocity profile can
be derived in terms of Bessel and modified Bessel functions using of Laplace transform methods
([218], p.72; [437], p. 316, [371], p. 143).

A practical alternative is to compute the solution computed by numerical methods. To remove
the singular behavior due to the impulsive motion at the initial instant, we set

uϕ =
Ωa2

σ
f(η, ξ), (5.5.24)

where η = (σ − a)/(νt)1/2 and ξ = (νt)1/2/a, are dimensionless variables, and f is a dimensionless
function ([371], p. 199). Considering (5.5.3), we compute the derivatives

∂uϕ

∂t
=

Ωa2

2σt
(−ηfη + ξfξ),

∂(σuϕ)

∂σ
=

Ωa

ξ
fη, (5.5.25)
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and

∂

∂σ

( 1

σ

∂(σuϕ)

∂σ

)
=

Ω

ξσ

(
− a

σ
fη +

1

ξ
fηη

)
, (5.5.26)

where a subscript η denotes a derivative with respect to η and a subscript ξ denotes a derivative
with respect to ξ. Substituting these expressions into (5.5.3) and simplifying, we obtain

1

2ξ
(−η fη + ξ fξ) = − a

σ
fη +

1

ξ
fηη. (5.5.27)

Setting σ/a = 1 + ηξ and rearranging, we find that f satisfies a convection–diffusion equation,

fξ +
( 2

1 + ηξ
− η

ξ

)
fη =

2

ξ
fηη, (5.5.28)

with boundary conditions f(0, ξ) = 1 and f(∞, ξ) = 0, and initial condition f(η, 0) = erfc(η/2).
The solution can be found by numerical methods (Problem 5.5.7).

Problems

5.5.1 Axial flow due to the motion of a circular cylinder

(a) Derive the velocity profile inside a circular cylinder executing axial translational vibrations.

(b) Repeat (a) for the flow outside a cylinder immersed in an infinite fluid.

(c) Consider the flow outside a cylinder that suddenly starts moving parallel to its length with
constant velocity in an otherwise quiescent fluid. Discuss the development of the flow and derive an
expression for the drag force at short times ([218], p.73; [23]).

5.5.2 Axial flow between concentric annular tubes

Derive the velocity profile of the axial flow between two concentric cylinders due to sudden applica-
tion of a constant pressure gradient (e.g., [437], p. 318).

5.5.3 Oscillatory swirling flow outside and inside a circular cylinder

(a) A solid circular cylinder of radius a executes rotational oscillations around the centerline with
angular frequency Ω in an otherwise quiescent infinite fluid, thus generating swirling flow. Compute
the velocity in terms of Bessel functions ([371], p. 141).

(b) Repeat (a) for interior flow.

5.5.4 Transient swirling flow in an annulus

An annular channel containing a viscous fluid is confined between two concentric cylinders. Suddenly,
the cylinders start rotating around their axis with different but constant angular velocities. Derive
an expression for the developing velocity profile in terms of Bessel and related functions (e.g., [437],
p. 316). Discuss the structure of the flow when the cylinders rotate with the same angular velocity.
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(a) (b)

x

y y

β

γ

β γ

x

Figure 5.6.1 Illustration of stagnation-point flow (a) in the interior of a fluid and (b) over a solid
wall. In both cases, the origin of the y axis is set at the stagnation point of the outer flow. The
angle β defines the slope of the straight dividing streamline of the outer inviscid flow. The angle
γ defines the actual slope of the generally curved dividing streamline of the viscous flow.

Computer Problems

5.5.5 Axial pulsating flow in a circular pipe

Plot the velocity profiles of pulsating pressure-driven flow inside a circular pipe at a sequence of
times and for several frequencies. Discuss the structure of the flow with reference to the occurrence
of boundary layers.

5.5.6 Axial starting flow in a pipe

Write a program that computes the velocity profiles of starting flow in a circular pipe due to the
sudden application of a constant pressure gradient using the finite-difference method discussed in
the text. Present profiles of the dimensionless velocity at a sequence of dimensionless times.

5.5.7 Transient swirling flow outside a spinning cylinder

Write a program that solves equation (5.5.28) using a finite-difference method with the BTCS
discretization discussed in the text. Plot and discuss velocity profiles at a sequence of times.

5.6 Stagnation-point and related flows

A family of two-dimensional, axisymmetric, and three-dimensional flows involving stagnation points
can be computed by solving systems of ordinary differential equations for properly defined functions
and independent variables. The stagnation points may occur in the interior of the fluid or at the
boundaries, as illustrated in Figure 5.6.1(a, b). The precise location of the stagnation points and the
slope of the dividing streamlines or stream surfaces are determined by the the outer flow far from the
stagnation point. Although the prescribed outer flow represents an exact solution of the equation of
motion, it does not satisfy the required boundary conditions along the dividing streamlines, stream
surfaces, or solid boundaries. Our goal is to compute a local solution that satisfies the boundary
conditions and agrees with the outer solution far from the stagnation points.
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Reviews of exact solutions for stagnation-point flows obtained by solving ordinary differential
equations can be found in References [42, 421]. In this section, we discuss several fundamental
configurations.

5.6.1 Two-dimensional stagnation-point flow inside a fluid

Jeffery derived a class of exact solutions of the equations of two-dimensional incompressible flow
[199]. Peregrine [292] pointed out that one of these solutions represents oblique stagnation-point
flow in the interior of a fluid, as shown in Figure 5.6.1(a).

Outer flow

We begin constructing the solution by introducing the outer flow prevailing far from the stagnation
point, denoted by the superscript ∞. The far-flow stream function, velocity, and vorticity in the
upper half-space, y > 0, are given by

ψ∞ = ξ (xy sinα+
1

2
y2 cosα),

u∞
x = ξ (x sinα+ y cosα), u∞

y = −ξ y sinα, ω∞
z = −ξ cosα, (5.6.1)

where ξ is a constant rate of elongation and α is a free parameter. Setting the stream function to
zero, we find that α is related to the angle β subtended between the straight dividing streamline
and the x axis by

tanβ = −2 tanα, (5.6.2)

as shown in Figure 5.6.1(a). Equations (5.6.1) describe oblique stagnation-point flow with constant
vorticity against a planar surface in the upper half space. The values α = 0 and π correspond,
respectively, to unidirectional simple shear flow toward the positive or negative direction of the x
axis with shear rate ξ. The value α = π/2 corresponds to irrotational orthogonal stagnation-point
flow in the upper half-space with rate of extension ξ.

The far-flow stream function, velocity components, and vorticity in the lower half-space, y < 0,
are given by

ψ∞ = ξxy sinα, u∞
x = ξx sinα, u∞

y = −ξy sinα, ω∞
z = 0, (5.6.3)

These equations describe irrotational orthogonal stagnation-point flow with shear rate equal to ξ sinα
in the lower half space.

The outer flow in the upper and lower half-space constitutes an exact solution of the Navier–
Stokes equation for a fluid with uniform physical properties and zero or constant vorticity. The
velocity is continuous across the horizontal dividing streamline at y = 0. However, the derivatives
of the velocity undergo a discontinuity that renders the outer flow admissible only in the context of
ideal flow. When viscosity is present, a vortex layer develops around the dividing streamline along
the x axis rendering the derivatives of the velocity and therefore the stresses continuous throughout
the domain of flow.
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Viscous flow

Motivated by the functional form of the stream function of the outer flow in the upper and lower
half-space, shown in (5.6.1) and (5.6.3), we express the stream function of the viscous flow in the
form

ψ = xF(y) + G(y), (5.6.4)

where F(y) and G(y) are two unknown functions satisfying the far-field conditions

F(±∞) � ξy sinα, G(+∞) � 1

2
ξy2 sinα, G(−∞) � 0, (5.6.5)

and the symbol � denotes the leading-order contributions. Straightforward differentiation yields the
components of the velocity and the vorticity,

ux = xF ′(y) + G′(y), uy = −F(y), ωz = −xF ′′(y)− G′′(y). (5.6.6)

Substituting expressions (5.6.6) into the steady version of the two-dimensional vorticity transport
equation (3.13.1),

ux
∂ωz

∂x
+ uy

∂ωz

∂y
= ν

(∂2ωz

∂x2
+

∂2ωz

∂y2

)
, (5.6.7)

and factoring out the x variable, we derive two fourth-order ordinary differential equations,

ν F ′′′′ + FF ′′′ −F ′F ′′ = 0, ν G′′′′ + FG′′′ −F ′′G′ = 0. (5.6.8)

The first equation involves the function F alone. A solution that satisfies the first far-field condition
(5.6.5) is the far flow itself,

F(y) = ξy sinα. (5.6.9)

Equation (5.6.6) then yields ωz = −F ′′. Substituting (5.6.9) into the second equation of (5.6.8), we
obtain an equation for g,

G′′′′ +
ξ

ν
sinα y G′′′ = 0. (5.6.10)

Integrating (5.6.10) twice subject to the aforementioned far-field (5.6.5) and requiring that the
vorticity is continuous across the dividing streamline located at y = 0, we obtain an expression for
the negative of the vorticity,

G′′ = −ωz =

{
ξ cosα+A erfc(λy) for y > 0,
(A+ ξ cosα) erfc(λy) for y < 0,

(5.6.11)

where λ = (ξ sinα/ν)1/2 and A is a constant that must be found by specifying the rate of decay of
vorticity far from the x axis. Further integrations of (5.6.11) require two additional stipulations on
the behavior of the flow far from the stagnation point.
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5.6.2 Two-dimensional stagnation-point flow against a flat plate

Next, we consider oblique two-dimensional stagnation-point flow in the upper half space against
a flat plate, as illustrated in Figure 5.6.1(b). Far from the plate, the magnitude of the vorticity
and stream function assume the far-field distribution given in (5.6.1). Since the outer flow satisfies
neither the no-slip nor the no-penetration boundary condition at the wall, it is not an acceptable
solution of the equations of viscous flow. A numerical solution that satisfies the full Navier–Stokes
equation and boundary conditions was derived by Hiemenz [176] for orthogonal flow and by Stuart
[390] for the more general case of oblique flow.

Working as in the case of the free stagnation-point flow, we express the stream function as
shown in (5.6.4), and find that the functions F and G satisfy the differential equations (5.6.8). To
satisfy the no-slip and no-penetration conditions on the wall, we require that

F(0) = 0, F ′(0) = 0, F ′(0) = 0. (5.6.12)

Setting without loss of generality the stream function to zero at the the plate located at y = 0, we
obtain

G(0) = 0. (5.6.13)

As y tends to infinity, the function F must behave to leading order like F � ξy sinα, and the
function G must behave like G � 1

2 ξy
2 cosα.

Computation of the function F

Integrating the first equation in (5.6.8) once subject to the aforementioned far-field condition, we
obtain a third-order equation,

νF ′′′ + FF ′′ −F ′2 = −ξ2 sin2 α. (5.6.14)

It is convenient to introduce a dimensionless independent variable, η, and a dimensionless dependent
variable scaled with respect to the forcing function on the right-hand side, f(η), defined such that

η =
( ξ
ν

sinα
)1/2

y, F(y) = (ξν sinα)1/2 f(η), (5.6.15)

and thereby obtain the dimensionless equation

f ′′′ + ff ′′ − f ′2 + 1 = 0, (5.6.16)

where a prime denotes a derivative with respect to η. The boundary conditions require that f(0) = 0
and f ′(0) = 0, and the far-field condition requires that f(∞) � η or f ′(∞) = 1.

To solve the third-order equation (5.6.16), we denote f = x1, introduce the auxiliary functions
f ′ = x2 and f ′′ = x3, and resolve (5.6.16) in a system of three first-order ordinary differential
equations,

d

dη

⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ x2

x3

x2
2 − x1x3 − 1

⎤⎦ , (5.6.17)
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with boundary conditions x1(0) = 0, x2(0) = 0, and x2(∞) = 1. The solution can be computed
using a shooting method for boundary-value problems according to the following steps:

1. Guess the value of x3(0).

2. Integrate (5.6.17) as an initial-value problem from η = 0 to ηmax, where ηmax is a sufficiently
large truncation level. In practice, setting ηmax as low as 3.0 yields satisfactory accuracy.

3. Check whether x2(ηmax) = 1 within a preset tolerance. If not, return to Step 1 and repeat the
computations with a new and improved value for x3(0).

The new value of x3(0) in Step 3 can be found using a method for solving the nonlinear algebraic
equation Q[x3(0)] ≡ x2(ηmax)− 1.0 = 0, as discussed in Section B.3, Appendix B [317].

In practice, it is expedient to carry out the iterations using Newton’s method based on varia-
tional equations. First, we define the derivatives

x4 ≡ dx1

dx3(0)
, x5 ≡ dx2

dx3(0)
, x6 ≡ dx3

dx3(0)
, (5.6.18)

expressing the sensitivity of the solution to the initial guess. Differentiating equations (5.6.17) with
respect to x3(0), we obtain

dx4

dη
= x5,

dx5

dη
= x6,

dx6

dη
= 2x2x5 − x4x3 − x1x6, (5.6.19)

subject to the initial conditions x4(η = 0) = 0, x5(η = 0) = 0, and x6(η = 0) = 1 . The shooting
method involves the following steps:

1. Guess a value for x3(t = 0).

2. Integrate equations (5.6.17) and (5.6.19) with the aforementioned initial conditions.

3. Replace the current initial value, x3(t = 0), with the updated value

x3(t = 0) ← x3(t = 0)− x2(η = ∞)− 1

x5(η = ∞)
. (5.6.20)

The iterations converge quadratically for a reasonable initial guess. Graphs of the functions f , f ′,
and f ′′ computed by this method are shown in Figure 5.6.2(a). The numerical solution reveals that
x3(0) � 1.232588. At large values of η, the function f(η) behaves like

f(η) = η − b+ · · · , (5.6.21)

where b � 0.647900, to shown accuracy.

Computation of the function G

Having computed the function F(y) in terms of f(η), we substitute the result into the first equation
of (5.6.8) and obtain a linear homogeneous equation for the function G(y). Integrating once, we
derive a third-order equation,

ν G′′′ + FG′′ −F ′G′ = c, (5.6.22)



5.6 Stagnation-point and related flows 353

(a) (b)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

η

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

η

 
Figure 5.6.2 Two-dimensional oblique stagnation-point flow against a flat plate. (a) Graphs of the

functions f (solid line), f ′ (dashed line), and f ′′ (dotted line). (b) Graphs of the functions g (solid
line), g′ (dashed line), and g′′ (dotted line).

where c is a constant. In terms of the dimensionless function f(η), we obtain

ν G′′′ + (ξν sinα)1/2f(η)G′′ − ξ sinαf ′(η)G′ = c. (5.6.23)

Letting y or η tend to infinity and using (5.6.21) and the far-field condition G(∞) � 1
2ξy

2 cosα, we
obtain

c = −b ξ cosα(ξν sinα)1/2, (5.6.24)

where the constant b is defined in (5.6.21).

In the case of orthogonal stagnation-point flow corresponding to α = 1
2
π, or simple shear flow

corresponding to α = 0 or π, we find that c = 0, which means that equation (5.6.23) admits the
trivial solution G = 0. In the more general case where α �= 0, 1

2π, π, we express g in terms of a
dimensionless function g(η) defined by

G(y) = ν cotα g(η), (5.6.25)

where η has been defined previously in (5.6.15). Substituting (5.6.25) and (5.6.24) into (5.6.23), we
obtain the dimensionless equation

g′′′ + fg′′ − f ′g′ = −b, (5.6.26)

where a prime denotes a derivative with respect to η. The solution must satisfy the boundary
conditions g(0) = 0 and g′(0) = 0, and a far-field condition dictating that, as η tends to infinity, g
behaves like g � 1

2 η
2. Equation (5.6.16) suggests that g = bf is a particular solution of (5.6.26), and
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this allows us to eliminate the forcing function on the right-hand side and obtain a homogeneous
equation.

In practice, it is expedient to compute the solution directly by numerical methods. Denoting
g = x7 and introducing the auxiliary functions g′ = x8 and g′′ = x9, we rewrite (5.6.26) in the
standard form of a first-order system of ordinary differential equations,

d

dη

⎡⎣ x7

x8

x9

⎤⎦ =

⎡⎣ x8

x9

−x1x9 + x2x8 − b,

⎤⎦ . (5.6.27)

The solution must satisfy the boundary conditions x7(0) = 0 and x8(0) = 0, and the far-field
condition x9(∞) = 1. The solution can be found using the shooting method described previously
for the function F , where shooting is now done with respect to x9(0). The functions x1 and x2

are known at discrete points from the numerical solution of (5.6.16). Because equation (5.6.26) is
linear, two shootings followed by linear interpolation are sufficient. The numerical results, plotted
in Figure 5.6.2(b), show that x9(0) � 1.406544, to shown accuracy [108].

Vorticity

The vorticity can be computed in terms of the functions f ′′ and g′′ as

ωz = ω∞
z − ξx sinα

(ξ sinα

ν

)1/2

f ′′(η) + ξ [1− g′′(η) ] cosα. (5.6.28)

The first term on the right-hand side represents the constant vorticity of the incident flow. The
third term represents a vortex layer with uniform thickness attached to the wall. Far from the
origin, the second term on the right-hand side dominates and the ratio between the vorticity and
the x component of the incident flow is∣∣∣ ωz

u∞
x

∣∣∣ � (ξ sinα

ν

)1/2

f ′′(η), (5.6.29)

which reveals the presence of a vortex layer of constant thickness lining the wall. In physical terms,
diffusion of vorticity from the wall is balanced by convection, thereby confining the vorticity gradient
near the wall.

The thickness of the vortex layer, δ, can be defined as the point where x3(η) = 0.01. The
numerical solution shows that f ′′(2.4) � 0.01, and thus

δ = 2.4
( ν

ξ sinα

)1/2

. (5.6.30)

As α tends to zero, the thickness of the vortex layer understandably diverges to infinity.

Pressure field

Having computed the velocity field, we substitute the result into the Navier–Stokes equation and
obtain a partial differential equation for the pressure. Straightforward integration yields the pressure
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Figure 5.6.3 Illustration of two-dimensional flow in an semi-infinite fluid due a symmetrically stretch-
ing sheet.

field

p = cρx− 1

2
ρ ξ2 sin2 αx2 − μξ sinα [f ′(η) +

1

2
f2(η)] + ρg · x+ p0, (5.6.31)

where the constant c was defined in (5.6.24) and p0 is a reference pressure. When α = 0 or π, the
pressure assumes the hydrostatic distribution, p = ρg · x+ p0.

Stability

The behavior of perturbations introduced in the base flow derived in this section can be assessed by
performing a linear stability analysis, as discussed in Chapter 9. Conditions for stability subject to
suitable perturbations have been established [224].

5.6.3 Flow due to a stretching sheet

Consider a steady two-dimensional flow produced by the symmetric stretching of an elastic sheet in
an otherwise quiescent semi-infinite fluid, as shown in Figure 5.6.3. The x component of the velocity
at the surface of the sheet, located at y = 0, is ux = ξx, where ξ is a constant rate of extension with
dimensions of inverse time.

Following our analysis in Section 5.6.2 for orthogonal stagnation-point flow against a flat plate,
α = 1

2π, we introduce the dimensionless variable η = (ξ/ν)1/2y, and express the stream function in

the form ψ(x, y) = (ξν)1/2x f(η). The boundary conditions require that f(0) = 0 and f ′(0) = 1, and
the far-field condition of vanishing x velocity requires that f ′(∞) = 0. Making substitutions into the
vorticity transport equation, we find that the dimensionless function f(η) satisfies the homogeneous
Hiemenz equation

f ′′′ + ff ′′ − f ′2 = 0, (5.6.32)

where a prime denotes a derivative with respect to η. The solution is given by

f(η) = 1− exp(−η), (5.6.33)

yielding Crane’s [96] stream function

ψ(x, y) = (ξν)1/2x (1− e−η), (5.6.34)
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Figure 5.6.4 (a) Illustration of axisymmetric orthogonal stagnation-point flow. (b) Graphs of the
functions f (solid line), f ′ (dashed line), and f ′′ (dotted line). The radial velocity profile is
represented by the dashed line.

which provides us with an exact solution of the Navier–Stokes equation with corresponding pressure
field

p = −μξ
[
f ′(η) +

1

2
f2(η)

]
+ ρg · x+ p0, (5.6.35)

where p0 is a reference pressure. The y velocity component tends to a constant value, v = −(ξν)1/2,
far from the stretching sheet. Thus, the stretching of the sheet causes a uniform flow against the
sheet to satisfy the mass balance.

The effect of wall suction or blowing at a constant velocity can be incorporated into the
similarity solution (e.g., [423]). In Section 8.3.2, Crane’s solution will be generalized to situations
where the in-plane wall velocity exhibits an arbitrary power-law dependence on the x position,
subject to the boundary-layer approximation.

5.6.4 Axisymmetric orthogonal stagnation-point flow

Next, we consider irrotational, axisymmetric, orthogonal stagnation-point flow against a flat plate
located at x = 0, and introduce cylindrical polar coordinates, (x, σ, ϕ), as shown in Figure 5.6.4(a).
Far from the plate, as x tends to infinity, the Stokes stream function, axial velocity component, and
radial velocity component assume the far-field distributions

ψ∞ = −ξxσ2, u∞
x = −2ξx, u∞

σ = ξσ, (5.6.36)

where ξ is a constant rate of extension with dimensions of inverse length.

Working as in Section 5.6.2 for two-dimensional orthogonal stagnation-point flow, we express
the Stokes stream function, ψ, in terms of a dimensionless variable, η = (ξ/ν)1/2x, and set

ψ = −(ξν)1/2σ2f(η), (5.6.37)
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where f(η) is a dimensionless function. The axial and radial velocity components and the azimuthal
vorticity component are given by

ux = −2 (ξν)1/2f(η), uσ = ξσf ′(η), ωϕ = ξσ(ξν)1/2f ′′(η), (5.6.38)

where a prime denotes a derivative with respect to η, The no-penetration and no-slip boundary
conditions require that f(0) = 0 and f ′(0) = 0, and the far-field condition requires that f ′(∞) = 1.

Substituting expressions (5.6.38) into the vorticity transport equation for axisymmetric flow,
and integrating once subject to the far-field condition, we derive Homann’s [188] ordinary differential
equation

f ′′′ + 2ff ′′ − f ′2 + 1 = 0, (5.6.39)

which differs from the Hiemenz equation (5.6.16) only by the value of one coefficient. The solution
can be found using a shooting method similar to that used to solve (5.6.17), yielding f ′′(0) = 1.3120,
as shown in Figure 5.6.4(b). Having computed the velocity field, we substitute the result into the
Navier–Stokes equation and integrate in space to obtain the pressure field

p = −1

2
ρ ξ2σ2 − 2μξ

[
f ′(η) + f2(η)

]
+ ρg · x+ p0, (5.6.40)

where p0 is a reference pressure.

As in the case of two-dimensional stagnation-point flow, the vorticity is confined inside a
vortex layer of constant thickness lining the wall. Orthogonal axisymmetric stagnation-point flow
provides us with an example of a flow where intensification of the vorticity due to vortex stretching
is balanced by diffusion and convection under the influence of the incident flow.

5.6.5 Flow due to a radially stretching disk

Consider a steady axisymmetric flow due to the radial stretching of an elastic sheet in an otherwise
quiescent fluid residing in the upper half space, x > 0. The radial component of the velocity at the
surface of the sheet, located at x = 0, is uσ = ξσ, where ξ is the rate of extension with dimensions
of inverse time. Repeating the analysis of Section 5.6.4, we find that the function f(η) satisfies the
homogeneous Homann equation

f ′′′ + 2ff ′′ − f ′2 = 0, (5.6.41)

where a prime denotes a derivative with respect to the similarity variable η = (ξ/ν)1/2x. The no-
penetration and no-slip boundary conditions require that f(0) = 0 and f ′(0) = 1, and the far-field
condition requires that f ′(∞) = 0. It will be noted that (5.6.41) differs from (5.6.32) only by a
numerical factor of two. The corresponding pressure distribution is given by

p = −2μξ
[
f ′(η) + f2(η)

]
+ ρg · x+ p0, (5.6.42)

where p0 is a reference pressure. Although an analytical solution of (5.6.41) is not available, a
numerical solution can be obtained readily by elementary numerical methods [418].

In Section 8.5.3, the formulation will be generalized to situations where the radial disk velocity
exhibits an arbitrary power-law dependence on the radial position, subject to the boundary-layer
approximation.
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5.6.6 Three-dimensional orthogonal stagnation-point flow

Generalizing the flow configurations considered previously in this section, now we consider three-
dimensional orthogonal stagnation-point flow against a flat plate located at x3 = 0. Far from the
plate, as x3 tends to infinity, the velocity components assume the far-field distributions

u∞
1 = ξ1x1, u∞

2 = ξ2x2, u∞
3 = −(ξ1 + ξ2)x3, (5.6.43)

where ξ1 and ξ2 are two arbitrary shear rates with dimensions of inverse length. When ξ1 = 0
or ξ2 = 0, we obtain two-dimensional orthogonal stagnation-point flow in the x1x3 or x2x3 plane.
When ξ1 = ξ2, we obtain axisymmetric orthogonal stagnation-point flow.

Our experience with two-dimensional and axisymmetric flows suggests expressing the solution
in the form

u1 = ξ1x1q
′(η), u2 = ξ2x2w

′(η), u3 = −
√
ξ1ν

[
q(η) + λw(η)

]
, (5.6.44)

where λ = ξ2/ξ1 is a dimensionless parameter,

η = x3

(ξ1
ν

)1/2

, (5.6.45)

is a dimensionless coordinate, and a prime denotes a derivative with respect to η [193]. The unknown
functions q and w are required to satisfy the boundary conditions q(0) = 0, w(0) = 0, q′(0) = 0,
and w′(0) = 0, and the far-field conditions q′(∞) = 1 and w′(∞) = 1. The functional forms (5.6.44)
automatically satisfy the continuity equation.

It is convenient to work with the hydrodynamic pressure excluding hydrostatic variations,
p̃ ≡ p− ρg · x. Substituting expressions (5.6.44) into the x3 component of the equation of motion,
we find that the derivatives of the hydrodynamic pressure ∂p̃/∂x1 and ∂p̃/∂x2 are independent of the
vertical coordinate x3, and thus identical to those of the incident irrotational flow. Using Bernoulli’s
equation, we find that

∂p̃

∂x1
= −ρ ξ21x1,

∂p̃

∂x2
= −ρ ξ22x2. (5.6.46)

Substituting these expressions along with (5.6.44) into the x1 and x2 components of the equation of
motion, we derive two coupled nonlinear ordinary differential equations for the functions q and w,

q′′′ + (q + λw) q′′ − q′2 + 1 = 0, w′′′ + (w + λq) q′′ − λ (w′2 − 1) = 0. (5.6.47)

In the case of axisymmetric flow where λ = 1, both equations reduce to (5.6.39) with q = w = f . In
the case of two-dimensional flow with λ = 0, the first equation reduces to (5.6.16) with q = f .

The boundary value problem expressed by (5.6.47) can be solved using a shooting method
where guesses are made for q′′(0) and w′′(0). Numerical results show that q′′(0) = 1.233 and
w′′(0) = 0.570 when λ = 0.0; q′′(0) = 1.247 and w′′(0) = 0.805 when λ = 0.25; q′′(0) = 1.267 and
w′′(0) = 0.998 when λ = 0.50; q′′(0) = 1.288 and w′′(0) = 1.164 when λ = 0.75; q′′(0) = 1.312 and
w′′(0) = 1.312 when λ = 1.00.
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Unsteady flow

The scaling of the velocity shown in (5.6.44) is useful for computing unsteady flow due to the start-up
of an outer stagnation-point flow. Substituting into the continuity equation and equation of motion
the functional forms

u1 = ξ1 x1K1(x3, t), u2 = ξ2 x2K2(x3, t), u3 = −(ξ1ν)
1/2K3(x3, t),

p = −1

2
ρ (ξ21x

2
1 + ξ22x

2
2) + μ (ξ1 + ξ2)K4(x3, t) + ρg · x+ p0, (5.6.48)

we obtain a system of four differential equations for the functions Ki with respect to x3 and t, where
i = 1–4. The solution can be found by standard numerical methods (e.g., [371] p. 207). There is a
particular protocol of startup where the flow admits a similarity solution and the problem is reduced
to solving an ordinary differential equation for a carefully crafted similarity variable [419].

Problems

5.6.1 Two-dimensional stagnation-point flow against an oscillating plate

Consider two-dimensional orthogonal stagnation-point flow with rate of extension ξ against a flat
plate that oscillates in its plane along the x axis with angular frequency Ω and amplitude V . The
flow can be described by the stream function

ψ = (νξ)1/2 Real
{
xf(η) + V

(
ν/ξ

)1/2
q(η) exp(−iΩt)

}
, (5.6.49)

where η = (ξ/ν)1/2y is a scaled coordinate, i is the imaginary unit, and f , q are two unknown
complex functions (e.g., [353]; [428] p. 402). The no-slip and no-penetration conditions at the plate
require that f(0) = 0, f ′(0) = 0, q(0) = 0, and q′(0) = 1. The far-field condition requires that
f(∞) � η or f ′(∞) = 1, and q′(∞) = 0.

(a) Show that the function f satisfies equation (5.6.16), and is therefore identical to that for steady
stagnation-point flow, whereas the function q satisfies the linear equation

q′′′ + fq′′ − (f ′ + i Ω̂) q′ = 0, (5.6.50)

where Ω̂ ≡ Ω/ξ is a dimensionless parameter. Demonstrate that the pressure field is unaffected by
the oscillation.

(b) Explain why the problem is equivalent to that of stagnation-point flow against a stationary flat
plate, where the stagnation point oscillates about a mean position on the plate.

(c) Develop the mathematical formulation when the plate oscillates along the z axis ([428] p. 405).

5.6.2 Stagnation-point flow against a moving plate

Discuss the computation of two-dimensional orthogonal stagnation-point flow against a plate that
translates in its plane with a general time-dependent velocity [425].

5.6.3 Flow due to a stretching plane

Develop a similarity solution for the flow in a semi-infinite fluid due to the stretching of a surface
located at x3 = 0. The tangential velocity at the surface is given by u1 = ξ1x1 and u2 = ξ2x2 [418].
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Computer Problems

5.6.4 Stagnation-point flow

(a) Write a program that uses the shooting method to solve the system (5.6.17) and (5.6.27) for
two-dimensional stagnation-point flow and reproduce the graphs in Figure 5.6.2(a, b).

(b) Write a program that uses the shooting method to solve the system (5.6.39) for axisymmetric
orthogonal stagnation-point flow and reproduce the graphs in Figure 5.6.4(b).

(c) Write a computer program that uses the shooting method to solve equations (5.6.41) subject to
the stated boundary conditions. Compare the results with the Crane solution for the corresponding
two-dimensional flow.

(d) Write a computer program that uses the shooting method to solve equations (5.6.47) and prepare
graphs of the results for λ = 0.30, 0.60, and 0.90.

5.6.5 Orthogonal stagnation-point flow against an oscillating plane

Solve the differential equation (5.6.50) using a method of your choice and prepare a graph of the
solution.

5.7 Flow due to a rotating disk

Consider an infinite horizontal disk rotating in its plane around the x axis and about the centerpoint
with constant angular velocity Ω in a semi-infinite fluid, as shown in Figure 5.7.1(a). The rotation
of the disk generates a swirling flow that drives a secondary axisymmetric stagnation-point flow
against the disk along the axis of rotation. The secondary flow is significant inside a boundary layer
attached to the disk, and decays to zero far from the disk. The thickness of the boundary layer
depends on the angular velocity of rotation.

Von Kármán [415] observed that the equation of motion can be reduced into a system of
ordinary differential by introducing the transformations

ux = (νΩ)1/2 H(η), uσ = Ωσ F (η), uϕ = Ωσ G(η), (5.7.1)

where η = x(Ω/ν)1/2 is a scaled x coordinate and H, F , and G are three dimensionless functions.
The no-slip boundary condition at the disk surface requires that H(0) = 0, F (0) = 0, and G(0) = 1.
The continuity equation requires that H ′(0) = 0. The far-field condition requires that F (∞) = 0,
G(∞) = 0, and H ′(∞) = 0. Note that by demanding that H ′(∞) = 0 or H(∞) is a constant, we
allow for the onset of uniform axial flow toward the disk. Substituting expressions (5.7.1) into the
Navier–Stokes equation, we find that the pressure must assume the functional form

p = −μΩQ(η) + ρg · x+ p0, (5.7.2)

where Q is a dimensionless function and p0 is a constant. Note that the hydrodynamic pressure does
not exhibit the usual radial dependence due to the centripetal acceleration.

Combining the equation of motion with the continuity equation, we obtain a system of four
ordinary differential equations for the functions H,F,G, and Q. Combining these equations further
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Figure 5.7.1 (a) Illustration of flow due to a rotating disk. (b) Graphs of the dimensionless functions

−H (solid line), G (dashed line), F (dotted line), and Q (dot-dashed line).

to eliminate the functions Q and F , we derive two third-order coupled ordinary differential equations
for the functions H and G,

H ′′′ −H ′′H +
1

2
H ′2 − 2G2 = 0, G′′ −G′H +GH ′ = 0, (5.7.3)

subject to the aforementioned boundary conditions. Once the solution has been found, the functions
F and Q arise from the expressions

F = −1

2
H ′, Q =

1

2
H2 −H ′. (5.7.4)

An approximate solution of equations (5.7.3) is available [90]. To compute a numerical solution, we
recast these equations as a system of five first-order equations for H,H ′, H ′′, G, and G′. Denoting
H = x1 and G = x4, we obtain

d

dt

⎡⎢⎢⎢⎢⎣
x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
x2

x3

x1x3 − 1
2 x

2
2 + 2x2

4

x5

x1x5 − x4x2

⎤⎥⎥⎥⎥⎦ , (5.7.5)

with boundary and far-field conditions

x1(0) = 0, x2(0) = 0, x4(0) = 1, x2(∞) = 0, x4(∞) = 0. (5.7.6)

Since the initial values x3(0) and x5(0) are a priori unknown, we must solve a boundary-value
problem with two unknown end conditions. The solution can be found using a shooting method in
two variables according to the following steps:
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1. Guess the values of H ′′(0) = x3(0) and G′(0) = x5(0).

2. Integrate the system by solving an initial value problem from η = 0 up to a sufficiently large
value. In practice, η = 10 yields satisfactory accuracy.

3. Check whether the far-field conditions H ′(∞) = x2(∞) = 0 and G(∞) = x4(∞) = 0 are
fulfilled. If not, return to Step 2 and repeat the procedure with improved guesses for x3(0)
and x5(0).

Results computed using this method are plotted in Figure 5.7.1(b). The numerical solution shows
that H ′′(0) = −1.0204 and G′(0) = −0.6159, to shown accuracy.

The thickness of the boundary layer on the disk, δ, can be identified with the elevation of the
point where the function F (η) drops to a small value. The numerical solution shows that F (η) = 0.01
when

δ � 5.4 (ν/Ω)1/2. (5.7.7)

At the edge of the boundary layer, the axial velocity takes the value ux = −0.89 (νΩ)1/2. The
associated flow feeds the boundary layer in order to sustain the radial motion of the fluid away from
the centerline.

Torque

Neglecting end effects, we find that the axial component of the torque exerted on a rotating disk of
radius a is given by

Tz =
π

2
G′(0) ρa4(νΩ3)1/2. (5.7.8)

Stability

Observation reveals and stability analysis confirms that the steady flow over the disk is stable as
long as the radius of the disk, a, expressed by the Reynolds number, Re = a(Ω/ν)1/2, is lower than
about 285 [251]. Above this threshold, the flow develops non-axisymmetric waves yielding a spiral
vortex pattern.

Unsteady flow

The von Kármán scaling of the velocity with respect to radial distance σ shown in (5.7.1) is also
useful in the case of unsteady flow due, for example, to the sudden rotation of the disk with constant
or variable angular velocity. Substituting into the continuity equation and equation of motion the
functional forms

ux = (νΩ)1/2 H(x, t), uσ = σΩF (x, t), uϕ = σΩG(x, t),

p = −μΩQ(x, t) + ρg · x+ p0, (5.7.9)

we obtain a system of four partial differential equations for the functions H,F,G, and Q with respect
to x and t whose solution can be found by numerical methods ([371] p. 204; [419]).
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Problems

5.7.1 Rotary oscillations

Consider the flow due to a disk executing rotary oscillations. Derive four differential equations for
the functions H,F,G, and Q with respect to x and t. Confirm that, in the limit of zero frequency,
these equations reduce to (5.7.3) and (5.7.4).

5.7.2 Flow due to two coaxial rotating disks

Consider the flow between two parallel disks of infinite extent separated by distance b, rotating
around a common axis with angular velocity Ω1 and Ω2. Introduce expressions (5.7.1), where Ω is
replaced by the angular velocity of the lower disk Ω1, and show that the functions H,F,G, and Q
satisfy equations (5.7.3) and (5.7.4) with boundary conditions

F (0) = 0, G(0) = 1, H(0) = 0, F (η1) = 0, F (η1) =
Ω2

Ω1
, H(η1) = 0, (5.7.10)

where η1 = (Ω1/ν)
1/2b.

5.8 Flow inside a corner due to a point source

Jeffery and Hamel independently considered two-dimensional flow between two semi-infinite planes
intersecting at an angle 2α, as illustrated in Figure 5.8.1 [161, 199]. The motion of the fluid is driven
by a point source located at the apex. This configuration can be regarded as a model of the local
two-dimensional flow in a rapidly converging or diverging channel.

We begin the analysis by introducing plane polar coordinates with origin at the apex, (r, θ), as
shown in Figure 5.8.1. Assuming that the flow is purely radial, we set uθ = 0 and use the continuity
equation to find that the radial velocity component takes the functional form

ur =
A

r
F (η), (5.8.1)

where η = θ/α, F (η) is a dimensionless function, and A is a dimensional constant related to flow
rate, Q, by the equation

Q = Aα

∫ 1

−1

F (η) dη. (5.8.2)

To satisfy the no-slip boundary condition at the two walls located at θ = ±α, we require that
F (±1) = 0. Since the velocity field is purely radial, closed streamlines do not arise. However, it is
possible that the direction of the flow may reverse inside a certain portion of the channel. When
this occurs, the fluid moves against the direction of the primary flow driven by the point source.

We are free to select the relative magnitudes of A and F . To remove this degree of freedom,
we specify that the maximum value of F is equal to unity, which is equivalent to requiring that
F ′ = 0 when F = 1, where a prime denotes a derivative with respect to η. Substituting (5.8.1) into
the two-dimensional vorticity transport equation, we obtain a third-order nonlinear equation for F ,

F ′′′ + 4α2F ′ + 2αReFF ′ = 0, (5.8.3)
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Figure 5.8.1 Illustration of the Jeffery–Hamel flow between two semi-infinite planes intersecting at
angle 2α, driven by a point source located at the apex.

where Re ≡ αA/ν is the Reynolds number. To simplify the notation, we have allowed Re to be
negative in the case of net inward flow. Integrating (5.8.3) once with respect to η, we derive the
Jeffery–Hamel equation

F ′′ + 4α2F + αReF 2 = δ, (5.8.4)

where δ is a constant. Substituting (5.8.1) into the radial component of the Navier–Stokes equa-
tion, using (5.8.4), and integrating once with respect to r, we obtain the hydrodynamic pressure
distribution,

p̃ ≡ p− ρg · x =
2μ

r2
A
(
F (η)− 1

4
δ
)
. (5.8.5)

Stokes flow

The third term on the left-hand side of (5.8.4) represents the effect of fluid inertia. Neglecting this
term yields a linear equation whose solution is readily found by elementary analytical methods.
Solving for F and computing A in terms of Q from (5.8.2), we obtain

ur =
Q

r

cos 2θ − cos 2α

sin 2α− 2α cos 2α
. (5.8.6)

A different way of deriving this solution based on the stream function is discussed in Section 6.2.5.

Inertial flow

To compute flow at nonzero Reynolds numbers, we multiply (5.8.4) by F ′ and rearrange to obtain

1

2
(F ′2)′ + 2α2(F 2)′ +

1

3
αRe (F 3)′ = δ F ′. (5.8.7)

One more integration subject to the condition F ′(η) = 0 when F = 1 yields the first-order equation

F ′ = ±(1− F )1/2
[ 2
3
αReF (1 + F ) + 4α2F + c

]1/2
, (5.8.8)



5.9 Flow due to a point force 365

where c is a new constant. Applying (5.8.8) at η = ±1 reveals that c is related to the magnitude of
the shear stress at the walls by

c = |F ′(±1)|. (5.8.9)

When AF ′(1) < 0 or AF ′(−1) < 0, we obtain a region of reversed flow adjacent to the walls. Given
the values of α and Re, the problem is reduced to solving (5.8.8) and computing the value of the
constant c subject to the boundary conditions F (±1) = 0. Once this is done, the results can be
substituted into (5.8.2) to yield the corresponding value of Q. Rosenhead [350] derived an exact
solution in terms of elliptic functions.

Numerical methods

To compute a numerical solution, we use a shooting method involving the following steps [190]:
Guess a value for c; integrate (5.8.8) by solving an initial value problem with the plus or minus
sign and initial condition F (−1) = 0 from η = −1 to = 1; examine whether F (1) = 0; if not,
repeat the computation with an improved estimate for c. The results show that the flow exhibits a
variety of features, especially at high Reynolds numbers, discussed in detail by a number of authors
[24, 136, 137, 428, 190]. Linear stability analysis shows that the flow becomes unstable above a
critical Reynolds number that decreases rapidly as the angle α becomes wider [160].

Computer Problem

5.8.1 Computing the Jeffery–Hamel flow by a shooting method

Solve (5.8.8) for α = π/8 at a sequence of Reynolds numbers, Re = 1, 10, 20, and 50. Compute the
corresponding dimensionless flow rate, Q/ν.

5.9 Flow due to a point force

Consider the flow due to a narrow jet of a fluid discharging into

b
x0

Flow due to a point source of
momentum.

a large tank that is filled with the same fluid. As the diameter of
the jet decreases while the flow rate is kept constant, we obtain
the flow due to a point source of momentum, also called a point
force, located at the point of discharge. A different realization
of the flow due to a point force is provided by the motion of a
small particle settling under the action of gravity in an otherwise
quiescent ambient fluid.

The velocity and pressure fields due to a steady point force
applied at a point x0 satisfy the continuity equation and the
steady version of Navier–Stokes equation with a singular forcing term on the right-hand side,

ρu · ∇u = −∇p̃+ μ∇2u+ b δ(x− x0), (5.9.1)

where b is a constant vector determining the magnitude and direction of the point force. The effect
of the distributed body force due to gravity has been absorbed into the hydrodynamic pressure,
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p̃ ≡ p−ρg ·x. Physically, equation (5.9.1) describes the flow due to the steady gravitational settling
of a particle with infinitesimal dimensions but finite weight in an ambient fluid of infinite expanse,
viewed in a frame of reference translating with the particle.

Assuming that the flow is axisymmetric, we introduce spherical polar coordinates, (r, θ, ϕ),
where the x axis points in the direction of the point force, b, and describe the flow in terms of the
Stokes stream function, ψ. The absence of an intrinsic length scale suggests the functional form

ψ(r, θ) = νrF(cos θ), (5.9.2)

where F is a dimensionless function and ν = μ/ρ is the kinematic viscosity of the fluid. For future
convenience, cos θ has been used instead of the polar angle θ in the argument. The spherical polar
components of the velocity are

ur =
1

r2 sin θ

∂ψ

∂θ
= −ν

r
F ′, uθ = − 1

r sin θ

∂ψ

∂r
= − ν

r sin θ
F , (5.9.3)

and the azimuthal component of the vorticity is

ωϕ = −ν

r
sin θF ′′, (5.9.4)

where a prime denotes a derivative with respect to cos θ. It is clear from these functional forms that
the streamlines are self-similar, that is, one streamline derives from another by a proper adjustment
of the radial scale.

Progress can be made by substituting (5.9.3) into the vorticity transport equation to derive a
fourth-order ordinary differential equation for F . However, it is more expedient to work directly with
the generalized equation of motion (5.9.1), thus obtaining a simultaneous solution for the pressure.
Motivated again by the absence of an intrinsic length scale, we express the hydrodynamic pressure
in the functional form

p̃(r, θ) = p0 + μ
ν

r2
Q(cos θ), (5.9.5)

whereQ is a dimensionless function and p0 is an unspecified constant. Substituting (5.9.3) and (5.9.5)
into the radial and meridional components of the Navier–Stokes equation for steady axisymmetric
flow, given by

ρ
(
ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
− u2

θ

r

)
= −∂p̃

∂r
+ μ

(
∇2ur − 2

ur

r2
− 2

r2
∂uθ

∂θ
− 2

r2
uθ cot θ

)
,

(5.9.6)

ρ
(
ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uruθ

r

)
= −1

r

∂p̃

∂θ
+ μ

(
∇2uθ +

2

r2
∂ur

∂θ
− uθ

r2 sin2 θ

)
,

where

∇2f =
1

r2
∂

∂r

(
r2

∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
, (5.9.7)
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we obtain two coupled, third-order, nonlinear ordinary differential equations,

(FF ′ − sin2 θF ′′)′ +
F2

sin2 θ
+ 2Q = 0, F ′′ +

1

2

( F2

sin2 θ

)′
+Q′ = 0. (5.9.8)

Integrating the second equation once and combining the result with the first equation to eliminate
Q, we obtain an equation for F alone,

[ (1− η2)F ′′ −FF ′ ]′ + 2F ′ = A, (5.9.9)

where η = cos θ, and A is an integration constant. Integrating once more, we derive a second-order
equation,

(1− η2)F ′′ −FF ′ + 2F ′ −Aη = c, (5.9.10)

where c is a new integration constant.

To evaluate the constants A and c, we note that both the positive and negative parts of the x
axis are streamlines and set F(±1) = 0. Next, we require that the radial component of the velocity
and the vorticity are finite along the x axis and use (5.9.8) to find that, as η tends to ±1, both
F ′(±1) and the limit of (1 − η2)1/2F ′′(η) must be bounded. Equation (5.9.10) then yields A = 0
and c = 0. Integrating (5.9.10), we find

(1− η2)F ′ + 2ηF − 1

2
F2 = α, (5.9.11)

where α is a new integration constant. Applying (5.9.11) at the x axis corresponding to η = ±1 and
requiring a nonsingular behavior we obtain α = 0. Integrating (5.9.11), we finally obtain the general
solution

F = 2
sin2 θ

d− cos θ
(5.9.12)

where d is a new integration constant whose value must be adjusted so that the flow field satisfies
(5.9.1) at the singular point, x0 [221, 385]. Substituting (5.9.12) into the first equation of (5.9.8)
yields the function Q,

Q = 4
d cos θ − 1

(d− cos θ)2
. (5.9.13)

To evaluate the constant d, we apply the macroscopic momentum balance (3.2.9) over a
spherical volume of fluid of radius R centered at the point force. We note that the flow is steady
and use the properties of the delta function to find∫∫

Sphere

(σ − ρu⊗ u) · n dS = −b, (5.9.14)

where n is the normal vector pointing outward from the spherical surface. Using (5.9.12) and (5.9.13)
to evaluate the stress tensor and substituting the result in the x component of (5.9.14), we obtain
an implicit equation for d,

Re2 ≡ |b|
8πμν

=
8

3

d

d2 − 1
+ d2 ln

d− 1

d+ 1
+ 2d, (5.9.15)
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Figure 5.9.1 (a) The relationship between the effective Reynolds number, Re, defined in (5.9.15)
and the constant d. The dashed line represents the low-Re asymptotic given in (5.9.17), and the
dotted line represents the high-Re asymptotic given in (5.9.17). (b) Streamline pattern of the flow
due to a point source of momentum or point force for d = 1.1.

when Re is an effective Reynolds number of the flow. It is now evident that the structure of the
flow depends on the value of Re determining the intensity of the point force. In fact, this conclusion
could have been drawn on the basis of dimensional analysis at the outset. A graph of Re against
the constant d in its range of definition, d > 1, is shown with the solid line in Figure 5.9.1(a). The
streamline pattern for d = 1.1 is shown in Figure 5.9.1(b).

Low-Reynolds-number flow

To study the structure of flow for large values of d, we expand the right-hand side of (5.9.15) in
a Taylor series with respect to 1/d and find that Re2 � 2/d, which confirms that Re is small,
as shown in Figure 5.9.1(a). Making appropriate approximations, we find that the corresponding
stream function and modified pressure are given by

ψ =
|b|
8πμ

r sin2 θ, p̃ =
|b|
4π

1

r2
cos θ. (5.9.16)

Evaluating the various terms of the Navier–Stokes equation shows that the nonlinear inertial terms
are smaller than the pressure and viscous terms by a factor of 1/d and the solution (5.9.15) satisfies
the equations of Stokes flow. The streamline pattern is symmetric about the midplane x = 0, as
illustrated in Figure 6.4.1(a).

High-Reynolds-number flow

To study the opposite limit as d tends to unity, we expand the right-hand side of (5.9.15) in a Taylor



5.9 Flow due to a point force 369

series with respect to d− 1, and find that

Re2 =
4

3(d− 1)
, (5.9.17)

which confirms that Re is large. Making appropriate approximations, we find that, as long as cos θ
is not too close to unity, that is, sufficiently far from the positive part of the x axis, the stream
function and hydrodynamic pressure are given by

ψ = 2νr (1 + cos θ), p̃ = −μ
ν

r2
1

1− cos θ
, (5.9.18)

independent of the magnitude of Re.

Further flows due to a point force

The flow due to a point force in an infinite domain discussed in this section has been generalized
to account for a simultaneous swirling motion and for the presence of a flat or conical boundaries
[146, 372, 428]. Other configurations are discussed in Chapter 6 in the context of Stokes flow.

Problem

5.9.1 Edge of the Landau jet

The edge of the jet can be defined as the surface where the associated streamlines are at minimum
distance from the x axis. Show that this is a conical surface with θ = β, where cosβ = 1/d.



Flow at low Reynolds numbers 6
The distinguishing and most salient feature of low-Reynolds-number flow is that the nonlinear con-
vective force, ρu · ∇u, makes a small or negligible contribution to Cauchy’s equation of motion
expressing Newton’s law of motion for a small fluid parcel. The motion of the fluid is governed by
the continuity equation and the linearized Navier–Stokes equation describing steady, quasi-steady, or
unsteady Stokes flow, as discussed in Section 3.10. The linearity of the governing equations allows us
to study in detail the mathematical properties of the solution and the physical structure of the flow.
Solutions can be obtained by a variety of analytical and numerical methods for a broad range of
configurations involving single- and multi-fluid flow. Examples include methods based on separation
of variables, singularity representations, and boundary-integral formulations. In this chapter, we
discuss the general properties of steady, quasi-steady, and unsteady flow at low Reynolds numbers,
and then proceed to derive exact and approximate solutions for flow near boundary corners, flow
of liquid films, lubrication flow in confined geometries, and flow past or due to the motion of rigid
particles and liquid drops.

The study of uniform flow past a stationary particle or flow due to the translation of a particle
in an infinite quiescent fluid will lead us to examine the structure of the far field where the Stokes-
flow approximation is no longer appropriate. In the far flow, the neglected inertial term ρu · ∇u

can be approximated with the linear form ρU · ∇u, where U is the uniform velocity of the incident
flow, yielding Oseen’s equation and corresponding Oseen flow. Computing solutions of the Oseen
equation is complicated by the quadratic coupling of U and u. Nevertheless, the preserved linearity
of the equation of motion with respect to u allows us to conduct some analytical studies and develop
efficient methods of numerical computation. In concluding this chapter, we discuss oscillatory and
more general time-dependent flow governed by the unsteady Stokes equation (3.10.6). Although
the new feature of time-dependent motion renders the analysis somewhat more involved, we are still
able to build a firm theoretical foundation and derive exact and approximate solutions using efficient
analytical and numerical methods.

6.1 Equations and fundamental properties of Stokes flow

The scaling analysis of Section 3.10 revealed that the flow of an incompressible Newtonian fluid with
uniform physical properties at low values of the frequency parameter, β ≡ L2/(νT ), and Reynolds
number, Re ≡ UL/ν, is governed by the continuity equation expressing mass conservation, ∇·u = 0,
and the Stokes equation expressing a force balance,

∇ · σ + ρg = 0, (6.1.1)

370
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or

−∇p+ μ∇2u+ ρg = 0, (6.1.2)

where u is the velocity, p is pressure, μ is the fluid viscosity, ρ is the fluid density, and g is the
acceleration of gravity.

In terms of the hydrodynamic pressure excluding the effect of the body force, p̃ ≡ p− ρg · x,
and associated stress tensor, σ̃ = −p̃ I+ 2μE, the Stokes equation becomes

∇ · σ̃ = 0, (6.1.3)

or

−∇p̃+ μ∇2u = 0, (6.1.4)

where E = 1
2
[∇u+ (∇u)T ] is the rate-of-deformation tensor for an incompressible fluid.

A flow that is governed by one of the four equivalent equations (6.1.1)–(6.1.4) is called a Stokes
or creeping flow.

Force and torque on a fluid parcel

The total force exerted on an arbitrary fluid parcel, including the hydrodynamic and the body force,
is given in (3.1.15), repeated below for convenience,

Ftot =

∫∫∫
Parcel

(∇ · σ + ρg) dV. (6.1.5)

Referring to (6.1.1), we see that the hydrodynamic force balances the body force and the total force
exerted on the parcel is zero. The assumption of creeping flow guarantees that the rate of change of
momentum of a fluid parcel is negligibly small.

The total torque with respect to a point, x0, exerted on an arbitrary fluid parcel was given in
(3.1.20) and (3.1.21), repeated below for convenience,

Ttot =

∫∫
Parcel

x̂× (n · σ) dS +

∫∫∫
Parcel

x̂× (ρg) dV +

∫∫∫
Parcel

λ cdV, (6.1.6)

where x̂ = x − x0 and λ is an appropriate physical constant associated with the torque field c.
Converting the surface integral to a volume integral and switching to index notation, we obtain

T tot
i =

∫∫∫
Parcel

(
εijk σjk + εijk x̂j

∂σlk

∂xl
+ ρ εijkx̂jgk + λ ci

)
dV. (6.1.7)

In the absence of an external torque field, the stress tensor is symmetric and the total torque exerted
on any fluid parcel is zero.
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6.1.1 The pressure satisfies Laplace’s equation

Taking the divergence of the Stokes equation (6.1.2) and using the continuity equation for an in-
compressible fluid, ∇ · u = 0, we find that the pressure satisfies Laplace’s equation,

∇2p = 0. (6.1.8)

The general properties of harmonic functions discussed in Section 2.1.5 ensure that, in the absence
of singular points, the pressure must attain extreme values at the boundaries of the flow or else
grow unbounded at infinity. The hydrodynamic pressure, p̃, excluding hydrostatic variations, also
satisfies Laplace’s equation, ∇2p̃ = 0.

Flow in an infinite domain

Consider a flow in a domain of infinite expanse, possibly in the presence of interior boundaries, and
assume that the velocity decays and the pressure tends to a constant at infinity. Using the results of
Section 2.3, we find that the hydrodynamic pressure decays like 1/dm, where d is the distance from
the origin and m is an integer. Substituting in the Stokes equation p = 1/d, we obtain an equation
for the velocity that does not admit a solenoidal solution. Consequently, the pressure must decay
at least as fast as 1/d2. Balancing the orders of the pressure gradient and of the Laplacian of the
velocity, we find that the velocity must decay at least as fast as 1/d. Repeating these arguments for
two-dimensional Stokes flow, we find that the velocity must increase or decay at a rate that is less
than logarithmic, ln(d/a), where a is a constant length scale.

6.1.2 The velocity satisfies the biharmonic equation

Taking the Laplacian of (6.1.2) and using (6.1.8), we find that the Cartesian components of the
velocity satisfy the biharmonic equation,

∇4u = 0. (6.1.9)

The mean-value theorems stated in (2.4.14) and (2.4.14) provide us with the identities

1

4πa2

∫∫
Sphere

u(x) dS(x) = u(x0) +
1

6
a2∇2u(x0) (6.1.10)

and

1
4π
3 a3

∫∫∫
Sphere

u(x) dV (x) = u(x0) +
1

10
a2∇2u(x0), (6.1.11)

relating the mean value of the velocity over the surface or volume of a sphere of radius a centered
at a point, x0, to the value of the velocity and its Laplacian at the center of the sphere.

Irrotational flow

Equation (6.1.9) shows that any solenoidal velocity field, u = ∇φ, satisfies the Stokes equation
with a corresponding constant hydrodynamic pressure. However, since an irrotational flow alone
cannot be made to satisfy more than one scalar boundary condition, it is generally unable by itself
to represent an externally or internally bounded flow.
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6.1.3 The vorticity satisfies Laplace’s equation

Taking the curl of the Stokes equation and noting that the curl of the gradient of any twice differ-
entiable vector field is zero, we find that the Cartesian components of the vorticity satisfy Laplace’s
equation,

∇2ω = 0. (6.1.12)

Consequently, each Cartesian component of the vorticity attains an extreme value at the boundaries
of the flow. Another important consequence of (6.1.12) is the absence of localized concentration of
vorticity in Stokes flow. The onset of regions of recirculating fluid does not imply the presence of
compact vortices, as it typically does in the case of high-Reynolds-number flow discussed in Chapters
10 and 11.

Any linear flow with constant vorticity satisfies the equations of Stokes flow with a corre-
sponding constant hydrodynamic pressure, including the simple shear flow u = [ξy, 0, 0], where ξ is
a constant shear rate.

Mean-value theorems

The mean-value theorems for functions that satisfy Laplace’s equation stated in (2.4.2) and (2.4.14)
provide us with the identities

ω(x0) =
1

4πa2

∫∫
Sphere

ω(x) dS(x) =
1

4π
3
a3

∫∫∫
Sphere

ω(x) dV (x), (6.1.13)

stating that the mean value of the vorticity over the surface or volume of a sphere of radius a centered
at a point, x0, is equal to the value of the vorticity at the center of the sphere.

We note that the outward normal vector over the surface of the sphere is n = 1
a (x− x0) and

use the divergence theorem to write∫∫
Sphere

(x− x0)× u(x) dS(x) = a

∫∫
Sphere

n(x)× u(x) dS(x) = a

∫∫∫
Sphere

ω(x) dV (x). (6.1.14)

Combining this equation with (6.1.13), we obtain

ω(x0) =
1

4π
3
a4

∫∫
Sphere

(x− x0)× u(x) dS(x). (6.1.15)

This equation relates the mean value of the angular moment of the velocity over the surface of a
sphere to the angular velocity of the fluid at the center of the sphere.

6.1.4 Two-dimensional flow

The vorticity of a two-dimensional flow in the xy plane arises from the stream function, ψ, as
ωz = −∇2ψ. Since the vorticity is a harmonic function, ∇2ωz = 0, the stream function satisfies the
biharmonic equation,

∇4ψ = 0. (6.1.16)

The mean value of the stream function along a circle or over a circular disk are given by the mean-
value theorem stated in (2.5.7) and (2.5.8).
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6.1.5 Axisymmetric and swirling flows

To describe an axisymmetric Stokes flow, we introduce cylindrical polar coordinates, (x, σ, ϕ), and
accompanying spherical polar coordinates, (r, θ, ϕ), and express the velocity field in terms of the
Stokes stream function, ψ. The azimuthal component of the vorticity vector was given in equation
(2.9.19), repeated for convenience

ωϕ = − 1

σ
E2ψ, (6.1.17)

where E2 is a second-order differential operation defined in (2.9.17) and (2.9.20) as

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
=

∂2

∂r2
+

sin θ

r2
∂

∂θ

( 1

sin θ

∂

∂θ

)
=

∂2

∂r2
+

1

r2
∂2

∂θ2
− cot θ

r2
∂

∂θ
. (6.1.18)

The steady vorticity transport equation for axisymmetric Stokes flow requires that the Stokes
stream function satisfies a fourth-order linear partial differential equation,

E2(E2ψ) = E4ψ = 0. (6.1.19)

Far from the axis of revolution, this equation reduces to the biharmonic equation corresponding to
two-dimensional flow in an azimuthal plane.

Swirling flow

To describe a swirling Stokes flow, such as that produced by the slow rotation of a prolate spheroid
around its axis of revolution, x, we introduce the swirl function, Θ(x, σ), defined by the equation
uϕ = Θ/σ, where σ is the distance from the axis of revolution. The vorticity points along the x axis,
indicated by the unit vector ex,

ω =
1

σ

∂Θ

∂σ
ex. (6.1.20)

Swirling motion does not generate a pressure field in Stokes flow. Resorting to (6.1.9), we find that
the swirl function satisfies a second-order partial differential equation,

E2Θ = 0, (6.1.21)

where the operator E2 is defined (6.1.18).

6.1.6 Reversibility of Stokes flow

Let us assume that u and p are a pair of velocity and pressure fields satisfying the equations of
Stokes flow with a body force, ρg. It is evident that −u, −p, and −ρg will also satisfy the equations
of Stokes flow. We conclude that the reversed flow is a mathematically acceptable and physically
viable solution. It is important to note that the direction of the hydrodynamic force and torque
acting on any surface are reversed when the signs u and p are switched. Reversibility is not shared
by inertial flow at nonzero Reynolds numbers, for the sign of the nonlinear acceleration term u · ∇u

does not change when the sign of the velocity is reversed.
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Reversibility of Stokes flow can be invoked to deduce the structure of a flow without actually
computing the solution. Consider a solid sphere convected under the action of simple shear flow
in the vicinity of a plane wall. In principle, the hydrodynamic force acting on the sphere may
have a component perpendicular to the wall and a component parallel to the wall. Let us assume
temporarily that the component of the force perpendicular to the wall pushes the sphere away from
the wall. Reversing the direction of the shear flow must reverse the direction of the force and thus
push the sphere towards the wall. However, this anisotropy is physically unacceptable in light of the
fore-and-aft symmetry of the domain of flow. We conclude that the normal component of the force
on the sphere is zero and the sphere must keep moving parallel to the wall.

Using the concept of reversibility, we infer that the streamline pattern around an axisymmetric
body with fore-and-aft symmetry moving along its axis must also be axisymmetric and fore-and-aft
symmetric. The streamline pattern over a two-dimensional rectangular cavity must be symmetric
with respect to the midplane. A neutrally buoyant spherical particle convected in a parabolic flow
inside a cylindrical tube may not move toward the center of the tube or the wall, but must retain
the initial radial position.

6.1.7 Energy integral balance

In the absence of inertial forces, the rate of accumulation and rate of convection of kinetic energy
into a fixed control volume, Vc, bounded by a surface, D, are zero. Combining (3.4.22) with (3.4.15),
we derive a simplified energy integral balance,∫∫

D

u · f̃ dS = −2μ

∫∫∫
Vc

E : E dV, (6.1.22)

where f̃ = n · σ̃ is the hydrodynamic traction excluding the effect of the body force, and n is the unit
normal vector pointing into the control volume. Equation (6.1.22) states that the rate of working
of the hydrodynamic traction on the boundary is balanced by the rate of viscous dissipation inside
the control volume.

Flow due to rigid-body motion

As an application, we consider the flow produced by the motion of a rigid body that translates with
velocity V while rotating about the point x0 with angular velocity Ω in an ambient fluid of infinite
expanse. We select a control volume Vc that is confined by the surface of the body, B, and a large
surface, S∞, and apply (6.1.22) with D representing the union of B and S∞. Letting S∞ tend to
infinity and noting that the velocity decays like 1/d, where d is the distance from the origin, we
find that the corresponding surface integral on the left-hand side makes a vanishing contribution.
Requiring the boundary condition u = V +Ω× (x− x0) over B, we obtain

V · F+Ω ·T = −2μ

∫∫∫
Vc

E : E dV, (6.1.23)

where F and T are the hydrodynamic force and torque with respect to x0 exerted on the body,
excluding contributions from the body force.
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Equation (6.1.23) expresses a balance between the rate of supply of mechanical energy nec-
essary to sustain the motion of the body and the rate of viscous dissipation in the fluid. Since the
right-hand side is nonpositive for any combination of V and Ω, each projection V · F and Ω · T
must be negative. Physically, these inequalities assert that the drag force exerted on a translating
body and the torque exerted on a rotating body always resist the motion of the body.

6.1.8 Uniqueness of Stokes flow

Let us assume now that either the velocity or the boundary traction or the projection of the velocity
onto the boundary traction, u · f̃ , is zero over the boundaries of the flow. The left-hand side of
(6.1.22) is zero and the rate of deformation tensor vanishes throughout the domain of flow. As
a result, the velocity must express rigid-body motion including translation and rotation (Problem
1.1.3). An important consequence of this conclusion is uniqueness of solution of the equations of
Stokes flow noted by Helmholtz in 1868.

To prove uniqueness of solution, we temporarily consider two solutions corresponding to a
given set of boundary conditions for the velocity or traction. The flow expressing the difference
between these two solutions satisfies homogeneous boundary conditions and must represent rigid-
body motion. If the boundary conditions specify the velocity on a portion of the boundary, rigid-body
motion is not permissible, the difference flow must vanish, and the solution of the stated problem is
unique. However, if the boundary conditions specify the traction over all boundaries, an arbitrary
rigid-body motion can be added to any particular solution.

6.1.9 Minimum dissipation principle

Helmholtz showed that the rate of viscous dissipation in a Stokes flow with velocity u is lower than
that in any other incompressible flow with velocity u′. The boundary velocity is assumed to be the
same in both flows. One consequence of the minimum energy dissipation principle is that the drag
force and torque exerted on rigid body moving steadily in a fluid under conditions of Stokes flow are
lower than those for flow at nonzero Reynolds numbers.

To demonstrate the minimum dissipation principle, we introduce the rate-of-deformation ten-
sor, E, and consider the identity∫∫∫

Flow

E′ : E′ dV −
∫∫∫

Flow

E : E dV =

∫∫∫
Flow

(E′ −E) : (E′ −E) dV +

∫∫∫
Flow

(E′ −E) : E dV. (6.1.24)

The first integral on the right-hand side is nonnegative. We will show that the second integral on
the right-hand side is zero. Working toward that goal, we write∫∫∫

Flow

(E′ −E) : E dV =

∫∫∫
Flow

∂(u′
i − ui)

∂xj
Eij dV, (6.1.25)

and use the divergence theorem to obtain∫∫∫
Flow

(E′ −E) : E dV = −
∫∫

B

(u′
i − ui)Eij nj dS −

∫∫∫
Flow

(u′
i − ui)

∂Eij

∂xj
dV, (6.1.26)
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where n is the unit vector normal to the boundaries, B, pointing into the fluid. Since u and u′

are identical over the boundary, the boundary integral on the right-hand side is zero. In fact, the
volume integral on the right-hand side is also zero. To show this, we use the continuity equation
and the Stokes equation to obtain∫∫∫

Flow

(u′
i − ui)

∂Eij

∂xj
dV =

1

2

∫∫∫
Flow

(u′
i − ui)∇2ui dV =

1

2μ

∫∫∫
Flow

(u′
i − ui)

∂p

∂xi
dV. (6.1.27)

Using the continuity equation once more, we write∫∫∫
Flow

(u′ − u) · ∇p dV =

∫∫∫
Flow

∇ · [p (u′ − u)] dV = − 1

μ

∫∫
B

p (u′ − u) · n dS. (6.1.28)

Since u and u′ have the same values over the boundaries, the last integral is zero.

6.1.10 Complex-variable formulation of two-dimensional Stokes flow

Two-dimensional Stokes flow is amenable to a formulation in complex variables that is analogous to,
but somewhat more involved than that, of two-dimensional potential flow discussed in Section 7.10.
In the case of potential flow, the complex-variable formulation is based on the observation that the
harmonic potential, φ, and stream function, ψ, comprise a pair of conjugate harmonic functions.
In the case of Stokes flow, the complex-variable formulation can be developed in two different ways
based on the pressure and vorticity or with reference to the stress components.

Pressure–vorticity formulation

Consider a two-dimensional Stokes flow in the xy plane. Using the identity ∇2u = −∇ × ω along
with the Stokes equation, μ∇2u = ∇p, we obtain

μ∇× ω = −∇p, (6.1.29)

where p is the hydrodynamic pressure excluding hydrostatic variations. Writing the two scalar
components of (6.1.29) in the x and y directions, we find that the z vorticity component, denoted
by ω, and the hydrodynamic pressure, p, satisfy the Cauchy–Riemann equations,

∂ω

∂x
=

1

μ

∂p

∂y
,

∂ω

∂y
= − 1

μ

∂p

∂x
. (6.1.30)

As a consequence, the complex function

f(z) = ω + i
p

μ
(6.1.31)

is an analytic function of the complex variable z = x+ iy, where i is the imaginary unit. Assigning
to the complex function f(z) various forms provides us with different families of two-dimensional
Stokes flows.

To describe the structure of a flow in terms of the stream function, it is convenient to work
with the first integral of f(z) defined by the equation dF/dz = f . The vorticity and pressure fields
are given by

ω =
∂FR

∂x
=

∂FI

∂y
,

p

μ
= −∂FR

∂y
=

∂FI

∂x
, (6.1.32)
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where the subscripts R and I denote the real and imaginary parts. To derive an expression for the
stream function in terms of F , we note that, if H0, H1, H2, and H3 are four harmonic functions and
c0, c1, c2, and c3 are four arbitrary constants, then

ψ = c0H0 + c1xH1 + c2yH2 + c3 (x
2 + y2)H3 (6.1.33)

satisfies the biharmonic equation, ∇4ψ = 0, and it is therefore an acceptable stream function. The
corresponding vorticity is

ω = −∇2ψ = −2c1
∂H1

∂x
− 2c2

∂H2

∂y
− 4c3

(
H3 + x

∂H3

∂x
+ y

∂H3

∂y

)
. (6.1.34)

Comparing this expression with the first expression in (6.1.32), we set H1 = FR, H2 = FI , H3 = 0,
and c1 + c2 = −1/2, and restate (6.1.33) as

ψ = c0H + c1(x− x0)FR − (
1

2
+ c1)(y − y0)FI , (6.1.35)

where c0 and y0 are two arbitrary constants and H is a harmonic function of x and y.

Equations (6.1.32) and (6.1.35) provide us with the vorticity, pressure, and stream function of
a two-dimensional Stokes flow in terms of a generating complex function, F , and a real function, H.
Having specified these functions, we obtain a family of flows with identical vorticity and pressure
fields parametrized by the constants c0 and c1. For example, setting F equal to a constant produces
irrotational flows with vanishing vorticity and constant pressure.

In the particular case where c1 = −1/4, expression (6.1.35) takes the compact form

ψ = c0H − 1

4
(x− x0)FR − 1

4
(y − y0)FI = −1

4
real

[
(z − z0)

∗F (z) +G(z)
]
, (6.1.36)

whereG(z) is an arbitrary analytic function and an asterisk denotes the complex conjugate. Straight-
forward differentiation yields the associated velocity field,

ux + iuy =
i

4

[
F + (z − z0)F

′∗ +G′∗
]
, (6.1.37)

where a prime denotes a derivative with respect to z.

An extensive discussion and further applications of the complex variable formulation of two-
dimensional Stokes flow is available elsewhere ([223], Chapter 7). The complex-variable formulation
is amenable to a boundary-integral representation that can be used to derive and numerically solve
boundary-integral equations [306].

Formulation in terms of the Airy stress function

A two-dimensional Stokes flow can be described by the Airy stress function, Φ, defined in terms of
the hydrodynamic stress that excludes hydrostatic pressure variations, σ̃, by the equations

σ̃xx = μ
∂2Φ

∂y2
, σ̃xy = σ̃yx = −μ

∂2Φ

∂x∂y
, σ̃yy = μ

∂2Φ

∂x2
. (6.1.38)
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The Stokes equation is satisfied for any differentiable function Φ. Using the continuity equation and
recalling that the pressure is a harmonic function, we find that Φ satisfies the biharmonic equation,
∇4Φ = 0. Expressing the three independent components of the stress tensor in terms of the pressure,
p, and stream function, ψ, and using the Stokes equation to eliminate the pressure, we obtain

∂2Φ

∂x2
− ∂2Φ

∂y2
= −4

∂2ψ

∂x∂y
,

∂2ψ

∂x2
− ∂2ψ

∂y2
=

∂2Φ

∂x∂y
. (6.1.39)

Next, we write x = 1
2 (z + z∗) and y = − i

2(z − z∗), and regard Φ and ψ as functions of z and z∗,
where an asterisk denotes the complex conjugate. Applying the chain rule, we find that( ∂Φ

∂z∗

)
z
=

∂Φ

∂x

∂x

∂z∗
+

∂Φ

∂y

∂y

∂z∗
=

1

2

(∂Φ
∂x

+ i
∂Φ

∂y

)
(6.1.40)

and ( ∂2Φ

∂z∗2

)
z
=

1

4

(∂2Φ

∂x2
− ∂2Φ

∂y2
+ 2i

∂2Φ

∂x∂y

)
. (6.1.41)

Similar expressions can be derived for ψ. Combining these results, we find that the complex function
χ = Φ− 2iψ satisfies the differential equation( ∂2χ

∂z∗2

)
z
= 0. (6.1.42)

Integrating (6.1.42) twice, we obtain

χ(z) = x∗χ1(z) + χ2(z), (6.1.43)

where χ1 and χ2 are two arbitrary analytic functions of z. Different selections for χ1 and χ2 produce
various types of two-dimensional Stokes flow. For example, setting

χ =
1

2

[
(ζ∗ − 1

3
ζ)ζ − 4

]
ζ (6.1.44)

produces two-dimensional Hagen–Poiseuille flow in a two-dimensional channel confined between two
parallel walls located at y = ±a, where ζ = z/a.

The formulation in terms of the Airy stress function and stream function is amenable to a
boundary-integral representation that can be used to derive integral equations [306].

6.1.11 Swirling flow

A swirling flow can be described by a single scalar function, χ(x, σ), defined in cylindrical polar
coordinates, (x, σ, ϕ), by the equations

σ̃xϕ = μ
1

σ2

∂χ

∂σ
, σ̃σϕ = −μ

1

σ2

∂χ

∂x
(6.1.45)



380 Introduction to Theoretical and Computational Fluid Dynamics

([247], p. 325). All other stress components are identically zero. The Stokes equation is satisfied for
any function χ. For an incompressible Newtonian fluid,

σ̃xϕ = μ
∂uϕ

∂x
, σ̃σϕ = μσ

∂

∂σ

(uϕ

σ

)
, (6.1.46)

requiring that

σ
∂

∂σ̃

( σ̃xϕ

σ

)
=

∂σ̃σϕ

∂x
. (6.1.47)

Substituting expressions (6.1.45), we find that χ satisfies the equation

∂2χ

∂x2
+ σ3 ∂

∂σ

( 1

σ3

∂χ

∂σ

)
= 0. (6.1.48)

The function φ ≡ χ cos 2ϕ/σ2 satisfies Laplace’s equation, ∇2φ = 0.

Problems

6.1.1 Reversibility of Stokes flow

Explain why the drag force exerted on a solid sphere rotating in the vicinity an infinite plane wall
may not have a component perpendicular to the wall.

6.1.2 Mean-value theorems

(a) Derive (6.1.15) by expanding the velocity field in a Taylor series about the center of the sphere.

(b) Derive the counterpart of (6.1.15) for two-dimensional flow.

6.1.3 Complex variable formulation

With reference to the representation (6.1.35), find the values of c0 and c1 and the functions H and
F (z) that produce (a) unidirectional simple shear flow, (b) orthogonal stagnation-point flow, (c)
oblique stagnation-point flow.

6.1.4 Airy stress function

Find the functions χ1 and χ2 corresponding to the flows described in Problem 6.1.3.

6.1.5 Swirling flow

(a) Confirm that the Stokes equation is satisfied for any choice of the function χ defined in (6.1.45).

(b) Show that χ is constant along a line of vanishing traction.

(c) Show that the derivative of χ normal to a line C rotating as a rigid body is zero. The azimuthal
velocity component is uϕ = Ωσ over C, where Ω is the angular velocity of rotation.

(d) Confirm that the function φ ≡ χ cos 2ϕ/σ2 satisfies Laplace’s equation, ∇2φ = 0.

6.1.6 Shear flow over a wavy wall

Consider a two-dimensional semi-infinite simple shear flow with shear rate ξ past an infinite sinusoidal
wall with wavelength L and amplitude εL, where ε is a small dimensionless coefficient. The wall
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profile in the xy plane is described by the function y = yw(x) = εL cos(kx), where k = 2π/L is the
wave number. Show that the stream function is given by the asymptotic expansion

ψ =
1

2
ξy2 − εξyLe−ky cos(kx) + · · · , (6.1.49)

where the dots indicate quadratic and higher-order terms in ε. Compute the drag force exerted on
the wall over one period accurate to first order in ε.

6.2 Stokes flow in a wedge-shaped domain

Because the velocity of a viscous fluid is zero over a stationary solid

θ

r

Illustration of a
wedge-shaped domain.

boundary, the Reynolds number of the flow in the vicinity of the bound-
ary is necessarily small and the local structure of the flow is governed by
the equations of Stokes flow. The role of the outer flow is to provide a
driving mechanism that determines the asymptotic behavior of the flow
far from the boundary. In certain applications, the flow is due to bound-
ary motion but the Reynolds number of the flow near the boundary is low
due to the small length scales involved. Under these circumstances, the
structure of the inner Stokes flow is determined by the local boundary
geometry and nature of boundary conditions driving the flow.

In this section, we derive a general solution and study two-dimensional Stokes flow in a wedge-
shaped domain bounded by two intersecting stationary, translating, or rotating planar walls repre-
senting rigid boundaries or free surfaces of vanishing shear stress. In Section 6.3, we will consider in
detail the structure of two-dimensional flow inside and around a corner with stationary walls driven
by an ambient flow.

6.2.1 General solution for the stream function

To circumvent the computation of the pressure and thus reduce the number of unknowns, it is
convenient to describe the flow in terms of the stream function, ψ. Since the boundary conditions
are applied at intersecting plane walls, it is appropriate to introduce plane polar coordinates with
origin at the vertex, (r, θ), and separate the radial from the angular dependence by writing

ψ(r, θ) = q(r)f(θ), (6.2.1)

where q(r) and f(θ) are two unknown functions.

Working in hindsight, we stipulate the power-law functional dependence

q(r) = Arλ. (6.2.2)

The complex constant A is a measure of the intensity of the outer flow, and the complex exponent
λ determines the structure of the inner Stokes flow. It is understood that either the real or the
imaginary part of the complex stream function ψ provides us with an acceptable solution.
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The nonzero vorticity component directed along the z axis is

ωz = −∇2ψ = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

r2
∂2ψ

∂θ2
= −f

r

d

dr

(
r
dq

dr

)
− q

r2
d2f

dθ2
. (6.2.3)

Substituting (6.2.1) and (6.2.2), we find that

ωz = −Arλ−2 (λ2f +
d2f

dθ2
). (6.2.4)

Requiring that the vorticity is a harmonic function, ∇2ωz = 0, provides us with a fourth-order
homogeneous ordinary differential equation for f ,

f ′′′′ + 2(λ2 − 2λ+ 2) f ′′ + λ2(λ− 2)2f = 0, (6.2.5)

where a prime denotes a derivative with respect to θ. Substituting an eigensolution of the form

f(θ) = exp(κθ), (6.2.6)

we obtain a quadratic equation for the generally complex constant κ,

κ4 + 2(λ2 − 2λ+ 2)κ2 + λ2(λ− 2)2 = 0. (6.2.7)

When κ has an imaginary component, the eigensolutions can be expressed in terms of trigonometric
functions. Solving for κ and substituting the result into (6.2.6), we obtain the general solution

f(θ) =

⎧⎨⎩ B sin(λθ − β) + C sin[(λ− 2)θ − γ] if λ �= 0, 1, 2,
B sin(2θ − β) + Cθ +D if λ = 0, 2,
B sin(θ − β) + Cθ sin(θ − γ) if λ = 1,

(6.2.8)

where B, C, and D are complex constants and β and γ are real constants. A solution with λ = 0
was presented in (5.8.6) in the context of the Jeffery–Hamel flow.

6.2.2 Two-dimensional stagnation-point flow on a plane wall

In the first application, we consider Stokes flow near a stagnation point on a plane wall, as illustrated
in Figure 6.2.1. The no-slip and no-penetration boundary conditions require that f = 0 and f ′ = 0
at θ = 0 and π. In addition, we require that f = 0 at the dividing streamline located at θ = α.
Making the judicious choice λ = 3 and using the general solution (6.2.8), we obtain

f(θ) = B sin(3θ − β) + C sin(θ − γ). (6.2.9)

Enforcing the boundary conditions, we derive the specific form

f(θ) = F sin2 θ sin(θ − α), (6.2.10)

which can be substituted into (6.2.1) to yield the stream function in plane polar or Cartesian
coordinates,

ψ = Gr3 sin2 θ sin(θ − α) = Gy2(y cosα− x sinα), (6.2.11)
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Figure 6.2.1 Stokes flow near a stagnation point on a plane wall. The angle subtended between the
wall and the dividing streamline, measured from the positive x semiaxis, is (a) α = π/2 or (b) π/4.
As α tends to zero, we obtain unidirectional shear flow with parabolic velocity profile.

where F and G are two real constants determined by the intensity of the outer flow that is responsible
for the onset of the stagnation point. The Cartesian components of the velocity and pressure gradient
are

ux = Gy (3y cosα− 2x sinα), uy = Gy2 sinα, ∇p = 2μG

[
3 cosα
sinα

]
. (6.2.12)

It is worth noting that the pressure gradient is constant and points into the same quadrant as
the velocity along the dividing streamline. Streamline patterns for α = π/2 and π/4 are shown
in Figure 6.2.1. As the angle α tends to zero, we obtain unidirectional shear flow with parabolic
velocity profile.

6.2.3 Taylor’s scraper

Taylor [400] studied the flow near the edge of a flat plate moving along the x axis with velocity V ,
scraping fluid off a plane wall at an angle α. In a frame of reference moving with the scraper, the wall
appears to move along the x axis with velocity −V , against a stationary scraper, as shown in Figure
6.2.2. The no-slip boundary condition requires that (1/r)(∂ψ/∂θ) = −V at the wall positioned at
θ = 0. To satisfy this condition, we set λ = 1 and find that the radial component of the velocity
depends on the polar angle θ alone, and is independent of r. Enforcing the boundary conditions
f = 0, f ′ = −V at θ = 0 and f = 0, f ′ = 0 at θ = α, and using the general solution (6.2.8), we
obtain the stream function

ψ(θ) =
V

α2 − sin2 α
r [α(θ − α) sin θ − θ sin(θ − α) sinα ]. (6.2.13)

Streamline patterns for V > 0 are shown in Figure 6.2.2 for three scraping angles.
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Figure 6.2.2 Streamline pattern of the flow due a scraper moving over a plane wall in a frame of
reference moving with the scraper. The inclined wall on the left side of each frame is stationary.
The scraping angle is (a) α = π/4, (b) π/2, (c) 3π/4, and (d) π.

The wall shear stress is given by

σrθ(θ = 0) =
μ

r

(∂ur

∂θ

)
θ=0

=
μ

r2

(∂2ψ

∂θ2

)
θ=0

= −μ
V

r

2α− sin(2α)

α2 − sinα2
. (6.2.14)

The nonintegrable 1/r functional form suggests that an infinite force is required to maintain the
motion of the scraper. In real life, the corner between the scraper and the wall has a small but
nonzero curvature that alters the local flow and removes the singular behavior. If the edge of the
scraper is perfectly sharp, a small gap will be present between the scraper and the wall to allow for
a small amount of leakage. This situation occurs at the top corners of a fluid-filled cavity, where the
motion is driven by a translating lid.
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Figure 6.2.3 Streamline pattern of the flow due the translation of a section of a plane wall (a) close

to the moving section and (b) far from the moving section.

The case α = π describes flow driven by the motion of a semi-infinite belt extending from
the origin to infinity, as shown in Figure 6.2.2(d). A slight rearrangement of the general solution
(6.2.13) yields the simple form

ψ(θ) = V r
θ − π

π
sin θ = V y

θ − π

π
. (6.2.15)

In Section 6.2.3, this elementary flow will be used to construct a general solution for arbitrary
in-plane wall motion.

6.2.4 Flow due to the in-plane motion of a wall

Using the solution (6.2.15) and exploiting the feasibility of linear superposition, we find that the flow
due to the in-plane motion of a section of the wall extending between x = −a and a with uniform
velocity V is described by the stream function

ψ = −V y
( θ− − π

π
− θ+ − π

π

)
= −V y

θ+ − θ−

π
, (6.2.16)

where tan θ+ = y/(x− a) and tan θ− = y/(x+ a). As a/r tends to zero, we obtain the asymptotic
solution

ψ � −V

π

(∂θ
∂x

)
0
2a =

2aV

π

y2

x2 + y2
, (6.2.17)

which describes the flow far from the moving section. Streamline patterns near and far from the
moving section are shown in Figure 6.2.3. The far flow in the first quadrant resembles that due to
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a point source with strength m = 2aV/π located at the origin, in the presence of two intersecting
walls along the x and y axes where the no-slip and no-penetration conditions apply. The flow in the
second quadrant admits a similar interpretation.

Exploiting further the feasibility of superposition, we use the far-flow solution (6.2.17) to
derive the stream function of the flow above a plane wall subject to an arbitrary distribution of a
tangential in-plane velocity, V(x),

ψ(x, y) =
1

π

∫ ∞

−∞

y2

(x− x′)2 + y2
V(x′) dx′. (6.2.18)

Expression (6.2.16) arises by setting V equal to a constant V for |x| < a, and to zero otherwise.
When V is equal to a constant V over the entire x axis, we obtain ψ = V y, describing uniform flow.

Differentiating (6.2.18), we compute the velocity components

ux(x, y) =
1

π

∫ ∞

−∞

∂

∂y

( y2

(x− x′)2 + y2

)
V(x′) dx′,

(6.2.19)

uy(x, y) = − 1

π

∫ ∞

−∞

∂

∂x

( y2

(x− x′)2 + y2

)
V(x′) dx′ =

2

π

∫ ∞

−∞

(x− x′)

[(x− x′)2 + y2]2
y2 V(x′) dx′.

In the limit y → 0, the derivative inside the integral for the x velocity component tends to πδ(x−x′),
where δ is the one-dimensional delta function. When V(x) = ξx, we obtain orthogonal stagnation-
point flow with constant rate of elongation, ξ.

6.2.5 Flow near a belt plunging into a pool or a plate withdrawn from a pool

Consider the flow due a belt plunging into a liquid pool or a plate withdrawn from a liquid pool
with velocity V at an angle α, as shown in Figure 6.2.4. Over the belt or plate, located at θ = −α,
we require the no-slip boundary condition ∂ψ/∂θ = V r. Motivated by this expression, we set the
exponent λ = 1. At the free surface of the pool, we require the no-penetration condition and the
condition of vanishing shear stress.

Using the general solution (6.2.8) and implementing the four boundary conditions f = 0,
f ′ = V at θ = −α and f = 0, f ′′ = 0 at θ = 0, we derive the stream function [271]

ψ = − 2

2α− sin(2α)
V r (θ cos θ sinα− α sin θ cosα). (6.2.20)

Streamline patterns for α = π/4 and π/2 are shown in Figure 6.2.4. As in the case of the scraper
discussed in Section 6.2.2, the radial velocity component depends only on the polar angle, θ, and
is independent of radial distance, r. Because the shear stress diverges like 1/r near the corner, an
infinite force is required to maintain the motion of the belt. In reality, the free surface will distort
near the contact point to prevent this unphysical singular behavior.
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Figure 6.2.4 Flow due to (a) a belt plunging into a liquid pool at angle α = π/4 and (b) a plate
withdrawn from a liquid pool at angle α = π/2. In both cases, the shear stress is zero at the
horizontal free surface.

6.2.6 Jeffery–Hamel flow

Consider Stokes flow between two intersecting planes located at θ = ±α, due to a point source with
strength m located at the apex, as discussed in Section 5.8 for Navier–Stokes flow. Using the present
formulation, we derive the stream function

ψ(θ) =
m

2

sin 2θ − 2θ cos 2α

sin 2α− 2α cos 2α
, (6.2.21)

satisfying ψ(α)−ψ(−α) = m. This expression is consistent with the radial velocity given in (5.8.6).
Since the shear stress is zero at the midplane, θ = 0, the solution also describes the flow inside the
corner bounded by a stationary wall located at θ = ±α and a free surface located at the midplane
θ = 0, where the flow is driven by a point source with strength 1

2
m located at the apex.

The denominator in (6.2.21) vanishes and the stream function diverges when α = 257.45◦ due
to the neglected inertial forces [272]. This failure underscores the possible limitations of Stokes flow
(see also Problem 6.2.3).

Problems

6.2.1 Belt plunging into a pool

With reference to Figure 6.2.4, derive an expression for the radial velocity at the free surface and
compare it with the velocity of the belt.
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6.2.2 Flow due to an imposed shear stress near a static contact line

Consider a flow driven by the application of a uniform shear stress, τ , along a flat interface located
at θ = α, in the presence of a stationary plane wall located at θ = 0. Derive the stream function

ψ =
τ

8μ

r2

cos 2α− 1 + α sin 2α

[
(1− cos 2α− 2α sin 2α) sin 2θ)

+(2α cos 2α− sin 2α)(cos 2θ − 1) + 2θ(1− cos 2α)
]
. (6.2.22)

Discuss the structure of the flow in the limit as α → 0 [271].

6.2.3 Flow due to the counter-rotation of two hinged plates

(a) Consider the flow between two hinged plates located at θ = ±α(t), rotating against each other
with angular velocity ±Ω. Derive the stream function [271]

ψ =
Ω

2
r2

sin 2θ − 2θ cos 2α

sin 2α− 2α cos 2α
. (6.2.23)

Show that the denominator vanishes and the stream function diverges when α = 257.45◦. Discuss
the physical implication of this failure with reference to the neglected inertial forces [272].

(b) Generalize the results to arbitrary angular velocities of rotation.

6.3 Stokes flow inside and around a corner

Continuing our discussion of Stokes flow in a wedge-shaped domain, we study the structure of the
flow near or around a corner that is confined by two stationary intersecting walls, as illustrated in
Figures 6.3.1 and 6.3.2 [103, 271]. The local flow near the corner is driven by the motion of the fluid
far from the walls. Because all boundary conditions for the stream function are homogeneous, the
solution must be found by solving an eigenvalue problem for the exponent λ introduced in (6.2.2).
Stated differently, the exponent λ cannot be assigned a priori but must be found as part of the
solution. We will consider separately the cases of flow with antisymmetric or symmetric streamline
pattern, as shown in Figures 6.3.1 and 6.3.2. Antisymmetric flow occurs when the outer flow exhibits
a corresponding symmetry, or else the midplane of symmetry represents a free surface with vanishing
shear stress.

6.3.1 Antisymmetric flow

Concentrating first on the case of antisymmetric flow, illustrated in Figure 6.3.1, we require that the
velocity is zero at the walls and derive the boundary conditions ψ = 0 and ∂ψ/∂θ = 0 at θ = ±α.
Assuming that λ �= 0, 1, 2, using (6.2.8), and stipulating that the velocity is antisymmetric with
respect to the midplane, ∂ψ/∂θ = 0 at θ = 0, we find that

f(θ) = A cosλθ +B cos[(λ− 2)θ], (6.3.1)

where A and B are two complex constants. When λ is complex, the complex conjugate of the right-
hand side of (6.3.1) is also added to extract the real part. Enforcing the boundary conditions at the
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Figure 6.3.1 Antisymmetric Stokes flow near two intersecting stationary plane walls for corner semi-
angle (a) α = 135◦, (b) 45◦, (c) 30◦, and (d) 10◦.

walls, we obtain two homogeneous equations,[
cosλα cos[(λ− 2)α]
λ sinλα (λ− 2) sin[(λ− 2)α]

]
·
[

A
B

]
=

[
0
0

]
. (6.3.2)

A nontrivial solution for A and B is possible only when the determinant of the coefficient matrix is
zero, providing us with the secular equation

(λ− 2) cosλα sin[(λ− 2)α]− λ sinλα cos[(λ− 2)α] = 0, (6.3.3)

which can be recast into the compact form of a nonlinear algebraic equation for λ,

sin[2α(λ− 1)] = (1− λ) sin 2α. (6.3.4)
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Figure 6.3.2 Symmetric Stokes flow near two intersecting stationary planes for corner semi-angle
(a) α = 135◦ and (b) 10◦.

An obvious solution is λ = 1. However, since for this value the third rather than the first expression
in (6.2.8) should have been chosen, this choice is disqualified. Combining (6.3.2) with (6.3.1) and
(6.2.1), we find that the stream function is given by

ψ = Crλ
(
cosλθ cos[(λ− 2)α]− cosλα cos[(λ− 2)θ]

)
, (6.3.5)

where C is a real constant.

Non-reversing flow

Dean & Montagnon [103] pointed out that real and positive solutions other than the trivial solution
exist in the range 73◦ < α < 180◦ or 0.41π < a < π; the lower limit is a numerical approximation.
In practice, the nontrivial solutions can be computed by solving equation (6.3.4) using Newton’s
method (Problem 6.3.1). We are mainly interested in the smallest solution plotted with the solid
line in the left column of Figure 6.3.3(a), describing the strongest possible velocity field that is
expected to prevail in practice. When α = 90◦, we find that λ = 2 corresponding to simple shear
flow. When α = 180◦, we find that λ = 1.5 corresponding to flow around a flat plate. The streamline
pattern for α = 135◦ is shown in Figure 6.3.1(a).

Eddies

Moffatt pointed out that, approximately when α < 73◦, equation (6.3.4) has complex solutions [271].
To study the structure of the flow, we write λ = λR + iλI and decompose (6.3.4) into its real and
imaginary parts indicated by the subscripts R and I, obtaining

sin[2α(λR − 1)] cosh(2αλI) = (1− λR) sin 2α,
cos[2α(λR − 1)] sinh(2αλI) = −λI sin 2α.

(6.3.6)
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Figure 6.3.3 The left column describes antisymmetric flow and the right column describes symmetric
flow inside a corner confined between two intersecting planes. (a) Dependence of the real (solid
lines) and imaginary (broken lines) part of the exponent λ with the smallest real part on the
corner semi-angle, α. The eigenvalue is real when 0.41π < α < π in antisymmetric flow or when
0.43π < α < π in symmetric flow. (b) Graphs of ξ (solid lines) and η (broken lines) defined in
(6.3.6) in the regime where eddies develop. (c) Graphs of the geometric ratio, ρ (solid lines), and
decay ratio, σ (broken lines), defined in equations (6.3.14) and (6.3.15).
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To simplify the notation, we introduce the auxiliary variables

ξ = 2α(λR − 1), η = 2αλI , κ =
sin 2α

2α
, (6.3.7)

note that λ = 1 + (ξ + iη)/(2α), and recast (6.3.6) into the form

sin ξ cosh η = −kξ, cos ξ sinh η = −kη. (6.3.8)

Since both the sine and cosine of ξ must be negative, ξ must lie in the range (2n−1)π < ξ < (2n− 1
2)π,

where n is an integer. The solution of the two nonlinear equations (6.3.8) can be computed using
Newton’s method with suitable initial guesses for ξ and η. The solution branch with the smallest
real part, λR, is shown in the left column of Figure 6.3.3(a, b). Combining (6.3.2) with (6.3.1) and
(6.2.1), we find that the stream function for α < 73◦ is given by

ψ = C rλR Real{ eiλI ln rQ }, (6.3.9)

where C is a real constant and

Q = cos(λθ) cos[(λ− 2)α]− cos[(λ− 2)θ] cos(λα). (6.3.10)

Thus,

ψ = C rλR [ Real{Q} cos(λI ln r)− Imag{Q} sin(λI ln r)]. (6.3.11)

Streamline patterns for α = 45◦, 30◦, and 10◦ are shown in Figure 6.3.1(b–d).

Moffatt observed that, as r tends to zero, the stream function changes sign an infinite number
of times [271]. Physically, an infinite sequence of self-similar eddies develop inside the corner. To
identify these eddies, we express the stream function in the form

ψ = C rλR |Q| cos[λI ln r +Arg{Q} ], (6.3.12)

where Arg denotes the argument of a complex number. Setting ψ = 0 or λI ln r+arg(Q) = (n+ 1
2
)π,

we find that the shape of the dividing streamlines is described by the equation

rn = exp
( 1

λI

[
(n+

1

2
)π −Arg{Q}

] )
, (6.3.13)

where n = . . . ,−1, 0, 1, . . . . Applying (6.3.13) at a certain value of θ, we find that the ratio of the
radial positions of two successive dividing streamlines is

ρ ≡ rn+1

rn
= eπ/λI . (6.3.14)

Using (6.3.12), we find that the ratio of the magnitude of the corresponding polar component of the
velocity is

σ ≡ uθn+1

rθn
= e(λR−1)π/λI . (6.3.15)
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The geometric ratio, ρ, and amplification ratio, σ, are plotted on a linear-logarithmic scale with a
solid or broken line in the left column of Figure 6.3.3(c).

As the angle α tends to zero, the geometrical ratio ρ tends to unity, which means that the
eddies tend to become evenly spaced between two nearly parallel walls. As α increases from zero, ρ
takes values on the order of unity for small and moderate angles, revealing a slow spatial modulation
of the eddy size. As α tends to the critical angle α � 73◦, ρ increases rapidly. Physically, the eddy
size decays quickly into the corner flow. The amplification ratio σ takes large values over an extended
range of angles, α, and this reveals that the intensity of the eddy flow decays rapidly inside the corner.
The minimum value of σ achieved in the limit α → 0 is approximately 360. When α = 45◦, σ is
approximately 2000. Consequently, it takes one eddy for the magnitude of the velocity to decrease
by three orders of magnitude!

Channel flow

As α tends to zero, the intersecting planes tend to become parallel yielding a two-dimensional channel
with parallel walls. The emerging flow can be identified with the flow far inside a deep cavity driven
by an overpassing fluid. To derive an appropriate similarity solution, we may consider the limit as α
tends to zero. However, it is more expedient to begin afresh working in Cartesian coordinates where
the walls are located at y = ±a.

Setting ψ = Af(y) exp(−k|x|), requiring that ψ satisfies the biharmonic equation, and enforc-
ing the no-penetration condition ψ = 0 at y = ±a, we obtain

ψ = B (a cos ky − y cot ka sin ky) exp(−k|x|), (6.3.16)

where A and B are complex constants and k is the complex wave number,. Requiring the no-
slip condition ∂ψ/∂y = 0 at y = ±a provides us with an algebraic equation, sin 2ka = −2ka, which
admits only imaginary solutions. The solution with the smallest positive real part, 2ka = 4.21+2.26i,
describes a periodic eddy pattern with approximate wavelength L � 4πa/2.26 = 5.56a.

6.3.2 Symmetric flow

Next, we address the case of symmetric flow illustrated in Figure 6.3.2. Requiring that the velocity
vanishes at the walls located at θ = ±α and the shear stress vanishes at the midplane θ = 0, we
derive the boundary conditions ψ = 0 and ∂ψ/∂θ = 0 at θ = ±α, and ψ = 0 and ∂2ψ/∂θ2 = 0 at
θ = 0. Working as in the case of the antisymmetric flow, we set

f = A sinλθ +B sin[(λ− 2)θ], (6.3.17)

where A and B are two complex constants. Enforcing the boundary conditions, we derive an
eigenvalue problem expressed by

sin[2α(λ− 1)] = (λ− 1) sin 2α. (6.3.18)

The obvious solutions λ = 1, 2 are disqualified for the reason that the second and third rather than
the first expression in (6.2.8) should have been chosen.
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Moffatt pointed out that real and positive solutions exist in the range 78◦ < α < 180◦ [271].
The solution branch with the smaller magnitude is plotted with the solid line in the right column
of Figure 6.3.3(a). When α = 90◦, we find that λ = 2 corresponding to simple shear flow. When
α = 180◦, we find that λ = 1.5 corresponding to flow along a semi-infinite flat plate. When
approximately α < 78◦ = 0.43π, equation (6.3.18) has complex solutions that can be computed
working in terms of ξ and η as in the case of antisymmetric flow. The solution branch with the
smallest real part λR is shown in the right column of Figure 6.3.3(a, b). The corresponding geometric
ratio, ρ, and amplification ratio, σ, are plotted on a linear-logarithmic scale in the right column of
Figure 6.3.3(c). Comparing these results with those shown in the left column of Figure 6.3.3 for
antisymmetric flow reveals that the size of the eddies decays less rapidly. However, the intensity of
the eddy motion decays at an appreciably higher rate.

Channel flow

As α tends to zero, the intersecting planes tend to become parallel and the asymptotic solution
describes Stokes flow inside a liquid layer resting on a plane wall. To derive a similarity solution, it
is expedient to introduce Cartesian coordinates where the wall is located at y = 0 and the midplane
or free surface is located at y = a. Working as in the case of antisymmetric flow, we find that the
wavelength of the periodic eddy pattern is L � 2πa/2.76 = 2.28 a [271].

6.3.3 Flow due to a disturbance at a corner

We have considered solutions corresponding to λ with a positive real part, yielding a rapidly decaying
sequence of eddies. If λ1 is a solution of (6.3.4) or (6.3.18) with positive real part, then λ2 = 2− λ1

is also a solution with positive or negative real part corresponding to a flow whose velocity decays
like r−λ1+1 as r → ∞. In this light, the streamline patterns shown in Figures 6.3.1 and 6.3.2 can
be reinterpreted as those due to a disturbance near a corner, where the velocity decays far from the
corner.

Problem

6.3.1 Flow inside the corner between two free surfaces

Consider flow between two planar intersecting free surfaces with vanishing shear stress [271]. The
flow is driven by fluid motion far from the corner An example is the flow near the cusped interface
of a bubble subjected to straining flow.

(a) Consider the case of antisymmetric flow described by (6.3.1). Show that the exponent λ satisfies
the equation

(λ− 1) cosλα cos[(λ− 2)α] = 0, (6.3.19)

which has only real solutions, precluding the occurrence of eddies. Confirm that, when α > π/2, the
smallest positive solution is λ = 2 − π/(2α), corresponding to rotational flow. Confirm that, when
α < π/2, the smallest positive solution is λ = π/(2α), corresponding to irrotational flow.

(b) Repeat (a) for symmetric flow.
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Figure 6.4.1 Illustration of flow past an obstacle in a Hele–Shaw cell confined between two parallel
plates separated by distance h.

Computer Problem

6.3.2 Solution of the eigenvalue problem

(a) Write a program that solves equations (6.3.4) and (6.3.8) and reproduce the plots shown in
Figure 6.3.3.

(b) Repeat (a) for symmetric flow.

6.4 Nearly unidirectional flows

When the curvature of the streamlines is small, the flow can be regarded as locally unidirectional,
which means that the velocity profile can be assumed to depend on the local pressure gradient and
direction of the body force. The union of these assumptions comprises the framework of lubrication
flow. To formally study the structure of a nearly unidirectional flow, we may introduce asymptotic
expansions for flow variables of interest in terms of the curvature of the streamlines. The analysis
confirms that the approximate solution obtained in the framework of lubrication flow is the leading-
order approximation of the exact solution (e.g., [223]).

6.4.1 Flow in the Hele–Shaw cell

The Hele–Shaw cell is a narrow channel with parallel walls separated by distance h. The clearance
of the channel can be blocked by stationary or moving objects, such as circular disks, flattened air
bubbles and liquid drops, as depicted in Figure 6.4.1. The flow can be driven by an imposed pressure
gradient, gravity, or the motion of the objects.

When the channel height, h, is small compared to the global dimensions of the channel and
size of the objects, pressure variations normal to the channel walls are negligibly small. The flow may
then be assumed to be locally unidirectional with a parabolic velocity profile described by (5.1.6).
If the walls are located at z = 0 and h, as shown in Figure 6.4.1, the nonzero velocity components
are

ux(x, y, z) =
1

2μ

(
− ∂p

∂x
+ ρgx

)
z(h− z), uy(x, y, z) =

1

2μ

(
− ∂p

∂y
+ ρgy

)
z(h− z) (6.4.1)
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to leading-order approximation. Integrating these profiles across the clearance of the channel, we
obtain the mean fluid velocity

u(x, y) ≡ 1

h

∫ h

0

u dz =
h2

12μ
∇(−p+ ρg · x), (6.4.2)

where the gradient ∇ operates with respect to x and y.

It is evident from (6.4.2) that the negative of the hydrodynamic pressure, −p̃ ≡ −p+ ρg · x,
plays the role of a potential function for the mean velocity, ū. Consequently, the two-dimensional
vector field ū(x, y, t) is irrotational. Mass conservation requires that the two-dimensional vector
field ū is solenoidal, ∇ · ū = 0. Substituting expression (6.4.2) for the velocity, we find that the
hydrodynamic or physical pressure is a harmonic function of x and y,

∇2p = 0. (6.4.3)

These results suggest that flow in a Hele–Shaw cell with uniform gap past an obstacle is identical
to two-dimensional irrotational flow of an incompressible fluid past a body with corresponding
geometry. Interestingly, highly viscous flow inside the Hele–Shaw cell provides us with a method of
visualizing irrotational flow normally occurring when the effect of viscosity is negligibly small.

Computing the flow in the Hele–Shaw is thus reduced to solving Laplace’s equation (6.4.3).
Over an impermeable boundary, we require the no-penetration condition expressed as a Neumann
boundary condition for the pressure. Over the inlet and outlet, we typically impose a Dirichlet
boundary condition specifying the level of the pressure. Over an interface between two immisci-
ble fluids, we require continuity of the normal velocity and specify that the pressure undergoes a
discontinuity determined by the interfacial curvature and surface tension.

The assumptions that lead us to the Laplace equation (6.4.3) cease to be valid in the vicinity
of a boundary where the flow becomes three-dimensional and the assumption of local unidirectional
flow is no longer appropriate. However, boundary effects in the Hele–Shaw cell are confined inside
thin fluid layers whose thickness is of order of the plate separation, h, and are thus negligible
to a leading-order approximation. Neglecting inertial nonlinear effects due to the curvature of the
streamlines introduces an additional error that is small as long as the fluid velocity is not exceedingly
high.

Flow in a coating die

A coating die is an industrial device used to generate a thin sheet of a liquid for subsequent coating
onto a moving substratum, as illustrated in Figure 6.4.2(a). The die assembly consists of a circular
inlet tube that feeds a liquid into a Hele–Shaw cell. A schematic illustration of the cross-section of
the inlet tube is shown in Figure 6.4.2(b). The die should be designed to deliver a uniform flow rate
at the outlet of the Hele-Shaw cell so that a layer of uniform thickness can be coated onto a moving
support.

To develop a model for the flow inside the die, we neglect the the effect of gravity and assume
that the average velocity of the liquid through the channel is related to the pressure gradient by
equation (6.4.2) and the pressure satisfies Laplace’s equation (6.4.3). The boundary conditions
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Figure 6.4.2 Flow in a coating die consisting of an inlet tube and a Hele-Shaw cell; (a) top view of
the die, and (b) cross-section of the inlet tube.

require that the pressure at the outlet is equal to the atmospheric pressure, p = pa at y = d, and
the fluid cannot penetrate the side walls, ∂p/∂y = 0 at x = 0 and w.

To complete the definition of the problem, we must provide a boundary condition for the
pressure at the inlet. A mass balance for the flow along the inlet tube requires that

dQ

dl
= −hn · ū =

h3

12μ
n · ∇p, (6.4.4)

where Q is the flow rate and l is the arc length along the centerline of the inlet tube, 0 < l < b, and
n is the normal vector in the xy plane pointing into the Hele–Shaw cell. Evaluating the flow rate
along the inlet using Poiseuille’s law, we set

Q = −πa4

8μ

∂p

∂l
. (6.4.5)

The inlet tube is allowed to be tapered, that is, the tube radius a can be a function of arc length along
the centerline, l. Combining (6.4.4) with (6.4.5), we derive the desired inlet boundary condition in
the form of a second-order partial differential equation,

∂2p

∂l2
+

4

a

da

dl

∂p

∂l
+

2h3

3πa4
n · ∇p = 0, (6.4.6)

supplemented by the value of the pressure at the inlet, l = 0, and the condition that the flow rate
vanishes at the end of the inlet tube, ∂p/∂l = 0 at l = b.

Hele–Shaw cell with uneven walls

The analysis of flow in a Hele–Shaw cell with perfectly parallel walls discussed previously in this
section can be extended to situations where the clearance of the channel exhibits slow modulations



398 Introduction to Theoretical and Computational Fluid Dynamics

h

h

V

h(x)

y

0
L

0

α

L

x

x
p(x)

apap

Figure 6.4.3 Lubrication flow between a horizontal and an inclined flat surface (top), and the devel-
oping pressure field (bottom). In this configuration, the pressure is the same on either end of the
lubrication zone.

so that the plate separation h is a function of x and y. Equations (6.4.1) and (6.4.2) are still valid
provided that the origin is set at the lower wall and the upper wall is located at z = h(x, y). Mass
conservation requires that ∇ · (hu) = 0, yielding a Helmholtz equation,

∇ · [h3(∇p− ρg)] = 0. (6.4.7)

Physically, this equation describes the steady distribution of temperature in a plate whose thermal
conductivity is proportional to h3.

6.4.2 Hydrodynamic lubrication

In another application of the lubrication approximation, we consider viscous flow between a hori-
zontal flat plate that moves parallel to itself with velocity V underneath a stationary mildly sloped
surface representing, for example, the assembly of a rocker bearing, as illustrated in Figure 6.4.3. If
the slope of the inclined surface is sufficiently small, the flow at any x station across the gap between
the planar and the inclined surface can be approximated with plane Couette–Poiseuille flow between
two parallel plates separated by a variable distance, h(x).

To leading-order approximation, the hydrodynamic pressure is independent of position across
the channel, y, so that p(x). According to (5.1.7), the flow rate through the channel is given by

Q =
1

2
V h− dp

dx

h3

12μ
. (6.4.8)

Mass conservation requires that Q is a constant, independent of x. To compute the pressure dis-
tribution along the gap, we solve (6.4.8) for the unknown pressure gradient, dp/dx, and obtain the
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ordinary differential equation

dp

dx
= 6μ

V

h2
− 12μ

Q

h3
. (6.4.9)

The boundary conditions specify that p = p0 at x = 0 and p = pL at x = L, where p0 and pL
are specified pressures at the beginning and end of the lubrication zone confined in the interval
0 ≤ x ≤ L. One boundary condition is required because (6.4.9) is a first-order ordinary differential
equation, and another boundary condition is required because the flow rate Q is an unknown that
must be found as part of the solution.

Linear profile

To make the analysis more specific, we consider an inclined upper wall with linear profile, as shown
in Figure 6.4.3, and set h = h0 − αx, where α is the constant slope and h0 the clearance of the
channel at the beginning of the lubrication zone. Equation (6.4.9) becomes

dp

dx
= 6μ

V

(h0 − αx)2
− 12μ

Q

(h0 − αx)3
. (6.4.10)

To compute the flow rate, Q, we require that the integral of the right-hand side of (6.4.10) with
respect to x across the lubrication zone is pL − p0.

For illustration, we assume that the pressure is equal to the atmospheric pressure pa at both
ends of the lubrication zone, p0 = pL = pa. Setting the integral of the right-hand side of (6.4.10)
from x = 0 to L to zero, we obtain

Q = V
h0hL

h0 + hL
, (6.4.11)

where hL = h0 −αL is the clearance of the channel at the end of the lubrication zone. Substituting
this expression for Q into (6.4.10) and integrating with respect to x, and recover the pressure
distribution

p = pa + 6μV
α

h0 + hL

x (L− x)

(h0 − αx)2
. (6.4.12)

It is convenient to introduce the dimensionless geometric parameter

κ ≡ h0

αL
=

h0

h0 − hL
, (6.4.13)

taking values in the range (1,∞) or (−∞, 0). In the first range, the inclined wall slopes downward,
as shown in Figure 6.4.3. In the second range, the inclined wall slopes upward, leaning away from
the direction of translation. Values of κ in the range [0, 1] are prohibited by the requirement that
the upper wall does not slope downward so much as to touch the lower wall before the end of the
lubrication zone. When κ = 1, the two walls meet at x = L, and the channel is closed at the right
end. Equations (6.4.11) and (6.4.12) take the form

Q = V h0
κ− 1

2κ− 1
, p = pa + 6μV

L

h2
0

κ2

2κ− 1

x̂ (1− x̂)

(κ− x̂)2
, (6.4.14)
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Figure 6.4.4 Graph of the function G(κ) expressing the hydrodynamic lift force exerted on the inclined
plane shown in Figure 6.4.3.

where x̂ = x/L is the dimensionless position varying in the interval [0, 1]. The maximum pressure
occurs at the location

xmax =
κ

2κ− 1
L (6.4.15)

and is given by

pmax = pa + 6μV
κ

(κ− 1)(2κ− 1)

L

h2
0

. (6.4.16)

As κ increases from unity to infinity, the location of the maximum pressure is shifted from the left
end point, x = L, to the midpoint, x = 1

2
L.

The y component of the hydrodynamic force exerted on the sloped surface can be approximated
with the negative of the normal force exerted on the planar surface. The latter is found by integrating
the pressure over the planar surface, finding

Fy �
∫ L

0

p dx = paL+ 6μV
L2

h2
0

κ2
(
ln

h0

hL
− 2

h0 − hL

h0 + hL

)
. (6.4.17)

It is useful to recast this expression into the form

Fy = paL+ 6μV
L2

h2
0

G(κ), (6.4.18)

where

G(κ) = κ2
(
ln

κ

κ− 1
− 2

2κ− 1

)
. (6.4.19)
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Figure 6.4.5 Lubrication flow between two solid but not necessarily rigid surfaces in close contact
moving with different velocities.

The second term on the right-hand side of (6.4.19) is the lubrication lifting or load force. A graph
of the function G(κ) is shown in Figure 6.4.4.

When κ > 1, the plane wall moves toward the minimum gap and the lubrication force is
positive. Under these conditions, given V , the lift force will be able to balance the weight of
an overlying object whose lower surface is represented by the inclined plane, provided that κ is
sufficiently close to unity. Alternatively, given κ, the lift force will be able to balance the weight of
an overlying object provided that the velocity V is sufficiently large. When κ < 0, the wall moves
toward the maximum gap and the lubrication force pulls the object toward the moving plane, closing
the gap and choking the flow.

6.4.3 Reynolds lubrication equation

Next, we consider the motion of a fluid between two solid, but possibly deformable, surfaces in close
contact, consisting of a rigid or elastic material. In the Cartesian coordinates defined in Figure 6.4.5,
the distance between the surfaces, h, is a function of the lateral coordinates y, z, and time, t. The
velocities of the upper and lower surfaces, V(1) and V(2), are allowed to vary with position over the
surfaces and time, reflecting rigid-body motion and boundary deformation. Applying the kinematic
boundary condition (1.10.5) at the upper and lower surfaces, and subtracting corresponding sides of
the resulting expressions, we derive an evolution equation for the film thickness, h(y, z, t),

∂h

∂t
= (V(2) −V(1)) · ∇h− V (2)

x + V (1)
x , (6.4.20)

where ∇ = (∂/∂y, ∂/∂z) is the two-dimensional gradient in the yz plane.

Mass conservation requires that

∂h

∂t
= −∇ · (hu), (6.4.21)

where

uy =
1

h

∫
uy dx, uz =

1

h

∫
uz dx (6.4.22)
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are the mean velocities of the fluid along the gap, and the integration with respect to x is per-
formed over the film thickness. Now adopting the approximations of lubrication flow, we use the
unidirectional channel flow solution (5.1.8) to write

uy(y, z, t) =
1

2
(V (1)

y + V (2)
y )− h2

12μ

(∂p
∂y

− ρgy),

uz(y, z, t) =
1

2
(V (1)

z + V (2)
z )− h2

12μ

(∂p
∂z

− ρgz). (6.4.23)

Finally, we combine (6.4.20), (6.4.21), and (6.4.23) to obtain the Reynolds lubrication equation
governing the distribution of the pressure inside the gap,

1

12μ
∇ ·

[
h3

(
∇p− ρg

) ]
=

1

2
∇ · [h (V(1) +V(2))] + (V(2) −V(1)) · ∇h− V (2)

x + V (1)
x . (6.4.24)

The left-hand side of (6.4.24) expresses the effects of pressure- and gravity-driven flow. The right-
hand side represents the effects of Couette and squeezing flow.

Squeezing flow between two disks

As an application of the Reynolds lubrication equation, we consider

V

x

h σ

a

Illustration of squeezing flow
between two disks.

the axisymmetric flow between two parallel, horizontal, coaxial pla-
nar disks moving against each other under the action of an imposed
force. The disks may represent, for example, the flattened sur-
faces of two colliding bodies. Without loss of generality, we assume
that the upper disk moves with velocity V (t) against a stationary
lower disk. Introducing cylindrical polar coordinates with the x
axis pointing toward the moving disk, we write V(1) = −V (t)ex
and V(2) = 0, where ex is the unit vector along the x axis, and the
two surfaces are located at x = 0 and h(t).

All but the last term on the right-hand side of (6.4.24) vanish,
yielding

1

σ

∂

∂σ

(
σ
∂p

∂σ

)
= −12μV

h3
, (6.4.25)

where σ is the distance from the axis of revolution. Integrating once with respect to σ subject to
the condition that the pressure gradient is finite at the centerline, we obtain

∂p

∂σ
= −6μV

h3
σ, (6.4.26)

which shows that the radial pressure gradient increases linearly with distance from the centerline.
Integrating (6.4.26) once with respect to σ, we derive an expression for the hydrodynamic pressure
due to the squeezing flow,

p = −3μV

h3
σ2 + P(x), (6.4.27)
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where the function P(x) incorporates the effect of the ambient pressure and body force. The radial
velocity profile is found by integrating the lubrication equation of channel flow

∂p

∂σ
= μ

∂2uσ

∂x2
, (6.4.28)

with boundary condition uσ = 0 at x = 0 and h, yielding

uσ = 3V
σ

h3
x(h− x). (6.4.29)

The axial velocity, ux, arises by integrating the continuity equation using (6.4.29) and accounting
for the boundary conditions at the lower surface, yielding

ux = −6V

h3

∫ x

0

� (h− �) d� = − V

h3
x2

(
3h− 2x

)
, (6.4.30)

independent of σ (Problem 6.4.3). We observe that ux(h) = −V , as required.

The vertical component of the force exerted on the upper disk is found by integrating the
hydrodynamic normal stress over the surface of the upper disk from the origin up to the disk radius,
σ = a,

Fx = 2π

∫ a

0

p σ dσ = 2π

∫ a

0

(
− 3μV

h3
σ2 + P(h)

)
σ dσ, (6.4.31)

yielding

Fx =
3

2

πμV a4

h3
+ πa2 P(h). (6.4.32)

This force is equal in magnitude and opposite in sign to the weight of a body whose lower surface
is represented by the upper disk, pushing against a flat surface represented by the lower disk. The
magnitude of the force shown in (6.4.32) is equal to the force that one must apply in order to remove
a piece of adhesive tape from a solid surface, pulling it normal to the surface with velocity V . A thin
layer of an adhesive viscous liquid is assumed to separate the surface from the tape. A generalization
of (6.4.32) to non-Newtonian fluids is available [231].

Further applications

Further applications of hydrodynamic lubrication are discussed in a comprehensive monograph by
Hamrock [164]. Lubrication theory finds important applications in describing the flow inside the
narrow gaps between two colliding particles or liquid drops where a squeezing flow is established.

6.4.4 Film flow down an inclined plane

The lubrication approximation can be used to describe the flow of a nearly uniform liquid film
down an inclined plane, as illustrated in Figure 6.4.6. The film thickness, h(x, t), depends on the
downstream position, x, and time, t. We will assume that the spatial variation of the film thickness



404 Introduction to Theoretical and Computational Fluid Dynamics

βg

h

y

p
a

x

Figure 6.4.6 Evolution of a thin liquid film flowing under the action of gravity down an inclined plane.

is small, ∂h/∂x < 1, so that the flow is nearly unidirectional at every x station. Adapting the first
equation in (5.1.17) for the velocity profile and equation (5.1.18) for the flow rate, we obtain

ux(x, y, t) =
1

2μ

(
ρg sinβ − ∂p

∂x

)
y (2h− y), Q(x, t) =

h3

3μ

(
ρg sinβ − ∂p

∂x

)
, (6.4.33)

where β is the plane inclination angle. As part of the lubrication approximation, we assume that the
hydrodynamic pressure developing inside the film due to the flow is independent of the transverse
position, y. Accounting for the pressure drop across the free surface due to surface tension and
adding the hydrostatic variation, we derive the pressure distribution

p(x, y, t) = ρg cosβ(h− y) + γκ+ pa, (6.4.34)

where κ is the curvature of the free surface in the xy plane and pa is the atmospheric pressure pre-
vailing above the film. Substituting this equation in the expression for the flow rate and introducing
the approximation κ � −hxx, we obtain

Q(x, t) =
h3

3μ
(ρg sinβ − ρg cosβhx + γ hxxx), (6.4.35)

where the subscript x denotes a partial derivative with respect to x. Mass conservation requires that
the film thickness and flow rate satisfy the equation

ht = −Qx, (6.4.36)

where the subscript t denotes a partial derivative with respect to t. It will be noted that equation
(6.4.21) is a generalization of equation (6.4.36). Substituting (6.4.35) into (6.4.36), we derive a
fourth-order nonlinear partial differential equation describing the evolution of the film thickness,

ht +
1

3μ

[
h3 (ρg sinβ − ρg cosβ hx + γ hxxx)

]
x
= 0. (6.4.37)

To complete the definition of the problem, an initial film profile and four periodicity or boundary
conditions must be provided.
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If the film surface travels without change in shape with phase velocity c, the film thickness is
a function of the translating coordinate ξ ≡ x−ct alone. Substituting h(x, t) = η(ξ) in the evolution
equation (6.4.37) and integrating once with respect to ξ, we obtain

c =
1

3μη

[
η3 (ρg sinβ − ρg cosβ ηξ + γ ηξξξ)

]
+

d

η
, (6.4.38)

where d is a constant and η is a shape function. This equation can be used to describe a propagating
gravity current down an inclined plane (e.g., [263]).

Dimensionless form

It is useful to introduce the dimensionless variables ĥ = h/h̄, x̂ = x/h̄, and t̂ = gh̄ sinβt/(2ν), where
h̄ is a reference length identified with a mean film thickness, and ν = μ/ρ is the kinematic viscosity
of the fluid. Equation (6.4.37) becomes

ĥt̂ +
2

3
[ ĥ3(1− ĥx̂ cotβ + Γ ĥx̂x̂x̂) ]x̂ = 0, (6.4.39)

where Γ = γ/(ρgh̄2 sinβ) is an inverse Bond number determined by the physical properties of the
fluid, the mean film thickness, and the plane inclination angle.

6.4.5 Film leveling on a horizontal plane

In the particular case where the film rests on a horizontal plane, β = 0, the evolution equation
for the film thickness undergoes significant simplifications. As a physical application, we consider
the leveling of an uneven liquid layer coated on a flat horizontal surface and evolving under the
simultaneous action of gravity and surface tension. Assuming that the flow inside the film is locally
unidirectional and the velocity profile is parabolic at every x position along the wall, we find that
the evolution of the film thickness is governed by the following simplified version of (6.4.37),

ht +
g

3ν

[
h3 (−hx +

γ

ρg
hxxx)

]
x
= 0. (6.4.40)

In terms of the dimensionless variables ĥ ≡ h/h̄, x̂ ≡ x/h̄, and t̂ = gh̄t/(2ν), we obtain the
dimensionless equation

ĥt̂ +
2

3
[ ĥ3(−ĥx̂ + Γĥx̂x̂x̂) ]x̂ = 0, (6.4.41)

where Γ = g/(ρgh̄2) is an inverse Bond number and h̄ is the mean film thickness.

Numerical methods

To compute the evolution of a periodic film from a specified initial state, we divide one period of
the film with length L into N evenly spaced intervals separated by the grid points xi = (i− 1)L/N ,
where i = 1, . . . , N + 1. Our objective is to compute the film thickness at the grid points at a
sequence of time instants separated by a time interval, Δt.
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Figure 6.4.7 (a) Illustration of a flat plate withdrawn with constant velocity, V , from a liquid pool.
(b) Distribution of the curvature along the film surface far from the pool.

The value of h at the ith grid point at the time instant t = nΔt is denoted as hn
i , where

n = 0, 1, . . . , and h0
i corresponds to the prescribed initial shape. Applying equation (6.4.40) at the

ith grid point and approximating the temporal derivative using a forward difference and the spatial
derivatives using central differences, we obtain

hn+1
i = hn

i − g

3ν

Δt

Δx

(
Fn

i+1 −Fn
i

)
(6.4.42)

for i = 1, . . . , N , where F ≡ h3 (−hx + γ
ρg hxxx). Values of the function F at the grid points can be

computed using the finite-difference approximations discussed in Section B.5, Appendix B, subject
to the periodicity condition on both sides. The difference equation (6.4.42) provides us with an
explicit method of updating the film thickness at the grid points. In practice, the ratio Δt/Δx must
be kept sufficiently small to prevent the onset of numerical instability, as discussed in Chapter 12.
An implicit method involving the solution of a system of nonlinear algebraic equations at each time
step can be implemented to circumvent this restriction.

6.4.6 Coating a plate

Consider a flat plate withdrawn with constant velocity V at an angle β from a liquid pool, as shown
in Figure 6.4.7(a). We are interested in computing the thickness of the liquid film coated on the
plate far from the pool, denoted by h∞. The flow can be divided naturally into two regimes: (a)
Regime A prevails inside the film far from the pool and (b) Regime B prevails near the neck of the
interface, as shown in Figure 6.4.7(a). The effect of gravity is insignificant in Regime A due to the
assumed small film thickness. Hydrostatics dominates in Regime B due to the slow flow, and the
shape of the interface is determined by a balance between the gravitational and the capillary force.
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Our plan is to separately consider the two regimes and then sensibly match the corresponding free
surface profiles.

Film flow

Concentrating on Regime A, we introduce inclined Cartesian coordinates, (ξ, η), as shown in Figure
6.4.7(a). Adapting the first equation in (5.1.17) for the velocity profile and equation (5.1.18) for the
flow rate of film flow, we obtain

uη(η) = − 1

2μ

∂p

∂η
ξ (2h− ξ) + V, Q = −h3

3μ

∂p

∂η
+ V h, (6.4.43)

where h(η) is the film thickness and Q = V h∞ is the constant flow rate. The pressure inside the
film is determined by the normal interfacial force balance. Neglecting the effect of gravity and
approximating the curvature with the linear form κ � −hηη, we obtain

p(η) � −γhηη + pa, (6.4.44)

where pa is the ambient pressure and the subscript η denotes a derivative with respect to η. Sub-
stituting this pressure distribution into the expression for the flow rate given in (6.4.43), setting
Q = V h∞, and rearranging, we obtain a third-order nonlinear differential equation,

hηηη = −Ca

3

h− h∞

h3
. (6.4.45)

where Ca ≡ μV/γ is a capillary number determining the relative magnitude of viscous and capillary
forces over the interface. The far-field condition requires that h → h∞ as y → ∞. Linearizing the
right-hand side of (6.4.45) in the limit as η → ∞ and h → h∞, we obtain

(h− h∞)ηηη � −Ca

3

h− h∞

h3
∞

. (6.4.46)

The only acceptable solution of this third-order linear ordinary differential equation that tends to
h∞ as η → ∞ is

h− h∞ � c exp
[
−
(Ca

3

)1/3 η

h∞

]
, (6.4.47)

where c is a constant. Differentiating this expression and eliminating the undesirable constant c, we
obtain

hη � −
(Ca

3

)1/3h− h∞

h∞
, hηη �

(Ca
3

)2/3h− h∞

h∞
. (6.4.48)

Free-surface deformation

Next, we consider Regime B and introduce the solution for the semi-infinite hydrostatic meniscus
attached to an inclined plate derived in Section 4.3.1 with zero apparent contact angle, α = 0, and



408 Introduction to Theoretical and Computational Fluid Dynamics

arbitrary plate inclination angle, β. Our analysis has shown that the curvature of the interface at
the apparent contact line is

κcl = −hcl

�2
, (6.4.49)

where hcl is the capillary height at the apparent contact line, � ≡ (γ/ρg)1/2 is the capillary length,
and ρ is the density of the coated liquid. In the case of a vertical plate, β = π/2 and hcl/� =

√
2.

Matching

To prevent a discontinuity in the pressure, we require that the curvature of the interface at the
beginning of Regime A is the same as that at the end of Regime B, yielding

hηη � hcl

�2
(6.4.50)

at the matching zone. The validity of this condition can be justified by formal matched asymptotic
expansions [430].

Landau–Levich formula

It is convenient to introduce the dimensionless variables

ĥ =
h

h∞
, η̂ =

η

h∞
Ca1/3. (6.4.51)

Equation (6.4.45) governing the film shape in Regime A becomes

ĥη̂η̂η̂ = − 3

ĥ3
(ĥ− 1). (6.4.52)

The primary and derived far-field conditions (6.4.48) take the form

ĥ → 1, ĥη̂ → − 1

31/3
(ĥ− 1), ĥη̂η̂ → 1

32/3
(ĥ− 1). (6.4.53)

The matching condition (6.4.50) requires that

ĥη̂η̂ � hcl
h∞

�2
1

Ca2/3
(6.4.54)

at the beginning of the film flow zone.

Equation (6.4.52) can be integrated backward with respect to η̂ using a standard numerical

method, starting from an arbitrary and inconsequential initial position, η̂∞, where ĥ � 1. The
necessary initial conditions for the numerical integration are provided by (6.4.53). A numerical

solution obtained for ĥ∞ = 1.01 is shown in Figure 6.4.7(b), where dimensionless variables indicated
by a hat are implied in the labels of the horizontal and vertical axes.
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The numerical computations reveal that the second derivative tends to ĥη̂η̂ � 1.337578 as
η̂− η̂∞ → −∞. Substituting this result into (6.4.54) and rearranging, we obtain the Landau–Levich
formula [222]

h∞

�
� 1.337578

�

hcl
Ca2/3. (6.4.55)

The predictions of this equation are in good agreement with laboratory observations at small capillary
numbers.

Flow in the pool

Once the film thickness has been determined, the flow in the pool far from the meniscus can be
reconstructed by superposing (a) the flow due to a plate withdrawn from the pool studied in Section
6.2.4, and (b) the Jeffery–Hamel flow due to a point sink with strength m = 2V h∞ studied in Section
6.2.5. The point sink emulates the liquid leaving the pool to be coated on the upward moving plate.
The factor of two in the strength of the point source is present because the horizontal free surface
represents that midplane of the dihedral corner of the Jeffery–Hamel flow.

In plane polar coordinates, (r, θ), defined with respect to the xy axes such that x = r cos θ
and y = r sin θ, as shown in Figure 6.4.7(a), the stream function is

ψ =
2

2(π − β)− sin(2β)
V r (θ cos θ sinβ + α sin θ cosβ) + V h∞

sin 2θ − 2θ cos 2β

sin 2β + 2α cos 2β
. (6.4.56)

Typical streamline patterns are shown in Figure 6.4.8 for two plate withdrawal angles.

Problems

6.4.1 Lubrication flow in a channel

With reference to Figure 6.4.3, compute the maximum lift force subject to the constraint that the
mean clearance of the channel, 1

2 (h0 + hL), is held constant.

6.4.2 Lubrication flow between a flat and a curved surface

Consider the arrangement in Figure 6.4.3, but replace the inclined plane with a section of a circular
arc of radius a whose center lies in the plane x = L. Repeat the lubrication analysis discussed in
the text and recompute the lift force in terms of hL, L, and a.

6.4.3 Squeezing flow between two disks

Compute the axial velocity profile across the gap, ux(x, σ).

Computer Problem

6.4.4 Film leveling

Write a program that computes the evolution of a periodic film using the finite-difference method
discussed in the text for L = 2πh̄ with initial condition h = h̄[1 + ε sin(2πx/L)], where ε is a



410 Introduction to Theoretical and Computational Fluid Dynamics

(a) (b)

0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

x

y

−0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

x

y
Figure 6.4.8 Streamline pattern in a liquid pool far from a plate withdrawn at inclination angle (a)

β = π/2 or (b) π/4.

dimensionless amplitude. Run the program for ε = 0.50 and Γ = 0, 0.5, and 1.0. Plot transient film
profiles at a sequence of times and discuss the behavior of the solution in each case.

6.5 Flow due to a point force

The velocity field due to a point force applied at a certain point in an a particular domain of a flow
plays an important role in the analysis and computation of Stokes flow in a variety of applications.
Examples include the flow due to the motion of small particles in a suspension and the propulsion
of a microscopic organism. Physically, the flow due to a point force can be identified with the flow
generated by the slow motion of a small particle in an otherwise quiescent fluid, as discussed in
Section 5.9 in the more general context of Navier–Stokes flow. Later in this chapter, we will see that
surface distributions of point forces provide us with boundary-integral representations that can be
used to derive boundary-integral equations.

The velocity and hydrodynamic pressure fields due to a point force are found by solving the
continuity equation, ∇ · u = 0, and the singularly forced Stokes equation,

−∇p+ μ∇2u+ b δ3(x− x0) = 0, (6.5.1)

where x0 is the location of the point force, the constant b represents the direction and magnitude
of the point force, and δ3 is the three-dimensional delta function. Equation (6.5.1) is the linearized
version of (5.9.1) in the absence of fluid inertia. The solution of (6.5.1) must be found subject to a
boundary condition requiring that the velocity is zero over a stationary solid boundary of the flow
denoted by SB, that is, u = 0 when x is on SB.
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6.5.1 Green’s functions of Stokes flow

To expedite the solution of (6.5.1), we introduce the Green’s function tensor of three-dimensional
Stokes flow, Gij , with dimensions of inverse length, defined by the equation

ui(x) =
1

8πμ
Gij(x,x0) bj , (6.5.2)

where summation is implied over the repeated index, j, and the factor 1/(8πμ) has been introduced
to facilitate further manipulations. To satisfy the condition of zero velocity on a solid boundary,
SB , we require that Gij(x,x0) = 0 when x lies on SB . Other boundary conditions are imposed on
free surfaces or interfaces between two immiscible fluids.

The vorticity, pressure, and stress fields due to the point force can be expressed in terms of a
vorticity tensor, Ω, pressure vector, P , and stress tensor, T , as

ωi(x) =
1

8πμ
Ωij(x,x0) bj , p(x) =

1

8π
Pj(x,x0) bj , σik(x) =

1

8π
Tijk(x,x0) bj , (6.5.3)

where summation is implied over the repeated index, j. The stress tensor is given by

Tijk(x,x0) = −δik Pj(x,x0) +
∂Gij(x,x0)

∂xk
+

∂Gkj(x,x0)

∂xi
. (6.5.4)

We note that Tijk = Tkji, as required by the symmetry of the stress tensor, σ. If the domain of flow
is infinite, Ω, P , and T are required to decay far from the point force.

6.5.2 Differential properties of Green’s functions

Taking the divergence of (6.5.2) and using the continuity equation we obtain the identity

∂Gij(x,x0)

∂xi
= 0, (6.5.5)

where summation is implied over the repeated index, i. Substituting expressions (6.5.3) into (6.5.1)
and discarding the arbitrary constant b, we obtain

−∂Pj(x,x0)

∂xk
+∇2Gkj(x,x0) + 8π δkj δ3(x− x0) = 0 (6.5.6)

and

∂Tijk(x,x0)

∂xi
=

∂Tkji(x,x0)

∂xi
= −8π δkj δ3(x− x0), (6.5.7)

which are equivalent statements of the Stokes equation written for the Green’s function. Working
in index notation, we can show that

∂

∂xk

[
εilm xl Tmjk(x,x0)

]
= −8πεiljxl δ(x− x0), (6.5.8)

where εilj is the alternating tensor.
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Figure 6.5.1 Illustration of a point force and a closed surface, D, in the available domain of flow.
The point force may be located inside (as shown), outside, or precisely on D.

6.5.3 Integral properties of Green’s functions

Integrating (6.5.5) over a volume of fluid that is enclosed by a surface, D, and using the divergence
theorem, we derive the identity ∫∫

D

Gij(x,x0)ni(x) dS(x) = 0, (6.5.9)

where n is the unit vector normal to D. This identity holds true independent of whether the singular
point x0 is located inside, precisely on, or outside D. Working in a similar fashion, we derive the
identities ∫∫

D

Tijk(x,x0)ni(x) dS(x) =

∫∫
D

Tkji(x,x0)ni(x) dS(x) = β δjk (6.5.10)

and ∫∫
D

εilmTmjk(x,x0)nk(x) dS(x) = β εilj x0l
, (6.5.11)

where n is unit normal vector pointing into the control volume, as shown in Figure 6.5.1, and x0l
on

the right-hand side of (6.5.11) denotes the lth component of x0. The coefficient β on the right-hand
sides is equal to 8π, 4π, or 0, depending on whether the point x0 is located inside, precisely on, or
outside a smooth surface, D. When the point x0 is on D, the surface integrals are improper but
convergent principal-value integrals.

6.5.4 Symmetry of Green’s functions

In Section 6.8.3, we will show that the Green’s functions satisfy the symmetry property

Gij(x,x0) = Gij(x,x0), (6.5.12)

which provides us with a relation between the velocity at the point x due to a point force placed
at the point x0, and the velocity at the point x0 due to a point force placed at x. Among other
purposes, identity (6.5.12) serves as a useful check of accuracy in the computation of a Green’s
function.
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6.5.5 Point force in free space

To compute the flow due to a point force in an infinite domain of flow with no interior boundaries
(free space), we express the delta function on the right-hand side of (6.5.1) in terms of the Green’s
function of Laplace’s equation,

δ3(x− x0) = − 1

4π
∇2

(1
r

)
, (6.5.13)

where r = |x − x0|. Recalling that the hydrodynamic pressure satisfies Laplace’s equation and
balancing the dimensions of the pressure gradient with those of the delta function in (6.5.1), we set

p = − 1

4π
∇
(1
r

)
· b, (6.5.14)

and find that (6.5.1) becomes

μ∇2u =
1

4π
b ·

(
I∇2 −∇∇

)(1
r

)
, (6.5.15)

where I is the identity matrix. This form motivates expressing the velocity in terms of a generating
scalar function, H, as

u =
1

μ
( I∇2H−∇∇H ) · b. (6.5.16)

The continuity equation is satisfied for any twice differentiable function H. Substituting (6.5.16)
into (6.5.15) and discarding the arbitrary constant b, we obtain

( I∇2 −∇∇)
(
∇2H− 1

4πr

)
= 0, (6.5.17)

which is satisfied by any solution of the Poisson equation

∇2H− 1

4πr
= 0. (6.5.18)

Taking the Laplacian of this equation, we find that H is the Green’s function of the biharmonic
equation,

∇4H+ δ3(x− x0) = 0, (6.5.19)

which is given by H = r/(8π).

Stokeslet

Substituting H = r/(8π) into (6.5.16) and carrying out the differentiations, we derive the flow due
to a point force in the standard form (6.5.2). The associated free-space Green’s function, Gij , also
called the Stokeslet or the Oseen–Burgers tensor and denoted by Sij , is given by

Sij(x̂) =
δij
r

+
x̂ix̂j

r3
, (6.5.20)
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Figure 6.5.2 Streamline pattern due to (a) a thee-dimensional and (b) a two-dimensional point force
pointing along the x axis.

where x̂ = x− x0 and r = |x̂|. The corresponding vorticity, pressure, and stress fields are given by
(6.5.6) with

Ωij(x̂) = 2 εijl
x̂l

r3
, Pj(x̂) = 2

x̂j

r3
, Tijk(x̂) = −6

x̂ix̂j x̂k

r5
. (6.5.21)

The expression for Tijk is found by substituting the expressions for Sij and Pj into (6.5.4).

Stream function

The Stokes stream function due to a point force located at the origin and pointing along the x axis
is given by

ψ =
bx
8πμ

r sin2 θ, (6.5.22)

where bx is the strength of the point force, r is the distance from the origin, and θ is the meridional
angle. The streamline pattern is shown in Figure 6.5.2(a). We observe that the point force causes
a forward motion of the fluid throughout the domain of flow.

Force on a spherical surface enclosing a point force

It is instructive to compute the hydrodynamic traction and force exerted on a fluid sphere of radius
a centered at a point force. Using (6.5.3) and (6.5.21) and setting nk = x̂k/a, we obtain

fi(x) = σik(x)nk(x) =
1

8π
Tijk(x,x0)nk(x) bj = − 3

4π

x̂ix̂j

a5
bj . (6.5.23)
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The hydrodynamic force exerted on the spherical surface is

Fi =

∫∫
Sphere

fi(x) dS(x) = − 3

4πa4

∫∫
Sphere

x̂ix̂j dS(x) bj . (6.5.24)

Using the divergence theorem, we compute∫∫
Sphere

x̂ix̂j dS(x) = a

∫∫
Sphere

x̂inj dS(x) = a

∫∫∫
Sphere

∂x̂i

∂x̂j
dS(x) =

4π

3
a4 δij . (6.5.25)

Substituting this expression into (6.5.24), we find that

F = −b, (6.5.26)

independent of the radius of the sphere, a. Physically, in the absence of inertia, the net force exerted
on a volume of fluid enclosed by two concentric spheres must vanish.

Torque on a spherical surface enclosing a point force

The torque with respect to the location of the point force, x0, on any surface enclosing the point
force is zero. The torque with respect to the location of any other point is nonzero (Problem 6.5.2).

Fourier transforms

It is instructive to rederive the Stokeslet using the method of Fourier transforms. The three-
dimensional complex Fourier transform of a rapidly decaying scalar function f(x) defined in the
whole three-dimensional space is

f̂(k) =
1

(2π)3/2

∫∫∫
f(x) exp(ik · x) dV (x), (6.5.27)

where i is the imaginary unit and k is a real wave number vector. The inverse transform is

f(x) =
1

(2π)3/2

∫∫∫
f̂(k) exp(−ik · x) dV (k). (6.5.28)

The Fourier transforms of the partial derivatives arê( ∂f

∂xi

)
(k) = −i kif̂(k). (6.5.29)

Using this expression, we obtain the Fourier transform of the gradient,
(
∇̂f

)
(k) = −ikf̂(k).

Taking the Fourier transform of the continuity equation (6.5.5) for the Stokeslet, we obtain

ki Ŝij(k) = 0. (6.5.30)

Taking the Fourier transform of (6.5.6) for a Stokeslet placed at the origin, x0 = 0, and using the
properties of the delta function, we find that

i klP̂j(k)− k · k Ŝlj(k) +
4√
2π

δlj = 0. (6.5.31)
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Multiplying this equation by kl, summing over l, and using (6.5.30) to eliminate the Stokeslet, we
obtain

ik · k P̂j(k) +
4√
2π

kj = 0. (6.5.32)

Rearranging, we obtain the Fourier transform of the pressure,

P̂j(k) = i
4√
2π

kj
k · k . (6.5.33)

Substituting this expression into (6.5.31), we derive the Fourier transform of the Stokeslet,

Ŝij(k) =
4√
2π

1

k · k
(
δij −

kikj
k · k

)
. (6.5.34)

Now taking the inverse Fourier transform of the pressure, we find that

Pj(x) =
i

π2

∫∫∫
kj
k · k exp(−ik · x) dV (k) = − 1

π2

∂

∂xj

(∫∫∫ 1

k · k exp(−ik · x) dV (k)
)
. (6.5.35)

Expressing the wave number vector, k, in spherical polar coordinates, (r, θ, ϕ), where the meridional
angle θ is measured from the orientation of k, we compute the integral

I ≡
∫∫∫

1

k · k exp(−ik · x) dV (k) = 2π

∫ ∞

0

(∫ π

0

exp(−i kr cos θ) sin θ dθ
)
dk, (6.5.36)

finding

I = 4π

∫ ∞

0

sin(kr)

kr
dk =

2π2

r
, (6.5.37)

where r = |x|. Substituting this expression into (6.5.35) reproduces the expression for the pressure
Green’s function. The Stokeslet is derived working in a similar fashion (Problem 6.5.1(a)).

6.5.6 Point force above an infinite plane wall

In 1907, Lorentz derived an expression for the flow due to a point force in a semi-infinite fluid above
an infinite plane wall [245]. If the wall is located at x = w, as shown in Figure 6.5.3, the Green’s
function satisfies the boundary condition G(x = w, y, z;x0) = 0, where x0 is the location of the
point force.

Blake [37] demonstrated that the Green’s function can be constructed from a Stokeslet, S,
and a few image singularities, including a Stokeslet, a potential dipole, and a point-force dipole,

G(x,x0) = S(x− x0)− S(x− xim
0 )− 2h2

0 Φ(x− xim
0 ) + 2h0Ψ(x− xim

0 ), (6.5.38)

where h0 = x0 − w is the distance of the point force from the wall, and

xim
0 =

[
2w − x0, y0, z0

]
(6.5.39)
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Figure 6.5.3 Illustration of a point force located at a point, x0, above an infinite wall positioned at
x = w. The point xim

0 is the image of the point force with respect to the wall.

is the image of the singular point, x0, with respect to the wall. The tensors Φ and Ψ contain,
respectively, potential dipoles and Stokeslet dipoles,

Φij(x) = ± ∂

∂xj

(
− xi

r3

)
= ±

(
− δij

r3
+ 3

xixj

r5
)
= ±Dij (6.5.40)

and

Ψij(x) = ±
(
− ∂Si1

∂xj

)
= x1Φij(x)±

−δj1 xi + δi1 xj

r3
, (6.5.41)

where r = |x| and Dij is the potential dipole discussed in Section 6.6.1. The minus sign of ± applies
for j = 1, corresponding to the x direction, and the plus sign applies for j = 2, 3, corresponding to
the y and z directions [313].

Pressure field

By analogy with (6.5.38), we express the pressure vector in the form

P(x,x0) = PS(x− x0)−PS(x− xim
0 ) + 2h0 P

Ψ(x− xim
0 ), (6.5.42)

where PS is the pressure vector associated with the Stokeslet given in (6.5.24), and

PΨ
i (x) = ±2Di1. (6.5.43)

The minus sign applies for i = 1, corresponding to the x direction, and the plus sign applies for
i = 2 and 3, corresponding to the y and z directions. Because they are irrotational singularities, the
potential dipoles do not make a contribution to the pressure.
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6.5.7 Two-dimensional point force

The flow due to a two-dimensional point force is found by solving the continuity equation, ∇·u = 0,
and the singularly forced Stokes equation

−∇p+ μ∇2u+ b δ2(x− x0) = 0, (6.5.44)

where b is the strength of the point force, δ2 is the two-dimensional delta function and ∇2 is the
two-dimensional Laplacian operator in the xy plane. Working as in the case of three-dimensional
flow, we express the velocity, vorticity, pressure, and stress fields in the standard forms

ui(x) =
1

4πμ
Gij(x,x0) bj , ωi(x) =

1

4πμ
Ωij(x,x0) bj , p(x) =

1

4π
Pj(x,x0) bj ,

σik(x) =
1

4π
Tijk(x,x0) bj , (6.5.45)

involving the velocity, vorticity, pressure, and stress Green’s functions, G, Ω, P , and T , where
summation is implied over the repeated index, j.

Two-dimensional point force in free space

To compute the flow due to a two-dimensional point force in free space, we express the two-
dimensional delta function on the right-hand side of (6.5.1) in terms of the Green’s function of
Laplace’s equation,

δ2(x− x0) =
1

2π
∇2 ln

r

a
, (6.5.46)

where a is a constant length. Noting that the pressure is a harmonic function and balancing the
dimensions of the pressure gradient and the delta function, we set

p =
1

2π
∇(ln

r

a
) · b. (6.5.47)

Next, we introduce the generating function H defined in (6.5.16) and derive the Poisson equation

∇2H+
1

2π
ln

r

a
= 0, (6.5.48)

which shows that H is the Green’s function of the biharmonic equation,

∇4H+ δ2(x− x0) = 0, (6.5.49)

given by

H =
1

8π

(
− ln

r

a
+ 1

)
r2. (6.5.50)

Substituting this expression into (6.5.16), we derive the velocity field in the standard form (6.5.45),
where Gij is the free-space Green’s function,

Sij = −δij ln
r

a
+

x̂ix̂j

r2
, (6.5.51)
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also called the two-dimensional Stokeslet, x̂ = x−x0 and r = |x̂|. The associated vorticity, pressure,
and stress fields are given by (6.5.45) with

Ωij(x̂) = 2 εijl
x̂l

r2
, Pj(x̂) = 2

x̂j

r2
, Tijk(x̂) = −4

x̂ix̂j x̂k

r4
. (6.5.52)

All these fields decay like 1/r with respect to the distance from the singular point, x0. In contrast,
the corresponding field for three-dimensional flow exhibit a faster, 1/r2 decay.

Stream function

The stream function associated with a point force is found by integrating the velocity,

ψ =
1

4πμ
(1− ln

r

a
) (ŷ ex − x̂ ey) · b, (6.5.53)

where ex and ey are unit vectors along the x and y axes. The streamline pattern due to a point
force pointing along the x axis is illustrated in Figure 6.5.2(b). Lengths have been normalized by a.

In Section 6.1.11, we discussed the complex variable formulation of two-dimensional Stokes
flow. To obtain the stream function due to a point force with unit strength located at the point z0
and oriented along the x axis, we set in (6.1.35)

c0 =
1

4π
, H = y − y0, c1 = 0, F (z) =

i

2π
ln

|z − z0|
a

, (6.5.54)

and obtain

ψ =
1

4π
(y − y0)(− ln

|z − z0|
a

+ 1). (6.5.55)

The alternative choice

c0 = − 1

4π
, H = x− x0, c1 = −1

2
, F (z) = − 1

2π
ln

|z − z0|
a

, (6.5.56)

yields the stream function due to a point force of unit strength oriented along the y axis,

ψ =
1

4π
(x− x0)(− ln

|z − z0|
a

+ 1). (6.5.57)

These expressions are consistent with the compact form (6.5.53).

Properties of Green functions

Two-dimensional Green’s functions have been derived for a variety of boundary geometries (e.g.,
[306, 313]). All Green’s functions exhibit a common singular logarithmic behavior at the location
of the point force, identical to that of the free-space Green’s function. The Green’s functions of
infinite flow are required to decay at infinity or increase, at most, at a logarithmic rate. Using the
continuity equation and the Stokes equation, we find that the two-dimensional Green’s functions
satisfy (6.5.5), (6.5.6), and (6.5.7) provided that the factor 8π on the right-hand side of the second
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and third equations is replaced with 4π. Equations (6.5.9)–(6.5.11) are also valid for two-dimensional
Green’s functions provided that the surface integral over a closed surface D is replaced by a line
integral along a smooth closed contour, C. The coefficient β on the right-hand sides of (6.5.10) and
(6.5.11) is equal to 4π, 2π, or 0, depending on whether the point x0 is located inside, on, or outside
a smooth contour C. When x0 is on C, the line integrals are improper principal-value integrals.

6.5.8 Classification, computation, and further properties of Green’s functions

The Green’s functions of Stokes flow can be classified in several categories according to the topology
of the domain of flow. First, we have the free-space Green’s function for infinite unbounded flow.
Second, we have the Green’s functions for infinite or semi-infinite domains of flow bounded by solid
surfaces. Third, we have the Green’s functions of interior flow in a completely confined domain.
Singly, doubly, and triply periodic Green’s functions express the flow due to periodic arrays of point
forces. As the observation point, x, approaches the location of the point force, x0, all Green’s
functions exhibit a common singular behavior that is identical to that of the free-space Green’s
function. The Green’s functions for infinite unbounded flow are required to decay at infinity at a
rate that matches, or is lower than that of, the free-space Green’s function.

Interior flow

The Green’s functions of interior flow may carry a degree of freedom determining the flow rate or
pressure drop in an appropriate direction. For example, in the case of flow inside an infinite tube,
the flow due to a periodic array of point forces oriented along the tube may generate either zero
axial flow rate or zero pressure drop. If a Green’s function for one condition is available, the Green’s
function for the other condition can be produced readily by adding an appropriate pressure-driven
flow, such as a Poiseuille flow.

Library of Green’s functions

A detailed discussion and explicit expressions of Green’s functions for a variety of boundary geome-
tries can be found in References [306, 313]. Computer codes are available in the boundary-element
software library Bemlib [313] (see also Appendix C).

Problems

6.5.1 Stokeslet via Fourier transforms

(a) Invert the three-dimensional Fourier transform to derive the Stokeslet.

(b) Derive the two-dimensional Stokeslet and associated pressure using the two-dimensional complex
Fourier transform.

6.5.2 Torque on a surface enclosing a point force

Using (6.5.23), show that the torque with respect to the location of a point force exerted on any
surface that encloses the point force is zero. What is the torque with respect to another point in
space?
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6.5.3 Properties of Green’s functions

(a) Prove identity (6.5.8) for three-dimensional flow.

(b) Show that (6.5.8) is also valid for two-dimensional flow, provided that the factor 8π on the
right-hand side is replaced by 4π.

6.5.4 Two-dimensional semi-infinite flow

Derive the velocity induced by a two-dimensional point force above a plane wall located at y = w.

6.6 Fundamental solutions of Stokes flow

The linearity of the equations of Stokes flow allows us to generate solutions by superposing fun-
damental solutions that satisfy the governing equations but not necessarily the required boundary
conditions. The superposition is designed so that the flow expressed by discrete collections or con-
tinuous distributions of properly selected fundamental solutions satisfies the boundary conditions
in an exact or approximate sense. The fundamental solutions may become infinite at a singular
point or else diverge at infinity. In this section, we develop three classes of fundamental solutions
originating from the point source, the point force, and a quadratic flow. In Section 6.7, we will use
these fundamental solutions to study flow past particles and liquid drops.

6.6.1 Point source and derivative singularities

In Section 6.1, we saw that any irrotational velocity field satisfies the equations of Stokes flow with an
associated constant pressure field set to zero. One example is the flow due to a point source located
at the point x0, given in (2.1.30). Differentiating the point source with respect to the position of the
singular point, x0, we obtain a sequence of derivative vectorial or tensorial singularities expressing
irrotational flow. The first three members of this chain are the potential dipole, the potential
quadruple, and the potential sextuple. The velocity and stress fields due to a point source with
scalar strength m, a potential dipole with vectorial strength d, and a potential quadruple with
tensorial strength q are shown in Table 6.6.1. The associated pressure fields are uniformly zero, and
the vorticity fields vanish throughout the domain of flow.

6.6.2 Point force and derivative singularities

A second family of fundamental solutions originates from the point force. Differentiating the
Stokeslet with respect to the singular point, x0, we obtain derivative singularities representing mul-
tipoles of the point force. The velocity, pressure, and stress fields due to a point force with vectorial
strength b and a point-force dipole with tensorial strength p located at the point x0 in free space
are shown in Table 6.6.2. The point-force dipole in free space is also called the Stokeslet dipole.

Couplet or rotlet

The coefficient of the Stokeslet dipole, p, can be resolved into a symmetric component, s = 1
2 (p+pT ),

and an antisymmetric component, r = 1
2 (p − pT ), where the superscript T indicates the matrix
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Point source with strength m

ui =
1

4π
mMi σik =

μ

4π
m T M

ik

Mi =
x̂i

r3
T M
ik = 2

δij
r3

− 6
x̂ix̂k

r5
= −2Dik

Potential dipole with strength d

ui =
1

4π
Dijdj σik =

μ

4π
T D
ijk dj

Dij =
∂Mi

∂x0j

= −δij
r3

+ 3
x̂ix̂j

r5

T D
ijk =

∂TM
ik

∂x0j

= 6
δjkx̂i + δkix̂j + δij x̂k

r5
− 30

x̂ix̂j x̂k

r7
= −2Qijk

Potential quadruple with strength q

ui =
1

4π
Qijl qjl σik =

μ

4π
T Q
ijlk qjl

Qijl =
∂Dij

∂x0l

= −3
δij x̂l + δjlx̂i + δlix̂j

r5
+ 15

x̂ix̂j x̂l

r7

T Q
ijlk =

∂T D
ijk

∂x0l

= −6
δijδlk + δilδjk + δikδjl

r5
+ 30

δjkx̂k + δikx̂j + δjkx̂i

r7
x̂l

+30
δilx̂j x̂k + δjlx̂ix̂k + δklx̂ix̂j

r7
− 210

x̂ix̂j x̂lx̂k

r9

Table 6.6.1 Velocity and stress fields at a point, x, due to irrotational singularities of three-dimensional
Stokes flow located at the point x0 in free space; r = |x̂| and x̂ = x − x0. The associated
hydrodynamic pressure fields are constant.

transpose. The velocity due to the dipole can be expressed as

ui =
1

8πμ

(
[SD

ijl]
+ sjl + [SD

ijl]
− rjl

)
, (6.6.1)

where the square brackets [ ]+ denote the symmetric part and the square brackets [ ]− denote
the antisymmetric part with respect to the indices j and l. Cursory inspection yields the specific
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Point force with strength b

ui =
1

8πμ
Sij bj p =

1

8π
PS
j bj σik =

1

8π
T S
ijk bj

Sij =
δij
r

+
x̂ix̂j

r3
PS
j = 2

x̂j

r3
= 2Mj T S

ijk = −6
x̂ix̂j x̂k

r5

Point-force dipole with strength p

ui =
1

8πμ
SD
ijl pjl p =

1

8π
PSD
jl pjl σik =

1

8π
T SD
ijlk pjl

SD
ijl =

∂Sij

∂x0l

=
1

r3
(δij x̂l − δilx̂j − δjlx̂i) + 3

x̂ix̂j x̂l

r5

PSD
jl =

∂PS
j

∂x0l

= 2
∂

∂x0l

( x̂j

r3

)
= −2

δjl
r3

+ 6
x̂j x̂l

r5
= 2Djl

T SD
ijlk =

∂TS
ijk

∂x0l

=
6

r5
(δilx̂j x̂k + δjlx̂kx̂i + δklx̂ix̂j)− 30

x̂ix̂j x̂kx̂l

r7

Couplet or rotlet with strength c

ui =
1

8πμ
Cim cm p = 0 σik =

1

8π
T C
imk cm

Cim = −1

2
εjlm SD

ijl = εiml
x̂l

r3
T C
imk = −1

2
εjlm T SD

ijlk = 3
εijmx̂k + εkjmx̂i

r5
x̂j

Table 6.6.2 Velocity, pressure, and stress fields at the point x due to a three-dimensional point force
or point-force dipole located at the point x0 in free space; r = |x̂|, x̂ = x − x0, M is the point
source, and D is the point-source dipole.

expressions

[SD
ijl]

+ = −δjl
x̂i

r3
+ 3

x̂ix̂j x̂l

r5
, [SD

ijl]
− =

1

r3
(δij x̂l − δilx̂j), (6.6.2)

so that [SD
ijl]

+ + [SD
ijl]

− = [SD
ijl]. Exploiting the antisymmetry of r, we write

rjl = −1

2
εjlm cm, (6.6.3)
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where the vector c is defined as

cm = −εmjl rjl = −εmjl pjl. (6.6.4)

Expression (6.6.1) for the velocity due to the point-force dipole takes the form

ui =
1

8πμ

(
[SD

ijl]
+ sjl −

1

2
[SD

ijl]
−εjlm cm

)
=

1

8πμ

(
[SD

ijl]
+ sjl + Cim cm

)
, (6.6.5)

where

Cim ≡ −1

2
εjlm [SD

ijl]
− = −1

2
εjlm SD

ijl = εiml
x̂l

r3
(6.6.6)

is a new fundamental solution called the couplet or rotlet. The pressure field associated with the
couplet is constant, and the stress field is given in the third entry of Table 6.6.2.

Stresslet

Inspecting the symmetric component of the Stokeslet doublet given in (6.6.2), we recognize a point
source and a complementary fundamental solution called the stresslet, defined as

Σijl ≡ [SD
ijl]

+ + δjl Mi =
1

2
(SD

ijl + SD
ilj) + δjl Mi = 3

x̂ix̂j x̂l

r5
, (6.6.7)

where Mi is the point source. The velocity, pressure, and stress field due to a stresslet with strength
s is given in the first entry of Table 6.6.3.

Point-force quadruple

Differentiating the Stokeslet doublet, we obtain the Stokeslet quadruple shown in the second entry
of Table 6.6.3. Contracting the last two indices of the quadruple, we obtain the singularity

SSQ
ijll = −2

(
− δij

r3
+ 3

x̂ix̂j

r5
)
. (6.6.8)

The term inside the parentheses on the right-hand side is recognized as the potential dipole,

Dij = −1

2
SSQ
ijll = −1

2
∇2

0 Sij , (6.6.9)

where S is the Stokeslet. This expression allows to restate all irrotational singularities, with the
exception of the point source, in terms of derivatives of the Laplacian of the Green’s function.

6.6.3 Contribution of singularities to the global properties of a flow

Inspecting the functional form of the fundamental solutions discussed in this section, we find that
the flow rate Q through any closed surface that encloses a singularity is zero, except for the point
source where Q = m, and the stresslet where Q = 1

2 sii. The force exerted on any surface enclosing
a singularity is zero, except for the Stokeslet where F = −b. The torque with respect to a point
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Stresslet with strength s

ui =
1

8πμ
Σijl sjl p =

1

8π
PΣ
jl sjl σik =

1

8π
T Σ
ijlk sjl

Σijl = 3
x̂ix̂j x̂l

r5
PΣ
jl = PSD

jl =
∂PS

j

∂x0l

= 2
∂

∂x0l

( x̂j

r3

)
= −2

δjl
r3

+ 6
x̂j x̂l

r5
= 2Djl

TΣ
ijlk = −δik PΣ

jl +
∂Σijl

∂xk
+

∂Σkjl

∂xi
=

1

2
(T SD

ijlk + T SD
iljk ) + δjlT M

ik

= δikδjl
2

r3
+

3

r5
(δij x̂kx̂l + δilx̂j x̂k + δkj x̂ix̂l + δklx̂ix̂j)− 30

x̂ix̂j x̂kx̂l

r7

Point-force quadruple with strength t

ui =
1

8πμ
SQ
ijlm tjlm p =

1

8π
PSQ
jlm tjlm σik =

1

8π
T SQ
ijlmk tjlm

SQ
ijlm =

∂SD
ijl

∂x0m

=
∂2Sij

∂x0l
∂x0m

=
1

r3
(−δijδlm + δilδjm + δjlδim)

− 3

r5
[ (−δij x̂l + δilx̂j + δjlx̂i)x̂m + δimx̂j x̂l + δjmx̂ix̂l + δlmx̂ix̂j ] + 15

x̂ix̂j x̂lx̂m

r7

PSQ
jlm =

∂PSD
jl

∂x0m

=
∂2PS

j

∂x0l
∂x0m

= − 6

r5
(δjlx̂m + δjmx̂l + δlmx̂j) + 30

x̂j x̂lx̂m

r7

T SQ
ijlmk =

∂T SD
ijlk

∂x0m

=
∂2T S

ijk

∂x0l
∂x0m

Table 6.6.3 Velocity, pressure, and stress fields at the point x due to a three-dimensional rotlet,
stresslet, or point-force quadruple located at the point x0 in free space; r = |x̂| and x̂ = x− x0,
D is the point-source dipole, and T M is the stress tensor due to a point source.

x1 exerted on a spherical surface that encloses a singularity is zero, except for the point force, the
point force dipole, and the couplet where

T = (x1 − x0)× b, Ti = εijl pjl, T = −L. (6.6.10)

These expressions will find applications in Section 6.7 where we discuss exact and approximate
singularity representations for several flows.
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Stokeson with strength w

ui = Nij wj p = μPN
j wj σik = μ T N

ijk wj

Nij = 2r2δij − x̂ix̂j PN
j = 10 x̂j T N

ijk = 3 (−4 δikx̂j + δij x̂k + δkj x̂i )

Stokeson dipole with strength h

ui = SND
ijl hjl p = μPND

jl hjl σik = μ T ND
ijlk hjl

SND
ijl =

∂Nij

∂x0l

= −δij4x̂l + δilx̂j + δjlx̂i PND
jl =

∂PN
j

∂x0l

= −10 δjl

T ND
ijlk =

∂T N
ijk

∂x0l

= 3 (−4δikδjl + δijδkl + δkjδil )

Table 6.6.4 Velocity, pressure, and stress field at a point x due to three-dimensional interior rotational
singularities of Stokes flow located at the point x0 in free space; r = |x̂| and x̂ = x− x0.

6.6.4 Interior flow

Families of fundamental solutions that have no singular points but diverge at infinity can be con-
structed for interior flow [87]. To derive these singularities, we recall that the pressure is a harmonic
function and set

p = 10μ (x− x0) ·w, (6.6.11)

where w is a constant vector and the factor of ten has been introduced for future convenience.
Substituting this expression into the Stokes equation, we obtain a Poisson equation for the velocity,
∇2u = 10w, to be solved subject to the constraint ∇ · u = 0 imposed by the continuity equation.
The solution is

u = N ·w, (6.6.12)

where N is a new singularity called the Stokeson, shown in the first entry of Table 6.6.4.

The derivatives of the Stokeson with respect to the singular point, x0, are legitimate funda-
mental solutions of interior Stokes flow. Differentiating the Stokeson once, we obtain the Stokeson
dipole shown in the second entry of Table 6.6.4. The symmetric part of the Stokeson dipole is the
stresson, and the antisymmetric part is the roton. The stresson represents linear, purely straining
flow with vanishing vorticity and pressure, and the roton represents rigid-body rotation (Problem
6.6.3).
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6.6.5 Flow bounded by solid surfaces

The apparatus of fundamental solutions can be extended in a straightforward fashion to flows that are
bounded by solid or other surfaces [306]. The Green’s functions discussed in Section 6.5, representing
the flow due to a point force, provide us with one class of fundamental solutions. Other families can
be constructed by differentiating the point force with respect to the singular point. For example,
the point-source dipole arises from the Laplacian of the point force.

Point source

The velocity due to a point source located at a point x0 in a totally or partially infinite domain of
flow arises from the pressure vector due to the point force at the same point in the same domain,
denoted by P(x,x0), as

u(x) =
1

4π
mM(x,x0), (6.6.13)

where m is the strength of the point source and

M(x,x0) = −1

2
P(x0,x). (6.6.14)

Note that the arguments x and x0 are switched on the left- and right-hand sides of (6.6.14). For
example, in the case of the free-space Green’s function,

P(x0,x) =
2

r3
(x0 − x), M(x,x0) =

1

r3
(x− x0), (6.6.15)

where r = |x− x0|.

Point source above an infinite wall

In the case of flow in a semi-infinite domain bounded by a plane wall located at x = w, we use
expression (6.5.42) for the pressure vector and obtain

P(x0,x) = PS(x0 − x)−PS(x0 − xim) + 2hPΨ(x0 − xim), (6.6.16)

where h = x− w and

xim = (2w − x, y, z) (6.6.17)

is the image of the point x with respect to the wall. In index notation,

Pi(x0,x) = 2MFS
i (x0 − x)− 2MFS

i (x0 − xim)± 4hDFS
i1 (x0 − xim), (6.6.18)

where MFS is the point source in free space DFS is the point-source dipole in free space. Using
(6.6.14) and substituting the specific expressions for the singularities, we obtain

M(x,x0) =
x̂

r3
+

1

r3im

⎡⎣ x0 − 2w + x
y0 − y
z0 − z

⎤⎦+ 2
x− w

r5im

⎡⎣ −r2im + 3 (x0 − xim)2

−3 (x0 − xim)(y0 − y)
−3 (x0 − xim)(z0 − z)

⎤⎦ , (6.6.19)
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where

x̂ = x− x0, r = |x− x0|, rim = |x0 − xim|. (6.6.20)

Next, we introduce the image of the point x0 with respect to the wall,

xim
0 = (2w − x0, y0, z0), (6.6.21)

define the distance x̂im = x− xim
0 , and write

x− w = (x+ x0 − 2w)− (x0 − w) = x̂im − h0, (6.6.22)

where h0 = x0 − w, we derive the expression

M(x,x0) = MFS(x̂) +
1

r3im

⎡⎣ x̂im

−ŷim
−ẑim

⎤⎦+ 2
x̂im − h0

r5im

⎡⎣ −r2im + 3 x̂2
im

3 x̂imŷim
3 x̂imẑim

⎤⎦ , (6.6.23)

which can be rearranged into the expression

M(x,x0) = MFS(x̂) +MFS(x̂im)− 2

r3im

⎡⎣ 0
ŷim

ẑim

⎤⎦+ 2
x̂im

r5im

⎡⎣ −r2im + 3 x̂2
im

3 x̂imŷim
3 x̂imẑim

⎤⎦+ 2h0 Di1. (6.6.24)

Combining the third with the fourth term on the right-hand side, we derive the final expression

M(x,x0) = MFS(x̂) +MFS(x̂im) + 2 (− 1

r3im
+ 3

x̂2
im

r5im
)

⎡⎣ x̂im

ŷim
ẑim

⎤⎦+ 2h0 Di1. (6.6.25)

The first two terms on the right-hand side represent point sources located, respectively, at x0 and
xim
0 . The third term is a Stokeslet doublet, SD

ixx, and the fourth term is a potential dipole placed
at xim

0 .

6.6.6 Two-dimensional flow

Fundamental solutions for two-dimensional flow are derived working as previously in this section
for three-dimensional flow. Examples of two-dimensional fundamental solutions are the Green’s
functions discussed in Section 6.5, and the point source and its derivatives discussed in Section
2.1.6. Families of irrotational and rotational singularities are presented in Table 6.6.5–6.6.7. Some
of these singularities will be employed in Section 6.14 to compute streaming flow past a circular
cylinder.

Problems

6.6.1 Vorticity due to singularities

Derive the vorticity fields due to the singularities listed in Table 6.6.2.
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Two-dimensional point source with strength m

ui =
1

2π
mMi σik =

μ

2π
m T M

ik

Mi =
x̂i

r2
T M
ik = 2

δij
r2

− 4
x̂ix̂k

r4
= −2Dik

Two-dimensional potential dipole with strength d

ui =
1

2π
Dij dj σik =

μ

2π
T D
ijk dj

Dij =
∂Mi

∂x0j

= −δij
r2

+ 2
x̂ix̂j

r4
T D
ijk =

∂TM
ik

∂x0j

= 4
δjkx̂i + δkix̂j + δij x̂k

r4
− 16

x̂ix̂j x̂k

r6
= −2Qijk

Two-dimensional potential quadruple with strength q

ui =
1

2π
Qijl qjl σik =

μ

2π
T Q
ijlk qjl

Qijl =
∂Dij

∂x0l

= −2
δij x̂l + δjlx̂i + δlix̂j

r4
+ 8

x̂ix̂j x̂l

r6

T Q
ijlk =

∂T D
ijk

∂x0l

= −4
δijδlk + δilδjk + δikδjl

r4
+ 16

δjkx̂k + δikx̂j + δjkx̂i

r6
x̂l

+16
δilx̂j x̂k + δjlx̂ix̂k + δklx̂ix̂j

r6
− 96

x̂ix̂j x̂lx̂k

r8

Table 6.6.5 Velocity and stress field at the point x due to irrotational singularities of two-dimensional
Stokes flow located at the point x0 in free space; r = |x̂| and x̂ = x − x0. The associated
hydrodynamic pressure fields are constant. Corresponding singularities of three-dimensional flow
are shown in Table 6.6.1.

6.6.2 Two-dimensional point-force quadruple

Derive the expressions for the two-dimensional point-force quadruple shown in Table 6.6.7.

6.6.3 Stresson and roton

(a) Show that the stresson represents purely straining linear flow with vanishing vorticity and pres-
sure, while the roton represents rigid-body rotation.

(b) Derive the two-dimensional stresson and roton.
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Two-dimensional point force with strength b

ui =
1

4πμ
Sij bj p =

1

4π
PS
j bj σik =

1

4π
T S
ijk bj

Sij = −δij ln
r

a
+

x̂ix̂j

r2
PS
j = 2

x̂j

r2
= 2Mj T S

ijk = −4
x̂ix̂j x̂k

r4

Two-dimensional point-force dipole with strength p

ui =
1

4πμ
SD
ijl pjl p =

1

4π
PSD
jl pjl σik =

1

4π
T SD
ijlk pjl

SD
ijl =

∂Sij

∂x0l

=
1

r2
(δij x̂l − δilx̂j − δjlx̂i) + 2

x̂ix̂j x̂l

r5

PSD
jl =

∂PS
j

∂x0l

= 2
∂

∂x0l

( x̂j

r2

)
= −2

δjl
r2

+ 4
x̂j x̂l

r4
= 2Dij

T SD
ijlk =

∂TS
ijk

∂x0l

=
4

r4
(δilx̂j x̂k + δjlx̂kx̂i + δklx̂ix̂j)− 16

x̂ix̂j x̂kx̂l

r6

Two-dimensional rotlet with strength c

ui =
1

4πμ
Cim cm p = 0 σik =

1

4π
T C
imk cm

Cim = εiml
x̂l

r2
T C
imk = −1

2
εjml T SD

ijlk = 2
εijmx̂k + εkjmx̂i

r4
x̂j

Table 6.6.6 Velocity, pressure, and stress field at the point x due to two-dimensional rotational
singularities of Stokes flow located at the point x0 in free space; r = |x̂| and x̂ = x − x0, a is a
chosen length, M is the two-dimensional point source, and D is the two-dimensional point-source
dipole.

6.6.4 Point source above a wall

Draw the streamline pattern of the axisymmetric flow due to a three-dimensional point source above
an infinite plane wall.

6.6.5 Two-dimensional point source above a wall

Derive the velocity field due to a two-dimensional point source above an infinite wall located at
y = w [306].
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Two-dimensional stresslet with strength s

ui =
1

4πμ
Σijl sjl p =

1

4π
PΣ
jl sjl σik =

1

4π
T Σ
ijlk sjl

Σijl = 2
x̂ix̂j x̂l

r5
PΣ
jl = PSD

jl =
∂PS

j

∂x0l

= 2
∂

∂x0l

( x̂j

r2

)
= −2

δjl
r2

+ 4
x̂j x̂l

r4
= 2Djl

TΣ
ijlk = −δik PΣ

jl +
∂Σijl

∂xk
+

∂Σkjl

∂xi
=

1

2
(TSD

ijlk + TSD
ilkk) + δjlT M

ik

= δikδjl
1

r2
+

2

r4
(δij x̂kx̂l + δilx̂j x̂k + δkj x̂ix̂l + δklx̂ix̂j)− 16

x̂ix̂j x̂kx̂l

r6

Two-dimensional point-force quadruple with strength t

ui =
1

4πμ
SQ
ijlm tjlm p =

1

4π
PSQ
jlm tjlm σik =

1

4π
T SQ
ijlmk tjlm

SQ
ijlm =

∂SD
ijl

∂x0m

=
∂2Sij

∂x0l
∂x0m

=
1

r2
(−δijδlm + δilδjm + δjlδim)

− 2

r4
[ (−δij x̂l + δilx̂j + δjlx̂i)x̂m + δimx̂j x̂l + δjmx̂ix̂l + δlmx̂ix̂j ] + 8

x̂ix̂j x̂lx̂m

r6

PSQ
jlm =

∂PSD
jl

∂x0m

=
∂2PS

j

∂x0l
∂x0m

= − 2

r4
(δjlx̂m + δjmx̂l + δlmx̂j) + 8

x̂j x̂lx̂m

r6

T SQ
ijlmk =

∂T SD
ijlk

∂x0m

=
∂2T S

ijk

∂x0l∂x0m

Table 6.6.7 Velocity, pressure, and stress field at the point x due to two-dimensional rotational
singularities of Stokes flow located at the point x0 in free space; r = |x̂| and x̂ = x−x0, D is the
point-source dipole, and T M is the stress tensor due to a point source.

6.7 Stokes flow past or due to the motion of particles and liquid drops

The fundamental solutions derived in Section 6.6 can be used as building blocks to produce the flow
past or due to the motion of solid particles and liquid drops. In Section 6.12, we will see that the
singularity representations allow us to develop generalized Faxén laws providing us with the force,
the torque, and higher moments of the traction exerted on a particle immersed in an arbitrary flow
in terms of the velocity and derivatives of the velocity of the ambient flow at selected locations.
Exact singularity representations will be developed in this section for flow due to the translation or
rotation of a sphere, arbitrary linear flow past a stationary sphere, flow due to the translation or
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rotation of a prolate spheroid, flow due to the translation of a spherical drop, and linear flow past
a stationary sphere with the slip boundary condition over the surface of the sphere. Approximate
singularity representations can be constructed by numerical methods.

6.7.1 Translating sphere

In the first case study, we consider the flow generated by a solid sphere of radius a translating
with velocity V in an otherwise quiescent fluid of infinite expanse. The functional forms of the
singularities listed in Tables 6.6.1 and 6.6.2 suggest representing the flow in terms of a Stokeslet
with strength b and a potential dipole with strength d, both situated at the center of the sphere,
x0. The induced velocity field is given by

ui(x) =
1

8πμ
Sij(x,x0) bj +

1

4π
Dij(x,x0) dj . (6.7.1)

Introducing the explicit forms of the singularities, we obtain

ui(x) =
1

8πμ

(δij
r

+
x̂ix̂j

r3
)
bj +

1

4π

(
− δij

r3
+ 3

x̂ix̂j

r5
)
dj . (6.7.2)

Enforcing the no-slip and no-penetration boundary conditions, u = V at r = a, we obtain two
algebraic equations for the coefficients of the singularities,

a2b− 2μd = 8πμa3 V, a2b+ 6μd = 0. (6.7.3)

The solution is

b = 6πμaV, d = −πa3V. (6.7.4)

Substituting these expressions into (6.7.2) and grouping similar terms, we derive an explicit repre-
sentation of the velocity field,

ui(x) =
1

4

a

r

(
3 +

a2

r2
)
Vi +

3

4

a

r

(
1− a2

r2
) x̂ix̂j

r2
Vj . (6.7.5)

Because of the point force singularity, the flow generated by the sphere decays like 1/r far from the
sphere.

Stream function

In spherical polar coordinates centered at the sphere with the x axis pointing in the direction of
translation indicated by the unit vector ex, the Stokes stream function is

ψ(r, θ) =
1

4
ar

(
3− a2

r2
)
sin2 θV · ex. (6.7.6)

Since the stream function diverges at infinity, an unphysical infinite amount of fluid is convected
along the x due to the motion of the sphere. The streamline pattern in a stationary frame of reference
and in a frame of reference moving with the sphere are depicted in Figure 6.7.1.
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Figure 6.7.1 Streamline pattern of the flow due to a sphere translating along the x axis under con-
ditions of Stokes flow in (a) a stationary frame of reference and (b) a frame of reference moving
with the sphere.

Surface traction

The hydrodynamic traction exerted on the sphere is readily computed from the strength of the
singularities using Tables 6.6.1 and 6.6.2, and is found to be

fi =
1

8π
T S
ijk bjnk + μ

1

4π
T D
ijk djnk. (6.7.7)

Substituting the expressions for the singularities, we find that

fi = − 3

4π

x̂ix̂j x̂k

a5
bj nk + μ

3

2π

(δjkx̂i + δkix̂j + δij x̂k

a5
− 5

x̂ix̂j x̂k

a7
)
dj nk. (6.7.8)

Setting nk = x̂k/a, observing that x̂kx̂k = a2, and simplifying, we obtain

fi = − 3

4π

x̂ix̂j

a4
bj + μ

3

2π

(2x̂ix̂j + δija
2

a6
− 5

x̂ix̂j

a6
)
dj . (6.7.9)

Substituting expressions (6.7.4) and simplifying, we find that

fi = −9

2

x̂ix̂j

a3
Vj − μ

3

2

(−3 x̂ix̂j + δija
2

a3
)
Vj , (6.7.10)

yielding the remarkably simple expression

fi = −3

2

μ

a
Vi. (6.7.11)

We have found that the traction is a constant vector oriented in the direction of translation. This
is a unique, remarkable yet fortuitous feature of the spherical geometry.
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Stokes law

To compute the hydrodynamic force exerted on the sphere, we can either integrate the traction over
the surface of the sphere or use the properties of the singularities discussed in Section 6.6. The result
is the Stokes law,

F =

∫∫
Sphere

f dS = −6πμaV. (6.7.12)

The torque exerted on the sphere with respect to the center of the sphere is zero. The torque with
respect to any other point is nonzero.

Settling or rising velocity

As an application, we compute the velocity of a sphere that is settling or rising under the action of
gravity in an infinite fluid. Requiring that the hydrodynamic drag force exerted on the sphere given
in (6.7.12) cancels the buoyancy force and the weight of the sphere, we obtain

−6πμaV +
4

3
πa3 (ρs − ρ)g = 0, (6.7.13)

where ρs is the density of the sphere. Rearranging, we obtain

V =
2

9

a2(ρs − ρ)

μ
g. (6.7.14)

A heavy sphere falls in the direction of gravity and a light sphere rises against the direction of
gravity.

6.7.2 Sphere in linear flow

In the second case study, we consider an infinite linear flow with velocity u∞ = A · (x − x0)
past a stationary sphere centered at the point x0, where A is a constant matrix with zero trace
representing the transpose of the velocity gradient, AT = ∇u∞. Inspecting the functional forms of
the fundamental solutions derived in Section 6.6 suggests representing the disturbance flow due to
the sphere by a Stokeslet doublet, SD, and a potential quadruple, Q, placed at the center of the
sphere,

ui(x) = u∞
i (x) +

1

8πμ
SD
ijl(x,x0) pjl +

1

4π
Qijl(x,x0) qjl. (6.7.15)

Substituting the specific expressions for the singularities and defining x̂ = x− x0, we find that

ui(x) = Aij x̂j +
1

8πμ

(δij x̂l − δilx̂j − δjlx̂i

r3
+ 3

x̂ix̂j x̂l

r5
)
pjl

+
3

4π

(
− δij x̂l + δjlx̂i + δlix̂j

r5
+ 5

x̂ix̂j x̂l

r7
)
qjl. (6.7.16)
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Rearranging, we obtain

ui(x) = Aij x̂j +
1

8πμ

δij x̂l − δilx̂j

r3
pjl −

3

4π

δij x̂l + δlix̂j

r5
qjl

− 1

8πμ

x̂i

r3
pll −

3

4π

x̂i

r5
qll +

3

8πμ

x̂ix̂j x̂l

r5
pjl +

15

4π

x̂ix̂j x̂l

r7
qjl. (6.7.17)

Requiring that the velocity at the surface of the sphere is zero, we obtain

A+
1

8πμ

1

a3
(p− pT )− 3

4π

1

a5
(q+ qT ) = 0, pll = qll = 0, p = −10μ

a2
q, (6.7.18)

where pll is the trace of p and qll is the trace of q. Splitting the matrix A into a symmetric and an
antisymmetric part in the first equation, we obtain

1

2
(A−AT ) +

1

8πμ

1

a3
(p− pT ) = 0,

1

2
(A+AT )− 3

4π

1

a5
(q+ qT ) = 0. (6.7.19)

Eliminating p in favor of q from the first equation in (6.7.19) using the third equation in (6.7.18),
and simplifying the second equation, we find that

q− qT =
2

5
πa5 (A−AT ), q+ qT =

2

3
πa5 (A+AT ). (6.7.20)

Adding these equations and rearranging, we obtain

q =
2

15
πa5 (4A+AT ), p = −4

3
πμa3 (4A+AT ). (6.7.21)

The symmetric and antisymmetric components of the coefficient of the point-force dipole , satisfying
p = s+ r, are

s = −20

3
πμa3 E, r = −4πμa3 Ξ, (6.7.22)

where

E =
1

2
(A+AT ), Ξ =

1

2
(A−AT ) (6.7.23)

are the rate-of-strain tensor and vorticity tensor of the linear flow.

Surface traction

The disturbance traction exerted on the sphere is given by

fD
i (x) =

1

8μ
T SD
ijlk (x,x0) pjl nk +

μ

4π
T Q
ijlk(x,x0) qjl nk = 3

μ

a
Aij x̂j . (6.7.24)

It is remarkable that the disturbance traction is proportional to the local velocity of the incident
flow.
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Force and torque

The force exerted on the sphere is zero due to the absence of a point force. To compute the coefficient
of the couplet inherent in the Stokeslet dipole, we use expression (6.6.4), obtaining

cm = 4πμa3εmjlAjl. (6.7.25)

Using the third equation in (6.6.10), we find that the torque with respect to the center of the sphere
exerted on the sphere is

Tm = −cm = −4πμa3εmjlAjl. (6.7.26)

In terms of the vorticity of the ambient flow, ω∞
i = −εijk Ajk,

T = 4πa3ω∞. (6.7.27)

In Section 6.7.12, we will see that this is a more general result applicable to any incident unbounded
flow.

6.7.3 Rotating sphere

The velocity over the surface of a rigid sphere that rotates with angular velocity Ω is identical to
the disturbance velocity over the surface of a stationary sphere that is immersed in a linear flow
with transpose velocity gradient tensor

Aik = −εijk Ωj . (6.7.28)

Noting that the matrix A is antisymmetric, A = −AT , and using the solution for a sphere in
linear flow discussed in Section 6.7.2, we obtain q = 2π

5
a5A and p = −4πμa3A. Because q is

antisymmetric and Qijl is symmetric with respect to the last two indices, the quadruple makes a
vanishing contribution. Using (6.7.16), we obtain the velocity field

ui = −a3
1

2
SD
ijl Ajl = a3

1

2
SD
ijl εjml Ωm = a3CimΩm = a3εiml Ωm

x̂l

r3
, (6.7.29)

which shows that the flow is represented by a couplet with strength

c = 8πμa3Ω (6.7.30)

situated at the center of the rotating sphere. The torque exerted on the sphere then follows as

T = −c = −8πμa3Ω. (6.7.31)

Combining (6.7.27) with (6.7.31), we find that a freely suspended sphere bearing zero torque rotates
at an angular velocity that is equal to half the vorticity of the ambient flow.

Combining (6.7.24) with (6.7.28), we find that the traction exerted on the sphere is

fi(x) = −3
μ

a
εijk Ωj x̂k or f(x) = −3

μ

a
Ω× x̂. (6.7.32)

It is remarkable that the traction is proportional to the velocity over the surface of the rotating
sphere.
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Figure 6.7.1 The flow due to the rotation or translation of a prolate spheroid can be represented by
a singularity distribution over the focal length of the spheroid.

6.7.4 Rotation and translation of a prolate spheroid

Consider a prolate spheroid with major semiaxis a aligned with the x axis and minor semiaxis b
in the yz plane, as illustrated in Figure 6.7.1. The focal semiaxis, c, is defined by the equation
c2 = a2 − b2. The eccentricity of the spheroid, e ≡ c/a, ranges in the interval [0, 1), where e = 0
corresponds to a sphere and e � 1 corresponds to a slender needle.

Swirling flow due to rotation

The swirling flow due to a prolate spheroid rotating with angular velocity Ωx around its major axis
can be represented by a distribution of couplets oriented along the x axis over the focal length of
the spheroid,

ui(x) = Ωx c
2β

∫ c

−c

(
1− ξ2

c2
)
Cix

(
x,X(ξ)

)
dξ, (6.7.33)

where X(ξ) = [ξ, 0, 0] is a point along the centerline and

β =
1

2e

1− e2
− ln

1 + e

1− e

(6.7.34)

is a dimensionless coefficient [86]. Integrating the strength density of the couplets over the focal
length, we find that the torque exerted on the spheroid is

T = −32

3
πμΩxβc

3ex, (6.7.35)

where ex is the unit vector along the x axis. In the limit e → 0, we find that β → 3/(4e3),
reproducing our earlier results for the sphere.

Translation

The flow due to a prolate spheroid translating with velocity V in an infinite fluid can be represented
by distributions of Stokeslets and potential dipoles over the focal length of the spheroid pointing in
the direction of translation, with constant or parabolic distribution densities, respectively [87]. The
induced velocity field is

ui(x) =

∫ c

−c

(
Sij(x,X(ξ))− 1

2
(1− ξ2

c2
) b2 Dij

(
x,X(ξ)

) )
dξ αjk Vk, (6.7.36)
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where X(ξ) = [ξ, 0, 0] is a point along the centerline and αjk is a dimensionless diagonal matrix with
nonzero components

αxx =
e2

−2e+ (1 + e2) ln
1 + e

1− e

, αyy = αzz =
2e2

2e− (1− 3e2) ln
1 + e

1− e

. (6.7.37)

The force exerted on the spheroid is found by integrating the strength density of the point forces
over the focal length,

F = −16πμcα ·V. (6.7.38)

In the limit e → 0, all three coefficients a11, a22, and a33 tend to 3/(8e), in agreement with our
earlier results for a sphere.

6.7.5 Translating spherical liquid drop

Next, we consider the flow due to a spherical liquid drop with viscosity λμ translating with velocityV

in an infinite ambient fluid with viscosity μ. Cursory inspection of the menu of available singularities
suggests the following representation for the exterior flow,

uext
i (x) =

1

8πμ
Sij(x,x0) bj +

1

4π
Dij(x,x0) dj , (6.7.39)

and the following representation for the interior flow,

uint
i (x) = ci +Nij(x,x0)wj , (6.7.40)

where S is the Stokeslet, D is the potential dipole, N is the Stokeson, and c is a constant representing
a uniform flow. Substituting the expressions for the singularities and requiring that the velocity is
continuous across the drop surface, we find that

a2b− 2μad− 8πμa3c− 16πμa5w = 0, a2b+ 6μad+ 8πμa5w = 0. (6.7.41)

Requiring that the component of the velocity normal to the drop surface is zero in a frame of
reference moving with the drop, (uint −V) · n = 0, we obtain an additional condition,

c+ a2w = V. (6.7.42)

A fourth equation emerges by requiring that the shear stress is continuous across the interface. Using
the formulas given in the tables of Section 6.6, we find that the shear stress exerted on the exterior
and interior sides of the interface are given by

fshear,ext
k =

1

4π

[
− 3

x̂ix̂j

a4
bj + 6μ

(δij
a4

− 3
x̂ix̂j

a6
)
dj
]
(δik − nink) (6.7.43)

or

f shear,int
k = 3λμ

(
a δij − 3

x̂ix̂j

a

)
wj (δik − nink). (6.7.44)
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Note that the projection operator I − n ⊗ n represented by the last term on the right-hand side
extracts the tangential component of the surface traction. Equating the right-hand sides of (6.7.43)
and (6.7.44), we obtain

d = 2πλa5 w. (6.7.45)

Solving the system of equations (6.7.41), (6.7.42), and (6.7.45) for the coefficients of the fundamental
solutions, we obtain

b = 2πμa
3λ+ 2

λ+ 1
V, d = −πa3

λ

λ+ 1
V, c =

1

2

2λ+ 3

λ+ 1
V, w = − 1

2a2
1

λ+ 1
V. (6.7.46)

In the limit of high viscosity ratio, λ → ∞, the coefficients b and d tend to corresponding values
for the solid sphere given in (6.7.4), c tends to V, and w vanishes, yielding a uniform interior flow.

Having computed the coefficients of the singularities, we derive exact representations for the
velocity field inside and outside the drop in a stationary frame of reference,

uext
i =

1

4

1

λ+ 1

[a
r

(
3λ+ 2 + λ

a2

r2

)
Vi +

a3

r3

(
3λ+ 2− 3λ

a2

r2

) x̂ix̂j

a2
Vi

]
(6.7.47)

and

uint
i =

1

2

1

λ+ 1

[ (
2λ+ 3− 2

a2

r2

)
Vi +

x̂ix̂j

a2
Vj

]
. (6.7.48)

The streamline patterns for λ = 1 in a stationary frame of reference and in a frame of reference
moving with the drop is depicted in Figure 6.7.2.

Inside the drop, the azimuthal component of the vorticity, ωϕ, increases linearly with distance
from the axis, σ, and the flow is identical to that inside Hill’s spherical vortex. As a consequence,
the interior flow satisfies the unsimplified Navier–Stokes equation with the nonlinear terms included
on the left-hand side. However, this is not true for the flow outside the drop.

Drag force

The hydrodynamic drag force exerted on the drop is found from the coefficient of the point force,

F = −b = −2πμa
3λ+ 2

λ+ 1
V. (6.7.49)

This expression was derived independently by Hadamard and Rybczynski in 1911 by solving a
partial-differential equation for the Stokes stream function. Equation (6.7.49) can be expressed in
terms of a drag coefficient as

cD ≡ F

πρV 2a2
=

4

Re

3λ+ 2

λ+ 1
, (6.7.50)

where ρ is the fluid density, V is the magnitude of the drop velocity, and Re = 2aρV/μ is the
Reynolds number based on the drop diameter, 2a. Inertial corrections to this formula are available,
as reviewed by Clift, Grace, & Weber ([89], Chapter 5).
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Figure 6.7.2 Streamline pattern due to the translation of a spherical liquid drop in an infinite fluid
with the same viscosity, λ = 1, (a) in a stationary frame of reference and (b) in a frame of reference
moving with the drop.

Settling or rising velocity

Balancing the hydrodynamic force given in (6.7.49), the buoyancy force, and the weight of the drop,
we find that the velocity of a drop that is rising or settling under the action of gravity is

V =
ρd − ρ

μ
a2

2

3

λ+ 1

3λ+ 2
g, (6.7.51)

where ρd is the drop density. In the limit λ → ∞, we recover the settling velocity of a solid sphere.

Normal force balance

The singularity solution was derived without reference to the component of the traction normal
to the drop interface. A tacit assumption appears to be that surface tension is high enough for
the drop to maintain a spherical shape even though the difference in the normal component of the
traction across the interface may not be uniform so that it can be balanced by the product of the
surface tension and twice the mean curvature, 2γ/a. In fact, we will show that this assumption is
not necessary.

Using the expressions given in tables of Section 6.6, we find that the normal component of the
traction on either side of the interface is

(f · n)ext = 3

4πa5
(a2b+ 4μd) · x̂− ρg · x̂+ c1, (f · n)int = −6λμw · x̂− ρd g · x̂+ c2, (6.7.52)

where n is the outward unit normal vector and c1, c2 are two undefined constants. Subtracting these
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expressions, we obtain

(f · n)ext − (f · n)int = 3

4πa5
(a2b+ 4μd− 8πa2λμw) · x̂− (ρ− ρd)g · x̂+ c1 − c2. (6.7.53)

Substituting (6.7.51) into (6.7.46) and then into (6.7.53), we find that the jump in the normal
component of the traction is constant and equal to c1 − c2 = −2γ/a. Since the singularity solution
satisfies all required boundary conditions, surface tension is not necessary for a settling or rising drop
to maintain the spherical shape. However, surface tension does affect the stability of the spherical
shape.

Stability

Linear stability analysis for small perturbations shows that the spherical drop is stable, except in
the complete absence of surface tension. In practice, we find that, if the surface tension is sufficiently
high or a perturbation is sufficiently small, the drop is able to restore its spherical shape. Otherwise,
the interface either elongates into an oblate shape or obtains a toroidal shape. Physically, the back
side of the drop is convected outward or inward under the influence of the local stagnation-point
flow. Stages in the evolution of a settling drop with a prolate or oblate initial shape are shown in
Figure 6.7.3 for λ = 1 in the absence or presence of surface tension. The evolution of the interface
was computed using the boundary-integral method for Stokes flow [305].

6.7.6 Flow past a spherical particle with the slip boundary condition

Consider an infinite linear flow with velocity u∞ = U + A · x past a translating and rotating
spherical particle of radius a, where U is a constant velocity and A is the transpose of the velocity
gradient tensor, AT = ∇u∞ [249]. The continuity equation requires the trace of A to be zero. The
no-penetration condition and a slip boundary condition are enforced at the particle surface,

u = V +Ω× (x− xc) + uS , (6.7.54)

where V is the velocity of translation of the particle center, xc, and Ω is the angular velocity of
rotation about xc. The first two terms on the right-hand side of (6.7.54) describe rigid-body motion,
while the third term expresses a slip velocity given by the Navier–Maxwell–Basset slip formula

uS =
1

β

a

μ
f · (I− n⊗ n) =

λ

μ
n× f × n, (6.7.55)

where f ≡ σ · n is the traction, σ is the stress tensor, n is the unit normal vector pointing into
the fluid, I− n⊗ n is the tangential projection operator, β is the dimensionless Basset particle slip
coefficient ranging from zero for vanishing shear stress and perfect slip to infinity for nonzero shear
stress and no-slip, and λ = a/β is the slip length, as discussed in Section 3.7.4.

For convenience, we set the particle center at the origin, xc = 0, and express the velocity field
in terms of five singularities,

ui = Ui +Aijxj + aSij bj + a3 Dij dj + a3 Cij cj + a3 SD
ijl pjl + a5 Qijl qjl, (6.7.56)

where Sij is the Stokeslet, Dij is the potential dipole, Cij is the rotlet, SD
ijl is the Stokeslet dipole,

and Qijl is the potential quadrapole.
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Figure 6.7.3 Stages in the evolution of a settling drop with an oblate or prolate initial shape (a) in
the absence and (b) in the presence of surface tension for unit viscosity ratio, λ = 1. Snapshots
are shown at equal time intervals. When the surface tension is sufficiently strong, the drop restores
its spherical shape.

The no-penetration boundary condition requires that uixi = Vixi at the particle surface,
r = a. Substituting the expressions for the singularities and simplifying, we find that

ujxj = Ujxj +Ajl xj xl + 2 (bj + dj)xj + (−δjl a
2 + 3xjxl) (pjl + 3 qjl) = Vjxj , (6.7.57)

and thus

b+ d =
1

2
(V −U), 3 [p]+ + 9q = −E, (6.7.58)

where the brackets [ ]+ denote the symmetric part of the enclosed tensor, and E is the rate-of-
deformation tensor, E = [A]+.
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The tangential velocity component over the particle surface is given by

u
|
i = ui − um

xixm

a2
= Ui +Aij xj + aSij bj + a3 Dij dj + a3 Cij cj + a3 SD

ijl pjl + a5 Qijl qjl

−xixm

a2
(
Um +Amj xj + aSmj gj + a3 Dmj dj + a3 Cmj cj + a3 SD

mjl pjl + a5 Qmjl qjl
)
. (6.7.59)

Making substitutions and simplifying, we find that

u
|
i = (Uj + bj − dj)(δij −

xixj

a2
) + εilj cl xj

+(Aij + pij − pji − 3 qij − 3 qji)xj +
1

a2
(−Alj + 6 qjl)xixjxl. (6.7.60)

The stress field is given by

σik = μ
(
Aik +Aki + a T S

ijk bj + a3 T S
ijk dj + a3 T C

ijk cj + a3 T SD
ijlk pjl + a5 T Q

ijlk qjl

)
. (6.7.61)

The traction exerted on the surface of the sphere is fi = σikxk/a, and its tangential component is

f
|
i = fi − fm

xixm

a2
= μ

xk

a
(Aik +Aki + a T S

ijk bj + a3 T S
ijk dj + a3 T C

ijk cj + a3 T SD
ijlk pjl + a5 T Q

ijlk qjl)

−μ
xixmxk

a3
(
Amk +Akm + a T S

mjk gj + a3 T D
mjk dj + a3 T C

mjk cj

+a3 T SD
mjlk pjl + a5 T Q

mjlk qjl
)
. (6.7.62)

Making substitutions and simplifying, we obtain

f
|
i = 6μdj (δij −

xjxi

a2
) +

3μ

a
cl εijl xj +

μ

a
(Aij +Aji + 6 pji + 24 qij + 24 qji − 6 qkkδij)xj

+
μ

a3
(6 qkk − 2Ajl − 6pjl − 48 qjl)xixjxl. (6.7.63)

The slip boundary condition at the particle surface requires that

u
|
i − Vi + Vm

xixm

a2
− εijkΩjxk =

a

μβ
f
|
i . (6.7.64)

Substituting the expressions for the tangential components of the velocity and traction, and grouping
similar terms, we find that

U−V + b− d =
6

β
d, c =

β

β + 3
Ω, (6.7.65)

and also

A+ 2 [p]− − 6q =
1

β

(
2E+ 6pT + 48q− 6 trace(q) I

)
(6.7.66)

and

(β − 2)E− 6 [p]+ − 6 (8 + β)q+ 6 trace(q) I = 0, (6.7.67)
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where the square brackets [ ]− denote the antisymmetric part of the enclosed tensor and the su-
perscript T denotes the matrix transpose. Combining the first equation in (6.7.58) with the first
equation in (6.7.65), we obtain

b =
3

4

β + 2

β + 3
(V −U), d =

1

4

β

β + 3
(U−V). (6.7.68)

The force exerted on the sphere is

F = −8πμab = −6πμa
β + 2

β + 3
(V −U). (6.7.69)

As β tends to zero, the Stokes-law coefficient of six tends to four, indicating a substantial reduction
in the drag force. Combining the second equation in (6.7.58) with equations (6.7.66) and (6.7.67),
we find that

[p]+ = −5

6

β + 2

β + 5
E, [p]− = −1

2

β

β + 3
Ξ, q =

1

6

β

β + 5
E, (6.7.70)

where Ξ is the vorticity tensor, Ξ = [A]−. Thus,

p = [p]+ + [p]− = − (4β2 + 20β + 15)A+ (β2 + 5β + 15)AT

6 (β + 3)(β + 5)
. (6.7.71)

The coefficient of the couplet inherent in the antisymmetric part of the Stokeslet dipole is

cSD
m = −εmjl a

3 [pjl]
− =

1

2
εmjl a

3 β

β + 3
Ajl = −a3

2

β

β + 3
ω∞
m , (6.7.72)

where ω∞ is the vorticity of the ambient linear flow. The torque experienced by the sphere is

T = −8πμ (a3 c+ cSD) = −4πμa3
β

β + 3
(2Ω− ω∞). (6.7.73)

A torque-free particle rotates with angular velocity that is equal to half the vorticity of the incident
flow. When β = 0, a rotating particle does not generate a flow and the torque vanishes.

6.7.7 Approximate singularity representations

Exact singularity representations are known only for a limited class of flows bounded by spherical or
spheroidal surfaces [86, 87, 208]. To derive approximate representations for more general flows and
arbitrary boundary shapes, we resort to asymptotic and numerical methods. The general strategy
is to express the flow in terms of discrete or continuous singularity distributions, and then compute
the coefficients of the singularities or densities of the distributions, and possibly their location, so as
to satisfy the required boundary conditions in some approximate sense.

Flow past a sphere

Burgers represented the flow due to a translating sphere in terms of a point force situated at the
center of the sphere and computed the strength of the point force by requiring that the mean
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velocity vanishes over the surface of the sphere ([61], p. 120). The approximate solution reproduces
precisely Stokes’ law (Problem 6.7.4(a)). The perfect agreement is explained by recalling that the
exact solution is composed by a Stokeslet and a potential dipole, and noting that average velocity
of the dipole is zero over the surface of a sphere. Burgers performed a similar computation for the
disturbance flow due to a sphere held stationary in a paraboloidal flow and found that the drag force
is still in perfect agreement with the exact solution which can be found readily using Faxén relations
discussed in Section 6.12 (Problem 6.7.4(b)).

Numerical methods

To develop a formal procedure for computing singularity representations, we introduce a positive
functional expressing the difference between the specified boundary conditions and the corresponding
boundary values computed using the singularity representation. When the problem requires that
u = V over a boundary, D, we introduce a positive functional F(u−V) that vanishes when u = V.
Other boundary conditions are implemented in a straightforward fashion.

The general strategy is to represent the velocity u in terms of a certain singularity distribution,
and then minimize the functional, F , with respect to the strength of the singularities and possibly
the location of their poles (e.g., [442]). When velocity boundary conditions are specified, a wise
choice is the least-squares collocation functional

F(u−V) =
M∑
i=1

|u(xi)−V(xi)|2, (6.7.74)

where xi, is a collection of M collocation points over D. Minimizing (6.7.74) with respect to the
strength of the singularities yields a system of linear equations. When the force or torque acting
on the boundary D are specified, the strengths of the singularities must satisfy additional linear
constraints originating from (6.6.10).

The least-squares collocation method has found extensive applications in a variety of numerical
studies of Stokes flow involving suspended particles. In certain cases, instead of using singularity ex-
pansions, it is more expedient to use alternative expansions in terms of spherical harmonic functions
([220], §335; [208], Chapter 13). A generalized implementation allows the singularities to relocate
as part of the optimization (e.g., [442]).

Problems

6.7.1 Flow due to a translating sphere

Derive the Stokes stream function (6.7.6) by solving the partial differential equation (6.1.19) subject
to appropriate boundary conditions.

6.7.2 Minimum resistance shapes

(a) Consider a family of spheroids with constant volume and variable aspect ratio, b/a. Compute
the aspect ratio of the spheroid with the minimum drag force in axial or transverse translation.

(b) Repeat (a) for the torque in the case of rotation around the spheroid major axis.
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6.7.3 Pressure on a sphere in irrotational or Stokes flow

Discuss the differences in the pressure distribution over the surface a rigid translating sphere under
conditions of potential or Stokes flow.

Computer Problem

6.7.4 Burgers solution

(a) Following Burgers [61], we represent the flow due to the translation of a sphere in terms of a
point force alone as

u(x) =
1

8πμ
S(x,x0) · b, (6.7.75)

where S is the Stokeslet located at the center of the sphere, x0. Compute the coefficient b by
requiring that the average fluid velocity on the surface of the sphere is equal to the velocity of
translation. Calculate the drag force exerted on the sphere and compare it with the exact value
given by Stokes’ law.

(b) Perform a similar computation for paraboloidal flow past a stationary sphere of radius a, with
velocity

uP =
U

a2
(
y2 + z2, 0, 0

)
, (6.7.76)

where U is a constant. Compare your result for the force exerted on the sphere with the exact value
given by the Faxén law, F = 4πμa [U, 0, 0] (Section 6.12).

6.8 The Lorentz reciprocal theorem and its applications

Consider two unrelated Navier–Stokes flows with velocity fields u and u′ and associated hydrody-
namic stress tensors, excluding hydrostatic pressure variations, σ̃ and σ̃′. A generalized reciprocal
theorem relating the two velocity and stress fields was stated in equation (3.5.22),

∂

∂xj

(
μ′u′

iσ̃ij − μuiσ̃
′
ij

)
= μ′u′ · ∇ · σ̃ − μu · ∇ · σ̃′, (6.8.1)

where μ and μ′ are the fluid viscosities. For simplicity, we omit the tilde above the hydrodynamic
stress, pressure, and traction. If both flows satisfy the Stokes equation, the right-hand side of (6.8.1)
is zero, yielding the Lorentz reciprocal identity [245]

∂

∂xj
(μ′u′

iσij − μuiσ
′
ij) = 0, (6.8.2)

which is the counterpart of Green’s second identity for two scalar harmonic potentials.

Assuming that the two Stokes flows of interest are free of singular points inside a control
volume, Vc, bounded by a surface, D, we integrate (6.8.2) over the control volume and use the
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divergence theorem to obtain ∫∫
D

(μ′u′
ifi − μuif

′
i) dS = 0, (6.8.3)

where f = n ·σ is the boundary traction and the unit normal vector n may point either into or out
of the control volume.

The reciprocal identities (6.8.2) and (6.8.3) allow us to obtain information about a certain
flow without explicitly solving the equations of Stokes flow, but merely by using information about
another flow. An alternative form of the reciprocal theorem involving the velocity and the pressure
is stated in Problem 6.8.1.

6.8.1 Flow past a stationary particle

As an application of the reciprocal theorem, we consider an arbitrary incident flow with velocity u∞

past a stationary particle. The particle causes a disturbance velocity, uD, which can be added to
the incident velocity to produce the total velocity, u = u∞ + uD.

Force

To compute the force exerted on the particle, we turn to (6.8.3) and identify u′ with the velocity
field generated when the particle translates with velocity V . Exploiting the linearity of the Stokes
equation, we express the corresponding traction exerted at the particle surface as

f t = −μRt · V , (6.8.4)

where Rt is a traction resistance matrix for translation indicated by the superscript t, not to be
confused with the matrix transpose.

Next, we select a control volume enclosed by the particle surface, denoted by P , and a surface
with large size enclosing the particle, denoted by S∞. Applying the reciprocal relation (6.8.3) for
the pair of flows ut and uD with equal fluid viscosities, we obtain∫∫

S∞,P

ut · fD dS =

∫∫
S∞,P

uD · f t dS. (6.8.5)

Letting the surface S∞ tend to infinity and noting that the velocity decays at least as fast as 1/d
and the traction decays at least as fast as 1/d2, where d is the distance from a designated particle
center, we find that the contribution of the surface integrals over S∞ disappears. Equation (6.8.5)
then yields

V · FD =

∫∫
P

uD · f t dS, (6.8.6)

where FD is the disturbance force exerted on the particle. In the absence of inertia, the force exerted
on any fluid volume by the ambient flow is zero and the disturbance force, FD, is equal to the total
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force, F. Enforcing the boundary condition u = 0 or uD = −u∞ on P and using (6.8.4), we finally
obtain

F = μ

∫∫
P

u∞ ·Rt dS. (6.8.7)

This expression allows us to compute the hydrodynamic force exerted on a stationary particle in
terms of the incident velocity over the particle surface and the traction resistance matrix for trans-
lation, Rt [56].

Torque

Next, we consider the torque exerted on a rigid particle that is held stationary in an ambient flow.
Repeating the previous steps for the force, we introduce a rotary traction resistance matrix , Rr,
defined by the equation

f r = −μRr ·O, (6.8.8)

where f r is the traction established when the particle rotates about a specified point, x0, with
angular velocity O. The analysis provides us with the counterpart of (6.8.7) for the torque with
respect to x0,

T = μ

∫∫
P

u∞ ·Rr dS. (6.8.9)

This expression allows us to evaluate the hydrodynamic torque exerted on a stationary particle in
terms the incident velocity over the particle surface and the traction resistance matrix for rotation,
Rr [56].

Spherical particle

As an application, we use expressions (6.7.11) and (6.7.32) for the traction on a spherical particle of
radius a, and deduce the translational and rotary traction resistance matrices

Rt
ij =

3

2

1

a
δij , Rr

ij =
3

a
εijk x̂k, (6.8.10)

where x̂ = x − x0 is the distance from the particle center, x0. Substituting these expressions into
(6.8.7) and (6.8.9), we obtain

F =
3

2

μ

a

∫∫
P

u∞ dS, T = 3
μ

a

∫∫
P

x̂× u∞ dS. (6.8.11)

Because the matrix Rt is constant and diagonal, the force is proportional to the surface average of
the incident velocity, u∞.

Flow in a bounded domain

Similar results are obtained for an incident flow past a particle that is held stationary in a bounded
domain of flow. For example, the force and torque exerted on the particle that is held stationary
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inside a tube can be computed from knowledge of the traction exerted on the particle when it
translates or rotates in an otherwise stationary fluid inside the tube.

Generalized Faxén laws

Equations (6.8.7) and (6.8.9) constitute one version of the generalized Faxén laws for the force and
torque. Other versions of the Faxén law s producing the force, torque, and higher moments of the
traction in terms of the incident velocity and its spatial derivatives evaluated at specific points inside
a particle are discussed in Section 6.12.

6.8.2 Force and torque on a moving particle

Next, we consider a flow with velocity u∞ past a suspended rigid particle that translates with linear
velocity V while rotating about a point x0 with angular velocity Ω. The presence or motion of the
particle generates a disturbance velocity, uD, which can be added to the incident velocity to yield
the total velocity, u = uD + u∞.

Force and torque from the resistance problem

Applying the reciprocal identity for the disturbance flow and the flow produced when the particle
translates in an otherwise quiescent fluid with velocity V , we derive equation (6.8.6). Enforcing the
boundary condition of rigid-body motion, u = V +Ω× (x− x0), restated as

uD = V +Ω× (x− x0)− u∞, (6.8.12)

and recalling that the disturbance force is equal to the total force, we obtain

V · Ft +Ω ·Tt =

∫∫
P

u∞ · f t dS + V · F, (6.8.13)

where Ft and Tt are the force and torque with respect to the point x0 exerted on the particle when
it translates with velocity V . Working in a similar fashion in the case of particle rotation, we obtain
the corresponding equation

V · Fr +Ω ·Tr =

∫∫
P

u∞ · fR dS +O · F, (6.8.14)

where Fr and Tr are the force and torque with respect to the point x0 exerted on the particle when
it rotates around the point x0 with angular velocity O.

Now we take advantage of the linearity of the equations of Stokes flow with respect to the
boundary conditions and write

Ft = −μX · V , Tt = −μZ · V , Fr = −μW ·O, Tr = −μY ·O, (6.8.15)

where X, Z are resistance matrices for translation and W, Y are resistance matrices for rotation.
Using the reciprocal theorem, we may show that the resistance matrices X and Y are symmetric
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and Z is the transpose of W, W = ZT (Problem 6.8.3). Using the definitions (6.8.15), we recast
(6.8.13) and (6.8.14) into the forms

V ·X+Ω · Z =

∫∫
P

u∞ ·Rt dS − 1

μ
F,

V · ZT +Ω ·Y =

∫∫
P

u∞ ·Rr dS − 1

μ
T.

(6.8.16)

Given the force, F, and torque, T, exerted on the particle and the resistance matrices for translation
and rotation, we obtain a linear system of equations for the particle translational and rotational
velocities, V and Ω.

Force and torque from the mobility problem

Consider a force-free and torque-free rigid particle convected in an ambient flow with velocity u∞.
Applying the reciprocal theorem, we find that the particle velocity of translation, V, and angular
velocity of rotation, Ω, satisfy the equations

V · F =

∫∫
P

u∞ · fF dS, Ω ·T =

∫∫
P

u∞ · fT dS, (6.8.17)

where fF and fT are the tractions exerted on the particle when it moves under the influence of an
external force, F, or an external torque, T (Problem 6.8.4). An important consequence of (6.8.17)
is that the translational and angular velocities of a force-free and torque-free particle immersed in
an arbitrary ambient flow can be computed from the distribution of the incident velocity over the
particle surface and the traction exerted on the particle surface when it moves under the influence
of an external force or torque.

6.8.3 Symmetry of Green’s functions

An important consequence of the reciprocal theorem is the symmetry of the Green’s functions of
Stokes flow,

Gij(x,x0) = Gij(x,x0). (6.8.18)

Analogous symmetry properties exist for the Green’s functions of potential flow, linear elastostatics
and, more generally, for the Green’s function of linear, elliptic partial differential equations involving
self-adjoint differential operators. Physically, the symmetry property states that the velocity at a
point, x, due to a point force at another point, x0, can be deduced from the velocity at the point
x0 due to a point force located at x.

To prove (6.8.18), we introduce the velocity fields induced by two point forces located at x1

and x2 with strengths b(1) and b(2), given by

u
(1)
i =

1

8πμ
Gij(x,x1) b

(1)
j , u

(2)
i =

1

8πμ
Gij(x,x2) b

(2)
j , (6.8.19)
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S
B

x2

x1

Figure 6.8.1 Illustration of two point forces near a boundary, SB , introduced to prove the symmetry
of the Green’s functions of Stokes flow.

as illustrated in Figure 6.8.1. The corresponding stress fields satisfy the equations

∂σ
(1)
ij

∂xj
= −b

(1)
i δ3(x− x(1)),

∂σ
(2)
ij

∂xj
= −b

(2)
i δ3(x− x(2)), (6.8.20)

where δ3 is the three-dimensional delta function. Substituting these expressions into the right-hand
side of (6.8.2) with equal fluid viscosities, μ′ = μ, we obtain

∂

∂xj
(u

(2)
i σ

(1)
ij − u

(1)
i σ

(2)
ij )

= − 1

8πμ

[
Gik(x,x

(2)) b
(2)
k b

(1)
i δ3(x− x(1))− Gik(x,x

(1)) b
(2)
k b

(2)
i δ3(x− x(2))

]
. (6.8.21)

Next, we integrate (6.8.21) over a control volume that is confined by a solid boundary where the
Green’s functions are required to be zero, SB, two spherical surfaces of infinitesimal radii enclosing
x1 and x2, and, in the case of infinite flow, a large surface enclosing SB as well as the points x1

and x2. Using the divergence theorem, we convert the volume integral on the left-hand side of the
resulting equation into a surface integral over all surfaces enclosing the control volume.

The surface integral over SB vanishes because the Green’s function and hence the velocities
u(1) and u(2) are zero over SB . Letting the radius of the large surface tend to infinity and the radii
of the small spheres enclosing x1 and x2 to zero, we find that the corresponding surface integrals
make insignificant contributions. As a result, the whole integral of the left-hand side of (6.8.21)
vanishes. Using the properties of the delta function to manipulate the right-hand side, we finally
arrive at the equation

b
(1)
k b

(2)
i

[
Gki(x1,x2)− Gik(x2,x1)

]
= 0. (6.8.22)

Property (6.8.18) follows by observing that the constants b(1) and b(2) are arbitrary.

Repeating this procedure with some modifications, we can show that the two-dimensional
Green’s functions also satisfy the symmetry property (6.8.18) (Problem 6.8.5).
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Figure 6.8.2 Illustration of a point force inside cylindrical tube with arbitrary cross-section. The
corresponding flow affords one degree of freedom determining the axial flow rate or pressure drop.

6.8.4 Pressure drop due to a point force in a tube

Consider a point force located at the point x0 inside an infinite cylindrical tube with arbitrary
cross-section whose generators are parallel to the x axis, as shown in Figure 6.8.2. Applying the
reciprocal theorem for (a) the flow induced by the point force expressed by a corresponding Green’s
function, and (b) unidirectional pressure-driven flow indicated by the superscript P , we find that

∂

∂xj
[uP

i (x)
1

8π
Tikj(x,x0)−

1

8πμ
Gik(x,x0)σ

P
ij(x) ] = −up

i (x) δ3(x− x0), (6.8.23)

where k is a free index indicating the direction of the point force. We will assume that the velocity
generated by the point force decays far upstream and downstream, and the pressure tends to a
constant value far from the point force, so that

Pj(x → ±∞,x0) → α±∞
8π

a2
δjx, Tijk(x → ±∞,x0) → −α±∞

8π

a2
δjx δik, (6.8.24)

where α±∞ are dimensionless constants and a is a specified length. These circumstances arise if the
tube is closed at both ends.

Next, we integrate (6.8.23) over a volume of fluid inside the tube bounded by a far upstream
cross-sectional surface, D+, and a far downstream cross-sectional surface, D−. Using the divergence
theorem, we convert the volume integral into a surface integral. Recalling that uP and G are both
zero when the point x lies at the tube surface, and observing that G is virtually zero on D±∞ due
to the fast decay of the flow due to a point force, we find that∫∫

D±

uP
i (x) Tikj(x,x0)nj(x) dS(x) = 8π up

i (x0), (6.8.25)

where n is the unit normal vector pointing into the control volume. Evaluating the integral using
(6.8.24), we obtain (α+∞ − α−∞)Qp = a2up

i (x0), where

Qp =

∫∫
D−∞

uP · n dS (6.8.26)
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Figure 6.8.3 Illustration of a periodic array of two-dimensional point forces above a plane wall.

is the axial flow rate of the pressure-driven flow. Rearranging, we derive an expression for the
pressure drop due to a point force inside a closed tube,

α+∞ − α−∞ =
a2

Qp
up
i (x0). (6.8.27)

This pressure drop induces a back flow that cancels the forward flow induced by the point force.
The functional dependence of the pressure drop on the position of the point force is precisely that
exhibited by the velocity profile of the corresponding pressure-driven flow.

Flow in a circular tube

In the case of flow through a circular tube of radius a, we use the parabolic Poiseuille flow profile
and find that

α+∞ − α−∞ = 2
a2 − σ2

0

a2
, (6.8.28)

where σ0 is the distance of the point force from the centerline.

6.8.5 Streaming flow due to an array of point forces above a wall

Consider a periodic array of two-dimensional point forces located at a sequence of points xl parallel to
an infinite plane wall positioned at y = 0, as illustrated in Figure 6.8.3, where l = −∞, . . . , 0, . . . ,∞.
Applying the reciprocal theorem for (a) the flow induced by the periodic array expressed in terms of
the corresponding periodic Green’s function, and (b) unidirectional simple shear flow with velocity
ussfx = ξy, ussf

y = 0, we obtain

∂

∂xj
[ussf

i (x)
1

4π
Tikj(x,x0)−

1

4πμ
Gik(x,x0)σ

ssf
ij (x) ] = −ussf

i (x)
∞∑

l=−∞

δ2(x− xl), (6.8.29)

where k is a free index indicating the direction of the point forces and δ2 is the two-dimensional
delta function.
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When the point forces are perpendicular to the wall, the induced velocity decays far from the
wall. When the point forces are parallel to the wall, the induced velocity tends to a constant value
far from the wall,

Gij(x,x0) → 4πα δix δjx, (6.8.30)

as y → ∞, where α is a dimensionless constant. The corresponding pressure and stress fields decay
at an exponential rate.

Next, we integrate (6.8.29) over one period of the flow confined between the wall and a periodic
line far above the wall, C, and use the divergence theorem to convert the areal integral into a line
integral along the boundary of one period of the flow. Noting that the net contribution of the
periodic segments is zero and recalling that ussf and G are zero when x lies on the wall, we obtain∫

C

Gik(x,x0)σ
ssf
ij (x)nj(x) dl(x) = 4πμussf

i (x0), (6.8.31)

where n is the unit normal vector pointing outward from the control volume. Substituting (6.8.30)
and evaluating the stress field of the simple shear flow, we find that

αξL = ussf
i (x0), (6.8.32)

where L is the point force separation. Rearranging, we find that

α =
y0
L
. (6.8.33)

We have shown that the velocity of the streaming flow induced by an array of point forces parallel
to a wall is proportional to the distance of the point forces from the wall.

The results are readily generalized to the flow induced by a doubly periodic array of three-
dimensional point forces arranged in a Bravais lattice parallel to an infinite plane wall located at
x = 0. The counterpart of (6.8.30) is

Gij(x,x0) → 8π
x0√
A

Jij , (6.8.34)

where x0 is the distance of the point forces from the wall, J is the identity matrix except that the
first diagonal element is set to zero, and A is the area occupied by one periodic cell in the yx plane
parallel to the wall.

Problems

6.8.1 Alternative statement of the reciprocal theorem

Show that two Stokes flows of a certain fluid with velocity u and u′ and corresponding hydrodynamic
pressure fields p and p′ satisfy the alternative reciprocal relation [166]

∂

∂xk

[
u′
i

(
− δikp+ μ

∂ui

∂xk

)
− ui

(
− δikp

′ + μ
∂u′

i

∂xk

)]
= 0. (6.8.35)
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6.8.2 Faxén laws

(a) Prove equation (6.8.9).

(b) Departing from (6.8.11), show that the force exerted on a spherical particle of radius a placed
at the axis of a paraboloidal flow with velocity u∞ = U [(y/a)2 + (z/a)2, 0, 0] is F = 4πμUa[1, 0, 0].

6.8.3 Symmetry of the resistance tensors

Use the reciprocal theorem to show that the resistance matrices X and Y introduced in (6.8.15) are
symmetric, and W is the transpose of Z [54, 55].

6.8.4 Force and torque from the mobility problem

Prove equations (6.8.17).

6.8.5 Symmetry of the two-dimensional Green’s functions

Prove that the two-dimensional Green’s functions satisfy the symmetry property (6.5.12). The
proof presents an apparent but not essential difficulty due to the possible divergence of the Green’s
functions at infinity [306].

6.9 Boundary-integral representation of Stokes flow

The solution of linear, elliptic, and homogeneous partial differential equations can be represented
in terms of boundary integrals involving the unknown function and its derivatives (e.g., [386, 387]).
One example is the boundary-integral representation of harmonic functions discussed in Section 2.3.
Another example is Somigliana’s identity for the displacement field in linear elastostatics (e.g., [247],
p. 245; [295]). In the case of Stokes flow, we obtain a boundary-integral representation involving
the boundary values of the velocity and traction.

Reciprocal theorem with a point force

A convenient starting point for deriving the boundary-integral representation is the Lorentz recip-
rocal identity (6.8.2) applied for a particular flow of interest with velocity u and stress σ, and the
flow due to a point force with strength b located a point, x0, with velocity and stress fields

u′
i(x) =

1

8πμ
Gij(x,x0) bj , σ′

ik(x) =
1

8π
Tijk(x,x0) bj . (6.9.1)

Substituting these expressions into (6.8.2) with μ = μ′ and discarding the arbitrary constant b, we
obtain the equation

∂

∂xk

(
Gij(x,x0)σik(x)− μui(x) Tijk(x,x0)

)
= 0, (6.9.2)

which is valid everywhere except at the singular point, x0.

Reciprocal identity with a point force

Next, we select a control volume, Vc, bounded by a closed, singly or multiply connected surface, D,
consisting of fluid surfaces, fluid interfaces, or solid surfaces, as illustrated in Figure 6.9.1, and place
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Figure 6.9.1 A control volume used to derive the boundary-integral representation of Stokes flow and
associated integral equations.

the point force outside the control volume. Noting that the function inside the large parentheses in
(6.9.2) is nonsingular throughout Vc, we integrate (6.9.2) over Vc and use the divergence theorem to
convert the volume integral over Vc into a surface integral over D, obtaining∫∫

D

[Gij(x,x0)σik(x)− μui(x) Tijk(x,x0) ]nk(x) dS(x) = 0. (6.9.3)

In equation (6.9.3) as well as in all subsequent equations, the unit normal vector, n, points into the
control volume, Vc.

Integral representation

Now we place the point x0 inside the control volume, Vc, and introduce a small spherical volume
Vε of radius ε centered at x0. The function inside the square brackets in (6.9.2) is nonsingular
throughout the reduced volume, Vc − Vε. Integrating (6.9.2) over Vc − Vε and using the divergence
theorem to convert the volume integral into a surface integral, we obtain∫∫

D,Sε

[Gij(x,x0)σik(x)− μui(x) Tijk(x,x0)]nk(x) dS(x) = 0, (6.9.4)

where Sε is the spherical surface enclosing the volume Vε, as illustrated in Figure 6.9.1. Letting
the radius ε shrink to zero, we find that, to leading order in ε, the tensors G and T reduce to the
Stokeslet and its associated stress tensor,

Gij �
δij
ε

+
x̂ix̂j

ε3
, Tijk � −6

x̂ix̂j x̂k

ε5
, (6.9.5)

where x̂ = x − x0. Over Sε, the normal vector is n = 1
ε x̂ and the differential surface area is

dS = ε2dΩ, where Ω is the differential solid angle. Substituting these expressions along with (6.9.5)
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into (6.9.4), we obtain∫∫
D

[
Gij(x,x0)σik(x)− μui(x) Tijk(x,x0)

]
nk(x) dS(x)

= −
∫∫

Sε

[ (δij
ε

+
x̂ix̂j

ε3

)
σik(x) + 6μui(x)

x̂ix̂j x̂k

ε5
]
x̂k dS(x) = 0. (6.9.6)

As ε → 0, u and σ over Sε tend to their respective values at the center of the small volume Vε, which
are u(x0) and σ(x0). Since x̂ decreases linearly with ε as ε → 0, the contribution of the stress term
inside the integral on the right-hand side of (6.9.6) decreases linearly with ε whereas the contribution
of the velocity term tends to a constant value. Thus, in the limit ε → 0, equation (6.9.6) becomes∫∫

D

[Gij(x,x0)σik(x)− μui(x) Tijk(x,x0)]nk(x) dS(x) = −6μui(x0)
1

ε4

∫∫
Sε

x̂ix̂j dS(x). (6.9.7)

Using the divergence theorem, we compute∫∫
Sε

x̂ix̂j dS(x) = ε

∫∫
Sε

x̂inj dS(x) = ε

∫∫∫
Vε

∂x̂i

∂x̂j
dS(x) = δij

4π

3
ε4. (6.9.8)

Substituting this expression into (6.9.7), we obtain

uj(x0) = − 1

8πμ

∫∫
D

Gij(x,x0) fi(x) dS(x) +
1

8π

∫∫
D

ui(x) Tijk(x,x0)nk(x) dS(x), (6.9.9)

where f = σ · n is the boundary traction.

Equation (6.9.9) provides us with an integral representation of the velocity field in terms of
boundary distributions of the Green’s function, G, and associated stress tensor, T . The densities
of these distributions are proportional, respectively, to the boundary values of the traction and
velocity. Making an analogy with corresponding results in the theory of electrostatics, we term
the first distribution involving the boundary traction the single-layer potential, and the second
distribution involving the boundary velocity the double-layer potential.

Physical interpretation

The symmetry property (6.5.12) allows us to switch the order of the indices of the Green’s function
in the single-layer potential, provided that we also switch the order of the arguments, x and x0,
obtaining

uj(x0) = − 1

8πμ

∫∫
D

Gji(x0,x)fi(x) dS(x) +
1

8π

∫∫
D

ui(x) Tijk(x,x0)nk(x) dS(x). (6.9.10)

It is now evident that the single-layer potential represents a boundary distribution of point forces
with surface strength equal to −f . The physical interpretation of the double-layer potential will be
discussed later in this section.
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Flow in an infinite domain

Mathematical idealization produces entirely or partially unbounded domains of flow. Two examples
are the flow due the motion of a small particle in an infinitely dilute suspension, and semi-infinite
shear flow over a wall containing a solitary depression or projection. To apply the boundary integral
equation, we select a control volume that is confined by a solid or fluid boundary, B, and a large
surface extending to infinity, S∞. If the fluid is quiescent at infinity, the velocity must decay at least
as fast as 1/d and the pressure and stress must decay at least as fast as 1/d2, where d is a typical
distance from B, as discussed in Section 6.1. Since the Green’s function decays at least as fast as
1/d and the associated stress tensor decays at least as fast as 1/d2, as S∞ expands to infinity, the
single- and double-layer potentials make vanishing contributions. As a result, the domain D of the
boundary-integral equation is conveniently reduced to B.

Simplification with the use of proper Green’s functions

The domain of integration of the single- and double-layer potentials consists of all fluid and solid
surfaces enclosing a selected volume of flow. If the velocity happens to vanish over a portion of the
boundary, the corresponding double-layer integral does not make a contribution to the double-layer
potential. Similarly, if the surface force happens to vanish over another portion of the boundary,
the corresponding single-layer integral does not make a contribution to the single-layer potential. A
further reduction in the domain of integration is possible by using a Green’s function that observes
the symmetry, periodicity, or other special features of the flow.

Consider a flow that is bounded by an internal or external solid stationary surface, B. Since the
velocity is zero over B, the corresponding double-layer integral does not appear. To also eliminate
the single-layer potential, we use a Green’s function that vanishes over B, that is, G(x,x0) = 0

when x is on B. In this way, B is conveniently excluded from the domain of the boundary-integral
equation.

Integral identities

Useful identities can be derived by applying the boundary-integral equation for simple flows that
are known to be exact solutions of the equations of Stokes flow. In the case of rigid-body motion
with translational velocity V and angular velocity Ω, the fluid velocity is u = V + Ω × x̂, where
x̂ = x−xc and xc is the center of rotation. Setting f = −pn, where p is the constant hydrodynamic
pressure, we derive the identities∫∫

D

Tijk(x,x0)nk(x) dS(x) = 8πα δij (6.9.11)

and

εilm

∫∫
D

x̂m Tijk(x,x0)nk(x) dS(x) = 8πα εjlm x̂0m
, (6.9.12)

where D is the smooth boundary of an arbitrary control volume, x̂0m denotes the mth component
of x0, and α = 1 or 0 depending on whether the point x0 is located inside or outside D. These
equations reiterate identities (6.5.10) and (6.5.11). Similar identities can be written for linear or
parabolic flow.



6.9 Boundary-integral representation of Stokes flow 459

6.9.1 Flow past a translating and rotating rigid particle

In the particular case of flow past a stationary or moving rigid particle, the boundary-integral
representation is amenable to an important simplification. We start by decomposing the velocity,
u, into an undisturbed component prevailing in the absence of the particle, u∞, and a disturbance
component due to the particle, uD, so that u = u∞ + uD. On the surface of the particle, the fluid
velocity is u = V +Ω × (x − xc) and the disturbance velocity is uD = −u∞ +V +Ω × (x − xc),
where V is the velocity of translation and Ω is the angular velocity of rotation about the point xc.
Applying the integral representation (6.9.10) for the disturbance flow, neglecting the integrals at
infinity due to their decay and simplifying, we find that, for a point x0 in the flow,

uD
j (x0) = − 1

8πμ

∫∫
P

fD
i (x)Gij(x,x0) dS(x) +

1

4π

∫∫
P

u∞
i (x) Tijk(x,x0)nk(x) dS(x), (6.9.13)

where P is the particle surface. Since the point x0 lies in the exterior of the control volume occupied
by the particle, we may use the reciprocal identity (6.9.1) for the incident flow u∞ to write

μ

∫∫
P

u∞
i (x) Tijk(x,x0)nk(x) dS(x) =

∫∫
P

f∞
i (x)Gij(x,x0) dS(x). (6.9.14)

Now combining the two representations to eliminate the double-layer integral from the right-hand
side of (6.9.13) and adding the incident velocity field u∞ to both sides of the resulting equation, we
derive a simplified single-layer representation,

uj(x0) = u∞
j (x0)−

1

8πμ

∫∫
P

fi(x)Gij(x,x0) dS(x). (6.9.15)

The disturbance velocity field is represented by a surface distribution of point forces whose strength
density is the boundary traction.

Behavior of the flow far from a particle

To study the behavior of the flow far from a particle, we expand the Green’s function in a Taylor
series with respect to x about a chosen point, xc, that is located somewhere in the vicinity or inside
the body, and derive a multipole expansion for the velocity,

uj(x0) = u∞
j (x0)−

1

8πμ

(
Gji(x0,xc)

∫∫
P

fi(x) dS(x)

+
∂Gij

∂xck

(x0,xc)

∫∫
P

(xk − xc,k) fi(x) dS(x) + · · ·
)
. (6.9.16)

The first integral on the right-hand side of (6.9.16) is the force exerted on the particle, F. The
second integral is the first moment of the boundary traction. Subsequent integrals express higher
moments of the boundary traction.

The first term on the right-hand side of (6.9.16) represents the flow due to a point force. The
second term represents the flow due to a point-force dipole. Subsequent terms represent the flow
due to point-force quadruples and higher-order multipoles. The coefficient of the point-force dipole,
q, can be decomposed into the coefficient of the stresslet, s, and an antisymmetric component, r,
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amounting to a torque mediating couplet, as discussed in Section 6.6.2. Equation (6.9.16) shows
that, far from a particle, the disturbance flow due to the particle is similar to that due to a point
force with strength −F. When F = 0, the far flow is similar to that produced by a point-force
dipole. Consequently, in the case of flow in an infinite domain, the disturbance flow decays as 1/d
or 1/d2, respectively, for F �= 0 or F = 0, where d is the distance from the particle center.

Translating sphere

Substituting into (6.9.15) the expression for the traction exerted on a sphere translating with velocity
V in an infinite quiescent fluid, given in (6.7.11), we obtain

uj(x0) =
3

16πa
Vi

∫∫
Sphere

Sij(x,x0) dS(x), (6.9.17)

where Sij is the Stokeslet. Substituting into the left-hand side the singularity representation (6.7.1)
expressed in the form

uj(x0) = Vi

( 3
4
a+

1

8
a3 ∇2

0

)
Sij(x0,xc), (6.9.18)

discarding the arbitrary velocity Vi, and rearranging, we obtain the identity

1

4πa2

∫∫
Sphere

Sij(x,x0) dS(x) =
(
1 +

1

6
a2 ∇2

c

)
Sij(x0,xc), (6.9.19)

where xc is the center of the sphere, the gradient ∇c involves derivatives with respect to xc, and
the point x0 lies outside the sphere. This expression is consistent with the mean-value theorem for
biharmonic functions stated in (2.4.14).

For a point x0 that lies inside the sphere, the representation (6.9.17) yields uj(x0) = Vj , and
we find that ∫∫

Sphere

Sij(x,x0) dS(x) =
16

3
πa δij , (6.9.20)

independent of the precise position of x0 inside the sphere. This identity can be confirmed readily
when the point x0 is the center of the sphere.

6.9.2 Significance of the double-layer potential

We return to discussing the physical significance of the double-layer potential involving the stress
tensor of the Green’s function, Tijk. Decomposing the stress tensor into its pressure and viscous
constituents using (6.5.4), we obtain∫∫

D

ui(x) Tijk(x,x0)nk(x) dS(x) = −
∫∫

D

Pj(x,x0)
(
u · n

)
(x) dS(x)

+

∫∫
D

∂Gji(x,x0)

∂xk
(uink + ukni)(x) dS(x). (6.9.21)

The second integral on the right-hand side represents a distribution of symmetric point-force dipoles.
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Interpretation of the pressure vector as a point source

Consider the first integral on the right-hand side of (6.9.21) in the case of an entirely or partially
infinite domain of flow. Since the boundary velocity distribution is arbitrary, the pressure vector,
P(x,x0), must represent the velocity field of a Stokes flow. In fact, inspecting the behavior of the
pressure near the point force reveals that P(x,x0) represents the velocity at the point x0 due to a
point source located at the point x. It is now evident that the first integral on the right-hand side
of (6.9.21) represents a distribution of point sources whose density is proportional to the normal
component of the fluid velocity, u ·n. This contribution vanishes over a solid boundary where u = 0

and over a stationary fluid interface where u · n = 0.

Using the definition of the Green’s function and the symmetry property of the velocity Green’s
function tensor, we write

∂Pj(x,x0)

∂xk
= ∇2Gjk(x0,x). (6.9.22)

This equation reveals that all derivatives of the pressure can be expressed in terms of the Laplacian
of the Green’s function.

Interior and triply periodic flow

The interpretation of the pressure Green’s function discussed earlier in this section does not apply in
the case of a completely enclosed or triply periodic domain of flow. The reason is that the velocity
distribution is subject to the constraint of zero flow rate across the boundary. Consequently, P(x,x0)
may no longer be interpreted as the flow due to a point source.

6.9.3 Flow due to a stresslet

Our discussion has shown that the stress tensor associated with a point force in an entirely or
partially infinite, but not completely enclosed, domain of flow represents a fundamental solution of
Stokes flow. Specifically, the pair

uj(x0) =
1

16πμ
Tijk(x,x0) sik, p(x0) =

1

8π
PΣ
ik(x,x0) sik (6.9.23)

represents the velocity and pressure field at the point x0 due to a stresslet with strength s placed
at the point x, where PΣ is the corresponding pressure tensor. In the case of the free-space Green’s
function, the pressure tensor due to the stresslet is

PSTR
ik (x,x0) = −2

δik
r3

+ 6
x̂ix̂k

r5
, (6.9.24)

as shown in the first entry of Table 6.6.3.

6.9.4 Boundary-integral representation for the pressure

The interpretation of the double-layer potential in terms of point sources and point-force dipoles mo-
tivates a boundary-integral representation of the pressure in terms of two distributions corresponding
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to the single- and double-layer potentials,

p(x0) = − 1

8π

∫∫
D

Pi(x,x0) fi(x) dS(x) +
μ

4π

∫∫
D

ui(x)PΣ
ik(x,x0)nk(x) dS(x). (6.9.25)

The vector P and tensor PΣ express the pressure corresponding to the Green’s function and asso-
ciated stress tensor expressing a stresslet.

6.9.5 Flow past an interface

Consider a flow with velocity u∞ past a closed fluid interface representing a bubble, drop, capsule,
or cell. The boundary-integral representation (6.9.10) at a point x0 outside the interface for the
disturbance flow indicated by the superscript D becomes

uD
j (x0) = − 1

8πμ

∫∫
I

Gji(x0,x) f
D
i (x) dS(x) +

1

8π

∫∫
I

uD
i (x) Tijk(x,x0)nk(x) dS(x), (6.9.26)

where I denotes the interface. Since the point x0 is located in the exterior of the interface, we may
use the reciprocal identity (6.9.1) for the incident flow u∞ to write∫∫

I

Gji(x0,x) f
∞
i (x) dS(x) = μ

∫∫
I

u∞
i (x) Tijk(x,x0)nk(x) dS(x). (6.9.27)

Combining the last two representations to formulate the total velocity and traction, u = u∞ + uD

and f = f∞ + fD, and adding the incident velocity field u∞ to both sides of the resulting equation,
we obtain

uj(x0) = u∞
j (x0)−

1

8πμ

∫∫
I+

Gji(x0,x) fi(x) dS(x) +
1

8π

∫∫
I+

ui(x) Tijk(x,x0)nk(x) dS(x). (6.9.28)

The notation I+ emphasizes that the velocity and traction are evaluated on the outer side of the
interface indicated by the normal vector, n.

Behavior of the flow far from an interface

To study the behavior of the flow far from a closed interface, we expand the Green’s function in a
Taylor series with respect to x about a chosen point, xc, located somewhere in the vicinity or inside
the interface, and derive a multipole expansion for the velocity,

uj(x0) = u∞
j (x0)−

1

8πμ

(
Gji(x0,xc)

∫∫
I+

fi(x) dS(x)

+
∂Gij

∂xck

(x0,xc)

∫∫
I+

[(xk − xc,k) fi(x)− μ(ukni + uink)(x)] dS(x) + · · ·
)

− 1

8π
Pj(xc,x0)

∫∫
I

u · n dS + · · · . (6.9.29)

The first series on the right-hand side contains multipoles of the point force, while the second series
contains multipoles of the pressure. It is evident now that the pressure term P(xc,x0) represents



6.9 Boundary-integral representation of Stokes flow 463

the velocity field at the point x0 due to a point source at the point xc, in agreement with our earlier
observations. Formula (6.9.22) suggests that all terms after the first term in the second series on the
right-hand side of (6.9.29) can be incorporated into the first series. Consequently, the disturbance
flow far from the interface can be represented in terms of an expansion of multipoles of the point
force supplemented by a point source.

6.9.6 Flow past a liquid drop or capsule

Consider a flow with velocity u∞ and viscosity μ past a liquid drop, capsule, or cell that contains
a fluid with viscosity λμ. The velocity at a point in the ambient fluid, x0, is given by the integral
representation (6.9.28). Applying the reciprocal theorem at that point for the interior flow, we
obtain

1

8πλμ

∫∫
I−

Gji(x0,x) fi(x) dS(x) =
1

8π

∫∫
I−

ui(x) Tijk(x,x0)nk(x) dS(x), (6.9.30)

where I− denotes the interior side of the interface. Combining (6.9.28) with (6.9.30) to formulate
the jump in the traction across the interface, Δf ≡ f+ − f−, and assuming that the velocity is
continuous across the interface, we derive the integral representation

uj(x0) = u∞
j (x0)−

1

8πμ

∫∫
I

Gji(x0,x)Δfi(x) dS(x) +
1− λ

8π

∫∫
I

ui(x) Tijk(x,x0)nk(x) dS(x),

(6.9.31)

where n is the unit normal vector pointing into the ambient fluid. In the case of equal viscosities,
λ = 1, the double-layer integral does not appear.

Since the force on the exterior side of the interface is equal to the force on the interior side
of the interface to satisfy global equilibrium, and since the particle volume is fixed, the multipole
expansion (6.9.29) simplifies into

uj(x0) = u∞
j (x0) +

∂Gij

∂xck

(x0,xc) pik + · · · , (6.9.32)

where

pik =

∫∫
I+

[
(xk − xc,k)Δfi(x)− μ(1− λ) (ukni + uink)(x)

]
dS(x). (6.9.33)

In the case of equal fluid viscosities, λ = 1, the second term inside the integral does not appear.

Working in a similar fashion, we find that the velocity field in the interior of a drop, capsule,
or cell is given by the right-hand side of (6.9.31), provided that all terms, including the first term
representing the ambient flow, are divided by the viscosity ratio, λ ([306], Chapter 5).

6.9.7 Axisymmetric flow

In the case of axisymmetric flow, we express the Cartesian velocity and traction components in terms
of their radial and meridional counterparts, and perform the integration in the azimuthal direction,
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ϕ, to reduce the surface integrals into line integrals along the boundary contour in an azimuthal
plane. The corresponding kernels of the single- and double-layer potential involve complete elliptical
integrals arising from integrals with respect to the azimuthal angle, ϕ. Further discussion and specific
expressions can be found elsewhere (e.g., [306, 313]).

6.9.8 Two-dimensional flow

To derive the boundary-integral representation of two-dimensional Stokes flow, we repeat our earlier
steps for three-dimensional flow. Applying the reciprocal theorem, we find that∮

C

Gij(x,x0) fi(x) dl(x) = μ

∮
C

ui(x) Tijk(x,x0)nk(x) dl(x), (6.9.34)

where the point x0 lies outside a selected domain of flow enclosed by the contour C, and l is the arc
length along C. For a point x0 located inside the selected domain of flow, we obtain the boundary-
integral representation

uj(x0) = − 1

4πμ

∮
C

Gij(x,x0) fi(x) dl(x) +
1

4π

∮
C

ui(x) Tijk(x,x0)nk(x) dl(x), (6.9.35)

where the unit normal vector, n, points into the domain of flow. All properties, interpretations, and
simplifications of the boundary-integral equation discussed earlier for three-dimensional flow also
apply to two-dimensional flow. Exceptions arise in the case of infinite flow past a body and flow
produced by the motion of a body in an infinite fluid. In both cases, if the force exerted on the
body is nonzero, the disturbance velocity far from the body increases at a logarithmic rate and the
boundary integrals at infinity may not be overlooked.

The pressure vector, P , and stress tensor, T , associated with a Green’s function for an entirely
or partially infinite domain of flow constitute two fundamental solutions of Stokes flow. Specifically,
P(x,x0) represents the velocity at the point x0 due to a two-dimensional point source located at x.
Similarly, the flow given in (6.9.23) represents the velocity at the point x0 due to a two-dimensional
stresslet located at x. The corresponding pressure field may be expressed in terms of a pressure
tensor PSTR, as shown in (6.9.23). In the case of flow in infinite space,

PSTR
ik (x,x0) = −2

δik
r2

+ 4
x̂ix̂k

r4
. (6.9.36)

The pressure field of a two-dimensional Stokes flow can be expressed in terms of two distributions
corresponding to the single- and double-layer potentials,

p(x0) = − 1

4π

∮
C

Pi(x,x0) fi(x) dl(x) +
μ

4π

∮
C

ui(x)PSTR
ik (x,x0)nk(x) dl(x). (6.9.37)

The vector P and tensor PSTR express the pressure field corresponding to the Green’s function and
associated stress tensor representing a stresslet.
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Problems

6.9.1 Reciprocal theorem with a point force

Derive the boundary integral representation (6.9.10) on the basis of (6.5.7) using the properties of
the delta function without reference to the small volume Vε.

6.9.2 Alternative boundary integral representation

Integrate (6.8.35) over a selected control volume and use the divergence theorem to derive the
alternative boundary integral representation

uj(x0) = − 1

8πμ

∫∫
D

Gji(x0,x)
(
− p ni +

∂ui

∂xk
nk

)
(x) dS(x) (6.9.38)

+
1

8π

∫∫
D

ui(x)
(
− Pj(x,x0)ni(x) +

∂Gji(x0,x)

∂xk
nk(x)

)
nk(x) dS(x)

involving the velocity and the pressure ([166], p. 81).

6.9.3 Flow due to the motion of a thin sheet

Consider the flow produced by the motion of a piece of paper or fabric with infinitesimal thickness in a
viscous fluid. Show that the double-layer integral in the boundary integral equation can be eliminated
naturally and the flow can be represented in terms of a single-layer integral whose distribution density
admits a simple physical interpretation.

6.10 Boundary-integral equation methods

The boundary-integral representation developed in Section 6.9 provides us with a powerful tool
for computing Stokes flow by solving integral equations over the boundaries of a selected control
volume of flow. The main benefit of this approach is that the dimensionality of the computational
problem is reduced by one unit with respect to that of the physical problem. Thus, computing a
three-dimensional flow is reduced to solving an integral equation over a two-dimensional domain
consisting of all surfaces enclosing a selected volume of flow. Arbitrary boundary geometries can be
easily accommodated by surface approximation and interpolation [317].

To derive the boundary-integral equation, we examine the behavior of the boundary integrals
as the field point, x0, approaches the boundary D of a selected domain of flow. Due to the weak
singularity of the Stokeslet, the single-layer integral remains continuous as the point x0 approaches
and then crosses D from either side. If the velocity and normal vector vary continuously over D, the
double-layer potential undergoes a discontinuity of magnitude 8πu(x0) as the point x0 crosses D,

lim
x0→D

∫∫
D

ui(x) Tijk(x,x0)nk(x) dS(x) =

∫∫ PV

D

ui(x) Tijk(x,x0)nk(x) dS(x)± 4π uj(x0), (6.10.1)

where PV designates the principal value of the double-layer potential defined as the improper double-
layer integral computed when the point x0 is located precisely on D. The plus sign applies when the
point x0 approaches D from the side of the selected volume of flow indicated by the normal vector,
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n, and the minus sign otherwise. To confirm the discontinuity, we write∫∫
D

ui(x) Tijk(x,x0)nk(x) dS(x) =

∫∫
D

[ui(x)− ui(x0)] Tijk(x,x0)nk(x) dS(x)

+ui(x0)

∫∫
D

Tijk(x,x0)nk(x) dS(x). (6.10.2)

The first integral on the right-hand side is continuous due to the reduced singularity of the kernel.
A discontinuity is evident from identity (6.9.11).

Substituting (6.10.1) with the plus sign into (6.9.9) or with the minus sign into (6.9.3), we
find that, when the field point x0 is located on D,

uj(x0) = − 1

4πμ

∫∫
D

Gij(x,x0) fi(x) dS(x) +
1

4π

∫∫ PV

D

ui(x) Tijk(x,x0)nk(x) dS(x). (6.10.3)

This integral equation imposes an integral constraint on the mutual distributions of the boundary
velocity and traction. Conversely, the integral equation allows us to compute the boundary velocity
from the boundary traction, and vice versa, as required.

In summary, equations (6.9.2), (6.9.10), and (6.10.3) apply, respectively, when the point x0 is
located outside, inside, and precisely on a smooth boundary of a selected control volume, D.

6.10.1 Integral equations

Prescribing the boundary velocity u over D provides us with a Fredholm integral equation of the
first kind for the boundary traction originating from (6.10.3),∫∫

D

Gij(x,x0) fi(x) dS(x) = −4πμuj(x0) + μIDj (x0), (6.10.4)

where

IDj (x0) ≡
∫∫ PV

D

ui(x) Tijk(x,x0)nk(x) dS(x) (6.10.5)

is the known double-layer potential.

Alternatively, prescribing the boundary traction f over D provides us with a Fredholm integral
equation of the second kind for the boundary velocity originating from (6.10.3),

ui(x0) =
1

4π

∫∫ PV

D

ui(x) Tijk(x,x0)nk(x) dS(x)−
1

4πμ
ISj (x0), (6.10.6)

where

IDj (x0) ≡
∫∫

D

Gij(x,x0) fi(x) dS(x) (6.10.7)

is the known single-layer potential.
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Prescribing the velocity over a portion of D and the traction over the remaining portion of D
provides us with a Fredholm integral equation of mixed kind for the unknown boundary distributions.
Applications of the mixed formulation can be found in flows bounded by solid boundaries and free
surfaces or interfaces. Once the integral equations have been solved, the velocity, pressure, and stress
fields can be computed using the boundary-integral representations (6.9.10) and (6.9.25).

Weakly singular integral equations

Inspecting the integral equations (6.10.4) and (6.10.6), we observe that the kernels Gij(x,x0) and
Tijk(x,x0)nk(x) become singular as the observation point, x, approaches the pole, x0. In fact,
careful inspection reveals that the singularities of the kernels are not square integrable. This behavior
prevents us from studying the properties of the solution using the Fredholm and Hilbert–Schmidt
theories for integral equations with square integrable kernels. However, when the boundary D is
a Lyapunov surface, which means that it has a continuous normal vector, the kernels are weakly
singular, the single- and double-layer potentials are compact linear operators, and the theoretical
framework still applies (e.g., [208, 306]).

6.10.2 Two-dimensional flow

Repeating the preceding derivations with minor modifications, we derive corresponding results for
two-dimensional flow. As the field point x0 approaches and then crosses a boundary contour C
from either side, the single-layer potential remains continuous. If the velocity and normal vector
vary continuously over a smooth contour C, the double-layer potential undergoes a discontinuity of
magnitude 4πu(x0),

lim
x0→C

∫
C

ui(x) Tijk(x,x0)nk(x) dl(x) =

∫ PV

C

ui(x) Tijk(x,x0)nk(x) dl(x)± 2π uj(x0), (6.10.8)

where the plus sign applies when x0 approaches C from the side of the flow indicated by the normal
vector, n, and the minus sign otherwise (Problem 6.10.1). The principal value of the double-layer
integral is the value of the improper double-layer integral computed when the evaluation point x0

is located precisely on C.

Combining (6.10.8) with (6.9.35), we find that, for a point x0 that lies on C,

uj(x0) = − 1

2πμ

∮
D

Gij(x,x0) fi(x) dl(x) +
1

2π

∫ PV

C

ui(x) Tijk(x,x0)nk(x) dl(x), (6.10.9)

where PV denotes the principal value of the double-layer potential. This integral representation
serves as a point of departure for deriving integral equations of the first or second kind for the
boundary velocity or traction involving the principal value of the double-layer potential.

Weakly singular integral equations

The kernel of the single-layer potential exhibits a weak logarithmic singularity associated with the
two-dimensional Stokeslet. The kernel of the principal value of the double-layer potential undergoes
a discontinuity as the integration point, x, crosses over the evaluation point, x0, along a smooth
contour. This behavior can be easily accommodated in numerical methods for solving the integral
equations.
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Figure 6.10.1 Application of the boundary-integral equation method to flow in a rectangular cavity
driven by a moving lid.

6.10.3 Flow in a rectangular cavity

As an application, we consider flow in a rectangular cavity driven by a moving lid, as shown in Figure
6.10.1. The top, left, bottom, and right walls are denoted by T , L, B, and R. Using the boundary-
integral representation (6.9.35), and enforcing the velocity boundary conditions, and noting the unit
normal vector points against the y axis over the lid, we obtain

uj(x0) = − 1

4πμ

∫
T,L,B,R

Sij(x,x0) fi(x) dl(x)−
V

4π

∫
T

Txjy(x,x0) dl(x), (6.10.10)

where S is the Stokeslet, T is the corresponding stress tensor, V is the lid velocity, and the point
x0 lies inside the cavity. The integral equation (6.10.9) takes the corresponding form∫

T,L,B,R

Sij(x,x0) fi(x) dl(x) = −2πμuj(x0)− μV

∫ PV

T

Txjk(x,x0) dl(x), (6.10.11)

where the point x0 is located on T, L,B, or R. The problem has been reduced to solving an integral
equation of the first kind for the boundary traction f inside the single-layer integral on the left-hand
side.

Boundary-element method

To solve the integral equation (6.10.11), we may discretize the boundaries of the flow into straight
elements and approximate the traction components with constant functions constant over each
element, as shown in Figure 6.10.1. This approximation allows us to recast (6.10.11) into the
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discretized form

N∑
l=1

f
(l)
i A

(l)
ij (x0) = −2πμuj(x0)− μV

K∑
l=1

B
(l)
j (x0), (6.10.12)

where f (l) is the constant value of the traction over the lth element, N is the total number of segments,
and the sum on the right-hand side runs over the K lid elements. The influence coefficient, A(l),
and forcing vector, B(l), are defined as

A
(l)
ij ≡

∫
El

Gij(x,x0) dl(x), B
(l)
j ≡

∫ PV

El

Txjy(x,x0) dl(x), (6.10.13)

where El denotes the lth boundary element. Applying (6.10.12) at the midpoint of the mth element,
denoted by X(m), we obtain a system of N linear equations for f (l),

N∑
l=1

f
(l)
i A

(l)
ij (X

(m)) = −2πμuj(X
(m))− μV

K∑
l=1

B
(l)
j (X(m)), (6.10.14)

where m = 1, . . . , N . Most of the influence coefficients defined in (6.10.13) can be computed by
numerical integration.

When the mth element midpoint, X(m), is located over the lid, the kernel Txjy is identically

zero and B
(l)
i (X(m)) = 0 for l,m = 1, . . . ,K. The associated influence coefficient A(l)(X(m)) corre-

sponding to the lid segments can be computed exactly by noting that the off-diagonal components

are zero, A
(l)
xy(X(m)) = 0 and A

(l)
yx(X(m)) = 0, and evaluating the integrals

A(l)
xx =

∫
El

(− ln
|X(m) − x|

a
+ 1) dx, A(l)

yy = −
∫
El

ln
|X(m) − x|

a
dx (6.10.15)

by elementary analytical methods, where a is an arbitrary length and l,m = 1, . . . ,K. Similar
expressions can be derived for the left, bottom, and right wall segments at midpoints X(m) located
at corresponding sides.

Formulation of a linear system

Proceeding with the logistics of the boundary-element implementation, we collect the two compo-
nents of the element tractions f (l) into a long vector

w =
[
f (1)
x , f (2)

x , · · · , f (N)
x , f (1)

y , f (2)
y , · · · , f (N)

y

]
, (6.10.16)

and compile equations (6.10.14) to formulate a system of linear equations,

C ·w = d, (6.10.17)

where C is an influence coefficient matrix and d is a constant vector. The first set of N equations in
(6.10.17) correspond to the x components of (6.10.14), and the second set of N equations correspond
to the y components of (6.10.14) for X(1), X(2), . . ., X(N).



470 Introduction to Theoretical and Computational Fluid Dynamics

Regularization

The linear system (6.10.17) is nearly singular due to the unspecified level of the pressure inside the
flow. To prevent numerical difficulties, we may specify the normal component of the traction at a
chosen element, discard one equation, and then solve a system of 2N−1 equations for the remaining
unknowns. More reliable methods of removing the singularity by eigenvalue deflation are available
(e.g., [313]). In the present case, we may exploit the anticipated symmetry of the flow setting, for
example,

f (1)
x = f (K)

x , f (1)
y = −f (K)

y . (6.10.18)

When an even number of elements is employed, implementing the symmetry condition reduces
the size of the final system of equations by a factor of two. The simplified linear system contains
equations corresponding to N/2 collocation points distributed over the left or right half of the cavity.

6.10.4 Boundary-element methods

A variety of boundary-element methods have been developed for computing Stokes flow past or
due to the motion of particles and interfaces representing drops, capsules, and biological cells (e.g.,
[306, 313]). A numerical simulation illustrating stages in the axisymmetric settling or rise of a liquid
drop normal to a plane wall is shown in Figure 6.10.2. The drop contour in an azimuthal plane
is described by a set of marker points, and the shape of the interface is reconstructed by cubic-
spline interpolation (e.g., [317]). The marker-point velocity is computed from the boundary-integral
representation, and the position of the marker points is advanced in time using the second-order
Runge–Kutta method discussed in Section B.8, Appendix B. Regridding is performed after each
time step to ensure adequate spatial resolution.

Problem

6.10.1 Boundary-integral equation of three-dimensional flow

(a) Follow the limiting procedure outlined in Section 6.9 to derive the boundary-integral equation
for a point x0 on a smooth boundary, D. (Hint: consider a point x0 on D, define a control volume
that is enclosed by D and excludes a hemisphere of radius ε centered at x0, and let ε tend to zero.)

(b) Show that equation (6.10.3) is valid at a corner point, x0, provided that uj(x0) on the left-hand
side is replaced by ui(x0) cij(x0), where the matrix cij(x0) is determined by the geometry of the
corner. Evaluate cij(x0) for a point at the corner of a two-dimensional wedge [306].

6.10.2 Boundary-integral equation of two-dimensional flow

(a) Follow the limiting procedure outlined in Section 6.9 to derive the boundary-integral equation
for a point x0 on a smooth boundary contour, C, of a two-dimensional flow.

(b) Show that the boundary-integral equation (6.10.9) is valid at a corner point, x0, provided that
the coefficient 1/2π in front of the single- and double-layer potential is replaced by 1/(2α), where α
is the interior corner angle.
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Figure 6.10.2 Stages in (a) the gravitational spreading of a liquid drop over a plane wall and (b)
the gravitational rise of a liquid drop away from a wall, in the absence of surface tension. The
viscosity of the drop is equal to that of the ambient fluid. Interfacial profiles are shown at equal
time intervals.

Computer Problem

6.10.3 Flow in a cavity

(a) Consider flow in a rectangular cavity driven by a moving lid, as shown in Figure 6.10.1. Write a
program that computes the boundary traction using the boundary-element method described in the
text. Prepare graphs of the boundary shear stress for cavities with depth to width ratio 0.10, 0.50,
1.0, 2.0, and 10. Discuss your results with reference to the occurrence of stagnation points along the
boundaries of the flow.

(b) Draw streamline patterns for the cases studied in (a) and discuss the structure of the flow.

6.11 Slender-body theory

Flow past or due to the motion of slender bodies is encountered in studies of fiber suspensions and
biological flagella or cilia motion, and in applications involving flow over surfaces with attached
rods, such as nanomats consisting of carbon nanotubes. Hancock [165] and Gray & Hanckock [151]
represented the flow due to a moving flagellum in terms of point forces and companion potential
dipoles distributed along the centerline. In the simplest version of their theory, known as the
resistance-coefficient theory, the strength of the singularities is assumed to be proportional to the
local velocity of translation. Improved theories represent the flow due to the motion of a cilium in
terms of a priori unknown singularities distributed along the centerline. Enforcing the boundary
conditions provides us with Fredholm integral equations for the densities of the distributions.
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Figure 6.11.1 In slender-body theory, the flow due to the axial or transverse translation of an elongated
circular cylinder is described by distributions of point forces and potential dipoles over the centerline.

In this section, we review the basic concepts of the slender-body theory and present a theo-
retical framework that supports the basic premise of the slender-body approximation. Our analysis
will confirm that the centerline singularity distributions are rational approximations of surface dis-
tributions arising from the boundary-integral representation, thus validating an otherwise heuristic
approach.

6.11.1 Axial motion of a cylindrical rod

Consider the flow due to the translation of a slender cylindrical rod of radius b and length L = 2a
situated between x = −a and a, and introduce cylindrical polar coordinates, (x, σ, ϕ), as shown in
Figure 6.11.1. When the rod translates along the centerline with velocity Vx, the induced axisym-
metric flow is represented by a uniform distribution of point forces oriented along the x axis with
linear strength density αμVx, where μ is the fluid viscosity and α is an a priori unknown dimension-
less coefficient to be found as part of the solution. The axial component of the velocity at a point
on the rod located at the radial position σ = b is given by

ux(x, b) = Vx
α

8π

∫ a

−a

( 1

[(x− ξ)2 + b2]1/2
+

(x− ξ)2

[(x− ξ)2 + b2]3/2

)
dξ. (6.11.1)

Introducing the dimensionless variable w = (x− ξ)/b and rearranging the integrand, we obtain

ux(x, b) = Vx
α

8π

∫ B

−A

( 2

(w2 + 1)1/2
− 1

(w2 + 1)3/2

)
dw, (6.11.2)

where

A =
a+ x

b
, B =

a− x

b
. (6.11.3)

Both A and B are positive when −a < x < a. Performing the integration, we find that

ux(x, b) = Vx
α

8π

(
2 ln

[
(B +

√
B2 + 1)(A+

√
A2 + 1)

]
− B√

B2 + 1
− A√

A2 + 1

)
. (6.11.4)
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The radial component of the velocity at the surface of the cylinder is

uσ(x, b) = b Vx
α

8π

∫ a

−a

x− ξ

[(x− ξ)2 + b2]3/2
dξ = Vx

α

8π

∫ B

−A

w

(1 + w2)3/2
dw. (6.11.5)

Performing the integration, we find that

uσ(x, b) = Vx
α

8π

( 1√
A2 − 1

− 1√
B2 − 1

)
. (6.11.6)

Asymptotics

As the aspect ratio b/a tends to zero, the linear functions A(x) and B(x) tend to infinity and (6.11.4)
takes the asymptotic form

ux(x, b) � Vx
α

4π

[
ln(4AB)− 1

]
. (6.11.7)

The product AB = (a2 − x2)/b2 describes a parabolic distribution that vanishes at both cylinder
ends, x = ±a. Applying (6.11.7) at the midpoint of the cylinder and at a point located at a quarter
of the length of the rod away from the tips, we obtain

ux(0, b) = Vx
α

4π
( 2 ln

L

b
− 1 ), ux(

a

2
, b) = Vx

α

4π
( 2 ln

L

b
+ ln

3

4
− 1 ). (6.11.8)

To satisfy the no-slip boundary condition, we require that ux(x, b) = Vx. When the aspect ratio L/b
is large, the two velocities in (6.11.8) are not too far apart, and the choice

α =
2π

ln L
b − 1

2

(6.11.9)

provides us with a reasonable singularity representation. The drag force exerted on the cylinder is
given by

F = −αμVxL ex, (6.11.10)

where ex is the unit vector along the x axis. The radial surface velocity given in (6.11.6) is of order
b/L, which is small as long the aspect ratio is large, corroborating the consistency of the approximate
representation.

Surface distribution

To justify the flow representation in terms of a line distribution of point forces along the centerline,
we consider the underlying dimensionless velocity field

vi(x) =
1

8π

∫ a

−a

Six

(
x,X(ξ)

)
dξ, (6.11.11)

where X(ξ) = [ξ, 0, 0], and compare it with that induced by an equivalent uniform distribution of
point forces over the cylindrical surface,

vi(x) =
1

8π

1

2πb

∫∫
Six

(
x,X(ξ)

)
dS, (6.11.12)
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Figure 6.11.2 (a) Axial and (b) radial surface velocity due to a centerline distribution (solid line) and
an equivalent surface distribution (dashed line) of point forces, for a cylinder with aspect ratio
L/a = 10. (c) Axial and (d) radial components of the traction on a cylinder with aspect ratio
L/b = 10 computed by a boundary-element method (solid lines). The dashed line in (c) represents
the prediction of slender-body theory.

where X(ξ) = [ξ, b cosϕ, b sinϕ] and dS = bdξ dϕ is a differential surface area. The surface integral
in (6.11.12) was computed by numerical integration in terms of the axisymmetric Green’s function
of Stokes flow [318]. Graphs of the axial and radial velocities, vx and vσ, computed from (6.11.11)
and (6.11.12) are shown in Figure 6.11.2(a, b) with the solid and broken line, respectively, for a
cylinder with aspect ratio L/a = 10. The good agreement justifies replacing the surface distribution
with a line distribution along the centerline. Even better agreement is obtained for higher aspect
ratios, L/a.
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Comparison with an exact solution

To assess the accuracy of the slender-body theory, in Figure 6.11.2(c, d) we plot with solid lines
the axial and radial components of the traction over the surface of a cylinder with aspect ratio
L/b = 10, computed by an accurate boundary-element method. The traction has been scaled by
μVx/L and plotted with respect to arc length along the the trace of the cylinder in a meridional
plane, measured from the axis of revolution, denoted by s. Benign singularities are observed at the
sharp corners on either end of the cylinder. The horizontal dashed line in Figure 6.11.2(c) represents
the predictions of the slender-body theory, fx = αμVx/(2πb). The good agreement over the main
body of the cylinder lends credence to the slender-body representation.

6.11.2 Transverse motion of a cylindrical rod

Next, we consider the flow due to transverse translation of a cylindrical rod along the y axis with
velocity Vy. Working in hindsight, we introduce a representation in terms of a distribution of point
forces with constant density βμVy and a distribution of potential dipoles with constant density
γb2Vy along the rod centerline, where β and γ are a priori unknown dimensionless coefficients. Both
singularities are oriented in the direction of translation along the y axis.

The y velocity component at the surface of the cylinder, σ = b, is

uy(x, b, ϕ) = Vy
β

8π

∫ a

−a

( 1

[(x− ξ)2 + b2]1/2
+

y2

[(x− ξ)2 + b2]3/2

)
dξ

+Vy b
2 γ

4π

∫ a

−a

(
− 1

[(x− ξ)2 + b2]3/2
+ 3

y2

[(x− ξ)2 + b2]5/2

)
dξ, (6.11.13)

where y = b cosϕ and ϕ is the azimuthal angle. Introducing the dimensionless variable w = (x−ξ)/b
and rearranging the integrand, we obtain

uy(x, b, ϕ) = Vy
β

8π

∫ B

−A

( 1

(w2 + 1)1/2
+

cos2 ϕ

(w2 + 1)3/2

)
dw

+Vy
γ

4π

∫ B

−A

(
− 1

(w2 + 1)3/2
+ 3

cos2 ϕ

(w2 + 1)5/2

)
dw. (6.11.14)

Performing the integration, we find that

uy(x, b, ϕ) = Vy

( β

8π
F +

γ

4π
G
)
, (6.11.15)

where

F = ln
[
(B +

√
B2 + 1)(A+

√
A2 + 1)

]
+ cos2 ϕ

( B√
B2 + 1

+
A√

A2 + 1

)
(6.11.16)

and

G = − B√
B2 + 1

− A√
A2 + 1

+ cos2 ϕ
(
B

2B2 + 3

(B2 + 1)3/2
+A

2A2 + 3

(A2 + 1)3/2

)
. (6.11.17)
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The z velocity component is given by

uz(x, b, ϕ) = Vy
β

8π

∫ a

−a

yz

[b2 + (x− ξ)2]3/2
dξ + Vy b

2 γ

2π
3

∫ a

−a

yz

[b2 + (x− ξ)2]5/2
dξ. (6.11.18)

Asymptotics

In the limit as the aspect ratio a/b and thus A and B tend to infinity, we obtain

uy(x, b, ϕ) = Vy
β

8π
[ ln(4AB) + 2 cos2 ϕ ] + Vy

γ

2π
(−1 + 2 cos2 ϕ ). (6.11.19)

To eliminate the ϕ dependence, we set

γ = −1

4
β (6.11.20)

and obtain

uy(x, b) � Vy
β

8π
[ ln(4AB) + 1 ] � Vy

β

8π
( 2 ln

L

b
+ 1 ). (6.11.21)

Working as in the case of axial motion, we require that uy = Vy at x = 0 and find that

β =
4π

ln L
b + 1

2

. (6.11.22)

Integrating the distributed point forces, we find that the drag force exerted on the cylinder is given
by

F = −βμVyL ey, (6.11.23)

where ey is the unit vector along the y axis. It is worth noting that the ratio of the magnitude of
the drag force in transverse and axial motions is approximately equal to two.

It remains to confirm that the x and z velocity components are zero on the surface of the
cylinder. Working as for the y velocity component, we find that

uz(x, b, ϕ) = Vy
β

8π
sin 2ϕ+ Vy

γ

4π
sin 2ϕ, (6.11.24)

which is zero in light of (6.11.22). The magnitude of the x velocity component at the surface of the
cylinder is of order b/L, which is small as long the aspect ratio is large.

Surface distribution

To justify the flow representation in terms of a line distribution of point forces and potential dipoles
along the centerline, we consider the underlying dimensionless velocity field

vi(x) =
1

8π

∫ a

−a

(
Siy

(
x,X(ξ)

)
− 1

4
b2 Diy

(
x,X(ξ)

) )
dξ, (6.11.25)
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Figure 6.11.3 (a) Velocity due to a centerline distribution of point forces and dipoles (solid line), and

an equivalent surface distribution of point forces (dashed line), for cylinder aspect ratio L/a = 10.
(b) Graphs of the dimensionless cylindrical polar components of the traction around the cylinder
plotted with respect to arc length; Fx (solid lines), Fσ (dashed lines), and Fϕ (dotted lines).

where X(ξ) = [ξ, 0, 0]. An approximation of the y surface velocity corresponding to (6.11.21) is

vy(x) =
1

8π
[ ln(4AB) + 1 ]. (6.11.26)

This velocity field is now compared with that induced by an equivalent uniform distribution of point
forces pointing along the y axis over the cylindrical surface,

vi(x) =
1

8π

1

2πb

∫∫
Siy(x,X(ξ)) dS, (6.11.27)

where X(ξ) = [ξ, b cosϕ, b sinϕ] and dS = bdξ dϕ is a differential surface area. The surface integral
in (6.11.27) was computed by numerical integration.

Shown in Figure 6.11.3(a) is the y component of the surface velocity induced by the centerline
point force and potential dipole distributions (solid line) and by the corresponding surface distribu-
tion of point forces (dashed line) for a cylinder with aspect ratio L/a = 10. The good agreement
provides support for the basic premise of the slender-body representation.

Comparison with an exact solution

To assess the accuracy of the slender-body theory, we express the cylindrical polar components of
the traction over the surface of the circular cylinder, f = σ · n, in the form

fx =
μVy

L
Fx(l) cosϕ, fσ =

μVy

L
Fσ(l) cosϕ, fϕ = −μVy

L
Fϕ(l) sinϕ, (6.11.28)
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where l is the arc length along the trace of the cylinder contour in a meridional plane, Fα(l) are
dimensionless functions, and α = x, σ, ϕ. The y and z components of the traction are

fy = fσ cosϕ− fϕ sinϕ =
μVy

L

(
Fσ(l) cos

2 ϕ+ Fϕ(l) sin
2 ϕ

)
(6.11.29)

and

fy = fσ sinϕ− fϕ cosϕ =
μVy

L

(
Fσ(l)−Fϕ(l)

)
sinϕ cosϕ. (6.11.30)

The traction coefficient functions Fα were computed by solving an integral equation using a
highly accurate boundary-element method. Graphs of the dimensionless traction Fourier coefficients
are plotted in Figure 6.11.3(b) with respect to arc length for a cylinder with moderate aspect ratio,
L/b = 10. Singularities are observed at the sharp corners at either end. The coefficients Fσ(l)
and Fϕ(l) are nearly identical over the main body of the cylinder, meaning that the streamwise
traction coefficient fy is nearly uniform around the cylinder cross-section and the traction fz is
nearly zero. The horizontal line in Figure 6.11.3(b) represents the predictions of the slender-body
theory, fy = βμVy/(2πb). The successful comparison provides further validation for the slender-body
approximation.

6.11.3 Arbitrary translation of a cylindrical rod

The slender-body representations for axial or transverse motion of a circular cylinder can be unified
by expressing the velocity field in arbitrary translation in the form

ui(x) =
1

8πμ

∫ a

−a

Sij

(
x,X(ξ)

)
bj(ξ) dξ +

1

4π

∫ a

−a

Dij

(
x,X(ξ)

)
dj(ξ) dξ, (6.11.31)

where S is the Stokeslet, D is the potential dipole, X(ξ) = [ξ, 0, 0] is a point along the centerline,
and

b = μ

⎡⎣ αVx

β Vy

β Vz

⎤⎦ , d = −1

4
b2

⎡⎣ 0
β Vy

β Vz

⎤⎦ (6.11.32)

are the densities of point force and potential dipole distributions. The force exerted on the cylinder
is given by

F = −μL (αVxex + βVyey + βVzez), (6.11.33)

where ex, ey, and ez are unit vectors in the subscripted directions.

A settling needle

As an application, we consider a slender needle settling under the action of gravity at an angle θ with
respect to the vertical direction, as shown in Figure 6.11.4, where θ = 0 corresponds to a horizontal
needle and θ = π/2 corresponds to a vertical needle. Reversibility of Stokes flow requires that the
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Figure 6.11.4 Illustration of a slender needle settling under the action of gravity in an infinite fluid.

needle maintain its initial inclination. Balancing the drag force with the weight of the needle, W ,
we find that

W sin θ = μLαVt, W cos θ = μLβVn, (6.11.34)

where Vt is the velocity of the needle tangential to the centerline and Vn is the velocity of the needle
normal to the centerline. Setting β � 2α, we find that the ratio between the horizontal drift velocity,
Vd = Vt cos θ − Vn sin θ, and the vertical settling velocity, Vs = Vt sin θ + Vn cos θ, is

Vd

Vs
=

2 cos θ sin θ − sin θ cos θ

2 sin2 θ + cos2 θ
=

sin θ cos θ

1 + cos2 θ
. (6.11.35)

The maximum value of this ratio is attained when θ = π/4.

6.11.4 Slender-body theory for arbitrary centerline shapes

Generalizing (6.11.31) for a slender body with a curved centerline, C, we introduce a representation
in terms of point forces with linear density b and potential dipoles with linear density d,

ui(x) = u∞
i (x) +

1

8πμ

∫
C

Sij

(
x,X(l)

)
bj(l) dl +

1

4π

∫
C

Dij

(
x,X(l)

)
dj(l) dl, (6.11.36)

where u∞ is the velocity of an imposed flow, l is the arc length along the centerline, and X(l) is the
position along the centerline [177, 239, 240]. Motivated by the second expression in (6.11.32), we
extract the normal component of the dipole and set the tangential component to zero to obtain

d = −1

4
b2 b · (I− t⊗ t), (6.11.37)

where t is the unit tangent vector along the centerline and I−n⊗ t is a normal projection operator.

Numerical methods

Given the velocity along the rod centerline, equation (6.11.36) provides us with an integral equation
of the first kind for the point force strength density, b. A numerical solution can be computed
by dividing the centerline into straight segments and assuming that the force density b takes the
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constant value b(k) over the kth segment (e.g., [177]). Enforcing (6.11.36) at the midpoint of each
segment provides us with a system of linear equations for the segment values, b(k).

The influence coefficients are computed by integrating along the centerline numerically or
analytically, as discussed previously in this section for a circular cylinder. The element length
must be sufficiently larger than the rod radius, b, otherwise the basic premise of the slender-body
approximation is violated and numerical instabilities arise. To improve the performance of the
method, the formulation can be recast in terms of an integral equation of the second kind for the
Stokeslet density distribution [200].

Integral equations

The numerical procedure can be formalized in terms of the integral equation

u(l0) = u∞(l0) +
1

4πμ
(b · t⊗ t)0( 2 ln

2q

b
− 1 ) +

1

8πμ
[b · (I− t⊗ t)]0 ( 2 ln

2q

b
+ 1 )

+
1

8πμ

∫
|l−l0|>q

S(l0, l) · b(l) dl +
1

4π

∫
|l−l0|>q

D(l0, l) · d(l) dl, (6.11.38)

where q is a cut-off length allowed to depend on l0, and the subscript 0 indicates evaluation at l0
[156]. The second term on the right-hand side originates from the first equation in (6.11.8) and the
third term on the right-hand side originates from (6.11.21) with L = 2q. The second term disappears
when q = b

2

√
e � 0.82b. The last integral on the right-hand side of (6.11.38) can be neglected due

to the fast decay far from the evaluation point at l0.

6.11.5 Motion near boundaries

In the case of flow in a domain that is bounded by a solid surface, we introduce the complement of
the Stokeslet ensuring the satisfaction of the no-slip and no-penetration condition on the surface,
given by Sc = G−S, where G is the Stokes flow Green’s function for the chosen domain of flow. In
the case of flow in a semi-infinite domain bounded an infinite plane wall, the complementary flow
can be computed by the method of images, as discussed in Section 6.5. The complement of the
dipole can be computed in terms of the Laplacian of the complement of the point force [156]. The
following term is then added to the right-hand side of (6.11.38),

v(l0) ≡
1

8πμ

∫
C

Sc(l0, l) · b(l) dl +
1

4π

∫
C

Dc(l0, l) · d(l) dl. (6.11.39)

Note that the integrals are performed along the entire length of the centerline. The last integral
on the right-hand side of (6.11.39) can be neglected due to the fast decay away from the evaluation
point at l0 [177].

Shear flow past a rod attached to a wall

As an application, we consider simple shear flow along the y axis past a straight rod of length d and
radius b attached normal to a plane wall. The velocity components of the incident flow are u∞

x = 0,
u∞
y = ξx, and u∞

z = 0, where ξ is the shear rate. The density distribution of the point forces is
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Figure 6.11.5 Critical evaluation of slender-body theory for shear flow past a rod attached to a
plane wall. The circles represent numerical results for the dimensionless centerline force density,
−by/(μξL), obtained by an accurate boundary-element method for a cylinder with aspect ratio
b/d = 0.001, 0.005, and 0.01. The lines represent the results of a highly accurate boundary-element
method for b/d = 0.001 (dotted line), 0.005, and 0.01.

found by solving the integral equation

u(l0) = u∞(l0) +
1

4πμ
(b · t⊗ t)0( 2 ln

2q

b
− 1 ) +

1

8πμ

[
b · (I− t⊗ t)

]
0
( 2 ln

2q

b
+ 1 )

+
1

8πμ

∫
|l−l0|<q

(G − S)(l0, l) · b(l) dl +
1

8πμ

∫
|l−l0|>q

G(l0, l) · b(l) dl. (6.11.40)

In the numerical method, the rod centerline is divided into N equal elements of length Δl = d/N .
Applying (6.11.40) at the midpoint of each element, setting 2q = Δl, and requiring u(l0) = 0, we
obtain a system of linear equations for the linear density, b. The integrals on the right-hand side
of (6.11.40) can be computed over the union of the elements using the Gauss–Legendre quadrature
(Section B.6, Appendix B). Numerical results obtained with 32 elements for three rod aspect ratios,
b/d, are represented by the circles in Figure 6.11.5. The predictions of the slender-body theory shown
in this figure are compared with highly accurate results obtained by a boundary-element method
for b/d = 0.001 (dotted line), 0.005, and 0.01 [309]. The excellent agreement over the entire length
of the rod except near the tip where the slender-body theory is expected to fail corroborates the
fundamental premises of the slender-body approximation.

6.11.6 Extensions and generalizations

Asymptotic analyses for slender bodies with arbitrary cross-sectional shapes, flexible bodies, bodies
whose volume changes in time, and bodies executing general types of motion have shown that, in
general, distributions of point forces, potential dipoles, couplets, and point sources are required (e.g.,
[25]).
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Problem

6.11.1 Exact and approximate representations for prolate spheroids

Prepare a graph of the linear distribution density of the point forces given by the exact solution
(6.7.36), and compare it with the constant distributions given in (6.11.9) and (6.11.22) for a family
of prolate spheroids with increasing aspect ratio. Compare the exact with the approximate drag
force and estimate the aspect ratio where the slender-body solution is sufficiently accurate.

6.12 Generalized Faxén laws

In order to compute the velocity of translation and angular velocity of rotation of a particle that
is suspended in an ambient fluid, we must have available the force, F, and torque, T, exerted on
the particle when it is held stationary in an incident ambient flow. The generalized Faxén laws
provide us with such expressions in terms of the incident velocity field or its derivatives at particular
locations in the interior or over the surface of the particle. Faxén first developed relations for a
spherical particle [122].

6.12.1 Force on a stationary particle

First, we consider the force exerted on a solid particle that is held stationary in an ambient flow
with velocity u∞ [207, 209]. We begin by assuming that the flow generated by a particle translating
with velocity V can be represented in terms of a discrete or continuous distribution of point forces
in the form

ui(x) = VkMkj [Gij(x,x0)], (6.12.1)

where Gij is a Stokes flow Green’s function for the velocity and Mkj is an integral, differential, or
integro-differential operator acting with respect to the point x0 to generate point forces and their
derivatives expressing multipoles of the point force inside or over the surface of the particle. To
satisfy the boundary condition u = V at the particle surface, we require that

Mkj [Gij(x,x0)] = δki, (6.12.2)

when the point x lies at the particle surface. The traction on the particle surface is given by the
corresponding expression

f t
i (x) = μVkMkj [Tijl(x− x0)]nl(x), (6.12.3)

where the superscript t stands for translation. Combining (6.12.3) with (6.8.4) and (6.8.7), we obtain
an expression for the force exerted on the particle,

Fk = −μ

∫∫
P

u∞
i (x)Mkj [Tijl(x− x0)]nl(x) dS(x), (6.12.4)

where P denotes the particle surface.
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The boundary integral representation (6.9.9) for the ambient flow, u∞, at a point x0 located
inside the volume occupied by the particle takes the form

u∞
j (x0) =

1

8πμ

∫∫
P

f∞
i (x)Gij(x,x0) dS(x)−

1

8π

∫∫
P

u∞
i (x) Tijk(x,x0)nk(x) dS(x), (6.12.5)

where the unit normal vector n points outward from the particle. Operating on both sides by Mkj ,
we obtain

Mkj [u
∞
j (x0)] =

1

8πμ

∫∫
P

f∞
i (x)Mkj [Gij(x,x0)] dS(x)

− 1

8π

∫∫
P

u∞
i (x)Mkj [Tijk(x,x0)]nk(x) dS(x). (6.12.6)

Incorporating the boundary condition (6.12.2) in the first integral on the right-hand side of (6.12.6),
and noting that the force due to the ambient flow over a fluid parcel occupied by the particle is zero,
we find that the first integral is identically zero. Combining the resulting equation with (6.12.4), we
derive the generalized Faxén relation

Fk = 8πμMkj [uj(x0)], (6.12.7)

providing us with the hydrodynamic force exerted on a stationary solid particle. This expression
allows us to compute the force exerted on the particle in terms of the velocity of the incident flow
alone.

Spherical particle

In Section 6.7.1, we found that the flow due to the translation of a spherical particle in an infinite
fluid can be presented in terms of a point force and a potential dipole placed at the particle center,
x0. Introducing the representation (6.7.1) with coefficients given in (6.7.4) and using (6.6.9) to
express the potential dipole, D, in terms of the Stokeslet, S, we obtain

ui(x) = Vk δkj (
3

4
a+

1

8
a3 ∇2

0 )Sij(x,x0), (6.12.8)

where a is the particle radius, x0 is the particle center, and the Laplacian ∇2
0 operates with respect

to x0. Faxén’s law for the force then follows from (6.12.7) as

F = 6πμau∞(x0) + πμa3
(
∇2 u∞

)
(x0). (6.12.9)

Thus, the force exerted on a spherical particle can be found from the incident velocity and its
Laplacian at the particle center. Comparing the Faxén relation (6.12.9) with the first relation in
(6.8.11), we confirm the mean-value theorems stated in (6.1.10).

Prolate spheroid

Using the singularity representation shown in (6.7.36), we derive Faxén relation for the force on a
prolate spheroid,

Fk = 8πμαkj

∫ c

−c

(
u∞
j

(
X(ξ)

)
+

1

4
b2
(
1− ξ2

c2
) (

∇2u∞
j

)(
X(ξ)

) )
dξ, (6.12.10)
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where X(ξ) = [ξ, 0, 0] is a point along the centerline. As the eccentricity tends to zero, c → 0, we
recover the Faxén law for a sphere.

6.12.2 Torque on a stationary particle

Next, we consider the torque exerted on a particle that is held stationary in an ambient flow with
velocity u∞. Assuming that the flow generated when the particle rotates about the origin with
angular velocity Ω can be represented in terms of a discrete or continuous distribution of Green’s
functions as

ui = Ωk Nkj [Gij(x,x0)], (6.12.11)

and working as previously for the force, we find that the torque exerted on the particle is given by
the generalized Faxén relation

Tk = 8πμNkj [uj(x0)]. (6.12.12)

This expression allows us to compute the torque exerted on the particle in terms of the velocity of
the incident flow alone.

Spherical particle

In Section 6.7.3, we found that the flow due to the rotation of a spherical particle in an infinite fluid
can be represented in terms of a couplet alone. Combining (6.7.29) with (6.6.6), we obtain

ui(x) =
1

2
Ωka

3εklj
∂Sij

∂x0j

(x,x0), (6.12.13)

where S is the Stokeslet and x0 is the particle center. Faxén’s law then follows from (6.12.12) as

T = 4πμa3
(
∇× u∞

)
(x0). (6.12.14)

We have found that the torque exerted on a spherical particle can be computed from the curl of the
velocity representing the local vorticity of the incident flow at the particle center. Comparing the
Faxén relation (6.12.14) with that shown in (6.8.11), we confirm the mean-value theorem expressed
by identity (6.1.11). Combining (6.12.14) with (6.7.31), we find that a freely suspended sphere
bearing zero torque rotates at an angular velocity that is equal to half the vorticity of the ambient
flow.

Prolate spheroid

Based on the singularity representation (6.7.33), we find that the Faxén law for the axial component
of the torque on a prolate spheroid is expressed by

Tx = 4πμβc2
∫ c

−c

(1− ξ2

c2
)
(
∇× u∞

)(
X(ξ)

)
dξ, (6.12.15)

where X(ξ) = [ξ, 0, 0]. As the eccentricity tends to zero, c → 0, we recover the Faxén law for a
spherical particle.
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6.12.3 Traction moments on a stationary particle

Generalized Faxén relations can be developed for higher moments of the traction on a stationary
particle. The zeroth-order moment is the force and the antisymmetric part of the first-order moment
is the torque.

Coefficient of the stresslet

The symmetric part of the first-order moment is the coefficient of the stresslet expressing the sym-
metric part of the point force dipole in the multipole expansion (6.9.16). To compute the coefficient
of the stresslet for a particle that is held stationary in an arbitrary flow, we assume that the dis-
turbance flow generated when the particle is held stationary in a purely straining flow with velocity
u∞ = E · x admits the singularity representation

uD
i = ElkLklj [Gij(x,x0)], (6.12.16)

where E is a symmetric matrix with zero trace. The coefficient of the stresslet arising when the
particle is held stationary in an arbitrary ambient flow with velocity u∞ is

slk = −4πμ
(
L0
klj [uj(x0)] + L0

lkj [uj(x0)]
)
, (6.12.17)

where L0 operates with respect to x0 [306].

Spherical particle

The singularity representation (6.7.15) with coefficients given in (6.7.21), combined with the defi-
nitions of the singularities discussed in Section 6.6, show that, in the case of a spherical particle of
radius a,

uD
i = −5

6
Ejl a

3 ∂

∂x0l

(
1 +

1

10
a2∇2

0

)
Sij(x,x0), (6.12.18)

where S is the Stokeslet. The Faxén relation for the coefficient of the stresslet then follows from
(6.12.17) as

sij =
10

3
πμa3(1 +

1

10
a2∇2)

(∂u∞
j

∂xi
+

∂u∞
i

∂xj

)
, (6.12.19)

where the right-hand side is evaluated at the center of the sphere.

6.12.4 Arbitrary particle shapes

To derive the Faxén relations for a particular particle shape, we require singularity representations
for the flow due to the particle translation or rotation, as well as for the disturbance flow produced
when the particle is held stationary in a straining ambient flow. The singularity representations can
be computed using numerical and approximate methods, as discussed in Section 6.7.7.
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6.12.5 Faxén laws for a fluid particle

Our next objective is to derive Faxén relations for a fluid particle that is held stationary in an ambient
flow with velocity u∞. Working as in the case of a solid particle, we introduce the disturbance flow
due to the particle, uD, and decompose the velocity field as u = u∞ + uD. Since the particle is
stationary, the normal component of the velocity u is zero at the interface. The tangential component
of the velocity and interfacial traction are required to be continuous across the interface, but the
normal component of the traction is allowed to undergo a discontinuity balanced by the capillary
pressure due to surface tension or by a gravitational pressure due to differences in the density of the
internal and external fluid.

Force on a stationary drop or bubble

First, we consider the Faxén relation for the force on a stationary drop or bubble. Applying the
reciprocal theorem for the disturbance flow with velocity uD due to the presence of the drop, and
the flow with velocity ut produced when the drop translates with velocity V, we obtain∫∫

Pext

ut · fD dS =

∫∫
Pext

uD · f t dS, (6.12.20)

where the subscript ext indicates the exterior particle surface. Now we substitute uD = u−u∞ into
the right-hand side, slightly modify the left-hand side, and rearrange to obtain∫∫

Pext

(ut −V) · fD dS +V · FD =

∫∫
Pext

u · f t dS −
∫∫

Pext

u∞ · f t dS, (6.12.21)

where FD is the disturbance force exerted on the particle.

Next, we describe the velocity of the exterior flow ut by the singularity representation (6.12.1)
and project the boundary-integral representation (6.12.6) onto V and obtain

VkMkj[uj(x0)] =
1

8πμ

∫∫
Pext

f∞
i (x)Vk Mkj

[
Gij(x,x0)

]
dS(x)

− 1

8π

∫∫
Pext

u∞
i (x)Vk Mkj

[
Tijk(x,x0)

]
nk(x) dS(x), (6.12.22)

which can be restated as

VkMkj

[
uj(x0)

]
=

1

8πμ

∫∫
Pext

f∞
i (x)ut

i(x) dS(x)−
1

8πμ

∫∫
Pext

u∞
i (x) f t

i (x) dS(x), (6.12.23)

where μ is the viscosity of the ambient fluid and n is the unit normal vector pointing outward from
the particle.

Combining (6.12.21) with (6.12.23), we find that∫∫
Pext

(ut −V) · fD dS +V · FD =

∫∫
Pext

u · f t dS −
∫∫

Pext

ut · f∞ dS + 8πμV ·M[u(x0)] (6.12.24)
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or ∫∫
Pext

(ut −V) · f dS +V · F =

∫∫
Pext

u · f t dS + 8πμV ·M[u(x0)]. (6.12.25)

Since the velocities ut −V and u are tangential to the interface and the tangential components of f
and f t are continuous across the interface, the domain of integration of both integrals in (6.12.25) can
be switched from the exterior to the interior side of the interface. Applying the reciprocal theorem
for the disturbance flow ut −V and for the interior flow u, we then find that the first two integrals
in (6.12.25) are exactly the same. Rearranging, we derive a generalized Faxén relation for the force
expressed by (6.12.7).

Spherical drop or bubble

In Section 6.7.6, we found that the exterior flow produced by the translation of a spherical drop
admits the singularity representation (6.7.39) with coefficients given in (6.7.46),

uexti = Vj
1

8
a
(
2
3λ+ 2

λ+ 1
+ a2

λ

λ+ 1
∇2

0

)
Sij(x,x0), (6.12.26)

where λ is the ratio of the drop to the ambient fluid viscosity, x0 is the drop center, and S is the
Stokeslet. The Faxén law for the force takes the form

F = πμa
(
2
3λ+ 2

λ+ 1
+ a2

λ

λ+ 1
∇2

0

)
u∞(x0). (6.12.27)

As λ tends to infinity, we recover expression (6.12.9) for a spherical particle.

Torque and high-order moments

Following a similar procedure, we find that the generalized Faxén relations for the torque and
coefficient of the stresslet for a solid particles discussed earlier in this section also apply for gas
bubbles and liquid drops [208, 209, 306].

Problems

6.12.1 Faxén laws for a prolate spheroid

Confirm that, as the spheroid aspect ratio tends to unity, the Faxén laws for the force and torque
reduce to those for a sphere.

6.12.2 Approximate Faxén relation for a sphere

Derive an approximate Faxén law for the force on a solid sphere based on the approximate singularity
representation discussed in Problem 6.7.1(a). Compare the approximate with the exact law.

6.13 Effect of inertia and Oseen flow

The solution of the equations of Stokes flow provides us with the leading-order approximation to the
structure of a flow at low Reynolds numbers. A fundamental assumption is that inertial forces are
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uniformly negligible throughout the domain of flow. In the case of interior flow, this assumption can
be validated by making the Reynolds number, defined with respect to the size of the boundaries,
sufficiently small. Having obtained the solution of the equations of Stokes flow, we may proceed to
study the effect of fluid inertia by expanding the velocity and pressure in regular perturbation series
with respect to the Reynolds number [412].

Exterior flow

In the case of exterior flow in an infinite domain, the assumption that inertial forces are negligible
throughout the domain of flow may not be valid. As an example, we consider uniform (streaming)
flow with velocity U past a stationary three-dimensional body. The Stokes-flow solution reveals
that, when the force exerted on the body is nonzero, the perturbation flow decays like 1/d, which
means that the magnitude of the left-hand side of the Navier–Stokes equation decays like ρU/d2,
whereas the magnitude of the right-hand side decays like μ/d3, where d is the distance from the
body. This means that inertial forces dominate and the Stokes-flow approximation ceases to be valid
at distances greater than μ/(ρU) from the body.

Failure of the Stokes-flow approximation

An important consequence of the failure of the Stokes-flow approximation at large distances from a
body is that the Stokes-flow solution does not necessarily satisfy the far-field condition. In the case
of three-dimensional flow, this difficulty is shielded by the 1/d decay of the flow due to a point force,
where d is the distance from the point force. However, a paradoxical behavior is encountered in the
case of two-dimensional flow due to the logarithmic divergence of the flow induced by a point force,
as discussed in Section 6.14.

These difficulties can be resolved by admitting that the flow near the body is governed by
the equations of Stokes flow, whereas the flow far from the body is governed by the equations
of Navier–Stokes or Oseen flow incorporating a linearized convective contribution, as discussed in
Section 6.13.1. The method of matched asymptotic expansions may then be applied to derive a
uniformly valid solution.

6.13.1 Oseen flow

In the case of steady streaming (uniform) flow with velocity U past a stationary body, Oseen
proposed replacing the Stokes equation with the linearized Navier–Stokes equation

ρU · ∇u = −∇p+ μ∇2u, (6.13.1)

subject to the condition that u tends to U far from the body [287]. The left-hand side captures the
dominant contribution of the inertial forces far from the body. When the Reynolds number defined
with respect to the distance from the body is sufficiently low, the left-hand side of (6.13.1) is small
compared to the right-hand side and the Oseen equation (6.13.1) describes Stokes flow.

Flow due to a moving body

Oseen’s equation for flow due to a body that translates steadily with velocity V in an otherwise
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quiescent fluid takes the form of the unsteady Stokes equation

ρ
∂u

∂t
= −∇p+ μ∇2u, (6.13.2)

subject to the condition that u decays to zero far from the body. Since in a frame of reference
moving with the body the velocity field is steady,

∂u

∂t
+V · ∇u = 0 or

∂u

∂t
= −V · ∇u, (6.13.3)

which shows that (6.13.2) is identical to (6.13.1) with V = −U. We have found that the flow due to
the steady translation of a body governed by the unsteady Stokes equation is equivalent to Oseen
flow past a stationary body.

Axisymmetric flow

In the case of axisymmetric flow, it is convenient to align the x axis with the velocity of the outer
streaming flow so that U = Uex, introduce cylindrical polar coordinates, (x, σ, ϕ), and describe the
flow in terms of the Stokes stream function, ψ. A linear vorticity transport equation corresponding to
the Oseen equation (6.13.1) arises by simplifying the general vorticity transport equation (3.12.24),
obtaining

U

σ

∂ωϕ

∂x
=

ν

σ2
E2(σ ωϕ), (6.13.4)

where ν = μ/ρ is the kinematic viscosity of the fluid,

ωϕ = − 1

σ
E2ψ = − 1

σ

(∂2ψ

∂x2
+

∂2ψ

∂σ2
− 1

σ

∂ψ

∂σ

)
, (6.13.5)

is the azimuthal vorticity, and E2 is a second-order linear differential operator defined in (2.9.17),
repeated below for convenience,

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
. (6.13.6)

Substituting into (6.13.4) expression (6.13.5) and rearranging, we obtain

(E2 − U

ν

∂

∂x
) (E2ψ) = 0. (6.13.7)

When U = 0, this equation describes axisymmetric Stokes flow.

In spherical polar coordinates, (r, θ, ϕ), equation (6.13.7) becomes[
E2 − U

ν
(cos θ

∂

∂r
− sin θ

1

r

∂

∂θ
)
]
(E2ψ) = 0, (6.13.8)

where

E2 ≡ ∂2

∂r2
+

sin θ

r2
∂

∂θ

( 1

sin θ

∂

∂θ

)
=

∂2

∂r2
+

1

r2
∂2

∂θ2
− cot θ

r2
∂

∂θ
. (6.13.9)
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6.13.2 Flow due to a point force

The linearity of the governing equations with respect to velocity and pressure allows us to construct
solutions for Oseen flow by superposing fundamental solutions represented by Green’s functions. The
flow due to a point force satisfies (6.13.1) with a singular forcing function added to the right-hand
side,

ρU · ∇u = −∇p+ μ∇2u+ b δ3(x− x0), (6.13.10)

where b is a constant vector and δ3 is the three-dimensional delta function. The fundamental
solution of the Oseen equation, called the Oseenlet and denoted by O, can be derived working as
in Section 6.5 for the Stokeslet [166]. The pressure due to an Oseenlet is identical to that of the
Stokeslet. The velocity is given by the counterpart of expression (6.5.16),

u =
1

8πμ
O · b =

1

μ
( I∇2H−∇∇H ) · b, (6.13.11)

which ensures the satisfaction of the continuity equation. The generating function H satisfies the
linear differential equation

− 1

ν
U · ∇H+∇2H− 1

4πr
= 0, (6.13.12)

where ν = μ/ρ is the kinematic viscosity of the fluid. The Laplacian, Q ≡ ∇2H, is the Green’s
function of the linear convection–diffusion equation,

1

ν
U · ∇Q = ∇2Q+ δ3(x− x0), (6.13.13)

given by

Q(x,x0) = Φ(x,x0) exp
[ 1

2ν
U · (x− x0)

]
, (6.13.14)

where Φ(x,x0) is the Green’s function of the Helmholtz equation

∇2Φ(x,x0)− c2 Φ(x,x0) + δ3(x− x0) = 0 (6.13.15)

with c = |U|/(2ν), given by

Φ(x,x0) =
1

4πr
e−cr. (6.13.16)

Thus,

Q ≡ ∇2H =
1

4πr
e−η, (6.13.17)

where

η =
|U|
2ν

(r − e · x̂), (6.13.18)

e = U/|U| is the unit vector in the direction of the streaming flow, x̂ = x− x0, and r = |x̂|.
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To solve equation (6.13.17) for H, we work in hindsight and assume that H is a function of
the dimensionless variable η alone. The gradient is

∇H =
|U|
2ν

dH
dη

(
x̂

r
− e), (6.13.19)

and the Laplacian is

∇2H = ∇ · ∇H =
( |U|
2ν

)2 d2H
dη2

(
x̂

r
− e) · ( x̂

r
− e) +

|U|
2ν

dH
dη

∇ ·
( x̂
r

)
. (6.13.20)

Simplifying the expression for the Laplacian, we obtain

∇2H =
( |U|
2ν

)2 d2H
dη2

2

r
(r − e · x̂) + |U|

2ν

dH
dη

2

r
=

|U|
ν

1

r

(
η
d2H
dη2

+
dH
dη

)
. (6.13.21)

Substituting the last expression into (6.13.17) and rearranging, we derive the ordinary differential
equation

d

dη

(
η
dH
dη

)
=

1

4π

ν

|U| e
−η, (6.13.22)

whose solution is

dH
dη

=
1

4π

ν

|U|
1− e−η

η
, H(η) =

1

4π

ν

|U|

∫ η

0

1− e−ξ

ξ
dξ. (6.13.23)

Expression (6.13.19) for the gradient now becomes

∇H =
1

8π

1− e−η

η
(
x̂

r
− e). (6.13.24)

The Oseenlet is computed from the expression

O = 8π (Q I−∇∇H). (6.13.25)

Making substitutions, we find that

Oij(x,x0) = 2
1

r
e−η δij +

∂

∂xi

[1− e−η

η
(
x̂j

r
− ej)

]
. (6.13.26)

Carrying out the differentiations on the right-hand side, we derive lengthy expressions.

Behavior near the point force

To assess the behavior of the Oseenlet near the point force, we let η tend to zero, expand the
integrand in (6.13.23) in a Taylor series, and perform the integration to find that

H(η) =
1

4π

ν

|U| (η − 1

4
η2 + · · ·) = 1

8π

[
r − e · x̂− 1

4

|U|
2ν

(r − e · x̂)2 + · · ·
]
. (6.13.27)

Keeping only the first two terms and discarding the irrelevant linear function e · x, we recover the
expression for the Stokeslet, H = r/(8π).
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6.13.3 Drag force on a sphere

Consider streaming flow along the x axis with velocity U > 0, and introduce an Oseenlet with
strength bx parallel to the streaming flow. The induced x velocity component is

ux =
1

μ
(∇2H− ∂2H

∂x2
) bx =

1

μ
(
∂2H
∂y2

+
∂2H
∂z2

) bx. (6.13.28)

Substituting the asymptotic form (6.13.27), we find that, near the singular point, in limit as r tends
to zero, the streamwise velocity component behaves as

ux � 1

8πμ
(Sxx − U

2ν
) bx, (6.13.29)

where Sxx is the Stokeslet. The second term on the right-hand side expresses an induced uniform
flow with velocity

ũx = − 1

8πμ

U

2ν
bx. (6.13.30)

In the case of streaming flow past a sphere of radius a, we set bx = −6πμaU from the Stokes flow
solution, and compute the induced velocity

ũx � 3

8

aU

ν
=

3

16
Re, (6.13.31)

where Re = 2aU/ν is the Reynolds number based on the sphere diameter, 2a. Using Stokes’s law,
we find that the force exerted on the sphere is given by

Fx = 6πμa (U + ũx) = 6πμaU (1 +
3

16
Re), (6.13.32)

yielding the drag coefficient

cD ≡ F

πρU2a2
=

12

Re
(1 +

3

16
Re). (6.13.33)

The second term on the right-hand side expresses the first inertial correction to Stokes’s law. The
procedure can be extended using the method of matched asymptotic expansions to derive further
corrections to the drag force [412].

6.13.4 Stream function due to a point force in the direction of the flow

When the point force is parallel to the uniform velocity of the far flow, U, the flow induced by the
point force is axisymmetric. To derive an expression for the Stokes stream function, ψ, we introduce
spherical polar coordinates with the x pointing in the direction of the far flow so that U = Uxex.
Substituting into (6.13.7) the educated guess

E2ψ = φ e
1
2
X , (6.13.34)
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we obtain (
E2 − 1

2 �2
)
φ = 0, (6.13.35)

where X = Uxx/ν is a dimensionless variable and � = ν/|Ux| is a length scale. Working in hindsight,
we introduce spherical polar coordinates, (r, θ, ϕ), set

φ(r, θ) = sin2 θ χ(R), (6.13.36)

and derive the ordinary differential equation

χ′′ − (
2

R
+

1

4
)χ = 0, (6.13.37)

where R = r/� is a dimensionless variable and a prime denotes a derivative with respect to R. A
decaying solution is

χ(R) = c ( 1 +
2

R
) e−

1
2
R, (6.13.38)

where c is a constant. Substituting these expressions into (6.13.36), we obtain a second-order
equation for the stream function,

E2ψ = c sin2 θ ( 1 +
2

R
) e−

1
2
(R−X), (6.13.39)

where X = ±R cos θ, the plus sign applies if Ux > 0 and the minus sign applies if Ux < 0. Solving
this equation, we find that the Stokes stream function associated with a point force with strength
bx is given by

ψpfx =
bx

4πρUx

1

R
(R+X)

(
1− e−

1
2
(R−X)

)
. (6.13.40)

In the limit R → 0, we recover the stream function for the Stokeslet given in (6.5.22).

6.13.5 Oseen–Lamb flow past a sphere

Exact solutions to the Oseen equation for flow past particles are not available. An approximate
solution describing streaming flow with velocity Ux along the x axis past a stationary sphere of
radius a situated at the origin was proposed by Lamb [219]. To derive this solution, we introduce
spherical polar coordinates with the x axis in the direction of the far flow, so that Ux > 0, and
represent the disturbance flow due to the sphere in terms of a potential dipole and a point force
located at the center of the sphere and pointing along the x axis. The Stokes stream function is
constructed by linear superposition,

ψ = ψ∞ + ψpfx +
dx
4πr

sin2 θ, (6.13.41)

where ψ∞ = 1
2 Uxr

2 sin2 θ is the stream function of the incident streaming flow, ψpfx is the stream
function due to a point force point along the axis given in (6.13.40), and dx is the strength of the
dipole.
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Figure 6.13.1 Approximate streamline pattern of Oseen flow (a) past a sphere and (b) due to the
translation of a sphere at Re = 2.

Resorting to the singularity representation of Stokes flow past a stationary sphere, we set

bx = −6πμaUx, dx = πa3Ux, (6.13.42)

and obtain

ψ = ψ∞ + a2Ux

[
− 3

Re
(1 + cos θ)

(
1− exp[−Re

4

r

a
(1− cos θ) ]

)
+

1

4

a

r
sin2 θ

]
, (6.13.43)

where Re = 2aρUx/μ is the Reynolds number defined with respect to the sphere diameter, 2a.
Near the sphere, the ratio r/a is of order unity and the argument of the exponential term is small.
Expanding the exponential term in a Taylor series, we obtain the stream function for Stokes flow,
supplemented by a small correction whose magnitude is proportional to the Reynolds number. Unlike
in Stokes flow, the streamline pattern in Oseen flow is no longer symmetric with respect to the mid-
plane of the sphere, as shown in Figure 6.13.1(a) for Re = 2.

Flow due to a translating sphere

The stream function of the flow due to a sphere translating in the positive direction of the x axis
with velocity V arises from (6.13.43) as

ψ = a2V
[ 3

Re
(1− cos θ)

(
1− exp[−Re

4

r

a
(1 + cos θ) ]

)
− 1

4

a

r
sin2 θ

]
. (6.13.44)

Far from the sphere, the streamlines are radial lines everywhere except inside a wake, as shown in
Figure 6.13.1(b) for Re ≡ 2aρV/μ = 2.



6.13 Effect of inertia and Oseen flow 495

6.13.6 Two-dimensional Oseen flow

The pressure field due to a two-dimensional point force in Oseen flow is identical to that in Stokes
flow. The velocity field is given by

u =
1

4πμ
O · b =

1

μ
( I∇2H−∇∇H ) · b, (6.13.45)

where O is the two-dimensional Oseenlet, regarded as the counterpart of the two-dimensional
Stokeslet for Stokes flow. The generating function, H, satisfies the linear differential equation

−1

ν
U · ∇H+∇2H+

1

4π
ln

r

a
= 0, (6.13.46)

where r = |x − x0| and a is a chosen length. The Laplacian, Q ≡ ∇2H, is the Green’s function of
the linear convection–diffusion equation

1

ν
U · ∇Q = ∇2Q+ δ2(x− x0), (6.13.47)

given by

Q(x,x0) = Φ(x,x0) exp
[ 1

2ν
U · (x− x0)

]
, (6.13.48)

where Φ(x,x0) is the Green’s function of the Helmholtz equation

∇2Φ(x,x0)− c2 Φ(x,x0) + δ2(x− x0) = 0 (6.13.49)

with c = |U|/(2ν), given by

Φ(x,x0) =
1

2π
K0(cr), (6.13.50)

and K0 is the zeroth-order modified Bessel function of the second kind. Thus,

Q ≡ ∇2H =
1

2π
K0(cr) exp(c e · x̂), (6.13.51)

where e = U/|U| is the unit vector in the direction of the streaming flow, x̂ = x− x0, and r = |x̂|.

To simplify the analysis, we may assume that the streaming flow occurs along the x axis and
set U = Uex, e = ex, and e · x̂ = x̂ ≡ x − x0. The solution of (6.13.51) is given by the indefinite
integral

H =
1

4πc

∫
[K0(cr) e

cx̂ + ln(cr) ] dx. (6.13.52)

The two-dimensional Oseenlet may now be computed from the expression

O = 4π (I∇2H−∇∇H) = 4π (Q I−∇∇H). (6.13.53)
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For a point force pointing in the direction of the outer streaming flow along the x axis, we obtain

Oxx = K0(cr) e
cx̂ +

(
K1(cr) e

c x̂ − 1

cr

) x̂
r
, Oyx =

(
K1(cr) e

c x̂ − 1

cr

) ŷ
r
. (6.13.54)

For a point force pointing normal to the outer streaming flow, we obtain

Oyx =
(
K1(cr) e

c x̂ − 1

cr

) ŷ
r
, Oyy = K0(cr) e

cx̂ −
(
K1(cr) e

c x̂ − 1

cr

) x̂
r
. (6.13.55)

We note that Oxx + Oyy = 4πQ, as required. These expressions can also be derived by applying
Fourier transforms, as discussed in Section 6.5 for the Stokeslet ([230], Problem 6.13.4).

Behavior near the point force

Using the asymptotic expansions K0(cr) � − ln(cr) + ln 2 − γ and K1(cr) � 1/(cr) in the limit
cr → 0, we obtain

Oxx = Sxx(cx̂) + ln 2− γ + · · · , Oyx = Syx(cx̂) + · · · ,
Oxy = Syx(cx̂) + · · · , Oyy = Sxx(cx̂) + ln 2− E + · · · , (6.13.56)

where E = 0.577215665 · · · is Euler’s constant, S is the two-dimensional Stokeslet, and the dots
denote decaying terms. We observe a leading-order Stokes flow solution complemented by streaming
flow in the direction of the point force. In Section 6.14, these expressions will be used to describe
streaming flow past a circular cylinder.

6.13.7 Flow past particles, drops, and bubbles

Inertial effects on the flow past and due to the motion of rigid particles and liquid drops at nonzero
Reynolds numbers have been studied extensively using asymptotic and numerical methods. A wealth
of information is compiled by Clift, Grace, & Weber [89].

Problems

6.13.1 Effects of inertia

(a) Explain why the Stokes flow approximation is valid throughout the domain of shear flow past a
stationary body.

(b) Consider a particle translating above an infinite plane wall. Estimate the distance from the
particle where inertial effects become important.

6.13.2 Vorticity in Oseen flow

Consider Oseen flow due to the translation of a three-dimensional body. Show that the vorticity
field satisfies the unsteady heat conduction equation

ρ
∂ω

∂t
= −U · ∇ω = ν∇2ω. (6.13.57)

Explain in physical terms why the body acts like an effective source of vorticity.
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6.13.3 Two-dimensional Oseenlet

Derive the two-dimensional Oseenlet using the method of Fourier transforms.

6.14 Flow past a circular cylinder

A natural set of singularities for representing Stokes flow due to the translation of a circular cylinder
in an infinite fluid is the two-dimensional Stokeslet, S, and the two-dimensional potential dipole, D,
both placed at the center of the cylinder, xc. However, since the velocity due to a two-dimensional
point force increases logarithmically with distance from the singular point, the far-flow condition of
decaying velocity cannot be satisfied. Physically, the Stokes flow approximation ceases to be valid
at a certain distance from the cylinder determined by the Reynolds number. Bearing in mind this
essential difficulty, we proceed to derive the solution in three stages: first, we consider the Stokes
flow in the vicinity of the cylinder; second, we describe the far flow using Oseen’s equation; third we
match the functional forms of the two solutions.

6.14.1 Inner Stokes flow

Inspecting the singularities of two-dimensional Stokes flow derived in Section 6.6 suggests describing
the flow by a point force with strength b and a potential dipole with strength d placed at the center
of the cylinder. Since the velocity due to a two-dimensional point force in Stokes flow diverges at
infinity, it is permissible to complement the singularity representation with a uniform flow expressed
by a constant, c, setting

ui(x) =
1

4πμ
Sij(x,x0) bj +

1

2π
Dij(x,x0) dj + ci. (6.14.1)

Introducing the explicit forms of the singularities, we obtain

ui(x) =
1

4πμ
(−δij ln

r

δ
+

x̂ix̂j

r2
) bj +

1

2π
(−δij

r2
+ 2

x̂ix̂j

r4
) dj + ci, (6.14.2)

where x̂ = x − xc is the distance from the center of the cylinder and δ is a specified length to be
determined as part of the solution.

Now we enforce the boundary condition u = V at the surface of the cylinder located at r = a,
and obtain a system of two equations for three unknowns, b, d, and c,

− 1

4πμ
ln

a

δ
b− 1

2πa2
d+ c = V, a2 b+ 4μd = 0, (6.14.3)

where V is the cylinder velocity. The solution is

b = 2πμαV, d = −1

2
πa2 αV, c = [ 1 +

1

2
α (ln

a

δ
− 1

2
) ]V, (6.14.4)

where α is an indeterminate dimensionless constant. Substituting these expressions into (6.14.2),
we derive an explicit expression for the velocity field,

ui(x) =
α

2
(− ln

r

a
− 1

2
+

1

2

a2

r2
) +

α

2
( 1− a2

r2
)
x̂ix̂j

r2
Vj + Vi. (6.14.5)
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Note that the length δ has disappeared after these substitutions. The force per unit length exerted
on the cylinder is

F = −s = −2πμαV. (6.14.6)

The torque with respect to the center of the cylinder is zero.

Surface traction

The hydrodynamic traction exerted on the cylinder can be computed from the strength of the
singularities using the expressions given in Tables 6.5.3 and 6.5.4,

fi =
1

4π
T S
ijkbjnk + μ

1

2π
T D
ijkdjnk. (6.14.7)

We find that

fi = − 1

π

x̂ix̂j x̂k

a4
bj nk + μ

2

π
(
δjkx̂i + δkix̂j + δij x̂k

a4
− 4

x̂ix̂j x̂k

a6
) dj nk. (6.14.8)

Setting nk = x̂k/a, x̂kx̂k = a2, and simplifying, we obtain

fi = − 1

π

x̂ix̂j

a3
bj + μ

2

π
(
2x̂ix̂j + δija

2

a5
− 4

x̂ix̂j

a5
) dj . (6.14.9)

Substituting the expressions for b and d given in (6.14.4) and simplifying, we find that

fi = −2α
x̂ix̂j

a3
Vj − αμ (

−2 x̂ix̂j + δija
2

a3
)Vj , (6.14.10)

yielding

fi = −α
μ

a
Vi. (6.14.11)

We have found that, as in the case of a translating sphere, the traction is a constant vector oriented
in the direction of translation. This is a unique and rather fortuitous feature of the circular geometry.

Integral representation

We have seen that the potential dipole can be expressed in terms of the Laplacian of the Stokeslet,

D(x,x0) = −1

2
∇2

0 S(x,x0). (6.14.12)

Using the second equation in (6.14.3) to write

d = − a2

4μ
b, (6.14.13)

we recast the singularity representation (6.14.1) into the form

ui(x) =
1

4πμ
Sij(x,x0) sj +

a2

16πμ
∇2

0 Sij(x,x0) sj + ci. (6.14.14)
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Applying the mean-value theorem for biharmonic functions (2.5.7) for the Stokeslet, we obtain

1

2πa

∮
Cylinder

Sij(x, ξ) dl(ξ) = Sij(x,x0) +
1

4
a2∇2

0 Sij(x,x0), (6.14.15)

where the point x lies outside the cylinder and the point ξ lies at the surface of the cylinder.
Combining the last two equations, we find that

ui(x) =
α

4πa

∮
Cylinder

Sij(x, ξ) dl(ξ)Vj + ci. (6.14.16)

The integral on the right-hand side represents a uniform distribution of two-dimensional point forces
with strength density fj = αμVj/a around the cylinder contour. This interpretation is an essential
aspect of the slender-body theory discussed in Section 6.11.

6.14.2 Oseen flow far from the cylinder

Next, we describe the flow far from the cylinder (outer solution) by an Oseenlet with strength bx
parallel to the x axis located at the center of the cylinder, xc. The asymptotic expressions (6.13.56)
show that, as r tends to zero, the inner limit of the outer solution is described by a Stokeslet
complemented by uniform flow,

uouter
i (x) � − 1

4πμ

(
− δij ln

r

δ
+

x̂ix̂j

r2
)
bj +

1

4πμ
( 2 ln 2− γ ) bi, (6.14.17)

where δ = ν/|V| and b = [bx, 0]. To satisfy the force balance, the strength of the point force, b,
must be the same as that occurring in the inner Stokes flow solution.

6.14.3 Matching

In Section 6.14.1, we saw that the inner Stokes flow consists of a point force, a potential dipole,
and a uniform flow. The outer limit of the inner flow computed from (6.14.2) by neglecting the
fast-decaying dipole is

uinner
i (x) � 1

4πμ
(−δij ln

r

δ
+

x̂ix̂j

r2
) bj + ci. (6.14.18)

Comparing (6.14.17) with (6.14.18) and requiring functional consistency between the inner and outer
limits, we set

c =
1

4πμ
(2 ln 2− γ) b. (6.14.19)

Substituting into this equation the expressions for b and c given in (6.14.4), we obtain

1 +
α

2

(
ln

Re

2
− 1

2

)
=

α

2
(2 ln 2− γ), (6.14.20)
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where Re = Dμ|V|/μ is the Reynolds number defined with respect to the cylinder diameter, D = 2a.
Solving for the coefficient α, we obtain [219]

α =
2

ln
8

Re
− γ +

1

2

� 2

ln
7.4

Re

. (6.14.21)

Substituting (6.14.21) into (6.14.6), we obtain an expression for the drag force,

F � −2πμ
2

ln
7.4

Re

V.
(6.14.22)

As Re tends to zero, the drag force diverges, and this underscores the ill-posedness of two-dimensional
streaming Stokes flow.

The analysis can formally extended using the method of matched asymptotic expansions to
derive further terms in the expression for the drag force [412].

Problems

6.14.1 Flow past an elliptical cylinder

Outline a procedure for computing the drag force on an infinite elliptical cylinder immersed in
streaming flow along the major or minor axis.

6.14.2 Flow due to a circular drop

Develop a singularity representation of the flow due to a moving circular liquid drop.

6.15 Unsteady Stokes flow

In the remainder of this chapter, we turn our attention to a class of flows occurring at low Reynolds
numbers, Re ≡ UL/ν � 1, but not necessarily at low values of the dimensionless frequency pa-
rameter, β ≡ L2/νT , as discussed in Section 3.10.2, where U is a characteristic velocity, L is a
characteristic length, T is a characteristic time, and ν is the kinematic viscosity of the fluid. More
generally, we consider flows where Re � β, requiring that that characteristic time scale is much
smaller than the convective time scale, T � L/U . The motion of the fluid is governed by the con-
tinuity equation for an incompressible fluid, ∇ · u = 0, and the unsteady Stokes equation (3.10.6),
repeated below for convenience,

ρ
∂u

∂t
= −∇p+ μ∇2u, (6.15.1)

where ρ is the fluid density, μ is the fluid viscosity, and p is the hydrodynamic pressure incorporating
the effect of the body force.

Flows governed by the unsteady Stokes equation include those generated by hydrodynamic
braking and by the translational or rotational vibrations of rigid and liquid particles suspended in
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a viscous fluid, provided that the amplitude of the oscillation is small compared to the particle size.
Other examples include oscillatory flow past a suspended particle due to the passage of a sound wave,
and the flow due to the transient motion of a particle in a quiescent, accelerating, or decelerating
ambient fluid. Unsteady Stokes flow occurs in the inner ear due to the small-amplitude vibrations
of the eardrum transmitted through the ossicular bone chain.

6.15.1 Properties of unsteady Stokes flow

Taking the divergence of the unsteady Stokes equation (6.15.1) and using the continuity equation,
we find that the pressure satisfies Laplace’s equation,

∇2p = 0, (6.15.2)

as in the case of steady Stokes flow. Taking the curl of (6.15.1), we find that the Cartesian compo-
nents of the vorticity evolve according to the unsteady heat conduction equation,

∂ω

∂t
= ν∇2ω, (6.15.3)

where ν = μ/ρ is the kinematic viscosity of the fluid.

Any irrotational velocity field described by a harmonic potential, u = ∇φ, satisfies the equa-
tions of unsteady Stokes flow. The associated hydrodynamic pressure is given by the simplified
Bernoulli equation

p = −ρ
∂φ

∂t
+ c(t), (6.15.4)

where c(t) is a time-dependent function. However, because a general potential flow is not generally
able to satisfy both the no-penetration and the no-slip conditions over a solid boundary, it must be
complemented by a rotational flow.

Unsteady Stokes flow shares many of the properties of steady Stokes flow discussed previously
in this chapter, including reversibility, the reciprocal identity, Faxén’s laws, and uniqueness subject
to specified boundary conditions for the velocity (e.g., [217, 306]).

6.15.2 Laplace transform

The Laplace transform allows us to eliminate the temporal dependence from the governing equations,
replacing it with an algebraic dependence. Assuming that the motion has started at time t = 0−

to allow for the possibility of an impulse causing a discontinuity at t = 0, we specify that all flow
variables grow, at most, at an exponential rate in time and introduce the one-sided Laplace transform
of the velocity, pressure, and vorticity, denoted by a caret,⎡⎣ û

p̂
ω̂

⎤⎦ (x, s) =

∫ ∞

0−

⎡⎣ u

p
ω

⎤⎦ (x, t) e−st dt, (6.15.5)



502 Introduction to Theoretical and Computational Fluid Dynamics

where s is a complex variable. Taking the Laplace transform of the unsteady Stokes equation (6.15.1)
and the continuity equation, ∇·u = 0, and using the properties of the Laplace transform, we obtain
Brinkman’s equation and the continuity equation in the Laplace domain,

sρ û = −∇p̂+ μ∇2û, ∇ · û = 0. (6.15.6)

An additional term appears on the right-hand side of the Stokes equation in the presence of a
distributed or localized body force.

Having computed the solution subject to appropriate boundary conditions, we recover the
physical variables in the time domain in terms of the Bromwich integral in the complex s plane,⎡⎣ u

p
ω

⎤⎦ (x, t) =
1

2πi

∫ γ+i∞

γ−i∞

⎡⎣ û

p̂
ω̂

⎤⎦ (x, s) est ds, (6.15.7)

where i is the imaginary unit and γ is a sufficiently large real positive number chosen so that, as we
move upward, all singularities of the Laplace transformed functions lie on the left of the integration
path.

6.15.3 Oscillatory flow

The linearity of the equations of unsteady Stokes flow requires that the velocity, vorticity, hydro-
dynamic pressure, and hydrodynamic stress of an oscillatory flow with angular frequency Ω exhibit
identical harmonic dependencies. We may thus write⎡⎢⎢⎣

u

ω

p
σ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ū

ω̄

p̄
σ̄

⎤⎥⎥⎦ exp(−iΩt), (6.15.8)

where i is the imaginary unit and a bar denotes the amplitude of the underlying variable. Substituting
these expressions into (6.15.1) and into the continuity equation, ∇ · u = 0, we obtain the equations
of oscillatory Stokes flow,

−iΩρu = −∇p+ μ∇2u, ∇ · u = 0. (6.15.9)

It is worth noting the similarity with the Laplace transformed equations (6.15.6), subject to the
substitution s → −iΩ.

Solutions of the equation of oscillatory flow can be produced by superposing fundamental
solutions or by developing boundary integral representations, as in the case of Stokes flow. A
fundamental building block is the Green’s function, representing the flow due to a point force whose
strength oscillates harmonically in time.

Oscillatory point force

Consider the flow due to an oscillatory point force located at a point, x0. The strength of the point
force is given by the real or imaginary part of

b = b̄ exp(−iΩt), (6.15.10)
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where b̄ is a constant amplitude. The induced velocity and pressure fields are computed by solving
the equation

−iΩρu = −∇p+ μ∇2u+ b δ3(x− x0), (6.15.11)

subject to the continuity equation, ∇ · u = 0, where δ3 is the three-dimensional delta function. To
compute the solution, we work as in Section 6.5.5 for Stokes flow, and set

u =
1

μ
( I∇2H−∇∇H) · b. (6.15.12)

The generating function H satisfies the inhomogeneous Helmholtz equation,

∇2H+ i
Ω

ν
H− 1

4πr
= 0, (6.15.13)

where r = |x − x0| is the distance from the point force. Taking the Laplacian of (6.15.13), we find
that the Laplacian of the generating function, Q ≡ ∇2H, is the Green’s function of the Helmholtz
equation

∇2Q+ i
Ω

ν
Q+ δ3(x− x0) = 0, (6.15.14)

which is given by

Q =
1

4πr
e−R, (6.15.15)

where

R ≡ r
(
− i

Ω

ν

)1/2

=
1− i√

2

r

�
(6.15.16)

is a dimensionless complex distance and

� ≡
√

ν/Ω (6.15.17)

is a kinematic diffusion length. Note that the real part of scaled distance R is positive to ensure
exponential decay.

To compute the function H, we introduce spherical polar coordinates with origin at the point
force, set

Q ≡ ∇2H =
1

r2
d

dr

(
r2

dH
dr

)
=

1

4πr
e−R (6.15.18)

and find that

dH
dr

=
1

4πR2

[
1− (1 +R) e−R

]
. (6.15.19)
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Integrating, we obtain

H =
1

4π

(
i
ν

Ω

)1/2 e−R − 1

R
=

1

4π

1 + i√
2

�
e−R − 1

R
. (6.15.20)

Oscillatory Stokeslet

Substituting (6.15.20) into (6.15.12), we derive the velocity field due to an oscillating point force in
the standard form

ui(x,x0) =
1

8πμ
Sij(x̂) bj , (6.15.21)

where x̂ = x− x0. The oscillatory Stokeslet is given by

S = 8π
(
I∇2H−∇∇H

)
= 8π

[
Q I−∇

(dH
dr

x̂

r

) ]
, (6.15.22)

yielding

S = 8π
[ (

Q− 1

r

dH
dr

)
I+

1

r2
( 1
r

dH
dr

− d2H
dr2

)
x̂⊗ x̂

]
, (6.15.23)

where I is the identity matrix. Making substitutions, we obtain

Sij(x̂) =
δij
r

A(R) +
x̂ix̂j

r3
C(R), (6.15.24)

where

A(R) = 2
(
1 +

1

R
+

1

R2

)
e−R − 2

R2
, C(R) = −2

(
1 +

3

R
+

3

R2

)
e−R +

6

R2
, (6.15.25)

are frequency-dependent functions. One may confirm that A(0) = C(0) = 1, which shows that, at
small frequencies or close to the point force, the unsteady Stokeslet reduces to the regular Stokeslet
for Stokes flow.

The vorticity, pressure, and stress fields associated with the oscillatory Stokeslet are given by
(6.15.8) with

ωi =
1

8πμ
Ωij bj , p =

1

8π
Pj bj , σik =

1

8π
Tijk bj, (6.15.26)

where
Ωij = 2 εijk

x̂l

r3
(R+ 1) e−R, Pj = 2

x̂j

r3
, (6.15.27)

Tijk = − 2

r3
(δij x̂k + δkj x̂i)

[
(R+ 1) e−R − C

]
− 2

r3
δikx̂j(1− C)− 2

x̂ix̂j x̂k

r5
[
5 C − 2(R+ 1)e−R

]
,

and the function C is given in (6.15.25). Note that Tijk is symmetric with respect to the indices i
andk.
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Traction and force on a spherical surface

It is instructive to compute the traction on a spherical surface of radius r centered at the oscillating
point force, given by fi = σijnj , where n = 1

r (x − x0) is the outward normal vector. Making
substitutions, we obtain

fi =
1

8π

(δij
r

K(R) +
x̂ix̂j

r4
L(R)

)
bj , (6.15.28)

where

K(R) = 2
[
C − (R+ 1) e−R

]
, L(R) = 2

[
(R+ 1) e−R − 1− 3 C

]
. (6.15.29)

Performing a Taylor series expansion, we find that K(0) = 0 and L(0) = −6, which is consistent with
equation (6.5.23) for Stokes flow. The force exerted on the spherical surface is found by integrating
the traction,

F =
1

6
(3K + L)b = −1

3
[ 2(R+ 1) e−R + 1 ]b. (6.15.30)

We note that the force exerted on a small sphere with infinitesimal radius (R = 0) is equal to −b,
whereas the force exerted on a sphere with infinite radius (R → ∞) is equal to − 1

3 b. The difference
between these two values is equal to the rate of change of momentum of the fluid surrounding the
point force.

Behavior at low frequencies

To examine the asymptotic behavior of the flow due to an oscillating point force at low frequencies,
we expand the generating function H given in (6.15.20) in a Taylor series for small R, obtaining

H =
1

4π

1 + i√
2

�
(
− 1 +

1

2
R− 1

6
R2 − 1

24
R3 + · · ·

)
. (6.15.31)

Simplifying, we obtain

H = − 1

4π

1 + i√
2

�+
r

8π

(
1− 1

3
R+

1

12
R2 + · · ·

)
. (6.15.32)

The constant term does not generate a flow; the linear term generates a steady Stokeslet, the
quadratic term generates a uniform flow; further terms generate a sequence of unclassified singular-
ities. It is interesting to recall that the Oseenlet also generates a uniform flow in addition to the
Stokeslet near the point force. The corresponding expansion for the oscillating Stokeslet is

S(x̂) = S(0)(x̂) + S(1)(x̂) +R2 S(2)(x̂) +R3 S(3)(x̂) + · · · , (6.15.33)

where S(0) is the steady Stokeslet and

S(1)
ij = −4

3

1− i√
2

1

�
δij , S(2)

ij =
1

4
(3

δij
r

− x̂ix̂j

r3
), S(3)

ij =
2

15
(2

δij
r

− x̂ix̂j

r3
). (6.15.34)
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All constituent tensors, S(n), have dimensions of inverse length. As noted, the tensor S(1) represents
uniform streaming flow.

Behavior at high frequencies

To examine the behavior of the flow at high frequencies or far from the point force, we expand S in
an asymptotic series for large R, obtaining

Sij(x̂) =
2

R2
(−δij

r
+ 3

x̂ix̂j

r3
) + 2 e−R (

δij
r

− x̂ix̂j

r3
) + · · · . (6.15.35)

The first term on the right-hand side is the steady potential dipole. We conclude that, at high
frequencies or far from the point force, the unsteady Stokeslet produces irrotational flow.

Green’s functions of oscillatory flow

A Green’s function of oscillatory Stokes flow represents the flow due to an oscillatory point force in
an infinite or bounded domain of flow. When the domain extends to infinity, the velocity, vorticity,
pressure and stress tensors are required to decay as the observation point moves far from the point
force. The Green’s function for semi-infinite flow bounded by a plane wall is discussed in References
[303, 306]. It can be shown using the reciprocal theorem that the Green’s functions for the velocity, G,
satisfy the symmetry property (6.5.12). The pressure vector, P , and stress tensor, T , are acceptable
unsteady Stokes flows representing the flow due to an oscillatory point source and the flow due to
an oscillatory stresslet.

Boundary-integral formulation of oscillatory flow

Working as in Section 6.9 for Stokes flow, we derive an identical boundary-integral representation,

αuj(x0) = − 1

8πμ

∫∫
D

fi(x)Sij(x,x0) dS(x) +
1

8π

∫∫
D

ui(x) Tijk(x,x0)nk(x) dS(x), (6.15.36)

where D is the smooth boundary of a selected control volume, n is the unit normal vector pointing
into the control volume, and α = 1, 12 , 0, respectively, when the the point x0 lies inside, at the
boundary of, or outside the control volume. In the second case, the principal value of the double-
layer potential represented by the integral on the right-hand side is implied.

For example, applying the boundary-integral representation (6.15.36) for streaming oscillatory
flow with uniform velocity u = U and pressure p = iΩρU · x, and setting f = −pn, we derive the
identity

α δij = i
Ω

8πν

∫∫
D

xi nk(x)Skj(x,x0) dS(x) +
1

8π

∫∫
D

Tijk(x,x0)nk(x) dS(x), (6.15.37)

where ν = μ/ρ is the kinematic viscosity of the fluid.

6.15.4 Flow due to a vibrating particle

Consider the flow due to the translational or rotational vibrations of a particle in an otherwise qui-
escent infinite ambient fluid. The characteristic time scale of the flow is T = 1/Ω, the characteristic
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velocity is U = Ωd̄, and the characteristic length is the particle size, L, where Ω is the angular
frequency and d̄ is the amplitude of the vibration. Requiring that UL/ν ≡ Re � β ≡ L2/νT , we
obtain T � L/U or d̄ � L, which shows that the equations of unsteady Stokes flow apply when
the amplitude of vibration is much smaller than the particle size. Enforcing the boundary condi-
tion of rigid-body motion at the mean position of the particle instead of the instantaneous position
introduces an error that is comparable to d̄/L, which is negligible as long as the amplitude of the
oscillation is small compared to the particle size. The boundary-integral formulation provides us
with the integral representation (6.15.36), where the integration domain, D, is the mean particle
surface.

Translational vibrations

In the case of translational vibrations with velocity V = V̄ exp(−iΩt), we set u = V at the mean
position of the particle surface, P , and obtain the integral representation

uj(x0) = − 1

8πμ

∫∫
P

fi(x)Sij(x,x0) dS(x) +
1

8π
Vi

∫∫
P

Tijk(x,x0)nk(x) dS(x), (6.15.38)

for a point x0 lying in the ambient fluid. Combining this representation with identity (6.15.37)
written with α = 0 to eliminate the double-layer potential, we derive a single-layer representation,

uj(x0) = − 1

8πμ

∫∫
P

[
fi(x) + iΩρ (V · x)ni

]
Sij(x,x0) dS(x). (6.15.39)

Now we move the point x0 to the particle surface and derive an integral equation that can be solved
by numerical methods (e.g., [304, 243]). A similar reduction of the boundary-integral representation
to a single-layer potential is not possible in the case of rotational oscillations.

Low-frequency asymptotics

To study the behavior of the flow at low angular velocities in the general case of translational and
rotational vibrations, we introduce the dimensionless complex frequency

λ ≡
(
− i

Ω

ν

)1/2

L =
1− i√

2

L

�
, (6.15.40)

where L is a particle length scale. Next, we expand the velocity and traction in asymptotic series
with respect to λ,

u = u(0) + λu(1) + λ2 u(2) + · · · , f = t(0) + λf (1) + λ2 f (2) + · · · . (6.15.41)

The boundary conditions of rigid-body motion require that

u(0) = V +Ω× (x− xc), u(1) = u(2) = · · · = 0 (6.15.42)

at the mean particle surface, where

V = V̄ exp(−iΩt), Ω = Ω̄ exp(−iΩt), (6.15.43)
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are the translational and rotational velocities about the center of rotation, xc. Substituting these
expansions along with (6.15.33) into (6.15.36), and collecting terms of zeroth and first order in λ,
we obtain the integral equations

u
(0)
j (x0) = − 1

8πμ

∫∫
P

f
(0)
i (x)S(0)

ij (x,x0) dS(x)nk(x) dS(x) (6.15.44)

and

− 1

6πμa
F

(0)
j = − 1

8πμ

∫∫
P

f
(1)
i (x)S(0)

ij (x,x0) dS(x). (6.15.45)

The double-layer potential has disappeared from (6.15.44) due to the boundary condition or rigid-
body motion.

The solution of the zeroth-order integral equation (6.15.44) can be expressed in the form

f (0) = −μ (Rt ·V +Rr ·Ω), (6.15.46)

where Rt and Rr are, respectively, the steady translational and rotary surface traction resistance
matrices introduced in (6.8.4) and (6.8.8). The steady force and torque exerted on the particle can
be expressed in terms of the resistance matrices introduced in (6.8.15),

F(0) = −μ (X ·V + Z ·Ω), T(0) = −μ (ZT ·V +Y ·Ω). (6.15.47)

Comparing the last four equations, we conclude that the first correction to the traction, force, and
torque exerted on the particle are given by⎡⎣ f

F

T

⎤⎦(1)

=
1

6πa

⎡⎣ Rt

X

ZT

⎤⎦ · F(0) = − μ

6πa

⎡⎣ Rt

X

ZT

⎤⎦ · (X ·V +P ·Ω). (6.15.48)

We have found that the first-order correction can be computed from the resistance matrices for
steady Stokes flow.

6.15.5 Two-dimensional oscillatory point force

The flow due to a two-dimensional oscillatory point force can be derived working as in Section
6.15.3 for the three-dimensional point force. We find that the generating function H satisfies an
inhomogeneous Helmholtz equation in the xy plane,

∇2H+ i
Ω

ν
H+

1

2π
ln

r

a
= 0, (6.15.49)

where r = |x−x0|, ∇2 is the Laplacian operator in the xy plane, and a is a constant length. Taking
the Laplacian of (6.15.49), we find that the Laplacian of the generating function, Q ≡ ∇2H, is the
fundamental solution of a Helmholtz equation in the xy plane,

∇2Q+ i
Ω

ν
Q+ δ2(x− x0) = 0. (6.15.50)
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The free-space Green’s function is given by

Q =
1

2π
( ker0�− i kei0� ), (6.15.51)

where r = |x − x0|, � =
√
ν/Ω, � = r/�, and ker0, kei0 are Kelvin functions (e.g., [2], p. 379). To

compute the solution, we express the Laplacian in plane polar coordinates,

∇2H =
1

r

d

dr

(
r
dH
dr

)
= Q, (6.15.52)

and integrate once to find that

dH
dr

=
1

2πr

∫ r

0

ξ ( ker0�− i kei0� ) dξ. (6.15.53)

Abramowitz & Stegun ([2], p. 380) provide us with the indefinite integrals∫
ξ ker0(ξ) dξ = − ξ√

2

(
ker1ξ − kei1ξ

)
= ξ kei′0ξ (6.15.54)

and ∫
ξ kei0(ξ) dξ = − ξ√

2

(
kei1ξ + ker1ξ

)
= −ξ ker′0ξ. (6.15.55)

Substituting these integrals into (6.15.53), we obtain

dH
dr

=
�

2π
( kei′0�+ iker′0� ). (6.15.56)

The oscillatory Stokeslet is given by

S = 4π(I∇2H−∇∇H) = 4π
[
IQ−∇

(dH
dr

x̂

r

) ]
, (6.15.57)

which can be recast into the form

S = A(�) I+
C(�)
r2

x̂⊗ x̂, (6.15.58)

where

A(�) = 4π (G − 1

r

dH
dr

) = 2 (ker0�−
1

�
kei′0�)− 2 i (kei0�+

1

�
ker′0�),

C(�) = 4π (
1

r

dH
dr

− d2H
dr2

) = 2 (−ker0�+
2

�
kei′0�) + 2 i (kei0�+

2

�
ker′0�)

(6.15.59)

[307]. As R tends to zero, we recover the steady two-dimensional Stokeslet.
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6.15.6 Inertial effects and steady streaming

The equations of unsteady Stokes flow describe the structure of a flow when the Reynolds number,
Re, is much smaller than the frequency parameter β, so that the nonlinear acceleration term, ρu·∇u,
is insignificant compared to the Eulerian term, ρ ∂u/∂t. The leading-order solution can be regarded
as a base state for studying nonlinear inertial effects using regular perturbation expansions.

Oscillatory flow

The Stokes flow solution for oscillatory flow, is given by the real or imaginary part of the right-hand
side of (6.15.8). Selecting the real part, we introduce a regular asymptotic expansion for the velocity
with respect to Re,

u(x, t) =
1

2
(ū(0) e−iΩt + ū(0)∗eiΩt) + Reu(1)(x, t) + · · · , (6.15.60)

where the superscript (0) denotes the Stokes flow solution, the superscript (1) denotes the first
inertial correction, an asterisk designates the complex conjugate, and the three dots denote high-
order corrections with respect to Re, The nonlinear convection term on the left-hand side of the
equation of motion becomes

u · ∇u =
1

4
F(u(0)) +O(Re), (6.15.61)

where

F(u(0)) ≡
[
ū(0) · ∇ū(0)

]
e−2iΩt +

[
ū(0)∗ · ∇ū(0)∗

]
e2iΩt +∇ ·

(
ū(0) ⊗ ū(0)∗ + ū(0)∗ ⊗ ū(0)

)
. (6.15.62)

Substituting expressions (6.15.60) and (6.15.62) into the Navier–Stokes equation, nondimensional-
izing all terms as discussed in Section 3.10, retaining terms of first order in Re, and reverting to
physical variables, we obtain a forced unsteady Stokes equation

ρ
∂u(1)

∂t
= −∇p(1) + μ∇2u(1) − 1

4
ρF , (6.15.63)

where p(1) is the first inertial correction to the pressure. We observe that the nonlinear acceleration
term produces second harmonics of the fundamental frequency, Ω, represented by the terms inside
the square brackets on the right-hand side of (6.15.62). The time-independent term enclosed by
the parentheses on the right-hand side of (6.15.62) is responsible for the onset of inertial steady
streaming superimposed on the underlying oscillatory flow.

Steady streaming

To describe the steady streaming flow, we integrate equation (6.15.63) over one period to eliminate
the time dependence, and derive a forced Stokes equation,

−∇p̄(1) + μ∇2ū(1) − 1

4
ρ∇ ·

(
ū(0) ⊗ ū(0)∗ + ū(0)∗ ⊗ ū(0)

)
= 0, (6.15.64)

where a bar designates a time average. The problem is reduced to solving the forced Stokes flow equa-
tion (6.15.64) together with the continuity equation, subject to appropriate boundary conditions.
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At high frequencies, the forcing term is confined inside a Stokes layer surrounding the boundaries of
the flow, and a solution can be found using the boundary-layer approximation (e.g., [24], p. 358).

The mathematical properties and computation of steady streaming due to an oscillatory flow
over a curved boundary have been studied extensively with reference to the flow induced by the
propagation of sound waves (e.g., [203, 210, 290, 345]).

Problems

6.15.1 Oscillatory point force

(a) Confirm that, as the scaled distance R tends to zero, the vorticity and stress tensors Ω and T

defined in (6.15.27) reduce to those for steady Stokes flow.

(b) Repeat (a) for the two-dimensional oscillatory point force.

6.15.2 Oscillating sphere

Derive the specific form of (6.15.48) for an oscillating sphere.

6.16 Singularity methods for oscillatory flow

The apparatus of the singularity method for Stokes flow can be extended to unsteady Stokes flow.
The generalized Faxén relations based on singularity representations discussed in Section 6.12 are also
valid for unsteady Stokes flow [303]. While the general principles of the singularity method remain
the same, the specific expressions for the singularities become more involved and the computation
of singularity representations becomes more cumbersome. In this section, we derive of families of
singularities of oscillatory Stokes flow originating from the point source or point force, and then
employ them to generate exact solutions.

6.16.1 Singularities of oscillatory flow

Working as in the case of Stokes flow, we generate two families of singularities consisting of irro-
tational and rotational flows. The former originate from the point source, and the latter originate
from the point force.

Oscillatory point source and derivative singularities

A point source with oscillatory strength, m = m̄ exp(−iΩt), located at the point x0, produces
irrotational flow. The induced velocity and pressure fields are

u(x) =
m

4π

x− x0

r3
, p(x) = −iΩρ

m

4π

1

r
, (6.16.1)

where x̂ = x−x0 and r = |x̂|. As the frequency Ω decreases, the pressure field vanishes throughout
the domain of flow.

Differentiating the point source with respect to the singular point, x0, we obtain a sequence
of derivative singularities expressing irrotational flow. The first two are the potential dipole and the
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potential quadruple. The velocity fields are shown in Table 6.6.1 and the corresponding pressure
fields are found by differentiating the pressure of the point source.

Multipoles of the oscillatory point force

Differentiating a Green’s function representing an oscillatory point force with respect to the singular
point, x0, we obtain a sequence of singularities expressing multipoles of the oscillatory point force.
The associated pressure fields are identical to those of the corresponding singularities of steady
Stokes flow.

Symmetric Stokeslet quadruple

The Laplacian of the free-space Green’s function with respect to the singular point provides us with
symmetric Stokeslet quadruple,

SSQ
ij = −1

2
∇2

0 Sij =
[
− δij

r3
(1 +R+R2) +

x̂ix̂j

r5
(3 + 3R+R2)

]
e−R, (6.16.2)

where R ≡ r(−iΩ/ν)1/2 is a dimensionless distance. One may verify by straightforward substitution
that

SSQ = D − 1

2

R2

r2
S, (6.16.3)

whereD is the potential dipole given in Table 6.6.1 and S is the unsteady Stokeslet given in (6.15.24).
As R → 0, the symmetric Stokeslet quadruple reduces to the potential dipole, D.

The velocity and stress fields due to a symmetric Stokeslet quadruple with strength q are
given by

ui =
1

4π
SSQ
ij qj , σik =

μ

4π
T SQ
ijk qj , (6.16.4)

where

T SQ
ijk =

(δij x̂k + δjkx̂i

r5
(6 + 6R+ 3R2 +R3) + 2δik

x̂j

r5
(3 + 3R+R2)

−2
x̂ix̂j x̂k

r7
(15 + 15R+ 6R2 +R3)

)
e−R. (6.16.5)

The traction exerted on a spherical surface of radius r centered at the singular point is

fi = σijnj =
μ

4π

(δij
r4

E(R)− x̂ix̂j

r6
F(R)

)
e−R qj , (6.16.6)

where

E(R) = 6 + 6R+ 3R2 +R3, F(R) = 18 + 18R+ 7R2 +R3. (6.16.7)

Substituting E(0) = 6 and F(0) = 18, we confirm agreement with corresponding results for Stokes
flow. The associated force is

F =
μ

r2
[ E(R)− 1

3
F(R)] e−R q =

2

3

1

r2
R2 (1 +R) e−R q. (6.16.8)

We observe that the force is zero only in the case of Stokes flow, R → 0.



6.16 Singularity methods for oscillatory flow 513

Oscillatory rotlet or couplet

The velocity, pressure, and stress fields due to an oscillatory couplet or rotlet with strength c are
given by

ui =
1

8πμ
Cim cm, p = 0, σik =

1

8π
T C
imk cm, (6.16.9)

where

Cim = εiml
x̂l

r3
(1 +R) e−R. (6.16.10)

The torque exerted on a spherical surface of radius r centered at the couplet is

T = −(1 +R+
1

3
R2) e−R c. (6.16.11)

As R → 0, we recover our previous results for Stokes flow T = −c.

Interior flow

The velocity, pressure, and stress fields due to an oscillating Stokeson with strength s = s̄ exp(−iΩt)
is given by [303]

ui = SN
ij sj , p = μPN

j sj, σik = μ T N
ijk sj . (6.16.12)

The pressure vector is the same as that of the steady Stokeson, PN
j = 10 x̂j . The velocity tensor is

given by

SN
ij = δij2r

2Q(R)− x̂ix̂jW(R), (6.16.13)

and traction exerted on a spherical surface of radius r centered at the Stokeson is

fi = σijnj = μ
(
δijr I(R) +

x̂ix̂j

r
J (R)

)
sj , (6.16.14)

where the functions Q, W, I, and J , are given in Table 6.16.1. In the limit of steady Stokes flow,
we find that I(0) = 3 and J (0) = −9, yielding the Stokeson in Stokes flow.

6.16.2 Singularity representations

The analytical and numerical computations of singularity representations for unsteady Stokes flow
are similar to those of Stokes flow discussed in Section 6.7. If the exterior flow due to the small-
amplitude oscillations of a rigid or fluid particle can be expressed in terms of a collection of sin-
gularities, including the oscillating Stokeslet and its derivatives expressing multipoles of the point
force, then the force exerted on the particle can be computed directly from the total strength of the
Stokeslets, b, as

F = −b− iΩρVpV, (6.16.15)

where Vp is the particle volume and V is the particle velocity of translation [303].
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Q(R) = − 1

4R5

(
2−R3 − 30(1 +R2) sinhR+ 30R coshR

)
W(R) =

15

R5

(
(3 +R3) sinhR− 3R coshR

)
I(R) =

15

R5

(
R(6 +R2) coshR− 3(2 +R2) sinhR

)
J (R) = −10− 15

R5

(
R(18 +R2) coshR− (7R2 + 18) sinhR

)
Table 6.16.1 Functions related to the velocity field and force exerted on a spherical surface due to an

oscillating Stokeson in interior flow.

Rotational vibration of a sphere

The flow due to the rotational vibration of a sphere of radius a can be represented in terms of a
rotlet with strength

c = 8πμa3
eλ

1 + λ
Ω, (6.16.16)

where λ2 = −iΩa2/ν is a dimensionless frequency. Using (6.16.11), we find that the torque exerted
on the sphere is

T = −(1 + λ+
1

3
λ2) e−λ c = −8

3
πμa3

(
3 +

λ2

1 + λ

)
Ω. (6.16.17)

As λ → 0, we recover our earlier results for Stokes flow.

Translational vibration of a sphere

The flow due to the translational vibration of a sphere of radius a whose center is oscillating about
a mean position, x0, can be represented in terms of an unsteady Stokeslet with strength b and a
symmetric Stokeslet quadruple with strength q,

ui(x) =
1

8πμ
Sij(x,x0) bj +

1

4π
SSQ
ij (x,x0) qj . (6.16.18)

Substituting the expressions for the singularities and enforcing the boundary condition ū = V̄ at
r = a, we find that

b = 6πμa(1 + λ+
1

2
λ2)V, q = −6πa3

1

λ
(eλ − 1− λ− 1

3
λ2)V, (6.16.19)

where λ2 = −iΩa2/ν is a dimensionless frequency. As λ → 0, we obtain expressions (6.7.4) for
steady Stokes flow.
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Using (6.15.30) and (6.16.8) or (6.16.15) along with the coefficients (6.16.19), we obtain the
force exerted on the sphere,

F = −1

3
[2e−λ(λ+ 1) + 1]b− iΩ

ρ

2

3
e−λ(1 + λ)q = −b− iΩρVsV, (6.16.20)

where Vs =
4π
3 a3 is the volume of the sphere. Making substituting, we recover the Boussinesq–Basset

formula (e.g., [413])

F = −6πμa (1 + λ+
1

9
λ2)V. (6.16.21)

It is remarkable that the expression for the force is a binomial in the complex frequency parameter
λ. The three terms in the parentheses on the right-hand side of (6.16.21) represent, respectively,
the steady Stokes drag force, the unsteady Boussinesq–Basset force, and an acceleration reaction
associated with the virtual mass in potential flow. The quadratic dependence is true only for the
spherical shape [303].

Further singularity representations

Exact singularity representations for unsteady flow are limited to those for flow produced by the
translational or rotational oscillations of a solid or liquid sphere, and for the disturbance flow due
to a sphere that is held stationary in an oscillating linear ambient flow ([303]; [208], Chapter 5;
[308]). It should be noted that, since a general oscillating linear flow is not an exact solution of
the equations of unsteady Stokes flow, the solution for linear ambient flow must be regarded as the
response of the sphere to the linear term in the Taylor series expansion about the center of the
sphere of a general unsteady incident flow. Approximate singularity representations of the flow due
to the translational oscillations of a prolate spheroid can be computed in terms of oscillatory point
forces and quadruples distributed over the focal length of the spheroid [303]. The densities of the
distributions range from those for steady flow at low frequencies to those for inviscid potential flow
at high frequencies.

Problems

6.16.1 Oscillating liquid drop

Derive the singularity representation of an oscillating liquid drop [303].

6.17 Unsteady Stokes flow due to a point force

Having investigated the properties and computation of oscillatory Stokes flow, now we turn our
attention to a more general time-dependent motion.

6.17.1 Impulsive point force

The velocity and pressure fields of an unsteady Stokes flow due to an impulsive point force with
strength b applied at a point x0 at time t0 satisfy the continuity equation, ∇ · u = 0, and the
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singularly forced equation

ρ
∂u

∂t
= −∇p+ μ∇2u+ b δ3(x− x0) δ1(t− t0), (6.17.1)

where δ3 is the three-dimensional delta function and δ1 is the one-dimensional delta function. The
solution for the velocity and pressure can be expressed in the forms

u(x̂, t̂) =
1

μ
(∇2H−∇∇H) · b, p(x̂, t̂) = − 1

4π
∇
(1
r

)
· b =

1

4π

x− x0

r3
· b, (6.17.2)

where r = |x − x0| is the distance of the field point, x, from the point force, and t̂ = t − t0 is the
time elapsed since the introduction of the point force. Working as in Section 6.5.5, we find that the
generating function, H, with dimensions of length over time, satisfies the equation

1

ν

∂H
∂t

= ∇2H− 1

4πr
δ(t− t0), (6.17.3)

where ν = μ/ρ is the kinematic viscosity of the fluid. The continuity equation, ∇·u = 0, is satisfied
for any nonsingular function H.

The Laplacian of the generating function, Q ≡ ∇2H, is the Green’s function of the unsteady
diffusion equation, satisfying

1

ν

∂Q
∂t

= ∇2Q+ δ3(x− x0) δ(t− t0), (6.17.4)

given by

Q(r, t̂) =
ν

(4πνt̂)3/2
exp

(
− r2

4νt̂

)
(6.17.5)

(see also Section 12.2.1). Solving the Poisson equation ∇2H = Q in spherical polar coordinates for
a radial field,

∇2H =
1

r2
∂

∂r

(
r2

∂H
∂r

)
= Q, (6.17.6)

we find that

H(r, t̂) =
1

4πr

( ν

πt̂

)1/2
∫ r

0

[
1− exp

(
− ξ2

4νt̂

) ]
dξ. (6.17.7)

In terms of the error function,

erf(w) ≡ 2√
π

∫ w

0

e−�2

d�, (6.17.8)

we obtain

H(r, t̂) =
1

4πr

( ν

πt̂

)1/2 [
r − (πνt̂)1/2 erf

( r

(4νt̂)1/2

) ]
. (6.17.9)

Straightforward differentiation according to (6.17.2) produces the evolving velocity field.
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Long-time asymptotics

The behavior of the flow at long times can be found by expanding the integrand in (6.17.7) in a
Taylor series with respect to the argument of the exponential, finding

H(r, t̂) =
1

4πr

( ν

πt̂

)1/2
∫ r

0

[ ξ2

4νt̂
− 1

2

( ξ2

4νt̂

)2

+ · · ·
]
dξ. (6.17.10)

Performing the integration, we obtain

H(r, t̂) =
1

4π

( ν

πt̂

)1/2[ 1
3

r2

4νt̂
− 1

10

r4

(4νt̂)2
+ · · ·

]
. (6.17.11)

Substituting this expansion into (6.17.2), we obtain

u(x̂, t̂) =
1

4πμ

( ν

πt̂

)1/2[ 4
3

1

4νt̂
I− 6

r3

(4νt̂)2
S(3) + · · ·

]
· b, (6.17.12)

where I is the identity matrix and the tensor S(3) is defined in (6.15.34). This expression finds ap-
plications in the computation of the long-time decay of the angular velocity autocorrelation function
of small particles executing Brownian motion [183].

Laplace transform

The flow due to a localized impulse can also be derived by applying the Laplace transform to obtain
equations (6.15.6) with a forcing term in the equation of motion due to the impulse,

sρ û = ∇p̂+ μ∇2û+ b δ3(x− x0), ∇ · û = 0. (6.17.13)

The solution is

ûi(x̂, s) =
1

8πμ
Sij(x̂, s) bj , (6.17.14)

where x̂ = x − x0 and S is the unsteady Stokeslet tensor given in (6.15.24) with R = r
√
s/ν.

Inversion yields the results produced earlier in this section using th method of Green’s functions.

To compute the long time behavior of the flow, we use expansion (6.15.33) for the oscillatory
Stokeslet at small s, finding

û =
1

8πμ

(
S(0)(x̂)− 4

3
R

1

r
I+R2 S(2)(x̂) +R3 S(3)(x̂) + · · ·

)
· b. (6.17.15)

Inverting this expansion reproduces expression (6.17.12) (Problem 6.17.2).

6.17.2 Persistent point force

The generating function for a stationary point force with constant strength introduced at time tstart
at the fixed point x0 can be found by integrating the generating function due to an impulsive point
force, given in (6.17.7), with respect to t0 from tstart until the present time t, obtaining

H̃(r, t− tstart) ≡
∫ t

tstart

H(r, t− t0) dt0 =

∫ t−tstart

0

H(r, τ) dτ, (6.17.16)
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where τ = t− t0 (e.g., [61]). Making substitutions, we find that

H̃(r, t− tstart) =
1

4π3/2r

∫ r

0

ξ I(η) dξ, (6.17.17)

where η ≡ ξ/[ν(t− tstart)]
1/2 is a dimensionless similarity variable,

I(η) ≡
∫ t−tstart

0

1

ξ

(ν
τ

)1/2[
1− exp

(
− ξ2

4ντ

) ]
dτ = 2

∫ ∞

η

1− e−�2/4

�2
d�, (6.17.18)

and ρ ≡ ξ/(ντ)1/2 is a dimensionless integration variable. Evaluating the integral for small values
of η, we obtain

I =
√
π − 1

2
η +

1

48
η3 + · · · . (6.17.19)

Substituting this expansion into (6.17.17) and performing the integration, we obtain

H̃ =
r

8π3/2

(√
π − 1

3
R+

1

120
R3 + · · ·

)
, (6.17.20)

where R ≡ r/[ν(t − tstart)]
1/2, which is consistent with the expression derived in Section 6.5.5 for

the Stokeslet.

6.17.3 Wandering point force with constant strength

The generating function for a moving point force with constant strength introduced at time tstart
can be found by specifying the trajectory of the singular point, x0(t), and integrating (6.17.7) with
respect to t0 from tstart up to the present time, t. The Laplacian of the generating function, denoted
by Q̃(x, t), is given by

Q̃(x, t) ≡
∫ t

tstart

Q(x,x0(t0), t− t0) dt0 =

∫ t−tstart

0

Q(x,x0(t− τ), τ) dτ, (6.17.21)

where τ = t− t0 is the elapsed time and Q is given in (6.17.5).

In the case of a point force moving with constant velocity, V, the position of the point force
is x0(t− τ) = x0(t)−Vτ . Making substitutions, we obtain

Q̃(x, t) =

∫ t−tstart

0

ν

(4πντ)3/2
exp

(
− (x− x0(t)−Vτ)2

4ντ

)
dt̂. (6.17.22)

Letting the upper integration limit tend to infinity and performing the integration, we obtain

Q̃ =
1

4πr
exp

[
− |V|

2ν
(r − e · x̂)

]
, (6.17.23)

where x̂ = x − x0(t), r = |x̂|, and e = V/|V| is the unit vector in the direction of translation.
Expression (6.17.23) is consistent with the Laplacian of the generating function associated with the
Oseenlet, given in (6.13.17).
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Problems

6.17.1 Green’s function

Derive the solution of (6.17.5) in two dimensions.

6.17.2 Decay of an impulsive point force

Invert (6.17.15) using tables of the Laplace transform to reproduce expansion (6.17.12).

6.17.3 Two-dimensional impulsive point force

Derive the counterpart of (6.17.9) in two-dimensional flow.

6.18 Unsteady particle motion

In Sections 6.15 and 6.16, we studied oscillatory Stokes flow past a stationary particle and flow due
to a vibrating particle. To describe an arbitrary time-dependent flow, we may solve the unsteady
Stokes equation using the method of Laplace transform discussed in Section 6.15.2. Solutions in
the Laplace transformed domain can be produced by boundary-integral and singularity methods, as
discussed previously for oscillatory flow. The inversion of the Laplace transform can be carried out
by analytical or numerical methods.

6.18.1 Force on a translating sphere

The Laplace transform of the force exerted on a solid sphere of radius a moving with a specified
time-dependent velocity V(t) from rest, V(0) = 0, follows from (6.16.21) as

F̂ = −6πμa (1 + λ+
1

9
λ2)V̂, (6.18.1)

where λ2 = sa2/ν. Taking the inverse Laplace transform, we obtain

F(t) = −6πμaV(t)− 6a2
√
πρμ

∫ t

0

(dV
dt

)
τ

dτ√
t− τ

− 1

2
ρVs

dV

dt
, (6.18.2)

where Vs = 4π
3 a3 is the volume of the sphere. The three terms on the right-hand side of (6.18.2)

represent the Stokes drag force, the Boussinesq–Basset viscous memory force, and an acceleration
reaction. The inverse square root kernel of the Boussinesq–Basset memory integral reflects the
diffusion of vorticity away from the particle surface.

Equation (6.18.2) can be used to derive an integro-differential equation describing the grav-
itational settling of a spherical particle released from rest. Using Newton’s second law of motion
incorporating the hydrodynamic drag force, the buoyancy force, and the particle weight, we obtain

(ρs +
1

2
ρ)Vs

dV

dt
= −6πμaV(t)− 6a2

√
πρμ

∫ t

0

(dV
dt

)
τ

dτ√
t− τ

+ (ρs − ρ)Vs g, (6.18.3)

where ρs is the density of the sphere. Equation (6.18.3) can be recast as a second-order ordinary
differential equation in time for V(t), which can be integrated by standard numerical methods ([89],
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p. 288; [437], p. 376). It should be pointed out that, because the boundary condition is applied at
a fixed position, equations (6.18.1)–(6.18.3) are strictly valid only for small travel distances, much
less than the particle size.

Equations similar to (6.18.2) and (6.18.3) have been developed for spherical bubbles and drops
and nonspherical rigid particles [89].

Torque on a rotating sphere

Consider a sphere of radius a rotating about its center with time-depended angular velocity, Ω(t).
The counterpart of expression (6.16.17) for the Laplace transform of the angular velocity and torque
exerted on the sphere is

T̂ = −8

3
πμa3

(
3 +

λ2

1 + λ

)
Ω̂ = −8

3
πμa3

(
3 +

1√
ν/a2

s√
ν/a2 +

√
s

)
Ω̂, (6.18.4)

where λ2 = sa2/ν. Assuming that the sphere has started rotating at t = 0 in a quiescent fluid, we
obtain the torque by taking the inverse Laplace transform denoted by L−1. Resorting to tables of
the Laplace transform, we read

L−1
( 1

s+
√
αs

)
= L−1

( 1√
s

1√
α+

√
s

)
= eαt erfc(

√
αt), (6.18.5)

where α is a constant. Now we write

T̂ = −8

3
πμa3

(
3 +

[ 1√
ν/a2

1√
s
− 1√

s

1√
ν/a2 +

√
s

]
s
)
Ω̂, (6.18.6)

and find that

T(t) = −8

3
πμa3

[
3Ω(t) +

∫ t

0

(dΩ
dt

)
τ

( 1√
πα(t− τ)

− eα(t−τ)erc
√
α(t− τ)

)
dτ

]
, (6.18.7)

where α = ν/a2 is the inverse of the viscous time scale [303]. We note the presence of an instanta-
neous viscous torque together with a viscous history torque. There is no added mass term.

6.18.2 Particle motion in an ambient flow

To compute the force exerted on a translating particle, it is expedient to refer to a frame of ref-
erence moving with the particle. If the flow in a stationary frame is described by the unsteady
Stokes equation, the flow in the moving frame is described by the nonlinear Navier–Stokes equation.
Geometrical nonlinearities arise in the case of general unsteady motion when the particle position
is not fixed. Equations describing particle motion in an ambient flow accounting for the effect of
fluid inertia have been developed under various approximations [258]. Comprehensive reviews can
be found in References [89, 308, 413].
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Problem

6.18.1 Force on a sphere in time-dependent motion

Derive (6.18.2) from (6.16.21) using the method of Laplace transform.

Computer Problem

6.18.2 Gravitational settling of a sphere

Develop and implement a computational procedure for solving the integro-differential equation
(6.18.3). Compute and plot the velocity of the settling sphere as a function of time. To evalu-
ate the singular memory integral, subtract out and then integrate analytically the singularity.



Irrotational flow 7
The vorticity transport equation (3.12.1) for fluids whose density is uniform throughout the domain
of flow, or for barotropic fluids whose pressure is a function of the density alone, shows that the rate
of vorticity production is zero throughout an irrotational flow. Consequently, vorticity may enter
the flow only by diffusion across the boundaries. Once vorticity has entered the flow, it is convected
by the existing velocity field while diffusing with a diffusivity that is equal to the kinematic viscosity
of the fluid, and intensifies or attenuates due to vortex stretching. An unbounded flow does not have
any vorticity entrance ports. Accordingly, if an unbounded flow is irrotational at the initial instant,
it will remain irrotational at all times.

Under certain conditions, the distance across which the vorticity penetrates the fluid from
the boundaries is small compared to the overall size of the boundaries, and the bulk of the flow is
nearly irrotational. This occurs when the rate of diffusion of vorticity into the flow is comparable
to the rate of convection of vorticity by tangential fluid motion along the boundary. Balancing the
orders of magnitude of the rate of convection and diffusion of vorticity yields the formal requirement
that the Reynolds number, Re, defined with respect to the typical size of the boundaries, should
be sufficiently high, Re � 1. When this condition is met, vorticity is convected along thin layers
wrapping around the boundaries, and is then channeled into slender wakes or deposited into regions
of rotational flow, commonly called vortices or regions of separated flow. The point where a vortex
layer detaches from a boundary and enters the bulk of the flow defines the position where a boundary
layer is said to separate. The relevant physical mechanisms and the mathematical description of
these processes will be discussed in Chapter 8.

Examples of nearly irrotational flows include high-Reynolds-number flows past an aircraft wing
or streamlined ground vehicles. Under normal operating conditions, the vorticity is confined inside
thin boundary layers lining the wing or the surface of a vehicle, as well as inside wakes developing
behind these bodies. Another example is the flow generated by the propagation of surface waves in
the ocean, which is irrotational everywhere except inside a thin boundary layer containing a small
amount of vorticity along the free surface.

Whether the vorticity of a high-Reynolds-number flow will remain confined within slender
wakes or generate steady or unsteady regions of recirculating flow is not known a priori, but must
be assessed by observation, analysis, or numerical computation. In practice, as the Reynolds number
increases, the onset of hydrodynamic instability causes unsteady or oscillatory motion that renders
the structure of the flow hard to analyze and difficult to predict. Turbulent motion characterized
by temporal and spatial fluctuations appears beyond a critical threshold.

522
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Prandtl proposed decoupling the irrotational flow far from the boundary layers from the flow
inside the boundary layers. In the first step, a potential-flow problem is solved assuming that the
domain of irrotational flow extends all the way up to the boundaries and neglecting the presence
of wakes and regions of recirculating fluid. In the second step, the potential-flow solution is used
to study the development and instability of boundary layers, subject to appropriate simplifying
assumptions. In this chapter and in Chapter 10, we discuss the properties and computation of the
outer potential flow. In Chapters 8 and 9, we discuss the structure and stability of the boundary-layer
flow.

7.1 Equations and computation of irrotational flow

The description and computation of an irrotational flow is considerably simplified by introducing
the velocity potential, φ, defined by the equation

u = ∇φ, (7.1.1)

where u is the velocity. Taking the curl of (7.1.1) and remembering that the curl of the gradient
of a twice differentiable function is identically zero, we find that the vorticity vanishes and confirm
that a potential flow is also an irrotational flow. In Section 2.1, we saw that the converse is also
true, that is, any irrotational flow can be described in terms of a single- or multi-valued velocity
potential, φ. The advantages of introducing the potential become evident by observing that, instead
of computing the three components of the velocity, we only need to compute the scalar potential
function of an irrotational flow.

Incompressibility condition

The continuity equation for an incompressible fluid requires that the velocity field be solenoidal,
∇ · u = 0, and the potential φ be a harmonic function,

∇2φ = 0. (7.1.2)

Laplace’s equation (7.1.2) can be solved by a variety of analytical and numerical methods subject
to one scalar boundary condition over each boundary. Since the normal component of the velocity
at the edge of a boundary layer over an impermeable stationary body is small, we must enforce
the no-penetration condition, n · ∇φ = 0. The irrotational flow computed subject to this condition
exhibits a nonzero tangential velocity, which amounts to a surface of discontinuity identified as a
vortex sheet. This apparent jump is a macroscopic representation of a vortex layer or boundary
layer whose thickness is small compared to the macroscopic length scale of the flow.

Bernoulli equation

Since the velocity field of an irrotational flow can be computed without reference to the equation of
motion, kinematics and dynamics are decoupled. The equation of motion provides us with a first-
order linear partial differential equation for the pressure, which can be integrated to yield Bernoulli’s
equation (3.9.22), repeated for convenience,

∂φ

∂t
+ B = c(t), (7.1.3)
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where

B ≡ 1

2
u · u+

p

ρ
− g · x (7.1.4)

is the Bernoulli function and c(t) is a specified function of time. We have assumed that the density
of the fluid is uniform throughout the domain of flow.

It is worth emphasizing that an irrotational flow and the associated pressure field computed
using Bernoulli’s equation constitute an exact solution of the full Navier–Stokes equation with the
viscous force included. However, with some fortuitous exceptions, the solution cannot satisfy more
than one scalar boundary condition. One exception is the two-dimensional flow generated by the
steady rotation of a circular cylinder around its center, which is identical to the irrotational circu-
latory flow due to a point vortex. Another exception is the flow generated by the radial expansion
or contraction of a spherical bubble which is identical to the irrotational flow due to a point source,
as discussed in Section 7.1.3.

7.1.1 Force and torque exerted on a boundary

If the pressure is available, the force and torque with respect to a point, x0, exerted on a boundary,
B, can be computed using simplified versions of the general expressions (3.4.12) and (3.4.13),

F = −
∫∫

B

pn dS, T = −
∫∫

B

p (x− x0)× n dS, (7.1.5)

where n is the normal unit vector pointing into the flow. Strictly speaking, these equations provide
us with the force and torque exerted on a fluid surface around the edge of boundary layers, subject
to the assumption that viscous stresses make negligible contributions. These predictions must be
corrected taking into consideration the viscous stresses near the boundaries and the pressure drop
occurring across boundary layers, as discussed in Chapter 8.

7.1.2 Viscous dissipation in irrotational flow

Although the viscous force in the equation of motion is zero in an irrotational flow, the viscous
stresses and rate of viscous dissipation are nonzero and depend on the structure of the flow and the
fluid viscosity, as discussed in Section 3.4. This realization makes an important distinction between
irrotational and inviscid flow.

Departing from (3.4.14) and (3.4.15), noting that the rate-of-deformation tensor is the same as
the velocity gradient tensor in an irrotational flow, using the continuity equation, and applying the
divergence theorem, we find that the rate of viscous dissipation in an irrotational flow with uniform
viscosity is given by∫∫∫

Flow

Φ dV = 2μ

∫∫∫
Flow

(∇∇φ) : (∇∇φ) = −μ

∫∫
B

n · ∇(u · u) dS, (7.1.6)

where n is the normal unit vector pointing into the flow and B denotes the boundaries. The right-
hand side of (7.1.6) expresses the rate of viscous dissipation in terms of the derivatives of the square
of the magnitude of the velocity normal to the boundaries.
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Using equation (3.4.21), we find that the rate of viscous dissipation inside a fluid parcel
balances the rate of working of the deviatoric viscous traction f̌ = σ̌ · n,∫∫∫

Parcel

Φ dV = −
∫∫

Parcel

u · f̌ dS, (7.1.7)

where σ̌ is the deviatoric component of the stress tensor and n is the normal unit vector pointing
into the parcel. Further discussion of the relation between the drag force exerted on a boundary and
the rate of viscous dissipation is available [201].

7.1.3 A radially expanding or contracting spherical bubble

An interesting example of viscous irrotational flow is provided by

a

An expanding bubble produces
irrotational flow represented by

a point source.

the radial expansion or contraction of a spherical bubble with time-
dependent radius a(t) in an ambient fluid of infinite expanse. The
velocity field can be represented by a three-dimensional point source
with time-dependent strength m(t) placed at the center of the bub-
ble. In spherical polar coordinates (r, θ, ϕ) with origin at the bubble
center, the velocity potential and radial component of the velocity
are given by

φ = −m(t)

4π

1

r
, ur =

∂φ

∂r
=

m(t)

4π

1

r2
, (7.1.8)

where r is the distance from the center of the bubble. The no-penetration condition at the surface of
the bubble requires that da/dt = ur(a), which can be rearranged into an expression for the strength
of the point source,

m(t) = 4πa2
da

dt
. (7.1.9)

Far from the bubble, the pressure assumes the hydrostatic distribution

p � ρg · (x− xc) + p∞(t), (7.1.10)

where xc is the bubble center and p∞(t) is the far-field hydrodynamic pressure. Substituting (7.1.8)
and (7.1.9) into Bernoulli’s equation (7.1.3) and rearranging, we obtain

p− ρg · (x− xc)− p∞(t) = ρ
1

3

[ 1
r

d2a3

dt2
− 1

6

1

r4

(da3
dt

)2 ]
. (7.1.11)

To derive an evolution equation for the bubble radius in terms of the internal bubble pressure,
pB(t), we enforce the radial component of the interfacial boundary condition (3.8.8) with constant
surface tension, γ,

σrr + pB(t) = γ 2κm, (7.1.12)

set κm = 1/a, and obtain

pB(t) = p(r = a, t)− 2μ
(∂ur

∂r

)
r=a

+ 2
γ

a
. (7.1.13)
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Note that the normal viscous stress expressed by the second term on the right-hand side makes a
nonzero contribution to the interfacial force balance. Rearranging, we obtain

p(r = a, t) = pB(t)− 4
μ

a

da

dt
− 2

γ

a
. (7.1.14)

We will assume that the bubble is so small that hydrostatic variations can be neglected over the
bubble diameter, so that ρg · x � ρg · xc over the bubble surface. Using (7.1.11) the evaluate the
pressure at the bubble surface, we derive a second-order nonlinear evolution equation governing the
bubble radius,

a
d2a

dt2
+

3

2

(da
dt

)2

+
4ν

a

da

dt
=

1

ρ

(
pB(t)− p∞(t)− 2

γ

a

)
, (7.1.15)

known as the generalized Rayleigh equation. In general, the solution of (7.1.15) subject to a certain
initial condition and a specified ambient pressure field or pressure inside the bubble must be found
by numerical methods [299].

When pB(t) = p∞(t), time does not appear explicitly on the right-hand side of (7.1.15). In
that case, it is possible to reduce the order of the equation by regarding da/dt a function of a, and
writing da/dt = f(a). Substituting this expression into (7.1.15), we obtain a first-order differential
equation,

a
df

da
+

3

2
f +

4ν

a
= −2

γ

ρ

1

af
. (7.1.16)

If viscous effects and surface tension are negligible, we obtain the exact solution f = da/dt = c/a3/2,
where c is a constant. Using the definition of f and integrating once with respect to time we obtain
the exact solution

a = a0

[
1 +

5

2

1

a0

(da
dt

)
t=0

t
]2/5

, (7.1.17)

where a0 = a(t = 0) is the initial bubble radius.

The collapse of a bubble near a wall has important consequences on mechanical damage due
to cavitation [38]. Observations and numerical simulations have revealed that the bubble no longer
has a spherical shape, but develops a dimple that drives a strong damaging jet of ambient fluid
toward the wall.

7.1.4 Velocity variation around a streamline

The condition of vanishing vorticity imposes a constraint on the structure of the velocity field around
a streamline in an irrotational flow, with interesting consequences. Setting the components of the
vorticity in (1.11.12) to zero, we obtain

n · (∇u) · b = b · (∇u) · n, ∂u

∂lb
= 0,

∂u

∂ln
= −κu, (7.1.18)
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where u is the magnitude of the velocity. The third equation shows that, if a streamline has a
circular shape and the fluid moves in the clockwise direction so that the curvature κ is positive,
∂u/∂ln is negative and the velocity on the inner side of the circle is greater than the velocity on the
outer side. The associated counterclockwise rotation of fluid parcels balances the clockwise rotation
due to the global motion of the fluid along the circular streamline. Generalizing this result, we find
that the velocity of an irrotational flow around a sharp corner reaches a maximum at the salient
edge.

7.1.5 Minimum of the pressure

In Section 2.4, we used the mean-value theorem to show that the velocity potential and magnitude of
the velocity reach extreme values at the boundaries. Now we will demonstrate that the hydrodynamic
pressure, p̃ ≡ p− ρg · x, reaches a minimum at the boundaries. Taking the Laplacian of Bernoulli’s
equation (7.1.3), we find that p̃ satisfies Poisson’s equation with a negative forcing function,

∇2p̃ = −1

2
ρ∇2(u · u) = −ρ∇u : ∇u. (7.1.19)

To derive the last expression, we have noted that the individual Cartesian velocity components
satisfy Laplace’s equation in an irrotational flow, ∇2ux = ∇2uy = ∇2uz = 0. Integrating (7.1.19)
over a control volume, Vc, bounded by a closed surface, D, and using the divergence theorem, we
obtain ∫∫

D

n · ∇p̃ dS = −ρ

∫∫∫
Vc

∇u : ∇u dV < 0, (7.1.20)

where the normal unit vector n points outward from the control volume. Next, we identify D with a
small surface that encloses a point where the hydrodynamic pressure allegedly reaches a minimum,
so that p̃ is constant over this surface. By construction, n · ∇p̃ is positive over the surface, which
contradicts inequality (7.1.20).

Problems

7.1.1 Expanding or contracting bubble

(a) Verify that the velocity field (7.1.8) satisfies (7.1.7).

(b) Derive (7.1.17) subject to the underlying assumptions.

7.1.2 Pressure at a bend

Consider flow along a straight pipe with a sudden bend. Assuming that the velocity profile along
the straight section of the pipe is uniform and the flow around the bend is irrotational, show that
the maximum velocity and thus the minimum pressure occurs at the wall of the pipe on the inside
of the bend.

7.1.3 Minimum of the pressure

Discuss whether the pressure, p, must reach a minimum at the boundaries.
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Figure 7.2.1 Illustration of (a) flow past a translating rigid body and (b) flow due to the motion or
deformation of a body in the presence of a stationary boundary, SB .

7.2 Flow past or due to the motion of a three-dimensional body

An important area of study in the field of incompressible potential flow concerns flow past a sta-
tionary or moving body and the flow due to the motion or deformation of a body in an effectively
inviscid fluid. In this section, we discuss the general properties of these flows concentrating on the
behavior of the flow far from the body and kinetic energy of the fluid, and in Section 7.3, we discuss
the developing forces and torques. Interestingly, we will find that the behavior of the far flow, the
kinetic energy of the fluid, and force exerted on the body are related by simple functional forms.

7.2.1 Flow past a translating rigid body

We begin by considering an ambient potential flow past a three-dimensional rigid body that translates
with velocity V in the possible presence of a stationary boundary, as illustrated in Figure 7.2.1(a).
It is beneficial to decompose the harmonic potential into two constituents, φ = φ∞ + φd, where
φ∞ describes the undisturbed ambient flow prevailing in the absence of the body and φd is the
disturbance potential due to the body.

Boundary-integral representation

Next, we write the boundary integral representation (2.3.8) for the disturbance potential φd at a
point in the flow, x0. The boundary, D, consists of the surface of the body, B, the surface of an
impenetrable stationary boundary, SB, and a large surface enclosing B and SB, denoted by S∞. The
double-layer integral over SB vanishes because of the zero normal velocity. The single-layer integral
over SB can be made to vanish by using an appropriate Green’s function. As the large surface
expands to infinity, the integrals over S∞ decay to zero. Enforcing the boundary no-penetration
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condition u · n = 0 over B, expressed in the form

n · ∇φd = V · n− n · ∇φ∞, (7.2.1)

we obtain the integral representation

φd(x0) = −
∫∫

B

G(x0,x)n(x) · [V −∇φ∞(x)] dS(x) +

∫∫
B

φd(x)n(x) · ∇G(x0,x) dS(x). (7.2.2)

In the case of flow in an infinite domain with no interior boundaries, G(x,x0) is the free-space
Green’s function, G(x,x0) = 1/(4π|x− x0|).

Now we apply the integral relation (2.3.2) for a test flow with velocity V − ∇φ∞ and cor-
responding potential V · x − φ∞. Identifying the control volume with the volume occupied by the
body and the boundary of the control volume with the surface of the body, we obtain∫∫

B

[V · x− φ∞(x)]n(x) · ∇G(x0,x) dS(x) =

∫∫
B

G(x0,x)n(x) · [V −∇φ∞(x)] dS(x). (7.2.3)

Use of this identity is permissible because the point x0 lies in the exterior of the body. Combining
(7.2.2) with (7.2.3) to eliminate the single-layer potential, we derive a simplified representation
for the disturbance potential in terms of a double-layer potential. Adding to both sides of the
representation the potential of the incident flow, we obtain

φ(x0) = φ∞(x0)−
∫∫

B

[V · x− φ(x)]n(x) · ∇G(x0,x) dS(x). (7.2.4)

The modular cases of flow past a stationary body and flow due to the translation of a body arise by
setting, respectively, V equal to zero or φ∞ equal to a constant.

Far-field expansion

The representation (7.2.4) provides us with a convenient starting point for assessing the asymptotic
behavior of the flow from the body. Assuming that the point x0 lies far from the body, we select a
point xc inside or in the vicinity of the body, expand the Green’s function dipole in a Taylor series
with respect to the point x about the point xc, and retain only the leading term to obtain

φ(x0) = φ∞(x0)−
(∫∫

B

[V · x− φ(x)]n(x) dS(x)
)
· ∇c G(x0,xc) + · · · , (7.2.5)

where the subscript c signifies differentiation with respect to xc. Comparing equation (7.2.5) with
(2.2.23), we find that, far from the body, the disturbance flow is similar to that due to a point-source
dipole located at the point xc with strength

d = VBV −
∫∫

B

φ(x)n(x) dS(x), (7.2.6)

where VB is the volume occupied by the body. The first term on the right-hand side of (7.2.6) arises
by applying the divergence theorem to manipulate the surface integral in (7.2.5) involving V.

We have found that the coefficient of the dipole can be computed from knowledge of the
velocity of the body and distribution of the velocity potential over the surface of the body. In
Section 7.3, we will see that the coefficient of the dipole can be used to compute the force exerted
on a rigid body in accelerating motion.
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7.2.2 Flow due to the motion and deformation of a body

Next, we consider the flow due to the translation, rotation, or deformation of a body in an otherwise
quiescent fluid, as illustrated in Figure 7.2.1(b). The body may represent a swimming fish or a
moving underwater vehicle. To assess the far field behavior of the flow, we resort to the boundary-
integral representation for the harmonic potential (2.3.8), assume that the point x0 is located far
from the body, select a point xc inside or in the vicinity of the body, and expand the Green’s function
and its gradient in a Taylor series with respect to x about a point, xc. The result is an asymptotic
expansion for the far flow in terms of a Green’s function and its multipoles,

φ(x0) = G(x0,xc)

∫∫
B

n(x) · ∇φ(x) dS(x)

−
∫∫

B

[−φ(x)n(x) + (x− xc)n(x) · ∇φ(x)] dS(x) · ∇cG(x0,xc) + · · · . (7.2.7)

The leading term on the right-hand side of (7.2.7) represents the flow due to a point source whose
strength is equal to the flow rate across the surface of the body. The second integral is the coefficient
of the point-source dipole,

d ≡
∫∫

B

[
− φ(x)n(x) + (x− xc)n(x) · ∇φ(x)

]
dS(x). (7.2.8)

Using the divergence theorem, we find that the integral on the right-hand side of (7.2.8) remains
unchanged when the domain of integration, B, is replaced by any other closed surface enclosing B.
When the flow rate across a surface enclosing the body is zero, the integral is independent of the
location of the pivot point, xc.

Motion of a rigid body

As a specific application of (7.2.8), we consider the flow due to a rigid body translating with velocity
V and rotating with angular velocity Ω about a point, xc. The no-penetration condition at the
surface of the body requires that

n(x) · ∇φ(x) = [V +Ω× (x− xc)] · n(x). (7.2.9)

Substituting (7.2.9) into (7.2.8) and rearranging the triple mixed product, we obtain

d = VBV −
∫∫

B

φ(x)n(x) dS(x) +

∫∫
B

(x− xc)
(
[(x− xc)× n(x)] ·Ω

)
dS(x). (7.2.10)

As in the case of flow past a translating body discussed earlier in this section, the strength of the
dipole can be computed from the distribution of the velocity potential over the surface of the body.

Applying the divergence theorem, we find that the second integral on the right-hand side of
(7.2.10) can be made to disappear by identifying the point xc with the volume centroid of the body
defined as

Xc ≡
1

VB

∫∫∫
Body

x dV (x). (7.2.11)

A representation of the centroid in terms of a surface integral is given in (4.1.7).
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Decomposition into fundamental modes of rigid-body motion

The linearity of the governing equations and boundary conditions allows us to express the velocity
potential of the flow due to the motion of a rigid body as a linear combination of the linear velocity
and angular velocity of rotation about a point, xc, in the form

φ(x) = Vi(t) Φi

(
x,xc(t), e(t)

)
+Ωi(t) Φi+3

(
x,xc(t), e(t)

)
. (7.2.12)

The six velocity potentials Φi for i = 1, . . . , 6, represent three fundamental modes of translation and
three fundamental modes of rotation; the tall parentheses contain the arguments of Φi. The vector e
describes the instantaneous orientation of the body. The no-penetration boundary condition requires
that

n · ∇Φi =

{
ni for i = 1, 2, 3,[

(x− xc)× n
]
i−3

for i = 4, 5, 6,
(7.2.13)

where the subscript on the square brackets in the second expression denotes the Cartesian compo-
nents.

It is convenient to introduce a six-dimensional vector, N, whose first and second three-entry
blocks contain, respectively, the normal unit vector, n, and the vector (x− xc)× n,

N ≡
[
n, (x− xc)× n

]
. (7.2.14)

The no-penetration boundary condition (7.2.13) takes the form

n · ∇Φi = Ni (7.2.15)

for i = 1, . . . , 6.

Coefficient of the dipole and added mass

Substituting (7.2.13) in the integral on the right-hand side of (7.2.10), we obtain a compact expression
for the coefficient of the dipole,

d = VB(V +α ·V + β ·Ω+ γ ·Ω), (7.2.16)

where

αij = − 1

VB

∫∫
B

niΦj dS, βij = − 1

VB

∫∫
B

niΦj+3 dS,

γij =
1

VB
εlmj

∫∫
B

x̂i x̂l nm dS =
1

VB
εijl

∫∫∫
B

x̂l dV

(7.2.17)

for i, j = 1, 2, 3 are added-mass tensors, and x̂ = x − xc. This terminology is explained in Section
7.3.3 where the force and torque exerted on a rigid body in arbitrary unsteady motion is discussed.

If the point xc is placed at centroid of the body, Xc, defined in (7.2.11), the tensor γ is
identically zero and expression (7.2.16) simplifies into

d = VB(V +α ·V + β ·Ω), (7.2.18)
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which provides us with a method of computing the elements of the added-mass tensors α and β

from the coefficient of the dipole corresponding to six independent modes of rigid-body motion.

Symmetry of the added-mass tensor, α

In the case of flow due to the motion of a rigid body in an domain of infinite expanse in the absence
of exterior or interior boundaries, the 3 × 3 added-mass tensor αij is symmetric, αij = αji. To
demonstrate this property, we use the first set of boundary conditions in (7.2.13), recall that Φi are
harmonic functions, ∇2Φi = 0, and apply the divergence theorem to write∫∫

B

niΦj dS =

∫∫
B

(n · ∇Φi) Φj dS = −
∫∫∫

B

(∇Φi) · (∇Φj) dV. (7.2.19)

We have noted that Φi decays fast enough so that the integral on the left-hand side of (7.2.19) over
a large closed surface is infinitesimal. Interchanging the roles of Φi and Φj , we obtain an expression
with identical right-hand side, completing the proof.

The symmetry of αij implies that the component of the coefficient of the dipole in a particular
direction due to translation in another direction is equal to the component of the dipole in the second
direction due to translation in the first direction.

Kinetic energy of the flow due to the motion of a rigid body and grand added mass

Equation (2.1.22) provides us with an expression for the instantaneous kinetic energy of a potential
flow in terms of a boundary integral involving the boundary distribution of φ and the boundary
distribution of the normal velocity component. In the case of flow due to the motion of a rigid body,
possibly in the presence of stationary boundaries, we use the boundary conditions (7.2.9) to obtain

K = −1

2
ρ

∫∫
B

u · nφ dS = −1

2
ρ

∫∫
B

V · nφ dS − 1

2
ρ

∫∫
B

[
Ω× (x− xc)

]
· nφ dS. (7.2.20)

Rearranging, we find that

K = −1

2
ρV ·

∫∫
B

φn dS − 1

2
ρΩ ·

∫∫
B

φ (x− xc)× n dS. (7.2.21)

To expedite the analysis, we introduce the six-dimensional vector

W =
[
Vx, Vy, Vz,Ωx,Ωy,Ωz

]
, (7.2.22)

and substitute the decomposition (7.2.12) into the right-hand side of (7.2.21) to obtain the compact
quadratic form

K =
1

2
ρ VBWiAijWj , (7.2.23)

where A is the 6× 6 grand added-mass tensor defined as

Aij = − 1

VB

∫∫
B

NiΦj dS, (7.2.24)
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and the vector N is defined in (7.2.15). Using (7.2.15), we obtain

Aij = − 1

VB

∫∫
B

(n · ∇Φi) Φj dS. (7.2.25)

The tensors α and β defined in (7.2.17) comprise, respectively, the top and bottom 3× 3 diagonal
blocks of A.

It is evident from the right-hand side of (7.2.25) that A depends on the instantaneous body
shape, orientation, and presence of other stationary objects, but is independent of the body’s linear
or angular acceleration. Physically, A is a measure of the sensitivity of the kinetic energy of the
fluid to the velocity of translation and angular velocity of rotation, and may thus be regarded as an
influence matrix for the kinetic energy.

Symmetry of the grand added-mass tensor

We will show that the grand added-mass tensor A is symmetric, that is, Aij = Aji. Consequently,
the kinetic energy of the fluid produced when a body translates in a particular direction and rotates
about another direction with unit linear and angular velocities is the same as that produced when
the body translates in the second direction and rotates about the first direction with unit linear and
angular velocities. The symmetry property follows immediately by using the divergence theorem to
write ∫∫

B

(n · ∇Φi) Φj dS = −
∫∫∫

Flow

∇ · (Φj∇Φi) dS = −
∫∫∫

Flow

∇Φj · ∇Φj dS. (7.2.26)

Interchanging the role of the two potentials on the left-hand side produces the same right-hand side.
Since A is symmetric, it has only 21 independent components. Six of these components can be made
to vanish by making appropriate choices for the center of rotation xc and directions of the Cartesian
axes.

7.2.3 Kinetic energy of the flow due to the translation of a rigid body

In the case of the flow due to a translating but nonrotating body, we use (7.2.23) and (7.2.18) and
obtain an expression for the kinetic energy in terms of the coefficient of the dipole,

K =
1

2
ρVBV ·α ·V =

1

2
ρ (d− VBV) ·V. (7.2.27)

Since the matrix α is symmetric, we can find three mutually perpendicular principal directions
where α is diagonal and the quadratic cross terms of the velocity, ViVj for i �= j, do not appear in
(7.2.27). In the case of an axisymmetric body, one principal direction coincides with the axis of the
body and the other two principal directions lie in the perpendicular plane.

Later in this chapter, we will discuss a method of computing a potential flow in terms of discrete
or continuous distributions of dipoles inside the volume or over the surface of a body. Equations
(7.2.18) and (7.2.27) will provide us with the added-mass tensor α and kinetic energy of fluid in
terms of the total strength of the dipoles, thus circumventing the need for detailed computation.
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Coefficient of the dipole

As a final note, we relate the sensitivity of the kinetic energy of the fluid with respect to the velocity
of translation to the coefficient of the dipole. Beginning with (7.2.27) and using (7.2.18), we obtain

∂K
∂Vk

=
1

2
ρ VB

∂

∂Vk
(V ·α ·V) = ρVBαkjVj = ρ(dk − VB Vk). (7.2.28)

Rearranging, we find that

dk =
1

ρ

∂K
∂Vk

+ VBVk, (7.2.29)

which relates the coefficient of the dipole to the rate of change of kinetic energy with respect to the
velocity of the body.

Problems

7.2.1 Flow past a rotating body

Discuss whether it is possible to derive a double-layer representation similar to (7.2.4) for irrotational
flow past a rotating rigid body.

7.2.2 Tensorial nature of the grand added-mass matrix

Show that A is a second-order tensor of the sixth-dimensional Cartesian space with coordinates
(x1, x2, x3, x1, x2, x3) ([437], p. 101).

7.2.3 Elemental potentials

Derive the boundary conditions (7.2.13).

7.3 Force and torque exerted on a three-dimensional body

We proceed to study in more detail the force and torque exerted on a three-dimensional moving
or stationary body in potential flow, given in equations (7.1.5) in terms of the pressure. Our main
goal is to develop simplified expressions in terms of the velocity potential and velocity field using
Bernoulli’s equation (7.1.3). The density of the fluid is assumed to be uniform throughout the
domain of flow.

7.3.1 Steady flow past a stationary body

We begin by considering steady potential flow past a stationary rigid body, as illustrated in Figure
7.3.1. The no-penetration boundary condition applies at the surface of the body.

Force

Substituting Bernoulli’s equation (7.1.3) into the first equation of (7.1.5), we obtain the force exerted
on the body,

F =
1

2
ρ

∫∫
B

(u · u)n dS − ρVBg, (7.3.1)
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n

B

n

Vc

E

n

E

Figure 7.3.1 The force exerted on a stationary rigid body, B, immersed in a potential flow can be
computed in terms of surface integrals over the boundary E of a control volume that is partly
confined by the body.

where B stands for the surface of the body, n is the normal unit vector pointing into the fluid, and
VB is the volume of the body.

To simplify the computation of the integral on the right-hand side of (7.3.1), we introduce
a control volume, Vc, that is enclosed by the surface of the body, B, and a closed boundary or
a collection of closed boundaries, denoted by E, as shown in Figure 7.3.1. Using the divergence
theorem, we write ∫∫∫

Vc

∇(u · u) dV = −
∫∫

B

(u · u)n dS +

∫∫
E

(u · u)n dS. (7.3.2)

Since the flow is irrotational, the velocity gradient tensor is symmetric, ∇u = (∇u)T , and∫∫∫
Vc

∇(u · u) dV = 2

∫∫∫
Vc

(∇u) · u dV = 2

∫∫∫
Vc

u · ∇u dV = 2

∫∫∫
Vc

∇ · (uu) dV. (7.3.3)

The continuity equation, ∇ ·u = 0, was used to derive the last expression. Applying once again the
divergence theorem and using the no-penetration boundary condition, u · n = 0 over B, we obtain∫∫∫

Vc

∇(u · u) dV =

∫∫
E

u (u · u) dA, (7.3.4)

where the normal unit vector n over E points outward from the control volume, as shown in Figure
7.3.1. Combining (7.3.2), (7.3.4), and (7.3.1), we derive an expression for the force as a surface
integral over E,

F =
1

2
ρ

∫∫
E

[
(u · u)n− 2(u · n)u

]
dS − ρVBg. (7.3.5)
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The integral on the right-hand side of (7.3.5) is independent of the shape of E. Identifying E with
B and using the no-penetration condition, u · n = 0, we recover (7.3.1). The usefulness of the
generalized expression (7.3.5) will become evident when we discuss particular applications.

Torque

Substituting Bernoulli’s equation (7.1.3) into the second equation of (7.1.5) and rearranging, we find
that the torque with respect to a point, xc, exerted on the body is given by

T =
1

2
ρ

∫∫
B

(x− xc)× n (u · u) dS − ρVB(Xc − xc)× g, (7.3.6)

where Xc is the center of volume of the body defined in (7.2.12). When the center of the torque,
xc, is identified with the volume centroid, the torque due to the body force disappears. Working as
previously for the force, we derive the generalized expression

T =
1

2
ρ

∫∫
E

(x− xc)× [(u · u)n− 2(u · n)u] dS − ρVB(Xc − xc)× g, (7.3.7)

where E is an arbitrary surface which, along with B, encloses a control volume, and the normal unit
vector n over E points outward from the control volume. Using the divergence theorem, we can
show that the integral on the right-hand side of (7.3.7) is independent of the shape of E. Identifying
E with B and using the no-penetration condition, u · n = 0, we recover (7.3.6).

7.3.2 Force and torque on a body near a point source or point-source dipole

As an application, we consider the flow due to a point source with strength m located at a point, xs,
in the vicinity of a body, in the absence of any other interior or exterior boundaries. Decomposing
the velocity field into a singular component due to the point source and a nonsingular complementary
component due to the presence of the body, denoted by v, we obtain

u =
m

4π

x− xs

r3
+ v, (7.3.8)

where r = |x− xs| is the distance from the point source.

Next, we identify E with a spherical surface of small radius ε centered at the point source,
denoted by Sε, and a large surface enclosing the body and the point source. As the large surface
expands to infinity, the corresponding integrals in (7.3.5) make infinitesimal contributions. Over
the surface of the small sphere enclosing the point force, the inward unit normal vector is given by
n = − 1

ε (x− xs). Consequently,

u = − m

4πε2
n+ v, u · u =

( m

4πε2

)2

− m

2πε2
n · v + v · v, u · n = − m

4πε2
+ v · n. (7.3.9)

Substituting these expressions into (7.3.5), evaluating the velocity v at the location of the point
source, and simplifying, we obtain

F =
1

2
ρ

∫∫
Sε

[− m

2πε2
n (vs · n)− 2(− m

4πε2
+ vs · n)(−

m

4πε2
n+ vs) ] dS − ρVBg, (7.3.10)
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where vs ≡ v(xs). Simplifying and performing the integration in the limit as ε → 0, we derive the
remarkably simple expression

F = ρmv(xs)− ρVBg. (7.3.11)

Substituting (7.3.9) into (7.3.7) and working in a similar fashion, we obtain an expression for the
torque,

T = ρm (xs − xc)× v(xs)− ρVB(Xc − xc)× g. (7.3.12)

We have found that the force and torque can be computed in terms of the reflected velocity, v, at
the position of the point source.

Force and torque on a body near a point-source dipole

Corresponding results can be derived for the flow due to a point-source dipole with strength d

located at a point, xd. In this case, we the integrals over two small spherical surfaces enclosing a
point source and a point sink separated by a small distance. The force exerted on the body is

F = ρd · ∇v(xd)− ρVBg, (7.3.13)

and the corresponding torque is

T = ρd× v(xd)− ρVB(Xc − xc)× g, (7.3.14)

where v is the reflected velocity due to the body ([268], p. 498).

Multiple singularities

If the flow is due to a collection of singularities including point sources and point-source dipoles, the
right-hand sides of (7.3.11), (7.3.12), (7.3.13), and (7.3.14) are summed over all singularities.

7.3.3 Force and torque on a moving rigid body

Now we concentrate on the force and torque exerted on a rigid body that translates with time-
dependent velocity, V(t), while rotating with time-dependent angular velocity, Ω(t), about a moving
material point, xc(t), in an otherwise quiescent fluid.

Force

Substituting Bernoulli’s equation (7.1.3) into the expression for the force (7.1.5), we find that

F = −
∫∫

B

pn dS = ρ

∫∫
B

(∂φ
∂t

+
1

2
u · u

)
n dS − ρVBg. (7.3.15)

To assess the contribution of the six fundamental modes of rigid body motion, we express φ in terms
of the six fundamental potentials introduced in (7.2.12), Expanding the time derivative, we obtain

∂φ

∂t
= Φi

dVi

dt
+Φi+3

dΩi

dt
+

∂Φi

∂t
Vi +

∂Φi+3

∂t
Ωi, (7.3.16)
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where summation is implied over i = 1, 2, 3, and

Φj

(
x,xc(t), e(t)

)
(7.3.17)

for j = 1–6. The material point xc(t) defines the instantaneous position of the body, and the unit
vector e(t) defines the instantaneous orientation. Substituting (7.3.16) into (7.3.15), we find that

F = ρ
( ∫∫

B

nΦi dS
) dVi

dt
+ ρ

( ∫∫
B

nΦi+3 dS
) dΩi

dt
+ FS(V,Ω), (7.3.18)

where all terms that depend on the instantaneous position, orientation, linear and angular velocities
of the body, but are independent of the linear or angular acceleration, have been collected into the
term FS expressing the force exerted on a body in steady motion. The first two terms on the right-
hand side of (7.3.18) express the acceleration reaction. In terms of the 3× 3 added-mass tensors α
and β introduced in (7.2.17), we obtain

F = −ρVB

(
α · dV

dt
+ β · dΩ

dt

)
+ FS(V,Ω). (7.3.19)

The first term on the right-hand side of (7.3.19) is a generalized version of Newton’s second law
of motion, where the coefficient matrix ρVBα plays the role of an effective or virtual mass. Since
the product ρVB is the mass of fluid displaced by the body, it is natural to call α the coefficient of
virtual inertia or added mass.

Torque

Working in a similar fashion, we derive an expression for the torque with respect to a point, xc(t),
exerted on a moving rigid body,

T = ρ
( ∫∫

B

(x− xc)× nΦi dS
) dVi

dt
+ ρ

( ∫∫
B

(x− xc)× nΦi+3 dS
) dΩi

dt
+TS(V,Ω). (7.3.20)

The first two terms on the right-hand side express the torque due to unsteady translation and
rotation. The third term is analogous to that on the right-hand side of (7.3.18).

Grand coefficient of virtual inertia

Equations (7.3.18) and (7.3.20) can be collected into a unified form in terms of a six-dimensional
force–torque vector comprised of the three components of the force and three components of the
torque, R =

[
F,T

]
. Introducing the grand added-mass tensor A defined in (7.2.25) and the

extended velocity vector W defined in (7.2.22), we obtain

R = −ρVB
dW

dt
·A+RS , (7.3.21)

where the superscript S denotes the value of R in steady motion. Since the matrix A is symmetric,
the order of the vector-matrix multiplication in the first term on the right-hand side of (7.3.21) is
inconsequential. The first term on the right-hand side of (7.3.21) expresses a variation of Newton’s
second law of motion where the matrix coefficient ρVBA plays the role of an effective or virtual mass
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Figure 7.4.1 Illustration of an arbitrary body, B, translating with velocity V in an infinite ambient
fluid. To compute the force and torque exerted on the body, we introduce a closed surface, E,
enclosing the body.

for the extended velocity vector. This observation provides justification for calling A the grand
coefficient of virtual inertia or grand added mass.

Problems

7.3.1 Force and torque on a body due to a dipole or a quadruple

(a) Derive expressions (7.3.13) and (7.3.14).

(b) Derive corresponding expressions for a point source quadruple.

7.3.2 Torque on a moving rigid body

Derive expression (7.3.19).

7.4 Force and torque on a translating rigid body in streaming flow

Of particular interest is the flow due to a rigid body translating in a fluid of infinite expanse in the
absence of exterior or interior boundaries, and uniform (streaming) flow past a stationary body. Our
objective is to derive specific expressions for the force and torque.

7.4.1 Force on a translating body

First, we consider a body translating with time-dependent velocity V(t) in an otherwise quiescent
fluid of infinite expanse, as shown in Figure 7.4.1. Expression (7.3.19) for the forced exerted on the
body simplifies into

F = −ρVB α · dV
dt

+ ρ

∫∫
B

( 1

2
u · u+ Vi

∂ Φi[x,xc(t), e]

∂t

)
n dS − ρVBg, (7.4.1)
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where the material vector e is independent of time. The three terms on the right-hand side of (7.4.1)
represent, respectively, the acceleration reaction, the steady force, and the buoyancy force. Since
the body translates in a fluid of infinite expanse in the absence of exterior or interior boundaries,
the fundamental potentials Φi depend on the distance from the designated center of the body, xc,

Φi

(
x,xc(t), e

)
= Φi

(
x− xc(t), e

)
, (7.4.2)

where, by definition, dxc/dt = V. Concentrating on the steady force, we write∫∫
B

Vi
∂ Φi[x− xc(t), e]

∂t
n dS = −

∫∫
B

Vi
∂ Φi[x− xc(t), e]

∂xj

dxcj

dt
n dS = −

∫∫
B

(u ·V)n dS. (7.4.3)

Substituting this expression into (7.4.1), we find that

F = −ρVB α · dV
dt

+ ρ

∫∫
B

(1
2
u · u− u ·V

)
n dS − ρVBg. (7.4.4)

We will show that the integral on the right-hand side of (7.4.4) is identically zero and the expression
for the force simplifies into

F = −ρVB α · dV
dt

− ρVBg. (7.4.5)

Vanishing of the steady force

To simplify the computation of the integral of the quadratic term involving u · u on the right-hand
side of (7.4.4), we introduce a control volume, Vc, confined between the body, B, and a closed
exterior surface, E, as shown in Figure 7.4.1. Using the divergence theorem, we restate the integral
of the quadratic term as∫∫

B

(u · u)n dS =

∫∫
E

(u · u)n dS −
∫∫∫

Vc

∇(u · u) dV, (7.4.6)

where the normal unit vector n over E points outward from the control volume. Since the flow is
irrotational, ∇u = (∇u)T and∫∫∫

Vc

∇(u · u) dV = 2

∫∫∫
Vc

(∇u) · u dV = 2

∫∫∫
Vc

u · ∇u dV = 2

∫∫∫
Vc

∇ · (uu) dV. (7.4.7)

To derive the last expression, we have used the continuity equation, ∇ · u = 0. Applying the
divergence theorem once again and enforcing the no-penetration boundary condition, we obtain∫∫∫

Vc

∇ · (uu) dV = −
∫∫

B

(V · n)u dS +

∫∫
E

(u · n)u dS. (7.4.8)

Now combining (7.4.6) with (7.4.8), we obtain∫∫
B

(u · u)n dS = 2

∫∫
B

(V · n)u dS +

∫∫
E

[(u · u)n− 2 (u · n)u ] dS. (7.4.9)
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Substituting this expression in the right-hand side of (7.4.4) we find that

F = −ρVB α · dV
dt

+ ρ

∫∫
B

[u (V · n)− (u ·V)n ] dS

+
1

2
ρ

∫∫
E

[(u · u)n− 2u (u · n)] dS − ρVBg. (7.4.10)

The first integrand on the right-hand side can be written as V × (u× n).

Using the irrotationality condition, ∇u = (∇u)T , we establish that the integral over B on
the right-hand side of (7.4.10) remains unchanged when the domain of integration is replaced by
an arbitrary surface enclosing B (Problem 7.4.2(a)). Replacing B with E and combining the two
integrals on the right-hand side of (7.4.10), we obtain the compact form

F = −ρVB α · dV
dt

+ ρ

∫∫
E

(
u [(V − u) · n] + [u · (1

2
u−V)]n

)
dS − ρVBg. (7.4.11)

Identifying E with B reproduces (7.4.4). Now we identify E with a large spherical surface and note
that, because in the far flow the velocity behaves like that due to a point-source dipole and thus
decays like 1/r3, the integral on the right-hand side (7.4.11) is identically zero, yielding (7.4.5).

We have thus arrived at the remarkable conclusion that the hydrodynamic force exerted on a
three-dimensional body translating steadily in a fluid of infinite expanse with no exterior or interior
boundaries is zero. It is important to emphasize that the presence of boundaries may cause the
development of a drag force, a lift force force, or both (Problem 7.4.1). Other exceptions arise in
the case of an infinite cylindrical body with a smooth or corrugated surface.

D’Alembert’s paradox

The component of the steady force in the direction of translation can be computed in an alternative
fashion using an energy argument. Concentrating on the integral energy balance (3.4.23), repeated
here for convenience,∫∫∫

Vc

∂

∂t

(1
2
ρ |u|2

)
dV =

∫∫
D

(
1

2
ρ |u|2)u · n dS +

∫∫
D

pu · n dS +

∫∫∫
Vc

ρg · u dV, (7.4.12)

we use the divergence theorem to convert the first boundary integral on the right-hand side into
a volume integral. Combining the resulting expression with the integral on the left-hand side and
expressing the body-force term as shown in (3.2.14), we obtain∫∫∫

Vc

D

Dt

(1
2
ρ |u|2

)
dV =

∫∫
D

pu · n dS − ρ

∫∫
D

(g · x)(u · n) dS, (7.4.13)

where D/Dt is the material derivative. Now we identify the control volume with the whole domain
of flow and recognize the left-hand side of (7.4.13) as the rate of change of the kinetic energy, dK/dt.
The boundary, D, consists of the surface of the body and a surface of large size extending to infinity.
We note that, far from the body, the flow behaves like that due to a point-source dipole and eliminate
the corresponding integrals over the large surface. Enforcing the no-penetration condition over the
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surface of the body and using the divergence theorem to manipulate the surface integral involving
the body force, we obtain

dK
dt

= −V · (F+ ρVBg). (7.4.14)

The parentheses on the right-hand side enclose the hydrodynamic force, excluding the buoyancy
force.

Now working independently, we differentiate (7.2.27) with respect to time and recall that the
virtual mass matrix α is symmetric to express the rate of change of kinetic energy in the form

dK
dt

= ρ VBαijVi
dVj

dt
. (7.4.15)

Combining (7.4.14) with (7.4.15) and using (7.2.18) to express the added mass in terms of the
coefficient of the dipole, we obtain

dK
dt

= −V · (F+ ρVBg) = ρ VBαij Vi
dVj

dt
= −ρ (d− VBV) · dV

dt
, (7.4.16)

which shows that the component of the hydrodynamic component of the force in the direction of
translation is nonzero only when the body accelerates, and vanishes when the body executes steady
motion (d’Alembert’s paradox). Physically, when a body translates with constant velocity in the
absence of exterior and interior boundaries, the whole flow pattern is convected with the body and
the kinetic energy remains constant in time, dK/dt = 0. Because the kinetic energy of the fluid
remains constant in the absence of dissipation, work is not required to sustain the motion of the
fluid.

7.4.2 Force on a stationary body in uniform unsteady flow

The force exerted on a rigid body that is held stationary in an incident streaming (uniform) flow with
time-dependent velocity U(t) can be found using the results for flow due to the body translation.
In a frame of reference translating with velocity U(t), the far flow vanishes and the body appears
to translate with velocity V(t) = −U(t) in an otherwise quiescent fluid. Subtracting from the
acceleration reaction given in (7.4.5) the fictitious inertial force −ρVB dU(t)/dt, we obtain

F = −ρVB

(
α · dV

dt
+ g

)
+ ρVB

dU

dt
. (7.4.17)

Rearranging, we find that

F = ρVB(I+α) · dU
dt

− ρVBg. (7.4.18)

The term associated with the identity matrix I on the right-hand side expresses the force exerted
on the fluid displaced by the body in accelerating streaming flow.
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7.4.3 Force on a body translating in a uniform unsteady flow

To compute the force exerted on a body that translates with velocity V(t) in a uniform unsteady
flow with velocity U(t), we work in a frame of reference that translates with velocity U(t) −V(t).
The far flow vanishes and the body appears to translate with velocity W(t) = V(t) − U(t) in an
otherwise quiescent fluid. Subtracting from the acceleration reaction given in (7.4.5) the fictitious
inertial force −ρVB d[U(t)−V(t)]/dt, we obtain

F = −ρVB

(
α · dW

dt
+ g

)
+ ρVB

d(U−V)

dt
. (7.4.19)

Rearranging, we find that

F = ρVB(I+α) · dU
dt

− ρVB α · dV
dt

− ρVBg, (7.4.20)

which is inclusive of (7.4.5) and (7.4.18).

Acceleration of a body translating in uniform unsteady flow

To compute the acceleration of a body that translates in an infinite fluid in the absence of exterior or
interior boundaries, we apply Newton’s second law of motion stating that the rate of change of the
linear momentum of the body balances the hydrodynamic and gravitational force. Using expression
(7.4.20) for the hydrodynamic force, we obtain

ρBVB
dV

dt
= ρVB(I+α) · dU

dt
− ρVB α · dV

dt
− ρVBg + ρBVBg, (7.4.21)

where ρB is the density of the body. Rearranging, we derive a linear ordinary differential equation,

(κI+α) · dV
dt

= (I+α) · dU
dt

+ (κ− 1)g, (7.4.22)

where κ = ρB/ρ is the density ratio. In Section 7.5 we will discuss applications of (7.4.22) to the
motion of a sphere.

7.4.4 Torque on a rigid body translating in an infinite fluid

Next, we consider the torque exerted on a body that translates with velocity V in an otherwise
quiescent fluid. Departing from (7.3.20) and working as previously for the force, we find that the
torque with respect to a point, xc, exerted on the body is

T = ρ
( ∫∫

B

(x̂× n) Φi dS
) dVi

dt
+ ρ

∫∫
B

(1
2
u · u− u ·V

)
x̂× n dS − ρVB(Xc − xc)× g, (7.4.23)

where Xc is the volume centroid, x̂ = x−Xc, and summation is implied over the repeated index i
over 1, 2, 3. This expression is the counterpart of (7.4.4) for the force.

To simplify the computation of the integral of the quadratic term involving u ·u on the right-
hand side of (7.4.23), we introduce a control volume, Vc, confined between the body, B, and a closed
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exterior surface , E, as shown in Figure 7.4.1. Using the divergence theorem stated in equation
(A.7.3), Appendix A, we restate the integral of the quadratic term as∫∫

B

(u · u) x̂× n dS =

∫∫
E

(u · u) x̂× n dS +

∫∫∫
Vc

∇× [(u · u) x̂] dV, (7.4.24)

where the normal unit vector n over E points outward from the control volume. Focusing on
the volume integral, we recall that, because the flow is irrotational, the velocity gradient tensor is
symmetric, ∇u = (∇u)T , yielding∫∫∫

Vc

∇× [(u · u) x̂] dV = 2

∫∫∫
Vc

[(∇u) · u]× x̂ dV = 2

∫∫∫
Vc

[u · ∇u]× x̂ dV (7.4.25)

and then ∫∫∫
Vc

∇× [(u · u) x̂] dV = 2

∫∫∫
Vc

∇ · (uu)× x̂ dV = 2

∫∫∫
Vc

∇ · [u (u× x̂)] dV. (7.4.26)

To derive the penultimate integral, we have used the continuity equation, ∇ · u = 0. Applying the
divergence theorem once more and enforcing the no-penetration boundary condition, we obtain∫∫∫

Vc

∇× [(u · u) x̂] dV = 2

∫∫
E

(u · n)u× x̂ dS − 2

∫∫
B

(V · n)u× x̂ dS. (7.4.27)

Combining (7.4.24) with (7.4.27), we find that∫∫
B

(u · u) x̂× n dS = −2

∫∫
B

(V · n)u× x̂ dS +

∫∫
E

[
(u · u) x̂× n+ 2(u · n)u× x̂

]
dS. (7.4.28)

Substituting this expression in (7.4.23), we obtain

T = ρ
( ∫∫

B

(x̂× n) Φi dS
) dVi

dt
− ρ

∫∫
B

x̂×
[
(u ·V)n− u (V · n)

]
dS

+ρ

∫∫
E

x̂×
[ 1
2
(u · u)n− (u · n)u

]
dS − ρVB(Xc − xc)× g. (7.4.29)

Identifying E with B reproduces (7.4.23). The integrand in the second integral on the right-hand
side of (7.4.29) can be simplified by writing (u ·V)n− u (V · n) = V × (u× n).

Next, we add and subtract one term from the second integral on the right-hand side of (7.4.29),
obtaining

T = ρ
( ∫∫

B

x̂× nΦi dS
) dVi

dt
− ρ

∫∫
B

[
x̂× [V × (u× n)

]
+ φV × n] dS

+

∫∫
B

φV × n dS + ρ

∫∫
E

x̂× [
1

2
(u · u)n− (u · n)u ] dS − ρVB(Xc − xc)× g. (7.4.30)

The second integral on the right-hand side of (7.4.30) remains unchanged when the surface of the
body, B, is replaced by a closed surface enclosing B (Problem 7.4.2(b)). Replacing B with a large
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spherical surface and noting that, far from the body, the flow is similar to that due to a point-source
dipole and the velocity decays like 1/d3, where d is the distance from the origin, we find that the
second and fourth integrals on the right-hand side of (7.4.30) are identically zero.

Finally, we express the third integral on the right-hand side of (7.4.30) in terms of the coeffi-
cient of the dipole using (7.2.10), we find that

T = ρ
( ∫∫

B

(x̂× n) Φi dS
) dVi

dt
− ρV × d− ρVB(Xc − xc)× g, (7.4.31)

where summation of the repeated index i is implied over 1, 2, 3.

Steady flow

In the case of steady flow and in the absence of significant gravitational effects, the hydrodynamic
torque is

T = −ρV × d, (7.4.32)

which suggests that the torque exerted on a steadily translating body vanishes only when the coef-
ficient of the dipole is oriented in the direction of translation so that the cross product is zero.

Using (7.2.18) to express the coefficient of the dipole, d, in terms of the added mass tensor α,
and remembering that α is symmetric, we find

T = −VBρV × (α ·V). (7.4.33)

we deduce that it is possible to find three mutually perpendicular directions of translation, called
the directions of permanent translation, where coefficient of the dipole is parallel to the direction of
the translation. A body translating in these directions does not show a tendency for rotation.

Problems

7.4.1 A body translating in a bounded domain

(a) Explain why equation (7.4.2) is valid for the two potentials Φy and Φz corresponding to trans-
lation parallel to a plane wall that is perpendicular to the x axis in a semi-infinite domain of flow.

(b) Consider a body translating parallel to a plane wall in a semi-infinite fluid. Show that equation
(7.4.11) is valid provided that D is identified with the wall, and simplify the integrand.

(c) Consider a body translating inside or outside a cylindrical boundary with arbitrary cross-section.
Discuss whether (7.4.2) is valid for any of the fundamental potentials.

7.4.2 Invariant integrals

(a) Show that the integral over the surface of the body, B, on the right-hand side of (7.4.10) remains
unchanged when B is replaced by a closed surface enclosing B.

(b) Repeat (a) for the second integral on the right-hand side of (7.4.30).
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7.5 Flow past or due to the motion of a sphere

Having discussed the general features of flow past or due to the motion of a three-dimensional body,
we proceed to consider in detail the particular case of flow past or due to the motion of a sphere.

7.5.1 Flow due to a translating sphere

The flow due to a sphere of radius a translating with velocity V in a fluid of infinite expanse in the
absence of boundaries can be represented by a point-source dipole with strength

d = 2πa3V (7.5.1)

placed at the instantaneous center of the sphere, x0. In this case, not only the far flow, but also the
entire flow is described by a potential dipole. Using (2.1.33) and (2.1.34), we find that the harmonic
potential and velocity field are given by

φ = −1

2

a3

r3
V · x̂, u =

1

2

a3

r3
[
−V +

3

r2
(V · x̂) x̂

]
, (7.5.2)

where r = |x̂| and x̂ = x− x0. The streamline pattern shown in Figure 7.5.1(a) is identical to that
outside Hill’s spherical vortex illustrated in Figure 2.13.3(a).

In spherical polar coordinates, (r, θ, ϕ), where the x axis corresponding to θ = 0, π is parallel
to the velocity of the sphere, V = V ex, the Stokes stream function is

ψ =
1

2
V

a3

r
sin2 θ. (7.5.3)

The surface velocity is equal to V at the centerline located at θ = 0 and π, and − 1
2 V at the midplane

located at θ = 1
2π.

Added mass, kinetic energy, and force

Substituting into expressions (7.2.18), (7.2.27), and (7.4.5) the coefficient of the dipole d = 2πa3V,
we compute the added mass tensor, kinetic energy of the fluid, and force exerted on the sphere,

α =
1

2
I, K =

1

4
ρVB |V|2, F = −ρVB

( 1
2

dV

dt
+ g

)
, (7.5.4)

where VB = 4π
3
a3 is the volume of the sphere. The last expression shows that the external force

necessary to overcome the hydrodynamic force and thus accelerate a sphere is equal to the force
necessary to accelerate half the volume of fluid displaced by the sphere.

Fundamental potentials

Using (7.5.2) and noting that a sphere rotating about its center does not generate a flow, we find
that the six fundamental potentials defined in (7.2.13) are given by

Φi = −1

2

a3

r
xi, Φi+3 = 0 (7.5.5)
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Figure 7.5.1 Streamline pattern of irrotational flow (a) due to a translating sphere and (b) past a
stationary sphere.

for i = 1, 2, 3, where the point xc has been identified with the center of the sphere, x0. If we set
the point xc at a location other than the center of the sphere, the first three potentials associated
with translation will be modified and the last three potentials associated with rotation will express
a nontrivial flow.

7.5.2 Uniform flow past a sphere

The solution for uniform (streaming) flow with velocity U(t) past a stationary sphere of radius a
arises from that for flow due to a translating sphere working in a frame of reference where the fluid
far from the sphere appears to be stationary. Substituting in (7.5.2) V = −U and adding the
potential or velocity of the far flow, we obtain

φ =
(
1 +

1

2

a3

r3
)
U · x̂, u = U+

1

2

a3

r3
[
U− 3

r2
(U · x̂) x̂

]
, (7.5.6)

where r = |x̂|, x̂ = x−x0, and x0 is the center of the sphere. The streamline pattern in the xy plane,
shown in Figure 7.5.1(b), is identical to that outside Hill’s spherical vortex in a frame of reference
traveling with the vortex, shown in Figure 2.13.3(b).

In spherical polar coordinates where the x axis is parallel to the far-field velocity, U = Uex,
the Stokes stream function is given by

ψ =
1

2
Ur2 sin2 θ

(
1− a3

r3
)
, (7.5.7)

where σ = r sin θ is the distance from the axis of revolution. The surface velocity is zero at the
front and back of the sphere corresponding to θ = 0 and π, and is equal to 3

2U at the midplane
corresponding to θ = 1

2π.
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7.5.3 Unsteady motion of a sphere

Consider a sphere translating with generally time-dependent velocity V(t) in a uniform unsteady
flow with velocity U(t) due, for example, to the passage of a sound wave. Substituting the expression
for the added mass given in (7.5.4) into (7.4.20) and (7.4.22), we find that the force experienced by
the sphere is

F =
3

2
ρVB

dU

dt
− 1

2
ρVB

dV

dt
− ρVBg, (7.5.8)

and the acceleration of the sphere is

dV

dt
=

3

2κ+ 1

dU

dt
+ 2

κ− 1

2κ+ 1
g, (7.5.9)

where κ = ρs/ρ and ρs is the density of the sphere. In the absence of the gravitational force, the
acceleration of a sphere that is heavier than the fluid, κ > 1, is lower than that of the fluid, while
the acceleration of a sphere that is lighter than the fluid, κ < 1, is higher than that of the fluid.

Gravitational settling or rise of a sphere

As an application, we consider the gravitational settling or rise of a sphere in a quiescent fluid of
infinite expanse. Setting in (7.5.9) U = 0, we find that

dV

dt
= 2

κ− 1

2κ+ 1
g. (7.5.10)

One interesting consequence of this expression is that the acceleration of a sphere with negligible
mass, κ = 0, such as an air bubble, is twice the acceleration of gravity.

Terminal velocity of a settling or rising sphere

When a sphere starts rising or settling in a viscous fluid, the induced flow is irrotational during
an infinitesimal period of time at the beginning of the motion, and expression (7.5.9) predicts the
exact initial acceleration. As time progresses, the viscous drag force makes a significant contribution
to the force balance and vorticity enters the flow by diffusion across boundary layers, as discussed
in Chapter 8. At long times, the sphere reaches a terminal velocity where the viscous drag force
balances the weight of the sphere and the buoyancy force. At that stage, the unsteady force given
in (7.5.8) does not contribute to the force balance.

7.5.4 A spherical bubble rising at high Reynolds numbers

Observations have shown that, when surface tension is sufficiently high, a spherical air bubble rising
in an infinite fluid maintains a nearly spherical shape. At high Reynolds numbers, the vorticity
is confined inside a thin boundary layer that wraps around the surface of the bubble and inside a
narrow wake behind the bubble, while the main part of the flow is nearly irrotational, as discussed
Section 8.1. To compute the terminal velocity of the bubble, we turn to the energy balance (7.4.14),
include on the right-hand side the viscous dissipation term given by (3.4.13), note that the kinetic
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energy of the fluid remains constant in time, and thus obtain the Levich equation

V · (F+ ρVBg) = −
∫∫∫

Flow

Φ dV (7.5.11)

([235] p. 444; [259]). In Section 8.1.2, we will see that, at high Reynolds numbers, the rate of
dissipation inside the boundary layer around the surface of the bubble is negligible compared to
the viscous dissipation in the bulk of the fluid. Consequently, the overall rate of dissipation can be
computed using (7.1.6). According to (7.1.7), the right-hand side of (7.5.11) is equal to the rate of
working of the deviatoric part of the boundary traction computed using the solution for irrotational
flow.

Substituting (7.5.2) into the last integral of (7.1.6) and carrying out the integration produces
the value 12πaμ|V|2, which shows that the hydrodynamic drag force exerted on the sphere is

D ≡ F+ ρVBg = −12πaμV. (7.5.12)

It is interesting that the magnitude of the drag force is twice that predicted by Stokes’s law for
a solid sphere moving at low Reynolds numbers given in (6.7.12). The drag coefficient for an air
bubble moving with velocity V in a viscous fluid at high Reynolds numbers is then

cD ≡ D

πρV 2a2
=

24

Re
, (7.5.13)

where Re = 2aV/ν is the Reynolds number and ν is the kinematic viscosity of the fluid.

Newton’s second law of motion requires that the force F is balanced by the weight of the
bubble, F + ρBVBg = 0. Neglecting the density of the bubble, ρB � 0, we set F = 0 and use
(7.5.12) to find the terminal velocity

V =
1

9

ga2

ν
. (7.5.14)

It is worth emphasizing that this prediction arises from a relatively simple calculation using the
potential flow solution alone.

7.5.5 Weiss’s theorem for arbitrary flow past a stationary sphere

Consider an arbitrary incident irrotational flow past a stationary sphere of radius a centered at the
point x0 in a domain of infinite expanse. The incident flow is required to be free of singularities inside
the volume occupied by the sphere. Weiss’s theorem provides us with the disturbance potential due
to the sphere, denoted by the subscript d, in the form

φd(x) =
a

r
φ∞

[
xinv(a)

]
− 2

ar

∫ a

0

φ∞

[
xinv(η)

]
η dη, (7.5.15)

where φ∞(x) is the harmonic potential of the incident flow,

xinv(η) = x0 +
η2

r2
(x− x0) (7.5.16)
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Figure 7.5.2 Illustration of the inverse of a field point, x, and inverse of a point source, xs, with
respect to a sphere of radius η centered at x0.

is the inverse of the field point, x, with respect to a sphere of radius η centered at x0, and r = |x−x0|
is the distance of x from the center of the sphere [426]. The right-hand side of (7.5.15) involves the
potential of the incident flow along a line starting at the center of the sphere and ending at the
inverse of the evaluation point, x, with respect to the sphere, xinv(a), as shown in Figure 7.5.2.

Point source outside a sphere

As an application, we consider the flow due to a point source with strength m placed at a point, xs,
outside a stationary sphere. Straightforward application of (7.5.15) with φ∞(x) = −m/(4π|x−xs|)
yields

φd(x) = −m

4π

a

r

1

|xinv(a)− xs|
+

m

2π

1

ar

∫ a

0

η

|xinv(η)− xs|
dη, (7.5.17)

which can be restated as

φd(x) = −ma

4πr

1

|(x− x0)
a2

r2
− (xs − x0)|

+
m

2πar

∫ a

0

η

|(x− x0)
η2

r2
− (xs − x0)|

dη. (7.5.18)

The inverse point of the point source with respect to a sphere of radius η centered at x0 is

xinv
s (η) = x0 +

η2

r2s
(xs − x0), (7.5.19)

where rs = |xs − x0| is the distance of the point source from the center of the sphere. By definition
of the inverse points,

rs r
inv
s = r rinv = η2, (7.5.20)

where

rinvs = |xinv
s (η)− x0|, rinv = |xinv(η)− x0| (7.5.21)
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are the distances of the inverse points from the center of the sphere, x0, as illustrated in Figure
7.5.2. Rearranging (7.5.20), we find that

r

rs
=

rinvs

rinv
, (7.5.22)

which demonstrates that the triangles (x0,x
inv,xs) and (x0,x

inv
s ,x) depicted in Figure 7.5.2 are

similar. Accordingly,

r

rs
=

|xinv
s (η)− x|

|xinv(η)− xs|
(7.5.23)

and expression (7.5.17) can be recast into the form

φd(x) = −m

4π

a

rs

1

|x− xinv
s (a)| +

m

2π

1

ars

∫ a

0

1

|x− xinv
s (η)| η dη. (7.5.24)

It is convenient to write

xinv
s (η) = x0 + ξes, (7.5.25)

where es = (xs−x0)/rs is the unit vector pointing from the center of the sphere to the point source,
and ξ = η2/rs. Straightforward manipulation of the integral in (7.5.24) yields the more useful form

φd(x) = −m

4π

a

rs

1

|x− (x0 + a2es/rs|)
+

m

4πa

∫ a2/rs

0

dξ

|x− (x0 + ξes)|
. (7.5.26)

The first term on the right-hand side of (7.5.26) represents a point source with strength ma/rs
placed at the inverse point of the original point source with respect to the sphere. The second term
represents a continuous distribution of point sinks extending from the center of the sphere to the
inverse point of the point source. The net discharge of the point source and point sinks balances to
zero.

The force exerted on the sphere can be deduced immediately from the exact solution using
expression (7.3.11), where v(xs) = ∇φd(xs). Taking the gradient of (7.5.24), we find that

v(xs) =
(m

4π

a

rs

1

|xs − xinv
s (a)|2 − m

2π

1

ars

∫ a

0

1

|xs − xinv
s (η)|2 η dη

)
es. (7.5.27)

Next, we substitute

xs − xinv
s (η) = (1− η2

r2s
)(xs − x0), |xs − xinv

s (η)| = (rs −
η2

rs
), (7.5.28)

and obtain

v(xs) =
m

4π

( ars
(r2s − a2)2

− rs
a

∫ a2

0

dη2

(r2s − η2)2

)
es. (7.5.29)
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The integral on the right-hand side is equal to a2/[r2s(r
2
s−a2)]. Making substitutions and simplifying,

we find that

v(xs) =
m

4π

a3

rs (r2s − a2)2
es. (7.5.30)

The hydrodynamic component of the force is thus

F = ρm2 1

4π

a3

rs(r2s − a2)2
es (7.5.31)

([268], p. 496). We observe that the force is oriented from the center of the sphere toward the point
source. The direction of the force can be explained by noting that the magnitude of the velocity at
the region of the sphere near the point source is higher than that elsewhere. Bernoulli’s equation
shows that the inverse is true for the pressure, and the net result is that the sphere is attracted to
the point source.

7.5.6 Butler’s theorems for axisymmetric flow past a stationary sphere

Next, we consider an axisymmetric flow past a stationary sphere in a domain of infinite expanse,
in the absence of exterior or interior boundaries. The incident flow is described in spherical polar
coordinates centered at the sphere by a Stokes stream function, ψ∞(r, θ), assumed to be free of
singularities inside the volume occupied by the sphere. The level of ψ∞ is adjusted so that ψ∞ = 0
at the center of the sphere, xc. In the absence of singularities inside the sphere, ψ∞ is of order r2

near the center of the sphere, where r is the distance from the center of the sphere.

Butler’s sphere theorem [63] states that the disturbance stream function due to the presence
of the sphere, denoted by the subscript d, is given by

ψd = − r

a
ψ∞(

a2

r
, θ). (7.5.32)

It is reassuring to confirm that the stream function given in (7.5.7) for uniform flow past a sphere
is in agreement with (7.5.32).

A second theorem due to Butler states that, if all singularities of ψ∞(r, θ) lie inside the sphere,
and if ψ∞ decays like 1/r far from the sphere, then (7.5.32) provides us with the disturbance flow
in the interior of the sphere.

Orthogonal stagnation-point flow past a sphere

As an application of Butler’s theorem, we consider irrotational orthogonal stagnation-point flow past
a sphere with

ψ∞ = ξr3 cos θ sin2 θ, (7.5.33)

where ξ is a constant rate of extension. The corresponding velocity components are shown in (5.6.36).
Using Butler’s theorem, we find that the disturbance stream function due to the sphere is

ψd = −ξ
a5

r2
cos θ sin2 θ. (7.5.34)
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We can verify that ψ∞ + ψd = 0 at the surface of the sphere, ensuring that the no-penetration
condition is satisfied.

Point source outside a sphere

We return to discussing the flow due to a point source in the presence of a sphere considered in
Section 7.5.5 in terms of the velocity potential. Assuming that the point source is located on the
x axis at the point xs = (xs, 0, 0), we use Butler’s theorem to find that the incident Stokes stream
function to be used with (7.5.32) is

ψ∞ = −m

4π

( x− xs

|x− xs|
+

xs

|xs|
)
= −m

4π

( r cos θ − xs

(r2 + x2
s − 2rxs cos θ)1/2

+
xs

|xs|
)
. (7.5.35)

The disturbance stream function due to the sphere then follows as

ψd =
m

4π

r

a

( a2 cos θ − rxs

(a4 + r2x2
s − 2a2rxs cos θ)1/2

+
xs

|xs|
)
. (7.5.36)

It can be shown that the flow expressed by (7.5.36) is identical to that described by the potential
given in (7.5.18) [63].

Line vortex ring outside a sphere

In a third application, we consider the axisymmetric flow due to a line vortex ring with radius σR

and strength κ oriented perpendicular to the x axis at the plane x = xR, in the presence of a sphere
of radius a < |xR| centered at the origin. The incident Stokes stream function to be used with
Butler’s theorem is found from (2.12.21),

ψ∞(r, θ) =
κ

4π
σR r sin θ

∫ 2π

0

cosϕ

R dϕ, (7.5.37)

where

R ≡
[
(r cos θ − xR)

2 + (r sin θ + σR)
2 − 4σR r sin θ cos2(

1

2
ϕ)

]1/2
. (7.5.38)

Applying Butler’s theorem, we find that the disturbance stream function is

ψd(r, θ) = − κ

4π
aσR r sin θ

∫ 2π

0

cosϕ

P dϕ, (7.5.39)

where

P ≡
[
(a2 cos θ − rxR)

2 + (a2 sin θ + rσR)
2 − 4a2σR r sin θ cos2(

1

2
ϕ)

]1/2
. (7.5.40)

Now we introduce the square of the distance from the origin, r2R = x2
R + σ2

R, and note that

(a2 cos θ − rxR)
2 + (a2 sin θ + rσR)

2 = r2R

[(
r cos θ − xR

a2

r2R

)2
+
(
r sin θ + σR

a2

r2R

)2 ]
. (7.5.41)
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Using this expression, we find that the disturbance flow is generated by an image ring whose strength
and location are given by

κim = −κ
a

rR
, xim

R = xR
a2

r2R
, σim

R = σR
a2

r2R
. (7.5.42)

The image ring passes through the inverse point of the trace of the primary ring with respect to the
sphere in any azimuthal plane.

Computer Problems

7.5.1 Weiss’s theorem for streaming flow

Use Weiss’s theorem to derive the velocity potential corresponding to uniform flow past a sphere
given in (7.5.2).

7.5.2 Weiss’s theorem for a rectilinear vortex

(a) Consider a rectilinear line vortex with strength κ parallel to the z axis, located at x = b and
y = 0, in the presence of a sphere of radius a centered at the origin. Show that the disturbance
potential is given by

φd =
κa

2πr
arctan(

y

x− r2b/a2
)− κ

πar

∫ a

0

arctan(
y

x− r2b/η2
) η dη. (7.5.43)

(b) Demonstrate that the disturbance potential can be described by an image system consisting of a
line vortex ring of radius a2/(2b) lying in the xz plane and centered at x = a2/(2b) and z = 0, and
a vortex sheet subtended by the image ring [426].

7.5.3 Settling and rising spheres

Explain in physical terms why the acceleration of a settling solid sphere is lower than the acceleration
of gravity, whereas the acceleration of a rising fluid sphere can be as high as twice the acceleration
of gravity.

Computer Problem

7.5.4 Flow due to a point source in the presence of a sphere

Draw the streamline patterns of flow due to a point source located in the exterior of a sphere at
radial position rs/a = 1.2, 2.0, and 4.0.

7.6 Flow past or due to the motion of a nonspherical body

In Section 7.5, we saw that computing the flow past or due to the motion of a spherical body can be
expedited with the application of certain powerful theorems which, unfortunately, are specific to the
spherical shape. A standard method of computing the flow past or due to the motion of a nonspher-
ical body involves solving Laplace’s equation for the velocity potential in appropriate curvilinear
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coordinates that conform with the body geometry, subject to the no-penetration boundary condi-
tion. The procedure is explained in detail in classical texts of fluid mechanics (e.g., [220] Chapter
5; [268]). Two examples concerning the motion of a prolate or oblate spheroid will be discussed in
Sections 7.6.1 and 7.6.2.

Singularity methods

An interesting method of computing a potential flow past or due to the motion of a body involves
representing the harmonic potential in terms of discrete or continuous distributions of singular fun-
damental solutions, including the point source and the point-source dipole, and then computing the
strengths of the singularities, and possibly their optimal location, by analytical or numerical methods
in order to satisfy stipulated boundary conditions. One advantage of the singularity representation
is that it provides us with the kinetic energy of the fluid, the added-mass tensor, and the accelera-
tion reaction directly from the strength of the singularities, thereby bypassing the computation of
the velocity field and pressure distribution over the body and inside the flow. Applications will be
discussed in Sections 7.6.1 and 7.6.3.

Boundary-integral methods

Another powerful class of numerical methods for computing potential flow originates from the
boundary-integral representation discussed in Chapter 2, as well as from generalized single- or
double-layer representations discussed in Chapter 10. The numerical procedure involves apply-
ing the boundary-integral representation at the boundaries of the flow to derive Fredholm integral
equations of the first or second kind for the boundary distributions of unknown functions, including
the harmonic potential and its normal derivative. The integral equations can be solved by highly
accurate boundary-element or panel methods. The engineering importance and popularity of the
boundary-integral methods justifies their separate discussion in Chapter 10.

7.6.1 Translation of a prolate spheroid

Chwang & Wu [86] demonstrated that the irrotational flow due to the translation of a prolate
spheroid with major semi-axis a and minor semi-axis b can be represented in terms of point-source
dipoles distributed over the focal length of the spheroid, extending between the two foci of the
generating ellipse, −c ≤ x ≤ c, where c = ea,

e ≡
[
1−

( b
a

)2 ]1/2
(7.6.1)

is the eccentricity of the spheroid, and the origin has been set at the center of the spheroid, as shown
in Figure 7.6.1. The dipoles point in the direction of translation and have a parabolic linear density
distribution that vanishes at the two focal points. The induced velocity potential is

φ(x) = −1

2

∫ c

−c

(Vx

δx
(x− ξ) +

Vy

δy
y +

Vz

δz
z
) c2 − ξ2

|x− ξ|3 dξ, (7.6.2)

where the point ξ = (ξ, 0, 0) lies on the x axis, V is the velocity of translation, and δx, δy, δz are
dimensionless coefficients given by

δx =
2e

1− e2
− ln

1 + e

1− e
, δy = δz = e

2e2 − 1

1− e2
+

1

2
ln

1 + e

1− e
. (7.6.3)
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Figure 7.6.1 The potential flow due to the translation of a prolate spheroid can be represented by
potential dipoles distributed over the focal length of the spheroid pointing in the direction of
translation.

Using Maclaurin series expansions, we find that, as the eccentricity tends to zero and the prolate
spheroid tends to a sphere, δx, δy, δz � 4

3
e3.

The total coefficient of the dipole is found by integrating the density of the parabolic distri-
bution, yielding

di = 2π
Vi

δi

∫ c

−c

(c2 − ξ2) dξ =
8π

3
c3

Vi

δi
, (7.6.4)

where summation is not implied over the repeated index i. Substituting expression (7.6.4) into
(7.2.27) and noting that the volume of the spheroid is VB = 4π

3 ab2, we obtain the kinetic energy of
the fluid

K =
4π

3
ρc3

(V 2
x

δx
+

V 2
y

δy
+

V 2
z

δz

)
− 2π

3
ρab2 (V 2

x + V 2
y + V 2

z ). (7.6.5)

Using (7.2.18) we find that the nonzero elements of the diagonal added-mass tensor are

αxx = 2
(a
b

)2 e3

δx
− 1, αyy = αzz = 2

(a
b

)2 e3

δy
− 1. (7.6.6)

As the eccentricity of the spheroid tends to zero, we recover the results of Section 7.5.1 for a sphere,
αxx = αyy = αzz = 1/2.

Solution in prolate spheroidal coordinates

Amore explicit but somewhat indirect description of the flow is possible in terms of prolate spheroidal
coordinates, (ζ, μ, ϕ), related to Cartesian coordinates, (x, y, z), and associated cylindrical polar
coordinates, (x, σ, ϕ), by the equations

x = cμζ, y = σ cosϕ, z = σ sinϕ, σ = c
√
ζ2 − 1

√
1− μ2, (7.6.7)

where the dimensionless parameter ζ ranges from unity to infinity and the dimensionless μ varies
between −1 and 1 (e.g., [220], p. 141). It is convenient to set μ = cosχ, where the parameter
χ varies in the range [0, π] along the contour of the generating ellipse. The surfaces of constant
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ζ or μ are confocal prolate spheroids and hyperboloids of two sheets. The surface of the spheroid
corresponds to ζ = ζ0 = 1/e. As ζ0 → 1, the spheroid reduces to a slender needle.

The velocity potential and Stokes stream function of the axisymmetric flow due to a prolate
spheroid translating along the x axis are given by

φ = 2c
Vx

δx

(
1− 1

2
ζ ln

ζ + 1

ζ − 1

)
μ, ψ =

Vx

δx
σ2
( ζ

ζ2 − 1
− 1

2
ζ ln

ζ + 1

ζ − 1

)
, (7.6.8)

where the dimensionless coefficient δx is defined in (7.6.3).

The velocity potential of the three-dimensional flow due to a prolate spheroid translating
normal to the x axis is given by

φ =
1

c
σ2

[1
2
ln
(ζ + 1

ζ − 1

)
− ζ

ζ2 − 1

] ( Vy

δy
cosϕ+

Vz

δz
sinϕ

)
, (7.6.9)

where the dimensionless coefficients δy and δz are defined in (7.6.3).

7.6.2 Translation of an oblate spheroid

In the case of an oblate spheroid, we introduce oblate spheroidal coordinates, (ζ, μ, ϕ), related
to Cartesian coordinates, (x, y, z), and associated cylindrical polar coordinates, (x, σ, ϕ), by the
equations

x = cμ ζ, y = σ cosϕ, z = σ sinϕ, σ = c
√
ζ2 + 1

√
1− μ2 (7.6.10)

where the dimensionless parameter ζ varies from zero to infinity and the dimensionless parameter μ
varies in the interval [−1, 1]. We may set μ ≡ cosχ, where the angle χ varies from 0 to π along the
contour of the generating ellipse (e.g., [220], p. 144).

Consider an oblate spheroid with minor semiaxis along the x axis equal to a and major semiaxis
normal to the x axis equal to b, where a < b, as shown in Figure 7.6.2. The focal length of the
spheroid is c = eb, where

c2 = b2 − a2, e ≡
[
1−

(a
b

)2 ]1/2
(7.6.11)

The dimensionless eccentricity, e, varies in the interval (0, 1] whose lower or upper limit corresponds
to a circular disk or a sphere. The surface of the spheroid corresponds to ζ = ζ0 = a/c. The surfaces
of constant z or μ are, respectively, planetary ellipsoids and hyperboloids of revolution of one sheet
with common focal circle at x = 0 and σ = c.

The velocity potential and Stokes stream function of the axisymmetric flow due to axial
translation along the x axis are given by

φ = b
Vx

δx
(1− ζarccotζ)μ, ψ =

1

2e

Vx

δx
σ2
( ζ

ζ2 + 1
− arccotζ

)
, (7.6.12)
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Figure 7.6.2 Illustration of the potential flow due to the translation of an oblate spheroid. Solutions
for the axisymmetric flow due to axial translation and three-dimensional flow due to transverse
translation are available.

where

δx =
√
1− e2 − 1

e
arcsine. (7.6.13)

The velocity potential of the three-dimensional flow due to transverse translation normal to the x
axis is given by

φ =
1

c
σ2

( ζ

ζ2 + 1
− arccotζ

)
(
Vy

δy
cosϕ+

Vz

δz
sinϕ), (7.6.14)

where

δy = δz =
1

ζ0

ζ20 + 2

ζ20 + 1
− arccotζ0. (7.6.15)

As the aspect ratio a/b tends to zero and the eccentricity tends to unity, we obtain the flow due
to the translation of a circular disk of infinitesimal thickness (Problem 7.6.1). In the opposite limit
where a/b tends to unity and the eccentricity tends to zero, we recover the results of Section 7.5.1
for a sphere.

7.6.3 Singularity representations

An efficient numerical method of computing axisymmetric or three-dimensional potential flow due to
the axial or transverse translation of an axisymmetric body involves representing the flow in terms
of a collection of singularities deployed at selected locations along the centerline or in the interior of
the body, and then computing the strengths of the singularities so as to satisfy the no-penetration
boundary condition in some approximate fashion.
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Figure 7.6.3 Representation of the flow due to the translation of an axisymmetric body in terms of
(a) point sources and sinks for axial motion and (b) point-source dipoles for transverse motion.

Axial translation of an axisymmetric body

In the case of flow due to the axial translation of an axisymmetric body, we introduce a representation
in terms of N point sources or sinks distributed along at centerline, as shown in Figure 7.6.3(a).
For a body with fore-and-aft symmetry, the singularities are arranged symmetrically with respect
to the midplane. Since the flow rate across any surface enclosing the body is zero, the sum of the
strengths of the singularities must balance to zero.

It is convenient to work in a frame of reference translating with the body along with the x
axis with velocity Vx. In this frame, the body appears to be stationary and the fluid approaches
the body along the x axis with velocity −Vx. Referring to spherical polar coordinates centered at
each singularity, and using the expression (2.9.15) for each singularity, we derive the Stokes stream
function

ψ(x, σ) = −1

2
Vx σ

2 − 1

4π

N∑
i=1

mi cos θi, (7.6.16)

where σ is the distance from the axis of symmetry, mi is the strength of the ith singularity, and θi
is the angle subtended between the field point x and the ith singularity located at the point xi on
the x axis, satisfying

θi = arctan[σ/(x− xi)], (7.6.17)

as shown in Figure 7.6.3(a). The problem has been reduced to computing the strengths of the
singularities so that ψ = 0 over the contour of the body in an azimuthal plane. Having obtained the
strengths of the singularities, we recover the coefficient of the dipole, d = (dx, 0, 0), as

dx =

N∑
i=1

xi mi. (7.6.18)
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Figure 7.6.4 Rankine ovoids generated by introducing a point and a point sink separated by distance
2d in streaming flow for (a) λ = 0.2 and (b) 0.05. As λ decreases, the dividing stream surface
becomes a sphere.

Since the strengths of the singularities add up to zero, the result is independent of the chosen origin
of the x axis.

Rankine ovoids

Introducing one point source and one point sink with strengths of equal magnitude and opposite
sign, ±m, located at x = ±d, we find that ψ = 0 over a family of axisymmetric bodies parametrized
by the dimensionless number λ = Vxd

2/m, known as Rankine ovoids. Two examples for λ = 0.5 and
0.05 ar shown in Figure 7.6.4. As λ tends to zero, the two singularities merge to yield a point-source
dipole with strength

dx = 2md =
2

λ
Vxd

3. (7.6.19)

Referring to (7.5.1), we find that, in this limit, the ovoids reduce to a sphere of radius a satisfying
the equation dx = 2πa3Vx. Solving for the radius of the sphere, we find that (a/d)3 = 1/(πλ).

Numerical methods

Given a body of a certain shape, the strengths of the point sources or sinks, mi, can be computed
by pointwise collocation. The procedure involves requiring that ψ = 0 at Nc selected points over
the contour of the body in an azimuthal plane, where Nc ≥ N , and then solving a linear system
of equations for the strength of the singularities, mi. Selecting Nc > N and then solving an
overdetermined system of linear equations by a least-squares or minimization method helps reduce
the sensitivity of the solution to the position of the collocation points.
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Continuous singularity distribution

In a generalization approach, the flow is represented by a continuous distribution of point sources
with linear density �(x) over a portion of the centerline inside the body between two selected limits,
x = −a and b. The discrete singularity representation emerges by setting �(x) equal to a weighted
sum of one-dimensional delta functions with different singular points. In a frame of reference trans-
lating with a body, the Stokes stream function is

ψ(x, σ) = −1

2
Vx σ

2 − 1

4π

∫ b

−a

�(ξ) cos θ(ξ) dξ, (7.6.20)

where θ(ξ) = arctan[σ/(x− ξ)]. Requiring that ψ = 0 over the body contour in an azimuthal plane
provides us with an integral equation of the first kind for the linear density �(ξ). The solution
can be found by standard numerical methods, including the collocation method and the method of
weighted residuals (e.g., [104]).

Using the expression for the potential due to a point source given in Section 2.1.6, we find
that the harmonic potential corresponding to the distribution (7.6.20) is given by

φ(x) = −Vxx− 1

4π

∫ b

−a

�(ξ)
1

|x− ξ| dξ, (7.6.21)

where the point ξ = (ξ, 0, 0) lies along the x axis. In fact, it can be shown that the continuous distri-
bution (7.6.20) is equivalent to a series expansion in terms of Legendre polynomials with argument
cos θ, scaled over the interval [−a, b]. The coefficients of the series are related to the moments of the
distribution density function, �(ξ) ([24], p. 460).

Transverse translation of axisymmetric bodies

To describe the flow due to the transverse translation of an axisymmetric body, we introduce a rep-
resentation in terms of point-source dipoles with strength di pointing in the direction of translation.
The singularities are placed at strategic location along the centerline inside the body, as shown in
Figure 7.6.3(b). The velocity field due to translation along the y axis is

u(x) =
1

4π
Vy

N∑
i=1

di

(
− 1

|x− xi|3
ey + 3

y

|x− xi|5
(x− xi)

)
, (7.6.22)

where xi = (xi, 0, 0) is the location of the ith singularity and ey is the unit vector along the y axis.
Evaluating (7.6.22) at the surface of the body, enforcing the no-penetration boundary condition,
u · n = V · n = Vyny, and writing ny = (y/σ)nσ and nz = (z/σ)nσ, we obtain

N∑
i=1

di

(
− 1

|x− xi|3
+ 3

σ

nσ

(x− xi)nx + σnσ

|x− xi|5
)
= 4π, (7.6.23)

where σ2 = y2 + z2. To compute the strengths of the dipoles, di, we apply (7.6.23) at Nc selected
collocation points along the contour of the body in an azimuthal plane and work as in the case of
axial translation. In the case of a sphere, we recover the exact solution with one dipole placed at
the center of the sphere.
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Continuous singularity distribution for transverse flow

In a generalized implementation of the singularity method, the flow is represented by a continuous
distribution of point-source dipoles pointing in the direction of translation. The density of the
distribution is computed by a collocation or weighted residual method. In the case of a prolate
spheroid, a parabolic distribution over the focal length of the spheroid produces the exact solution,
as discussed in Section 7.6.1. For more general shapes, the optimal distribution domain that provides
us with the highest accuracy can be found by numerical optimization or experimentation.

Singularity methods for three-dimensional flow

Singularity methods for three-dimensional flow arise as straightforward extensions of those for ax-
isymmetric flow. The types of singularities employed and their location inside the body must be
selected by exercising physical intuition. The strengths of the singularities are typically computed
by pointwise collocation. When the flow is represented in terms of a collection of Ns point sources
with strengths mi and Nd point-source dipoles with strengths di, the coefficient of the dipole is
computed as

d =

Ns∑
i=1

mi xi +

Nd∑
i=1

di. (7.6.24)

In an advanced implementation of the singularity method, the locations of the singularities are not
specified at the outset but computed instead as part of the solution to minimize an appropriate
positive functional enforcing the boundary conditions (e.g., [442]). This modification allows us to
achieve a high degree of accuracy with a small number of singularities.

Problem

7.6.1 Flow due to the axial translation of a circular disk

Consider the flow due to the axial translation of an oblate spheroid. Take the limit as the eccentricity
e tends to unity to derive the velocity potential due to the translation of a circular disk with
infinitesimal thickness (e.g., [220], p. 144).

Computer Problems

7.6.2 Rankine ovoids

Compute and plot the contours of Rankine ovoids in an azimuthal plane for a sequence of values of
the slenderness parameter λ = a2Vx/m.

7.6.3 Flow due to translation of an axisymmetric body

Write a program that uses a collocation method to compute the strengths of the point sources or
point-source dipoles according to (7.6.20) or (7.6.23). Run the program for a prolate spheroid with
aspect ratio a/b = 2 and compare the computed coefficient of the dipole with the exact value given in
(7.6.4). The singularities should be distributed evenly over the focal length of the spheroid. Discuss
the convergence of the method with respect to the number of singularities employed.



7.7 Slender-body theory 563

x

y

z

−a a

f(x)

Figure 7.7.1 Illustration of a slender axisymmetric body. The flow due to the translation of the body
can be represented in terms of singularities distributed over an interval inside the body.

7.7 Slender-body theory

When the length of an axisymmetric body is much larger than its cross-sectional size, it is possible
to represent the flow in terms of singularities distributed along the centerline and then compute the
densities of the distributions by asymptotic methods. The approximate solution obtained in this
fashion provides us with a reasonable alternative to full numerical computation.

7.7.1 Axial motion

Consider a slender axisymmetric body whose surface is described in cylindrical polar coordinates,
(x, σ, ϕ), as σ = f(x), where −a < x < a. For simplicity, and without loss of generality, we set
the origin of the x axis midway between the two ends, as shown in Figure 7.7.1. Assuming that
the body translates parallel to the x axis with velocity Vx, we introduce a representation in terms
of a distribution of point sources along the centerline with linear density �, and obtain the velocity
potential

φ(x) = − 1

4π

∫ a

−a

�(ξ)

|x− ξ| dξ, (7.7.1)

where the point ξ = (ξ, 0, 0) lies on the x axis.

The density of the distribution, �, must be adjusted to satisfy the no-penetration condition at
the surface of the body. To achieve this, we write a mass balance over a fixed control volume that
is confined between the instantaneous surface of the body and two planes that are perpendicular to
the x axis. Let A = πf2 be the cross-sectional area of the body and Q(x) be the instantaneous flow
rate in the exterior of the body through a plane that is perpendicular to the x axis. In the limit as
the distance between the two planes becomes infinitesimal, we obtain

∂A

∂t
=

∂Q

∂x
or 2πf

∂f

∂t
=

∂Q

∂x
, (7.7.2)

Next, we introduce the instantaneous flow rate q(x) across the whole area of a plane that is perpen-
dicular to the x axis and use the point-source representation to write

∂q

∂x
= �. (7.7.3)
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Since, in a frame of reference moving with the body, the radius of the body is constant,

∂f

∂t
+ Vx

∂f

∂x
= 0. (7.7.4)

Combining this equation with (7.7.2) and approximating Q with q, we find that the density distri-
bution of the point sources is given by

� =
∂A

∂t
= −Vx

∂A

∂x
. (7.7.5)

Although the assumptions underlying these derivations fail near the end of the body where (7.7.2)
ceases to be valid, expression (7.7.5) provides us with a reasonable approximation of the flow over
the main portion of the body.

The coefficient of the dipole, d, is parallel to the centerline. Using (7.7.5) and integrating by
parts under the stipulation f(±a) = 0, we find that

dx =

∫ a

−a

ξ �(ξ) dξ = −Vx

∫ a

−a

ξ
d(πf2)

dξ
dξ = VxVB , (7.7.6)

where VB is the volume of the body. Substituting (7.7.6) into (7.2.18) and (7.2.23), we find that,
at this level of approximation, the added mass and kinetic energy of the fluid are both zero. A
higher-order approximation is required to account for the presence of the body.

Prolate spheroids

To assess the accuracy of the slender-body theory, we compare the approximate solution (7.7.6) with
the exact solution for a prolate spheroid given in (7.6.4). As the aspect ratio b/a tends to zero, the
exact solution yields

dx =
4π

3
Vxa

3
( b
a

)2 [
1−

( b
a

)2

ln
b

a

]
+ · · · . (7.7.7)

Neglecting the second term inside the square bracket yields precisely the right-hand side of (7.7.6).
The slender-body approximation incurs a relative error on the order (b/a)2 ln(b/a), which is small
for bodies with moderate and high aspect ratio. Consequently, slender-body theory provides us with
an efficient method for approximating the coefficient of the dipole with the product of the volume
of the body and velocity of translation in axial motion.

Asymptotic expansions

Equation (7.7.6) can be derived formally working within the framework of asymptotic expansions.
We begin by considering the no-penetration condition, uxnx + uσnσ = Vxnx, and introduce the
approximations nx � −∂f/∂x and nσ � 1. Since ux and uσ have comparable magnitudes while nx

is small compared to nσ, we may approximate

uσ � −Vx
∂f

∂x
. (7.7.8)
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Differentiating (7.7.1) with respect to σ, we express the radial velocity as

uσ(x) =
∂φ

∂σ
=

1

4π
σ

∫ a

−a

�(ξ)

[(x− ξ)2 + σ2]3/2
dξ. (7.7.9)

Rearranging, we obtain

uσ(x) =
∂φ

∂σ
=

1

4πσ

∫ (a−x)/σ

−(a+x)/σ

�(ξ)

(η2 + 1)3/2
dη, (7.7.10)

where η = (ξ − x)/σ is an auxiliary variable. Next, we evaluate (7.7.9) at a point on the surface
of the body, σ = f(x), expand �(ξ) in a Taylor series about x and retain only the leading constant
term. As f/a tends to zero, the limits of integration with respect to η become infinite yielding the
approximation

uσ(x) =
1

4πf(x)
�(x)

∫ ∞

−∞

dη

(η2 + 1)3/2
=

1

2π

�(x)

f(x)
. (7.7.11)

Substituting the approximate boundary condition (7.7.8) reproduces (7.7.5).

Working in a similar fashion, we find that the axial component of the velocity at a point on
the surface of the body is given by

ux(x) =
∂φ

∂x
=

1

4π

∫ a

−a

x− ξ

[(x− ξ)2 + σ2]3/2
�(ξ) dξ. (7.7.12)

Expanding �(ξ) in a Taylor series about x and retaining only the constant and linear terms, we
obtain

ux(x) = − 1

4π

d�

dx
ln

4(a2 − x2)

f2(x)
, (7.7.13)

which can be used along with (7.7.11) and Bernoulli’s equation to evaluate the surface pressure.

7.7.2 Transverse motion

In the case of a slender axisymmetric body translating along the y axis that is normal to the
centerline with velocity Vy, we approximate the flow near the body with that due to translating
circular cylinder whose radius is equal to the local radius of the body, f(x).

In Section 7.8, we will see that streaming flow past a circular cylinder can be represented in
terms of a two-dimensional dipole oriented along the y axis with strength 2πVyf

2 = 2VyA, where A
is the cross-sectional area of the body. Since the two-dimensional dipole emerges by integrating the
three-dimensional dipole along the x axis, it is appropriate to introduce a representation in terms
of a distribution of three-dimensional dipoles with linear distribution density 2πVyf

2(x), obtaining
the potential

φ(x) = −1

2
Vy

∫ a

−a

y

|x− ξ|3 f2(ξ) dξ, (7.7.14)
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where the point ξ = (ξ, 0, 0) lies on the x axis. This representation can be derived more rigorously
working as in the case of axial motion in the context of asymptotic expansions (Problem 7.7.1(b)).
The coefficient of the dipole,

dy ≡ 2πVy

∫ a

−a

f2(x) dx = 2VyVB, (7.7.15)

is equal to twice that for axial motion shown in (7.7.7). A comparison with the exact solution for
prolate spheroids confirms the consistency and accuracy of the slender-body representation (7.7.14)
for bodies with moderate and large aspect ratio (Problem 7.7.1(c)). The nonzero component of the
added-mass matrix and kinetic energy of the fluid are αyy = 1 and K = 1

2ρVBV
2
y .

Problems

7.7.1 Slender-body theory

(a) Compute the coefficient of the dipole for a sphere according to (7.7.6). Compare your result
with the exact solution.

(b) Derive the representation (7.7.14) working in the context of asymptotic expansions as in the case
of axial motion discussed in the text.

(c) Compute the asymptotic limit of the coefficient of the dipole for a prolate spheroid given in
(7.6.4) in the limit as b/a tends to zero, and thus verify that the leading-order term is given by
dy = 2VyVB , in agreement with the slender-body approximation.

7.7.2 Application of slender-body theory

Derive the distribution density of the singularity representation corresponding to the axial translation
of an axisymmetric body whose surface is described by σ = f(x) = b (1−x2/a2), where −a < x < a
and b is a given length. Evaluate the pressure at the surface of the body.

7.8 Flow past or due to the motion of a two-dimensional body

Because the domain of flow past a two-dimensional body is inevitably doubly connected, the velocity
potential is a single valued function of position only when the circulation around a body is zero. The
nonuniqueness of the potential requires special attention in studying the properties and computing
the structure of a two-dimensional flow.

7.8.1 Flow past a stationary or translating rigid body

Consider a potential flow past a two-dimensional body translating with velocity V, as illustrated in
Figure 7.8.1(a). The velocity field can be resolved into three components, u = u∞ + v + ud, where
u∞ = ∇φ∞ is the velocity of a specified incident irrotational flow with potential φ∞, v is the velocity
due to a point vortex located at a chosen point inside the body, and ud is a disturbance velocity
expressed in terms of a single-valued harmonic potential φd, so that ud = ∇φd. The strength of the
point vortex is equal to the circulation around the body.
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Figure 7.8.1 (a) Illustration of irrotational flow past a translating two-dimensional rigid body with
nonzero circulation around the body. (b) Direction of the lift force, F, on a translating two-
dimensional body with positive circulation around the body.

The no-penetration boundary condition requires that u · n = V · n over the contour of the
body, B. Making substitutions and rearranging, we obtain

n · ∇φd = n ·V − n · ∇φ∞ − n · v. (7.8.1)

The counterpart of the boundary-integral representation (7.2.2) for the single-valued disturbance
potential, φd, is

φd(x0) = −
∮
B

G(x0,x)n(x) ·
[
V −∇φ∞(x)− v(x)

]
dl(x)

+

∮
B

φd(x)n(x) · ∇G(x0,x) dl(x), (7.8.2)

where l is the arc length around the body contour, B.

Using the counterpart of (7.2.3) for two-dimensional flow to simplify the single-layer potential
on the right-hand side of (7.8.2), and adding to both sides of the resulting equation the potential of
the incident flow, φ∞, we obtain

Φ(x0) = φ∞(x0) +

∮
B

G(x0,x)n(x) · v(x) dl(x)

+

∮
B

[−V · x+Φ(x) ]n(x) · ∇G(x0,x) dl(x), (7.8.3)

where Φ ≡ φ∞ + φd is a single-valued potential. The total velocity potential is

φ = Φ+
κ

2π
θ, (7.8.4)

where θ is the polar angle measured around the point vortex. In the absence of circulation around
the body, κ = 0, v vanishes and Φ reduces to φ. The modular cases of flow past a stationary body
and flow due to the translation of a body in an otherwise quiescent fluid emerge by setting V or φ∞

to zero, respectively.
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Far-field expansion

To assess the behavior of the flow far from the body, we follow a procedure similar to that outlined
in Section 7.2 for three-dimensional flow. The result is the asymptotic expansion

φ(x0) = φ∞(x0) + d · ∇c G(x0,xc) +
κ

2π
θ + · · · , (7.8.5)

where the gradient ∇c involves derivatives with respect to an arbitrary point inside or in the vicinity
of the body, xc,

d = ABV −
∮
B

[
n(x) Φ(x)− (x− xc)v(x) · n(x)

]
dl(x) (7.8.6)

is the coefficient of the dipole, AB is the cross-sectional area of the body in the xy plane. It will be
noted that d is defined in terms of the single-valued part of the velocity potential Φ along the body
contour.

7.8.2 Flow due to the motion and deformation of a body

Next, we consider the flow due to the translation, rotation, and deformation of a body in an otherwise
quiescent fluid. We begin by resolving the velocity into two components, u = ud + v, where ud

represents a disturbance flow described by a single-valued harmonic potential, φd, so that ud = ∇φd,
and v is the velocity field due to a point vortex located inside the body. The integral formulation
provides us with the boundary-integral representation

φd(x0) = −
∮
B

G(x0,x)n(x) · [u− v ](x) dl(x) +

∮
B

φd(x)n(x) · ∇G(x0,x) dl(x), (7.8.7)

where the point x0 lies in the domain of flow.

Far-field expansion

To assess the behavior of the flow far from the body, we expand the Green’s function and its dipole
in a Taylor series with respect to x about a chosen point, xc, note that∮

B

v · n dl = 0, (7.8.8)

due to mass conservation, and obtain

φd(x0) = −G(x0,xc)

∮
B

n(x) · u(x) dl(x) + d · ∇cG(x0,xc) + · · · , (7.8.9)

where

d = −
∮
B

[
n(x)φd(x)− (x− xc)n(x) · ud(x)

]
dl(x), (7.8.10)

is the coefficient of the dipole. We can demonstrate using the divergence theorem that the integral
on the right-hand side of (7.8.10) remains unchanged when the contour of integration, B, is replaced
by any other contour enclosing B.
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The first term on the right-hand side of (7.8.9) represents the flow due to a point source
associated with the change in the area occupied by the body. To leading order, far from the body,
the flow behaves like that due to a point source and a point vortex whose strength is equal to the
circulation around the body. In the absence of circulation and when the area occupied by the body
does not change in time, the far flow resembles that due to a two-dimensional potential dipole.

7.8.3 Motion of a rigid body

The single-valued disturbance velocity ud due to a rigid body that translates with velocity V while
rotating with angular velocity Ω = Ωzez around the z axis about a point , xc, satisfies the boundary
condition

n(x) · ud(x) =
[
V +Ω× (x− xc)− v

]
· n(x). (7.8.11)

Substituting this condition into (7.8.10), we obtain an expression for the coefficient of the dipole in
terms of the disturbance velocity potential around the body,

d = ABV −
∮
B

[
n(x)φd(x) + (x− xc)n(x) · v(x)

]
dl(x)

+

∮
B

Ω ·
[
(x− xc)× n(x)

]
(x− xc) dl(x). (7.8.12)

The last integral on the right-hand side can be made to vanish by identifying the point xc with the
areal centroid of the body,

Xc ≡
1

AB

∫∫
Body

x dA(x). (7.8.13)

We may use the divergence theorem in two dimensions to derive a representation of the areal centroid
in terms of a contour integral analogous to that shown in (4.1.7).

Decomposition into fundamental modes of rigid-body motion and circulation

The linearity of the equations and boundary conditions governing potential flow due to the motion of
a rigid body allows us to express the potential as a linear combination of the velocity of translation,
V, angular velocity rotation about the z axis, Ω = Ωzez, and strength of a point vortex κ located
at a certain location inside the body and producing a desired degree of circulation. Consequently,
we can write

φ(x) = Vx Φ1[x,xc, e(t)] + Vy Φ2[x,xc, e(t)] + Ωz Φ3[x,xc, e(t)] + κ
( θ

2π
+Φ4[x,xc, e(t)]

)
, (7.8.14)

where Φi are four fundamental single-valued velocity potentials, xc is the chosen center of rotation,
the unit vector e describes the instantaneous body orientation, and θ is the polar angle around a
point vortex located inside the body. The square brackets contain the arguments of the fundamental
potentials, Φi.

Substituting (7.8.14) into (7.8.12) and identifying for convenience xc with the areal centroid
Xc to discard the last term on the right-hand side, we obtain

d = AB

[
(I+α) ·V +Ωz ζ + κη

]
+

∮
B

(x−Xc)
[
n(x) · v(x)

]
dl(x), (7.8.15)
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where

αij = − 1

AB

∮
B

niΦj dl, ζi = − 1

AB

∮
B

niΦ3 dl, ηi = − 1

AB

∮
B

niΦ4 dl, (7.8.16)

for i = 1, 2. Working as in Section 7.2, we can show that the 2×2 added-mass matrix α is symmetric.

Kinetic energy of the flow due to the motion of a rigid body

The 1/d decay of the velocity in the case of nonzero circulation is responsible for infinite kinetic
energy in a two-dimensional flow, where d is the distance from the origin. This unphysical behavior
can be resolved by observing that the onset of circulation during startup is accompanied by the
generation of an equal amount of vorticity of opposite sign deposited at infinity, causing a faster
decay. Useful information can be obtained by considering the kinetic energy of the fluid inside an
area that is enclosed by the body and a large circle of radius R. Decomposing φ into a single-
valued disturbance component, φd, and a component associated with the point vortex, and using
the counterpart of expression (2.1.22) for two-dimensional flow, we obtain

K = −1

2
ρ

∮
B

φd [n · ∇φd ] dl + · · · . (7.8.17)

If the circulation around the body is nonzero, the omitted term represented by the dots is infinite;
otherwise, it is zero. The finite part of the kinetic energy represented by the first term on the right-
hand side of (7.8.17) is amenable to the analysis of Section 7.2 for three-dimensional flow, subject
to straightforward changes in notation.

Force on a translating rigid body

To compute the force exerted on a translating two-dimensional body, we resort to Bernoulli’s equa-
tion. Working as in Section 7.3 for three-dimensional flow, we derive the expression

F = −ρAB α · dV
dt

+ ρ

∮
B

[
u (V · n)− (V · u)n

]
dl − ρABg. (7.8.18)

The three terms on the right-hand side represent, respectively, the acceleration reaction, a steady
force, and the buoyancy force. Using the divergence theorem, we find that the integral on the right-
hand side of (7.8.18) remains unchanged when the contour of integration is replaced by any other
closed contour enclosing B. When the circulation around the body is nonzero, the velocity decays
like 1/d and the integral over a circle with large radius takes the Kutta–Joukowski value κ ez ×V,
where d is the distance from the origin and ez is the unit vector along the z axis. Substituting this
expression into (7.8.18), we obtain the final expression

F = −ρAB α · dV
dt

+ ρ κ ez ×V − ρABg, (7.8.19)

which shows that the steady drag force is zero and the lift force is proportional to the circulation
around a translating two-dimensional body, independent of the body shape.

The direction of the lift force for positive circulation is illustrated in Figure 7.8.1(b). Physically,
the circulation accelerates the fluid above the body and decelerates the fluid below the body, thus
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causing a pressure difference that results in a lift force. The lifting action of an airfoil hinges on its
ability to generate a sufficient amount of positive circulation, so that the lift force counterbalances
the aircraft weight. The generation of circulation relies on viscous effects inside boundary layers
developing around the airfoil, as discussed in Chapter 8.

The torque exerted on a two-dimensional body can be computed working as in Section 7.3 for
three-dimensional flow.

Problems

7.8.1 Boundary conditions for the fundamental potentials

State the boundary conditions satisfied by the four fundamental potentials introduced in (7.8.14).

7.8.2 Force on a translating body

Derive (a) expression (7.8.18) and (b) the Kutta–Joukowski value for the lift force from (7.1.3) and
(7.1.5).

7.9 Computation of two-dimensional flow past a body

Having established general properties of two-dimensional flow past or due to the motion of a rigid
body, we proceed to discussing specific solutions obtained by analytical or numerical methods. We
will discuss flow due to the translation of a circular cylinder, streaming flow past a circular cylinder,
flow representation in terms of a boundary vortex sheet, and then overview numerical and asymptotic
methods.

7.9.1 Flow due to the translation of a circular cylinder with circulation

In the first application, we consider the flow due to a circular cylinder of radius a translating with
generally time-dependent velocity V(t) in the xy plane, while rotating about its center around the
z axis with angular velocity Ωz(t) in an infinite fluid. Since the component of the velocity normal
to the surface of the cylinder due to the cylinder rotation is zero, rotation does not generate fluid
motion.

Singularity representation

The flow due to translation with a specified circulation around the cylinder, C, can be represented
by a point-source dipole with strength

d = 2πa2V, (7.9.1)

and a point vortex with strength κ = C, both placed at the center of the cylinder. The harmonic
potential and velocity field are given by

φ(x) = −a2

r2
V · x̂+

κ

2π
θ, u(x) = a2

[
− 1

r2
V +

2

r4
(V · x̂) x̂

]
+

κ

2π

1

r
eθ, (7.9.2)
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where x̂ = x− xc, r = |x̂c| is the distance of the field point, x, from the instantaneous center of the
cylinder, xc, θ is the polar angle around the center of the cylinder, and eθ is the corresponding unit
vector.

Fundamental potentials

Comparing the potential given in (7.9.2) with (7.8.14), we deduce that the four fundamental poten-
tials for translation, rotation, and circulation, are given by

Φ1 = −a2

r2
x̂, Φ2 = −a2

r2
ŷ, Φ3 = 0, Φ4 = 0. (7.9.3)

Since the velocity due to the point vortex is parallel to the surface of the cylinder, the last term on
the right-hand side of (7.8.15) is zero.

Coefficient of the dipole, added mass, and force

Using (7.9.3) and the definitions (7.8.16), we find that the coefficients ζ and β vanish, and the
coefficient of the dipole is given by

d = πa2(I+α) ·V. (7.9.4)

Remembering that d = 2πa2V according to (7.9.1), we obtain α = I, which can be substituted into
(7.8.19) to yield the force exerted on the cylinder,

F = −ρπa2
dV

dt
+ ρ κez ×V − ρπa2 g, (7.9.5)

where the last term represents the buoyancy force.

Stream function and streamlines

In plane polar coordinates where the x axis is parallel to the velocity of translation, V, the stream
function is given by

ψ(x) =
a2

r
sin θV · ex − κ

2π
ln

r

a
. (7.9.6)

where V = V ex. This expression reveals that the structure of the flow is determined by the
dimensionless circulation parameter λ ≡ κ/(4πaV ). Streamline patterns for several values of λ with
κ > 0 and V > 0 are shown in Figure 7.9.1. In all cases, the lift force points in the positive direction
of the y axis due to the high velocity, and thus low pressure, on the upper side of the cylinder
compared to that on the lower side.

7.9.2 Uniform flow past a stationary circular cylinder with circulation

The solution for unsteady uniform flow with velocity U(t) past a stationary or rotating circular
cylinder with circulation C around the cylinder can be derived from that due to a translating
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Figure 7.9.1 Streamline patterns of the flow due to the translation of a circular cylinder in the positive
direction of the x axis with counterclockwise circulation corresponding to circulation parameter (a)
λ ≡ κ/(4πaV ) = 0, (b) 0.25, (c) 0.5, and (d) 1.0.

cylinder discussed in Section 7.9.1. Working in a frame of reference where the flow far from the
cylinder appears to be stationary, we obtain

φ(x) =
(
1 +

a2

r2

)
U · x̂+

κ

2π
θ, u(x) = U+ a2

[ 1

r2
U− 2

r4
(U · x̂) x̂

]
+

κ

2π

1

r
eθ, (7.9.7)

where κ = C is the strength of a point vortex, x̂ = x − xc, r = |x̂c| is the distance of the field
point x from the center of the cylinder, xc, θ is the polar angle measured around xc, and eθ is the
corresponding unit vector. In plane polar coordinates where the x axis is parallel to U, the stream
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Figure 7.9.2 Streamline patterns of uniform flow past a stationary or rotating circular cylinder for
values of the circulation parameter (a) β ≡ −κ/(4πaU) = 0, (b) 0.5, (c) 1.0, and (d) 1.2.

function is

ψ(r, θ) = U
(
r − a2

r

)
sin θ − κ

2π
ln

r

a
, (7.9.8)

where U = Uex. Note that the stream function is zero when r = a, as required. Equation
(7.9.8) reveals that the structure of the flow depends on the dimensionless circulation parameter
β ≡ −κ/(4πaU). Streamline patterns for positive values of β with κ < 0 and U > 0 are shown in
Figure 7.9.2.
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t
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N

Figure 7.9.3 The flow past a stationary two-dimensional body can be represented by a vortex sheet.

The tangential component of the velocity around the surface of the cylinder is readily found
by differentiating the stream function (7.9.8) with respect to the radial distance, r, yielding

uθ(r = a) = −
(∂ψ
∂r

)
r=a
= −2U sin θ +

κ

2πa
. (7.9.9)

We observe that uθ becomes zero when sin θ = −β, and this reveals the onset of a symmetric pair
of stagnation points on the surface of the cylinder when 0 < β < 1. For larger values of β, the
stagnation points move off the surface of the cylinder and then merge to yield a free stagnation
point inside the flow, as shown in Figure 7.9.2. It is evident from (7.9.9) that, when β > 0, the
magnitude of the velocity at the top of the cylinder is higher than that at the bottom of the cylinder.
Bernoulli’s equation then shows that the surface pressure at the top is lower than that at the bottom,
which provides us with a physical explanation for the occurrence of a lift force toward the positive
direction of the y axis noted by Magnus in 1853.

7.9.3 Representation in terms of a boundary vortex sheet

An interesting representation of a two-dimensional potential flow past a stationary body with van-
ishing or nonzero circulation around the body emerges by pretending that the interior of the body is
occupied by a stationary fluid. We may then regard the disturbance flow due to the body as though
it were induced by a two-dimensional vortex sheet situated at the surface of the body, as illustrated
in Figure 7.9.3.

The strength of the vortex sheet is equal to the tangential component of the fluid velocity,
ut = u · t, where t is the tangential unit vector pointing in the counterclockwise direction. This
point of view suggests expressing the stream function at an arbitrary point x0 in the flow as

ψ(x0) = ψ∞(x0)−
1

2π

∫ L

0

ln
|x0 − x|

a
ut(x) dl(x) + c, (7.9.10)

where ψ∞ is the stream function of an incident flow, L is the total arc length of the contour of the
body in the xy plane, c is an arbitrary constant, and a is a chosen length.

Applying (7.9.10) at a point at the surface of the body and enforcing the no-penetration
boundary condition, ψ = 0, we obtain an integral equation of the first kind for the tangential



576 Introduction to Theoretical and Computational Fluid Dynamics

boundary velocity,

1

2π

∫ L

0

ln
|x0 − x|

a
ut(x) dl(x) = ψ∞(x0) + c. (7.9.11)

The constant c determines implicitly the circulation around the body.

Numerical methods

A simple numerical method for solving the integral equation (7.9.11) involves tracing the contour of
the body with N marker points arranged in the counterclockwise direction, and then approximating
the contour of the body with a polygonal line connecting successive marker points. Assuming that
the value of ut is constant and equal to ui over the ith segment, we obtain the discrete version of
(7.9.11),

Ai(x0)ui = ψ∞(x0) + c, (7.9.12)

where summation is implied over the repeated index i = 1, . . . , N , and

Ai(x0) =
1

2π

∫ xi+1

xi

ln
|x0 − x|

a
dl(x) (7.9.13)

are influence coefficients. The tangential velocities ui can be computed by pointwise collocation.
The methodology involves applying (7.9.12) at the midpoint of each segment, yj = 1

2 (xj + xj+1),
to derive a system of N linear equations,

Ai(yj)ui = ψ∞(yj) + c (7.9.14)

for j = 1, . . . , N , where summation is implied over the repeated index, i. To ensure that the
circulation around the body has a prescribed value, κ, we introduce the additional constraint

N∑
i=1

ui |xi − xi+1| = κ, (7.9.15)

and solve a system of the N + 1 linear equations comprised of (7.9.14) and (7.9.15) for N + 1
unknowns, ui and c.

The off-diagonal influence coefficients of the influence matrix, Ai(yj) for i �= j, can be com-
puted using a standard integration method, such as the trapezoidal rule. or a Gaussian quadrature
(Section B.6, Appendix B). The diagonal influence coefficients corresponding to the host collocation
point, Aj(yj), can be computed analytically as

Aj(yj) =
1

π
|yj − xj | (ln

|yj − xj |
a

− 1) (7.9.16)

for j = 1, . . . , N . An integral identity ensures that the choice of the length, a, is immaterial on the
accuracy of the computations.
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Flow past a plate with infinitesimal thickness

In the case of uniform flow past a flat plate with infinitesimal thickness positioned along the x axis
between the points x = ±a, the upper and lower surfaces of the body coincide and the integral
representation (7.9.10) reduces to

ψ(x0) = ψ∞(x0)−
1

2π

∫ a

−a

ln
|x0 − x ex|

a
Δu(x) dx+ c, (7.9.17)

where Δu ≡ u−
t − u+

t is the discontinuity in the tangential velocity across the plate, the plus
superscript indicates evaluation at the upper side of the plate, and the minus superscript indicates
evaluation at the lower side of the plate. Equation (7.9.11) provides us with an integral equation,

1

2π

∫ a

−a

ln
|x0 − x|

a
Δu(x) dx = ψ∞(x0) + c, (7.9.18)

where the constant c determines the circulation around the plate, κ.

To establish the relation between κ and c, we note that

1

2π

∫ a

−a

ln
|x0 − x|

a

dx√
a2 − x2

= − 1√
2
, (7.9.19)

independent of x0, which demonstrates that

Δu(x) = −
√
2√

a2 − x2
c (7.9.20)

is a solution of (7.9.18) with ψ∞ = 0. The circulation around the plate is

κ =

∫ a

−a

Δu(x) dx = −
√
2πc. (7.9.21)

Combining the last two equations, we obtain

Δu(x) =
κ

π

1√
a2 − x2

. (7.9.22)

Note that singularities occur at both ends of the plate, x = ±a.

In the case of uniform flow with velocity U = (Ux, Uy), the stream function of the incident
flow is ψ∞ = Uxy − Uyx and the solution of the integral equation (7.9.18) is given by

Δu(x) =
(
2Uy x+

κ

π

) 1√
a2 − x2

(7.9.23)

(Section 7.12.2). When the circulation assumes the Kutta value κ = −2πaUy, the singularity at the
trailing edge, x = a, disappears and fluid particles on either side of the plate leave the plate in the
tangential direction without making a sharp turn.
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7.9.4 Computation of flow past bodies with arbitrary geometry

The singularity methods described in Section 7.6.3 for three-dimensional flow can be easily adapted
to flow past or due to the motion of a two-dimensional body. However, the efficiency of these
methods competes with that of another class of methods based on a complex-variable formulation
combined with the conformal mapping techniques discussed in Sections 7.10–7.13. A third class of
powerful methods relies on the boundary-integral formulation discussed in Chapter 10.

Slender-body theory

Slender-body theory provides us with useful approximate solutions for flow past an elongated body
with high aspect ratio. Consider the flow due to the axial translation of a slender two-dimensional
body whose contour is symmetric with respect to the x axis, in the absence of circulation around
the body. The upper and lower surfaces of the body are described by the function y = ±f(x) for
−a < x < a. Working as in the case of flow due to the motion of an axisymmetric body discussed
in Section 7.7, we represent the flow due to translation with velocity Vx along the x axis in terms of
two-dimensional point sources distributed along the centerline. The induced harmonic potential is

φ(x) =
Vx

2π

∫ a

−a

ln
|x− ξ|

a
�(ξ) dξ, (7.9.24)

where � is the density of the distribution, a is a chosen length, and the point ξ = (ξ, 0) lies at the x
axis. The no-penetration condition requires that

uxnx + uyny = Vxnx (7.9.25)

around the body contour. Introducing the approximations nx � −df/dx and ny � 1 on the upper
surface of the body, and noting that ux and uy have comparable magnitudes while nx is small
compared to ny, we derive the approximation

uy(x, f) � −Vx
df

dx
. (7.9.26)

Next, we differentiate (7.9.24) with respect to y to produce uy, obtaining

uy(x) =
Vx

2π
y

∫ a

−a

�(ξ)

(x− ξ)2 + y2
dξ =

Vx

2π

∫ (a−x)/y

−(a+x)/y

�(ξ)

η2 + 1
dη, (7.9.27)

where η = (ξ − x)/y is an auxiliary integration variable. Next, we evaluate (7.9.27) at a point
x = (x, f) on the upper surface of the body, expand �(ξ) in a Taylor series about x, and retain only
the leading constant term. As the body aspect ratio f/a tends to zero, the limits of integration with
respect to η terns to infinity, yielding the approximation

uy(x, f) �
Vx

2π
�(x)

∫ ∞

−∞

dη

η2 + 1
=

1

2
Vx �(x). (7.9.28)

Substituting (7.9.28) into (7.9.26), we find that

� = −2
df

dx
. (7.9.29)



7.10 Complex-variable formulation of two-dimensional flow 579

The coefficient of the dipole is

dx = Vx

∫ a

−a

ξ �(ξ) dξ = −2Vx

∫ a

−a

ξ
df

dξ
dξ = 2ABVx, (7.9.30)

where AB is the area occupied by the body. Remarkably but fortuitously, this formula produces the
exact answer for a circular cylinder derived in Section 7.9.1.

Problems

7.9.1 Lift on a circular cylinder

Substitute (7.9.2) into Bernoulli’s equation to obtain the pressure distribution over the cylinder and
then use (7.1.5) to compute the force exerted on the cylinder.

7.9.2 Formulation in terms of a boundary vortex sheet

(a) Derive the counterparts of (7.9.10) and (7.9.11) for axisymmetric flow past a stationary body.

(b) Discuss the implementation of the method for three-dimensional flow, that is, derive an integral
equation for the two tangential components of the boundary vortex sheet. Hint: recall that the
vorticity field is solenoidal.

Computer Problem

7.9.3 Boundary vortex sheet

(a) Write a program that solves the system of equations (7.9.14) and (7.9.15) for a specified body
geometry described in terms of a collection of marker points.

(b) Run the program for the case of uniform flow along the x axis past a circular cylinder. Plot
the distribution of tangential velocity along the surface of the cylinder for several values of the
circulation and compare the numerical results with the exact solution.

(c) Run the program for the case of uniform flow along the x axis past an elliptic cylinder with
aspect ratio equal to 4. Plot the distribution of the tangential velocity for several values of the
circulation.

(d) Run the program for uniform flow with velocity Ux = Uy past a flat plate aligned with the x
axis. Plot the distribution of tangential velocity for several values of the circulation. Compare the
numerical results with the exact solution given in (7.9.23).

7.10 Complex-variable formulation of two-dimensional flow

A powerful method of analyzing and computing the two-dimensional irrotational flow of an incom-
pressible fluid is based on a complex variable formulation that employs the harmonic potential, φ,
and the stream function, ψ. The theory of analytic functions of a complex variable allows us to
derive solutions for a variety of flows in domains with arbitrary geometry using efficient and elegant
analytical and numerical methods.
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7.10.1 The complex potential

Consider a two-dimensional irrotational flow of an incompressible fluid in the xy plane, and introduce
the corresponding two-dimensional harmonic potential, φ, satisfying Laplace’s equation in the plane
due to the continuity equation, ∇2φ = 0, and associated stream function, ψ. Since the vorticity is
identically zero, the stream function is a harmonic function in the xy plane, ωz = −∇2ψ = 0. The
velocity vector field is tangential to the instantaneous streamlines of constant ψ and perpendicular
to the instantaneous equipotential lines of constant φ. A rectilinear or curvilinear grid consisting of
lines of constant ψ and φ is sometimes called a flow net.

Cauchy–Riemann equations

The companion harmonic functions φ and ψ are related through their definition by the Cauchy–
Riemann equations,

ux =
∂φ

∂x
=

∂ψ

∂y
, uy =

∂φ

∂y
= −∂ψ

∂x
. (7.10.1)

Since φ and ψ is a pair of conjugate harmonic functions, they can be identified with the real or
imaginary part of an analytic function of a complex variable, z = x+ iy,

w(z) ≡ φ+ iψ, (7.10.2)

called the complex potential, where i is the imaginary unit, i2 = −1. A function of a complex
variable, z, is analytic at a point, z0, if its first derivative with respect to z is finite and independent
of the direction of differentiation at every point in a neighborhood of z0. An entire function is
analytic at each point in the complex plane. In the remainder of this chapter, z = x+ iy will denote
the complex variable rather than the Cartesian coordinate normal to the xy plane.

Velocity

Differentiating (7.10.2) and using the Cauchy–Reimann equations (7.10.1), we obtain the two velocity
components in the complex form

dw

dz
= ux − iuy ≡ u∗, (7.10.3)

where u ≡ ux + iuy is the complex velocity, and an asterisk denotes the complex conjugate. If
the velocity field is continuous, the complex potential must be an analytic function of z everywhere
except at isolated singular points. Selecting different analytic functions for the complex potential,
w(z), allows us to construct diverse families of incompressible irrotational flows.

Uniform flow

The complex potential of uniform (streaming) flow with velocity U = (Ux, Uy) in the xy plane is
given by

w = (Ux − iUy) z = U∗z, (7.10.4)
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Figure 7.10.1 (a) Illustration of potential flow inside or around a corner with aperture angle α. (b–e)
Streamline patterns of flow in a corner with aperture angle (b) α = π/4, (c) π/2, (d) 3π/4, and
(e) 2π. (f) Streamline pattern of the flow due to a periodic array of point sources arranged along
the x axis; the x and y axes have been scaled with half the point source separation.

where U = Ux + iUy is a complex velocity. The potential function, stream function, and complex
velocity are given by

φ = Ux x+ Uy y, ψ = Uxy − Uyx,
dw

dz
= u∗ = Ux − iUy. (7.10.5)

Flow inside and around a corner

The complex potential of irrotational flow inside or around a corner with aperture angle α = π/m,
as shown in Figure 7.10.1(a), is given by

w = Azm, (7.10.6)

where A is a real constant with appropriate dimensions. In plane polar coordinates, (r, θ), defined
such that x = r cos θ, y = r sin θ, and z = r exp(iθ), one wall is located at θ = 0 and the second wall
is located at θ = α. The potential function, stream function, and complex velocity are given by

φ = Arm cos(mθ), ψ = Arm sin(mθ),
dw

dz
= u∗ = Amzm−1. (7.10.7)
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Point source

w =
m

2π
ln

z − z0
a

, φ =
m

2π
ln

|z − z0|
a

, ψ =
m

2π
arg

|z − z0|
a

,
dw

dx
=

m

2π

z∗ − z∗0
|z − z0|2

m is the strength of the point source and a is a specified length

Point-source dipole

w = −dx + i dy
2π

1

z − z0
, φ = − 1

2π

dx(x− x0) + dy(y − y0)

|z − z0|2

ψ =
1

2π

dx(y − y0)− dy(x− x0)

|z − z0|2
,

dw

dx
=

dx + idy
2π

1

(z − z0)2

d = (dx, dy) is the strength of the point source dipole

Point vortex

w =
κ

2πi
ln

z − z0
a

, φ =
κ

2π
arg

|z − z0|
a

, ψ = − κ

2π
ln

|z − z0|
a

,
dw

dx
=

κ

2πi

z∗ − z∗0
|z − z0|2

κ is the strength of the point vortex, a is a specified length

Table 7.10.1 The complex potential, w, the corresponding real harmonic potential, φ, the stream
function, ψ, and the complex velocity field, dw/dz = ux − iuy of elementary potential flows due
to singularities located at z0. An asterisk designates the complex conjugate.

Streamline patterns for several angles aperture angles are shown in Figure 7.10.1(b–e). When α = π,
corresponding to m = 1, we obtain uniform streaming flow along the x axis. When α = 2π,
corresponding to m = 1/2, we obtain flow around a semi-infinite flat plate represented by the
positive part of the x axis.

Point sources and point vortices

The complex potential and velocity due to a point source, a point-source dipole, and a point vortex
are given in Tables 7.10.1. The complex potential and velocity due to a periodic array of point
sources and a periodic array point vortices are given in 7.10.2. The streamline pattern of the flow
due to a periodic array of point sources is shown Figure 7.10.1(f). The streamline pattern due to a
periodic array of point vortices is shown in Figure 2.10.1.
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Periodic array of point sources along the x axis

w =
m

2π
ln
[
sin

(k
2
(z − z0)

)]
φ =

m

4π
ln
[
cosh

(
k(y − y0)

)
− cos

(
k(x− x0)

)]
ψ =

m

2π
arg

[
sin

(k
2
(x− x0)

)
cosh

(k
2
(y − y0)

)
+ i cos

(k
2
(x− x0)

)
sinh

(k
2
(y − y0)

) ]
dw

dz
=

m

2a
cot

[k
2
(z − z0)

]

Periodic array of point vortices along the x axis

w =
κ

2πi
ln
[
sin

(k
2
(z − z0)

)]
φ =

κ

2π
arg

[
sin

(k
2
(x− x0)

)
cosh

(k
2
(y − y0)

)
+ i cos

(k
2
(x− x0)

)
sinh

(k
2
(y − y0)

) ]
ψ = − κ

4π
ln
[
cosh

(
k(y − y0)

)
− cos

(
k(x− x0)

]
dw

dz
=

κ

2ai
cot

[k
2
(z − z0)

]
Table 7.10.2 The complex potential and velocity field due to a periodic arrangement of point sources

or point vortices along the x axis; a is the period, k = 2π/a is the wave number, and z0 is the
location of one point source or point vortex in the array.

Point source between two parallel walls

The velocity field due to a point source located at a point, x0, between two parallel walls separated
by distance h can be represented by two infinite arrays of point sources with period L = 2h running
perpendicular to the walls. The first array contains the point source, and the second array contains
the image of the point source with respect to the upper or lower wall. The strengths of the point
sources in both arrays are equal. The wavenumber of each periodic array is 2π/L = π/h. Using
Table 7.10.2, we find that, If the walls are parallel to the x axis and thus perpendicular to the y
axis, the corresponding harmonic potential is given by

φ(x) =
m

4π
ln
[(

cosh
[π
h
(x− x0)

]
− cos

[π
h
(y − y0)

])
(
cosh

[π
h
(x− x0)

]
− cos

[π
h
(y − yim0 )

])]
, (7.10.8)
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where yim0 is the image of the point source with respect to the upper or lower wall. Since the two
images are separated by distance 2h, the choice is inconsequential. For example, of the lower wall
is located at y = yw, then the image point with respect to the lower wall is yim0 = 2yw − y0 and the
corresponding image point with respect to the upper wall is yim0 = 2yw + 2h− y0. Setting m = −1
we obtain the Green’s function of the second kind (Neumann function) of Laplace’s equation whose
normal derivative vanishes over the lower and upper walls.

Green’s function in a domain between two parallel walls

The Green’s function of Laplace’s equation in a infinite strip confined between two parallel plane
walls separated by distance h can be represented by an infinite array of point sinks complemented
by an infinite array of point sources. If the walls are parallel to the x axis and thus perpendicular
to the y axis, the Green’s function is given by

G(x,x0) = − 1

4π
ln

cosh[πh (x− x0)]− cos[πh (y − y0)]

cosh[πh (x− x0)]− cos[πh (y − yim0 )]
, (7.10.9)

where yim0 is the image of the singular point with respect to the upper or lower wall. As x → x0,
we recover the free-space Green’s function, G(x,x0) = − 1

2π ln(|x− x0|/h).

7.10.2 Computation of the complex potential from the potential or stream function

The theory of harmonic functions provides us with a method of computing the stream function from
the potential function, and vice versa, yielding the complex potential in terms of one its harmonic
components. The procedure involves integrating the Cauchy–Riemann equations along a path in
the complex plane, obtaining

φ(x, y) = φ(x0, y0)−
∫ y

y0

∂ψ

∂x
(x0, y

′) dy′ +

∫ x

x0

∂ψ

∂y
(x′, y0) dx

′,

ψ(x, y) = ψ(x0, y0) +

∫ y

y0

∂φ

∂x
(x0, y

′) dy′ −
∫ x

x0

∂φ

∂y
(x′, y0) dx

′, (7.10.10)

where (x0, y0) is an arbitrary point where the potential function and stream function are arbitrarily
assigned [106]. The integrals can be computed by analytical or numerical methods.

Far-field expansion of the complex potential for infinite flow

Insights on the structure of infinite flow past or due to the motion of a two-dimensional body can
be gained by studying the behavior of the complex potential far from the body. To assess the most
general form of the complex potential corresponding to a velocity field that either decays or tends
to a constant at infinity, we expand the analytic function dw/dz into a Laurent series about a point
z0 outside a circle of sufficiently large radius centered at a chosen point, z0. The series begins with
a constant term and contains only negative powers of the complex distance z − z0.

Integrating the series with respect to z and setting for convenience the integration constant
to zero, we obtain the expansion

w(z) = U∗(z − z0) +
m− iκ

2π
ln

z − z0
a

+ b0 +
∞∑

n=1

bn
(z − z0)n

, (7.10.11)
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where a is a constant length and bn are constant complex coefficients. Referring to Table 7.10.1, we
recognize the second term on the right-hand side of (7.10.11) as a point source and a point vortex
located at the point z0. The strength of the point source, m, is equal to the flow rate across a closed
contour enclosing the body. The strength of the point vortex, κ, is equal to the cyclic constant of
the motion around the body. For example, in the case of flow due to the isotropic expansion of a
circular bubble centered at the point z0, κ and all coefficients bn in (7.10.11) are zero.

7.10.3 Blasius theorems

Blasius developed an elegant method of computing the force and torque exerted on a body that
is held stationary in a steady ambient flow [40]. As a first step, we introduce the complex force,
F = Fx+iFy, and use Bernoulli’s equation for steady irrotational flow to express the hydrodynamic
force exerted on the body as

F ∗ = −i

∮
Body

p dz∗ =
1

2
iρ

∮
Body

(dw
dz

)(dw
dz

)∗

dz∗ =
1

2
iρ

∮
Body

(dw
dz

)
dw∗, (7.10.12)

where p is the real hydrodynamic pressure, ρ is the fluid density, the path of integration is taken
in the counterclockwise direction, and an asterisk denotes the complex conjugate. Since the stream
function is constant and the complex potential is real around the body contour, we can replace dw∗

in the last integral with dw, obtaining

F ∗ =
1

2
iρ

∮
Body

(dw
dz

)2

dz. (7.10.13)

Working in a similar fashion with the real torque, T , we find that

T =

∮
Body

p (x dx+ y dy) = −1

2
ρ Real

{ ∮
Body

(dw
dz

)2

z dz
}
. (7.10.14)

Assuming that the functions inside the last integrals in (7.10.13) and (7.10.14) are analytic through-
out the domain of flow, we use Cauchy’s integral theorem to replace the integrals along the contour of
the body with corresponding integrals along another closed contour enclosing the body. Introducing
the Laurent series of the complex potential stated in (7.10.11) allows us to compute the integrals in
terms of the coefficients of the far-field expansion.

Uniform flow

As an application, we consider uniform flow with velocity U past a stationary body. Substituting
into (7.10.13) the Laurent series (7.10.11) with m = 0, we obtain

F ∗ =
1

2
iρ

∮
Body

(
U∗ +

κ

2πi

1

z − z0
−

∞∑
i=1

nbn
(z − z0)n+1

)2

dz. (7.10.15)

Expanding the square, we find that

F ∗ =
1

2
iρ

∮
Body

(
U∗2

+ U∗ κ

πi

1

z − z0
+ · · ·

)
dz, (7.10.16)
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where the three dots represent terms that decay at a quadratic or higher rate. Evaluating the integral
by the method of residues, we obtain the real components of the force,

Fx = ρκUy, Fy = −ρκUx, (7.10.17)

which shows that uniform incident past a body combined with circulation around the body generates
a lift force that is independent of the body shape. These expressions are in agreement with our earlier
results in Section 7.8 obtained by different methods.

Working in a similar fashion, we find that the hydrodynamic torque with respect to a point,
z0, is given by

T = −2πρ Imag{U∗b1 }. (7.10.18)

Because the complex constant b1 depends on the body shape, the result for the torque is less general
than that for the force.

Force on a translating body

The hydrodynamic force exerted on a body that translates with velocity V follows from (7.10.17)
by setting U = −V, yielding

Fx = −ρκVy, Fy = ρκVx, (7.10.19)

in agreement with our previous results in Section 7.8. A lift force is established when Vx > 0 in the
presence of positive circulation, κ > 0.

7.10.4 Flow due to the translation of a circular cylinder

Combining the first equation in (7.9.2) with (7.9.6) and using Table 7.10.1, we find that the complex
potential of the flow due to a circular cylinder of radius a translating along the x axis with velocity
Vx and along the y axis with velocity Vy is given by

w(z) = −V
a2

z − zc
+

κ

2πi
ln

z − zc
a

, (7.10.20)

where κ is the circulation around the cylinder, zc is the instantaneous center of the cylinder, and
V = Vx+iVy is the complex velocity of translation. The first term on the right-hand side of (7.10.20)
represents a point-source dipole and the second term represents a point vortex.

7.10.5 Uniform flow past a circular cylinder

Combining the first equation in (7.9.7) with (7.9.8) and using Table 7.10.1, we find that the complex
potential of uniform flow past a stationary circular cylinder of radius a is given by

w(z) = U∗z + U
a2

z − zc
+

κ

2πi
ln

z − zc
a

, (7.10.21)

where U = Ux+iUy is the complex velocity far from the cylinder. The three terms on the right-hand
side of (7.10.21) represent, respectively, uniform flow, the flow due to a point-source dipole, and the
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flow due to a point vortex. The complex potential (7.10.21) can be used to derive the complex
potential of uniform flow past a body with arbitrary cross-section using the method of conformal
mapping, as discussed in Section 7.11.

7.10.6 Arbitrary flow past a circular cylinder

Milne–Thomson’s circle theorem allows us to derive an exact expression for the complex potential
of an arbitrary incident flow past a stationary circular cylinder [267]. A prerequisite is that the
incident flow prevailing in the absence of the cylinder is free of singularities in the interior of the
cylinder. As a preliminary, we regard the incident complex potential, w∞, as a function of z − zc,
where zc is the center of the cylinder. The complex potential in the presence of the cylinder is

w(z − zc) = w∞(z − zc) + w†
∞(

a2

z − zc
), (7.10.22)

where w†
∞(z) ≡ w∗

∞(z∗) and a is the cylinder radius.

Uniform flow

As an example, we consider uniform flow past a circular cylinder with vanishing circulation around
the cylinder, and set w∞ = U∗z. The restriction of vanishing circulation stems from the required
absence of singularities inside the cylinder. To apply the circle theorem, we write

w∞(z − zc) = U∗(z − zc) + U∗zc (7.10.23)

and use (7.10.22) to obtain

w(z) = U∗z + U
a2

z − zc
+ Uz∗c , (7.10.24)

which is consistent with (7.10.21). The inconsequential constant Uz∗c on the right-hand side plays
no role on the velocity field.

Point source outside a circular cylinder

In the case of an incident flow due to a point source located at the point zs in the exterior of a
circular cylinder, we set

w∞(z) =
m

2π
ln

z − zs
a

. (7.10.25)

To apply the circle theorem, we write

w∞(z − zc) =
m

2π

(
ln[z − zc − (zs − zc) ]− ln a

)
(7.10.26)

and use (7.10.22) to find that the complex potential in the presence of the cylinder is

w(z) =
m

2π

(
ln

z − zs
a

+ ln
[ a

z − zc
− (zs − zc)

∗

a

] )
. (7.10.27)
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Rearranging, we obtain

w(z) =
m

2π

(
ln

z − zs
a

− ln
z − zc

a
+ ln

[
1− (z − zc)(zs − zc)

∗

a2
] )

(7.10.28)

and then

w(z) =
m

2π

(
ln

z − zs
z − zc

+ ln
[z − zc

a
− a

(zs − zc)∗
]
+ ln

(zc − zs)
∗

a

)
. (7.10.29)

The last term on the right-hand side of (7.10.29) can be discarded as inconsequential. The resulting
expression shows that the disturbance flow due to the cylinder can be represented in terms of a
point sink with strength −m located at the center of the cylinder and a point source with strength
m located at the inverse point of the primary point source with respect to the cylinder,

zinvs = zc +
a2

|zs − zc|2
(zs − zc) = zc +

a2

(zs − zc)∗
. (7.10.30)

The real part of (7.10.29) with m = −1 is the two-dimensional Green’s function of the second kind
or Neumann function, N (z, z0), in the exterior of a circular cylinder.

Point vortex outside or inside a cylinder

In the case of an incident flow due to a point vortex located at the point zv in the exterior of a
cylinder, we set

w∞(z) =
κ

2πi
ln

z − zv
a

=
κ

2πi

(
ln

z − zc − (zv − zc)

a

)
. (7.10.31)

The complex potential of the flow in the presence of the cylinder is

w(z) =
κ

2πi

(
ln

z − zv
a

− ln
[ a

z − zc
− (zv − zc)

∗

a

])
. (7.10.32)

Working as in the case of the point source, we find that the disturbance flow due to the cylinder can
be represented in terms of a point vortex with strength κ located at the center of the cylinder and
an image point vortex with strength −κ located at the inverse point of the primary point vortex
with respect to the cylinder, zinvv = zc+a2/(zv−zc)

∗. The velocity induced by the first point vortex
is tangential to the cylinder and can be disregarded without affecting the no-penetration condition.
We may consider the exterior point vortex as the image of the interior point vortex and use the
solution derived in this section to describe the flow due to a point vortex inside a cylinder.

Problems

7.10.1 Linear irrotational flow past a circular cylinder

Consider a linear flow with velocity u∞ = A · x past a circular cylinder of radius a centered at
the origin, where A is a constant symmetric matrix with zero trace. (a) Derive the corresponding
complex potential. (b) Compute the force and torque exerted on a cylinder centered at the origin
using the Blasius formulas (7.10.13) and (7.10.14).
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Figure 7.11.1 Conformal mapping of the z plane to the ζ plane using the mapping function ζ = F (z).
The angle α subtended between two infinitesimal vectors is preserved after mapping.

7.10.2 Flow due to a point source

Explain in physical terms why it is not possible to find a complex potential associated with a point
source inside a cylinder or any other closed surface. What will happen if a small perforation is
introduced at the contour of the cylinder?

7.10.3 Flow due to a point-source dipole in the presence of a cylinder

Derive the complex potential due to a point-source dipole located (a) outside and (b) inside a circular
cylinder.

7.11 Conformal mapping

Conformal mapping allows us to compute potential flow in a two-dimensional domain with arbitrary
geometry from knowledge of a corresponding elementary flow in a domain with simple geometry.
To develop the method, we introduce a complex variable, ζ = ξ + iη, where ξ and η are two real
variables, and a complex function F (z) that is analytic in some region of the physical complex plane,
where z = x+ iy, and map a point in the physical plane to another point in the ζ plane so that

ζ = F (z), (7.11.1)

as shown in Figure 7.11.1. When the function F (z) is multivalued, we introduce an appropriate
branch cut in the z plane so as to render the mapping unique. The image of an open or closed line
in the z plane is another open or closed line in the ζ plane with different orientation and shape.

Inverse mapping function

It will be necessary to also introduce the inverse function mapping a point in the ζ plane back to a
point in the z plane,

z = f(ζ). (7.11.2)

When the function f(ζ) is multi-valued, we introduce an appropriate branch cut in the ζ plane so
as to render the inverse mapping unique.
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Differential vectors

Differentiating F (z) and f(ζ) with respect to z or ζ, we find that the ratio of two corresponding
infinitesimal differential vectors in the z and ζ planes, dz and dζ, are related by

dζ

dz
= F ′(z) = |F ′(z)| exp

(
i Arg{F ′(z)}

)
,

dz

dζ
= f ′(ζ) = |f ′(ζ)| exp

(
i Arg{f ′(ζ)}

)
, (7.11.3)

where Arg denotes the argument of a complex number, defined as the polar angle around the origin
of the complex plane. Since the functions F (z) and f(ζ) are analytic, the derivatives in equations
(7.11.3) depend on z or ζ but are independent of the orientation of corresponding differential pairs,
dz and dζ.

The first equation in (7.11.3) states that the length of the differential vector dζ is equal to the
length of dz multiplied by the scalar factor |F ′(z)|. The direction of dζ is rotated with respect to
that of dz by an angle that is equal to the argument of F ′(z). A singular behavior is expected at a
critical point of the mapping (7.11.1) where F ′(z) becomes infinite or, equivalently, f ′(z) is zero. A
similar interpretation of the differentials pertains to the second equation in (7.11.3).

A horse is a horse, of course, of course

Let us select a point z0 in the z plane and draw two infinitesimal vectors, dz1 and dz2, that start
at the chosen point, z0, as shown in Figure 7.11.1. The images of these vectors form a pair of
corresponding vectors in the ζ plane, dζ1 and dζ2, starting at ζ0. Using the first or second equation
in (7.11.3), we find that the angle subtended between the vectors dz1 and dz2 is the same as the
angle subtended between the vectors dζ1 and dζ2, except if z0 happens to be a critical point. The
equality of the angles can be traced back to the analyticity of the complex mapping function F (z).
As a consequence, the image of a tiny loop having the shape of a tiny little donkey in the z plane will
look like a tiny little donkey in the ζ plane, possibly rotated and amplified or shrunk, but definitely
looking like a donkey. This property justifies calling the mapping (7.11.1) and its inverse conformal.

7.11.1 Cauchy–Riemann equations

Since the real and imaginary parts of the the mapping function F (z) satisfy the Cauchy–Riemann
equations for an analytical complex function, we can write ∂FR/∂x = ∂FI/∂y and ∂FR/∂y =
−∂FI/∂x, where the subscripts R and I denote the real and imaginary parts. Equivalent statements
are

∂ξ

∂x
=

∂η

∂y
,

∂ξ

∂y
= −∂η

∂x
. (7.11.4)

As a consequence, ξ and η are harmonic functions of x and y,

∂2ξ

∂x2
+

∂2ξ

∂y2
= 0,

∂2η

∂x2
+

∂2η

∂y2
= 0. (7.11.5)

Using equations (7.11.4), we derive the orthogonality condition

∂χ

∂x
· ∂χ
∂y

= 0, (7.11.6)

where χ is the real position vector in the ζ plane.
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The Cauchy–Riemann equations associated with the inverse mapping function, f(ζ), take the
corresponding forms

∂x

∂ξ
=

∂y

∂η
,

∂x

∂η
= −∂y

∂ξ
. (7.11.7)

As a consequence, x and y are harmonic functions of ξ and η,

∂2x

∂ξ2
+

∂2x

∂η2
= 0,

∂2y

∂ξ2
+

∂2y

∂η2
= 0. (7.11.8)

Using equations (7.11.7), we derive the orthogonality condition

∂x

∂ξ
· ∂x
∂η

= 0, (7.11.9)

where x is the real position vector in the z plane. This condition is the cornerstone of orthogonal
grid generation by conformal mapping, which involves producing the images of lines of constant ξ
and constant η and identifying their intersections as computational nodes (e.g., [317]).

7.11.2 Elementary conformal mapping functions

It is instructive to consider elementary conformal mapping functions that find frequent application
in the theory of potential flow. An extensive discussion can be found in texts on complex analysis
(e.g., [4]).

Linear function with shift

The linear function with shift,

ζ = F (z) = az + b, (7.11.10)

multiplies the distance from the origin, |z|, by the scalar factor |a|, rotates a line connecting the
origin to a point z by an angle that is equal to the argument of a, and then shifts every point by
the complex number b. Circles in the z plane remain circles in the ζ plane. The inverse mapping
function,

z = f(ζ) =
ζ − b

a
, (7.11.11)

performs a similar transformation.

Möbius transformation

The Möbius transformation, also called the partial fractional transformation,

ζ = F (z) =
Az +B

Cz +D
, (7.11.12)
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maps the whole complex plane onto itself, where A–D are four complex constants. Circles and
straight lines in the z plane are mapped to circles or straight lines in the ζ plane, and vice versa.
When C = 0, we obtain a linear transformation with shift. The inverse transformation,

z = f(ζ) =
Dζ −B

−Cζ +A
, (7.11.13)

performs a similar function.

Exponential function

The exponential function,

ζ = F (z) = λ exp
2πz

b
, (7.11.14)

where b and λ are two real and positive constants, maps the semi-infinite horizontal strip x > 0 and
0 < y < b to the exterior a circle of radius λ centered at the origin, as shown in Figure 7.11.2(a).
The vertical side of the strip is mapped to the circle, and the two semi-infinite horizontal sides are
mapped to a semi-infinite section of the ξ axis, ξ > λ. The inverse mapping function,

z = f(ζ) =
b

2π
ln

ζ

λ
, (7.11.15)

becomes unique by introducing a branch cut along the positive ξ axis, ξ > λ, and specifying that
the argument of ζ takes values in the range [0, 2π).

The same exponential function (7.11.14) maps the rectangle confined between 0 < x < a and
0 < y < b to an annulus with inner radius λ and outer radius

μ = λ exp
2πa

b
, (7.11.16)

as shown in Figure 7.11.2(b). As the aspect ratio a/b tends to infinity, the annulus reduces to the
exterior of a disk of radius λ.

The exponential function,

ζ = F (z) = λ exp
(
− 2πz

b

)
, (7.11.17)

maps the semi-infinite horizontal strip x > 0 and 0 < y < b to a disk of radius λ centered at the
origin of the ζ plane. The left infinity of the strip is mapped to the center of the disk. The inverse
mapping function,

z = f(ζ) = − b

2π
ln

ζ

λ
, (7.11.18)

becomes unique by introducing a branch cut along the positive ξ axis, 0 < ξ < λ, and specifying
that the argument of ζ takes values in the range [0, 2π).
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Figure 7.11.2 The exponential function maps (a) a semi-infinite strip to the exterior of a circular
disk, and (b) a rectangle to an annulus.

Logarithmic function

The logarithmic function,

ζ = F (z) =
b

2π
ln

z

a
, (7.11.19)

where a and b are two real and positive constants, maps the z plane to the infinite horizontal strip
−∞ < ξ < ∞, and 0 < η < b. The mapping becomes unique by introducing a branch cut along the
positive x axis. The inverse mapping function is

z = a exp
2πζ

b
. (7.11.20)

The same function (7.11.19) maps the upper half z plane to the infinite horizontal strip−∞ < ξ < ∞,
and 0 < η < 1

2 b.

7.11.3 Gradient of a scalar

The gradient of an arbitrary function g(x, y) in the z plane or g(ξ, η) in the ζ plane is a vector with
components

∇g ≡
(∂g
∂x

,
∂g

∂y

)
, ∇̂g ≡

( ∂g
∂ξ

,
∂g

∂η

)
. (7.11.21)
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Using the chain rule, we find that

∂g

∂x
=

∂g

∂ξ

∂ξ

∂x
+

∂g

∂η

∂η

∂x
,

∂g

∂y
=

∂g

∂ξ

∂ξ

∂y
+

∂g

∂η

∂η

∂y
, (7.11.22)

which can be collected into the vector form

∇g = H · ∇̂g, (7.11.23)

where H is the Jacobian matrix,

H ≡
[

∂ξ/∂x ∂η/∂x
∂ξ/∂y ∂η/∂y

]
. (7.11.24)

Transformation metric

Using the Cauchy–Riemann equations (7.11.4), we derive an expression for the determinant of the
Jacobian matrix,

h2 ≡ det(H) =
( ∂ξ
∂x

)2

+
(∂ξ
∂y

)2

=
(∂η
∂x

)2

+
(∂η
∂y

)2

= |F ′(z)|2, (7.11.25)

where h = |F ′(z)| is the metric of the transformation. The inverse of the Jacobian matrix is

H−1 =
1

h2
HT , (7.11.26)

where the superscript T denotes the matrix transpose. We conclude that

H ·HT = h2I, (7.11.27)

where I is the identity matrix.

Gradient projection

Using (7.11.23), we find that the projection of the gradients of two arbitrary functions, g1 and g2,
at corresponding points is given by

(∇g1) · (∇g2) = (H · ∇̂g1) · (H · ∇̂g2) = ∇̂g1 · (HT ·H) · ∇̂g2 = h2 (∇̂g1) · (∇̂g2). (7.11.28)

Setting g1 = g2 = g, we find that

|∇g| = h |∇̂g|. (7.11.29)

Expression (7.11.28) reveals that, if the vectors ∇g1 and ∇g2 are orthogonal, (∇g1) · (∇g2) = 0, the

vectors ∇̂g1 and ∇̂g2 are also orthogonal, (∇̂g1) · (∇̂g2) = 0.
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7.11.4 Laplacian of a scalar

The Laplacian of an arbitrary function g in the z or ζ plane is defined as

∇2g ≡ ∇ · ∇g =
∂2g

∂x2
+

∂2g

∂y2
, ∇̂2g ≡ ∇̂ · ∇̂g =

∂2g

∂ξ2
+

∂2g

∂η2
. (7.11.30)

Working as for the gradient using the chain rule, we find that

∇2g = h2∇̂2g (7.11.31)

(see also Section A.9, Appendix A). A function g that satisfies Laplace’s equation in the xy plane,

∇2g = 0, will also satisfy Laplace’s equation in the ξη plane, ∇̂2g = 0.

Working in a similar fashion, we find that

∇4g = h4∇̂4g + 4 |F ′′(z)|2 ∇̂2g. (7.11.32)

A function g that satisfies the biharmonic equation in the xy plane, ∇4g = 0, will not necessarily
satisfy the biharmonic equation in the ξη plane, ∇̂4g �= 0.

Convection–diffusion in irrotational flow

As an application, we consider a steady temperature field, T (x, y), governed by the steady convection–
diffusion equation in a two-dimensional irrotational flow with velocity u = ∇φ,

ux
∂T

∂x
+ uy

∂T

∂y
= u · ∇T = (∇φ) · (∇T ) = κ∇2T, (7.11.33)

where κ is the thermal diffusivity. Using the preceding relations for the gradient and Laplacian, we
find that T (ξ, η) satisfies the same equation in the ξη plane,

(∇̂φ) · (∇̂T ) = κ ∇̂2T. (7.11.34)

Accordingly, a solution in the transformed plane can be used to produce a solution in the physical
plane, and vice versa, subject to appropriate boundary conditions [26].

7.11.5 Flow in the ζ plane

The complex potential of an irrotational flow in the physical xy plane, w(z) = φ+ iψ, is a function
of the corresponding complex variable, z = x + iy, where φ is the potential function and ψ is the
stream function. Since to every point in the z plane we may assign a corresponding point in the ζ
plane according to (7.11.1), we may also regard w a function of ζ. Combining (7.10.2) with (7.11.2),
we write

w(z) = w[f(ζ)] ≡ W (ζ) = Φ(ξ, η) + iΨ(ξ, η), (7.11.35)

where Φ and Ψ are two real functions of ξ and η. Because an analytic function of another analytic
function is also analytic, the functions Φ and Ψ are harmonic with respect to their arguments, that
is, they satisfy Laplace’s equation

∂2Φ

∂ξ2
+

∂2Φ

∂η2
= 0,

∂2Ψ

∂ξ2
+

∂2Ψ

∂η2
= 0. (7.11.36)

Moreover, Ψ and Ψ constitute a pair of conjugate harmonic functions.
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These properties allow us to identify Φ with the potential function and Ψ with the stream
function of a flow in the ζ plane, so that

dW

dζ
= Uξ − iUη, (7.11.37)

where U = (Uξ, Uη) is the velocity in the ζ plane. To find the relation between the magnitude and
direction of the velocity in the z plane, u, and the corresponding velocity in the ζ plane, U, we use
the chain rule to write

dW

dζ
=

dw

dz

dz

dζ
=

dw

dz
f ′(ζ), (7.11.38)

which shows that the ratio of the two complex velocities is given by

Uξ − iUη

ux − iuy
= f ′(ζ) = |f ′(ζ)| exp

(
i arg[f ′(ζ)]

)
. (7.11.39)

Equation (7.11.39) allows us to compute u from U, and vice versa, in terms of the mapping function
f(ζ). Comparing (7.11.39) with the second equation in (7.11.3), we find that differential vectors and
velocities are amplified in inverse proportion so that the flow rates across corresponding differential
line elements are the same in both planes.

7.11.6 Flow due to singularities

It is interesting to investigate the nature of the flow in the ζ plane due to a singularity in the z plane,
such as a point source or a point vortex. This can be done by expanding the harmonic potential
W (ζ) in a Taylor series about a point ζ0, which is the image of the pole of the singularity in the z
plane, z0.

In the case of a point source in the z plane, we choose a reference length, a, and write

W (ζ) = w[f(ζ)] = w(z) =
m

2π
ln

z − z0
a

=
m

2π
ln

f(ζ)− f(ζ0)

a
. (7.11.40)

Expanding f(ζ) in a Taylor series about the singular point ζ0, we find we find that

W (ζ) � m

2π
ln[f ′(ζ0)

ζ − ζ0
a

] � m

2π
ln

ζ − ζ0
a

, (7.11.41)

which shows that the flow in the ζ plane contains a point source with identical strength placed at
the image point, ζ0. An exception occurs when the point z0 happens to be a critical point of the
conformal mapping. Replacing m with −iκ, we obtain a corresponding result for a point vortex with
strength κ.

In the case of a point-source dipole with complex strength d = dx + idy, we find that

W (ζ) � − d

2π

1

f ′(ζ0)

1

ζ − ζ0
, (7.11.42)

which shows that the flow in the ζ plane contains a point-source dipole with modified strength and
orientation. Replacing d with −iλ we obtain a corresponding result for a point-vortex dipole.



7.11 Conformal mapping 597

N

L

ηn

l

y

x ξ

Figure 7.11.3 Mapping of a flow domain in the z plane to a corresponding domain in the ζ plane.
An impermeable boundary in the z plane remains impermeable in the ζ plane.

7.11.7 Transformation of boundary conditions

Consider the boundary of an irrotational flow in the z plane and the corresponding boundary of the
flow in the ζ plane computed using the conformal mapping (7.11.1). It is clear from (7.11.35) that
corresponding values of w(z) and W (ζ) are identical. Consequently, a Dirichlet boundary condition
that specifies the real or imaginary part of w(z) or W (z) is preserved after mapping.

The Neumann boundary condition remains a Neumann boundary condition but undergoes
a quantitative transformation. To see this, we express the normal unit vector in the z plane as
n = (dy/dl,−dx/dl) and apply the chain rule to obtain

n · ∇φ =
∂φ

∂x

dy

dl
− ∂φ

∂y

dx

dl
=

∂φ

∂ξ

( ∂ξ
∂x

dy

dl
− ∂ξ

∂y

dx

dl

)
+

∂φ

∂η

(∂η
∂x

dy

dl
− ∂η

∂y

dx

dl

)
, (7.11.43)

where l is the arc length around the boundary, as shown in Figure 7.11.3. Now using the Cauchy–
Riemann equations, we find that

n · ∇φ =
∂φ

∂ξ

(∂η
∂y

dy

dl
+

∂η

∂x

dx

dl

)
+

∂φ

∂η

(
− ∂ξ

∂y

dy

dl
− ∂ξ

∂y

dx

dl

)
=

∂φ

∂ξ

dη

∂l
− ∂φ

∂η

dξ

∂l
(7.11.44)

and then

n · ∇φ =
dL

dl
N · ∇̂Φ = |F ′(z)|N · ∇̂Φ, (7.11.45)

where N is the normal unit vector pointing into the flow in the ζ plane and L is the arc length
along the transformed boundary, as shown in Figure 7.11.3. Equation (7.11.45) ensures that an
impermeable boundary in the z plane where n · ∇φ = 0 remains impermeable in the ζ plane, that
is, N · ∇̂Φ = 0.

7.11.8 Streaming flow past a circular cylinder

As an application, we consider uniform flow in the z plane past a circular cylinder of radius a
centered at the origin, with arbitrary circulation around the cylinder. The corresponding complex
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Figure 7.11.4 The exterior of a circle of radius a in the z plane is mapped to the upper half-plane
using the linear fractional transformation (7.11.47). Corresponding points are shown with the same
symbol. Uniform flow past a cylinder with nonzero circulation around the cylinder in the z plane
transforms to flow due to a point-source dipole and a point vortex supplemented by their images
in the ζ plane. Streamlines for zero circulation are shown.

potential is given by (7.10.21) with zc = 0,

w(z) = U∗z + Ua
a

z
+

κ

2πi
ln

z

a
. (7.11.46)

The following linear fractional transformation and its inverse map the exterior or interior of a circle
of radius a in the z plane to the upper or lower half ζ plane, and vice versa,

ζ = F (z) = ib
z + a

z − a
, z = f(ζ) = a

ζ + ib

ζ − ib
, (7.11.47)

where b is a real positive constant, as shown in Figure 7.11.4. Infinity is mapped to the first singular
point ζ = i b, and the center of the circle is mapped to the second singular point ζ = −i b.

Substituting into (7.11.46) the inverse transformation given by the second expression in
(7.11.47), we derive the complex potential of the flow in the ζ plane,

W (ζ) = U∗a
ζ + ib

ζ − ib
+ Ua

ζ − ib

ζ + ib
+

κ

2πi
ln

ζ + ib

ζ − ib
. (7.11.48)

After a straightforward manipulation, we obtain

W (ζ) = (U∗ + U)a+ 2iab
( U∗

ζ − ib
− U

ζ + ib

)
+

κ

2πi
ln

ζ + ib

ζ − ib
. (7.11.49)

Referring to Table 7.10.1, we find that the flow in the ζ plane is represented by a point-source dipole
with strength d = −4πiabU∗ placed at the first singular point, ζ = ib, and a point vortex with
strength κ placed at the second singular point, ζ = −ib. Both singularities are accompanied by their
images with respect to the wall to satisfy the no-penetration condition.
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7.11.9 A point vortex inside or outside a circular cylinder

Consider a point vortex with strength κ located at the point ζv above a plane wall identified with
the ξ axis in the ζ plane. The corresponding complex potential consists of the potential due to the
point vortex and the potential due to its image with respect to the wall,

W (ζ) =
κ

2πi
ln

ζ − ζv
ζ − ζ∗v

. (7.11.50)

Substituting the conformal mapping function given by the first expression in (7.11.47) and rearrang-
ing, we obtain the corresponding complex potential of the flow in the z plane,

w(z) =
κ

2πi

(
ln

(z + a)(zv − a)− (z − a)(zv + a)

(z + a)(z∗v − a) + (z − a)(z∗v + a)
+ ln

z∗v − a

zv − a

)
. (7.11.51)

Simplifying the first fraction and discarding the inconsequential constant last fraction, we obtain

w(z) =
κ

2πi
ln

zv − z

zz∗v − a2
=

κ

2πi

(
ln

zv − z

z − a2/z∗v
− ln(−z∗v)

)
. (7.11.52)

Discarding the constant last term, we find that the flow consists of a primary point vortex in the z
plane and a reflected point vortex with opposite strength located at the image of the point vortex
with respect to the cylinder, in agreement with (7.10.32).

7.11.10 Applications of conformal mapping

To apply the theory of conformal mapping theory, we may consider a certain flow in the z plane
and study the corresponding flow in the ζ plane subject to a chosen mapping function ζ = F (z).
However, in a typical application, we are faced with the inverse problem where a function z = f(ζ)
that maps a domain of flow with simple geometry in the ζ plane to a physical domain of a flow with
a prescribed geometry in the z plane is required. Simple domains include the semi-infinite plane
and the interior or exterior of a circular disk, as discussed in Section 7.12. The corresponding flow
in the ζ plane should be available readily and preferably in closed form. The issue of existence and
uniqueness of the forward mapping function is addressed by the Riemann mapping theorem.

7.11.11 Riemann’s mapping theorem

Riemann’s mapping theorem guarantees that any two simply connected domains can be conformally
mapped onto one another. The reason is that any simply connected domain in the z plane can be
mapped to a unit disk centered at the origin of the ζ plane. An indirect correspondence may then
be established between the two regions in terms of the individual conformal mappings. Exceptions
are the whole plane and the whole plane minus a single point.

A three-parameter family of functions ζ = F (z) can be found that map a simply connected
domain, D, to another simply connected domain D′. To remove the three degrees of freedom, we
generalize the definition of a point in the complex plane to include infinity and choose one of the
following three sets of conditions:
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1. Stipulate that an arbitrary point, z0, inside D is mapped to the origin, ζ = 0, and specify the
direction of an infinitesimal vector starting at z0 whose image lies on the ξ axis.

2. Stipulate that an arbitrary point, z0, inside D is mapped to the origin ζ = 0, and another
arbitrary point ζ1 at the boundary of D is mapped to an arbitrary point ζ1 at the boundary
of D′.

3. Stipulate that three arbitrary points, z0, z1, and z2, at the boundary of D are mapped in the
same order to three arbitrary corresponding points ζ0, ζ1, and ζ2 at the boundary of D′.

As an example, the Möbius transformation (7.11.12) is defined by specifying the three ratios A/D,
B/D, and C/D.

Problems

7.11.1 Conformal mapping

Discuss the properties of the conformal mapping ζ = F (z) = azn, where a is a complex constant
and n is a real constant.

7.11.2 Properties of conjugate flows

Consider an open contour in the z plane and the corresponding contour in the ζ plane. Show that
the flow rate across and circulation along these contours corresponding to the complex potentials
w(z) and W (ζ) are identical.

7.11.3 A point vortex inside or outside a cylindrical surface

Assume that the function ζ = F (z) maps the interior or exterior of a simply connected domain D
enclosed by an impenetrable boundary to the interior or exterior of disk of radius a centered at the
origin. Show that the complex potential associated with a point vortex with strength κ located at
z0 is

w(z) =
κ

2πi
ln
( F (z)− F (z0)

a− F (z)F (z∗0)/a

)
. (7.11.53)

7.11.4 Green’s function in the presence of a cylinder with arbitrary cross-section

Let the function ζ = F (z) map the interior of a simply-connected domain D to a disk of radius a
centered at the origin. Show that the complex potential corresponding to the Green’s function of
Laplace’s equation in the exterior of D is

w(z) = − 1

2π
ln
( F (z)− F (z0)

a− F (z)F (z∗0)/a

)
. (7.11.54)

7.11.5 Laplacian and biharmonic operators

Prove equations (7.11.31) and (7.11.32).
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Figure 7.12.1 Mapping the exterior of an ellipse with major and minor semiaxes a and b in the z
plane to the exterior of a circle of radius λ in the ζ plane.

7.12 Applications of conformal mapping to flow past a two-dimensional body

To compute a streaming flow past a two-dimensional body with arbitrary cross-section, we map the
exterior of the body in the z plane to the exterior of a disk of radius λ centered at the origin of the
ζ plane. The flow in the physical z plane is recovered from the flow in the ζ plane using the exact
solution (7.10.21),

W (ζ) = U∗ζ + U
λ2

ζ
+

κ

2πi
ln

ζ

λ
. (7.12.1)

To ensure that the far flows in the two complex planes behave in a similar manner so that uniform
flow far from the disk in the ζ plane is uniform flow far from the body in the z plane, we require
that the mapping function, ζ = F (z), and its inverse, z = f(ζ), are linear functions far from the
body, as |z| or |ζ| tends to infinity, so that their first derivatives tend to a constant.

7.12.1 Flow past an elliptical cylinder

Consider uniform flow past an elliptical cylinder centered at the origin of the z plane with major
semiaxis equal to a and minor semiaxis equal to b, where b < a, as shown in Figure 7.12.1. The
focal length of the cylinder, c, and the dimensionless eccentricity, e, are defined as

c =
√
a2 − b2 = ae, e =

[
1−

( b
a

)2 ]1/2
. (7.12.2)

The inverse mapping function,

z = f(ζ) = ζ +
1

4

c2

ζ
, (7.12.3)

projects the exterior of a disk of radius λ = 1
2 (a + b) centered at the origin of the ζ plane to the

exterior of the ellipse in the z plane. Since f(ζ) exhibits the required linear behavior at infinity, it
is acceptable for the study of uniform flow.
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Decomposing (7.12.3) into its real and imaginary parts, we obtain the explicit coordinate
transformations

x = ξ
(
1 +

1

4

c2

|ζ|2
)
, y = η

(
1− 1

4

c2

|ζ|2
)
, (7.12.4)

where c is the focal length and |ζ|2 = ζζ∗ = ξ2 + η2. The forward transformation mapping the
exterior of the ellipse to the exterior of the disk is found by solving the quadratic equation (7.12.3)
for ζ. We note that the root with the negative sign corresponds to a point inside the ellipse and
choose the root with the positive sign to obtain

ζ = F (z) =
1

2

(
z +

√
z2 − c2

)
. (7.12.5)

The square root on the right-hand side becomes unique by introducing a branch cut along the x axis
between the two focal points, extending from −c to c.

The complex potential of the flow in the z plane is found by substituting (7.12.5) into (7.12.1)
and setting λ = 1

2 (a+ b) to obtain

w(z) =
1

2
U∗

(
z +

√
z2 − c2

)
+

1

2
U

(a+ b)2

z +
√
z2 − c2

+
κ

2πi
ln

z +
√
z2 − c2

a+ b
. (7.12.6)

When a = b, we recover the complex potential for flow past a circular cylinder of radius a.

7.12.2 Flow past a flat plate

As the aspect ratio of the ellipse decreases, b/a → 0, we obtain a plate with length 2a aligned with
the x axis. The transformation (7.12.3) reduces to

z = f(ζ) = ζ +
1

4

a2

ζ
, (7.12.7)

mapping the exterior of a disk of radius λ = 1
2 a centered at the origin of the ζ plane to the

whole complex z plane. The circular contour of the disk is mapped to the flat plate. The inverse
transformation (7.12.5) with c = a becomes

ζ = F (z) =
1

2

(
z +

√
z2 − a2

)
, (7.12.8)

where the branch cut of the square root coincides with the length of the plate. A different method
of deriving (7.12.7) is discussed in Problem 7.13.1.

Substituting (7.12.8) into (7.12.1) and setting λ = 1
2a, or else setting in (7.12.6) b = 0, provides

us with the complex potential of the flow in the z plane,

w(z) =
1

2
U∗

(
z +

√
z2 − a2

)
+

1

2
U

a2

z +
√
z2 − a2

+
κ

2πi
ln

z +
√
z2 − a2

a
. (7.12.9)
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Simplifying the first two terms on the right-hand side, we obtain

w(z) = Uxz − iUy

√
z2 − a2 +

κ

2πi
ln

z +
√
z2 − a2

a
. (7.12.10)

The velocity field is given by

ux − iuy =
dw

dz
= Ux − iUy

z√
z2 − a2

+
κ

2πi

1√
z2 − a2

. (7.12.11)

The tangential velocity on the upper or lower surfaces of the plate, indicated by a plus or
minus superscript, is

u±
x (x, y = 0)) = Ux ∓

(
Uy x+

κ

2π

) 1√
a2 − x2

(7.12.12)

for −a ≤ x ≤ a. We observe that the velocity diverges at both ends of the plate, x = ±a. The force
exerted on the plate follows from (7.10.17). Streamline patterns for several flow configurations are
shown in Figure 7.12.2.

Kutta–Joukowski condition

The Kutta–Joukowski condition requires that the circulation established around the plate is such
that the velocity is finite at the trailing edge and the two fluid streams merge smoothly above and
below the airfoil (e.g., [99]). Physically, the action of viscosity during the unsteady startup process
is such that, when the final potential flow state is established, viscous effects are significant only
insofar as to ensure that the Kutta–Joukowski condition is satisfied. Equation (7.12.12) shows that,
if the trailing edge is located at x = −a, the circulation around a flat plate necessary to satisfy the
Kutta–Joukowski condition is

κ = 2πaUy. (7.12.13)

Accordingly, when β ≡ κ/(2πaUy) = 1, the streamlines merge smoothly at the trailing edge, as
shown in Figure 7.12.2(b).

7.12.3 Joukowski’s transformation

The study of potential flow past a two-dimensional body has been motivated to a large extent by
applications in aircraft design. To investigate the performance of an aircraft, we must have available
the structure of the nearly two-dimensional potential flow around an airfoil with a specified degree
of circulation around the airfoil, including the circulation corresponding to the Kutta–Joukowski
condition. Knowledge of the potential flow allows us to compute the viscous drag force exerted on
the airfoil using the boundary-layer theory discussed in Chapter 8.

The analytical computation of potential flow past an airfoil with a specified shape is generally
intractable. Early work in aerodynamics before the advent of high-speed computers concentrated
on families of airfoil shapes generated by mapping a circle using carefully crafted transformations.
One important family of shapes is generated by the Joukowski transformation,

z = f(ζ) = ζ +
σ2

ζ
, (7.12.14)
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Figure 7.12.2 (a, b) Streaming flow past a flat plate with incident velocity Ux = −Uy and circulation
parameter (a) β ≡ κ/(2πaUy) = 0 or (b) 1 (Kutta–Joukowski value). (c, d) Streamline patterns
for incident velocity Ux = 0 and (c) β = 0 or (d) 1 (Kutta–Joukowski value).

where σ is a specified length, as shown in Figure 7.12.3. It will be noted that (7.12.14) includes as
special cases (7.12.7) and (7.12.3), corresponding to the flat plate and the ellipse. An alternative
version of (7.12.14) is

z − 2σ

z + 2σ
=
(ζ − σ

ζ + σ

)2

. (7.12.15)

The critical points of the Joukowski transformation where df/dζ = 0 are located at ζ = ±σ,
corresponding to z = ±2σ. A circle centered at the origin of the ζ plane and passing through both
singular points is mapped to a flat plate with half length equal to a = 2σ in the z plane. A smooth
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Figure 7.12.3 Mapping with the Joukowski transformation. The bold circle in the ξη plane transforms
into a plate in the xy plane, and the dashed circle transforms into an airfoil.

curve in the ζ plane passing through the first singular point, ζ = −σ, and enclosing the second
singular point, ζ = σ, is mapped to a cusped curve in the z plane. The cusp is located at the image
of the first singular point, as shown in Figure 7.12.3.

In engineering practice, Joukowski’s transformation is used to generate airfoils with a rounded
leading edge and a cusped trailing edge. The airfoils are the images of circles in the ζ plane passing
through the first singular point, ζ = −σ, and enclosing the second singular point, ζ = σ, as shown
in Figure 7.12.3. When the center of the circle lies on the ξ axis, the airfoil is symmetric about
the x axis. When the center of the circle is located in the first quadrant, the airfoil is downward
cambered. A generalization of the Joukowski transformation is discussed in Problem 7.12.1. Other
generalizations describing multi-parameter airfoils are available (e.g., [293], pp. 72–79).

7.12.4 Arbitrary shapes

Next, we address the more challenging problem of computing a function z = f(ζ) that maps the
exterior of a circle with a specified radius λ in the ζ plane to the exterior of a body with arbitrary
shape in the z plane. The mapping function for the ellipse shown in (7.12.3) and the mapping
function of the Joukowski airfoil shown in (7.12.14) appear as truncated Laurent series. For a body
with general shape, we expect the full infinite expansion,

z = f(ζ) = ζ + a(0) +
∞∑

n=1

a(n)
λn

ζn
, (7.12.16)

where a(n) are complex coefficients determined by the body shape and orientation. The linear term
on the right-hand side of (7.12.16) satisfies the requirement that df/dζ tends to unity as ζ tends to
infinity. The constant a(0) determines the relative position of the body in the z plane and can be set
to zero. A finite set of subsequent coefficients can be computed by stipulating that a collection of
points around the body contour are mapped to a corresponding collection of points on the circular
contour in the ζ plane. However, the precise location of the image points must be computed as a
part of the solution.
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Alternatively, nonstandard body shapes can be generated by keeping selected terms in the sum
on the right-hand side of (7.12.16). For example, to obtain rounded squares, we set all coefficients
to zero except for the third coefficient, a(3) < 0, according to the Lewis transformation. An infinite
sum that yields a perfect square is available (e.g., [210]).

Numerical methods

To formalize a numerical method, we map the exterior of a smooth body to the exterior of the
disk of radius λ centered at the origin of the ζ plane. The position around the circular contour is
ζ = λ exp(iϕ), where ϕ is the polar angle and i is the imaginary unit. Equation (7.12.16) provides
us with a Fourier expansion,

z(ϕ) = λeiϕ + a(0) +
∞∑

n=1

a(n)e−niϕ. (7.12.17)

Separating the real part (R) from the imaginary part (I), we obtain

x(ϕ) = a
(0)
R + (λ+ a

(1)
R ) cosϕ+ a

(1)
I sinϕ+

∞∑
n=2

(
a
(n)
R cos(nϕ) + a

(n)
I sin(nϕ)

)
(7.12.18)

and

y(ϕ) = a
(0)
I + a

(1)
I cosϕ+ (λ− a

(1)
R ) sinϕ+

∞∑
n=2

(
a
(n)
I cos(nϕ)− a

(n)
R sin(nϕ)

)
. (7.12.19)

Using the Fourier orthogonality properties, we find that

λ =
1

2π

∫ 2π

0

(
x(ϕ) cosϕ+ y(ϕ) sinϕ

)
dϕ, (7.12.20)

and

a
(n)
R =

1

2π

∫ 2π

0

[
x(ϕ) cos(nϕ)− y(ϕ) sin(nϕ)

]
dϕ,

a
(n)
I =

1

2π

∫ 2π

0

[
x(ϕ) sin(nϕ) + y(ϕ) cos(nϕ)

]
dϕ (7.12.21)

for n ≥ 0. The numerical method involves the following steps:

1. Trace the contour of the body with N points distributed in the counterclockwise direction,
located at (xi, yi), for i = 1, . . . , N .

2. Assign values for ϕ to the marker points, ϕi.

3. Reconstruct the functions x(ϕ) and y(ϕ) by cubic-spline interpolation.

4. Compute λ and the coefficients a(n) for n = 0, 1, . . . , nmax by performing the integration in
(7.12.20) and (7.12.21) analytically or using the trapezoidal rule implemented by a fast Fourier
transform, where nmax is a specified truncation level (e.g., [317]).
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Figure 7.12.4 Grids of nodes generated by mapping the exterior of a body described by a chain a
marker points, indicated by circles, to the exterior of a disk.

5. Compute the right-hand side of expressions (7.12.18) and (7.12.19), and formulate the differ-
ences between the specified and computed coordinates, Δxi ≡ xi−x(ϕi) and Δyi ≡ yi−y(ϕi).

6. Adjust the values ϕi to either drive the squares of the distances |Δzi|2 to zero or minimize the

positive functional
∑N

i=1 |Δzi|2, using, for example, Newton’s method.

Grids of points generated using the minimization method for truncation level nmax = N/2 are
shown in Figure 7.12.4. The radial lines pass through a chain of marker points distributed around
the body. The difference between the specified and reconstructed body contour diminishes rapidly
as more terms are retained in the expansion.

Schwarz–Christoffel and other transformations

The Schwarz–Christoffel transformation allows us to map the exterior of an arbitrary body with
polygonal shape in the z plane to the upper half ζ plane or exterior of a circle in the ζ plane. The
mapping function is known in differential or integral flow in terms of a set of scalar coefficients. The
particular form of the mapping function and the computation of the pertinent coefficients is discussed
in Section 7.13. Generalizations of the Schwarz–Christoffel transformation to polygons with rounded
edges, polygons consisting of circular arcs, and bodies with smooth shapes are available.

Another way of obtaining the mapping function is by mapping the exterior of a body of
interest to the interior of an auxiliary body using the inverse transformation ζ = 1/z, where the
origin lies inside the body. At the second stage, we map the interior of the auxiliary body to the
upper half-plane or interior of a disk. However, even if the original body has a polygonal shape, the
auxiliary body will have a curved shape, which precludes the application of specialized methods for
polygons. Other methods of computing a function that maps the interior of a body to a disk involve
solving an integral equation over the body contour and developing a variational formulation (e.g.,
[65]).
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Orthogonal grid generation

In Section 7.1, we mentioned that the mapping function, z = f(ζ), is useful for orthogonal grid
generation. The function (7.12.16) maps the exterior of a circular disk with radius λ to the exterior
of a body with arbitrary geometry. The exterior of the disk can be mapped further to a semi-infinite
horizontal strip in the σ plane, σR > σ0 and 0 < σI < 2π, using the mapping function

ζ = λ exp(σ − σ0), (7.12.22)

where σ0 is a specified threshold. The left end of the strip, σR = σ0, is mapped to the contour of the
body. An orthogonal grid can be generated by mapping lines of constant σR or constant σI inside
the strip to the physical z plane.

For example, substituting (7.12.22) into the inverse mapping function (7.12.3) for an ellipse
with major semiaxis a and minor semiaxis b, we obtain

z = a cosh(σ − σ0) + b sinh(σ − σ0). (7.12.23)

It is convenient to set σ0 = atanh(b/a) and obtain the simplified expression z = A coshσ, where

A = a coshσ0 − b sinhσ0 =
c2

a
coshσ0, (7.12.24)

and c is the focal length of the ellipse. The real and imaginary parts of σ provide us with elliptic
coordinates.

Problems

7.12.1 Bipolar coordinates

Plane bipolar coordinates, (ξ, η), are defined by the conformal mapping function

x+ i y = Ai cot
π − η + i ξ

2
, (7.12.25)

where A is a real constant. Decomposing the mapping function into its real and imaginary parts,
we obtain

x = A
sinh ξ

cosh ξ + cos η
, y = A

sin η

cosh ξ + cos η
. (7.12.26)

Assume that the dimensionless variable ξ varies in the range ξ1 ≤ ξ ≤ ξ2, and the dimensionless
variable η varies in the range [0, 2π).

(a) Show that the lower limit, ξ = ξ1 < 0, corresponds to the surface of a left circle, the upper limit,
ξ = ξ2 > 0, corresponds to the surface of a right circle, and the value ξ = 0 corresponds to the y
axis.

(b) Show that the center of the left circle is located at x = xc1 ≡ A coth ξ1 and y = 0, the center
of the right circle is located at x = xc2 ≡ A coth ξ2 and y = 0, the radius of the left circle is
a1 = −A/ sinh ξ1, and the radius of the right circle is a2 = A/ sinh ξ2.



7.13 The Schwarz–Christoffel transformation 609

(c) Confirm that

A2 = y2c1 − a21 = y2c2 − a22 = (yc2 − 2d)2 − a21 = (yc1 + 2d)2 − a22, (7.12.27)

where 2d ≡ xc2 − xc1 = A (coth ξ2 − coth ξ1).

7.12.2 Generalized Joukowski transformation

The following generalized Joukowski transformation prevents the formation of a cuspidal trailing
edge,

z − 2σ

z + 2σ
=
(ζ − σ

ζ + σ

)q

, (7.12.28)

where 1 < q < 2. Demonstrate that a circle centered at the origin of the ζ plane and passing through
both singular points, ζ = ±σ transforms into two circular arcs passing through the points z = ±qσ.

Computer Problem

7.12.3 Joukowski airfoils

(a) Generate a family of airfoils using the Joukowski transformation. The airfoils should be the
images of circles passing through the first singular point, ζ = −σ, and enclosing the second singular
point ζ = σ. The center of the circle should be located at the ξ axis at ξ/σ = 1.0, 1.2, 1.5, and 2.0.

(b) Repeat (a) with the center of the circle located at ξ/σ = 1.0, 1.2, 1.5, 2.0, and η/σ = 0.2.

7.13 The Schwarz–Christoffel transformation

The Schwarz–Christoffel transformation maps an interior or exterior domain bounded by straight
segments, semi-infinite straight lines, or infinite straight lines, to a half-plane, or to the interior or
exterior of a circular disk. The pertinent mapping functions are available in integral form in terms
of a set of a priori unknown scalar coefficients. Computing the transformation is reduced to calcu-
lating these coefficients, which can be done analytically for simple shapes or numerically for more
complicated shapes. Generalized Schwarz–Christoffel transformations that map domains bounded
by smooth contours are available. In this section, we present the various forms of the Schwarz–
Christoffel transformation for polygonal and smooth domains and illustrate the computation of the
mapping parameters by analytical and numerical methods.

7.13.1 Mapping a polygon to a semi-infinite plane

One version of the Schwarz–Christoffel transformation maps the interior of anN -sided closed polygon
in the z plane to the upper half ζ plane, as shown in Figure 7.13.1. To generate the transformation, we
number the vertices around the polygon sequentially in the counterclockwise direction and compute
the exterior angles subtended between the extension of each side and the next side, γi, as shown in
Figure 7.13.1. By convention, −π < γi < π, where γi is positive when the ith corner is projecting
into the exterior of the polygon, and negative otherwise. All angles γi are positive for a convex
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Figure 7.13.1 One version of the Schwarz–Christoffel transformation maps a polygon in the z plane
to the upper half ζ plane.

polygon and all angles γi are equal for a regular polygon. In all cases, the sum of the angles satisfies
the geometrical constraint

N∑
i=1

γi = 2π, (7.13.1)

where positive and negative angles may appear inside the sum. For example, in the case of a square,
N = 4 and γi = 1

2
π for i = 1–4. The Schwarz–Christoffel transformation provides us with the

inverse mapping function in the differential form

dz

dζ
= c

N∏
i=1

1

(ζ − ξi)γi/π
, (7.13.2)

where c is a complex constant and ξn are the images of the vertices of the polygon along the real ξ
axis of the ζ plane. The associated integral form is

z = f(ζ) = z0 + c

∫ ζ

ζ0

[ N∏
i=1

1

(�− ξi)γi/π

]
d�, (7.13.3)

where z0 and ζ0 are a pair of corresponding points and � is an integration variable. The complex
powers in (7.13.2) and (7.13.3) are computed best by setting, for example,

(�− ξi)
γi/π = exp

[ γi
π

ln(�− ξi)
]
, (7.13.4)

where the branch cut of the logarithmic function is the negative real axis. Given the polygon shape,
the problem is reduced to specifying or computing the images of the vertices, ξi, and the values of
the three constants, c, z0, and ζ0. Riemann’s mapping theorem discussed in Section 7.11.10 allows
us to arbitrarily choose the images of three vertices, ξi, and compute the rest of the vertices so as
to map the polygon to the upper half-plane. It is permissible to set ξ1 = −∞ or ξN = ∞, in which
case the corresponding factors in the product in (7.13.2) or (7.13.3) do not appear.
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Figure 7.13.2 Mapping a triangle in the z plane to the upper half ζ plane. The dot-dashed line is
the image of the η axis. Corresponding streamlines are shown as dashed lines.

Triangle

In the simplest application, we map the interior of a triangle with vertices at the points z1 = b+ i d,
z2 = 0, and z3 = a, to the upper half ζ plane, where a, b, and d are three real positive constants,
as illustrated in Figure 7.13.2. The Riemann mapping theorem allows us to arbitrarily select the
images of all three vertices. It is convenient to set ξ1 = −∞, ξ2 = 0, and ξ3 = 1. Applying (7.13.3)
with z0 = 0 and ζ0 = 0, we find that

z = f(ζ) = c

∫ ζ

0

d�

�γ2/π(�− 1)γ3/π
. (7.13.5)

Unfortunately, it is not possible to perform the integration analytically for an arbitrary triangular
shape. To evaluate the constant c, we require that f(1) = a and obtain

a = c

∫ 1

0

d�

�γ2/π(�− 1)γ3/π
=

c

(−1)γ3/π

Γ(1− γ2/π) Γ(1− γ3/π)

Γ(2− γ2/π − γ3/π)
. (7.13.6)

The values of the gamma function, Γ, can be read from tables or approximated by series expansions
(e.g., [2], p. 255). Substituting (7.13.6) into (7.13.5), we obtain

z = f(ζ) = a
Γ(2− γ2/π − γ3/π)

Γ(1− γ2/π) Γ(1− γ3/π)

∫ ζ

0

d�

�γ2/π(1− �)γ3/π
. (7.13.7)

The η axis is mapped to the dot-dashed line connecting the second to the first vertex in the xy
plane, as shown in Figure 7.13.2.

To compute the singular integral on the right-hand side of (7.13.7), denoted by I, we subtract
out the singularity at the origin by restating the integral as

I = J +

∫ ζ

0

d�

�γ2/π
= J +

1

1− γ2/π
ζ1−γ2/π, (7.13.8)
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where

J ≡
∫ ζ

0

1

�γ2/π

[ 1

(1− �)γ3/π
− 1

]
d�. (7.13.9)

The integral on the right-hand side of (7.13.9) can be computed by standard numerical methods, as
discussed in Section B.6, Appendix B.

Uniform flow along the ξ axis in the ζ plane corresponds to flow due to a point-source dipole
placed at the vertex z1 in the z plane, and oriented perpendicular to the bisector of the corresponding
triangle angle. A streamline is illustrated with the dashed lines in Figure 7.13.2.

Semi-infinite strip

As the elevation of the first vertex, d, tends to infinity while b lies between 0 and a, the triangle
becomes a vertical semi-infinite strip with width a. Setting γ2 = γ3 = 1

2π, we obtain

z = f(ζ) = c

∫ ζ

0

d�

�1/2(�− 1)1/2
= c

∫ 2ζ−1

−1

dλ

(λ2 − 1)1/2
= −i c [ arcsin(2ζ − 1) +

π

2
], (7.13.10)

where λ = 2�− 1 and � = 1
2 (λ+ 1). Requiring that f(1) = a, we find that c = ia/π and obtain he

mapping function

z = f(ζ) =
a

π
[ arcsin(2ζ − 1) +

π

2
]. (7.13.11)

The forward mapping function follows by inversion,

ζ = F (z) =
1

2

(
1− cos

πz

a

)
. (7.13.12)

Uniform flow along the ξ axis in the ζ plane corresponds to flow descending along the left vertical
side of the strip and leaving up along the right side of the strip in the z plane (Problem 7.13.4).

Rectangle

Next, we map the interior of a rectangle with vertices at the points

z1 = −a+ i b, z2 = −a, z3 = a, z4 = a+ i b, (7.13.13)

to the upper half ζ plane, as shown in Figure 7.13.3. Motivated by the symmetry of the rectangle,
we specify that ξ2 = −1 and ξ3 = 1. Requiring that the origin of the z plane is mapped to the origin
of the ζ plane, we set z0 = 0 and ζ0 = 0. Anticipating the symmetry of the solution, we set ξ1 = −λ
and ξ4 = λ, where λ > 1 is a real constant to be computed as part of the solution. Substituting
these values along with γi = π/2 into (7.13.3) for i = 1–4, we obtain the transformation

z = f(ζ) = c

∫ ζ

0

d�

(�2 − 1)1/2(�2 − λ2)1/2
. (7.13.14)
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Figure 7.13.3 Mapping a rectangle in the z plane to the upper half ζ plane. Corresponding labels of
the four vertices are shown.

To compute the values of the two constants c and λ, we require that, as we move along the ξ axis
from the origin up to ξ3 and then up to ξ4, we find ourselves at the corresponding vertices z3 and
z4. The first condition yields the real equation

c

∫ 1

0

dξ

(1− �2)1/2(λ2 − ξ2)1/2
= a, (7.13.15)

which shows that c is real. The second condition yields the real equation

c

∫ λ

1

dξ

(ξ2 − 1)1/2(λ2 − ξ2)1/2
= −b. (7.13.16)

Combining these equations to eliminate c, we obtain a nonlinear equation,

Q(λ) ≡
∫ λ

1

dξ

(ξ2 − 1)1/2(λ2 − ξ2)1/2
+

b

a

∫ 1

0

dξ

(1− ξ2)1/2(λ2 − ξ2)1/2
= 0. (7.13.17)

The solution can be found using standard numerical methods, such as Newton’s method discussed
in Section B.3, Appendix B.

Certain aspects of the computation require special attention. The integral in (7.13.15) can be
written as ∫ 1

0

dξ

(1− ξ2)1/2(λ2 − ξ2)1/2
=

1

λ
F
( 1
λ

)
, (7.13.18)

where

F (k) ≡
∫ 1

0

dξ

(1− ξ2)1/2(1− k2ξ2)1/2
=

∫ π/2

0

du√
1− k2 sin2 u

(7.13.19)

is the complete elliptic integral of the first kind discussed in Section 2.12, 0 < k < 1, and ξ = sinu.
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Figure 7.13.4 Mapping of a semi-infinite domain above a wall with (a) a forward or (b) backward
facing step to the upper half ζ plane shown in (c).

To compute the singular integral on the left-hand side of (7.13.16), denoted by I, we subtract
out the singularities on either end of the integration domain by restating the integral into the form

I = J +
1

(λ2 − 1)1/2

[ ∫ λ

1

dξ

(ξ2 − 1)1/2
+

∫ λ

1

dξ

(λ2 − ξ2)1/2

]
, (7.13.20)

where

J ≡
∫ λ

1

( 1

(ξ2 − 1)1/2(λ2 − ξ2)1/2
− 1

(λ2 − 1)1/2
[ 1

(ξ2 − 1)1/2
+

1

(λ2 − ξ2)1/2
] )

dξ. (7.13.21)

The J integral can be computed by standard numerical methods, as discussed in Section B.6,
Appendix B. The two improper integrals enclosed by the square brackets on the right-hand side of
(7.13.20) can be computed by elementary analytical methods.

Uniform flow along the ξ axis in the ζ plane corresponds to flow due to a horizontal point-
source dipole located at the midpoint of the upper side of the rectangle in the z plane, x = 0, y = 0,
as shown in Figure 7.13.3.

Semi-infinite region above a step

The Schwarz–Christoffel transformation can be extended to include domains that are bounded by
generalized polygons with one or two vertices at infinity. One example is the semi-infinite strip dis-
cussed earlier in this section. A second example is the corner-like domain shown in Figure 7.10.1(a),
where ζ = Azα/π, α = π − γ is the internal turning angle, γ is the external turning angle according
to the conventions of the Schwarz-Christoffel transformation, and A is a constant.

A third example is the semi-infinite region above a wall with a forward facing step whose
boundary can be regarded as a generalized polygon with one vertex at infinity, as shown in Figure
7.13.4(a). Mapping the vertex at infinity in the z plane to the positive infinity of the ξ axis, specifying
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that ξ1 = 0 and ξ2 = 1, and setting γ1 = 1
2
π and γ2 = −1

2
π, we obtain the transformation

z = f(ζ) = c

∫ ζ

0

(�− 1

�

)1/2

d� = 2c

∫ √
ζ

0

√
ω2 − 1 dω, (7.13.22)

where ω =
√
�. Performing the integration, we find that

z = f(ζ) = c
[
ω
√
ω2 − 1− ln(ω +

√
ω2 − 1)

]√ζ

0
, (7.13.23)

and then

z = f(ζ) = c
[√

ζ(ζ − 1)− ln(
√

ζ +
√
ζ − 1) + i

π

2

]
. (7.13.24)

The constant c is determined by requiring that f(1) = ia, yielding c = 2a/π.

Backward facing step

In the case of a backward facing step shown in Figure 7.13.4(b), we specify that ξ1 = 0 and ξ2 = 1,
and set γ1 = − 1

2
π and γ2 = 1

2
π, to obtain the transformation

z = f(ζ) = c

∫ ζ

0

( �

�− 1

)1/2

d� = 2c

∫ √
ζ−1

0

√
ω2 + 1 dω, (7.13.25)

where ω =
√
�− 1. Performing the integration, we find that

z = f(ζ) = c
[
ω
√
ω2 + 1 + ln(ω +

√
ω2 + 1)

]√ζ−1

i
, (7.13.26)

and then

z = f(ζ) = c
[√

ζ(ζ − 1) + ln(
√

ζ +
√
ζ − 1)− i

π

2

]
. (7.13.27)

The constant c is determined by requiring that f(1) = −ia, yielding c = 2a/π.

Angles of generalized polygons

The angle γi corresponding to the vertex of a generalized polygon located at infinity is equal to
2π− θ, where θ is the external angle formed by the intersection of the two corresponding sides when
they are extended back from infinity.

For example, in the case of the generalized polygon with two collapsed sides and one vertex
at infinity illustrated in Figure 7.13.5,

γ1 =
π

2
, γ2 = 2π − γ3 =

4π

3
, γ3 =

2π

3
, γ4 =

π

2
, γ5 = −π. (7.13.28)

Note that the angle constraint (7.13.1) is satisfied.
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Figure 7.13.5 Illustration of a generalized polygon with two sides collapsed and one vertex at infinity.

Channel-like domain

Consider an infinite channel-like domain defined by N vertices, as shown in Figure 7.13.6. The left
aperture angle defined in this figure, γL, is related to the vertex angles α1 and α2 by

α1 + α2 = π + γL. (7.13.29)

For example, when α1 = 1
2π and α2 = 1

2π, γL = 0. The right aperture angle, γR, is related to the
corresponding vertex angles β1 and β2 by

β1 + β2 = π + γR. (7.13.30)

For example, when β1 = 1
2
π and α2 = 0, γR = 1

2
π. The identity

α1 + α2 + β1 + β2 +
N∑
i=1

γi = 2π (7.13.31)

requires that

γL + γR +

N∑
i=1

γi = 0, (7.13.32)

where the angles γi are defined in Figure 7.13.6.

The Schwartz–Christoffel transformation mapping the channel to the upper half ζ plane is
given by the differential form

dz

dζ
=

c

ζ1+γL/π

N∏
i=1

1

(ζ − ξi)γi/π
, (7.13.33)

where the left infinity is mapped to the origin of the ζ plane and the right infinity is mapped to the
infinity of the ζ plane. For example, in the case of a channel confined between two parallel horizontal
walls, we set N = 2, γL = 0, γ1 = 0, and γ2 = 0, yielding dz/dζ = 1/ζ. Integrating, we obtain
z = c ln(ζ/ζ0), where c and ζ0 are two constants.
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Figure 7.13.6 A channel-like domain with two vertices at infinity can be mapped to the upper half ζ
plane and then to an infinite strip in the σ plane.

The upper half ζ plane can be subsequently mapped to a horizontal strip in the complex,
σ = σR + iσI plane, −∞ < σR < ∞, 0 < σI < h, as shown in Figure 7.13.6. The mapping is
mediated by the logarithmic function and its inverse,

σ =
h

π
ln

ζ

a
, ζ = a exp

πσ

h
, (7.13.34)

where a is a positive constant [129]. Making substitutions into (7.13.33), we find that

dz

dσ
= � exp

(
− γLσ

h

) N∏
i=1

[
exp

π(σ − σi)

h
− 1

]−γi/π

, (7.13.35)
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where � is a new constant. Rearranging the right-hand side, we obtain

dz

dσ
= � exp

(
− γLσ

h

) N∏
i=1

[
exp

−γi(σ − σi)

2h

]
×

N∏
i=1

[
sinh

π(σ − σi)

2h

]−γi/π

. (7.13.36)

Using (7.13.32), we finally obtain

dz

dσ
= q exp

[
(γL − γR)

σ

h

] N∏
i=1

[
sinh

π(σ − σi)

2h

]−γi/π

, (7.13.37)

where q is a new constant. We can separate the lower from the upper wall vertices to obtain

dz

dσ
= p exp

[
(γL − γR)

σ

h

] K∏
i=1

[
sinh

π(σ − σi)

2h

]−γi/π
N∏

i=K+1

[
cosh

π(σ − σi + ih)

2h

]−γi/π

, (7.13.38)

where p is a new constant. In the case of a channel with symmetric extensions, γL = γR, the
exponential factor in front of the products on the right-hand side does not appear. In the case of a
channel with a flat top wall, the second product on the right-hand side of (7.13.38) does not appear.

In the case of a channel whose upper and lower walls are repeated along the x axis with period
L, we obtain [130]

dz

dσ
= p

∞∏
m=−∞

( K∏
i=1

[
sinh

π(σ − σi −mL)

2h

]−γi/π
N∏

i=K+1

[
cosh

π(σ − σi + ih−mL)

2h

]−γi/π)
. (7.13.39)

In practice, accurate results can be obtained even when the product is truncated at small values
of m. In the case of a channel with a flat top wall, the second product on the right-hand side of
(7.13.39) does not appear.

7.13.2 Mapping a polygon to the unit disk

In certain applications, it is desirable to map the interior of a polygon in the z plane to a unit disk
centered at the origin of the complex τ plane. This can be done by first mapping the unit disk in
the τ plane to the upper half ζ plane, and vice versa, using a linear fractional transformation and
its inverse,

ζ = W(τ) = iμ
1 + τ

1− τ
, τ = W−1(ζ) =

ζ − iμ

ζ + iμ
, (7.13.40)

where μ is a real positive constant, as illustrated in Figure 7.13.7. The center of the disk is mapped
to the point ζ = iμ. The origin of the ζ plane is mapped to the leftmost point of the unit circle,
τ = −1. In the second stage, the upper half-plane is mapped to the interior of the polygon.

Substituting the first expression in (7.13.40) into the right-hand side of (7.13.3), we obtain
the required mapping function

z = f(ζ) = f [W(τ)] ≡ q(τ) = z0 + 2iμc

∫ τ

τ0

N∏
i=1

[ (
iμ

1 + ϑ

1− ϑ
− ξi

)−γi/π ] dϑ

(1− ϑ)2
. (7.13.41)
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Figure 7.13.7 Mapping a polygon in the z plane to a unit disk centered at the origin of the τ plane.

Rearranging and taking into account (7.13.1) to simplify the integrand, we obtain

z = q(τ) = z0 + d

∫ τ

τ0

N∏
i=1

[ 1

(ϑ− τi)γi/π

]
dϑ, (7.13.42)

where d is a new constant. The image points, τi = (ξi− iμ)/(ξi+iμ) for i = 1, . . . , N , are distributed
around the unit circle in the τ plane. We can place ξ1 or ξN at infinity to obtain, respectively, τ1 = 1
or τN = 1. Although the corresponding multiplier does not appear in (7.13.3), it must be included
inside the product in (7.13.42). It will be noted that the disk transformation (7.13.42) is identical
in form to the semi-infinite plane transformation (7.13.3). The only difference is that the images,
τi, are distributed around the unit circle in the counterclockwise fashion instead of the real ξ axis.

Regular polygons

In the case of a regular N -sided polygon centered at the origin of the z plane, z0 = 0, we set τ0 = 0,
γi = 2π/N , and choose

τi = exp
(
2πi

i− 1

N

)
(7.13.43)

for i = 1, . . . , N , so that the vertices are distributed uniformly around the unit circle with τ1 = 1.
The transformation (7.13.42) with z0 = 0 and τ0 = 0 becomes

z = q(τ) = d

∫ τ

0

N∏
i=1

[
ϑ− exp

(
2πi

i− 1

N

) ]−2/N

dϑ. (7.13.44)

The product inside the integral is equivalent to a simple polynomial, τi,

N∏
i=1

[
ϑ− exp

(
2πi

i− 1

N

) ]
= ϑN − 1, (7.13.45)
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Figure 7.13.8 Corresponding grids generated by mapping a disk of unit radius in the τ plane to a
heptagon of radius a in the z plane.

yielding

z = q(τ) = A

∫ τ

0

dϑ

(1− ϑN )2/N
, (7.13.46)

where A is a new constant computed by requiring q(1) = a, and a is the radius of the polygon.
Performing the integration with respect to ϑ, we obtain an inconvenient expression in terms of the
Gauss hypergeometric function. Although an approximate Taylor series expansion is available [225],
in practice, it is expedient to compute the mapping function by numerical integration. Corresponding
grids generated by mapping the disk to a heptagon are shown in Figure 7.13.8.

Fractal shapes

Polygonal shapes can be generated by distributing a specified number of images τi around the unit
disk and specifying the corresponding angles γi in the physical z plane, subject to the restriction
imposed by (7.13.1). Fractal contours can be generated in the limit as the number of vertices tends
to infinity [344].

7.13.3 Mapping the exterior of a polygon

Thus far, we have discussed mapping the interior of a polygon to the upper half-plane or unit disk.
Corresponding transformations are available for mapping the exterior of a polygon.

Mapping to the unit disk

To map the exterior of a polygon in the z plane to the unit disk in the τ plane, we regard the
exterior of the polygon as a doubly connected domain bounded by the polygon of interest and
another auxiliary polygon of large size extending to infinity. The two polygons are connected by
a branch cut, as shown in Figure 7.13.9. We number the vertices of the inner polygon of interest
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Figure 7.13.9 Mapping the exterior of a polygon to the interior or exterior of a unit disk in the τ
complex plane.

sequentially in the clockwise direction, and compute the vertex angles, γi, where

N∑
i=1

γi = −2π. (7.13.47)

For the configuration shown in Figure 7.13.9, γ1 > 0 and γ2 < 0. The vertices of the exterior
auxiliary polygon are mapped to the origin of the τ plane, so that the corresponding images are
zero, τj = 0, and the sum of the corresponding angles satisfies

∑
j γj = 2π.

Applying (7.13.2) for the union of the vertices of the outer and inner polygons with the
aforementioned conventions, we obtain the transformation

z = q(τ) = z0 + d

∫ τ

τ0

N∏
i=1

[ 1

(ϑ− τi)γi/π

] dϑ
ϑ2

, (7.13.48)

where z0 and τ0 is an arbitrary pair of corresponding points and d is a complex constant. The image
points, τi, are distributed in the counterclockwise direction around the unit disk centered at the
origin of the τ complex plane, as shown in Figure 7.13.10 ([276], p. 193).

Regular polygons

In the case of a regular N -sided polygon centered at the origin of the z plane, we set γi = −2π/N for
i = 1, . . . , N , and select the images shown in (7.13.43) so that the vertices are distributed uniformly
around the unit circle with τ1 = 1. The transformation (7.13.48) reduces to

z = q(τ) = z0 + d

∫ τ

τ0

(ϑN − 1)2/N
dϑ

ϑ2
. (7.13.49)

The power (ϑN − 1)2/N is computed best after the polynomial ϑN − 1 has been factorized into a
product of monomials involving the Nth roots of unity.
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Figure 7.13.10 Grids generated by mapping the exterior of the unit circle to the exterior of an equi-
lateral triangle, square, or regular pentagon.

Mapping to the exterior of the unit circle

To map the exterior of a polygon in the z plane to the exterior of a unit disk in the ζ plane, we
substitute into (7.13.48) ζ → 1/ζ and obtain an identical expression. The image points, τi, are
distributed in the clockwise direction around the unit disk centered at the origin of the τ complex
plane, as shown in Figure 7.13.9. Grids generated by mapping the exterior of the unit circle truncated
at a certain radial threshold to the exterior of a triangle, square, or pentagon are shown in Figure
7.13.10.

Mapping to the upper half-plane

Substituting into (7.13.48) the second transformation in (7.13.40), τ = W−1(ζ), we obtain a function
that maps the exterior of a polygon in the z plane to the upper half ζ plane,

z = f(ζ) = z0 + c

∫ ζ

ζ0

N∏
i=1

[ 1

(�− ξi)γi/π

] d�

(�+ iμ)2(�− iμ)2
(7.13.50)

([65], p. 153). The computation of the unknown parameters is analogous to that for the correspond-
ing mapping of the interior of a polygon previously discussed.

7.13.4 Periodic domains

Consider a semi-infinite domain bounded by a periodic polygonal line consisting of N periodically
repeated vertices, as shown in Figure 7.13.11. We will map each period of the domain into a vertical
semi-infinite strip with width λ bounded by the ξ axis in the ζ plane. As a preliminary, we define
the turning angles, γi, satisfying

N∑
i=1

γi = 0, (7.13.51)

where −π < γi < π. Positive angles correspond to counterclockwise rotation and negative angles
correspond to clockwise rotation.
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Figure 7.13.11 Mapping a semi-infinite domain bounded by a periodic polygonal line to the upper
half-plane.

Modifying the Schwartz–Christoffel transformation (7.13.2) to account for all vertex images,
we obtain the inverse mapping function

dz

dζ
= c

N∏
i=1

( ∞∏
k=−∞

1

(ζ + kλ− ξi)

)γi/π

= c
N∏
i=1

[
(ζ − ξi)

∞∏
k=1

[
(ζ − ξi)

2 − k2λ2)
]]−γi/π

. (7.13.52)

Further rearrangement yields

dz

dζ
= cλ

N∏
i=1

[ζ − ξi
λ

∞∏
k=1

[
1− (ζ − ξi)

2

k2λ2

]]−γi/π

. (7.13.53)

Next, we introduce the Euler product expansion of the sine function,

sin(πw) = πw

∞∏
k=1

(
1− w2

k2

)
(7.13.54)

and substitute w = (ζ − ξi)/λ to obtain

dz

dζ
= d

N∏
i=1

[
sin

(
π
ζ − ξi
λ

)]−γi/π

, (7.13.55)

where d = cλ/π. Requiring that the first point, z1, be mapped to the origin of the ζ plane, ξ1 = 0,
and integrating, we find that

z = z1 + d

∫ ζ

0

N∏
i=1

[
sin

(
π
�− ξi
λ

)]−γi/π

d�. (7.13.56)
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Far from the wall, as η → ∞, we obtain a constant mapping slope,

dz

dζ
→ d exp

(
− i

N∑
i=1

γi
ξi
λ

)
. (7.13.57)

Because of (7.13.51), the argument of the exponent is insensitive to the definition of the origin of
the ξ axis. Integrating along a periodic, we find that

d =
L

λ
exp

(
i

N∑
i=1

γi
ξi
λ

)
, (7.13.58)

which can be used to evaluate the constant d once the positions ξi are available. Substituting this
expression into (7.13.57), we find that dz/dζ → L/λ far from the wall. To compute the N − 1
unknown images, ξ2, . . . , ξN , we integrate along the ξ axis from the first up to the jth vertex, we
obtain

zj = z1 + d

∫ ξj

0

N∏
i=1

[
sin

(
π
ξ − ξi
λ

)]−γi/π

dξ (7.13.59)

for j = 2, . . . , N . Requiring that this expression reproduces the vertices of the polygonal boundary
in the physical plane provides us with a system of nonlinear equations.

Triangular asperities

In the case of a wall with an infinite sequence of triangular asperities, N = 2 and γ2 = −γ1, as shown
in Figure 7.13.12(a). Without loss of generality, we may assume that γ1 < 0 so that the integrand
tends to zero at the origin. The transformation (7.13.56) with ξ1 = 0 becomes

z = z1 +
L

λ
eiγ1(1−ξ2/λ)

∫ ζ

0

[ sin
(
π�/λ

)
sin

(
π(ξ2 − �)/λ

)]−γ1/π

d�. (7.13.60)

Since γ1 < 0, the exponent inside the integral is positive and a singularity does not appear at the
origin, ρ = 0. The integral can be computed accurately using the numerical methods discussed
in Section B.6, Appendix B. Applying equation (7.13.59) for j = 2 provides us with an algebraic
equation for ξ2, which can be recast into the form

F(ξ2) ≡ z1 − z2 +
L

λ
ei (1−γ1ξ2/λ)

∫ ξ2

0

[ sin
(
πξ/λ

)
sin

(
π(ξ2 − ξ)/λ

)]−γ1/π

dξ = 0. (7.13.61)

To compute the constant ξ2, we solve the real equation FF∗ = 0 using, for example, Newton’s
method discussed in Section B.3, Appendix B. To evaluate the integral on the right-hand side,
denoted by I, we remove the singularity of the integrand at ξ = ξ2 by writing

I =

∫ ξ2

0

([ sin
(
πξ/λ

)
sin

(
π(ξ2 − ξ)/λ

)]−γ1/π

−
[ sin (πξ2/λ)
π(ξ2 − ξ)/λ

]−γ1/π)
dξ

+
[ sin (πξ2/λ)

π/λ

]−γ1/π
∫ ξ2

0

[ 1

ξ2 − ξ

]−γ1/π

dξ. (7.13.62)
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Figure 7.13.12 (a) Mapping a semi-infinite domain bounded by a periodic sequence of asperities to
the upper half-plane. (b, c) Grids generated by mapping a uniform Cartesian grid in the ζ plane
to the z plane.

The first integral on the right-hand side can be computed accurately using the numerical methods
discussed in Section B.6, Appendix B. The second integral on the right-hand side is equal to ξm2 /m,
where m = 1+γ1/π > 0. A grid of points generated by mapping a uniform Cartesian grid from the ζ
to the z plane is shown in Figure 7.13.12(c). In the case of symmetric asperities where x2 = x1+

1
2L,

while y1 and y2 are arbitrary, we set ξ2 = 1
2
λ and obtain

z = z1 +
L

λ
eiγ1/2

∫ ζ

0

[
tan

(π�
λ

)]−γ1/π

d�. (7.13.63)

A grid generated by mapping a uniform Cartesian grid is shown in Figure 7.13.12(b).

Polygonal strip

Transformations mapping a periodic channel with polygonal walls to an infinite strip are avail-
able [129, 130, 132, 133]. The mapping functions are useful in developing orthogonal grids for use
with finite-difference methods, or studying scalar conduction in domains with involved and fractal
geometry [53].
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7.13.5 Numerical methods

We have discussed transformations mapping the interior or exterior of a generalized polygon to the
upper half-plane, to the unit disk or the exterior of a unit disk. For polygons with a small number
of vertices, the constants involved in the mapping function can be computed analytically or by
standard numerical methods. Unfortunately, as the number of vertices increases, high accuracy in
evaluating improper integrals in the complex plane is required due to vertex crowding. To address
these concerns, efficient iterative numerical methods for computing Schwarz–Christoffel and related
transformations for polygonal domains with complicated geometry have been developed [53, 129,
133, 406].

The usefulness of the standard Schwarz–Christoffel transformation appears to be limited by the
requirement of polygonal boundary geometry. However, any curved boundary can be approximated
with a polygonal line connecting a chain of vertices. Thus, our ability to map a polygonal domain
with a large number of vertices to a disk or to the half-plane can be exploited to derive approximate
mapping functions for arbitrary domains. An alternative is to use generalized Schwarz–Christoffel
transformations for smooth domains.

7.13.6 Generalized Schwarz–Christoffel transformations

The Schwarz–Christoffel transformation discussed in Section 7.13.1 maps the interior of a polygon
to the semi-infinite plane, as shown in Figure 7.13.1. The differential form of the relevant inverse
mapping function given in (7.13.2) can be recast into the judiciously designed form

dz

dζ
= c

N∏
i=1

exp
(
− γi

π
log(ζ − ξi)

)
. (7.13.64)

An equivalent form is

dz

dζ
= c

N∏
i=1

exp
(
− 1

π

∫ ∞

−∞

dϕ

dξ
log(ζ − ξ) dξ

)
, (7.13.65)

where ϕ is the slope angle defined in Figure 7.13.13. In the case of an N -sided polygonal boundary,
ϕ is a discontinuous function,

dϕ

dξ
=

N∑
i=1

γi δ(ξ − ξi), (7.13.66)

and (7.13.65) reduces to (7.13.64), where δ is the one-dimensional delta function.

Smooth contours

In fact, the transformation (7.13.65) applies for polygonal as well as smooth shapes with nonsingular
slope functions ϕ(ξ). A slight rearrangement yields

dz

dζ
= c

N∏
i=1

exp
(
− 1

π

∫ ∞

−∞

dϕ

d�
log(ζ − ξ)

d�

dξ
dξ

)
, (7.13.67)
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Figure 7.13.13 A generalized Schwarz–Christoffel transformation maps a smooth domain in the z
plane to the upper half ζ plane.

involving the known function dϕ/d� and the unknown function d�/dξ, where � is an arc-length like
parameter describing the physical contour [129, 133]. To compute the mapping function, we may
trace a smooth contour enclosing a domain of interest in the z plane with a number of marker points,
introduce the corresponding images, ξi, construct the function d�/dξ by interpolation, and work as
in the case of a polygon to generate a system of nonlinear equations.

To map a smooth region to the unit disk in the τ plane, we use the transformation

dz

dτ
= d

N∏
i=1

exp
(
− 1

π

∮
dϕ

d�
log(τ − υ)

d�

dυ
dυ

)
, (7.13.68)

corresponding to the polygon transformation (7.13.42), where d is a complex constant and the
integral is performed in the counterclockwise direction around the unit circle. Writing υ = exp(iχ),
we obtain

dz

dτ
= d

N∏
i=1

exp
(
− 1

π

∫ 2π

0

dϕ

d�
log(τ − eiχ)

d�

dχ
dχ

)
. (7.13.69)

A weak logarithmic singularity occurs when the point τ is located at the unit circle. Working in a
similar fashion, we derive transformations that map the exterior of a smooth contour to the upper
half-plane or exterior of the unit disk.

Rounded corners and circular arcs

Modified transformations for polygons with rounded corners [7] and polygons of circular arcs [194]
are available.

Problem

7.13.1 Mapping the exterior of a flat plate to the exterior of a disk

Derive (7.12.7) from (7.13.48), thus obtaining a transformation that maps the exterior of a disk with
radius λ = 1

2 a centered at the origin of the ζ plane to the exterior of a flat plate subtended between
the points x = ±a in the z plane.
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Computer Problems

7.13.2 Flow in a strip

Compute and plot the streamlines of the flow inside the semi-infinite strip using the transformation
(7.13.12), subject to uniform flow along the ξ axis in the ζ plane.

7.13.3 Semi-infinite flow above a step

Compute and plot the streamlines of potential flow in the semi-infinite region above a step corre-
sponding to the transformation (7.13.41), subject to uniform flow along the ξ axis in the ζ plane.

7.13.4 Mapping the interior of a rectangle to the upper half-plane

Write a program that computes the constants involved in the transformation that maps the rectangle
shown in Figure 7.13.3 to the upper half-plane. The algorithm should employ the iterative method
discussed in the text. Plot the streamlines of the flow inside the rectangle corresponding to uniform
flow along the ξ axis in the ζ plane.

7.13.5 Plane with flat plates

Consider a semi-infinite domain above a horizontal plane located at y = 0 hosting an infinite sequence
of flat plates with length a separated by distance L. Substituting into (7.13.56) N = 3, γ1 = −π,
γ2 = π/2, and γ3 = π/2, along with ξ1 = 0 and ξ3 = λ− ξ2, we obtain

z = z1 +
L

λ

∫ ζ

0

sin
(π�
λ

)[
sin

(
π
�− ξ2

λ

)
sin

(
π
�+ ξ2

λ

)]−1/2

d�. (7.13.70)

The plate aspect ratio, a/L, is determined implicitly by the dimensionless parameter ξ2/λ ranging
in the interval (0, 1). Generate a grid of points similar to that shown in Figure 7.13.12(b) for several
values of ξ2/λ.



Boundary-layer analysis 8
There is an important class of flows where the gradient of the vorticity or the vorticity itself vanishes
virtually everywhere, except inside thin layers or narrow columns of fluid wrapping around or trailing
behind solid boundaries, free surfaces, and fluid interfaces, loosely identified as boundary layers.
Inspecting the equation of motion, we find that viscous forces are small and can be neglected outside
the boundary layers, but make important contributions and must be retained inside the boundary
layers.

An important consequence of dropping the viscous force in the Navier–Stokes equation to
obtain the Euler equation outside boundary layers is that the order of the governing equations with
respect to the spatial partial derivatives is reduced from two to one. This makes it impossible to
satisfy, in general, more than one scalar boundary condition over each boundary, as required for
viscous fluids. The presence of boundary layers inside which the motion of the fluid is governed by a
second-order partial differential equation due to the presence of the viscous force is thus imperative.
An important conclusion is that, with some exceptions, viscous forces cannot be neglected uniformly
throughout the domain of a flow.

Prandtl boundary layers occur in high-Reynolds-number flow past a streamlined body, such
as an airfoil, or flow past a round but not so bluff body, such as a cylinder or a sphere. At the turn of
the twentieth century, Prandtl argued that, at sufficiently high Reynolds numbers, but not so high
that the flow becomes turbulent, the bulk of the flow is nearly irrotational and vorticity gradients
are confined inside boundary layers lining the surface of a body as well as inside narrow wakes and
possibly compact regions of recirculating flow [327]. The flow may then be analyzed in two stages:
first, we consider the outer irrotational flow subject to the no-penetration boundary condition;
second, we compute the flow inside the boundary layers subject to appropriate simplifications based
on the realization that the flow is nearly unidirectional, driven by the tangential component of the
outer flow. The boundary-layer flow satisfies the no-slip boundary condition at a wall and agrees
with the outer-flow solution far from the wall.

Following Prandtl’s original idea, a large body of theoretical and laboratory work has con-
firmed the physical relevance and efficiency of boundary-layer theory, opening a new era in the study
of viscous flow (e.g., [395]). Prandtl boundary layers have been identified over surfaces translating
at high speed or stretching in an otherwise quiescent fluid in a broad range of applications. The
importance of boundary-layer flows in practical aerodynamics has spawned a large body of literature
discussed in comprehensive monographs and reviews [41, 70, 71, 260, 352, 363, 376].

629
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The physical processes determining the behavior of boundary layers developing over solid
surfaces in unsteady flow become evident by considering the structure of a boundary layer developing
along a rigid body that is held stationary in an impulsively started incident flow. At the initial
instant, the velocity field is irrotational everywhere, except inside a thin vortex layer lining the
body. Viewed at a distance, the vortex layer resembles a vortex sheet whose strength is equal to the
negative of the tangential velocity of the potential flow. As soon as the motion has been initiated, the
vortex sheet diffuses into the flow. Locally around the boundary, the flow resembles that developing
over an infinite flat plate subject to an impulsively started uniform flow described by a similarity
solution, as discussed in Section 5.4.3. When the thickness of the vortex layer becomes significant,
convection of vorticity in the tangential and normal directions becomes important and the leading-
order similarity solution is modified with the addition of a second-order term that is proportional
to time since startup [391]. Examination of the second-order term shows that the boundary shear
stress vanishes and back flow occurs at the point where the irrotational flow decelerates along the
boundary. The time of separation predicted by the second-order solution is in remarkably good
agreement with experimental observation.

More generally, changes in the conditions of an incident flow affect the distribution of the
tangential velocity and pressure gradient that drive the flow inside the boundary layer, and therefore
cause the vorticity to diffuse across the boundaries and enter or exit the flow. The precise description
of the evolution of an unsteady boundary-layer flow presents us with significant analytical and
computational challenges that have been tackled only for a limited number of flows [352].

A different class of boundary layers occurs at free surfaces and interfaces between two streams
of the same or different fluids. In the case of interfacial flow, an irrotational incident flow is not
capable of satisfying both the kinematic boundary condition of continuity of velocity and the dy-
namic boundary condition specifying the discontinuity in the interfacial traction, and the role of the
boundary layer is to make an appropriate adjustment. An example is the boundary layer established
around the surface of a gas bubble rising through a liquid. Another example is the boundary layer
established around a liquid jet discharging into an ambient fluid.

In this chapter, we introduce the fundamental concepts involved in the formulation of boundary-
layer theory and discuss analytical, approximate, and numerical methods for solving the governing
equations in various types of steady and unsteady flow. We will consider Prandtl boundary layers
developing over stationary surfaces in nonaccelerating and accelerating flow, and boundary layers
developing over moving or stretching surfaces in an otherwise quiescent fluid. By way of applica-
tion, the theory will be used to predict the expansion of a two-dimensional or axisymmetric oil slick
floating on a pool of an otherwise quiescent fluid.

8.1 Boundary-layer theory

A fundamental assumption in developing a boundary-layer theory is that the flow consists of an
outer region where vorticity gradients virtually vanish and the flow is described by the equations of
inviscid flow, including Euler’s equation and the continuity equation, and a boundary layer attached
to a surface. Wakes and regions of recirculating flow are allowed, but are significant only insofar as
to modify the structure of the outer flow.
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Figure 8.1.1 Illustration of the Prandtl boundary layer developing around a two-dimensional body.
Shown are the typical velocity, U , the typical length, L, and the boundary-layer thickness, δ.

8.1.1 Prandtl boundary layer on a solid surface

To illustrate the physical arguments involved in the boundary-layer formulation and demonstrate
the resulting mathematical simplifications, we consider the boundary layer developing around a
mildly curved two-dimensional rigid body that is held stationary in an incident irrotational flow, as
illustrated in Figure 8.1.1.

Continuity equation

We begin the boundary-layer analysis by introducing Cartesian coordinates where the x axis is
tangential and the y axis is perpendicular to the surface of the body at a point, as shown in Figure
8.1.1. Next, we apply the continuity equation at a point in the vicinity of the origin,

∂u

∂x
+

∂v

∂y
= 0, (8.1.1)

where u = ux and v = uy are the components of the velocity along the x and y axes.

Let L be the typical dimension of the body, U be the typical magnitude of the velocity of
the outer irrotational flow, δ be the typical thickness of the boundary layer, defined as the region
around the body across which the velocity undergoes a rapid variation and the magnitude of the
viscous force is significant, and V be the typical magnitude of the velocity component normal to
the body at the edge of the boundary layer. We expect that the magnitude of the derivative ∂u/∂x
inside the boundary layer will be comparable to the ratio U/L, and the magnitude of the derivative
∂v/∂y will be comparable to the ratio V/δ. The continuity equation (8.1.1) requires that

U

L
∼ V

δ
or V ∼ U

δ

L
, (8.1.2)

stating that V scales with the boundary-layer thickness, δ. In fact, V is roughly proportional to the
boundary-layer thickness, δ.
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Next, we turn to examining the two components of the equation of motion inside the boundary
layer in the vicinity of the origin written for the hydrodynamic pressure that excludes the effect of
the body force. For simplicity, the hydrodynamic pressure is denoted without a tilde, as p.

x component of the equation of motion

Considering the x component of the Navier–Stokes equation,

∂u

∂t
+ u

∂u

∂x︸ ︷︷ ︸+ v
∂u

∂y︸ ︷︷ ︸ = −1

ρ

∂p

∂x
+ ν

∂2u

∂x2︸ ︷︷ ︸+ ν
∂2u

∂y2︸ ︷︷ ︸, (8.1.3)

U2/L U2/L νU/L2 νU/δ2

we introduce the scalings

u ∼ U,
∂u

∂x
∼ U

L
, v ∼ V,

∂u

∂y
∼ U

δ
,

∂2u

∂x2
∼ U

L2
,

∂2u

∂y2
∼ U

δ2
, (8.1.4)

where ν is the kinematic viscosity of the fluid. Moreover, we use the scaling (8.1.2) to eliminate V
in favor of U , and find that the magnitudes of the various terms are as shown underneath equation
(8.1.3). The scaling of the first term involving the time derivative on the left-hand side is determined
by the temporal variation of the outer flow, which is left unspecified. At this point, there is no obvious
way of scaling the x derivative of the dynamic pressure gradient on the right-hand side of (8.1.3) in
the context of kinematics alone.

The scalings shown underneath equation (8.1.3), combined with the fundamental assumption
that δ � L, have two important consequences. First, the penultimate viscous term on the right-hand
side is small compared to the last term and can be neglected, yielding the boundary-layer equation

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν

∂2u

∂y2
. (8.1.5)

Second, the magnitude of the last viscous term must be comparable to the magnitude of the inertial
terms on the left-hand side, requiring that

U2

L
∼ ν

U

δ2
. (8.1.6)

Rearranging, we find that

δ ∼
(νL
U

)1/2

=
L√
Re

, (8.1.7)

where Re = UL/ν is the Reynolds number.

y component of the equation of motion

Next, we consider the individual terms in the y component of the Navier–Stokes equation,

∂v

∂t
+ u

∂v

∂x︸ ︷︷ ︸+ v
∂v

∂y︸︷︷︸ = −1

ρ

∂p

∂y
+ ν

∂2v

∂x2︸ ︷︷ ︸+ ν
∂2v

∂y2︸ ︷︷ ︸,
U2δ/L2 U2δ/L2 U2δ/L2 U2δ/L2 (8.1.8)
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and introduce the scalings

v ∼ V,
∂v

∂x
∼ V

L
, u ∼ U,

∂v

∂y
∼ V

δ
,

∂2v

∂x2
∼ V

L2
,

∂2v

∂y2
∼ V

δ2
. (8.1.9)

Moreover, we express the kinematic viscosity ν in terms of δ using (8.1.6), setting ν ∼ Uδ2/L, and
find that the magnitudes of the various terms are as shown underneath equation (8.1.8).

The magnitudes of all nonlinear convective and viscous terms are of order δ. Unless the
magnitude of the time derivative on the left-hand side is of order unity, the dynamic pressure
gradient across the boundary layer must also be of order δ, ∂p/∂y � δ. This deduction allows us to
write to leading-order approximation

∂p

∂y
� 0. (8.1.10)

We conclude that nonhydrostatic pressure variations across the boundary layer are negligible, and
the dynamic pressure inside the boundary layer is primarily a function of position along the wall.

Boundary-layer equations

To compute the streamwise pressure gradient, we evaluate the x component of the Euler equation
at the edge of the boundary layer, obtaining

−1

ρ

∂p

∂x
=

∂U

∂t
+ U

∂U

∂x
, (8.1.11)

where U is the tangential component of the velocity of the outer flow. The boundary-layer equation
(8.1.5) then becomes

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

∂U

∂t
+ U

∂U

∂x
+ ν

∂2u

∂y2
, (8.1.12)

where U is regarded as a known forcing function.

The continuity equation (8.1.1) and the boundary-layer equation (8.1.12) provide us with a
system of two second-order nonlinear partial-differential equations for the x and y velocity compo-
nents, u and v, to be solved subject to the no-slip and no-penetration boundary conditions requiring
that u and v are zero along the boundary, and a far-field condition requiring that, as y/δ tends to
infinity, u tends to the tangential component of the outer velocity, U . Because the boundary-layer
equations do not involve a second partial derivative of v with respect to y, a far-field condition for v
is not required. The pressure plays the role of a forcing function computed by solving the equations
governing the outer irrotational flow.

Favorable and adverse pressure gradient

Evaluating (8.1.12) at the origin and enforcing the no-slip and no-penetration conditions in a steady
flow, we obtain (∂2u

∂y2

)
y=0

= −U

ν

dU

dx
, (8.1.13)



634 Introduction to Theoretical and Computational Fluid Dynamics

which shows that the sign of the curvature of the velocity profile at the boundary is opposite to that
of the streamwise acceleration of the outer flow, dU/dx. Thus, the flow inside the boundary layer
in a decelerating outer flow, corresponding to dU/dx < 0, reverses direction, causing convection of
vorticity away from the boundary and the consequent formation of wakes and vortices inside the
bulk of the flow.

When dU/dx > 0, the pressure gradient is negative, dp/dx < 0, and the boundary layer is
subjected to a favorable pressure gradient. In the opposite case where dU/dx < 0, the pressure
gradient is positive, dp/dx > 0, and the boundary layer is subjected to an adverse pressure gradient.
Equation (8.1.13) shows that an adverse pressure gradient promotes flow separation.

Boundary-layer equations in curvilinear coordinates

The Prandtl boundary-layer equation (8.1.12) was developed with reference to the local Cartesian
axes shown in Figure 8.1.1, and is strictly valid near the origin. To avoid redefining the Cartesian
axes at every point along the boundary, we introduce a curvilinear coordinate system where the ξ
axis is tangential to the boundary and the η axis is perpendicular to the boundary, as shown in
Figure 8.1.1. The corresponding velocity components are denoted by uξ and uη.

Performing the boundary-layer analysis, we find that the boundary-layer equations (8.1.1),
(8.1.10), and (8.1.12) remain valid to leading-order approximation, provided that the Cartesian x
and y coordinates are replaced by corresponding arc lengths in the ξ and η directions denoted,
respectively, by l and �. Equation (8.1.10) becomes

∂p

∂�
=

ρU2
ξ

R
, (8.1.14)

where R is the radius of curvature of the boundary. We conclude that the dynamic pressure drop
across the boundary layer is of order δ, provided that R is not too small, that is, provided that the
boundary is not too sharply curved. For simplicity, in the remainder of this chapter we denote l and
�, respectively, by x and y.

Parabolization of the equation of motion

The absence of a second partial derivative with respect to x renders the boundary-layer equation
(8.1.12) a parabolic partial differential equation with respect to the streamwise position, x. This
classification has important consequences on the nature of the solution and on the choice of numerical
methods for computing the solution. Specifically, the system of equations (8.1.1) and (8.1.12) can
be solved using a marching method with respect to x, beginning from a particular x station where
the structure of the boundary layer is known. In contrast, the Navier–Stokes equation is an elliptic
partial differential equation with respect to x and y, and the solution must by found simultaneously
at every point in the flow, even when the velocity and pressure are specified at the inlet.

The parabolic nature of the boundary-layer equation (8.1.12) with respect to x implies that a
perturbation introduced at some point along the boundary layer modifies the structure of the flow
downstream but leaves the upstream flow unchanged. The absence of the second partial derivative
with respect to x due to the boundary-layer approximation precludes a mechanism for upstream
signal propagation.
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Dimensionless form of the equation of motion

The estimates of the various terms in the equation of motion discussed earlier in this section suggest
a particular way of defining dimensionless variables to be used in nondimensionalizing the equation
of motion, given by

x̂ =
x

L
, ŷ =

y

δ
=

y

L
Re1/2, t̂ =

tU

L
,

û =
u

U
, v̂ =

v

V
=

v

U
Re1/2, p̂ =

p

ρU2
.

(8.1.15)

The corresponding dimensionless form of the continuity equation and two components of the unsim-
plified Navier–Stokes equation are

∂û

∂x̂
+

∂v̂

∂ŷ
= 0,

∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂p̂

∂x̂
+

1

Re

∂2û

∂x̂2
+

∂2û

∂ŷ2
, (8.1.16)

1

Re

(∂v̂
∂t̂

+ û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

)
= −∂p̂

∂ŷ
+

1

Re2
∂2v̂

∂x̂2
+

1

Re

∂2v̂

∂ŷ2
.

The magnitude of each partial derivative in equations (8.1.16) is of order unity. Taking the limit
as Re tends to infinity and retaining only the leading-order terms, we obtain a simplified system of
governing equations,

∂û

∂x̂
+

∂v̂

∂ŷ
= 0,

∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂p̂

∂x̂
+

∂2û

∂ŷ2
,

∂p̂

∂ŷ
= 0. (8.1.17)

Reverting to dimensional variables and using Bernoulli’s equation, we recover equations (8.1.1),
(8.1.10), and (8.1.12).

The absence of the Reynolds number in the governing equations (8.1.17) suggests that the
Reynolds number is significant only insofar as to determine the physical thickness of the boundary
layer and magnitude of the y velocity component according to (8.1.12), and does not have an influence
on the structure of the flow inside the boundary layer. However, the assumption that the Reynolds
number is sufficiently high is necessary for this asymptotic behavior to prevail.

Energy dissipation inside a boundary layer

Viewed at a distance, a boundary layer resembles a vortex sheet whose strength is equal to the
tangential component of the velocity of the outer flow. Since the velocity gradient diverges at the
location of a vortex sheet, the associated rate of viscous dissipation is infinite. Viewed from a point in
its proximity, the boundary layer resembles a vortex layer with noninfinitesimal thickness incurring
a finite rate of viscous dissipation. Specifically, the rate of viscous dissipation per unit mass of fluid
inside the boundary layer is

ν
(∂u
∂y

)2 ∼ ν
U2

δ2
, (8.1.18)
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which, according to (8.1.7), scales as U3/L and therefore remains finite as the viscosity tends to
vanish or the Reynolds number tends to infinity. The rate of viscous dissipation inside the boundary
layer per unit surface area of the boundary is∫ δ

0

μ
(∂u
∂y

)2

dy ∼ μ
U2

δ
, (8.1.19)

which, according to (8.1.7), scales as ρU3/Re1/2. Since the rate of viscous dissipation per unit
volume of fluid outside the boundary layer scales with ρU 3/(LRe), the rate of viscous dissipation
inside the boundary layer makes a dominant contribution.

Flow separation

Boundary-layer analysis for laminar flow is based on two key assumptions: the Reynolds number is
sufficiently high, but not so high that the flow becomes turbulent, and the vorticity remains confined
inside boundary layers wrapping around the boundaries. The physical relevance of the second
assumption depends on the structure of the incident flow and boundary geometry. Streamlined
bodies allow laminar boundary layers to develop over a large surface area, whereas bluff bodies cause
vorticity to concentrate inside compact regions forming steady or unsteady wakes. For example, the
alternating ejection of vortices of opposite sign into a wake is responsible for the von Kármán vortex
street illustrated in Figure 8.1.2(a) (e.g., [187]). These limitations should be born in mind in carrying
out a boundary-layer analysis.

Drag force on a body

The changes in the structure of a flow as a function of the Reynolds number are reflected on global
flow diagnostics, such as the drag force exerted on a body and the angular frequency of the vortices
developing in the wake of a body, Ω, expressed in terms of the Strouhal number, St = ΩL/U . The
dimensionless drag coefficient for a circular cylinder with diameter D is defined as

cD ≡ F
1
2ρU

2D
, (8.1.20)

where F is the drag force per unit length exerted on the cylinder. In Figure 8.1.2(b), the drag
coefficient is plotted against the Reynolds number, Re = UD/ν, on a log-log scale. Using (6.14.22),
we find that, in the limit of vanishing Reynolds number, the drag force is given by the modified
Stokes law

F � 4πμU

ln
7.4

Re

. (8.1.21)

Correspondingly, the drag coefficient is given by

cD � 8π

Re ln
7.4

Re

. (8.1.22)

The predictions of this formula are represented by the dashed line in Figure 8.1.2(b). The apparent
change in the functional form of the drag coefficient at a critical Reynolds number on the order of



8.1 Boundary-layer theory 637

(a) (b)

Stokes flow Inertial flow

Vortex street

Turbulent wake

−2 0 2 4 6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

log
10

(Re)
lo

g 10
(c

D
)

Figure 8.1.2 (a) Changes in the structure of streaming flow past a circular cylinder with increasing
Reynolds number showing boundary-layer separation and the development of a wake consisting of
a vortex street. (b) Laboratory data for the drag coefficient on a circular cylinder that is held
stationary in streaming flow plotted against the Reynolds number defined with respect to the
cylinder diameter. The dashed line represents an analytical prediction for low-Reynolds-number
flow.

103, shown in Figure 8.1.2(b), is due to the detachment of the boundary layer from the surface of
the cylinder at a certain point at the rear surface of the cylinder, in a process that is described as
flow separation, as shown in Figure 8.1.2(a). When the Reynolds number becomes on the order of
105, the flow becomes fully turbulent and the boundary layer reattaches, causing a sudden decline
in the drag coefficient.

Three-dimensional boundary layers

To analyze the structure of a boundary layer over a three-dimensional curved surface, we introduce
curvilinear coordinates with two axes lying in the surface and the third axis perpendicular to the
surface, and implement the boundary-layer approximation with respect to the normal coordinate.
The analysis reveals that the pressure drop across the boundary layer can be neglected, and the
tangential components of the Navier–Stokes equation can be parabolized by eliminating the second
partial derivative of the tangential velocity with respect to distance in a tangential direction to
leading-order approximation. The precise form of the boundary-layer equations for three-dimensional
flow are discussed in Section 8.5.2.

8.1.2 Boundary layers at free surfaces and fluid interfaces

Consider the flow near a free surface where the tangential component of the traction is required to
vanish. An irrotational ambient flow is not capable of satisfying the condition of vanishing shear
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stress, and a boundary layer must be established. An example is the boundary layer developing over
the surface of a spherical bubble rising through a liquid at high Reynolds numbers, as discussed in
Section 7.5.4 [259]. An important difference between this boundary layer and the Prandtl boundary
layer developing over a solid surface is that, in the case of a free surface, the velocity does not have
to undergo a jump whose magnitude is comparable to the velocity of the incident flow.

Free surfaces

The tangential component of the vorticity at an arbitrary surface was given in (3.9.18) as

ω · (I− n⊗ n) = (n× ω)× n = [ (∇u) · n− n · ∇u ]× n, (8.1.23)

and the rotated shear stress was given in (3.9.16) as

f × n = μ
[
(n · ∇u)× n− n× [(∇u) · n]

]
, (8.1.24)

where f is the traction and n is the normal unit vector. Combining these expressions, we obtain

ω · (I− n⊗ n) =
1

μ
f × n− 2 (n · ∇u)× n = − 1

μ
f × n+ 2 [(∇u) · n]× n. (8.1.25)

Requiring that the tangential component of the traction vanishes at the free surface, we find that the
tangential component of the vorticity is given by equation (3.9.19), repeated here for convenience,

ωfs · (I− n⊗ n) = −2 (n · ∇u)× n = 2 [(∇u) · n]× n, (8.1.26)

where the subscript fs denotes the free surface.

It is useful to decompose the velocity field into the outer component, u∞, and a complementary
velocity field associated with the boundary layer, ubl, so that u = u∞ +ubl. Assume that the outer
velocity field u∞ is irrotational. Applying (8.1.25) at the edge of the boundary layer where the
vorticity is zero, we find that

ω∞ · (I− n⊗ n) =
1

μ
f∞ × n− 2 (n · ∇u∞)× n = − 1

μ
f∞ × n+ 2 [(∇u∞) · n]× n = 0. (8.1.27)

To leading order, equation (8.1.26) yields

ωfs · (I− n⊗ n) � −2 (n · ∇u∞)× n � 2 [(∇u∞) · n]× n. (8.1.28)

Combining the last two equations, we find that

ωfs · (I− n⊗ n) � 1

μ
f∞ × n. (8.1.29)

For the vorticity inside the boundary layer to be of order U/L, the jump in the complementary
velocity ubl across the boundary layer must be of the same order of magnitude as the boundary
layer thickness, δ, which scales with Re−1/2, and is therefore small as long as the Reynolds number
is sufficiently high. The smallness of ubl allows us to linearize the equation of motion and vorticity
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Figure 8.1.3 Illustration of a boundary layer developing in the wake of a two-dimensional body.

transport equation with respect to u about u∞. Since the magnitude of ubl is much smaller than
that of u∞, the tendency for back flow in a decelerating flow along a free surface is much weaker
than along a solid wall, and the rate of viscous dissipation inside the boundary layer is comparable
to that inside the incident flow.

Fluid interfaces

To describe the flow around a fluid interface, we introduce a boundary layer on either side of the
interface, demand that the velocity is continuous across the interface, and require that the two
boundary layers develop so as to satisfy the tangential force balance. The mathematical formulation
is discussed by Harper & Moore [169] with reference to the boundary layer developing around the
surface of a viscous drop rising through an otherwise quiescent ambient liquid at high Reynolds
numbers.

8.1.3 Boundary layers in a homogeneous fluid

Boundary-layer theory assumes that the magnitude of the derivative of the tangential velocity normal
to a surface is much larger than the magnitude of the corresponding tangential derivative. In the case
of flow of a homogeneous fluid with uniform physical properties, the boundary-layer approximation
can be applied in cases where the velocity exhibits sharp variations across thin layers of fluid, called
free boundary layers or shear layers. An example is the shear layer developing during the viscous
spreading of a vortex sheet discussed in Section 5.4.3.

Spreading of a two-dimensional wake

Another example is the spreading of a symmetric two-dimensional wake behind a streamlined object
that is held stationary in a uniform (streaming) incident flow along the x axis with velocity U , as
illustrated in Figure 8.1.3. Assuming that the rate of spreading with respect to downstream distance,
x, is small, we implement the boundary-layer approximation and derive a linear partial differential
equation for the streamwise velocity, u(x, y),

U
∂u

∂x
= ν

∂2u

∂y2
. (8.1.30)
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Requiring that u tends to U as y tends to infinity, we obtain the Gaussian profile

u(x, y) = U
[
1− c√

x
exp

(
− U

4νx
y2
) ]

, (8.1.31)

where c is a dimensional constant determined by the particular form of the velocity distribution at
the beginning of the wake.

Writing a momentum integral balance over a rectangular control area with two parallel sides
perpendicular to the x axis containing the object, we obtain an expression for the drag force per
unit width exerted on the object generating the wake,

F = ρ

∫ ∞

−∞

(U2 − u2) dy � ρ

∫ ∞

−∞

U (U − u) dy. (8.1.32)

Substituting the velocity profile, performing the integration, and rearranging, we find that

c =
1

2
√
π

F

ρU3/2ν1/2
(8.1.33)

(Problem 8.1.4). Other free boundary layers are discussed in Problems 8.2.3, 8.5.5, and 8.5.6.

8.1.4 Numerical and approximate methods

The boundary-layer equations for two-dimensional flow provide us with a parabolic system of two
nonlinear partial differential equations with respect to tangential arc length, l. The solution can be
found using standard space-marching, weighted-residual, or finite-difference methods, as discussed
in Chapter 12. Expressing the velocity in terms of the stream function allows us to discard the
continuity equation and concentrate on solving one third-order nonlinear parabolic partial-differential
equation for the stream function. Reviews of early and more recent implementations are presented
by Blottner [41] and Cebeci & Bradshaw [71].

A variety of other specialized methods have been developed for computing the flow inside
boundary layers developing over arbitrarily shaped bodies that either move or are held stationary in
an arbitrary irrotational flow. A review of early work can be found in a comprehensive monograph
edited by Rosenhead [352], a concise and illuminating discussion is given in a textbook by White
([427], Chapter 4), and more recent developments are discussed by Cebeci & Bradshaw [70, 71].

Problems

8.1.1 Boundary conditions

Discuss the number of boundary conditions necessary for computing the tangential and normal
velocity components inside a two-dimensional Prandtl boundary layer.

8.1.2 Lubrication flow and boundary layers

Discuss the relation between the boundary-layer equations and the lubrication equations for nearly
unidirectional viscous flow in a narrow channel discussed in Section 6.4.
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8.1.3 Prandtl’s transposition theorem

Show that, if the velocities u(x, y, t) and v(x, y, t) satisfy the Prandtl boundary-layer equations, then
the velocities ũ(x̃, ỹ, t) and ṽ(x̃, ỹ, t) will also satisfy the boundary-layer equations, where x̃ = x,
ỹ = y + f(x), ũ(x̃, ỹ, t) = u(x, y, t), ṽ(x̃, ỹ, t) = v(x, y, t) + f ′(x)u(x, y, t), and f(x) is an arbitrary
function ([352], p. 211).

8.1.4 Spreading of a two-dimensional wake

Derive (8.1.32) and the relation between the coefficient c and F given in (8.1.33).

8.1.5 Von Mises’ transformation

Von Mises’ transformation regards the velocity as a function of the independent variables x and ψ
instead of x and y, where ψ is the stream function with zero value over an impermeable boundary.

(a) Show that, in the von Mises variables, and subject to the boundary conditions u = 0 and v = 0
at y = 0 and far-field condition that u tends to U as y/δ tends to infinity, the equation of motion
(8.1.12) becomes

∂u

∂t
+ u

∂u

∂x
=

∂U

∂t
+ U

∂U

∂x
+ ν u

∂

∂ψ

(
u
∂u

∂ψ

)
, (8.1.34)

with boundary conditions u = 0 at ψ = 0 and far-field condition that u tends to U as ψ tends to
infinity.

(b) Show that, in the case of steady flow, the equation of motion (8.1.12) can be restated as a
nonlinear parabolic equation,

∂χ

∂x
= ν (U2 − χ)1/2

∂2χ

∂ψ2
, (8.1.35)

where χ ≡ U2−u2, with boundary condition χ = U2 at ψ = 0 and far-field condition requiring that
χ decays to zero as ψ tends to infinity.

8.2 Boundary layers in nonaccelerating flow

When the outer tangential velocity, U , is constant, dU/dx = 0, the boundary-layer equation (8.1.12)
simplifies into a nonlinear homogeneous convection–diffusion equation,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (8.2.1)

to be solved for the x and y velocity components, u = ux and v = uy, subject to the continuity
equation (8.1.1).

8.2.1 Boundary-layer on a flat plate

The simplest possible boundary layer is encountered in the case of uniform (streaming) flow along a
stationary semi-infinite plate that is held parallel to the incident stream, as shown in Figure 8.2.1(a).
Because the length of the plate is infinite, our only choice for a characteristic length scale introduced
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Figure 8.2.1 (a) Illustration of a boundary layer developing along a semi-infinite flat plate that is held
parallel to a uniform incident stream. (b) Graphs of the Blasius self-similar streamwise velocity
profile u/U = f ′ (solid line), its integral f (dashed line), and derivative f ′′ (dotted line).

in Section 8.2, L, is the streamwise distance, x. Equation (8.1.7) provides us with an expression for
the boundary-layer thickness in terms of the local Reynolds number, Rex ≡ Ux/ν,

δ(x) ∼
(νx
U

)1/2

=
x

Re1/2x

. (8.2.2)

Recall that this scaling arose by balancing the magnitudes of the inertial and viscous forces inside
the boundary layer.

Self-similarity and the Blasius equation

Blasius [39] discovered that computing the solution of the governing partial differential equations
(8.2.1) and (8.1.1) can be reduced to solving a single ordinary differential equation. To carry out
this reduction, we assume that the flow develops in a self-similar fashion so that the streamwise
velocity profile across the boundary layer is a function of a scaled dimensionless transverse position
expressed by the similarity variable

η ≡ y

δ(x)
=
( U

νx

)1/2

y, (8.2.3)

according to the functional form

u(x, y) = UF (η), (8.2.4)

where F (η) is an a priori unknown function to be computed as part of the solution. A key observation
is that the self-similar streamwise profile derives from the stream function

ψ(x, y) = (Uνx)1/2f(η), (8.2.5)
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where the function f(η) is the indefinite integral or antiderivative of the function F (η), satisfying
df/dη = F (η). The principal advantage of using the stream function is that the continuity equation
is satisfied automatically and does not need to be considered in further analysis.

Differentiating (8.2.5) with respect to y or x, and invoking the definition of the stream function,
we obtain expressions for the x velocity component,

u(x, y) =
∂ψ

∂y
= U (Uνx)1/2 f ′ dη

dy
= U (Uνx)1/2 f ′

( U

νx

)1/2

, (8.2.6)

and y velocity component,

v(x, y) = −∂ψ

∂x
= −(Uν)1/2

∂[
√
x f(η)]

∂x
= −1

2

(Uν

x

)1/2

f − (Uνx)1/2 f ′ ∂η

∂x
, (8.2.7)

where a prime denotes a derivative with respect to η. Simplifying, we obtain

u(x, y) = Uf ′, v(x, y) = −1

2

(Uν

x

)1/2

(f − η f ′). (8.2.8)

Substituting these expressions into the boundary-layer equation (8.2.1), we derive the Blasius equa-
tion

f ′′′ +
1

2
ff ′′ = 0. (8.2.9)

An alternative form is

d ln f ′′

dη
= −1

2
f. (8.2.10)

Enforcing the no-slip and no-penetration boundary conditions, we obtain

f(0) = 0, f ′(0) = 0. (8.2.11)

Since the flow in the boundary layer reduces to the outer uniform flow far from the plate,

f ′(∞) = 1. (8.2.12)

Equations (8.2.11) and (8.2.12) provide us with boundary and far-field conditions to be used in
solving the Blasius equation (8.2.9). Since boundary conditions are specified at both ends of the
computational domain, [0,∞), we must solve a boundary-value problem involving a third-order,
nonlinear, ordinary differential equation.

Rescaling

If f(η) = g(η) is a solution of (8.2.9), then f(η) = αg(αη) is also a solution of (8.2.9) for any value
of the constant α. Requiring that the function g(η) satisfies the boundary conditions g(0) = 0,
g′(0) = 0, and g′′(0) = β, where β is an arbitrary value, and setting α = 1/[g′(∞)]1/2, ensures that
the function αg(αη) satisfies the boundary conditions (8.2.11) and (8.2.12), and therefore represents
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the desired solution, f(η). However, in practice, it is more expedient to compute the solution by a
shooting method, as discussed later in this section.

Weyl integral equation

Integrating by parts and using the boundary conditions (8.2.11), we find that∫ η

0

(ξ − η)2f ′′(ξ) dξ = −2

∫ η

0

(ξ − η)f ′(ξ) dξ = 2

∫ η

0

f(ξ) dξ, (8.2.13)

where a prime denotes a derivative with respect to the integration variable, ξ. Integrating (8.2.10)
with respect to η and using (8.2.13), we derive Weyl’s integral equation for f ′′,

ln
f ′′

f ′′
0

= −1

4

∫ η

0

(ξ − η)2f ′′(ξ) dξ, (8.2.14)

where f ′′
0 = f ′′(0) ([352], p. 233).

Curvature of the velocity profile at the wall

Applying the Blasius equation (8.2.9) at the plate, η = 0, and using the first boundary condition in
(8.2.11), we find that

f ′′′(0) = 0, (8.2.15)

which shows that the curvature of the streamwise velocity profile vanishes at the wall, in agreement
with equation (8.1.13).

Numerical solution

To solve the Blasius equation (8.2.9), we rename x1 = f , denote the first and second derivatives of
the function f as x2 ≡ df/dη and x3 ≡ dx2/dη = d2f/dη2, and decompose the third-order Blasius
equation into a system of three first-order nonlinear equations,

dx1

dη
= x2,

dx2

dη
= x3,

dx3

dη
= −1

2
x1x3. (8.2.16)

The accompanying boundary and far-field conditions are

x1(0) = 0, x2(0) = 0, x2(∞) = 1, (8.2.17)

originating from (8.2.11) and (8.2.12). The solution can be computed using a shooting method
according to the following steps:

1. Guess the value of x3(0) ≡ f ′′(η = 0).

2. Integrate equations (8.2.16) from η = 0 to η = ∞ subject to the initial conditions (8.2.11)
using the guessed value of x3(0).

3. Check whether the far-field condition x2(∞) = 1 is satisfied; if not, improve the guess for x3(0)
and return to Step 2.
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Numerical experimentation shows that integrating up to η = 10 in the second step yields satisfactory
accuracy. The improvement in the third step can be made using a method for solving nonlinear
algebraic equations, as discussed in Section B.3, Appendix B.

Variational equations

In practice, it is expedient to carry out the iterations using Newton’s method based on derived
variational equations (e.g., [317]). First, we define the derivatives

x4 ≡ dx1

dx3(0)
, x5 ≡ dx2

dx3(0)
, x6 ≡ dx3

dx3(0)
, (8.2.18)

expressing the sensitivity of the solution to the initial guess. Differentiating equations (8.2.16) with
respect to x3(0), we obtain

dx4

dη
= x5,

dx5

dη
= x6,

dx6

dη
= −1

2
(x4x3 + x1x6), (8.2.19)

subject to the initial conditions

x4(η = 0) = 0, x5(η = 0) = 0, x6(η = 0) = 1. (8.2.20)

The shooting method involves the following steps: guess a value for x3(0); integrate equations
(8.2.17) and (8.2.19) with the aforementioned initial conditions; replace the current initial value,
x3(0), with an updated value,

x3(0) ← x3(0)−
x2(∞)− 1

x5(∞)
. (8.2.21)

The iterations converge quadratically for a reasonable initial guess.

Self-similar velocity profile

Numerical computations show that the far-field boundary condition is satisfied when f ′′(0) �
0.332057. The streamwise velocity profile, u/U = f ′ ≡ df/dη, is drawn with the solid line in Figure
8.2.1(b), along with the profiles of f (dashed line) and f ′′ ≡ d2f/dη2 (dotted line). Close inspection
reveals that u/U = 0.99 when η � 4.9. Based on this result, we define the 99% boundary-layer
thickness,

δ99 = 4.9
(νx
U

)1/2

or
δ99
x

=
4.9

Rex
, (8.2.22)

where Rex ≡ Ux/ν is the local Reynolds number. The 99.5% boundary-layer thickness is defined in
a similar fashion. The numerical solution shows that the corresponding numerical coefficient on the
right-hand side of equations (8.2.22) is approximately equal to 5.3.

Wall shear stress

The wall shear stress and drag force exerted on a boundary are of particular interest in the engi-
neering design of equipment for high-speed flow. According to the Blasius similarity solution, the
wall shear stress is given by
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σw
xy(x) = μ

(∂u
∂y

)
y=0

=
f ′′(0)√
Rex

ρU2 =
0.332√
Rex

ρU2. (8.2.23)

We observe that σw
xy takes an infinite value at the leading edge, and decreases as the inverse square

root of the streamwise distance or local Reynolds number, Rex, along the plate. However, the
physical significance of the singular behavior at the origin is undermined by the breakdown of the
assumptions that led us to the boundary-layer equations at the leading edge.

Drag force

Even though the shear stress is infinite at the leading edge, the inverse-square-root singularity is
integrable and the drag force exerted on any finite section of the plate extending from the leading
edge up to an arbitrary point is finite. Using the similarity solution, we find that the drag force
exerted on the plate over a length extending from the leading edge up to a certain distance x, is
given by

D(x) ≡
∫ x

0

σw
xy(ξ) dξ = 0.332 ρU3/2ν1/2

∫ x

0

dξ√
ξ
. (8.2.24)

Performing the integration, we find that

D(x) =
0.664√
Rex

ρ U2x. (8.2.25)

Based on this expression, we define the dimensionless drag coefficient

cD(x) ≡ D(x)
1
2ρU

2x
=

1.328√
Rex

. (8.2.26)

The predictions of the last two equations for the drag force and drag coefficient agree well with
laboratory measurements up to Rex � 1.2× 105. At that point, the flow inside the boundary layer
develops a wavy pattern and ultimately becomes turbulent. Above the critical value of Rex, the
function cD(Rex) jumps to a different branch with significantly higher values. The transition from
steady laminar flow, presently considered, to unsteady turbulent flow will be discussed in Section
9.8.2 in the context of hydrodynamic stability.

Vorticity transport

Neglecting the velocity component along the y axis, we find that the z component of the vorticity
inside the boundary layer is given by

ωz(x, y) � −∂u

∂y
= − f ′′(η)√

Rex

U2

ν
= −f ′′(η)

U

δ(x)
. (8.2.27)

We observe that the magnitude of the vorticity at a particular location, η, decreases like the inverse
of the local boundary-layer thickness due to the broadening of the velocity profile.
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The streamwise rate of convection of vorticity across a plane that is perpendicular to the plate
is given by ∫ ∞

0

u(x, y) ωz(x, y) dy � −
∫ ∞

0

u(x, y)
∂u

∂y
dy = −1

2
U2, (8.2.28)

independent of the downstream position, x. Thus, the flux of vorticity across the plate is zero and
viscous diffusion of vorticity does not occur at the wall, in agreement with our earlier observation that
the gradient of the vorticity vanishes at the wall. Consequently, all convected vorticity is generated
at the leading edge where the boundary-layer approximation ceases to be valid. Viscous stresses at
the leading edge somehow generate the proper amount of vorticity necessary for the establishment
of the Blasius self-similar flow.

Displacement thickness

Because of the widening of the streamwise velocity profile, the streamlines inside the Blasius bound-
ary layer are deflected upward, away from the plate, as shown in Figure 8.2.1(a). Consider a
streamline outside the boundary layer, described by the equation y = g(x), and write a mass bal-
ance over a control area that is enclosed by (a) the streamline, (b) a vertical plane at x = 0, (c) a
vertical plane located at a certain distance x, and (d) the flat plate. Since the streamwise velocity
profile is flat at the leading edge located at x = 0, we obtain∫ g(0)

0

U dy =

∫ g(x)

0

u(x, y) dy. (8.2.29)

Straightforward rearrangement yields

U
[
g(x)− g(0)

]
=

∫ g(x)

0

[
U − u(x, y)

]
dy. (8.2.30)

Taking the limit as the streamline under consideration moves farther from the plate, we find that

lim
x→∞

[ g(x)− g(0) ] = δ∗(x), (8.2.31)

where

δ∗(x) ≡
∫ ∞

0

(
1− u

U

)
dy (8.2.32)

is the displacement thickness. Using the numerical solution of the Blasius equation to evaluate the
integral on the right-hand side, we derive the exact expression

δ∗(x) =
(νx
U

)1/2
∫ ∞

0

(
1− df

dη

)
dη = 1.721

(νx
U

)1/2

, (8.2.33)

which shows that the displacement thickness, like the 99% boundary layer thickness, increases like
the square root of the streamwise position, x.

Physically, the displacement thickness represents the vertical displacement of the streamlines
far from from the plate with respect to their elevation at the leading edge. Laboratory experiments
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have shown that the laminar boundary layer undergoes a transition from the laminar to the turbulent
state when the Reynolds number based on the displacement thickness reaches the approximate value
600, that is, when δ∗ ∼ 600 ν/U . At that point, turbulent shear stresses become significant and the
present analysis based on the assumption of laminar flow ceases to be valid.

Iterative improvement

The displacement thickness describes the surface of a fictitious impenetrable but slippery body
that is held stationary in the incident irrotational flow. An improved boundary-layer theory can
be developed by replacing the tangential velocity of the outer flow along the plate, U , with the
corresponding tangential velocity of the irrotational flow past the fictitious body. The irrotational
flow past the fictitious body must be computed after the displacement thickness has been established,
as discussed in this section. This iterative improvement provides us with a venue for describing the
flow in the framework of matched asymptotics (e.g., [277]).

Momentum thickness

It is illuminating to perform a momentum integral balance over the control area employed to define
the displacement thickness [415]. Since the upper boundary of the control volume is a streamline, the
associated tangential flow does not contribute to the rate of momentum input. Assuming that the
normal stresses on the vertical sides are equal in magnitude and opposite in sign, which is justified by
the assumption that the pressure drop across the boundary layer is negligibly small, and neglecting
the traction along the top streamline, we obtain∫ g(0)

0

U (ρU) dy −
∫ g(x)

0

u (ρ u) dy −D(x) = 0, (8.2.34)

where D(x) is the drag force exerted on the plate defined in (8.2.24). Now we make the two upper
limits of integration equal by recasting (8.2.34) into the form

−ρU2
[
g(x)− g(0)

]
− ρ

∫ g(x)

0

(U2 − u2) dy −D(x) = 0. (8.2.35)

Finally, we take the limit as the streamline defining the top of the control area is moved far from
the plate, and use (8.2.30) to obtain the relation

D(x) = ρU2Θ(x), (8.2.36)

where Θ(x) is the momentum thickness defined as

Θ(x) ≡
∫ ∞

0

u

U

(
1− u

U

)
dy. (8.2.37)

Using the numerical solution of the Blasius equation, we find that

Θ(x) =
(νx
U

)1/2
∫ ∞

0

f ′(η) [1− f ′(η)] dη = 0.664
(νx
U

)1/2

, (8.2.38)
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where f ′(η) = df/dη. The momentum thickness, like the displacement thickness and the 99%
boundary-layer thickness, increases as the square root of the streamwise position, x. Differentiating
(8.2.36) with respect to x and using (8.2.24), we derive the relation

dΘ

dx
=

σw
xy

ρU2
, (8.2.39)

which provides us with a method of extracting the wall shear stress from the momentum thickness,
and vice versa, based on available information.

Shape factor

The ratio of the displacement to the momentum thicknesses is called the shape factor,

H ≡ δ∗

Θ
. (8.2.40)

Substituting the right-hand sides of expressions (8.2.33) and (8.2.38) into (8.2.40), we find that, for
the Blasius boundary layer over a flat plate, H = 2.591. Inspecting the definitions of δ∗ and Θ
in equations (8.2.32) and (8.2.37), we find that the shape factor is greater than unity as long as
the streamwise velocity u is less than U within a substantial portion of the boundary layer. The
satisfaction of this restriction is consistent with physical intuition. The smaller the value of H, the
more blunt the velocity profile across the boundary layer.

Relation between the wall shear stress and the momentum thickness

The momentum thickness is related to the wall shear stress, and vice versa, by the integral momentum
balance expressed by equation (8.2.36). Differentiating (8.2.24) with respect to x, we find that

dD(x)

dx
= σw

xy(x). (8.2.41)

Expressing the drag force in terms of the momentum thickness using (8.2.36), we obtain

σw
xy(x) = ρU2 dΘ(x)

dx
. (8.2.42)

If the shear stress is known, the momentum thickness can be computed by integrating with respect
to x. If the momentum thickness is known, the shear stress can be computed by differentiating with
respect to x.

Given the velocity profile across a boundary layer, the wall shear stress can be computed in
two ways: directly by differentiation, and indirectly by evaluating the momentum thickness and then
differentiating it with respect to streamwise position x to obtain the wall shear stress according to
equation (8.2.42). The indirect method is less sensitive to the structure of the velocity profile near
the wall. For the velocity profile that arises by solving the Blasius equation, the two aforementioned
methods are equivalent. To see this, we substitute (8.2.38) into (8.2.42) and obtain (8.2.23). We
conclude that the approximations that led us to the boundary-layer equations are identical to those
that led us to the simplified integral momentum balance (8.2.32).
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Solution by trial profiles

Nothing can stop us from introducing a self-similar velocity profile with some reasonable form that is
either stipulated by physical intuition or suggested by laboratory observation. Our goal is to adjust
an unspecified function involved in this form so that the two methods of computing the wall shear
stress discussed previously in this section are equivalent. A reasonable velocity profile is

u

U
=

df(η)

dη
=

{
sin πy

2Δ(x) for 0 ≤ y ≤ Δ(x),

1 for y ≥ Δ(x),
(8.2.43)

where η ≡ y/Δ(x) and Δ(x) is an unspecified function playing the role of a boundary-layer thickness,
similar to the δ99 thickness introduced in (8.2.22). Note that the velocity distribution (8.2.43) con-
forms with the required boundary and far-field conditions, f ′(0) = 0, f ′′′(0) = 0, and f ′(∞) = 1, but
does not satisfy the Blasius equation; a prime denotes a derivative with respect to η. Differentiating
the profile (8.2.43) with respect to y, we obtain the wall shear stress

σw
xy(x) ≡ μ

(du
dy

)
y=0

=
π

2
μ

U

Δ(x)
. (8.2.44)

The displacement and momentum thicknesses defined in (8.2.32) and (8.2.37) are found to be

δ∗(x) = (1− 2

π
)Δ(x) = 0.363Δ(x), Θ(x) = (

2

π
− 1

2
) Δ(x) = 0.137Δ(x), (8.2.45)

and the shape factor is H = 2.660. It is reassuring to observe that the shape factor is remarkably
close to that arising from the exact solution of the Blasius equation, H = 2.591.

Substituting the expressions for the momentum thickness and wall shear stress into (8.2.42),
we derive an ordinary differential equation for Δ(x),

π

2
μ

U

Δ(x)
= 0.137 ρU2 dΔ(x)

dx
. (8.2.46)

Rearranging and integrating with respect to x subject to the initial condition Δ = 0 at x = 0, we
find that

Δ(x) = 4.80
(νx
U

)1/2

. (8.2.47)

Substituting this expression into (8.2.44) and (8.2.45), we find that

σw
xy(x) =

0.327√
Rex

ρU2, δ∗(x) = 1.4043
(νx
U

)1/2

, Θ(x) = 0.8544
(νx
U

)1/2

. (8.2.48)

These expressions are in excellent agreement with their exact counterparts shown in (8.2.23), (8.2.33),
and (8.2.38). However, the agreement is fortuitous and thus atypical of the accuracy of the approx-
imate method (Problem 8.2.2).
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Figure 8.2.2 (a) Illustration of the Sakiadis boundary layer developing over a semi-infinite belt trans-
lating in an otherwise quiescent fluid. (b) Graphs of the self-similar streamwise velocity profile
u/V = f ′ (solid line), its integral f (dashed line), and derivative f ′′ (dotted line).

8.2.2 Sakiadis boundary layer on a moving flat surface

Sakiadis investigated the flow due to the translation of a semi-infinite belt with velocity V along
the x axis normal to a vertical stationary wall, as illustrated in Figure 8.2.2(a) [360, 361]. At high
velocities, a boundary layer is established over the belt, while the fluid is quiescent far from the
belt. The Sakiadis boundary layer is the mirror image of the Blasius boundary layer established
in streaming flow over a stationary plate discussed in Section 8.2.1, in that the wall and far-field
velocities play opposite roles.

Similarity solution

Carrying out the boundary-layer analysis, we find that the flow in the Sakiadis boundary layer is
governed by the Blasius ordinary differential equation (8.2.9), where the belt velocity, V , is used in
place of the free-stream velocity, U , in the similarity variable

η ≡ y

δ(x)
=
( V

νx

)1/2

y. (8.2.49)

The function f(η) satisfies the boundary conditions f(0) = 0 and f ′(0) = 1 and the far-field condition
f ′(∞) = 0. The solution can be found using the shooting method discussed in Section 8.2.1 for the
Blasius boundary layer. Numerical computations show that the far-field condition is satisfied when
f ′′(0) = −0.443748.

The profile of the streamwise velocity, u/V = f ′(η), is drawn with the solid line in Figure
8.2.2(b) along with the profiles of f(η) and f ′′(η), drawn with the dashed and dotted lines. As
in the case of the Blasius boundary layer, the curvature of the velocity profile is zero at the wall.
The 0.01% boundary-layer thickness, δ0.01, is defined as the elevation where u/V = 0.01. Using the
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numerical, solution, we find that

δ0.01 = 6.37
(νx
V

)1/2

. (8.2.50)

Displacement thickness, momentum thickness, and wall shear stress

The displacement and momentum thicknesses of the Sakiadis boundary layer are defined as

δ∗ ≡
∫ ∞

0

u

V
dy, Θ ≡

∫ ∞

0

( u

V

)2

dy. (8.2.51)

Using the numerical solution, we find that

δ∗ = 1.616
(νx
V

)1/2

, Θ = 0.888
(νx
V

)1/2

. (8.2.52)

Performing a momentum integral balance, we find that the drag force exerted on the moving plate
from the origin up to a certain position, x, is given by

D(x) ≡
∫ x

0

σw
xy(ξ) dξ = ρV 2Θ(x). (8.2.53)

The wall shear stress is given by

σw
xy = ρV 2 dΘ

dx
=

0.444√
Rex

ρ V 2, (8.2.54)

where Rex = V x/ν is the Reynolds number defined with respect to the belt velocity, V .

In fact, the velocity profile is reasonably well approximated with the complementary error
function, u/V � erfc(η/2). The corresponding numerical coefficients on the right-hand sides of
(8.2.52) are 1.128 and 0.856 [361].

8.2.3 Spreading of a two-dimensional jet

To illustrate further the application of boundary-layer theory, we consider the spreading of a sym-
metric two-dimensional jet discharging from a slit along the x axis into an infinite pool of quiescent
fluid, as shown in Figure 8.2.3. A free boundary layer whose thickness increases with streamwise
position, x, is established along the midplane, y = 0.

Writing a momentum integral balance over an infinite control area with two parallel sides
perpendicular to the x axis, we find that the momentum integral,

M = ρ

∫ ∞

−∞

u2 dy, (8.2.55)

is constant, independent of x. Motivated by this observation and carrying out a dimensional analysis,
we express the stream function in the form

ψ =
(Mν

ρ

)1/3

x1/3 f(η), (8.2.56)



8.2 Boundary layers in nonaccelerating flow 653

x

y

Figure 8.2.3 Illustration of a boundary layer developing due to the spreading of a two-dimensional or
axisymmetric jet discharging along the x axis into a quiescent ambient fluid.

where f is a dimensionless function and

η ≡
(M
νμ

)1/3 y

x2/3
(8.2.57)

is a dimensionless similarity variable. These expressions reveal that the boundary-layer thickness is
proportional to x2/3, while the centerline velocity decreases like x−1/3. In contrast, the Blasius and
Sakiadis boundary layer thicknesses are proportional to x1/2.

Making substitutions in the steady version of the Prandtl boundary-layer equation (8.1.12)
with U set to zero, we obtain a nonlinear homogeneous ordinary differential equation,

f ′′′ +
1

3
ff ′′ +

1

3
f ′2 = f ′′′ +

1

3
(ff ′)′ = 0, (8.2.58)

accompanied by the boundary conditions f(0) = 0, f ′′(0) = 0, and the far-field condition f ′(∞) = 0,
where a prime denotes a derivative with respect to η. The integral constraint (8.2.55) requires that∫ ∞

−∞

f ′2 dη = 1. (8.2.59)

The solution can be found by analytical methods and is given by

f(η) = 6α tanh(αη), (8.2.60)

where α = 1/481/3. The axial volumetric flow rate per unit width is given by

Q(x) =

∫ ∞

−∞

u dy = 12α
(Mνx

ρ

)1/3

. (8.2.61)

We observe that Q(x) increases in the streamwise direction due to the entrainment of ambient fluid.
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Problems

8.2.1 Blasius boundary layer

Show that the streamwise velocity component, u, is constant inside the Blasius boundary layer along
a parabola described by x = αy2, where α is a constant.

8.2.2 Von Kármán approximate method

Assume that the velocity profile inside a boundary layer is given by u/U = tanh
(
y/Δ(x)

)
instead

of that shown in (8.2.43). Show that the effective boundary-layer thickness, wall shear stress,
displacement thickness, and momentum thickness are given by the right-hand sides of equations
(8.2.47) and (8.2.48), except that the numerical coefficients on the right-hand sides are equal to
2.553, 0.392, 1.770, and 0.664, respectively, ([427], p. 247). Discuss the accuracy of these results
with reference to the exact solution.

8.2.3 Shear layer

Consider the flow between two parallel streams that merge along the x axis with velocities U1 and
U2. The stream function can be expressed in the form ψ = (νx)1/2f(η), where f is a dimensionless
function, η = y/δ, and δ = (νx/U1)

1/2. Show that, in the boundary-layer approximation, the
function f satisfies the Blasius equation and derive appropriate boundary conditions.

8.2.4 Boundary layer on a moving flat surface

Perform the boundary-layer analysis of the combined Blasius–Sakiadis boundary layer with an ar-
bitrary streaming incident velocity, U , and arbitrary wall velocity, V .

Computer Problem

8.2.5 Blasius and Sakiadis boundary layers

(a) Solve the Blasius problem using a method of your choice. Compute and display the velocity
profile shown in Figure 8.2.1(b).

(b) Solve the Sakiadis problem using a method of your choice. Compute and display the velocity
profile shown in Figure 8.2.2(b).

8.3 Boundary layers in accelerating or decelerating flows

Having examined the boundary layer on a semi-infinite flat plate that is aligned with a streaming
(uniform) incident flow or translates in an otherwise quiescent fluid, distinguished by a constant far-
field or tangential velocity, we proceed to consider situations where the incident or boundary velocity
exhibits acceleration or deceleration with an accompanying favorable or adverse pressure gradient.
Examples of physical circumstances where this occurs are illustrated in Figure 8.3.1. In related
applications, the boundary layer is due to the stretching of a planar sheet with a specified in-plane
velocity. In this section, we will discuss the classical Falkner–Skan boundary layer developing over a
plate in accelerating or decelerating flow, and then address an analogous boundary layer developing
over a stretching surface in steady or unsteady flow.
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Figure 8.3.1 Examples of boundary layers in accelerating or decelerating flow. (a, b) Flow past a
wedge-shaped body and (c) streaming flow past a flat plate at a finite angle of attack.

8.3.1 Falkner–Skan boundary layer

The tangential component of the velocity of the outer flow responsible for the Falkner–Skan boundary
layer exhibits a power-law dependence on the streamwise position along a flat boundary, x,

U(x) = ξxm, (8.3.1)

where ξ is a positive dimensional coefficient and m is a positive or negative exponent [121]. When
m = 0, we recover the Blasius flow over a semi-infinite flat plate at zero angle of attack. When
m = 1, we obtain orthogonal stagnation-point flow against a flat plate. Intermediate values of
m correspond to accelerating symmetric flow past a wedge with semi-angle α = πm/(m + 1), as
illustrated in Figure 8.3.1(a).

Differentiating the outer velocity described by (8.3.1), we obtain an expression the streamwise
acceleration of the outer flow

dU

dx
= mξxm−1, (8.3.2)

which shows that the outer flow accelerates when m > 0 and decelerates when m < 0. In the first
case, the continuity equation requires that the normal derivative of the velocity component of the
outer flow normal to the boundary, V , is negative, ∂V/∂y < 0. Since V is zero at the wall, it must
be negative at the edge of the boundary layer. The motion of the fluid normal to the boundary
contains the vorticity toward the boundary, thereby restricting the growth of the boundary layer.
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Substituting (8.3.2) into the boundary-layer equation (8.1.12), we obtain the specific form

u
∂u

∂x
+ v

∂u

∂y
= ξ2mx2m−1 + ν

∂2u

∂y2
. (8.3.3)

Working as in Section 8.2 for the Blasius boundary layer, we identify the characteristic length L
with the current streamwise position, x, and use (8.1.7) to write

δ(x) ∼
( νx

U(x)

)1/2

=
(ν
ξ

)1/2

x(1−m)/2. (8.3.4)

The exponent (1−m)/2 determines the rate of spatial growth of the boundary layer in accelerating
or decelerating flow.

Similarity solution

Next, we postulate that the velocity profile across the boundary is self-similar, that is, u is a function
of the similarity variable

η ≡ y

δ(x)
= y

(U(x)

νx

)1/2

= y
( ξ

νx1−m

)1/2

, (8.3.5)

and write

u(x, y) = U(x)F (η), (8.3.6)

where F (η) is a dimensionless function. This self-similar velocity profile can be derived from the
stream function shown in (8.2.5), repeated here for convenience,

ψ(x, y) = (Uνx)1/2 f(η), (8.3.7)

where U(x) is given in (8.3.1) and F (η) = f ′(η). Differentiating (8.3.7) and using the relations

∂η

∂x
=

m− 1

2

y

x

( ξ

νx1−m

)1/2

,
∂η

∂y
=
( ξ

νx1−m

)1/2

, (8.3.8)

we obtain the velocity components

u(x, y) =
∂ψ

∂y
= U(x)

df

dη
= ξxm df

dη
(8.3.9)

and

v(x, y) = −∂ψ

∂x
=

1

2
(νξxm−1)1/2 [(1−m) η

df

dη
− (1 +m) f ]. (8.3.10)

Further differentiation provides us with expressions for the derivatives of the velocity involved in the
boundary-layer equation,

∂u

∂x
= ξmxm−1 df

dη
+ U

d2f

dη2
∂η

∂x
,

∂u

∂y
= U

d2f

dη2
∂η

∂y
,

∂2u

∂y2
= U

d3f

dη3

(∂η
∂y

)2

. (8.3.11)
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Substituting these expressions into (8.3.3), we derive a third-order nonlinear inhomogeneous ordinary
differential equation for the function f ,

f ′′′ +
1

2
(m+ 1) ff ′′ −mf ′2 +m = 0. (8.3.12)

The boundary and far-field conditions require that f(0) = 0, f ′(0) = 0, and f ′(∞) = 1. When
m = 0, equations (8.3.9), (8.3.10), and (8.3.12) reduce to the Blasius equations (8.2.8) and (8.2.9).
When m = 1, we obtain equation (5.6.16), providing us with an exact solution to the equation of
motion describing orthogonal stagnation-point flow.

Velocity profile

Applying the Falker–Skan boundary-layer equation (8.3.12) at the wall, y = 0, and enforcing the
aforementioned boundary conditions, we find that f ′′′(0) = −m, which is positive when m < 0,
corresponding to decelerating flow. Thus, the curvature of the velocity profile at the wall is positive
in a decelerating flow. Noting that f ′′′ must become negative at a sufficiently high value of η
for the streamwise velocity f ′ to tend to a constant value, reveals the presence of an inflection
point. In Chapter 9, we will see that the inflection point renders the boundary layer susceptible to
hydrodynamic instability mediated by the growth of small perturbations.

Numerical solution

Since boundary conditions are specified at both ends of the solution domain, [0,∞), we encounter
a two-point boundary-value problem involving a third-order differential equation. To solve the
Falkner–Skan equation, we rename x1 = f , denote the first and second derivatives of the function f
as x2 ≡ df/dη and x3 ≡ dx2/dη = d2f/dη2, and decompose the third-order equation into a system
of three first-order nonlinear equations,

dx1

dη
= x2,

dx2

dη
= x3,

dx3

dη
= −1

2
(m+ 1)x1x3 +mx2

2 −m. (8.3.13)

The accompanying boundary and far-field conditions are shown in (8.2.17). Working as in the case of
the Blasius equation, we implement Newton’s method by defining the derivatives (8.2.18) satisfying
the initial conditions (8.2.20). Differentiating equations (8.3.13) with respect to x3(0), we obtain

dx4

dη
= x5,

dx5

dη
= x6,

dx6

dη
= −1

2
(m+ 1) (x4x3 + x1x6) + 2mx2x5. (8.3.14)

The shooting method is implemented by guessing a value for x3(η = 0), integrating equations (8.3.13)
and (8.3.14) with the aforementioned initial conditions, and replacing the guessed value, x3(η = 0),
with an updated value computed using formula (8.2.21).

The solution for m = 1, corresponding to orthogonal stagnation-point flow, was obtained in
Section 5.6.1. Numerical solutions for other values of m have been presented by a number of authors
following the original contributions of Hartree [170] and Stewartson [388]. A unique solution branch
is found when m > 0, corresponding to accelerating flow, and multiple solution branches are found
when m < 0, corresponding to decelerating flow [120, 427]. In the case of decelerating flow, the
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Figure 8.3.2 (a) Graphs of the wall shear stress coefficient x3(0) = f ′′(0) (solid line), coefficient α

pertaining to the displacement thickness (dashed line), and coefficient β pertaining to the momen-
tum thickness (dotted line). (b) Velocity profiles across the Falkner–Skan boundary layer: from
bottom to top, m = 1.8 (dotted line), 1.6, 1.4, . . . 0.4, 0.3, 0.2, 0.1, 0.0 (dashed line representing
the Blasius boundary layer), −0.05, −0.08, and −0.0904.

solution that appears to be most physical relevant is retained. Results for x3(0) obtained using the
shooting method discussed previously in this chapter are shown with the solid line in Figure 8.3.2(a).
Velocity profiles expressed by the derivative f ′(η) are shown in Figure 8.3.2(b) for several values of
m. The profiles for m < 0, corresponding to decelerating flow, exhibit an inflection point near the
wall.

Wall shear stress, vorticity transport, displacement and momentum thicknesses

The wall shear stress is found by differentiating the streamwise velocity profile and evaluating the
resulting expression at the wall, finding

σw
xy(x) = μ

(∂u
∂y

)
y=0

= ρ
√
ν f ′′(0) ξ3/2 x(3m−1)/2. (8.3.15)

We observe that, when m = 1/3, the shear stress is independent of the streamwise position, x;
when m > 1/3, the shear stress increases with the streamwise position; when m < 1/3, the shear
stress decreases with the streamwise position; when m = 1, corresponding to orthogonal stagnation-
point flow, the shear stress increases linearly with the streamwise position; when m = −0.0904,
corresponding to decelerating flow, f ′′(0) = 0 and the shear stress, and thus the skin friction, vanish
uniformly along the wall. The rate of convection of vorticity across a plane that is perpendicular to
the wall is given by the right-hand side of (8.2.28). Because U depends on the streamwise position,
vorticity must diffuse across the wall in order to satisfy the vorticity balance at every x station.
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The displacement and momentum thicknesses defined in equations (8.2.32) and (8.2.37) are
given by

δ∗(x) ≡
∫ ∞

0

(
1− u

U

)
dy = α

(νx
U

)1/2

= α
(ν
ξ

)1/2

x(1−m)/2 (8.3.16)

and

Θ(x) ≡
∫ ∞

0

u

U

(
1− u

U

)
dy = β

(νx
U

)1/2

= β
(ν
ξ

)1/2

x(1−m)/2, (8.3.17)

where

α =

∫ ∞

0

(1− f ′) dη, β =

∫ ∞

0

f ′(1− f ′) dη (8.3.18)

are dimensionless coefficients dependent on m, plotted with the dashed and dotted lines in Figure
8.3.2(a). When m > 1, both δ∗ and Θ decrease in the streamwise direction due to the acceleration
of the incident flow. When m < 1, both δ∗ and Θ increase in the streamwise direction due to
the deceleration of the incident flow. When m = 1, corresponding to orthogonal stagnation-point
flow, the displacement and momentum thicknesses are constant along the wall. Physically, viscous
diffusion of vorticity is balanced by convection against the flat plate.

8.3.2 Steady flow due to a stretching sheet

In Section 8.2.2, we introduced the Sakiadis boundary layer as the mirror image of the Blasius
boundary layer satisfying complementary boundary conditions for the plate and far-flow velocities.
A similar analogy can be made between the Falkner–Skan boundary layer and the boundary layer
developing over a semi-infinite stretching elastic sheet emerging from a vertical slit into an otherwise
quiescent fluid along the x axis, as illustrated in Figure 8.2.2(a). In the generalized Sakiadis boundary
layer, the x component of the velocity at the surface of the sheet, located at y = 0, is described by
the power law

V (x) = ξxm, (8.3.19)

where ξ is the constant rate of extension and m is a positive or negative exponent.

Similarity solution

As a preliminary, we introduce the similarity variable η defined in (8.3.5), where the sheet velocity,
V (x), is used in place of the far-field velocity, U(x),

η ≡ y

δ(x)
= y

( V

νx

)1/2

= y
( ξ

νx1−m

)1/2

. (8.3.20)

Performing the boundary-layer analysis in the absence of outer flow, U = 0, we find that the function
f(η) satisfies the homogeneous Falkner–Skan equation

f ′′′ +
1

2
(m+ 1) ff ′′ −mf ′2 = 0, (8.3.21)
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Figure 8.3.3 (a) Graphs of the negative of the wall shear stress coefficient −x3(0) = −f ′′(0) (solid
line), coefficient α pertaining to the displacement thickness (dashed line), and coefficient β per-
taining to the momentum thickness (dotted line). (b) Velocity profiles across the boundary layer
above a stretching sheet: from bottom to top, m = 1.8 (dotted line), 1.6, 1.4, 1, 2, 1.0 (dot-dashed
line), 0.8, . . ., 0.0 (dashed line representing the Sakiadis boundary layer), −0.10,−0.20, −0.28,
and −0.33.

where a prime denotes a derivative with respect to η. The boundary and far-field conditions require
that f(0) = 0, f ′(0) = 1, and f ′(∞) = 0. When m = 0, we obtain the Blasius equation describing
the Sakiadis boundary layer over an inextensible belt. When m = 1, we obtain the homogeneous
Hiemenz equation (5.6.32), which is satisfied by Crane’s exact solution of the unsimplified Navier–
Stokes equation, f(η) = 1− e−η, as discussed in Section 5.6.3.

Solutions for other values of m computed by a shooting method are shown in Figure 8.3.3.
The wall shear stress tends to zero at a critical yet unphysical negative value of m. Applying (8.3.21)
at the wall, y = 0, and enforcing the aforementioned boundary conditions, we find that f ′′′(0) = m,
which is negative when m < 0, corresponding to decelerating flow. Thus, the curvature of the
velocity profile at the wall is negative in a decelerating flow. Since f ′′′ must become positive as η
tends to infinity for the streamwise velocity f ′ to decay to zero, we infer the presence of an inflection
point in the velocity profile. In Chapter 9, we will see that the inflection point renders the boundary
layer susceptible to hydrodynamic instability mediated by the growth of small perturbations.

Displacement and momentum thicknesses

The displacement and momentum thicknesses defined in equations (8.2.51) are given by

δ∗(x) ≡
∫ ∞

0

u

V
dy = α

(νx
V

)1/2

= α
(ν
ξ

)1/2

x(1−m)/2 (8.3.22)
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and

Θ(x) ≡
∫ ∞

0

( u

V

)2

dy = β
(νx
V

)1/2

= β
(ν
ξ

)1/2

x(1−m)/2, (8.3.23)

where

α =

∫ ∞

0

f ′ dη = f(∞), β =

∫ ∞

0

f ′2 dη (8.3.24)

are dimensionless coefficients plotted with the dashed and dotted lines in Figure 8.3.3(a) against
the exponent, m. When m > 1, both δ∗ and Θ decrease in the streamwise direction due to the
severe stretching of the sheet. When m < 1, both δ∗ and Θ increase in the streamwise direction
due to the deceleration of the sheet. When m = 1, corresponding to the Crane boundary layer, the
displacement and momentum thicknesses are constant over the sheet.

8.3.3 Unsteady flow due to a stretching sheet

Next, we consider a class of unsteady boundary layers generated by the time-dependent in-plane
stretching of an elastic sheet occupying the positive part of the x axis in an otherwise quiescent fluid,
as shown in Figure 8.2.2(a). The flow inside the boundary layer attached to the sheet is governed
by the continuity equation (8.1.1) and the unsteady boundary-layer equation (8.1.12) in the absence
of an outer potential flow,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
. (8.3.25)

To simplify the analysis, we describe the flow in terms of an unsteady stream function, ψ(x, y, t),
defined in the usual way such that u ≡ ux = ∂ψ/∂y and v ≡ uy = −∂ψ/∂x.

Similarity solution

We are interested in situations where the sheet velocity, V (x, t) = u(x, y = 0, t), allows for a similarity
solution such that

ψ(x, y, t) = tκψ̃(x̃, ỹ), x̃ =
x

tα
, ỹ =

y

tβ
, (8.3.26)

where the exponents κ, α, and β are determined as part of the solution and a tilde indicates a
similarity variable. The two velocity components are given by

u =
∂ψ

∂y
= tκ−β ∂ψ̃

∂ỹ
, v = −∂ψ

∂x
= −tκ−α ∂ψ̃

∂x̃
. (8.3.27)

Substituting these expressions along with the expressions

∂u

∂t
= tδ−β−1

(
(δ − β)

∂ψ̃

∂ỹ
− αx̃

∂2ψ̃

∂x̃∂ỹ
− βỹ

∂2ψ̃

∂ỹ2

)
,

∂u

∂x
= tδ−α−β ∂2ψ̃

∂x̃∂ỹ
, (8.3.28)

and

∂u

∂y
= tκ−2β ∂2ψ̃

∂ỹ2
,

∂2u

∂y2
= tκ−3β ∂3ψ̃

∂ỹ3
, (8.3.29)
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in the boundary-layer equation (8.3.25), we obtain

(κ− β)
∂ψ̃

∂ỹ
− αx̃

∂2ψ̃

∂x̃∂ỹ
− βỹ

∂2ψ̃

∂ỹ2
+ tκ−α−β+1

( ∂ψ̃

∂ỹ

∂2ψ̃

∂x̃∂ỹ
− ∂ψ̃

∂x̃

∂2ψ̃

∂ỹ2

)
= νt−2β+1 ∂3ψ̃

∂ỹ3
. (8.3.30)

To eliminate the explicit time dependence on both sides of this equation, we require that

β =
1

2
, κ = α− 1

2
, (8.3.31)

and derive a nonlinear partial differential equation for x̃ and ỹ,

(α− 1)
∂ψ̃

∂ỹ
−
(
αx̃− ∂ψ̃

∂ỹ

) ∂2ψ̃

∂x̃∂ỹ
−
(1
2
ỹ +

∂ψ̃

∂x̃

) ∂2ψ̃

∂ỹ2
= ν

∂3ψ̃

∂ỹ3
. (8.3.32)

The no-penetration boundary condition requires that ψ̃(x̃, 0) = 0, and the far-field condition requires
that ∂ψ̃/∂x̃ → 0 and ∂ψ̃/∂ỹ → 0 as ỹ → ∞. The value of α and the choice of further boundary
conditions depend on the specifics of the problem under consideration, as discussed in Sections 8.3.4
and 8.3.5.

Equation (8.3.32) admits the solution ψ̃(x̃, ỹ) = x̃f(ỹ) + ψ̃∞, resulting in an ordinary differ-
ential equation,

ν f ′′′ + (
1

2
ỹ + f )f ′′ + f ′(1− f ′) = 0, (8.3.33)

where ψ̃∞ is a constant and a prime denotes a derivative with respect to ỹ. The no-penetration
condition requires that f(0) = 0, and the far-field condition requires that f(ỹ) decays to zero as ỹ
tends to infinity.

Solution near the origin

We may assume that the general solution near the origin, x̃ → 0, takes the asymptotic form

ψ̃(x̃, ỹ) � x̃qf(η), (8.3.34)

where q is a positive exponent, η = ỹ/x̃� is a similarity variable, and the positive exponent � is
determined as part of the solution. Substituting (8.3.34) into (8.3.32) and simplifying, we find that

[α(1− q + �)− 1] f ′ + (α�− 1

2
) ηf ′′ + x̃q−�−1 [(q − �) f ′2 − q ff ′′] = ν x̃−2� f ′′′. (8.3.35)

This equation is physically acceptable under two complementary conditions. First, setting the power
of x̃ on the right-hand side of (8.3.35) to zero, � = 0, we obtain

νf ′′′ +
1

2
ỹ f ′′ − [α(1− q)− 1] f ′ = q x̃q−1 ( f ′2 − ff ′′ ). (8.3.36)

When q > 1, the right-hand side vanishes as x̃ → 0, yielding a homogeneous integral equation,

νf ′′′ +
1

2
ỹ f ′′ − [α(1− q)− 1] f ′ = 0. (8.3.37)



8.3 Boundary layers in accelerating or decelerating flows 663
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Figure 8.3.4 Illustration of an unsteady boundary layer extending between x = −a(t) and a(t) due
to the spreading of a two-dimensional oil slick at the surface of the ocean.

Alternatively, we require that the power of x̃ on the right-hand side of (8.3.35) matches that of the
last term on the left-hand side, q − �− 1 = −2� or � = 1− q, and obtain

νf ′′′ + q ff ′′ − (2q − 1) f ′2 = x̃2� (2α�− 1)
(
f ′ +

1

2
ηf ′′

)
. (8.3.38)

The right-hand side vanishes as x̃ → 0, yielding the homogeneous Falkner–Skan equation (8.3.21)
with m = 2q−1. The properties of these equations have been investigated with respect to uniqueness
of solution [135, 296, 297].

8.3.4 Gravitational spreading of a two-dimensional oil slick

As an application of the similarity solution derived in Section 8.3.3, we consider the flow due to the
gravitational spreading of a two-dimensional oil slick over the flat surface of an otherwise quiescent
pool of water, as shown in Figure 8.3.4. A thinning film of oil with time-dependent thickness h(y, t)
is confined inside the spilling zone, |x| < a(t). At high Reynolds numbers, an unsteady boundary
layer is established next to the film, while the fluid tends to become quiescent far from the film [60].

Oil flow

The oil phase will be denoted by the superscript or subscript o. To leading order, the x and y
components of the equation of motion inside the oil film take the form

∂σo
xy

∂y
=

∂po
∂x

,
∂po
∂y

= ρog, (8.3.39)

where σo
xy is the shear stress. Integrating the second equation and requiring that the pressure at

the oil–air interface, located at y = −h(x, t), is equal to the atmospheric pressure, patm, we obtain
the oil pressure distribution

po = ρog (y + h) + patm. (8.3.40)

Substituting this expression into the first equation in (8.3.39), and integrating with respect to y
subject to the condition of zero shear stress at the oil–air interface, we obtain the interfacial shear
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stress on the side of the oil,

σo
xy(y = 0) = ρog h

∂h

∂x
. (8.3.41)

A mass balance for the oil provides us with an evolution equation for the film thickness,

∂h

∂t
+

∂(ūoh)

∂x
= 0, (8.3.42)

where ūo(x) is the mean velocity across the oil film. The total amount of floating oil per unit width
in the transverse z direction is

Ao(t) =

∫ a(t)

0

h(x, t) dx. (8.3.43)

Continuity of velocity and shear stress at the oil–water interface requires that

u(y = 0) = uo(y = 0) ≡ V (x), μ
(∂u
∂y

)
y=0

= σo
xy(y = 0) = ρogh

∂h

∂x
, (8.3.44)

where u is the x component of the water velocity.

Similarity solution

Progress can be made by assuming that the boundary layer develops according to the similarity
solution discussed in Section 8.3.3. The edges of the spreading film are located at

x = ±a(t) = ±x̃∗ tα, (8.3.45)

where x̃∗ is a constant to be determined as part of the solution.

Substituting the similarity solution into (8.3.43), stipulating that Ao(t) = qot
n, and rearrang-

ing, we obtain

Ao(t) = qot
n = tα

∫ x̃∗

0

h(x, t) dx̃, (8.3.46)

where qo is a constant coefficient and n is a specified exponent. This equation is satisfied only if

h(x, t) = tn−α h̃(x̃), (8.3.47)

where h̃(x̃) is an unknown function to be determined as part of the solution. Substituting this
expression along with the similarity solution into the interfacial shear stress condition given in the
second equation in (8.3.44), we obtain

μ tκ+3α−2β−2n
(∂2ψ̃

∂ỹ2

)
ỹ=0

= ρog h̃
dh̃

dx̃
. (8.3.48)

To eliminate the explicit time dependence on the left-hand side, we require that the exponent of
time, t, on the left-hand side is zero. Combining this condition with (8.5.36), we obtain

κ =
4n− 1

8
, α =

4n+ 3

8
, β =

1

2
. (8.3.49)
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The interfacial condition (8.3.48) then becomes

dh̃2

dx̃
= 2

μ

ρog

(∂2ψ̃

∂ỹ2

)
ỹ=0

, (8.3.50)

coupling the oil with the water flow.

The similarity solution predicts that the x component of the water velocity is

u = tκ−β ∂ψ̃

∂ỹ
, (8.3.51)

and this motivates expressing the mean oil velocity in the corresponding form

ūo = tκ−β x̃G(x̃) = tκ−β−α xG(x̃) = x

t
G(x̃), (8.3.52)

where G(x̃) is an unknown function. Combining this expression with (8.3.47), we find that

ūo h = tn−1 x̃ h̃(x̃)G(x̃). (8.3.53)

Substituting this expression along with (8.3.47) into the mass balance equation (8.3.42), we obtain
an ordinary differential equation,

d

dx̃

[
x̃(G − α)h̃] + nh̃ = 0. (8.3.54)

When n = 0, this equation is satisfied by the constant function G(x̃) = α. Assuming with good
reason that h̃ is nearly constant except at the leading edge, we derive the more general, albeit
approximate, result

G(x̃) � α− n. (8.3.55)

A numerical solution of the boundary-layer equations using an approximate method based on an
integral momentum balance will be presented in Section 8.4.4.

8.3.5 Molecular spreading of a two-dimensional oil slick

When the thickness of the oil film has reached molecular dimensions, the oil behaves like a surfactant,
affecting the surface tension according to an assumed surface equation of state, γ(h) [135, 297].
Balancing the induced Marangoni traction with the shear stress, we derive the interfacial condition

μ
(∂u
∂y

)
y=0

= −∂γ

∂x
. (8.3.56)

A mass balance over the oil film provides us with an evolution equation for the film thickness

∂h

∂t
+

∂(ush)

∂x
= 0, (8.3.57)
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where us is the surface velocity parallel to the interface. This equation also describes the evolution of
the surface concentration of an insoluble surfactant, Γ. In the preceding and forthcoming equations,
Γ is substituted for h.

In the similarity solution, the film thickness and surface tension are assumed to depend ex-
clusively on the scaled coordinate x̃, so that

h(x, t) = h̃(x̃), γ(x, t) = γ̃(x̃). (8.3.58)

The interfacial condition (8.3.56) requires that

μ tκ+α−2β
(∂2ψ̃

∂ỹ2

)
ỹ=0

= −dγ̃

dx̃
. (8.3.59)

To eliminate the explicit time dependence on the left-hand side, we set κ+ α− 2β = 0. Combining
this equation with (8.3.31), we obtain

κ =
1

4
, α =

3

4
, β =

1

2
. (8.3.60)

The evolution equation (8.3.57) for the film thickness becomes

−3

4
x̃
dh̃

dx̃
+

d

dx̃

[
ψ̃0
ỹ h̃

]
= 0, (8.3.61)

which can be restated as

d

dx̃

[(
ψ̃0
ỹ −

3

4
x̃
)
h̃
]
+

3

4
h̃ = 0, (8.3.62)

where ψ̃0
ỹ ≡ (∂ψ̃/∂ỹ)ỹ=0. Numerical solutions of the boundary-layer equations have been obtained

by finite-difference methods [135, 297].

8.3.6 Arbitrary two-dimensional flow

We return to examining the boundary layer developing over a curved surface in accelerating or
decelerating flow beyond the confines of the Falkner–Skan power law. Smith & Clutter [375] consid-
ered the boundary layer developing along a curved body and regarded the stream function, ψ, as a
function of the arc length along the boundary, l, and scaled transverse position

η =
(U
νl

)1/2

�, (8.3.63)

where � is the arc length in the normal direction. Following Görtler [148], we write

ψ = (Uνl)1/2 f(l, η), (8.3.64)

where f is an unknown function. Substituting this functional form into the boundary-layer equation,
we obtain a third-order partial differential equation,

f ′′′ +
1

2
(m+ 1) ff ′′ −mf ′2 +m = l

(
f ′ ∂f

′

∂l
− f ′′ ∂f

∂l

)
, (8.3.65)
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where m = (l/U) dU/dl and a prime denotes a partial derivative with respect to η. The boundary
and far-field conditions require that f(l, 0) = 0, f ′(l, 0) = 0, and f ′(l,∞) = 1. In the case of the
Falkner–Skan boundary layer, the velocity profile is described by (8.3.1) with l = x and � = y,
the coefficient m is constant, the function f is independent of x and only depends on η, and the
right-hand side of (8.3.65) is identically zero yielding the Falkner–Skan ordinary differential equation
(8.3.12).

Approximating the partial derivatives with respect to l in (8.3.65) with first- or second-order
backward differences, we obtain an ordinary differential equation for f with respect to η that can
be solved subject to the aforementioned boundary conditions using a standard shooting method. In
another implementation of the method, equation (8.3.65) is recast as a system of three first-order
equations with respect to η, which is then integrated using a standard finite-difference method.

Problem

8.3.1 Similarity patching

Develop an algorithm that allows us to integrate the boundary-layer equations by pretending that
the boundary layer consists of a sequence of finite patches of Falkner–Skan boundary layers, where
the exponent m is constant aver each patch [374].

Computer Problems

8.3.2 Falkner–Skan boundary layer

Write a computer program that solves the Falkner–Skan boundary-layer equation using a method
of your choice. Reproduce Figure 8.3.2 and tabulate the corresponding dimensionless coefficients α
and β defined in (8.3.18).

8.3.3 Boundary layer due to a stretching sheet

Write a computer program that solves the homogeneous Falkner–Skan equation for the generalized
Sakiadis boundary layer using a method of your choice. Reproduce the counterpart of Figure 8.3.3.

8.3.4 Method of Smith & Clutter

Derive an ordinary differential equation for the function f with respect to η by approximating the
partial derivatives of f with respect to l in (8.3.65) using second-order backward finite differences.
Discuss the implementation of the method in a computer code.

8.4 Integral momentum balance analysis

Von Kármán [415] developed a powerful and elegant method of computing the flow inside a boundary
layer along a two-dimensional body that is held stationary in an incident flow, based on an integral
momentum balance. The analysis culminates in a partial differential equation with respect to time
and position along the body for a properly defined boundary-layer thickness, such as the displacement
or momentum thickness. In fact, Kármán’s integral formulation is more general and can be applied to
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Figure 8.4.1 A rectangular control volume introduce to perform an integral momentum balance. The
balance provides us with a relation between the displacement thickness, the momentum thickness,
and the wall shear stress.

other types boundary-layer flows. In this section, we discuss the development and implementation
of the method to flow past a solid surface or due to in-plane boundary motion in an otherwise
quiescent fluid. When appropriate, the method will be validated by comparison with exact or
numerical solutions of the boundary-layer equations derived by different methods.

8.4.1 Flow past a solid surface

Consider the boundary layer developing over a flat plate, as shown in Figure 8.4.1. The tangential
component of the outer flow along the surface is denoted by U(x). For simplicity, we assume that the
physical properties of the fluid are uniform throughout the domain of flow. Our point of departure
is the integral momentum balance stated in equation (3.2.9), applied over a control area, Ac, that
is bounded by a contour, C,∫∫

Ac

∂(ρu)

∂t
dA = −

∮
C

(σ − ρu⊗ u) · n dl +

∫∫
Ac

ρg dA, (8.4.1)

where σ is the stress tensor and l is the arc length along C.

Next, we consider a control area confined between two vertical planes located at x1 and x2,
the flat surface located at y = 0, and a horizontal plane located at the elevation y = h, as shown
in Figure 8.4.1. Introducing the Newtonian constitutive equation for the stress tensor, neglecting
the normal viscous stresses expressed by the term 2μ∂ux/∂x or 2μ∂uy/∂y over the vertical and
top planes, and also neglecting gravitational effects, we find that the x component of the integral
momentum balance becomes∫ x2

x1

∫ h

0

ρ
∂u

∂t
dy dx−

∫ h

0

[u(ρu)]x=x1,y dy +

∫ h

0

[u(ρu)]x=x2,y dy

+

∫ x2

x1

[v(ρu)]x,y=h dx =

∫ h

0

(−p)x=x1,y dy −
∫ h

0

(−p)x=x2,y dy −
∫ x2

x1

σw
xy(x) dx. (8.4.2)

Taking the limit as x1 tends to x2, recalling that the pressure is constant across the boundary layer,
setting u(x, y = h) = U(x), and rearranging, we obtain an integro-differential relation,

ρ

∫ h

o

∂u

∂t
dy = h

( ∂p

∂x

)
y=h

− ρ
∂

∂x

∫ h

0

u2 dy − ρU(x)
(
v
)
x,y=h

− σw
xy(x). (8.4.3)
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To reduce the number of unknowns, we eliminate the y velocity at the top plane, v(x, y = h), in
favor of the velocity profile, u, using the continuity equation, setting

(
v
)
x,y=h

= −
∫ h

0

∂u

∂x
(x, y′) dy′. (8.4.4)

Moreover, we use the x component of Euler’s equation (6.5.3) to evaluate the streamwise pressure
gradient, finding

∂p

∂x
= −ρ (

∂U

∂t
+ U

∂U

∂x
). (8.4.5)

Substituting expressions (8.4.4) and (8.4.5) into (8.4.3) and rearranging, we obtain

ρ

∫ h

o

∂(U − u)

∂t
dy = −ρ

∂

∂x

∫ h

0

u(U − u) dy

−ρ
∂

∂x

∫ h

0

U(U − u) dy + ρU
∂

∂x

∫ h

0

(U − u) dy + σw
xy(x), (8.4.6)

which can be interpreted as an evolution law for the momentum deficit expressed by the term
ρ (U − u).

Von Kármán integral momentum balance equation

Now we let the scaled height h/δ tend to infinity and use the definitions of the displacement and
momentum thicknesses stated in equations (8.2.32) and (8.2.37) to derive the von Kármán integral
momentum balance

ρ
∂(Uδ∗)

∂t
+ ρ

∂(U2Θ)

∂x
+ ρ

∂(U2δ∗)

∂x
− ρU

∂(Uδ∗)

∂x
− σw

xy = 0. (8.4.7)

Rearranging, we derive a relation between the displacement thickness, the momentum thickness,
and the wall shear stress in the dimensionless form

1

U2

∂(Uδ∗)

∂t
+

∂Θ

∂x
+ (2Θ + δ∗)

1

U

∂U

∂x
=

σw
xy

ρU2
. (8.4.8)

If the flow is steady, the first term on the left-hand side does not appear. If, in addition, U is
constant, equation (8.4.8) reduces to (8.2.39) describing the Blasius boundary layer developing over
a semi-infinite flat plate that is held stationary in an incident stream at zero angle of attack.

Equation (8.4.8) can be derived from the continuity equation (8.1.1) and the boundary-layer
equation (8.1.12) in a way that bypasses the integral momentum balance [301]. Multiplying the
left-hand side of (8.1.1) by U − u, adding the product to the right-hand side of (8.1.12), using the
continuity equation, integrating the result from y = 0 to ∞, and enforcing the boundary conditions,
we obtain (8.4.8). This derivation ensures that no error is introduced by replacing the boundary-layer
equations with the integral momentum balance.
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Impulsive flow past a semi-infinite plate

As an example, we consider an impulsively started streaming flow with constant velocity U past a
semi-infinite flat plate. Equation (8.4.8) takes the simple form

∂δ∗

∂t
+ U

∂Θ

∂x
=

σw
xy

ρU
. (8.4.9)

At short times, we obtain impulsive flow over a stationary infinite plate, which is the complement
of the flow due to the sudden translation of an infinite plane discussed in Section 5.4.3. A steady
boundary layer described by the Blasius solution is established at long times. A numerical solution
describing the evolution of the flow can be found using the Kármán–Pohlhausen method discussed
in Section 8.4.2, combined with the numerical methods discussed in Chapter 12.

Steady orthogonal stagnation-point flow

In the case of steady orthogonal stagnation-point flow, U = ξx, where ξ is a constant rate of
stretching. In Section 8.3, we found that the boundary-layer thickness is constant, independent of
x. Setting in the steady version of equation (8.4.8) ∂Θ/∂x = 0 and simplifying, we obtain

σw
xy = ρ (2Θ + δ∗) ξ2x. (8.4.10)

Substituting the expressions for the displacement and momentum thickness given in (8.3.16) and
(8.3.17) for m = 1, we find that

σw
xy = ρ

√
ν (2β + α) ξ3/2x, (8.4.11)

which is consistent with (8.3.15) for m = 1, provided that f ′′(0) = 2β +α. Substituting expressions
(8.3.18), we obtain

f ′′(0) =

∫ ∞

0

(−2f ′2 + f ′ + 1) dη. (8.4.12)

To confirm this identity, we recast the Falkner–Skan equation (8.3.12) for m = 1 into the form

f ′′′ +
[
f(f ′ − 1)

]′ − 2f ′2 + f ′ + 1 = 0. (8.4.13)

Integrating and using the boundary and far-field conditions f(0) = 0, f ′(0) = 0, and f ′(∞) = 1,
reproduces (8.4.12).

Injection and suction

If fluid is injected into the flow or withdrawn from the flow through a porous wall with normal
velocity V , the right-hand side of (8.4.8) contains the additional term −V/U , where V is positive in
the case of injection and negative in the case of suction (problem 8.4.1).

8.4.2 The Kármán–Pohlhausen method

Kármán and Pohlhausen implemented an approximate method for computing the boundary-layer
thickness and associated structure of the flow based on the momentum integral balance (8.4.8). The
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main idea is to introduce a meaningful boundary-layer thickness, Δ(x), similar to the δ99 boundary-
layer thickness, and then employ a sensible velocity profile across the boundary layer, u/U = F (η),
where η ≡ y/Δ(x) is a dimensionless similarity variable. At the second stage, we compute Δ(x) to
satisfy the integral momentum balance (8.4.8) for solving a differential equation.

The implementation of the method in the case of flow over a flat plate at zero angle of attack
where F (η) is a quarter of a period of a sinusoidal function, as shown in (8.2.43), was discussed in
Section 8.2. In this section, we illustrate the implementation for arbitrary steady flows.

Pohlhausen polynomials

Pohlhausen described the velocity profile across the boundary layer by a fourth-order polynomial,

u

U
= F (η) =

{
a(x) η + b(x) η2 + c(x) η3 + d(x) η4 for 0 < η < 1,
1 for η > 1,

(8.4.14)

where a(x)–d(x) are four position-dependent coefficients to be computed as part of the solution.
The functional form (8.4.14) satisfies the no-slip boundary condition at the wall corresponding to
η = 0. To compute the four coefficients, we require four equations. First, we demand that the overall
velocity profile is continuous with smooth first and second derivatives at the edge of the boundary
layer corresponding to η = 1, and thus obtain three conditions,

F (η = 1) = 1, F ′(η = 1) = 0, F ′′(η = 1) = 0, (8.4.15)

where a prime denotes a derivative with respect to η. A fourth condition arises by applying the
boundary-layer equation (8.1.13) at the wall located at y = 0, and then using the no-slip and no-
penetration conditions to set the left-hand side to zero. Evaluating the streamwise pressure gradient
using (8.4.5) with the time derivative on the right-hand side set to zero, we obtain

ν
( ∂2u

∂y2

)
y=0

= −UU ′, (8.4.16)

where U ′ ≡ dU/dx. Next, we express the velocity in terms of the function F (η) introduced in
(8.4.14), and obtain

F ′′(η = 0) = −Λ, (8.4.17)

where

Λ(x) ≡ Δ2(x)

ν
U ′ (8.4.18)

is a dimensionless function expressing the ratio of the magnitude of the inertial acceleration forces
in the outer irrotational flow to the magnitude of the viscous forces developing inside the boundary
layer; if dU/dx = 0, then Λ = 0. By definition, the effective boundary-layer thickness Δ(x) is related
to Λ(x) by

Δ(x) ≡
(νΛ
U ′

)1/2

. (8.4.19)
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Figure 8.4.2 (a) Profiles of the Pohlhausen polynomials for Λ = 20, 12 (dashed ), 6, 0,−6,−12, and

−15. (b) Exact (solid line) and approximate (dashed line) values of the Holstein–Bohlen function
λ for the Falkner–Skan boundary layer in accelerating or decelerating flow.

Requiring that the Pohlhausen profile (8.4.14) satisfies equations (8.4.15) and (8.4.17), we obtain

a = 2 +
Λ

6
, b = −Λ

2
, c = −2 +

Λ

2
, d = 1− Λ

6
. (8.4.20)

Substituting these expressions into (8.4.14) and rearranging, we obtain the velocity profile in terms
of the parameter Λ,

u

U
= F (η) =

{
η (2− 2 η2 + η3) + Λ 1

6 η (1− η)3 for 0 < η < 1,
1 for η > 1.

(8.4.21)

A family of profiles for Λ = 20, 12 (dashed line), 6, 0, −6, −12, and −15, is shown in Figure
8.4.2(a). When Λ > 12, corresponding to a strongly accelerating external flow according to (10.5.14),
the profile exhibits an overshooting, which undermines the physical relevance of the fourth-order
polynomial expansion. When Λ = −12, the slope of the velocity profile is zero at the wall and the
flow is on the verge of reversal. At that point, the approximations that led us to the boundary-layer
equations cease to be valid, and the boundary layer is expected to separate from the wall producing
a region of recirculating fluid attached to the wall.

The displacement thickness, momentum thickness, and wall shear stress can be computed in
terms of Δ(x) and Λ(x) using the profiles (8.4.21), and are found to be
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δ∗ =

∫ ∞

0

[
1− F (η)

]
dy = Δ

1

10
(3− 1

12
Λ),

Θ =

∫ ∞

0

F (η)
[
1− F (η)

]
dy = Δ

1

315
(37− 1

3
Λ− 5

144
Λ2),

σw
xy =

μU

Δ

(∂F (η)

∂η

)
η=0

=
μU

Δ
(2 +

1

6
Λ).

(8.4.22)

Expressing Δ(x) in terms of Λ(x) using the definition (8.4.19), we obtain corresponding expressions
in terms of Λ(x) and the known distribution U ′(x). Substituting expressions (8.4.22) into the
momentum integral balance (8.4.8) provides us with a first-order nonlinear ordinary differential
equation for Λ(x) with respect to x. Having solved this equation, we recover the boundary-layer
thickness, Δ(x), using the definition (8.4.19).

Blasius boundary layer

In the case of uniform flow past a semi-infinite flat plate that is held stationary at zero angle of attack,
studied in Section 8.2, U is constant, Λ = 0, and the right-hand side of (8.4.19) is indeterminate.
However, this is only an apparent difficulty. Substituting expressions (8.4.22) into (8.4.8) provides
us with an ordinary differential equation for Δ(x),

Δ
dΔ

dx
=

630

37

ν

U
, (8.4.23)

which can be integrated from the leading edge up to a certain point, x, subject to the initial condition
Δ(x = 0) = 0, to give

Δ(x) = 5.836
(νx
U

)1/2

. (8.4.24)

It is instructive to compare this expression with that shown in (8.2.47), corresponding to a sinusoidal
velocity profile, and note a significant difference in the numerical coefficient on the right-hand side.
Substituting (8.4.24) into (8.4.22), we find that

σw
xy =

0.343√
Rex

ρU2, δ∗ = 1.751
(νx
U

)1/2

, Θ = 0.685
(νx
U

)1/2

, (8.4.25)

which are reasonably close to the exact expressions given in (8.2.23), (8.2.33), and (8.2.38). The
predicted shape factor is H = 2.556.

Holstein–Bohlen function

In the case of the Blasius boundary layer, we were able to derive an analytical solution for Δ(x).
Under more general circumstances, the solution must be obtained by numerical methods. It is
convenient to introduce the dimensionless Holstein–Bohlen function

λ(x) ≡ Θ2(x)

Δ2(x)
Λ(x) =

Θ2(x)

ν
U ′(x), (8.4.26)
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whose physical interpretation is similar to that of Λ defined in (8.4.18). Using the expression for the
momentum thickness given in (8.4.22), we obtain a relationship between λ and Λ,

λ =
1

3152
Λ (37− 1

3
Λ− 5

144
Λ2)2. (8.4.27)

The value Λ = −12 corresponds to λ = −0.15673 where the boundary layer is expected to separate,
as shown in Figure 8.4.2(a). In the case of the Falkner–Skan boundary layer, we substitute into
(8.4.26) the velocity distribution U = ξxm and the analytical solution for the momentum thickness
given in (8.3.17), and find that λ = mβ2, which is plotted with the solid line in Figure 8.4.2(b). As
the exponent m increases from zero, yielding a strongly accelerating flow, λ increases and tends to
a constant.

Numerical solution

To expedite the numerical solution, we multiply both sides of the momentum integral balance (8.4.8)
at steady state by Θ, and rearrange to obtain

d

dx

( λ

U ′

)
≡ 1

ν

dΘ2

dx
= 2

T (λ)

U
, (8.4.28)

where

T (λ) ≡ S(λ)−
[
2 +H(λ)

]
λ, (8.4.29)

H ≡ δ∗/Θ is the dimensionless shape factor, and S(λ) is a dimensionless shear function defined as

S(λ) ≡ Θ

μU
σw
xy. (8.4.30)

Physically, the shear function expresses the ratio between the wall shear stress and the average value
of the shear stress across the boundary layer, and is thus another measure of the bluntness of the
boundary-layer velocity profile. Using expressions (8.4.25), we find that

H =
315

10

3− 1
12 Λ

37− 1
3 Λ− 5

144 Λ
2
, S =

1

315
(2 +

Λ

6
) (37− 1

3
Λ− 5

144
Λ2), (8.4.31)

where Λ can be expressed in terms of λ using equation (8.4.27).

In the case of the Blasius or Falkner–Skan boundary layer, equation (8.4.28) is satisfied if λ
is a zero of the nonlinear algebraic equation

2mT (λ) + (m− 1)λ = 0. (8.4.32)

A physically acceptable solution branch is shown with the dashed line in Figure 8.4.2(b). When
m = 1, corresponding to orthogonal stagnation-point flow, we find that λ = 0.0770356 corresponding
to Λ = 7.0523231, indicated by the reclusive circle in Figure 8.4.2(b).

More generally, equation (8.4.28) must be solved by numerical methods. The numerical pro-
cedure involves the following steps:
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1. Given the value of λ at a particular position, x, compute the corresponding value of Λ by
solving the nonlinear algebraic equation (8.4.27).

2. Evaluate the functions S and H using expressions (8.4.31).

3. Compute the right-hand side of (8.4.28) to obtain the rate of change of the ratio on the left-
hand side with respect to x.

4. Advance the value of λ over a small step, Δx.

5. Return to Step 1 and repeat for another cycle.

The numerical integration typically begins at a stagnation point where the tangential velocity U
vanishes and the right-hand side of (8.4.28) is undefined. The initial value of λ is found by solving
equation (8.4.32) with a proper value for the exponent m pertinent to the flow near the stagnation
point. Although the assumptions that led us to the boundary-layer equations cease to be valid at
the stagnation point where the local flow is not nearly unidirectional, starting the integration at a
stagnation point does not undermine the validity of the solution.

Evaluation at a stagnation point

To evaluate the right-hand side of (8.4.28) at a stagnation point located at x = 0, we apply the
l’Hôpital rule to evaluate the fraction and obtain

d

dx

( λ

U ′

)
= 2

dT

dx

1

U ′
= 2

dT

dx

1

U ′

dλ

dx
, (8.4.33)

where all terms are evaluated at x = 0. Rearranging the last term, we obtain

d

dx

( λ

U ′

)
= 2

dT

dλ

[ d

dλ

( λ

U ′

)
+ λ

U ′′

(U ′)2

]
. (8.4.34)

Combining the left-hand side with the first term inside the square brackets on the right-hand side,
we find that

d

dx

( λ

U ′

)
=

2λ

1− 2T ′
T ′ U ′′

(U ′)2
, (8.4.35)

where T ′ = dT/dλ. Evaluating the expression on the right-hand side using the definition of T (λ),
we extract the required initial value

d

dx

( λ

U ′

)
x=0

= −0.0652
( U ′′

(U ′)2

)
x=0

, (8.4.36)

where we have assumed that U ′ is nonzero and finite at the origin.

Boundary layer around a curved body

The Kármán–Pohlhausen method was developed with reference to a planar boundary, with the x
coordinate increasing along the boundary in the direction of the velocity of the outer flow. To tackle
the more general case of a curved boundary, we simply replace x with the arc length along the
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boundary, l, measured in the direction of the tangential velocity of the incident flow, and begin the
integration at a stagnation point. A difficulty arises at the critical point where the acceleration dU/dl
becomes zero or infinite. However, the ambiguity can be removed by carrying out the integration
at that point using the Falkner–Skan similarity solution with a proper value for the exponent m
(Problem 8.4.4).

Boundary layer around a cylinder in streaming flow

As an application, we consider streaming flow past a stationary circular cylinder of radius a with
vanishing circulation around the cylinder, as shown in Figure 8.4.3(a). Far from the cylinder, the
flow occurs toward the negative direction of the x axis and the velocity tends to the uniform value
−U∞ ex, where U∞ > 0 is the magnitude of the streaming flow and ex is the unit vector along the x
axis. Using the velocity potential for irrotational flow past a circular cylinder with zero circulation,
given in (7.9.9), we find that the tangential component of velocity of the outer flow over the surface
of the cylinder is

Uθ(θ) =
( ∂φ

∂θ

)
r=a

= 2U∞ sin θ, (8.4.37)

where θ is the polar angle measured around the center of the cylinder in the counterclockwise
direction, as shown in Figure 8.4.3(a). The arc length around the cylinder measured from the front
stagnation point is l = aθ. The required derivatives of the velocity with respect to arc length are

dUθ

dl
=

1

a

dUθ

dθ
= 2

U∞

a
cos θ,

d2Uθ

dl2
=

1

a2
d2Uθ

dθ2
= −2

U∞

a2
sin θ. (8.4.38)

Equation (8.4.36) yields

d

dl

( λ

dUθ/dl

)
l=0

= 0, (8.4.39)

which is used to start up the computations.

Graphs of the solution are shown in Figure 8.4.3(b–e). The velocity profile across the bound-
ary layer at different stations around the cylinder can be inferred from the scaled Pohlhausen profiles
shown in Figure 8.4.2 using the local value of Λ. The shear function becomes negative when separa-
tion occurs, even though the average value of the shear stress across the boundary layer is positive.
At the front stagnation point, the values of all functions shown in Figure 8.4.3 are close to those
predicted by the Falkner–Skan similarity solution for orthogonal stagnation-point flow with m = 1
and shear rate ξ = 2U∞/a.

The numerical solution reveals that Λ = −12 at the meridional angle θ = 109.5◦. At that
point, the shear stress becomes zero and the boundary layer is expected to separate. Comparing this
result with the experimentally observed value θ = 80.5◦, we find a serious disagreement attributed
to the deviation of the actual outer flow from the idealized potential flow described by (7.9.9), due to
the presence of a wake. To improve the solution, we may describe the tangential velocity distribution
Uθ by interpolation based on data collected in the laboratory. When this is done, the predictions of
the boundary-layer analysis are in excellent agreement with laboratory observation ([427], p. 323).



8.4 Integral momentum balance analysis 677

(a)

a

θ
x

(b) (c)

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

θ/π

Λ
/1

2,
   

   
  λ

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

θ/π

Δ
,  

 δ
,  

 Θ

(d) (e)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

θ/π

σ
xy

,  
   

  S

0 0.1 0.2 0.3 0.4 0.5 0.6
2

2.5

3

3.5

4

θ/π

H

Figure 8.4.3 (a) Illustration of the Prandtl boundary layer around a circular cylinder of radius a
held stationary in an incident streaming flow with velocity V . (b) Distribution of the dimensionless
parameters 1

12 Λ (solid line) and λ (dashed line) computed by the von Kármán-Pohlhausen method.
(c) Boundary-layer thicknessΔ (solid line), displacement thickness δ∗ (dashed line), and momentum
thickness Θ (dotted line); all are reduced by (νa/V )1/2. (d) Distribution of the wall shear stress
reduced by μV/a (solid line) and shape factor S (dashed line). (e) Distribution of the shear
function, H.



678 Introduction to Theoretical and Computational Fluid Dynamics

Extensions and improvements

The Kármán–Pohlhausen method described in this section can been improved in several ways. In
one extension, the fourth-order Pohlhausen polynomial is replaced by another function based on the-
oretical arguments or laboratory observations. For example, a high-degree polynomial that satisfies
additional boundary conditions at the wall and at the edge of the boundary layer can be employed
(Problem 8.4.2). In another extension, the shear and shape functions S(λ) and H(λ) are described
by empirical correlations.

Thwaites function

Thwaites proposed replacing the function T (λ) defined in (8.4.29) by the linear function T (λ) =
0.45λ− 6.0, motivated by laboratory observations [402]. An analytical solution can be obtained,

Θ2(x) = Θ2(x0) +
0.45ν

U6

∫ x

x0

U5(ξ) dξ, (8.4.40)

where x0 is an arbitrary point (Problem 8.4.3). The predictions of this equation are in excellent
agreement with experimental observations.

8.4.3 Flow due to in-plane boundary motion

A momentum integral balance can be written for the boundary layer developing over a flat surface
due to tangential boundary motion with velocity V (x, t) in an otherwise quiescent fluid. An example
is the boundary layer due to a stretching sheet discussed in Sections 8.3.2 and 8.3.3. The counterpart
of the von Kármán equation (8.4.8) is

1

V 2

∂(V δ∗)

∂t
+

∂Θ

∂x
+

2

V

∂V

∂x
Θ = −

σw
xy

ρV 2
, (8.4.41)

where δ∗ and Θ are the displacement and momentum thicknesses defined in (8.2.51). Equation
(8.4.41) can be derived by multiplying the left-hand side of the continuity equation (8.1.1) by the
streamwise velocity, u, adding the product to the right-hand side of (8.1.12), using the continuity
equation, integrating the result from y = 0 to ∞, and enforcing the boundary conditions.

Kármán–Pohlhausen method

To implement the Kármán– Pohlhausen method for steady flow, we introduce the similarity variable
η = y/Δ(x), where Δ(x) is an appropriate boundary-layer thickness, and define the dimensionless
function

Λ ≡ Δ2

ν
V ′ (8.4.42)

expressing the ratio of the magnitude of the inertial acceleration forces to the magnitude of the
viscous forces developing inside the boundary layer, where V ′ ≡ dV/dx. If V ′ = 0, then Λ = 0.
Conversely, the boundary-layer thickness Δ(x) is related to the dimensionless parameter Λ(x) by

Δ ≡
(νΛ
V ′

)1/2

. (8.4.43)
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The velocity profile across the boundary layer can be represented by the complementary
Pohlhausen polynomial,

u

V
= Fc(η) ≡ 1− F (η), (8.4.44)

satisfying the boundary conditions

Fc(η = 1) = 0, F ′
c(η = 1) = 0, F ′′

c (η = 1) = 0, F ′′
c (η = 0) = Λ, (8.4.45)

where a prime denotes a derivative with respect to η. The last condition arises by applying the
boundary-layer equation at the wall, located at y = 0, and then using the no-slip and no-penetration
boundary conditions in the absence of a pressure gradient to obtain

ν
( ∂2u

∂y2

)
y=0

= V V ′. (8.4.46)

Explicitly, the velocity profile is given by

u

V
= Fc(η) =

{
1− 2 η + 2 η3 − η4 − Λ 1

6 η (1− η)3 for 0 < η < 1,
0 for η > 1.

(8.4.47)

The displacement thickness, momentum thickness, and wall shear stress can be computed in terms
of Δ(x) and Λ(x) using the profiles (8.4.21), and are found to be

δ∗ =
Δ

10
(3− Λ

12
), Θ =

Δ

126
(23− 11

12
Λ +

1

72
Λ2), σw

xy = −μV

Δ
(2 +

1

6
Λ). (8.4.48)

Expressing Δ(x) in terms of Λ(x) using the definition (8.4.43), we obtain corresponding expressions
in terms of Λ(x) and the boundary distribution of the acceleration, V ′(x). Substituting expressions
(8.4.48) into the momentum integral balance (8.4.41) provides us with a first-order nonlinear ordi-
nary differential equation for Λ(x) with respect to x. Having solved this equation, we recover the
boundary-layer thickness, Δ(x), using the definition (8.4.43).

Sakiadis boundary layer

In the case of the Sakiadis boundary layer discussed in Section 8.3, the boundary velocity V is
constant and Λ = 0. Substituting expressions (8.4.48) into the steady version of (8.4.41) provides
us with an ordinary differential equation for Δ(x),

Δ
dΔ

dx
= 2

126

23

ν

V
, (8.4.49)

which can be integrated subject to the initial condition Δ(x = 0) = 0 to give

Δ(x) = 4.6811
(νx
V

)1/2

. (8.4.50)

Substituting (8.4.50) into (8.4.48), we obtain

δ∗ = 1.751
(νx
U

)1/2

, Θ = 0.685
(νx
U

)1/2

, σw
xy =

0.42725√
Rex

ρ V 2, (8.4.51)

which are close to the exact expressions given in (8.2.52) and (8.2.54).
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Figure 8.4.4 Exact (solid line) and approximate (dashed line) values of the Holstein–Bohlen parameter
λ for the boundary layer due to a stretching sheet.

Holstein–Bohlen parameter

In the case of flow due to boundary stretching, the dimensionless Holstein–Bohlen function is defined
as

λ(x) ≡ Θ2(x)

Δ2(x)
Λ(x) =

Θ2(x)

ν
V ′, (8.4.52)

where V ′ = dV/dx. Using the expression for the momentum thickness given in (8.4.48), we obtain
a relationship between λ and Λ,

λ =
Λ

1262
(23− 11

12
Λ +

1

72
Λ2)2. (8.4.53)

In the case of the generalized Crane boundary layer, we substitute the velocity distribution
V = ξxm and the analytical solution for the momentum thickness given in (8.3.23) into the definition
(8.4.52), and find that λ = mβ2, which is plotted with the solid line in Figure 8.4.4. When m = 0,
we obtain λ = 0 due to the absence of acceleration. As the exponent m increases from zero, λ
increases and tends to a constant value in a strongly accelerating flow.

Numerical solution

To expedite the numerical solution, we multiply both sides of the momentum integral balance (8.4.41)
at steady state by Θ, and rearrange to obtain

d

dx

( λ

V ′

)
≡ 1

ν

dΘ2

dx
= 2

S(λ)− 2λ

V
, (8.4.54)
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where

S(λ) ≡ − Θ

μV
σw
xy (8.4.55)

is a dimensionless shear function. Using expressions (8.4.48) based on the Pohlhausen polynomials,
we find that

S =
1

126
(2 +

Λ

6
) (23− 11

12
Λ +

1

72
Λ2). (8.4.56)

Equation (8.4.54) can be solved using the numerical methods discussed in Section 8.4.2.

In the case of the Sakiadis or generalized Crane boundary layer, equation (8.4.54) is satisfied
for a constant λ satisfying the nonlinear algebraic equation

2m
(
S(λ)− 2λ

)
+ (m− 1)λ = 0. (8.4.57)

A physically acceptable solution branch is shown with the dashed line in Figure 8.4.4. The approx-
imate solution is reasonably close to the exact solution plotted with the solid line.

8.4.4 Similarity solution of the flow due to stretching sheet

In Section 8.3.3 we discussed a similarity solution for the flow due to stretching sheet. In the
terminology introduced in that section,

x = tα x̃, y = tβ ỹ, u = tκ−β ũ(x̃, ỹ), V = tκ−β Ṽ (x̃),

δ∗ = tβ δ̃∗(x̃), Θ = tβ Θ̃(x̃), σw
xy = μ

(∂u
∂y

)
y=0

= μ tκ−2β
(∂ũ
∂ỹ

)
ỹ=0

,
(8.4.58)

where a tilde denotes a similarity variable. Substituting these expressions into the integral momen-
tum balance expressed by (8.4.41), and recalling that κ = α− β, we obtain an ordinary differential
equation,

κ
δ̃∗

Ṽ
− α

x̃

Ṽ 2

d(Ṽ δ̃∗)

dx̃
+

dΘ̃

dx̃
+

2

Ṽ

dṼ

dx̃
Θ̃ = − ν

Ṽ 2

(∂ũ
∂ỹ

)
ỹ=0

. (8.4.59)

A similarity solution in the x̃ỹ domain can be sought in terms of the complementary Pohlhausen
polynomials defined in (8.4.47),

ũ(x̃, ỹ) = Ṽ (x̃)Fc(η), (8.4.60)

where η = x̃/Δ̃(x̃) is a similarity variable and Δ̃(x̃) is the boundary-layer thickness. To evaluate
the parameter Λ inherent in the Pohlhausen polynomials, we apply the boundary-layer equation at
the surface of the stretching sheet and find that

ν
(∂2u

∂y2

)
y=0

=
∂V

∂t
+ V

∂V

∂x
= tκ−3/2

[
(κ− β) Ṽ − αx̃ Ṽ ′ + Ṽ Ṽ ′

]
. (8.4.61)
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After simplifications, we obtain

ν
(∂2ũ

∂ỹ2

)
ỹ=0

= Ṽ V, where V ≡ κ− β +
(
1− α

x̃

Ṽ

)
Ṽ ′, (8.4.62)

and define

Λ(x̃) ≡ Δ̃2(x̃)

ν
V or Δ̃(x̃) ≡

(νΛ
V
)1/2

. (8.4.63)

The last two equations can be used to compute Λ from Δ̃, and vice versa.

Substituting into the right-hand side of (8.4.59) the expression(∂ũ
∂x̃

)
x̃=0

= − Ṽ

Δ̃

(
2 +

Λ

6

)
, (8.4.64)

originating from the third equation in (8.4.48), and rearranging, we obtain the ordinary differential
equation

dΘ̃

dx̃
− α

Ṽ
x̃
dδ̃∗

dx̃
=

α

Ṽ

[ ( x̃

Ṽ

dṼ

dx̃
− κ

α

)
δ̃∗ − 2

α

dṼ

dx̃
Θ̃ +

ν

α

1

Δ̃
(2 +

Λ

6
)
]
. (8.4.65)

The solution must be found by numerical methods according to the physics of the problem under
consideration.

8.4.5 Gravitational spreading of an oil slick

In the case of gravitational spreading of an oil slick discussed in Section 8.3.4, equation (8.4.65) is
integrated from the leading edge, x̃ = x̃∗, where the boundary-layer thickness is zero, Λ = 0, δ̃∗ = 0,
and Θ̃ = 0, toward the centerpoint. The interfacial condition (8.3.50) provides us with a differential
equation for the square of the film thickness,

dh̃2

dx̃
= 2

μ

ρog

(∂ũ
∂ỹ

)
ỹ=0

= − 2μ

ρog

Ṽ

Δ̃
(2 +

Λ

6
), (8.4.66)

where ρo is the oil density. To circumvent the integrable singularity at the leading edge, x̃ = x̃∗, we
introduce the variable ω = (x̃∗ − x̃)1/2 and recast (8.4.66) into the form

dh̃2

dω
= ω

4μ

ρog

Ṽ

Δ̃
(2 +

Λ

6
). (8.4.67)

Integrating from the leading edge where ω = 0 up to the centerline, we obtain the film thickness.

Now we set Ṽ � αx̃ for n = 0 or approximate Ṽ � (α − n)x̃ for general n, and obtain
V � κ− β − n. Equation (8.4.65) becomes

d(Θ̃− c δ̃∗)

dx̃
=

8

3− 4n

1

x̃

[ 1
2
δ̃∗ − 2 Θ̃ + ν

1

Δ̃
(2 +

Λ

6
)
]
, (8.4.68)
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where

c =
α

α− n
=

3 + 4n

3− 4n
. (8.4.69)

To integrate equation (8.4.68), we multiply both sides by Θ̃− c δ̃∗ and rearrange to obtain

d(Θ̃− c δ̃∗)2

dx̃
=

2

x̃

8

3− 4n

([ 1
2
δ̃∗ − 2 Θ̃

]
(Θ̃− c δ̃∗) + νH(Λ) c (2 +

Λ

6
)
)
, (8.4.70)

where

H(Λ) ≡ Θ̃− c δ̃∗

Δ̃
=

1

126
(23− 11

12
Λ +

1

72
Λ2)− c

10
(3− Λ

12
). (8.4.71)

Using relations (8.4.48) and the expression for the boundary-layer thickness in terms of Λ from
(8.4.63), we find that

(Θ̃− c δ̃∗)2 = ν
Λ

V
[ 1

126
(23− 11

12
Λ +

1

72
Λ2)− c

10
(3− Λ

12
)
]2
, (8.4.72)

which can be used to compute the value of Λ, given the the left-hand side, by numerically solving an
algebraic equation. Equation (8.4.70) accompanied by (8.4.72) can be integrated from the leading
edge toward the centerpoint using elementary numerical methods.

The unknown value x̃∗ corresponding to the leading edge is determined by the oil slick volume
per unit width, Ao = qo t

n,

x̃∗ = ζ
(g2q4o

ν

)1/8

, (8.4.73)

where ζ is a numerical coefficient. In practice, we may guess a value for x̃∗, solve the preceding
equations, compute the volume of oil, and then rescale x̃∗ to ensure a specified volume. When
n = 0, the numerical computations show that ζ = 1.74. The distribution of the boundary-layer
thickness for n = 0 computed using the numerical method discussed in this section is shown in
Figure 8.4.5. We see that the film thickness h̃ is nearly constant, except near the leading edge. The
results are in excellent agreement with those obtained by other numerical methods [60, 75].

Problems

8.4.1 Boundary layer with suction

Show that, if a fluid is injected into a flow or withdrawn from a flow through a porous wall with
normal velocity V , the right-hand side of (8.4.8) contains the additional term −V/U .

8.4.2 Boundary conditions at a wall

Assume that the velocity profile across a boundary layer is described by the function u/U = F (η).
Show that, in addition to satisfying the no-slip condition F (0) = 0 and the far-field conditions
(8.4.15), the velocity profile is subject to the boundary condition F ′′′(0) = 0.
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Figure 8.4.5 (a) Boundary layer thickness Δ (solid line), momentum thickness Θ (dashed line), and

displacement thickness δ∗ (dotted line), along a two-dimensional oil slick expanding due to gravity,
reduced by x̃∗ and plotted against the dimensionless similarity distance x̃/x̃∗. (b) Corresponding
distribution of the film thickness for a fixed amount of oil, n = 0.

8.4.3 Thwaites boundary layer

Replace the function T (λ) given in (8.4.29) with the general linear function T (λ) = aλ−b and derive
a generalized form of (8.4.40), where a and b are two constants.

Computer Problem

8.4.4 Boundary layer around a circular cylinder

(a) Write a program that uses the Kármán–Pohlhausen method to compute the boundary layer
around a circular cylinder with vanishing circulation around the cylinder, subjected to an incident
uniform flow. Run the code and reproduce the graphs shown in Figure 8.4.4.

(b) Repeat (a) with nonzero circulation of your choice and discuss the behavior of the flow.

8.5 Axisymmetric and three-dimensional flows

The formulation of the boundary-layer theory and the exact or approximate solution of the boundary-
layer equations for axisymmetric and three-dimensional flows are carried out according to the prac-
tices and ideas discussed earlier in this chapter for two-dimensional flow, with some minor modifi-
cations.
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Figure 8.5.1 Illustration of (a) a boundary layer in axisymmetric flow past a body and (b) axisymmetric
orthogonal stagnation-point flow against a flat surface.

8.5.1 Axisymmetric boundary layers

To carry out the boundary-layer analysis for axisymmetric flow in the presence or absence of swirling
motion, we introduce the arc length along the trace of the boundary in a plane of constant azimuthal
angle ϕ, denoted by l, and the arc length in the normal direction, denoted by �, as shown in Figure
8.5.1(a). The corresponding tangential and normal velocity components are denoted by u and v,
and the azimuthal velocity component responsible for the swirling motion is denoted by w.

Continuity equation

The continuity equation for axisymmetric flow in the absence or presence of swirling motion takes
the form

1

σ

∂(σu)

∂l
+

∂v

∂�
= 0. (8.5.1)

When the distance from the axis of symmetry, σ, is much larger than the typical boundary-layer
thickness around the body contour, the continuity equation (8.5.1) can be recast into the approximate
convenient form

∂(σu)

∂l
+

∂(σv)

∂�
= 0. (8.5.2)

To satisfy this equation, we may introduce a stream function, ψ(l, �), defined by the equations

u =
1

σ

∂ψ

∂�
, v = − 1

σ

∂ψ

∂l
. (8.5.3)

In the case of a cylindrical body, l = x, � = σ, u = ux, and v = uσ. In the case of flow over a plane
that is perpendicular to the x axis, as shown in Figure 8.5.1(b), l = σ and � = x, u = uσ and v = ux.
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Boundary-layer equations

The normal component of the equation of motion states that the pressure drop across the boundary
layer can be neglected to leading-order approximation. Consequently, the pressure distribution,
p(l, ϕ), can be computed using Euler’s equation for the incident flow,

−1

ρ

∂p

∂l
=

∂U

∂t
+ U

∂U

∂l
− W 2

σ

∂σ

∂l
, −1

ρ

1

σ

∂p

∂ϕ
=

∂W

∂t
+ U

∂W

∂l
+

UW

σ

∂σ

∂l
, (8.5.4)

where U is the meridional tangential velocity and W is the azimuthal swirling velocity of the outer ir-
rotational flow. The corresponding components of the equation of motion simplify into the boundary-
layer equations

∂u

∂t
+ u

∂u

∂l
+ v

∂u

∂�
− w2

σ

∂σ

∂l
= −1

ρ

∂p

∂l
+ ν

∂2u

∂�2
(8.5.5)

and

∂w

∂t
+ u

∂w

∂l
+ v

∂w

∂�
+

uw

σ

∂σ

∂l
= −1

ρ

1

σ

∂p

∂ϕ
+ ν

∂2w

∂�2
. (8.5.6)

In the absence of swirling motion, equation (8.5.6) is trivially satisfied and equation (8.5.5)
reduces into the boundary-layer equation (8.1.12) for two-dimensional flow with a straightforward
change in notation,

∂u

∂t
+ u

∂u

∂l
+ v

∂u

∂�
=

∂U

∂t
+ U

∂U

∂l
− 1

ρ

∂p

∂l
+ ν

∂2u

∂�2
. (8.5.7)

The effect of axisymmetry is manifested in the continuity equation (8.5.1) alone.

Mangler’s transformation

Mangler invented a remarkable transformation that reduces the boundary-layer equations (8.5.1)
and (8.5.7) for axisymmetric flow without swirling motion to the simpler boundary-layer equations
(8.1.1) and (8.1.12) for two-dimensional flow written for the judiciously chosen modified variables

x̃ =
1

L2

∫ l

0

σ2 dl, ỹ =
σ

L
�, ũ = u, ṽ =

L

σ

(
v +

�

σ

dσ

dl
u
)
, (8.5.8)

where L is a specified length [254]. To demonstrate the reduction of the continuity equation, we
write

∂

∂l
=

∂x̃

∂l

∂

∂x̃
+

∂ỹ

∂l

∂

∂ỹ
� σ2

L2

∂

∂x̃
+

�

L

dσ

dl

∂

∂ỹ
=

σ2

L2

∂

∂x̃
+

ỹ

σ

dσ

dl

∂

∂ỹ
(8.5.9)

and

∂

∂�
=

∂x̃

∂�

∂

∂x̃
+

∂ỹ

∂�

∂

∂ỹ
� σ

L

∂

∂ỹ
. (8.5.10)
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The simplified continuity equation (8.5.2) requires that

∂(σu)

∂x̂
+

L

σ

∂(σv)

∂ŷ
+

L2

σ2

ŷ

σ

dσ

dl

∂(σu)

∂ŷ
= 0, (8.5.11)

which can be approximated as

∂u

∂x̂
+

∂

∂ŷ

(L
σ
v +

L2

σ2

ŷ

σ

dσ

dl
u
)
= 0. (8.5.12)

Now invoking the last definition in (8.5.8), we obtain the continuity equation for the transformed
variables in the two-dimensional x̃ỹ domain.

Mangler’s transformation reduces the problem of computing a boundary layer over an axisym-
metric body to the problem of computing a boundary layer over a body with modified geometry
in a fictitious two-dimensional flow. A practical drawback is that the pressure distribution of the
fictitious flow can be considerably more involved than that of the physical flow.

Momentum integral balance

Working as in the case of two-dimensional flow, we derive an integral momentum balance for ax-
isymmetric flow in the absence of swirling motion,

1

U2

∂(Uδ∗)

∂t
+

1

σ

∂(σΘ)

∂l
+ (2Θ + δ∗)

1

U

∂U

∂l
=

σw
sh

ρU2
, (8.5.13)

which is a slight modification of (8.4.8) (Problem 8.5.1). The numerator of the fraction on the right-
hand side, σw

sh, is the wall shear stress. The displacement and momentum thicknesses are defined as
in the case of two-dimensional flow in terms of integrals with respect to normal arc length, �.

Using the fourth-degree Pohlhausen polynomial and the Holstein–Bohlen dimensionless pa-
rameter introduced in (8.4.26), we find that the momentum integral balance for steady flow takes
the form

1

σ2

d

dl

(σ2λ

U ′

)
= 2

T (λ)

U
, (8.5.14)

where the function T (λ) defined in (8.4.29), and a prime denotes a derivative with respect to tangen-
tial arc length, l (Problem 8.5.1). At the front stagnation point of an axisymmetric body, σ reduces
to l and the tangential velocity U behaves like ξl, where ξ is the local shear rate. Making substitu-
tions in the left-hand side of (8.5.14) and requiring that dλ/dl is finite, we obtain the starting value
λ = 0.0571. Equation (8.5.6) is integrated using the methods discussed earlier for two-dimensional
flow. Boundary-layer separation occurs when λ = −0.15673, corresponding to Λ = −12.

In the case of uniform flow past a stationary sphere, numerical integration of (8.5.14) shows
that the boundary layer separates at the meridional angle θ = 110◦, which is substantially higher than
the measured value 83◦ (Problem 8.5.6). The discrepancy is attributed to the poor representation
of the outer irrotational flow due to the presence of a wake.
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Görtler, Smith & Clutter formulation

Following the formulation of Smith & Clutter [375], we regard the Stokes stream function, ψ, as a
function of the arc length along the trace of the boundary in an azimuthal plane, l, and of the scaled
transverse position, η = (U/νl)1/2�, where � is the arc length in the normal direction. Following
Görtler [148], we write

ψ = (Uνl)1/2 σf(l, η), (8.5.15)

and introduce the dimensionless parameter m = (l/U)dU/dl. The counterpart of equation (8.3.65)
for axisymmetric flow is

f ′′ +
( m+ 1

2
+

l

σ

dσ

dl

)
ff ′′ −mf ′2 +m = l

(
f ′ ∂f

′

∂l
− f ′′ ∂f

∂l

)
, (8.5.16)

where a prime denotes a partial derivative with respect to η. The solution can be computed using
a shooting method or a direct finite-difference method as in the case of two-dimensional flow.

Integral momentum balance of flow due to boundary motion

The integral momentum balance of the flow due to in-plane boundary motion with tangential bound-
ary velocity V (l) in an otherwise quiescent fluid is expressed by the dimensionless equation

1

V 2

∂(V δ∗)

∂t
+

1

σV 2

∂(σV 2Θ)

∂l
= − σw

σx

ρV 2
, (8.5.17)

where δ∗ and Θ are the displacement and momentum thicknesses defined in (8.2.51) with � in place
of the normal distance, y.

8.5.2 Steady flow against or due to a radially stretching surface

As an application, we consider axisymmetric orthogonal stagnation-point flow against an infinite
flat surface located at x = 0, as illustrated in Figure 8.5.1(b). The radial velocity of the incident
flow is described by the power-law

U(σ) = ξσm, (8.5.18)

where ξ is a positive constant and m is a positive exponent. The flow inside the boundary layer is
governed by the continuity equation,

1

σ

∂(σuσ)

∂σ
+

∂ux

∂x
= 0, (8.5.19)

and the boundary-layer equation,

uσ
∂uσ

∂σ
+ ux

∂uσ

∂x
= ν

∂2uσ

∂x2
. (8.5.20)

To carry out the boundary-layer analysis, we introduce the dimensionless similarity variable

η =
( U

νσ

)1/2

x, (8.5.21)
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and express the Stokes stream function in the form

ψ = −(Uνσ)1/2 σ f(η). (8.5.22)

The radial velocity component is

uσ = − 1

σ

∂ψ

∂x
= Uf ′(η). (8.5.23)

The wall shear stress is found by differentiating the radial velocity profile and evaluating the resulting
expression at the wall, yielding

σw
σx(σ) = μ

(∂u
∂x

)
x=0

= ρ
√
ν f ′′(0) ξ3/2 σ(3m−1)/2. (8.5.24)

Performing the boundary-layer analysis, we find that the function f(η) satisfies a third-order
ordinary differential equation,

f ′′′ +
[ 1
2
(m+ 1) + 1

]
ff ′′ −mf ′2 +m = 0. (8.5.25)

The boundary conditions require that f(0) = 0 and f ′(0) = 0, and the far-field condition requires
that f ′(∞) = 1. When m = 1, we recover the Homann equation (5.6.39), providing us with an exact
solution of the unsimplified Navier–Stokes equation.

Radially stretching surface

A complementary problem addresses the flow due to the radial stretching of an elastic sheet in its
plane with radial velocity V (σ) = ξσm in an otherwise quiescent fluid. The axisymmetric boundary
layer developing over the sheet is described by the Stokes stream function

ψ = −(V νσ)1/2 σ f(η), (8.5.26)

where

η =
( V

νσ

)1/2

x (8.5.27)

is a dimensionless similarity variable, the function f(η) satisfies the homogeneous equation

f ′′′ +
[ 1
2
(m+ 1) + 1

]
ff ′′ −mf ′2 = 0, (8.5.28)

and a prime denotes a derivative with respect to η. The boundary conditions require that f(0) = 0
and f ′(0) = 1, and the far-field condition requires that f ′(∞) = 0.

8.5.3 Unsteady flow due to a radially stretching surface

Next, we consider a class of unsteady boundary layers generated by the in-plane radial stretching of a
surface located at x = 0, as shown in Figure 8.5.1(b). The corresponding two-dimensional boundary



690 Introduction to Theoretical and Computational Fluid Dynamics

layers were discussed in Section 8.3.3. The flow inside the axisymmetric boundary layers is governed
by the continuity equation (8.5.1) and the counterpart of equation (8.3.25) for axisymmetric flow,

∂u

∂t
+ u

∂u

∂σ
+ v

∂u

∂x
= ν

∂2u

∂x2
, (8.5.29)

where u = uσ is the radial velocity and v = ux is the axial velocity. The flow will be described in
terms of a time-dependent Stokes stream function, ψ(σ, x, t), defined such that

u ≡ uσ = − 1

σ

∂ψ

∂x
, v ≡ ux =

1

σ

∂ψ

∂σ
. (8.5.30)

The ordered pair, (σ, x), defines a system of two Cartesian coordinates similar to the (x, y) coordi-
nates in two-dimensional flow.

Similarity solution

We are interested in situations where the radial sheet velocity, uσ(σ, x = 0, t) ≡ V (σ, t), allows for a
similarity solution such that

ψ(σ, x, t) = −tκ ψ̃(σ̃, x̃), σ̃ =
σ

ta
, x̃ =

x

tβ
, (8.5.31)

where the exponents κ, α, and β will be determined as part of the solution. The radial and axial
velocity components are given by

u = − 1

σ

∂ψ

∂x
= tκ−β 1

σ

∂ψ̃

∂x̃
, v =

1

σ

∂ψ

∂σ
= −tκ−α 1

σ

∂ψ̃

∂σ̃
. (8.5.32)

Substituting these expressions along with the expressions

∂u

∂t
= tκ−β−1 1

σ

(
(κ− β)

∂ψ̃

∂x̃
− ασ̃

∂2ψ̃

∂x̃∂σ̃
− βx̃

∂2ψ̃

∂x̃2

)
(8.5.33)

and

∂u

∂σ
= tκ−α−β 1

σ

( ∂2ψ̃

∂σ̃∂x̃
− 1

σ̃

∂ψ̃

∂x̃

)
,

∂u

∂x
= tκ−2β 1

σ

∂2ψ̃

∂x̃2
,

∂2u

∂x2
= tκ−3β 1

σ

∂3ψ̃

∂x̃3
, (8.5.34)

into the boundary-layer equation (8.5.29), we obtain

(κ− β)
∂ψ̃

∂x̃
− ασ̃

∂2ψ̃

∂σ̃∂x̃
− βx̃

∂2ψ̃

∂x̃2

+tκ−2α−β+1 1

σ̃

( ∂ψ̃

∂x̃

[ ∂2ψ̃

∂σ̃∂x̃
− 1

σ̃

∂ψ̃

∂x̃

]
− ∂ψ̃

∂σ̃

∂2ψ̃

∂x̃2

)
= νt−2β+1 ∂3ψ̃

∂x̃3
. (8.5.35)

To eliminate the explicit time dependence on both sides of this equation, we set

β =
1

2
, κ = 2α− 1

2
, (8.5.36)
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and derive a nonlinear partial differential equation for σ̃ and x̃,

(
2α− 1− 1

σ̃2

∂ψ̃

∂x̃

) ∂ψ̃
∂x̃

−
(
ασ̃ − 1

σ̃

∂ψ̃

∂x̃

) ∂2ψ̃

∂σ̃∂x̃
−
(1
2
x̃+

1

σ̃

∂ψ̃

∂σ̃

) ∂2ψ̃

∂x̃2
= ν

∂3ψ̃

∂x̃3
. (8.5.37)

The no-penetration boundary condition requires that ψ̃(σ̃, 0) = 0, and the far-field condition requires
that ∂ψ̃/∂σ̃ → 0 and ∂ψ̃/∂x̃ → 0 as x̃ → ∞.

Equation (8.5.37) admits the solution ψ̃(σ̃, x̃) = σ̃2f(x̃) + ψ̃∞, resulting in an ordinary differ-
ential equation,

νf ′′′ +
(1
2
x̃+ 2f)f ′′ + f ′(1− f ′) = 0, (8.5.38)

where ψ̃∞ is a constant and a prime denotes a derivative with respect to x̃. The no-penetration
condition requires that f(0) = 0 and the far-field condition requires that f(x̃) decays to zero as x̃
tends to infinity.

Solution near the centerpoint

We may assume that the general solution near the centerline, σ̃ → 0, takes the asymptotic form

ψ̃(σ̃, x̃) � σ̃qf(η), (8.5.39)

where q is a positive exponent, η = x̃/σ̃� is a similarity variable, and the positive exponent � will be
determined as part of the solution. Substituting (8.5.39) into (8.5.37) and simplifying, we obtain

[α(2− q + �)− 1] f ′ + (α�− 1

2
) ηf ′′ + σ̃q−�−2 [(q − �− 1) f ′2 − q ff ′′] = ν σ̃−2� f ′′′. (8.5.40)

This equation is physically acceptable under two complementary conditions. First, setting the power
of σ̃ on the right-hand side of (8.5.40) to zero, � = 0, we obtain

νf ′′′ +
1

2
x̃ f ′′ − [α(2− q)− 1] f ′ = σ̃q−2 [ (q − 1)f ′2 − qff ′′ ]. (8.5.41)

When q > 2, the right-hand side vanishes as σ̃ → 0, yielding a homogeneous integral equation,

νf ′′′ +
1

2
x̃ f ′′ − [α(2− q)− 1] f ′ = 0. (8.5.42)

Alternatively, we require that the power of σ̃ on the right-hand side of (8.5.40) matches that of the
last term on the left-hand side, q − �− 2 = −2� or � = 2− q, and thus obtain

νf ′′′ + q ff ′′ − (2q − 3) f ′2 = σ̃2� (2α�− 1)
(
f ′ +

1

2
ηf ′′

)
. (8.5.43)

The right-hand side vanishes as σ̃ → 0, yielding the homogeneous Falkner–Skan equation (8.5.28)
with m = 2q − 3. The properties of the equations presented in this section have been investigated
with respect to uniqueness of solution [296].
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Integral momentum balance

The integral momentum balance (8.5.17) provides us with the equation

1

V 2

∂(V δ∗)

∂t
+

∂Θ

∂σ
+
( 2

V

∂V

∂σ
+

1

σ

)
Θ = − σw

σx

ρV 2
. (8.5.44)

To compute the similarity solution, we introduce further similarity variables denoted by a
tilde,

u = tκ−α−β ũ(σ̃, x̃), V = tκ−α−β Ṽ (σ̃), δ∗ = tβ δ̃∗(σ̃),

Θ = tβ Θ̃(σ̃), σw
σx = μ

(∂u
∂x

)
x=0

= μ tκ−α−2β
(∂ũ
∂x̃

)
x̃=0

. (8.5.45)

Substituting these expressions into the integral momentum balance (8.5.44) and recalling that κ =
2α− β, we obtain an ordinary differential equation,

(κ− α)
δ̃∗

Ṽ
− σ̃

α

Ṽ 2

d(Ṽ δ̃∗)

dσ̃
+

dΘ̃

dσ̃
+
( 2

Ṽ

dṼ

dσ̃
+

1

σ̃

)
Θ̃ = − ν

Ṽ 2

(∂ũ
∂x̃

)
x̃=0

. (8.5.46)

Given the radial velocity, Ṽ (σ̃), the solution can be found by sensible approximate methods.

Complementary Pohlhausen polynomials

A similarity solution in the σ̃x̃ plane can be sought in terms of the complementary Pohlhausen
polynomials defined in (8.4.47),

ũ(x̃, ỹ) = Ṽ (x̃)Fc(η), (8.5.47)

where η = x̃/Δ̃(σ̃) is a similarity variable and Δ̃(σ̃) is the boundary-layer thickness. To evaluate
the parameter Λ inherent in the Pohlhausen polynomials, we apply the boundary-layer equation at
the stretching sheet and find that

ν
(∂2u

∂x2

)
x=0

=
∂V

∂t
+ V

∂V

∂σ
= tκ−α−3/2

[
(κ− α− β) Ṽ − ασ̃ Ṽ ′ + Ṽ Ṽ ′

]
, (8.5.48)

where a prime denotes a derivative with respect to σ̃. After simplifications, we obtain

ν
(∂2ũ

∂x̃2

)
x̃=0

= Ṽ V, where V ≡ κ− α− β +
(
1− α

σ̃

Ṽ

)
Ṽ ′, (8.5.49)

and define

Λ(σ̃) ≡ Δ̃2(σ̃)

ν
V or Δ̃(σ̃) ≡

(νΛ
V
)1/2

. (8.5.50)

The last two equations can be used to compute Λ from Δ̃ and vice versa.

Substituting into the right-hand side of (8.5.46) the expression(∂ũ
∂ỹ

)
ỹ=0

= − Ṽ

Δ̃

(
2 +

Λ

6

)
, (8.5.51)
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Figure 8.5.2 Illustration of an unsteady boundary layer due to the axisymmetric spreading of an oil
slick of radius a(t) at the surface of the ocean.

originating from the third equation in (8.4.48), and rearranging, we obtain the ordinary differential
equation

dΘ̃

dσ̃
− σ̃

α

Ṽ

dδ̃∗

dσ̃
=

α

Ṽ

[ ( σ̃

Ṽ

dṼ

dσ̃
− κ− α

α

)
δ̃∗ − 2

α

dṼ

dσ̃
Θ̃ +

ν

α

1

Δ̃
(2 +

Λ

6
)
]
− Θ̃

σ̃
. (8.5.52)

The solution must be found by numerical methods according to the physics of the problem under
consideration.

8.5.4 Gravitational spreading of an axisymmetric oil slick

As an application of the similarity solution derived in Section 8.5.3, we consider the gravitational
spreading of an axisymmetric oil slick over the flat surface of an otherwise quiescent pool of water,
as shown in Figure 8.5.2. A thinning film of oil with time-dependent thickness h(σ, t) is confined
inside the spilling zone, σ < a(t). At high Reynolds numbers, an unsteady boundary layer develops
next to the film, while the fluid tends to become quiescent far from the film. The two-dimensional
version of this problem was discussed in Sections 8.3.4 and 8.4.5.

Oil flow

To leading order, the σ and x components of the equation of motion inside the thin oil film, denoted
by the subscript or subscript o, take the form

∂σo
σx

∂x
=

∂po
∂σ

,
∂po
∂x

= ρog, (8.5.53)

where σo
σx is the shear stress. Integrating the second equation and requiring that the pressure at

the oil–air interface, located at x = −h(σ, t), is equal to the atmospheric pressure, patm, we obtain
the oil pressure distribution

po = ρog (x+ h) + patm. (8.5.54)

Substituting this expression into the first equation of (8.5.53) and integrating with respect to x
subject to the condition of zero shear stress at the oil-air interface, we obtain

σo
σx(x = 0) = ρog h

∂h

∂σ
. (8.5.55)
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A mass balance for the oil provides us with an evolution equation for the film thickness,

∂h

∂t
+

1

σ

∂(σūoh)

∂σ
= 0, (8.5.56)

where ūo(σ) is the mean radial velocity across the oil film. The total volume of floating oil is

Vo(t) = 2π

∫ a(t)

0

h(σ, t)σ dσ. (8.5.57)

Continuity of velocity and shear stress at the oil–water interface requires that

u(x = 0) = uo(x = 0) ≡ V (σ), μ
(∂u
∂x

)
x=0

= σo
σx(x = 0) = ρogh

∂h

∂σ
, (8.5.58)

where u is the radial (σ) component of the water velocity.

Similarity solution

We assume that the boundary layer develops according to the similarity solution derived in Section
8.5.3. The radius of the spreading film is

σ = a(t) = σ̃∗ tα, (8.5.59)

where σ̃∗ is a constant to be determined as part of the solution.

Substituting the similarity solution into (8.5.57), stipulating that Vo(t) = qot
n, and rearrang-

ing, we obtain

Vo(t) = qot
n = 2π t2α

∫ σ̃

0

h(σ̃) σ̃ dσ̃, (8.5.60)

where qo is a constant coefficient and n is a specified exponent. This equation is satisfied only if

h(σ, t) = tn−2α h̃(σ̃), (8.5.61)

where h̃(σ̃) is an unknown function to be determined as part of the solution. Substituting this
expression along with the similarity solution into the interfacial shear stress condition given by the
second equation in (8.5.58), we obtain

μ tκ+4α−2β−2n 1

σ̃

(∂2ψ̃

∂x̃2

)
x̃=0

= ρog h̃
∂h̃

∂σ̃
. (8.5.62)

To eliminate the explicit time dependence on the left-hand side, we require that the exponent of
time, t, on the left-hand side is zero. Combining this condition with (8.5.36), we obtain

κ =
2

3
n, α =

3 + 4n

12
, β =

1

2
. (8.5.63)

The interfacial condition (8.5.62) then becomes

∂h̃2

∂σ̃
= 2

μ

ρog

1

σ̃

(∂2ψ̃

∂x̃2

)
x̃=0

, (8.5.64)

coupling the oil with the water flow.
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The similarity solution predicts that

u = tκ−α−β 1

σ̃

∂ψ̃

∂x̃
, (8.5.65)

and this motivates setting

ūo = tκ−α−β σ̃ G(σ̃) = tκ−2α−β σ G(x̃) = σ

t
G(σ̃), (8.5.66)

where G(σ̃) is an unknown function. Combining this expression with (8.5.61), we find that

σūoh = tn−1 σ̃2 h̃(σ̃)G(σ̃). (8.5.67)

Substituting this expression along with (8.5.61) into the balance equation (8.5.56), we derive the
ordinary differential equation

1

σ̃

d

dσ̃

[
σ̃2h̃(G − α)

]
+ nh̃ = 0. (8.5.68)

When n = 0, this equation is satisfied by the constant function G(σ̃) = α. Assuming with good
reason that h̃ is nearly constant except at the leading edge, we derive the more general albeit
approximate result G(x̃) � α− n/2.

Integral momentum balance

To compute the boundary layer, we may integrate the integral momentum balance (8.5.52) from the
leading edge located at σ̃ = σ̃∗ where the thickness of the boundary-layer is zero, Λ = 0, δ̃∗ = 0,
and Θ̃ = 0, toward the centerpoint. The interfacial condition (8.5.64) provides us with a differential
equation for the square of the film thickness,

dh̃2

dσ̃
= 2

μ

ρog

(∂ũ
∂x̃

)
x̃=0

= − 2μ

ρog
Ṽ

1

Δ̃
(2 +

Λ

6
). (8.5.69)

To circumvent the integrable singularity at the leading edge located at σ̃ = σ̃∗, we recast this
equation into the form

dh̃2

dω
=

4μ

ρog
ω Ṽ

1

Δ̃
(2 +

Λ

6
), (8.5.70)

where ω = (σ̃∗ − σ̃)1/2. Integrating from the leading edge where ω = 0 up to the centerline, we
obtain the film thickness.

Spreading of a fixed amount of oil

In the case of gravitational spreading of a fixed amount of oil, n = 0, we have found that Ṽ = αx̃,
κ = 0, α = 1

4 , and V = κ− α− β = − 3
4 . Equation (8.5.52) simplifies into

d(Θ̃− δ̃∗)

dσ̃
=

1

σ̃

[
(2− κ

α
) δ̃∗ − 2 Θ̃ +

ν

α

1

Δ̃
(2 +

Λ

6
)
]
− 2

Θ̃

σ̃
. (8.5.71)
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Figure 8.5.3 (a) Boundary-layer thickness Δ (solid line), momentum thickness Θ (dashed line), and
displacement thickness δ∗ (dotted line), over an axisymmetric oil slick expanding due to gravity,
reduced by σ̃∗ and plotted against the dimensionless similarity distance σ̃/σ̃∗. (b) Corresponding
distribution of the film thickness for a fixed amount of oil, n = 0.

To integrate this equation, we multiply both sides by Θ̃− δ̃∗ and rearrange to obtain

d(Θ̃− δ̃∗)2

dσ̃
=

2

σ̃

([
(2− κ

α
) δ̃∗ − 2 Θ̃

]
(Θ̃− δ̃∗) +

ν

α
H(Λ) (2 +

Λ

6
)
)
− Θ̃

σ̃
(Θ̃− δ̃∗), (8.5.72)

where the function H is given in (8.4.71). Using relations (8.4.48) and the expression for the
boundary-layer thickness in terms of Λ given in (8.5.50), we obtain equation (8.4.72), which can
be used to compute the value of Λ given the left-hand side, by numerically solving an algebraic
equation. Equation (8.5.72) accompanied by (8.4.72) can be integrated from the leading edge up to
the centerline of the oil slick using elementary numerical methods.

The unknown value σ̃∗ corresponding to the radius of the leading edge is determined from the
oil slick volume, Vo = qot

n,

σ̃∗ = ζ
(g2q4o

ν

)1/12

, (8.5.73)

where ζ is a numerical coefficient. In practice, we may guess a value for σ̃∗, solve the boundary-layer
equations, compute the volume of oil, and then rescale σ̃∗ to meet a specified volume. When n = 0,
the numerical computations show that ζ = 1.14. The distribution of the boundary-layer thickness
computed using the numerical method discussed in this section is shown in Figure 8.5.3. The results
are in excellent agreement with those obtained by different methods [75].

8.5.5 Molecular spreading of an axisymmetric oil slick

When the thickness of the oil film discussed in Section 8.5.4 has reached molecular dimensions, the
oil behaves like a surfactant, affecting the surface tension according to an assumed surface equation
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of state, γ(h) [297]. The two-dimensional version of this problem was discussed in Section 8.3.5.
Balancing the induced Marangoni traction with the shear stress, we obtain

μ
(∂u
∂x

)
x=0

= −∂γ

∂σ
. (8.5.74)

A mass balance over the oil film provides us with the evolution equation

∂h

∂t
+

1

σ

∂(σush)

∂σ
= 0, (8.5.75)

where us = uσ(σ, x = 0, t) is the radial surface velocity.

In the similarity solution, the film thickness and the surface tension are assumed to depend
exclusively on the scaled radial coordinate σ̃, so that

h(σ, t) = h̃(σ̃), γ(σ, t) = γ̃(σ̃). (8.5.76)

The interfacial condition (8.5.74) requires that

μ tκ−2β 1

σ̃

(∂2ψ̃

∂x̃2

)
x̃=0

= −dγ̃

dσ̃
. (8.5.77)

To eliminate the explicit time dependence on the left-hand side, we require that κ − 2β = 0.
Combining this condition with (8.5.36), we obtain

δ = 1, α =
3

4
, β =

1

2
. (8.5.78)

The evolution equation (8.5.75) for the film thickness becomes

−3

4
σ̃
dh̃

dσ̃
+

1

σ̃

d

dσ̃

[
ψ̃0
x̃ h̃

]
= 0, (8.5.79)

where ψ̃0
x̃ ≡ (∂ψ̃/∂x̃)x̃=0 . Numerical solutions of the boundary-layer equations can be obtained by

finite-difference methods [297].

8.5.6 Three-dimensional flow

The computation of boundary layers in three-dimensional flow is complicated by the arbitrary orien-
tation of the tangential component of the velocity of the incident flow. The boundary-layer equations
arise from two tangential components of the equation of motion by discarding the second partial
derivatives of the tangential velocity components with respect to arc length in the tangential direc-
tions. The normal component of the equation of motion ensures that the pressure drop is negligible
across the boundary layer. Accordingly, the tangential pressure gradient can be set equal to that of
the incident irrotational flow.

In global laboratory Cartesian coordinates, the boundary-layer equations for an irrotational
incident flow with tangential boundary velocity U take the form

∂u

∂t
·P+ u · (∇u) ·P =

∂U

∂t
·P+

1

2
P · ∇(U ·U) + ν(n⊗ n) : (∇∇u) ·P, (8.5.80)
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where P = I− n⊗ n is the tangential projection operator. The continuity equation retains its full
form for three-dimensional flow.

Surface curvilinear coordinates

In practice, equation (8.5.80) is decomposed into two tangential components corresponding to a
pair of orthogonal or nonorthogonal surface curvilinear coordinates, ξ1 and ξ2, wrapping around
the boundary, and a third coordinate, η, varying in the normal direction. An appealing choice for
lines of constant ξ1 and ξ2 are the surface streamlines of the incident potential flow and the curves
intersecting them at a right angle at each point, called the intrinsic coordinates. The two component
boundary-layer equations involve derivatives of the velocity with respect to ξ1, ξ2, and η multiplied
by the metrics of the three curvilinear coordinates. The wall shear stress, also called the skin
friction, and momentum thickness may point in arbitrary tangential directions. In surface curvilinear
coordinates, the momentum thickness is a rank-two tensor. The momentum integral balance and
the Kármán–Pohlhausen method and its variations are developed in a straightforward fashion but
assume more involved vectorial forms (e.g., [253]). A discussion of approximate and numerical
methods for computing boundary layers in three-dimensional flow can be found in monographs by
Rosenhead [352], Moore [260], and Cebeci & Bradshaw [70].

Problems

8.5.1 Momentum integral balance

(a) Derive the integral momentum balance equation (8.5.13).

(b) Derive the Kármán–Pohlhausen differential equation (8.5.14).

8.5.2 Mangler’s transformation for a sphere

Compute and discuss the transformed variables according to Mangler for streaming (uniform) flow
past (a) a cone and (b) a sphere.

8.5.3 Spreading of an axisymmetric jet

Consider the spreading of an axisymmetric jet that emerges through a circular orifice along the x
axis into an infinite quiescent ambient fluid ([363], p. 230). A momentum integral balance over a
control volume bounded by two parallel planes that are perpendicular to the x axis requires that
the momentum integral,

M = 2πρ

∫ ∞

0

u2σ dσ, (8.5.81)

is independent of x. Implementing the boundary-layer approximation in the axial component of the
equation of motion written in cylindrical polar coordinates, (x, σ, ϕ), and noting that the ambient
pressure is constant, we obtain the boundary-layer equation

u
∂u

∂x
+ v

∂u

∂σ
=

ν

σ

∂

∂σ

(
σ
∂u

∂σ

)
, (8.5.82)

where u = ux is the axial velocity and v = uσ is the radial velocity. The corresponding Stokes
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stream function can be expressed in the form

ψ(x, σ) = νx f(η), (8.5.83)

where f is a dimensionless function and η ≡ σ/x is a dimensionless similarity variable. Substituting
(8.5.83) into (8.5.82), we obtain a third-order homogeneous ordinary differential equation,(

f ′′ − f ′

η

)′

+
1

η
(ff ′′ + f ′2)− ff ′

η2
= 0. (8.5.84)

We observe that, if f(η) is a solution of (8.5.84), then f(cη) is also a solution for any constant c.
The boundary conditions specify that f(0) = 0, f ′(0) = 0, and f ′(∞) = 0.

Solve (8.5.84) subject to the integral constraint (8.5.81), to obtain the solution

f(η) =
4αη2

4 + αη2
, (8.5.85)

where α = 3M/(16πμν) is a dimensionless constant. Show that the axial volumetric flow rate is
given by Q = 8πνx, independent of M .

8.5.4 Spreading of an axisymmetric wake

Consider the widening of an axisymmetric wake behind a streamlined object that is held stationary
in uniform (streaming) flow along the x axis with velocity U (e.g., [363], p. 234). Show that, if the
rate of widening is sufficiently small, boundary-layer predicts the axial velocity profile

u(x, σ) = U
(
1− c

x
exp

[
− Uσ2

4νx

] )
, (8.5.86)

where c = F/(4πμU) is a dimensional constant and F is the drag force exerted on the object.
Compare this solution with that derived in Section 8.1.4 for a two-dimensional wake.

8.5.5 Three-dimensional boundary layers

Present the explicit forms of the tangential components of (8.5.80) corresponding to a system of
orthogonal surface curvilinear coordinates, ξ1 and ξ2, wrapping around the body, and a third coor-
dinate, η, that is normal to the body.

Computer Problem

8.5.6 Boundary layer around a sphere

Write a program that uses the Kármán–Pohlhausen method to compute the boundary layer around
a sphere that is held stationary in an incident uniform flow. Plot the distribution of the wall shear
stress and estimate the meridional angle, θ, where the boundary layer is expected to separate.

8.6 Oscillatory boundary layers

An important class of boundary layers arise in oscillatory flow past a stationary body or suspended
particle, pulsating internal flow inside a channel or tube, and in the flow caused by natural or forced
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vibrations of rigid or deformable objects. For example, an oscillating boundary layer develops at the
bottom of the ocean due to the periodic flow induced by the propagation of free-surface or internal
gravity waves.

Role of vorticity

To illustrate the physical mechanism governing the structure of an oscillatory boundary layer, we
consider uniform pulsating flow with angular velocity Ω past a stationary rigid body. Reversal of the
velocity of the outer flow over one period causes the sign of the boundary vorticity to alternate in
time. As a result, vorticity of positive and negative sign diffuses across the boundary and enters the
flow, and the boundary layer consists of successive vortex layers that penetrate and tend to cancel
each other as they are convected by the incident flow. An example is the Stokes boundary layer
arising in oscillatory unidirectional streaming flow over an infinite plate, as discussed in Section 5.4.1.
The Stokes boundary layer consists of traveling bands of vorticity with alternating sign penetrating
the flow by a distance that is comparable to the Stokes boundary-layer thickness, δ = (2ν/Ω)1/2,
where Ω is the angular frequency of the oscillations and ν is the kinematic viscosity of the fluid.
Similar boundary layers occur in oscillatory flow through tubes, as discussed in Section 5.5.

Driven Stokes boundary layer

When the Reynolds number of an incident oscillatory flow is high, Re = ΩL2/ν � 1, and the
geometry of the boundary is smooth and sufficiently simple, the thickness of an oscillatory boundary
layer is small compared to the boundary size, L. Under these circumstances, the outer flow is
irrotational and the boundary layer is driven by the tangential component of the outer velocity, u∞,
given by

u∞
t ≡ (n× u∞)× n = (I− n⊗ n) · u∞ ≡ Ūt cos(Ωt) t, (8.6.1)

where n is the normal unit vector pointing into the flow, t is a tangent unit vector, and Ūt is the
amplitude of the tangential velocity. Neglecting the curvature of the boundary, we approximate the
flow at a particular point on the boundary with the flow over a flat plate due to an overpassing
oscillatory streaming flow with velocity Ūt cos(Ωt)t, as discussed in Section 5.4.2. Introducing a
local coordinate system with the y axis perpendicular to the boundary at a point and origin at that
point, and using (5.4.16), we find that the velocity profile across the oscillatory boundary layer is
given by

u = Ūt

[
cos(Ωt)− cos(Ωt− ŷ) e−ŷ

]
t, (8.6.2)

where ŷ = y/δ and δ = (2ν/Ω)1/2 is the Stokes boundary-layer thickness.

Drag force

The force exerted on the boundary consists of the acceleration reaction associated with the outer
unsteady irrotational flow and a viscous drag due to the Stokes boundary layer. It might appear that
the local solution (8.6.2) alone is sufficient for computing the viscous drag. However, this approach
leads us to the erroneous conclusion that the phase shift between the drag force and the velocity
at the edge of the boundary layer is equal to 3π/4, independent of the boundary geometry ([24], p.
335). The viscous normal stresses due to the boundary curvature must be taken into consideration.



8.6 Oscillatory boundary layers 701

Computation of the damping force

Consider a streaming oscillatory flow with velocity u∞ = U cos(Ωt) past a stationary body, where
U is a constant velocity. The component of the drag force in the direction of U and in phase with
U, is called the damping force. Batchelor proposed that the damping force can be computed by
setting the rate of energy dissipation inside the Stokes boundary layer equal to the rate of working
necessary to hold the body at a fixed position, both averaged over one cycle ([24], p. 336).

To perform this calculation, we work in a frame of reference where the body appears to
execute translational oscillations with velocity v = V cos(Ωt) and the velocity decays far from the
body, where V = −U. Noting that the average kinetic energy of the fluid is constant over each
period of the oscillation, T = 2π/Ω, and integrating the energy balance over one period, we obtain∫ T

0

(∫∫
Body

u · f dS
)
dt = −

∫ T

0

(∫∫∫
Flow

Φ dV
)
dt, (8.6.3)

where the normal unit vector, n, points into the flow.

Substituting (8.6.2) into (3.4.15), we find that the rate of dissipation inside a small volume
within the boundary layer is given by

Φ = μ
(∂ut

∂y

)2

= ρΩ Ū2
t cos2(Ωt− 3π

4
− y

δ
) e−2y/δ, (8.6.4)

where ut is the tangential velocity. The average rate of viscous dissipation over one period of the
oscillation is thus given by

D̄ ≡ 1

T

∫ T

0

∫ ∞

0

(∫∫
Body

Φ dS
)
dy dt =

μ

2δ

∫∫
Body

Ū2
t dS. (8.6.5)

Next, we express the hydrodynamic drag force as

D = D̄ cos(Ωt− α), (8.6.6)

where D̄ is the amplitude and α is the phase shift between the drag force and the velocity. The
average rate of working of the body due to its motion against the fluid, expressed by the integral on
the left-hand side of (8.6.3), is

W̄ ≡ 1

T

∫ T

0

V ·D cos(Ωt) cos(Ωt− α) dt =
1

2
cosαV ·D. (8.6.7)

Substituting (8.6.5) and (8.6.7) into (8.6.3), we obtain

U ·D =
1

cosα

μ

δ

∫∫
B

U2
t dS. (8.6.8)

Our analysis in Sections 6.15 and 6.16 has indicated that, unless the boundary has sharp edges, in
which case the linearized equation of motion ceases to be valid, D is an analytic function of (−i/δ)1/2
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and α = π/4. To compute the damping force, we must evaluate the surface integral of the square of
the amplitude of the tangential velocity of the outer flow.

As an example, we use the solution for streaming irrotational flow past a sphere of radius a
to evaluate the integral in (8.6.8) and find that

U ·D =
(Ωa2

ν

)1/2

6πμa|V|2. (8.6.9)

In the case of streaming irrotational flow past a cylinder of radius a and length L, we find that

U ·D =
(Ωa2

ν

)1/2

4πμL|V|2. (8.6.10)

Problem

8.6.1 Damping force on a sphere and a cylinder

Integrate the potential flow solution to compute the dissipation integral (8.6.8) for (a) a sphere and
(b) a cylinder.

Computer Problem

8.6.2 Damping force on a spheroid

Integrate the potential flow solution to compute the dissipation integral (8.6.8) for axial flow past a
prolate spheroid. Plot your results against the spheroid aspect ratio and confirm agreement for the
sphere.



Hydrodynamic stability 9
In previous chapters, we discussed analytical and numerical methods for computing the structure of
a steady flow and the evolution of an unsteady flow under a broad range of conditions. The spectrum
of flows considered includes creeping flows at vanishing Reynolds numbers, irrotational flows at high
Reynolds numbers, and flows dominated by vortex motion. In this chapter, we address the issue of
whether the steady flows considered can be physically realized in practice.

In nature and technology, a flow is always established through a transient process, beginning
from a certain initial state. It is important to realize that the evolution of a physical flow from
the initial state will not necessarily lead to a steady state that can be captured by analytical or
numerical methods. For example, imposing a pressure drop across the length of a circular tube does
not guarantee the onset of unidirectional Poiseuille flow with a parabolic velocity profile discussed
in Section 5.2.1. In fact, in 1883 Reynolds observed that, at sufficiently high Reynolds numbers,
Re, the tube flow develops wavy motions and the assumption of unidirectional motion ceases to be
valid.

Flows in industrial, laboratory, and natural settings are subjected to disturbances with small
or large amplitude due to equipment and building vibration, Brownian motion of microscopic sus-
pended particles, and other reasons. In some technological applications, perturbations with a suitable
amplitude and form are purposely introduced in order to initiate a certain desirable action, such
as enhance mixing or delay boundary-layer separation. It is then possible that natural or artificial
disturbances may amplify in time or space leading to unsteady motion or to a new steady state.

The behavior of a disturbance depends on its specific form as well as on the structure of the
unperturbed flow. In the context of hydrodynamic stability, the unperturbed flow is a base flow.
Perturbations may exhibit different types of behavior depending on the Reynolds number and other
dimensionless numbers characterizing the base flow. In some cases, perturbations may grow while
being convected with the base flow, causing a convective instability. In other cases, perturbations
may spread out to contaminate the whole domain of flow, causing an absolute instability. More
involved types of behavior are possible [195]. For example, disturbances in a globally unstable flow
may initiate self-excited modes. Establishing criteria for the resilience and thus physical relevance
of a particular steady or unsteady base flow is the main directive of hydrodynamic stability analysis.

To assess the stability of a base flow, we may subject it to a broad range of perturbations
and observe their subsequent evolution. If all perturbations decay, the flow is stable. If certain
perturbations amplify, the flow is unstable and may not be realized in a physical setting unless an

703
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external mechanism that controls the growth of the unstable perturbations is provided. In certain
cases, assessing the behavior of perturbations can be done by simple physical arguments. More
generally, the study of perturbations requires detailed analysis and numerical computation.

In principle, the behavior of perturbations can be studied by solving the equation of motion
together with the continuity equation subject to imposed boundary conditions and a suitable initial
condition. However, since the number of admissible disturbances is innumerable, it is futile to
attempt to exhaust all possibilities. One way to make progress is to assume that the magnitude of
the perturbation is small and remain small during an initial period of time, linearize the governing
equations with respect to all flow variables around the base state, and solve the governing equations
for a wide range of initial conditions using, for example, the method of Laplace transform. This
approach encapsulates the essence of linear stability analysis. However, even after linearization,
a general solution can be obtained by analytical methods only for a limited family of flows by
performing a normal-mode analysis that considers perturbations with exponential growth or decay
in time.

If linear stability analysis indicates that perturbations grow in time, the base flow hosting the
perturbations is unstable. However, since neglected nonlinear effects may promote the growth or
perturbations, the converse is true only if the magnitude of perturbations is and remains sufficiently
small in time. In certain cases, nonlinear effects slow down or even suppress the growth of unstable
perturbations and lead to a new steady or periodic state. Assessing the effect of nonlinearities can be
challenging. Progress can be made working under the auspices of weakly nonlinear stability theory
where a disturbance is described by a perturbation series and the analysis is carried out up to the
second or higher order with respect to a perturbation parameter. A full assessment of the nonlinear
effects requires the use of numerical methods, such as the finite-difference methods discussed in
Chapter 13.

In this chapter, we introduce the basic concepts underlying the formulation of the linear
stability problem for internal, external, interfacial, and free-surface flows. In the case of interfacial
flows, we employ the method of domain perturbation where a fluid is artificially extended into another
fluid or a boundary by analytical continuation. Having laid the theoretical foundation and derived
the governing equations, we present the normal-mode stability analysis and study the properties
of a fundamental class of viscous and inviscid flows. Solutions of the linearized equations will be
obtained by analytical and numerical methods for solving ordinary and linear partial differential
equations involving an eigenvalue.

Further discussion of linear and nonlinear stability analysis can be found in classical texts
by Lin [241], Chandrasekhar [73], and Betchov & Criminale [34], and in other relevant reviews and
monographs [95, 112, 195, 257, 364].

9.1 Evolution equations and formulation of the linear stability problem

To prepare the ground for computing the evolution of perturbations in a nearly steady flow, we
summarize the equations governing the evolution of the velocity, vorticity, and pressure fields in a
homogeneous incompressible fluid with uniform physical properties, in the presence of a uniform
body force.
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Evolution of the velocity

For the purpose of assessing stability, it is useful to regard the Navier–Stokes equation (3.5.5) as an
evolution equation for the velocity,

∂u

∂t
= Fu(u, p), (9.1.1)

where

Fu(u, p) ≡ −u · ∇u− 1

ρ
∇p+ ν∇2u+ g (9.1.2)

is a forcing function, ρ is the fluid density, and ν is the kinematic viscosity.

Evolution of the pressure

An explicit evolution equation for the pressure is not available. Instead, the condition of fluid
incompressibility imposes a local constraint, requiring that the instantaneous pressure field is such
that the rate of expansion remains zero at all times, ∇ · u = 0. To illustrate the way in which this
condition provides us with an implicit evolution equation for the pressure, we take the divergence
of (9.1.1) and derive an evolution equation for the rate of expansion, α ≡ ∇ · u,

∂α

∂t
= ∇ ·Fu = −∇ · (u · ∇u)− 1

ρ
∇2p+ ν∇2α. (9.1.3)

Requiring that the left-hand side and the last term on the right-hand side are zero, we derive a
Poisson equation for the pressure,

∇2p = −ρ∇ · (u · ∇u) = −ρ∇∇ : (uu), (9.1.4)

subject to boundary conditions discussed in Section 13.3.3. Conversely, if the pressure field develops
so that (9.1.4) is satisfied at all times, the gradient of the pressure on the right-hand side of (9.1.2)
will be such that ∇ ·Fu = 0 at any time (Problem 9.1.1).

Now we take the partial derivative of (9.1.4) with respect to time, expand the derivatives
on the right-hand side, and use (9.1.1) to derive a Poisson equation for the rate of change of the
pressure,

∇2
(∂p
∂t

)
= −ρ∇ · (Fu · ∇u)− ρ∇ · (u · ∇Fu) = −2ρ∇∇ : (uFu). (9.1.5)

The solution can be found using the Poisson inversion formula, yielding a standard evolution equation
written in the symbolic form

∂p

∂t
= Fp

(
u,Fu(u, p)

)
. (9.1.6)

The functional form of Fp depends on the instantaneous structure of the flow and required boundary
conditions.
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Solenoidal projection

To illustrate further the role of the pressure in maintaining the velocity field solenoidal, we consider
the right-hand side of (9.1.2) with the pressure term omitted, and define the pressureless forcing
function

Fu(u, 0) ≡ −u · ∇u+ ν∇2u+ g. (9.1.7)

The Helmholtz decomposition theorem discussed in Section 2.8 allows us to express the function
Fu(u, p = 0) as the sum of a solenoidal and an irrotational field,

Fu(u, 0) = ∇×A+∇φ, (9.1.8)

where A is a vector potential and φ is a potential function. By definition,

Fu(u, p) = Fu(u, 0)−
1

ρ
∇p = ∇×A+∇φ− 1

ρ
∇p. (9.1.9)

If the fluid is incompressible, Fu(u, p) is solenoidal and

∇p = ρ∇φ, (9.1.10)

which shows that the pressure gradient projects Fu(u, 0) into the space of solenoidal functions,
thereby transforming it into a solenoidal field, Fu(u, p). In Section 13.5, we will see that this
interpretation is the foundation of a class of numerical methods for integrating the equation of
motion in time, called projection or pressure-correction methods.

Evolution of the vorticity

An evolution equation for the vorticity emerges by recasting the vorticity transport equation (3.12.1)
for an incompressible fluid with uniform physical properties into the form

∂ω

∂t
= Fω(ω,u), (9.1.11)

where

Fω(ω,u) ≡ −∇× (ω × u) + ν∇2ω = −u · ∇ω + ω · ∇u+ ν∇2ω. (9.1.12)

One noteworthy feature of (9.1.12) is the absence of the pressure. This feature is exploited for the
expedient analytical or numerical computation of flows based on the vorticity transport equation,
as discussed in Chapters 11 and 13.

Summary of evolution equations

Compiling equations (9.1.2), (9.1.6), and (9.1.11), we obtain a complete system of evolution equations
for the velocity, pressure, and vorticity in vector form,

∂u

∂t
= Fu(u, p),

∂p

∂t
= Fp(p,u),

∂ω

∂t
= Fω(ω,u). (9.1.13)
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The left-hand side of each equation in (9.1.13) is zero in a steady flow, and the structure of the
velocity, pressure, and vorticity fields is governed by the equations of steady flow,

Fu(u
S , pS) = 0, Fp(p

S,uS) = 0, Fω(ωS ,uS) = 0, (9.1.14)

where the superscript S indicates a steady state.

9.1.1 Linear evolution from a steady state

Next, we consider a nearly steady flow that deviates only slightly from a certain steady state. This
physical condition can be implemented by expressing the velocity, pressure, and vorticity fields as

u = uS + εuU , p = pS + ε pU , ω = ωS + εωU , (9.1.15)

where ε � 1 is a small dimensionless coefficient and the superscript U denotes the unsteady com-
ponent. Both the steady and unsteady components are required to satisfy the continuity equation
for an incompressible fluid,

∇ · uS = 0, ∇ · uU = 0. (9.1.16)

The steady variables depend only on position, x, whereas the unsteady variables depend on position
and time, t.

Substituting expressions (9.1.15) into the right-hand sides of (9.1.2) and (9.1.12) and discard-
ing terms with quadratic dependence on ε, we obtain the linear forms

Fu(u, p) � ε
[
− uS · ∇uU − uU · ∇uS − 1

ρ
∇pU + ν∇2uU

]
(9.1.17)

and

Fω(ω,u) � ε
[
− uS · ∇ωU − uU · ∇ωS + ωU · ∇uS + ωS · ∇uU + ν∇2ωU

]
. (9.1.18)

To derive these equations, we have used (9.1.14) to eliminate the terms involving the steady field
alone on the right-hand sides.

Next, we substitute expressions (9.1.15), (9.1.17), and (9.1.18) into the evolution equations
(9.1.1) and (9.1.11), and thus derive a linear evolution equation for the unsteady components of the
velocity and vorticity,

∂uU

∂t
= −uS · ∇uU − uU · ∇uS − 1

ρ
∇pU + ν∇2uU (9.1.19)

and

∂ωU

∂t
= −uS · ∇ωU − uU · ∇ωS + ωU · ∇uS + ωS · ∇uU + ν∇2ωU . (9.1.20)

These two equations can be collected into the compact form

∂

∂t

[
uU

ωU

]
=

[
A B 0

C 0 D

]
·

⎡⎣ uU

pU

ωU

⎤⎦ , (9.1.21)
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where A, B, C, and D are four differential operators given by

A = −uS · ∇ − (∇uS)T ·+ν∇2, B = −1

ρ
∇,

C = −(∇ωS)T ·+ωS · ∇, D = −uS · ∇+ (∇uS)T ·+ν∇2 .

(9.1.22)

We observe that the precise form of A, B, C, and D depends on the structure of the base flow.

Substituting the right-hand side of (9.1.15) for the velocity and pressure into (9.1.4), and lin-
earizing the right-hand side of the resulting equation, we obtain a Poisson equation for the unsteady
component of the pressure,

∇2pU = −ρ∇ · (uS · ∇uU + uU · ∇uS) = −2ρ∇∇ : (uUuS). (9.1.23)

We can work in a similar fashion with the evolution equation (9.1.6), recasting it into a form that is
similar to that shown in (9.1.21). However, this is not necessary for the purposes of our discourse.

Linear stability analysis

Equations (9.1.21) and (9.1.23) provide us with a system of linear homogeneous partial differential
equations for the evolution of the unsteady component of a nearly steady flow. Solving this system
allows us to study the departure of a flow from a steady state during an initial period of time where
the magnitude of the unsteady component is small compared to that of the base flow.

Now we consider a base flow at steady state and identify the unsteady component with a
physical perturbation. Depending on the structure of the base flow and form of the perturbation,
a disturbance may behave in different ways. If the magnitude of the disturbance, defined in some
local or global sense, grows, remains constant, or decays asymptotically in time, the disturbance is
unstable, marginally stable, or stable. If every possible disturbance decays in time, the base flow is
linearly stable. If certain disturbances grow, the base flow is linearly unstable. An unstable flow can
be physically realized only if unstable disturbances are screened out by a control mechanism that
detects and suppresses the growth of perturbations.

To this end, we underline the limitations and advisory role of linear stability theory by pointing
out that a flow that is stable according to linear stability theory will not necessarily appear in
practice. The reason is that nonlinear interactions and small deviations from an assumed perfect
geometry of the domain of flow can be responsible for unstable behavior. For example, Poiseuille
flow in a tube is always stable according to linear theory but unstable in real life when the Reynolds
number is sufficiently large, as discussed in Section 9.8.6.

9.1.2 Evolution of stream surfaces and interfaces

A perturbation causes a stream surface or interface between two immiscible fluids to deviate from
the steady shape corresponding to the base flow. In the case of two-dimensional flow in the xy plane,
the shape of a streamline or fluid interface can be described parametrically as

x(l, t) = X(l) + εq(l, t)n(l), (9.1.24)
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Figure 9.1.1 (a) Illustration of a material line or interface deviating from a reference shape correspond-
ing to a two-dimensional base flow. (b) A perturbed material line or interface can be described by
a chain of marker particles parametrized by the arc length along the unperturbed interface, l.

where X(l) is a steady streamline or interface regarded as a reference line, l is the arc length along
the reference line, n(l) is the unit vector normal to the reference line, and εq(l, t) is the normal
displacement, as shown in Figure 9.1.1(a). Correspondingly, the velocity component normal to the
reference line evaluated at the position of the perturbed stream surface or interface can be expressed
in the form

un(l, t) = εvn(l, t), (9.1.25)

where vn is the leading-order normal velocity component. Substituting the expressions ζ = εq and
un = εvn into the general kinematic compatibility condition (1.10.17), and linearizing with respect
to ε, we obtain the evolution equation

∂q

∂t
+ ut(l)

∂q

∂l
− vn = 0, (9.1.26)

where ut is the velocity component of the base flow tangential to the reference line. Given the
tangential and normal velocities, the shape of an evolving interface can be computed by integrating
in time the convection equation (9.1.26) by analytical or numerical methods. Equation (9.1.26)
also describes the evolution of the trace of an axisymmetric interface in an azimuthal plane in
axisymmetric flow. Similar equations can be written for three-dimensional flow.

Numerical methods

In a numerical implementation, a two-dimensional or axisymmetric interface is typically described
by a chain of N marked points or nodes, as shown in Figure 9.1.1(b). The position of the ith marker
point corresponding to arc length li is

xi = Xi + εqi(t)n, (9.1.27)

where qi(t) is the nodal value of the shape function q(t). Since tangential motion does not cause
a change in shape, we have stipulated that the marker points move normal to the unperturbed
stationary interface.
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The shape function, q(l), and its derivative, q′(l) ≡ dq/dl, can be constructed in terms of the
nodal values, qi, by cubic spline or another type interpolation, as discussed in Section B.4, Appendix
B. The numerical method provides us with the nodal derivatives,

q′(li) =
(∂q′(li)

∂qj

)
q=0

qj , (9.1.28)

where summation is implied over the repeated index, j. Note the linear dependence of q′(li) on the
nodal displacements, qj . Linearizing the normal velocity at the ith node with respect to the position
of all nodes, and working in a similar fashion, we obtain an expression for the nodal velocities

vn(li) =
(∂vn(li)

∂qj

)
q=0

qj . (9.1.29)

Applying equation (9.1.26) at the ith node and substituting expressions (9.1.28) and (9.1.29), we
derive a system of linear ordinary differential equations,

dqi
dt

= Mijqj , (9.1.30)

where summation is implied over the repeated index, j, and

Mij ≡
(∂vn(li)

∂qj

)
q=0

− ut(li)
(∂q′(li)

∂qj

)
q=0

(9.1.31)

is a constant matrix. The general solution of the linear system (9.1.30) can be found in terms of the
eigenvalues, eigenvectors, and possibly generalized eigenvectors of the matrix M (e.g., [317]). If the
matrix M is diagonalizable, we obtain exponential solutions described as regular normal modes. As
an alternative, equation (9.1.30) can be integrated in time by numerical methods.

Discrete perturbations

In practice, the jth column of the matrix M introduced in (9.1.30) can be generated by a simple
numerical procedure, described as the method of discrete perturbations, according to the following
steps:

1. All marker points are positioned along the unperturbed interface at chosen arc length positions
li, where i = 1, . . . , N .

2. The jth marker point is displaced normal to the interface by a small distance, δ.

3. Cubic spline or another interpolation with appropriate boundary conditions is performed for
a function G(l) using the data set

G(l1) = 0, . . . , G(lj−1) = 0, G(lj) = δ, G(lj+1) = 0, . . . , G(lN ) = 0, (9.1.32)

and the nodal derivatives, G′(li), are evaluated. For arbitrary δ,(∂q′(li)
∂qj

)
q=0

=
1

δ
G′(li). (9.1.33)

The value of δ must be small if nonlinear interpolation is employed.
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4. The velocity component normal to the unperturbed contour is evaluated at all nodes. For
small δ, we compute (∂vn(li)

∂qj

)
q=0

� 1

δ
vn(li). (9.1.34)

The value of δ must be such that the differentiation error is larger than the numerical error in
evaluating the velocity.

5. The results of Steps 3 and 4 are used to compute Mij according to (9.1.31)

The computation is repeated for j = 1, . . . , N to generate all columns of M and the eigenvalues are
computed by standard numerical methods. This formulation is especially advantageous when the
normal velocity can be computed from a contour- or boundary-integral representation, as in the case
of Stokes flow, potential flow, or inviscid flow containing vortex patches. The main advantage is that
solving the equations of inviscid or viscous flow is entirely bypassed and the analysis is conducted
using an essentially geometrical approach [43]. Applications are discussed in Section 9.3.5.

9.1.3 Simplified evolution equations

In previous chapters, we discussed approximate solutions for low- and high-Reynolds number flow.
For example, in Section 6.4.4, we found that the thickness of a liquid film coated on a horizontal sur-
face, h(x, t), is governed by the partial differential equation (6.4.40), repeated here for convenience,

ht +
ρg

3μ

[
h3 (−hx +

γ

ρg
hxxx)

]
x
= 0, (9.1.35)

where ρ is the film density, μ is the film viscosity, γ is the surface tension, g is the acceleration of
gravity, a subscript t denotes a derivative with respect to time, and a subscript x denotes a derivative
with respect to x. To derive a linearized evolution equation for the film thickness, we set

h(x, t) = h̄+ εη(x, t), (9.1.36)

where h̄ is the mean film thickness and η(x, t) is a perturbation shape function. Substituting this
expression into (9.1.35) and linearizing with respect to ε, we obtain a fourth-order linear partial
differential equation with respect to η,

ηt +
ρg

3μ
h̄3

(
− ηx +

γ

ρg
ηxxx

)
x
= 0. (9.1.37)

An initial condition and a boundary or periodicity condition for η must be provided. The solution
can be computed by finite-difference, finite-element, spectral, or other numerical methods.

Problems

9.1.1 Pressure Poisson equation

Consider an initially solenoidal velocity field. Show that if the pressure is computed from (9.1.4),
the velocity field will remain solenoidal at all times. What will happen if the initial velocity field is
not initially solenoidal?
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9.1.2 Nonlinear evolution equation in operator form

Recast (9.1.13) in operator form similar to that shown in (9.1.21).

9.1.3 Linearized vorticity transport for two-dimensional flow

Discuss the physical significance of the various terms in (9.1.20) for two-dimensional flow.

9.2 Initial-value problems

We proceed to discussing possible ways of solving the initial-value problem governed by the linearized
equation of motion and vorticity transport equation (9.1.21), subject to appropriate boundary con-
ditions and a specified initial condition describing a perturbation. The analysis will illustrate the
difficulty in computing the evolution of an unsteady flow by analytical methods even after lineariza-
tion.

9.2.1 Inviscid Couette flow

In the case of inviscid Couette flow along the x axis in a channel

a

y

x

−a

Couette flow in a channel.

confined between two plane walls located at y = ±a, an analytical
solution of the linearized initial-value problem can be found in inte-
gral form [283]. The velocity of the base flow is uS = (ξy, 0), where
ξ is a constant shear rate with units of inverse time.

We focus our attention on two-dimensional perturbations in
the plane of the flow and introduce the disturbance stream function,
ψ(x, y, t). The no-penetration boundary condition at the two walls
requires that ψ = 0 at y = ±a. The z component of the linearized
vorticity transport equation (9.1.20) shows that, in the absence of
viscous forces, the vorticity associated with the disturbance flow is
simply convected by the base flow,

∂ωU
z

∂t
+ ξy

∂ωU
z

∂x
= 0, (9.2.1)

where ωU
z = −∇2ψ and the superscript U denotes the unsteady component. Inverting the hyperbolic

operator on the left-hand side, we obtain the general solution

∇2ψ = −ωU
z (x, y, t) = −Ωz(x− ξty, y), (9.2.2)

where Ωz(x, y) ≡ ωU
z (x, y, t = 0) is the disturbance vorticity at the initial instant.

Fourier expansions

For simplicity, we consider perturbations that are initially symmetric with respect to the origin of
the x axis, x = 0, and express the stream function as a sine Fourier series in the y direction and a
cosine Fourier integral in the x direction. Antisymmetric perturbations can be treated in a similar
manner and a general perturbation can be expressed in terms of symmetric and antisymmetric modes
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(Problem 9.2.1). Taking into account the no-penetration boundary condition ψ = 0 at y = ±a, we
write

ψ(x, y, t = 0) =
∞∑

n=1

sin
(nπ
2a

(y + a)
) ∫ ∞

−∞

bn(λ) cosλx dλ, (9.2.3)

where bn(λ) are real Fourier coefficients with dimensions of velocity multiplied by squared length.
Without loss of generality, we may assume that bn are even functions, bn(λ) = bn(−λ); odd functions
are annihilated upon integration. Straightforward differentiation yields the initial vorticity field,

Ωz(x, y) ≡ −∇2ψ(x, y, t = 0) =
∞∑

n=1

sin
(nπ
2a

(y + a)
) ∫ ∞

−∞

[(nπ
2a

)2

+ λ2
]
bn(λ) cosλx dλ. (9.2.4)

Fourier transform

The Fourier transform of a rapidly decaying function, f(x), is defined by the integral

f̂(k) ≡
∫ ∞

−∞

f(x) e−ikx dx, (9.2.5)

where i is the imaginary unit. The Fourier transform of the derivatives are f̂ ′(k) = ik f̂(k) and

f̂ ′′(k) = −k2 f̂(k). The inverse transform is

f(x) =
1

2π

∫ ∞

−∞

f̂(k) eikx dκ. (9.2.6)

Derivation of a one-dimensional Poisson equation

Substituting (9.2.4) into (9.2.2) and taking the x Fourier transform of the emerging equation, we
find that (

− k2 +
∂2

∂y2

)
ψ̂(k, y, t) = F(k, y, t), (9.2.7)

where

F(k, y, t) = −
∞∑

n=1

sin
(nπ
2a

(y + a)
) ∫ ∞

−∞

[(nπ
2a

)2

+ λ2
]
bn(λ)

[ ∫ ∞

−∞

cos[λ(x− ξty)] e−ikx dx
]
dλ.

(9.2.8)

Next, we compute the inner integral∫ ∞

−∞

cos[λ(x− ξty)] e−ikx dx =
1

2

∫ ∞

−∞

(
exp[iλ(x− ξty)] + exp[−iλ(x− ξty)]

)
e−ikx dx

=
1

2

(
e−iλξty

∫ ∞

−∞

exp[i(λ− κ)x] dx+ eiλξty
∫ ∞

−∞

exp[−i(λ+ κ)x] dx
)
, (9.2.9)
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yielding ∫ ∞

−∞

cos[λ(x− ξty)] e−ikx dx = π e−iλξty
(
δ(λ− κ) + δ(λ+ κ)

)
, (9.2.10)

where δ is the one-dimensional Dirac delta function. Substituting this expression into (9.2.8), using
the distinctive properties of the delta function, and recalling that bn(k) = bn(−k), we find that
(9.2.7) becomes(

− k2 +
∂2

∂y2

)
ψ̂(k, y, t) = −2π

∞∑
n=1

[(nπ
2a

)2

+ k2
]
sin

(nπ
2a

(y + a)
)
bn(k) e

−ikξty. (9.2.11)

Restating the sine as the sum of two complex exponentials, we find that(
− k2 +

∂2

∂y2

)
ψ̂(k, y, t) = πi

∞∑
n=1

[(nπ
2a

)2

+ k2
]
bn(k) (An −A−n), (9.2.12)

where

An = exp
(
i
[nπ
2a

(y + a)− kξty
] )

. (9.2.13)

Particular and general solution

A particular solution of (9.2.12) can be expressed in the form

ψ̂p(k, y, t) = −πi
∞∑

n=1

[(nπ
2a

)2

+ k2
]
bn(k) (αnAn − α−nA−n), (9.2.14)

where αn, κn, and λn are functions of k and t. Substituting (9.2.14) into (9.2.12) and matching the
functional forms on the left- and right-hand sides, we find that

αn =
1(

nπ
2a − kξt

)2
+ k2

. (9.2.15)

To simplify the notation, we define the negative-order coefficients, b−n(k) ≡ −bn(k), and obtain

ψ̂p(k, y, t) = −πi
∞∑

n=−∞

′
[(nπ

2a

)2

+ k2
]
bn(k)αn An, (9.2.16)

where the prime indicates that the term n = 0 is excluded from the sum. Substituting the expression
for αn, adding a judiciously selected homogeneous solution, and taking the inverse Fourier transform,
we derive the general solution,

ψ(x, y, t) = − i

2

∞∑
n=−∞

′

∫ ∞

−∞

(
nπ
2a

)2

+ k2(
nπ
2a − kξt

)2

+ k2
bn(k) (9.2.17)

×
[
Bn − eikξty

(
κn sinh[k(a− y)] + λn sinh[k(a+ y)]

) ]
eik(x−ξty) dk,
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where the functions κn and λn depend on k and t but not on y , and

Bn = exp
(nπi
2a

(y + a)
)
. (9.2.18)

To satisfy the no-penetration boundary condition, we require that the term enclosed by the large
square brackets is zero when y = ±a, yielding

κne
−ikξta sinh(2ka) = Bn(−a) = 1,

λne
ikξta sinh(2ka) = Bn(a) = enπi = (−1)n. (9.2.19)

Selecting the real part on the right-hand side of (9.2.16), we obtain ([437], p. 482)

ψ(x, y, t) =
1

2

∞∑
n=−∞

′

∫ ∞

−∞

(
nπ
2a

)2

+ k2(
nπ
2a − kξt

)2

+ k2
bn(k) Φn(x, y, t, k) dk, (9.2.20)

where

Φn(x, y, t, k) = sin
(nπ
2a

(y + a) + k(x− ξty)
)

(9.2.21)

− 1

sinh(2ka)

(
sinh[k(a− y)] sin[k(x+ ξta)] + sinh[k(a+ y)] sin[k(x− ξta) + nπ]

)
.

Evaluating the right-hand side of (9.2.20) at long times shows that the disturbance decays like 1/t2,
and this means that the base flow is stable (Eliassen, Høilland & Riis [119]; see [257, 112] ). Later
in this chapter, we will see that viscous forces render certain types of perturbations unstable in a
certain range of Reynolds numbers.

9.2.2 Laplace transform

In the case of inviscid plane Couette flow, we were able to solve the initial-value problem governed by
(9.1.21) and (9.1.23) exactly by analytical methods. To compute the solution for more general base
flows, we resort to approximate and numerical methods for linear partial differential equations. The
Laplace transform allows us to eliminate the temporal dependence from the governing equations,
replacing it with an algebraic dependence. Assume that a perturbation has been introduced at the
origin of time and then grows, at most, at an exponential rate in time. The one-sided Laplace
transform of the velocity, pressure, and vorticity is defined as⎡⎣ û

p̂
ω̂

⎤⎦U

(x, s) =

∫ ∞

0+

⎡⎣ u

p
ω

⎤⎦U

(x, t) e−st dt, (9.2.22)

where s is a complex variable. Taking the Laplace transform of (9.1.21) provides us with a system
of linear, inhomogeneous, second-order system partial differential equations in the spatial variables
for the Laplace transformed functions,
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s

[
û

ω̂

]U
=

[
A B 0

C 0 D

]
·

⎡⎣ û

p̂
ω̂

⎤⎦U

+

[
û

ω̂

]U
(x, t = 0+), (9.2.23)

where 0+ indicates the limit t → 0 from positive times when the disturbance is present. Having
computed the solution subject to appropriate boundary conditions, we recover the physical variables
in the time domain in terms of the Bromwich integral in the complex s plane,⎡⎣ u

p
ω

⎤⎦U

(x, t) =
1

2πi

∫ γ+i∞

γ−i∞

⎡⎣ û

p̂
ω̂

⎤⎦U

(x, s) est ds, (9.2.24)

where i is the imaginary unit and γ is a sufficiently large real positive number chosen so that
all singularities of the Laplace transformed functions lie on the left of the integration path. The
integral in (9.2.24) can be evaluated using the method of residues by introducing a closed contour
that encloses all singularities of the integrand. In the absence of branch points of the Laplace-
transformed variables, the contour can be identified with the union of the vertical line s = γ and a
semi-circular contour of large radius.

9.2.3 Green’s functions

Green’s functions are solutions of the linearized equation of motion and associated vorticity transport
equation for the velocity, vorticity, and pressure, subject to a localized forcing. To compute a Green’s
function, we add to the right-hand side of the vorticity transport equation the singular function

δ(x− x0) δ(y − y0) δ(z − z0) δ(t)b, (9.2.25)

where x0 is an arbitrary point in the domain of flow, b is a constant vector, and δ is the one-
dimensional delta function. The solution for the velocity is G(x,x0, t) · b, where G(x,x0, t) is the
Green’s function tensor for the velocity. The solution of the initial-value problem can be expressed
as (a) a volume integral of the Green’s function over the domain of flow multiplied by an appropriate
density distribution function, q, determined by the initial condition, and (b) a convolution integral
in time, in the form

u(x, t) =

∫ t

0

[ ∫∫∫
Flow

G(x,x0, t− τ) · q(x0) dV (x0)
]
dτ. (9.2.26)

Unfortunately, because Green’s functions are hard to compute, this approach finds limited applica-
tions in practice [195].

Problem

9.2.1 Inviscid Couette flow

(a) Verify that (9.2.20) reduces to (9.2.3) at the initial instant, t = 0.
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(b) Derive the counterpart of (9.2.20) for antisymmetric perturbations where the stream function at
the initial instant is given by a sine Fourier integral with respect to x.

Computer Problem

9.2.2 Perturbation flow

Plot the streamline patterns according to (9.2.3) and (9.2.20) at the initial instant and at a later
time of your choice for bn(k) = 0 and b1(k) = ξa3e−ka. Discuss the behavior of the perturbation.

9.3 Normal-mode analysis

To study the evolution of every possible type of perturbation on a given base flow is practically
impossible. Progress can be made by expressing an initial disturbance as a combination of linearly
independent fundamental modes, and then examining the evolution of each individual mode. This
approach assumes that a complete set of fundamental modes is available.

A convenient set of fundamental modes that are analogous to the eigenvectors of a diagonal-
izable matrix are normal modes with exponential dependence on time. The unsteady component of
the flow takes the form ⎡⎣ u

p
ω

⎤⎦NM

(x, t) =

⎡⎣ V

Π
Ω

⎤⎦ (x, �) e−i�t, (9.3.1)

where the superscript NM stands for “normal mode”, � is a complex constant called the complex
growth rate, complex cyclic frequency, or complex angular velocity, i is the imaginary unit satisfying
i2 = −1, and V, Π, and Ω are complex functions of x and �. All dependent variables are assumed
to be complex, with the understanding that both the real and imaginary parts represent admissible
solutions.

Substituting (9.3.1) into the linearized equation of motion and vorticity transport equation
stated in (9.1.21), we obtain a system of linear homogeneous equations governing the spatial structure
of the normal modes,

(i�− uS · ∇+ ν∇2)V −V · ∇uS − 1

ρ
∇Π = 0, (9.3.2)

and

(i�− uS · ∇+ ν∇2)Ω−V · ∇ωS +Ω · ∇uS + ωS · ∇V = 0. (9.3.3)

The continuity equation requires that

∇ ·V = 0. (9.3.4)

By introducing the normal modes, we have factored out the time dependence and derived a system
of partial differential equations in space involving the a priori unknown complex growth rate, �.
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Discrete and continuous spectra

Nontrivial solutions of the system of differential equations (9.3.2), (9.3.3), and (9.3.4) exist only
when the complex growth rate, �, takes values in a set of complex numbers called the spectrum
of eigenvalues of the base flow. The spectrum consists of a discrete part containing separated
eigenvalues, and a continuous part containing families of eigenvalues that vary in a continuous
fashion along a curve with respect to some parameter (e.g., [95], p. 52). The discrete part of the
spectrum may contain a finite number of eigenvalues or no eigenvalues at all. The continuous part
of the spectrum may be null.

For example, in the case of viscous unidirectional flow in a channel, only a discrete spectrum
consisting of an infinite number of discrete eigenvalues that form a complete set can be found. In the
case of inviscid unidirectional channel flow, only a continuous spectrum consisting of stable normal
modes can be found. The nature of the two components of the spectrum will be illustrated in Section
9.5.2 for inviscid Couette flow.

Completeness

Whether or not the normal modes provide us with a complete base of eigenfunctions capable of
describing an arbitrary disturbance by linear superposition depends on the topology of the domain
of flow and presence of singularities [217]. If the normal modes provide us with a complete base,
an arbitrary disturbance can be expressed as a linear combination of (a) the discrete normal modes
multiplied by appropriate complex coefficients, and (b) distributions of the continuous normal modes
weighed by appropriate complex distribution density functions. It is important to keep in mind that,
even though the individual normal modes may grow or decay at an exponential rate, their super-
position may exhibit a different type of temporal behavior (e.g., [68]). Generalized normal modes
with nonexponential dependence on time, corresponding to the eigenvectors of nondiagonalizable
matrices, may arise in some flows. These generalized modes behave as tm exp(−i�t), with an a
priori unknown algebraic exponent, m.

Stable and unstable normal modes

Decomposing the complex growth rate � into its real and imaginary parts, � = �R + i�I , we recast
(9.3.1) into the form ⎡⎣ u

p
ω

⎤⎦NM

(x, t) =

⎡⎣ V

Π
Ω

⎤⎦ (x, �) e�It e−i�Rt, (9.3.5)

which shows that �I is the temporal growth rate of the normal mode and �R is the cyclic frequency
or angular velocity of the perturbation. If �I is positive, the disturbance grows exponentially in time
and the base flow is linearly unstable; if �I is negative, the disturbance decays and the normal mode
is linearly stable; if �I is zero, the disturbance is neutrally stable.

If a perturbation consists of a number of superimposed normal modes, the mode corresponding
to the eigenvalue with the maximum growth rate, �I , called the most unstable or most dangerous
normal mode, will dominate the rest of the modes. The computation of this growth rate and
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associated eigensolution is a prime objective of the linear stability analysis. To establish the critical
conditions under which a flow is expected to be unstable, we examine the behavior of neutrally
stable perturbations with �I = 0, with respect to the dimensionless numbers that characterize the
base flow, such as the Reynolds number or the Weber number.

Laplace transform

It is instructive to apply the method of Laplace transform for computing the evolution of normal
modes. Combining the normal-mode form (9.3.1) with the definition of the Laplace transform shown
in (9.2.22), we find that the transformed variables, indicated by a caret, are given by⎡⎣ û

p̂
ω̂

⎤⎦NM

(x, s, �) =
1

s+ i�

⎡⎣ V

Π
Ω

⎤⎦ (x, �). (9.3.6)

Substituting the right-hand side of (9.3.6) into (9.2.23) and simplifying, we recover (9.3.2) and
(9.3.3), and thereby reconcile the inhomogeneous problem expressed by (9.2.23) with the eigenvalue
problem expressed by (9.3.2) and (9.3.3).

Equation (9.3.6) shows that � = −is is a simple pole of the flow variables in the Laplace-
transformed domain. The associated normal modes may then be used to evaluate the Bromwich
integral in (9.2.24) using the method of residues. Conversely, the poles of the Laplace-transformed
variables correspond to normal modes that fall within the discrete part of the spectrum. The
continuous part of the spectrum is associated with branch cuts of branch points in the complex s
plane.

9.3.1 Interfacial flow

In the case of interfacial flow, we substitute into the linearized kinematic compatibility condition
(9.1.26) the normal-mode expansions

q(l, t) = Q(l) e−i�t, vn(l, t) = Vn(l) e
−i�t, (9.3.7)

and obtain an ordinary differential equation,

−i�Q(l) + ut(l)
dQ

dl
− Vn(l) = 0, (9.3.8)

where Q(l) is a shape function and Vn(l) is the corresponding normal velocity. Rearranging and
observing that Vn(l) is an implicit function of the normal displacement, Q(l), we obtain an eigenvalue
problem governed by an ordinary differential equation,

Vn(l)− ut(l)
dQ

dl
= −i�Q(l). (9.3.9)

The second term on the left-hand side does not appear in the absence of base flow. The form of the
shape function Q(l) can be deduced by physical intuition subject to volume and possibly contact
angle constraints, or else computed as part of the solution.
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Linear stability analysis by discrete perturbations

In the numerical implementation, a two-dimensional or axisymmetric interface is typically described
by a chain of N marker points or nodes, as shown in Figure 9.1.1(b). In the case of a normal-mode
perturbation, the position of the ith marker point corresponding to arc length li is

xi = Xi + εQi e
−i�t ni (9.3.10)

for i = 1, . . . , N , where Qi is the nodal value of the shape function Q, and ni is the corresponding
unperturbed normal unit vector. Because tangential motion does not cause a change in shape, we
have stipulated that the marker points move normal to the unperturbed stationary interface.

The shape function, Q(l), and its derivative, Q′(l), can be constructed in terms of the nodal
values, Qi, by cubic spline or some other type of interpolation, yielding an expression for the deriva-
tive at the ith node,

Q′
i =

( ∂Q′
i

∂Qj

)
Q=0

Qj , (9.3.11)

where summation is implied over the repeated index, j (e.g., [317]). Similarly, the normal velocity
at the ith node can be linearized with respect to the position of all nodes, yielding the corresponding
expression

Vn(li) =
(∂Vn(li)

∂Qj

)
Q=0

Qj . (9.3.12)

Applying equation (9.3.9) at the ith node and substituting these expressions, we obtain an algebraic
eigenvalue problem expressed by the linear system

MijQj = −i�Qi, (9.3.13)

where

Mij ≡
(∂Vn(li)

∂Qj

)
Q=0

− ut(li)
( ∂Q′

i

∂Qj

)
Q=0

. (9.3.14)

The matrix M can be generated by the discrete perturbation method discussed in Section 9.1.7.
The method has been applied successfully to study the capillary instability of an infinite quiescent
viscous cylindrical thread containing a periodic array of particles arranged along the centerline, and
the gravitational instability of a pendant drop [43, 322]. Two additional applications are discussed
in this section.

Relaxation of a viscous drop

In the first application, we study the relaxation of a slightly deformed neutrally buoyant spherical
liquid drop suspended in an infinite fluid with the same viscosity, μ. Restricting our attention to
axisymmetric perturbations with respect to an arbitrarily chosen x axis that passes through the
center of the unperturbed drop, we distribute interfacial nodes around the semi-circular interfacial
contour in an azimuthal plane, as shown in Figure 9.3.1(a). Because of the absence of a base flow, the
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Figure 9.3.1 (a) Illustration of a stationary spherical viscous liquid drop suspended in an infinite
quiescent ambient fluid. (b) Graphs of the first five eigenfunctions.

unperturbed tangential velocity is identically zero, ut = 0, and the second term on the right-hand
side of (9.3.14) does not appear. Referring to (9.3.9), we set l = aθ and identify the normal velocity
with the radial velocity, un = ur, where a is the drop radius and θ is the polar angle.

The discrete perturbation method described in this section is implemented in the computer
code drop ax placed in directory 08 stab of the software library Fdlib (Appendix C). The interfacial
velocity is computed using the boundary-integral method for Stokes flow discussed in Section 6.9.
Solving the eigenvalue problem provides us with the dimensionless growth rate ρ̂I ≡ �Iμa/γ, where
γ is the surface tension. The computations reveal a double zero eigenvalue followed by a sequence of
negative eigenvalues, ρ̂I = −0.46,−0.76,−1.04,−1.31,−1.57,−1.83, . . ., corresponding to decaying
modes. The first five eigenfunctions, Q(θ), normalized so that Q(π) = 1, are shown in Figure
9.3.1(b). The first two eigenfunctions, corresponding to the zero eigenvalues, express inadmissible
radial expansion, Q = 1, and inconsequential translation, Q = − cos θ. Further eigenfunctions
are precisely proportional to the Legendre polynomials, Ln(cos θ), for n > 1, ensuring that the
deformation conserves the drop volume to first order with respect to the dimensionless deformation
parameter, ε.

Stability of a settling viscous drop

In the second application, we consider the instability of a spherical viscous liquid drop with radius
a and viscosity λμ, settling with velocity V in the direction of gravity along the x axis in an infinite
ambient fluid with viscosity μ under conditions of Stokes flow, as illustrated in Figure 9.3.2(a).
Using the singularity solution given in (6.7.47) and (6.7.48), we find that, in a frame of reference
translating with the drop, the interfacial velocity over the unperturbed spherical interface is

ui(r = a) =
1

2

1

λ+ 1

[
(2λ+ 1)Vi +

x̂ix̂j

a2
Vj

]
− Vi =

1

2

1

λ+ 1

(
− Vi +

x̂ix̂j

a2
Vj

)
, (9.3.15)
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Figure 9.3.2 (a) Illustration of a settling viscous liquid drop observed in a frame of reference trans-
lating with the drop velocity, V . (b) Spectrum of dimensionless complex growth rates −i�μa/γ for
Ca = 0 (circles), 0.5 (squares), 1.0 (diamonds), 2.0 (plus signs), 3.0 (asterisks), and 5.0 (dots).

where x̂ = x − x0 is the distance from the drop center, x0, λ is the viscosity ratio, and Vx = V ,
Vy = 0, Vz = 0 are the Cartesian components of the drop velocity. We can easily verify that the
normal velocity component is zero, as required, u · n = 0. In a frame of reference moving with the
drop, the tangential surface velocity is

ut(l) = uθ(r = a) = V
1

2

sin θ

λ+ 1
, (9.3.16)

where l = aθ and θ is the meridional angle. The maximum surface velocity occurs at the equator,
θ = 1

2π. Using expression (6.7.51) for the velocity of settling, we formulate the capillary number

Ca ≡ μV

γ

3

2

3λ+ 2

λ+ 1
=

a2(ρd − ρ)g

γ
(9.3.17)

determining the significance of the capillary pressure due to surface tension, γ, relative to the viscous
stresses due to the motion, where ρd is the drop fluid density.

Referring to (9.3.9), we identify the normal velocity with the radial velocity, un = ur. The dis-
crete perturbation method is implemented in the computer code drop ax discussed in the preceding
section on drop relaxation. The spectrum of dimensionless complex growth rates, −i�μa/γ, is shown
in Figure 9.3.2(b) for several capillary numbers, Ca. Zero eigenvalues representing inconsequential
translation appear for any capillary number. The eigenvalues are real at small capillary numbers but
become complex as the capillary number increases beyond a critical threshold. Since the real part
of −i�μa/γ is zero or negative independent of the capillary number, the interface is stable except in
the complete absence of surface tension corresponding to infinite capillary number.
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Figure 9.3.3 The first three eigenfunctions representing the interfacial deformation of a moving vis-
cous drop for capillary number (a) Ca = 0.5, (b) 1.0, (c) 2.0, and (d) 3.0.

The first three eigenfunctions corresponding to nonzero eigenvalues are shown in Figure 9.3.3
for Ca = 0.5, 1.0, 2.0, and 3.0. The corresponding eigenfunctions for zero capillary number, cor-
responding to a stationary drop relaxing after a normal-mode perturbation has been imposed, are
shown in Figure 9.3.1(b). In the case of a moving drop, the interfacial velocity field causes the
normal-mode perturbations to concentrate at the back of the drop where a sharp peak arises at high
capillary numbers. The peak becomes infinitely tall in the absence of surface tension due to the
uninhibited action of the local stagnation-point flow.

9.3.2 Simplified evolution equations

The availability of simplified evolution equations considerably expedites the linear stability analysis
in terms of normal modes. As an example, we investigate the instability or leveling of a film coated on
a horizontal surface in the framework of the lubrication approximation. To study spatially periodic
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normal-mode perturbations with wavelength L, we substitute into the linearized equation (9.1.37)
the normal-mode form

η(x, t) = h̄ cos(kx) exp(−i�t), (9.3.18)

where k = 2π/L is the wave number and h̄ is the mean film thickness. Simplifying and rearranging,
we derive a purely imaginary growth rate,

�I = − h̄3

3μ
k2(ρg + γk2). (9.3.19)

Since ρI < 0 under any conditions, normal-mode perturbations decay exponentially due to the
combined action of gravity and surface tension.

Problems

9.3.1 Normal modes in operator form

Recast equations (9.3.2) and (9.3.3) in operator form similar to that shown in equation (9.1.21).

9.3.2 Eigenvalues and eigenvectors of a matrix

Discuss the number of eigenvalues and the number of possible distinct eigenvectors of an N × N
square matrix. State the conditions under which the eigenvectors form a complete base of the
Nth-dimensional vector space (e.g., [317]).

9.3.3 Ordinary differential equations

Consider a system of first-order linear ordinary differential equations, dx/dt = A · x, where x is
the unknown solution vector and A is a square matrix. Express the general solution in terms of
exponential functions in time involving the eigenvalues of A. Discuss the possible occurrence of
non-exponential solutions (e.g., [317]).

9.4 Unidirectional flows

Unidirectional flows are encountered in a broad range of natural and engineering applications. Ex-
amples include shear-layer flows forming between two merging streams, atmospheric boundary-layer
flows, pressure-driven flows in channels and tubes, and the flow of liquid films down inclined planes.
The velocity, pressure, and vorticity of a steady unidirectional base flow along the x axis varying
along the y axis are described as

uS = U(y) ex, pS(x), ωS = −dU

dy
ez, (9.4.1)

where the function U(y) describes the velocity profile, ex is the unit vector along the x axis, and ez
is the unit vector along the z axis. In certain applications, the pressure pS is constant; an example
is Couette flow between two plates. In other applications, the pressure varies linearly with respect
to x and the streamwise pressure gradient is constant; an example is Hagen–Poiseuille flow through
a channel.
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Linearized equation of motion

To carry out the normal-mode stability analysis, we substitute expressions (9.4.1) into the governing
equations (9.3.2) and (9.3.3). Simplifying, we obtain the linearized equation of motion(

i�− U
∂

∂x
+ ν∇2

)
V − U ′ Vy ex − 1

ρ
∇Π = 0, (9.4.2)

and linearized vorticity transport equation(
i�− U

∂

∂x
+ ν∇2

)
Ω+ U ′′ Vy ex + U ′

(
Ωy ex − ∂V

∂z

)
= 0, (9.4.3)

where a prime denotes a derivative with respect to y. The physical properties of the fluid are assumed
to be uniform throughout the domain of flow.

Fourier decomposition

A normal-mode disturbance can be expressed as a double complex Fourier integral with respect to x
and z in the horizontal plane where the velocity of the unperturbed base flow is constant. Because
the governing equations (9.4.2) and (9.4.3) are linear, each Fourier mode evolves independently and
can be studied in isolation. Motivated by this observation, we consider perturbations of the form⎡⎣ V

Π
Ω

⎤⎦ (x, �) =

⎡⎣ F

G
Q

⎤⎦ (y, �)× exp[i(kxx+ kzz)], (9.4.4)

where F, G, and Q are complex functions of y to be determined as part of the solution, and kx, kz
are complex wave numbers in the x and z directions comprising the two-dimensional wave number
vector

k = (kx, 0, kz). (9.4.5)

Substituting (9.4.4) into the continuity equation (9.3.4) and carrying out the differentiations, we
obtain the equation

kxFx + kzFz − iF ′
y = 0, (9.4.6)

where a prime denotes a derivative with respect to y. Recalling that the vorticity is defined as the
curl of the velocity, we find that the functions F and Q are related by

Qx = F ′
z − ikzFy, Qy = i ( kzFx − kxFz ), Qz = ikxFy − F ′

x. (9.4.7)

Substituting (9.4.4) into (9.4.3) and using (9.4.6) and (9.4.7), we obtain the vector equation

[ i (�− Ukx)− ν (k2x + k2z) ]Q+ νQ′′ − iU ′

⎡⎣ kxFz

kzFy

kzFz

⎤⎦+ U ′′Fy

⎡⎣ 0
0
1

⎤⎦ = 0. (9.4.8)

Two scalar boundary conditions must be specified over each boundary.
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Temporal and spatial instability

When the wave number k is real and the angular velocity � is complex, we obtain a spatially periodic
disturbance evolving in time, corresponding to temporal instability. When k is complex and � is
real, we obtain a disturbance evolving in space while its amplitude at a particular point in the flow
oscillates in time, corresponding to spatial instability. In the more general case where both k and
� are complex, we obtain a disturbance that evolves both in time and space, corresponding to a
hybrid instability. The solution of the general problem can be constructed by superposing temporal
and spatial modes.

9.4.1 Squire’s theorems

Before tackling the solution of the linearized equations for normal-mode perturbations, we digress to
discuss Squire’s theorems relating the behavior of three-dimensional spatially periodic perturbations
evolving in time to the behavior of equivalent two-dimensional perturbations evolving in the xy
plane that is perpendicular to the vorticity of the base flow [384].

In the case of two-dimensional disturbances in the xy plane, kz = 0, the x and y components
of (9.4.8) are trivially satisfied and the z component becomes[

i (�− Ukx)− ν k2x
]
Qz + ν Q′′

z + U ′′Fy = 0, (9.4.9)

where Qz is given by the third equation in (9.4.7).

Returning to the three-dimensional problem, we introduce the unit wave number vector, k̂,
and its reciprocal vector, l̂, given by

k̂ =
1

k
(kz, 0, kz), l̂ =

1

k
(−kz, 0, kz), (9.4.10)

defined such that k̂ · l̂ = 0. where k ≡ |k|. Assuming that the wave number is real and projecting

equation (9.4.8) onto the reciprocal unit vector, l̂, we obtain[
i
(
�

k

kx
− Uk

)
− ν

k

kx
k2

]
J +

k

kx
ν J ′′ + U ′′ Fy = 0. (9.4.11)

We have introduced the component of the vorticity vector in the direction of the reciprocal vector,

J ≡ Q · l̂ = i k Fy −
1

k
(kxF

′
x + kzF

′
z). (9.4.12)

Now we make the substitutions

�̃ =
k

kx
�, k̃x = k, k̃z = 0, ν̃ = ν

k

kx
, (9.4.13)

and

F̃x =
1

k
(kxFx + kzFz), F̃y = Fy, F̃z = 0, Q̃z = J , (9.4.14)
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and observe that equations (9.4.11) and (9.4.12) reduce to equation (9.4.9) and the third equation in
(9.4.7) written for the tilde variables and physical parameters. This means that the study of three-
dimensional perturbations can be reduced to the study of two-dimensional perturbations with a
suitable change of the wavelength of the perturbation and kinematic viscosity of the fluid determining
the Reynolds number of the base flow.

We conclude that, to assess the stability of a unidirectional flow with uniform physical proper-
ties, it is sufficient to consider two-dimensional disturbances. Once the tilded variables corresponding
to an equivalent two-dimensional problem are available, the non-tilded variables corresponding to
the three-dimensional physical problem are recovered using relations (9.4.13) and (9.4.14). It should
be emphasized that Squire’s theorem may not be valid when the boundaries of the flow deform in
response to a perturbation, and are applicable only for spatially periodic modes corresponding to
temporal stability.

Critical Reynolds number

The third definition in (9.4.13) shows that the kinematic viscosity of the fluid for the tilde variables
corresponding to the equivalent two-dimensional problem is higher than for the non-tilde variables
corresponding to the three-dimensional problem. Accordingly, the Reynolds number of the flow in
the former variables is lower than that in the latter variables. This observation provides us with a
basis for Squire’s theorem for viscous flow: to compute the maximum Reynolds number for stability,
it is sufficient to consider two-dimensional disturbances whose wave number vector points in the
direction of the base flow.

Inviscid flow

The first definition in (9.4.13) shows that the growth rate in the equivalent two-dimensional problem
is higher than that in the physical three-dimensional problem. When the fluid is inviscid, the two
problems occur at the same infinite Reynolds number, yielding Squire’s theorem for inviscid flow: for
every unstable three-dimensional perturbation, we can find another two-dimensional perturbation
with different wavelength that is more unstable.

9.4.2 The Orr–Sommerfeld equation

Motivated by Squire’s theorem, we consider a unidirectional flow along the x axis, restrict our
attention to two-dimensional disturbances in the xy plane, and seek to compute the eigenvalues and
eigenfunctions associated with the normal modes. To reduce the number of unknown functions, we
introduce a vector potential for the velocity, F, writing

F(x) = ∇× (q ez), Qz(x) = −∇2q, (9.4.15)

where q(x) is a complex function playing the role of a stream function and ez is the unit vector
along the z axis. To conform with the periodicity of the flow, we set

q(x, y) = f(y) eikx, (9.4.16)

where f(y) is a complex function with dimensions of velocity multiplied by length. To simplify the
notation, we have set k = kx. Substituting expression (9.4.16) into (9.4.15) and then into (9.4.9),
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we obtain a second-order linear ordinary differential equation,

w′′ −
[
k2 + i

k

ν
(U − c)

]
w = i

k

ν
U ′′ f, (9.4.17)

where a prime denotes a derivative with respect to y. The auxiliary function

w ≡ −f ′′ + k2 (9.4.18)

provides us with the amplitude of the vorticity of the disturbance flow.

Substituting (9.4.18) into (9.4.17), we obtain a fourth-order linear homogeneous ordinary
differential equation,

f ′′′′ − 2k2 f ′′ + k4f = i
k

ν

[
(U − c)(f ′′ − k2f)− U ′′f

]
, (9.4.19)

derived independently by Orr [283] in 1907 and by Sommerfeld [378] in 1908, known as the Orr–
Sommerfeld equation, where c ≡ �/k is the complex phase velocity.

Dimensionless form

Nondimensionalizing all variables using as characteristic length L, velocity V , and time L/V , as
discussed in Section 3.10, we recast the Orr–Sommerfeld equation into the dimensionless form

f̂ ′′′′ − 2k̂2 f̂ ′′ + α4f̂ = iRe k̂
[
(Û − ĉ)(f ′′ − α2f)− Û ′′f

]
. (9.4.20)

We have introduced the following dimensionless variables and constants,

f̂ =
f

V L
, Û =

U

L
, ĉ =

c

V
, x̂ =

x

L
, k̂ = kL, Re =

V L

ν
. (9.4.21)

A prime in (9.4.20) indicates a derivative with respect to the dimensionless transverse position, ŷ.

9.4.3 Temporal instability

In the temporal instability problem, a real wave number, k, is specified, and the Orr–Sommerfeld
equation is regarded as a linear ordinary differential equation involving an unspecified complex
eigenvalue, c. The real part of c is the phase velocity of the perturbation. Having obtained c, we
compute the complex growth rate, � = kc, identify its real and imaginary parts, � = �R + i�I , and
extract the growth rate of the perturbation, �I = kcI . At neutral stability, �I = 0, both c and �
are real. In dimensionless variables, the solution of the temporal stability problem depends on the
Reynolds number, Re, and dimensionless wave number, k̂.

If the velocity U in (9.4.19) is replaced by U − U0, where U0 is an arbitrary constant, the
eigenvalues of the Orr–Sommerfeld equation will be shifted from c to c−U0. Physically, referring to
a frame of reference that translates steadily in the direction of the flow with velocity U0 changes the
phase velocity of the perturbation but leaves the growth rate unaffected, in agreement with physical
intuition.



9.4 Unidirectional flows 729

(a) (b)

0
2

4
6

x 10
4

0

0.5

1

1.5
−0.04

−0.02

0

0.02

Reka

gr
ow

th
 r

at
e

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0.2

0.4

0.6

0.8

1

1.2

Re

ka

Unstable

Stable

Figure 9.4.1 (a) Dependence of the highest growth rate scaled by V/a on the Reynolds number,
Re, and scaled wave number, ka, for plane Hagen–Poiseuille flow. (b) Stability phase diagram
separating stable from unstable normal modes.

Plane Poiseuille flow

As an example, we consider plane Hagen–Poiseuille flow along the x axis in a channel confined
between two parallel plates located at y = ±a (e.g., [369]). The velocity of the undisturbed flow is
described by the parabolic profile

U(y) = U0

(
1− y2

a2
)
, (9.4.22)

where U0 is the centerline velocity. The Reynolds number is defined as Re = U0a/ν where ν is the
kinematic viscosity of the fluid. A graph of the highest growth rate representing the most unstable
mode, scaled by V/a, is shown in Figure 9.4.1(a), and a stability phase diagram in the (Re, ka) plane
is shown Figure 9.4.1(b). The complex phase velocity was computed using a finite-difference method
discussed in Section 9.7. The neutral stability curve where cI = 0 separates stable from unstable
modes in Figure 9.4.1(b). The flow is stable below a critical Reynolds, Rec � 5772 for any wave
number, as discussed in Section 9.8.5.

9.4.4 Spatial instability

In the spatial instability problem, we set k = kR+ikI and � = �R, where kR is the real wave number
of the perturbation, −kI is the corresponding spatial growth rate, and �R is the real cyclic frequency
or angular velocity of the perturbation. Specifying �R provides us with an eigenvalue problem for
the complex wave number, k. At neutral stability, kI = 0 and k is real. In dimensionless variables,
the solution of the spatial stability problem depends on the Reynolds number, Re, and dimensionless
real cyclic frequency L�R/V , where L and V are characteristic length and velocity scales.
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9.4.5 Relation between the temporal and the spatial instability

The temporal and spatial stability problems are based on different expectations for the growth
or decay of perturbations–evolution in time, versus evolution in space. At neutral stability, the
wavenumber, k, and growth rate, �, are both real and the solutions of the two problems are identical.
This means that the threshold wave number, cyclic frequency, and Reynolds number that separated
regions or stable and unstable flow are all the same.

Considering the general case where k and � are both complex, we introduce dimensionless
variables and express the solution of the eigenvalue problem associated with the Orr–Sommerfeld
equation in the functional form

F(�̂, k̂,Re) = 0, (9.4.23)

where �̂ = L�/V is a dimensionless complex growth rate and k̂ = kL is the dimensionless complex
wave number. Assuming that F is an analytic function of its arguments, we follow a solution branch
and write

dF =
∂F
∂�̂

d�̂+
∂F
∂k̂

dk̂ +
∂F
∂Re

dRe = 0. (9.4.24)

Next, we denote the real wave number of the temporal stability problem for neutral stability at
a particular Reynolds number by k̂0, and the corresponding dimensionless real cyclic frequency of
the spatial stability problem for neutral stability at the same Reynolds number by �̂0, where, by
definition, F(k̂0, �̂0,Re) = 0. If the Reynolds number is changed by a differential amount, dRe,

while k̂0 is held constant, �̂0 will change by d�̂ so that

∂F
∂�̂

(d�̂)k̂ +
∂F
∂Re

dRe = 0. (9.4.25)

If the Reynolds number is changed by a differential amount, dRe, while �0 is held constant, k̂0 will
change by dk̂ so that

∂F
∂k̂

(dk̂)�̂ +
∂F
∂Re

dRe = 0. (9.4.26)

Combining equations (9.4.25) and (9.4.26) to eliminate dRe, we obtain

(d�̂)k̂ =
∂F/∂k̂

∂F/∂�̂
(dk̂)�̂ = −

(∂�̂
∂k̂

)
Re
(dk̂)�̂ ≡ cG dk̂, (9.4.27)

where cG = (∂�̂/∂k̂)Re is the complex group velocity of the spatially growing waves under conditions
of neutral stability [141]. Equation (9.4.27) can be used to extract information on the temporal
stability problem using results from the spatial stability problem, and vice versa.

9.4.6 Base flow with linear velocity profile

Consider a shear flow with linear velocity profile, U(y) = ξy + U0, where ξ is a constant shear rate
and U0 is a constant reference velocity. The second derivative of the velocity profile U ′′ vanishes
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throughout the domain of flow and the right-hand side of the vorticity transport equation (9.4.17)
is identically zero. To simplify the functional form of (9.4.17), we introduce the new variable

η ≡
( ν

kξ

)2/3[
k2 + i

k

ν
(ξy + U0 − c)

]
, (9.4.28)

which is a linear function of y. Substituting (9.4.28) into (9.4.17), we obtain the Stokes equation

d2w

dη2
+ ηw = 0, (9.4.29)

whose solution can be found in terms of contour integrals in the complex plane (e.g., [123]).

9.4.7 Computation of the disturbance flow

Having solved the eigenvalue problem, we combine expressions (9.3.5), (9.4.4), (9.4.15), and (9.4.16),
and derive the stream function of the disturbance flow associated with a normal mode,

ψNM (x, y, t) = f(y) exp[i(kx− �t)] = f(y) exp[ik(x− ct)]. (9.4.30)

To expedite the study of the linear stability problem, the functional form (9.4.30) is sometimes
assumed at the outset. Differentiating the stream function with respect to y or x, we derive the two
normal-mode disturbance velocity components,[

ux

uy

]NM

=

[
f ′(y)

−i kf(y)

]
exp[i(kx− �t)], (9.4.31)

and the disturbance vorticity,

ωNM
z (x, y, t) =

[
f ′′(y) + k2f(y)

]
exp[i(kx− �t)]. (9.4.32)

To obtain the corresponding normal-mode pressure, we substitute these expressions into the lin-
earized Navier–Stokes equation (9.4.2) and integrate the resulting first-order differential equation.

Problem

9.4.1 Squire’s theorem

Discuss whether Squire’s theorem applies to the case of film flow down an inclined plane where the
free surface may deform in response to a perturbation.

9.5 The Rayleigh equation for inviscid fluids

When the Reynolds number on the right-hand side of (9.4.20) is large or the fluid is effectively
inviscid, viscous forces are negligible and the Orr–Sommerfeld equation reduces to the Rayleigh
equation corresponding to the Euler equation,

(U − c)(f ′′ − k2f)− U ′′f = 0, (9.5.1)
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where a prime denotes a derivative with respect to y. Rearranging, we derive the standard form of
a second-order linear ordinary differential equation with variable coefficients,

f ′′ −
(
k2 +

U ′′

U − c

)
f = 0, (9.5.2)

where k, or c, or both are allowed to be complex. For future reference, we introduce the variable
q ≡ f/(U − c), and recast (9.5.2) into the form

[(U − c)2q′]′ − k2(U − c)2 q = 0. (9.5.3)

The first term on the left-hand side involves a linear self-adjoint operator, L(q) ≡ [(U − c)2q′]′.

Riccati equation

To expedite the solution, it is sometimes useful to introduce the variable F ≡ f ′/f and rearrange
(9.5.2) into the Riccati equation,

F ′ = −F 2 + k2 +
U ′′

U − c
. (9.5.4)

The reduction in the order of Rayleigh’s equation from two to one is offset by the occurrence of a
nonlinearity due to the quadratic term on the right-hand side.

Critical layer

The second term inside the parentheses on the left-hand side of the Rayleigh equation (9.5.2) becomes
singular at the critical layer where the the unperturbed fluid velocity is equal to the phase velocity
of the perturbation, U = c. For this to occur, c must be real, which means that the flow is neutrally
stable. The associated disturbances fall within the continuous part of the spectrum (e.g., [67]).
We will see that the occurrence of this singularity has important implications on the efficiency of
numerical methods used to compute normal modes.

9.5.1 Base flow with linear velocity profile

In the case of a base flow with linear velocity profile, U(y) = ξy + U0, where ξ is a constant shear
rate and U0 is a constant reference velocity. Rayleigh’s equation (9.5.1) simplifies into

(U − c)(f ′′ − k2f) = 0, (9.5.5)

which is satisfied by any solution of the one-dimensional Helmholtz equation, f ′′ − k2f = 0. The
associated eigenvalues provide us with the discrete part of the spectrum. Equation (9.4.32) shows
that the corresponding eigenfunctions represent irrotational flow. Using (9.4.31), we find that the
associated normal-mode velocity potential is given by

φNM (x, y, t) = − i

k
f ′(y) exp[ik(x− ct)]. (9.5.6)

These eigensolutions will be used in Section 9.6 to determine the stability of a vortex layer with
constant vorticity separating two uniform streams.
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Continuous spectrum

A second family of solutions of (9.5.5) corresponding to the continuous part of the spectrum emerges
by allowing the expression inside the second set of parentheses on the left-hand side to be singular
when U = c. The singularity occurs at the position y = η ≡ (U − U0)/ξ, which varies between
the lower and the upper boundary of the flow. Since c is real, the corresponding normal modes are
neutrally stable.

The eigensolutions can be expressed as f(y) = ξaG(y), where a is a reference length. The
function G, with dimensions of length, satisfies the differential equation

G′′ − k2G + δ(y − η) = 0, (9.5.7)

where δ is the one-dimensional delta function with dimensions of inverse length. The solution of
(9.5.7) is the Green’s function of the one-dimensional Helmholtz equation forced at the position
where the phase velocity becomes equal to the fluid velocity of the base linear flow. Referring to
(9.4.32), we find that the disturbance represents the flow due to a flat vortex sheet with sinusoidal
strength situated along the x axis at the position y = η. An acceptable solution of (9.5.7) must be
continuous with discontinuous derivatives at y = η, satisfy the homogeneous equation G′′ − k2G = 0
everywhere except at y = η, respect the specified kinematic conditions at the boundaries of the flow,
and conform with the jump condition

G′(η+)− G′(η−) = −1, (9.5.8)

where the plus and minus subscripts indicate evaluation immediately above and below the critical
level y = η (e.g., [67]).

9.5.2 Inviscid Couette flow

As an application, we investigate the stability of inviscid plane Couette flow in a channel confined
between two parallel walls located at y = ±a, discussed earlier in Section 9.2. The velocity profile
is U(y) = ξy, where ξ is a constant shear rate, and the origin of the y axis has been set midway
between the walls so that −a ≤ y ≤ a. Because a solution of the Helmholtz equation f ′′ − k2f = 0
consistent with the no-penetration condition f = 0 at y = ±a cannot be found, the discrete part of
the spectrum is null. Physically, when the normal component of the boundary velocity is zero, an
irrotational velocity field cannot be established in a confined domain.

Continuous spectrum

The general solution of (9.5.7), corresponding to the continuous part of spectrum , is parametrized
by the elevation η = U/ξ where c = U , ranging from −a to a. We find that

G(k, y, η) = 1

k sinh(2ka)

{
sinh[k(a+ η)] sinh[k(a− y)] for η < y < a,
sinh[k(a− η)] sinh[k(a+ y)] for − a < y < η.

(9.5.9)

It is a straightforward exercise to verify that (9.5.9) satisfies the four conditions stated at the end
of Section 9.5.1 (Problem 9.5.2).
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Since c = ξη, the complex stream function corresponding to an arbitrary perturbation can be
expressed in terms of the eigenfunctions (9.5.9) by superposition as

ψ(x, y, t) = − 1

2π

∫ ∞

−∞

∫ a

−a

q(k, η)G(k, y, η) exp[ik(x− ξηt)] dη dk, (9.5.10)

where the dimensionless function q is determined by the form of the perturbation at the initial
instant. To demonstrate this dependence explicitly, we express the initial stream function as a
Fourier integral with respect to x in the form

ψ(x, y, t = 0) =
1

2π

∫ ∞

−∞

ψ̂0(k, y) e
ikx dk, (9.5.11)

where ψ̂0(k, y) is the one-dimensional Fourier transform of the initial stream function with respect
to x. Comparing (9.5.11) with (9.5.10), we write

ψ̂0(k, y) = −
∫ a

−a

q(k, η)G(k, y, η) dη. (9.5.12)

Operating on (9.5.12) with ∂2/∂y2−k2, switching the order of the second derivative and the integral
sign on the right-hand side, and using (9.5.7) and the distinguishing properties of the delta function,
we find that

q(k, y) =
( ∂2

∂y2
− k2

)
ψ̂0(k, y), (9.5.13)

which provides us with a relation between q and the Fourier transform, ψ̂0. Remembering that
ωz = −∇2ψ and taking the Laplacian of (9.5.11), we find that ξaq(k, y) is the Fourier transform of
the initial vorticity distribution with respect to x.

Fourier expansion

Further progress can be made by expanding ψ̂0(k, y) in a sine Fourier series with respect to y, similar
to that shown in (9.4.2),

ψ̂0(k, y) = 2π
∞∑

n=1

bn(k) sin
(nπ
2a

(y + a)
)
, (9.5.14)

where bn are complex coefficients. Substituting (9.5.14) into the right-hand side of (9.5.13), we
obtain a sine Fourier series with respect to y for q(k, y),

q(k, y) = −2π

∞∑
n=1

bn(k)
[(nπ

2a

)2

+ k2
]
sin

(nπ
2a

(y + a)
)
. (9.5.15)

Finally, we substitute (9.5.15) into the integrand of (9.5.10) and carry out the integration with
respect to η to derive the general solution in terms of bn,

ψ(x, y, t) =
∞∑

n=1

∫ ∞

−∞

bn(k)
[(nπ

2a

)2

+ k2
]
eikx Ψn(k, y, t) dk, (9.5.16)
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where

Ψn(k, y, t) ≡
∫ a

−a

G(k, y, η) sin
(nπ
2a

(η + a)
)
e−ikξηt dη (9.5.17)

is a kernel defined in terms of a Green’s function transform.

Green’s function transform

To compute the integral on the right-hand side of (9.5.17), we note that G′′ = Gηη, where a subscript
η denotes a derivative with respect to η. Multiplying (9.5.7) by exp[i(αη + β)] and integrating with
respect to η from −a to a, we find that∫ a

−a

Gηη(k, y, η) e
i(αη+β) dη − k2

∫ a

−a

G(k, y, η) ei(αη+β) dη + ei(αy+β) = 0, (9.5.18)

where α and β are two constants. Integrating by parts, we obtain[
Gη(k, y, η) e

i(αη+β)
]η=a

η=−a
− (α2 + k2)

∫ a

−a

G(k, y, η) ei(αη+β) dη + ei(αy+β) = 0. (9.5.19)

Rearranging, we obtain

F(k, y, α, β) ≡
∫ a

−a

G(k, y, η) ei(αη+β) dη =
1

α2 + k2

(
ei(αy+β) +

[
Gη(k, y, η) e

i(αη+β)
]η=a

η=−a

)
.

(9.5.20)

Carrying out the differentiation on the right-hand side, we obtain

F(k, y, α, β) =
1

α2 + k2

(
ei(αy+β) − eiβ

1

sinh(2ka)

[
sinh[k(a+ y)]eiαa + sinh[k(a− y)]e−iαa

])
.

(9.5.21)

Stream function

We return to (9.5.17), express the sine term in terms of complex exponentials, and compute

Ψn(k, y, t) =
1

2i

(
F(k, y, αn, βn)−F(k, y, α−n, β−n)

)
, (9.5.22)

where

αn =
nπ

2a
− kξt, βn =

nπ

2
. (9.5.23)

Substituting the expression for F and simplifying, we obtain

Ψn(k, y, t) =
1

2i

[
Hn(k, y, t)−H−n(k, y, r)

]
, (9.5.24)
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where

Hn(k, y) =
1(

nπ
2a − kξt

)2

+ k2

[
exp[i

(nπ
2a

(y + a)− kξty
)
] (9.5.25)

− 1

sinh(2ka)

(
sinh[k(a+ y)] exp[i(nπ − kξta)] + sinh[k(a− y)] exp(ikξta)

)]
.

Substituting (9.5.24) into (9.5.16) and defining the negative coefficients b−n(k) ≡ −bn(k), we obtain

ψ(x, y, t) =
1

2i

∞∑
n=−∞

′

∫ ∞

−∞

(
nπ
2a

)2
+ k2(

nπ
2a − kξt

)2
+ k2

bn(k) Jn(k, y, t) dk, (9.5.26)

where a prime indicates that the term n = 0 is excluded from the sum, and

Jn(k, y) = exp
[
i
(nπ
2a

(y + a) + k(x− ξty)
)]

(9.5.27)

− 1

sinh(2ka)

(
sinh[k(a+ y)] exp[i(k(x− ξta) + nπ )] + sinh[k(a− y)] exp[ik(x+ ξta)]

)
.

The imaginary part of Jn is precisely the function Φn given in (9.2.21).

We have confirmed that the set of the normal modes falling within the continuous part of the
spectrum comprises a complete set.

9.5.3 General theorems on the temporal instability of shear flows

Several general theorems allow us to assess the temporal stability of inviscid unidirectional flows and
obtain estimates for the location of the phase velocity in the complex plane by mere inspection.

Rayleigh criterion on the significance of an inflection point

Multiplying both sides of (9.5.2) by f∗ and rearranging, we obtain

(f ′f∗)′ − |f ′|2 =
(
k2 +

U ′′

U − c

)
|f |2, (9.5.28)

where an asterisk denotes the complex conjugate and a prime denotes a derivative with respect to
y. Assuming that the flow is confined between two impenetrable planar boundaries located at y = a
and b, we integrate (9.5.28) with respect to y from a to b and enforce the no-penetration condition
f(a) = f(b) = 0 to obtain

−
∫ b

a

|f ′|2 dy =

∫ b

a

(
k2 +

U ′′

|U − c|2 (U − c∗)
)
|f |2 dy. (9.5.29)

Equating the real and imaginary parts of the left-hand and right-hand sides, we find that

−
∫ b

a

|f ′|2 dy =

∫ b

a

(
k2 +

U ′′

|U − c|2 (U − cR)
)
|f |2 dy (9.5.30)
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and

cI

∫ b

a

(
k2 +

U ′′

|U − c|2
)
|f |2 dy = 0. (9.5.31)

The last equation requires that either cI = 0, corresponding to neutral stability, or the integral on
the left-hand side is zero, requiring that U ′′ changes sign at least once between y = a and b. We
conclude that, for a normal mode of a unidirectional shear flow to be unstable, the velocity profile
must exhibit at least one inflection point [335]. This is a necessary but not sufficient condition, that
is, a normal-mode disturbance of a unidirectional shear flow whose velocity profile has an inflection
point is not necessarily unstable.

An important consequence of Rayleigh’s criterion is that the normal modes of infinite simple
shear flow, Couette or Poiseuille channel flow, are stable. Curious though it may seem, viscous forces
are required to render perturbations unstable. Physically, viscous stresses sustain a perturbation for
a longer period of time, thereby giving them a better chance to grow.

Fjørtoft’s condition for instability

We can go beyond Rayleigh’s criterion by combining (9.5.30) and (9.5.31) to find that, unless a
perturbation is neutrally stable, we must have∫ b

a

(U − U0)
U ′′

|U − c|2 (U − c∗) |f |2 dy = −
∫ b

a

(k2|f |2 + |f ′|2) dy < 0, (9.5.32)

where U0 is an arbitrary constant [128]. Consider a flow whose velocity profile has a single inflection
point, and identify U0 with the velocity at the inflection point. The sign of the product U ′′(U −U0)
is constant throughout the integration domain. For the integral on the left-hand side of (9.5.32)
to be negative, the sign of U ′′(U − U0) must also be negative, otherwise the disturbance will be
neutrally stable. Consequently, for a normal mode of a unidirectional shear flow to be unstable, the
maximum of the absolute value of the vorticity of the base flow must occur at an inflection point.

Combining Rayleigh’s and Fjørtoft’s theorems, we find that the normal modes of the flow
shown in Figure 9.5.1(a) are stable, whereas those of the flow shown in Figure 9.5.1(b) may be stable
or unstable.

Sufficient condition for instability

Rayleigh’s and Fjørtoft’s theorems provide us with necessary but not sufficient conditions for in-
stability. Tollmien indicated that, in the case of shear flow in a channel with a symmetric and
monotonically varying profile U(y) similar to that observed in boundary layers, these conditions are
also sufficient. The proof and further extensions of the theory are discussed in detail by Drazin &
Reid [112] and Yih ([437], p. 473).

9.5.4 Howard’s semi-circle theorem

Numerical methods for computing the complex phase velocity cmay require an accurate initial guess.
In some cases, this can be found by using Gershgorin’s theorem applicable to standard algebraic
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(a) (b)

Figure 9.5.1 Applications of Rayleigh’s theorem on the significance of an inflection point and Fjørtoft’s
theorem. Normal modes in flow (a) are stable, but those in flow (b) may be unstable.

eigenvalue problems (Problem 9.5.4) [317]. A more general but less accurate method of locating
eigenvalues is provided by Howard’s semi-circle theorem stating that c must fall inside a half-disk in
the upper half complex plane [192]. The center of the disk lies at the point 1

2
(Umax +Umin) on the

real axis, and the disk radius is equal to 1
2 (Umax − Umin), where Umax and Umin are the maximum

and minimum values of U . One consequence of Howard’s semi-circle theorem is that there is always
a point where the real part of c is equal to U and the disturbance travels with the local fluid velocity.
The region around that point is the critical layer.

To prove the semi-circle theorem, we multiply (9.5.3) by q∗ and integrate the resulting equation
from y = a to b, where an asterisk indicates the complex conjugate. Enforcing the no-penetration
condition q(a) = 0 and q(b) = 0, we obtain∫ b

a

(U − c)2Φ dy = 0, (9.5.33)

where Φ ≡ |q′|2 + k2|q2| is a non-negative function. Decomposing the integral into its real and
imaginary parts, we obtain∫ b

a

(U2 − 2cRU + c2R − c2I) Φ dy = 0, cI

∫ b

a

(U − cR) Φ dy = 0. (9.5.34)

The second equation is satisfied for neutrally stable perturbations, cI = 0. Leaving this case aside,
we set the second integral to zero and find that the phase velocity cR must take values between
Umax and Umin, which demonstrates that a disturbance cannot move faster than the fluid [335].

Next, we work in two stages. First, we use the second equation in (9.5.34) to simplify the first
equation, obtaining ∫ b

a

(U2 − c2R − c2I) Φ dy = 0. (9.5.35)

Second, we make the independent observation that, since Φ is non-negative,∫ b

a

(U − Umin)(U − Umax) Φ dy < 0, (9.5.36)
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and use the second equation in (9.5.34) to restate (9.5.36) as∫ b

a

[
U2 − cR(Umax + Umin) + UmaxUmin

]
Φ dy < 0. (9.5.37)

Finally, we combine (9.5.35) with (9.5.37) and obtain∫ b

a

[
c2R + c2I − cR(Umax + Umin) + UmaxUmin

]
Φ dy < 0 (9.5.38)

or ∫ b

a

[(
cR − Umax + Umin

2

)2

+ c2I −
(Umax − Umin

2

)2 ]
Φ dy < 0. (9.5.39)

Since Φ is non-negative, the term inside the square brackets in the integrand must be nonpositive,
and c must be located inside a disk in the complex plane centered at the real axis at the point
1
2 (Umax +Umin). The disk radius is 1

2 (Umax −Umin). The upper half of the disk contains unstable
normal modes with positive values, cI .

Problems

9.5.1 Neutral stability of a shear layer

Confirm that c = 0 is an eigenvalue and f(y) = A sech(y/b) is the corresponding neutrally stable
eigenfunction of Rayleigh’s equation for infinite shear flow with velocity profile U(y) = U0 tanh(y/b),
where A and U0 are two constants. What are the dimensions of A?

9.5.2 Green’s function of the Helmholtz equation

Verify that (9.5.9) satisfies the four conditions stated at the end of Section 9.5.1.

9.5.3 Stability of inviscid flow with sinusoidal velocity profile

Consider a unidirectional inviscid shear flow with velocity profile U(y) = U0 sin(y/d) in a channel
confined between two parallel plane walls located at y = a and b, where d is a specified constant
length and U0 is a specified constant velocity. Show that, if there are no values of d/(nπ) between
a and b, where n is an integer, the flow is stable.

9.5.4 Gerschgorin’s theorem

Show that the eigenvalues of a square N × N matrix, A, must be located inside the union of N
disks in the complex plane. The disks are centered at the diagonal elements of A and the radii of
the disks are equal to the sum of the magnitudes of the off-diagonal elements of the corresponding
rows [317].

Computer Problem

9.5.5 Inviscid plane Couette flow

Draw the streamline pattern corresponding to the eigenfunctions (9.5.9) for bn = 0 when n > 1 and
a function b1(k) of your choice, at several time instants. Discuss the structure of the evolving flow.
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Figure 9.6.1 Illustration of a vortex layer with thickness 2b separating two uniform streams flowing
along the x axis with uniform velocities ±U0. The horizontal lines represent the upper and lower
vortex contours in the unperturbed configuration. The sinusoidal lines represent the upper and
lower vortex in the perturbed configuration.

9.6 Instability of a uniform vortex layer

Having established general theorems regarding the temporal instability of unidirectional inviscid
shear flows based on the Rayleigh equation, we proceed to consider a case where an exact solution
can be found. The results will provide us with insights into the structure of normal modes and reveal
important details on the stability properties of general free shear flows with monotonically varying
velocity profiles.

Base flow

Consider a homogeneous unbounded shear flow consisting of an infinite a vortex layer with thickness
2b and uniform vorticity Ω, as illustrated in Figure 9.6.1, considered by Rayleigh ([337], Vol. II,
p. 393). The vortex layer separates two uniform semi-infinite streams translating along the x axis
with velocities ±U0, where Ω = −U0/b. In the unperturbed state, the velocity profile is flat above
and below the vortex layer and varies linearly across the vortex layer. This piecewise linear velocity
profile can be regarded as an approximation of a continuous profile described, for example, by the
hyperbolic tangent function, U(y) = U0 tanh(y/b).

Rayleigh equation

Since U ′′ = 0 everywhere in the flow except at the edges of the vortex layer, the normal modes
are governed by the simplified Rayleigh equation (9.5.5). Leaving aside neutrally stable modes with
c = U corresponding to the continuous part of the spectrum, we obtain the Helmholtz equation,
f ′′ − k2f = 0, describing irrotational perturbations, where k is the real wave number. The general
solution is

fn(y) = an e
ky + bn e

−ky, (9.6.1)

where an and bn are constant coefficients, and n = −1, 0, 1 indicate, respectively, the region below,
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inside, and above the vortex layer. To ensure that the disturbance decays far from the vortex layer,
we set

a1 = 0, b−1 = 0. (9.6.2)

The disturbance stream function and velocity of the normal modes are given by expressions (9.4.30)
and (9.4.31). Since the disturbance flow is irrotational throughout the domain of flow, we may
introduce the velocity potential given in (9.5.6), if required.

Deformation of vortex boundaries

The perturbation causes the upper and lower vortex boundaries to deform in response to the flow.
The location of the boundaries in the deformed state can be described by the real or imaginary parts
of the functions

y = η1(x, t) = b+ εA1 exp[ik(x− ct)], y = η−1(x, t) = −b+ εA−1 exp[ik(x− ct)], (9.6.3)

where ε is a small dimensionless number, A±1 are two complex constants, the subscript −1 denotes
the lower vortex contour, and the subscript 1 denotes the upper vortex contour.

Continuity of the y velocity component

To compute the eight unknowns comprised of A±1 and an, bn, for n = −1, 0, 1, we require six
equations in addition to (9.6.2). Two equations emerge by requiring that the y component of the
velocity is continuous across the boundaries of the perturbed vortex layer. Equation (9.4.31) shows
that this will be true provided that

f−1(η−1) = f0(η−1), f0(η−1) = f1(η1). (9.6.4)

To first order in ε, we obtain

f−1(−b) = f0(−b), f0(b) = f1(b). (9.6.5)

Using expressions (9.6.1), we find that

a0 + β b0 = a−1, β a0 + b0 = b1, (9.6.6)

where β ≡ exp(2kb) is a dimensionless coefficient.

Continuity of the x velocity component

Next, we require that the x component of the disturbance velocity is continuous across the boundaries
of the vortex layer. To implement this condition, we evaluate the normal-mode velocity at y = η±1

using equations (9.4.31), expand the resulting expressions in a Taylor series about y = ±b, and
retain only linear terms with respect to ε. For the upper boundary, we find that

ux(y = η1) = U(y = η1) + εuNM
x (y = η1) � U(y = b) +

(
dU

dy

)
y=b

(η1 − b) + εuNM
x (y = b). (9.6.7)
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Noting that U(y = b) = −Ωb and making substitutions, we obtain

ux(y = η1) = −Ωb+ ε

(
A1

dU

dy
+ f ′

)
y=b

exp[ik(x− ct)], (9.6.8)

where dU/dx = −Ω inside the vortex layer and dU/dx = 0 outside the vortex layer. Continuity of
velocity then requires that

f ′
1(b) = f ′

0(b)− ΩA1. (9.6.9)

Working in a similar manner with the lower vortex boundary, we obtain that

f ′
−1(−b) = f ′

0(−b)− ΩA−1. (9.6.10)

Substituting (9.6.1) into (9.6.9) and (9.6.10), we derive the relations

V A1 − β a0 + b0 = b1, V A−1 − a0 + β b0 = −a−1, (9.6.11)

where V ≡ Ωekb/k is a convenient intermediate velocity.

Kinematic compatibility

Since the boundaries of the vortex layer are material lines convected by the flow,

D

Dt

(
η±1(x, t)− y

)
= 0, (9.6.12)

where D/Dt is the material derivative. Expanding all terms in Taylor series with respect to ε and
retaining only the linear contributions, we find that

∂η±1

∂t
+ U(y = ±b)

∂η±1

∂x
− εuNM

y (y = ±b) = 0. (9.6.13)

Substituting (9.6.3) and (9.4.31) into (9.6.13), we obtain

A1 =
f1(b)

c− U0
= b1

e−kb

c− U0
, A−1 =

f−1(−b)

c+ U0
= a−1

e−kb

c+ U0
. (9.6.14)

Now we are in a position to compute the complex phase velocity and associated growth rate.

Computation of the growth rate

Equations (9.6.2), (9.6.6), (9.6.11), and (9.6.14) provide us with a system of eight linear homogeneous
equations for eight unknown coefficients. Setting the determinant of the coefficient matrix to zero
to ensure the existence of a nontrivial solution, provides us with a venue for the computation of the
complex phase velocity, c. To solve the linear system, we substitute (9.6.14) into (9.6.11) and obtain

β a0 − b0 = b1

(
− 1 +

Ω

k(c− U0)

)
, a0 − β b0 = a−1

(
1 +

Ω

k(c+ U0)

)
. (9.6.15)
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Finally we substitute (9.6.6) into (9.6.15) and derive a homogeneous system of two linear equations,

[
Ω β(2kc+ 2kU0 +Ω)

β(2kc− 2kU0 − Ω) −Ω

]
·
[

a0
b0

]
= 0. (9.6.16)

Setting the determinant of the matrix on the left-hand side to zero provides us with a quadratic
equation for the complex phase velocity whose solution is

c = ± U0

2kb

[
(1− 2kb)2 − e−4kb

]1/2
. (9.6.17)

The quantity under the radical is negative when kb < 0.639 · · ·, and positive otherwise. In the first
case, c is purely imaginary and the plus sign in (9.6.17) yields an unstable mode with growth rate
�I = kc and vanishing phase velocity. The minus sign produces a companion stable normal mode.
When kb > 0.639 · · ·, c is real and the normal modes translate upstream or downstream with phase
velocity c, while maintaining their initial amplitude. The lack of dissipation in an inviscid fluid
prevents the decay of the kinetic energy of a perturbation.

Flow instability

We have found that a normal-mode disturbance can be unstable only when the scaled wave number,
kb, is less than approximately 0.639, which means that the ratio between the wave length and
the layer thickness, L/(2b), is larger than approximately 4.92. Normal-mode disturbances with
shorter wavelengths travel along the vortex layer with phase velocity that depends on the scaled
wave number, kb. The significance of these results on the behavior of general spatially periodic
perturbations that do not necessarily represent normal modes is discussed in Section 9.6.3.

Growth rate and phase velocity

The imaginary part of the phase velocity and growth rate of unstable normal modes are plotted
with the dashed and solid lines in Figure 9.6.2(a) against the scaled wave number, kb. The scaled
imaginary part of the phase velocity, cI/U0, decreases from unity when kb = 0 to zero at the
critical threshold for instability, kb � 0.639. The scaled growth rate, 4b�I/U0 = 4kbcI/U0, reaches
a maximum at the most unstable or most dangerous normal mode corresponding to kb � 0.398.
The dotted line in Figure 9.6.2(a) displays the dimensionless phase velocity of stable normal modes,
cR/U0, corresponding to the plus sign in equation (9.6.17). As kb increases beyond the stability
threshold, the phase velocity tends to the velocity of the upper stream so that the ratio cR/U0 tends
to unity. If the minus sign were chosen instead in equation (9.6.17), the phase velocity would have
opposite sign.

9.6.1 Waves on vortex boundaries

It is illuminating to examine the deformation of the upper and lower vortex contours due to a
normal-mode perturbation. To compute the ratio of the complex amplitudes of the waves on the
upper and lower vortex boundaries, we divide equations (9.6.14), and use equations (9.6.6) and
(9.6.16) to obtain

A−1

A1
=

a−1

a1

c− U0

c+ U0
=

(1− 2kb)β2 − 1 + 2kbβ2ĉ

2kbβ(1 + ĉ)
, (9.6.18)
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Figure 9.6.2 (a) Graphs of the dimensionless growth rate, 4b�I/U0 (solid line), and scaled imaginary
part of the complex phase velocity, cI/U0 (dashed line), in the unstable regime of wave numbers.
The dotted line in the stable regime of wave numbers represents the scaled phase velocity, cR/U0.
(b) The solid line represents the ratio of amplitudes of traveling waves along the upper and lower
vortex contours, |A−1/A1|, in the regime of stable wave numbers. The dashed line represents the
phase shift Δφ/π between growing waves on the upper and lower vortex contours in the regime
of unstable wave numbers. The dotted line represents the phase shift between the disturbance in
circulation and the wave along the upper vortex contour, Δφγ/π, in the regime of unstable wave
numbers.

where ĉ ≡ c/U0 is the scaled complex phase velocity computed from (9.6.17). The ratio |A−1/A1|
is equal to unity in the regime of unstable wave numbers. The solid in Figure 9.6.2(b) displays the
amplitude ratio |A−1/A1| in the regime of stable wave numbers, corresponding to the plus sign in
equation (9.6.17). At high scaled wave numbers, kb, the lower contour is only slightly deformed with
respect to the upper contour. If the minus sign were chosen instead in equation (9.6.17), the ratio
|A−1/A1| would be the inverse of that plotted in Figure 9.6.2(b), which means that the upper contour
would be only slightly deformed with respect to the lower contour. These observations demonstrate
that the two normal modes act in complementary ways to prevent spatial bias in a unidirectional
flow.

The dashed line in Figure 9.6.2(b) represents the phase shift of the sinusoidal waves on the
upper and lower vortex contours for the unstable normal mode in the regime of unstable wave
numbers, Δφ = arg(A−1/A1). As kb tends to zero, Δφ vanishes, indicating that the boundary
waves tend to grow in phase. As kb increases toward the threshold of neutral stability, Δφ increases
monotonically toward the maximum value of π, indicating that boundary waves tend to grow out of
phase. The phase shift of the stable normal mode is the negative of that of the unstable mode shown
with the dashed line in Figure 9.6.2(b). The profiles shown in Figure 9.6.3 illustrate the structure
of unstable and stable normal modes.
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Figure 9.6.3 (a) Structure of an unstable (left) or stable (right) normal mode for kb = 0.48438. (b)
Illustration of two stable modes for kb = 0.73438.

9.6.2 Disturbance in circulation

The occurrence of phase shift between the waves on the upper and lower vortex contours suggests
that rotational fluid is redistributed inside the vortex layer due to a normal-mode perturbation. The
resulting periodic accumulation of vorticity can be regarded as a physical mechanism that amplifies
or dampens the perturbations. To examine the redistribution of rotational fluid in quantitative
terms, we consider the strength of the perturbed vortex layer defined as

γ(x) ≡ Ω(η1 − η−1) = Ω
[
2b− ε(A−1 −A1)

]
exp[ik(x− ct)], (9.6.19)

and confirm that the perturbation causes a disturbance in the strength of the vortex layer. The
associated phase shift with respect to the displacement of the upper vortex contour is

Δφγ = arg
(A−1 −A1

A1

)
. (9.6.20)

Using (9.6.18), we compute

A−1 −A1

A1
=

2kbβ(1 + β) + 1− β2 + 2kbβ(1− β)ĉ

2kbβ(1 + ĉ)
. (9.6.21)

The phase shift Δφγ is zero in the regime of stable wave numbers where the waves on the upper and
lower vortex contours are out of phase, Δφ = π.

A graph of Δφγ/π corresponding to the plus sign in equation (9.6.17) is shown with the dotted
line in Figure 9.6.2(b) in the regime of unstable wave numbers. As kb tends to zero, Δφγ tends to
1
2 π. Physically, rotational fluid tends to accumulate midway between the crests and troughs of
growing waves.
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Vortex sheet

A surface of discontinuity, regarded as a vortex sheet, arises in the limit as kb tends to zero while
the upper and lower stream velocity, U0 = −Ωb, is held constant. Expanding (9.6.17) in a Taylor
series with respect to kb yields the complex growth rate

� ≡ kc → ±i kU0, (9.6.22)

which shows that a vortex sheet is unstable for all wave numbers. More important, the growth rate
becomes infinite as the wave length of a disturbance becomes infinitesimally small. This singular
behavior undermines the physical relevance of a vortex sheet and imposes essential difficulties in
computing its self-induced motion, as discussed in Section 11.5.

9.6.3 Behavior of general periodic disturbances

The behavior of general periodic disturbances that deform the boundaries of the vortex layer in a
sinusoidal fashion with scaled wave number kb can be studied by decomposing the disturbance into
two normal modes with the same wave number. The procedure involves solving a system of three
linear equations for the amplitudes and phase shifts of the normal modes (Problem 9.6.1(b)). When
kb < 0.639 · · ·, one of the two normal modes is unstable and the original disturbance is unstable,
provided that it does not coincide precisely with a stable normal mode. When kb > 0.639 · · ·, the
disturbance is stable. Now we consider a periodic disturbance with wavelength L and wave number
k = 2π/L deforming the vortex boundaries in a nonsinusoidal fashion. The initial location of the
boundaries can be described by a Fourier series in x, and each term in the series can be decomposed
into a pair of normal modes. The disturbance is unstable only if kb < 0.639 · · · .

9.6.4 Nonlinear instability

The profiles shown in Figure 9.6.4 illustrate the evolution of a periodic disturbance computed by the
method of contour dynamics discussed in Section 11.8.3. The computer code is available in Directory
11 vortex of the software library Fdlib discussed in Appendix C. We observe an initial linear growth
followed by a nonlinear evolution manifested by the development of nonsinusoidal contour shapes.
The amplification of the disturbance produces a periodic array of compact vortices connected by
thin filaments of rotational fluid. The dynamics of this flow provides us with an example of an
instability leading to a new nearly steady state after nonlinear saturation.

9.6.5 Generalized Rayleigh equation

The normal-mode solution derived in this section satisfies the Rayleigh equation (9.5.1), provided
that the second derivative of the unperturbed velocity profile is expressed in terms of the one-
dimensional delta function, δ(x), as

U ′′ = Ω [ δ(x+ b)− δ(x− b)]. (9.6.23)

The resulting generalized Rayleigh equation is

(U − c)[f ′′ − k2f ]− Ω [ δ(x+ b)− δ(x− b)] f = 0. (9.6.24)
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Figure 9.6.4 Linear amplification and nonlinear evolution of a periodic disturbance on a vortex layer
computed by the method of contour dynamics. Profiles of the vortex contours are shown at equal
time intervals from top to bottom.

The solution is required to be a continuous function, f(y). Integrating (9.6.24) with respect to y
over a small distance centered at the upper or lower vortex contour, located at y = ±b, using the
properties of the delta function, and rearranging, we find that

f ′(b+)− f ′(b−) = Ω
f(b)

U0 − c
, f ′(−b+)− f ′(−b−) = Ω

f(b)

U0 + c
, (9.6.25)

where the superscript ± indicate evaluation on the upper (+) or lower (−) side. These expressions
are consistent with conditions (9.6.9) and (9.6.10), subject to expressions (9.6.14).

Problems

9.6.1 Vortex layer

(a) Superimpose on the vortex layer shown in Figure 9.6.1 a uniform flow in the x direction with
velocity U1. Compute the complex phase velocity and discuss the effect of U1 on the behavior of
normal modes.

(b) Consider a disturbance that deforms the upper and lower vortex boundaries in a sinusoidal
fashion with the same wavelength but different amplitudes and a specified phase shift. Express the
disturbance in terms of two normal modes.

9.6.2 Vortex layer attached to a wall

Consider a vortex layer with uniform vorticity attached to an impermeable wall on the lower side
and exposed to a uniform (streaming) flow on the upper side. Compute the complex phase velocity
of the normal modes [329].
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9.6.3 Compound vortex layer

Formulate the linear stability problem of an unbounded inviscid flow containing two attached vortex
layers with arbitrary uniform vorticity and thickness separating two parallel uniform streams [324].

Computer Problems

9.6.4 Normal modes

(a) Plot the shape of the vortex contours corresponding to stable and unstable normal modes for
kb = 0.2 and 1.0. Discuss the results in terms of redistribution of rotational fluid.

(b) Plot and discuss the corresponding streamlines of the perturbed flow.

9.6.5 Compound vortex layer

With reference to Problem 9.6.3, write a program that computes the complex phase velocity of the
normal modes as a function of kb1 when the vorticity of the upper layer is equal in magnitude and
opposite in sign to that of the lower layer, where b1 is the upper-layer thickness. Prepare plots of
the growth rate of unstable disturbances against kb1 for different values of the lower-to-upper layer
thickness ratio b2/b1. Discuss the physical significance of your results. Hint: two distinct bands of
unstable wave numbers may appear.

9.7 Numerical solution of the Rayleigh and Orr–Sommerfeld equations

Analytical solutions to the Orr–Sommerfeld and Rayleigh equations are available only for a limited
class of creeping or inviscid base flows. To study the stability of general unsteady unidirectional flows
at nonzero and noninfinite Reynolds numbers, we resort to approximate, asymptotic, and numerical
methods. Analytical and numerical techniques are discussed in articles by Gersting & Jankowski
[143] and Davey [101] and in a monograph by Drazin & Reid [112]. In this section, we overview a
fundamental class of numerical methods and discuss their implementation for the temporal stability
problem where a real wave number is specified and the corresponding complex phase velocity is to
be found as part of the solution.

9.7.1 Finite-difference methods for inviscid flow

We begin by developing finite-difference methods for solving the Rayleigh equation (9.5.1) for the
case inviscid shear flow inside a channel confined between two parallel impermeable walls located at
y = −A and B. Moving the complex phase velocity c to the right-hand side, we obtain

Uf ′′ − (k2U + U ′′)f = c (f ′′ − k2f), (9.7.1)

where a prime denotes a derivative with respect to y. Note that the right-hand side is independent
of the velocity profile of the base flow.

In the first step of the numerical implementation, we introduce a one-dimensional uniform grid
of nodes located at yi for i = 0, . . . , N + 1, where y0 = −A and yN+1 = B, as shown in Figure 9.7.1
To satisfy the no-penetration boundary condition, we require that f0 = 0 and fN+1 = 0. Because
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Figure 9.7.1 A finite-difference grid for solving the Rayleigh or Orr–Sommerfeld equation determining
the linear stability of unidirectional flow.

the stream function takes the same value at the two walls, the disturbance flow does not generate
a net flow rate. Next, we approximate the second derivative, f ′′, at the ith node with a central
difference, and thereby replace the differential equation (9.7.1) with the finite-difference equation

U(yi)
fi−1 − 2fi + fi+1

Δy2
−
[
k2U(yi) + U ′′(yi)

]
fi = c

( fi−1 − 2fi + fi+1

Δy2
− k2fi

)
, (9.7.2)

where fi = f(yi) is the value of the eigenfunction f(y) at the ith node. Denoting

Ui ≡ U(yi), U
′′

i ≡ U ′′(yi), h ≡ Δy, (9.7.3)

and rearranging, we obtain

Ui fi−1 −
[
2Ui + h2 (k2Ui + U

′′

i )
]
fi + Ui fi+1 = c

[
fi−1 − (2 + k2h2) fi + fi+1

]
. (9.7.4)

Collecting the unknown values fi into an N -dimensional vector, f = [f1, f2, . . . , fN−1, fN ], we for-
mulate a linear system of equations,

A · f = cB · f , (9.7.5)

where

A ≡

⎡⎢⎢⎢⎣
−2U1 − h2(k2U1 + U

′′

1 ) U1 0 · · · 0

U2 −2U2 − h2(k2U2 + U
′′

2 ) U2 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · UN −2UN − h2(k2UN + U
′′

N )

⎤⎥⎥⎥⎦
(9.7.6)

is an N ×N tridiagonal matrix,

B ≡

⎡⎢⎢⎢⎣
−2− (kh)2 1 0 0 . . . 0

1 −2− (kh)2 1 0 . . . 0
...

...
...

...
...

...
0 0 0 · · · 1 −2− (kh)2

⎤⎥⎥⎥⎦ (9.7.7)
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is another N × N tridiagonal matrix. The structures of the matrices A and B depend on the
finite-difference method chosen to approximate the derivatives. The structure of the matrix B is
independent of the velocity profile, U(y).

Solving the generalized eigenvalue problem

We have reduced the problem of solving the Rayleigh equation to a generalized algebraic eigenvalue
problem expressed by the linear algebraic system (9.7.5). The solution provides us with N complex
eigenvalues and corresponding eigenfunctions. We are especially interested in the eigenvalue with
the maximum growth rate, �I = kcI , corresponding to the most unstable normal mode. As the
discretization level N increases, the maximum growth rate obtained by solving the generalized
eigenvalue problem tends to that arising from the exact solution of the continuous problem expressed
by (9.7.1). Powerful numerical methods for solving the generalized algebraic eigenvalue problem are
available (e.g., [205]). Reliable functions methods based on sophisticated algorithms are implemented
in Matlab.

Reduction to a standard eigenvalue problem

In one approach, the generalized eigenvalue problem is recast into a standard algebraic eigenvalue
problem expressed by the equation

D · f = c f . (9.7.8)

The complex growth rate, c, is an eigenvalue of the new matrix D ≡ B−1 · A. The eigenvalue
with the largest magnitude can be computed by the power method, and other eigenvalues can be
obtained by successive deflation, as discussed in Section B.2, Appendix B. A good initial guess for
c is provided by Gerschgorin’s theorem discussed in Section B.2, Appendix B. A practical concern
is that the computation of the inverse matrix, B−1, necessary to obtain D, can be prohibitively
expensive or introduce significant numerical round-off error.

In an alternative approach, equation (9.7.5) is restated as a homogeneous system of linear
algebraic equations,

E(c) · f = 0, (9.7.9)

and the eigenvalues, c, are identified with the roots of the characteristic polynomial, det[E(c)] = 0.
Rearranging (9.7.5), we find that

E ≡

⎡⎢⎢⎢⎢⎢⎣
−2− h2(k2 +

U
′′

1

U1−c ) 1 0 0 · · · 0

1 −2− h2(k2 +
U

′′

2

U2−c
) 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · 1 −2− h2(k2 +
U

′′

N

UN−c )

⎤⎥⎥⎥⎥⎥⎦ .

(9.7.10)

Because the matrix E is tridiagonal, its determinant can be computed using an efficient algorithm
discussed in Section B.2.1, Appendix B.
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Having specified the wave number, k, we compute the eigenvalues in three repetitive steps:
guess a complex value c; compute det(E) using a method for tridiagonal matrices; correct the value
of c to ensure that both the real and imaginary parts of det(E) are zero. The correction in the third
step can be made using Newton’s method discussed in Section B.3, Appendix B, setting

cnew = cold − det[E(cold)]/
(d det[E(c)]

dc

)
c=cold

. (9.7.11)

Since det[E(c)] is an analytic function of c, we may select a real or complex number with small
magnitude, ε, and approximate the derivative d det[E(c)]/dc with a finite difference. Using, for
example, a forward difference, we find that

d det[E(c)]

dc
� det[E(c+ ε)]− det[E(c)]

ε
. (9.7.12)

High accuracy in the computation of this derivative is not required.

Shear flow with hyperbolic tangent velocity profile

As an application, we consider the instability of a shear flow whose velocity profile is described by
the hyperbolic tangent function,

U(y) = U0 tanh
y

b
, (9.7.13)

where U0 is a constant velocity and b is a constant length expressing the width of the shear flow.
The flow occurs inside a channel confined between two parallel walls located at y = ±a. The broken
and solid lines in Figure 9.7.2 show the dimensionless imaginary part of the scaled phase velocity,
cI/U0, and the scaled growth rate, 4b�I/U0, of unstable normal modes computed by the finite-
difference method discussed in this section. The depicted family of curves correspond to a sequence
of scaled channel widths, a/b. As expected, the presence of the walls reduces the growth rate of the
perturbations. As a/b tends to infinity, we obtain infinite shear flow. In this limit, the critical wave
number for neutral stability is kb = 1.0, and the value of cI/U0 in the limit kb → 0 is equal to unity
[264].

It is instructive to compare the graphs presented in Figure 9.7.1 with corresponding graphs
presented in Figure 9.6.2(a) for a vortex layer. The comparison reveals that the detailed structure
of the velocity profile–piecewise linear versus hyperbolic tangent–affects only mildly the stability of
a shear flow.

9.7.2 Finite-difference methods for viscous flow

Finite-difference methods for the Orr–Sommerfeld equation determining the stability of viscous
unidirectional flow can be developed working as in Section 9.7.1 for inviscid flow. The first numerical
implementation of a finite-difference method can be traced to Thomas’ seminal work on the stability
of plane Hagen–Poiseuille flow [403]. To implement the finite-difference method, we rearrange the
Orr–Sommerfeld equation into

i
ν

k
f ′′′′ + (U − i 2kν)f ′′ − (k2U + U ′′ − ik3ν)f = c (f ′′ − k2f). (9.7.14)
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Figure 9.7.2 Stability graph for inviscid shear flow with hyperbolic tangent velocity profile, U(y) =
U0 tanh(y/b). Graphs of the scaled imaginary part of the complex phase velocity, cI/U0 (dashed
lines), and dimensionless growth rate, 4b�I/U0 (solid lines), in the unstable regime of wave numbers
for several channel half-width a/b = 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0.

The no-penetration and no-slip boundary conditions require that f = 0 and f ′ = 0 over a stationary
plane wall confining the flow. Applying (9.7.14) at the ith interior node and approximating the
second and fourth derivatives with central differences, we obtain the difference equation

i
ν

k

fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2

Δy4
+ [ U(yi)− i 2kν ]

fi−1 − 2fi + fi+1

Δy2

−
[
k2U(yi) + U ′′(yi)− i νk3

]
fi = c

(fi−1 − 2fi + fi+1

Δy2
− k2fi

)
, (9.7.15)

where fi ≡ f(yi). In the absence of viscous effects, we set ν = 0 and obtain the corresponding
discretized Rayleigh equation (9.7.2).

Compiling the difference equations at the nodes provides us with a system of linear equations
that is similar to (9.7.5), except that A is a complex pentadiagonal matrix due to the presence of the
fourth derivative. The matrix B is the same as that in the case of inviscid flow. The final algebraic
system can be recast into the form E(c) · f = 0, where E is a pentadiagonal matrix. Unfortunately,
the determinant of Emay no longer be computed by a specialized algorithm, and must be found using
a general-purpose method such as Gauss elimination or LU decomposition discussed in Section B.1,
Appendix B. Results obtained by solving the generalized eigenvalue problem using a Matlab function
will be presented in Section 9.8.1. The computer code is available in program orr in Directory 08 stab

of Fdlib (Appendix C).
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9.7.3 Weighted-residual methods

The complex eigenfunction f(y) can be expanded in a truncated sum of a complete set of preferably
orthogonal basis functions gk(y) that satisfy the prescribed boundary conditions,

f(y, c) =
N∑

k=1

ak(c) gk(y), (9.7.16)

where ak(c) are unknown constants, c it the complex phase velocity, and N is a specified truncation
level. Substituting (9.7.16) into the Rayleigh or Orr–Sommerfeld equation, multiplying the resulting
equation by a chosen set of weight functions, wk(y), and integrating the product with respect to y
over the solution domain, we obtain a homogeneous system of algebraic equations for the coefficients
ak(c). In Galerkin’s method, the weighting functions, wk, are identified with the expansion functions,
gk (e.g., [318]). Requiring that the final system of equations has a nontrivial solution provides us
with a generalized eigenvalue problem for c.

The choice of basis functions plays an important role in the accuracy and efficiency of the
numerical method. In the case of plane Poiseuille flow between two plane walls separated by the
distance 2a, an appropriate choice for symmetric disturbances is gk = (1− ŷ2) ŷ2(k−1), where ŷ = y/a
is a scaled position and the origin of the y axis has been placed midway between the two walls [143].
Analysis shows that expansions in Chebyshev polynomials yield higher accuracy than expansions in
other seemingly more relevant sets of orthogonal functions [284]. In the case of infinite shear flow,
the arguments of the basis functions should exhibit exponential decay [274].

9.7.4 Solving differential equations

In a different approach, the Orr–Sommerfeld or Rayleigh equation is integrated with respect to y
using a standard numerical method, such as the Runge–Kutta method discussed in Section B.8,
Appendix B. Shooting with respect to the complex growth rate is then performed to satisfy the
boundary conditions. This approach bypasses the computation of eigenvalues of large matrices with
the benefit of conceptual and analytical simplicity. However, certain difficulties associated with
numerical instability may arise.

Reduction to a first-order system

To integrate the Orr–Sommerfeld equation, we decompose it into a system of four first-order differ-
ential equations,

dq

dt
= M · q, (9.7.17)

where q =
[
f, f ′, f ′′ − k2f, f ′′′ − k2f ′

]
,

M =

⎡⎢⎢⎣
0 1 0 0
k2 0 1 0
0 0 0 1

−k̂U ′′ 0 k2 + k̂ (U − c) 0

⎤⎥⎥⎦ , (9.7.18)

and k̂ ≡ ik/ν.
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To illustrate the implementation of the method, we consider plane Poiseuille flow in a channel
confined between two parallel walls located at y = ±a. The no-slip and no-penetration boundary
conditions require that f(±a) and f ′(±a) are all zero. The method proceeds according to the
following steps:

1. Guess a complex value for c.

2. Integrate (9.7.17) from y = −a to a with initial condition q = [0, 0, 1, 0] to generate a first
solution, called q1.

3. Integrate (9.7.17) from y = −a to a with initial condition q = [0, 0, 0, 1] to generate a second
solution, called q2.

4. The linear combination, q3 = q1 + βq2, satisfies (9.7.17) with

f3(a) = f1(a) + βf2(a), f ′
3(a) = f ′

1(a) + βf ′
2(a), (9.7.19)

where β is a constant. Requiring that f3(a) = 0 and f ′
3(a) = 0, we obtain the compatibility

condition

G(c) ≡ f1(a)f
′
2(a)− f2(a)f

′
1(a) = 0. (9.7.20)

In general, this condition will not be satisfied for the guessed value of c.

5. Improve the value of c using, for example, Newton’s method, and return to Step 2.

In searching for symmetric eigenmodes, we require that f ′(0), f ′′′(0), f(a), and f ′(a) are zero and
carry out the integrations in Steps 2 and 3 from the centerline of the channel toward the upper wall
with initial condition [1, 0, 0, 0] in Step 2, and [0, 0, 1, 0] in Step 3.

Although seemingly innocuous, the procedure may suffer from numerical instability leading
to unreliable results when the system (9.7.17) is integrated in the vicinity of walls, especially at high
Reynolds numbers. To bypass this difficulty, we may perform forward and backward integration
and combine the solutions to eliminate spurious oscillations. Alternatives are filtering out numerical
instabilities, orthonormalizing the solution during the numerical integration, and performing parallel
shooting (e.g., [143]). Similar difficulties are encountered when integrating the Rayleigh equation
for inviscid flow. The numerical computations proceed smoothly when integrating from a region
where the velocity profile of the base flow is nearly uniform to the main core of the shear flow, but
numerical instability is encountered when the integration continues into the region of uniform flow.
Physically, the perturbation decays exponentially into the region of vanishing shear rate.

The practical difficulties associated with integrating the Orr–Sommerfeld or Rayleigh’s equa-
tion can be avoided by working with a modified nonlinear set of equations constructed according to
Riccati’s method, or by using the compound matrix method briefly discussed in the remainder of
this section.

9.7.5 Riccati equation

An alternative approach is based on Riccati’s equation (9.5.4), repeated here for convenience,

F ′ = −F 2 + k2 +
U ′′

U − c
, (9.7.21)
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where F ≡ f ′/f . To illustrate the method, we consider unidirectional inviscid shear flow in a channel
confined between two parallel walls located at y = ±a. The algorithm is implemented according to
the following steps:

• Guess a complex value for c.

• Integrate Riccati’s equation from y = −a to a using as initial condition the specified boundary
condition F (−a) = 0.

• Adjust the value of c to achieve F (a) = 0. The correction can be made using Newton’s method.

Approximations may cause numerical instability that degrades the accuracy of the computations in
the case of unbounded flow. A remedy is to map the infinite domain of flow onto a finite strip using
the transformation

η = tanh
y

b
, (9.7.22)

where b is a characteristic length scale comparable to the effective thickness of the shear flow and z is
a new dimensionless variable [264]. As y varies from −∞ to +∞, η varies from −1 to 1. Substituting
(9.7.22) into Riccati’s equation (9.5.4), we obtain

dF

dη
=

b

1− η2

(
− F 2 + k2 +

U ′′

U − c

)
, (9.7.23)

where a prime indicates a derivative with respect to y.

To develop appropriate boundary conditions, we resort to Rayleigh’s equation and find that,
as y tends to ±∞, the function f(y) behaves like exp(∓ky). Using the definition F = f ′/f , we then
obtain F (η = −1) = k and F (η = 1) = −k. The numerical procedure involves three repetitive steps:
guess a complex value for c; integrate (9.7.23) from η = −1 to 1 with initial condition F (η = −1) = k;
adjust the value of c to achieve F (η = 1) = −k using, for example, Newton’s method.

The right-hand side of (9.7.23) is indeterminate at η = −1. To avoid this apparent difficulty,
we may begin the integration from η = −1 + ε using as initial condition F (η = −1 + ε) = k, where
ε is a small positive number. Alternatively, we compute the right-hand side at η = −1 using the
l’Hôpital rule, as illustrated in the following example.

Hyperbolic-tangent shear flow

As an application, we consider an unbounded shear flow with hyperbolic-tangent velocity profile,
U(y) = U0 tanh(y/b), where U0 is the far-field velocity and b is half the shear layer thickness [264].
In this case, U(y) = U0η, and U ′′ = −2 (U0/b

2) η (1− η2), where a prime denotes a derivative with
respect to y. Substituting these expressions into (9.7.23), we obtain a nonlinear differential equation,

dF

dη
= b

k2 − F 2

1− η2
− 2

b

η

η − c/U0
. (9.7.24)
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To compute dF/dη at η = ±1, we use the l’Hôpital rule to evaluate the first term on the right-hand
side, finding (dF

dη

)
η=±1

= ∓kb
(dF
dη

)
η=±1

− 2

b

1

1∓ c/U0
, (9.7.25)

which can be rearranged into(dF
dη

)
η=±1

= − 2

b(1± kb)(1∓ c/U0)
. (9.7.26)

Viscous flow

Riccati’s method reduces the Orr–Sommerfeld equation into a quadratic system of four first-order
differential equations for the four entries of the 2 × 2 Riccati matrix R defined by the equation
u = R · v. The two-dimensional vectors u and v contain, respectively, the second and fourth,
and first and third entries of the vector q defined in (9.7.17). The implementation of this powerful
method is discussed by Davey [101].

9.7.6 Compound matrix method

The compound matrix method involves developing differential equations for the four minors of a
4× 2 solution matrix [112, 279]. The two columns of the solution matrix contain the values and the
first three derivatives of two independent solutions of the Orr–Sommerfeld equation subject to two
distinct sets of initial conditions.

Computer Problems

9.7.1 Finite-difference method for the Rayleigh equation

(a) Consider spatially periodic perturbations in an inviscid shear flow with velocity profile

U(y) = U0

(
δ tanh ŷ + (δ − 1) exp(−ŷ2)

)
, (9.7.27)

where ŷ = y/b, b is a specified length, and the parameter δ takes values in the interval [0, 1]. The
limiting values δ = 1 and 0 yield, respectively, a shear layer with hyperbolic tangent velocity profile
and a symmetric wake with Gaussian velocity profile. Assuming that the flow occurs in a bounded
domain, −a ≤ y ≤ a, prepare and discuss a graph of the maximum growth rate against the wave
number kb for δ = 0, 0.5, 1.0, and a/b = 2.0, 3.0, 4.0.

(b) Repeat (a) for the velocity profile

U(y) = U0

(
δ tanh ŷ + (δ − 1) sech2ŷ

)
. (9.7.28)

The limiting values δ = 1 and 0 yield, respectively, a shear layer with hyperbolic tangent velocity
profile and the Bickley jet [416].

9.7.2 Riccati’s method

Repeat Problem 9.7.1 using Riccati’s equation.
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Figure 9.8.1 Stability graph for a viscous shear layer with hyperbolic tangent velocity profile, U =
U0 tanh(y/b). Contour plot of the dimensionless growth rate, �I/(bU0), against the Reynolds
number, Re = U0b/ν, and wave number, kb.

9.8 Instability of viscous unidirectional flows

The fundamental significance and practical importance of unidirectional and nearly unidirectional
shear flows has motivated numerous studies of their stability by analytical and numerical methods.
Drazin & Reid review channel, free shear layer, boundary layer, and jet flows ([112], p. 211). Huerre
& Monkewitz summarize in tabular form the stability characteristics of several families of external
shear flows and provide a comprehensive list of references ([195], Table 3). In this section, we review
the stability characteristics of a few representative flows.

9.8.1 Free shear layers

A free shear layer is the diffuse interface between two parallel fluid streams merging with different
velocities. Consider a symmetric free shear layer with hyperbolic tangent velocity profile, U =
U0 tanh(y/b), where U0 is the magnitude of the velocity far above and below the shear layer and b
is half the shear layer thickness. A contour plot of the dimensionless growth rate, �I/(bU0), with
respect to the Reynolds number, Re = U0b/ν, and wave number, kb. is shown in Figure 9.8.1. The
graphs were produced using the finite-difference method for the Orr–Sommerfeld equation discussed
in Section 9.7.2. The neutral stability curve corresponds to vanishing dimensionless growth rate
(zero contour line). In Section 9.7.1, we mentioned that, in the limit of infinite Reynolds number,
the flow is unstable for disturbances with wave number kb < 1. The results in Figure 9.8.1 show
that, in fact, the flow is unstable at any finite Reynolds number, except in the theoretical limit of
Stokes flow. The range of unstable wave numbers broadens and the maximum growth rate increases
as the Reynolds number becomes higher [35]. We conclude the viscosity has a stabilizing influence
on free shear flows.
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Figure 9.8.2 Stability graph of boundary layers with self-similar velocity profiles. Schematic illus-
tration of regions of stable and unstable flow plotted with respect to the Reynolds number,
Re = Uδ∗/ν, and wave number, kδ∗, where δ∗ is the displacement thickness.

The velocity profile of a free shear layer represents an exact solution of the equations of steady
inviscid flow. However, because the velocity profile does not satisfy the steady version of the Navier–
Stokes equation with the viscous force present, it is not an acceptable representation of a steady
unidirectional viscous flow. Including viscous effects causes the shear layer to spread out and the
vorticity to diffuse away from the central region, as discussed in Chapter 5. Neglecting the temporal
or spatial evolution of a nearly steady or nearly unidirectional base flow may introduce significant
error [195].

9.8.2 Boundary layers

The normal-mode analysis of a self-similar velocity profile associated with a boundary layer is con-
ducted under the approximation of locally unidirectional flow. The results show that the base flow is
stable when the Reynolds number is below a critical threshold, Rec, that depends on the streamwise
pressure gradient of the outer irrotational flow, dp/dx, as shown in Figure 9.8.2. Boundary layers
with zero or favorable pressure gradient, dp/dx < 0, are stable in the limit of inviscid flow, as required
by Rayleigh’s theorem on the significance of inflection points. However, since the velocity profile
of a boundary layer with adverse pressure gradient, dp/dx > 0, exhibits an inflection point, the
boundary layer is susceptible to instability in the limit of inviscid flow. Solving the Orr–Sommerfeld
equation reveals that instability occurs at sufficiently high Reynolds numbers.

Schematic contour plots of the growth rate as a function of the Reynolds number and scaled
wave number are shown in Figure 9.8.2. We observe a family of loops separating a regime of stable
flow on the left from a regime of unstable flow on the right. The unstable normal modes are
called Tollmien–Schlichting waves. For the Blasius boundary layer corresponding to dp/dx = 0, the
critical Reynolds number for instability is Rec = 519, where Re = Uδ∗/ν and δ∗ is the displacement
thickness. When instability first occurs at Rec, the wave number of the marginally stable mode is
kδ∗ = 0.3, corresponding to wavelength L = 18 δ∗. In the opposite extreme case of a boundary



9.8 Instability of viscous unidirectional flows 759

(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

kb

bρ
I/U

0

Odd mode

Even mode

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kb

c R
/U

0

Odd mode

Even mode

Figure 9.8.3 Normal modes of the inviscid Bickley jet with velocity profile U(y) = U0 sech
2(y/b); (a)

growth rate and (b) phase velocity of even (symmetric) or odd (antisymmetric) modes.

layer in orthogonal stagnation-point flow, Rec � 1.4 × 104. The Blasius boundary layer and other
boundary layers with favorable pressure gradient are stable in the limit of inviscid flow but unstable
at finite and sufficiently high Reynolds numbers. This behavior demonstrates once again that viscous
stresses may have a destabilizing influence by sustaining the perturbations.

9.8.3 Jets

The stability properties of two-dimensional jets are generally similar to those of free shear layers
discussed in Section 9.8.1. Physically, the edges of a jet constitute shear layers susceptible to the
generic instability of free shear flows. The interaction of the two edges leads to multiple normal
modes corresponding to symmetric (sinuous) or antisymmetric (varicose) perturbations. In the case
of a circular jet, we obtain axisymmetric or spiral deformations.

Bickley jet

The Bickley jet is a prototypical two-dimensional jet with a symmetric velocity profile described by

U(y) = U0 sech
2ŷ, (9.8.1)

where ŷ = y/b and b is half the jet thickness. In the theoretical limit of inviscid flow, the jet exhibits
the sinuous and varicose unstable normal modes described in Figure 9.8.3. The results presented in
this figure were produced using the finite-difference method discussed in Section 9.7.1. The wave
number, phase velocity, and eigenfunctions of neutrally stable waves are kb = 2, c = 2

3
U0, and

f(y) = bU0 sech
2ŷ for the symmetric mode, and kb = 1, c = 2

3 U0, and f(y) = bU0 sechŷ tanh ŷ for
the antisymmetric mode ([112], p. 233). Because the growth rate of the symmetric mode is higher
than that of the antisymmetric mode, the amplification of an arbitrary disturbance leads to the
formation of a staggered array of vortices in the arrangement of the von Kármán vortex street, as
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discussed in Section 11.3. Solving the Orr–Sommerfeld equation, we find that the flow is unstable
when the Reynolds number, Re = bU0/ν, exceeds the critical threshold Rec = 4. The wave number
at neutral stability corresponding to Rec is kb = 0.20.

9.8.4 Couette and Poiseuille flow

Normal-mode analysis reveals that the plane Couette flow is stable at any Reynolds number, Re ≡
ξa2/ν, and for any wave number; ξ is the wall shear rate or slope of the velocity profile and a is half
the channel width. Unstable behavior observed in practice at Reynolds numbers as low as Re = 350
is attributed to nonlinear effects due to the finite amplitude of the disturbances, wall roughness,
and deviation from unidirectional motion due to entrance effects. Transient growth may introduce
nonlinearity that is responsible for a secondary instability (e.g., [364]).

Normal-mode analysis reveals that the plane Poiseuille flow becomes unstable when the
Reynolds number, Re ≡ Ucla/ν, exceeds the critical value Rec = 5772, where a is half the chan-
nel width, and Ucl is the centerline velocity. At lower Reynolds numbers, the flow is stable. The
wave number of the normal mode that first becomes unstable at the critical Reynolds number is
ka � 1.020. In practice, the flow becomes unstable when the Reynolds number exceeds the approx-
imate threshold 1500.

Poiseuille flow in a circular tube is stable against axisymmetric as well as more general three-
dimensional perturbations. In practice, the flow becomes unstable when the Reynolds number,
Re ≡ Ucla/ν, exceeds a threshold as low as 1100, where a is the tube radius and Ucl is the centerline
velocity. The unstable behavior is attributed to the reasons stated previously in this section for
Couette flow.

Problem

9.8.1 Bickley jet

Confirm the properties of the neutrally stable waves given in the text for the symmetric and anti-
symmetric mode.

Computer Problems

9.8.2 Boundary layers

Prepare a graph of the temporal growth rate against the wave number for two self-similar boundary-
layer profiles of your choice with adverse pressure gradient in the limit of inviscid flow. Show that,
as dp/dx tends to zero, the band of unstable wave numbers shrinks to zero.

9.8.3 Bickley jet

Reproduce the graphs of the growth rate and phase velocity shown in Figure 9.8.3.
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9.9 Inertial instability of rotating flows

A new type of instability arises when the base flow rotates so that the unperturbed streamlines are
not rectilinear. Centrifugal forces give rise to an effective distributed body force causing the onset
of a pressure gradient across the streamlines to satisfy the force balance, and this may destabilize
the flow.

9.9.1 Rayleigh criterion for inviscid flow

The simplest manifestation of the inertial instability due to rotation occurs in the case of purely
swirling flow. Consider a system of cylindrical polar coordinates, (x, σ, ϕ), concentric with the axis
of revolution of a swirling flow. Rayleigh [338] offered an energy argument to show that, in the case
of inviscid flow, a necessary and sufficient condition for the flow to be stable against axisymmetric
disturbances is that the distribution of circulation in the radial direction, C = 2πσuϕ, satisfies the
inequality

dC2

dσ
> 0. (9.9.1)

To derive Rayleigh’s criterion, we consider two fluid rings with radii σ1 and σ2 and equal volumes,
δV , compute their respective kinetic energies and add them to obtain the combined kinetic energy
in the unperturbed state in terms of the ring radii and circulations,

KU =
1

2
[(u2

ϕ)1 + (u2
ϕ)2] ρ δV =

1

8π2

[(C1

σ1

)2

+
(C2

σ2

)2 ]
ρ δV, (9.9.2)

where ρ is the fluid density. Next, we assume that the rings interchange radial positions and compute
the combined kinetic energy in the perturbed state, KP , in terms of the radii and circulations, subject
to the restriction of constant circulation imposed by Kelvin’s circulation theorem,

KP =
1

8π2

[(C1

σ2

)2

+
(C2

σ1

)2 ]
ρ δV. (9.9.3)

Requiring that the perturbation is supplied with additional energy, KP > KU , we find that

(C2
2 − C2

1 )
( 1

σ2
1

− 1

σ2
2

)
> 0. (9.9.4)

In the limit as σ1 tends to σ2, we find that δC2δσ > 0, which proves Rayleigh’s criterion stated in
(9.9.1).

Von Kármán provided an appealing physical interpretation of Rayleigh’s criterion [414]. Con-
sider a fluid ring that is displaced in a way that preserves axisymmetry from an initial radial position,
σ1, to a new radial position, σ2, due to the instability. Kelvin’s circulation theorem requires that
the circulation around the ring, C, is preserved after the perturbation. The old and new azimuthal
components of the velocity of the ring, (uϕ)1 and (uϕ)2, are related by C1 = 2πσ1(uϕ)1 = 2πσ2(uϕ)2.
The centrifugal force per unit volume due to the rotation of the fluid at the unperturbed and per-
turbed states are

F1 = ρ
(u2

ϕ)1

σ1
, F2 = ρ

(u2
ϕ)2

σ2
=

ρ

4π2

C2
1

σ3
2

. (9.9.5)
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(a) (b)

Figure 9.9.1 Instability of rotating flows: (a) Taylor instability of a fluid between two rotating
concentric cylinders and (b) Görtler instability of a high-Reynolds-number flow along a curved wall.

If the pressure field remains unchanged, the radial pressure gradient at the new position has the
undisturbed value ( dp

dσ

)
2
=

ρ

4π2

C2
2

σ3
2

. (9.9.6)

Rayleigh’s criterion (9.9.1) affirms that the flow is stable as long as the pressure gradient is able to
overcome the centrifugal acceleration, and thus push the fluid ring back to its original position.

9.9.2 Taylor instability

Taylor studied the instability of the circular Couette flow generated by the rotation of two coaxial
cylinders, as discussed in Section 5.3.1 [398]. Observation shows and linear stability analysis confirms
that the flow is unstable for combinations of the inner and cylinder angular velocities Ω1 and Ω2

that fall inside a certain regime determined by the radii of the inner and outer cylinders, R1 and R2.
When the inner cylinder is fixed and the outer cylinder rotates, the flow is stable; in the opposite case,
the flow can be unstable. For fixed radii, R1 and R2, there is a region in the (Ω1,Ω2) plane where
unstable modes grow and saturate, leading to a new steady state involving axisymmetric rolling
patterns with coiled streamlines, known as Taylor vortex flow, as illustrated in Figure 9.9.1(a). More
complicated wavy and turbulent states of the Taylor vortices occur for other combinations of the
cylinder angular velocities. A normal-mode stability analysis reveals that, if Rayleigh’s circulation
criterion is fulfilled, the base flow is stable at any Reynolds number.

9.9.3 Görtler instability

A more complex manifestation of the inertia instability of rotating fluids occurs in boundary-layer
flow over a concave wall at high Reynolds numbers [147]. Under certain conditions, the boundary
layer develops an alternating sequence of rolling structures illustrated in Figure 9.9.1(b). Regarding
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the wall as the stationary outer cylinder of a circular Couette flow allows us to make an analogy
between the instability of this flow and that of the flow between two concentric cylinders.

Problem

9.9.1 Dean instability

Consider pressure-driven flow through a curved cylindrical tube having, for example, a toroidal or
spiral shape. Discuss the possibility of inertial instability due to the centrifugal force.

9.10 Instability of a planar interface in potential flow

Having investigated the instability of homogeneous unidirectional shear flows, in the remainder of
this chapter we turn to examining the instability of the interface between two fluids across which
the density and viscosity may undergo a step discontinuity and the surface tension may enter the
interfacial force balance.

We begin in this section by consider the instability of the interface between two inviscid
fluids that merge with different velocities forming a unidirectional base flow. Since the tangential
component of the fluid velocity is allowed to undergo a discontinuity across the interface between
two inviscid fluids, the interface can be regarded as a flat vortex sheet whose self-induced motion
causes the growth or decay of perturbations. Conversely, the disturbance flow can be attributed
to the instability of an interfacial vortex sheet. The second interpretation allows us to study the
nonlinear stages of the motion using the vortex methods discussed in Chapter 11. In Sections 9.11–
9.13, we discuss the instability of the interface between viscous fluids due to the fluid inertia, gravity,
viscosity stratification, or interfacial tension.

9.10.1 Base flow and linear stability analysis

Consider two inviscid fluids with uniform densities, ρ1 and ρ2, moving in the horizontal direction
with uniform velocities U1 and U2, as shown in Figure 9.10.1. For simplicity, we assume that the
interface exhibits a constant surface tension denoted by T (the standard symbol γ is reserved for the
strength of an interfacial vortex sheet). In the unperturbed state, the interface is a flat vortex sheet
with uniform strength γ = U2 −U1. In the configuration shown in Figure 9.10.1 where U1 > U2, the
strength of the vortex sheet is negative.

A two-dimensional spatially periodic normal-mode disturbance causes the interface to deform
in a sinusoidal fashion. The profile of the perturbed interface can be described by the real or
imaginary part of the function y = εη(x, t), where ε is a small dimensionless coefficient,

η(x, t) = A exp[ik(x− ct)] (9.10.1)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity. To
formulate the linear stability problem, we describe the perturbations on either side of the interface
separately using the linearized equation of motion, and then match the two disturbance flows by
requiring appropriate kinematic and dynamic conditions.
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Figure 9.10.1 Illustration of a periodic vortex sheet representing the interface between two inviscid
fluids in uniform motion along the x axis.

Rayleigh equation

Since U ′′ = 0 above and below the interface, Rayleigh’s equation (9.5.2) simplifies into the Helmholtz
equation, f ′′ − k2f = 0, inside each fluid. Because the vorticity of the base flow vanishes above and
below the interface, the disturbance flow is irrotational. The general solution of the Helmholtz
equation is

fn(y) = An eky +Bn e−ky, (9.10.2)

where n = 1, 2 for the upper or lower fluid, and An, Bn are four constants. Demanding that the
disturbance decays far from the interface, we set

A1 = 0, B2 = 0. (9.10.3)

Using (9.5.6), (9.10.2), and (9.10.3), we derive expressions for the normal-mode potential,

φNM
1 = iB1 e

−ky exp[ik(x− ct)], φNM
2 = −iA2 e

ky exp[ik(x− ct)]. (9.10.4)

To compute the remaining three unknowns, B1, A2, and c, we require three equations.

Kinematic compatibility

The velocity on either side of the interface must be such that the motion of point particles adjacent to
the interface is consistent with the evolving shape of the interface expressed by (9.10.1), as discussed
in Section 1.10. Introducing the kinematic constraint D(y−εη)/Dt = 0 on either side of the interface,
expanding all terms in Taylor series with respect to ε, and retaining only the linear contributions,
we find that

∂η

∂t
+ Un

∂η

∂x
− uNM

y (y = 0) = 0, (9.10.5)

where D/Dt is the material derivative and the subscript n of Un indicates that the velocity is
computed on the upper (n = 1) or lower (n = 2) side of the interface. Setting uy = ∂φ/∂y, and
substituting into (9.10.5) expressions (9.10.1) and (9.10.4), we derive two equations,

A =
A2

c− U2
=

B1

c− U1
. (9.10.6)

It is clear that the phase velocity cannot be the upper or lower stream velocity.
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Interfacial force balance

Next, we require that the normal stress undergoes a discontinuity across the interface that is balanced
by the surface tension, τ . Recalling that the normal stress is equal to the negative of the pressure
in an inviscid fluid, we obtain

pNM
2 − pNM

1 = −τ
∂2η

∂x2
, (9.10.7)

evaluated at the interface. Consistent with the linear analysis, we have approximated the curvature
of the disturbed interface with the negative of the second derivative of the shape function η with
respect to x (see Table 4.2.1).

To express the pressure in terms of the velocity, we use Bernoulli’s equation. Linearizing the
quadratic terms and substituting the result into (9.10.7), we obtain

−ρ2

(∂φNM
2

∂t
+ U2

∂φNM
2

∂x
+ gη

)
+ ρ1

(∂φNM
1

∂t
+ U1

∂φNM
1

∂x
+ gη

)
= −τ

∂2η

∂x2
, (9.10.8)

evaluated at y = 0. Substituting the expression for the potential given in (9.10.4), we obtain

−ρ2 [ k(U2 − c)A2 + gA ] + ρ1 [−k(U1 − c)B1 + gA ] = k2Aτ. (9.10.9)

Growth rates

To compute the complex phase velocity, we solve equations (9.10.6) for A2 and B1 in terms of A,
substitute the result into (9.10.9), and eliminate the arbitrary constant A to derive a quadratic
equation for c whose solution is

c =
1

ρ1 + ρ2
( ρ1U1 + ρ2U2 ±

√
D ) (9.10.10)

where

D =
Δρ g

k
(ρ1 + ρ2) + kτ(ρ1 + ρ2)− ρ1ρ2 ΔU2 (9.10.11)

is the discriminant, ΔU = U2 −U1, and Δρ = ρ2 − ρ1. If D is positive, c is real and the disturbance
travels with constant amplitude and phase velocity cR = c.

If D is negative, c is complex, one of the two solutions corresponding to the ± sign has a
positive imaginary part, and some disturbances are unstable. The phase velocity and growth rate
of unstable waves are

cR =
ρ1U1 + ρ2U2

ρ1 + ρ2
, �I = k

√
|D|

ρ1 + ρ2
. (9.10.12)

The critical wave numbers for neutral stability, kc, are found by setting the discriminant D to zero,
yielding a quadratic equation,

τk2c −ΔU2 ρ1ρ2
ρ1 + ρ2

kc +Δρ g = 0. (9.10.13)

The two real roots enclose a finite band of unstable wave numbers.
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Critical velocity difference

To ensure that a given wave number is stable, we require that D > 0 and derive a constraint on the
magnitude of the velocity difference,

ΔU2 <
Δρ g

k

ρ1 + ρ2
ρ1ρ2

(
1 +

τk2

Δρ g

)
. (9.10.14)

The critical velocity difference under which the flow is stable to all disturbances, |ΔUc|, corresponds
to the minimum of the right-hand side of (9.10.14), regarded as a function of k, which occurs when
k = (Δρ g/τ)1/2, yielding

|ΔUc|4 = 4Δρ g τ
(ρ1 + ρ2

ρ1ρ2

)2

. (9.10.15)

When the upper fluid is heavier than the lower fluid, Δρ < 0, the flow is unstable even in the absence
of flow.

Interfacial vortex sheet

It is interesting to consider the perturbation in the strength of the vortex sheet, γ, representing the
interface. Recalling that the circulation along the vortex sheet is equal to the jump in the velocity
potential across the vortex sheet and using (9.10.4) and (9.10.6), we find that

γ = U2 − U1 − ε
(∂φNM

1

∂x
− ∂φNM

2

∂x

)
y=0

= U2 − U1 + εk (B1 +A2) exp[ik(x− ct)]. (9.10.16)

Making substitutions, we obtain

γ = U2 − U1 + 2εAk [ c− 1

2
(U1 + U2) ] exp[ik(x− ct)]. (9.10.17)

Comparing (9.10.17) with (9.10.1), we deduce that the perturbation in the strength of the vortex
sheet has a phase shift with respect to the perturbation of the interface equal to the argument of
the shifted complex velocity, c− 1

2 (U1 + U2).

9.10.2 Kelvin–Helmholtz instability

When the densities of the fluids above and below the vortex sheet are matched, ρ1 = ρ2 = ρ, the
right-hand side of (9.10.15) is zero. Consequently, some perturbations are unstable for any velocity
difference, ΔU . The critical wave numbers are found from (9.10.13),

kc1 = 0, kc2 =
1

2

ρΔU2

τ
. (9.10.18)

Intermediate wave numbers yield unstable normal modes with growth rate

�I =
1

2
k |ΔU |

(
1− 2

kτ

ρΔU2

)1/2

, (9.10.19)
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and phase velocity equal to the mean velocity of the unperturbed streams, cR = 1
2
(U1 + U2). The

phase shift between the disturbance in the strength and shape of the vortex sheet is equal to 1
2π

for unstable wave numbers and zero for neutrally stable wave numbers. The maximum growth rate
corresponding to the most dangerous normal mode occurs when k = 2

3
kc2 . Large wave numbers

with small wavelengths are stabilized by the restraining action of surface tension.

Absence of surface tension

In the absence of surface tension, kc2 is shifted to infinity, all wave numbers are unstable, and
(9.10.19) with U1 = U0 and U2 = −U0 reduces to (9.6.22), yielding a linear relationship between the
growth rate and the wave number.

Nonlinear evolution

The initial linear growth and subsequent nonlinear development of the Kelvin–Helmholtz instability
are illustrated in Figure 9.10.2(a) in the absence of surface tension. The evolution of the interface
depicted in this figure was computed using the point-vortex method for vortex sheets discussed
in Section 11.5. We observe that the growth of sinusoidal waves leads to the formation of a pe-
riodic array of spiral structures. Numerical evidence strongly suggests that the curvature of the
interface becomes discontinuous at a point immediately before the spiral structures develop (e.g.,
[215]). Since a geometrical singularity arises spontaneously from a smooth initial condition, the
problem of vortex-sheet motion is classified as ill-posed. Comparing the instability of the vortex
sheet illustrated in Figure 9.10.2(a) with the instability of a vortex layer illustrated in Figure 9.6.5
demonstrates the strong effect of the velocity discontinuity due to mathematical idealization involved
in the construction of a vortex sheet.

9.10.3 Rayleigh–Taylor instability

The Rayleigh–Taylor instability occurs when the unperturbed fluids are quiescent, U1 = 0 and
U2 = 0, and the upper fluid is heavier than the lower fluid, ρ1 > ρ2 or Δρ < 0, in which case the
fluids are said to be unstably or inversely stratified [336]. The strength of the unperturbed vortex
sheet representing the flat interface is zero. Setting into (9.10.13) ΔU = 0, we obtain the critical
wave number

kc =
( |Δρ| g

T

)1/2

. (9.10.20)

For smaller wave numbers, one normal mode is stable and the second normal mode is unstable with
associated growth rate

�I = kcI =
(
k
|Δρ| g − k2T

ρ1 + ρ2

)1/2
(9.10.21)

and zero phase velocity. The maximum growth rate occurs when k = kc/
√
3. Normal modes with

wave numbers larger than kc are stabilized by surface tension.

In the absence of surface tension, all wave numbers are unstable and the growth rate is given
by the simplified expression

�I =
√

Akg, (9.10.22)
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Figure 9.10.2 Initial linear growth and subsequent nonlinear evolution of (a) the Kelvin–Helmholtz
instability and (b) the Rayleigh–Taylor instability of a vortex sheet in the absence of surface tension.
Profiles of the interface are shown at equal time intervals from top to bottom.

where

A =
∣∣∣ρ2 − ρ1
ρ2 + ρ1

∣∣∣ (9.10.23)

is the Atwood ratio. Because, the higher the wave number, the higher the growth rate of the
perturbation, a singularity may occur after a finite evolution time due to the amplification of small-
scale irregularities.

Nonlinear evolution

The initial growth and long-time evolution of the Rayleigh–Taylor instability is illustrated in Figure
9.10.2(b) for A = 0.5 in the absence of surface tension. In these simulations, the evolution of the
interface was computed using a variation of the point-vortex method discussed in Section 11.5,
incorporating regularization. The development of a convoluted pattern with a secondary Kelvin–
Helmholtz instability appearing along the sides of plunging sections of the interface is a striking
feature of the nonlinear motion.

Accelerating interfaces

Consider two adjacent fluids accelerating with velocity V(t) normal to a flat interface. The analysis
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of this section remains valid in a noninertial frame translating with the interface, provided that the
inertial acceleration force, −ρdV/dt, is added to the gravitational force, ρg [399]. In this light, the
Rayleigh–Taylor instability emerges as the instability of an accelerating interface between two fluids
in the possible presence of a body force directed normal to the interface.

Wall effects

Container walls may have a strong stabilizing influence on the interfacial instability by placing limits
on the maximum wave length (or minimum wave number) of normal modes that are allowed to enter
the physical system. As an example, we consider the instability of a horizontal interface inside a
vertical circular container of radius a that is partially filled with a liquid labeled 2 lying underneath
another liquid labeled 1. In the unperturbed state, the interface is flat and the pressure distribution
in each fluid is determined by hydrostatics.

Introducing cylindrical coordinates, (x, σ, ϕ), with the x axis pointing upward against the
direction of gravity, we describe the position of the interface by the real or imaginary part of the
function x = εη(σ, ϕ, t), where

η(σ, ϕ, t) = A Jm(kσ) exp[i(mϕ− �t)], (9.10.24)

is a normal-mode shape function, A is a complex constant determined by the initial perturbation, k
is a real coefficient playing the role of a radial wave number, m is an integer expressing the azimuthal
structure of the normal mode, and � is the complex growth rate. The associated velocity potential
is

φNM
j (σ, ϕ, t) = Bm,j e

±kx Jm(kσ) exp[i(mϕ− �t)] (9.10.25)

for j = 1 (upper fluid) or 2 (lower fluid), where Bm,n are two complex constants. The plus or minus
sign in the first exponential apply for the lower or upper fluid, so that the perturbation decays far
from the interface (Problem 9.10.4).

To satisfy the no-penetration condition at the cylinder surface, we require that ∂φNM
n /∂σ = 0

at σ = a, and find that an acceptable radial wave number k must satisfy the equation(Jm(kσ)

dσ

)
σ=a

= 0. (9.10.26)

Referring to standard mathematical tables, we find that, for m = 0, corresponding to an axisym-
metric perturbation, ka = 3.83, 7.02, 10.17, . . .; for m = 1, ka = 1.84, 5.33, 8.53, . . .; for m = 2,
ka = 3.05, 6.70, 9.97 . . .. We note that the smallest value of ka is 1.84 corresponding to m = 1, and
invoke criterion (9.10.20) to find that half of the interface plunges and the other half rises when
ρ1 > ρ2 and the cylinder radius exceeds the critical value

ac = 1.84
( τ

|Δρ| g
)1/2

. (9.10.27)

When the cylinder radius is smaller than this critical value, the interface is stable in a configuration
where heavy fluid lies above a light fluid supported by interfacial tension.
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9.10.4 Gravity–capillary waves

Our analysis can be adapted to study the propagation of waves on the free surface of an otherwise
quiescent liquid, such as water in the ocean. Setting U1 = 0 and U2 = 0, neglecting the density of
the upper fluid, ρ1 = 0, and denoting for convenience ρ2 = ρ, we obtain from (9.10.10) the phase
velocity

c = ±
( g

k

(
1 +

τk2

ρg

) )1/2

. (9.10.28)

The normal modes represent neutrally stable waves of constant amplitude traveling to the left or
right with phase velocity that depends on the wave number, k. The initial shape of an interface
consisting of a packet of waves with different wave numbers evolves as each wave travels with a
different phase velocity. The dispersion of the packet is determined by the functional relationship
between the phase velocity and the wave number c(k) shown in (9.10.28). This interpretation justifies
calling (9.10.28) a dispersion relation.

Equipartition of energy in progressive gravity waves

The evolving profile of a progressive gravity wave is described by y(x, t) = εη(x, t), where η =
A cos[k(x− ct)] and A is a real constant. The potential energy of the fluid inside one period is

P = ρg

∫ L

0

( ∫ η

0

y dy
)
dx =

1

2
ρg ε2A2

∫ L

0

cos2[k(x− ct)] dx =
1

2

ρg

k
ε2A2, (9.10.29)

where L = 2π/k is the wavelength. Resorting to (2.1.22), we find that the linearized kinetic energy
of the fluid inside one period can be expressed as an integral along the free surface,

K � −1

2
ρ

∫ L

0

φu · n dx, (9.10.30)

where n is the unit vector normal to the free surface pointing into the flow. Using (9.10.4), we
evaluate the free-surface potential φ = εAc sin[k(x − ct)]. Substituting this expression along with
the expression

u · n = c nx � c
∂η

∂x
= −c εAk sin[k(x− ct)] (9.10.31)

into (9.10.30), we obtain

K � 1

2
ρ c2ε2A2

∫ L

0

sin2[k(x− ct)] dx =
1

2k
ρ c2ε2A2. (9.10.32)

In the absence of surface tension, c2 = g/k, and the potential and kinetic energies are equal.

Standing waves

Superposing two waves with the same amplitude traveling in opposite directions, corresponding
to the two signs in (9.10.28), we obtain a standing gravity–capillary wave oscillating with angular
velocity kc. Whether a progressive or a standing wave arises in practice depends on the physical
mechanism that is responsible for initiating the disturbance and on the boundary conditions at the
point where the interface meets a container.
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9.10.5 Displacement of immiscible fluids in a porous medium

A liquid labeled 2 displaces another liquid labeled 1 through a ho-

Fluid 2

Fluid 1g

x

y

Displacement of immiscible
fluids in a porous medium

mogeneous and isotropic porous medium. The flow of each fluid is
described by Darcy’s law, u = ∇φ, where u is the macroscopic fluid
velocity,

φ =
κ

μ
(−p+ ρg · x) (9.10.33)

is the driving potential, p is a macroscopic pressure, and κ is the
permeability of the fluid through the porous medium. The continu-
ity equation requires that the potential, φ, and thus the macroscopic
pressure, p, satisfy Laplace’s equation, ∇2φ = 0 and ∇2p = 0.

In the unperturbed state, the interface is flat and the two fluids translate along the y axis
pointing upward against the direction of gravity with the same uniform seepage velocity, U . The

unperturbed velocity potentials, indicated by the superscript (0), are given by φ
(0)
1 = Uy and

φ
(0)
2 = Uy. The interfacial velocity is V = U/n, where n < 1 is the porosity.

The horizontal interface is susceptible to the Saffman–Taylor instability [359]. To carry out the
linear stability analysis for two-dimensional perturbations in the xy plane, we describe the flow in a
frame of reference moving with the unperturbed interface. Working as in Section 9.10.1, we describe
the profile of the perturbed interface by the real or imaginary part of the function y = εη(x, t), where
ε is a small dimensionless coefficient,

η(x, t) = A exp[ik(x− ct)] (9.10.34)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity. We
will describe the perturbations on either side of the interface separately, and then match the two
disturbance flows by requiring appropriate kinematic and dynamic conditions.

The normal-mode potentials are given in (9.10.4) in terms of the unknown constants B1 and
A2. To compute the three unknowns, B1, A2, and c, we require three equations. Introducing the
kinematic constraint D(y− εη)/Dt = 0 on either side of the interface, expanding all terms in Taylor
series with respect to ε, and retaining only the linear contributions, we find that

n
∂η

∂t
− uNM

y (y = 0) = 0, (9.10.35)

where D/Dt is the material derivative. Making substitutions, we find that B1 = A2 = ncA.

The driving potential in the ith fluid on either side of the perturbed interface is φi = φ
(0)
i +

εφNM
i for i = 1, 2, evaluated at y = εη. Linearizing with respect to ε, we find that

φ1(y = εη) � ε
[
Uη + φNM

1 (y = 0)
]
= ε(U + inc ) η,

φ2(y = εη) � ε
[
Uη + φNM

2 (y = 0)
]
= ε(U − inc ) η. (9.10.36)
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From Darcy’s law, the pressure is related to the potential by pi = −(λi φi + ρigy) for i = 1, 2, where
λ2 ≡ μ2/κ2 and λ1 ≡ μ1/κ1. Substituting (9.10.36), we obtain an expression for the interfacial
pressure jump,

p2 − p1 = −ε
[
ΔλU − i (λ1 + λ2)nc+Δρ g

]
η, (9.10.37)

where Δρ = ρ2 − ρ1 and Δλ = λ2 − λ1. Balancing the pressure difference with an effective surface
tension, T , we set p2− p1 = −εT ∂2η/∂x2 = ε Tk2η. A note should be made that the physical origin
of this equation is unclear in light of the particulate medium. Equation (9.10.37) then provides us
with an expression for the complex phase velocity,

�I ≡ kc = −k

n

Δρ g +ΔλU + Tk2

λ1 + λ2
. (9.10.38)

The flow is stable if �I < 0, which requires that

Δρ g > (λ1 − λ2)U − Tκ2 or U <
Δρ g + Tκ2

λ1 − λ2
, (9.10.39)

and unstable otherwise. The second inequality shows that, when κ1 = κ2 and in the absence of
surface tension, the interface between a low-viscosity fluid displacing a high-viscosity fluid with the
same density is unstable.

Problems

9.10.1 Oblique waves

Derive the counterpart of (9.10.10) for interfacial waves directed obliquely with respect to the direc-
tion of the flow. The wave numbers in the x and z directions are, respectively, kx and kz [95].

9.10.2 Instability of a flat accelerating interface

Discuss the stability of the interface between two liquids inside a freely falling capsule.

9.10.3 Rayleigh–Taylor instability

(a) Explain why an appropriate Reynolds number of the flow due to the Rayleigh–Taylor instability
in the early stages of the motion is Re = g1/2/(k3/2ν). The flow is virtually irrotational when
Re � 1. What is the condition for the flow to remain virtually irrotational at long times?

(b) Assume that an infinite horizontal interface located at y = 0 suffers a three-dimensional defor-
mation described by the real imaginary part of the function y(z, x, t) = εη(z, x, t), where η(z, x, t) =
AS(z, x) exp(−i�t) is a shape function, A is a complex constant, and � is the complex growth rate.
Show that the function S(x, z) satisfies Helmholtz’ equation

∂2S

∂z2
+

∂2S

∂x2
= −k2S, (9.10.40)

subject to periodicity or no-penetration conditions. Show that the growth rate satisfies (9.10.21).
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Figure 9.11.1 Gravitational leveling of a liquid film resting on a horizontal plane in a constant-pressure
environment.

9.10.4 Rayleigh–Taylor instability inside a circular cylinder

(a) Verify that the potential given in (9.10.25) satisfies Laplace’s equation.

(b) Show that the interfacial position given in (9.10.24) is consistent with the kinematic boundary
condition at the interface.

(c) Compute the constants Bm,n in terms of the constant A.

9.10.5 Rayleigh–Taylor instability between two vertical plates

Discuss the Rayleigh–Taylor instability of a flat two-dimensional interface between two parallel
vertical plates separated by distance 2a. The contact line is free to move under the action of the
flow due to the instability.

9.10.6 Displacement of immiscible fluids in the Hele–Shaw cell

Consider two immiscible fluids displacing each other in the Hele–Shaw cell as discussed in Section
6.4.1. According to (6.4.2), the flow is described by Darcy’s law with permeability κ = h2/12 and
unit porosity, n = 1. Reformulate the Saffman–Taylor linear stability problem assuming that the
pressure jump across the interface is given by p2−p1 = T

(
2/h−ε ∂2η/∂x2). Derive criteria for stable

displacement and discuss the physical relevance of the interfacial pressure boundary condition.

9.11 Film leveling on a horizontal wall

In Section 9.10, we considered the instability of an inviscid interfacial flow where the stress tensor
is determined by the pressure alone. A more general framework is necessary in the case of viscous
interfacial flow where normal and tangential interfacial force balances arise. To demonstrate the
methodology, in this section we perform the stability analysis of a liquid film resting on a horizontal
wall under a constant-pressure medium in the absence of a mean flow, as illustrated in Figure 9.11.1.
The interface is occupied by an insoluble surfactant that is convected and diffuses over the interface,
but not into the bulk of the fluids, altering the surface tension according to a specified equation of
state.

Base state

In the unperturbed state, the film is quiescent and the surfactant is distributed uniformly over the
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flat interface. The pressure distribution assumes the hydrostatic profile

p(0)(y) = −ρg(y − h) + p0, (9.11.1)

where ρ is the film density, g is the acceleration of gravity, p0 is the ambient pressure, and the
superscript (0) denotes the unperturbed base state.

Normal-mode analysis

To carry out the normal-mode stability analysis for two-dimensional perturbations, we describe the
position of the interface by the real or imaginary part of the function

y = f(x, t) = h+ εη(x, t), (9.11.2)

where h is the unperturbed film thickness, ε is a dimensionless coefficient whose magnitude is much
less than unity,

η(x, t) = A exp[ik(x− ct)] (9.11.3)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function

The stream function, ψ, is defined by the equations u = ∂ψ/∂y and v = −∂ψ/∂x. In the linear
analysis, we set ψ = εψ(1) and introduce the normal-mode form

ψ(1)(x, y, t) = φ(ŷ) exp[ik(x− ct)], (9.11.4)

where ŷ ≡ ky and the superscript (1) denotes the disturbance. The perturbation velocity components

are ux = εu
(1)
x and uy = εu

(1)
y , where u

(1)
x = ∂ψ(1)/∂y and u

(1)
y = −∂ψ(1)/∂x.

The Reynolds number of the flow is so small that the motion of the fluid is governed by
the equations of Stokes flow. Requiring that the stream function satisfies the biharmonic equation,
∇4ψ(1) = 0, we obtain

φ(ŷ) = a1e
ŷ + a2ŷ e

ŷ + a3 e
−ŷ + a4ŷ e

−ŷ, (9.11.5)

where ai are four dimensionless complex coefficients for i = 1–4.

Wall conditions

The no-penetration and no-slip boundary conditions over the wall require that

φ(ŷ = 0) = 0, φ′(ŷ = 0) = 0, (9.11.6)

where a prime denotes a derivative with respect to ŷ. Making substitutions, we obtain

a3 = −a1, 2a1 + a2 + a4 = 0. (9.11.7)
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Kinematic compatibility

Kinematic compatibility requires that D[f(x, t)− y]/Dt = 0, where D/Dt is the material derivative,
yielding

∂f

∂t
+ ux

∂f

∂x
− uy = 0, (9.11.8)

where the velocity is evaluated at the film surface. Linearizing in the absence of a mean flow, we
obtain

∂η

∂t
+

∂ψ(1)

∂x
= 0 (9.11.9)

evaluated at the undisturbed film thickness, y = h. Substituting the normal-mode forms, we obtain
−iAkc+ ikφ(k̂) = 0, yielding

φ(k̂) = cA, (9.11.10)

where k̂ = kh is a dimensionless wave number.

Surfactant concentration and surface tension

Surfactant concentration inhomogeneities over the film surface cause corresponding variations in
surface tension. The distribution of the interfacial surfactant concentration, Γ, and surface tension,
γ, are described by the companion functions

Γ(x, t) = Γ0 + εΓ1 exp[ik(x− ct)], γ(x, t) = γ0 + ε γ1 exp[ik(x− ct)], (9.11.11)

where Γ0, γ0 are uniform values corresponding to the flat film, and Γ1, γ1 are complex amplitudes.
Since the perturbations are small, we can write

γ1
γ0

= −Ma
Γ1

Γ0
, (9.11.12)

where Ma is the Marangoni number defined in Section 3.8.2.

Surfactant transport

The linearized form of the surfactant transport equation (1.9.13) is

∂Γ(1)

∂t
+ Γ0

∂u
(1)
x

∂x
= Ds

∂2Γ(1)

∂x2
, (9.11.13)

where

Γ(1)(x, t) = Γ1 exp[ik(x− ct)], (9.11.14)

Ds is the surface surfactant diffusivity, and the velocity is evaluated at the unperturbed film surface,
y = h. Expressing the velocity in terms of the stream function, we obtain

∂Γ(1)

∂t
+ Γ0

∂2ψ(1)

∂x∂y
= Ds

∂2Γ(1)

∂x2
. (9.11.15)
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Substituting the normal-mode forms and rearranging, we find that the complex amplitude of the
surfactant concentration is given by

Γ1

Γ0
= k

φ′(k̂)

c+ ikDs
. (9.11.16)

Correspondingly, the complex amplitude of the surface tension is given by

γ1
γ0

= −k
Ma

c+ ikDs
φ′(k̂). (9.11.17)

Evaluating the derivative and remembering that a3 = −a1, we obtain

γ1
γ0

= −k ek̂
Ma

c+ ikDs

[
a1(1 + q) + a2(1 + k̂) + a4(1− k̂) q

]
, (9.11.18)

where q = exp(−2k̂).

Tangential component of the interfacial force balance

The linearized tangential component of the interfacial force balance requires that

μ
(∂u(1)

x

∂y
+

∂u
(1)
y

∂x

)
y=h

=
∂γ(1)

∂x
, (9.11.19)

where

γ(1)(x, t) = γ1 exp[ik(x− ct)]. (9.11.20)

The term on the right-hand side of (9.11.19) represents the Marangoni traction. Expressing the
velocity in terms of the stream function and rearranging, we obtain( ∂2ψ(1)

∂y2
− ∂ψ(1)

∂x2

)
y=h

=
1

μ

∂γ(1)

∂x
, (9.11.21)

Substituting the normal-mode forms, we find that(d2φ
dŷ2

+ φ
)
ŷ=k̂

= i
γ1
μk

. (9.11.22)

Computing the derivatives, recalling that a3 = −a1, and rearranging, we find that

(1− q) a1 + (k̂ + 1) a2 + (k̂ − 1) q a4 = i
γ1
2μk

e−k̂. (9.11.23)

Normal component of the interfacial force balance

The linearized pressure field is p = p(0) + εp(1). The linearized normal component of the interfacial
stress balance provides us with an expression for the perturbation pressure,

p(1) = 2μ
∂u

(1)
y

∂y
+ ρg η − γ0

∂2η

∂x2
+ γ1 κ0, (9.11.24)
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where κ0 is the interfacial curvature in the unperturbed configuration. All terms in (9.11.24) are
evaluated at the unperturbed film surface, y = h. The first term on the right-hand side expresses the
contribution of the viscous normal stress at the interface. Because in the unperturbed configuration
the film surface is flat, κ0 = 0, the last term on the right-hand side is identically zero. Consequently,
surface tension variations do not affect the normal force balance.

Differentiating (9.11.24) with respect to x and using the tangential projection of the Stokes
equation to evaluate the pressure derivative on the left-hand side, we obtain the preferred pressure-
free form

∂p(1)

∂x
= μ∇2u(1)

x = 2μ
∂2u

(1)
y

∂x∂y
+ ρg

∂η

∂x
− γ0

∂3η

∂x3
, (9.11.25)

where all terms are evaluated at the unperturbed film surface, y = h. Introducing the stream
function, we obtain

μ
(
3
∂3ψ(1)

∂x2∂y
+

∂3ψ(1)

∂y3

)
= ρg

∂η

∂x
− γ0

∂3η

∂x3
. (9.11.26)

Substituting the normal-mode forms and using (9.11.10), we obtain

μc
[
− 3φ′(k̂) + φ′′′(k̂)

]
= i

( ρg
k2

+ γ0
)
φ(k̂), (9.11.27)

where a prime denotes a derivative with respect to ŷ. Evaluating the derivatives and remembering
that a3 = −a1, we find

c
[
− (1 + q) a1 − a2k̂ + a4k̂ q

]
= i

1

2μ
(
ρg

k2
+ γ0)

(
a1(1− q) + a2 k̂ + a4 k̂ q

)
. (9.11.28)

Formulation of an eigenvalue problem

Collecting the second equation in (9.11.7), the shear stress balance (9.11.23), the normal stress
balance (9.11.28), and equation (9.11.18), we derive a linear system of homogeneous equations,
M ·w = 0, where w = [a1, a2, a4, γ1/(μk)] is an unknown vector. The coefficient matrix is given by

M =

⎡⎢⎢⎢⎣
2 1 1 0

1− q k̂ + 1 (k̂ − 1) q −i 1
2
e−k̂

c (1 + q) + iΠ (1− q) k̂ (c+ iΠ) k̂ (−c+ iΠ) q 0

Ma (1 + q) Ma (1 + k̂) Ma (1− k̂) q μ (c+ ikDs) e
−k̂

⎤⎥⎥⎥⎦ , (9.11.29)

where

Π ≡ 1

2μ

( ρg

k2
+ γ0

)
. (9.11.30)

Setting the determinant of the matrix M to zero provides us with a quadratic equation with two
purely imaginary roots for c, yielding negative growth rates, �I ≡ −ikcI .
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Dimensionless numbers

A Bond number can be defined with respect to either the wavelength of the perturbation or the
layer thickness,

Bo ≡ ρgL2

γ0
, Bo′ ≡ ρgh2

γ0
, (9.11.31)

Corresponding dimensionless property groups can be introduced expressing the importance of the
surfactant diffusivity,

α =
γ0L

μDs
, α′ =

γ0h

μDs
= α

h

L
. (9.11.32)

Multiplying the third row of (9.11.29) by μk̂/γ0, we obtain the new matrix

M′ =

⎡⎢⎢⎢⎣
2 1 1 0

1− q k̂ + 1 (k̂ − 1) q −i 1
2 e

−k̂

ĉ k̂(1 + q) + iΛ(1− q)/k̂ ĉ k̂2 + iΛ (−ĉ k̂2 + iΛ) q 0

Ma (1 + q) Ma (1 + k̂) Ma (1− k̂) q (ĉ+ ik̂/α′) e−k̂

⎤⎥⎥⎥⎦ , (9.11.33)

where ĉ ≡ cμ/γ0 is a dimensionless complex phase velocity and

Λ ≡ k̂2
μ

γ0
Π =

k̂2

8π2
(Bo + 4π2) =

1

2
(Bo′ + k̂2). (9.11.34)

Setting the determinant of the matrix M′ to zero provides us with a quadratic equation with two
purely imaginary roots for ĉ, yielding negative growth rates, �̂I ≡ −ik̂ĉI .

Absence of surfactant

In the absence of surfactant, Ma = 0, we set γ0 = γ and γ1 = 0 and retain the first three equations
in (9.11.29) involving the dimensionless group Λ. After some algebra, we find that the real part of
the phase velocity is zero, as expected by symmetry, and the dimensionless growth rate is given by

�̂I ≡ μh�I
γ

= −Λ
1

k̂

1
2 sinh(2k̂)− k̂

k̂2 + cosh2 k̂
. (9.11.35)

Since the fraction on the right-hand side is positive for any k̂, the growth rate is negative and the
film is stable.

In Section 9.3.6, we derived an expression for the growth rate subject to the lubrication
approximation. In the present notation, equation (9.3.19) becomes

�I = −i
h3

3μ
k2(ρg + γk2) = −2

γ

3μh
Λ k̂2. (9.11.36)

This expression is the asymptotic form of (9.11.35) in the limit is k̂ tends to zero (Problem 9.11.1(b)).
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Computer code

Directory coat0 s of the software library Fdlib contains a code that computes the growth rates
based on the equations derived in this section (Section D.8, Appendix D.)

Layer underneath a semi-infinite fluid

The linear stability analysis of a liquid film resting on a horizontal wall underneath another semi-
infinite viscous fluid is presented in Section D.14, Appendix D. The corresponding growth rate is
given in (D.14.28) in terms of the viscosity ratio, λ; in the present configuration, λ = 0.

Problem

9.11.1 Inertial effects and asymptotic behavior

(a) State the conditions for the effect of fluid inertia to be negligible.

(b) Confirm that expression (9.11.36) arises from (9.11.35) in the limit is k̂ tends to zero.

Computer Problem

9.11.2 Growth rate

Prepare graphs of the dimensionless growth rate against the dimensionless wave number k̂ in the
presence of surfactant and discuss the effect of the Marangoni number.

9.12 Film flow down an inclined plane

Gravity-driven flow of a liquid film down an inclined surface is observed in everyday life and is
encountered in numerous applications. Examples include the flow of rain water down the windshield
of an automobile, the flow of a cooling film down a heated surface, and the flow of a layer of a photo-
graphic gelatin emulsion down an inclined plane for subsequent deposition onto a moving substrate.
The mathematical formulation of the linear stability problem requires careful attention to ensure the
consistent implementation of the dynamic boundary condition at the location of the evolving free
surface. Apart from the shear-flow instability and instability due to density stratification identified
in previous sections, we will encounter a new mode of instability associated with differences in the
viscosity between the film and ambient fluid.

9.12.1 Base flow

The base flow whose stability we wish to investigate is described by the Nusselt flat-film solution
discussed in Section 5.1.4, as illustrated in Figure 9.12.1. To simplify the notation, it is helpful
to nondimensionalize all variables using as characteristic velocity the unperturbed velocity at the
free surface, umax

x , characteristic length the unperturbed film thickness, h, characteristic time the
ratio h/umax

x , and characteristic pressure and stress the combination μumax
x /h. In dimensionless
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Figure 9.12.1 Periodic disturbances on a liquid film flowing down an inclined plane. The dashed line
represents the unperturbed film surface.

variables, the base flow velocity and pressure are given by

û(0)
x ≡ u

(0)
x

umax
x

=
2ν

gh2 sinβ
u(0)
x = ŷ (1− ŷ), p̂(0) ≡ 2

ρgh sinβ
p(0) = 2 cot β (1− ŷ), (9.12.1)

where β is the plane inclination angle, h is the unperturbed film thickness, ν is the kinematic viscosity
of the fluid, ŷ = y/h is a dimensionless distance from the plane, and the superscript (0) denotes the
steady state. The dimensionless volumetric flow rate per unit width of the film and mean velocity
of the fluid are

Q̂(0) =
2ν

gh3 sinβ
Q(0) =

2

3
, ûmean

x =
2ν

gh2 sinβ
umean
x =

2

3
. (9.12.2)

For future reference, we introduce the dimensionless stress tensor in the xy plane,

σ(0) =
2

ρgh sinβ
σ(0) = 2 (1− ŷ)

[
cotβ 1
1 − cotβ

]
. (9.12.3)

For convenience, we have assumed that the pressure takes the reference value of zero at the free
surface so that σ(0) = 0 at ŷ = 1.

9.12.2 Linear stability analysis

In the inclined Cartesian coordinates depicted in Figure 9.12.1, the Navier–Stokes equation assumes
the dimensionless form

Re
( ∂û

∂t̂
+ û · ∇̂û

)
= −∇̂p+ ∇̂2û+ 2

[
1

− cotβ

]
, (9.12.4)

where

t̂ =
tumax

x

h
, ∇̂ =

( ∂

∂x̂
,

∂

∂ŷ

)
, x̂ =

1

h
x (9.12.5)



9.12 Film flow down an inclined plane 781

are the dimensionless time, gradient operator, and position vector. The Reynolds number is

Re =
humax

x

ν
=

gh3

2ν2
sinβ =

2

sinβ
Fr2, (9.12.6)

where Fr ≡ umax
x /

√
gh is the Froude number.

Orr–Sommerfeld equation

A normal-mode disturbance alters the velocity field from the steady field, u(0)(x), to an unsteady
field,

u(x, t) = u(0)(x) + εu(1)(x, t), (9.12.7)

where ε is a small dimensionless coefficient and the superscript (1) denotes the perturbation. Nondi-
mensionalizing the normal-mode velocities given in (9.4.31) using the scales discussed in Section
9.12.1, we derive the dimensionless disturbance velocity

û(1)
x = f̂ ′(ŷ) exp[ik̂(x̂− ĉt̂)], û(1)

y = −ik̂f̂(ŷ) exp[ik̂(x̂− ĉt̂)], (9.12.8)

where k̂ = kh is the dimensionless wave number, ĉ = c/umax
x is a dimensionless complex phase

velocity, and f̂ = f/(humax
x ) is a scaled eigenfunction. Substituting the velocity profile (9.12.1) into

the dimensionless version of the Orr–Sommerfeld equation (9.4.20), we obtain

f̂ ′′′′ − 2k̂2f̂ ′′ + k̂4f̂ = iRe k̂
[
(2ŷ − ŷ2 − ĉ)(f̂ ′′ − k̂2f̂) + 2f̂

]
, (9.12.9)

where a prime denotes a derivative with respect to ŷ.

To complete the definition of the linear stability problem, we require four boundary conditions
for the eigenfunction f̂ . Two boundary conditions arise by requiring that both velocity components
are zero at the plane, yielding

f̂(0) = f̂ ′(0) = 0. (9.12.10)

Two additional boundary conditions emerge by demanding that the shear stress is zero and the nor-
mal stress is consistent with the jump in interfacial traction due to surface tension at the free surface.
To prepare the ground for implementing these conditions, we digress to describe the kinematics of
the perturbed flow at the free surface.

Kinematic compatibility

In the normal-mode analysis, the scaled elevation of the deformed free surface is described by the
real or imaginary part of the function

ŷ = ζ̂(x̂, t̂) = 1 + εη̂(x̂, t̂), (9.12.11)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η̂(x̂, t̂) = A exp[ik̂(x̂− ĉt̂)] (9.12.12)
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is the normal-mode wave form of the perturbation, and A is a dimensionless complex constant.
Substituting (9.12.11) into the kinematic boundary condition

∂ζ̂

∂t
+ ûx

∂ζ̂

∂x
− ûy = 0, (9.12.13)

we obtain

iεk̂A (−ĉ+ ûx) exp[ik̂(x̂− ĉt̂)]− ûy = 0, (9.12.14)

where the velocity components ûx and ûy are evaluated at the location of the perturbed free surface.
To compute the free surface velocity, we expand the velocity in a Taylor series around the undeformed
position,

û(ŷ = ζ̂) = û(ŷ = 1) +
(∂û
∂ŷ

)
ŷ=1

εη̂ + · · · . (9.12.15)

Expressing the velocity in terms of the base component and normal-mode perturbation, we obtain

û(ŷ = ζ̂) = û(0)(ŷ = 1) + ε
[(∂û(0)

∂ŷ

)
ŷ=1

η̂ + û(1)(ŷ = 1)
]
+ · · · , (9.12.16)

where the dots represent terms with quadratic or higher-order dependence on ε. Substituting
(9.12.11) into (9.12.16) and the result into (9.12.14), and retaining terms of first order with re-

spect to ε, we find that A = f̂(1)/(ĉ − 1). Consequently, the deformed free surface is described by
the real or imaginary part of the function

η̂(x, t̂) =
f̂(1)

ĉ− 1
exp[ik̂(x̂− ĉt̂)]. (9.12.17)

Free-surface conditions

At the free surface, the hydrodynamic traction undergoes a jump that is balanced by surface tension
or a more general interfacial force field. For a clean interface with constant surface tension γ,

σ̂ · n = − 1

Bo
κ̂n, (9.12.18)

where σ̂ is the dimensionless stress tensor, n is the normal unit vector pointing into the ambient
gas, κ̂ is the dimensionless curvature of the free surface in the xy plane, and

Bo =
ρgh2

2γ
sinβ (9.12.19)

is a Bond number. It is sometimes convenient to introduce the inverse Bond number, Γ, Weber
number, We, and a property group, S, that depends exclusively on the physical properties of the
fluid, defined as

Γ =
1

Bo
=

Re

We
=

S

Re2/3
1

sin1/3 β
, We =

ρh(umax
x )2

γ
, S = γ

( 2ρ

gμ4

)1/3

. (9.12.20)

For water at room temperature, S is approximately equal to 4,280.
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Next, we expand both sides of (9.12.18) in perturbation series with respect to ε. For this
purpose, we decompose the stress tensor and normal unit vector into their steady and unsteady or
disturbance components,

σ̂ = σ̂(0) + ε σ̂(1), n = n(0) + εn(1), (9.12.21)

where

n(0) =
[
0, 1

]
, n(1) =

[
− ∂η̂

∂x̂
, 0

]
. (9.12.22)

To compute the left-hand side of (9.12.18) in terms of flow variables at the undisturbed position of
the free surface, we apply once again the method of domain perturbation, writing

(σ̂ · n)ŷ=ζ̂ =
[
σ̂(ŷ = 1) + εη̂

(∂σ̂
∂ŷ

)
ŷ=1

+ · · ·
]
· n

=
[
σ̂(0)(ŷ = 1) + ε σ̂(1)(ŷ = 1) + ε η̂

(∂σ̂(0)

∂ŷ

)
ŷ=1

+ · · ·
]
· (n(0) + εn(1))

= ε
[
σ̂(1)(ŷ = 1) + η̂

(∂σ̂(0)

∂ŷ

)
ŷ=1

]
· n(0) + · · · . (9.12.23)

Substituting the last expression into the left-hand side of (9.12.18), approximating κ̂ = −ε ∂2η̂/∂x̂2

on the right-hand side, and equating terms of same order in ε, we obtain

σ̂(1)(ŷ = 1) ·
[

0
1

]
= 2η̂

[
1

− cotβ

]
+ Γ

∂2η̂

∂x̂2

[
0
1

]
, (9.12.24)

where Γ is the inverse Bond number. Next, we decompose (9.12.24) into its two scalar constituents
expressing tangential and normal force balances,

σ̂(1)
xy (ŷ = 1) = 2η̂, σ̂(1)

yy (ŷ = 1) = −2η̂ cotβ + Γ
∂2η̂

∂x̂2
. (9.12.25)

Expressing the stress tensor in terms of its pressure and the viscous constituents, we obtain two
scalar linearized boundary conditions,

∂û
(1)
x

∂ŷ
+

∂û
(1)
y

∂x̂
= 2η̂, p̂(1) = 2

∂û
(1)
y

∂ŷ
+ 2 η̂ cotβ − Γ

∂2η̂

∂x̂2
, (9.12.26)

where all terms are evaluated at the unperturbed free surface position, ŷ = 1.

Tangential force balance

Substituting (9.12.8) along with (9.12.17) into the first equation in (9.12.26) and rearranging, we
obtain

f̂ ′′(1) +
(
k̂2 − 2

ĉ− 1

)
f̂(1) = 0, (9.12.27)

expressing a linearized tangential force balance.
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Normal force balance

To derive the free surface condition corresponding to the second equation in (9.12.26), we require an
expression for the disturbance pressure in terms of the velocity. This expression emerges by applying
the dimensionless form of the linearized Navier–Stokes equation at the free surface, projecting it onto
the tangent unit vector, t, and rearranging to find

t · ∇̂p(1) = −Re
(∂û(1)

∂t̂
+ û(0) · ∇̂û(1) + û(1) · ∇̂û(0)

)
+ (∇̂2û(1)) · t. (9.12.28)

Now differentiating the second equation in (9.12.26) with respect to x̂, we obtain

∂p̂(1)

∂x̂
= 2

∂2û
(1)
y

∂x̂∂ŷ
+ 2

∂η̂

∂x̂
cotβ − Γ

∂3η̂

∂x̂3
, (9.12.29)

evaluated at ŷ = 1. Equating the right-hand sides of (9.12.28) and (9.12.29) and retaining only
terms of order ε, we obtain

−Re
(∂û(1)

x

∂t̂
+

∂û
(1)
x

∂x̂

)
+ ∇̂2û(1)

x = 2
∂2û

(1)
y

∂x̂∂ŷ
+ 2

∂η̂

∂x̂
cotβ − Γ

∂3η̂

∂x̂3
, (9.12.30)

evaluated at ŷ = 1. Finally, we substitute (9.12.8) along with (9.12.17) into (9.12.30) and obtain
the desired boundary condition

f̂ ′′′(1) + k̂
[
i Re (ĉ− 1)− 3k̂

]
f̂ ′(1)− i

k̂

ĉ− 1
(2 cot β + Γk̂2) f̂(1) = 0, (9.12.31)

involving the Reynolds number, Re, and the inverse Bond number, Γ.

Formulation of an eigenvalue problem

The problem has been reduced to solving an eigenvalue problem expressed by the Orr–Sommerfeld
equation (9.12.9), subject to four boundary conditions (9.12.10), (9.12.27), and (9.12.31). Analytical
solutions are not available and we must resort to approximate, asymptotic, and numerical methods
(e.g., [298, 74, 77]). Anshus & Goren [10] noted that a main difficulty in solving the Orr–Sommerfeld
equation (9.12.9) stems from the presence of the non-constant coefficient on the right-hand side
involving the unperturbed velocity profile, and proposed replacing the velocity distribution with the
maximum velocity at the free surface. At low and moderate Reynolds numbers, approximate growth
rates computed in this fashion are close to the exact growth rates computed by numerical methods.

Long-wave solution

Useful insights can be obtained by considering disturbances with long wavelength or small scaled
wave number, k̂ [435]. It turns out from the numerical solution of the exact eigenvalue problem
that the fastest growing mode does have a long wavelength, and the approximate analysis for small
scaled wave numbers provides us with accurate predictions. Expanding the eigenfunction f̂ and the
complex phase velocity ĉ in Taylor series with respect to k̂, we obtain

f̂ = f̂0 + k̂f̂1 + k̂2f̂2 + · · · , ĉ = ĉ0 + k̂ĉ1 + k̂2ĉ2 + · · · . (9.12.32)
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Substituting these expansions into the Orr–Sommerfeld equation and associated boundary condi-
tions, assuming that both Re and Γ are of order unity, and collecting terms of same order in k̂, we
derive a sequence of eigenvalue problems.

The zeroth-order problem is governed by the differential equation

f̂ ′′′′
0 = 0, (9.12.33)

with boundary conditions

f̂0(0) = 0, f̂ ′
0(0) = 0, f̂ ′′

0 (1)−
2

ĉ0 − 1
f̂0(1) = 0, f̂ ′′′

0 (1) = 0. (9.12.34)

The solution is readily found to be

f̂0 = B ŷ2, ĉ0 = 2, (9.12.35)

where B is an arbitrary constant expressing the initial magnitude of the perturbation. Physically,
this solution tells us that long waves translate with a phase velocity that is equal to twice the velocity
of the liquid film at the free surface. It is interesting to note that this behavior contradicts Rayleigh’s
theorem for inviscid flow discussed in Section 9.5.

The first-order problem is governed by the differential equation

f̂ ′′′′
1 = −i Re

[
(ŷ2 − 2ŷ + ĉ0) f̂

′′
0 − 2f̂0

]
, (9.12.36)

with boundary conditions

f̂1(0) = 0, f̂ ′
1(0) = 0, f̂ ′′

1 (1)−
2

ĉ0 − 1
f̂1(1) = − 2ĉ1

(ĉ0 − 1)2
f̂0(1),

f̂ ′′′
0 (1) = −i Re (ĉ0 − 1) f̂ ′

0(1) + 2 i
cotβ

ĉ0 − 1
f̂0(1). (9.12.37)

Since k̂ has been used as a perturbation variable, it appears neither in the zeroth-order equation
(9.12.33) nor in the first-order equation (9.12.36). Substituting (9.12.35) into (9.12.36), we obtain
the simple form

f̂ ′′′′
1 = 4iBRe (ŷ − 1). (9.12.38)

A solution that satisfies the two boundary conditions at the wall is given by the fifth-degree poly-
nomial

f̂1 = i
1

30
BRe ŷ4(ŷ − 5) + Cŷ3, (9.12.39)

where C is a new constant. Substituting (9.12.39) into the third and fourth boundary conditions in
(9.12.37), we derive two linear homogeneous equations for B and C,[

ĉ1 − 8
15 iRe 2

−2i cot β g

]
·
[

B
C

]
= 0. (9.12.40)
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Setting the determinant of the coefficient matrix to zero to ensure a nontrivial solution, we obtain
C = 1

3 iB cosβ and

ĉ1 = i
8

15
(Re− 5

4
cotβ). (9.12.41)

Now collecting the zeroth- and first-order solutions, we obtain

ĉ � 2 + i k̂
8

15
(Re− 5

4
cotβ). (9.12.42)

Recalling that the dimensionless growth rate of the disturbance is equal to the imaginary part of
−ik̂ĉ, we obtain Benjamin’s [28] criterion for long waves,

Re >
5

4
cotβ. (9.12.43)

Substituting the definition of the Reynolds number from (9.12.6), we find that long waves will grow
when

h >
(10
4

ν2

g

cotβ

sinβ

)1/3

. (9.12.44)

This inequality places a limit on the maximum film thickness for stable flat-film flow. A vertical
film corresponding to β = π/2 is unstable at all Reynolds numbers.

Approximate methods

Benjamin [28] developed an approximate method for solving the linear stability problem based on
an infinite series expansion,

f̂(ŷ) =
∞∑

n=0

Anŷ
n. (9.12.45)

Substituting (9.12.9) into the Orr–Sommerfeld equation, we obtain a recurrence relationship among
four groups of coefficients, An, An−2, An−4, and An−6. Enforcing the boundary conditions provides
us with an algebraic eigenvalue problem with infinite dimensions. In practice, the series (9.12.45)
and associated linear algebraic eigenvalue problem are truncated at a finite level. Benjamin noted
that truncating amounts to expressing the solution in a Taylor series with respect to k̂ and Re, and
then truncating that series. For example, keeping 16 terms produces results that are accurate to
third order in k̂ and Re. Benjamin solved the corresponding eigenvalue problem analytically and
derived an involved relationship between the critical wave number for neutral stability, the Reynolds
number, Re, and the Weber number, We.

Instead of implementing the long wave approximation in the final linearized system and bound-
ary conditions, Benney [29] worked with an approximate form of the Navier–Stokes equation that
assumes long waves of finite amplitude at the outset. The governing equations are developed as dis-
cussed in Section 6.4. By carrying out a linear stability analysis of the resulting evolution equation
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for the film thickness, Benney produced the second and third coefficients of the complex growth rate
ĉ shown in (9.12.32),

ĉ2 = −2− 32

63
Re (Re− 5

4
cotβ), (9.12.46)

and

ĉ3 = i
(
− 1

3
Γ− 157

56
Re +

6

5
cotβ − 8

45
Re cot2 β +

138904

155925
Re2 cotβ − 1213952

2027025
Re3

)
. (9.12.47)

The neutral stability curves where the imaginary part of ĉ becomes zero, are given by k̂c = 0 and
(−ĉ0/ĉ3)

1/2.

Problems

9.12.1 Benney’s method

Show that, according to Benney’s analysis, the neutral stability curves along which the imaginary
part of c is zero, are given by

Re =
5

4
cotβ + k̂2c (0.625Γ + 4.320870 cot β − 0.000006 cot2 β) +O(ĉ4c), (9.12.48)

where ĉc is the critical dimensionless wave number.

9.12.2 Two-layer film flow

Consider the flow of two superposed liquid films down an inclined plane. Formulate and discuss the
equations and boundary conditions governing the temporal linear stability problem.

9.12.3 Two-layer channel flow

Consider the flow of two superposed layers in plane Couette or Poiseuille flow inside a channel
confined between two parallel walls. Formulate and discuss the equations and boundary conditions
governing the temporal linear stability problem [189, 436].

9.13 Capillary instability of a curved interface

A curved interface between two immiscible fluids is susceptible to a capillary instability due to
surface tension. Rayleigh observed that distortions of the interface cause normal stress differences
that may promote the growth of perturbations [334]. Manifestations of the capillary instability are
found in a broad range of applications. A capillary instability occurs when a cylindrical jet of a
fluid penetrates another immiscible fluid, causing it to develop corrugations and finally to break
up into an array of droplets. Stirred liquid drops develop viscous filaments that disintegrate into
smaller drops to form an emulsion. In nature, the capillary instability of a quiescent liquid column is
responsible for the formation of spider’s web. In biomechanics, the capillary instability of an annular
layer coated on the exterior or interior side of a cylindrical surface, such as a pulmonary airway, is
responsible for the formation of annular rings. The capillary instability is exploited in ink-jet printer
technology where an ejected column of ink breaks up into an array of droplets that are subsequently
guided onto a printed surface by an electrical field [46].
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Figure 9.13.1 Illustration of a liquid thread suspended in an infinite constant-pressure medium.

9.13.1 Rayleigh instability of an inviscid liquid column

Consider a cylindrical jet of an inviscid liquid with circular cross-section of radius a discharging with
uniform velocity into an ambient gas with negligible density and constant pressure, p0, as shown
in Figure 9.13.1. Assuming that gravitational forces are negligible and recalling that the mean
curvature of the unperturbed interface is κm = 1/(2a), we find that the pressure inside the jet is
p0 + aγ, where γ is the surface tension.

Normal-mode analysis

It is convenient to work in a frame of reference where the jet appears to be a stationary column
of fluid and the ambient gas executes an inconsequential backward motion. The flow due to a
perturbation will be described in cylindrical coordinates coaxial with the undisturbed cylindrical
interface, (x, σ, ϕ). In the case of axisymmetric perturbations, the jet radius is described by the real
part of the function

σ = f(x, t) = a+ εη(x, t), (9.13.1)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (9.13.2)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Confining our attention to irrotational and spatially periodic perturbations, we introduce a
velocity potential for the flow inside the liquid, φ = εφ(1), where

φ(1)(x, σ, t) = B Φ(σ) exp[ik(x− ct)] (9.13.3)
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is a perturbation potential, B is a complex constant, and Φ is a complex eigenfunction. Requiring
that the perturbation potential satisfies Laplace’s equation written in cylindrical polar coordinates,
and demanding a nonsingular behavior at the centerline, σ = 0, we find that

Φ(σ) = J0(ikσ) = I0(kσ), (9.13.4)

where J0 is the zeroth-order Bessel function and I0 is the zeroth-order modified Bessel function. To
derive the last expression, we used the property of Bessel functions Jn(ix) = in In(x), where n is a
positive integer and x is a real argument. To compute the ratio B/A and complex phase velocity, c,
we require two constraints.

Kinematic compatibility

The first constraint arises by substituting the expressions given into (9.13.2) and (9.13.3) in the
linearized kinematic condition at the interface stated in (1.10.3), ∂η/∂t− ∂φ(1)/∂σ = 0, obtaining

−ikcA = B
dΦ

dσ
= B

dJ0(ikσ)

dσ
= −i kB J1(ikσ), (9.13.5)

evaluated at the unperturbed interface, σ = a, where J1 is the first-order Bessel function. Simplify-
ing, we obtain

cA = B J1(ika) = iB I1(ka), (9.13.6)

where I1 is the first-order modified Bessel function.

Interfacial normal force balance

The second constraint arises by requiring that the pressure drop across the interface is balanced
by surface tension, p − p0 = 2κmγ, where κm is the mean curvature of the perturbed interface.
Linearizing the expression for the mean curvature given in Table 4.2.1, we obtain

p− p0
γ

=
1

a2
(a− εη)− ε

∂2η

∂x2
. (9.13.7)

The second term on the right-hand side is the curvature in a meridional plane and the second term
is the curvature in its conjugate orthogonal plane. The pressure in the liquid can be evaluated using
Bernoulli’s equation (3.6.11) for unsteady irrotational flow. Discarding the square of the velocity
and substituting into (9.13.7) the resulting linearized form, we obtain

ρ
∂φ(1)

∂t
= γ

( η

a2
+

∂2η

∂x2

)
. (9.13.8)

Substituting into (9.13.8) expressions (9.13.2) and (9.13.3), and evaluating the left-hand side at the
location of the unperturbed interface, σ = a, we find that

−ikcρB I0(ka) =
γ

a2
A
[
1− (ka)2

]
. (9.13.9)
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Growth rate and phase velocity

Dividing corresponding sides of (9.13.6) and (9.13.9) to eliminate the constants A and B, and
rearranging, we obtain the square of the complex phase velocity

c2 = − γ

ρka2
I1(ka)

I0(ka)

[
1− (ka)2

]
, (9.13.10)

The modified Bessel functions, I0(ka) and I1(ka), are positive for any scaled wavenumber, ka.
Accordingly, the sign of the right-hand side of (9.13.10) is determined by the magnitude of ka.

When ka > 1, the right-hand side of (9.13.10) is positive and the complex phase velocity, c,
takes two real values corresponding to stable normal modes. Axisymmetric waves with ka > 1 travel
undamped to the left or right with phase velocity

c = ±
( γ

ρka2
I1(ka)

I0(ka)
[1− (ka)2]

)1/2

. (9.13.11)

The permanence of the amplitude of the interfacial wave is a consequence of the absence of viscous
dissipation in an inviscid flow.

When ka < 1, the right-hand side of (9.13.10) is negative, and the complex phase velocity, c,
takes two complex conjugate values with zero real part. The negative imaginary part corresponds
to a stable mode, while the positive imaginary part corresponds to an unstable mode with growth
rate

�I = kcI =
( γk

ρa2
I1(ka)

I0(ka)

[
1− (ka)2

])1/2

. (9.13.12)

The fastest growth occurs approximately when ka = 0.679, and the corresponding maximum growth
rate is

(�I)max = 0.34
( γk

ρa2

)1/2

. (9.13.13)

Physically, perturbations with large wavelength amplify due to a surface pressure generated by
surface tension.

We have found that, when the Plateau–Rayleigh criterion ka < 1 is fulfilled, the jet falls
prey to the capillary instability [334]. The growth of perturbations in the unstable regime can
be explained by considering the pressure distribution in the liquid column at the initial instant,
neglecting pressure variations due to the fluid acceleration. Considering station A in Figure 9.13.1,
we note that the curvature of the interface in a meridional plane increases due to the interfacial
corrugation, whereas the curvature in a plane that is perpendicular to the x axis decreases due to
the increased jet radius; the inverse is true at station B. The linearized form of the expression for the
mean curvature on the right-hand side of (9.13.9) then shows that the pressure at station A will be
lower than the pressure at station B and the fluid will be driven towards the crest when 0 < ka < 1,
thereby amplifying the interfacial corrugations.
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Nonlinear evolution

The initial amplification of interfacial corrugations due to the Rayleigh instability is followed by the
formation of liquid drops connected by axisymmetric bridges, eventually breaking up into smaller
satellite drops. Mansour & Lundgren [255] present numerical simulations based on the boundary-
integral method discussed in Chapter 10.

Three-dimensional corrugations

To study the behavior of non-axisymmetric disturbances, we describe the shape of the interface by
the real or imaginary part of the shape function

η(x, t) = A exp[i(kx+mϕ− ct)], (9.13.14)

where m an integer representing the azimuthal wave number. Repeating the preceding analysis, we
find that the growth rate is given by the generalized expression [334]

c2 = − γ

ρka2
I′m(ka)

Im(ka)

[
1− (ka)2 −m2

]
, (9.13.15)

where Im are mth-order modified Bessel functions. When m = 0, we recover (9.13.10). Since the
ratio of the modified Bessel functions on the right-hand side of (9.13.15) is positive for any integer
m > 0, the right-hand side is positive for any m ≥ 1 and the interface is stable to non-axisymmetric
perturbations. Thus, a cylindrical column of fluid is expected to break up by developing axisym-
metric corrugations, in agreement with observation.

9.13.2 Capillary instability of a viscous thread

Next, we consider the instability of a viscous thread suspended in an infinite ambient viscous fluid,
as illustrated in Figure 9.13.2(a). The inner fluid is labeled 1 and the outer fluid is labeled 2.
The viscosity of the inner fluid is μ1 and the viscosity of outer fluid is μ2 = λμ1, where λ is the
viscosity ratio. In the absence of surfactants, the interface exhibits uniform surface tension, γ. In
the unperturbed configuration, the fluids are quiescent. We will assume that the motion of the fluid
on either side of the interface due to a perturbation is governed by the continuity equation and the
Stokes equation with appropriate physical constants for each fluid.

Normal-mode analysis

To carry out the normal-mode stability analysis for axisymmetric perturbations, we introduce cylin-
drical polar coordinates, (x, σ, ϕ), where the x axis coincides with the axis of revolution of the
unperturbed interface. The radial position of the interface is described by the real or imaginary part
of the function

σ = f(x, t) = a+ εη(x, t), (9.13.16)

where a is the unperturbed thread radius, ε is a dimensionless coefficient whose magnitude is much
less than unity,

η(x, t) = A exp[ik(x− ct)] (9.13.17)
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Figure 9.13.2 (a) Illustration of an infinite viscous thread suspended in a quiescent infinite viscous
fluid. (b) Dependence of the dimensionless growth rate, s ≡ �Iaμ1/γ, on the scaled wave number,
ka, for viscosity ratio λ = 0 (dashed line) corresponding to a thread suspended in vacuum, 0.01,
0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 20.0 (lowest line).

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function, velocity and vorticity

Taking advantage of the axial symmetry of the flow, we describe the perturbation flow in terms of
a perturbation Stokes stream function ψ1 for the inner fluid and ψ2 for the outer fluid. The axial
and radial components of the perturbation velocity are given by

uxj = ε
1

σ

∂ψ
1)
j

∂σ
, uσj = −ε

1

σ

∂ψ
(1)
j

∂x
(9.13.18)

for j =1, 2, where the superscript (1) denotes the perturbation. The azimuthal component of the
vorticity is

ωϕj
= −ε

1

σ
E2ψ

(1)
j , (9.13.19)

where

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
(9.13.20)

is a second-order differential operator. The vorticity transport equation for axisymmetric Stokes
flow requires that

E4ψ
(1)
j ≡ E2 (E2ψ

(1)
j ) = 0, (9.13.21)
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which can be decomposed into two second-order constitutive equations

E2ψ
(1)
j = ψ̃

(1)
j , E2ψ̃

(1)
j = 0, (9.13.22)

where a tilde denotes an intermediate solution.

Normal-mode expansion

The stream function is expressed in the normal-mode form

ψ
(1)
j (x, σ, t) = φj(σ) exp[ik(x− ct)], (9.13.23)

where φj(σ) are eigenfunctions. Substituting this expression into (9.13.22), we obtain( d2

dσ2
− 1

σ

d

dσ
− k2

)
φj = φ̃j, (9.13.24)

where ( d2

dσ2
− 1

σ

d

dσ
− k2

)
φ̃j = 0. (9.13.25)

The general solution is

φ1(σ) = σ
[
A1,1 I1(σ̂) +A2,1 σ I0(σ̂)

]
(9.13.26)

for the thread fluid labeled 1, and

φ2(σ) = σ
[
B1,2 K1(σ̂) +B2,2 σK0(σ̂)

]
(9.13.27)

for the ambient fluid labeled 2, where I0, I1, K0, and K1 are Bessel functions, Ai,j , Bi,j are complex
constants, and σ̂ ≡ kσ is the dimensionless radial position. The first term on the right-hand side
of (9.13.26) or (9.13.27) satisfies (9.13.24) with φ̃j = 0. The second term satisfies (9.13.24) with φ̃j

being a nontrivial solution of (9.13.25).

Substituting the preceding expressions into (9.13.18) and using the properties of the Bessel
functions,

I′0(z) = I1(z), I′1(z) = I0(z)−
1

z
I1(z), K′

0(z) = −K1(z),

K′
1(z) = −K0(z)−

1

z
K1(z), (9.13.28)

where a prime denotes a derivative with respect to z, we find that

uxj
= ε Uxj

(σ) exp[ik(x− ct)], uσj
= ε Uσj

(σ) exp[ik(x− ct)], (9.13.29)

where

Ux1
(σ) =

1

σ

dφ1

dσ
= A1,1k I0(σ̂) +A2,1

[
2 I0(σ̂) + σ̂ I1(σ̂)

]
,

Uσ1
(σ) = − ik

σ
φ1 = −ik

[
A1,1I1(σ̂) +A2,1σ I0(σ̂)

]
(9.13.30)
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for the thread fluid labeled 1, and

Ux2
(σ) =

1

σ

dφ2

dσ
= −B1,2 kK0(σ̂) +B2,2

[
2K0(σ̂)− σ̂K1(σ̂)

]
,

Uσ2
(σ) = − ik

σ
φ2 = −ik

[
B1,2K1(σ̂) +B2,2 σK0(σ̂)

]
(9.13.31)

for the ambient fluid labeled 2.

Pressure field

The normal-mode pressure field is

pj = Pj + ε χj(σ) exp[ik(x− ct)], (9.13.32)

where P1 and P2 are the uniform unperturbed pressures, P1−P2 = γ/a is the unperturbed capillary
pressure, and γ is the surface tension. To compute the disturbance pressure field, we consider the x
component of the Stokes equation for axisymmetric flow,

∂pj
∂x

= μj

[ ∂2uxj

∂x2
+

1

σ

∂

∂σ

(
σ
∂uxj

∂σ

) ]
. (9.13.33)

Substituting (9.13.32) along with the first equation into (9.13.29) and linearizing, we obtain

χj(σ) = iμjkUxj
− iμj

k

1

σ

d

dσ

(
σ
dUxj

dσ

)
= − iμj

k

[ 1
σ

d

dσ
(σ

dUxj

dσ
)− k2 Uxj

]
(9.13.34)

or

χj(σ) = − iμj

k

( d2Uxj

dσ2
+

1

σ

dUxj

dσ
− k2 Uxj

)
. (9.13.35)

Making substitutions, we find that

χ1(σ) = −i 2μ1kA2,1I0(σ̂), χ2(σ) = −i 2μ2kB2,2K0(σ̂). (9.13.36)

Note that only one term of the general solution in each fluid contributes to the pressure field.

Continuity of velocity at the interface

Requiring that the x and σ velocity components are continuous at the interface and using expressions
(9.13.30) and (9.13.31), we derive the linearized kinematic interfacial conditions

A1,1 k I0(k̂) +A2,1

[
2 I0(k̂) + k̂ I1(k̂)

]
= −B1,2 kK0(k̂) +B2,2

[
2K0(k̂)− k̂K1(k̂)

]
,

A1,1 I1(k̂) +A2,1 a I0(k̂) = B1,2 K1(k̂) +B2,2 aK0(k̂),

(9.13.37)

where k̂ = ka is a scaled wave number.
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Kinematic compatibility

Kinematic compatibility requires that D[f(x, t) − σ]/Dt = 0 at the interface, where D/Dt is the
material derivative and the function f describes the position of the interface according to (9.13.16).
Carrying out the differentiation, we obtain

∂f

∂t
+ ux

∂f

∂x
− uσ = 0, (9.13.38)

where the velocity is evaluated at the interface. Substituting the preceding expressions and lineariz-
ing, we obtain an expression for the interfacial amplitude,

A = −Uσ1
(σ = a)

ick
=

1

c

[
A1,1I1(k̂) +A2,1a I0(k̂)

]
. (9.13.39)

Because of the continuity condition (9.13.37), the outer fluid velocity, Uσ2
(σ = a), could have been

used in this expression.

Tangential interfacial force balance

Balancing the tangential hydrodynamic forces exerted on an infinitesimal portion of the interface,
we derive the linearized shear stress condition(

σxσ1
− σxσ2

)
σ=a

= μ1

(∂ux1

∂σ
+

∂uσ1

∂x

)
σ=a

− μ2

(∂ux2

∂σ
+

∂uσ2

∂x

)
σ=a

= 0. (9.13.40)

Substituting the normal-mode expansions, we obtain

μ1

(dUx1

dσ
+ ikUσ1

)
σ=a

− μ2

(dUx2

dσ
+ ikUσ2

)
σ=a

= 0. (9.13.41)

Using the expressions

dUx1

dσ
= A1,1 k

2I1(σ̂) +A2,1k
[
2 I1(σ̂) + σ̂ I0(σ̂)

]
,

dUx2

dσ
= B1,2 k

2K1(σ̂)−B2,2 k
[
2K1(σ̂)− σ̂K0(σ̂)

]
, (9.13.42)

along with expressions (9.13.30) and (9.13.31), we obtain

2μ1k
(
A1,1k I1(k̂) +A2,1[I1(k̂) + k̂I0(k̂)]

)
−2μ2k

(
B1,2kK1(k̂)−B2,2[K1(k̂)− k̂K0(k̂)]

)
= 0. (9.13.43)

Consolidating the various terms, we derive a linear algebraic equation,

F1A1,1 + F2A2,1 + F7B1,2 + F8B2,2 = 0, (9.13.44)

where

F1 = kI1(k̂), F2 = I1(k̂) + k̂ I0(k̂), F7 = −λ kK1(k̂), F8 = λ
[
K1(k̂)− k̂K0(k̂)

]
. (9.13.45)



796 Introduction to Theoretical and Computational Fluid Dynamics

Normal stress interfacial condition

Balancing the normal force exerted on an infinitesimal portion of the interface with the interfacial
tension, γ, and linearizing, we derive the normal stress balance(

σσσ1
− σσσ2

)
σ=a

=
(
− p+ 2μ1

∂uσ1

∂σ

)
σ=a

−
(
− p+ 2μ2

∂uσ2

∂σ

)
σ=a

= γ 2κm, (9.13.46)

where κm is the mean curvature of the interface. In the linearized approximation,

2κm = −1

a
+ ε

( η

a2
+ ηxx

)
= −1

a
+ ε

A

a2
(1− k̂2) exp[ik(x− ct)]. (9.13.47)

Using (9.13.39) to eliminate the interface amplitude, A, we obtain

2κm = −1

a
+ ε 2κ(1)

m exp[ik(x− ct)], (9.13.48)

where

2κ(1)
m =

1− k̂2

ca2
[
A1,1 I1(k̂) +A2,1 a I0(k̂)

]
. (9.13.49)

Substituting the normal-mode expansions into (9.13.46), we obtain(
− χ1 + 2μ1

∂Uσ1

∂σ

)
σ=a

−
(
− χ2 + 2μ2

∂Uσ2

∂σ

)
σ=a

= γ
1− k̂2

ca2
[
A1,1 I1(k̂) +A2,1 a I0(k̂)

]
. (9.13.50)

Using the expressions

dUσ1

dσ
= −i k

(
A1,1 k

[
I0(σ̂)−

1

σ̂
I1(σ̂)

]
+A2,1

[
I0(σ̂) + σ̂ I1(σ̂)

] )
(9.13.51)

and

dUσ2

dσ
= −i k

(
−B1,2 k

[
K0(σ̂) +

1

σ̂
K1(σ̂)

]
+B2,2

[
K0(σ̂)− σ̂K1(σ̂)

] )
, (9.13.52)

along with the last expression in (9.13.36) for the pressure, we obtain

α1,1A1,1 + α2,1aA2,1 + β1,2B1,2 + β2,2aB2,2 = 0, (9.13.53)

where

α1,1 = k̂ I0(k̂)− I1(k̂)−ΠI1(k̂), α2,1 = k̂ I1(k̂)−ΠI0(k̂),

β1,2 = λ
[
k̂K0(k̂) + K1(k̂)

]
, β2,2 = λ k̂K1(k̂). (9.13.54)

We have introduced the dimensionless group

Π = i
γ

2μ1c

1− k̂2

k̂
. (9.13.55)

If c is imaginary, as expected due to the absence of a mean base flow, the parameter Π is real.
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(a)

M =

⎡⎢⎢⎣
I1(k̂) I0(k̂) −K1(k̂) −K0(k̂)

k̂ I0(k̂) 2 I0(k̂) + k̂I1(k̂) k̂K0(k̂) −2K0(k̂) + k̂K1(k̂)

k̂ I1(k̂) I1(k̂) + k̂ I0(k̂) −λ k̂K1(k̂) λ [K1(k̂)− k̂K0(k̂)]

k̂I0(k̂)− I1(k̂)−ΠI1(k̂) k̂ I1(k̂)−ΠI0(k̂) λ [k̂K0(k̂) + K1(k̂)] λ k̂K1(k̂)

⎤⎥⎥⎦
(b)

M′ =

⎡⎢⎢⎣
I1(k̂) k̂ I0(k̂)− I1(k̂)

k̂ I0(k̂) k̂ [I0(k̂) + k̂ I1(k̂)]

k̂ I1(k̂) â2I0(k̂)

k̂ I0(k̂)− I1(k̂)−ΠI1(k̂) (1 + k̂2)I1(k̂)− k̂I0(k̂)−Π [k̂I0(k̂)− I1(k̂)]

−K1(k̂) −k̂K0(k̂)−K1(k̂)

k̂K0(k̂) k̂ [−K0(k̂) + k̂K1(k̂)]

−λ k̂K1(k̂) −λ k̂2K0(k̂)

λ [k̂K0(k̂) + K1(k̂)] λ [(1 + k̂2)K1(k̂) + k̂K0(k̂)]

⎤⎥⎥⎦
(c)

M′′ =

⎡⎢⎢⎣
I1(k̂) k̂ I0(k̂)− I1(k̂)

I0(k̂) I0(k̂) + k̂ I1(k̂)

I1(k̂) k̂ I0(k̂)

k̂ I0(k̂)− I1(k̂)−ΠI1(k̂) (k̂2 + 1) I1(k̂)− k̂ I0(k̂)−Π [k̂ I0(k̂)− I1(k̂)]

K1(k̂) −k̂K0(k̂)−K1(k̂)

−K0(k̂) −K0(k̂) + k̂K1(k̂)

λK1(k̂) −λ k̂K0(k̂)

−λ [k̂K0(k̂) + K1(k̂)] λ [(1 + k̂2)K1(k̂) + k̂K0(k̂)]

⎤⎥⎥⎦

Table 9.13.1 Matrices arising from the linear stability analysis of a viscous liquid thread. Setting the
determinant of any one of these matrices to zero provides us with an algebraic equation for the
complex phase velocity.

Formulation of an eigenvalue problem

To formulate an algebraic eigenvalue problem, we collect equations (9.13.37) (9.13.44), and (9.13.53)
into a homogeneous linear system, M · q = 0, where q =

(
A1,1, aA2,1, B1,2, aB2,2

)
, and the 4× 4

complex coefficient matrix M is given in Table 9.13.1(a). Multiplying the second column of M by

k̂, subtracting from the product the first column, and also multiplying the fourth column by k̂ and
adding to the product the third column, we obtain the modified matrix M′ shown in Table 9.13.1(b).
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D1 = det
(⎡⎣ k̂ I0(k̂)− I1(k̂) K1(k̂) −k̂K0(k̂)−K1(k̂)

I0(k̂) + k̂ I1(k̂) −K0(k̂) −K0(k̂) + k̂K1(k̂)

k̂ I0(k̂) λK1(k̂) −λ k̂K0(k̂)

⎤⎦)

D2 = det
(⎡⎣ I1(k̂) K1(k̂) −k̂K0(k̂)−K1(k̂)

I0(k̂) −K0(k̂) −K0(k̂) + k̂K1(k̂)

I1(k̂) λK1(k̂) −λ k̂K0(k̂)

⎤⎦)

D3 = det
(⎡⎣ I1(k̂) k̂ I0(k̂)− I1(k̂) −k̂K0(k̂)−K1(k̂)

I0(k̂) I0(k̂) + k̂ I1(k̂) −K0(k̂) + k̂K1(k̂)

I1(k̂) k̂ I0(k̂) −λ k̂K0(k̂)

⎤⎦)

D4 = det
(⎡⎣ I1(k̂) k̂ I0(k̂)− I1(k̂) K1(k̂)

I0(k̂) I0(k̂) + k̂ I1(k̂) −K0(k̂)

I1(k̂) k̂ I0(k̂) λK1(k̂)

⎤⎦)

Table 9.13.2 Determinants of matrices arising from the linear stability analysis of a viscous liquid
thread.

Switching the sign in the third column and eliminating the factor k̂ in each term in the second row
and third rows, we obtain the new matrix M′′ shown in Table 9.13.1(c). Expanding the determinant
of this matrix with respect to the last row and setting the resulting expression to zero, we derive
the equation

Π =
1

Φ

([
k̂ I0(k̂)− I1(k̂)

]
D1 −

[
(k̂2 + 1) I1(k̂)− k̂ I0(k̂)

]
D2

−λ
[
k̂K0(k̂) + K1(k̂)

]
D3 + λ

[
(1 + k̂2)K1(k̂) + k̂K0(k̂)

]
D4

)
, (9.13.56)

where Φ = I1(k̂)D1 −
[
k̂ I0(k̂) − I1(k̂)

]
D2, and D1–D4 are four determinants defined with respect

to the first three rows of M′′ and given in Table 9.13.2. Invoking the definition of Π from (9.13.55),
we finally derive a purely imaginary growth rate,

� ≡ kc = i
γ

2μ1aΠ
(1− k̂2), (9.13.57)

where Π is computed from (9.13.56) [410]. A code that produces the growth rate is available in the
software library Fdlib (Section D.17, Appendix D, Directory thread0).

Graphs of the dimensionless growth rate s ≡ aμ1�I/γ plotted against the scaled wave number,
ka, are shown in Figure 9.13.2(b) for several viscosity ratios, λ = μ2/μ1. The results demonstrate
that the thread is unstable for scaled wave numbers that are lower than the Rayleigh–Plateau
threshold, ka < 1. When the ambient fluid is inviscid, λ = 0, the growth rate tends to a finite limit
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Figure 9.13.3 Effect of an insoluble surfactant on the instability of a viscous thread suspended in an in-

finite fluid. The graphs demonstrate the dependence of the dimensionless growth rate s ≡ �Iaμ1/γ
on the scaled wave number for β = 0.001 (dashed lines), 0.05 (dotted lines), 0.1, 0.2, . . . , 0.5, and
negligible surfactant diffusivity, α = ∞. The viscosity ratio is (a) λ = 1 and (b) 0.

as ka tends to zero. In contrast, when the ambient is viscous, the growth rate vanishes as ka tends
to zero. We conclude that the ambient fluid viscosity has a profound effect on the evolution of long
waves.

Effect of an insoluble surfactant

The presence of an insoluble surfactant is incorporated into the linear stability analysis presented
in Directory ann2l0, Section D.2, Appendix D. The effect of the surfactant is determined by the
dimensionless parameter β defined in (3.8.16) or Marangoni number Ma defined in (3.8.18), and a
dimensionless number expressing the significance of the surfactant diffusivity, Ds,

α ≡ aγ0
μ1Ds

, (9.13.58)

where γ0 is the surface tension of the unperturbed thread [214]. In practice, the surfactant surface
diffusivity is typically negligible and α is large. When β = 0 or Ma = 0, the surface tension is not
affected by the presence of the passively advected surfactant. A code that produces the growth rates
of the two normal modes is available in the software library Fdlib, as discussed in Section D.2,
Appendix D, Directory ann2l0.

Graphs of the dimensionless growth rate s ≡ aμ1�I/γ0 plotted against the scaled wave number,
ka, are shown in Figure 9.13.3 for viscosity ratio λ = 1 and 0. Two normal modes arise in the
presence of an insoluble surfactant. The first normal mode is unstable for scaled wave numbers that
are lower than the Rayleigh–Plateau threshold, ka < 1. The second normal mode is stable for all
wave numbers. The corresponding growth rates arise from the splitting of the contiguous lobe in
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(a) (b)

Figure 9.13.4 Evolution of an annular layer coating the interior side of a circular tube subject to
an axisymmetric perturbation. The straight dotted lines show the initial position of the interface.
Frame (a) illustrates the initial amplification of sinusoidal interfacial corrugations and the forma-
tion of primary drops connected with axisymmetric bridges, as shown in frame (b). The bridges
eventually breakup to yield two alternating sequences of drops.

the absence of surfactant, β = 0. Because the surfactant reduces the growth rate of the unstable
mode, it has a dampening action on the capillary instability. The effect is small when λ = 1, but
significant when λ = 0.

9.13.3 Annular layers

The capillary instability of an annular layer coated on the external or internal surface of a hol-
low cylinder is of interest in pulmonary physiology with reference to the spontaneous occlusion of
bronchioles (e.g., [281]). A code that produces the growth rate is available in the software library
Fdlib for Navier–Stokes and Stokes flow, as discussed in Sections D.1 and D.2, Appendix D, Direc-
tories ann2l and ann2l0. The mathematical formulation takes into account the effect of an insoluble
surfactant. A schematic illustration of the evolution of an annular layer coated on the interior of a
circular tube, subject to an axisymmetric perturbation is shown in Figure 9.13.4. We observe the
initial amplification of interfacial corrugations and the formation of primary drops connected with
axisymmetric bridges. The bridges eventually break up to yield two alternating sequences of drops.
If the thickness of the annular layers is small, the instability leads to the developing of lenticular
structures occluding the tube or a periodic array of axisymmetric toroidal lobes attached to the
cylinder.

Problems

9.13.1 Coalescence of an array of drops

Consider a one-dimensional array of touching spherical drops arranged in a straight line, representing
a chain of melted glass beads. Explain why one should expect the drops to coalesce forming a liquid
column, and the column to break up into a new array of drops. Compute the initial-to-final drop
radius ratio.
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Computer Problem

9.13.2 Capillary instability of an inviscid jet

Prepare a plot of the growth rate against the scaled wave number ka based on equations (9.13.12).
To compute the modified Bessel functions, use computer library functions or polynomial approxi-
mations.

9.13.3 Capillary instability of a viscous thread

Reproduce the graphs of the growth rate shown in Figure 9.13.3(a).

9.14 FDLIB Software

Appendix C introduces the fluid mechanics software library Fdlib. Directory 08 stab of Fdlib con-
tains a collection of programs that perform the linear stability analysis. The User Guide of this
directory is given in Appendix D.



Boundary-integral methods
for potential flow

10
Potential flow is encountered in a variety of natural contexts and engineering applications. A familiar
example is high-Reynolds-number flow past a streamlined body discussed in Chapters 7 and 8. Since
the vorticity is confined inside thin boundary layers and narrow wakes, the main part of the flow is
irrotational and the associated velocity field can described in terms of a scalar potential, u = ∇φ.
Using the continuity equation for incompressible fluids, ∇ · u = 0, we find that φ is a harmonic
function, ∇2φ = 0. The computation of the flow is thus reduced to solving Laplace’s equation
subject to the no-penetration condition over the impermeable boundaries of the flow or to a dynamic
boundary condition specifying the pressure at a free surface.

Another example of potential flow from a different physical context is provided by the flow of
a viscous fluid through a channel confined between two parallel plates separated by a small distance
h, called the Hele–Shaw cell, as discussed in Section 6.4.1. We have found that the fluid velocity
averaged across the width of the channel, ū, is proportional the gradient of the hydrodynamic
pressure, p̃ = p − ρg · x. Accordingly, p̃ plays the role of a velocity potential, ū = ∇φ, where
φ = −p̃h2/(12μ) and μ is the fluid viscosity. Mass conservation requires that the hydrodynamic
pressure is a harmonic function, ∇2p̃ = 0. The computation of the Hele–Shaw flow is thus reduced
to solving Laplace’s equation subject to the Dirichlet, Neumann, or another boundary condition
over different boundaries of the flow.

A related application concerns the flow of a viscous fluid through an isotropic porous medium,
such as a fibrous matrix or ground rock. According to Darcy’s law, the macroscopic velocity of the
fluid, U, defined as the average velocity of the fluid over a volume that is small compared to the
global dimensions of the flow but large compared to the size of the fibers or grains, is related to the
corresponding macroscopic hydrodynamic pressure, p̃, through the equation U = −(κ/μ)∇p̃, where
κ is a physical constant called the permeability of the fluid through the porous medium. It is evident
that the macroscopic pressure plays the role of a potential function, φ = (κ/μ) p̃. The continuity
equation requires that p̃ is a harmonic function, ∇2p̃ = 0. The computation of a porous-medium
flow is then reduced to solving Laplace’s equation subject to the Neumann boundary conditions over
the impermeable boundaries of the flow or to the Dirichlet boundary condition over boundaries that
are exposed to the atmosphere.

Motivated by the pervasiveness of Laplace’s equation in the various branches of fluid mechanics
and other physical and engineering sciences, we devote this chapter to discussing a powerful class
of numerical methods for computing potential flow in domains with arbitrary geometry, known as

802
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Figure 10.1.1 Illustration of a flow domain bounded by an internal and an external surface whose
union comprises the boundary, D. In the case of exterior flow decaying at infinity, Dext does not
appear.

boundary-integral, boundary-element (BEM), boundary-integral-equation (BIE), or panel methods.
The formulation and basic implementation of the method will be discussed in Section 10.1–10.4, and
subsequent sections are devoted to extensions and advanced topics.

10.1 The boundary-integral equation

In Section 2.3, we developed an integral representation of a function φ that satisfies Laplace’s
equation, ∇2φ = 0, in terms of two boundary integrals representing boundary distributions of
point sources and point-source dipoles. The densities of these distributions are proportional to the
boundary values of the function and its normal derivative. For a point x0 located inside a selected
control volume bounded by a surface, D, as shown in Figure 10.1.1, we derived the representation
(2.3.8), repeated below for convenience,

φ(x0) = −
∫∫

D

G(x0,x)n(x) · ∇φ(x) dS(x) +

∫∫
D

φ(x)n(x) · ∇G(x0,x) dS(x), (10.1.1)

where G(x0,x) is a Green’s function of Laplace’s equation and n is the unit vector normal to D
pointing into the control volume. The Green’s function satisfies the symmetry property G(x0,x) =
G(x,x0). The first integral on the right-hand side of (10.1.1), representing a distribution of point
sources, is the single-layer potential. The second integral, representing a distribution of point-source
dipoles oriented normal to D, is the double-layer potential.

Equation (10.1.1) is also valid at a point, x0, located inside a partially or entirely infinite
domain of flow that is bounded by an interior boundary D, provided that the velocity decays and
therefore the potential φ tends to the reference value of zero at infinity.

Integral equations

The representation (10.1.1) allows us to compute the value of φ(x0) at any point x0 inside a selected
control volume in terms of the distribution of φ and its normal derivative, n·∇φ, over the boundaries
of the control volume. In practice, physical arguments provide us with one scalar boundary condition
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for the distribution of φ, n · ∇φ, or their linear combination, but not for both. It would appear
then that (10.1.1) is useful only when both boundary distributions are available. The basic idea of
the boundary-integral method is to let the point x0 approach the boundary D, and thereby reduce
(10.1.1) into a Fredholm integral equation for the unknown distribution.

10.1.1 Behavior of the hydrodynamic potentials

Before taking the limit of (10.1.1) as the point x0 approaches the boundary, D, we must examine
the behavior of the single- and double-layer potentials. To avoid mathematical complications, we
assume that the boundary D is a Lyapunov surface, which means that it has a continuously varying
normal unit vector in the absence of corners or cusps.

Single-layer potential

Examining the singularity of the single-layer integrand in (10.1.1), we find that, as the point x0

approaches and then crosses D, the single-layer potential varies in a continuous fashion.

Double-layer potential

The double-layer potential exhibits a jump across the integration domain, D. The discontinuity is
seen most clearly by writing

lim
x0→D±

∫∫
D

φ(x)n(x) · ∇G(x0,x) dS(x) = J0 + φ0 lim
x0→D±

∫∫
D

n(x) · ∇G(x0,x) dS(x), (10.1.2)

where φ0 ≡ φ(x0),

J0(x0) ≡ lim
x0→D±

∫∫
D

[
φ(x)− φ(x0)

]
n(x) · ∇G(x0,x) dS(x), (10.1.3)

and the superscripts + or− designate that the point x0 approachesD from within the control volume,
indicated by the normal vector, or from the exterior side, as shown in Figure 10.1.1. Examining the
singularity of the integrand, we find that the function J0(x0) varies continuously as x0 approaches
and then crosses D. To assess the behavior of the integral in the right-hand side of (10.1.2), we recall
that D represents the collection of all boundaries of an enclosed domain of flow and use identities
(2.2.15) to find that

lim
x0→D±

ext

∫∫
D

φ(x)n(x) · ∇G(x0,x) dS(x) = J0(x0) + β±φ(x0) (10.1.4)

for an exterior boundary, where β+ = 1 and β− = 0, and

lim
x0→D±

int

∫∫
D

φ(x)n(x) · ∇G(x0,x) dS(x) = J0(x0) + γ±φ(x0) (10.1.5)

for an interior boundary, where γ+ = 0 and γ− = −1. These equations demonstrate that, as the
point x0 crosses an exterior or interior boundary to enter the domain of flow, the double-layer integral
undergoes a discontinuity equal to φ(x0).
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Principal-value of the double-layer integral

When the evaluation point x0 is located precisely on D, the double-layer integral is an improper
but convergent integral, called the principal-value integral and denoted by PV . Subtracting the
singularity, as shown in (10.1.2), and using identities (2.2.15), we find that∫∫ PV

Dext

φ(x)n(x) · ∇G(x0,x) dS(x) = J0(x0) +
1

2
φ(x0) (10.1.6)

for an exterior boundary, and∫∫ PV

Dint

φ(x)n(x) · ∇G(x0,x) dS(x) = J0(x0)−
1

2
φ(x0) (10.1.7)

for an interior boundary.

Combining (10.1.4) and (10.1.5) with (10.1.6) and (10.1.7), we obtain a unified relationship
between the limits of the double-layer potential and its principal value for an exterior or interior
boundary,

lim
x0→D±

∫∫
D

φ(x)n(x) · ∇G(x0,x) dS(x) =

∫∫ PV

D

φ(x)n(x) · ∇G(x0,x) dS(x)±
1

2
φ(x0). (10.1.8)

The significance of this equation hinges on the realization that the principal value of the double-
layer potential is much easier to compute than the limit of the double-layer potential as the point
x0 approaches the boundary from either side.

10.1.2 Boundary-integral equation

Having assessed the behavior of the single-layer and double-layer potentials, we now take the limit
of the integral representation (10.1.1) as the field point x0 approaches the boundary D, and use
(10.1.8) to derive the boundary-integral equation

φ(x0) = −2

∫∫
D

G(x0,x)n(x) · ∇φ(x) dS(x) + 2

∫∫ PV

D

φ(x)n(x) · ∇G(x0,x) dS(x), (10.1.9)

where the point x0 lies on D. It will be noted that (10.1.9) is identical to (10.1.1), except that the
right-hand side is multiplied by a factor of two and the principal value of the double-layer integral is
employed. Because of the symmetry property G(x2,x1) = G(x1,x2), the arguments of the Green’s
function in the single-layer and double-layer potentials can be freely switched.

An alternative method of deriving (10.1.9) involves assuming that the point x0 lies on a smooth
boundary, D, and then repeating the analysis of Section 2.3, excluding from the control volume a
hemisphere centered at the point x0. Generalizing this method, we find that (10.1.9) is also valid
at a point x0 located at a boundary wedge or corner, provided that φ(x0) on the left-hand side is
multiplied by the factor α/2π, where α is the solid angle subtended by the corner on the side of the
control volume (Problem 10.1.1). In the case of a smooth boundary, α = 2π.
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10.1.3 Integral equations of the second kind

Specifying the distribution of the normal derivative n · ∇φ over D reduces (10.1.9) into a Fredholm
integral equation of the second kind for the boundary distribution of φ,

φ(x0) = 2

∫∫ PV

D

φ(x)n(x) · ∇G(x0,x) dS(x)− 2 IS(x0), (10.1.10)

where

IS(x0) ≡
∫∫

D

G(x0,x)n(x) · ∇φ(x) dS(x) (10.1.11)

is the known single-layer potential. Recasting (10.1.10) into the standard form of an integral equa-
tion, we obtain

φ(x0) =

∫∫ PV

D

φ(x)K(x0,x) dS(x)− 2 IS(x0), (10.1.12)

where

K(x0,x) = 2n(x) · ∇G(x0,x) (10.1.13)

is the kernel of the double-layer potential.

Regularity

To assess the singular nature of the kernel of the double-layer potential, we note the asymptotic
behavior (2.2.10) and find that, as x → x0,

K(x0,x) � 2n(x) · ∇
(1
r

)
= − 1

2π
n(x) · x− x0

r3
. (10.1.14)

When the normal unit vector varies continuously over D, as x → x0, the vectors x0 − x and n tend
to become perpendicular and their dot product tends to vanish. Consequently, the singularity of the
kernel K(x0,x) is of order 1/r2−ε, where ε is a positive number determined by the smoothness of
the boundary. If D is a smooth surface with finite curvature, ε = 0 and the singularity of the kernel
is of order 1/r. Since the order of the singularity is less than that dimensionality of the domain
of integration, which is equal to two, the kernel K(x0,x) and the integral equation (10.1.12) are
weakly singular. Later in this chapter, we will see that this property has important implications on
the existence and uniqueness of solution, as well as on the feasibility of computing the solution by
iterative methods.

Uniqueness of solution

In Section 10.7, we will study the properties of the integral equation (10.1.12) and will find that, when
D represents the interior boundary of an infinite external flow, the integral equation has a unique
solution. However, when D is the exterior boundary of an internal flow in the absence of interior
boundaries, the integral equation has either no solution or an infinite number of solutions that differ
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by an arbitrary constant. The physical relevance of these results becomes evident by identifying φ
with a temperature field and noting that a steady temperature distribution in a confined domain
will exist only if the flow rate of heat through the boundaries is zero. When this condition is met,
the temperature can be set to an arbitrary level.

Flow past a stationary rigid body

As an application, we consider an ambient irrotational flow past a stationary impermeable body. In
Section 7.2, we showed that the velocity potential is given by the simplified representation (7.2.4)
with V = 0 involving the double-layer potential alone,

φ(x0) = φ∞(x0) +

∫∫
B

φ(x)n(x) · ∇G(x0,x) dS(x), (10.1.15)

where B is the surface of the body. Taking the limit as the point x0 approaches the surface of the
body and using (10.1.8), we derive an integral equation of the second kind for φ,

φ(x0) = 2φ∞(x0) + 2

∫∫ PV

B

φ(x)n(x) · ∇G(x0,x) dS(x). (10.1.16)

Substituting the free-space Green’s function, G(x0,x) = 1/(4πr), where r = |x− x0|, we obtain the
specific form

φ(x0) = 2φ∞(x0)−
1

2π

∫∫ PV

B

φ(x)
x− x0

r3
· n(x) dS(x). (10.1.17)

In Section 10.7, we will show that equation (10.1.17) has a unique solution for any ambient potential
φ∞ representing an arbitrary irrotational incident flow.

Flow past a sphere

As a specific application, we consider streaming flow with velocity U past a stationary sphere with
radius a centered at the origin of the chosen Cartesian coordinates. The exact solution for the
velocity potential was given in (7.5.6) as

φ(x) =
(
1 +

1

2

a3

|x|3
)
U · x. (10.1.18)

Substituting into (10.1.17) φ∞(x) = U · x and the boundary distribution φ(x) = 3
2
U · x, and

simplifying, we obtain the identity

x0 =
3

2π

∫∫ PV

Sphere

x
x− x0

r3
· n(x) dS(x), (10.1.19)

where r = |x − x0|, n(x) = 1
a x is the normal unit vector, the integration is performed over the

surface of the sphere, and the point x0 lies at the surface of the sphere (Problem 10.1.2).
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Figure 10.1.2 In the case of axisymmetric flow, the boundary integrals can be reduced to line integrals
along the trace of the boundaries in an azimuthal plane.

10.1.4 Integral equations of the first kind

Specifying the distribution of φ over the boundary, D, reduces (10.1.9) into a Fredholm integral
equation of the first kind for the boundary distribution of n · ∇φ,∫∫

D

G(x0,x)n(x) · ∇φ(x) dS(x) = F(x0), (10.1.20)

with forcing function F = ID − 1
2 φ, where

ID(x0) ≡
∫∫ PV

D

φ(x)n(x) · ∇G(x0,x) dS(x) (10.1.21)

is the double-layer integral. The kernel of the integral equation (10.1.20) is the Green’s function,
G(x0,x). Inspecting the singular behavior shown in (2.2.10), we find that, if the normal unit vector
varies continuously over the boundary, D, the integral equation is weakly singular. Further properties
of the solution will be discussed in Section 10.7.

10.1.5 Flow in an axisymmetric domain

In the case of axisymmetric flow, the boundary integrals of the single- or double-layer potentials
can be reduced to line integrals along the contour of the boundaries in an azimuthal plane, denoted
by C, as shown in Figure 10.1.2. This reduction considerably simplifies the solution of the integral
equations and the computation of the velocity potential inside the domain of flow.

To implement these simplifications, we introduce cylindrical polar coordinates, (x, σ, ϕ), de-
fined with respect to Cartesian coordinates such that y = σ cosϕ and z = σ sinϕ. The azimuthal
velocity component is zero, uϕ = 0, and the potential φ is independent of the azimuthal angle, ϕ.
Next, we express the Cartesian components of the velocity and normal unit vector in cylindrical
polar coordinates,

uy = uσ cosϕ, uz = uσ sinϕ, ny = nσ cosϕ, nz = nσ sinϕ, (10.1.22)
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and compute the normal derivative

n · ∇φ = n · u = uxnx + uσnσ. (10.1.23)

Applying the boundary-integral equation (10.1.9) with the free-space Green’s function given by
G(x0,x) = 1/(4π|x− x0|), and expressing the differential surface area as dS = σ dϕ dl, we obtain

φ(x0) = − 1

2π

∫
C

(∫ 2π

0

1

|x0 − x| dϕ
)
[n · u](l) σ(l) dl

+
1

2π

∫ PV

C

(∫ 2π

0

x0 − x

|x− x|3 · n(x) dϕ
)
φ(l)σ(l) dl, (10.1.24)

where l is the arc length along the trace of the boundary in the xy plane, C.

It is convenient to introduce the single- and double-layer axisymmetric kernels defined as

I(x0, l) ≡
∫ 2π

0

dϕ

|x0 − x| , K(x0, l) ≡
∫ 2π

0

x0 − x

|x− x|3 · n(x) dϕ. (10.1.25)

Substituting into the double-layer kernel the expression

(x0 − x) · n = (x0 − x)nx + (σ0 cosϕ0 − σ cosϕ)nσ cosϕ+ (σ0 sinϕ0 − σ sinϕ)nσ sinϕ

= (x0 − x)nx + σ0nσ cos(ϕ0 − ϕ)− σnσ, (10.1.26)

we obtain

I(x0, l) = I10(x̂, σ, σ0),

K(x0, l) = (x̂nx − σnσ)I10(x̂, σ, σ0) + σ0 nσI30(x̂, σ, σ0),
(10.1.27)

where x̂ = x0−x and the integrals Inm are defined in (2.12.10) and (2.12.11). The integral equation
(10.1.24) takes the one-dimensional form

φ(x0) = − 1

2π

∫
C

I(x0, l)[n · u](l) σ(l) dl + 1

2π

∫ PV

C

K(x0, l)φ(l)σ(l) dl. (10.1.28)

Integral equations of the first or second kind with respect to arc length, l, can be derived depending
on the imposed boundary conditions as discussed previously in this section.

Three-dimensional flow in an axisymmetric domain

In the case of three-dimensional flow in an axisymmetric domain, the velocity potential and Cartesian
components of the velocity can be expanded in Fourier series with respect to the azimuthal angle,
ϕ. Substituting these series into the boundary-integral equation, we derive corresponding Fourier
series for the single- and double-layer potentials. Separating similar terms provides us with a system
of integral equations for the Fourier coefficients. The procedure has been used successfully to derive
analogous integral equations for Stokes flow [313].
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Problems

10.1.1 General form of the boundary integral equation

Show that the boundary-integral representation and boundary-integral equation can be recast into
the generalized form

c φ(x0) = −2

∫∫
D

G(x0,x)n(x) · ∇φ(x) dS(x) + 2

∫∫ PV

D

φ(x)n(x) · ∇G(x0,x) dS(x), (10.1.29)

where c = 1 or 0 when the point x0 is located inside or outside selected control volume, c = 1
2
when

x0 lies on a smooth patch of D, and c = α/(2π) when x0 lies at corner or wedge, where α is the
solid angle subtended by the corner facing the control volume. In all cases, the normal unit vector,
n, points into the control volume.

10.1.2 Flow past a sphere

To confirm identity (10.1.19), we write∫∫ PV

Sphere

x
x− x0

r3
· n(x) dS(x) =

∫∫
Sphere

(x− x0)
x− x0

r3
· n(x) dS(x)− x0

∫∫ PV

Sphere

n(x) · ∇
(1
r

)
dS(x).

(10.1.30)

To compute the first integral on the right-hand side, we introduce Cartesian coordinates with origin
at the center of the sphere and the x axis passing through the point x0. Owing to symmetry, the y
and z components of the integral are identically zero. Carrying out the integration in terms of the
azimuthal angle, θ, show that the x component of the integral is equal to − 4π

3 x0. Use (2.2.15) to
show that the second integral on the right-hand side of (10.1.30) is equal to −2π. Combining these
results, confirm identity (10.1.19).

10.2 Two-dimensional flow

The results of Section 10.1 for three-dimensional flow can be adapted readily to two-dimensional
interior or exterior flow. The counterpart of the boundary-integral equation (10.1.9) is

φ(x0) = −2

∫
C

G(x0,x)n(x) · ∇φ(x) dl(x) + 2

∫ PV

C

φ(x)n(x) · ∇G(x0,x) dl(x), (10.2.1)

where G(x,0 ,x) is a two-dimensional Green’s function, C is the boundary of a selected control area,
l is the arc length along C, and n is the unit vector pointing into the control area. In the remainder
of this section, we illustrate the application of (10.2.1) to several types of flow.

10.2.1 Flow past a rigid body with circulation

In the first application, we consider irrotational flow past a stationary two-dimensional body with
nonzero circulation around the body. Setting V = 0 in the integral representation (7.8.3) and using
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the free-space Green’s function, G(x0,x) = − 1
2π

ln(|x−x0|/a), we obtain an integral representation
for the single-valued potential Φ,

Φ(x0) = φ∞(x0)−
1

2π

∮
B

ln
( r
a

)
n(x) · v(x) dl(x)− 1

2π

∮
B

Φ(x)n(x) · x− x0

r2
dl(x), (10.2.2)

where r = |x− x0|, a is a chosen length, and v is the velocity due to a point vortex whose strength
is equal to the circulation of the flow around the body, located at an arbitrary point inside the body.
Letting the point x0 approach the body, we derive an integral equation of the second kind for Φ,

Φ(x0) = − 1

π

∮ PV

B

Φ(x)n(x) · x− x0

r2
dl(x) + 2φ∞(x0)−

1

π

∮
B

ln
( r
a

)
n(x) · v(x) dl(x). (10.2.3)

In Section 10.7, we will show that this integral equation admits a unique solution.

10.2.2 Fluid sloshing in a tank

An interesting formulation arises in the case of irrotational flow due to the sloshing of a liquid inside
a tank, as illustrated in Figure 10.2.1(a). Applying the integral equation (10.2.1) with the free-space
Green’s function and using the no-penetration condition over the walls, we obtain

φ(x0) = − 1

π

∮ PV

W,S

φ(x)n(x) · x− x0

r2
dl(x) +

1

π

∫
S

ln
( r
a

)
n(x) · u(x) dl(x), (10.2.4)

where W represents the four side and bottom walls, S represents the free surface, and a is a chosen
length. An efficient computational procedure for describing the evolution of the free surface subject
to an initial condition involves the following steps (e.g., [275]):

1. Trace the free surface with a collection of marker points and assign to the marker points initial
values for φ.

2. Solve the integral equation (10.2.4) for the normal velocity component over the free surface, S,
and for the potential over the walls, W . In this case, (10.2.4) is an integral equation of mixed
kind.

3. Differentiate the potential along the free surface to compute the tangential component of the
fluid velocity.

4. Advance the position of the marker points over a small time interval with the normal and
tangential fluid velocities. To prevent clustering, it is preferable to move the marker points
with the normal velocity alone. This modification provides us with a kinematically consistent
description of the free surface.

5. At the new position, update the marker-point potential using Bernoulli’s equation. Applying
equation (7.1.3) at the free surface, we find that, when the marker points move with the fluid
velocity, the rate of change of the potential following their motion is given by

Dφ

Dt
=

∂φ

∂t
+ u · ∇φ =

∂φ

∂t
+ |u|2 =

1

2
|u|2 − p

ρ
+ g · x+ c(t). (10.2.5)
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Figure 10.2.1 (a) Illustration of liquid sloshing inside a two-dimensional tank. The evolution of the
free surface is computed by a boundary-integral method while the free-surface potential is updated
using Bernoulli’s equation. (b) Results of numerical simulations when the tank starts moving along
the x axis to the left and then it stops. The initial position of the free surface is shown as a dashed
line, and the interfacial marker points are shown as dots. Profiles are shown at equal time intervals.
Note the deformation of the free surface and subsequent sloshing of the liquid.

If the marker points move with the normal velocity, we use the alternative evolution equation

dφ

dt
=

∂φ

∂t
+ (u · n)n · ∇φ+ |u|2 = (u · n)2 − 1

2
|u|2 − p

ρ
+ g · x+ c(t). (10.2.6)

The time-dependent integration constant, c(t), in (10.2.5) and (10.2.6) can be set to zero
without any consequences on the motion of the fluid. The pressure on the right-hand sides
derives from the dynamic boundary condition at the free surface. For example, in the case of
a free surface with surface tension γ, we set p = patm + γκ, where κ is the curvature of the
free surface in the xy plane and patm is the ambient atmospheric pressure.

6. Return to Step 2 and repeat the cycle.

If the tank undergoes vertical or horizontal acceleration with velocity V(t), we work in a frame of
reference where the tank appears to be stationary. The acceleration of gravity, g, on the right-hand
side of (10.2.5) and (10.2.6) is then replaced by g − dV/dt to account for the fictitious inertial
acceleration force.

Green’s function for a semi-infinite strip

The boundary-integral equation (10.2.4) can be simplified by using a Green’s function of the second
kind (Neumann function) whose normal derivative is zero over the bottom, left, and right walls,
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Figure 10.2.2 Flow due to the propagation of free-surface gravity waves over a flat bottom.

constructed by the method of images. The image system consists of four periodic arrays of point
sinks with equal strengths. Using the expression for the potential due to a periodic array of point
sources shown in Table 7.8.1, we obtain

G(x,x0) = − 1

4π

4∑
m=1

ln
(
cosh[k(y − ym)]− cos[k(x− xm)]

)
, (10.2.7)

where k = π/a is the wave number, and

x1 = (x0, y0), x2 = (−x0, y0), x3 = (x0,−y0), x4 = (−x0,−y0). (10.2.8)

Using the Green’s function (10.2.7) allows us to eliminate the double-layer potential over the walls
and provides us with a Fredholm integral equation of the first kind for the normal component of the
velocity over the free surface alone.

Stages in the deformation of the free surface computed using the numerical method described
in this section in conjunction with the boundary-element method described in Section 10.3.1 are
shown in Figure 10.2.1(b) in the absence of surface tension. The tank starts moving along the x axis
with a constant acceleration for a certain time period, and then it stops. The numerical simulation
illustrates the initial deformation of the free surface and subsequent sloshing of the fluid inside the
tank.

10.2.3 Propagation of gravity waves

In the third application, we consider two-dimensional potential flow due to the propagation of
periodic gravity waves on the free surface of a liquid above a flat bottom wall located at y = w, as
shown in Figure 10.2.2. The free surface and velocity field are repeated along the x axis with period
a. Because the no-slip condition is not enforced at the bottom wall, the fluid can translate as a
rigid-body along the x axis with arbitrary velocity. To remove this ambiguity, we stipulate without
loss of generality that the potential φ observes the periodicity of the flow, φ(x+ a) = φ(x).

To simplify the boundary-integral formulation, we use a Green’s function of the second kind
(Neumann function) that is repeated in the x direction with period a. The normal derivative of the
Green’s function vanishes at the bottom, y = w. Using the method of images, we find that
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G(x,x0) = − 1

4π
ln
(
cosh[k(y − y0)]− cos[k(x− x0)]

)
− 1

4π
ln
(
cosh[k(y + y0 − 2w)]− cos[k(x− x0)]

)
, (10.2.9)

where k = 2π/a is the wave number. Next, we identify our control area with one period of the flow
enclosed by the contours S, P1, P2, and B, as shown in Figure 10.2.2, and derive the integral equation
(10.2.1). The double-layer integral is identically zero over B because the normal derivative of the
Green’s function vanishes when the point x is on B. The single-layer integral is also identically zero
over B because of the no-penetration boundary condition. The integrals over the vertical segments
P1 and P2 cancel each other because φ is periodic and the corresponding normal unit vectors point
into opposite directions. These simplifications allow us to reduce the contour, C, to one period of
the free surface alone. The evolution of the flow can be computed using the numerical procedure for
the problem of fluid sloshing discussed in Section 10.2.2.

Problems

10.2.1 Fluid sloshing in a tank

Consider fluid sloshing inside a two-dimensional tank that undergoes rotational oscillations around
the z axis about a fixed point. Indicate the necessary modifications of the computational procedure
discussed in the text. Hint: consider Bernoulli’s equation for a flow with constant vorticity.

10.2.2 Gravity waves in a semi-infinite fluid

Develop a boundary-integral formulation for the flow due to the propagation of a two-dimensional
periodic gravity wave in a fluid with infinite depth.

10.3 Numerical methods

Analytical solutions of the boundary-integral equations are feasible only for a limited number of
boundary geometries and types of flow. To compute the solution under general circumstances, we
resort to approximate, asymptotic, and numerical methods. Reviewing the available strategies for
solving Fredholm integral equations of mathematical physics, we find a variety of methods with
varying degrees of accuracy and sophistication. A discussion of general and specialized methods can
be found in monographs and reviews by Atkinson [16, 17, 19] and other authors [104, 174, 306, 313].

10.3.1 Boundary-element method

In a popular class of methods, known as boundary-element or panel methods, the boundary is dis-
cretized into a set of NE boundary elements defined by element nodes. The boundary elements may
have a variety of shapes, including flat and curved triangles or rectangles described by parametric
interpolation (e.g., [306, 313]). In two dimensions, the boundary elements can be straight segments,
circular arcs, or other interpolated segments. In the next step, the unknown boundary function is
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approximated with a truncated polynomial expansion in terms of properly defined surface coordi-
nates over each element. The union of the local expansions provides us with an approximate solution
that is not necessarily continuous across the element edges or nodes.

The union of all element expansions contains M unknown coefficients. When the unknown
function is approximated with a constant function over each element, M is equal to the number of
elements, NE . When higher-order expansions are employed, M is greater than NE . If the order of
the expansion of the unknown function is identical to that of the Cartesian coordinates of a point over
an element, we obtain an isoparametric representation. If it is higher, we obtain a superparametric
representation.

Global expansions

To facilitate the logistics of the computation, it is convenient to identify the coefficients of the
expansion over each element with the values of the unknown function at corresponding element
nodes. The functions multiplying these coefficients are local or element basis functions. Compiling
the local expansions and collecting the coefficients corresponding to shared element nodes, we obtain
an expansion in terms of N global basis functions. It should be noted that, although superficially
innocuous, certain types of local expansions may introduce instabilities in the numerical solution,
as discussed later in this section.

Influence coefficients

The union of the local expansions of the unknown function is now substituted into the integral
equation, and the N coefficients are extracted from the single- and double-layer potentials to yield
an algebraic equation,

F(c1, c2, . . . , cN ) = 0, (10.3.1)

where ci are the coefficients of the global expansion. Since F is a linear function of ci, we can write

F(c1, c2, . . . , cN ) = A1c1 +A2c2 + · · ·+AN cN +B, (10.3.2)

where

B = F(c1 = 0, . . . , cN = 0). (10.3.3)

The influence coefficients, Ai, are integrals of the single- or double-layer potential over selected
boundary elements. In certain cases, it is expedient to compute the influence coefficients by numerical
differentiation,

Am = F(c1 = 0, . . . , cm−1 = 0, cm = 1, cm+1 = 0, . . . , cN = 0)−B, (10.3.4)

implementing an exact finite-difference approximation.

Collocation and weighted residual methods

The coefficients of the local expansions can be computed by the collocation method or by the method
of weighted residuals. In the collocation method, the discretized integral equation is applied at N
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selected collocation points over the boundary. In the method of weighted residuals, the discretized
integral equation is multiplied by a set of N chosen weighting functions and the product is integrated
over the boundary. The goal in both cases is to produce a system of N linear algebraic equations
for the N coefficients of the global expansion.

Different choices for the weighting functions in the method of weighted residuals produce
different schemes. Identifying the weighting functions with the global basis functions, we obtain
Galerkin’s method. Identifying the weighting functions with delta functions whose singular points
are placed at selected locations over the boundary, we recover the collocation method. Because of
increased computational requirements, Galerkin’s method is suitable only for problems with notable
geometrical simplicity [17].

Formulation of a linear system

In the last step, the derived system of linear algebraic equations, symbolically written in the form
A · x = b, is solved for the N coefficients of the global expansion contained in the unknown vector
x, where A is an influence matrix. Since, in general, the matrix A is dense and nonsymmetric, the
solution must be found using a general-purpose numerical method. Two possible choices are Gauss
elimination and an iterative method such as Jacobi’s method or the method of conjugate gradients
and its variations discussed in Section B.1, Appendix B. Iterative methods are preferred for large
systems due to computational savings. A direct method requires O(K3) multiplications, whereas an
iterative method requires O(IK2) multiplications, where K is the size of linear system and I is the
number of necessary iterations. The former is much larger than the latter when K > I.

In solving the final system of linear equations for the coefficients of the local expansions, issues
of well-posedness, existence, and uniqueness of the solution of the integral equation arise. Ill-posed
integral equations and integral equations with no solution or multiple solutions lead to ill-conditioned
linear systems with sensitive, oscillatory, or nonconvergent solutions. Integral equations of the first
kind may be susceptible to oscillations due to numerical error (e.g., [104]). Fortunately, experience
has shown that integral equations of the first kind that arise from boundary-integral representations
are well-behaved.

10.3.2 Flow past a two-dimensional airfoil

To illustrate the application of the boundary-element method, we consider flow past a two-dimensional
Joukowski airfoil with nonzero circulation around the airfoil, as illustrated in Figure 10.3.1. Our
point of departure is the integral equation of the second kind (10.2.3) for the single-valued potential,
Φ, repeated below for convenience,

Φ(x0) = − 1

π

∮ PV

C

Φ(x)n(x) · x− x0

r2
dl(x) + 2φ∞(x0)−

1

π

∮
C

ln
( r
a

)
n(x) · v(x) dl(x), (10.3.5)

where C is the airfoil contour, r = |x− x0|, and a is a chosen length. We begin by discretizing the
contour of the airfoil into N boundary elements, Ej , where j = 1, . . . , N . Approximating Φ and v ·n
with constant functions over the jth element, respectively equal to Φj and vj , we recast (10.3.5)
into the discrete form

Φ(x0) = −Fj(x0) Φj + 2φ∞(x0) +Gj(x0) vj , (10.3.6)
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Figure 10.3.1 Illustration of potential flow past a two-dimensional Joukowski airfoil computed by a
boundary-element method. The jth element is defined by the jth and j + 1 nodes.

where summation is implied over the repeated index, j. The influence coefficients Fj(x0) and Gj(x0)
are defined as

Fj(x0) =
1

π

∫ PV

Ej

x− x0

r2
· n(x) dl(x), Gj(x0) = − 1

π

∫
Ej

ln
( r
a

)
dl(x). (10.3.7)

The principal-value integral is relevant only when the evaluation point, x0, lies on the element Ej .

Applying equation (10.3.6) at the midpoint of each element, xM
i , we obtain a system of linear

equations for the collection of all Φj ,

Φi = −Fj(x
M
i ) Φj + 2φ∞(xM

i ) +Gj(x
M
i ) vj , (10.3.8)

which can be rewritten in the standard form of a linear system,[
δij + Fj(x

M
i )

]
Φj = 2φ∞(xM

i ) +Gj(x
M
i ) vj , (10.3.9)

where δij is Kronecker’s delta. The solution can be found by the method of Gauss elimination
discussed in Section B.1.2, Appendix B.

Computation of the influence coefficients

The accurate computation of the influence coefficients, Fj(x
M
i ) and Gj(x

M
i ), is an important aspect

of the numerical method. When i �= j, the integrals involved in the definition of these coefficients
can be computed by standard methods, including the trapezoidal rule and the Gauss–Legendre
quadrature discussed in Section B.6, Appendix B.

Consider the diagonal coefficients, Fi(x
M
i ), where summation is not implied over i. When the

elements are straight segments and the integration point, x, lies at the ith element, the distance x−
xM
i is perpendicular to the normal unit vector, the corresponding integrand in (10.3.7) is identically

zero, and Fi(x
M
i ) = 0. When the elements are curved segments such as circular arcs, we apply a

Taylor series expansion about the midpoint to find that Fi(x
M
i ) � 0 to leading-order approximation.

These simplifications explain why the principal value of the double-layer integral is used instead of
the limit of the double-layer integral as the evaluation point approaches a boundary.
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When i = j, the integral Gi(x
M
i ) exhibits a logarithmic singularity, which can be integrated

analytically over a straight segment to yield

Gi(x
M
i ) = − 1

π
Δli

[
ln
(Δli
2a

)
− 1

]
. (10.3.10)

where Δli = |xi+1 − xi| is the length of the ith element. A similar analytical integration is possible
when the boundary elements are circular arcs (Problem 10.3.1).

Velocity and pressure

Having solved the linear system (10.3.8) or (10.3.9), we may differentiate the boundary distribution
of the velocity potential with respect to arc length using a standard numerical method to obtain the
boundary distribution of the tangential velocity, and then apply Bernoulli’s equation to compute
the boundary distribution of the pressure and pressure drag coefficient. The drag and lift forces
exerted on the airfoil can be computed from the pressure by numerically integrating along the airfoil
contour, as discussed in Section 7.1. The results show that the drag force vanishes and the lift force
has the Kutta–Joukowski value (7.8.19).

Problems

10.3.1 Flow past a two-dimensional airfoil

Discuss the significance of the location of the point vortex with regard to the integral equation
(10.3.5).

10.3.2 Boundary-element integrals

(a) Derive (10.3.10) and investigate whether it is possible to compute Gj(x
M
i ) = 0 analytically over

a straight segment when i �= j.

(b) Derive the counterpart of (10.3.10) when the boundary elements are circular arcs.

Computer Problems

10.3.3 Flow past a two-dimensional airfoil

Compute the pressure distribution, drag force, and lift force on a Joukowski airfoil of your choice.
Compare your results for the lift and drag force with theoretical predictions (Section 7.8).

10.3.4 Flow in a coating die

Compute the velocity distribution at the exit of the coating die shown in Figure 6.3.2 for h = 3 mm,
L = 20 cm, W = 20 cm, sloping angle α = 20◦, and constant tube radius R = 6 mm. The pressure
at the inlet point is 3 atm, and the working fluid is glycerin.

10.3.5 Unidirectional flow in a pipe

Compute the distribution of shear stress around the boundary of a cylindrical pipe with elliptical
cross-section and aspect ratio of your choice in unidirectional pressure-driven flow. Compare your
results with the exact solution derived in Section 5.2.2.
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10.4 Generalized boundary-integral representations

In Section 7.2, we developed the boundary-integral representation (7.2.4) for the harmonic potential
of an irrotational flow past a stationary or translating rigid body involving the double-layer potential
alone. Two important advantages of this representation are conceptual simplicity and computa-
tional convenience in solving the associated integral equation. Motivated by these simplifications,
we seek to eliminate one of the two hydrodynamic potentials from the general boundary-integral rep-
resentation and associated integral equation, and thereby construct generalized boundary-integral
representations and associated integral equations.

Exterior flow

Considering an exterior flow that decays far from an interior boundary, D, we introduce the harmonic
potential χ in the interior of D so that χ = φ over D. Applying the reciprocal relation (2.3.2) for
χ at a point x0 in the exterior of D and subtracting (2.3.2) from (2.3.8), we obtain a generalized
representation in terms of a single-layer potential alone,

φ(x0) = −
∫∫

D

G(x0,x) q(x) dS(x), (10.4.1)

where q = n · ∇(φ− χ) is the distribution density and n is the normal unit vector pointing into the
exterior of D. Working in a similar fashion, we introduce a harmonic potential � in the interior of
D so that n · ∇� = n · ∇φ over D, and derive the generalized double-layer representation

φ(x0) =

∫∫
D

ϑ(x)n(x) · ∇G(x0,x) dS(x). (10.4.2)

where ϑ = φ−� is the distribution density and n is the normal unit vector pointing into the exterior of
D. The derivation of (10.4.1) and (10.4.2) hinges on the existence of the complementary potentials χ
and �. In Section 10.7, we will see that it is always possible to find the internal potential, χ, and thus
represent any exterior flow in terms of a single-layer potential alone. In contrast, a complementary
potential � exists only when the flow rate of φ across the boundary D is zero,∫∫

D

n · ∇φ dS = 0. (10.4.3)

Consequently, only a limited class of exterior flows that satisfy (10.4.3) can be represented in terms
of a double-layer potential alone.

Interior flow

In the case of interior flow, we introduce a harmonic potential χ in the exterior of D so that χ = φ
over D, and χ and decays at infinity. Repeating the preceding analysis, we derive the single-layer
representation (10.4.1). Working in a similar fashion, we introduce the harmonic potential � in the
exterior of D so that n · ∇� = n · ∇φ over D and � decays at infinity, and derive the double-layer
representation (10.4.2). Analysis undertaken in Section 10.7 guarantees the existence of both χ and
�, and thus ensures that any nonsingular interior flow can be represented in terms of a single-layer
or double-layer potential alone.
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Investigation of generalized representations

The simplicity of the generalized boundary-integral representations motivates us to investigate of
the properties of the single- and double-layer potentials and associated integral equations, as well
as assess the extent to which these representations are capable of describing an arbitrary interior or
exterior flow. These topics will be the theme of the following three sections.

Problems

10.4.1 Temperature field between bodies held at a constant temperature

Consider the temperature field in the region between a number of closed surfaces that are held at
different constant temperatures. Identify φ with the temperature and show that the double-layer
integral on the right-hand side of (2.3.8) vanishes, yielding a representation in terms of a single-layer
potential alone.

10.4.2 Interior flow with an interior boundary

Consider a domain of flow enclosed by an external surface in the presence of a closed interior
boundary. Discuss whether it is possible to develop a double-layer representation defined over both
the interior and exterior surfaces.

10.5 The single-layer potential

The single-layer potential is the harmonic function due to a distribution of Green’s functions over a
chosen surface, D,

φ(x0) =

∫∫
D

G(x0,x) q(x) dS(x), (10.5.1)

where q is the surface density of the distribution, as shown in Figure 10.5.1. Physically, the single-
layer potential can be identified with the temperature field due to a distribution of point sources of
heat or with the velocity potential due to a distribution of point sinks of mass with density q over
the surface D.

The single-layer potential is continuous throughout the domain of flow as well as across the
distribution domain, D. When G is a Green’s function of the first kind, φ vanishes over the associated
boundary SB . When G is a Green’s function of the second kind (Neumann function), the normal
derivative of φ vanishes over SB. Using the general properties of the Green’s functions we find that,
far from D, φ decays at a rate that is equal to, or faster than 1/d, where d is the distance from the
origin. The precise rate of decay depends on the geometry of SB .

Integral identity

For simplicity, we assume that the distribution domain D is a closed surface with a continuously
varying normal unit vector, N, pointing outward from D, as shown in Figure 10.5.1. The integral
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Figure 10.5.1 Distribution domain of a hydrodynamic potential and illustration of several closed
surfaces in a flow.

identities (2.2.15) allow us to write

∫∫
D

N(x) · ∇G(x,x0) dS(x) =

⎧⎨⎩ 0 when x0 is outside D,
−1

2
when x0 is on D,

−1 when x0 is inside D.
(10.5.2)

This identities are also true for any closed surface that does not enclose any boundaries, such as
the surface S1 or S2 illustrated in Figure 10.5.1, provided that the normal unit vector, N, points
outward.

Flow rates

Integrating the normal derivative of (10.5.1) over a surface that encloses the distribution domain,
D, but no other boundaries, such as the surface S1 illustrated in Figure 10.5.1, we find that the
volumetric flow rate through the surface is

Q1 =

∫∫
S1

N(x0) · ∇0φ(x0) dS(x0) =

∫∫
D

(∫∫
S1

N(x0) · ∇0G(x0) dS(x0)
)
q(x) dS(x). (10.5.3)

Using (10.5.2) with S1 in place of D, we obtain

Q1 = −
∫∫

D

q(x) dS(x), (10.5.4)

which shows that Q1 vanishes only when the total strength of the distribution defined as the integral
in (10.5.4) is zero. Working in a similar manner, we find that the volumetric flow rate across a closed
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fluid surface that does not enclose any boundaries, such as the surface S2 illustrated in Figure 10.5.1,
is zero (Problem 10.5.1).

10.5.1 Derivatives of the single-layer potential

The derivative of the single-layer potential normal to a small surface element located at a point x0

with normal unit vector n(x0) is given by

n(x0) · ∇0φ(x0) = n(x0) ·
∫∫

D

∇0G(x0,x) q(x) dS(x), (10.5.5)

where the subscript 0 of the del operator designates differentiation with respect to x0. By definition,
when G is a Green’s function of the second kind, the normal derivative of φ vanishes over the
associated boundary, SB.

Normal derivative

To investigate the behavior of the normal derivative across the distribution domain, D, we take the
limit of (10.5.5) as the point x0 approaches D, introduce the free-space Green’s function GFS =
1/(4π|x− x0|), note that ∇0GFS = −∇GFS , and write the identity

n(x0) · ∇0φ(x0) = J(x0) +

∫∫
D

N(x) · ∇0GFS(x0,x) q(x0) dS(x), (10.5.6)

where

J(x0) ≡
∫∫

D

[
N(x0) · ∇0G(x0,x) q(x)−N(x) · ∇0GFS(x0,x) q(x0)

]
dS(x). (10.5.7)

Because of the weak singularity of the integrand in (10.5.7), the integral is continuous across D.
Considering the second term on the right-hand side of (10.5.6), we use (10.5.2) to obtain[

N(x0) · ∇0φ(x0)
]+

= J(x0),
[
N(x0) · ∇0φ−(x0)

]−
= J(x0) + q(x0), (10.5.8)

where the plus superscript denotes the exterior side of D indicated by the direction of N, and
the minus superscript denotes the interior side. Equations (10.5.8) demonstrate that the normal
derivative of the single-layer potential suffers a discontinuity of magnitude −q across the distribution
domain D, [

N(x0) · ∇0φ(x0)
]+ −

[
N(x0) · ∇0φ−(x0)

]−
= −q(x0). (10.5.9)

Principal value of the normal derivative

The principal value (PV ) of the normal derivative of the single-layer potential is defined as the value
of the right-hand side of (10.5.6) computed when the point x0 is located precisely on D. Since D
has been assumed to be a smooth surface, we use (10.5.2) and find that[

N(x0) · ∇0φ(x0)
]PV

= J(x0) +
1

2
q(x0). (10.5.10)
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Combining equations (10.5.8) and (10.5.10), we obtain[
N(x0) · ∇0φ(x0)

]+
=
[
N(x0) · ∇0φ(x0)

]PV − 1

2
q(x0),

[
N(x0) · ∇0φ(x0)

]−
=
[
N(x0) · ∇0φ(x0)

]PV
+

1

2
q(x0).

(10.5.11)

Tangential derivative

Since the single-layer potential is a continuous function of position, its tangential derivatives vary
continuously over the distribution domain, D. Combining this observation with the jump condition
(10.5.11), we express the gradient of the single-layer potential on either side of D as[

∇0φ(x0)
]+

=
[
∇0φ(x0)

]PV − 1

2
q(x0)N(x0),

[
∇0φ(x0)

]−
=
[
∇0φ(x0)

]PV
+

1

2
q(x0)N(x0).

(10.5.12)

10.5.2 Integral equations

We have investigated in sufficient detail the properties of the single-layer potential. Next, we proceed
to derive integral equations originating from the single-layer representation (10.5.1).

Dirichlet problem

In the Dirichlet problem, the distribution of the single-layer potential φ is specified over D, and the
density of the distribution, q, is required. Applying (10.5.1) at a point x0 on D provides us with a
Fredholm integral equation of the first kind for q. Numerical evidence suggests that, in general, the
solution of this equation is unique and the computational problem is tractable by standard numerical
methods, including the panel method discussed in Section 10.3.

Neumann problem

In the Neumann problem, the normal derivative of φ is specified over the external or internal side
of D, and the distribution density, q, is required. Using (10.5.11) to express the normal derivative
in terms of the principal value, we obtain a Fredholm integral equation of the second kind for q,

q(x0) = ±2

∫∫ PV

D

N(x0) · ∇0G(x0,x) q(x) dS(x)∓ 2
[
N(x0) · ∇0φ(x0)

]±
, (10.5.13)

where the plus superscript corresponds to the exterior side of D and the minus superscript corre-
sponds to the interior side of D. It is convenient to introduce the linear integral operator

O±

[
q(x0)

]
≡ q(x0)∓ 2

∫∫ PV

D

N(x0) · ∇0G(x0,x) q(x) dS(x), (10.5.14)

and recast (10.5.13) into the compact form

O±

[
q
]
= ∓2

[
N · ∇0φ±

]±
, (10.5.15)

where O+ corresponds to the exterior problem and O− corresponds to the interior problem.
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In Section 10.7, we will find that the integral equation (10.5.13) has a unique solution in
the case of exterior flow, but either no solution or an infinite number of solutions in the case of
interior flow. In the case of interior flow, an infinite number of solutions exist only when the
constraint (10.7.25) is fulfilled. Fortunately, the satisfaction of this constraint is guaranteed by
the continuity equation for any flow that does not contain point sources and point sinks with a
nonzero net discharge. We conclude that the single-layer representation is capable of representing
any external flow and any nonsingular internal flow.

Flow past a rigid body

As a specific application, we consider an irrotational flow with velocity u∞ past a stationary three-
dimensional rigid body, and decompose the velocity potential into the potential of the incident
flow, φ∞, and a disturbance potential due to the body, φD, so that φ = φ∞ + φD. Introducing a
single-layer representation for φD, we obtain

φ(x0) = φ∞(x0) +

∫∫
B

G(x0,x) q(x) dS(x), (10.5.16)

where B denotes the surface of the body. Enforcing the no-penetration boundary condition N ·∇φ =
0 over B, we derive the integral equation

q(x0) = 2

∫∫ PV

B

N(x0) · ∇0G(x0,x) q(x) dS(x) + 2N(x0) · u∞(x0). (10.5.17)

According to our previous discussion, the integral equation (10.5.17) has a unique solution for any
incident flow.

Flow past a two-dimensional airfoil

In a second application, we consider irrotational flow with velocity u∞ past the two-dimensional
airfoil with nonzero circulation, as illustrated in Figure 10.3.1. It is convenient to decompose the
velocity field into the incident component, u∞, the velocity due a point vortex whose strength, κ, is
equal to the circulation around the airfoil v, and a disturbance velocity described by a single-valued
potential, uD, so that u = u∞ + v + uD. The point vortex is located at a chosen point inside
the airfoil. Expressing uD in terms of a single-layer potential with density q and working as in the
previous case of three-dimensional flow, we derive the integral equation

q(x0) = 2

∮ PV

C

N(x0) · ∇0G(x0,x) q(x) dl(x) + 2N(x0) ·
[
u∞(x0) + v(x0)

]
, (10.5.18)

where C represents the airfoil contour. A numerical solution can be found by the boundary-element
method discussed in Section 10.3 (Problem 10.5.4).

Problems

10.5.1 Integral properties of the single-layer potential

Show that, when G is a Green’s function of the second kind, the flow rate across the surface S3

illustrated in Figure 10.5.1 is zero. Explain why that is not generally true when G is a Green’s
function of the first kind.
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10.5.2 Solution of a homogeneous integral equation

Show that, when D is the surface of a sphere, a constant q satisfies the homogeneous equation
O− = 0, where the operator O− is defined in (10.5.15).

Hint: Consider the distribution of φ outside a sphere over which φ is constant, and use the standard
boundary-integral representation to obtain (10.5.1), where q = N ·∇φ. Note that the distribution of
φ inside the sphere must be constant and the flux over the interior side of the sphere must be zero.

10.5.3 Flow past a body computed inside the body

Explain why the potential (10.5.16) is uniform inside the body.

Computer Problem

10.5.4 Flow past a two-dimensional airfoil with circulation

Use the single-layer representation combined with the boundary-element method discussed in Section
10.3 to compute the pressure distribution around a Joukowski airfoil discussed in Problem 10.2.3.
Compute the lift and drag force.

10.6 The double-layer potential

The double-layer potential is defined as the harmonic field due to a

+ −

N

D

S
B

Distribution domain of the
double-layer potential.

surface distribution of Green’s function dipoles oriented perpendic-
ular to a distribution domain, D,

φ(x0) =

∫∫
D

q(x)N(x) · ∇G(x0,x) dS(x), (10.6.1)

where q is the distribution density and N is the normal unit vector
pointing outward from the volume enclosed by D. Far from D, the
double-layer potential decays at least as fast as 1/d2, where d is a
typical distance from D. The precise rate of decay depends on the
shape of the boundary SB associated with the Green’s function, G. The flow rate across any closed
surface that does not enclose SB is zero (Problem 10.6.1).

Jump condition

The double-layer potential is continuous throughout the domain of flow, but suffers a discontinuity
across the distribution domain, D. To assess the discontinuity, we write

lim
x0→D

φ(x0) = lim
x0→D

I(x0) + q(x0)

∫∫
D

N(x) · ∇G(x0,x) dS(x), (10.6.2)

where

I(x0) ≡
∫∫

D

[ q(x)− q(x0)]N(x) · ∇G(x0,x) dS(x). (10.6.3)
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We note that I(x0) is continuous across D and use identity (10.5.2) to evaluate the second integral
on the right-hand side of (10.6.2), finding

lim
x0→D+

φ(x0) ≡ φ+(x0) = I(x0), lim
x0→D−

φ(x0) ≡ φ−(x0) = I(x0)− q(x0), (10.6.4)

where D+ and D− signify that x0 approaches D from the external side, indicated by the direction
of the normal unit vector, N, or from the internal side. When the point x0 is located precisely on
D, we obtain the principal value (PV) of the double-layer potential,

φPV (x0) = I(x0)−
1

2
q(x0). (10.6.5)

Comparing the last three equations, we find that

φ+(x0) = φPV (x0) +
1

2
q(x0), φ−(x0) = φPV (x0)−

1

2
q(x0), (10.6.6)

and

φPV (x0) =
1

2

[
φ+(x0) + φ−(x0)

]
, (10.6.7)

which shows that the double-layer potential suffers a discontinuity across the distribution domain,

φ+(x0)− φ−(x0) = q(x0). (10.6.8)

It is instructive to observe the opposite signs on the right-hand sides of (10.6.6) for the double-layer
potential and (10.5.11) for the normal derivative of the single-layer potential.

10.6.1 Restatement as a single-layer potential

The double-layer potential can be restated as a single-layer potential defined over D. To show this,
we introduce the extensions of the distribution density function, q, into the interior and exterior of
D, denoted by q− and q+, respectively, defined such that

∇2q− = 0 inside D, ∇2q+ = 0 outside D, q− = q+ = q on D. (10.6.9)

In addition, we require that q+ decays to zero at infinity. The general properties of harmonic
functions discussed in Section 2.1 guarantee the existence and uniqueness of both q− and q+.

Next, we select a point x0 in the exterior of D and note that both G(x0,x) and q−(x) are
nonsingular harmonic functions throughout the interior ofD. Applying the reciprocal identity (2.2.1)
with q− in place of f and G(x0,x) in place of g, we restate (10.6.1) in terms of a single-layer potential
with distribution density N · ∇q−,

φext(x0) =

∫∫
D

G(x,x0)N(x) · ∇q−(x) dS(x). (10.6.10)

Using the divergence theorem, we write∫∫
D

N(x) · ∇q−(x) dS(x) =

∫∫∫
V−

∇2q−(x) dS(x) = 0, (10.6.11)
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where V− is the interior of D. This identity demonstrates that the total strength of the single-layer
potential is zero and confirms that, far from D, φext decays like a Green’s function dipole.

Working in a similar manner, we find that the double-layer potential at a point x0 in the
interior of D can be restated as a single-layer potential with distribution density N · ∇q+,

φint(x0) =

∫∫
D

G(x,x0)N(x) · ∇q+(x) dS(x). (10.6.12)

The total strength of the single-layer potential is zero.

Taking the limit as the point x0 approaches D from either side and using (10.6.10) and
(10.6.12) in conjunction with (10.6.8), we obtain

φ+(x0)− φ−(x0) =

∫∫
D

G(x,x0)N(x) · ∇[q− − q+](x) dS(x) = q(x0). (10.6.13)

To confirm this equation, we write the boundary-integral equation (10.1.9) for q+ with n = N and
for q− with n = −N. Adding the two equations, we obtain

q+(x0) + q−(x0) = −2

∫∫
D

G(x0,x)N(x) · ∇[q+ − q−](x) dS(x)

+2

∫∫ PV

D

[q+ − q−](x)N(x) · ∇G(x0,x) dS(x), (10.6.14)

where the evaluation point, x0, lies on D. Identity (10.6.13) arises by substituting into this equation
the third equation in (10.6.9).

10.6.2 Derivatives of the double-layer potential and the velocity field

The gradient of the double-layer potential is continuous throughout the domain of flow but undergoes
a discontinuity across the distribution domain D. To study the behavior of the normal derivative
across D, we write the boundary-integral equation (10.1.9) for the exterior flow with n = N and for
the interior flow with n = −N. Adding the two equations, we obtain

φ+(x0) + φ−(x0) = −2

∫∫
D

G(x0,x)N(x) · ∇[φ+ − φ−](x) dS(x)

+2

∫∫ PV

D

[
φ+ − φ−

]
(x)N(x) · ∇G(x0,x) dS(x), (10.6.15)

where x0 is on D. Using (10.6.8) to simplify the integrand of the double-layer potential on the right-
hand side, invoking the definition (10.6.1) to identify the double-layer potential with the principal
value of φ, and taking into account (10.6.7), we finally obtain∫∫

D

G(x0,x)N(x) · ∇[φ+ − φ−](x) dS(x) = 0, (10.6.16)

where x0 is on D. Since this equation holds true for any arbitrary double-layer potential, the
integrand must be identically zero and the normal derivative of the double-layer potential must be
continuous across D.
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Representation as a vortex sheet

It is evident from (10.6.6) and (10.6.8) that the tangential derivative of the double-layer potential
exhibits a discontinuity across D,

[
∇φ

]±
=
[
∇φ

]PV ± 1

2
(I−N⊗N) · ∇q =

[
∇φ

]PV ± 1

2
(N×∇q)×N, (10.6.17)

and

P · ∇
[
φ+ − φ−

]
= P · ∇q = (N×∇q)×N, (10.6.18)

where P = I − N ⊗ N is the tangential projection operator. Equation (10.6.18) states that the
tangential component of the velocity undergoes a discontinuity across D. Referring to (1.13.15), we
find that the flow can be regarded as though it were induced by a vortex sheet with strength

ζ = N×∇q (10.6.19)

situated over D, in the possible presence of an external or internal boundary, SB . We thus arrive
at the interesting conclusion that the flow due to a double-layer potential can be regarded as the
flow due to a vortex sheet whose strength derives from the tangential derivatives of the double-layer
distribution density, q.

Vector potential and velocity field

In the case of flow in a unbounded domain, we use the free-space Green’s function, G = 1/(4πr),
where r = |x − x0|, note the property ∇G(r) = −∇0G(r), and find that a vector potential for the
velocity is

A(x0) = −
∫∫

D

N(x)×∇G(x0,x) q(x) dS(x), (10.6.20)

where the subscript 0 indicates differentiation with respect to x0. One may readily verify by straight-
forward differentiation that u = ∇×A = ∇φ.

To derive the velocity field, we use the Biot–Savart integral in (2.10.18), and find that

u(x0) = ∇0φ(x0) =

∫∫
D

∇G(r)×
[
∇q(x)×N(x)

]
dS(x). (10.6.21)

An alternative derivation of (10.6.21) is discussed in Section 10.6.5.

10.6.3 Integral equations for the Dirichlet problem

Specifying the distribution of φ on either side of D reduces (10.6.6) into a Fredholm integral equation
of the second kind for the distribution density, q,

q(x0) = −2
[
φPV (x0)− φ+(x0)

]
, q(x0) = 2

[
φPV (x0)− φ−(x0)

]
, (10.6.22)
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where the plus sign indicates the outer side, the minus sign indicates the inner side, and

φPV (x0) =

∫∫ PV

D

q(x)N(x) · ∇G(x,x0) dS(x) (10.6.23)

is a principal-value integral. It is useful to introduce the operator

P±

[
q(x0)

]
≡ q(x0)± 2

∫∫ PV

D

q(x)N(x) · ∇G(x,x0) dS(x), (10.6.24)

and rewrite (10.6.22) in the compact form

P±[q] = ±2φ±. (10.6.25)

Identity (10.5.2) shows that the homogeneous equation, P+[q] = 0, has a nontrivial solution with
constant q for any shape D. Accordingly, equation (10.6.22) for the exterior problem has either no
solution or an infinite number of solutions differing by an arbitrary constant.

The properties of the integral equations (10.6.25) will be discussed extensively in Section 10.7.
The results will show that the exterior flow problem has a solution only when the flow rate of
the forcing function φ+ across D is zero. When this condition is met, the integral equation has a
multiplicity of solutions that differ by an arbitrary constant. In contrast, the integral equation for
interior flow has a unique solution for any forcing function φ−. Thus, the double-layer representation
is capable of representing any internal flow and a limited class of external flows.

Flow past a rigid body

As an application, we consider irrotational flow with velocity u∞ past a three-dimensional stationary
rigid body bounded by the surface B. Following standard practice, we decompose the velocity
potential into an undisturbed component, φ∞, and a disturbance component due to the body, φD,
so that φ = φ∞ + φD. Introducing a double-layer representation for φD, we write

φ(x0) = φ∞(x0) +

∫∫
B

q(x)N(x) · ∇G(x,x0) dS(x). (10.6.26)

The no-penetration boundary condition requires that N · ∇φ = 0 over the exterior side of B.

To derive an integral equation, we recall that the normal derivative of the double-layer po-
tential is continuous across B. Accordingly, the normal component of the velocity vanishes on the
interior side of B, the internal velocity field computed from (10.6.26) is zero, and φ takes a constant
value, c, in the interior of B. Applying (10.6.26) at a point on the internal side of B and using
(10.6.6) provides us with an integral equation of the second kind for q,

q(x0) = 2

∫∫ PV

B

q(x)N(x) · ∇G(x,x0) dS(x) + 2
[
φ∞(x0)− c

]
. (10.6.27)

Using identities (10.5.2), we obtain the alternative integral equation

q(x0) = 2

∫∫ PV

B

[
q(x) + 2 c

]
N(x) · ∇G(x,x0) dS(x) + 2φ∞(x0). (10.6.28)

In Section 10.7, we will show that (10.6.27) has a unique solution for any incident flow.
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Oscillations of a liquid drop

In a second application, we consider the oscillations of an inviscid liquid drop suspended in ambient
gas. An efficient numerical procedure for computing the motion of the drop surface involves the
following steps [22]:

1. Describe the surface in terms of a collection of point particles moving with the fluid velocity.

2. Assign to the point particles initial values for the potential, φ.

3. Differentiate φ along the free surface to compute the tangential component of the fluid velocity.

4. Solve the integral equation (10.6.22) for q for the interior problem using the free-space Green’s
function.

5. Compute the vector potential over the free surface using (10.6.20) and then obtain the normal
component of the fluid velocity using the equation N · u = N · (∇×A). The right-hand side
involves tangential derivatives of A.

6. Advect the marker points with the fluid velocity. The tangential and normal components of
the velocity are available from Steps 3 and 5.

7. At the new position, update the potential using (10.2.5).

8. Return to Step 3 and repeat the computation for another step.

Other free-surface problems involving irrotational flow can be solved by similar methods.

10.6.4 Integral equations for the Neumann problem

Next, we consider the Dirichlet problem where the distribution of the normal derivative N · ∇φ is
specified on the internal or external side of D, and the distribution density q is sought. Projecting
equation (10.6.17) onto the normal unit vector and specifying the normal derivative on one side of
D provides us with a Fredholm integral equation of the second kind for the tangential component of
∇q. Once this equation has been solved, q can be reconstructed from tangential derivatives over D.

Flow past a stationary body

As a specific application, we consider irrotational flow with velocity u∞ past a stationary rigid
body enclosed by a surface, B. We begin by decomposing the velocity potential into the incident
component, φ∞, and a disturbance component due to the body, φD, so that φ = φ∞ + φD. Next,
we introduce a double-layer representation for φD to obtain the integral representation (10.6.26).
According to (10.6.17) and (10.6.21), the velocity on either side of B is given by

∇0φ
±(x0) = ∇0φ∞(x0) +

∫∫ PV

B

∇G(r)×
[
∇q(x)×N(x)

]
dS(x)

±1

2

[
N(x0)×∇q(x0)

]
×N(x0).

(10.6.29)

The no-penetration condition requires that N · ∇φ = 0 on the external side of B. Since the normal
derivative of the double-layer potential is continuous across B, the internal flow must vanish and
∇φ− = 0. Equation (10.6.17) then yields

∇φ+ = (N×∇q)×N, (10.6.30)



10.6 The double-layer potential 831

which relates the tangential velocity to the strength of the vortex sheet, ζ, given in (10.6.19).
Substituting ∇φ− = 0 into the left-hand side of (10.6.29) provides us with a vectorial integral
equation for the strength of the vortex sheet [213],

1

2
ζ(x0)×N(x0) = ∇0φ∞(x0) +

∫∫ PV

B

ζ(x)×∇G(r) dS(x). (10.6.31)

In the case of two-dimensional or axisymmetric flow, we obtain an integral equation for the tangential
velocity (see Section 10.7).

10.6.5 Free-space flow

As a last topic of this section, we examine in more detail the case of the free-space Green’s function,
G = 1/(4πr), where r = |x − x0|. Exploiting the property ∇G(r) = −∇0G(r), we restate the
double-layer potential (10.6.1) as

φ(x0) = −∇0 ·
∫∫

D

q(x)N(x)G(x0,x) dS(x), (10.6.32)

where the subscript 0 indicates differentiation with respect to x0. Taking the gradient of (10.6.32)
and using the identity

∇(∇ ·A) = ∇×∇×A+∇2A, (10.6.33)

applicable for any twice differentiable function A, we find that ([91], p. 57)

∇0φ(x0) = −∇0 ×∇0 ×
∫∫

D

q(x)N(x)G(x0,x) dS(x). (10.6.34)

Now we extend the domain of definition of q inward and outward from D according to (10.6.9),
select a point x0 in the exterior of D, and use the divergence theorem to write∫∫

D

q(x)N(x)G(x0,x) dS(x) =

∫∫∫
V−

∇[ q−(x)G(x0,x) ] dV (x). (10.6.35)

Equation (10.6.34) yields

∇0φext(x0) = −∇0 ×
∫∫∫

V−

∇× [ q−(x)∇G(x0,x) ] dV (x) (10.6.36)

and then

∇0φext(x0) = ∇0 ×
∫∫∫

V−

∇× [∇q−(x)G(x0,x) ] dV (x). (10.6.37)

A variation of Stokes’ theorem for a twice differentiable vector function, F, states that∫∫
V−

∇× F dV =

∫∫
D

N× F dS, (10.6.38)
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as discussed in Section A.7, Appendix A. Applying (10.6.38) for the volume integral in (10.6.38), we
obtain

∇0φext(x0) = ∇0 ×
∫∫

D

N(x)×∇q−(x)G(x0,x) dS(x), (10.6.39)

which can be rearranged into

∇0φext(x0) =

∫∫
D

[
N(x)×∇q−(x)

]
×∇G(x0,x) dS(x). (10.6.40)

Working in a similar manner, we find that the gradient of the double-layer potential at a point x0

in the interior of D is given by the corresponding expression

∇0φint(x0) =

∫∫
D

[
N(x)×∇q+(x)

]
×∇G(x0,x) dS(x). (10.6.41)

Equations (10.6.40) and (10.6.41) provide us with the gradient of the double-layer potential in terms
of distributions of the Green’s function dipoles. Because the corresponding distribution densities,
−N(x) × ∇q+(x) and −N(x) × ∇q−(x), are tangential to D, they can be determined from the
distribution of q over D independent of the extensions, q− and q+. To recover (10.6.21), we write

N×∇q− = N×∇q+ = N×∇q. (10.6.42)

Problems

10.6.1 Flow rate due to the double-layer potential

Show that the flow rate of the double-layer potential across any closed surface that does not enclose
SB is zero.

10.6.2 Restatement as a single-layer potential

Explain why the total strength of the interior single-layer representation (10.6.12) is zero.

10.6.3 Potential of doublets

The potential due to a surface distribution of Green’s function doublets is defined as

φ(x0) =

∫∫
D

q(x) · ∇G(x0,x) dS(x), (10.6.43)

where q is the vectorial density distribution. When q is normal to D, we obtain a double-layer
potential. Show that, as x0 approaches D, the limiting values of φ are given by

φ±(x0) = φPV (x0)±
1

2
N(x0) · q(x0), (10.6.44)

where the plus sign applies for the side indicated by the direction of the normal unit vector, N, and
the minus sign for the other side.
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10.6.4 Velocity due to the double-layer potential

Evaluate expressions (10.6.40) and (10.6.41) on either side of D and subtract out the dominant
singularity of the integrands to obtain

∇0φ
±(x0) =

∫∫
D±

[N(x)×∇q(x)−N(x0)×∇q(x0)]×∇G(x0,x) dS(x)

+N(x0)×∇q(x0)×
∫∫

D±

∇G(x0,x) dS(x). (10.6.45)

Explain why the first integral on the right-hand side is continuous across D, whereas the second
integral undergoes a discontinuity of magnitude N across D.

Computer Problem

10.6.5 Flow past a two-dimensional airfoil

Solve the integral equation (10.6.28) to obtain the pressure distribution, drag force, and lift force
on a Joukowski airfoil discussed in Problem 10.3.3, using the boundary-element method discussed
in Section 10.3.

10.7 Investigation of integral equations of the second kind

In previous sections, we made occasional reference to the existence and uniqueness of solution of
the integral equations that arise from standard and generalized boundary-integral representations.
In this section, we examine in detail the properties of the integral equations. Since the integral
equations of the first kind are amenable only to rudimentary theoretical investigations (e.g., [300],
Chapter 6), we focus our attention to integral equations of the second kind and study the existence
and uniqueness of solution as well as the feasibility of computing the solution by iterative methods.

Summary of integral equations

For convenience, we assume that the flow is bounded externally or internally by a single closed
surface, D, and denote the outward normal unit vector by N. The integral equation (10.1.9) arising
from the boundary-integral representation with the Dirichlet boundary condition then becomes

φ+(x0) = 2

∫∫ PV

D

φ+(x)N(x) · ∇G(x0,x) dS(x)− 2 I+(x0) (10.7.1)

for the exterior problem, and

φ−(x0) = −2

∫∫ PV

D

φ−(x)N(x) · ∇G(x0,x) dS(x) + 2 I−(x0) (10.7.2)

for the interior problem, where

I±(x0) ≡
∫∫

D

G(x0,x)N(x) · ∇φ±(x) dS(x) (10.7.3)
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is the known single-layer potential computed on the exterior (+) or interior (−) side of D. For
convenience, we repeat the integral equation (10.5.13) arising from the single-layer representation
with the Neumann boundary condition,

q(x0) = ±2

∫∫ PV

D

q(x)N(x0) · ∇0G(x0,x) dS(x)∓ 2N(x0) · ∇0φ±(x0), (10.7.4)

and the integral equation (10.6.22) arising from the double-layer representation with the Dirichlet
boundary condition,

q(x0) = ∓2

∫∫ PV

D

q(x)N(x) · ∇G(x,x0) dS(x)± 2φ±(x0), (10.7.5)

where the plus sign corresponds to the exterior problem and the minus sign corresponds to the
interior problem.

10.7.1 Generalized homogeneous equations

To investigate the properties of the integral equations, we consider the corresponding generalized
homogeneous equations that arise by discarding the forcing function on the right-hand side and
multiplying the principal-value integral by a complex constant, β, or its complex conjugate, β∗,
obtaining

φ(x0) = 2β

∫∫ PV

D

ψ(x)N(x) · ∇G(x,x0) dS(x) (10.7.6)

and

χ(x0) = 2β∗

∫∫ PV

D

χ(x)N(x0) · ∇0G(x0,x) dS(x), (10.7.7)

where ψ and χ are eigenfunctions and an asterisk denotes the complex conjugate. In the standard
terminology of integral equation theory, β is a complex eigenvalue of the double-layer operator

L
[
ψ(x0)

]
≡ 2

∫∫ PV

D

ψ(x)N(x) · ∇G(x,x0) dS(x), (10.7.8)

and β∗ is a complex eigenvalue of the adjoint of the double-layer operator

L†
[
χ(x0)

]
≡ 2

∫∫ PV

D

χ(x)N(x0) · ∇0G(x0,x) dS(x). (10.7.9)

Note that the adjoint operator L† arises from L, and vice versa, by switching the arguments x0 and
x of the kernel. Using these definitions, equations (10.7.6) and (10.7.7) are written concisely as

ψ = β L[ψ], χ = β∗L†[χ]. (10.7.10)
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Self-adjoint operators

It can be shown by direct substitution that any two complex functions, q1 and q2, satisfy the
distinguishing property of adjoint operators,(

L[q1], q2
)
=
(
q1, L†[q2]

)
, (10.7.11)

where the projection operator (·, ·) is defined as

(
q1, q2

)
≡
∫∫

D

q1(x) q
∗
2(x) dS(x), (10.7.12)

and an asterisk indicates the complex conjugate (Problem 10.7.1).

10.7.2 Riesz–Fredholm theory

The significance of the generalized homogeneous equations (10.7.10) relies on the Riesz–Fredholm
theory of compact linear operators (e.g., [91], Chapter 1). The applicability of this theory in the
present context is justified by the weak singularity of the kernel of the double-layer operator and
its adjoint in the absence of boundary corners. This property guarantees that L and L† are com-
pletely continuous or compact operators. Certain important results of the Riesz–Fredholm theory
are summarized in this section.

Spectrum

The homogeneous equations (10.7.10) have complex conjugate eigenvalues and the same number of
eigensolutions. The set of all eigenvalues is the spectrum of the double-layer operator or its adjoint.
The eigenvalues can be numerable or innumerable. However, an infinite number of eigenvalues may
not accumulate at any point in the complex plane, except at infinity. The spectral radius of L or
L† is defined as the magnitude of the eigenvalue, β, with the minimum norm.

Fredholm alternative

Fredholm’s alternative ensures that, if the coefficient α does not belong to the spectrum of L, then
the inhomogeneous equation

q = αL[q] + F (10.7.13)

has a unique solution, where F is a forcing function. If α belongs to the spectrum of L, the
inhomogeneous equation has either no solution or an infinite number of solutions. An infinite number
of solutions exist only if all eigenfunctions of the adjoint double-layer operator, χ, corresponding to
α, are orthogonal to the forcing function F , that is, only when (F, χ) = 0, where the projection (·, ·)
is defined in (10.7.12). Similar results apply to the inhomogeneous equation involving the adjoint
operator defined in (10.7.9),

q = αL†[q] + F, (10.7.14)

where F is a specified forcing function.
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Successive substitutions

The inhomogeneous equations (10.7.13) and (10.7.14) can be solved by the method of successive
substitutions, also called the method of fixed-point iterations or successive approximations, only if α
is less than the spectral radius of the double-layer operator. The method is implemented by guessing
a solution, computing the right-hand side of the integral equation, and then replacing the guessed
with the computed solution. In the extreme case when α = 0, the solution is obtained after one
iteration. When the initial guess is set equal to zero, q = 0, we obtain a series of approximations
called the Neumann series of the integral equations.

10.7.3 Spectrum of the double-layer operator

Next, we proceed to investigate the spectrum of the double-layer operator and its adjoint. As a
preliminary, we integrate equation (10.7.7) over D and use equation (10.5.2) to derive a constraint
on an eigenvalue and the corresponding eigenfunction,

(1 + β∗)

∫∫
D

χ dS = 0. (10.7.15)

We begin by introducing the single-layer potential

φ(x0) =

∫∫
D

G(x0,x)χ(x) dS(x), (10.7.16)

and use (10.5.11) and (10.7.7) to obtain

N(x) · ∇φ+(x) =
1

2

( 1

β∗
− 1

)
χ(x), N(x) · ∇φ−(x) =

1

2

( 1

β∗
+ 1

)
χ(x). (10.7.17)

Working as in (2.1.21), we find that the kinetic energy of the flow in the interior and exterior of D
are given by

K+ = −1

2
ρ

∫∫
D+

φN · ∇φ∗ dS, K− =
1

2
ρ

∫∫
D−

φN · ∇φ∗ dS. (10.7.18)

Substituting (10.7.17) into (10.7.18), we find that

K+ =
1

4
ρ
(
1− 1

β

)∫∫
D+

φχ∗ dS, K− =
1

4
ρ
(
1 +

1

β

)∫∫
D−

φχ∗ dS. (10.7.19)

Combining these expressions to eliminate the integral on the right-hand side, we obtain

β =
1 + δ

1− δ
, (10.7.20)

where

δ ≡ K+/K− . (10.7.21)

Since δ is real and positive, β is real and lies outside the closed range [−1, 1]. However, this deduction
may fail in the following three cases.
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Case β = 1

When β = 1, equation (10.7.19) shows that K+ = 0, which requires that φ is constant throughout V+.
Since φ must vanish at infinity, the value of this constant is necessarily zero. Since φ is continuous
across D, φ must also vanish throughout V− and the normal derivative on the internal side of D
must be zero. Applying (10.7.17) on the internal side of D shows that χ = 0, which demonstrates
that β = 1 cannot be an eigenvalue of the double-layer potential.

Case β = −1

When β = −1, equation (10.7.19) shows that K− = 0, which requires that φ is constant throughout
V− as well as on the interior side of D. Equation (10.7.17) yields the eigenfunction

χ = N · ∇φ+. (10.7.22)

The constraint (10.7.15) is satisfied and (10.7.22) constitutes a perfectly acceptable eigenfunction.
Writing the boundary-integral representation for φ defined in (10.7.16) allows us to identify χ with
the negative of the normal gradient of a potential function on the external side of D established
when φ is constant over D.

Although we are not be able to compute the eigensolution χ explicitly, except for one particular
case discussed in Problem 10.7.2, we can show that it must satisfy the integral constraint∫∫

D

χ dS �= 0. (10.7.23)

Since φ is constant over D, equation (10.7.19) shows that, if (10.7.23) were not true, K+ would
have to vanish, which means that φ and thus χ would have to be zero. Equation (10.5.2) shows
that the corresponding eigensolution of (10.7.6) is constant, ψ = c. One important consequence of
the last two equations is that the geometric multiplicity of the eigenvalue β = −1 is exactly equal
to one. If this were not true, we would be able to find a generalized or principal eigensolution η
satisfying the inhomogeneous equation η = −LA[η] + χ. According to Fredholm’s alternative, for
a solution of this equation to exist, χ must be orthogonal to ψ. However, since ψ is constant, we
obtain a contradiction with (10.7.23). We conclude that the algebraic and geometric multiplicities
of the eigenvalue β = −1 are equal to one.

Case of zero kinetic energy

A third exception occurs when one or both of K± are zero. However, this takes us back to the two
cases cases previously discussed.

Summary

We have found that (a) the eigenvalues of the double-layer potential are real and lie outside the
semi-closed range (−1, 1], and (b) β = −1 is a marginal eigenvalue for any shape, D. The spectral
radius of the double-layer operator or its adjoint is equal to unity. Based on these results, we make
the following deductions regarding the properties of the integral equations for interior or exterior
flow:
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• Equations (10.7.2) and (10.7.4) for the exterior problem and equation (10.7.5) for the interior
problem have a unique solution for any boundary shape, D.

• Equation (10.7.1) for the interior problem has either no solution or a multiplicity of solutions
that differ by an arbitrary constant. According to Fredholm’s alternative, multiple solutions
exist only if the projection of the forcing function onto the adjoint eigensolution χ, given in
(10.7.22), is zero. However, this is true for any flow that does not contain point sources and
point sinks. To see this, we denote the single-layer potential as IS and formulate its projection
on χ to obtain(

χ, IS
)
=

∫∫
D

χ(x0)
(∫∫

D

G(x0,x)N(x) · ∇φ−(x) dS(x)
)
dS(x0) (10.7.24)

=

∫∫
D

N(x) · ∇φ−(x)
(∫∫

D

χ(x0)G(x0,x) dS(x)
)
dS(x0) =

∫∫
D

N(x) · ∇φ−(x) c dS(x0) = 0,

where c is the constant value of the potential over D corresponding to (10.7.22).

• Equation (10.7.4) for the interior problem has either no solution or a multiplicity of solutions.
According to Fredholm’s alternative, multiple solutions exist only if the projection of the
forcing function onto the constant eigensolution of the double-layer potential corresponding to
β = −1 is zero, ∫∫

D

N · ∇φ− dS = 0. (10.7.25)

This requires that the flow rate of the field represented by the forcing function across D is
zero.

• Equation (10.7.5) for the exterior problem has either no solution or a multiplicity of solu-
tions that differ by an arbitrary constant According to Fredholm’s alternative, an infinity of
solutions exist only if the projection of the forcing function onto the adjoint eigensolution χ
corresponding to β = −1 is zero,∫∫

D

φ+χ dS = −c

∫∫
D

N · ∇φ+ dS = 0, (10.7.26)

where c is the constant value of the potential overD defined in (10.7.16). The second expression
in (10.7.26) arises from the reciprocal theorem for harmonic functions discussed in Section 2.2.

• None of the equations discussed can be solved by the method of successive substitutions.

The spectrum of the sphere

It is instructive to compute the spectrum of the double-layer operator when D is the surface of a
sphere of radius a. Noting that the single-layer potential (10.7.16) is continuous across D, and using
(10.7.17), we derive two matching conditions at r = a,

φ+ = φ−,
∂φ+

∂r
= κ

∂φ−

∂r
, (10.7.27)
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where κ = (1 − β∗)/(1 + β∗) and r is the distance from the center of the sphere. The problem is
reduced to computing nontrivial interior and exterior harmonic potentials φ+ and φ− subject to
(10.7.27).

Expanding φ+ and φ− in solid spherical harmonics, we obtain

φ+ =

∞∑
n=0

bn

(a
r

)n+1

Sn(θ, ϕ), φ− =

∞∑
n=0

cn

( r
a

)n+1

Sn(θ, ϕ), (10.7.28)

where Sn are surface spherical harmonics and bn, cn are constants (e.g., [220]). Enforcing the
matching conditions (10.7.28), we find that

bn = cn, −bn(n+ 1) = κncn, (10.7.29)

which requires that κ = −(n + 1)/n and b = −2n − 1. Thus, the spectrum of the double-layer
operator for the sphere is the set of all negative integers.

Problems

10.7.1 Adjoint of the double-layer operator

Show that any two complex functions, q1 and q2, satisfy (10.7.11), where the projection (·, ·) is
defined in (10.7.12).

10.7.2 A known eigensolution

Verify that, when D is the surface of a sphere, (10.7.7) has a constant eigensolution with correspond-
ing eigenvalue β = −1.

10.7.3 Null space of operators

Find the null space of the operators O± and P± introduced in (10.5.14) and (10.6.24), that is, find
all functions q that satisfy O±[q] = 0 or P±[q] = 0.

10.7.4 Multiple boundaries

Show that, when D consists of a number of closed surfaces, Di, where i = 1, . . . , N , the most general
eigensolution of (10.7.6) with β = −1 is ψ = ck over Dk, where ck are arbitrary constants. What is
the most general adjoint eigensolution χ?

10.8 Regularization of integral equations of the second kind

We have seen that the integral equations (10.7.2) and (10.7.4) for interior flow and the integral
equation (10.7.5) for exterior flow have either no solution or an infinite number of solutions when
appropriate restrictions on the forcing functions are satisfied. The integral equations (10.7.2) and
(10.7.4) for exterior flow and the integral equation (10.7.5) for interior flow have a unique solution
which, however, cannot be computed by the method of successive substitutions.

The occurrence of multiple solutions and our inability to compute a solution by the method
of successive substitutions can be circumvented by replacing the original integral equations with
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regularized integral equations that have a unique solution amenable to the method of successive
substitutions. The solution of the regularized equations or a modification of the solution also satisfy
the original integral equations.

10.8.1 Wielandt deflation

To set up the ground for developing the regularized integral equations, we establish a connection
between linear integral equations and linear calculus of matrices. Consider a real square matrix, A,
and introduce its transpose, B = AT . The matrices A and B satisfy the distinguishing relation of
adjoint operators, (

y,A · x
)
=
(
B · y,x

)
, (10.8.1)

where y and x are two arbitrary vectors and the parentheses denote the inner vector product.
Consequently, A andB have complex conjugate eigenvalues and the same number of eigenvectors and
generalized eigenvectors or principal vectors (e.g., [45, 318]). Each eigenvector of A corresponding
to a particular eigenvalue, λ1, is orthogonal to each eigenvector of B corresponding to a different
eigenvalue, λ2.

Let us assume that u is a real eigenvector of A corresponding to an eigenvalue, λ1, with
adjoint eigenvector v,

A · u = u ·B = λ1u, B · v = v ·A = λ1v. (10.8.2)

Wielandt’s theorem states that the modified matrix

A
(1)
ij ≡ Aij − λ1uiwj (10.8.3)

shares its eigenvalues with A, except that λ1 has been replaced by zero, where w is an arbitrary
vector satisfying w ·u = 1 (e.g., [45], p. 361; [429], p. 596). Wielandt’s theorem also states that the
modified matrix

B
(1)
ij ≡ Bij − λ1vizj (10.8.4)

shares its eigenvalues with B, except that λ1 has been replaced by zero, where z is an arbitrary
vector satisfying z · v = 1. The adjoint of B(1), which is equal to its transpose,

A
(2)
ij ≡ Aij − λ1zivj , (10.8.5)

shares its eigenvalues with the adjoint of B, which is the matrix A, except that λ1 has been replaced
by zero.

The process of modifying a matrix to reduce the number of nonzero eigenvalues is called eigen-
value spectrum deflation. Single deflation eliminates one eigenvalue and leaves all other eigenvalues
and adjoint eigenvectors unaffected, but alters the corresponding eigenvectors (Problem 10.8.1). To
implement eigenvalue deflation, we must have available one eigenvalue and either the corresponding
eigenvector, u, or the adjoint eigenvector, v.
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10.8.2 Regularization of (10.7.4) for exterior flow

To demonstrate the application of eigenvalue deflation to integral equations, we consider equation
(10.7.4) for exterior flow, repeated below for convenience,

q(x0) = 2

∫∫ PV

D

q(x)N(x0) · ∇0G(x0,x) dS(x)− 2N(x0) · ∇0φ+(x0), (10.8.6)

which was shown to have a unique solution. Unfortunately, because the spectral radius of the adjoint
double-layer operator is equal to unity, the solution cannot be computed by the method of successive
substitutions.

Let us discretize the domain D into N boundary elements and approximate the unknown
function q(x) with a constant function over each element. In the numerical representation, equation
(10.8.6) takes the discrete form

x = A · x+ b, (10.8.7)

where A is an influence matrix, the vector x contains the constant values of q over the boundary
elements, and the vector b contains the values of the forcing function at the midpoints of the
boundary elements. Instead of solving (10.8.7), we propose to solve the regularized equation

x = A(2) · x+ c, (10.8.8)

where A(2) is defined in (10.8.5) and c is a constant vector.

To ensure that the solution of (10.8.8) also satisfies (10.8.7), we require that

c = b+ λ1 z (v · x). (10.8.9)

Projecting (10.8.7) onto v and recalling that, by definition, v ·A = λ1v, we obtain

v · x =
1

1− λ1
v · b. (10.8.10)

Substituting this expression into the last term on the right-hand side of (10.8.9), we obtain

c = b+
λ1

1− λ1
z (v · b). (10.8.11)

When v · b = 0, we obtain c = b. Equation (10.8.8) then takes the explicit form

x = A(2) · x+
(
I+

λ1

1− λ1
z⊗ v

)
· b, (10.8.12)

where I is the identity matrix. The solution of (10.8.12) is identical to that of (10.8.7).

Identifying λ1 = −1 with the eigenvalue of A with the maximum norm corresponding to the
eigenvalue of the adjoint double-layer operator with the minimum norm, β = −1, and noting that
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λ1 is not a eigenvalue of A(2), we find that the spectral radius of A(2) is less than unity. Equation
(10.8.12) may then be solved by the method of successive substitutions.

Deflated integral equation

Now we return to (10.8.6), recall that ψ = c is the adjoint eigenfunction corresponding to the
eigenvalue with minimum norm, β = −1, note that v plays the role of ψ, and introduce a function
η(x) corresponding to z. To satisfy the condition z · v = 1, we set η = 1/(cSD), so that the integral
of the product ψη over D is equal to unity, where SD is the surface area of D. Motivated by (10.8.9),
we replace (10.8.6) with the regularized integral equation

q(x0) = 2

∫∫ PV

D

q(x)N(x0) · ∇0G(x0,x) dS(x) +
1

SD

∫∫
D

q dS

−2N(x0) · ∇0φ+(x0) +
1

SD

∫∫
D

N · ∇φ+dS.
(10.8.13)

To demonstrate that a solution of (10.8.13) also satisfies (10.8.6), we integrate (10.8.13) over D and
use identity (10.5.2) to find ∫∫

D

q dS = −
∫∫

D

N · ∇φ+dS, (10.8.14)

which can be substituted into (10.8.13) to produce (10.8.6).

The generalized homogeneous equation of (10.8.13) arises by discarding the forcing function
expressed by the last two terms on the right-hand side, and multiplying the remaining terms on the
right-hand side by the eigenvalue β∗, yielding

χ(x0) = 2β∗
(∫∫ PV

D

χ(x)N(x0) · ∇0G(x0,x) dS(x) +
1

2SD

∫∫
D

χ dS
)
. (10.8.15)

Integrating (10.8.15) over D and using (10.5.2), we find that the last integral on the right-hand
side is zero, which allows us to identify the eigenvalues and eigenfunctions of (10.8.15) with those of
(10.7.7). However, since criterion (10.7.23) is violated, β = −1 is no longer an eigenvalue and the
spectral radius of the integral operator on the right-hand side of (10.8.13) is higher than unity. This
guarantees that equation (10.8.13) can be solved by the desirable method of successive approxima-
tions.

When the boundary D consists of a collection of closed boundaries, Dk, where k = 1, . . . , Nk,
the counterpart of equation (10.8.13) at a point x0 that lies on the kth boundary is

q(x0) = 2

∫∫ PV

D

N(x0) · ∇0G(x0,x) q(x) dS(x) +
1

SDk

∫∫
Dk

q dS

−2N(x0) · ∇0φ+(x0) +
1

SDk

∫∫
Dk

N · ∇φ+dS, (10.8.16)

where SDk
is the surface area of the kth boundary. We observe that each surface undergoes an

individual deflation.
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10.8.3 Regularization of (10.7.5) for interior flow

Next, we apply the method of eigenvalue deflation to the integral equation (10.7.5) arising from the
double-layer representation with Dirichlet boundary conditions for interior flow,

q(x0) = 2

∫∫ PV

D

q(x)N(x) · ∇G(x,x0) dS(x)− 2φ−(x0). (10.8.17)

In Section 10.7, we demonstrated that this integral equation admits a unique solution. However,
because the spectral radius of the adjoint double-layer operator is equal to unity, the solution cannot
be found by the method of successive substitutions.

Working as in Section 10.8.2, we discretize the domain D into N boundary elements and
assume that q is constant over each element to obtain the linear algebraic system (10.8.7) with a
different influence matrix, A, and known vector, b. Instead of solving this system, we propose to
solve the alternative system

x = A(1) · x+ c, (10.8.18)

where the matrix A(1) is defined in (10.8.3). To ensure that the solution of the altered system
(10.8.18) also satisfies the original system x = A · x+ b, we require that

c = b+ λ1 u (w · x). (10.8.19)

Since A(1) · u = 0, we can rewrite (10.8.18) as

y = A(1) · y + b, (10.8.20)

where

y ≡
(
I− λ1 u⊗w

)
· x. (10.8.21)

Projecting (10.8.21) onto w and recalling that w ·u = 1, we obtain w ·y = (1−λ1)w ·x. Substituting
this expression into (10.8.21) and rearranging, we obtain

x =
(
I+

λ1

1− λ1
u⊗w

)
· y. (10.8.22)

Instead of solving the original equation x = A ·x+b for x, we prefer to solve equation (10.8.20) for
y and then use (10.8.22) to recover x.

Identifying λ1 = −1 with the eigenvalue of A with the maximum norm corresponding to the
eigenvalue β = −1 of the double-layer operator with the minimum norm, and noting that λ1 is not
a eigenvalue of A(1), we find that the spectral radius of A(1) is less than unity. Equation (10.8.20)
may then be solved by the method of successive substitutions.

Deflated integral equation

Now we return to (10.8.17), recall that β = −1 is an eigenvalue of the generalized homogeneous
equation (10.7.6) with constant eigenfunction, ψ = c, note that u plays the role of y, and introduce



844 Introduction to Theoretical and Computational Fluid Dynamics

a function η corresponding to the vector w. To satisfy the constraint w ·u = 1, we set η = 1/(cSD),
where SD is the surface area of D. Finally, we write the counterparts of equations (10.8.20) and
(10.8.22),

Q(x0) = 2

∫∫ PV

D

Q(x)N(x) · ∇G(x,x0) dS(x) +
1

SD

∫∫
D

Q dS − 2φ−(x0), (10.8.23)

and

q = Q− 1

2SD

∫∫
D

Q dS. (10.8.24)

The numerical procedure involves solving (10.8.23) for Q and then using (10.8.24) to recover q.

The generalized adjoint homogeneous equation corresponding to (10.8.23) is given in (10.8.15).
Our earlier analysis has shown that (10.8.23) has a unique solution that can be computed by the
method of successive substitutions. Straightforward substitution of (10.8.24) into (10.8.23) yields
the original integral equation (10.8.17) (Problem 10.8.2).

10.8.4 Regularization of (10.7.1) for exterior flow

The deflation of equation (10.7.1) for exterior flow is similar to that of equation (10.7.5) for interior
flow, as discussed in Section 10.8.3. The counterparts of equations (10.8.23) and (10.8.24) are

Φ(x0) = 2

∫∫ PV

D

Φ(x)N(x) · ∇G(x,x0) dS(x) +
1

SD

∫∫
D

Φ dS − 2 IS
+(x0), (10.8.25)

and

φ+ = Φ− 1

2SD

∫∫
D

Φ dS, (10.8.26)

where IS
+ is the single-layer potential on the right-hand side of (10.7.1).

If D consists of a number of disconnected closed boundaries, we obtain a modified set of
equations. For a point x0 that lies at the kth boundary, Dk, we obtain

Φ(x0) = 2

∫∫ PV

D

Φ(x)N(x) · ∇G(x,x0) dS(x) +
1

SDk

∫∫
Dk

Φ dS − 2 IS
+(x0), (10.8.27)

and

φ+ = Φ− 1

2SDk

∫∫
Dk

Φ dS, (10.8.28)

where SDk
is the surface area of the kth boundary. We observe that each surface undergoes an

individual deflation.
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10.8.5 Regularization of (10.7.5) for exterior flow

Next, we consider the integral equation (10.7.5) that arises from the double-layer representation
with the Dirichlet boundary condition for exterior flow. The counterpart of (10.8.18) is

x = −A(1) · x+ c, (10.8.29)

where the influence matrix A is the same as that appearing in (10.8.18) but the vector c is different.
Working in the familiar way, we replace (10.8.29) with

y = −A(1) · y + b, (10.8.30)

where

y = (I+ λ1u⊗w) · x. (10.8.31)

To perform eigenvalue deflation, we must apply (10.8.31) with λ1 = −1. However, inverting this
equation to recover x is prohibited by the singular nature of the matrix I−uw (Problem 10.8.3). We
conclude that (10.7.5) cannot be regularized for exterior flow. Similar difficulties are encountered
when we attempt to deflate equations (10.7.1) and (10.7.5) for interior flow.

10.8.6 Completed double-layer representation for exterior flow

Our inability to represent an arbitrary exterior flow with a double-layer potential alone stems from
the fast decay of the point-force dipole, requiring that the flow rate of the velocity ∇φ across the
distribution domain D or any other surface enclosing D vanish. This restriction is fulfilled in the
case of flow past or due to the motion of a rigid body, but not in the case of flow due to the expansion
of a bubble.

To demonstrate the limitations of the double-layer representation, we regard the integral
equation (10.6.25) for exterior flow, P+[q] = 2φ+, as a mapping of the space of density functions, q,
to the space of the exterior boundary distributions, φ+. Functional analysis of compact operators
shows that the image of the mapping P+ is orthogonal to the null space of the adjoint operator O−

defined in (10.5.15), which contains the eigenfunction χ given in (10.7.22). A solution of (10.6.25)
for exterior flow will exist only when the projection of φ+ on χ is zero, as required by (10.7.26).

Range completion

To complete the deficient range of the double-layer operator in the case of exterior flow, we introduce
a composite representation,

φ(x) =

∫∫
D

q(x)N(x) · ∇G(x0,x) dS(x) + Φ(x0), (10.8.32)

where the harmonic function Φ contributes a finite flow rate across D. Applying (10.8.32) at the
exterior side of D and using (10.6.6), we obtain an integral equation of the second kind for q,

q(x0) = −2

∫∫ PV

D

q(x)N(x) · ∇G(x0,x) dS(x)− 2Φ(x0) + 2φ+(x0). (10.8.33)
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Equation (10.8.32) is the completed double-layer representation, and equation (10.8.33) is the asso-
ciated integral equation.

Completion with a point source

One possible choice for Φ is the potential associated with a Green’s function located at a point, xs,
inside D,

Φ(x0) = cG(x0,xs), (10.8.34)

where c is a constant determined by the distribution density, q. To remove this dependency while
preserving linearity, we set

c = A

∫∫
D

q(x) dS(x), (10.8.35)

where A is a new constant independent of q. With these choices, the integral equation (10.8.33)
becomes

q(x0) = −2

∫∫ PV

D

q(x)N(x) · ∇G(x0,x) dS(x)− 2AG(x0,xs)

∫∫
D

q(x) dS(x) + 2φ+(x0). (10.8.36)

To show that this equation has a unique solution, we consider the corresponding adjoint homogeneous
equation

χ(x0) = −2

∫∫ PV

D

χ(x)N(x0) · ∇0G(x0,x) dS(x)− 2AG(x0,xs)

∫∫
D

χ(x) dS(x), (10.8.37)

where χ is an eigenfunction. Integrating (10.8.37) over D and using (10.5.2), we find that the last
integral is identically zero. Equation (10.8.37) then reduces to (10.7.7) with β∗ = −1, in violation
of (10.7.23). Consequently, the integral equation (10.8.37) has only the trivial null solution for any
value of A.

Problems

10.8.1 Wielandt’s deflation

Show that the Wielandt deflation eliminates one eigenvalue, leaves all other eigenvalues and adjoint
eigenvectors unaffected, but alters the eigenvectors.

10.8.2 Deflated equation

Show that (10.8.23) and (10.8.24) produce the solution of (10.8.17).

10.8.3 A singular matrix

Show that, if two vectors, u and w, satisfy u · w = 1, the matrix I − u ⊗ w is singular. Hint:
demonstrate that one eigenvalue is zero.
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10.8.4 Completion with a single-layer potential

One choice for the function Φ defined in (10.8.32) is a single-layer potential with density ζ,

Φ(x0) =

∫∫
D

G(x0,x) ζ(x) dS(x). (10.8.38)

To ensure the linearity of the integral equation, we require that ζ is a linear function of q, setting
ζ = Aq, where A is a constant. Show that, with this choice, the solution of (10.8.33) is unique for
any positive A.

10.8.5 Completion with a collection of point sources

Identify the function Φ introduced in (10.8.32) with the potential due to a collection of point sources
located in the interior of D. Discuss the uniqueness of solution of the resulting integral equation.

10.9 Iterative solution of integral equations of the second kind

Compared to direct methods, iterative methods for solving integral equations of the second kind
have two significant advantages: reduced algebraic manipulations associated with grouping unknown
coefficients of the local expansions in the boundary-element implementation, and affordability in
terms of computer memory requirements, central processor (CPU) time, and programming effort.
To illustrate the implementation of iterative methods, we consider a prototypical integral equation
of the second kind,

q = αO[q] + F, (10.9.1)

where O is a compact linear integral operator defined over a specified line or surface, D, q is an
unknown density distribution, and F is a given forcing function. We proceed by discretizing D into
N boundary elements and approximate the integral operator O[q] with an integration quadrature
over each element to obtain

q(x) =

n=1,...,N∑
Elements

( k=1,...,K∑
Quadrature points

Ank(x,xn,k) q(xn,k)
)
+ F (x), (10.9.2)

where {xn,k} is the union of the K quadrature base points over each element and A is an influence
matrix (see Section B.6, Appendix B).

Nÿstrom method

In Nÿstrom’s method, equation (10.9.2) is enforced at the integration quadrature points over each
element to yield a system of NK linear algebraic equations for the unknown values, q(xn,k) [15].
Jacobi’s method for linear systems is the discrete implementation of the method of successive sub-
stitutions involving three steps: guess the values q(xnk), compute the right-hand side of (10.9.2) at
all quadrature base points, and replace the assumed with the computed values, qnew(xnk). Other
iterative schemes based on generalized conjugate gradient methods are discussed in Section B.1,
Appendix B.
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To reduce the computational cost, it is helpful to compute the influence matrix An,k once at
the outset and then store and recall its elements during the iterations. When N is on the order of
a few hundred and the unknown function is assumed to be a constant or linear function over each
element, the computer memory requirements are modest. When the number of boundary elements
is large or high-order approximations are employed, the size of the matrix An,k may exceed the
available memory, and this necessitates recomputing some or all of the elements, An,k, before each
iteration.

Element expansions

In a more general approach capturing the spirit of the spectral-element method, the unknown density,
q, is expanded into a polynomial or trigonometric series with respect to properly defined surface
variables over each element, and the coefficients of the expansion are identified with the values of q
at corresponding element nodes. Initial values of q are assigned, the polynomial approximations are
evaluated over all elements, and the integral equation is enforced at the nodes. Finally, the double-
layer integral is computed and added to the forcing function F , thereby producing new values for
q at the nodes. The procedure is repeated until the values of q at all nodes change by less than
a preset minimum after one iteration. This method has the advantage of directly producing the
value of q at the nodes, and thus circumventing the need for further interpolation. This feature is
especially desirable when q represents a primary variable, such as the velocity.

Convergence

It is important to emphasize that the iterative procedures described in this section converge only
when the magnitude of the coefficient α is less than the spectral radius of the operator O, and the
integration domain, D, is a smooth Lyapunov surface. If D contains sharp edges or corners, the
iterations may diverge. In order to compute a solution, equation (10.9.2) must be restated in the
standard form of a linear system of equations and the solution must be computed by direct inversion.

10.9.1 Computer implementations with parallel processor architecture

The availability of computers with parallel processor architecture allows us to tackle problems with
pronounced geometric complexity. The standard computational problem requires solving a linear
system of equations, such as that shown in (10.9.2), by a direct or iterative method. Parallelization
of the computational tasks in a direct method ranges from hard to unfeasible [32]. For example,
parallelization in Gaussian elimination is prohibited by pivoting. Iterative methods are ideally suited
for parallel computation, the main consideration being the efficient distribution of tasks among the
available processors to minimize communication time.

In the context of parallel computation, we may distinguish two classes of problems according
to the topology of the flow domain. The first class includes problems in domains that are bounded
by distinct closed surfaces representing, for example, the boundaries of a collection of suspended
particles. The second class includes problems in domains with contiguous but complex boundaries
representing, for example, the surface of a vehicle or aircraft.

Assuming that the boundary of a flow consists of a collection of M smooth closed surfaces,
we decompose the integral operator in (10.9.1) into the sum of M operators, where each operator is
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supported by a distinct boundary, and write

q(x) = α
M∑

m=1

Om[q] + F (x). (10.9.3)

We then guess the distribution of q over each boundary, call it q(0), and iterate individually on each
surface using the method of successive substitutions, where each boundary is assigned to a different
processor. Over the ith surface, we iterate based on the equation

q(x) = αOi[q] +G(x) where G(x) = α
M∑

m=1

′Om[q] + F (x), (10.9.4)

and the prime after the sum indicates that the term m = i is excluded from the summation. These
local iterations are guaranteed to converge as long as |α| is less than the spectral radius of the
corresponding operators. After a number of local iterations have been carried out, the initial guess
q(0) is updated across all processors, a second global iteration is carried out, and the procedure is
repeated until a converged solution has been found. The frequency and protocol of communication
between the processors play an important role in determining the overall efficiency of the method
(e.g., [102, 138]).

Computer Problem

10.9.1 Nÿstrom method

Solve the integral equation

q(x) =
1

2

∫ 1

0

q(ξ) |x− ξ| dξ + ex (10.9.5)

using Nÿstrom’s method implemented by the trapezoidal rule with 32 divisions.



Vortex motion 11
An important class of flows at high Reynolds numbers are characterized by the presence or motion
of compact regions of concentrated vorticity, concisely called vortices, including vortex filaments and
vortex layers. The analysis of these flows and the development of pertinent numerical methods is
conducted under the assumption that viscous forces are confined inside thin boundary layers and
the fluid in the main part of the flow is effectively inviscid. In nature and technology, vortices are
generated by a variety of mechanisms, including the deposition of vorticity inside compact wakes
behind bluff bodies, the rollup of separated boundary layers and vortex sheets ejected from sharp
corners, and the instability of shear layers between two fluids that merge at different velocities. In
everyday life, vortices emerge from the rollup of vortex sheets on either side of a blade that moves
parallel to itself broadside along a free surface. Vortices have been described poetically as the muscles
of a turbulent flow.

To compute the evolution of a flow that is dominated by vortex motion, it is expedient to com-
pute the evolution of the vorticity field using the vorticity transport equation, while simultaneously
describing the evolution of the velocity field by inverting the definition of the vorticity, ω = ∇× u.
This method of computation, concisely described as a vortex method, is preferable to directly inte-
grating in time the equation of motion in primary variables, including the velocity and the pressure.
The direct approach will be discussed in Chapter 13 in the context of the finite-difference method.

The computational advantages of vortex methods stem from substantial simplifications in the
vorticity transport equation that are not necessarily reflected in the equation of motion. In the case
of two-dimensional flow, because of the absence of vortex stretching, the vorticity evolves under the
action of convection and viscous diffusion alone. When viscous effects are insignificant, a region of
concentrated vorticity remains compact at all times and the vortices are simply convected by the
flow. These features allow us to reduce the computational domain by considering only those regions
of the flow where the vorticity takes substantial values, above a preset threshold. Another important
advantage of vortex methods is that computing the pressure is not required. The significance of this
simplification will become evident in Chapter 13 where we discuss the subtleties involved in deriving
and implementing boundary conditions for the pressure from specified conditions for the velocity.

A typical computational algorithm of a vortex method for computing the evolution of an
unsteady flow involves the following four main steps:

1. Given an initial velocity field, compute the associated initial vorticity field. If the initial
vorticity field is specified, this step is not necessary.

2. Use the vorticity transport equation to advance the vorticity field by one time step.

850
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3. Invert the definition of the vorticity, ω = ∇× u, to obtain the velocity field at the new time
instant.

4. Return to Step 2 and repeat the computation for another time step.

To obtain the velocity field from the vorticity field in Step 2, we may use the Biot–Savart integral
discussed in Sections 2.10–2.13. This approach is particularly effective in the case of inviscid or
slightly viscous flows considered in this chapter. Other methods discussed in Chapter 13 in the
context of the finite-difference formulation involve expressing the velocity in terms of a solenoidal
vector potential, A, so that u = ∇×A and ∇ ·A = 0, and then solving a Poisson equation for A,
∇2A = −ω, or inverting Laplace’s equation for the velocity ∇2u = −∇ × ω. These methods are
appropriate for viscous flows the vorticity is spread all over the domain of flow.

In this chapter, we outline and discuss the fundamental principles, governing equations, and
computational algorithms underlying a general class of vortex methods for two-dimensional, axisym-
metric, and three-dimensional flow. Further information on specific topics can be found in review
articles by Clements & Maull [88], Saffman & Baker [358], Leonard [233, 234], Pullin [330], Puckett
[328], and in monographs by Newton [278] and Saffman [357].

11.1 Invariants of vortex motion

In computing vortex motion of an inviscid fluid in a domain of infinite expanse in the absence of
interior boundaries and subject to the condition that the velocity decays at infinity, it is wise to
check the accuracy of the numerical results by monitoring the evolution of known invariants of the
motion.

11.1.1 Three-dimensional flow

In Section 2.10, we saw that, if that the vorticity of a three-dimensional flow decays faster than
1/d3, where d is the distance from the origin, the integral of the vorticity over the domain of flow is
zero. Thus, the total vorticity, ∫∫

Flow

ω dV = 0 (11.1.1)

is a first invariant of the motion.

Linear and angular impulse

Two additional invariants are the linear impulse, P , and the angular impulse, A, required to generate
the motion and thereby impart to the fluid the necessary linear and angular momentum, defined as

P =
1

2
ρ

∫∫
Flow

x× ω dV = 0, A =
1

3
ρ

∫∫
Flow

x× (x× ω) dV = 0 (11.1.2)

(e.g., [24], Section 7.2). The angular impulse is proportional to the first moment of the distributed
linear impulse expressed by the integrand defining P . To show that P and A remain constant in
time, we take the time derivative of expressions (11.1.2) and invoke the vorticity transport equation
for a homogeneous fluid (Problem 11.1.1(a)).
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Kinetic energy

In the absence of viscous dissipation, the total kinetic energy of the fluid is conserved. Thus,

K =
1

2
ρ

∫∫
Flow

u · u dV =
1

2
ρ

∫∫
Flow

A · ω dV = ρ

∫∫
Flow

u · (x× ω) dV (11.1.3)

is a fourth invariant of the motion, where A is a solenoidal vector potential for the velocity defined
by the equation u = ∇×A (Section 2.6).

Helicity

Projecting Euler’s equation onto the vorticity vector and then integrating the product over the
volume of the flow, we find that the helicity,

H ≡
∫∫

Flow

u · ω dV, (11.1.4)

is a fifth invariant of the motion. Physically, the helicity is a measure of the net linkage of the vortex
lines [273].

Viscous effects

In the presence of viscous forces, the total vorticity defined in (11.1.1) remains zero and the linear
and angular impulse defined in (11.1.2) remain invariant during the motion. However, the kinetic
energy of the fluid and the helicity change during the evolution of an unsteady viscous flow. It is
not surprising that the kinetic energy decreases due to viscous dissipation. Using the energy balance
(3.4.22) for infinite flow, we find that

dK
dt

= −2μ

∫∫∫
Flow

E : E dV = −μ

∫∫∫
Flow

[ω · ω + 2∇ · (u · L) ] dV, (11.1.5)

where L is the velocity gradient tensor and E is the rate-of-deformation tensor. Applying the
divergence theorem and simplifying, we find that

dK
dt

= −μ

∫∫∫
Flow

ω · ω dV (11.1.6)

(Problem 11.1.1(b)). The integral on the right-hand side of (11.1.6) is the enstrophy of the flow.

Projecting the vorticity transport equation onto the vorticity vector, we derive an evolution
equation for the enstrophy,

d

dt

∫∫∫
Flow

ω · ω dV = 2

∫∫∫
Flow

(ω ⊗ ω) : E dV − 2 ν

∫∫∫
Flow

∇ω : ∇ω dV, (11.1.7)

where ν is the kinematic viscosity of the fluid (Problem 11.1.1(b)). A more general evolution equation
for flow in a bounded domain is given in (3.12.27).
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11.1.2 Axisymmetric flow

In the case of axisymmetric flow with no swirling motion, the vorticity points in the azimuthal
direction, ω = ωϕeϕ. In cylindrical polar coordinates, (x, σ, ϕ), the expressions for the linear
momentum, angular momentum, kinetic energy, and helicity simplify into

P = πρ

∫∫
Flow

ωϕ σ2 dA ex, A = 0, K = πρ

∫∫
Flow

ψ ωϕ dA, H = 0, (11.1.8)

where σ is the distance from the axis of revolution, dA = dx dσ is the differential area in a plane
of constant azimuthal angle, ϕ, ex and eϕ are coordinate unit vectors, and ψ is the Stokes stream
function for axisymmetric flow; see equation (2.10.15). The helicity is identically zero because the
velocity is normal to the vorticity in an axisymmetric flow.

11.1.3 Two-dimensional flow

In the case of two-dimensional flow, we obtain a new set of invariants, some but not all of which are
related to the invariants of three-dimensional flow. In Section 3.13, we saw that the total circulation
of a two-dimensional flow is conserved. Accordingly,

C =

∫∫∫
Flow

ωz dA (11.1.9)

is an invariant of the motion for inviscid or viscous fluids, where dA = dx dy is a differential area in
the xy plane of the flow and ωz is the nonvanishing vorticity component.

Vorticity centroid and dispersion length

Two additional invariants are the centroid of vorticity and square of the dispersion length, defined,
respectively, as

X =
1

C

∫∫
Flow

xωz dA, D2 =
1

C

∫∫
Flow

(x · x)ωz dA. (11.1.10)

These invariants are related to the linear and angular impulse that must be expended in order to
generate the motion of the fluid (e.g., [24], Section 7.2). Due to the constancy of C, the location of
the origin of the Cartesian axes is immaterial.

Kinetic energy

The kinetic energy of an infinite two-dimensional flow with nonvanishing total circulation, C, is
infinite. However, the quantity

W =
1

2
ρ

∫∫
Flow

ψ ωz dA (11.1.11)

is finite and remains constant during the motion, where ψ is the stream function, assumed to decay
to zero at infinity. Physically, W expresses the part of the kinetic energy of the fluid that depends
on the particular way in which the vorticity is distributed in the flow (e.g., [24], Section 7.2).



854 Introduction to Theoretical and Computational Fluid Dynamics

Viscous effects

In the case of two-dimensional viscous flow with no interior boundaries, the total circulation, C, and
vorticity centroid, X , remain constant in time. The square of the dispersion length increases at a
constant rate according to the evolution equation

dD2

dt
= 4ν (11.1.12)

(e.g., [24], p. 536). This increase reflects the tendency of the vorticity to diffuse away from the
initial distribution and occupy all available space. Viscous dissipation causes W to monotonically
decrease during the evolution of an unsteady flow.

Problem

11.1.1 Invariants of the motion

(a) Show that P and A are conserved in a three-dimensional flow.

(b) Derive the evolution equations (11.1.6) and (11.1.7).

(c) Derive the evolution equation (11.1.12).

11.2 Point vortices

We begin the discussion of vortex motion by considering two-dimensional flow of an effectively
inviscid fluid containing a collection of N point vortices defined discussed in Sections 1.13.3 and
2.13. The vorticity transport equation guarantees that the point vortices maintain their strength as
they move about the domain of flow. Using the Biot–Savart integral, we find that, in the absence
of boundaries, the velocity of each point vortex is equal to the sum of the velocities induced by all
other point vortices.

Point-vortex motion

The fundamental steps of vortex methods outlined in the Introduction of this chapter, combined
with the expressions for the induced velocity given in Section 2.13.1, provide us with a system of
coupled nonlinear ordinary differential equations for the coordinates of the point vortices, Xi, in the
xy plane,

dXi

dt
= − 1

2π

N∑
j=1

′ κj
Yi − Yj

|Xi −Xj |2
,

dYi

dt
=

1

2π

N∑
j=1

′ κj
Xi −Xj

|Xi −Xj |2
, (11.2.1)

where κj is the strength of the jth point vortex and the prime indicates that the term i = j
is excluded from the sum. An implicit supplement to this system is the condition of strength
invariance, dκi/dt = 0, for i = 1, . . . , N .

To compute the motion of a collection of point vortices from a given initial configuration, we
integrate equations (11.2.1) in time using a standard numerical method, such as the Runge–Kutta
method, as discussed in Section B.8, Appendix B.
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To position of the point vortices in the complex plane is governed by the coupled differential
equations

dZ∗
i

dt
=

1

2πi

N∑
j=1

′ 1

Zi − Zj
, (11.2.2)

where Zi = Xi+iYi and i is the imaginary unit. Equations (11.2.1) are the real and imaginary parts
of the unifying complex form (11.2.2).

Stream function and invariants of the motion

The stream function due to a collection of N point vortices arises by summing the individual stream
functions of each point vortex,

ψ(x) = − 1

2π

N∑
i=1

κi ln
|x−Xi|

a
, (11.2.3)

where a is a chosen length. Expressing the vorticity in terms of the two-dimensional delta function
and using (11.2.3), we find that the scalar invariants of the motion (11.1.10)–(11.1.11) simplify into

C =
N∑
i=1

κi, X =
1

C

N∑
i=1

κi Xi, D2 =
1

C

N∑
i=1

κi Xi ·Xi,

W = − ρ

4π

N∑
i=1

N∑
j=1

′ κiκj ln
|Xi −Xj |

a
.

(11.2.4)

The availability of these invariants allows us to predict the trajectories of two point vortices, as
discussed in Section 11.2.1.

Hamiltonian formulation

Kirchhoff noted that the system of ordinary differential equations (11.2.1) can be recast into the
Hamiltonian form

κi
dXi

dt
=

∂W
∂Yi

, κi
dYi

dt
= − ∂W

∂Xi
, (11.2.5)

where summation over the repeated index i is not implied on the left-hand sides. This formulation
allows us to study the motion of point vortices in the context of Hamiltonian dynamics [278].

11.2.1 Two point vortices

The motion of two point vortices with strength κ1 and κ2 separated by distance d can be predicted
from the requirement that X , D2, and W remain constant in time. We find that the point vortices
move along concentric circles centered at the centroid of vorticity X with angular velocity

Ω =
κ1 + κ2

2πd2
, (11.2.6)
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Figure 11.2.1 (a) Two point vortices move along concentric circles centered at the centroid of vor-
ticity. (b) Streamline pattern due to a pair of point vortices with strengths of equal magnitude
and opposite sign, drawn in a frame of reference moving with the vortex pair. The x axis may be
regarded as an impenetrable wall.

while maintaining their initial separation, as illustrated in Figure 11.2.1(a). If κ1 = κ2, the point
vortices rotate about the midpoint. If κ1 � κ2, the second point vortex nearly orbits around the
nearly stationary first point vortex.

Translating vortex pair

If the strengths of the two point vortices have equal magnitude and opposite sign, ±κ, the total
circulation of the flow is zero, the centroid of vorticity is shifted to infinity, and the point vortices
move in parallel straight lines that are perpendicular to their separation with velocity

V =
κ

2πd
. (11.2.7)

The associated streamline pattern in a frame of reference moving with the point vortices is shown in
Figure 11.2.1(b). The dividing streamline takes the shape of an oblate oval with major and minor
axes equal to 2.09a and 1.73a, respectively, where a = d/2 is the half the point vortex separation.
It is instructive to observe the similarity in the streamline pattern shown in Figure 11.2.1(b) with
that shown in Figure 2.12.2 for axisymmetric flow due to a line vortex ring.

11.2.2 More than two point vortices

The motion of three or more point vortices in an infinite domain is known to follow periodic orbits
but also exhibit complex and chaotic behavior [12]. Steadily rotating point vortex arrangements
include concentric polygons, rectilinear distributions, and star shapes [13]. Examples will be given
in this section.
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Figure 11.2.2 A collection of N point vortices with identical strengths, κ, distributed at positions
corresponding to the zeros of the N -degree Hermite polynomial rotates as a whole with angular
velocity Ω.

Vortex polygons

Havelock [172] considered the motion of N identical point vortices arranged at the vertices of a
regular polygon that is inscribed inside a circle of radius a. Assume that at an instant the point
vortices are located at the complex positions

zi = xi + iyi = a exp
(
2πi

i− 1

N − 1

)
(11.2.8)

for i = 1, . . . , N , where i is the imaginary unit, so that z1 = a. Using Table 7.10.1, we find that the
complex potential of the induced flow is

w(z) =
κ

2πi
ln

zN − aN

aN
. (11.2.9)

The complex velocity induced at the location of the first point vortex, z1 = a, by all other point
vortices is

lim
z→a

d

dz

[
w − κ

2πi
ln

z − a

a

]
=

κ

2πi
lim
z→a

[
N

zN−1

zN − aN
− 1

z − a

]
=

κ

2πi

N − 1

2a
. (11.2.10)

Accordingly, the vortex polygon rotates intact with angular velocity

Ω = (N − 1)
κ

4πa2
. (11.2.11)

For N = 2, we recover formula (11.2.6) with κ1 = κ2 = κ and d = 2a. Linear stability analysis
reveals that the rotation is stable when N < 7, marginally stable when N = 7, and unstable when
N > 7 [172].

11.2.3 Rotating collinear arrays of point vortices

Next, we consider the mutually induced motion of a collection of N point vortices with equal
strengths, κ, initially situated along the x axis at positions, xi, where i = 1, . . . , N , as shown
in Figure 11.2.2. As a preliminary, we introduce the Nth-degree generating polynomial

Φ(x) = (x− x1)(x− x2) · · · (x− xN ). (11.2.12)
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Using elementary calculus, we find that

Φ′′(xi)

2Φ′(xi)
=

1

xi − x1
+ · · ·+ 1

xi − xi−1
+

1

xi − xi+1
+ · · ·+ 1

xi − xN
(11.2.13)

(e.g., [317]). Note that one singular term is missing from the sum. The y velocity component of the
ith point vortex is given by

vi =
κ

2π

Φ′′(xi)

2Φ′(xi)
. (11.2.14)

If the point vortex assembly rotates as a whole around the origin with angular velocity Ω, then

vi = Ωxi. (11.2.15)

Combining the last two expressions, we obtain

κ

2π

Φ′′(xi)

2Φ′(xi)
= Ωxi (11.2.16)

for i = 1, 2 . . . , N , which shows that xi are the roots of the Nth-degree polynomial

Π(x) ≡ Φ′′(x)− 4πΩ

κ
xΦ′(x). (11.2.17)

Accordingly, we can write

Π(x) = cΦ(x), (11.2.18)

where c is a constant. To ensure that the coefficients of the highest power of x on the right-hand
sides of the last two expressions are the same, we set c = −4πΩN/κ and find that Φ satisfies the
differential equation

Φ′′(x)− 4πΩ

κ
xΦ′(x) +

4πΩ

κ
NΦ(x) = 0. (11.2.19)

In terms of the dimensionless position,

x̂ ≡ x

√
2πΩ

κ
, (11.2.20)

equation (11.2.19) reduces to the Hermite equation

Φ̈(x̂)− 2 x̂ Φ̇(x̂) + 2NΦ(x̂) = 0, (11.2.21)

where a dot denotes a derivative with respect to x̂. The solution of the Hermite equation is the
Nth-degree Hermite polynomial whose roots, σi, are available in analytical or tabular form (e.g.,
[317]). The position of the point vortices in physical space is

xi ≡ σi

( κ

2πΩ

)1/2
(11.2.22)

for i = 1, . . . , N , where Ω is a free parameter whose sign matches the sign of κ.
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11.2.4 Rotating clusters of point vortices

Next, we consider the mutually induced motion of a cluster of N point vortices with equal strengths,
κ, situated at arbitrary positions in the complex z plane. Working as in the case of the linear array,
we introduce the Nth-degree generating complex polynomial

Φ(z) = (z − z1)(z − z2) · · · (z − zN ), (11.2.23)

where zi is the position of the ith point vortex. Using elementary calculus, we find that

Φ′′(zi)

2Φ′(zi)
=

1

zi − z1
+ · · ·+ 1

zi − zi−1
+

1

zi − zi+1
+ · · ·+ 1

zi − zN
, (11.2.24)

where a prime denotes a derivative with respect to z (e.g., [317]). Note that one detrimental singular
term is missing from the sum. The complex velocity of the ith point vortex is given by

ui − i vi =
κ

2πi

Φ′′(zi)

2Φ′(zi)
, (11.2.25)

where ui = ux is the x velocity component and vi = uy is the y velocity component of the ith point
vortex.

If the point vortex assembly rotates intact as a cluster around the origin with angular velocity
Ω, the velocity of the ith point vortex satisfies ui + i vi = iΩ zi or

ui − i vi = −iΩ z∗i (11.2.26)

for i = 1, . . . , N , where an asterisk denotes the complex conjugate. Substituting expression (11.2.25)
for the left-hand side, we find that

κ

2πi

Φ′′(zi)

2Φ′(zi)
= −iΩ z∗i . (11.2.27)

This expression shows that the positions zi are zeros of the generally nonanalytic complex function

Π(z) ≡ Φ′′(z)− 4πΩ

κ
z∗ Φ′(z), (11.2.28)

constituting a polynomial in z and z∗.

A rotating polygon

In the case of a regular polygon of N point vortices with radius a, we substitute Φ(z) = zN − aN

and find that

Π(z) ≡ N(N − 1) zN−2 − 4πΩ

κ
z∗NzN−1 = NzN−2

(
N − 1− 4πΩ

κ
|z|2

)
. (11.2.29)

Requiring that Π(z) = 0 for zN = aN where |z| = a, we recover precisely Havelock’s expression
(11.2.11).
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Two nested polygons

Now we consider two nested concentric regular polygons of M point vortices with radii |a1| and |a2|,
so that N = 2M and

Φ(z) = (zM − aM1 )(zM − aM2 ), (11.2.30)

where a1 and a2 are two complex constants. Straightforward differentiation yields

Φ′(z) = MzM−1 (2zM − aM1 − aM2 ) (11.2.31)

and

Φ′′(z) = MzM−2
[
2(2M − 1) zM − (M − 1) (aM1 + aM2 )

]
. (11.2.32)

Substituting these expressions into (11.2.28), we find that

Π(z) ≡ MzM−2
[
2(2M − 1) zM − (M − 1) (aM1 + aM2 )− 4πΩ

κ
|z|2 (2zM − aM1 − aM2 )

]
. (11.2.33)

Requiring that Π(z) = 0 when zM = aM1 or zM = aM2 , we obtain two algebraic equations,

(3M − 1) aM1 − (M − 1) aM2 =
4πΩ

κ
|a1|2 (aM1 − aM2 ),

(3M − 1) aM2 − (M − 1) aM1 =
4πΩ

κ
|a2|2 (aM2 − aM1 ). (11.2.34)

Dividing side by side to eliminate Ω and rearranging, we obtain

αM |α|2 − 3M − 1

M − 1
(αM + |α|2) + 1 = 0, (11.2.35)

where α = a2/a1 is the radii ratio. Further rearrangement yields

β2αM+2 − 3M − 1

M − 1
(αM + β2α2) + 1 = 0, (11.2.36)

where β ≡ |α|/α. If α is real, in which case the polygons are in-phase, β2 = 1. If α = |α| exp(πi/M),
in which the polygons are out of phase, β2 = exp(2πi/M).

For M = 2 and β2 = 1, we obtain the algebraic equation α4 − 10α2 + 1 = 0. The roots,
α = ±� and α = ±1/�, describe a collinear array of four point vortices discussed in Section 11.2.3,
where � = 3.14626436994197 is the ratio of the first two positive roots of the fourth-order Hermite
polynomial. For M = 2 and β2 = −1, we obtain the algebraic equation α4 = 1 whose roots produce
a rotating square. For M = 3 and β2 = 1, we obtain the algebraic equation α5− 4α3− 4α2+1 = 0.
The real roots, α = � and α = 1/�, yield two nested triangles, as shown in the first panel of Figure
11.2.3, where � = 2.36920540709247.

Similar structures are obtained for higher values of M , as shown in Figure 11.2.3. The point
vortex clusters shown in this figure were generated using the program pvpoly2 in directory 09 vortex

of the software library Fdlib (Appendix C).
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Figure 11.2.3 Equilibrium structures of two nested polygons of point vortices with identical strengths
rotating steadily in an infinite fluid. In-phase and out-of-phase polygons are observed for M > 4.

Rotating clusters with a central point vortex

In the presence of a central point vortex with strength κ0 located at the origin, we obtain the
counterpart of (11.2.25)

ui − i vi =
κ

2πi

Φ′′(zi)

2Φ′(zi)
+

κ0

2πi

1

zi
, (11.2.37)

where u = ux and v = uy. The counterpart of (11.2.27) for a rotating cluster is

κ

2πi

Φ′′(zi)

2Φ′(zi)
= −i Ω z∗i − κ0

2πi

1

zi
. (11.2.38)

This expression shows that the positions zi are zeros of the generally nonanalytic complex function

Λ(z) ≡ Φ′′(z)− 4πΩ

κ
z∗ Φ′(z) +

2

z
λ0 Φ

′(z), (11.2.39)

where λ0 ≡ κ0/κ.

In the case of a regular polygon of N point vortices with radius a, we substitute Φ(z) = zN−aN

and find that

Λ(z) ≡ N(N − 1) zN−2 − 4πΩ

κ
z∗NzN−1 + 2Nλ0z

N−2. (11.2.40)
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Simplifying, we obtain

Λ(z) = NzN−2
(
N − 1 + 2λ0 −

4πΩ

κ
|z|2

)
. (11.2.41)

Requiring that Λ(z) = 0 when zN = aN , we obtain

Ω = (N − 1 + 2λ0)
κ

4πa2
, (11.2.42)

which is a generalization of (11.2.11).

In the case of two nested concentric M -sided regular polygons with radii |a1| and |a2|, we have
N = 2M and Φ(z) = (zM − aM1 )(zM − aM2 ). Working as previously , we obtain

Λ(z) ≡ MzM−2
[
2(2M − 1) zM − (M − 1) (aM1 + aM2 )

−
(4πΩ

κ
|z|2 − 2λ0

)
(2zM − aM1 − aM2 )

]
. (11.2.43)

The counterparts of equations (11.2.44) are

(3M − 1 + 2λ0) a
M
1 − (M − 1 + 2λ0) a

M
2 =

4πΩ

κ
|a1|2 (aM1 − aM2 ),

(3M − 1 + 2λ0) a
M
2 − (M − 1 + 2λ0) a

M
1 =

4πΩ

κ
|a2|2 (bM − aM ). (11.2.44)

Dividing side by side to eliminate Ω and rearranging, we obtain

β2αM+2 − 3M − 1 + 2λ0

M − 1 + 2λ0
(αM + β2α2) + 1 = 0, (11.2.45)

where α = b/a is the radii ratio and β ≡ |α|/α. If α is real, the polygons are in-phase; if α =
|α| exp(πi/M), the polygons are out of phase.

Generalization

To generalize the preceding results, we consider a rotating assembly of point vortex consisting of
an M1-sided polygon of point vortices of radius |a1| and strength κ1, and a concentric M2-sided
polygon of point vortices of radius |a2| and strength κ2. It is convenient to introduce the polynomials
Φ1(z) = zM1 − aM1

1 and Φ2(z) = zM2 − aM2

2 , and express the velocity of the ith point vortex in the
first array as

ui − i vi =
κ1

2πi

Φ′′
1(zi)

2Φ′
1(zi)

+
κ2

2πi

Φ′
2(zi)

Φ2(zi)
= −iΩz∗i , (11.2.46)

and the velocity of the ith point vortex in the second array as

ui − i vi =
κ2

2πi

Φ′′
2(zi)

2Φ′
2(zi)

+
κ1

2πi

Φ′
1(zi)

Φ1(zi)
= −iΩz∗i . (11.2.47)
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These expressions show that the position of the point vortices in the first polygon are the zeros of
the function

Π1(z) = Φ′′
1(z) Φ2(z) + Φ′

1(z)
(
2λΦ′

2(z)−
4πΩ

κ1
z∗ Φ2(z)

)
, (11.2.48)

and the position of the point vortices in the second polygon are the zeros of the function

Π2(z) = Φ′′
2(z) Φ1(z) + Φ′

2(z)
1

λ

(
2Φ′

1(z)−
4πΩ

κ1
z∗ Φ1(z)

)
, (11.2.49)

where λ = κ2/κ1. Substituting the expressions for Φ1 and Φ2, we find that

Π1(z) = M1z
M1−2

[
(M1 − 1)(zM2 − aM2

2 ) + 2λM2z
M2 − 4πΩ

κ1
|z|2 (zM2 − aM2

2 )
]

(11.2.50)

and

Π2(z) = M2z
M2−2

[
(M2 − 1)(zM1 − aM1

1 ) +
1

λ

(
2M1z

M1 − 4πΩ

κ1
|z|2 (zM1 − aM1

1 )
) ]

. (11.2.51)

Requiring that Π1(z) = 0 when zM1 = aM1

1 and Π2(z) = 0 when zM2 = aM2

2 , we obtain two
equations,

(M1 − 1)(aM2

1 − aM2

2 ) + 2λM2a
pM1

1 =
4πΩ

κ1
|a1|2 (aM2

1 − aM2

2 ),

λ (M2 − 1)(aM1

2 − aM1

1 ) + 2M1a
M2/p
2 =

4πΩ

κ1
|a2|2 (aM1

2 − aM1

1 ). (11.2.52)

When M1 = M2 = M and λ = 1, we recover equations (11.2.34). Dividing side by side to eliminate
Ω, we obtain an equation for the radii ratio, a2/a1. When M1 = M2 and λ �= 1, we obtain a
generalization of (11.2.53),

β2αM+2 − (2 + λ)M − λ

M − 1
αM − (2λ+ 1)M − 1

M − 1
β2α2 + λ = 0, (11.2.53)

where α ≡ a2/a1 and β ≡ |α|/α.

The analysis presented in this section can be extended to a higher number of nested point
vortex polygons with the same or different strengths [13].

11.2.5 Point vortices in bounded domains

The velocity induced by a point vortex residing in an internally or externally bounded domain of
flow must be complemented with that due to a nonsingular reflected irrotational flow ensuring that
the no-penetration boundary condition is satisfied. The point vortex itself moves under the influence
of the complementary flow. In some cases, the complementary flow can expressed in terms of image
point vortices with appropriate strengths located outside the domain of flow. The motion of the
image point vortices is deduced from the instantaneous position of the primary vortex.
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The stream function of the flow due to a point vortex located at the point X in the presence
of an impermeable boundary is the Green’s function of the first kind of the two-dimensional Laplace
equation multiplied by the strength of the point vortex, κ, that is, ψ(x,X) = κG(x,X). In the
case of unbounded flow, we employ the free-space Green’s function, G(x,X) = −1/(2π) ln |x −X|.
Specific expressions for several Green’s functions generated by the method of images are given in
Section 2.2.8.

Point vortex above a plane wall

The image of a point vortex with respect to a plane wall is another point vortex with strength of
equal magnitude and opposite sign placed in the instantaneous mirror image of the original point
vortex with respect to the wall. Examining the velocity field induced by the image point vortex,
we find that the original point vortex moves parallel to the wall with velocity V = κ/(4πb), where
b is the distance of the point vortex from the wall. The streamline pattern in a frame of reference
moving with the point vortex is identical to that shown in Figure 11.2.1(b), provided that the x axis
is identified with the wall.

Point vortex inside a circular cylinder

The image of a point vortex located at a point X inside a circular cylinder of radius a centered at
the point xc is another point vortex with strength of equal magnitude and opposite sign placed at
the instantaneous inverse point of the point vortex with respect to the cylinder,

Xinv = xc +
a2

|X− xc|2
(X− xc). (11.2.54)

This construction shows that a single point vortex describes a circular path that is concentric with
the cylinder, moving around the center of the cylinder with polar velocity

uθ =
κ

2π

|X− xc|
a2 − |X− xc|2

. (11.2.55)

The streamline pattern of the induced flow is shown in Figure 11.2.4(a).

Point vortex outside a circular cylinder

The image of a point vortex located at a point X outside a circular cylinder of radius a centered at
the point xc is another point vortex with strength of equal magnitude and opposite sign placed at the
instantaneous inverse point of the point vortex with respect to the cylinder. The image system can
be supplemented with a third point vortex located at the center of the cylinder whose strength, κc,
determines the circulation around the cylinder. Consequently, the primary point vortex of interest
describes a circular path, moving around the center of the cylinder with polar velocity

uθ = − κ

2π

|X− xc|
a2 − |X− xc|2

+
κc

2π

1

|X− xc|
. (11.2.56)

The streamline pattern for κc = 0 is shown in Figure 11.2.4(b).
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Figure 11.2.4 Streamline pattern due to a point vortex (a) inside and (b) outside a circular cylinder.
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Figure 11.2.5 Trajectory of a point vortex in the first quadrant near a right-angle corner, and illus-
tration of the three images.

Point vortex near a corner

The image system of a point vortex in a quarterly infinite domain bounded by a right-angle corner
is the set of three point vortices shown in Figure 11.2.5. In plane polar coordinates with origin at
the apex where the walls located at θ = 0 and π/2, the point vortex moved along a curve described
by r = c/ sin(2θ), where the constant c is determined by the initial position. A generalization of this
configuration to flow inside a corner with arbitrary aperture angle is discussed in Problem 11.2.2.
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Figure 11.2.6 Streamline pattern due to a point vortex (a) between two parallel walls and (b) in a
semi-infinite strip.

Point vortex between two parallel walls

Next, we consider the motion of a point vortex between two parallel walls separated by distance
h. The image system consists of two periodic arrays of point vortices with separation 2h arranged
perpendicular to the walls. The first array contains the original point vortex, and the second array
contains the image of the point vortex with respect to the upper or lower wall. The strength of the
point vortices in the second array is equal in magnitude and opposite in sign to that of the point
vortices in the first array.

Assume that the point vortex is located at (X,Y ) and the walls are parallel to the x axis.
Using (2.13.14), we find that the stream function of the induced flow is

ψ(x) = − κ

4π
ln

cosh[k(x−X)]− cos[k(y − Y )]

cosh[k(x−X)]− cos[k(y − Yim)]
, (11.2.57)

where k = π/h is a wave number and Yim is the y position of the image. Using (2.13.15), we find
that the point vortex moves along the x axis parallel to the walls under the influence of the flow
induced by the second array containing its image. The velocity of the point vortex is

Vx =
κ

4h

sin(2kb)

1− cos(2kb)
, (11.2.58)

where b is the distance of the point vortex from the lower wall. The streamline pattern in shown in
Figure 11.2.6(a). In the limit as kb tends to zero, we recover the earlier results for a point vortex in
a semi-infinite fluid above an infinite plane wall.

Point vortex in a semi-infinite strip

Consider a point vortex placed between two parallel walls separated by distance h and intersecting at
a right angle a third wall to form a semi-infinite rectangular strip, as illustrated in Figure 11.2.6(b).
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The image system consists of the image system associated with the two parallel walls, and the
reflection of the image system with respect to the third intersecting wall. The strengths of the
reflected point vortices are the negatives of those of their images. The motion of the point vortex
can be computed by numerical methods.

Complex boundary shapes

The complementary irrotational flow due to a boundary with arbitrary geometry can be computed
using the conformal mapping methods discussed in Section 7.12 or the boundary-integral methods
discussed in Chapter 10.

11.2.6 Periodic arrangement of point vortices

Using equation (2.13.15), we find that the motion of an infinite periodic collection of N point vortices
repeated in the x direction with period a is governed by the differential equations

dXi

dt
= − 1

2a

N∑
j=1

′ κj
sinh[k(Yi − Yj)]

cosh[k(Yi − Yj)]− cos[k(Xi −Xj)]
,

dYi

dt
=

1

2a

N∑
j=1

′ κj
sin[k(Xi −Xj ])

cosh[k(Yi − Yj)]− cos[k(Xi −Xj)]
,

(11.2.59)

where k = 2π/a is the wave number and the prime indicates that the term j = i is excluded from
the sum.

Problems

11.2.1 Equation of motion of point vortices in complex variables

Introduce the complex variable Z = X + iY and confirm that equations (11.2.1) and (11.2.59) can
be expressed in the compact forms

dZ∗
i

dt
=

1

2πi

N∑
j=1

′ κj

Zi − Zj
,

dZ∗
i

dt
=

1

2ai

N∑
j=1

′ κj cot
[ 1
2
k (Zi − Zj)

]
, (11.2.60)

where i is the imaginary unit, i2 = −1, an asterisk denotes the complex conjugate, and the prime
indicates that the term j = i is excluded from the sum.

11.2.2 Motion of a point vortex near a corner

Consider the motion of a point vortex in the vicinity of a corner with internal angle π/n. Using
conformal mapping show, that in plane polar coordinates with origin at the apex and the walls
located at θ = 0 and π/n, the trajectory of the point vortex is described by the equation r =
c/ sin(nθ), where c is a constant determined by the initial position of the point vortex ([24], p. 536).

11.2.3 Two point vortices behind a cylinder

Föppl considered uniform potential flow along the x axis past a stationary cylinder of radius a
centered at the origin, with vanishing circulation around the cylinder, as shown in Figure 11.2.7
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x
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Figure 11.2.7 Two point vortices behind a cylinder in streaming flow emulate a stationary wake.

([220], p. 223). A pair of point vortices with opposite strength is symmetrically located above
and below the x axis. Verify that the point vortices will remain stationary provided that they lie
on the curve described by the equation 2ry = r2 − a2, and the strengths of the point vortices are
κ = ±Ur(1− a2/r2)(1− a4/r4), where r is the distance from the origin.

11.2.4 Point vortex polygons

Derive the counterpart of (11.2.53) in the presence of a central point vortex with strength κ0.

Computer Problems

11.2.5 A periodic array of point vortices between two walls

Consider of an infinite array of point vortices separated by distance a between two parallel plane
walls separated by distance h. Compute and plot the velocity of the array against the ratios b/h
and a/h, where b is the distance of the point vortices from the lower wall. Discuss the results of
your computations.

11.2.6 Stability of a polygonal arrangement of point vortices

(a) Write a program that computes the motion of point vortices initially arranged at the vertices of
an N -sided regular polygon of radius a. Perform simulations for N = 6, 7, and 8, and discuss the
differences in behavior due to the amplification of round-off error.

(b) Assume that the motion occurs in the presence of a circular cylinder of radius b concentric with
the polygon. Compute and plot the angular velocity of the point vortices for N = 2, 4, and 8, and
b/a = 0.10, 0.50, 0.90, 1.1, 1.50, and 2.0. Compare your results with the analytical solution for the
case of unbounded flow.

11.3 Rows of point vortices

An infinite row of identical point vortices is a useful model of the flow developing from the instability
of a vortex layer, as discussed in Section 9.6. The associated streamline pattern is shown in Figure
2.13.1. When the point vortices are precisely collinear and equidistant, they remain stationary in
a steady flow. To assess the stability of the array, we displace the point vortices in the horizontal
and vertical directions and compute their subsequent motion. If the initial displacement is small
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compared to the point vortex separation, a, the motion can be described analytically in the context
of linear stability theory discussed in Chapter 9.

11.3.1 Stability of a row or point vortices

Consider an infinite array of point vortices distributed along the x axis. Following the general
formalism of the normal mode analysis discussed in Section 9.3, we assume that the position of the
perturbed point vortices is given by the real part of the right-hand sides of the equations

Xm = a (m+ ξm), Ym = a ηm (11.3.1)

for m = 0,±1,±2, . . ., where

ξm = ε1 exp[i(mka− �t)], ηm = ε2 exp[i(mka− �t)] (11.3.2)

are dimensionless complex displacements, ε1 and ε2 are dimensionless complex coefficients with
small but comparable magnitudes, k = 2π/L is the wave number of the perturbation, L is the
corresponding wavelength, and � is the complex growth rate. If the imaginary part of � is positive,
the periodic array is unstable.

The physical requirement that the separation between two consecutive point vortices is smaller
than the wavelength of the perturbation, L = k/2π, imposes the geometrical constraint a/L =
ka/(2π) < 1. When the ratio L/a is an integer, the array is perturbed in a commensurate and
spatially periodic fashion.

The motion of the point vortices is governed by the differential equations (11.2.1). Linearizing
the terms inside the sums with respect to ε1 and ε2, we obtain

Ym − Yn

|Xm −Xn|2
� 1

a

ηm − ηn
(m− n)2

,
Xm −Xn

|Xm −Xn|2
� 1

a

m− n+ ξm − ξn + · · ·
(m− n)2 + 2(m− n)(xm − xn) + · · · (11.3.3)

for any arbitrary integer pair, (m,n). Simplifying the second expansion, we obtain

Xm −Xn

|Xm −Xn|2
� 1

a

( 1

m− n
− ξm − ξn

(m− n)2
+ · · ·

)
. (11.3.4)

The x position of each point vortex evolves according to the linearized ordinary differential
equation

dXm

dt
= − κ

2πa

∞∑
n=−∞

′ ηm − ηn
(m− n)2

= −ε2
κ

2πa
exp[i(mka− �t)]

∞∑
n=−∞

′ 1− ei(n−m)ka

(m− n)2
, (11.3.5)

where the prime indicates that the term m = n is excluded from the sum. Substituting into the
left-hand side the first expressions in (11.3.1) and (11.3.2) and simplifying, we obtain

ε1a i� = ε2
κ

2πa
α, (11.3.6)
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where

α =
∞∑

l=−∞

′ 1− eilka

l2
=

∞∑
l=−∞

′ 1− cos(lka)

l2
= ka

(
1− ka

2π

)
, (11.3.7)

and the prime indicates that the singular term l = 0 is excluded from the sum.

Unfortunately, applying formula (11.2.1) for the y velocity component produces a divergent
sum. To circumvent this apparent but not essential difficulty, we retain a large but finite number of
2N + 1 point vortices in the array and obtain

dYm

dt
=

κ

2πa

( N∑
n=−N

′ 1

m− n
− ε1 exp[i(mka− �t)]

∞∑
n=−∞

′ 1− ei(n−m)ka

(m− n)2

)
. (11.3.8)

Because the first sum on the right-hand side of (11.3.8) is independent of the position of the point
vortices, it can be discarded with no consequences on the flow. This manipulation is an example
of a mathematical renormalization. Substituting into the left-hand side the second expressions in
(11.3.1) and (11.3.2), and simplifying, we obtain

ε2 a i� = ε1
κ

2πa
α. (11.3.9)

Combining equations (11.3.6) and (11.3.9), we find that

� = ±iπ
κ

a2
a

L

(
1− a

L

)
,

ε2
ε1

= ∓1. (11.3.10)

Since a/L < 1, the plus or minus sign can be selected according to the sign of the strength of
the point vortices so that the imaginary part of � is positive, corresponding to instability. The
corresponding normal mode displacement causes the point vortices to move away from their original
location at an exponential rate (see also Problem 11.3.1).

An unstable and a stable normal mode displacement are illustrated in Figure 11.3.1 for negative
point vortex strength, κ < 0, corresponding, respectively, to ε2/ε1 = 1 and −1. In the case of the
unstable mode, the point vortices are displaced so that they concentrate near regions where the
interface slopes downward, causing a local counterclockwise rotation that promotes the instability.
The opposite is true in the case of the stable normal mode with ε2/ε1 = −1.

Vortex pairing

When the wavelength of the perturbation, L, is a multiple of the point vortex separation, a, the
ratio n ≡ L/a is an integer expressing the number of point vortices residing inside each period. The
expression for the complex growth rate in (11.3.10) becomes

� = ±iπ
κ

a2
n− 1

n2
. (11.3.11)

For fixed point vortex strength, κ, the highest value of �I corresponding to the most unstable
perturbation is obtained for the smallest possible integer, n = 2, associated with a pairing interaction
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Ustable Stable

Figure 11.3.1 An unstable and a stable normal mode displacement of an infinite array of point vortices
with negative circulation.

between two adjacent point vortices. An unstable normal mode perturbation displaces the point
vortices upward and downward in succession, yielding a triangular wave.

Vortex sheet

An interesting interpretation of expression (11.3.11) for the growth rate arises by expressing the
strength of the point vortices in terms of the difference in the velocity of the streams far above and
below the point-vortex array, ΔU , the wavelength of the perturbation, L, and the number of point
vortices inside each period, n = L/a, finding κ = −aΔU = −LΔU/n. The growth rate is

� = ±iπ
ΔU

L

n− 1

n
= ±i

1

2
kΔU

n− 1

n
, (11.3.12)

where k = 2π/L is the wave number. Increasing the number of point vortices inside each wave-
length, n, from two to infinity, while keeping the velocity difference constant and the wavelength
of the perturbation fixed, doubles the growth rate. The limit n → ∞ corresponds to a continuous
distribution of point vortices representing a vortex sheet.

11.3.2 Von Kármán vortex street

The von Kármán vortex street consists of two parallel rows of point vortices arranged along the x
axis with separation a and displaced along the y axis by distance b, as shown in Figure 11.3.2. The
strengths of the point vortices in the upper row are equal in magnitude and opposite in sign to the
strengths of the point vortices in the lower row. The von Kármán vortex street is a useful model of
the wake developing behind a bluff object.

Symmetric street

Using expressions (11.2.59), we find that, when the point vortices are located above each other in
the arrangement of the symmetric vortex street shown in Figure 11.3.2(a), they translate parallel to
the x axis with velocity

Vx =
κ

2a

sinh(kb)

cosh(kb)− 1
=

κ

2a
coth(

1

2
kb), (11.3.13)

where k = 2π/a is the wave number. Linear stability analysis shows that the symmetric vortex
street is unstable and should not be expected to occur in practice (Problem 11.3.2).
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Figure 11.3.2 Illustration of (a) a symmetric and (b) an antisymmetric street of point vortices. The
strengths of the point vortices in the top row are equal in magnitude and opposite in sign that
those of the point vortices in the bottom row.

Antisymmetric street

When the vortices in the top row are displaced with respect to the point vortices in the bottom
row along the x axis by a distance that is equal to half their separation, forming the antisymmetric
vortex street shown in Figure 11.3.2(b), they translate along the x axis with velocity

Vx =
κ

2a

sinh(kb)

cosh(kb) + 1
=

κ

2a
tanh(

1

2
kb). (11.3.14)

Linear stability analysis reveals that the antisymmetric vortex street is unstable, except in the
special case where cosh(kb) = 2 corresponding to b/a = 0.281, where the flow is marginally stable
(Problem 11.3.2). However, nonlinearities promote the instability and the antisymmetric vortex
street is considered unstable.

Problem

11.3.1 Stability of a row of point vortices

Use expressions (11.2.59) to study the stability of a row of point vortices.

11.3.2 Stability of a vortex street

Carry out the linear stability analysis of the (a) symmetric and (b) antisymmetric vortex street
([220], pp. 225, 228).

Problem

11.3.3 Kelvin–Helmholtz instability of a row of point vortices

An infinite array of point vortices separated by distance a induces an upper streaming flow with
velocity U and a lower streaming flow with velocity −U . The strength of each point vortex is related
to U by κ = −2U/a. Assume that the array is subjected to a sinusoidal perturbation with fixed
wave length L = na and amplitude b0, where n is an integer.
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(a) Write a program that computes the motion of the point vortices and plot profiles of the evolving
array. The ordinary differential equations governing the motion of the point vortices should be
integrated in time using the modified Euler method discussed in Section A.8, Appendix B. The
program should compute the ratio of the maximum displacement of the point vortices from the x
axis, b, to the initial amplitude, b0.

(b) Consider an unstable normal mode perturbation where the initial position of the mth point
vortex is given by

Xm = c1 a (m− 1) + b0 sinϕm, Ym = c2 b0 sinϕm, (11.3.15)

where m is an integer, c1 = 1, c2 = 1 , ϕm = 2π(m − 1)/n, b0 > 0 is a perturbation amplitude,
and κ < 0. Compute the motion of the point vortices for b0/L = 0.10 and n = 4, 8, 16, and 32.
Plot the ratio b/b0 against time on a linear-log scale in each case and compare your results with the
predictions of the linear stability analysis discussed in the text.

(c) Repeat (b) for c1 = 1 and c2 = −1, corresponding to a stable normal mode.

(d) Repeat (b) for c1 = 0 and c2 = 1 and discuss the difference in behavior from case (b).

11.4 Vortex blobs

A point vortex is a mathematical idealization emerging in the limit as the cross-section of a two-
dimensional rectilinear vortex filament tends to zero, while the circulation around the filament is held
fixed. Unfortunately, the infinitesimal cross-section of the point vortices causes an erratic mutually
induced motion, especially when two point vortices are in close proximity, due to the divergent
velocity. To suppress the erratic motion, we may replace the singular delta function representing
the vorticity distribution with a regularized distribution supported by a finite cross-sectional area,
and thereby obtain a vortex blob [81]. The instantaneous vorticity field due to a vortex blob with
strength κ located at the point X is given by

ωz = κ ζ(x−X), (11.4.1)

where the distribution function, ζ, is a regularization of the two-dimensional delta function, δ2,
normalized so that its integral over the entire xy plane is equal to unity,∫∫

ζ(x) dx dy = 1, (11.4.2)

as discussed in Section A.3, Appendix A. The distribution function ζ has dimensions of inverse
squared length.

11.4.1 Radially symmetric blobs

Assuming that the vorticity of a blob is symmetric around the centerline, we introduce the specific
form

ζ(x−X) =
π

ε2
f(r/ε), (11.4.3)
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where r = |x − X| is the distance from the center of the blob, ε is the blob radius, and f is a
dimensionless distribution function decaying far from the blob. As ε tends to zero, ζ reduces to the
two-dimensional delta function. For the integral of ζ over the entire xy plane to be equal to unity,
the function f must satisfy the integral constraint∫ ∞

0

wf(w) dw =
1

2π2
. (11.4.4)

A possible choice for the core distribution function is the piecewise constant top-hat distribution

f(w) =

{
1/π2 for w ≤ 1,
0 for w ≥ 1,

(11.4.5)

describing the circular Rankine vortex with constant vorticity inside the core. Another choice is the
Gaussian distribution

f(w) =
1

π2
e−w2

. (11.4.6)

Both choices satisfy the integral constraint (11.4.4).

Velocity field

In plane polar coordinates centered at an axisymmetric vortex blob, the radial velocity is zero.
To compute the polar velocity, uθ, we resort to the definition of vorticity and derive the ordinary
differential equation

1

r

d

dr
(ruθ) = κ

π

ε2
f(r/ε). (11.4.7)

Straightforward integration subject to the condition that the velocity is zero at the centerline yields
the velocity profile

uθ =
κ

2πr
F(r/ε), (11.4.8)

where

F(r/ε) = 2π2

∫ r/ε

0

w′f(w′) dw′ (11.4.9)

is a dimensionless function. Equation (11.4.4) shows that, as the blob radius ε tends to zero for fixed
r, the function F(r/ε) tends to unity. The Cartesian components of the velocity at a point x due
to a blob located at X are

ux(x) = − κ

2π

ŷ

x̂2 + ŷ2
F(r/ε), uy(x) =

κ

2π

x̂

x̂2 + ŷ2
F(r/ε), (11.4.10)

where x̂ = x − X is the distance from the centerpoint. This velocity differs from that due to a
point vortex only by the presence of the radial distribution function, F(r/ε). Far from the center of
the blob, F(r/ε) tends to unity and the blob induces a velocity field similar to that due to a point
vortex.
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For the top-hat distribution shown in (11.4.5), straightforward computation of the integral in
(11.4.8) yields

F(w) =

{
w2 for w ≤ 1,
1 for w ≥ 1,

(11.4.11)

which shows that the fluid inside a Rankine blob rotates like a rigid body, while the flow outside the
Rankine blob is identical to that due to a point vortex.

For the Gaussian distribution shown in (11.4.6), we obtain

F(w) = 1− e−w2

. (11.4.12)

Far small w, the function F(w) is quadratic in w and the velocity depends linearly on the distance
from the center of the blob. Far from the blob, the function F(w) tends to unity and the flow
resembles that due to a point vortex.

Biot–Savart integral

It is instructive to rederive the velocity field due to a vortex blob based on the Biot–Savart integral
(2.1.26). Setting the origin at the center of a blob, we find that the y component of the velocity at
a point x0 located on the x axis is given by

uy(x0) =
κ

2π

∫ 2π

0

∫ ∞

0

x0 − r cos θ

x2
0 + r2 − 2x0r cos θ

ζ(x) r dr dθ. (11.4.13)

Substituting (11.4.3) into the integrand of (11.4.13), we obtain

uy(x0) =
κ

2

∫ ∞

0

(∫ 2π

0

x0 − r cos θ

x2
0 + r2 − 2x0r cos θ

dθ
)
f(w)w dw, (11.4.14)

where w = r/ε. Finally, we note that∫ 2π

0

1− w cos θ

1 + w2 − 2w cos θ
dθ =

{
2π ifw < 1,
0 ifw > 1,

(11.4.15)

and set w = r/x0 to obtain the right-hand side of (11.4.8) with x0 in place of r.

11.4.2 Motion of a collection of vortex blobs

The motion of the center of a vortex blob that belongs to a collection of N axisymmetric blobs with
identical structure is described by the following modified version of (11.2.1),

dXi

dt
= − 1

2π

N∑
j=1

′ κj
Yi − Yj

|Xi −Xj |2
F
(Xi −Xj

εj

)
,

dYi

dt
=

1

2π

N∑
j=1

′ κj
Xi −Xj

|Xi −Xj |2
F
(Xi −Xj

εj

)
, (11.4.16)

where κj is the strength of the jth blob and the prime indicates that the term i = j is excluded
from the sum. In order to preserve the total circulation, the strength of each blob remains constant
in time.
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11.4.3 Periodic arrays of vortex blobs

Combining (11.2.59) with (11.4.16), we find that the motion of a collection of N vortex blobs that
are repeated periodically in the x direction with period a is described by the system

dXi

dt
= − 1

2a

N∑
j=1

′ κj
sinh[k(Yi − Yj)]

cosh[k(Yi − Yj)]− cos[k(Xi −Xj)]
+ Ui,

dYi

dt
=

1

2a

N∑
j=1

′ κj
sin[k(Xi −Xj)]

cosh[k(Yi − Yj)]− cos[k(Xi −Xj)]
+ Vi, (11.4.17)

where

Ui = − 1

2π

N∑
j=1

[
κj

∞∑
m=−∞

Yi − Yj

R2
ijm

Gijm

]
, Vi =

1

2π

N∑
j=1

[
κj

∞∑
m=−∞

Xi −Xj −ma

R2
ijm

Gijm

]
,

(11.4.18)

Gijm ≡ F
(Rijm

εj

)
− 1, R2

ijm = (Xi −Xj −ma)2 + (Yi − Yj)
2.

The sums on the right-hand side of (11.4.17) express the velocity due to a periodic array of point
vortices. The sums in (11.4.18) express corrections due to the finite size of the blobs. The inner
infinite sums over m converge rapidly and can be truncated after a sufficient number of terms.

11.4.4 Diffusing blobs

In real life, the radius of each vortex blob increases due to viscous diffusion. Consider a single blob
with Gaussian vorticity distribution, f(w) = exp(−w2). Substituting this form into the vorticity
transport equation written in plane polar coordinates, we find that the blob radius, ε, increases in
time according to the equation

dε

dt
= 2

ν

ε
or

dε2

dt
= ν, (11.4.19)

where ν is the kinematic viscosity of the fluid. We have found that the square of the radius or
a Gaussian blob, ε2, increases at a linear rate in time. Equations (11.4.16) and (11.4.19) provide
us with a system of ordinary differential equations for the position of the centers and radii of a
collection of vortex blobs. To preserve the total circulation, which is an invariant of the motion, we
require that the strength of each blob remains constant during the motion. However, in practice,
the vorticity distribution of each blob becomes non-axisymmetric due to mutual interactions.

Problem

11.4.1 Vortex blob Biot–Savart integral

Derive the definite integral (11.4.15) and then compute the velocity field induced by a vortex blob.
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Fluid 1

Fluid 2

t

u

u
(2)

(1)

ξ

Figure 11.5.1 Illustration of a two-dimensional vortex sheet described by a string of marker points
moving with the fluid velocity normal to the vortex sheet, while executing an arbitrary tangential
motion.

Computer Problems

11.4.2 Stability of a polygonal arrangement of vortex blobs

(a) Write a program that computes the motion of vortex blobs with Gaussian vorticity distribution
initially arranged at the vertices of an N -sided regular polygon of radius a. Perform simulations with
N = 6 and blob radius ε/a = 0.01, 0.05, 0.10, 0.20, and 0.50. Plot the angular velocity of rotation of
the vortex arrangement against b/a and discuss the effect of the blob radius.

(b) Repeat (a) with diffusing blobs whose radii increase according to (11.4.19).

11.4.3 Vortex street with vortex blobs

Compute and plot the velocity of translation of vortex blobs with Gaussian vorticity distribution in
a symmetric or antisymmetric vortex street as a function of the blob radius ε/a, for street aspect
ratio b/a = 0.10, 0.25, and 0.50.

11.5 Two-dimensional vortex sheets

A two-dimensional vortex sheet is a cylindrical surface across which the tangential component of
the fluid velocity, residing in a plane that is perpendicular to the generators of the vortex sheet,
undergoes a discontinuity called the strength of the vortex sheet, γ, as shown in Figure 11.5.1. By
definition,

Δu ≡ u(2) − u(1) = γ t, (11.5.1)

where u(i) is the fluid velocity on the ith side of the vortex sheet, i = 1, 2, and t is the tangent
unit vector. Since nonzero viscosity causes the unphysical onset of infinite shear stress and viscous
dissipation, the notion of a vortex sheet whose thickness is and remains infinitesimal in time is
acceptable only in the context of inviscid flow.

Principal velocity

The principal velocity of the vortex sheet is defined as the mean value of the velocity of the fluid on
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either side of the vortex sheet,

uPV ≡ 1

2

(
u(1) + u(2)

)
. (11.5.2)

Combining this definition with (11.5.1), we obtain

u(1) = uPV − 1

2
γ t, u(2) = uPV +

1

2
γ t, (11.5.3)

subject to the conventions defined in Figure 11.5.1.

Marker points

To describe the motion of a vortex sheet, we mark its trace in the xy plane with a string of marker
points identified by a permanent label, ξ, as depicted in Figure 11.5.1, and follow the evolution of the
vortex sheet by computing the trajectories of the marker points. Kinematic compatibility requires
that the component of the velocity of the marker points normal to the vortex sheet be equal to the
normal component of the fluid velocity on either side of the vortex sheet. The tangential component
of the marker-point velocity can be arbitrary. If X(ξ, t) is the position and V(ξ, t) is the velocity of
a marker point,

∂X

∂t
= V(ξ, t) = (u(i) · n)n+ Vt(ξ) t (11.5.4)

for i = 1, 2, where Vt(ξ) is an arbitrary tangential velocity allowed to vary in time and across the
marker points.

Using equations (11.5.3), we express the marker-point velocity in terms of the velocity of the
fluid on either side of the vortex sheet, the principal velocity of the vortex sheet (PV), and the
strength of the vortex sheet, as

V(a, t) = (1− α)u(1) + αu(2) = uPV + (α− 1

2
) γ t, (11.5.5)

where α is a dimensionless parameter related to the tangential marker-point velocity by

Vt = uPV · t+ (α− 1

2
) γ. (11.5.6)

When α = 0, 1
2 , 1 the marker points move, respectively, with the velocity of the fluid on the first

side of the vortex sheet, the principal velocity of the vortex sheet, and the velocity of the fluid on
the second side of the vortex sheet. In the remainder of our discussion, α will be assumed to be a
specified constant.

It will be useful to express the fluid velocity on either side of the vortex sheet in terms of the
marker-point velocity, V, as

u(1) = V + α1γ t, u(2) = V + α2γ t, (11.5.7)
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where α1 = −α and α2 = 1− α. Equations (11.5.7) can be collected into the compact form

u(i) = V + αiγ t (11.5.8)

for i = 1, 2.

Biot–Savart integral

Substituting into (11.5.5) the Biot–Savart integral (2.13.19), we obtain an integro-differential equa-
tion for the motion of the marker points,

∂X

∂t
= V(ξ) =

1

2π

∫ PV

C

[
−Y (ξ) + Y (ξ′)
X(ξ)−X(ξ′)

]
γ(ξ′)

|X(ξ)−X(ξ′)|2
∂l

∂ξ′
dξ′ + (α− 1

2
) γ t+ v, (11.5.9)

where C is the trace of the vortex sheet in the xy plane, PV denotes the principal-value integral,
and l is the arc length along the vortex sheet measured in the direction of the tangent unit vector,
t. The first term on the right-hand side of (11.5.9) expresses the self-induced velocity of the vortex
sheet. The third term expresses a generally time-dependent external rotational or irrotational flow
with velocity v.

11.5.1 Evolution of the strength of the vortex sheet

To compute the trajectories of the marker points, we require an evolution equation for the strength
of the vortex sheet following the marker points, expressed by the derivative (∂γ/∂t)ξ. Our point of
departure is Euler’s equation on either side of the vortex sheet,

∂u(i)

∂t
+ u(i) · ∇u(i) = − 1

ρi
∇pi + g (11.5.10)

for i = 1, 2, where pi is the pressure and ρi is the fluid density. Slightly rearranging the left-hand
side, we obtain

∂u(i)

∂t
+V · ∇u(i) + (u(i) −V) · ∇u(i) = − 1

ρi
∇pi + g. (11.5.11)

The first two terms on the left-hand side express the derivative (∂u(i)/∂t)ξ, representing the rate of
change of the fluid velocity on either side of the vortex sheet following the marker points.

Differentiating equation (11.5.8), relating the fluid velocity to the marker-point velocity, we
obtain (∂u(i)

∂t

)
ξ
=
(∂V
∂t

)
ξ
+ αi

(∂(γt)
∂t

)
ξ
. (11.5.12)

Substituting the right-hand side of (11.5.12) in place of the first two terms in (11.5.11), and setting
u(i) −V = αi γ t, we find that

ρi

(∂V
∂t

)
ξ
+ ρiαi

[ (∂(γt)
∂t

)
ξ
+ γ

∂(V + αiγt)

∂l

]
= −∇pi + ρi g, (11.5.13)
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where l is the arc length along the vortex sheet. Next, we take the difference of the equations that
arise by writing (11.5.13) for i = 1 and 2, finding

Δρ
(∂V
∂t

)
ξ
+ ρ̃

[(∂(γt)
∂t

)
ξ
+ γ

∂V

∂l

]
+ Δ̂ρ γ

∂(γt)

∂l
= −∇Δp+Δρg, (11.5.14)

where Δρ = ρ2 − ρ1 is the density difference, Δp = p2 − p1 is the pressure difference, and

ρ̃ = α2ρ2 − α1ρ1 = (1− α) ρ2 + αρ1, Δ̂ρ = α2
2ρ2 − α2

1ρ1 = (1− α)2ρ2 − α2ρ1. (11.5.15)

Projecting (11.5.14) onto the tangent unit vector, t, to formulate the tangential derivatives of the
pressure difference, and noting that, because t is a unit vector t · ∂t/∂l = 0 and t · ∂t/∂t = 0, we
find that

Δρ t ·
(∂V
∂t

)
ξ
+ ρ̃

[(∂γ
∂t

)
ξ
+ γ t · ∂V

∂l

]
+ Δ̂ρ γ

∂γ

∂l
= −∂Δp

∂l
+Δρg · t. (11.5.16)

Rearranging, we obtain the evolution equation

ρ̃
(∂γ
∂t

)
ξ
+Δρ t ·

(∂V
∂t

)
ξ
= −ρ̃ γ t · ∂V

∂l
− Δ̂ρ γ

∂γ

∂l
− ∂Δp

∂l
+Δρg · t. (11.5.17)

The jump in the pressure across the vortex sheet on the right-hand side of (11.5.17) depends on the
properties of the interface separating the two fluids, as discussed in Section 3.8. For example, if the
vortex sheet represents the interface between two immiscible fluids with surface tension τ ,

Δp = τκ, (11.5.18)

where κ is the curvature of the vortex sheet in the xy plane, reckoned as positive when the interface
is downward convex. In the absence of surface tension, Δp = 0. Combining equation (11.5.17) with
the interfacial condition (11.5.18), we obtain the desired evolution equation for the strength of the
vortex sheet following the marker points involving the marker-point velocity distribution, V(ξ), and
the tangential component of the marker-point acceleration, t · (∂V/∂t)ξ.

Fredholm integral equation

The tangential acceleration in the second term on the left-hand side of (11.5.17) is an implicit
function of the time derivative (∂γ/∂t)ξ. To establish this relationship, we differentiate the right-
hand side of (11.5.9) with respect to time keeping ξ constant. Projecting the resulting expression
onto the tangent unit vector and recalling once again that t is a unit vector, we find that

t(ξ) ·
(∂V
∂t

)
ξ
=

1

2π
t(ξ) ·

∫ PV

C

∂

∂t

([ −Y (ξ) + Y (ξ′)
X(ξ)−X(ξ′)

]
γ(ξ′)

|X(ξ)−X(ξ′)|2
∂l

∂ξ′

)
dξ′ + G(ξ), (11.5.19)

where

G(ξ) ≡ (α− 1

2
)
(∂γ
∂t

)
ξ
+ t(ξ) ·

(∂v
∂t

)
ξ
. (11.5.20)
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The time derivative inside the integral is taken keeping both ξ and ξ′ constant. Expanding the
derivative under the integral sign, we obtain

t(ξ) ·
(∂V
∂t

)
ξ
=

1

2π
t(ξ) ·

∫ PV

C

[
−Y (ξ) + Y (ξ′)
X(ξ)−X(ξ′)

]
1

|X(ξ)−X(ξ′)|2
(∂γ
∂t

)
ξ′
dl(ξ′) + J (ξ) + G(ξ).

(11.5.21)

The function

J (ξ) ≡ 1

2π
t(ξ) ·

∫ PV

C

∂

∂t

([ −Y (ξ) + Y (ξ′)
X(ξ)−X(ξ′)

]
1

|X(ξ)−X(ξ′)|2
∂l

∂ξ′

)
γ(ξ′) dξ′ (11.5.22)

expresses the tangential component of the acceleration of the point particles if they were moving
with the principal velocity of the vortex sheet while preserving the current circulation. In practice,
this function can be computed by numerical time differentiation. Substituting the right-hand side of
(11.5.21) into the second term on the right-hand side of (11.5.17), rearranging, and observing that
ρ̃ +Δρ (α − 1

2 ) =
1
2(ρ1 + ρ2), we obtain a linear Fredholm integral equation of the second kind for

(∂γ/∂t)ξ,(∂γ
∂t

)
ξ
+

A
π
t(ξ) ·

∫ PV

C

[
−Y (ξ) + Y (ξ′)
X(ξ)−X(ξ′)

]
1

|X(ξ)−X(ξ′)|2
(∂γ
∂t

)
ξ′
dl(ξ′) = 2F(ξ), (11.5.23)

where

A =
ρ2 − ρ1
ρ1 + ρ2

(11.5.24)

is the Atwood ratio. The forcing function on the right-hand side of (11.5.23) is given by

F(ξ) = −A
[
J + t · [

(∂v
∂t

)
ξ
− g]

]
− γ

(
B t · ∂V

∂l
+ Â ∂γ

∂l

)
− 1

ρ1 + ρ2

∂Δp

∂l
, (11.5.25)

where

B =
ρ̃

ρ1 + ρ2
=

(1− α)ρ2 + αρ1
ρ1 + ρ2

, Â =
Δ̂ρ

ρ1 + ρ2
=

(1− α)2ρ2 − α2ρ1
ρ1 + ρ2

(11.5.26)

are dimensionless coefficients defined in terms of the fluid densities and the marker-point velocities.

Evolution of circulation along the vortex sheet

The circulation along the vortex sheet, Γ, is defined by the differential relation dΓ = γdl, where
Γ = 0 at a designated marker point. Straightforward differentiation yields(∂ dΓ

∂t

)
ξ
=
(∂ (γdl)

∂t

)
ξ
=
(∂ γ

∂t

)
ξ
dl + γ t · ∂V

∂l
dl, (11.5.27)

which can be restated as

∂2 Γ

∂t∂ξ
=
[ (∂ γ

∂t

)
ξ
+ γ t · ∂V

∂l

] ∂l

∂ξ
. (11.5.28)
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Solving (11.5.28) for (∂γ/∂t)ξ, substituting the result into the first term on the left-hand side
of (11.5.17), multiplying the emerging equation by ∂l/∂ξ, and simplifying, we derive an integro-
differential evolution equation for the circulation along the vortex sheet,

ρ̃
∂2 Γ

∂t∂ξ
+Δρ

∂x

∂ξ
·
(∂V
∂t

)
ξ
=

∂

∂ξ

[
− 1

2
Δ̂ρ γ2 −Δp+Δρg · x

]
. (11.5.29)

The tangential acceleration in the second term on the left-hand side is computed from (11.5.21).
The right-hand side of (11.5.29) expresses the rate of production of vorticity along the vortex sheet.

11.5.2 Motion with the principal velocity of the vortex sheet

When the marker points move with the principal velocity of the vortex sheet, α = 1
2
, we obtain

α1 = − 1
2 , α2 = 1

2 , and

ρ̃ =
1

2
(ρ1 + ρ2), Δ̂ρ =

1

4
Δρ, B =

1

2
, Â =

1

4
A. (11.5.30)

The forcing function defined in (11.5.25) takes the simpler form

F(ξ) = −A
[
J + t · [

(∂v
∂t

)
ξ
− g ] +

1

4
γ
∂γ

∂l

]
− 1

2
γ t · ∂V

∂l
− 1

ρ1 + ρ2

∂Δp

∂l
. (11.5.31)

The motion of the vortex sheet is determined exclusively by the Atwood ratio, A. The evolution
equation (11.5.17) becomes(∂γ

∂t

)
ξ
+ γ t · ∂V

∂l
= −2A

[
t ·

(∂V
∂t

)
ξ
+

1

4
γ
∂γ

∂l
− t · g ]

]
− 2

ρ1 + ρ2

∂Δp

∂l
. (11.5.32)

The first two terms inside the square brackets on the right-hand side can be written in the compact
form

t ·
(∂V
∂t

)
ξ
+

1

4
γ
∂γ

∂l
= t · ā, (11.5.33)

where

ā ≡ 1

2

(Du(1)

Dt
+

Du(2)

Dt

)
(11.5.34)

is the mean value of the fluid acceleration on either side of the vortex sheet and D/Dt is the material
derivative. To show this, we write

Du(i)

Dt
=

∂u(i)

∂t
+ u(i) · ∇u(i) =

∂u(i)

∂t
+ (V + αiγt) · ∇u(i) (11.5.35)

for i = 1, 2. Applying this equation for i = 1 and 2 with α1 = −1
2 and α2 = 1

2 , and summing the
resulting equations, we obtain

2 ā = 2
∂V

∂t
+ (V − 1

2
γ t) · ∇u(1) + (V +

1

2
γ t) · ∇u(2). (11.5.36)
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Rearranging the right-hand side, we find that

2 ā = 2
∂V

∂t
+V · ∇(u(1) + u(2)) +

1

2
γ t · ∇(u(2) − u(1)). (11.5.37)

The union of the first two terms on the right-hand side of (11.5.37) is equal to 2 (∂V/∂t)ξ. Substi-
tuting u(2) − u(1) = γ t and projecting the resulting equation on t, we obtain (11.5.33).

Matched fluid densities

When the vortex sheet separates two fluids with equal densities, ρ1 = ρ2 = ρ, the Atwood ratio is
zero, A = 0, yielding an explicit expression for the rate of change of the strength of the vortex sheet
following the marker points, (∂γ

∂t

)
ξ
= −γ t · ∂V

∂l
− 1

ρ

∂Δp

∂l
. (11.5.38)

The evolution equation (11.5.29) for the circulation along the vortex sheet can be integrated with
respect to arc length to give (∂ Γ

∂t

)
ξ
= −Δp

ρ
+ c(t), (11.5.39)

where c(t) is an arbitrary function of time. In the absence of surface tension, the pressure is
continuous across the vortex sheet. Setting without loss of generality c(t) = 0, we obtain the
remarkably simple evolution equation (∂Γ/∂t)ξ = 0, stating that the marker points preserve their
circulation. To simplify the formulation, we may label the marker points by their initial circulation,
setting ξ = Γ.

11.5.3 The Boussinesq approximation

In certain applications involving gravity-driven flow, density variations play an important role in
determining the magnitude of the gravitational force, but make a minor contribution to the magni-
tude of the inertial force. To simplify the computation of the flow, we may adopt the Boussinesq
approximation, replacing the individual fluid densities ρi with the mean value, ρ = 1

2 (ρ1+ρ2), in all
but the gravity term in the equation of motion. The Boussinesq approximation is strictly valid in
the limit as the Atwood ratio A tends to zero while the scaled acceleration of gravity gT 2/L tends
to infinity, so that the product Ag remains finite, where L and T are characteristic length and time
scales.

Under the Boussinesq approximation, the factors and coefficients defined in (11.5.15) and
(11.5.26) take the values

ρ̃ = ρ, Δ̂ρ = (1− 2α) ρ, B =
1

2
, Â =

1

2
− α. (11.5.40)

The evolution equation for the strength of the vortex sheet reduces to(∂γ
∂t

)
ξ
= −γ

(
t · ∂V

∂l
+ (1− 2α)

∂γ

∂l

)
− 1

ρ

∂Δp

∂l
+ 2Ag · t, (11.5.41)
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and the evolution equation for the circulation along the vortex sheet reduces to(∂Γ
∂t

)
ξ
= −(

1

2
− α) γ2 − Δp

ρ
+ 2Ag · x+ c(t). (11.5.42)

The simplifications resulting from the Boussinesq approximation are reflected in the absence of the
tangential marker-point acceleration on the right-hand sides of (11.5.41) and (11.5.42).

11.5.4 A vortex sheet embedded in irrotational flow

In the particular but common case where a vortex sheet separates two regions of irrotational flow,
the circulation along the vortex sheet is equal to the jump in the velocity potential across the vortex
sheet, Γ = φ2 − φ1, as discussed in Section 2.1.3. Using the unsteady Bernoulli equation, we find
that the change in the potential on either side of a vortex sheet as seen by an observer who is moving
with the marker points is(∂φi

∂t

)
ξ
−V · u(i) +

1

2
u(i) · u(i) +

pi
ρi

− g · x = ci(t) (11.5.43)

for i = 1, 2, where ci(t) two are unrelated functions. Substituting u(i) = V + αiγ t and simplifying,
we find that (∂φi

∂t

)
ξ
− 1

2
V ·V +

1

2
α2
i γ

2 +
pi
ρi

− g · x = ci(t). (11.5.44)

Next, we apply this equation for i = 1, 2 and take the difference of the resulting expressions. In the
case of equal fluid densities, ρ1 = ρ2 = ρ, we obtain(∂Γ

∂t

)
ξ
+

1

2
(α2

2 − α2
1) γ

2 +
Δp

ρ
= c2(t)− c1(t), (11.5.45)

which is consistent with equation (11.5.29) derived by a different method.

Problems

11.5.1 A vortex sheet embedded in potential flow

Discuss how equation (11.5.43) can be used to derive (11.5.29) in the general case of different fluid
densities.

11.5.2 A fluid interface in oscillatory motion

Consider a fluid resting on another fluid with different density inside a container that executes
vertical oscillatory motion normal to the interface along the x axis with velocity Vx = V0 sin(Ωt),
where V0 is a constant amplitude and Ω is the angular frequency of the oscillations. In the absence of
viscous forces, the motion of the interface can be described in terms of an vortex sheet situated over
the interface. Show that, subject to the Boussinesq approximation, the evolution of the circulation
along the vortex sheet for α = 1

2
is described by(∂Γ

∂t

)
ξ
=

τ

ρ
κ+ 2A [V0 cos(Ωt)− gx]x, (11.5.46)

where τ is the surface tension, κ is the curvature, and A is the Atwood ratio.
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Xi−1/2

X i

Xi+1/2

Figure 11.6.1 Discretization of a vortex sheet into a collection of elements defined by end points and
midpoints. In the point-vortex method, the vortex sheet is replaced by a collection of point vortices
located at the midpoints.

11.6 The point-vortex method for vortex sheets

In Section 11.5, we derived an integro-differential equation governing the motion of marker points
distributed along a two-dimensional vortex sheet, and an integral equation governing the evolution of
the strength of the vortex sheet or circulation along the vortex sheet. These equations can be solved
by standard numerical methods for differential and integral equations (e.g., [409]). The simplest
approach is based on the point-vortex discretization, first implemented by Rosenhead at the dawn
of scientific computing [349].

Trapezoidal rule

In the point vortex method, the principal value of the Biot–Savart integral (11.5.9) along a vortex
sheet is approximated with the trapezoidal rule. To implement the method, we divide the vortex
sheet into N elements whose end points are defined in terms of a chain of marker points, Xi−1/2,
where i = 1, . . . , N + 1, as shown in Figure 11.6.1. The midpoint of the ith segment extending
between Xi−1/2 and Xi+1/2 is denoted by Xi, the element length is denoted by Δli, the difference in
the circulation across the end points is denoted by ΔΓi, and the unit vector tangent to the segment
at the midpoint is denoted by ti. Using central differences, we approximate the tangent unit vector
as

ti �
1

Δli

(
Xi+1/2 −Xi−1/2

)
. (11.6.1)

More advanced differentiation methods based on cubic spline or trigonometric interpolation of the
coordinates of the marker points with respect to the arc length of the polygonal line connecting the
marker points offer higher accuracy.

Point vortex motion

The element end points and midpoints are marker points whose velocity is determined by equa-
tion (11.5.9). Applying (11.5.9) at the midpoints, Xi, we derive a system of nonlinear differential
equations for Xi,

dXi

dt
=

1

2π

N∑
j=1

′

[
−Yi + Yj

Xi −Xj

]
ΔΓj

|Xi −Xj |2
+ (α− 1

2
)
ΔΓi

Δli
ti + v(Xi), (11.6.2)

where the prime indicates that the term i = j is excluded from the sum. Apart from the last two
terms, equation (11.6.2) is identical to (11.2.1) describing the motion of a collection of N point
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vortices located at the element midpoints, Xi. The element circulation, ΔΓj , plays the role of the
point vortex strength, κj . Computing the evolution of the vortex sheet is thus reduced to computing
the motion of point vortices with generally evolving strength.

Having advanced the position of the midpoints, Xi, using (11.6.2), we reset the position of
the end points, Xi+1/2, by linear or high-order interpolation. In the simplest approach, we set

Xi+1/2 = 1
2 (Xi +Xi+1). As an alternative, we advance the position of the end points according to

the velocity field induced by the point vortices, setting

dXi+1/2

dt
=

1

2π

N∑
j=1

[
−Yi+1/2 + Yj

Xi+1/2 −Xj

]
ΔΓj

|Xi+1/2 −Xj |2
+ (α− 1

2
) γi+1/2 t(Xi+1/2) + v(Xi+1/2).

(11.6.3)

The tangential unit vector in the last term of (11.6.3) can be computed by numerical differentiation
setting, for example, t(Xi+1/2) = (Xi+1 −Xi)/|Xi+1 −Xi|.

Evolution of the strength of the point vortices

To derive an evolution equation for the element circulation, ΔΓi, we integrate equation (11.5.29)
with respect to the parameter ξ over the length of a segment. Applying the trapezoidal rule, we
derive the approximate form

ρ̃
dΔΓi

dt
+Δρ

[
t ·

(∂V
∂t

)
ξ

]
Δli =

[
− 1

2
Δ̂ρ γ2 −Δp+Δρg · x

]Xi+1/2

Xi−1/2

. (11.6.4)

The acceleration of the point vortices involved in the first term on the right-hand side is computed
by differentiating the right-hand side of (11.6.2) with respect to time. To simplify the expressions,
we set α = 1

2 and obtain

(∂V
∂t

)
a
≡ dVi

dt
=

1

2π

N∑
j=1

′

[
−Yi + Yj

Xi −Xj

]
1

|Xi −Xj |2
dΔΓj

dt

+
1

2π

N∑
j=1

′ d

dt

([ −Yi + Yj

Xi −Xj

]
1

|Xi −Xj |2
)
ΔΓj +

(∂v
∂t

)
(Xi). (11.6.5)

Carrying out the differentiation in the second sum on the right-hand side and simplifying, we find
that

d

dt

([ −Yi + Yj

Xi −Xj

]
1

|Xi −Xj |2
)
=

1

r̂4

[
2ûx̂ŷ + v̂ (ŷ2 − x̂2)
û (ŷ2 − x̂2)− 2v̂x̂ŷ

]
, (11.6.6)

where

x̂ = Xi −Xj , ŷ = Yi − Yj , r̂2 = x̂2 + ŷ2, û = Vxi
− Vxj

, v̂ = Vyi
− Vyj

. (11.6.7)

Substituting (11.6.6) into (11.6.5) and then into (11.6.4), we obtain a system of linear algebraic
equations for dΔΓi/dt. The solution can be computed by Jacobi iterations, which involves assuming
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values for dΔΓi/dt, substituting these values into the right-hand side of (11.6.5), and then computing
the right-hand side of (11.6.4) to produce new and improved values for dΔΓi/dt, to be used in
subsequent iterations.

Boussinesq approximation

Adopting the Boussinesq approximation and setting in (11.6.4) α = 1
2 , we obtain an explicit evolution

equation for the strength of the point vortices,

dΔΓi

dt
=
[
− Δp

ρ̃
+ 2Ag · x

]Xi+1/2

Xi−1/2

, (11.6.8)

where A is the Atwood ratio defined in (11.5.24). In the absence of surface tension, Δp = 0. We see
that the Boussinesq approximation bypasses solving a system of equations for the rate of the change
of the strength of the point vortices.

11.6.1 Regularization

In practice, unless a vortex sheet is sufficiently stretched during the evolution, the motion of the
point vortices representing the vortex sheet becomes disorganized and eventually chaotic. The origin
of this pathology can be traced back to the exponential amplification of the round-off error due to
the instability of an array of point vortices discussed in Section 11.3.

Repositioning

One way to regularize the motion is to redistribute the point vortices along the vortex sheet after
each time step or every few time steps, so that the point vortices become evenly spaced with respect
to the instantaneous arc length [127]. The strength of the point vortices at the new positions is
found from the strength of the point vortices at the old positions by interpolation with respect to ξ
or with respect to arc length of the polygonal line connecting successive marker points.

Smoothing the position

In another approach, irregularities are filtered out by expressing the Cartesian coordinates of the
point vortices in a global Fourier series or a local polynomial expansion in terms of an appropriate
label, such as the polygonal arc length. The position of the point vortices is then recomputed by
truncating the Fourier series or discarding odd terms in the polynomial expansion [215]. A simple
yet effective method of smoothing is provided by the five-point formula

xs
i =

1

16
(−xi−2 + 4xi−1 + 10xi + 4xi+1 − xi+2), (11.6.9)

where the superscript s denotes a smoothed position [244].

Smoothing the kernel

In a third approach, the motion is regularized by replacing the point vortices with vortex blobs,
as discussed in Section 11.4 [82]. Alternatively, the singular Biot–Savart integrand in (11.5.9) is
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replaced with a nearly singular integrand, and equation (11.5.7) is correspondingly modified. For
α = 1

2 , the motion of the point vortices is governed by the equations

dXi

dt
=

1

2π

N∑
j=1

′

[
−Yi + Yj

Xi −Xj

]
ΔΓj

|Xi −Xj |2 + δ2
+ v(Xi), (11.6.10)

where δ is a small numerical parameter with dimensions of length, included to eliminate the unstable
behavior due to the singular Biot–Savart integral [216].

11.6.2 Periodic vortex sheets

The equations derived in this section for a finite or closed vortex sheet can be modified in a straight-
forward fashion to describe the motion of a vortex sheet that is repeated periodically in the x
direction with period a. Using (2.13.23), we find that the motion of marker points deployed along
the vortex sheet is governed by a modified version of (11.5.7),

∂X

∂t
=

1

2a

∫ PV

C

[
− sinh(k[Y (ξ)− y(ξ′)])

sin(k[X(ξ)− x(ξ′)])

]
γ(ξ′)

cosh(k[Y (ξ)− y(ξ′)])− cos(k[X(ξ)− x(ξ′)])

∂l

∂ξ′
dξ′

+(α− 1

2
) γ t+ v, (11.6.11)

where k = 2π/a is the wave number and C is the trace of the vortex sheet in the xy plane over one
period. The evolution equation for the strength of the vortex sheet remains unchanged.

The counterpart of the regularized system (11.6.10) is

dXi

dt
=

1

2a

N∑
j=1

′

[
− sinh[k(Yi − Yj)]

sin[k(Xi −Xj)]

]
ΔΓj

cosh[k(Yi − Yj)]− cos[k(Xi −Xj)] + ε2
+ v(Xi), (11.6.12)

whereN is the number of point vortices inside one period and ε is a small dimensionless regularization
parameter. The evolution equation for the strength of the point vortices remain unchanged.

Stages in the evolution of a sinusoidally perturbed vortex sheet with negative strength im-
mersed in a homogeneous fluid computed using (11.6.12) with N = 96 and ε = 0.125 or 0.250 are
shown in Figure 11.6.2. The vortex sheet rolls up into a periodic sequence of spirals whose turns
keep increasing in time. A higher number of tightly wound spiral turns develop as ε becomes smaller.
The numerical results suggest that, in the limit as ε tends to zero, a cusp develops spontaneously at
the center of the spiral after a finite period of time, immediately before the spiral starts forming its
turns [216].

Problems

11.6.1 Point-vortex method for an accelerating vortex sheet

Write the counterpart of the evolution equation (11.6.8) in a frame of reference undergoing transla-
tional acceleration with time-dependent velocity V(t).
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Figure 11.6.2 Stages in the evolution of a sinusoidally perturbed vortex sheet with negative strength
computed using the regularized equation (11.6.12) with (a) ε = 0.250 or (b) 0.125. Profiles are
shown at equal time intervals.

11.6.2 Stability of a row of regularized point vortices

Carry out the linear stability analysis of an infinite row of point vortices whose motion is described
by the regularized evolution equation (11.6.12). Verify that, as ε tends to zero, the results are
consistent with those for the point-vortex array discussed in Section 11.3.

11.6.3 Smoothing

Discuss the mathematical action of the smoothing formula (11.6.9) with reference to a triangular
wave.

Computer Problem

11.6.4 Rayleigh–Taylor instability of a vortex sheet

Consider the instability of the interface separating two immiscible quiescent fluids with different
densities in the absence of surface tension. At the initial instant, the interface is subjected to a
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periodic sinusoidal perturbation in shape with wavelength L and amplitude b0. When viscous effects
are insignificant, the interface can be identified with a vortex sheet with vanishing initial strength.
Write a program that computes the motion of the vortex sheet using the point-vortex method,
subject to the Boussinesq approximation. The integration in time should be performed using the
modified Euler method discussed in Section B.8, Appendix B. The motion should be regularized using
a method of your choice. At the initial instant, assume that each point vortex is displaced along
the y axis in a sinusoidal fashion, while its strength remains zero. Run the program for b0/L = 0.10
and N = 8, 16, and 32 point vortices inside each period separated by distance a = L/N . Discuss
the observed differences in behavior.

11.7 Two-dimensional flow with distributed vorticity

In Section 11.6, we discussed a method of computing the motion of two-dimensional vortex sheets
discretized into a collection of point vortices or vortex blobs. The procedure involves computing the
motion of the point vortices or vortex blobs while simultaneously updating their strengths by solving
an integral equation. To extend this method to the more general case of two-dimensional flow with
continuous vorticity distribution, we express the initial vorticity field in terms of a collection of N
point vortices with strength κi located at xi,

ωz =
N∑
i=1

κi(t) δ2(x− xi), (11.7.1)

where δ2 is the two-dimensional delta function. The motion of the point vortices is then computed
using the methods discussed in Section 11.2 [85]. A regularized version of method discretizes the
vorticity field into vortex blobs, as discussed in Section 11.4 (e.g., [328]).

Discretization of the vorticity field

At the beginning of the computation, we must distribute the point vortices in a way that is consistent
with the initial state. In one implementation, a two-dimensional rectilinear or curvilinear grid
forming a two-dimensional array of cells is introduced and a point vortex is placed in the middle of
each cell. To ensure that the sum of the strengths of all point vortices is equal to the circulation
around a large loop enclosing the flow, the strength of each point vortex is set equal to the integral of
the vorticity or circulation of the fluid inside the corresponding cell. Other methods of discretizing
the initial vorticity field are available [78].

11.7.1 Vortex-in-cell method (VIC)

The simulations become prohibitively expensive when a large number of point vortices are employed.
Computing the velocity of N point vortices requires calculating N2 mutual interactions, which can
be unaffordable for N on the order of a few hundred or thousand. To circumvent this difficulty, a
vortex-in-cell (VIC) method was proposed as a special implementation of the cloud-in-cell method
(CIC) [85]. The numerical scheme helps reduce the computational cost by circumventing the direct
computation of the mutual interactions.
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Given the instantaneous position of the point vortices, the stream function is computed by
inverting the Poisson equation

∇2ψ = −ωz. (11.7.2)

The velocity at the position of the point vortices arises by numerically differentiating the stream
function.

Poisson equation on a grid

The Poisson equation for the stream function can be solved

x xx

y

y

y

i i+1n

j+1

n

j

κn

Illustration of a point vortex inside a
host cell.

by finite-difference or fast Fourier transform methods based
on spectral expansions. Both methods require computing the
vorticity at grid points from the position and strength of the
point vortices according to an algorithm that preserves the
circulation around each cell.

Assume that the nth point vortex lies inside a rectangu-
lar cell that is bounded by the vertical grid lines x = xi and
xi+1, and by the horizontal grid lines y = yj and yj+1. The
contribution of that point vortex to the vorticity of adjacent
grid points can be computed according to the formulas

ω
(n)
i,j = β (xi+1 − xn) (yj+1 − yn), ω

(n)
i+1,j = β (xn − xi) (yj+1 − yn),

ω
(n)
i,j+1 = β (xi+1 − xn) (yn − yj), ω

(n)
i+1,j+1 = β (xn − xi) (yn − yj), (11.7.3)

where β = 4κn/A, A is the cell area, xn = (xn, yn) is the position of the nth point vortex, and κn

is the strength of the nth point vortex [85]. The contribution of the point vortex to all other grid
points is zero. Implementations of the vortex-in-cell method for vortex blobs are available [6].

Fast algorithms

A variety of computational techniques have been developed for reducing the O(N2) operations of the
point-vortex method to O(N lnN) or even O(N) operations. Examples are tree codes and multipole
expansions [328]. One particular method involves successively discretizing the domain of flow into
smaller rectangles by subdividing a parent rectangle into four smaller rectangles until N rectangles
have been formed. Near-neighbors and well-separated rectangles are identified and, for the purpose
of computing velocities, point vortices that lie inside well-separated boxes are condensed into central
point vortices whose strength is equal to the sum of the strengths of the condensed point vortices.

11.7.2 Viscous effects

A physically appealing method of accounting for viscous or diffusive effects is based on the obser-
vation that point particles in a macroscopically stationary fluid execute random motions due to
thermal fluctuations. The stochastic displacement of a point particle in a particular direction over a
time period, Δt, is a Gaussian distribution with zero mean value and variance equal to 2κΔt, where
κ is the particle diffusivity.
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Moore (1969) (see [265]) and Chorin [81] observed that, since point vortices and vortex blobs
in an inviscid fluid maintain their original strength, viscous diffusion can be emulated by allowing the
point vortices or vortex blobs to execute random motion in addition to the deterministic motion due
to mutual interactions. The diffusion step displaces the position of the ith point vortex over one time
step by (Δxi,Δyi), where Δx1,Δy1, . . . ,ΔxN ,ΔyN is a set of independent random displacement
whose probability density function forms a Gaussian distribution with zero mean and variance equal
to 2νΔt, where ν is the kinematic viscosity. Chorin [81] applied the random vortex method to
simulate flow at high Reynolds number past a circular cylinder. Milinazzo & Saffman [265] and
Roberts [347] showed that the casual application of the method may lead to significant numerical
error due to slow convergence with respect to N . A large number of point vortices is required to
ensure statistical equilibrium.

Another way of emulating the effects of viscosity is to employ vortex blobs whose radius
increases in time due to diffusion, as discussed in Section 11.4. The lack of random motion justifies
calling these vortex methods deterministic (e.g., [328]).

11.7.3 Vorticity generation at a solid boundary

Consider a viscous flow past an impermeable solid boundary where the tangential and normal velocity
components are required to vanish. In general, the velocity field induced by the point vortices that
arise by discretizing the vorticity field satisfies neither the no-penetration nor the no-slip condition.
To annihilate the penetration velocity, we may introduce an appropriate complementary potential
flow. However, the sum of the flow induced by the point vortices and the complementary potential
flow will still have a finite tangential component, ut, amounting to a boundary vortex sheet whose
strength is equal to −ut. Physically, the boundary vortex sheet represents a viscous boundary layer.

In the case of steady unseparated flow past a streamlined body, the thickness of the boundary
layer depends on the Reynolds number as 1/

√
Re. In the case of unsteady flow, vorticity diffuses

away from the vortex sheet, it is convected by the ambient flow, and finally enters the bulk of the
flow. Chorin [81] proposed modeling these physical processes according to the following steps:

1. Discretize the boundary into a collection of segments with arc length Δl.

2. Compute the tangential velocity, ut at the midpoint of each segment.

3. Introduce a vortex blob with top-hat vorticity distribution, circulation equal to utΔl, and
radius rb = Δl/(2π) at the midpoint of each segment.

4. Move the blobs with a velocity that is equal to the sum of (a) the velocity induced by the
vorticity of the flow, (b) the velocity due to a potential flow that accounts for the the no-
penetration condition, and (c) a random velocity that emulates viscous diffusion. If a vortex
blob crosses the boundary, it is removed from the flow.

5. Return to Step 2 and repeat the computation for another time step.

Subtleties arise when we attempt to determine the motion of newly created blobs. An improved
version of the method involves discretizing the vortex sheet into elemental vortex patches using the
Prandtl boundary layer equations [83, 84]. Refinements and improvements are available [328].
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Computer Problems

11.7.1 Kirchhoff’s vortex

Write a program that computes the motion of an elliptical vortex patch with constant vorticity Ω
immersed in an infinite otherwise quiescent fluid using the point-vortex method. The initial strength
of the point vortices should be computed by projection onto a rectilinear grid. The algorithm should
employ direct summation for computing the mutually induced velocities. The modified Euler method
discussed in Section A.8, Appendix B, should be employed for integrating the differential equations.
Perform computations for ellipse aspect ratios a/b = 1.1, 1.5, and 2, and an increasing number of
point vortices, N . Assess the stage where the computational requirements become prohibitive for
the available resources.

11.7.2 Diffusing Kirchhoff’s vortex

Repeat Problem 11.7.1 including viscous effects implemented by random walks. The random dis-
placements should be computed with the help of a random-number generator. Study the motion
for ellipse aspect ratios a/b = 1.0, 1.5, and 2, and several values of the effective Reynolds number
Re = Ωa2/ν. Carry out simulations with an increasing number of point vortices, N , and discuss the
results.

11.8 Two-dimensional vortex patches

Two-dimensional vortex patches with uniform vorticity are amenable to analytical and computa-
tional studies that reveal the structure and dynamics of regions of concentrated vorticity in an
otherwise irrotational flow [357]. In Section 2.13.5, we saw that the flow due to a vortex patch
with uniform vorticity Ω can be expressed as a line integral around the patch contour, C. Equation
(2.13.23), provides us with the contour integral representation

u(x) = − Ω

4π

∮
C

ln
x̂2 + ŷ2

a2
t(x′) dl(x′), (11.8.1)

where x̂ = x− x′, a is a chosen length, and l is the arc length around the contour measured in the
direction of the tangent unit vector, t.

The vorticity transport equation for two-dimensional flow in the absence of viscous forces
guarantees that the vorticity of the patch remains constant in time. Combining the contour integral
representation with the vorticity transport equation, we find that the dynamics of the flow can be
described on geometrical grounds by following the evolution of the vortex contour alone.

11.8.1 The Rankine vortex

The Rankine vortex is a circular vortex patch immersed in an otherwise quiescent infinite fluid, as
shown in Figure 11.8.1(a). The fluid inside the vortex rotates like a rigid body about the center of
the vortex with polar velocity

uθ =
1

2
Ωr, (11.8.2)
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Figure 11.8.1 (a) Illustration of a Rankine vortex of radius a. The fluid executes rigid-body motion
inside the vortex and the velocity decays like that due to a point vortex outside the circular core.
(b) Illustration of Kirchhoff’s elliptical vortex rotating with angular velocity Ωz.

where r is the distance from the centerpoint. Outside a Rankine vortex of radius a, the flow is
identical to that due to a point vortex with strength κ = Ωπa2 situated at the center of the vortex,
and the polar velocity is

uθ =
Ω

2

a2

r
. (11.8.3)

Note that the composite velocity is continuous, but the derivative of the velocity suffers a disconti-
nuity across the vortex contour located at r = a.

Small-amplitude waves around the vortex contour

To study the propagation of small-amplitude waves around the Rankine vortex, we displace the
contour to the radial position

r = a [1 + ε cos(mθ)], (11.8.4)

where ε � 1 is a small dimensionless number, θ is the polar angle measured around the center of
the unperturbed vortex, and m > 1 is an integer determining the circumferential wave number. In
Cartesian coordinates, the vortex contour is described by the equations

x = xc(θ) = a
[
1 + ε cos(mθ)

]
cos θ, y = yc(θ) = a

[
1 + ε cos(mθ)

]
sin θ. (11.8.5)

Substituting these expressions into the contour integral representation (11.8.1), we derive an expres-
sion for the velocity induced by the deformed patch,[

ux

uy

]
(x) = −Ωa

4π

∫ 2π

0

ln

[
x− xc(θ)

]2
+
[
y − yc(θ)

]2
a2

[
− sin θ + ε

[
cos(mθ) cos θ

]′
cos θ + ε

[
cos(mθ) sin θ

]′ ] dθ, (11.8.6)

where a prime denotes a derivative with respect to θ.
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Linearization

Next, we evaluate the velocity at a point on the vortex contour located at θ = θ0. As a preliminary,
we compute the squares of the x and y distances

(Δx)2 ≡
[
xc(θ0)− xc(θ)

]2
= a2

[
cos θ0 − cos θ + ε

(
cos(mθ0) cos θ0 − cos(mθ) cos θ

)]2
(11.8.7)

and

(Δy)2 ≡
[
yc(θ0)− yc(θ)

]2
= a2

[
sin θ0 − sin θ + ε

(
cos(mθ0) sin θ0 − cos(mθ) sin θ

)]2
. (11.8.8)

Adding these expressions, linearizing with respect to ε, and simplifying, we find that

(Δx)2 + (Δy)2 � 2a2
[
1− cos(θ0 − θ)

](
1 + ε [cos(mθ0) + cos(mθ)]

)
. (11.8.9)

Substituting this expression into the argument of the logarithm in the contour integral representation
(11.8.6) and linearizing, we obtain[

ux

uy

]
(θ0) � −Ωa

4π

∫ 2π

0

ln[1− cos(θ0 − θ)]

[
− sin θ
cos θ

]
dθ − ε

Ωa

4π

[
wx

wy

]
(θ0), (11.8.10)

where [
wx

wy

]
(θ0) =

∫ 2π

0

ln[1− cos(θ − θ0)]

[
cos(mθ) cos θ
cos(mθ) sin θ

]′
dθ

+

∫ 2π

0

[
cos(mθ0) + cos(mθ)

] [ − sin θ
cos θ

]
dθ. (11.8.11)

The first integral integral on the right-hand side of (11.8.10) expresses the circulatory flow of the
perfectly circular vortex with velocity components ux = − 1

2 Ωa sin θ0 and uy = 1
2 Ωa cos θ0. The

second integral on the right-hand side of (11.8.11) is identically zero for any m > 1. Accordingly,[
ux

uy

]
(θ0) �

Ωa

2

[
− sin θ0
cos θ0

]
− ε

Ωa

4π

∫ 2π

0

ln[1− cosw]

[
cos[m(w + θ0)] cos(w + θ0)
cos[m(w + θ0)] sin(w + θ0)

]′
dθ,

(11.8.12)

where w ≡ θ − θ0 and a prime denotes a derivative with respect to w.

Normal velocity

The velocity component normal to the unperturbed circular contour arises by projecting the velocity
given in (11.8.12) onto the radial unit vector, n = [cos θ0, sin θ0], finding

un(θ0) = −ε
Ωa

4π

∫ 2π

0

ln[1− cosw]

[
cos[m(w + θ0)] cos(w + θ0)
cos[m(w + θ0)] sin(w + θ0)

]′
·
[

cos θ0
sin θ0

]
dθ. (11.8.13)

Simplifying the integrand, we obtain

un(θ0) = ε
Ωa

4π

∫ 2π

0

ln[1− cosw]
[
cos[m(w + θ0)] sinw +m sin[m(w + θ0)] cosw

]
dw, (11.8.14)
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which can be restated as

un(θ0) = −ε
Ωa

4π

∫ 2π

0

ln[1− cosw]
[
cos[m(w + θ0)] cosw

]′
dw (11.8.15)

and then

un(θ0) = ε
Ωa

4π
sin(mθ0)

∫ 2π

0

ln[1− cosw]
[
sin(mw) cosw

]′
dw. (11.8.16)

Integrating by parts, we find that the integral on the right-hand side is equal to 2π when m > 0,
and −2π when m < 0. Thus,

un(θ0) = ε
m

|m|
Ωa

2
sin(mθ0). (11.8.17)

The calculations can be repeated with a sine instead of a cosine on the right-hand side of (11.8.4),
resulting in (11.8.17) with a negative cosine instead of a sine on the right-hand side.

Stability

Our analysis has indicated that, if

η(θ, t) = aε cos[m(θ − ct)] (11.8.18)

is the normal displacement of the boundary velocity, then

un(θ, t) = ε
m

|m|
Ωa

2
sin[m(θ − ct)] (11.8.19)

is the velocity normal to the circular contour, where t stands for time and c is the phase velocity of
the contour wave. Kinematic compatibility requires that

∂η

∂t
+

uθ

a

∂η

∂θ
− un = 0, (11.8.20)

where uθ = 1
2
Ωa is the tangential velocity of the unperturbed vortex. Substituting (11.8.18) and

(11.8.19) into (11.8.20) and simplifying, we obtain

−c+
Ω

2
− 1

|m|
Ω

2
= 0. (11.8.21)

Rearranging, we derive an expression for the phase velocity first deduced by Kelvin in 1880 [404],

c =
1

2
Ω
(
1− 1

|m|
)
. (11.8.22)

Since c is real, boundary waves rotate with constant amplitude and the Rankine vortex is linearly
stable. The phase velocity increases from c = 1

4 Ω when m = 2 for long waves to c = 1
2 Ω as m =→ ∞

for short waves.

We have analyzed the evolution of Kelvin waves around the Rankine vortex based on the
contour representation in a way that bypasses the computation of the pressure based on the Euler
or Bernoulli equation.
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11.8.2 The Kirchhoff elliptical vortex

Kirchhoff discovered that the contour of an elliptical vortex patch, but not the fluid itself, rotates
steadily with angular velocity that depends on the patch aspect ratio (e.g., [270, 357]). Consider a
horizontal elliptical vortex patch whose contour is described by the equations

xc(η) = a cos η, yc(η) = b sin η, (11.8.23)

where a and b are the semiaxes and η is the natural parameter of the ellipse ranging in the interval
[0, 2π). Without loss of generality, we assume that a ≥ b, as shown in Figure 11.8.1(b). Substituting
(11.8.23) into (2.13.23), we derive an integral representation for the induced velocity,[

ux

uy

]
(x) = − Ω

4π

∫ 2π

0

ln
(x− a cos η)2 + (y − b sin η)2

a2

[
−a sin η
b cos η

]
dη. (11.8.24)

The parameter η should not be confused with the polar angle, θ.

Contour velocity

The velocity at a point on the vortex contour corresponding to η = η0, located at x = a cos η0 and
y = b sin η0, is [

ux

uy

]
(η0) = − Ω

4π

∫ 2π

0

ln
(R2

a2
) [ −a sin η

b cos η

]
dη, (11.8.25)

where

R2 ≡ a2 (cos η0 − cos η)2 + b2 (sin η0 − sin η)2. (11.8.26)

Simplifying, we find that

R2 = (a2 + b2) (1− κ cos η+) (1− cos η−), (11.8.27)

where

η+ = η + η0, η− = η − η0, κ =
a2 − b2

a2 + b2
. (11.8.28)

Substituting (11.8.27) into (11.8.25), we obtain[
ux

uy

]
(η0) = − Ω

4π

[ ∫ 2π

0

ln(1− κ cos η+)

[
−a sin(η+ − η0)
b cos(η+ − η0)

]
dη+

+

∫ 2π

0

ln(1− cos η−)

[
−a sin(η− + η0)
b cos(η− + η0)

]
dη−

]
. (11.8.29)

Simplifying, we obtain [
ux

uy

]
(η0) = − Ω

4π

[
a (A−A1) sin η0
b (A+A1) cos η0

]
, (11.8.30)
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where

A(κ) =

∫ 2π

0

ln(1− κ cos η+) cos η+ dη+ = −2π
1−

√
1− κ2

κ
= −2π

a2 − b2

(a+ b)2
, (11.8.31)

and A1 ≡ A(1) = −2π. Substituting the expressions for A and A1 into (11.8.30), we obtain[
ux

uy

]
(η0) = Ω

ab

a+ b

[
− sin η0
cos η0

]
. (11.8.32)

It is interesting that the tangential velocity at the tip of the vortex, η0 = 0, is the same as that at
the midpoint of the flat side, η0 = 1

2π.

Angular velocity of rotation

In a frame of reference rotating around the vortex center with angular velocity Ωz, the velocity
around the vortex contour is[

vx
vy

]
(η0) = Ω

ab

a+ b

[
− sin η0
cos η0

]
− Ωz

[
−b sin η0
a cos η0

]
. (11.8.33)

We note that the vector
[
b cos η0, a sin η0

]
is normal to the vortex contour at the position η0, and

conclude that the normal velocity, v · n, will be zero provided that

Ω
ab

a+ b
(a− b)− Ωz(a

2 − b2) = 0, (11.8.34)

yielding

Ωz = Ω
ab

(a+ b)2
or Ωz =

κ

π

1

(a+ b)2
, (11.8.35)

where κ = Ωπab is the circulation around the vortex. We have shown that an elliptical vortex patch
rotates intact with angular velocity Ωz given in (11.8.35). As the aspect ratio a/b increases while
the circulation around the vortex is held fixed, the rotating elliptical vortex reduces to a rotating
vortex layer with elliptical distribution of circulation along the major axis. The limit a/b → ∞ leads
us to a rotating vortex sheet (Problem 11.8.1).

Tangential velocity

Substituting (11.8.35) into (11.8.33), we obtain the velocity around the vortex contour in a frame of
reference rotating with the vortex,[

vx
vy

]
(η0) = Ωz

[
−a sin η0
b cos η0

]
. (11.8.36)

The corresponding tangential velocity is

vt(η0) ≡
1

J(η0)
v ·

[
−a sin η0
b cos η0

]
= Ωz J(η0), (11.8.37)
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where

J(η) =
(
a2 sin2 η + b2 cos2 η

)1/2
(11.8.38)

is the metric of the arc length with respect to the native parameter η around the elliptical shape.

Stability of the Kirchhoff elliptical vortex

To study the evolution of the vortex contour for small deviations from the elliptical shape, we refer
to a frame of reference rotating with the unperturbed vortex and describe the vortex contour as[

xc

yc

]
(η) =

[
a cos η
b sin η

]
+ εaq(η, t)n, (11.8.39)

where ε is a small dimensionless number, q(η) is a dimensionless deformation function, and n is the
unit vector normal to a horizontal stationary elliptical patch, given by

n =
1√

dx2
c + dy2c

[
dyc

−dxc

]
=

1

J(η)

[
b cos η
a sin η

]
. (11.8.40)

To ensure that the deformation preserves the area of the elliptical patch, we require that∮
q dl =

∫ 2π

0

q J dη = 0. (11.8.41)

Kinematic consistency requires the linearized condition

εa
∂q

∂t
+ εa

vt
J

∂q

∂η
− vn = 0, (11.8.42)

where vt is the velocity component tangential to the unperturbed contour given in (11.8.37), and
vn is the velocity component normal to the unperturbed contour. Substituting expression (11.8.37)
and rearranging, we find that

∂q

∂t
+Ωz

∂q

∂η
− vn

εa
= 0. (11.8.43)

Given a relation between vn and q, this linear partial differential equation can be integrated in time
by numerical methods.

Normal modes

To study normal mode perturbations with exponential dependence in time, we assume that the
shape function and normal velocity in the rotating frame behave as

q(η, t) = Q(η) e−i�t, vn(η, t) = εΩa Vn(η) e
−i�t, (11.8.44)

where � is the complex growth rate, Q(η) is a complex dimensionless eigenfunction, and Vn(η) is
an accompanying dimensionless complex function. Substituting these expressions into (11.8.43), we
obtain

−i�Q(η) + Ωz
dQ

dη
− ΩVn(η) = 0. (11.8.45)
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Given a linear relation between Vn and Q, we obtain an eigenvalue problem for the complex phase
velocity, �. To ensure the satisfaction of the area-preserving condition (11.8.41), we now set

Q =
a

J
(cosmη + γ sinmη), (11.8.46)

where m > 1 is the integer circumferential wave number and γ is an a priori unknown coefficient
determining the phase of the normal mode with respect to the x axis. Substituting this expression
into (11.8.45), we find that

−i�Qc(η) + Ωz
dQc

dη
− Ω

[
Vn(η)

]
Q=Qc

= −γ
(
− i�Qs(η) + Ωz

dQs

dη
− Ω

[
Vn(η)

]
Q=Qs

)
, (11.8.47)

where we have defined

Qc ≡
a

J
cosmη, Qs ≡

a

J
sinmη. (11.8.48)

If Vn is available, equation (11.8.47) can be applied for two different values of η, and the resulting
equations can be divided side by side to produce a quadratic algebraic equation for �. Once the
roots have been found, the coefficient γ determining the phase shift can be computed by applying
(11.8.47) for an arbitrary value η.

Computation of the normal velocity

The contour integral representation produces us with an expression for the velocity field induced by
a slightly deformed elliptical vortex in a stationary frame,[

ux

uy

]
(x) = − Ω

4π

∫ 2π

0

ln
R2

ε

a2

[
−a sin η + b ε(ψ cos η)′

b cos η + a ε(ψ sin η)′

]
dη, (11.8.49)

where ψ ≡ aq/J , a prime denotes a derivative with respect to η, and

R2
ε ≡ (x− a cos η − εbψ cos η)2 + (y − b sin η − εaψ sin η)2. (11.8.50)

For a point located at the perturbed vortex contour, η = η0,

R2
ε =

(
a (cos η0 − cos η) + ε b [ψ(η0) cos η0 − ψ(η) cos η]

)2

+
(
b (sin η0 − sin η) + ε a [ψ(η0) sin η0 − ψ(η) sin η]

)2

. (11.8.51)

Linearizing with respect to ε, we find that

R2
ε � R2 + ε 2abR1, (11.8.52)

where R is given in (11.8.27) and

R1 = (cos η0 − cos η)[ψ(η0) cos η0 − ψ(η) cos η]
+(sin η0 − sin η)[ψ(η0) sin η0 − ψ(η) sin η].

(11.8.53)
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Substituting (11.8.52) into (11.8.49) and linearizing the logarithmic term, we obtain[
ux

uy

]
(η0) � − Ω

4π

∫ 2π

0

(
ln

R2

a2
+ ε 2ab

R1

R2

) [ −a sin η + b ε(ψ cos η)′

b cos η + a ε(ψ sin η)′

]
dη. (11.8.54)

Linearizing further, we find that the velocity in a frame of reference rotating with the elliptical
vortex is given by[

vx
vy

]
(η0) � Ωz

[
−b sin η0
a cos η0

]
− Ω

4π

∫ 2π

0

ln
R2

a2

[
−a sin η
b cos η

]
dη

−ε
( Ω

4π
2ab

∫ 2π

0

R1

R2

[
−a sin η
b cos η

]
dη +

Ω

4π

∫ 2π

0

ln
R2

a2

[
b (ψ cos η)′

a (ψ sin η)′

]
dη +Ωz

[
−aψ sin η0
bψ cos η0

])
.

(11.8.55)

The velocity component normal to the unperturbed elliptical contour is

vn(η0) � −ε
1

J(η0)

Ω

4π

(
2a2b2

∫ 2π

0

R1

R2
sin(η0 − η) dη +

∫ 2π

0

L(η, η0) ln
R2

a2
dη
)
, (11.8.56)

where

L(η, η0) =

[
b (ψ cos η)′

a (ψ sin η)′

]
·
[

b cos η0
a sin η0

]
. (11.8.57)

The integrable logarithmic singularity in the second integral on the right-hand side of (11.8.56) can
be removed by expressing the integral in the form∫ 2π

0

(
L(η, η0) ln

R2

a2
− L(η0, η0) ln[1− cos(η0 − η0)]

)
dη − 2πL(η0, η0) log 2. (11.8.58)

Because of the periodic integrands, the regularized integral can be computed efficiently by the
trapezoidal rule. Machine accuracy can be achieved by using a large number of integration base
points.

Comparing (11.8.56) with the second expression in (11.8.44), we deduce the requisite dimen-
sionless function Vn(η) in relation to the dimensionless shape function Q(η) given in (11.8.46),

Vn(η0) � − 1

4πa

1

J(η0)

(
2a2b2

∫ 2π

0

R1

R2
sin(η0 − η) dη +

∫ 2π

0

L(η, η0) ln
R2

a2
dη
)
. (11.8.59)

The procedure described in the paragraph following equation (11.8.48) may then be applied.

Love waves

Love [246] carried out a classical stability analysis and obtained the complex growth rate

� = ±Ω

2

[(
2m

Ωz

Ω
− 1

)2

−
(a− b

a+ b

)2m]1/2
. (11.8.60)
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Figure 11.8.2 Illustration of a vortex patch with constant vorticity, Ω. The vortex contour, C, is
described by N marker points.

Perturbations with m = 2 are stable for any aspect ratio a/b; perturbations with m = 3 are stable
when a/b < 3; perturbations with m > 3 are stable below higher aspect ratio thresholds [270]. The
solution of the quadratic equation for the complex growth rate discussed in the paragraph following
equation (11.8.47) is in perfect agreement with Love’s analytical predictions.

Numerical linear stability analysis

An algebraic eigenvalue problem originating from (11.8.45) can be formulated based on the contour
integral representation, as discussed in Section 9.3.5 in the general context of interfacial flow. First,
the elliptical vortex contour is traced with a string of N marker points corresponding to a sequence
of parameter values, ηj , where j = 1, . . . , N . The jth point is displaced by a small distance δ
normal to the elliptical contour, so that εaqi = 0 for i = 1, . . . , N , except that εaqj = δ, and the
deformed contour is reconstructed by cubic-splines interpolation. Next, the derivative dij ≡ (∂q/∂η)i

is computed numerically at all points, and the normal velocity v
(j)
ni is evaluated from the contour

integral representation using the numerical methods discussed in Section 11.8.3, for i = 1, . . . , N .
The results are now collected into a matrix

Aij =
1

δ

(
v(j)ni

− Ωz dij
)
, (11.8.61)

whose eigenvalues are equal to −i�. The corresponding eigenvectors are discrete representations
of the shape function Q(η). The solution of the eigenvalue problem reproduces Love’s eigenvalues
and corresponding eigenfunctions. Computer programs are available in directory kirchhoff inside
directory 09 vortex of the software library Fdlib (Appendix C).

11.8.3 Contour dynamics

In the method of contour dynamics invented by Zabusky, Hughes, and Roberts [440], the evolution of
a vortex patch is followed numerically by computing the motion of the vortex contour. This is done
by tracing the vortex contour with N point particles arranged in the counterclockwise direction,
as shown in Figure 11.8.2, and then computing the motion of the ith point particle, Xi, using the
equation

dXi

dt
= − Ω

4π

∮
C

ln
(Xi − x)2 + (Yi − y)2

a2
t(x) dl(x) (11.8.62)
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for i = 1, . . . , N , where a is a constant length and t is the tangent unit vector pointing in the
counterclockwise direction around the vortex contour [113, 330]. To compute the integral in (11.8.62),
we interpolate for the shape of the contour C from the position of the marker points, as discussed
in Section B.4, Appendix B.

In the simplest implementation of the method, the vortex contour is approximated with a
polygonal line connecting a chain of marker points. To compute the contour integral on the right-
hand side of (11.8.62) over a segment that does not contain the ith marker point, Xi, we use a
standard numerical method, such as the trapezoidal rule, Simpson’s rule, or a Gaussian quadrature,
as discussed in Section B.6, Appendix B. However, since the integrand in (11.8.62) exhibits a log-
arithmic singularity, these methods cannot be applied for the two segments that contain Xi as an
end point. The integration in these two cases can be done by elementary analytical methods [318].

Combining the trapezoidal rule for integration over the nonsingular segments with the ana-
lytical integration over the singular segments, we obtain

dXi

dt
= − Ω

8π

N∑
j=1

′ (Xj+1 −Xj)
(
ln

|Xi −Xj |2
a2

+ ln
|Xi −Xj+1|2

a2
)

− Ω

4π

∑
j=i−1,i

(Xj+1 −Xj)
(
ln

|Xj+1 −Xj |2
a2

− 2
)
, (11.8.63)

where the prime denotes that the terms j = i − 1 and j = i are excluded from the sum. Equation
(11.8.63) provides us with a system of N nonlinear, coupled ordinary differential equations for the
position of the marker points. The system can be integrated in time using Euler’s method, a Runge–
Kutta method, or another method, as discussed in Section B.8, Appendix B.

Multiple vortices

When the flow contains a collection of vortex patches with the same or different vorticity, the right-
hand side of (11.8.62) contains the sum of integrals over the contours of all patches multiplied by the
corresponding values of the vorticity, and equation (11.8.63) undergoes corresponding modifications.
Figure 11.8.3 shows the evolution of two initially circular vortex patches with identical vorticity in
close proximity computed using a code encapsulated in the software library Fdlib (Appendix C).
We observe that the patches coalesce into a larger patch under the action of their mutually induced
velocity. Numerical investigation shows that the patches merge only if they are initially closer than
a critical distance.

Periodic arrangements

Using the results of Section 2.13.5, we find that the motion of marker points distributed around the
contour of a vortex patch that is repeated periodically along the x axis with period a is governed
by the modified version of (11.8.62)

dXi

dt
= − Ω

4π

∮
C

ln
(
cosh[k(Yi − y)]− cos[k(Xi − x)]

)
t(x) dl(x), (11.8.64)

where C is the contour of one patch and k = 2π/a is the wave number.
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Figure 11.8.3 Evolution of two circular vortex patches with equal vorticity. Vortex contours are
shown at equal time intervals. The vortex patches are attracted and gradually coalesce into a
larger rotating elliptical vortex.

The contour of a patch can be approximated with a polygonal line connecting point particles.
To compute the improper integral over the adjacent segments of the ith point particle, Si−1 and Si,
we write ∫

Sj

ln
(
cosh[k(Yi − y)]− cos[k(Xi − x)]

)
t(x) dl(x) = I + J (11.8.65)

for j = i− 1 and i, where

I ≡
∫
Sj

ln
cosh[k(Yi − y)]− cos[k(Xi − x)]

k2(Xi − x)2 + k2(Yi − y)
t(x) dl(x) (11.8.66)

and

J ≡
∫
Sj

ln
[
k2(Xi − x)2 + k2(Yi − y)2

]
t(x) dl(x). (11.8.67)

The nonsingular integral in (11.8.66) can be computed with adequate accuracy using the trapezoidal
rule or a Gaussian quadrature. The singularity has been shifted to the integral in (11.8.67), which
can be computed by elementary methods.
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Vortex layers

An example of an infinite vortex patch is the infinite vortex layer with constant vorticity discussed in
Section 9.6. When the boundaries of the vortex layer are parallel, the flow is unidirectional and the
velocity varies linearly with distance across the vortex layer and has two different constant values
above and below the vortex layer. Figure 9.6.5 shows stages in the instability of a periodically
perturbed vortex layer computed using the method of contour dynamics for periodic flow [323, 324].

Problem

11.8.1 Rotating vortex sheet

Show that a flat vortex sheet with strength γ = γ0(1−x2/a2)1/2 situated in the interval −a ≤ x ≤ a
rotates undeformed. Derive an expression for the angular velocity of rotation of the vortex sheet in
terms of the constant γ0.

Computer Problems

11.8.2 Kirchhoff’s vortex

Write a program that computes the motion of an elliptical vortex patch using the contour integral
representation. Perform computations for axis ratio a/b = 1.1, 1.5, 2.0, 3.0, and 4.0 and verify that
the patch rotates as a rigid body. Plot the computed angular velocity of rotation against the aspect
ratio and compare the numerical results with the exact solution.

11.8.3 Interaction of two vortex patches

Write a program that computes the interaction of two identical circular vortex patches with equal
vorticity in close proximity. Carry out computations for three cases where the initial separation of
the vortex centers is 2.5, 3.0, and 4.0 the initial vortex radius. Discuss the motion of the patches with
reference to vortex merger and contour filamentation. To improve the efficiency of your program,
you may wish to exploit the symmetry of the two vortex contours with respect of the midpoint of
the line connecting the two vortex centers.

11.9 Axisymmetric flow

Vortex methods for axisymmetric vortex flow are extensions of those for two-dimensional flow dis-
cussed earlier in this chapter. However, the curvature of the vortex lines and the occurrence of vortex
stretching necessitates essential modifications that demonstrate the subtlety of three-dimensional
vortex flows.

11.9.1 Coaxial line vortex rings

The motion of a collection of coaxial line vortex rings is analogous to that of point vortices. The
axial velocity of each ring is the sum of the self-induced velocity and the velocities induced by all
other rings, as discussed in Section 2.12.1. In the absence of other rings and flow boundaries, an
axisymmetric vortex ring translates along the axis of revolution with its own self-induced velocity.
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In contrast, an isolated rectilinear line vortex (point vortex) remains stationary. The formation,
motion, and stability of vortex rings has attracted a great deal of attention in the scientific and
popular literature [367].

If Vi is the self-induced velocity of the ith vortex ring that belongs to a collection of N coaxial
rings, the axial position, Xi, and radius, Σi, of the ring evolve according to the equations

dXi

dt
= Vi(Σi) +

N∑
j=1

′ κj Ux(Xi −Xj ,Σi,Σj),

dΣi

dt
=

N∑
j=1

′ κj Uσ(Xi −Xj,Σi,Σj),

(11.9.1)

where the prime indicates that the term i = j is excluded from the sum,[
Ux

Uσ

]
(x, σ, σ′) =

1

4π

[
−σ I31(x, σ, σ

′) + σ′ I30(x, σ, σ
′)

x I31(x, σ, σ
′)

]
, (11.9.2)

and the integrals Inm are defined in (2.13.14). The vorticity transport equation requires that the
strength of each ring, κi, remains constant in time.

Self-induced velocity

The divergence of the self-induced velocity of a line vortex ring with infinitesimal core underscores
the importance of the core size. To compute the motion of a vortex ring, we may assume a sensible
vorticity distribution over the core, and thus transform the vortex ring into an axisymmetric vortex
blob. Kelvin’s formula for the self-induced velocity of a vortex ring whose vorticity is distributed
uniformly over a circular vortex core of radius a is

V =
κ

4πΣ

(
ln

8Σ

a
− 1

4

)
, (11.9.3)

where Σ is the ring centerline radius, κ = Ωπa2 is the vortex ring strength, and ωϕ = Ω is the
uniform core vorticity ([220], p. 241). Hicks’s formula for the self-induced velocity of a vortex ring
whose vorticity is concentrated around a vortex sheet of radius a is identical to (11.9.3), except that
the factor 1/4 is replaced by 1/2 on the right-hand side [175]. For a ring with arbitrary core vorticity
distribution, we expect that the self-induced velocity is

V =
κ

4πΣ

(
ln

8Σ

a
− 1

2
+ α

)
, (11.9.4)

where α is a dimensionless constant taking the value of 1/4 for a Kelvin ring and the value of zero
for a Hicks ring (e.g., [125]).

As the radius of a ring, Σ, changes during the motion, the azimuthal vorticity, ωϕ, increases
or decreases by the same proportion. In response to this change, the radius of the core, a, adjusts
to preserve the ring strength and core volume, so that d(Σa2)/dt = 0. Expanding the derivative, we
obtain an expression for the rate of change of the radius of the vortex core,

da

dt
= −1

2

a

Σ

dΣ

dt
. (11.9.5)
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The motion of the vortex rings is computed by simultaneously integrating in time equations (11.9.1)
and (11.9.5) for the axial position, radial position, and radius of the vortex core.

Bounded domains

When a vortex ring resides in a domain that is bounded by an impermeable axisymmetric surface,
the induced velocity must be complemented with that due to a potential flow that accounts for
the no-penetration boundary condition. When the boundary geometry is sufficiently simple, the
complementary flow can be expressed in terms of images of the vortex rings. The image of a vortex
ring with respect to a plane wall is another ring with opposite strength placed at the instantaneous
mirror-image position. The image of a ring with respect to a sphere was discussed in Section 7.5.

11.9.2 Vortex sheets

Methods for computing the motion of axisymmetric vortex sheets are similar to those for two-
dimensional vortex sheets discussed in Section 11.6. The expressions for the self-induced velocity
resulting from the Biot–Savart integral involve complete elliptic integrals of the first and second kind
that must be evaluated by numerical methods. The evolution of the strength of the vortex sheet is
governed by equation (11.5.17). However, the tangential component of the marker-point acceleration
in an azimuthal plane is given by an expression that is more complicated than that shown on the
right-hand side of (11.5.21). When a vortex sheet separates two fluids with identical densities and
the interfacial marker points move with the principal velocity of the vortex sheet, the evolution of
the strength of the vortex sheet and circulation along the trace of the vortex sheet in an azimuthal
plane are governed by the simplified equations (11.5.38) and (11.5.39).

11.9.3 Vortex patches in axisymmetric flow

The vorticity transport equation for axisymmetric flow in the absence of viscous forces takes the
simple form D(ωϕ/σ)/Dt = 0, where D/Dt is the material derivative. This equation shows that, if
the azimuthal vorticity component, ωϕ, is equal to Ωσ at a particular instant, it will remain so at all
times, where Ω is an arbitrary constant. In this case, computing the evolution of an axisymmetric
vortex patch with linear vorticity distribution is reduced to describing the motion of the vortex
contour.

Contour dynamics

The numerical implementation of the contour dynamics method for axisymmetric flow is similar
to that for two-dimensional flow discussed in Section 11.8.3 (e.g., [302, 330]). Using (2.12.29) and
(2.12.37), we find that the axial position, X, and radial position, Σ, of point particles distributed
along the vortex contour evolve according to the equation

d

dt

[
X
Σ

]
= − Ω

4π

∫
C

[
x̂ I10(x̂,Σ, σ) nx(x, σ) + Σ I11(x̂,Σ, σ) nσ(x, σ)]

−σ I11(x̂,Σ, σ)nx(x)

]
σ dl(x), (11.9.6)

where the integration is performed along the vortex contour, C, n is the normal unit vector pointing
outward from the vortex patch, x̂ = X − x, and the integrals Inm are defined in (2.13.14). Near the
evaluation point, X, the integrand in (11.9.6) behaves as shown in (11.8.62). The computation of
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the singular integrals over the adjacent segments of a marker point is done by subtracting out the
singularity according to (11.8.66) (Problem 11.9.2).

Problems

11.9.1 Self-induced velocity of a vortex ring with constant vorticity

Carry out an asymptotic analysis of (2.12.7) to derive (11.9.3).

11.9.2 Desingularization of contour integrals

(a) Carry out an asymptotic analysis to show that the integrand in (11.9.6) behaves like that shown
in (11.8.62).

(b) Explain how the singularity can be subtracted out from the integrand according to (11.9.5).

Computer Problems

11.9.3 Motion of coaxial line vortex rings

Write a program that computes the motion of two line vortex rings whose vorticity is distributed
uniformly over the core. Run the program to compute the interaction of two initially identical vortex
rings for several ratios of the initial core-to-ring radius. Discuss the behavior of the ring doublet.

11.9.4 A line vortex ring approaching head-on a plane wall or a sphere

(a) Compute the trajectory of a line vortex ring with uniform vorticity distribution approaching a
plane wall with its axis perpendicular to the wall.

(b) Repeat (a) for a vortex ring with initial radius Σ0 approaching a sphere of radius a centered
at the ring axis. Perform a series of computations for Σ0/a = 0.10, 0.50, 1.0, and 2.0, and discuss
differences in behavior. The location of the image ring is given in equation (7.4.10).

11.10 Three-dimensional flow

Vortex methods for three-dimensional flow are generalizations of those for two-dimensional and ax-
isymmetric flow discussed earlier in this chapter. However, the extensions are not always straightfor-
ward and the numerical implementation may lead to conceptual difficulties and significant numerical
error.

11.10.1 Line vortices

In Section 2.11.2, we saw that a curved line vortex with infinitesimal cross-section moves with
an unphysical infinite self-induced velocity. This singular behavior emphasizes that the centerline
curvature and the size of the vortex core plays a critical role in determining the motion of vortex
filaments. Computing the self-induced motion of a line vortex with finite vortex core can be done
by several approximate methods. The point of departure in all cases is the Biot–Savart integral



11.10 Three-dimensional flow 909

(2.11.1), repeated here for convenience,

u(x) =
κ

4π

∫
L

t(x′)× x̂

r3
dl(x′), (11.10.1)

where x̂ = x−x′, r = |x̂|, κ is the strength of the line vortex, and t is the tangent unit vector along
a line vortex, L. Since a line vortex moves with the fluid velocity in the absence of viscous diffusion,
the problem is reduced to solving an integro-differential equation for the position of point particles
distributed along the line vortex, dX/dt = u(X).

Desingularization of the Biot–Savart integral

Rosenhead [348] proposed replacing the Biot–Savart integral (11.10.1) with a modified integral in-
volving a smooth kernel, yielding the velocity field

u(x) =
κ

4π

∫
L

t(x′)× x̂

(r2 + δ2)3/2
dl(x′). (11.10.2)

The magnitude of the size parameter, δ, is small comparable to the size of the vortex core, which is
assumed to be constant along the line vortex. A similar desingularization was discussed in Section
11.6 in the context of the point-vortex method for vortex sheets.

Truncation of the Biot–Savart integral

Hama [162, 163] retained the exact form of the Biot–Savart integral (11.10.1) but truncated the
line integral to a small distance on either side of the point where the velocity is evaluated. Partial
justification for this approximation is provided by the observation that setting the cut off length
equal to b 1

2 exp
1
4 reproduces the velocity of a circular vortex ring whose vorticity is distributed

uniformly over a core of radius b.

Local-induction approximation (LIA)

In the Da Rios local induction approximation (LIA) discussed in Section 2.11.3, we retain the last
term in the asymptotic form of the Biot–Savart (2.11.12) but truncate the limits of integration on
either side of the origin at a lower limit that is comparable to the size of the vortex core, b. To
leading-order approximation, we obtain

u(X) = − κ

4π
c(X)b(X) ln

b

a
, (11.10.3)

where c is the curvature of the line vortex and a is the truncation length (Da Rios 1906, see [339];
[162, 163]). According to the LIA, the velocity vector at a point on a line vortex is parallel to the
local binormal vector, b. The numerical procedure is similar to that used to compute the motion of
two-dimensional vortex sheets in terms of point vortices.

11.10.2 Three-dimensional vortex sheets

To compute the motion of a three-dimensional vortex sheet, we introduce two surface curvilinear
coordinates, ξ and η, and follow the motion of marker points distributed at the nodes of an interfacial
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grid labeled by discrete values of ξ and η. The strength of the vortex sheet, ζ = n × (u(1) − u(2)),
is tangential to the instantaneous position of the vortex sheet, where the superscripts (1) and (2)
designate evaluation at the upper or lower side of the vortex sheet and the normal unit vector n

points toward the upper side.

The marker points move normal to the vortex sheet with the common normal fluid velocity
on either side of the vortex sheet, while executing an arbitrary tangential motion. The velocity of a
marker point can be expressed in terms of the principal velocity of the vortex sheet defined as the
principal value of the Biot–Savart integral, as discussed in Section 11.5 for two-dimensional flow. To
compute the evolution of the strength of the vortex sheet, ζ, we work as in Section 11.5, beginning
with Euler’s equation on either side of vortex sheet written in the form of (11.5.12). The complexity
of the algebraic manipulations in the general case discourages a detailed derivation.

Vortex sheet immersed in a homogeneous fluid

Assume that a vortex sheet separates two fluids with equal densities, ρ, the flow on either side of
the vortex sheet is irrotational, and the interfacial marker points move with the principal velocity
of the vortex sheet. Introducing the velocity potential on either side of the vortex sheet and using
the unsteady Bernoulli equation, we obtain(∂φi

∂t

)
ξ,η

−V · u(i) +
1

2
u(i) · u(i) +

pi
ρ

− g · x = ci(t) (11.10.4)

for i = 1, 2, where ci(t) are time-dependent functions. Substituting

V =
1

2
(u(1) + u(2)), (11.10.5)

we obtain (∂φi

∂t

)
ξ,η

+
1

2
u(1) · u(2) +

pi
ρ

− g · x = ci(t). (11.10.6)

Evaluating equation (11.10.6) on either side of the vortex sheet and subtracting the resulting ex-
pressions, we obtain (∂(φ1 − φ2)

∂t

)
ξ,η

= −p1 − p2
ρ

+ c1(t)− c2(t). (11.10.7)

The jump in pressure across the vortex sheet is related to surface tension of the interface represented
by the vortex sheet, τ , by p1 − p2 = τ2κm, where κm is the mean curvature. Equation (11.10.7)
shows that, in the absence of surface tension and when c1(t) = c2(t), the marker points maintain
the difference in the potential across the vortex sheet, φ1 − φ2 [202].

Equation (11.10.7) provides us with a basis for a numerical procedure according to the fol-
lowing steps: advance the position of the marker points with the principal velocity of the vortex
sheet; update the jump in the potential φ+ − φ− according to (11.10.7); compute the surface gradi-
ent ∇(φ+ − φ−) over the vortex sheet; update the strength of the vortex sheet using the definition
ζ = n×∇(φ+ − φ−) [64, 311].
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11.10.3 Particle methods

Generalized vortex-particle methods for three-dimensional flow with isolated line vortices or dis-
tributed vorticity include the standard vortex-particle method, which is the counterpart of the
point-vortex method, the regularized vortex-particle method, which is the counterpart of the vortex-
blob method, and the vortex-in-cell method. In the standard vortex particle method, the vorticity
field is discretized into a form that is analogous to that shown in (11.7.1),

ω(x) =
N∑
i=1

αi(t) δ3(x− xi), (11.10.8)

where δ3 is the three-dimensional delta function. The ith term on the right-hand side of (11.10.8)
represents a vortex particle with strength αi located at the point xi. The velocity field arises by
taking the curl of the vector potential

A(x) =
1

4π

N∑
i=1

αi(t)

x− xi(t)
, (11.10.9)

computed according to (2.10.1). The vortex particles move with the fluid velocity while their strength
evolves due to vortex stretching. Using equations (3.11.9) and (3.12.1), we obtain

dxi

dt
= u[xi(t), t],

dαi

dt
= αi(t) · [β∇u+ (1− β)(∇u)T ], (11.10.10)

where β is a free parameter. The choice β = 0 helps preserve the total vorticity of the flow, which is
an invariant of the motion [431]. The alternative choice β = 1

2 helps reduce the computational cost.

One difficulty with the representation (11.10.8) is that, in general, the discretized vorticity
field and vector potential are not solenoidal. Improvements can be made to rectify this deficiency.
Vortex methods for three-dimensional flow are reviewed by Leonard [234], Kino & Ghonien [211],
Winckelmans & Leonard [431], and Puckett [328].

Computer Problem

11.10.1 Self-induced velocity of a vortex ring

Write a program that computes the self-induced velocity of a circular vortex ring of radius a based
on the regularized Biot–Savart integral (11.10.2). Prepare and discuss a plot of the ring velocity
against δ/a.



Finite-difference methods
for convection–diffusion

12
Finite-difference methods provide us with a powerful tool for generating numerical solutions to a
broad range of partial differential equations. Before we can apply these methods to solving the
equations governing fluid flow, we must have available reliable and accurate schemes for solving the
convection–diffusion equation for a scalar or vector field. The development of such schemes and
the investigation of their performance is the theme of the present chapter. Since the subject of
finite-difference methods is broad and diverse, we confine our attention to outlining the fundamen-
tal principles and procedures and presenting a selected class of methods that either illustrate the
methodology or find extensive applications in numerical practice. Further discussion of methods
employed in computational fluid dynamics (CFD) can be found in specialized monographs and texts
on numerical methods for partial-differential equations [5, 124, 184, 185, 269, 317, 343, 377].

It is helpful to keep in mind throughout this chapter that the particular way in which the
convection–diffusion equation enters a numerical procedure for computing the structure of a steady
flow or the evolution of an unsteady incompressible flow depends on the chosen computational
strategy. In certain cases, the convection–diffusion equation is integrated with reference to the
equation of motion. In other cases, the convection–diffusion equation is integrated with reference to
the vorticity transport equation. Examples in each category will be discussed in Chapter 13.

12.1 Definitions and procedures

The most general problem addressed in this chapter is the computation of a generally vector function,
f , that satisfies the nonlinear convection–diffusion equation

∂f

∂t
+ u(x, t, f) · ∇f = κ∇2f (12.1.1)

in a specified one-, two-, or three-dimensional solution domain, subject to a given initial condition,
f(x, t = 0) = F(x), where F(x) is a prescribed function. The convection velocity, u, is a known
function of position, x, and time t, explicitly, as well as implicitly through its dependence on the
solution f . If u is constant, we obtain a linear convection–diffusion equation. If u depends on x and
t but is independent of f , we obtain a quasi-linear convection–diffusion equation.

The diffusivity, κ, is assumed to be a uniform throughout the solution domain. When κ is
nonzero, equation (12.1.1) is a parabolic differential equation in time. When κ is zero, equation
(12.1.1) is a hyperbolic differential equation in time. Later in this chapter, we will see that this

912
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seemingly academic classification has important consequences on the effectiveness of the various
finite-difference schemes.

To complete the statement of the computational problem, we must introduce a proper number
of boundary conditions. When the diffusivity κ is nonzero, the convection–diffusion equation is a
second-order partial differential equation and we must supply a number of boundary conditions that
matches the dimensionality of the unknown function f . Thus, if f is a three-dimensional vector, we
require three scalar conditions, one for each component of f over each boundary. Fewer boundary
conditions are needed when κ is zero.

12.1.1 Finite-difference grids

The central goal of the finite-difference method is to produce the values of an unknown function
at the nodes of a coordinate grid that covers the solution domain at a sequence of discrete time
levels separated by a chosen time step, Δt. The finite-difference grid can be defined in Cartesian
coordinates, (x, y, z), or any other orthogonal or nonorthogonal curvilinear coordinates, (ξ, η, ζ), as
discussed in Sections A.8–A.17, Appendix A. The choice of coordinates is dictated by the geometry
of the solution domain and is made with the prime objective of facilitating the implementation of
the boundary conditions. For example, when the domain of solution is the exterior or interior of a
sphere, the boundary conditions are naturally described in spherical polar coordinates with origin at
the center of the sphere and the governing equations are best solved in these coordinates. Orthogonal
coordinates are desirable for analytical simplicity and improved numerical stability.

In Cartesian coordinates, the finite-difference grid is comprised of an array of straight lines
that run parallel to the x, y, and z axes, with grid spacings Δx, Δy, and Δz. The grid spacings
may vary across the solution domain to allow for enhanced spatial resolution at regions where the
solution is expected to exhibit sharp variations. The grid becomes finer as the grid spacings become
smaller.

Interpolation

Once a discrete finite-difference solution is available, the values of the computed function between
grid points and time levels can be obtained by applying standard methods of function interpolation,
extrapolation, or approximation, as discussed in Sections B.4 and B.7, Appendix B.

12.1.2 Finite-difference discretization

A distinguishing feature of the finite-difference method is that the temporal and spatial partial
derivatives in the governing equations are approximated with finite differences that relate the val-
ues of the unknown functions at a group of neighboring grid points at various time levels. This
approximation replaces the governing partial differential equation (PDE) with a finite-difference
equation (FDE). A compilation of finite-difference approximations to total and partial derivatives
can be found in Section B.5, Appendix B. The process of replacing partial derivatives with algebraic
differences is called finite-difference approximation or discretization of the differential equation.

Applying the finite-difference equation sequentially at internal grid nodes provides us with a
system of linear or nonlinear algebraic equations that relate the values of the unknown functions at
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the nodes. In certain cases, the solution domain is extended beyond the natural boundaries of the
physical problem and the finite-difference equation is applied at boundary nodes for the purpose of
accurately implementing boundary conditions involving derivatives.

12.1.3 Consistency

The accuracy of a numerical computation based on a finite-difference method depends on the control
parameters of the numerical method, including the grid spacing and time step. Assume that both
are reduced simultaneously but arbitrarily so that they may have different orders of magnitude. If
the finite-difference equation approximates the partial-differential equation with increasing accuracy
in some sensible fashion, then the finite-difference method is consistent. However, if the grid spacing
and time step must be reduced simultaneously is special ways for the finite-difference equation
to approximate the partial-differential equation with increasing accuracy, then the finite-difference
method is only conditionally consistent.

The consistency of a finite-difference equation that arises by applying well established finite-
difference formulas to approximate temporal and spatial derivatives in the partial differential equa-
tion is guaranteed and does not need to be examined. By contrast, the consistency of a finite-
difference equation that arises by heuristic or ad-hoc modifications of well-established finite-difference
approximations is subject to confirmation.

Modified differential equation

The consistency of a finite-difference method can be assessed by pretending that all variables in the
finite-difference equation are continuous functions of space and time, and then expanding them in
a Taylor series around a selected grid point at a certain time instant to obtain a new differential
equation, called the modified differential equation (MDE) [424]. If, in the limit as the size of the
time step and grid spacings are reduced simultaneously but independently the modified differential
equation reduces to the original partial differential equation, the finite-difference method is consis-
tent. Phrased differently, if a finite-difference method is consistent, the difference between the MDE
and the PDE involves terms that are proportional to powers, but not ratios, of the grid sizes and
time step. The exponents of these powers define the order of the numerical error. Examples will be
presented in this chapter.

Undetermined coefficients

Certain finite-difference equations emerge by applying the differential equation at a particular grid
point, and then replacing it with a combination of values of the unknown function at a group of
neighboring grid points at different times. The coefficients that multiply the values of the function
are computed by imposing certain restrictions, including consistency with the differential equation
and a desired degree of accuracy in approximating the partial derivatives.

12.1.4 Numerical stability

Let us assume that the exact solution of the convection–diffusion equation, or some other partial-
differential equation, subject to a given initial condition and a proper number of boundary conditions,
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does not grow unbounded in time, but either stays constant or decays at every point. It is not un-
reasonable to demand that the finite-difference solution reproduces this behavior, that is, it provides
us with a numerical approximation that is free of oscillations. If it does, the finite-difference method
is stable; otherwise the method is unstable. If the exact solution of the differential equation grows
in time, the finite-difference method is stable when it produces a numerical solution that grows at a
rate that not greater than that of the exact solution.

The stability of relatively simple finite-difference methods for linear partial-differential equa-
tions can be assessed by several methods, including the von Neumann stability method, the projec-
tion matrix method, and the discrete-perturbation method. The stability of involved finite-difference
methods is harder to investigate. In practice, stability is often warranted by the absence of noticeable
spatial or temporal oscillations in the results of a computation.

The stability of finite-difference methods for nonlinear differential equations is typically ex-
amined by linearizing the differential equation about a particular grid point and then studying the
performance of the finite-difference method with reference to the linearized equation, as discussed
in Chapter 9 in the context of hydrodynamic stability. The local stability criteria obtained in this
manner provide us with an accurate characterization of the overall performance of the numerical
scheme.

12.1.5 Convergence

Stability imposes a modest restriction on the numerical method. Before the numerical results can
be claimed to bear any degree of physical relevance with respect to the physical problem governed
by the original partial-differential equation, we must ensure that, as the size of the grid and time
step are made finer, the numerical solution converges to the exact solution.

Lax’s equivalence theorem guarantees that, if a numerical solution of a linear partial-differential
equation obtained using a consistent finite-difference approximation is stable, then, in the limit as
the grid spacings and time step tend to zero, the numerical solution converges to the exact solution
[227, 343]. Thus, consistency and stability ensure convergence and vice versa. The convergence
of finite-difference methods for nonlinear differential equations is harder to assess. Experience has
shown that, if the numerical method is consistent and locally stable, the finite-difference solution
converges to the exact solution in the limit as the grid spacings and time step are refined.

12.1.6 Conservative form

If the convection velocity field is solenoidal, ∇ · u = 0, equation (12.1.1) can be recast into the
equivalent conservative form

∂f

∂t
+∇ ·

[
u(f ,x, t)⊗ f

]
= κ∇2f . (12.1.2)

By contrast, the primary equation (12.1.1) expresses the nonconservative form. This terminology
emphasizes that the components of the matrix u ⊗ f at the grid points telescope up to the bound-
aries, and thus conserve possible invariants of the solution in a finite-difference discretization. The
conservative form is preferred over the nonconservative form due to improved accuracy and superior
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numerical stability. In the case of incompressible fluid flow, both the Navier–Stokes equation and the
vorticity transport equation can be recast into a conservative form similar to that shown in (12.1.2).

Problems

12.1.1 Developing finite-difference approximations

(a) The first and second derivatives of a function, f(x), can be approximated by the central difference
formulas

f ′(x) = af(x− h) + bf(x) + cf(x+ h), f ′′(x) = Af(x− h) +Bf(x) + Cf(x+ h), (12.1.3)

where h is a small interval. Derive relations among the coefficients a–c and A–C so that the
finite-difference approximations are consistent. This means that, in the limit as h tends to zero, the
approximations reproduce the exact values of the first and second derivatives at x. Derive additional
relations among the coefficients so that the discretization error is of second order in h and solve for
the coefficients a–c and A–C.

(b) Compute the coefficients a–c and A–C so that the error of the backward or forward difference
approximations

f ′(x) = af(x− 2h) + bf(x− h) + cf(x), f ′′(x) = Af(x) +Bf(x+ h) + Cf(x+ 2h), (12.1.4)

is of second order in h.

(c) Compute the coefficients a–e so that the error of the central difference approximation

f ′(x) = af(x− 2h) + bf(x− h) + cf(x) + d f(x+ h) + ef(x+ 2h) (12.1.5)

is of fourth order in h.

12.1.2 Finite-difference formulation for a linear ODE

Consider the linear ordinary differential equation f ′′ + 4f = 0 in a domain extending between
x = 0 and π/2, with boundary conditions f ′(0) = −2 and f(π/2) = −1, where a prime indicates a
derivative with respect to x.

(a) Compute the solution analytically.

(b) Discretize the solution domain into N evenly spaced intervals separated by the nodes xi =
(i − 1)Δx, where Δx = π/(2N) and i = 1, . . . , N + 1. Apply the differential equation at the ith
node and approximate the second derivative using central differences to derive the finite-difference
equation

fi−1 − 2 (1− 2Δx2)fi + fi+1 = 0 (12.1.6)

for i = 2, . . . , N , where fi ≡ f(xi). The boundary condition at x = π/2 requires that fN+1 = −1.

(c) To confirm the consistency of (12.1.6), we regard the grid values fj as discrete realizations of a
twice-differentiable function and evaluate them using a Taylor series expansion about the point xi,
thereby obtaining the corresponding modified differential equation (MDE). Show that, as Δx tends
to zero, the MDE reduces to the original ordinary differential equation (ODE).
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(d) Approximating the first derivative at x = 0 with a forward difference, we obtain the discrete
boundary condition f2 − f1 = −2Δx. Collect all finite-difference equations into a linear system,
A · f = b, where A is a tridiagonal matrix,

f = [ f1, f2, . . . , fN ] (12.1.7)

is the N -dimensional solution vector, and b is a known vector. Present the explicit forms of the
matrix A and vector b.

(e) The finite-difference equation (12.1.6), is second-order accurate in Δx, whereas the corresponding
finite-difference equation for the boundary condition at x = 0 derived in (d) is first-order accurate in
Δx. This discrepancy somewhat compromises the overall accuracy of the finite-difference method.
To obtain a fully consistent second-order method, we extend the solution domain beyond the natural
boundary at x = 0, introduce a fictitious exterior node, x0 = −Δx, apply equation (12.1.6) for i = 1,
and approximate the derivative with a central difference to obtain the discrete boundary condition
f2 − f0 = −4Δx. Derive the corresponding linear system, B · f = c, and present the explicit forms
of the tridiagonal coefficient matrix B and known vector c.

12.1.3 Finite-difference formulation for quasi-linear ODEs

Repeat Problem 12.1.2(c–e) for the differential equation f ′′ + 4(cosx + sinx)f = 0 in the same
domain and with the same boundary conditions.

Computer Problems

12.1.4 Finite-difference solution of a linear ODE

Solve the tridiagonal systems of equations developed in Problem 12.1.2(d, e) using the Thomas
algorithm discussed in Section B.1.4, Appendix B. Compare the numerical results for discretization
levels N = 2, 4, 8, and 16 with the exact solution.

12.1.5 Finite-difference solution of a quasi-linear ODE

Solve the tridiagonal systems of equations developed in Problem 12.1.3 using the Thomas algorithm
for discretization levels N = 2, 4, 8 and 16. Discuss the accuracy of the numerical solution.

12.2 One-dimensional diffusion

We begin by developing finite-difference methods for the one-dimensional scalar unsteady diffusion
equation

∂f

∂t
= κ

∂2f

∂x2
, (12.2.1)

which is a special case of the more general convection–diffusion equation (12.1.1), subject to the
initial condition f(x, 0) = F (x), where F (x) is a known function. For simplicity, we assume that the
solution domain extends over the entire x axis and stipulate the homogeneous far-field conditions
f(x = ±∞, t) = 0. If the domain of solution were bounded in the interval a ≤ x ≤ b, we would have
to require one boundary condition for f or ∂f/∂x at both ends, x = a, b, or boundary conditions
for both f and ∂f/∂x at one end.
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12.2.1 Exact solution in an infinite domain

When the solution domain extends over the entire x axis, the exact solution can be found in integral
form in terms of the Green’s function of the unsteady diffusion equation in one dimension, denoted
by G(x, x0, t, t0), satisfying

∂G
∂t

= κ
∂2G
∂x2

+ δ1(x− x0) δ(t− t0), (12.2.2)

where δ1 is the one-dimensional delta function (see also Section 6.17). Physically, the Green’s
function represents the diffusing field due to a impulsive point source with unit strength applied at
a point, x0, at time t0. Using Fourier transforms, we obtain the evolving Gaussian distribution

G(x− x0, t− t0) =
1[

4πκ(t− t0)
]1/2 exp

[
− 1

4κ

(x− x0)
2

t− t0

]
(12.2.3)

for −∞ < x < ∞ and t > t0 (e.g., [66], p. 53). At the initiation instant, t = t0, the Green’s function
is the one-dimensional delta function.

In terms of the Green’s function, the solution of the unsteady diffusion equation (12.2.1) is
constructed by superposition as

f(x, t) =

∫ ∞

−∞

F (x+ �)G(�, t) d�, (12.2.4)

where the integration variable, �, is the distance from the evaluation point, x. Substituting the
Green’s function, we obtain the exact solution

f(x, t) =
1√
4πκt

∫ ∞

−∞

F (x+ �) exp
(
− �2

4κt

)
d� (12.2.5)

for t > 0. The integral on the right-hand side can be computed numerically using the Gauss-Hermite
quadrature [317].

12.2.2 Finite-difference grid

Our objective is to generate the discrete version of the exact solution given in (12.2.5) using a finite-
difference method. We will assume that the function f(x, t) is and remains infinitesimal outside a
sufficiently wide computational domain, a ≤ x ≤ b, during a certain initial period of evolution. As
a first step toward implementing the finite-difference method, we introduce a two-dimensional grid
that covers a semi-infinite strip in the space-time domain, a ≤ x ≤ b and 0 ≤ t < ∞, as illustrated
in Figure 12.2.1(a).

The goal of the finite-difference method is to provide us with the values of the function, fn
i ,

at the grid points, xi, where i = 1, . . . , N + 1, at a sequence of successive time levels, tn, beginning
at the initial time level, t0 = 0, subject to the boundary conditions fn

1 = 0 and fn
N+1 = 0. By

definition,

fn
i ≡ f(xi, tn). (12.2.6)

The initial condition specifies that f0
i = F (xi).
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Figure 12.2.1 (a) Discretization of the space-time domain for solving the one-dimensional diffusion
equation. The solution is advanced forward in time from the initial level, t = 0. (b) Computational
stencil of the forward-time, centered-space (FTCS) discretization.

12.2.3 Explicit FTCS method

Applying (12.2.1) at the xi grid point at the time instant tn, and approximating the time derivative
using a forward difference (FT) and the space derivative using a central difference (CS), we derive
the FTCS finite-difference equation with first-order accuracy in time and second-order accuracy in
space,

fn
i − fn+1

i

Δt
+O(Δt) = κ

fn
i−1 − 2fn

i + fn
i+1

Δx2
+O(Δx2). (12.2.7)

The FTCS differentiation stencil is indicated with filled circles in Figure 12.2.1(b). Solving (12.2.7)
for fn+1

i , we obtain

fn+1
i = αfn

i−1 + (1− 2α) fn
i + αfn

i+1, (12.2.8)

where

α ≡ κΔt

Δx2
(12.2.9)

is a positive dimensionless constant called the diffusion number. Equations (12.2.7) and (12.2.8) can
be applied at the internal grid points, i = 2, . . . , N , but not at the boundary points, i = 1, N + 1.

Equation (12.2.8) provides us with a straightforward algorithm for computing the value of f
at a grid point at the time level n+1 in terms of the values of f at three grid points at the previous
time level, n. Since the algorithm does not require solving a system of algebraic equations, it is
classified as explicit. In summary, the FTCS discretization provides us with an explicit two-level
method with first-order accuracy in time and second-order accuracy in space.



920 Introduction to Theoretical and Computational Fluid Dynamics

Consistency

To confirm the consistency of the difference equation (12.2.8), we regard all discrete variables as
continuous functions of space and time, expand them in Taylor series about the point (xi, tn), and
simplify to obtain the associated modified differential equation

ft +
1

2
fttΔt+O(Δt2) = κ fxx +

1

12
κ fxxxx Δx2 +O(Δx4), (12.2.10)

where subscripts denote partial derivatives with respect to corresponding variables, and all variables
are evaluated at xi and tn. Since, in the limit as Δt and Δx tend to zero independently, the
modified differential equation (12.2.10) reduces to the partial differential equation (12.2.1), the
FTCS discretization is consistent.

Differentiating the governing equation (12.2.1) once with respect to t and twice with respect
to x, and combining the resulting equations, we derive a fourth-order differential equation,

ftt = κ2fxxxx. (12.2.11)

Eliminating fxxxx on the right-hand side of (12.2.10) in favor of ftt and combining the resulting
expression with the second term on the left-hand side, we find that, when α = 1/6, the accuracy of
the FTCS discretization becomes of second order in both space and time.

Successive mapping

To formalize the action of the FTCS method, we collect the grid values of fn
i at the grid points

i = 2, . . . , N into a vector, fn, and use (12.2.8) in conjunction with the Dirichlet boundary conditions
fn
1 = 0 and fn

N+1 = 0 to obtain a linear system,

fn+1 = B · fn, (12.2.12)

where B is a (N − 1) × (N − 1) tridiagonal matrix with superdiagonal, diagonal, and subdiagonal
elements equal to α, 1−2α, and α. This matrix form shows that the solution vector, fn+1, arises by
projecting the vector fn onto the matrix B, and thereby establishes a relation between time stepping
and successive mapping in vector space.

Whether the vector fn will amplify or shrink during the successive mappings depends on
the spectral radius of the projection matrix, B, denoted by �(B) and defined as the maximum
magnitudes of the eigenvalues of B. The theory of matrix calculus instructs us that, if �(B) is
equal to unity, less than unity, or larger than unity, the length of fn will stay constant, decrease,
or increase during the successive mappings (e.g., [317]). Since, according to the exact solution, the
magnitude of f decays due to diffusion at long times, we tolerate the first behavior, welcome the
second behavior, and dismiss the third behavior as numerically unstable.

To compute the eigenvalues of the matrix B, we write B = αC+ I, where C is a tridiagonal
matrix with super-diagonal, diagonal, and subdiagonal elements equal to 1, −2, and 1, and I is
the identity matrix. The eigenvalues of B and C, denoted by λ(B) and λ(C), are related by
λ(B) = αλ(C) + 1. A detailed computation shows that

λm(B) = 1− 4α cos2
(mπ

2N

)
(12.2.13)
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for m = 1, . . . , N − 1 (e.g., [5] p. 57; [317]). This expression demonstrates that the spectral radius
of B is less than unity only when α < 1

2 , and the FTCS method is conditionally stable.

Effect of the boundary conditions

If boundary conditions other than the homogeneous Dirichlet conditions fn
1 = 0 and fn

N+1 = 0
are specified at one end or both ends of the computational domain, the mapping matrix B will be
slightly altered. However, the performance of the finite-difference method will still be determined by
the spectral radius, �(B). As an example, we impose the Neumann boundary condition at the left
end, ∂f/∂x = q at x = a, and retain the homogeneous Dirichlet condition at the right end, x = b.
To implement the left-end boundary condition with second-order accuracy, we extend the solution
domain beyond the physical boundary, x = a, introduce a fictitious node, x0 = x1 −Δx, and use a
central difference to obtain fn

2 − fn
0 = 2qΔx. Having extended the solution domain, we may apply

the differential equation at the first node, x1, and write (12.2.8) for i = 1.

To obtain the corresponding projection matrix, B, we collect the values of fn
i at the grid

points i = 1, . . . , N into a vector, fn, and combine (12.2.8) with the discretized Neumann boundary
condition to obtain a linear system, fn+1 = B · fn+b, where B is an N ×N tridiagonal matrix with
superdiagonal, diagonal, and subdiagonal elements respectively equal to α, 1 − 2α, and α, except
that the second entry of the first row is equal to 2α. All entries of the vector b are zero, except for
the first entry that is equal to −2qΔx . The presence of the vector b does not affect the significance
of the projection matrix B regarding the behavior of the numerical solution. When �(B) is equal to
unity, less than unity, or larger than unity, the length of fn will stay constant, decrease, or increase
during the successive mappings. Unfortunately, the eigenvalues of B are not known in analytical
form.

Von Neumann stability analysis

The simple structure of the projection matrix associated with the FTCS method subject to Dirichlet
boundary condition at both ends allowed us to compute its eigenvalues and spectral radius exactly,
and thereby assess the stability of the numerical method without any approximations. Analytical
expressions for the eigenvalues of the projection matrix may not be available for more advanced
finite-difference discretizations and more general boundary conditions. We may certainly compute
the eigenvalues using a numerical method, but this can be an arduous computational task.

Another way to assess the stability of the numerical method is by performing the von Neumann
stability analysis of the finite-difference equation, neglecting the boundary conditions. The basic
idea is to examine the behavior of the numerical solution subject to a sinusoidal initial condition
with a prescribed wavelength, L. Motivated by the linearity of the governing equation, we separate
the temporal from the spatial dependencies by writing

fn
i = An exp(i iθ), (12.2.14)

where i is the imaginary unit, θ = 2πΔx/L is the phase angle, and An is a constant coefficient
dependent on the time level, n. Note that the superscript n is a time index, not an exponent.
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Substituting (12.2.14) into (12.2.8) and simplifying, we find that

An+1

An
≡ G = 1− 2α (1− cos θ) = 1− 4α sin2

θ

2
, (12.2.15)

whereG is the growth factor, also called the gain or amplification factor. When α > 1
2
, the magnitude

of the right-hand side of (12.2.15) is greater than unity in a certain range of θ and the numerical
method is unstable. When α < 1

2 , the magnitude of the right-hand side of (12.2.15) is less than
unity for any value of θ and the numerical method is stable. These results are consistent with our
previous conclusions based on the spectral radius of the projection matrix, B.

The efficiency of the von Neumann stability analysis is now apparent. One limitation of
the method is that, in its simple form described in this section, it does not incorporate the effect
of general boundary conditions, which may have a destabilizing influence on the finite-difference
method.

Assessment of the FTCS method

Since the diffusion number α is proportional to the temporal step, Δt, and inversely proportional to
the square of the spatial step, Δx2, the stability constraint α < 1

2 of the FTCS method requires a
time step that is excessively small and may require a prohibitive computational cost. The low-order
accuracy combined with the conditional stability renders the FTCS method less attractive compared
to its alternatives.

12.2.4 Explicit CTCS or Leap-Frog method

To achieve second-order accuracy in both time and space, we may use central differences in time
and space. Applying (12.2.1) at the point xi at the time instant tn, we obtain the CTCS difference
equation

fn+1
i − fn−1

i

2Δt
+O(Δt2) = κ

fn
i−1 − 2fn

i + fn
i+1

Δx2
+O(Δx2). (12.2.16)

Rearranging, we derive the three-time-level explicit algorithm

fn+1
i = fn−1

i + 2αfn
i−1 − 4αfn

i + 2αfn
i+1. (12.2.17)

The solution at the first time level, n = 1, must be computed using a two-level method, such as
the FTCS method discussed in Section 12.2.1, with a time step that is small enough to prevent the
onset of deleterious oscillations.

To examine the stability of the method, we substitute (12.2.14) into (12.2.17), set

An+1

An
=

An

An−1
= G, (12.2.18)

and obtain a quadratic equation for the gain, G2+βG−1 = 0, where β = 2α(1−cos θ) = 4α sin2(θ/2)
is a real non-negative parameter. The solution is

G =
1

2

[
− β ± (β2 + 4)1/2

]
. (12.2.19)
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Since the magnitude of the root corresponding to the minus sign is higher than unity, the CTCS
method is unconditionally unstable and thus of no practical value.

12.2.5 Explicit Du Fort–Frankel method

Du Fort and Frankel [116] proposed a modification of the CTCS discretization to ensure second-
order accuracy while improving numerical stability. The idea is to replace the middle term in the
numerator on the right-hand side of (12.2.16) with an average value, yielding

fn+1
i − fn−1

i

2Δt
+O(Δt2) = κ

fn
i−1 − (fn+1

i + fn−1
i ) + fn

i+1

Δx2
+O(Δx2). (12.2.20)

Rearranging, we obtain a three-level explicit algorithm expressed by the difference equation

fn+1
i =

1− 2α

1 + 2α
fn−1
i +

2α

1 + 2α
(fn

i−1 + fn
i−1). (12.2.21)

The computations must be started using a two-level method.

Performing the von Neumann stability analysis, we find that the amplification factor satisfies
the quadratic equation

(1 + 2α)G2 − 4α cos θ G− 1 + 2α = 0. (12.2.22)

Examining the roots, we find that |G| < 1 for any value of α, which ensures that the Du Fort–Frankel
method is unconditionally stable.

Consistency

Since (12.2.20) was derived by an ad-hoc modification of the well-founded CTCS discretization, its
consistency must be examined by comparing the associated modified differential equation (MDE)
with the given differential equation (12.2.1). To derive the MDE, we regard all discrete variables
in (12.2.20) as continuous functions of space and time, expand them in Taylor series about (xi, tn),
and simplify to obtain

ft = κ
[
fxx −

(Δt

Δx

)2

ftt
]
. (12.2.23)

We note that equation (12.2.23) is an accurate approximation of (12.2.1) only if the ratio (Δt/Δx)2

is sufficiently small, which requires that Δt is sufficiently smaller than Δx in appropriate units.
This restriction is milder than that arising from a stability constraint on the diffusion number, α.
We observe that (12.2.23) is classified as a hyperbolic differential equation due to the presence of
the second derivative with respect to time, whereas (12.2.1) is classified as a parabolic differential
equation, and conclude that adding a term with a wave-like character has a stabilizing influence on
the numerical method.

Because of its advantages regarding numerical stability, the Du Fort–Frankel method enjoyed
widespread popularity in early numerical implementations. When using this method, care must be
taken so that the ratio (Δt/Δx)2 is sufficiently small, otherwise the results will not be physically
meaningful.
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Figure 12.2.2 (a) Computational stencil of the BTCS discretization; the solution at three grid points
at the new time level is computed in terms of one current value. (b) Computational stencil of the
Crank–Nicolson discretization; the solution at three grid points at the new time level is computed
in terms of three current values. (c) Computational stencil of a three-level implicit method; the
solution at the new time level is computed in terms of values at two previous time levels.

12.2.6 Implicit BTCS or Laasonen method

Thus far, we have considered explicit methods where the solution at a particular time level is
computed directly from the solution at one or two previous time levels without solving a system
of equations. Now we turn to considering implicit discretizations that require solving a system of
equations in the hope of gaining unconditional stability while ensuring consistency and thus relaxing
the restriction on the time step.

Applying (12.2.1) at the point xi at the time instant tn+1, and approximating the time deriva-
tive with a backward difference and the space derivative with the central difference, we obtain the
BTCS difference equation

fn+1
i − fn

i

Δt
+O(Δt) = κ

fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δx2
+O(Δx2). (12.2.24)

The corresponding finite-difference stencil is shown with filled circles in Figure 12.2.2(a). Rearrang-
ing (12.2.24), we derive the two-level implicit algorithm expressed by the equation

−αfn+1
i−1 + (1 + 2α)fn+1

i − αfn+1
i+1 = fn

i , (12.2.25)

where α is the diffusion number defined in (12.2.9). The presence of three unknown nodal values on
the left-hand side renders the BTCS method implicit.

Recasting (12.2.25) into a matrix form and implementing homogeneous Dirichlet boundary
conditions, we obtain a system of linear equations, A · fn+1 = fn, where A is an (N − 1)× (N − 1)
tridiagonal matrix with superdiagonal, diagonal, and subdiagonal elements equal to −α, 1 + 2α,
and −α. Solving for fn+1 yields fn+1 = A−1 · fn, where A−1 is the inverse of A. This expression
shows that stepping in time is tantamount to successively mapping the initial vector f0 with the
projection matrix A−1. In practice, in order to compute the solution at the n+1 time level, we solve
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a system of linear algebraic equations, A · fn+1 = fn, which renders the BTCS method implicit.
Since the coefficient matrix A is tridiagonal and diagonally dominant, the linear system can be
solved efficiently using the Thomas algorithm discussed in Section B.1.4, Appendix B.

To study the stability of the BTCS method, we consider the eigenvalues of the projection
matrix A−1 = (−αC + I)−1, where C is a tridiagonal matrix with superdiagonal, diagonal, and
subdiagonal elements equal to 1, −2, and 1. Recalling that the eigenvalues of the inverse of a matrix
are equal to the inverse of the eigenvalues, and using (12.2.13), we obtain

λm =
1

1 + 4α sin2 mπ
2N

, (12.2.26)

where m = 1, . . . , N − 1. Since the spectral radius of the projection matrix is less than unity, the
method is unconditionally stable. An independent way of arriving at this result is by performing
the von Neumann stability analysis, obtaining the amplification factor

G =
1

1 + 2α(1− cos θ)
=

1

1 + 4α sin2 θ
2

, (12.2.27)

whose magnitude is less than unity for any value of α or θ.

The low-order temporal accuracy of the BTCS method places a restriction on the size of the
time step for an accurate solution.

12.2.7 Implicit Crank–Nicolson method

Continuing our search for an efficient method, we target an algorithm that is unconditionally stable
and second-order accurate in both time and space. The explicit FTCS method emerged by applying
the diffusion equation (12.2.1) at the point xi at time level tn, whereas the implicit BTCS method
emerged by applying (12.2.1) at the point xi at time level tn+1. Applying (12.2.1) at the intermediate
grid point, (xi, tn+1/2), located halfway between the grid points (xi, tn) and (xi, tn+1), and setting
the spatial derivative at the tn+1/2 level equal to the average of the spatial derivatives at the tn and
tn+1 levels, we derive the Crank–Nicolson [97] finite-difference equation

fn+1
i − fn

i

Δt
+O(Δt2) =

κ

2

(fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δx2
+

fn
i−1 − 2fn

i + fn
i+1

Δx2

)
+O(Δx2). (12.2.28)

The corresponding finite-difference stencil is shown with filled circles in Figure 12.2.2(b). Rearranging
(12.2.28), we obtain a tridiagonal system of equations,

−αfn+1
i−1 + 2 (1 + α)fn+1

i − αfn+1
i+1 = αfn

i−1 + 2 (1− α)fn
i − αfn

i+1. (12.2.29)

Deriving and examining the corresponding modified differential equation shows that the Crank–
Nicolson method is consistent and second-order accurate in both time and space.

Stability

Recasting (12.2.29) into a matrix form, we obtain a system of linear equations, A · fn+1 = B · fn,
where A is a tridiagonal matrix with superdiagonal, diagonal, and subdiagonal elements equal to
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−α, 2(1 + α), and −α, and B is another tridiagonal matrix with superdiagonal, diagonal, and
subdiagonal elements equal to α, 2(1− α), and α. Solving for fn+1, we find that

fn+1 = A−1 ·B · fn, (12.2.30)

which shows that stepping in time is equivalent to mapping successively with the projection matrix
P = A−1 ·B. It can be shown that the spectral radius of the projection matrix is always less than
unity, thus ensuring that the Crank–Nicolson method is unconditionally stable (Problem 12.2.2).
Carrying out the von Neumann stability analysis, we derive the amplification factor

G =
1− α (1− cos θ)

1 + α (1− cos θ)
=

1− 2α sin2(θ/2)

1 + 2α sin2(θ/2)
, (12.2.31)

which is always less than unity, confirming that the method is unconditionally stable.

Because of its remarkable properties regarding accuracy and stability, the Crank–Nicolson
method has become a standard choice in practice.

Multiple substeps

It is instructive to regard the Crank–Nicolson method as the implementation of two substeps, where
each substep lasts for time interval 1

2Δt. The first substep is carried out using the explicit FTCS
method, while the second substep is carried out using the implicit BTCS method according to the
finite-difference equations

f
n+1/2
i − fn

i
1
2Δt

= κ
fn
i−1 − 2fn

i + fn
i+1

Δx2
,

fn+1
i − f

n+1/2
i

1
2Δt

= κ
fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δx2
. (12.2.32)

Adding these equations to eliminate the intermediate variables at time tn+1/2 reproduces (12.2.28).
The unconditional stability of the second substep prevails over the conditional stability of the first
substep and renders the method overall unconditionally stable.

12.2.8 Implicit three-level methods

Richtmyer and Morton survey three-level implicit methods ([343], p. 189). The general form of a
five-point method with a T-shaped finite-difference stencil shown in Figure 12.2.2(c) is

(1 + β)
fn+1
i − fn

i

Δt
− β

fn
i − fn−1

i

Δt
= κ

fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δx2
, (12.2.33)

where β is an arbitrary positive constant. It can be shown that the numerical algorithm is uncon-
ditionally stable for any value of β.

The particular choice β = 1
2
provides us with a method that is second-order accurate in time

and capable of suppressing small-scale oscillations. These features render the difference equation
(12.2.33) with β = 1

2 preferable over the Crank–Nicolson method when the solution exhibits sharp
spatial variations. The choice β = 1

2 (1+
1
6α ) provides us with a method that is second-order accurate

in time and fourth-order accurate in space.
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Problems

12.2.1 CTCS and the Du Fort–Frankel method

(a) Express (12.2.17) in vector notation in terms of the solution vectors fn+1, fn, and fn−1.

(b) Perform a consistency analysis of the Du Fort–Frankel method and derive the modified differential
equation (12.2.23).

12.2.2 Spectral radius of the projection matrix of the Crank–Nicolson method

Verify that the eigenvalues of the projection matrix for the Crank–Nicolson method are

λm(A−1 ·B) =
1− 2α sin2(mπ/2N)

1 + 2α sin2(mπ/2N)
(12.2.34)

for m = 1, . . . , N − 1. Show that the spectral radius of the projection matrix is less than unity and
therefore the method is unconditionally stable.

12.2.3 Generalized Crank–Nicolson method

A general form of the Crank–Nicolson equation (12.2.28) arises by using a weighted average to
approximate the spatial derivative, obtaining

fn+1
i − fn

i

Δt
= κ

(
γ
fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δx2
+ (1− γ)

fn
i−1 − 2fn

i + fn
i+1

Δx2

)
, (12.2.35)

where γ is a positive parameter ranging in the interval [0, 1]. When γ = 0, we obtain the explicit
FTCS method; when β = 1/2, we obtain the implicit Crank–Nicolson method; when β = 1, we
obtain the implicit BTCS method.

(a) Show that the method is generally first-order accurate in t and second-order accurate in x. When
γ = 1

2 (1− 1
6α ), the accuracy of the method increases to second order in t and fourth order in x.

(b) Provide an interpretation of the method in terms of a sequence of two elementary substeps.

(c) Perform the von Neumann stability analysis to derive the amplification factor

G =
1− 4(1− γ)α sin2 θ

2

1 + 4γα sin2 θ
2

. (12.2.36)

Show that the method is unconditionally stable when 1
2 < β < 1, and conditionally stable when

0 < β < 1
2 . Derive the stability restriction 2α < 1/(1− 2γ) ([343], p. 189). When γ = 1

2 , the critical
value of α is shifted to infinity and the method becomes unconditionally stable.

12.2.4 Dispersion

The dispersion equation in one dimension reads

∂f

∂t
= γ

∂3f

∂x3
, (12.2.37)

where the constant γ is the dispersion coefficient. A solution describing the propagation of a si-
nusoidal wave is f(x, t) = exp[−i k(x − ct)], where k is a real wave number, c = k2γ is the phase
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velocity of the traveling wave, and i is the imaginary unit. Since the phase velocity depends on the
wavelength, a wave packet disperses as each constituent wave travels with its own phase velocity.
Physically, the dispersion equation acts to propagate an arbitrary initial distribution while modifying
its shape.

(a) The FTCS discretization leads to an explicit five-point two-level scheme described by the finite-
difference equation

fn+1
i = −1

2
ζ fn

i−2 + ζ fn
i−1 + fn

i − ζ fn
i+1 +

1

2
ζ fn

i+2, (12.2.38)

where ζ = γΔt/Δx3. The numerical error is of order Δt and Δx2. Carry out the von Neumann
stability analysis to derive the amplification factor

G = 1 + i 2ζ sin θ(1− cos θ) (12.2.39)

and explain why the method is unconditionally unstable.

(b) The implicit five-point two-level BTCS discretization leads to the finite-difference equation

1

2
ζfn+1

i−2 − ζfn+1
i−1 + fn+1

i + ζfn+1
i+1 − 1

2
γfn+1

i+2 = fn
i . (12.2.40)

Derive the associated amplification factor

G =
1

1 + i 2ζ sin θ (1− cos θ)
(12.2.41)

and explain why the method is unconditionally stable.

(c) Repeat (b) for the counterpart of the Crank–Nicolson method.

12.2.5 Fourth-order diffusion

The fourth-order diffusion equation in one dimension reads

∂f

∂t
= −λ

∂4f

∂x4
, (12.2.42)

where λ is a positive constant called the hyperdiffusivity or fourth-order diffusivity.

(a) The FTCS discretization leads to the explicit five-point difference equation

fn+1
i = −εfn

i−2 + 4εfn
i−1 + (1− 6 ε) fn

i + 4εfn
i+1 − εfn

i+2, (12.2.43)

where ε = λΔt/Δx4, with first-order accuracy in time and second-order accuracy in space. Carry
out the von Neumann stability analysis, compute the amplification factor, and assess the stability
of the method.

(b) Repeat (a) for the implicit five-point two-level BTCS method.

(c) Develop the counterpart of the Crank–Nicolson method.
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12.2.6 Eigenvalues and eigenvectors of a tridiagonal Toeplitz matrix

A matrix with constant diagonal elements is called a Toeplitz matrix. Consider a K×K tridiagonal
Toeplitz matrix whose subdiagonal, diagonal, and superdiagonal elements are respectively equal to
a, b, and c [317].

(a) Verify that the eigenvalues are given by

λi = a− 2(bc)1/2 cos
( iπ

K + 1

)
(12.2.44)

for i = 1, . . . ,K. Note that, when the product bc is negative, the eigenvalues are complex.

(b) Show that, when b and c are real and negative, the eigenvector of the ith eigenvalue is

u
(i)
j = rj sin

( ijπ

K + 1

)
(12.2.45)

for j = 1, . . . ,K, where r = (c/b)1/2 is a real and positive constant.

(b) Deduce the eigenvectors when b and c are real and positive.

Computer Problem

12.2.7 Transient Couette flow

A two-dimensional channel confined between two parallel plates separated by distance 2 cm is filled
with water. Suddenly, the upper plate starts moving parallel to itself with velocity V = 10 (1−e−ξt)
cm/s while the lower plate is stationary, where ξ is a constant with dimensions of inverse time.
Compute and plot the developing velocity profiles for ξ = 0.1 or 1 s−1 using (a) the FTCS method,
(b) the Du Fort–Frankel method, (c) the CTCS method, and (d) the Crank–Nicolson method.
Discuss the selection of the temporal and spatial steps.

12.3 Diffusion in two and three dimensions

Having addressed the unsteady diffusion equation in one dimension, now we consider unsteady
diffusion in two and three dimensions governed, respectively, by the equations

∂f

∂t
= κ (

∂2f

∂x2
+

∂2f

∂y2
),

∂f

∂t
= κ (

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
), (12.3.1)

subject to a specified initial condition, f(x, t = 0) = F (x), where F (x) is a known function. For
simplicity, we assume that the solution domain extends over the whole two-dimensional plane or
three-dimensional space, and the function f decays to zero far from the origin.

The majority of finite-difference methods discussed in Section 12.2 can be extended in a
straightforward manner to handle a second or third dimension. Examples will be discussed in this
section. However, we will see that the need for computationally efficient algorithms necessitates the
development of new procedures.
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12.3.1 Iterative solution of Laplace and Poisson equations

Before proceeding to discuss specific discretizations, we remark that the finite-difference methods for
solving equations (12.3.1) provide us with iterative procedures for solving the Laplace and Poisson
equations in two and three dimensions. As an example, we consider the Poisson equation in two
dimensions,

∂2f

∂x2
+

∂2f

∂y2
+ g(x, y) = 0, (12.3.2)

where g is a given source term. The idea is to introduce a fictitious unsteady diffusion problem in
the presence of a source term, governed by the unsteady reaction–diffusion equation

∂f

∂t
= κ

( ∂2f

∂x2
+

∂2f

∂y2
+ g

)
, (12.3.3)

subject to a certain initial condition. Since the asymptotic solution of (12.3.3) at long times is
identical to the solution of (12.3.2), advancing in time the solution of the diffusion–reaction equation
amounts to iterating on the solution of the Poisson equation with a projection matrix that arises
from the finite-difference scheme used to integrate (12.3.3).

12.3.2 Finite-difference procedures

In three dimensions, the goal of the finite-difference method is to generate the values of the unknown
function, f , at the nodes of a three-dimensional grid parametrized by three indices, i, j, and k. In
two dimensions, the grid is parametrized by two indices, i and j. For simplicity, we assume that the
grid spacings, Δx, Δy, and Δz, are uniform but not necessarily identical throughout the solution
domain.

von Neumann stability analysis

To carry out the von Neumann stability analysis in three dimensions, we consider the evolution of
a sinusoidal wave and set

fn
ijk = An exp[ i (iθx + jθy + kθz) ], (12.3.4)

where i is the imaginary unit and θx = 2πΔx/Lx, θy = 2πΔy/Ly, and θz = 2πΔz/Lz, are phase
angles with corresponding wavelengths Lx, Ly, and Lz. The objective is to study the magnitude of
the amplification factor, G ≡ An+1/An. Because the stability criteria for two- or three-dimensional
diffusion are more restrictive than those for one-dimensional diffusion, conditionally stable methods
are prohibitively expensive.

12.3.3 Explicit FTCS method

To implement the FTCS method in two dimensions, we apply the diffusion equation at the (i, j)
node of a two-dimensional grid at the time instant, tn, and approximate the second derivatives in
the x and y directions using central differences to obtain the difference equation

fn+1
i,j − fn

i,j

Δt
= κ

( fn
i−1,j − 2 fn

i,j + fn
i+1,j

Δx2
+

fn
i,j−1 − 2 fn

i,j + fn
i,j+1

Δy2
)
. (12.3.5)
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Rearranging, we derive the explicit form

fn+1
i,j = αx(f

n
i+1,j + fn

i−1,j) + (1− 2αx − 2αy) f
n
i,j + αy(f

n
i,j+1 + fn

i,j−1), (12.3.6)

where

αx =
κΔt

Δx2
, αy =

κΔt

Δy2
(12.3.7)

are the diffusion numbers in the x and y directions. An alternative form of (12.3.6) is

fn+1
i,j = αx

[
(fn

i+1,j + fn
i−1,j) + 2

( 1

2αx
− 1− β

)
fn
i,j + β (fn

i,j+1 + fn
i,j−1)

]
, (12.3.8)

where β = (Δx/Δy)2. As β tends to zero or infinity, we recover the FTCS formula for one-
dimensional diffusion along the x or y axis.

Carrying out the von Neumann stability analysis, we derive the amplification factor

G = 1− 4 (αx sin
2 θx
2

+ αy sin
2 θy
2
), (12.3.9)

which shows that the FTCS method in two dimensions is stable provided that αx + αy < 1
2
, or

αx <
1

2 (1 + β)
. (12.3.10)

This requirement imposes a strong constraint on the size of the time step and renders the explicit
discretization inefficient. Similar difficulties are encountered in three dimensions.

12.3.4 Implicit BTCS method

To achieve unconditional stability, we resort to an implicit method. The fully implicit BTCS dis-
cretization in two dimensions yields the difference equation

fn+1
i,j − fn

i,j

Δt
= κ

( fn+1
i−1,j − 2fn+1

i,j + fn+1
i+1,j

Δx2
+

fn+1
i,j−1 − 2fn+1

i,j + fn+1
i,j+1

Δy2
)
, (12.3.11)

with first-order accuracy in time and second-order accuracy in space. Rearranging, we derive the
implicit formula

−αx(f
n+1
i−1,j + fn+1

i+1,j) + (1 + 2αx + 2αy) f
n+1
i,j − αy(f

n+1
i,j−1 + fn+1

i,j+1) = fn
i,j . (12.3.12)

A stability analysis reveals that the method is unconditionally stable.

Unfortunately, the numerical implementation of (12.3.12) results in a pentadiagonal system
of algebraic equations whose solution cannot be carried out using a specialized method, such as the
Thomas algorithm. This complication renders the BTCS method prohibitively expensive.
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12.3.5 ADI method in two dimensions

To reduce the computational burden of the implicit BTCS method for two-dimensional diffusion,
Peaceman & Rachford [291] and Douglas [109] proposed splitting each time step into two substeps of
equal duration 1

2 Δt, and approximating the spatial derivatives in a partially implicit fashion while
working sequentially and in the x and y directions in an alternating fashion. The computations
proceed according to the finite-difference equations

f
n+1/2
i,j − fn

i,j

1
2Δt

= κ
[fn+1/2

i−1,j − 2f
n+1/2
i,j + f

n+1/2
i+1,j

Δx2

]
+ κ

fn
i,j−1 − 2fn

i,j + fn
i,j+1

Δy2
(12.3.13)

and

fn+1
i,j − f

n+1/2
i,j

1
2Δt

= κ
f
n+1/2
i−1,j − 2f

n+1/2
i,j + f

n+1/2
i+1,j

Δx2
+ κ

[fn+1
i,j−1 − 2fn+1

i,j + fn+1
i,j+1

Δy2

]
, (12.3.14)

where n + 1
2
is an intermediate time level and the square brackets on the right-hand sides enclose

implicit discretizations. The first substep is carried out using the implicit BTCS method for the x
direction, while the second substep is carried out using the implicit BTCS method for the y direction.
To eliminate the bias associated with this particular arrangement, the order is alternated after the
completion of each step. The overall method is second-order accurate in time and space.

Rearranging the difference equations, we obtain a two-step implicit algorithm representing the
x and y sweeps,

−αxf
n+1/2
i−1,j + 2(1 + αx) f

n+1/2
i,j − αxf

n+1/2
i+1,j = αyf

n
i,j−1 + 2(1− αy) f

n
i,j + αyf

n
i,j+1 (12.3.15)

and

−αyf
n+1
i,j−1 + 2(1 + αy) f

n+1
i,j − αyf

n+1
i,j+1 = αxf

n+1/2
i−1,j + 2(1− αx)f

n+1/2
i,j + αxf

n+1/2
i+1,j . (12.3.16)

Completing each time step requires solving two systems of tridiagonal equations, which can be done
efficiently using the Thomas algorithm described in Section B.1.4, Appendix B.

Carrying out the von Neumann stability analysis, we obtain the amplification factor

G =
(1− 2αx sin

2 θx
2
)(1− 2αy sin

2 θy
2
)

(1 + 2αx sin
2 θx

2 )(1 + 2αy sin
2 θy

2 )
. (12.3.17)

Cursory examination reveals that |G| < 1 under any conditions, which ensures that the ADI method
is unconditionally stable. The second-order accuracy combined with the unconditional stability are
the reasons that the ADI method is a standard choice in practice.

12.3.6 Crank–Nicolson method and approximate factorization

The ADI method in two dimensions allows us to advance the solution over one time step by solving
two pseudo one-dimensional problems, which amounts to decoupling the diffusion processes in the
two spatial directions. To demonstrate this clearly, we introduce the central-difference operators

Δ2
xf

n
i,j ≡ fn

i−1,j − 2 fn
i,j + fn

i+1,j , Δ2
yf

n
i,j ≡ fn

i,j−1 − 2 fn
i,j + fn

i,j+1, (12.3.18)
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and restate the ADI equations as

(2− αxΔ
2
x)f

n+1/2
i,j = (2 + αyΔ

2
y)f

n
i,j , (2− αyΔ

2
y)f

n+1
i,j = (2 + αxΔ

2
x)f

n+1/2
i,j . (12.3.19)

Combining these equations to eliminate the intermediate solution at the n+ 1
2 level, we obtain

(2− αxΔ
2
x)(2− αyΔ

2
y)f

n+1
i,j = (2 + αxΔ

2
x)(2 + αyΔ

2
y)f

n
i,j . (12.3.20)

The spatial decoupling is reflected in the factorized nature of the difference operators on either side.

The fully implicit Crank–Nicolson discretization of the two-dimensional diffusion equation in
both spatial directions can be written in the symbolic form

(2− αxΔ
2
x − αyΔ

2
y)f

n+1
i,j = (2 + αxΔ

2
x + αyΔ

2
y)f

n
i,j , (12.3.21)

which can be restated as

(2− αxΔ
2
x)(2− αyΔ

2
y)f

n+1
i,j = (2 + αxΔ

2
x)(2 + αyΔ

2
y)f

n
i,j + αxαy Δ

2
x Δ2

y(f
n+1
i,j − fn

i,j). (12.3.22)

The Crank–Nicolson algorithm can be shown to be unconditionally stable (problem 12.3.2).

The ADI form (12.3.20) derives from the Crank–Nicolson form (12.3.22) by neglecting the last
term on the right-hand side. This simplification is permissible, for the neglected term is of fourth-
order in the spatial variables, whereas (12.3.20) is meant to be accurate only up to second order in
the spatial steps. We may say that the ADI method results from the approximate factorization of
the difference operators on either side of the Crank–Nicolson equation (12.3.21).

12.3.7 Poisson equation in two dimensions

The explicit and semi-implicit methods for two-dimensional diffusion provide us with efficient it-
erative procedures for solving the Poisson’s equation ∇2f + g = 0, as discussed in Section 12.3.1.
Algorithms arising from the explicit FTCS discretization on a uniform grid and its modified versions
corresponding to the Gauss–Seidel and successive over-relaxation methods, are collected in Table
12.3.1. The explicit point Gauss–Seidel scheme (PGS) given in the second entry arises from the
FTCS scheme given in the first entry by setting αx = 1/[2(1 + β)], which marginally satisfies the
stability criterion αx + αy < 1/2. Introducing a relaxation parameter, ω, yields the point succes-
sive over-relaxation (PSOR) method shown in the third entry of Table 12.3.1. All methods are
second-order accurate in Δx and Δy.

The line Gauss–Seidel (LGS) scheme shown in the fourth entry of Table 12.3.1 arises from
the semi-implicit discretization of the Poisson equation. The relaxation parameter ω of the line
successive over-relaxation (LSOR) scheme shown in the last entry of Table 12.3.1 varies in the range
[0, 2]. The implicit LGS and LSOR schemes require solving tridiagonal systems of equations for each
grid line parallel to the x axis, which can be done efficiently using the Thomas algorithm. Similar
equations can be written for the y axis.

To develop the ADI method, we introduce the parameter � = 2/αx, and recast the ADI equa-
tions (12.3.15) as shown in the first entry of Table 12.3.2. Since the ADI method is unconditionally
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Explicit FTCS

fn+1
i,j = fn

i,j + αx

[
fn
i+1,j + fn

i−1,j − 2 (1 + β) fn
i,j + β (fn

i,j+1 + fn
i,j−1) + Δx2gi,j

]
Explicit point Gauss–Seidel (PGS)

fn+1
i,j =

1

2 (1 + β)

[
fn
i+1,j + fn

i−1,j + β (fn
i,j+1 + fn

i,j−1) + Δx2gi,j

]
Explicit point successive over-relaxation (PSOR)

fn+1
i,j = (1− ω) fn

i,j +
ω

2 (1 + β)

[
fn
i+1,j + fn

i−1,j + β (fn
i,j+1 + fn

i,j−1) + Δx2gi,j

]
Implicit line Gauss–Seidel for the x direction (LGS)

−fn+1
i−1,j + 2 (1 + β) fn+1

i,j − fn+1
i+1,j = β (fn

i,j−1 + fn
i,j+1) + Δx2gi,j

Implicit line successive over-relaxation for the x direction (LSOR)

−ω fn+1
i−1,j + 2 (1 + β) fn+1

i,j − ω fn+1
i+1,j = 2 (1− ω) (1 + β) fn

i,j + ω β (fn
i,j−1 + fn

i,j+1) + Δx2 gi,j

Table 12.3.1 Iterative methods for solving the Poisson equation, ∇2f + g = 0, on a uniform rect-
angular grid, where β = (Δx/Δy)2. All methods are second-order accurate in Δx and Δy. The
relaxation parameter ω in the PSOR and LSOR schemes ranges between 0 and 2.

stable, it might appear that the fastest approach to the steady state will be achieved using a large
value for Δt or a small value for �. However, careful analysis shows that the minimum number of
iterations for a specified level of accuracy is achieved when a certain repetitive sequence of values
for � is employed. In its generic implementation, the performance of the ADI method is comparable
to that of the line successive over-relaxation method (LSOR) ([5]; [184], p. 446).

To develop the SOR-ADI method shown in the second entry of Table 12.3.2, we set � = 2β in
the first ADI equation and � = 2 in the second ADI equation so that the middle terms on the right-
hand sides disappear. A relaxation parameter, ω, is then introduced to accelerate the convergence
([186], Vol. II, p. 9). To demonstrate the consistency of the SOR-ADI scheme, we assume that the
solution depends only on x. The first SOR-ADI equation yields

−ωf
n+1/2
i−1,j + 2(1 + β)f

n+1/2
i,j − ωf

n+1/2
i+1,j = 2(1 + β − ω)fn

i,j +
ω

2
Δx2gi,j . (12.3.23)
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ADI

−f
n+1/2
i−1,j + (2 + �) f

n+1/2
i,j − f

n+1/2
i+1,j = β fn

i,j−1 + (�− 2β) fn
i,j + β fn

i,j+1 +Δx2 gi,j ,

−β fn+1
i,j−1 + (�+ 2β) fn+1

i,j − β fn+1
i,j+1 = f

n+1/2
i−1,j + (�− 2) f

n+1/2
i,j + f

n+1/2
i+1,j +Δx2 gi,j

SOR-ADI

−ω f
n+1/2
i−1,j + 2 (1 + β) f

n+1/2
i,j − ω f

n+1/2
i+1,j

= ω β fn
i,j−1 + 2 (1 + β) (1− ω) fn

i,j + ω β fn
i,j+1 + ωΔx2 gi,j ,

−ω β fn+1
i,j−1 + 2 (1 + β) fn+1

i,j − ω β fn+1
i,j+1

= ω f
n+1/2
i−1,j + 2 (1 + β) (1− ω) f

n+1/2
i,j + ω f

n+1/2
i+1,j + ωΔx2 gi,j

Table 12.3.2 ADI methods for solving the Poisson equation, ∇2f + g = 0, on a uniform Cartesian
grid, where β = (Δx/Δy)2. All methods are second-order accurate in Δx and Δy.

When ω = 1 + β, we obtain

−f
n+1/2
i−1,j + 2f

n+1/2
i,j − f

n+1/2
i+1,j = Δx2gi,j , (12.3.24)

which is the central difference discretization of the ordinary differential equation d2f/dx2 + g = 0.

12.3.8 ADI method in three dimensions

The standard ADI method in three dimensions is carried out in three substeps of equal duration,
1
3
Δt. One spatial dimension is treated implicitly while the other two dimensions are treated explicitly

in each substep, in the spirit of (12.3.13) and (12.3.14). The method is first-order accurate in time
and second-order accurate in space. Unfortunately, the partial BTCS discretizations result in an
algorithm that is stable only when αx + αy + αz < 3

2
, which places an unaffordable restriction on

the size of the time step [317].

Douglas [111] developed an ADI method that is second-order accurate in both time and space
and unconditionally stable. The method proceeds in a predictor–correction sense in three substeps.
The first substep produces a predicted solution using the Crank–Nicolson method for the x direction,
while treating the y and z directions explicitly according to the difference equation

(3− 1

2
αxΔ

2
x)f

∗
i,j,k = (3 +

1

2
αxΔ

2
x + αyΔ

2
y + αzΔ

2
z)f

n
i,j,k, (12.3.25)
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where an asterisk denotes the first provisional solution. The second substep produces a predicted
solution using the x discretization of the first substep and the Crank–Nicolson discretization for the
y direction, while treating the z direction explicitly according to the difference equation

(3− 1

2
αyΔ

2
y)f

∗∗
i,j,k = (3 +

1

2
αxΔ

2
x +

1

2
αyΔ

2
y + αz Δ

2
z)f

n
i,j,k +

1

2
αxΔ

2
xf

∗
i,j,k, (12.3.26)

where a double asterisk denotes the second provisional solution. The third substep advances the
solution using the x and y discretizations of the second substep, while using the Crank–Nicolson
method for the z direction according to the difference equation

(3− 1

2
αzΔ

2
z)f

n+1
i,j,k = (3 +

1

2
αxΔ

2
x +

1

2
αyΔ

2
y +

1

2
αzΔ

2
z ) f

n
i,j,k +

1

2
αxΔ

2
xf

∗
i,j,k +

1

2
αyΔ

2
yf

∗∗
i,j,k.

(12.3.27)

Combining (12.3.26) with (12.3.25) and simplifying, we obtain

(3− 1

2
αyΔ

2
y)f

∗∗
i,j,k = 3 f∗

i,j,k − 1

2
αyΔ

2
yf

n
i,j,k. (12.3.28)

Combining (12.3.27) with (12.3.26) and simplifying, we obtain

(3− 1

2
αzΔ

2
z)f

n+1
i,j,k = 3 f∗∗

i,j,k −
1

2
αzΔ

2
zf

n
i,j,k. (12.3.29)

We can deduce the overall action of the method by combining (12.3.29) and (12.3.28) to eliminate
the second intermediate solution, obtaining

(3− 1

2
αyΔ

2
y)(3−

1

2
αzΔ

2
z)f

n+1
i,j,k = 3 f∗

i,j,k − 1

2
αyΔ

2
yf

n
i,j,k −

1

2
αz(3−

1

2
αyΔ

2
y)Δ

2
zf

n
i,j,k. (12.3.30)

Now combining (12.3.30) and (12.3.25) to eliminate the first intermediate solution, we obtain

(3− 1

2
αxΔ

2
x)(3−

1

2
αyΔ

2
y)(3−

1

2
αzΔ

2
z)f

n+1
i,j,k

= (3 +
1

2
αxΔ

2
x + αyΔ

2
y + αzΔ

2
z)f

n
i,j,k − 1

2
(3− 1

2
αxΔ

2
x)αyΔ

2
yf

n
i,j,k

− 1

2
αz(3−

1

2
αxΔ

2
x)(3−

1

2
αyΔ

2
y)Δ

2
zf

n
i,j,k. (12.3.31)

Simplifying the right-hand side, we find that

(3− 1

2
αxΔ

2
x)(3−

1

2
αyΔ

2
y)(3−

1

2
αzΔ

2
z)f

n+1
i,j,k =

(
1 +

1

2
(αxΔ

2
x + αyΔ

2
y + αzΔ

2
z)

+
1

4
(αxαyΔ

2
xΔ

2
y + αxαzΔ

2
xΔ

2
z + αyαzΔ

2
yΔ

2
z)−

1

8
αxαyαzΔ

2
xΔ

2
yΔ

2
z

)
fn
i,j,k. (12.3.32)

The right-hand side can be rearranged to give

(3− 1

2
αxΔ

2
x)(3−

1

2
αyΔ

2
y)(3−

1

2
αzΔ

2
z)f

n+1
i,j,k

= (3 +
1

2
αxΔ

2
x)(3 +

1

2
αyΔ

2
y)(3 +

1

2
αzΔ

2
z)f

n
i,j,k −

1

4
αxαyαzΔ

2
xΔ

2
yΔ

2
zf

n
i,j,k,

(12.3.33)

which reveals a nearly factorized form. Performing the von Neumann stability analysis, we find that
the method is unconditionally stable [317].
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12.3.9 Operator splitting and fractional steps

Another way of preserving the tridiagonal nature of the one-dimensional implicit discretization is by
replacing the three-dimensional equation (12.3.1), or its two-dimensional counterpart, with a set of
three or two one-dimensional evolution equations that operate successively in fractional steps [434].
In two dimensions, we obtain

∂f

∂t
= κ

∂2f

∂x2
,

∂f

∂t
= κ

∂2f

∂y2
, (12.3.34)

which amounts to allowing diffusion to operate sequentially in the two directions, each time neglecting
the other dimension. Each fractional step proceeds for the full time interval, Δt, and time is reset
to the initial value at the end of the first fractional step. To preserve the spatial isotropy of the
Laplacian operator, the order of the equations in (12.3.34) can be switched after completing a full
time step. The fractional steps can be carried out using different methods for the one-dimensional
component diffusion equations, as discussed in Section 12.2. The stability restrictions of the overall
method is the union of the restrictions pertaining to the individual fractional steps.

Approximate factorization implicit (AFI) method

The approximate factorization implicit (AFI) method emerges by applying the implicit BTCS dis-
cretization in each fractional step of (12.3.34). It can be shown that the AFI scheme derives from the
approximate factorization of the fully implicitly BTCS discretization of (12.3.1) (Problem 12.3.2).
Each fractional step requires solving a tridiagonal system of equations using the Thomas algorithm.

Crank–Nicolson method

Using the Crank–Nicolson method for each fractional step in two dimensions, we obtain the difference
equations

(1− 1

2
αxΔ

2
x)f

∗
i,j = (1 +

1

2
αxΔ

2
x)f

n
i,j , (1− 1

2
αyΔ

2
y)f

n+1
i,j = (1 +

1

2
αyΔ

2
y)f

∗
i,j , (12.3.35)

where an asterisk denotes an intermediate solution. Eliminating the intermediate solution yields the
ADI equation in two dimensions. We conclude that the algorithm is second-order accurate in time
and space, while enjoying unconditional stability.

Problems

12.3.1 Generalized fully implicit Crank–Nicolson method in two dimensions

The Crank–Nicolson method can be generalized into a more comprehensive scheme expressed by the
difference equation[

1− γ (αxΔ
2
x + αyΔ

2
y)
]
fn+1
i,j =

[
1 + (1− γ) (αxΔ

2
x + αyΔ

2
y)
]
fn
i,j , (12.3.36)

where γ is a dimensionless numerical parameter. The explicit FTCS discretization corresponds to
γ = 0, the standard Crank–Nicolson discretization corresponds to γ = 1

2 , and the implicit BTCS



938 Introduction to Theoretical and Computational Fluid Dynamics

discretization corresponds to γ = 1. Perform the von Neumann stability analysis to derive the
amplification factor

G =
1− 4(1− γ)

[
αx sin

2( 1
2
θx) + αy sin

2( 1
2
θy)

]
1 + 4 γ

[
αx sin

2(12θx) + αy sin
2( 12θy)

] . (12.3.37)

Show that, when γ > 1
2 , |G| < 1 for any values of αx, αy, θx, and θy, and the method is stable;

whereas when γ < 1
2 , the method is stable only if

αx + αy <
1

2(1− 2γ)
. (12.3.38)

Explain why the Crank–Nicolson method corresponding to γ = 1
2
is unconditionally stable.

12.3.2 AFI method

Show that the AFI method can be regarded as the result of the approximate factorization of the
fully implicit BTCS discretization of (12.3.1).

12.3.3 ADI method for Poisson’s equation in three dimensions

Develop an iterative method for solving Poisson’s equation in three dimensions based on the ADI
method of Douglas [111].

Computer Problems

12.3.4 ADI method for the Poisson equation in two dimensions

Write a computer program that solves the two-dimensional Poisson equation in a rectangular domain
covered by an Nx×Ny grid based on the ADI method given in Table 12.3.2, subject to the Dirichlet
boundary condition. Run the program to compute the solution inside a square box with a forcing
function and boundary values of your choice. Examine the rate of convergence of your results with
respect to �. Test the reliability of your solution by comparing the results against a known analytical
solution of your choice.

12.3.5 ADI method for the Poisson equation in three dimensions

Repeat Problem 12.3.4 for the three-dimensional Poisson equation inside a rectangular box dis-
cretized into an Nx ×Ny ×Nz grid, based on the ADI method developed in Problem 12.3.3.

12.4 Convection

Having discussed the extreme case of pure diffusion in one two and three dimensions, now we turn
our attention to the opposite extreme case of pure convection.

12.4.1 One-dimensional convection

We begin by considering the one-dimensional linear convection equation,

∂f

∂t
+ U

∂f

∂x
= 0, (12.4.1)
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t

x
characteristic

F(x)

ξ

Figure 12.4.1 According to the linear convection equation, the initial distribution travels along the
x axis with velocity U . The dashed line is a characteristic line along which the solution remains
constant.

where U is a positive or negative constant convection velocity. For simplicity, we assume that the
solution domain extends over the whole x axis and stipulate the far-field conditions f(±∞, t) = 0.
If the solution domain were finite, we would have to specify one boundary condition at one end. An
initial condition stipulating that f(x, t = 0) = F (x) is provided, where F (x) is a known function.

One may readily verify that the exact solution is given by f(x, t) = F (x − Ut), which states
that the initial distribution, F (x), travels along the x axis with constant velocity U , as illustrated in
Figure 12.4.1. If the velocity U is negative, the motion occurs toward the negative direction of the
x axis. The value of the function f(x, t) remains constant along the characteristic lines x = ξ + Ut
in the xt plane, as shown with the dashed line in Figure 12.4.1, where ξ is an arbitrary point.

As a preliminary, we differentiate (12.4.1) twice, once with respect to t and the second time
with respect to x, and combine the resulting expressions to obtain the wave equation

∂2f

∂t2
= U2 ∂2f

∂x2
, (12.4.2)

which is a prototypical second-order hyperbolic partial differential equation. The hyperbolic nature
of the first-order equation (12.4.1) thus becomes apparent. A function that satisfies the convection
equation (12.4.1) also satisfies the wave equation (12.4.2).

12.4.2 Explicit FTCS method

Applying the linear convection equation (12.4.1) at the xi grid point at time tn, and approximating
the time derivative, ∂f/∂t, with a forward difference and the space derivative, ∂f/∂x, with a central
difference, we obtain the FTCS difference equation

fn+1
i − fn

i

Δt
+ U

fn
i+1 − fn

i−1

2Δx
= 0. (12.4.3)
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The numerical error due to the temporal and spatial discretizations is of order Δt and Δx2. Since this
difference equation emerged by applying standard finite-difference approximations, its consistency
is guaranteed and need not be examined. Solving for fn+1

i , we obtain the explicit formula

fn+1
i =

c

2
fn
i−1 + fn

i − c

2
fn
i+1, (12.4.4)

where

c =
UΔt

Δx
(12.4.5)

is the dimensionless convection number, also called the Courant number.

According to the difference formula (12.4.4), the

n

+1

−1n
i−1 i i+1

n

x

t

Computational stencil of the FTCS
discretization.

new solution vector, fn+1, emerges by multiplying the
previous solution vector, fn, with a tridiagonal projection
matrix B whose subdiagonal, diagonal, and superdiago-
nal elements are, respectively, equal to c

2 , 1, and − c
2 . We

know that, if the spectral radius of a projection matrix
with a complete set of eigenvectors is equal to unity, less
than unity, or larger than unity, the length of fn will stay
roughly constant, decrease, or increase during the succes-
sive projections. We remember that, according to the ex-
act solution, the initial distribution is convected without
change in shape, and accept the first behavior, tolerate
the second behavior, and dismiss the third behavior as
numerically unstable.

The eigenvalues and thus the spectral radius of the (N−1)×(N−1) matrixB can be computed
analytically and are given by

λm = 1 + i c cos
(mπ

N

)
(12.4.6)

for m = 1, . . . , N − 1, where i is the imaginary unit [317]. Since the magnitude of all eigenvalues
is greater than unity, the norm of the solution vector, fn, will amplify during the projections.
Accordingly, the numerical method is unconditionally unstable.

Another way of assessing stability is by performing the von Neumann analysis, obtaining the
amplification factor

G ≡ An+1

An
= 1 + i c sin θ, (12.4.7)

where θ = 2πΔx/L is the phase angle. Since the magnitude of the right-hand side of (12.4.7) is
greater than unity for any value of c and θ, the solution vector, fn, will amplify for any wavelength,
L, and this confirms that the FTCS method is unconditionally unstable and must be abandoned. It
is instructive to recall that the FTCS method for the diffusion equation was found to be conditionally
stable.
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Figure 12.4.2 Computational stencil of the (a) FTBS and (b) FTFS discretization for solving the
convection equation.

12.4.3 FTBS method

We proceed to exploring a different type of discretization in the hope of ensuring numerical stability.
Now we apply (12.4.1) at the point xi at the time instant tn and approximate the time derivative,
∂f/∂t, with a forward difference and the spatial derivative, ∂f/∂x, with a backward difference to
obtain the FTBS scheme

fn+1
i − fn

i

Δt
+ U

fn
i − fn

i−1

Δx
= 0. (12.4.8)

The corresponding finite-difference stencil is shown in Figure 12.4.2(a). The numerical error is of
order Δt and Δx. Rearranging (12.4.8), we derive the two-level explicit algorithm

fn+1
i = c fn

i−1 + (1− c) fn
i . (12.4.9)

The right-hand side is recognized as a weighted average.

The exact solution at the xi grid point at the first step is

fexact
i (Δt) = F (xi − UΔt) = F (xi−1 +Δx− UΔt), (12.4.10)

where F (x) is the initial distribution. When U is positive and Δx = UΔt or c = 1, we find that

fexact
i (Δt) = F (xi−1) = f0

i−1, (12.4.11)

which shows that the FTBS difference equation (12.4.9) reproduces the exact solution. It might
appear that adjusting Δx and Δt so that c = 1 is a perfect choice. Unfortunately, we will see that
stability constraints necessitate a compromise.

Performing the von Neumann stability analysis, we derive the amplification factor

G ≡ An+1

An
= 1− c+ c exp(i θ), (12.4.12)

which reveals that G traces a circle of radius c centered at the point (1− c, 0) in the complex plane.
To guarantee stability, we require that |G| < 1, and obtain the stability constraint 0 < c < 1. When
the convection velocity U is negative, this constraint cannot be fulfilled and the FTBS method is
unstable.
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12.4.4 FTFS method

Returning to (12.4.1), we apply forward differences for the time and space derivatives, and obtain
the FTFS difference equation

fn+1
i − fn

i

Δt
+ U

fn
i+1 − fn

i

Δx
= 0. (12.4.13)

The corresponding finite-difference stencil is shown in Figure 12.4.2(b). The numerical error is of
order Δt and Δx. Rearranging, we derive the two-level explicit formula

fn+1
i = (1 + c) fn

i − c fn
i+1. (12.4.14)

When U is negative and c = −1, we find that fn+1
i = fn

i+1, which reproduces the exact solution.

Carrying out the von Neumann stability analysis, we derive the gain

G ≡ An+1

An
= 1 + c− c exp(−i θ), (12.4.15)

which reveals that G is located on a circle of radius c centered at the point (1+ c, 0) in the complex
plane. To ensure stability, we require that |G| < 1 and obtain the stability constraint −1 < c < 0.
When the convection velocity U is positive, the method is unstable.

12.4.5 Upwind differencing, numerical diffusivity, and the CFL condition

The complementary successes of the FTBS and FTFS schemes, respectively, for positive and negative
values of the convection velocity, U , suggests the method of upwind differencing: use FTBS when
U > 0, use FTFS when U < 0, and always keep |c| < 1. The restriction |c| < 1 is known as
the Courant–Friedrichs–Lewy (CFL) stability criterion. Upwind differencing is particularly effective
when the convection velocity is not constant but varies in time and space over the solution domain.
In physical terms, upwind differencing carries information on the structure of the solution forward
from the direction of a traveling wave, and thus anticipates and suppresses the growth of unwanted
perturbations.

12.4.6 Numerical diffusion

To explain further the conditional stability of the spatially biased FTBS and FTFS discretizations,
respectively, for positive and negative values of the convection velocities, which should be contrasted
with the unconditional instability of the FTCS discretization, we perform a consistency analysis.

FTBS discretization

Considering first the FTBS formula (12.4.9), we pretend that all discrete variables are continuous
functions of space and time and expand them in Taylor series about the doublet (xi, tn) to obtain

fn
i + (ft)

n
i Δt+

1

2
(ftt)

n
i Δt2 +O(Δt3)

= c
(
fn
i − (fx)

n
i Δx+

1

2
(fxx)

n
i Δx2

)
+ (1− c) fn

i + cO(Δx3), (12.4.16)
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where ft = ∂f/∂t, fx = ∂f/∂x, and fxx = ∂2f/∂x2. Simplifying and rearranging, we find that

(ft)
n
i Δt+ c (fx)

n
i Δx =

1

2

[
c (fxx)

n
i Δx2 − (ftt)

n
i Δt2

]
+O(Δt3) + cO(Δx3). (12.4.17)

Next, we divide both sides by Δt and recall the definition c = UΔt/Δx to obtain

(ft)
n
i + U (fx)

n
i =

[
c
Δx2

Δt
(fxx)

n
i Δx2 − (ftt)

n
i Δt

]
+O(Δt2) +

c

Δt
O(Δx3). (12.4.18)

Finally, we substitute ftt = U2fxx and obtain

(ft)
n
i + U (fx)

n
i =

1

2
UΔx (1− c) (fxx)

n
i +O(Δt2) + U O(Δx2). (12.4.19)

Neglecting the quadratic terms, we derive the modified differential equation

ft + Ufx =
1

2
UΔx (1− c) fxx. (12.4.20)

The right-hand side represents a small diffusive term with numerical diffusivity

κnum =
1

2
UΔx (1− c), (12.4.21)

which is positive when 0 < c < 1. Negative numerical diffusivity is tantamount to numerical
instability.

FTFS discretization

Working in a similar fashion with the FTFS method, we derive a modified differential equation
involving a small diffusion term involving the numerical diffusivity

κnum = −1

2
UΔx (1 + c), (12.4.22)

which is nonnegative when −1 < c < 0. Combining this result with the von Neumann stability
analysis, we confirm that positive numerical diffusivity helps ensure numerical stability.

FTCS discretization

What went wrong with the FTCS discretization? Carrying out a consistency analysis, we derive a
modified differential equation involving a small diffusion term with numerical diffusivity

κnum = −1

2
cUΔx = −1

2
U2Δt, (12.4.23)

which is negative under any conditions.
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Figure 12.4.3 Cone of influence for the (a) FTBS and (b) FTFS method. The characteristic is drawn
as a heavy line.

12.4.7 Numerical cone of influence

The exact solution of the linear convection equation at the xi grid point at time tn is found by
traveling backward in time along the characteristic, as shown in Figure 12.4.3. When we have
reached the initial time level, t = 0, where x = ξ, we stop and set

fn
i = F (ξ). (12.4.24)

According to the finite-difference equations derived in the section, to compute the value fn
i , we use

information at all grid points residing inside a planar angle with apex at the point (xi, tn), called
the numerical cone of influence, as illustrated in Figure 12.4.3. The CFL condition, |c| < 1, requires
that the characteristic lies inside the numerical cone of influence. If the numerical cone of influence
does not include the characteristic that passes through a node, the numerical method will surely be
unstable. The CFL condition is thus necessary but not sufficient for numerical stability.

12.4.8 Lax’s modification of the FTCS method

Lax proposed a modification of the unconditionally unstable FTCS method meant to introduce a
stabilizing diffusive action [226]. Replacing fn

i in the finite-difference approximation of the time
derivative with an average value, 1

2(f
n
i+1 + fn

i−1), we obtain the Lax difference equation

fn+1
i − 1

2 (f
n
i+1 + fn

i−1)

Δt
+ U

fn
i+1 − fn

i−1

2Δx
= 0. (12.4.25)

Rearranging, we derive an explicit two-level formula,

fn+1
i =

1

2
(1 + c) fn

i−1 +
1

2
(1− c) fn

i+1. (12.4.26)

However, since this formula was obtained by an ad hoc modification of the well-founded FTCS
discretization, its consistency must be examined. Expanding all variables in Taylor series about the



12.4 Convection 945

xi grid point at time tn, we derive the modified differential equation

ft + Ufx = −1

2
Δt ftt +

1

2

Δx2

Δt
fxx. (12.4.27)

We conclude that the difference equation is consistent only when Δx and Δt are reduced simulta-
neously so that the ratio Δx2/Δt tends to zero and the last term on the right-hand side becomes
infinitesimal. Keeping the ratio Δx/Δt constant yields a method that is first-order accurate in time
and space.

Performing the von Neumann stability analysis, we derive the amplification factor

G = cos θ + i c sin θ. (12.4.28)

Requiring that |G| < 1, we find that cos2 θ + c2 sin2 θ < 1, which reproduces the CFL condition,
|c| < 1.

To explain the conditional stability of Lax’s method, we substitute ftt = U2fxx into the
modified differential equation and group the first with the second term on the right-hand side to
obtain the numerical diffusivity

κnum =
1

2
UΔx (

1

c
− c), (12.4.29)

which is positive when |c| < 1. As the time step and thus c tends to zero, the numerical diffusivity
becomes excessive, undermining the physical relevance of the calculations.

12.4.9 The Lax–Wendroff method

Upwind (FTBS or FTFS) differencing offers numerical stability but suffers from low-order spatial
accuracy. FTCS differencing offers second-order spatial accuracy but suffers from unconditional
instability. We want to develop a two-level explicit method that combines accuracy and stability,
that is, a method that is second-order accurate in time and space as well as conditionally stable.
In the Lax–Wendroff method, the next value, fn+1

i , is expressed as a linear combination of three
previous values, fn

i−1, f
n
i , and fn

i+1,

fn+1
i = a−1 f

n
i−1 + a0 f

n
i + a1 f

n
i+1, (12.4.30)

where a−1, a0, and a1 are three constant coefficients [228]. This formula encompasses all two-level
methods considered previously in this section.

To ensure consistency, we expand all variables in (12.4.30) in Taylor series about (xi, tn) and
obtain

fn
i + (ft)

n
i Δt+

1

2
(ftt)

n
i Δt2 = a−1 [ f

n
i − (fx)

n
i Δx+

1

2
(fxx)

n
i Δx2 ] + a0 f

n
i

+a1
[
fn
i + (fx)

n
i Δx+

1

2
(fxx)

n
i Δx2

]
. (12.4.31)
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Rearranging, we derive the modified differential equation

(1− a−1 − a0 − a1) f
n
i +Δt [(ft)

n
i +

U

c
(a−1 + a1) (fx)

n
i ]

=
1

2
(a−1 + a1) (fxx)

n
i Δx2 − 1

2
(ftt)

n
i Δt2. (12.4.32)

Next, we substitute ftt = U2fxx and require that the modified differential equation reduces to the
convection equation as Δx and Δt tend to zero. Stipulating also that the second-order error due
to the temporal discretization cancels the second-order error due to the spatial discretization, we
obtain a system of algebraic equations for the three unknown coefficients,⎡⎣ 1 1 1

1 0 −1
1 0 1

⎤⎦⎡⎣ a−1

a0
a1

⎤⎦ =

⎡⎣ 1
c
c2

⎤⎦ . (12.4.33)

The solution is

a−1 =
1

2
c (c+ 1), a0 = 1− c2, a1 =

1

2
c (c− 1). (12.4.34)

Substituting these values into (12.4.30), we derive the Lax–Wendroff formula

fn+1
i =

1

2
c (c+ 1) fn

i−1 + (1− c2) fn
i +

1

2
c (c− 1) fn

i+1. (12.4.35)

Rearranging, we find that

fn+1
i = fn

i +
1

2
c (fn

i−1 − fn
i+1) +

1

2
c2 (fn

i−1 − 2 fn
i+1 + fn

i+1). (12.4.36)

The first two terms on the right-hand side implement the FTCS discretization. The last term cancels
a term originating from the second time derivative of the modified differential equation.

To assess the numerical stability of the Lax–Wendroff method, we carry out the von Neumann
stability analysis and find that

G = 1− c2 + c2 cos θ + i c sin θ, (12.4.37)

which shows that the gain traces an ellipse with center at the point (1− c2, 0) and semi-axes equal
to c2 and c in the complex plane. When |c| = 1, the ellipse reduces to the unit circle centered at
the origin. Geometrical arguments reveal that |G| < 1 when |c| < 1, and this demonstrates that the
method is stable when the CFL condition is fulfilled.

12.4.10 Explicit CTCS or leapfrog method

Another way to achieve second-order accuracy in time and space is by using central differences for
both the time and space derivatives, obtaining the difference equation

fn+1
i − fn−1

i

2Δt
+ U

fn
i+1 − fn

i−1

2Δx
= 0. (12.4.38)
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Figure 12.4.4 Computational stencil of (a) the explicit CTCS discretization involving three time levels,
(b) the implicit BTCS discretization involving two time levels. and (c) the implicit Crank–Nicolson
discretization involving three time levels.

The associated numerical error is on the order of Δt2 and Δx2. The computational stencil is shown
in Figure 12.4.4(a). Rearranging, we derive the two-level explicit formula

fn+1
i = fn−1

i + c fn
i−1 − c fn

i+1. (12.4.39)

The solution at the first time level, n = 1, must be computed using a two-level method with a
sufficiently small time step to prevent the onset of numerical instability.

To perform the von Neumann stability analysis, we substitute fn
i = An exp(−i iθ) and find

that

An+1 = An−1 + 2 iAn c sin θ. (12.4.40)

Dividing both sides by An, we obtain

An+1

An
=

An−1

An
+ 2i c sin θ. (12.4.41)

Next, we set An+1/An = An/An−1 = G, and derive a quadratic equation, G2 − 2i c sin θ G− 1 = 0,
whose solution is

G = i δ ±
√

1− δ2, (12.4.42)

where δ = c sin θ. To assess the magnitude of the amplification factor, we consider two complemen-
tary possibilities. If δ2 > 1, then G = i (δ ±

√
δ2 − 1 ) and the magnitude of one of the roots is

greater than unity. If δ2 < 1, then |G| = 1, which shows that the magnitude of the solution stays
constant during the successive mappings, in agreement with the exact solution. We note that δ2 < 1
when |c| < 1 for any value of θ and conclude that the CTCS method is stable provided that the
CFL condition is fulfilled. Since the CTCS discretization for the unsteady diffusion equation was
found to be unconditionally unstable, we infer that the presence of diffusivity does not necessarily
promote numerical stability.

In practice, the efficiency of the CTCS method is undermined by increased memory require-
ments associated with storage of information at three time levels. In addition, numerical error that
grows independently at every other time step, described as even-odd coupling, may arise.
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12.4.11 Implicit BTCS method

Next, we turn to considering implicit discretizations in the hope of achieving unconditional stability
and thus relaxing the restriction on the time step, Δt. The BTCS discretization yields the difference
equation

fn+1
i − fn

i

Δt
+ U

fn+1
i+1 − fn+1

i−1

2Δx
= 0. (12.4.43)

The numerical error is of order Δt and Δx2. The computational stencil is shown in Figure 12.4.4(b).
Rearranging, we derive a two-level implicit formula,

−c fn+1
i−1 + 2fn+1

i + c fn+1
i+1 = 2fn

i . (12.4.44)

In the case of periodic boundary conditions, time-stepping is carried out by solving a linear system
of equations,

A · fn+1 = fn, (12.4.45)

with an N ×N tridiagonal coefficient matrix,

A =

⎡⎢⎢⎢⎢⎢⎢⎣
2 c 0 · · · 0 −c

−c 2 c · · · 0 0
0 −c 2 c · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · 0 −c 2 c
c 0 · · · 0 −c 2

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.4.46)

Note that this matrix is equal to twice the transpose of the projection matrix for the FTCS dis-
cretization. The projection matrix of the BTCS discretization is P = A−1. Since the eigenvalues of
P are the inverses of the eigenvalues of A, the numerical method is unconditionally stable. Carrying
out the von Neumann stability analysis, we derive the amplification factor

G =
1

1− i c sin θ
. (12.4.47)

Since the magnitude of G is always less than unity, the BTCS method is confirmed to be uncondi-
tionally stable. The increased computational effort required for solving a linear system at each step
is rewarded with unconditional stability. The reason is that the boundaries of the numerical cone
of influence include all points at the n+ 1 time level. Consequently, the numerical cone of influence
reduces to a rectangular strip, which is guaranteed to contain the characteristic line passing through
any grid point.

12.4.12 Crank–Nicolson method

The Crank–Nicolson method arises by applying the differential equation midway between the present
and next time levels, tn and tn+1, and approximating the spatial derivative with the average of two
derivatives at two time levels according to the difference equation

fn+1
i − fn

i

Δt
+ U

1

2
(
fn+1
i+1 − fn+1

i−1

2Δx
+

fn
i+1 − fn

i−1

2Δx
) = 0. (12.4.48)
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The numerical error is of order Δt2 and Δx2. The computational stencil is shown in Figure 12.4.4(c).
Rearranging, we derive the difference equation

−cfn+1
i−1 + 4fn+1

i + cfn+1
i+1 = cfn

i−1 + 4fn
i − cfn

i+1, (12.4.49)

yielding a tridiagonal system of algebraic equations at each time step. Carrying out the von Neumann
stability analysis, we find that the amplification factor is the ratio of two conjugate numbers,

G =
2 + i c sin θ

2− i c sin θ
. (12.4.50)

Since |G| = 1, the method is unconditionally stable.

12.4.13 Summary

The restriction on the time step of conditionally stable explicit methods is not intolerable. The CFL
condition requires that the time step, Δt, be roughly smaller than Δx in appropriate dimensionless
units, which is not unreasonable. In contrast, the stability restriction for the diffusion equation
discussed in Section 12.2 requires that the time step, Δt, be roughly smaller than Δx2 in appropri-
ate dimensionless units, which is typically intolerable. Although implicit methods allow us to use
larger time steps, the associated numerical error may erode the accuracy and therefore the physical
relevance of the solution. It is then not surprising that explicit methods are a standard choice in
practice.

12.4.14 Modified dynamics and explicit numerical diffusion

We saw that finite-difference discretizations introduce some type of numerical error whose leading-
order term is proportional to the second, third, or fourth spatial derivative of the solution. The
presence of this term implements, respectively, numerical diffusion, dispersion, and fourth-order
diffusion. A certain amount of numerical diffusion is necessary to ensure numerical stability and
dampen small-scale irregularities. Monotone schemes produce solutions that are free of artificial
oscillations. In practice, a prohibitively fine grid may be required to reduce the artificial smearing
of physical sharp gradients. A remedy would be to use a higher-order method, but the associated
modified differential equation typically contains a dispersive term that causes local oscillations.

The intensity of artificial oscillations can be reduced by adding to the original differential
equation explicit diffusion or fourth-order diffusion. In one dimension, these are implemented, re-
spectively, by the terms β(x) ∂2f/∂x2 and −γ(x) ∂4f/∂x4. The positive coefficients β and γ can be
allowed to vary in space and time according to the structure of the solution. The optimal values of
these coefficients depend on the particular problem under consideration and must be found by nu-
merical experimentation (e.g., [185], p. 207). A weak justification for introducing explicit numerical
diffusion is that the approximations that lead us to the convection equation have neglected physical
diffusion-like processes. Artificially introducing these terms into the differential equation may not
undermine the physical relevance of the solution.
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12.4.15 Multistep methods

The performance of explicit methods can be improved by breaking up each time step into a number of
elementary substeps executed using different methods. Some substeps predict the solution at the next
time level using a crude method, while other substeps make corrections using a more sophisticated
method. Accordingly, multistep methods are sometimes classified as predictor–corrector methods.

The overall action of multistep methods for linear convection can be reduced to that of single-
step methods developed earlier in this section. Their discussion in the context of linear equations
serves as a point of reference for developing methods for nonlinear convection.

Richtmyer’s method

In Richtmyer’s method [342], a complete step is carried out in two substeps of equal duration 1
2
Δt.

The first substep is executed using Lax’s method based on formula (12.4.26), and the second substep
is executed using the CTCS method based on formula (12.4.39). The corresponding difference
equations are

f
n+1/2
i =

1

2
(1 +

c

2
) fn

i−1 +
1

2
(1− c

2
) fn

i+1, fn+1
i = fn

i +
c

2
f
n+1/2
i−1 − c

2
f
n+1/2
i+1 , (12.4.51)

where c = UΔt/Δx. Eliminating from the second equation the solution at the intermediate n + 1
2

level, we obtain the Lax–Wendroff formula (12.4.35) with grid spacing 2Δx,

fn+1
i =

1

2
� (�+ 1) fn

i−2 + (1− �2) fn
i +

1

2
� (�− 1) fn

i+2, (12.4.52)

where � = 1
2 c = UΔt/(2Δx). Our analysis of the Lax–Wendroff formula guarantees that Richtmyer’s

method is second-order accurate in time and space, and stable as long as |�| < 1 or |c| < 2.

Burstein’s method

Burstein’s method [47] differs from Richtmyer’s method in that the convection equation is applied
at the intermediate grid point i+ 1

2 at the first substep and at the regular grid point i at the second
substep. In both cases, the spatial step is 1

2
Δx. The counterparts of equations (12.4.51) are

f
n+1/2
i+1/2 =

1

2
(1 + c) fn

i +
1

2
(1− c)fn

i+1, fn+1
i = fn

i + cf
n+1/2
i−1/2 − cf

n+1/2
i+1/2 , (12.4.53)

where c = UΔt/Δx. Eliminating the intermediate solution from the second equation, we obtain the
Lax–Wendroff formula (12.4.35). We conclude that Burstein’s method is second-order accurate in
time and space, and stable as long as |c| < 1.

MacCormack method

In MacCormack’s method [250], a predictor step is made using the explicit FTFS method to produce
an approximation to fn+1

i according to formula (12.4.14), denoted as f∗
i ,

f∗
i = (1 + c)fn

i − cfn
i+1. (12.4.54)
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Rearranging, we obtain

f∗
i = fn

i − c ( fn
i+1 − fn

i ). (12.4.55)

The corrector step uses the explicit forward time discretization and a hybrid forward/backward
space approximation involving the preliminary values according to the difference equation

fn+1
i − fn

i

Δt
+

U

2

( fn
i+1 − fn

i

Δx
+

f∗
i − f∗

i−1

Δx

)
= 0. (12.4.56)

Rearranging, we obtain

fn+1
i = fn

i − 1

2
c (fn

i+1 − fn
i + f∗

i − f∗
i−1). (12.4.57)

To deduce the action of the method, we use equation (12.4.55) to eliminate fn
i+1 on the right-

hand side of (12.4.57) in favor of f∗
i , we obtain

fn+1
i = fn

i − 1

2
( fn

i − f∗
i )− 1

2
c (f∗

i − f∗
i−1), (12.4.58)

and then

fn+1
i =

1

2
[ fn

i + (1− c) f∗
i + cf∗

i−1) ]. (12.4.59)

Eliminating the intermediate variables denoted by an asterisk using equation (12.4.54), we recover the
Lax–Wendroff formula (12.4.35). We conclude that MacCormack’s method is second-order accurate
in time and space, and stable as long as the CFL condition is fulfilled, |c| < 1. In Section 12.4.16, we
will see that MacCormack’s method is particularly effective for problems of nonlinear convection.

Flux-Corrected-Transport

We have seen that explicit numerical diffusion may be necessary to enhance the performance of first-
order methods. The idea behind flux-corrected transport is to use a predictor–corrector method
where the predictor step involves an artificial dampening term [49, 50, 51]. The corrector step re-
moves excessive dissipation by introducing diffusion with a negative diffusivity, termed anti-diffusion.

12.4.16 Nonlinear convection

Most methods for linear convection can be extended to nonlinear convection where the convection
velocity, U , is no longer a constant. The main new feature is that U is evaluated at the grid point
where the differential equation is applied to yield a difference equation. When a finite-difference
method is conditionally stable, the time step must be sufficiently small to satisfy the stability criteria
for linear convection with the local velocity over the entire solution domain. Implicit methods lead
to a system of nonlinear algebraic equations that must be solved by iterative methods at a high
computational cost. Accurate and efficient numerical solutions can be obtained using multistep
methods, including and MacCormack’s method discussed in this section for the inviscid Burgers
equation.
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Inviscid Burgers equation

The convective and conservative forms of Burgers equation are

∂f

∂t
+ f

∂f

∂x
= 0,

∂f

∂t
+

∂q

∂x
= 0, (12.4.60)

where q = 1
2f

2 is an effective local kinetic energy. Physically, Burgers’s equation describes the
propagation of an initial distribution with a convection velocity that is proportional to the local am-
plitude of the distribution. The dependence of the local propagation velocity on the local amplitude
causes profile steepening and allows the formation of discontinuous fronts and shocks from smooth
initial shapes.

Lax’s method

Lax’s modification of the FTCS discretization yields the explicit two-level formula

fn+1
i =

1

2
(1 + cni−1) f

n
i−1 +

1

2
(1− cni+1) f

n
i+1, (12.4.61)

where

cni−1 = rfn
i−1, cni+1 = rfn

i+1, (12.4.62)

and r = Δt/Δx. The method is first-order accurate in time, second-order accurate in space, and
stable provided that |rfmax| < 1.

Lax–Wendroff method

To achieve second-order accuracy, we discretize the conservative form as

fn+1
i = fn

i +
1

2
r (qni−1 − qni+1) +

1

4
r2 (Aqni−1 −B qni + C qni+1 ), (12.4.63)

where A,B, and C are adjustable coefficients and r = Δt/Δx. The second term on the right-
hand side of (12.4.63) arises from the second term on the right-hand side of (12.4.36) by setting
c = 1

2 (f
n
i−1 + fn

i+1). Working as in the case of the linear convection, we find that

A = fn
i−1 + fn

i , B = fn
i−1 + 2 fn

i + fn
i+1, C = fn

i + fn
i+1 (12.4.64)

(e.g., [185], p. 207). The method is second-order accurate in space and time, and stable provided
that |rfmax| < 1.

BTCS discretization

The implicit BTCS discretization results in a quadratic system of algebraic equations that must be
solved by iteration,

−r (fn+1
i−1 )2 + 4fn+1

i + r (fn+1
i+1 )2 = 4fn

i , (12.4.65)

where r = Δt/Δx. A suitable initial guess is provided by the converged solution at the previous
time step. In practice, increased computational cost renders this method uneconomical.
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MacCormack’s method

Substituting into the difference formula (12.4.55) the expression c = 1
2
(fn

i+1 + fn
i ), we obtain a

tentative update denoted by an asterisk,

f∗
i = fn

i − c (qni+1 − qni ). (12.4.66)

Setting in the difference formula (12.4.59) c = 1
2 (f

∗
i + f∗

i−1), we obtain the solution at the next time
level,

fn+1
i =

1

2

[
fn
i + f∗

i − c (q∗i − q∗i−1)
]
. (12.4.67)

The bias in the solution due to the forward or backward differencing is eliminated by alternating
the order after the completion of a time step. The method is stable as long as |rfmax| < 1.

12.4.17 Convection in two and three dimensions

Generalizing our discussion of the one-dimensional convection equation, we consider linear convection
in three dimensions governed by the equation

∂f

∂t
+ U

∂f

∂x
+ V

∂f

∂y
+W

∂f

∂z
= 0. (12.4.68)

The convection velocity, U = (U, V,W ), is assumed to be constant in time and space. The case
of two-dimensional convection arises by setting W = 0. An initial condition, f(x, t = 0) = F (x),
and suitable boundary conditions are provided. Assuming, for simplicity, that the solution domain
extends over the whole three-dimensional space or two-dimensional plane, we find that the exact
solution is given by F (x−Ut), which states that the initial distribution, F (x), travels with constant
velocity U. The characteristic lines along which the function f remains constant, are described by
the equation x−Ut = ξ, where ξ is an arbitrary point in space.

Finite-difference methods for two-dimensional and three-dimensional convection arise by direct
and straightforward extensions those for one-dimensional convection. In this section, we discuss
certain characteristic examples.

Lax’s method

Lax’s method in two dimensions emerges by replacing (12.4.68) with the finite-difference equation

1

Δt

[
fn+1
i,j − 1

4
(fn

i+1,j + fn
i−1,j + fn

i,j+1 + fn
i,j−1)

]
+ U

fn
i+1,j − fn

i−1,j

2Δx
+ V

fn
i,j+1 − fn

i,j−1

2Δy
= 0.

(12.4.69)

Rearranging, we obtain the explicit two-level algorithm

fn+1
i,j =

1

2
(
1

2
+ cx)f

n
i−1,j +

1

2
(
1

2
− cx) f

n
i+1,j +

1

2
(
1

2
+ cy)f

n
i,j−1 +

1

2
(
1

2
− cy)f

n
i,j+1, (12.4.70)
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where

cx =
UΔt

Δx
, cy =

VΔt

Δy
(12.4.71)

are convection numbers for the x and y directions. Performing the von Neumann stability analysis,
we find that the method is stable provided that c2x + c2y < 1

2 . This condition imposes a strong
restriction on the time step that renders Lax’s method inefficient in practice. In three dimensions,
the stability constraint is c2x+ c2y + c2z < 1

3 , which describes the interior of a sphere with radius 1/
√
3

centered at the origin, where cz = WΔt/Δz and W is the convection velocity along the z axis.

Implicit methods

To achieve unconditional stability, we may resort to a fully implicit method. In three dimensions,
we obtain the difference equation[

1 +
1

2
(cxΔx + cyΔy + czΔz)

]
fn+1
i,j,k = fn

i,j,k, (12.4.72)

where

Δx(fi,j,k) ≡ fi+1,j,k − fi−1,j,k, Δy(fi,j,k) ≡ fi,j+1,k − fi,j−1,k,

(12.4.73)

Δz(fi,j,k) ≡ fi,j,k+1 − fi,j,k−1

are central-difference operators. Unfortunately, collecting the finite-difference equations results in
a system of algebraic equations that are sparse but not tridiagonal. Numerical methods for such
systems with large size require a prohibitive amount of computational effort.

As a remedy, we may use an ADI partially implicit discretization, which requires solving a
one-dimensional equation in each substep (e.g., [110]; [182], Volume I, p. 442; [229]). The standard
ADI algorithm is unconditionally stable in two dimensions and unconditionally unstable in three
dimensions.

Operator splitting

Following the general blueprint of operator splitting and fractional step methods, we replace the
three-dimensional convection equation (12.4.68) with a system of three one-dimensional sequential
equations,

∂f

∂t
+ U

∂f

∂x
= 0,

∂f

∂t
+ V

∂f

∂y
= 0,

∂f

∂t
+W

∂f

∂z
= 0. (12.4.74)

Each equation applies for the full time step, tn < t < tn +Δt.

Adopting the implicit BTCS discretization, we advance the solution in each step by solving
tridiagonal systems of equations,

(1 +
1

2
cxΔx)f

∗
i,j,k = fn

i,j,k, (1 +
1

2
cyΔy)f

∗∗
i,j,k = f∗

i,j,k, (1 +
1

2
czΔx)f

n+1
i,j,k = f∗∗

i,j,k, (12.4.75)
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where the starred and double starred variables denote the solution after the first and second fractional
steps. Combining the three equations in (12.4.75), we derive an overall finite-difference scheme
involving a factorized implicit operator in the left-hand side,

(1 +
1

2
cxΔx)(1 +

1

2
cyΔy)(1 +

1

2
czΔz)f

n+1
i,j,k = fn

i,j,k. (12.4.76)

Comparing this formula with the fully implicit formula (12.4.72) shows that the fractional step
method implements the approximate factorization of the explicit BTCS scheme.

Problems

12.4.1 Numerical diffusivity

Carry out a consistency analysis of the FTCS and Lax’s methods and derive the corresponding
numerical diffusivities.

12.4.2 Lax–Wendroff method for the inviscid Burgers equation

Derive equations (12.4.64) working as in the case of linear convection.

12.4.3 Lax’s method in two and three dimensions

(a) Perform the von Neumann stability analysis to derive the stability criterion c2x + c2y < 1
2 . Derive

the associated numerical diffusivity.

(b) Analyze the stability of the method in three dimensions and derive the stability criterion c2x +
c2y + c2z < 1

3 .

12.4.4 ADI method in two dimensions

Devise an ADI method for linear two-dimensional convection, and study its consistency and stability.
Discuss how the method can be extended to three dimensions.

Computer Problems

12.4.5 Burgers equation with MacCormack’s method

Use MacCormack’s method to solve the inviscid Burgers equation in an infinite domain with initial
condition (a) the inverted Heaviside step function, F (x) = 1 for x < 0 and F (x) = 0 for x > 0, and
(b) the Gaussian function F (x) = exp(−x2). Discuss the behavior of the numerical solution in each
case.

12.4.6 Burgers equation with an implicit method

Repeat Problem 12.4.3 with the implicit BTCS discretization. Discuss the performance of the
method and comment on the computational cost.
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12.5 Convection–diffusion

The methods developed previously in this chapter for the modular cases of pure diffusion and pure
convection can be extended in a straightforward fashion to handle combined convection–diffusion.
In this section, we discuss methods for linear one-dimensional convection–diffusion governed by the
parabolic differential equation

∂f

∂t
+ U

∂f

∂x
= κ

∂2f

∂x2
, (12.5.1)

subject to an initial condition, f(x, t = 0) = F (x). Both the convection velocity, U , and diffusivity,
κ, are assumed to be constant.

12.5.1 Explicit FTCS and Lax’s method

The forward time–centered space (FTCS) discretization yields the difference equation

fn+1
i − fn

i

Δt
+ U

fn
i+1 − fn

i−1

2Δx
= κ

fn
i−1 − 2fn

i + fn
i+1

Δx2
. (12.5.2)

Rearranging, we obtain the explicit two-level algorithm

fn+1
i = (

1

2
c+ α) fn

i−1 + (1− 2α) fn
i − (

1

2
c− α) fn

i+1, (12.5.3)

where

c =
UΔt

Δx
, α =

κΔt

Δx2
(12.5.4)

are the dimensionless convection and diffusion numbers. The ratio of these two numbers is defined
as the cell Reynolds number, sometimes also called the cell Péclet number,

Rec ≡
c

α
=

UΔx

κ
. (12.5.5)

Physically, Rec expresses the relative strengths of the convective and diffusive contributions to the
difference equation underlying (12.5.1).

In previous sections, we found that the explicit FTCS scheme is conditionally stable for un-
steady diffusion and unconditionally unstable for linear convection. Performing the von Neumann
stability analysis for convection–diffusion, we derive the amplification factor

G = 1− 2α+ 2α cos θ + i c sin θ, (12.5.6)

which shows that G traces an ellipse passing through the point (1, 0) in the complex plane. The
center of the ellipse is located at the point (1− 2α, 0), and the ellipse semi-axes are equal to 2α and
c. To guarantee stability, we require that the ellipse lies inside the unit disk.

First, we demand that the length of each semi-axis is less than unity,

α <
1

2
, c < 1. (12.5.7)
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A further restriction emerges by requiring that the curvature of the ellipse at the point (1, 0) is
higher than the curvature of the unit circle. Combining these restrictions, we obtain

c2 < 2α < 1. (12.5.8)

It is instructive to recall that the FTCS discretization for pure convection leads to an unconditionally
unstable scheme. We conclude that the presence of diffusion has a stabilizing action on the numerical
method.

The modified differential equation corresponding to the difference equation (12.5.10) is the
convection–diffusion equation with effective diffusivity

κeff = κ− 1

2
U2Δt = κ

(
1− 1

2

c2

α

)
. (12.5.9)

Inequality (12.5.8) states that a necessary condition for numerical stability is that the positive
physical diffusivity overtakes the negative numerical diffusivity in absolute value.

The difference equation (12.5.3) can be recast into the form

fn+1
i = α (1 +

1

2
Rec) f

n
i−1 + (1− 2α) fn

i + α (1− 1

2
Rec) f

n
i+1. (12.5.10)

Consider an initial condition where the value of the function f is positive at one grid point and
zero at all other grid points. Since the initial distribution will be convected and diffuse, the value
of f should be positive at all grid points at all subsequent time levels. For this to be true, all three
coefficients on the right-hand side of equation (12.5.10) must be positive, suggesting the physical
restriction

Rec < 2. (12.5.11)

Violation of this inequality may lead to unphysical overshooting.

The stability restriction (12.5.8) requires an excessively small time step, and this renders the
FTCS discretization uneconomical. Lax’s modification leads to an unconditionally unstable method.
Regrettably, the explicit FTCS scheme and its variations are of limited interest.

12.5.2 Upwind differencing

Based on our experience with the convection equation, we expect that the stability of the FTCS
method will improve by applying upwind differencing for the convective derivative. Assuming that
U is positive, we use a forward difference for the time derivative, a backward difference for the first
spatial derivative, and a centered difference for the second spatial derivative, and thus obtain the
FTBSCS scheme

fn+1
i − fn

i

Δt
+ U

fn
i − fn

i−1

Δx
= κ

fn
i−1 − 2fn

i + fn
i+1

Δx2
. (12.5.12)

The numerical error is of order Δt and Δx. Rearranging, we obtain

fn+1
i = (c+ α) fn

i−1 + (1− c− 2α) fn
i + α fn

i+1. (12.5.13)
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Carrying out a consistency analysis, we find that the corresponding modified differential equation is
the convection–diffusion equation with effective diffusivity

κeff = κ
[
1 +

1

2
(1− c)Rec

]
. (12.5.14)

Since Rec vanishes as Δx tends to zero, the method is consistent.

Performing the von Neumann stability analysis, we derive the amplification factor

G = 1− (c+ 2α) + (c+ 2α) cos θ + i c sin θ, (12.5.15)

which shows that G traces an ellipse passing through the point (1, 0) in the complex plane. The
center of the ellipse is located at (1− c− 2α, 0), and the semi-axes of the ellipse are c+ 2α and c.
To guarantee stability, we demand that the ellipse lies inside the unit disk and derive the stability
constraint

c2 < c+ 2α < 1. (12.5.16)

When U is negative, we use a forward difference for the convective spatial derivative and a centered
difference for the diffusive derivative. Working in a similar fashion, we find that the method is stable
if c2 < |c| + 2α < 1. In practice, the numerical diffusivity associated with upwind differencing can
be significant. This undesirable feature combined with the first-order accuracy and the conditional
stability renders the method inferior to its alternatives.

Generalized upwind differencing

Upwind differencing can be generalized into a more comprehensive scheme,

fn+1
i − fn

i

Δt
+

1

2
U
[
(1 + β)

fn
i − fn

i−1

Δx
+ (1− β)

fn
i+1 − fn

i

Δx

]
= κ

fn
i−1 − fn

i +−fn
i+1

Δx2
, (12.5.17)

where β is an arbitrary constant. Setting β = 0, we recover the explicit FTCS scheme. Setting
β = 1 when U > 0 and β = −1 when U < 0, we recover the first-order upwind differencing scheme
discussed in Section 12.5.2. Carrying out the von Neumann stability analysis, we find that the
method is stable provided that

c2 < βc+ 2α < 1, (12.5.18)

which is consistent with the formulas derived earlier for β = 0,±1.

Higher-order methods

To improve the accuracy and reduce the numerical diffusivity of the first-order upwind method,
we may approximate the convective derivative using a third-order backward difference involving
four points, while keeping the central difference for the second spatial derivative [232]. When U is
positive, the finite-difference equation is

fn+1
i − fn

i

Δt
+ U

fn
i−2 − 6fn

i−1 + 3fn
i + 2fn

i+1

6Δx
= κ

fn
i−1 − 2fn

i + fn
i+1

Δx2
. (12.5.19)



12.5 Convection–diffusion 959

The discretization error is of order Δt and Δx2. Rearranging, we derive the Leonard difference
equation

fn+1
i = −1

6
c fn

i−2 + (c+ α) fn
i−1 + (1− 1

2
c− 2α) fn

i + (−1

3
c+ α) fn

i+1. (12.5.20)

The corresponding modified differential equation is the convection–diffusion equation with an ef-
fective diffusivity identical to that of the FTCS scheme given in (12.5.9). Carrying out the von
Neumann stability analysis, we derive the amplification factor

G = − c

6
exp(2iθ) + (c+ α) exp(iθ) + 1− c

2
− 2α+ (− c

3
+ α) exp(−iθ). (12.5.21)

The stability criteria are substantially milder than those of the first-order upwind method.

12.5.3 Explicit CTCS and the Du Fort–Frankel method

We have found that the CTCS discretization is unconditionally unstable for unsteady diffusion
and conditionally stable for pure convection. Does adding convection to diffusion have a stabilizing
influence? Surprisingly, the answer is negative. The CTCS discretization for the convection–diffusion
equation leads to an unconditionally unstable scheme.

The Du Fort–Frankel method is based on a variation of the CTCS discretization implemented
by the formula

fn+1
i − fn−1

i

2Δt
+ U

fn
i+1 − fn

i−1

2Δx
= κ

fn
i−1 − (fn+1

i + fn−1
i ) + fn

i+1

Δx2
. (12.5.22)

This is the CTCS discretization, except that the middle term in the numerator on the right-hand
side has been replaced by an average. Rearranging, we derive an explicit three-level formula,

fn+1
i =

c+ 2α

1 + 2α
fn
i−1 +

1− 2α

1 + 2α
fn−1
i +

−c+ 2α

1 + 2α
fn
i+1. (12.5.23)

A consistency analysis shows that the Du Fort–Frankel method produces results that approximate
the solution of the convection–diffusion equation only if the ratio (Δt/Δx)2 is sufficiently small.

To carry out the von Neumann stability analysis, we substitute fn
i = An exp(−i iθ) and set

G = An+1/An = An/An−1 to find

G =
c+ 2α

1 + 2α
exp(iθ) +

1− 2α

1 + 2α

1

G
+

−c+ 2α

2α+ 1
exp(−iθ). (12.5.24)

Rearranging, we obtain the quadratic equation

(1 + 2α)G2 − 2 (2α cos θ + i c sin θ)G− 1 + 2α = 0. (12.5.25)

Detailed consideration reveals that |G| < 1 when |c| < 1, and this shows that the Du Fort–Frankel
method is stable as long as the CFL condition is fulfilled.

The absence of a stability restriction on the diffusion number, α, allows us to use large time
steps. However, a sufficiently small time step must be used to ensure that the solution is accurate
and consistent with the convection–diffusion equation.
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12.5.4 Implicit methods

Implicit methods are unconditionally stable for pure diffusion and convection, and remain uncondi-
tionally stable for mixed convection–diffusion.

BTCS

Implementing a backward difference for the time derivative and centered differences for the convective
and diffusive spatial derivatives, we derive the fully implicit BTCS difference formula

fn+1
i − fn

i

Δt
+ U

fn+1
i+1 − fn+1

i−1

2Δx
= κ

fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δx2
. (12.5.26)

The numerical error is of order Δt and Δx2. Rearranging, we derive a tridiagonal system of algebraic
equations,

−(c+ 2α) fn+1
i−1 + 2 (1 + 2α) fn+1

i + (c− 2α) fn+1
i+1 = 2fn

i . (12.5.27)

The corresponding amplification factor is found to be

G =
1

1 + 2α(1− cos θ)− i c sin θ
. (12.5.28)

Since |G| < 1 for any values of α and c, the method is unconditionally stable. However, the physical
restriction Rec < 2 must be satisfied for the results to be physically meaningful under any conditions.

Crank–Nicolson method

To improve the temporal accuracy of the BTCS method, we implement the fully implicit Crank–
Nicolson method according to the difference equation

fn+1
i − fn

i

Δt
+ U

1

2

( fn+1
i+1 − fn+1

i−1

2Δx
+

fn
i+1 − fn

i−1

2Δx

)
= κ

1

2

( fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δx2
+

fn
i−1 − 2fn

i + fn
i+1

Δx2

)
. (12.5.29)

The numerical error is of order Δt2 and Δx2. Rearranging, we derive a tridiagonal system of
algebraic equations,

−(c+ 2α)fn+1
i−1 + 4 (1 + α)fn+1

i + (c− 2α)fn+1
i+1 = (c+ 2α)fn

i−1 + 4(1− α)fn
i − (c− 2α)fn

i+1.

(12.5.30)

The amplification factor is

G =
2− 2α(1− cos θ) + i c sin θ

2 + 2α(1− cos θ)− i c sin θ
. (12.5.31)

It can be shown that |G| < 1 for any value of α and c, and thus the method is unconditionally stable.
The physical restriction Rec < 2 still applies.
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Two-level fully implicit method

The general form of an implicit method involving three grid points and two time levels is

b−1f
n+1
i−1 + b0f

n+1
i + b1f

n+1
i+1 = a−1f

n
i−1 + a0f

n
i + a1f

n
i+1, (12.5.32)

where ai and bi are six constant coefficients. Consistency requires that

b−1 + b0 + b1 = a−1 + a0 + a1 = 1. (12.5.33)

The last equality represents an arbitrary normalization that removes one degree of freedom. For
example, in the case of the BTCS discretization, a−1 = 0, a0 = 1, a1 = 0, and

b−1 = −1

2
(c+ 2α) b0 = 1 + 2α, b1 =

1

2
(c− 2α). (12.5.34)

In the case of the Crank–Nicolson discretization,

a−1 =
1

4
(c+ 2α), a0 = 1− α, a1 = −1

4
(c− 2α),

b−1 = −1

4
(c+ 2α), b0 = 1 + α, b1 =

1

4
(c− 2α). (12.5.35)

Carrying out the von Neumann stability analysis for the general case, we derive the amplification
factor

G =
1− (a1 + a−1)(1− cos θ)− i (a1 − a−1) sin θ

1− (b1 + b−1)(1− cos θ)− i (b1 − b−1) sin θ
(12.5.36)

([294], p. 39). Formulas (12.5.28) and (12.5.31) are special cases of (12.5.36).

Three-level fully implicit method

We can achieve second-order temporal accuracy by using a scheme that combines three-level back-
ward differencing in time and a fully implicit spatial discretization according to the difference equa-
tion

3fn+1
i − 4fn

i + fn−1
i

2Δt
+ U

fn+1
i+1 − fn+1

i−1

2Δx
= κ

fn+1
i−1 − 2fn+1

i + fn+1
i+1

Δx2
. (12.5.37)

The numerical error is of order Δt2 and Δx2. Rearranging, we derive a tridiagonal system of
algebraic equations for the solution vector at the next time level, tn+1. A stability analysis reveals
that the method is unconditionally stable. Comparing the amplification factor with that of the
Crank–Nicolson method shows that small-amplitude oscillations are damped more effectively when
the solution exhibits sharp variations. The physical restriction Rec < 2 must be fulfilled.

MacCormack explicit method

In this genuinely predictor–corrector method, the predictor step is implemented as an extension of
formula (12.4.54),

f∗
i = (1 + c) fn

i − cfn
i+1 + α (fn

i−1 − 2fn
i + fn

i+1), (12.5.38)
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and the corrector step is implemented as an extension of formula (12.4.59),

fn+1
i =

1

2

(
fn
i + f∗

i − c (f∗
i − f∗

i−1) + α (f∗
i−1 − 2f∗

i + f∗
i+1)

)
. (12.5.39)

The method is stable inside a square window described by |c| < 0.90 and α < 0.50 (e.g., [184, 317]).

MacCormack implicit method

To develop the implicit MacCormack method, we repeat the steps that led us to equations (12.5.38)
and (12.5.39), except that the diffusion term is treated implicitly in both the predictor and corrector
steps. Details are provided by Hoffmann and Chiang ([185], Vol. I, p. 263).

12.5.5 Operator splitting and fractional steps

We have seen that certain discretizations work well for the convection equation, while other dis-
cretizations work well for the diffusion equation. This observation suggests the use of fractional
steps where the convective and diffusive components are treated independently by different methods
according to the constituent equations

∂f

∂t
+ U

∂f

∂x
= 0,

∂f

∂t
= κ

∂2f

∂x2
. (12.5.40)

Both equations apply for a full time step, tn < t < tn +Δt, with the understanding that the time is
reset to the initial value, tn, at the end of the first fractional step. The first step takes us from the
current time level, fn, to f∗, and the second step takes us from f∗ to the new time level, fn+1.

For example, applying the FTCS discretization, we obtain the difference equations

f∗
i =

1

2
c fn

i−1 + fn
i − 1

2
c fn

i+1, fn+1
i = αf∗

i−1 + (1− 2α) f∗
i + αf∗

i+1. (12.5.41)

The stability restrictions are the same as those for the FTCS method applied to the undivided
convection–diffusion equation.

Hopscotch method

The hopscotch method is named after a children’s game ([269], p. 77; [149]). The explicit FTCS
discretization is used to advance the solution at the odd-numbered grid points, x2i+1, and then the
implicit BTCS discretization is used to advance the solution at the even-numbered grid points, x2i,
where i is an integer. The order is reversed after the completion of each step. Since the solution at
every other grid point at the new time level is known, the implicit step does not have to be done
through matrix inversion and the method is effectively explicit. The hopscotch method is first-order
accurate in time, second-order accurate in space, and stable as long as |c| < 1. There is no stability
restriction on the diffusion number α.

The explicit FTCS update of the ith node from tn to tn+1 yields

fn+1
i = (

1

2
c+ α) fn

i−1 + (1− 2α) fn
i − (

1

2
c− α) fn

i+1. (12.5.42)
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The implicit BTCS update of the same node from tn−1 to tn yields

(
1

2
c+ α) fn

i−1 − (1 + 2α) fn
i − (

1

2
c− α) fn

i+1 = −fn−1
i . (12.5.43)

Combining these equations, we derive the difference equation

fn+1
i = 2fn

i − fn−1
i , (12.5.44)

which implements linear extrapolation. This formula is applicable only in the FTCS step.

12.5.6 Nonlinear convection–diffusion

Our discussion of pure nonlinear convection in Section 12.4 also applies to the present case of mixed
nonlinear convection–diffusion.

Burgers equation

A prototypical equation for studying the performance of numerical methods is the Burgers convection–
diffusion equation whose convective and conservative forms are

∂f

∂t
+ f

∂f

∂x
= κ

∂2f

∂x2
,

∂f

∂t
+

∂q

∂x
= κ

∂2f

∂x2
, (12.5.45)

where q = 1
2 f

2 is the quadratic flux. The general solution in an unbounded domain extending over
the entire x axis can be found analytically using the Cole–Hopf transformation [30],

f = −2κ

u

du

dx
. (12.5.46)

Direct substitution shows that the function u satisfies the linear unsteady diffusion

∂u

∂t
= κ

∂2u

∂x2
, (12.5.47)

whose exact solution is available in integral form. Note that the transformation fails as κ tends to
zero, yielding the inviscid form. An exact solution is

f(x, t) = −κ

L

cosh(x/L)

sinh(x/L) + exp(−κt/L2)
, (12.5.48)

where L is a specified length [30]. Note that a discontinuity occurs when the denominator becomes
zero. As time progresses, the discontinuity progresses along the x axis and settles at the origin,
x = 0.

The explicit MacCormack discretization arises by a straightforward modification of equations
(12.4.66) and (12.4.67). The predictor step is

f∗
i = fn

i − c ( qni+1 − qni ) + α (fn
i−1 − 2fn

i + fn
i+1), (12.5.49)

and the correction step is

fn+1
i =

1

2

[
fn
i + f∗

i − c (q∗i − q∗i−1)
]
+ α (f∗

i−1 − 2f∗
i + f∗

i+1). (12.5.50)
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12.5.7 Convection–diffusion in two and three dimensions

Finite-difference methods for the three-dimensional linear convection–diffusion equation

∂f

∂t
+ U

∂f

∂x
+ V

∂f

∂y
+W

∂f

∂z
= κ

( ∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
)
, (12.5.51)

and its simplified two-dimensional version, emerge by straightforward extensions of the methods
for the one-dimensional equation discussed in Section 12.6. Selected examples are discussed in this
section.

FTCS method

The fully explicit FTCS method is consistent, first-order accurate in time, and second-order accurate
in space. Stability requires that

αx + αy + αz <
1

2
,

c2x
αx

+
c2y
αx

+
c2z
αz

< 2. (12.5.52)

In two dimensions, the sums on the left-hand sides are over x and y [180].

Upwind differencing

Adopting a first-order upwind difference for the convective spatial derivative and the central differ-
ence for the diffusive derivative yields a conditionally stable method. The stability constraint in two
dimensions is 4αx + |cx|+ |cy| < 1 ([294], p. 66).

Hopscotch method

The hopscotch method is implemented as discussed for one dimension in Section 12.6 [149]. In two
dimensions, we first use the explicit FTCS method to advance the solution at the grid points xi,j ,
where i + j is an odd integer, and then use the implicit BTCS method to advance the solution at
the grid points xi,j , where i + j is an even integer. The order is reversed after the completion of a
time step. After the first time step, the FTCS difference equation is replaced with the equivalent
equation

fn+1
i,j = 2fn

i,j − fn−1
i,j . (12.5.53)

The method is first-order accurate in time, second-order accurate in space, and stable as long as
|cx| < 1 and |cy| < 1.

ADI method in two dimensions

Implicit methods are preferred due to their unconditional stability. The ADI method in two dimen-
sions is implemented according to the finite-difference equations

f
n+1/2
i,j − fn

i,j

1
2Δt
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[fn+1/2
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n+1/2
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2Δx

]
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fn
i,j+1 − fn

i,j−1

2Δy

= κ
[fn+1/2

i−1,j − 2f
n+1/2
i,j + f

n+1/2
i+1,j

Δx2

]
+ κ

fn
i,j−1 − 2fn

i,j + fn
i,j+1

Δy2
(12.5.54)



12.5 Convection–diffusion 965

and

fn+1
i,j − f
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i,j

1
2Δt

+ U
f
n+1/2
i+1,j − f

n+1/2
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2Δx
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2Δy
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+ κ

[fn+1
i,j−1 − 2fn+1

i,j + fn+1
i,j+1

Δy2

]
, (12.5.55)

where the square brackets enclose implicit discretizations. The ADI method is unconditionally stable
and second-order accurate in time and space ([294], p. 66).

ADI method in two dimensions with time-dependent velocities

When the velocity components U and V are not constant but vary in time, the ADI method becomes
first-order accurate in Δt. To ensure second-order accuracy, we use the following averaged velocities
in the first ADI step,

U = a1 U
n+1 + (1− a1 − a2)U

n + a2 U
n−1,

V = b1 V
n+1 + (1− b1 − b2)V

n + b2 V
n−1, (12.5.56)

and the following averaged velocities in the second ADI step,

U = (1− a1 + a2 + a3)U
n+1 + (a1 − a2 − 2a3)u

n
x + a3 U

n−1,

V = (1− b1 + b2 + b3)V
n+1 + (b1 − b2 − 2b3)V

n + b3 V
n−1, (12.5.57)

where ai and bi are six arbitrary constants ([294], p. 66).

Fractional steps

To implement the fractional step method in two or three dimensions, we consider convection–diffusion
in each direction individually through a sequence of one-dimensional steps of equal duration, Δt. In
three dimensions, the fractional steps are carried out according to the one-dimensional convection–
diffusion equations

∂f

∂t
+ ux

∂f

∂x
= κ

∂2f

∂x2
,

∂f

∂t
+ uy

∂f

∂y
= κ

∂2f

∂y2
,

∂f

∂t
+ uz

∂f

∂z
= κ

∂2f

∂z2
. (12.5.58)

Each step applies for tn < t < tn +Δt, and time is reset to the initial value, tn, after completion of
the first and second fractional steps. Each step can be carried out using an unconditionally stable
implicit method. When Dirichlet or Neumann boundary conditions are prescribed, the discretization
results in tridiagonal systems of equations.

Problems

12.5.1 Du Fort–Frankel method

Perform a consistency analysis of the Du Fort–Frankel method and show that the corresponding
partial differential equation is given by (12.2.23) in the presence of a convection term on the left-
hand side.
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12.5.2 Implicit MacCormack method

Write the finite-difference equations for the implicit MacCormack method.

12.5.3 Implicit BTBC-CS method

Write the difference equation for the BTBC-CS method where a backward difference is used for the
convection term and a central difference is used for the diffusion term. Assess the stability of the
method.

12.5.4 Generalized upwind differencing

(a) Derive the modified differential equation corresponding to the difference equation (12.5.17).
Confirm that the method is consistent and compute the effective diffusivity.

(b) Derive the stability criteria shown in (12.5.18).

12.5.5 Hopscotch method for linear three-dimensional convection–diffusion

Develop a hopscotch method for the linear convection–diffusion equation in three dimensions.

12.5.6 Fractional-step method

Write the finite-difference equations corresponding to the Crank–Nicolson discretization of the three
equations in (12.5.58).

Computer Problems

12.5.7 Burgers equation

Compute the solution of the Burgers equation with initial condition F (x) = exp(−x2) using (a) the
FTCS, (b) the Du Fort–Frankel, and (c) the MacCormack explicit method, with κ = 0.01, 0.1, and
1.0. Discuss and compare the results of the three simulations.

12.5.8 Korteweg–de Vries equation

A standard form of the Korteweg–de Vries equation is

∂f

∂t
+ εf

∂f

∂x
+ μ

∂3f

∂x3
= 0, (12.5.59)

where ε and μ are two positive constants.

(a) Confirm that an exact solution in an unbounded domain expressing the propagation of a solitary
wave is

f =
3c

cosh2
[
α (x− εct− d)

] , (12.5.60)

where c ≥ 0 and d are two arbitrary constants and α =
√
εc/(4μ) [98].

(b) Develop an explicit finite-difference method and compute the evolution of the solution from the
initial state described by (12.5.60). Discuss the reliability and accuracy of your computations.



Finite-difference methods
for incompressible Newtonian flow

13
Having discussed finite-difference methods for solving the convection–diffusion equation in its general
form, we proceed to develop corresponding methods for solving the equations of steady and unsteady
incompressible Newtonian flow. The set of governing equations includes the Navier–Stokes equation
and the continuity equation. The primary unknowns are the velocity and the pressure. However, we
recall that an arbitrary rotational flow can be described, and therefore computed, in terms of the
secondary variables discussed in Chapter 2, including the vorticity, the stream functions, and the
vector potential. Numerical methods based on these secondary fields will be outlined.

Considering the evolution of an unsteady flow, we regard the Navier–Stokes equation as an
evolution equation for the velocity, providing us with the rate of change of the velocity at a particular
point in the flow in terms of the instantaneous velocity and pressure fields. In the absence of
the pressure gradient term, the Navier–Stokes equation reduces to a nonlinear convection–diffusion
equation that is amenable to the finite-difference methods discussed in Chapter 12. The presence of
the pressure gradient in the equation of motion requires special attention due to the absence of an
explicit evolution equation for the pressure, as discussed in Section 9.1. In place of this evolution
equation, we have the restriction of incompressibility requiring that the pressure evolves so that the
rate of expansion is zero and the velocity field remains solenoidal at all times. In Section 9.1, we
saw that the restriction of incompressibility can be expressed in terms of a Poisson equation either
for the pressure or for the rate of change of the pressure, with a time-dependent forcing function.
These equations implicitly determine the evolution of the pressure field.

Computing the evolution of an incompressible Newtonian flow is thus distinguished by the
need to solve simultaneously a parabolic equation in time, which is the equation of motion, and an
elliptic equation in space, which is the Poisson equation for the pressure or rate of change of the
pressure in time. It is interesting to note that the continuity equation for compressible fluids has the
form of an evolution equation for the density, which is related to the hydrodynamic pressure through
a chosen equation of state. Since all governing equations are parabolic in time, they can be marched
forward in time using a standard numerical method. For this reason, computing the evolution of a
compressible flow is more straightforward than computing the evolution of an incompressible flow.

An additional concern in computing the structure of a steady incompressible flow or the
evolution of an unsteady incompressible flow in primary variables, including the velocity and the
pressure, is the derivation and numerical implementation of boundary conditions for the pressure.
In the vast majority of fluid dynamics applications, boundary conditions for the pressure are not

967
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directly available, but must be derived from the equation of motion subject to specified boundary
conditions for the velocity or traction. We will see that the accurate implementation of derived
pressure boundary conditions requires special attention.

We will begin this chapter by discussing a class of methods for computing the structure of a
steady flow and the evolution of an unsteady flow based on the vorticity transport equation. The
numerical procedure involves computing the evolution of the vorticity field, while simultaneously
obtaining the simultaneous evolution of the velocity field by inverting the definition of the vorticity,
ω = ∇×u, subject to the continuity equation. One advantage of this approach is that the pressure
field does not need to considered. One disadvantage is the need to derive boundary conditions for
the vorticity.

Methods based on the vorticity transport equation can be regarded as generalizations of the
vortex methods for inviscid or weakly viscous flows discussed in Chapter 11. What distinguishes
vortex methods from other methods based on vorticity transport is that the velocity field is obtained
from the vorticity field efficiently using the Biot–Savart integral or a related contour integral. In
the case of viscous flow, because the support of the vorticity is not necessarily compact, and it is
more expedient to recover the velocity from the vorticity field by finite-difference or other domain
discretization methods.

A variety of finite-difference procedures are available for solving the equations of steady and
unsteady incompressible Newtonian flow, and a choice must be made according to the tolerated level
of programming complexity and available computational resources. In this chapter, we outline the
fundamental principles of several alternative formulations and discuss the basic steps involved their
numerical implementation. Extensions and discussion of particular issues and specialized methods
can be found in the references cited as well as in general reviews and monographs on finite-difference
methods in fluid dynamics dynamics (e.g., [9, 69, 155, 185, 286, 294, 346]). Numerical methods for
free-surface and interfacial flow are reviewed in Reference [131].

13.1 Vorticity–stream function formulation for two-dimensional flow

We begin the discussion of finite-difference methods by presenting a classical formulation based on
the vorticity transport equation for two-dimensional flow, known as the stream function–vorticity
formulation. In Section 13.3, we address the more general case of three-dimensional flow.

13.1.1 Governing equations

In the case of two-dimensional flow, solving for the velocity in terms of the vorticity is done with the
least amount of computational effort by introducing the stream function, ψ. The two components
of the velocity in the x and y directions are ux = ∂ψ/∂y and uy = −∂ψ/∂x, and the z component
of the vorticity is

ωz = −∇2ψ, (13.1.1)

where ∇2 is the Laplacian operator in the xy plane. The computation proceeds according to the
two fundamental steps of the vortex methods discussed in Chapter 11.
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In the first step, the rate of change of the vorticity is computed using the simplified vorticity
transport equation for two-dimensional flow written in the vorticity–stream function form

∂ωz

∂t
+

∂ψ

∂y

∂ωz

∂x
− ∂ψ

∂x

∂ωz

∂y
= ν∇2ωz, (13.1.2)

where ν is the kinematic viscosity of the fluid. The sum of the second and third terms on the
left-hand side of (13.1.2) is sometimes designated as the Jacobian, J (ωz, ψ). In the second step, the
simultaneous evolution of the stream function is obtained by solving the Poisson equation (13.1.1)
for ψ in terms of ωz. Boundary conditions are requiring in both the integration of (13.1.2) and the
inversion of (13.1.1). It is instructive to note that the absence of an explicit evolution equation for
the pressure in the original system of governing equations is reflected in the absence of an explicit
evolution equation for the stream function.

Pressure field

One important feature of the vorticity–stream function formulation is that computing the pressure
is not required. If the instantaneous pressure field is desired, it can be computed a posteriori by
solving a Poisson equation that emerges by taking the divergence of the Navier–Stokes equation and
using the continuity equation to obtain

∇2p = 2ρ
[ ∂2ψ

∂x2

∂2ψ

∂y2
−
( ∂2ψ

∂x∂y

)2 ]
. (13.1.3)

Boundary conditions for the pressure arise by applying the equation of motion at the boundaries,
enforcing the specified boundary conditions, and then projecting the result onto the normal or
tangential unit vector, as discussed in Section 13.3 in the context of the velocity–pressure formulation.

13.1.2 Flow in a rectangular cavity

To illustrate the implementation of the finite-difference method, we consider the classical problem
of flow in a rectangular cavity driven by a lid that translates parallel to itself with a generally time-
dependent velocity, V (t), as illustrated in Figure 13.1.1. The no-penetration condition requires that
the normal velocity component is zero at each wall. In terms of the stream function,

ψ = c over all walls, (13.1.4)

where c is an arbitrary constant set for simplicity to zero. The no-slip boundary condition requires
that the tangential component of the velocity is zero over the bottom, left, and right walls, whereas
the tangential velocity at the upper wall is equal to the wall velocity, V (t). In terms of the stream
function, we obtain the equivalent statement

∂ψ

∂y
= 0 at the bottom,

∂ψ

∂x
= 0 at the sides,

∂ψ

∂y
= V at the lid. (13.1.5)

Given these boundary conditions for the velocity, we derive simplified expressions for the boundary
values of the vorticity in terms of the stream function. Beginning with (13.1.1) and noting that, for
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Figure 13.1.1 A finite-difference grid for computing two-dimensional flow in a rectangular cavity
driven by a moving lid. The pressure and the two components of the velocity are defined at the
same grid nodes.

example, ∂2ψ/∂x2 = −∂uy/∂x = 0 at the top wall because of the no-penetration condition, we find
that

ωz = −∂2ψ

∂y2
at the top and bottom walls, ωz = −∂2ψ

∂x2
at the side walls. (13.1.6)

To implement a finite-difference method, we introduce a two-dimensional grid with Nx ×Ny

divisions, as illustrated in Figure 13.1.1. For simplicity, we have assumed that the grid lines are
evenly spaced, which means that the grid spacings, Δx and Δy, are uniform throughout the domain
of flow. The finite-difference formulation involves assigning discrete values to the stream function and
vorticity at all internal and boundary grid points, and replacing the governing differential equations
(13.1.1) and (13.1.2) with difference equations, as discussed in Chapter 12. The specific strategy of
computation depends on whether we wish to compute a steady or an unsteady flow.

Steady flow

Two distinct but somewhat related approaches are available for computing a steady flow. The first
class of methods involves solving the equations of steady flow using an iterative scheme. The second
class of methods involves computing the solution of a fictitious transient flow problem governed by
a modified set of differential equations from a given initial condition up to the steady state. The
solution of the modified problem at steady state satisfies the equations of steady two-dimensional
incompressible Newtonian flow.



13.1 Vorticity–stream function formulation for two-dimensional flow 971

13.1.3 Direct computation of a steady flow

In one version of the direct approach, the governing equations (13.1.1) and (13.1.2) are regarded as
a coupled nonlinear system of Poisson equations for ψ and ωz,

∇2ψ = −ωz, (13.1.7)

and

∇2ωz =
1

ν

(
ux

∂ωz

∂x
+ uy

∂ωz

∂y

)
. (13.1.8)

In the special case of Stokes flow, the right-hand side of (13.1.8) vanishes, yielding Laplace’s equation
for the vorticity, ∇2ωz = 0. Equation (13.1.7) then shows that the stream function satisfies an
inhomogeneous biharmonic equation, ∇4ψ = −ωz. The computational algorithm in the general case
of nonzero Reynolds-number flow involves the following steps:

Step 1: Guess the vorticity distribution.

Step 2: Solve the Poisson equation (13.1.7) for the stream function.

For boundary conditions, we have the choice between the Dirichlet boundary condition that spec-
ifies the boundary distribution of the stream function, and the Neumann boundary condition that
specifies the boundary distribution of the normal derivative of the stream function, which is equal
to the tangential component of the velocity. A combination of the Dirichlet and Neumann boundary
conditions at different boundaries can also be employed. If we use the Neumann condition over all
boundaries, the Poisson equation will have a solution only if the following compatibility condition
is fulfilled, ∮

Walls

n · ∇ψ dl =

∫∫
Flow

ωz dx dy, (13.1.9)

where n is the normal unit vector pointing into the flow. Even when (13.1.9) is fulfilled by a fortuitous
guess of the vorticity distribution in Step 1, the singular nature of the linear system of equations
that arises from the finite-difference discretization of (13.1.7) introduces additional complications.
For these reasons, the Dirichlet condition expressed by (13.1.4) is preferred around all boundaries.

Step 3: Compute the right-hand side of (13.1.8) and the boundary values of the vorticity using the
specified boundary conditions for the velocity.

Step 4: Solve the Poisson equation (13.1.8) for the vorticity.

Step 5: Check whether the computed vorticity field agrees with that guessed in Step 1 at all grid points.
If it does not agree within a specified tolerance, replace the guessed with the computed vorticity and
return to Step 2.

Implementation

The details of the numerical implementation will be discussed with reference to flow in a cavity
driven by a moving lid, as illustrated in Figure 13.1.1.
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Step 1: Assign initial values for the stream function to all internal and boundary (Nx+1)× (Ny+1)
grid points.

A simple choice consistent with the no-penetration boundary condition is to set the initial stream
function to zero, corresponding to a quiescent fluid.

Step 2: Assign values for the vorticity to all internal Nx ×Ny grid points.

A simple choice is to set all initial vorticity gird values to zero, corresponding to a quiescent fluid.
Note that this choice disregards the motion of the fluid due to the translation of the upper wall.

Step 3: Solve the Poisson equation (13.1.7) for ψ subject to the Dirichlet boundary condition (13.1.4)
at all four walls.

Since the vorticity on the right-hand side is only an approximation to the exact solution, high accu-
racy is not necessary. To reduce the computational effort, we solve the Poisson equation iteratively
and carry out only a small number of iterations. To perform the iterations, we introduce a fictitious
unsteady diffusion–reaction problem governed by the equation

∂ψ

∂t
= κ (∇2ψ + ωz), (13.1.10)

where κ is a diffusivity. The solution of this equation at steady state satisfies (13.1.7). For simplicity,
we denote ω = ωz. Implementing the forward time centered space (FTCS) discretization discussed
in Section 12.3.7, we find that

ψ
(l+1)
ij = ψ

(l)
ij + αx R

(l)
ij , (13.1.11)

where αx = κΔt/Δx2 is the diffusion number in the x direction, the superscript (l) denotes the lth
iteration level,

Ri,j ≡ ψi+1,j − 2 (1 + β)ψi,j + ψi−1,j + βψi,j+1 + βψi,j−1 +Δx2ωi,j (13.1.12)

is the residual, and β = Δx2/Δy2. The transient evolution is numerically stable if αx(1 + β) < 1
2
.

The iterative method involves computing a time-like sequence of grid values parametrized by the
index l, computed using the formula

ψ
(l+1)
i,j = ψ

(l)
i,j +

�

2(1 + β)
R

(l)
i,j , (13.1.13)

for l = 1, 2, . . . , where � is a relaxation factor used to control the iterations. When the iterations
are executed for the first time, the initial guess ψ(0) is set equal to that assigned in Step 1. When
the iterations converge, the solution is second-order accurate with respect to Δx and Δy.

Step 4: Use the simplified expressions (13.1.6) to compute the vorticity at the boundary grid points
by one-sided finite differences.

To compute the vorticity at a grid point along the upper wall, we expand the stream function in a
Taylor series with respect to y about a grid point that lies at the lid and evaluate the series at the



13.1 Vorticity–stream function formulation for two-dimensional flow 973

Ny level immediately below to obtain

ψi,Ny
� ψi,Ny+1 −Δy

(∂ψ
∂y

)
i,Ny+1

+
1

2
Δy2

(∂2ψ

∂y2

)
i,Ny+1

. (13.1.14)

The no-slip boundary condition (13.1.5) requires that (∂ψ/∂y)i,Ny+1 = V , and the first equation
in (13.1.6) requires that ωi,Ny+1 = −(∂2ψ/∂y2)i,Ny+1. Substituting these expressions into (13.1.14)
and solving for ωi,Ny+1, we obtain

ωi,Ny+1 = 2
ψi,Ny+1 − ψi,Ny

Δy2
− 2

V

Δy
, (13.1.15)

which is first-order accurate in Δy. Working in a similar fashion for the bottom and side walls, we
derive the corresponding expressions

ωi,1 = 2
ψi,1 − ψi,2

Δy2
, ω1,j = 2

ψ1,j − ψ2,j

Δy2
, ωNx+1,j = 2

ψNx+1,j − ψNx,j

Δy2
. (13.1.16)

To increase the accuracy of the method to second order, we expand the stream function in
a Taylor series about a grid point at the upper wall, evaluate the series at two layers immediately
below the upper wall, and retain terms up to third order to find

ψi,Ny
� ψi,Ny+1 −Δy

(∂ψ
∂y

)
i,Ny+1

+
1

2
Δy2

(∂2ψ

∂y2

)
i,Ny+1

+
1

6
Δy3

(∂3ψ

∂y3

)
i,Ny+1

(13.1.17)

and

ψi,Ny−1 � ψi,Ny+1 − 2Δy
(∂ψ
∂y

)
i,Ny+1

+ 2Δy2
(∂2ψ

∂y2

)
i,Ny+1

− 4

3
Δy3

(∂3ψ

∂y3

)
i,Ny+1

. (13.1.18)

Combining these equations to eliminate the third derivative of the stream function, solving for the
second derivative, using the boundary condition (13.1.5), and taking into account (13.1.6), we find
that

ωi,Ny+1 =
7ψi,Ny+1 − 8ψi,Ny + ψi,Ny−1

2Δy2
− 3

V

Δy
. (13.1.19)

Working in a similar fashion for the bottom and side walls, we find that

ωi,1 =
7ψi,1 − 8ψi,2 + ψi,3

2Δy2
, ω1,j =

7ψ1,j − 8ψ2,j + ψ3,j

2Δx2
,

ωNx+1,j =
7ψNx+1,j − 8ψNx,j + ψNx,j

2Δx2
.

(13.1.20)

Step 5: Differentiate the stream function to compute the velocity at the internal grid points subject
to the boundary values (13.1.4).

Step 6: Differentiate the vorticity to compute the right-hand side of (13.1.8) at the internal grid
points subject to the boundary values computed from (13.1.15) and (13.1.16) or from (13.1.19) and
(13.1.20).
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Step 7: Solve the Poisson equation (13.1.8) for the vorticity subject to the Dirichlet boundary condi-
tions for the vorticity derived in Step 4.

This is done by iteration using, for example, the forward time–centered space (FTCS) algorithm
discussed in Step 3, carrying out only a small number of iterations. Grid values of the forcing
function on the right-hand side at the internal nodes are available from Step 6.

Step 8: If the vorticity computed in Step 7 does not agree with that previously available within a
specified tolerance, we return to Step 2 and repeat the computations with the new values of the
vorticity.

This outer iteration is terminated when the absolute value of the difference in the vorticity between
two successive iterations at each grid point becomes less than a present threshold, ε, or when the
sum of the absolute values of the differences in the vorticity over all internal Nx × Ny grid points
becomes less than Nx ×Ny × ε.

One noteworthy feature of the algorithm is that the corner grid points do not enter the
computation, which means that the numerical scheme is oblivious to the velocity discontinuity at the
two upper corner points. The local jump may cause local oscillations and slow down the convergence
of the iterations, but does not have a deleterious effect on the overall numerical method.

Structure of the flow

Vorticity and stream function contour plots for flow in a cavity with aspect ratio Lx/Ly = 2, and
Reynolds number Re = V Lx/ν = 1 and 100 are shown in Figure 13.1.2. In the notation of Figure
13.1.1, Lx = bx − ax and Ly = by − ay. Stream function contours are both streamlines and particle
paths in a two-dimensional flow.

When Re = 1, we obtain a nearly creeping flow whose streamlines are symmetric with respect
to the midplane due to reversibility of Stokes flow, as discussed in Section 6.1.7. Small regions of
recirculating flow are present at the bottom two corners, requiring increased spatial resolution. The
vorticity is singular at the upper two cavity corners due to the discontinuous boundary velocity. A
local analysis shows that the shear stress diverges at these corners, and an infinite force is required
to slide the lid as a result of the sharp-corner idealization, as discussed in Section 6.2. However,
these physical singularities do not deter the performance of the numerical method.

As the Reynolds number increases, the center of the central eddy is shifted toward the upper
right corner due to the fluid inertia and the flow becomes unsymmetric. To compute flow at even
higher Reynolds numbers, it is helpful to perform parameter continuation where the initial guesses
for the stream function and vorticity are identified with the corresponding converged values at a
lower Reynolds number. In fact, the Reynolds number can be increased gradually up to a targeted
value in the course of the iterations.

Improvements and extensions

The computational procedure discussed in this section can be improved in several ways (e.g., [159]).
In one improvement, instead of iterating on the Poisson equation for the vorticity in Step 7, we
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Figure 13.1.2 (a ) Vorticity and (b) stream function contour plots for flow in a rectangular cavity
with aspect ratio Lx/Ly = 2, at Reynolds number Re = V Lx/ν = 1 (left) and 100 (right).

iterate on the full diffusion–convection equation (13.1.8). This requires that the nonlinear term on
the right-hand side is recomputed after each iteration using the updated vorticity. The iterations
can be carried out using an explicit or implicit finite-difference method for the convection–diffusion
equation in two dimensions discussed in Section 12.7. Because the flow near the center of the cavity
is dominated by convection at high Reynolds numbers, using upwind differencing helps improve
numerical stability. The rate of convergence of the inner and outer iterations depends on the details
of the particular implementation [198].

The method for computing the boundary values of the vorticity described in Step 3 has been
the subject of criticism [155]. It has been argued that it is not appropriate to explicitly impose the
boundary values of the vorticity. Instead, the boundary distribution of the vorticity should arise
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implicitly as part of the solution using the natural boundary conditions for the velocity or traction.
This issue will be discussed further in Section 13.2 in the more general context of three-dimensional
flow.

13.1.4 Modified dynamics for steady flow

A distinguishing feature of the direct approach described in Section 13.1.3 is the solution of a
Poisson equation for the stream function, reflecting the elliptic nature of the equations governing
the structure of a steady flow. Physically, the velocity at a point in a flow affects the velocity at
every other point. We saw that one way to perform the associated inner iterations is to introduce a
fictitious unsteady diffusion–reaction problem and then implement the explicit FTCS discretization.

This observation suggests reformulating the problem by retaining the vorticity transport equa-
tion (13.1.1) and replacing (13.1.2) with an evolution equation equation for the stream function ex-
pressed by (13.1.10), where the diffusivity κ is a free parameter of the numerical method. The idea is
to compute the evolution of the flow from a certain initial condition subject to (13.1.1) and (13.1.10)
until a steady state has been established. The steady-state solution will satisfy the original equations
(13.1.7) and (13.1.8). An advantage of this approach is that all governing equations are parabolic
in time. Time-marching schemes similar to those developed in Chapter 12 for convection–diffusion
may then be employed.

For the problem of flow in a cavity illustrated in Figure 13.1.1, the method of modified dy-
namics is implemented according to the following steps:

1. Assign initial values to the stream function and vorticity at all internal and boundary grid
points. A simple choice is to set them both to zero.

2. Differentiate the stream function to compute the two components of the velocity at all internal
grid points.

3. Compute the vorticity at the boundary grid points.

4. Advance the vorticity at all internal grid points on the basis of (13.1.2) using, for example, the
ADI method for the convection–diffusion equation described in Section 12.7, while keeping the
vorticity at the boundary grid points constant.

5. Advance the stream function at all internal grid points on the basis of (13.1.10) using, for
example, the ADI method for the convection–diffusion equation described in Section 12.7.

6. Return to Step 3 and repeat the computations for another time step.

13.1.5 Unsteady flow

To compute the evolution of an unsteady flow, we combine features of the direct method with
features of the method of modified dynamics for steady flow. The algorithm involves computing the
evolution of the vorticity field using (13.1.2), while simultaneously describing the evolution of the
velocity field in terms of the stream function using (13.1.1). To simplify the notation, we denote
u = ux, v = uy, and ω = ωz. A simple strategy for computing the evolution of flow in a cavity when
the lid starts translating suddenly with constant velocity V involves the following steps:
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1. At the initial instant, we set the stream function and velocity equal to zero at all internal and
boundary grid points. Then we set the x velocity component at the grid points at the upper
wall equal to the lid velocity, V .

2. Now we differentiate the velocity to compute the vorticity. For the internal grid points, we
use central differences. For grid points that lie on the lid, we use the definition of the vorticity
and apply second-order backward difference to find that

ωi,Ny+1 =
−3V + 4ui,Ny

− ui,Ny−1

2Δy
. (13.1.21)

For grid points that lie at the bottom and side walls, we use the corresponding second-order
difference formulas

ωi,1 =
−4ui,2 + ui,3

2Δy
, ω1,j =

4 v2,j − v3,j
2Δx

, ωNx+1,j =
−4 vNx,j + vNx−1,j

2Δx
. (13.1.22)

3. Next, we integrate (13.1.2) to obtain the vorticity at the next time level at all internal grid
points subject to the boundary conditions (13.1.21) and (13.1.22) using an explicit method,
such as the FTCS method. At high Reynolds numbers, we use upwind differences.

4. In the fourth step, we solve the Poisson equation (13.1.1) for the stream function at the next
time level subject to the Dirichlet boundary condition (13.1.4).

5. Now we differentiate the stream function to compute the velocity at the next time level at all
internal grid points.

6. Having advanced the flow by one time step, we return to Step 2 and repeat the computation
for another time step.

To improve the temporal accuracy and promote the numerical stability, we may update the
vorticity using an implicit or semi-implicit method, such as the ADI method.

ADI method

In a simple implementation of the ADI method, the convection velocity is held constant and equal
to initial value at the beginning of the first substep during both substeps. In a more advanced
implementation, the Poisson equation is solved for an intermediate stream function after completing
the first substep, and the convection velocity is set equal to an intermediate velocity computed by
differentiating the intermediate stream function at the second substep. Since the convection velocity
is held constant and equal to its value at the beginning of a step or substep, the overall accuracy of
both methods is first-order in time.

To achieve second-order accuracy, we use the ADI method with time-dependent velocities
described in (12.5.56) and (12.5.57). Collecting the values of the vorticity at all grid points into a
vector, ω, we obtain two ADI equations written in the symbolic form

A(un−1,un,un+1) · ωn+1/2 = B(un−1,un,un+1) · ωn,

C(un−1,un,un+1) · ωn = B(un−1,un,un+1) · ωn+1/2,

(13.1.23)
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where A, B, C, and D are tridiagonal matrices dependent on their stated arguments. Equations
(13.1.23) replace the explicit FTCS equation in Step 3. Steps 3–5 combine into the following inner
iterative loop: (a) Guess the velocities un+1 and solve the two tridiagonal systems (13.1.23) with
boundary conditions (13.1.21) and (13.1.22) for ωn+1/2 and ωn+1; (b) execute Steps 4 and 5; (c)
solve (13.1.23) with the computed values of un+1 or with a weighted average of old and new values.

If the boundary velocity changes in time, we solve the first tridiagonal system in (13.1.23)
subject to the boundary conditions ωn+1/2 = 1

2
(ωn + ωn+1), where ωn+1 has been approximated

from the previous inner iteration. To accelerate the convergence, we may replace the boundary
conditions for ωn+1 during the inner iterations with a weighted average of old and new values.
Further details on the implementation of the method are given in Reference [294] (p. 197).

Problems

13.1.1 Poisson equation for the pressure

Take the divergence of the two-dimensional Navier–Stokes equation and introduce the stream func-
tion to derive the pressure Poisson equation (13.1.3).

13.1.2 Axisymmetric flow

Write the counterparts of equations (13.1.1)–(13.1.3) for axisymmetric flow in terms of the Stokes
stream function.

13.1.3 Boundary condition for the vorticity in unsteady flow

Derive expressions (13.1.21) and (13.1.22).

Computer Problems

13.1.4 Steady flow in a cavity

(a) Write a program that uses the direct approach discussed in the text to compute the steady
flow in a square cavity of equal width and depth, L, generated by the steady translation of a lid.
The inner iterations should may be carried out using the FTCS method. Carry out computations
for a sequence of Reynolds numbers, Re = V L/ν = 1, 10, 100, 500, . . ., and discuss the changes
in the structure of the flow. Study the convergence of the method as a function of the relaxation
parameter, �, and number of iterations. Estimate the critical Reynolds number where the spatial
resolution appears to be inadequate.

(b) Repeat (a) with the inner iterations carried out using the LSOR method and discuss possible
improvements (see Table 12.3.1).

(c) Repeat (a) using the method of modified dynamics.

13.1.5 Unsteady flow in a cavity

Write a program that uses the first-order method discussed in the text to solve the unsteady version
of Problem 13.1.4 when the lid is set in motion impulsively with constant velocity.
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13.2 Vorticity transport equation for three-dimensional flow

Methods based on the vorticity transport equation for three-dimensional flow employ the repetitive
application of the two basic steps discussed in Section 13.1, involving the evolution of the vorticity
field and the simultaneous evolution of the velocity field.

Evolution of the vorticity field

In the first step, the evolution of the vorticity field is computed based on the vorticity transport
equation written in the conservative Eulerian form

∂ω

∂t
+∇× (ω × u) = ν∇2ω. (13.2.1)

Taking the divergence of (13.2.1) and recalling that the divergence of the curl of any twice differ-
entiable vector function is identically zero, we find that the divergence of the vorticity, β ≡ ∇ · ω,
evolves according to the unsteady heat conduction equation,

∂β

∂t
= ν∇2β. (13.2.2)

Accordingly, the computed vorticity field will be solenoidal, as required, provided that it is solenoidal
at the initial instant and the boundary distribution of β remains zero at all times (Problem 13.2.1).

Boundary conditions for the vorticity

To integrate the vorticity transport equation (13.2.1) in time, we require the boundary distribution
of the vorticity. In the majority of numerical implementations, the boundary vorticity emerges by
applying the definition of the vorticity at or near boundaries, ω = ∇× u, and then simplifying the
resulting expressions by implementing specified boundary conditions for the velocity. This procedure
guarantees that an initially solenoidal vorticity field will remain solenoidal at all times [158, 407].
The numerical procedure is analogous to that involved in the stream function–vorticity formulation
discussed in Section 13.1.

It has been argued that it is not entirely appropriate to impose an explicit local boundary
condition for the vorticity [155]. Instead, the boundary distribution of the vorticity should emerge
as part of the solution in terms of the specified boundary conditions for the velocity or traction.
Computational experiments have shown that computing instead of imposing the boundary values of
the vorticity promotes the stability of the numerical method at the cost of increased programming
complexity and computational effort.

Quartapelle & Valz-Gris [332] replaced the boundary conditions for the vorticity with an
integral constraint. In the case of two-dimensional flow with homogeneous boundary conditions for
the velocity, the constraint requires that the vorticity is orthogonal to any nonsingular harmonic
function defined in the domain of flow, that is, the integral of the vorticity multiplied by any
nonsingular harmonic function over the area of the flow is zero. The implementation of this method
is discussed by Quartapelle [331] and Anderson [8] in the context of Chorin’s vortex sheet method
(Section 11.6).
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Noninertial frames

When the flow is described in a noninertial frame that translates with velocity V(t) while rotating
with angular velocity Ω(t) about a chosen point, we work with the modified vorticity W = ω+2Ω,
which evolves according to the standard vorticity transport equation (13.2.1) for an inertial frame, as
discussed in Section 3.12.5 [383]. Since the acceleration of the frame of reference enters the solution
only through the boundary condition, using the modified vorticity simplifies the implementation and
reduces the computational cost.

Evolution of the velocity

In the second step of methods based on the vorticity transport equation, the evolution of the velocity
field is computed by inverting the definition of the vorticity, ω = ∇ × u, subject to the continuity
equation, ∇·u = 0. The inversion can be done in two ways according to the vector potential–vorticity
or velocity–vorticity formulation.

13.2.1 Vorticity–vector potential formulation

In this formulation, the velocity field is decomposed into a solenoidal and irrotational component ex-
pressed by the gradient of a harmonic potential function, ∇φ, and a rotational component expressed
by the curl of a solenoidal vector potential, A, so that

u = ∇φ+∇×A, (13.2.3)

as discussed in Section 2.8 [181]. In the case of flow past a solid boundary, the scalar potential
φ is computed by solving Laplace’s equation subject to the no-penetration boundary condition,
n · ∇φ = n · u = 0. The solution is unique up to an arbitrary but physically irrelevant constant. To
compute the vector potential, we write

ω = ∇×∇×A = ∇(∇ ·A)−∇2A, (13.2.4)

and stipulate that A is solenoidal, ∇ ·A = 0, to obtain a vectorial Poisson equation,

∇2A = −ω. (13.2.5)

Taking the divergence of (13.2.5) and remembering that the vorticity field is solenoidal, we find
that the divergence ∇ · A satisfies Laplace’s equation, which means that the computed A will be
solenoidal provided that ∇ ·A = 0 over all boundaries.

Boundary conditions for the vector potential

Consider flow in a simply connected domain. To ensure that ∇ · A = 0 over the boundaries, we
require that the tangential components of A are zero,

n× (A× n) = 0. (13.2.6)

To validate this stipulation in light of the no-slip boundary condition, and also derive a boundary
condition for the normal component of A, it is convenient to introduce a local coordinate system
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y
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n

z

Figure 13.2.1 Illustration of a local coordinate system on a solid boundary used to derive a boundary
condition for the normal component of the vector potential.

where the x and z axes are tangential to the boundary and the y axis is normal to the boundary
at a point, as shown in Figure 13.2.1. The boundary condition (13.2.6) specifies that Ax = 0 and
Az = 0 at the origin. The normal component of the velocity is

(∇×A)y =
∂Ax

∂z
− ∂Az

∂x
=

∂A

∂z
· tx − ∂A

∂x
· tz (13.2.7)

evaluated at the origin, where tx and tz are unit tangent vectors along the x and z axes. Rearranging,
we obtain

(∇×A)y =
∂(A · tx)

∂z
− ∂(A · tz)

∂x
−A · (∂tx

∂z
− ∂tz

∂x
). (13.2.8)

Now implementing the boundary condition (13.2.6), we obtain

(∇×A)y = −Ay n · (∂tx
∂z

− ∂tz
∂x

) = Ay n · (tx
∂n

∂z
− tz

∂n

∂x
), (13.2.9)

which is zero in light of (1.7.13), consistent with the requirement that n · (∇×A) = 0, originating
from the no-penetration boundary condition.

Now using the condition ∇ ·A = 0, we find that, at the origin,

∇ ·A = n · (∇A) · n+
∂A

∂x
· tx +

∂A

∂z
· tz, (13.2.10)

where the term n · (∇A) ·n represents the derivative of the normal component of A in the direction
normal to the boundary. Rearranging, we find that

∇ ·A = n · (∇A) · n+
∂(A · tx)

∂x
+

∂(A · tz)
∂z

−A ·
(∂tx
∂x

+
∂tz
∂z

)
, (13.2.11)

yielding

∇ ·A = n · (∇A) · n+ 2κm A · n = 0, (13.2.12)
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or

n · (∇A) · n = −2κm A · n, (13.2.13)

where κm is the mean curvature of the boundary. In the case of a flat boundary, n · (∇A) · n = 0.

Boundary conditions for multiply connected domains are available [341]. The numerical imple-
mentation of the vector potential–vorticity formulation for three-dimensional flow has been discussed
on several occasions (e.g., [11, 20, 252]). In the case of two-dimensional or axisymmetric flow, all
components ofA are set to zero, except for the z or azimuthal components that are identified, respec-
tively, with the stream function or with the Stokes stream function divided by the distance from the
axis of revolution, σ. The vector potential–vorticity formulation then reduces to the vorticity–stream
function formulation discussed in Section 13.1.

13.2.2 Velocity–vorticity formulation

In the most popular version of the velocity–vorticity formulation, the velocity is computed from the
vorticity by solving a vectorial Poisson equation,

∇2u = −∇× ω, (13.2.14)

which arises by taking the curl of the definition ω = ∇ × u and requiring that the velocity u is
solenoidal, ∇ · u = 0. The solution is subject to specified boundary conditions for the velocity.

To validate the method, we must show that the curl of the velocity computed by solving
(13.2.14) is identical to the vorticity, ω, provided that ω is solenoidal and its boundary values are
computed from the definition ω = ∇ × u [100, 407]. Working toward this goal, we use the vector
identity ∇× (∇× u) = ∇(∇ · u)−∇2u in conjunction with (13.2.14). Defining δω ≡ (∇× u)− ω

and rearranging, we obtain

∇× δω = ∇(∇ · u). (13.2.15)

Taking the curl of both sides, we find that

∇×∇× δω = ∇(∇ · δω)−∇2δω = 0. (13.2.16)

Since ω and thus δω is solenoidal, ∇·δω = 0, we can be sure that ∇2δω = 0. Because the boundary
values of δω are zero, δω must vanish identically and the curl of the computed velocity, ∇×u, must
be equal to the prescribed vorticity ω throughout the domain of flow.

To show that the velocity computed by solving (13.2.14) is solenoidal, we invoke once again
the identity ∇×(∇×u) = ∇(∇·u)−∇2u. Using (13.2.14), we find that ∇×(∇×u) = ∇(∇·u)+ω,
which shows that ∇(∇ · u) = 0. Integrating in space, we find that ∇ · u is a constant equal to zero
due to mass conservation throughout the domain of flow [100, 407].

Numerical implementations of the velocity–vorticity formulation based on (13.2.14) have been
presented by several authors [76, 100, 105, 158, 407]. Guj & Stella [157] developed a method of false
transients for steady flow by replacing the elliptic equation (13.2.14) with the parabolic equation

Re
∂u

∂t
= ∇2u+∇× ω. (13.2.17)
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In another version of the velocity–vorticity formulation, the velocity field is computed directly by
solving the Cauchy–Riemann system of equations ω = ∇×u and ∇ ·u = 0 for the velocity, subject
to the no-penetration boundary condition [142, 288].

Problem

13.2.1 Integration of the vorticity transport equation

Consider the time integration of the vorticity transport equation written in nonconservative form
where the vortex stretching term appears explicitly on the right-hand side, subject to the boundary
condition ω = ∇×u. Discuss whether the vorticity field will remain solenoidal during the integration
[142].

13.3 Velocity–pressure formulation

In the remainder of this chapter, we discuss methods for solving the Navier–Stokes equation for two-
or three-dimensional flow in primitive variables, including the velocity and the pressure. The fluid
density and viscosity are assumed to be uniform throughout the domain of flow. Relaxing these
restrictions requires only straightforward modifications. To simplify the notation, we work with the
hydrodynamic pressure, denoted by p, excluding the effect of the body force.

We begin by recasting the Navier–Stokes equation as an evolution equation for the velocity
involving the pressure,

∂u

∂t
= N(u)− 1

ρ
∇p+ νL(u), (13.3.1)

where the terms N(u) and L(u) are associated, respectively, with the nonlinear inertial force and
the linear viscous force,

N(u) ≡ −u · ∇u = −∇ · (u⊗ u), L(u) ≡ ∇2u = ∇(∇ · u)−∇× ω. (13.3.2)

Because the fluid is incompressible, the velocity field is solenoidal and the term ∇(∇ · u) in the
definition of L(u) is identically zero. However, because numerical discretization destroys the exact
equality, keeping this term helps ensure numerical stability and minimize the numerical error.

The equation of motion is accompanied by the continuity equation for incompressible fluids,

∇ · u = 0, (13.3.3)

stating that the velocity field is and must remain solenoidal during the evolution.

13.3.1 Pressure Poisson equation

Taking the divergence of (13.3.1) and switching the order of the gradient and temporal derivative
on the left-hand side, we obtain an evolution equation for the rate of expansion, α ≡ ∇ · u,

∂α

∂t
= ∇ ·N(u)− 1

ρ
∇2p+ ν∇ · L(u). (13.3.4)
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The continuity equation requires that the right-hand side vanishes at all times. Accordingly, the
pressure must satisfy the pressure Poisson equation (PPE)

∇2p = ρ∇ ·N(u) + μ∇ · L(u). (13.3.5)

One may argue that, since the divergence and the linear operator L commute, the second term on
the right-hand side of (13.3.5) vanishes, yielding the simplified form

∇2p = ρ∇ ·N(u). (13.3.6)

For reasons that will become evident in our further analysis, equation (13.3.5) is called the consistent
PPE and equation (13.3.6) is called the simplified PPE [153].

13.3.2 Alternative systems of governing equations

To this end, we consider replacing the governing equations (13.3.1) and (13.3.3) either with equations
(13.3.1) and (13.3.5) or with equations (13.3.1) and (13.3.6). These substitutions will be acceptable,
provided that the velocity field remains solenoidal at all times. Substituting (13.3.5) into (13.3.4),
we obtain

∂α

∂t
= 0, (13.3.7)

which states that, if the velocity field is solenoidal at the initial time, it will remain solenoidal at
all times. Thus, if the initial velocity field is solenoidal, it is permissible to replace the continuity
equation with the consistent pressure Poisson equation (13.3.5). However, if the initial rate of
expansion is nonzero, the divergence of the velocity will remain nonzero throughout the evolution.

Substituting (13.3.6) into (13.3.4) and interchanging the divergence with the Laplacian, we
obtain an unsteady diffusion equation for the rate of expansion,

∂α

∂t
= ν L(α). (13.3.8)

The general properties of the unsteady diffusion equation in a bounded domain show that the rate
of expansion will vanish at all times provided that (a) the initial velocity field is solenoidal and
(b) the rate of expansion or its normal derivative are zero over all boundaries of the flow at all
times. When these conditions are met, it is permissible to replace the continuity equation with the
simplified pressure Poisson equation (13.3.5). The second condition underlines the importance of
accurately satisfying mass conservation at the grid points near the boundaries. When the initial
rate of expansion is not zero but the boundary distribution is kept zero during the evolution, the
magnitude of the divergence of the velocity will keep decreasing and eventually vanish during the
evolution.

13.3.3 Boundary conditions for the pressure

The consistent and modified pressure Poisson equations must be solved subject to one scalar bound-
ary condition for the pressure over each boundary of the flow. According to our previous discussion,
this condition must ensure that the boundary distribution of the divergence of the velocity is zero
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at all times. The derivation of proper boundary conditions for the pressure is discussed in two
illuminating articles by Orszag, Israeli & Deville [285] and Gresho & Sani [153].

A Neumann boundary condition emerges by applying (13.3.1) at the boundaries of the flow
and projecting the resulting equation onto the normal unit vector, n, obtaining

n · ∇p = ρ
(
− ∂u

∂t
· n+N(u) · n

)
+ μL(u) · n. (13.3.9)

Analysis shows that this condition is an acceptable substitute of the condition of incompressibility
over the boundaries of the flow. Specifically, using the boundary condition (13.3.9) guarantees that
replacing the continuity equation with the simplified PPE is appropriate. The solution for the
pressure computed using (13.3.9) will also satisfy the Dirichlet condition that emerges by projecting
the equation of motion onto a tangential vector and then integrating it with respect to tangential arc
length. In contrast, the pressure field computed by solving the pressure Poisson equation using the
Dirichlet condition will satisfy the Neumann condition only when the initial velocity field satisfies
certain regularity conditions [153].

Flow over a plane wall

In the case of flow over a plane wall that is either stationary or translates parallel to itself with con-
stant velocity, we use the no-slip and no-penetration boundary conditions to find that the Neumann
condition (13.3.9) simplifies into

n · ∇p = μ
∂2u

∂�2
· n, (13.3.10)

where n is the normal unit vector directed into the flow and � is the arc length normal to the wall
measured in the direction of the fluid. When the Reynolds number is sufficiently high, the right-hand
side of (13.3.10) is small and can be set to zero in order to simplify the implementation.

Implicit implementations

In a certain class of finite-difference methods discussed in Section 13.4, the Neumann condition
(13.3.9) is not explicitly enforced. Instead, the numerical method employs an alternative boundary
condition that emerges by enforcing the continuity equation at grid nodes adjacent to the boundaries.
The consistent implementation of this constraint is equivalent to the Neumann boundary condition
(13.3.9). Other implementations have been proposed. For example, Quartapelle & Napolitano [333]
replaced the boundary condition for the pressure with an integral constraint involving the projection
of the boundary distribution of the pressure onto a nonsingular solution of the vectorial Helmholtz
equation defined within the available domain of flow.

13.3.4 Compatibility condition for the PPE

The computational procedure emerging from the previous discussion involves solving a Poisson
equation for the pressure,

∇2p = w, (13.3.11)
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subject to the Neumann boundary condition

n · ∇p = q, (13.3.12)

over all boundaries of the flow, where the function w is identified with the right-hand side of (13.3.5)
or (13.3.6), and the function q is identified with the right-hand side of (13.3.9).

Integrating the pressure Poisson equation over the domain of flow and using the divergence
theorem, we find that a solution will exist only when a compatibility condition is fulfilled,∫∫∫

Flow

∇2p dV = −
∫∫

B

n · ∇p dS (13.3.13)

or ∫∫∫
Flow

w dV = −
∫∫

B

q dS, (13.3.14)

where B stands for the boundaries of the flow and n is the normal unit vector pointing into the flow.
The two-dimensional counterpart of (13.3.14) is∫∫

Flow

w dA = −
∮
B

q dl, (13.3.15)

where l is the arc length around the boundary, B. When the compatibility condition is fulfilled, the
pressure can be determined only up to an arbitrary constant. When the compatibility condition is
not fulfilled, a solution for the pressure cannot be found.

Discrete compatibility condition

In the discrete formulation of the problem, we obtain a linear system of algebraic equations incorpo-
rating the pressure Poisson equation applied at the internal grid points and the associated boundary
conditions, written in the symbolic form

A ·ψ = b(w, q), (13.3.16)

where A is a singular matrix. The vector on the right-hand side, b(w, q), is a function of the source
term, w, and boundary pressure flux, q. For the linear system to have a solution, the vector b must
be orthogonal to an eigenvector of the transpose of A corresponding to the null eigenvalue, denoted
by v and satisfying v ·A = 0. The solvability condition is

v · b = 0. (13.3.17)

In practice, the eigenvector v can be computed directly or else compiled by inspection in terms of
integration quadrature weights.

The solvability condition (13.3.17) is the discrete implementation of the compatibility con-
dition (13.3.14). In this light, the left-hand side of (13.3.17) is recognized as the implementation
of a numerical integration quadrature pertinent to the volume or surface integrals on the left- and
right-hand sides of (13.3.14). The particular nature of this quadrature depends on the structure of
the matrix A, which is determined by the method used to discretize the Laplacian in the pressure
Poisson equation. This observation reveals an intimate relation between the numerical differentiation
matrix embedded in A and the singular eigenvector of its transpose of this matrix with reference to
numerical integration.
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13.3.5 Ensuring compatibility

Although the satisfaction of (13.3.14) is guaranteed in the continuous formulation of the problem,
numerical error may destroy the exact equality of the compatibility condition in the discrete for-
mulation. As a result, the linear system (13.3.16) will not have a solution. In solving the Poisson
equation by iterative methods, the inconsistency may result in slow convergence or even divergence
of the numerical solution. The iterations amount to stepping in time on the verge of numerical insta-
bility based on the unsteady diffusion–reaction equation that emerges by adding the time derivative
∂p/∂t to the right-hand side of (13.3.10). It is clear then that, if the compatibility condition is not
fulfilled, a convergent solution corresponding to steady state cannot be found. In most implementa-
tions, only a few iterations are carried out and a solution of unknown accuracy is obtained [134]. To
produce a numerical solution, we may abandon one linear equation expressing the Poisson equation
at a particular grid point at the risk of introducing numerical oscillations. However, more sensible
methods are available.

Consistent finite-difference discretization

A custom-made finite-difference method can be developed that coordinates the discretization of the
equation of motion, the pressure Poisson equation, and the boundary conditions, so as to automati-
cally satisfy the discrete version of the compatibility condition [1]. This procedure is sometimes called
the consistent finite-difference discretization. Extensions to three-dimensions, curvilinear grids, and
unstructured finite-volume grids are available [21, 134, 256, 380, 381, 394].

Regularization

In an alternative and more general approach, the right-hand side of the Poisson equation, ∇2p = w,
is modified by an appropriate amount so as to yield a singular system with an infinite number of
solutions [57, 144, 145, 173]. This is done by replacing w with w−ε f , where f is a specified function
independent of w, and ε is a small dimensionless number to be found as part of the solution.
The pressure is computed by solving the altered pressure Poisson equation ∇2p = w − ε f . The
compatibility condition is satisfied if

ε =
[ ∫∫∫

Flow

w dV +

∫∫
B

q dS
]
/

∫∫∫
Flow

f dV. (13.3.18)

The method can be implemented according to the following steps:

1. Solve the first N − 1 equations of the system (13.3.16) for the first N − 1 unknowns, set the

last unknown to zero, ψN = 0, and call the solution ψ(1).

2. Compute the residual of the last equation R(1) ≡ ANiψ
(1)
i − bN .

3. Solve the first N−1 equations of the system (13.3.16) with q = 0 for the first N−1 unknowns,

set the last unknown to zero, wN = 0, and call the solution ψ(2).

4. Compute the residual of the last equation R(2) ≡ ANiψ
(2)
i − bN .

5. Set ε = R(1)/R(2) and compute the final solution ψ = ψ(1) − εψ(2).

The final solution satisfies all N equations of the perturbed linear system A ·ψ = b(w + εf, q).
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To formalize and optimize the method, we replace the linear system (13.3.16) with the per-
turbed system

A ·ψ = b− ε c, (13.3.19)

where c is a suitable vector normalized so that c · c = 1, and the constant ε on the right-hand
side is adjusted to ensure the satisfaction of the solvability condition When the adjoint eigenvector
v is available, we may enforce the solvability condition by setting ε = (v · b)/(v · c). When the
linear system (13.3.16) is solved by iteration, the regularization embodied in (13.3.19) with a uniform
vector c can be implemented by shifting all components of the solution vector w by the same amount
after each iteration, so that one arbitrarily chosen component is anchored at a fixed value.

The best way of regularizing the linear system (13.3.16) is by projecting the right-hand side
onto the orthogonal complement of the adjoint eigenvector of the matrix A, denoted by v and
satisfying v ·A = 0, thereby obtaining the regularized system

A ·ψ = (I− v ⊗ v) · b, (13.3.20)

where v · v = 1 [312]. By construction then, the solvability condition is fulfilled. Comparing
(13.3.19) with (13.3.20), we identify the otherwise arbitrary vector c with v, and the constant ε
with the projection v ·b. The regularization expressed by (13.3.20) perturbs the source term in the
Poisson equation as well as the boundary conditions in some special way.

Solution of a singular system

When the discrete version of the compatibility condition is fulfilled, the linear system of equations
associated with the discrete Poisson equation has a multiplicity of solutions that differ by an arbitrary
constant. To render the solution unique, we may either specify the value of the pressure at an
arbitrary grid point, or set the average value of the pressure over all grid points at an arbitrary level.

13.3.6 Explicit evolution equation for the pressure

An evolution equation for the pressure can be obtained by differentiating the pressure Poisson
equation in time and using the equation of motion to eliminate the time derivatives of the velocity
in favor of the velocity and pressure, as discussed in Section 9.1. The result is a Poisson equation
for ∂p/∂t shown in (9.1.5), to be solved subject to a Neumann boundary condition that arises by
differentiating (13.3.9) in time and interchanging the order of the normal spatial derivative and
temporal derivative on the left-hand side. This method appears to have been untested in practice.

13.3.7 Assessment

Comparing the formulation in primitive variables to the formulations based on the vorticity trans-
port equation discussed in the preceding sections of this chapter, we identify relative strengths and
weaknesses. One weakness is the need to derive boundary conditions for the pressure, and one
strength is the ease in extending the implementation to multi-fluid and interfacial flows.
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Problem

13.3.1 Compatibility condition for the PPE

Show that the compatibility condition (13.3.13) for the pressure Poisson equation (13.3.5) with
boundary conditions given in (13.3.9) is fulfilled [153].

Computer Problem

13.3.2 Solving the Poisson equation in a rectangular domain

Write a program that solves the Poisson equation in a two-dimensional rectangular domain with
an arbitrary source term assigned at the grid points and arbitrary Neumann boundary conditions
all around the boundaries. The Laplacian should be approximated using the five-point formula and
the normal derivative at the boundaries should be approximated using second-order one-side finite
differences (see Section B.5, Appendix B.) A regularization of your choice should be employed to
ensure that the discrete problem admits a solution.

13.4 Implementation in primitive variables

Having addressed the fundamental concepts involved in the computation of an incompressible Newto-
nian flow in terms of the velocity and the pressure, we proceed to discussing specific implementations.
The marker-and-cell (MAC) method combines a finite-difference method for solving the equations of
incompressible flow with a marker-point tracing method for tracking the evolution of a free surface
or interface between two immiscible fluids [168].

The finite-difference method is based on the explicit forward-time discretization of the equation
of motion (1.4.32), yielding the velocity at the next time level, n+1, from the velocity and pressure
at the current time level, n,

un+1 = un +Δt
(
N(un) + νL(un)− 1

ρ
∇pn

)
, (13.4.1)

where Δt is the time step. To compute the pressure, pn, we discretize the evolution equation for the
rate of expansion (13.3.4) using a forward difference in time and obtain

(∇ · u)n+1 − (∇ · u)n
Δt

= ∇ ·N(un) + νL(∇ · un)− 1

ρ
∇2pn. (13.4.2)

Requiring that the divergence of the velocity is zero at the n + 1 time level, we obtain a Poisson
equation for the pressure,

∇2pn =
ρ

Δt
(∇ · u)n + ρ∇ ·N(un) + μL(∇ · un), (13.4.3)

which is a modification of the consistent pressure Poisson equation. Although small, the first and
third terms on the right-hand side of (13.4.3) should be retained to prevent the onset of numerical
instability. The computational algorithm involves the following steps:
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1. Specify an initial solenoidal velocity field that satisfies the prescribed boundary conditions.

2. Compute the pressure field by solving the Poisson equation (13.4.3), subject to the Neumann
boundary condition (13.3.9). In practice, this is done using an alternative but equivalent set
of boundary conditions to be discussed shortly.

3. Use (13.4.1) to advance the velocity field by one step in time, subject to the prescribed bound-
ary conditions. The spatial derivatives on the right-hand side of (13.4.1) are computed using
central differences. The size of time step is kept sufficiently small to suppress the growth of
numerical oscillations.

4. Return to Step 2 and repeat the computation for another time step.

The method can be implemented on a staggered grid that decouples velocity from pressure nodes,
or on a nonstaggered grid where all variables are defined at the same nodes.

13.4.1 Implementation on a staggered grid

Harlow & Welch [168] employed the staggered grid shown in Figure 13.4.1 for flow in a cavity driven
by a translating grid. The staggered grid consists of two interwoven grids parametrized by two pairs
of indices, (i, j) and (i′, j′), as illustrated in Figure 13.4.1. The grid lines of the primary grid are
represented by the solid lines and the grid lines of the secondary grid are represented by the broken
lines. The secondary grid conforms with the physical boundaries of the flow. The values of the
primed indices are printed in bold.

Discrete values of the pressure are assigned to the primary nodes, (i, j), defined by the in-
tersection of the solid lines, shown as circles. Discrete values of the x component of the velocity
are defined at the intersection of horizontal primary grid lines and vertical secondary grid lines,
(i′, j), shown as horizontal arrows. Discrete values of the y component of the velocity are defined at
the intersection of vertical primary grid lines and horizontal secondary grid lines, (i, j′), shown as
vertical arrows.

A distinguishing feature of the staggered-grid method is that the unknown functions and gov-
erning equations are defined or enforced at different nodes. This decoupling simplifies the numerical
implementation and promotes the stability of the numerical method. We will see that distributing
the pressure nodes in the interior of the flow excluding the boundaries bypasses the derivation of
explicit boundary conditions for the pressure.

Interpolation and extrapolation of the velocity

For simplicity, we denote ux by u and uy by v. The velocity components at the vertices of the
primary or secondary grids are computed by linear interpolation from the closest nodes,

ui′+1/2,j =
1

2
(ui′,j + ui′+1,j), ui′,j+1/2 =

1

2
(ui′,j + ui′,j+1).

vi+1/2,j′ =
1

2
(vi,j′ + vi+1,j′), vi,j′+1/2 =

1

2
(vi,j′ + vi,j+1′). (13.4.4)
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Figure 13.4.1 A staggered grid for computing flow in a rectangular domain representing a cavity. The
primary grid is drawn with heavy lines and the secondary grid is drawn with broken lines. Note
that the secondary grid conforms with the boundaries of the flow. The pressure is defined at the
circles, the x and y velocity components are defined at the horizontal or vertical arrows.

Unphysical x velocity components are required at the horizontal lines j = 1 and j = Ny + 2 for the
computation of the second y derivative of u near the top and bottom boundaries. Corresponding
unphysical y velocity components are required at the vertical levels i = 1 and Nx + 2 for the
computation of the second x derivative of v near the left and right boundaries. These exterior
velocities are computed by extrapolation to satisfy the boundary conditions at the physical levels
i′ = 1, i′ = Nx + 1, j′ = 1, and j′ = Ny + 1.

For example, approximating u with a parabolic function near the lid located at y = by, and
enforcing the no-slip boundary condition u = V , we obtain

u = V +A (y − by)
2 +B (y − by), (13.4.5)

where V is the lid velocity, and A,B are unknown coefficients. Applying this expression at three
neighboring grid levels, we obtain

ui′,Ny = V +A
9

4
h2 −B

3

2
h, ui′,Ny+1 = V +A

1

4
h2 −B

1

2
h,

ui′,Ny+2 = V +A
1

4
h2 +B

1

2
h, (13.4.6)
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where h = Δy. Eliminating A and B, we obtain

ui′,Ny+2 =
1

3
(8V − 6ui,Ny+1 + ui,Ny

). (13.4.7)

Similar expressions are derived for the other external velocities.

Advancing the velocity field

To advance the x and y velocity components in time, we apply (13.4.1) at the corresponding inte-
rior velocity nodes, express the nonlinear convection term in conservative form, and approximate
the spatial derivatives using central differences. Enforcing the x component of the Navier–Stokes
equation at the (i′, j) x-velocity node, we obtain

un+1
i′j = un

i′j +Δt
(
− ũn

i′,j + ν ǔn
i′,j −

1

ρ

pi′+1,j − pi′,j
Δx

)
, (13.4.8)

where

ũi′,j =
u2
i′+1/2,j − u2

i′−1/2,j

Δx
+

(uv)i′,j+1/2 − (uv)i′,j−1/2

Δy
(13.4.9)

is the discretized nonlinear term and

ǔi′j =
ui′−1,j − 2ui′,j + ui′+1,j

Δx2
+

ui′,j−1 − 2ui′,j + ui′,j+1

Δy2
(13.4.10)

is the discretized Laplacian. Working similarly, we enforce the y component of the Navier–Stokes
equation at the (i, j′) y-velocity node and obtain

vn+1
ij′ = vnij′ +Δt

(
− ṽni,j′ + v̌ni,j′ −

1

ρ

pi,j′+1 − pi,j′

Δx

)
, (13.4.11)

where

ṽi,j′ =
(uv)i+1/2,j′ − (uv)2i−1/2,j′

Δx
+

v2i,j′+1/2 − vi,j′−1/2

Δy
(13.4.12)

and

v̌ij′ =
vi−1,j′ − 2 vi,j′ + vi+1,j′

Δx2
+

vi,j′−1 − 2 vi,j′ + vi,j′+1

Δy2
. (13.4.13)

Before we can evaluate the right-hand sides of (13.4.8) and (13.4.11), the nodal pressures must be
available.

Pressure Poisson equation

To compute the pressure, we approximate the rate of expansion at the (i, j) pressure node using
central differences and obtain

Di,j ≡ (∇ · u)i,j =
ui,j − ui−1,j

Δx
+

vi,j − vi,j−1

Δy
= 0 (13.4.14)
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for i = 2, . . . , Nx +1 and j = 2, . . . , Ny +1. Requiring that the right-hand side of (13.4.14) vanishes
at the n + 1 time level and expressing the velocity at the n + 1 level in terms of the velocity and
pressure at the nth level using (13.4.8) and (13.4.11), we obtain

ρ

Δt
Dn

ij − ρ
( ũi,j − ũi−1,j

Δx
+

ṽi,j − ṽi,j−1

Δy

)n

+ μ
( ǔi,j − ǔi−1,j

Δx
+

v̌i,j − v̌i,j−1

Δy

)n

−
(pi+1,j − 2 pi,j + pi−1,j

Δx2
+

pi,j+1 − 2 pi,j + pi,j−1

Δy2

)n

= 0. (13.4.15)

Rearranging, we derive the discrete version of the pressure Poisson equation (13.4.3), where the
Laplacian is approximated with the five-point formula over intervals equal to Δx and Δy.

Pressure boundary condition

For the pressure nodes adjacent to the boundaries, we follow a slightly different approach that takes
into account the prescribed velocity boundary conditions. Considering the second horizontal layer,
j = 2, hosting the pressure nodes, we require that the discrete form of the rate of expansion given
by the right-hand side of (13.4.14) is zero at the n + 1 time level. Focusing on the pressure nodes
i = 3, . . . , Nx, located away from the corners, we express the velocities at the adjacent nodes at the
n + 1 level inside the domain of flow in terms of the velocities and pressure at the nth level using
(13.4.8) and (13.4.11), and obtain

ρ

Δt

( un
i,2 − un

i−1,2

Δx
+

vni,2 − vn+1
i,1

Δy

)
− ρ

( ũi,2 − ũi−1,2

Δx
+

ṽi,2
Δy

)n

(13.4.16)

+μ
( ǔi,2 − ǔi−1,2

Δx
+

v̌i,2
Δy

)n

−
(pi+1,2 − 2 pi,2 + pi−1,2

Δx2
+

pi,3 − pi,2
Δy2

)n

= 0.

The v velocity at the (i, 1) node is available from the prescribed boundary conditions. Straightfor-
ward modifications are necessary for the two corner nodes, i = 2 and Nx + 1. Working in a similar
fashion for the last horizontal layer corresponding to j = Ny + 1 for i = 3, . . . , Nx, we obtain

ρ

Δt

( un
i,j − un

i−1,j

Δx
+

vn+1
i,j − vni,j−1

Δy

)
− ρ

( ũi,j − ũi−1,j

Δx
− ṽi,j−1

Δy

)n

(13.4.17)

+μ
( ǔi,j − ǔi−1,j

Δx
− v̌i,j−1

Δy

)n

−
(pi+1,j − 2 pi,j + pi−1,j

Δx2
− pi,j − pi,j−1

Δy2

)n

= 0,

where j = Ny+1. Similar equations can be written for the first and last vertical layers corresponding
to i = 1 and Nx + 1, for j = 2, . . . , Ny + 1. Equations (13.4.16), (13.4.17), and their counterparts
for the first and last vertical layers, provide us with boundary conditions for the discrete Poisson
equation (13.4.15).

To implement an explicit Neumann boundary condition for the pressure, we introduce the
exterior pressure nodes pi,1. Using the continuity equation, we find that ∂v/∂y vanishes at the
bottom wall. Applying (13.3.10) at the lower wall located at y = ay, and approximating the
derivatives using central differences, we obtain

n · ∇p =
(∂p
∂y

)
y=ay

� pi,2 − pi,1
Δy

= μ
(∂2uy

∂y

)
y=ay

� 2μ
vi,2
Δy

. (13.4.18)
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Rearranging, we find that

pi,1 = pi,2 − 2μ
vi,2
Δy2

, (13.4.19)

where all variables are evaluated at the nth time level. Working in a similar fashion with the upper,
left, and right walls, we find that

pi,Ny+2 = pi,Ny+1 + 2μ
vi,Ny+1

Δy
, p1,j = p2,j − 2μ

u2,j

Δx
,

pNx+2,j = pNx+1,j + 2μ
uNx+1,j

Δx
.

(13.4.20)

Equations (13.4.19) and (13.4.20) provide us with an alternative set of boundary conditions for the
Poisson equation (13.4.15), which is now also applied at pressure nodes adjacent to the boundaries,
i = 2, Nx + 1 and j = 2, Ny + 1.

It appears that, by using a staggered grid, we have circumvented the derivation of explicit
boundary conditions for the pressure. In fact, equation (13.4.16) and its counterparts for the other
three walls amount to the Neumann pressure boundary condition stated in(13.3.9) [153]. To see
this, we subtract (13.4.16) from (13.4.15) written for j = 2, and obtain

ρ

Δt
(un+1

i,j−1 − un
i,j−1) + ρ

ṽni,j−1

Δy
− μ

v̌ni,j−1

Δy
+

pni,j − pni,j−1

Δy2
= 0. (13.4.21)

As Δy tends to zero, the first and second terms on the left-hand side vanish and the remaining terms
reproduce the Neumann boundary condition (13.4.19).

Assessment

Bypassing the derivation of the boundary conditions for the pressure is a significant advantage of
the staggered-grid implementation. Unfortunately, the numerical formulation becomes considerably
more involved and prohibitively expensive for grids defined in curvilinear coordinates.

13.4.2 Non-staggered grid

To implement the explicit method on the non-staggered grid shown in Figure 13.1.1, we enforce
the discretized equation of motion (13.4.1) and pressure Poisson equation (13.4.3) at all interior
nodes and compute all spatial derivatives by central difference approximations. To derive boundary
conditions for the pressure, we require that the discretized form of the rate of expansion is zero at grid
points located along the four walls. Considering the first horizontal layer, j = 1 for i = 2, . . . , Nx,
we use central differences in the x direction and second-order one-sided differences in the y direction
to write [80]

Dij =
ui+1,1 − ui−1,1

2Δx
+

−vi,3 + 4vi,2 − 3vi,1
2Δy

. (13.4.22)

Requiring that the right-hand side of (13.4.22) is zero at the n + 1 time level and expressing the
velocities at the (i, 2) and (i, 3) nodes in terms of the discrete version of the right-hand side of
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(13.4.1), we obtain the counterpart of equation (13.4.16). Working in a similar fashion, we derive
corresponding equations for the upper, left, and right walls.

It appears that we have again circumvented the explicit derivation of boundary conditions
for the pressure. However, it can be shown that (13.4.22) and its counterparts for the three other
walls amount to the Neumann boundary conditions (13.3.9) [153]. This is true even when first-order
one-sided differences are used to approximate the second partial derivatives. Unfortunately, solving
the Poisson equation by this method is susceptible to numerical instability due to the decoupling
of the pressure at adjacent nodes. A small numerical incompressibility must be tolerated in the
finite-difference solution.

13.4.3 Second-order methods

The explicit method discussed in this section is first-order accurate in time and conditionally stable.
To improve the accuracy and relax the stability constraint, we may resort to a semi-implicit, fully
implicit, or predictor–corrector method. Adopting the Crank–Nicolson discretization, we apply the
equation of motion at an intermediate n + 1

2 level and obtain a second-order scheme expressed by
the equation

un+1 = un +
Δt

2

(
N(un+1) +N(un) + ν [L(un+1) + L(un) ]

)
− Δt

ρ
∇pn+1/2. (13.4.23)

Since the method is implicit in the nonlinear terms, carrying out each time step requires solving a
system of nonlinear algebraic equations for the velocity at the n+ 1 time level and for the pressure
at the n+ 1

2
time level. In practice, this is done by iteration ([294], p. 167).

Problems

13.4.1 Pressure boundary conditions

Derive the counterparts of equations (13.4.16) and (13.4.17) for (a) the first and last vertical layers
corresponding to i = 1, Nx and j = 2, . . . , Ny − 1, and (b) the four corner pressure nodes.

13.4.2 Neumann boundary conditions for the pressure on a non-staggered grid

Derive the finite-difference statement of the Neumann boundary condition for the pressure in the
case of flow in a cavity using the non-staggered grid shown in Figure 13.1.1.

Computer Problem

13.4.3 Flow in a rectangular cavity

(a) Write a program that uses the explicit method on a a staggered grid described in the text to
compute transient flow in a rectangular cavity due to the impulsive translation of the lid. The
pressure Poisson equation should be solved using an iterative method of your choice.

(b) Repeat (a) for a non-staggered grid.
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13.5 Operator splitting, projection, and pressure-correction methods

The Navier–Stokes equation states that the velocity at a particular point in a flow changes because
of the simultaneous action of the nonlinear convective term, ρu ·∇u, the linear viscous term, μ∇u2,
and the pressure gradient, ∇p. In the operator-splitting method, each one or groups of these terms
are decoupled and considered to operate sequentially during fictitious time intervals of equal length.
Since a main issue in the computation of an unsteady incompressible flow is the absence of an
evolution equation for the pressure, it is natural to decouple the convective–diffusive term from the
pressure gradient term. The Navier–Stokes equation is then split into two component equations,

∂u

∂t
= N(u) + ν L(u) (13.5.1)

and

∂u

∂t
= −1

ρ
∇p. (13.5.2)

These equations are assumed to apply sequentially, each for the full time interval Δt within each
time step. The nonlinear convection–diffusion equation (13.5.1) advances the velocity from the
initial state, un, to an intermediate state, u∗. The pressure correction equation (13.5.2) advances
the intermediate state, u∗, to the final state, un+1, thus completing the nth time step.

13.5.1 Solenoidal projection and the role of the pressure

To analyze the nature of the fractional-step decomposition expressed by equations (13.5.1) and
(13.5.2), it is helpful to introduce the concept of solenoidal projection due to Chorin [80], discussed
in Section 9.1. A key idea is to introduce the space of all vector functions, and note that the velocity
field of an unsteady incompressible flow must evolve within the subspace of solenoidal functions.
Next, we observe that the intermediate velocity, u∗, will not be necessarily solenoidal at the end
of the convection–diffusion step (13.5.1). Thus, the convection–diffusion step causes a departure
from the subspace of solenoidal functions. The role of the pressure-correction step is to cancel
this departure by projecting u∗ into the subspace of solenoidal functions, thus producing the final
velocity, un+1.

Since the pressure p has not been updated in the convection–diffusion step, it loses its physical
meaning and must be regarded as an auxiliary function whose main purpose is to project the interme-
diate velocity, u∗, onto the subspace of solenoidal functions. To indicate this subtle differentiation,
we replace the pressure p in (13.5.2) with a projection function, φ, writing

∂u

∂t
= −1

ρ
∇φ. (13.5.3)

In the case of a constant density fluid, the right-hand side of this equation is irrotational. The
relation between the projection function and the pressure will be discussed later in this section.

13.5.2 Boundary conditions for intermediate variables

An important consideration in the implementation of the fractional-step method is the choice of
boundary conditions for the intermediate velocity, u∗, and projection function, φ. Ideally, the
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boundary conditions for u∗ should be chosen to minimize its divergence while ensuring that the
stipulated boundary conditions for the physical velocity are observed at the end of a complete
time step. The derivation of boundary conditions for u∗ and φ has been the subject of extensive
investigation [285].

A consistent set of boundary conditions include the Dirichlet boundary condition for the
normal and tangential velocity components of the intermediate velocity,

u∗ · n = Vn+1 · n, u∗ · (I− n⊗ n) =
(
Vn+1 +

1

ρ

∫ tn+Δt

tn
∇φ dt

)
· (I− n⊗ n), (13.5.4)

where V is the prescribed boundary velocity, I is the identity matrix, and I−n⊗n is the tangential
projection operator. Correspondingly, the projection function satisfies the homogeneous Neumann
condition

n ·
∫ tn+Δt

tn
∇φ dt = 0. (13.5.5)

Straightforward substitution demonstrates that (13.5.4) and (13.5.5) ensure the required boundary
condition at the end of a complete step, un+1 = Vn+1. In expressions (13.5.4) and (13.5.5), the
projection function is regarded as a continuous function of time over the interval where equation
(13.5.3) applies. In numerical practice, the continuous evolution is replaced by an instantaneous
projection.

Optimal and simplified boundary conditions with varying degrees of accuracy and ease of
implementation are available [154]. In the simplest scheme, the intermediate velocity, u∗, satisfies
the boundary conditions stipulated at the n + 1 time level, and the projection function φ satisfies
the homogeneous Neumann boundary condition n · ∇φ = 0. Improved boundary conditions are
discussed in Section 13.5.4.

13.5.3 Evolution of the rate of expansion

Evolution equations for the rate of expansion during the convection–diffusion and projection steps
arise by taking the divergence of (13.5.1) and (13.5.3), finding

ρ
∂α

∂t
= ρ∇ ·N+ μ∇2α, (13.5.6)

and

ρ
∂α

∂t
= −∇2φ, (13.5.7)

where α ≡ ∇ · u is the rate of expansion. The convection–diffusion equation (13.5.6) receives the
presumably vanishing rate of expansion at the tn time level, and advances it over a time interval Δt
to an intermediate nonzero field, α∗. The projection equation (13.5.7) receives α∗ and advances it
over the same time interval Δt to the final field, αn+1, which is required to vanish throughout the
domain of flow and over the boundaries.
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13.5.4 First-order projection method

To make matters more specific, we discuss the implementation of a first-order projection method for
three-dimensional flow [80]. We begin by splitting the convection–diffusion step (13.5.1) into three
sequential convection–diffusion fractional steps according to the equations

∂u

∂t
+ ux

∂u

∂x
= ν

∂2u

∂x2
,

∂u

∂t
+ uy

∂u

∂y
= ν

∂2u

∂y2
,

∂u

∂t
+ uz

∂u

∂z
= ν

∂2u

∂z2
. (13.5.8)

Each component equation applies for the full time interval, Δt, and time is reset to the initial value,
tn, at the end of each fractional step. The three intermediate velocity fields, denoted by

un+1/4, un+2/4, un+3/4 ≡ u∗, (13.5.9)

are not generally solenoidal. In the case of two-dimensional flow, only the first two steps in (13.5.8)
are present and the intermediate velocity fields are denoted by

un+1/3, un+2/3 ≡ u∗. (13.5.10)

The three steps in (13.5.8) can be carried out using the implicit BTCS method or the Crank–Nicolson
method with first- or second-order accuracy in time, respectively. Both methods are unconditionally
stable and require the easy task of solving tridiagonal systems of equations. To express the con-
stituent convection–diffusion equations in conservative form, we may set the convection velocity in
all three steps equal to the presumed solenoidal velocity at the beginning of the step corresponding
to the time level, tn. Boundary conditions for the intermediate velocities will be derived.

Approximating the time derivative in the projection step in (13.5.3) with a difference equation
and rearranging, we obtain

un+1 = u∗ − Δt

ρ
∇φn+1. (13.5.11)

To compute φn+1, we take the divergence of (13.5.11) and require that ∇ · un+1 = 0 to derive a
Poisson equation,

∇2φn+1 =
ρ

Δt
∇ · u∗, (13.5.12)

accompanied by the boundary condition

n · ∇φn+1 = 0. (13.5.13)

As in the case of the Poisson equation for the pressure discussed in Section 13.3, the explicit imple-
mentation of this boundary condition can be circumvented by using a staggered grid and requiring
that ∇ · un+1 = 0 at pressure nodes adjacent to the boundaries, or by using a non-staggered grid
and requiring that ∇ · un+1 = 0 at nodes located at the boundaries.

Given an initial velocity field along with a prescribed boundary condition, u = V, we compute
the evolution of the flow according to the following steps:



13.5 Operator splitting, projection, and pressure-correction methods 999

1. Assign the initial velocity to velocity nodes and provide an estimate for the projection function,
φn+1, at the pressure nodes.

2. Advance the velocity field sequentially according to equations (13.5.8) with boundary condi-
tions u∗ · n = V · n for the normal velocity component and

u∗ · (I− n⊗ n) = (V +
Δt

ρ
∇φn+1 ) · (I− n⊗ n) (13.5.14)

for the tangential velocity component, where I is the identity matrix and I − n ⊗ n is the
tangential projection operator.

3. Solve the Poisson equation (13.5.12) with the Neumann boundary condition (13.5.13). Since
the flow rate of u∗ and thus of ∇φ across the boundaries of the flow vanishes because of the
imposed boundary conditions on u∗, the compatibility condition is automatically satisfied and
the Poisson equation has an infinite number of solutions.

4. Compute the velocity un+1 at all internal and boundary grid points according to (13.5.11). If
the tangential boundary velocity is not equal to the specified velocity, producing a nonzero slip
velocity, return to Step 2 and repeat the computations with the current boundary distribution
of φ. Otherwise, proceed to Step 5.

5. Reset the time to tn+1, return to Step 2, and repeat the computations for another time step.

Consider the familiar problem of two-dimensional flow in a cavity driven by a moving lid, illustrated
in Figure 13.1.1. The convection–diffusion equations in the x and y directions can be integrated
in time using an implicit method, such as the Crank–Nicolson method. When integrating in the x
direction, we use the side wall boundary conditions

u1,j = 0, v1,j =
Δt

ρ

(∂φn+1

∂y

)
1,j

, uNx+1,j = 0, vNx+1,j =
Δt

ρ

(∂φn+1

∂y

)
Nx+1,j

, (13.5.15)

where u = ux and v = uy. Boundary conditions over the upper and lower walls are not required.
When integrating in the y direction, we use the lower and upper wall boundary conditions

ui,1 =
Δt

ρ

(∂φn+1

∂y

)
i,1
, vi,1 = 0, ui,Ny+1 =

Δt

ρ

(∂φn+1

∂y

)
i,Ny+1

, vi,Ny+1 = 0. (13.5.16)

Boundary conditions over the side walls are not required.

In a more advanced implementation, the convection–diffusion equation (13.5.1) is integrated in
time using the alternating direction implicit (ADI) method. This modification reduces the temporal
error due to the directional spatial decoupling involved in (13.5.8) and renders the convection–
diffusion step, but not necessarily the overall scheme, second-order accurate in time.

13.5.5 Second-order methods

Methods with second-order temporal accuracy can be developed. Discretizing the evolution equa-
tions (13.5.1) and (13.5.6) for the velocity and rate of expansion according to the generalized Crank–
Nicolson method, we obtain the semi-discrete forms

ρ
u∗ − un

Δt
= ρNn+γ + μ

[
(1− γ)∇2un + γ∇2u∗

]
(13.5.17)
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and

ρ
α∗ − αn

Δt
= ρ

[
∇ ·Nn+γ + μ

(
1− γ)∇2αn + γ∇2α∗

]
, (13.5.18)

where the numerical parameter γ varies in the interval (0, 1]. The term Nn+γ is assumed to be
available with O(Δtm) accuracy in terms of the extrapolated or interpolated velocity of the physical
velocity field evaluated at time tn + γΔt. When m = 2, we obtain second-order accuracy.

Now turning to the projection step, we replace the corresponding evolution equations (13.5.3)
and (13.5.7) with the difference equations

ρ
un+1 − u∗

Δt
= −∇φn+1, (13.5.19)

and

ρ
αn+1 − α∗

Δt
= −∇2φn+1. (13.5.20)

Solving (13.5.20) for α∗, we obtain

α∗ = αn+1 +
Δt

ρ
∇2φn+1. (13.5.21)

Requiring that αn+1 = 0, we derive a familiar Poisson equation for φn+1,

∇2φn+1 =
ρ

Δt
α∗, (13.5.22)

which is to be solved subject to the homogeneous Neumann condition, n · ∇φn+1 = 0, originating
from (13.5.5).

Now using (13.5.19) to eliminate the intermediate velocity u∗ from (13.5.17), we obtain the
equation

ρ
un+1 − un

Δt
= ρNn+γ −∇(φn+1 − γμα∗) + μ

[
(1− γ)∇2un + γ∇2un+1

]
. (13.5.23)

Comparing this expression with the equation of motion discretized according to the generalized
Crank–Nicolson method shows that second-order temporal accuracy for the velocity is achieved
when γ = 1

2 , the pressure is evaluated according to

pn+
1
2 = φn+1 − 1

2
μα∗ +O(Δt2) = φn+1 − 1

2
νΔt∇2φn+1 +O(Δt2), (13.5.24)

and the nonlinear term is evaluated with second-order accuracy by extrapolation or interpolation, so
that m = 2 [59, 206]. Equation (13.5.24) provides us with a relation between the projection function
and the pressure, worthy of further investigation.
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Relation between the projection function and the pressure

To analyze further the relation between the projection function and the pressure, we rearrange
(13.5.18) into an inhomogeneous Helmholtz equation,

α∗ − γνΔt∇2α∗ = Δt∇ ·Nn+γ +Rn
+, (13.5.25)

where

Rn
+ ≡ αn + (1− γ) νΔt∇2αn (13.5.26)

is a residual. In the temporal semi-discrete formulation presently considered, R+ is zero throughout
the domain of flow and along the boundaries. In a full time-space discretization, R+ vanishes to
machine accuracy only for a certain class of carefully designed numerical methods [380]. Substituting
the right-hand side of (13.5.21) for α∗ into (13.5.25) and rearranging, we obtain

∇2
(
φn+1 − γνΔt∇2φn+1

)
= ρ∇ ·Nn+γ − ρ

Δt
(Rn+1

− −Rn
+). (13.5.27)

The residual,

Rn+1
− ≡ αn+1 − γνΔt∇2αn+1, (13.5.28)

is precisely zero in the space-continuous formulation presently considered, but only approximately
zero in a spatially discrete implementation.

We can infer the relation between the projection function and the pressure by taking the
divergence of the equation of motion and enforcing the incompressibility condition to derive the
pressure Poisson equation. Applying the Poisson equation at time tn+γ , we obtain

∇2pn+γ = ρ∇ ·Nn+γ
E , (13.5.29)

where the subscript E denotes the exact value. Subtracting (13.5.27) from (13.5.29) and rearranging,
we find that

∇2
(
pn+γ − φn+1 + γνΔt∇2φn+1

)
+ ρ

[
∇ ·Nn+γ −∇ ·Nn+γ

E

]
=

ρ

Δt
(Rn+1

− −Rn
+). (13.5.30)

By definition, the expression enclosed by the square brackets on the left-hand side is of O(Δtm).

In the absence of spatial discretization or under fortunate circumstances, αn = 0 and αn+1 = 0,
the right-hand side of (13.5.30) vanishes, and the expression enclosed by the first set of parentheses
on the left-hand side of (13.5.30) is a harmonic function up to O(Δtm), denoted by χ. Rearranging,
we find that

pn+γ = φn+1 − γνΔt∇2φn+1 + χ+O(Δtm) = φn+1 − γ μα∗ + χ+O(Δtm). (13.5.31)

Neumann boundary conditions for χ arise by projecting the gradient of (13.5.31) normal to the
boundaries of the flow. Using the equation of motion and the homogeneous Neumann boundary
condition for φn+1, we find that

n · ∇χ = n ·
[
− ρ (

∂uB

∂t
)n+γ + ρNn+γ

E + μ∇2u
n+γ
E + γ νΔt∇ (∇2φn+1)

]
+O(Δtm). (13.5.32)
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Next, we substitute into the right-hand side of (13.5.32) the approximation

∇2u
n+γ
E = (1− γ)∇2un + γ∇2un+1 +O(Δtl), (13.5.33)

where l is the temporal order of the physical velocity. Using (13.5.17) and the Laplacian of (13.5.19)
to eliminate the Laplacian of the velocity, we finally obtain

n · ∇χ = ρn ·
[ u∗ − un

Δt
−
(
∂uB

∂t

)n+γ

+O(Δtl) +O(Δtm)
]
. (13.5.34)

In light of the first boundary condition in (13.5.4), the right-hand side of (13.5.34) vanishes up to
order Δtm or Δtl. Consequently, the harmonic function χ is constant within this precision, and
equation (13.5.31) yields

pn+γ = φn+1 − γνΔt∇2φn+1 +O(Δtl) +O(Δtm) (13.5.35)

or

pn+γ = φn+1 − γμα∗ +O(Δtl) +O(Δtm). (13.5.36)

In the case of the Crank–Nicolson discretization corresponding to γ = 1
2 and l = 2, and a second-

order interpolation or extrapolation method for the nonlinear term corresponding to m = 2, we
recover (13.5.24).

Boundary layer of the intermediate rate of expansion

Consider an unsteady Stokes flow in the absence of a distributed body force. In the space-continuous
formulation, equation (13.5.25) reduces into a homogeneous Helmholtz equation for the intermediate
rate of expansion, α∗,

α∗ − γνΔt∇2α∗ = 0. (13.5.37)

Balancing the magnitude of the two terms on the left-hand side, we find that α∗ is supported by
boundary layers of thickness δ � (γνΔt)1/2. Since the normal derivative of φ at the boundary is
zero, the corresponding normal derivative of α∗ is comparable to that of the pressure according to
(13.5.36). Consequently, α∗ is of order δ inside the boundary layer. Correspondingly, the second
term on the right-hand side of (13.5.36) makes a leading-order contribution of order δ inside the
boundary layer and decays exponentially outside the boundary layer [117, 154, 393]. As γ tends
to zero, yielding an explicit discretization, the thickness of the boundary layer vanishes and the
numerical method expectedly fails.

Under more general conditions of unsteady Navier–Stokes flow and in the presence of a dis-
tributed body force, the right-hand side of (13.5.25) is significant throughout the domain of flow
and α∗ is of order Δt in the interior of the flow and varies by an amount of order Δt1/2 across the
boundary layers.

In the fully discrete time-space implementation, the right-hand side of (13.5.30) does not
generally vanish to machine accuracy, and is of order Δt×hm, where the exponent m is determined
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by the spatial discretization. Accordingly, the right-hand sides of (13.5.35), (13.5.36), and (13.5.24)
include corrections that may lower the nominal order of the numerical method.

A semi-implicit three-level method

Kim & Moin [206] proposed advancing the velocity field according to two fractional steps,

u∗ − un

Δt
=

1

2

[
3N(un)−N(un−1)

]
+

1

2
ν
[
L(u∗) + L(un)

]
(13.5.38)

and

un+1 − u∗

Δt
= −1

ρ
∇φn+1. (13.5.39)

Equation (13.5.38) uses the explicit second-order Adams–Bashforth method for the nonlinear term
and the implicit second-order Crank–Nicolson method for the viscous term. The projection function,
φ, is computed by solving the Poisson equation (13.5.12) to ensure that the velocity field un+1 is
solenoidal. Solving (13.5.39) for u∗ and substituting the result into (13.5.38), we find that

un+1 − un

Δt
= −1

ρ
∇
(
φn+1 +

1

2
νΔt∇2φn+1

)
+
1

2

[
3N(un)−N(un−1)

]
+

1

2
ν
[
L(un+1) + L(un)

]
, (13.5.40)

which makes a clear distinction between p and φ. Setting

pn+1/2 ≡ φn+1 +
1

2
νΔt∇2φn+1 (13.5.41)

shows that (13.5.39) is second-order accurate in time.

To carry out the convection–diffusion step, we recast (13.5.38) into the form

(1− 1

2
νΔt∇2)(u∗ − un) =

1

2
Δt

[
3N(un)−N(un−1)

]
+ νΔt∇2(un), (13.5.42)

and then approximately factorize the operator on the left-hand side,

(1− 1

2
νΔt∇2) � (1− 1

2
νΔt

∂2

∂x2
)(1− 1

2
νΔt

∂2

∂y2
)(1− 1

2
νΔt

∂2

∂z2
). (13.5.43)

To compute the difference u∗−un, we solve three tridiagonal systems of equations using the Thomas
algorithm discussed in Section B.1.4, Appendix B (Problem 13.5.2). Boundary conditions for u∗

arise as discussed in Section 13.5.2. The Poisson equation (13.5.12) can be solved on a staggered
grid to avoid the explicit implementation of boundary conditions for the projection function, φ.

An iterative second-order method

Bell, Colella & Glaz [27] proposed a two-level projection method with second-order accuracy in
time. Introducing the velocity and pressure at the integer time levels, n, as well at intermediate
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time levels, n + 1
2
, we compute the intermediate velocity, u∗, based on a semi-discrete version of a

modified equation of motion,

u∗ − un

Δt
= N(un+1/2)− 1

ρ
∇ψ +

1

2
ν
[
L(u∗) + L(un)

]
, (13.5.44)

where ψ is a projection function. The velocity at the next time level derives from a further projection
in terms of a new projection function, φ,

un+1 = u∗ − Δt

ρ
∇φ. (13.5.45)

Solving (13.5.45) for u∗ and substituting the result into (13.5.44), we obtain

un+1 − un

Δt
= N(un+1/2)− 1

ρ
∇(ψ + φ) +

1

2
ν
[
L(un+1) + L(un)

]
+

1

2
μΔt∇L(φ), (13.5.46)

which implements a second-order discretization of the equation of motion provided that pn+1/2 =
ψ+φ and the last term on the right-hand side is zero. The algorithm can be implemented according
to the following steps [443]:

1. Given the pressure, pn−1/2, and the velocity, un, estimate un+1/2 by extrapolation and set
ψ = pn−1/2.

2. Calculate the nonlinear term, N(un+1/2)), compute u∗ from (13.5.44), and call the solution
u∗,k, where k is an inner iteration number.

3. Introduce the discrete form of the equation of motion

un+1,k − un

Δt
= N(un+1/2)− 1

2
∇pn+1/2,k +

1

2
ν
[
L(un+1,k) + L(un)

]
, (13.5.47)

take its divergence, and require that un+1,k is solenoidal to obtain a Poisson equation for
pn+1/2,k. Solve the Poisson equation subject to appropriate boundary conditions and use
(13.5.47) to compute un+1,k.

4. Set ψ = pn+1/2,k, return to Step 2 and repeat the computations with un+1 = un+1,k, where
un+1/2 is computed by interpolation or extrapolation, increasing k by one.

Problems

13.5.1 Solenoidal projection

(a) Consider a nonsolenoidal rotational velocity field defined over the whole three-dimensional space
and decaying at infinity. Develop a procedure for removing the nonsolenoidal component while
leaving the vorticity unchanged.

(b) Repeat (a) for a bounded flow and discuss appropriate boundary conditions for the projection
function.
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13.5.2 Approximate factorization

Write the three tridiagonal systems of equations corresponding to the factorized form (13.5.43).

Computer Problem

13.5.3 Flow in a rectangular cavity

Write a program that uses the first-order projection method described in the text to compute the
transient flow in a rectangular cavity due to the impulsive translation of the lid.

13.6 Methods of modified dynamics or false transients

The methods discussed in the preceding two sections involve advancing the velocity using a time-
marching method suitable for parabolic differential equations, and updating the pressure or pro-
jection function by solving the elliptic Poisson’s equation over the flow domain. The origin of this
dual approach can be traced back to the absence of an evolution equation for the pressure in the
original system of governing equations. The solution of the elliptic equation consumes most of the
computational effort and hinders the development of methods with second-order accuracy in time.
If all governing equations were available the form of an evolution equation, a simple time-marching
scheme would suffice.

The main idea behind the methods of modified dynamics is to amend either the continuity
equation or the equation of motion so as to render all governing equations parabolic in time. In
certain cases, the error introduced by modifying the original equations is mild and the transient
or steady solution obtained by solving the modified equations describes the physical evolution with
acceptable accuracy. In other cases, the transient evolution is purely fictitious and thus physically
irrelevant, and the temporal evolution is significant only insofar as to provide us with a venue that
leads us to a steady state. The modified equations are designed so that the solution obtained
at steady state satisfies the equations of steady incompressible Newtonian flow within a specified
tolerance.

13.6.1 Artificial compressibility method for steady flow

To render all governing equations parabolic in time, we may transform the continuity equation into
an evolution equation for the pressure. In Chorin’s artificial compressibility method, the continuity
equation is replaced by the modified evolution equation

∂p

∂t
+

ρ

δ
∇ · u = 0, (13.6.1)

where ρ is the fluid density and δ is a small positive constant called the artificial compressibility
[79]. At steady state, the first term on the left-hand side of (13.6.1) vanishes and the steady solution
satisfies the equations of steady incompressible flow.
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Implementation of a non-staggered grid

On a non-staggered grid, the modified continuity equation (13.6.1) is discretized using standard
centered-time and centered-space differences. The divergence of the velocity at boundary nodes is
computed using central differences for the velocity component tangential to the boundary or first- or
second-order one-sided differences for the velocity component normal to the boundary. The pressure
at boundary nodes is computed as discussed previously in this chapter.

To expedite the approach to steady state, it is desirable to use larger times steps. However, a
semi-implicit or fully-implicit method must be employed to ensure numerical stability. Chorin [79]
implemented a variation of the explicit CTCS method according to the Du Fort–Frankel scheme.
The finite-difference equation corresponding to the x component of the equation of motion at the
(i, j) grid point is

un+1
ij = un−1

ij + 2Δt
(
− 1

ρ

∂pn

∂x
+ Fx

)
, (13.6.2)

where

Fx = Nx(u
n) + ν

( un
i+1,j − un+1

i,j − un−1
i,j + un

i−1,j

Δx2
+

un
i,j+1 − un+1

i,j − un−1
i,j + un

i,j−1

Δy2

)
, (13.6.3)

and u = ux. The nonlinear term, N, is discretized using centered differences in its conservative form.
In Chapter 12, we saw that the modified differential equation corresponding to the Du Fort–Frankel
scheme is not consistent with the original differential equation. However, since the difference is
a small term involving second partial derivatives with respect to time, the modified and original
equations agree at steady state. The numerical scheme can be extended in a straightforward fashion
to three-dimensional flow where the Du Fort–Frankel scheme is applied to one out of the three second
spatial derivatives. Chorin [79] finds that, given boundary conditions for the velocity, and provided
that the flow remains subsonic with respect to the artificial speed of sound 1/

√
δ, the method is

stable as long as the maximum Courant number is less than 2(δ/n)1/2/(1 + 51/2), where n = 2 or 3
for two- or three-dimensional flow.

Other explicit or implicit implementations of the artificial compressibility method can be
devised. Implementing explicit upwind methods for the convection term at high Reynolds numbers
and implicit methods for the viscous term allows us to use of large time steps and thus accelerate
the approach to steady state.

Implementation on a staggered grid

Next, we consider the implementation of the method on the staggered grid shown in Figure 13.4.1.
Adopting an explicit formulation, we advance the velocity at the x and y velocity nodes according
to equations (13.4.8) and (13.4.11), subject to the boundary conditions discussed in Section 13.4.
To advance the pressure, we apply (13.6.1) at the pressure nodes and introduce the explicit FTCS
discretization to obtain

pn+1
ij = pnij −

ρΔt

δ

( ui,j − ui−1,j

Δx
+

vi,j − vi,j−1

Δy

)
, (13.6.4)
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where u = ux and v = uy. One notable feature of the artificial compressibility method implemented
on a staggered grid is that boundary conditions for the pressure are not required. When steady state
has been reached, the pressure satisfies the pressure Poisson equation with Neumann boundary
conditions that arise by projecting the equation of motion onto the unit vector normal to the
boundaries.

13.6.2 Modified PPE

Sotiropoulos & Abdallah [379] modified the evolution equation (13.3.4) for the rate of expansion,
α ≡ ∇ · u, transforming it into an evolution equation for the pressure,

∂p

∂t
=

ρ

β

(1
ρ
∇2p−∇ ·N(u) +

∂α

∂t

)
, (13.6.5)

where β is a positive constant. At steady state, equation (13.6.5) reduces to the familiar Poisson
equation for the pressure. The transient solution lacks physical meaning and equation (13.6.5) is
significant only insofar as to provide us with a route toward the steady state.

13.6.3 Penalty-function formulation

The penalty-function formulation uses an artificial constitutive equation for the pressure in terms
of the rate of expansion,

p = −1

ε
∇ · u, (13.6.6)

where ε is a small positive constant [401]. Since the pressure is an order-one variable, the rate of
expansion is restricted to remain small at all times. Substituting (13.6.6) into the equation of motion
yields a modified evolution equation for the velocity alone. In practice, to ensure numerical stability,
it is necessary to add to the modified equation of motion an additional small term involving the rate
of expansion. The governing equation of motion is

∂u

∂t
= N(u) +

1

ρε
∇(∇ · u)− 1

2
u (∇ · u) + ν L(u). (13.6.7)

The computations proceed by integrating (13.6.7) forward in time from a given initial state subject
to the specified velocity boundary conditions. The penalty-function formulation has found extensive
applications in numerical procedures based on finite-element methods [196].

Problem

13.6.1 Artificial compressibility method

(a) Write the counterparts of (13.6.2) and (13.6.3) for the x and y velocity components on a staggered
grid.

(b) Develop an ADI method for two-dimensional flow.



Mathematical supplement A
Understanding theoretical and computational fluid dynamics requires familiarity with elementary
mathematics summarized in this appendix. The theory of differential, integral, and vector calculus is
discussed in two highly mathematical textbooks by Boas [44] and Hildebrand [178]. The equations
of fluid mechanics and transport processes in general curvilinear coordinates are discussed in an
essential monograph by Aris [14].

A.1 Functions of one variable

A function of a real variable is a device that receives a real number, x, and produces another real
number, f(x). We say that a function maps a point, x, to another point, f(x).

Continuity

If the graph of a function does not exhibit sudden jumps inside a certain interval, a ≤ x ≤ b, the
function is continuous in that interval.

Intermediate-value theorem

Assume that a function, f(x), is continuous in an interval, a ≤ x ≤ b, and denote the minimum
value of the function as min ≡ infimum[f(x)], and the maximum value of the function as max ≡
supreme[f(x)]. The intermediate-value theorem asserts, and geometrical intuition confirms, that,
for any number c such that min ≤ c ≤ max, there is at least one point, ξ, in the interval a ≤ ξ ≤ b,
such that f(ξ) = c, as illustrated in Figure A.1.1(a).

Mean-value theorem for the derivative

Assume that a function, f(x), is continuous in a closed interval, a ≤ x ≤ b, and the derivative of
the function, f ′(x), is finite in the open interval a < x < b, as illustrated in Figure A.1.1(b). The
mean-value theorem for the derivative ensures that at least one point, ξ, can be found in the closed
interval a ≤ ξ ≤ b, where the derivative of the function is equal to the slope of the line subtended
between the two end points,

f ′(ξ) =
f(b)− f(a)

b− a
. (A.1.1)

A consequence of the mean-value theorem is Rolle’s theorem stating that, if f(a) = 0 and f(b) = 0,
there is at least one point, ξ, in the interval a ≤ ξ ≤ b, where f ′(ξ) = 0.

1008
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(a) (b)

c

a bξ

max

min

y

x
a bξ

y=f(x)

x

y

Figure A.1.1 Graphical interpretation of (a) the intermediate-value theorem and (b) the mean-value
theorem.

Mean-value theorem for an integral

Let w(x) be a nonnegative function whose definite integral is finite in an interval, a ≤ x ≤ b. If the
function f(x) is continuous in that interval, then at least one point, ξ, can be found in the interval
a ≤ ξ ≤ b, such that ∫ b

a

f(x)w(x) dx = f(ξ)

∫ b

a

w(x) dx. (A.1.2)

The value f(ξ) is a weighted average of the function f(x). If w(x) is constant, the value f(ξ) is the
mean value of the function f(x).

Taylor series expansion

If (a) a point, x, is close to another point, x0, (b) the function f(x) is continuous in a neighborhood
of x0, and (c) the graph of the function does not become vertical at x0, it is reasonable to expect
that the difference between f(x) and f(x0) will be proportional to the difference between x and
x0. The Taylor series provides us with an infinite polynomial expression for the difference in the
function values, f(x)− f(x0), in terms of the corresponding difference in the arguments, x− x0.

If the first N + 1 derivatives of a function f(x) are continuous at every point between and
including the points x and x0, then

f(x) = f(x0) +
N∑

m=1

( 1

m !
f (m)(x0) (x− x0)

m
)
+RN (x, x0), (A.1.3)

where the superscript (m) denotes the mth derivative and m! = 1 · · · 2 · · ·m is the factorial, subject
to the convention that 0 ! = 1. The remainder is given by

RN (x, x0) =
1

(N + 1) !
f (N+1)(ξ) (x− x0)

N+1, (A.1.4)
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where ξ(x, x0) is a special point; if x < x0, then x ≤ ξ ≤ x0; whereas, if x0 < x, then x0 ≤ ξ ≤ x.
An alternative expression for the remainder is

RN (x, x0) =
1

N !

∫ x

x0

f (N+1)(η) (x− η)N dη. (A.1.5)

Expression (A.1.4) arises from (A.1.5) using the mean-value theorem for an integral. As the trun-
cation threshold, N , tends to infinity, we obtain an infinite series representation.

It is important to note that the remainder does not necessarily vanish in the limit N → ∞, but
may oscillate or grow unbounded. This means that the infinite Taylor series without the remainder
does not necessarily converge to the function, f(x). The radius of convergence is determined by the
location of the pole of the complex function f(z) nearest x0.

Maclaurin series expansion

If the expansion point is set at the origin, x0 = 0, the infinite Taylor series without the remainder
reduces to the Maclaurin series. The Maclaurin series expansions of several common functions are
presented in Table A.1.1.

Problem

A.1.1 Maclaurin series

Derive the Maclaurin series of the function f(x) = 1/(1+x+x2) and deduce its radius of convergence.

A.2 Functions of two variables

A function of two variables is a device that receives a pair of numbers, x and y, and produces a
new number, f(x, y). We may say that the function f(x, y) maps an ordered pair, (x, y), to a single
point, f(x, y). Functions of more than two variables are defined in similar ways.

Taylor series expansion

The Taylor series expansion of a function of two variables about a point, (x0, y0), takes the form

f(x, y) = f(x0, y0) +
N∑

m=1

[ 1

m !

(
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

)m

x0,y0

f(x, y)
]
+RN (x, y, x0, y0), (A.2.1)

where

RN (x, y, x0, y0) =
1

(N + 1) !

(
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

)N+1

ξx,ξy
f(x, y) (A.2.2)

is the remainder. If x < x0, x ≤ ξx ≤ x0; whereas, if x0 < x, x0 ≤ ξx ≤ x. Similar relations apply
for ξy. The operators on the right-hand sides of (A.2.1) and (A.2.2) are defined in terms of the
binomial expansion as[

(x− x0)
∂

∂x
+ (y − y0)

∂

∂y

]m
x0,y0

f(x, y) ≡
m∑

k=0

(
m
k

)( ∂mf

∂xk∂ym−k

)
x0,y0

(x− x0)
k(y − y0)

m−k. (A.2.3)
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Rational 1
1−x

= 1 + x+ x2 + x3 + · · · for −1 < x < 1

1
1+x = 1− x+ x2 − x3 + · · · for −1 < x < 1

Exponential ex = 1 + x+ 1
2 x

2 + 1
6 x

3 + · · ·+ 1
i! x

i + · · · for any real x

sinhx = x+ 1
6
x3 + 1

5!
x5 + 1

7!
x7 + · · · for any real x

coshx = 1 + 1
2
x2 + 1

4!
x4 + 1

6!
x6 + · · · for any real x

tanhx = x− 1
3 x

3 + 2
15 x

5 − 17
315 x

7 + · · · for any real x

ax = 1 + x ln a+ 1
2 (x ln a)

2 + · · ·+ 1
i! (x ln a)

i + · · · for any real x

Logarithmic ln(1 + x) = x− 1
2 x

2 + 1
3 x

3 − 1
4 x

4 + . . . for −1 < x < 1

Trigonometric sinx = x− 1
6 x

3 − 1
5! x

5 + 1
7! x

7 + · · · for any real x

cosx = 1− 1
2 x

2 + 1
4! x

4 − 1
6! x

6 + · · · for any real x

tanx = x+ 1
3
x3 + 2

15
x5 + 17

315
x7 + · · · for any real x

Trigonometric arcsinx = x+ 1
6
x3 + 3

40
x5 + 5

112
x7 + · · · for any real x

arccosx = π
2 − x− 1

6 x
3 − 3

40 x
5 − 5

112 x
7 + · · · for any real x

Table A.1.1 Maclaurin series expansions of common functions. A comprehensive compilation can be
found at the CRC Standard Mathematical Tables [444].

The first set of large parentheses on the right-hand side of (A.2.3) denote the combinatorial,

(
m
k

)
≡ m !

k ! (m− k) !
=

l∏
p=1

m− p+ 1

p
, (A.2.4)

where l is the minimum of k and m − k. The combinatorial expresses the number of possible
combinations by which k objects can be chosen from a set of m identical objects, leaving behind
m− k objects.

As the truncation level, N , tends to infinity, we obtain an infinite series polynomial represen-
tation. However, the remainder does not necessarily vanish, and the Taylor series does necessarily
converge as N → ∞. The Maclaurin series arises by setting x0 = 0 and y0 = 0.
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Problems

A.2.1 Maclaurin series

Derive the Maclaurin series of the function f(x) = ex+y and f(x) = exy.

A.2.2 Taylor series of a function of three variables

State the Taylor series of a function of three variables, f(x, y, z).

A.2.3 Binomial distribution

The binomial distribution is defined as

Bk|m(x) ≡
(
m
k

)
xk(1− x)m−k, (A.2.5)

where k ≤ m. In statistics, the binomial distribution represents the probability of k successes in m
trials, where x is the success probability for each individual trial, called the Bernoulli probability.
Show that the binomial distribution reaches a maximum at x = k/m.

A.3 Dirac delta function

The Dirac delta function in one dimension, δ(x−x0), represents an infinitesimally narrow distribution
due to a unit impulse applied at a point, x0. The induced field is distinguished by the following
properties:

1. δ(x− x0) vanishes everywhere except at the singular point, x = x0, where it becomes infinite.

2. The integral of δ(x − x0) with respect to x over an interval I that contains the point x0 is
equal to unity, ∫

I

δ(x− x0) dx = 1. (A.3.1)

This property reveals that the delta function with argument of length has units of inverse
length.

3. The integral of the product of an arbitrary function, f(x), and the delta function over an
interval I that contains the point x0 is equal to value of the function at the singular point,∫

I

δ(x− x0) f(x) dx = f(x0). (A.3.2)

The integral of the product of an arbitrary function, f(x), and the delta function over an
interval I that does not contain the singular point x0 is zero.

4. If a function, f(x), undergoes a discontinuity from a left value f− to a right value f+ at the
point x0, the derivative of the function at that point can be expressed in terms of the delta
function as

f ′(x0) = (f+ − f−) δ(x− x0) + · · · , (A.3.3)

where the dots denote nonsingular terms.
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Figure A.3.1 A family of dimensionless test functions, G ≡ gL, described by (A.3.4), plotted against
the dimensionless distance X ≡ (x−x0)/L for λ = 1 (dashed line), 2, 5, 10, 20, 50, 100, and 500
(dotted line). As the dimensionless parameter λ tends to infinity, we recover Dirac’s delta function
in one dimension.

In formal mathematics, δ(x− x0) can be obtained from the family of Gaussian test functions,

g(x− x0) =
( λ

πL2

)1/2

exp
[
− λ

(x− x0

L

)2 ]
, (A.3.4)

in the limit as the dimensionless parameter λ tends to infinity, where L is an arbitrary length. The
mean value of the Gaussian distribution is x0 and the variance is σ2 = L2/(2λ).

Graphs of the dimensionless function G ≡ g L plotted against the dimensionless distance
X ≡ (x − x0)/L are shown in Figure A.3.1 for λ = 1 (dashed line), 2, 5, 10, 20, 50, 100, and 500
(dotted line). The maximum height of each graph is inversely proportional to its width, so that the
area underneath each graph is equal to unity,∫ ∞

−∞

g(x) dx =
( λ

πL2

)1/2
∫ ∞

−∞

exp(−λ
x2

L2
) dx = 1. (A.3.5)

To prove this identity, we recall the definite integral associated with the error function,

2√
π

∫ ∞

0

exp(−w2) dw = 1, (A.3.6)

and substitute w = λ1/2x/L.

Dirac delta function in two dimensions

The Dirac delta function in two dimensions, δ2(x− x0, y − y0), represents an infinitesimally narrow
distribution due to a unit impulse applied at a point, (x0, y0), in the xy plane. The induced field is
distinguished by the following properties:
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1. δ2(x − x0, y − y0) vanishes everywhere except at the point x = x0, y = y0, where it becomes
infinite.

2. The integral of the delta function over an area, D, that contains the singular point (x0, y0) is
equal to unity, ∫∫

D

δ2(x− x0, y − y0) dx dy = 1. (A.3.7)

This property illustrates that the delta function in two dimensions has units of inverse squared
length.

3. The integral of the product of an arbitrary function, f(x, y), and the delta function over an
area D that contains the singular point, (x0, y0), is equal to the value of the function at the
singular point, ∫∫

D

δ2(x− x0, y − y0) f(x, y) dx dy = f(x0, y0). (A.3.8)

The integral of the product of an arbitrary function, f(x, y), and the delta function over an
area D that does not contain the singular point, (x0, y0), is equal to zero.

4. We may write

δ2(x− x0, y − y0) = δ1(x− x0)δ1(y − y0), (A.3.9)

where δ1 is the one-dimensional delta function.

In formal mathematics, δ2(x− x0, y − y0) arises from the family of test functions

q(r) =
λ

πL2
exp

(
− λ

r2

L2

)
, (A.3.10)

in the limit as the dimensionless parameter λ tends to infinity, where r ≡ |x − x0| and L is an
arbitrary length.

Graphs of the dimensionless function Q ≡ qL2 plotted against the dimensionless distance
X ≡ (x− x0)/L are shown in Figure A.3.2 for y = y0, and λ = 1 (dashed line), 2, 5, 10, 20, 50, 100,
and 500 (dotted line). The maximum height of each graph is inversely proportional to the square of
its width, so that the area underneath each graph in the xy plane is equal to unity,∫ ∞

−∞

∫ ∞

−∞

q(r) dx dy =

∫ 2π

0

∫ ∞

0

q(r) r dr dθ = 2π

∫ ∞

0

q(r) r dr. (A.3.11)

Making substitutions, we find that∫ ∞

−∞

∫ ∞

−∞

q(r) dx dy =
2λ

L2

∫ ∞

0

exp
(
− λ

r2

L2

)
r dr = 1, (A.3.12)

independent of L.
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Figure A.3.2 A family of dimensionless test functions, Q ≡ qL2, described by (A.3.10), plotted
against the dimensionless distance X ≡ (x− x0)/L for y = y0 and λ = 1 (dashed line), 2, 5, 10,
20, 50, 100, and 500 (dotted line). As the dimensionless parameter λ tends to infinity, we recover
Dirac’s delta function in two dimensions.

Dirac delta function in three and higher dimensions

The Dirac delta function can be defined in a space with arbitrary dimensions. The mathematical
properties are similar to those in one and two dimensions.

Problems

A.3.1 Dirac delta function in three dimensions

(a) State the distinguishing properties of the Dirac delta function in three dimensions.

(b) Devise a family of test functions, similar to those shown in (A.3.4) and (A.3.10), that reduce to
the three-dimensional delta function as λ tends to zero.

A.3.2 Heaviside function

The dimensionless Heaviside function, H(t), is defined such that H(t) = 0 for t < 0 and H(t) = 1
for t > 0. Express the first derivative of the Heaviside function in terms of Dirac’s delta function.
Discuss the second derivative of the Heaviside function.

A.4 Index notation

In index notation, a Cartesian vector in the Nth dimensional space, u, is denoted as ui, where
i = 1, . . . , N ; a two-dimensional matrix A is denoted as Aij ; and an N -dimensional matrix B is
denoted as Bij···m, where the number of subscripts, i–m, is equal to N . The same index may not
appear more than twice in an index array or across index arrays in a product.
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Repeated-index summation convention

Einstein’s repeated-index summation convention states that, if a subscript appears twice in an
expression involving products, summation over that subscript is implied in its range. Under this
convention,

ui ≡ Aijvj ≡
∑
j

Aijvj , Cikl ≡ Aij Bjkl ≡
∑
j

Aij Bjkl,

ui vi ≡ u1 v1 + u2 v2 + · · ·+ uN vN , Aii ≡ A11 +A22 + . . .+ANN , (A.4.1)

where N in the last expression is the maximum value of the index i. The third expression defines
the inner product of a pair of vectors, u and v.

Free indices

The vector or matrix nature of an expression is determined by the number of free indices, that is,
the indices that appear only once in the expression. For example, Aijuj is a vector, whereas uiuj

and uiAijl are two-dimensional matrices.

Kronecker’s delta

Kronecker’s delta, δij , represents the identity or unit matrix: δij = 1 if i = j, and δij = 0 if i �= j.
Using this definition, we find that

ui δij = uj , Aij δjk = Aik, δij Ajk δkl = Ail, δij δjk δkl = δil, δii = N, (A.4.2)

where the index i in the last expression ranges from 1 to N . If xi is a set of N independent variables,
then

∂xi

∂xj
= δij ,

∂xi

∂xi
= N. (A.4.3)

The Einstein summation convention is implied in the second expression.

Alternating tensor

The alternating tensor εijk, where all three indices takes the values 1, 2, 3, is defined such that (a)
εijk = 0 if all three indices or any two indices have the same value, (b) εijk = 1 if the indices are
arranged in cyclic order, 123, 312, or 231, and (c) εijk = −1 otherwise. Thus, ε132 = −1, ε122 = 0,
εijj = 0, and εijk = εjki = εkij = −εjik. Formally, we define

εijk =
1

2
(i− j)(j − k)(k − i). (A.4.4)

Two useful properties of the alternating tensor are

εijk εijl = 2 δkl, εijk εilm = δjl δkm − δjm δkl, (A.4.5)

where summation is implied over indices that appear twice.
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Antisymmetric matrix

A three-dimensional antisymmetric (skew-symmetric) matrix, Aij , has only three independent com-
ponents that can be represented in terms of a three-dimensional vector, v, as

Aij = εijkvk. (A.4.6)

Multiplying this definition by εijl and using (A.4.5), we obtain the inverse relation

vk =
1

2
εijk Aij . (A.4.7)

For example, in fluid mechanics the matrix A can be the vorticity tensor, Ξ, and the vector v can
be the vorticity vector, ω.

Vector and matrix products

It is a standard practice in the theory of matrix calculus and numerical analysis to regard by
convention an N -dimensional vector u as a column vector, which is a contrived two-dimensional
N × 1 matrix. To obtain the corresponding row vector, which is a contrived 1 × N matrix, we
formulate the transpose of the column vector, uT , denoted by the superscript T . If A is an N ×N
square matrix, then the products Au and uTA, defined according to the usual rules of matrix
multiplication, represent, respectively, an N -dimensional column and an N -dimensional row vector.

In fluid mechanics, we avoid using the superscript T by indicating the one-index-product with
a centered dot. For example, v = A · u is equivalent to vi = Aijuj , where summation is implied
over the repeated index, j. Similarly, w = u ·A is equivalent to wj = uiAij , where summation is
implied over the repeated index, i. The scalar

s = (A · u) · v = v · (A · u) = (v ·A) · u = u · (v ·A) · u (A.4.8)

is defined as s = viAijuj , where summation is implied over the repeated indices, i and j.

Inner vector product

The inner product of a pair of vectors with the same dimensions, u and v, is a scalar defined as the
sum of the products of corresponding elements,

s ≡ u · v = ui vi. (A.4.9)

If the inner product is zero, the two vectors are orthogonal.

Tensor vector product

If u and v are two N -dimensional vectors, then the tensor product

A = u⊗ v (A.4.10)

is an N ×N matrix with components Aij = uivj . By contrast, u · v = uivi is a scalar defining the
inner product of the vectors u and v, which is also equal to the sum of the diagonal elements (trace)
of the matrix A.
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Using the definitions of the inner and tensor products, we obtain

w · (u⊗ v) = (w · u)v, (u⊗ v) ·w = (v ·w)u, (A.4.11)

where u,v, and w are three vectors with matching dimensions. Identifying w with u or v, we find
that, if the vectors u and v are orthogonal, the matrix u ⊗ v has a zero eigenvalue and is thus
singular.

Double-dot scalar matrix product

The double-dot product of a pair of two-dimensional matrices, A and B, is a scalar defined as

s ≡ A : B = B : A = AijBij , (A.4.12)

where summation is implied over the repeated indices, i and j. If the matrix A is symmetric,
Aij = Aji, and the matrix B is antisymmetric, Bij = −Bji, then A : B = 0.

Problem

A.4.1 Tensor vector product

Show that (u⊗ v) · (w ⊗ z) = α (u⊗ z) and evaluate the constant α, where u,v,w, and z are four
vectors with matching dimensions.

A.5 Three-dimensional Cartesian vectors

Consider a Cartesian system of axes, (x, y, z), and denote the corresponding unit vectors by ex, ey,
and ez, or e1, e2, and e3. The Cartesian components of a three-dimensional vector, a, representing,
for example, position, velocity, or acceleration, are hosted by the three entries of a. A similar
notation is used in two dimensions.

Inner product

In Section A.4, we defined the inner product of a pair of vectors, a and b, as the scalar s ≡ a·b = ai bi,
where summation is implied over the repeated index, i. If the inner product is zero, the two vectors
are orthogonal. In two or three dimensions, the inner product of two vectors is equal to the product
of the lengths of the vectors, |a| and |b|, and the cosine of the angle α subtended between the vectors
in their plane,

a · b = |a| |b| cosα. (A.5.1)

A similar interpretation applies in two dimensions.

Outer product

The outer or vector product of an ordered pair of three-dimensional vectors, a and b, is a new vector,
c ≡ a× b, given by the determinant of a matrix,

c ≡

⎡⎣ e1 e2 e3
a1 a2 a3
b1 b2 b3

⎤⎦ = e1 (a2b3 − a3b2) + e2 (a3b1 − a1b3) + e3 (a1b2 − a2b1). (A.5.2)
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In index notation,

ci = εijkajbk. (A.5.3)

It is evident from this definition that

a× b = −b× a. (A.5.4)

The outer product, c, is oriented normal to the plane of a and b. The direction of the outer product
is determined by the right-handed rule applied to the ordered triplet a,b, c.

The magnitude of the outer product is equal to the product of the lengths of the two vectors,
|a| and |b|, and the sine of the angle α subtended between these vectors in their plane,

|a× b | = |a| |b| sinα. (A.5.5)

This expression demonstrates that, if the outer product is a null vector, the vectors a and b are
parallel, and vice versa.

Triple scalar product

The triple scalar product of an ordered vector triplet, a, b, c, is a scalar representing the volume of
a parallelepiped with three sides defined by the vectors a, b, and c,

V ≡ [a,b, c] ≡ (a× b) · c = (c× a) · b = (b× c) · a. (A.5.6)

Notice two cyclic permutations. The triple scalar product can be computed as the determinant of a
matrix,

[a,b, c] ≡ det
(⎡⎣ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎤⎦) = a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1). (A.5.7)

Cyclic permutation preserves the triple scalar product,

[a,b, c] = [c,a,b] = [b, c,a]. (A.5.8)

Since the determinant of a matrix is equal to the determinant of the matrix transpose,

V 2 = det
(⎡⎣ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎤⎦ ·

⎡⎣ a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤⎦) = det
(⎡⎣ a · a a · b a · c

b · a b · b b · c
c · a c · b c · c

⎤⎦). (A.5.9)

If the vectors a,b, c are mutually orthogonal, the off-diagonal elements of the last matrix are zero.

Triple vector product

The triple vector product of an ordered vector triplet, a, b, c, is a new vector,

d ≡ a× (b× c). (A.5.10)
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Writing

di = εijk aj (εklmblcm) = εijkεklmajblcm = εkijεklmajblcm, (A.5.11)

and then

di = (δilδjm − δimδjl)ajblcm = ajbicj − ajbjci, (A.5.12)

we obtain the vector identity

a× (b× c) = b (a · c)− c (a · b). (A.5.13)

Working in a similar fashion, we derive the identity

a× (b× c) + b× (c× a) + c× (a× b) = 0. (A.5.14)

Notice the cyclic permutation of the vector triplets on the left-hand side.

Directional vector components

The component of a vector, b, in the direction of a unit vector, e, is given by (b ·e) e, where e ·e = 1.
Applying (A.5.13) with a = c = e, we find that the vector

e× (b× e) = b− e (e · b) (A.5.15)

represents the component of b normal to e. Using index notation, we find that

e× (b× e) = b · (I− e⊗ e), (A.5.16)

where I is the identity matrix and ⊗ denotes the tensor vector product.

Vector–matrix outer product

Given a three-dimensional vector, u, and a square three-dimensional matrix, A, we define their left
outer product as a new matrix, B = u×A, with elements

Bij = εikl uk Alj . (A.5.17)

Similarly, we define the right cross product as a new matrix, C = A× u, with elements

Cij = Aikεkljul, (A.5.18)

where summation is implied over the repeated indices, k and l.

Problem

A.5.1 Vector components

Prove identity (A.5.16) working index notation.
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A.6 Vector calculus

The Cartesian components of the del or nabla vector operator, denoted by ∇, are the partial deriva-
tives with respect to the corresponding coordinates,

∇ ≡ ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, (A.6.1)

where ei are unit vectors in the directions of the subscripted axes. In two dimensions, only the x
and y derivatives and associated unit vectors appear.

Gradient of a scalar function

The gradient of a scalar function of position, f(x), is a vector defined as

∇f = ex
∂f

∂x
+ ey

∂f

∂y
+ ez

∂f

∂z
, (A.6.2)

where ei are unit vectors in the directions of the subscripted axes. Physically, the gradient points
into the direction where the function f increases most rapidly at a point. To prove this, we consider
the directional derivative of the function f , as discussed at the end of this section.

Divergence of a vector field

The divergence of a vector function of position, f = (fx, fy, fz), is a scalar defined as

∇ · f = ∂fi
∂xi

=
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

. (A.6.3)

If ∇ · f = 0 at every point, the vector field f is called solenoidal. The continuity equation requires
that the velocity field of an incompressible fluid is solenoidal throughout the domain of a flow.

Gradient of a vector field

The gradient of a vector field, f , denoted by L ≡ ∇f , is a two-dimensional matrix with elements

Lij =
∂fj
∂xi

. (A.6.4)

The divergence of f is equal to the trace of the matrix L, which is equal to the sum of the diagonal
elements of L,

∇ · f = trace(L). (A.6.5)

In fact, the velocity gradient is the tensor product of the gradient vector operator and the vector
field of interest, f . To simplify the notation, we have denoted

∇f ≡ ∇⊗ f . (A.6.6)
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Curl of a vector field

The curl of a vector field, f , denoted by ∇ × f , is another vector field computed according to the
usual rules of the outer vector product, treating the del operator as a regular vector, yielding

∇× f = det
(⎡⎣ ex ey ez

∂/∂x ∂/∂y ∂/∂z
fx fy fz

⎤⎦). (A.6.7)

Explicitly,

∇× f = ex

(∂fz
∂y

− ∂fy
∂z

)
+ ey

(∂fx
∂z

− ∂fz
∂x

)
+ ez

(∂fy
∂x

− ∂fx
∂y

)
. (A.6.8)

In the case of the two-dimensional vector field, f , lying in the xy plane, only the z component of the
curl survives.

Laplacian of a scalar function

The Laplacian of a scalar function, f , is a scalar defined as

∇ · (∇f) ≡ ∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
. (A.6.9)

The Laplacian is equal to the divergence of the gradient.

Vector identities

Let f be a scalar function and u, v be two vector functions. The following identities can be shown
working in index notation:

∇ · (f u) = f ∇ · u + u · ∇f, (A.6.10)

∇ (u · v) = u · ∇v + v · ∇u+ u× (∇× v) + v × (∇× u) , (A.6.11)

∇ · (u× v) = v · ∇ × u− u · ∇ × v, (A.6.12)

∇× (u× v) = u∇ · v − v∇ · u+ v · ∇u− u · ∇v, (A.6.13)

∇× (∇f) = 0, (A.6.14)

∇ · (∇× u) = 0, (A.6.15)

∇× (∇× u) = ∇ (∇ · u)−∇2u. (A.6.16)

Divergence of a matrix

The divergence of a two-dimensional matrix function of position, Q(x), is a vector, v = ∇ ·Q, with
components

vj =
∂Qij

∂xi
, (A.6.17)

where summation is implied over the repeated index, i.
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Directional derivatives

The rate of change of a scalar function, f , with respect to arc length, lt, in the direction of a unit
vector t, is given by

t · ∇f =
∂f

∂lt
= tx

∂f

∂x
+ ty

∂f

∂y
+ tz

∂f

∂z
. (A.6.18)

Using the geometrical interpretation of the inner vector product, we find that t · ∇f is maximum
when t is parallel to ∇f at a point.

The corresponding rate of change of a vector function, f , is a vector given by

t · ∇f =
∂f

∂lt
= tx

∂f

∂x
+ ty

∂f

∂y
+ tz

∂f

∂z
. (A.6.19)

Note that, by convention, the gradient ∇f is multiplied from the left by t to produce a directional
derivative.

Problem

A.6.1 Curl

Compute the curl of the vector function v(x) = f(r)x, where r = |x|, x is the position vector, and
f(r) is a differentiable function.

A.7 Divergence and Stokes’ theorems

The divergence and Stokes’ theorems allow us to convert a volume integral into a surface integral or
line integral. In practice, these theorems are used to derive differential from integral balances, and
vice versa, originating from physical laws.

Divergence theorem in space

Let Vc be an arbitrary volume in space bounded by a closed surface, D, as illustrated in Figure
A.7.1(a). The Gauss divergence theorem states that the volume integral of the divergence of any
differentiable vector function, f = (fx, fy, fz), over Vc is equal to the flow rate of f across D,∫∫∫

Vc

∇ · f dV =

∫∫
D

f · n dS, (A.7.1)

where n be the unit vector normal to D pointing outward from Vc.

Making the three sequential choices f = (f, 0, 0), f = (0, f, 0), and f = (0, 0, f), where f is
a differentiable scalar function, we derive the vector form of the divergence theorem,∫∫∫

Vc

∇f dV =

∫∫
D

f n dS. (A.7.2)
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Figure A.7.1 Illustration of (a) a volume used to derive the divergence theorem in space and (b) an
area used to derive the divergence theorem in the xy plane. (c) Illustration of a closed loop in
space, C, bounded by a surface, D, used to derive Stokes’ theorem.

The particular choices f = x, f = y, or f = z, provide us with expressions for the volume of Vc in
terms of a surface integral of the x, y, or z component of the normal vector.

Setting f = a× q, where a is a constant vector and q is a differentiable vector function, and
discarding the arbitrary constant a, we obtain the identity∫∫∫

Vc

∇× q dV =

∫∫
D

n× q dS. (A.7.3)

The integral on the right-hand side involves the tangential component of the vector field, q.

Divergence theorem in a plane

Let Ac be an arbitrary control area in the xy plane bounded by a closed contour, C, as illustrated
in Figure A.7.1(b). The Gauss divergence theorem states that the areal integral of the divergence of
any two-dimensional differentiable vector function, f = (fx, fy), over Ac is equal to the flow rate of
f across C, ∫∫

Ac

∇ · f dA =

∮
C

f · n dl, (A.7.4)

where l is the arc length along C and n is the unit vector normal to C pointing outward from Ac.

Making the sequential choices f = (f, 0) and f = (0, f), where f is a differentiable scalar
function, we obtain the vector form of the divergence theorem,∫∫

Ac

∇f dA =

∮
C

f n dl. (A.7.5)

The particular choices f = x or f = y yield the area of Ac in terms of a line integral of the x or y
component of the normal vector.
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Divergence theorem on a surface

Consider a surface patch, D, with normal unit vector n, enclosed by a closed loop, C, with tangent
unit vector t, as illustrated in Figure A.7.1(c). The normal unit vector, n, is oriented according
to the right-handed rule with respect to t and with reference to a designated side of D. Let f be
a function of position defined over the patch. The Gauss divergence theorem provides us with the
identity ∫∫

P

(P · ∇) · (P · f) dS =

∮
C

(t× n) · f dl, (A.7.6)

where P = I−n⊗n is the tangential projection operator, l is the arc length along C, and t×n = b

is the tangent unit vector shown in Figure A.7.1(c). The integrand on the left-hand side of (A.7.6) is
the surface divergence of the tangential component of f . If f is normal to D, the surface divergence
is identically zero.

Stokes’ theorem

Let C be an arbitrary closed loop with tangent unit vector t and D be an arbitrary surface bounded
by C, as illustrated in Figure A.7.1(c). Stokes’ theorem states that the circulation of a differentiable
vector function f along C is equal to the flow rate of the curl of f across D,∮

C

f · t dl =
∫∫

D

(∇× f) · n dS, (A.7.7)

where l is the arc length along C and n is the unit vector normal to D oriented according to the
right-handed rule with respect to t and with reference to a designated side of D. As we look at
a designated side of D, the normal vector points toward us, while the tangent vector describes a
counterclockwise path.

Setting f = a × q, where a is a constant vector and q is a differentiable vector function of
position, expanding the integrand on the right-hand side of (A.7.7), and discarding the arbitrary
constant a, we derive the identity∮

C

q× t dl =

∫∫
D

[
(∇ · q)n− (∇q) · n

]
dS, (A.7.8)

where the matrix ∇q is the gradient of q.

Problems

A.7.1 Volume of a sphere

Use the divergence theorem to compute the volume of a sphere in terms of a surface integral.

A.7.2 Curl

Show that
∮
f(r)x · tdl = 0, where r = |x|, x is the position vector, f(r) is a differentiable function,

and t is the unit vector tangent to a closed contour.
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Figure A.8.1 Illustration of three-dimensional orthogonal curvilinear coordinates. The variables, α1,
α2, and α3 do not necessarily measure physical arc length.

A.8 Orthogonal curvilinear coordinates

Consider three distinct families of surfaces that fill the entire three-dimensional space, where two
surfaces of the same family do not intersect at a singular line or point. Next, we introduce three
continuous scalar variables, α1, α2, and α3, defined such that two of these variables vary over a
chosen surface, while the third variable remains constant over the chosen surface, as shown in Figure
A.8.1. The position vector, x, can be regarded as a function of the curvilinear coordinates, α1, α2,
and α3, so that x(α1, α2, α3).

Base vectors and unit vectors

Three surfaces can be identified passing through a chosen point in space, one surface from each
family. Two variables are constant along the intersection of a pair of surfaces, and the third variable
varies in a continuous fashion along the intersection. The base vectors

g1 ≡ ∂x

∂α1
, g2 ≡ ∂x

∂α2
, g3 ≡ ∂x

∂α3
, (A.8.1)

are tangential to the intersections, pointing into the directions of increasing α1, α2, and α3. The
magnitude and direction of these base vectors generally change with position in space. The corre-
sponding unit vectors are denoted by

e1 ≡ g1

|g1|
, e2 ≡ g2

|g2|
, e3 ≡ g3

|g3|
, (A.8.2)

as shown in Figure A.8.1. The direction of each base unit vector generally changes with position in
space. Since |ei|2 = ei · ei = 1,

∂(ei · ei)
∂αj

= 2 ei ·
∂ei
∂αj

= 0 (A.8.3)
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for any j, where summation is not implied over the repeated index, i. This equation demonstrates
that the vector ∂ei/∂αj lacks a component in the direction of ei.

Orthonormality

If the base unit vectors form a local right-handed system of orthogonal axes, so that

ep × eq = εpqm em, (A.8.4)

then the variables α1, α2, and α3 comprise a system of orthogonal curvilinear coordinates, where
summation is implied over the repeated index, m. In that case, the inner product of any two different
base vectors gi and gj is zero, gi ·gj = 0 for i �= j. Orthonormality of the base unit vectors requires
that

ei · ej = δij , (A.8.5)

where δij is Kronecker’s delta.

Metric tensor

An infinitesimal vector in space can be described as

dx = g1 dα1 + g2 dα2 + g3 dα3, (A.8.6)

where gi are the local base vectors and dαi are appropriate differential increments for i = 1, 2, 3.
Unless the base vectors are constant, equation (A.8.6) cannot be integrated readily to produce
an explicit expression for the position vector, x(α1, α2, α3). Exceptions arise in the case of polar
coordinates discussed in Sections A.9–A.11.

The square of the length of the vector is

dx · dx = gij dαi dαj , (A.8.7)

where summation is implied over the repeated indices, i and j. We have introduced the diagonal
metric tensor g with diagonal components

gii = gi · gi ≡ h2
i , (A.8.8)

where hi = |gi| are three positive metric coefficients, and summation is not implied over the repeated
index, i. With these definitions, the base unit vectors are

e1 ≡ g1

h1
, e2 ≡ g2

h2
, e3 ≡ g3

h3
. (A.8.9)

The differential arc length along a line over which α2 and α3 are constant but α1 changes, is
dl1 = h1dα1. Similar relations can be written for the other two axes,

dl1 = h1dα1, dl2 = h2dα2, dl3 = h3dα3. (A.8.10)
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Properties of the base vectors

Using the definition of the base vectors, we write the identity

∂(hiei)

∂αj
=

∂(hjej)

∂αi
=

∂2x

∂αi∂αj
, (A.8.11)

where summation is not implied over the repeated indices, i and j. Expanding the first two deriva-
tives, projecting the resulting equation onto ej , and using (A.8.3), we obtain

∂hj

∂αi
= hi

∂ei
∂αj

· ej (A.8.12)

for i �= j, where summation is not implied over the repeated index, j.

Now using the orthogonality condition g1 · g2 = 0, we write

∂(g1 · g2)

∂α3
=

∂

∂α3

( ∂x

∂α1
· ∂x

∂α2

)
=

∂g3

∂α1
· ∂x

∂α2
+

∂g3

∂α2
· ∂x

∂α1
= −2g3 ·

∂2x

∂α1∂α2
= 0. (A.8.13)

We have demonstrated that

g3 ·
∂2x

∂α1∂α2
= g3 ·

∂(h1e1)

∂α2
= g3 ·

∂(h2e2)

∂α1
= 0, (A.8.14)

which shows that

e3 ·
∂e1
∂α2

= 0, e3 ·
∂e2
∂α1

= 0. (A.8.15)

Similar relations can be written for other combinations, yielding

ei ·
∂ej
∂αk

= 0 (A.8.16)

when the indices i, j, and k are all different. This equation demonstrates that the vector ∂ej/∂αk

lacks a component in the direction of ei, where i, j, and k are all different. Combining this result
with (A.8.12), we obtain

∂ei
∂αj

=
1

hi

∂hj

∂αi
ej (A.8.17)

for i �= j, where summation is not implied over the repeated index, j.

We may now write

∂e1
∂α1

=
∂(e2 × e3)

∂α1
=

∂e2
∂α1

× e3 −
∂e3
∂α1

× e2 =
1

h2

∂h1

∂α2
e1 × e3 −

1

h3

∂h1

∂α3
e1 × e2, (A.8.18)

yielding

∂e1
∂α1

= − 1

h2

∂h1

∂α2
e2 −

1

h3

∂h1

∂α3
e3. (A.8.19)
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Similar equations can be written for two other combinations,

∂e2
∂α2

= − 1

h3

∂h2

∂α3
e3 −

1

h1

∂h2

∂α1
e1,

∂e3
∂α3

= − 1

h1

∂h3

∂α1
e1 −

1

h2

∂h3

∂α2
e2. (A.8.20)

Surface and volume metrics

A differential volume in space can be expressed in the form

dV (x) = h1h2h3 dV (α), (A.8.21)

where dV (a) ≡ dα1 dα2 dα3. We see that the product h1h2h3 serves as a volume metric coefficient
for the curvilinear coordinates. The size of a differential surface element that lies in the surface over
which α1, α2, or α3 is constant is given, respectively, by

dS1 = h2h3 dα2 dα3, dS2 = h3h1 dα3 dα1, dS3 = h1h2 dα1 dα2. (A.8.22)

We see that the products hihj for i �= j are surface metric coefficients.

Vector components

The component of a vector function of position, f(x), in the direction of the unit vector, ei, is given
by the scalar product fi = f · ei. By definition,

f = f1e1 + f2e2 + f3e3. (A.8.23)

To prevent misinterpretation the curvilinear components, fi, should not be collected into a vector.

Vector and tensor calculus

Vector and tensor calculus in orthogonal curvilinear coordinates are simplifications of those in more
general nonorthogonal curvilinear coordinates discussed in Section A.12. However, it is both expe-
dient and instructive to develop concepts and expressions in a specialized framework.

Gradient of a scalar function

The gradient of a scalar function, f(x), is given by

∇f = e1
1

h1

∂f

∂α1
+ e2

1

h2

∂f

∂α2
+ e3

1

h3

∂f

∂α3
= e1

∂f

∂l1
+ e2

∂f

∂l2
+ e3

∂f

∂l3
, (A.8.24)

where li is the arc length measured along the αi coordinate line.

Gradient operator

The definitions (A.8.24) motivate introducing the gradient operator

∇ ≡ e1
1

h1

∂

∂α1
+ e2

1

h2

∂

∂α2
+ e3

1

h3

∂

∂α3
= e1

∂

∂l1
+ e2

∂

∂l2
+ e3

∂

∂l3
. (A.8.25)

The unit vectors and differentiation operators should not be transposed in these expressions.
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Gradient of a vector field

The gradient of a vector function of position, f(x), is a matrix

L ≡ ∇f =
( 1

h1
e1 ⊗

∂

∂α1
+

1

h2
e2 ⊗

∂

∂α2
+

1

h3
e3 ⊗

∂

∂α3

)
(f1e1 + f2e2 + f3e3). (A.8.26)

The expression enclosed by the first set of parentheses on the right-hand side originates from the
gradient operator. Carrying out the differentiation, we find that

L =
1

h1

∂f1
∂α1

e1 ⊗ e1 +
f1
h1

e1 ⊗
∂e1
∂α1

+
1

h2

∂f1
∂α2

e2 ⊗ e1 +
f1
h2

e2 ⊗
∂e1
∂α2

+
1

h3

∂f1
∂α3

e3 ⊗ e1 +
f1
h3

e3 ⊗
∂e1
∂α3

+ · · · , (A.8.27)

where the three dots represent similar terms involving f2 and f3. Using (A.8.17), (A.8.19), and
(A.8.20) to evaluate the derivative of the unit vectors, we obtain

L =
1

h1

∂f1
∂α1

e1 ⊗ e1 −
f1

h1h2

∂h1

∂α2
e1 ⊗ e2 −

f1
h1h3

∂h1

∂α3
e1 ⊗ e3 +

1

h2

∂f1
∂α2

e2 ⊗ e1

+
f1

h1h2

∂h2

∂α1
e2 ⊗ e2 +

1

h3

∂f1
∂α3

e3 ⊗ e1 +
f1

h1h3

∂h3

∂α1
e3 ⊗ e3 + · · · , (A.8.28)

where the three dots represent similar terms involving f2 and f3. Collecting similar terms, we derive
the dyadic expansion

L = Lij ei ⊗ ej , (A.8.29)

where Lij are the components of L in the chosen curvilinear coordinates, and summation is implied
over the repeated indices, i and j. The calculations yield the diagonal components

L11 =
1

h1

( ∂f1
∂α1

+
f2
h2

∂h1

∂α2
+

f3
h3

∂h2

∂α3

)
, L22 =

1

h2

( f1
h1

∂h2

∂α1
+

∂f2
∂α2

+
f3
h3

∂h1

∂α3

)
,

(A.8.30)

L33 =
1

h3

( f1
h1

∂h3

∂α1
+

f2
h2

∂h3

∂α2
+

∂f3
∂α3

)
, (A.8.31)

and the off-diagonal components

L12 =
1

h1

( ∂f2
∂α1

− f1
h2

∂h1

∂α2

)
, L21 =

1

h2

( ∂f1
∂α2

− f2
h1

∂h2

∂α1

)
,

L13 =
1

h1

( ∂f3
∂α1

− f1
h3

∂h1

∂α3

)
, L31 =

1

h3

( ∂f1
∂α3

− f3
h1

∂h3

∂α1

)
, (A.8.32)

L23 =
1

h2

( ∂f3
∂α2

− f2
h3

∂h2

∂α3

)
, L32 =

1

h3

( ∂f2
∂α3

− f3
h2

∂h3

∂α2

)
.

The trace of L is the divergence of f , whereas the curl of f is related to the skew-symmetric part of
L, as discussed later in this section.
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Divergence of a vector field

The divergence of a vector function of position, f(x), denoted by ∇ · f , is the trace of the gradient,
L ≡ ∇f , that is, ∇ · f = L11 + L22 + L33. Alternatively, we write

∇ · f ≡
( 1

h1
e1 ·

∂

∂α1
+

1

h2
e2 ·

∂

∂α2
+

1

h3
e3 ·

∂

∂α3

)
(f1e1 + f2e2 + f3e3). (A.8.33)

Since the base unit vectors are orthonormal, the trace of the matrix ei ⊗ ej is zero if i �= j, or unity
if i = j. Using (A.8.27) and recalling that, because ei is a unit vector, ei · ∂ei/∂αj = 0, where
summation is not implied over the repeated index, i, we find that

∇ · f = 1

h1

∂f1
∂α1

+ f1

( 1

h2
e2 ·

∂e1
∂α2

+
1

h3
e3 ·

∂e1
∂α3

)
+ · · · , (A.8.34)

which also follows from (A.8.33). The three dots on the left-hand side represent similar terms
involving f2 and f3. A slight rearrangement yields

∇ · f = 1

h1

∂f1
∂α1

+ f1

( 1

h1h2
e2 ·

∂(h1e1)

∂α2
+

1

h1h3
e3 ·

∂(h1e1)

∂α3

)
+ · · · . (A.8.35)

Now using the relations (A.8.11) and similar relations and simplifying, we obtain

∇ · f = 1

h1h2h3

[ ∂

∂α1
(h2h3f1) +

∂

∂α2
(h3h1f2) +

∂

∂α3
(h1h2f3)

]
. (A.8.36)

We recall that the products hihj for i �= j are surface metric coefficients corresponding to coordinate
surfaces.

Laplacian of a scalar function

The Laplacian of a scalar function, f(x), is equal to the divergence of its gradient. Using expressions
(A.8.24) and (A.8.36), we find that

∇2f =
1

h1h2h3

[ ∂

∂α1

(h2h3

h1

∂f

∂α1

)
+

∂

∂α2

(h3h1

h2

∂f

∂α2

)
+

∂

∂α3

(h1h2

h3

∂f

∂α3

)]
. (A.8.37)

We recall that (1/h1) ∂f/∂α1 = ∂f/∂l1, (1/h2) ∂f/∂α2 = ∂f/∂l2, and (1/h3) ∂f/∂α3 = ∂f/∂l3.

Curl of a vector field

The curl of a vector function, f , is a vector defined as

ω ≡ ∇× f =
( 1

h1
e1 ×

∂

∂α1
+

1

h2
e2 ×

∂

∂α2
+

1

h3
e3 ×

∂

∂α3

)
(f1e1 + f2e2 + f3e3). (A.8.38)

Expanding the derivatives, we find that

ω =
1

h1

(
f1 e1 ×

∂e1
∂α1

+ f2 e1 ×
∂e2
∂α1

+
∂f2
∂α1

e3 + f3 e1 ×
∂e3
∂α1

− ∂f3
∂α1

e2

)
+

1

h2

(
f1 e2 ×

∂e1
∂α2

− ∂f1
∂α2

e3 + f2 e2 ×
∂e2
∂α2

+ f3 e2 ×
∂e3
∂α2

+
∂f3
∂α2

e1

)
(A.8.39)

+
1

h3

(
f1 e3 ×

∂e1
∂α3

+
∂f1
∂α3

e2 + f2 e3 ×
∂e2
∂α3

− ∂f2
∂α3

e1 + f3 e3 ×
∂e3
∂α3

)
.
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The first component of the curl is

ω1 ≡ ω · e1 =
1

h2

(
f1 e1 · (e2 ×

∂e1
∂α2

) + f2 e1 · (e2 ×
∂e2
∂α2

) + f3 e1 · (e2 ×
∂e3
∂α2

) +
∂f3
∂α2

)
+

1

h3

(
f1 e1 · (e3 ×

∂e1
∂α3

) + f2 e1 · (e3 ×
∂e2
∂α3

)− ∂f2
∂α3

+ f3 e1 · (e3 ×
∂e3
∂α3

)
)
. (A.8.40)

Rearranging the triple scalar products and using the orthogonality of the base vectors, we obtain

ω1 =
1

h2

(
f1 e3 ·

∂e1
∂α2

+ f2 e3 ·
∂e2
∂α2

+ f3 e3 ·
∂e3
∂α2

+
∂f3
∂α2

)
− 1

h3

(
f1 e2 ·

∂e1
∂α3

+ f2 e2 ·
∂e2
∂α3

+
∂f2
∂α3

+ f3 e2 ·
∂e3
∂α3

)
. (A.8.41)

Using relations (A.8.3) and (A.8.15), we obtain

ω1 =
1

h2

(
f2 e3 ·

∂e2
∂α2

+
∂f3
∂α2

)
− 1

h3

( ∂f2
∂α3

+ f3 e2 ·
∂e3
∂α3

)
, (A.8.42)

which can be rearranged into

ω1 =
1

h2h3

(
h3

∂f3
∂α2

− f3 h2 e2 ·
∂e3
∂α3

− h2
∂f2
∂α3

+ f2 h3 e3 ·
∂e2
∂α2

)
. (A.8.43)

Using relations (A.8.20), we obtain

ω1 =
1

h2h3

(
h3

∂f3
∂α2

+ f3
∂h3

∂α2
− h2

∂f2
∂α3

− f2
∂h2

∂α3

)
=

1

h2h3

(∂(h3f3)

∂α2
− ∂(h2f2)

∂α3

)
. (A.8.44)

Similar relations can be written for ω2 and ω3. Compiling these results, we find that the curl is
given by the determinant of a matrix,

ω ≡ ∇× f =
1

h1h2h3
det

(⎡⎣ h1e1 h2e2 h3e3
∂/∂α1 ∂/∂α2 ∂/∂α3

h1f1 h2f2 h3f3

⎤⎦). (A.8.45)

The determinant is computed according to the usual rules of the outer vector product, treating the
partial derivative operator triplet as a regular vector.

Alternatively, the components of the curl are given by

ω1 = L23 − L32, ω2 = L31 − L13, ω3 = L12 − L21, (A.8.46)

where L = ∇f is the gradient of f .

Problems

A.8.1 Divergence of a vector function

Derive expression (A.8.36) working as discussed in the text.

A.8.2 Curl of a vector field

Prove the expression for the curl of a vector field given in (A.8.46).
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Figure A.9.1 Cylindrical polar coordinates, (x, σ, ϕ), defined with respect to companion Cartesian
coordinates, (x, y, z).

A.9 Cylindrical polar coordinates

A point in space can be identified by the values of the ordered triplet (x, σ, ϕ), as illustrated in
Figure A.9.1, where:

• x is the projection of the position vector onto the straight (rectilinear) x axis passing through
a designated origin, taking values in the range (−∞,+∞).

• σ is the distance of a point of interest from the x axis, taking values in the range [0,∞).

• ϕ is the azimuthal angle measured around the x axis, taking values in the range [0, 2π).

The value ϕ = 0 corresponds to the first and second quadrants, and the value ϕ = π corresponds to
the third and fourth quadrants of the xy plane. An xσ half-plane of constant azimuthal angle ϕ is
called an azimuthal plane. In astronomy, land, and sea navigation, the yz plane lies in the horizon
and the y axis points to the north. A star may be located at a point x in the sky.

Using elementary trigonometry, we derive relations between the Cartesian and associated polar
cylindrical coordinates,

y = σ cosϕ, z = σ sinϕ, (A.9.1)

and the inverse relations between the polar cylindrical and Cartesian coordinates,

σ =
√

y2 + z2, ϕ = arccos
y

σ
. (A.9.2)

In computing the inverse cosine function, arccos, care must be taken so that ϕ is a continuous
function of y and σ.
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Unit vectors

We consider a point in space and define three vectors of unit length, denoted by ex, eσ, and eϕ,
pointing, respectively, in the direction of the x axis, normal to the x axis, and in the direction of
the azimuthal angle ϕ, as depicted in Figure A.9.1. Note that the orientation of the unit vectors
eσ and eϕ changes with position in space, whereas the orientation of ex is fixed and independent of
position in space. The position vector is

x = x ex + σ eσ. (A.9.3)

The dependence of the position vector on the azimuthal angle, ϕ, is mediated through the unit
vector eσ on the right-hand side. The absence of eϕ from the right-hand side of (A.9.3) is justified
by observing that the distance from the origin, expressed by the position vector x, is perpendicular
to the third unit vector, eϕ.

Vector components

Any vector, v, can be resolved as

v = vx ex + vσ eσ + vϕ eϕ, (A.9.4)

where the coefficients vx, vσ, and vϕ are the cylindrical polar components of v.

Relation to Cartesian vector components

Using elementary trigonometry, we derive relations between the Cartesian and cylindrical polar unit
vectors and the inverse relations,

eσ = cosϕ ey + sinϕ ez, eϕ = − sinϕ ey + cosϕ ez,

ey = cosϕ eσ − sinϕ eϕ, ez = sinϕ eσ + cosϕ eϕ. (A.9.5)

The corresponding relations for a vector, v, are

vσ = cosϕvy + sinϕvz, vϕ = − sinϕvy + cosϕvz,

vy = cosϕvσ − sinϕvϕ, vz = sinϕvσ + cosϕvϕ. (A.9.6)

All derivatives ∂eα/∂β are zero, except for two derivatives,

∂eσ
∂ϕ

= eϕ,
deϕ
dϕ

= −eσ, (A.9.7)

where Greek variables stand for x, σ, and ϕ.

Metric coefficients

The cylindrical polar coordinates, (x, σ, ϕ), comprise a set of orthogonal curvilinear coordinates
(α1, α2, α3), as discussed in Section A.8. The associated metric coefficients are

hx = 1, hσ = 1, hϕ = σ. (A.9.8)
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Expressions (A.9.7) arise by substituting these metric coefficients into the general relations (A.8.17),
(A.8.19), and (A.8.20).

Differential operators

The gradient a scalar function, f(x), is

∇f = ex
∂f

∂x
+ eσ

∂f

∂σ
+ eϕ

1

σ

∂f

∂ϕ
. (A.9.9)

The Laplacian of a scalar function, f(x), is

∇2f =
∂2f

∂x2
+

1

σ

∂

∂σ

(
σ
∂f

∂σ

)
+

1

σ2

∂2f

∂ϕ2
. (A.9.10)

The divergence of a vector function, f(x), is

∇ · f = ∂fx
∂x

+
1

σ

∂(σfσ)

∂σ
+

1

σ

∂fϕ
∂ϕ

. (A.9.11)

The curl of a vector field, f(x), is

∇× f = ex
1

σ

(∂(σfϕ)
∂σ

− ∂fσ
∂ϕ

)
+ eσ

( 1

σ

∂fx
∂ϕ

− ∂fϕ
∂x

)
+ eϕ

(∂fσ
∂x

− ∂fx
∂σ

)
. (A.9.12)

The Laplacian of a vector function, f(x), is

∇2f = ex ∇2fx + eσ

(
∇2fσ − fσ

σ2
− 2

σ2

∂fϕ
∂ϕ

)
+ eϕ

(
∇2fϕ − fϕ

σ2
+

2

σ2

∂fσ
∂ϕ

)
. (A.9.13)

The derivative of a vector function, f(x), with respect to arc length, l, measured in the
direction of a unit vector, t, is

t · ∇f =
∂f

∂l
= ex (t · ∇fx) + eσ

(
t · ∇fσ − tϕfϕ

σ

)
+ eϕ

(
t · ∇fϕ +

tϕfσ
σ

)
, (A.9.14)

where the cylindrical polar coordinates of the gradient of the individual components, ∇fα, are
computed from (A.9.9).

Problem

A.9.1 Laplacian of a vector field

Derive the expression for the Laplacian of a vector function given in (A.9.13).

A.10 Spherical polar coordinates

A point in space can be identified by the values of the ordered triplet (r, θ, ϕ), as illustrated in Figure
A.10.1, where:
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Figure A.10.1 Spherical polar coordinates, (r, θ, ϕ), defined with respect to companion Cartesian
coordinates, (x, y, z), and cylindrical polar coordinates, (x, σ, ϕ).

• r is the distance from the designated origin taking values in the range [0,∞).

• θ is the meridional angle subtended between the x axis, the origin, and the chosen point, taking
values in the range [0, π].

• ϕ is the azimuthal angle measured around the x axis, taking values in the range [0, 2π).

The value ϕ = 0 corresponds to the first and second quadrants, and the value ϕ = π corresponds to
the third and fourth quadrants of the xy plane. An rθ half-plane of constant azimuthal angle ϕ is
called an azimuthal plane. In astronomy, land and sea navigation, the yz plane is the horizon and
the y axis points to the north. A star may be located at the point x in the sky.

Using elementary trigonometry, we derive relations between the Cartesian, cylindrical, and
spherical polar coordinates,

x = r cos θ, σ = r sin θ, (A.10.1)

and

y = σ cosϕ = r sin θ cosϕ, z = σ sinϕ = r sin θ sinϕ. (A.10.2)

The inverse relations are

r =
√

x2 + y2 + z2 =
√
x2 + σ2, θ = arccos

x

r
, ϕ = arccos

y

σ
. (A.10.3)

In computing the inverse cosine functions, care must be taken so that θ and ϕ are continuous
functions of x, y, r, and σ.



A.10 Spherical polar coordinates 1037

Unit vectors

We consider a point in space and define three vectors of unit length, denoted by er, eθ, and eϕ,
pointing, respectively, in the radial, meridional, and azimuthal direction, as illustrated in Figure
A.10.1. Note that the orientation of all three unit vectors changes with position in space. In
contrast, the orientation of the Cartesian unit vectors, ex, ey, and ez, is fixed. The position vector
is proportional to the radial unit vector,

x = r er. (A.10.4)

The dependence on θ and ϕ is mediated through the unit vector er. The absence of eθ and eϕ from
the right-hand side of (A.10.4) is explained by observing that the distance from the origin, expressed
by the position vector x, is perpendicular to the unit vectors eθ and eϕ.

Vector components

A vector, v, can be resolved in the component form

v = vr er + vθ eθ + vϕ eϕ, (A.10.5)

where the coefficients vr, vθ, and vϕ are the spherical polar components of v.

Relation to Cartesian vector components

Using elementary trigonometry, we derive relations between the spherical polar, cylindrical polar,
and Cartesian unit vectors,

er = cos θ ex + sin θ cosϕ ey + sin θ sinϕ ez = cos θ ex + sin θ eσ,

eθ = − sin θ ex + cos θ cosϕ ey + cos θ sinϕ ez = − sin θ ex + cos θ eσ, (A.10.6)

eϕ = − sinϕ ey + cosϕ ez.

The corresponding relations for a vector, v, are

vr = cos θ vx + sin θ cosϕvy + sin θ sinϕvz = cos θ vx + sin θ vσ,

vθ = − sin θ vx + cos θ cosϕvy + cos θ sinϕvz = − sin θ vx + cos θ vσ, (A.10.7)

vϕ = − sinϕvy + cosϕvz.

All derivatives ∂eα/∂β are zero, except for the five derivatives

der
dθ

= eθ,
der
dϕ

= sin θ eϕ,
deθ
dθ

= −er,
deθ
dϕ

= cos θ eϕ,

deϕ
dϕ

= − sin θ er − cos θ eθ, (A.10.8)

where Greek variables stand for r, θ, and ϕ.
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Metric coefficients

The spherical polar coordinates, (r, θ, ϕ), comprise a set of orthogonal curvilinear coordinates iden-
tified with the triplet (α1, α2, α3), as discussed in Section A.8. The associated metric coefficients are
given by

hr = 1, hθ = r, hϕ = r sin θ. (A.10.9)

Expressions (A.10.8) arise by substituting these metric coefficients into the general relations (A.8.17),
(A.8.19), and (A.8.20).

Differential operators

The gradient a scalar function, f , is given by

∇f = er
∂f

∂r
+ eθ

1

r

∂f

∂θ
+ eϕ

1

r sin θ

∂f

∂ϕ
. (A.10.10)

The Laplacian of a scalar function, f , is given by

∇2f =
1

r2
∂

∂r

(
r2

∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
. (A.10.11)

The divergence of a vector function, f , is given by

∇ · f = 1

r2
∂(r2fr)

∂r
+

1

r sin θ

( ∂(sin θfθ)

∂θ
+

∂fϕ
∂ϕ

)
, (A.10.12)

yielding

∇ · f = ∂fr
∂r

+ 2
ur

r
+

1

r

∂fθ
∂θ

+
fθ
r
cot θ +

1

r sin θ

∂fϕ
∂ϕ

. (A.10.13)

The curl of a vector field, f , is

∇× f = er
1

r sin θ

(∂(sin θfϕ)
∂θ

− ∂fθ
∂ϕ

)
+ eθ

1

r

( 1

sin θ

∂fr
∂ϕ

− ∂(rfϕ)

∂r

)
+eϕ

1

r

(∂(rfθ)
∂r

− ∂fr
∂θ

)
.

(A.10.14)

The Laplacian of a vector function, f , is given by

∇2f = qrer + qθeθ + qϕeϕ, (A.10.15)

where

qr = ∇2fr − 2
fr
r2

− 2

r2
∂fθ
∂θ

− 2

r2
fθ cot θ − 2

r2 sin θ

∂fϕ
∂ϕ

,

qθ = ∇2fθ +
2

r2
∂fr
∂θ

− fθ

r2 sin2 θ
− 2

r2
cot θ

sin θ

∂fϕ
∂ϕ

, (A.10.16)

qϕ = ∇2fϕ +
1

r2 sin2 θ

(
− fϕ + 2

∂fr
∂ϕ

+ 2 cos θ
∂fθ
∂ϕ

)
,

and the Laplacian of the individual vector components is computed using (A.10.11).
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Figure A.11.1 Plane polar coordinates, (r, θ), in the xy plane defined with respect to companion
Cartesian coordinates, (x, y).

The derivative of a vector function, f , with respect to arc length, l, measured in the direction
of a unit vector, t, is given by

t · ∇f =
∂f

∂l
= er

(
t · ∇fr −

tθfθ + tϕfϕ
r

)
+ eθ

(
t · ∇fθ +

tθfr
r

− cot θ

r
tϕfϕ

)
+eϕ

(
t · ∇fϕ +

tϕfr
r

+
tϕfθ
r

cot θ
)
.

(A.10.17)

The gradients of the individual spherical polar components, ∇fr, ∇fθ, and ∇fϕ, are computed
according to (A.10.10).

Problem

A.10.1 Curl of a vector field

Derive the expression for the curl of a vector field given in (A.10.14).

A.11 Plane polar coordinates

A point in the xy plane can be identified by the doublet (r, θ), where r is the distance from the origin
and θ is the polar angle subtended between the x axis, the origin, and the chosen point, measured in
the counterclockwise direction, as illustrated in Figure A.11.1. The radial position, r, takes values
in the range [0,∞), and the polar angle, θ, takes values in the range [0, 2π). Using elementary
trigonometry, we derive the relations between the Cartesian and plane polar coordinates,

x = r cos θ, y = r sin θ. (A.11.1)
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The inverse relations are

r =
√
x2 + y2, θ = arccos

y

r
. (A.11.2)

In computing the inverse cosine function, care must be taken so that θ is a continuous function of y
and r.

Unit vectors

We consider a point in the xy plane and define two vectors of unit length, denoted by er and eθ,
pointing in the radial or polar direction, as depicted in Figure A.11.1. Note that the orientation of
these unit vectors changes with position in the xy plane, whereas the orientation of the Cartesian
unit vectors ex and ey is fixed. The position vector is proportional to the radial unit vector,

x = r er. (A.11.3)

The dependence of the position vector on the polar angle, θ, is mediated through the unit vector er.

Vector components

A vector in the xy plane, v, can be expressed in the form

v = vr er + vθ eθ, (A.11.4)

where the coefficients vr and vθ are the plane polar components of v.

Relation to Cartesian vector components

Using elementary trigonometry, we derive the following relations between the Cartesian and plane
polar unit vectors and vice versa,

er = cos θ ex + sin θ ey, eθ = − sin θ ex + cos θ ey,

ex = cos θ er − sin θ eθ, ey = sin θ er + cos θ eθ. (A.11.5)

The corresponding relations for a vector, v, are

vr = cos θ vx + sin θ vy, vθ = − sin θ vx + cos θ vy,

vx = cos θ vr − sin θ vθ, vy = sin θ vr + cos θ vθ. (A.11.6)

All derivatives ∂eα/∂β are zero, except for two derivatives,

∂er
∂θ

= eθ,
deθ
dθ

= −er, (A.11.7)

where Greek indices stand for r or θ.

Metric coefficients

The plane polar coordinates, (r, θ), comprise a set of orthogonal curvilinear coordinates (α1, α2).
The associated metric coefficients are

hr = 1, hθ = r. (A.11.8)



A.11 Plane polar coordinates 1041

Expressions (A.11.7) arise by substituting these metric coefficients into the general relations (A.8.17),
(A.8.19), and (A.8.20).

Differential operators

The differential vector operators in plane polar coordinates, (r, θ), derive from those in cylindrical
polar coordinates by discarding the dependence on x and renaming σ as r and ϕ as θ. The gradient
of a scalar function, f , is given by

∇f = er
∂f

∂r
+ eθ

1

r

∂f

∂θ
. (A.11.9)

The Laplacian of a scalar function, f , is

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
. (A.11.10)

The divergence of a vector function, f , is given by

∇ · f = 1

r

∂(rfr)

∂r
+

1

r

∂fθ
∂θ

. (A.11.11)

The curl of a vector field, f , is given by

∇× f =
1

r

(∂(rfθ)
∂r

− ∂fr
∂θ

)
ez, (A.11.12)

where ez is the unit vector normal to the xy plane. The Laplacian of a vector function, f , is

∇2f = er

(
∇2fr −

fr
r2

− 2

r2
∂fθ
∂θ

)
+ eθ

(
∇2fθ −

fθ
r2

+
2

r2
∂fr
∂θ

)
. (A.11.13)

The derivative of a vector function, f , with respect to arc length, l, measured in the direction
of a unit vector, t, is given by

t · ∇f =
∂f

∂l
= er

(
t · ∇fr −

tθfθ
r

)
+ eθ

(
t · ∇fθ +

tθfr
r

)
, (A.11.14)

where the plane polar coordinates of the gradient of the individual components, fr and fθ, are
computed from (A.11.9).

Problem

A.11.1 Laplacian of a vector field

Derive the expression for the Laplacian of a vector function given in (A.11.13).
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Figure A.12.1 Nonorthogonal curvilinear coordinates in a plane; (g1,g2) are the covariant base vec-
tors, and (g1,g2) are the contravariant base vectors.

A.12 Nonorthogonal coordinates

Rectilinear and curvilinear nonorthogonal coordinates are employed to accommodate the particular
geometry of a solution domain of interest. The main objective is to facilitate the implementation of
boundary conditions in solving partial differential equations by analytical or numerical methods.

Base vectors

We begin the discussion of nonorthogonal coordinates by introducing two continuous intersecting
families of generally curvilinear axes in the xy plane, (x1, x2), as shown in Figure A.12.1. The
position vector, x, is regarded as a function of x1 and x2, signified by writing x(x1, x2). Next, we
introduce a corresponding pair of tangent base vectors,

g1 =
∂x

∂x1
, g2 =

∂x

∂x2
, (A.12.1)

where the derivative with respect to x1 is taken keeping x2 constant, and vice versa. The two base
vectors, g1 and g2, are unit vectors only if the coordinates x1 and x2 measure physical arc length.
The theory of differential calculus allows us to express an infinitesimal vector in the xy plane at a
point, x, as

dx = g1dx
1 + g2dx

2. (A.12.2)

In general, equation (A.12.2) cannot be integrated readily to produce an explicit expression for the
position vector, x(x1, x2).

The ordered doublet (x1, x2) constitutes a pair of nonorthogonal curvilinear coordinates with
associated base vectors (g1,g2). If the lines of constant x

1 and x2 are straight, we obtain rectilinear
coordinates. If the angle subtended between the two vectors g1 and g2 is equal to 90◦ at every point
in the plane, we obtain orthogonal curvilinear or rectilinear coordinates.



A.12 Nonorthogonal coordinates 1043

Biorthonormal base vectors

In the general case of nonorthogonal curvilinear coordinates where the variables x1 and x2 do not
measure physical arc length from a designated origin,

g1 · g2 �= 0, g1 · g1 �= 1, g2 · g2 �= 1. (A.12.3)

The first inequality expressing nonorthogonality prevents us from computing the differential com-
ponents dx1 and dx2 in (A.12.2) by projecting the position vector given in (A.12.2) onto each base
vector, that is,

dx1 �= dx · g1

g1 · g1
, dx2 �= dx · g2

g2 · g2
. (A.12.4)

Instead, the differential components must be found by solving a system of two equations for two
unknowns originating from (A.12.2),

g11 dx
1 + g12 dx

2 = dx · g1, g21 dx
1 + g22 dx

2 = dx · g2, (A.12.5)

where

g11 = g1 · g1, g12 = g21 = g1 · g2, g22 = g2 · g2 (A.12.6)

are the components of the metric tensor, g. Using Cramer’s rule, we find the solution

dx1 = dx · (g22
g

g1 −
g12
g

g2), dx2 = dx · (−g12
g

g1 +
g11
g

g2), (A.12.7)

where

g ≡ g11g22 − g212 = det(gij). (A.12.8)

If g1 and g2 are unit vectors, g11 = 1 and g22 = 1. In the case of orthogonal coordinates, g12 =
g21 = 0.

Motivated by this solution, we introduce the new base vectors

g1 ≡ g22
g

g1 −
g12
g

g2, g2 ≡ −g12
g

g1 +
g11
g

g2, (A.12.9)

and express (A.12.7) in the form

dx1 = dx · g1, dx2 = dx · g2. (A.12.10)

Direct substitution shows that

g1 · g1 = 1, g2 · g1 = 0, g1 · g2 = 0, g2 · g2 = 1, (A.12.11)

which reveals that g2 is orthogonal to g1 and g1 is orthogonal to g2. We have arrived at the
biorthogonality condition

gi · gj = δij , (A.12.12)

where δij is Kronecker’s delta. The vectors gi and gj constitute a biorthonormal set.
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g1,g2 covariant base vectors
x1, x2 contravariant coordinates
g1,g2 contravariant base vectors
x1, x2 covariant coordinates
g1, g2 covariant base vectors

gij = gi · gj covariant metric tensor
e1 = g1/

√
g11, e2 = g2/

√
g22, covariant base unit vectors

g1, g2 contravariant base vectors
gij = gi · gj contravariant metric tensor

e1 = g1/
√
g11, e2 = g2/

√
g22, contravariant base unit vectors

a1, a2 contravariant vector components
a1, a2 covariant vector components

Table A.12.1 Definitions of covariant and contravariant coordinates, base vectors, and vector com-
ponents in two dimensions. Analogous definitions are made in three dimensions.

Contravariant and covariant coordinates and base vectors

Since the new base vectors g1 and g2 form a complete geometrical base, we may also write

dx = g1dx1 + g2dx2, (A.12.13)

where (x1, x2) are covariant curvilinear coordinates. In contrast, (x1, x2) are contravariant curvilin-
ear coordinates. Working as in the case of contravariant coordinates, we find that

dx1 = dx · g1, dx2 = dx · g2. (A.12.14)

The covariant base vectors are defined in (A.12.1). The contravariant base vectors are defined as

g1 =
∂x

∂x1
, g2 =

∂x

∂x2
. (A.12.15)

Important definitions are summarized in Table A.12.1.

Metric tensor

Using the definitions of the covariant and contravariant metric tensor, we find that

dx · dx = gij dx
i dxj = gij dxi dxj = dxi dxi, (A.12.16)

where summation is implied over the repeated indices, i and j. Combining (A.12.5) with (A.12.14)
and juxtaposing the two coordinates, we obtain

gij dx
j = dxi, gij dxj = dxi, (A.12.17)

where summation is implied over the repeated index, j. These expressions demonstrate that the
covariant metric tensor is the inverse of the contravariant metric tensor, and vice versa,

[gij ] = [gij ]−1, [gij ] = [gij ]
−1, (A.12.18)

where the superscript −1 denotes the matrix inverse.



A.12 Nonorthogonal coordinates 1045

ξ

η

ζ

ξ

η

ζ

’

’

’

Figure A.12.2 Illustration of three-dimensional nonorthogonal curvilinear coordinates, (x1, x2, x3).
Contravariant coordinate lines, (ξ, η, ζ), are drawn with solid lines and covariant coordinate lines,
(ξ′, η′, ζ ′), are drawn with broken lines.

Because of the biorthonormality of the covariant and contravariant base vectors, the trace of
the matrices gi ⊗ gj and gj ⊗ gj satisfy the equations

trace(gi ⊗ gj) = δij , trace(gi ⊗ gj) = δij , (A.12.19)

where δij is Kronecker’s delta.

By definition, the traces of the matrices gi ⊗ gj and gi ⊗ gj are

trace(gi ⊗ gj) = gij , trace(gi ⊗ gj) = gij , (A.12.20)

as defined in Table A.12.1.

Three-dimensional coordinates

All notions and equations discussed previously in this section in two dimensions can be extended
in a straightforward fashion to three dimensions. A system of three-dimensional nonorthogonal
coordinates is shown in Figure A.12.2. Subscripts and superscripts now vary from 1 to 3, and the
size of the metric tensor is 3 × 3. Given the covariant base vectors, the contravariant base vectors
can be computed using the formula

gi =
1

J εijk gj × gk, gj × gk = J εjki g
i, (A.12.21)

where εijk is the alternating tensor, and summation is implied over the repeated indices j and k.
We have introduced the volumetric Jacobian associated with the covariant base,

J ≡ g1 · (g2 × g3) =
√
g, (A.12.22)

where

g ≡ det(gij) =
1

det(gij)
. (A.12.23)
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The last equality in (A.12.22) originates from (A.5.9). Explicitly,

g1 =
1

J g2 × g3, g2 =
1

J g3 × g1, g3 =
1

J g1 × g2. (A.12.24)

The contravariant base vectors can be computed from the covariant base vectors using similar
expressions,

gi = J εijk g
j × gk, gj × gk =

1

J εjki gi. (A.12.25)

Explicitly,

g1 = J g2 × g3, g2 = J g3 × g1, g3 = J g1 × g2. (A.12.26)

Problems

A.12.1 Base vectors in three dimensions

Derive the counterpart of relations (A.12.7) in three dimensions.

A.12.2 Orthogonal coordinates

Derive a relation between the covariant and contravariant base vectors in the case of orthogonal
curvilinear coordinates in the plane discussed in Section A.8.

A.13 Vector components in nonorthogonal coordinates

Any vector, a, can be described in terms of its contravariant components, (a1, a2, a3), and associ-
ated covariant base vectors, or covariant components, (a1, a2, a3), and associated contravariant base
vectors, so that

a = a1 g1 + a2 g2 + a3 g3 = a1 g
1 + a2 g

2 + a3 g
3. (A.13.1)

We may write

a = ai gi = ai g
i, (A.13.2)

where summation is implied over the repeated index, i. Using the biorthonormality of the base
vectors, we find that

a1 = a · g1, a2 = a · g2, a3 = a · g2,
a1 = a · g1, a2 = a · g2, a3 = a · g3.

(A.13.3)

Taking the inner product of (A.13.1) with each of the covariant vectors, g1, g2, and g2, we
find that

a1 = a1 g11 + a2 g21 + a3 g31, a2 = a1 g12 + a2 g22 + a3 g32,

a3 = a1 g13 + a2 g23 + a3 g33. (A.13.4)
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Taking the inner product of (A.13.1) with each one of the contravariant vectors, g1, g2, and g2, we
find that

a1 = a1 g
11 + a2 g

21 + a3 g
31, a2 = a1 g

12 + a2 g
22 + a3 g

32

a3 = a1 g
13 + a2 g

23 + a3 g
33. (A.13.5)

We may then write

ai = aj gji, ai = aj g
ji, (A.13.6)

where summation is implied over the repeated index, j. Expressions (A.13.6) are used to raise or
lower the indices.

Inner vector product

Using the biorthogonality of the base vectors, we find that the inner product of two vectors, a and
b, is the scalar

a · b = aibi = aib
i, (A.13.7)

where summation is implied over the repeated index, i. The square of the length of a vector, a, is

|a|2 ≡ a · a = aiai, (A.13.8)

where summation is implied over the repeated index, i.

Outer vector product

The inner product of two vectors a and b is a new vector given by

a× b = (aigi)× (bjgj) = (aig
i)× (bjg

j), (A.13.9)

where summation is implied over the repeated indices, i and j. Using relations (A.12.21) and
(A.12.25), we obtain

a× b = J εijk a
ibj gk =

1

J εijk aibj gk, (A.13.10)

where εijk is the alternating tensor.

Gradient of a scalar function

Consider a scalar function of position, f(x). The gradient of the function, ∇f , is a vector defined
such that its projection on gi or g

i provides us with the rate of change in the respective direction,

gi · (∇f) =
∂f

∂xi
, gi · (∇f) =

∂f

∂xi
. (A.13.11)

Based on these definitions, we deduce that the derivatives, ∂f/∂xi, are the covariant components of
the gradient, whereas the derivatives, ∂f/∂xi, are the contravariant components of the gradient,

(∇f)i =
∂f

∂xi
, (∇f)i =

∂f

∂xi
. (A.13.12)
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We thus write

∇f =
∂f

∂x1
g1 +

∂f

∂x2
g2 +

∂f

∂x3
g3, ∇f =

∂f

∂x1
g1 +

∂f

∂x2
g2 +

∂f

∂x3
g3, (A.13.13)

and observe that the derivatives with respect to contravariant coordinates, xi, produce covariant
components. To signify this rule, sometimes the gradient is regrettably called a covariant vector.

Convective derivative

Using the biorthonormality relation between the covariant and contravariant base vectors, we find
that the convective derivative in two dimensions can be computed either from the expression

u · ∇f = (u1g1 + u2g2) · (g1 ∂f

∂x1
+ g2 ∂f

∂x2
) = u1 ∂f

∂x1
+ u2 ∂f

∂x2
, (A.13.14)

or from the expression

u · ∇f = (u1g
1 + u2g

2) · (g1
∂f

∂x1
+ g2

∂f

∂x2
) = u1

∂f

∂x1
+ u2

∂f

∂x2
, (A.13.15)

where u represents the velocity. Similar expressions can be written in three dimensions, yielding

u · ∇f = ui ∂f

∂xi
= ui

∂f

∂xi
, (A.13.16)

where summation is implied over the repeated index, i.

Gradient operator

Motivated by (A.13.13), we introduce the gradient operator,

∇ = gk
∂

∂xk
= gk ∂

∂xk
, (A.13.17)

where summation is implied over the repeated index, k. Explicitly in three dimensions,

∇ = g1
∂

∂x1
+ g2

∂

∂x2
+ g3

∂

∂x3
= g1 ∂

∂x1
+ g2 ∂

∂x2
+ g3 ∂

∂x3
. (A.13.18)

The base vectors and derivative operators may not be transposed.

Numerical computation

As an application, we consider the computation of the gradient of a scalar function, ∇f , at a point
in a plane. We are given the values of the function at nodes distributed along two rectilinear axes
passing through that point, as shown in Figure A.13.1. For convenience, we denote x1 = ξ and
x2 = η. A suitable algorithm involves the following steps:

1. Compute the covariant base vectors by finite-difference approximations

gξ ≡ ∂x

∂ξ
� xR − xL

ξR − ξL
, gη ≡ ∂x

∂η
� xT − xB

ηT − ηB
, (A.13.19)

where L,R, T,B stand for left, right, top, and bottom nodes relative to the intersection.



A.14 Christoffel symbols of the second kind 1049

ξR

B

L

T

η

Figure A.13.1 Illustration of two curvilinear coordinates supporting data passing through the central
point.

2. Compute the corresponding contravariant base vectors, gξ, gη, using the formulas discussed
in this section.

3. Compute the covariant derivatives by finite-difference approximations,

∂f

∂ξ
� fR − fL

ξR − ξL
,

∂f

∂η
� fT − fB

ηT − ηB
. (A.13.20)

4. Compute the gradient, ∇f , using the second expression in (A.13.13).

Exactly the same results are obtained if we compute the gradient by solving a system of two
equations for two unknowns originating from the chain rule,[

∂x/∂ξ ∂y/∂ξ
∂x/∂η ∂y/∂η

]
· ∇f =

[
∂f/∂ξ
∂f/∂η

]
(A.13.21)

Problem

A.13.1 Vector components

Consider a vector in the xy plane. Can this vector be specified by one contravariant and one covariant
component?

A.14 Christoffel symbols of the second kind

The derivatives of the covariant base vectors, gi, with respect to the contravariant coordinates, xj ,
are vectors themselves. By definition,

∂gi

∂xj
≡ Γk

ij gk, (A.14.1)

where Γk
ij are the Christoffel symbols of the second kind and summation is implied over the repeated

index, k. Using the biorthonormality of the covariant and contravariant base vectors, we obtain

Γk
ij ≡

{ k
i j

}
=

∂gi

∂xj
· gk. (A.14.2)
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Using the biorthonormality of the base vectors once more, we find that ∂(gi·gk)/∂xj = 0. Expanding
the derivative, we obtain

∂gk

∂xj
· gi = − ∂gi

∂xj
· gk = −Γk

ij , (A.14.3)

which shows that

∂gk

∂xj
= −Γk

ij g
i. (A.14.4)

Using the definition (A.14.2), we write

Γk
ij =

∂gi

∂xj
· gk =

∂x

∂i∂xj
· gk =

∂gj

∂xi
· gk, (A.14.5)

which reveals the symmetry property

Γk
ij = Γk

ji. (A.14.6)

Christoffel symbols in terms of the metric tensor

Next, we compute the derivatives

∂gmi

∂xj
=

∂(gm · gi)

∂xj
= gm · ∂gi

∂xj
+ gi ·

∂gm

∂xj
= Γk

ij gm · gk + Γk
mj gi · gk, (A.14.7)

yielding

∂gmi

∂xj
= Γk

ij gmk + Γk
mj gik, (A.14.8)

where summation is implied over the repeated index, k. Multiplying the last equation by gmp, where
p is a free index, summing over m, and noting that gmkg

mp = δkp, we obtain

gmp ∂gmi

∂xj
= Γp

ij + Γk
mj gik g

mp. (A.14.9)

Switching the indices i and j, we obtain

gmp ∂gmj

∂xi
= Γp

ij + Γk
mi gjk g

mp. (A.14.10)

Combining the last three equations, we find that the Christoffel symbols of the second kind can be
computed in terms of the metric tensor from the expression

Γk
ij =

1

2
gkm

(∂gmi

∂xj
+

∂gmj

∂xi
− ∂gij

∂xm

)
, (A.14.11)

where summation is implied over the repeated index, m.
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Gradient of a vector field

Consider a vector function of position, f(x). The right gradient of this vector field,

M ≡ (∇f)T , (A.14.12)

is a matrix defined such that its projection from the right on gi or gi provides us with the rate of
change of f in the respective directions,

M · gi =
∂f

∂xi
, M · gi =

∂f

∂xi
. (A.14.13)

By analogy with (A.13.13) for the gradient of a scalar, we introduce the covariant and contravariant
expansions

M =
∂f

∂x1
⊗ g1 +

∂f

∂x2
⊗ g2 +

∂f

∂x3
⊗ g3,

(A.14.14)

M =
∂f

∂x1
⊗ g1 +

∂f

∂x2
⊗ g2 +

∂f

∂x3
⊗ g3.

Expressing the vector field f in terms of the covariant or contravariant base vectors and
carrying out the differentiations, we obtain four combinations. The first combination is

M =
∂(f i gi)

∂xj
⊗ gj =

(∂f i

∂xj
+ Γi

kj f
k
)
gi ⊗ gj . (A.14.15)

The second combination is

M =
∂(fi g

i)

∂xj
⊗ gj =

( ∂fi
∂xj

− Γk
ij fk

)
gi ⊗ gj . (A.14.16)

The third combination is

M =
∂(f i gi)

∂xj
⊗ gj =

∂f i

∂xj
gi ⊗ gj + f i ∂gi

∂xj
⊗ gj . (A.14.17)

The fourth combination is

M =
∂(fi g

i)

∂xj
⊗ gj =

∂fi
∂xj

gi ⊗ gj + fi
∂gi

∂xj
⊗ gj . (A.14.18)

Summation over the repeated indices i and j is implied in all four combinations. In solid mechanics,
continuum mechanics, and applied mathematics, the right gradient M = (∇f)T is simply called the
gradient of the vector field f .

In fluid mechanics, the gradient of the vector field f is identified with the left gradient,

L = ∇f = MT . (A.14.19)
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An example is the velocity gradient L = ∇u discussed in Section 1.1.2. Using (A.14.15), we find
that

L =
(∂f i

∂xj
+ Γi

kj f
k
)
gj ⊗ gi ≡ f i

,j g
j ⊗ gi, (A.14.20)

where f i
,j is the first covariant derivative. Similar representations can be derived from expressions

(A.14.16)–(A.14.18).

As an example, using (A.14.20), we find that the convective derivative of the velocity on the
left-hand side on the equation of motion is

u · ∇u = (um gm) ·
( ∂ui

∂xj
+ Γi

kj u
k
)
gj ⊗ gi = uj

( ∂ui

∂xj
+ Γi

kj u
k
)
gi = ujui

,j gi. (A.14.21)

The term ujui
,j is the ith covariant component of the convective derivative.

Divergence of a vector field

The divergence of a vector field, f , is the trace of the gradient, ∇f , or its transpose, (∇f)T . Using
(A.14.15) and (A.14.16), we find that

∇ · f = trace(M) =
∂f i

∂xi
+ Γi

ki f
k =

( ∂fi
∂xj

− Γk
ij fk

)
gij . (A.14.22)

Making substitutions, we obtain

∇ · f = ∂f i

∂xi
+

1

2
gmi ∂gim

∂xk
fk. (A.14.23)

Further manipulation gives

∇ · f = 1√
g

∂

∂xi

(
f i√g

)
, (A.14.24)

where g = det(gij).

Invoking the vector representation of the gradient operator in (A.13.17), we write

∇ · f =
(
gi · ∂

∂xi

)
(f jgj), (A.14.25)

where summation is implied over the repeated indices, i and j. Explicitly,

∇ · f =
(
g1 · ∂

∂x1
+ g2 · ∂

∂x2
+ g3 · ∂

∂x3

)(
f1g1 + f2g2 + f3g3

)
. (A.14.26)

Carrying out the differentiations and using (A.14.1), we recover (A.14.22).
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Laplacian of a scalar field

The Laplacian of a scalar field, f , is the divergence of the gradient, ∇2f = ∇ · (∇f). Setting in
(A.14.24) f = ∇f , f i = ∂f/∂xi and fi = ∂f/∂xi, we find that

∇2f =
1√
g

∂

∂xi

(
gki

∂f

∂xk

√
g
)
, (A.14.27)

where g = det(gij).

Curl of a vector field

Invoking the vector representation of the gradient operator in (A.13.17), we compute the curl of a
vector field, f , as

ω ≡ ∇× f =
(
gi × ∂

∂xi

)
(fj g

j), (A.14.28)

where summation is implied over the repeated indices, i and j. Explicitly,

ω =
(
g1 × ∂

∂x1
+ g2 × ∂

∂x2
+ g3 × ∂

∂x3

)(
f1g

1 + f2g
2 + f3g

3
)
. (A.14.29)

Carrying out the differentiations, we obtain

ω =
∂f1
∂x2

(g2 × g1) +
∂f1
∂x3

(g3 × g1) + f1
(
g1 × ∂g1

∂x1
+ g2 × ∂g1

∂x2
+ g3 × ∂g1

∂x3

)
+ · · · , (A.14.30)

where the dots indicate similar terms involving f2 and f3. Using (A.12.25) and (A.14.4), we obtain

ω =
1

J
(
− ∂f1

∂x2
g3 +

∂f1
∂x3

g2

)
− f1

[ (
Γ1
i1 g

1 + Γ1
i2 g

2 + Γ1
i3 g

3
)
× gi

]
+ · · · , (A.14.31)

where summation is implied over the repeated index, i. Using (A.12.25), we find that the term
enclosed by the square brackets on the right-hand side of (A.14.31) is identically zero, yielding the
simple expression

ω =
1

J εijk
∂fk
∂xj

gk. (A.14.32)

Laplacian of a vector field

The Laplacian of a vector field, f is another vector field defined by ∇2f = ∇ · (∇f). Using (A.14.20)
and the vector representation of the gradient operator, we find that

∇2f =
(
gm · ∂

∂xm

) [ (∂f i

∂xj
+ Γi

kj f
k
)
gj ⊗ gi

]
. (A.14.33)

Expanding the derivatives, we obtain

∇2f = (gm · gj)
∂

∂xm

(∂f i

∂xj
+ Γi

kj f
k
)
gi +

(∂f i

∂xj
+ Γi

kj f
k
) (

gm · ∂ gj ⊗ gi

∂xm

)
. (A.14.34)



1054 Introduction to Theoretical and Computational Fluid Dynamics

τ ij contravariant components
τij covariant components
τ ij mixed right-covariant components

τ j
i mixed left-covariant components

Table A.15.1 Possible components of a two-index tensor in contravariant, covariant, and mixed forms.

Carrying out the differentiations and simplifying, we obtain

∇2f = gkjf i
,jk gi, (A.14.35)

where

f i
,jk =

∂2f i

∂xk∂xj
+ Γi

jl

∂f l

∂xk
+ Γi

lk

∂f l

∂xj
− Γl

jk

∂f i

∂xl
+
(∂Γi

jl

∂xk
+ Γi

mkΓ
m
jl − Γm

jkΓ
i
ml

)
f l (A.14.36)

is the covariant second derivative. This expression can be used to evaluate the viscous force on the
right-hand side of the Navier–Stokes equation (e.g., [417]).

Problem

A.14.1 Christoffel symbols

Derive expression (A.14.11).

A.15 Components of a second-order tensor in nonorthogonal coordinates

Expressions (A.14.15)–(A.14.18) for the gradient of a vector field illustrate that an arbitrary second-
order tensor, τ , can be represented in four different ways as

τ = τ ij gi ⊗ gj , τ = τ j
i gi ⊗ gj ,

τ = τ ij gi ⊗ gj , τ = τij g
i ⊗ gj .

(A.15.1)

The scalar coefficients representing the pure contravariant, the pure covariant, and the mixed com-
ponents are named as shown in Table A.15.1.

Repeating our previous analysis for vectors, we find that the various tensor components derive
from one another by the relations

τ j
k = gki τ

ij , τ ik = τ ij gjk, τlk = gli τ
ij gjk, τkj = gki τij , (A.15.2)

τ k
i = τij g

jk, τ lk = gil τij g
jk, τkj = gki τ

i
j, τil = τ j

i gjl,

where summation is implied over the repeated indices, k and l. Cursory inspection reveals obvious
rules for raising and lowering the indices.
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Divergence of a second-order tensor

Departing from the the last expression in (A.15.1) and using (A.13.17), we find that

∇ · τ = gk · ∂

∂xk

(
τij g

i ⊗ gj
)
=

∂τij
∂xk

gik gj + τij

(
(gk · ∂g

i

∂xk
)gj + (gk · gi)

∂gj

∂xk

)
. (A.15.3)

Computing the derivatives of the base vectors using (A.14.4), we obtain

∇ · τ =
∂τij
∂xk

gik gj − τij

(
gmkΓi

mk g
j + gik Γj

mk g
m
)
, (A.15.4)

which can be recast into the form

∇ · τ =
(∂τij
∂xk

− Γm
ik τmj − Γm

jk τim

)
gik gj . (A.15.5)

Working in a similar fashion, we find the alternative forms

∇ · τ =
(∂τ ij
∂xi

+ Γi
im τmj + Γj

im τim

)
gj ,

∇ · τ =
(∂τ ij
∂xi

+ Γi
im τmj − Γm

ij τ
i
m

)
gj ,

∇ · τ =
(∂τ j

i

∂xk
− Γm

ik τ
j

m + Γj
km τ m

i

)
gik gj .

(A.15.6)

The right-hand sides of the last four equations are vectors expressed in covariant or contravariant
form.

Problem

A.15.1 Divergence of a tensor

Derive expressions (A.15.6).

A.15.2 Gradient of a tensor

Derive expressions for the gradient of a tensor in a suitable base of your choice.

A.16 Rectilinear coordinates with constant base vectors

As an example, we consider rectilinear nonorthogonal coordinates in the plane and assume that the
covariant base consists of two dimensionless constant vectors,

g1 =

[
1
0

]
, g2 =

[
1
1

]
, (A.16.1)

where the square brackets enclose the Cartesian coordinates, as illustrated in Figure A.16.1. The
covariant metric tensor is

gij =

[
1 1
1 2

]
. (A.16.2)
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Figure A.16.1 Illustration of two-dimensional rectilinear nonorthogonal coordinates in the plane.

The contravariant base vectors computed from (A.12.9) are

g1 =

[
1

−1

]
, g2 =

[
0
1

]
. (A.16.3)

The contravariant metric tensor is

gij =

[
2 −1

−1 1

]
. (A.16.4)

We can easily confirm that gij is the inverse of gij and vice versa.

Next, we formulate the matrices

g1 ⊗ g1 =

[
1 −1
0 0

]
, g1 ⊗ g2 =

[
0 1
0 0

]
,

g2 ⊗ g1 =

[
1 −1
1 −1

]
, g2 ⊗ g2 =

[
0 1
0 1

]
, (A.16.5)

The traces of g1 ⊗ g1 and g2 ⊗ g2 are unity, whereas the traces of g1 ⊗ g2 and g2 ⊗ g1 are zero.

The covariant, contravariant, and Cartesian axes share a common origin. The contravariant
and covariant coordinates of the position vector with Cartesian coordinates x = [x, y] are

x1 = x · g1 = x− y, x2 = x · g2 = y, x1 = x · g1 = x, x2 = x · g2 = x+ y. (A.16.6)

Conversely,

x = x1 + x2 = x1, y = x2 = −x1 + x2. (A.16.7)

If we know that contravariant or covariant coordinates, we can easily compute the Cartesian coor-
dinates.
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Gradient of a scalar

Now we consider a scalar field,

f(x, y) = 2x+ y = 2x1 + 3x2 = x1 + x2, (A.16.8)

where x and y are Cartesian coordinates. In Cartesian coordinates, the gradient of this field is
∇f = [2, 1]. Straightforward differentiation yields

∂f

∂x1
= 2,

∂f

∂x2
= 3,

∂f

∂x1
= 1,

∂f

∂x2
= 1, (A.16.9)

which is consistent with (A.13.13).

Vector field

Next, we consider a vector field,

u =

[
2x+ y
x− 2y

]
= (x+ 3y)g1 + (x− 2y)g2 = (2x+ y)g1 + (3x− y)g2. (A.16.10)

The contravariant and covariant components are

u1 = x+ 3y = x1 + 4x2, u2 = x− 2y = x1 − x2,

u1 = 2x+ y = x1 + x2, u2 = 3x− y = 4x1 − x2. (A.16.11)

Using (A.14.22), we find that ∇ · u = 0.

The gradient of the vector field is

∇u =
∂u1

∂x1
g1 ⊗ g1 +

∂u1

∂x2
g1 ⊗ g2 +

∂u2

∂x1
g2 ⊗ g1 +

∂u2

∂x2
g2 ⊗ g2, (A.16.12)

yielding

∇u = g1 ⊗ g1 + 4g1 ⊗ g2 + g2 ⊗ g1 − g2 ⊗ g2 =

[
2 1
1 −2

]
. (A.16.13)

Because u is solenoidal, the trace of this matrix zero.

Problems

A.16.1 Rectilinear coordinates

Repeat the calculations in this section for base vectors

g1 =

[
2
0

]
, g2 =

[
1
2

]
. (A.16.14)

A.16.2 Rectilinear coordinates in three dimensions

Repeat the calculations in this section for nonorthogonal three-dimensional rectilinear coordinates
of your choice.
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Figure A.17.1 Illustration of helical coordinates, (x̂, σ̂, ϕ̂), in relation to companion Cartesian and
cylindrical polar coordinates, (x, σ, ϕ).

A.17 Helical coordinates

Nonorthogonal helical coordinates are employed when the structure of a scalar or vector field of
interest is invariant along a helical path. Examples include fluid flow in a tube with helical cor-
rugations, flow through a tube with a helical centerline, and flow induced by a helical line vortex.
In these applications, a point in space is identified by the helical curvilinear coordinates, (σ̂, ϕ̂, x̂),
defined in Figure A.17.1, which are related to the cylindrical polar coordinates, (x, σ, ϕ), by

σ = σ̂, ϕ = ϕ̂+ α x̂, x = x̂, (A.17.1)

and to the associated Cartesian coordinates by

x = x̂, y = σ̂ cos(ϕ̂+ α x̂), z = σ̂ sin(ϕ̂+ α x̂), (A.17.2)

where α ≡ 2π/L is the helical wave number and L is the helical pitch. In the limit of infinite
pitch, α → 0, the helical coordinates reduce to cylindrical polar coordinates. In problems with
helical symmetry, the partial derivative of a variable of interest, f , with respect to x̂ is zero, so that
f(σ̂, ϕ̂).

Setting x1 = σ̂, x2 = ϕ̂, and x3 = x̂, we compute the base vectors

g1 ≡ ∂x

∂x1
=

∂x

∂σ̂
=

⎡⎣ 0
cos(ϕ̂+ α x̂)
sin(ϕ̂+ α x̂)

⎤⎦ , g2 ≡ ∂x

∂x2
=

∂x

∂ϕ̂
= σ̂

⎡⎣ 0
− sin(ϕ̂+ α x̂)
cos(ϕ̂+ α x̂)

⎤⎦ ,

g3 ≡ ∂x

∂x3
=

∂x

∂x̂
=

⎡⎣ 1
−ασ̂ sin(ϕ̂+ α x̂)
ασ̂ cos(ϕ̂+ α x̂)

⎤⎦ . (A.17.3)

The covariant metric tensor is

[
gij

]
=
[
gi · gj

]
=

⎡⎣ 1 0 0
0 σ̂2 α σ̂2

0 α σ̂2 1 + α2 σ̂2

⎤⎦ . (A.17.4)
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The contravariant metric tensor is the inverse of the covariant tensor,

[
gij

]
=

⎡⎣ 1 0 0
0 σ̂−2 + α2 −α
0 −α 1

⎤⎦ . (A.17.5)

The presence of nondiagonal elements indicates that the helical coordinates are orthogonal only in
the limit of infinite pitch, α → 0. The only nonzero Christoffel symbols of the second kind are

Γ2
21 =

1

σ̂
, Γ2

31 =
α

σ̂
, Γ1

22 = −σ̂, Γ1
32 = −α σ̂,

Γ2
12 =

1

σ̂
, Γ1

23 = −α σ̂, Γ1
33 = −α2 σ̂, Γ2

13 =
α

σ̂
. (A.17.6)

(e.g., [411]).

A vector field, u, can be resolved into physical components corresponding to polar cylindrical
and associated helical coordinates,

u = uσ eσ + uϕ eϕ + ux ex = uσ̂ eσ̂ + uϕ̂ eϕ̂ + ux̂ ex̂, (A.17.7)

where

eσ̂ =
1√
g11

g1 = g1, eϕ̂ =
1√
g22

g2 =
1

σ̂
g2, ex̂ =

1√
g33

g3 =
1√

1 + α2σ̂2
g3 (A.17.8)

are position-dependent unit vectors. Projecting (A.17.7) onto eσ, eϕ, or ex, we find that

uσ = uσ̂, uϕ = uϕ̂ +
α σ̂√

1 + α2σ̂2
ux̂ = uϕ̂ + α σ̂ ux, ux =

1√
1 + α2σ̂2

ux̂. (A.17.9)

If the vector field u is helically symmetric, the cylindrical polar as well as the helical components of
u are independent of x̂, and only depend on σ̂ and ϕ̂.

The contravariant components of u corresponding to the helical coordinates, defined such that
u = u1g1 + u2g2 + u3g3, are given by

u1 =
uσ̂√
g11

= uσ̂, u2 =
uϕ̂√
g22

=
uϕ̂

σ̂
, u3 =

ux̂√
g33

=
ux̂√

1 + α2σ̂2
= ux. (A.17.10)

In the case of helical symmetry, the contravariant components are independent of x̂, and only depend
on σ̂ and ϕ̂.

Problem

A.17.1 Helical coordinates

Alternative helical coordinates (σ̃, ϕ̃, x̃) can be defined such that the cylindrical polar coordinates
are σ = σ̃, ϕ = ϕ̃, and x = x̃+ 1

α ϕ̃ (e.g., [439]). The associated Cartesian coordinates are

x = x̃+
1

α
ϕ̃, y = σ̃ cos ϕ̃, z = σ̃ sin ϕ̃. (A.17.11)

Sketch the coordinate lines and compute the corresponding covariant and contravariant metric ten-
sors.



Primer of numerical methods B
A summary of methods employed in numerical and computational fluid dynamics is presented in
this appendix. Further information can be found in two highly recommended texts on numerical
methods and numerical analysis [18, 317].

B.1 Linear algebraic equations

We seek to compute an N -dimensional vector, x, which, when multiplied by a given N ×N square
matrix, A, yields a known vector, b, so that A · x = b. In our discussion, summation will not be
implied over a repeated index; instead, it will be stated explicitly, as required.

B.1.1 Diagonal and triangular systems

When the matrix A is diagonal, the unknown vector x can be computed by the simple algorithm

xi =
bi
Ai,i

(B.1.1)

for i = 1, . . . , N , where summation is not implied over the repeated index, i. For clarity, a comma
was inserted between the two matrix indices.

When the matrix A is lower triangular, we use the forward substitution algorithm

x1 =
b1
A1,1

, xi =
1

Ai,i
(bi −

i−1∑
j=1

Ai,jxj) (B.1.2)

for i = 2, . . . , N .

When the matrix A is upper triangular, we use the backward substitution algorithm

xN =
bN

AN,N
, xi =

1

Ai,i
(bi −

N∑
j=i+1

Ai,jxj) (B.1.3)

for i = N − 1, . . . , 1. Note that the last unknown, xN , is computed first.
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B.1.2 Gauss elimination and LU decomposition

When the matrix A does not have a recognized structure, the solution can be found by direct or
iterative methods. The latter are designated for systems of large size involving sparse matrices with
many zeros.

Gauss elimination is the simplest and most popular direct method. The basic idea is to solve
the first equation of the given system, A · x = b, for the first unknown, x1, and use the expression
thus obtained to eliminate x1 from all subsequent equations. We then retain the first equation as is,
and replace all subsequent equations with their descendants that do not contain x1. At the second
stage, we solve the second equation for the second unknown, x2, and use the expression thus obtained
to eliminate x2 from all subsequent equations. We then retain the first and second equations, and
replace all subsequent equations with their descendants that do not contain x1 or x2. Continuing in
this fashion, we arrive at the last equation, which contains only the last unknown, xN .

Having completed the elimination, we compute the unknowns by the method of backward
substitution. First, we solve the last equation for xN , which thus becomes a known. Second, we
solve the penultimate equation for xN−1, which also becomes a known. Continuing in the backward
direction, we scan the reduced system until we have computed all unknowns.

Pivoting

Immediately before the mth equation has been solved for the mth unknown in the process of elimi-
nation, where m = 1, 2, . . . , N − 1, the linear system takes the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(m)
1,1 A

(m)
1,2 · · · · · · · · · A

(m)
1,N

0 A
(m)
2,2 · · · · · · · · · A

(m)
2,N

0 0 · · · · · · · · · · · ·
0 0 A

(m)
m−1,m−1 A

(m)
m−1,m · · · A

(m)
m−1,N

0 · · · 0 A
(m)
m,m · · · A

(m)
m,N

0 · · · 0 · · · · · · · · ·
0 · · · 0 A

(m)
N,m · · · A

(m)
N,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xN−1

xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
(m)
1

b
(m)
2

b
(m)
3
...

b
(m)
N−1

b
(m)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.1.4)

where A
(m)
i,j are intermediate coefficients and b

(m)
i are intermediate right-hand sides. The first equa-

tion of (B.1.4) is identical to the first equation of the given linear system for any value of m.
Subsequent equations are different, except at the first step corresponding to m = 1.

A difficulty arises when the diagonal element, A
(m)
m,m, is nearly or precisely zero, since we are

unable to solve the mth equation for xm, as required. However, the failure of the method does
not imply that the system does not have a unique solution. To circumvent this difficulty, we simply
rearrange the equations or relabel the unknowns so as to bring themth unknown to themth equation
using the method of pivoting. If there is no way we can make this happen, the matrix A is singular
and the linear system has either no solution or an infinite number of solutions.

In the method of row pivoting, potential difficulties are bypassed by switching themth equation
in the system (B.1.4) with the subsequent kth equation, where k > m; the value of k is chosen so
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that |A(m)
k,m| is the maximum value of the elements in the mth column below the diagonal, A

(m)
i,m , for

i ≥ m. If A
(m)
i,m = 0 for all i ≥ m, the matrix A is singular and the system under consideration does

not have a unique solution.

Algorithm with row pivoting

To implement the method of Gauss elimination with row pivoting, we work according to the following
steps:

Setting up

Formulate the N × (N + 1) partitioned augmented matrix

C(1) ≡
[
A

∣∣∣ b ]
, (B.1.5)

and introduce an N ×N matrix, L, whose elements are initialized to zero.

First pass

1. Find the location of the element with the maximum norm in the first column of C(1).
This is done by searching for the maximum norm of the elements |C(1)

i,1 |, for i = 1, . . . , N .

Assume that this is equal to |C(1)
k,1|, corresponding to the kth row.

2. Skip this step if k = 1. Otherwise, switch the first row with the kth row of C(1); repeat
for the matrix L.

3. Compute the first column of L below the diagonal by setting Li,1 = C
(1)
i,1 /C

(1)
1,1 , for i =

2, . . . , N .

4. Subtract from the ith row of C(1) the first row multiplied by Li,1, for i = 2, . . . , N , to
obtain a new augmented matrix,

C(2) ≡
[
A(2)|b(2)

]
. (B.1.6)

Second pass

1. Find the location of the element with the maximum norm in the second column of C(2),
below the diagonal. This is done by searching for the maximum norm of the elements

|C(2)
i,2 |, for i = 2, . . . , N . Assume that this is equal to |C(2)

k,2|, corresponding to the kth row.

2. Skip this step if k = 2. Otherwise, switch the second row with the kth row of C(2); repeat
for the matrix L.

3. Compute the second column of L below the diagonal, by setting Li,2 = C
(2)
i,2 /C

(2)
2,2 , for

i = 3, . . . , N .

4. Subtract from the ith row of C(2) the second row multiplied by Li,2, for i = 3, . . . , N , to
obtain a new augmented matrix,

C(3) ≡
[
A(3)|b(3)

]
. (B.1.7)

. . .
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mth pass

1. Find the location of the element with the maximum norm in the mth column of C(m),
below the diagonal. This is done by searching for the maximum norm of the elements

|C(m)
i,m |, for i = m, . . . , N . Assume that this is equal to |C(m)

k,m|, corresponding to the kth
row.

2. Skip this step if k = m. Otherwise, switch the mth row with the kth row of C(m); repeat
for the matrix L.

3. Compute the mth column of L below the diagonal, by setting Li,m = C
(m)
i,m /C

(m)
m,m, for

i = m+ 1, . . . , N .

4. Subtract from the ith row of C(m) the mth row multiplied by Li,m, for i = m+1, . . . , N ,
to obtain a new augmented matrix,

C(m+1) ≡
[
A(m+1)|b(m+1)

]
. (B.1.8)

. . .

(N − 1) pass

At the end of the N − 1 pass, corresponding to m = N − 1, the augmented matrix, C(N), has
the form

C(N) =
[
A(N)

∣∣∣ b(N)
]
, (B.1.9)

where A(N) ≡ U is an upper triangular matrix.

Backward substitution

Finally, we solve by backward substitution the upper triangular system

U · x = b(N) (B.1.10)

to extract the solution of the original system of equations, A · x = b. This is done by solving
the last equation in (B.1.10) for the last unknown, xN ; once this is available, we solve the
penultimate equation for xN−1; continuing backward in this fashion, we finally compute x1.

Complete the matrix L (optional)

Set the diagonal elements of the matrix L equal to 1.

LU decomposition

It can be shown by straightforward algebraic manipulations that the matrices L and U provide us
with the LU decomposition of the matrix A. Specifically,

L ·U = Amod, (B.1.11)

where the matrix Amod is identical to A, except that the rows may have been switched due to
pivoting. If pivoting is disabled, Amod = A.
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Determinant

The determinant of the matrix A follows from the relation

det(A) = ± det(Amod) = ± det(L) · det(U) = ±U1,1 U2,2 · · ·UN,N , (B.1.12)

where the plus sign applies when an even number of row interchanges have been made due to
pivoting, and the minus sign otherwise. In the absence of pivoting, the plus sign is chosen.

Other algorithms for performing the LU decomposition of a matrix directly without reference
to a particular system of linear equations are available. Examples are Crout’s and Doolittle’s algo-
rithms [18, 318]. Once the L and U matrices have been obtained, the solution of the linear system
A · x = b is found in two stages: first, we solve the lower triangular system L · y = b for y by
forward substitution; second, we solve the upper triangular system U · x = y for x by backward
substitution.

B.1.3 Thomas algorithm for tridiagonal systems

The Thomas algorithm is used for solving an N ×N tridiagonal system,

D · x = s, (B.1.13)

where s is a given vector. The matrix D has the tridiagonal form

D =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 b1 0 0 0 · · · 0 0 0
c2 a2 b2 0 0 · · · 0 0 0
0 c3 a3 b3 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · cN−1 aN−1 bN−1

0 0 0 0 0 · · · 0 cN aN

⎤⎥⎥⎥⎥⎥⎥⎦ . (B.1.14)

The Thomas algorithm proceeds in two stages. At the first stage, the tridiagonal system (B.1.13) is
transformed into a bidiagonal system,

D′ · x = y, (B.1.15)

involving the bidiagonal coefficient matrix

D′ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 d1 0 0 0 · · · 0 0 0
0 1 d2 0 0 · · · 0 0 0
0 0 1 d3 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 0 1 dN−1

0 0 0 0 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (B.1.16)

At the second stage, the bidiagonal system (B.1.15) is solved by backward substitution. The al-
gorithm involves solving the last equation for the last unknown, xN , and then moving upward to
compute the rest of the unknowns in a sequential fashion. The combined algorithm is listed in Table
B.1.1.
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Reduction to bidiagonal:[
d1
y1

]
=

1

a1

[
b1
s1

]
Do i = 1, 2, . . . , N − 1[

di+1

yi+1

]
=

1

ai+1 − ci+1di

[
bi+1

si+1 − ci+1yi

]
End Do

Backward substitution:

xN = yN

Do i = N − 1, N − 2, . . . , 1 (step=−1)

xi = yi − di xi+1

End Do

Table B.1.1 The Thomas algorithm for solving a tridiagonal system of linear equations.

B.1.4 Fixed-point iterations and successive substitutions

Fixed-point iteration or successive substitution algorithms arise by recasting the original linear
system A · x = b into the system

M · x = N · x+ b, (B.1.17)

where A = M−N is a splitting of the matrix A, We then write

x = P · x+ c, (B.1.18)

where

P = M−1 ·N, c = M−1 · b. (B.1.19)

The algorithm involves computing the sequence of vectors x(k) based on the equation

M · x(k+1) = N · x(k) + b, (B.1.20)

or on the equation

x(k+1) = P · x(k) + c, (B.1.21)
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beginning with a certain initial vector, x(0). If the spectral radius of the projection matrix P is less
than unity, that is, the magnitude of all eigenvalues of P is less than one, the sequence of vectors will
converge to the fixed point of the mapping, denoted by X, that satisfies the equation X = P ·X+ c

and therefore the given equation A ·X = b. In that case, the sequence x(k) will contain increasingly
accurate successive approximations to the solution.

Jacobi’s method

In Jacobi’s method, the iteration matrix, P, and constant vector, c, are constructed by solving the
individual scalar equations of the given system, A ·x = b, for the diagonal unknowns, obtaining the
iteration formula

x
(k+1)
i =

1

Ai,i

(
bi −

N∑
j=1

′Ai,j x
(k)
j

)
, (B.1.22)

where the prime denotes that the term i = j is excluded from the sum. The matrix M defined in
(B.1.17) is the diagonal component of A, and the matrix N is the negative of A with the diagonal
elements set equal to zero. The components of the projection matrix are Pi,j = −Ai,j/Ai,i if i �= j,
Pi,j = 0 if i = j, and ci = −bi/Ai,i, where summation is not implied over the repeated index, i.

A sufficient but not necessary condition for the successive substitutions to converge is that
the matrix A is diagonally dominant,

|Ai,i| >
N∑
j=1

′|Ai,j | (B.1.23)

for any i, where summation is not implied the repeated index, i, and the prime denotes that the
term i = j is excluded from the sum.

Gauss–Seidel method

The Gauss–Seidel method is a variation of Jacobi’s method with the new feature that the components
of x(k+1) replace the corresponding components of x(k) as soon as the former are available. The
effective algorithm is

x
(k+1)
i =

1

Ai,i

(
bi −

i−1∑
j=1

Ai,j x
(k+1)
j −

N∑
j=i+1

Ai,j x
(k)
j

)
. (B.1.24)

Let D be a diagonal matrix, L be a lower triangular, and U be an upper triangular matrix, con-
taining, respectively, the diagonal, lower triangular, and upper triangular components of A. The
Gauss–Seidel mapping takes the form

(D+ L)x(k+1) = −Ux(k) + b, (B.1.25)

where

M = D+ L, N = −U. (B.1.26)

A sufficient but not necessary condition for the successive substitutions to converge is that the matrix
A is symmetric and positive definite.
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Successive over-relaxation

The successive over-relaxation method (SOR) is constructed by restating the Gauss–Seidel iteration
algorithm in the residual correction form x(k+1) = x(k) + r(k), where

r(k) ≡ (P− I) · x(k) + c (B.1.27)

is the residual correction. The correction is controlled by introducing a relaxation parameter, ω,
and setting

x(k+1) = x(k) + ωr(k) = (1− ω)x(k) + ω
(
P · x(k) + c

)
. (B.1.28)

The method is implemented in terms of the modified Gauss–Seidel algorithm

x
(k+1)
i = (1− ω)x

(k)
i +

ω

Ai,i

(
bi −

i−1∑
j=1

Ai,j x
(k+1)
j −

N∑
j=i+1

Ai,j x
(k)
j

)
. (B.1.29)

The corresponding iteration formula is

(D+ ωL) · x(k+1) =
[
(1− ω)D− ωU

]
· x(k) + ωb. (B.1.30)

When ω = 1, we obtain the Gauss–Seidel algorithm. A necessary condition for the successive
substitutions to converge is that 0 < ω < 2. Ideally, ω should take the value that minimizes the
spectral radius of the underlying projection matrix, P. The optimal value can be constructed during
the iterations.

B.1.5 Minimization and search methods

When the coefficient matrix A is symmetric and positive definite, computing the solution of the
linear system A · x = b is equivalent to finding a vector x that minimizes the quadratic functional

F(x) =
1

2
x ·A · x− b · x. (B.1.31)

If the matrix A is not symmetric, we can multiply the equation A · x = b by the transpose of A to
obtain the preconditioned system B · x = c, where B = AT ·A is symmetric and positive definite,
and c = AT · b.

Steepest decent search

In the method of steepest decent, an initial guess is made and then improved by stepping in the
direction where the quadratic functional appears to change most rapidly. The initial steepest-descent
direction is aligned with the residual vector

r ≡ −∇F = −A · x+ b, (B.1.32)

evaluated at the initial guess, x(0),

r(0) ≡ −A · x(0) + b. (B.1.33)
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Thus, the first search direction vector is

p(1) = r(0). (B.1.34)

To compute the travel distance, we note that, as we travel in the direction of r(0), the vector x is
described by x = x(0) +α r(0), where α is a scalar parameter. The value of the quadratic functional
along the travel path is a quadratic function of α,

F(x) =
1

2
(x(0) + α r(0)) ·A · (x(0) + α r(0))− b · (x(0) + α r(0)). (B.1.35)

We want to stop traveling when F has reached a minimum, ∂F/∂α = 0. Taking the partial derivative
of the right-hand side of (B.1.35) with respect to α and setting the resulting expression to zero, we
find the optimal value

α1 =
r(0) · r(0)

r(0) · (A · r(0)) , (B.1.36)

which yields the improved position

x(1) = x(0) + α1 r
(0). (B.1.37)

The minimization process is subsequently repeated in the search direction vector

p(k) = r(k−1) ≡ −A · x(k−1) + b (B.1.38)

so that x(k) = x(k−1) + αk p
(k) with

αk =
p(k) · p(k)

p(k) · (A · p(k))
, (B.1.39)

until the minimum has been reached within a specified tolerance. While the method is guaranteed
to converge, the rate of convergence can be slow.

Directional search

In this method, the minimization problem is solved by selecting a set of search directions expressed
by the N -dimensional vectors p(1),p(2),p(3), . . . , and then stepwise advancing an initial guess, x(0),
by setting

x(k) = x(k−1) + αk p
(k), (B.1.40)

for k = 1, . . . , where αk are appropriate coefficients determining the length of each step. The evolved
solution at the end of the kth step is

x(k) = x(0) +

k∑
i=1

αi p
(i), (B.1.41)
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for k > 0. Without loss of generality, we can begin the search from the origin, x(0) = 0. Our goal is
to compute the search directions so that the exact solution, X, is found exactly after N steps,

X = α1 p
(1) + α2 p

(2) + · · ·+ αN p(N), (B.1.42)

where N is the system size.

As we travel in the search direction p(k), the vector x is described by x = x(k−1) + αk p
(k),

and the quadratic functional along the path is given by

F(x) =
1

2
(x(k−1) + αk p

(k)) ·
(
A · (x(k−1) + αk p

(k))
)
− b · (x(k−1) + αk p

(k)), (B.1.43)

which is a quadratic function of αk. Setting ∂F/∂αk = 0 to identify the optimal stopping point, we
find that

αk =
p(k) · r(k−1)

p(k) · (A · p(k))
, (B.1.44)

which is consistent with (B.1.39).

We have considerable freedom in selecting the search directions. In the steepest descend search
discussed earlier in this section, we have stipulated that p(k) = r(k−1). However, when the graph
of the functional exhibits narrow valleys, the search directions tend to align and successive points
bounce off opposite sides. Better methods for selecting the search directions are available.

In the method of conjugate gradients, the search vectors are computed so that they are A-
conjugate with each other, that is, p(i) ·A ·p(j) = 0 for i �= j. The direction p(k) is aligned as much
as possible with p(k−1), subject to the A-conjugation constraint. The basic algorithm is shown in
Table B.1.1.

B.1.6 Other methods

Powerful iterative methods based on variational principles and residual minimization techniques are
available. In the method of conjugate gradients, the residuals form an orthogonal set in the Krylov
space. In the method of generalized minimal residuals (GMRES), an orthonormal base consisting of
a set of vectors, v(i), is constructed explicitly at every step using Gram–Schmidt orthogonalization.
Specifically, the GMRES sequence is constructed using the formula

x(k) = x(0) + α1 v
(1) + α2 v

(2) + · · ·+ αk v
(k), (B.1.45)

where the coefficients, αi, are chosen to minimize the norm of the residual |A · x(k) − b| at every
step.

B.2 Matrix eigenvalues

The set of eigenvalues of a matrix is called the spectrum of the matrix. The eigenvalues of a diagonal,
upper triangular, or lower triangular matrix are the diagonal elements. Multiple eigenvalues corre-
spond to repeated elements. The eigenvalues of a tridiagonal matrix whose diagonal, subdiagonal,
and superdiagonal elements are constant are known in closed flow, as discussed in Problem 12.2.6.
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x(0) = 0

Do k = 1, . . . , N

If k = 1

p
(1) = r

(0) = b

Else If k > 1

βk =
r(k−1) · r(k−1)

r(k−2) · r(k−2)

p
(k) = r

(k−1) + βk p
(k−1)

End if

αk =
r(k−1) · r(k−1)

p(k) · (A · p(k))

x(k) = x(k−1) + αk p
(k)

r(k) = r(k−1) − αk A · p(k)

End Do

Table B.1.1 A conjugate gradients algorithm for solving a linear system, A · x = b, with a real,
symmetric, and positive definite-coefficient matrix, A.

Gerschgorin’s theorem locates the eigenvalues of a general N ×N matrix, A, inside the union
of N disks in the complex plane. The ith disk is centered at the diagonal element, Ai,i, and the
corresponding radius is equal to the minimum of

N∑
i=1

′|Ai,j |,
N∑
j=1

′|Ai,j |, (B.2.1)

where the prime denotes that the term i = j is excluded from the sum. Other methods for locating
eigenvalues are available [429]. Three general classes of methods for computing eigenvalues are
available.

B.2.1 Roots of the characteristic polynomial

The first class of methods produces the eigenvalues of a matrix, A, by computing the roots of the
characteristic polynomial,

P(λ) ≡ det(A− λI). (B.2.2)

This can be done using general-purpose numerical methods for solving nonlinear algebraic discussed
in Section B.3. To compute P (λ), we may perform the LU decomposition of the matrix A− λI for
a trial value of λ using, for example, the method of Gauss elimination discussed in Section B.2.1.2.
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Determinant of a tridiagonal matrix

When the matrix A is tridiagonal, the shifted matrix, B = A− λI, is also tridiagonal. To compute
the determinant of B, we denote the nonzero elements as Bi,i−1 = γi, Bi,i = αi, Bi,i+1 = βi, set
P0 = 1 and P1 = α1, and compute the sequence

Pi = αiPi−1 − βi−1γiPi−2, (B.2.3)

for i = 2, . . . , N . It can be shown by straightforward substitutions that P = det(B).

B.2.2 Power method

The power method successively transforms a chosen vector by projecting it onto the matrix A until it
becomes an eigenvector corresponding to the eigenvalue with the maximum norm. In the numerical
implementation, we select an initial vector with unit length, x(0), and compute a Krylov sequence
based on the formula

x(k+1) = A · x(k) (B.2.4)

for k = 0, 1, . . . . The algorithm is:

Choose x(0)

for k = 0, 1, ...

s = |x(k)|

x(k) ← 1
s
x(k)

x(k+1) = A · x(k)

λ(k+1) = x(k) · x(k+1)

end

If the matrix A is real and the dominant eigenvector is complex, a complex starting vector x(0) must
be provided.

Suppose that the eigenvalue of A with the maximum norm, λ1, is available. To obtain a
second eigenvalue, we may apply the power method to the singular matrix B = A− λ1I. Note that
at least one eigenvalue of B is zero. Since the eigenvalues of B are shifted with respect to those
of A by λ1, the dominant eigenvalue has been moved to the origin and does not play a role in the
iterations. The power method produces the eigenvalue of B with the maximum norm, λB. The
corresponding eigenvalue of A is λA = λB + λ1.

To compute the eigenvalue of A with the minimum norm, we apply the power method to the
inverse matrix, A−1, and thus obtain the corresponding eigenvalue with the maximum norm, λA−1 .
The eigenvalue of A with the minimum norm is λA = 1/λA−1 . The success of this method hinges
on our ability to compute the inverse A−1 with adequate precision.

To compute the eigenvalue of A that is closest to a specified complex number, c, we apply the
power method to the matrix B = (A − c I)−1, and obtain the eigenvalue of B with the maximum
norm, λB . The theory of eigenvalue shifting ensures that λA = c + 1/λB is the eigenvalue of A
closest to c. To avoid the demanding and possibly precarious computation of the inverse matrix,
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(A− c I)−1, we carry out the iterations by selecting a starting vector, x(0), and then solve a system
of linear equations,

(A− c I) · x(k+1) = x(k). (B.2.5)

In practice, we may perform the LU decomposition of the coefficient matrix A − c I and carry out
iterations by forward and backward substitution, as discussed in Section B.1. The method is reliable
even when c is close to an eigenvalue, rendering the matrix A− c I nearly singular.

Deflation by size reduction

Let us assume that the real eigenvalue of A with the maximum norm, λ1, and the corresponding
real eigenvector, u(1), are available. The eigenvector is normalized so that u(1) · u(1) = 1. Now we
introduce the orthogonal Householder matrix H = I− 2w ⊗w with elements

Hi,j = δi,j − 2wiwj , (B.2.6)

where w is a real vector with unit length, w ·w = 1. We want to compute the vector w so that the
elements in the first column of the matrix

B = H ·A ·H (B.2.7)

are zero, except for the first element, B1,1, that is equal to λ1. Analysis shows that this is true when

w1 =
(1
2
(1± u

(1)
1 )

)1/2

, wi = ± 1

2w1
u
(1)
i (B.2.8)

for i = 2, . . . , N (e.g., [317]). The eigenvalues of the bottom (N − 1)× (N − 1) diagonal block of B
are also eigenvalues of A. Applying the power method to the reduced matrix B yields an additional
eigenvalue. The deflation can be repeated until the sequentially deflated matrix has been reduced
to a scalar.

B.2.3 Similarity transformations

If P is a nonsingular matrix, the matrix B computed by the similarity transformation B = P−1 ·A·P
shares its eigenvalues with A. This observation suggests searching for a transformation matrix, P,
that renders the matrix B as simple as possible, ideally diagonal or triangular.

Jacobi’s method

Jacobi’s method seeks to reduce the norm of the off-diagonal elements of a symmetric matrix, A, by
performing consecutive similarity transformations described as plane rotations by an angle, θ. The
algorithm involves the following steps:

1. Compute

w ≡ cot 2θ =
Ai,i −Aj,j

2Ai,j
. (B.2.9)
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2. Obtain tan θ from the equation

tan θ =
sign(w)

|w|+
√
w2 + 1

. (B.2.10)

3. Set

cos θ =
1√

tan2 θ + 1
. (B.2.11)

4. Compute

r =
sin θ

1 + cos θ
. (B.2.12)

5. Compute the elements of B corresponding to the amended elements of A from the equations

Bi,i = Ai,i +Ai,j tan θ, Bj,j = Aj,j −Ai,j tan θ, (B.2.13)

and

Bi,k = Bk,i = Ai,k + (Aj,k − rAi,k) sin θ, Bj,k = Bk,j = Aj,k − (Ai,k + rAj,k) sin θ,

(B.2.14)

for k = 1, . . . , N and k �= i, j.

The algorithm involves sweeping the off-diagonal elements of the upper or lower triangular block of
the evolving matrix according to a certain protocol.

As the similarity transformations continue, the transformed matrix tends to become diagonal
at a quadratic rate. This means that, after a full sweep has been completed, the sum of the squares
of the norms of the off-diagonal elements has been roughly squared. In practice, only a few sweeps
are necessary to reduce the magnitude of the off-diagonal elements below a negligible threshold.

QR decomposition

The method of QR decomposition can be applied to an arbitrary matrix that is not necessarily
symmetric. The algorithm involves decomposing a matrix A as A = Q ·R, where Q is an orthogonal
matrix and R is an upper triangular matrix whose diagonal elements are equal to unity. Setting
P = Q, we obtain B = QT ·A ·Q = R ·Q. As the transformations are repeated, the evolving matrix
tends to become precisely or nearly upper triangular.

B.3 Nonlinear algebraic equations

Consider a system of N nonlinear algebraic equations for N scalar unknowns,

fi(x1, x2, . . . , xN ) = 0, (B.3.1)
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where i = 1, . . . , N . It is convenient to introduce the vector of independent variables, x, and the
vector function f(x).

Fixed-point iterations

To compute the solution of the vector equation f(x) = 0, we recast it into the form x = g(x), and
perform fixed-point iterations based on the formula

x(k+1) = g(x(k)), (B.3.2)

beginning with a certain initial guess, x(0), where the superscript (k) is an iteration index. It is
possible that the sequence x(k) will converge to the fixed point of the mapping function g, denoted
by X, which, by definition, satisfies the equation X = g(X) or f(X) = 0. A sufficient condition for
the fixed-point iterations to converge is that

N∑
i=1

|Gi,j(X)| ≤ 1, (B.3.3)

for any j. The Jacobian matrix, G, with elements Gi,j = ∂gi/∂xj , is the transpose of the gradient
of g, G ≡ (∇g)T . A necessary condition for the iterations to converge is that the spectral radius of
G evaluated at the a priori unknown fixed point is less than unity.

Newton’s and related methods

To implement Newton’s method, we introduce the matrix of partial derivatives of the vector function
f with elements Fi,j = ∂fi/∂xj , and use the iteration function

g(x) = x− F−1(x) · f(x), (B.3.4)

where F−1 is the inverse of F. The algorithm involves solving a linear system of equations for a
correction vector e,

F(x(k)) · e = −f(x(k)), (B.3.5)

and then setting x(k+1) = x(k) + e. The iterations are terminated when |e| falls below a specified
threshold.

In the case of a single equation, N = 1, we obtain the Newton–Raphson algorithm

x(k+1) = x(k) − f(x(k))

f ′(x(k))
, (B.3.6)

where f ′ = df/dx. In practice, the derivative f ′ is computed by numerical differentiation setting,
for example, f ′ = [f(x+ ε)− f(x)]/ε, where ε is a small increment, as discussed in Section B.5.

Newton’s method is guaranteed to converge so long as the initial guess is sufficiently close
to a root. The rate of convergence is quadratic: each time we carry out one iteration, the error is
raised to the second power and then multiplied by a constant coefficient. In the case of a multiple
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root, the rate of convergence is linear: each time we carry out one iteration, the error is multiplied
by a constant factor that is less than unity. In the case of a double root, the constant factor is
equal to one half. However, if necessary, second-order convergence can be rectified by a judicious
modification of the basic algorithm.

Secant method

The secant method is a modification of Newton’s method designed to circumvent the computation
of derivatives. In the case of one equation, N = 1, the algorithm is

x(k+1) = x(k) − f (k) x
(k) − x(k−1)

f (k) − f (k−1)
. (B.3.7)

Two guesses are required to initialize the iterations. Each time we carry out one iteration, the error
is raised approximately to the 1.6 power.

Quasi-Newton’s methods are modifications of Newton’s method where the Jacobian matrix is
either kept constant or constructed during the iterations.

Bairstow’s method for polynomials

This powerful method allows us to compute a pair of roots of an Nth degree polynomial, PN (x) =
a1 xN + a2 x

N−1 + a3 x
N−2 + · · · + aN x + aN+1. When the coefficients ai are real, we are able to

capture complex conjugate pairs of roots. The idea is to express the polynomial in the form

PN (x) = (x2 − r x− s) (b1 x
N−2 + b2 x

N−3 + b3 x
N−4 + · · ·+ bN−2 x+ bN−1)

+ bN (x− r) + bN+1,
(B.3.8)

where bi are real or complex coefficients. Now we seek to compute the constants r and s so that the
coefficients bN and bN+1 are zero and the polynomial has a factorized form. When this has been
accomplished, the roots of the binomial x2 − r x − s are also roots of the polynomial, PN (x), and
can be extracted using the quadratic formula. To compute further roots, we apply the method to
the (N − 2)-degree polynomial enclosed by the second set of parentheses on the right-hand side of
(B.3.8).

The problem has been reduced to solving a system of two nonlinear equations,

bN (r, s) = 0, bN+1(r, s) = 0, (B.3.9)

where the coefficients bN and bN+1 are polynomial functions of r and s. The solution is found using
Newton’s method for two equations. To evaluate the coefficients bN and bN+1 and their partial
derivatives with respect to r and s, we construct the sequence

b1 = a1, b2 = a2 + r b1, b3 = a3 + r b2 + s b1, . . . ,

bN = aN + r bN−1 + s bN−2, bN+1 = aN+1 + r bN + s bN−1, (B.3.10)

and then the sequence

c1 = 0, c2 = b1, c3 = b2 + r c1, c4 = b3 + r c3 + s c2, . . . ,

cN = bN−1 + r cN−1 + s cN−2, cN+1 = bN + r cN + s cN−1. (B.3.11)
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It can be shown by straightforward substitution that ∂bk/∂r = ck and ∂bk/∂s = ck−1 for k =
1, . . . , N .

Deflation

Once a root of the equation f(x) = 0 has been found, denoted by X, it can be screened out by
considering the deflated equation f̃(x) = 0, where f̃(x) = f(x)/|x −X|m and m is the multiplicity
of X.

Initial guess

A successful estimate of the location of a root can be made by examining whether any terms of the
function f take small or large values for small or large values of the individual scalar components
of the vector of independent variables, x. If they do, we either ignore these terms or discard the
rest of the terms, compute the solution of the simplified system, and check a posteriori whether the
approximations that lead us to the approximate solution are justified.

Parameter continuation

A successful initial guess can be found by the method of parameter continuation or embedding.
The idea is to perturb the equation f(x) = 0 to formulate a modified equation, q(x, ε) = 0, where
q(x, ε = 1) = f(x) and the equation q(x, ε = 0) = 0 is easy to solve. The procedure involves solving
a sequence of equations, such as

q(x, ε = 0) = 0, q(x, ε = 0.1) = 0, . . . , q(x, ε = 1.0) = 0, (B.3.12)

where the initial guess in solving each equation is the converged solution of the previous equation.
In fluid mechanics, the parameter ε can be identified with the Reynolds number.

B.4 Function interpolation

Given the values of a function, f(x), at N + 1 data points, xi, where i = 1, . . . , N + 1, we wish to
compute the value of the function at an intermediate point.

The interpolating polynomial

A popular method of function interpolation replaces the interpolated function, f(x), with an Nth-
degree interpolating polynomial passing through the data points,

f(x) � PN (x) = a1x
N + a2x

N−1 + a3x
N−2 + · · ·+ aNx+ aN+1, (B.4.1)

so that f(xi) = PN (xi). The error incurred by this approximation is given by

e(x) = −f (N+1)(ξ)

(N + 1)!
ΦN+1(x), (B.4.2)

where

ΦN+1(x) = (x− x1)(x− x2) · · · (x− xN )(x− xN+1), (B.4.3)
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is an (N + 1)-degree polynomial and f (N+1)(ξ) is the N + 1 derivative of f evaluated at a certain
point ξ that is located somewhere between x1 and xN+1. The actual location of ξ depends on the
value of x. The interpolation error does not necessarily vanish as N tends to infinity, especially
when the data points are evenly spaced. However, if the data points coincide with the scaled zeros
of an Nth degree orthogonal polynomial, the error generally diminishes uniformly as N is increased.

Vandermonde matrix

To compute the interpolating polynomial, we may enforce the interpolation constraint f(xi) =
PN (xi) at the N + 1 data points, and thereby derive a system of N + 1 equations for the N + 1
unknown coefficients, ai. The matrix of the linear system multiplying the unknown vector is the
transpose of the Vandermonde matrix. The determinant of this matrix can be shown to be equal to
the product of xi − xj with i > j, and this ensures that the solution of the linear system is unique
as long as the data points are distinct. Unfortunately, the Vandermonde matrix is nearly singular
for moderate and high values of N , placing limits on the accuracy and practicality of the numerical
method.

Lagrange interpolation

In Lagrange’s method, the interpolating polynomial is constructed in an expedient manner that
circumvents the explicit computation of the polynomial coefficients, by setting

PN (x) =
N+1∑
i=1

f(xi) lN,i(x), (B.4.4)

where

lN,i(x) =
(x− x1)(x− x2) · · · (x− xi−1)(x− xi+1) · · · (x− xN+1)

(xi − x1)(xi − x2) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xN+1)
(B.4.5)

are Nth-degree Lagrange polynomials defined in terms of the data points. An alternative compact
representation is

lN,i(x) =
1

Φ′
N+1(xi)

ΦN+1(x)

x− xi
, (B.4.6)

where the polynomial ΦN+1 is defined in (B.4.3). The denominators of the fractions defining lN,i(x)
are constant, whereas the numerators are Nth-degree polynomials in x.

Local polynomial interpolation

When the number of data points is large or the data carry an appreciable amount of error, global
polynomial interpolation may lead to substantial error in certain regions, especially near the ends of
the interpolation domain. To avoid this pitfall, we replace the global interpolating polynomial with
the union of local interpolating polynomials defined with respect to a small group of data points.

Linear polynomial interpolation employs two consecutive data points and yields the first-degree
polynomial

P
(i)
1 (x) = f(xi) + (x− xi)

f(xi+1)− f(xi)

xi+1 − xi
, (B.4.7)
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or

P
(i)
1 (x) = f(xi)

x− xi+1

xi − xi+1
+ f(xi+1)

x− xi

xi+1 − xi
, (B.4.8)

for xi < x < xi+1.

Quadratic interpolation employs three consecutive data points and yields the second-degree
polynomial

P
(i)
2 (x) = f(xi) + [ (ai(x− xi) + bi ](x− xi), (B.4.9)

for xi−1 < x < xi+1. The coefficients ai and bi are computed sequentially as

ai =
1

xi+1 − xi−1

( f(xi+1)− f(xi)

xi+1 − xi
− f(xi−1)− f(xi)

xi−1 − xi

)
,

(B.4.10)

bi =
f(xi+1)− f(xi)

xi+1 − xi
− ai (xi+1 − xi).

Simplifications occur when the points are evenly spaced.

Cubic-spline interpolation

Cubic-spline interpolation fits a third-degree polynomial over each interval between two consecutive
data points and matches the first and second derivatives of adjacent polynomials at the data points.
Denoting the ith cubic polynomial by

P
(i)
3 (x) = ai(x− xi)

3 + bi(x− xi)
2 + ci(x− xi) + yi, (B.4.11)

we find that

ai =
1

3

bi+1 − bi
hi

, ci =
yi+1 − yi

hi
− 1

3
hi (2bi + bi+1), (B.4.12)

where hi = hi+1 − hi and

bN+1 ≡ 1

2

(d2P (N)
3

dx2

)
x=xN+1

= 3 aNhN + bN . (B.4.13)

The coefficients bi satisfy the N − 1 equations

hi bi + 2 (hi + hi+1) bi+1 + hi+1 bi+2 = 3
( yi+2 − yi+1

hi+1
− yi+1 − yi

hi

)
, (B.4.14)

for i = 1, . . . , N − 1. To compute the N + 1 unknowns, b1, b2, . . . , bN+1, we require two additional
conditions. In the case of clamped splines, we specify the slope of the first and last cubics at the first
and last data points. If the interpolated function is periodic, we require that the first and second
derivatives of the first cubic at the first point are equal to those of the last cubic at the last point.
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Polynomial interpolation in two variables

Polynomial interpolation in two variables is similar to that in one variable discussed earlier in this
section. The counterpart of local linear interpolation is bilinear interpolation: for each value of x,
the interpolating function varies linearly with respect to y; for each value of y, the interpolating
function varies linearly with respect to x. Suppose that a point x lies inside a rectangle confined
by the vertical grid lines x = xi, xi+1, and the horizontal grid lines y = yj, yj+1. The interpolated
value, f(x, y), is computed as a weighted average of values of f at the four closest grid points,

f(x, y) = w(x, y) : F. (B.4.15)

In terms of the dimensionless coordinates

ξ =
x− xi

Δx
, η =

y − yj
Δy

, (B.4.16)

where Δx = xi+1 − xi and Δy = yj+1 − yj , the weight matrix takes the form

w =

[
(1− ξ) η ξ η

(1− ξ) (1− η) ξ (1− η)

]
. (B.4.17)

Bilinear interpolation generates a continuous function with generally discontinuous first derivatives
across the grid lines.

Trigonometric interpolation

Consider a real function, f(x), defined in the interval [a, b]. Trigonometric or Fourier approximation
and interpolation represents the function in that interval with a truncated complete Fourier series,

FM (x) =
1

2
a0 +

M∑
p=1

ap cos(pkx̂) +

M∑
p=1

bp sin(pkx̂), (B.4.18)

where x̂ = x−a, k = 2π/L is the wave number, L = b−a is the length of the interval, M is a chosen
truncation level, and ap, bp are real Fourier coefficients. Although x̂ can be replaced by x without
loss of generality, this complicates the forthcoming algebraic expressions. Outside the interval [a, b],
the Fourier series yields the periodic repetition of the portion of f in [a, b].

An alternative complex form of the complete Fourier series is

FM (x) =
M∑

p=−M

cp exp(−i pkx̂), (B.4.19)

where cp are complex Fourier coefficients and i is the imaginary unit, i2 = −1. To ensure that the
right-hand side of (B.4.19) is real, we require that

c−p = c∗p, (B.4.20)

where an asterisk denotes the complex conjugate. Using the Euler decomposition of the complex
exponential,

exp(−ipkx̂) = cos(pkx̂)− i sin(pkx̂), (B.4.21)
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∫ b

a

exp[i (p− q)kx̂] dx =

∫ L

0

exp[i (p− q)kx̂] dx̂ = L δpq

∫ L

0

cos(pkx̂) cos(qkx̂) dx̂ =

⎧⎨⎩ L if p = q = 0
1
2 L if p = q �= 0
0 otherwise∫ L

0

sin(pkx̂) sin(qkx̂) dx̂ =

{
1
2 L if p = q �= 0,
0 otherwise.∫ L

0

cos(pkx̂) sin(qkx̂) dx̂ = 0

Table B.4.1 Orthogonality of trigonometric functions in the interval [a, b]; L = b − a, k = 2π/L, p
and q are two integers, and x̂ = x− a.

we find that the real and complex Fourier coefficients are related by

cp =
1

2
(ap + i bp), (B.4.22)

with the understanding that b0 = 0 and therefore c0 = 1
2 a0 is real. Because of the preferential

treatment of the first term on the right-hand side of (B.4.18), equation (B.4.22) holds true for any
value of p, including zero. A graph of |cp|2 against the index p provides us with the discrete power
spectrum of the function f(x).

To compute the Fourier coefficients, we use of the Fourier orthogonality properties shown in
Table B.4.1. Multiplying both sides of (B.4.19) by exp(i qx̂), where q is an integer, using the first
orthogonality property in Table B.4.1, and then relabeling q → p, we find that

cp =
1

L

∫ b

a

f(x) exp(i pkx̂) dx, (B.4.23)

and thus

ap =
2

L

∫ b

a

f(x) cos(pkx̂) dx, bp =
2

L

∫ b

a

f(x) sin(pkx̂) dx. (B.4.24)

It can be shown that, when the coefficients are computed in this fashion, in the limit as M tends
to infinity, the Fourier representation (B.4.18) becomes exact. The integrals in (B.4.24) can be
computed by numerical integration, as discussed in Section B.6.

Let us divide the interval L into N subintervals separated by N+1 data points xi = a+(i−1)h,
where i = 1, . . . , N +1, h = L/N , and xN+1 = b. Using the trapezoidal rule to evaluate the complex
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N∑
j=1

exp(ipkx̂j) =

{
N if p = sN
0 otherwise

N∑
j=1

exp[−ijk(xp − xq)] =

{
N if p− q = sN
0 otherwise

N∑
j=1

cos(pkx̂j) cos(qkx̂j) =

⎧⎨⎩ N if p− q = sN �= 0
1
2 N if p− q = 0

0 otherwise

N∑
j=1

sin(pkx̂j) sin(qkx̂j) =

{
1
2
N if p− q = sN
0 otherwise

N∑
j=1

cos(pkx̂j) sin(qkx̂j) = 0

Table B.4.2 Discrete orthogonality of trigonometric functions, where xj = a + (j − 1)h for j =
1, . . . , N + 1, is a sequence of evenly spaced points, h = L/N , L = b − a, x1 = a, xN+1 = b,
k = 2π/L, x̂ = x− a, i is the imaginary unit, and p, q, s are integers.

Fourier integral in (B.4.23), we find that

cp =
1

N

[ 1
2
f(x1) + ωp f(x2) + ω2p f(x3) + · · ·+ ω(N−1)p f(xN ) +

1

2
f(xN+1)

]
, (B.4.25)

where

ω ≡ exp(ikh) = exp(
2πi

N
). (B.4.26)

Using the identities shown in Table B.4.2, we find that, when the coefficients are computed in this
fashion, the truncated Fourier series interpolates through the interior data,

FM (xj) = f(xj) (B.4.27)

for j = 2, . . . , N . The value of the truncated Fourier series at the first and last data is the end point
average,

FM (x1) = FM (xN+1) =
1

2
[ f(x1) + f(xN+1) ]. (B.4.28)

Thus, the truncated Fourier series interpolates through the mean of the first and last points.
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If the interpolated function f(x) is repeated along the x axis with period L, f(x1) = f(xN+1),
formula (B.4.25) takes the simpler form

cp =
1

N

N∑
j=1

ω(j−1)p f(xj). (B.4.29)

In that case,

FM (xj) = f(xj) (B.4.30)

for all j = 1, . . . , N +1, that is, the truncated Fourier series interpolates through all N +1 data. In
practice, when N is large, the sum on the right-hand side of (B.4.29) is computed most efficiently
by the method of fast Fourier transform (FFT) requiring N log2 N operations.

B.5 Numerical differentiation

Given the values of a function, f(x), at N + 1 data points, xi, where i = 1, . . . , N + 1, we wish
to compute its derivatives at the data points or at an intermediate point. This can be done by
approximating the function with a local interpolating polynomial, as discussed in Section B.4, and
then differentiating the interpolating polynomial to obtain approximations to the derivatives.

Consider the computation of the derivatives of a function at the ith datum point, xi. If we
use an equal number of data points on either side of xi to construct the interpolating polynomial, we
obtain central differences. Otherwise, we obtain spatially biased, forward or backward differences.
Table B.5.1 summarizes finite-difference formulas for computing the derivatives of a function of one
variable, x, at the point xi using the values of the function at a collection of evenly spaced data
points separated by distance Δx = h (e.g., [185]).

Finite-difference formulas for computing the Laplacian of a function of two variables, x and y
at a grid point, (xi, yi), can be derived working in a similar fashion. Consider a uniform Cartesian
grid with spacings Δx and Δy, and define β = (Δx/Δy)2. The five-point formula yields

(∇2f)i,j =
1

Δx2

⎡⎣ 0 β 0
1 −2 (1 + β) 1
0 β 0

⎤⎦ : F, (B.5.1)

with accuracy of O(Δx2) and O(Δy2), where

F =

⎡⎣ fi−1,j+1 fi,j+1 fi+1,j+1

fi−1,j fi,j fi+1,j

fi−1,j−1 fi,j−1 fi+1,j−1

⎤⎦ . (B.5.2)

The nine-point formula with Δx = Δy yields

(
∇2f

)
i,j

� 1

6Δx2

⎡⎣ 1 4 1
4 −20 4
1 4 1

⎤⎦ : F, (B.5.3)

with accuracy of O(Δx2).
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Backward differences with accuracy O(h)

⎡⎢⎢⎣
h f ′

i

h2 f ′′
i

h3 f ′′′
i

h4 f ′′′′
i

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 0 −1 1
0 0 1 −2 1
0 −1 3 −3 1
1 −4 6 −4 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

fi−4

fi−3

fi−2

fi−1

fi

⎤⎥⎥⎥⎥⎥⎥⎦
Backward differences with accuracy O(h2)

⎡⎢⎢⎣
2h f ′

i

h2 f ′′
i

2h3 f ′′′
i

h4 f ′′′′
i

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 0 1 −4 3
0 0 −1 4 −5 2
0 3 −14 24 −18 5

−2 11 −24 26 −14 3

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

fi−5

fi−4

fi−3

fi−2

fi−1

fi

⎤⎥⎥⎥⎥⎥⎥⎦
Centered differences with accuracy O(h2)

⎡⎢⎢⎢⎢⎣
2h f ′

i

h2 f ′′
i

h2 f ′′
i

2h3 f ′′′
i

h4 f ′′′′
i

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
0 −1 0 1 0
0 1 −2 1 0

−1 2 0 −2 1
1 −4 6 −4 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

fi−2

fi−1

fi
fi+1

fi+2

⎤⎥⎥⎥⎥⎥⎥⎦
Centered differences with accuracy O(h4)

⎡⎢⎢⎣
12h f ′

i

12h2 f ′′
i

8h3 f ′′′
i

6h4 f ′′′′
i

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 −8 0 8 −1 0
0 −1 16 −30 16 −1 0
1 −8 13 0 −13 8 −1

−1 12 −39 56 −39 12 −1

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fi−3

fi−2

fi−1

fi
fi+1

fi+2

fi+3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table B.5.1 Finite-difference formulas for the derivatives of a function, f(x), at the grid point, xi,

in terms of values of the function at a set of evenly spaced neighboring points separated by the
distance Δx = h. (Continuing.)
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Forward differences with accuracy O(h)

⎡⎢⎢⎣
h f ′

i

h2 f ′′
i

h3 f ′′′
i

h4 f ′′′′
i

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−1 1 0 0 0
1 −2 1 0 0

−1 3 −3 1 0
1 −4 6 −4 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

fi
fi+1

fi+2

fi+3

fi+4

⎤⎥⎥⎥⎥⎦
Forward differences with accuracy O(h2)

⎡⎢⎢⎣
2h f ′

i

h2 f ′′
i

2h3 f ′′′
i

h4 f ′′′′
i

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−3 4 −1 0 0 0
2 −5 4 −1 0 0

−5 18 −24 14 −3 0
3 −14 26 −24 11 −2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

fi
fi+1

fi+2

fi+3

fi+4

fi+5

⎤⎥⎥⎥⎥⎥⎥⎦
Table B.5.1 (Continued.)

B.6 Numerical integration

Given the values of a function f(x) at N + 1 data or base points, xi, i = 1, . . . , N + 1, distributed
inside a closed interval, [a, b], we want to compute the integral

I ≡
∫ b

a

f(x) dx. (B.6.1)

A typical method of numerical integration involves approximating the integrand, f(x), with a global
interpolating polynomial or with a set of local interpolating polynomials defined in [a, b], as discussed
in Section B.4, and then integrating the interpolating polynomials over their domain of definition.

Trapezoidal rule

Approximating f(x) with a straight line between two consecutive data points, described by a first-
degree local interpolating polynomial, we obtain the trapezoidal rule. When the base points are
distributed evenly with constant separation h = (b− a)/N , we obtain

Itr(h) = h (
1

2
f1 + f2 + · · ·+ fN +

1

2
fN+1 ), (B.6.2)

where x1 = a and xN+1 = b. It can be shown that the leading-order numerical error is

Etr(h) =
1

12
(b− a) f ′′(ξ)h2, (B.6.3)

where the point ξ lies somewhere inside the integration domain.
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Romberg integration uses the results of two computations with different interval sizes h to
improve the accuracy to fourth order in h. For example,

IRom(h =
ε

2
) =

1

3

(
4 Itr(h =

ε

2
)− Itr(h = ε)

)
. (B.6.4)

Note that the most accurate result enjoys a higher weight.

Simpson’s rule

Approximating f(x) with a parabola subtended across triplets of consecutive data points, described
by a second-degree local interpolating polynomial, we obtain Simpson’s one-third rule. Assuming
that the number of intervals N is even, we obtain

Ismp(h) =
1

3
h
(
f1 + 4f2 + 2f3 + 4f4 + · · ·+ 2fN−1 + 4fN + fN+1

)
. (B.6.5)

The numerical error is

ESmp(h) =
1

180
(b− a) f ′′′′(ξ) h4 � 1

180
(f ′′′

N+1 − f ′′′
1 ) h4, (B.6.6)

where the point ξ lies somewhere inside the integration domain. Romberg integration improves the
accuracy to sixth order in h by setting

IRom(h =
ε

2
) =

1

15

(
16 ISmp(h =

ε

2
)− ISmp(h = ε)

)
. (B.6.7)

Note that the most accurate result is assigned a considerably higher weight.

Gauss quadratures

Gauss quadratures require that the data points are distributed in special ways over the integration
domain. Global polynomial interpolation followed by analytical integration leads to the numerical
approximation

IGauss =
1

2
(b− a)

NQ∑
i=1

f(xi)wi, (B.6.8)

where NQ is the chosen number of quadrature base points and wi are proper weights. The position
of the base points, xi, is determined by the zeros of a properly selected NQ-degree orthogonal
polynomial.

The Gauss–Legendre quadrature is designed for functions that are free of singularities inside
the entire integration domain, including the boundaries. The base points where the integrand is
evaluated are located at xi =

1
2 [a+ b+ ti(b− a)], where ti are the zeros of the NQ-degree Legendre

polynomial defined in the interval [−1, 1]. For each chosen NQ, the weights wi add up to two, which
is necessary for (B.6.8) is to be valid when f is a constant function. Polynomials of degree 2NQ − 1
or less are integrated exactly. Values of zi and wi for several values of NQ are given in texts on
numerical methods (e.g., [317]).
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Other Gauss quadratures applicable to singular integrals and semi-infinite or infinite integra-
tion domains are available (e.g., [317]).

Two-dimensional integrals

The choice of a successful numerical method for computing the integral of a function of two variables
f(x, y) over a two-dimensional domain depends on the smoothness of the function and geometry of
the integration domain.

When the function f(x, y) is smooth and the domain is a rectangular area confined within
a < x < b and c < yd, the successive application of two Gauss–Legendre quadratures for integration
in each direction yields the compound quadrature

∫∫
rectangle

f(x, y) dx dy � 1

4
(b− a)(c− a)

NQx∑
i=1

NQy∑
i=1

f(xi, yj)wi wj , (B.6.9)

where NQx and NQy are two independent integers determining the order of the quadrature, and xi,
yj correspond to the Gauss-Legendre base points.

To compute the integral of a smooth function over the surface of a triangle with vertices at
the points v1, v2, and v3, we use the quadrature

∫∫
triangle

f(x, y) dx dy � A

NQ∑
i=1

f(xi)wi, (B.6.10)

where A = |(x2 − x1)× (x3 − x1)| is the area of the triangle and

xi = αiv1 + βiv2 + γiv3 (B.6.11)

is the position of the base points over the triangle. The coefficients αi, βi, and γi, and corresponding
weights, wi, are are given in texts on numerical methods [317].

B.7 Function approximation

Given a certain amount of information about a function, f(x), inside an interval, [a, b], we wish
to approximate the function with an Nth-degree approximating polynomial, PN (x). Weierstrass’s
theorem guarantees that, if f(x) is a continuous function, a polynomial of sufficiently high degree,
N , can be found such that |f(x) − PN (x)| < ε for any x between a and b, where ε is an arbitrary
small number. Our task is to compute this optimal polynomial.

In the least-squares method, the coefficients of the polynomial are found by minimizing the
integral of the squared difference, |f(x)−PN (x)|2, multiplied by a chosen weighting function, w(x),
over [a, b]. Unfortunately, when N is higher than about five, this approach results in a nearly singular
system of algebraic equations.
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Orthogonal polynomials

In an alternative approach, we introduce a family of orthogonal polynomials, pi(x), for i = 0, 1, . . .,
where pi(x) is an ith degree polynomial with associated weighting function w(x) defined in the
interval [c, d]. By construction,

(
pi, pj

)
≡
∫ d

c

pi(x) pj(x)w(x) dx = Dij , (B.7.1)

where D is a diagonal matrix. Two popular families of orthogonal polynomials are the Legendre
polynomials and the Chebyshev polynomials, both defined in the interval [−1, 1]. An important
property of the Chebyshev polynomials is that their magnitude is less than unity for any value of x
in the interval [−1, 1].

Next, we introduce the scaled variable t = c+(d−c)(x−b)/(a−b), where a < b and c < d. As
x increases from a to b, the variable t increases from c to d. Finally, we express the approximating
polynomial in terms of a weighted sum of orthogonal polynomials of a chosen class as

Pn(t) =
N∑
i=0

ai pi(t), (B.7.2)

and compute the coefficients ai using the orthogonality condition for pi(t) stated in (B.7.1),

ai =
1

Dii

∫ d

c

f(t) pi(t)w(t) dt, (B.7.3)

where summation is not implied over the repeated index, i. The integral in (B.7.3) can be computed
by numerical integration in terms of the values of f at data points, as discussed in Section B.6. To
relate t to x, we use the inverse transformation, x = a+ (t− c)(b− a)/(d− c).

B.8 Ordinary differential equations

Consider a system of N ordinary differential equations with respect to an independent variable, t,

dxi

dt
= fi(x1, x2, . . . , xN , t), (B.8.1)

subject to a given initial condition, xi(t = 0), for i = 1, . . . , N . In terms of the vector of unknowns
functions, x, and velocity vector, f , we obtain

dx

dt
= f(x, t). (B.8.2)

The space of scalar variables encapsulated in the vector x comprise the phase space of the solution.
If the function f does not depend explicitly on t but only implicitly through x, the system is called
autonomous; otherwise it is called nonautonomous.

In the following discussion, the superscript (k) denotes the kth time level, tk, and Δt = tk+1−tk
is the time step.
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Euler method

In Euler’s method, the solution is advanced over a small time interval, Δt, by moving in the phase
space by a small distance with the initial phase velocity, so that

x(k+1) = x(k) +Δt f(x(k), tk). (B.8.3)

Each time step introduces a numerical error of order Δt2.

Second-order Runge–Kutta method

The second-order Runge–Kutta method (RK2) is a predictor–corrector scheme requiring two velocity
evaluations in each time step. The solution is advanced according to the following five substeps:

1. Compute: f (k) ≡ f(x(k), tk)

2. Set: xtmp = x(k) + κΔt f (k)

3. Compute: f tmp = f(xtmp, tk + κΔt)

4. Set: ffinal = (1− α) f (k) + α f tmp

5. Advance: x(k+1) = x(k) +Δt ffinal

where the superscript “tmp” denotes a temporary solution, and α and κ are positive numerical
parameters satisfying 2ακ = 1.

• Setting α = 1
2 and κ = 1 yields the standard version of the RK2 method, also called the

modified Euler method.

• Setting α = 1 and κ = 1
2 yields the midpoint RK2 method.

• Setting α = 3
4 and κ = 2

3 yields Heun’s method.

Heun’s method minimizes the magnitude of the numerical error. In all cases, each complete time
step introduces a numerical error of order Δt3.

Third-order Runge–Kutta method

The third-order Runge–Kutta method (RK3) requires three velocity evaluations in each step. The
solution is advanced according to the following seven substeps:

1. Compute: f (k) ≡ f(x(k), tk)

2. Set: xtmp1 = x(k) + 1
2 Δt f (k)

3. Compute: f tmp1 = f(xtmp1, tk + 1
2 Δt)

4. Set: xtmp2 = x(k) +Δt (2 f tmp1 − f (k) )

5. Compute: f tmp2 = f(xtmp2, tk +Δt)
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6. Set: ffinal = 1
6

(
f (k) + 4 f tmp1 + f tmp2

)
7. Advance: x(k+1) = x(k) +Δt ffinal

Each complete time step introduces a numerical error of order Δt4.

Fourth-order Runge–Kutta method

The fourth-order Runge–Kutta method (RK3) requires four velocity evaluations in each step. The
solution is advanced according to the following nine substeps:

1. Compute: f (k) ≡ f(x(k), tk)

2. Set: xtmp1 = x(k) + 1
2 Δt f (k)

3. Compute: f tmp1 = f(xtmp1, tk + 1
2 Δt)

4. Set: xtmp2 = x(k) + 1
2 Δt f tmp1

5. Compute: f tmp2 = f(xtmp2, tk + 1
2 Δt)

6. Set: xtmp3 = x(k) +Δt f tmp2

7. Compute: f tmp3 = f(xtmp3, tk +Δt)

8. Set: ffinal = 1
6

(
f (k) + 2 f tmp1 + 2 f tmp2 + f tmp3

)
9. Advance: x(k+1) = x(k) +Δt ffinal

Each complete time step introduces a numerical error of order Δt5.



FDLIB software library C
The software library Fdlib contains a collection of Fortran 77, C++, Matlab, and other programs
that solve a broad range of problems in fluid dynamics and related disciplines by a variety of nu-
merical methods. Fdlib consist of the thirteen main directories listed in Table C.1. Each main
directory contains a multitude of nested subdirectories that include main programs, assisting sub-
routines, and utility subroutines. Linked with drivers, the utility subroutines become stand-alone
modules; all drivers are provided. A list of subdirectories and a brief description of their con-
tents are given in this appendix. Further information is available at the Fdlib Internet site:
http://dehesa.freeshell.org/FDLIB. Sample results generated by various codes are shown in
Figures C.1–C.10.

C.1 Installation

The source code of Fdlib, containing programs and data files, can be obtained from the Fdlib In-
ternet site stated above. The directories have been archived using the tar Unix facility into the
compressed FDLIB *.tgz file, where the asterisk denotes the version number encoded as year and
month (yy mm). To unravel the directories (folders) in a Unix system, issue the Unix command:
tar xzf FDLIB *.tgz. This will generate the FDLIB * directory containing nested subdirectories.
To unravel the directories in another operating system, double-click on the archived tar file and
follow the instructions of the invoked application.

Compilation and execution

Matlab programs are executed as interpreted scripts. The downloaded Fdlib package does not
contain Fortran 77 or C++ object or executable files. To compile and link Fortran 77 or C++
programs, follow the instructions of your compiler. An application can be built using the makefile
provided in each subdirectory. The makefiles contain scripts interpreted by the make utility that
instruct the operating system how to compile the main programs and subroutines, and then link the
object files into executable binary files.

To compile an application named nea krini, navigate to the subdirectory where the application
resides and type: make nea krini. To compile the Fortran 77 programs using a Fortran 90
compiler, make appropriate compiler call substitutions in the makefiles. To remove the object files,
output files, and executable of an application named polihni, navigate to the subdirectory where the
application resides and issue the command: make clean.

1090



C FDLIB software library 1091

Subject Directory

1 Numerical methods 01 num meth

2 Grids 02 grids

3 Hydrostatics 03 hydrostat

4 Various 04 various

5 Lubrication 05 lub

6 Stokes flow 06 stokes

7 Potential flow 07 ptf

8 Hydrodynamic stability 08 stab

9 Vortex motion 09 vortex

10 Boundary layers 10 bl

11 Finite-difference methods 11 fdm

12 Boundary-element methods 12 bem

13 Turbulence 13 turbo

Table C.1 The software library Fdlib is arranged in thirteen directories according to physical or
numerical classification.

CFDLAB

A subset of Fdlib has been combined with the X11 graphics library vogle into the integrated
application Cfdlab that visualizes the results of simulations and performs interactive animation.
Vogle is written in C but offers Fortran 77 and C++ interfaces. The source code of Cfdlab can be
downloaded from the Internet site: http://dehesa.freeshell.org/CFDLAB.

BEMLIB

A subset of Fdlib containing boundary-element and related codes have been arranged in the li-
brary Bemlib [313]. The source code of Bemlib can be downloaded from the Internet site:
http://dehesa.freeshell.org/BEMLIB.

Figure C.1 Streamlines of potential flow exiting a two-dimensional channel generated using code strml

in Directory 04 various of Fdlib.
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C.2 FDLIB directory contents

The public Fdlib directories are listed in the following tables along with a brief description. Further
information can be found at the Fdlib Internet site.

01 num meth

This directory contains a suite of general-purpose programs on general numerical methods and
differential equations accompanying Reference [317].

Subdirectory Topic

01 num comp General aspects of numerical computation.

02 lin calc Linear algebra and linear calculus.

03 lin eq Systems of linear algebraic equations.

04 nl eq Nonlinear algebraic equations.

05 eigen Eigenvalues and eigenvectors of matrices.

06 interp diff Function interpolation and differentiation.

07 integration Function integration.

08 approximation Function approximation.

09 ode Ordinary differential equations.

10 ode ddm Ordinary differential equations (domain discretization methods).

11 pde diffusion Partial differential equations (unsteady diffusion equation).

12 pde poisson Partial differential equations (Poisson equation).

13 pde cd Partial differential equations (convection--diffusion equation).

14 bem Boundary-element methods.

15 fem Finite-element methods.

99 spec fnc Special functions.

Figure C.2 Finite-element solution of Laplace’s equation with the Dirichlet boundary condition gen-
erated using code lapl3 d in Directory of 15 fem inside Directory 01 num meth of Fdlib.
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02 grids

This directory contains programs that perform grid generation, adaptive discretization, parametriza-
tion, representation, and meshing of planar lines, three-dimensional lines, and three-dimensional
surfaces.

Subdirectory Topic

grid 2d Discretization of a planar line into a mesh

of straight or circular elements.

prd 2d Adaptive parametrization of a closed line.

prd 3d Adaptive parametrization of a closed

three-dimensional line.

prd ax Adaptive parametrization of a planar line

representing the trace of an axisymmetric

surface in a meridional plane.

rec 2d Interpolation through a Cartesian grid.

trgl Triangulation of a closed surface.

trgl flat Triangulation of a flat patch.

Figure C.3 Triangulation of a disk, square, square with a square hole and square with a circular hole
into six-node triangular elements generated using codes trgl6 disk, trgl6 sqr, trgl6 ss, and trgl6 sc

in Directory of trgl flat inside Directory 02 grids of Fdlib.
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03 hydrostat

This directory contains codes that compute interfacial shapes in hydrostatics.

Subdirectory Topic

drop 2d Shape of a two-dimensional pendant or sessile

drop on a horizontal or inclined plane.

drop ax Shape of an axisymmetric pendant

or sessile drop on a horizontal plane.

flsphere Position of a sphere floating at an

interface with a curved meniscus.

men 2d Shape of a two-dimensional meniscus

between two parallel plates.

men 2d plate Shape of a two-dimensional meniscus

attached to an inclined plane.

men ax Shape of an axisymmetric meniscus

inside a vertical circular tube.

men axe Shape of an axisymmetric meniscus

outside a vertical circular tube.

men cc Shape of a three-dimensional meniscus

between two circular cylinders.

men ell Shape of a three-dimensional meniscus

in the exterior of an ellipse.

men hexa Shape of a doubly periodic meniscus

with hexagonal cells.
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Figure C.4 Equilibrium position of a floating sphere generated using code flsphere in Directory
03 hydrostat of Fdlib.
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04 various

This directory contains miscellaneous codes that compute the structure and kinematics of various
flows.

Subdirectory Topic

chan 2d Steady flow in a channel.

chan 2d 2l Steady two-layer flow in a channel.

chan 2d imp Impulsive flow in a channel.

chan 2d ml Multi-layer flow in a channel.

chan 2d osc Oscillatory flow in a channel.

chan 2d trans Transient flow in a channel.

chan 2d wom Pulsating flow in a channel.

chan brush Steady flow in a brush-like channel.

film Film flow down an inclined plane.

films Multi-film flow down an inclined plane.

flow 1d Steady unidirectional flow in a tube

with arbitrary cross-section.

flow 1d 1p Steady unidirectional flow over

a periodic array of cylinders

with arbitrary cross-section.

flow 1d osc Oscillatory unidirectional flow in a

tube with arbitrary cross-section.

path lines Computation of path lines.

plate imp Flow due to the impulsive motion of a plate.

plate osc Flow due to the oscillations of a plate.

spf Similarity solutions for stagnation-point flows.

strml Streamline patterns of a broad range

of flows offered in a menu.

tube ann Steady annular flow.

tube ann ml Steady multi-layer annular flow.

tube ann sw Steady swirling annular flow.

tube ann sw ml Steady multi-layer swirling annular flow.

tube crc Steady flow through a circular tube.

tube crc ml Steady multi-layer flow through a circular tube.

tube sec Steady flow through a circular tube

due to the translation of a sector.

tube sw Transient swirling flow in a circular tube.

tube sw trans Transient flow through a circular tube.

tube sw wom Pulsating flow through a circular tube.

tube ell Steady flow through a tube with elliptical cross-section.

tube rec Steady flow through a tube with rectangular cross-section.

tube trgl eql Steady flow through a tube with triangular cross-section.
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05 lub

This directory contains codes that solve problems involving lubrication flows.

Subdirectory Topic

bear 2d Dynamical simulation of the motion of a slider bearing

pressing against a flat wall.

chan 2l exp Dynamical simulation of the evolution of two superposed

viscous layers in a horizontal or inclined channel

computed by an explicit finite-difference method.

chan 2l imp Same as chan 2l exp but with an implicit finite-difference method.

films Evolution of an arbitrary number of superposed films

on a horizontal or inclined wall.
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Figure C.5 Velocity profiles of unidirectional pressure-driven flow through a rectangular tube com-
puted by a boundary-element method implemented in the code flow 1d in Directory 04 various of
Fdlib.

Figure C.6 Evolution of two films flowing down an inclined plane computed using code films in
Directory 05 lub of Fdlib.
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06 stokes

This directory contains codes that compute viscous flows at vanishing Reynolds number.

Subdirectory Topic

bump 3d Shear flow over a spherical bump on a plane wall.

drop ax Dynamical simulation of the motion of an axisymmetric liquid drop

in free space, toward a plane wall, or through a circular tube.

flow 2d Two-dimensional flow in a domain with arbitrary geometry.

flow 3x Shear flow over an axisymmetric cavity, orifice, or protrusion.

prtcl 2d Flow past a fixed bed of two-dimensional particles

with arbitrary shapes for a variety of flow configurations

computed by a boundary-element method.

prtcl 3d Flow past or due to the motion of a three-dimensional particle

for a variety of flow configurations computed by a boundary-element method.

prtcl 3d mob Same as prtcl 3d but for the mobility problem where the

force and torque are specified and the particle velocity

is computed as part of the solution.

prtcl ax Flow past or due to the motion of a collection of axisymmetric particles

computed by a boundary-element method.

prtcl sw Swirling flow produced by the rotation of an axisymmetric particle

computed by a boundary-element method.

rbc 2d Flow-induced deformation of a two-dimensional red blood cell.

sgf 2d Green’s functions of two-dimensional flow.

sgf 3d Green’s functions of three-dimensional flow.

sgf ax Green’s functions of axisymmetric flow.

Figure C.7 Color-coded (or grayscale) plot of the shear stress over the surface of a particle attached to
a wall in simple shear flow computed by a boundary-element method implemented in code bump 3d

included in Directory 06 stokes of Fdlib.
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07 ptf

This directory contains codes that solve problems involving potential flow.

Subdirectory Topic

airf 2d Airfoil shapes.

airf 2d cdp Flow past an airfoil computed by the

constant-dipole-panel method.

airf 2d csdp Flow past an airfoil computed by the

constant-source-dipole-panel method.

airf 2d lvp Flow past an airfoil computed by the

linear-vortex-panel method.

body 2d Flow past or due to the motion of

a two-dimensional body computed

by a boundary-element method.

body ax Flow past or due to the motion of

an axisymmetric body computed

by a boundary-element method.

cvt 2d Flow in a rectangular cavity computed

by a finite-difference method.

flow 2d Two-dimensional flow in an arbitrary domain

computed by a boundary-element method.

lgf 2d Green and Neumann functions of Laplace’s

equation in two dimensions.

lgf 3d Green and Neumann functions of Laplace’s

equation in three dimensions.

lgf ax Green and Neumann functions of Laplace’s

equation in axisymmetric domains.

tank 2d Dynamical simulation of liquid sloshing

in a rectangular tank computed by a

boundary-element method.

Figure C.8 Distribution of the pressure coefficient around the NACA 23012 airfoil computed by a
panel method implemented in code airf 2d lvp included in Directory 07 ptf of Fdlib.
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08 stab

This directory contains codes that perform the linear stability analysis of miscellaneous flows. The
fundamental concepts underlying the linear stability analysis are discussed in Chapter 9. The User
Guide of this Directory can be found in Appendix D.

Subdirectory Topic

ann2l Capillary instability of two annular layers between two

concentric cylinders in the presence of an insoluble surfactant.

ann2l0 Same as ann2l for Stokes flow.

ann2lel Same as ann2l for an elastic interface.

ann2lel0 Same as ann2l0 for an elastic interface.

ann2lvs0 Same as ann2l0 for a viscous interface.

chan 2l0 Instability of two-layer Stokes flow in a channel.

chan 2l0 s Instability of two-layer Stokes flow in a channel in the presence

of an insoluble surfactant.

coat0 s Stokes flow instability of a liquid film resting on a plane wall

in the presence of an insoluble surfactant.

drop ax Relaxation of a deformed liquid drop.

film0 Stokes flow instability of a liquid film down an inclined plane.

film0 s Stokes flow instability of a liquid film down an inclined plane

in the presence of an insoluble surfactant.

if0 Stokes flow instability of a horizontal interface between

two semi-infinite fluids.

ifsf0 s Stokes flow instability of a horizontal interface between two

semi-infinite fluids in the presence of an insoluble surfactant.

layer0 Stokes flow instability of a horizontal liquid layer resting

on a horizontal wall under a semi-infinite fluid.

layersf0 s Stokes flow instability of a sheared liquid layer coated on a

horizontal plane in the presence of an insoluble surfactant.

orr Solution of the Orr-Sommerfeld equation by a finite-difference method.

prony Prony fitting of a times series with a sum of complex exponentials.

sf1 Instability of an inviscid shear flow with arbitrary velocity profile.

thread0 Stokes flow instability of an infinite viscous thread suspended

in an ambient viscous fluid.

thread1 Instability of an inviscid thread suspended in an inert gas.

vl Instability of a vortex layer.

vs Instability of a vortex sheet.
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09 vortex

This directory contains codes that compute vortex motion.

Subdirectory Topic

kirch stab Linear stability analysis of Kirchhoff’s elliptical

vortex by a discrete perturbation method

based on the contour dynamics formulation.

lv lia Dynamical simulation of the motion of a

three-dimensional line vortex computed

by the local-induction approximation (LIA).

lvr Velocity induced by line vortex rings.

lvrm Dynamical simulation of the motion of a

collection of coaxial line vortex rings.

pv Velocity induced by point vortices.

pvm Dynamic simulation of the motion of a

collection of point vortices.

pvm pr Dynamical simulation of the motion of a

periodic collection of point vortices.

pvpoly2 Equilibrium of point vortices on two nested polygons.

ring Self-induced velocity of a vortex ring

with core of finite size.

vl 2d Dynamical simulation of the evolution of

compound periodic vortex layers.

vp 2d Dynamical simulation of the evolution of a

collection of two-dimensional vortex patches.

vp ax Dynamical simulation of the evolution of a

collection of axisymmetric vortex rings and

vortex patches with distributed vorticity.

Figure C.9 Evolution of a vortex patch computed by the method of contour dynamics implemented
in code vp 2d in Directory 09 vortex of Fdlib.
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10 bl

This directory contains codes that solve boundary-layers flows.

Subdirectory Topic

blasius Computation of the Blasius boundary layer.

falskan Computation of the Falkner−Skan boundary layer.

kp cc Boundary layer around a circular cylinder

computed by the Kármán−Pohlhausen method.

pohl pol Profiles of the Pohlhausen polynomials.

11 fdm

This directory contains codes that solve problems using finite-difference methods.

Subdirectory Topic

channel Unidirectional flow in a channel.

cvt pm Transient flow in a rectangular cavity

computed by a projection method.

cvt stag Steady Stokes flow in a rectangular cavity

computed on a staggered grid.

cvt sv Steady flow in a rectangular cavity computed

by the stream function−vorticity formulation.

12 bem

This directory contains codes that produce solutions to Laplace’s equation by boundary-element
methods.

Subdirectory Topic

ldr 3d Solution of Laplace’s equation with the Dirichlet boundary

condition in the interior or exterior of a three-dimensional

region computed using the boundary-integral formulation.

ldr 3d 2p Solution of Laplace’s equation with the Dirichlet boundary

in a semi-infinite domain bounded by a doubly-periodic surface

computed using the double-layer formulation.

ldr 3d ext Solution of Laplace’s equation with the Dirichlet boundary

condition in the exterior of a three-dimensional region

computed using the double-layer formulation.

ldr 3d int Solution of Laplace’s equation with the Dirichlet boundary

condition in the interior of a three-dimensional region

computed using the double-layer formulation.

lnm 3d Solution of Laplace’s equation with the Neumann boundary

condition in the interior or exterior of a three-dimensional

region computed using the boundary-integral formulation.
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13 turbo

This directory contains data and codes pertinent to turbulent flow.

Subdirectory Topic

stats Statistical analysis of a turbulent velocity time series.
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Figure C.10 A time series of two velocity components in a turbulent flow contained in the file keller.dat
included in Directory stats inside Directory 13 turbo of Fdlib.



User Guide of directory 08 stab
of FDLIB on hydrodynamic stability

D
This appendix contains the User Guide of the eighth directory of the software library Fdlib on
hydrodynamic stability (see Appendix C). The individual subdirectories contain programs that per-
form the linear stability analysis of several families of inviscid and viscous flows at zero or nonzero
Reynolds numbers. The fundamental concepts underlying the linear stability analysis are discussed
in Chapter 9. The subdirectories of the main directory 08 stab are listed in Table D.1.

Subdirectory Topic

ann2l Rayleigh capillary instability of an annular interface
between two concentric cylinders.

ann2l0 Rayleigh capillary instability of an annular interface
between two concentric cylinders under conditions of Stokes flow.

ann2lel Rayleigh capillary instability of an annular elastic interface
between two concentric cylinders.

ann2lel0 Rayleigh capillary instability of an annular elastic interface
between two concentric cylinders under conditions of Stokes flow.

ann2lvs0 Rayleigh capillary instability of an annular viscous interface
between two concentric cylinders under conditions of Stokes flow.

chan2l0 Linear stability of two-layer Stokes flow in a channel.

chan2l0 s Linear stability of two-layer Stokes flow in a channel
in the presence of an insoluble surfactant.

Table D.1 Contents of the Fdlib directory 08 stab on hydrodynamic stability.
(Continuing.)

1103
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Subdirectory Topic

coat0 s Instability of a liquid film resting on a horizontal wall
in the presence of an insoluble surfactant in Stokes flow.

drop ax Relaxation rate of a deformed spherical viscous drop.

film0 Instability of a liquid film flowing down an inclined plane
under conditions of Stokes flow.

film0 s Instability of a liquid film flowing down an inclined plane
in the presence of an insoluble surfactant
under conditions of Stokes flow.

if0 Instability of a planar interface between two semi-infinite fluids
under conditions of Stokes flow.

ifsf0 s Instability of a planar interface between two semi-infinite fluids
in shear flow in the presence of an insoluble surfactant
under conditions of Stokes flow.

layer0 Instability of a liquid layer resting on a horizontal wall
under a semi-infinite fluid in Stokes flow.

layersf0 s Instability of a liquid layer resting on a horizontal wall under a
semi-infinite fluid undergoing simple shear flow in the presence
of an insoluble surfactant under conditions of Stokes flow.

prony Decomposition of a time series into normal modes expressing
exponentially growing or decaying sinusoidal waves.
Decomposition of linear spatial waves into
exponentially evolving normal modes.

orr Solution of the Orr–Sommerfeld equation for viscous unidirectional flow.

thread0 Capillary instability of viscous thread immersed in an
infinite ambient viscous fluid under conditions of Stokes flow.

sf1 Normal-mode stability analysis of inviscid shear flow
with a velocity profile specified in analytical or numerical form.

Table D.1 (Continued.)
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Subdirectory Topic

thread1 Capillary instability of an inviscid liquid column
suspended in an infinite ambient fluid with negligible density.

vl Kelvin–Helmholtz instability of an inviscid
vortex layer with constant vorticity.

vs Instability of a vortex sheet.

Table D.1 (Continued.) Contents of the Fdlib directory 08 stab on hydrodynamic stability.

The User Guide of the individual directories is presented in this appendix, including the
definition of the base state, the formulation of the linear stability problem, and the derivation of an
algebraic eigenvalue problem determining the complex growth rate. To facilitate the study of the
individual programs, some parts of the analysis and a few figures are repeated across the individual
directories. This User Guide is intended to be used in concert with Chapter 9 on the fundamentals
of hydrodynamic stability.

D.1 Directory ann2l

This directory contains a code that performs the linear stability analysis of the interface between
two annular layers confined between two concentric cylinders, as illustrated in Figure D.1.1 [214].
The interface is populated by an insoluble surfactant that is convected and diffuses over the interface
but not into the bulk of the fluids.

x

a
a

ai

e

σ

Fluid 1 (inner)

Fluid 2 (outer)

Figure D.1.1 Illustration of two annular layers confined between an inner cylindrical tube of radius ai
and an outer cylindrical tube of radius ae. The interface is occupied by an insoluble surfactant.
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Base state

We consider two stationary annular layers separated by a cylindrical interface of radius a, placed
between an inner cylindrical tube of radius ai and an outer cylindrical tube of radius ae, as illustrated
in Figure D.1.1. The inner fluid is labeled 1 and the outer fluid is labeled 2. In the unperturbed
configuration, the fluids are quiescent and the surfactant is distributed uniformly over the interface.
Several special cases can be recognized:

• When the inner cylinder is absent and the radius of the outer cylinder is infinite, we obtain a
thread suspended in an infinite ambient fluid.

• When the inner cylinder is absent, we obtain a core–annular arrangement consisting of an
annular layer coated on the interior surface of the inner cylinder.

• When the radius of the outer cylinder is infinite, we obtain an annular layer coated on the
exterior surface of the inner cylinder.

Normal-mode analysis

To carry out the normal-mode stability analysis for axisymmetric perturbations, we introduce cylin-
drical polar coordinates, (x, σ, ϕ), where the x axis coincides with the axis of revolution of the
interface. The radial position of the interface is described by the real or imaginary part of the
function

σ = f(x, t) = a+ εη(x, t), (D.1.1)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)], (D.1.2)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function, velocity and vorticity

The motion of the fluid on either side of the interface is governed by the continuity equation and
the Navier–Stokes equation with appropriate physical constants for each fluid. Taking advantage
of the axial symmetry of the flow, we describe the perturbation flow in terms of the Stokes stream

functions, ψ
(1)
1 and ψ

(1)
2 , for the inner and outer fluid, respectively, where the superscript (1) denotes

the disturbance. The axial and radial components of the perturbation velocity are given by

uxj
= ε

1

σ

∂ψ
(1)
j

∂σ
, uσj

= −ε
1

σ

∂ψ
(1)
j

∂x
(D.1.3)

for j = 1, 2. The azimuthal component of the vorticity is given by

ωϕj
= −ε

1

σ
E2ψ

(1)
j , (D.1.4)
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where

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
(D.1.5)

is a second-order differential operator. It is convenient to work with the vorticity transport equation
for axisymmetric flow,

D

Dt

( 1

σ
ωϕj

)
=

νj
σ2

E2(σ ωϕj ), (D.1.6)

where D/Dt is the material derivative and νj is the kinematic viscosity of the jth fluid. Substituting
expression (D.1.4) into (D.1.6), linearizing with respect to ε and rearranging, we obtain

(
E2 − 1

νj

∂

∂t

)
E2 ψ

(1)
j = 0 (D.1.7)

for j = 1, 2.

To carry out the normal-mode analysis, we express the perturbation stream function in the
form

ψ
(1)
j (x, σ, t) = φj(σ) exp[ik(x− ct)], (D.1.8)

where φj(σ) are eigenfunctions. Substituting this expression into (D.1.7), we obtain

( d2

dσ2
− 1

σ

d

dσ
− k2

)( d2

dσ2
− 1

σ

d

dσ
− k2j

)
φj = 0, (D.1.9)

where

k2j ≡ k2 − i c
k

νj
. (D.1.10)

The general solution is

φj(σ) = σ
[
A1,j I1(σ̂) +A2,j I1(σ̂j) +B1,j K1(σ̂) +B2,j K1(σ̂j)

]
(D.1.11)

for j = 1, 2, where σ̂ ≡ kσ, σ̂j ≡ kjσ, I1 and K1 are Bessel functions, and Ai,j , Bi,j are complex
coefficients to be found as part of the solution. The first and third terms on the right-hand side
of (D.1.11) correspond to the first operator, while the second and fourth terms correspond to the
second operator on the left-hand side of (D.1.9).

Substituting into (D.1.3) the preceding expressions and using the properties of the Bessel
functions

I′0(z) = I1(z), I′1(z) = I0(z)−
1

z
I1(z), K′

0(z) = −K1(z),

K′
1(z) = −K0(z)−

1

z
K1(z), (D.1.12)
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we find that

uxj = ε Uxj (σ) exp[ik(x− ct)], uσj = ε Uσj (σ) exp[ik(x− ct)], (D.1.13)

where

Uxj
(σ) =

1

σ

dφj

dσ
= A1,j k I0(σ̂) +A2,j kj I0(σ̂j)−B1,j kK0(σ̂)−B2,j kj K0(σ̂j), (D.1.14)

and

Uσj
(σ) = −i

k

σ
φj = −ik

[
A1,j I1(σ̂) +A2,j I1(σ̂j) +B1,j K1(σ̂) +B2,j K1(σ̂j)

]
. (D.1.15)

Pressure field

The normal-mode expression for the pressure is

pj = Pj + ε χj(σ) exp[ik(x− ct)], (D.1.16)

where P1 and P2 are the unperturbed pressures, P1−P2 = γ0/a is the unperturbed capillary pressure,
γ0 is the unperturbed surface tension, and χj are eigenfunctions. To compute the disturbance
pressure, we consider the x component of the Navier–Stokes equation for axisymmetric flow,

ρj
Duxj

Dt
= −∂pj

∂x
+ μj

( ∂2uxj

∂x2
+

1

σ

∂

∂σ
(σ

∂uxj

∂σ
)
)
. (D.1.17)

Substituting (D.1.16) together with the first equation into (D.1.13) and linearizing, we obtain

χj(σ) = (cρj + iμj k)Uxj
− i

μj

k

1

σ

d

dσ

(
σ
dUxj

dσ

)
= −i

μj

k

( 1

σ

d

dσ
(σ

dUxj

dσ
)− k2j Uxj

)
, (D.1.18)

yielding

χj(σ) = −i
μj

k

( d2Uxj

dσ2
+

1

σ

dUxj

dσ
− k2j Uxj

)
. (D.1.19)

Making substitutions, we find that

χj(σ) = −iμj (k
2 − k2j )

[
A1,j I0(σ̂)−B1,j K0(σ̂)

]
= kcρj

[
A1,j I0(σ̂)−B1,j K0(σ̂)

]
. (D.1.20)

Note that only two terms contribute to the pressure field.

Continuity of velocity at the interface

Requiring that the x and σ velocity components are continuous at the interface and using expressions
(D.1.14) and (D.1.15), we derive the linearized kinematic interfacial conditions

A1,1 k I0(k̂) +A2,1 k1 I0(k̂1)−B1,1 kK0(k̂)−B2,1 k1 K0(k̂1)

= A1,2 k I0(k̂) +A2,2 k2 I0(k̂2)−B1,2 kK0(k̂)−B2,2 k2 K0(k̂2) (D.1.21)

and

A1,1 I1(k̂) +A2,1 I1(k̂1) +B1,1 K1(k̂) +B2,1 K1(k̂1)

= A1,2 I1(k̂) +A2,2 I1(k̂2) +B1,2 K1(k̂) +B2,2K1(k̂2), (D.1.22)

where k̂ = ka, k̂1 = k1a, and k̂2 = k2a.
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Kinematic compatibility

Kinematic compatibility requires that D[f(x, t) − σ]/Dt = 0 at the interface, where D/Dt is the
material derivative and the function f describes the position of the interface according to (D.1.1).
Carrying out the differentiation, we obtain

∂f

∂t
+ uxj

∂f

∂x
− uσj

= 0, (D.1.23)

where the velocity is evaluated at the interface. Substituting the preceding expressions and lineariz-
ing, we find that

A =
i

ck
Uσj

(σ = a) =
1

c
[A1,j I1(k̂) +A2,j I1(k̂j) +B1,j K1(k̂) +B2,j K1(k̂j) ]. (D.1.24)

Boundary conditions at the cylinders

The no-slip and no-penetration conditions at the inner and outer cylinder require that

Uxj
(ai) = Uσj

(ai) = 0, Uxj
(ae) = Uσj

(ae) = 0. (D.1.25)

Making substitutions, we find that

A1,1 k I0(k̂i) +A2,1 k1 I0(k̂i1)−B1,1 kK0(k̂i)−B2,1 k1 K0(k̂i1) = 0,

A1,1 I1(k̂i) +A2,1 I1(k̂i1) +B1,1 K1(k̂i) +B2,1 K1(k̂i1) = 0, (D.1.26)

and

A1,2 k I0(k̂e) +A2,2 k2 I0(k̂e2)−B1,2 kK0(k̂e)−B2,2 k2 K0(k̂e2) = 0,

A1,2 I1(k̂e) +A2,2 I1(k̂e2) +B1,2 K1(k̂e) +B2,2 K1(k̂e2) = 0, (D.1.27)

where k̂i = kai, k̂i1 = k1ai, k̂e = kae, and k̂e2 = k2ae.

Surfactant transport

The interface is occupied by an insoluble surfactant with surface concentration Γ. For a normal-mode
disturbance, Γ = Γ0 + εΓ(1), where Γ0 is the unperturbed surfactant concentration,

Γ(1) ≡ Γ1 exp[ik(x− ct)] (D.1.28)

is the normal-mode perturbation, and Γ1 is the complex amplitude of the perturbation. Linearizing
the surfactant transport equation in the absence of base flow, we derive the evolution equation

ε
∂Γ(1)

∂t
+ Γ0

∂ux

∂x
= −Γ0

a
uσ + εDs

∂2Γ(1)

∂x2
, (D.1.29)

where the velocity is evaluated at the unperturbed position, σ = a. Substituting the normal-mode
forms and rearranging, we find that

Γ1

Γ0
= − 1

s+Dsk2

(
ik Uxj +

Uσj

σ

)
σ=a

= −i
k

a (s+Ds k2)

(
A1,j [k̂ I0(k̂)− I1(k̂)]

+A2,j [k̂j I0(k̂j)− I1(k̂j)]−B1,j [k̂K0(k̂) + K1(k̂)]−B2,j [k̂j K0(k̂j) + K1(k̂j)]
)
, (D.1.30)
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where s ≡ −ikc. If c is imaginary, as expected in the absence of a base flow, s = kcI is the real
growth rate.

Surface equation of state

Surfactant concentration inhomogeneities over the interface cause corresponding variations in the
surface tension. For a normal-mode perturbation,

γ = γ0 + ε γ1 exp[ik(x− ct)], (D.1.31)

where γ0 is the surface tension in the unperturbed state corresponding to the surfactant concentration
Γ0, and γ1 is the complex amplitude of the perturbation. In the linearized approximation, the surface
tension depends linearly on the surfactant concentration,

γ1
Γ1

= −Ma
γ0
Γ0

, (D.1.32)

where Ma is the Marangoni number. Substituting (D.1.30) and rearranging, we obtain

γ1
γ0

= iMa
k

a (s+Dsk2)

(
A1,j [k̂ I0(k̂)− I1(k̂)] +A2,j [k̂j I0(k̂j)− I1(k̂j)]

−B1,j [k̂K0(k̂) + K1(k̂)]−B2,j [k̂j K0(k̂j) + K1(k̂j)]
)
. (D.1.33)

Next, we select j = 1 and recast this equation into the form

γ1 = i (δ1A1,1 + δ2A2,1 − δ3B1,1 − δ4B2,1), (D.1.34)

where

δ1 = Π [k̂ I0(k̂)− I1(k̂)], δ2 = Π [k̂1I0(k̂1)− I1(k̂1)], δ3 = Π [k̂K0(k̂) + K1(k̂)],

δ4 = Π [k̂1K0(k̂1) + K1(k̂1)], (D.1.35)

and

Π ≡ Ma γ0
k

a (s+Dsk2)
(D.1.36)

is a dimensionless number.

Shear stress interfacial condition

Balancing the tangential forces exerted on an infinitesimal portion of the interface and the interfacial
tension γ, we derive the linearized shear stress balance(

σxσ1
− σxσ2

)
σ=a

= μ1

(
∂ux1

∂σ
+

∂uσ1

∂x

)
σ=a

− μ2

(
∂ux2

∂σ
+

∂uσ2

∂x

)
σ=a

=
∂γ

∂x
. (D.1.37)

Substituting the normal-mode forms, we obtain

ik γ1 = μ1

(dUx1

dσ
+ ik Uσ1

)
σ=a

− μ2

(dUx2

dσ
+ ik Uσ2

)
σ=a

. (D.1.38)
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Now using the expression

dUxj
(σ)

dσ
= A1,j k

2 I1(σ̂) +A2,j k
2
j I1(σ̂j) +B1,j k

2 K1(σ̂) +B2,j k
2
j K1(σ̂j) (D.1.39)

along with (D.1.15), we obtain

μ1

[
A1,12 k

2 I1(k̂) +A2,1(k
2 + k21) I1(k̂1) +B1,12 k

2 K1(k̂) +B2,1(k
2 + k21)K1(k̂1)

]
−μ2

[
A1,22 k

2 I1(k̂) +A2,2(k
2 + k22) I1(k̂2) +B1,22 k

2 K1(k̂) +B2,2(k
2 + k22)K1(k̂2)

]
= ik γ1 = −k (δ1A1,1 + δ2A2,1 − δ3B1,1 − δ4B2,1). (D.1.40)

Consolidating the various terms, we derive a linear algebraic equation,

F1 A1,1 + F2 A2,1 + F3 B1,1 + F4 B2,1 + F5 A1,2 + F6 A2,2 + F7 B1,2 + F8 B2,2 = 0, (D.1.41)

where

F1 = −2μ1 k
2 I1(k̂)− k δ1, F2 = −μ1 (k

2 + k21) I1(k̂1)− k δ2,

F3 = −2μ1 k
2 K1(k̂) + k δ3, F4 = −μ1 (k

2 + k21)K1(k̂1) + k δ4,

F5 = 2μ2 k
2 I1(k̂), F6 = μ2 (k

2 + k22) I1(k̂2),

F7 = 2μ2 k
2 K1(k̂), F8 = μ2 (k

2 + k22)K1(k̂2).

(D.1.42)

Normal stress interfacial condition

Balancing the normal forces exerted on an infinitesimal patch of the interface with the interfacial
tension, γ, and linearizing, we derive the normal stress balance(

σσσ1
− σσσ2

)
σ=a

=
(
− p1 + 2μ1

∂uσ1

∂σ

)
σ=a

−
(
− p2 + 2μ2

∂uσ2

∂σ

)
σ=a

= γ 2κm, (D.1.43)

where κm is the mean curvature. In the linearized approximation,

2κm = −1

a
+ ε

( η

a2
+ ηxx

)
= −1

a
+ ε

A

a2
(1− k̂2) exp[ik(x− ct)]. (D.1.44)

Using (D.1.24) with j = 1 to eliminate the interfacial amplitude, A, we obtain

2κm = −1

a
+ ε 2κ(1)

m exp[ik(x− ct)], (D.1.45)

where

2κ(1)
m =

1− k̂2

ca2

(
A1,1 I1(k̂) +A2,1 I1(k̂1) +B1,1 K1(k̂) +B2,1 K1(k̂1)

)
. (D.1.46)

Next, we substitute into (D.1.43) the normal-mode expansions and obtain(
− χ1 + 2μ1

∂Uσ1

∂σ

)
σ=a

−
(
− χ2 + 2μ2

∂Uσ2

∂σ

)
σ=a

= −γ1
a

+ γ0
1− k̂2

ca2

(
A1,1 I1(k̂) +A2,1 I1(k̂1) +B1,1 K1(k̂) +B2,1 K1(k̂1)

)
. (D.1.47)
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Substituting into (D.1.47) the expression

dUσj

dσ
= −i k

[
A1,j k

(
I0(σ̂)−

1

σ̂
I1(σ̂)

)
+A2,j kj

(
I0(σ̂j)−

1

σ̂j
I1(σ̂j)

)
−B1,j k

(
K0(σ̂) +

1

σ̂
K1(σ̂)

)
−B2,j kj

(
K0(σ̂j) +

1

σ̂j
K1(σ̂j)

) ]
, (D.1.48)

together with the last expression in (D.1.20) for the pressure, we obtain

α1,1A1,1 + α2,1A2,1 + β1,1B1,1 + β2,1B2,1 + α1,2A1,2 + α2,2A2,2 + β1,2B1,2 + β2,2B2,2

= −i
γ1
a

=
1

a
(δ1 A1,1 + δ2 A2,1 − δ3 B1,1 − δ4 B2,1), (D.1.49)

where

α1,1 = s ρ1 I0(k̂) + 2μ1 k
2
(
I0(k̂)−

1

k̂
I1(k̂)

)
− γ0k

3

s

1− k̂2

k̂2
I1(k̂),

α2,1 = 2μ1 k k1

(
I0(k̂1)−

1

k̂1
I1(k̂1)

)
− γ0k

3

s

1− k̂2

k̂2
I1(k̂1),

β1,1 = −s ρ1 K0(k̂)− 2μ1 k
2
(
K0(k̂) +

1

k̂
K1(k̂)

)
− γ0k

3

s

1− k̂2

k̂2
K1(k̂), (D.1.50)

β2,1 = −2μ1 k k1

(
K0(k̂1) +

1

k̂1
K1(k̂1)

)
− γ0k

3

s

1− k̂2

k̂2
K1(k̂1),

and

α1,2 = −s ρ2 I0(k̂)− 2μ2 k
2
(
I0(k̂)−

1

k̂
I1(k̂)

)
, α2,2 = −2μ2 k k2

(
I0(k̂2)−

1

k̂2
I1(k̂2)

)
,

β1,2 = s ρ2 K0(k̂) + 2μ2 k
2
(
K0(k̂) +

1

k̂
K1(k̂)

)
, β2,2 = 2μ2 k k2

(
K0(k̂2) +

1

k̂2
K1(k̂2)

)
.

(D.1.51)

Consolidating the various terms, we obtain a linear algebraic equation,

G1A1,1 +G2A2,1 +G3B1,1 +G4B2,1 +G5A1,2 +G6A2,2 +G7B1,2 +G8B2,2 = 0, (D.1.52)

where

G1 = α1,1 −
δ1
a
, G2 = α2,1 −

δ2
a
, G3 = β1,1 +

δ3
a
, G4 = β2,1 +

δ4
a
,

G5 = α1,2, G6 = α2,2, G7 = β1,2, G8 = β2,2. (D.1.53)

Formulation of an eigenvalue problem

Collecting equations (D.1.21), (D.1.22), (D.1.26), (D.1.27), (D.1.41), and (D.1.52), we formulate a
homogeneous linear system, M · q = 0, where

q =
(
A1,1, A2,1, B1,1, B2,1, A1,2, A2,2, B1,2, B2,2

)
(D.1.54)
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1(k̂) I1(k̂1) K1(k̂) K1(k̂1) −I1(k̂)

k I0(k̂) k1 I0(k̂1) −kK0(k̂) −k1 K0(k̂1) −k I0(k̂)

I1(k̂i) I1(k̂i1) K1(k̂i) K1(k̂i1) 0

k I0(k̂i) k1 I0(k̂i1) −kK0(k̂i) −k1 K0(k̂i1) 0

0 0 0 0 I1(k̂e)

0 0 0 0 k I0(k̂e)
F1 F2 F3 F4 F5

G1 G2 G3 G4 G5

−I1(k̂2) −K1(k̂) −K1(k̂2)

−k2I0(k̂2) kK0(k̂) k2K0(k̂2)
0 0 0
0 0 0

I1(k̂e2) K1(k̂e) K1(k̂e2)

k2 I0(k̂e2) −kK0(k̂e) −k2 K0(k̂e2)
F6 F7 F8

G6 G7 G8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table D.1.1 Setting the determinant of the matrix displayed to zero provides us with an algebraic

equation for the complex growth rate.

and the coefficient matrix, M, is shown in Table D.1.1. For a nontrivial solution to exist, the deter-
minant of the coefficient matrix must be zero. In the numerical method implemented in the code,
the roots of the secular equation det(M) = 0 are found by Newton’s method with a suitable initial
guess. The determinant of the matrix is calculated by LU decomposition using Gauss elimination.

Thread surrounded by an annular layer

When the inner cylinder is absent, we obtain an annular layer surrounding a liquid thread. For small
values of their arguments, the modified Bessel functions become singular and the general expression
for the stream function (D.1.11) exhibits singular terms. For the velocity to be regular at the x axis,
the constants B1,1 and B2,1 must be set to zero, yielding a simplified expression for the inner fluid
stream function,

φj(σ) = σ
[
A1,j I1(σ̂) +A2,j I1(σ̂j)

]
, (D.1.55)

where j = 1. The linear system M · q = 0 undergoes analogous simplifications.

Annular layer coated on a tube

When the outer cylinder is absent, we obtain an annular layer coated on the exterior surface of
a cylindrical tube, surrounded by an infinite outer fluid. For large values of their arguments, the
modified Bessel functions become unbounded. To ensure a regular behavior, we set the coefficient
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A1,2 and A2,2 to zero and obtain a simplified expression for the exterior stream function,

φj(σ) = σ
[
B1,j K1(σ̂) +B2,j K1(σ̂j)

]
, (D.1.56)

where j = 2. The linear system M · q = 0 undergoes analogous simplifications.

Suspended thread

In the simplest configuration, both the internal and external cylinders are absent, yielding an infinite
thread suspended in an infinite ambient fluid. The stream functions for the internal and external
flows are described, respectively, by equations (D.1.55) and (D.1.56). The linear system M · q = 0

undergoes analogous simplifications. When the interface is devoid of surfactants, the coefficient
matrix reduces to that derived by Tomotika [410], as discussed in Section 9.13.2.

Program files:

1. ann2l
Computes the growth rate.

2. matrix
Formulates the matrix M.

3. bess I01K0

Computes the Bessel functions.

4. gel
Computes the determinant of a matrix by LU decomposition using Gauss elimination.

Input files:

1. ann2l.dat
Problem selection and specification of input parameters.

Output files:

1. ann2l.out
Growth rates.

D.2 Directory ann2l0

This directory contains a code that performs the linear stability analysis of two annular layers
confined between two concentric cylinders, as illustrated in Figure D.2.1. The instability occurs
under conditions of Stokes flow. The interface is populated by an insoluble surfactant that diffuses
and is convected over the interface but does not enter the bulk of the fluids.
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x

a
a

ai

e

σ

Fluid 1 (inner)

Fluid 2 (outer)

Figure D.2.1 Illustration of two concentric annular layers confined between an inner cylindrical tube
of radius ai, and an outer cylindrical tube of radius ae.

Base state

We consider the instability of the interface between two annular layers separated by a cylindrical
interface of radius a, confined between an inner cylindrical tube of radius ai and an outer cylindrical
tube of radius ae, as illustrated in Figure D.2.1. The inner fluid is labeled 1 and the outer fluid is
labeled 2. The viscosity of the inner fluid is μ1 and the viscosity of outer fluid is μ2 = λμ1, where λ is
the viscosity ratio. The interface is occupied by an insoluble surfactant that diffuses and is convected
over the interface, but does not enter the bulk of the fluids. In the unperturbed configuration, the
fluids are quiescent and the surfactant is distributed uniformly over the cylindrical interface. Several
special cases can be recognized:

• When the inner cylinder is absent and the radius of the outer cylinder is infinite, we obtain a
thread suspended in an infinite ambient fluid.

• When the inner cylinder is absent, we obtain an annular layer coated on the interior surface
of the outer cylinder.

• When the radius of the outer cylinder is infinite, we obtain an annular layer coated on the
exterior surface of the inner cylinder.

Normal-mode analysis

To carry out the normal-mode stability analysis for axisymmetric perturbations, we introduce cylin-
drical polar coordinates, (x, σ, ϕ), where the x axis coincides with the axis of revolution of the
unperturbed interface. Next, we describe the radial position of the interface in terms of the real or
imaginary part of the function

σ = f(x, t) = a+ εη(x, t), (D.2.1)
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where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.2.2)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function, velocity and vorticity

The motion of the fluid on either side of the interface is governed by the continuity equation and the
Stokes equation with appropriate physical constants for each fluid. Taking advantage of the axial
symmetry of the flow, we describe the perturbation flow in terms of the Stokes stream functions,

ψ
(1)
1 and ψ

(1)
2 , for the inner and outer fluid, respectively, where the superscript (1) denotes the

disturbance. The axial and radial components of the perturbation velocity are given by

uxj
= ε

1

σ

∂ψ
(1)
j

∂σ
, uσj

= −ε
1

σ

∂ψ
(1)
j

∂x
(D.2.3)

for j = 1, 2. The azimuthal component of the vorticity is given by

ωϕj
= −ε

1

σ
E2ψ

(1)
j , (D.2.4)

where

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
(D.2.5)

is a second-order differential operator. Far from the axis of revolution, E2 reduces to the Laplacian
in a meridional plane of constant azimuthal angle, ϕ.

The vorticity transport equation for axisymmetric Stokes flow requires that

E4ψj ≡ E2 (E2ψ
(1)
j ) = 0, (D.2.6)

which can be decomposed into two second-order constituent equations,

E2ψ
(1)
j = ψ̃

(1)
j , E2ψ̃

(1)
j = 0, (D.2.7)

where a tilde denotes an intermediate solution.

Next, we express the stream function in the normal-mode form

ψ
(1)
j (x, σ, t) = φj(σ) exp[ik(x− ct)], (D.2.8)

where φj(σ) are eigenfunctions. Substituting this expression into (D.2.7), we find that

( d2

dσ2
− 1

σ

d

dσ
− k2

)
φj = φ̃j , (D.2.9)
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where ( d2

dσ2
− 1

σ

d

dσ
− k2

)
φ̃j = 0. (D.2.10)

The general solution is

φj(σ) = σ
[
A1,j I1(σ̂) +A2,jσ I0(σ̂) +B1,j K1(σ̂) +B2,j σK0(σ̂)

]
, (D.2.11)

where I0, I1,K0, and K1 are Bessel functions, Ai,j , Bi,j are complex constants, and σ̂ ≡ kσ. The

first and third terms on the right-hand side of (D.2.11) satisfy (D.2.9) with φ̃ = 0. The second and
fourth terms satisfy (D.2.9) with φ̃ being a nontrivial solution of (D.2.10).

Substituting the preceding expressions into (D.2.3) and using the properties of the Bessel
functions

I′0(z) = I1(z), I′1(z) = I0(z)−
1

z
I1(z), K′

0(z) = −K1(z),

K′
1(z) = −K0(z)−

1

z
K1(z), (D.2.12)

we find that

uxj
= ε Uxj

(σ) exp[ik(x− ct)], uσj
= ε Uσj

(σ) exp[ik(x− ct)], (D.2.13)

where

Uxj
(σ) =

1

σ

dφj

dσ
= A1,j k I0(σ̂) +A2,j [2 I0(σ̂) + σ̂ I1(σ̂)]

−B1,j kK0(σ̂) +B2,j [2K0(σ̂)− σ̂K1(σ̂)], (D.2.14)

and

Uσj
(σ) = −i

k

σ
φj = −ik

[
A1,j I1(σ̂) +A2,j σ I0(σ̂) +B1,j K1(σ̂) +B2,j σK0(σ̂)

]
. (D.2.15)

Pressure field

The normal-mode expression for the pressure is

pj = Pj + ε χj(σ) exp[ik(x− ct)], (D.2.16)

where P1 and P2 are the uniform unperturbed pressures, the pressure jump P1 − P2 = γ0/a is
the unperturbed capillary pressure, γ0 is the unperturbed surface tension, and χj(σ) are pressure
eigenfunctions. To compute the disturbance pressure, we consider the x component of the Stokes
equation for axisymmetric flow,

∂pj
∂x

= μj

[ ∂2uxj

∂x2
+

1

σ

∂

∂σ

(
σ
∂uxj

∂σ

) ]
. (D.2.17)
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Substituting (D.2.16) together with the first equation in (D.2.13) and linearizing, we obtain

χj(σ) = iμj k Uxj
− i

μj

k

1

σ

d

dσ

(
σ
dUxj

dσ

)
= −i

μj

k

( 1

σ

d

dσ
(σ

dUxj

dσ
)− k2 Uxj

)
, (D.2.18)

yielding

χj(σ) = −i
μj

k

( d2Uxj

dσ2
+

1

σ

dUxj

dσ
− k2 Uxj

)
= −i 2μj k

[
A2,j I0(σ̂) +B2,j K0(σ̂)

]
. (D.2.19)

Note that only two terms contribute to the pressure field.

Continuity of velocity at the interface

Requiring that the x and σ velocity components are continuous at the interface and using expressions
(D.2.14) and (D.2.15), we derive the linearized kinematic interfacial conditions

A1,1k I0(k̂) +A2,1[2 I0(k̂) + k̂ I1(k̂)]−B1,1kK0(k̂) +B2,1[2K0(k̂)− k̂K1(k̂)]

= A1,2 k I0(k̂) +A2,2 [2 I0(k̂) + k̂ I1(k̂)]−B1,2 kK0(k̂) +B2,2 [2K0(k̂)− k̂K1(k̂)] (D.2.20)

and

A1,1 I1(k̂) +A2,1 a I0(k̂) +B1,1 K1(k̂) +B2,1 aK0(k̂)

= A1,2 I1(k̂) +A2,2 a I0(k̂) +B1,2 K1(k̂) +B2,2 aK0(k̂), (D.2.21)

where k̂ = ka is a scaled wave number.

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t)− σ]/Dt = 0 evaluated at the interface, where D/Dt
is the material derivative and the function f describes the position of the interface according to
(D.2.1). Carrying out the differentiation, we obtain

∂f

∂t
+ ux

∂f

∂x
− uσ = 0, (D.2.22)

where the velocities ux and uσ are evaluated at the interface. Substituting the preceding expressions
and linearizing, we find that

A =
i

ck
Uσj

(σ = a) =
1

c
[A1,j I1(k̂) +A2,j a I0(k̂) +B1,j K1(k̂) +B2,j aK0(k̂) ]. (D.2.23)

Boundary conditions at the cylinders

The no-slip and no-penetration conditions at the inner and outer cylinders require that

Uxj
(ai) = 0, Uσj

(ai) = 0, Uxj
(ae) = 0, Uσj

(ae) = 0. (D.2.24)

Making substitutions, we find that

A1,1 k I0(k̂i) +A2,1 [2 I0(k̂i) + k̂i I1(k̂i)]−B1,1 kK0(k̂i) +B2,1 [2K0(k̂i)− k̂i K1(k̂i)] = 0,

A1,1 I1(k̂i) +A2,1 ai I0(k̂i) +B1,1 K1(k̂i) +B2,1 aiK0(k̂i) = 0, (D.2.25)
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where k̂i = kai, and

A1,2 k I0(k̂e) +A2,2 [2 I0(k̂e) + k̂e I1(k̂e)]−B1,2 kK0(k̂e) +B2,2 [2K0(k̂e)− k̂e K1(k̂e)] = 0,

A1,2 I1(k̂e) +A2,2 ae I0(k̂e) +B1,2 K1(k̂e) +B2,2 ae K0(k̂e) = 0, (D.2.26)

where k̂e = kae.

Surfactant transport

The interface is occupied by an insoluble surfactant with surface concentration Γ. For a normal-mode
perturbation, Γ = Γ0 + εΓ(1), where Γ0 is the unperturbed surfactant concentration,

Γ(1) ≡ Γ1 exp[ik(x− ct)] (D.2.27)

is the normal-mode surfactant perturbation, and Γ1 is the complex amplitude of the perturbation.
Linearizing the surfactant transport equation in the absence of a base flow, we derive the evolution
equation

ε
∂Γ(1)

∂t
+ Γ0

∂ux

∂x
= −Γ0

a
uσ + εDs

∂2Γ(1)

∂x2
, (D.2.28)

where the velocity is evaluated at the unperturbed position σ = a. Substituting the normal-mode
forms and rearranging, we find that

Γ1

Γ0
= − 1

s+Dsk2

(
ik Uxj

+
1

a
Uσj

)
σ=a

= −i
k

a (s+Dsk2)

(
A1,j [k̂ I0(k̂)− I1(k̂)]

+A2,ja [I0(k̂) + k̂ I1(k̂)]−B1,j [k̂K0(k̂) + K1(k̂)] +B2,j a [K0(k̂)− k̂K1(k̂)]
)
, (D.2.29)

where s ≡ −ikc. If c is imaginary, as expected in the absence of a base flow, s = kcI is the real
growth rate.

Surface equation of state

Surfactant concentration inhomogeneities over the interface cause corresponding variations in the
surface tension. For a normal-mode perturbation,

γ = γ0 + ε γ1 exp[ik(x− ct)], (D.2.30)

where γ0 is the surface tension in the unperturbed state corresponding to the surfactant concen-
tration Γ0, and γ1 is the complex amplitude of the perturbation. Consistent with the linearized
approximation, we assume that the surface tension is a linear function of the surfactant concentra-
tion,

γ1
Γ1

= −Ma
γ0
Γ0

, (D.2.31)

where Ma is the Marangoni number. Substituting (D.2.29) and rearranging, we obtain

γ1
γ0

= iMa
k

a (s+Dsk2)

(
A1,j [k̂ I0(k̂)− I1(k̂)] +A2,j a [I0(k̂) + k̂ I1(k̂)]

−B1,j [k̂K0(k̂) + K1(k̂)] +B2,j a [K0(k̂)− k̂K1(k̂)]
)
. (D.2.32)
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Selecting j = 1, corresponding to the inner fluid, we recast this equation into the form

γ1 = i ( δ1A1,1 + δ2A2,1 + δ3B1,1 + δ4B2,1), (D.2.33)

where

δ1 =
Π

a
[k̂ I0(k̂)− I1(k̂)], δ2 = Π [I0(k̂) + k̂ I1(k̂)], δ3 = −Π

a
[k̂K0(k̂) + K1(k̂)],

δ4 = Π [K0(k̂)− k̂K1(k̂)], (D.2.34)

and

Π ≡ Ma
γ0

s+Dsk2
(D.2.35)

is a dimensionless number pertinent to the surfactant.

Tangential interfacial force balance

Balancing the tangential hydrodynamic forces exerted on an infinitesimal portion of the interface
and the interfacial tension, γ, we derive the linearized shear stress condition(

σxσ1
− σxσ2

)
σ=a

= μ1

(∂ux1

∂σ
+

∂uσ1

∂x

)
σ=a

− μ2

(∂ux2

∂σ
+

∂uσ2

∂x

)
σ=a

=
∂γ

∂x
. (D.2.36)

Substituting the normal-mode forms, we find that

μ1

(dUx1

dσ
+ ik Uσ1

)
σ=a

− μ2

(dUx2

dσ
+ ik Uσ2

)
σ=a

= ikγ1. (D.2.37)

Using the expression

dUxj
(σ)

dσ
= A1,j k

2 I1(σ̂) +A2,jk[2 I1(σ̂) + σ̂ I0(σ̂)]

+B1,jk
2 K1(σ̂)−B2,jk [2K1(σ̂)− σ̂K0(σ̂)] (D.2.38)

along with (D.2.15) and (D.2.33), we obtain

2μ1k
(
A1,1k I1(k̂) +A2,1[I1(k̂) + k̂ I0(k̂)] +B1,1kK1(k̂)−B2,1[K1(k̂)− k̂K0(k̂)]

)
−2μ2k

(
A1,2k I1(k̂) +A2,2[I1(k̂) + k̂ I0(k̂)] +B1,2kK1(k̂)−B2,2[K1(k̂)− k̂K0(k̂)]

)
= ik γ1 = −k

(
δ1 A1,1 + δ2 A2,1 + δ3 B1,1 + δ4 B2,1

)
. (D.2.39)

Consolidating the various terms, we obtain a linear algebraic equation,

F1A1,1 + F2A2,1 + F3B1,1 + F4B2,1 + F5A1,2 + F6A2,2 + F7B1,2 + F8B2,2 = 0, (D.2.40)

where

F1 = 2μ1k I1(k̂) + δ1, F2 = 2μ1[I1(k̂) + k̂ I0(k̂)] + δ2,

F3 = 2μ1 kK1(k̂) + δ3, F4 = 2μ1 [−K1(k̂) + k̂K0(k̂)] + δ4,

F5 = −2μ2 k I1(k̂), F6 = −2μ2 [I1(k̂) + k̂ I0(k̂)],

F7 = −2μ2 kK1(k̂), F8 = −2μ2 [−K1(k̂) + k̂K0(k̂)].

(D.2.41)
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Normal stress interfacial condition

Balancing the normal forces exerted on an infinitesimal patch of the interface and the interfacial
tension γ, and linearizing, we derive the normal stress balance(

σσσ1
− σσσ2

)
σ=a

=
(
− p1 + 2μ1

∂uσ1

∂σ

)
σ=a

−
(
− p2 + 2μ2

∂uσ2

∂σ

)
σ=a

= γ 2κm, (D.2.42)

where κm is the mean curvature. In the linearized approximation,

2κm = −1

a
+ ε

( η

a2
+ ηxx

)
= −1

a
+ ε

A

a2
(1− k̂2) exp[ik(x− ct)]. (D.2.43)

Using (D.2.23) with j = 1 to eliminate the interfacial amplitude, A, we obtain

2κm = −1

a
+ ε 2κ(1)

m exp[ik(x− ct)], (D.2.44)

where

2κ(1)
m =

1− k̂2

ca2
[
A1,1 I1(k̂) +A2,1 a I0(k̂) +B1,1 K1(k̂) +B2,1 aK0(k̂)

]
. (D.2.45)

Substituting into (D.2.42) the normal-mode expansions, we obtain(
− χ1 + 2μ1

∂Uσ1

∂σ

)
σ=a

−
(
− χ2 + 2μ2

∂Uσ2

∂σ

)
σ=a

= −γ1
a

(D.2.46)

+γ0
1− k̂2

ca2
(
A1,1 I1(k̂) +A2,1 a I0(k̂) +B1,1K1(k̂) +B2,1 aK0(k̂)

)
.

Substituting into the left-hand side the expression

dUσj

dσ
= −i k

[
A1,j k

[
I0(σ̂)−

1

σ̂
I1(σ̂)

]
+A2,j

[
I0(σ̂) + σ̂ I1(σ̂)

]
−B1,j k

[
K0(σ̂) +

1

σ̂
K1(σ̂)

]
+B2,j

[
K0(σ̂)− σ̂K1(σ̂)

] ]
(D.2.47)

together with the last expression in (D.2.19) for the pressure, we find that

α1,1A1,1 + α2,1A2,1 + β1,1B1,1 + β2,1B2,1 + α1,2A1,2 + α2,2A2,2

+β1,2B1,2 + β2,2B2,2 = −i
γ1
a

=
1

a

(
δ1 A1,1 + δ2A2,1 + δ3B1,1 + δ4B2,1

)
, (D.2.48)

where

α1,1 = 2μ1 k
2
[
I0(k̂)−

1

k̂
I1(k̂)

]
− γ0k

3

s

1− k̂2

k̂2
I1(k̂),

α2,1 = 2μ1 k k̂ I1(k̂)−
γ0k

3

s

1− k̂2

k̂2
a I0(k̂),

β1,1 = −2μ1 k
2
[
K0(k̂) +

1

k̂
K1(k̂)

]
− γ0k

3

s

1− k̂2

k̂2
K1(k̂), (D.2.49)

β2,1 = −2μ1 k k̂ K1(k̂)−
γ0k

3

s

1− k̂2

k̂2
aK0(k̂),
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and

α1,2 = −2μ2 k
2
[
I0(k̂)−

1

k̂
I1(k̂)

]
, α2,2 = −2μ2 k k̂ I1(k̂),

β1,2 = 2μ2 k
2
[
K0(k̂) +

1

k̂
K1(k̂)

]
, β2,2 = 2μ2 k k̂K1(k̂). (D.2.50)

Consolidating the various terms, we derive a linear algebraic equation,

G1 A1,1 +G2 A2,1 +G3 B1,1 +G4 B2,1 +G5 A1,2 +G6 A2,2 +G7 B1,2 +G8 B2,2 = 0, (D.2.51)

where

G1 = α1,1 −
δ1
a
, G2 = α2,1 −

δ2
a
, G3 = β1,1 −

δ3
a
, G4 = β2,1 −

δ4
a
,

G5 = α1,2, G6 = α2,2, G7 = β1,2, G8 = β2,2. (D.2.52)

Formulation of an eigenvalue problem

To formulate the algebraic eigenvalue problem, we collect equations (D.2.20), (D.2.21), (D.2.25),
(D.2.26), (D.2.40), and (D.2.51) into a linear homogeneous system, M · q = 0, where

q =
(
A1,1, A2,1, B1,1, B2,1, A1,2, A2,2, B1,2, B2,2

)
, (D.2.53)

and the coefficient matrix, M, is given in Table D.2.1 [214]. When both the inner and outer cylinders
are absent and the interface is devoid of surfactants, the coefficient matrix is in agreement with that
derived by Tomotika [410], as discussed in Section 9.13.2.

For a nontrivial solution to exist, the determinant of the matrix M must be zero, det(M) = 0.
To compute the growth rate, s = −ikc, we eliminate the denominators from all entries of the matrix
M by multiplying corresponding rows by them, thereby obtaining a new matrix, Q. Setting the
determinant of Q to zero, we obtain a quadratic equation for the shifted growth rate,

P2(s) = det(Q) = ã (s− sr)
2 + b̃ (s− sr) + c̃ = 0, (D.2.54)

where sr is an arbitrary reference value. In the numerical method, the binomial coefficients, ã, b̃, c̃,
are computed from the values P2(sr−δ), P2(sr), P2(sr+δ), using finite-difference formula with zero
error, where δ is an arbitrary offset. The growth rate is then computed using the quadratic formula,
yielding two normal modes. In the absence of surfactant, ã = 0, yielding one normal mode.

Program files:

1. ann2l0
Solves the secular equation. The determinant of the matrix is calculated by LU decomposition
using Gauss elimination.

2. ann2l0 dr

Driver for ann2l0.
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1(k̂) a I0(k̂) K1(k̂) aK1(k̂)

k I0(k̂) 2 I0(k̂) + k̂ I1(k̂) −kK0(k̂) 2K0(k̂)− k̂K1(k̂)

I1(k̂i) ai I0(k̂i) K1(kai) ai K0(k̂i)

k I0(k̂i) 2 I0(k̂i) + k̂i I1(k̂i) −kK0(k̂i) 2K0(k̂i)− k̂iK1(k̂i)
0 0 0 0
0 0 0 0
F1 F2 F3 F4

G1 G2 G3 G4

−I1(k̂) −a I0(k̂) −K1(k̂) −aK0(k̂)

−k I0(k̂) −2 I0(k̂)− k̂ I1(k̂) kK0(k̂) −2K0(k̂) + k̂K1(k̂)
0 0 0 0
0 0 0 0

I1(k̂e) ae I0(k̂e) K1(k̂e) ae K0(k̂e)

k I0(k̂e) 2 I0(k̂e) + k̂e I1(k̂e) −kK0(k̂e) 2K0(k̂e)− k̂e K1(k̂e)
F5 F6 F7 F8

G5 G6 G7 G8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table D.2.1 Setting the determinant of the matrix displayed to zero provides us with a quadratic
equation for the complex growth rate.

3. matrix
Formulates the secular matrix, M.

4. bess I01K0

Computes the Bessel functions.

5. gel
Computes the determinant of a matrix by LU decomposition using Gauss elimination.

Input files:

1. ann2l0.dat
Problem selection and specification of input parameters.

Output files:

1. ann2l0.out
Growth rates.
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x

a
a

ai

e

σ

Fluid 1 (inner)

Fluid 2 (outer)

Figure D.3.1 Illustration of two annular layers separated by an elastic interface between an inner
cylindrical tube of radius ai and an outer cylindrical tube of radius ae.

D.3 Directory ann2lel

This directory contains a code that performs the linear stability analysis of the elastic interface
between two annular layers confined between two concentric cylinders, as illustrated in Figure D.3.1,
subject to axisymmetric perturbations [310].

Base state

We consider two stationary annular layers separated by a cylindrical interface of radius a, confined
between an inner cylindrical tube of radius ai and an outer cylindrical tube of radius ae, as illustrated
in Figure D.3.1. The inner fluid is labeled 1 and the outer fluid is labeled 2. The viscosity of the
inner fluid is μ1 and the viscosity of outer fluid is μ2 = λμ1, where λ is the viscosity ratio. Several
special cases can be recognized:

• When the inner cylinder is absent and the radius of the outer cylinder is infinite, we obtain a
thread suspended in an infinite ambient fluid.

• When the inner cylinder is absent, we obtain a core-annular arrangement consisting of an
annular layer coated on the interior surface of the inner cylinder.

• When the radius of the outer cylinder is infinite, we obtain an annular layer coated on the
exterior surface of the inner cylinder.

In the unperturbed configuration, the fluids are quiescent.

Normal-mode analysis

To carry out the normal-mode stability analysis for axisymmetric perturbations, we introduce cylin-
drical polar coordinates, (x, σ, ϕ), where the x axis coincides with the axis of revolution of the
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interface. The radial position of the interface is described in terms of the real or imaginary part of
the right-hand side of the equation

σ = f(x, t) = a+ εη(x, t), (D.3.1)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.3.2)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function, velocity and vorticity

The motion of the fluid on either side of the interface is governed by the continuity equation and the
Navier–Stokes equation with appropriate physical constants for fluid. Taking advantage of the axial
symmetry of the flow, we describe the perturbation flow in terms of the Stokes stream functions,

ψ
(1)
1 and ψ

(1)
2 , for the inner and outer fluid, respectively, where the superscript (1) denotes the

disturbance. The axial and radial components of the perturbation velocity are

uxj
= ε

1

σ

∂ψ
(1)
j

∂σ
, uσj

= −ε
1

σ

∂ψ
(1)
j

∂x
(D.3.3)

for j = 1, 2, and the azimuthal component of the vorticity is given by

ωϕj
= −ε

1

σ
E2ψ

(1)
j , (D.3.4)

where

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
(D.3.5)

is a second-order differential operator.

Next, we recall the vorticity transport equation for axisymmetric flow,

D

Dt

( 1

σ
ωϕj

)
=

νj
σ2

E2(σ ωϕj
), (D.3.6)

where D/Dt is the material derivative and νj is the kinematic viscosity of the jth fluid. Substituting
(D.3.4) into (D.3.6), linearizing with respect to ε and rearranging, we obtain(

E2 − 1

νj

∂

∂t

)
E2 ψ

(1)
j = 0 (D.3.7)

for j = 1, 2.

To carry out the normal-mode analysis, we express the stream function in the form

ψ
(1)
j (x, σ, t) = φj(σ) exp[ik(x− ct)], (D.3.8)
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where φj(σ) are eigenfunctions. Substituting this expression into (D.3.7), we obtain( d2

dσ2
− 1

σ

d

dσ
− k2

)( d2

dσ2
− 1

σ

d

dσ
− k2j

)
φj = 0, (D.3.9)

where

k2j ≡ k2 − i c
k

νj
. (D.3.10)

The general solution is

φj(σ) = σ
[
A1,j I1(σ̂) +A2,j I1(σ̂j) +B1,j K1(σ̂) +B2,j K1(σ̂j)

]
(D.3.11)

for j = 1, 2, where σ̂ ≡ kσ, σ̂j ≡ kjσ, I1 and K1 are Bessel functions, and Ai,j , Bi,j are complex
constants. The first and third terms on the right-hand side of (D.3.11) correspond to the first
operator, while the second and fourth terms correspond to the second operator on the left-hand side
of (D.3.9).

Substituting the preceding expressions into (D.3.3) and using the properties of the Bessel
functions

I′0(z) = I1(z), I′1(z) = I0(z)−
1

z
I1(z), K′

0(z) = −K1(z),

K′
1(z) = −K0(z)−

1

z
K1(z), (D.3.12)

we find that

uxj = ε Uxj (σ) exp[ik(x− ct)], uσj = ε Uσj (σ) exp[ik(x− ct)], (D.3.13)

where

Uxj
(σ) =

1

σ

dφj

dσ
= A1,j k I0(σ̂) +A2,j kj I0(σ̂j)−B1,j kK0(σ̂)−B2,j kj K0(σ̂j) (D.3.14)

and

Uσj
(σ) = −i

k

σ
φj = −ik

[
A1,j I1(σ̂) +A2,j I1(σ̂j) +B1,j K1(σ̂) +B2,j K1(σ̂j)

]
. (D.3.15)

Pressure field

The normal-mode expression for the pressure is

pj = Pj + ε χj(σ) exp[ik(x− ct)], (D.3.16)

where P1 and P2 are the uniform unperturbed pressures, P1−P2 = γ0/a is the unperturbed capillary
pressure, and χj(σ) are pressure eigenfunctions. To compute the disturbance pressure, we resort to
the x component of the Navier–Stokes equation for axisymmetric flow,

ρj
Duxj

Dt
= −∂pj

∂x
+ μj

( ∂2uxj

∂x2
+

1

σ

∂

∂σ
(σ

∂uxj

∂σ
)
)
. (D.3.17)
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Substituting (D.3.16) together with the first equation in (D.3.13) and linearizing, we obtain

χj(σ) = (cρj + iμj k)Uxj − i
μj

k

1

σ

d

dσ
(σ

dUxj

dσ
) = −i

μj

k

( 1

σ

d

dσ
(σ

dUxj

dσ
)− k2j Uxj

)
(D.3.18)

or

χj(σ) = −i
μj

k

(d2Uxj

dσ2
+

1

σ

dUxj

dσ
− k2j Uxj

)
. (D.3.19)

Making substitutions, we find that

χj(σ) = −iμj (k
2 − k2j )

[
A1,j I0(σ̂)−B1,j K0(σ̂)

]
= ckρj

[
A1,j I0(σ̂)−B1,j K0(σ̂)

]
. (D.3.20)

Note that only two terms contribute to the pressure field.

Continuity of velocity at the interface

Requiring that the x and σ velocity components are continuous at the interface and using expressions
(D.3.14) and (D.3.15), we derive the linearized kinematic interfacial conditions

A1,1 k I0(k̂) +A2,1 k1 I0(k̂1)−B1,1 kK0(k̂)−B2,1 k1 K0(k̂1)

= A1,2 k I0(k̂) +A2,2 k2 I0(k̂2)−B1,2 kK0(k̂)−B2,2 k2 K0(k̂2) (D.3.21)

and

A1,1 I1(k̂) +A2,1 I1(k̂1) +B1,1 K1(k̂) +B2,1 K1(k̂1)

= A1,2 I1(k̂) +A2,2 I1(k̂2) +B1,2 K1(k̂) +B2,2K1(k̂2), (D.3.22)

where k̂ = ka, k̂1 = k1a, and k̂2 = k2a.

Kinematic compatibility

Kinematic compatibility requires D[f(x, t)− σ]/Dt = 0 at the interface, where D/Dt is the material
derivative, and the function f describes the position of the interface according to (D.3.1). Carrying
out the differentiation, we find that

∂f

∂t
+ ux

∂f

∂x
− uσ = 0, (D.3.23)

where the velocity is evaluated at the interface. Substituting the preceding expressions and lineariz-
ing, we obtain

A = i
1

kc
Uσj (σ = a) =

1

c

[
A1,j I1(k̂) +A2,j I1(k̂j) +B1,j K1(k̂) +B2,j K1(k̂j)

]
. (D.3.24)

Boundary conditions at the cylinders

The no-slip and no-penetration conditions at the inner and outer cylinder surface require that

Uxj
(ai) = 0, Uσj

(ai) = 0, Uxj
(ae) = 0, Uσj

(ae) = 0. (D.3.25)
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tn
Fluid 1

Fluid 2

l

ϕ x

y

z

Figure D.3.2 Illustration of an interfacial deformation subject to an axisymmetric normal-mode per-
turbation.

Making substitutions, we obtain

A1,1 k I0(k̂i) +A2,1 k1 I0(k̂i1)−B1,1 kK0(k̂i)−B2,1 k1 K0(ai1) = 0,

A1,1 I1(k̂i) +A2,1 I1(k̂i1) +B1,1K1(k̂i) +B2,1 K1(k̂i1) = 0, (D.3.26)

and

A1,2 k I0(k̂e) +A2,2 k2 I0(k̂e2)−B1,2 kK0(k̂e)−B2,2 k2 K0(k̂e2) = 0,

A1,2 I1(k̂e) +A2,2 I1(k̂e2) +B1,2 K1(k̂e) +B2,2 K1(k̂e2) = 0, (D.3.27)

where k̂i = kai, k̂i1 = k1ai, âe = kae, and k̂e2 = k2ae.

Interfacial force balance

The dynamic interfacial condition requires that the jump in the hydrodynamic traction is balanced
by the stress resultants due to the surface tension, γ, as well as by the elastic interfacial tensions,

Δf ≡ (σ(1) − σ(2)) · n = γ 2κm n+Δfels, (D.3.28)

where σ(1) and σ(2) are the hydrodynamic stress tensors for the inner and outer fluid, n is the unit
vector normal to the interface pointing into the inner fluid labeled 1, as shown in Figure D.3.2, κm

is the mean curvature of the interface, and Δfels is an elastic component.

It will be necessary to introduce the unit vector tangent to the interface in an azimuthal plane,
t, and the arc length l in the direction of t, as shown in Figure D.3.2. A force balance over a small
section of the interface shows that the jump in the hydrodynamic traction due to the elastic tensions
is given by

Δfels = (κlτl + κϕτϕ)n−
(∂τl
∂l

+
1

σ

∂σ

∂l
(τl − τϕ)

)
t, (D.3.29)



D.3 FDLIB User Guide: 08 stab/ann2lel 1129

where κl and κϕ are the principal curvatures of the interface in an azimuthal and its conjugate plane,
τl is the principal elastic tension in the direction of the tangential vector t, and τϕ is the principal
elastic tension in the azimuthal direction (e.g., [306], pp. 152–153). All functions in equations
(D.3.28) and (D.3.29) are evaluated at the position of the perturbed interface. Consistent with the
normal-mode analysis, we express the principal elastic tensions as

τl = εγl exp[ik(x− ct)], τϕ = εγϕ exp[ik(x− ct)], (D.3.30)

where γl and γϕ are complex coefficients to be determined as part of the solution.

Using (D.3.1) and standard expressions for the normal unit vector and curvatures, we derive
linearized forms for the normal unit vector,

n = −eσ + εikA exp[ik(x− ct)] ex, (D.3.31)

principal curvatures,

κl = −εAk2 exp[ik(x− ct)], κϕ = −1

a
+ ε

A

a2
exp[ik(x− ct)], (D.3.32)

and mean curvature,

2κm = κl + κϕ = −1

a
+ ε

( η

a2
+ ηxx

)
= −1

a
+ ε

A

a2
(1− k̂2) exp[ik(x− ct)], (D.3.33)

where ex and eσ are unit vectors in the axial and radial directions.

Linearizing the tangential and normal components of the interfacial force balance expressed
by (D.3.28), we obtain(

σxσ1
− σxσ2

)
σ=a

= μ1

(∂ux1

∂σ
+

∂uσ1

∂x

)
σ=a

− μ2

(∂ux1

∂σ
+

∂uσ1

∂x

)
σ=a

= εiκγl exp[ik(x− ct)],

(D.3.34)

and (
σσσ1

− σσσ2

)
σ=a

=
(
− p1 + 2μ1

∂uσ1

∂σ

)
σ=a

−
(
− p2 + 2μ2

∂uσ2

∂σ

)
σ=a

, (D.3.35)

yielding (
σσσ1

− σσσ2

)
σ=a

= ε
[
γ
A

a2
(1− k̂2)− γϕ

a

]
exp[ik(x− ct)]. (D.3.36)

Interface constitutive equations

A constitutive equation relating the elastic tensions to the interfacial deformation is required. Fol-
lowing standard practice, we introduce the principal extension ratios

λl ≡
∂l

∂lR
, λϕ ≡ σ

σR
, (D.3.37)
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where the subscript R denotes the resting state. Assuming that the interface behaves like a thin
elastic sheet of an incompressible material that obeys the Mooney constitutive law (e.g., [152, 236,
262]), we write

τl =
2

3
E (2λ̂l + λ̂ϕ), τϕ =

2

3
E (λ̂l + 2λ̂ϕ), (D.3.38)

where λ̂l = λl − 1 and λ̂ϕ = λϕ − 1. Introducing the normal-mode forms

λl = 1 + εχl exp[ik(x− ct)], λϕ = 1 + εχϕ exp[ik(x− ct)], (D.3.39)

we find that

γl =
2

3
E (2χl + χϕ), γϕ =

2

3
E (χl + 2χϕ). (D.3.40)

Evolution of the extension ratios

It remains to derive evolution equations for the principal extension ratios. An evolution equation
for λϕ arises by substituting (D.3.1) into the second equation of (D.3.37) and setting σR equal to
the unperturbed radius of the interface, a, to obtain

χϕ =
A

a
. (D.3.41)

An evolution equation for χl arises from the equation of motion of a material vector lying along the
trace of the interface in an azimuthal plane,

1

χl

Dχl

Dt
= t · L · t, (D.3.42)

where D/Dt is the material derivative and L is the velocity gradient tensor. Linearizing, we obtain

χl = − 1

ca

(∂φj

∂σ

)
σ=a

. (D.3.43)

Interfacial displacement

Setting the right-hand side of the first equation in (D.3.37) equal to the right-hand side of the first
equation in (D.3.39) and substituting (D.3.43), we obtain

∂l

∂lR
= 1 + εχl exp[ik(x− ct)] = 1− ε

ca

(∂φj

∂σ

)
σ=a

exp[ik(x− ct)]. (D.3.44)

Integrating with respect to lR, we find that the axial displacement of a material membrane point
which at the unstressed state was located at x, is given by

ΔX = i
ε

kca

(∂φj

∂σ

)
σ=a

exp[ik(x− ct)], (D.3.45)
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where j = 1 or 2. The corresponding axial displacement given by (D.3.41) is

ΔΣ = εA exp[ik(x− ct)]. (D.3.46)

We anticipate that, because of the absence of a mean flow, the phase velocity c will be purely imagi-
nary. Selecting the real parts of the last two equations, we obtain the normal-mode parametrization

X = x+ εX1 sin(kx) exp[ik(x− ct)], Σ = a+ εΣ1 cos(kx) exp[ik(x− ct)], (D.3.47)

where

X1 = −i
1

kca

(∂φj

∂σ

)
σ=a

, Σ1 = A. (D.3.48)

The ratio δ ≡ X1/Σ1 determines the direction of displacement of the individual material points
corresponding to a normal mode.

Formulation of an eigenvalue problem

To formulate the algebraic eigenvalue problem, we collect equations (D.3.21), (D.3.22), (D.3.26),
(D.3.27), (D.3.34), and (D.3.36) into a linear homogeneous system, M · q = 0, where

q =
(
A1,1, A2,1, B1,1, B2,1, A1,2, A2,2, B1,2, B2,2

)
, (D.3.49)

and the coefficient matrix, M, is given in Table D.3.1. The functions Fi and Gi are coded in the
function matrix. For a nontrivial solution to exist, the determinant of the coefficient matrix must
be zero, det(M) = 0. In practice, the roots are found numerically using Newton’s method with a
suitable initial guess.

Program files:

1. ann2lel
Computes the roots of the secular equation det(M) = 0 using Newton’s method. The deter-
minant of the matrix is calculated by LU decomposition using Gauss elimination.

2. matrix
Formulates the matrix M.

3. bess I01K0

Computes the Bessel functions.

4. gel
Computes the determinant of a matrix by LU decomposition through Gauss elimination.

Input files:

1. ann2lel.dat
Problem selection and specification of input parameters.

Output files:

1. ann2lel.out
Growth rates.
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1(k̂) I1(k̂1) K1(k̂) K1(k̂1) −I1(k̂)

k I0(k̂) k1I0(k̂1) −kK0(k̂) −k1K0(k̂1) −k I0(k̂)

I1(k̂i) I1(k̂i1) K1(k̂i) K1(k̂i1) 0

k I0(k̂i) k1I0(k̂i1) −kK0(k̂i) −k1K0(k̂i2) 0

0 0 0 0 I1(k̂e)

0 0 0 0 k I0(k̂e)
F1 F2 F3 F4 F5

G1 G2 G3 G4 G5

−I1(k̂2) −K1(k̂) −K1(k̂2)

−k2I0(k̂2) kK0(k̂) k2K0(k̂2)
0 0 0
0 0 0

I1(k̂e2) K1(k̂e) K1(k̂e2)

k2I0(k̂e2) −kK0(k̂e) −k2K0(k̂e2)
F6 F7 F8

G6 G7 G8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table D.3.1 Setting the determinant of the matrix displayed to zero provides us with an algebraic
equation for the complex growth rate.

D.4 Directory ann2lel0

This directory contains a code that performs the linear stability analysis of an elastic interface
separating two annular layers confined between two concentric cylinders, as shown in Figure D.4.1,
subject to axisymmetric perturbations. The instability occurs under conditions of Stokes flow [310].

Base state

We consider the instability of an elastic interface separating two annular layers confined between
two concentric cylinders, as shown in Figure D.4.1. The inner fluid is labeled 1 and the outer fluid
is labeled 2. The viscosity of the inner fluid is μ1 and the viscosity of outer fluid is μ2 = λμ1, where
λ is the viscosity ratio. In the unperturbed configuration, the fluids are quiescent. Several special
cases can be recognized:

• When the inner cylinder is absent and the radius of the outer cylinder is infinite, we obtain a
thread suspended in an infinite ambient fluid.

• When the inner cylinder is absent, we obtain an annular layer coated on the interior surface
of the outer cylinder.
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ai
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σ

Fluid 1 (inner)

Fluid 2 (outer)

Figure D.4.1 Illustration of two annular layers separated by an elastic interface between an inner
cylindrical tube with radius ai and an outer cylindrical tube with radius ae.

• When the radius of the outer cylinder is infinite, we obtain an annular layer coated on the
exterior surface of the inner cylinder.

Normal-mode analysis

To carry out the normal-mode stability analysis for axisymmetric perturbations, we introduce cylin-
drical polar coordinates, (x, σ, ϕ), where the x axis coincides with the axis of revolution of the
unperturbed interface. Next, we describe the radial position of the interface in terms of the real or
imaginary part of the function

σ = f(x, t) = a+ ε η(x, t), (D.4.1)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.4.2)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function, velocity, and vorticity

The motion of the fluid on either side of the interface is governed by the continuity equation and the
Stokes equation with appropriate physical constants for each fluid. Taking advantage of the axial
symmetry of the flow, we describe the perturbation flow in terms of the Stokes stream functions,

ψ
(1)
1 and ψ

(2)
2 , for the inner and outer fluid, respectively, where the superscript (1) denotes the

disturbance. The axial and radial components of the perturbation velocity are given by

uxj
= ε

1

σ

∂ψ
(1)
j

∂σ
, uσj

= −ε
1

σ

∂ψ
(1)
j

∂x
(D.4.3)
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for j = 1, 2. The azimuthal component of the vorticity is given by

ωϕj
= −ε

1

σ
E2ψ

(1)
j , (D.4.4)

where

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
(D.4.5)

is a second-order differential operator.

The vorticity transport equation for axisymmetric Stokes flow requires that

E4ψj ≡ E2 (E2ψ
(1)
j ) = 0, (D.4.6)

which can be decomposed into two second-order constituent equations,

E2ψj = ψ̃
(1)
j , E2ψ̃

(1)
j = 0, (D.4.7)

where a tilde denotes an intermediate solution.

Next, we express the stream function in the normal-mode form

ψ
(1)
j (x, σ, t) = φj(σ) exp[ik(x− ct)], (D.4.8)

where φj(σ) are eigenfunctions. Substituting this expression into (D.4.7), we find that( d2

dσ2
− 1

σ

d

dσ
− k2

)
φj = φ̃j , (D.4.9)

where ( d2

dσ2
− 1

σ

d

dσ
− k2

)
φ̃j = 0. (D.4.10)

The general solution is

φj(σ) = σ
[
A1,j I1(σ̂) +A2,jσ I0(σ̂) +B1,j K1(σ̂) +B2,jσK0(σ̂)

]
, (D.4.11)

where I0, I1,K0, and K1 are Bessel functions, Ai,j , Bi,j are complex constants, and σ̂ ≡ kσ. The

first and third terms on the right-hand side of (D.4.11) satisfy (D.4.9) with φ̃ = 0. The second and
fourth terms satisfy (D.4.9) with φ̃ being a nontrivial solution of (D.4.10).

Substituting the preceding expressions into (D.4.3) and using the properties of the Bessel
functions

I′0(z) = I1(z), I′1(z) = I0(z)−
1

z
I1(z), K′

0(z) = −K1(z),

K′
1(z) = −K0(z)−

1

z
K1(z), (D.4.12)
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we find that

uxj
= ε Uxj

(σ) exp[ik(x− ct)], uσj
= ε Uσj

(σ) exp[ik(x− ct)], (D.4.13)

where

Uxj (σ) =
1

σ

dφj

dσ
= A1,j k I0(σ̂) +A2,j [ 2 I0(σ̂) + σ̂ I1(σ̂) ]

−B1,j kK0(σ̂) +B2,j [ 2K0(σ̂)− σ̂K1(σ̂) ] (D.4.14)

and

Uσj
(σ) = −i

k

σ
φj = −ik

[
A1,j I1(σ̂) +A2,j σ I0(σ̂) +B1,j K1(σ̂) +B2,j σK0(σ̂)

]
. (D.4.15)

Pressure field

The normal-mode expression for the pressure is

pj = Pj + ε χj(σ) exp[ik(x− ct)], (D.4.16)

where P1 and P2 are the uniform unperturbed pressures, P1−P2 = γ/a is the unperturbed capillary
pressure, γ is the surface tension, and χj(σ) are pressure eigenfunctions. To compute the disturbance
pressure field, we consider the x component of the Stokes equation for axisymmetric flow,

∂pj
∂x

= μj

( ∂2uxj

∂x2
+

1

σ

∂

∂σ

(
σ
∂uxj

∂σ

))
. (D.4.17)

Substituting (D.4.16) together with the first equation in (D.4.13) and linearizing, we obtain

χj(σ) = iμjkUxj
− i

μj

k

1

σ

d

dσ

(
σ
dUxj

dσ

)
= −i

μj

k

[ 1

σ

d

dσ

(
σ
dUxj

dσ

)
− k2 Uxj

]
, (D.4.18)

yielding

χj(σ) = −i
μj

k

(d2Uxj

dσ2
+

1

σ

dUxj

dσ
− k2 Uxj

)
= −i 2μjk

[
A2,j I0(σ̂) +B2,j K0(σ̂)

]
. (D.4.19)

Note that only two terms contribute to the pressure field.

Continuity of velocity at the interface

Requiring that the x and σ velocity components are continuous at the interface and using expressions
(D.4.14) and (D.4.15), we derive the linearized kinematic interfacial conditions

A1,1 k I0(k̂) +A2,1 [2 I0(k̂) + k̂ I1(k̂)]−B1,1 kK0(k̂) +B2,1 [2K0(k̂)− k̂K1(k̂)]

= A1,2 k I0(k̂) +A2,2 [2 I0(k̂) + k̂ I1(k̂)]−B1,2 kK0(k̂) +B2,2 [2K0(k̂)− k̂K1(k̂)] (D.4.20)

and

A1,1 I1(k̂) +A2,1 a I0(k̂) +B1,1 K1(k̂) +B2,1 aK0(k̂)

= A1,2 I1(k̂) +A2,2 a I0(k̂) +B1,2 K1(k̂) +B2,2 aK0(k̂), (D.4.21)

where k̂ = ka is a scaled wave number.



1136 Introduction to Theoretical and Computational Fluid Dynamics

Kinematic compatibility

Kinematic compatibility requires D[f(x, t)− σ]/Dt = 0 at the interface, where D/Dt is the material
derivative and the function f describes the position of the interface according to (D.4.1). Carrying
out the differentiation, we find that

∂f

∂t
+ ux

∂f

∂x
− uσ = 0, (D.4.22)

where the velocity is evaluated at the interface. Substituting the preceding expressions and lineariz-
ing, we find

A = i
1

ck
Uσj

(σ = a) =
1

c
[A1,j I1(k̂) +A2,j a I0(k̂) +B1,j K1(k̂) +B2,j aK0(k̂) ]. (D.4.23)

Boundary conditions at the cylinders

The no-slip and no-penetration conditions at the inner and outer cylinder surface require that

Uxj
(ai) = 0, Uσj

(ai) = 0, Uxj
(ae) = 0, Uσj

(ae) = 0. (D.4.24)

Making substitutions, we obtain

A1,1 k I0(k̂i) +A2,1 [2 I0(k̂i) + k̂i I1(k̂i)]−B1,1 kK0(k̂i) +B2,1 [2K0(k̂i)− k̂i K1(k̂i)] = 0,

A1,1 I1(k̂i) +A2,1 ai I0(k̂i) +B1,1K1(k̂i) +B2,1 ai K0(k̂i) = 0, (D.4.25)

and

A1,2 k I0(k̂e) +A2,2 [2 I0(k̂e) + k̂e I1(k̂e)]−B1,2 kK0(k̂e) +B2,2 [2K0(k̂e)− k̂e K1(k̂e)] = 0,

A1,2 I1(k̂e) +A2,2 ae I0(k̂e) +B1,2 K1(k̂e) +B2,2 ae K0(k̂e) = 0, (D.4.26)

where k̂i = kai and k̂e = kae.

Interfacial force balance

The dynamic interfacial condition requires that the jump in the hydrodynamic traction is balanced
by the capillary pressure due to the surface tension, γ, as well as by the normal and tangential elastic
interfacial tensions,

Δf ≡ (σ(1) − σ(2)) · n = γ 2κm n+Δfels, (D.4.27)

where σ(1) and σ(2) are the hydrodynamic stress tensors in the inner and outer fluid, n is the unit
vector normal to the interface pointing into the inner fluid labeled 1, as shown in Figure D.4.2, γ is
the surface tension, κm is the mean curvature of the interface, and Δfels is an elastic component.

It will be necessary to introduce the unit vector tangent to the interface in an azimuthal plane,
t, and the arc length l in the direction of t, as shown in Figure D.4.2. A force balance over a small
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Figure D.4.2 Illustration of an interfacial deformation subject to an axisymmetric normal-mode per-
turbation.

section of the interface shows that the jump in the hydrodynamic traction due to the elastic tensions
is given by

Δfels = (κlτl + κϕτϕ)n−
( ∂τl
∂l

+
1

σ

∂σ

∂l
(τl − τϕ)

)
t, (D.4.28)

where κl and κϕ are the principal curvatures of the interface in a meridional and its conjugate
plane, τl is the principal elastic tension in the direction of t, and τϕ is the principal elastic tension
in the azimuthal direction of increasing angle ϕ (e.g., [306], pp. 152–153). All functions in equations
(D.4.27) and (D.4.28) are evaluated at the position of the perturbed interface.

Consistent with the normal-mode analysis, we express the principal elastic tensions as

τl = εγl exp[ik(x− ct)], τϕ = εγϕ exp[ik(x− ct)], (D.4.29)

where γl and γϕ are complex coefficients to be determined as part of the solution.

Using (D.4.1) and standard expressions for the normal unit vector and curvatures, we derive
linearized forms for the normal unit vector,

n = −eσ + εAik exp[ik(x− ct)] ex, (D.4.30)

principal curvatures,

κl = −εAk2 exp[ik(x− ct)], κϕ = −1

a
+ ε

A

a2
exp[ik(x− ct)], (D.4.31)

and mean curvature,

2κm = κl + κϕ = −1

a
+ ε

( η

a2
+ ηxx

)
= −1

a
+ ε

A

a2
(1− k̂2) exp[ik(x− ct)], (D.4.32)

where ex and eσ are unit vectors in the axial and radial directions.



1138 Introduction to Theoretical and Computational Fluid Dynamics

Linearizing the tangential and normal components of the interfacial force balance expressed
by (D.4.27), we find that

(
σxσ1

− σxσ2

)
σ=a

= μ1

(∂ux1

∂σ
+

∂uσ1

∂x

)
σ=a

− μ2

(∂ux2

∂σ
+

∂uσ2

∂x

)
σ=a

= ε iκγl exp[ik(x− ct)]

(D.4.33)

and (
σσσ1

− σσσ2

)
σ=a

=
(
− p1 + 2μ1

∂uσ1

∂σ

)
σ=a

−
(
− p2 + 2μ2

∂uσ2

∂σ

)
σ=a

, (D.4.34)

yielding (
σσσ1

− σσσ2

)
σ=a

= ε
[
γA

1

a2
(1− k̂2)− γϕ

a

]
exp[ik(x− ct)]. (D.4.35)

Both sides are evaluated at the location of the unperturbed interface, σ = a.

Interface constitutive equations

A constitutive equation relating the elastic tensions to the interfacial deformation is required. Fol-
lowing standard practice, we introduce the principal extension ratios

λl ≡
∂l

∂lR
, λϕ ≡ σ

σR
, (D.4.36)

where the subscript R signifies the resting state. Assuming that the membrane behaves like a thin
elastic sheet consisting of an incompressible material that obeys the Mooney constitutive law (e.g.,
[152, 236, 262]), we write

τl =
2

3
E (2λ̂l + λ̂ϕ), τϕ =

2

3
E (λ̂l + 2λ̂ϕ), (D.4.37)

where λ̂l = λl − 1 and λ̂ϕ = λϕ − 1 . Introducing the normal-mode forms

λl = 1 + εχl exp[ik(x− ct)], λϕ = 1 + εχϕ exp[ik(x− ct)], (D.4.38)

we find that

γl =
2

3
E (2χl + χϕ), γϕ =

2

3
E (χl + 2χϕ). (D.4.39)

Evolution of the extension ratios

It remains to derive evolution equations for the principal extension ratios. An evolution equation
for λϕ arises by substituting (D.4.1) into the second equation of (D.4.36) and setting σR equal to
the unperturbed radius of the interface, a, to obtain

χϕ =
A

a
. (D.4.40)
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An evolution equation for χl arises from the equation of motion of a material vector lying along the
trace of the interface in an azimuthal plane,

1

χl

Dχl

Dt
= t · L · t, (D.4.41)

where D/Dt is the material derivative and L is the velocity gradient tensor. Linearizing, we find

χl = − 1

ca

(∂φj

∂σ

)
σ=a

, (D.4.42)

where j = 1 or 2.

Interfacial displacement

Setting the right-hand side of the first equation in (D.4.36) equal to the right-hand side of the first
equation in (D.4.38) and substituting (D.4.42), we find

∂l

∂lR
= 1 + εχl exp[ik(x− ct)] = 1− ε

ca

(∂φj

∂σ

)
σ=a

exp[ik(x− ct)]. (D.4.43)

Integrating with respect to lR, we find that the axial displacement of a material point which at the
unstressed state was located at x, is given by

ΔX = i
ε

kca

(∂φj

∂σ

)
σ=a

exp[ik(x− ct)], (D.4.44)

where j = 1 or 2. The corresponding axial displacement given by (D.4.40) is

ΔΣ = εA exp[ik(x− ct)]. (D.4.45)

We anticipate that, because of the absence of a base flow, the phase velocity c will be purely imaginary
and select the real parts of the last two equations to obtain the normal-mode parametrization

X = x+ εX1 sin(kx) exp[ik(x− ct)], Σ = a+ εΣ1 cos(kx) exp[ik(x− ct)], (D.4.46)

where

X1 = −i
1

kca

(∂φj

∂σ

)
σ=a

, Σ1 = A. (D.4.47)

The ratio δ ≡ X1/Σ1 determines the direction of displacement of the individual material points
corresponding to the normal modes.

Formulation of an eigenvalue problem

To formulate an algebraic eigenvalue problem, we collect equations (D.4.20), (D.4.21), (D.4.25),
(D.4.26), (D.4.33), and (D.4.35) into a linear homogeneous system, M · q = 0, where

q =
(
A1,1, A2,1, B1,1, B2,1, A1,2, A2,2, B1,2, B2,2

)
(D.4.48)
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1(k̂) a I0(k̂) K1(k̂) aK1(k̂)

k I0(k̂) 2 I0(k̂) + k̂ I1(k̂) −kK0(k̂) 2K0(k̂)− k̂K1(k̂)

I1(k̂i) ai I0(k̂i) K1(k̂i) ai K0(k̂i)

k I0(k̂i) 2 I0(k̂i) + k̂i I1(k̂i) −kK0(k̂i) 2K0(k̂i)− k̂iK1(k̂i)
0 0 0 0
0 0 0 0
F1 F2 F3 F4

G1 G2 G3 G4

−I1(k̂) −a I0(k̂) −K1(k̂) −aK0(k̂)

−k I0(k̂) −2 I0(k̂)− k̂ I1(k̂) kK0(k̂) −2K0(k̂) + k̂K1(k̂)
0 0 0 0
0 0 0 0

I1(k̂e) ae I0(k̂e) K1(k̂e) ae K0(k̂e)

k I0(k̂e) 2 I0(k̂e) + k̂e I1(k̂e) −kK0(k̂e) 2K0(k̂e)− k̂e K1(k̂e)
F5 F6 F7 F8

G5 G6 G7 G8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table D.4.1 Setting the determinant of the matrix displayed to zero provides us with an algebraic
equation for the complex growth rate.

and the coefficient matrix, M, is given in Table D.4.1 [310]. The functions F1–F8 in the seventh
row and the functions G1–G8 in the eighth row are defined in the computer code. For a nontrivial
solution to exist, the determinant of the coefficient matrix must be zero, det(M) = 0. Expanding
the determinant, we obtain a quadratic equation for the growth rate.

Program files:

1. ann2lel0
Computes the roots of the secular equation det(M) = 0. The determinant of the matrix is
calculated by LU decomposition using Gauss elimination.

2. matrix
Formulates the matrix M.

3. bess I01K0

Computes the Bessel functions.

4. gel
Computes the determinant of a matrix by LU decomposition using Gauss elimination.
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Figure D.5.1 Illustration of two annular layers separated by a viscous interface confined between an
inner cylindrical tube with radius ai and an outer cylindrical tube with radius ae.

Input files:

1. ann2lel.dat
Problem selection and specification of input parameters.

Output files:

1. ann2lel.out
Growth rates.

D.5 Directory ann2lvs0

This directory contains a code that performs the linear stability analysis of a viscous interface
separating two annular layers confined between two concentric cylinders, as shown in Figure D.5.1
[326]. The instability occurs under conditions of Stokes flow.

Base state

We consider the capillary instability of an infinite, cylindrical, viscous interface separating two
concentric annular layers confined between two concentric cylinders, as shown in Figure D.5.1. The
inner fluid is labeled 1 and the outer fluid is labeled 2. The viscosity of the inner fluid is μ1 and the
viscosity of outer fluid is μ2 = λμ1, where λ is the viscosity ratio. In the unperturbed configuration,
the fluids are quiescent. Several special cases can be recognized:

• When the inner cylinder is absent and the radius of the outer cylinder is infinite, we obtain a
thread suspended in an infinite ambient fluid.
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• When the inner cylinder is absent, we obtain an annular layer coated on the interior surface
of the outer cylinder.

• When the radius of the outer cylinder is infinite, we obtain an annular layer coated on the
exterior surface of the inner cylinder.

Normal-mode analysis

To carry out the normal-mode stability analysis for axisymmetric perturbations, we introduce cylin-
drical polar coordinates, (x, σ, ϕ), where the x axis coincides with the axis of revolution of the
unperturbed interface. Next, we describe the radial position of the interface in terms of the real or
imaginary part of the function

σ = f(x, t) = a+ εη(x, t), (D.5.1)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.5.2)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, i is the imaginary unit satisfying i2 = −1, k = 2π/L is the wave number, L is the wavelength,
and c is the complex phase velocity.

Stream function, velocity and vorticity

The motion of the fluid on either side of the interface is governed by the continuity equation and the
Stokes equation with appropriate physical constants for each fluid. Taking advantage of the axial

symmetry of the flow, we describe the perturbation in terms of the Stokes stream functions, ψ
(1)
1 and

ψ
(1)
2 , for the inner and outer fluid, respectively, where the superscript (1) denotes the disturbance.

The axial and radial components of the perturbation velocity are given by

uxj
= ε

1

σ

∂ψ
(1)
j

∂σ
, uσj

= −ε
1

σ

∂ψ
(1)
j

∂x
(D.5.3)

for j = 1, 2. The azimuthal component of the vorticity is given by

ωϕj
= −ε

1

σ
E2ψ

(1)
j , (D.5.4)

where

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
(D.5.5)

is a second-order differential operator.

The vorticity transport equation for axisymmetric Stokes flow requires that

E4ψj ≡ E2 (E2ψ
(1)
j ) = 0, (D.5.6)
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which can be decomposed into two second-order constituent equations,

E2ψ
(1)
j = ψ̃j, E2ψ̃

(1)
j = 0, (D.5.7)

where a tilde denotes an intermediate solution.

The stream function is now expressed in the normal-mode form

ψ
(1)
j (x, σ, t) = φj(σ) exp[ik(x− ct)], (D.5.8)

where φj(σ) are eigenfunctions. Substituting this expression into (D.5.7), we obtain( d2

dσ2
− 1

σ

d

dσ
− k2

)
φj = φ̃j , (D.5.9)

where ( d2

dσ2
− 1

σ

d

dσ
− k2

)
φ̃j = 0. (D.5.10)

The general solution is

φj(σ) = σ
[
A1,j I1(σ̂) +A2,j σ I0(σ̂) +B1,j K1(σ̂) +B2,j σK0(σ̂)

]
, (D.5.11)

where I0, I1,K0, and K1 are Bessel functions, Ai,j , Bi,j are complex constants, and σ̂ ≡ kσ. The

first and third terms on the right-hand side of (D.5.11) satisfy (D.5.9) with φ̃j = 0. The second and

fourth terms satisfy (D.5.9) with φ̃j being a nontrivial solution of (D.5.10).

Substituting the preceding expressions in (D.5.3) and using the following properties of the
Bessel functions,

I′0(z) = I1(z), I′1(z) = I0(z)−
1

z
I1(z), K′

0(z) = −K1(z),

K′
1(z) = −K0(z)−

1

z
K1(z), (D.5.12)

we find that

uxj
= ε Uxj

(σ) exp[ik(x− ct)], uσj
= ε Uσj

(σ) exp[ik(x− ct)], (D.5.13)

where

Uxj
(σ) =

1

σ

dφj

dσ
= A1,j k I0(σ̂) +A2,j [ 2 I0(σ̂) + σ̂ I1(σ̂) ]

−B1,j kK0(σ̂) +B2,j [ 2K0(σ̂)− σ̂K1(σ̂) ], (D.5.14)

and

Uσj
(σ) = −i

k

σ
φj = −ik

[
A1,j I1(σ̂) +A2,j σ I0(σ̂) +B1,j K1(σ̂) +B2,j σK0(σ̂)

]
. (D.5.15)
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Pressure field

The normal-mode pressure field is

pj = Pj + εχj(σ) exp[ik(x− ct)], (D.5.16)

where P1 and P2 are the unperturbed uniform pressures, P1−P2 = γ/a is the unperturbed capillary
pressure, γ is the surface tension, and χj(σ) are pressure eigenfunctions. To compute the disturbance
pressure field, we consider the x component of the Stokes equation for axisymmetric flow,

∂pj
∂x

= μj

[ ∂2uxj

∂x2
+

1

σ

∂

∂σ

(
σ
∂uxj

∂σ

) ]
. (D.5.17)

Substituting (D.5.16) along with the first equation into (D.5.13) and linearizing, we obtain

χj(σ) = iμjk Uxj
− i

μj

k

1

σ

d

dσ

(
σ
dUxj

dσ

)
= −i

μj

k

[ 1
σ

d

dσ

(
σ
dUxj

dσ

)
− k2 Uxj

]
(D.5.18)

or

χj(σ) = −i
μj

k

(d2Uxj

dσ2
+

1

σ

dUxj

dσ
− k2 Uxj

)
. (D.5.19)

Making substitutions, we obtain

χj(σ) = −i 2μjk
[
A2,j I0(σ̂) +B2,j K0(σ̂)

]
. (D.5.20)

Note that only two terms contribute to the pressure field.

Continuity of velocity at the interface

Requiring that the x and σ velocity components are continuous at the interface, and using expressions
(D.5.14) and (D.5.15), we derive the linearized kinematic interfacial conditions

A1,1k I0(k̂) +A2,1[2 I0(k̂) + k̂ I1(k̂)]−B1,1kK0(k̂) +B2,1[2K0(k̂)− k̂K1(k̂)]

= A1,2 k I0(k̂) +A2,2[2 I0(k̂) + k̂ I1(k̂)]−B1,2 kK0(k̂) +B2,2 [2K0(k̂)− k̂K1(k̂)], (D.5.21)

and

A1,1 I1(k̂) +A2,1 a I0(k̂) +B1,1 K1(k̂) +B2,1 aK0(k̂)

= A1,2 I1(k̂) +A2,2 a I0(k̂) +B1,2 K1(k̂) +B2,2 aK0(k̂), (D.5.22)

where k̂ = ka is a scaled wave number.

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t) − σ]/Dt = 0 at the interface, where D/Dt is the
material derivative and the function f describes the position of the interface according to (D.5.1).
Carrying out the differentiation, we obtain

∂f

∂t
+ ux

∂f

∂x
− uσ = 0, (D.5.23)
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where the velocity is evaluated at the interface. Substituting the preceding expressions and lineariz-
ing, we find that

A = i
1

kc
Uσj

(a) =
1

c

[
A1,j I1(k̂) +A2,j a I0(k̂) +B1,j K1(k̂) +B2,j aK0(k̂)

]
. (D.5.24)

Boundary conditions at the cylinders

The no-slip and no-penetration condition at the inner and outer cylinder require that

Uxj
(ai) = Uσj

(ai) = 0, Uxj
(ae) = Uσj

(ae) = 0. (D.5.25)

Making substitutions, we obtain

A1,1 k I0(k̂i) +A2,1 [2 I0(k̂i) + k̂i I1(k̂i)]−B1,1 kK0(k̂i) +B2,1 [2K0(k̂i)− k̂i K1(k̂i)] = 0,

A1,1 I1(k̂i) +A2,1 ai I0(k̂i) +B1,1K1(k̂i) +B2,1 ai K0(k̂i) = 0, (D.5.26)

and

A1,2 k I0(k̂e) +A2,2 [2 I0(k̂e) + k̂e I1(k̂e)]−B1,2 kK0(k̂e) +B2,2 [2K0(k̂e)− k̂e K1(k̂e)] = 0,

A1,2 I1(k̂e) +A2,2 ae I0(k̂e) +B1,2 K1(k̂e) +B2,2 ae K0(k̂e) = 0, (D.5.27)

where k̂i = kai and k̂e = kae.

Interfacial force balance

The dynamic interfacial condition requires that the jump in the hydrodynamic traction is balanced
by the normal stress due to the surface tension, γ, as well as by viscous interfacial tensions generated
by the fluid motion,

Δf ≡ (σ(1) − σ(2)) · n = γ 2κm n+Δfv, (D.5.28)

where σ(1) and σ(2) are the hydrodynamic stress tensors in the inner and outer fluid, n is the unit
vector normal to the interface pointing into the inner fluid labeled 1, as shown in Figure D.5.2, κm

is the mean curvature of the interface, and Δfv is a viscous component.

A force balance over a small section of the interface shows that the jump in the hydrodynamic
traction due to the interfacial tensions is given by

Δfv = (κlτl + κϕτϕ)n−
[ ∂τl
∂l

+
1

σ

∂σ

∂l
(τl − τϕ)

]
t, (D.5.29)

where κl and κϕ are the principal curvatures of the interface in a meridional and its conjugate plane,
τl and τϕ are the principal viscous tensions referring to orthogonal curvilinear axes corresponding
to the unit tangential vector t and to the azimuthal angle, ϕ, and l is the arc length measured in
the direction of t, as shown in Figure D.5.2 (e.g., [306], pp. 152–153). All functions in equations
(D.5.28) and (D.5.29) are evaluated at the position of the perturbed interface.



1146 Introduction to Theoretical and Computational Fluid Dynamics

tn
Fluid 1

Fluid 2

l

ϕ x

y

z

Figure D.5.2 Illustration of an interfacial deformation subject to an axisymmetric normal-mode per-
turbation.

Consistent with the normal-mode analysis, we express the principal viscous tensions as

τl = εγl exp[ik(x− ct)], τϕ = εγϕ exp[ik(x− ct)], (D.5.30)

where γl and γϕ are complex coefficients to be determined as part of the solution.

Using (D.5.1) and standard expressions for the normal and tangent unit vectors and curvatures,
we derive linearized forms for the normal and tangent unit vectors,

n = −eσ + εAik exp[ik(x− ct)]ex, t = ex + εAik exp[ik(x− ct)]eσ (D.5.31)

principal curvatures,

κl = −εAk2 exp[ik(x− ct)], κϕ = −1

a
+ ε

A

a2
exp[ik(x− ct)], (D.5.32)

and mean curvature,

2κm = κl + κϕ = −1

a
+ ε

( η

a2
+ ηxx

)
= −1

a
+ ε

A

a2
(1− k̂2) exp[ik(x− ct)], (D.5.33)

where ex and eσ are the unit vectors in the axial and radial directions.

To evaluate the viscous interfacial tensions, we introduce the principal extension ratios

λl ≡
∂l

∂lR
, λϕ ≡ σ

σR
, (D.5.34)

where the subscript R signifies the resting state.

The viscous tensions developing in a three-dimensional interface can be expressed in global
Cartesian form as [366]

τ v = μe θP+ μs (2E
s − θP) = (μe − μs) θP+ μs 2E

s, (D.5.35)
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where μe is the interface expansion viscosity, μs is the interface shear viscosity, P ≡ I − n ⊗ n is
the tangential projection operator, n is the unit vector normal to the interface, Es is the surface
rate-of-deformation tensor given by

Es =
1

2
P ·

[
∇u+ (∇u)T

]
·P = P · ∇u ·P, (D.5.36)

the superscript T denotes the transpose, and θ is the surface rate of dilatation given by

θ = P : ∇u = trace(Es). (D.5.37)

In the case of axisymmetric deformation, P = t⊗ t+ eϕ ⊗ eϕ,

Es = (t · ∇u · t) t⊗ t+ (eϕ · ∇u · eϕ) eϕ ⊗ eϕ, τ v = τl t⊗ t+ τϕ ⊗ eϕ eϕ, (D.5.38)

where

τl = (μe − μs) θ + 2μst · ∇u · t, τϕ = (μe − μs) θ + 2μs eϕ · ∇u · eϕ, (D.5.39)

and eϕ is the unit vector in the azimuthal direction. To interpret these expressions, we introduce
the principal extension ratios

t · ∇u · t = ∂u

∂l
· t = ∂lR

∂l

∂u

∂lR
· t = 1

λl

Dλl

Dt
=

∂ut

∂l
+ κl un,

eϕ · ∇u · eϕ =
1

σ

∂u

∂ϕ
· eϕ =

1

λϕ

Dλϕ

Dt
=

uσ

σ
, (D.5.40)

where D/Dt is the material derivative, ut ≡ u · t is the tangential velocity, and un ≡ u · n is the
normal velocity (e.g., [107]). The radial velocity can be expressed in terms of the tangential and
normal velocities as

uσ = ut
∂σ

∂l
− un

∂x

∂l
, (D.5.41)

yielding

eϕ · ∇u · eϕ =
uσ

σ
=

ut

σ

∂σ

∂l
− un

σ

∂x

∂l
=

ut

σ

∂σ

∂x
+ κϕ un. (D.5.42)

The rate of surface dilatation is then

θ = t · ∇u · t+ eϕ · ∇u · eϕ =
1

σ

∂(σut)

∂l
+ 2κm un. (D.5.43)

The first term on the right-hand side expresses dilatation due to in-plane axisymmetric motion, and
the second term expresses dilatation due to normal motion.

In the linear approximation,

t · ∇u · t =
(∂ux

∂x

)
σ=a

= ε ikUx(a) exp[ik(x− ct)], eϕ · ∇u · eϕ = ε
Uσ(a)

a
exp[ik(x− ct)],

θ = εi
(
kUx − i

Uσ

a

)
σ=a

exp[ik(x− ct)]. (D.5.44)
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Substituting these expressions into the surface constitutive equation, we find that

γl = i (δ1A1,1 + δ2A2,1 + δ3B1,1 + δ4B2,1), (D.5.45)

where

δ1 = k2 [(μe + μs) I0(k̂)− (μe − μs)
1

k̂
I1(k̂)],

δ2 = k [(μe + μs)[2 I0(k̂) + k̂ I1(k̂)]− (μe − μs) I0(k̂) ],

δ3 = k2 [−(μe + μs)K0(k̂)− (μe − μs)
1

k̂
K1(k̂) ], (D.5.46)

δ4 = k [ (μe + μs)[2K0(k̂)− k̂K1(k̂)]− (μe − μs)K0(k̂) ],

and

γϕ = i(δ′1A1,1 + δ′2A2,1 + δ′3B1,1 + δ′4B2,1), (D.5.47)

where

δ′1 = k2 [(μe − μs) I0(k̂)− (μe + μs)
1

k̂
I1(k̂)],

δ′2 = k [(μe − μs)[2 I0(k̂) + k̂ I1(k̂)]− (μe + μs) I0(k̂) ],

δ′3 = k2 [−(μe − μs)K0(k̂)− (μe + μs)
1

k̂
K1(k̂) ], (D.5.48)

δ′4 = k [ (μe − μs)[2K0(k̂)− k̂K1(k̂)]− (μe + μs)K0(k̂) ].

Tangential interfacial balance

Linearizing the tangential component of the interfacial force balance (D.5.28), we obtain

(
σxσ1

− σxσ2

)
σ=a

= μ1

(
∂ux1

∂σ
+

∂uσ1

∂x

)
σ=a

− μ2

(
∂ux2

∂σ
+

∂uσ2

∂x

)
σ=a

=
∂τl
∂l

= εikγl exp[ik(x− ct)]. (D.5.49)

Substituting the normal-mode expression for the velocity, we find that

μ1

(dUx1

dσ
+ ik Uσ1

)
σ=a

− μ2

(dUx2

dσ
+ ik Uσ2

)
σ=a

= ikγl. (D.5.50)

Using the expression

dUxj
(σ)

dσ
= A1,j k

2 I1(σ̂) +A2,j k [2 I1(σ̂) + σ̂ I0(σ̂)]

+B1,j k
2 K1(σ̂)−B2,j k [2K1(σ̂)− σ̂K0(σ̂)] (D.5.51)
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along with (D.5.15) and (D.5.45), we obtain

2μ1 k
(
A1,1 k I1(k̂) +A2,1 [I1(k̂) + k̂ I0(k̂)] +B1,1 kK1(k̂)−B2,1 [K1(k̂)− k̂K0(k̂)]

)
−2μ2 k

(
A1,2 k I1(k̂) +A2,2 [I1(k̂) + k̂ I0(k̂)] +B1,2 kK1(k̂)−B2,2 [K1(k̂)− k̂K0(k̂)]

)
= ik γl = −k

(
δ1A1,1 + δ2A2,1 + δ3B1,1 + δ4B2,1

)
. (D.5.52)

Consolidating the various terms, we obtain a linear algebraic equation,

F1A1,1 + F2A2,1 + F3B1,1 + F4B2,1 + F5A1,2 + F6A2,2 + F7B1,2 + F8B2,2 = 0, (D.5.53)

where

F1 = 2μ1k I1(k̂) + δ1, F2 = 2μ1 [I1(k̂) + k̂ I0(k̂)] + δ2,

F3 = 2μ1kK1(k̂) + δ3, F4 = 2μ1 [−K1(k̂) + k̂K0(k̂)] + δ4,

F5 = −2μ2k I1(k̂), F6 = −2μ2 [I1(k̂) + k̂ I0(k̂)],

F7 = −2μ2kK1(k̂), F8 = −2μ2 [−K1(k̂) + k̂K0(k̂)].

(D.5.54)

Normal interfacial balance

Next, we linearize the normal component of the interfacial force balance expressed by (D.5.28), and
find that (

σσσ1
− σσσ2

)
σ=a

=

(
−p1 + 2μ1

∂uσ1

∂σ

)
σ=a

−
(
−p2 + 2μ2

∂uσ2

∂σ

)
σ=a

, (D.5.55)

yielding

σσσ1

∣∣∣
σ=a

− σσσ2

∣∣∣
σ=a

= −γ

a
− ε

[
− γ

A

a2
(1− k̂2) +

γϕ
a

]
exp[ik(x− ct)]. (D.5.56)

Both sides are evaluated at the location of the unperturbed interface, σ = a. Substituting the
normal-mode expansions, we obtain(

−χ1 + 2μ1
∂Uσ1

∂σ

)
σ=a

−
(
−χ2 + 2μ2

∂Uσ2

∂σ

)
σ=a

= γ
A

a2
(1− k̂2)− γϕ

a
. (D.5.57)

Substituting into the left-hand side of (D.5.57) the expression

dUσj

dσ
= −i k

(
A1,j k

[
I0(σ̂)−

1

σ̂
I1(σ̂)

]
+A2,j

[
I0(σ̂) + σ̂ I1(σ̂)

]
−B1,j k

[
K0(σ̂) +

1

σ̂
K1(σ̂)

]
+B2,j

[
K0(σ̂)− σ̂K1(σ̂)

] )
(D.5.58)

along with the last expression in (D.5.20) for the pressure and expression (D.5.24) for the interfacial
amplitude, A, we obtain

α1,1A1,1 + α2,1A2,1 + β1,1B1,1 + β2,1B2,1 + α1,2A1,2 + α2,2A2,2 + β1,2B1,2 + β2,2B2,2

= −i
γϕ
a

=
1

a

(
δ′1A1,1 + δ′2A2,1 + δ′3B1,1 + δ′4B2,1

)
, (D.5.59)
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where

α1,1 = 2μ1 k
2
[
I0(k̂)−

1

k̂
I1(k̂)

]
− γk3

s

1− k̂2

k̂2
I1(k̂),

α2,1 = 2μ1 k k̂ I1(k̂)−
γ k3

s

1− k̂2

k̂2
a I0(k̂),

β1,1 = −2μ1 k
2
[
K0(k̂) +

1

k̂
K1(k̂)

]
− γ k3

s

1− k̂2

k̂2
K1(k̂), (D.5.60)

β2,1 = −2μ1 k k̂K1(k̂)−
γk3

s

1− k̂2

k̂2
aK0(k̂),

and

α1,2 = −2μ2 k
2
[
I0(k̂)−

1

k̂
I1(k̂)

]
, α2,2 = −2μ2 k k̂ I1(k̂),

β1,2 = 2μ2 k
2
[
K0(k̂) +

1

k̂
K1(k̂)

]
, β2,2 = 2μ2 k k̂ K1(k̂). (D.5.61)

Consolidating the various terms, we obtain a linear algebraic equation,

G1A1,1 +G2A2,1 +G3B1,1 +G4B2,1 +G5A1,2 +G6A2,2 +G7B1,2 +G8B2,2 = 0, (D.5.62)

where

G1 = α1,1 −
δ′1
a
, G2 = α2,1 −

δ′2
a
, G3 = β1,1 −

δ′3
a
, G4 = β2,1 −

δ4
a
,

G5 = α1,2, G6 = α2,2, G7 = β1,2, G8 = β2,2.

(D.5.63)

Formulation of an eigenvalue problem

To formulate the algebraic eigenvalue problem, we collect equations (D.5.21), (D.5.22), (D.5.26),
(D.5.27), (D.5.53), and (D.5.62) into a liner homogeneous system M · q = 0, where

q =
(
A1,1, A2,1, B1,1, B2,1, A1,2, A2,2, B1,2, B2,2

)
, (D.5.64)

and the coefficient matrix M is given by in Table D.5.1. For a nontrivial solution to exist the
determinant of M must be zero, det(M) = 0. Expanding the determinant, we obtain a linear
algebraic equation for the growth rate.

Thread surrounded by an annular layer

When the inner cylinder is absent, we obtain an annular layer surrounding a liquid thread. For small
values of their arguments, the modified Bessel functions become singular and the general expression
for the stream function (D.5.11) exhibits divergent terms. For the velocity to be regular at the x
axis, the constants B1,1 and B2,1 must be set to zero, yielding a simplified expression for the inner
fluid stream function,

φj(σ) = σ
[
A1,j I1(σ̂) +A2,j I1(σ̂j)

]
, (D.5.65)

where j = 1. The linear system M · q = 0 undergoes analogous simplifications.
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1(k̂) a I0(k̂) K1(k̂) aK1(k̂)

k I0(k̂) 2 I0(k̂) + k̂ I1(k̂) −kK0(k̂) 2K0(k̂)− k̂K1(k̂)

I1(k̂i) ai I0(k̂i) K1(k̂i) aK1(k̂)

k I0(k̂) 2 I0(k̂) + k̂ I1(k̂) −kK0(k̂) 2K0(k̂)− k̂K1(k̂)

I1(k̂i) ai I0(k̂i) K1(k̂i) ai K0(k̂i)

k I0(k̂i) 2 I0(k̂i) + k̂i I1(k̂i) −kK0(k̂i) 2K0(k̂i)− k̂iK1(k̂i)
0 0 0 0
0 0 0 0
F1 F2 F3 F4

G1 G2 G3 G4

−I1(k̂) −a I0(k̂) −K1(k̂) −aK0(k̂)

−k I0(k̂) −2 I0(k̂)− k̂ I1(k̂) kK0(k̂) −2K0(k̂) + k̂K1(k̂)
0 0 0 0
0 0 0 0

I1(k̂e) ae I0(k̂e) K1(k̂e) ae K0(k̂e)

k I0(k̂e) 2 I0(k̂e) + k̂e I1(k̂e) −kK0(k̂e) 2K0(k̂e)− k̂e K1(k̂e)
F5 F6 F7 F8

G5 G6 G7 G8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table D.5.1 Setting the determinant of the matrix displayed to zero provides us with an algebraic
equation for the complex growth rate.

Annular layer coated on a tube

When the outer cylinder is absent, we obtain an annular layer coated on the exterior surface of a
cylindrical tube and surrounded by an infinite outer fluid. The modified Bessel functions become
singular as their argument tends to infinity. To ensure a regular behavior, we set the coefficient A1,2

and A2,2 to zero and obtain a simplified expression for the exterior stream function,

φj(σ) = σ
[
B1,j K1(σ̂) +B2,j K1(σ̂j)

]
, (D.5.66)

where j = 2. The linear system M · q = 0 undergoes analogous simplifications.

Suspended thread

In the simplest configuration, both the internal and external cylinder are absent, yielding an infinite
thread suspended in an infinite ambient fluid. The stream functions for the internal and external
flow are described, respectively, by equations (D.5.65) and (D.5.66). The linear system M · q = 0

undergoes analogous simplifications. In the absence of interfacial viscosity, the coefficient matrix
reduces to that derived by Tomotika [410].
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Program files:

1. ann2lvs0
Computes the roots of the secular equation. The determinant of the matrix is calculated by
LU decomposition using Gauss elimination.

2. matrix
Formulates the matrix M.

3. bess I01K0

Computes the Bessel functions.

4. gel
Computes the determinant of a matrix by LU decomposition using Gauss elimination.

Input files:

1. ann2lvs.dat
Problem selection and specification of input parameters.

Output files:

1. ann2lvs.out
Growth rates.

D.6 Directory chan2l0

This directory contains a code that performs the linear stability analysis of two-layer flow in a
horizontal or inclined channel, as illustrated in Figure D.6.1. The instability occurs under conditions
of Stokes flow.

Base state

In the unperturbed configuration, the interface is flat and the fluids execute unidirectional motion
parallel to the channel walls. In the inclined system of coordinates depicted in Figure D.6.1, the
unperturbed interface is located at y = 0, the lower wall is located at y = −h1, and the upper wall
is located at y = h2 = 2h−h1, where 2h is the channel width. For convenience, the x and y velocity
components are denoted by u = ux and v = uy.

The velocity profile of the base flow is

u
(0)
j = −χ+ ρjgx

2μj
y2 + ξjy + uI , v

(0)
j = 0 (D.6.1)

for j = 1, 2, corresponding to the lower or upper fluid, where the superscript (0) denotes the
unperturbed base state, subject to the following definitions: χ is the negative of the axial pressure
gradient; gx = g sinβ is the x component of the acceleration of gravity; g is the magnitude of the
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Figure D.6.1 Two-layer flow in an inclined channel confined between two parallel plane walls inclined
at angle β.

acceleration of gravity; ρj are the fluid densities; μj are the fluid viscosities; uI ≡ u
(0)
j (y = 0) is the

common interfacial velocity. The coefficients

ξ1 ≡
(∂u(0)

x1

∂y

)
y=0

, ξ2 ≡
(∂u(0)

x2

∂y

)
y=0

, (D.6.2)

are the interfacial shear rates of the unperturbed flow. Continuity of shear stress across the interface
requires that μ1ξ1 = μ2ξ2 or

ξ1 = λ ξ2, (D.6.3)

where λ = μ2/μ1 is the viscosity ratio.

The corresponding pressure distributions are given by

p
(0)
j (y) = −χx+ ρj gy y + p0 (D.6.4)

for j = 1, 2, where gy = −g cosβ is the y component of the acceleration of gravity and p0 is an
unspecified reference pressure.

Enforcing the no-slip boundary condition at the walls, u1 = U1 at y = −h1 and u2 = U2 at
y = h2, we find that

ξ1 =
ΔU

h1

λ

λ+ r
− h

μ1

(
χ+ ρ1gx

λ− δ r2

λ− r2
) λ− r2

(1 + r)(λ+ r)
, ξ2 =

ξ1
λ

(D.6.5)
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and

uI =
r U1 + λU2

λ+ r
+

h2

μ1

(
χ+ ρ1gx

1 + δ r

1 + r

) 2r

(1 + r)(λ+ r)
, (D.6.6)

where ΔU = U2 − U1 is the difference in the wall velocities, r = h2/h1 is the layer thickness ratio,
and δ = ρ2/ρ1 is the density ratio. When the densities of the two liquids are matched, δ = 1 and
ρ1 = ρ2 = ρ, the two terms enclosed by the large parentheses on the right-hand side of (D.6.5) and
(D.6.6) combine into an effective negative pressure gradient, χ+ ρ gx.

Normal-mode analysis

A normal-mode perturbation displaces the interface to a position given by the real or imaginary
part of the function

y = f(x, t) = εη(x, t), (D.6.7)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.6.8)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function

The stream function, ψ, is defined by the equations u = ∂ψ/∂y and v = −∂ψ/∂x. In the linear

analysis, we set ψj = ψ
(0)
j + εψ

(1)
j and introduce the normal-mode form

ψ
(1)
j (x, y, t) = φj(ŷ) exp[ik(x− ct)] (D.6.9)

for j = 1, 2, where ŷ = ky and the superscript (1) denotes the disturbance. The perturbation
velocity components are u(1) = ∂ψ(1)/∂y and v(1) = −∂ψ(1)/∂x.

The Reynolds number of the flow is so small that the motion of the fluid is governed by
the equations of Stokes flow. Requiring that the stream function satisfies the biharmonic equation,

∇4ψ
(1)
j = 0, we find that

φj(ŷ) = a1j cosh ŷ + a2j ŷ cosh ŷ + a3j sinh ŷ + a4j ŷ sinh ŷ, (D.6.10)

where aij are eight complex coefficients for i = 1–4 and j = 1, 2.

Pressure field

The linearized pressure field in the jth fluid is pj = p
(0)
j + εp

(1)
j . The disturbance pressure field is

expressed by the normal-mode form

p
(1)
j (x, y, t) = μj qj(ŷ) exp[ik(x− ct)] (D.6.11)
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for j = 1, 2, where qj(ŷ) are pressure eigenfunctions. Substituting this expression into the x compo-
nent of the Stokes equation, we find that

p
(1)
j (y) = − i

k

( ∂3ψj

∂x2∂y
+

∂3ψj

∂y3

)
, (D.6.12)

yielding

qj(ŷ) = i k2
(dφj

dŷ
− d3φj

dŷ3

)
. (D.6.13)

Continuity of y velocity at the interface

In the linear approximation, continuity of y velocity at the interface requires that

ψ
(1)
1 (x, y = 0, t) = ψ

(1)
2 (x, y = 0, t), (D.6.14)

yielding a11 = a12.

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t)− y]/Dt = 0, where D/Dt is the material derivative
and the function f(x, t) describe the shape of the interface according to (D.6.7). In the linear
approximation,

∂η

∂t
+ uI

∂η

∂x
− v(1)(y = 0) = 0, (D.6.15)

where v(1) = −∂ψ(1)/∂x. Substituting the preceding expressions, we find that −ikcA + uI ikA +
ika11 = 0, yielding a11 = (c− uI)A or

A = ζa11, (D.6.16)

where ζ ≡ 1/(c− uI).

Continuity of x velocity at the interface

In the linear approximation, continuity of x velocity at the interface requires that

ξ1η(x, y) +
(∂ψ(1)

1

∂y

)
y=0

= ξ2η(x, y) +
(∂ψ(1)

2

∂y

)
y=0

, (D.6.17)

yielding

ξ1A+ k
(dφ1

dŷ

)
ŷ=0

= ξ2A+ k
(dφ2

dŷ

)
ŷ=0

. (D.6.18)

Rearranging and using (D.6.16), we find that

ζ (ξ1 − ξ2) a11 + k
(dφ1

dŷ

)
ŷ=0

− k
(dφ2

dŷ

)
ŷ=0

= 0, (D.6.19)
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yielding

ζ (Ξ1 − Ξ2) a11 + a21 + a31 − a22 − a32 = 0, (D.6.20)

where Ξi ≡ ξi/k, for i = 1, 2, are coefficients with dimensions of velocity.

Wall boundary conditions

The no-slip and no-penetration conditions at the lower and upper wall require that

φ1(ŷ = −k̂1) = 0, φ′
1(ŷ = −k̂1) = 0, φ2(ŷ = k̂2) = 0, φ′

2(ŷ = k̂2) = 0, (D.6.21)

where k̂1 ≡ kĥ1, k̂2 ≡ kĥ2, and a prime denotes a derivative with respect to ŷ. Making substitutions,
we obtain[

cosh k̂1 −k̂1 cosh k̂1 − sinh k̂1 k̂1 sinh k̂1
− sinh k̂1 cosh k̂1 + k̂1 sinh k̂1 cosh k̂1 − sinh k̂1 − k̂1 cosh k̂1

]
·w1 = 0, (D.6.22)

and [
cosh k̂2 k̂2 cosh k̂2 sinh k̂2 k̂2 sinh k̂2
sinh k̂2 cosh k̂2 + k̂2 sinh k̂2 cosh k̂2 sinh k̂2 + k̂2 cosh k̂2

]
·w2 = 0, (D.6.23)

where w1 =
[
a11, a21, a31, a41

]
and w2 =

[
a12, a22, a32, a42

]
.

Tangential component of the interfacial force balance

The linearized tangential component of the interfacial force balance requires that

μ1

(∂u(1)
1

∂y
+

∂v
(1)
1

∂x

)
y=0

= μ2

(∂u(1)
2

∂y
+

∂v
(1)
2

∂x

)
y=0

+Δρ gxA, (D.6.24)

where Δρ = ρ1 − ρ2. Expressing the velocity in terms of the stream function and using (D.6.16) to
eliminate the interfacial amplitude, A, we find that(∂2ψ

(1)
1

∂y2
− ∂2ψ

(1)
1

∂x2

)
y=0

= λ
(∂2ψ

(1)
2

∂y2
− ∂2ψ

(1)
2

∂x2

)
y=0

+
Δρ gx
μ1

ζ a11, (D.6.25)

yielding

(
d2φ1

dŷ2
+ φ1

)
ŷ=0

= λ
(d2φ2

dŷ2
+ φ2

)
ŷ=0

+
Δρ gx
μ1k2

ζ a11. (D.6.26)

Substituting the preceding expressions for φj and simplifying, we find that

(1− ζ Bx) a11 + a41 − λ (a12 + a42) = 0, (D.6.27)

where

Bx ≡ Δρ gx
2μ1k2

. (D.6.28)
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We recall that a11 = a12, and obtain

a41 = −a12 (1− λ− ζ Bx) + λ a42. (D.6.29)

Normal component of the interface force balance

In the linear approximation, the normal component of the interface force balance reads(
− p

(1)
1 + 2μ1

∂v
(1)
1

∂y

)
y=0

−
(
− p

(1)
2 + 2μ2

∂v
(1)
2

∂y

)
y=0

−Δρ gyη(x) = γ
∂2η

∂x2
, (D.6.30)

where γ is the surface tension. Substituting the preceding expressions, we obtain(
− μ1q1 + μ2q2 − 2ik2μ1

dφ1

dŷ
+ 2ik2μ2

dφ2

dŷ

)
ŷ=0

−Δρ gy A = −γ Ak2. (D.6.31)

Substituting qj(ŷ = 0) = −2i k2a2j , we obtain

2 i k2(μ1a21 − μ2a22)− 2 i k2μ1 (a21 + a31) + 2 i k2μ2 (a22 + a32)−Δρ gy A = −γ Ak2, (D.6.32)

which can be simplified into

−2ik2μ1 a31 + 2ik2μ2 a32 −Δρ gyA = −γ Ak2. (D.6.33)

Rearranging and using (D.6.16), we find that

a31 = λ a32 − i Π ζ a12, (D.6.34)

where

Π ≡ 1

2μ1

(
− Δρ gy

k2
+ γ

)
= −By +

γ

2μ1
(D.6.35)

is a property group with dimensions of velocity, and

By ≡ Δρ gy
2μ1k2

. (D.6.36)

Formulation of an eigenvalue problem

Substituting (D.6.34) into (D.6.20) and rearranging, we find that

a21 = ζ (i Π + Ξ2 − Ξ1) a12 + a22 + (1− λ) a32. (D.6.37)

Finally, we substitute (D.6.29), (D.6.34), and (D.6.37) into the linear system (D.6.22) and obtain
the equivalent system[

C11 − ζ C12 −k̂1 cosh k̂1 −λ sinh k̂1 − (1− λ) k̂1 cosh k̂1
C21 + ζ C22 cosh k̂1 + k̂1 sinh k̂1 cosh k̂1 + (1− λ) k̂1 sinh k̂1

λ k̂1 sinh k̂1
−λ (sinh k̂1 + k̂1 cosh k̂1)

]
·w2 = 0, (D.6.38)
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where

C11 = cosh k̂1 − (1− λ) k̂1 sinh k̂1,

C12 = k̂1

[
(Ξ2 − Ξ1) cosh k̂1 − Bx sinh k̂1

]
+ iΠ (k̂1 cosh k̂1 − sinh k̂1),

C21 = − sinh k̂1 + (1− λ)(sinh k̂1 + k̂1 cosh k̂1), (D.6.39)

C22 =
[
(Ξ2 − Ξ1) (cosh k̂1 + k̂1 sinh k̂1)− Bx (sinh k̂1 + k̂1 cosh k̂1)

]
+ iΠ k̂1 sinh k̂1.

Appending equations (D.6.38) to equations (D.6.23), we obtain a linear homogeneous system,
Q ·w2 = 0, where

Q =

⎡⎢⎢⎣
cosh k̂2 k̂2 cosh k̂2
sinh k̂2 cosh k̂2 + k̂2 sinh k̂2

C11 − ζ C12 −k̂1 cosh k̂1
C21 + ζ C22 cosh k̂1 + k̂1 sinh k̂1

sinh k̂2 k̂2 sinh k̂2
cosh k̂2 sinh k̂2 + k̂2 cosh k̂2

−λ sinh k̂1 − (1− λ) k̂1 cosh k̂1 λ k̂1 sinh k̂1
cosh k̂1 + (1− λ) k̂1 sinh k̂1 −λ (sinh k̂1 + k̂1 cosh k̂1)

⎤⎥⎥⎦ . (D.6.40)

Setting the determinant of Q to zero provides us with a secular equation for the computation of the
complex phase velocity, c.

Performing the Laplace expansion with respect to the first column and rearranging, we obtain

c = uI +
C12 M31 + C22 M41

cosh k̂2 M11 − sinh k̂2 M21 + C11 M31 − C21 M41

, (D.6.41)

where M11, M21, M31, and M41 are the determinants of 3×3 minor matrices defined in Table D.6.1.

Separating the complex phase velocity into its real and imaginary parts, we obtain the real
phase velocity

cR = uI +
N

D
(D.6.42)

where

N = k̂1 [ (Ξ2 − Ξ1) cosh k̂1 − Bx sinh k̂1 ]M31 (D.6.43)

+
[
(Ξ2 − Ξ1) (cosh k̂1 + k̂1 sinh k̂1)− Bx (sinh k̂1 + k̂1 cosh k̂1)

]
M41,

and

D = cosh k̂2 M11 − sinh k̂2 M21 + C11 M31 − C21 M41. (D.6.44)
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M11 = det(

⎡⎣ cosh k̂2 + k̂2 sinh k̂2 cosh k̂2
−k̂1 cosh k̂1 −λ sinh k̂1 + (λ− 1) k̂1 cosh k̂1

cosh k̂1 + k̂1 sinh k̂1 cosh k̂1 − (λ− 1) k̂1 sinh k̂1

sinh k̂2 + k̂2 cosh k̂2
λ k̂1 sinh k̂1

−λ (sinh k̂1 + k̂1 cosh k̂1)

⎤⎦)

M21 = det(

⎡⎣ k̂2 cosh k̂2 sinh k̂2
−k̂1 cosh k̂1 −λ sinh k̂1 + (λ− 1) k̂1 cosh k̂1

cosh k̂1 + k̂1 sinh k̂1 cosh k̂1 − (λ− 1) k̂1 sinh k̂1

k̂2 sinh k̂2
λ k̂1 sinh k̂1

−λ (sinh k̂1 + k̂1 cosh k̂1)

⎤⎦)

M31 = det(

⎡⎣ k̂2 cosh k̂2 sinh k̂2
cosh k̂2 + k̂2 sinh k̂2 cosh k̂2
cosh k̂1 + k̂1 sinh k̂1 cosh k̂1 − (λ− 1) k̂1 sinh k̂1

k̂2 sinh k̂2
sinh k̂2 + k̂2 cosh k̂2

−λ (sinh k̂1 + k̂1 cosh k̂1)

⎤⎦)

M41 = det(

⎡⎣ k̂2 cosh k̂2 sinh k̂2
cosh k̂2 + k̂2 sinh k̂2 cosh k̂2

−k̂1 cosh k̂1 −λ sinh k̂1 + (λ− 1) k̂1 cosh k̂1

k̂2 sinh k̂2
sinh k̂2 + k̂2 cosh k̂2

λ k̂1 sinh k̂1

⎤⎦)

Table D.6.1 Matrices involved in the secular equation determining hydrodynamic stability. The ver-
tical lines separate the three matrix columns.
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The growth rate is

sI = kcI =
Π

D

[
(k̂1 cosh k̂1 − sinh k̂1)M31 + k̂1 sinh k̂1 M41

]
, (D.6.45)

where Π is defined in (D.6.35). Note that the growth rate is independent of the shear rate at the
interface, that is, it is independent of the overall structure of the velocity profile of the base flow
and is the same as that prevailing in quiescent fluids.

Program files:

1. chan2l0
Evaluates the complex phase velocity.

2. chan2l0 dr

Driver for the subroutine chan2l0

3. det 33c

Determinant of a 3× 3 complex matrix.

4. det 44c

Determinant of a 4× 4 complex matrix.

Input file:

1. chan2l0.dat
Specification of input parameters.

Output file:

1. chan2l0.out
Recording of the computed phase velocity and growth rate.

D.7 Directory chan2l0 s

This directory contains a code that performs the linear stability analysis of two-layer flow in a
horizontal or inclined channel, as illustrated in Figure D.7.1. The interface is occupied by an insoluble
surfactant and the instability occurs under conditions of Stokes flow.

Base state

In the inclined system of coordinates depicted in Figure D.7.1, the unperturbed interface is located
at y = 0, the lower wall is located at y = −h1 and the upper wall is located at y = h2 = 2h − h1,
where 2h is the channel width. The surfactant is distributed uniformly over the interface. For
convenience, the x and y velocity components are denoted by u = ux and v = uy.

The velocity profile of the base flow is

u
(0)
j = −χ+ ρjgx

2μj
y2 + ξjy + uI , v

(0)
j = 0 (D.7.1)
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Figure D.7.1 Two-layer flow in an inclined channel confined between two parallel walls. The interface
is occupied by an insoluble surfactant.

for j = 1, 2, corresponding to the lower and upper fluid, where the superscript (0) denotes the
unperturbed base state, subject to the following definitions: χ is the negative of the axial pressure
gradient; gx = g sinβ is the x component of the acceleration of gravity; g is the magnitude of the

acceleration of gravity; ρj are the fluid densities; μj are the fluid viscosities; uI ≡ u
(0)
j (y = 0) is the

common interfacial velocity. The coefficients

ξ1 ≡
(∂u(0)

x1

∂y

)
y=0

, ξ2 ≡
(∂u(0)

x2

∂y

)
y=0

, (D.7.2)

are the interfacial shear rates of the unperturbed flow. Continuity of shear stress across the interface
requires that μ1ξ1 = μ2ξ2 or

ξ1 = λ ξ2, (D.7.3)

where λ = μ2/μ1 is the viscosity ratio. The corresponding pressure distributions are

p
(0)
j (y) = −χx+ ρjgy y + p0 (D.7.4)

for j = 1, 2, where gy = −g cosβ is the y component of the acceleration of gravity and p0 is a
reference pressure.

Enforcing the no-slip wall boundary conditions, u1 = U1 at y = −h1 and u2 = U2 at y = h2,
we find that

ξ1 =
ΔU

h1

λ

λ+ r
− h

μ1

(
χ+ ρ1gx

λ− δ r2

λ− r2
) λ− r2

(1 + r)(λ+ r)
, ξ2 =

ξ1
λ
, (D.7.5)
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and

uI =
r U1 + λU2

λ+ r
+

h2

μ1

(
χ+ ρ1gx

1 + δ r

1 + r

) 2r

(1 + r)(λ+ r)
, (D.7.6)

where ΔU = U2 − U1 is the difference in the wall velocities, r = h2/h1 is the layer thickness ratio,
and δ = ρ2/ρ1 is the density ratio. When the densities of the two liquids are matched, δ = 1 and
ρ1 = ρ2 = ρ, the two terms enclosed by the large parentheses on the right-hand side of (D.7.5) and
(D.7.6) combine into an effective negative pressure gradient, χ+ ρ gx.

Normal-mode analysis

A normal-mode perturbation displaces the interface to a position given by the real or imaginary
part of the function

y = f(x, t) = εη(x, t), (D.7.7)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.7.8)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function

The stream function, ψ, is defined by the equations u = ∂ψ/∂y and v = −∂ψ/∂x. In the linear

analysis, we set ψj = ψ
(0)
j + εψ

(1)
j and introduce the normal-mode form

ψ
(1)
j (x, y, t) = φj(ŷ) exp[ik(x− ct)], (D.7.9)

where ŷ = ky and the superscript (1) denotes the perturbation. The perturbation velocity compo-
nents are u(1) = ∂ψ(1)/∂y and v(1) = −∂ψ(1)/∂x.

The Reynolds number of the flow is so small that the motion of the fluid is governed by
the equations of Stokes flow. Requiring that the stream function satisfies the biharmonic equation,

∇4ψ
(1)
j = 0, we find that

φj(ŷ) = a1j cosh ŷ + a2j ŷ cosh ŷ + a3j sinh ŷ + a4j ŷ sinh ŷ, (D.7.10)

where aij are eight complex coefficients for i = 1–4 and j = 1, 2.

Pressure field

The linearized pressure field in the jth fluid is pj = p
(0)
j + εp

(1)
j . The disturbance pressure field is

expressed by the normal-mode form

p
(1)
j (x, y, t) = μjqj(ŷ) exp[ik(x− ct)] (D.7.11)
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for j = 1, 2, where qj(ŷ) are pressure eigenfunctions. Substituting this expression into the x compo-
nent of the Stokes equation, we find that

p
(1)
j (y) = − i

k

( ∂3ψj

∂x2∂y
+

∂3ψj

∂y3

)
, (D.7.12)

yielding

qj(ŷ) = i k2
(dφj

dŷ
− d3φj

dŷ3

)
. (D.7.13)

Continuity of y velocity at the interface

In the linear approximation, continuity of y velocity at the interface requires that

ψ
(1)
1 (x, y = 0, t) = ψ

(1)
2 (x, y = 0, t), (D.7.14)

yielding a11 = a12.

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t)− y]/Dt = 0, where D/Dt is the material derivative.
In the linear approximation,

∂η

∂t
+ uI

∂η

∂x
− v(1) = 0, (D.7.15)

where the velocity is evaluated at y = 0. Substituting the preceding expressions, we find that
−ikcA+ uI ikA+ ika11 = 0, yielding a11 = (c− uI)A or

A = ζa11, (D.7.16)

where ζ ≡ 1/(c − uI) is the inverse of the complex phase velocity shifted by the real interfacial
velocity.

Continuity of x velocity at the interface

In the linear approximation, continuity of the x velocity at the interface requires that

ξ1η(x, y) +
(∂ψ(1)

1

∂y

)
y=0

= ξ2η(x, y) +
(∂ψ(1)

2

∂y

)
y=0

, (D.7.17)

yielding

ξ1A+ k
(dφ1

dŷ

)
ŷ=0

= ξ2A+ k
(dφ2

dŷ

)
ŷ=0

. (D.7.18)

Rearranging and using (D.7.16), we obtain

(ξ1 − ξ2) ζ a11 + k
(dφ1

dŷ

)
ŷ=0

− k
(dφ2

dŷ

)
ŷ=0

= 0, (D.7.19)
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yielding

(Ξ1 − Ξ2) ζ a11 + a21 + a31 − a22 − a32 = 0, (D.7.20)

where Ξ1 ≡ ξ1/k and Ξ2 ≡ ξ2/k are coefficients with dimensions of velocity.

Wall conditions

The no-slip and no-penetration conditions at the lower and upper wall require that

φ1(ŷ = −k̂1) = 0, φ′
1(ŷ = −k̂1) = 0, φ2(ŷ = k̂2) = 0, φ′

2(ŷ = k̂2) = 0, (D.7.21)

where k̂1 ≡ kĥ1, k̂2 ≡ kĥ2, and a prime denotes a derivative with respect to ŷ. Making substitutions,
we obtain[

cosh k̂1 −k̂1 cosh k̂1 − sinh k̂1 k̂1 sinh k̂1
− sinh k̂1 cosh k̂1 + k̂1 sinh k̂1 cosh k̂1 − sinh k̂1 − k̂1 cosh k̂1

]
·w1 = 0 (D.7.22)

and [
cosh k̂2 k̂2 cosh k̂2 sinh k̂2 k̂2 sinh k̂2
sinh k̂2 cosh k̂2 + k̂2 sinh k̂2 cosh k̂2 sinh k̂2 + k̂2 cosh k̂2

]
·w2 = 0, (D.7.23)

where w1 =
[
a11, a21, a31, a41

]
and w2 =

[
a12, a22, a32, a42

]
.

Surfactant concentration and surface tension

The distribution of the interfacial surfactant concentration and surface tension are described by the
companion functions

Γ(x, t) = Γ0 + εΓ1 exp[ik(x− ct)], γ(x, t) = γ0 + ε γ1 exp[ik(x− ct)], (D.7.24)

where Γ0, γ0 are uniform values corresponding to the flat interface, and Γ1, γ1 are complex ampli-
tudes. Since the perturbations are small, we can adopt the linear constitutive equation

γ1
γ0

= −Ma
Γ1

Γ0
, (D.7.25)

where Ma is the Marangoni number.

Surfactant transport

Surfactant transport over the interface is governed by the equation

DΓ

Dt
+ Γ t · ∂u

∂l
=

∂

∂l

(
Ds

∂Γ

∂l

)
, (D.7.26)

where D/Dt is the material derivative. Regarding Γ as a function of x and t, we obtain

∂Γ

∂t
+ u

∂Γ

∂x
+ Γ t ·

( ∂u

∂x
+

∂u

∂y

∂Γ

∂x

)∂x
∂l

=
∂

∂l

(
Ds

∂Γ

∂l

)
. (D.7.27)
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The unit tangential vector can be linearized as

t � ex + ε
∂η

∂x
ey, (D.7.28)

where ex and ey are unit vectors along the x and y axes. To leading order, ∂x/∂l = 1, and the
linearized form of the surfactant transport equation becomes

∂Γ(1)

∂t
+ u(0) ∂Γ

(1)

∂x
+ Γ0

( ∂u(1)

∂x
+

∂u(0)

∂y

∂η

∂x

)
= Ds

∂2Γ(1)

∂x2
, (D.7.29)

where all terms are evaluated at the unperturbed position, y = 0, the velocity on the left-hand
side is evaluated on either side of the interface, and Γ(1)(x, t) = Γ1 exp[ik(x− ct)]. Substituting the
preceding expressions for the upper fluid velocity, we find that

Γ1

Γ0
=

a22 + a32 + Ξ2 ζ a11
1 + iDskζ

kζ, (D.7.30)

where we recall that Ξ2 = ξ2/k.

Tangential component of the interfacial force balance

The linearized tangential component of the interfacial force balance requires that

μ1

(∂u(1)
1

∂y
+

∂v
(1)
1

∂x

)
y=0

= μ2

(∂u(1)
2

∂y
+

∂v
(1)
2

∂x

)
y=0

+Δρ gxA+
∂γ(1)

∂x
, (D.7.31)

where γ(1)(x, t) = γ1 exp[ik(x−ct)] and Δρ = ρ1−ρ2. Expressing the velocity in terms of the stream
function and using (D.7.16) to eliminate A in favor of a11, we obtain(∂2ψ

(1)
1

∂y2
− ∂2ψ

(1)
1

∂x2

)
y=0

= λ
(∂2ψ

(1)
2

∂y2
− ∂2ψ

(1)
2

∂x2

)
y=0

+
Δρ gx
μ1

ζa11 +
1

μ1

∂γ(1)

∂x
, (D.7.32)

yielding (d2φ1

dŷ2
+ φ1

)
ŷ=0

= λ
(d2φ2

dŷ2
+ φ2

)
ŷ=0

+
Δρ gx
μ1k2

ζ a11 + i
γ1
kμ1

. (D.7.33)

Substituting the preceding expressions for φj and simplifying, we obtain

(1− ζ Bx) a11 + a41 − λ (a12 + a42) = i
γ1

2μ1k
, (D.7.34)

where

Bx ≡ Δρ gx
2μ1k2

. (D.7.35)

We recall that a11 = a12 and γ1/γ0 = −MaΓ1/Γ0, and use (D.7.30) to obtain

a41 = −a12 (1− λ− ζ Bx) + λ a42 + Λ(a22 + a32 + Ξ2 a12 ζ), (D.7.36)
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where

Λ ≡ −Ma
γ0
2μ1

i ζ

1 +Dsk i ζ
(D.7.37)

is a dimensionless group. In the absence of surfactant, Λ = 0.

Normal component of the interface force balance

In the linear approximation, the normal component of the interfacial force balance requires that

(
− p

(1)
1 + 2μ1

∂v
(1)
1

∂y

)
y=0

−
(
− p

(1)
2 + 2μ2

∂v
(1)
2

∂y

)
y=0

−Δρ gyη(x) = γ0
∂2η

∂x2
. (D.7.38)

Substituting the preceding expressions, we find that

−μ1q1 + μ2q2 − 2ik2μ1
dφ1

dŷ
+ 2ik2μ2

dφ2

dŷ
−Δρ gy A = −γ0 Ak2, (D.7.39)

where the left-hand side is evaluated at ŷ = 0. Substituting qj(y = 0) = −2i k2a2j , we obtain

2i k2(μ1a21 − μ2a22)− 2 i k2μ1 (a21 + a31) + 2 i k2μ2 (a22 + a32) + (−Δρ gy + γ0 k
2 )A = 0,

(D.7.40)

which simplifies into

−2i k2μ1 a31 + 2ik2μ2 a32 − (ρ1 − ρ2) gyA (−Δρ gy + γ0 k
2 )A = 0. (D.7.41)

Rearranging and using (D.7.16), we obtain

a31 = λ a32 − i Π ζa12, (D.7.42)

where

Π ≡ 1

2μ1

(
− Δρ gy

k2
+ γ0

)
= −By +

γ0
2μ1

(D.7.43)

is a property group with dimensions of velocity, and

By ≡ Δρ gy
2μ1k2

. (D.7.44)

Formulation of an eigenvalue problem

Substituting (D.7.42) into (D.7.20) and rearranging, we find that

a21 = ζ (i Π + Ξ2 − Ξ1) a12 + a22 + (1− λ) a32. (D.7.45)
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Finally, we substitute (D.7.36), (D.7.42), and (D.7.45) into the linear system (D.7.22) and derive
the equivalent system A ·w2 = 0, where

A =

[
C11 − ζ (C12 − ΛC13) k̂1 (Λ sinh k̂1 − cosh k̂1)

C21 + ζ (C22 + ΛC23) (1− Λ k̂1) cosh k̂1 + (k̂1 − Λ) sinh k̂1

−(1− λ) k̂1 cosh k̂1 + (Λ k̂1 − λ) sinh k̂1 λ k̂1 sinh k̂1
(1− Λ k̂1) cosh k̂1 + [(1− λ) k̂1 − Λ] sinh k̂1 −λ (sinh k̂1 + k̂1 cosh k̂1)

]
, (D.7.46)

and

C11 = cosh k̂1 − (1− λ) k̂1 sinh k̂1,

C12 = k̂1

[
(Ξ2 − Ξ1) cosh k̂1 − Bx sinh k̂1

]
+ iΠ (k̂1 cosh k̂1 − sinh k̂1),

C13 = Ξ2 k̂1 sinh k̂1,

C21 = − sinh k̂1 + (1− λ)(sinh k̂1 + k̂1 cosh k̂1),

C22 =
[
(Ξ2 − Ξ1) (cosh k̂1 + k̂1 sinh k̂1)− Bx (sinh k̂1 + k̂1 cosh k̂1)

]
+ iΠ k̂1 sinh k̂1,

C23 = −Ξ2 (sinh k̂1 + k̂1 cosh k̂1). (D.7.47)

Note that the coefficients C13 and C23 are real.

Appending equations (D.7.46) to equations (D.7.23), we obtain a linear homogeneous system
Q ·w2 = 0, where

Q =

⎡⎢⎢⎣
cosh k̂2 k̂2 cosh k̂2
sinh k̂2 cosh k̂2 + k̂2 sinh k̂2

C11 − ζ (C12 − ΛC13) k̂1 (Λ sinh k̂1 − cosh k̂1)

C21 + ζ (C22 + ΛC23) (1− Λ k̂1) cosh k̂1 + (k̂1 − Λ) sinh k̂1

sinh k̂2 k̂2 sinh k̂2
cosh k̂2 sinh k̂2 + k̂2 cosh k̂2

−(1− λ) k̂1 cosh k̂1 + (Λ k̂1 − λ) sinh k̂1 λ k̂1 sinh k̂1
(1− Λ k̂1) cosh k̂1 + [(1− λ) k̂1 − Λ] sinh k̂1 −λ (sinh k̂1 + k̂1 cosh k̂1)

⎤⎥⎥⎦ . (D.7.48)

In the absence of surfactant, Λ = 0. Setting the determinant of Q to zero provides us with a secular
equation for the complex phase velocity, c.

Numerical method

The growth rates of the two normal modes are identified with the roots of a quadratic equation with
complex coefficients,

P2(ζ) = (1 +Dskiζ) det(Q) = a ζ2 + b ζ + c = 0. (D.7.49)

The factor 1 + Dskiζ on the left-hand side involving the surface surfactant diffusivity arises from
the definition of the parameter Λ. In the numerical method, the binomial coefficients are obtained
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by an exact finite-difference method based on the equations

P2(1) = a+ b+ c, P2(−1) = a− b+ c, P2(0) = c. (D.7.50)

The roots are found analytically using the quadratic formula.

Program files:

1. chan2l0 s

Evaluates the complex phase velocity.

2. chan2l0 s dr

Driver for the subroutine chan2l0 s

3. det 33c

Determinant of a 3× 3 complex matrix.

4. det 44c

Determinant of a 4× 4 complex matrix.

5. quadc
Computes the roots of a quadratic equation with complex coefficients.

Input file:

1. chan2l0 s.dat

Specification of input parameters.

Output file:

1. chan2l0 s.out

Recording of the computed phase velocity and growth rate.

D.8 Directory coat0 s

This directory contains a code that performs the linear stability analysis of a liquid film resting
on a horizontal plane wall underneath a constant-pressure medium. The formulation of the linear
stability problem is discussed in Section 9.11.

Program files:

1. coat0 s

Evaluates the growth rate.

2. cramer 33c

Solves a system of three complex equations.
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3. det 33c

Computes the determinant of a 3× 3 complex matrix.

4. det 44c

Computes the determinant of a 4× 4 complex matrix.

5. matrix
Evaluates the secular matrix.

Input file:

1. coat0 s.dat

Specification of input parameters.

Output file:

1. coat0 s.out

Recording of the computed phase velocity and growth rate.

D.9 Directory drop ax

This directory contains a code that computes the rate of relaxation of a viscous drop immersed in
an ambient fluid with the same viscosity under conditions of Stokes flow. The formulation of the
linear stability problem is discussed in Section 9.3.5. Results are presented in Figure 9.3.2.

Program files:

1. drop ax

Evaluates the rate of relaxation by discrete perturbations.

2. drop slp splines

Evaluates the single-layer potential on cubic splines.

3. ell int

Evaluates complete elliptic integrals.

4. gauss leg

Gauss–Legendre base points and weights.

5. sgf ax fs

Free-space Green’s function of axisymmetric Stokes flow.

6. splc clm

Cubic-spline interpolation with clamped boundary conditions.

7. splc geo

Geometry of interpolated interface.

8. thomas
Thomas algorithm for tridiagonal systems.
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D.10 Directory film0

This directory contains a code that performs the linear stability analysis of a liquid film flowing
down an inclined plane under conditions of Stokes flow. Expressions for the phase velocity and
growth rate are derived in directory film0 s in the more general context of flow in the presence of
an insoluble surfactant (Section D.11).

Program files:

1. det 33c

Determinant of a complex 3× 3 matrix.

2. film0
Evaluates the complex phase velocity.

3. film0 dr

Driver for film0.

4. matrix
Evaluates the secular matrix.

5. cramer 33c

Solution of a complex 3× 3 linear system.

Input file:

1. film0.dat
Specification of input parameters.

Output file:

1. film0.out
Recording of the computed growth rate.

D.11 Directory film0 s

This directory contains a code that performs the linear stability analysis of a liquid film flowing
down an inclined plane, as illustrated in Figure D.11.1. The film surface is occupied by an insoluble
surfactant that is convected and diffuses over the film surface but not into the bulk of the film fluid
[314]. The instability occurs under conditions of Stokes flow.

Base state

The flow is described in the inclined coordinates defined in Figure D.11.1. The unperturbed config-
uration is described by the flat-film Nusselt solution designated by the superscript (0). The velocity,
stream function, and pressure are given by

u(0)
x =

ρg

2μ
sinβ y(2h− y), u(0)

y = 0, ψ(0) =
ρg

2μ
sinβ y2(h− 1

3
y),

p(0) = ρg cosβ(h− y) + pa, (D.11.1)



D.11 FDLIB User Guide: 08 stab/film0 s 1171

Air

β
g

y

x

Liquid

Figure D.11.1 Instability of a liquid film flowing down an inclined plane. The surface of the film is
occupied by an insoluble surfactant.

where g = |g| is the magnitude of the acceleration of gravity, β is the plane inclination angle, and
pa is the ambient atmospheric pressure. The free-surface velocity is

us = u(0)
x (y = h) =

ρgh2

2μ
sinβ. (D.11.2)

Normal-mode analysis

To carry out the normal-mode stability analysis for two-dimensional perturbations, we describe the
position of the film surface by the function

y = f(x, t) = h+ εη(x, t), (D.11.3)

where ε is a dimensionless coefficient, whose magnitude is small compared to unity,

η(x, t) = A exp[ik(x− ct)] (D.11.4)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function

The stream function, ψ, is defined by the equations u = ∂ψ/∂y and v = −∂ψ/∂x. In the linear
analysis, we set ψ = ψ(0) + εψ(1) and introduce the normal-mode form

ψ(1)(x, y, t) = φ(ŷ) exp[ik(x− ct)], (D.11.5)

where the superscript (1) denotes the perturbation and ŷ ≡ ky.

The Reynolds number of the flow is so small that the motion of the fluid is governed by
the equations of Stokes flow. Requiring that the stream function satisfies the biharmonic equation,

∇4ψ
(1)
j = 0, we obtain

φ(ŷ) = a1 e
ŷ + a2 ŷ e

ŷ + a3 e
−ŷ + a4 ŷ e

−ŷ, (D.11.6)

where a1–a4 are four complex coefficients.
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Wall conditions

The no-penetration and no-slip boundary conditions over the wall require that φ(0) = 0 and φ′(0) =
0. Making substitutions, we obtain

a3 = −a1, 2a1 + a2 + a4 = 0. (D.11.7)

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t)− y]/Dt = 0, where D/Dt is the material derivative,
yielding

∂f

∂t
+ ux

∂f

∂x
− uy = 0, (D.11.8)

evaluated at the film surface. Linearizing, we obtain

∂η

∂t
+ us

∂η

∂x
+

∂ψ(1)

∂x
= 0. (D.11.9)

Substituting the preceding expressions, we find that −iAkc + usikA + ikφ(k̂) = 0, where k̂ = kh.
Rearranging, we obtain

A = ζφ(k̂), (D.11.10)

where ζ = 1/(c − us) is the inverse of the complex phase velocity shifted by the real interfacial
velocity.

Surfactant concentration and surface tension

Surfactant concentration inhomogeneities over the film surface cause corresponding variations in
surface tension. The distribution of the interfacial surfactant concentration, Γ, and surface tension,
γ, are described by the companion functions

Γ(x, t) = Γ0 + εΓ1 exp[ik(x− ct)], γ(x, t) = γ0 + ε γ1 exp[ik(x− ct)], (D.11.11)

where Γ0, γ0 are uniform values corresponding to the flat film, and Γ1, γ1 are complex amplitudes.
Since the perturbations are small, we can write

γ1
γ0

= −Ma
Γ1

Γ0
, (D.11.12)

where Ma is the Marangoni number.

Surfactant transport

The linearized form of the surfactant transport equation is

∂Γ(1)

∂t
+ u(0)

x

∂Γ(1)

∂x
+ Γ(0)

( ∂u
(1)
x

∂x
+

∂u
(0)
x

∂y

dη

dx

)
= Ds

∂2Γ(1)

∂x2
, (D.11.13)
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evaluated at the unperturbed interface, y = h. The second term inside the parentheses on the left-

hand side arises from the derivative ∂u
(0)
x /∂l � (∂u

(0)
x /∂y)(df/dx) = ε (∂u

(0)
x /∂y)(dη/dx). However,

because the shear stress and thus slope of the Nusselt velocity profile vanishes at the film surface,
this term does not make a contribution. In terms of the stream function,

∂Γ(1)

∂t
+ us

∂Γ(1)

∂x
+ Γ0

∂2ψ(1)

∂x∂y
= Ds

∂2Γ(1)

∂x2
. (D.11.14)

Substituting the normal-mode forms and rearranging, we find that the complex amplitude of the
surfactant concentration is

Γ1

Γ0
= k

φ′(k̂)

c− us + ikDs
, (D.11.15)

where a prime denotes a derivative with respect to k̂. Correspondingly, the complex amplitude of
the surface tension is

γ1
γ0

= k
Ma

c− us + ikDs
φ′(k̂). (D.11.16)

Evaluating the derivative and remembering that a3 = −a1, we obtain

γ1
γ0

= −k ek̂
Ma

c− us + ikDs

[
a1(1 + q) + a2(1 + k̂) + a4(1− k̂) q

]
, (D.11.17)

where q = exp(−2k̂).

Tangential component of the interfacial force balance

The linearized tangential component of the interfacial force balance requires that

μ
(∂u(1)

x

∂y
+

∂u
(1)
y

∂x

)
y=h

= 2μ
us

h2
η +

∂γ(1)

∂x
. (D.11.18)

The last term on the right-hand side represents the Marangoni traction. Expressing the velocity in
terms of the stream function and rearranging, we obtain(∂2ψ(1)

∂y2
− ∂ψ(1)

∂x2

)
y=h

= 2
us

h2
η +

1

μ

∂γ(1)

∂x
, (D.11.19)

Substituting the normal-mode forms and using (D.11.10), we obtain

k̂2
(d2φ
dŷ2

+ φ
)
ŷ=k̂

= 2us ζ φ(k̂) + i k̂
h

μ
γ1. (D.11.20)

Computing the derivatives, recalling that a3 = −a1, and rearranging, we find that

ηk̂
[
(1− q) a1 + (k̂ + 1) a2 + (k̂ − 1) q a4

]
= −

( 1− q

k̂
a1 + a2 + q a4

)
+ iχh

γ1
2μ

e−k̂, (D.11.21)

where q = exp(−2k̂) and χ = −1/(usζ) = 1− c/us.
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Normal component of the interfacial force balance

The linearized pressure field is pj = p(0) + εp(1). The linearized normal component of the interfacial
stress balance provides us with an expression for the perturbation pressure,

p(1) = 2μ
∂u

(1)
y

∂y
+ ρg cosβ η − γ(0) ∂

2η

∂x2
+ γ(1) κ0, (D.11.22)

where κ0 is the interfacial curvature and all terms are evaluated at the unperturbed film surface,
y = h. Because in the unperturbed configuration the film surface is flat, κ0 = 0, the last term on the
right-hand side is identically zero. Consequently, surface tension variations do not affect the normal
force balance.

Differentiating (D.11.22) with respect to x and using the tangential projection of the equation
of motion to evaluate the pressure derivative on the left-hand side, we obtain the preferred pressure-
free form

∂p(1)

∂x
= μ∇2u(1)

x = 2μ
∂2u

(1)
y

∂x∂y
+ ρg cosβ

∂η

∂x
− γ0

∂3η

∂x3
, (D.11.23)

where all terms are evaluated at the unperturbed film surface, y = h. Introducing the stream
function, we obtain

μ
(
3
∂3ψ(1)

∂x2∂y
+

∂3ψ(1)

∂y3

)
= ρg cosβ

∂η

∂x
− γ0

∂3η

∂x3
. (D.11.24)

Substituting the normal-mode forms and using (D.11.10), we obtain

μ
[
− 3φ′(k̂) + φ′′′(k̂)

]
= i ζ (

ρg

k2
cosβ + γ0)φ(k̂), (D.11.25)

where a prime denotes a derivative with respect to ŷ. Evaluating the derivatives, remembering that
a3 = −a1, and setting ζ = −1/(usχ), we find that

χ [ (1 + q) a1 + a2k̂ − a4k̂ q ] = i
1

2μus
(
ρg

k2
cosβ + γ0)

[
a1(1− q) + a2 k̂ + a4 k̂ q

]
, (D.11.26)

where q = exp(−2k̂).

Formulation of an eigenvalue problem

Collecting the second equation in (D.11.7), the shear stress balance (D.11.21), the normal stress
balance (D.11.26), and equation (D.11.17), we derive a linear system of homogeneous, M ·w = 0,
where w = [a1, a2, a4, γ1/(μk)] is the unknown vector. The coefficient matrix is given by

M =

⎡⎢⎢⎢⎣
2 1 1 0

(1− q)(χ k̂ + 1/k̂) χ k̂ (k̂ + 1) + 1 χ k̂ (k̂ − 1) q + q −i 1
2
χ k̂ e−k̂

χ k̂(1 + q)− i τ(1− q)/k̂ χ k̂2 − i τ −(χ k̂2 + i τ) q 0

Ma (1 + q) Ma (1 + k̂) Ma (1− k̂) q μ (−usχ+ ikDs) e
−k̂

⎤⎥⎥⎥⎦ ,

(D.11.27)
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where q = exp(−2k̂),

τ ≡ 1

2μus
(ρgh2 cosβ + γ0k̂

2) = cotβ +
2π2

Ca
, Ca ≡ μus

γ0

(L
h

)2

=
1

2

ρgL2

γ0
sinβ, (D.11.28)

are a dimensionless group and a capillary number defined with respect to the wavelength of the
perturbation. Setting the determinant of M to zero provides us with a third-order algebraic equation
for the reduced and shifted complex phase velocity, χ. One trivial root is χ = 0 corresponding to
c = us. The other two roots can be computed in terms of the coefficients of the remainder binomial
using the quadratic formula. In practice, the coefficients are extracted by solving a system of complex
linear equations for three trial values of χ. Thus, in the presence of surfactant, the flow admits two
normal modes.

Absence of surfactant

In the absence of surfactant, Ma = 0, we set γ1 = 0 and retain the first three equations in (D.11.27).
Yih [435] derived analytical expressions for the phase velocity cR and rate of decay of surface waves
sI = kcI , where the subscripts R and I denote the real and imaginary part. The dimensionless
phase velocity and dimensionless growth rate are given by

cR
us

= 1 +
1

cosh2 k̂ + k̂2
, ŝ ≡ sIh

us
=

cI k̂

us
= − τ

2k̂

sinh(2k̂)− 2k̂

cosh2 k̂ + k̂2
. (D.11.29)

Since the fraction on the right-hand side of the expression for the growth rate is positive for any k̂,
the growth rate is negative and the flow is stable.

Program files:

1. cramer 33c

Solves a system of three complex equations.

2. det 33c

Computes the determinant of a 3× 3 complex matrix.

3. det 44c

Computes the determinant of a 4× 4 complex matrix.

4. film0 s

Evaluates the growth rate.

5. matrix
Evaluates the secular matrix.

Input file:

1. film0 s.dat

Specification of input parameters.

Output file:

1. film0 s.out

Recording of the computed phase velocity and growth rate.
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Figure D.12.1 Instability of the interface between two semi-infinite fluids in Stokes flow.

D.12 Directory if0

This directory contains a code that performs the linear stability analysis of an infinite horizontal
interface separating two semi-infinite quiescent fluids, as illustrated in Figure D.12.1. When the
upper fluid is heavier than the lower fluid, we obtain the Rayleigh–Taylor instability. The flow due
to the instability is assumed to occur under conditions of Stokes flow.

Base state

The lower fluid is labeled 1 and the upper fluid is labeled 2. The viscosity of the lower fluid is μ1 and
the viscosity of the upper fluid is μ2 = λμ1, where λ is the viscosity ratio. The origin of the y axis is
set at the location of the unperturbed interface. For convenience, the x and y velocity components
are denoted by u = ux and v = uy.

In the unperturbed configuration, the interface is flat, the fluids are quiescent, and the pressure
assumes the hydrostatic distribution

p
(0)
j (y) = −ρjgy + p0, (D.12.1)

where 1, 2 for the lower or upper fluid, ρj are the fluid densities, g is the acceleration of gravity, p0
is an unspecified reference pressure, and the superscript (0) denotes the unperturbed base state.

Normal-mode analysis

A normal-mode perturbation displaces the interface to a position given by the real or imaginary
part of the function

y = f(x, t) = εη(x, t), (D.12.2)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.12.3)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity of the
perturbation.
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Stream function

The stream function, ψ, is defined by the equations u = ∂ψ/∂y and v = −∂ψ/∂x. In the absence of

base flow, we set ψj = εψ
(1)
j and introduce the normal-mode form

ψ
(1)
j (x, y, t) = φj(ŷ) exp[ik(x− ct)], (D.12.4)

where j = 1, 2 for the lower or upper fluid, and ŷ = ky. The perturbation velocity components are
u(1) = ∂ψ(1)/∂y and v(1) = −∂ψ(1)/∂x.

The Reynolds number of the flow is so small that the motion of the fluid is governed by
the equations of Stokes flow. Requiring that the stream function satisfies the biharmonic equation,

∇4ψ
(1)
j = 0, we obtain

φ1(ŷ) = a1 e
ŷ + b1 ŷ e

ŷ, φ2(ŷ) = c2 e
−ŷ + d2 ŷ e

−ŷ, (D.12.5)

where a1, b1, c2, and d2 are four complex coefficients.

Pressure field

The linearized pressure field in the jth fluid is pj = p
(0)
j + εp

(1)
j . The perturbation pressure is

described by the normal-mode form

p
(1)
j (x, t) = μj qj(ŷ) exp[ik(x− ct)] (D.12.6)

for j = 1, 2, where qj(ŷ) are pressure eigenfunctions. Substituting this expression into the x compo-
nent of the Stokes equation, we obtain

p
(1)
j = − i

k

(∂3ψ
(1)
j

∂x2∂y
+

∂3ψ
(1)
j

∂y3

)
, (D.12.7)

yielding

qj(ŷ) = i k2
(dφj

dŷ
− d3φj

dŷ3

)
. (D.12.8)

Continuity of y velocity at the interface

In the linear approximation, continuity of y velocity at the interface requires that

ψ1(x, y = 0, t) = ψ2(x, y = 0, t), (D.12.9)

yielding a1 = c2.

Continuity of x velocity at the interface

In the linear approximation, continuity of x velocity at the interface requires that(∂ψ1

∂y

)
y=0

=
(∂ψ2

∂y

)
y=0

, (D.12.10)
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yielding

a1 + b1 = −c2 + d2. (D.12.11)

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t) − y]/Dt = 0 at the interface, where D/Dt is the
material derivative. In the linearized approximation,

∂η

∂t
− v(1)(y = 0) = 0. (D.12.12)

Substituting the preceding expressions, we find that −ikcA+ ika1 = 0 or

a1 = cA. (D.12.13)

Tangential component of the interfacial force balance

The linearized tangential component of the interfacial force balance requires that

μ1

(∂u1

∂y
+

∂v1
∂x

)
y=0

= μ2

(∂u2

∂y
+

∂v2
∂x

)
y=0

(D.12.14)

or (∂2ψ1

∂y2
− ∂2ψ1

∂x2

)
y=0

= λ
(∂2ψ2

∂y2
− ∂2ψ2

∂x2

)
y=0

, (D.12.15)

where λ = μ2/μ1 is the viscosity ratio. Substituting the preceding expressions for the stream function
and simplifying, we find that

a1 + b1 = λ (c2 − d2). (D.12.16)

Combining (D.12.16) with (D.12.11), we obtain

d2 = c2 = a1, b1 = −a1. (D.12.17)

Normal component of the interfacial force balance

The linearized normal component of the interfacial force balance requires that

(
− p

(1)
1 + 2μ1

∂v
(1)
1

∂y

)
y=0

−
(
− p

(1)
2 + 2μ2

∂v
(1)
2

∂y

)
y=0

+Δρ g η = γ
∂2η

∂x2
, (D.12.18)

where γ is the surface tension and Δρ = ρ1 − ρ2. Substituting the preceding expressions, we obtain

−μ1q1 + μ2q2 − 2ik2 (μ1 − μ2)
dφ1

dŷ
+Δρ gA = −γAk2, (D.12.19)
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where all terms are evaluated at y = 0. Substituting also

q1(y = 0) = −2i k2 b1, q2(y = 0) = −2i k2 d2, (D.12.20)

we obtain

2i k2(μ1b1 − μ2d2)− 2ik2 (μ1 − μ2)(a1 + b1) + Δρ g A = −γAk2. (D.12.21)

Using (D.12.17) to simplify and rearranging, we find that

a1 = − i

2μ1(1 + λ)

( Δρ g

k2
+ γ

)
A. (D.12.22)

Growth rate

Substituting expression (D.12.13) into (D.12.22), we obtain an imaginary phase velocity,

c = − i

2μ1(1 + λ)

( Δρ g

k2
+ γ

)
. (D.12.23)

The growth rate is

σI ≡ kcI = − 1

2μ1(1 + λ)

( Δρ g

k
+ kγ

)
. (D.12.24)

When the fluids are unstably stratified, ρ2 > ρ1 or Δρ < 0, the first term inside the large parentheses
on the right-hand side is responsible for the Rayleigh–Taylor instability. The second term expresses
the stabilizing influence of surface tension.

Program files:

1. if0
Evaluates expression (D.12.24).

2. if0 dr

Driver for if0.

Input file:

1. if0.dat
Specification of input parameters.

Output file:

1. if0.out
Recording of the growth rate.
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Figure D.13.1 Instability of the interface between two semi-infinite fluids in simple shear flow. The
interface is occupied by an insoluble surfactant.

D.13 Directory ifsf0 s

This directory contains a code that performs the linear stability analysis of the horizontal interface
between two semi-infinite fluids undergoing simple shear flow, as illustrated in Figure D.13.1. The
interface is occupied by an insoluble surfactant and the fluid motion occurs under conditions of
Stokes flow.

Base state

The lower fluid is labeled 1 and the upper fluid is labeled 2. The viscosity of the lower fluid is μ1

and the viscosity of the upper fluid is μ2 = λμ1, where λ is the viscosity ratio. The origin of the
y axis is set at the unperturbed interface. For convenience, the x and y velocity components are
denoted as u = ux and v = uy.

In the unperturbed configuration, the interface is flat and the fluids undergo simple shear flow
with a linear velocity profile parallel to the interface. The velocity profiles in the lower and upper
fluids are given by

u
(0)
1 = λξy, u

(0)
2 = ξy, (D.13.1)

where ξ is the shear rate in the upper fluid and the superscript (0) denotes the base state. The
corresponding pressure distributions are

p
(0)
j (y) = −ρjg y + p0 (D.13.2)

for j = 1, 2, where ρj are the fluid densities, g is the gravitational acceleration, and p0 is an
inconsequential interfacial pressure.
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Normal-mode analysis

A normal-mode perturbation displaces the interface to a position given by the real or imaginary
part of the function

y = f(x, t) = εη(x, t), (D.13.3)

where ε is a dimensionless number whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.13.4)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity of the
perturbation.

Stream function

The stream function, ψ, is defined by the equations u = ∂ψ/∂y and v = −∂ψ/∂x. In the linear

analysis, we set ψj = ψ
(0)
j + εψ

(1)
j and introduce the normal-mode form

ψ
(1)
j (x, y, t) = φj(ŷ) exp[ik(x− ct)] (D.13.5)

for j = 1, 2, where ŷ = ky and the superscript (1) denotes the perturbation. The perturbation
velocity components are u(1) = ∂ψ(1)/∂y and v(1) = −∂ψ(1)/∂x.

The Reynolds number of the flow is so small that the motion of the fluid is governed by
the equations of Stokes flow. Requiring that the stream function satisfies the biharmonic equation,

∇4ψ
(1)
j = 0, and decays far from the interface, we obtain

φ1(ŷ) = a1 e
ŷ + b1ŷ e

ŷ, φ2(ŷ) = c2 e
−ŷ + d2ŷ e

−ŷ, (D.13.6)

where a1, b1, c2, and d2 are four complex coefficients.

Pressure field

The linearized pressure field in the jth fluid is pj = p
(0)
j + εp

(1)
j . The perturbation pressure is

described by the normal-mode form

p
(1)
j (x, y, t) = μj qj(ŷ) exp[ik(x− ct)] (D.13.7)

for j = 1, 2, where qj(ŷ) are pressure eigenfunctions. Substituting this expression into the x compo-
nent of the Stokes equation, we obtain

p
(1)
j = − i

k

(∂3ψ
(1)
j

∂x2∂y
+

∂3ψ
(1)
j

∂y3

)
, (D.13.8)

yielding

qj(y) = i k2
(dφj

dŷ
− d3φj

dŷ3

)
. (D.13.9)
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Continuity of the y velocity at the interface

In the linear approximation, continuity of the y velocity component at the interface requires that

ψ
(1)
1 (x, y = 0, t) = ψ

(1)
2 (x, y = 0, t), (D.13.10)

yielding a1 = c2.

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t)− y]/Dt = 0 evaluated at the interface, where D/Dt
is the material derivative. In the linearized approximation,

∂η

∂t
− v

(1)
j = 0, (D.13.11)

evaluated at y = 0 for either fluid, j = 1, 2. Substituting the preceding expressions for the lower
fluid velocity, we find that −ikcA+ ika1 = 0 or

A = ζa1, (D.13.12)

where ζ = 1/c is the inverse of the complex phase velocity.

Continuity of the x velocity component at the interface

In the linear approximation, continuity of the x velocity component at the interface requires that

λξη +
(∂ψ(1)

1

∂y

)
y=0

= ξη +
(∂ψ(1)

2

∂y

)
y=0

, (D.13.13)

yielding

λξA+ k
(dφ1

dŷ

)
ŷ=0

= ξA+ k
(dφ2

dŷ

)
ŷ=0

. (D.13.14)

Rearranging and using (D.13.12), we obtain

−ζ ξ (1− λ) a1 + k
(dφ1

dŷ

)
ŷ=0

= k
(dφ2

dŷ

)
ŷ=0

, (D.13.15)

yielding [
1− ζ Ξ (1− λ)

]
a1 + b1 + c2 − d2 = 0, (D.13.16)

where Ξ ≡ ξ/k is a coefficient with dimensions of velocity. Substituting c2 = a1 and rearranging, we
find that

b1 = d2 −
[
2− Ξ ζ (1− λ)

]
c2. (D.13.17)
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Surfactant concentration and surface tension

The distribution of the surfactant surface concentration and surface tension are described by the
companion functions

Γ(x, t) = Γ0 + εΓ1 exp[ik(x− ct)], γ(x, t) = γ0 + ε γ1 exp[ik(x− ct)], (D.13.18)

where Γ0, γ0 are the uniform unperturbed values corresponding to the flat interface, and Γ1, γ1
are the complex amplitudes of the perturbation. Since the perturbations are small, we may use the
linearized form

γ1
γ0

= −Ma
Γ1

Γ0
, (D.13.19)

where Ma is the Marangoni number.

Surfactant transport

Interfacial surfactant transport is governed by the convection–diffusion equation

DΓ

Dt
+ Γ t · ∂u

∂l
=

∂

∂l

(
Ds

∂Γ

∂l

)
, (D.13.20)

where D/Dt is the material derivative, t is the unit tangent vector pointing in the direction of
increasing arc length, l, and Ds is the surface surfactant diffusivity. Regarding Γ as a function of x
and t, we obtain

∂Γ

∂t
+ ux

∂Γ

∂x
+ Γ t ·

( ∂u

∂x
+

∂u

∂y

∂Γ

∂x

)∂x
∂l

=
∂

∂l

(
Ds

∂Γ

∂l

)
. (D.13.21)

The unit tangential vector can be linearized as

t � ex + ε
∂η

∂x
ey, (D.13.22)

where ex and ey are unit vectors along the x and y axes. To first order in ε, ∂x/∂l = 1. The
linearized surfactant transport equation becomes

∂Γ(1)

∂t
+ u(0) ∂Γ

(1)

∂x
+ Γ0

( ∂u(1)

∂x
+

∂u(0)

∂y

∂η

∂x

)
= Ds

∂2Γ(1)

∂x2
, (D.13.23)

where Γ(1)(x, t) = Γ1 exp[ik(x− ct)], all terms are evaluated at the unperturbed position, y = 0, and
the velocity on the left-hand side is evaluated on either side of the interface. Choosing the upper
fluid velocity, we obtain

−Γ1ikc+ Γ0 [ ik
2(a1 + b1) + ξAik ] = −Ds k

2Γ1. (D.13.24)

Substituting A = ζa1 and rearranging, we obtain

Γ1

Γ0
=

a1 + b1 + Ξζa1
1 + iDsk ζ

kζ, (D.13.25)

where we recall that Ξ = ξ/k.
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Tangential component of the interfacial force balance

The linearized tangential component of the interfacial force balance requires that

μ1

(∂u(1)
1

∂y
+

∂v
(1)
1

∂x

)
y=0

= μ2

(∂u(1)
2

∂y
+

∂v
(1)
2

∂x

)
y=0

+
∂γ(1)

∂x
, (D.13.26)

where γ(1)(x, t) = γ1 exp[ik(x− ct)]. Expressing the velocity in terms of the stream function, we find
that (∂2ψ

(1)
1

∂y2
− ∂2ψ

(1)
1

∂x2

)
ŷ=0

= λ
(∂2ψ

(1)
2

∂y2
− ∂2ψ

(1)
2

∂x2

)
ŷ=0

+
1

μ1

∂γ(1)

∂x
, (D.13.27)

yielding (d2φ1

dŷ2
+ φ1

)
y=0

= λ
(d2φ2

dŷ2
+ φ2

)
y=0

+ i
γ1
kμ1

. (D.13.28)

Substituting the preceding expressions for φj , simplifying, and using (D.13.19), we obtain an alge-
braic equation,

a1 + b1 − λ (c2 − d2) = i
γ1

2μ1k
= −iMa

Γ1

2μ1k

γ0
Γ0

. (D.13.29)

Substituting (D.13.25), we find that

a1 + b1 − λ (c2 − d2) = −iMa
γ0
2μ1

a1 + b1 + ξζa1/k

1 + iDsk ζ
ζ, (D.13.30)

which can be rearranged into

a1 + b1 − λ (c2 − d2) = [ a1(1 + Ξ ζ) + b1 ] Λ, (D.13.31)

where

Λ ≡ −iMa
γ0
2μ1

ζ

1 +Dsk i ζ
(D.13.32)

is a dimensionless group. In the absence of surfactant, Λ = 0. Setting a1 = c2 and rearranging, we
find that

(1− Λ) b1 = [λ− 1 + Λ(1 + Ξ ζ) ] c2 − λ d2. (D.13.33)

Substituting the expression for b1 from (D.13.17) and rearranging, we obtain

(1 + λ− Λ) d2 =
[
(1− Λ) [2− Ξζ(1− λ)] + λ− 1 + Λ(1 + Ξ ζ)

]
c2. (D.13.34)
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Normal component of the interface force balance

The linearized normal component of the interfacial force balance requires that(
− p

(1)
1 + 2μ1

∂v
(1)
1

∂y

)
y=0

−
(
− p

(1)
2 + 2μ2

∂v
(1)
2

∂y

)
y=0

+Δρ g η = γ0
∂2η

∂x2
, (D.13.35)

where Δρ = ρ1 − ρ2. Substituting the preceding expressions, we find that(
− μ1q1 + μ2q2 − 2ik2 μ1

dφ1

dŷ
+ 2ik2 μ2

dφ2

dŷ

)
ŷ=0

+Δρ gA = −γ0Ak
2. (D.13.36)

Substituting q1(y = 0) = −2i k2b1, q2(y = 0) = −2i k2d2, and using (D.13.17), we obtain

2ik2
[
μ1b1 − μ2d2 − (μ1 − μ2)(a1 + b1)− μ2 Ξ ζ(1− λ) c2

]
+
(
Δρ g + γ0 k

2
)
A = 0. (D.13.37)

Setting a1 = c2 and rearranging, we obtain

μ2 (b1 − d2)− (μ1 − μ2) c2 − μ2 Ξ ζ(1− λ) c2 − i
1

2

( Δρ g

k2
+ γ0

)
ζ c2 = 0. (D.13.38)

Finally, we substitute the expression for b1 from (D.13.17) and simplify to obtain(
μ1 + μ2 + i

1

2

( Δρ g

k2
+ γ0

)
ζ
)
c2 = 0. (D.13.39)

First normal mode

Assuming that c2 �= 0, we set the expression inside the large parentheses in (D.13.39) to zero and
obtain the imaginary phase velocity of the first normal mode,

c = −i
1

2μ1(1 + λ)

( Δρ g

k2
+ γ0

)
. (D.13.40)

The constant d2 arises from (D.13.34) in terms of an arbitrary c2. We note that the complex phase
velocity is independent of the Marangoni number and is thus unaffected by the surfactant. The
growth rate is always negative and this mode is stable.

Second normal mode

Assuming that c2 = 0 and d2 �= 0, we set the coefficient multiplying d2 in (D.13.34) to zero and
obtain

Λ ≡ −iMa
γ0
2μ1

ζ

1 +Dsk i ζ
= 1 + λ. (D.13.41)

Rearranging, we derive the imaginary phase velocity of the second normal mode,

c = −i
(
Ma

γ0
2μ1(1 + λ)

+ kDs

)
. (D.13.42)

Since the growth rate �I = kcI is always negative, this mode is stable. Since c2 = 0, the interface is
flat and the perturbation flow is driven by in-plane interfacial motion.
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Program files:

1. ifsf0 s

Evaluates the analytical expressions for the phase velocity and growth rates.

2. ifsf0 s dr

Driver for ifsf0 s.

Input file:

1. ifsf0 s.dat

Specification of input parameters.

Output file:

1. ifsf0 s.out

Recording of the growth rate.

D.14 Directory layer0

This directory contains a code that performs the linear stability analysis of a liquid layer resting
on a horizontal wall underneath a semi-infinite fluid, as illustrated in Figure D.14.1. The flow is
assumed to occur under conditions of Stokes flow [280].

Base state

The layer is designated as fluid 1 and the upper fluid is designated as fluid 2. The viscosity of the
layer fluid is μ1 and the viscosity of the upper fluid is μ2 = λμ1, where λ is the viscosity ratio. The
origin of the y axis is set at the location of the unperturbed interface. For convenience, the x and y
velocity components are denoted by u = ux and v = uy.

In the unperturbed configuration, the interface is flat, the fluids are quiescent, and the pressure
distribution assumes the hydrostatic profile

p
(0)
j (y) = −ρjgy + p0, (D.14.1)

where j = 1 or 2 for the film or upper fluid, ρj are the fluid densities, g is the acceleration of gravity,
p0 is an unspecified reference pressure, and the superscript (0) denotes the unperturbed base state.

Normal-mode analysis

A normal-mode perturbation displaces the interface to a position described by the real or imaginary
part of the function

y = f(x, t) = εη(x, t), (D.14.2)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.14.3)
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h
g

y

Figure D.14.1 Gravitational (Rayleigh–Taylor) instability and leveling of a liquid layer resting on a
horizontal wall underneath a semi-infinite fluid.

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function

The stream function, ψ, is defined by the equations u = ∂ψ/∂y and v = −∂ψ/∂x. In the absence of

base flow, we set ψj = εψ
(1)
j and introduce the normal-mode form

ψ
(1)
j (x, y, t) = φj(ŷ) exp[ik(x− ct)], (D.14.4)

where j = 1 or 2 for the film or upper fluid, ŷ = ky, and the superscript (1) denotes the perturbation.
The perturbation velocity components are u(1) = ∂ψ(1)/∂y and v(1) = −∂ψ(1)/∂x.

The Reynolds number of the flow is so small that the motion of the fluid is governed by
the equations of Stokes flow. Requiring that the stream function satisfies the biharmonic equation,

∇4ψ
(1)
j = 0, we obtain

φ1(ŷ) = a1 e
ŷ + b1 ŷ e

ŷ + c1 e
−ŷ + d1 ŷ e

−ŷ, φ2(ŷ) = c2 e
−ŷ + d2 ŷ e

−ŷ, (D.14.5)

where a1, b1, c1, d1, a2, and b2 are six complex coefficients. Note that the disturbance flow decays
exponentially with distance from the interface into the overlying fluid.

Pressure field

The linearized pressure field in the jth fluid is pj = p
(0)
j + εp

(1)
j . The perturbation pressure field is

described by the normal-mode form

p
(1)
j (x, y, t) = μjqj(ŷ) exp[ik(x− ct)] (D.14.6)

for j = 1, 2, where qj(ŷ) are pressure eigenfunctions. Substituting this expression into the x compo-
nent of the Stokes equation, we obtain

p
(1)
j = − i

k

(∂3ψ
(1)
j

∂x2∂y
+

∂3ψ
(1)
j

∂y3

)
, (D.14.7)

yielding
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qj(ŷ) = i k2
(dφj

dŷ
− d3φj

dŷ3

)
. (D.14.8)

Wall conditions

The no-slip and no-penetration conditions at the wall, located at y = −h, require that

φ1(ŷ = −k̂) = 0,
dφ1

dŷ
(ŷ = −k̂) = 0, (D.14.9)

where k̂ = kh is a dimensionless wave number. Making substitutions, we find that

a1 e
−k̂ − b1 k̂ e

−k̂ + c1 e
ŷ − d1 k̂ e

k̂ = 0,

a1 e
−k̂ + b1 (1− ŷ) e−k̂ − c1 e

ŷ + d1 (1 + ŷ) ek̂ = 0.

(D.14.10)

Continuity of y velocity at the interface

In the linear approximation, continuity of y velocity at the interface requires that

ψ
(1)
1 (x, y = 0, t) = ψ

(1)
2 (x, y = 0, t), (D.14.11)

yielding

a1 + c1 = c2. (D.14.12)

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t)− y]/Dt = 0 evaluated at the interface, where D/Dt
is the material derivative. In the linear approximation,

∂η

∂t
− v(1)(y = 0) = 0. (D.14.13)

Substituting the preceding expressions and choosing the upper fluid interfacial velocity, we find that
−ikcA+ ikc2 = 0. Simplifying, we obtain

c2 = cA. (D.14.14)

Continuity of x velocity at the interface

In the linear approximation, continuity of x velocity at the interface requires that(∂ψ(1)
1

∂y

)
y=0

=
(∂ψ(1)

2

∂y

)
y=0

, (D.14.15)

yielding

a1 + b1 − c1 + d1 = −c2 + d2. (D.14.16)
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Tangential component of the interface force balance

The linearized tangential component of the interfacial force balance requires that

μ1

(∂u(1)
1

∂y
+

∂v
(1)
1

∂x

)
y=0

= μ2

(∂u(1)
2

∂y
+

∂v
(1)
2

∂x

)
y=0

(D.14.17)

or (∂2ψ
(1)
1

∂y2
− ∂2ψ

(1)
1

∂x2

)
y=0

= λ
(∂2ψ

(1)
2

∂y2
− ∂2ψ

(1)
2

∂x2

)
y=0

, (D.14.18)

where λ = μ2/μ1 is the viscosity ratio. Substituting the preceding expressions and simplifying, we
find that

a1 + b1 + c1 − d1 = λ (c2 − d2). (D.14.19)

Normal component of the interface force balance

The linearized normal component of the interfacial force balance requires that(
− p

(1)
1 + 2μ1

∂v
(1)
1

∂y

)
y=0

−
(
− p

(1)
2 + 2μ2

∂v
(1)
2

∂y

)
y=0

+Δρ g η = γ
∂2η

∂x2
, (D.14.20)

where γ is the surface tension and Δρ = ρ1 − ρ2. Substituting the preceding expressions, we find
that

−μ1q1 + μ2q2 − 2ik2 (μ1 − μ2)
dφ1

dŷ
+Δρ g A = −γAk2, (D.14.21)

evaluated at y = 0. Substituting

q1(y = 0) = −2i k2(b1 + d1), q2(y = 0) = −2i k2d2, (D.14.22)

we obtain

2i k2c μ1

[
b1 + d1 − λ d2 − (1− λ)(−c2 + d2)

]
+Δρ g c2 = −γ k2c2. (D.14.23)

Simplifying and rearranging, we obtain

b1 + d1 +Φ c2 − d2 = 0, (D.14.24)

where

Φ ≡ 1− λ− i

2μ1c

( Δρ g

k2
+ γ

)
(D.14.25)

is a dimensionless group. Rearranging the definition of Φ, we derive an expression for the growth
rate,

�I ≡ kcI =
1

2μ1(Φ− 1 + λ)k

( Δρ g

k2
+ γ

)
. (D.14.26)
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Formulation of an eigenvalue problem

Compiling equations (D.14.10), (D.14.12) (D.14.16), (D.14.19), and (D.14.24), we obtain a linear
homogeneous system M ·w = 0, where w =

(
a1, b1, c1, d1, c2, d2

)
,

M =

⎡⎢⎢⎢⎢⎢⎢⎣
q (1− k̂) q −1 1 + k̂ 0 0

q −qk̂ 1 −k̂ 0 0
1 0 1 0 −1 0
1 1 −1 1 1 −1
1 1 1 −1 −λ λ
0 1 0 1 Φ −1

⎤⎥⎥⎥⎥⎥⎥⎦ , (D.14.27)

and q ≡ exp(−2k̂). Setting the determinant of the matrix M to zero provides us with a secular
equation for the computation of Φ. Once Φ is available, the growth rate follows from (D.14.26).
After some algebra, we derive the dimensionless growth rate

�I = − 1

2μ1(1 + λ)k

( Δρ g

k2
+ γ

)
F(k̂, λ), (D.14.28)

where

F(k̂, λ) = (1 + λ)
1
2 sinh(2k̂)− k̂ + λ (sinh2 k̂ − k̂2)

(1− λ2) k̂2 + (cosh k̂ + λ sinh k̂)2
. (D.14.29)

As k̂ → ∞, the function F(k̂, λ) tends to unity, yielding the growth rate of perturbations at the

interface between two semi-infinite fluids. In the limit λ → 0, the function F(k̂, λ) reduces the
second fraction on the right-hand side of (9.11.35) for a liquid film underneath a constant-pressure
ambient gas.

When the fluids are unstably stratified, ρ2 > ρ1 and Δρ < 0, the first term inside the
parentheses on the right-hand side of (D.14.28) is responsible for the Rayleigh–Taylor instability.
The second term inside the parentheses expresses the stabilizing influence of the surface tension.

Program files:

1. layer0
Computes the growth rate by two methods.

2. layer0 dr

Driver for layer0

3. crout
Crout decomposition for computing the determinant.

Input file:

1. layer0.dat
Specification of input parameters.
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Figure D.15.1 Instability of a liquid layer coated on a horizontal wall underneath a semi-infinite fluid
undergoing simple shear flow. The interface is occupied by an insoluble surfactant.

Output file:

1. layer0.out
Recording of the growth rate.

D.15 Directory layersf0 s

This directory contains a code that performs the linear stability analysis of a liquid layer resting on
a horizontal wall underneath a semi-infinite fluid undergoing simple shear flow, as shown in Figure
D.15.1. The interface is occupied by an insoluble surfactant and the motion of the fluid occurs under
conditions of Stokes flow [325].

Base state

The liquid layer is designated as fluid 1 and the overlying semi-infinite fluid is designated as fluid
2. The viscosity of the layer is μ1 and the viscosity of the upper fluid is μ2 = λμ1, where λ is the
viscosity ratio. The origin of the y axis is set at the wall. For convenience, the x and y velocity
components are denoted by u = ux and v = uy.

In the unperturbed configuration, the interface is flat and the fluids undergo unidirectional
flow parallel to the wall. The velocity profiles inside the layer and upper fluid are given by

u
(0)
1 = λξy, u

(0)
2 = ξ

[
y + (λ− 1)h

]
, (D.15.1)

where ξ is the shear rate in the upper fluid, h is the layer thickness, and the superscript (0) denotes
the unperturbed unidirectional flow. These expressions ensure continuity of velocity and shear stress
at the interface for any viscosity ratio. The corresponding pressure distributions are given by

p
(0)
j (y) = −ρjg (y − h) + p0 (D.15.2)

for j = 1, 2, where p0 is an inconsequential interfacial pressure.
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Normal-mode analysis

A normal-mode perturbation displaces the interface to a position given by the real or imaginary
part of the function

y = f(x, t) = h+ εη(x, t), (D.15.3)

where ε is a dimensionless coefficient whose magnitude is much less than unity,

η(x, t) = A exp[ik(x− ct)] (D.15.4)

is the normal-mode wave form of the perturbation, A is the complex amplitude of the interfacial
wave, k = 2π/L is the wave number, L is the wavelength, and c is the complex phase velocity.

Stream function

The stream function, ψ, is defined by the equations u = ∂ψ/∂y and v = −∂ψ/∂x. In the linear

analysis, we set ψj = ψ(0) + εψ
(1)
j and introduce the normal-mode form

ψ
(1)
j (x, y, t) = φj(ŷ) exp[ik(x− ct)], (D.15.5)

where the superscript (1) denotes the perturbation, ŷ ≡ k(y − h), and j = 1, 2 for the liquid
film or semi-infinite fluid. The perturbation velocity components are u(1) = ∂ψ(1)/∂y and v(1) =
−∂ψ(1)/∂x.

The Reynolds number of the flow is so small that the motion of the fluid is governed by
the equations of Stokes flow. Requiring that the stream function satisfies the biharmonic equation,

∇4ψ
(1)
j = 0, we obtain

φj(ŷ) = a1j cosh ŷ + a2j ŷ cosh ŷ + a3j sinh ŷ + a4j ŷ sinh ŷ, (D.15.6)

where aij are eight complex coefficients for i = 1–4 and j = 1, 2. To ensure that the perturbation
velocity decays in the upper fluid far from the wall, we set

a32 = −a12, a42 = −a22. (D.15.7)

Pressure field

The linearized pressure field in the jth fluid is pj = p
(0)
j + εp

(1)
j . The disturbance pressure field takes

the normal-mode form

p
(1)
j (x, y, t) = μjqj(ŷ) exp[ik(x− ct)] (D.15.8)

for j = 1, 2, where qj(ŷ) are pressure eigenfunctions. Substituting this expression into the x compo-
nent of the Stokes equation, we obtain

p
(1)
j = − i

k

(∂3ψ
(1)
j

∂x2∂y
+

∂3ψ
(1)
j

∂y3

)
, (D.15.9)
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yielding

qj(y) = i k2
(dφj

dŷ
− d3φj

dŷ3

)
. (D.15.10)

Continuity of the y velocity component at the interface

In the linear approximation, continuity of the y velocity component at the interface requires that

ψ
(1)
1 (x, y = h, t) = ψ

(1)
2 (x, y = h, t), (D.15.11)

yielding a11 = a12. Combining this equation with (D.15.7), we obtain a32 = −a12 = −a11.

Kinematic compatibility

Kinematic compatibility requires that D[f(x, t)− y]/Dt = 0, where D/Dt is the material derivative.
In the linear approximation,

∂η

∂t
+ uI

∂η

∂x
− v

(1)
j (y = h) = 0 (D.15.12)

for j = 1, 2, where uI = λξh is the unperturbed interfacial velocity. Substituting the preceding
expressions, we obtain −ikcA+ uI ikA+ ika11 = 0, yielding a11 = (c− uI)A and

A = ζ a11, (D.15.13)

where ζ ≡ 1/(c − uI) is the inverse of the complex phase velocity shifted by the real interfacial
velocity.

Continuity of the x velocity component at the interface

In the linear approximation, continuity of the x velocity component at the interface requires that

λξη(x, t) +
(∂ψ(1)

1

∂y

)
y=h

= ξη(x, t) +
(∂ψ(1)

2

∂y

)
y=h

, (D.15.14)

yielding

λξA+ k
(dφ1

dŷ

)
ŷ=k̂

= ξA+ k
(dφ2

dŷ

)
ŷ=k̂

, (D.15.15)

where k̂ = kh. Rearranging and using (D.15.13), we obtain

−ξζ (1− λ) a11 + k
(dφ1

dŷ

)
ŷ=h

− k
(dφ2

dŷ

)
ŷ=h

= 0, (D.15.16)

yielding

−Ξ ζ (1− λ) a11 + a21 + a31 − a22 − a32 = 0, (D.15.17)

where Ξ = ξ/k. Substituting a32 = −a11, we obtain

[1− Ξ ζ (1− λ)] a11 + a21 + a31 − a22 = 0. (D.15.18)
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Wall conditions

The no-slip and no-penetration conditions at the horizontal wall require that

φ1(ŷ = −k̂) = 0, φ′
1(ŷ = −k̂) = 0, (D.15.19)

where a prime denotes a derivative with respect to ŷ. Making substitutions, we obtain[
cosh k̂ −k̂ cosh k̂ − sinh k̂ k̂ sinh k̂

− sinh k̂ cosh k̂ + k̂ sinh k̂ cosh k̂ − sinh k̂ − k̂ cosh k̂

]
·w1 = 0, (D.15.20)

where w1 =
(
a11, a21, a31, a41

)
is a collection of unknown coefficients.

Surfactant concentration and surface tension

The distribution of the interfacial surfactant concentration, Γ, and surface tension, γ, are described
by the companion functions

Γ(x, t) = Γ0 + εΓ1 exp[ik(x− ct)], γ(x, t) = γ0 + ε γ1 exp[ik(x− ct)], (D.15.21)

where Γ0, γ0 are uniform values corresponding to the flat interface, and Γ1, γ1 are complex ampli-
tudes. Since the perturbations are small, we can write

γ1
γ0

= −Ma
Γ1

Γ0
, (D.15.22)

where Ma is the Marangoni number.

Surfactant transport

Surfactant transport over the interface is governed by the equation

DΓ

Dt
+ Γ t · ∂u

∂l
=

∂

∂l

(
Ds

∂Γ

∂l

)
, (D.15.23)

where D/Dt is the material derivative, l is the arc length along the interface measured in the direction
of the unit tangent vector, t, and Ds is the surface surfactant diffusivity. Regarding Γ as a function
of x and t, we obtain

∂Γ

∂t
+ ux

∂Γ

∂x
+ Γ t ·

( ∂u

∂x
+

∂u

∂y

∂Γ

∂x

)∂x
∂l

=
∂

∂l

(
Ds

∂Γ

∂l

)
. (D.15.24)

The unit tangential vector can be linearized as

t � ex + ε
∂η

∂x
ey, (D.15.25)

where ex and ey are unit vectors along the x and y axes. To leading order, ∂x/∂l = 1. The emerging
linearized form of the surfactant transport equation is

∂Γ(1)

∂t
+ u(0) ∂Γ

(1)

∂x
+ Γ0

( ∂u(1)

∂x
+

∂u(0)

∂y

∂η

∂x

)
= Ds

∂2Γ(1)

∂x2
, (D.15.26)
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where all terms are evaluated at the unperturbed position, y = h, and the velocity on the left-hand
side is evaluated on either side of the interface, and Γ(1)(x, t) = Γ1 exp[ik(x− ct)]. Substituting the
preceding expressions for the upper fluid velocity, we obtain

Γ1

Γ0
=

a22 + a32 + Ξ ζa11
1 +Dsk iζ

kζ =
(Ξ ζ − 1) a11 + a22

1 +Dsk iζ
kζ, (D.15.27)

where we recall that Ξ = ξ/k.

Tangential component of the interfacial force balance

The linearized tangential component of the interfacial force balance requires that

μ1

(∂u(1)
1

∂y
+

∂v
(1)
1

∂x

)
y=h

= μ2

(∂u(1)
2

∂y
+

∂v
(1)
2

∂x

)
y=h

+
∂γ(1)

∂x
, (D.15.28)

where γ(1)(x, t) = γ1 exp[ik(x − ct)]. Expressing the velocity in terms of the stream function and
rearranging, we obtain

(∂2ψ
(1)
1

∂y2
− ∂2ψ

(1)
1

∂x2

)
y=h

= λ
(∂2ψ

(1)
2

∂y2
− ∂2ψ

(1)
2

∂x2

)
y=h

+
1

μ1

∂γ(1)

∂x
. (D.15.29)

Substituting the normal-mode forms, we find that(d2φ1

dŷ2
+ φ1

)
ŷ=0

= λ
(d2φ2

dŷ2
+ φ2

)
ŷ=0

+ i
γ1
μ1k

. (D.15.30)

Substituting the preceding expressions for φj and simplifying, we obtain

a11 + a41 − λ (a12 + a42) = i
γ1

2μ1k
, (D.15.31)

yielding

(1− λ) a11 + a41 + λ a22 − Λ [ (Ξ ζ − 1)a11 + a22 ] = 0, (D.15.32)

where

Λ ≡ −iMa
γ0
2μ1

ζ

1 +Dsk i ζ
(D.15.33)

is a dimensionless group. In the absence of surfactant, Λ = 0.

Normal component of the interfacial force balance

The linearized normal component of the interfacial force balance requires that

(
− p

(1)
1 + 2μ1

∂v
(1)
1

∂y

)
y=h

−
(
− p

(1)
2 + 2μ2

∂v
(1)
2

∂y

)
y=h

+Δρ g η = γ0
∂2η

∂x2
, (D.15.34)
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where Δρ = ρ1 − ρ2. Substituting the preceding expressions, we obtain

−μ1q1 + μ2q2 − 2ik2 μ1
dφ1

dŷ
+ 2ik2 μ2

dφ2

dŷ
+Δρ g A = −γ0 Ak

2, (D.15.35)

where all terms are evaluated at ŷ = 0. Substituting further qj(0) = −2i k2a2j , we obtain

2ik2(μ1a21 − μ2a22)− 2ik2 μ1(a21 + a31) + 2ik2 μ2(a22 + a32) + Δρ g A = −γ0Ak
2, (D.15.36)

which simplifies into

−2ik2μ1a31 + 2ik2μ2a32 + (Δρ g + γ0k
2 )A = 0. (D.15.37)

Rearranging, setting a32 = −a11, and using (D.7.16), we find that

(λ+ iΠζ) a11 + a31 = 0, (D.15.38)

where

Π ≡ 1

2μ1

( Δρ g

k2
+ γ0

)
=

γ0
2μ1

(Bo + 1) (D.15.39)

is a property group with dimensions of velocity, and Bo ≡ Δρ g/(γ0k
2) is a Bond number,

Formulation of an eigenvalue problem

Collecting equations (D.15.20), (D.15.18), (D.15.32), and (D.15.38), we obtain a linear homogeneous
system, M ·w = 0, where w =

(
a11, a21, a31, a41, a22

)
and

M =

⎡⎢⎢⎢⎢⎣
cosh k̂ −k̂ cosh k̂ − sinh k̂ k̂ sinh k̂ 0

− sinh k̂ cosh k̂ + k̂ sinh k̂ cosh k̂ − sinh k̂ − k̂ cosh k̂ 0
1− Ξζ(1− λ) 1 1 0 −1

1− λ− Λ(Ξζ − 1) 0 0 1 λ− Λ
λ+ iΠζ 0 1 0 0

⎤⎥⎥⎥⎥⎦ . (D.15.40)

Using the last equation to eliminate a31 in favor of a11, we derive a smaller system, M′ · w′ = 0,
where w′ =

(
a11, a21, a41, a22

)
and

M′ =

⎡⎢⎢⎣
cosh k̂ + (λ+ iΠζ) sinh k̂ −k̂ cosh k̂ k̂ sinh k̂ 0

− sinh k̂ − (λ+ iΠζ) cosh k̂ cosh k̂ + k̂ sinh k̂ − sinh k̂ − k̂ cosh k̂ 0
1− λ− ζ[ Ξ (1− λ) + iΠ ] 1 0 −1

1− λ− Λ(Ξ ζ − 1) 0 1 λ− Λ

⎤⎥⎥⎦ . (D.15.41)

Setting the determinant of the matrix M′ to zero provides us with a quadratic equation for
two possible growth rates,

P2(ζ) = (1 +Dsk iζ) det(M
′) = aζ2 + bζ + c = 0. (D.15.42)
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The factor 1 + Dsk iζ on the left-hand side involving the surface surfactant diffusivity arises from
the definition of the dimensionless parameter Λ. In the numerical method, the binomial coefficients
are computed by an exact finite-difference based on the equations

P2(1) = a+ b+ c, P2(−1) = a− b+ c, P2(0) = c. (D.15.43)

The roots are found analytically using the quadratic formula.

As the dimensionless wave number kh increases, the effect of the wall becomes decreasingly
important, yielding shear flow past an interface separating two semi-infinite fluids. Our analysis in
directory ifsf0 s has revealed two normal modes with complex phase velocities given in (D.13.42)
and (D.13.42),

c = uI − i
1

2μ1(1 + λ)

( Δρ g

k2
+ γ

)
, c = uI − i

(
Ma

γ0
2μ1(1 + λ)

+ kDs

)
. (D.15.44)

Both modes are stable with negative growth rates and phase velocity equal to the undisturbed
interfacial velocity.

Program files:

1. layersf0 s

Evaluates the complex phase velocity.

2. layersf0 s dr

Driver for the subroutine layersf0 s

3. det 33c

Determinant of a 3× 3 complex matrix.

4. det 44c

Determinant of a 4× 4 complex matrix.

5. quadc
Computes the roots of a quadratic equation with complex coefficients.

Input file:

1. layersf0 s.dat

Specification of input parameters.

Output file:

1. layersf0 s.out

Recording of the growth rate.

D.16 Directory orr

This directory contains a code that computes the complex phase velocity of normal-mode pertur-
bations in a viscous unidirectional shear flow using a finite-difference method. The mathematical
formulation and numerical method are discussed in Section 9.7.1
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D.17 Directory prony

This directory contains programs that decompose a time series into a linear superposition of nor-
mal modes. The mathematical formulation and numerical method are discussed in Section 8.9 of
Reference [317].

D.18 Directory sf1

This directory contains a code that computes the complex phase velocity of normal-mode pertur-
bations in an inviscid unidirectional shear flow using a finite-difference method. The mathematical
formulation and numerical method are discussed in Section 9.7.1

D.19 Directory thread0

This directory contains a code that performs the linear stability analysis of a viscous thread sus-
pended in an infinite ambient viscous fluid. The instability occurs under conditions of Stokes flow.
The formulation of the linear stability problem is discussed in Section 9.13.2.

Program files:

1. thread0
Evaluates the growth rate from analytical expression derived in Section 9.13.2.

2. bess I01K01

Computes the Bessel functions.

3. thread0 dr

Driver calling the main function.

Input files:

1. thread0.dat
Specification of input parameters.

Output files:

1. thread0.out
Growth rates.

D.20 Directory thread1

This directory contains a code that performs the linear stability analysis of an inviscid liquid column
suspended in an infinite constant-pressure ambient gas. The formulation of the linear stability
problem is discussed in Section 9.13.1.
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Program files:

1. thread1
Evaluates the phase velocity and growth rate from analytical expressions.

2. bess I01K01

Computes Bessel functions.

3. thread1 dr

Driver calling the main function.

D.21 Directory vl

This directory contains a code that computes the phase velocity and growth rate of periodic distur-
bances on a vortex layer from analytical expressions derived in Section 9.6.

D.22 Directory vs

This directory contains a code that produces the phase velocity and growth rate of periodic distur-
bances on a vortex sheet separating two streams merging with different velocities from analytical
expressions derived in Section 9.10.
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Index

absolute instability, 703
acceleration, 40

of a point particle, 24
added mass, 531
adhesion, 403
ADI method

for convection, 954
for convection–diffusion, 964

advancing contact angle, 232
AFI method, 937, 938
air viscosity, 207, 216
Airy stress function, 378
alternating tensor, 1016
amplification factor, 922
angle

contact, 231
solid, 166

angular
momentum, 39
velocity, 6
complex, 717

ann2l code, 1105
ann2l0 code, 1114
ann2lel code, 1124
ann2lel0 code, 1132
ann2lvs0 code, 1141
annular

layer, 1105
in Stokes flow, 1114
instability, 800
with elastic interface, 1124, 1132
with viscous interface, 1141

tube, 321
antisymmetric matrix, 1017
approximation of a function, 1086
Archimedes principle, 275

asperity, 624
Atwood ratio, 768, 881
augmented matrix, 1062
autonomous system, 94, 1087
Avogadro number, 204
axisymmetric

boundary layer, 685
domain, 809
flow, 110, 157, 265
induced by vorticity, 172
irrotational, 808

interface, 84
Stokes flow, 374, 463
vortex, 176

Bairstow’s method, 1075
baroclinic production of vorticity, 257
barotropic fluid, 218, 260
base

dyadic, 3
flow, 703
vectors, 1042
contravariant, 1043
covariant, 1043

Basset viscous memory force, 519
bearing, 398
Beltrami

field, 143
flow, 96, 100, 219, 222, 260
extended, 271, 273
generalized, 260, 269

BEM (boundary-element method), 468
BEMLIB, 1091
ber function, 343
Bernoulli

constant, 218

1225
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equation, 222
in a noninertial frame, 225

function, 218, 222
probability, 1012

Bessel function
J0, zeros of, 344
J1, zeros of, 346
J2, zeros of, 346

Bickley jet, 756, 759
biharmonic equation, 373

Green’s function, 413
in two dimensions, 418

mean-value theorem, 138
Bingham fluid, 207
binomial distribution, 1012
binormal vector, 49
Biot–Savart integral, 145, 161

desingularization, 909
truncation, 909

bipolar coordinates, 608
Blasius

boundary layer, 641, 642
instability, 758

equation, 641, 642
theorems, 585

blob, 873
periodic, 876

body force, 188
Bond number, 254, 281, 296, 301, 405, 782
boundary

condition
at a contact line, 231
at an interface, 238
for the vorticity, 979
no-penetration, 227
no-slip, 228
slip, 229

element method, 468, 814, 1091
integral equation, 805
for potential flow, 555, 803
for Stokes flow, 455, 465
for tube flow, 326
generalized, 819

layer
axisymmetric, 685

due to a radially stretching surface, 689
due to a stretching sheet, 659, 661
due to an oil slick, 663, 665, 693, 696
Falkner–Skan, 655
free, 639
in a homogeneous fluid, 639
in accelerating flow, 654
in nonaccelerating flow, 641
instability, 758
oscillatory, 699
Sakiadis, 651, 654
Stokes, 334
theory, 630
thickness, 645
three-dimensional, 637, 697
unsteady, 629

rigid, 240
Boussinesq

approximation, 883, 887
Basset viscous memory force, 519

Brinkman equation, 502
Bromwich integral, 502, 716, 719
BTCS method

for convection, 948
for convection–diffusion, 960
for diffusion, 924
for the Burgers equation, 952

bubble
expanding, 525
Faxén laws, 486
terminal velocity, 548
translating in Stokes flow, 438

buoyancy, 275
Burgers

columnar vortex, 261, 266
equation
inviscid, 952
viscous, 963

vortex layer, 264
Burstein method, 950
Butler’s theorems, 552

capillary
force, 236, 288
length, 281, 290
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number, 254, 407, 722
pressure, 236
rise, 284
torque, 236

Cartesian
vector, 1018

cat’s eye, 182
catenary, 290
catenoid, 284, 290
Cauchy

equation of motion, 195
Green strain tensor, 30
integral theorem, 585
Riemann equations, 377, 580, 590
stress, 190

cellular flow, 270
Celsius temperature, 204
centrifugal force, 203
centroid

areal, 569
of vorticity, 853
volume, 276, 530

CFDLAB, 1091
CFL condition, 942
chan2l0 code, 1152
chan2l0 s code, 1160
channel flow

steady, 312
two-layer, 1152
with surfactant, 1160

unsteady, 338
characteristic

polynomial, 1070
scale, 251

Christoffel symbols, 1049
CIC method, 890
circle theorem, 587
circular

cylinder
in potential flow, 571, 586, 587
in Stokes flow, 497

tube, 317
indented, 324

circulation, 102
evolution of, 255

preservation of, 268
circulatory motion, 8
cloud-in-cell method, 890
coalescence, 903
coat0 s code, 1168
coating

a plate, 406
die, 396
leveling, 405

Cole–Hopf transformation, 963
collocation method, 815
combinatorial, 1011
compatibility, kinematic, 89
complex

lamellar flow, 100, 143
potential, 580
variable formulation
for potential flow, 579
for Stokes flow, 377

compound matrix method, 756
compressibility, 37

artificial, 1005
compressible

flow, 140
fluid, 136, 279

cone of influence, 944
conformal mapping, 589
conservative form, 915
consistency of a finite-difference method, 914
contact

angle, 231
advancing, 232
dynamic, 232
hysteresis, 232
receding, 232
singularity, 233
static, 232

line, 231
continuation, 974
continuity equation, 35
continuous

function, 1008
spectrum, 718, 733

continuum
approximation, 1
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mechanics, x
contravariant

base vectors, 1043
coordinates, 1044

control volume, 35
convection, 938

–diffusion, 956
in two and three dimensions, 964
nonlinear, 963

in one dimension, 938
in three dimensions, 953
in two dimensions, 953
nonlinear, 951
number, 940

convective derivative, 24, 1048
convergence, 915
coordinates

bipolar, 608
contravariant, 1044
convected, 56
covariant, 1044
curvilinear, 1042
cylindrical polar, 1033
elliptic, 608
helical, 1058
nonorthogonal, 20, 1042
orthogonal, 13, 1026
plane polar, 1039
spherical polar, 1035
surface curvilinear, 56, 91, 93

Coriolis force, 203
corner

dihedral, 286
flow
between free surfaces, 394
potential, 581
viscous, 388

rounded, 626
Couette flow, 313, 760

instability, 712, 733
inviscid, 712, 733
oscillatory, 338
transient, 338

couplet, 421
oscillatory, 513

Courant number, 940
Courant–Friedrichs–Lewy condition, 942
covariant

base vectors, 1043
coordinates, 1044

Crank–Nicolson method, 925, 927, 932
for convection, 948
for convection–diffusion, 960
generalized, 927, 937

creeping flow, 252
unsteady, 252, 370

critical
layer, 732, 738
point of mapping, 590
Reynolds number, 727

CTCS method
for convection, 946
for convection–diffusion, 959
for diffusion, 922

cubic-spline interpolation, 1078
curl of a vector field, 1022, 1031, 1053
curvature, 66

mean, 67, 74, 235
as a contour integral, 76

of a line, 49
in a plane, 71

of an axisymmetric surface, 77
principal, 68

curvilinear coordinates
in a surface, 56
nonorthogonal, 20, 193, 1042
orthogonal, 13, 192, 199, 1026

cyclic constant, 103, 114
cylinder

circular
in potential flow, 571, 586, 587, 597
in Stokes flow, 497

cylindrical polar coordinates, 14, 216, 1033

D’Alembert’s paradox, 541
Da Rios equations, 169
damping force in oscillatory flow, 701
Darboux rotation vector, 50
Darcy law, 771, 802
decomposition
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LU, 1061
of a vector field, 152
of the velocity gradient, 4
QR, 1073

deflation, Wielandt, 840
deformation, 6

gradient, 29
relative, 29

rate of, 4
del operator, 1021
delta function

in one dimension, 1012
in three dimensions, 1015
in two dimensions, 1013

density, 21
derivative

convective, 24, 1048
material, 23

determinant, 1064
of a tridiagonal matrix, 1071

deviatoric stress tensor, 205
differential equation, 1087
differentiation, numerical, 1082
diffusion, 917

fourth-order, 928
number, 919
numerical, 942
explicit, 949

of vorticity, 258, 261
diffusivity, 912

numerical, 943
surfactant, 82

dihedral corner, 286
dilatation, 7, 63

of a surface, 58
dilatational viscosity, 207
dipole

of a point force, 421
of a point source, 120

Dirac delta function
in one dimension, 1012
in three dimensions, 1015
in two dimensions, 1013

direction cosine, 9
Dirichlet problem, 823

discretization, finite difference, 913
disk

rotating in viscous flow, 360
translating in potential flow, 562

dispersion
equation, 927
length, 853
relation, 770

displacement, 29
thickness, 647

dissipation, 197
in a fluid parcel, 197
in irrotational flow, 524

disturbance, 703
divergence

of a vector field, 1021, 1031, 1052
of the velocity, 3
surface, 60
theorem
in a plane, 1024
in a surface, 1025
in space, 1023

double-layer
potential, 132, 803, 825
of Stokes flow, 457

representation, 828
completed, 845

drop
Faxén laws, 486
oscillations, 830
relaxation, 720, 1169
rotating, 280
translating in Stokes flow, 438

drop ax code, 1169
Du Fort–Frankel method

for convection–diffusion, 959
for diffusion, 923

dyadic base, 3, 10
dynamic contact angle, 232
dynamics, 1

eccentricity, 601
eddy in viscous flow, 390
eigenvalue

computation, 1069
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deflation, 840, 1072
of the rate-of-strain tensor, 6
problem
generalized, 750
standard, 750

Einstein summation convention, 1016
Ekman flow, 331
elasticity of a surface, 234, 237
electromagnetic force, 188
ellipke function, 175
elliptic

coordinates, 608
integral, 175, 613

elliptical
cylinder in potential flow, 601
tube, 319

embedding method, 1076
energy

differential balance, 196
dissipation, 213
integral balance, 197
in Stokes flow, 375

kinetic, 117
enstrophy, 265, 852
entire function, 580
equation

linear system, 1060
nonlinear algebraic, 1073
of motion, 195
generalized for an interface, 239
in a noninertial frame, 201

error
function, 264, 336, 516, 1013
complementary, 264, 336

Ertel’s theorem, 266
Euler

constant, 303, 496
decomposition, 1079
equation, 222, 253
method, 1088
modified, 1088

theorem for the curvature, 69
theorem in kinematics, 34

Eulerian
description of material surfaces, 89

framework, 21
even–odd coupling, 947
evolution

equation, 704
of the pressure, 705
of the velocity, 705
of the vorticity, 706

expansion, 7, 63
viscosity, 207

extension rate, 100
extensive variable, 38
extremum

of a harmonic function, 137
of the velocity, 137

factorial, 1009, 1011
fading memory, 205
Falkner–Skan boundary layer, 655
false transient, 1005
Faxén law, 482

for oscillator flow, 511
generalized, 449

FDE, 913
FDLIB, 1090
Fick’s law, 82, 87
film

coating, 406
down an inclined plane, 403
instability, 779, 1170
with surfactant, 1170

flow down an inclined plane, 315
instability on a horizontal plane, 773
leveling, 405, 723, 773, 1168
Rayleigh–Taylor instability, 1168, 1169

film0 s code, 1170
finite-difference

grid, 913, 918
method, 340, 344
for boundary layers, 640

five-point formula, 887
fixed-point iterations, 1074
Fjørtoft’s theorem, 737
flow

axisymmetric, 110, 265
base, 703
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due to a line vortex, 164
induced by vorticity, 161
axisymmetric, 172
two-dimensional, 179

irrotational, 8, 112, 522
linear, 100, 160
nearly unidirectional, 395
net, 580
Oseen, 487
past a two-dimensional body, 601
rotating, 330, 342
rotational, 8
separation, 636
steady, 1
Stokes, 370
swirling, 20, 342
two-dimensional, 1, 108, 266
potential, 810
Stokes, 373

unidirectional
steady, 311
unsteady, 332

fluid
ideal, 209
incompressible, 36
inelastic, 206
inviscid, 209
Newtonian, 207
incompressible, 209

simple, 206
sloshing, 226
viscous, 206

force
body, 188
capillary, 236, 288
in a fluid, 187
in a Newtonian fluid, 211, 212
on a body in potential flow, 534
on a boundary, 190, 213
on a fluid sheet, 190
on a parcel, 190
on an immersed body, 275
point-
in Navier–Stokes flow, 365
in Stokes flow, 421

surface, 187
form drag, 213
Fourier

series, 712
complete, 1079

transform, 415, 713
fractal shape, 620
fractional steps

for convection–diffusion, 962, 965
for diffusion, 937

Fredholm
alternative, 835
integral equation, 881
of the first kind, 808, 823
of the second kind, 806, 823

free surface, 211, 244
Frenet–Serret relations, 49, 96
frequency parameter, 251
Froude number, 251, 781
FTBS method, 941
FTCS method, 919
FTFS method, 942
function

approximation, 1086
continuous, 1008
entire, 580
of a complex variable, 377, 579
of a real variable, 1008
of two real variables, 1010

fundamental
form of a surface
first, 65
second, 66

solutions of Stokes flow, 421

Görtler instability, 762
gain, 922
Galerkin method, 753, 816
gamma function, 611
gas, 229

ideal, 204, 279
Gauss

–Seidel method, 1066
divergence theorem, 1023
elimination, 1061
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hypergeometric function, 620
quadrature, 1085

Gaussian distribution, 1013
geopotential, 226
Gerschgorin theorem, 739, 1070
Gibbs

surface elasticity, 234
surface equation of state, 237

GMRES, 1069
gradient

of a scalar function, 1021, 1029, 1047
of a vector field, 1021, 1030, 1051
of the velocity, 2, 242
operator, 1029, 1048

Green’s
function, 716
for unsteady diffusion, 918
of Laplace’s equation, 123
of Stokes flow, 411
symmetry, 126, 412

identity
first, 123
second, 123
third, 133

Lagrange strain tensor
left, 31
right, 30

grid
finite-difference, 913, 918
generation
orthogonal, 591, 608

staggered, 990
group velocity, 730
growth

factor, 922
rate, 717

Hagen–Poiseuille flow, 313
Hamiltonian formulation, 855
harmonic potential, 117
Heaviside function, 337, 1015
Hele–Shaw cell, 395, 773, 802
helical

coordinates, 1058
line , 55

line vortex, 172
pitch, 55, 172, 1058

helicity, 852
Helmholtz

decomposition, 153
equation, 289
theorems, 256

Henry equation of state, 237
Hermite equation, 858
Heun’s method, 1088
Hicks velocity of a vortex ring, 906
Hill’s vortex, 178, 223, 439
Hodge decomposition, 153
hopscotch method

for convection, 962
for convection–diffusion, 964

horse, 590
Householder matrix, 1072
Howard’s theorem, 737
hydrodynamic

pressure, 212
stress, 212
volume force, 195

hyperbolic equation, 939
hypergeometric function, 620

ideal
fluid, 209
gas, 204, 279
constant, 204
law, 204

identity matrix, 4
if0 code, 1176
ifsf0 s code, 1180
impulse, 851
impulsive source, 918
incompressible fluid, 36, 117

Newtonian, 209
index notation, 1015
inelastic fluid, 206
inertia, 195

in low-Re flow, 487
inextensible surface, 60
influence coefficient, 469, 576, 815
initial
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condition, 912
value problem, 712

inner vector product, 1016–1018, 1047
instability

absolute, 703
convective, 703
hydrodynamic, 703
numerical, 914
spatial, 726, 729
temporal, 726, 728

integral
balance
energy, 197
mass, 36
momentum, 196

elliptic, 175, 613
equation
of the first kind, 466, 808, 823
of the second kind, 466, 806, 823

representation
of potential flow, 131, 139

integration, numerical, 1084
intensive variable, 38
interface, 80

axisymmetric, 84
two-dimensional, 80

interfacial condition, 233
intermediate-value theorem, 1008
interpolation, 1076

in two variables, 1079
Lagrange, 1077
local polynomial, 1077
trigonometric, 1079

intrinsic vorticity, 266
invariant

of a tensor, 11
of vortex motion, 851

inviscid fluid, 209
irreducible loop, 112
irrotational flow, 8, 112, 522
isoparametric representation, 815
iterations

fixed-point, 1074
Gauss–Seidel, 1066
Jacobi, 1066

SOR, 1067
iterative solution, 847

Jacobi method, 1066, 1072
Jeffery–Hamel flow, 387
jet

Bickley, 756
instability, 759
spreading
axisymmetric, 698
two-dimensional, 652

Joukowski transformation, 603
generalized, 609

Kármán–Pohlhausen method, 670
Kelvin

circulation theorem, 256
functions, 343
Helmholtz instability, 182, 766
minimum dissipation theorem, 119
temperature, 204
velocity of a vortex ring, 906

ker function, 343
kinematic

compatibility, 89
viscosity, 215

kinematics, 1, 111
kinetic energy, 117, 163
Kirchhoff

Hamiltonian formulation, 855
vortex patch, 897
stability of, 899

Knudsen number, 229
Korteweg–de Vries equation, 966
Kovasznay flow, 272
Kronecker delta, 1016
Krylov sequence, 1071
Kutta–Joukowski condition, 603

Laasonen method, 924
label, 21
Lagrange

interpolation, 1077
Jacobian tensor, 27
metric, 28

Lagrangian
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description, 22
label, 21, 22
mapping, 26

lamellar field, 143
Landau–Levich film thickness, 409
Langmuir equation of state, 237
Laplace

Beltrami operator, 88
equation, 117, 930
law, 238
pressure, 236
transform, 501, 715, 719
Young equation, 281

Laplacian
of a scalar function, 1022, 1031, 1053
of a vector function, 1035, 1038, 1041

Lax
equivalence theorem, 915
method, 944
for the Burgers equation, 952

Wendroff method, 945
for the Burgers equation, 952

layer
in shear flow, 1191
leveling, 1186

layer0 code, 1186
layersf0 s code, 1191
leapfrog method, 946
Legendre polynomial, 721
Leonard method, 959
level-set formulation, 90
Levich equation, 549
Lewis transformation, 606
LIA, 169, 909
line

curvature of, 49
material, 48
torsion of, 49
vortex, 105, 164, 908
helical, 172
sinusoidal, 172

linear
equations, 1060
evolution, 707
flow, 100, 160

stability analysis, 704
transformation, 10

liquid, 229
column, 1198
thread, 1198

local
induction approximation, 169, 909
interpolation, 1077
solution for Stokes flow, 381

Lorentz reciprocal theorem, 220
for Stokes flow, 446

Love waves, 901
LU decomposition, 1061
lubrication, 398

equation, 401
flow, 395
force, 401

Lyapunov surface, 467, 804

Möbius transformation, 591
MAC method, 989
MacCormack method, 950

for convection–diffusion, 961
for the Burgers equation, 953

Maclaurin series, 1010
Magnus effect, 575
Mangler transformation, 686
mapping

conformal, 589
of a polygon, 609, 618, 620
of a rectangle, 612
of a region above a step, 614
of a strip, 612
of a triangle, 611

Lagrangian, 26
Schwarz–Christoffel, 609
periodic, 622

Marangoni
number, 237, 1110, 1119
traction, 236

mass, 35
added, 531
conservation, 35
integral balance, 36

material
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derivative, 23
line, 48
surface, 56
vector, 46

matrix, 1015
antisymmetric, 1017
augmented, 1062
skew-symmetric, 45, 1017
symmetric, 45
trace, 1017

Maxwell relation for slip, 229
MDE, 914
mean

curvature, 67, 235
value theorem, 136, 140
for a biharmonic function, 138, 140
for a singular function, 138
for an integral, 1009
for the derivative, 1008

meniscus
attached to a plate, 291
axisymmetric, 298
between two plates, 284, 295
inside a container, 297
inside a tube, 299
outside a tube, 301
three-dimensional, 307

metric
of a line, 49
of a surface, 57, 1031
tensor, 65, 1043, 1044

Meusnier theorem, 66
modified

differential equation, 914
dynamics, 949, 1005

molar mass, 204
momentum

angular, 39
integral balance, 196
linear, 38
tensor, 13
thickness, 648

motion
equation of, 195
of a point particle, 39

multiply connected domain, 112
multipole

expansion in Stokes flow, 459, 462
of Green’s function, 128

multistep method, 950

Nÿstrom method, 847
nabla operator, 1021
Navier

Maxwell–Basset slip, 229, 441
Stokes equation, 186, 215

nearly unidirectional flow, 395
Neumann

function, 124
problem, 823
series, 836

Newton
method, 1074
Raphson method, 1074
second law of motion, 189, 195
third law of motion, 190

Newtonian fluid, 186, 207
incompressible, 209

no-penetration condition, 227
no-slip condition, 228
nodoid, 284
nonautonomous system, 1087
noninertial frame, 201, 265, 980
nonlinear

convection, 951
equation, 1073
stability analysis, 704

nonorthogonal coordinates, 20, 193, 1042
normal

mode analysis, 717
of unidirectional flow, 724

stress, 188
vector, 49, 57

notation, ix
index, 1015

numerical
approximation, 1086
cone of influence, 944
differentiation, 1082
diffusion, 942
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explicit, 949
integration, 1084
methods, 1060
stability, 914

Nusselt film flow, 316

objectivity, 205
oblate

spheroid
curvature, 80
in potential flow, 557

spheroidal coordinates, 557
octuple, 128
ODE, 1087
operator

self-adjoint, 835
splitting, 937, 954

orr code, 1197
Orr–Sommerfeld equation, 727

numerical solution, 748
orthogonal

coordinates, 13, 192, 1026
polynomial, 1087
transformation, 9

orthogonality, Fourier, 1080
oscillatory

boundary layer, 699
flow above a plate, 334, 338
flow due to a plate, 333
Poiseuille flow, 339, 342
Stokes flow, 502

osculating plane, 49
Oseen

Burgers tensor, 413
flow, 221, 370, 488
two-dimensional, 495

Lamb flow past a sphere, 493
vortex, 269

Oseenlet, 490
two-dimensional, 495

outer product, 1018, 1047
vector–matrix, 1020

Péclet number, 956
panel method, 803, 814

parameter continuation, 974, 1076
particle

motion in Stokes flow, 519
point-, 22
vibrating, 506

path line, 99
PDE, 913
permanence of irrotational flow, 256
permanent translation, 545
permeability, 771, 802
perturbation, 703
phase

space, 1087
velocity, 728, 928

pitch, 55, 172, 1058
pivoting, 1061
plane polar coordinates, 18, 156, 216, 1039
plate

in potential flow, 602
suddenly translating, 335
vibrating in its plane, 333

Plateau–Rayleigh criterion, 790
Pohlhausen polynomials, 671, 679
Poincaré decomposition, 154
point

force, 410
above a wall, 453
in free space, 413
in Navier–Stokes flow, 365
in Oseen flow, 490
in Stokes flow, 421
inside a tube, 452
oscillatory, 502

particle, 2, 22
acceleration, 24
label, 21
motion, 39
rotation, 44

source, 120, 536
above a wall in Stokes flow, 427
dipole, 120
in Stokes flow, 421
oscillatory, 511
outside a cylinder, 587
outside a sphere, 553
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stream function, 156, 158
vortex, 108, 180
above a plane wall, 864
array, 181, 857, 868
between two walls, 866
clusters, 859
diffusion, 268
dipole, 183
in a semi-infinite strip, 866
inside a cylinder, 588, 599, 864
method for a vortex sheet, 885
near a corner, 865
outside a cylinder, 588, 599, 864
periodic array, 867
polygon, 857
row, 181, 868

poise, 207
Poiseuille

flow, 313, 317
instability, 729, 760
oscillatory, 339, 342
transient, 343, 345

law, 318
Poisson

equation, 130, 156, 312, 930
integral, 136
for a circle, 141
for a sphere, 135

inversion formula, 145
polar

coordinates
cylindrical, 216, 1033
plane, 156, 216, 1039
spherical, 216, 1035

decomposition, 30
polygon

mapping, 618, 620
of point vortices, 857

polygonal tube, 326
polyline, 80
polymorphism, ix
polynomial

characteristic, 1070
interpolating, 1076
orthogonal, 1087

roots, 1075
porosity, 771
porous medium, 771, 802
positive definite tensor, 30, 31
potential, 37

complex, 580
function, 112
harmonic, 117
vector, 37, 142
volume, 136

power
law fluid, 207
method, 1071
spectrum, 1080

PPE, 983
Prandtl

Batchelor theorem, 267, 272
boundary layer, 629, 631
transposition theorem, 641

pressure
correction method, 996
gradient
adverse, 633
favorable, 633

hydrodynamic, 212
in hydrostatics, 275
in Stokes flow, 372
integral representation, 461

jump across an interface, 238
Poisson equation, 983, 992
reaction, 205

principal
curvature, 68
value integral, 126, 465, 822
velocity of a vortex sheet, 108, 877

product
inner, 1016–1018
matrix, 1017
matrix double-dot, 1018
outer, 1018
tensor, 1017
triple scalar, 1019
triple vector, 1019

projection
matrix, 91
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method, 996
prolate

spheroid
rotating in Stokes flow, 437
translating in potential flow, 555
translating in Stokes flow, 437

spheroidal coordinates, 556
Prony method, 1198

QR decomposition, 1073
quadrature, Gauss, 1085
quadruple, 128

Rankine
ovoid, 560, 562
vortex, 874, 893

rate
of deformation tensor, 4
of extension, 100
of strain tensor, 4

Rayleigh
criterion
for an inflection point, 736
for rotating flow, 761

equation, 731
for a bubble, 526
numerical solution, 748

instability
inviscid, 788
viscous, 791

Plateau criterion, 790
Taylor instability, 767, 889, 1176

reaction pressure, 205
receding contact angle, 232
reciprocal theorem

for harmonic functions, 123
for incompressible fluids, 38
for Navier–Stokes flow, 220
for Stokes flow, 446

rectangle
flow through, 321
mapping, 612

rectifying plane, 49
rectilinear flow, 311
reducible loop, 112

regularization, 887
Reiner–Rivlin fluid, 207
relaxation of a drop, 720
remainder, 1009
renormalization, 870
reorientation, 257

of a material vector, 47
repositioning, 887
residual

correction, 1067
generalized minimal, 1069

residues, 716
reversibility of Stokes flow, 374
Reynolds

lubrication equation, 401
number, 251, 974
cell, 956
for tube flow, 318

transport theorem, 34
Riccati equation, 732, 754
Richtmyer method, 950
Riemann mapping theorem, 599
Riesz–Fredholm theory, 835
rigid

body
motion, 55, 227
rotation, 6
translation, 6

boundary, 240
rise velocity, 434, 440
RK2, 1088

midpoint method, 1088
RK3, 1088
RK4, 1089
Rolle’s theorem, 1008
Romberg integration, 1085
rotating

flow
steady, 330
unsteady, 342

sphere, 436
rotation, 6

around an axis, 44
matrix, 10, 44
of a disk, 360
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rotational flow, 8
rotlet, 145, 162, 421

oscillatory, 513
Runge–Kutta method

fourth order, 1089
second order, 1088
third order, 1088

Sakiadis boundary layer, 651, 654
saturation, 746
Schrödinger equation, 170
Schwarz–Christoffel transformation, 609

for periodic domains, 622
scraper, 383
secant method, 1075
seepage velocity, 771
self-adjoint operator, 835
self-similarity, 641, 642
semi-circle theorem, 737
separation of a flow, 636
series

Taylor, 1009
in two variables, 1010

settling velocity, 434, 440
sextuple, 128
sf1 code, 1198
shape factor, 649
shear

flow, 207, 1197, 1198
instability, 736, 757
simple, 32, 215, 313

function, 674
layer, 639
instability, 757

rate, 32, 215
stress, 188

sheet, vortex, 105
similarity

solution, 263, 335
transformation, 13, 1072
variable, 642

similitude, 253
simple

fluid, 206
shear flow, 313

simply connected domain, 112
Simpson’s rule, 1085
single-layer

potential, 132, 803, 820
of Stokes flow, 457

representation, 823
singularity

at a contact angle, 233
of irrotational flow, 120
of Stokes flow, 421
representation
of potential flow, 555, 558
of Stokes flow, 431, 444

skew-symmetric matrix, 1017
skin friction, 213, 242
slender-body theory

for potential flow, 563, 578
for Stokes flow, 471

slip
boundary condition, 229
over a sphere, 441

sloshing, 226
smoothing, 887
solenoidal

field, 36, 1021
projection, 706

solid
angle, 166
mechanics, x

soliton, 171
SOR, 1067
source, impulsive, 918
spatial instability, 726, 729
spectral radius, 835, 1066
spectrum

continuous, 718, 733
discrete, 718
of a matrix, 1069
of an integral operator, 835
of eigenvalues for stability, 718

sphere
Faxén law for, 483
in linear Stokes flow, 434
with slip, 441

rotating
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in Stokes flow, 436
in unsteady Stokes flow, 520

rotational vibrations of, 514
translating
in potential flow, 546
in Stokes flow, 432, 460
in Stokes flow with slip, 441
in unsteady Stokes flow, 519

translational vibrations of, 514
spherical polar coordinates, 16, 216, 1035
spheroid

Faxén law for, 483
mean curvature, 79
oblate in potential flow, 557
prolate

in potential flow, 555
rotating in Stokes flow, 437
translating in Stokes flow, 437

spheroidal coordinates
oblate, 557
prolate, 556

spin vector, 53
squeezing flow, 402
Squire’s theorems, 726
stability

analysis
linear, 704
nonlinear, 704

hydrodynamic, 703
numerical, 914
von Neumann, 921

staggered grid, 990
stagnation point, 94

at a free surface, 249
at an interface, 249
flow, 348
in Stokes flow, 382

standing wave, 770
static contact angle, 232
steady

flow, 1
streaming, 510

steepest decent, 1067
Stokes

boundary-layer thickness, 333, 338

equation, 731
flow, 252, 370
oscillatory, 502
past a particle, 447
reversibility, 374
two-dimensional, 464
unsteady, 252, 370, 500

law, 434
inertial correction, 492

theorem, 1025
Stokeslet, 413

dipole, 421
oscillatory, 504
two-dimensional, 419

strain, 6
rate, 4

streakline, 100
stream

function, 143, 154
surface, 95
tube, 95

streamline, 94
coordinates, 96

stress, 186, 274
deviatoric, 205
hydrodynamic, 212
in a fluid, 188
in cylindrical polar coordinates, 193
in plane polar coordinates, 193
in spherical polar coordinates, 193
momentum tensor, 196
normal, 188
shear, 188
tensor, 190
deviatoric, 205
symmetry of, 198

stresslet, 424
stretch

ratio, 30
tensor, 30

stretching
of a material vector, 46
vortex-, 257

strip
mapping, 612
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with a point vortex, 866
Strouhal number, 636
substitutions

backward, 1060
forward, 1060
successive, 836, 1065

successive
over-relaxation, 1067
substitutions, 836, 1065

suction through a plate, 272
superparametric representation, 815
surface

axisymmetric, 77
dilatation, 58
divergence, 60
elasticity, 234
evolver, 309
force, 187
inextensible, 60
material, 56
tension, 234

surfactant, 233, 234
diffusivity, 799
effect on the Rayleigh instability, 799
equation of state, 236
transport, 80

swirling flow, 20, 342
creeping, 374, 379
inside a cylinder, 346
outside a cylinder, 346

symmetry
of Green’s functions, 126, 450
of the stress tensor, 198

Taylor
cellular flow, 270
instability, 762
scraper, 383
series, 1009
in two variables, 1010

temperature, 204
temporal instability, 726, 728
tensor, ix, 8

invariant, 11
metric, 65

properties, 13
thickness

displacement, 647
momentum, 648

Thomas algorithm, 341, 1064
thread

instability, 791
inviscid, 1198
viscous, 1198

thread0 code, 1198
thread1 code, 1198
Thwaites boundary layer, 678, 684
TMAC, 229
Toeplitz matrix, 929
Tollmien–Schlichting waves, 758
torque

capillary, 236
in a Newtonian fluid, 212
on a body in potential flow, 534
on a boundary, 192, 213
on a fluid parcel, 191

torsion of a line, 49
trace of a matrix, 1017
traction, 187

in a Newtonian fluid, 211
in terms of the stress, 189
jump at an interface, 233

transformation
Cole–Hopf, 963
linear, 10
Möbius, 591
Mangler, 686
Schwarz–Christoffel, 609
for periodic domains, 622

similarity, 13
transient

Couette flow, 338
Poiseuille flow, 343, 345

transition to turbulence, 648
translation, 6
transport equation, 35
trapezoidal rule, 1084
triangle

flow through, 320
mapping, 611
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tridiagonal matrix, 1064
determinant of, 1071
eigenvalues of, 921

trigonometric
interpolation, 1079

triple scalar vector product, 1019
tube

annular, 321
circular, 317
indented, 324

elliptical, 319
flow
steady, 316
unsteady, 342

polygonal, 326
rectangular, 321
triangular, 320

two-dimensional
flow, 1, 108, 266
interface, 80
Stokes flow, 373

undetermined coefficients, 914
unduloid, 284
unidirectional flow

nearly, 395
steady, 311
unsteady, 332

uniqueness
of potential flow, 119
of Stokes flow, 376

upwind differencing
for convection, 942
for convection–diffusion
in two dimensions, 964

Vandermonde matrix, 1077
variable

extensive, 38
intensive, 38

vector, ix, 1015
binormal, 49
calculus, 1021
Cartesian, 1018
component

directional, 1020
components, 1029, 1046
identities, 1022
material, 46
normal, 49, 57
potential, 37
product
inner, 1016–1018, 1047
outer, 1018, 1047
tensor, 1017
triple scalar, 1019

tangent, 48
velocity, 1

at an interface, 238
gradient, 2, 242
group, 730
in Stokes flow, 372
in terms of the vorticity, 144
of a point particle, 2
of rise or settling of a drop, 440
of rise or settling of a sphere, 434
potential, 112
pressure formulation, 983
seepage, 771

vertex crowding, 626
vibrating

particle, 506
plate, 333

VIC method, 890
viscosity, 207

bulk, 208
dilatational, 207
dynamic, 207
kinematic, 215
of air, 207, 216
of water, 207, 216

viscous fluid, 206
vl code, 1199
volume

control, 35
force, 195

von Kármán
approximate method, 650
vortex street, 871

von Mises’ transformation, 641
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von Neumann stability analysis, 921
vortex, 145

axisymmetric, 176
blob, 269, 873
periodic, 876

Burgers, 261, 266
coalescence, 903
flow, 850
axisymmetric, 905
three-dimensional, 908
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tensor, 4
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vorton, 162
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